diff --git a/starkjs/src/utils.js b/starkjs/src/utils.js index 03585a91..0e45fc79 100644 --- a/starkjs/src/utils.js +++ b/starkjs/src/utils.js @@ -5,7 +5,7 @@ module.exports = { // * Maximum degree of constraints d // * Domain blowup factor b // * Collision resistance of the hash function c - // * Nummber of queries n + // * Number of queries n // Security Level(bits): // min(log2(q/(t*b)), log2(b/d)*n, c) security_test(starkStruct, execution_trace) { diff --git a/starky/src/f5g.rs b/starky/src/f5g.rs index 61e22995..76ca9ec3 100644 --- a/starky/src/f5g.rs +++ b/starky/src/f5g.rs @@ -620,7 +620,7 @@ impl F5G { // order p^5-1), obtain that x^r is a root of the polynomial // X^(p-1) - 1. However, all non-zero elements of GF(p) are // roots of X^(p-1) - 1, and there are p-1 non-zero elements in - // GF(p), and a polynomial of degre p-1 cannot have more than + // GF(p), and a polynomial of degree p-1 cannot have more than // p-1 roots in a field. Therefore, the roots of X^(p-1) - 1 // are _exactly_ the elements of GF(p). It follows that x^r is // in GF(p), for any x != 0 in GF(p^5) (this also holds for x = 0). diff --git a/starky/src/fft_worker.rs b/starky/src/fft_worker.rs index 294005b5..0bf7d282 100644 --- a/starky/src/fft_worker.rs +++ b/starky/src/fft_worker.rs @@ -10,9 +10,9 @@ pub fn interpolate_prepare_block( st_n: usize, ) { log::trace!("linear interpolatePrepare start....{}/{}", st_i, st_n); - let heigth = buff.len() / width; + let height = buff.len() / width; let mut w = start; - for i in 0..heigth { + for i in 0..height { for j in 0..width { buff[i * width + j] *= w; } @@ -51,9 +51,9 @@ fn _fft_block( let mut w = F::ZERO; if s > blockbits { let width = 1 << (s - layers); - let heigth = n / width; - let y = start_pos / heigth; - let x = start_pos % heigth; + let height = n / width; + let y = start_pos / height; + let x = start_pos % height; let p = x * width + y; w = F::from(MG.0[s].exp(p as u64)); } else {