diff --git a/notebooks/mnist_example/Epoch_100_MNIST_1000_Samples_VP_NF_128_Ch_Mult_2_2_Batch_Size_128_LR_1e_3_ema_decay_0_999.pt b/notebooks/mnist_example/Epoch_100_MNIST_1000_Samples_VP_NF_128_Ch_Mult_2_2_Batch_Size_128_LR_1e_3_ema_decay_0_999.pt new file mode 100644 index 0000000..c19c7bd Binary files /dev/null and b/notebooks/mnist_example/Epoch_100_MNIST_1000_Samples_VP_NF_128_Ch_Mult_2_2_Batch_Size_128_LR_1e_3_ema_decay_0_999.pt differ diff --git a/notebooks/mnist_example/MNIST_Diffusion_Example.ipynb b/notebooks/mnist_example/MNIST_Diffusion_Example.ipynb new file mode 100644 index 0000000..7811be5 --- /dev/null +++ b/notebooks/mnist_example/MNIST_Diffusion_Example.ipynb @@ -0,0 +1,449 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# This notebook demonstrates how to train a score-based diffusion model on the MNIST dataset. \n", + "\n", + "We will introduce MNIST, show how to download the dataset, train a score-based diffusion model on MNSIT, and evaluate the quality of the samples generated by our trained modelusing the [PQMass](https://arxiv.org/abs/2402.04355) metric, introduced by Lemos et al. (2024)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# General Imports \n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torchvision.transforms as transforms\n", + "from torchvision.datasets import MNIST\n", + "import os \n", + "\n", + "# Imports for Score Model\n", + "from score_models import ScoreModel, EnergyModel, NCSNpp, MLP, DDPM\n", + "\n", + "# Imports for PQMass\n", + "from scipy.stats import norm, chi2, uniform\n", + "from pqm import pqm_chi2\n", + "\n", + "# Imports for Nice Plotting\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.dpi'] = 200\n", + "plt.rc(\"font\", **{\"family\": \"serif\", \"serif\": [\"Computer Modern\"]})\n", + "plt.rc(\"text\", usetex=True)\n", + "\n", + "# Create a Folder called MNIST_Checkpoint_Directory if it doesn't exist - This is used during training the diffusion model\n", + "# Define the directory path\n", + "checkpoint_dir = './MNIST_Checkpoint_Directory'\n", + "\n", + "# Check if the directory exists, and if not, create it\n", + "if not os.path.exists(checkpoint_dir):\n", + " os.makedirs(checkpoint_dir)\n", + "\n", + "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MNIST\n", + "\n", + "The data we are going to be working with is called MNIST. It is a 60,000 training and 10,000 test images of handwritten digits from 0 to 9. All the images are grayscaled, meaning one channel, and each image is 28x28 pixels. It is widely used for benchmarking machine learning models due to its simplicity and ease of visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def open_data(data_dir, num_samples=10000, train=True):\n", + " # Define the transform to convert images to tensors\n", + " transform = transforms.Compose([transforms.ToTensor()])\n", + " \n", + " # Load the MNIST dataset with the transform applied\n", + " all_mnist = MNIST(data_dir, train=train, transform=transform, download=False)\n", + " \n", + " # Randomly select a subset of images\n", + " total_samples = len(all_mnist)\n", + " random_indices = torch.randperm(total_samples)[:num_samples]\n", + " \n", + " # Stack only the selected images\n", + " dataset = torch.stack([all_mnist[i][0] for i in random_indices], dim=0)\n", + "\n", + " return dataset\n", + "\n", + "class MNIST_datasets(torch.utils.data.Dataset):\n", + " def __init__(self, data_dir, *args, num_samples=10000):\n", + " self.args = args\n", + " # Load training and test datasets\n", + " self.dataset = open_data(data_dir=data_dir, num_samples=num_samples, train=True)\n", + " self.dataset_test = open_data(data_dir=data_dir, num_samples=num_samples, train=False)\n", + "\n", + " def __len__(self):\n", + " return len(self.dataset)\n", + "\n", + " def __getitem__(self, idx):\n", + " data = []\n", + " for i in range(1, len(self.datasets) + 1):\n", + " data.append(self.datasets[f'dataset{i}'][idx].to(device))\n", + "\n", + " return data\n", + " \n", + "# Set the data directory\n", + "data_dir = './data'\n", + "\n", + "# Download MNIST\n", + "MNIST(data_dir, train=True, download=True, transform=transforms.ToTensor())\n", + "MNIST(data_dir, train=False, download=True, transform=transforms.ToTensor())\n", + "\n", + "# Initialize the mult_datasets instance\n", + "dataset_instance = MNIST_datasets(data_dir=data_dir)\n", + "\n", + "# Access both train and test datasets\n", + "train_data = dataset_instance.dataset\n", + "test_data = dataset_instance.dataset_test" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Diffusion Model Setup\n", + "\n", + "Here we define the setup for a diffusion model such that it can be trained on all 60k MNIST grayscaled images. This is just an example of the hyperparameters and leave it for the reader to modify the hyperparameters as they see fit." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using the Variance Preserving SDE\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 10 | Cost: 1.8e+01 |: 100%|██████████| 10/10 [02:07<00:00, 12.78s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finished training after 0.035 hours.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[162.28086529502386,\n", + " 38.11480836023258,\n", + " 27.26716512366186,\n", + " 23.280498987511745,\n", + " 20.737696273417413,\n", + " 19.808246214178546,\n", + " 19.183665178999117,\n", + " 18.101966061169588,\n", + " 18.22634054739264,\n", + " 18.268924833853035]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "checkpoints_directory = './MNIST_Checkpoint_Directory'\n", + "\n", + "net = NCSNpp(channels=1, dimensions=2, nf=128, ch_mult=[2, 2])\n", + "model = ScoreModel(model=net, beta_min=1e-2, beta_max=20).to(device)\n", + "\n", + "model.fit(train_data.to(device), epochs=10, batch_size=128, learning_rate=1e-3, ema_decay = 0.999,\n", + " checkpoints_directory=checkpoints_directory)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sampling\n", + "\n", + "Now we have trained our model, we can generate samples and see what our model has learned" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling from the prior | t = 0.0 | sigma = 4.5e-03| scale ~ 2.9e-01: 100%|██████████| 1000/1000 [00:10<00:00, 99.07it/s]\n" + ] + } + ], + "source": [ + "model.eval()\n", + "\n", + "B = 10 # Number of samples you want to generate\n", + "dimensions = [1, 28, 28] # The spatial dimensions of MNIST; 1 channel (black and white), 28x28 pixels\n", + "\n", + "# Generate samples from the trained model (steps is the number of Euler-Maruyama steps)\n", + "samples = model.sample(shape=[B, *dimensions], steps=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "hide-cell", + "hide-input" + ] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD4wAAAQOCAYAAACaDyQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde2ykWVoY7rfnfp9q99x3Z3enehNygSCVeyCRiCC/sZUoJLCJ7J6EEAUFxkYIKRIkdgaSKDepU52AdrMroDyLAsouMGP/kUiJhGIvCQpCkGl7UQQrILiWmd2de9s19/v498eojF0ud/u8LtfF/TyStdsev/V99X3nO7c6b50TW1tbWwEAAAAAAAAAAAAAAAAAAMDIuWrQJwAAAAAAAAAAAAAAAAAAAECOhHEAAAAAAAAAAAAAAAAAAIARJWEcAAAAAAAAAAAAAAAAAABgREkYBwAAAAAAAAAAAAAAAAAAGFESxgEAAAAAAAAAAAAAAAAAAEaUhHEAAAAAAAAAAAAAAAAAAIARJWEcAAAAAAAAAAAAAAAAAABgREkYBwAAAAAAAAAAAAAAAAAAGFESxgEAAAAAAAAAAAAAAAAAAEaUhHEAAAAAAAAAAAAAAAAAAIARJWEcAAAAAAAAAAAAAAAAAABgREkYBwAAAAAAAAAAAAAAAAAAGFESxgEAAAAAAAAAAAAAAAAAAEaUhHEAAAAAAAAAAAAAAAAAAIARJWEcAAAAAAAAAAAAAAAAAABgREkYBwAAAAAAAAAAAAAAAAAAGFESxgEAAAAAAAAAAAAAAAAAAEaUhHEAAAAAAAAAAAAAAAAAAIARdc2gTwAAAAAAAKDT2tpabGxsRLVajWq1OujTAYZAs9mMVqsVGxsbERFRrVZjbGwsKpVK8Wu040tiAQAAAAAAAACGlYRxAAAAALiCrK2txeOPPx5ra2vRbDaj2WxGRGwnZFYqlZicnIyzZ88eOIFqcnIyGo2GhE6OVDvBr9lsxsbGRqyvr+/6d7PZjImJiVhcXBz0qXIIS0tL0Wg0YmVlZc9/m5iYiHq9HrVabQBnBgxCu9+ysrISa2tr+/5drVaLhx9+OObm5vZ9nUajEU888cR2snhbpVKJer0eMzMzvTx1gGOtsx/earVifX1917+bzWZsbW0N+lSLGXcAx8FB6rKzZ89Go9EY9KkCAAAAANBDEsYBAAAA4Apw/vz5OHfu3J4kqbadyeNLS0sxOzsbExMTMTs7G1NTU/u+7sLCQqysrESz2ZQwzpFpNptx+vTpQZ8GR2htbS2mp6e366G5ubmYnZ2NarUazWYzVlZWYn5+PsbHx6PRaEjsZCAmJye7fpnBUalUKlGtVuPMmTMxPj5e9GUuo25hYSHq9fp2nVCr1aJer8fExMSuXcGbzeZ2Uvn8/HycO3cuHnvsse2+S6vVivn5+VhYWIiID794Yn5+Ps6cObMdf+7cuZidnY1GoxGrq6v9f7MwQmZnZ7efp4Oo1WpD91wtLCzE7OxsUcwoJj0ftYceeuiSX+Qxqow7KDE9PT0Sz8Hy8rL5mivMyspKTE5ODvo0AAAAAAAYAAnjAAAAAHCMLSwsxPz8/K5E8ampqXj44YejVqvF2NhYVCqVXTsPtXfybP+0d0/rlqRWr9f792aAY2ln4lalUokvfelLu3YR70xuaCeST0xM9PU8od9arVasra1tJyLNzs5GrVaL2dnZY/ulCSsrKzE7O7udKD4xMRH1en1XnbBTtVqNarUaU1NT0Wq1Ynp6Oqanp6PRaMTExESMj49v94Hq9XrXHcjb17f9xRV2jIXeWVtbi6WlpUt+AVW/zc/PD/oUgGNi5xfvDbO1tTUJ4wAAAAAAcIU4seXrsAEAAADgWOrcAXBubq4owXtpaSkeeeSRaLVaUalUdu3Y2f7v09PTEfHhjlWSNzlK7YS/ZrMZFy5c2LXzbNvU1JREvxGzsx6JiFhdXd2TGNr5NxEfJpEuLy/35RyhrdVqxcbGxq7/v7i4uO9uu5VKJer1epw5c+bAO4O3X7fVasWTTz4ZKysrXXeurFQq8eijj3ZNgO61lZWVmJ+fj7W1tajVavHYY4/tm8B9GOfPn9+VyNloNIoS48+fPx+NRqNr4tZ+yeInT57c9aU6ERHr6+uSqgr1q4wweN3qweXl5Th//nxEfFg3dT5Tw9Rmt3dcrdVqXevWiYmJ7S+m2VlvqxP2at/njY2NaDab0Wg0Ymlpac/fjeJyFOMODmplZWXXs9BqteLxxx+/5K7jMzMzMT4+HmNjY6ljto+zvr4eFy5cONAO56V9Ko6HneOKCxcu7PkyyYgPy2Oj0RjMCY6YycnJaDabsb6+PpDjr62tbdcv7S+rqFQq21+g9eCDD8bU1JQ+CwAAAAAgYRwAAAAAjqPx8fHthcOVSiVWV1fTiwZ3JnAtLi5uJ43vPIaEcfqt2WzG6dOnd/1O4sZoWVtbi/Hx8e1/75fQOT09vScBqVKpxObm5pGfIxzE/Pz8drLkTr1MzllYWOiasFar1WJxcfHIEgPayZWdun25w2F0fsnNzv7GQXQmm+9Uq9VidXV1z+8766A2fZoy/SojDLf2Mzg1NbWdyLTT5ubmgb844yi1v4Cm1WrFysrKrv+2X13BwU1OTu65rsdhOYpxB6W6PQsR5V/id1Bra2vRaDT2/RKjozouo6Vb31fC+OW1Wq0YHx/f7tv0u13b+cVMER/2V86cObN9L1dXV3d9eUStVot6vW48AwAAAABXsKsGfQIAAAAAQG9NT09vLxSsVqvx1a9+9VCJZHNzc9uL4aenp2NlZWXfHU+hX6rVqgWwI+6RRx7Z/v+VSmXfnZK77b5n1yyGyezsbNff97KczszMxPr6+p7k8LW1tTh9+nTXhPVe2C8J+9y5cz07xsLCwq4Ep3q9XpQsHhGX3L14vwSp/ZJX1S9l+lFGGH47vxyj2/O7XxJjP7VarVhaWtq3zt7v9xzcfvXBqDPuoNR+z8KDDz54JMer1WrRaDRic3Ozax3c+SUeXJlqtZov8ym0sLAQDzzwwMCeoenp6ZicnIy1tbWYmJiI9fX1WF1d3f5isnbC/+rqaqyvr8fExESsra3F5OSkfg0AAAAAXMEkjAMAAADAMXL+/PldO/EuLy/3ZDe/qamp7R33Jicnj20yAKNFUt/oWlpa2vWlE48++ui+f9ttobPFzwyTbl9qcKnfH8bU1FSsr6/v+YKF+fn57Z1ze2m/5IheJU00m81dz3OtVtv3yyMu5VLJ3/sl+VWr1T1JVVNTU9qWQkddRhgNO5/Bbm30MOxe+sQTT0SlUtm3TjiKOvtKc5yvobbh6ExPT++awzgOBlVeKpVKLC4u7ulLtVqtgZwPw0dddjALCwtx8uTJmJ2dHcjz02q14vTp09t1Y6PRiOXl5Uvev2q1GsvLy9tflrWwsBDj4+OefwAAAAC4AkkYBwAAAIBjotVq7UrkbjQaPV0M2t61KiLsLs5Q6MWXITAYnYljl9pNuFarbSfIzszMxPLy8q6dTGHQBlEX1ev1WFxc3PW7paWlnieNnzlzpuj3pTq/gGa/3cAvZ78vkbjcTuWLi4vbiRXLy8t7rimXd9RlhNFTrVb37GDabDYHPn5oNBpx9uzZgZ7DcXec++bH+b0N2tLSUjz55JODPo1jpV6v7xov+RIX6K7dP1laWor5+fkYHx+PEydODCxRPOLDud3x8fHt57a9m/hBzc3NbY+p1tbWYnx8/EjOEwAAAAAYXhLGAQAAAOCY2Jl0ValUjiShcmZm5rLJVwCXs7Kysv3/K5XKZb/colqtRr1ej0ajse/OoHClmZqaitXV1V2/63XSeLcE7kqlkk7s3qnVau3aUfRSO/9ezsTERKyuru5J6JucnDxQ7NzcnLol6SjLCKNr2HYZbyeE7fflEsBg2Pn26DQaje1+kYRx2G1ycjJOnDgRp0+fjvHx8Zieno7z589vf7lNe5w1iC+qm56e3n5mp6amUuewc2zTbDYPNCYCAAAAAI4PCeMAAAAAcAy0Wq1YWFjY/vejjz56ZMeSAAQcxs5k8Qi70MJh1Gq1WF5e3vW7XiaN12q1WF9fj5mZmajVajEzMxNf/epXe7LT6hNPPLHr34fd+bdzR+MI9Us/HGUZYXR1e547n/l+Wlpa6rrzOTBYGxsbgz6FY23n3I3kfPgTnXVPtVqNmZmZWFxcjM3NzVhcXBxIn2FhYWHXfMljjz2Wfq2dX9SzsrKya84YAAAAADjeJIwDAAAAwDHQmYBxlLuAtxdSAmR0Jitcbndx4NLaO2TvtLS01LOkgGq1Go1GI1ZXV3ftVnlY6+vru/59+vTpQ71eq9XaU79IWu6PoyojjK5KpbJnPNJqtfZ8aUy/NBoNu4vDEGrv5svR2DlvIzkf/sTi4mKsrq7G5uZmbG1txfr6ejQajZiamhpYP7bVasX8/Pz2v+fm5g51LtVqdVdfbH5+3hdHAAAAAMAVQsI4AAAAABwDi4uLu/591AmYOxcxApRoNpu7/i2xEA6vXq/v2QVvdnZ2qJMCOuuCw/ZdJELBcOmWoL1zt8t+WVtbi2az6QuvYAh19gXovYmJiYhwrWGnarUatVptqOYizp07t2vs1osvunn00Ue3/3+r1Ypz584d+jUBAAAAgOEnYRwAAAAAjoELFy5s//9+7NbbXlwJUOrixYuDPgU4lh577LE9v5uenh7AmRzMUX95xDAlgMCVaGJiYs9zuLS01Pcvsmg0Gl3PBRi8J598ctCncOy1+4ISxmG4nT9/fvv/V6vVnsztdibFLywsHPo1AQAAAIDhJ2EcAAAAAI6BnYkX/UqGePjhh/tyHADg8mq12vYukm0rKysSA4CBOXv27J7fPfHEE309hyeeeGKovzwDrmQrKyuDPoVj78yZMxERsb6+PuAzAfbTOV6bmprq2WvvHB+2Wi1jQwAAAAC4AkgYBwAAAIAR17lTVL92jurlAkYA4PDq9fqe383Pzw/gTAAiZmdn9/yu0Wj07fjtHc1nZmb6dkzgYJrN5q4vvuNo1Gq1iAjXGoZYZ9/owQcf7Nlrd77W4uJiz14bAAAAABhOEsYBAAAA4Jjp10LgarXat93MAYDLq9Vq24lBbXaSAwalVqtFtVrd9bu1tbW+fcFVo9HwJVcwpJaWlgZ9CleMarXat3oXKNNqtWJtbW3X7zr7TofROTZcWVnxBRIAAAAAcMxJGAcAAACAETc2NrbndysrK3059pkzZ/pyHADgYLrt6Ntt53GAfuhWJ/UjUbTVasXKykrX4wODd+7cuUGfwhWjVqtJGIch1W3+tjPJ+zC6zdv2a84YAAAAABgMCeMAAAAAMOK67fLdaDT6cuxeLmIEAA7v7Nmze37XbDYlBgADMTMzs+d3/RirPPHEE1GpVGJiYuLIjwWUWVpassNtwtraWszOzhZfOzuMw/BaXl7e9e9uc7yH0e31nnzyyZ4eAwAAAAAYLhLGAQAAAOAY6EzcXlpa6suC4AcffPDIjwEAHFylUolqtbrn93YZBwahW9J2s9mMtbW1Iz1uo9HomqwODN4jjzwy6FMYSc1mMxYWFmJjY6Mo7vTp00d0RsBhXbhwYde/u43jDqszafyo+2AAAAAAwGBJGAcAAACAY6Dbznmzs7NHftx2ovrY2NiRHwsAOJipqak9v7PDODAo09PTe353lLuMtxPS+zEeAspkdsjmQ6WJ4m0TExOxuLjY47MBeqEzefso5lc7k9A7k9QBAAAAgONFwjgAAAAAHAPdkiFWVlZifn7+SI9brVZja2trzw7nAMDgPPjgg11/L2kcGIRuO30/8cQTR3a8RqMR1Wr1SHbpBPLm5+djYWFh0KcxsrKJ9tVqteuXCQGD1W2n787dwHuhMwm91Wr54g4AAAAAOMauGfQJAAAAAACHV61Wo1ar7VlseP78+Th16lTMzc0N6MzKNJvNWFpaiuXl5Wg2m9FsNiMithM+JicnY2JioqcJ6s1mM1qtVjSbzdjY2Ij19fVd/242mzEzMxP1ev3A51ypVGJsbGz7vKenp7vuAn8pKysrsbi4GCsrK7GxsRGtVisqlUpUq9UYGxuL6enpOHv27KEXk7bPuf2eL168uOea1Ov1rok+ER8ucH388ce3d3Jsv/+d96wX5zlIzWYzGo3G9vvrLJfZe3wprVYrVlZWYnl5OS5cuBCtVmu7HLSPXavVYnJysuu9mZ2djdOnT4/Ms59xkLK7urraNVmsfU9XVla2Y2q1WkxMTMSjjz7ak/LafjZ2lpuddUOtVovZ2dmeJLNd6fUYe+3XTi4vL1/2PnaWnVarFevr67t+d9x3qjzIM3XmzJlYXl4+8Gu26/HDtLkHPc5Rtx+DLiPHqX6t1Wrx8MMPXxFfvjQ1NRVLS0vb/261WrG0tHQkSYwLCwvx6KOP9vx1e6Gf5Tej1WrFE088savM7my/JyYmBl5mB9E3Py4GMd5uH3d+fn5XHUC59fX1I3vt4z4vMOx17+XqtcnJyZiamurr+enDHL32fd7pKHYY7/bcXbhwQTsJAAAAAMeUhHEAAAAAOCbq9XpMTk7u+f38/Hysr69HvV4f2qS8Vqu1a7exqamp7cW67aTPJ554Yntn1FqtFo8++uihE0xWVla6XrODnvMjjzwSS0tL2zt2TU9Px9jYWDSbzVheXt4+34WFhahWq9FoNC67IHNlZSVmZ2e3k61mZ2e379v6+nosLS3F2tra9t9NTU3FY489lrq3CwsLXXenP4ilpaU4d+5crK2tRaVSiTNnzsTExERUKpVYW1uLCxcuxNraWiwtLW2fZ71eH6mdHne+x4gPy93U1FQ8+OCD20ljKysrsbKyEgsLC1GpVOLRRx89VJJ2s9mMer2+/Sy0k3Kq1er24ux2gtrq6mrMz8/H7Oxs1Ov17eOeP38+FhYWDpVweFjNZjNOnz59oL89f/58nD9//rJ/t7m5uV3OD1N2Z2dnt5/J9jMW8eFupO1zWV1dTS98P3/+fDQaje3F3xMTEzE1NbV9PdbX12NtbW37WNVqNebn59P360qvx+huv7r2IDuMj4+Pd01eyCh5VrPleD+tVitOnDhx2b+bm5vblex70GdqY2Oj6Hzaz9pR6Wf70csyUuI41q8rKyvb57q4uHisk65mZ2f3PAONRqPnCeMrKyvRarUG2g/qpt/lt9Ta2lrMz8/vaiempqa265H2mKxdZmu1WtTr9b4mmw2ib35cDGK83R4TLi8vX7b9O+h4oG3nuOBKcuHChSN53eM8LzDsdW9nvdY+x/Y1bCfgz8/Px/z8fExMTES9Xj/S/oI+TP90G0/0q24bRF8eAAAAAOiTLQAAAADg2JiamtqKiK4/lUplq16vb62vrw/6NHdZXl7eqlQq2+d3KY1GY6tSqWy/p4mJia3Nzc1DHXu/67XzZ25urus512q1rdXV1X1ff319fatWq+16rUu9x5mZme3jXep9LS4u7rm3mfvaaDQO9P4bjcZ2zObm5tbExMRWRGxNTU1tLS8vX/L1q9Xqgd9/qbm5uV2vPTU11ZPX3dzc3PUsTUxMXPI+r66u7nqf1Wr1kn+/n/b9OMiz0C1uYmJiV9mYmZkpPodeWV9fP1DZKvnZ+UwctOzufC42Nze3qtXqVqVS2VpcXNx1vp11QaVSKa5blpeXd5WDyz3Hm5ubu8pwttxc6fXYsOh2zTP3s5c669/2TzYuU98e9Fkd5E+3Z+MgcbVareh+XKqPtvNnZ5t7UP1uP3pZRg7iSqpfM/d/WBzkvu/sx7d/DtOX72ZmZmZrYmLikn/T7svu/OnsG/TKoMrvQW1ubm633e165HLlcH19fbtO21lfdOv/9eocB9E33+moxh39MIjx9ubm5pG23b2uN3ptv7HQYeqZnde0133mUZ8X6GbY69719fVdbdHl6t719fWtubm57eezs+9xUJ390c4+35Xah9nPzvaxl+1aW2fbcph7eynd3sdRP4MAAAAAwOBIGAcAAACAY2Rzc7NrIkbnT61W26rX6wNPZmsnJ5UsRF9fX9+18LdSqRzqfayvr2+tr69vra6ubtXr9a7Xb+eCzdXV1eJFnJ2Lo7stFG8v/j3oe2mfx84FzZmF8+33v7y83HWx6s6Fv6urq1uVSqV48XRnUk6tVuvJIv+jSNxov8fMYt3OxdeXWjTfqf1eqtVqKgGg87y7Lf7ut3bZ6vzpXKw8MTGx79/u/Nnv9S9VdnfG1Wq1fa9vt+THkoSOnccvLd+ddVpmgfiVXo8Ng27lb9BtbLeEyIOc1+bm5tbm5ubW+vr61uLiYtfn46D1bft1uv10vu7c3NyB6oL9frol966url42rluZa1+D9jO1X1+qVPt6LC8vd03cyCTbDKL96GUZuZwrsX4t6T8Mk4Pc927tda8TzA7ShvcrYXzQ5fdyOp//qamponPcOZZrn3Pnde31Ofarb95pVBPGBznevlTb263dKWnzh91RJIzv7DccxTUY5XmBTsNe93b2WUvq3p2J+pf7cpRuLpUw3j6vK7EPs5+jThjvVyJ3t+McRdkGAAAAAIaDhHEAAAAAOGY6E/AO8jMxMdH3BPL2eWYWuXZLjO/VuXdLOGsvpGwft3QBZ7d70rlbcmYhfueiz14kCHdLjGs0GtuL3jP3a2tr78LkXiSG9jpxo/M+ZRbqdu6ydZB7unNX18Ms/u88/0EnjO/nqBJuuu2M176e7SS//cpct3rxoAuodz6H2edja2t3AsVh792VXo8NQrcyNOiE8f0SkkuTlbolPfXiue31roRHtbPt1lb38p9JGO/U7R6VXIdhaT+OqoxcqfVrpVI51DkOykHue7ey0otnqa39TFxOPxLGh7H87tRZlrOv3U7+bX8BUC/r4UH1zbsZxYTxYR1vb21t7Xnt45a42OuE8c4xej+S5kdpXmCnYa97d/bdDlOXtOuk0vj9Esbb9cWV2ofZz1EnjHfrjxxFwni3L4EYhXYMAAAAAMi5KgAAAACAY6VWq8Xq6mpUKpUDx6ysrMT8/HyMj4/HiRMnYnJyMhYWFqLVah3ZeU5PT0elUonFxcXi2EqlEo899tiu3z300EM9Od+JiYmoVqtd/9tDDz0UExMTMTc3V/SatVptz2suLCxERMTa2lrMzs7G4uJi1Gq1otednZ3d85qHvQbd3tv6+nqMj49HrVaL5eXl1OsuLi7uugbNZjPGx8fT59lra2tru84nc58jIr70pS/t+vdDDz102ZhHHnkkIiJmZmb2LXsHUavVUud8XMzMzHT9fbPZjPn5+Xjsscf2rRe7PXsPPvjgZY85PT29/SxXq9X08xGx+xlZWFjY83yXuNLrMT60X3nf2Ngoep1qtRoTExM9OKPRVavVisv2QczPzx8qfljaj6MoI1dy/dpqteL8+fPpcxxm1Wp1z/VbW1uLZrPZk9dvNBr79gf6aVjLb9vKykpMTk5u/3tiYiIajUbqtarVaiwuLsbKykpPzq1tkH3z42JYx9tcWqvVilartT1Hc/LkyUP3FzJGcV5g2OvepaWlmJ6e3v73xMRE6vmMiKjX6zE3NxdLS0vb7/kwpqenY2pqSh+mz0rHZb2kPgcAAACA40vCOAAAAAAcQ7VaLb761a/G1NRUKr694P/kyZNx+vTpOH/+fE8XEy4sLESz2bxkAuflTE1N7UrearVace7cuZ6cX7eksJ3nnNF5L9pJGefOnYuZmZlUolWtVttz/Z544onU+e3UmcjTXvDbmXBRqnPBdrPZ7GliyWHsXLgdEemF25VKZdci61ardcn3uLS0tP1sdZ5DxqOPPnro1xhl3ZL4ZmdnY2Ji4pL1YWdddLm/j/jwuVhaWtr+92ESEiI+LDs7X2NhYeFQi/+v9HqM/WXa88MkIx8XR3ENDvOaw9Z+9PL6qF8jHn/88dTrjIJu/aJssvJO7QTLXjwPhzHs5bfVau26Rp2vn9FO5l5ZWTnU6+w0qL75cTHs4+0r1fT0dJw4ceKSPydPnoyTJ0/G5ORkz+dhSo3SvMCw173NZnNPvXbYtq9er0e1Wj30FwosLCzExsaGPswVZpDJ6gAAAADA0ZIwDgAAAADHVHs3sdXV1UPt+tjenffkyZMxOzvbkwXLjUYjKpVKOqG9rTO5qRc7K+1nfn4+6vV6esH9zl38Ij68risrK7G0tBT1ej19Xp339rALoyO670p7mPfeVq1W9+xYtbCw0NPkkozZ2dldO1vOzc0d6r12K5f77Zy5czH1mTNn0sdsq1QqV/ROwJ33rf2cXW4RfftLNpaXl2N1dfWyz9Ha2tqu1zzs7r5t1Wp1V73YWTYP60qqx4g4depU19+vr68Xv9Zh6396b9jaj16VEfXrh9bW1npwVsOp2w7gvejDLywsDLwfNArlt3OX6MO03zv1YqzQNsi++XExiuNths+ozAuMQt3bmSzeTvY+rHq9Hq1Wa1eyfCl9GAAAAACA40XCOAAAAAAcc7VaLZaXl2NzczPq9XrXXREPamFhIR544IFDLQBttVqxtrYWrVYrTp48GePj4+mFwZ0JIYddKLufhYWFaLVaXRNcDqrbYuDp6emYmpo61ILrztc9iuSHSqVyqPe+U7cdTAe5E+Ta2tqexIfD7rLaLVlpv93DjmIx9aB31hwmjUYjqtXqgZLH2vftIHVk5zU+7K5uO3WWv84F+FlXej3Gn7Cb3PFwXNsP9eufOK51Ybd+Unt38MNoNBo9669mDXv5PX/+/K66o5d9/IjuXwZQatB98+NgFMfbV4pGoxHr6+uX/Gl/eVW9Xj90wn+vDeu8wKjVvRGxJ2G+1OzsbJw8eXL7vWfrNH2YwerFF3ICAAAAAHSSMA4AAAAAV4hKpRJzc3Oxuroam5ubsbi4mNp5qdVqxfj4eHqh+M6Fo+3F7JOTk6kFpZVKZc/5P/nkk6nzupTDLqCNiBgbG+v6uodNgOjcQfYoFub2cqfGdjncqdVqDWy3unPnzu36d61W68nuiJ2L1vd7fzsTNy9cuHDo40b0ZqfZ42JpaanniRadu1JOTEz0ZHe4tlqttuuZazabPUnMudLrMThujmP7oX7d+7rH1ezs7J7fLS4upl+v2WxGs9ns+rr9Mgrlt7Pfe9j2u9ODDz546NcYdN/8OBjF8faVYmxsLKrV6iV/2s/63NxcLC4uxubmZk/H44cxjPMCo1j3HnZ8Oj09vZ3ovfO8svRhAAAAAACOFwnjAAAAAHAFqlQqMTU1tWuHq0ajUbRL7PT0dGqnsv0WsmYTdvq1M+1hd6Hc77oeZsf3bq97FAtzuy0APoyHH354z+/q9XpPj3EQ3RZ7dzu3jG678XXbDXbnte3VToeHLVPHTa/uaVtnWT2KHXk765vOJINevW6pUa7H+BO9rtMZjOPYfqhfdzvOX57RLVnuMAm8jUYjarVaT5MESw17+T1//vye9nXYdi8ehr75cTCq4226q1Qqsby8PBRJ48M4LzDsdW9nYnfE4b+so9s83GGeS30YAAAAAIDjRcI4AAAAABDVajVmZma2d7BaXV2Ner1+2cShzE5lvU7k6NcC9qNYoN2L1xzFxL9uCT3NZjP1BQSH0S3Brlf3uVs577YD7M6/W1pa6slOp+zWywTIpaWlPXVMP+qGtbW1njwf6rEry8WLF7v+/vTp030+E47CcWs/1K977dxF/jjqtqNpthwvLCwMdHfxUSi/nQmO3XaOHrRh6JsfB6M63ubSevXlMMPksPMCo1D3dkuAP+z4tNvY6TDPvT4MAAAAAMDxImEcAAAAANijVqvF3NxcrK6uxvr6+iV3nyvdwalWq3XdgWgYdsy6lIPuvF5i2JI0+qnb/V5eXu7rOXRLSuplcnHna62uru75m87dvKanpw+1w2bb1NTUoXcKOw56/Yw9/vjjR36MiO7lcHFx8dCvqx4j4mjKAf133NoP9euVp9sYIpMQubKyEq1WK86ePduL00oZ9vK7tra2Z4fbYRx7DUPf/DgY1fE2l1atVo9lv/sw8wLDXvc2m80jSWjv9gUph/nSFH0YAAAAAIDjRcI4AAAAAHBJ1Wo1FhcX910Qu7a2VpygtLq6ur3otv362WSAzsWtnckQvXBUC7Ov5F1ex8fH9/yunzuMt1qtPYu3e71QunPnr2678XXbXXN2djbGx8cPtVvs4uLiJb/o4UrRyySjiL1l9CiTNjpf+7DPh3rsyrPfDqDHMdnoSnTc2g/165VnYmJiT9+rnfxdotFodH2tfhr28tvtbx588MGenVMvDEvf/LgYtfE2B3Mck/4PMy8w7HXvUX0JxtzcXNTr9e0vEajX6zE3N5d6LX2YK1e3neoBAAAAgONBwjgAAAAAcCBTU1P77sI2Pz9f9FrVajVWV1dja2vrsjuYD4OjSkC5kndy6rbYvdvuh0el2wLvXi+W7ry/GxsbXf+m2+LutbW1mJ6ejhMnTsTs7GwsLS1Jzkjo5T3tVj6PcoF9Z/nptkPdYV6vV67kemzY7VdnSA44Ho5T+6F+vXJ1++KD0i+iWlpaOtTOqoc1CuW3X7vwHsaw9M2Pi1Ebb3Mwx7G9yc4LjELd222n9F59Wcfc3Fysr6/H+vp6Olk84niWqVHi+gMAAAAAR0HCOAAAAABwYLVaLRqNxp7ft1qtvu4O3T7mYRN8GJz9FnP3634++eSTe37X6wXmB93FsF6vXzKJY2FhIaanp+PkyZNx+vTpkUkAPG4uXLiw53f93MUu4sPECDio/eqcXuxsyHA4Lu2H+vXK1S3Ru9tYYz8LCwtRqVQGmgw7CuW3238ftoTxYeqb8yHj7eFz+vTpQ8W3Wq2h6wdk5wVGoe7txxdhMNq6fZHXxYsXe36cbs+8ZHUAAAAAOL6uGfQJAAAAAACjZWZmJlZXV/fs/tdoNLruDnUYzWYzVlZWYn19PdbW1ixYP2YqlcqehavNZrMvyYzdFswuLS3FiRMnjuyYl9rVd3FxMWZnZy+7q2az2YyFhYXtv6tWqzExMRHT09M9f/6Og1OnTvXstdbX13v2WgfRrbyo/yjRrbyoJ46f49B+qF+vXNVqNWq12q6ku3Z//yBJdYuLi3H27NmjPMXLGtXyO2xJi8PWN79SGG9fWS5cuBDT09Oxvr4+VMmimXmBUa17h+m6M3iDLA/aQAAAAAA4viSMAwAAAADF6vX6nsSkXu0wvrS0FI8//nisrKzsWjTcTmwaHx+ParUa1Wo1xsbGYn5+/rJJUgynsbGxPQvDNzY2+nLsbseZmpqKRx999MiOebnFwI1GIyYnJ2N+fv7Ai893JgDWarV47LHH7B68Qy8XYA/DrlxHsdsYx9N+dcjk5GSfz4R+GPX2Q/16ZZudnd2z03ij0Yh6vX7JuFarFSsrK7G6unqUp3dZw15+RyX5dxj75seV8fboOmyCZ/vLOYbtCyMy8wLDXvcO0y7uDK9uz3S/ys7p06f7chwAAAAAoP8kjAMAAADAiGu1WnHy5MlYX1/v28LfSqUSU1NTsbS0tOs8DrobYKdWqxULCwtx7ty5XYsja7VazM7OxtmzZ/dd/HulLvQ/Drrdu34tju12nPYul4M0NTW1/Ww1Go2iL2JYW1uL8fHxaDQaMTMzc4RneWUahoSrYTgHRsN+dcegd5Lm6Ixy+zEMddswnMOV6uzZs3sSxhcWFi6bML6wsDAUfbdhKDuXOof9+tbDNoYa1r75cWG8fTxMTU3F5uZm+p4M287ibZl5gWGve/f7b3Z1ZqduZf8ovkSx22sOY10AAAAAAPTGVYM+AQAAAADgcNoL/9q7RfVLt93eMot25+fn4+TJkzE/P7+9KHhiYiJWV1djdXU1ZmZmLGTkijM1NRXLy8uxubkZi4uLMTMzc+CEmdnZ2Th//vwRnyGDYKc6DqrbjruVSkXi3RVA+5Gjfh2cSqWy58ss2ruHX0qj0diTaH6lUn65FOPt4+Uw9+rChQtDt7v4KMvUvZ41dnrwwQf3/O4o2vRur+nLCwAAAADg+JIwDgAAAADHRL93WKrVansWu5YsbGw2m3H69OldiUmVSiUWFxdjeXlZUtsVoFt56dcC6m4L5Ycx2aZSqcTU1FQ0Go1YXV2Nra2tWF1djXq9fsmdgufn52NhYaGPZ3r8ZXa+6zUJHhzUE088sed3Z8+eHcCZMCij1H6oX+mW+N1oNPb9+7W1tWg2mzE1NXWUp3Ugw15+9+tbD1u/d1T65qPEeJtOa2trQ9neZeYF1L0cB/16HrvtMK4NAAAAAIDjS8I4AAAAABwT6+vrfT9m5+LGbosQu1lbW4vx8fFdSe7VajVWV1eHIvGD/uhWXvq1YLbbAu6Dlt9Bq9VqMTc3F8vLy7G1tRWLi4tdF/vOzs72/YskjrN+78DVrTzakY6DWFtb65qMMj8/3/+TYagMa/uhfmVqamrPPVhaWtr37xuNRtRqtaFIfBz28jsM1+ggRrlvPoyMt+nULgvddjQetMy8wLDXvfudn3qNnbr1w4+ijHQbG45K/wAAAAAAKCdhHAAAAACOiUEkhmYWGDabzXjooYd2LVisVCqxurpqweIVptui1X4t/D59+vSe3w1it6+FhYVYW1s71GtMTU3F6upqzM3N7flv9Xr9UK/Nn+hWZo6y3u322t3OATo9/vjje343NTWljT1mjlP7oX4lIuLs2bN7frdf0vgTTzzRdVfyQRjV8jtsSYvD0jc/Dq6E8faJEydiYWFh0KcxUtp9hmEsA5l5gWGve+0wzkF1PpNHUY47X9Pu4gAAAABwvEkYBwAAAIBj4sKFC30/ZufCxoMsPp6ent6zSHZxcdHOjleY/ZLc+rVw9cyZM3t+N4gvXZifn49z58715LXq9fqeBD+JFL3TrX47ymQru4CR1e25f/TRRwdwJhyl49R+qF+JiK4J4I1GY8/vVlZWotVqxczMTD9O67JGofx2618Pot97KcPSNz8OjLfp5sknn4yI4WvvsvMCo1D3dvvv6jU6dZaTXn+pQLfX69bmAgAAAADHh4RxAAAAADgmWq3WoXeazBxzp8vtArW0tLTnHKempmJiYqLXp8aQ6/YFB/0sB7VabU/SxKAWb6+srPTstebm5mJqaurIXv9K1nldI/q/i526kstZWFjY0zZPTEzYRW5IHTYh5Li0H+pXIj7sm3UmTbWTw3dqNBpdy8ygjEL57fbfhy1pcZj65qPMeJv9LC0tRcTwJYxn5wVGte5tJ+5D2/T09J7f9bIsd3vGJicne/b6AAAAAMDwkTAOAAAAAMdIt134jlLnIsbLJaR12wnzsLueliRbnT9/Pk6cOHGo49Ebq6ure37X70Wr3RZw9/tLFyJ6/2UPnbvESrbpnc46rtVq9XwHsAjJjOTNz8/v+V2/+wbH1eW+FCfjsDthHqf2Q/1KRPddxnfudt9qtWJpaanr3w3SsJffbn3sbn3xQRuWvvkoM96mm2azGc1mMyqVytDtNH+YeYFhr3u7JQL7Mjc6nT17ds/vetn2dSu/w/TFOwAAAABA70kYBwAAAIBj5Iknnujr8XbuVHO5BbPNZnPPosdKpXLoXU8Pm2zFYHQrq/1etPrwww/v+V233Zd6oVv536mXC8er1equ53F9fb1nr32l61ZmjmLRf7fX7JZwADvNzs7uSZJZXFwcup0k+RO9SMg+Lu2H+pWI7n3BnV968cQTT0SlUhm6JP9hL7/drtdR9XkPY5j65qPIeJv9DOvu4hGHmxcYxbr3uNU7HF63erqXO9F3fimDZHEAAAAAOP4kjAMAAADAMdJqteL8+fN9OVaz2dyVmHa5XaC6LbLttpNOqaPYQYqjtbKysue+TUxM9H0B+9TU1J5jLi4uHsmxZmdn45FHHtn3vy8vL/f0eIdNDKG7mZmZPb/r5WLuts5F3ZVKpeuxoW1tbW3XLrwRH9ZxEgKGWy/q/uPSfqhfifgwmbGzDO5Mgm00GkN5v0ah/M7Nze3699raWs/HUYdNLB6mvvkoulLG28N2PqOg/cUbw5Ywfth5gVGoe7v93VEktU9PT8f4+HjPX5f+6Pzyg/aXPPRCZ3nr9kULAAAAAMDxImEcAAAAAI6Z+fn5nuxYeTk7d/uL6L4Qdqduu1SePn360OcxjLvjHTe93lWus+xERNTr9Z4e46Dm5+d3/XtlZaXnz0+r1YqVlZVL7obZ60XjO5+tU6dO9fS1r2SVSmVPwlUvF3O3de609+ijj/b8GBwfrVYrHnrooV2/q1Qq8dhjjw3ojI6nXvRZOvVil8nj0n6oX2mbnZ3d87tGo7GdOD6MiU6jUH67/W2v649u471Sw9I3H0WjNN4eGxvb9e+SJPB2eeh8DbpbWFjYvmaHTRgftnmBUah7O+u0iO7v+7CWlpbizJkzPX9d+qNzPrXzCzqzWq3WnjbUF4oBAAAAwPEnYRwAAAAAjqFuiRa9tnMn07m5uahUKpf8+24L/S8XczndFlH2ehEzvUloa2s2m3sWcU9MTAx0R9POctjr5PVz585FxOWfy87dgQ9jZ8KI3cZ7qzNBoNls9jThamlpaVe91i0RAtparVaMj4/vKTOrq6uHbmPZrfN6HjaJo52w2AvHpf1Qv46+XiQ3ddsR+YknnohGo9F1B/JhMezlt9uOuL1OWuzF+x2mvvmoGaXxdmficslr9ir5+UqxM2H5wQcfPNRrDeO8wLDXvdVqdU+CbudrHla7H3jc6rQrSbc2uvOLCjI6X0O/FwAAAACuDBLGAQAAAOAYWllZienp6SN7/fn5+V0LXA+yw1K3Bd2HXSTbaDQkxPVBLxdd77dr5CB96Utf2vXvhYWFni3gbrVacf78+ZiamrpsUkMvr8POxfzHbffEQatUKnvuVS8TmdpJTG12iWY/zWYzHnjggV0JYtVqNVZXVyVRHYHDJLd1s7CwEJVKpSf36ri0H+rX0dXuN/UikbRSqexJrmv3p4Y5GW4Uym+9Xt81durl7t1ra2tdk0kzfeph6ZuPmlEab3cmBZeUw3Y9M6xfHjFMpqend5WBw5b5YZwXGIW697HHHtvzHHXbeTyrXq9HrVbzTIy4znLbi/79ztesVCo9/wIWAAAAAGA4SRgHAAAAgGOmnXy0tLR0JEkVa2trcf78+e1/H3QR+enTp/f87sknn0yfR3ux/+Li4p7f7+fixYvHLsG8Xzuq96Israys7Flgvri4mF643qvEkVqttmfhbK++cKG9EPwgC3PX1tb27LKWdeHChYgYzmTxzvvWy93VjvK1d5qZmdmVzLaystKTe7e0tLQr2arzOMdVv+qxo3JU5exSFhYW4vTp03uSgI4qWfwo3mM/rlsvj9FZnx72tc+dO3egL9w5iGFoP3p1rdWvo6ldbnq1++x+/c7O3TeHzbCX30qlsmfs1KvxYi+/rGxY+uY7DaKtLzVK4+3Jycld/y6pO5aXl49dsv9RmJ6e3lP/9OK6DeO8wCjWvQsLCz1Jvj9//nw0m02JwEek2zj1qNqDzt3r9/siloPq/FIYZQQAAAAArhwSxgEAAADgmKnX67G8vByVSiUWFhZifHy8pzvHPfTQQ9v/npmZOXDixtmzZ/f8bmlpKb3Ycn5+PiYmJmJiYmLPwuL93u/a2lqcOXPmsq99FEmn3V5jmF93p1qtFs1m81CJGt3i5+bmDpWs1bl49zDve25ubldy3MrKyq4vRshYWFiIhYWFaDQaB178/sgjjxzqmBG7n6thXBTced96mSzc+VoXL17s2Wt36kxqmJ6ePlRd2/mM1Gq1Q+0qph7rn/3K8FEkwq+trcXk5OSeZJ2pqalYXV09si9F6WV9e1Sv2S2+1/egc+fGbKLP/Px8jI2N7UoKaVtfX0+95qDbj17eT/Vr7163X3bulHrY/lPEh19Y0FmfdftdVre6oVf1xbCX34mJiV11z8rKSiwsLKRfL+LDBNJms9m1Tste12Hpm7cdRTvYa6M03u72PB80wfeovhivlwZZPtbW1mJ8fLzr9TxsHTqs8wIRo1f3RnxYdx6mrDSbzZifn4+ZmZkDf9GPPkyZfowvdmrvFt92mP79zvI7NTU19F+6AwAAAAD00BYAAAAAMNLW19e3ImIrIrYqlcqu31er1e3/Vq/XD3Wc5eXlrUqlsv16ExMTxa8xNze3HX+Y12k0GlsRsbW+vt71dRuNRte4S/23ts3NzV3vs/3TPlbW4uJiT957p4mJiT2ve7n3eDm1Wm3X683MzGwtLy+ny9Hm5uaushgRW3Nzc4c6x62trT2vWalUtjY3Nw/1mlNTUz25lu37PTMzc8m/21nW2u/nMOViZ/m93LEHpfO+9eL52traXRfuvKZHaXNzc9fzUq1WU++l8xk5bN2gHuuvbm1br9/D8vJy1+tUqVS2lpeXe3ac/XSWp539jYxuz2utVjvUa3a7D71oa3ZaXV3d9fpTU1PFr9F+jtr3rbNOPGi9NWztR6/LiPq1N/VrP3T2nXpV/83MzOx6zcXFxR6cbff6pxd10E7DWn536qwzV1dXU6/Tvk+Li4tdy/Fh6+F+9833cxTjjqMwCuPtzmOUnGe9Xt+KiKG89jt11l9H1S/ZaXl5uWt9fJhx0ajMC+x8/VGre6vVaqo8t/sjJW2XPkyZ/foLR/kcb23tvU+Z4+2sg7JlDAAAAAAYXRLGAQAAAGDE7VzE2Llod3Nzc1eCWaVS2ZqbmytaELq5ubln4fFhElG7JbyVLDau1+t7EuQ2Nzcvuxh6bm6ua/LS+vr61vr6+tbq6upWo9HYsyh652s2Go2t1dXV7Zj9bG5ubr/m8vLy9jl3e92pqamtxcXFA73uznNdXFzcd0F4pVLZqtfrW8vLy9sxJQtEuy0Mb1/70vvf+cUF2USPzvferRy1k30Oej3307nAv7S8txeBHyRuZ7lov7d2uSi181oPywLtg963SqWy1Wg0dpXZy5Xbzme3WyJ6u0x0Pru9SFDfaeezWKlUipKuOr+MI3vv1WNHr31Ndl6X/ZLFd5brneXuID/ta1Ov17cmJib2ve5Hlaxw0Od2YmJi133vxfN60LLUWT4vdR/ayU29qgM624iShP12Hb+zHex2LWZmZi57joNsP46ijOxH/Xrw+rUfNjc3t+/7zMzMvufdbn/b9XgmGbnzCxoyOuvWRqNxyXPuLLOHveaDLr+X0+7bt39KkvJ3jjPbcd2SBtt13mHa8H72zbe2+jvuOArDNt6+lM469VJlsD3vcdTJmiW69Q33Sxbf2TfsrGNK+4nLy8tbjUZja25u7pJ9xc72pNQwzgscxKjVvdVqtegcV1dXtyqVymUTgfVhLu1Sz9alvnyhWx+n87UOO27t/NKCkjpcsjgAAAAAIGEcAAAAAEbczoTx/RYCLi8vd90VbWpqaqvRaOxaxLlzkWTnYvP2AufD2m/ns0stIF1dXd1eDN1tMW3nDmXtRa87d9rqXIDe3h0r+7Pftbjc4tLL/eznMK9ZstB5v4Xh7WvW3snqUklym5ubexZC12q1VMLQfjs7HfQns/tu5zPTTl69lMXFxe2Ygz4n3XZzbSfbVKvVA5/7zms9LEkUh71vlyq3nc97L5/frMXFxV2L5ScmJi5Z3ldXV/ckM2R2T1WP9c9+CWP9/KlWq1v1ev3IFv4f5rndL9H4sM9rN/slvPSijB5EZzLY5eqTzc3N7ZjOv90veb79004I6jSo9uMoysjlqF97V3YP61KJkJf7yfTH2s9Hpv7fL3m539d8UOX3oDr7vAf5wop2gmBnkuPlrnmlUtmqVCqpLx/rV998EOOOozAs4+3L6bbjdLfXaCcbl+ym3A+96I/06yczRhy2eYESw173rq6u7in7l6t/19fXt8/xcu2iPsyl9bKP0O2nW9+9VOeXd05MTFz2CwJ2PrODHjsDAAAAAINzTQAAAAAAx8LMzExUKpWu/21iYiLW19djZWUl6vV6rKysRKvViqWlpVhaWrrsa1cqlZiZmYl6vd6Tc63X6/Hwww/HuXPnto+/srISp0+fjqmpqZicnIyxsbHY2NjYPu+1tbWYmZmJxcXFru9zZmYmxsbGYnp6OiIims1mzM7Obp//4uJiTE1N7fv+IiLGxsYue+4bGxsREdFqtS77t0fxukd1rgc1MTERX/3qV+ORRx6JycnJqFarMTU1FadPn46xsbFoNpvx5JNP7ipXtVotHn300X2v/0H18723n5nz589Ho9GIZrMZ8/PzMT8/H7VaLc6cOROVSiVarVY0m81YWVnZjlteXo5qtXrgY1UqlV3P1tTUVKyvr8fs7GxMTk5GpVKJs2fPxunTp7dft/PZaB+7Xq9HrVZLveejUnLfIo7uGSt97VJTU1MxNTUV8/PzsbCwECsrKzE+Ph7VajWq1er2fWk2m7G2thbNZnP7PTz66KMxNzd3qOOrx46fSqUS1Wo1zpw5E+Pj4zExMVFUtxz22BFl9+goXvNS931nX6D0PA9bnhqNRkxPT8fs7Ox2f2N+fn5PXb2zTazVarG6ulpcR7darX3Pd5Dtx1GUkf2oX4evLjzouR/2vOv1eszPzx9qDFJaV0T0tr4YdPm9nJ193nPnzsXCwkIsLCzExMTEdl+/fX7t+ix7bu1r2X6P2fM86r55xGg/nxHDN97eT6VSidXV1XjkkUe2z3N6enr72ahWq7G2thYrKysxMTERi4uLh7gqV7bTp0/39PUGOS9wEMNe99ZqtVhfX4+FhYWo1+vRbDa3699udVr7p1arFT1r+jBlOuu+bu+vW7/2KN5bu15dWlqKc+fOxcrKSpw8eXJX+9ytX1+r1aJer8fExETPzwkAAAAAGA0ntra2tgZ9EgAAAABAXqvVioceeii+9KUv7Zsw3k174fXy8nJsbGxEs9ncXuTYXkRbrVZjenr6SBcatlqt7fNoL4Ld2NiIVqu1vUj8wQcfvGRCfOfrLSwsxPr6ekREjI+Px8zMzJGd/3E0Pj6+vdg04sPkgEajsefv2td6572rVCoxNjYW1Wo1JicnY2pqqm8JjkdpbW0tHn/88e3F5O33Wq1WY2xsLCYnJw9cRneanJyM2dnZfRd8d7vGEbF9nWu1WkxOTvY1kZSDWVtb205o2nnvdiYpPPzww0OX4A+Uafdh1tbW4sKFC9t9qZ0J/7Ozs/s+6+Pj49FsNmNsbGy7bt/5v6dOndr+4p6druT2Q/3KKBv28ruyshKLi4tx4cKF7fHhznrj4Ycf3rfeWVpaiunp6V11WLuvvLM+q1arhx5fHlXf/DgalfF2s9mMRqOx556229F+JBmz23GaFxj2urdbndZ5frOzsyPXZ6N32mVkZWWl6/ztoMswAAAAADA8JIwDAAAAALDLQReGAwAAAMePeQEAAAAAABg9Vw36BAAAAAAAAAAAAAAAAAAAAMiRMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAwC7NZnPXvzc2NgZ0JgAAAEC/mRcAAAAAAIDRI2EcAAAAAIBtzWYzWq3Wrt+tra0N5mQAAACAvjIvAAAAAAAAo+nE1tbW1qBPAgAAAACAwWjvGtZqteLChQtRr9f37CQWETExMRGzs7NRrVajUqlERES1Wu3nqQIAAAA9Zl4AAAAAAACOBwnjAAAAAABXqIWFhZidnU3Hr66uRq1W6+EZAQAAAP1iXgAAAAAAAI6PawZ9AgAAAAAADFZ7Z7CxsbHL/u3GxkZEfLjzGAAAADD6zAsAAAAAAMDos8M4AAAAAAAAAAAAAAAAAADAiLpq0CcAAAAAAAAAAAAAAAAAAABAjoRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAEXVNr1/w3nvvLY557733imOuuab81K+77rrimI2NjeKYG264oTgmIuLtt98ujrntttuKY15//fXimPfff7845vrrry+OOXHiRHFMpiy88cYbxTG33nprcUxE7r5mvPvuu8UxN954Y3HM1VdfXRzz1ltv9eU4mWt90003FcdERLzzzjvFMZm64dVXXy2OyTxHm5ubxTG9cN999xXHXHVV+XedZMr6yy+/XByTac8y9WtE7hnJlPdMWc/Uy5lymykLmboyc623traKYyJyZejaa68tjulXXZ559jLX4IMPPiiOyfRTMtcgIlf/v/baa8Uxmecocx2+/vWvF8f0wl133VUck6nDMn2+zJghc5xMHzYid58zdUumTcvUl5k6rF91S+Y5zLyfiNz4NtO/ufnmm4tj3nzzzeKYTLueKXOZ95MZQ2fHGRmZcVDm2mXK3Isvvlgc0wt33313cUxm7JW5z5k6OdMvyNR7Ebm+fLYeK9Wv57df9X+mr5wdP2bjSmXGWxmZNiPz7GXeT7/m57LHytTlmfKTeY4uXrxYHNMLd9xxR1+Ok6nDWq1WcUy/5uQjcm1N5vnNnF+mrGeeqcyYM3Numf5epVIpjonIzX1kzi8z5uzXeCvzfjJlu1/z3BG5/uQtt9zSl+Nk7tHzzz9fHNML99xzT3FMv+bXM3VLdsyQkekbZPogmXoic5xMm5GZIx7mz2cicv2Ofo1NMnVLvz4/ysiUhcxzFxFx8uTJ4phM/yFT7jJt9KDGGZnPMzL61Qfp1+e4WZk2LfP8Zua9M/VyZs6xX/2wbJuR+SwoU4Yy9WWmbcrco0xdmWlrM89D5jgRufuauUeZcpc5ziitm8rMe2fWmGbKbabey84rZ47Vr7o8U8f2ax42MzbJ9MOy66Yy+tVXybynzBxY5r72aw1ddpyRmWfKrG3IzJ1l1uFkPlfuhcw4I/PMZ+rKzLXPPLvZa9+vNYz9+twk8yxmYjLXLdN/yNSVEblrl+lHZT5vyYzRMjLPeKac9msdQETE7bffXhyTqcv7tW7q2WefLY7phUy5zfR7M9exX3NT2f5ov+YwMjL3qF9zt/36nCpbH2XuUb/Gt5m1JP36PKNfa6Cy8/iZObpMn6hfZSGzRuhS7DAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIuqbXL/j+++8Xx9x8883FMa+++mpxTKvVKo656qrynPr33nuvOCYi4q677iqOeeGFF4pj7rzzzuKYp556qjjmxhtvLI655pryIvnKK68Ux9x9993FMa+//npxTETumbjuuuuKYzLXO1N+MsfJXLurr766OObaa68tjsnUJRG5uiFz7W6//fbimDfffLM4ZlDefffd4pitra3imLfeeqs4JlOXVyqV4phMHZGVqWMz1/vEiRPFMRsbG8Ux9913X3FMRuaZytRhERE33HBDccz1119fHJN59t55553imEx7lnn2Mtf7gw8+KI659dZbi2MiIp577rnimJtuuqk4JtMOZp7XUfL2228Xx2SuY+Z+nTx5sjgm0++NyD0jmWuXOc7Y2FhxzNNPP10ckxlzZuqjTD2RqZMjIl577bXimEyblinf9957b3HMSy+9VByTuUeZ651pz7J9gcx1yIwZMuOZTF9gUDLvL9M3yBwnE5OpW7JzU5m+ZaY+yrynTNt0yy23FMdk5jAy9USmzGXGttljZd7TbbfdVhyTKXOZOd7M+8nEvPzyy8UxmbF6RO45z/T/M/NZozQ3lXk+MnPL3/jGN/pynMw8TubcInLX7v777y+OyZT1Z555pjgmU4dl2plMPZF5Di9evFgcE5F7T5l7lJnXy7ynN954ozgmMz+XuUeZzyayfYFM/Z/p4/VzrmMQ+jXPlOmDZMpt5rOJbBufGU9mylOmPsrMGb344ovFMZmykBk3Ze5rpq7MylyHzJih2WwWx3z0ox8tjsnMM2Xq/349DxG59jZzXzPnlznOoGTq5cyzmOmDZNr4zFxnto3P1H2ZeiIzR5cZM2TmmTJzxJmy0E/96ndk2vXM/HpmrVWmXsi0GadOnSqOyfYF+jVv3a8x2qD0q03M1MuZzwgzMZm5kohc2e1XHztT/2fG7v0aC2Y+08+OHzPPRGaeMjOP2q+58kzZztT/mevWT5l7lJHpS46Sfq1zzowzMnVYdlyYaQfvuOOO4phMHZaplzPXITO3mZF5drNrUTLrtTOfy2bmfzLPXia/J7MuNTP/nOmnZMZnWZnnKFN+RunzjEw73698hsyYIXPts3VLpp7IzN9m2s5+rU3KyPSp+rVWLyvzTGTawcyYoV9zvJm6MpMTlDlORO4eZeqGzH3NrLvoNTuMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoq4Z9AlERDz//PPFMffcc09xzNVXX10cc+eddxbHPP3008UxERHvvfdeKq7UBx98UBzz8Y9/vDjmnXfeKY556623imO2traKY95///3imEz5iYg4ceJEcczNN99cHPPyyy8Xx5w6dao45pZbbimOyTzjd9xxR3FMxiuvvJKKyzxHzzzzTHHM/fffXxxz1VWj810gmet40003Fce8++67xTHXXXddcUy/6rCI3LXLHOvGG28sjsnURx/5yEeKYy5evFgcs7m5WRyTObdsm55pOzPHyrRNN9xwQ3HM9ddfXxyTObdMvZdpm665Jtd1vv3224tj3njjjeKYTL2VqUsGJdM/yjwfmfucOc5Xv/rV4phMGxiR68dmnvlMO5Ppi508ebI45tprry2OydTJmfoo22Zk+suvvfZacUzm2mWOkxmjZZ7XzH0dGxsrjnn77beLYyL613ZmrkO23zoIr776anFMpr3O1JXPPfdccUym3qtUKsUxERHPPvtscUym3GbGTq+//npxTGbeI/N89Osa9HNuKtv3LdVqtYpjMu8nMyeTefYyffJsm5GpgzLjjEx/LVsHDcJtt91WHJOpjzJ9+UzfMjMnkym3ERF33XVXcUymvG9sbBTHZD4/ytT/mecw01fOlIXs/HqmL/DAAw8Ux2Tm6Po1l5xpA/v17GXHj5k5lcyc+osvvlgck2nXByXTvr355pvFMZn7lZlnyoyBsnOJ9957b3FMpr7MtBmZzxky9yhTFvo1T5l9DjN9+UzfK1MfZT5fzfTxMu8nU5dk2plM2Y6IuO+++4pjMtcusw4nM44elMxc56233lock5kDy8xhZOaIM8eJyD3zmeuQeU+Zsp5pbzPz0Znn4/Tp08Ux3/It31IcExHx3/7bfyuOybRPmXL3jW98ozgmU4f16/P5zPOQaWcicuPozPqTzHEyc2CDkuknZtqMTL2XWSP4wgsvFMdk+6OZOjbzjGRknt9MPzHT/8/04zN9y2xfoF9zr5lyl+mnZMZ1mWc8U5dk+qzZuf/M5wyZa5cZo2XmHwYlc88ycyWZ+5y5X5l6IlNHROTOL9PHztT/mfuaqcP6NTeVkf08o1+fo2XqiczcVOZ5zdyjzHXLtE3ZXIbMmprMOorMmCG7XmMQ+rUuOFMGM89Uv9a/RvRvji7TL8+0GRmZcUZmHUCmnsjWLZm+fKYMZZ6JzJrMzHq4TL2Xua+Zc8uO1TN1Q+YZzzwTwzDOGJ2sQgAAAAAAAAAAAAAAAAAAAHaRMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI+qaXr/giRMnimNuvfXW4ph33nmnOObdd98tjnnqqaeKY26++ebimIiIjY2N4pi77767OCZz7d54443imExZyLjzzjuLY5577rnimJMnTxbHROSuwze+8Y3imHvuuac45qWXXiqOee2114pjbrrppuKYV155pTjmgw8+KI7JnFtExFVXlX/fRubZy8Rk7tGgZK5/5v1l2pn33nuvOObGG28sjsmU9Yjce3r//feLY958883imI985CPFMZnrcO211xbHfOxjHyuOyVy3rK2trb4dq1SmPXv11Vf7cpxM+cm0m/0sC7fccktxTKvVKo65/fbbi2MG5eLFi8UxlUqlOCbTn8iUjUzfMnNuEbk2LVOesuOgfrjuuuuKY95+++3imMy46frrry+OiYh49tlni2M+/vGPF8dkxk7XXFM+1ZDp92b6Apnx4+uvv14ck3nuInJ1Q+Z69+seDUrmuXrrrbeKYzL3+b777iuOydRHmX5YRK4/mmkHM+Up0z/K1MuZcV2mncmUhcx8UUTuOmS88MILxTGZeYFMX75fY61v//ZvL475gz/4g9SxXn755eKYTP149dVXF8dk6q1ByYwnM+11pn/9/PPPF8dk6spPfOITxTEREc8880xxTOYzmky5zdTlmXuUmcO44YYbimMyY9tM3yYi10/M9JczbVOmfGfG0Zlzy8zVZp6HzHEicu8p8xlIpn4cpTYj81xl+r1PP/10ccz9999fHJMpF9n50Uwdm/lsIjPXmenrZNqmTFnIlLlMvzczvxIRMTY2VhyTGUdn3lOmDsvc10zZzrTr/Zp/iMhdu8x1yPSJRqnNyPRBMnM5mfKU6YNkysXm5mZxTESuv5OZJ8i0M5n5n0xMpo3OlLnJycnimH/5L/9lcUxExDd/8zcXx2TqlsznGZnPDDLXO1OXZ9bGZOqF7OfFmXqrX/PP2bHTIGTONTMfkVmX2q82PtPOZI+VmQvMjBkyZT3zTGXqlkw9kemHZa5bRG6ccerUqeKYX/3VXy2OyayH+IVf+IXimM997nPFMZlnPDMGyvQlI3JzjpnnKLOuqF/r3Hsh02ZkPkvKlPVMHZY5t6zs+o1SmTX5mXnvfq2V6Vfdkv08I9MXyLRPt912W3FMZkycua/9WueeGUNn1xFmcqMy1yEzXzvM67s7ZfrYmbFupp+YGYNm3k92nJFZ95KpyzP1cua5yrS3/eq7Zfrxf/Wv/tXimIiIH/mRHymO+eM//uPimB/8wR8sjsn0sTPtWeYZz7RNmbUD2Zy+TB8ic+0ycwn9zDnZjx3GAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBElYRwAAAAAAAAAAAAAAAAAAGBESRgHAAAAAAAAAAAAAAAAAAAYURLGAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBElYRwAAAAAAAAAAAAAAAAAAGBESRgHAAAAAAAAAAAAAAAAAAAYURLGAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBElYRwAAAAAAAAAAAAAAAAAAGBESRgHAAAAAAAAAAAAAAAAAAAYUdf0+gWvu+664pirr766OOb1118vjrnmmvK3e+211xbHvPvuu8UxERE33nhjcczXv/714pirrir/noCtra3imDvvvLM45s033yyOyVzve+65pzjmjTfeKI6JyJXVzLV77bXXimOuv/764pgTJ04Ux7z//vt9icmcW/a+fvDBB8UxN910U3FM5j1l6rpByZzrLbfcUhzz6quv9uU4mfKUaTcjIm644YbimFarVRxz8803F8e89dZbxTEXL14sjrnrrruKYzJ1cqZ9ztQREbnrnSlD3/Zt31Yc84d/+IfFMV/72teKYzL1wqlTp4pj3n777eKYSqVSHBOR66tk2sE77rijOOaVV14pjhmUzPXP1Mubm5vFMbfffntxTKYflukrR+TGNLfddltxTKa+/I//8T8Wx3z0ox8tjmk2m8Ux/+pf/avimOeee644JtPfi8iVocwzn+nDZtqzTBvdr7mEzFgrc5yI3Hg9E5OpT957773imEHJnGumPGXKeqZtypSnsbGx4piIXJuRqY8yfZ3M3FSmX54pCz/0Qz9UHJPpPzQajeKYrEw9kemPZvpemfFj5r5mxiaf/exni2Oyfbzv+q7vKo7JjNcz/cJ33nmnOGZQMnX5M888UxyTmcPI1Hu33nprccxLL71UHBORmzvLjMUz1yHzXGWuXaYvn+m7Pf/888Uxmec9IuLuu+/uy7Gy46BSmfo/0x/K9D9/9Ed/tDgm89xFRPzsz/5sccyLL75YHJPp34zS3FSmD5up9zJtRmbcmukrZ8e6mf5EZs438yxm7lGm3su0Z5lrMDMzUxzz/d///cUxEbk6NtOX/zf/5t8Ux6ysrBTHZMpCpl3PPHuZ+vWpp54qjomIuPfee4tjMuf38ssvF8dk6pJByXw2ff/99xfHZPq9mZjMuCl7vzJtWuazicwcXeZzqsxnhNnPmUtl+hw/8RM/kTpWZv4nUy9n+suZMpfpc2Q+089cg8w6kszaw4hc3ZAp35njZO7roGSuSaZP9clPfrI4JtOeZeYFs+PCzLOYaZ8ya60y/aPMM5+ZX9nY2CiO6dfnlxG5eZlM/yYzxs+069PT08Uxn/rUp4pjMuO6r3zlK8UxmbFtRP/W2mbqk2xZHYRMHZupjzKfgWTKRqYOy3wWGZFby5Pp/2fqlsx9zfQF+jXXllmnkJmLjsj1+TKfBWXmMDJ1WOY5yvT/M+1ZZh4w28fLvKeMzHsapXVT/VqLnulbZspg5tpn1jJF9G8OMtMOZj7Xz9zXfn2e8dM//dPFMZmyHRHxy7/8y8Uxv/Irv1Ic06+5nMxxMmOtzFxbpj+U1a91+CdPniyOycyp9NrojHQAAAAAAAAAAAAAAAAAAADYRcI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAjSsI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAjSsI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAj6ppev+AHH3xQHPP1r3+9OOYTn/hEcczzzz9fHPPxj3+8OOaNN94ojomIuOGGG4pjXnvtteKY+++/vzgmc49arVZxzNVXX10cc+rUqeKY//f//l9xzJ133lkck43LlNXbbrutOObaa68tjsnI3Nc77rijOObnf/7ni2Myz1BExMMPP1wck6kfr7mmvJq+6aabimMG5f333+/LcW6++ebimOuvv7445pVXXimOGRsbK47JHuv2228vjnnuueeKYzJlMHNu77zzTnHMddddVxxz1113FcfMzc0Vx0TkrveDDz5YHHPrrbcWx/zQD/1QcczW1lZxTKYflbmv7733XnHMxYsXi2MicmX1lltuKY45ceJEccyNN95YHDMomeuYqctPnjxZHJPp92aufabcRuTKxrd+67cWx/z0T/90cUymHfzDP/zD4pjFxcXimJdffrk4JnOts/c1U74zdcvGxkZxzNe+9rXimEz//9VXXy2OyYybMs9rdqyVqesyx8r0BV588cXimEHJ9A0yMmO8zLm99dZbxTGZOiwiVy8/88wzxTF33313cUzmPWXqyoy//bf/dnFMpvw89NBDxTEREX//7//94pjMfX3zzTeLY/o1FszUlZmYzPOanXO89957i2Myc46ZuZu33367OGZQMs9iZj66X3PlmeNkZebbMnMsL730UnFMv9qMzLzHVVeVf49zpj+auT8RuXrs3XffLY7J1LGZsVPmGc88e9/0Td9UHPM93/M9xTHr6+vFMRG5ZyJTvjOfJWbL6qjIfJ6dGVNn+gWZ8X7mM6uIXH+iX+Ogfs3RZeY9fu7nfq445pu/+ZuLY7Ljpsz4NnOsf/fv/l1xzPT0dHHMU089VRyTKQuZZzzT//zkJz9ZHBORG9dl+niZsUmmXhiUTFl/4YUXimMy/bDMnExmnJGZK4/ItRmZMUNmLJ5ZW5J5pjJzt5my8FM/9VPFMdnxfub8Mu1Mtq9SKnNumc/AM+/n2WefLY7JrtvJfKa6ublZHJOZCxwlmeufqcszfZDM+Dgzxss+u5m2JlMvZ95Tpr7MXO9M+cnMyWTqvUzdH5HrY2fKQiamX58LZtaRf/azny2O+Sf/5J8Ux/yf//N/imMicvNMmT51JqZfa6h7IVO3ZOq9zOfFmbo8M4+T6UtE5N5Tv/otmT5Vpo7NrDfO1GGZ65btC2TW/2TOLzNGy7TRf/2v//XimEz/IdPW/tqv/VpxTObzsIjcc5Q5VuY5GqX8jH593pfpK2fKbeYeZz83zzzzGf3qW2b6vT/5kz9ZHHPmzJnimAceeKA45jOf+UxxTETE5z//+eKYTFnN9Hv71XZm1mdl5rMy1y3TZ43oXy5R5nr3a/3qpdhhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAESVhHAAAAAAAAAAAAAAAAAAAYERJGAcAAAAAAAAAAAAAAAAAABhREsYBAAAAAAAAAAAAAAAAAABGlIRxAAAAAAAAAAAAAAAAAACAEXVNr1/w5ZdfLo75xCc+URzz3nvvFcdcc035233mmWeKY8bGxopjIiKeeuqp4pibbrqpOObNN98sjrn++uv7cpx77723OObpp58ujrnuuuuKYzLlJyJ3He66667imLfeeqs45iMf+UhxzGOPPVYc88EHHxTHfOUrXymOufPOO4tjPvnJTxbHRET89//+34tj/ubf/JvFMe+//35xzNbWVnHMoGTeX+aZuvXWW4tj3n333eKY++67rzjmG9/4RnFMRMS1115bHPPGG28Ux5w8ebI4JuO1114rjrnqqvLvvTlx4kRxzMzMTHHMX/yLf7E4JiJ3vTPP/D/4B/+gOKZf7W2mbGfKwttvv10c8/rrrxfHROTa20xdl3lPmXs0KJnnt9VqFcfcfPPNxTGZZzfTd7vhhhuKYyJy5/e5z32uOCbTFzt//nxxzC/+4i8Wx1x99dV9icmMZ55//vnimIj+1WOZ+ijTJ3ruueeKY26//fbimFdffbU4plKpFMdk24zM2Dsz3srUj5lnfFAyz2+mncn0YTNjoEz/KDsuzMzrZZ75frWDmeejWq0Wx2SuQeZa33jjjcUxEbm2JlNWM89eZo43UxYyY/w/82f+THHMqVOnimOyfYFMXZ65r5k50Uy9NSivvPJKcUxm7jbz/Gau/bPPPlsckxkDReSe+cw8WGbMn7l2mb5Apr3NvJ/Ms5uJicidX2be4wd+4AeKYy5evFgck6mXM9fgb/yNv1Eck+lfZ65bRK69zcypZ56jzNh2UDLPfKbc3nbbbcUxmfo/c49vueWW4piI3NxC5jPwzDgjc5xMHfsf/sN/KI7JfM6QeaZ+67d+qzgmIre24Tu+4zuKYzLtzPz8fHHM7OxscUymfs2MOd95553imK997WvFMRG5flRmTJMZM2TqrUHJtImZ+ijTl8983pe59tn7lZm/vfvuu4tjMmPqTF8g8/lMZpyakWk3s323zJg480xk6suNjY3imMy6wEz/IdPOZOcPMzJrKjN93UxZ6Ndz1AuZcpspT5k51Uy/IFNX3nPPPcUxEREvvPBCcUymD5L5nOFbvuVbimN+7Md+rDhmfX29OOZXfuVXimN+//d/vzgmM3cYkZuXybRpn/3sZ4tjvu/7vq84JrM2PiPTH+rXvGv2WJubm8Uxmf5xZs5iUDLXMbMuLNOO3nHHHcUxmX5Bdt47M87IjOv61f/PXLt+fQaSGQtm7k9ErnxnPjPIrLvO9OV/+Id/uDgm8zlDZq3V7/3e7xXHTE9PF8dE5J7zzLquTD88s0ZoUDLPb6aeyPQNMs9UJiY7N5V5fjN938w4I9MXyKxn/a7v+q7imMxz+Du/8zvFMf/5P//n4piI3D3KlO9M+cl+9lYq095m2tpM2c6OHzNtRqau6+cav16ywzgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACPqml6/4LXXXlsc8/777xfHvP7668UxJ0+eLI559913i2M2NjaKYyIirrmm/HZcd911xTGvvvpqccytt95aHHPVVeXfR/Dyyy/35TiVSqU45o033iiOiYi48cYbi2Pee++9vhzn0UcfLY65/fbbi2Neeuml4phf+qVfKo7J+At/4S+k4ra2topjMuUuc+0ydeqgZMr6Bx98UBzz5ptvFse8/fbbxTGZa5+pXyNy1+Gmm24qjnnllVeKY2677bbimMx1yPQFTpw4URzzm7/5m8Ux3/d931ccE5E7v4w//uM/Lo7JtLeZ5yjTnmX6Xv2qxyNy1y7Tx8s8E5njDEqmPGXqo0zZyPTj33rrreKYTFmKiPiv//W/Fsfce++9xTHr6+vFMV/+8peLYzJuuOGG4phPf/rTxTETExPFMT/xEz9RHBMR8YUvfKE4JtP3yoyjM89rv46TecYz/aFs/frOO+8Ux9x8883FMZn2NnPtBiXzzD///PPFMZn6f2xsrDgm00fMtDMRueeqX3M5mTnHTL03OTlZHJO5bpkx0M/8zM8Ux0T0b3ybeSauvvrq4phMHVutVotj6vV6cUxm3P2//tf/Ko6JyM11ZO5rv+aSByXTJmbGXpl5nEy/4CMf+UhxzNNPP10cE5EbI2fGGZm6/IUXXiiOydRhmX7YP/7H/7g4JnNuX/ziF4tjIiLuvvvu4ph//s//eXHMqVOnimMyz0TmGc+0M5lz+/rXv14ck+mzRvTvs9t+zrcNQqbfkqn/X3vtteKYzLOb+dwz+1lp5vP2Z599tjjm+uuvL47JXO+HHnqoOOY7v/M7i2Myz+FnPvOZ4pif/dmfLY6JyD3zf+Wv/JXimM9+9rPFMWtra8UxGZn6tdVqFcdk+gLZz4szbXTmWLfccktxTGaOblAy96xfn2dn5mEzfZ1M3R8Rcc899xTHZK5DZt1LZo7umWeeKY7JnFvmOczc1+xn2Zm5ysx8RKYvMMzrFDJjzsy5ZT9/zFy7TP+hn5+pDkJmPjFTT3zta18rjsncr8xnIBcvXiyOici1t5l5psw8wU/91E8Vx9x5553FMX/2z/7Z4pjv/d7vLY556qmnimN++qd/ujgmIuI3fuM3imMy/aj/+T//Z3HMj/zIjxTHZOqjTJvx1a9+tTjmd3/3d4tjMmOgiFy7nrmvmfMbpTYjM9eZKU+Z/nWm35vpu2XXYWTGJ5k2OnPtMmsbMn35zNxmZh1Apv+QnXPMzBNk7mvmOfpzf+7PFcdk+gL9Kqcf//jHi2O+/du/vTgmImJ1dbU4JvNMZPqgmed1UDLjtRdffLE4JlO/ZtrezGfMmf5HRG7MkCkbmeNkYjL9//vvv7845r/8l/9SHHP+/PnimOy8d6bcZWIy7WC/PkvMrKfPtIGZc8v0cyMiPvaxjxXHZD5/vOOOO4pjMuOZXhudkQ4AAAAAAAAAAAAAAAAAAAC7SBgHAAAAAAAAAAAAAAAAAAAYURLGAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBElYRwAAAAAAAAAAAAAAAAAAGBESRgHAAAAAAAAAAAAAAAAAAAYURLGAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBElYRwAAAAAAAAAAAAAAAAAAGBESRgHAAAAAAAAAAAAAAAAAAAYURLGAQAAAAAAAAAAAAAAAAAARpSEcQAAAAAAAAAAAAAAAAAAgBF1Ta9f8L333iuOefvtt4tjbrnlluKYd999tzhmc3OzOOajH/1ocUxExOuvv14c88YbbxTHnDp1qjjm1VdfLY7Z2toqjsm8n0qlUhyTKQs33HBDcUz2WO+//35xzPd///cXx4yPjxfH3HjjjcUxP/iDP1gc85WvfKU45sknnyyOyVzriFx5yJSFa64pr6Yzz96gXH311cUx9957b3FMq9Uqjrn22muLYzJ1Zeb9RES88sorxTGZ63DHHXcUx7zzzjvFMZn6P1N+Ms/HJz/5yeKY6667rjgmIlcn/cqv/EpxzIsvvlgck7l2t956a3HM1772teKYsbGx4pjbbrutOCbTV4vIXe+Mm2++uTjmxIkTR3AmRyPTJn7wwQdHcCZ7bWxsFMdk2pnMGCgiN0Z76qmnimN+6Zd+qThmdXW1OOaqq8q/9+z+++8vjvm2b/u24phMPX777bcXx2Rl+vKZ6/3mm28Wx2TGdZm2qV/1f6YNjIh49tlni2MydXmm35rt3wzCW2+9VRyTmSvJ3K/MM5Up63fffXdxTESuj50pT5n6MtN2Ztx3333FMZn+3gsvvFAc82u/9mvFMRG5fuIXvvCF4pjM+PHll18ujvnYxz5WHJMZM2SevU9/+tN9iYnI1cuZ8fr1119fHJOZsxiUzDXJzOVkxrr33HNPcUymH3/nnXcWx0REvPbaa8Uxzz//fHFM5npn+tiZsjA/P18c83f/7t8tjsmM6b73e7+3OCYi10Zn+gLNZrM4JlMfZdrAzLgpM2eRqccz7yciVy/fdNNNxTGZ5yj7Gc0gZMZembFJpi//9NNPF8dkymCmbYrI9X379dlEZgz0qU99qjgmU4f9xm/8RnHMf/pP/6k4JjuHmqn7HnzwweKYzOermXovUx9lxviZdj1TTqvVanFMRG58m5kLzHwumG0HByHzzGeuSSYm09fJPIeZsh6Re0+Z5zdTh2Vkym2mbunXXFu2zci8p37do8x7+shHPlIck+kPZZ69zLXOfD4TkVt/klkjmvm8JdMPH5RMO5pZs5bpT5w8ebI4JtMnz65z61eb9p3f+Z3FMZn5rMy5ZeqwTExmLPj5z3++OCYit+bgF37hF4pjMu1MZl145jOQn//5ny+OWVxcLI7J1JXZNUaZz+gz7VNmLDhKn4Fn1i1kPh/LrE3KrJvKfDaROU5Ers3ItJ2ZNfmZdQrLy8vFMZl2JjNHnJlXyHw+H5H7nCrTX87Uff/0n/7T4phMvzczFsyMuz/zmc8Ux3z5y18ujonItU+ZeZiM7FqwQcg8H5n6KPNMZWIyY+rsWDdz7TLj40x7m6mPMn3lL37xi8UxmeuWkZ1z7Fd+VabPkRk/PvDAA8UxmXo5M57JlNPs3H9m/Unm/DJzN/3KX7gUO4wDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCiJIwDAAAAAAAAAAAAAAAAAACMKAnjAAAAAAAAAAAAAAAAAAAAI0rCOAAAAAAAAAAAAAAAAAAAwIiSMA4AAAAAAAAAAAAAAAAAADCirun1C77zzjvFMZVKpTjm7bffLo45ceJEcczJkyeLY5577rnimIiI22+/vTgmc+1arVZxzPXXX9+XmNdff7045s033yyO2draKo656qrc9yuMjY0VxzzwwAPFMX/v7/294phMmXvjjTeKY9bX14tj3n///eKYa6+9tjgme1/ffffd4pgbbrihLzEvv/xyccygZO7zq6++Whxz8803F8dk2plMG5h5piIiXnrppeKY2267rTgm02Zkym2m/s/UYXfddVdxzJ/+03+6OOatt94qjomIuHDhQnHMT/3UTxXHfPDBB8UxGZnrkGk3M3XyxYsXi2MyfY6IXB/0vvvuK47J1KmZum5QMm12pj7ql8zzkakrIyIeeuihVFypTN2SeT5OnTpVHPPpT3+6OOamm24qjsn0BTJjk4hc3zdzftdcUz5tcPXVVxfHvPbaa8UxmXuUObfMcd57773imIhc+c6UoUz5ue6664pjBiVT1jP1cmbOKNNvufXWW4tjMuOmiFy9fOONNxbHZNr1zFg3Mzf1L/7FvyiOybyfTP2arVsyz+83f/M3F8dknr1MvZfpw37xi18sjvnZn/3Z4pinnnqqOCZTFiJybWdGpn7MvqdByMyvv/jii8Uxmf5Ept7L9Mmzc4mZ9inTF8u0TZn6KFOX/+Zv/mZxzN/5O3+nOKaf896ZufxGo1Ec87//9/8ujsn0bzJlLjOG/v7v//7imFtuuaU4JjNPGRHxW7/1W8UxmXYm09cdpbmpTH2ZaWcyfb7M2CTTj898XhDRv88MMm3Gpz71qeKYiYmJ4pjMZ0GZsUnmmcrOTWX6HZ/73OdSxyr17LPPFsdkyk+m35v5nCFznKeffro4JiL3vGb6hZn+8cbGRnHMoGTqsDvvvPMIzqQ3MmOg7NxUv8aTmb5Ypq+TqVsyfYHv+Z7vKY758R//8eKYP/qjPyqOiYj4mZ/5meKY3/md3ymOybRpmfnDz3/+88UxmTmjf/SP/lFxTKb8ZD8Dz1y7zLOXmZsapc8zMue6ublZHJOZJ8jU5f1a0xuR60+88sorxTGZftWP/MiPFMdknqn/+3//b3FMZjzz7d/+7cUx2c8zfvu3f7s45mtf+1pxTOaZGB8fL465++67i2N+93d/tzgm0//MjOmyfbXMc96vNYvZOmgQMuvCMu185tpn5qaef/754pjsmsdMe5uZl//X//pfF8d867d+a3HMj/7ojxbHLC0tFcdkylxmfW52rW2m7cy8p4985CPFMX/pL/2l4phM2/Q//sf/KI7JrKFrNpvFMdm+QOa+Zj4LytRbmb7koGTaxEwZzNTlmc8mMjHZ+3XvvfcWx2RyOjLjukzfMtMXyHyekelT9XNNeGZe75Of/GRxzC//8i8Xx2TGtpkyl6lf/7//7/8rjslc6+zcfyY3KnMdMs9Rv3J1LsUO4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjCgJ4wAAAAAAAAAAAAAAAAAAACNKwjgAAAAAAAAAAAAAAAAAAMCIkjAOAAAAAAAAAAAAAAAAAAAwoiSMAwAAAAAAAAAAAAAAAAAAjKhrev2Ct912W3HMddddVxzzwQcfFMdcc03P325X119/fSru7bffLo55//33i2NuvPHG4pj33nuvOObVV18tjrnqqvLvMJieni6OOXv2bHHMfffdVxwTEXH77bcXx2xtbRXH3HrrrcUxV199dXHMZz7zmeKYN998szgm8xxtbm4Wx9x8883FMRG55zVTvjPv6aabbiqOGZTMud5www3FMa+88kpxTOZ+ZWIydWVExN13310ck2k7MzEnTpwojsnc10wddssttxTHfNM3fVNxzOuvv14cExHx5S9/uTjm4sWLxTH96hO99dZbxTGZ+5ppMzJ9qLGxseKYiFw7+NprrxXHvPvuu8Ux1157bXHMoLzzzjvFMZmynmkzMuOZzP3qZ78lU5dn2sFMGfy+7/u+4pjTp08Xx2Rk6rDZ2dnUsT72sY8Vx3zuc58rjvnGN75RHJMpC5lrd/78+eKY7/me7ymO+Wf/7J8Vx3zxi18sjonI9SH69exl2vVByfQNMjGZsXu/2rPsOCNTNjLzTJnjZMYMmfmszD3KtJuZZyrbj8/0O37u536uOOYf/sN/WByTuUc/8AM/UBzze7/3e8UxmeuWqUsy1yCif3MQd9xxR3FMpn88KP1qe/s1B5aZ98iMWbNxL7/8cnHMRz/60eKYTFnP3KN+9Y8yfY7HH388dayf+ZmfKY7JzE1l3lMmJjO3uby8XBzz27/928UxmT5HP/vkmf5Npo+XqVMHJTM3mKn3NjY2imMqlUpfjpN17733Fsdk5ugy/be77rqrOCYzBsq0TS+99FJxTD/niDP1cuaZyPSXP/WpTxXH/Pqv/3pxTObcMn2OTB8v22Zk1jZkPm/JfAaSaddHSaZefuONN4pjMuUpU+9lPpeIyLVpmWNlymBmzJ+Zy/nlX/7l4pgHHnigOCYzJ//n//yfL46JiDh37lxxTOa+fulLXyqOyYxnTp06VRyTqcP69Rl49nnN9AUycwnZubNRkbmOmboy02Zk+qP33HNPcUxmfByRW1OXGYP+/u//fnHMH/zBHxTHZMbhmfLzS7/0S8UxX/jCF4pjsjJtZ+a+ZsZOzzzzTHHM008/XRyTqfcya4cz9X+m/xAR8fWvf7045uTJk8UxmX5rZpw6KJnPDDJ9g8x9ztTJmXU8f/zHf1wcE5GrWzLj6kyfL9PeZtr1fn2enemnZMZnEf2bJ/ju7/7u4pjMe8rMH9br9eKYfrVNmZyyiP7NdWTqrVGSKU+Z+j/T/8+MwzP3ONPfi8iNWzPnl5mXz1y7zLOYKQuZ65YZz2T7o//+3//74piPfOQjxTGZ+v+5554rjsmsycmcW+YeZeazsnNTrVarOCbTf8j0b7JltZdG51N4AAAAAAAAAAAAAAAAAAAAdpEwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAjSsI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAjSsI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAj6ppev+Brr71WHPPuu+8Wx1xzTfmpZ2LeeOON4pi33nqrOCarUqkUx7z55pvFMTfccENxzAcffFAcc/r06eKY8+fPF8dkzu2VV14pjomIuOqq8u9luPrqq4tj3nvvveKY119/vTjmK1/5SnHM1tZWccz7779fHHPXXXcVx2Seh4iIkydPFsdk6rpMWbj22muLYwYl02ZknsVMHfbOO+8Ux2Tu16233locE5Fra06cOJE6VqnMuWWuQ6b8PPPMM8Ux/byvP//zP18ck2lnMu1g5jjXXXddcUxG5nnN9AszbVNErh285ZZbimNefvnl4pjsexqEzH2+/fbbi2My1z7TNp06dao4JtOXiMg9v5mYP/Wn/lRxzA//8A8Xx/y1v/bXimMyfeXMfX311VeLYz72sY8Vx0RE/K2/9beKYz7xiU8Ux/zYj/1YcUymPvrCF75QHPMd3/EdxTH/8T/+x+KYL33pS8Uxmbo/Ilc3ZPq6mbKaqYcHJfPMZ9rETP8601fO9Htvu+224pisTNnIvKe33367OOamm24qjsk8v5m+5Y033lgck5mnjMi163/0R3/Ul+N8+ctfLo75vd/7veKYzBgo84xn6pLsXPLY2FhxTKZuGPb58cPK9LEz7XVmHnZzc7M45vrrry+OyTwfERE333xzccy9995bHPPCCy8Ux2Q+N8n0H37yJ3+yL8fJlJ9Pf/rTxTER+c9BSmXqy8wcXSYmc737NdeWiYnI9YlefPHF4pjMnGh2rmMQMvf5jjvuKI7JlMHMM5WZu83Mm0VEfOMb3yiOyZSnTP/t2WefLY7JPFOZdnN8fLw45td//deLY7J9gcw46IEHHiiO+YEf+IHimMw9+rf/9t8Wx1y8eLE4JlNOM8fJeumll4pjMnNTmTH+KH0GnpF5f/2aS8zUlZk2MCLXH808V5k6LDNn9N3f/d3FMZ/85CeLYzLXIPN+sv3RTFnNzEc8/PDDfTlOZpxx//33F8f86q/+anHML/7iLxbHfP7zny+Oycr0JzPzI9myOgiZebRMO5qZk8nMYWT68V/72teKYyJybU3m84x+fTbRrznVTP8/00/Jflaaud79mjPKlJ/M9c6MH1utVnFM5hpkPtuKyK3rzXyekWkzMtd7lPRr/idT1jP1f+azsYhcHZu5DplxRuZzncy5ZerlzPXOrBfq17rmiIizZ88Wx8zMzBTH/P7v/35xzI//+I8Xxzz//PPFMZlymqlLsmsbMuUhsy78nnvuKY7JzJsNSmb+J5NTs7GxURyTGa/1a+1wRK5flXlPmfFWps3IfH6UaTMyY4bMZ4SZtcMREX/5L//l4pjnnnuuOOaHfuiHimMydXmmr5ypXzNrTDPPQ3buP9OmZcZBmb7kMMxNDf4MAAAAAAAAAAAAAAAAAAAASJEwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAAAjSsI4AAAAAAAAAAAAAAAAAADAiJIwDgAAAAAAAAAAAAAAAAAAMKIkjAMAAAAAAAAAAAAAAAAAAIwoCeMAAAAAAAAAAAAAAAAAAP8/e/ceHFl61of/0c793qPZ2dmrd7fH2I5DCtDs4tgYbLMSgaqYQCHtQghFAowUAnaliorE4sIQflCLFAOBxAnSECCVANmRKDAYE1tawIAxeGdEQRni28he7312Lj33+8zvjy2JGalndt5nWt3qmc+nimJX3m/36dPved/3vOc8fQDalIJxAAAAAAAAAAAAAAAAAACANqVgHAAAAAAAAAAAAAAAAAAAoE0pGAcAAAAAAAAAAAAAAAAAAGhTCsYBAAAAAAAAAAAAAAAAAADa1PJGv+DGjRuLMytXrizOrFq1qjjzwgsvFGe2bdtWnNm0aVNxJiLiwIEDxZmXXnqpOLNhw4biTEdHR1Myzz33XHHm8OHDxZlKpVKcybTtiIhly5alckvVX/7lXxZnMsf4xYsXizOZtpDZtohcf7Jly5bizLlz54ozJ06cKM60yooVK4ozmX1Sq9WKM+vWrSvOdHZ2FmeOHTtWnIlo3vf8wAMPFGeOHj1anMkcv5l++eTJk8WZZ555pjiTnQvceeedxZnz588XZ77zO7+zONPb21ucybj//vuLM6dOnSrOXLhwoTjzgz/4g8WZiIjp6enizJEjR4ozt91W/ltQZ8+eLc60SuaYz/Sxmf41M56dPn26OJM5B4qIeO9731uc+dZv/dbizB133FGcyZwz/If/8B+KM3/2Z39WnMm0n0uXLhVnHnnkkeJMRMR/+2//rTjzlre8pTjzG7/xG8WZPXv2FGde97rXFWc+85nPFGd+9md/tjiTGTPOnDlTnInI9f+Z+UOmrW7evLk40yqZz5eZJ2bWFjLnGZn+/8UXXyzORESsWbOmOJPZ3xmZtp7ZD5n1iLvvvrs4k+knVq9eXZyJyJ0zPPvss8WZ9evXF2f+8A//sDiTmcMuX16+DJ5p25n3Wbt2bXEmInfundm+zNpZZh2mVTL7P9NPZI7fTD+RGTOy85bMOejMzExxJnM9I7N+mDk3yezvzLZl1s3uueee4kxErn1nzqMz7SeTyawZZfrKZl1Dy64lZ9YtMvPWzJyjWXPJRsicr2X2yb333lucyawzNXOMz1w7yRy/mT7s85//fHEmMx/NrC1Uq9XizNNPP12cyZ5nfOVXfmVx5rd+67eKM5nvNeNd73pXcWZ8fLw4k/k8mUymH4/IjU+Z9p3pF9rpGniz5onNum6eWfvPyoxPmf2QabeZ/jLTV2aO+cycKjPWfuITnyjOROTWUT/96U8XZ/7Vv/pXxZlMf3T8+PHiTGb94fbbby/OvPnNby7ONPO+tsw8qplrHa2QWffIHL+ZayCZ4yOzrpy5LhGRa0+ZTKb/z/TlmbEps++aNc5kz/czaxjNWnvNnONnPk/mfTLz+My2Zefkmb7u+eefL85kxs7MmkqrZPr/TD+R2SeZNdXM+2TXMDJry5ljcevWrcWZTH/0pje9qTiTOdfKbFumP8q0n4iI7/7u7y7ODA0NFWcyY2fm3rb9+/cXZzIy86HMfQDZ/jXT7jLrYJkarGwf1AqZcT5zDeSuu+4qzjTr+ljmfoqI3L5r1jpTZo6d2bbM+9x3333Fmfe85z3FmW/+5m8uzkREfOELXyjOfNd3fVdxJtOHZcbBQ4cOFWcyx15mHp9Zf8jel5pp35l1vcxcMrvW0UieMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJta3ugXvHTpUnHmyJEjxZlNmzYVZ7Zs2VKcOXbsWHHmzJkzxZmIiBUrVhRn7rrrruJMR0dHcebcuXPFmQsXLhRnVq9eXZypVCrFmTVr1hRnbrst9/sKmfZw8eLF4sxzzz1XnJmeni7OnD17timZU6dOFWfWrVtXnMn0WRERb37zm4sztVqtOHP33XcXZw4fPlycaZVMf7R+/frizMqVK5uSybTbbN+yefPm4szp06eLM/v37y/OZMazVatWFWcyn+eOO+4ozmT65Mw4ExHxvve9rziT6Se+4iu+ojiTcf78+eJMZv6Q6f8/+clPFmcyfVZE7jNl+obMfsgcr61y8uTJ4kxmnpjpWzZu3NiU98l+X+9973uLM5k50rJly4ozv/7rv16c+YM/+IPiTObzZOeJpf7iL/4ilfvEJz5RnHnnO99ZnLnvvvuakvl//+//FWd27txZnMmcm2T68Uz/ExFx8ODB4kxm3SLTn2TOZ1olM3/LzP9feeWV4kxm32fOgTLrKxG5eXlm7ptdOyu1bdu24szRo0eLM5k2l9kH2bEp0x4++9nPFmdeeuml4kxm2173utcVZ5599tniTOZ4ffnll4szmXYakWtDmf2dWRfOzI9bJTM3yJyvZfbj7bffXpw5dOhQcSbbt2RymeMq8x1lzt8z5zMf+chHijPf+73fW5ypVqvFmR/+4R8uzkREdHZ2Fmf+x//4H8WZp556qjiTWRfIfK9r164tzmS2LTP/zLrzzjuLM5nrDJm1wMx31Cpbt24tzmTmiZl9nxl7M2NTdt37hRdeKM5krusvX15+68MDDzxQnMmsE2TOtX7yJ3+yOPNTP/VTxZnscdisew6atU75lre8pTgzPj5enGnW58med2fa6vHjx4szzZqHt0pm/T9zvpbZJ5nv68tf/nJxJjOnisitq2bae6atZ87R3va2txVnMv1EZmzKXJ/51V/91eJMRG5OlLkn541vfGNx5g//8A+LM5nrzJk1x8z3mpkPZcbniNz4lMlkzp3aaczI3GeU2SeZtvHiiy8WZzLjWfY+jMw6U+aaWuZcNzOeZd4ne/zebDL7IdPuMutmmfPozHwtI7Pfsv1rZj9kvqPMvmvWfSGNkFmbOnHiRHEm0zYyc53M/a/ZNpg5R8u0wcw4kxnX3/rWtxZnuru7izMf/vCHizOZYyoz94+IGBgYKM5kti9zT2amLWTOmzLzoUzbzswls/esZNYTMv1WZv0506e2SqY9Zc7XMveIZK5nZLYtO2b8yI/8SHEmc1/X7/zO7xRnMuNt5l7E7//+7y/OZO5L3bBhQ3Fm9+7dxZmIiJGRkeJMpm/JtNVMPW3m3CTTh2XmUJl9kK1/y4w1zbrPJbPe02jtszoGAAAAAAAAAAAAAAAAAADAFRSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbWt7oF+zo6CjOnD9/vjizbNmy4syRI0eKM5VKpTizefPm4kxExMGDB4szmf1w7ty5pmQy2/b93//9xZmVK1cWZzJt7rd/+7eLMxER69evL8788R//cXHmQx/6UHHmwoULxZnMvsvYtm1bcSbzeU6fPl2ciYj40pe+VJzJtNWjR48WZ7J9UCucPHmyOHPp0qWmZDJjxqpVq4ozmb4yIuLs2bPFmdWrVxdnMvthzZo1xZkVK1YUZ86cOVOc2bFjR3Gmu7u7OJPtK9/+9rcXZy5evFic+cIXvlCcyXymzDwqk/nlX/7l4sz4+Hhx5vnnny/OROSO82YdE9lxsBUyfeyhQ4eKM8uXl58iZb6vzL5/4IEHijNZmTHjxRdfLM6MjIwUZzLjeuZ8JvO9Zrbt1KlTxZmIiKmpqeLM13/916feq9Qrr7xSnNm5c2dx5uWXXy7O3HZb+e/mZb6jTJuLyJ0/Zt4rM3/ItO9WyXzPGZs2bSrOZPrXzFwiMy+IiDh8+HBxJjN21mq14kxm32XabeZ8JnNumxlnMuseEbl+IvNeL730UnHmh3/4h4szW7duLc4MDw8XZzL7YN26dU15n4iIDRs2FGeOHz9enMm0n8xx1CqZYzHz+TLzo4zM+mN2jM+MNZnty8h8R//m3/yb4sy3fuu3FmeatQ/e9ra3pXKZ9Z9//s//eXHmT//0T4szmbbarPXnzHztxIkTxZnMNdiI3BidkTmfadY1p0bItKfsOX8zZMamzPwjIqKzs7M4kzkWM/Oq7/u+7yvOZI75T3/608WZzOfJXFfMzkff8pa3FGc++9nPFmfe8IY3FGcybTVz3a1ZY0ZmHSf7vWb6rcz8JrPen13raIW1a9cWZzKfL/M+mfPWzPw6e/0pM95m1qbe9a53FWf+v//v/yvOZL6jY8eOFWe++MUvFmd2795dnMnORzN931133VWcyYyDf/Znf1acyXxHGZlxJtOXZNcFMuu1mWu3mfvHMuN6qzTrvoDMvt+yZUtxJjOXyM5bMnOkTH/UrHlL5jpu5jrVgw8+WJz5R//oHxVnbr/99uJMRO78MTNXueOOO4ozmXlKZn09cz/TL/zCLxRnMtcLMm0uIndvfKYtZI7xzLXRVtm/f39xJrNelzmmMm09s22ZuX9Ebm6QWbf8rd/6reJMX19fcSZzP8Sb3/zm4szdd99dnMnc2/aOd7yjOBORW//JnNNk2s9b3/rW4kzmPrDM58nMvQ4cOFCcyd6306w1lcw8vJ1kvuc777yzOJMZRzPblun//+t//a/FmYiIb/iGbyjOZNYJvvmbv7k4k/GBD3ygOPMd3/EdxZlm1Xd+9KMfLc5E5Npd5pwz0x9t3LixOJORmXtljvHMelHmvDuiefeIZtY6svPWRvKEcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDa1vNEveOHCheJMZ2dncebIkSPFmVOnThVnli1bVpy5ePFicSYi4uzZs8WZAwcOFGc2bdpUnMlYvry8eX3nd35nceb8+fPFmc985jPFmR//8R8vzkREnDx5sjhz6dKl4syKFSuKMxmZ46hSqRRnMsdDZtu2bNlSnImIOH78eCpXKtMHZY6JVsn0E2vXri3OZI7Dbdu2FWcOHTpUnMl8nojcMZ8Zo5u1vzs6Oooz73jHO4ozH/zgB4szGZnPE5E7fn/0R3+0OPOhD32oONOsOdGaNWuKM5k2d+bMmeJMZh9E5NrDsWPHijOZ4zXTL7TKqlWrijOZ9nTixInizOnTp4szmfne/v37izMRER/72MeKM5lztEwfmzkWM+02034yfdhtt5X/JtuP/diPFWciIr71W7+1OJOZYx88eLA485GPfKQ489JLLxVnMm0h0y+sW7euOJPpxyNy7a5arRZnnn322eJMs845GyEzp1q/fn1xJnNMZeYTr7zySnEm09YjIu6+++7iTOY86I477ijOZI6rzP7OjOsrV64szmRkzzMy49Ob3/zm4kzme73rrruKMy+//HJxJtO/ZtpPZl9n12pfeOGF4kymb8is3WTmuq2S6Vsyc8vM+VqmPWX6iey5bqafyMxhn3nmmeLMe97znuJMZs63lI+P7JiRad+Zz9SsedTGjRuLM5l9l8ls3ry5OHP48OHiTETuez137lxxJrNGl+2DWiHzPWfOTTLXrTLfV2buX6vVijMRuflO5l6AzHWdN7zhDcWZzFpJ5hp45lpkZt6bvbchM1fJrC089NBDxZndu3cXZ77t276tOJNpP5njIXOMv/71ry/ORER8/vOfL8780A/9UHFm3759xZnM3KtVMmNG9ppxqUx7yqx7ZNdKMt/z4OBgcSbTL2f6y8y62S/+4i8WZz784Q8XZzJzt+xxmJmXv//97y/O/Oqv/mpxJjPeZvZDJpPZtkz/k7kmGJFbU8nsh8xxdLOfZ2Q+3+te97riTObaROY8I/M+Ebl+OdMfZc7rMuPgT/7kTxZnMvdkZtbAMnP/Zt5fk1mbytyn0KzrDI8++mhxJnOvRubaaHZdIHPsZe7dWb16dXGmnc4zMsdv5vjIzBMz1wgzc53MPeIRuWMxk9m1a1dx5r777ivOdHd3F2d27txZnMmcPzbzvpJM+85kMv1/Zq3kU5/6VHEmM1fOXC/OXNPJ9AsRuXsBMmNaZj9k+6BWyMxHM9egMsd8pm/JrKl2dXUVZyJy9wxl5hPPP/98cSaz7vFHf/RHxZmHH364OPPOd76zOJO55+Vv//ZvizMRub68We27We+Tmdtk1owy25bJROTO6zZs2FCcaVbtYKN5wjgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1qeaNf8MyZM8WZDRs2NHoz6qpUKsWZFStWFGdOnTpVnImI2LhxY3Hm4sWLxZnMZzp79mxx5u677y7OrFmzpjizbNmy4szg4GBx5sSJE8WZiIiOjo7izKVLl4ozJ0+eLM5k9nfm82S2LXMcPfDAA8WZQ4cOFWcicsdEZn9n+q1z584VZ1pl1apVxZnTp08XZzLH1LFjx4ozmeMjM25G5I6RTP+/adOm4szRo0eLMxm33357cSbTFjLjzPnz54szERF9fX3Fmb/7u78rzly4cKE4kzn2brutOb9NlOn3Mt9RZr9F5I69lStXFmcy27d27driTKu89NJLxZnM/Hr16tXFmUy/t2XLluLMyy+/XJyJiPi3//bfFmeWcn+5fHn5aWzmvOmRRx4pzrz//e8vztx5553FmYjcdzQxMVGc+dmf/dnizOHDh4szmb4yc86Z2bZM/5pd58i0789//vPFmUz/n9m2Vlm3bl1xJtNPZPZjpq/MyI7xzToPypyLZz5T5nvNzGHf9KY3FWcy43qtVivORETcc889xZlf+IVfKM5k5l6ZNaPf//3fL85k1nEybW79+vXFmczYFJGbt2bad2b9YfPmzcWZVuns7CzOZPq9Zs1hM2slmfleRMS73/3u4szx48eLM9lz8VKZ7zXTt3zyk58szmzbtq04k1krj8it1/7f//t/izOZ7zVzztCs77VZawnZOV5m+zJ9+cGDB4sz2WuqrZBpT826bpVZu926dWtxJnMcRuTmfJn9/fVf//XFmcy1u4997GPFmexcvlRmvSizFh2RW5fPXG//1Kc+VZz50R/90eLM8PBwceYf/+N/XJxp1v0d2fWHzPZt3769OPPMM88UZ5o1L2yEzDif2feZ4zfzPhnZ98mcZ/zLf/kvizOZ9pTp9373d3+3OPOhD32oOJPRrPPUiNx9L5k1jN/5nd8pzmTaQmY/ZPZ3pv/PrI1n5+SZvi6zDpOZ62bObVslM3/LtKfMNdnMOJO5Byq7PnrfffcVZzLnJpljvln35GSuR2baTyaTOaeLyB0TmXaXOSaatTaVOSYyn6dZbS4it97WrPl/O91rm5G5ZpBZx88ch5k+OTOXiMi1p8xnymR+/Md/vDiTuVb67//9vy/OPPzww8WZzL7O9BERubWPzDiTybz+9a8vznzt135tcWZqaqo406x7oLL1GZl+OdMWnn322eJM5nyrVTL7sVnX7jLfV2a9KHufW2b7PvGJTxRnPvjBDxZnPvOZzxRnMucz/+f//J/izD/9p/+0OLN///7iTHbMyPTlGc2qP82078w8JXteVyp7/TGzHzL9Y3b7Ws0TxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFPLG/2CnZ2dxZkjR44UZzZu3Ficue228vr4Y8eOFWfWrFlTnImIOHXqVHFm9erVxZlLly4VZ+65557izHve857iTKb9ZPbbF77wheLMsmXLijMREWfOnCnOLF9efmiuXLmyOHPx4sXiTKVSKc6sW7euOPP8888XZ06ePFmcOXv2bHEmImLFihXFmcz2Zb7XCxcuFGdaJbOt586dK85k+sr9+/cXZ7Zu3VqcyYxNEbljMdNfZjKZviXT1r/zO7+zOJPpjzLf0Xvf+97iTETEpz/96eJMZpzJzFU6OjqKMydOnCjOrFq1qjizYcOG4szRo0eLM5nxOSI3h1i7dm1xJvOZsuNgK2T6vczxm5krZ76vTP+a/b4ybTDTX2aO+cxcIHMsZvbBv/7X/7o4s2XLluJMZtyMyLXvX/qlXyrO1Gq14syjjz5anPm2b/u24sw3fMM3FGf+5E/+pDjzfd/3fcWZTF8SEXH69OniTGYelWmrL774YnGmVTLzlsOHDxdnMucZS7nfi8htX2bMyIyDmW3LjNH/5b/8l+LMN37jNxZn9u7dW5z5ru/6ruJMRK4NvfGNbyzOZL6jH/mRHynOHDp0qDizfv364kymT87s6wMHDhRnIiI2bdpUnGnWunDmGG+VZq2jNasvz1zPyKxFREQ88sgjqVypzLw3Mxdolttvv70487rXva44k5mnREQ888wzxZmPf/zjxZnMd5RZA8ucb2XWnzPn683aBxG5vi5zjt+sa5atktknmX450wYz1yYynydz/hmR+0yZtcCdO3cWZzLf0fve977iTEZm3Ttz30X2OlXme830fZn3+Y3f+I3iTGb+n/k8n/rUp4ozmbX/7Jw8k8u0ocz3mrl+1CqZ+5ky67CbN28uzjTrenFm3hsR8XM/93PFmcyYlplXZeYtzbqPJ3NMZc5T3/72txdnIiLe//73F2cy69GZcT3Tl2fWQzPrWZn7kjLtp5nn0JkxI3McnT9/vjjTKs2aH2XaU2ZtKrPWeffddxdnInLHfOb4zZzzZ47FP//zPy/OZNbxM99rJrPUz/ez9/+UyuyH48ePF2cy/V7m3rHMuUlEbm6Y2Q+ZNbDM+kOrZD7fSy+9VJzJjDOZ63B33nlnceZzn/tccSYiYtu2bcWZzHHVrHt6P/nJTxZn/uqv/qo4k/mOent7izPf8z3fU5yJyK2dZeZezbr/MHOf2h/90R8VZ5p1z2L2npXMPR4ZDz74YHHm4MGDi7AliyPTl2e+s0zbyJzjfeVXfmVxJjvGf+ADHyjO/Mqv/EpxJvMdZfqjzLlg5v6BzP0r3/RN31ScyVyXjoj4y7/8y+JM5l7CzHGUmeNl5imZ9pN5n2z/n5EZ1zPXGTLH61JYm/KEcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2tTyRr/g8ePHizPLli1ryvssX17+cdevX1+cqdVqxZmIiAceeKA484EPfKA409XVVZzJyOy7224r/w2Db/qmbyrOnDt3rjhz6tSp4kxExLp164ozZ8+eLc5k9l3GyZMnizMXLlwozmzZsqU489xzzxVn7rjjjuJMRMTatWuLM0eOHCnOnD59ujizcuXK4kw72bx5c3Hm/PnzxZkHH3ywOHPixIniTGYMjIh48cUXizNr1qwpzmSO30wbXLVqVXEmM54988wzxZmdO3cWZz7zmc8UZyJy41NGpi289NJLxZlKpVKcOXDgQHEm0y9k2nZmLhkRcfTo0eJMZv6Q6esy40yrZLY1M15n5nyZTKavzHyeiIiLFy8WZzLHSGYOu3r16qa8z4oVK4ozL7zwQnHmq77qq4ozHR0dxZmI3Nj5sz/7s8WZTF/+T/7JPynOZPqwzLn37bffXpx517veVZx56qmnijMRufO6TN/wyiuvFGcyx2urZPrl++67rzhz8ODB4kxm/p/pJ7Lzlg0bNqRypbLnQaXe8pa3FGfe8Y53FGcyx+6TTz5ZnMm004iI4eHh4kymDWX6vg996EPFmTNnzhRnMn1lZg0ss561devW4kxErt1l5tSZMSPbB7VCpo/NrP9kzvEy10Aya/JjY2PFmYiI97znPcWZTP9/6dKl4kymn8hkMvv7K7/yK4szmX2QPc/4mZ/5meJMpm9p1twys22bNm0qzmTW/pu1hhqRW5vKtKHMeV2z1kMbobOzsziT+XyZMT4zZmTmOvfcc09xJiK3ljMyMlKcyaxH/Pf//t+LM5kxI7O/M+tZmTW97DXwzPZl9kOm78v0R7/1W79VnMnMezP9ayaTWRPOyoy3zboG0iqZ+VtmTSbzPWeO+czxnjlviojYtWtXcaa7u7s4k5nLZ9rt008/XZzJtPVMP/HGN76xOPPBD36wOBMR8cUvfrE48z3f8z3Fmcx+yLSFTPvOjIGZ6zOZuX/m3oGI5vVbmX2X+V5bJdPHZuZHmf2YOZ/JrP1k7hGJyJ2/Z+Ytmf2Q+V4//elPF2cyc45m3TuQXZtq5jpYM94n0xampqaKM5nvKDPnyFwDichdU23WeVBm37VKZs0oM5/I3IedOc/I7PvM/R4RzbunOrMfMuNMs/q9zDGVmcdn56OZMaNZx3zmfb7iK76iOPPWt761OPOJT3yiOJPp/zNr1hHNu6aaua7TrPtcGiFzHS5zzGfOTY4dO1ac+bEf+7HizH/8j/+xOBORO2fI7LvM2vLhw4eLMxs3bizOZDzxxBPFmcz3+r//9/8uzkTk9l2mFuTf/bt/V5zJ1ARl6ibe9KY3FWe++qu/ujjzS7/0S8WZZl6nypwHZcb1pXCvrSeMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQppY3+gVXrVpVnDl+/Hhx5o477ijOHDt2rDhz+vTp4szKlSuLMxER999/f3Hmq7/6q4szGzZsKM5knD9/vjjzIz/yI8WZZ555pjizfHl50+/o6CjORERcvHixOLNly5bizBvf+MbizNGjR4szf//3f1+cOXPmTHEm05esWbOmOJOV6U9WrFhRnGlmW22FZcuWFWdOnTpVnMn05bfdVv6bKpn3yeyDiFzfsnHjxuJMZn9n+v+M7/7u7y7O/M3f/E1x5ty5c8WZ7HGYOeZPnjxZnMnMvTLblukrOzs7izOZbbtw4UJT3ici1x4yx16mLaxfv7440yqbNm0qzmSO37NnzxZnMvsxc86QGZsiIg4fPlycyey7e++9tziTGTMOHjxYnMmMmz//8z9fnMnMr7/3e7+3OBOR61ve9a53FWcyc/nMcZQZmzLzqDvvvLM488/+2T8rzjz11FPFmYjcZ8ocr0eOHCnOZPrhVsnsx/379xdnMud4tVqtOJNpt5m1kojcuXjmPCPTT2S+1wMHDhRnMm39L/7iL4ozmX5vcnKyOBORm3e88MILxZn/9J/+U3EmM55lPk/mfL1SqRRnLl26VJzJbFtEbv6/devW4kxmf2fGmVbJzHU2b95cnHnppZeKM5k14sznya5Nfc3XfE1x5t3vfndx5r777ivO/NVf/VVxJrMe8QM/8APFmQcffLA4kzkXzMwRIyL27t1bnGnWWmBmXH/ggQeKM5kxet26dcWZzBwqsw8icuNTZq6bmUtm+6B2kTkWmzUnz8x7T5w4UZyJiLjnnnuKM1/1VV9VnMmsgf3yL/9ycSZzTK1du7Y4k1kjbub1jMwae+Yej8zcsll9S2Yun/mOMvOU7D7I5DLnJpn2nRmbWiWzTzL7PnMcZtbKm7VtERE/9VM/VZz56Z/+6eJMtVotznz91399ceYTn/hEceaRRx4pzvzYj/1YcSZzzplp2xG58TbThjLnTpn+qFn33WXmhZnrVNkxI3OPVmb7Mmt02fW2Vsicg2b68swaX+Y8IzPvzV7PyMyRnnvuueJM5jNlvqOnn366OJNZk8nc95I5B8qeP65evbo4k9kPme8oM8587nOfK8588IMfLM5kPk9mPMv04xG5PihzLTF77367yLT1L3/5y8WZTL+XmRdk+qNMu4iIeOWVV4ozmTlI5pw/M+/N9JWZ+X/m2m/m3D17P1ym78tkmnVPfrOuM2TaXGYukB0zMtuX6R8z13uzn6kVMvsk8z1nrltl9n1m2zL3Z0XkxqdMP5aZL2fu98icH2f29+7du4szv/d7v1ececMb3lCciYj4F//iXxRnvuM7vqM48yu/8ivFmd/+7d8uzmTuu8jM///4j/+4OJNpP9mxNjPvyMxbn3/++eLMUrie4QnjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0qeWNfsFTp04VZ267rbxu/dixY8WZ9evXF2cOHDhQnFm1alVxJiLiK77iK4ozmX3X0dFRnFm+vLypZPbd7/7u7xZnzp8/X5w5fvx4cWbdunXFmWzu937v94ozb3jDG4oze/bsKc5813d9V3HmxIkTxZkjR44UZ9asWVOcybTtiIjTp08XZw4ePFic2bJlS3Fm9erVxZlWyfRhZ86cKc5cvHixOLNhw4bizObNm4szmW2LiHjllVeKM5kxOrN9K1asKM5kjqlPfepTxZlMmzt79mxxJtu3ZI7fzHvt37+/OLNx48biTKYtvPzyy8WZzs7O4kxmPpSZc0REbNq0qTiTaXeZcTA7v2mFc+fOFWcyY2+lUinOZDSrrUdE3H777cWZF198sThz4cKF4szRo0eLM5n5UWYMzMxhv+7rvq44k+krsy5dulScyXxHv/zLv1ycycxt3v72txdn+vr6ijP33ntvcSYz54jIHUfLli0rzmTmre10npHZ1sw4kzlnyIzxmbnyfffdV5yJiHj22WdTuVIrV64szmSOj8z5TCbz+te/vjjzwQ9+sDiTme9F5Nbo3vve9xZn/v7v/744kxmbmrW2mZk/1Gq14kymT45o3piRWYfJHOOtkjmuMmvLmTnf4cOHizOZ72vbtm3FmYhce/9f/+t/FWcy7TbTl2fmbx/72MeKMz/wAz9QnMmsRzz99NPFmYhc+8705c1aZ8p8nsw4k2k/mfW5rMxYk/lMS3kdphEyc6q77767OJPpyzPnM82U6csz7emnf/qnizOZ8SxzXpeZHzUrk/l+InLtrlnndZk1+Zdeeqk4k+lfM2ttmX2QvU6VkVmHyeyHzPyhVTL7f+3atcWZzHlrZuzN9MnZc93MOJiZv33+858vzuzbt684k7k+Mzg42JT3yfTjn/3sZ4szEREf//jHizOZ84zMvYSZYy9z/Shzz2JmzpG5ZzE7l2zW+WOmT830Ja2SWZtq1vlx5trEyZMnizOZuVtE7hwt019mxsHMsXj//fcXZzLrh5n9/b73va84kxlrIyJ+7dd+rTiT2d/Nun40MDBQnMn0y5m+MnO8Zs8fM/1/5jps5n3a6XpGZv9n1qYy+/HQoUPFmcyxm70PI3OfUWa8zZyjZfZDZn1l586dxZmurq7izFKXbUPNeJ/MOuUnP/nJ4kzmGM/c0/Xggw8WZyJyc6/MdbTMXDez/tAqzVqHzawLZo6PzPlM9ly3WfeWZNboMvf03nPPPcWZzDwxcx6eeZ+//uu/Ls5ERPzt3/5tcSazvvkN3/ANxZkf/MEfLM5kxozM+eOf//mfF2cy/U92Tp7pyzOZzP3DmRqBRvOEcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2tTyRr/gpUuXijO33357cea5554rzmS2bfny8l104cKF4kxExOTkZHGmr6+vOPOmN72pOHPq1KnizOjoaHHm7NmzxZnVq1c3JXPy5MniTETE13zN1xRn1q5dW5w5evRocWblypXFmfXr1xdnjh8/XpzJtIXNmzcXZ1asWFGciYg4cuRIceaOO+4oztx2W/nvehw7dqw40yqZ/bhq1ariTGdnZ3Emsx8zn2fNmjXFmWxu06ZNxZlz5841JXPx4sXiTOb4yPTlmb5y48aNxZmI3Pwmc0xk5l5nzpwpzmT62Ew7vfPOO4szhw4dKs5kxqaIiFdeeaU4kxnTMvOb8+fPF2daJdNPZNp6Zp+cPn26OHP//fcXZ06cOFGcycr0Y5k5X2bMaNb84X3ve19xJvO9Ztp2RG4czJyr/uiP/mhx5uMf/3hxJnPsffjDHy7OZD5PR0dHUzIRuXPvSqVSnMnMb7LnxK2QOT/OHIuZc4bMOfX+/fuLM9m1qXvuuac4k+mXM/PEzHH1/PPPF2f+7u/+rjjzhje8oTiT8Tu/8zup3ODgYHEmM+9YtmxZcSYzj8r0e5ljPHMOdNdddxVnarVacSYid+6U6R8za+rr1q0rzrRKZj6ambdkxt7MGnFm3pvpxyNy25c55jMy/VFmnMmcA/3iL/5icSYjc+xG5M4zMv1lZozOnONn5rCZPixzjGfWcTJrTBERBw4cKM5s2bKlOJMZB7OfqRUyc5BmrWFkZPqw7LZ9+ctfLs58+7d/e3EmM+fLZDLXZzLzh8x5XXY9IiMzZmTaXeb8MXO+fvfddxdnMjJtIbPfMnO1iObdr7Ft27biTHYdtRUya3yZ87XM/CjTt2T6/+w1tYzMezVrff39739/cSbzvTbrWstHP/rR4kxE867RZ/q+zL7LnHNm5r3Zew5KZdeSM99Rpn1/9rOfLc5kzmdaJdP/Z/qwzL7PjL0HDx4szmTnsJn3yszlM31LZmz667/+6+LMD/3QDxVnMufuf/RHf1Scec973lOcichdR8vMsTNrZ7/0S79UnMmsgWXGmcxYm5mzZs+bMv1W5jjKrD+30zXwTH+Z+Z4zc4PMMZU538+eZ2TaRmYulvlMmblAZg17z549xZnv/d7vLc5k2k9mTh6R6/8zdUGZPizT5jLXWjKfJ9OXZO7Bz679Z9b1tm/fXpz50pe+VJzJzFNaJdM2Msdi5rywWdfas/U0GzZsKM40a67TrPO6zLZlxs3MPKyZ10B+5md+pjizdevW4swb3/jG4sxP/MRPFGeefvrp4kzm3rHMMZRdm2pWbUtmTr0UxgxPGAcAAAAAAAAAAAAAAAAAAGhTCsYBAAAAAAAAAAAAAAAAAADalIJxAAAAAAAAAAAAAAAAAACANqVgHAAAAAAAAAAAAAAAAAAAoE0pGAcAAAAAAAAAAAAAAAAAAGhTCsYBAAAAAAAAAAAAAAAAAADalIJxAAAAAAAAAAAAAAAAAACANqVgHAAAAAAAAAAAAAAAAAAAoE0pGAcAAAAAAAAAAAAAAAAAAGhTCsYBAAAAAAAAAAAAAAAAAADalIJxAAAAAAAAAAAAAAAAAACANqVgHAAAAAAAAAAAAAAAAAAAoE0tb/gLLi9/yWPHjhVnKpVKU95n9erVxZmVK1cWZyIinn/++eLMt3/7t6feq1RHR0dx5sKFC8WZ224r/w2D48ePF2fOnz9fnFm7dm1xJiLiT//0T4szP/mTP1mc+fmf//nizNatW4szmzdvLs68+OKLxZlM+3n55ZeLMxs2bCjOZHPr1q0rzhw9erQ4k+mHWyWzH7ds2VKcOXz4cHGmWX3YsmXLijMREadOnSrO7N+/vzhz6dKl4szFixeb8j6Z8TYzrmeOqczYFBGxYsWK4kzmmMj0LZn9nWmnGZljPLNtmbYdkRs7M/t71apVxZnTp08XZ1ol019m9uOZM2eKM5lzk1qtVpw5d+5ccSYi9z1n9kNmbpk5zzh79mxxJnN8fOM3fmNxJnsu2CwjIyPFmT/5kz9p/IbUkZlHZdp2ps1lbNq0KZXLHOeZtY7M/s7MU1olc56R2feZ7/mFF14ozjTr80Tk+tjMXCczH82s5WTG256enuJMZgx8/etfX5z567/+6+JMRMSJEyeKM5m5b6afyMzxMv1epv3ceeedxZmXXnqpOJM5hiJy/UnmvTLnxJn93SqZtp5ZJz5y5Ehx5uTJk8WZzHG4cePG4kxEbi6WWf/JzN8y32uzzjkzx0cms2bNmuJMRG695O677y7OZL6jgwcPFmcy7Sezjv/FL36xOLNt27biTHbMyKyJZtrdl7/85eJM9jO1QmaOnZmHZeb/Bw4cKM5k1kqy54WZMSNz3po55jOZTP//0EMPFWfe8Y53FGe+5Vu+pTiT6Y8iIv7n//yfxZmf+7mfK85kxujMuWBm7pXpFzLHeOZcPXs9I3N+m9nfmeto2fW2Vsjsx8x3lhmvM31yZi6RucYQkRs7M+c0mXEms7/vuuuu4kym38tsW7Pu1cjK9H2ZuXym/89kOjs7izMZmeM1s9YWkZsbZu7ryvSpzbpPoREy31nm+M2MM8261yq7hpGZG2SO30zfktkPmbnl3/zN3xRnMveO/dAP/VBx5j3veU9xJiI3t8zs72eeeaY48/u///vFmcwYnTlPzaxZZzLZ+yEy/f/69euLM83sg1ohM/Y+99xzxZl77723OJNZWzh06FBxJtsGM31s5ljMfKbbb7+9OJOZKz/88MPFmcw+aNb9xtlc5lwwc/33V37lV4ozv/mbv1mcadZ1t2atP0RE3HHHHcWZzPwmc20iex9OKzRrDpLJZK5nZMbATP8aketjM9uXOTfJnD9mvqPMuVZmTS+zBpa99zMzT8yM65nzoI9+9KPFmcz1+cy9eplxM7OWkJn7RzSv3jfT/2fG6EbzhHEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANrU8ka/4Jo1a4ozJ0+eLM4sX16+6Zs2bSrOrFy5sjiT+TwREWfPni3OLFu2rDhz223lvxNw7Nix4kxHR0dxJvN51q1bV5zJbNu5c+eKMxERFy5cKM58/OMfL84cPXq0OJNpcydOnCjOXLp0qTizdevW4syhQ4eKM5n9FhFx7733Fmeee+654szatWuLM+fPny/OtEqmv7x48WJxZtWqVcWZFStWFGcyMv1eRERnZ2dx5vTp08WZM2fOFGe2bdtWnHn22WeLM5m2vmXLluJMZttWr15dnImIWL9+fXEmM0Zn5muZYy8zBmb6vczcJjOuZ9pPRMSRI0eKM5n98PzzzzflfVrl1KlTxZnM95wZMw4ePFic2bBhQ3Emc24SEbFx48biTGbOl5mLVSqV4kymP8q0haeeeqo48+ijjxZnsnO3j33sY8WZX/u1XyvOZOYCmc+U+V43b95cnMmcmxw/frw4k/1eM3OBzJw60wdl5hytkpn3ZtrgCy+8UJzJzFsy5yaZvj8i9z1njpHMeVBmDptZP8y0n8w5w8svv1ycyazjROTWRDNzgcyYkTm3ffHFF4szmXlv5nvNHK+ZsSkit+8yfVDmvC77mVohs08y5ybVarU488wzzxRnmnk9IyPTHw0MDBRn3vnOdxZnHnjggeLMgQMHijPvfve7izOZsbZWqxVnInLfUea9MufR999/f3Emc7xm5gL33XdfcSYje56RGdMyc6/MeUZmf7dKZpy/4447ijOvvPJKcSZz7GY0cy0xc46WOc/4ju/4juLMe9/73uJM5rpJZlzP7LfsmuPdd99dnMnMEzPnqZk13sy+y3yvmWM8c46fvZ6R2d+Z7zVzrT17TtwKmTl2s651Neu8NTOXiMjdJ5JZj8ise2TuM3r/+99fnPn1X//14kxmjM58r5/73OeKMxG5dpc5D8q0hcx1hswxnun/M+NM5lwre29M5jvKrNdm2ndmXG+VzNpbZrzO9HuZezIzc8TM/RQRuX45s06QuXbXrPXRTPvJXNv6gz/4g+JM5vuJiHjssceKM5m2mumXM31sdj+Uysy9MsfD4cOHizMRufP1zJpRs84FWyWzNphZm8qce2X6lsy+zx5TmWtqmffKzKsybf2uu+4qznzd131dcSZzzpkZm7Lr3l/4wheKMx/+8IeLM7t37y7ONOuexcz7NOt7zZ5nZOatmXOGzDjYTvUZme85s06cabeZtc5Me8rex5/JZdpts66pZc5NMvVVmfleps1l9nX2vTJ939ve9rbiTGZdOHNt+g1veENx5ktf+lJxpll1pBG5tpr5XjPXYTP9Y6N5wjgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECb6rh06dKlRr7gtm3bijNr1qwpznz5y18uzmzatKk4k9m2c+fOFWciIs6fP1+cOX78eHFm3bp1xZm1a9cWZ5YtW1acWb16dXHm8OHDxZkjR44UZ173utcVZyJy27dixYrizPr164szb3/724szH/3oR4szGcuXLy/OHDhwoDiT2dcREZs3by7OXLx4sThz9uzZ4kxHR0dx5uWXXy7ONEJmzMj0lZl9n2kbt91W/jssp06dKs5ERNxxxx3Fmcz4lGlPGSdPnizOZL7XzNjUrLYQEXHs2LHiTGausnLlyuJMpo+9/fbbizMZr7zySnEmMy+8cOFCcSYiYsOGDcWZEydOFGc2btxYnDl48GBxJrO/G6FSqRRntmzZUpzJHIeZeUtmjM/0Ydn3ysz/M+02M85k+tjMd5TRrHEzIjcOZmTaQmaZ4cyZM8WZzPdaq9WKM82aP0TkzjMy+y6TyYyDmflDI2TWPe68887iTObcJDP2Zs4ZMvsgItcGM9uX6csz7TazHzJtPdPvZc6BMueBEbljMXPOkNkPq1atKs5kjqNMW8isu2bm5JmxNiK3vpmR6esy50AvvPBCcaYRMsdV5vjNnB9nzk0yx25mTT4i4j//5/9cnHnHO95RnMmcz2QyGZn+6N3vfndxJnOecfr06eJMRPPmvpl+4nOf+1xxJtO+M5lMX54ZnzPr6RG5PjYzRmfWbjJt9aWXXirONEKmL8/MrzNzkMy1yGaNTRG5a5gZmfO6PXv2FGcy7TZzPvPHf/zHxZnMGPihD32oOBMR8alPfao4c/To0eJMZt9lrptkxqZDhw4VZzLnnJnzmUy/EJE7X7/vvvuKM5lr05mx6cUXXyzONMK9995bnMmsr2TWRzNzy8wxlZ2TN+s6Q2bOl9nfmWP+0UcfLc789E//dHEmM5699a1vLc5E5L7XzHpEZm0qcy2xWdczMvdGPvDAA8WZzDpHRO57bdZxlDnGn3/++eJMI2TWpjJjRub+iMy8ILNmmb2m1qxrmJk5bLPmfEv5PoXsteytW7cWZzJtNfO9Zvq9zPlwZh0n05dk1qYy500RufaQud6SuRcgs6beqntt77rrruJMZpzP9JWZ7ytz7GbmiNn3ysz5Muetmc/0Ld/yLcWZJ554ojiTOddq1n3yERE/+IM/WJyZnp4uzmTmKpn2k7m/O7PGm+krOzs7izPPPfdccSYi95kyfdAzzzzTlPfJ7ocblbk2kbnGs3///uJMpq/M9BPZ+0Uz25c5rpp1D3vmmtPdd9/dlPdpVi1kRG58euc731mc+amf+qniTGYukOmPMmPTN3/zNxdnMmsW2blAZozOjLeZ+XHmPDpzzelaPGEcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2pWAcAAAAAAAAAAAAAAAAAACgTSkYBwAAAAAAAAAAAAAAAAAAaFMKxgEAAAAAAAAAAAAAAAAAANqUgnEAAAAAAAAAAAAAAAAAAIA2tbzRL7hq1arizMGDB4sz999/f3Hm3LlzxZnnn3++OPP617++OBMRsX///uLMtm3bijOnTp0qzly6dKk4c+TIkeLM6tWrizNHjx4tztx9993FmePHjxdnInLHxPLl5YdmZj985CMfKc7cdlv570xkMpn91tnZWZw5e/ZscSYi4uLFi8WZFStWFGeOHTtWnMnsu1bJ7P9Mv3f48OHiTKVSKc68+OKLxZns93Xo0KHizIkTJ4ozmzZtKs5s3LixOHPhwoXiTKavPHnyZHEm83kyfXJExLJly4ozmX2XmQtk9kPG+fPnizN33XVXcSYz/8y0uYjc/s7sh8xnyrSfVlm7dm1xJjN/y8xHX3jhheLMPffcU5x5+eWXizMRuWMkM3ZmvqPsXKzU6dOnizOZMbqjo6M4U6vVijMRubnKhg0bijOZtpDpwzZv3lycyZxzZsazTPvJrD9ERHzpS18qzmzdurU4s379+uJMZi7ZKpk5bObcK9PvZc6Pq9VqcSZzHEbk5gbNmmNn+tjM8Zv5jpo1p3rppZdSucz8Zs2aNcWZzHx03bp1xZnMmJHpw+67777izLPPPlucyawXReTOTzLtO3PsZfugVsh8vnvvvbc4k+krM+N1s9baIiK+9mu/tjiTOUf7+7//++JMZp6YOXf/zd/8zeJM5vjIHLuZzxORW/e+/fbbizOZ/ZA5JjKZAwcOFGcy19Ay41mmL4nIrTlmxpnMeXSmzbVKZn6UWTPKzEEy84nMvs/MKyNy8+VMP5G51p6Zv/3N3/xNcebDH/5wceZ3f/d3izOZ/ig7d2vW9chMX56Z42XmUWfOnCnOZPZbZszIXs/IzDsyY2emD2qn6xmZbc0cv806181cA8+sz0VEbNmypTjzyiuvFGcyx2Lm+nxm/rB79+7izOTkZHEmM7fMjhmZ+WimP8rc45cZMzLfa+Z8OHN9L7N+mPk8EbnvKPNembaaPXdqhcxxdccddxRnMmu3me945cqVxZns/TUZzToXb9Y12cz7NOv6arZvyfRjmXPiZt3Pmvk8mWu/zbrXKnMOlJU5Z8h8R826Z6URMn1sszKZvjLzHWeu6Ufk+v/MPDF7n0ipTB+bOT4yx3ymLXzyk58szkTkrh9l2l1mjSUzrmfOhzPvk7l+lLmmn73fOHPunWmrmTl1tg9qhcw+aeY1g1KZ4zB7/SmzrpepYcrMYTN9bGZumblPOXPMN+t+iIiIt73tbcWZn/iJnyjOZMbbzNzr93//94szMzMzxZnMmJG5Vy9zD2ZE7jhfyn1do3nCOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbUrBOAAAAAAAAAAAAAAAAAAAQJtSMA4AAAAAAAAAAAAAAAAAANCmFIwDAAAAAAAAAAAAAAAAAAC0KQXjAAAAAAAAAAAAAAAAAAAAbWp5o1/w4MGDxZnOzs7izIEDB4ozd9xxR3Fm27ZtxZmstWvXFmdWrFhRnFm+vPxrv3TpUnGmo6OjOPPyyy8XZ+6+++7iTK1WK85k28JLL71UnLnttvLfcli5cmVxJvO9Hj9+vDizefPm4swXv/jF4sz9999fnLl48WJxJiJ37B09erQ4c/78+eJMpi9plfXr1xdnMm3wyJEjxZnM2NTMfX/ixInizF133VWcOXfuXHHm0KFDxZnM/s4cH8uWLSvOZMazzJwj6+TJk8WZTN+3evXq4kymnWaO8UqlUpzJtJ/MeBaR6+teeeWV4kxmLpDZD62Saetnz54tzmTmynfeeWdxZv/+/cWZTD8ekevLb7/99uLMiy++WJy59957izPPPfdccWbr1q1NeZ9Mf5SdP1y4cKE48+yzzxZnmtXHfulLXyrOZNppZr9l5v6ZPisiYtWqVcWZzHldZu0m0z+2Suac+syZM8WZ06dPF2cy+zEzZmT6/ojcfCeTyfSxmfE2s78zbSHT5jLzlKxM35LpxzLnDJn5f+Z7zWQyx3hmbMqcN0VEbNmypTiTWafM7LtsH9QKmW3NtNtM35KRWff48pe/nHqvP/3TPy3OPPnkk8WZPXv2FGcy32tmTpWZW65bt644k1kj2LBhQ3EmItePHT58uDjzzDPPFGcy6//NOh/OHOOZbcus/UTkPlPmPCjTn6xZs6Y40yrHjh0rzmTWYTPna5n+KDOHzYwzEbk+KdP3ZebYDz30UHEm871mjqmMTFvIrntnzhky11symUzfkrlPIbPmmLlenOlfN27cWJyJyB1HmUxmbMqut7VC5nwy851lrj9l7sPIzGEzc8SIXJ+0adOm4kxmXM+cMzTrPp5MH5YZnzP7LSK3NpVZj8hco8+M0Zm5fKb/z6y1Ze67yK5ZNGstMNNW22ltqln3YWT6ysycKnO/0H333VecicjdP5y5Vpq5np3pLzPXZDPzo8wcNnOemhnPInL9cqZvyRx7GZl+OTO/bta9rNn+NTOfzNzvmem3smsdrZD5zjJtMHN/fWa+l+krM+dAEbl7WJZyrcVTTz1VnPn2b//24szXfd3XFWfGx8eLMx/5yEeKMxHNu18j8z6Zc8HMvDzT72Xm15mxKdu/ZtYFMvuuWffntpNM/5+ZUzXrPv7sfDRzXGXGtMxcPvOZTp06VZzJnJtk2k/meM9cA4nIrb1m2urnP//54sz73ve+4kzmWnum/WSuJWaOocw5XUSuX87ch5+51ypbp9hInjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECbUjAOAAAAAAAAAAAAAAAAAADQphSMAwAAAAAAAAAAAAAAAAAAtCkF4wAAAAAAAAAAAAAAAAAAAG1KwTgAAAAAAAAAAAAAAAAAAECb6rh06dKlRr7gxo0bizPr1q0rzmQ2+/Tp08WZjo6O4szy5cuLMxG5z3T+/PniTOYznT17tjizevXq4syqVauKMxknTpwozly8eDH1Xps2bSrOnDx5sjizcuXK4kxGZj9cuHChKe+TOfbWr19fnImIOHbsWHEm074z32um/bz88svFmUa46667ijMrVqwozmT6vXPnzhVnMuNMtg1m9kPmuMq09cwxnxkzli1bVpzJjJuZtpAdz86cOVOcWbNmTXEmc0ycOnWqOFOpVIozmTlHps1lxozM9xORm3dk2tBtt5X/FlSmXzhw4EBxphG2bt1anMm09cx+bNY8PrNtEbnxKfNemXlLJlOr1YozmXPOtWvXFmcyfWX2/DHT92X62Mx3lDkmMnObzP7OHHvN2gcRuXZ36NCh4kxm7pXpF/bv31+caYQ777yzOJNpT5m2kZn/Z+bkmbYekesvjx8/XpzJ7LtMH5bpYzPHYbPWzZo5H83M5TPHUWa+ltGstanM2nhmHScid86QOb/NnHtn9nerxoxt27YVZzJtI9PvZcbeTD+R+Y4jcmNN9r1KZdp6pl/OyLSfTD+R6ccjcm2oWdfRMuPZhg0bijOZfZBpc5l+ITvHy5yfZNYcM++TGTNefPHF4kwjZM4zMu2ps7OzOHP06NHiTOY8PHuum5kvZ+blmWMxc1xl5mGZPiwzbjbrnC4iN3Zmzhky+zvzvWbGpmaNZ5njNZOJyB2vGZm5buZ7PXjwYHGmEe64447iTGafZDKZdtusdbOI5l3zy7T1zP7OrAVmxvXMfsvM45t5DbxZ1/gyn6lZ19oz79OstbaI3PeaGZ8yc6LMuXc73TeV6cMy+7FZ1z0z17IjcudomTWWTHvKZDLnW5nxNtNPZL+jjGaNT826bp7RrHEz0y9k723IzOUzx1HmM2Xa95EjR4ozjbB58+biTOb4yKwtZO4la+Z9GBmZfZc5RjJjU2ZO9cY3vrE4k2lz09PTxZlmrUVkNes+o2bdp5w558zI3hufmYNmxozMdbTMvTututc2c50hM45mjt9Mu820i+y9ts1aj85o1r3NmWOqWffDZWXG6Gatt2U0q14gI7PfssdQs+5zz7SfzLW3zPWja/GEcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2pSCcQAAAAAAAAAAAAAAAAAAgDalYBwAAAAAAAAAAAAAAAAAAKBNKRgHAAAAAAAAAAAAAAAAAABoUwrGAQAAAAAAAAAAAAAAAAAA2lTHpUuXLrV6IwAAAAAAAAAAAAAAAAAAACjnCeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtSsE4AAAAAAAAAAAAAAAAAABAm1IwDgAAAAAAAAAAAAAAAAAA0KYUjAMAAAAAAAAAAAAAAAAAALQpBeMAAAAAAAAAAAAAAAAAAABtanmrNwAAAAAAAACApWV6ejoOHToU1Wo1qtVqqzcHAAAAAAAAALgGTxgHAAAAAACAW9T09HQMDQ1FT09PbN++PTo6OqKjoyO2b98ePT090dfXF2NjY1Gr1a77NXt6emJmZmbxNppFMzExET09PdHR0RE7duy4ol309PTE9PR0qzcRYMkxlgIAAAAAALAUdFy6dOlSqzcCAAAAAACgHc0WCLWrnp6eGBwcbPVm0AIjIyPxxBNPFBWvdXd3x8DAQPT29l71vxkbG4uBgYGYnJyM7u7uBmwpzTA9PR19fX1zxYmDg4MxMDAQ1Wo1ZmZmYmpqKoaGhqJWq8Xo6Gj09/e3eIu5VQ0MDMTY2Nh1//ddXV2xd+/eRdyicrP9ZInrua1jx44dRT/q0N/fH6Ojo0XbcT127Ngx15d0dnZeV+bQoUNRq9Xi8OHDUalUrvrf1Wq12Lx589x/c72vP/+9Zl/rRseqpTCWmosCAAAAAAAwa3mrNwAAAAAAAKBd7dmzJ6amplq9GWnXKsri5jQ2NjZX+Durt7c3Hnvssejq6orOzs6oVCoxMzMTtVotZmZm4sknn4ypqam5/+vu7o7x8fG67Wd4eLh5H4aGuLx4tVKpxFNPPRVdXV1z/3u1Wr3iv58tJPeDALSD6enpmJiYuGZxbrMtleLesbGx6OvrW5RjeXaMKSmkXkqv/1qW0lhqLgoAAAAAAMAsBeMAAAAAAABJ11OoVK1Wo6urK6rVamzZsiUi6hfH1Gq1OHjwYIyNjV31dXt7e+Phhx++anHN7GvMzMzM/d+1trFVhVa0xvwn8w4ODl61KG22SLirq2uu0HJiYiJ27twZU1NT8eCDD8auXbuuKMKcmJiYe6os7WFiYuKKJx3PLxav999EvFrMqGCcVhgeHp4ruK7VanHo0KGYnJyMkZGRiHh1fJ0/to2Oji6ZgvGpqamo1WrR1dVV92ngs0+frlarxYW0Tz311BVPzz506FDMzMzE5ORkTExM1M0MDAzEvn37ij/HtYyPj8/NQa713hGvjjHzi6yvpVKpXLG9lxdjX+t9Lt+vs68TsfAHMa7HUhtLzUUBAAAAAACY1XHp0qVLrd4IAAAAAACAdjQ0NDRXpHa53t7eGBgYSBVUTk1NRU9PT93XHB8fL369mZmZGB0drVv809XVFXv37i1+TdrPjh075ooTK5VK7N27N1UoFxExMjIyV7A5Pj4+V+h2+XtMTk4qKF7ipqenY8eOHXP/Pjw8HIODgwv+u76+vgWFmJVKJQ4fPrzo2wjXa7Zf6u3tjenp6QUFt4cPH14STzLu6+uLiFeLZOc/FXqxxuSZmZnYvn37Vf/3axU8N0KtVotHHnlkQYF8o8eJen1VRGP361IcS81FAQAAAAAAmHVbqzcAAAAAAACgXc0veqlWq7Fv374YHx9PF0E99NBDdf/+8MMPp16vWq3G8PBwHD58eME2eRr0raGvr2+u+KxarcYXv/jFdIFbxKvFhbMFY319fTE1NRVTU1N1n5bL0rVz5865f65UKnWLxSMiOjs7F/ztRtoPLIb+/v65f673NPHLnwjdKrVaLSYmJmJgYKDu/361vzdKf39/3WN3ZGRkUecDlUolnnrqqSsK9hfjR0Uef/zxun9v1H5dqmOpuSgAAAAAAACzFIwDAAAAAAAkHTp0aO6fZwt0brSQ8mpPQG3Ek1EnJyevKKqbX2TEla72tNJ2MjIycsVnmJycbEhb6u3tnXsiaE9Pz9xTUm9GN0M7mG9iYuKKosSrFVpG1C+2XOzCVih1eb9Wr32Ojo42cWvq2717d1QqlasW8db7cYZGqlQqV3069GIf05VKZa6fqVarDS8Wn32PehqxX5fyWGouCgAAAAAAwCwF4wAAAAAAAEmXPxXxakVYS83w8HBDCn5uBRMTE/H000+3ejPSarXaFcVno6OjDX0ydFdX11wR5s38dPF2bwf1zC+erfdE5lldXV2xb9++GBwcjP7+/gXFfrDUVKvV6OrquuJvMzMzLe+nRkdH49FHH23pNnR1ddU93qemphb9hzFmv5PFKBZfTEt9LDUXBQAAAAAAYJaCcQAAAAAAgKTZpyL29vYuKE5bqiqVSgwPD8/9uyc71ncz7JfLC9wqlcqiFPn29/dfs9i43d0M7aCeqampuX+uVCqvWfxYrVZjeHg4RkdH267Yk1vTUnvK+GzB+mI/yft67Nq1q26x7s6dOxf1fWef9N1uhcJLfSw1FwUAAAAAAGCWgnEAAAAAAICkQ4cORUTEY4891uItKXP5E04vfzIl/2D2u21XtVotxsbG5v798ccfX7T3urzo62bT7u2gnsuLxSMiHnrooRZtCSyeek/y3r17dwu25FUTExN1n3zeCvOLdWfNf5L2Yrxvu2mHsdRcFAAAAAAAgFkKxgEAAAAAAJJmn4jYbk/crVQqc0VrN2NBbCNMT0+3ehNuyPzCyMV8Cni1Wl2UJ64uBe3eDuqZ/yTX13q6OLSjSqWyoN+r1WoLfjChWUZHR5fE08Vn9ff31y1eHxkZWfTi3S1btizq6zdSO4yl5qIAAAAAAADMUjAOAAAAAACQMFug09XV1ZZPzZwtLJpfPMqr2v1pl+Pj41f8+2IXBS/mU2lbqd3bQT3zP1M79l9wPeoVaI+OjjZ9O6anp2NmZmbJ/bDGrl276v69r6+vyVuydC31sdRcFAAAAAAAgMspGAcAAAAAAEiYfRpiuz6d9+GHH44IT3W8mqeffrrVm3BD9uzZM/fPzWij1Wq17tNq2127t4N6Dh482OpNgKbo7u5eUEQ7MTHR9OLU0dHRutvSal1dXXWL2Kenp2NiYqIFW7T0LPWx1FwUAAAAAACAyykYBwAAAAAASJgtOJstdmk3s8VFnupY39TUVKs34YZc/r02q0jxsccea8r7NFO7twO41T366KML/rZ79+6mbsPu3buX7FO7h4eH644RO3fubP7GLEFLfSw1FwUAAAAAAOByCsYBAAAAAAAS2v2pjrNPsNy3b1+Lt2TpmZmZaevipZmZmWv++2Lp7e1tyvs0S7u3AyBiYGBgwd9GR0eb9v6zTzSv9yTvpaBSqcTw8PCCv9dqtbr77lbSDmOpuSgAAAAAAACXUzAOAAAAAACQMFtI2q5FOhGvForNFhvxDyYmJlq9CQ3VrKLnarXatCewNsPN1g7gVtTV1bVgnJ6enm5a8e/o6OiS/zGN/v7+ucLdy42NjcX09HQLtmhpWopjqbkoAAAAAAAAl1MwDgAAAAAAkDBbbNbORTqdnZ2eoFzHE0880epNuCGdnZ0L/jY1NdWU937ooYea8j7N0O7tAHhVvSdlN+MHIWq1WkxNTbXFk7rHx8fr/n3nzp1N3pKlox3GUnNRAAAAAAAALqdgHAAAAAAAIOHgwYMREW39ROVqteqpjvNMTEy0feFSvTY5OjralPeu95TadnQztAPgVf39/Qv+1ow+cffu3VGpVKK7u3vR3+tGVavVGBwcXPD36enpGBsba8EWtV47jKXmogAAAAAAAFxOwTgAAAAAAEBCrVZr6wKdiFcLjGafTsmrbpanqc4vNpuYmGjKd/3www8v+ns0w83SDoCoW7Q9MzMT09PTi/q+o6OjdYvVl6rh4eG685qhoaFb9gc0lvpYai4KAAAAAADA5RSMAwAAAAAAJGzfvj0effTRVm/GDenp6WmLJ582y8DAwE1TFFfvex0YGFj0950truvs7Fz091osN1M7AF7V19e34G+L+bTo2YL0ZvS7jbRr164Ff6vVajE0NNSCrWm9pT6WmosCAAAAAABwOQXjAAAAAAAACYODg4tabNYM/f39MT4+3urNWBKGhoZibGys1ZvRMPUK2qampha96K9arcalS5cWPJW1Xdxs7QB4Vb0nfe/evXvR3m90dDSq1WpUq9VFe4/F0NvbW7d4d2xsbNGfyL4ULfWx1FwUAAAAAACAyy1v9QYAAAAAAACwtM3MzMTo6GhMT0/HzMxMzMzMRETMFcNVq9Xo6+tr6BMia7VaTE1NxeTkZOzZsydqtVocOnRo7snP1Wo1urq6oqenp24h4MDAQGzfvj0GBwdf87MNDQ3FxMREw7Z9KZjdP/ML/EZGRmLLli2vuV+Wkma0v5u1HSym2e+iVqvFzMxMHDx48Ip/P3ToUOzdu7duwezsdzo1NTWX6erqiu7u7nj88cejUqnc8PZNT0/Hk08+eUW7qVQq0dnZOXd8DAwMNKSgd/7n3rdv3xX/PjMzE/39/TE8PHzV/MTERExOTtbd1mwbn5qaivHx8ZiamprrPyuVSlSr1ejs7Iy+vr549NFHG7K/20Fvb+8Vx3itVouJiYno7e1t+HuNjY3F448/3vDXbYbR0dHYvn37gr/39fXFvn37WrBFrXMzjaUAAAAAAADc/DouXbp0qdUbAQAAAAAAwD/o6OhY8LfR0dG6hdGLaWJiIp544om5QqnZgs6HH354rihyampq7n+vVCrx+OOP31AB1czMTAwPD8895bm7uzt6enqiWq3OFVDOFmDu3bs3du/eHbVaLYaHh+fed2RkJIaGhqK/v7/ukzenp6djz549MTk52fAC4cOHDy+Z4supqano6emp+7/NFq8ulW2tZ7Hb383cDmZmZuoWfN6Iyz/T2NhY3Sfvzrdv374FBdkDAwMxNjYW1Wo1uru7Y8eOHRERcz8KEBGxd+/e9FPqR0ZGYnR0dO6HBbq7u6Orq2tuf+zbty+mp6djamoqIl4tCJ3tLzKudZxdbnBwcEHBeK1Wi507d8bExERUq9Xo7e2N7du3R2dnZ8zMzMTk5OTcds5u6+jo6GsWjk9NTcXAwEDMzMzM9aGz392+fftiYmJibv9EvFpIvWvXriXdH1yPjo6O6O3tverTiut9V93d3TE5OdnQ7Zh9n2v1Az09PVd8txER4+Pji1K8Ptsf1GuDVzM0NBQjIyML/n75WJvdjht5jet5/fludL+2+1iatVTmogAAAAAAAFw/TxgHAAAAAADgCpcXMUa8WlA3PDx81QLO6enp6Ovrm3tK8+joaIyPjxcXfM4WoVYqlesuKBsdHZ3LTU5OxsDAQAwNDV3zs80WqN7suru7FzxRd9bY2Fjs3r07Hn/88ejt7W3IU5YbpRnt71ZqB0vF7D4/dOjQggLOywv/IyIeeeSR+OIXv1hUhHl5kXTEqwXa13paea1WiyeeeCJGRkZiYGAghoeHU/1W1tTUVPT19UW1Wr1qgfzg4GDMzMxEX1/f3JPSe3p6rtk/zhbkX+vzDw8Px8TERPT19UXEqz/OMDU1ddUnwt8suru7o1KpRK1Wm/vb1NTU3JPXG2V8fHzuvdrV7A+3XL6vImLuxxXa+bOVatexFAAAAAAAgFvPba3eAAAAAAAAAJaO6enpePDBB+cKowYHB2NycvKaRZRdXV2xb9++uQLQmZmZ2LFjx4Knp17L0NBQDAwMzBVPljx9tL+/P/bu3Rt79uyZK4C8mkqlEvv27bvq/80vguvv77/mf/9a+Va71lODa7VaDA0Nxfbt22PHjh0xMjJyRdFuKzSr/d3s7aBarV512+Y/Hba7u7v4M12+PyYnJ6/reH3kkUci4tWnh89/2u/8p5XXarXi/qOnpydmZmaiq6srDh8+/JpP/Z39YYrZp6DPtptr/eBEPZfvv717917X04anp6ejp6dnru+6Vvue7RMvL0QdGhqqW7w6NDQUu3fvvq7t6O3tjb179879e61Wi56engUFwjebek9H3r17d0PfY/ZHTNrd1Z7UvnPnziZvSeu121gKAAAAAADArckTxgEAAAAAAIiIV4sYL3/q8vU+5XvW+Ph47NixY65Qqqen5zWLISNefbrtyMhIRERMTk6mntDZ1dUVTz311HU9Nbrk9SuVSls/MbRSqVzXfpmenr6iwK27uzt6enqiu7u7aU9cbnb7u9nbwdW2d37RY/azzWaq1Wp0d3fH9u3br1okOzIyEjMzM1d9avjsU8Ev9/TTTy8oLK9n9onaEa+228nJyYJP8Q/F9T09PTE1NRUjIyNRq9VidHS06DVmdXV1RVdXV/T09NT9b2u1WjzyyCPp9j2rr68vDh8+PLc/x8bGYmxsLJ566qnrPma7urqiv79/bv/NzMzE0NBQ0WdvNwMDA3PjzazR0dG6heQZs4X819N2l7ru7u7o7u5e8OMNs0+k7+7ubtGWNV87jaUAAAAAAADcujxhHAAAAAAAgAXFut3d3UXFjLOeeuqpK/599qnC1zL7tNL+/v4bKsrt6upKbfPNrqurK/bu3Vv01OupqakYGhqKHTt2REdHR/T09MTY2NiiPX24le2Pxrhawe1sEfK1ntBbr5Dy4Ycffs337Ovrmyt2rlarxcXilxsfH5/rf270CdHd3d1X7cseeeSRVPvu6upa8Jqzn316ejoGBgZifHy8uCh1/udczON8KahWqwv24/T0dN0fLchoZPH5UnC1Hw+4GZ6gXqodxlIAAAAAAABubQrGAQAAAAAAiL6+viv+fXx8PPU6lUrlikLIWq12zcKyiYmJucKp+duQ8fjjj9/wa9yMurq64otf/GL6qbdTU1MxMDAQmzdvju3bt889hblRWtX+aKx6RdIDAwPR3d19zbY3v5j8tf77iFefWj77NOeIuKFi8YhX287lrzH7xO6seoXbY2NjMTMzE7t27Uq95vx9MlvM+8QTT0R/f3/qic9dXV0LCmB3796d2r52Ua9PaMRT1Wu1WkxNTTVkLFsqqtVqDA8PL/j7zMzMgie13wqW+lgKAAAAAADArU3BOAAAAAAAwC1uYGDgiqerDg4OFj1Bc775RduzRZL1PPnkk3P//NBDD6Xfc1alUkkVTd4KKpVKjI+Px969e29oH80+MXrz5s0xMDBww8VurWx/NNb8721mZmbuCbvXMluEOTk5GXv37n3N4u/p6ekrXrO/v/+qT/QuUa1WrygEnd82b9TQ0FAMDw+n23dPT88V/z67fycmJuoW9V6v+f3BjRbfL3X1ngB+Iz8OcPlr3Ixj0ODgYN3ja2ho6JbsW5fqWAoAAAAAAAAKxgEAAAAAAG5h09PTCwrlbvQp3fUK5q729Nbp6ekbeq96bqanuy6Grq6umJycjMOHD8fw8HDdJyFfr7GxsXjwwQfT32Or2x+La3R0NKrV6nUVVc5+b9fTHucf469VkF5ifvubX6SdNTY2FrVarW6x8vWqV7Tb19cXvb29N/QjC/Nf92YvAq7XR8w+HfxGjI6O3tD3u5RdrQ+t97T2W8VSGksBAAAAAAAgQsE4AAAAAADALe2JJ5644t+7urpuqPBw1vyCzqs9vfXQoUNz/7xnz54bft+Ixjyp/FZQqVRicHAw9u7dG4cPH47x8fHUk5prtVrs2LEjJiYmireh1e2PxTUxMXHFE7sbYf4T47u7uxvydPFZXV1dVxQTz8zMpNr2fDdaLB4R0dnZWfd1b/RHFrZs2XLFv9/sBeMR9Qudx8fH0683MzMTMzMzN20BdXd3d91jeWpq6oYL7dvdUhhLAQAAAAAAIELBOAAAAAAAwC2rXiHkY4891pDXrvf01npPzry8ALJRT4G+kad83qoqlUr09vbG6Oho7Nu3L/bt2xejo6NFTy7u6+srKhxcCu2Pxdeo73TW8PDwFf8+/8cBGmH+U8Xn/7BBo1631NWOxRvt8+a/bq1Wu6HXawf1ip9v5IclRkdHo6urq6E/XrDU7Nq1q+7fb9Yi+YxWjKUAAAAAAAAwS8E4AAAAAADALapegfb8QtusekVz9Z4gfvl/NzEx4cmaS0S1Wo3+/v4YHx+Pw4cPx969e2N4ePg1C1N7enqu++nES6H9sfga+QMOExMTC9pXo9rMtV5zenq6IQWczdjWjHpPLr8V1Hvie3YMGhsbu+kLpyuVyoIfbIh49cc/hoaGWrBFS18zxlIAAAAAAACYpWAcAAAAAADgFlWvMK6RxZ3zX2vv3r0L/pv5T9zt6+u7oae8zurt7b3hp/nyD7q6umJwcDD27t0b+/btq/t03lnX+8TnpdD+WFyNftryk08+uejvEVG/HY6Pj9/w617vE4ZL3MxPtF5s9fqqej9k8VqmpqaiVqvFo48+2ojNWtIGBwfrtrmRkREFztdhMcZSAAAAAAAAmKVgHAAAAAAA4BZUq9UWFHc1uphx/lNr6xWT1XvC68DAQOzYseOGnjY+Pj5+zUIs8qrVaoyPj1+1gHZ6evo1i/6XSvtjcTXyBwAiYsFTvhezWHr+a9/oE8YXa1u3b9++KK97K+ju7l7Q78wWf5cYHR2t+1o3q6v1/Tf7E9YbrRFjKQAAAAAAAFxOwTgAAAAAAMAtqF7xY6MLGucXzx06dKjufzM4OLjg79PT09HX1xcdHR0xMDAQExMTxUV8LK7e3t6rPrV7aGjomtml0v5YXI38Tqenpxf0AYtZMD6//czMzNzQjw4sVjHxrVKkvFjq/WhJaZHuxMTELVUs3dXVVfcHWaampm7oh15uVTcylgIAAAAAAMDlFIwDAAAAAADcgp5++ukFf2t08eX1PuF5eHj4mk8DHxsbi76+vti8eXNs375dAfkS0tXVFaOjowv+XqvVrvlE5qXU/mgPe/bsWfC3Zj5hPOLVonVuLvUKvev1aVczNjYWlUrlmmPYzWjXrl11/75z584mb8nNITuWAgAAAAAAwOUUjAMAAAAAANyC6hVbT0xMREdHR8P+b/5TWucX8F5ufHy87pNe55uZmalbQK6gqnX6+/vrfnfXKrpcau2PxbFly5aGvda+ffsa9lrXo1578aMDN59qtRpdXV1X/K3kafLj4+Px6KOPLsamLWmVSuWqBc6eip2TGUsBAAAAAADgcstbvQEAAAAAAAA036FDhxb8rbe3Nx5//PFFe89KpXLN/310dDR6enpiaGjouov1ZgvIx8bGoqurK3bt2rWg+I/FNzw8vKBA+1pF/Eux/dF4jdzn9X5koNnf6cGDB5v6fjTHwMDAgieNj46OxvDw8DVzs09/3rt372Ju3pLV398fo6OjMT09fcXfR0ZGYmBgIKrVaou2rH2VjqUAAAAAAABwOQXjAAAAAAAAt6B6xZf1nrTabL29vdHb2xsTExMxOjpaVCg1PT0dO3bsiNHR0et6WvnNqlarxebNm2Pfvn1NK9irVCpz39vl2zEzM1N3G5Zq+2PpWgpP914K20DjPfroowsKxsfGxl6zYHxsbOyW77d27doVO3bsWPD3vr6+ti+kb4exFAAAAAAAAC53W6s3AAAAAAAAAObr7e2NycnJOHz4cIyPj0d/f/91F+UNDAzEyMjIIm/h0jX79O75T31dbPWeDq7AlptJvR86oP1VKpXo7u6+4m+zTw+/ltHR0QWF5rearq6uuj/QMj09veBJ2e3GWAoAAAAAAEC7UTAOAAAAAABwC7repz632uzTNkdHR2Pv3r1x6dKl2Lt3bwwPDy8o8Lvc0NBQ2xer3ahmF5h1dXVFpVK54m9Xa1Pt0v5YOua3rYjmtxlP+L151Sv8Hh0dvep/Pz09HTMzM9Hb27uYm9UWhoeH6x6fQ0NDN0W/vpTHUgAAAAAAALicgnEAAAAAAIBbUL3irtmnaS51XV1dMTg4GJOTk3Hp0qUYHx+v+/TxgYGBW/qpnPv27Wv6e84vqL1am2rn9kdrdHZ2NvX96rXHeu2Wm0Nvb++C73diYuKq//3o6Gh0dXX5EYF49bgYHh5e8PdarRZDQ0Mt2KLGWspjKQAAAAAAAFxOwTgAAAAAAMAtaPv27Qv+1oonWI6NjcX09PQNvUZvb2/s3bs3BgcHF/xv9YrYFlNHR8eSebJ5K4rlr7d4cqm0v8WylNrBzaJem1nMNl7vtettAzePRx99dMHfrlY0vnv37rpPJb9V9ff31/3hlkaM8a22lMdSAAAAAAAAuJyCcQAAAAAAgFvQQw89tOBvrSiKGhoaiieeeKIhrzU8PLygQPxWLtrds2dP099zfpHb1Yrelkr7o33Ua0uL+dTdej9goIjz5lavAHx0dHTB36ampqJWq0V/f38zNqtt7Nq1q+7fd+7c2eQtaaylPJYCAAAAAADA5RSMAwAAAAAA3IK6urqiUqlc8bdWFexOTU017LUGBwejt7d30V6/ndRqtaY/2XV+kW1nZ2fd/24ptT/aw/zjOqL5Txjv7u5etPej9bq6uhYU5s4Wh19udHS0bnu81XV1ddUtop+enm7rH29ZymMpAAAAAAAAXE7BOAAAAAAAwC2qXvFjs4uiIhpfjDX/KeO3ciFyvafjLqb5+7qrq+uq/+1SaX+0j/ntqVar1X0S+I1SLH7rqveU8cuLnWu1WkxMTNT973h1zJn/YyAREUNDQ4tyrDbLUh5LAQAAAAAAYJaCcQAAAAAAgFvUY489tuBve/bsWZT3mpmZuWYxcCOfAl6tVq8o7ty3b1/DXrvd7N69u6nvd3n7ea0C26XU/mgP9dpMI/uOa71mX19fw9+Hpafek8MvLxbevXt3VCoVPyBwDbt27Vrwt1qtFjt37mzB1jTGUh5LAQAAAAAAYJaCcQAAAAAAgFtUb29vVKvVK/42Pj6+KO81MDBwzWKxycnJhr5fK57GuRSfnlqr1WJkZKQp7zUzM3PFPujp6bnmf7+U2l8jLcV2cLPo7+9f8Lenn3664e+zd+/eK/69UqnUfW9uPtVqdcH4cfkPToyOjmoLr6G3t7dukXM7/2jHUh5LAQAAAAAAYJaCcQAAAAAAgFvY0NDQFf8+NTUVMzMzDX2PWq0WU1NT13xKZqOfErx9+/a5f96yZct15zo7O6/495Li39n9Nv81Wm1oaKjh32k9lz+FN6J+ce98S6X9zXcztoObQaVSicHBwSv+NjEx0fD3mf804ccff7zh78HSNTAwsOBvo6Ojc4Xj9Z50z5Xmjwc3g6U8lgIAAAAAAECEgnEAAAAAAIBbWn9/f1QqlSv+Njw83ND3eOKJJyKifhHe5cbGxhr2nvv27Zv755Knjc9/4vWhQ4euOztbSDb/NZaC19r3jXD59zc4OLigXdWzlNrf5W7WdnAzmF+8PTMz09AfnJiYmLjiBwLqFamzdJX8uMPVPProowv+tnv37hgdHa37BHIWqlarN+Vxs1THUgAAAAAAAIhQMA4AAAAAAHDLe+qpp67497GxsYYU3UW8Wrw3MjISvb29r1lA28gnkk5PT8/9c8mTpecXApY8TXS2qHgpFhNOTU1FX1/for3+0NDQFW2m5InMS6X9Xe5mbQc3g0qlsqCvaOSPDMz+wMCsXbt2Ney1WTyzfUbJjztcTaVSid7e3gWvPzIy0pSC4Uab3TeN6lev1/Dw8E1X7LyUx1IAAAAAAABQMA4AAAAAALCEXK2gazELvbq6uhYUXDaqIGpoaCgirq+gc3p6OiYmJhryvnv27ImIsmLxiIienp4F23S9Jicnl+RTpSuVSlSr1ZiYmFiUYsfp6ekYGRmZ+/fR0dGiIsGl0v4udzO2g1nz+5JG9i2L+dqX6+/vv6Kgd2pqqiF9x8TExBXf9fz3uVk1osi61Wb7/JJj9Vqu1lf29/c35PWbaWpq6or/30w30w8uLPWxtJFaMRcFAAAAAADgxikYBwAAAAAAWEKuVrh38ODBRX3fwcHBK4qrp6amrihcyhgbG4uxsbEYHR297gLanTt33tB7Rrxa9Dlb1FRaKNzd3b2gQOt6C1EXq4jsRg0PD8fk5GRUKpUYGxuLHTt2FD0x+1qmp6fjkUcemfv3/v7+VEHlUml/s27GdjBrfh/TyGLh+a+1mP3W+Pj4Fd9rX1/fDbXrmZmZK36ooKura8GTzEssRvF8vddYyq/bTLM/DhERN9x3RNTvA+r9LavecbdYhftPPPFERLzaxptdNN7b21v8wy1ZV2uzjdqv7TCWNkqr5qIAAAAAAADcGAXjAAAAAAAAS8jVCpwvL4JeLJOTk1c8TXdoaCjGxsZSrzVbNFtS9FStVqNWqy14unOJWq02V3Te398fXV1dxa8x/zu4nqLR2QLFpfb02UqlEv39/VGtVmPv3r1RrVZjeno6tm/ffsNFlVNTU/HII4/Mtcvu7u4bKrBtdfub72ZqB5eb/wTm6enphhQ9zszMLOijGvHU72vZu3fvFcd4T09P6rPM73e6u7tj79696e2q1WpzT7yeNTMzc8P7uV6x7+Tk5A295tVeY/fu3Tf8us3S19d3Rbu+kb7jco8++ugV/96oH4KYmZmp+yT0G+k/65lt15cflz09PU0vGm/05yp9n0a8fzuNpY3QyrkoAAAAAAAAeR2XLl261OqNAAAAAAAAuBXUarUFT22c/dv09HQ8+eSTdYvIZs0WLD388MNRrVYXPOm0s7OzIU8/HRgYuKLYrr+/v6h4aWhoKEZGRq4rt3nz5rnio71798495be3tzfGx8eLtntmZmauYLS7u/uGCil37NhxxXcxPj5+RTHz/Pfdvn17DA4OFj/RfDHMbk/Eq0Vfg4ODc/9brVaLvr6+uYLB2TY1MDBw3U/hni3Kv7wYuLSNXEsz299raed2EBFzBcq1Wi1mZmZidHS0brFopVKJ4eHhqFarV7SDa/Upl7/2nj17Ynh4uG5BdFdXVwwMDMRDDz10xWuVPvX9Wvr6+ubaY6VSiaeeeuq6fyxiamoq+vr65vqhbN8T8Q/7YnR0tG5fXq1WY2ho6Ip9cbX9MDs2XD5GPPHEE3WLNXt7e+Oxxx67Yly42uvObxNPPvlk3cL+SqUSjz/+eHR1dc29VqPGmBsxu90zMzMxOTkZu3fvvmoBa1dXVzz22GPR1dUVnZ2dxT8gMj09HTt27Jj798ytFZcfE7PtY2ho6Krb3N3dPdcflx4vsz/aMLtvrlU0393dHT09PXPfbyOPx3pGRkbmngI/f1wqNX+fXqsdz8rs13YfS6/1vu0wFwUAAAAAAKCcgnEAAAAAAIAmubxgajFUq9XYt29fQ15ramoqBgYG5gqzZosHr1XkNTExEUNDQ3OFqdfzlOXZgvHLi6QmJiair68vqtVqjI6ORnd392u+zuX7thEFu7VaLXbs2HFFYVq9YuHZIvVKpXJDTyRupMuL3A4fPly3cGv+9xvx6nc8W0TY2dk5Vwg2W0g2MzMT4+PjVxQczxYaN/qJ2s1qf6/lZmkHWVcrnh4bG7vhpy036juaNTExETt37rziKb3Dw8NXLRKeLcC+vNB8165dV/1BgKuZmpq64unkpa62Hy4vgs+42m0AHR0d6dfMFNM32vwflCgxOTl5XePJ5bZv3x4zMzOpzz47ljXC9dzWMf8HLkrs27dv0YvGZ/fljRSM12q12Lx5c8O26Vpt4mYYS+tpp7koAAAAAAAAZZa3egMAAAAAAABuZfUKkDo7Oxf8bf7TICPiqk8obYTu/7+9Ow2TqrzzP3waMLK4BURRMAMCLmhiLnDfUAdI1KConUajogOyueCKjAIqos6AGteouCFEx13UiBHENSaOC4gkTpAAAVQgigiK2ghN/1/Mhddcf1z6d1JV3Q993+8/fR62Ok1Vfbu6dcvmzZuXjR07Nhs3blw2f/78bNiwYdmwYcOyzp07f/0Jues/3XP98Gn9J3tHhmfrh1LrlZeXZ/PmzcsGDhz49Qi3oqIia9++/ddfd/ny5dm8efOyadOmfT2Q+76BaMT64e///fTP9SP29Z/IOmPGjGzatGlZt27dan1E+U0GDBjwrZ/yuf7Pd9q0admYMWOyadOmZStWrMgeeeSRGo1U13/CaLE+SbuUf/++y8bw92D934Fvelz5Jusfa2ry+FLMrx1VXl6elZeXZ8OGDctuv/32bNq0aVmXLl2+/vTk9Y8L8+fPz2bMmBH6YQQ1Efm9KNbvcU2/brHOWko1/TX8s+cfM2ZMNmzYsH/qse7/Pg5H/61kWezsdfnPdty4cV/f0/9ZeX5Psyzf72vK99KaqqvfiwIAAAAAABDjE8YBAAAAAAD4XjNmzMgefPDBr4eW8+fPz7baaqtsxx13zJo3b5517979O0dV36Z79+7ZwIEDv/VTfVesWJHdfvvt2bPPPvv1dbPsf8dNzZs3zzp37px1794969atW9E+HXX9J1b//7/2Pffc8zvPXltWrFiR/eu//mv23HPPhf481g+fn3322a8/BXX9EGz96HbHHXfMfvnLX4Y/pfefVay/fxGp/T2o72bMmPH1Dxv4v48d/3dA3rt374L8gAlg47Mx3ksBAAAAAADYuBmMAwAAAAAAAAAAAAAAAAAAJKpBbR8AAAAAAAAAAAAAAAAAAACAfAzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQ1KvQXLCsrK/SXBKDIqqura+W67hkA6XHPAKCm3DMAqCn3DABqyj0DgJpyzwCgptwzAKgp9wwAaso9A4CaKvQ9wyeMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiGtX2AQAAAAAAAAAAAKAuKisrCzetW7cON5dddlm46devX7ip6y644IJwc91114WbdevWhRsAAAAAgLrMJ4wDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIa1fYBAAAAAAAAAADI76STTgo3I0aMyHWt6dOnh5szzjgj3KxYsSLcAPVLgwbxz0rp3bt3uDnssMPCTb9+/cJNHl988UW4qaqqKsJJvlnTpk3DzdVXXx1u1q1bF25uuOGGklwHAAAAAKBUfMI4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQ1qu0DAAAAAAAAwMauWbNm4aZ79+7h5vzzzw83WZZlDRrEf870qFGjws3UqVPDDQAAfJNtttkm3FRUVISbgw46KNzMnj073IwbNy7cPPHEE+FmwYIF4SavESNGhJtLL7003Fx77bXh5rnnngs3s2bNCjcAAAAAAKViMA4AAMBGrWXLluHm1FNPDTebbrppuFm1alW4ybIsKysrCzcdO3YMN40axZ822GGHHcJNqeT5Mzr00EPDzSuvvBJusizLjjrqqHDzySef5LoWAAAAUHfdeuut4WbAgAHhprq6OtxkWZZ16NAh3AwbNizcrFixItwAAAAAAABAfRX/qAAAAAAAAAAAAAAAAAAAAADqBINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAdYrQZQAAM3xJREFUJKpRbR8AAAAAAKDQGjSI/6zM/fbbL9w89NBD4Wa77bYLN2VlZeEmr3HjxoWbhQsXhpvx48eHm6VLl4YbgGIYNGhQuLn44ovDTZs2bcLN7Nmzw02WZVnLli3Dze233x5u9tprr3BTXV0dbpYtWxZuAABIS57nCY455pginIRvc8UVV4SbJk2ahJuLLroo3IwYMSLcnHDCCeGmqqoq3ABQP3Xp0iXcbLLJJuFmzZo14Wb69OnhBiB1O+ywQ7g5/fTTw83QoUPDTcOGDcPNvffeG27OPPPMcLNy5cpwAwAUjsE4AAAAG7UhQ4aEm+HDhxfhJBTSunXrwk2eF74rKyvDTadOncJNlmVZ06ZNw80nn3yS61oAAABAXIsWLcJNnh/IdMQRR4Sbum7kyJHh5tprrw03c+bMCTcAAAAAAACwMYh/zA4AAAAAAAAAAAAAAAAAAAB1gsE4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEtWotg8AAAAAAFBonTp1Cjcvv/xyEU6yoerq6pI0efXv378k1znkkEPCzRFHHBFuqqqqwg1Qv3Tu3DncXHvtteHmiy++CDdnnXVWuLnnnnvCTZZl2c477xxu/vCHP4SbBx98MNzsuuuu4ebKK68MNzfffHO4AQAACuvNN98syXXKy8vDzRVXXBFuZs2aFW4AqJn9998/3JxxxhnhZrfddgs3bdu2DTeffvppuMnz+lGe5ymffvrpcJNlWXb++efn6gC+S+PGjcNNv379ws3VV18dbvKcLY88j/8nnnhiuMnzetjMmTPDDQBQOAbjdUijRvE/jubNm4ebPG8uOuigg8LNww8/HG7uvPPOcLNu3bpws2bNmnADAMXWtGnTcLPFFluEm6VLl4YbSmvLLbcMN6tXrw43lZWV4QZqW6tWrcLNUUcdVYSTbOizzz4LN/Pnz891rTxP+i9fvjzcrF27Nty89dZb4SaPqVOnhpsXXnihCCcBAAAA6ouOHTuGm169ehX+IAWyZMmSXN2MGTPCTZ435f7yl78MN9ddd124GT16dLgBAAAAAACAuqZBbR8AAAAAAAAAAAAAAAAAAACAfAzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKhGtX0AAAAAAIBCGzFiREmu8+CDD4abyy+/PNxUVlaGm7yGDBlSkqZbt27hZuLEieEmz+/3u+++G26AdJ177rnhpkmTJuHmsMMOCzevvfZauMlrxowZ4SbPffDUU08NN+vWrQs3zZo1CzcAAEDtmz59erj54IMPwk3r1q3DzVlnnRVu+vfvH24AUta2bdtc3ciRI8NNRUVFuHnhhRfCzYQJE8JNnvvZq6++Gm7WrFkTbgDqik6dOuXqfv3rX4ebHj16hJuPP/443EydOjXcXHPNNeFm/vz54ebMM88MN4sXLw43UEhHH310uHn//fdzXSvP9295HHjggeGmadOmRTjJhubOnRtu8jweAcVlMF4EZWVlubpbb7013PTr1y/XtUrh4IMPDjc33XRTuMlzM7///vvDTV55/lwXLFhQ+IMAUDKdO3fO1Y0fPz7cVFVVhZu859uYlJeXh5uf/OQnua61//77h5sdd9wx3Cxfvjzc7LnnnuEGCqlFixbh5vrrrw83P/7xj8PNvvvuG27yPFmW598uAAAAAP+8HXbYIdzcc8894SbP+wcmT54cbo466qhwU0pdunQJN2+++Wa4+fnPfx5uRo8eHW4AAAAAAACgrmlQ2wcAAAAAAAAAAAAAAAAAAAAgH4NxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJKpRbR8AAAAAAOC7/PSnPw03Rx55ZLiprKwMN2PHjg03s2fPDjeldN5554Wbp59+Otzcdddd4eb4448PN9tuu2246datW7gB+D4ff/xxbR+h4MaNGxduTj311HDz1ltvhZsxY8aEGwAAoPYtWrQo3KxYsSLctG7dOtwApGyTTTYJN3fccUe4OeWUU8JNlmXZwoULw015eXm4mTJlSrgBqG+aNWsWbvr27RtuLrnkknCTZVnWokWLcPPMM8+Em379+oWbJUuWhJtSufjii2v7CNRzf/vb38JNu3btwk11dXW4ybIs+/zzz3N1UVVVVeGmrKws3Gy55ZbhZu3ateGmVL+eOXPmhJssy/cerTzvgXrppZfCzYIFC8IN1ITBeBHkfTI5zzeUZFmbNm3CzdChQ4twkm927LHHhps8bzS+//77w82qVavCDUB9c+6554ab4cOHF+Ek3+yMM84oyXWaN28ebvbbb79wc9xxx4Wbk08+Odw0bNgw3OSV5wmOuvykIRRSly5dwk1FRUW4yfPGopkzZ4abr776Ktzsvffe4aaU8jwh9eGHHxb+IAAAAAAFds4554SbDh06hJs8b047/fTTw01dl+d573Xr1pWkAQAAAAAAgI1Bg9o+AAAAAAAAAAAAAAAAAAAAAPkYjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRjWr7AAAAAAAA36V79+7hpmnTpuFm5syZJWk2RkuXLg03W221VeEP8g0ef/zxklwHSNeSJUtKcp3tt98+3MydO7cIJymcoUOHluQ6f/rTn0pyHQAAAIAUDBgwINxUVlaGmwMOOCDcdOvWLdxkWZb993//d7j5/PPPc10LoD5p3LhxuDnrrLPCzVVXXRVu1q5dG26yLMsuvPDCcHPbbbeFm1WrVoWbUmnZsmW4+eSTT8JN3j8j+Ca9e/cON23atAk3y5cvDzdZlmUfffRRuKmqqgo3eV7/bdAg/nnB+++/f7jJ42c/+1m42WKLLcJNnveOZVmWHX300eGmvLw83HzxxRfhpn///uHmgQceCDfUPwbj3yPPg+oll1xShJOQqvbt24ebcePGhZvzzz8/3PTo0SPcLFq0KNwAFMNmm20Wbm699dZw86tf/SrcvPHGG+Emy7Ls5ptvDjd//vOfw83EiRPDzaGHHhpuWrduHW7yWLFiRbj54x//GG7GjBkTbrIsy2bNmhVuPv3001zXgtqU5/9OFRUVRTjJhqZOnRpu/vM//zPcHHfcceFmhx12CDel9Prrr4ebPP+fmTBhQrhZt25duAEAAAAoteeffz7cfPjhh0U4Se167LHHavsIAAAAAAAAsFGLv6MfAAAAAAAAAAAAAAAAAACAOsFgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEhUo9o+QF3XpEmTcNO7d+8inKRw1q5dG24++OCDIpyk9uT5c91mm22KcJLC2WmnncLN1KlTw80+++wTblauXBluAL7Pk08+GW4OOeSQcDNlypRwc9ttt4WbLMuyXXbZJdyMHz8+3DRs2DDc5PH444+Hm8ceeyzcPPfcc+FmyZIl4Qb4bptvvnm46du3bxFOsqHTTjutJNfJ48svv8zVzZs3L9y0adMm3Oy9994laTp06BBuhg8fHm6AdP385z8vyXXyfH+9MWrWrFm4GTduXLjZbLPNws17770Xbu66665wA9Qvt9xyS7gZPHhwuHnooYfCTZ7n5BcuXBhusizLLrroonDTq1evcDN58uRwc+2114YbgLoiz+PypptuGm6++uqrcNO/f/9wk2VZNmLEiHDTqlWrcLNq1apw8+///u/hBoC6pXnz5uGmadOmRTjJhv7rv/6rJNcB6peuXbuGm7POOivc7LnnnuFm4sSJ4QaA4ikrKws3559/frgZPXp0uMmzN+nTp0+4ybIse+GFF3J1dVXbtm3DzcyZM8NNly5dwk2e96jBt5kxY0ZJmo3RunXrws0rr7xShJPU3nXyuuCCC8LNmDFjwk2e56Zat24dbqAmfMI4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQ1qu0D1HWff/55uOnZs2eua91xxx3hZuXKleHmyiuvDDdPPPFEuKnLtttuu3DTrVu3XNc67bTTws0+++wTbn7wgx+Em5122incnHDCCeHmtttuCzdAurbeeutwM3Xq1HCzxx57hJspU6aEmyuuuCLcTJo0KdxkWb7fuxkzZoSbhx56KNzcdNNN4aaysjLcVFdXhxugbhg8eHBtH6Ggqqqqws2QIUPCzYQJE8JNlmXZ6tWrw80mm2wSbiZOnBhuysvLw83AgQPDzfDhw8MNkK5ly5aV5DpNmzYtyXXqun79+oWbfffdtwgn2dCoUaPCzZdfflmEkwAbkwULFoSbF154Idz84he/CDfnnXdeuBk5cmS4ybIsO/7448PNu+++G27OPPPMcLNo0aJwA1AMZWVl4aZv374lafKcrZTPyS9evDjc9OrVK9xMnz493ABQt3Tt2jXctGvXrggn2dC8efNKch2gfhk2bFi4adQo/vbvq666KtzkeV/z7Nmzww0ANdOjR49wM3r06HCT532pFRUV4Wb+/Pnhpq7L87r5iy++GG5WrVoVbvJsowBS17Bhw5JcJ8/rLXnut1ATPmEcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKLKqqurqwv6BcvKCvnloF4aNWpUuBk5cmQRTrKhBx54INz06dMn3KxduzbckF+BbwU15p5R9zVs2DDcjBkzJtycd9554eaDDz4IN7vuumu42XzzzcNN3759w02WZdn06dPDzbPPPhtuqqqqwg2s555RP+y+++7h5tVXXw03zZo1Czd5zJ07N9wMGDAg3Lz44ovhpq7bdtttw82SJUvCTWVlZbjZZZddws2iRYvCDfm5Z1BIxxxzTLh55JFHws2CBQvCzb777htuPvroo3DTokWLcJNlWXbmmWeGm+HDh4ebPP9//Pvf/x5udtttt3CzevXqcENpuWeQos022yzcvPXWW+HmX/7lX8LNwoULw02WZVn79u3DzaBBg8LN7bffHm5gPfcMCmn27NnhpkOHDkU4SWHk+Xtayn9TTz/9dLjJ85zRU089FW7mzJkTbvLc1/3fpLTcMyBdeZ4LfPTRR8PNlClTwk2es+W5n1Fa7hnUtjyPLXvssUe4OfbYY8NNnufkn3nmmXCTZVl29tlnh5s87wWAf4Z7BoV09NFHh5s8r4HneW364IMPDjd1/TH5Bz/4QbgZPXp0uDn//PPDTYMG8c8Bveiii8JNnvd3k597BtQNN954Y7g544wzws27774bbjp16hRu2DgV+p7hE8YBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJKpRbR8A2NBf//rX2j7CtzrhhBPCzZVXXhlu3nnnnXADFN5+++0Xbs4777winGRDp556arhZtWpVSZo8j3sAdcmhhx4abpo1a1aEk2xo1qxZ4aa8vDzczJ07N9xsjPLcB/No3LhxuGnVqlW4WbRoUbgB6oa1a9eGm+rq6nDTtm3bcPO73/0u3EyePDnctG7dOtxkWZb1798/V1cKU6ZMCTerV68uwkkA4vJ8r3z44YeHmzz3mZ133jncZFmWvfnmm+Fm/Pjxua4FUGh5XsPs2LFjuMnz/4znn38+3OR5faZp06bhJq85c+aEmw4dOoSbBg3in4Fw7LHHhps87rrrrnBz7bXXhps8v9cAqevbt29JrvPHP/4x3FRWVhbhJEB9N2nSpJI0l112Wbg5+uijw80VV1wRbrIsy15++eVwc+KJJ4abF154IdwAfJ8ddtgh3OR5XF62bFm4GTlyZLip6++bOvDAA8PN3XffHW7yPJ+VxyuvvBJubrzxxiKcBKDuyvsaSPfu3Qt8km+2YsWKklwHasInjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIVKPaPgAAAAAAwHf53e9+F26uvvrqcHPhhReGm7322qskTV23atWqcHPDDTcU4SQAddeSJUvCTVlZWUmaLMuy1q1bh5t27dqFmzlz5oQbAAAgTa1atQo3nTp1KsJJNvTAAw+U5DoAKXviiSfCzfPPP5/rWnleM3j66afDzUknnRRuHn300XAD1C/nnHNOuNljjz3Czdlnnx1u7rrrrnCTx/bbbx9uzj333FzXGjRoULhZsGBBrmtFrVy5Mtz06tUr3Hz55ZfhBqCuaNy4cbg57bTTcl1rp512ytVFNW3aNNzcfvvtRThJ7Vm6dGm4ueSSS4pwEgzGgZDq6upw069fv3Bz3nnnhRug8A477LDaPsK36tOnT7jp2bNnuLn33nvDzTvvvBNusswTOEBxbLLJJuHmrbfeCjeffPJJuMnzvWWeJ33mzp0bbvhfu+22W20f4VutW7euto8AAAAA1BEjRowoyXVmzJgRbn7xi1+EmxYtWoSbhg0bhpu8Pvvss5JcJ88PQenQoUO4GTlyZLjJ8xp4njeMnXzyyeEGAAAAAACA+qlBbR8AAAAAAAAAAAAAAAAAAACAfAzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKhGtX0AAAAAAIBCGzFiRLiZNGlSuDn22GPDzQcffBBu5s6dG26yLMvuvvvucLPNNtuEmzy/33PmzAk3ACkbNWpUuNlpp53CzS233BJusizLKioqws1VV10Vbk466aRwU1lZGW4AAIDa16dPn3DTrl27IpwEKLatttoq3KxYsaLg56D2ffbZZ7m6AQMGhJtVq1aFm+uvvz7cvPrqq+Fm8eLF4QZI1+GHHx5uPv7443Dz8MMPh5uDDz443Bx33HHh5le/+lW42XzzzcNNlmXZ1VdfHW7ef//9cJPn9ZaxY8eGm+XLl4cboH7Zcccdw83FF18cblq2bBluevToEW4aN24cbqqrq8NNKbVv3z7cvPPOOyW5zqxZs8JNHqW6Dt/PYBwouvvuu6+2jwDk9Pjjj4ebYcOGhZsmTZqEm5NPPjnc5DFkyJBw8+ijj+a6Vp6BxbvvvpvrWkD9kWckluexZdtttw03m222WbjxpoHSOu2000pynTwvfLz55ptFOAkAAACQojxvLl23bl24yfPDP7766qtws2TJknDD/8rznNHQoUPDzUEHHRRuunbtGm4AAAAAAACgphrU9gEAAAAAAAAAAAAAAAAAAADIx2AcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiWpU2wcAAAAAACi0qqqqcPP666+XpMnjkEMOydVts8024aa6ujrcLFq0KNwApKxx48bh5rjjjgs3L7/8cri58MILw02WZdnvf//7cDNp0qRwM3jw4HBz3XXXhRsAAPgmm222WbiZMGFCuGnVqlW4GTduXLh57rnnws0HH3wQbrbffvtwk2VZNmDAgFxd1OTJk8ON57OgsMaOHRtuRo0aletaeR7HqPvWrl0bboYMGRJudt5553DTu3fvcOP5LEhX8+bNw83mm28ebrbYYotw84c//CHctG/fPtysWbMm3MyfPz/c5Hkcz7Is+9Of/hRuZs2aFW5mzpwZbv7jP/4j3AB8n88++yzcLF68uCTNb3/723CT5zmZAw44INxkWZZdc801ubqoMWPGhJsrrriiCCcBg3Gok/r06VPbR/hW77//friZM2dOEU4ClEKeJ0h23XXXcNOlS5dw07Rp03BTUVERbn7yk5+Emzxv/s2yLCsrKws35eXlua4FpKdNmza5uqOOOirc9OzZM9zkefF2xYoV4Yb8GjRoEG5+/OMfF+EkG3r77bdLch0AAABg45Tnhx7leeNTnjEadd/HH38cblavXh1u8vw9BQAAAAAAgJqKv1scAAAAAAAAAAAAAAAAAACAOsFgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEhUo9o+AGzsDjnkkHDTtWvXwh+kQJ544olw89lnnxXhJEBUjx49ws3UqVPDzaJFi0rS5HHfffeFm9/85jfhZvDgweEG4PuUl5fn6n7wgx+Em5dffjnXtajbzj777HCzzz77FOEkG7rkkktKch2AlPXt27dk15o1a1a4yfOcEUDKKioqwk2bNm3CzcCBA8PN559/Hm6yLMueeuqpcPPAAw+Em+OPPz7c3HTTTeFm7dq14QaoX5o2bRpu8jyWv//+++GG0jrssMPCTcuWLcPNtddeG26Awhs1alS4OeaYY4pwkg3tt99+4eajjz4KN++++264adKkSbjJsizbcccdw83ChQvDzdChQ8PNV199FW6Abzdp0qRw88wzz+S61muvvRZu7r///nDz3HPPhRvqvrfffru2jwDUccuXLw83M2fODDeHH354uGnbtm24mTdvXrgZN25cuLnmmmvCzQ9/+MNwk2X5zpfHz372s5JcB+D75Hn+Z2N7T+bq1atr+wjf6cUXX6ztI8DXfMI4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQ1qu0DwMbuwgsvDDdNmjQpwkmA+q5Lly7hZurUqUU4Se3ZZZddws0xxxxThJN8s6qqqpJdC6g/Pvroo9o+AkWw9957h5sLLrigCCfZ0EsvvRRupk+fXoSTANRd++yzT7g54ogjinCSb/bYY4+V7FoAqSovLw83d911V7ip68/PLV++PNzstdde4aZz587h5vXXXw83QLruvPPOcHPZZZeFm8GDB4eb4cOHhxvy23777cPNyJEji3CSDS1durQk14H6ZNtttw03gwYNKsJJNpTne/mOHTuGm3bt2oWbli1bhptSWrFiRbj50Y9+FG5mz54dboBv9/vf/z7cvPXWW7muNWDAgHBz/fXXh5vddtst3CxcuDDc5Hk8eu2118LNypUrw00p5fn97tq1a7jJc8849thjww1Qv/Ts2TPcHHjggeFm0aJFJWlKZd99983V5XmN5sknnww3y5YtCzcAFEee14uhvvIJ4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAAS1ai2DwCp2H777XN1u+yyS4FPUjjz588PNzfccEMRTgKUQkVFRbiprKwMN9ddd124yWPTTTcNN7/97W/DTatWrcLN7Nmzw02WZdm5556bqwP4Lttss0242XLLLcPNypUrww1Z1r59+1zd/fffH2622267cFNVVRVuzjnnnHCT53sOgJT16NEj3Pzwhz8swkm+2W233VayawGk6oADDgg3N910UxFOUrvKysrCzT/+8Y9wk+f1DKB+Wbp0abjJ8xh2yCGHhBvy22GHHcLNmDFjws1uu+0WbkaPHh1uSvUaGtQnDRrEPyulSZMmRTjJht55551wM2HChHAzatSocNOhQ4dwU0p77LFHuHnyySfDzdixY8PNNddcE24+/fTTcAP1RZ7v47Msyy6//PJwc9VVV4Wb3XffPdx06dIl3HTq1Cnc5Hlf6tZbbx1udt5553Cz+eabh5ssy7KPPvoo3EyfPj3cDB48ONxMmzYt3AB8n1deeaW2j1BQW221VbgZMWJErmstW7Ys3OR5/Aeg7mjdunVtH+E75Xl/LhSLTxgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKhGtX0ASMUpp5ySq2vbtm1hD1JAN954Y7iZO3duEU4ClMLdd98dbq644opws2rVqnDz17/+NdyMHz8+3HTo0CHc/OMf/wg3w4cPDzdZlmWLFy/O1QH1w8SJE3N15513Xri57LLLws0FF1wQbqqqqsJNXXbggQeGm3vvvTfXtX70ox+Fm7Vr14abgQMHhpu333473ADUN4cffnjJrpXn/zSVlZVFOAlA3bXVVluFm4YNG4abN954I9yUUqdOncJNnz59ws3kyZPDzbJly8INUL/ccccd4aZnz57hZt999w03Xbt2DTcvvfRSuCmlFi1ahJuOHTuGm3vuuSfc5Hkt6NFHHw03Y8aMCTdA4eV53mPQoEHh5rbbbgs3Z599driprq4ON3n+b/Lee++Fm7zPZy1atCjc7LzzzuHmkksuCTcjRowIN3nugWeccUa4AQovz2ulM2fOLEkDABuDgw8+ONzst99+ua518sknh5slS5bkuhYA1IT7DHWJTxgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKhGtX0AqA0HHnhguLn00kuLcJLCmTt3bri57777inASoK6aOHFiuOnVq1e4GTduXLgplb/97W/hZsCAAeHmxRdfDDcA32f58uW5ugkTJoSb4cOHh5utt9463Fx//fXhZvr06eFmxx13DDeXXXZZuCkvLw83jRs3DjdZlmXV1dXhZuDAgeFm/Pjx4Qagvjn88MPDzZ577lmEk3yzZ599NtysWrWqCCcBqLvWrFkTbvJ8T77TTjuFm8mTJ4eb1q1bh5ssy/e83urVq8PN/fffH24AiuHiiy8ON0899VS4efjhh8PNgw8+GG5efvnlcHPkkUeGmyzLsn322SfcdOzYMdx8+eWX4ebf/u3fws3jjz8ebvKcDSi8devWhZs77rgj3HzyySfh5pJLLgk3//M//xNu3n333XCT570Ded6XlFee14KOOeaYcDNkyJBw8/e//z3cAABAajp06BBu8vxf64033gg3WZZljzzySK4OAGqisrIy3CxbtqwIJ4F8fMI4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgESVVVdXVxf0C5aVFfLLQVF079493EyZMqUIJymczp07h5uZM2cW/iAkqcC3ghpzz6j7mjVrFm569eoVbvr06RNuHn/88XDzxBNPhJvFixeHG9iYuWekZ5NNNgk399xzT7ipqKgIN3n+XNesWRNuGjVqFG4aNmwYbvLI8+vJsiwbNGhQuBk/fnyua0Fe7hnUFy+99FK4OfDAA4twkm92yy23hJuzzjqrCCeBb+eeQYqWLVsWbj788MNwc/fdd4ebiy++ONxkWb7nAo888shwM23atHAD67lnUNt23333cHPKKaeEm/79+4ebzTffPNyU8t/UHXfcEW6eeuqpcDN58uRww8bJPQOAmnLPAKCm3DOoLy666KJwc/rpp4ebrl27hpssy7L58+fn6qCU3DOgsH7605/m6nr27BluJk2aFG7+8pe/hBtYr9D3DJ8wDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRjWr7AAAAAAAAqWrQoDQ/k3PlypW5uptvvrnAJwEgy7LsmmuuCTcXXXRRuBk7dmy4yat3797hZtq0aUU4CQAAAAAAUAjt27cPN5deemm4mThxYriZP39+uAGgfpo5c2ZJO0iZwTjUQZMmTQo3f/7zn4twEqC++/zzz8PNfffdV5IGgJpZs2ZNuDnxxBPDzejRo8NNRUVFuDn44IPDzWGHHRZu3nvvvXDz6KOPhpvf/OY34SbLsmzevHm5OgAAAADy+8tf/hJuhg4dWpIGAAAAAAAAqN9K8/E3AAAAAAAAAAAAAAAAAAAAFJzBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJCosurq6uqCfsGyskJ+OSiK7t27h5spU6YU4STfrHPnzuFm5syZhT8I9UaBbwU15p4BkB73DABqyj2DFLVs2TLcvPrqq+GmXbt24ebOO+8MN1mWZQMHDszVQSm5ZwBQU+4ZANSUewYANeWeAUBNuWeQoptuuincNGrUKNwMHjw43MDGzD0DgJoq9D3DJ4wDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASFRZdXV1dUG/YFlZIb8cFEWHDh3CzeWXX57rWtOnTw83v/71r8NNgf8pU8/U1t8f9wyA9LhnAFBT7hkA1JR7BgA15Z4BQE25ZwBQU+4ZANSUewYANeWeAUBNFfqe4RPGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACSqrLq6urqgX7CsrJBfDoASKPCtoMbcMwDS454BQE25ZwBQU+4ZANSUewYANeWeAUBNuWcAUFPuGQDUlHsGADVV6HuGTxgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKiy6urq6to+BAAAAAAAAAAAAAAAAAAAAHE+YRwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABI1P8DV8viy3O1V1IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the number of images you want to plot\n", + "B = 10\n", + "\n", + "# Create a 2xB grid of subplots\n", + "fig, ax = plt.subplots(2, B, figsize=(20, 6))\n", + "\n", + "# Plot the model's samples in the first row\n", + "for i in range(B):\n", + " ax[0, i].imshow(samples[i, 0].cpu().detach().numpy(), cmap='gray')\n", + " ax[0, i].axis('off')\n", + "\n", + "# Plot the test images in the second row\n", + "for i in range(B):\n", + " ax[1, i].imshow(test_data[i, 0].cpu().detach().numpy(), cmap='gray')\n", + " ax[1, i].axis('off')\n", + "\n", + "# Add row titles\n", + "fig.text(0.5, 0.92, 'Samples from Diffusion Model at Epoch 10', ha='center', fontsize=30)\n", + "fig.text(0.5, 0.48, 'Test Set from MNIST', ha='center', fontsize=30)\n", + "\n", + "# Adjust spacing between subplots for better layout\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do these samples come from the same distribution as the test set? Has it learned the underlying distribution? How can you tell? There are statistical methods to evaluate if the samples come from the same distribution such as [PQMass](https://arxiv.org/abs/2402.04355). This gives you a way of determining if the distrubution your model has learned is similar a test/validation distribution. In this case we use to compare the samples our model generatives to the test set of MNIST!\n", + "\n", + "You need a lot of samples so we will load in 5k samples that have already been generated to show how PQMass works. Note that this is is the model with the same hyperparameters trained offline for 100 epochs that is in the folder." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Samples from a pretrained model at Epoch 100 (can be found in here (link)) \n", + "samples = torch.load('./Epoch_100_MNIST_1000_Samples_VP_NF_128_Ch_Mult_2_2_Batch_Size_128_LR_1e_3_ema_decay_0_999.pt', weights_only=False)\n", + "samples = samples.unsqueeze(1) # Adds the channel dimension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot the samples to show what they look like verus the test set of MNIST. (Note that this is not the same epoch as from above so these samples look much better!)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "hide-cell", + "hide-input" + ] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD4wAAAQOCAYAAACaDyQ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzde5BkWV4Q/tMzPe9XdvWuCyyom62I4opk9eyiEGDEZGGEgKhk9SyiEihTpSggIVu1TfAwfsA22YSsRkCEWSMaoQEyXaWLCoQRlYtALCsyXSkoGIuxlYvCvpztrpz3e+r3x0QWVVlZ3XW+mXkzb/XnE9Gx2zX9vXnq3nPP4+b53nNqd3d3NwEAAAAAAAAAAAAAAAAAAFA6t027AAAAAAAAAAAAAAAAAAAAAMRIGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoqdPTLgAAAAAAAHAydDqddP369VStVlO1Wp12cYAZ0O12U6/XS9evX08ppVStVtPc3FyqVCrZx+jH58QCAAAAAAAAANwKJIwDAAAAwIzrdDrpiSeeSJ1OJ3W73dTtdlNKaS8hs1KppIWFhXThwoVjJ1AtLCykVqsloZOJ6if4dbvddP369bS9vX3g791uN9Xr9bS+vj7tojKCjY2N1Gq1UrvdPvTf6vV6ajabqVarTaFkwDT0xy3tdjt1Op0j/12tVkuPPvpoWllZOfI4rVYrXblyZS9ZvK9SqaRms5mWlpbGWXSAE21wHN7r9dL29vaBv3e73bS7uzvtomYz7wBOguO0ZRcuXEitVmvaRQUAAAAAYEZJGAcAAACAGXX58uV06dKlQ0lSffuTxzc2NtLy8nKq1+tpeXk5NRqNI4+7traW2u126na7EsaZmG63m86dOzftYjBBnU4nLS4u7rVDKysraXl5OVWr1dTtdlO73U6rq6tpfn4+tVotiZ1MxcLCwtCXGUxKpVJJ1Wo1nT9/Ps3Pz2e9zKXs1tbWUrPZ3GsTarVaajabqV6vH9gVvNvt7iWVr66upkuXLqXHH398b+zS6/XS6upqWltbSym9+eKJ1dXVdP78+b34S5cupeXl5dRqtdLW1lbxvyyUyPLy8t79dBy1Wm3m7qu1tbW0vLycFVPGpOdJe+SRR274Io+yMu8gx+LiYinug83NTc9rbjHtdjstLCxMuxgAAAAAAJSchHEAAAAAmDFra2tpdXX1QKJ4o9FIjz76aKrVamlubi5VKpUDOw/1d/Ls/+nvnjYsSa3ZbBb3ywAn0v7ErUqlkj70oQ8d2EV8MLmhn0her9cLLScUrdfrpU6ns5eItLy8nGq1WlpeXj6xL01ot9tpeXl5L1G8Xq+nZrN5oE3Yr1qtpmq1mhqNRur1emlxcTEtLi6mVquV6vV6mp+f3xsDNZvNoTuQ989v/8UVdoyF8el0OmljY+OGL6Aq2urq6rSLAJwQ+1+8N8s6nY6EcQAAAAAAINupXa/WBgAAAICZMbgD4MrKSlaC98bGRnrsscdSr9dLlUrlwI6d/f++uLiYUnpzxyrJm0xSP+Gv2+2mq1evHth5tq/RaEj0K5n97UhKKW1tbR1KDB38Nym9mUS6ublZSBmhr9frpevXrx/4/+vr60futlupVFKz2Uznz58/9s7g/eP2er305JNPpna7PXTnykqlki5evDg0AXrc2u12Wl1dTZ1OJ9VqtfT4448fmcA9isuXLx9I5Gy1WlmJ8ZcvX06tVmto4tZRyeJnzpw58FKdlFLa3t6WVJWpqDrC9A1rBzc3N9Ply5dTSm+2TYP31Cz12f0dV2u12tC2tV6v772YZn+7rU04rH+dr1+/nrrdbmq1WmljY+PQvyvjEhLzDo6r3W4fuBd6vV564oknbrjr+NLSUpqfn09zc3Ohz+x/zvb2drp69eqxdjjPHVNxMuyfV1y9evXQyyRTerM+tlqt6RSwZBYWFlK3203b29tT+fxOp7PXvvRfVlGpVPZeoPXwww+nRqNR+JhlVssFAAAAAIyHhHEAAAAAmBHz8/N7C4crlUra2toKL87bn8C1vr6+lzS+/zMkjFO0brebzp07d+BnEjfKpdPppPn5+b2/H5XQubi4eCgBqVKppJ2dnYmXEY5jdXV1L1lyv3Em56ytrQ1NWKvVaml9fX1iC/D7yZWDhr3cYRSDL7nZP944jsFk8/1qtVra2to69PPBNqjPmCZPUXWE2da/BxuNxl7C0H47OzvHfnHGJPVfQNPr9VK73T7w345qKzi+hYWFQ+f1JCwhMe8g17B7IaX8l/gdV6fTSa1W68iXGE3qcymXYWNfCeM31+v10vz8/N7Ypuh+bf+LmVJ6c7xy/vz5vWu5tbV14OURtVotNZvNic9nZrVcAAAAAMB43TbtAgAAAAAAbyZC9BfkVavV9PGPf3ykRLKVlZW9xfCLi4up3W4fueMpFKVarVpoWnKPPfbY3v+vVCpH7pQ8bPc9u1MxS5aXl4f+fJz1dGlpKW1vbx9KDu90OuncuXNDE9bH4agk7EuXLo3tM9bW1g4kODWbzaxk8ZTSDXcvPipB6qjkVe1LniLqCLNv/8sxht2/RyUxFqnX66WNjY0j2+yjfs7xHdUelJ15B7mOuhcefvjhiXxerVZLrVYr7ezsDG2DB1/iwa2pVqt5mU+mtbW19I53vGNq99Di4mJaWFhInU4n1ev1tL29nba2tvZeTNZP+N/a2krb29upXq+nTqeTFhYWJjqumdVyAQAAAADjJ2EcAAAAAKbs8uXLB3bi3dzcHMtufo1GY2/HvYWFhRObDEC5SOorr42NjQMvnbh48eKR/3bYgmKLjJklw15qcKOfj6LRaKTt7e1DL1hYXV3d2zl3nI5KjhhX0kS32z1wP9dqtSNfHnEjN0r+PirJr1qtHkqqajQa+pZMk64jlMP+e3BYHz0Lu5deuXIlVSqVI9uESbTZt5qTfA71DZOzuLh44BnGSTCt+lKpVNL6+vqhsVSv15tKeZg92rLjWVtbS2fOnEnLy8tTuX96vV46d+7cXtvYarXS5ubmDa9ftVpNm5ubey/LWltbS/Pz82Mt/6yWCwAAAACYHAnjAAAAADBFvV7vQCJ3q9Ua62LQ/q5VKSW7izMTxvEyBKZjMHHsRrsJ12q1vQTZpaWltLm5eWAnU5i2abRFzWYzra+vH/jZxsbG2JPGz58/n/XzXIMvoDlqN/CbOeolEjfbqXx9fX0vgWFzc/PQOeXmJl1HKJ9qtXpoB9Nutzv1+UOr1UoXLlyYahlOupM8Nj/Jv9u0bWxspCeffHLaxThRms3mgfmSl7jAcP3xycbGRlpdXU3z8/Pp1KlTU0sUT+nNZ7vz8/N7921/1+7jWllZ2ZtTdTqdND8/f6LLBQAAAABMloRxAAAAAJii/UlXlUplIgmVS0tLN02+AriZdru99/8rlcpNX25RrVZTs9lMrVbryJ1B4VbTaDTS1tbWgZ+NO2l8WAJ3pVIJJ3bv1+v1DuwoeqOdf2+mXq+nra2tQwl9CwsLx4pdWVnRtgRNso5QXrO2y3g/Ieyol0sA02GH2clptVp74yIJ43DQwsJCOnXqVDp37lyan59Pi4uL6fLly3svt+nPs6bxorrFxcW9e7bRaITKsH9u0+12jzUnKmu5AAAAAIDJkjAOAAAAAFPS6/XS2tra3t8vXrw4sc+SAASMYn+yeEp2oYVR1Gq1tLm5eeBn40war9VqaXt7Oy0tLaVarZaWlpbSxz/+8bHstHrlypUDfx9159/BHY1T0r4UYZJ1hPIadj8P3vNF2tjYGLrzOTBd169fn3YRTrT9z24k58MfGGx7qtVqWlpaSuvr62lnZyetr69PZcywtrZ24HnJ448/Hj7W/hf1tNvtA8+MT0q5AAAAAIDJkzAOAAAAAFMymIAxyV3A+wspASIGkxVutrs4cGP9HbL329jYGNvi+2q1mlqtVtra2jqwW+Wotre3D/z93LlzIx2v1+sdal8kLRdjUnWE8qpUKofmI71e79BLY4rSarXsLg4zqL+bL5Ox/7mN5Hz4A+vr62lrayvt7Oyk3d3dtL29nVqtVmo0GlMbx/Z6vbS6urr395WVlZHKUq1WD4zFVldXQy+OmNVyAQAAAADFkDAOAAAAAFOyvr5+4O+TTsDcv1gQIEe32z3wd4mFMLpms3loF7zl5eWZXnw/2BaMOnaRCAWzZViC9v5dJYvS6XRSt9v1wiuYQYNjAcavXq+nlJxr2K9araZarTZTzyIuXbp0YO42jhfdXLx4ce//93q9dOnSpRNTLgAAAACgGBLGAQAAAGBKrl69uvf/i9itt7+4EiDXtWvXpl0EOJEef/zxQz9bXFycQkmOZ9Ivj5ilBBC4FdXr9UP34cbGRuEvsmi1WkPLAkzfk08+Oe0inHj9saCEcZhtly9f3vv/1Wp1LM92B5Pi19bWTky5AAAAAIBiSBgHAAAAgCnZn3hRVDLEo48+WsjnAAA3V6vV9naR7Gu32xbgA1Nz4cKFQz+7cuVKoWW4cuXKTL88A25l7XZ72kU48c6fP59SSml7e3vKJQGOMjhfazQaYzv2/vlhr9fLmhvOarkAAAAAgOJIGAcAAACAKRjcKaqonaPGuVAQABhds9k89LPV1dUplAQgpeXl5UM/a7VahX1+f0fzpaWlwj4TOJ5ut3vgxXdMRq1WSykl5xpm2ODY6OGHHx7bsQePtb6+fuzYWS0XAAAAAFAcCeMAAAAAMAOKWghcrVYL280cALi5Wq22lxjUZ8c2YFpqtVqqVqsHftbpdAp7wVWr1fKSK5hRGxsb0y7CLaNarRbW7gJ5er1e6nQ6B342OHYaxeDcsN1uH+u58ayWCwAAAAAoloRxAAAAAJiCubm5Qz9rt9uFfPb58+cL+RwA4HiG7eg7bOdxgCIMa5OKSBTt9Xqp3W4P/Xxg+i5dujTtItwyarWahHGYUcOe3w4mU49i2HPb4zwzntVyAQAAAADFkjAOAAAAAFMwbJfvVqtVyGePc7EgADC6CxcuHPpZt9u1AB+YiqWlpUM/K2KucuXKlVSpVFK9Xp/4ZwF5NjY27CQb0Ol00vLycva5s8M4zK7Nzc0Dfx/2jHcUw4735JNP3jRuVssFAAAAABRLwjgAAAAATMlg4vbGxkYhC4IffvjhiX8GAHB8lUolVavVQz+3yzgwDcOStrvdbup0OhP93FarNTRZHZi+xx57bNpFKKVut5vW1tbS9evXs+LOnTs3oRIBo7p69eqBvw+bx41qMDn7OGOwWS0XAAAAAFAsCeMAAAAAMCXDds5bXl6e+Of2E9Xn5uYm/lkAwPE0Go1DP7PDODAti4uLh342yV3G+wnpRcyHgDyRHbJ5U26ieF+9Xk/r6+tjLg0wDoNJ0pN4vjqY7D2YDD7MrJYLAAAAACiWhHEAAAAAmJJhyRDtdjutrq5O9HOr1Wra3d09tMM5ADA9Dz/88NCfSxoHpmHYTt9XrlyZ2Oe1Wq1UrVYnshsmELe6uprW1tamXYzSiibaV6vVoS8TAqZr2I7ag7tuj8Ngsnev17thezKr5QIAAAAAind62gUAAAAAgFtVtVpNtVrt0KK+y5cvp7Nnz6aVlZUplSxPt9tNGxsbaXNzM3W73dTtdlNKaS/hY2FhIdXr9bEmqHe73dTr9VK3203Xr19P29vbB/7e7XbT0tJSajabxy5zpVJJc3Nze+VeXFwcugv8jbTb7bS+vp7a7Xa6fv166vV6qVKppGq1mubm5tLi4mK6cOHCyIs2+2Xu/87Xrl07dE6azebQRJ+U3lxI+sQTT+zt5Nj//fdfs3GUc5q63W5qtVp7v99gvYxe4xvp9Xqp3W6nzc3NdPXq1dTr9fbqQf+za7VaWlhYGHptlpeX07lz50pz70ccp+5ubW0NTRbrX9N2u70XU6vVUr1eTxcvXhxLfe3fG/vrzf62oVarpeXl5bEks93q7RiHHdVPbm5u3vQ6DtadXq+Xtre3D/zspO9UeZx76vz582lzc/PYx+y346P0ucf9nEn3H9OuIyepfa3VaunRRx+9JV6+1Gg00sbGxt7fe71e2tjYmEgS49raWrp48eLYjzsORdbfiF6vl65cuXKgzu7vv+v1+tTr7DTG5ifFNObb/c9dXV090AaQb3t7e2LHPunPBWa97b1Zu7awsJAajUah5TOGmbz+dd5vEjt5D7vvrl69emQ/OavlAgAAAACKJ2EcAAAAAKao2WymhYWFQz9fXV1N29vbqdlszmxSXq/XO7DbWKPR2Fus20/6vHLlyt7OqLVaLV28eHHkBJN2uz30nB23zI899lja2NjY27FrcXExzc3NpW63mzY3N/fKu7a2lqrVamq1Wjdd+Nhut9Py8vJestXy8vLeddve3k4bGxup0+ns/btGo5Eef/zx0LVdW1sbujv9cWxsbKRLly6lTqeTKpVKOn/+fKrX66lSqaROp5OuXr2aOp1O2tjY2Ctns9ks1U6P+3/HlN6sd41GIz388MN7SWPtdju12+20traWKpVKunjx4khJ2t1uNzWbzb17oZ+UU61W9xZn9xPUtra20urqalpeXk7NZnPvcy9fvpzW1tZGSjgcVbfbTefOnTvWv718+XK6fPnyTf/dzs7OXj0fpe4uLy/v3ZP9eyylN3cj7Zdla2srvPD98uXLqdVq7S2yrtfrqdFo7J2P7e3t1Ol09j6rWq2m1dXV8PW61dsxhjuqrT3ODuPz8/NDkwQicu7VaD0+Sq/XS6dOnbrpv1tZWTmQ7Hvce+r69etZ5enfa5NSZP8xzjqS4yS2r+12e6+s6+vrJzrpanl5+dA90Gq1xp4w3m63U6/Xm+o4aJii62+uTqeTVldXD/QTjUZjrx3pz8n6dbZWq6Vms1loUtc0xuYnxTTm2/054ebm5k37v+POB/r2zwtuJVevXp3IcU/yc4FZb3sH27V+GfvnsJ+Av7q6mlZXV1O9Xk/NZnOi4wVjmOIMm08U1bbdaCw/q+UCAAAAAKZgFwAAAACYqkajsZtSGvqnUqnsNpvN3e3t7WkX84DNzc3dSqWyV74babVau5VKZe93qtfruzs7OyN99lHna/+flZWVoWWu1Wq7W1tbRx5/e3t7t1arHTjWjX7HpaWlvc+70e+1vr5+6NpGrmur1TrW799qtfZidnZ2duv1+m5KabfRaOxubm7e8PjVavXYv3+ulZWVA8duNBpjOe7Ozs6Be6ler9/wOm9tbR34PavV6g3//VH61+M498KwuHq9fqBuLC0tZZdhXLa3t49Vt3L+7L8njlt3998XOzs7u9VqdbdSqeyur68fKO9gW1CpVLLbls3NzQP14Gb38c7OzoE6HK03t3o7NiuGnfPI9Rynwfa3/ycaF2lvj3uvTvPPsHvjOHG1Wi3retxojLb/z/4+97iK7j/GWUeO41ZqXyPXf1Yc57rvH8f3/4wylh9maWlpt16v3/Df9Mey+/8Mjg3GZVr197h2dnb2+u5+O3Kzeri9vb3Xpu1vL4aN/8ZVxmmMzfeb1LyjCNOYb+/s7Ey07x53uzFuR82FRmln9p/TcY+Zy/5cYJhZb3u3t7cP9EU3a3u3t7d3V1ZW9u7PwbHHcQ2ORwfHfLfqGOYo+/vHcfZrfYN9yyjX9kaG/R43ugdntVwAAAAAQPEkjAMAAADAlO3s7AxNxBj8U6vVdpvN5tST2frJSTkL0be3tw8s/K1UKiP9Htvb27vb29u7W1tbu81mc+j5278wcmtrK3ux5ODi6GELxfuLf4/7u/TLsX9Bc2ThfP/339zcHLoodP/C362trd1KpZK9eHowKadWq41lkf8kEjf6v2NkUezg4usbLZof1P9dqtVqKAFgsNzDFn8XrV+3Bv8MLgqu1+tH/tv9f446/o3q7v64Wq125PkdlvyYk9Cx//Nz6/dgmxZZiH2rt2OzYFj9m3YfOywh8jjl2tnZ2d3Z2dnd3t7eXV9fH3p/HLe97R9n2J/B466srByrLTjqz7Dk3q2trZvGDatz/XPQv6eOGkvl6p+Pzc3NoQkSkWSbafQf46wjN3Mrtq8544dZcpzrPqy/HneC2XH68KISxqddf29m8P5vNBpZZdw/l+uXefC8jruMRY3NB5U1YXya8+0b9b3D+p2cPn/WTSJhfP+4YRLnoMzPBQbNets7OGbNaXv3J+rf7OUow9woYbxfrltxDHOUSSeMF5UwPexzbnSdZ7VcAAAAAEDxJIwDAAAAwAwYTMA7zp96vV54Anm/nJFFrsMS48dV9mEJZ/0Fi/3PzV0oOeyaDO6WHFmIP7i4chwJwsMS41qt1t6i98j12t09vDB5HImh407cGLxOkQWxg7tsHeea7t/VdZTF/4Pln3bC+FEmlXAzbGe8/vnsJ/kdVeeGtYvHXai8/z6M3h+7uwcTKEa9drd6OzYNw+rQtBPGj0pIzk1WGpb0NI77dty7Ek5qZ9vd3eH1P5IwPmjYNco5D7PSf0yqjtyq7WulUhmpjNNynOs+rK6M417q698TN1NEwvgs1t/9Buty9Nj95N/+C4DG2Q5Pa2w+TBkTxmd1vr27u3vo2CctQXDcCeODc/QikubL9Fxgv1lve/eP3UZpS/ptUm78UQnj/fbiVh3DHGXSCePDxiOTSMwe9hKIG9WdWS0XAAAAAFC82xIAAAAAMHW1Wi1tbW2lSqVy7Jh2u51WV1fT/Px8OnXqVFpYWEhra2up1+tNrJyLi4upUqmk9fX17NhKpZIef/zxAz975JFHxlLeer2eqtXq0P/2yCOPpHq9nlZWVrKOWavVDh1zbW0tpZRSp9NJy8vLaX19PdVqtazjLi8vHzrmqOdg2O+2vb2d5ufnU61WS5ubm6Hjrq+vHzgH3W43zc/Ph8s5bp1O50B5Itc5pZQ+9KEPHfj7I488ctOYxx57LKWU0tLS0pF17zhqtVqozCfF0tLS0J93u920urqaHn/88SPbxWH33sMPP3zTz1xcXNy7l6vVavj+SOngPbK2tnbo/s5xq7djvOmo+n79+vWs41Sr1VSv18dQovKq1WrZdfs4VldXR4qflf5jEnXkVm5fe71eunz5criMs6xarR46f51OJ3W73bEcv9VqHTkeKNKs1t++drudFhYW9v5er9dTq9UKHatarab19fXUbrfHUra+aY7NT4pZnW9zY71eL/V6vb1nNGfOnBl5vBBRxucCs972bmxspMXFxb2/1+v10P2ZUkrNZjOtrKykjY2Nvd95FIuLi6nRaBjDFCx3XjZON2rPZ7VcAAAAAEDxJIwDAAAAwIyo1Wrp4x//eGo0GqH4/oL/M2fOpHPnzqXLly+PddHe2tpa6na7N0zgvJlGo3EgeavX66VLly6NpXzDksL2lzli8Fr0kzIuXbqUlpaWQolWtVrt0Pm7cuVKqHz7DSby9Bf8DiZc5BpcsN3tdseaWDKK/Qu3U0rhhduVSuXAIuter3fD33FjY2Pv3hosQ8TFixdHPkaZDUviW15eTvV6/Ybt4WBbdLN/n9Kb98XGxsbe30dJSEjpzbqz/xhra2sjLf6/1dsxjhbpz0dJRj4pJnEORjnmrPUf4zw/2teUnnjiidBxymDYuCiarLxfP8FyHPfDKGa9/vZ6vQPnaPD4Ef1k7na7PdJx9pvW2PykmPX59q1qcXExnTp16oZ/zpw5k86cOZMWFhbG/hwmV5meC8x629vtdg+1a6P2fc1mM1Wr1ZFfKLC2tpauX79uDHOLmWZS+I3MarkAAAAA4FYlYRwAAAAAZkh/N7Gtra2Rdn3s78575syZtLy8PJYFy61WK1UqlXBCe99gctM4dlY6yurqamo2m+EF9/t38UvpzfPabrfTxsZGajab4XINXttRF0anNHxX2lF+975qtXpox6q1tbWxJpdELC8vH9jZcmVlZaTfdVi9PGrnzP2Lqc+fPx/+zL5KpXJL7wQ8eN3699nNFtH3X7KxubmZtra2bnofdTqdA8ccdXffvmq1eqBdHKybo7qV2jFSOnv27NCfb29vZx9r1Paf8Zu1/mNcdUT7+qZOpzOGUs2mYTuAj2MMv7a2NvVxUBnq7+Au0aP03/uNY67QN82x+UlRxvk2s6cszwXK0PYOJov3k71H1Ww2U6/XO5Asn8sYBgAAAACAo0gYBwAAAIAZVKvV0ubmZtrZ2UnNZnPorojHtba2lt7xjneMtAC01+ulTqeTer1eOnPmTJqfnw8vDB5MCBl1oexR1tbWUq/XG5rgclzDFgMvLi6mRqMx0oLrweNOIvmhUqmM9LvvN2wH02nuBNnpdA4lPoy6y+qwZKWjdg+bxGLqae+sOUtarVaqVqvHSh7rX7fjtJGD53jUXd32G6x/gwvwo271dow/YNe2k+Gk9h/a1z9wUtvCYeOk/u7go2i1WmMbr0bNev29fPnygbZjnGP8lIa/DCDXtMfmJ0EZ59u3ilarlba3t2/4p//yqmazOXLC/7jN6nOBsrW9KaVDCfO5lpeX05kzZ/Z+92ibZgwzXeN4IeckzGq5AAAAAIDiSRgHAAAAgBlWqVTSyspK2traSjs7O2l9fT2081Kv10vz8/PhheL7F472F7MvLCyEFpRWKpVD5X/yySdD5bqRURfQppTS3Nzc0OOOmgAxuIPsJBbmjnOnxn493K/X601tt7pLly4d+HutVhvL7oiDi9aP+v32J25evXp15M9NaTw7zZ4UGxsbY0+0GNyVsl6vj2V3uL5arXbgnut2u2NJzLnV2zE4aU5i/6F9PXzck2p5efnQz9bX18PH63a7qdvtDj1uUcpQfwfHvaP234MefvjhkY8x7bH5SVDG+fatYm5uLlWr1Rv+6d/rKysraX19Pe3s7Ix1Pj6KWXwuUMa2d9T56eLi4l6i9/5yRRnDAAAAAABwFAnjAAAAAFASlUolNRqNAztctVqtrF1iFxcXQzuVHbWQNZqwU9TOtKPuQnnUeR1lx/dhx53EwtxhC4BH8eijjx76WbPZHOtnHMewxd7DyhYxbDe+YbvB7j+349rpcNQ6ddKM65r2DdbVSezIO9jeDCYZjOu4ucrcjvEHxt2mMx0nsf/Qvh50kl+eMSxZbpQE3larlWq12liTBHPNev29fPnyof511nYvnoWx+UlQ1vk2w1UqlbS5uTkTSeOz+Fxg1tvewcTulEZ/Wcew53Cj3JfGMAAAAAAAHEXCOAAAAACUVLVaTUtLS3s7WG1tbaVms3nTxKHITmXjTuQoagH7JBZoj+OYZUz8G5bQ0+12Qy8gGMWwBLtxXedh9XzYDrD7/93GxsZYdjrloHEmQG5sbBxqY4poGzqdzljuD+3YreXatWtDf37u3LmCS8IknLT+Q/t62P5d5E+iYTuaRuvx2traVHcXL0P9HUxwHLZz9LTNwtj8JCjrfJsbG9fLYWbJqM8FytD2DkuAH3V+OmzuNMp9bwwDAAAAAMBRJIwDAAAAwAlRq9XSyspK2traStvb2zfcfS53B6darTZ0B6JZ2DHrRo6783qOWUvSKNKw6725uVloGYYlJY0zuXjwWFtbW4f+zeBuXouLiyPtsNnXaDRG3insJBj3PfbEE09M/DNSGl4P19fXRz6udoyUJlMPKN5J6z+0r7eeYXOISEJku91OvV4vXbhwYRzFCpn1+tvpdA7tcDuLc69ZGJufBGWdb3Nj1Wr1RI67R3kuMOttb7fbnUhC+7AXpIzy0hRjGAAAAAAAjiJhHAAAAABOoGq1mtbX149cENvpdLITlLa2tvYW3faPH00GGFzcOpgMMQ6TWph9K+/yOj8/f+hnRe4w3uv1Di3eHvdC6cGdv4btxjdsd83l5eU0Pz8/0m6x6+vrN3zRw61inElGKR2uo5NM2hg89qj3h3bs1nPUDqAnMdnoVnTS+g/t662nXq8fGnv1k79ztFqtoccq0qzX32H/5uGHHx5bmcZhVsbmJ0XZ5tscz0lM+h/lucCst72TegnGyspKajabey8RaDabaWVlJXQsY5hb17Cd6mfBrJYLAAAAAG5VEsYBAAAA4ARrNBpH7sK2urqadaxqtZq2trbS7u7uTXcwnwWTSkC5lXdyGrbYfdjuh5MybIH3uBdLD17f69evD/03wxZ3dzqdtLi4mE6dOpWWl5fTxsaG5IyAcV7TYfVzkgvsB+vPsB3qRjneuNzK7disO6rNsAj/ZDhJ/Yf29dY17MUHuS+i2tjYGGln1VGVof4WtQvvKGZlbH5SlG2+zfGcxP4m+lygDG3vsJ3Sx/WyjpWVlbS9vZ22t7fDyeIpncw6VSazev5ntVwAAAAAQPEkjAMAAADACVer1VKr1Tr0816vV+ju0P3PHDXBh+k5ajF3UdfzySefPPSzcS8wP+4uhs1m84ZJHGtra2lxcTGdOXMmnTt3rjQJgCfN1atXD/2syF3sUnozMQKO66g2Zxw7GzIbTkr/oX29dQ1L9B421zjK2tpaqlQqU02GLUP9HfbfZy1hfJbG5rzJfHv2nDt3bqT4Xq83c+OA6HOBMrS9RbwIg3Ib9iKva9eujf1zht3zN0oKn9VyAQAAAADFOz3tAgAAAAAAk7e0tJS2trYO7f7XarWG7g41im63m9rtdtre3k6dTseC9ROmUqkcWiDa7XYLSWYctjB1Y2MjnTp1amKfeaNdfdfX19Py8vJNd9XsdrtpbW1t799Vq9VUr9fT4uLi2O+/k+Ds2bNjO9b29vbYjnUcw+qL9o8cw+qLduLkOQn9h/b11lWtVlOtVjuQdNcf7x8nqW59fT1duHBhkkW8qbLW31lLWpy1sfmtwnz71nL16tW0uLiYtre3ZyopM/JcoKxt7yydd6ZvmvXhRn3grJYLAAAAACiehHEAAAAAuEU0m81DiUnj2mF8Y2MjPfHEE6ndbh9YNNxPbJqfn0/VajVVq9U0NzeXVldXb5okxWyam5s7tDD8+vXrhXz2sM9pNBrp4sWLE/vMmy26bbVaaWFhIa2urh578fn+BMBarZYef/xxuwfvM86FzrOw+9UkdvXiZDqqDVlYWCi4JBSh7P2H9vXWtry8fGin8VarlZrN5g3jer1earfbaWtra5LFu6lZr79lSf6dxbH5SWW+XV6jJlL2X84xay+MiDwXmPW2d5Z2cWd2Dbuni6o7586dO/K/zWq5AAAAAIDiSRgHAAAAgCno9XrpzJkzaXt7u7CFv5VKJTUajbSxsXGgHMfdDXBQr9dLa2tr6dKlSwcWIdZqtbS8vJwuXLhw5OLfW3Wh/0kw7NoVtQh12Of0d7mcpkajsXdvtVqtrBcxdDqdND8/n1qtVlpaWppgKW9Ns5BwNQtloByOajumvZM0k1Pm/mMW2rZZKMOt6sKFC4cSxtfW1m6aML62tjYTY7dZqDs3KsNRY+tZm0PN6tj8pDDfPhkajUba2dkJX5NZ21m8L/JcYNbb3qP+m92T2W9Y3Z/ESxSHHfNGbcGslgsAAAAAKN5t0y4AAAAAANyK+gvs+rtFFWXYbm+RRburq6vpzJkzaXV1dW9RcL1eT1tbW2lraystLS1ZMMgtp9FopM3NzbSzs5PW19fT0tLSsRNmlpeX0+XLlydcQqbBTnUc17AddyuVisS7W4D+I0b7Oj2VSuXQyyz6u4ffSKvVOpRofqtSf7kR8+2TZZRrdfXq1ZnbXbzMIm2ve439Hn744UM/m0SfPuyYN3p5wayWCwAAAAAonoRxAAAAAJiiondYqtVqhxa75iwg7Ha76dy5cwcSkyqVSlpfX0+bm5uS2m4Bw+pLUQuohy2Un8Vkm0qlkhqNRmq1Wmlrayvt7u6mra2t1Gw2b7hT8OrqalpbWyuwpCdfZOe7cZPgwXFduXLl0M8uXLgwhZIwLWXqP7SvDEv8brVaR/77TqeTut1uajQakyzWscx6/T1qbD1r496yjM3LxHybQZ1OZyb7u8hzAW0vJ0FR9+Ownbxv1AfMarkAAAAAgOJJGAcAAACAKdre3i78MwcXEQ5b7DdMp9NJ8/PzB5Lcq9Vq2tramonED4oxrL4UtTB12ALu49bfaavVamllZSVtbm6m3d3dtL6+PnRR7fLycuEvkjjJit7palh9tCMdx9HpdIYmo6yurhZfGGbKrPYf2lcajcaha7CxsXHkv2+1WqlWq81E4uOs199ZOEfHUeax+Swy32ZQvy4M2zl42iLPBWa97T2qfNo19hs2Dp9EHRk2N7zRPTar5QIAAAAAiidhHAAAAACmaBqJoZGFfN1uNz3yyCMHFgZWKpW0tbVlYeAtZtji0KIWfp87d+7Qz6ax29fa2lrqdDojHaPRaKStra20srJy6L81m82Rjs0fGFZnJtnuDjv2sDLAoCeeeOLQzxqNhj72hDlJ/Yf2lZRSunDhwqGfHZU0fuXKlaG7kk9DWevvrCUtzsrY/CS4Febbp06dSmtra9MuRqn0xwyzWAcizwVmve21wzjHNXhPTqIeDx7zOLt4z2q5AAAAAIBiSRgHAAAAgCm6evVq4Z85uIDwOIuPFxcXDy2SXV9ft7PjLeaoJLeiFoieP3/+0M+m8dKF1dXVdOnSpbEcq9lsHkrwk0gxPsPat0kmW9lti6hh9/3FixenUBIm6ST1H9pXUkpDE8Bbrdahn7Xb7dTr9dLS0lIRxbqpMtTfYePraYx7b2RWxuYngfk2wzz55JMppdnr76LPBcrQ9g7779o1Bg3Wk3G/VGDY8Yb1uYNmtVwAAAAAQLEkjAMAAADAFPV6vZF3mox85n432wVqY2PjUBkbjUaq1+vjLhozbtgLDoqsB7Va7VDSxLQWb7fb7bEda2VlJTUajYkd/1Y2eF5TKn4XO20lN7O2tnaob67X63Zrm1GjJl6clP5D+0pKb47NBpOT+snh+7VaraF1ZlrKUH+H/fdZS1qcpbF5mZlvc5SNjY2U0uwljEefC5S17e0n7kPf4uLioZ+Nsy4Pu8cWFhZuGjer5QIAAAAAiiVhHAAAAACmbNgufJM0uFjwZglpw3bCHHXX05xkq8uXL6dTp06N9HmMx9bW1qGfFb04dNgC7qJfupDS+F/2MLhLrGSb8Rls43q93th32kpJMiNxq6urh35W9NjgpLrZS3EiRt0J8yT1H9pXUhq+y/j+3e57vV7a2NgY+u+madbr77Ax9rCx+LTNyti8zMy3Gabb7aZut5sqlcrM7TQ/ynOBWW97hyXcepkbgy5cuHDoZ+Ps+4bV3+O8eGdWywUAAAAAFEvCOAAAAABM2ZUrVwr9vP07wtxswWy32z20uLBSqYy86+moyVZMx7C6WvTi0EcfffTQz4btcjQOw+r/fuNcOF6tVg/cj9vb22M79q1uWJ2ZxKL/YccclnAA+y0vLx9KkllfX5+5nST5A+NIyD4p/Yf2lZSGjwX3v/TiypUrqVKpzFyS/6zX32Hna1Jj3lHM0ti8jMy3Ocqs7i6e0mjPBcrY9p60dofRDWunx7kT/eBLGY57f81quQAAAACAYkkYBwAAAIAp6/V66fLly4V8VrfbPZCYdrNdoIYtsh22Y02uSewgxWS12+1D161erxe+gL3RaBz6zPX19Yl81vLycnrssceO/O+bm5tj/bxRE0MYbmlp6dDPxrloum9w8XSlUhn62dDX6XQO7MKb0pttnIX3s20cbf9J6T+0r6T0ZjLjYB3cnwTbarVm8nqVof6urKwc+Hun0xn7PGrUxOJZGpuX0a0y35618pRB/8Ubs5YwPupzgTK0vcP+3SSS2hcXF9P8/PzYj0sxBl9+0H/JwzgM1rdhL1o4yqyWCwAAAAAojoRxAAAAAJgBq6urY9mx8mb27/aX0vCFsPsN26Xy3LlzI5djFnfHO2nGvavcYN1JKaVmsznWzziu1dXVA39vt9tjv396vV5qt9s33A1z3IvG999bZ8+eHeuxb2WVSuVQwtU4F033De60d/HixbF/BidHr9dLjzzyyIGfVSqV9Pjjj0+pRCfTOMYsg8axy+RJ6T+0r/QtLy8f+lmr1dpLHJ/FhKIy1N9h/3bc7cew+V6uWRmbl1GZ5ttzc3MH/p6TBN6vD4PHYLi1tbW9czZqwvisPRcoQ9s72KalNPz3HtXGxkY6f/782I9LMQafpw6+oDOq1+sd6kNzXig2q+UCAAAAAIojYRwAAAAAZsSwRItx27+T6crKSqpUKjf898MW+t8s5maGLVYc9yJmxpPQ1tftdg8t4q7X61Pd0XSwHo47ef3SpUsppZvfl4O7A49if8KI3cbHazBBoNvtjjXhamNj40C7NiwRAvp6vV6an58/VGe2trZG7mM5aPB8jpos0U9YHIeT0n9oX8tvHElEw3ZEvnLlSmq1WkN3IJ8Vs15/h+2IO+6kxXH8vrM0Ni+bMs23BxOXc445ruTnW8X+hOWHH354pGPN4nOBWW97q9XqoUTYwWOOqj8OPGlt2q1kWB89+KKCiMFj5I57Z7VcAAAAAEBxJIwDAAAAwIxot9tpcXFxYsdfXV09sMD1ODssDVvQPeoi2VarJSGuAONcdH3UrpHT9KEPfejA39fW1sa2gLvX66XLly+nRqNx06SGcZ6H/Yv5T9ruidNWqVQOXatxJjL1k5j67BLNUbrdbnrHO95xIEGsWq2mra0tSVQTMEpy2zBra2upUqmM5VqdlP5D+1pe/XHTOBJJK5XKoeS6/nhqlpPhylB/m83mgbnTOHfv7nQ6Q5NJI2PqWRmbl02Z5tuDScE59bDfzszqyyNmyeLi4oE6MGqdn8XnAmVoex9//PFD99Gwncejms1mqtVq7omSG6y34xjf7z9mpVIJ3RuzWi4AAAAAoBgSxgEAAABgBvSTjzY2NiaSVNHpdNLly5f3/n7cReTnzp079LMnn3wyXI7+Yv/19fVDPz/KtWvXTlyCeVE7qo+jLrXb7UMLzNfX18ML18eVOFKr1Q4tUB3XCxf6C8GPswC20+kc2mUt6urVqyml2UwWH7xu49xdbZLH3m9paelAMlu73R7LtdvY2DiQbDX4OSdVUe3YpEyqnt3I2tpaOnfu3KEkoEkli0/idyzivI3zMwbb01GPfenSpWO9cOc4ZqH/GNe51r6WU7/ejGv32aPGnYO7XM6aWa+/lUrl0NxpXPPFcb6sbFbG5vtNo6/PVab59sLCwoG/57Qdm5ubJy7ZfxIWFxcPtT/jOG+z+FygjG3v2traWJLvL1++nLrdroTbCRk2T51UfzC4e/1RL2I5rsGXwkTryKyWCwAAAAAohoRxAAAAAJgBzWYzbW5upkqlktbW1tL8/PxYd4575JFH9v6+tLR07MSNCxcuHPrZxsZGeLHl6upqqtfrqV6vH1pYfNTv2+l00vnz52967EkknQ47xiwfd79arZa63e5IiRrD4ldWVkZK1hpcvDvK772ysnIgOa7dbh94MULE2tpaWltbS61W69iL3x977LGRPjOlg/fVLC6+Hbxu40wWHjzWtWvXxnbsQYNJDYuLiyO1tYP3SK1WG2n3Lu1YcY6qw5NIhO90OmlhYeFQsk6j0UhbW1sTeynKONvbSR1zWPy4r8Hgzo3RRJ/V1dU0Nzd3IPmib3t7O3TMafcf47ye2tfxHbco+3dKHXX8lNKbLywYbM+G/SxqWNswrvZi1utvvV4/0Pa02+20trYWPl5KbyaQdrvdoW1a9LzOyti8bxL94LiVab497H4+boLvpF6MN07TrB+dTifNz88PPZ+jtqGz+lwgpfK1vSm92XaOUle63W5aXV1NS0tLx37RjzFMniLmF/v1d4vvG2V8v7/+NhqNkV66M6vlAgAAAAAKsAsAAAAAFG57e3s3pbSbUtqtVCoHfl6tVvf+W7PZHOlzNjc3dyuVyt7x6vV69jFWVlb24kc5TqvV2k0p7W5vbw89bqvVGhp3o//Wt7Ozc+D37P/pf1bU+vr6WH73QfV6/dBxb/Y73kytVjtwvKWlpd3Nzc1wPdrZ2TlQF1NKuysrKyOVcXd399AxK5XK7s7OzkjHbDQaYzmX/eu9tLR0w3+3v671f59R6sX++nuzz56Wwes2jvtrd/dgW7j/nE7Szs7OgfulWq2GfpfBe2TUtkE7Vqxhfdu4f4fNzc2h56lSqexubm6O7XOOMlif9o83Iobdr7VabaRjDrsO4+hr9tva2jpw/EajkX2M/n3Uv26DbeJx261Z6z/GXUe0r+NpX4swOHYaV/u3tLR04Jjr6+tjKO3w9mccbdB+s1p/9xtsM7e2tkLH6V+n9fX1ofV41Ha46LH5USYx75iEMsy3Bz8jp5zNZnM3pTST536/wfZrUuOS/TY3N4e2x6PMi8ryXGD/8cvW9lar1VB97o9HcvouY5g8R40XJnkf7+4evk6Rz9vfBkXrWFnKBQAAAABMloRxAAAAAJiC/YsYBxft7uzsHEgwq1QquysrK1kLQnd2dg4tPB4lEXVYwlvOYuNms3koQW5nZ+emi6FXVlaGJi9tb2/vbm9v725tbe22Wq1Di6L3H7PVau1ubW3txRxlZ2dn75ibm5t7ZR523Eajsbu+vn6s4+4v6/r6+pELwiuVym6z2dzd3Nzci8lZiDlsYXj/3Ode/8EXF0QTPQZ/92H1qJ/sc9zzeZTBBf659b2/CPw4cfvrRf9369eLXPvP9aws0D7udatUKrutVutAnb1ZvR28d4clovfrxOC9O44E9f3234uVSiUr6WrwZRzRa68dm7z+Odl/Xo5KFt9fr/fXu+P86Z+bZrO5W6/Xjzzvk0pWOO59W6/XD1z3cdyvx61Lg/XzRtehn9w0rjZgsI/ISdjvt/H7+8Fh52JpaemmZZxm/zGJOnIU7evx29ci7Ozs7F33paWlI8vd73/77XgkGXnwBQ0Rg21rq9W6YZkH6+yo53za9fdm+mP7/p+cpPz988x+3LCkwX6bN0ofXuTYfHe32HnHJMzafPtGBtvUG9XB/nOPSSdr5hg2NjwqWXz/2HCwjckdJ25ubu62Wq3dlZWVG44VB/uTXLP4XOA4ytb2VqvVrDJubW3tViqVmybcGsPc2I3urRu9fGHYGGfwWKPOWwdfWpDThk8yKXtWywUAAAAATI6EcQAAAACYgv0J40ctuNvc3By6K1qj0dhttVoHFnHuXyQ5uNi8v8B5VEftfHajBaRbW1t7i6GHLaYd3KGsv+h1/05bgwvQ+7tjRf8cdS5utrj0Zn+OMsoxcxY6H7UwvH/O+jtZ3ShJbmdn59BC6FqtFkoYOmpnp+P+iey+O3jP9JNXb2R9fX0v5rj3ybDdXPvJNtVq9dhl33+uZyWJYtTrdqN6O3i/j/P+jVpfXz+wWL5er9+wvm9tbR1KZojsnqodK85RCWNF/qlWq7vNZnNiC+xHuW+PSjQe9X4d5qiEl3HU0eMYTAa7WXuys7OzFzP4b49Knu//6ScEDZpW/zGJOnIz2tfx1d1R3SgR8mZ/IuOx/v0Raf+PSl4u+pxPq/4e1+CY9zgvrOgnCA4mOd7snFcqld1KpRJ6+VhRY/NpzDsmYVbm2zczbMfpYcfoJxvn7KZchHGMR4r6E5kjztpzgRyz3vZubW0dqvs3a3+3t7f3ynizftEY5sbGOUYY9mfY2D3X4Ms76/X6TV8QsP+endTceVbLBQAAAABMxukEAAAAAEzN0tJSqlQqQ/9bvV5P29vbqd1up2azmdrtdur1emljYyNtbGzc9NiVSiUtLS2lZrM5lrI2m8306KOPpkuXLu19frvdTufOnUuNRiMtLCykubm5dP369b1ydzqdtLS0lNbX14f+nktLS2lubi4tLi6mlFLqdrtpeXl5r/zr6+up0Wgc+fullNLc3NxNy379+vWUUkq9Xu+m/3YSx51UWY+rXq+nj3/84+mxxx5LCwsLqVqtpkajkc6dO5fm5uZSt9tNTz755IF6VavV0sWLF488/8dV5O/ev2cuX76cWq1W6na7aXV1Na2urqZarZbOnz+fKpVK6vV6qdvtpna7vRe3ubmZqtXqsT+rUqkcuLcajUba3t5Oy8vLaWFhIVUqlXThwoV07ty5veMO3hv9z242m6lWq4V+50nJuW4pTe4eyz12rkajkRqNRlpdXU1ra2up3W6n+fn5VK1WU7Va3bsu3W43dTqd1O12936HixcvppWVlZE+Xzt28lQqlVStVtP58+fT/Px8qtfrWW3LqJ+dUt41msQxb3Td948Fcss5an1qtVppcXExLS8v7403VldXD7XV+/vEWq2Wtra2stvoXq93ZHmn2X9Moo4cRfs6e23hccs+armbzWZaXV0daQ6S21akNN72Ytr192b2j3kvXbqU1tbW0traWqrX63tj/X75+u1ZtGz9c9n/HaPlnPTYPKVy358pzd58+yiVSiVtbW2lxx57bK+ci4uLe/dGtVpNnU4ntdvtVK/X0/r6+ghn5dZ27ty5sR5vms8FjmPW295arZa2t7fT2tpaajabqdvt7rW/w9q0/p9arZZ1rxnD5Bls+4b9fsPGtZP43frt6sbGRrp06VJqt9vpzJkzB/rnYeP6Wq2Wms1mqtfrYy/TLJcLAAAAAJiMU7u7u7vTLgQAAAAA3Gp6vV565JFH0oc+9KEjE8aH6S+83tzcTNevX0/dbndvkWN/EW21Wk2Li4sTXdDX6/X2ytFfBHv9+vXU6/X2Fok//PDDN0yIHzze2tpa2t7eTimlND8/n5aWliZW/pNofn5+b1FnSm8mB7RarUP/rn+u91+7SqWS5ubmUrVaTQsLC6nRaBSW4DhJnU4nPfHEE3uLyfu/a7VaTXNzc2lhYeHYdXS/hYWFtLy8fOSC72HnOKW0d55rtVpaWFgoNJGU4+l0OnsJTfuv3f4khUcffXTmEvyBPP0xTKfTSVevXt0bS+1P+F9eXj7yXp+fn0/dbjfNzc3tte37//fs2bN7L+7Z71buP7SvlNms1992u53W19fT1atX9+aH+9uNRx999Mh2Z2NjIy0uLh5ow/pj5f3tWbVaHXl+Oamx+UlUlvl2t9tNrVbr0DXt96NFJBlz0El6LjDrbe+wNm2wfMvLy6UbszE+/TrSbreHPr+dVh2e1XIBAAAAAOMhYRwAAAAA4AQ47sJwAAAA4OTxXAAAAAAAAG5tt027AAAAAAAAAAAAAAAAAAAAAMRIGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAA4Abrd7oG/X79+fUolAQAAAIrmuQAAAAAAANzaJIwDAAAAAJRct9tNvV7vwM86nc50CgMAAAAUynMBAAAAAADg1O7u7u60CwEAAAAAwPH1dw3r9Xrp6tWrqdlsHtpJLKWU6vV6Wl5eTtVqNVUqlZRSStVqtciiAgAAAGPmuQAAAAAAADBIwjgAAAAAQImsra2l5eXlcPzW1laq1WpjLBEAAABQFM8FAAAAAACAYU5PuwAAAAAAAOTr7ww2Nzd30397/fr1lNKbO48BAAAA5ee5AAAAAAAAsJ8dxgEAAAAAAAAAAAAAAAAAAErqtmkXAAAAAAAAAAAAAAAAAAAAgBgJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUhLGAQAAAAAAAAAAAAAAAAAASkrCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUhLGAQAAAAAAAAAAAAAAAAAASkrCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACV1etwHPHXq1LgPOdSdd96ZHbO7u5sd8+qrr2bHREXOXeR3uu22/PcEvPHGG9kxEbfffnt2zOuvvz6Bktwa7rnnnuyYyD3x2muvZcfMusi5e/HFFydQkvGItCXjUFSfcccdd2TH3HvvvdkxTz/9dHbM3XffnR2TUkovvfRSdkyk/Y8oqs+IuO+++7Jjnn/++QmUZLpOn84fAs5yW/7ggw9mxzzzzDPZMdF7KFLvnn322dBn5YrUhSLHx/vddddd2TGRsWWkrkfOSaSfeeGFF7JjUprtMXaR52FWRc5BSsWdh1keRxVVt09avxkV6QenNV+P1I3IGDbybOqVV17Jjon0gS+//HJ2TFSkfJG5YOR3inxOUfOZop5tplTc+O2hhx7KjomMeyPX6P7778+Oee6557JjimoXihS5xyP94LT6zqKeTUXGE5FnRpF6G5lTpxSbV0dExqOR+jSt56PHMevzpkjbFxFpLyNli9SfyOdEnu8+8MAD2TEpxZ5vRupdpA2KmNb9GrnOkTlRUePRyBwveu6LumaR7+4iY4FIG1vUdxMn7fvLqKKe5UQ+J6LIsfKsP4PIVabvwGd5Plnk89Gi2rHIc4JIuzzL84xIPY20ESnFxjdF1e9IHx2pc5FzcNLa5JRmu60rU59RlFkfW0bKF7lHInOnosZvkeeHkecRke/domPlSDsR+Z6hqLXas9zuzfI6kpSKu0aR/jZyH41DUX1GpN0rqq2sVCrZMSnF2olIfZ/l+yrSLhd1f0T69OhnncS1PLmKqqeR7/dSKm5tQ1HfvZVpnlFU31vU2g2KdRKfYZw0s5xHGllvllJszXFEUfV73H2GHcYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJXV62gVIKaW3vvWt2TFPPfVUdsxDDz2UHfP0009nx0SdOnUqO2Z3dzc75o033siOqVQq2TEvvPBCdkzEnXfemR3zyiuvZMfcc8892TEppfTcc89lx5w+nX9rvvbaa9kxL774YnbMLLvrrruyYyLnOqWUnn/++VBcEc6ePTvtIhxb5L6K1NtI3Sjq/rj33ntDcS+99FJ2TKT9jzhz5kx2TK/Xy465//77s2MibeVtt+W/XydS51KKXaOXX345OyZyHubm5rJjnnnmmeyYyHjt2rVr2TER0fs1Mu4oSqQuTMssn8ei5jNRt99+e3bM66+/nh0TuUci1/XBBx/Mjom0R7Puvvvuy46JjGFfffXV7Jii5oIRkXoa+X0i89SUYvfE3XffnR0TGUtG507TUNT9UVTfFDn3kTFiVOSzIuPlyDOwSExkPrOzs5MdM8tjm6hIe3nHHXdkx0TqXKTdi4iMu4oUufeKbE+moajnsJFnC5HnyrP+HUjkni/qvoqMeyNjy8g4MXIOomPyosaWRSmqv43MoSPPNp999tnsmKiino9H5vjTEmknIor63jPSJs/6d2qRaxTp1yPnoahzELl3o9+Bz/L3zEU994700UWVLdKnp1Rcvx6pd5H+dloi7cQsPyco8rukSNsSWWsVGS9Hxi1FzbeK+h4o2mdEnp1FRO69yHmItLGROlfUM5nIPZRSbNwaeT4SKV+Zvs+IiKwLi6xFibRhkXYiOm6JPDuLnIdITGTOH/l9ihq7RdrK6Ngt0vYV9b1ORGSMV9Rz/MjYJnreImOVyHd8RX3nNC0PPPBAdkzkeWKkDkbu+Uh/HVljmlKsrymq7SvqukbmdZF1F0V9HxZV1PdokfsoUhci90RR86bo8/TId2+RfiZyH836WoD9IvdiUTkGRd7zEW95y1uyYyJjpMj5joyPijLrY6rIODHSlhdVvyP3eGS+XtR3W9Fn40W1dZH2P1Lnxs0O4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSOrW7u7s7zgPed9992TGvvPJKdsydd96ZHfPCCy9kx9x+++3ZMZVKJTsmpZSuX7+eHTPmy3eke+65Jzvm9ddfz46JXNfnnnsuOybijjvuCMW9+uqrYy7JcJHyRcp2//33Z8fcdlv+uymeeeaZ7JjIvReppyml9Oyzz2bHRNqTaPlyFdWWDIrU29dee20CJTks0h5Frlf0Gj/44IPZMc8//3x2TFF1MKKoeypSFyJjm6ii2v9ZNst1IaVYPxgpX+Q8nD59Ojsm0geOw7333psdE+kzItcrMgd66aWXsmOi49E33ngjOyZynSPli5y7Xq+XHXPXXXdlx0Tqzyz3mynFzsPLL788gZKMR2Q8FJlnzLpI+xh5PhK5X4uarw86derUVD6XkyEyPor0GWfOnMmOiY7DippHR9qJSD9T1O9TlMg4PqWU7r777uyYyHOBiKLmQOMQ6TPe+ta3Zsc89dRT2TGRe6qoaxwVebYcGU9Eruu0no8ex6w/+4k8L4l85/T0009nx0RExgIPPfRQdsy1a9eyY6JmeS5onnFYpB+NPPuJnPvI56QUu68iz9gjdT3ynCByjSJjvqLa/5P2fUFKsXMXuUaRZ7wRRY5t5ubmsmMi61yKMq0xXqQ9irR7Ra3PmvV2YpbH/5FrFKk/Rd2HkWfRKcXGApE+OvKspKi2vCiROhe5PinF5miRz4rERK7rtPqMyDWLfMdT1Bh21vuMiLe97W3ZMZ/5zGeyY4pap1DUOoAi60JR8/VIe3TS7olon1HU2p1IXY08A5tWnzHL34EXtWahSEXNjyP3VaSPLup576yvtY2IPP+PnO/IGDYyB4rUucgz+bNnz2bHpFTsdye5Tvp34EXdv7O+3q+oPq2o780jIvUnEhP9zqkokXvii77oi7Jj/sf/+B/ZMUXVn+h6plzRtrKo71QjZqHPsMM4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKRO7e7u7o71gKdOZcfcf//92THPPfdcdkykbPfcc08hn5NSSs8//3x2zOnTp7Nj7rvvvuyYp59+Ojsm4o477siOee2117JjfuRHfiQ75ju/8zuzY1JK6c4778yO+fCHP5wd8/f+3t/LjvnYxz6WHfPyyy9nx9x+++3ZMa+//np2TETkHk8ppRdffDE7JtI2jLmJnvrnDLr33nuzYyLn/iSK1N1I+//MM89kx0TavUi/HhG5DyPnrajfZ9bdfffd2TEvvfTSzH4Ob5pWnxG5F1955ZXsmMjYsiiRfjOllF544YXsmEhbHhnzFdWvFzXnPHv2bHZMZB6YUuxejIzlT1obGxlDFTn+PGnne1p9xm235b8fcVplnZTI85WUUnr11VfHXJLxibTlEUWN5SPXKDoWiDzXi4wFIvfRLNe5k+ihhx7Kjon0M5Exx7Ta4QceeCA7JtJOvOUtb8mOicxNIuexqGf/UZG5YGQs8Oyzz2bHROpP5HNmfQw7y8//IyL154033phASQ6L3A8pxeedRYjU78hzjnGIzNeK+k7twQcfzI7Z2dnJjomULaXYPR/5DnyWn+tFxteR7zMidS6qqPbyrrvuyo4p6jxE5nWROVCk/kSejUfNct85rXlG5P4tqj5RrMg8PDJHi4ypiuxri5qfRMZEkfUQJ20uWKlUsmNSSqnX62XHzHKfVqY+g7hIuxyZi3/yk5/MjpllkT6jSJH7d35+Pjvmv/yX/5IdE5nPvPe9782O+cAHPpAdE3nOEf2u7rOf/Wx2TKTeRcbUkb5TnzEekWscPfez/Dw60k5E5uGR+yMyho1co0h7FP2sop4ZzfLan6LmTdHxwyw/4438TtN6dnPS+oyTKFKfIs8jIvdUpP2fdYuLi9kx3/Ed35Ed8+lPfzo75j3veU92TKQPjDyTL+rZVGQ8lFLse8vIeSiqjx73PMMO4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSOj32A57OP+Rzzz2XHXP//fdnx7z00kvZMS+88EJ2TJFef/317JjXXnttAiUZj3vvvTc75sd//MezY/76X//r2TG7u7vZMdG4p59+Ojvm2rVr2TEvv/xydkxEpJ7edlv++ywi5/rFF1/MjomK1O/IuYu0ddNS1Pl/8MEHs2OeeeaZCZTksHvuuScUFzl3kT460t9ev349OyYiUrbImCMSM+vuuuuu7Jjbb789OyYyjorU01deeSU7pqixZErFjb0i1+iOO+6YQEkmI1KfInU90vdGxiB33313dkyRc5PIfVWUSL0tqi3v9XrZMZE6V6S/8Bf+QnbM+vp6dsx9992XHVOUz372s9kxX/mVXxn6rI9+9KPZMZH2P1LvouPWaTh16lR2THTOn+uhhx7Kjok8I3j11VezY4oUqbeRtjzStkTGo5FnGJG+NlIXUoo9j4jUoaLqXeQej8RE5gyROvepT30qOyYqWodOskjbEqlPkfHEnXfemR0TaVvm5uayY1KKjX3PnDmTHRN57l2Uop6vz/L8LKVYPxhR1NzpjTfeyI4pavz5/PPPZ8dEPfDAA9kxkTa1yO9oRlXUPR95nrWzszOBkhxW1LypSJHxf+R5b6Qtjzw/jMw5n3322eyYlGLtZWS8HGljI/dr5HMic9tInYu0ldH+OfKdamRcGFHUmGNaivouKXKNI2OQ6NitqO9/ixIpW+Q7kFkfU0Xa2Eg/GGknIjGRvnOW16wU1Y6nFBsTReoPhxW1LiAyPoquw4i0E5Hno56pxr4jjPZNkTHRl33Zl2XH/Mqv/Ep2TKQ9isybqtVqdkxR35tEnnNHRepCJKZM66ZOmshzpllfXxNRVB5IUWtEImvbot+BRNrYotbXRL7ji4yJIs+ZinoGNsv5SinF2v9ZX4czDZExeZnyXCYp0oZF5iazPKf+2q/92uyY/+//+/9CnxX53vPf/Jt/kx3TbDazYyL9TGRN79LSUnZMJO+ySJFxR2QNXUSk7xy3k/2NCgAAAAAAAAAAAAAAAAAAwAkmYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUqfHfcDXXntt3Icc6qWXXsqOufvuu7NjnnvuueyYt73tbdkxKaX0mc98JhSX68UXXyzkcyLe+c53Zse85z3vyY657bb8dyW8/vrr2TEppbS7u5sd8zu/8zvZMZ/+9KezYyLn4Y033siOiXjggQeyY55++ukJlGS4ubm57Jjr169PoCTldurUqeyYyD31zDPPZMfce++92TEvvPBCdkyRbfKzzz5b2GcVoah+vUiRtiUyJorU1b/8l/9ydsyP//iPZ8f8wi/8QnbMP/gH/yA7ZtbrwpkzZ7JjdnZ2smOi45uyePnllwv5nNtvvz07pqj5TEopvfLKK9kxkTFfUf36HXfckR3z6quvZscU5fM///NDcZG50+d8zudkx3zjN35jdkxkHBWpPxGROveWt7wlO+Yd73hHdkxKKX30ox/Njom05XfddVd2zCw/SxgUaSci5zHyDCzSZ5xEkfMQua7PP/98dkzE/fffnx0T6Z+jIv36LPedkTFRpA2LPEu45557smOKFDl3kXFr5J6YlsgYJHKdI/PwSDsRucaRsqUUa5evXbsW+qxcDz74YHZM5J6PXKNIH/i//tf/yo6JPCNIKaWv+IqvyI6J9BmROUNEpP2PzBnOnj2bHfPZz342O6ZIxq2HRb63ijyTj/S9EZF5YVHP2lKKzbdOnx770oepirSvkTasqO9+UypujlbUc8rIs4TIdY3U7TvvvDM7JqXi7vOivgOZlkgdjPS99913X3ZMpN4W+V1SZIxd1LqXyDWKzNGKaisjz72jc7pIGxsZy0fqQqQ9ipyHyJyzqP5s1hX1XeK0FDX3irRHkflMkWPLouZOJ03k2WakLkTvw8g98c3f/M3ZMbP83fRv//ZvF/I5kb42Ou+OzPGLWhdSVM7DOES+eylqfVxkDhoZ+0fv3cjcKXLuItco8h1NpF+PnO/I88Nv+7Zvy475ki/5kuyYlFL6vM/7vOyYd73rXdkxv/iLv5gdE6k/P/3TP50d8/M///PZMZE6F3ku8NBDD2XHpFRcLsgsr4cYh8h3pZHnEbM8Jo+u3ShqfVxkrBPpByPX6Au+4AuyY65cuZId82f+zJ/Jjvlbf+tvZceklNIv//IvZ8fM8ne5kfod6TcjIuOU6PPnyPwkMv6P3HuzkJ9hh3EAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUhLGAQAAAAAAAAAAAAAAAAAASkrCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASZ3a3d3dHecBb7/99uyYN954Izvm9OnT2TEPPfRQdkyv18uOef3117NjinTnnXdmx7zyyivZMWfPns2O+cQnPpEdc9ddd2XHRK7RqVOnsmNSSun69evZMV/6pV+aHfP7v//72TGkdN9994XiXnrppeyYu+++Ozvm+eefz46JGHNXcGyR++ree+/NjnnhhReyY4pqK2fdAw88kB3z7LPPZsfccccd2TGvvfZadsy06vqs+cqv/MrsmH//7/99dszc3Fx2TKRd+Mmf/MnsmG/91m/NjomKjI8j5yEyvoncE/qM8SiqfU2puPMQmaNF5oKRunDbbfnvSovEvOMd78iO+fCHP5wdk1JKZ86cyY6J/E6R8U1kHBVpWyJjgciYI1JPI5+TUmx+++KLL4Y+qwhl6jNOmsj4I6XYeCL6Wblm/XlbESLteEqxduz+++/PjomMHyJlm2WR+yFatyN9xssvv5wdE613uaZ1jxf1POIkitTBouagr776anZMZD4Tqbf1ej075j//5/+cHbO+vp4dk1JK73nPe0JxuSL9zHPPPTeBkoxHpC2J1NNomxyJm+W2blrzjKLaiaLM8nOzIkXao8j9W1S9jTzHic6hI8/BfuzHfiw75uu//uuzY37pl34pO+Z973tfdszVq1ezYyJ9RuR76SJFvguKrKGIKNOzqci6haLWEhAXWSMSGbtF+uiinitAWUyrz4iMRyPtf1FroIpsW+65557smMjz26KeRxT5bLkI0XnGO9/5zuyYX/3VX82OicyJi1pzHFlLUtQaumide9vb3pYdE1kfU9Rzi2n1GQ8++GB2TOQ8Rp6BFbV2I/JMpkiRez4SU9Raq6eeeio7plKpZMdE1xtE6l1R1yjSTjz99NPZMe9+97uzYz72sY9lxxQpMo8u6tlZpB2OXNdxKOo78JP2fd9J9E3f9E3ZMd/+7d+eHRMZk0e+L4jkGxapqLn3X/yLfzE75l/+y3+ZHfP2t789OybSr0eeJaQ0299bRsbU4x7r2mEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFKnx33AN954Y9yHHOr06fyiX7t2LTvmzjvvzI6Jev311wv5nFOnTmXHfNEXfVF2zAc/+MHsmNtuy3+Hwauvvpodc/vtt2fH7O7uZseklNIP//APZ8f8/u//fnbMW9/61uyY69evZ8dE7okXX3wxO+ahhx7KjnnuueeyYyL1J6XY/fr888+HPusku+uuu7JjXnjhhQmU5LBXXnmlkM+Jmpuby46J3PPPPvtsdkxE5F584IEHsmOK+n2i7rnnnuyYP/7H/3h2zOOPP54dc/bs2eyYyLgw0r7+v//3/7JjIs6cOROKu/vuu7NjPvWpT2XHRMbHd9xxR3ZMmRTVZ0TOY1HzppRi4/9IHx35nYo6D5G25S1veUt2zL/9t/82O+b+++/PjkkpNnd67bXXsmOKmhP/6q/+anZM5Pf58i//8uyY3/iN38iOidbtyNwp0s9E5sQvv/xydsy0RPrESH2KiNy7kXb8/e9/f3ZMSimtrKyE4sj3e7/3e9kxkTYipZT+5//8n9kx//Sf/tPsmMh85hd/8RezYyL9emS8FpmnRsoWmdumVNz8NlK+p59+egIlmYxInx3pZyL9deR5dKQORvv4yD3f6/VCn1WEyBwoUhf+/t//+9kxER//+MdDcZHrGrmPipqvR8Zekd/nne98Z3bMd37nd2bHRL4HSimlb/mWb8mO+cxnPpMdE+lvI/fRtBT1PW7Evffemx1T1H046yLfLUaelUTmdZE++su+7MuyY1qtVnZMSil98Rd/cXbMJz7xieyYn/7pn86O+bqv+7rsmCtXrmTHnDt3LjvmpZdeyo4pUqSuRr5/jIiM16Yl8sy3qD7xvvvuy44pcp1D5NxF2vKixomRe6qodQqR/iw6f4yc74iivnOKXNei1ndExuTR76mKav8jilzvOaqixgZFzWeK/C4p+rw8V6Q+ReZokedmkX490lZGznV0re2XfumXZsdErlHke8HI96uXLl3Kjpn1OUPEU089lR0TqauRZ5tFjVPGIfK9UOScFNW+RuZA0fXekXY5ci/+4T/8h7Njfvd3fzc75tFHH82Oed/73pcdExnDRq5RdBwfqUNFzRl2dnayYyJrU//Un/pT2TEf+9jHsmMifW10LDDL/eAzzzwz7SIcW1H9W+SZzEkUmYtHxqM/+qM/mh3zHd/xHdkxP/ADP5AdExn3Rp73RuZAKcWeb0Y+KzL3jtyvv/Vbv5UdExkP/fk//+ezYz7ykY9kxxT5nWVk/BC5rkWtRb2R8sx0AAAAAAAAAAAAAAAAAAAAOEDCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACV1etoFSCmlO+64IzvmpZdeyo655557smNefPHF7Jiou+66KzvmlVdeyY75/M///OyYt7/97dkx586dy46JOH06vxpHzttP/MRPZMeMEpfrqaeeyo658847s2Mi90SlUsmO6fV62TFnz57Njrl27Vp2TJHuvffe7JgXXnhhAiWZjNdeey075rbb8t918sYbb2THFCXS9qeU0vXr17Njzpw5kx3z3HPPZcecOnUqO+b222/Pjnn22WezYyL31Msvv5wd8/rrr2fHRP3X//pfs2Mi5yFyHxV1v25tbWXHRMafOzs72TFFirSpkZhpufvuu7NjInOGiFdffTU7JtJWRu3u7mbHRNqxSH2KtP+RdiIy7l1cXMyO+ZIv+ZLsmCLrQlFzp8j5/of/8B9mx3z7t397dsxXfdVXZcd84hOfyI6JPH9IKTbfilzXyBivTIrq3yLjicj1mp+fz4757u/+7uyYlIob80VE+rNIG1vU53zBF3xBdkzUF37hF2bHfMM3fMMESnLY933f92XHvP/978+OiYzXIh544IHsmEhfW6RIn1FUuzAOkfFopD5F+vhI21LkHC/y/DYyr4uIzAWff/757Jjv+q7vyo752q/92uyYSF3odrvZMSkV953Y/fffnx0Tee4dGZe/733vy465ePFidkxE9Pp87/d+b3ZMZI4WaR/L1GfMsiKfLURE5kGRZ1ORsXxk/Bb5biLi/Pnz2TEf+chHsmOiY+Uf/MEfzI750R/90eyYSL9+4cKF7Jh/9a/+VXbMH/7Dfzg7JtJHR8ZQkXFuSrH6EJnTRNqFyPd101LUs7dI+x9pX9/61rdmx0TWr6QUG/NFntFF6nqk3hY1vo6Me4vqz1KKjfkia9u+6Iu+KDsm8tys0Whkx7zrXe/KjonMMz7wgQ9kx0S/A4/0NZHxWuQ7p6K+Ix6HotaW3HfffdkxkXYisgaqyOsV6TNmee1eZBxW1Bq6arUailtZWcmOKWptUuT54T/7Z/8sO6aotTEPPvhgdkz0+cMzzzyTHRO5rkWu9y+LyDmJ9PEPPfRQdkykPkWvcaRdjoz53vve92bHROZbRX3PXNQ64P/7f/9vdkxKKT399NPZMZG502/+5m9mx3zP93xPdsw3fuM3Zsd89KMfzY6JjNciz2Qi464iFZXbMi2zvgYhV1H1NqXinjNFvmdeWlrKjnnnO9+ZHbO9vZ0dExG5RtHrGmn/I+P/iMhzj09+8pPZMR//+MezY775m785OybyPVWRImtqIm3QLPSDvoUHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUhLGAQAAAAAAAAAAAAAAAAAASkrCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlNTpcR/wttvyc9Bvv/327JhXX321kJgHHnggO+bZZ5/Njkkpdu52d3ezY06fzr/sq6urhXzOqVOnsmMifuM3fiM75ru/+7tDnxW5RkW54447smNeeeWVQmIirl27lh0TaX9SSun111/PjonU7zvvvDM75oUXXsiOmZbIeSxK5HpF7veXX345OyalWN3Y2dkJfVYRIn1gUe66667smOh9+L3f+73ZMZHyvfbaa9kxRfXRb7zxRnbMhz/84eyYyLjw/vvvz45JKVYf7rnnnuyYyO9UVB89Di+99FJ2TOT+iLbLuSLnPlIvUorVwXvvvTc7pqhxy9zcXHbMz//8z2fHvOtd78qOibRh0fFo5J6IzNEi1zVyHp588snsmKL8x//4H7NjXnzxxdBnRepD9LMYXVHPpi5cuJAdEx1fR+Y0kXldpK7/t//237Jjfu3Xfi07Znt7Ozvmq77qq7JjIuPrP/pH/2h2TEopzc/Ph+JyRerCD/7gD2bHVKvV7Jhv+7Zvy46J9LXR58IRkfnJ888/nx0zy89uxiHSLkeeqUY+5ySKzNGKuq/e9ra3ZcdcunQpOybS/v/qr/5qdsx/+k//KTumSM8991x2TGQ+s7i4mB3zPd/zPdkxkfb1Ix/5SHZMvV7Pjkkppb/0l/5Sdsy3f/u3hz4rV1HPHMsk0s9E6mDkOVPkuXJKsecEkbnJgw8+mB3zzDPPZMdEnpV87ud+bnbMz/3cz2XHRM7bN3zDN2THpBQrX1Ei34dFnq9Enm1G7vHI3GTWRdqTyD0+Lffdd192TKQtj4yPIvWpyDoY6TPe+c53ZsdE7vkv/MIvzI755Cc/mR1z5syZ7JhIP/Pud787OyZyfVJK6Uu/9EuzYyLf0UTa2KLWKUT66B/7sR/LjtnY2MiO+b3f+73smKhIHYq0dZH1niddZNwbma9F+oy3vvWt2TEppfTUU09lx0TqYK/Xy44pSmRMFWmPImObD33oQ9kxKaX09re/PTsmUlcj31P93b/7d7NjPvvZz2bHRPqziEi7EBUZ30TGx5G6EH3WMQ1FzTMi3wtF6tOsn/sf+ZEfyY6JfM8QWZ8VuUaRMVXkuUfke+nf+Z3fyY5JKTaW/5mf+ZnsmK/7uq8r5HN++Id/ODsm0q8X9Uz+oYceCsVFvheMrPeMjPEi99G0FJUDUZQi1zlHvtf/iq/4iuyYSD/z3ve+Nzvmf//v/50dU1RdKGpsk1LsWWCkn4nMOYv6Di1St4talxrNz4i0/5F6V1TfNG6zm50FAAAAAAAAAAAAAAAAAADADUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkJIwDAAAAAAAAAAAAAAAAAACUlIRxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKROj/uAb7zxRnbMSy+9NO5iDPXaa69lx7z66qvZMQ888EB2TEqx8t15553ZMXfccUd2zOd//udnx5w6dSo75sUXX8yOOX06vxr/zM/8THZMkSJ16Nlnn82Oef7557NjIl544YVCPuehhx7Kjnn66adDnxWp37u7u9kxvV4vOyZyj590kXMSaf+L9Morr0y7CGN13333ZcdE2r2i2qPl5eVQ3Hvf+97smNtvvz075vXXXy/kcyJ2dnayYz7zmc9kx0T6jMg4JaXY+DjSR0fGRPfee292TJm8/PLLhXxOpJ+J1Isi2/5Ie1lUHVxaWsqO+bIv+7LsmKJExogpxepdpC2PzFNvuy3/3XRFja8jzx82NzezY+6+++7smJSKaxsi5Svq2c04RJ6VRM5jUfOMf/fv/l12zF/9q381OyallP7QH/pD2TGR8/3rv/7r2TF/7s/9ueyYe+65JzsmMub7F//iX2THFHlP/ZW/8leyY97znvdkxzz66KPZMZG5ybd8y7dkx7z//e/Pjvnd3/3d7JhIvxmppynN/nOLk2yWz/2DDz6YHfPMM8+EPisy/o8+i8115syZ7Jgnn3wyOybSB37iE5/Ijvnqr/7q7JjoM4xZ9u53vzs75kd+5EeyYyLt//d///dnx0Ta/4WFheyYlGb7O7EyzTMi7r///uyYor7PjrQT0bluUc+wo31arsj88V//63+dHRO5P778y788O+bXfu3XsmNSis2JI89/Iuf7Ax/4QHbMXXfdlR3z6U9/OjsmIlK2yFgtpeLWD0S+FyzqHh+Hos5jpM+IiNy70Tr4j/7RP8qO+eEf/uHQZ+WKPPeOiDz3jjxXjvTP0e8zInXok5/8ZHbMT/3UT2XH/OIv/mJ2zKc+9ansmB/6oR/Kjvmar/ma7Jif+ImfyI75+q//+uyYlIob40XGrWVaNxVpLyPnMXL/Ru/5XE899VQoLnLuIu1lRKQORvqZyHqIyOdE2rDIeuOUYuWLjIne9773ZcdcuXIlOyYi8iwhstYqIvp9RqR8kboQeV5bVLswDpF5RlHflVYqleyYz372s9kxRYqsE3nssccmUJLDIs+wI235z/7sz2bHFDl3j4yJfuVXfiU7JvJd+5/9s382O+aDH/xgdkxkTB4ZQ0XGhbN+j0cU9RxmHCLXrKg1UEXNJaMi3zM//vjj2TGRZ/lXr17NjpllkbFNZLyXUuwZ+3PPPRf6rFyRsn3O53xOdszHPvax7JiVlZXsmIiiznVKsfy8srLDOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpCSMAwAAAAAAAAAAAAAAAAAAlJSEcQAAAAAAAAAAAAAAAAAAgJKSMA4AAAAAAAAAAAAAAAAAAFBSEsYBAAAAAAAAAAAAAAAAAABKSsI4AAAAAAAAAAAAAAAAAABASUkYBwAAAAAAAAAAAAAAAAAAKCkJ4wAAAAAAAAAAAAAAAAAAACUlYRwAAAAAAAAAAAAAAAAAAKCkTk+7ACmldPvtt2fHnDp1qpDPeemllwqJSSn2O+3u7mbHfMEXfEF2zFvf+tbsmFdeeSU75u67786O+dSnPpUd85M/+ZPZMZFzHfXGG29kxzzwwAPZMc8++2x2zJ133pkdc/p0flNz223577N4+umns2Puv//+7JiUUnr11VezY15++eXsmDNnzmTHPPPMM9kx03LXXXdlx0TOY+R6RdqjaPsfEbmvIvdvJCZyXZ977rnsmEg7EWlfI/3zI488kh2TUkp33HFHKC5XZEz02muvZcfs7Oxkx3zDN3xDdkzkvEX6jKiixniRPuOpp57KjuGw++67Lzsm0p+9+OKL2TEpxdrLe++9Nzsm8jstLi5mx/zjf/yPs2MifXTkfH/1V391dky0z3j44YezYyL94G//9m9nx9xzzz3ZMQ899FB2zD//5/88O+Y3f/M3s2Mon8jziLNnz2bHvP7669kxkbnJRz7ykeyYyLOflFL6vM/7vOyYf/JP/kl2zHd913dlx0RExr0RkflZRKRPTymln/3Zn82O+e///b9nxzz66KPZMZGxckTkGkXu8YjoGC8i8hwsMl8vam47DpH7KvL7RdqjSJ8ReS4YbVsizwkiIvX2b/yNv5Ed8/a3vz07JjJ3/77v+77smEh7FG1fI79TZE78/PPPZ8dUq9XsmP/zf/5Pdkzk2dSnP/3p7JgPfvCD2TFRkX49InK/Rp4llEmkrSzqe4bI+Chatsh3BkUp6tltrVbLjvk7f+fvZMf82q/9WnZMVKR/ijybinyv/yf/5J/MjvmFX/iF7JiIyPdukbayqHlqVGQswGFFzamLXCsTaVsiY51IHfziL/7i7Jhut5sd8zmf8znZMZF1U5GYX/qlX8qOSSmlj370o9kxkT6t1+tlx0TU6/XsmHe9613ZMZ/4xCeyY1ZWVrJjovd45Dl85PlIpF0o6rneOBT1fKWocW9k/WJ03BJZjxJZCxY5d5FnvpHvVyMi3zFH5iaRsX9U5Br98i//cnZMpG2J1O9I3S5Kkd9nROpQUetcpiXy3URR1yxSbyuVSnZMdLwXmYt/z/d8T3bMZz7zmeyYyLPlJ554IjumqLYl8hww2mdEvkeLfGcQ+R7tN37jN7JjilqzXtRYOfr9Y2RMVNRzpsj3YdNS1Hd3kescqetFPkv8D//hP2THXL16tZCYotqJoupPZBwfeRaRUux5RGR+GzkPRcV80zd9U3ZMtC0v6nMidSjSD0b6piLnTkexwzgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAAAAAAAAoKQkjAMAAAAAAAAAAAAAAAAAAJSUhHEAAAAAAAAAAAAAAAAAAICSkjAOAAAAAAAAAAAAAAAAAABQUhLGAQAAAAAAAAAAAAAAAAAASkrCOAAAAAAAAAAAAAAAAAAAQElJGAcAAAAAAAAAAAAAAAAAACgpCeMAAAAAAAAAAAAAAAAAAAAlJWEcAAAAAAAAAAAAAAAAAACgpE6P+4CVSiU75tlnn82OueOOO7JjTp06lR1TpN3d3eyYyHm4fPlydkzkup4+nV+9InXh67/+6wv5nLvvvjs7JqWU3njjjeyY119/PTvm+eefz46JiPw+L7zwQnbMPffckx0TEamnKaX03HPPjbkkw+3s7GTH3HnnnRMoyWS8+uqr2TF33XVXdszLL7+cHfPSSy9lxxQp0k5E7t9er5cdc++992bHRNqJ++67Lzsm0lb+tb/217JjGo1GdkxKKb322mvZMdF2rIjPWVhYyI75zd/8zeyYokTHkrfdlv+Opsg9/tRTT2XHlElRbUtEpK2MtGFRkfa/qLHO7//+72fHRMYP999/f3bMRz/60eyYSJ2LzM9Sis0fb7/99uyYyNjyxRdfzI6JiIwLI215pP5E5pwpxc73K6+8kh0TGXOcdNeuXcuOiTwnmPV5xic/+cnsmG/+5m/Ojom0YRFFjZWLeuZY5Hz/+vXrhXxOZJwSGV9H+qZI/Ym0r5HfJ6XYc+GixniR8dq0ROpg5DlTZBwWmRfOzc1lxxR1v6cUa8f+5t/8m9kxH/jAB7JjInXh+7//+7Njfuqnfio7JnJPPfTQQ9kxKaX09NNPZ8dEnrc98MAD2TE/8AM/kB3z67/+69kxkXnqH/tjfyw75t3vfnd2TPQ5x2/91m9lx0TmW5HyRfqzMomM/yNz0EgfX+S8MNJ3FqWouUmn0ykkpkiRvvNrvuZrsmP+9t/+29kxkecy73//+7NjInPBou69aN2O/E6Rse5JfzZV1Lg8ch8WJfpM5kd/9EcLiTlpilpDEb2uRd3zkTbs677u67JjfuZnfiY7JnKNvvVbvzU7JvLdVvTZVKQNKupZ4Cy3j9NS1Lg3Mg6LPsOIKOo7mkh7FKm3f+SP/JHsmG/5lm/JjomsbYh+bxJ5JvrhD384OyYy34qMe8+ePZsd85nPfCY75iS2lZF6F3mOWlT7OA6z/N1L5N6NiMy1Uop9TxhZu/1DP/RD2TGRsXJkfX1R6+4i84zI89Coz/3cz82OibQTf+JP/InsmA9+8IPZMUWJfKcTXTdVVD5MpD2JrBGdlqKeyUfGE5ExVeS7pGju15/+0386O+bnfu7nsmMiv1NR85mi7sMix2GRsUBk7BUZE0XWUFSr1eyYbrebHVPU+HPW5yZlmjPsZ4dxAAAAAAAAAAAAAAAAAACAkpIwDgAAAAAAAAAAAAAAAAAAUFISxgEAAAAAAAAAAAAAAAAAAEpKwjgAAAAAAAAAAAAAAAAAAEBJSRgHAAAAAAAAAAAAAAAAAAAoKQnjAAAAAAAAAAAAAAAAAAAAJSVhHAAAAAAAAAAAAADg/2fvzoMjTe/6gD/aua/dHo2NwQtU3GPCUQQXPbsxxpxeyYA5Eow0iwlXyqxkE8JhXFK2gjEhdhaJgMEOR2sgKUIce0cqMIdjKPVyxqmUdyRXBUjARm1jzGF7R9O7c5/KH1stdPTMzvOb1tv9aj6fKpdntPPt99Xbz/s8z/u+/esHAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEnt7PYLtlqt7Mzhw4ezM2fOnMnODA4OZmfuuSe/pv7GjRvZmZRS2rFjR3bmJS95SXbm8z//87MzAwMD2ZmrV69mZ377t387O7OwsJCdOXDgQHYm8v6klNIzzzxT2LZyRdr3yspKdiby+1y8eDE7s2/fvuxMpM8qUlH9Y69E+stIJtIGr1+/np0p0t69e7MzkfPq4MGD2ZnLly9nZyLOnz+fndm5M3/q8xM/8RPZmSJF+uXIe/T+978/O7O0tJSdiYj0/5cuXcrORI51SikdOnQoO9Pv41MvRN6z7Wb37t2hXGQuX1Rf/qEPfSg7s7y8nJ2J9BORa613vetd2Zlv+ZZvyc6klFKz2czORPqxyPwhYv/+/dmZCxcuZGd27dqVnTl79mx2JjJXSynW10Xma0W9r70SOf6R8frpp5/OzkTs2bMnOxPtxyPXTleuXAltqwhFzaki/URE9Do1co9ucnIytK1ckWu0yHj2sY99rJDtRETf136/b8F6Rb1fkblyVOQ641WvelV25qd+6qeyM5H73n/8x3+cnYncM4r0Lffee292JjpPiVx3Rtr3y172suxM5F7gG97whuzMi1/84uzMH/7hH2Znjhw5kp35oR/6oexMSil9+MMfzs4U1W9F+pJeicxbIvcjItuJKPK5SeQarah7gZHjEOnLX/GKV2Rn3vnOd2ZnPvjBD2ZnpqamsjMppfQVX/EV2Zmf+ZmfCW0r1w//8A9nZyLPQCIi7ScyPkfum0Vdu3YtOxPp68o0ZhQ5L88VuQ8bEb0/ut3vW96Ofn6mEznfU4qNt5HroB/7sR/LzoyNjWVnIvdr/9W/+lfZmV/5lV/JzkREP+cY6csjbWi7PwMpakyM9MuRe/+R/qioZy1RkblYUc9NRkdHszPf+Z3fmZ2J/D6RZ7IpxdrDO97xjuxMUe/rJz/5yexMP19DVyqVUC7yvC5yHCL3DyP3bsokMo6eO3duC/Zks0i7iMwRUypublDUZ3oj53z0Gq0I0XsYkXls5HMhkXs5999/f3amn+ccRX0eIioy74i0n6I+P9AN0eu8XJFjH7lmiHzm5Wu/9muzMynF5jt/9Ed/lJ0pqiYr0rf08zV19DPUkf4y8kwsck78+q//enYm8rmLf/Nv/k12JvL8qMjPOUa2FRGZe0U+s9Jtvd8DAAAAAAAAAAAAAAAAAAAAQhSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFI7e70DKaV09uzZ7MzBgwezM+fOncvOXLlyJTtTpGvXrmVnBgYGsjP33JP/3QIrKyvZmdnZ2exMxPnz5wvZTkopfcZnfEZ25o1vfGN25p/9s3+WnfnQhz6UnfnBH/zB7Mxf/uVfZmciLl68mJ3ZtWtXaFtFnRNnzpzJzuzevTs70yuR43j16tUt2JPeifTJKRV3HCJj586dfTG96Og1r3lNdqZarWZnou9rUcfut37rt7Izx48fz87s2LEjOxMR6f/37NmTnYnOC1utViiX69ChQ9mZyDy8V27cuNHrXeiqIuejRYmM63/913+dnfmZn/mZ7MxP/uRPZmcibe6f/JN/kp35vd/7vexMSim97GUvy878zd/8TXbm3nvvzc5E5ikXLlzIzkQUNYeKXKunFLs+iZx7169fz86UyaVLl7IzkXE+0k/s3bu3kMzly5ezMynF2kakDUYUNRco6p5j5H7R3/3d32VnUopdn3zt135tdiZy3yOyb5HjEOlfI79PZJyJjLUpxc7X7TgHvVP79u3LzkSuQSPvc6Qvj/b/EZVKJTvzS7/0S9mZyPX7Bz7wgexM5P56pJ+IeOaZZ7IzkflDSrE2NDo6mp35+Z//+exMpM397M/+bHbmy7/8y7MzL3jBC7IzkedA73jHO7IzKcXaaqQNRebhZRKZtxR17y1yH7bIe2393DYic6rIffzIfYJv//Zvz84UdX2WUkpf8iVfkp158YtfnJ2Zn5/PzrznPe/JzkRE+spIn1zkHK8o0Xtn21mkL4/MlSPXrZG+JdpuI8ehqHudBw4cyM5ExtvI8e736/0XvvCF2Zn//t//e3bm5S9/eXYm0la/4zu+Izvzrne9KzsTaT/79+/PzkTuc6QU68sj86jIvdeirte7IXJMIvPrSP9/+PDh7EzkWUuR71fk+n15eXkL9mSz7/u+78vOvPWtb83ORO6VR9pPdL4X+XzNb/7mb2ZnIvOHyNwrMs5EzvGi5lBFff4ppdj41M/3H7ohMk+MjKORzx/3e61FUSLzt0gmMnZG53z9LPLs7YEHHsjOfOpTn8rONJvN7Ez0M8fbTeTaOzK/iTx7i8wFeqWo+/+ROV9R8/+v+7qvC+Uiv9NHPvKRQrYTUVT/H+mTI+dhtPYrMleJ9Ee///u/n515yUtekp2JvK//4l/8i+zMX/3VX2Vn3v3ud2dnop9tiPR1Rc1bI58/7DYrjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASe3s9gvu378/O3PhwoXszLlz57Iz29HKykp2ZmBgYAv2ZLPIvl28eLGQ7bzyla/Mznzrt35rdiallL77u787O3Pt2rXszI4dO7IzR48ezc68973vzc586EMfys5EPP/5z8/OPP3006FtXb58OTuza9eu0LZy3bhxo5DtdENR+7pzZ/5wFzkPIyJ9WErF7d8LXvCC7MzZs2ezM5GxKXIMfuAHfiA7c889+d+vc/369exMSrG+/M1vfnN25md+5meyMwcPHszORM7xyLywqPnnp3/6p2dnUkppeXk5O3PlypXsTOTc2+727t2bnbl69Wp2JtqX54qOm0XNQSLHLrJvb3vb27IzET/90z9dyHY+8zM/M5R73etel535sR/7sezMM888k50h3i9ExrSi3qNIn9orkfn/7t27szOR+USkbbRarexMZA6bUmysiczl9+3bl52JzP8vXbqUnYncm4qI3o+I+OzP/uzsTLVa3YI96Y4f/dEfzc5E5tdF9SXRfjyyfxGR+VpkXtgrRZ3zRY3XkTYY6ZNTSumNb3xjdibSbh9//PHszPd///dnZ4ocb3NF+vE9e/aEtvV93/d92Znv/d7vzc5E5hyR4z0yMpKd+aM/+qPszPvf//7szNvf/vbsTFH3H1KK9f+R/uTMmTPZmV7p5/Etck5F7kUX9VwiKnIPOzIXiJwfkfeoqOMduReRUkqvf/3rszORfiwyF4jM/yMi15yHDh3KzkSeS0dFzqOiPrsT2bdeKeo6KtI2Iv1R5NyNzpWjz1hzRa6dIpnI+RFpC0U9K/3qr/7q7ExKKf2H//AfsjNf8iVfkp2JnBPf9V3flZ05efJkdqao96jIa4aIyPwmcp1R1P2eboi8ZwcOHMjOnD9/PjsTmetEfp/ofc5Ie4rcoyvqvPr8z//87ExR1xmRuU10TI/cB4vcz3rHO96RnYkcu6LuH0bmKUX2lZF+q6jP+xT1rKUbIscx8lmyyDV1ZLyOjDP9/vmVyPytKJF7gQ8++GB2JvK+fvM3f3N2JqWUXvrSl2ZnIs/ABwcHszN/93d/l52JnHuR+0yRsSnSl0TGppRi89aiRNp3r0Q+xxOZ9/bzNWj0XuJf//VfZ2cinxEv6lo3ci4W9dn/SH8U7SM+93M/Nzvznve8Jztz//33Z2ci1zP/9//+3+zMb/3Wb2Vnipor93v/Grkm7oeaDiuMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpqZ7df8MKFC9mZffv2ZWcuXryYnel3u3btys584hOfyM5cu3YtOzMwMJCd+Ymf+InszIc+9KHszJve9KbszI/8yI9kZ6Iixy5iZWUlOxM5j17xildkZ37+538+O3PkyJHszKc+9anszD33FPe9GVevXs3ORPYvco6XyeHDh7MzZ86c2YI9KZ+DBw9mZyLjTFF+7/d+Lztz7Nix7Ezk3I2M6Sml9Eu/9EvZmR//8R8PbWs7KWqs/fu///tCthO13efUO3bsyM5Ezt/r169nZ/pd5Dh86Zd+aXbma77ma7Izb37zm7MzEZH56Mc+9rHszOzsbHYmMo9PKaV/+2//bXYm0hYi40xkHNy7d292JtKHFTVXjvYlkf2LHO/I2Hnp0qXsTK/083VUUfOW5z//+aFcUfP/c+fOZWd27uz6bcyOIudvZB4WOaci90pSSunJJ5/MzkTbUBE++tGPFrKdSF8SGWujIv3WoUOHsjNnz57NzkSvictiz5492ZnIXCfimWeeyc588IMfDG3rcz/3c7MzkXt0lUolOxO5zqhWq9mZr/u6r8vORETmD9H+KHL+3rhxIzsTeRb0G7/xG9mZ3/zN38zOLC8vZ2civ09R8/iUYv3WlStXsjORa7TI/Z5eicxHI+N1ZMyIzEf7/blJpL1Hjndk/h/ZTqSvjIjMYYeGhkLb+qzP+qzszO/+7u9mZ/7zf/7P2Zno/bYiRObXEdEx4/z589mZ3bt3Z2ci48x2vzcVEenDImNvZDtFPmt5wQtekJ2J3AMr6jhE5omRz+p967d+a3bmjW98Y3YmpZRqtVp25id/8iezM29/+9uzMx//+MezMxFF9WGRz4REnxcX9Ww6Mq4XdS+5Gy5fvpydidzji7TByL5FRN+vyLw80gYj+/e6170uO/MN3/AN2ZnI9X5Rn6GIzgUic5Xp6enszKtf/erszLve9a7szC/+4i9mZyLuvffe7Eykf42OZ5G5SuTaJKLI5zp3qp+viSL9a+RaMvp+veQlL8nOfNmXfVl2JvLZ5sh4Njw8nJ25//77szP/6B/9o+xMZP5w4MCB7ExKsX4scr8kcl8v0ube/e53Z2ci95k+7dM+LTvz9NNPZ2eK7LMi72tkzhG5BuqVos6PyLVJ5Hl2RKSuKKXYORI550+dOpWdiYiMM5H2E7k2ifQTkfseKaV08uTJ7EzkWvALvuALsjN/8zd/k535+q//+uxM5Bn4hz/84exM5N549BlapF+O9P+RzzkW9RmhW7HCOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkdnb7BXft2pWduXjxYrd3o5R27NiRnfm8z/u8QrZzzz353y3whje8ITtz7ty57MxXfMVXZGci7fTGjRvZmaidO/NPzYGBgezM3r17C9nOyspKduapp57KzkQU+b5G9Pv+3al9+/ZlZ86cObMFe9IdkXPq0qVLoW1F+ok9e/ZkZyL9ckTk93nZy162BXuyWWTfPvjBD4a29au/+qvZmcj+Xbt2LTtTlMgYff78+S3Yk+4ZHBzMziwvL2dnImN0mUTa+uXLl7dgT8rnq77qq7Iz733ve7MzkXHwT/7kT7Izv/Ebv5GdibSFyHZe97rXZWfq9Xp2JqVYX/793//92Zmf/dmfzc4888wz2ZnInCNynVHU9cyBAweyMynFxrSDBw9mZ4qa4/XKlStXer0LNxUZzyI+8YlPhHKRvjzyO0WudS9cuJCdiYj0E4cOHcrORO6HRt6flFK6evVqKFeEyHj28Y9/PDuze/fu7EzkuEXaT+QaKKVYXxcZZyLXM/1872ajyHsWmVtG2lNR9wWffPLJUO5zP/dzszOR9vTKV74yOxOZv0XGs8j7GtnO9evXszPRviXS7iL38l/60pdmZyJz2MizrYjIc7fIsY60hajI/m335xkRkTYYGePvvffe7EyR95UjxyHSniL7V1T/X5R//I//cXbm137t10Lbiryv//E//sfsTGRcj4yDkfYT2bfIs7rI/DN6/Ri5Vo2cR5G+LnK8eyXShxXVLxc1nyjy/lz0PliuyJyvqGdb3/Ed35GdifTJkXvRKcWenZw4cSI7ExmbIvfyI/dXIu3nvvvuy85E+vHIvkW3FTknIv1/P38eohuKurcQEZnrRBV1LzYy///BH/zB7Mzznve87Exk3yLHINJ+om0u0r4j/f/LX/7y7MzHPvax7Mwv/uIvZmciIs/nI3OO6Dke6cv7+Xlvr5Tpmuh2RM7dH//xHw9ta3JyMjsTGWeKuk8cOXaRfrmoWobofeXIOVHUdd34+Hh25t3vfnd25s///M+zM5HPpUZErzMibTXyWYDIOHj27NnsTK8UVSsVOSaRthE53xcXF7MzKcXuq77xjW/MzkTu5fTzZw6K6l9/6qd+KjuTUqwNRWo1IyLPzX/5l3+5kEzksyRFPi8u6rN3kfbdD/ULVhgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlNTObr/g1atXszMHDx7Mzly+fDk7E9m3vXv3ZmeuX7+enUkppUuXLmVn/vRP/zQ702q1sjOR92jfvn3Zmbe+9a3ZmU996lPZmYGBgezMjh07sjMppXTt2rXszD335H+XQ6TdRY5D5PeJ2LVrV3Ymcr7u3BnrBs+cOZOdibShyP5F+6BeuHjxYnbmvvvuy848/fTT2ZmIfu9blpeXszORc/FFL3pRdubnf/7nszORcz4i8r5+27d9W2hbf/7nfx7K5Yr8TpFxfffu3dmZZ555JjsTEWnbhw4dCm0rcu5FjnckE5lT90pkXw8cOJCdOX/+fHam3/3AD/xAdibSnm7cuJGd+fu///vsTOS6bs+ePdmZSJt7/PHHszM/93M/l51JKTZPHBwczM587/d+b3bmsccey85UKpXsTOTaNjKXjGwn2pfce++92Zmixs7IuN4rkX29cuVKdiYypzp37lx2pkiRe1MRkXM+4sKFC9mZlZWV7MwnP/nJ7EzEZ37mZ4ZyL3zhC7MzkXEwMt5+4AMfyM4873nPy8586EMfys5E2kIks3///uxMSrF+K3KPN3I9w2aRuXJR162vfe1rszMppfT//t//y8684hWvyM4cPnw4OxO5Fxi5Rxc5DyP79jmf8znZmZe85CXZmZRSWlpays6Mj49nZ4qaE0WubSNz+cgznUi/EBU5jyLP3iJ90NmzZ7MzvRJ59hKZG0RE5qOR+wqR+V5Kxd2DLOoZZlHPJiLXZz/0Qz+UnYk+p3rf+96XnfmDP/iD7Exk/yJtNXLPMSJyPkTu6RV5/6GoZ9NlegYemRtE5i2R+5YRkX2LfA6g30X6ichc4Ed/9EezM294wxuyM5H5w9d//ddnZ1JK6dSpU9mZSP8fuV9b1HPBSL8Q+VzSdhQZ1yPHu1civ1/k+WpR+v3zB5F7OQ899FB25ujRo9mZyJgRua6LjGeR7UTve0eu64q6l/+bv/mb2Zmi7hkVNfeKnuORe91FKeqZZTdEjmOkPRV13zJy3+OjH/1oaFt/9md/lp35jM/4jOzMkSNHsjOROWzk+jiSicw53v/+92dn/sf/+B/ZmZRin7X9lm/5luzMG9/4xuxMpG95y1vekp35xm/8xuxMROTef/SzJ5FjF7l2inyuKHoftRci+1rU/dGinsm+853vzM6klNKXf/mXZ2ciz9vvv//+7MzU1FR25nd+53eyM5E5eeT+yld+5VdmZ8bGxrIzKaX0L//lv8zORMbOyO/0kz/5k9mZ//bf/lt25s1vfnN2JnLdFHmGFjnHU4rNWyPjU+S6rqhnxLdSnrtjAAAAAAAAAAAAAAAAAAAArKNgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJIaWFlZWenmC+7bty87c+nSpezMgQMHsjPnz5/PzhRpcHAwO7O8vJyd+aZv+qbszHve857szMDAQHYm0hbuuSf/ew8izX737t3ZmZRix+HGjRvZmchxuHjxYnZmeHg4O/P+978/OxOxc+fO7My1a9dC29q/f3925sKFC6Ft5Yr0w0Xt20aR86Oo7UTe48g4Ezl3U4r1E0X5qq/6quzM7//+72dnIn359evXszOvfe1rszP/9b/+1+xM1OHDh7MzZ86cyc7s2LEjO3Pw4MHszNNPP52ded7znpedeeqpp7IzPKvLlw+3ragxoyh79+7Nzrz0pS8Nbev3fu/3sjOR8emP//iPszORMSMyBkbaz8tf/vLszNvf/vbszBd/8RdnZ1JK6cqVK9mZyHH4wz/8w+xM5JqhqPEs4t57783OPPPMM1uwJ90T6YOuXr2anYleb92pSFu/7777sjORect2tGvXruxMZJ5Y1Dm/Z8+e7Mzly5ezM5F7GL/2a7+WnUkppW/8xm/MzkTmfJFz701velN25i1veUt2ZjuKnEeReVTknlFknIncp+yGoq4ztuM4E+kvI3ODyP2IyFy5qHvL3/7t356d+eVf/uXsTORZS0opffd3f3d25td//dezM0XdyylqLv+Zn/mZ2ZnTp09nZ3rVV96uyPkauV9bpntTRR2TiMjvU+Sxj9ybisx1ipr/Rxw9ejQ78+STT2Znotfu//Sf/tPszEc/+tHQtopQ1OdcetWH3a5+fqYa+bxGUefrRpE5yNmzZ7MzkXEmch8nOrcsSmQuH+n/I8chcq/8t37rt7IzH/7wh7Mzr3zlK7Mzf/M3f5OdSSnW9xU1FyhK5F5JROSzh3/7t38b2lbkPIq0hcg1fkSZrjOK0u/XDJG5QWTMiMwTP/GJT2RnIm09ch5GrjkjbSF6nVHUPcdI5jWveU125nd/93ezM5FnspH3NXLPOjovjMzL+/kZSJnGjMg5FVHUZ96LvMaLHO/Xve512ZlWq5WdiTw3f+KJJ7Izkf4oMtZGz6lI3/c1X/M12Zn3vve92ZnIORG5xn/1q1+dnWk0GtmZyH2c6Dw3UiMWeXZS1JyoV9ep/XydUZQi6zMiz3K/7du+LTsT6WM/8IEPZGd+6Zd+KTvzd3/3d9mZH/zBH8zORPrxlFJ685vfnJ2J3GN5/etfn52JPGv/ru/6ruxMUfOoIp+NFrWtyDOQyL51+zPHVhgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlNTObr/gpUuXuv2SHV29erWQ7dxzT35N/Y0bN0LbWl5eDuVy/fZv/3Z25vHHH8/OHD9+PDuzd+/e7Mz169ezMxEDAwOhXOScKOo4/K//9b8KyUQcOHAgO7OyspKduXbtWnYmpVh72LNnT3bm8uXL2ZmLFy9mZ9gs0v/v3Jk/rEbO95RibTfSH33hF35hdub3f//3szOR3ydyvM+cOZOdec973pOdiYr0fZHfKSIyv3n66ae3YE82O336dHZm37592Zlo/xqdQ+SKjIO7du3agj3ZGpHz4/z581uwJ5sdOXIkOxM5d7/gC74gO5NSbEy7cuVKdubzPu/zsjM/+qM/mp2JXAu+9KUvzc589Vd/dXZm//792Zno9czu3btDuVxLS0uFbKeo8WxwcDA7U9S1ekopHTp0KDtz9uzZ7ExR927KJDJvuffee7MzkbGpqPseUTt27MjOFHXOR/rlyJwvcgyGh4ezM6961auyM1GROWzk2mlubi47E1FU/xoRaacpxeZ4RfUnZbrOiNxbiNzDKOr6uEiR+wSRNlhUu420hUhf+da3vjU7E9m3aP8a6csPHjyYnXnqqaeyM5H7ApE+9plnnsnOfPzjH8/ORESvA4s69yKZyHjWK5FnPJH7K0WNTZF7iVFFPR+LzMsj24mIzI9e9rKXZWci896ZmZnsTEopffSjHw3lchV1Lz+SKaptFynSN0TudUTmD+fOncvO9ErkerKo/j8yXkfmIJExMCrSx0ba7Rd90RdlZ37lV34lOxO5Hx25ZxSZw0baaUqxtlrU5/UiY2ekPyrqnvwnP/nJ7EzkPndKsd8p0jccPnw4O1PU/edeicx7I/cwIudukc/0I79TpN1+9md/dnYm0h9F5paRYxCZC0Q+2xbt9yLzjshx+E//6T9lZ37jN34jOxMRGQMj101F3rP+9E//9OzM3//932/BnmxWpucZkbbez/c9tuP18S/8wi9swZ5sFhlvi3rWUtTngFOK3Vso6jhExsHI84zIZ9si41mk/yny/nNR72uRv1MvFDUHKeozvZHrppRic/nXvva12ZkTJ05kZ97ylrdkZ77yK78yO/OlX/ql2ZnIcYucU5FjkFJKR48ezc7cd9992ZlXvOIV2ZlIfV4/90eRcT1yPZxSShcuXMjORMbbyP2saJ1iN5XnKTwAAAAAAAAAAAAAAAAAAADrKBgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpHb2egeirly5kp05cOBAdubSpUvZmaiBgYHszMrKSnbmxo0b2Zlf+IVfyM4cP348O3P16tXszI4dO7Iz99yT/10J169fz86klNLu3buzM3/6p3+anfnpn/7p7Mzjjz+enYm0uX379mVnzp8/n505cuRIdubChQvZmZRi+0fvRNrt2bNnt2BPNou2wUhfHhlnPuuzPis7E9m3nTvzpyTXrl3LzszPz2dnXv7yl2dn3ve+92VnUor1LZFjt2vXruxM5H29fPlydiYiMq5fvHhxC/aks0gfVJTI3KtXov1lEU6fPp2dibTb9773vdmZlGLXTpE57POf//zszI/8yI9kZyLz/6JErhmiv09R52/kWjDSviPjTGT+X9T5Gvl9UorNbyIOHTqUnSlqftwNkblO5J5R5DyM9BNF/T4ppdRqtbIzkXMkcm0S6S+Lmj/s3bs3O/P2t789OxM51inF2uozzzyTnfmhH/qh7Mxf//VfZ2ciInPySDu9//77szMf//jHszP9rkxjRmTsjfRHkf7/3nvvzc5Ezt2oyHHo52vQyLOgN73pTdmZSD/xt3/7t9mZ//Jf/kt2JqVYf3nu3LnsTGR+ExlvP/WpT2VnIm07Mv+PXHdH77UdPnw4O3PmzJnQtnJFr516IXL8I+22qGfTRV7rRo5d5Jomcg8schwi41nknH/ta1+bnYmYm5sL5SK/U+R9jfRHkXEm8r5Gzono9Xqufn+WHblej8yPyyRybRL5HEbk2iTS1vfs2ZOdSSk2ZkSe+UX62Hq9np2J3Gt7xStekZ35q7/6q+xMRJFzt8i1SWRsisz/I/tW1D35yDle5L2EiMhcIDIPL5PIZ0SK+uxGZA4SOT9SKu4e5Ate8ILsTOTeclHz0cj8ITLWHjx4MDuTUmye+O53vzs7MzExkZ0pau4VubaNvEdF3n9eXl7OzkTG6Mi1YD9/pmujft7XSB+2f//+7EyRnx2L7F/kvl7kfY2Mt0V9XjRy7kY/JxN5NvEN3/AN2ZnIuB5pP5HtFHVOFNn/FPXMKdJvRd6jXinqeXaRn8POVeRz6cg88X//7/+dnfmmb/qm7EykBuKLv/iLszNf+IVfmJ357d/+7ezMyZMnszP9LvKcKtIvF1WrE7n/cN9992Vnovq5FqHbrDAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKKmd3X7Be++9NzvzzDPPdHs3Orp27Vp25uDBg9mZK1euZGdSSmnfvn3ZmeXl5dC2cv3FX/xFdmZsbCw785a3vCU787znPS87EzEwMBDK/dzP/Vx25t//+3+fnfnUpz6VnSlK5NgdOHAgOxM593bs2JGdSSml69evh3Kw0Y0bN0K5nTvzh/DIOPjN3/zN2Zlof5krcv6OjIxkZx5//PHsTJF27dqVnYm0n7Nnz2ZnIo4cOZKduXTpUnbm/Pnz2ZmovXv3Zmciv1NEZN96ZWVlpde7cFPPf/7zszMXL17MznzsYx/LzqSU0hd90RdlZ9761rdmZ1796ldnZyJ9eWTsjMzdIvsWyUTG55RSunz5cnbm+7//+7MzH/7wh7Mzkfcocj18+vTp7ExEdL4WcfXq1UK2ExnXd+/evQV7sjUix/HChQvZmej9n1yR+d7TTz+9BXvSWaVSyc5EzqtI5p578r8rMzLnOH78eHbmxS9+cXYmKtKGXv/612dnPvrRj2ZnIn1LpM1FxoxDhw5lZz7+8Y9nZ4q0Z8+e7ExR87VeiVwTRY5J5Bq0qHEmck6llFKr1crORI5dZC4feV//9b/+14VkIvfNfvVXfzU78z//5//MzkRFfqdIJtKXR+6BRe5NRc6HIp8xRO5BRETG9TKNGZE5VeQeX1HP2iPX4dH3K9IGI/dLIvsX6SciXvnKV2Znvuqrvio7E3mm/wd/8AfZmZRi105FzW+Kur9S1LywTPfxb1fkfI3cD93u+vk8jN73LuoZ+Etf+tLszLlz57Izkfsr/+f//J/szNGjR7MzkWdHn/M5n5OdSSmlV73qVdmZ+++/PzsTuZfzpje9KTvzrne9KzsTuScfuY9TZF8Z+VxXUc/oi3rW3iuR9zlyHV7U8/no+xW5fo+cix/84AezM9PT09mZ7/zO78zO/M7v/E525lu+5VuyM5H+NToXeN/73pedee1rX5udiTw/Kur+SlEi9xKinwmMzEEj24r0J5H2zWaR+0yR5/NFiuxfpN1G6lQi41nkWityD7vI+96R+7Vve9vbsjORZ0GRcSYyV/6VX/mV7ExEpP1EjkF0W0X1J/38+dWNijrn+/kZT2RsSik25ytqnhhp60888UR2Zn5+PjsT6ZOLuo8fFenHIufE/v37szOR+5SROUfkGXhkfh39nOPg4GB2JlKDG3kGHjknus0K4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpKwTgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSGlhZWVnp5gvu378/O3Px4sVu7kLPRY5BSikNDAxkZy5cuJCd6fJbflO7du3Kzly9ejU7EzlukWOwZ8+e7ExKKV27di07c/369dC2ckWOXaVSyc6cOXMmO3PgwIHszPnz57MzUYcOHcrORH6np556KjsTaT83btzIznRD5JhE+r2IyPkR6ScuXbqUnYmKjE9FnVeRvjLSbr/ne74nO/POd74zO7Nz587sTEop7d69Oztz7ty50LbIt3fv3lCuyPO8CEXNJTcqat7y9NNPZ2eKOiaR3yellFqtVlf342a+9Eu/NDvzz//5P8/ORN6jV7/61dmZpaWl7Mz999+fndmxY0d2JqWU/t2/+3fZmfe9733Zmcj+ReajRZ3jkbnk5cuXszNRRV3fRkTm7r2ap0TuR0TmoxFFnVPmLXH79u3LzkT6lsj7Gh0zIvfbvuALviA785d/+ZfZmYh77sn/DtRe3fe4HZHfJ6XYeR5pq5Hr28jYVFQ/vFFk7I2IvF+RdhtpT9G+P3Kfqaj7egcPHszOnDp1Kjvz4he/ODsTaeuvec1rsjO//uu/np1Jqbj3NdJWI31Lr+5h3I6inqGlVNzYGbm3GXmPrly5kp3phqKeGUTmib0aR7eDSL8XOT9++qd/Ojvz+te/Pjvzhje8ITvztre9LTsTFbne6ufPkkTO8ch9pqK2E9XPz/XL9DyjqO1ErvEi85boPYyzZ89mZ4aHh7Mzv/M7v5OdKUpknIkc70j7id77ef/735+d+d3f/d3szJ/8yZ9kZ/70T/80OxP5vFCkbRMX6eui11t36t57783OFHU/OmK73btNKdaeIsehqGvdop5TERe5To3cF4i0uci9n5RifWw/f869V/emIteGRe3rfffdl52JtIvoM4Z+vm6NPM+IjJ1FPZ+JOHz4cCgX+TxcpG/5gR/4gezMT/3UT2VnIr/Pp33ap2Vninr+GO3Hi3qmWtTzsF59Bqeoz01F5sqR7USuw6PXeD43VVz76efnuMS55ozr9jlhhXEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKKmBlZWVla6+4MBAN1/upnbu3JmduXHjRiHb2b17d3YmpZSuX7+enbl48WJoW7kiv9PVq1ezM5HmuHfv3uzMpUuXsjNFOnz4cHbmzJkz2ZnnPe952ZmnnnoqO7N///7szIULF7IzBw4cyM5Ez6FIX3fvvfdmZ65cuZKdOX/+fHamy0PBbStqzBgcHMzOPP3009mZyO9z7dq17ExU5Bz5y7/8y+xM5Lw6ffp0dmZkZCQ781d/9VfZmYgdO3aEcpExLdKG9uzZk52JvK+RucA99+R/n9HBgwezM2fPns3ORPvKSP//zDPPZGcOHTqUnYmMt0X2W2tF+tjIuRiZk0cU1S5Sip3zly9fzs5Ezt/I9VZkfhQR2bfI+RE5binF2nekX46IzL2Wl5e3YE+6IzI+R491pA+KzPEi1wyR41DUPYuNiuqPIsckMgcpUuTYRe63FSXSV/7wD/9wdmZqaio7U6SXv/zl2ZkPfOAD2ZnI8Y7MOYoS+X0ifXJ0zOhVH7tVtvu9qcj99aLmvUUqat7ywhe+MDvzkY98JDsTuZ/1yle+Mjvz53/+59mZXbt2ZWdSip0TRd3Lj7SFiKKuBYsUeV8j/XJR29nuY0ZRx7Go+0X9LnIN9GVf9mXZmUajkZ35xCc+kZ358i//8uzMRz/60exMSrE2FHlmHGl3kbGpqHM80uaKumedUuw6qKhjFxlvyzRmFPWZiqJEPzcVuQ56zWtek5151atelZ156KGHsjMf//jHszNPPvlkdiZyz/Ev/uIvsjOzs7PZmZRSOnfuXHZmu83LI9doRT3TiXxGLaXY59SKOg6R9lPU8d4oMqeKzA0imci8IDKe9ftzk34WeY8i86PIfZwi39ftNmZsR0V9xrtSqWRnIvOUXo0ZkeuMyDhT1H2m7dj/R9p65L5H5D3at29fdqbfn0UWdX8zMt5+z/d8T3Ymcs/oF37hF7IzEZHP50b61yIVdR+mV/emIr9f5POskXvYRT0DicwRUzJPTCml++67LzsT+ezYdpwLFKWoesOIyPgcGWdSio3rkbZa1H34bo8ZVhgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlNTAysrKSjdfsFKpZGcuXryYnbly5Up2ZteuXdmZq1evZmf63T335H9PwI0bN7ZgT7pjO76v/fw77dmzJzsT6WYi53i/O3z4cHbmzJkzW7Anm3V5KLhtkbZ+7dq17MyOHTuyMzt37szOXL58OTsT2beUUrp+/Xoo168iY1Ok3UYyu3fvzs4U2Yft378/O3PhwoUt2JPN9u7dm525dOlSdiZyHt17773ZmWifHBk7I/1JxJEjR7IzTz311BbsyXMbGBjIzuzbty87E+lfDx48mJ2JjGfPPPNMdiYqcv5Grhn6ec4XOXcj84fz589nZ1Iqro/tZ5H+v6g5VGRuExU59w4dOpSdOXv2bHamV9cZkTGjn++VROZ70XsEkb4lMreMnIuR9yiSiYzRkWMQmadEveENb8jOvOMd78jORI5dRFFjYFF9ZZH6eews05hR1H2CyNwykonOESPHrqj3uZ/vr0feo0h/VNR9ZeIi9xKi59CBAweyM5/85CcL2U7kmrhMY0ZEUX1Y5Dojcq8kpeLudRZ13/vrvu7rsjPvfOc7szOTk5PZmRMnTmRnos+pIvPyyDkfOfcifWy/z+WJ6dWYUdQ1f+Q6o58/+5NScfdVI8ehqGugyDVnZC5Q5PlR1Pymn+/xRhR1/yE6zy2qDbnO2P4i88qUYvdYzp07F9pWrsj5G+kro8+Zc913333ZmaeffnoL9qSzSD8Rma9FPisT2bfINXTk+UyR91Aj9yAiIve6I3OBMo0ZRY2jRYlea0XufUTGjMi9s8j8LTLvLep5X78/X418ZjTyeb3IuRe5txlp25HzKPIeRee5kfMo0v8X9ZneMo0ZkbYRmctHageL/Mxj5DqjqPE2Mufr5xqDiOhzqsg8tp/vGVGsSP8YGTO6PV+zwjgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpAZWVlZWuvqCAwPdfLmeu++++7Iz586dC23r+vXrodx2cvDgwUK2c+HChezMjRs3tmBPumf37t3ZmStXrmzBnnTHzp07szORYxBpC0XasWNHdibSl3R5KLht9957b3bm7NmzW7AnvRMZZ1JK6emnn+7ynnRP5Py9du3aFuxJd0TOw/3794e2VVT7Lmq8jc6Jcu3atSs7c/Xq1S3Yk+4pak4d6f97NWZE2u358+ezM4cOHcrOROYTRc79I8euqPM34vDhw9mZM2fObMGebPa85z0vO/PUU0+FtnXPPfnf/xZp35HroMh4VlS/t2/fvuxM5HyNXmsV1ccWNV/r1ZixZ8+eQrZT1Bw2cr5H5kcpFdvec0Wu+SNz+UjmbW97W3bme77ne7IzUV/4hV+YnfmzP/uz7ExR597ly5ezMwcOHMjOROaSEZG2nVLs3ItsK9IHRTJFHe+N+vl5Rj/Pe6Ne+MIXZmf+9m//dgv2ZLO9e/dmZy5durQFe9Id0blAUfdLIvfO+v1efhEi8/iUYvPWyLVTZB4VGc8ic4FuiByTSN8SOQ8j115FnlORuUE/P5ct6vcp6hlh9HlBUediZEzbbmNGkc/dIvcPI/cCI9ePkf6xV5/BiVxnFHXORxT5HC7SNiLzicjYGXmPItfhFy9ezM5E+onIPKXIZ0eR/YuIXJssLy9nZ4o6x/v9s2OR97Woc7xX88+iPjcV2U7kOBb5ma5+vucbEZmHRX6fotp6tB+P9JeR4xCZr0V+p8jcJnI9E7lnUdTnAFKKzVUifVBk7Iy0uV59zjHS7/Xz9fGRI0eyM6dPn96CPemtyOeHI58djrT1yHOqyGegomNGPz+j2W4i42Zk/plS7H5CUX1d5HqrV88z+vkZeFGin8Mo6noyMj/qVXvaKkWNgUUq6rPakeuMSPvp9+dUkXtGkf0r6j58tz9ra4VxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpKwTgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkNrKysrHTzBXfs2JGduXHjRjd3oasGBwezM61WK7Stoo7Drl27sjNXr17Nzhw4cCA7c/78+exMRKSdXr9+PbStoo53xP79+7MzFy5c2II92Wzv3r3ZmUuXLmVn9uzZk51JKaXLly9nZ/q5LXR5KLhtAwMD2ZnIcbx27Vp2pqhjEjkPU4qdi0eOHMnOnD59OjsTeV/vu+++7MzZs2ezM5G+vKj+qMht9XN/FHHPPfnfgRQ5BpH5Q0qx/uTixYuhbRWhV2NGZMy+cuVKdqaothHpj6JtMNJP7Ny5MzsTGW+L6o+K+n2KFOn7iuov+7kPK8q+fftCucixK+q6LjJP6VVbiNyPKOqaIdKHRfr/Isfrou5nRdp6ZAzcvXt3diYyrkfaQpH3MCJjZ2T/iroXWJTI+Ro51inFrr0jfV1kO5H23avrjMiYUdT90Yh+v+8dUdR1RuT6sZ+fgUTm/ikVN64X1VYPHTqUnYncc4zM/4ucK/fzs6CIMj3PiGQic4N+vndbpEi/XNT99egzg1wHDx7Mzpw7dy60raL6vsg1WmRcj4xN/fycs8h+ocjnaLl6NWZE2lOkbUSu9yP7FjkPo4qaIxXVXxb1bCIy34tsJ9oWIseuqM8fRvqJIu//5Ir0/5HzIaXYtVOv+uXbsd2vM4r6/SL3I/r5s8NFiryvRYm0n2i/V9Qz+sj+Re5NRa5To9douYq8lxwReY8ic5XIPbBejRmRMTtyfVzU9WSRn18s6t5CUSqVSnYmWtuSq9/nAv3ct0TmApHjXWRfXpTINXHkHO/nWoSNIu2pqLlBUW09+iy7qPuWEUXe/y9C5DNG0eumyLkYufdalMixi/w+ke1E+srtODZF5g/dbnNWGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACU1MDKyspKr3cCAAAAAAAAAAAAAAAAAACAfFYYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpKwTgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpKwTgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoqZ293gEAAAAAAAAA+svi4mJaXl5O1Wo1VavVXu8OAAAAAAAAAHALVhgHAAAAAACAu9Ti4mKanJxMw8PD6ejRo2lgYCANDAyko0ePpuHh4TQ6OppmZmZSq9W67dccHh5OzWZz63aaLTM3N5eGh4fTwMBAOnbs2Lp2MTw8nBYXF3u9iwB9x1gKAAAAAABAPxhYWVlZ6fVOAAAAAAAAlFG7QKishoeH08TERK93gx6Ynp5Ojz32WFbx2tDQUBofH08jIyM3/TczMzNpfHw8zc/Pp6GhoS7sKUVYXFxMo6Ojq8WJExMTaXx8PFWr1dRsNlOj0UiTk5Op1Wqler2exsbGerzH3K3Gx8fTzMzMbf/7Wq2WFhYWtnCP8rX7yRy387GOY8eOZX2pw9jYWKrX61n7cTuOHTu22pcMDg7eVmZ5eTm1Wq105syZVKlUbvrvWq1WOnz48Oq/ud3X37it9mvd6VjVD2OpuSgAAAAAAABtO3u9AwAAAAAAAGV16tSp1Gg0er0bYbcqymJ7mpmZWS38bRsZGUkPP/xwqtVqaXBwMFUqldRsNlOr1UrNZjM9/vjjqdForP5vaGgozc7Odmw/U1NTxf0ydMXa4tVKpZKeeOKJVKvVVv97tVpd9+/bheS+EIAyWFxcTHNzc7cszi1avxT3zszMpNHR0S05l9tjTE4hdT+9/nPpp7HUXBQAAAAAAIA2BeMAAAAAAABBt1OoVK1WU61WS9VqNR05ciSl1Lk4ptVqpdOnT6eZmZmbvu7IyEh68MEHb1pc036NZrO5+r9b7WOvCq3ojY0r805MTNy0KK1dJFyr1VYLLefm5tIjjzySGo1GetGLXpROnDixrghzbm5udVVZymFubm7dSscbi8U7/ZuUni1mVDBOL0xNTa0WXLdarbS8vJzm5+fT9PR0SunZ8XXj2Fav1/umYLzRaKRWq5VqtVrH1cDbq09Xq9XsQtonnnhi3erZy8vLqdlspvn5+TQ3N9cxMz4+npaWlrJ/j1uZnZ1dnYPcatspPTvGbCyyvpVKpbJuf9cWY99qO2uPa/t1Utr8hRi3o9/GUnNRAAAAAAAA2gZWVlZWer0TAAAAAAAAZTQ5OblapLbWyMhIGh8fDxVUNhqNNDw83PE1Z2dns1+v2Wymer3esfinVqulhYWF7NekfI4dO7ZanFipVNLCwkKoUC6llKanp1cLNmdnZ1cL3dZuY35+XkFxn1tcXEzHjh1b/fvU1FSamJjY9O9GR0c3FWJWKpV05syZLd9HuF3tfmlkZCQtLi5uKrg9c+ZMX6xkPDo6mlJ6tkh246rQWzUmN5vNdPTo0Zv+91sVPHdDq9VKDz300KYC+W6PE536qpS6e1z7cSw1FwUAAAAAAKDtnl7vAAAAAAAAQFltLHqpVqtpaWkpzc7OhougHnjggY4/f/DBB0OvV61W09TUVDpz5symfbIa9N1hdHR0tfisWq2mj3zkI+ECt5SeLS5sF4yNjo6mRqORGo1Gx9Vy6V+PPPLI6p8rlUrHYvGUUhocHNz0sztpP7AVxsbGVv/caTXxtStC90qr1Upzc3NpfHy843+/2c+7ZWxsrOO5Oz09vaXzgUqlkp544ol1Bftb8aUijz76aMefd+u49utYai4KAAAAAABAm4JxAAAAAACAoOXl5dU/twt07rSQ8mYroHZjZdT5+fl1RXUbi4xY72arlZbJ9PT0ut9hfn6+K21pZGRkdUXQ4eHh1VVSt6Pt0A42mpubW1eUeLNCy5Q6F1tudWEr5Frbr3Vqn/V6vcC96ezkyZOpUqnctIi305czdFOlUrnp6tBbfU5XKpXVfqZarXa9WLy9jU66cVz7eSw1FwUAAAAAAKBNwTgAAAAAAEDQ2lURb1aE1W+mpqa6UvBzN5ibm0tPPvlkr3cjrNVqrSs+q9frXV0ZularrRZhbufVxcveDjrZWDzbaUXmtlqtlpaWltLExEQaGxvbVOwH/aZaraZarbbuZ81ms+f9VL1eT8ePH+/pPtRqtY7ne6PR2PIvxmi/J1tRLL6V+n0sNRcFAAAAAACgTcE4AAAAAABAUHtVxJGRkU3Faf2qUqmkqamp1b9b2bGz7XBc1ha4VSqVLSnyHRsbu2Wxcdlth3bQSaPRWP1zpVJ5zuLHarWapqamUr1eL12xJ3enfltlvF2wvtUred+OEydOdCzWfeSRR7Z0u+2VvstWKNzvY6m5KAAAAAAAAG0KxgEAAAAAAIKWl5dTSik9/PDDPd6TPGtXOF27MiX/oP3ellWr1UozMzOrf3/00Ue3bFtri762m7K3g07WFounlNIDDzzQoz2BrdNpJe+TJ0/2YE+eNTc313Hl817YWKzbtnEl7a3YbtmUYSw1FwUAAAAAAKBNwTgAAAAAAEBQe0XEsq24W6lUVovWtmNBbDcsLi72ehfuyMbCyK1cBbxarW7Jiqv9oOztoJONK7k+1+riUEaVSmVTv9dqtTZ9YUJR6vV6X6wu3jY2NtaxeH16enrLi3ePHDmypa/fTWUYS81FAQAAAAAAaFMwDgAAAAAAENAu0KnVaqVcNbNdWLSxeJRnlX21y9nZ2XV/3+qi4K1clbaXyt4OOtn4O5Wx/4Lb0alAu16vF74fi4uLqdls9t0Xa5w4caLjz0dHRwvek/7V72OpuSgAAAAAAABrKRgHAAAAAAAIaK+GWNbVeR988MGUklUdb+bJJ5/s9S7ckVOnTq3+uYg2Wq1WO65WW3ZlbwednD59ute7AIUYGhraVEQ7NzdXeHFqvV7vuC+9VqvVOhaxLy4uprm5uR7sUf/p97HUXBQAAAAAAIC1FIwDAAAAAAAEtAvO2sUuZdMuLrKqY2eNRqPXu3BH1r6vRRUpPvzww4Vsp0hlbwdwtzt+/Pimn508ebLQfTh58mTfrto9NTXVcYx45JFHit+ZPtTvY6m5KAAAAAAAAGspGAcAAAAAAAgo+6qO7RUsl5aWerwn/afZbJa6eKnZbN7y71tlZGSkkO0UpeztAEhpfHx808/q9Xph22+vaN5pJe9+UKlU0tTU1Kaft1qtjsfublKGsdRcFAAAAAAAgLUUjAMAAAAAAAS0C0nLWqST0rOFYu1iI/7B3Nxcr3ehq4oqeq5Wq4WtwFqE7dYO4G5Uq9U2jdOLi4uFFf/W6/W+/zKNsbGx1cLdtWZmZtLi4mIP9qg/9eNYai4KAAAAAADAWgrGAQAAAAAAAtrFZmUu0hkcHLSCcgePPfZYr3fhjgwODm76WaPRKGTbDzzwQCHbKULZ2wHwrE4rZRfxhRCtVis1Go1SrNQ9Ozvb8eePPPJIwXvSP8owlpqLAgAAAAAAsJaCcQAAAAAAgIDTp0+nlFKpV1SuVqtWddxgbm6u9IVLndpkvV4vZNudVqkto+3QDoBnjY2NbfpZEX3iyZMnU6VSSUNDQ1u+rTtVrVbTxMTEpp8vLi6mmZmZHuxR75VhLDUXBQAAAAAAYC0F4wAAAAAAAAGtVqvUBTopPVtg1F6dkmdtl9VUNxabzc3NFfJeP/jgg1u+jSJsl3YApI5F281mMy0uLm7pduv1esdi9X41NTXVcV4zOTl5136BRr+PpeaiAAAAAAAArKVgHAAAAAAAIODo0aPp+PHjvd6NOzI8PFyKlU+LMj4+vm2K4jq9r+Pj41u+3XZx3eDg4JZva6tsp3YAPGt0dHTTz7Zyteh2QXoR/W43nThxYtPPWq1Wmpyc7MHe9F6/j6XmogAAAAAAAKylYBwAAAAAACBgYmJiS4vNijA2NpZmZ2d7vRt9YXJyMs3MzPR6N7qmU0Fbo9HY8qK/arWaVlZWNq3KWhbbrR0Az+q00vfJkye3bHv1ej1Vq9VUrVa3bBtbYWRkpGPx7szMzJavyN6P+n0sNRcFAAAAAABgrZ293gEAAAAAAAD6W7PZTPV6PS0uLqZms5mazWZKKa0Ww1Wr1TQ6OtrVFSJbrVZqNBppfn4+nTp1KrVarbS8vLy68nO1Wk21Wi0NDw93LAQcHx9PR48eTRMTE8/5u01OTqa5ubmu7Xs/aB+fjQV+09PT6ciRI895XPpJEe1vu7aDrdR+L1qtVmo2m+n06dPr/r68vJwWFhY6Fsy239NGo7GaqdVqaWhoKD366KOpUqnc8f4tLi6mxx9/fF27qVQqaXBwcPX8GB8f70pB78bfe2lpad3fm81mGhsbS1NTUzfNz83Npfn5+Y77Gm3jjUYjzc7Opkajsdp/ViqVVK1W0+DgYBodHU3Hjx/vyvEug5GRkXXneKvVSnNzc2lkZKTr25qZmUmPPvpo11+3CPV6PR09enTTz0dHR9PS0lIP9qh3ttNYCgAAAAAAwPY3sLKystLrnQAAAAAAAOAfDAwMbPpZvV7vWBi9lebm5tJjjz22WijVLuh88MEHV4siG43G6n+vVCrp0UcfvaMCqmazmaamplZXeR4aGkrDw8OpWq2uFlC2CzAXFhbSyZMnU6vVSlNTU6vbnZ6eTpOTk2lsbKzjypuLi4vp1KlTaX5+vusFwmfOnOmb4stGo5GGh4c7/rd28Wq/7GsnW93+tnM7aDabHQs+78Ta32lmZqbjyrsbLS0tbSrIHh8fTzMzM6laraahoaF07NixlFJa/VKAlFJaWFgIr1I/PT2d6vX66hcLDA0NpVqttno8lpaW0uLiYmo0GimlZwtC2/1FxK3Os7UmJiY2FYy3Wq30yCOPpLm5uVStVtPIyEg6evRoGhwcTM1mM83Pz6/uZ3tf6/X6cxaONxqNND4+nprN5mof2n7vlpaW0tzc3OrxSenZQuoTJ070dX9wOwYGBtLIyMhNVyvu9F4NDQ2l+fn5ru5Hezu36geGh4fXvbcppTQ7O7slxevt/qBTG7yZycnJND09venna8fa6H7cyWvczutvdKfHtexjaVS/zEUBAAAAAAC4fVYYBwAAAAAAYJ21RYwpPVtQNzU1ddMCzsXFxTQ6Orq6SnO9Xk+zs7PZBZ/tItRKpXLbBWX1en01Nz8/n8bHx9Pk5OQtf7d2gep2NzQ0tGlF3baZmZl08uTJ9Oijj6aRkZGurLLcLUW0v7upHfSL9jFfXl7eVMC5tvA/pZQeeuih9JGPfCSrCHNtkXRKzxZo32q18larlR577LE0PT2dxsfH09TUVKjfimo0Gml0dDRVq9WbFshPTEykZrOZRkdHV1dKHx4evmX/2C7Iv9XvPzU1lebm5tLo6GhK6dkvZ2g0GjddEX67GBoaSpVKJbVardWfNRqN1ZXXu2V2dnZ1W2XV/uKWtccqpbT65Qpl/t1ylXUsBQAAAAAA4O5zT693AAAAAAAAgP6xuLiYXvSiF60WRk1MTKT5+flbFlHWarW0tLS0WgDabDbTsWPHNq2eeiuTk5NpfHx8tXgyZ/XRsbGxtLCwkE6dOrVaAHkzlUolLS0t3fR/G4vgxsbGbvnvnyvfa7daNbjVaqXJycl09OjRdOzYsTQ9Pb2uaLcXimp/270dVKvVm+7bxtVhh4aGsn+ntcdjfn7+ts7Xhx56KKX07OrhG1f73bhaeavVyu4/hoeHU7PZTLVaLZ05c+Y5V/1tfzFFexX0dru51RdOdLL2+C0sLNzWasOLi4tpeHh4te+6Vftu94lrC1EnJyc7Fq9OTk6mkydP3tZ+jIyMpIWFhdW/t1qtNDw8vKlAeLvptDryyZMnu7qN9peYlN3NVmp/5JFHCt6T3ivbWAoAAAAAAMDdyQrjAAAAAAAApJSeLWJcu+ry7a7y3TY7O5uOHTu2Wig1PDz8nMWQKT27uu309HRKKaX5+fnQCp21Wi098cQTt7VqdM7rVyqVUq8YWqlUbuu4LC4uritwGxoaSsPDw2loaKiwFZeLbn/bvR3cbH83Fj1Gf7d2plqtpqGhoXT06NGbFslOT0+nZrN501XD26uCr/Xkk09uKizvpL2idkrPttv5+fmM3+IfiuuHh4dTo9FI09PTqdVqpXq9nvUabbVaLdVqtTQ8PNzx37ZarfTQQw+F23fb6OhoOnPmzOrxnJmZSTMzM+mJJ5647XO2VqulsbGx1ePXbDbT5ORk1u9eNuPj46vjTVu9Xu9YSB7RLuS/nbbb74aGhtLQ0NCmL29or0g/NDTUoz0rXpnGUgAAAAAAAO5eVhgHAAAAAABgU7Hu0NBQVjFj2xNPPLHu7+1VhW+lvVrp2NjYHRXl1mq10D5vd7VaLS0sLGStet1oNNLk5GQ6duxYGhgYSMPDw2lmZmbLVh/uZfujO25WcNsuQr7VCr2dCikffPDB59zm6OjoarFztVrNLhZfa3Z2drX/udMVooeGhm7alz300EOh9l2r1Ta9Zvt3X1xcTOPj42l2dja7KHXj77mV53k/qFarm47j4uJixy8tiOhm8Xk/uNmXB2yHFdRzlWEsBQAAAAAA4O6mYBwAAAAAAIA0Ojq67u+zs7Oh16lUKusKIVut1i0Ly+bm5lYLpzbuQ8Sjjz56x6+xHdVqtfSRj3wkvOpto9FI4+Pj6fDhw+no0aOrqzB3S6/aH93VqUh6fHw8DQ0N3bLtbSwmf65/n9Kzq5a3V3NOKd1RsXhKz7adta/RXrE7qlPh9szMTGo2m+nEiROh19x4TNrFvI899lgaGxsLrfhcq9U2FcCePHkytH9l0alP6Maq6q1WKzUaja6MZf2iWq2mqampTT9vNpubVmq/G/T7WAoAAAAAAMDdTcE4AAAAAADAXW58fHzd6qoTExNZK2hutLFou10k2cnjjz+++ucHHnggvM22SqUSKpq8G1QqlTQ7O5sWFhbu6Bi1V4w+fPhwGh8fv+Nit162P7pr4/vWbDZXV9i9lXYR5vz8fFpYWHjO4u/FxcV1rzk2NnbTFb1zVKvVdYWgG9vmnZqcnExTU1Ph9j08PLzu7+3jOzc317Go93Zt7A/utPi+33VaAfxOvhxg7WtsxzFoYmKi4/k1OTl5V/at/TqWAgAAAAAAgIJxAAAAAACAu9ji4uKmQrk7XaW7U8HczVZvXVxcvKNtdbKdVnfdCrVaLc3Pz6czZ86kqampjish366ZmZn0ohe9KPw+9rr9sbXq9XqqVqu3VVTZft9upz1uPMefqyA9x8b2t7FIO2pmZia1Wq2Oxcq3q1PR7ujoaBoZGbmjL1nY+LrbvQi4Ux/RXh38TtTr9Tt6f/vZzfrQTqu13y36aSwFAAAAAACAlBSMAwAAAAAA3NUee+yxdX+v1Wp3VHjYtrGg82arty4vL6/++dSpU3e83ZS6s1L53aBSqaSJiYm0sLCQzpw5k2ZnZ0MrNbdarXTs2LE0NzeXvQ+9bn9srbm5uXUrdnfDxhXjh4aGurK6eFutVltXTNxsNkNte6M7LRZPKaXBwcGOr3unX7Jw5MiRdX/f7gXjKXUudJ6dnQ2/XrPZTM1mc9sWUA8NDXU8lxuNxh0X2pddP4ylAAAAAAAAkJKCcQAAAAAAgLtWp0LIhx9+uCuv3Wn11k4rZ64tgOzWKtB3ssrn3apSqaSRkZFUr9fT0tJSWlpaSvV6PWvl4tHR0azCwX5of2y9br2nbVNTU+v+vvHLAbph46riG7/YoFuvm+tm5+Kd9nkbX7fVat3R65VBp+LnO/liiXq9nmq1Wle/vKDfnDhxouPPt2uRfEQvxlIAAAAAAABoUzAOAAAAAABwl+pUoL2x0DaqU9FcpxXE1/67ubk5K2v2iWq1msbGxtLs7Gw6c+ZMWlhYSFNTU89ZmDo8PHzbqxP3Q/tj63XzCxzm5uY2ta9utZlbvebi4mJXCjiL2NeITiuX3w06rfgeHYNmZma2feF0pVLZ9IUNKT375R+Tk5M92KP+V8RYCgAAAAAAAG0KxgEAAAAAAO5SnQrjulncufG1FhYWNv2bjSvujo6O3tEqr20jIyN3vJov/6BWq6WJiYm0sLCQlpaWOq7O23a7Kz73Q/tja3V7teXHH398y7eRUud2ODs7e8eve7srDOfYzitab7VOfVWnL7J4Lo1GI7VarXT8+PFu7FZfm5iY6NjmpqenFTjfhq0YSwEAAAAAAKBNwTgAAAAAAMBdqNVqbSru6nYx48ZVazsVk3Va4XV8fDwdO3bsjlYbn52dvWUhFnHVajXNzs7etIB2cXHxOYv++6X9sbW6+QUAKaVNq3xvZbH0xte+0xXGt2pfjx49uiWvezcYGhra1O+0i79z1Ov1jq+1Xd2s79/uK6x3WzfGUgAAAAAAAFhLwTgAAAAAAMBdqFPxY7cLGjcWzy0vL3f8NxMTE5t+vri4mEZHR9PAwEAaHx9Pc3Nz2UV8bK2RkZGbrto9OTl5y2y/tD+2Vjff08XFxU19wFYWjG9sP81m846+dGCrionvliLlrdLpS0tyi3Tn5ubuqmLpWq3W8QtZGo3GHX3Ry93qTsZSAAAAAAAAWEvBOAAAAAAAwF3oySef3PSzbhdf3u4Kz1NTU7dcDXxmZiaNjo6mw4cPp6NHjyog7yO1Wi3V6/VNP2+1Wrdckbmf2h/lcOrUqU0/K3KF8ZSeLVpne+lU6N2pT7uZmZmZVKlUbjmGbUcnTpzo+PNHHnmk4D3ZHqJjKQAAAAAAAKylYBwAAAAAAOAu1KnYem5uLg0MDHTtfxtXad1YwLvW7Oxsx5VeN2o2mx0LyBVU9c7Y2FjH9+5WRZf91v7YGkeOHOnaay0tLXXttW5Hp/biSwe2n2q1mmq12rqf5awmPzs7m44fP74Vu9bXKpXKTQucrYodExlLAQAAAAAAYK2dvd4BAAAAAAAAire8vLzpZyMjI+nRRx/dsm1WKpVb/vd6vZ6Gh4fT5OTkbRfrtQvIZ2ZmUq1WSydOnNhU/MfWm5qa2lSgfasi/n5sf3RfN495py8ZKPo9PX36dKHboxjj4+ObVhqv1+tpamrqlrn26s8LCwtbuXt9a2xsLNXr9bS4uLju59PT02l8fDxVq9Ue7Vl55Y6lAAAAAAAAsJaCcQAAAAAAgLtQp+LLTiutFm1kZCSNjIykubm5VK/XswqlFhcX07Fjx1K9Xr+t1cq3q1arlQ4fPpyWlpYKK9irVCqr79va/Wg2mx33oV/bH/2rH1b37od9oPuOHz++qWB8ZmbmOQvGZ2Zm7vp+68SJE+nYsWObfj46Olr6QvoyjKUAAAAAAACw1j293gEAAAAAAADYaGRkJM3Pz6czZ86k2dnZNDY2dttFeePj42l6enqL97B/tVfv3rjq61brtDq4Alu2k05fdED5VSqVNDQ0tO5n7dXDb6Ver28qNL/b1Gq1jl/Qsri4uGml7LIxlgIAAAAAAFA2CsYBAAAAAADuQre76nOvtVfbrNfraWFhIa2srKSFhYU0NTW1qcBvrcnJydIXq92pogvMarVaqlQq6352szZVlvZH/9jYtlIqvs1Y4Xf76lT4Xa/Xb/rvFxcXU7PZTCMjI1u5W6UwNTXV8fycnJzcFv16P4+lAAAAAAAAsJaCcQAAAAAAgLtQp+Ku9mqa/a5Wq6WJiYk0Pz+fVlZW0uzsbMfVx8fHx+/qVTmXlpYK3+bGgtqbtakytz96Y3BwsNDtdWqPndot28PIyMim93dubu6m/75er6dareZLBNKz58XU1NSmn7darTQ5OdmDPequfh5LAQAAAAAAYC0F4wAAAAAAAHeho0ePbvpZL1awnJmZSYuLi3f0GiMjI2lhYSFNTExs+m+diti20sDAQN+sbN6LYvnbLZ7sl/a3VfqpHWwXndrMVrbxTq/daR/YPo4fP77pZzcrGj958mTHVcnvVmNjYx2/uKUbY3yv9fNYCgAAAAAAAGspGAcAAAAAALgLPfDAA5t+1ouiqMnJyfTYY4915bWmpqY2FYjfzUW7p06dKnybG4vcblb01i/tj/Lo1Ja2ctXdTl9goIhze+tUAF6v1zf9rNFopFarlcbGxorYrdI4ceJEx58/8sgjBe9Jd/XzWAoAAAAAAABrKRgHAAAAAAC4C9VqtVSpVNb9rFcFu41Go2uvNTExkUZGRrbs9cuk1WoVvrLrxiLbwcHBjv+un9of5bDxvE6p+BXGh4aGtmx79F6tVttUmNsuDl+rXq93bI93u1qt1rGIfnFxsdRf3tLPYykAAAAAAACspWAcAAAAAADgLtWp+LHooqiUul+MtXGV8bu5ELnT6rhbaeOxrtVqN/23/dL+KI+N7anVanVcCfxOKRa/e3VaZXxtsXOr1Upzc3Md/x3PjjkbvwwkpZQmJye35FwtSj+PpQAAAAAAANCmYBwAAAAAAOAu9fDDD2/62alTp7ZkW81m85bFwN1cBbxara4r7lxaWuraa5fNyZMnC93e2vbzXAW2/dT+KIdObaabfcetXnN0dLTr26H/dFo5fG2x8MmTJ1OlUvEFArdw4sSJTT9rtVrpkUce6cHedEc/j6UAAAAAAADQpmAcAAAAAADgLjUyMpKq1eq6n83Ozm7JtsbHx29ZLDY/P9/V7fViNc5+XD211Wql6enpQrbVbDbXHYPh4eFb/vt+an/d1I/tYLsYGxvb9LMnn3yy69tZWFhY9/dKpdJx22w/1Wp10/ix9gsn6vW6tvAcRkZGOhY5l/lLO/p5LAUAAAAAAIA2BeMAAAAAAAB3scnJyXV/bzQaqdlsdnUbrVYrNRqNW66S2e1Vgo8ePbr65yNHjtx2bnBwcN3fc4p/28dt42v02uTkZNff007WrsKbUufi3o36pf1ttB3bwXZQqVTSxMTEup/Nzc11fTsbVxN+9NFHu74N+tf4+Pimn9Xr9dXC8U4r3bPexvFgO+jnsRQAAAAAAABSUjAOAAAAAABwVxsbG0uVSmXdz6amprq6jcceeyyl1LkIb62ZmZmubXNpaWn1zzmrjW9c8Xp5efm2s+1Cso2v0Q+e69h3w9r3b2JiYlO76qSf2t9a27UdbAcbi7ebzWZXv3Bibm5u3RcEdCpSp3/lfLnDzRw/fnzTz06ePJnq9XrHFcjZrFqtbsvzpl/HUgAAAAAAAEhJwTgAAAAAAMBd74knnlj395mZma4U3aX0bPHe9PR0GhkZec4C2m6uSLq4uLj655yVpTcWAuasJtouKu7HYsJGo5FGR0e37PUnJyfXtZmcFZn7pf2ttV3bwXZQqVQ29RXd/JKB9hcMtJ04caJrr83WafcZOV/ucDOVSiWNjIxsev3p6elCCoa7rX1sutWv3q6pqaltV+zcz2MpAAAAAAAAKBgHAAAAAADoIzcr6NrKQq9arbap4LJbBVGTk5Mppdsr6FxcXExzc3Nd2e6pU6dSSnnF4imlNDw8vGmfbtf8/HxfripdqVRStVpNc3NzW1LsuLi4mKanp1f/Xq/Xs4oE+6X9rbUd20Hbxr6km33LVr72WmNjY+sKehuNRlf6jrm5uXXv9cbtbFfdKLLutXafn3Ou3srN+sqxsbGuvH6RGo3Guv8v0nb6woV+H0u7qRdzUQAAAAAAAO6cgnEAAAAAAIA+crPCvdOnT2/pdicmJtYVVzcajXWFSxEzMzNpZmYm1ev12y6gfeSRR+5omyk9W/TZLmrKLRQeGhraVKB1u4WoW1VEdqempqbS/Px8qlQqaWZmJh07dixrxexbWVxcTA899NDq38fGxkIFlf3S/tq2Yzto29jHdLNYeONrbWW/NTs7u+59HR0dvaN23Ww2131RQa1W27SSeY6tKJ7v9Br9/LpFan85RErpjvuOlDr3AZ1+FtXpvNuqwv3HHnsspfRsGy+6aHxkZCT7i1uibtZmu3VcyzCWdkuv5qIAAAAAAADcGQXjAAAAAAAAfeRmBc5ri6C3yvz8/LrVdCcnJ9PMzEzotdpFszlFT9VqNbVarU2rO+dotVqrRedjY2OpVqtlv8bG9+B2ikbbBYr9tvpspVJJY2NjqVqtpoWFhVStVtPi4mI6evToHRdVNhqN9NBDD622y6GhoTsqsO11+9toO7WDtTauwLy4uNiVosdms7mpj+rGqt+3srCwsO4cHx4eDv0uG/udoaGhtLCwEN6vVqu1uuJ1W7PZvOPj3KnYd35+/o5e82avcfLkyTt+3aKMjo6ua9d30nesdfz48XV/79YXQTSbzY4rod9J/9lJu12vPS+Hh4cLLxrv9u+Vu51ubL9MY2k39HIuCgAAAAAAQNzAysrKSq93AgAAAAAA4G7QarU2rdrY/tni4mJ6/PHHOxaRtbULlh588MFUrVY3rXQ6ODjYldVPx8fH1xXbjY2NZRUvTU5Opunp6dvKHT58eLX4aGFhYXWV35GRkTQ7O5u1381mc7VgdGho6I4KKY8dO7buvZidnV1XzLxxu0ePHk0TExPZK5pvhfb+pPRs0dfExMTqf2u1Wml0dHS1YLDdpsbHx297Fe52Uf7aYuDcNnIrRba/51LmdpBSWi1QbrVaqdlspnq93rFYtFKppKmpqVStVte1g1v1KWtf+9SpU2lqaqpjQXStVkvj4+PpgQceWPdauau+38ro6Ohqe6xUKumJJ5647S+LaDQaaXR0dLUfivY9Kf3DsajX6x378mq1miYnJ9cdi5sdh/bYsHaMeOyxxzoWa46MjKSHH3543bhws9fd2CYef/zxjoX9lUolPfroo6lWq62+VrfGmDvR3u9ms5nm5+fTyZMnb1rAWqvV0sMPP5xqtVoaHBzM/gKRxcXFdOzYsdW/Rz5asfacaLePycnJm+7z0NDQan+ce760v7ShfWxuVTQ/NDSUhoeHV9/fbp6PnUxPT6+uAr9xXMq18Zjeqh23RY5r2cfSW223DHNRAAAAAAAA8ikYBwAAAAAAKMjagqmtUK1W09LSUldeq9FopPHx8dXCrHbx4K2KvObm5tLk5ORqYertrLLcLhhfWyQ1NzeXRkdHU7VaTfV6PQ0NDT3n66w9tt0o2G21WunYsWPrCtM6FQu3i9QrlcodrUjcTWuL3M6cOdOxcGvj+5vSs+9xu4hwcHBwtRCsXUjWbDbT7OzsuoLjdqFxt1fULqr9PZft0g6iblY8PTMzc8erLXfrPWqbm5tLjzzyyLpVeqempm5aJNwuwF5baH7ixImbfiHAzTQajXWrk+e62XFYWwQfcbOPAQwMDIRfM1JM320bv1Aix/z8/G2NJ2sdPXo0NZvN0O/eHsu64XY+1rHxCy5yLC0tbXnRePtY3knBeKvVSocPH+7aPt2qTWyHsbSTMs1FAQAAAAAAyLOz1zsAAAAAAABwN+tUgDQ4OLjpZxtXg0wp3XSF0m4YGhpKS0tLaXp6OtXr9dRsNtPk5GSanJxMtVptdYXc9uqe7cKn9sreOYVn7UKptpGRkbS0tJTGx8dXi3CPHz+ejh49uvq6y8vLaWlpKTUajdUCuecqEM3RLvxdu/pnu4i9vSLr4uJiajQaaWhoqOdFlJ2MjY3ddJXP9vvbaDTS1NRUajQaqdVqpbm5udsqUm2vMLpVK2kX2f5uZTu0g3Yb6NSvdNLua26nf9nK1841MjKSRkZG0uTkZJqZmUmNRiMdO3ZsdfXkdr/QbDbT4uJi1pcR3I6cY7FVx/h2X3er9rVIt/s73On+T01NpcnJyTvq69b2w7nnSkp5+97P7229Xl8d0+9U5JimFDuuZR5Lb1e/zkUBAAAAAADIY4VxAAAAAAAAntPi4mJ6/PHHVwstm81mqlQqqVqtpsHBwTQ8PHzLoqqbGR4eTuPj4zdd1bfVaqWZmZk0Pz+/ut2Uni1uGhwcTLVaLQ0PD6ehoaEtWx21vWL1xt/9gQceuOW+90qr1UoPPfRQeuKJJ7Lej3bh8/z8/OoqqO1CsHbRbbVaTaOjo9mr9N6prWp/OcrWDu52i4uLq182sLbvWFtA/vDDD3flCyaA7Wc7jqUAAAAAAABsbwrGAQAAAAAAAAAAAAAAAAAASuqeXu8AAAAAAAAAAAAAAAAAAAAAMQrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAAAAAAAAACUlIJxAAAAAAAAAAAAAAAAAACAklIwDgAAAAAAAAAAAAAAAAAAUFIKxgEAAAAAAAAAAAAAAAAAAEpKwTgAAAAAAAAAAAAAAAAAAEBJKRgHAAAAAAAAAAAAAAAAAAAoKQXjAAAAAAAAAAAAAAAAAAAAJaVgHAAAAAAAAAAAAAAAAAAAoKQUjAMAAAAAAAAAAAAAAAAAAJSUgnEAAAAAAAAAAAAAAAAAAICSUjAOAAAAAAAAAAAAAAAAAABQUgrGAQAAAAAAAAAAAAAAAAAASkrBOAAAAAAAAAAAAAAAAAAAQEkpGAcAAAAAAAAAAAAAAAAAACgpBeMAAAAAAAAAAAAAAAAAAAAlpWAcAAAAAAAAAAAAAAAAAACgpBSMAwAAAAAAAAAAAAAAAAAAlJSCcQAAAAAAAAAAAAAAAAAAgJJSMA4AAAAAAAAAAAAAAAAAAFBSCsYBAAAAAAAAAAAAAAAAAABKSsE4AAAAAAAAAAAAAAAAAABASSkYBwAAAAAAAAAAAAAAAAAAKCkF4wAAAAAAAAAAAAAAAAAAACWlYBwAAAAAAAAAAAAAAAAAAKCkFIwDAAAAAAAAAAD/v727j/N6zvc//pka1CSsRFR7SuUidu1NrkVxo93YCJ3BIk4p5SJEHLogxTmhdZFFrlLLcbWElVXreu06LiLtOltt2grVkhRhUjPz++Pc9vdPLub1Od/vd+bd3O//P+bzJuZd3/k++wIAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASFR5ob9gWVlZob8kAEVWW1tbL891ZwCkx50BQF25MwCoK3cGAHXlzgCgrtwZANSVOwOAunJnAFBX7gwA6qrQd4ZPGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARJXX9wEAAAAAAAAAAACgISorKws3bdu2DTdXXnlluBk4cGC4aeguvvjicHPDDTeEm5qamnADAAAAANCQ+YRxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEhUeX0fAAAAAAAAAACA/E499dRwM2rUqFzPmj17drg555xzws3q1avDDdC4NGkS/6yUE088Mdwcfvjh4WbgwIHhJo8vv/wy3FRXVxfhJN+soqIi3Fx33XXhpqamJtzcdNNNJXkOAAAAAECp+IRxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkqr+8DAAAAAAAAwKauRYsW4ebII48MNxdddFG4ybIsa9Ik/vdMjx07NtzMmjUr3AAAwDfZfvvtw01lZWW4OeSQQ8LNvHnzws3kyZPDzRNPPBFuFi9eHG7yGjVqVLi54oorws3EiRPDzXPPPRdu5s6dG24AAAAAAErFYBwAAIBNWuvWrcPNGWecEW622GKLcLN27dpwk2VZVlZWFm66dOkSbsrL4y8btG/fPtyUSp5fo8MOOyzcvPLKK+Emy7LsmGOOCTeffvpprmcBAAAADddtt90WbgYPHhxuamtrw02WZVnnzp3DzaWXXhpuVq9eHW4AAAAAAACgsYp/VAAAAAAAAAAAAAAAAAAAAAANgsE4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAElVe3wcAAAAAACi0Jk3if1fmgQceGG4efvjhcLPjjjuGm7KysnCT1+TJk8PNkiVLws2UKVPCzYoVK8INQDEMGTIk3Fx++eXhpl27duFm3rx54SbLsqx169bh5o477gg3++67b7ipra0NNytXrgw3AACkJc/rBMcdd1wRTsK3GT9+fLhp3rx5uLnsssvCzahRo8LNySefHG6qq6vDDQCNU7du3cLNZpttFm7Wr18fbmbPnh1uAFLXvn37cHP22WeHmxEjRoSbpk2bhpv77rsv3Jx77rnhZs2aNeEGACgcg3EAAAA2acOGDQs3I0eOLMJJKKSamppwk+cH31VVVeGma9eu4SbLsqyioiLcfPrpp7meBQAAAMS1atUq3OT5C5mOOuqocNPQjR49OtxMnDgx3CxYsCDcAAAAAAAAwKYg/jE7AAAAAAAAAAAAAAAAAAAANAgG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEhUeX0fAAAAAACg0Lp27RpuXn755SKcZGO1tbUlafIaNGhQSZ7Ts2fPcHPUUUeFm+rq6nADNC577713uJk4cWK4+fLLL8PNeeedF27uvffecJNlWbbrrruGmz/84Q/h5qGHHgo3u+++e7i5+uqrw80tt9wSbgAAgMJ68803S/Kcfv36hZvx48eHm7lz54YbAOrmoIMOCjfnnHNOuNljjz3CTYcOHcLNZ599Fm7y/Pwoz+uUTz/9dLjJsiy76KKLcnUA36VZs2bhZuDAgeHmuuuuCzd5zpZHnu//p5xySrjJ8/OwOXPmhBsAoHAMxhuQ8vL4L8e2224bbvK8ueiQQw4JN4888ki4ueuuu8JNTU1NuFm/fn24AYBiq6ioCDdbbbVVuFmxYkW4obS23nrrcLNu3bpwU1VVFW6gvrVp0ybcHHPMMUU4ycY+//zzcLNo0aJcz8rzov+qVavCzYYNG8LN22+/HW7ymDVrVrh54YUXinASAAAAoLHo0qVLuOnbt2/hD1Igy5cvz9W99dZb4SbPm3L/9V//NdzccMMN4WbcuHHhBgAAAAAAABqaJvV9AAAAAAAAAAAAAAAAAAAAAPIxGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiyuv7AAAAAAAAhTZq1KiSPOehhx4KN1dddVW4qaqqCjd5DRs2rCTNEUccEW6mTZsWbvL8+54/f364AdJ14YUXhpvmzZuHm8MPPzzcvPbaa+Emr7feeivc5LkHzzjjjHBTU1MTblq0aBFuAACA+jd79uxw8+GHH4abtm3bhpvzzjsv3AwaNCjcAKSsQ4cOubrRo0eHm8rKynDzwgsvhJupU6eGmzz32auvvhpu1q9fH24AGoquXbvm6n75y1+Gm169eoWbTz75JNzMmjUr3Fx//fXhZtGiReHm3HPPDTfLli0LN1BIxx57bLj54IMPcj0rz+/f8ujevXu4qaioKMJJNrZw4cJwk+f7EVBcBuNFUFZWlqu77bbbws3AgQNzPasUDj300HAzadKkcJPnMn/ggQfCTV55fl0XL15c+IMAUDJ77713rm7KlCnhprq6OtzkPd+mpF+/fuHmxz/+ca5nHXTQQeFm5513DjerVq0KN/vss0+4gUJq1apVuLnxxhvDzY9+9KNwc8ABB4SbPC+W5fl/FwAAAID/u/bt24ebe++9N9zkef/AjBkzws0xxxwTbkqpW7du4ebNN98MNz/72c/Czbhx48INAAAAAAAANDRN6vsAAAAAAAAAAAAAAAAAAAAA5GMwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgESV1/cBAAAAAAC+y09+8pNwc/TRR4ebqqqqcHPttdeGm3nz5oWbUho+fHi4efrpp8PN3XffHW5OOumkcLPDDjuEmyOOOCLcAHyfTz75pL6PUHCTJ08ON2eccUa4efvtt8PNhAkTwg0AAFD/li5dGm5Wr14dbtq2bRtuAFK22WabhZs777wz3Jx++unhJsuybMmSJeGmX79+4WbmzJnhBqCxadGiRbgZMGBAuBkzZky4ybIsa9WqVbh55plnws3AgQPDzfLly8NNqVx++eX1fQQaub/97W/hpmPHjuGmtrY23GRZln3xxRe5uqjq6upwU1ZWFm623nrrcLNhw4ZwU6p/ngULFoSbLMv3Hq0874F66aWXws3ixYvDDdSFwXgR5H0xOc9vKMmydu3ahZsRI0YU4STf7Pjjjw83ed5o/MADD4SbtWvXhhuAxubCCy8MNyNHjizCSb7ZOeecU5LnbLvttuHmwAMPDDcnnHBCuDnttNPCTdOmTcNNXnle4GjILxpCIXXr1i3cVFZWhps8byyaM2dOuPn666/DzX777RduSinPC1IfffRR4Q8CAAAAUGAXXHBBuOncuXO4yfPmtLPPPjvcNHR5XveuqakpSQMAAAAAAACbgib1fQAAAAAAAAAAAAAAAAAAAADyMRgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAosrr+wAAAAAAAN/lyCOPDDcVFRXhZs6cOSVpNkUrVqwIN9tss03hD/INHn/88ZI8B0jX8uXLS/KcnXbaKdwsXLiwCCcpnBEjRpTkOX/6059K8hwAAACAFAwePDjcVFVVhZuDDz443BxxxBHhJsuy7L//+7/DzRdffJHrWQCNSbNmzcLNeeedF26uueaacLNhw4Zwk2VZdskll4Sb22+/PdysXbs23JRK69atw82nn34abvL+GsE3OfHEE8NNu3btws2qVavCTZZl2ccffxxuqqurw02en/82aRL/vOCDDjoo3OTx05/+NNxstdVW4SbPe8eyLMuOPfbYcNOvX79w8+WXX4abQYMGhZsHH3ww3ND4GIx/jzzfVMeMGVOEk5CqTp06hZvJkyeHm4suuijc9OrVK9wsXbo03AAUw5ZbbhlubrvttnDzi1/8Ity88cYb4SbLsuyWW24JN3/+85/DzbRp08LNYYcdFm7atm0bbvJYvXp1uPnjH/8YbiZMmBBusizL5s6dG24+++yzXM+C+pTnz06VlZVFOMnGZs2aFW7+8z//M9yccMIJ4aZ9+/bhppRef/31cJPnzzNTp04NNzU1NeEGAAAAoNSef/75cPPRRx8V4ST167HHHqvvIwAAAAAAAMAmLf6OfgAAAAAAAAAAAAAAAAAAABoEg3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUeX1fYCGrnnz5uHmxBNPLMJJCmfDhg3h5sMPPyzCSepPnl/X7bffvggnKZxddtkl3MyaNSvc7L///uFmzZo14Qbg+zz55JPhpmfPnuFm5syZ4eb2228PN1mWZbvttlu4mTJlSrhp2rRpuMnj8ccfDzePPfZYuHnuuefCzfLly8MN8N1atmwZbgYMGFCEk2zszDPPLMlz8vjqq69yde+99164adeuXbjZb7/9StJ07tw53IwcOTLcAOn62c9+VpLn5Pn99aaoRYsW4Wby5MnhZssttww377//fri5++67ww3QuNx6663hZujQoeHm4YcfDjd5XpNfsmRJuMmyLLvsssvCTd++fcPNjBkzws3EiRPDDUBDkef78hZbbBFuvv7663AzaNCgcJNlWTZq1Khw06ZNm3Czdu3acPPv//7v4QaAhmXbbbcNNxUVFUU4ycb+67/+qyTPARqXHj16hJvzzjsv3Oyzzz7hZtq0aeEGgOIpKysLNxdddFG4GTduXLjJszfp379/uMmyLHvhhRdydQ1Vhw4dws2cOXPCTbdu3cJNnveowbd56623StJsimpqasLNK6+8UoST1N9z8rr44ovDzYQJE8JNntem2rZtG26gLnzCOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEldf3ARq6L774Itz06dMn17PuvPPOcLNmzZpwc/XVV4ebJ554Itw0ZDvuuGO4OeKII3I968wzzww3+++/f7jZfPPNw80uu+wSbk4++eRwc/vtt4cbIF3bbbdduJk1a1a42WuvvcLNzJkzw8348ePDzfTp08NNluX7d/fWW2+Fm4cffjjcTJo0KdxUVVWFm9ra2nADNAxDhw6t7yMUVHV1dbgZNmxYuJk6dWq4ybIsW7duXbjZbLPNws20adPCTb9+/cLNWWedFW5GjhwZboB0rVy5siTPqaioKMlzGrqBAweGmwMOOKAIJ9nY2LFjw81XX31VhJMAm5LFixeHmxdeeCHc/PznPw83w4cPDzejR48ON1mWZSeddFK4mT9/frg599xzw83SpUvDDUAxlJWVhZsBAwaUpMlztlK+Jr9s2bJw07dv33Aze/bscANAw9KjR49w07FjxyKcZGPvvfdeSZ4DNC6XXnppuCkvj7/9+5prrgk3ed7XPG/evHADQN306tUr3IwbNy7c5HlfamVlZbhZtGhRuGno8vzc/MUXXww3a9euDTd5tlEAqWvatGlJnpPn5y157luoC58wDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRZbW1tbUF/YJlZYX8ctAojR07NtyMHj26CCfZ2IMPPhhu+vfvH242bNgQbsivwFdBnbkzGr6mTZuGmwkTJoSb4cOHh5sPP/ww3Oy+++7hpmXLluFmwIAB4SbLsmz27Nnh5ve//324qa6uDjfwT+6MxmHPPfcMN6+++mq4adGiRbjJY+HCheFm8ODB4ebFF18MNw3dDjvsEG6WL18ebqqqqsLNbrvt8/62xQAAIQZJREFUFm6WLl0absjPnUEhHXfcceHmN7/5TbhZvHhxuDnggAPCzccffxxuWrVqFW6yLMvOPffccDNy5Mhwk+fPj3//+9/DzR577BFu1q1bF24oLXcGKdpyyy3Dzdtvvx1u/uVf/iXcLFmyJNxkWZZ16tQp3AwZMiTc3HHHHeEG/smdQSHNmzcv3HTu3LkIJymMPP+dlvL/qaeffjrc5HnN6Kmnngo3CxYsCDd57nV/NiktdwakK89rgY8++mi4mTlzZrjJc7Y89xml5c6gvuX53rLXXnuFm+OPPz7c5HlN/plnngk3WZZl559/frjJ814A+L9wZ1BIxx57bLjJ8zPwPD+bPvTQQ8NNQ/+evPnmm4ebcePGhZuLLroo3DRpEv8c0Msuuyzc5Hl/N/m5M6BhuPnmm8PNOeecE27mz58fbrp27Rpu2DQV+s7wCeMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAElVe3wcANvbXv/61vo/wrU4++eRwc/XVV4ebd999N9wAhXfggQeGm+HDhxfhJBs744wzws3atWtL0uT5vgfQkBx22GHhpkWLFkU4ycbmzp0bbvr16xduFi5cGG42RXnuwTyaNWsWbtq0aRNuli5dGm6AhmHDhg3hpra2Ntx06NAh3Pz2t78NNzNmzAg3bdu2DTdZlmWDBg3K1ZXCzJkzw826deuKcBKAuDy/V+7du3e4yXPP7LrrruEmy7LszTffDDdTpkzJ9SyAQsvzM8wuXbqEmzx/znj++efDTZ6fz1RUVISbvBYsWBBuOnfuHG6aNIl/BsLxxx8fbvK4++67w83EiRPDTZ5/1wCpGzBgQEme88c//jHcVFVVFeEkQGM3ffr0kjRXXnlluDn22GPDzfjx48NNlmXZyy+/HG5OOeWUcPPCCy+EG4Dv0759+3CT5/vyypUrw83o0aPDTUN/31T37t3DzT333BNu8ryelccrr7wSbm6++eYinASg4cr7M5AjjzyywCf5ZqtXry7Jc6AufMI4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgESV1/cBAAAAAAC+y29/+9twc91114WbSy65JNzsu+++JWkaurVr14abm266qQgnAWi4li9fHm7KyspK0mRZlrVt2zbcdOzYMdwsWLAg3AAAAGlq06ZNuOnatWsRTrKxBx98sCTPAUjZE088EW6ef/75XM/K8zODp59+Otyceuqp4ebRRx8NN0DjcsEFF4SbvfbaK9ycf/754ebuu+8ON3nstNNO4ebCCy/M9awhQ4aEm8WLF+d6VtSaNWvCTd++fcPNV199FW4AGopmzZqFmzPPPDPXs3bZZZdcXVRFRUW4ueOOO4pwkvqzYsWKcDNmzJginASDcSCktrY23AwcODDcDB8+PNwAhXf44YfX9xG+Vf/+/cNNnz59ws19990Xbt59991wk2VewAGKY7PNNgs3b7/9drj59NNPw02e31vmedFn4cKF4Yb/tccee9T3Eb5VTU1NfR8BAAAAaCBGjRpVkue89dZb4ebnP/95uGnVqlW4adq0abjJ6/PPPy/Jc/L8JSidO3cON6NHjw43eX4GnucNY6eddlq4AQAAAAAAoHFqUt8HAAAAAAAAAAAAAAAAAAAAIB+DcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACSqvL4PAAAAAABQaKNGjQo306dPDzfHH398uPnwww/DzcKFC8NNlmXZPffcE2623377cJPn3/eCBQvCDUDKxo4dG2522WWXcHPrrbeGmyzLssrKynBzzTXXhJtTTz013FRVVYUbAACg/vXv3z/cdOzYsQgnAYptm222CTerV68u+Dmof59//nmubvDgweFm7dq14ebGG28MN6+++mq4WbZsWbgB0tW7d+9w88knn4SbRx55JNwceuih4eaEE04IN7/4xS/CTcuWLcNNlmXZddddF24++OCDcJPn5y3XXnttuFm1alW4ARqXnXfeOdxcfvnl4aZ169bhplevXuGmWbNm4aa2tjbclFKnTp3CzbvvvluS58ydOzfc5FGq5/D9DMaBorv//vvr+whATo8//ni4ufTSS8NN8+bNw81pp50WbvIYNmxYuHn00UdzPSvPwGL+/Pm5ngU0HnlGYnm+t+ywww7hZssttww33jRQWmeeeWZJnpPnBx9vvvlmEU4CAAAApCjPm0tramrCTZ6//OPrr78ON8uXLw83/K88rxmNGDEi3BxyyCHhpkePHuEGAAAAAAAA6qpJfR8AAAAAAAAAAAAAAAAAAACAfAzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkKjy+j4AAAAAAEChVVdXh5vXX3+9JE0ePXv2zNVtv/324aa2tjbcLF26NNwApKxZs2bh5oQTTgg3L7/8cri55JJLwk2WZdnvfve7cDN9+vRwM3To0HBzww03hBsAAPgmW265ZbiZOnVquGnTpk24mTx5crh57rnnws2HH34Ybnbaaadwk2VZNnjw4Fxd1IwZM8KN17OgsK699tpwM3bs2FzPyvN9jIZvw4YN4WbYsGHhZtdddw03J554Yrjxehaka9tttw03LVu2DDdbbbVVuPnDH/4Qbjp16hRu1q9fH24WLVoUbvJ8H8+yLPvTn/4UbubOnRtu5syZE27+4z/+I9wAfJ/PP/883Cxbtqwkza9//etwk+c1mYMPPjjcZFmWXX/99bm6qAkTJoSb8ePHF+EkYDAODVL//v3r+wjf6oMPPgg3CxYsKMJJgFLI8wLJ7rvvHm66desWbioqKsJNZWVluPnxj38cbvK8+TfLsqysrCzc9OvXL9ezgPS0a9cuV3fMMceEmz59+oSbPD+8Xb16dbghvyZNmoSbH/3oR0U4ycbeeeedkjwHAAAA2DTl+UuP8rzxKc8YjYbvk08+CTfr1q0LN3n+OwUAAAAAAIC6ir9bHAAAAAAAAAAAAAAAAAAAgAbBYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIVHl9HwA2dT179gw3PXr0KPxBCuSJJ54IN59//nkRTgJE9erVK9zMmjUr3CxdurQkTR73339/uPnVr34VboYOHRpuAL5Pv379cnWbb755uHn55ZdzPYuG7fzzzw83+++/fxFOsrExY8aU5DkAKRswYEDJnjV37txwk+c1I4CUVVZWhpt27dqFm7POOivcfPHFF+Emy7LsqaeeCjcPPvhguDnppJPCzaRJk8LNhg0bwg3QuFRUVISbPN/LP/jgg3BDaR1++OHhpnXr1uFm4sSJ4QYovLFjx4ab4447rggn2diBBx4Ybj7++ONwM3/+/HDTvHnzcJNlWbbzzjuHmyVLloSbESNGhJuvv/463ADfbvr06eHmmWeeyfWs1157Ldw88MAD4ea5554LNzR877zzTn0fAWjgVq1aFW7mzJkTbnr37h1uOnToEG7ee++9cDN58uRwc/3114ebH/zgB+Emy/KdL4+f/vSnJXkOwPfJ8/rPpvaezHXr1tX3Eb7Tiy++WN9HgP/PJ4wDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASFR5fR8ANnWXXHJJuGnevHkRTgI0dt26dQs3s2bNKsJJ6s9uu+0Wbo477rginOSbVVdXl+xZQOPx8ccf1/cRKIL99tsv3Fx88cVFOMnGXnrppXAze/bsIpwEoOHaf//9w81RRx1VhJN8s8cee6xkzwJIVb9+/cLN3XffHW4a+utzq1atCjf77rtvuNl7773Dzeuvvx5ugHTddddd4ebKK68MN0OHDg03I0eODDfkt9NOO4Wb0aNHF+EkG1uxYkVJngONyQ477BBuhgwZUoSTbCzP7+W7dOkSbjp27BhuWrduHW5KafXq1eHmhz/8YbiZN29euAG+3e9+97tw8/bbb+d61uDBg8PNjTfeGG722GOPcLNkyZJwk+f70WuvvRZu1qxZE25KKc+/7x49eoSbPHfG8ccfH26AxqVPnz7hpnv37uFm6dKlJWlK5YADDsjV5fkZzZNPPhluVq5cGW4AKI48Py+GxsonjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIVHl9HwBSsdNOO+XqdttttwKfpHAWLVoUbm666aYinAQohcrKynBTVVUVbm644YZwk8cWW2wRbn7961+HmzZt2oSbefPmhZssy7ILL7wwVwfwXbbffvtws/XWW4ebNWvWhBuyrFOnTrm6Bx54INzsuOOO4aa6ujrcXHDBBeEmz+85AFLWq1evcPODH/ygCCf5ZrfffnvJngWQqoMPPjjcTJo0qQgnqV9lZWXh5h//+Ee4yfPzDKBxWbFiRbjJ8z2sZ8+e4Yb82rdvH24mTJgQbvbYY49wM27cuHBTqp+hQWPSpEn8s1KaN29ehJNs7N133w03U6dODTdjx44NN507dw43pbTXXnuFmyeffDLcXHvtteHm+uuvDzefffZZuIHGIs/v47Msy6666qpwc80114SbPffcM9x069Yt3HTt2jXc5Hlf6nbbbRdudt1113DTsmXLcJNlWfbxxx+Hm9mzZ4eboUOHhptnn3023AB8n1deeaW+j1BQ22yzTbgZNWpUrmetXLky3OT5/g9Aw9G2bdv6PsJ3yvP+XCgWnzAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFHl9X0ASMXpp5+eq+vQoUNhD1JAN998c7hZuHBhEU4ClMI999wTbsaPHx9u1q5dG27++te/hpspU6aEm86dO4ebf/zjH+Fm5MiR4SbLsmzZsmW5OqBxmDZtWq5u+PDh4ebKK68MNxdffHG4qa6uDjcNWffu3cPNfffdl+tZP/zhD8PNhg0bws1ZZ50Vbt55551wA9DY9O7du2TPyvNnmqqqqiKcBKDh2mabbcJN06ZNw80bb7wRbkqpa9eu4aZ///7hZsaMGeFm5cqV4QZoXO68885w06dPn3BzwAEHhJsePXqEm5deeinclFKrVq3CTZcuXcLNvffeG27y/Czo0UcfDTcTJkwIN0Dh5XndY8iQIeHm9ttvDzfnn39+uKmtrQ03ef5s8v7774ebvK9nLV26NNzsuuuu4WbMmDHhZtSoUeEmzx14zjnnhBug8PL8rHTOnDklaQBgU3DooYeGmwMPPDDXs0477bRws3z58lzPAoC6cM/QkPiEcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJMhgHAAAAAAAAAAAAAAAAAABIlME4AAAAAAAAAAAAAAAAAABAogzGAQAAAAAAAAAAAAAAAAAAEmUwDgAAAAAAAAAAAAAAAAAAkCiDcQAAAAAAAAAAAAAAAAAAgEQZjAMAAAAAAAAAAAAAAAAAACTKYBwAAAAAAAAAAAAAAAAAACBRBuMAAAAAAAAAAAAAAAAAAACJKq/vA0B96N69e7i54oorinCSwlm4cGG4uf/++4twEqChmjZtWrjp27dvuJk8eXK4KZW//e1v4Wbw4MHh5sUXXww3AN9n1apVubqpU6eGm5EjR4ab7bbbLtzceOON4Wb27NnhZueddw43V155Zbjp169fuGnWrFm4ybIsq62tDTdnnXVWuJkyZUq4AWhsevfuHW722WefIpzkm/3+978PN2vXri3CSQAarvXr14ebPL8n32WXXcLNjBkzwk3btm3DTZble11v3bp14eaBBx4INwDFcPnll4ebp556Ktw88sgj4eahhx4KNy+//HK4Ofroo8NNlmXZ/vvvH266dOkSbr766qtw82//9m/h5vHHHw83ec4GFF5NTU24ufPOO8PNp59+Gm7GjBkTbv7nf/4n3MyfPz/c5HnvQJ73JeWV52dBxx13XLgZNmxYuPn73/8ebgAAIDWdO3cON3n+rPXGG2+EmyzLst/85je5OgCoi6qqqnCzcuXKIpwE8vEJ4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASVVZbW1tb0C9YVlbILwdFceSRR4abmTNnFuEkhbP33nuHmzlz5hT+ICSpwFdBnbkzGr4WLVqEm759+4ab/v37h5vHH3883DzxxBPhZtmyZeEGNmXujPRsttlm4ebee+8NN5WVleEmz6/r+vXrw015eXm4adq0abjJI88/T5Zl2ZAhQ8LNlClTcj0L8nJn0Fi89NJL4aZ79+5FOMk3u/XWW8PNeeedV4STwLdzZ5CilStXhpuPPvoo3Nxzzz3h5vLLLw83WZbvtcCjjz463Dz77LPhBv7JnUF923PPPcPN6aefHm4GDRoUblq2bBluSvn/1J133hlunnrqqXAzY8aMcMOmyZ0BQF25MwCoK3cGjcVll10Wbs4+++xw06NHj3CTZVm2aNGiXB2UkjsDCusnP/lJrq5Pnz7hZvr06eHmL3/5S7iBfyr0neETxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkqry+DwAAAAAAkKomTUrzd3KuWbMmV3fLLbcU+CQAZFmWXX/99eHmsssuCzfXXnttuMnrxBNPDDfPPvtsEU4CAAAAAAAUQqdOncLNFVdcEW6mTZsWbhYtWhRuAGic5syZU9IOUmYwDg3Q9OnTw82f//znIpwEaOy++OKLcHP//feXpAGgbtavXx9uTjnllHAzbty4cFNZWRluDj300HBz+OGHh5v3338/3Dz66KPh5le/+lW4ybIse++993J1AAAAAOT3l7/8JdyMGDGiJA0AAAAAAADQuJXm428AAAAAAAAAAAAAAAAAAAAoOINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFFltbW1tQX9gmVlhfxyUBRHHnlkuJk5c2YRTvLN9t5773AzZ86cwh+ERqPAV0GduTMA0uPOAKCu3BmkqHXr1uHm1VdfDTcdO3YMN3fddVe4ybIsO+uss3J1UEruDADqyp0BQF25MwCoK3cGAHXlziBFkyZNCjfl5eXhZujQoeEGNmXuDADqqtB3hk8YBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJCostra2tqCfsGyskJ+OSiKzp07h5urrroq17Nmz54dbn75y1+GmwL/r0wjU1///bgzANLjzgCgrtwZANSVOwOAunJnAFBX7gwA6sqdAUBduTMAqCt3BgB1Veg7wyeMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEiUwTgAAAAAAAAAAAAAAAAAAECiDMYBAAAAAAAAAAAAAAAAAAASZTAOAAAAAAAAAAAAAAAAAACQKINxAAAAAAAAAAAAAAAAAACARBmMAwAAAAAAAAAAAAAAAAAAJMpgHAAAAAAAAAAAAAAAAAAAIFEG4wAAAAAAAAAAAAAAAAAAAIkyGAcAAAAAAAAAAAAAAAAAAEhUWW1tbW1Bv2BZWSG/HAAlUOCroM7cGQDpcWcAUFfuDADqyp0BQF25MwCoK3cGAHXlzgCgrtwZANSVOwOAuir0neETxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkqqy2tra2vg8BAAAAAAAAAAAAAAAAAABAnE8YBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABJlMA4AAAAAAAAAAAAAAAAAAJAog3EAAAAAAAAAAAAAAAAAAIBEGYwDAAAAAAAAAAAAAAAAAAAkymAcAAAAAAAAAAAAAAAAAAAgUQbjAAAAAAAAAAAAAAAAAAAAiTIYBwAAAAAAAAAAAAAAAAAASJTBOAAAAAAAAAAAAAAAAAAAQKIMxgEAAAAAAAAAAAAAAAAAABL1/wB2hnwyWFFROwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define the number of images you want to plot\n", + "B = 10\n", + "\n", + "# Create a 2xB grid of subplots\n", + "fig, ax = plt.subplots(2, B, figsize=(20, 6))\n", + "\n", + "# Plot the model's samples in the first row\n", + "for i in range(B):\n", + " ax[0, i].imshow(samples[i, 0].cpu().detach().numpy(), cmap='gray')\n", + " ax[0, i].axis('off')\n", + "\n", + "# Plot the test images in the second row\n", + "for i in range(B):\n", + " ax[1, i].imshow(test_data[i, 0].cpu().detach().numpy(), cmap='gray')\n", + " ax[1, i].axis('off')\n", + "\n", + "# Add row titles\n", + "fig.text(0.5, 0.92, 'Samples from Diffusion Model at Epoch 100', ha='center', fontsize=30)\n", + "fig.text(0.5, 0.48, 'Test Set from MNIST', ha='center', fontsize=30)\n", + "\n", + "# Adjust spacing between subplots for better layout\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Normalize with respect to test_images as that is what we are comparing to\n", + "normalized_normalized_test_data = ((test_data - torch.min(test_data)) / (torch.max(test_data) - torch.min(test_data))) \n", + "normalized_samples = ((samples - torch.min(test_data)) / (torch.max(test_data) - torch.min(test_data))) \n", + "\n", + "# Reshape\n", + "normalized_samples = normalized_samples.data.reshape(-1, 28*28)\n", + "normalized_normalized_test_data = normalized_normalized_test_data.data.reshape(-1, 28*28)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PQMass\n", + "\n", + "The way PQMass works is that given two distributions, $p$ and $q$, it randomly selects reference points from each dataset. Then it constructs $n_R$ Voronoi tesellations around those centers. Then based on the distribution of each dataset, the number of samples in a given region is counted. It follows that any given sample follows a Multinomial distribution, it can be in region A or any other region, in which the PQMass paper constructed a way to evaluate both a $\\chi^2$ metric and a p-value to measure if the $p$ and $q$ come from the same distribution or not. For this notebook we use the $\\chi^2$ metric." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "99.04893425663707 11.433193566118554\n" + ] + } + ], + "source": [ + "zs = []\n", + "num_repeats = 35\n", + "n = len(samples) // num_repeats\n", + "m = len(test_data) // num_repeats\n", + "\n", + "for i in range(num_repeats):\n", + " for _ in range(num_repeats):\n", + " z = pqm_chi2(normalized_samples[i*n:(i+1)*n].cpu(), normalized_normalized_test_data[i*m:(i+1)*m].cpu())\n", + " zs.append(z)\n", + "\n", + "print(np.median(zs), np.std(zs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above we show the median and the standard deviation but if you want to see another way of showcasing how in or out of distribution your samples are, you can plot them against the $\\chi^2$ distribution. You want your samples (blue) to match the test distribuition (red). We show that the generated samples are well in distribution with the test set from MNIST meaning our model has learned the correct underlying distrubution!" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAKoCAYAAAAyFeVdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AACl9UlEQVR4nOzdeZwT9f3H8XfYBcQDssvPAwstBI961CMLnq1VyeKBrVci1dpWrbuLVm29EsFbq5AVb6skSz3qCbvFelbZgNarVkjEarUqG1FQvMgGUDl35/dHmrCz95Fkssnr+XjsA/KZme98cs7kk+/3OzbDMAwBAAAAAAAAaTLA6gQAAAAAAACQXyg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4AQAAAAAAIK0oOAEAAAAAACCtKDgBAAAAAAAgrSg4Acgqn88nm83W5s/n8/W6zfLy8nbbDIVCqXWqqqraXae6urrTtqPRqGw2m0pKSkx/ye2TysrK2l2v5V9n+woGg/J4PBo7dqxKSko0duxYVVVVKRqNmh67lvdJkiKRiMaOHZu2v6qqqp4+/DmVR3/Q2+ca6cNz0H1VVVUqLy9PPVYej8fqlPqsurpa5eXlqb+6ujqrU8opmT5edqWurs70/rTZbBo7dqx8Pp/pPSoljj2dHS96+163+jFA/+LxeEyfk305p20tHz+DUWAMALBAY2Oj4Xa7DYfDYUgy7HZ7r9oJh8OG0+k0JBmSDL/f3+U2lZWVqfUlGQ0NDT3aj9vt7nCbxsZGw+Vypdr2er2dttvQ0GA4nU7D6XQa9fX1pnZqa2sNp9Np+P1+o6GhwZBkWscwDKO2tjb1+Hm9XqO+vt4Ih8NGQ0OD0dDQYITD4dRjLMkIBAKpZcnlgUAgdd+cTmeXj0V7ciWPXNbX5xp9x3PQc7W1tYbf7zfsdrshyXC5XFan1CcOh8NwOBxGY2OjYRhG6n515zhQiDJ5vGwtEAikno/KysoO36OVlZWpuMPhMNxud5u20vlez+ZjgP4p+TnZ3XO/3rSdL5/BKDwUnABYJhAImA7QtbW1PW7D6/UagUCgRyeCfr/ftN/uFjcaGhq6VRhr2XY4HO50XYfD0eXJQ2VlZepEo/VJcfK+d3a/W54sJ79ktSdZAOyNXMkjl/X1uUbf8Rz0XvJzrT9/2XG73abP5WSxoTuf1YUq08dLwzD/UON2uzs9PhhG4rjvcrkMr9eb2qa1dL7Xs/EYID8kz3PSWXBKyofPYBQmhtQBsJTdbpfb7ZYkBQKBHm8fj8dVWlqaut3y/51xOp3y+/2SEl3yu+omL0kOh0MOh6PHOXYkOTygtra20/UCgUCH+21oaJDX601LXn6/X7FYrFfb5koe6dDVEI3eSMdznQ6ZuG/9Ra48B/2V3W63OoU+icfjqqurk8PhkNPplJT4TK+vr1dtbW0qhrYyebyMx+MqKytTKBRSZWWlamtru3yt+f1+lZeXd5hHJt7ruXDOgNyXyc/J/v4ZjMJFwQmA5ZJfgEOhkOLxeLe3S87z0Fterzf1JaO9uSEyLRgMyuFwdOskYurUqe3G4/G4ysvL05KPw+HodsEuV/NIh0y8DtLxXKdDtl/juSRXngNYY/HixZLUpgDgcrlSP3qgY5k6Xk6YMEHRaFROp7NHPzq1zKe1TL3XrTpnKCsry/i+srEPAIWJghMAy7lcrtSJYTAY7PZ29fX1crlcfdp3TU1N6v/Z7PkRj8cVj8e7/YuV2+1ud91YLKZx48alLS+Hw9Gjol+u5ZEOixYtSmt76Xqu0yHd962/yKXnANZIfpnmee29dB8vfT6fIpGIJHXZG6k97W2T6fe6FecMkUgk48fDbOwDQGGi4AQgJ1RWVkrq/rC6npxQdsbpdMrr9UpK9LDqScGrL5JDxpIn291xyimntIml63FIcjgcvRrOlit5pEO6r1iVruc6HQr1aly59BwA/VU6j5fxeDw1LM3lcvVq6Fl7Q9Yy/V636pwBAPorCk4AckLyl8JoNNqtE8VgMJi2Xxf9fn/qpLWqqiorv/K17O7f3ftRVlbWZqhZuoax9bW9XMmjr4LBYNqHFaTrue6rTNy3/iJXngOgv0vX8bJloaYvQ+Nb93LOxnvdinMGAOivKDgByAktJ3LtTi+nRYsWpXUyzpZd8/ty8tsTyV9Vk8Wzrk5aKysr28xZkfylNV3cbnevHtdcyaMv6urqMjZEIh3PdV9k8r71F1Y/B0C+SMfxcs6cOan/92VovMfjaVMsysZ73YpzBgDojyg4AcgZyS/Ec+fO7XS9SCSS9h4wTqczNawvFAplZehRIBAwzV1VUlKSuvJOT4YDFIJ4PK6qqiqVlZXJ4/GovLxc5eXlnT5P1dXV8ng88ng8qqqqUlVVVeqxbfn6CYVCGjt2rOlLQzAYlM1mM/315TlJ93Pd3ccj0/ct2VZJSYnpr702PR6PaV2bzSafz2dap7vPWW+k+zkIhUKpxz35HHT15baqqkrl5eUaO3asSkpKUp95yeez5fLWbSXXSe6rrKys0/15PB6VlZWl9pV8rOvq6lJ5jx07VmPHjm3zPPRFJt+rvZF8jScf67q6OtNrPzmsq/Xjlcw3GAymHu/y8vJOn9/q6urUesltfD5fh9tk8/WQTuk4XrZ8z/XlxwWXy9XmR6psHFutOGfIB1a+5nv6/uxIy8/Q5OdWd65a2FJvPieBfssAAIsEAgEjEAikbjc2NhqSDElGbW1th9tVVlYajY2Nqdu1tbWp7VrGO+L3+436+vp2l9ntdkOSYbfb223L6XR2q/1kPuFwuNN1w+Fwap/t/blcrk4fi+6orKzs0eOTKb3No7a21rDb7Ybf7zfF6+vrDUlGZWWlKd7Y2Gg4HI52H7fk42232zvNsXWb6ZCu57qnj0dSJu9bct9dte/1elP3taGhIRXvy3PWE+l6DiorKw2v19sm7na7DUmmz7WW6uvrjUAgkMqhsrLSCIfDhtvtNr0nGhoaDEmGw+EwGhsbO1wn+bi0936qra1tsy+3290mt/r6esNutxsOh6PTz6tAIJB6jDqSzfdqT3WVf21treH3+1OPV/J28r44nc4OX9/hcNhwOBztviaSbbZ3H7P5euitTBwvWx7rM/VVJJ3H1kyfM3SlO+cS/WEfhmHNa76378/WGhoaDJfLZTgcDtPxK7kPl8uVOs62t6+k3h7Du/MZDOQiCk4ALNO64GQYW76wdXZAbX0wTmfBqeUXZ7fb3WZ5ugtOhpE4+fZ6vZ2eHDudzl5/iejPBafkc9vRyVvysW554pb8Yt1Zm1YUnAyj7891bx6PpEzft+R7t7P2GxoaDIfD0W5uvX3Oeqqvz0GyQNPeY2wYhuFwOAxJHX7GGMaW58ntdnd4v5PPl9/v7/DzsOU6HWn5vuvo8yj55U5Smy9SSd0p2GTzvdpT3f2y1vILY8v7koy3PmaFw+EuX/fJx6ajQmQ2Xw89lYnjZfIxSxZqMiVdx9ZMnzN0JZ8KTknZes2n4/1pGInXUrIw39HrJblOZ5+DfTmGU3BCf0XBCYBl2is4tTx56+hX+9YnfuksOBnGli/O7X1pzETBqaWGhgYjEAgYbre7zUlyb09c+2vBqeXJW2frt/512eFwdPlYtVf0aJljpooyLfX0ue7t45GU6fvW8ktkR/n5/f52f0nuy3PWF715vyV7aXV0P5PLOyukJL84dPYZ0Z3Pke58AelOPi3X6+h+d7YvK96rPdXdL2vJx8Fut3dYfGudn9T16XSyh1R7bWbz9dBTmTheZqOHU2t9ObZm+pyhK/lYcMrWaz4d70/DMAyXy2VInfe+Nwyj0x5OfT2GU3BCf8UcTgByisvlMs290Fp9fX2fJhjtjpqamlQO2Z4M1OFwqLKyUrW1tWpsbFRDQ0NqMtNIJNLjeQL6s+nTpysej8vpdKaej/a4XC7F43EtXrxYkmS32xWJRDqdlyadc9b0Vk+f694+HtnidDpT+Xd0qfA5c+bI7Xa3iVv1nPXm/TZ58mTZ7Xa53e52n4fx48dLUrfnBelosuKWbXe0TnKy5OSl4DvT1VW4pk6dKilxv3t6qfd8fK86HI4u5xaqrq5WNBrt1jFp8uTJkrq+P9l6PaRLb46Xnb1GMiWTx1YrzxnyQaZe8+l6f9bV1SkUCklSu8ev7sr1YziQKRScAOSc5EScrScCjcfjWTlRtdvtqqmpSe3Tyqt7ORwOhcPh1AlTd67gly+Sk2eOGzeu0/WSXwqj0aikxCWrpcTJps1mU3l5uXw+n+rq6lJFgORrLJd09Vz39vHIpuR7pb3XaSgU6vDEP1ees+6835xOpxobG01XqWpPd770d+fKWNm6WqPdbk/tq76+vkfb5uN7tTuPe/JKa91ZN3ns6mxS4Fx6PXRXb4+XLe9rXz+rejPRcjqPrb15DOLxeJuLN3T0J0llZWXdWjdZGMnWPvoqk6/5dL0/k+309aql/eEYDmRCsdUJAEBrySsURaNRRSIRU6+JbBV/3G63XC6XQqFQar/pvER6NBpVKBTq9pepQCCgsWPHFtQJSPK+hkKhLn81drvdqZM0l8ul+vp6VVVVpR7nlifIXq839UU3G9L1XPf28cimyspK+Xy+1H1uWWDy+/0dFmky/Zxl6v0WjUZVV1enRYsWpQriPbniUVe9jqTs9gZxOByKRqM9/pzJl/dqS915/ySveNad56jlcx2NRtttP9deD93Vm+Pl5MmTU49fT96brUUiEdXX16d6nlh1bO3pY2C329XQ0NCtz4uysjIFAoEuCxWSuSiSjX30VSZf8+l6fyZfG93JtTP94RgOZAIFJwA5x+FwyOl0KhKJKBAIpH55bGhoyOoBuLa2ViUlJZIS3eQbGhrS1nY8Hlc4HO72+snhHckvg4V0IuJ2u3v8pdPlcqmhoUGRSESLFy9WfX29IpGIotGoqqurFQqFevT490W6n+vePB7ZVFlZqerqavn9/lTBKRqNym63dzmMIFPPWbqfg1AoJJ/Pp0gkkiqKJNdpOfyi0PT392q29PQy7P1BT4+XyeJ0ctveFpwWL16ssrKy1G0rj609fQx6sq9x48b1qtCTjX3km0y/P3P9GA6kG0PqAOSkZE+m5FwikUjEdFKZDXa7PVXsikajaZ9LpKdfSpMnjoVSbErez56e/LXsEu90OlPzdjQ0NCgcDsvhcPRqnpry8vIerd9SOp7r3j4e3dGX+9Za8r0bCoVSv+gGAoFOeydm6jlrKV3vt+rqapWXlysej6uhocFUbOrvknOG9PT+5Np7NVt6cr9bDrHMl9dLSz09Xtrtdnm9XkmJ92ayN0pP1dbWthmqa9WxNdPnDOiZdL0/k7f7OjdaJo/hQC6j4AQgJ7X8tbOurk6BQMCSuTwqKytTv/ile8Lu5JDB7lq8eHFeflHpSHKIRHcnzkyexFVUVHR4Qud0OlPz0/R0npq+SMdz3dvHI9scDkebeVE6m79Jys5zlo7noOWXyPr6+m6/H3O1YNJSPB5PPQfJCXS7K5/eqz3RchhXV5K9XbqaMLg/6+nx0u/3p9avqKjo8f5CoZBp7rEkK4+tmTxnQM+k6/2Z/DxMx7BLKfeP4UC6UXACkLOSB+fp06enve2eHMi7mhy4L7p7RZtIJKJ4PF5Qv5j6/f7UVay6OtHz+XymX7Xnzp3b4brJIRTtfcEYO3Zs7xPuQl+f6748HlJm71t7+5cShZbuzr3W2+esJ/r6HCR75LT3JTdp0aJFksyfMblQMOnqNZP8nHW5XD2+EpMV79VcMHXqVNntdoVCoS6PKcnXTnJy6f4kk8fLBQsWpHqy9WSOxuTk3B09nuk+tubKOQO6L13vT7fbLafTqXg83mXvuc56QfX1GA70VxScAFimoaGh0zkOkiefkUik2yeP3enyvGjRoh79UuVwODI23j4Wi6msrKzTk6F4PC6Px5MaclJIFixYIEmdfhFJ/prd8kuyz+fr9DGNRqPtDiNL/jLd+kSv5eT1vZWO57q3j4eU2fvWmsvlksPhSH2R687rtrfPWU/09TlI/vLdVZ7JfeWSlkMcW0vOl2S323v9ZTnb79Vc0PLx6qyHTjAYVDQaNfXo6S8yfby02+0Kh8NyOp0KBoPyeDxdFgcikYgmTJig2traDnuLpfPYmkvnDOi+dL4/k+10VpgMhUKpwlVHr7u+HMOBfssAAAsEAgFDkiHJCAQCHa5nt9sNh8PRaVuVlZXdasswDMPv9xuSDLvdbtTW1vYoZ4fDYTidzk7XaWxsNFwuVyofr9fb7nrhcNiQZDQ0NBi1tbWGw+EwKisrjfr6eqOxsTHVVm1trWG32w2Xy5WK90Q4HDYcDkcqH7/f3+M20qEvedTX1xsOh8NwuVxGQ0ODaVltbW2bxyb5mmlv/eTzU1lZ2eH+ks9fy9dHbx9/w0j/c93TxyOT960zyfdaZ491Ul+fs66k8zlIPoat82loaDDcbrfR0NBgOJ3O1OMcDofbrOt2u1OfQx3tJ/m51td1vF6vIclwuVyGy+Uy6uvrTcvr6+sNSYbT6Wzz2Pd0X9l+r/ZEy/w7u5/J587pdHb7fZG835WVlW228fv9ht1u7/TYlM3XQ09k+njZWiAQMOx2e+r9FQ6HU8saGxuN+vp6w+12d/paTffnbbYfg/ZIMj0WmZCNfbSUzdd8X9+fScnzGLfb3aadQCBguN1u0/2qra1t83nbMp+eHsPT/f4GsoWCE4CsSn75ae+vveKM3+9vtziRPEnoqC273W460LcsSrX+686JhmEkTjZcLle7y5JfUjrLp+X9aGhoaPNFKhAIGC6XK1WYsdvthtPp7PFJrt1u7/SxSbZtt9s7LIilQ7rz8Pv9htPpNJxOZ+rLc3uvjeQXxeRj7HK5UieCbre73RPA9vaV/LLgdrv7dCKeqee6u49He9ul6751prGxscsv90npeM46k+7nILlt8jF0u92G1+s1faGtrKw0nE6n6bXd2fsheR9bFmb7sk5S8jM3ef/9fn8q5+SXns4+AzvbV0evnWy+V7vSWf7JYkBjY2Onn1Nut7tb+2p9v51OZ7tfcpOseD10R6aPl12pra1NvT6T783kF/2u7k+63utWPwYt5VPBycrXfE/fnx1JttPy8yr5WqqsrEy9XpPrdNR+dz8ne/MZDOQSm2EYhgAAAJB3fD6fqqurVVlZmZrEHUD/YbPZUsMO+/M+ABQm5nACAAAAAABAWlFwAgAAAIAc5PV6M36lxmzsA0BhKrY6AQAAAABAW9m44h1X1QOQKfRwAgAAyFPJy3PHYjFrEwEAAAWHghMAAECeWrx4sSQpEomkik8AAADZwFXqAAAA8kg8HldJSUmHyxsbG2W327OXEAAAKEgUnAAAAAAAAJBWDKkDAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWhVbnQBy2/r16/X2229LkrbffnsVF/OSAQAAAAAgX2zevFlfffWVJOlHP/qRttpqq7S0S/UAnXr77bd1wAEHWJ0GAAAAAADIsDfeeEPjx49PS1sMqQMAAAAAAEBa0cMJndp+++1T/3/jjTc0YsQIC7MBAAAAAADptHLlytTIppY1gL6i4IROtZyzacSIERo5cqSF2QAAAAAAgExJ57zNDKkDAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWhXUpOHBYFC1tbVyOByKxWKSpKlTp8rpdGa93Xg8runTpysSiaRisVhMU6dOldvtbnebaDSqqqoqeTweuVwuORyOVDwSiWjOnDny+/2pOAAAAAAAgBUKpuDk8XgUjUa1YMEC2e12SYlCTVlZmfx+vyorK7PWbjQalc/na1Mcqq6ulsfjkdPpVDgcbrNdPB5XKBRSKBRqNxeKTQAAAAAAIBcUxJC6YDCouro6U1FIkhwOh2pqalRVVWXqaZTpdj0ej+LxuOLxuCnu9XrlcDgUiUTk8/m6nUeyQOX1ent8HwAAAAAAANKtIApOPp9PLpfLVBRKSg5f60mBp6/tRiIRhUIhTZ8+vc2yZA+ljnoxud1uNTQ0qL6+XuFwWIZhKBwO93lYIAAAAAAAQLrkfcEpEokoHo93WpBxOp0KhUJtehxlqt3KykrZ7XZVVVV1uG1paWmHyxwOh1wuF0UmAAAAAACQk/K+4DRnzhxJ0vDhwztcJ1nc6ahXUbrbDQQCamxslMvlarNNcl2Px9PtXAAAAAAAAHJJ3heckgWc9oa9JSWXLVq0yNJ26+rqJCV6MPV2EnMAAAAAAACr5f1V6pLD2TobopZc1pMhdeluNxqNqqKiQk6nUwsWLOh03UgkokAgkLodi8U0efLk1LxRPbFixYpOl69cubLHbQIAAAAAgMKW9wWnWCyWs+tGo1H5fD5Fo1FFIhF5vV75/f5O2wqFQho/fryp4BSNRjV27FhVVlaa4t0xatSoHq0PAAAAAADQlbwfUpfLHA6HamtrFQ6HFQ6HFQqFNHbs2A7nknI4HKqpqZHX620T93q9CgaDCgaD2UgdAAAAAACgQxSccoTT6VQ4HFYsFlN5eXlqPqeW7HZ7h8PmJk+eLEny+Xw92u/y5cs7/XvjjTd6fmcAAAAAAEBBy/uCU3Iepe4MgetsPqZstZucLLyioqJHc0o5HA5JifmiIpFIt7cbOXJkp38jRozodlsAAAAAAABSARScOruKXFKyaNSddTPd7vjx4yUlCkdz585NxaPRqKqqqtrt+dRaNBrt9v4AAAAAAADSLe8LTuPGjZMkNTQ0dLhOskCTLPZkst1gMKiSkhJ5PJ52t0n2VJKkcDic+n8gEFAwGOxwu47aAAAAAAAAyLa8LziVl5dLUqfD05LLOpofKZ3tBgIBxeNx1dXVtdsTqeUQvbKystT/hw8fLmnLkLvWWrbldDq7vgMAAAAAAAAZkvcFp2Sxp6Mrv8XjcUWj0R4XaXrbbrJnlMPhaLcnUsv5l1wuV+r/TqdTXq9XgUCg3f0l8+hJ0QwAAAAAACAT8r7gJEl+v1/RaLTdHkXJeZJqamraLItGoyorK1NVVVXa2vV4PHI6nR0OxUsWlCorK00FKZfL1eG+ktvZ7fZ27wcAAAAAAEA2FVudQDZ4vV4tWrRI5eXlCofDqUm8I5GIfD6f/H5/uz2cAoGAIpGIIpGIqqqq2qzTm3ZdLpeqqqpUVlammpoa0/KqqipFo1G53e52ezL5/X5VVVXJ5/Olej/F43FNmDBBsVhMCxYs6NEE5QAAdNfoy56xOoWctGzGJKtTAAAAyEk2wzAMq5PIlmAwqNraWjkcDsViMcXjcVPxprVIJCKPxyOHw6H6+vq0tSslek8le0gl521yOByqqqrqdDtJ8vl8ikQiisViKi0tldPplN/v78Yj0HMrVqzQqFGjJEnLly/XyJEjM7IfAEBuo+DUPgpOAACgv8vU9/6CKjih5yg4AQAkCk4doeAEAAD6u0x97y+IOZwAAAAAAACQPRScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVhScAAAAAAAAkFYUnAAAAAAAAJBWFJwAAAAAAACQVsVWJwAAQC4ZfdkzVqcAAAAA9Hv0cAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaUXACAAAAAABAWlFwAgAAAAAAQFpRcAIAAAAAAEBaFVudQDYFg0HV1tbK4XAoFotJkqZOnSqn05n1duPxuKZPn65IJJKKxWIxTZ06VW6325L7AQAAAAAAkA4FU3DyeDyKRqNasGCB7Ha7JCkajaqsrEx+v1+VlZVZazcajcrn88nv98vhcKTi1dXV8ng8cjqdCofDWb0fAAAAAAAA6VIQQ+qCwaDq6upMRRpJcjgcqqmpUVVVlamnUabb9Xg8isfjisfjprjX65XD4VAkEpHP58va/QAAAAAAAEingig4+Xw+uVwuU5EmKTl8rb0CT6bajUQiCoVCmj59eptlyR5PoVAobfsDAAAAAADIprwvOEUiEcXj8U7nN3I6nQqFQm16HGWq3crKStntdlVVVXW4bWlpadr2BwAAAAAAkE15X3CaM2eOJGn48OEdrpMs7rTXqygT7QYCATU2NsrlcrXZJrmux+NJ2/4AAAAAAACyKe8LTsniS3vD0JKSyxYtWmRpu3V1dZISw+paT/6dqfsBAAAAAACQbnl/lbrk8LLWQ9RaSi7ryVC0dLcbjUZVUVEhp9OpBQsWZHx/SStWrOh0+cqVK7vdFgAAAAAAgFQABadYLJaz60ajUfl8PkWjUUUiEXm9Xvn9/qzmNmrUqG6vCwAAAAAA0B15P6QulzkcDtXW1iocDiscDisUCmns2LHMwQQAAAAAAPq1vO/h1F84nU6Fw2GVlJSovLxctbW1crvdGd/v8uXLO12+cuVKHXDAARnPAwAAAAAA5I+87+GUnNeoO8PMOpsfKVvtJicLr6ioMM3FlKn9jRw5stO/ESNGdLstAAAAAAAAqQAKTp1d1S0pWcTpzrqZbnf8+PGSEhN/z507N+P7AwAAAAAASLe8LziNGzdOktTQ0NDhOtFoVNKWYk8m2w0GgyopKZHH42l3G4fDkfp/OBzu8/4AAAAAAACyLe8LTuXl5ZJkGp7WWnJZT+ZM6m27gUBA8XhcdXV1qQJRSy2HzJWVlfV5fwAAAAAAANmW9wWnZPGloyu/xeNxRaNROZ3OrLSb7KnkcDhMvZmSIpFI6v8ul6vP+wMAAAAAAMi2vC84SZLf71c0Gm23R1FynqSampo2y6LRqMrKylRVVZW2dj0ej5xOZ4dD4wKBgKTE5OGtC1K9vR8AAAAAAADZVBAFJ6/XK7fbrfLyctOQtEgkIp/PJ7/f327PoEAgoEgkomAwaOp51Jd2XS6XqqqqVFZW1qbNqqoqRaNRud3uVOEpHfcDAAAAAAAgm4qtTiBbamtrFQwG5fF45HA4FIvFFI/HVVtbaxq61tLkyZNVV1cnh8PRYSGnN+1WVlbK5XKleiwl521yOByqr6/vcLve7g8AAAAAACCbbIZhGFYngdy1YsUKjRo1SpK0fPlyjRw50uKMACCzRl/2jNUpoB9ZNmOS1SkAAAD0Saa+9xfEkDoAAAAAAABkDwUnAAAAAAAApBUFJwAAAAAAAKQVBScAAAAAAACkFQUnAAAAAAAApBUFJwAAAAAAAKQVBScAAAAAAACkVbHVCQAAgNwysGmT9ln5oQ75+C3t9vUn2mrzRg3evFGDmjZp8OZNGty0UYM2b9Lgpk0a1LRJgzZvUmzrYXpnx7F6Z8ex+s+ODv1nx7FaPWQ7q+8KAAAALELBCQCAAjeguUl7fvmRDvn4LR3y8b81fsV/tM2m9T1qo2T9Wo2NrdDx7/0jFVs+bMdUAeqdHcfqnZ120dfblKQ7fQAAAOQgCk4AABQgx6oV+smyN3XIx2/poE/e1rAN36Z9H6NWf6FRq7/QMR+8lor98/s/0oP7T9L8XQ/S5iJOQwAAAPIVZ3oAABSQ8cvf0fmvzdFhy960ZP8Hf/K2Dv7kbX25TYke22eiHt3vaK0cur0luQAAACBzKDgBAJDvDEOHfPyWLnjtMR20/J1ub/buDmP0r1F766ttSrShaKA2Fg/UhqJB//t3y+2mAQPkiH2qvb6Iaq8vGvTDrz7S4KbNnba9w7eNuuCfc/S712u1YJcD9NB+x+jlMfvLsHE9EwAAgHxAwQkAgHxlGDo8ulgXvPaYnJ+93+XqDaXf02s/2FevfX8fvf79H6lx62Hd3tU/f7Bv6v/FTZu1y6rl2vuLBu31RYP2/rxBe34ZbXdeqCKjWRM/fF0TP3xdy+wj9Mh+R2vuPuWKDxna7X0DAAAg91BwAgAgz9j+V8Q577U5+tEXDR2u9/XWw/SCY7xe+8E++uf399HnQ/8vLfvfXFSs/+4wRv/dYYzqfuSSJA3avElHf/CqTn/zWR2w4t12txsdX6lpL96n8197TDf/5Ff6i3OSmgcUpSUnAAAAZBcFJwAA8siRS9+Q9x8P6Idff9zhOiu3Ha5ZB7n12D4TtWHg4KzktbF4oJ7c83A9uefh2v2rZTr9zWd14n9e0LYb17VZd7uN63TNgqBOfmeBLj/qd/r3iN2ykiMAAADSh4ITAAB5YMjG9bpqQVCn/nt+h+ssH7aj7jnIrbq9XdpYPDCL2Zm9v/1oXTnxXM346Rk64d0Xdfqbz2qPr5a1We9HXzTob3+5WA86j9XMw36ttYO3yX6yAAAA6BUKTgAA9HM/Wvmhbnt6psbGPm13ebRkZ9198Cn6256Ha3NR7hz6vx28tR7e/1g9vN8xKvv0PZ0Rfko/++/LpnUGyNBvIs/omPdf0/VHnq2n9jhMstksyhgAAADdlTtnnQAAoEcGNDep8o3HdfHLD2pgc1Ob5R8M/77uOmSynv7hj3N7LiSbTeGReyo8ck/9xTlJNzx/t3Zb9YlplR2+bdSdT90kz9shXVU+RctKv2dRsgAAAOgOrj0MAEA/tNOar/XwnCt02T/ub1Ns+nbgVvIefYGO+u1denLPn+Z2samVRaP21qQzb9eMn56hdcVt55c6bNmbev7e8/T7Vx7RoM2bLMgQAAAA3UHBCQCAfubo91/Vc/edp4M/ebvNsiUjdtOxZ96huftOlGHrn4f5TUUDNesgt8rPvlsLxo5vs3xw0yZd+OojmvuITzuu/dqCDAEAANCV/nkmCgBAAdp64zr5n71ds/42Xfb135iWNcumOw+eLPcvq/Vxyc4WZZheK4btqN+efJWqTpymldsOb7N8v5Uf6KkHLpTz0/csyA4AAACdoeAEAEA/sMvXn+jp+3+vyW/Xt1m2Yuj2+sVp03XzYb/KqUnB08Jm0/O7HSLX2feoZvwJ2tyq19YO3zbq0UenytPJ1fkAAACQfRScAADIcfus/EC1D/vkaPyszbKnfvgTHXvmnXpj1N4WZJY93w7eWjccebaO//Ut+ti+k2nZ4KbNuunvd+ia+lkqbtpsUYYAAABoiYITAAA57OCP/61HHrtcJevXmuLfDBqiiyZdqPN/7tWarba1KLvs+89Ou+jnv75VL/9gvzbLzog8rQfnXqmS71ZnPzEAAACYUHACACBHlX/4uu6vvVrbblxnir+106469ow7NG/vCZLNZlF21lk9ZDudccq1mj3u+DbLDv7kbT31wIXa84uoBZkBAAAgiYITAAA56MR3Fuqex2/U4KZNpvhLo/fXL06drk9KRliUWW5oGlCkP06o0EWTLtSGooGmZSPXfKm6hy/VpPdetig7AAAAUHACACDH/Cb8lG595hYVG82m+DO7H6qzT75K6wZtZVFmuWfe3hPk+aW/zVXstt60QX960q+LX3pQMgyLsgMAAChcFJwAAMgVhqELXn1U14YCbRY9ts9Enf9zrzYWD2xnw8L27xG76ee/uU2Lv7dHm2Xn/3OOrgkFKDoBAABkGQUnAABygM1o1pULZ+uiVx5usyw4/kRddvT5ah5QZEFm/cNX25botF/cqEf2ParNsjMiT+v6+ntka9VjDAAAAJlDwQkAAIsVNTep+tk79NvFT7RZVn3Yr3XjEWcV5OTgPbWxeKCmHXWerph4rpps5lOcX735rG54/m6KTgAAAFlSbHUCAAAUsgHNTbr9yZt03PuvmOLNsumq8il6yDnJosz6KZtND+1/rBq32k63P3WTaR6s0956TgOMZk09+jwZNn5zAwAAyCQKTgAAWOiKhX9uU2zabBugi467SE/uebg1SeWBZ/b4iZoGDNCdT1ZrYHNTKv6Lf89XUXOzfMcwRBEAACCT+HkPAACL/HbR33RW+ElTbH3xIFWedAXFpjR4bvdDdd7xPm1qVVjyvBPSTc/epgEtClEAAABILwpOAABY4Jj/vqLLF/7ZFNs4oFhnnXyVFu5ygEVZ5Z/ndztE55wwTRsHmDt1n/yfF3TLM7eoiKITAABARlBwAgAgy5wr3tNtT9+sATJM8Usm/UGvjd7PmqTyWGjXAzXlxGnaUGQuOp3w7j9069M3U3QCAADIAApOAABk0ZjYp5o973oNbtpkilcf9muG0WXQwl0OUNWJV2hD0UBT/OfvvaTbn7xJxU2bLcoMAAAgP1FwAgAgS4Z/G9f9tVerdN0aU/yRfY/W3Qd5LMqqcLw4dpwqTrpC64sHmeLHvf+K/M/dIRlGB1sCAACgpyg4AQCQBVttWq8///U6/SD+uSm+0DFOV048R7LZLMqssLzkKNNvT76qTdHp5HcW6g+vPmJRVgAAAPmHghMAABk2oLlJdzw1U/ut/MAUf3vHsTrveJ+aWl1FDZn16uj9dKb7aq0rHmyK/+HVR+X5d71FWQEAAOQXCk4AAGSSYeiqBTWa+OHrpvCKoTvoLPc1+m7QEIsSK2z//MG++t3xPjXZzKdCNz5/lw5dtsSapAAAAPIIBScAADLo7EWP64zI06bY6sHb6Deea/XVtiUWZQUpMZH41a4qU2xgc5PuefxG7f7VMmuSAgAAyBMUnAAAyJAjl76hK1641xTbUFSsipOvVMP/jbIoK7T0kHOSAgecZIoN3fid7qu9Rjuu/dqirAAAAPo/Ck4AAGTAzmu+1C3P3NImfumxF+qNUXtbkBE6MuPwM/T07j82xXZe+7Xuq7tW22z4zqKsAAAA+jcKTgAApFlx02bd+US17Ou/McX9P/2NntzzpxZlhY4YtgG6+LiLtPh7e5jie375kf70hF/FTZstygwAAKD/ouAEAECaXfLSX1T22X9NsWd2P1T3HOi2KCN0ZUPxIFWcdIWiJTub4od/FNb18++WDMOizAAAAPonCk4AAKTREQ2LNOWNeabYx/addNkxF0g2m0VZoTsatx6mMzzXatWQoab4qf+er3Nfr7UoKwAAgP6JghMAAGkyYs1XuuVp87xNG4qK9bvjL9PawdtYlBV64pOSETr75Ku0vniQKe596S/6+bsvWpMUAABAP0TBCQCANChu2qw7n6xWyfq1pvgNR/xW7+y0i0VZoTfe/N4P9fvjLlGzzD3Sbnr2du39+VKLsgIAAOhfKDgBAJAGF7/8kMZ9+p4p9uxuh+gvzuMsygh98fzuh+iGI39rig1u2qR7/jZdw9at7WArAAAAJFFwAgCgjw5vWKRz/lVnin0ybEf5jv098zb1Y38ed7wecE4yxUat/kK3Pn2zbEazRVkBAAD0DwVVcAoGgyovL1dVVZU8Ho88Ho8ikYhl7VZXV6u8vFwlJSUaO3Zsl9tFo1GVl5crGAwqGo2a4nV1dfJ4PKY4ACDzdlrztW555lZTbOMA5m3KCzabrj+yQou+t6cpfGR0sc57bY5FSQEAAPQPxVYnkC3JYsyCBQtkt9slJQo1ZWVl8vv9qqyszFq78XhcHo9HVVVVqq+vlyRFIhF5PB6VlZXJ6/XK7/e3u10oFFIoFGo3F7/fL4fD0av7AQDouaLmJt35ZLVK160xxW884iy9PWJXi7JCOm0uKtbvjvfpmft/r+2/i6fiF77yiN4asZukSR1uCwAAUMgKoodTMBhUXV2dqSgkSQ6HQzU1NaqqqupVT6fetuvxeOTz+eR2u1Mxp9OpcDgsu92u6upq1dXVtdmuI8ltvV5vj+8DAKD3Ln75QY3/9F1T7LndDtb9ZT+zKCNkwpfbDdf5x3u12bbltGmADN3+1Ezp448tzAwAACB3FUTByefzyeVymYpCScmij8/ny0q7yQKUy+Vqs43dbk/1iKqoqGh3n263Ww0NDaqvr1c4HJZhGAqHw3I6nT3OHwDQez+NhnXu6+YfB5YP21HeY5i3KR+9/v19VP3T35hiJevXSm63tGGDRVkBAADkrrwvOEUiEcXj8U4LMk6nU6FQSPF4POPtJofElZeXt7tNMh6Pxzucj8nhcMjlclFkAgCLDFu3VjOfbTtv03k/92rNVttalBUyLXjASfr7boeYg4sXS7//vTUJAQAA5LC8LzjNmZOY1HP48OEdrlNaWipJHc6NlM52GxoaUrH2htu1nIMpHROaAwDS76oFQW3/bdwUm3H4mXpr592tSQjZYbPJe+zvFS3Z2RwPBKQHHrAmJwAAgByV9wWnZLGnvWFvScllixYtyni7VVVVcjgccrvd7fZQatkbqrO2AQDWOKJhkU7+zwum2ELHON077ucWZYRsWjt4G005cZq+GzjYvGDKFOmtt6xJCgAAIAfl/VXqkgWcZG+j9iSX9WRIXW/bdTqdqV5O7Vm8eHHq/+PGjWt3nUgkokAgkLodi8U0efJk0yTkAID0G7r+G01/7k5TbM2grTXtqPOYt6mAfLD9aF129Pm646mZW4Lr10snn5wYYscPRgAAAPlfcIrFYv1q3WQhqbKyst0eTqFQSOPHjzcVnKLRqMaOHavKykpTvDtWrFjR6fKVK1f2qD0AyGeXL/yzdvrG/Jl+/YSz9fnQ/7MoI1jlyT0Pl/PT/+qMyNNbgg0N0q9/Lf3tb9KAvO9EDgAA0Km8Lzj1J3V1dYpEInI4HPL7/W2WOxwO1dTUtOnJ5HA45PV6VV1drbKystSV7rpj1KhRfc4bAArBYdGwJr9db4r9Y4xTtT9q/yIQyH83HPlbnTHoa+n117cEn3pKuu026aKLLMsLAAAgF/DzW46Ix+OqqKiQ3W5XfX19u72b7HZ7h8PmJk+eLEny+XyZTBMACtK2G77T9OfuMsXWDhqiqUczlK6QbSoaKNXWSttvb14wdSrzOQEAgIKX9z2cSktLFY/HuzWsrbP5mDLdrsfjkSSFw2HTleq6K7lNPB5XJBJpd0Ly9ixfvrzT5StXrtQBBxzQ43wAIJ9MffFefW/tV6bY9CPO0mdDd7AoI+SMkSOlRx+Vysslw0jENm6UTjstMZ/TkCHW5gcAAGCRvO/h1J0rvSWLRj25Klw6262urtbixYs7LTZFo1FVVVWprq6uy/1Go9Eu10kaOXJkp38jRozodlsAkI8O/vgt/XLJc6bYqz/YR4/se7RFGSHnTJggeb3m2LvvSvQ6BgAABSzvC07JK711dmW4ZIFm/PjxWW83GAwqEAjoo48+6rRnUyAQUDAYTPWE6kxvekgBANraeuM6Vf/9DlPs24FbyXf0BQylg9l110mtexffeaf07LPW5AMAAGCxvC84lZcnJnONx+MdrpNc1tH8SJlqNxQKKRAIKBwOt+kFVVdXp1AolLo9fPhwSepwQvCWvZq6O5wOANA57z8e0KjVX5hi/p/+RivsO1mUEXLWoEHSww+3HUJ35pnSl19akxMAAICF8r7glCz2tCzetBSPxxWNRntcpOlru5FIRD6fTwsWLGh3yN2iRYtMPZWcTqe8Xq8CgUC77SXz6EnRDADQsQOWv2O+5L2kf43aWw86J1mUEXLeD38o3XKLOfbll9Jvf7tlficAAIACkfcFJ0ny+/2KRqPtzm00d+5cSVJNTU2bZdFoVGVlZaqqqkpru8kr0iWXxePx1F80GlUkElFdXZ2p4ORyuTrcl5QYcme329vdHwCgZ7batF7Vz95uiq0rHizvMRfIsBXEoRO9VVUl/exn5tjTT0uzZlmTDwAAgEUK4qzZ6/XK7XarvLzcNAQu2cvI7/e32xMpEAgoEokoGAwqEomkpd14PK6ysjJFIhGVlZWppKTE9Dd27FiVlZW1ez/8fr+qqqpMvaqS7cVisQ57SwEAeuaSlx7U6PhKU2zmYb/SxyU7W5QR+g2bTfrzn6UddzTHL75Yeu89a3ICAACwQLHVCWRLbW1tatJth8OhWCymeDyu2tpauVyudreZPHlyqqdRR0Pjetru9OnTu3UVufYm/nY4HKqvr08Vs2KxmEpLS+VyueT3+7tsEwDQtX1WfqCzFj9pioV3/qHuK/tZB1sArWy/vXT//dIxx2yJrVsn/fKX0uuvJ+Z7AgAAyHM2w2BSAXRsxYoVGjVqlCRp+fLlGjlypMUZAUAGNTdrycgfar+VH6ZCG4oG6pgz71R0OJ9/aGvZjE7m9LrggsSV6lryeiV+JAIAADkkU9/7C2JIHQAA3fLnP5uKTZJ0249Po9iE3vH7pb32Msduukl64QVr8gEAAMgiCk4AAEhSLCZNnWoKNZSO1OzxJ1iTD/q/IUOkRx4xD6EzDOlXv0q83gAAAPIYBScAACTp8sulVatMoavKp2hT0UCLEkJe2GcfacYMc+zTT6Vzz7UmHwAAgCyh4AQAwOLFUiBgCj2z+6F6dfR+1uSD/PL730utLyQyZ440b541+QAAAGQBBScAQGFrbpbOOy8x1Ol/vhs4WH888mwLk0JeGTBAeuABqbTUHD/nnDa96gAAAPIFBScAQGG77z7pX/8yhe46eLJWDt3eooSQl3beue0V6778MnElOwAAgDxEwQkAULhiMemyy0yhaMnOmj3+RIsSQl479VTp5z83xx55RHriCWvyAQAAyCAKTgCAwnXlldLXX5tC17iqtLGYicKRATabNGuWZLeb41OmcNU6AACQdyg4AQAKUySS+PLf0kkn6SVHmTX5oDCMGCHdfrs59vnn0oUXWpMPAABAhlBwAgAUnuZm6Xe/S/ybNGSIdOut1uWEwvGrX0nHHmuO/eUv0jPPWJMPAABABlBwAgAUngcekF5/3Ry7/HLp+9+3Jh8UFptNCgSkoUPN8cpKKR63JCUAAIB0K7Y6AQAAsqqxUfL5zLFddpEuucSafNCvjb6s972SPIeeoZv+fseWwGefac5hp8h37O/TkJn1ls2YZHUKAADAQvRwAgAUlquukr76yhy74w5p8GBr8kHBqv1Ruf4xxmmKTX67XodFwxZlBAAAkD4UnAAAhWPJEunuu82x44+XjjnGknRQ4Gw2TT36PK0dNMQUnvHcndp2w3cWJQUAAJAeFJwAAIXBMBJXAms5UfhWW0m33WZZSsBnQ3fQ9CPOMsV2Xvu1pr1wr0UZAQAApAcFJwBAYXj6aenFF82xadOk0aOtyAZIeWTfo/XqD/YxxU576zkdumyJNQkBAACkAQUnAED+27xZ8nrNse9/n4nCkRtsNvmO+b2+HbiVKez/+x3aeuM6i5ICAADoGwpOAID8N3u29N//mmM33CANGdL++kCWrRi2o2YcfoYpNnLNl7ro5YesSQgAAKCPKDgBAPLbmjXS1VebY06ndNpp1uQDdOCh/Y/V66P2NsXODD+lvT5falFGAAAAvUfBCQCQ36qrpS+/NMdmzpQGcAhEbjFsAzT16PO1oWhgKlZkNGv683epqLnJwswAAAB6jrNtAED+WrFCuvlmc+xnP5OOOMKafIAufFT6Pd118Cmm2D6fL9Vvwk9blBEAAEDvUHACAOSvK6+U1q/fcruoSPL7rcsH6IZZB7n14fBRptjFLz+oEWu+sigjAACAnqPgBADIT0uWSA88YI5VVEh77GFJOkB3bSoaqGlH/c4U22bTel1XP0syDIuyAgAA6BkKTgCA/GMY0iWXmL+cb7utdM01lqUE9MSiUXvr0X0mmmLlS/+loz74p0UZAQAA9AwFJwBA/nnuOWnBAnPsssukHXe0Jh+gF6YfcZa+2tpuil0bmqVtN3xnTUIAAAA9QMEJAJBfNm+WLr3UHPve96QLL7QmH6CX1my1ra6fUGGK7fRNTJe89BeLMgIAAOg+Ck4AgPxy//3Sf/5jjv3xj9LWW1uSDtAXT+5xmF4avb8p9uvIM9r3s/ctyggAAKB7KDgBAPLHN98krkzX0r77Sr/6lTX5AH1ls+nyo36ndcWDU6EBMjT9+btU3LTZwsQAAAA6l9WC0/Dhw7O5OwBAoZk5U/r887axoiJr8gHSYLl9J91+6Kmm2J5ffqSzFj9hUUYAAABdy2rByTAMPf7449ncJQCgUHz2mXTTTebYMcdILpc1+QBpNHv8CXpv+9Gm2IWvPKKRq7+wJiEAAIAuZH1Indvt1tSpU7VmzZps7xoAkM+uvlr6rsXVuwYMkKqrrcsHSKPNRcWadtR5apYtFRuyeYOun3+3ZBgWZgYAANC+rBac4vG4Zs2aJZfLpbPPPluTJ0/WkiVLspkCACAfvfeedO+95thZZ0l7721NPkAGvPm9H+qh/Y81xY6IhnXcf1+2KCMAAICOZbXgFAgEVFFRoQkTJmju3LkKBoOqr6/XUUcdpdmzZ2czFQBAPrn6aqm5ecvtrbeWrrvOunyADLnpp7/WF9uWmmJXLJytbTZ818EWAAAA1shqwamiosJ0e9iwYbr00kv1/PPPa8yYMZo8ebLOOeccffzxx9lMCwDQn735plRba45deKE0YoQ1+QAZtHbwNrpmQqUpttM3Mf3h1UcsyggAAKB9WZ/DqSPjx4/XmDFjNHfuXDkcDh111FGaN2+e1WkBAHLdFVeYb9vt0iWXWJIKkA1/3/1Q/WOM0xQ7c/GT2u2rZdYkBAAA0I6sFpyWLVvWJrZw4UJNnjxZJSUluummm9TY2KiTTz5ZM2bM0KpVqzRx4kTNnDkzm2kCAPqLV1+Vnn3WHPN6E0UnIF/ZbLraVaUNRcWpULHRrOvrZzGBOAAAyBlZLTiVlZWl/j979mztuuuuKi8vV21trcaMGaMZM2aosbFRc+fO1f7776+KigrNnz9f+++/v6ZMmUKPJwDAFoYhTZtmju2wg3TBBdbkA2TRstLvadaBblPswOXv6MT/vGBRRgAAAGZZLTgZhqHx48erqKhIVVVVamho0IQJE1RfX6+lS5fq0ksv1bBhw9psN2HCBM2aNUuGYTC5OAAgob5eeuklc+zyy6VttrEmHyDL7jnIreXDdjTFpr1wr4au/8aijAAAALbI+hxO4XA4NVl4Q0OD5s+frwkTJnRr25NPPlnhcDjDGQIAcp5hJIpLLY0aJVVVWZMPYIH1A7fSNS7zBOLbfxfXha88bFFGAAAAW2S94FRdXa1YLKYZM2ZozJgx3dpm5syZOvroo7VmzRqtWrUqwxkCAHLe3/4mLV5sjl19tTR4sCXpAFZZsMuBqt/lAFPs15FntNcXDRZlBAAAkJDVglNpaaku6cWVg2688UbNnz9fY8aM0ZQpUzKQGQCg32hqantlul13lX7zG2vyASx27YRKrS8elLpdZDTruvn3yGY0W5gVAAAodFktOPl8vl5tFw6HFQgEtHjxYh155JFpzgoA0K88+qj07rvm2PXXS8XF7a8P5LkV9p30p4M8pljZZ/+V++2QRRkBAABkueBUUVEhSVqzZk27yxcuXNjusjFjxqiioqLbQ/AAAHlq06bE0LmW9t1X8njaXx8oEMEDT9ZHJSNMsctevF/D1q21KCMAAFDosj6H0ymnnKKSkhIdffTRbZaNGTNGbrebK9EBANp3771SNGqO/fGP0oCsH86AnLKheJCucZmnHRi+bo0ufekvFmUEAAAKXVbP0GfPnq14PC7DMNTQ0HYyyzFjxmj+/PlaunSplixZks3UAAC5bt066brrzLGDDpImTbImHyDH/MNRpr/vdogpdtqS57TPyg8syggAABSyrBacamtrNX/+fNXX12tx66sLtTBjxgwFAoEsZgYAyHn33CN99pk5duONks1mTT5ADrp+wtn6buCWqzUOkKHr59+jAc1NFmYFAAAKUVYLTsOGDZMkTZgwIfV/AAC6tHatNH26OTZhgnTEEdbkA+Soz4buoDsP+YUptu/nH+rUt563KCMAAFCoslpwWr16dbfXjbaeowMAULhuu036+mtz7IYbLEkFyHWzx5+gpaUjTbFLX/qLSr7r/nkYAABAX2W9h1NHV6hr6c0338xCNgCAfiEWk2bONMeOP1468EBr8gFy3Kaigbqq3DyBuH39N7rk5QctyggAABSirBacxo0bpwkTJmjt2o4v0btkyRKdcsopKi8vz2JmAICcdfPNUssfK2w26frrrcsH6AdeG72fnv7hT0yxU5c8r70+X2pRRgAAoNBkteDk9XrV3Nwsu92uc889V/PmzdOSJUu0cOFCzZs3T5MnT1ZZWZnsdrsuueSSbKYGAMhFq1ZJd9xhjv3iF9KPfmRNPkA/csMRZ7WZQPzaUEAyDAuzAgAAhaI42zusra1VeXm5Zs2a1eZKdIZhyOl0au7cuRnZdzAYVG1trRwOh2KxmCRp6tSpcjqdlrRbXV2dumJfaWmpnE5nt7bL1P0AgJxzyy3SN99suT1ggHT11dblA/QjK4durz8ddIoubTGUbtyn7+mEd1/U3/Ziwn0AAJBZWS84ORwONTQ0qLq6WnPnzlUkEpEkOZ1OTZ48WZdeemlG9uvxeBSNRrVgwQLZ7XZJiYnJy8rK5Pf7VVlZmbV24/G4PB6PqqqqVF9fL0mKRCLyeDwqKyuT1+uV3+/P6v0AgJzTXu+m006Tdt/dmnyAfmj2ASfqlLfr9YP456nY1BfvU/0uB+rbwVtbmBkAAMh3NsPI/37VwWBQVVVVamxsTBVpkurq6uTxeBQOh3vcQ6i37ZaXl8vn88nlcpni8XhcY8aMUTweV21trdxud1buR2dWrFihUaNGSZKWL1+ukSNHdrEFAKTJ5ZdLN9645faAAdK772a84DT6smcy2j6QbROW/kt//qt53rNZB5ykGUecldH9LpsxKaPtAwCA9MjU9/6szuHUE5MnT05bW8niTusijaRUUcfn82Wl3WSPrtbFJkmy2+2pHkoVFRVp2R8A9Ev0bgLSZsHYA/SCo8wUO2vxk3KsWmFRRgAAoBDkbMEpWZhJRzvxeLzTXj9Op1OhUEjxeDzj7YZCIYVCoQ6vwpeMx+NxRaPRjN8PAMhJ7c3ddMUV1uUD9Gc2m66bUKmNA7bMpDCoebOuXhBkAnEAAJAxWZ/Dac2aNQoGg2poaOhwnWg0aiq29MWcOXMkScOHD+9wndLSUkmJYlDrYWzpbjd5v0OhkCKRSJsCksPhSP0/EomkbmfqfgBAzqF3E5B2H5V+T/eOP15T/vXXVOynH0VUvvRfqt/1IAszAwAA+SqrBaePPvpIu+yyi6TEFek6U1JSkpZ9hkIhSWp3GFpSctmiRYu6XajpbbtVVVUKhUJyOp3t9lZq2TupZduZuh8AkHPo3QRkxJ0HT9aJ/3lBO34TS8WuXFCjl0bvrw0DB1uYGQAAyEdZLThVVVVpwoQJ8ng8pp48rTU0NOicc85Jyz6TBZxk75/2JJf1ZChab9t1Op2d9u5avHhx6v/jxo3r8/66smJF5/M3rFy5stttAUCf0bsJyJhvB2+tGw8/U7c/fXMq9v3VX6jyjXm689BTLcwMAADko6wWnGKxmKmg0pEJEyaouro6bfvsT+sGAgFJUmVlpak3U6b2l5yJHgByAr2bgIx6Ys/D9cslf9cBK95Nxc59vU5//dEEfTZ0BwszAwAA+Sark4a37LHTFb/fn8FMclNdXV1q3qZCvP8AChy9m4DMs9l0jWuKmmxbTgGHbN6gaQvvtTApAACQj7I+aXh3dXQVt3wVj8dVUVEhu92u+vr6TudqSqfly5d3unzlypU64IADspILgAJH7yYgK97d0aFH9jtav3rz2VTsuPdf0cMfv6V//mBfCzMDAAD5JKs9nDwej2bOnNmtdcvKytKyz+S8Rt0ZZtbZ/EiZbtfj8UiSwuFwu/NbZep+jBw5stO/ESNGdLstAOi1VaukO+80x+jdBGTMzT85XY1bbWeKXRMKqLhps0UZAQCAfJPVgtOECRM0ZswYnXPOOXrrrbc6XXfVqlVp2Wd3egolizg96VWUznarq6u1ePHiDotN6d4fAOScW2+V1q7dcpveTUBGxYcM1c2H/coU2/3rT3R6i15PAAAAfZHVgtNRRx2lGTNmKBQKyel0qqioSMOHDzf9FRUVqaioSDabLS37TM4b1dmV4aLRqCRp/PjxWW83GAwqEAjoo48+6vTKfZm6HwBgOeZuAizxyL5H6T87mM89LnzlYZV+t9qijAAAQD7JasFp0aJFCofDamhokGEYMgxDjY2Npr9kPF2Sc0HF4/EO10kuc7vdWW03FAopEAgoHA636ZVUV1enUCiU1v0BQE6idxNgieYBRbq6vMoUG7bhW1308kMWZQQAAPJJVgtOpaWlCgaDam5u7vSvO/MUdVey+NKyeNNSPB5XNBqV0+nMaruRSEQ+n08LFixodwjcokWLTD2eMnU/AMBS9G4CLLV45F56co/DTLFT33pee3wZtSgjAACQL7JacHI4HKmhYZ2x2+0qKSlJ2379fr+i0WhqyFlLc+fOlSTV1NS0WRaNRlVWVqaqqqo2y/rSbvKKdMll8Xg89ReNRhWJRFRXV9dmiF1v9wcAOYveTYDlph9+ptYVD07dLjKadU0oKKWxxzkAACg8WS041dbWar/99uvWuuFwOG379Xq9crvdKi8vNw1JS/Yy8vv97fYMCgQCikQiCgaDikQiaWk3Ho+rrKxMkUhEZWVlKikpMf2NHTu2wyv09fZ+AEBOamykdxOQA1YO3V53H2Qejn/g8nd07PuvWpQRAADIB8XZ3NmwYcNS/1+yZImi0agcDkeqCLVw4UKNGzdOQ4cONa2bDrW1tQoGg/J4PHI4HIrFYorH46qtrZXL5Wp3m8mTJ6d6GnVUyOlpu9OnT2+3h1JrHU0g3pv7AQA56c47zb2bbDZ6NwEWCR5wkib/u14j13yZik174c9aOHac1g/cysLMAABAf2Uz0jlDdzcsWbJEFRUVqR5DlZWVuueeeyRJb775pnw+n6ZMmaKTTjopm2mhAytWrNCoUaMkScuXL9fIkSMtzghAXli7VvrBDxK9nJJ+8Qvp0Uety+l/Rl/2jNUpAJY45r+v6J4nZphitx56mm7/8Wm9am/ZjEnpSAsAAGRYpr73Z3VI3erVq3XkkUeqsbFRFRUVmjVrlmn5/vvvr/nz52v+/PlatmxZNlMDAGTT3Xebi02SdPnl1uQCQJL0990P1T+//yNTbMq//qqdW/R6AgAA6K6sFpx8Pp8qKyu1dOlSzZo1SxUVFe2uN2vWLPn9/mymBgDIlu++k26+2Rw78URp772tyQdAgs2maydUqsm25fRwyOYNmvrCfRYmBQAA+qusFpwkacaMGV2vJCnLI/0AANkSDEpffWWO0bsJyAn/3WGMHtnvaFPsZ/99WQcsf8eijAAAQH+V1YKTzWbr9rqNrYdaAAD6v/XrpZtuMseOPVbq4OqcALLv5p+crvhW25pi14QCGtDcZFFGAACgP8pqwSkWi3VrvdWrV1NwAoB8dP/90mefmWNcmQ7IKfEhQ3XLj39piu355Uea/O96izICAAD9UVYLTiUlJZo2bZop1t7QOZfLpYkTJ2YrLQBANmzaJLUeVn3kkdLBB1uTD4AOPbz/sXr//75vil3y0l80dP03FmUEAAD6m6wWnPx+v2bNmqWjjz5ajz/+uJYtWyabzaY1a9ZoyZIlmj17tnbddVfF43Fdcskl2UwNAJBpDz0kffyxOXblldbkAqBTTQOKdO2ESlNs+Lo1+sMrj1iUEQAA6G+Ks7mzYcOGae7cuZo4caLq67d0yw4Gg6n/jxkzxrQMAJAHNm+WbrzRHDv0UOmnP7UmHwBdem30fnput4N19Af/TMV+HXlaj+x3tJa26v0EAADQWtavUudyuRSLxXTSSSfJMIzU37Bhw1RRUaGlS5dqzJgx2U4LAJBJc+dKS5eaY1dcIfXgYhIAsu+GI36rDUUDU7eLjWZdtaBG4mrCAACgC1kvOEmS3W5XbW2tmpub1dDQoMbGRsViMc2aNcuKdAAAmdTcLN1wgzk2bpx01FHW5AOg25bbd1LNASeaYocte1MTGt6wKCMAANBfWFJwamnMmDEaNmyYKfbRRx/pnHPOsSgjAEBaPf649O675hi9m4B+4+6DPPp821JT7IqFszVo8yaLMgIAAP2B5QWn9kSjUS1evNjqNAAAfWUY0h//aI7ts4/0s59Zkw+AHvtu0BDNOPxMU2xM40qdEX7SoowAAEB/kNVJw7vTaykWiykUCqm0tLTLdQEAOe6ZZ6QlS8yxyy+XBuTk7x0AOvC3PQ/XryLPqOyz/6Zi57/2mB7f60h9tW2JhZkBAIBcldWC05w5c7R69WoZnUw0abPZZBiG4vF49hIDAKRfe72bdt9dOvlka/IB0Hs2m651VerJv1yUCm23cZ0ueekv8h37ewsTAwAAuSqrBafS0lK5XC5VVVW1WRaPx9XQ0KC5c+dqypQpKisry2ZqAIB0W7BA+te/zLHLL5eKiqzJB0Cf/HvEbqrd2yXPO6FUzPN2SA/tf6zeHrGrhZkBAIBclNWCk91u17Rp07Tffvt1uI7X69Vll12mcePGZS8xAED6XX+9+faYMdKpp1qTC4C0qP7pr3XMB69q243rJEkDZOiaUEAnn34TFwIAAAAmWZ1Ew+/3y+FwdLnejBkzFAgEspARACAjXn5Zeuklc2zqVKk4q79zAEizr7Yt1V0HTzbFyj77r37+3j8syggAAOSqrBacJkyYoKFDh3Zr3c7meQIA5LgbbzTfHjlS+s1vrMkFQFrdO+54LbOPMMWmvnCfhmxcb1FGAAAgF+XsZYIaGxutTgEA0BvhsPTcc+aY1ysNGmRNPgDSamPxQN1w5G9NsRHfrNKUf9VZlBEAAMhFOVlwWrhwoaLRqNVpAAB6Y/p08+0ddpDOPtuaXABkRP0uB+rlH+xnilW9MU8jV39hTUIAACDnZLXgNHz48E7/ioqKVFRUpPLy8navZAcAyHHvvSfNm2eOXXihNGSINfkAyAybTddNqNBm25ZTya02b9RlL9xnYVIAACCXZLXgZBiGGhsbO/wbNmyY9t9/f82aNUtn82s4APQ/06dLLefgGzZMOvdc6/IBkDEfbv8DPeicZIod9/4rOvCTty3KCAAA5JKsFpwcDoeqq6vV3Nzc7l8sFtPixYtVUVGRzbQAAOnw0UfSI4+YY+efL3XzYhEA+p/bDj1NjVttZ4pdvSCoAc1NFmUEAAByRVYLTqWlpXK5XNncJQAgW6qrpaYWXzK33lr6/e+tywdAxq0esp1u/snpptieX36kX/x7vkUZAQCAXJHVglNtba3222+/bO4SAJANK1dK995rjlVVSf/3f9bkAyBrHt3vaP33/35gil3y0oMSVxwGAKCgZbXgNGzYsD63MXPmzDRkAgBIq5tvljZu3HJ70CDpkkusywdA1jQNKNJ1E8zTIZSuWyNde61FGQEAgFyQ1YJTOgQCAatTAAC0tGqVNGuWOXbmmdLOO1uTD4Cse230fnput4PNwbvukt5915qEAACA5YqzubPZs2f3afuGhgZFo9E0ZQMASIs77pC+/XbL7aIiyeu1Lh8AlvjjEb/VEQ2LNbhpUyLQ1CT94Q/S889LNpuluQEAgOzLasHJMAz5/X599NFHqdst2bo4GTEMQyUlJRnLDwDQQ2vXJgpOLZ16quRwWJMPAMussO+k4AEn6fx/ztkSrK+XnnxSOv546xIDAACWyGrBqaKiQi6XS+Xl5XK5XCorKzMtX7p0qf7617+qrKxM48aNMy1btWqVGhoaNG/evGymDADozD33SPG4OXbZZZakAsB6dx/kkfvtkEZ8s2pL8KKLpKOOkrbayrrEAABA1mW14PTRRx9pypQpikQiGjp0aLvr+P1+TZkyRVVVVe2us8suu2Q6TQBAd6xbJ91yizl24onSXntZkw8Ay60btJWmH3Gm7niqxUVeolHp1lulqVOtSwwAAGRdVicNv+yyyzR37twOi01Jfr9fPp+v3WVutzsTqQEAeuree6UvvjDHpk2zJhcAOePJPX6qxd/bwxy84Qbp00+tSQgAAFgi61epGzZsWLfWWbVqVbvLZsyYke6UAAA9tWmTVF1tjk2cKLUaDg2gANlsusZVZZ4o/Ntv6eEEAECByWrBqSdXmOtqAnEAgIUeflj65BNz7PLLrckFQM55Z6ddpLPOMgcffFB6/XVrEgIAAFmX1YJTSUmJXnjhhS7XW716teKtJ6EFAOSGpiZp+nRz7NBDpZ/8xJp8AOSmG2+UWk+jcMEFUnOzNfkAAICsymrBqbKyUi6Xq9Oi07JlyzRu3DiVl5dnMTMAQLfNmyd98IE5dvnl5uEzALDDDtLVV5tjixZJDzxgTT4AACCrsnqVOrfbrSOPPFIul0vl5eVyuVxyOp2SEsPt6uvrVVdXJ6fTqUsuuSSbqQEAusMwEpP/trT//tLRR1uTD4Dcdt55UjAovf/+ltjUqdLJJ7ft/QQAAPJKVgtOklRXV6cjjzxS8+fPV319vWmZYRhyOp2aO3duttMCAHTH3/8uvfWWOTZ1Kr2bALRv0CDpttukY47ZEvviC+n666WbbrIsLQAAkHmWXKUuHA5r1qxZOvLII2UYhgzD0P777y+/36/FixdrzJgx2U4LANCV9no37b67dNJJ1uQDoH84+mjpuOPMsdtvbzs0FwAA5JWs93BKqqysVGVlpVW7BwD01EsvSa+9Zo5NnSoVFVmTD4D+45ZbpOeflzZtStzetEm68ELpmWeszQsAAGRM1ns4JS1ZskTz5s3TkiVLUrGFCxdqzZo1VqUEAOjMjTeab3//+9Jpp1mTC4D+ZdddpT/8wRx79tnEHwAAyEtZLzgtWbJE48ePV1lZmTwejwKBQGpZSUmJ3G635s2bl+20AACdWbxYmj/fHPN6pYEDrckHQP9zxRXSjjuaY3/4g7RhgyXpAACAzMrqkLrVq1fryCOPVGlpqSoqKlRWVqZIJJJavv/++2v+/PmaMmWKnE6nRo8enc30AKBgjL6sZ8NYZj1+g1peh+6rbez6cXSENvSwHQAFbOhQacYM6cwzt8Q+/DAxqbjPZ1laAAAgM7Law8nn86myslJLly7VrFmzVFFR0e56s2bNkt/vz2ZqAIAO7PL1Jzr6g3+aYrPHn6ANAwdblBGAfuvXv5YOPNAcu/566dNPrckHAABkTNaH1M2YMaNb6xmGkeFMAADdcc7rtabbqwdvo4f3O9aibAD0awMGSHfeKdlsW2LffpsYogsAAPJKVgtOtpYnF11obGzMYCYAgO4YFf9cx7/7D1Ps/rKf6ZvBW1uUEYB+b/x46ayzzLFHHpFeftmafAAAQEZkteAUi8W6td7q1aspOAFADqj6119VbDSnbn87cCvdN+7nFmYEIC/ceKM0bJg5dv75UlOTNfkAAIC0y2rBqaSkRNOmTTPF2hs653K5NHHixGylBQBox/bfxOR5u94Ue2S/oxUfMtSijADkjR12kK67zhx76y2pxdWLAQBA/5bVgpPf79esWbN09NFH6/HHH9eyZctks9m0Zs0aLVmyRLNnz9auu+6qeDyuSy65JJupAQBaqXjjcQ1u2py6vaGoWLPHn2BdQgDyy7nnSnvvbY5dcYX09dfW5AMAANKqOJs7GzZsmObOnauJEyeqvn7Lr+bBYDD1/zFjxpiWAQCyz75ujX655O+m2F/3dumL7f7PoowA5J3i4sQE4kccsSXW2JgoOs2aZV1eAAAgLbJ+lTqXy6VYLKaTTjpJhmGk/oYNG6aKigotXbpUY8aMyXZaAIAWzgg/pW02rU/dbrIN0D0HuS3MCEBeOvxw6ZRTzLFgUIpELEkHAACkT9YLTpJkt9tVW1ur5uZmNTQ0qLGxUbFYTLMy/GtWMBhUeXm5qqqq5PF45PF4FEnDCU1f241EIho7dqzi8Xin60WjUZWXlysYDCoajZridXV18ng8pjgA9MY2G77TGeGnTLEn9zhMy+07WZQRgLw2c6a0dYsrXxpGYgLxdub5BAAA/UdWh9S1J1u9mZLFmAULFshut0tKFGrKysrk9/tVWVmZ9XYjkYgCgYBpSGFn4vG4QqGQQqFQu8v9fr8cDkeP7wMAtPTLJX+Xff03phi9mwBkzKhR0rRpiaF0Sa+9Jj30kPSrX1mXFwAA6JOs9nCqqalRUVFRmyvVZVowGFRdXZ2pKCRJDodDNTU1qqqq6lVPp962W11drbKyMgUCAXk8HtO2veF0OhUOh+X1evvUDgAM3rxRFYseN8We3/UgfbD9aGsSAlAYLr5Yav2jmdcrrV1rTT4AAKDPsn6VOsMwFA6Hs7lb+Xw+uVyudgs7brc7tU622vV6vQqHwwoEAnK5XD3ap9vtVkNDg+rr6xUOh1OPp9Pp7HH+ANCa5+2Qtv82bordfZDHmmQAFI6ttpJuu80c+/xz6frrLUkHAAD0XVYLTsmeOM8//3yX686bNy8t+4xEIorH450WZJxOp0KhUJdzKGWj3e5wOBxyuVwUmQCkVXHTZk15vc4Ue/kH++mtnXe3KCMABeW446SjjzbHbrtNev99S9IBAAB9k9WCk8PhkM1m69a6velx1J45c+ZIkoYPH97hOqWlpZLU4dxI2WwXAKxywrsvauSaL02xPx1ySgdrA0Ca2WzS7bdLAwduiW3aJF1wAROIAwDQD2W14DRjxgw99thjmjlzptasWdPpuqtWrUrLPpPFns7mSUouW7RokeXtAoAVBjQ36ZzXa02x8M4/1OujfmRRRgAK0m67SRdeaI7Nny89/nj76wMAgJyV1avUnXPOOZKkBQsWyOfzyW63y+FwpHoCSVIsFlM8Hu92T6iuJIeztdxHa8llPRn6lql2uyN5dbukWCymyZMnp+aN6okVK1Z0unzlypU9bhNA/3Ps+69qbOxTU+zOQyYnehwAQDZdcUXiCnWffbYl9oc/SEcdJW2zjWVpAQCAnslqwWnOnDlavXq1jP91i25sbOxwAvGSkpK07DMWi/WrdbsSCoU0fvx4U8EpGo1q7NixqqysNMW7Y9SoUWnLDUD/ZDOa9bt/zjXF3tlxrF50jLMoIwAFbbvtpJtvlk49dUts+XLphhukG2+0Li8AANAjWR1SV1paKq/Xq8bGxk7/Fi9enM20+g2Hw6Gamhp5vd42ca/Xq2AwqGAwaFF2APqrCUsXaY+vlplidx18Cr2bAFhn8mTpiCPMsZkzmUAcAIB+JO09nNasWaNoNJr6W7p0qT766CN5vV45HA5NnjxZw4YN67QNp9OZth5O+cRut3c4bG7y5Mmqrq6Wz+dTZWVlt9tcvnx5p8tXrlypAw44oEd5AuhHDEPn/XOOKfTh8FF6freDLUoIAJQoeP/pT9I++0ibNydimzZJ552XmNOJgjgAADkv7QWn0aNHa/Xq1bLb7Zo6dap8Pp/GjBkjKdETJ/n/rtTW1na9UjeUlpYqHo93a1hbZ/MxZavd3nI4HJIS80VFIhE5nc5ubTdy5MhMpgUgx/142RLtt/IDU+xPB58iw5bVDrAA0NYee0gXXSRVV2+JhUJSXZ3k8ViXFwAA6JaMfKOw2+2KRqO65JJLTAWm7habJGn//fdPWy5dSRaNurNuptvtSDQaVVVVlerq6rq1LgB0R+veTR/bd9JTexxmUTYA0MqVV0rf+545duGF0jffWJMPAADotowUnGpqarocNpct48YlJr1taGjocJ1kgWb8+PGWt9uRQCCgYDAoTzd+0Uv2dgKAzoxb8R8dtPwdU+yeA91qGlBkUUYA0Mq220q33mqOffqpdP311uQDAAC6LSMFJ5fL1Sa2ZMmSDv8yqby8XFJiqFlHkss6mh8pm+12ZPjw4ZLU4fxMLXs1dXc4HYDCdt5r5ivTfbbd/2ne3hMsygYAOuB2S63PLW+5RXrvPWvyAQAA3ZL2OZwkaejQoW1ijz32mKLRqOrq6mT730SPbrdbDodDDoej3W3SIVnsCYVC7S6Px+OKRqM9LtJkqt2OOJ1Oeb1e+f3+dpcn80hHcQtA/vvRyg91+EdhUyx4wEnaWDzQoowAoAM2m3TXXdKPfpSYOFxKTCR+3nmJOZ2YQBwAgJyU9h5OHU2QPWPGDM2dO1eLFy+WYRgKBAKaM2eOpk+fnrFiU5Lf709dNa+1uXMTv/DX1NS0WRaNRlVWVqaqqqq0ttsbLperw31JiSF3drs9bfsDkN9+97q5d9NXW9v12L4TLcoGALqw++7SJZeYYwsXSnPntr8+AACwXNoLTrYufmVK9vg55ZRTOl3vnHPOSVtOXq9Xbrdb5eXlpiFwkUhEPp9Pfr+/3Z5IgUBAkUhEwWBQkUgkbe22FI1GU9suXry403X9fr+qqqpMvari8bjKysoUi8W0YMGCtExQDiDPvfOOjv7gn6bQ7ANO0PqBW1mUEAB0w+WXS6NGmWMXXSStXWtNPgAAoFMZGVLXle4Moeuq+NJTtbW1qUm3HQ6HYrGY4vG4amtr251zSpImT56suro6ORyODgtHvWm3rq5O06dPVzweVywWSxWJPB6PSktLZbfbNXnyZHm9XtN2DodD9fX1qWJWLBZTaWmpXC5Xh0PtAKCN6dNNN+NbbauH9jvWomQAoJu22Ua67Tbp5JO3xD77TLr2WmnmTMvSAgAA7bMZhmGks8Fdd91VH374YVbWQeatWLFCo/73a+Ly5cs1cuRIizMC0CdLlyaGpjQ3p0K3Hnqabv/xaRYmBSAfLZsxKf2NGoZ0zDHS889viRUVSUuWSHvvnf79AQBQADL1vT/tPZxWrVqlxx9/XGPGjOlwnVgsprfeeksd1boaGhoUi8XSnRoAYMYMU7Hpm0FDdH/ZzyxMCAB6wGaT7rwzUVzauDERa2pKTCD+wgtMIA4AQA7JyJC67lwprau5jZiLCADS7JNPpAceMIUe3H+SVg/ZzqKEAKAXdt1VuvRS6YYbtsT+8Q/poYekX/3KurwAAIBJ2icNlyTDMPr8BwBIs5tuSlxK/H/WFQ/W7PEnWJcPAPTWtGnSD35gjl18sUQPeQAAckZGejglr85WWlra421jsZgaGho0derUDGQGAAXq88+lmhpT6LF9J2rVNnZr8gGAvth6a+mOO6Tjj98S++or6bLLpGDQurwAAEBK2gtONptNl156aZ/amDBhgm666aY0ZQQA0MyZ0oYNqZsbBxQrcMDJnWwAADnu5z9PFJyeeGJLrKZGOuMM6ZBDLEsLAAAkpH1IXUlJSVraYVgdAKTJl19Kd99tCtX9aII+H/p/FiUEAGly553SNtuYY1VV0qZN1uQDAABS0l5wCofDOdUOABS8m2+W1q3bcru4WHcf5LEuHwBIl1GjpOuuM8feeUe69VZr8gEAAClpLzgNGzYsp9oBgIL29dfSn/5kjv3611ph38mafAAg3S64QNp3X3PsmmukZcusyAYAAPxPRq5SBwDIEbfcIn377ZbbRUWJqzsBQL4oLpYCAclm2xJbt046/3yJKRoAALAMBScAyFexWGJ+k5Z++Utp7Fhr8gGATDnwQGnKFHPs6aelxx+3Jh8AAEDBCQDy1m23Sd98s+X2gAHS5Zdblg4AZNSNN0o77miOXXCBtHatNfkAAFDgKDgBQD5qbJRuv90cO/VUabfdrMkHADLNbm87Wfinn0pXXWVJOgAAFDoKTgCQj+64Q1qzZsttm43eTQDy3y9+IZWXm2N33CFFItbkAwBAAaPgBAD5ZvXqxHC6lk45RdpjD0vSAYCssdmku++WBg/eEmtuTszv1NRkXV4AABSgYqsTAACk2Z13SvG4OXbFFZakAqBwjb7sGcv2ff54ty5+5eEtgUWLdOUx5+lB53GW5ZS0bMYkq1MAACAr6OEEAPlk7VrpllvMsZNPlvbe25p8AMACgQPdaigdaYpd+o+/aIe1qyzKCACAwkPBCQDyyZ/+lJgwvKUrr7QmFwCwyMbigbr8qHNNsaEbv9PVC4IWZQQAQOGh4AQA+eKbb6SZM82xE06Q9t3XknQAwEqvf38f1e09wRSb9P6rKv/wdYsyAgCgsFBwAoB8cc890qpWw0Xo3QSggN14xFmKDRlqil0//25tt+FbizICAKBwUHACgHzw3XfSTTeZY8cdJzmd1uQDADkgtvUwXX/k2abYTt/E5HvxfmsSAgCggFBwAoB8EAhIX31ljl11lTW5AEAOeXyvI/SPMebi++lL/q7xy9+xKCMAAAoDBScA6O/WrZOqq82xY46Rxo+3Jh8AyCU2my4/6nf6buBgU3jGc3dq8OaNFiUFAED+o+AEAP1dTY30+efmGHM3AUDKimE7auZPfm2KjY19qvNem2NRRgAA5D8KTgDQn333nTR9ujlWXi4dfLA1+QBAjrq/7DgtGbGbKTblX3X64ZcfWZQRAAD5jYITAPRns2a17d3E3E0A0EbzgCL5jrlAmwYUpWIDm5s047k7NKC5ycLMAADITxScAKC/+vZbacYMc6y8XPrxj63JBwBy3Pvbj9Y9B7pNsf1Wfqgzw09ZlBEAAPmLghMA9Fd33dX2ynTXXWdNLgDQT9x1yC+0tHSkKXbxyw9qZPzzDrYAAAC9QcEJAPqjNWvaXpnu2GOlgw6yJh8A6Cc2Fg/UZcecb4ptvWmDbnz+T5JhWJQVAAD5h4ITAPRHd9whxWLmGL2bAKBbFo/cSw/uf6wpdtiyN3XSfxZalBEAAPmHghMA9DfxuHTzzebY8cdLZWWWpAMA/ZH/p2do5bbDTbErF8zW8G/j1iQEAECeoeAEAP3Nrbcmik4tXXutJakAQH/1zeCtdeXEc02xkvVrdfWCoEUZAQCQXyg4AUB/EoslCk4tud3Svvtakw8A9GOhXQ/U0z/8iSn28/de0lEfvGZRRgAA5A8KTgDQn8ycKa1du+W2zSZdc41l6QBAf3eNq1LxrbY1xf74/N0q+W61RRkBAJAfKDgBQH/x1VeJycJb+sUvpL32siYfAMgDX29TomsnVJpi238X17WhgEUZAQCQHyg4AUB/UV0tffvtltsDBkhXX21dPgCQJx7f6wjV73KAKfbz917S0e+/alFGAAD0fxScAKA/+Pxz6U9/MsdOP13afXdr8gGAfGKzadpR57UdWjf/bpUytA4AgF6h4AQA/cGMGdK6dVtuFxVJV11lXT4AkGe+2rZUV7uqTLH/+261rqufZVFGAAD0bxScACDXffqpNKvVF54zzpDGjrUkHQDIV0/sebjm73qQKXbcf1/Wsf99xaKMAADovyg4AUCuu/FGacOGLbcHDpSuuMK6fAAgX9lsunzi79S41Xam8PXz79bwb+PW5AQAQD9FwQkActknn0g1NebYb38rjR5tSToAkO++2rZEV5dPMcWGr1uj6+rvsSgjAAD6JwpOAJDL/vhHadOmLbcHDZIuv9y6fACgADy5x2F6breDTbFJ77+qSe+9bFFGAAD0PxScACBXLV0q3XefOVZVJY0caU0+AFAobDZdMfFcxYYMNYWvr79H//dto0VJAQDQv1BwAoBcddVV0ubNW25vtZU0dap1+QBAAfl6mxJd1WpoXem6Nbp+/j2SYViUFQAA/QcFJwDIRW++KT36qDl23nnSiBHW5AMABejpH/5Ez+52iCl2zAev6WfvvWRRRgAA9B8UnAAgF02bZr49bBi9mwAg22w2XTnxXK1qNbTuuvpZ2v4bhtYBANAZCk4AkGtefFF67jlzzOeTSkstSQcACtmqbey6cuK5pljJ+rXy//12htYBANAJCk4AkEsMQ7rsMnNsp52kCy6wJh8AgJ794Y/19O4/NsWOjC7W6Uv+blFGAADkPgpOAJBLnnhC+te/zLGrrpK22caafAAAkqQrJ56jL7cpMcUuX/hnOVatsCgjAAByGwUnAMgVmze3nbtp7Fjp7LOtyQcAkNK49TBdeuwfTLEhmzfotqdnqrhpc/sbAQBQwCg4AUCuePBB6b33zLE//lEaONCafAAAJv9wlOkB5yRTbJ/Pl+r3rz7awRYAABSuYqsTyKZgMKja2lo5HA7FYjFJ0tSpU+V0Oi1tNxKJyOPxKBwOy263Z3x/AHLQ+vXS1VebY/vvL51yijX5AADaNf3wM3Xosre0S2zLULpzX6/Vi44yhUfuaWFmAADkloIpOHk8HkWjUS1YsCBV1IlGoyorK5Pf71dlZWXW241EIgoEAgoGg5bfDwAWu/tuaflyc2z6dGkAHVEBIJesH7iVfv+zS/S3By/WwOYmSVKR0axbn75Zx555p74ZvLXFGQIAkBsK4ptMMBhUXV2dqUgjSQ6HQzU1NaqqqlIkEslau9XV1SorK1MgEJDH4+lWr6ZM3g8AFlu9WrrxRnPs8MOliRMtSQcA0Ln/7LSLbvnJ6abY91d/oatD3f8REQCAfGczDMOwOolMKykp0bhx41RfX9/ucpvNJpfL1eHyTLdbUlKieDyuxsbGTotPmbofnVmxYoVGjRolSVq+fLlGjhyZtrYB/M+VVybmamrp9delAw/M2C5HX/ZMxtoGgEIwoLlJjz46TQeu+I8pfs7xl+nvP/xxh9stmzGpw2UAAFghU9/7876HUyQSUTwe73R+I6fTqVAopHg8bnm7ubI/AFnyxRfSLbeYYyeemNFiEwCg75oHFOni4y7S2kFDTPEbn/+Tdli7yqKsAADIHXlfcJozZ44kafjw4R2uU1paKkkKhUKWt5sr+wOQJddfL3333ZbbAwZIN9xgXT4AgG5bMWxHXVV+jilWsn6tZj57m2xGs0VZAQCQG/K+4JQsvnQ2VC25bNGiRZa3myv7A5AF0agUCJhjZ5wh7bGHJekAAHru8b2O0NM//IkpdtiyN/Wb8NMWZQQAQG7I+4JTcnhZsvdPe5LLejIULVPt5sr+AGTBVVdJmzdvuT14sHTNNZalAwDoBZtNl088Vyu3NfdCn/rifdr1q48tSgoAAOvlfcEpFov1q3Wzvb8VK1Z0+rdy5crepAugK2+9JT3yiDl23nnS/ybrAwD0H6uHbKdLJl1oig1u2qQ7nrpJgzdtsCgrAACsVWx1ArDWKL7cAtlnGNLFFyf+TRo6VJo61bqcAAB98uro/TR73PE6e/ETqdgeXy3TlQtn64qjfmdhZgAAWCPvezgBQM559llpwQJz7NJLpU4uCgAAyH03/fQ3em/70abY6Uv+rknvvWxNQgAAWCjvC07JeY26M8yss/mRstVutve3fPnyTv/eeOONXucMoB2bNkmXXGKOfe970kUXWZMPACBtNhQP0nk/9+m7gYNN8enP3alR8c8tygoAAGvk/ZC6zq7qlpQs4nRn3Uy3m+39jRw5spcZAeiVYFD673/NsenTpa23tiYfAEBaNfzfKF1Zfq5ufvbWVGzoxu901xN+uU+vtjAzAACyK+97OI0bN06S1NDQ0OE60WhUkjR+/HjL282V/QHIgHhcuvpqc6ysTPrlLy1JBwCQGX/90QT9da8jTLF9P/9QvhfvtyYhAAAskPcFp/LycklSPB7vcJ3kMrfbbXm7ubI/ABlwww3SqlXm2C23SAPy/qMYAArOlRPPVUPp90yxsxc/IT31lEUZAQCQXXn/LSdZfAmFQu0uj8fjikajcjqdOdFuruwPQJo1NEh33GGOnXSSdNhh1uQDAMio7wYN0XnH+7ShaKB5wRlnSMuXW5ITAADZlPcFJ0ny+/2KRqOpIWctzZ07V5JUU1PTZlk0GlVZWZmqqqrS2m5vZXt/ANLossukjRu33B44UPL7rcsHAJBx7+3g0PUTKszBWEw69VRp82ZrkgIAIEsKouDk9XrldrtVXl5uGpIWiUTk8/nk9/vb7RkUCAQUiUQUDAYViUTS1m5L0Wg0te3ixYszcj8AWOyVV6S6OnPs/POlXXaxJh8AQNY8tN8xemb3Q83BV19tO6cfAAB5xmYYhmF1EtkSDAZVW1srh8OhWCymeDwun88nl8vV7vqRSEQej0cOh0P19fVpa7eurk7Tp09XPB5PXVkuqbS0VHa7XZMnT5bX603L/vpixYoVGjVqlCRp+fLlXNUO6KnmZumgg6RFi7bESkulpUulkhLL0hp92TOW7RsACs3Q9d/o6ft/r++v/mJL0GaTnn9e+t88nQAAWCVT3/sLquCEnqPgBPTRww9Lp59ujt1xR6KHk4UoOAFAdu372fuqe9irgc1NW4I77CC99Za0007WJQYAKHiZ+t5fEEPqAMAS332XmLuppd13l6ZMsSYfAIBl3tp5d8346Rnm4JdfSr/8pdTU1O42AAD0ZxScACBTbrlFWrHCHJs5MzFhOACg4Px5/AnScceZgwsXSlddZUk+AABkEgUnAMiElSulGTPMsQkTpEmTrMkHAGA9m026/36p9VCFG2+UnnjCkpQAAMgUCk4AkAlXXil9++2W2zabdPPNiX8BAIVr+HDpscek4mJz/Fe/kt5/35qcAADIAApOAJBub70l3XuvOXbWWdK++1qTDwAgtxx6aGLYdUtr10onnSR98401OQEAkGYUnAAgnQxDuvDCxL9J22wjXX+9dTkBAHLPeee1vYrpu+8mfqDgItIAgDxAwQkA0mnuXOmFF8yxyy6TRoywJh8AQG6y2aRAoG3v19ratr2fAADohyg4AUC6rF0rXXSROTZqVNsYAACStPXW0l//Ktnt5rjPJ734ohUZAQCQNhScACBdrrtO+uwzc+z22xNfKAAAaM/YsdLDD5svKtHUJJ1yirRihXV5AQDQRxScACAd/vMf6bbbzLGjjpJOOMGKbAAA/cmxx0pXX22OffWV5HZLGzZYkxMAAH1EwQkA+sowEpO/bt68JTZokHTnneZfrAEA6MiVV0qTJplj//qX9PvfW5MPAAB9RMEJAPrqscfazrVx6aXSrrtakg4AoB8aMEB68MHEELuWAgHpvvusyQkAgD6g4AQAfbFmjXTxxebY978vTZtmTT4AgP6rpESaN08aMsQcP+ccafFia3ICAKCXKDgBQF9cd520cqU5xkThAIDe2mcfafZsc2zDBun446VPP7UmJwAAeoGCEwD01jvvtJ0o/JhjEl8KAADordNOky64wBz77LPE8eW776zJCQCAHqLgBAC9kZwovKlpS2zQIOmOO5goHADQdzNnSocfbo6Fw9JvfiM1N1uSEgAAPUHBCQB649FHpX/8wxzz+aRddrEmHwBAfhk4UPrrX9seV+rqpKuvtiYnAAB6gIITAPRUexOF/+AH0mWXWZMPACA/lZZKTz8tDRtmjv/xj9LDD1uTEwAA3UTBCQB66pprpM8/N8eYKBwAkAm7757o1VRUZI7/9rfSP/9pTU4AAHQDBScA6Im3307M09TSscdKP/+5NfkAAPKfyyXdeac5tmGDdMIJ0scfW5ISAABdoeAEAN1lGNLvfmeeKHzwYCYKBwBk3jnnJC5W0dKXX0o/+5m0dq01OQEA0AkKTgDQXffeK738sjnm80ljx1qTDwCgsNx6qzRxojn29tvSL39p/jEEAIAcQMEJALrjs8/aThQ+ejQThQMAsqe4WJozR/rhD83xp57ieAQAyDkUnACgK4YhnXuutHq1Of6nP0lDhliTEwCgMNntiSvXlZaa4zNnSn/+syUpAQDQHgpOANCVujrpiSfMsdNPT0wWDgBAto0dK82bJw0caI5XVUl//7s1OQEA0AoFJwDozKpVbSdp3X576bbbLEkHAABJ0k9/Ks2aZY41NUlut/TGG9bkBABACxScAKAzF12UuApQS3fdJQ0fbk0+AAAknXWW5PWaY999J02aJH3wgTU5AQDwPxScAKAjzz0n/eUv5tjxx0sejzX5AADQ2vTpiavUtfT119JRR0mff25NTgAAiIITALRv7drEXBgtDRsm3X23ZLNZkxMAAK0NGCDde69UXm6OL1smHXOMtGaNJWkBAEDBCQDaM22a9Mkn5tjMmdLOO1uTDwAAHRk0SPrrXyWn0xxfskQ66SRpwwZL0gIAFDYKTgDQ2iuvSH/6kzl2xBHSb39rTT4AAHRlu+2kZ5+VHA5zfMEC6YwzpOZmS9ICABQuCk4A0NL69dLZZ0uGsSU2ZIhUU8NQOgBAbttxR+n55xNXU23pscekiy82H9sAAMgwCk4A0NL110vvv2+O/fGP0tix1uQDAEBP7LJLoqfTNtuY47fdJt18syUpAQAKEwUnAEh6803J7zfHDjhA+v3vrckHAIDeGDcuMadTcbE5fuml0kMPWZMTAKDgUHACAEnatEk66yypqWlLbOBA6c9/loqKrMsLAIDeOOqoxNXrWjvzTOmpp7KfDwCg4FBwAgBJqq5OXM2npWnTpL33tiQdAAD67Fe/ShzfWtq8WXK7pfnzrckJAFAwKDgBwKJF0jXXmGN77SVNnWpJOgAApM0ll0h/+IM5tnGjdPzx0osvWpERAKBAUHACUNi++Ub65S8Tv/gmDRiQGEo3eLB1eQEAkA42W2Ky8DPPNMfXr5eOO0569VVr8gIA5D0KTgAK24UXSh9+aI5dcYV04IHW5AMAQLoNGCDV1EinnWaOf/utdOyxiZ6+AACkGQUnAIXr8cel2bPNsQMPlK680pp8AADIlKIi6YEHpJNPNsfXrElMMN56HkMAAPqIghOAwvTZZ1JFhTm2zTaJy0W3vow0AAD5oLhYeuSRxFC6lhobpfJy6T//sSYvAEBeouAEoPA0Nyfmsli1yhy/4w5pl12syQkAgGwYNEiqrZUmTjTHv/5acrmkDz6wJi8AQN6h4ASg8Nx5Z9vLQZ90UtsJVQEAyEdbbZUYVn744eb4559LRx4pRaOWpAUAyC8UnAAUlrfflnw+c2znnaVgMHElHwAACsHWW0tPPSUdcog5/umn0oQJ0iefWJMXACBvUHACUDjWr09coWfDBnP8/vul4cMtSQkAAMtsu6307LPSuHHm+LJl0mGHSUuXWpIWACA/UHACUDimTpXeecccu+iixESpAAAUomHDpOefl/bd1xz/+ONE0endd63JCwDQ71FwAlAY5s+XbrvNHNtnH+nGGy1JBwCAnFFaKtXXS3vtZY6vXCn99KfSm29akxcAoF+j4AQg/339tXTGGebY4MGJS0MPHmxJSgAA5JTtt5deeEHaf39z/OuvpSOOkP75T2vyAgD0WxScAOQ3w5DOPjvxK21L1dVtf8kFAKCQbb+9tHChdPDB5vjq1Ynh5y++aElaAID+iYITgPx2003SE0+YY0cdJZ1/vjX5AACQy+z2xDD0I44wx7/9VjrmGOnvf7ckLQBA/0PBCUD+WrgwMVF4S8OHS/fdJ9ls1uQEAECu23Zb6ZlnpGOPNcfXr5eOP16aN8+avAAA/UpBFZyCwaDKy8tVVVUlj8cjj8ejSCRiWbs93S4ajaq8vFzBYFDRaNQUr6urk8fjMcWBgrZihfSLX0jNzVtiNpv08MPSiBHW5QUAQH8wZIj0+OPSySeb45s2SaecIj30kDV5AQD6jWKrE8iWZDFmwYIFstvtkhKFmrKyMvn9flVWVma13d5sF4/HFQqFFAqF2m3T7/fL4XD06n4AeWXDBsntlr76yhy/9trEcDoAANC1QYOkxx6TzjpLevDBLfGmJunXv5a++UaaMsW6/AAAOa0gCk7BYFB1dXVqbGxMFXckyeFwqKamRh6PR+PGjZPT6cxKu+nOx+l0qqampsf5A3nrooukf/3LHJs0Sbr8cmvyAQCgvyoulu6/X9pmG2nWrC1xw5DOOSfRo/j66xmqDgBooyCG1Pl8PrlcLlNxJ8ntdqfWyVa7fcnH7XaroaFB9fX1CofDMgxD4XCYYhOQ9OCD0t13m2MORyI+oCA+8gAASK8BAxLH1osvbrvshhuk3/xG2rgx+3kBAHJa3vdwikQiisfjnRZknE6nQqGQ4vF4u0WgdLabjnwcDgdD54D2vPWWVFVljm21VWJy05ISa3ICACAf2GyJK79ut510zTXmZQ8+KH32mfTXv0rDhlmSHgAg9+T9z/1z5syRJA0fPrzDdUpLSyWpw7mR0tlupvIBCl5jo3TSSdK6deZ4ICDtu681OQEAkE9sNunqqxPH1ta9hhcskH7yk8QQOwAAVAAFp2TRprOeS8llixYtyni7mcoHKGjNzYnJS1tfpfHccxNxAACQPpWV0pNPSltvbY6//bZ00EHSv/9tTV4AgJyS90Pq4vG4pC29htqTXJZcN5PtpiOfSCSiQCCQuh2LxTR58uTU/E89saKLX6FWrlzZ4zaBrLvxRunpp82xgw6Sbr3VmnwAAMh3kyZJ//hH4t8vv9wS//RT6cc/Tgxnd7msyw8AYLm8LzjFYrGcWrev+wiFQho/fryp4BSNRjV27FhVVlaa4t0xatSoHq0P5Jz586WrrjLHtt9eqq1NXM4ZAABkxrhx0uuvS8ccI73//pb42rWJ2OzZiQnFAQAFKe+H1OUTh8Ohmpoaeb3eNnGv16tgMKhgMGhRdoAFGhqkU09NXJo5acAAac4caeRI6/ICAKBQjBkjvfZaoldTS5s3S2ecIV1/vfk4DQAoGBSc+hG73d7hsLnJkydLknw+X4/aXL58ead/b7zxRp/zBjJi1arEr6etewJOny4dcYQ1OQEAUIhKS6X6eumUU9ouu+oq6bTTpG+/zX5eAABL5f2QutLSUsXj8W4NZetsXqV0tZupfBwOh6TEvE+RSEROp7Nb242kFwj6o/XrpRNOkD780Bw/8UTp0kstSQkAgIK21VbSo49Ko0ZJN99sXvbYY9J770l/+5s0erQV2QEALJD3PZw6uxpcUrL40511+9pub7eLRqOqqqpSXV1dl9tHW1+pC8gnzc2JLvqvvGKO77uv9MADiUs2AwCA7BswQJo5U7rjjrbH47feSsz5tGCBNbkBALIu7wtO48aNkyQ1NDR0uE6yQDN+/PiMt9vb7QKBgILBoDweT5e5JXs7AXlp2rTEHE0tjRwpPfOMtN121uQEAAC2OP/8xNVjhw0zx1etko46SrrtNuZ1AoACkPcFp/LyckmJoWYdSS7raH6kdLbb2+2GDx8uSaqsrGx3m5a9mro7nA7odwIBye83x7bbLlFs+t73rMkJAAC0deyx0htvSHvsYY43NUkXXpi4et26ddbkBgDIiryfwylZtAmFQu0uj8fjikajPS7S9Lbd3m7ndDrl9Xrlb/1l+3+S7fWkaAb0K88+K517rjlWVCTV1Un77NPhZqMveybDiQEA0H2Fdlza9qhrdcvmWzTxw9fNCx58UP+u/6emnDhNnw3dQZK0bMYkCzIEAGRK3vdwkiS/369oNNru3EZz586VJNXU1LRZFo1GVVZWpqqqqrS225vtXC5Xh9tIiSF3dru93f0B/d6bbyaufNPcbI4Hg9LEidbkBAAAuvTN4K1VdeI03XroaW2W7fP5Uj35wIU6YPk7FmQGAMi0gig4eb1eud1ulZeXm4ayRSIR+Xw++f3+dns4BQIBRSIRBYNBRSKRtLXb2+38fr+qqqpMvaPi8bjKysoUi8W0YMGCHk18DvQLn3wiTZrU9nLKV1whnXWWNTkBAIBuM2wDdPuPT1PFSVfom0FDTMv+77vVevixy/XbNx5nXicAyDM2wyicT/ZgMKja2lo5HA7FYjHF43H5fD65XK52149EIvJ4PHI4HKqvr09bu33dzufzKRKJKBaLqbS0VE6ns8Ohdn21YsUKjRo1SpK0fPlyjRw5MiP7Adq1erX04x9L77T65fP006W//KVbV6QrtKELAADksl2+/kTBeX+Uo/GztgsnTZLuu0/afvvsJwYABSxT3/sLquCEnqPgBMts3JiYcLT15ZMPP1x67jlp8OBuNUPBCQCA3DJ0/Te67amZOjK6uO3CnXeWHn44cbwHAGRFpr73F8SQOgD9zObNiavXtC427bGHNG9et4tNAAAg96zZaludffKVuuPgyWpWq97Kn30mHXmkdNVVifMBAEC/RcEJQG5papLOPFN67DFzfIcdEleqKymxJi8AAJA2zQOKdMthv9KvT7lOX21jNy80DOn666UjjpCWL7ckPwBA31FwApA7mpuls8+WHnrIHN96a+npp6XRoy1JCwAAZMYrY/bXMWfeqZdG79/OwlekffeVnngi+4kBAPqMghOA3NDcLE2ZIt1/vzk+eHDiRHP8eEvSAgAAmfX1NiX6zSnXSn6/VFxsXtjYKJ1wgnT++dL69ZbkBwDoHQpOAKxnGNJ550k1Neb4oEHS3/4mdXHlRgAA0L8ZtgGS15vo1dRej+a77pIOOECKRLKeGwCgdyg4AbCWYUh/+IN0zz3m+MCB0l//Kh19tCVpAQAACxx4oPTmm5LH03bZ228nik5XXZW4mi0AIKdRcAJgHcOQLr1UuuMOc7y4WJo7VzruOGvyAgAA1rHbpTlzpGBQ2mor87KmpsSE4uPG0dsJAHIcBScA1jAMado06eabzfGiIunRRxPzNQAAgMJks0kVFdLixYmJw1ujtxMA5DwKTgCscfXV0owZ5tiAAYkr1Lnd1uQEAAByy157SW+8kThvaD2hOL2dACCnUXACkF2GIV17beIEsSWbTXrgAekXv7AmLwAAkJsGDZKuuUZatKjz3k5XXklvJwDIIRScAGRPU1PianTXXGOO22zSvfdKp59uSVoAAKAf2G+/zns7/fGPUlmZ9NprlqQHADCj4AQgO9avl045Rbr77rbLgkHpjDOynhIAAOhnuurt9M470qGHSmedJX35ZdbTAwBsQcEJQOY1NkoTJ0rz5pnjNpt0zz3S2WdbkxcAAOifOuvtJEn33Sftvnvih66mpqynBwCg4AQg05Yvl378Y+nll83xQYOkxx6TpkyxJi8AANC/ddXbKR6Xfve7xPxOr7+e7ewAoOBRcAKQOe+8Ix18sPTuu+b40KHS888nhtgBAAD0xX77SYsXS7feKm23XdvlkUjifKSiQvr666ynBwCFioITgMz4xz8SPZs+/dQc33nnRG+nww+3JC0AAJCHioulP/xBev996bTT2l9n9uzEMLtAgGF2AJAFFJwApF9dXWLOptWrzfEf/lD65z+lffaxJi8AAJDfRoyQHn5YeuEFac892y6PxRLD+Z1O6bnnJMPIfo4AUCAoOAFIr7vuSgyV27jRHD/kEOmVV6Tvf9+avAAAQOE4/HBpyRLpppukbbZpu/zf/5aOOUZyuaRwONvZAUBBoOAEID3Wr5cqK6Xzz2/7a+Hxx0uhkDR8uDW5AQCAwjNwoHTJJdJ//ytNntz+OgsXSuPGSaeeKkWj2c3v/9u79yC37vL+45/1NbZJcrwmMU7s2DkLzZU4kdbAuKUJXYm7Aw3SLKEwnTB41aF/hF6QskPbzKS0RjudttCZUmlLwoRf29jaAgnNEEYyFNKBSbxSAoQ4hOjYxElM4nr35J44tvX749ujXVnX1Wqllfb9mjkj7bnt155nJZ1Hz/c5ANDjSDgBmL/Dh02/pvHx8m2RiJlit2ZN24cFAACgzZvNnXEzGemKKyrvc9ddZur/zTdLx461d3wA0KNIOAGYn/vuk/z+yuXot90mffWrppEnAABAJw0NST/9qXT77SYJdaY33pC+8hVpYED6m7+RXn65/WMEgB5CwglAc06fNgmlD37QNOCcbe1a07DzL/9S6uvrzPgAAADOtHy5dNNN0uOPS1/6knTuueX7vPii9Bd/Idm26QH10kvtHycA9AASTgDmbmpK+vCHpVtvLe/X9Fu/JT3wQPVbEgMAAHTamjVSLCbl89Kf/Zm0alX5Ps89J0Wj0rZtpuLpzLvvAgBqIuEEYG5yOTOF7rvfLd92ww3SgQPSlVe2f1wAAABztWGD9Hd/ZyqePvWpypXZx4+biqetW6W/+qvyym4AQEUknAA07mtfk3buNE3CZ1u2TBobM83BzzmnI0MDAABo2tat0p13mi/W3v/+yvs8/7z0139t9r3lFlMBBQCoioQTgPqOHzdT5D7zGen110u3nX++tH+/9PnP068JAAB0t6uvNlXcDzwg7dpVeZ+XXpLicTPV7nOfK/8iDgAgiYQTgHq+9S3p8sul//iP8m07d0oPPSRdd13bhwUAALBg3vEO6Z57zOecUKjyl2qvvip9+cvmrnYf+5h0//3lvS0BYAkj4QSgMq+q6YYbKpeM33yz9N//LV1wQduHBgAA0BZXXy2lUtIjj5jPRcsqXD6dPi1985vS7/6u6XN5553lFeEAsASRcAJQrlZVk2VJd90l/eM/SitXtntkAAAA7Xf55dK//Zv02GPSTTdJK1ZU3u+hh6Q//EPT5+m22+jzBGBJI+EEYEa9qqZdu6RHH5WGh9s/NgAAgE5729uk2283d7W7+WbpTW+qvN+zz0q33ipt2WISVA8+yHQ7AEsOCScARr2qpjvvlO6+W9q0qe1DAwAAWFQuvthUez/1lPQP/yDZduX9TpyQvv516Z3vlLZvNz2fjh9v50gBoGNIOAFL3eHDUjhcv6rpU5/iLnQAAACznXuuuVPd449L3/527Rup/PznZt8LLpA+/nEpnTb9nwCgR5FwApaqF16QbrlFuvRSaWKifPv69dI3vkFVEwAAQD3Ll0sf+Yj0gx9IDz9sptGtWlV53xMnpL17pfe+19zh7rbbpCNH2jpcAGgHEk7AUnPypJRISG99qxSPV76Lyq5d0i9+IX3yk1Q1AQAAzMX27abP05Ej0he/aKbfVXP4sOn1tHWrSUDdcYfkuu0aKQAsKBJOwFKSTkvXXCP90R9Jx46Vb+/vp6oJAACgFc4/X/rCF6QnnpAyGenGG6tXPRUK5nPapz8tbdwoffSj5q7AL7/c1iEDQCuRcAKWgoMHpQ99yHxz9sgj5dtXrDB3WvnVr6hqAgAAaKVly6ShIenf/106elT6ylekq66qvv+JE+bLvxtvNEmrG280P1eqSgeARWxFpwcAYAE99ZT0pS9J//Iv0qlTlfe5/nppbEy65JL2jg0AAGCWbbfc2+khtIktvf9v9Parn9DHf/Y97Xr0RzrnxCuVd33lFVPpdNddpkH57/++qX4KBqW1a9s6agCYKxJOQC96/HHTn+kb35DeeKPyPlddJf3935tv3AAAANA+fX36+aa36eeb3qYvvuczCjzxgHY9dr+udSa1+tTJysc8/7z09a+b5ayzTNLp+uulD39Yestb2jl6AGgICSeglzz0kLRnj7nrXKFQeZ+NG00Dy5tuMndUAQAAQMe8uuosfefya/Wdy6/VOa+9pPc9/hPtOvgj7fz1T7WicLryQa+9Jn3nO2aRpHe+0ySfrr9euuIK2iMAWBRIOAHdrlCQ7r/fJJruu6/6fqtXS3/6p9LoqHT22e0bHwAAABrywllvUuqqoFJXBbXhZVcfePzH+uKrPzef9Wp54AGzfOELkm1L73+/qYB6z3vMVDwA6ACahgPd6vRp6d57pXe/W7r22urJptWrpc9+VvrlL6W//VuSTQAAAF3g+DpL/++aD0o/+pF05IhphXDddfUr1B1H+ud/Nv2eNmyQdu6Ubr1V+p//qd5qAQAWABVOQLc5elS64w7pa18zHyiqOfts6Y//WPrc58w0OgAAAHSnzZulP/kTs0xNSd/9rnTPPebxxRerH3fqlPSTn5jlttvM58PrrjPVT0ND0mWXMf0OwIIh4QR0g5MnTQXT+Lipaqp2xzlJOu88k2T67Gcly2rXCAEAANAO/f3SH/yBWV5/XfrhD03y6Z57TCVULS++WNr7acMG6bd/21TMv/vd0jXXSKtWLfy/AcCSQMIJWMwOHZJuv91UND39dO19L7pI+vznpU9/mtvkAgAALAWrV0vvfa9Z/umfpIcflr73PSmdNlPoTpyoffzx4zPJKklas0Z617uk3/kdk4B617toxwCgaSScgMXGdaX/+i/pzjulTKb63eY8V14p/fmfS5/4hLRyZVuGCAAAgEWmr89UKF1zjXTLLdIrr5hm4+m0WX72s/rnePVV6Qc/MIskLVsmXX65tGPHzHLVVVRBAWgICSdgMXjuOenuu6X//E9p/34zha6Wdeukj39c+sxnzG1wmXsPAACA2dauld73PrNI0rPPmi8zMxnzebPe9DvJ3KTmkUfMcscdZt2qVdL27aVJqEsvrd/MHMCSQ8IJ6JQnn5S+9S3pm980Jc+nT9c/ZscOafduk2yaVd687ZZ7F3CgAAAA6HobN870fpKkX//afAa9/37z+ItfNHaeEyekAwfM4jnrLFN1v327qYDylv7+1v87AHQNEk5Au5w8KU1Omm+V7r7bPG+EZUmf/KSpZtq+fUGHCAAAgCVi61azeAmo48elH//YJKDuv998Vq1Xde957TWz/5mfbzdvnklCXXmluSveJZfQbxRYIkg4AQvFK0H+/vdN2fIPf1j7trWzeQ0gh4elG24wDRwBAACAhbJhg7Rrl1kk08/poYdmqpkOHJAef3xu53zqKbPce0Y1/tatJvl06aWlj29+M60igB5CwglolUJBeuIJk2D6/vdNs8Vjxxo/ft066UMfMgmmD36QO4IAAACgc9askXbuNIvHdaVstjQJ1UgvqDP9+tdmue++0vX9/dLAQOVl0ybTxBxA1yDhBDTr6NHSN9vJSVOKPBfr10sf+YhJMgWDZv47AAAAsBhZljQ0ZBbPsWPmDng//enM46OPml5PczU1ZZbZ/aE8Z50l2bZJPl18sXTRRaZS6qKLzHL++SSkgEVmSSWcksmkUqmUbNvW1NSUJGl0dFQ+n68j5233cZiHY8fMm6eXXHrwQenpp5s71+WXmzfp66+Xrr1WWrmytWMFAAAA2uW888qTUG+8YabfeUmon/1MOnhQOny4+d/z2msmkfXoo5W3r14tbdkyk4jaskW68ELpggvMcuGFZqwkpYC2WTIJp3A4LMdxtH//flmWJUlyHEd+v1/xeFwjIyNtPW+7j0MDCgXpmWdm3sgOHpx5/N//bf6827aZN+Df+z2zvOUtLRsyAAAAsOisXCldcYVZPvGJmfWvvGISUQcPSo89ZpaDB82611+f3+98/XXT3uKJJ6rvs2KF+SzuJaAuuMDcvW/jRlMhNftx3Tr6SQHztCQSTslkUhMTE5qeni4maSTJtm2Nj48rHA5rcHBwzhVCzZ633cdhlpMnTWXS4cPSoUMzj7/8pXmze+GF+f+OjRtnkktDQ6bkFwAAAFjq1q6Vrr7aLLOdOmU+l//qV1I+b5JG+bxZHMdUN7XCyZMzjczrWbNmJgF13nmmofmGDWap9nzVqtaME+gRfYVCodDpQSy09evXa3BwUOl0uuL2vr4+BQKBqttbfd52HzcfTz31lLZs2SJJOnLkiDZv3tyycy+oRx6RHn64NKl0+LBpatjo7V0b8aY3SX6/tGPHzLJtW9u/Ddl2y731dwIAAAC6TF/htM5/aUpb3d9o6/RRbXF/owtfPKaPbTglPflk6z/fz8eaNaZH6/r1pt9Vpcdzz5XOOWdmmf3zunVM+UNHLNR1f89XOOVyObmuW7Pqx+fzKZPJyHXdksqhhThvu49bsr78Zelf/7W151y9Wtq+vTS5dMkl0vLlrf09AAAAACRJhb5levbsN+vZs9+sB7dcWVz/sS99yDw5dUr6zW/MXe+efHLmDnhPP23aZTzzjNl++vTCD/bVV83yzDPNHd/XZ+5Ufc455ovtesvatSZJtXbtzHLmz2vWmOWss5giiLbr+YTT3r17JUkbNmyouk9/f78kKZPJKBQKLeh5233ckjWfaWzr1pnG3pddVvp48cUklwAAAIDFZPly04/pwgulnTsr73PqlPTcczMJqGeeMQmpo0elZ58125591iyvvtre8c9WKJgWH61o81HJ6tUzyafZiag1a8y21avNz9Wer1plltWrZ56fuW7lSrPMfl7p55UrTU+tFSvM8+XLSYj1oJ5POGUyGUmqWfHjbTtw4EDDiZpmz9vu45asbdtqb1+71iSQtm0zj7Y9k1zavJlSVgAAAKBXLF8ubdpkFr+/+n6FgvTyy+VJqOPHzU2EZj96z123bf+MeXv99fk3Z19Iy5fPJKK8JJSXlPKen7lursuyZfUfZy+V1i1bZpJj9X6+7DLpAx/o9P9qR/V8wsn9vxcAr/qnEm+bO4cXi2bP2+7j6nmqTsO8I0eOFJ8fPXq04fN23NlnSwMD5naoW7aYJNJFF5nHLVuk/v7qGfRmS2A76OQL87iLHgAAANBl6l3HzMvq1TPXEfWcPCk9/7w0PW0qk55/fmbxfn7hBZOYev55k9B64QXppZekF19sXUP0XnDqlFl6xUc/Kr397Z0eRUNmX+ufbGFPtJ5POE1NTS2qfdt9XD1bGnkR/T/veMc7Gt530cjnOz0CAAAAAC225audHgFQx7e/bZYuc+zYMW2rN2OoQcwbAgAAAAAAQEv1fIUTaps9Za6S1157TY899pg2btyo8847TytWdE/IHD16tFiV9eCDD2rTpk0dHhHQWsQ4lgLiHEsBcY6lgDjHUtCtcX7y5EkdO3ZMkvT2Fk4D7J7sQZP6+/vlum5D08xq9Udq1XnbfVw9mzdvrrvPW9/61obPt1ht2rSpoX8r0K2IcSwFxDmWAuIcSwFxjqWg2+K8VdPoZuv5KXW17urm8ZI4jew73/O2+zgAAAAAAIB26/mE0+DgoCQpX6N5tOM4kqQdO3Ys+HnbfRwAAAAAAEC79XzCKRgMSpJc1626j7ctFAot+HnbfRwAAAAAAEC79XzCyUu+ZDKZittd15XjOPL5fG05b7uPAwAAAAAAaLeeTzhJUjwel+M4xSlns+3bt0+SND4+XrbNcRz5/X5FIpGWnrfdxwEAAAAAALTTkkg4RaNRhUIhBYPBkilpuVxOsVhM8Xi8YmVQIpFQLpdTMplULpdr2XnbfRwAAAAAAEA7rej0ANollUopmUwqHA7Ltm1NTU3JdV2lUikFAoGKxwwPD2tiYkK2bVdN5DRz3k4cBwAAAAAA0C59hUKh0OlBAAAAAAAAoHcsiSl1AAAAAAAAaB8STgAAAAAAAGgpEk4AAAAAAABoKRJOAAAAAAAAaCkSTgAAAAAAAGgpEk4AAAAAAABoKRJOAAAAAAAAaCkSTgAAAAAAAGgpEk4AAAAAAABoqRWdHgDQLMdxFI/HNTk5qf7+fklSOBzWyMhI1WOSyaRSqZRs29bU1JQkaXR0VD6fry1jBuZiYmJCe/fulSS5ritJikQiCoVCNY8jzrHY5HI5hcNhZbNZWZZVd/9mY5jYRyfNNc7HxsaUTqeLn2N8Ph9xjkVvrnFeid/v1/j4eM2YJc7RSc3EOdemVRSALpRIJAqWZRVSqVTJ+mg0WkgkEhWPCYVCBZ/PV5ieni6uy+fzBcuyqh4DdEooFCqLy+np6UIgECiEQqGaxxHnWCyy2WxhZGSkIKkgqSQuq2k2hol9dMpc49x7LZ/9GSabzRZs2y5IKkSj0arHEufolGZezyuJRqMFSYVsNlt1H+IcndJsnHNtWh0JJ3SdRCJRkFRIp9Ml69PpdMGyrILP56t6TKUXjVQqVfeND2ineDxeiMfjVbfbtl3xjYg4x2IRj8cLPp+vMDIyUnxtbuSDW7MxTOyjE5qN80AgUPYZplAwiSjvHGdetBQKxDk6o9k4rySbzRYv5KvFKnGOTphPnHNtWhsJJ3SVfD5fkFSxwiMejxckFWzbLttmWVYhEAhUPa+kmtuBdrJtu5DP56tuj8fjFeOVOMdi1egHt2ZjmNjHYtBInGez2Zqx6FV/WJZV8fzEOTptPgmnQCBQ8Pl8NS+miXMsBo3GOdem9dE0HF0lEolIMnNbzxSNRpVIJJROp0vW53I5ua5bcy6sz+dTJpMp9skBOslxHOVyuarbLcsqzvP2EOfods3GMLGPbpLJZJTJZBQMBitu99a7rivHcYrriXN0u1gsplgsVuxtUwlxjm7DtWl9JJzQNRzHUSaTkaSqf6AjIyOybbtkndd0ecOGDVXP7b35eecHOm337t1Vk07pdFqBQKBkHXGObtdsDBP76Cb5fF6SicVKr/GzP8PM3k6co5s5jiPXdcs+u5yJOEc34dq0MSSc0DUmJiYkzfxBO45T/Lak1h+jt63WHQa8bQcOHGjNYIF5CIVCcl1Xfr9fsVisZJv37fiZ36QQ5+h2zcYwsY9uEolEZNu2QqFQxQuU2d9mz45p4hzdLBKJKJFI1N2POEc34dq0MSSc0DW8P7j+/n5lMhklEglFIhGNjo4ql8tp/fr1Fb8t9D681Srh9bb1Qtkiut/4+HjxjWZsbEwDAwPKZDJKJpOKxWI6dOhQ2ZsUcY5u12wME/voJj6fT/l8XqlUquL2ycnJ4vPBwcHic+Ic3WpsbKzsy7NqiHN0E65NG7Oi0wMAGjW7l0E6nVY8Hi/+HI1Gdfz4cfn9fmWz2ZJvDc/sdVPLXPYFFoplWTp06JDC4bAymYwcx1EwGJRt28pmsxW/ESHO0e2ajWFiH73EqwIZGRkpea0nztGNHMdRPp9XNBptaH/iHN2Ea9PGUOGEruFleDOZTLFB22zeut27d7dzWMCCsCxLwWCw5A3KcRxdfPHFPTGfGwBQamJiQrlcTrZtl1y4AN0qEokQy+hZXJs2hoQTuob3TZ9t22XN17z1kmmyWesOX8Bi5/VvkqRsNqvp6WmFQqHitmAwWJw3DgDofq7ravfu3bIsS+l0umZvD6AbeFPpiGX0Kq5NG0PCCV3Dm8ta6Q/a4/3hz+6B4B3XSElirbm0QLsMDQ0pEAgUS9Aty1IqlSq5CDnz2xLiHN2u2Rgm9tELwuGwJPMlQ6XPOcQ5uok3la7eXenORJyjm3Bt2hgSTugatf6YPd4fZTabLa5r5JsV7w+eb2HQaclkUo7jVCxBDwQCOnTokHw+n1zXVTKZLG4jztHtmo1hYh/dbmxsTJOTk1WTTRJxju7S7FQ64hzdhGvTxpBwQtfwphjV4v1xDgwMFNd5d3nJ5/NVj/Oavu3YsWM+QwTmLZ1O1/xG0LIs7d+/X1Lpmxdxjm7XbAwT++hmyWRSiURChw4dqnnxQpyjW+RyOU1OTsrv92tgYKBs8fpQDg0NFdd5iHN0E65NG0PCCV3DuwifXZJYzexGy8FgUFLt20p627w+OUCnOI5Tt3zWsizZtl3y5kWco9s1G8PEPrqVdxvtSncfnZiYKLlBBHGObuHz+TQ9Pa18Pl9x8WJ9//79xXUe4hzdhGvTxpBwQtewbbs4lajSH6jjOHJdV5ZllVSIeH+o1e7s5bquHMcpeSEAOiUQCDR0FzrHcYhz9JRmY5jYRzfK5XKKxWLav39/xSkTBw4cKKl4Is6xFBDn6CZcmzaGhBO6ijcffN++fWXbvLt2jY+PVzzOcZxieeJs3rkqHQe0WyQSkeM4Jf2ZzpRMJhUKhcreiIhzdLtmY5jYRzfx7kjnxaR3seJdZORyOU1MTJRNsSPO0UuqNUwmztFNuDZtQAHoMvF4vCCpkE6ni+vS6XRBUiEajVY9LhQKFWzbLkxPTxfXZbPZgmVZhXg8vpBDBuYknU5XjMvp6elCNBotBAKBqscS51hs8vl8QVLZ63Y1zcYwsY9OajTOp6enC7ZtF/ettti2XfF44hydNNfX8zNNT08Xj08kElX3I87RSXONc65Na+srFAqFdia4gFbIZDKKx+PFb0ds21YkEql7+9VkMqlUKiXbtjU1NSXXdRWLxeZ821Zgobmuqz179hTLbb2+TpFIpO58buIcnTYxMaE9e/bIdd2yb7H7+/tlWZaGh4cVjUYrHt9sDBP7aKdm4jwWi2lsbKzuuQOBgNLpdMVtxDnaab6v55K5E2MikSg53nVd2bYty7JKboLiIc7RTvONc65NqyPhBAAAAAAAgJaihxMAAAAAAABaioQTAAAAAAAAWoqEEwAAAAAAAFqKhBMAAAAAAABaioQTAAAAAAAAWoqEEwAAAAAAAFqKhBMAAAAAAABaioQTAAAAAAAAWoqEEwAAAAAAAFqKhBMAAAAAAABaioQTAAAAAAAAWoqEEwAAAAAAAFqKhBMAAAAAAABaioQTAAAAAAAAWmpFpwcAAACAhROLxeQ4jhzHkSRFIhGNjIx0eFQAAKDXkXACAADoUcFgUPF4XD6fT5KUyWQUDAaVTqeVSqU6PDoAANDLmFIHAADQg8bGxhSJRIrJJkkKBAKKRqOamJjQxMREB0cHAAB6HQknAACAHpROpxUOh+W6bsn64eHh4nYAAICFQsIJAACgB/l8PlmWVbbeW+f1dAIAAFgIJJwAAAB6UDwe1/T0dFnSKZPJSDL9nQAAABZKX6FQKHR6EAAAAGiPgYEBSVI+n+/wSAAAQC+jwgkAAGCJCIfDsixL2Wy200MBAAA9bkWnBwAAAICFFw6HJYlkEwAAaAsqnAAAAHpcOBxWMBhUKpUqrvN6OQEAACwEEk4AAAA9LBwOa3R0VCMjI8V1ruuWJJ8AAABajSl1AAAAi1AymVQ2m1Umk5Ft20okErJtu+YxuVxOkuTz+SRJfr9fkrRnz56S/RzH0fDw8AKMGgAAwCDhBAAAsMjkcjnl83klEgnlcjn5/X75/X4dOnRIlmVVPMZxHO3Zs6dYuRQOh4sJKO9xtng8vmDjBwAA6CsUCoVODwIAAADVhcNhTUxMKBqNVkwUua6rcDisdDrdgdEBAACUI+EEAACwyHlVTpZlaXp6umSbl2xKpVJVq58AAADajabhAAAAi5zP55Nt23Jdt+zucuFwWIlEgmQTAABYVEg4AQAAdIFQKCRJJXeXC4fDisfjdZuJAwAAtBtT6gAAALqA4zgaGBgoTquLRCIKBoPFRNSZwuGwHMcpNgwPBAJl+9i2rVgsVjdhlclklEgk5LquLMsqPkYikYrnlaRIJKLJycni70+n01X39SSTSUUiEUmmqmt4eFjRaLTmMQAAYHEi4QQAANAlBgYG5DiOQqGQgsGgRkZG6h7T19dXsfeTJMViMY2NjSmVSlVMXLmuq927d8txHKVSqZLElOM4CofDGhwcVDwerzqlz+/3y3Vd2bZdt6l5JBLRvn37NDg4SAN0AAC6HFPqAAAAusTspFAjySZJsixL/f39Fbd50/HC4bBc1y3b7vf75TiOstlsWRWUbdvKZrOanJzU0NBQ1d/f39+vSCSiTCYjx3Gq7pfL5RQMBotjBgAA3Y2EEwAAQJcYGBiQpJqJm7nyprnt27evZH0kEilWNtUyPj6uXC6nWCxWdR8vOZZIJKrus3fv3qrTAwEAQPch4QQAANAFHMcpTjPL5XIVK5KaMTU1JUll0+WSyaQCgUDd/k4+n08+n09jY2NVx2RZlkKhkJLJZMXtrutqw4YNzf0DAADAokTCCQAAYJFzXVeRSKSk19KZFUnNymQysm27pKH3xMSEJDV897vBwcG6YxodHZXrusVzz5ZMJqluAgCgx5BwAgAAWMRc11U4HC5ObRseHpZUe3paI3K5nPx+f8Vm3vl8XpLp4dQIb6qfd1wlPp9Ptm1XHHc+n284uQUAALrDik4PAAAAANWFw2ElEoliI22vEsibVtdIg23HcRSJRErWDQwMKB6Pl1Q2zVe9aXGRSESxWEyO4xQTTLObhQMAgN5BwgkAAGCRCofDxTvJzRYKhTQxMaFkMqloNNrQueZSEdVIxdJs3n71qpRGRkYUi8WUSCQUj8clmWbh3nMAANA7mFIHAACwCEUiEQ0PD8vn81XcJkl79uxZkN/tVVFlMpmG9vf2q1ctdWbz8FY1PgcAAIsPCScAAIBFZmxsTH6/v2oj7UAgIJ/PJ9d1NTY2Jskkfbzn82XbtuLxuHK5nHK5XHF9LpfT2NhY2TrHcRSNRhua3uc1D89kMtq3b1/ZVD8AANAbSDgBAAAsMpZlaWRkpOY++/fvVygUUiKRUDgcVjqdbnh6XSOi0ah8Pp92794tyVQjJRIJjYyMKJPJFJNO4XBYgUCg4WlxXvPweDyubDZLs3AAAHpUX6FQKHR6EAAAAFgY69evl+u6avYjXyQS0eTkpEZHRyXNTLcLBoOampqSbdvFO+hV0tfXV3YXurGxMcViMaVSqbIqrr6+PgUCgbI75wEAgO5CwgkAAKAHeYkirxLJqyyqlRyqJpPJKJFIKJfLFXtKZTIZjY6OllRVZTKZYh+nSCSiffv2Fe+kFwgEir/bdV0NDQ0pm80Wjw2Hw3IcR7lcTpZlaXBwUMFgsKVVWwAAoH1IOAEAAGDOksmkEolEWdKomYQWAADoPfRwAgAAwJwFAgHlcjklk0k5jqNwOKwdO3Z0elgAAGCRoMIJAAAATRkYGJDjOMWfz+zVBAAAli4qnAAAANCUVCol27aLvaFINgEAAA8VTgAAAAAAAGgpKpwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUiScAAAAAAAA0FIknAAAAAAAANBSJJwAAAAAAADQUv8f2cK4pJaZhpsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(6, 3.5))\n", + "ax.hist(zs, bins=10, density=True)\n", + "ax.plot(np.linspace(60, 160, 100), chi2.pdf(np.linspace(60, 160, 100), df=99), color='red')\n", + "ax.set_xlabel(r'$\\chi^2_{{\\rm PQM}}$')\n", + "ax.set_ylabel('Frequency')\n", + "plt.title('MNIST Test Set vs Samples from NCSN++ model')\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tarp_project", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/mnist_example/checkpoint_1.1605e+01_100.pt b/notebooks/mnist_example/checkpoint_1.1605e+01_100.pt new file mode 100644 index 0000000..0db46cc Binary files /dev/null and b/notebooks/mnist_example/checkpoint_1.1605e+01_100.pt differ