@@ -4,7 +4,7 @@ author: "Guyliann Engels & Philippe Grosjean"
44description : " **SDD III** Exercices sur l'ADL"
55tutorial :
66 id : " C01Lb_lda"
7- version : 1.2 .0/5
7+ version : 1.0 .0/5
88output :
99 learnr::tutorial :
1010 progressive : true
@@ -16,6 +16,23 @@ runtime: shiny_prerendered
1616BioDataScience3::learnr_setup()
1717SciViews::R()
1818library(mlearning)
19+
20+ # prepa data
21+ read("biometry", package = "BioDataScience") %>.%
22+ select(., gender, weight, height, wrist) %>.%
23+ drop_na(.) -> bio
24+
25+ # Prepare learn test and set test
26+ n <- nrow(bio)
27+ n_learning <- round(n * 2/3)
28+ set.seed(164)
29+ learning <- sample(1:n, n_learning)
30+
31+ bio_test <- slice(bio, -learning)
32+ bio_learn <- slice(bio,learning)
33+
34+ bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
35+
1936```
2037
2138``` {r, echo=FALSE}
@@ -33,6 +50,9 @@ BioDataScience3::learnr_server(input, output, session)
3350- Réalisez une analyse discriminante linéaire.
3451
3552``` {r, message=FALSE, warning=FALSE}
53+ library(mlearning)
54+ SciViews::R()
55+
3656# exercice 1 : résolution
3757read("biometry", package = "BioDataScience") %>.%
3858 select(., gender, weight, height, wrist) %>.%
@@ -45,30 +65,13 @@ set.seed(164)
4565learning <- sample(1:n, n_learning)
4666
4767bio_test <- slice(bio, -learning)
48- bio_learn <- slice(bio,learning)
68+ bio_learn <- slice(bio, learning)
4969
50- bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
70+ bio_lda <- mlLda(formula = gender ~ ., data= bio_learn)
5171bio_conf <- confusion(predict(bio_lda, bio_test), bio_test$gender)
5272conf_tab <- summary(bio_conf)
5373```
5474
55- ``` {r ldaprepa}
56- read("biometry", package = "BioDataScience") %>.%
57- select(., gender, weight, height, wrist) %>.%
58- drop_na(.) -> bio
59-
60- # Prepare learn test and set test
61- n <- nrow(bio)
62- n_learning <- round(n * 2/3)
63- set.seed(164)
64- learning <- sample(1:n, n_learning)
65-
66- bio_test <- slice(bio, -learning)
67- bio_learn <- slice(bio,learning)
68-
69- bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
70- ```
71-
7275## Création de votre modèle
7376
7477
@@ -98,7 +101,7 @@ table(bio_test$gender)
98101
99102Réalisez un modèle avec le set d'apprentissage. Prédisez la variable ` gender ` à l'aide des 3 variables numériques.
100103
101- ``` {r lda1_h2, exercise = TRUE, exercise.setup = "ldaprepa" }
104+ ``` {r lda1_h2, exercise = TRUE}
102105bio_lda <- mlLda(formula = ___ ~ ___, data = ___)
103106summary(bio_lda)
104107```
@@ -123,7 +126,7 @@ grade_code("Votre premier modèle est une réussite.")
123126
124127Vous venez de créer votre outils de classification qui se nomme ` bio_lda ` . Vous devez maintenant tester les performances de votre modèle.
125128
126- ``` {r lda2_h2, exercise = TRUE, exercise.setup = "ldaprepa" }
129+ ``` {r lda2_h2, exercise = TRUE}
127130# prédiction sur le set de test
128131bio_pred <- predict(___, ___)
129132# matrice de confusion
0 commit comments