Skip to content

Commit fa7c2ef

Browse files
update C01Lb_lda
1 parent 4fa1912 commit fa7c2ef

File tree

1 file changed

+25
-22
lines changed

1 file changed

+25
-22
lines changed

inst/tutorials/C01Lb_lda/C01Lb_lda.Rmd

Lines changed: 25 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ author: "Guyliann Engels & Philippe Grosjean"
44
description: "**SDD III** Exercices sur l'ADL"
55
tutorial:
66
id: "C01Lb_lda"
7-
version: 1.2.0/5
7+
version: 1.0.0/5
88
output:
99
learnr::tutorial:
1010
progressive: true
@@ -16,6 +16,23 @@ runtime: shiny_prerendered
1616
BioDataScience3::learnr_setup()
1717
SciViews::R()
1818
library(mlearning)
19+
20+
# prepa data
21+
read("biometry", package = "BioDataScience") %>.%
22+
select(., gender, weight, height, wrist) %>.%
23+
drop_na(.) -> bio
24+
25+
# Prepare learn test and set test
26+
n <- nrow(bio)
27+
n_learning <- round(n * 2/3)
28+
set.seed(164)
29+
learning <- sample(1:n, n_learning)
30+
31+
bio_test <- slice(bio, -learning)
32+
bio_learn <- slice(bio,learning)
33+
34+
bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
35+
1936
```
2037

2138
```{r, echo=FALSE}
@@ -33,6 +50,9 @@ BioDataScience3::learnr_server(input, output, session)
3350
- Réalisez une analyse discriminante linéaire.
3451

3552
```{r, message=FALSE, warning=FALSE}
53+
library(mlearning)
54+
SciViews::R()
55+
3656
# exercice 1 : résolution
3757
read("biometry", package = "BioDataScience") %>.%
3858
select(., gender, weight, height, wrist) %>.%
@@ -45,30 +65,13 @@ set.seed(164)
4565
learning <- sample(1:n, n_learning)
4666
4767
bio_test <- slice(bio, -learning)
48-
bio_learn <- slice(bio,learning)
68+
bio_learn <- slice(bio, learning)
4969
50-
bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
70+
bio_lda <- mlLda(formula = gender ~ ., data= bio_learn)
5171
bio_conf <- confusion(predict(bio_lda, bio_test), bio_test$gender)
5272
conf_tab <- summary(bio_conf)
5373
```
5474

55-
```{r ldaprepa}
56-
read("biometry", package = "BioDataScience") %>.%
57-
select(., gender, weight, height, wrist) %>.%
58-
drop_na(.) -> bio
59-
60-
# Prepare learn test and set test
61-
n <- nrow(bio)
62-
n_learning <- round(n * 2/3)
63-
set.seed(164)
64-
learning <- sample(1:n, n_learning)
65-
66-
bio_test <- slice(bio, -learning)
67-
bio_learn <- slice(bio,learning)
68-
69-
bio_lda <- mlLda(formula = gender ~ ., data = bio_learn)
70-
```
71-
7275
## Création de votre modèle
7376

7477

@@ -98,7 +101,7 @@ table(bio_test$gender)
98101

99102
Réalisez un modèle avec le set d'apprentissage. Prédisez la variable `gender` à l'aide des 3 variables numériques.
100103

101-
```{r lda1_h2, exercise = TRUE, exercise.setup = "ldaprepa"}
104+
```{r lda1_h2, exercise = TRUE}
102105
bio_lda <- mlLda(formula = ___ ~ ___, data = ___)
103106
summary(bio_lda)
104107
```
@@ -123,7 +126,7 @@ grade_code("Votre premier modèle est une réussite.")
123126

124127
Vous venez de créer votre outils de classification qui se nomme `bio_lda`. Vous devez maintenant tester les performances de votre modèle.
125128

126-
```{r lda2_h2, exercise = TRUE, exercise.setup = "ldaprepa"}
129+
```{r lda2_h2, exercise = TRUE}
127130
# prédiction sur le set de test
128131
bio_pred <- predict(___, ___)
129132
# matrice de confusion

0 commit comments

Comments
 (0)