@@ -69,13 +69,8 @@ import pyvo as vo
6969In this case, choose the coordinates from the first notebook to save time downloading the MER mosaic. Search a radius of 1.5 arcminutes around these coordinates.
7070
7171``` {code-cell} ipython3
72- ra = 273.474451
73- dec = 64.397273
74-
75- search_radius = 1.5 * u.arcmin
76- pos = SkyCoord(ra=ra, dec=dec, unit='deg')
77-
78- coord = SkyCoord(ra, dec, unit=(u.deg, u.deg), frame='icrs')
72+ search_radius = 10 * u.arcsec
73+ coord = SkyCoord.from_name('HD 168151')
7974```
8075
8176### Use IRSA to search for all Euclid data on this target
@@ -85,8 +80,7 @@ This searches specifically in the euclid_DpdMerBksMosaic "collection" which is t
8580``` {code-cell} ipython3
8681irsa_service= vo.dal.sia2.SIA2Service('https://irsadev.ipac.caltech.edu/SIA')
8782
88- im_table = irsa_service.search(pos=(pos.ra.deg, pos.dec.deg, 10*u.arcsec),
89- collection='euclid_DpdMerBksMosaic')
83+ im_table = irsa_service.search(pos=(coord, search_radius), collection='euclid_DpdMerBksMosaic')
9084
9185## Convert the table to pandas dataframe
9286df_im_irsa=im_table.to_table().to_pandas()
@@ -235,39 +229,31 @@ AND galaxy.spe_z_prob > 0.999 \
235229AND galaxy.spe_z BETWEEN 1.4 AND 1.6 \
236230ORDER BY spe.spe_line_snr_gf DESC \
237231"
238- adql
239232
240-
241- ## Use TAP with this ADQL string using pyvo
233+ # Use TAP with this ADQL string using pyvo
242234result = service.search(adql)
243235
244- ## Convert table to pandas dataframe and drop duplicates
245- df_spe = result.to_table().to_pandas()
246-
247- # Display first few rows
248- df_spe[0:15]
236+ # Convert table to pandas dataframe and drop duplicates
237+ result_table = result.to_qtable()
249238```
250239
251240### Choose an object of interest, lets look at an object with a strong Halpha line detected with high SNR.
252241
253242``` {code-cell} ipython3
254243obj_id = 2739401293646823742
255244
256- df_obj=df_spe[(df_spe ['object_id']== obj_id)]
245+ obj_2739401293646823742 = result_table[(result_table ['object_id'] == obj_id)]
257246
258- df_obj
247+ obj_2739401293646823742
259248```
260249
261250### Pull the spectrum of this object
262251
263252``` {code-cell} ipython3
264- adql_object = f"SELECT * \
265- FROM {table_1dspectra} \
266- WHERE objectid = {obj_id} \
267- AND uri IS NOT NULL "
253+ adql_object = f"SELECT * FROM {table_1dspectra} WHERE objectid = {obj_id} AND uri IS NOT NULL "
268254
269255result2 = service.search(adql_object)
270- df2= result2.to_table().to_pandas()
256+ df2 = result2.to_table().to_pandas()
271257df2
272258```
273259
276262This involves reading in the spectrum without readin in the full FITS file, just pulling the extension we want.
277263
278264``` {code-cell} ipython3
279- irsa_url= 'https://irsadev.ipac.caltech.edu/'
265+ irsa_url = 'https://irsadev.ipac.caltech.edu/'
280266
281- file_url= irsa_url+ df2['uri'].iloc[0]
267+ file_url = irsa_url + df2['uri'].iloc[0]
282268file_url
283269
284270response = requests.get(file_url)
0 commit comments