diff --git a/tessreduce/psf_photom.py b/tessreduce/psf_photom.py index 7fd584b..0821292 100644 --- a/tessreduce/psf_photom.py +++ b/tessreduce/psf_photom.py @@ -225,7 +225,7 @@ def psf_flux(self,image,ext_shift=None,surface=True,poly_order=3): mask = np.zeros_like(self.psf) mask[self.psf > np.nanpercentile(self.psf,90)] = 1 f0 = np.nansum(image*mask) - print(f0) + # print(f0) #bkg = np.nanmedian(image[~mask.astype(bool)]) #image = image - bkg diff --git a/tessreduce/tessreduce.py b/tessreduce/tessreduce.py index f470566..c0f24fc 100644 --- a/tessreduce/tessreduce.py +++ b/tessreduce/tessreduce.py @@ -1617,6 +1617,7 @@ def psf_photometry(self,xPix,yPix,size=7,snap='brightest',ext_shift=True,plot=Fa if diff is None: diff = self.diff flux = [] + eflux = [] # if isinstance(xPix,(list,np.ndarray)): # self.moving_psf_phot() @@ -1669,8 +1670,10 @@ def psf_photometry(self,xPix,yPix,size=7,snap='brightest',ext_shift=True,plot=Fa inds = np.arange(len(cutouts)) flux, eflux = zip(*Parallel(n_jobs=self.num_cores)(delayed(par_psf_flux)(cutouts[i],base,self.shift[i]) for i in inds)) else: + print('Non-parallell') for i in range(len(cutouts)): - flux += [par_psf_flux(cutouts[i],base,self.shift[i])] + flux += [par_psf_flux(cutouts[i],base,self.shift[i])[0]] + eflux += [par_psf_flux(cutouts[i],base,self.shift[i])[1]] if plot: plt.figure() plt.plot(flux) @@ -1691,6 +1694,7 @@ def psf_photometry(self,xPix,yPix,size=7,snap='brightest',ext_shift=True,plot=Fa ax.plot(flux) ax.set_ylabel('Flux') flux = np.array(flux) + # print('New flux shape:', flux.shape) eflux = np.array(eflux) return flux, eflux @@ -2623,7 +2627,8 @@ def field_calibrate(self,zp_single=True,plot=None,savename=None): if self.phot_method == 'aperture': flux += [np.nansum(tflux*mask,axis=(1,2))] elif self.phot_method == 'psf': - flux += [self.psf_photometry(xPix=xx,yPix=yy,snap='ref',diff=False)] + flux += [self.psf_photometry(xPix=xx,yPix=yy,snap='ref',diff=False)[0]] + eflux += [self.psf_photometry(xPix=xx,yPix=yy,snap='ref',diff=False)[1]] m2 = np.zeros_like(self.ref) m2[int(d.row.values[i] + .5),int(d.col.values[i] + .5)] = 1 m2 = convolve(m2,np.ones((7,7))) - convolve(m2,np.ones((5,5))) @@ -2641,9 +2646,9 @@ def field_calibrate(self,zp_single=True,plot=None,savename=None): if self.phot_method == 'aperture': flux[~eind] = np.nan - #calculate the zeropoint zp = d.tmag.values[:,np.newaxis] + 2.5*np.log10(flux) + # zp = d.tmag.values[:, np.newaxis, np.newaxis] + 2.5*np.log10(flux) if len(zp) == 0: zp = np.array([20.44])