|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Evaluate a MedCATtrainer project export" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "import json\n", |
| 17 | + "import pandas as pd\n", |
| 18 | + "import plotly.graph_objects as go\n", |
| 19 | + "from plotly. subplots import make_subplots\n", |
| 20 | + "from IPython.display import Image\n", |
| 21 | + "from collections import Counter" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": null, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "mct_export = '../../data/medcattrainer_export/'+'' # mct_export .json here\n", |
| 31 | + "with open(mct_export, 'r') as jsonfile:\n", |
| 32 | + " mct = json.load(jsonfile)" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": null, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "# projects\n", |
| 42 | + "for p in mct['projects']:\n", |
| 43 | + " print(p['name'])" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": null, |
| 49 | + "metadata": {}, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "# documents\n", |
| 53 | + "doc_lst = []\n", |
| 54 | + "for p in mct['projects']:\n", |
| 55 | + " for doc in p['documents']:\n", |
| 56 | + " doc_lst.append(doc['name'])\n", |
| 57 | + "doc_lst" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 2, |
| 63 | + "metadata": { |
| 64 | + "collapsed": true |
| 65 | + }, |
| 66 | + "outputs": [ |
| 67 | + { |
| 68 | + "ename": "NameError", |
| 69 | + "evalue": "name 'mct' is not defined", |
| 70 | + "traceback": [ |
| 71 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 72 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 73 | + "\u001b[0;32m/var/folders/31/x5x_6lb14zj9cz75df77dx9h0000gn/T/ipykernel_45904/483071205.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# annotations\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mann_lst\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mp\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmct\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'projects'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mdoc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'documents'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0manns\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdoc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'annotations'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 74 | + "\u001b[0;31mNameError\u001b[0m: name 'mct' is not defined" |
| 75 | + ], |
| 76 | + "output_type": "error" |
| 77 | + } |
| 78 | + ], |
| 79 | + "source": [ |
| 80 | + "# annotations\n", |
| 81 | + "ann_lst = []\n", |
| 82 | + "for p in mct['projects']:\n", |
| 83 | + " for doc in p['documents']:\n", |
| 84 | + " for anns in doc['annotations']:\n", |
| 85 | + " ann_lst.append(anns)\n", |
| 86 | + "ann_lst\n" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "# Summary format for analysis" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": null, |
| 99 | + "metadata": {}, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "\n", |
| 103 | + "ann_lst = []\n", |
| 104 | + "for p in mct['projects']:\n", |
| 105 | + " for doc in p['documents']:\n", |
| 106 | + " for anns in doc['annotations']:\n", |
| 107 | + " output = dict()\n", |
| 108 | + " output['project'] = p['name']\n", |
| 109 | + " output['document_name'] = doc['name']\n", |
| 110 | + " meta_anns_dict = {}\n", |
| 111 | + " for meta_ann in anns['meta_anns'].items():\n", |
| 112 | + " meta_anns_dict.update({meta_ann[0]: meta_ann[1]['value']})\n", |
| 113 | + " \n", |
| 114 | + " anns.pop('meta_anns')\n", |
| 115 | + " output.update(anns)\n", |
| 116 | + " output.update(meta_anns_dict)\n", |
| 117 | + " ann_lst.append(output)\n", |
| 118 | + "final_output = pd.DataFrame(ann_lst)\n", |
| 119 | + "final_output['last_modified'] = pd.to_datetime(final_output['last_modified'])" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "final_output" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [], |
| 136 | + "source": [ |
| 137 | + "# Counts of annotations\n", |
| 138 | + "cui_counts = Counter(final_output['cui'])\n", |
| 139 | + "cui_counts" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "# Make User plots" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": null, |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "df = final_output[['user', 'last_modified']]\n", |
| 156 | + "data = df.groupby([df['last_modified'].dt.year.rename('year'),\n", |
| 157 | + " df['last_modified'].df.month.rename('month'),\n", |
| 158 | + " df['last_modified'].dt.day.rename('day'),\n", |
| 159 | + " df['user']]).agg({'count'})\n", |
| 160 | + "\n", |
| 161 | + "data = pd.DataFrame(data)\n", |
| 162 | + "data.columns = data.columns.droplevel()\n", |
| 163 | + "data = data.reset_index(drop=False)\n", |
| 164 | + "data['date'] = pd.datetime(data[['year', 'month', 'day']])" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "code", |
| 169 | + "execution_count": null, |
| 170 | + "metadata": {}, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "data" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "markdown", |
| 178 | + "metadata": {}, |
| 179 | + "source": [ |
| 180 | + "## Plot" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": null, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [], |
| 188 | + "source": [ |
| 189 | + "# annotator work\n", |
| 190 | + "\n", |
| 191 | + "fig = go.Figure()\n", |
| 192 | + "for user in data['user'].unique():\n", |
| 193 | + " fig.add_trace(\n", |
| 194 | + " go.Bar(x=data[data['user'] == user]['date'], y=data[data['user'] == user]['count'], name=user),\n", |
| 195 | + " )\n", |
| 196 | + "\n", |
| 197 | + "fig.update_layout(tutle = {'text': 'MedCATtrainer Annotator Progress'})\n", |
| 198 | + "fig.update_layout(legend_title_text='MedCAT Annotator')\n", |
| 199 | + "fig.update_xaxes(title_text='Date')\n", |
| 200 | + "fig.update_yaxes(title_text='Annotation Count')\n", |
| 201 | + "fig.show()" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "code", |
| 206 | + "execution_count": null, |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "metadata": {}, |
| 215 | + "outputs": [], |
| 216 | + "source": [] |
| 217 | + } |
| 218 | + ], |
| 219 | + "metadata": { |
| 220 | + "kernelspec": { |
| 221 | + "display_name": "Python 3 (ipykernel)", |
| 222 | + "language": "python", |
| 223 | + "name": "python3" |
| 224 | + }, |
| 225 | + "language_info": { |
| 226 | + "codemirror_mode": { |
| 227 | + "name": "ipython", |
| 228 | + "version": 3 |
| 229 | + }, |
| 230 | + "file_extension": ".py", |
| 231 | + "mimetype": "text/x-python", |
| 232 | + "name": "python", |
| 233 | + "nbconvert_exporter": "python", |
| 234 | + "pygments_lexer": "ipython3", |
| 235 | + "version": "3.7.3" |
| 236 | + } |
| 237 | + }, |
| 238 | + "nbformat": 4, |
| 239 | + "nbformat_minor": 5 |
| 240 | +} |
0 commit comments