|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Seaching CogStack\n", |
| 8 | + "\n", |
| 9 | + "This script is designed to be a template for cogstack searches" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 2, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "import sys\n", |
| 19 | + "sys.path.append('..')\n", |
| 20 | + "from credentials import *\n", |
| 21 | + "from cogstack import CogStack" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "# Login and Initialise" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "cs = CogStack(hosts, username, password, api=True)" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "# Check the list of Indices and columns" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "for i in cs.elastic.indices.get_mapping().keys():\n", |
| 54 | + " print(i)" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": null, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "# Check the list of columns in that index\n", |
| 64 | + "index = ''\n", |
| 65 | + "for col in cs.elastic.indices.get_mapping(index=index)[index]['mappings']['properties'].keys():\n", |
| 66 | + " print(col)" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "# Set parameters" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "pt_list = [] # example list of patients' patient_TrustNumber here" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "## Columns of interest\n", |
| 90 | + "\n", |
| 91 | + "Select your fields and list in order of output columns" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [ |
| 100 | + "columns = []" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "markdown", |
| 105 | + "metadata": {}, |
| 106 | + "source": [ |
| 107 | + "## Build query\n", |
| 108 | + "\n", |
| 109 | + "For further information on [how to build a query can be found here](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html)\n" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "metadata": {}, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "# Example query structure\n", |
| 119 | + "query = {\n", |
| 120 | + " \"from\": 0,\n", |
| 121 | + " \"size\": 10000,\n", |
| 122 | + " \"query\": {\n", |
| 123 | + " \"bool\": {\n", |
| 124 | + " \"filter\": {\n", |
| 125 | + " \"terms\": {\"patient_TrustNumber\": pt_list}\n", |
| 126 | + " },\n", |
| 127 | + " \"must\": [\n", |
| 128 | + " {\"query_string\": {\n", |
| 129 | + " \"query\": \"***YOUR LUCENE QUERY HERE***\"}\n", |
| 130 | + " }\n", |
| 131 | + " ]\n", |
| 132 | + " }\n", |
| 133 | + " },\n", |
| 134 | + " \"_source\": columns # This is a search column filter. remove if all columns are to be retrieved\n", |
| 135 | + "}" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": { |
| 141 | + "tags": [] |
| 142 | + }, |
| 143 | + "source": [ |
| 144 | + "# Search, Process, and Save" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "df = cs.cogstack2df(query=query, index=index, column_headers=columns)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "## Process" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "metadata": {}, |
| 167 | + "outputs": [], |
| 168 | + "source": [ |
| 169 | + "# Whatever you want here\n", |
| 170 | + "df.head()" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "markdown", |
| 175 | + "metadata": {}, |
| 176 | + "source": [ |
| 177 | + "## Save" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "file_name = \"file_name.csv\"" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": null, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "df.to_csv(file_name, index=False)" |
| 196 | + ] |
| 197 | + } |
| 198 | + ], |
| 199 | + "metadata": { |
| 200 | + "kernelspec": { |
| 201 | + "display_name": "Python 3 (ipykernel)", |
| 202 | + "language": "python", |
| 203 | + "name": "python3" |
| 204 | + }, |
| 205 | + "language_info": { |
| 206 | + "codemirror_mode": { |
| 207 | + "name": "ipython", |
| 208 | + "version": 3 |
| 209 | + }, |
| 210 | + "file_extension": ".py", |
| 211 | + "mimetype": "text/x-python", |
| 212 | + "name": "python", |
| 213 | + "nbconvert_exporter": "python", |
| 214 | + "pygments_lexer": "ipython3", |
| 215 | + "version": "3.7.3" |
| 216 | + } |
| 217 | + }, |
| 218 | + "nbformat": 4, |
| 219 | + "nbformat_minor": 4 |
| 220 | +} |
0 commit comments