|
6 | 6 | Warning in `crosstable()`:
|
7 | 7 | Cannot describe columns `dummy_na` and `dummy_na2` as they contain only missing values/blank.
|
8 | 8 | Warning:
|
9 |
| - A problem occured when calculating crosstable effects (glm-logit): |
10 |
| - i "glm.fit: fitted probabilities numerically 0 or 1 occurred" |
| 9 | + Problems occured when calculating crosstable effects (glm-logit): |
| 10 | + i "glm.fit: fitted probabilities numerically 0 or 1 occurred" and "collapsing to unique 'x' values" |
11 | 11 | * You might want to check for complete separation or extreme outliers.
|
12 | 12 | * Applying `forcats::fct_rev()` to some columns might help too.
|
13 | 13 | Warning:
|
14 |
| - Problems occured when calculating crosstable effects (glm-logit): |
15 |
| - i "glm.fit: fitted probabilities numerically 0 or 1 occurred" and "collapsing to unique 'x' values" |
| 14 | + A problem occured when calculating crosstable effects (glm-logit): |
| 15 | + i "glm.fit: fitted probabilities numerically 0 or 1 occurred" |
16 | 16 | * You might want to check for complete separation or extreme outliers.
|
17 | 17 | * Applying `forcats::fct_rev()` to some columns might help too.
|
18 | 18 | Warning:
|
|
100 | 100 | Warning in `crosstable()`:
|
101 | 101 | Cannot describe columns `dummy_na` and `dummy_na2` as they contain only missing values/blank.
|
102 | 102 | Warning:
|
103 |
| - A problem occured when calculating crosstable effects (glm-logit): |
104 |
| - i "glm.fit: fitted probabilities numerically 0 or 1 occurred" |
| 103 | + Problems occured when calculating crosstable effects (glm-logit): |
| 104 | + i "glm.fit: fitted probabilities numerically 0 or 1 occurred" and "collapsing to unique 'x' values" |
105 | 105 | * You might want to check for complete separation or extreme outliers.
|
106 | 106 | * Applying `forcats::fct_rev()` to some columns might help too.
|
107 | 107 | Warning:
|
108 |
| - Problems occured when calculating crosstable effects (glm-logit): |
109 |
| - i "glm.fit: fitted probabilities numerically 0 or 1 occurred" and "collapsing to unique 'x' values" |
| 108 | + A problem occured when calculating crosstable effects (glm-logit): |
| 109 | + i "glm.fit: fitted probabilities numerically 0 or 1 occurred" |
110 | 110 | * You might want to check for complete separation or extreme outliers.
|
111 | 111 | * Applying `forcats::fct_rev()` to some columns might help too.
|
112 | 112 | Warning:
|
|
163 | 163 | 6 wt Difference in means (bootstrap CI), ref='auto'\nmanual minus auto: -1.36 [-1.84 to -0.88]
|
164 | 164 | 7 qsec Difference in means (t-test CI), ref='auto'\nmanual minus auto: -0.82 [-2.12 to 0.48]
|
165 | 165 | 8 vs Odds ratio [95% Wald CI], ref='manual vs auto'\nvshaped vs straight: 0.19 [0.02 to 1.11]
|
166 |
| - 9 gear Odds ratio [95% Wald CI], ref='manual vs auto'\n4 vs 3: 1.71e+09 [6.32e-162 to NA]\n5 vs 3: 7.30e+17 [3.18e-214 to NA] |
| 166 | + 9 gear Odds ratio [95% Wald CI], ref='manual vs auto'\n4 vs 3: 1.71e+09 [6.32e-162 to NA]\n5 vs 3: 7.30e+17 [3.29e-214 to NA] |
167 | 167 | 10 carb Difference in means (bootstrap CI), ref='auto'\nmanual minus auto: 0.19 [-1.09 to 1.46]
|
168 | 168 | 11 hp_date Difference in means (bootstrap CI), ref='auto'\nmanual minus auto: -33.42 [-85.88 to 19.05]
|
169 | 169 | 12 qsec_posix Difference in means (t-test CI), ref='auto'\nmanual minus auto: -7.11e+04 [-1.83e+05 to 4.12e+04]
|
|
257 | 257 | 6 wt Difference in medians (bootstrap CI), ref='auto'\nmanual minus auto: -1.20 [-1.77 to -0.66]
|
258 | 258 | 7 qsec Difference in medians (bootstrap CI), ref='auto'\nmanual minus auto: -0.80 [-2.21 to 1.17]
|
259 | 259 | 8 vs Risk difference [95% Wald CI], ref='manual vs auto'\nvshaped vs straight: -1.66 [-3.79 to 0.11]
|
260 |
| - 9 gear Risk difference [95% Wald CI], ref='manual vs auto'\n4 vs 3: 21.26 [-371.17 to NA]\n5 vs 3: 41.13 [-491.60 to NA] |
| 260 | + 9 gear Risk difference [95% Wald CI], ref='manual vs auto'\n4 vs 3: 21.26 [-371.17 to NA]\n5 vs 3: 41.13 [-491.56 to NA] |
261 | 261 | 10 carb Difference in medians (bootstrap CI), ref='auto'\nmanual minus auto: -1.00 [-2.00 to 2.00]
|
262 | 262 | 11 hp_date Difference in medians (bootstrap CI), ref='auto'\nmanual minus auto: -66.00 [-109.00 to 0]
|
263 | 263 | 12 qsec_posix Difference in medians (bootstrap CI), ref='auto'\nmanual minus auto: -6.91e+04 [-1.86e+05 to 1.04e+05]
|
|
411 | 411 | Output
|
412 | 412 | .id effect
|
413 | 413 | 1 mpg Difference in medians (bootstrap CI), ref='FALSE'\nTRUE minus FALSE: 1.35 [-5.53 to 4.00]
|
414 |
| - 2 cyl Risk difference [95% Wald CI], ref='TRUE vs FALSE'\n6 vs 4: 5.11e+01 [CI error]\n8 vs 4: -1.49e-14 [CI error] |
| 414 | + 2 cyl Risk difference [95% Wald CI], ref='TRUE vs FALSE'\n6 vs 4: 5.11e+01 [CI error]\n8 vs 4: -9.05e-15 [CI error] |
415 | 415 | 3 disp Difference in medians (bootstrap CI), ref='FALSE'\nTRUE minus FALSE: -108.20 [-159.00 to 78.30]
|
416 | 416 | 4 hp Difference in medians (bootstrap CI), ref='FALSE'\nTRUE minus FALSE: -27.00 [-75.00 to 53.35]
|
417 | 417 | 5 drat Difference in medians (bootstrap CI), ref='FALSE'\nTRUE minus FALSE: 0.08 [-0.95 to 0.74]
|
|
461 | 461 | 7 qsec Difference in means (t-test CI), ref='A'\nB minus A: 0.42 [-0.89 to 1.72]
|
462 | 462 | 8 vs Odds ratio [95% Wald CI], ref='B vs A'\nvshaped vs straight: 1.09 [0.21 to 6.03]
|
463 | 463 | 9 am Odds ratio [95% Wald CI], ref='B vs A'\nmanual vs auto: 0.45 [0.10 to 1.88]
|
464 |
| - 10 gear Odds ratio [95% Wald CI], ref='B vs A'\n4 vs 3: 0.63 [0.13 to 2.87]\n5 vs 3: 1.31 [0.17 to 12.27] |
| 464 | + 10 gear Odds ratio [95% Wald CI], ref='B vs A'\n4 vs 3: 0.62 [0.13 to 2.87]\n5 vs 3: 1.31 [0.17 to 12.27] |
465 | 465 | 11 carb Difference in means (bootstrap CI), ref='A'\nB minus A: 0.62 [-0.49 to 1.74]
|
466 | 466 | 12 hp_date Difference in means (t-test CI), ref='A'\nB minus A: 20.38 [-29.37 to 70.12]
|
467 | 467 | 13 qsec_posix Difference in means (t-test CI), ref='A'\nB minus A: 3.60e+04 [-7.66e+04 to 1.48e+05]
|
|
0 commit comments