@@ -30,18 +30,18 @@ Documentation of functions in R:
3030User guide: < https://docs.doubleml.org >
3131
3232** DoubleML** is currently maintained by
33- [ ` @MalteKurz ` ] ( https://github.com/MalteKurz ) and
34- [ ` @PhilippBach ` ] ( https://github.com/PhilippBach ) .
33+ [ ` @PhilippBach ` ] ( https://github.com/PhilippBach ) and
34+ [ ` @SvenKlaassen ` ] ( https://github.com/SvenKlaassen ) .
3535
3636## Main Features
3737
3838Double / debiased machine learning framework of [ Chernozhukov et
3939al. (2018)] ( https://arxiv.org/abs/1608.00060 ) for
4040
41- - Partially linear regression models (PLR)
42- - Partially linear IV regression models (PLIV)
43- - Interactive regression models (IRM)
44- - Interactive IV regression models (IIVM)
41+ - Partially linear regression models (PLR)
42+ - Partially linear IV regression models (PLIV)
43+ - Interactive regression models (IRM)
44+ - Interactive IV regression models (IIVM)
4545
4646The object-oriented implementation of ** DoubleML** that is based on the
4747[ R6 package for R] ( https://r6.r-lib.org/ ) is very flexible. The model
@@ -55,20 +55,20 @@ learning models and to perform statistical inference via the methods
5555object-oriented implementation allows a high flexibility for the model
5656specification in terms of …
5757
58- - … the machine learning methods for estimation of the nuisance
59- functions,
60- - … the resampling schemes,
61- - … the double machine learning algorithm,
62- - … the Neyman orthogonal score functions,
63- - …
58+ - … the machine learning methods for estimation of the nuisance
59+ functions,
60+ - … the resampling schemes,
61+ - … the double machine learning algorithm,
62+ - … the Neyman orthogonal score functions,
63+ - …
6464
6565It further can be readily extended with regards to
6666
67- - … new model classes that come with Neyman orthogonal score functions
68- being linear in the target parameter,
69- - … alternative score functions via callables,
70- - … alternative resampling schemes,
71- - …
67+ - … new model classes that come with Neyman orthogonal score functions
68+ being linear in the target parameter,
69+ - … alternative score functions via callables,
70+ - … alternative resampling schemes,
71+ - …
7272
7373![ OOP structure of the DoubleML package] ( man/figures/oop.svg?raw=true )
7474
@@ -88,18 +88,18 @@ remotes::install_github("DoubleML/doubleml-for-r")
8888
8989** DoubleML** requires
9090
91- - R (\> = 3.5.0)
92- - R6 (\> = 2.4.1)
93- - data.table (\> = 1.12.8)
94- - stats
95- - checkmate
96- - mlr3 (\> = 0.5.0)
97- - mlr3tuning (\> = 0.3.0)
98- - mlr3learners (\> = 0.3.0)
99- - mvtnorm
100- - utils
101- - clusterGeneration
102- - readstata13
91+ - R (\> = 3.5.0)
92+ - R6 (\> = 2.4.1)
93+ - data.table (\> = 1.12.8)
94+ - stats
95+ - checkmate
96+ - mlr3 (\> = 0.5.0)
97+ - mlr3tuning (\> = 0.3.0)
98+ - mlr3learners (\> = 0.3.0)
99+ - mvtnorm
100+ - utils
101+ - clusterGeneration
102+ - readstata13
103103
104104## Contributing
105105
@@ -137,17 +137,16 @@ Foundation) is acknowledged – Project Number 431701914.
137137
138138## References
139139
140- - Bach, P., Chernozhukov, V., Kurz, M. S., and Spindler, M. (2021),
141- DoubleML - An Object-Oriented Implementation of Double Machine
142- Learning in R, arXiv:[ 2103.09603] ( https://arxiv.org/abs/2103.09603 ) .
140+ - Bach, P., Chernozhukov, V., Kurz, M. S., and Spindler, M. (2021),
141+ DoubleML - An Object-Oriented Implementation of Double Machine
142+ Learning in R, arXiv:[ 2103.09603] ( https://arxiv.org/abs/2103.09603 ) .
143143
144- - Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen,
145- C., Newey, W. and Robins, J. (2018), Double/debiased machine
146- learning for treatment and structural parameters. The Econometrics
147- Journal, 21: C1-C68, < https://doi.org/10.1111/ectj.12097 > .
144+ - Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C. ,
145+ Newey, W. and Robins, J. (2018), Double/debiased machine learning for
146+ treatment and structural parameters. The Econometrics Journal, 21:
147+ C1-C68, < https://doi.org/10.1111/ectj.12097 > .
148148
149- - Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F.,
150- Coors, S., Au, Q., Casalicchio, G., Kotthoff, L., Bischl, B. (2019),
151- mlr3: A modern object-oriented machine learing framework in R.
152- Journal of Open Source Software,
153- < https://doi.org/10.21105/joss.01903 > .
149+ - Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors,
150+ S., Au, Q., Casalicchio, G., Kotthoff, L., Bischl, B. (2019), mlr3: A
151+ modern object-oriented machine learing framework in R. Journal of Open
152+ Source Software, < https://doi.org/10.21105/joss.01903 > .
0 commit comments