From f434228e29f620a5ecc912f93c48bde1469c88c5 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 20 Oct 2025 11:53:00 -0700 Subject: [PATCH 1/8] Removed extra model defaults sprinkled throughout the repo --- src/paperqa/agents/helpers.py | 2 +- src/paperqa/agents/models.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/paperqa/agents/helpers.py b/src/paperqa/agents/helpers.py index 3d0f48edb..2b3767ced 100644 --- a/src/paperqa/agents/helpers.py +++ b/src/paperqa/agents/helpers.py @@ -26,9 +26,9 @@ def get_year(ts: datetime | None = None) -> str: async def litellm_get_search_query( question: str, + llm: LLMModel | str, count: int, template: str | None = None, - llm: LLMModel | str = "gpt-4o-mini", temperature: float = 1.0, ) -> list[str]: search_prompt = "" diff --git a/src/paperqa/agents/models.py b/src/paperqa/agents/models.py index 7464f355a..36945f927 100644 --- a/src/paperqa/agents/models.py +++ b/src/paperqa/agents/models.py @@ -66,7 +66,7 @@ def strip_answer( v.filter_content_for_user() return v - async def get_summary(self, llm_model: LLMModel | str = "gpt-4o") -> str: + async def get_summary(self, llm_model: LLMModel | str) -> str: sys_prompt = ( "Revise the answer to a question to be a concise SMS message. " "Use abbreviations or emojis if necessary." From 4d81c3154ec60fa15b3c7db8deff8bea8830455b Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 20 Oct 2025 11:54:41 -0700 Subject: [PATCH 2/8] Modernized LLMs inside settings --- README.md | 6 +++--- src/paperqa/settings.py | 13 ++++--------- 2 files changed, 7 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index 6710a0252..da19a500a 100644 --- a/README.md +++ b/README.md @@ -895,9 +895,9 @@ will return much faster than the first query and we'll be certain the authors ma | Setting | Default | Description | | -------------------------------------------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- | -| `llm` | `"gpt-4o-2024-11-20"` | LLM for general use including metadata inference (see Docs.aadd) and answer generation (see Docs.aquery and gen_answer tool). | +| `llm` | `"claude-sonnet-4-5-20250929"` | LLM for general use including metadata inference (see Docs.aadd) and answer generation (see Docs.aquery and gen_answer tool). | | `llm_config` | `None` | Optional configuration for `llm`. | -| `summary_llm` | `"gpt-4o-2024-11-20"` | LLM for creating contextual summaries (see Docs.aget_evidence and gather_evidence tool). | +| `summary_llm` | `"claude-sonnet-4-5-20250929"` | LLM for creating contextual summaries (see Docs.aget_evidence and gather_evidence tool). | | `summary_llm_config` | `None` | Optional configuration for `summary_llm`. | | `embedding` | `"text-embedding-3-small"` | Embedding model for embedding text chunks when adding papers. | | `embedding_config` | `None` | Optional configuration for `embedding`. | @@ -944,7 +944,7 @@ will return much faster than the first query and we'll be certain the authors ma | `prompt.summary_json_system` | `summary_json_system_prompt` | System prompt for JSON summaries. | | `prompt.context_outer` | `CONTEXT_OUTER_PROMPT` | Prompt for how to format all contexts in generate answer. | | `prompt.context_inner` | `CONTEXT_INNER_PROMPT` | Prompt for how to format a single context in generate answer. Must contain 'name' and 'text' variables. | -| `agent.agent_llm` | `"gpt-4o-2024-11-20"` | LLM inside the agent making tool selections. | +| `agent.agent_llm` | `"claude-sonnet-4-5-20250929"` | LLM inside the agent making tool selections. | | `agent.agent_llm_config` | `None` | Optional configuration for `agent_llm`. | | `agent.agent_type` | `"ToolSelector"` | Type of agent to use. | | `agent.agent_config` | `None` | Optional kwarg for AGENT constructor. | diff --git a/src/paperqa/settings.py b/src/paperqa/settings.py index 4d0fdd4dc..a8915d1b9 100644 --- a/src/paperqa/settings.py +++ b/src/paperqa/settings.py @@ -11,12 +11,7 @@ import anyio from aviary.core import Tool, ToolSelector -from lmi import ( - CommonLLMNames, - EmbeddingModel, - LiteLLMModel, - embedding_model_factory, -) +from lmi import EmbeddingModel, LiteLLMModel, embedding_model_factory from pydantic import ( BaseModel, ConfigDict, @@ -525,7 +520,7 @@ class AgentSettings(BaseModel): model_config = ConfigDict(extra="forbid") agent_llm: str = Field( - default=CommonLLMNames.GPT_4O.value, + default="claude-sonnet-4-5-20250929", description="LLM inside the agent making tool selections.", ) @@ -693,7 +688,7 @@ class Settings(BaseSettings): model_config = SettingsConfigDict(extra="ignore") llm: str = Field( - default=CommonLLMNames.GPT_4O.value, + default="claude-sonnet-4-5-20250929", description=( "LLM for general use including metadata inference (see Docs.aadd)" " and answer generation (see Docs.aquery and gen_answer tool)." @@ -717,7 +712,7 @@ class Settings(BaseSettings): ), ) summary_llm: str = Field( - default=CommonLLMNames.GPT_4O.value, + default="claude-sonnet-4-5-20250929", description=( "LLM for creating contextual summaries" " (see Docs.aget_evidence and gather_evidence tool)." From 8310d606e54f749931b8baff82c52595b5c5f212 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 20 Oct 2025 13:29:08 -0700 Subject: [PATCH 3/8] Refreshing cassettes as needed --- tests/cassettes/test_docs_lifecycle.yaml | 2178 +++--- ...test_get_reasoning[deepseek-reasoner].yaml | 6482 ++++++++-------- ...st_get_reasoning[openrouter-deepseek].yaml | 6542 ++++++++--------- .../test_partitioning_fn_docs[False].yaml | 1234 ++-- .../test_partitioning_fn_docs[True].yaml | 1267 ++-- .../test_partly_embedded_texts[False].yaml | 1538 ++-- .../test_partly_embedded_texts[True].yaml | 1104 ++- .../test_pdf_reader_match_doc_details.yaml | 6226 ++++++++-------- 8 files changed, 12648 insertions(+), 13923 deletions(-) diff --git a/tests/cassettes/test_docs_lifecycle.yaml b/tests/cassettes/test_docs_lifecycle.yaml index 962c75284..6e03e25ea 100644 --- a/tests/cassettes/test_docs_lifecycle.yaml +++ b/tests/cassettes/test_docs_lifecycle.yaml @@ -17,20 +17,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/61UTY/aMBD9K5HPcbBDEpJcWVWqtP1QRS8FDiYZwCKJU9tZQCj/veOwXSjsblWp - OcXjj3nz3sw7EWOF7QzJidoRn9RgjNgAtccWMLZXekcraezV1hNoI1WDuzxgAbvskPxE1qIAi6+d - ep9YZUVFNZiucqGMhXE49om0UONyfiKyKeEApbtXCgu0FdodnM9DFoZ+5IfLpX/esbJ2cFycsoiy - cMaTnMV5HP/A/G4Xy6hbkvMkSjMe45dyhhg0rEFDUwAtVNdYkjOftN0KS9qCxhe/N3Koxx49tfZm - SqvGKu8rgjb4cIEraCwtVS1kM+B8/psjskIrY2qBDOFxq2VhB1rWojLQX9KUtNXSpb6vkic+D/0x - Xy7x/MOXj45TFoz5OF2MsknKoyhMQh6PsWKeuULPqqyU2tFiK1qLNTgcgO++SiNP/cznyT2PPKUs - ozyZMZazNI+SWx7j8YTFSRwmjDke20FfErGYRuMEzxrV6cKFpo4FpBlj0tAXvku6Ol5xbqWt8PSc - 8CTwPiFnYGWz8ewWcNVW4D2CWOfeDNfTTkvVGW8qDDhRPgvHq6i8D5XYuMBUNKIU3oM4EqyrxZTy - cGFu6Md6NajLkyx5lhFVA01fYEyhgpUWA4jze+6tSja7oTO/f3vE61trW5MvRouRPTdGUMJGd0ek - PShUvRg9SdgvRk6OG70Wo7d1DA51ddVbz5paONjFaGv/2LuM2pNySksXLpFb0baVLMS54Ya7tJYN - FkN6/x79fr+/RV6qoqsxhfuT76FdjNpyfQ+3a0wLhVxL7Lt/xmtkLSuhceiwi6HYDbhdi0KrcBTf - cATuHOE1S+DOEkK0BPSDKOf8zhJ4xlmSxvzcyqZQGm+GSZBNWDRJnUn87uYTtpPEkT663/9L4yBt - 37spMd0b03ptBy+TZK7G6BYSZg2U3ryXmVw50V+SOg0Gd6Ytzsp55LlPfnZwJgQJ1ZYOrj2gMSB0 - saXIhjP0pquqvu9/ARQ7PwBSBgAA + H4sIAAAAAAAA/61Uy27bMBD8FYFnUSb1qqWrgwIF0geK5FLLB1pa24QlUSWp2Ibhf+9SSmPXTlIU + qE7i8rGzM7tzJMYK2xuSE7UlPmnAGLEGag8dYGyn9JbW0tiLrSfQRqoWd3nAAnbeIfmRrEQJFl87 + nnxilRU11WD62oUyFrEw8om00OByfiSyrWAPlbtXCQu0E9odnM9DFoZ+7IeLhT/uWNk4OC5OWUxZ + +MDTnCV5kvzA/G4Xy2g6kvM0nmY8wW/KGWLQsAINbQm0VH1rSc580vVLLGkDGl98bOVQjz14auU9 + KK1aq7xvCNrgwyWuoLW0Uo2Q7YDz+W+OyEqtjGkEMoTHrZalHWhZidrA6Zymop2WLvVtlTz1eehH + fLHA83dfPzlOWRDxaFpMsg9THsdhGvIkwop55godVVkqtaXlRnQWa3A4AN99lUY+9TOfp7c88ill + GeXpA2M5m+Zxes1jEn1gSZqEKWOOx27Ql8QsoXGU4lmjel260MyxgDRjTBr6wndFl4cLzq20NZ6e + E54G3mfkDKxs157dAK66Grx7EKvce8D1rNdS9cabCQNOlC/C8Spq72Mt1i4wE62ohHcnDgTr6jCl + 3J+ZG/qxWQ7q8jRLn2VE1UDTFxgzqGGpxQBifM+9Vct2O3Tm4/d7vL6xtjN5MSkmdmyMoIK17g9I + e1Cqppg8SdgVEyfHlV7F5G0dg31TX/TWs6YW9raYbOwfe+dRe1JOaenCFXIruq6WpRgbbrhLG9li + MeTk36Lf7XbXyCtV9g2mcH/yPbTFpKtWt3D71nRQypXEvvtnvEY2shYahw67GMrtgNu1KHQKR/EN + R+DOEV6zBO4sIURLQD+Ic85vLIFnnKXThI+tbEql8WaYBhkL4yhyJvG7m4/YThJH+uB+/y+Ng7Sn + k5sS078xrZd28DJJ5mKMriFh1kDp9XuZyYUT/SWp02BwZ9rhrIwjz33ys4eRECRUWzq49oDGgNDl + hiIbztDbvq5Pp9MvI24pN1IGAAA= headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -44,11 +44,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "762" + - "761" Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:21 GMT + - Mon, 20 Oct 2025 19:00:36 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -94,7 +94,7 @@ interactions: and L. Rankin},\n pages = {405-436},\n title = {16. Marketing the Maple Leaf: The Curious Case of National Flag of Canada Day},\n year = {2016}\n}\n"}, "authors": [{"authorId": "118523421", "name": "Richard Nimijean"}, {"authorId": - "144557636", "name": "L. Rankin"}], "matchScore": 106.88853}]} + "144557636", "name": "L. Rankin"}], "matchScore": 106.91671}]} ' headers: @@ -107,27 +107,27 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:21 GMT + - Mon, 20 Oct 2025 19:00:36 GMT Via: - - 1.1 7dbcbf3457f77b741952e31c6826a8dc.cloudfront.net (CloudFront) + - 1.1 6269ff653a8a0b71d436afa999909318.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - bJKWWGjGQMEePdMntN9A18xc_CGtctQwapkNo5MpIVbdXDPQ6xlsRg== + - F4KDv75aGAodkO2p8twbOudeYS6lSqivmJk-tBpxB-tAfjn9aeO8Pw== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - SjNJNHtovHcEWtA= + - SwoBKFwwPHcEN7Q= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1015" x-amzn-Remapped-Date: - - Thu, 16 Oct 2025 17:17:21 GMT + - Mon, 20 Oct 2025 19:00:36 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 1a552e3d-8240-4326-b434-f12d7a5652b9 + - fbb94cbd-0ce5-4fa1-81e5-2c3cf7cc0439 status: code: 200 message: OK @@ -369,7 +369,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -379,7 +379,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -395,437 +395,438 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6S6S7OzMNOuN9+/4q1v6lSZk5H0zTiZsxEGjHFGgDEGjDEnAdqV/55iPamkUrVH - yWQNbMwCqfvuu6/W//wf//nPf3VZXeTTf/33f/7rU43Tf/1v+2fPdEr/67//87//j//85z//+Z9/ - f/9fVxZtVjyf1bf8u/zvy+r7LNb/+u//MP/3J//PRf/9n//SI03CqS6XdKm/bATTh116B6Nd6QJ9 - gYG/IbBIfj9ODtULtkXH5nvE9mQP9TLJhQn7F8yIOXZ8TULxnSB0vR3xNYZ23Ule3yFjM3mil0eW - Lt48JBATHeHz9sXDyvkUovODTFi2kqbePnwcgEGSYlx40UGdzSQoYLkJbxy2z8NAizRo0XBtcmzP - U6iufiPo6Jx6Dbbm5JzxrmjbYHsbB0+8H7psiaxFgYirTaxrKAG01XMRTM3tQ86/fHCoxR81QGiu - Yf0cp+H6KWwFcJwqeG/xUjvjJxtdYFfRh2SVj+jEfHwROZfLbW7yD6k3mWMLeM62nii2HtKNC68b - /OD26N1+EcrGtpcS5ATpi0h0CFRquLkGTtSJiLHhgG7y8tGgQ18zkbo8BvR6aGcoOy9zhi/PHLj0 - UTZIKo030fvBGla4+QK01pXBXqyZgD/Nqw7kS3UmziFI6fS+zS2A+iPCOAuNbPl27gFEkxCSa6A8 - wJy1coxOrHcll+vRDzm00QBqEiOR6P2SQo51LhD4YvnC0ZlrKCsuZw71r0NGnBegDg2vdwEl5GIT - 47CWNctAIwZhMvjk7J4OYOm4t32wiuHrcZ23Zh389SO0R1vH+rv8OEvH/WwAOXgm4YnVQ/YMqY58 - 5WKT2CIALK/f20Rlbl2JnS9OPX6YWEcBhQeC5ZZV52S0dZSNUUv8KTZqvnQ9CbKHy2PmkrlyWDfP - e3j4SBBH73swUJHqEpjatCJ+vb1D9tKUOULc2yT261JT9raWOVKlRSdPLbPD5daJAWwjRsXZtjlD - P7uVLQqnq+A16xrUy9UYD6B0e5NE4xEPnGNfRLg4Xod98VFk6w9lIowMS8N5ksxg/XBUhOZLa4jv - Vt+BwjPvgfYDgrlf68lZaN7P0HLeGclVdxgW/fU9QGSWDkmJHtXrtlYSnI3XOot9dK3Xkb3P8PiM - rsTefz813WsUjRFNZN/vkJOXSYeJ2G5E6X+Sww4Ex6Lyphm2u7V3Ni94xyi73AFxJ8cPlyiNNWj7 - 2wu/BMMY6PGrVSjvbzW5vRZe3TzXP6CvJRc4cWczW1XL9QG/Hq7EAc1cr3Uf2vBjpW8ic9wJkIC5 - Kui+THd89fUFUBqOFTQ7QcdPPzcBi+NMgPrXc/G5qcRwaW4ZAxuey8iuP2A174uOOuBiHBxzeVgR - vi9I6SUO361aqmdvyDwobWaBwye1Qi46hAdY8I8zCX9ZGzJMRTV0j4ISG/gO6HSGQAMt/0y8KlHB - sF5l7gB7zUDEfQ9vZ2tOjxmYm7vO3fegqHxHaYzokPs4Tm7lsHyXZAOGxb7xpZmBs5yVt4nsvpWw - 9fjUlLkaDYRs1mre6XdUAefrvgdnS+aJw3afYU29wwGk6vE+v6r0pm4X3WzhY8uu5Fxd8MARUWrR - bTj5WL7+hGy8YmGDR+Gi4NzQEO19PfFQX+udd8i3m7oc322Jzkou4SQnOmBEljLwJZGFXPTX25m+ - 1keDtD8+ZjHjxKF/hPvz5L04b2dWUme32Aqoc9MNX8azlnHASAJQnHIFP44MGja7Ae6fvpAL717p - cvOlBB2tySPyJ5Vr5i8/Hf9W4SSJPxkFnRDDU6WdcZSad4cL7I+JOP57mJe+vNR8PkLtX36CXJXV - GRzdBHpmyHi3pkoz/jtVEOJwij1ed/mMPi6VC4TO+2HtAO8qd/koHJTj24kYiwPVWTtJJZTW35fg - hp/qpcFqDpmKCt7sHMNsK9U7g/7y79WCJlt7i5nhX/w7yxwBOopZBHvdFHHIgFtNn8AP0BSsL3yW - t1VdLpa/QY3XEnzluAdY9Bc5wIYLbsSyVM4Zr3LeQlbyngRfvnRYb7+8h8p7zUhOsKHyKTD7f/n/ - CswKLMhDCfgtaCVpGlKH4u0CodC5P6LZuM3oM1JcJL4Hk5h7fvHW2+wAl1nGP71arlhY/taXXKE1 - hhSc4gTd8tTAtp1WIb1d0ubveiyfmPewYrawYVCszJ7fSzb6qi/BjdS8R5NTUlMxUjcxBZQllyxQ - amqu8wzCh2ngp/p+ZIzwxj5U/MuN6E9DrSdbfs2A42QB37EwOJOlhjY6tj30OAOUIS+nVwWe4vmJ - FRFs4fgy6xxN8ujj/AHikFObDP6rL1mZV8O61ydx8ArsbWn3rqf3rW2QxsrZvE7DLdyEVhHgQmWD - SG5l1NtstyOc807EDmi8YUzZqoPQ6wjWKGuFrJ+PAbiWi+AdYq2jY3cbcvhXX92X1w1U6LoRIUwF - D4okDpfD89qgqpZu5NUCLeMuCI5QomODz7/oGXL+QYvgGluhtxiLlnGn/s6g9Ts98PNn5PXKP6N/ - z+MtxxCry4gsG/7V29uJc9RJWpQR7fV8FoS1pottnGeUXhYBP3a9oOoZarDU0oloYn0bOO265ehg - nj3sDsIT0P5VJOB6e/jkaTIOZVOPg+jDCzecOMw9ZPX+0cAzbwZkvx9gY/KR4J++8Pie0TXMqYAe - 2+OKnXa9qOMVLxvSw49F4nMsZuRxqTxU8NmZWOxXAlsXhAHk5sUmEXrger1UHwUMj7uEjTIYwkWo - 7RmUWjLhGMkBZdtzYsKz2RcEX7zNGa03lZD7aT/4Ih+uYDnagnZissqeD6JgAvZwr1tkLGeRWBPP - OWt68Dl0PjyOxMs31tmYw8dEgBMcfFHfp/CX3owI2pcuIFZMfoBK/VEDSvHzSJG83xl3GrMAuoa+ - Yhw9p2Fgzy8IpUvhYI0b1JCPpBMHtgfnE6P93gC9P2gES7JEOLqcy2x7bpUOvseQI9rxJvyLb3gq - ZROfJ9Yd2MSuFPS3P26an+ulX7oEgqGsiXKOFrqonuiDwj54ROqQrpL6Y1QICc0ZX7PbqK7icuHg - t3C/5CIpHR3Acd5geTtQ4oQiU2/VuRcgZRZAivf4oeOxfh/Qs3GPRI6zLJx8MJegxlDBKQu9ekwB - VdDuR+al3t7ZaqmZDT6hq+5+/KL+0zP3rDIeN5mVMyHLSJCNRherktfQ7YLgDPMxLfFlcMKMft3J - h3/+Sqqvmzqv+juFXPPa5sRQmGx93ysFRQmxPVu4PrK1bdIUtMeREnOSH87Ca1KBhv6kz78yXNTV - W2UXknxkiOn114zTTmYFD4d7i62hckLyOqMOvsickktmM2B7XsfkT++xIhSiQxmBN+FnlDls/Y41 - YL6ddkBHtVqwqfwCML0cOYBtsOreUW5vDner2x4Kjg/IWXe2Yb1WsAO/36jOx0UYnR//Skx4WRUD - 48FNnKVeZBP+tpr3RKFPwTJVGfPPP/kk8OutncwGRkE17nqsh+zpxxYQ1KFJMCx/Kr1+GOb03mA2 - z8n7HU5LjnKIJvc5w1ht1MUVYQnliFLvxH5LsPZqE4HHczyQi3PVVM7lmwh+O8maCTkAdY00RUJ/ - 8fAX3yNByQbpUPjz55G59Xb52Bw0FkPE9u7/uPjhH2D5LU9YUY66w5DLQQDf6KHPRO0dwHTwVIGP - 7OhEn951va+Xj3g1f5IgcX7Z9tjS4q/+413vB/aXxy78km3y+Kj3MubpjR5cQZxjS9uUbLra9gZa - R3p7B/n6DfnW9COYgpX1jpJ6qRnBThjAjdPFo3CQMv5Ncw0mBNszc37WGT0nkwtPxVPGRXv+hrtf - qeCuX17nMHw2suZ5gctvzOdjCAtnlUzYg9hkDjhVnRaMt5bjIFETm4y3KqLrQHAEzpA/EU9hPPC7 - rV0OH2I/EkkS7WHlX74JqmuOPeZayIBl7aGFe/9ClFmkYGWV1yYmIV/PYs+WYCky7QCnhstnDqVM - 1lto0oFZ9gPR0l+bNTdfSqEQfVrv+Pstw3Y/DC0QaPPnty8qZ558E9ZNd8NKombDkpshA7chibFv - 4JuztBInQt7Bsse9Ez5bzbktkYgkQkzVVhzGuf1EeCpeMjHXygyb/XpwJ5bvHff9ZHtHsKGDNn1+ - b4fvsD0FMYf1w59mJOgK3UJBbf/WiyS1tv75xQWWhevNtHJ7+ucnoOKPLg6sKQi3Q3ld0CVQ8xk2 - kkOnLpEDBHTuStyCNZzxapWJ+FYePTnDUB025jCZ0DO3YQZ6PA/TGxcekPJjtNdHFC58vkWonc2J - PPTbD1C+8mMEJ7P2OJRG4ciRjIHXl7uS88SONRXT3Iavb3HE8mXVHW51TxsYRqiS5I7UgR83XEE/ - qxmPVWfRIeqZ0eE2pDFRxGoBcztJLXKD/DFnz0Kk63FMTHB19Q+2uN9DXUXh2sEALS/s/dCj3m4/ - XkGqDhucF9GdLjyADUDX+xFjbGfO1lArhhxeXziLRh4sQSybiAtO4+y3xuhsdTPZ4q4f8zbdx4ze - HyAG9fnXezyDXs72KxgJena0Ymd8vtXNVlEF/XsS4rxgvw4Nwiz+1+9cyqeRLQW0e8jod3nmZvgM - VxyH4umhJRHWUaU4fLxNHpzV2Mfu+aep9F6q47/+4cy/y2ypf8ImsvPo4/hp1PWmqrEPyeyL+MJP - b4dYknKApjojYpWh76wdr1bom3dvbF1yvv7eHzT+yx9vnQY2WwrRcOE3t3ps3pJnPX5xqMM2urve - ludPlY7vdwGjY/4gTjTydHnEZYpea/Am5h5vQ2JcGdjDLCBS49TOtrrrgpLXvL9fDehky/cZBvRw - IDZqnJrt4gsnZuzvivFr7AAtPbmAuhBmWLucpYxqNCjRdCQudpUBhsu8LAoyoRSQrGQ1h3AhY8LL - 4Wh5LP+Wwt4txALy8+0yQ3dZ6W/PL7jnPyneDldPbh51COpZNIv3g5mtHw6IUE1kil/Lyx4mBhoR - hI+6nBkbt+GWPVEFDUVDM69EZ3U174IGNV5PiBzXlrr7sRQ8scx6K+gg+PbfygX773c/yWXrzQ5S - YNhxgpU8RypJ2lwHktr3c/1jvnQ5h4aHnv4XYis8YUqV8p0ipg6IB+3sq25dkAWw+rkU60Qb1KEZ - 7gK83jJ/5oNbXdNJeAmQHX8hToXNHLastSLw56+OFyJnjG1cRqgvFT8fyec0bMTnNTgZ4uwtOx8h - xhDHUPtUAXFp19V7PHZ/60+U+1XItvT+MRE5OcN8SKRAXf/qZ1DeADkHUxlujh/7MEomG1valTqT - G2s+6plu3vOLp9P5NkkwShcDR8U7qSlhgga+Vv9NNFWyKRPMQIHVVhdzu8fHvPe7sHxHGb4tg15z - z77woUixR+y9P5q0JY1gLH1r7MnXb1Z+DSOAulQgfNEyO+OPJWMCXwsMYl2QDmjtPXTxPFwp/vNr - bAVhB5hDH2PpGBJ1Bm1QohUKFU7r9pyxai9DVBvzF+MQFuqmNtnhrx8m8qt9gU148hrk11dKLMcY - 6b/vdz7hnTafH+i+nsh4Fg0+Xyj540sK+HlxRtSP0tBVukoF6BRBJErJFsN6uA8N6N9VNXN17qlL - VssmekURJVqY2oBCYo7oYs7rzOz+lXl4eQMsUcVzXX3GkFQFb8LmoJywebI/2SI+LfjXbxD1GaTO - 9k60FA7MZcVmc1cpv7xPOnyraCF63jLZmMiUgetvicmdPY9g+x3XGUknoMyn1+PokEXsD1D1JpOY - 30OlrvLz7SLzHklEq0RR3fmuDa4xionxOv2GKcvuMxwPjYr9Rr1lU9XYG8TLT8PPbNCc9Tj6JtK/ - rkvSNCvBNvJsBW3sJfOhSzeni9JCg+tvi4mWmjtf+t0XWBytH5FjaA9cua0j/OOl2noqM+ZOX624 - 11ePzhcr23hJCODO32aG5AaYbzazQCYrbXL/aHO481wdwlS6k4SlUN37GQlRr6zwLT1EztJbaQR7 - +AiwXBok3JLPOqKdt8zvmyTXnOr0GsTbLGMtP6zOSHgzBRkSRg/JhyvdWtT2//JRss9Ynfn7PIP6 - As74ErF2yHBoUdB3IgvWg/eBzvFipLBhaTGvhaM73CJdFWRd2sQbAFocusezeAIpIbo71cPyfiYS - /H0HnRjhgjIybkYlir9snPNY1RyaJUYFlYthziwM1Xr3zzZkuBRg+TSGYP1akyaWJ+2IM8s163Xn - s5DMgYj//D7XUDlGolcBLGvnLdz9Vwcj79QRfRXPKtd/tETc14eo0F6drR6XA/qmnwYbMqjrPhV6 - BjyYwsNW9h4p0QvUwt9vVmfAduea3ZLFhN+8f2Nj1y+ipV0P4eNdEi95yxm9akcb/LY3j51ZMgfG - ktgIgk98xkYRKw4X3i/iv/7hXFoCHb321cL+XVZYGlkhXLV7WYBTpZ+9FUeXYXOCx/jPL6rccQy3 - q5ZvopLkC979/bDgXBbh4OWY3O1PQtftV3gwqBKB6Eo3q8tPtaAo3byFqEvFOPNMBfevHyRnCf/q - Vb77HMyaVvHgICBA649Rorx1FfLIJDRsbSu4sBSHMzlHv98wFk8phap/xTM4pGb9N3/457+YnUdv - 7ysjIdfsebz3k2BsuGuFANJ/M+dOak3vAmrgJ1qs+fBpBGcq4KSIf/zFE4UOLAOuZmSzxeqtJs9m - VAsiTqS+/sOX8nYaCN4uh1PKaR6+H1apZiibN2CvJ1iT6mBYHn6iwEH3mD/+DSaZeXVQBdYRq4fv - L5zqPjPh/n44+XJRRq3vVYF7fScX/R5m+/q5QAXO0aOVa1NauroEqBlp+OYUDd35VAq/a8zs62EN - tBPVUXSlff6QMjld2fXUw523kX3ekv2apa7++lNiS/Nc7/GvQHjdIJEHMjoLa14WoJlNg2XxUqs0 - ZsoeXtKAJ+peX//Vu9sELwRjGzhTc/+7P33944mfjcwNOLHudV4va6su5HIQT7930Xm8TNldn1AF - pXjhyDM+yQ6RT1kAtwfje8LY3ev+r/7llh+RcOdnk1mYOVSRC4mrDHm4VO8Rwn0/iNKaC9j7pwUE - fR96Pz9Ya9plVg6X/MrjTM4RXVS9zeGFFBKRHw/V4W6DWPzVayz15VTvfsEVnSB5YfPLMeG0xx/y - PuODFPs87tfxagkH+HQJrtKbw/3Ff30e+vlwur3DnZdv0LhhC0ucBMHOv2b4I1k/8xWp61/fbykU - h/yHDfuQhuvpqjZw97f4T/836Hw8EDhDN/P2QQyXOPY3JKjVHeMLeWfk/gARSN6+Sf78Zb/PY+Af - /znv/eufXkIHhdgDomw4c9Za8Z8e4xf5PIYF2l0hls/p7h3zc19Pz3uQwvgTst4PQCejSrtuyAh/ - 6h6vu/pUQwHQYamJaklf2m2+fED5VTph08hY+o/fG9nju/uJdpitomKgmMRPb734HKV/+nRWCgnj - n0+c7V36rrjYZCU2wCWlhdzNUHQPLJY4066p+9AKqOhi77G+b6p8Vobxye4NyzsugqtSLS17dDyt - 5t5fhnRUpFiHai0GxDgVXrb3Uym8oWdMrnu8tdy1iP54hFefpqQm/WdeQC/yLsaVTOtxny+c/vib - 6ncNpcNNmuHV1T7zwnxqh/zeVwYR/vvB2j5/4uspi8AcCfGcO89jNh7fcwW0+nnz3v5XclZ0DV24 - 83qPqbNfuAr1pEPwic74ChZ7YHt1jMQ1cf1/84NFkQod9l5yI2FpMuqCPDYFB9PwZni9yiprNT4H - /WezesI+H1mAlugQZf0dG9Sq600wzP7PP2P9y5J60dwDA3c+Pe98d1j2+S8MAc2xlriz03jtvYWj - pPt7ft6zfb4EUQ9FC9vBwDmLYCccTFztgDP8kyjrdWwC1SByiS4195CWrqf8zWvI/clugLoPN4f1 - /bIQeX8/qn/lfzwLe7bah1uXDB28K2OK9d4Ww1XQeg5Q/Wpgt9ZFMDypW8DbdLjMy21yVbbgog4a - 85viP/+w73cH9PBr/YtvLhUqDsafZcRW/M3VgQuhCf7qp7L3Tzt/N6GsXiZvjV5Bxt7hZYF7CcA6 - vRV0pKhM4Me4N15/Ltd6CVknBYnYbDinnTnQ/LIycOcB2LQEL9twchqBd5RVbOcdovQiBS30vsEL - 7/NkZ72zbAIP1hARfefxf++P0uqgYG2fx/CgHCtxAX618yxLZafm1EE90qUZVY8l27qk7tF//Z0K - +D/+t/8PJwrY//WJgvPI6DjSuTel+euUw8UUHSzfqoFuz0gb4WpoNkkgsQA35RqHdO3h45fcvULK - 1qkPg7fkEldmcmczrZCBy2NXtrcph/y3+JpoXnOdON/4RbcPuDbwccOcJ0LVHVhlNRok/y4/7CRs - H25gUERQdi8X620F6m0MNAk29nvBicqcwKbBREdqrQhzIDEx3ah6UGDiXGtP1Gwd8MQ3FCiWG4sd - aSCAot9FhGdOu+C7OkvOUru/Ap606EaytfPrvln9Df2umUW0UuRD+liVGKRBpWKvQMRZQsp0cIIN - IcW3+QFK1jKAfcJ73opxUK++L+4T9Ypiy1AquvD3sYDe9Jg9LlLmeqmUrkMkLkpsfSbqTPX4g1CO - zAnHtq0NVAjkBLXPz9l7P4x8WKfvUoJ2KmscnHPRWU9tpCFWiUKiHYgxkLuSBTBQhye5rJ+XOr15 - Q4LWzJlEZrohIyrvu8h3ih/2iqgOV66+uqh+HlwizYKmsr9uFiGjmRHx3qdIpV1xU4AltjlRrXCm - K7jdIuT+0jMxiDSoC2DzDfrlUyOB5gzqqqy4gddDW5KLAGzKPE+FCZVyIN7J/obDnFRmi2xws3HW - Toyz+tJ5RPO77LCr58ewq2MmRUaVO8Q76rLKBsdfCpPnupBM7Z4OZ1vWDAP195xjsKzqesplG11z - m/V+x3qg9F1VHkpTayahK7xqmsbKgrL1HXiP0PMy7mBdUthJMyLnJ2s45DJedHiHh5Lcn5ZF+Y0Z - TDiJkoQ14n4pv6QGg36qruOL1BUhR0+DAnrF4bHmZdvwO+WyCZlnkhK9f1N1fhLXh4bD34gepo7D - lwaz/VvvR2H1gMbPlBPPdpLhq+MDZ5HvmwCVn6KSW2YchmHWPRf2lXHDzjao6rZ8QAU79TqSR7XO - DrGTWwPdX7KfuPiqlEFYsGHQnk3iGwxb07zXUkinuvCoFXpgDSwmRSINlZndpN4ZyuSdwDN+3kmU - B4xKb2EgIUVvEnz2AiOkQBIqqN3hgl2pauqxKVkPBnB74QSSH10OjSNC/0FHYiTvtl705tCCGWsQ - R69f5yyvcK3AQTmBGU13ZVi1BRXwYnQtlpg1HugvsnXo9czRY+7KlFFuCjWYqf6KdWCcs3/5GXb5 - FV+nUQ+ZJ1Fd4Ae2TGKYRAO7MtAVs8OhwjIWinC7GXyCSgaX2N1WCFanusXocYoKfPXFbqD3pzSi - v/i9318w3EKtSsAkPD4EQ++scg/DkuCqnCRiuYE1bG0ZSBCCFzuzw+SDddhuLVSGdiPGDn3YOV4X - cO9YAUtXNQRrJWNRfMvdimWnl8HaZLWLeAPesTZbt5DL06UCt/EpkltabGAtfquHOr/LcJD2pB63 - E6Mj9iBpJL6Fz2HLSJFC0yg+RP/5msMuPUjhPVwg9tMwzbaZEwPYCZcGG1GF1VHzmQNE06nEtyPu - VHpybg0KB1nCTyPWB4Z6WADt7/4gMsZbvfjAHSH0xCs5k9EMqeXlC5Aje5oRqj1nHvMCgiVLk3nK - rcn5Fw9u1bn4yTbxwHW9NMLFFBxvuQ13lSbgm0AsHHJiY92pqb6kASBP74Hjn984FOtlgXIu7bzf - nVuHLbmGEA4cHAheIRNSrpbMv+cljh5/hu16+5nQHPMjTjy9H9brEVRQCaKRXN3gnHGN6ydoXI7l - /Mne55DngqyEIp+75AW9j7p+rn4AF3jpZpgEQrh9+4BBEOk+lpcfBUuWWQ36TU7uQW6JMqLwfQwj - MLnziX4g6Jue1+A5Ngl+OgeLchHiKvC6qoa35Yc12y7xvYSD9pawX4k3lVZjLcH3yUmwzpsXsD9f - ii5H60KUEnVg3fpfALW0fhFTdTx1tatvgbzbpuJIzzNnO7HfAzjHNiGGrsiAKxXAoEZMR+xG03dY - M6BoSN0OMXHjx4duR5MGEMavjLjlFQPuxH4hXIxwwcauX9x2Yk203ZcYy27wyWho1RG0A6fF3mCl - 9Vi9jQhELygQ9SBsYEGpqv/pAb4JoK2Xbid++U89EYP7ZHQxmjFnTyf/gu/cURnYP72m7/lHLkxo - DDRxIw0E3cBjabFoNt2+HIcY/rnikPmc6AZT1wZGtlBSVNWRrtGTk5B8PEn4uR7PlJll14UUBwjL - laUPrF19cxjXiudBJt/A+iNSg37v+EvczVzV6dTmmhir+kLOp2YL56SS2n/xcynXJVzb7KH/xY+3 - eCRQ17N4CMCfXsmqaqibF18SWF4pS1TkRsOivd8NsuNoIQ/QMOH0iY4JfFSDQRS1/g4b/25jxB+L - gyd8YR3ylpdv4DbrN2z5V9lh8KoKyCw7Gz+Lp1evF8Pp4Bk4lkfJoaCcPSs62uspVhBph8+uX7A6 - SDNWr+KvZnN8E+Dv1oYe/1maoWLvxw5u9y0m7tk2wDZfVwE9dIGSTFI0ldnjF9oqV5PiKeY1NX95 - BONrRrF00fKQM5qpBHdT6YgaeU7GLJKoA/etrsSw/SIkl/GsgwAuL2yAy1Glr19nw+ne3Ij2vLXD - KN9FEQJGXYhyTX8q5fMohnPnv0noHbRhoeRtg3o7fGfBsT/1vMcjWqGiYF+p9ZpbI2aDLbf15Fw9 - +2zd+rePNHi0vdP3cc029V318HGKC2J2jQ62yu1LoMfgSRyfB9kqOnkFO7ZjsXvvGTpe3GcH9+f3 - BMFo660USg6qX0/xltPjBKhzWUqofl2FPMMqcFikaQXc64N3uM6rMw5T3sFKLw0caVW5n9lxFPhO - uRtWAjUCtL7WBayf0MVF8rvU2/FQBnCD24L1MB2clTK9DlaeEXASh4dh4ztJ+Zd/9pn7OKMCqQ/9 - aF6w+3tz4TLU1gjLsYuJ8yhiZ/hIQYsaiDKijUIbku4UtZC9PzCxWH8D64tuCkJZFhL9FqJ6We1N - gNokjyRZ1pTO4CwkUNl8mwSpXIPV9D6MePiVC8704zWkSw8L+Bcfsco7GWfObQwlVnCJ1jfNsH7t - IAJcqLzmVZGimraZKe3gYsQWvZch/WSpDe71mHoHufrU2x4/EOnRnXiumoV06NQZhrrU4t1fDFtn - 7vnJVhmWOjsD9K6EPtAmdSTGGo1glXmawKnXKpyDhB9IV9wkeAj4xzwdmKezBIy+od0PYnfkFXX1 - 3quGpnt7I3g76pQqeb/Am/EssRaqLFjSq7nAP/9sqHPp8Pv6oQsLDKzY2jNc/Jvogb/69NJ7K+Ov - FiqgdSQi0T8nAuihEA+AaY4N1gCt6vk0PCXwMx3FQ9r3BlZdHE14uTcasd5zVq9vHktQBoQjyvd0 - GbZdz2FVWNufXtTs6fbN//k9KylYdTtYlwTOKesTtzlRZ6HRu0XHYyjMLTDOIW8nzwZylCXzb4su - YDuzjY/29SAulDJ1u2qwgneVLzywfAp1681bhP7y2/DwjW5mE6bIVpkaKyej3gmv6MF11Bp8x4EZ - 8smaF4BPiwbbq+k7fPKVSyC4IsbnzwNnf3oKNt0BxNTyZ7Y4Qgj/4nVeT75X734o/fOT+PW7nYal - LRMIbuNLJFp0lhzKmCMHXyMLZybrl3rJPlGF9JYD81IEV7r0wdeDz+Zn4bMHQnWrYlSI7/bnzPR0 - Qc6eTz46tYtEQtOH2WLOkw+tc9fg9Cg9wFRf+wS8ry3GrpDZIf3YUyXueoH1pivB7Ai2COvPO8bJ - ow8A7YqnAnVUBeT1XNds2U6MhvhjfiAvruGHXwLmCEaa+/G4FlbZBlPNhgwRv/jCNnFN7uvc/Pl3 - gk9gAIuWYRHQl5sROXo9siX0oA+/C31hI71olNajL8BMmhXi3uIw3OuXAkPHqLAaeUNIjx3doP+E - HDl/z5ea6YOvC6A9GVjp3quzFda6wcyWevx46kI2Y0fM4eyWF2IOb8YZs09UIo8oFpHwpg2MMR9T - WF18iZiPPqB0P9f5z988lC5X17PsK+gjtAN2uSUKu7PfM/BYQo4Y95OqrvDmeOChkN88Sy/qbJJa - ukgJ4hHrP79RyV4vwCZ8W2zaRqh2IjsLYu6JEpayeKTNUMszeqV3QqQ939df14qnQjn1RPvAd7ai - 6KTBBJgv/KxnNCziW5aA6Y8jUY5yoTKZlJtQAJpHruej63A3es3h6xxQ7yQCc9j9ZAkfw+mCL0bc - 1p0CaYCOixjt8UOdhSz3CvhfF5ECSbmzEa4zQeFHgBiyxNOpjywJXq2+wxLLWCpFkWijc91KszBa - fL1d4lcJ/PKlzUfzMKizE9olNG+0m5f3T1fniNYt+vNzh4mvVaq0aBbPXQ+xItJ3TY2b1MJPbEn4 - dQpKZ3pqAgN2fzt/jFjJuN58xpB0cJr5EzAGStbOh+1U1Vg1e1UtL+6z/6tfxDyqTrimqxxAfBxv - WM9/VrYdrHMKH1GkYVPMTGdGzNoi1yq+u38e6ulXhBC+sSYTXXvNYH3VlxRYE56Ior/Gern2ZwjT - e3P0Nj6fMiqZPxMKGQ7wnq8q22ZX/e955rFvTLoU6kuBAy5U8kgK1pmAY6do9wfzdk1/zhL9fjNk - +NeK3ZdUDuQkKx3kBOXkNZZd19sXZz5kT4yIPSTl6ibqSoU++NV5ANYXdfrrT3b/660uuDrsDDUf - ghlSD3hIypbv4dhB1tLdmafdnK1WMvdwvT0uxEakp2MROZ1YCkmP82gyBm61fxyAx+6IrfvlDNar - rZdQl7k3dkHC1xs4CynkQciQy5Op6FIpZQ9OWnzz4Ls60PkxWikIdaX1DlEfqx8hDwOkL4ZCzIf8 - dcbdz8LomVq738iy5fAQ4D/+Y2o5yuZn5I5QeeifeT0ALZs/DC9CTjVkjK+fD52n8VRAXr/Dmc0t - kzIodTSgmWrwVy+z+c+Pjx+7x25zCh1uCGIbCMtlwo5y9xx+WrcEngADyfWtR2o/BpqCDgH7wOl9 - 0kOOqpyCBN2M8aW7CUNffSsd5p4gkUd0arIf0rQcfuzY3ol6Byg6bSWKxyDCux+vaYYLKHri9iRq - ws3Dqjn9ASLgY+wQJA7rkV46mOB8IvlBlxy2sbkWEnt0scaZI13sMGzgMgkfUjC0cxaqQggrZuvw - 5ZcMKsE+TWFhaIzXmRlD6dVCOcRtjvErL6uQ7P0GMI38g/1ZaJx1ezAdLO5SQPw0FLMlMQIdhqi+ - zCB9mzU3VksPKmf4eJziTOr6jaZARIE+YHVYlHBpmQMDq6F6e3Wls+pX5RMPvp8PDXvw7odb+OsX - uNHcxPLnPAyrnUQlXKX46tXNYw7HFvglwprSzEQZrpR1qAVh2BXXOT3nRbi0fS0gNIESW+dYGzgZ - wuhvfT2gdk91ljZaIb/pPG9NbbKfcNs8ONtgm6cF0pD2W9HDYZob78h/bYdn6jGF4CXfsGzFUsbE - 1bCBy+34m1nzu9aLK1gc4K9ugXXbboblRqsKBgb39boiiNXlEN59uHoTi73kN9XbH584jnQgOkNV - yvsp44HydTkTT3HWkG594oGVDjN2sSqquz+V0J4f8yHqOeeN9VMFZ7e6EHfPj61yqwr++RP2ygsO - 0W/BCONbg0hs5LmzPrWFQ1t7fhBn+RQOVZdDBf94iZZMdfbnzwDpDpP3xsIhpLcwVaDXGDqxqnVW - l2W5pDC7fhm884ZhRb8Cwp8nABxcsuuwRAjl//TtIroP8E8P3eWIPXS7dM4/HlG+8Jk4zWOr//gg - SM/aRtTbSXYYqjIQtmZpkdRTT84WG58AZJ8x91YrLsNt54t/+uLddr5Hj0XJwLvKFmTvp+uV5Xn9 - T//IeZh8yrzveomODszw3/XcFlU9XF1Lx1b0etb8Azx92MFkJp7qqXR1UC6C9zPT8Nk5nOvVu7r/ - Fy8+MxCr3Hl4xHy7SKtXt2e3JuHzqAPydB84aKpTTQXe2mBgMF8cm4Ue8sPFNaHDHVLiClmf0QzH - B4jDg4LPAmiHTYDZBk+Ag96hfd/DxZ4zE7jzS/YYPc/U1dakDVmdjr12dH8qHTpnhrLcl0Q7O66z - PZs1Bh8me2NpbJR6Ft65K4r0quDYH9LdD2YHeDgV3izO7qDy4dGPYQv4FnsV1GsafXkBJm/xgbGL - lJpNy7yDbNY8sOTQi8OwhR8g37i+PFCbarh1vTnC4le+cPZd9HoVW+sAL+orx156cygzHCwfXuef - gvf9p7Oj3ES4aEQm0uvWZHTvl05vfZqwzEEX8KZoQiiOn56YEu8O7OP8dcEpGBLsJkESjmR5VcBv - em/e1Pq7T9ylABYK6GfQa1041jFMoXkS/fn4uz3qjSxeAcTUeGJjRcmwVM/Ohdzt682MRUm4iG9L - gXw9DuTPL27fw9z+8TeS940J+n3e8dc/ebRee0DoY2jhqWo5vPOvYX0nZYRA6JZETS4K4DTo60Af - pDOJ//LdmPkU2uEmE8fFgkpfE/bhzv+JFqS9s5aT5/7Tt73egH/8FeHmSYzPog30yr47tPMirJ2d - 0emMmU8gO2stNi+q4ND2kx6gNvcG0Sy7Hui3+NrQz1IDX74Tq25n3T/Aiy9MOPvGRzDpr6aFK+tb - ONrze937Z3S1uo6kVVdRIraq9M+fYbl7ZeRvHjHV0Y9cRgQAgeQ0Q5Pad7L3Y9nez+lQLBcWy5+Z - D2miyDY8SY7jQS+dw1/xcBsQBe+O2Hx+rVf24SdQRtGV3AeZ1rSz5QD2isWT8+Oi0j/+L34Z+MPy - IpkqcxpmDTxYKyLyfHiCTdMHDd6CWJmVeEicEehWAauHEnmfs1LSdZ9nAIPe0SwUAaduwY8R//gd - 2fsldYHHZwv3+818VBGVysEPArMLWW++TebAHBihgklsnkn8OWG683oR+ZMQYWtGp5ocTmWCLGQ5 - JBnejNqaTZZC5sicPXp7peHmBkuCvBS8iXz3evXXd9ECfSN8eUd11kLW8eQGfa2Ax57iXENKJz4C - xznVifE23xlNvnIFqoMye1s2VeofLxCLMnjgvb+vSdQkG3w/sEjsYMizxRJaDdCXl2HpOh6Hf/sF - PvOEXeqoNU8fdQsHc7Q9ztSOw5JyoS9WlZ+R16hWztibeQBPv4hgyTZmSvf+ko8AcbHq87y6pZzt - /eMTe/6r7MowHvKu7cmDSL3UJO/dVDTVMMOXly5myy3pIfS/HiI282qy7lMOOkS4fXptC6vwX359 - 5/Dq8feT6qxO9YyByBeud/QrGvY5K+jgr3+A+3yIbLjf/vEW9Spa9Sp/veWP73g04eZ6NNirjvzn - gZsFlmqUPdJzD4WukXHhKxtd/Nvmwp9pKfjPn7Ofa+KfGOV9IlidtYzxvo72zx96j+AUbmsEN/i6 - rxJWQv2b9f3DOoC9f8P+IVMpn5VqA/TTzSS2lbFgliGMoRxPObHXFYD1iZ0NWm7y9JarGtLlaSsc - eoKoJGf1blMKXncXlEe7nted106t3RRgvWUX8rf+s3L/MeKZ0y/zof5s2fRXf4LY6r3plwzO8ilr - Df3xXXN4RyoXebUH9nkl1s2izRbsrAkooDLOPA66bGlK5MJxfgWzKPNTTcfNrSAfhymW0untMKbV - CH/zNmzxR3Vgn70TQ2VoNpIcJAH0cle26I8XmxrXqP/mZzsvwXoi6+qa45sI9//nLXt/NpnexICq - cDas3WKscidodRDWwvg3jxioVJczQAnT7H6vCqflTCXwMthq5sHltc8flhL14RJgFYSKw0t1N4oH - rYpn7qJbNSsEZgSfy+NJsP2TKFO5tEGTkH2Its+j/vg5/KmaTqLdLy/fA9//0xtr6XBNvx+JQbel - rbF8Proqdce7BwdztrHs+JkzcUHTAO2TyB7J9axeWpCUMIidHnv1Zwv3kxAcfEGaYpczupp+pLQB - z/J19E70Xmab0Xwq2DbBk3hCItA1bH4cZPDR+scXlyaufHQZBwlrWiWFY1wNC7yOeojNdyeDxYvj - AqIhWudKYmKwSJdNg0eDXrG3+wFaGX0Hp7NmYqn3Jcr45dmELMx+HnvEpkp5eRbAmTse//kXDh3d - CmZd6MyL6gYZf0S4gpdeu5L7H286WOcExuv9Shzcjs5K9IsN/3+cKOD+1ycKbrZ5xc+P3tG1f5cN - Us7TzUNgjWoODTQ+Cd9BIxpPdMCbXagj91bO2FfCe7hcgLQg6vHUO76vpbOSb2EC5/QL8bP/NOqC - 7tuCdNt4zKfHMtHlcM41uOr2gI2HajjM0UhyJMei5NFoUChDz10jpsZJnUX+xtV0LO4LNJJGwEEm - Kg5zMpUU4UF4EOMqyCENg8iGj9gAnuShJGMTW/CAiSSNONHaZ7NrrQESmU7BTymQBvrkLwoE4ziR - +71xhu1objFC4F4TwyAa5dXsUIBzpcxYsrMOjE0Q9+IrRjwp3vwv2/BoxvDFdTKWVL9WF+JUPURP - xsexPCbqUrhvHd30e+WdnO8aTmavQTSPhxyfp5tM18u1caH/uj+ws6q1uv0EFaLf7elh5/4l2aoZ - SBAPiSpirLJjtipXYUT1B0TEVVuUTRMzzvCuKAUx0/juEICnGDDy4UA8LWPBJPecAB+EuWPTjt7h - GNiri0xXFojkGjSkS5VUkDm5E8Zo+dL1ezdjmD7wmZj22w+XK1UidEnDhcjO26JsIlwL5AVsRV5N - /qG0KkYfzneJELz5cs04hcyJvzX+YVmKm3Cb2GeP+KgWsWpmR0BPpdGh5ZdHOKdTTreMuc+oG7XS - Y6WWV5dRtlPR8iKdFOzoOyxCbx2mxNy8LfzINXdlGg/k46v1ltMnr5dN8gtUnQOeZIvOh9TXShPV - 8Ic8tsCPgftyRgs90bgS9TKN6hT6YgBdk7uTIk9mdXl9hw4mOi3JmcijyrzvVoSyp+Ngu5Kjmvuo - sQfu7KvALusmIb2gsAG8wdfEWf1N3R7+yYepW84ks5GXMdF879FL4074Ljgfh3RO1gPdmzQc0bTN - 1nvNJTBaHizx356ezQyeI/h2yRmbW1lk8533FFgcdEwe9jMeNq8VPGjPh5qY/m0M+zW6KpBfHjdy - 75WuXlrybET/J24Yh2Y9LKYW98jdLmfsWZOijumd+vBeXGaSRL1L5yeVInT8zE981sB92JzXMEO8 - MgZOF3tVV/uxd1jHd4Jva6+EDGEFG26+9CK3yPMonc7XFp3gycWvIejBen3n7enCWQ62LmFGp/7d - tTBsBGv+gXkBW8CVLfqxMMJOJbb/J2nf0rMgsLS5P7/i5GzNidykm2/H/S6NgIrJZAKKCIgg0A10 - 8v33Cb5nJplkdrM0RuRSVc+liu5hCbeJl/AdW0hp5AXMaBID2Ib5G3muFMRr6F4w5C31Q4pLE3lc - fnFSYBiXKzqeT5U3uulhlKSi99EpOhTDevfNVrqyjwLdq5efz3UjJVB9tTN5evKqLQ+BE4HhQJWo - +I219X2GAogHZyRyow8DZZ5fHwwdIViqGZhP3C5WocWeEFGnQI/5yJlDOIvrBfla+8hXXHE7MOZX - GkhHJxz+6tltcbOAj6JnzDxPSyCFTeERXV+rfL67I4bykbeRa09rTbwVXGDSDx7xjIJ6czJ4IrRw - +d7yyQAsfK+heIxfFkr5/a1e48YRIY3hO+BPwiuemIZwwudwv6PLOtfx8uyS5ldfkFamqceYjSdA - oWXsrYUD67WuvTs8LKWw5fMcr1/prgOf42YsSZqirR0pTdDdwR3X72+T4879jiDK5TOKPf0MuOf7 - sILLuZeIN9w5D6NRTiAcAp8E2SGql/wcFuIefF0UK5rn0fJORGjA1sSRJjmAeV2VBKp89cCUCDtt - eX++HbxeoUcsIWW86Z0+RwDWLkfx61yDRRrc7KAz7ImkARcC9sEONtw7qon7J3I0/v68+ND2fEhy - IefpSIt2Fdf3zg9egStrvGnLqRS12Rf5Hw2Av3o5PK4ZhskUDrPMJxWcG64PpLS/ADJO3xEqsXFC - sUnYeK1elg63/MdNwgjeeri7EL4/LEUmMDQwHfJMhm7dICSv2QUwuFAuUjClIvHpBMFYIIaDeQ1Y - 4r/cqp7x62xKyg4O6PTlLmC+hu0MFh8kxHneBW++vR1G0oLYREGATsNSTs0owXP0JFqtYG3R2ast - +sWsk1M0ooENLjCBn8dbQd6I1Zq5RbUtbfgTnDYvY7lyD11s8MNAz51YDVOYzhhKrAjx+ow4sGzx - I/7y7Yj255qo7yWEqSzz5BqjQZtZV8CweTgaulTeHswfS79L1XStSPCoOjpdbMAAtfVzlIgr8Lbv - C+mupwA93638i7fiDw/CV9DGVMNn+w9vMz1dteWpXX1I490b6Y6lAlZnnzZ85aKDVPTdezPbIxke - WulJNFt5UVwELgTVy42Ix8F7PsZS1UpifZGJBct3veKjX0GVThiZ9jegg4bPLuRxeCEPyzbqZTs+ - EEXwJsfqsQ4znjtZip/0Suwnu+bz3QqhlFuoINZxRoC3xGX94RXmKu9JeSKoO+jWLQrmSbBy/u7U - szS+Ti+Ub/lAqjwsf3gdMMd+jdfKS77SykdBsDswr3r+WP4doqy9BjtlfdZceHt1cDftP0F1Po1a - xTVOCovp4xDleQmHuVtOUPINrSMOggtdQh7JYONDJB/BUlMt393hWdi3yDukdc22+9MdvKbA++Nj - 7GRpd7G4MCWxG5d6pXnYJaAx0ywodTjVW3yY0BayGzHG9OLRr3iI4Ne2ImKw+4rOO5twsO5HjVzJ - qwar/JwDKVYjI9ivoTLM0vdWSLPtRijJ4jje7g8UqdrVxJBvnTd/brUtXVSsod/zojp9RwAukCMP - 78t640cTRnhbpAu5OoGc8xMXtCA1lxL5WIm2+NHuv+eD1Gz+xFTm4gYWO+AhP/Re3iKWlSuEse2Q - hH7OObNcVBGaR9FGLpUUusrbmhXXR7qiy7CO9aKIDgeZxIBbvFVg8ZZTAT6a0qNrmYNffO3gdZug - UVcRDwsTSKlYQrRHsmraOfei7xXeRq0j/l5ONGyfvTuMQbcGtEwFjX6PoSxdEtkg6iVvAQktIMI+ - +UYkuFxrbf7cBhdeza9DzNeigMUZnQusgWyQO8/imOIjexfpMzmQ+8YvlmtZdRCfGpvkkki97qyK - K8hYvdz4buXhKctNqDqlTsIzlj2eeVYByA9shd+715pP2I8buPE1/KqHRZuXiypI87E9IBddunrS - Vy+DgxfcA7pcbzXG1Q6C56sO8YFD55p2L9OEJ2M+osvj/sons2EY6Mlhi9RLdwaLvmoZ8D7VmXhx - hME8h+sKzeGWo6t/a7W5fvUN1N4lR5S6qLwVP+tAWjC6INtxzYHGSE6l/MBXgXBRuIEcbp0NR20O - kKmMgkfTz72D9gGdA4YYb8CItb6Teul1QL/7O/EXR4STmKRIG1nXY+s3juDwOGfE5swyX3daFYDx - DHzkSEc/HrPvCUK8Ci66nK0SzKs2+vA5HpqA5fyFdu3oMDCvzQPRt3jC/EXkgOG9xWDua5NyB6cJ - 4UE/58SRjmNMHe0xwp1hysR+c1K+xUsGBUEyf+evze2uLKUTnVtiGTmJp+E6zdAl9Lnhw50uuzmr - YNFJxR/fweqZTaWlUk3iKG1bU5iwhQS13SNgy0Gmy8UodcgtgEOOASyNOWS9Dvfj00SW+XY95jwn - KkjuOwa5n7gETCRk9199IU56a7zVkpIG8g8aErODVr3x6xT0pfxB14KccvZ91iDgcXQhtrIvAXWN - zISKmYnIfTwNjbmuYSaRZ1MiIyI0Hu9ug0GZOAk6pvcPpS9TuoPzPUaYqToKaNyIDETroBGHnHaA - wtNrlPagc1G+1QPCHrUSPtiqQMGjsuk66eUXfnFpoJvci3RqR3GFnZRW6P4cPh49r5iDu10xkTst - p01xa6nUZ/qBpNMuAPOp5tOffsLtPmtyelqdFDyexhdZg1/HWDneShgZekfOYJi8RUprDIexLMjx - Rpdh5uKkgapifPGcLEncizUrwN1pvW74YtRzq8ALaL+ugnRiGJTd4h/ursEOQ9YX4lm/DV8hlVUe - oZ2oDhxSRE5UM8ZEN/BSAJ1lLICXPxkElQmTz/DMpZLOqGeCzGEZRmqUrbTVK8xLPIqxUT46EFFL - IbZ6KygVklD94w/2/Hl7ROS5O3yIrhOsj9av13t+K4Ho6yE5snYxrPmiQRjl6hmZzP0IHkGfy3AW - 5wuKRCOJO5mxZ6BMXR8ciUUH/LkukaQVq0+C+1vy5sMDMqCpzYUY6aX88V0If/XQ+B7EYbldCAO8 - SxCTjf9QZjveTz+Qwq6tnC1zU/3xE8zPGh2ynLmOULazF1Jrw6Lz/aFl0pqnlJgO0w/0xVzwD79J - suU73emxDXv3wBLVWQw6P88+BKvxNJHGcQxdQB+oEpszCzLSGsXr873M8EV3LKZkIB6xz0wKnUF+ - BGwSYDpdy+orbXwfWcsxiJfp9nX/9PrGN7Q5PcYqVIXzDV0Wyg8TlxglbO6JhfdF5wD+FF5XuJPv - Z6RmEpdP1cNNoahyYsDhXKVTIz1MqFKCMRM+rzVW33YinhS3QvYao/iuJnEFDR7mf/roe89PlXTq - shMx487IVz4LWnHTqwQVbArWg5lWUO5xTdCxt2P2rA0YeN31hEvfovmaBlCAGoyfSC5PYk0d7YyB - fZ7PxB06JZ577mvCL2cMJH12dU7PyoGTpiYb8MFe/Hyhd20Ha1c5IDW1Tvla7PYQAOsNiSbYr3i8 - P7QUKvjxRkrieRot+l0B7Xu1C4RquNbzj9/unzMhR0PZe9QIPgLk0GkJdug25vSchOWPLxC/kT9g - KY6RKj2f2SkI8+wb/+UfB7oIbZ/zX72DtyEYkS12CMxhnpcwtJsZbf5NvOzUQwQDSZDJabS1eLT7 - uwo4TX8h1bi/40n91DZAfISRk950bym/4U7a9DCxddbUCLPKgrQThx0+BKE1kJ7tbZg/HA8ZRPG1 - P/7/wbqF1HKJ4sk/SJcf/iAbWl6OQQAzYGwTNMbCL/Fytx3x0N46QG79m6lxcgEJzHfPI9Ky69Fj - mcJOYBtseMm0N49zRjECe4pmgiCF3hDqnSv94u2U1/t6Pu6SSpr7IkGeNOnepPhlKwVGgshFWHDc - uWYui87niJHNr99hSd3ZlyqXFMh3jt94taR7Ax9sWeDDypdgCS7wAtHrqgSw5Xyw9CKe4f1SH4g3 - m3xO4z2bgb3DqpjWgaSRM4l10N6+gGgu34IVPwf/xy82fp9ra7z3C3Ah6Q0DIejovC+LDrL86KP0 - I9UU//yPKdZ7dNnyud30JRw8/05iIuw88o33FRQsbxdQ9ulp/BCVrsQocIcs6VvGq2sxAvT2loh8 - 7RbENOJPpfS1wgsxm4+lkSHqXHi5FSOS+bHW6MFS7lCo/EcASv01bH6fDRv1Pfx+n3+VcArhh+EW - fIhJRfnDrbT/+MNxPOF6uda79K+eIcXnctp5eQdb0nZIF1egjd8g3Elb/uFqgDxYL864glYVI+I9 - SUlnINIVjmXx3viJAfgYyZm0+YPBzjqJYNGvMieu9PnE4sa35p394eDPj3FK3Ay/fITwJrpY4WOb - bnq0hBlrlv/BWzt+NVJp7TSiz40S864R6dAeRpX4PBvES4aLL0Cvs4LU/bWsaQL7DmI5NIl8xrK2 - uJoQ/PL3z++a4du5QPu8nokbso2HEbmb4iU8Xkh6OJneKj+FADoDe0NIVvNhJvD5hUxiwaA/xjmg - x+omQ2lvR0i5fdt4ibyvC/uki8h18yM6B48uVHXxhpR+hB4+K7IAzTdk0P3OVt7wSb8+fNhnBa8H - 4Z2vSR+psHLECilSQgE9G0Z7+PEV/bniml4rvwTeKn4JklUwLDuKQyD1/ps8jxyfrwczrKDtawKG - d7bS5s1vlLbrCeZi3Xvjdv4iQ1eTGKe3UC9BH6uSkUc6lm6tWvNP5Z1ISloLKHDExaPlIHJQuEcE - Od+qjHn4SWypOagFsdar482H7GXC9ZW8tvgJBuxua/7dtJ1ElNPZoAzSRizyjK+j4313jRevMiso - kjpExsC18bDxc6i+mhmdNz7HnqeDD+3TviVofczD/E5iFdbvQ4IsnmvyP7/4fsYSZvT9KV7Vt5z8 - /B3805eL3S6B9DtffQ29ejIcMYJae16Jd83KfInrEMKZ23+QrjqjNw3X9wqHk+2iPLITb9VtzMEq - 9xvilIDWfK7HXwj5/IH8vGbrZUfbEG76dxI/sUz5XoACvJwHKcDA83JGOIc7KYmnAhkFOtT9idLw - j19cyUuja1eeXWgOeY4MZT5Rvq5h+osP/P3EJR19dv5Ciylioi3X2zCGRm+CyDg0CG14y/786o1P - BBwqKdjOJ4KGlKvI3F4h7plCvoh6/EIYX5pVW/a2ksF8TNAffi7Jxc1g0blVsN+JVT1fhL0AyIs8 - N/788eaX/u1Ao6wEw2A0appKyAQixgnRJzBo6y05qtCZoUeufstq356Zfcn8Nk+k7ZSsptbuWMEN - r9HG1zf+UoywE1Y+2B97O+f3uPtCZmJScrlH7bAQ7mUC1q0ICc7ZNabJ14VwiXiVWNzYD7PpOAl8 - qc5ElLzeD4Tlb+pPL+IRusibDf+hQ/lbPwP+LV61EVM6/8WTuc/0nN8tTCaxp9MNgyw0Bl4uexeK - 9ukVcLuHUK9bvAJt1hH68bPxFPg7eFL2BULk48UjzWNVsj8gJtpRBF6/+QnS5vdhMi5mvrAHVZDi - AubkCJZkGO24b6HBeCOxcCNs9WP2wWGphKAWqn08nwIfgod9VQJ8zvh82Pu8Cja/AvO2/q6p1G8d - On4cyRNYSz3vVPsCI+HVEeUoGzHXv98hVIRA/eNrzM64m+BwK3wiQ6UGVAnUu3SKiib44EbQfvkO - asAqyOb3hxoTPlJh5Ixx8BCwXDPv77GAp+vBI27gT5TeGlmUeCbQcfeRNMqJ9DCDTd8Q81K4A7sq - TgaTvvdI2NctGNfFKKT42N1Q8OKdePnCwYbCuTLJ2TelTR9DDuDemYj5NastX+0Ect9L+LuefP7p - MfaDTMy0sxGz062yJYW5xX/66eefg0FiSiK302tYw1v/hWXTZRg8uixeHIVyYPNLkD4BT6Pl7lRJ - klh+yHNc2nwmB02ERWdXqIixD5bbW5zhffh+g8PmH82F35sw9W4eUttwGuaasSMYPTuZZBmH6eQ7 - 9gVu9wMpj71JObOKZHBtvDsKPhe95rOLeIFIsL5E3fQG/9On3ggh3tnzJZ648DADVbG+yJ0SD6w7 - U4I/PCPOXHsxrh7gAs4t1wXQDnf1KtfaTvpy1oDbXHqDze/bxoFKA/3qV8O9QQhKeNwHw5r5dP3p - E0dbMdr0KR2NvJSlLb+QIV2vA3HtiYMbH8NC8h3pekROBr+FvEceR6Z4vtiqAEqOpsFroGrNmq9+ - m1BZDWJc9Rhs/lcIFdpciV0VXT2fzaCC3E0O8KiqTb35nZy4iz4x+vW/GH7Q0m0CsSSBpQ9g4+bf - Pz7Afb7A2/xFFfz4z68fuJADw0kPjVyIa1QjncbRZkTymp7HLy7a4ddPgmbyXYnlit+h00hhHlBZ - GXi/8cWJmqcSNtPX2fy317BEbTP+p39ooaPGaVPjw1N0b5Axeh9vLQdFhOTZlliwhMybH4zow+3/ - MadyK13sJKug8LAGJI/YHxj/oKe/fhKyjrUMuJfpV/C5yhdy49S2Ji+tx7ALRz9gnnupHh3cuEAB - Hgy4VVrj6Yd3hRiXQZ0IC8XPONdht0MFUq5KqHFoJQzk3vhNAu1gevyvP3kUVw6ZKG4oNdtiBNxz - 5oONj3r4lQ4+vAXVOeDzg7/5y34BZlsK8N5/TvVi7fcpnIMbS4x3to8pF8WdNHF1//ucz9fnMkJk - PFoSrscPoKPsFPDOq3si3w9v0GEKZrj5s0jV5J1GuUa8wM/jo6Bglg2Ag3YOgHdVUCBSmdNWPjOb - Xz1Bz+tD15izuq5wpY8ncqb0Xc/X2iigfZLaYHV2CSB3M5RBIZ5Kor+KgzYL9BPBQiEE+Q/15NF2 - kAVJrBP5108fsLILSujtol2wf7flsPz6IWE24eAkrE2+dm41AiCrVxRs/vFcjnSGfYCbYHQbRluu - 5beD1u3G/Pijt+ktGZ7d/fFPP/70JRzWwsfzerQAS9M5kBg6myR0CkkbK0ecIftan0SP7eOwPJ4C - /v+ZKOD/3xMFxVnikMubsjY7L7eBL2suiQNZU+O4fSpDnCYcuWEa5swksaq0Do6Hrte9Vy8yKnw4 - RrkdrAffB7QzwlKiSXVDofC+alSqW0bCb94O2OitaPwzuDew8us52Gd6mjPf9T1LX3NNkbHzv9s7 - uFUmqk5VIvNrzXS5hLkOOKlRUGbI+5yOSl9IfQ2bgMsuR209vPIMOk5dBStA6cC28HqB+/a2DwQJ - xfla67UqFQuzoocKzxQTpriAh+0UJPPbHozD9s5+TIt3wL+fj3pun90Kn6sroOPF2HmrtM2U7E+Q - Jdf8Omuj3i8m3PPRFaGQPOnyrN0KOr2rIT2OR20uY8eFkafYxP8WZ40cvCqVEhnyyHxkMV2O0tBA - iV1o0D73Wrzs8EOA+64K8E4S2Zw6maDDW8TnAZBFAhY3thIJ6UtCbvZRzbmrX2A4hceSoLg7elzq - CjMo7GdDrOAba99AlX1IWbQLaKGNdNTbZwNjen+T3EV2vC7rnEm3l2/g+T379azNRQE5phSJxju9 - Rvd4p8OCmn2w6o2jsQ9ejqTISCyS1jbUyFAlqXRWwu0dE/Ecs+IpU8F5ZUQ8F8UTjJ/lkUneuK+Q - FanXYSZr6kusYb9R8lIarbkaJ1fi0n6HuVhUKH9T4A6mngTIyf6mA2uf0zu8xg+TGJz4iDmUwggy - 2avE7BYfc7LN7BbNpSQXZlE1vnhEghSDPgn2gD8NzCtQsORf2w/xl/kFRvYgpKIVB2fyOLyOlGmS - Uyk1XtVizBdfjeHIoZQg2hBi/3IpeyocWfxoaoTUN7ur8ZttvhDD9EUMSfBj6j3aFE638EMuzVgO - 7PfFBBIwrRSloufXS5noAXiehQc69+YE1heThEDcv3YkKxJl+DrDq5Ma9flEcqImYH3fFldKxKkm - SWd8Ae1eugzNnrXIA/OwJpUgcMBLy5ScUqsYRrtVZSjFzJUEu4B6i6otmaR4o00cAUjg++yPMvBr - ViWnGBrechewDw8NOiNULWze8QoO4HR6XjGti4c2/z6n6KKgq8xpNdsPwIQf8RSSZFh8Opep3EqP - trLRhdz7fHnwdgQvh/EWsCJj1AuUkgA2WUSIMRZrPoujWkh15N2QEndWzq67qoK307tBZ9NXAL/7 - yAnUv8WKdMg78fpsji3oEkUiKc21gUtfIwcNRfbRRYextyqp6EtGzcjodlEWQO+2v0JJlfYo2p7P - qLfXBljamyFZOngxoxY9A2tmf8S7PLE0yj9LG9J9BYk9sAdv3QWtDJ926uG1zIJ8PCqdDNYLVoie - JpbGZNVZhYypX9A96AjAd99xob9cE+Tor9JbfTAn0rG4m6iAz7fGenkZwYoVd8TyIjzMe7VXIQwC - jKyH3A7L/iNUcN/PBpZAcxhw666c1I53gdwOj9fApmW/wluQhughHWfv9z3U9vyEbI52GjbOngsx - zF7I2j0rjRYHM5W+wd5CaCJ6zpnfWwinTp3Jce/q2mqcPRs+pqdMdDdaYuqGSwB3e08mxkJdMHNk - qQC87/hgUYMpnxLDY+DZTXRUfKY25y7iVxVzFc2Y4Tkcj6NFd+A5fAoMwv0SL9wMG1ja+ISy12h6 - 6+XyaEG5I2lweF7cnNUTW4d7Prwi3/iw2nwA8gybD1WINdgxmCMqyvAtxzySo4+es3l7aOFsEY9Y - emUA7lwm99/1INdvHcpt+QHvnK+SYztq8RoGUia+zLLH5SU2a960LAG+qTUEBzPE3syeayjZUdhs - +BGCtW3xBSKkR8jt+We+CvNthNhlGpQ8rJyu/nFSf/URef1j9ciYPkrwPEAb5c++yufOG1RY50EZ - fNRTDPjz61lB5Qpr8hiegrdKj/ECF5NmxFT3Bf2GVOEkWzpZKDl+z2Alj28Ix8/4Jefiqw7MJ+sT - Kd1REgh7pgIzm9Wp5CtaQIxKtbwRp+4XGn2tEGQ35sCnIQhhb7JLMDuila83eREkWocVphw75OvS - HUpQk+GLtIkJh3k4iRz8fjmN6M6ODqvPCSKwjsKKToW+1tMDkwSebcQSu1CcmpZd5UJFubnoZjYe - 4LQ9A6UlOY14mdhLvuKxbIF6lVeUnqCtTb1nu5KG6g9SuszUuEHVL/CxzjVJPxdVo98lGqXteaGY - LnrN74TtHShybTAAz8+w9C3oYKTrIcoPwZlicDx3klFz8u/64o0vcDCs/CM5Immu8c04XKBVjp9A - fOtuTR9VdoFK6MXIZ+02xsdRlMVHW9ok7rwspr/7FaV1RoyWBWDChWFLJCyOxNd9nS6onxgYxned - FFafewx1EwxP27shh0mvYn7jL/DDNCiALpyGVWHeo6RV522tgZpS+iSo/MX3hq8+wBY8ilC6ayby - wv0pJ5wbyVLKfWSkWUmm8bdZjkTtYinoaL/9mBps7gNvPRkkOalZzlnQEKSZNhbJP6VEV1Hu7qKX - Vil52k1bz991mmE0cRApaV/FvIp2KVwf3wPRq3uSc9HupMOvcDlj9zTdc7p/KHcp4gQ9gKXqajNU - 0i80j81IHtN9jKcXPQWSbossQeL9FdNncG9/z4NErdYMy7VCGH7ejBnsuhLkE6FxJJ2YB0FhBCqN - IY6fgJ3ZeeSIeTisQxvOknZNBORyzT1fT/3WsT9DhqT7aO/Rcno1UFDPEbkuzd5bQ+xm0M2wHOyc - 6DTMs64LUraX7yjwd5Su2h7uxHytuSB0WmdYKsMQYCKSmqhJ7w5c6LA7eHb0I7qhd1vTH/671OfQ - 9SG39UzdO4bHxLGRxb+oR49XR/7L9/toDcPAy7kL9dlj8IpkxuueD1mVvkcSIs8B32F5YHKB55UT - iX6gVT3iVO3gZQFOML4dWK8pEnyoy9gkzjw3NTZJiCVxvAzBoPYPOv/4JNMpK9LS7DIsh+s+g3e9 - M8hW37UVjt8OJtPxRMId19GllEITpIXpEi1oW4qn3jKBqCQ2eqa97eHbddrBz7juiJldjh5zD54R - SKPXmWi+wsekj4wRHk6ySuxT942nK+n0P3zQo30Q84qmBDB7VV5waK5G/H52CoSk7ksSbPi1ZKeh - gMfjByPt+nkNtLrVHNc8pRmZdsIPNBYTDNhTLhOVZbp83c4PHqbwjnIHfGuy5QO4WsEQfDd+w+8f - SiEJxWdExyZfajz1SIccU4k4k7heozF7DmG4xwXy1F4Cc/+dZSmLVhUdldd7YKEaY0l72jbKXInG - 4/Nhy+DFcQTZ5CgN88IGFXRbmBOUSG9Av2Megba+LcicvOvQ6yFuoNTXaUCjqPdW5mD7cOTuFCnL - tgqv0fIz7KtxIvdvwXqDGx4CkD1vgNg012qWYxkZwEWtiTIfJG15m9sq4+H9GAgtbof5KYkQvN2W - DXZR7Mds0oTbrkMNCMQND6n7mUJYxZZLDCfs6kV4cRF4micY7F/frRM51Z205+SSJJchrOfH1ES/ - +CeaV5UamRN8F2PNfqLoULo1G92UBgZ8rCJE1tBjwnq4ABXoDzzzYZGz/umVwhs7IKK87leNJMk3 - gbvWOhBv7/Vg4s+OCe/goKHMCYycD4rdDMrgFgXShl+jvzMLuAjXK/L6hdD1ke4u0CYzS4zb2dWY - 4oYrMYtmNRAjVGorg2ACNn2H1+ohevN5diEEyH6SH57zLavMktq8dHTe+MbyVZwIpLuFIPV0MrWp - lFIT7syvhyz1RAHOT3IL7lc2Redunb0lRiqWLrUnkyifFm/dpY0gSa+kJ6eNT256q4RWvr3DSoT9 - sGZAzMTgUZ3Rxn+8tX4/oHgNvJpYhsR586++b/wVi0ongtWPmjtkdh8Ps3531FaUwhBILKXEa29D - 3klTxkF4hzx62O8xXpHghKA3+YW4wZmnsxUCAbw9ZkReYx+GNQzYDF4uwhtF85OAId4nNpikSxRw - GivnlDlzjPRw8jPm8+vsTXqIW8i3Ok+U1CpqurifBpY1Zoln8holVnsXIbVUi3iCKHjzOMopZKUh - w+yutOjyNe0R0DqqiHsCVb4yREnASzDbH7/5D75segVlwjECK2XxCC/ISJBhfSLvL3+szDsSvZpX - b/nVg+MUIOKrdZCviWLd4RZfSD+cdtuuTUcGFEo54jfhLjWfDEUK9eN1T9TB5T1qJl0ExFU0gve5 - tyjpjLSEutXtMPQaR5tXWrYSdrkGGYOmAKa4tRXc6jVJTHEEy/tbYVjnfomO0XQYhn2qqtB9Oi5y - 96dbPIsfT5X6YFCQZUgXbWH0NYWMILhET2UnnorJSSFFPhesPWnpPKpMJT00nCBNDmm9crnXwt3x - oyHFb0q6fofUB1Q/CCjbuSagkrrtEsQdTLTdf8Am5f4CzDl9kUCtumHZHb8QvhIZBLtGafJ2izd4 - 2+ELjrd8nbLTcAeLrZ2QtudaDfefHQazGxyQOrhXb3lcaSTFYEjwmN6f9fK9MzM87ba9Dth7460Z - J+6A3KYtCTz+pdFHFSVQUK8Rnrd84h4pl0D0EqzNj2PpT3+C122CuNNaZsDs2y1gFDE3kuhnKZ+B - wH8lTyZ2AFUU1kNgqxjeVxaigD0K+bhXXzJcDu+A6JseX278Y9uL5ntAjvy50vmnzx+K36JffK7P - xmhhynM8UbOoBGuTX3WotONIbLSnYNV6W4B3ADTM86/YozH7iGDKM/zGT5h4nh6qDpyo+aJEejZg - NZjQBeXFr5H8TJR8sc/hXfrWKkWbfown3nMD+KuPNwfOMd6OD3okCCiweqANqEojEF3jGtmb3sYb - 34btNBJym+3eI7gbfSg/WZ/YBho8QqwlhFr9if/ib42evg6ZIDaCw3b8WVqjSKo7vCI9gepADtWl - AMJo7Yj1mUlM47rsfvyQXMjdielWn+HnGY5IeavKwFnvEyfOOGzQk7jMsHL7VAWsy7fkSG5lPGde - t5NY9j6gy+Tx9XpqtEoyKxH9/JGaakFYSHF3V8ipnmxAfvjInSYTyf0dg2Wr75IdlzlK4tjX3p+8 - SaGDeT2Y9m7jzdKaRQC9FBIso2nnvA1q+VBlYkZMHVJvbfKnCfOUOngCza2mzC1MQHpnYhI5Qz4s - 5+wEpdSMRKR1nhgvLowDYNGDSKxzBrXpe4cz/N72A5Lv5ERX+5ToYHb9A3pirfJ+/BvqVV9t+CV7 - azrUGM6q7G7616zZz2Xcwe77vmCaZlw980rrw4zZJiQ+5lzTmwlT2GLYElTfZjCh6xLADV//9O6W - zyXk8alF6uNr5OyG72Jb5wvm10yuqfb1INz4Mq5L+aUxyy2XoVccb4HwumFtRQyZIVC6ABVm4AK+ - FRVf6is8oUCgKp1uU7GD6lVdg1bvzjlNhksGzDjGGFw6q2bR9RAAgR4Qsirr4C0yrb4//wzZWf/2 - FvucFsCYzZygJW9rynj7HdjOJ/isZgXW/MN0EMX1A88bf6aMx0N4x9kSfJdHT5dTocjS4Tm7REXJ - QlePXlN4D4USL7QY69lcMCMKFKA//KRx3XUwKEmP+c+M8km1Zw4eD8UXAz1i4k2fVICRzskPTwAt - HpkA52eZk7vuN2D85Xf3MHRkUnsY5tixAzj4y5MYDL8M+CMDCOH36WAubnWNMxUjg+Gu+BCbqbh8 - zLxyJ0lnPUAZ85qHqeqzC5CCkkHnQXvRntHFFC5f3iD+zlG81SqzDGanw/cXX/kY8L0JaFLe/vw7 - jlTbYMIoVcS/RYrHPmu1hPeVh8S/9u7AnITDHXDhA214p8Y4UaziV1/+/IN56FoR7r1bTnTM0np+ - +MtFqiDPETVKhZqys55KKj0dN39uHH5+F9jwFP30IPsRl1TyYKMFwsDeNLqnbAX0sxciedMf43Ba - ORAsrRJ0Gz9kfvxg4+dkq5eANP26TTzsFWQd3L5e1TfJ4ObXoQsac7qUie8DD1x8YnPPb74EyRVD - iwIxEOs88eirrvDPryBqKNnxjLpqhpu/TX7+48LoYgbd61kMliAO6Nh9igr2dycmVhj3Azl9A1V0 - s1FGl2Ti6He/rgWs9KuCfLlU66kyjiLsLewgWxPXmNVNgqHtPmMUqJwZLw/8SWAa1WcsTXc/5uTD - ZP/pb/O513L+EL446WSoCvI3PJnlN/LBpieQ6nXbKtf9Ykpwvw7IY7lTzP349qLoN+RUGAPy0x8D - +cT4YO3v3tKEDxfM9l5FylavOGd+6eBc0IA4MmCHZbJuJpBTIUEJAp960c0Phvn64oI3Jro2W7Mt - AHXVLj+9BSiqwhCMbADxjnf9eMMX+6fv0HGyg2F8y/kq7kO8IzK/Vhrd+D7c+Ayxwo8V87WBTWjF - /pmEZvDWcKKgOzxfmicJqvRI6a11MkjAfUZuvMPeUj/ju7ThKfnhF7/2TCv+/Nafv9M1g9FCLluP - +FBua9DGnnkB7vUqYtGoNG8tqCfAFiAF1+5YDOOl9U244cUv37z5djQFSURICHASysPowJ0ptmMh - /J5Xzvz8b1hFGbHN3cFbP285g2mv44D4YUc/2cuBYIsfFJ639bX6k/qFU4hKJG9+/zcDaybh0rWI - JoQ5wPt1vUt7Y8wCGL51bz2oQQrPSiQFI30S0P38382/IW77zMDy9s74p0/Jr77zaw8b6K2xESzX - pK9nYKYmqD8FIPY3s+nKECeBDzY8kVvH3eO1CPgCkmlXkONk43px+XyGUsxdg8Ov3xR7ZgJUd73+ - /Pac/vwODb0+wT7tOw1vfh6AdXUKYHgy43U65i0wyocYnLs11H74IU3a3sBwzJ14IUKEpc2vDKhX - yRp7yEMBik7JE8OHX7DM/T2DhvG4kEeqrjl+peUqoXvTIOs91fUcBA8f2rjckZPsbR3em9JC1DF7 - ok6WF6/5yf5Pf8XvNR3M40eG0hSEGubiyIyZ/j030iEAK1IKPappfz3aoEx2I9nqxTD3sPnCUys9 - kOyIn5hGTm6C5C1XyNS7c4wPapD9/C7iLo/+r54DFSYJ8h7pPCwzjhn4468G+5y0nx6C50v7RCYa - AVj22mjCi23fgy7r39rUHHoVZtL6Rtb4GGv6zhgf8iE9o+AK1Zr1Lh0Dpk6eyXGrB8xbjlfJypwj - Ln78a+MXwHXYDh3NLvWGPPI6MLpvnhiFXVCi3NgIvqPURK4fjdoyRJIIa+6oo2DD38XLuwhOE1kC - HvtZPb4aaf3xrUB4TB5dlOMc/fwr5HEu+vUnfHjSnT5oH/hUz3N3ukg8WISAnnZDPPs78w52cIjQ - 8Sg2dLnxZwZOR9UPRpmRY1Y5ziHMP6+I+EESeTPHCPDX3yLes1djFr5KLEnmxUCBv7mmTb+Wh8uD - f+DxfrEoJ/jHCJztI7vVg4n+4Sf7vVsB27I52PRWACvIciSw+lxb9UxtpbxsMhIWxZ5+l3VO4doE - MbHEAz/g8X4SwF/9eGhoGDlmhvCjyRHmTuco/9bO9y7WZaUFPAzmnLz3cifZZGXRtiWhxrKXj/rD - +5//mS8l4THch+MOme5pGOZp2zXF5KwKJ+uLpevdV1xpyz+UZdktZ/xPlMI8Nm0kt/q2xui5+P7p - qZMRJdp8lU8YQnR/Bwfv0MTLV1Ginx7FJuweNZVr6MJBMt7IUHY5/ZioZGB/KSKk+eezxgg8CeE1 - 71kilznjrZIicKBQqhFpvnKNF99/7cQ6cm4/vkfxzw8z5+yF0I8/X9mqBQiZEV4Ez6Hs/iOUcMNv - olYPUaNFGt+hAOGFXKjtDSza1kTsHzeXnOrb8OvXrj8+h3nKhnS0WDmRVIWEweoMeT1T+cz99Rc8 - QI18vc61DdJCdwNo7w/1yp/0EYQaW6M8gkbMb/wSXOYhCgDnEm1V0jWAV75asPgaWw/fLQXDTZ8Q - +zENlA5eeQHPwvKRdr4QsFzGoIGfN2ciP1eIRhjRC+FIDrdgObSiRsykC+GtcyWEWucAlgqf1sNO - OjhImw21ptgXRuCJTybYNnDWKA/yrzi5QAp2CBnDUjWRAIGcXkm68d1Nr+5+/DBgz70FONP0OdjP - wZ74WzyvD0FLgDO9j3j2+nNOpnUw//dEwT/++c//sQ0I/KvtHsV7GwyYimX69/8ZFfg3/++xzd7v - 31zBv/CYlcW//us/Ewj/6oeu7af/OXVN8Rn/9V//FLnD4W/a4F9TN2Xv//ubf2x/99//+F8AAAD/ - /wMA/DTmttqBAAA= + H4sIAAAAAAAAA6Sby7KCTJem53UVX/xTK0JOkpk1Q0DOkgiI2CNAREBETglkRd97B+6K7uiIGnVP + 9kDRDZnr8LzvSv/z3/75519tWuXZ+K//+Odf73IY//Xv22uPZEz+9R///I9/++eff/75z9/f/+vK + vEnzx6P8FL/Lf2+Wn0e+/Os//mH+9yv/56L/+OdfnOpIOLb9gq5TyoZQzN3CXdbHQue9bTCw6XOT + JJkypgspTg16MPs91l5uX80YTwbcu0VK1ODAB4PFHmOUXsY9fjyOFu1ehtgijfd4Il1VltIDSWMY + nCeET0jB/YovFCI7UUasnI51tZ6Fxgf8rr5i31t3ytA2fg53ivrC97Lc9cs+9Rt0fDEZlmMmCObb + u9XQW1hrfI7YU8pKk2WBS0127upkbU/LxyxDj+MNrL65GMyHj8OB0TbfRFqK3qaGgCXw4QQVa2aa + BFRWRRm4Zi+4r7Nc2aNgOR4Y5eJNnocXouPuWYgIfc3L9G6/pJpPl1MOpyTqiBlZAZ1xeFnhTUwV + 987eUTqY3Ryj99o8iRZWfkD7c6aCh/IMyfly8Ols7lgV+hWdyLmDEaBfh1thmBJjYm6+0XN6MNeI + 9W4v4n41s1+fZwnCR/tmsJYbBmDV7mIBLklOxK1pqoyxuWtAUpxDfKpuerpeMmcHnpMaEG/S74DY + xSVCJyu6EHz9egH3kWgE6Qwl4h1KKWB3zgOCXhyeOBoPNWWW+sohyXMzcpwlmi6azwvow44WUTmm + qPjz7ZaAoUw9Yoe7HVhc/mLtLBm37pIVc9+TWRyginYaNu/V215IfXDB+i5OJD7nWsBc+EBDb/9h + kfjCALCo3cVA8nO8EF2T7YpANtLQjXF2RD/0rDJohaUhaagbcjve9Yoj51yC7/cxmVhjKW1u7LIO + SmwIcVJiv192zhUCp+lKkj+ZV8Cwby9DvvEwiM17FWXEfs6QMLYnclOfVrDeKsuHyVtScFZRq//u + 5dIXb8334HYl9qtFAIMIUsgZ5LrFL+vaDxHGo9bi26Dl/XrcpSJ8fe4qzgRuAstUByLs9l693e+n + p++nrgH5SS7T109HmxaPZIJcv6QkvnV9v0oFv4OoC21yYauwovXqS5BjqmVCrHWpqM99JmjLmU/M + kh3tIbrsGdFOjiM5uUgPGGlBGrQ/zUrc/CLZvGI9E5H4SorVkO1sKgeXCDFjD8i5OnsKhWykwvI8 + 5TjK3nq/RGxYolD8VuQifPlgrYNih+L7Ncc5QIa9RNngADSXF2ITd6pmWlMLyofuRY6AHAAZ2aOM + djO64dCwZjAf3KyEez7W8NUrDMDWt1SAxld28Kn4iMHMRCkDxVhOya3MCzDf3oWGhsOM8YUJjoA2 + 3mdGyHI47MNYqsbqDVx4e6oPnB4yM+CAE8pw/Hx/8dQEjFxRFVE1L7BZZYAOTwsYYNgtiVtLBuiX + D6eJ8FQ/EbF842XPy/HAgcPTmKdmf5YV3mVohARR8nDwdop+nvl2BdrNLLGr7EUwl3BREbAmCVvv + tqIsklUIt/xzRVFWADslhQuPhztP8KN/90uYuSK4Hav7dNeDq7LK57iBwtpfiG71uOdqcW4QhaaH + sfUS0iHw2hWa0UHG4SDvgm+hGy6yU/fj8h5/VWZQcgVi5VrCj3bVACt/KQM7JpiJKRUvm1TWW4XV + kSYTW3zE9FvokgsnKIoThFhShvq55rBv0BVje1JtLrkaPvDNVsZ5f0D90g6pA6OcpUTW+AulnFfE + 6Om9MMGIO1bsLz+PxbfEaXF/pzSfjQgugXDCz0d8s5lHzBoo1Pe7abczzxW//2QqXN6XdALP+agM + qgYzuG903g33NLG5fiohhOMYuVS78OmcS6UBXkb+xVJ/vCnsXZJFeA3uB2JfBaiMhHoF3B0PH+KO + ZKwoKYMY0ivPuTWjBv2s8PyMiuui4ku5r1N6spgJdmmVYNWjIaDmlIawNyQRP8L9tVp5KPkoge8c + G6dsUebAK1YY6V6M/aJK7FUq9jvImNOVKAhy9ljIWQMdL38Q7TjQfv3VG+IfU+JXga7wIRC6v/x/ + anYJ6BWjGDCvy0K8y47aa0ofEL6M7EuMl9CkS+yWDsJvbBBcLEbKYzZugZE+9L96Ncc3Y4az751I + rseDQiexiREeGh2bHV8GS8kkBVBqpGPJv7z6+Z5NFqzXK0vwEc/pFIp7CNSs5909vcbBXFRVLg6O + zhJ7GeWKFvvdBBx90HEKmnvKDtenB18HFBKVFZVgKlnSAbu5Czh4WH061JfAQshLoLumdRHw2vEo + Q+8UPbBtK2s1GIqSoaXwPBztpCjg2jWFcItXkj6Csp+r1OVERik9d8HPVzWWEVcjxL6yCZTVNVjA + WApQDq46OfGLHtBo5QY49p6IDS1y0+nw9VtIVmPGruSbFQu9wQdbfXC53Gjp4Jh9Bn/9VZWFtqfc + Nx7Qr58LuI2C1ciPNSKBcyUX/q6m/LCDA/xYcY1N9v4IeEuoQxhnKHCX7X0muvAMSoXjHXvLOato + 3ocDJLtCdBerwspizgcLPpsxxGES2wFheH9AV12ZpgNkKroi4zSh204ScCLKFaWNBlXoVPJIzgd6 + 7ZnEXzMUvg4ulvLoAaigTxkgp69H7o5gUxZ4GkQLl11xKIy3irst3xpiAfrkDpkK8Fr1liAcSTQd + qiylS30LhB+fYLNkz8rgWtKK7v7ZJHHdi/0Yu6WLxk9/Itqhk8B6CgIfsi60fv2sWmH0lgH9fiQs + C1EfUAOKHcCaN+Lse/IpwzitAfOWy4lWozUlfllJiLzXNz7mygVQxr5lB/GU2xN/iwzA8nHVoFfw + FYlyNTh7ee8lDr3dcU+0VmHtWdyzBhJPmY1t0ByCLjBv4d/zyeX9C2jqYxUUpYlJptavlAsb4MP9 + x1+we7+O/TcZ9gJUytLBJ2ooAQPcAwdEu/PIsRyuW74HIRz2MMTe2yjS+XgvNSCSD0fUoyzQaZDJ + BM3xpGP5cHB6Xrd9GZ2ZbiTYvJyq2V3iGD7ntianUzzTZSGWA17AcokeelowCM2nRFwSn3DeOkMw + g+XBQTt1PsRZu2/Qaoy7wihyKVEUm6mWXOsESKsYEP8xv+n0fiw7VDHZnhxbIQ0GUO4KEM2GghPT + cSvyhpWMPEGSp52dvNI5QkAD9yBWSLo7nQPqgzSE6enGuOzDLm2iWLcYOWfBwafsUlM67OAEeXFX + YKXJgnRhzsiDk3W+EhmeVoU8xUsEeQnAyVN0JqWX2JcRb4uza52se0qFt5WANBso0Y/a3Z4f6pyj + 5jbsp15HhC5Mf3HgJ4MMsafwkrLMQSghmPpm0wd2NSniuYbspUzJKU8ZQB/+EEM2QBGWi0q0Zxje + HEivLIctUa4Al3zVHZqKcsaOevHBlD4v/m9/XP7QX22uWbgOisgAxCrx2q82hDWw9sJxWlJ+SNvd + vTWgfnF17FiP2N541IBI5nkXnqsE/PGGIgwXEnwir1qTUaihVK4DMThfC5hSOOXwV4+NQ/xVqPlk + pEN1N+5Tb0cvZcD5OYNB5zwmJGq1sqQAFvDS3qjLfb0C0K1+gOcZ7sjWXxUe79UQssZ8ml6SCjZ9 + sUroFw8yR79g2PgCznmHpxfsnWqGd4uDr6AXsdLvw4rb+As+OOOAtVTWbKZKXQacj8iY+ttkAzar + viWYLXAiZixVdHLsxUPnUn2QBLrfdF5pkkOyK0Xs7K9yz5qPxoG3Vze5HDO5KXuJHBfq312Gzegh + p8P1ba3g2EovlzlePwEfVlIIB+fEuijTzxVrxAYDAu/iurM3SSljMIMKCX5aE/MqqnRRHeRA+Wwe + cXgln2DjlRIqOyFy6+DAp2Q0TzOUaZZNjO7m9rZ/DUi/6g4/LaYBoyRrIhyq2iI1+wnp+oieIUhM + cCBuIrig3a1xBk3XGog5m1Y/Z4OkAkYpPHcdX0fAjnbfwNEJn8Tc7SiYv/2eEz3VriZ+48vVuda7 + H29Oq5rQtH3EyALU43pyRk4DPoNSJPC93N/uep3mfj2++wbIH/VCjO/nrGx858C5Zq5YlYy0n5ko + YKCUSBHe+M5efve/P/BHd308+HQ5Ea5AYy4Qou3Pss2K1V3cEk8mOhqt4G1hTQTC+r24YNvPrb5a + sE9XdfrsPp9+hlJSwOIsTROqTZku8Kn8rRfJ5GlJhx8fPD+CO6Ex7egSGrIDj0/PxtGmN+f76zIj + xFbZhPLaUaYoXnykCNOFKPFLTwfTl1Sx9MeOaHqp/Nf+bfkwiY9m6gdOmVxQP3C49UcUrLubHKKr + G4/kgt5fQO/fIkLuQSjdZdMroz6nDDyRbCFKOQ7V/Lo6Fvx8oz0+vRjNZsLksIJiNBRyHxIFsEdK + Slg+dcb98SoRC0aDx7SLiPZJZjA9Ga9BwtFopuxciXTe8huwo/jG+le8K1Qeju1vv7ELuntFDUGX + Uf0xany37jf6Vx/i3XOH8fmT2jShhwh+vVOBbzfE9zMbLQYSg/MwZew82HPzRpZo1rk+zRYeUqp+ + QAS29XH3Tfe0aTAwEpRauGBj0F7KPJzOJXxYTIB99/Cx11JMfSgng4aVAejpuiNi94uHSUzOj2De + 9O6h4ZkQnx62bLO3Brlw4yF8/g6qQptJGeC+OfFE1q0iXYWx3YloLi44gnNVLY3aeJDTWoDt2Xql + U+DKO2jTHSJ2fPPsJVmqEllKXGIrPApKs5xpBG5Nf3DFA2HTBU83B37Mc4ftnn0EhPEUDVoMOLvc + cn0oM0deOWx20p0YrzdP6f5RJAgQriDOzVjSFrgLAx2H+OS4+SOzfV5mhJtEnsRRhcoUt58ORmWz + +9PvvHY9T+KPR/R+bsF8N145ZIwqxdKhlNKlZPwCqZA6GFc1DCjLzzLyM8cn3vWmpoN/rA349p+W + y7uqRNu2SXKYgq87HeRuUb5bfsEP9TCJ54yrpmfEtOh12IfTcnONdFk7IMJLe6V/ev7XH2FPb8V0 + sIYmmFn/XMITYOAk9vZJmd24VWFQyzGx0sRUNh7LQfk8Me5s3GH/FqHsAHrWC5fbSVxKL4scgZsh + xlhZLpASNsk08OS479Rd+Q/d+pv709vYohWmlE+WBFUvkbire/go6ylIfRgfMooxc+mVr/fkBUhO + vTdxbVRVy49vNh7FgdkZPfWaQwhG1rUmiNZjuq3vADXe56cd6A49TX1dhalWTi6XvfVqevlNBM/X + yf/xcEXPSjL81p9gehXS+afXqPnsp5X0F7oohWHAXvoCcjRhESwPvnHg5s9g9/lawXS8qR5KVGHa + 8ounE4xGCZ7voY59t4mrNZP9Foq5UxB3r1iUz0gvQ+euP6b2wgA6bXoXcpWR4iQMtYpT+smD16py + iSSu1CYR34Vwq9dYAfPcvyrj5kPTmxDW1aeVsvWsOsDiNJ1gi9HASj/GTsSnE8XSfjpVHESwBcpO + jLDCnUkw3j9+gS4Po8SP/feUcqRbINK56INV3c2VNX+nO9jMjysxg/4JKBl0FRa76k70536gf+9v + /cJlXy++X5mhiVCbyTXW6ZP0syY3Fti7G9/MfU3nPvZy0FwKkRihmPdLsvQFiJSumth94SrzvloM + FEUOJW73tQAFRBjQieTLxFqhErAbTwDumXpTkX+HYHiONwNWO/+A7U1vr5l3gD+9QRTzltgU79UI + 7tzLgs1YUihjZXcNdsxlJucPx9gDwfSvP5Hr1RwAheJxQrsWH6d90+3taWatHQzT0SB6cSyDpc8v + DhI+mUTUaC8qm79rgXUeoz9emfbZZ4Kv3azgTL9d00G/dCvM5ZeKcz5U7cVoCgPpt9j5Lz9n/zyV + sGDF+yRe2LXv1zZXoZTIEZG0M6/89Dr89R+7eVs9v47HAVbPKP/FX8qke5KL8uhFLiw9M13tY+vD + +70xJvB56oDsY2aGKxgscjONKaBkwBq0jfZG0s0voJs+Qv40lzhL3NBee2R58KKcAyyHNgnotzgO + aNObE1HbY8ULTqLCoywesTF5i032jzYB6q0d3L22Xqo1q7nuLx+l8xUrE9ntOrBO9gnr8cEKeHHn + yYh0dMZnO9lRwti3HLrw9pjY1dXsn15Gj4t8dyfjOKeLLNeO2IGOEA3OVU8ft1iCQhNoxO5ZlP4+ + L3KC3UwPSVDt5Ug/JQws3Zg4vVSC+SveLMhpHcCb/wzWLR/Ft6buse9kRrWK6BbBRbIAPqXXVeET + ukQIuivAmmSuwXo1YQsvKWqJOaKTwp9WNRQdZ/SJ7riLvQpjsUMbD2FTb6rqqzUWAx5q52KNtwc6 + HsZzA9OmU6b9oz9VrFJIBjxl4gtvz1OR40voYE+vBbFn65hS4YA3/fXmsLLVMy49siGkvHXC2nEv + 22wcP0S4O4IP/umzsf2QBhrLXOIzPAjBbHZzAmbfP7l7vzr39FuYA/y6g0kkCw8BxTc4iUzbzti/ + Tl6/fMyLCOe8xeTK5zFdgm5yobOPeXKS/UlZ3PbAiGS1ZmIbDWOPaDIc6AZvg7iS/63mvS1x0F5K + 2V3IDoF5un8K5IazTHLlhPpF+LQO/PE3PovffvP7E/iOv3iiU25UNLQ8GUkxn00HlPo9lXxGQlZm + 8XjTk2Ds+WOJahR9J+4GlWB19HML+xe0poN15wG5o1EWf/6LtpYtoDfPn9Du2i2u6AE2/el18b6b + WoyL/ACm7jlFhzzyXHzVXali0TerwdZPsBl+/J7GniDDsskZYpdcBTb9O8AHg/b497zD9wYMiJtY + xp6ihyltp5cMrb14JEokB+m2fg4oDLx3d93Xois5RxL4GoWKb+BV082fSuAr5BhyJoKZ0hkog3hd + 1ICEu0NGqb5+O/isTk8ipV5qfzdegQenKYgZ7KaAlg9BhjtfhuS87gZ7tubHDH48J1tepdC77E3Q + TEqeWKfHh25+ugqTV+wSzKXAnpj49/360+U3vnvv0a4GG09M7DlplPUsTP5hWy93RgILlkw7N1Dk + ILf5C8d0Ws4ggn1rYBcwRUS/86XxYGtmIcnoJVaGOReyHy8Q9wqzYL2WA/z5EeQ0OTMYLnk3g4bn + Qncs5qWac2xmUM2+PP7Nj6igNxncL+6RHF+ZYjP8Qczh47tOGDdorGZZuxnie62f+MhWTDUascSh + Z+3dye28rMF3tKsa6tLxTIz8ebX5xPkO8Ds8uwl+41ew+eUrTN9P88cjv/4ywY+Ju+kwJBXtaV4m + 8CPVHdZvShJseqL+1V+sM2kZbH6MBS7pvp34myJu/qO0Ir1ab9hB6yudxASE4MoMBtFviK/aRLQ0 + OPPJG8vvp1MNAS9s8d9jd2lOuk3s4h5BJ/FuOAfdvafgZiTiOXzFrqhWXUXetpz88X89rXY6559l + RV7xVbBh7ddgiKI+Bz//xQWoVbqbddmhO24FLNsFS2dNv6/glI4ffGu7Jh2Pz5KBIeAe2/5xdGmC + cwNZuZEwrrca1O8LVQRAWYjxHApK73I8wTVtWGyNN6ua/STM4UdqOheAg065MlC6wzO5mS70oKOs + MPU65HGssenLgJKnG2nQCTWfWKvk9mTj5Z+fTS4y0wbNy582/b+e3HLjo8E7ugw46sDBWlfQatR8 + XjxwXm2TP78mN+YJvoW5nmahrezRKi8MasP+ja0L61e8+gEhEChjTwGu9unmF5VAch4Xd2Qfkr3c + Y+rApDu6Ltz8J8rVowa3edsf/3JcPoQi18wefiBHA/Tp5hrc5q0kERxGoVfMJiB8AXc6oOmosP5b + 4qDiOIvLBx9ZoeIulqGT+DdsUKeq1tWNO2h6A8KGfiDVvD0f3Phsmpv+1a8NTlooD3qGlcKb7Hee + fBq4FL636eNb+ptnom2+jH/++qJeWg4Wz3qH4+cgUb79sjFUysIhR+F7C1YhyWUgFvNCHpfDCmY/ + yTI43l4zsY+L1dPxvCRQUfkVGyLogvVz71vYlUKCtRWLwcz7HQf281HH59QWQfsaYQ7Dr3+eIDs7 + CtdWTPubf+BUHKBCK+wNIJY+5l98s+Gh5OCRiQdsi0OmtDfDMYArjC3Rfvpp4CYD3rrL5HJh5afM + Vr+gWV3O2JqtnA4v28vg/nx7uZNZL9U2D0+AazErDqFmgPmnr5b24GH9Ubrpr7+BlFwUjLf68Zt/ + w+6rPfGJEN+mK8fGcNM7RPHWopqP7TFBbrjKWNLON5vzlKwT7atUEsOrTYVj4m8LhU8uTbMvzOn6 + uVcd+tfvVMD//Pf/hxMF7H9/ouA0MBoONe5FafY8ZHA2RBsfr2VP10eoDnDRVYvEkJiAGzOVQ5p6 + 9/Dz2D4DylaJB/2X5BDnyGT2apgBA+f7gvDtZRwD/pN/DDQtmUbsT/Sk6xtcani/Ys4VoeL0rLzo + NTp+z19sx2wXrKCXRVC0TwdrTQmqdfBVCdbWa8axwhzAqsJYQ0olC5MvMRFdqbKTYWxfKldULQ3w + xNNlKBYri22pJ4Ci71mEJ04945sySfZcOd8cHtTwStKl9aquXrwVfS+pSdRC5AN63xRi4pcKdnNE + 7DmgTAtHWBOSf+ovoGQpfNjFvOsueJswe54YgSAuKTZ1uaQzfxty6I73LaLkqZpLuW0RibYJ53uk + 9lgNXwiPoTHiyLLUngr+MUbN431yX3c965fxMxegGYsK+6dMtJdDE6qIlcOAqDui9+Qmpz70lf5B + zsv7qYwvXpegOXEGOTJtnxKF9xzk2fkXu3lYBQtXXRxUPXYOkSZBVdhvO4mQUY2QuK9DqNA2v8rA + FJuMKGYw0QVcryFyvsmJ6ETqlRmw2Qq94qESX7V7ZZEXXMPLrinIWQAWZR6H3IBy0RP3YH2CfopL + o0EWuFo4bUbGXjzpNKDpVbTY0bJ90FYRkyC9zGzi7rWtYu2/CYwfy0xSpX3YnGWaE/SV72OKwLwo + yyE7WuiSWaz73Vc9pa+ydFGSmBMJHOFZ0SSSZ5QuL9+9B66bcjvznMBWmhA5PVjdJufhrMEb3BXk + 9jBNyq9Mb8BRlCSsEudD+TnRGfRVNA2fpTYPOHroZdDJNo9VN1377yE7GpB5xAnRuhdVpgdxPKjb + /JVoQWLbfKEz699633OzAzR6JJx4suIUX2wP2PPxtgpQ/soKuab6ru8nzXVgV+pXbK+9oqzzG5Sw + VS4DuZfLZBMrvtbQ+cYnEhw+CmUQFizoNyeDeDrDVjTr1ATSscpdagYuWHyTSZBIA3liV6mz+yJ+ + xfCEHzcSZv7WIQJfQrJWx/jk+npAgSSUUL3BGTtSWVdDXbAu9OH6xDEkXzrvaluE3p0ORI9fTTVr + 9a4BE1YhDp/f1p6fwVKCnXwAExpvcr+oM8rhWW8bLDFL1NNvaGnQ7Zi9y9zkMaXcGKgwVbwFa0A/ + pX/5GbTZBV/GQQuYB1Ec4PnWkUQwDnt286vEdLcr8RELebBedT5GBYML7KwLBItdXiN0P4Q5vnhi + 29PbQxrQL35vtycM1kAtYzAK9zfB0D0p3F03JbjIB4mYjm/2a1P4EoTgyU5sP3pg6ddrA+W+WYkO + sRmwU7TM4NayApYuSgCW8ohF8XVsF3y0uyNY6rRyEK/DG1Yn8xpwWTKX4Do8RHJN8hUs+XdxUeu1 + KfaTjlTDemA0xO4klUTX4NGvKckTaOj5m2hfT7XZuQMJvAUzxF4SJOk6caIPW+FcYz0ssTKoHrOD + aDwU+LrHrUIP9rVGQX+U8EOPtJ6hLhZA873dyRHjtZo94AwQuuKFnMhgBNR0sxkcQ2ucEKpcexqy + HII5TeJpzMzR/osHp2wd/GDrqOfaThrgbAi2O1/7m0Jj8IkhFnYZsbBmV1SbEx+Qh3vH0derbYq1 + IkcZl7Tu98Yt/RpfAgh7DvYEL5AJKFdJxu9+ia1F7369XL8GNIZsj2NX6/rlsgcllP1wIBfHP6Vc + 7XgxGuZ9Mb3T1yngOT8toMhnDnlC960s74vnwxme2wnGvhCsn85nEESah4/zl4I5Tc0afUc7cyE3 + hymR+S6CIRid6UDfEHR1x6vwFBkEP+ydSbkQcSV4XhTdXbPdkq7n6FbAXn1J2CvFq0LLoZLg62DH + WOONM9juL0HnvXkmcoFasKzd14dqUj2JodiusljlJ0fudVVwqGWpvR7Yzw6cIotsDusRcIUMGFSL + yYCdcPz0SwpkFSnrLiJOdH/TdW9QH8LomRKnuGDAHdgPhLMezFjf6he3HlgDrbc5wkfHf6c0MKsQ + Wr7dYLc3k2ooX3oIwicUiLITVjCjRNF+9QBfBdBUc8v4Ncy+yoHo3Duls14PGXs4eGd84/Zyz/7q + NX1NX3JmAr2nsROqwG97HkuzSdPx+uE4xPCPBQfM+0BXmDgW0NOZkrws93QJH5yEjvuDhB/L/kSZ + 6eg4kGIf4WNpaj1rlZ8MRpXsupDJVrB8iVSj7yvaJrDGooyHJlPFSNFmcjrUazDFpdT8xc+5WOZg + adK79osfd3aJrywnceeDX706KoqurG50jmFxoSxRkBP2s/p61ciKwpncQc0E4zvcx/Be9jqRlerT + r/yriRC/z3eu8IFVwJtutoLrpF2x6V2ONoMXRUBG0Vr4kT/cajnrdgtPwDZdSnY55axJ1tDWT7GM + SNO/t/oFy500YeUifis2w1cBfq9N4PLvue5L9rZv4XpbI+KcLB2s02UR0F0TKEklWVWYLX6hpXAV + yR9iVlHjm4UwuqQUS2c1Czi9HgtwM+SWKKFrp8wsiRpwXspCdMvLA3IeThrw4fzEOjjvFfr8thYc + b/WVqI9r0w/HmyhCwCgzkS/JV6F8FkZwar0XCdyd2s+UvCxQrbvPJNjWu5q2eEQLlGXsyZVWcUvI + rLDh1o6cyke3OfYvD6lwb7mHz/2Srsqr7OD9EOXEaGsNrKXTFUCLwIPYHg/SRbSzErZsy2Ln1jF0 + ODuPFm737wqC3lRrIRQcVD6u7M6H+wFQ+zwXUPk4MnkEpW+zSFVzuPUHd3eZFnvox6yFpVboOFTL + IqA2tWX4Srgrln0lBLS6VDmsHtDBefw9V+t+V/hwheuMtSDp7YUynQYWnhFwHAW7fuVbSf7LP+vE + ve1BhtSDXjjN2Pm+uGDuK3OAxdBGxL7nkd2/Jb9BNUQpUQehCUh7CBvI3u6YmKy3guVJVxmhNA2I + dg1QNS/WKkB1PA4knpeETuAkxFBePYv4ybECi+G+GXH3LWacavtLQOcO5vAXH5HC2ylnTE0EJVZw + iNrVdb98LD8EXCA/p0WWwoo2qSEhOisDNumtCOg7TSxwq4bE3R3Ld7Vu8QORFt6I6yhpQPtWmWCg + SQ3e+KJfW2PLT7ZMsdRaKaA3OfCAOioD0ZdwAMuRpzEcO7XEGYj5nrT5VYI7n79P44552LPPaCva + eBA7Ay8ri/taVDTemivB616jVM66GV71R4HVQGHBnFyMGf74WVemwua39UNnFuhYttRHMHtX0QW/ + /vTUOjPlLybKobknItHeBwLoLhd3gKn3NVYBLavp0D82h8uWXaR+rmDRxMGA51utEvM1pdXy4rEE + j4BwRP4czv261XNY5ub6qxcVe7huxyM23jPjnFXWnXmO4ZSwHnHqA7VnGr4atN8HwtQA/RTwVvyo + IUdZMn3X8AzWE1t7aFsP4kApVdaLCkt4U/jcBfM7V9bOuIbol9+6i690NeogQZbCVFg+6FWwSIbo + wmVQa3zDvhHw8ZLlgE/yGluL4dl8/DkWQHBEjE/vO05/9RSsmg2IoWaPdLaFAP7idVoOnlttPJT8 + eBI/v9dDPzdFDMF1eIpEDU+STRlj4OBzYOHEpN1czek7LJHWcGCac/9C587/uPBRf018ckGgrGWE + cvHVfO2JHs7I3vLJQ4dmlkhgeDCdjWn0oHlqa5zspTsYq0sXg9elwdgRUiugb2ssxa1eYK1uCzDZ + giXC6v2KcHzvfEDb/CFDDZU+eT6WJZ3XA6Mifp/tyJOr+f4bgymEoeq8Xa6BZbrCRLUgQ8QPPrN1 + VJHbMtU/fif4AHowqykWAX06KTmGz3s6B5sz9JnpE+vJWaW0GjwBptIkE+caBcHWv2QY2HqJldDt + A7pv6Qq9B+TI6XM6V0znfxwArVHHcvta7DU3lxWmltTh+0MT0gnbYgYnpzgTo38x9pC+wwK5RDaJ + hFe1Z/Rpn8Dy7EnEuHc+pefhpP7xzV1uM2U5HT0ZvYWmxw43h0F78joG7gvIEf12UJQFXm0X3GXy + nSbpSe1VUgoHyX40YO3r1QrZ+gVYhU+DDUsPlFZkJ0HMXFHCUhoNtO6r44SeyY0Qacv35ds24iGX + Dx1R3/CVLig8qDAGxhM/qgn1s/g6SsDwhoHI+2OuMKmUGVAAqksup71jc1d6yeDz5FP3IAKj33iy + gPf+cMZnPWqqVobUR/tZDLf4ofZM5lsJvI+DSI6kzF4J1xog90JA9KPE07ELTQlezK7FEsuYCkWh + aKFT1UiTMJh8tZ6jZwG84qlOe2PXK5MdWAU0rrSd5tdXU6aQVg368dxu5CuFyg2axFPbQSyL9FVR + /So18B2ZEn4e/MIeH6rAgI1vp7ceySnXGY8IkhaOE38Aek/J0nqwGcsKK0anKMXZeXS//kWMvWIH + S7IcfYj3wxVr2ddM1515SuA9DFVsiKlhT4hZGuSY+Wfj574av3kA4QurR6Kpzwksz+qcAHPEI5G1 + 51DNl+4EYXKr9+7KZ2NKJeNrQCHFPt7yVWGb9KL97mcautqgc648ZdjjXCH3OGftEdhWgjY+mNZL + 8rXn8PudIMM/F+w8paInh6PcQk6QD25tWlW1fnDqQfbAiNhFUqasoiaX6I2frQtgdVbGnz7Z+Ndd + HHCx2QmqHgQTpC5wkZTOn92+haypORNP2yldzHjq4HK9n4m1DdaGPLRbsRDiDmfhqPfcYn05APft + Hpu38wksF0sroHbkXtgBMV+t4CQkkAcBQ84PpqRzKRcdOKjR1YWvcken+2AmINDkxt2FXaS8hSzw + kTbrMjHux489bDwLw0dibryRpvPuLsA//8dQM5ROj9AZoHzX3tOyA2o6vRlehJyiHzG+vN90GodD + DnntBic2Mw3KoMRWgWoo/q9fptOPx4e31WGnPgQ21/uRBYT5PGJbvrk2Py5rDA/bxOHy0kKlG3xV + RjufvePkNmoBRxVORoJmRPjcXoW+Kz+lBjNXkMg9PNTpF6lqBt9WZGFVqlpA0WEtUDT4Id54vKIp + zqHoiuuDKDE39YtqdzuIgIexTZDYL3t6bmGMs5FkO02y2driGkiswcEqZwx0toKghvMovEnO0Nae + qQIhLJm1xedv3CsEezSBua4ybmukDKUXE2UQNxnGz6woA7LpDWDo2Rt7k1Dby3pnWpjfJJ94SSCm + c6z7GgxQdZ5A8jIqbijnDpR2/3Y52R6V5ROOvoh8rcdKP8vB3DA7BpZ9+XKrUmOVj8LHLnw97ip2 + 4c0L1uDbzXClmYGP71PfL1YcFnCRootb1fcpGBrgFQircj0Rub9Q1qYmhEGbX6bklOXB3HSVgNAI + CmyeIrXnjhCGv/V1gdI+lElaaYm8unXdJbGIvUjG6sJtiD6NM6QB7da8g/041e6e/1g2z1RDAsHz + eMVHM5JSJir7FZyv++/EGp+lmh3B5AB/cXKsWVbdz1daltDXuY/b5n6kzLvg5sHFHVnsxt+xWn/+ + xH6gPdEYqlDeSxgXFM/zibiyvQR07WIXLLSfsIMVUdn4VEJbfky7sOPsF9YOJZyc8kycLT/W0ilL + +OMT9sILNtGu/gCja41IpGeZvTzUmUNrc7oTe37nNlXmXQl/fokaj1X64zNA2t3ovrCwC+g1SGTo + 1rpGzHKZlHmezwlMLx8Gb35Dv6BvDuHXFQD2z+mln0OEsr/6dhadO/irh868xy66nlv7z48oNj/c + ru9r9fMHQXJSV6JcD0eboQoDYWMUJklc5WCvkf72QfoeMncxoyJYN3/xV1/c6+bv0X1eMPCmsDnZ + 9HS1sDyv/eofOfWjR5nXTSvQ3oYp/l3PrWHZwcUxNWyGz0fF38HDgy2MJ+IqrkIXG2UieD1SFZ/s + 3ala3IvzX37xiYFY4U79PeKbWVrcqjk5FQkeew2Qh3PHfl0eKirw5gp9nfngyMi1gO/PjgFtbpcQ + R0i7lKY42kEc7GR8EkDTrwJMV3gAHHR3zesWzNaUGsCZnkeX0bJUWSxVWpHZathtBuer0L61J3g8 + dgVRT7Zjr496icCbSV9YGmq5moRX5ogivcg48vpk48F0B3eH3J3EyekVPth7EWwA32C3hFpFww8v + wPgl3jF2kFyxSZG1kE3rO5ZserYZNvd85OmXpwsqQwnWtjMGmH+LJ04/s1YtYmPu4Fl5ZthNrjZl + +p3pwcv0lfG2/3Sy5asIZ5UcifS81ind9NLhpY0jPnLQAbwhGhCKw7sjhsQ7PXs/fRxw8PsYO7Ef + BwOZnyXw6s6dVqX6VPQmSD7MZdBNoFPbYKgimEDjIHrT/nu9VyuZ3RyIif7A+oLifi4frQO568ed + GJOSYBZfpgz5aujJjxfXz25qfv4bybraAN027/jpJ5dWSwcIvfcNPJQNhzf/q19ecREiEDgFUeKz + DDgVehrQeulEol++6xOfQCtYj8R2sKDQ54g9uPn/RPWTzl6K0XX+6tvWb8Cf/4pw/SD6e1Z7emFf + Ldr8Iqye7MFu9YmPITupDTbOimDT5p3soDp1OlFNq+rpJ/9Y0EsTHZ8/I6usJ83bwbMnjDj9RHsw + as+6gQvrmTjc8nvZ9DO6mG1LkrItKREbRfrjM3xsnyn5zSPGKvyS84AAIJAcJmhQ60Y2PZZuek6D + YjGz+Pie+IDG8tGCB8m2XegmU/DN704NQv/VEovPLtXC3r0YHlF4Ibf+SCvaWkcfdrLJk9P9rNCf + /y9+GPjFx1kyFObQTyq4s2ZIjtPuAVZV61V49SN5kqM+tgegmTks73Lovk9yQZdtngF0ekOTkPuc + svpfRvz5d2TTS8oM948Gbt838WFJFHr0vxAYbcC603U0embHCCWMI+NEovcB082vF5E3CiE2J3So + yO5QxMhEpk3i/sUojVGnCWT2zMml12cSrI4/x8hNwIscb26nfLs2nKGnB093r0xqwNrusUYf0+ex + K9uXgNKRD8F+SjSiv4xXSuPPsQTlTp7cNR1L5ecXiHnh3/Gm7ysS1vEKX3csEsvvs3Q2hUbd5sAp + li7Dvv/bL/CeRuxQW6l4eq8a2BuD5XKGuu/nhAs8sSy9lDwHpbSHzsh8ePiGBEuWPlG66Us+BMTB + isfzyppwlvvnT2z5r7ALw7jIvTQHFyLlXJGscxLRUIIUn5+amM7XuIPQ+7iIWMyzTtt30WsQ4ebh + Ng0sg7/8+kzBxeVvB8Ve7PIRAZHPHXfvlTToMlbQwE8/wG0+RFbcrX9+i3IRzWo5ftz55++4NOam + atDZi4a8x46bBJaqlN3TUweFtj7i3JNXOnvX1YFfw5Txj8/Z9yX2Doz8OhCsTGrKuB9b/eND9+4f + gnUJ4Qqft0XCcqB90q67mzuw6Tfs7VKF8mmh1EA7XA1imSkLpiOEETxGY0asZQFgeWB7haYTP9z5 + ogR0flgyhx4gLMhJuVmUgufNAcXeqqZl82vHxqpzsFzTM/mt/yTfvox44rTztKveazr++o8fmZ07 + fuPent9FpaKfv2v0r1DhQrdywTavxJqRN+mM7SUGOZSHicd+m851gRw4TE9/Eo/8WNFhdUrIR0GC + pWR82Yxh1sJv3oZNfq/07KOzIyj39UrinSSA7tgWDfr5xYbK1crf/GzzS7AWHzVlyfBVhNv/c+dN + n42GOzKgzO0Vq9ftFOcBmi2ElTD85hE9lapiAihm6o33ymCcT1QCT50tJx6cn9v8YS5QF8w+VkAg + 27xUtYO4U8to4s6aWbGCb4TwMd8fBFtfiTKlQ2s0CumbqNs86uefw6+iaiTceHn+7Pjur96Yc4sr + +nlLDLrOTYWPp72jUGe4ubA3JgsfbS+1R86va6C+46NLMi2t5gbEBfQju8Nu9V4DmmGVg09IE+xw + elvRt5TU4FE89+6B3op01et3CZvafxBXiAW6BPWXgwzem3/+4lxHpYfOQy9hVS2lYIjKfoaXQQuw + 8WqPYHajKIeoD5eplJgIzNJ5VeFepxfsbjxAS71r4XhSDSx1nkQZrzgZkIXp12X32FAof5wEcOL2 + +z9+4dDeKWHaBvY0K46f8nuES3ju1Au5/fymnXmKYbTcLsTGzWAvRDtb8P/jRAH3358oSHrngpP3 + +lVWDL0MaT56uTz1w4pHkr470OtHJafoogGOMJWGsqWYcPZBt2qpOmlG2fF2cJnT8gS0eu4McCnP + IfbvSh0sqr7O6HbfvybK7UZK39b2G73ZHbBRvTXAdH6cIe+y8C6bfuSKYSI+FAt61ie2J1xF3SPP + QEQMAQeFJads+V0jhFTnTiRDkyoaKowGhVH7ul4kxD3nB7cGhDRTidvo357srkcfqashYz+/S/a8 + 15wdfCneRAL2awOaLaWPjmlVkvOcnRSuuLsd+EbrhE+vY9uTLy+L4ne48ORCsm+/VomRwJer791D + CitlSaFfwt/63ZPvraL++JLRaKSFK74WEoxrqkKkDMl2RseSg/l1qD34FOw7djujCugtqSBar2cX + O92XpIvxzAdxDlOAz6o19CuohAElIPXJaTFhP/Zx1sHs6D6JjeQQkMfjzIE3GyFy6hKmH7sxGqCw + ZnesnMJKIcVjMdDv/vWbToM5YtoSoi8zY8v8fOgaBEYC1yc4ETfsvYB+X2uMvs2ekHPoWQpzZ5cc + udzjRW7y7l3NqzSEUHzMEzkn8Fhxkzm6h3LqOqx1tA6WBKAOsSl/wFprSimL2E+LvCwMcdBesoqW + z8+EMq34uDuv46oZ3ONczC6eRq4H27PZk3F0IQ/nxN1XzLHiE61OwHX61C7w5iyY77aXo13I8eSe + fPlqZqLCQA/+PrqMud57jr5uDaxc4BPNhn0wqmvnwnaxbiTY4m/RTXuAc/0sidp2Q8BW+7uHjICc + sfrehRUnCFcR5A7NsBQJcbWimjqgMquKSHW4Kmu3mg7cPYuJZEfF7Rnx/umQG7kHHCi7jz1KWpoA + I7+rOB6lpp/9PPIgdL8MiWpD64kRThm8n9ITPn7uWToxr0mGz7LzSDrAWzove8GFF6eriESkb/Xd + WS8ZUul8JU83boM5eT0k8dMnCz42cgVmQLQGYe1lYGmvS3TIhSCE3wYR8qgkuxqcVApRzFoPjMXh + ls6vOl3hcwx1HN4PM12PLzmHY3CKccK7csCaTCzDtsmeJOu+OFhnZikRn30dnDK7Dvw+f8hl08HK + tp/DL56qHB4mshsXe/5fpL1Lr7MwlC04r19RqikqhQDB9p0R3gGCeYUQqdUCQggQQngZsHT/e4vz + la7UUs96GKGTgx977bXW3nbqZumRHQkxvjTnr7207deBP50YWDko67AhMbXg1TYabFuyq9DlE28w + 16sveShsYPPl82SCu2jFWMu+1TDS+DGihzVd8Z2Pi2HNkd6i7XUs8BPYDljD0zWC3VtfSFhet3r9 + yd8AXLVOJpfgM9WrnEMWXJrbQAwnGYZN5cXobz/NwFtgRqhXW/BxnCKCw1lVONmREhgKaYzdhi3s + te7bFIQTL7jodPTt9eZuC7qC4OFSd3mFXL+dXQQK1yY4eFT2ehfHGWrofsGW6m3hRNShgio/2MQo + K2pvH21g4MrCluS+pQH+ErGCiOFVxwEPHnRd1BMDR7l8u9RTG0okj/YnkLA5vllOrawXK+oQXeoG + nznrDnirz1iIR0kjSufDesneQw6bqBPI1cNLuPrXLAGaMW8za2ZnZdESTwb2i3znxtA+9kzYQQXR + rEa4IOVtOKrPxwyW6AGI+mHYYXY+ZQMTsXKIpXpBuADitifz5Fr4dQztbBMbLEL1W1gufpiWzU7h + O4HXI+PPG/dhlOXj9R3sv45NMLofM/K74hLcHmqG79qvHtZTYc8nFnx8ko5v3+YlMKgwooU6z7S6 + KCw7xh581w0ifkOEcDobRiEOgRu4k+NICv/lpAS1Szpg+ehBe3vchBH9ra+4f9/6ZtgUWg+uc3k1 + TuwZ4X6Er+3o40dPjgo9w7sJXwZvzVPz4AHlvpkEb4/rEUv0rGTzSFMTwlCw8OX4igFb1n6Agi88 + Eb0/imDcbiwHDz3hiBKQql5n9aYjEgoDTlYlBmt94ARwOL5uxFBjwd7U6scikWY6tmrdz1adNiMq + A+ZFHLeYlUVNvo74g45KovOMBx5GYwL/8ES6ZHK9518VeX7/dJPAMjJqHnAuivSh49e+/0hrewy0 + LYuf2ZvA2wt7njnxUBotdq+HpN7zoQc/VsSRgOmGcP1Kwgw1+abgSFsPYPV4NkHDU6mJ7SpfOmYc + gP/Wy7ddYO/PU5RqC8DR15eUtUBDAXWqEvI07TZcIfsx0e1nyjhP65X+jQeWSfDd41ke+Np6OVDg + ORNf3slhWGwdS/Bqaw1RSqsKyVjbEWCH1CPWuUkHIrVBi8gpPhMzOn7CzUNOBa/SY8LW+PaVHjbN + BrvVvBOvAhpd2pY44LkZH6I2v21YL2wiIX0aEnJ+3bZsK5O3hH7wXpAzyTBg3fW9oVpVz8TIy1fN + Zk7AwDxuXZe/zkbGbkO48xf03vkOP8yl4pXox59jF0mXjW4zG/Xo8Aki95R+3wrtOJjDU2fd3dM7 + edU8660N7KRD5c6soClf/vvLYYNDk7iM79vb2V4h2jT7S67FYaVbwGAJnORKImmtr+GmCXMCE3Fo + sQrXuj7S7M2CPf7IdV0Nm7UXORGXyHsT29WY7J2Cvc/l0HDu+IumcBGSyYJ0kFMitUxsrzd8cWH1 + wBE5X/iqXm8i5qACc4U8La6xV+1ZWsjuA83dxOacUf77KxCpmQD70isMj7l/Kk/PVWiItuWdvXw+ + 1ET83VL+5bPt2kY9KIWGI8Vs02Huc2GEn48fk2Q9Sxlng2IGdv947fnArzeODxOU58auYMiXrtym + ePA8fC/Y/LblQG3pHJyGXLiQQPZu2fFz2zYoyJaFscrINfWnoIGXR77hIL6PNRXDnwh3/MJmCSqw + 7vkT6In/w7mei/UcRZYITxWLsdlHM9jHz4re3ThgKTiaGb+KxxlOV9KRc95HNTGY/U6tLiIuBTJP + 13P+grDjSp1c4vabjSQaRPiVioAYobrzQX/QYfoRL8SSrrJNReYRQ2Y/tuvnwxxubcZBcc+X5I8v + 7vk3hyynmiSxn0fwQ1bagiwrSxy7XW2PxjzIcHuNKnk6jmQfH+Dcguk6dfNQ8nQgiRbmEB3up/lX + 9Gu4VgeZRctJFLA537p67gw7hlGdPl265+v5McwsoBK+zSKxb8pWp60M7VdzxffaKgcyn5oFfm21 + wrYRx9nmB3UF9v1NLOrMYJGGbYbDd8rwy1facFGTSwO5c8QTc4urjBYbddHnE8bYTWUNbHs+RSHd + 76waUs4mzq1zoPUTMFamr5DRzctHKGcgcbeBfgB70FUG2elNwHZ3+tpj/j6J8Aq8B76gt5Wx7FgE + UN38nCh+Wg7bYsk6aD+Dg63baNdTHb1ZWPDdBefMWmYbeTkmNE00u0x4Y8NuOfwWWBfMici+dLdH + lKYMSMv27J6as6Fw6TnyYFpOGbEOwRhuF/G6wKT/HAhWemTTQbim8KdPBlYPBU+XLyhL5IhCTS7y + a1Gm73hdIOd/9zPyp7xexDmtYEQ/Bb4obKCQdNUSFKJNI850+yrLHN0KhA7uyz01skTXC+tJ0PMp + v4/fUI6AnlSoxAcd22dkZezdoi3oz9sRK8ahBOzIWAlUHPzd+Utj045jc4hehk+cWjR2/SUuAPve + F0dO4Wf8u6AdKJ99/H/mz9LhjZUBxqdIU9j5J8Xo9fRKfJZeNBz1OWpBD6cIK9zhW2+N9izBmBj+ + DDOBAprpIguvN14hUsAzYG0Hf0R+Plq42PnTdOXqHG64f2LsJubeGCdt0O49DUeGAer5k1ki9Leo + wo+dL67nlRFhvlYzeX2uE1iuaxih+DSeSPpecbbyGx9BJCrr/E6+Tba+ul/yL74NoW+UeWFPJYwP + akcyLhzBss8X3OOJGOZ9BfRyaCLY9NduPkz+nf5K5gNhbosxURldqxdFzl2w5xtsnA66wmbvuoDN + 5SDNKGUEhdZHvT+VQsv9y2dsIWSxeEKljl8TPmcbyzElCCb/TK55xNr0ucUR+rXcjWhiudlE9r0K + 3cJxnIU+cuk4R88cnAJyJpfLtQhpqEgyslV2N8DEGkzY4UpoJJXm8k3tULqIlw7csYmJnJECrF5V + C/Bz02/YnOSnnRvzIMGGJDFOvt1d+cm5uYBRuJ1c+w8v/vQw7xQ2kfwKgq1bxwjUv36/U+BY2jt/ + 9uBJLiV8o6yYbSM9LGCz4huRTPOusKVrLpDBnk6eZWwMR+bI6XBKnsYMRlGin13vwe+yvbH9Koxw + lfQwRYOR0z89M/zpFdimp4kEe7zTLFciuOGVJ45vaXQZuqcEjuCw38G08zMBzTJKvZxi7Sm5dLO9 + cwfVQGbnxWXnYdo0NoehkMQuEkqiTMmn6pG8vhcsuaxbLzc21aH6rZELBeMQru47YGDWPh67XueH + aV1uux5z1JkVlgtgg8Lg4OHjRdhVMAfGjLcS2Bs6cuFFkxXSHJ86vErZNJ9YK6Ijk/4SsTrFFTbj + K1+/Ei0s4O5PYPw6FmGP27VCnW55xBpMFdDGkmRwObUS2fnYsDplUkBStBXZ80943JZBBLNrFHNz + oTRb35EDIYOzElvnRqxpX7UF+NzU294RKdH1d08tePaOA4nP13pYXsJvQ2+BGWehOzhgvdqsDIXv + CWB1j/8lKDALaPlExPW6UhkRqXP4W39fLDOdHdK+mgt40GzdPV3dRFneLstB62UuRHGXQ7a0gB/h + Hfs/l1urMaNhsvMh6KrEkMIvWO1SltGkKKtb2H4fbqc65OAQOAH2PKsf6Pd9q+Dh5k74+uwxoJ/j + UP7paXxuSBLSyb0E0LUjaecjqkKKZx4A7am+sbLroSk6hQuICnnCJtJVe7WPJYNid96Im90NOq2p + J6DXMxPnk/VWhol/Xhz4px9N5WHTf/w/kJMLVjk1UKbwdI3hu65j7H5zexhh6lRAsuBAVKdY//kl + pxsrAZJ/QlqTLLcjuN2wi81Xc7WPq2YmkHeSBivB+rC5VhNT0JB6IRerFu2hpImOju0nwY93cqjX + 61vd438LsWpomk3Y1qvQ8a1iEjNooL1Y9544M48JSzLpAXVupYMczyiwu8/nerHyDt4PeTHDNS7B + Qn4whbfTXXGX68sZaG7MAhyF+4noxcLbS/q+yeD+unkzNFZYz9m5GgFxK0Cso9AO62ewPbj7ZTh4 + aCld3wxMAVTYej6+z129MrbbQe8rOfhx8z/h1I8n9Q9f8cPmPsMHWo4J57rJyUs6HLJp0V7t3/rh + SzXYylHYSgt5sIF4xxdlg02zQOELAMZcdw1X5rWWSLbHO9FMzggnYess6J+ZEZu6VtcLez47sPg2 + lbus4ztbTrOqQni5jVg6En/4CU/kQfG5zTOiRkWP2rM0kcwdhR0vZrrW/ZzAg6ccsNQynL1t5VBC + 1FQd3tdHmVnOE9FSMMk8d0ce0DSDIghQiol0MEq6dXnI/Y9+PB10+4h5KUaZbq0uRE9gryZL3NMU + Gsm/+Vr+8EN4nmVsnavGpon2EyGjrt4cJ/JF2Yop6qDbBiX+8xv/9AHq36JCrJdyVtjEliVItUQh + F83680eKDcgDPGBnjUu6tsNj/Kf3r7v+3R5S58Lb/GmIqTwGukzhL4XRrEfkzx/68x9EJ11vu3+n + DQteBReG8umBdXzIhi0IXy389LnqHk5xNlAW/CSojkuAL2ve1vRlpu5f/BK/md701425CytWTrEj + bsgec95joSR5LM6rbwZ+vNF7cMfrGVafT7a9FFmH2lN/Y9MyKVh3f+H0x6+v2muuV4+HCfhy+o+o + hgEGykhFAnLofMgtjXh7fXhlC3c/ceYnsQrXs/7mUOGsuQs6gIaRWaQY5H6gE+diCPVizLWM9s8z + hLpcc5fm6KHdv8HO8bHaC+ktDupUJ9hh1jI8DopqovuhKIibjJa91OLZgnbqFNhekG+PX+ha0Hzo + kOx8lnLW3p63zxd2Re8ernLepnD58T5Wa68NeyQGFmxeEcGF6EqUA6eLA/n8+yGSc1n2Dv+AgdXj + GmH1DZqMntu3jHQ0H+blSPx6XTUpQa/p9Z6BOW7h3/sg+R0TrJHVUuZf3u/94tpGrNOpzJb4sqrw + tw7fPd4Ge/qO2gavFrRw8NSj4W//wBGVX2LlGa25K6AtVOD3iRV9PIbbI44j+ITkOGsOf1Y4XYAs + 3PWwC4vGHtj+WzLIdG9PbElYqLsKKx40FDPG4fOlhlT+3nQoOIcM27Hh06NijBG0cdXOzSF/h/Nz + LFu4+zXkzz+ZtesjBqbya7ETspfdT+EEuDSR6aIfocMai3EAL5Gh4OvOt3rDrQJx12tzufuva+6v + e4fO6BMjfz8ymqRiCgeHq1yhBBXdVOEFQYjAC1uZ/M02amcSuH7Efj4ylVYvD+6lA4a0N2I86KDQ + u3aV/+aLvMSRD7v1sDjoL99c+csjXIA6tXDXB/gfXvZTMUJ/C4CLLqWZscFT6P/8duL5ZZttoutv + YNy4hSjq+V5vlZpJf/yR6Nb3l+16MIK38DSR8wNJ9maLJx3ufHPud35L5e9ThQkeXu4fvyAEKwtk + vW7DWntXM5b82BSdrjd/XpdNG7jJPFnwcppSd3stwu6nMzqQ9QTjhMl0e2p6yMGHdi+wZcELnQgJ + GHRxSUgu7Qyy7nFcc4TfsTvXp14bFksLINr9d6KYsp+RMzhVUB3B+Bdfwwbc0gEGLT5uN98Pynp5 + TSZQ/J5x348DN3S2bshg13szlX8fZRHkroHO4ozkbt5Xun0XIdhPnPbEqT5ayH79jwkLp5ex/Dbc + kD0sMAXPlbGJzrqNvez+BgqM2Xe//srX0+5XgJ+fHP7h90iHyoUWS033susnrtGeFXzP1ysxpXlW + 1jX1RPSE03Gu+kKhxwe4NGDXN0S+ydbAm79HDK/ZxSbPGHzB3Gi3CsXF8sASkS41dQfgwIbddPJ6 + HZlsTN9PGez1BuJAvar3elACl0fvEWPH1+38tvK/esqMvmctPIpFYKKheoT4vBnfmnr3yQWXmX3v + 9ZP3QN3x0v/p23mJrilds5a24A8frK9hK3t+rFA3LF/yWPN22HQ35P7p84wLHbBUJ3GEJBQHl6mz + lW5l8pOhKEwu3v3vgYJQiGE8sxK5yRbZ6wFmDPd8g/V00infHlcI/Hud47PtqPWRLmIML819IGcf + ODUPDlqKlBjp8/bUo11f/1gQGPyADSexhxXzE4QyNxfEdiZHIWqQyQC4VuMCV2NC2r1rBu1+3Nwx + WWtv2pVhwGR6Or5M2Qg+O/8ATa+7bhuPV4X+6ZM9n2Psq6UypcCT0BfkyV99ZhjL05P7l1+4xhjp + it+/FGbcU8LO7netIq060HFD6VZuKNec2VwcgEdZ2/VYZP+r3+x6gRi/U1fv+SaFmxXd5gp3TT2F + NeREVgPhHz5RXvJoB2sil0Rn0ADGuhF6uPN9d3toIqD5ZoigcqOMuHxd0e1+YDmknL93ol7ZSRkf + 3F0Vg+BruWfz3QLKwbqEtGcoMXPxZ/f257Cd/HsqzyfmBIfpAc4NrC/pxRWv3XugnhyN6DdaT6zv + 83P80ztv2jX4uq5fe+P5NwfZVn7P20NLAUWH3oN/fAQcpq1ekjLd8ZIfsGu2zsDfCZvDiPFv2BVd + CbD3Y95ChjQ3cj8dWoX87ceHKMjulu5HV+9iM4OdT7tbEG9016PVnz/m1mu3KePnA8w/vMI6+noK + v+ADC3PofsiF4XWbdyQUg/XQctgZpY9C8b1YwHMsWfcgDmiYxydwIFvODxf5H+df/QSs5I3nhdem + kOb5IYFzPXHEovig0N2/QMc3/hG79w7DNhXnDh5KrSVe6XU2VYNfAddGPBCz8hrw6+72CMe76GF5 + r0esrmMVMF2ojM3KU8Hc58sMqPZ+upz8OdL1r366LVKEb+1dDTmEqxnu9XCsMvqnXrTk2MNXtfYu + FwxhRi7MfojT0woi7/i7TcU3gF7+mrFstLu/+/YEZCSl5i7rfAfjxDA5hDOVXbHb70wU3UMCtO8h + de9C39j09axGcFeLBNu996p3/cTCjTCjS94Oq6yfm7jAs36hWH8kKljUKVAhnw8OOUP+ElI+YNo/ + f30+Hnhj4Oe6dNFffTViTKjMv1Vc/tWP3XK9AsochPn/T0cB///dUSBXDw6bzFsK16rsG9jU45vI + 66Ar/CqYEnyEKkdSJHoZ9+JuMlrvHxvnBrLr5Xx2HciI94uLBskZlocjlShkiwcujCGmW3OLWaRt + vOGudnZW+GTLSxi0ZHWBGSUZq27agmx9TrA9W72ygaqqxIOtl9i0tIXShksh6Dwo40A1Dhkl4iNF + DIS1u1XLVVmKDyig+rVr91A7ycBmHyOFx3qWXIpgONCGCxjkLtKG71IZh/P16aYg6M4FualRn5Hk + y+y30ouNe6j4Z0gfYrdBV9kEbLgiY6/Dz16gZUssCabXEo7EXi0oJ8wdm332osvh11eQypaCL545 + hhsb/CxoXSaDOJ11C8ldDRLURB6Pcf0O6YaToYMn9nN0f7Oh1GswIQFm/H7rRmcdsyUkiQrh55u7 + aCUE0G9wj5DF/iISLo6cHVXG7eH49t/EjuRrxvujsAAf0IYojO/Sfnt5JrRqgFxhICOdC/pqYH8Q + GpJFd7Omn5OXoqOR6zMdJaemZzIXUHpLIrG94y+kN+iqcHX0zuUPg0nZTC1jhD6OQcIaQYWgN5sg + Zj/Q/pyEW8iNgqUDfFLBzIb1Kxu9BaVI8sIaq710H2i7Cg5aU+eD4+/Yhm3Fn3Vkek80r8bpTPnb + OWcgel0Becm3ZDiCTMjh43DSCN7Xg/skeQC79FHOYN8fC7DKDT22qiSPKJIVdnjKArrgm+cKQ+oP + XHF9z0i7uF8iz0VljwzoIrEP9Rt5/MCVsmO6ln/P5zE89wp3Io8SeUn1cSlQLcqv28kR2zT2sZWr + TD3eArb/Fw8Xz3TC7frUEygfly8JoqEcOJuoLgqjMMHROjv1wn4aHeSR+sT3QzwN1MRRBHL8YEh2 + 9k7ge3j6HQo6pcAqNKNhER5vC6nfS0180vXD9vVYFRqcb5DY82A9H/xkAxfFS0gRaAUY77dNhe+7 + cydYd6hNHcVP0a8zTaKJ5mEYrnQUwPZGMnnUimYvWV84MKyyGz4POQu6rC9cuL/vjO7ZU6ECdS1o + 4OCMPeGo1Fwk2zpUu6dH0iC6KvRyL1tktoWJb+P0GzatMgOIpyZxeU/T6Pa0mgCmOCZEP4VbtkTN + VqDD3X5g4yMYGbfHM7T9Z4PvEzkDLkalB29pvOGzOF6UVbihFuz7gaT0qAxc8nY46BDHxp4NQpv+ + ktRB8TGXcMpxK1gD6sywkI8HnHgdE04A3kswHhAliQ/tkB8vDxa2Znidj4fQUJaPtZiQ/+iQaPsB + /63nYwm+rcSY+UN8HYh7NiVQi/qZOGpgKJz4+uiQ/44xftxviz22zEWH5htH2BHU0l4YsPcovxcD + 34Xio/BFI7nQVnWGWIY3D6s9dQy0+GDGhlm3wzJ8uwqeikifT6A6DdOmVBw6HhaBPH3+PRzv38sG + X4vk43iQCZhvYsVBQoYJKw3t6vmgAws6r+2N9/2sbF89zpHXKCY2S17NWDt/eLBo3YU4aarQBUi2 + CdVskIhTojWk2ny2/n0+k84alqHyZ8CAnnNpV0zZaD0yFqrTqOLi7rUZq57FQGR4QuZlMuaa3PR6 + A9mNvmbWq9ZwUfm8gX/xkem6bq/FOFXA+R3uLjefrIzv+kSCH0a9Y/v8OSqUrRcW/lh8JuZpiGwK + x1SCF4dw+NJ+1IyPkl8LSWTbBJelBtiuZfO/8WDzKV0oe6veOjSwdyY20hRltcqrKNp12c1lNen1 + UbDvELrQ6F3glbO9visKUTfmDb6E1APrRpkYHqskxLJqvLLtmz1G+Pe8MOKsXtEhZ+CkRB/sMMFm + E/+OSrCfx8f39loN9OgDGe75yCX1OwTc9X5ooRirNUn1VrCp/3Ri6GR8Soy3nCmdsa0cGrKHgZ99 + HNsL0fsIvm9CTxJblQd2Dh8REp7Z7G66VgG6lTRBdglcoutHPZu1e9//Wy/DrPWBCy6DB4N2Wt0F + ysawRYYvIKIvn3mpkiGjMrqUwMd1j1UBeMMK/JSD/H4nim3+6LB0XCeC+7Rs2AufW0iWEkdQKg5H + cs39S01/SeBCLZosfCsMGxzZtYHogfxhPopbbG+fTprBLY02nAS+Xs8/v7MQu9EOX2CiK7yJoxgK + QVeTYhHlehN7eUQz8GR8M22V8qQfIbT9VzNv2vIdlg+wO0iRiv/mRxnvutahB0CMK1jECHe+wMHN + WBzi8mCpx5w/BfChe62LTq0V7udBY/jW7BDjnGnrSQ0vUNRDySRPZ0yVzQLAgaZ6SIlSI2hP7+fH + RGzmOkT9Rmq9FNmThYwSqSTpl8w+BlSd4f73M3sSq5ArgqWE3hdilzt107B+zscFwc8nx/GMKV3p + TEr4Upa7C16Nk03BhESINEXH137ws+lryRICE3fALu+nCutePVEc+OGMpYJzlOXuDR7w5YtGXpGZ + ZscMfAS04xG5lTdGWX9SkovX1ErIax/fom7XBT6vM8SO+q3CIzjPCXyR4EQcMkYZKzzeJuwGk58V + Rc/t5VKvOZJiVnWXKb/QNR6TFgJijuSpX8Z6Gsezi0jdHomtZzshycYWPm6jRyL92Qw0C8kMD0Jn + uCxLRDCPGw0Qw08Ep8ypUngmzR3wUUybGDcGDqvTSgviqXPCmlvl2Xp/iwxsjyxLgo45ZJva+B3c + mNUnL6E/2HSd+hTGx0JyYYn8bJmVRkDotjyxfkkopVqRz6IrUuTGfnMZ1uZyg1AXvzUxlq81HKe7 + xsDCGq/Yq6a2Xth+E5DgRxz+m6+NleEMnefFwGYe04wm8kX6F+++gYes27ZMh42M6bxyJc1+4+rJ + 6Iu+HjZvxV7xCF4xfGbciVhxWdFZu1cdvBd30233fLyaZ8GBGyvrRPdPDR1/RJoRQMHPrU/Lk9Je + KRj4Gm4blis9HhbrQlJ4URuNFOBJ6HIp+g7i388n98PQUSpcvQCUY2ARJZRaOjHT3QLfZjRxjF6m + PU33KwO3RT8Qi9pXm/PMgwv8AkVE4z2OEsP/jHBhRplo79+gzAlnqmjIMgMbMXJDjg3eFuSK3nEB + PkBam48VQi18PIlkih9l8327gDseYa0K38MyK6PIeaG/YkXJ+GyxnYYD+34mFi27bLVSXod35OT4 + vnz7er7eDw34Lu7gTj5/HthzfC7QT7tP2B0faz1Z6UGFN6Eg86P1fsr2tT8edCaxwJpSIEC73pPQ + 9dfK+HoCn4H9AKVHS5BfcFRRWhPG+i6AEy2CZVZGgE5sUcGrI2VE0pIPoGAeUvD3vsb7HmfDUXYb + OIHh7gLv+MtWVu88yI3ShnVrLMFiJN8FFmw0kVQHNOuIfbLAofpBoqi+Qrnrt5GAGOv1XgGEdMn6 + 2IEDaEx3qaZ2+KdHVl4+utS+OCE/xBILDTsS3c1jdXtB89WDFa4vxCm0rt6EN1eA0P8xLp9dVGX8 + AKVDyOhKkhudF248ZQPEdlJOzi4qw7kQ5kT01eWFfWu1al5G5xLeeFvG52H1bP5vvPvz+RTHRcaB + 7xrB14vH5DLSuJ5hZkWwOBgC0bfsN8zm9aRDBb0VHJyuWsZZo7uAWEGBy8chD+avHhfQaus7dvf9 + uSbWHEMGdByxmtxS+Otc6OL118jucbqXytK/cg9clCCZmSAVbRqkIoTZEZbEGkN14BvwXtAv1lSc + 9Z0F6LqdXCCWR4L3/BaOOTJ1qKuijQ0eUUBsT0rB7T4l+D4ui72Mt2pGB5ZIJCTDalP1wwoo8r0f + 8f7y38+wSugyk4qNcjqAJd/6Qlyv6Q1j0qj2Ot2vUNz1INFugLOX7xztnup2mf/wbJumJoeidndm + IJyu4aqaYwS6h0H/4sfufCpy0PjlPA60bAzpSfp5IEbflRhxyFP6rewFHDhpwsaon4ZNzrUU/umb + pycQ0M+t6oE1qwIXXJA0/NO/qUNuMxOqyzAaT6b9w2tikLVQ1p2/wn0/ERxgJRwPL0eEqacbxMzP + gr3rtQSS8pDNSC8MSpne7MDkFxXR0rXKlo/2jgDPVi3WHv6rpoM9OMB5LW+cHeUArMW3GCHyjzG+ + 1pfA/hc/RqpcifPMNns7OGcIKdLxzl/dYWFyI4cnV8jx1bkzYLldJxZ84NLPtY7imrv1TAKrHzkQ + PHu8vcxJZ4H0zFhuR1ojnItAKOHR7+C8LMxFoRmVWqTd4wZL9X5H0xLpxT8/IdGFEWydW83wYKsl + dobjCQyVIsvQPpwtbB7ZR70Y0yAj3wtlrIlbrNDutSXwzpQX4n7eJh3P8SWHSjmy7ul+aOtFlKMK + PYsixNaw0ZB26dDCs7hXKG6Pkq6PZ+KAtLsK+L7zq627hALK6E3H6uWgAHbHa/CzmjfZ+fewupEF + 4ZcRkLuY4sf+HNk+hUCOn/Ntj4fxS4ccjNHL/+P79SR48wYeKnPCGu/FYGs+SoBwVkfzZ1+f9dir + y58+cDkxaOw/fgmYgm3JeQze4SJEQQS/5BXOa2yp2RGc2wT+6Y3g1x0ptVCcA8j6ZB7JyGbjR0or + 6K/SgxTPC8roub/3f/jvsl7lh10myv2fvsaXN9nPLLclhDQ/ucRVD3+/2jIJQDNEEavaZa+A7Pr8 + uO5nIr2uCFfhdmxhEwU8cTOjBDv+q//4hBmxrL01pBOgMNvazB3X0N6E7zX4hx9Xr2brjQkrE0iR + 0+OiihpA23VxQfZla+yYl/Owbq6UI3ETKbb8w0qnXBFdKLJOSbxKWZTx1QkC2PUSPkdvqAzk0LlA + rkmNTeI7ypzfziIEZ2kh3sL87DFRoAdlermSq38d7Cnz3vstsHyAz80i2xspRhWy91BzRSQu4TYc + qgCFurhh5w0Vey6ENgUPcGDIpeBJuNnM0sH0DC0StYdLuC2Ru99iDCesgPmcHd+dvIm7v4LjfmKH + 1cedC37r90vOlC3D5RSYDOqVbsCRduFrqtV1hRxfx1j3PndKuWgpUC2q550PmGByL58IiutHxwrj + z4De/HOCvnWS4Tt4hcrnu3dEGVxouF3JN9n2aKwA7PzMFRrVzPb82Z1qp0qJEXfUXsOO6PDo3fE8 + /fHjE1tG4FnkIcnzNds7WlaI2ksr7nxVVJb1RAOwpB+RSAEFdGrccYGOMPTY4jifbhFkHfDM2BP2 + jdN79yPEvwp/RdzqJ9lbf6YzPEmOtfNzvT764ijCUb9F88mGXEiLC2dCL/oWWK/LpaaVMEbwVTZf + ogFjzabjaXWh4Mfcvl6VQvsr28BPOrVYSVUtY5NT0YiOky0zPXhSTT+/AULzY2VzS+qSHlfbluDt + 8snco/2elSVh8QKbj+TiTFstwK/b6qC3sU3YqAYlHK/izMAzSBd33H+1ZjGeXAt2PjSLsW3UR8b4 + BSCuNIzVAp7sZY8nVA9QxZYhfmzKRUIBfhyXEWNK23pdEBGBMeq+W+36bmNldoRnp85nGt4qZf0S + XoBlVlG3nPIfXefmLaGv3thE6S6bshzdew4PP+c5H/zPSLfjwrAi4xoY2y3SlbUzhA6OmvKdhXxw + BzLEEgePKjfOW3hkldX4HQpwNbWIqDOngI3UogD9QMhJDkgzzDsfRBNEKnYMNAw7n3Xha/y9/vyC + jNhSBqErv+z5QBpVOZYfLYatJX6JOlUcGE+BxKBWyF2cd69lIFonxsApchY/4PQOh7uaJpDriUYk + bTrbtHuJKdTd2w9LT17MZlg+LBCy+YMEl+/u31WPETLOWhFcHs82ry5BCQ/VAInsvSzAZodHDvh6 + xWSPT2WcpG8BK4nlsfJu1YF6qS5CoZgy4vAurfd8GKPdXyBYvgn14qImQRKZHLzrn+HP7wJDaqRY + +6dPRT9Bu//hsgV8KLSitwqo3cvDms1dsj+/5o8fulWdKjXnjCIHzTY3yZ+/Of8MuYJLUZ+x+z78 + 6qXZDikckyTB/inJlcXocgfccsYhbvHsM9q87zNc0q/o0lsdZcuxDmb0589iX9zPHFoBCyvZbIj9 + 3piavgIrhez6BO7qM25NsoSp/uLpz6/NRuZdBGIiCBK+kZmv+/cpKKBODAlrh04Ox+/vysHw21+w + tOt//k/fyToIsQIeurKcAR/BSnzF82k5OOER6MiB4rG8EunOKBk/XnwOSQ1zxna1euGWxGTXf5aN + Hdsi9fb4+TryD/OAnRL5IS9cE+8vH+FL9ZiHeX8ODzQLZ1qj3Kby9NTBH5+VhNLMOPO6qiCwsUsM + VT4OVJsvFtCsMsIpkL/1JuTfHu7+qdvMnEK3ESUC6DJydT/lrbBp0UgOCJwKzOzuv25//veq8yyW + fh+cTSwHNrHuZET+9DPtPhcXJqk0EnzLjZB7/2YZ9qF6I8+b+qnH7IMTeMu6F7nsfvFafU4prJC6 + YG1M5mxLC5ojkK2A2N/gnLENusnin9/6Ejt56LT+00Jf15150zWZLpPGBQC9MJhFcJfBapwGAQLA + wHnUf8VALANacMnAd7+cVLX3/Swgmoas+97vAJreSRGL0awLf/w5Yze4zCjJ4gf5w6MVZEsBrxzs + 3K92/obN73cSgKIIDX5ZSUdXFsotfC9GiZ3ncg1/Y7ul6FTEOvnT62O+VTnKKyd1GfWg2mvfuhHM + 2opz+9t7tX/x6LUolocP0V9RCnY/ZAN/fgVGR73mTMZp4PCr//yGH12zmyCD6MWAf/xsA99TBCsl + 90l8NPJ655fFn/4jkunN9b/6in7g7u6215uOfatH4H1378R5B86w/fFNH6yNe5q2LpxVXKRAS3rf + BTse/vE7UGYldZ/z1avJ6+67yGWIOrO6eQl3P2pGMq9H7sEoJYV9dYsAtVjiia2tPaDoDVN4FtaY + pP5hBZOaeBv6m7/LbNT1pkaTA8OVPZBgk97ZwnB+BU9pciCyiex691cauPtx5Jq0Kljt/QpA/icp + M3P39JC/3MsGtdpAsSMuwS6HriZYJmbY/bffsBCo9vAi+vuJv/AbbvzJ1kEgqhVWhfYWTn/+JToc + AiJN+Q+sL9JDYO+/uqY9t2XYxIYKUCEPHVtBNCnrHz+9E/2FJb4HYKksR4dlzpbucOk+4agaFx3G + G9diG2ZjTSeGNaFfHCJsEiDX/BCbLDh8hYXIWuaE/O7/Ist8pPNdPMK6t9lQAqfLr8P48rjbfdJm + HbiGH55cnXtBR/93cyFvCTrWGGag6zl4iv/02h+eL5efGcA3QzeX2f0xYvjTDG4fg3HRZbDpyupl + gN5JqWKt47CyWC7jwPrut+73Pfr1Br5rjEZlEt3TvR/C9WpzIzg9jGDH84auVqkJcCpFx/0KVAqP + g7A4MJ/9gLiqFGRUbzsI+Tb9Eb18yTX7fnsz6vVAw46yHun06nNT+KuP1OPNoFyBkAv0k88R4xBP + 9V/9D+3jcw9XNQMUfm0XSgU6kstYZCEtHlX7F097fUiqp/dWJlC8BOGeL/iBwDGQwJm7QGIsAc6m + fb/Ah9GEe/6O7P6oiaZom7LmsvBJwKgLUof++JANdT9kr2LLwA/ceqy9mTajR8jPUEcOwkowDMNm + rc8G8tWrmkPrdaTL3/vu8YfjPnlkxyNbJfDbzCbWLbnPlj5ienjoS4vEMw4p/bDnFkYk+bin9tOE + NL68XfjWn9K0Xp/Pmga30YJv5djicy3e6u9DLBfo6mmArXy+Kfw3eEX/5kNSH6y9tjjhwM5P8Dni + 7uHimrIuiov/IPj0W+j454eVOVdifefPVJC3HhBTD+aDzl32djOz/B8+P9WisqiwTmAKhZhktW4P + /JlFHuyRb5F4uA/2uuM93PXErre9et75Ltr1mQuAmIWLumkbRFGxYE39acMqlKEDfqlku8KRPdWb + yagN2OtxOA9jLeRnPoMA/wbfZZgDUejWyi783dN13jy2tUd2Oc8wmlWBqCdvoPQWey54TQcHO+OZ + gMV4Mg30q1jf8xEJx1eRebCl19Q9RKYYjucs8aD62xC28scJrOfgJp4U37ewEt5kZVWTZAHQVI7u + ahmsshkW6EWHvyOXI642bOpLZuFTiu4kgNqsUOtqMXAj968L4GIAVmbgBnHPMMQCslHTdFFMkHze + eN52f3L880P/p6PgP/7zP/+vvUHgv9ruWXz2xoCpWKf//j+tAv/N//fYpp/PX1/Bf81jWhb/9b/+ + pwPhv35D1/6m/3vqmuI7/tf/+k+RO53+dRv819RN6ef//eQ/9n/3v//j/wEAAP//AwCtBIL02oEA + AA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f935933d369338-SJC + - 991ac25129c4cf1f-SJC Connection: - keep-alive Content-Encoding: @@ -833,19 +834,19 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:22 GMT + - Mon, 20 Oct 2025 19:00:36 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=6TDmw0ojZQ_7nbf6qk_xMH_UiERWtWrRJQjG.YhOdik-1760635042-1.0.1.1-G6zCOcnVaTv3H.vPzfU_AC3SLrGO4hx_30e0q5mubmPGOuIUW_O5kzox..lePQkqBG8PZvc_NxLJvs8.hcgqQW8tnP4o3XHsHHoboLU8T6U; - path=/; expires=Thu, 16-Oct-25 17:47:22 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=2b7zn.S7cbtibW3SfRE4akE5Fx_84rCQXj0VQRir1Sw-1760986836-1.0.1.1-tKIjaiNb7M_hJpaAk3AZGc5Vy2VPwccwtxuodRlPdPaY.nFVSHiPQlpLyyqpM6uWUWK9BnAb8A81ESY33oNKEM_qhpWhFjKBJHy3I0qJI0I; + path=/; expires=Mon, 20-Oct-25 19:30:36 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=xDv2qdG9KENsgrRxm72HCOE.TYy9nyAVa3xwENnlEEg-1760635042145-0.0.1.1-604800000; + - _cfuvid=MBTZg9TI31Jr6Dv6rrXkRuMEPaXcR3ymj4bEikxUs4M-1760986836958-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-767d6694dc-4mg9w + - envoy-router-6544466cd5-7tsff X-Content-Type-Options: - nosniff alt-svc: @@ -857,7 +858,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "210" + - "132" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -865,7 +866,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "286" + - "192" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -875,13 +876,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199994753" + - "199994750" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 1ms x-request-id: - - req_c4dd60e8f5ea412d9cb3730b67e2eb80 + - req_3953b95ac2d24c7e834c1ffcf13dea3e status: code: 200 message: OK @@ -903,17 +904,17 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/3WT227iMBCGXwX5Og52DuRwV+1Ku0iVtqroSlvgIiQDuCRx1p6UIsS77ziwLepB - yoUzY8/8/zf2kVkssLcsZ3rHPNaAtcUGOB46oNhemx2vlcWr1DMYq3RLWekLX7xlWH5k66IEpGrH - k8dQY1FzA7avXUhGk0kYekwhNPQ7PzLVVvAClTtXFQi8K4zbOJ8HIgi8yIuWS++cQdU4OS7ORUTf - TIg8znIpHqm/y5KNpqMmkygTYZjFIksnpMHAGgy0JfBS9y2yXHis61dkaQuGKj60avCDh5Fej+4U - ol31ZrMd3ZFuS7VL3SK0yCvdFKodpF5WcxJXGm1tUxAk2o5GlTiQWRe1Ber+/dfUYRJ+EIpkMX7y - S8T4ebfeJr6UTviZ8krrHS+3RYekyRUF8vwpFpl4mZd8xCITLjIukplM8iDK4/Q9llhEqXBQhBAk - rBvGxWTMZUw7re5N6QLfnB9iRjFl+Su8iq8OVwBRYU275+zH/c3v6ezP6Of09paRqI5OqJc3y8Pd - aFYDaSkDeeFJ+MDw1yp3GtAcRqod3TRADAtXqoJO01i+wJB6sZd9giHlIiYSM5HmIszD8AOGIE7j - UMjwjMGW2tDJIPSjNAxE5O7LfxZHcqNotAe3fLi/pQZbxM7mi/FivN/v/SeL2vjabBZjKr+qYTH+ - atKnk+Np+8/ctH1dL5fXV9VeoX7fuNLq3PLLVsvLC+MdMT7PWXrsbw9nJyTVIB9e3tDAQmHKLaeb - 5x6lE3M6nf4Bpb1MLxYEAAA= + H4sIAAAAAAAA/3WT227iMBCGXwX5Og52Ds3hrtqVdpGQtqroSlvgIiQDuCRx1p6UIsS77zh0W9QW + KRfOjD3z/9/YR2axwN6ynOkd81gD1hYb4HjogGJ7bXa8VhYvUs9grNItZaUvfPGeYfmRrYsSkKod + Tx5DjUXNDdi+diEZ3SQi8ZhCaOh3fmSqreAFKneuKhB4Vxi3cT4PRBB4kRctl945g6pxclyci4i+ + mRB5nOVSPFJ/lyUbTUdNbqJMhGEWiyy9IQ0G1mCgLYGXum+R5cJjXb8iS1swVPGhVYMfPIz0enSn + EO2qN5vt6I50W6pd6hahRV7pplDtIPV1NSdxpdHWNgVBou1oVIkDmXVRW6Du339NHCbhB6FIFuMn + v0SMn3frbeJL6YSfKa+03vFyW3RImlxRIM9fYpGJl3nJZywy4SLjIpnJJA+iPE4/YolFlAoHRQhB + wrphXEzGXMa00+relC7wzfkhZhRTlr/Bq/jqcAEQFda0e85+3N/+nsz+jH5OplNGojo6oV7eLQ93 + o1kNpKUM5CtPwgeGv1W504DmMFLt6LYBYli4UhV0msZyBUPqxV72BYaUi5hIzESaizAPw08YgjiN + QyHDMwZbakMng9CPZRCkobsv/1kcyY2i0R7c8uF+Sg22iJ3NF+PFeL/f+08WtfG12SzGVH5Vw2J8 + bdKnk+Np+6/ctH1dL5eXV9VeoP7YuNLq3PJqq+XrC+MdMT7PWXrsbw9nJyTVIB9e3tDAQmHKLaeb + 5x6lE3M6nf4BHJ/mcBYEAAA= headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -931,7 +932,7 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:22 GMT + - Mon, 20 Oct 2025 19:00:37 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -947,6 +948,54 @@ interactions: status: code: 200 message: OK + - request: + body: null + headers: + accept: + - "*/*" + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - api.crossref.org + user-agent: + - python-httpx/0.28.1 + method: GET + uri: https://api.crossref.org/works/10.2307%2Fj.ctt5vkfh7.11/transform/application/x-bibtex + response: + body: + string: + " @inbook{1, url={http://dx.doi.org/10.2307/j.ctt5vkfh7.11}, DOI={10.2307/j.ctt5vkfh7.11}, + booktitle={Poetry in America}, publisher={University of Pittsburgh Press}, + pages={15\u201315} }\n" + headers: + Access-Control-Allow-Headers: + - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, + Accept-Ranges, Cache-Control + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - Link + Connection: + - keep-alive + Date: + - Mon, 20 Oct 2025 19:00:37 GMT + Server: + - Jetty(9.4.40.v20210413) + Transfer-Encoding: + - chunked + permissions-policy: + - interest-cohort=() + x-api-pool: + - plus + x-rate-limit-interval: + - 1s + x-rate-limit-limit: + - "150" + status: + code: 200 + message: OK - request: body: null headers: @@ -977,7 +1026,7 @@ interactions: (Part-B)},\n journal = {Journal of Ravishankar University (PART-B)},\n title = {Explanation of Gravity Hill of Mainpat by using digital Elevation Modeling},\n year = {2025}\n}\n"}, "authors": [{"authorId": "2368036338", "name": "Dushyant - Kumar Rajwade"}], "matchScore": 61.212677}]} + Kumar Rajwade"}], "matchScore": 61.07037}]} ' headers: @@ -986,79 +1035,31 @@ interactions: Connection: - keep-alive Content-Length: - - "1098" + - "1097" Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:22 GMT + - Mon, 20 Oct 2025 19:00:37 GMT Via: - - 1.1 b0797f10be715dcb685d992d17347df4.cloudfront.net (CloudFront) + - 1.1 11b74b29b8e5fb6f06701002e26ee6ae.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - 1AnflPhrN_ty4K69quz5uMLiVZ2Ly4wlLob3srZGfLilL4cBPCehew== + - sn5wnuOmF0yUJMFMebV6UQfxawvzE7dLeUIPRjPqHg1ssgxlmo6G8g== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - SjNJbFyfvHcETsQ= + - SwoBXHzSvHcEZHQ= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - - "1098" + - "1097" x-amzn-Remapped-Date: - - Thu, 16 Oct 2025 17:17:22 GMT + - Mon, 20 Oct 2025 19:00:37 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - d49b6038-35d7-405e-8655-2b0c8aee56f7 - status: - code: 200 - message: OK - - request: - body: null - headers: - accept: - - "*/*" - accept-encoding: - - gzip, deflate - connection: - - keep-alive - host: - - api.crossref.org - user-agent: - - python-httpx/0.28.1 - method: GET - uri: https://api.crossref.org/works/10.2307%2Fj.ctt5vkfh7.11/transform/application/x-bibtex - response: - body: - string: - " @inbook{1, url={http://dx.doi.org/10.2307/j.ctt5vkfh7.11}, DOI={10.2307/j.ctt5vkfh7.11}, - booktitle={Poetry in America}, publisher={University of Pittsburgh Press}, - pages={15\u201315} }\n" - headers: - Access-Control-Allow-Headers: - - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, - Accept-Ranges, Cache-Control - Access-Control-Allow-Origin: - - "*" - Access-Control-Expose-Headers: - - Link - Connection: - - keep-alive - Date: - - Thu, 16 Oct 2025 17:17:22 GMT - Server: - - Jetty(9.4.40.v20210413) - Transfer-Encoding: - - chunked - permissions-policy: - - interest-cohort=() - x-api-pool: - - plus - x-rate-limit-interval: - - 1s - x-rate-limit-limit: - - "150" + - cfe35218-ace9-40e3-97d5-dbd842506d6a status: code: 200 message: OK @@ -1106,7 +1107,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -1116,7 +1117,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -1247,7 +1248,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f9359c5a6f9338-SJC + - 991ac2599f91cf1f-SJC Connection: - keep-alive Content-Encoding: @@ -1255,13 +1256,13 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:38 GMT + - Mon, 20 Oct 2025 19:00:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-59554784b6-vvhv8 + - envoy-router-848c7cfc5-9gkgw X-Content-Type-Options: - nosniff alt-svc: @@ -1281,7 +1282,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "15120" + - "98" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1291,13 +1292,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999426" + - "199999423" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_35b1fb80f29b4f87a4bcff21a9c51026 + - req_fb0a1ce1063a4c448053246c5d50a925 status: code: 200 message: OK @@ -1317,7 +1318,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -1327,7 +1328,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -1458,7 +1459,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f935fbdb5e9338-SJC + - 991ac25b1ceecf1f-SJC Connection: - keep-alive Content-Encoding: @@ -1466,13 +1467,13 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:38 GMT + - Mon, 20 Oct 2025 19:00:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-767d6694dc-gr2rf + - envoy-router-6544466cd5-vhksf X-Content-Type-Options: - nosniff alt-svc: @@ -1484,7 +1485,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "109" + - "90" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1492,7 +1493,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "143" + - "150" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1508,135 +1509,123 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_eb05cb8e5e29445abf31c926004dda92 + - req_9db95a2af64d4c258039f9fbeca32810 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 - chunk 3: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed - now\\n\\n------------\\n\\n an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order - in Council\\\") from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor - General of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o - LeBlanc\\\"), on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from National2023 chunk 2: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, + 2023, Accessed now\\n\\n------------\\n\\n_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit + \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history + \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove + to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n + \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit + this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history)\\n\\nGeneral\\n\\n + \ * [What links here](/wiki/Special:WhatLinksHere/National_Flag_of_Canada_Day + \\\"List of all English Wikipedia pages containing links to this page \\\\[j\\\\]\\\")\\n + \ * [Related changes](/wiki/Special:RecentChangesLinked/National_Flag_of_Canada_Day + \\\"Recent changes in pages linked from this page \\\\[k\\\\]\\\")\\n * [Upload + file](/wiki/Wikipedia:File_Upload_Wizard \\\"Upload files \\\\[u\\\\]\\\")\\n + \ * [Special pages](/wiki/Special:SpecialPages \\\"A list of all special pages + \\\\[q\\\\]\\\")\\n * [Permanent link](/w/index.php?title=National_Flag_of_Canada_Day&oldid=1231946994 + \\\"Permanent link to this revision of this page\\\")\\n * [Page information](/w/index.php?title=National_Flag_of_Canada_Day&action=info + \\\"More information about this page\\\")\\n * [Cite this page](/w/index.php?title=Special:CiteThisPage&page=National_Flag_of_Canada_Day&id=1231946994&wpFormIdentifier=titleform + \\\"Information on how to cite this page\\\")\\n * [Get shortened URL](/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n + \ * [Download QR code](/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n + \ * [Wikidata item](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703 + \\\"Structured data on this page hosted by Wikidata \\\\[g\\\\]\\\")\\n\\nPrint/export\\n\\n + \ * [Download as PDF](/w/index.php?title=Special:DownloadAsPdf&page=National_Flag_of_Canada_Day&action=show-download-screen + \\\"Download this page as a PDF file\\\")\\n * [Printable version](/w/index.php?title=National_Flag_of_Canada_Day&printable=yes + \\\"Printable version of this page \\\\[p\\\\]\\\")\\n\\nIn other projects\\n\\n + \ * [Wikimedia Commons](https://commons.wikimedia.org/wiki/Category:National_Flag_of_Canada_Day)\\n\\nAppearance\\n\\nmove + to sidebar hide\\n\\nFrom Wikipedia, the free encyclopedia\\n\\nCanadian holiday\\n\\nNational + Flag of Canada Day \\n--- \\n[![](//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Canada_flag_halifax_9_-04.JPG/250px-\\nCanada_flag_halifax_9_-04.JPG)](/wiki/File:Canada_flag_halifax_9_-04.JPG) + The\\nnational flag of Canada \\nObserved by | [Canada](/wiki/Canada \\\"Canada\\\") + \ \\nDate | [February 15](/wiki/February_15 \\\"February 15\\\") \\nNext time + \ | February 15, 2025 (2025-02-15) \\nFrequency | Annual \\n \\n**National + Flag of Canada Day** ([French](/wiki/French_language \\\"French\\nlanguage\\\"): + _Jour du drapeau national du Canada_), commonly shortened to\\n**Flag Day** + , is observed annually on February 15 to commemorate the\\ninauguration of the + [flag of Canada](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") on\\nthat date + in 1965.[1] The day is marked by flying the flag, occasional public\\nceremonies + and educational programs in schools. It is not a [public\\nholiday](/wiki/Public_holidays_in_Canada + \\\"Public holidays in Canada\\\"),\\nalthough there has been discussion about + creating one.\\n\\n## History\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=1\\n\\\"Edit + section: History\\\")]\\n\\n### Background\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=2\\n\\\"Edit + section: Background\\\")]\\n\\nAmid [much controversy](/wiki/Great_Canadian_flag_debate + \\\"Great Canadian flag\\ndebate\\\"), the [Parliament of Canada](/wiki/Parliament_of_Canada + \\\"Parliament of\\nCanada\\\") in 1964 voted to adopt a new design for the + [Canadian\\nflag](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") and issued a + call for\\nsubmissions.[2]\\n\\nThis flag would replace the [Canadian Red Ensign](/wiki/Canadian_Red_Ensign\\n\\\"Canadian + Red Ensign\\\"), which had been, with various successive alterations,\\nin conventional + use as the national flag of [Canada](/wiki/Canada \\\"Canada\\\")\\nsince 1868. + Nearly 4,000 designs were submitted by Canadians.[2] On October\\n22, 1964, + the [Maple Leaf flag](/wiki/Maple_Leaf_flag \\\"Maple Leaf\\nflag\\\")\u2014designed + by historian [George Stanley](/wiki/George_Stanley \\\"George\\nStanley\\\")\u2014won + with a unanimous vote.[3] Under the leadership of [Prime\\nMinister](/wiki/Prime_Minister_of_Canada + \\\"Prime Minister of Canada\\\") [Lester\\nPearson](/wiki/Lester_B._Pearson + \\\"Lester B. Pearson\\\"), resolutions\\nrecommending the new design were passed + by the [House of\\nCommons](/wiki/House_of_Commons_of_Canada \\\"House of Commons + of Canada\\\") on\\nDecember 15, 1964, and by the [Senate](/wiki/Senate_of_Canada + \\\"Senate of\\nCanada\\\") two days later.[4]\\n\\nThe flag was proclaimed + by [Elizabeth II](/wiki/Elizabeth_II \\\"Elizabeth II\\\"),\\n[Queen of Canada](/wiki/Monarchy_of_Canada + \\\"Monarchy of Canada\\\"), on January\\n28, 1965,[3][5] and took effect \\\"upon, + from and after\\\" February 15 that\\nyear.[6]\\n\\n### Flag Day\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=3\\n\\\"Edit + section: Flag Day\\\")]\\n\\nNational Flag of Canada Day was instituted in 1996 + by an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order in Council\\\") + from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor General + of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o LeBlanc\\\"), + on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien \\\"Jean Chr\xE9tien\\\").[7] At the\\nfirst Flag Day ceremony in [Hull, Quebec](/wiki/Hull,_Quebec \\\"Hull, Quebec\\\"),\\nChr\xE9tien was confronted by demonstrators against - proposed cuts to the\\n[unemployment insurance](/wiki/Unemployment_insurance - \\\"Unemployment\\ninsurance\\\") system, and while walking through the crowd - he was [grabbed by the\\nneck and pushed aside](/wiki/Shawinigan_Handshake \\\"Shawinigan - Handshake\\\") a\\nprotester who had approached him.\\n\\nIn 2010, on the flag's - 45th anniversary, federal ceremonies were held to mark\\nFlag Day at [Ottawa](/wiki/Ottawa - \\\"Ottawa\\\"), [Winnipeg](/wiki/Winnipeg\\n\\\"Winnipeg\\\"), [St. John's](/wiki/St._John%27s,_Newfoundland_and_Labrador - \\\"St.\\nJohn's, Newfoundland and Labrador\\\"), and at\\n[Whistler](/wiki/Whistler,_British_Columbia - \\\"Whistler, British Columbia\\\") and\\n[Vancouver](/wiki/Vancouver \\\"Vancouver\\\") - in conjunction with the [2010 Winter\\nOlympics](/wiki/2010_Winter_Olympics - \\\"2010 Winter Olympics\\\") in Vancouver.[8]\\nIn 2011, Prime Minister [Stephen - Harper](/wiki/Stephen_Harper \\\"Stephen\\nHarper\\\") observed Flag Day by - presenting two citizens, whose work honoured the\\n[military](/wiki/Canadian_Armed_Forces - \\\"Canadian Armed Forces\\\"), with Canadian\\nflags that had flown over the - [Peace Tower](/wiki/Peace_Tower \\\"Peace Tower\\\").\\nIt was announced as - inaugurating an annual recognition of patriotism.[9]\\n\\n## See also\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=4\\n\\\"Edit - section: See also\\\")]\\n\\n * ![flag](//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Maple_Leaf_%28from_roundel%29.svg/25px-Maple_Leaf_%28from_roundel%29.svg.png)[Canada - portal](/wiki/Portal:Canada \\\"Portal:Canada\\\")\\n\\n * [Flag Day](/wiki/Flag_Day - \\\"Flag Day\\\")\\n * [List of Canadian flags](/wiki/List_of_Canadian_flags - \\\"List of Canadian flags\\\")\\n * [National flag](/wiki/National_flag \\\"National - flag\\\")\\n\\n## Footnotes\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=5\\n\\\"Edit - section: Footnotes\\\")]\\n\\n 1. **^** [Department of Canadian Heritage](/wiki/Department_of_Canadian_Heritage - \\\"Department of Canadian Heritage\\\"). [\\\"Ceremonial and Canadian Symbols - Promotion > The National Flag of Canada\\\"](https://web.archive.org/web/20100423114158/http://www.canadianheritage.gc.ca/progs/cpsc-ccsp/sc-cs/df1_e.cfm). - Queen's Printer for Canada. Archived from [the original](http://www.canadianheritage.gc.ca/progs/cpsc-ccsp/sc-cs/df1_e.cfm) - on April 23, 2010. Retrieved March 21, 2010.\\n 2. ^ _**a**_ _**b**_ Government - of Canada, Public Services and Procurement Canada (July 31, 2015). [\\\"Infographic: - National Flag of Canada Day \u2013 February 15 \u2013 Canada's Parliamentary - Precinct \u2013 PWGSC\\\"](https://www.tpsgc-pwgsc.gc.ca/citeparlementaire-parliamentaryprecinct/decouvrez-discover/jour-drap-flag-day-eng.html). - _www.tpsgc-pwgsc.gc.ca_. Retrieved February 5, 2022.\\n 3. ^ _**a**_ _**b**_ - [\\\"What is the National Flag Day of Canada?\\\"](http://westernfinancialgroup.ca/What-is-the-National-Flag-of-Canada-Day). - _westernfinancialgroup.ca_. Retrieved February 5, 2022.\\n 4. **^** [Department - of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department of - Canadian Heritage\\\"). [\\\"Ceremonial and Canadian Symbols Promotion > The - National Flag of Canada > Birth of the Canadian flag\\\"](http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm). - Queen's Printer for Canada. [Archived](https://web.archive.org/web/20100224005050/http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm) - from the original on February 24, 2010. Retrieved March 21, 2010.\\n 5. **^** - [\\\"Birth of the Canadian flag\\\"](http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm). - [Department of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department - of Canadian Heritage\\\"). [Archived](https://web.archive.org/web/20081220170253/http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm) - from the original on December 20, 2008. Retrieved December 16, 2008.\\n 6. - **^** [Conserving the Proclamation of the Canadian Flag](http://www.collectionscanada.gc.ca/publications/archivist-magazine/015002-2021-e.html) - [Archived](https://web.archive.org/web/20121021133944/http://www.collectionscanada.gc.ca/publications/archivist-magazine/015002-2021-e.html) - October 21, 2012, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback - Machine\\\"), Library and Archives of Canada, from John Grace in The Archivist, - National Archives, Ottawa, 1990. Retrieved February 15, 2011.\\n 7. **^** [Department - of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department of - Canadian Heritage\\\"). [\\\"National Flag of Canada Day\\\"](http://www.pch.gc.ca/special/jdn-nfd/index-eng.cfm). - Queen's Printer for Canada. [Archived](https://web.archive.org/web/20100217042202/http://www.pch.gc.ca/special/jdn-nfd/index-eng.cfm) - from the original on February 17, 2010. Retrieved March 21, 2010.\\n 8. **^** - [Dept. of Canadian Heritage news release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) - [Archived](https://web.archive.org/web/20110706182436/http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) - July 6, 2011, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback Machine\\\"), - February 15, 2010. Retrieved February 15, 2011.\\n \\n\\n------------\\n\\nQuestion: - What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + proposed cuts to the\\n[un\\n\\n------------\\n\\nQuestion: What is the national + flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6492" + - "6777" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFLBjtMwEL3nK6w5JyhJ22ybIys4AQdAIERWketMEi+ObdmTFUvVf0dO - uk0WFomLD/PmPb83M6eIMZANlAxEz0kMViW3H9/R8c3+/rD/Zb98usVvb1/3n9/vvqoP6cZCHBjm - eI+CnlivhBmsQpJGz7BwyAmDanZTpMVml+4OEzCYBlWgdZaSrUnyNN8mWZbk6YXYGynQQ8m+R4wx - dpreYFE3+BNKlsZPlQG95x1CeW1iDJxRoQLce+mJa4J4AYXRhHpyfao0YxX4cRi4e6ygZBVUEM9V - hwofuBZYe2EcBjSt9Hkt5bAdPQ9J9KjUCuBaG+JhElOIuwtyvtpWprPOHP0fVGillr6vHXJvdLDo - yViY0HPE2N00nvFZYrDODJZqMj9w+i7bZ5tZEJaNrODiApIhrta0/BC/oFg3SFwqvxoxCC56bBbu - sg8+NtKsgGiV+287L2nP2aXu/kd+AYRAS9jU1mEjxfPIS5vDcLH/arvOeTIMHt2DFFiTRBd20WDL - RzUfE/hHTzjUrdQdOuvkfFGtrfNNsStu2qzYQnSOfgMAAP//AwClGzUkWgMAAA== + H4sIAAAAAAAAAwAAAP//dFPLbtswEPyVxV56kQ3ZiANb1zYpEvSBNu6pKuQ1tbIYU0uVDydq4H8v + KMdok6InApxZzuzs8gk7W7PBApWhWPPEWxEOk4vJYjLP54t8NV9hhrrGAju/q/LZ8rGN35Z7dWuv + 7tYrul/HPqz3mGEYek4s9p52jBk6a9IFea99IAmYobISWAIW35/O/MCPCRmPAjebzb23UspTKQAl + +th15IYSCyhx3TIIBW2FDDSGdmAbeEtCNYH2EFqGj9Qbhg9MzUjI4KHVqoUH8lCz1zvhGrYDtNoH + 6zQJvGfrdgx3gcTwMIWbMJI9G1aBa7ACn1WwW3Ywn2cwW11eZPCgQwsEUUh0Z6OHgw0MjbMdCJMz + A1xkeZ6Dj9tOh/TMSdxPIfUwWk8qvbPKkO5Opr5EZoEro3/RlkMLNzdJ/ZYkkhtgvhzVFxmQ1GCb + RitNxgwQrN0DNw2rkPjXvHVjwWxxKhh7ctwbUlyPIY2Rpea/cg1Xkpydg2qphm2yoQWUlQPLc9zR + M5B/TvuNfzUHr0UxzJaXyyl8OiPXLyf0joY0Jbv17A5cA4nEsYGXpiFYULbruLOOAo+Gk8YbD1oo + 7qIb35+WmJ1WxLHhA4niyivrOK3KqpRjKZvNBo8/MvTB9pVj8lawQJa6CtEJPgOef0YWxVhINCbD + OG5v8YRa+hiqYPcsHot5nl9mqEi1XCnHo4fqJSU/446p/h92rk0K3LfcsSNTLbp/+X/QWfsaPWZo + Y/j7araYZZiS1YqroNlhgenX1eRqPB5/AwAA//8DAGmEEJvoAwAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f935fdcdc7ed37-SJC + - 991ac25d6f4d9441-SJC Connection: - keep-alive Content-Encoding: @@ -1644,68 +1633,52 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:39 GMT + - Mon, 20 Oct 2025 19:00:42 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=We7D_y8NjgR1JVH5BfYJ.micw.xE2lZDppbIpGZmO6c-1760635059-1.0.1.1-wQnJcpkQRmuBqv93M22mdJN71c29FDB8ujGQbAOyiWgG4_5euG2RL1Etx6uXlu9.QIDAg31q20rAjYs9aC78PdfaV9xkL3oeo9Plg85p7f8; - path=/; expires=Thu, 16-Oct-25 17:47:39 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=1_bgMKOaHwwaqI3m6mHmjzU9RVh.iu5L6MO7uAM3.ys-1760635059543-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:00:40Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:00:42Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:00:40Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "497" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxzDDyEjv6iRRQCJpBV + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "629" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998441" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_e3ce5eb92c7b40ac851fe55765e2a35e + - "3546" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 - chunk 4: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed - now\\n\\n------------\\n\\n2010.\\n 8. **^** [Dept. of Canadian Heritage news - release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from National2023 chunk 4: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, + 2023, Accessed now\\n\\n------------\\n\\n2010.\\n 8. **^** [Dept. of Canadian + Heritage news release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) [Archived](https://web.archive.org/web/20110706182436/http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) July 6, 2011, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback Machine\\\"), February 15, 2010. Retrieved February 15, 2011.\\n 9. **^** [PM pays tribute @@ -1753,60 +1726,49 @@ interactions: \ * [Mobile view](//en.m.wikipedia.org/w/index.php?title=National_Flag_of_Canada_Day&mobileaction=toggle_view_mobile)\\n\\n \ * [![Wikimedia Foundation](/static/images/footer/wikimedia-button.svg)](https://wikimediafoundation.org/)\\n \ * [![Powered by MediaWiki](/w/resources/assets/poweredby_mediawiki.svg)](https://www.mediawiki.org/)\\n\\n - \ * \\n\\n------------\\n\\nQuestion: What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + \ * \\n\\n------------\\n\\nQuestion: What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6244" + - "6296" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFLBbpwwEL3zFdacoQKyyzbcslFuVavmVLVEyJiBdWNs1x7SRqv998qw - WUibSr34MG/e83szc4wYA9lCyUAcOInBquT2/gM1d+5zrnb7Zn+zv3u8/9F84Xnx8eenrxAHhmm+ - o6AX1jthBquQpNEzLBxywqCa7Yq0uNqm2+sJGEyLKtB6S8nGJHmab5IsS/L0TDwYKdBDyb5FjDF2 - nN5gUbf4C0qWxi+VAb3nPUJ5aWIMnFGhAtx76YlrgngBhdGEenJ9rDRjFfhxGLh7rqBkFVQQz1WH - Cp+4Flh7YRwGNK30aS3lsBs9D0n0qNQK4Fob4mESU4iHM3K62Famt840/g8qdFJLf6gdcm90sOjJ - WJjQU8TYwzSe8VVisM4Mlmoyjzh9lxVZPgvCspE1fAbJEFfrev4+fkOxbpG4VH41YhBcHLBduMs+ - +NhKswKiVe6/7bylPWeXuv8f+QUQAi1hW1uHrRSvIy9tDsPF/qvtMufJMHh0T1JgTRJd2EWLHR/V - fEzgnz3hUHdS9+isk/NFdbbOr4ptseuyYgPRKfoNAAD//wMAW/tH2FoDAAA= + H4sIAAAAAAAAAwAAAP//dJJbbxMxEIX/ymienSoJpJB9Q62KhAQvFPHAos2sPcmaeseLPW4bovx3 + 5PTCTTxZOufzeM6MDzhGxwEbtIGK41mOIqyzl7PVbDlfrubr5RoNeocNjnnXzRev4uXq0+Ju2H1+ + e/H+TUpX5z+WH9+hQd1PXCnOmXaMBlMMVaCcfVYSRYM2irIoNl8OT7zyfXVOR4ObzeZbjtLKoRWA + FnMZR0r7Fhto8XrwGfjecpoUfIZtiiMQfPY3fmLnCSipt4GB+lgUPpD6KBTgKtAO4hYuSMgRXNLe + wN3g7VCLEEylD97CEIN3tAcvTyBnpT74PLCr6mK9PgcSB7HPnG7ZQRS44j4VSntYrHQ4g+uBnzus + YclLhsRbTiyWswG+V061qeDlJptTvZGVHCk99q0DPyfpi4KLnEGiguNsk+/5gbBaKFTN78SAjSGm + bCAmoGliSiSWa+jKnvJ4EtjWSXjNHLZnLZqHGScOfFvxLtuYuM562cqxlc1mg8evBrPGqUtMOQo2 + yOI6LUnw0cj8vdRw2EgJwWA5rb85oJepaKfxhiVjs3i9nhu0ZAfubOLTbro/kWc/Mbn/eU936ws8 + DTxyotCtxn/5X+5i+Ns9GoxFf5fWLwzWtXrLnXpO2GD9tY6Sw+PxJwAAAP//AwD7LCVXKAMAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f935fdb992152b-SJC + - 991ac25d6a84cf9f-SJC Connection: - keep-alive Content-Encoding: @@ -1814,214 +1776,54 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:39 GMT + - Mon, 20 Oct 2025 19:00:42 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=kMumJED2klYBp7q1VdHtUfBz3WsIvqIWP7QzF7uBpXA-1760635059-1.0.1.1-OkzaNPmmKpC4DxN8q2a5IxYbB5hTeyDsgj4DDqHGIPDBBrwaNtW_AfPbS4o0gdjhRpDhZ_4nIvn7QW79Imm5O5ZiGzY0CcStOEpAl8NRlSE; - path=/; expires=Thu, 16-Oct-25 17:47:39 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=jStTogdHYNdMU_sGOx7r0_vmrediLZJunc.AeOPZ4f0-1760635059553-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "554" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "644" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:00:40Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:00:42Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998498" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_fb2349eb116b4c40988a7a12b381d788 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from unknownauthorsUnknownyeargravityhill - lines 0-44: \\\"Gravity Hill.\\\" WikiMedia Foundation, 2023, Accessed now This - article has 0 citations.\\n\\n------------\\n\\n# Gravity hill\\n\\n> \\\"Magnetic - hill\\\" and \\\"Mystery hill\\\" redirect here. For other uses,\\n> see [Magnetic - Hill (disambiguation)]()\\n> - and [Mystery Hill (disambiguation)](https://en.wikipedia.org/wiki/Mystery_Hill).\\n\\nA - **gravity hill**, also known as a\\n**magnetic hill**, **mystery hill**, **mystery - spot**, **gravity road**, or **anti-gravity hill**,\\nis a place where the layout - of the surrounding land produces an [illusion](https://en.wikipedia.org/wiki/Illusion),\\nmaking - a slight downhill slope appear to be an uphill slope.\\nThus, a car left out - of gear will appear to be rolling uphill against [gravity](https://en.wikipedia.org/wiki/Gravity).\\n\\nAlthough - the slope of gravity hills is an illusion,\\nsites are often accompanied by - claims that magnetic or supernatural forces are at work.\\nThe most important - factor contributing to the illusion is a completely\\nor mostly obstructed horizon.\\nWithout - a horizon,\\nit becomes difficult for a person to judge the slope of a surface,\\nas - a reliable reference point is missing,\\nand misleading visual cues can adversely - affect the sense of balance.\\nObjects which one would normally assume to be - more or less perpendicular to the ground,\\nsuch as trees, may be leaning, offsetting - the visual reference.\\n\\nA 2003 study looked into how the absence of a horizon - can skew the perspective on gravity hills,\\nby recreating a number of antigravity - places in the lab to see how volunteers would react.\\nIn conclusion, researchers - from the Universities of Padua and Pavia in Italy\\nfound that without a true - horizon in sight,\\nthe human brain could be tricked by common landmarks such - as trees and signs.\\n\\nThe illusion is similar to the [Ames room](https://en.wikipedia.org/wiki/Ames_room),\\nin - which objects can also appear to roll against gravity.\\n\\nThe opposite phenomenon\u2014an - uphill road that appears flat\u2014is known in\\n[bicycle racing](https://en.wikipedia.org/wiki/Cycle_sport)\\nas - a [\\\"false flat\\\"](https://en.wikipedia.org/wiki/Glossary_of_cycling#F).\\n\\n## - See also\\n\\n- [List of gravity hills](https://en.wikipedia.org/wiki/List_of_gravity_hills)\\n- - [The Crooked House](https://en.wikipedia.org/wiki/The_Crooked_House) \u2013\\n - \ a pub (now demolished) with an internal gravity hill illusion.\\n\\n## References\\n\\n## - External links\\n\\n------------\\n\\nQuestion: What is the national flag of - Canada?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "3304" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNi9swEL37V4g5x8V2Eof6WloK/aIfh0K9GEUaO9rKGlWSl4aQ/15k - Z2On3YVedJg37+m9mTkljIGSUDEQBx5Eb3X66sv7sKfjx+Lb2++/8u2n+zevyR/X++7d5w9fYRUZ - tL9HER5ZLwT1VmNQZCZYOOQBo2q+K7Nyvc22L0egJ4k60job0g2lRVZs0jxPi+xCPJAS6KFiPxLG - GDuNb7RoJP6GimWrx0qP3vMOobo2MQaOdKwA9175wE2A1QwKMgHN6PpUG8Zq8EPfc3esoWI11LCa - qg41PnAjsPGCHEY0q815KeWwHTyPScyg9QLgxlDgcRJjiLsLcr7a1tRZR3v/FxVaZZQ/NA65JxMt - +kAWRvScMHY3jme4SQzWUW9DE+gnjt/t8s2kB/NCZjQvL2CgwPWCtb4M9VavkRi40n4xYBBcHFDO - 1HkbfJCKFkCySP2vm6e0p+TKdP8jPwNCoA0oG+tQKnGbeG5zGO/1ubbrlEfD4NE9KIFNUOjiJiS2 - fNDTKYE/+oB90yrTobNOTffU2qZYl9ty1+blBpJz8gcAAP//AwAA2jJXWAMAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f93602b8c4ed37-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 17:17:40 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:00:40Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "440" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxzDEDH83LTbQXJ2gg3 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "507" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999221" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 1ms - x-request-id: - - req_85f7d2f39fd24e8691260d9ed4eb8687 + - "3794" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 - chunk 1: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed - now\\n\\n------------\\n\\nJump to content\\n\\nMain menu\\n\\nMain menu\\n\\nmove - to sidebar hide\\n\\nNavigation\\n\\n * [Main page](/wiki/Main_Page \\\"Visit - the main page \\\\[z\\\\]\\\")\\n * [Contents](/wiki/Wikipedia:Contents \\\"Guides - to browsing Wikipedia\\\")\\n * [Current events](/wiki/Portal:Current_events + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from National2023 chunk 1: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, + 2023, Accessed now\\n\\n------------\\n\\nJump to content\\n\\nMain menu\\n\\nMain + menu\\n\\nmove to sidebar hide\\n\\nNavigation\\n\\n * [Main page](/wiki/Main_Page + \\\"Visit the main page \\\\[z\\\\]\\\")\\n * [Contents](/wiki/Wikipedia:Contents + \\\"Guides to browsing Wikipedia\\\")\\n * [Current events](/wiki/Portal:Current_events \\\"Articles related to current events\\\")\\n * [Random article](/wiki/Special:Random \\\"Visit a randomly selected article \\\\[x\\\\]\\\")\\n * [About Wikipedia](/wiki/Wikipedia:About \\\"Learn about Wikipedia and how it works\\\")\\n * [Contact us](//en.wikipedia.org/wiki/Wikipedia:Contact_us @@ -2069,60 +1871,50 @@ interactions: to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title\\n\\n------------\\n\\nQuestion: - What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "5797" + - "5849" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNa9wwEL37V4g528V21t7Wt5IeFwKBQGgdjFYee5XKkpDGS8Oy/73I - 3qydj0IvOsyb9/TezJwixkC2UDEQB05isCq5vd/R/kj6x+7YfS0ex+5O3u/wgdygvv+EODDM/hkF - vbK+CDNYhSSNnmHhkBMG1WxbpuVNkRbfJmAwLapA6y0lG5Pkab5JsizJ0wvxYKRADxX7FTHG2Gl6 - g0Xd4h+oWBq/Vgb0nvcI1bWJMXBGhQpw76UnrgniBRRGE+rJ9anWjNXgx2Hg7qWGitVQQzxXHSo8 - ci2w8cI4DGha6/NaymE3eh6S6FGpFcC1NsTDJKYQTxfkfLWtTG+d2ft3VOiklv7QOOTe6GDRk7Ew - oeeIsadpPOObxGCdGSw1ZH7j9F1WFuUsCMtG1vAFJENcrevbPP5EsWmRuFR+NWIQXBywXbjLPvjY - SrMColXuj3Y+056zS93/j/wCCIGWsG2sw1aKt5GXNofhYv/Vdp3zZBg8uqMU2JBEF3bRYsdHNR8T - +BdPODSd1D066+R8UZ1t8puyKLddVm4gOkd/AQAA//8DAAuRDH9aAwAA + H4sIAAAAAAAAA3RSTY/TQAz9K5Yve0lX7S5Faq4gxAGtBFppQQSl7sRNhk48Yezptqr631H6ASyI + 02j8nv2ePw7Yx4YDlugC5YYnGkXYJq8m88nd9G4+XdwtsEDfYIm9tvV09pC/zLXrPuw+cffxtTy+ + f9p9jhss0PYDjyxWpZaxwBTDGCBVr0ZiWKCLYiyG5dfDlW+8G5HTU+JyufyuUSo5VAJQoea+p7Sv + sIQKHzuvwDvHaTDwCusUeyB48hs/cOMJBmoZaBWzwc0DmY9CAd4FaiGu4Q0JNQRvaX8Dq2zQRFaQ + aDCaIi/gZR1Tf0qDhtUlv/LSwnNHBtYxyLXi+mVFcpYphD2EGDcKwW8YYgJvOpbxrQAH7llMb+Gx + 44vLYWBKChZhdfU8irjY99zHROa3DA3twXHg1fiX9sQ4qSeyjhNYRy+8/sK9KYf1We8ydNAuPss4 + tyH5npIPexDa+vbccc+SFUiasz+1lJ3lxLcVFuddJA68JXFcq4uJx53MKjlWslwu8fitQLU41IlJ + o2CJLE1tOQleAOUfmcUxlpJDKDCfzqQ8oJchW21xw6JYzhb39wU6ch3XLvHJXP2SMr3iian5H3bN + HRV46LjnRKGe9//yf6Oz7m/0WGDM9mdoMS9QOW2949o8JyxxvO6GUoPH408AAAD//wMAWHu1xFAD + AAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f935fdc9c3faba-SJC + - 991ac25d6fcd67f8-SJC Connection: - keep-alive Content-Encoding: @@ -2130,190 +1922,155 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:40 GMT + - Mon, 20 Oct 2025 19:00:42 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=yI6g7ZCbDlPQ2H6gSZ.SFqt.hXhyPftupaKZOx3.e.E-1760635060-1.0.1.1-bvVihKhcpM4ea27SrW7porKq1.FgSiSU5M893cM3zj6IWrO8RCEmG8T7Iw5QGEjeXKNnfdNSWBIbT0APthL5XE3ZE0OPrWq7babPbFxszbs; - path=/; expires=Thu, 16-Oct-25 17:47:40 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=uA0GJDjffU9oleR0YCBV1J6AgdawS0IATvj7aF0e2wE-1760635060326-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:00:40Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:00:42Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:00:40Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "970" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxzDvtN67piKA4mFbN6 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1357" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998633" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_6f2cdd455a2e43b2aa81616f2d13db8f + - "3855" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 - chunk 2: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed - now\\n\\n------------\\n\\n_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit - \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history - \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove - to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n - \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit - this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history)\\n\\nGeneral\\n\\n - \ * [What links here](/wiki/Special:WhatLinksHere/National_Flag_of_Canada_Day - \\\"List of all English Wikipedia pages containing links to this page \\\\[j\\\\]\\\")\\n - \ * [Related changes](/wiki/Special:RecentChangesLinked/National_Flag_of_Canada_Day - \\\"Recent changes in pages linked from this page \\\\[k\\\\]\\\")\\n * [Upload - file](/wiki/Wikipedia:File_Upload_Wizard \\\"Upload files \\\\[u\\\\]\\\")\\n - \ * [Special pages](/wiki/Special:SpecialPages \\\"A list of all special pages - \\\\[q\\\\]\\\")\\n * [Permanent link](/w/index.php?title=National_Flag_of_Canada_Day&oldid=1231946994 - \\\"Permanent link to this revision of this page\\\")\\n * [Page information](/w/index.php?title=National_Flag_of_Canada_Day&action=info - \\\"More information about this page\\\")\\n * [Cite this page](/w/index.php?title=Special:CiteThisPage&page=National_Flag_of_Canada_Day&id=1231946994&wpFormIdentifier=titleform - \\\"Information on how to cite this page\\\")\\n * [Get shortened URL](/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n - \ * [Download QR code](/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n - \ * [Wikidata item](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703 - \\\"Structured data on this page hosted by Wikidata \\\\[g\\\\]\\\")\\n\\nPrint/export\\n\\n - \ * [Download as PDF](/w/index.php?title=Special:DownloadAsPdf&page=National_Flag_of_Canada_Day&action=show-download-screen - \\\"Download this page as a PDF file\\\")\\n * [Printable version](/w/index.php?title=National_Flag_of_Canada_Day&printable=yes - \\\"Printable version of this page \\\\[p\\\\]\\\")\\n\\nIn other projects\\n\\n - \ * [Wikimedia Commons](https://commons.wikimedia.org/wiki/Category:National_Flag_of_Canada_Day)\\n\\nAppearance\\n\\nmove - to sidebar hide\\n\\nFrom Wikipedia, the free encyclopedia\\n\\nCanadian holiday\\n\\nNational - Flag of Canada Day \\n--- \\n[![](//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Canada_flag_halifax_9_-04.JPG/250px-\\nCanada_flag_halifax_9_-04.JPG)](/wiki/File:Canada_flag_halifax_9_-04.JPG) - The\\nnational flag of Canada \\nObserved by | [Canada](/wiki/Canada \\\"Canada\\\") - \ \\nDate | [February 15](/wiki/February_15 \\\"February 15\\\") \\nNext time - \ | February 15, 2025 (2025-02-15) \\nFrequency | Annual \\n \\n**National - Flag of Canada Day** ([French](/wiki/French_language \\\"French\\nlanguage\\\"): - _Jour du drapeau national du Canada_), commonly shortened to\\n**Flag Day** - , is observed annually on February 15 to commemorate the\\ninauguration of the - [flag of Canada](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") on\\nthat date - in 1965.[1] The day is marked by flying the flag, occasional public\\nceremonies - and educational programs in schools. It is not a [public\\nholiday](/wiki/Public_holidays_in_Canada - \\\"Public holidays in Canada\\\"),\\nalthough there has been discussion about - creating one.\\n\\n## History\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=1\\n\\\"Edit - section: History\\\")]\\n\\n### Background\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=2\\n\\\"Edit - section: Background\\\")]\\n\\nAmid [much controversy](/wiki/Great_Canadian_flag_debate - \\\"Great Canadian flag\\ndebate\\\"), the [Parliament of Canada](/wiki/Parliament_of_Canada - \\\"Parliament of\\nCanada\\\") in 1964 voted to adopt a new design for the - [Canadian\\nflag](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") and issued a - call for\\nsubmissions.[2]\\n\\nThis flag would replace the [Canadian Red Ensign](/wiki/Canadian_Red_Ensign\\n\\\"Canadian - Red Ensign\\\"), which had been, with various successive alterations,\\nin conventional - use as the national flag of [Canada](/wiki/Canada \\\"Canada\\\")\\nsince 1868. - Nearly 4,000 designs were submitted by Canadians.[2] On October\\n22, 1964, - the [Maple Leaf flag](/wiki/Maple_Leaf_flag \\\"Maple Leaf\\nflag\\\")\u2014designed - by historian [George Stanley](/wiki/George_Stanley \\\"George\\nStanley\\\")\u2014won - with a unanimous vote.[3] Under the leadership of [Prime\\nMinister](/wiki/Prime_Minister_of_Canada - \\\"Prime Minister of Canada\\\") [Lester\\nPearson](/wiki/Lester_B._Pearson - \\\"Lester B. Pearson\\\"), resolutions\\nrecommending the new design were passed - by the [House of\\nCommons](/wiki/House_of_Commons_of_Canada \\\"House of Commons - of Canada\\\") on\\nDecember 15, 1964, and by the [Senate](/wiki/Senate_of_Canada - \\\"Senate of\\nCanada\\\") two days later.[4]\\n\\nThe flag was proclaimed - by [Elizabeth II](/wiki/Elizabeth_II \\\"Elizabeth II\\\"),\\n[Queen of Canada](/wiki/Monarchy_of_Canada - \\\"Monarchy of Canada\\\"), on January\\n28, 1965,[3][5] and took effect \\\"upon, - from and after\\\" February 15 that\\nyear.[6]\\n\\n### Flag Day\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=3\\n\\\"Edit - section: Flag Day\\\")]\\n\\nNational Flag of Canada Day was instituted in 1996 - by an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order in Council\\\") - from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor General - of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o LeBlanc\\\"), - on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from National2023 chunk 3: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, + 2023, Accessed now\\n\\n------------\\n\\n an [Order in\\nCouncil](/wiki/Order_in_Council + \\\"Order in Council\\\") from [Governor\\nGeneral](/wiki/Governor_General_of_Canada + \\\"Governor General of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc + \\\"Rom\xE9o LeBlanc\\\"), on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien \\\"Jean Chr\xE9tien\\\").[7] At the\\nfirst Flag Day ceremony in [Hull, Quebec](/wiki/Hull,_Quebec \\\"Hull, Quebec\\\"),\\nChr\xE9tien was confronted by demonstrators against - proposed cuts to the\\n[un\\n\\n------------\\n\\nQuestion: What is the national - flag of Canada?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + proposed cuts to the\\n[unemployment insurance](/wiki/Unemployment_insurance + \\\"Unemployment\\ninsurance\\\") system, and while walking through the crowd + he was [grabbed by the\\nneck and pushed aside](/wiki/Shawinigan_Handshake \\\"Shawinigan + Handshake\\\") a\\nprotester who had approached him.\\n\\nIn 2010, on the flag's + 45th anniversary, federal ceremonies were held to mark\\nFlag Day at [Ottawa](/wiki/Ottawa + \\\"Ottawa\\\"), [Winnipeg](/wiki/Winnipeg\\n\\\"Winnipeg\\\"), [St. John's](/wiki/St._John%27s,_Newfoundland_and_Labrador + \\\"St.\\nJohn's, Newfoundland and Labrador\\\"), and at\\n[Whistler](/wiki/Whistler,_British_Columbia + \\\"Whistler, British Columbia\\\") and\\n[Vancouver](/wiki/Vancouver \\\"Vancouver\\\") + in conjunction with the [2010 Winter\\nOlympics](/wiki/2010_Winter_Olympics + \\\"2010 Winter Olympics\\\") in Vancouver.[8]\\nIn 2011, Prime Minister [Stephen + Harper](/wiki/Stephen_Harper \\\"Stephen\\nHarper\\\") observed Flag Day by + presenting two citizens, whose work honoured the\\n[military](/wiki/Canadian_Armed_Forces + \\\"Canadian Armed Forces\\\"), with Canadian\\nflags that had flown over the + [Peace Tower](/wiki/Peace_Tower \\\"Peace Tower\\\").\\nIt was announced as + inaugurating an annual recognition of patriotism.[9]\\n\\n## See also\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=4\\n\\\"Edit + section: See also\\\")]\\n\\n * ![flag](//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Maple_Leaf_%28from_roundel%29.svg/25px-Maple_Leaf_%28from_roundel%29.svg.png)[Canada + portal](/wiki/Portal:Canada \\\"Portal:Canada\\\")\\n\\n * [Flag Day](/wiki/Flag_Day + \\\"Flag Day\\\")\\n * [List of Canadian flags](/wiki/List_of_Canadian_flags + \\\"List of Canadian flags\\\")\\n * [National flag](/wiki/National_flag \\\"National + flag\\\")\\n\\n## Footnotes\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=5\\n\\\"Edit + section: Footnotes\\\")]\\n\\n 1. **^** [Department of Canadian Heritage](/wiki/Department_of_Canadian_Heritage + \\\"Department of Canadian Heritage\\\"). [\\\"Ceremonial and Canadian Symbols + Promotion > The National Flag of Canada\\\"](https://web.archive.org/web/20100423114158/http://www.canadianheritage.gc.ca/progs/cpsc-ccsp/sc-cs/df1_e.cfm). + Queen's Printer for Canada. Archived from [the original](http://www.canadianheritage.gc.ca/progs/cpsc-ccsp/sc-cs/df1_e.cfm) + on April 23, 2010. Retrieved March 21, 2010.\\n 2. ^ _**a**_ _**b**_ Government + of Canada, Public Services and Procurement Canada (July 31, 2015). [\\\"Infographic: + National Flag of Canada Day \u2013 February 15 \u2013 Canada's Parliamentary + Precinct \u2013 PWGSC\\\"](https://www.tpsgc-pwgsc.gc.ca/citeparlementaire-parliamentaryprecinct/decouvrez-discover/jour-drap-flag-day-eng.html). + _www.tpsgc-pwgsc.gc.ca_. Retrieved February 5, 2022.\\n 3. ^ _**a**_ _**b**_ + [\\\"What is the National Flag Day of Canada?\\\"](http://westernfinancialgroup.ca/What-is-the-National-Flag-of-Canada-Day). + _westernfinancialgroup.ca_. Retrieved February 5, 2022.\\n 4. **^** [Department + of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department of + Canadian Heritage\\\"). [\\\"Ceremonial and Canadian Symbols Promotion > The + National Flag of Canada > Birth of the Canadian flag\\\"](http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm). + Queen's Printer for Canada. [Archived](https://web.archive.org/web/20100224005050/http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm) + from the original on February 24, 2010. Retrieved March 21, 2010.\\n 5. **^** + [\\\"Birth of the Canadian flag\\\"](http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm). + [Department of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department + of Canadian Heritage\\\"). [Archived](https://web.archive.org/web/20081220170253/http://www.pch.gc.ca/pgm/ceem-cced/symbl/df3-eng.cfm) + from the original on December 20, 2008. Retrieved December 16, 2008.\\n 6. + **^** [Conserving the Proclamation of the Canadian Flag](http://www.collectionscanada.gc.ca/publications/archivist-magazine/015002-2021-e.html) + [Archived](https://web.archive.org/web/20121021133944/http://www.collectionscanada.gc.ca/publications/archivist-magazine/015002-2021-e.html) + October 21, 2012, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback + Machine\\\"), Library and Archives of Canada, from John Grace in The Archivist, + National Archives, Ottawa, 1990. Retrieved February 15, 2011.\\n 7. **^** [Department + of Canadian Heritage](/wiki/Department_of_Canadian_Heritage \\\"Department of + Canadian Heritage\\\"). [\\\"National Flag of Canada Day\\\"](http://www.pch.gc.ca/special/jdn-nfd/index-eng.cfm). + Queen's Printer for Canada. [Archived](https://web.archive.org/web/20100217042202/http://www.pch.gc.ca/special/jdn-nfd/index-eng.cfm) + from the original on February 17, 2010. Retrieved March 21, 2010.\\n 8. **^** + [Dept. of Canadian Heritage news release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) + [Archived](https://web.archive.org/web/20110706182436/http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) + July 6, 2011, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback Machine\\\"), + February 15, 2010. Retrieved February 15, 2011.\\n \\n\\n------------\\n\\nQuestion: + What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6725" + - "6544" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBbhs3EL3rKx54Xhla25JlXRWnMJAUbZJDiyoQRuTsLhvucEty7WwM - /3vBXduSmxTIhQe+mTfzhm/4MAOUNWoDpRtKuu3cfPvhXaKr92ZdVuHrzerPP7af4rClkOzHZquK - nOEPf7NOz1ln2red42S9TLAOTIkza3m1WqwulovlegRab9jltLpL80s/P1+cX87Lcn6+eEpsvNUc - 1QZ/zQDgYTxzi2L4q9pgUTzftBwj1aw2L0GACt7lG0Ux2phIkiqOoPaSWMauH3YC7FTs25bCsFMb - 7NSnhiGURZBD5aiGr7AlIUMFyEWPL+LvBRSRGsZ76hzjHVM1Bhe4pwjD0dbCBocBjY3JB0uCX9iH - mvExkTgeQGJAxneJDbzgLR9CT2FAuSxQXq+WZ7hNCNw50mzGWmMXmekDG9xIrlHgvrG6QUMGB2aB - FfSREa1oRrlerc+QFY1CKqbUB44gBDaoLDuDe5saUKZJjPhPT4FBCTZFaJbEoUCeGFmxUoMQ0+Ds - NzYjRTuqd0zVVGYSPs5ANz6ygKrEAXQcqSbnUPmA2B9aG6P1EqdZoBcS2/o+4s4nzlJ+o+AstSzp - REZm91VltSXnBnTBa0e2ncb9e5+ncOPsNzpwanB7O5LbCO3bllsfsiVBIv2Y7QW/Prf29tVr4w0N - Bfwhcrj77onOdqqYzBPY8R2J5n3UPnA2UbnYyeOp5QJXfaTseOmdOwFIxKex/Gj2z0/I44u9na+7 - 4A/xP6mqsmJjsw9M0Uu2cky+UyP6OAM+j2vUv9oM1QXfdmmf/Bcey5Xry/VEqI6bewJflE9o8onc - CXB9dV38gHJvOJF18WQXlSbdsDnmHheXemP9CTA7Ef59Pz/insRbqX+G/ghozXnn9l1gY/Vrzcew - wPlr+7+wl0GPDatsEat5nyyH/BiGK+rd9OuoOMTE7b6yUnPogp2+nqrbn1+slqurqlxdqtnj7F8A - AAD//wMA/KGIToMFAAA= + H4sIAAAAAAAAA3RTwW7cRgz9FYKXXmRjd2u3iI5JECSHBgmaBGi6hZae4a7YSByVpNbeGvvvxch1 + 4rboSQO+N49v+Kh7HEvmAVtMA82ZL7yoclxcXVxfbFab69WzzTNsUDK2OPqhW60//vC8t08v5Je3 + n44/vr/7PH18+eeNYYNxmriy2J0OjA1aGWqB3MWDNLDBVDRYA9tf7x/5wXcVWT4t7na7373oVu+3 + CrBFn8eR7LTFFrb4oWfgu8Q2BWTxNLuzw1sKKUoDvBroAGUPL0gpE7ykUwO3vaQexCHxwDdGwRmK + wiu+sZnsBOvr6CEKpDKOPJZKgOgZ9gMdvnOgXKaqfglvAkbWenY4kkmZq6bxWFTYgTQDH1nDoech + V8mR7MuDp8WJaBrmLHp40BfzeBQ4gSi8noehgfcz33BqFr1Hy0tPUdis1ivYF3tq8Kr6J1U5sjnZ + 6RLeLMR1A+9MRoafRMWDDX4OnnpWeE02scFk7Kx1HMu4hHSRdIieAnrKsB/KrUI58kPDd0yJ4UO5 + ZbuEmkRNDIz3bKyJ/amrXjyKnZZXSDi4HFT2kkgT19F8bSm5zjRODURf5kMPEpALO2gJmKwcJTMQ + ZA6SgTNk9mSyRFKTfppUipmGSpCDQjGgaWKy2vFyi83DNhkPfKylzlMxrlv1/VbPW93tdnj+rUGP + MnXG5EWxRdbcxWyKfwPOf8z1rdhqDQvnZdHbexSd5uiifGF1bDerq1WDiVLPXTJeAuz+SfmKG1P+ + P+zxbu1QsxvZaOiux//yv6Hr/t/oucEyx9PS+mrdoLMdJXEXwoYt1h80k2U8n/8CAAD//wMAAc6M + 0hMEAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f935fdce8cfa1e-SJC + - 991ac25d5e6f1692-SJC Connection: - keep-alive Content-Encoding: @@ -2321,51 +2078,166 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 17:17:42 GMT + - Mon, 20 Oct 2025 19:00:43 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=Rs8u4NMftI04dMwwIiPypsdSfA0Qqu88jJYIGybZRhk-1760635062-1.0.1.1-a9DJ49tgqBiOHNvLV6N4SF27dNE3kIBi5jPEew6kjjptV5wn23T0mAui6ANXwrac02boJUQxsSY6dVkuWaU.2bQMWxjDt8iCOQkINzwD_xI; - path=/; expires=Thu, 16-Oct-25 17:47:42 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=mOl7gjcfsO3wPAd8p_8DxdcIZmLUtltUfh0GIr8QoQY-1760635062153-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:00:41Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:00:43Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:00:41Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3168" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxzDHSUggogBaTrm2pY + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "3233" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + - "4892" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from unknownauthorsUnknownyeargravityhill lines 0-44: \\\"Gravity Hill.\\\" + WikiMedia Foundation, 2023, Accessed now This article has 0 citations.\\n\\n------------\\n\\n# + Gravity hill\\n\\n> \\\"Magnetic hill\\\" and \\\"Mystery hill\\\" redirect + here. For other uses,\\n> see [Magnetic Hill (disambiguation)]()\\n> + and [Mystery Hill (disambiguation)](https://en.wikipedia.org/wiki/Mystery_Hill).\\n\\nA + **gravity hill**, also known as a\\n**magnetic hill**, **mystery hill**, **mystery + spot**, **gravity road**, or **anti-gravity hill**,\\nis a place where the layout + of the surrounding land produces an [illusion](https://en.wikipedia.org/wiki/Illusion),\\nmaking + a slight downhill slope appear to be an uphill slope.\\nThus, a car left out + of gear will appear to be rolling uphill against [gravity](https://en.wikipedia.org/wiki/Gravity).\\n\\nAlthough + the slope of gravity hills is an illusion,\\nsites are often accompanied by + claims that magnetic or supernatural forces are at work.\\nThe most important + factor contributing to the illusion is a completely\\nor mostly obstructed horizon.\\nWithout + a horizon,\\nit becomes difficult for a person to judge the slope of a surface,\\nas + a reliable reference point is missing,\\nand misleading visual cues can adversely + affect the sense of balance.\\nObjects which one would normally assume to be + more or less perpendicular to the ground,\\nsuch as trees, may be leaning, offsetting + the visual reference.\\n\\nA 2003 study looked into how the absence of a horizon + can skew the perspective on gravity hills,\\nby recreating a number of antigravity + places in the lab to see how volunteers would react.\\nIn conclusion, researchers + from the Universities of Padua and Pavia in Italy\\nfound that without a true + horizon in sight,\\nthe human brain could be tricked by common landmarks such + as trees and signs.\\n\\nThe illusion is similar to the [Ames room](https://en.wikipedia.org/wiki/Ames_room),\\nin + which objects can also appear to roll against gravity.\\n\\nThe opposite phenomenon\u2014an + uphill road that appears flat\u2014is known in\\n[bicycle racing](https://en.wikipedia.org/wiki/Cycle_sport)\\nas + a [\\\"false flat\\\"](https://en.wikipedia.org/wiki/Glossary_of_cycling#F).\\n\\n## + See also\\n\\n- [List of gravity hills](https://en.wikipedia.org/wiki/List_of_gravity_hills)\\n- + [The Crooked House](https://en.wikipedia.org/wiki/The_Crooked_House) \u2013\\n + \ a pub (now demolished) with an internal gravity hill illusion.\\n\\n## References\\n\\n## + External links\\n\\n------------\\n\\nQuestion: What is the national flag of + Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "3356" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAAwAAAP//dJFNaxtBDIb/itClLYyDbWIc7y3EPfRYaEuhW3aVXcU76axmPdI4Nsb/ + vaxrk37Qk+B9nkGvmCP2seWABTaBcssTjSJsk9vJYjKfzhfT1XyFDn2LBfa6qaaz5eeH+4/3+/V6 + 61fruy/t8+7rcvYeHdph4NFiVdowOkwxjAGpejUSQ4dNFGMxLL4dr77xfiTnUWBd188apZRjKQAl + au57SocSCyixRPcrTRx4R9JwpU1MPNJpKadS6roupZRPHQPvG06DgVegx5gNNol23g7Q+RAU3sbB + fEMBfAhZfRSFl44TQxtfZFRAQxxYgYaBKYFFeGTIw4jeObCOfYKGsrI6IGkhcSDjFoaOJfYsdAMf + DMaDyYuCRPDyFFNP5qNcKj2QUEtvFOScUoCnQBsHGsGfm0s0uBxrYwXrGLaZdbRv8PTdoVocqsSk + UbBAlraynAQvQHmbWRrGQnIIDvP5a4ojehmyVRZ/sCgWd7O5w4aajqsm8blL9acxvfLE1P6PXd+O + C3jouOdEoVr0//qvdNb9TU8OY7bfo+WtQ+W08w1X5jn9lJKVEihBpSQWpSjV1gIAAAD//wMAsx6C + 98MCAAA= + headers: + CF-RAY: + - 991ac2748a279441-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 19:00:45 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:00:43Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:00:45Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998406" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_043f3ff0c3134c7b883f22dc666b31e0 + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:00:43Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxzV3EG5S1HNKQfzy2G + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "3157" status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml index afc978a7d..51e25126e 100644 --- a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml +++ b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml @@ -22,7 +22,7 @@ interactions: 257786462, "PubMed": "36972469"}, "url": "https://www.semanticscholar.org/paper/1db1bde653658ec9b30858ae14650b8f9c9d438b", "title": "A Perspective on Explanations of Molecular Prediction Models", "venue": "Journal of Chemical Theory and Computation", "year": 2023, "citationCount": - 48, "influentialCitationCount": 2, "isOpenAccess": true, "openAccessPdf": + 49, "influentialCitationCount": 2, "isOpenAccess": true, "openAccessPdf": {"url": "https://doi.org/10.1021/acs.jctc.2c01235", "status": "HYBRID", "license": "CCBY"}, "publicationTypes": ["Review", "JournalArticle"], "publicationDate": "2023-03-27", "journal": {"name": "Journal of Chemical Theory and Computation", @@ -46,27 +46,27 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:14 GMT + - Mon, 20 Oct 2025 18:59:01 GMT Via: - - 1.1 6cbbecc3198d4b8fe84dc82e5f121ae6.cloudfront.net (CloudFront) + - 1.1 412c0797c582f734d2a53446693c889e.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - tBUv7hPuhcxCwMegoGOOEqqtx7qFqgL40yyqA6ehL2v2MZj_4dVNqA== + - hlgO_H1WnjpP9fen-9dQfVMrqv1CwGcGXw80l6PhSaRojIyEDxvdwA== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - Sg2ioHCDPHcEsWQ= + - SwnycFkLvHcEdPg= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1398" x-amzn-Remapped-Date: - - Thu, 16 Oct 2025 00:09:14 GMT + - Mon, 20 Oct 2025 18:59:01 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 23165be6-384e-47b0-9eb6-f6fc4e0d0e67 + - 647afea1-8026-4001-b8dd-e7e02df7aef5 status: code: 200 message: OK @@ -90,103 +90,103 @@ interactions: string: !!binary | H4sIAAAAAAAA/81ca3PbOLL9Kyx9mqkSabz4cj45tuM4r8nGnmSy49QURUESYorU8mHHk8p/v90A ZYmQ7Ri+u/fu7s6OrEcTaHSfPt1o4PuoabO2a0b7o+pyNB4tZdNkc+m3NysJ711X9fa7V7JuVFXC - BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjKn48mVsPmvVEsXjJz4lPhXnVOyLeJ+z - f4JQ/BSGtVyN9mkcERFyFrI0ZePRZgA8ECQQox/jUS1nspZlLv286soWfiOS8WjVTQrVLGQN3z1Y - ylrlWekdLuQSXhTeWZUr2d54vxwcnv0KT1RN0+GAEnhdqFyWDfz153dUTt3eOSM+5mMW3zEh7hPu - s/ickH39P3tCUZwmccgI/gdGn1dlK8t2S7VXVQ0/mcoiu/FV6U+zG3gmGY9+//AGPl207arZv9i7 - 2MtrmbXqSubVclmVTVDV84u9fvDNxd7k5mJPBORib/QDBjnrYHVqPaej305xAUlAOeHpxR7VQ6FR - CE8tMz2NI3WlcDReNTM6a9r6BgdVKT9rGlm3cupPbuCbGzWPR9l1VsPy/zmCRROChiN4rprqZ+K/ - 7nmkmq6NDQcGUu6R/+PLj/G9gxfRA4OHBR97z1Uly7kqJZhCOR97x+WVqqtyCbrHj7Ny6p3XWdms - qrr1zm6aVi4blxmHVMT0pzPW4/x3zJiE8WbG78AOqhLM+rRsWtV2rcS5n8hS1vDmWzk1Ng8mD17i - MKsPPDx5S3mcRtHPZmbG4zCzLxvTn1bLTJXay/pXf+KnddU0y6y+9GvwHfDfVrvHLCsaCX7TLGCh - fBQBv5A1OGBboM+OXgV61QPvfCGr+sY7rJarrg1wAusBTP0VGMF9fi3GLPwCqt/SPGH0Yi/Lm+Br - 3uYBywllHG23n+zXqqtB/T6IUTmMAgcPvnkPFv4UOWi6L+h+yO9AjlREFPSukWOlcXfEqEh9RiNE - 4wYGkuObh6g8AEYNbf4tQuJCrFEyJCi9V9qB9x7wZyVzBBQPfOf426rISm1XDRrT26qQeVdktfe+ - RnvCD+BNQKlGaxYeob5ttAXPvaqKTs+MpmgJXQsLpu3ntw+Hp0cDJKvqXE0NfqEp+fAP83kcMz9K - Wdz/GiwFzBiNSX99tN/WnRyP5jBgRM0TCZ7uvQ/g27NsqQo0uE+yKMCY2xaXpJH/6lAH8P5M1U2L - YmczVajMGBaMbA0gEpcLkWGAf2Pv91JpmIbAAR98qPIFrI2sx9sv38lr7zNETQ98ncX6NzBm7wyi - LLiecelHagAWO/R5IsjjNPBStpl3MFDACcDaQg0nn02nysCFkwYQQY63AfTfpYz18A9wWNuDP5PN - IpvW/+XDf+RaRpGIfZ7qiPeItTwopzU8/GhozgtlW/J/lTa+IB1cTjTl4hQj3QZwq7KApz2Ih9tU - To//UuKs4T0A31y19KeBawuweXKx1wAHYcInjMEaxFz40QhX7FYs02KZi9h1HAClLGt5FdAcgjqJ - h3K5lstd5BIYy9ccQosA6jSUJrQ04Sotmy6zgBGaEhaD1Q1Ehlpk+JSJ6wAYTzDeW7OOtNDo8UIZ - jWFulCc0oozEcUJgoGloTT/WYmOn6cNvGkrASmHtKeQXJEx8S2yixSbuYsG0SC8WJuDzodhUi02d - LBV+c0TPDknIwvRoKI4SY/nEQauR4GgyaKDf1JXP0PyvwlW09K+swdLer57kWHGitQC2ljBbC9R4 - FnVyrR3BXCQ+swQb16JOvmUEMxauoSCkyc6IjZdRJzejYPJfA1XOZl2jXS2gLABqaIk23kYd3E0k - YQgrn9V/KICYlECyLcLUlmscjjp4HKVJhDbMOSoYrBfSb+LfWHKNx1EXlwONXuwtZrIJRBTQICR/ - YW5gD9j4HE1uyeGatEPsv8owNfFUCWGmq3UqM6vqpQ5mQDkr+LCBSLWVmd3yS7bNL0fP4e3LSdYo - 7xyD543Mas2uqQX+1LiqJqeaD/o9n47j3fHpAQDtLeeaDEP49mjTQmpR9vEKKfOLTNUlDHPsHeSa - Y2cTCMcQUTe5ZYZfvtkefEIHg++qIlteq1J5r4ajT6zQZYCBOQDDrYeJCBaepj5J0iS2cZEZTGBP - wATwsGjtujzxrfDA+mjrggkRgUXK1DKbB1c8UTxgsaBarLU+v5XeAeReM5UrbTotEH81x4XZ9w68 - 466uVjKD76xWdZXlC6+tIMHJ4Ut67cz6dDoluNU4GyzMrQjIJiEb0JWa8dbkDC4xC1WYQRWGqNJB - al53edvVmBaOIDn1NJ/zXlZdIwPPe150UqelHhi+h6M99Z6rotCETM0XbfPMQzB/5m2o5vX1dXCN - UhZayLy6AvrZtCvUmg/WV/jVzK/1jy/2AmtwBpeYEw0wkId5btki5CUBiQNiEyBmoIm5QBMQtIu9 - VZk1CHgkCgW1PZYZYGIuwLRtQYIoFrAkJJZYA0ss2V2k5wq8duz9FjyDdW/bCl4fBtupsTadr2A5 - aHrmHUCwJZgYkF2vAFsqATPQBpuuvpI3Adim552+Ojw49WnsYXW1WVQrRA+JUlWZTQqJK//LHwen - v+KC0/iZt1p5yUUHrznl9ioaGGN3U458UwawpvY+K7JcVWPvDCb3pssVJAIAXPDH265UwPbfwsuD - xVJOzVdeSgnA9gpeHclyLgv8rvdHprwFqGBSVZf73nmFdaPGyzyQMFOQGsxqyEBwktqkt2eYKaOK - O4D19Pj4+GLv8OML7cd1ua5tDcHWVHVk7X3UtT7tGlRrisdRZJTF4zgMhvEPzeH08PDjJ7AvBmQJ - fgTmK5hlE9zAK78bXu/X6utuATZyFHgfQFGvs/xSp1CB9w6VLEHBn+HFmVpWjf7WcYDzmIBO2qpW - ulQHeAMqRHUdDwzCqAvGS7SCHtTNWTVrYSmkdw6Zm07vPsLq3loo2uzHrFBT8+en3ggb75fTw7Pz - T9rqGNG6pFHc211M7tQkfD8kLBWoSQKaJNzOhUw84Q7x5G4G2yTcioHcRBTuEFEGxIoBzMBEeEwt - uX3+5kQyDTDK+Q1YNg4Y8wUapZZkEw+4sDkHTZJwmxXEZDv4vK4W3vvA+zRkBAiD68LjAzyFi3bx - oLW87dHqTY9W1pBNlOBPZq8RAU4s0p3FMyGCO4SIodwE5caRHXK5CRLcPUhksHJXPFKUQmYqQou8 - chMl+N0Z4xYiDNeV7zoN8tvq3XnI0Uo0AKUiZgmNt5f8nwCrc0CLHUZirzi+7Z2ePrjCPaN+J1sd - cDQA6FG0Ml+UVVHNFVDvX/qB/WpN3AQY7pTTmmqBJsHNstZVEibsuobBWOFAYYfuS0kYkDQWFnYL - gzjCAXEsy8IsTkTEslhh4Ea4EFiwo4s9IMMxjSwyIwzICL4bRN50EFFlPcfAq8PwGynxdR8DnHMl - jwOYn3Q3SF9OgzFE+2+TDsX/Hngf4e/nuC+mmcDY+5QVwAsWY+8l/PECBtE1GMDGGGYX18h6FsiI - 8KsnABeybc3Hx9MGYllX18hbm6YCHt4iYTgtc/j0lsWIOApNQBFxLCwqI/pKl1upy9R6KA0hp+E+ - ieLU/3ZXinDgXWXAsHVofeevZN2AsubAT5qNj9E05NteeLbIVoW88d4EMONtvi8MKgqrriYMqAkn - 3oszSOPEx90f4kdhikX/v5htfQbXxN24di/+hGTXHhnnME+Is/jvMNqe8Juqs0BH13AeEWZoAmHm - 4PCtd3Z68vroCIxzG4/yAR69LqvrQk7n0puqJq+uZG1yZCAkmbdUu0FIGPAVDuW6oUvHCBXA/G0I - MtgmnLAtAbE0FjzkKRJIGgdU0JAn1oKFBt5Clwxdl2dwH9lHcPNTXxCLm4QG3EK6s9Ik1OnWLYXg - A0t+D+9OvJNhPCF3LK17JWY4PgOS4VM5GawUD4BEUotGhgYuQxdOth3WQwzrNKbCXiWDOaEL5lAC - g3m/uGk+yKu3AHPI3JsAYgYwVGLRhrAvtbsk2SZoMB7xJAo4EwCWVogLDc6ETjizqeCrJUZkyiKL - O4UGY0KnYvtAbDIhJGEGFW3Lwo2nD8DnBybIto30Q9YsO3gmcNIAAtA24IYGAUJ7+YwDhw4ObJtb - BOa2HvJmL8M4b+RUXtsUMBJGojDeKWBExnkjl9oauAIkFkaVwaoqZQBhjlDbIiLjdxGzcYFzXeG8 - J7M4A6qR1fDfrxkq/f8hv4iMY0cOjj1cwVCzNWpXdSLj2NETyAQ6himQUsZ26piR8ejoyQmRppeE - 2XtyUb9/9nSfJjnyKivERcano5/yBouEnkEUWMi//Te62qOLCM+Bin7CIsarNSfFdz5INQP+h59l - +C1IVLHI8Q+FPPETZq3PvLf5YVE1MKax91rX0oprWRTARPFXqmibfHFZ6YrSMZK0DIsW3kHb1mrS - 6bCDpO2kzlYLO5e5t4r0U7N8VHADciun3suquhx77z4DYz47GOvqyKAYwniKmzxAZlpVFLoKYiFr - ZOArSmz3TJnOfzZRewCIn3EoH4Zumf4kaJdmXmprXqvNvJq7gnZkUDRyokGm4LHC5pr6tuIR2bQ1 - NkCqUWfIVxgTwy4hPtjG+dwBIr38ef5719In/ytEig1KxzsUi0NgfgBKF7W67JZZbVpw/q9xNDYB - IHbach2mHixJQ+FHf1ELSmMD0fGTIToF9k15lFjhMDYQHT9hz/Xrcr7stx8gfhMLSmMD0fHTGhyW - coqlxyCdQFZp8+/YoHT85E1XvT0WCmbvusZ9n4MT9+o3oJv8tuYIKY4FPbGBntghd+JAMCi2Euve - 4ibgAXBnkVrFzNigRuyEGven65vODAMZCdkNSse1rj4cQdhYFy0+63jS1VeAvNJsYHxU4DFlq0PR - R9V0WaH+RuxbqDmMxy+yG1l7M5mhVO1+mTeVcgXIqWPKM6sZ6m1VtrXEHmFGSAriqyLwINDSsbfy - qFXDSAx4JE7bp71SEsZ6+xDw/5azJMa/E6fqk04n4zDxWSoiP/Rt20iMZycuWdXQmrGdIiLE/9sS - bFw7cXLtW/7MgD5HLKTUsrjE+HXilEwNOh5CHG5qN38kxqmTp9aiwS4oABGz+X5ifDpx8Glbbgh0 - XzCLgiZ989KTyyERJMMkFjvmYDw6eWo2hesWYGnPwuPUeHT6xFIISxKwXZtZpMbTUhdPowhrVEQJ - mkGiN/6iu2qFunNcYf1yqTuczfEAudn33S4Zpsk2DXhRAxwvMIF9MUhgU+O/dk9MajwwddprQtVE - SZyEln+kxutSB69jHMEHj+HwPuzbZdPSk4XUpyTqGw8IJYTGrNUNpK3prweIzAt41HCDcXXbJT4o - rw50dZ6Valm1lXcemGadzUyMp6e2IRlHTZ1zpFzhKYWQtJY846CpU9BF74MMkfmMYlUqy0MRSkuu - cdDUwUEZxY0WSMbKgJNIxJFFPNK+s9DBN4ciOdA7u7lw3V34hC6ivtkHu5sZj+wuIojwvWi6G8Vf - dGNY7mfeSVaNdXr4h8JXh/Dqc9ZUpbo0KSakiZgxHpoc8qwr8W3vSM00KW6V3hk/y7PZrCqQSnvn - tTT1/f6wgvR+W7Vqqf7WZtn3XjzAsNfMGpI+MN8GbV6ff9ApHwvsKfZNjsSJcu9YD0mndmca6bsc - yVMZN6O4OQoxz+7AI32bI3GACCskYegIAeRtyX2XI3Ei3bY2JlkqYlty3+dInLz+tqsWzJOe2CL7 - Fkfi5PiI1WVWX+zNL7MstbsGYDK9ULctYqErSXb1l6RxmnDw2zQhw8T4vCqqpVRWLf+xWSbj9fSx - 2zSXrts0entbq+AJOQHV55+QpUGUIL6NVetO6Htaoe/TLjah7m6ARYxz3ACDf0d0sE9yUmeTKr/M - 7PZL8Uj1kv/gLhi97dd2yy4Ap3jI4ojwWPAgX1Dbctft2m792ib5zJvJV0SFSPc+k50O8x7K3Dq2 - MWR/XQL9FSGb2hJ7CHNq1d5NWsJ0Jw2g605tl1ZtqwbLctCBzdfpulXbqVdbLxzYwQzVqw+P7vhE - D2NOrdrD8eJJDpYmtuAeyqjT+QhbEZjR2YJ7gKDuAIFAztIUbGIn9vTN0NStG3p4lKdpq29YQSfc - zopo3xJNHXuiYaqHMQQgFkXiwBa5PiCxs1/D4gFFfqnJ8estMIKEI/w5GCHMPwQ+0yrv9IkwSGiK - m0aZpqBa5tW81AfK7AH3fsyc/ThXHEyXidyW2Psx22mGYwkb1FnpoCb+Xk5rOa+azCRYG4i+qzr8 - yvytyzhW+RRIXgMv84U9rh4EnPqih1UGPMASJjvnKvquaKr36S1OfLioikK2Y5iU572WddZst3lf - 4huBqnQ/cGgT0b4vmjo1Rpu1KTWwxN9sib3/M2f/z0sshhCyo9Xe8e/pU34MokQT7C61Y1ffqUvv - adV9xFEuEvkpEdQPbcm927u0rm5lm4ykmS2x93qXjlUjUUndMyUubYnr81BPOBBlzoFABgdpeSrs - Ch7te1Upd4qzSFG+rhYrYAM8tvOavpeUujSTboygWtVTbQTgArbg3rNcukk3B87S/jgMDam/Y169 - bzn1k/ZGAH4AS13bEnvf4necN7i9x+FQInbrXPa52rRp3mxvVwJQvO8m2FVxUWI3fNUBgp91yyUW - avCXh6dHHg1FCoAEmXPWLLF7YAtVYPB6o6PMJyooC3ihFuYISd6Lu9jrf+b9kuW4hSinOhUGju6z - 6FcbiPpWUerWK6oPq5ZK6n5s8MzETlr7RlHq0inKORYd1ddlgy1sfOf8FO27RKnY2eYbtEuwQXbw - obqW5kz2sPq3E4xlPeuWgfeiyK6q2lZT30hKnTpJb0kQntoDyCJhGO5EmL6plArns8dpnIDvJilL - eSKAEtmuK9bnI13QYNi7glaGW8Sp3TVJ+25Ks7366AXGavVshZ1XWJxJIvBfm3f3/ZjUqSGT4agn - k0kQpTAFu7+c9o2Y9J5OzAescdlXpRoakSikdjMi7bscqUub4yZXwlamyWh9rYp9J8qGB92e/++v - R0HeZw7TmMo2CKhqNVdb9oy3sRRZOe+Mg0gs6RaqvNSH9O1biWCYTaDxGi9AgGnAW9MZXhNz/zUq - 64tg+utUstWq6GvJ+sej+29JQo5bTkFFW7+BDwFXVzLXh5C0kv8Dg9x+hPP4GrVURVar9sYHCM4v - da6PF8LIVdXgrQoPXk1z18UxwmfhOUn2Q7JPdi+OSZgA2kn6i2OavKrhlxTvW1jfGPN9tKoVhg58 - +Qh13a+pH/iEbrJlO+aqnq039G1bD1+Os30ZRDO42GsNtv2VXd8Hd3dtLpx4xA0/8Iys6HOkK+kr - c5PTvRP7snsFF6jC6OQhw6ll0a/799Eia2Bksh+cvkxpbVAgazS+vVzpzkNQ/5pd6WrzEBiqyVeZ - t/o6ktHp2dk7PQuI+34a6QS+f83MHU5NU/ZPhKf3jzbDgbCHHfL4/Ntfo/P0X5KAXm1dlSrf/SZu - o33Ry66Hohf5dikeXucfP/4H7FUKuINOAAA= + BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn58mVsPmvVEsXjJz4lPiPnlOxzsi+i + f4JQ/BSGtVyN9mkckTSMmIgIDcejzQB4IEggRj/Go1rOZC3LXPp51ZUt/EYk49GqmxSqWcgavnuw + lLXKs9I7XMglvCi8sypXsr3xfjk4PPsVnqiapsMBJfC6ULksG/jrz++onLq9c0Z8zMcsvmNC3Cfc + Z/E5Ifv6f/aEojhN4pAR/A+MPq/KVpbtlmqvqhp+MpVFduOr0p9mN/BMMh79/uENfLpo21Wzf7F3 + sZfXMmvVlcyr5bIqm6Cq5xd7/eCbi73JzcWeCMjF3ugHDHLWwerUek5Hv53iApKAcsLTiz2qh0Kj + EJ5aZnoaR+pK4Wi8amZ01rT1DQ6qUn7WNLJu5dSf3MA3N2oej7LrrIbl/3MEiyYEDUfwXDXVz8R/ + 3fNINV0bGw4MpNwj/8eXH+N7By+iBwYPCz72nqtKlnNVSjCFcj72jssrVVflEnSPH2fl1Duvs7JZ + VXXrnd00rVw2LjMOqYjpT2esx/nvmDEJ482M34EdVCWY9WnZtKrtWolzP5GlrOHNt3JqbB5MHrzE + YVYfeHjylvI4jaKfzcyMx2FmXzamP62WmSq1l/Wv/sRP66pplll96dfgO+C/rXaPWVY0EvymWcBC + +SgCfiFrcMC2QJ8dvQr0qgfe+UJW9Y13WC1XXRvgBNYDmPorMIL7/FqMWfgFVL+lecLoxV6WN8HX + vM0DlhPKONpuP9mvVVeD+n0Qo3IYBQ4efPMeLPwpctB0X9D9kN+BHKmIKOhdI8dK4+6IUZH6jEaI + xg0MJMc3D1F5AIwa2vxbhMSFWKNkSFF6r7QD7z3gz0rmCCge+M7xt1WRldquGjSmt1Uh867Iau99 + jfaEH8CbgFKN1iw8Qn3baAuee1UVnZ4ZTdESuhYWTNvPbx8OT48GSFbVuZoa/EJT8uEf5vM4Zn6U + srj/NVgKmDEak/76aL+tOzkezWHAiJonEjzdex/At2fZUhVocJ9kUYAxty0uSSP/1aEO4P2ZqpsW + xc5mqlCZMSwY2RpAJC4XIsMA/8be76XSMA2BAz74UOULWBtZj7dfvpPX3meImh74Oov1b2DM3hlE + WXA949KP1AAsdujzRJDHaeClbDPvYKCAE4C1hRpOPptOlYELJw0gghxvA+i/Sxnr4R/gsLYHfyab + RTat/8uH/8i1jCIR+zzVEe8Ra3lQTmt4+NHQnBfKtuT/Km18QTq4nGjKxSlGug3gVmUBT3sQD7ep + nB7/pcRZw3sAvrlq6U8D1xZg8+RirwEOwoRPGIM1iLnwoxGu2K1YpsUyF7HrOABKWdbyKqA5BHUS + D+VyLZe7yCUwlq85hBYB1GkoTWhpwlVaNl1mASM0JSwGqxuIDLXI8CkT1wEwnmC8t2YdaaHR44Uy + GsPcKE9oRBmJ44TAQNPQmn6sxcZO04ffNJSAlcLaU8gvSJj4lthEi03cxYJpkV4sTMDnQ7GpFps6 + WSr85oieHZKQhenRUBwlxvKJg1YjwdFk0EC/qStIrcD8r8JVtPSvrMHS3q+e5FhxorUAtpYwWwvU + eBZ1cq0dwVwkPrMEG9eiTr5lBDMWrqEgpMnOiI2XUSc3o2DyXwNVzmZdo10toCwAamiJNt5GHdxN + JGEIK5/VfyiAmJRAsi3C1JZrHI46eBylSYQ2zDkqGKwX0m/i31hyjcdRF5cDjV7sLWayCUQU0CAk + f2FuYA/Y+BxNbsnhmrRD7L/KMDXxVAlhpqt1KjOr6qUOZkA5K/iwgUi1lZnd8ku2zS9Hz+Hty0nW + KO8cg+eNzGrNrqkF/tS4qianmg/6PZ+O493x6QEA7S3nmgxD+PZo00JqUfbxCinzi0zVJQxz7B3k + mmNnEwjHEFE3uWWGX77ZHnxCB4PvqiJbXqtSea+Go0+s0GWAgTkAw62HiQgWnqY+SdIktnGRGUxg + T8AE8LBo7bo88a3wwPpo64IJEYFFytQymwdXPFE8YLGgWqy1Pr+V3gHkXjOVK206LRB/NceF2fcO + vOOurlYyg++sVnWV5QuvrSDByeFLeu3M+nQ6JbjVOBsszK0IyCYhG9CVmvHW5AwuMQtVmEEVhqjS + QWped3nb1ZgWjiA59TSf815WXSMDz3tedFKnpR4YvoejPfWeq6LQhEzNF23zzEMwf+ZtqOb19XVw + jVIWWsi8ugL62bQr1JoP1lf41cyv9Y8v9gJrcAaXmBMNMJCHeW7ZIuQlAYkDYhMgZqCJuUATELSL + vVWZNQh4JAoFtT2WGWBiLsC0bUGCKBawJCSWWANLLNldpOcKvHbs/RY8g3Vv2wpeHwbbqbE2na9g + OWh65h1AsCWYGJBdrwBbKgEz0Aabrr6SNwHYpuedvjo8OPVp7GF1tVlUK0QPiVJVmU0KiSv/yx8H + p7/igtP4mbdaeclFB6855fYqGhhjd1OOfFMGsKb2PiuyXFVj7wwm96bLFSQCAFzwx9uuVMD238LL + g8VSTs1XXkoJwPYKXh3Jci4L/K73R6a8BahgUlWX+955hXWjxss8kDBTkBrMashAcJLapLdnmCmj + ijuA9fT4+Phi7/DjC+3HdbmubQ3B1lR1ZO191LU+7RpUa4rHUWSUxeM4DIbxD83h9PDw4yewLwZk + CX4E5iuYZRPcwCu/G17v1+rrbgE2chR4H0BRr7P8UqdQgfcOlSxBwZ/hxZlaVo3+1nGA85iATtqq + VrpUB3gDKkR1HQ8MwqgLxku0gh7UzVk1a2EppHcOmZtO7z7C6t5aKNrsx6xQU/Pnp94IG++X08Oz + 80/a6hjRuqRR3NtdTO7UJHw/JCwVqEkCmiTczoVMPOEO8eRuBtsk3IqB3EQU7hBRBsSKAczARHhM + Lbl9/uZEMg0wyvkNWDYOGPMFGqWWZBMPuLA5B02ScJsVxGQ7+LyuFt77wPs0ZAQIg+vC4wM8hYt2 + 8aC1vO3R6k2PVtaQTZTgT2avEQFOLNKdxTMhgjuEiKHcBOXGkR1yuQkS3D1IZLByVzxSlEJmKkKL + vHITJfjdGeMWIgzXle86DfLb6t15yNFKNAClImYJjbeX/J8Aq3NAix1GYq84vu2dnj64wj2jfidb + HXA0AOhRtDJflFVRzRVQ71/6gf1qTdwEGO6U05pqgSbBzbLWVRIm7LqGwVjhQGGH7ktJGJA0FhZ2 + C4M4wgFxLMvCLE5ExLJYYeBGuBBYsKOLPSDDMY0sMiMMyAi+G0TedBBRZT3HwKvD8Bsp8XUfA5xz + JY8DmJ90N0hfToMxRPtvkw7F/x54H+Hv57gvppnA2PuUFcALFmPvJfzxAgbRNRjAxhhmF9fIehbI + iPCrJwAXsm3Nx8fTBmJZV9fIW5umAh7eImE4LXP49JbFiDgKTUARcSwsKiP6SpdbqcvUeigNIafh + Poni1P92V4pw4F1lwLB1aH3nr2TdgLLmwE+ajY/RNOTbXni2yFaFvPHeBDDjbb4vDCoKq64mDKgJ + J96LM0jjxMfdH+JHYYpF/7+YbX0G18TduHYv/oRk1x4Z5zBPiLP47zDanvCbqrNAR9dwHhFmaAJh + 5uDwrXd2evL66AiMcxuP8gEevS6r60JO59KbqiavrmRtcmQgJJm3VLtBSBjwFQ7luqFLxwgVwPxt + CDLYJpywLQGxNBY85CkSSBoHVNCQJ9aChQbeQpcMXZdncB/ZR3DzU18Qi5uEBtxCurPSJNTp1i2F + 4ANLfg/vTryTYTwhdyyteyVmOD4DkuFTORmsFA+ARFKLRoYGLkMXTrYd1kMM6zSmwl4lgzmhC+ZQ + AoN5v7hpPsirtwBzyNybAGIGMFRi0YawL7W7JNkmaDAe8SQKOBMAllaICw3OhE44s6ngqyVGZMoi + izuFBmNCp2L7QGwyISRhBhVty8KNpw/A5wcmyLaN9EPWLDt4JnDSAALQNuCGBgFCe/mMA4cODmyb + WwTmth7yZi/DOG/kVF7bFDASRqIw3ilgRMZ5I5faGrgCJBZGlcGqKmUAYY5Q2yIi43cRs3GBc13h + vCezOAOqkdXw368ZKv3/Ib+IjGNHDo49XMFQszVqV3Ui49jRE8gEOoYpkFLGduqYkfHo6MkJkaaX + hNl7clG/f/Z0nyY58iorxEXGp6Of8gaLhJ5BFFjIv/03utqjiwjPgYp+wiLGqzUnxXc+SDUD/oef + ZfgtSFSxyPEPhTzxE2atz7y3+WFRNTCmsfda19KKa1kUwETxV6pom3xxWemK0jGStAyLFt5B29Zq + 0umwg6TtpM5WCzuXubeK9FOzfFRwA3Irp97Lqroce+8+A2M+Oxjr6sigGMJ4ips8QGZaVRS6CmIh + a2TgK0ps90yZzn82UXsAiJ9xKB+Gbpn+JGiXZl5qa16rzbyau4J2ZFA0cqJBpuCxwuaa+rbiEdm0 + NTZAqlFnyFcYE8MuIT7YxvncASK9/Hn+e9fSJ/8rRIoNSsc7FItDYH4AShe1uuyWWW1acP6vcTQ2 + ASB22nIdph4sSUPhR39RC0pjA9HxkyE6BfZNeZRY4TA2EB0/Yc/163K+7LcfIH4TC0pjA9Hx0xoc + lnKKpccgnUBWafPv2KB0/ORNV709Fgpm77rGfZ+DE/fqN6Cb/LbmCCmOBT2xgZ7YIXfiQDAothLr + 3uIm4AFwZ5FaxczYoEbshBr3p+ubzgwDGQnZDUrHta4+HEHYWBctPut40tVXgLzSbGB8VOAxZatD + 0UfVdFmh/kbsW6g5jMcvshtZezOZoVTtfpk3lXIFyKljyjOrGeptVba1xB5hRkgK4qsi8CDQ0rG3 + 8qhVw0gMeCRO26e9UhLGevsQ8P+WsyTGvxOn6pNOJ+Mw8VkqIj/0bdtIjGcnLlnV0JqxnSIixP/b + EmxcO3Fy7Vv+zIA+Ryyk1LK4xPh14pRMDToeQhxuajd/JMapk6fWosEuKAARs/l+Ynw6cfBpW24I + dF8wi4ImffPSk8shESTDJBY75mA8OnlqNoXrFmBpz8Lj1Hh0+sRSCEsSsF2bWaTG01IXT6MIa1RE + CZpBojf+ortqhbpzXGH9cqk7nM3xALnZ990uGabJNg14UQMcLzCBfTFIYFPjv3ZPTGo8MHXaa0LV + REmchJZ/pMbrUgevYxzBB4/h8D7s22XT0pOF1Kck6hsPCCWExqzVDaSt6a8HiMwLeNRwg3F12yU+ + KK8OdHWelWpZtZV3Hphmnc1MjKentiEZR02dc6Rc4SmFkLSWPOOgqVPQRe+DDJH5jGJVKstDEUpL + rnHQ1MFBGcWNFkjGyoCTSMSRRTzSvrPQwTeHIjnQO7u5cN1d+IQuor7ZB7ubGY/sLiKI8L1ouhvF + X3RjWO5n3klWjXV6+IfCV4fw6nPWVKW6NCkmpImYMR6aHPKsK/Ft70jNNCluld4ZP8uz2awqkEp7 + 57U09f3+sIL0flu1aqn+1mbZ9148wLDXzBqSPjDfBm1en3/QKR8L7Cn2TY7EiXLvWA9Jp3ZnGum7 + HMlTGTejuDkKMc/uwCN9myNxgAgrJGHoCAHkbcl9lyNxIt22NiZZKmJbct/nSJy8/rarFsyTntgi + +xZH4uT4iNVlVl/szS+zLLW7BmAyvVC3LWKhK0l29ZekcZpw8Ns0IcPE+LwqqqVUVi3/sVkm4/X0 + sds0l67bNHp7W6vgCTkB1eefkKVBlCC+jVXrTuh7WqHv0y42oe5ugEWMc9wAg39HdLBPclJnkyq/ + zOz2S/FI9ZL/4C4Yve3XdssuAKd4yOKI8FjwIF9Q23LX7dpu/dom+cybyVdEhUj3PpOdDvMeytw6 + tjFkf10C/RUhm9oSewhzatXeTVrCdCcNoOtObZdWbasGy3LQgc3X6bpV26lXWy8c2MEM1asPj+74 + RA9jTq3aw/HiSQ6WJrbgHsqo0/kIWxGY0dmCe4Cg7gCBQM7SFGxiJ/b0zdDUrRt6eJSnaatvWEEn + 3M6KaN8STR17omGqhzEEIBZF4sAWuT4gsbNfw+IBRX6pyfHrLTCChCP8ORghzD8EPtMq7/SJMEho + iptGmaagWubVvNQHyuwB937MnP04VxxMl4ncltj7MdtphmMJG9RZ6aAm/l5OazmvmswkWBuIvqs6 + /Mr8rcs4VvkUSF4DL/OFPa4eBJz6oodVBjzAEiY75yr6rmiq9+ktTny4qIpCtmOYlOe9lnXWbLd5 + X+Ibgap0P3BoE9G+L5o6NUabtSk1sMTfbIm9/zNn/89LLIYQsqPV3vHv6VN+DKJEE+wutWNX36lL + 72nVfcRRLhL5KRHUD23Jvdu7tK5uZZuMpJktsfd6l45VI1FJ3TMlLm2J6/NQTzgQZc6BQAYHaXkq + 7Aoe7XtVKXeKs0hRvq4WK2ADPLbzmr6XlLo0k26MoFrVU20E4AK24N6zXLpJNwfO0v44DA2pv2Ne + vW859ZP2RgB+AEtd2xJ73+J3nDe4vcfhUCJ261z2udq0ad5sb1cCULzvJthVcVFiN3zVAYKfdcsl + Fmrwl4enRx4NRQqABJlz1iyxe2ALVWDweqOjzCcqKAt4oRbmCEnei7vY63/m/ZLluIUopzoVBo7u + s+hXG4j6VlHq1iuqD6uWSup+bPDMxE5a+0ZR6tIpyjkWHdXXZYMtbHzn/BTtu0Sp2NnmG7RLsEF2 + 8KG6luZM9rD6txOMZT3rloH3osiuqtpWU99ISp06SW9JEJ7aA8giYRjuRJi+qZQK57PHaZyA7yYp + S3kigBLZrivW5yNd0GDYu4JWhlvEqd01SftuSrO9+ugFxmr1bIWdV1icSfB+IJt39/2Y1Kkhk+Go + J5NJEKUwBbu/nPaNmPSeTswHrHHZV6UaGpEopHYzIu27HKlLm+MmV8JWpslofa2KfSfKhgfdnv/v + r0dB3mcO05jKNgioajVXW/aMt7EUWTnvjINILOkWqrzUh/TtW4lgmE2g8RovQIBpwFvTGV4Tc/81 + KuuLYPrrVLLVquhryfrHo/tvSUKOW05BRVu/gQ8BV1cy14eQtJL/A4PcfoTz+Bq1VEVWq/bGBwjO + L3WujxfCyFXV4K0KD15Nc9fFMcJn4TlJ9kOyT3YvjkmYANpJ+otjmryq4ZcU71tY3xjzfbSqFYYO + fPkIdd2vqR/4hG6yZTvmqp6tN/RtWw9fjrN9GUQzuNhrDbb9lV3fB3d3bS6ceMQNP/CMrOhzpCvp + K3OT070T+7J7BReowujkIcOpZdGv+/fRImtgZLIfnL5MaW1QIGs0vr1c6c5DUP+aXelq8xAYqslX + mbf6OpLR6dnZOz0LiPt+GukEvn/NzB1OTVP2T4Sn9482w4Gwhx3y+PzbX6Pz9F+SgF5tXZUq3/0m + bqN90cuuh6IX+XYpHl7nHz/+B7dE6KiDTgAA headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -200,11 +200,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "5612" + - "5613" Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:14 GMT + - Mon, 20 Oct 2025 18:59:01 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -255,7 +255,7 @@ interactions: Connection: - keep-alive Date: - - Thu, 16 Oct 2025 00:09:14 GMT + - Mon, 20 Oct 2025 18:59:02 GMT Server: - Jetty(9.4.40.v20210413) Transfer-Encoding: @@ -1334,7 +1334,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -1344,7 +1344,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -1360,1694 +1360,1695 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R7SY+DTLfe/v6KV9/WkcxkqurbMZnZFAYb46wAYwwYY6YC6ir/PcIdJYp0V8mm - pW67G8M555lO9X/+xz///KtNqzwb//Xvf/71LofxX/9t+9kjGZN//fuf//4f//zzzz//+fv6f70z - b9L88Sg/xe/tvxfLzyNf/vXvf5j//ZP/86Z///Mv3Xgq3swyb7CaqsSBrxi88HFIzZCrKlRCKjBn - 8nx9T+qShSCHsTcesPc9++oiIqtEiF5ykrNkTde9pATwXbIykTl6VdfH266hpZwQ1h3XUfn+KccQ - dmOKjZ5p1PZI3QGyPY0mdk/knoucTIOfPb1Osw4qSuDw8kBRiwx2rfbiLO/E20FzzWyS0MIFq9Ck - A1Tdh+jBefqmY28NJSz7KMM43t36OXQmDzrpBRBTmQ7qsluwDo+tj/H11tKeOrtCRNkghlPtIk5d - xWIV0QSeGtaHR+ksx4/rA2j6AXl+8j4dVhLmsP2ub++QlFM/e+JZQdvzmxpPUVKW+jMH3M9ywdFp - t3fmz8ysiL6vEzla5p7OgtdxsDoHFlEyzVUZY+xFyJiqhs0v2oV0gP4O0Xl0yN3ydToWd1NCDNrN - xDqrYT/4dalA8O2eGPdnQaUZWEvEM8KVZPrXBVPkZLpoUtXGZlzqPQu5j4jcIeWJ3PSRQ99llwPI - 9QLWu1at+M/wlOCzuF6xgeWlooFp+TAWbAufxFfucGxObRSo8wWfwxqDpT6daphWwxkr1Amc9XSU - athcRntqvP2NrvMTJ/AyaEfic0uasuMr9WH9llLyZD5Vyn+NpENLrxFsO/cdoHfmDFFxbnOS2nnl - dHsl8mGdnHYT0hmump982SFFGQScKVzhsNXzs0ImGRJ8tC2hWs8HTwPos5eJrsfvnrGPwYTY3o3I - Zavn+AkCE56Vh0OSVwTTtRgqEz3jPCXu7qSlq3Ld+zB6yjYJC9FJif26XyB3lyDW8/Cc0vOp1BA/ - 1ilJHhXup6aPdPGlHT9EfyNPJcZdWBHr1hW+LeEr5FGWSnBvfGdiWreHOp/gW0LoFC/klKIpnd/R - qqDazhx8x8ejwxz6NUGu/0wJ1gXb4Rb77KFgiqppDd4+WBm5ag73RAqINNmWOgK+HUD9bXfk7qRm - OpPPKiKm6XiiAY6nS1DYNuiLwSa+OZfhbx7R7dOeyOO6l5xRzEYTHK02w+bBNMBsCWcfEUYz8COB - bDXXhy6BIbk/ibz/JBVXXloTMBggbAuO0s/hvYjRWOkYO8wzC5e3vTR/19fFQ1Cxej37SFHPApH2 - mQ8YM7UmJGlJ5Inb7zP79nxBwnKYsF2rVc+5RtZAdap9Ii2SFDJ9GEPo7xcGXy65Ahbj1WfQTpg9 - jo+plLInSeTQa9K46YCPR5U5XpEN/Y8IsL3hwVy8pQx14vqYuOGhOAzvcxyyx/KKrbguUj6+2Qn4 - 1K2O3a82VHN61UuY2S7CcnvTKi6yJB01+/MdP3z7RVd6Oc7QOzT3aRXoI+WaPtKAmZUPrLkoUnms - wAneji8eO24o92skLBx8oBiTK3N8O3PBPDjYF5NN1LZuVSrWBoc+d/5LsCEnTl2bPAMNA+6mKkr4 - cD3fuwK8TX/BWk0WsE6K0KHLoB/x9Xilzsw2bw523CROy2AvKfsEc4J4gfQe169uyF3TMkAnBo9Y - S/2oGoRd1oAbqXQckgiA+c1dGyiIEoMzIdYd1j4EHtITMyb2focdrvM9H1he3JCYs4pqlC+7CGaB - wXvC+VD21O1PAtwjKcOXrvadRX5rJewFScWJ4CjVOq1dDDb8JMcot8FoOTATZfvIkhMltrO+Egki - 5XzoieFzvrpqnpIjFcMHjtRySte0qxKkjKFBpFRVKHe2sgjkHysg2n78gNm7FR0CQdSQHz+tUHh1 - yP5mKwnH+FSt5Ue5ALtTV2wf24pOohdPEGZG63V53YbzPrmZcHx+ek+0gqKnEmEU1JjrSOyxn6rZ - ZrUcuiesYeMyFg4rnPkVmlS2yU2LT3QOncaFsm2w2AGumtLmYbVQSO8yzqkYUj6wrwGwE24/7SO3 - 6lddJAnUdUHBtvNQVHZ3rkpUFTn83R8gPt5ph9chD4l5PpTVD+/hdGpzfA80N50d5SSAcMc8p9e7 - e6SzLx9aSCMTYO0YHtJB486lOL+EkYT01IP1fC9LhDO5nA5vpezXHvgSyrXJIrpcSyrXpFiAckta - j+77yaFvxdPhjz+MD+LUGc2eCfx+lxO89z/Oxu8FhGYQEE8TSodZ998Ofstdu82TlHKLaENYn9ej - txezVzUfnEhC19fyxqfLzkjZWymLiMyf2mOBsPTDPnmawDy6Nc6fXw3MgG3gb742vJjpoigXEzGl - dCG3ORWqnx5BY6VhD6nyF8zBbpjhhi/4mbGfisENJ6E/Puz8Z7os0bmD6sJ8SK4JpTpdfEZAN/LS - cVbcbw4n618RlinISOJhzpnDexujTU/ga704PYN2UgTG57sn6TKaId/sVwVlM+mISb5uz+k2asGb - LW8EW5OccsqVD/76724nuJr3sWqjH56lEXyHWz9GyJf3eNNTbdgW2qBBa/Zn7JuHNV1N1eR+eglf - BH4Gs1+XEgJYxxhTeKrmQzq44iF7IK+s+Lha3Kry0D0Y7ljn9TdYdRt1gJVag7gZSdI//p4uu5g8 - 1mkJ10q779Cy7r9//bVw8TlGaugyRHo/abXWu0VDPg1iYt+HZ7XIb7eEn/aZTTxNnhWVHncG7m/a - PDGzC8LuO3cd3PjAg152r/qt3xF81g5OoXV3KLIEDrbYu+KTWbzVFj15eNBuc0jUbT65TwwEOF1g - jI05FXrqOuUFvTtbJNZbKSv6QquPrMf77jVrIIWTwL0EOHKXNzFcJ+nX55nU0KovIVZudy6d7+23 - +MNftSu5cELGXgOX682d3mfKhnM4KA2Mluk17WNZUfndoash1aGJLYimdIH6zgZmxdxIxHnIoS8k - +jCtpvPWT/tw0IuyQF4UqeQkxp7DHMOXiUYpORCXjnM6n5+yC02yUqxJkQrIFX8Z6Jj6G5tDd+xp - 85BbYBx4g6gvUDsrB+0BGk+fx+fBXsJFdPMdLD/+YYJXpKd8ZUwixOL3inU9PvYsO+IGBOp6mVaO - ncBseGYER6L0xFvnXl2iq1mCs7DnJ3592OqQVuZw6NuPSszPnoDpp89GaX8g3sWM0/nQiwmMUIuI - mgaSynq5ncDrXewnJPMvZ10NLYErX5keX++IM5wecn7oMrMjPt1/QmqfHRsmjpji40FJqvk2R5FY - QG8kVsvicHaCi/anHyKfiVLGukFRCA6TNC3FaFBqz9MAf3zgfuKd03u6XKCpdacJ0J7rR3OqGRjr - vkSujr2k3925L+D5vmjTfPisFQ3fPvfjG2JpmZxSi4ISVmff8tY+PqaLMJs2vOaVh43S5AGp17mD - PH61OHpeOmc+qgn8+RsiU2njg/YcoX1zrnCY6UdK2GCdAIACSy7L6bLx95WBv8//e/5fXzia0JX9 - FtvJKIQr2VfzD/+Ix7y/fffcHyOYhMuVqA81Dele8xU4fAUXP2RedvhXH2tw5z1Hb60ms5qswo8h - AvhG7OshAPTV+zr0OutOnCoxKr484QFuetmDvtmq69kwI/D7vE5e7ugwufsLcGW+JZZ3gumi7nEA - +M4QCB71qKeJ+olhLbALxs1F6Vd0Pfjwu9Tpnx5Yoci2cMM374A9Vp29O9NCX44xiZbzp6LuwdTh - /BJHcnplVsWlA5/AyWrAxF87tqfSWCiIKOvOm8FXc9gsBBmcD16DrbT6pIuVRy0wnizvoTAQQP9t - OPfwmx/duAJnfe5PEfww94O3vg5d2g2C48FD3H1IpnCSw8pvtwA36XCZ0M4RKXn7UoDGdL161EYj - WONKYcRxd8pxvOEzu/lRCKf5T0+l3VYfxOnXhmx6ACyH5wHC474x8anxibqU6l2Bx0xYSdqpfbUA - vp3Q43AZiKm8vypNlpMN12wnEBOudTUrQIxgSrrRE75olw4t2tliuh40bM6PIOVz7j5A9ebfiHq/ - 5/38UnxdFKb+9puPdLkxtQ6Wy40jhuXScN458gxnJ5a2eqR0HOpCg+MyKHjjv37x0HsH78F0J/rs - e3RhR6P505fR8ChVsuz8AW79is245/p5JWkOnnzvYX3zn9NJM2bIq5JLbMEpq+VTthf4iPqIKEFW - UEpYPoIPNrSmA/cQ0/VliSvcB9kJ23PH0o8+BDtwrL3B28lyoK53Zcrg8/TdYZOzin6xrSIH1Kb5 - VPSXhQ4ZHicgFvmDGJUk9cts+QF6DuFCnLwpHZI3aonQMeyJvM+7fraMZoCH7InI0bHP6Zh8ywwC - KLL4VAcFWKJbVqIhebo//q34U7sI8P6KXHw6Xbp+CDygiEzT8viyei6lR6wm6H44HT1BMIizzFbs - Qz3S2M0/FOEyLt8cikfxRBzRsfuFDFIrSt1BwWZSMGAOwXMHf3xw+uHh+V4WULuEM9HNU+20tzm6 - QOGZ19hhi6u6COVpB5cnCTxYZa90vs35BUi3diBn/cjQYeN7YHtiie3rrID18Ykakfdgi+9a9kpX - FB99dH9d3AnxJUepDNkEtW9bIUe5bMLf/cD29X0S/A2/YE27PoabH930Q5DOvzzg8AkSrB3tb7rN - o4R+8ye9hobOb+7RQP17c4j9FV5gWVjkwimmE9E/AIardChy1HCfEBvf9dJz18cuAOpbsInCsR5d - XNXjIPfQn1hheKlinFXI4bIm319/qTMXPTuI+FjGEsu86eoaWQ03/iUW9xDD+XnYdYB4doJ/eDit - n3aGj1KiGz6CcDbGSkA0OMYYi++lmtNKmuB+0SXi4scaUvnktCAuGB8/V8DQ9frgfLCCusdBQV4V - FezjluewmCgOdAGH2jSDC5e7xGQuSsr7mNPB0YcRfp66nfrnD3dCjn7Pky6O+Wkh99Ce2IngMV3M - HZDgIpUFlgpm58zPA9fCrf/w6XBj0+XIJxngk8tx6mWIqvX5fM1QZ8/tVN8eFmB/+dKyux6JRfom - nXo0SOJj3GMPbf570oq6+5ufI68N6vyZ2hXsv7PuBTz3qabv3LUQuwzBxsa/K9jZGYjtY4RNlZzp - XOYTB4e8IPgovU7VxgcX8MsftvkJ5yVQBZTfds+JhNEQzt0bmPDSSiW569Wz2vx6jcj8rvFPP4yl - elb+/OJpnc4ha1T7DHgoJd7uHGnpLAp0/fN7zjS9fp8nB8YCPexk9dyT/MpGUJ0aH2e0ltI5T1IN - pqQdpynZkXDzFxrM15L8+Aq0b71i4POupthggrZf8a4R0I65JxO3pn44Y2Z24YHAAich0NL1Pmsu - 3BW1Rmyy+cUCLhewzYe3/vpxKQNdhLfnkcinRu552r4GUCd4N4XD7QJmxZUauHuIIz6xtVlxGoIe - tOoo9JoNP9dPTEXkHer7aWkLplpl/SugkKRPrDo7vR9YjlEgo+5f2OD8CKyaZ+c//zfxJC8B+3WX - CIZ9beHn+SICWhTlBDtuED2mbV509b/zgJRX1BPJnJVwCdbhApj0nHj891tXa8upGfR7mBP1RI/q - 8t3xOtj0HTb3Ytq3t51foM2P4ZMqW2DFTyeC++6mEzWYk2oFI+Oji7UnWJUutsPd/aJDduRmRNn4 - dCzEfQ0F1/OwyktCtR77RIG7MzzjjKuMinF9U4OKMglT/Z67aoE39wLzG3xOrPIEgHyGmwSH5v4l - d/6qOlRlpfovL9vwt5q7N7VRvxcgvoXsTR194WTCb8e/JnGrF/ti8xUGZWyQBO5bddMfAcjN6umt - u2ffvz9lESHTr2Wcjxqk4+F52MEtTyXS1at7eq/VGXkBXxA7BFpI1XqNURGF8rTXhU6dNMR4yNLD - wuM47+FMHLQnsPl3okXZ2VlGijKov7IA69l5D7a8TIC3lT6w5AiHdPn5+92dt4nj4zylF2Zygcr2 - 6JffOTPNDv6f3wHxUtHFqPY5fDilTuTnoXTWd54NokZ6l+ich9RJ9Ifhp6exZB6CcN7ySKji3cOb - T/WHLqkuaoc02988lC0XdejMvgEDq2ZYuaatQ8/d0sLzqCZEWWUr5LOdV8J+PDXEoX3UT/U5vEAV - eSo+eTlN6ZO6wq+/yREOfDhseAs1ortEOfS6w1c3pAGNi3Xs4KCt2N7wS3irnY6o7jqEpPeAK2o7 - fo81U5J6Thc/Cdz8JXlkC6NO53tXwtgzDzjxNaaaThqe4U5vGKI/grhnNz8KrsbpSuQX7/c0sK8+ - POf3D7Hm56Cuz/OnAT+9Ep/lOx2qLOFAP+IGYzF79Ys1xAz8Xd8p7x745R2HFCi2941rKeQWUYFQ - vggB0XYDUbe8XYI/v3EMGM+Z67suQa2a5mkO743av30zEH/5pLXlg6y5Awr49Qe7xAgsVVHU0HnG - OXEGdt+Pv3x6w8NRDEGdLtdPN4GrUOQTHIVA5Yl+qqGzk87Y2vqfu/ttCxV9Tkmi0ne4/OZrzaBA - zB3SHRrfoxg+vmAgNtyb6twizoZfPJyJyktxtUgGhHDT796SKWtIwQtw0M1aDfsbfy52jDjRPHr1 - 1PD6EfCBKQc/P07cK2rSsT9EAdydd2cPbt/TJEQN3HdXHSu7p9OvjpiasKuyGj83fptPQ84Jv3zo - eHtWPfELLYBWfQhx4p4NSsd70cDBCe4eqBKjX5htk+Jf2jc+4eegEvmkdmgJZ45cvhWf9v3ZcH/7 - D3wMmMkhcO/E4qbfsfcJ5WpC8cmHs5NI2FKXvqelDSZ4ffMm2fL6vg95oABOvzVEEShKMzOVJ7Th - MXYPV9BveVYBt3yI4OoDQnI8PxNoz/OAPZAW1ZZ/daA73hd8HLOXQ7DUDnDjI3L7oMihzPsi/Olp - XD/rcIaVtsLuVPJE2fzWsu1n4LszRaI9jqw6HICxwgh1CCv7ok5n06YF+lxP+m+fUE2O/Y3Bhs9T - 4ZBvunx3ex1cYSMTnccsWPYT1aAkAepNbp729MCXDHBc08RpvKh0HT+sgmbkW9g4qVU6XA7qDl5O - WUDUwdMAO2jqgCZ63WGF5z79+s7MCYbceMfWdfo66y2yMhDvMwXrmJcqdusPeGfqEj+NQwno7u55 - UH06Pj6FQUzpxM02eB69I/Gukuyw6HWYwG9/sfl9Z+aX1AWWNavYV/wp/OX/4glGdELDIVSX5ujP - aMsfiCG9X84cp4UJ25ExSYJ9j67M+TDDSLrHxNj475f3gfUsZR7NtYszPw1BED+6EmJlcJ0tj5Am - sN3PxJfmDfTeNRJ+8za9jlADLFV23e/+iJRzpB+hvjPB/YCP3lINE138+FWD3P0oWL+2KZ3RTrrA - 3/Pa/Gy1ju+vBPjcSvHph1c9iCXwmzcNQ+TMB2DMP/6e9v1ZcJYjH2ToFuPTJCrrUM2S+vF++g0/ - 9L6p5gPAK0z6o4dt4bL2w1VdEvhIzwdsT4ORTtj92lADyndit35ekn6Xw9B3R4KLlglnrVEv0ILY - 3fqtrfrXOGjwcw++Hl/YVr+2nJPBS6uUxPa1SzWUecPB0/stkuP9ojhM67kxrPbfCVs0Dx0idN8M - bnz043/KP8NXBLt9KnmjxrXhwN7iHFr6ufAO45ehdPeREqTk+oVgt7imXfmxI/hNu+lPn88JWwpI - CEsTb/6sYprw7aL54DYTC4dbuOXvMRqQXWKpzkXam81qwuI6yVj25i6dG/X5N7/ePSmnivRLX//4 - CSdWOldrOuzjnz8mcnIK6cJMUow2/Us0a+eBNjkuJuS7o+B9Xk4ZTn1C27/8TulfbLjip3oRt7wb - H7f9CXX7owht/CzJsYSjyq33qYFWu+Om/ek1qctjcSTox5NJbDuzQrrhNXiS+YLzJmjB9NunqF05 - EmX/vaT0il8Mequth2/b9YdrFDaw+xQG9vRRCqePfp9gcJM64oLb6Izn62VG0ZTbf3n/+pUEASa7 - a411AWjhYmI5gMr8yolyWvqQjAfNhhLnP7GZ3zTAJv0uA/hZHrGy5VOcBJj8dz3v1V0D2j6QmqHz - WXDw9f5YnbU+hxGSB9chz9Z6Ocs5NGdoSPoRK/EpU6lfaD4Mbu/OQ3cAt/x82kHZKlj8m8dBnoSd - qCdjjFVWsVO2foQzws/iSGwz4SnpX48ExAA9iRMerynVM3eG//qdCvgf/+3/4UQB+1+fKMBLpmKz - O6iUuyYwgHin5li/PzWVyW+4BLqPc6IOIwTLQkoG3rjwOL2SZ0kXHlkdWrP5QvyLLaX8iIsGHc6n - C7GO6FRxSrIykJEBO5X7UVZZuPtyQFg6jzjmXevnQ8pA5AbGSGzA3ABrAc+Hp2/DedGBo9WojJ8M - 3pjFx0/cTf1yn2Tv8OmtgRgnuQf0JXYu3BcCR7SBWRza+EAE5WOFRA3qtB8/4FLDd+seSMiUHqC3 - ck7Q1OIP1pJCBrTSWxGqT+FMLq+8o0T4JAn8SpmFM2/6OJPPzjmY1Nye1h6rzmDoYIVuN7VEr2zD - WTv/GcA2hV8S3Z+aw8x0vABBl1t8i2+BwxexXkLhZE9ECleFctdvk8BAGi7kLr/9kNuXUQudXDXw - aR33Kj2nsQi/w2Ugz/Lx7RdiGAyyhHwk8i3pU3J07yJMDcbEj7bL6fKirI70I0eI8WSanvRBpsNb - Er+I0R6vPRu3sojKYH8hZk1YlV77yoWWijxsfSo1ZHPyiiHTXlRPHPIFfBmjMNGpfM7Ye6QDmMdv - ECF7R/ZYUoITnT+vlUFiPD08jqlGsHrfhYG5NPse955XWjcpLdE+Kg2iY61J2f5+dlGdvmJynv0G - cIey03/19lqpoj0FyxjDwYp977DsZJWbxSSDXe+KWAubOFxeyidA30LGOHrFbL+UWWzD+2n2vP0p - K0Iq9o0G04fyJE7Blz1nhoWHXrw+E5s4PVhsQ4PQCEqfXNX915k7s/ShZJk8kfjGUKdOHk04qZlN - 0kAzqt/zhtZrfWEvnb/9zN1ePgKhaBHLBVE/uto5O3ze+ysxxc8nnRcz4tBNChd8srwb5Vwsa2hX - Si25K4VAx0RZBwRr3yX4LCBntA13B0317eDHktxTZs2k5Pd8iWZzD8CMgpvDh3XWSSY3JF2R3DR/ - 8+ik/o7OEzm38EPnluR9PjpT9cw4KCRQJs+A6CqXD9MKs/PxSNxQr8OvWjMdwtJXJ+FYv+l6KDsN - nvdeTlSsftJuLK8uctbyg6W3860WC/Mr3I9uSPJ2CVVusmcfPm76HTvqeeiX/LU3odX1CcaDYISc - WQYRqs5sSY7HAKvcx3VqSO5KTZzDteiZ3V7g0PMxTls9HMAv7XuARi0dcdSrcc+cLWgCPv5ibAu9 - rPK3q2cCB0UYX9K0S5fmtkgwnYoLDri3lXLb/aJ3XdxwZC1SxYSG2cEEjTcse0HYM+F1XSF/7N9Y - e3Omw8vPyka8zcJJiPWvw9prmkFAH5jIu74Ol6bpbZjIDIOtQp/oKkuKjvgwE7D8OE7V0jSVCT+l - T/Fpqxd3uUAo7p+p5CHhUlJOWC4e0vL5OXGxj8BC1jyC2Jhdcrl/BbBWk7cT84V3iG4tRUW71BPh - 6xs+pvujUFUqcZILn82lmza8qtajfdUPzuHQE81/yD1d0M1GY5EV+KIoFZ07swvgeRy+2NvqzwjC - PYIfBfVYXS9SyFqPUkFhfd1P0JdPzkrOfA6nc5XieIZayNLnSYdzMKVYXvOrs2Ky2MiRx84rpUMA - tvlxUZvuvsTKvqI6lgeYQLY4OsTaYUzJVh8I2VWeaPU6psSSaQ6MNxWweZXPVZ8fzQGeysdMTqrD - h+9EESeoZEY3ARJIDnez8wKic/vG1jYfcxV/JsTz8Ob17/CZzi1XBwg9oEKe1+uZcpMt+DDF2CVH - Q5P6ef8NV5Rr+Urc6zCrS53UJUpuskNSDWI67JNXC/cgrLGyBGo/5755gcmxijzRN8pwqweEnVZO - 01Y/QG9X3YZne9oTs9LOYKmPQAf0BiV8iaPQYc+XaoWB4lrkvOu1kP/xTTcdMuyxB5vOclfOaNYO - Jr6Ql6Nu/c5AettJE5LyR7pyDJ7ggR0oVifeqejtyzeIB+2B3A980HMPVRVg8SoicgKPe09u5Rwj - 7eB4WCEfKeWT+A7hK3ifiXGCl5T413stnvjYwsYBfQAd4jBG2sDOJHk+2pRm2diB5KY62D0Ul3Rp - NJzBdsxyEoqnBQz3R+Cjz6zp+Ho5ds6ye54hEJbWw9H3ZPSrIHkx8Oq5JMpJVxz2XuQQ7neDiT01 - 6HuWCNcOBdy+IUapsOq06ncbLIe1w8bLGCoqHuILsvXXDluGH6acYbwadN/xllf4o9Nv19vB5SHo - v+flcPvZFOCtF6NJnDmssi//XqDeMHJiqAdKZ0E4R9DvUx67WQDAcmleA9qDc42jG1NQ1js/IXwN - g4yjNsr7ZbXDDowfvibH5y5N6UssXbSEWo7DY6yl7OEm5tA8NE+y4W84+feLho59LmFf7xyHjSJ1 - BxyZdMRILLXi7kavwAgYd4ID0jj09BQkuMsYn+Ti2XSWb6ZN6Madj+R+O+zDLtnNNlJ0EJKTWJ6d - FdV2AG/SeZnmwVqrOnKyC0SVmeBofNdgDmQrgl1xD3B8m5y+09dZQ+8TZxN5QhKd6+Huw1XoBGyj - XUMX3qEcECvDnfiXMfQU4yQAv/nij+4dUAY/TPi92VeShboWMtvfR8e5jcn9JRQhRW7kooNqqiTc - F7eK9uoXwiIGCcHdFKeL3ko5eslG5jVhVlWLHHMSytnXiHF+dMNF854N2PAce/5a0IFljyViavDE - XvVNnQXuXhxoGbMnkrRvHSrdKw7CYL6R7XWVe3u8Bl/iEmC9eJyc9ey/fJTpQ0TOr0dPF3xYIYoF - lsWn8Cw465BdRQj73icW+NbOWlwtBr5yYfI6TGpAQ2hCCMT6iqXWf6kUi8UM0WOneFt/q3SnVgkc - TvqKZQWewtnamQKkfKVP86gBZz4y7Iqu8OSQq2jAfnUfwAOE3kNsHZ7XdDRv5YB+ehWXrA6YwssG - 6GpSRrTeOoE1lNQCLG3Aejv2YIO5OVkxFEeR8W7vp0UXKhcMfEejRpw65ujkt54L+VfgYGOr13LL - 1ADN3/hDTFBiwH0SNMH6e+mxDrNnOi1Y/etvojzcEsz8o2jQ1r8eMkMSToD9iPDdegdvWRySTtfd - jYEyLOsJmm6qrtXzwkBZYBRyPt16Z3z55xJ6IJu8dqgNlck0eYLWdIVe85DilA7WN4A7rKCpD2+n - dGbPXyhG8ZGQa2l24Wy6VEfZhX4muvXPcriJGfg89NRrnRcMqVZxnEiEd0eivXVI1+ILfFiuQTax - q9c7/a8+SuOl0z5e9aotna8L3+u7xV45rf0UPw0Iz0zCTULGqf3KhM8WVOp8ntClztUFCF0JwK3p - iaq9QNhlzyJAVbxrsSuF354c6F2BkJ1lHO23HD+t4wY6PZPgwLsbYNMnDXysEBFJdFe6zkxqQ+Ur - IHwfPb2aX0kYwSI+JCRmHnE/a9Mug6KinIlW7/dObwJGg5Y3c1i5E09lrGCNkb2dgPj1Ly3rk3no - eSHFziI4dCrZRYDmAx2weZv6fqVunMEzoOIEVsqE9Y3ZuyBmrZB4blL1i+qrHnzx2kyOZWFUrPNt - W+h2Q4u1kRz6KewTCXxwaGJb33chaU1LhyTkTkQT7Fs6bvrj4B2fCXET7ZSuVkJi2KsJxOb97gGq - XbcT3Pdkh83WtQA/5skg/vjaE8+muukBE91fKk/M1v3SRSjGAF6abiFW5eg/fZ4DhR/8Pz338xcg - 1NYDUY1m7WnY3mLY3ckR2xV77GdIVw9ml+VDTo9L3E9019hQF9In8b4D6GeJPhpoK2zmUaacwJry - Rw9K1ashV/41g0VuWh8Ovv4gWpuFgLooCyD/XK/EPjTffvOfLWSSYsZPS1Md9nGZO7TpfQ+Bx70i - 5x2ToXNcBCRYT4O65C/eBMO+L7HE7+pwPU+nEg5ZL5Bjxtb9cj4eOuSrJ25iryBVZ3p55LDV14BY - 32WhxHo/Fai/xhArfLEAelBUD+x0U8Ph56D0nIgC5s9PGkJXOrR2Cxfau0yeIHOaqs6eYgjhen14 - iyLX9M+fBOEeYlmw4nTNh2YVvyFZvMPdfNPvUwtEKLUjmg6Miys6fE4lxFf+QeTFIeEUvIMBGrKS - YsN+Pvu5mOcE/n4f5Y7cM29ZmaFV+ZG3f6vXdPJO1wxs/E8etaeonFjscrjxDZbmFwZbf+bwe+wK - vOkhunq7KoCFV/ZYi8y6GoYqlNCm97wdcP2eGlqzg1c/askpd179/Dz0HrAH6BIpP0n9Gj+NHRw1 - XiTOjdgVZfqlRHvb/ZKU8y1nvX6nGJ7Vz4Gc8k+ervYU74BxenP4pPgTWBRwn1B6/4CpXAK14vOj - OUErqy18WdwppT0qa1BV1xtOvU8AJsthA7R/3iWP2fT3XJ2LAoVF/8Cmp5r9tPRFhHSKTSInzxIs - m74BjTvFHsVp3c/jN7kA5wB6opZdli4huZRizlaj976C1JndWohErg84rDljQ//0o+JJ94nrRblf - 9feJAVWXPcg9jRiHvob9DngrT7G74TF1wiWBc+35f3pq/hyjDGWx5+CfP2Bv+4ZDaTUMHp+/CrqG - HttB/jlfsXu52+nyZIsBbv4TyxMq6ORDvoOjxopY2Y8vZ97wBGbf/c5jDa3ol4Z9BFBhzgM56a2r - TvP7K8FsEm7ED9eS0mvfe/B4vvn4uM3b+jrlAvjlH5rIL2FXR50Ct3p5DPe8qOsgiD7AgQ2wmTpF - OJ+8MEClGxpYcfFdpcCzuN88EBOIJ5X71T82ZhGfzrs1nMjzO8BBfDjEfSdhRZVovqDk+Iq816Tz - dMPbHOCdnP/0Wzhbc9TC92GasKLuOpVefDGDQyIesdcuVJ2VfebBOf1cyOmAnZThgMYAi5kdYupe - 1M/H27kEshZVOD6ZhTon1b0G1xf38KjRrBW98V9G1LSeePuRYrrSLxxgFrsOjrZ6MoYEMyjaBxvL - W36xCKosQcdkZqxEwSGkVlQLMLwjn0iOYqb8+xPvoHH6cPjXP+1P36332zzNR1L2M3CeHhjePoPv - B37th0e+5qjzGZdsG7BwRmY1QECfGBv5SwLzI6Y2tK5PFbta34DFU94ccurx4gnv7lGRp4tFkO/s - Fh/vMaa0FaMZSdHOxnZil9XWvwVscvdE8rl5qyvn1yba7sf7yP2xWo1TK8IbQ318ulMt5MmJ2QEZ - m84knGsISOym0eF0SZ7YvSyffsGUdj/94mWbv5i3IBfc9a+Jf3ndGj8xhLfcUCcmnuZw4+sCmK6n - e8L4xP0vzwGbv8PhlifOfnF30WKikSje/QPaRFCln37DFpRf1R/f3UgjEEPfOeHoavcM7PySYrmc - l4osjpxDoOvc5B/Odspm3hJBk4lNbHS4Tml+X214TW0fO3vgqvxenEuYt/Ds7Q8W5/Q6QTnU8vW5 - +SsmJFs9EeeLJnaXjwL4ju+DH1956HOLAV3acfrh9bT1C2Dj0M+Rfbmd8eaXndU8shAOiXDE0i28 - qXW7nRA3btPHG1PdduZ6OPvwx/fW6DXV/F79GkWnUcLq7RL9Lz/2628rpy1d20ARkFUFkVfs6tlZ - L3zcwROsC3Le+GNqJA0itV0cnCR22f/lC73n1RPa/PegP3wGrVX+IsenGtC/51Hzd4h/eMzg5CzA - VWgFbOoeV41rM0swfDof74Ox6EzcM/ehsR4jksuF6AzGavt//MUs7hTOnMUrP7zF2RDDainsxIV9 - /Aknbuf5lNsO+aNz86mIpAQjJZ17mYGmfcm08gJWV0YbSzgldoQtqTPoYMeHCU7IlH55LJiFK2qh - H+HCe235DiV7ZUasMOnEnJLYWY+gE//0lZJdD4AEnNWKG196glSF/bKQjgE7i2mw7nyWfr4erwrM - xUzH56sPe/I4gRI6NbkQg0/TflV0K4aTpDZE3/Twaqt2Jh6I0mD7KyN144cI+o+oIW5zhc56A3UE - lMvQEEmIZMqe4JSBQJou2LWjL13l6t1B9a19Nz4sqsUCXgAD632aFBE1/Vh6bxH+5ks2hg+Ym8Nz - BnPt+iRkH3y4gK+QQHV4jsRZhB58vafiwf1uMj0ovHswD1Uqwew7SOT3/IlF5QDmp1s/tZuf5OJc - 0uD7xNhYm5qyYtnsXv/5M6eOI7paDgqAIQ5n/BgPR4eTJVsX+RqO5LETp3CU450C3btLcWpjtppO - VzOGT9w+SNDaDmDvk+zCi3H7eoFeXwHZ8Aee+MSa3n57Den7Pg3QKD4v8tOfH39FHNBfJMSGnxc9 - vTCRBONrc9o+n1LNsVlwf/NMXzeuooq/KOAdKqVXcTNS6Y5ZXMjvrynRt0Os5Ji6ErQtWE5M0BM6 - YnO0ARYvEP/8wco9owCO9zXEW/4O6NuGNfAdbiHGlzfUFiOUAeKcztP+ej2DRWjqBg6358sTIqqq - bGquEkx3xwRveQRYTrDJwFO9SiTkP426OpY1w1RL6z8/2R304wC2/A+f2m5H//y/LHAK/un5uU0M - 4Q/P7a/QqITlZxu9k3uD5cg4VnznXlaUwX3r3TKCU87LjAY+1ZtETsUypmQy2BayH/eM060fJqn3 - G3RQbRVbPz5xlKwFkgoLHHbGotLv0kPwceqGuEOc9ctnKHO48SsOcsMJl/3to/zy8A0PI/UbOMIO - /q7PzuCdjm9kepAtDIfg9+5BZ+tVF0C9hRG2o3EE37ezJiDIlxp7t9hNN70D4Sx7DbY5iwHrL/95 - ns2Q+AG4gy0vW4FN2zvZ+KIfAHwrCNkwxs/QUFP6dA0B/O5X/kYoXH2472CnFROWa/VW0V//NAbd - e/Pxdkzn2mJrOItCRm4b3i+vtw3hob9ov7ywYm7FcYXyMkCSX/ogHFsj3PyonxFpz7N0FNh8EpWv - iH77F6e7CzODyh3Pb/muQhdsjiawT19t2ulEStn1wwswxPWLSB+h6kmbrSUUkp08CakjhdR6P6W/ - PC0nXBdO5f1aIs4XTOx/BLValPGTw4MrwWmR7XTzT5YAw6Bx8W+/NtN54WAZ9Ry2XoKUsq52z2Fk - ll9PWHiX0h9fObls4GDLA+irF3SovhIDy2JoqL/9GJRc9j6hrV/oOo0S8A/YJtqWp9MtP4TZF+2w - e8vlit/nmQ33jXHCcpsydM2erQ+3/cwk6toL0G2fJ/gOs5BnW9jOphdd8M1fd6Js87/Q51EXnbX4 - bP703m/8ocDIlnKscvPDWdLbYAPc8obHWUvRD9wQDOIsuw1xbMz2S2ukAfwmHO912TyF4yTKASrN - +u1x39OnmkUtluCRiURvdxqtcLJVJf/lr57w8iRAJU1MwG3RJw+uZR/OOm5quOc/CpGMN+3XiH1L - 0NkxGsaWVjlz+hohbD6GMTHusU6XvcLWYuEVPT7LNqDzles4kM3xCetY01N+4xNITyzGtm+U6Zbv - JJBxx8dEtzx1mx8JToY9EKVKFufFXZr2L/9/rlUXjlt9Qex/mQk05bEnbT+0cMsXJ9CzfTgO5yaA - KXy/ieWNpsPkSqRBh8PWRJnSo0OT0gLF3Vpjo0yCkL+zOw/YT/vgraR/AvLVHzk0z0mOJb75qLOv - Mhy889lxsup8cIZPaE5QiqCNg2LkVcrk2AdNQr8ev+W366laN3/0fUxZy7fh4u9XH8n+YT8BRhfT - ed1XEGqmHnr7VGLAMpynAGz7vSlUvWtIsv45w9vVtfH59XAAJRnR4EdPMDE/GVanfJhmuO1H/viC - PPZyJLpoCn7zU32F4h0IfJgL+CRfm3COzZaDhc1YWFFVuZ9n31rhDz/sc9KqrBopJfzgs+ntU/AI - 1742GWhyDiAGdKJw6ycfbnoa39Lsm47dvLPhrRciEitjmdJPRF3UmdjHXigR9SvHnHK43sZhopk2 - 0/4ldh4sEz0h2FdcpwHsR0ALp5k47J5eONyK03r44e1PLzPb/1GCj7LvySmWV9o9sf2Xr+Hjlicu - cRjngBnLBOtbvs5v+T9MpMseO51YUjqOLvO3D7mqe8thB4UxhW0/Q377rLnGUPjxJ3YYXQzXeF1K - KBTmfaILVJ2VG6US0vJCyC2xqn7DTxF8EfPCv/0vb1HZR9t+2RuPY9VvecEEeX53m1AU4Wr9+bH/ - jxMF3H99osAy7h/ifL6fcA1dxofxYBOPP0OhmgcD5hC9biORKu+TDo2p7eCLjT1i5eZVpfJIOhhC - X5/YGqxgvuU4h56Y1uTkml7FvO7mCtLdKSVqdfdVDoyDDovC3BNdL0Z1mZ5KjbjmUGN1epuAeU/3 - FcY38eCx38fSkzqiHRgt/4Rv+rwHtP+UJbAR8Yk9e2I/nK++DZvDZ5rWW8Y5k9f0HLwWJefNuf0F - g51fEoi9b0Lih1Cm06rmNlQli8HW6UrA8pp5BbGvz4W4H8GinHQ9JLD5xKsHP4IFSD73HhCUT0O0 - fSOFvHtgErFYb8AbasSD5WstDcriWSFH/Wz3LGfVLURsUeIk9oZ0TrthgjqkOjk9sjKck/KkwF1L - BSI/BERXqioawMrhjG+i49JZjY4u3AX+kTyOjzpdKrmLEb+7EWJ840/f9pPso8XUM+zlHqVrQB82 - VFyUE8s5XfqZeakKUtu+IB6pboDH+ntFix3GE/+NPxW9eYUArbTO8KlSJ0rR6Q7hp3sbxHo0XErb - yhfQ/polxIhVtefZvurQTJkG3x1XC4mNZQGNnLYQO7/xPV2FewLAcmexHWNY0fmYBvBe9dBbZh+n - rFx0EjyaxY3EZfJymD3nlOhcMSUOD8urnzE9X9BMucZrpbBVP/EhjeGd+Co+xbFG2Ud63qHRunpY - E0sFMMn97sMzp+ZENmWgTmAcNDBM7ZvkTPNO+SVfI7S97h1hHDgTGH0JqW39JOGtM0PiKpIGnkEg - k9OZpA6dKjP+q4d9ktWQf9w0Ez64XsIGa5B0UR2pQPjryiSTRppOqqV20CJcMDGifElZfGh1hAPG - x7HE6pT5dLcZhq1xJtL3cK5WMZwhanwoEUv+COmKil0ESWvW+Dx1K2CW99tGZeCu5FZfOoft+zlC - kWM/yPVIHEDrFutwApGEwyNzpWyXCDsQ34QDude4cMgYPHSoO8NA7rXvh2va5CIQ7Z2FdcpgdYHC - ZYI2KC/EYt9MSFF0HFDRMwbBj7tAV6+pGLTND9bj26xSa6fkSFNdg/guF6kMn7UCNKm1EKv8qv0S - sI0GOeAk3pp/9yoN5tlGX9b8kFhM99VqXAsB4a8nE51NnJ7X7TlAwypk3hL0DFi0tzHA4KPwWC0v - Zcp/jzwDilt9nl6BeaQ8PHoXqFQ+xls9w97a/iei9HUeq/TbpMTX7xOawEXCZxueVOZgpDmUjeaE - ZSd3AP88bBvQa5bgRIzYfrnr0g7d+cNKzO/HdtjEK1p4C+ov9pyQhstSSTba+fh/snBtTc/xUPQH - uSiKJJfqVKeKoh69q0NbVClNkF//jb7fpRmG2XvttfdaknjBwq+BzmQVEhgNmBGunASdev0DoqCz - vkFHggis5fViQRc8koAJYawL7xTclFEFH+rP031kDlfVUP+wnHqpqHms4JcQXG6Wjr2risBkOV4G - 9M90o0HW70ciLasNj/pJJjyTesB8TbXglj+yNz8HIGJV4+Bxt8txcM6DcZKPcYU4b5eQ/QDSkWfc - bANHecOAU4gaCy8edsBY3Y7s6qLzyKE6W8g5ph0OfVHU2Tc6aEhPkoEI3r4DVOOoCuqu6oO5jUxP - lPVTD8DOl2je2BljG/+iT+eqZNnqjR3bMVM8jgzk5sq9vpKvrMH3oiv4IOwBWI8XnvvH/8bOeI6U - qbIL/e9gUzfDxchUL+GhdrYTehmKQz4/n3yNYu6uBaJvDc0QCTdtW5PtB+Ku7hoBvA/bGSJlQlXF - eTO6U0MX5XOU/uqD7Zc3seCrtmp68t47sF5BFsGHnhfYsDTbW/lXIf3wQT3LOOnjIy9nsJstDVvq - 3xOsF8I05MGOUJwloz7IJzGCZrVzSP2Xv8Cee5sWkuumot6AG8C+kaPC79GO/vEhLx/fD/Tj04qq - PWPiqS7g7tLkRNpVEyBtJtXKYwQ2VslN9aZvqFrIjc2B5q3X5etr3U0g3SsqNVTu06x8cijQX8/d - qJ75x3zVJN+HqlHI2Hl/D97Esn2mnAVYBpKS78bf89Djlg+NiPTyGFedU8QigvBhVxzZQg+HDCVs - imjVROd4XneGj4QyKoLnn9/ks6B8/uENF7Ot5qJvvAx0NiSd+j4nA/aSlAweLyELao9UozDf+Bo9 - ruwUDOWr2/q328J8UFpsWG3HlkOmJehT9jFOM5kA3useGpr/jjoRlMXMxfbjQbjxL77DgzqKr7Xp - 0a+/nwbP1XnHGELU7/iUxjtlYlNyRSJsNfdDg3K6eGynTv6Pf/HfANJGZJ7AI36l4lZfJZjH17NF - BFwPNG/9dFz4SjHg7t1ecEbG48iPxNnOUHIaWnlCpK+f0E7Q3+il2PEoy9mhZRIyn0eTGuZjiPfG - n2JAPa1aGtQnfeTLUoTwlZOZ4jm5bvG6aggeEp6Gw98KVoQ/CnxH6o0WO0ny1vk4+aCKyzYAO6tr - FoHK24aG8IjPpYTAWj0fBP2pBcEFP9J41Wj7QGwwCLXbxm/4dzaHv+t/eF6evRfBXrd4av/yv/ED - 4g9tjrU2GHNCxWyC3esi0Si7N83aPrPgV1/UJ3XDegUz+8fHND8cdmwVQ1yB02MtA6C0b0CgqK8o - Cp4utfzejsmtHG30NdU/fCl9T19PlW/DDgltwA05BJSa7xTxF/6Mw+uxGBfLUio4Wa5MjaxQvG// - XleoZhOl1jAl+pqT+oEk1u2oMcwn8OMvNI7PMz3uVjmeu+MsoXCdbVzKHM1XabgVcLB8m14PxpAz - /tZG0JXvN7IbBurN++QQgOZghdR20YEJdHYgzA7FkdpQ9cDvfVB5r9+AU05nNps09MEWf5oAcwGz - r+YBepXyRM9kqEdhOLw4+O4zj+LDTQHTseYesL8WL1op5JEvohO2sMj2Oj3kpPbm99VPABJeTbBk - 5yX/5R8Yl0TDkdur4/y+GimI431OdhyqwRxWfxAOBQX42Caux3Y0I8jPnyfsibqcMweXHLSkCgfL - 9j1bPmb4GMUj2QmKMM5QOXewurtTIJKTNi7fe/qBkvbqKB6sh86SnJthCs8S1a2Ub9b5GLr/4rHh - t/n3PEa1RA3hLjRseRNDaS75Efuse+arrFxFUEtdQ83ZBmDLZwGby/VIz5GT6gu6vbt/+fSpGYFV - WhQbOPlQbv1v1zCv7yH8OFlJL9nHz9eelC20DfdMlI91jyeTZr7SuW1AvXS/5ov31XiErFYnpfKs - 8u85XzlwD0yPqoTbxf35Etrom2c2Wf5OrCF/TzmAP3yaiVOysQzaCpnWvQyYOkv5zDjJVbZ5GTuH - d5ZTaAYpFCVY4b/z1RlFvN9F4BY1t2AX+ZSxcXYD+LzN3b/5ihmPFw901WLUFPxrPI3ECeV3GoXU - 2voR+QtlHg6C+8baVVsbJsBRhVca6dQZxGmckutzRt/87hCZKK4+g0WWgMexT7BetXWcU8PefgKa - Mj1s898qDVEBLvKxoQdhn4MFL/YNWv0zpOa51GP+eNNmmCxD9q+/9QPwDNibPsXOIPoNiUC/wpeY - ZDRsgmMuQMn+wNJsO5qT+JmT0P70cIsfPgofLibfhKjwJF9cHDTRORcy4dJCy+kW6r6h3vBVp7X/ - 8J8f6iBeSjfq0KzNPr0o66XZY7TA3/1kZTcdiCLHOPjTd573GfL5YTuZMlhnh/AkmhqWybRQrtY+ - o2Z1zhhbpVcFC+Ph08TrjVy4WjYHjoF8wHY+Hz22+Rgwvd9iGoDovu1xR/Yvf/SGkTnOxmVxkf/t - jmT38Tnvp2fQyS0nHA3CHxDuwsmC11w9UU1odw2bUzLB1QsXmjPly+bYrm9wwyv+zb/M/UMf6IbS - l97/1kmnqjZY//q5pj7MZsX7fahc95ujVnMGYHPaEXjcKTfssKIHDJ3OHOTaTMWXoTyP0zdMXDgd - RI0AllFveodZB28S8PBByT752timD+8fmVJfdY143We5Ae4fQLFDS1lnVf/XKVs88SGyTcBUz15h - PF2O1FTHIF5SzcugPREuEKEpMOLYwAZXS8iwliNj5B3jGcF7PzGsnmU9F8amnUCE7gP2PdkDX01x - LDCtSkE1awiZaIxVBV2/FwNlm+cWT+A6cP+I5Nf/2eycLip4PNwdNgVv0MdoMXw0fys+mFOkAjEo - ZwNWLtoHuzkevOV7rz6//kCtMv+OJOnoDSxFGtHjoFj599JnATRWu6PnPxrFE1SuHaCf6E6xCYZ8 - 48MJ+tfkjLPdvfTmC4AdKisrwid/RM28T8oICnvJwLGAazCG1nkCG/6x2SSdN+Wf8INSR62px3Pe - OK9iWKDzc3rjm3LZ9qAvoYIyEn2oqWBrXM7t7QNz/cUH3F8zjKtqKBpEQl1TvQwNIHzTWkGOGYxY - OwvOyHPivYMX++Bg18quDbO/fy68iMo7gNSom02fTGB8BzdqMeEerxE7WLC/Prutv+N4fn/uK1Cz - ZSZIKMJxH0xri061lOGkncJYZMmlRjdJdPGpHbx44l6GC1sjfGGcXfJ4LkCm/foDPpW7JV5X5ZOA - 7Zqav3naqDIecJUaYNtFT0CUIvtAaA4j2beJqzNf7hPwqr2G2lnU6ZPG1hQSv6qxQ675OPt7UIBZ - /ZyxlSk7fTp3TQc/Z+QFUimvI6Fiu8L95DKM2/YZj753VBBI3mfs8TvAVoQ5DgqO2uHT3z7V+bLk - OIjV6YJ1DB4N+zpDCqA5jvSggGvMY2gav3mSzOT20OcavD8/PR7Uqfz2WGM+AjCOVYiPvWizfRd9 - W1i3yRerBFF9vrBEQf71GlG/RX+A/8W3jmJG+E8MwXd2BuunR7Bjfcxm7z4uKThZrkCUWk7jqdFB - CsLbpQj2AxDH5hsdVMRB7ov1P3sY19jvfYiD7oo9tXyM08M+/F9/X2i5zT6SRwkiazCI0lb1uJTu - rYP8zToGYFjqcbmiZwAP4mMKxGY7Y2tOrhPMeFpi3GrauDhae0O2pqWBVKZNQ1+yVUDB2k34MDMu - //7qSYxGgt2S78c520cVcuXbFeOTvcbfTd8rYaq9sFYNd29VinZCDUI89oZFa4QTLidYSiuggYUF - Nmu8lSH3/bet6Moh2/SMBtTFL7AlQzfe19PBgK11fwZseI45Q5elh+20j07jrjfzH9//5u1gyGqJ - LWPTEng2FD2YTxnPqMD/Zb/vJTx0aDMlV4H/8RFVFTfzxpp/zFJXiQa2WmsPZgxPBlzv9funz7xl - HOfkpw//5XtVvGsIM/5TYK/1xZFZ2wrzZPRf1MnqDLB9NYjQ61MJH//U1BOYGWuwdnoDXw4BytfL - /kagke8F7JSvzpsrIibAfUcVVuupHz98gQJohXobKG/EwJQzI0NzflWwMd/eYMX7MYCVPCcUQ20G - 66STXtnyQ7WyeXri50lFOP+pWpApN5p/Y3wK4Lms5m0p1jlf78axh+r30P3Px1jLJSDk9pMGfvpg - 7FCoLtz8tA2fr3H+hoWrlIWebX5XzQje70K4+WPUY6Dy6DN3CNRVg9HzyZRGWqaSAfcfVcLxLgu8 - 2ezmGkrCAqiuxI94lo9xgcSwWGmUKvu8f9iXCtqamuIKRNv5Pd5VhT1vnDY92+bf+QYfyvO2dlhz - +8c4/fAK0q9P/+ZXOI46jm7gKZSY+j4amgWdmYg6tG+xSQ1u84PzFj6bS4J9Tyl0nipKB5txlmgJ - tAl8wzgOlT1OMPaFufTYzx+6mHKAcc21gHCPT/TDG/XO4QusSUczuJjcE+senMFsj679Tz+Z7DWN - KzccONgyW6enXDTBwk4rgZtfRDhPiLzVZ+cWopuk0I2vcrrFG70TnGK/RXv2uYNchD99b7rMyX/+ - ATCL9US91uviSeYAgQb/V2Pr3fTNcny8WuW4Qzk1ojgYReELOzgG5EviP9tpFqjyBUTPy3fjaxDP - ShaJ4CUVMXUY926o7CQ3ZKeRT356cLy6RIEmkWycNKbeUF/uU7ifbEbL3Stnc8C+N+hW8/Lz3+Of - 3oFsjD9Yq/sALPZwCqF3liya1nfPI5o6Qvm4k240dveNt3xyU4WbX4TNc9nEYk7qGiyPwaXe4XAH - K3l9b8o1PwZYZfcvmPlBXKFvegXFdWHpgr20HLSz7IjLOWM6Gdd3AEPL7Kjhu3o+c0WYwdA6dsHe - v0zekPxlPIzaHSLCl3voy0Vuerj1M2r7rwr89IpQ/AcAAP//pJ3JlrK8FoYviIF0kjCk7yEIiDgT - RARElCZArv4srG/4z86wVllWIMne7/vsNNijkSVnZ7JtamnBe6lFwarzaJibMGPhmIV0AAxdjLfU - mgNYGJOF5Oy0xsTtRQmsNJCwt58xPL0f2BFe9of9jYcGc2nqgf6SfLEzvyeCJVfawE10ZeT18N0s - i7tJPz6NvQPPq8M35QI4nI0HdiK9IvNj6w1wr3MHBy6zqeTqdAIgh/IxQ+E0DIQ+8TWMHC/G4aXC - e/yUJTGspgD7hGnA3CVUDTbBQkgmk6TSL86vIdXe5YDe+fVaBaEltsTXkNVUD3V9jRIrNnHsBaB+ - 2YRjhuELr3ffRuaingDt4jcLqH7ld3/hDevz0XRw9yfIk8ZGHQ/mQ4F7vp+JhHt3+xwK+JdvU8s8 - ksGm0gp6tCLsPHptPiQwFri9+CvKo6SJt/rwKuDVEuP5ufO7mQ3NEpwY6j5D9+iS1ayuNSzWdMG/ - 9i67voJfoeDQQ8hbdxL82oPNu5RncCI02DywhiKQzjmyPbKq0yX/llClYIhLLFlkoaaBBfPbcLBz - amqX1KNtwHvb6Dvvb8n0cfweXsQgxGZ6eJGl7JwOdt5oo/Q06mQNKlmCC/4s8/GT+ISUj4EGydX4 - zlymNsM2v16Z+MtfT0O8x4v29jr4SD9HHHrxW+3NmqpBais1khrENR+ucWdQ6UU6k7k7qsNHP9Dw - HL65gN/HJzldrgY8lkEXUH5BgSV/LhBSXQuxVippjG3KKSCS1jTg6LaKF7eUErjxUvLHBz+stAji - ctFVLNcQxKNxOjh//g9dQj9nl/ABAVDu6Rw4i5YzWL7vS1x7FxU1UwzrGDwiEMdMjoIPdOMPlGAJ - 46/vIa21n/myviYHuv4XBbxDbeqyzhoNJtZY551Pu2uqqBn0Vv6AM5rUYOKHQwEuYnwKeN/wY5pk - h5twz+EFIZp5k1/7xamh2ICTujbf6wejEPBej4uL3g5rpS8FEF799lfPmLUhLSH4HpQ9PodgZRa/ - FqKWh8h3O9Rs1CqOQm1/NaTSU6uO4DNHwrn+rgG5nxh3deJhAz/ev/vtfN33GoAEF/nMzcVLJTXd - LzBRxuNMwLWMJ8M06j89e/jxw05tNJiPeoUsoyDxrj8hNB5UjX36UoPN004SgEsQIVN608OWHoQM - Hs7lDTs64zRbrBXdj4+g665nNmbqK8FU0RG5p+33vHwB6+hEUFBjJWcA7inYlbQWrL5m5RvDSp7o - xEofHAQq3vkIbiGWN4J1IxLIEC289eMlM7hkFZisdYRwWecBq58aNMv6uhqwjB/tvldYB/T3bvPg - Fj1v2JXKhWynWh7F/f3NpuFVzXJg1erHf7BsiGI+F4enAL8dkn/6oVlZWaN++hPJxm2Op4yxa6Cm - RYvC99Kp2HMR//N7SPWloPnpPbHI5QPWGdd2Vx6y9K/+hV3Lzwbya39FZ8y//r0GcIYxdZORY1zs - eHHKIoPm5YGR1hgEfO+hmEH6sq8oZwyh6a+SEf7qJ1heSJkv/NSHf3x09wtgbaLnAly0OAEPG4FM - yWOpRdWnOOS61nfY348GAjfTfvWkhr5dT5GYwpjHZnp/q5tcvix4+JATVubUyEl2fBdwr1/s/Zn9 - 8U2IqfqMf35kLDSVFteqtdFJojcXj7LcC+3IREj3YALGrMsNKN5Ndv7sPHjiaVeDM8jlWbhHNph+ - 9S9MvdMZG2UWb3dL/kL6Qnm73zvEuz9aIPdV+GDVz9WwKsLdAr98+HZPc74WsiBAw53HgGovj3gL - Oo6HadM7SJd932VfGzfD+HxIsW9IZOfzlAU5lIdIaRy/4SS3oKFFtAXL9dWLVzWGEdxOfYPTdCXN - uCTTBq3bW53nT16AtV+iEmyPV4+teTCbqROlQNzzBY70tlEJqysL+D9WFHD/vaKgmAYvoGogqFtz - STO4RAEb0Lz/JWusUvupPfmAEf3F7rT4qyHGweU8M/pbIcQPlVq8WhPCsuUu7raobQDXC53is2B3 - 6vo+RhT80PMaUIppNyx9kFgoJId4Xg+yT9bXrEKxZedpJvAbAu4GwwheHumEtC+JhkUxawvGPWKR - dkWTu5n7Gl22u4fYXbpuIDZ/W2BTxgX2tGY/JbjnHAgo9YqUiH7nH+SHElyDo4Ef5XWK18stccRD - lDwDcMw+OUlfWyRe0uue70qrYZIebvBKKQlScLO6K3XQOzAR7osNaQVkOw0UK5xjq8Aq61kDOe8z - mm7qD7ZMhYC1FmRPvDw+FtIY2s7ZnjvOMJvpGedMrDT0+Rop0OrLCTt349VsSiomIEz1D7rGhxdY - cpjNUMnBEZtX9TDg7iEUovXwFXzb6GxYBp4OxaITuHloTLOhtURhRV+VXJw/cyVnlWPWQfu10tiN - YZNz2SpH4kFy3wG1hEPz+T2fPAMf+Rb/jdcTvUlieCYBUrzccFn/qC8wO780pD36OSfyy7iJWmg4 - SFE/qstM9yYTV6E3sEpmKWcO5jECEHb2vBYWp5LblVGgcG9NnCE6HWj9KBfiyAYWlnjwcjntaCvi - rdZXZNsq65KK0jPxEH0h1oWYNOsynBcYkz4PuEcUx9zFWSjxOSQMKg8Vm29O/V5AJCsIe0ZyHebO - EjdBegr1zLp9C9jzO69hy2bRLEiFMtBXv1jg+3xLcGEkx2ae4rSCn9ovsBaxbjO9z7MEWZ56YdOe - J7JdAqY7ChRHkLQeGHcTmmsIYwM6OA4ucrxgdEvBm/c0nIaPYOBCKQvEpxV8kVxGmsrU2aGH0tZk - WA0uz3hj3WcrGnYxIN+4KS4uXp4C9/eF8ociAZCqDwUeGOuEz09SurQuxI7oiF2AM3gi+Zq8BwO2 - MS+i/OvrKh3erAgyoSfgTPee6qIf5VL0Fu6E3UT+xkvWl5oAhemLkOZHw7b2NQsVh+qx0rFndZsL - xRLLD1cGEwtfMSGIScQn3VYofVJTvEJCdRDVSY/PjTioXF73PQwi9o1QWdLuxryuHhy4A0GKOduE - +dTGLFJF9sKFsckxWwQogQ89UrHrrIdheVYfBw7daCKToFtOTh+Xh5/6yQXsGj9cdtBHC+ipomPz - EZF4BV7SQoOhn+g2fwd3lRZYw6wYaGSO7FGdhvl9Ey1dzFBwPdiEzbJNENVWwcj6Ogd3w/eYFmsz - C1H+wWK+5pvLwinUPvPBiq45PfAwBMarMgJxdpSGeaZFBF9kuiINp091hWcpgGTqppnTjazZOgcV - kLBshnVPd92N/RgRlHoxQs6YLs36jBcB2srwmVcdFu7SRlIt1g+dxbbypYclUmgJNvdvh7SzY+QD - NWcjPDu+F9BBwOazGUWS+PnSIVaomYnxl/s6kOQ5Cfj+Sty1mvoa5BctR/Hakni84kURmY9jYznk - PZdOAlWBQMyaYBM+QUNry5kFzKNVZ/YI6L1/xRRGXwGjq1KZ6mZiaoa0qM0oeEpV86Ff/QafFlNh - 6XzLACdRlALkN3vHaPrw8QS8pBPz9XRB5jdbwJx6Nw/ka3xB6KQV6mIaRIC0dCuRFsR3l1bMrwPz - dJOw9LLcYbPhIwPdJhz8N7dZZPUVWYImvEb7CijVJU7ZOGJnBDOS5V521yhXbmJz7zuE3sYnZoXD - GAoXQ1exjzyNfEm21KJYSQsui8yNuSsZvzD3qzO+gSc9EOGqZRCS9IHk+snnc8w/KpgidkQaqYKG - +NM7EAT36iPHv18HUh0eBgzflIWljirzeXlfHXiXShGp+veVs+K+55H5lC1GbErHI0PDDCpO76Mb - 1NSYW9WkFw17NVA5lFZDqsPFgDxqUhzc7EtOaFbvAVZGBl3cG1E3ER8pqFWThMOJeTd9rx07cB7H - J44tyx82uphamCyDGYyuzAy92DiO8NC7Mhjf3YksLz6kIQy9BKEy6YbtvTwWGEifCd9Kbh1Ifzqx - 4h5/URRgqSGsXIwwvd42rEflGK/daYHi+rwVcytfRrCaDyeCgpbcURQdA5exqhzCq/x9zGb6pdyF - DlpNjEkqYflcPXNWmuVO9Dn9jYOaJXH/4jNWUKhrgDI7P+dbuq/ASpZkRCePvHJGgWotntnoHdw2 - mh9WWTjSkM+IjGz0LN1VFlZa/MU3RXjIKnOU9VYUzqcZe374adoHljex/gYSNlQJD1v+piDkKKFC - d3rLYtr69rRY2R8BhdNSgVWhOh6Ot7uFH3HwcVewyJW4wOuKruhJuWsPqISb71eM0z3+EE2IRrFK - Ng3pDa/ljP29hvBs8ytOmbUjNIOYBUa3NsFRRCWApl6vCh5GX8a/90M6bXXEgOkvf/+PXLMhhT1V - 7CsKys0lUgNnONXCNaCGPlUXv694MXxDCyW5fgArrT0CeGCKEUWsfI0JvvW8GPc+i7X2watk+sae - GHrPBtuv6aj2daPVMJVca6bbszMsRf00xCnED2Q/HEfdtEroYYlSE19PwmF4PdMkEvd8hk33cSQz - dUkkcX3OHDbXRCK0XEkaNBj2iYNXApoPCp6zWFHwMNMM/dn1gSCJv3hcaH0Sb0dmhoI/PZ9zR+6j - 24qHsyOqt/KD/Mwv3C3LBAEucidh5+56OQHwmMJe0V7YaupPvASDF/705HzYPAOwD6qA8OvDHJnm - 2cvX11C1YreFNgrV8TVsFLAgfFpcNVd7PKElGGuwVSMzgB/mBXBtFwWsn9GKrXmj43WY3xnc9R0y - +uLcbHHhVbCdrPfM22nQLIiRO1hnqoHVSk+GdS5FQ3RaycYX+/N2WeNkJfBbRiz2h/XpLsJaL6Iw - 8TW+YMlwWY/Jxl98xemT8nPSh5IFb881RYFi2sN2e+UtQKjiUPnU3/kMFHOGMfnmyP+8aXexw6MH - Azt8ouSKfHesLkwtvmDio7JevYHJikMNt9IYkbaPj2W8CxAyj07F/unru+zv+yZoqfNYHxnyuVNj - Dcswvs7ins+3iISL+NN/mqCKw1drUgWUUMqQGXqsi/vQsoA93/o9Pz8a0p5FB/DbQcRG6z/zxT2O - PCgS08R6OO23DD2mGQSjdsLZ3Btk3dhxg32735KSWy9ADMu3wF7/wN6FP6iLeLhb0BWOZ3x9OI7L - tpUjwRTVp9kc2au7suGBB7vfwMhaZJf+fZ5jxBN2dz1EPmdDgD3DdNh902qzZM4xg7BRtHn7SEq8 - 1uAmQI45nGYReS141YIc/MWXQ6ZvYCVlwMIPNCHy6Y3P9zN7DfjJxBXdi8UZOCarKOiezuHcnp3u - n97JS9tF+TOv4y2+fhygL02B3dGiwMLLdweelFUI+LttuaO+nyraOimHFOEzN8vRsRZI30JqHz+m - ul7YfSkLKN9YVsuYrA/ryYM5lVqMBMoeuEc6ZHBYIn8W0Lsbts4cNWGbcT3v+XvYTC78wojRh+DJ - T3HMJSwVQhDXKrYBNvK1F8YegLhS51UoH/Fih2sAxWPL4JgT6WExSsuBjswhbH2byiXUHI4iSc4q - cnf9OLqFFRxfV5ZHyOlisP707y8eGbxjxcyYHDZAn9Rkjw8V2DcsGqKT5wlWSi2KmeQ9aPC74nuw - fXTb/cVf4J4u4ZyjJHDXjxom4q53AhoKHSEZ4mZgoluHve1tNeuClA3YHDVjgyoVwP3i5bYId+SX - T7bZTsHNgQZ7v+ArZb0BqSc5E49rNe3zbcrJkgsd9AQDYP36aNxtYtZFfNI8QDfxUADW6RdFfDJ+ - OtN7/y7zewnFqLVuuCzum7rZlZfBpFu6QGy0l7o+z04Htcu64CQFWzyKT74U9/GBveUOhqmLnS/0 - 1aTDkclf4iGvqy+8tiUKXmrwzDcXSRnwD5mEyqHB+XS6LjPsPkoZHPd8g6PvvYN7fMQO4wvucsBf - +tiytwj7khvkOKYjHnb9rCKNvM7xKtirBxc0VUhzhXzY3PFlgD3eYZXwPlm18eTB6JR8kdFeZjL9 - 8l2Z8T6y08zMOeGyjcfirqTIfX3ZYZNjKYSf51FGOscMMf6cA/4ovnOAVc9PYhKHEwUTT9CRwawG - wcvdC4/JPaiwobCKypy48w2UKDFRqSg1wJvWJWJyr0DA3Z/vfLu94haeuKVFCh1O+cJ38Qb9Qhhm - ti+YYZQrSwNO+z1gXQg8Mh77gwOLxarxz/+s7GYX4KJvPfae1gcQ0b5pQNbGCKWmc3cx5SNHZIzk - ipTf+TzfairB7n+QQTI9XmF6FQQ9TSsUZLHWMPJFE0RfTTssdXQIGLDY1a//UJHlPpl/+uUF+x6r - bd+463a7brBnuC5YPpcDWH/P62krO7vD0clZp35v8GbyDFY+Up2v39FTYHGgjV1/8PFGpU76G98z - BU6Ku8cLC1KqA7DFtZxKwHNRgI5bB4VFapGf3hC2+3b68RaXRIHSivEleiFEf5HKiLAOxOwcfpAv - trk7uUwfgnCtg5nsfhIfN1oBX5/KkYcMGG+3evHgYeC7gH70Qby2xgcCg31cAlDwhBDZ8Y39lO9k - AseaBbOLpBt8NVqDLw9/HCZSGrTwkiLy018uXb7fNLh9x1cQedVIRt/Qv7AWqhwFvGg223MKIaz7 - AQZbHRzI7DHhLBqO+UQ6Vq2GXC/XL1yGspqnpXcIfSMvAyb3GiB/aVqVUAvUhEYznljxKo+w9/Mz - FJVZI0jWt7lZxVtAgfYmTvN6flkufXqYEjxRXIJc5a41DCUCHu68A2Xc7dNMkSQbopfCBWvkC92l - Shv2j6/ImvHJt+f8/YJfvPZnp9735Bw8EOJLjE3KdXL80yfX6HT++dUG60+4QPHYMUhS1zEnA3h4 - sB1Zb14u7Ytg7yNYsNOFGOn5mSHrselpuD9/0CeF566tCb4QfTQROykq8jVlziWsBZoNaPIt3BUF - nxE+vJQEl2+2kM/pys+QY74sMpnm7A7ca98T51gmKvzQHlbuIjmQy5czcrjL2yWPtLmJQBypeXNO - GVi/+xk2ue5DZN2DGfTzN+7FNu7qeXhVH3UNqkMG1cF8YM93FcJsV0sT7VLzsaN1oUrwrRJEg7Xg - /Lq3H7JIMNd++mQelywBS9T1UPhkKUDBKfIByxO1E3tqYZDSrUHMMtKtA9UrE9Dle+eaJdIvGXRN - K8FBQMXquOZE+vEgZBsY5PM+fsSqcBGys1FxmVYPQ3HXLxh9Hg4Y+w/vAZU+O//mD8qv1U//BTBu - NfVrYnaEwtvysdkFTTxCyi3h5cmqyLeIOnAPIUxgK1975CnO+MsPmyi/6TtKvmQbpme88MLx8vVQ - UI4vgEX7ZsALFhuk0G7XjCHP9mLnxyUylX7Jp2tHs4Dxczugd/5IJvNAAfldK3/9y4Z6V8OGY2oU - BBRxe16ZWXhcGWtm28sMSBNZ2t/3a5Cp3M1MmAycJwViU5k4dUVfOAP4vSJsa0drWPtHk8KuH1Wk - dzmJlzwbFgjNvXDae407q4BQkHkI5fzTIzsfqaCuVgu67ON51783GDQrj2W6eZENqaolus9hwEb/ - hPm3M0cDKNOSodM6wmZ5P719RWE5IHS5izFu+SwDXL6dkRHIRs6stJyJ6VW74GjnPYNkZAooP0yJ - JUPad1iZpQCF2RPRbX5pMTl1VSXuPDYgspkSrp7sG7ydrApn6PtRh1983/VwIPrKBeBQfgriC1GX - gH8BB6x3aDuwdYYIS0tgu1h8TRp0cu2IHNDlOXaVvSIrX/uAYlvD5b48YGGeLhJy7Nhzx92PACIC - K2CwhXOCma8Hf343CWLR/Q6GyMKTe5uR3oiuu9xS6wYLdRlxoTXTQJbyTIF9vGPLp1SyFGJ9g0BW - ZqSvl2Y/ijSTfvMDn9VAzjlUDMHv99jbRhT/6cH7beADuMfn5QmhAyARz9hKnhHZvtqthHfIbvOR - mKs67u9feHgJQfGDlVy6Ot8cEIgXEVu6J6v7eE7Fhx6qeM+vMd76PIIKlQcoYD8jwSg/VX+8zVNB - 5u68/J9+9aTr/n1CtvzyLVL5qolZ9Egt6LT9Yea522fAN/FDQddcHXTbeSlTTVUN56ODsf+qp3jZ - 2wNTWInoOj8AGeXndYOCq21BoZUdWBn3aMFZH20knc+b20ndu4f60QlnsWLW+E9vxV/jjK33Kg6T - CGvveJd1gtCnPTXEfQYVZM/0DSH5yIGN80AE3+qTmc/m/dyw+HEIwO//73qoWYHfhbAkeYsD+vEA - Ky9mBXg8rAabTA/Ij/eAz+AMyFJ4I/8sX80ATXkqkA1oX90iui7Aq14s/NCsgayLf9SErEMC3nlp - QxKmbXnl9Thgfa9vMF/rooHjZjfYXngx3+g8FuC7U50/P06W8g5h5t6seflcHmAqssT7xdvZl+SK - LA9sb5CzTxLSu9MLrNIWeHDTOCXgQi9VsZ1MLHyetgWpQWGpXFVVs1g4Txlru79nX/V0E8CtJdj8 - ZiFY2jmv4ftuCsEhjhFYem3txMydm3lh305Odv0Gl2vcIftWJ2QNSZ8A8c4wP36y5zd6gSzOHsiK - fF6dwpNvgANDzHlMzVidL9u3hk5+TQK43PNm95Ob2I+nCgdHZc6n8kB5UD4PDXLiNVHJ4Sws8FM3 - XMAknA/+8uX+PAGfFKO6hfpcw8tWHHG2x3P8+7yM/T7oVnsdcHK9dtDKnAhJsczlU3daKOD5WMd7 - /FaX1uk6aGu1hRShfZPde7Ng59HBwYqO+Wfvf9ilXItlgZNyeuffUOCKHjtjzsWEBMMX/vzXabr3 - 8VYnQALuSWL+6h/YnNQNDtwnQ/IQ0Pmmm6okSllaICN8zA3Z+T68s8Y9EPqTDZa7tRbiJc1LbO18 - /uen4Y+HmeEJkl9+hk/L+6KwqtJ4c4f4JgbX4yXYHHOIJ+pZCSJCXoGd1GGG9TVu+xmUp34GMVRz - Nu2nAA7OwUTeoT8MGDb2COJL+JqHD77H5JxDClbJoqFkOgmABIzsiL/+W27KrG4yjkPhYykV1tdn - CBZtOdN/8Sq1G2rAO38HdoHm4IB5T9355ReWRLeRvhZfdSGvJRGtkn9jhPnR3VpxHoFpkA3bftcO - 2DN0D56S7xV7jPR1yfYZKbDHd2SPH/uPbwijzUYBlx0jdZOc5AsP1pIH2+4PSG0pCyROWSOZTVaw - kLejAPvsUIEY51d3Juw5gKC1jj//SVZLsyCcav46C8nVHpYkUCVIm/dgfpZR65LIWwTYPYpsnpDX - kuXquRrUQs3BUT4sYBsMhgXdo8xQ8HIC948/TUbVYLlQw5hg3u/APr9QrH9f8Ubf9h0Gez0HTZ8s - n060oABHDq4BY2YB2KwUGVAL/O/cK7wRl6E+V7/6RMAh8dns+gBCwlkEx+GigKox1gq++eqBXTA2 - YJHr5l89L/LyTv3jg7SkqTilms+w11stcOIKG+vB9dVMxvqAkDrUC7JuS9eMpl4HILihbX6n39Jd - 8MhJgq8qLlImlDbkVz9YcktHJpYMlbgaqEEcDAsy7invzlrtJbA6Gw+E6JcVM3r0bMWTQgSsJ9vb - JeBWanCt5Qj5LHzly0WiNagvSP6rr3zD78sBUrClyN7z13pe+wyeXC1Gez2s2cTtnsCabMZfvXiw - +Wj503cKRf7qI5VIveCANJybYMn6VINDEmw7r2MaokyCAnERCkiuL19AMj9JwMh6VsCowTPmfn6V - Yt87r3RmdTvAWw+5V5pjkyAhHo1SsmB06xLkaqyhrrsfF/d6DZZyclOHQ/LUxN/8P8n9011XJjfg - oTltyBGF1CX6E27Q75x0bqO1BdifsAf3eg4KwKl2t+tBDf7ej/ZRumHc9THkQbf+1btaNvtkUNRO - ywzB1c23cYAl2PkV/qtn/+q7x+D2RGo7fcgYsnkInTZp/3j89qiWaD/wjMfJ7mfIzw9wSjUgUzDU - hr60H+k3H7BxBHT+vacbJd5qc93z19ZsupXMYMZACzgqPLnLFS8SbJ2Ew/IQA3cMb1Ikilq8zAtb - Nw3Rjrb0/5xRwP/3igKDAQ12lbNBVn19dVB1Xn3AUylPpsG7BXBbFAW76xjn/WF7siJY2Qk5dyLl - y6B1rHiTsI4lapZcpn2PFnRWd8L68zITAkWdh8R/ygF0s0vDUlJlCHfz680tczDUwWTXUJzvvIYt - VdYA8xCeI4RpfJrpx+iTxUDnArqZWiE5VR7ueuCnDuJkNHGJT4WLI4unoTMOl4C8ysYd80sXAIDq - A3LtURiWFaQOsB66is12HsnmO6YiXo9rhfRqAW5fBe0XrOKYYMt8Ciq5jEEEiS2NWNKfhbu9prcA - OS1isR5/A3Xty/UrPiP6hYKxqlQMRV+A3/z7CsRb2IBFoewQhPDuoDwQapd7WKEAFZV0WEruVbOC - Y7SJ3TuVghmln3jRxcaCacUzSH4jJyZDfZ8h0NQzVuLAINvF0T0xD6oCp8pTz5lD8oWw3t7P4H0k - 95h7m3oHj2w8Y10/iwNG07WDa5R4wTFR7jndkdtXjIpemjvJ2e9Z7dEoDFHRo9hKvIbudQ/Cc/Dl - Z+4k7KdosOUCFkxNSGuj18B1BysQucH6oBiSMl/Fu5GJ/tN8IHTYHu4mK24NtXVWZ+ZtvAnpDpYH - PhPj4/tJKXJOlmwI+cNjwIbNX11m9FxHFHG9n+hylgeGU/wECqK+YOsrHNyP048StNaiDuBFjAhd - VqICL2oYo7AotJw9TmMIKTGy59VkbHW9pMoCy+F4x5GVaYDh76QT8/ogI43mJEDn6MSCdvE7fB9E - Ld8ec2sB1jkQjED0IcukL4k4gPyJnTpmmnmI7hAqna2hogFCvsp9ukB+KlOsHS+pS8fGEkAJ1wk2 - rrAGm8KbpciL2Qvdwo5Rt8DmILwQZ8XqkrzipX1WmUiLvYGL54ABiSm4QROFKTrL4jTQ1faO4FqH - Ob5Tzi2nG31zRKfpJ3zLXjwgV3OqhHli93suz/saNa0JYExuEc77lxMv8VegATjk9/mgt3S8odfs - wRmDK7KhkqoLvtSdyBmzjo2KPOOcor+l8Mmv1Ew70mfADvWuRJ/UM7Jo02nYb9ul4vetPbDdUc9m - H7+8yPuVGYBJ3/d8NbImdnbJYWU8YnUT7KgTm889wQ+tQCr3pWJJjL26nBfD9lzOaU80yMtyCOar - 1uVkGJ0e6qJ0Qyi8scN2u2cKjBcQ4YDFQcykfW5BrYtsdD58DcASFvJwxscrSlxrBmMkqoFoxtuI - FIRUlRvq8yxi8SNh45hqLmEpxRLpbqz3PUQKYC+FUYvHNrwi7QmzgeszjoUj+FrB8Rq2ZF1VuRPp - A/bmTTuyMY5ugvObf8FgJN+GBKcmEU0UpRidZSfnLqelE4uazDOnUFSzeYkrAU9OGiT1Nxdw3/E6 - Qwc7F2ys/AmsSuVkQOvjMtiMz9Bs84Et4VFLHay+StUl0QgKuD/PvGZXK8Z2WwnQM4/UfntGMLCh - nNQi79cmejBNCDBiJgr+PW9ULgNX3JZUdHpbQUqVxIR+f9IvlLv0gqwj2wzjpbZSqOLSQGc0ODlp - xfcXqn25Iik1uHxlulkTjPMhQbY32AMdXaVWzCpo44JkS44PEG+wm455wExil6/XR99DGtEzkmtT - V0k2cAFMbqGO7Oxzcmkp6wx4Ne8kOHaUPGwl3zuQyq4DNtjHa1i4SvNg/dKewVQuR3et+msq8uLt - hbTH6IO54q8GfN/JEStOj2KWs/kZ3nXbw/7xq6vjQRsC2NDHAGd1bqgcNm/033xWypfQjKIffIX0 - IjjIqVRX3cyE92BNme682m0dT3dV90T+SY3IWqwODLIkU6Jg+CJWYeQR1kyWQMikz4psnR5cVjh1 - 1F/8Qu/9Hk8kN+2vfci3miZeS4W1xOOJcZDZGwVZGBh2+wqWCZtuy7rLesnrfc/eF93L5aiSMdRT - 8W+8P5tDvgn2rQXt7IXYTY8v8mZHiRX2/pm7RnXJelObBPQihbE7UGm+cIHDw29oAeRKr3VYqB7y - 0CEtxLlZILDcUCWINh+1SH9RysCeXg/r155ZKFrYbNSNWcRrmV/mLREllzkv7wpMYgOC7Xpn8ql7 - SDME5Eiw6w9lzl3GIIReFpmzkL0ywJbOp4b9tXaxzRVUvr3kjIcVLRboMbW+yvmnLRMnujkh6TYN - 7hqXTCQa/a3B2ns4DSS4Hkbw0MMTeuhtEn9OazKKlMzLyDozQcPeHb4VoxIb8+JXB/KdbKGGfKTc - Z4JcZ///z0rE16BAuXLuCMfQdw8uV9lGd69+u5PxOHviQLMG9vPs45K0laBYumKA8vMqDXSWaQls - F9ThaIzyfLzQdi/aVmagR3VYwfaQpgqgrx/85Wuaq7QAZKopYVWmHgN7kK4KfM+Ogs2urN3FydpI - fJrZgB+zTjXT6Xy5wd/8iQ3tSbY6XlJxbq8Y7eNzIFh80SARvASdiH8Cv/x8pOJjii4KRQ3LRuxF - bBXawqf2gslklwcNysIG5vWx8mqbi2EJblzHI2m8omY56Zcv7NIDN/N13rnjcWUL8UgHPU4OBlbb - YrAM8Ta3Pr5XjyjeONYcReajIGzR5rdZnt+IF6W+OmCDx2FOZqavwOkCNOREqZMv69MqxDqfpvnI - FWW+ZS9SAL/pHsF+m20+jtplE19v/RoQbNyHpRDtG3ybIUK/+LYIjz0ezOcO2+eTrLJWIVZwoR8q - cj8GACQJsQb38YDRzSIxma5CCFlMn9C1vkxklvmygs9toxGKjxqgTyju4ZS8lWDdRilfZDpJ4OMc - VNg7GlO8tuqngq+XFGN5vRcNGSxJgc8y3YntqBO2LrwZbK6fYGfpu/jzWq+GqKhr95d/2WvOFdA7 - 0/zM7fl2zTxjEavS7LH0qU8uR1NXDwxYfGPNP0w5Bs/LVxBEc0G2p16H/vHdGeLqTkh3tXQYZqaq - xPYSjgjNOjV8WCXJILSW09/4xS8mjkTJsJ9I6hzZpbvLPYV16cBgk5/dTkRPJWiOeYOVYXsBQqgq - Epl7d8bBzRua/edQSIqzi8yt+DTkN1+Lz6piDeF62F5xFEDHOR3ng5VHYDXArRJCx71jXaifzWIZ - mwJr08+QHQncvgcjdiCK4+9M/+YreD56sP+Mg5gtm61vmdu+JIlH3gOyw8xIEQsDhs1nNvE/hDxH - rwQeta749to0dzPeUgs+mpBgRX4aMZsW9xaGpKzm+SOfBu7F5CHUvy93Jq5nuvjVnCCIYIdmKsDn - 4ff34u1lf+bnszr9xkcE2dMxC/gOgHxsyWeGSUC78ys51e5KFKGGlf2KkZms8jBmmZcCuUsu6H7v - Y8C8jq8CvM0Izcv2ualzWtw7eG+kMyofQGuWSHS9fY16jHW4jXm7fhIWPD+LjR1wuIK1Vvn2l9+R - GyrvBn/oWYO7H8LS9hHUha3yEA4s8LCpeUa89ZKwCXVpQRwoa+BynqUXwHrWMdaq+AlWMREk+DRv - A/ZsXIHFoZ8trKGiY1SVVcyoD5DAXW/Pq5Tua/iFpoKn8IjnQfde+Xacxgj6D8PG5imK3e3bzikA - T77EsQeknB2koodJudzQDVcS2QJcB8BtHjeEKNvKaa7yPJAW2QNpjmQ39O1ZBzyfqyb2b2FDlio7 - dWLnix6WCa03dLYfhjRWHsKBsaxgqb8qKxQR90B6zzzdsSBFAb1xK5B5PnZgI3NfgfhCZVi9X+/q - RktPAdgj/cXlVTNyxtKWUkTx6Yv0R39u/vTxxeZmLO9nj09jb5XgMFlvfNEmDryE97WEkT4Xf3pg - yaABoc+8aPS4LWrOJGkvQNepq7mp322zJc6QwEVrXziaP208U209QutZxeg8iV283j3B+ellLG9j - FS/n77CJtH+Z58Kf22a9vhkFAhkinD60Xl3Wp1QC+5St89bGl2HY9TmAxlkJjvv8X6fjNsKPL1Dz - +3piwZ5/KHg8cc7MUbfVxZfRiMA+/+fhaWbuJkZ8ud87zyLZbzqVpK0F//SAk+jqwN0OJw182084 - YyuPyHJ6FhS0hct35mi3JmN0tTq4dsuCfEY95SQ4fCigp9Yb+dVjy8k6GBkMzoI3N3axkhW4hQMk - Ao9IHc/PBsch5UCVv0pB43pvdxE/KiXsenZmrYUAzIZuDfLhMCAne/FkToq2F7WYFYK1tJ75Fkts - BgOvyQIus9eBoGbswaJ1L+wWEnKn27n9Cmlxe2B3aWd3PmHN+OVbnNuurY79x+wAXXs+LlgUkEWp - VQhvRGuQLTPv/PM+e7P4i6+K//AJ4wlpCJUbdpDpqlqzgvu5hAxPlQHzopSGea0nQ0xu0c4jjNBl - VUw02F7PGyp3v71N3NGB6ngwAn7Xx2S42QnY5ycKjt0IxgTS1vFNDxO2V1oF7CpLCvx+3FdwlP1L - TmpTWH48Yv97tWF1N0ph5hjnmekeiYtTVgnh4TTO+No8iEqeN9WC5P4IkQYDeviEj/z2xydkHsyA - 7J8XL7FXIy+msLqG57mEUTkZ2Pp9/5N3FCBNaoIN9eMMdB+sPHSE9oQefpOpW86VPRAP5YrQflEU - GW5yIhqHxMTmzgdwXwMWhidT+eWreOMPsIc2WRAujsaUf8Fr3yNpP3UkXzY6XxYwecDlDjjge1tV - p5d6K6HQtQY6DUHg9hda7uHC8hHySvoUb+4ipeJaRzkK6q1x8fcW3qA4SP4MKcaImWAVWHBaOCqg - FJtSV6m6FrDRpf24/IvRsIF9gLCMBBKwT9A1q/9Ya/he7AzLQxCo61GmQmhC/EI+B1zCDfV9hPTg - cejKkHez+6cS9uzhtu/4WNwlF8NCpC3uivVYvcXL/alp0JPTBv3xqPaU9TBlzldsiw6I535eb1Dw - URRs3b6D7plKUPxU4R0hnCg5J37FCl4qXCN11zfEZxhFqM9OFLTAHOIlCcQKnpjFR+kVKoCbBtAB - nhd2KHi5uJ8ZszO04XJEXvJq3Mn8ONZf/tQXWiP0wTt0f7zIkVekbn4MIDTlyx1p0lEaFkabJHhd - NnbPN2ZDskPliI2uLMFzKjOw0sm4wNex7ufjE/XNx0rXRRxBb2H1bV7JAnU7gRveb3U5KCzZhvYS - io4cI6xflFLF2qHZxE+eUzNNrHezRfwqicr3c8U/3kbu47EXlMm6oovkK8MWz6ICX3bvIOcU6O6W - FOMXLHlto1i/B+rudyoAfPUw0zBImtXdQgo+FT6d17292ypLEuxLqUJ3DC2XbgKjEr8f+4XNOnuA - ObyfaFjbY4b26+rjZXlgHo7t3CLrHkuE+IdVEp8tI/zNh/n2Gm+Q2c+w0d5O5TJIfTlCdzyfkRJy - d7Dq6kzB/X0huVly8t3Hv8Dxw2derq8XISgPI9G19BO6FW3RENxklhifGxt5EfsB63X9UMA1JBfL - 6Re7684nwK6vZyiw9cBonyoCsndokHa8sO4qKvwMt0VSELLVmmxwCizIWy9+1zPM8OtfodW4O/LH - +5VMp/PjBj5hGiD9W3KEzNfBA7/2GkeOabbKuRVQMJCItU2q87mazwYcj8ERO/Pp7q6//n6cvQpF - 53Id1j2fwjFZzviBhKe6ZfFmiVb8vs4HxWvjpapeFFw6qKK8OUQN094PHqSnWETKcjqo871YBSie - Xp+A+nzkYWG3pP3FG1zOdgqWZ3DuIGXc0vk46g5Zy4XexN59nVBUt2W8AD3MxMPDn5CiOqK659/0 - F2+xj25yM/GdCY9fd06RsZ4o9zOdF0PUReWGvAClKv7xhN0/YiTKqsv9eJE0yQnWT7edgJ8m66f3 - goXtRbC4dLTforPaAfzFsyuubmDnwdiLWBv8+AAsX6kS4P7euktBihKO3fpFnptdht3/CLC8Chb2 - kpfqru1aOeLbXVrsThNqPkeZDaFXcjXSD1+DkIhBLKBuwoDRWLzByGpnCn6uKY+laH7n33oOFKBM - zhV5Bl/H288v7vEj4EnFNqtwH2u4b8L5xy/Z5D4Cl+E/KDsHN0A8VtMEqkte+O6rfLNRUq+Bu9l7 - s3hSYDy9z9oMq5oykdpYrDrnr3ty3PktlhJqU3HaWhT85QvzJOxnFCRzC6MYFTO1PBrCdnbpgV1v - YMNCdTwpmm8AgX/n6Pf8TLtvnWV7Fv7igzvDyXAgvnoFyi1VBYu4LQLc24MD+x3mP34KmfQtIfeR - lWB726Yl7DwdKQVUyfLclys+9OgUfGE3gXHUHhsU+8ZHOtbdoQWfXOF+fFODrDYsrpHz4F0hG8uc - xzRbY+87R8HXQp44yerP34HoZKX4Js7EJeEpCWHhAmFm2OKQT5lnbJAYzYiMZRkb4rC5BYnxHJE6 - zFNTIfQdAc/zIc7V++hOY/Ko4Jhs57nIWgPMrwnzQlnlBDsClzTsj4f//Adj6hvYTFeN4K5HcLBK - 53iPLxCmqjpi9+jowyLXuQTXnmH//C73oWcDGo0QYAs/N7D7kQQeD2OE8mnCzewp8iwybIOQOzM0 - 2f3WF5rfOQwoypcGjn+KG9QzGwale9GHrZDdHlAxSAPGHI0Br6a7Qf2gV9iLgiOZfvWB1c32g8Fh - FG9rbCfw+dlsbBd9Qlavkjoo3U09ENBjIKsc2JrwCl0mOEqTst+6bAfwFPDXWdz19XZ7tTdRPdzO - O79Zh2+Ic0vA3VQglFxv+dft8gy+SmNG1tUvhyXOjhVExRjMz2bZD0E30Q1+Js7H6HJKyDoK9ibY - MS3hbP/8j88cd569z3/Wxft8B94z2na+rhBae0IBfo86jbQlnNQxRyf6WAfBhPSgeblYyXkPhr3S - YUe3D+48cUcLNmHxRcag4IZMiIpgdal8XLxv/R5fGw8azLFB6jGfYxwcnhBGq/EKWmRGw58e2/XD - PEOqIOTHc+tjx85VfxvAcvQBDW+X72e/AiHMJ6a8jmDPb8h2G01dwOU0wiqseSQT+tXs9ZKbWL2L - AmtsxTVT5gXbjx/OIkuMgYkeXgJf9tdBUgWPw2r1xIDNkh1RUsUyeGmfPgISqx6CunzdmtX0PfaX - D5B3ETcw7/U00besF5bw6atO7Z0LIEDVIeDenZnTZ/jSoK0+OKzv43cJRD6DuHJkpGTn5cdHg11w - dzNR/SZeakP2RLoO/PmYKGK+fOGngMKjf+KYc5thNX2NBdS6PbAd3eph43NBAgrfxtgq4WUYDmG2 - QdLdQXAwE3sgx6EeYRhXJ6Q22AbEZI8h/MV/jzE/w1o8nBoKXWfg4HL2VQwHrwU7H5+FA3Vv1gW/ - +1/9bF7XezH8tX/nWciyw33F3c4rwA0eg+3hBfnnK4Q0/PEtTam5nFRUQe+bUjx0bkzNZWOJyuBj - 9h0cIO5GiHcLNijjs4zO8XdWyXPUSngJSYyc+SS68yAlX3j+attfvloIQAb45Q/ZZD7uSjscDc+x - Hcz0ztvG60UM4S9+x3ZxImsqJMUfz/nu9dJZsKP2V2/BtnEumiUkr1S8c/UX//j5qvlfCB4zcmbR - IRPZVm7fcR1tlx+fb2jtWtVwj3/IWaS/eoUFL+XoYb3FFJl2vwRflCRi6dQp6rj7WdACHCJ5vcNh - Yrww+/lrhOJoVQn5cono3S7+nl/VYU2FooDJe9Vn9qenf/Gy3x56cJha32Wp6JMBjv98kLkmWk4c - NragcpscZGnW7GInCitR9sQGa6o9qNM5PdHi/fNa8E23H+62cu7+fL6DzHB45GO+rwgyC5Ii10ic - ZnOSSBM+9u2DFbH85gv/OVogCKj3fCDx/0i7km5lYSz4g1jIJEmWzDIHARF3gIqgiEwB8uv78L5e - 9q6XHnk+IEndqrrJva3GO2q4IQmo/a5n/Pjf/aHz9zdPNYGAyFaa/Mvf+VajxVtaXlqIJFiSS7UU - 7vSXLyxtlsXZhZuHL2kyB/ytT3PPj86ZsvAA4TYmJy7utEErXhaapu8YHJRP2Py9L7jzx+D4IXew - kF8jwXNZ3Ih9W9OYCDexhPlpzGfhSFGxaivsAXHjOgAzx/7lg3Jo0VcXiC+aalQ/NMufHtt35Bp0 - fT0uKSL3cSW7Xi1WqwM6ZPiI/fPTtaWhywL3/MUsyrZTjFf4UGETPnpisNQapukozVBvQzt4hSB1 - OfN59+Df/JKZuXKXHU8BlCaOqO7CDqP+YsX/Z0fB8X/vKBBEXSVhH4YNET2SwfGdcAHUTeJS1sE1 - RBn6YWU2v/GyMkIKC2yq2LDtb0PZVOeRuxXejC6dAoRcdHlwUYBFrOd1axaBRTm8nbILcQbppLGX - u6RCtr2EWCs8jS6uO8mwp/qROPTQgu0lmRVgaDLhJPWNhqCOTyC5XTyc9nAYVr87O+gi9iJxtmcZ - b29phchdoYHjy+c7LBN8loCUyQvfP/Yd0Mc859AE/JH4Tgk0ouJLjUpeEjH+2kSb03fWS690yonK - Szzd+u39gNnds4Kt/n2GBdztUXLBISea/la07caZG8L+7M3ggSTae5Hbw9/FOROT0Gjg6ofPQvfz - +uHrdmTdTSCPGQjXTZu3DP0aOuKwR5ePVwbS4Kx0MU4oAMzt88U4xVK8bcIYQPTJDYKPvRxz2ZW3 - 0IHCgSjBjxSL4C064mQzDZAa2g27IlWSRiF15sPtTt2pFasU7RY88f2mdvl20VtUhq5FjN+9bVYd - vSHk4sMRa29R1vh+e5fImjCaQ9wfBvJqkgpZ0qnCbkSLQrg/rQDlEHPYwuYrHt3Dt0PBwvdzMo14 - YNlMYaA/bpi4vnfQNvt+r6CY5Qo5t2Iw8OLpnMHkOgLyTHFeCAP3q5HU1C5WePfk0qTtQ6BLLSLy - BTvuAPEp3P3UmeDTx4iFlz094Il8E+xdb6eCGyxJho8X2asOf3htrzNswbOafcg1bTSNtP4lQvRg - ZdggLjvQ56yIYB8PUj4/IhjjR1pDNzJ8cjOPTrylm5NBJlRuJAZVDeY8QCL0+f6OvcNRAEuLowy1 - k/Umz6z1XP44Sx7keNYk5nfewALFT4Dq+2pjT+ncRmj9ewizE34QP2/zZm2MdoRDmvvElPBbWyWJ - 4aEXhTq+BUzvcly3bNAr4xsJvOEycFrqOZAsOiKZ8KxcfvwedEgvkYsD+alrG1hUB9k3JiO3+p64 - 2++9zZC/WkZweOo43rgxT0C38girpasWtFO/Eur55kL85fIeliNmH7AiVU30wDLoqI/nDiXMY8C6 - I/na3/0gchxc4twfF8oxKB2h4bcRNuF0Glaeryt0bK4JOXHXa7OOS86Du5/+iI/OQ7xpa5WgI25F - 7Fy328Cy61E9hlmQYSUMXUDFdy2j2QpP2Pe068DxepnCxa40ovVtoAmjcVrA5WgccFLo3sAz2QaR - 3fBtwOfb6M6RzTvoc0AqVh/vDxgugeagNf9awbGwfgM9u00I7TBziC088oHmo1mjqjRN7KAtAcJy - +vbgtrY1UV/qL14KUrSQ/SUf7NufRNv84/sBJ+4mERtphstptVKiJ0fvxFRGA7Dees6goKRRsCin - shGig53BNg6v5OSdVrBmqT3/zf/5MydTs/mCqMJX80YBhL8ppm4sLvCpKuq8ufGzoBUAHXwk2Y0o - D+3YTIMzP2CSjyExbvHXXfkHkaCfJg98LV4FHeH4leBXV+7Em3Djct1xT4KsjBFwViQ3wtFzJPhl - gwQrGjbcbb0jB9ph7uB4255Dt2XtAwrXRcPnHU/28VBhIIQF1vWmGIQjc9bRjkckC9JRGx/bldlz - 1iXWHecKCNfwb3hM5R57+VfWJvz7mVDz1vu8VVHi0rzPTZhvXjXD3io12sn0gXY8Jc700oalvMgy - +m0l2Pukhy5b3coUbUyVB1+1uAzb9M3f8JTNJTHr/UzaEmo5qm4vMSC538XbopsmPJiJSnKHKBon - Tb4JMnmdSA6Sc7GRgJZox2Mse3ETb0p7qiB8JBdyj/KfOzm0kZF3eE/YuwkO2BydyWE49Gxwbae6 - 2diRYcG3T819vD+Ay1JlhO9PKRCHv/cF/WRqD7AzC9g7FknDsyPPIqKCAuPzWWm4si1SOL3qayDc - RX9Y77L6gMH31uCMJz2YTu9XipLXxyby+N2raFVDBNznSSDqtxqbBfaghPklRQE8qxylD6mZoSnu - VYQlrLtcwKsiSnGz7Du4EiCIzt4THJcMSWJSu+txCHsUyUqAw/KuApY6mQfdz374fCI23cofK6J7 - HnhEZ1q9EBoH5WCcgIZNKb3QxbXFN7ydhJL4jFINnCQxLBz9rz4zQXQGvAQbBiGrqol6IC7gM5on - 0HnIGw71CxdvwTMU/62380WwXMHQ3R6KCgxJ/oVHdx3f9woGbGxiPZkKbbO5zELvw1XHJlXcmG3P - JosuykMJ4LdpwSST0wZk5sdgg4AfWB4e1mEsBwZ+rp+q4V7sUv3D+4IKpJkePush5wvkWbhbWUGj - b7CB7tQt2GPf0zCGfpcJIjcPJPSdviCXwLXQ6VB6wX6OzOWVFteAi+uNKBZ4xfxU3EPIC8DFdl/H - gK+f0t4XumcDaZ8PS9O+WlSlRklCKV+0Bau4hff5RPZ4jeN9Pj4QFqTbzKTX80CbVBrhKCROwJh+ - 5G7ywkrS+i0HHHu/ik6P27FCYsHf59WL7nSR77AE3blmiPz+sfGQfqVAMuuCYuXuRQMV1v3cOn8d - A+ot0bDgXPXQy4xiUoZA15ZzETmI8D+e3KTPq6FskmWojK07uQJOooTODUQV5DwsN5uvUXuEGTTr - G8WWeL+5y+tgjWhjDq+Z35x33PpPlEEh8x3iDxUpJq1WHmgU1nNA33tXk1kfQmCIuJ0X3Ph0y4rr - DNLyFpOwfLPNzg9q8Hf/7lQx7hJynxHJ+n3b8aFpaLO8FvQ93Y84gm2srfNnKmGVnsrgONphsTIo - naVyeZ7mo/CQhkXRKhHNR80nJy780O28nGSYb78v1hJui9fT+5dAgk5f4kQgariiPfBAw9tGHAOn - w07hZ8T+1pFkxuvq/uNvO//4e35tO8+7ArR3TvmYz0DwwfkNddb1sHqCKuD09duDfC8Sqot4ozON - TwvsqXnELlRwsYwVgPCgrWyAJHqiFMlHGRDYV1jbtsMwHRrNQeFeE1rXGzAshKAeJvkc7n2yg4KM - dyffq5qJwdP2FMC146DCG/P1iBytbbMcDKmS+mPVY/uq/ShVi5wFs8KmAQzBW/sVzPaAl9deMyYS - s5hS6RdC8H1/iBEsGmU/wnWE1mK6WDvpabGFyVDDQbDjmf7dn+3zHRAzwSLq6lmUtrR1oGIZBlHJ - ZyzI6fgIxBSSaN6+Xyb+N19bU9h7k3L1QIloZ/CfvniyB20jubhAWk8IW/clLaiYLiEUC/b+Dz8n - WjQ1ULY4mvn6lDY0op4OjUk8E7V063j56XIN5fPlsl//ash6vKWwrrYnCSqJBfP0jd5ACFIYfD3h - 604eT3JwbZ4atlyxGygs9DeU0q4jf/hPfXBrYRfoL5zG91ezcliZIe+PDLGyI46XWP8+gBzujuD3 - Ug0L0usWbkNj/OPHH/drB9IgFw0xy0qKl0Q03tBgV4dEQd7G07lfZZh+2Jz42ikclufb3q2qFs78 - mf8Us/YZZAiz60DU+mcM2+8qM9D/bRLxJenWsOhx7mGqNubMA74qtpuvlPD+HZgZWrxe0JQbGIm/ - fr0Zwp9frH988lVZL1J67gwW+XywYPd4ddjevvEwJYZoQlKmLxwY9xLw5f3wBpGEc6JbL7vh+218 - gCsUbRK76jte7il8QI0/9EHntymlI846CF4OO7MxUV1W/h0XeJ8Ngne+XmzQXkP4c/fuaG7yBqtq - RRlEhm4SfzoNdClAJkEIugOxjkgbOLX+MPAxk2kufrcxnj/ppUYOuJZEVmcRbL9DEMJRfuckurFL - syhaJ8E/fMPQasAYbK8E7b+HH4s/FYvz9hy46yFirL9M2zp0Y+GqjSEpJdcGmxkULOTZkuDnLX3F - K3M55//W9zmdibb8jkKLCnr+YOOVmWAFY9XCBkQ9sU/LGlONZ1J4VN8BCfzCofSTOT18cO4zWCJl - jedFvXVQDBgpYCrnMFCNsyW4aM0tAOoP0F+kdxbMzO06s+Khc0dyElP4KYMv9hNLiNeNO+igezRd - IP7oW5ujl7jBxxy1Myi6MN7wpPawxKNMnjvfn001rUFuqAw+tZM6sKEymDAtoDeTX1UBusRvZu83 - WeC/+2W3dFOBc1YtYgTCpVnVuYkgnmWXPOY2pMtzBQ/wu3wyYoTXqlgCL3zAODE6jF/FS6PaT3+j - 7/3YE3WjhrY8kbhIRQdDrOvljw4+OLdo50fEjCavoAZ/4//hj17oY/ObP58HOsTdSGJas3TjTbuE - ysxz82HXe4QpkwrGsmfgKDHVoeaqu4pOR7nA8ruuGyEXNRaa+45QDTFtQWzxOINMplMAoELiLW+X - GnFTfiCaq76L9TJlEnAe6oa9XlzjRfBEExa2kRG9vRou7z0sCPOz9AqoklrFv+9lBzREftfqIPyN - 947f2Bybzt0k65XAnjeDuX8Eg7Y55VGFx/FYk5PHZHSd6dODf/HaPMWqtnzVpYVv43vACpm0Yeom - iYEfa3Hxcyu/wypJPIu05XXEuNruA0m5hoFm4IXY3f2FNbk8Qil0U454h+MV0B3vpBVJJd7nP523 - c5GCNVFxwMUzHNY2ohBV/K0IxEc1NPResT2MmrQmpr0azXqXnQfwn+JIsj/8Pcr+G2TrbcDejhd/ - +CGEQeJgx7uTeB6yTPrHd45bpdCFO9QbiI5bjP1EHIe5EiMTgVPUYsUCSsztfBcdNeUSXF5PsdkO - OcmhOdf4L941tPXvEXghWZsnxtri9QqjN/rsO3rlQRjpjpcqiqtaJ15UV3GvvAsdjNd7hJ+3O9WW - 7pHo6OuoJxxkcxOvf/zjq2t3ohfsC9DztXqj5ydJd72f0aUffqmkLc0xYITCoJwK7zKEh1NBnKTG - WncMZBVK8sDMl8Ml0UZFaCoETmE7k9HgtR/au5CZ8yHFWjJXwxIFSwJmI9qChtYJmM+WPcLmVGGM - TUMCi2FaG6wZwyJaqQ3aCO7KCIY4FwMEX7xLetXNwM73gqrZJjezUl4C6BBG+HE8/mLC1qoDTrxm - Yvw9vv87Pt+TvGGTe850XVqUw89Pd3C5mb27yL91gYtZz2T/Hkx+779hw0zmzO7+GUd8M4HfWLwQ - tZ+NmH0Haok4c8B7vPk0IzjrOSqn+4r/8HJNT5YME3BPiXEOvsUiyNsCnxf1GvRTxxX06KkS6nqo - 451/DNseP2D+OLr4XrmGRnc+CQNfD4JH5RwaKr57WXJ060OcmqkKer52LcxQdcJK8dALHh00Fh1H - UJNgv35kRjeXYknIMN7K07B+zchCT3IZsCtSfvicH3REUAeY7OsDTEM6bPCMC0z8LnwD9sj76Z9/ - h1O2++7xw4xgUxQbNoFf0jtqSA8U62QQr6Vrs9XHWkXPT5ri0wf5xY4fFbqzeo5DKMYDGbU4hev3 - McwSGjRX2PnD3iXCJ5e5eBb8t+k3cGqU9c/fcenyrCP4e9pt0B5QpI3r6r+hPkXxro9Zd/MirQf0 - M0XEiOey2eNlBP70+YkPmIbsfgKwpehKNCW14vUcMRl0evFCzN5LY8pfyw0Uv+JKvJfHFZvqAgjd - 4lfgkktqsICzl0OO8uu+YyYFo6LtNc+07jUfnqze8ONhneGoqzw+qcWlEf74mYSyDCf8Sx+W0lZH - +Kq+HfZaem4Waz5WEColJVdeUN01nlAOf9wjxAb+9pQwZVnDGco1Lna+S6441pGUGzpxFGnU1p0f - w0RmNXLb+cfmD9IMnMf9GCSOI4DpRpYNucVQBMijI527tazgylwa4rzHYFiUc9ShYy35wXxU1Vh4 - e34ChYvPEcfhIzCb+c2B0xvSf/xj94tTKPHMl8jF5BdsATIRLoh8AvH205vNN378v/Xq7fiwFqs1 - w3J6rgRDzDWTxeIaGvMlI/cbiYd12bbxj6/PElKfDZW9mwP3eEMwKw3ujl8t/DrPgMhP9qlNzSC0 - sDUzFl9SyMW0uIsRGNkVEkvT4mbxXblGn19zJpaZMdq86IEJdj2N7b6o3VmGUiDtfhnxxVyPBac+ - qfDnRho+6du36I2OZKABYY+1UnPdubwL77/5Rna8iNex/pkgM5creSzJ013XPH7/8QWsM+075r/X - TwkmF09EEX99Q13J7oApZnd8BfPP/Yv/MHDM44wk6TZQha4M9Kjm4L/19bNvgAHfb7oG4CKpxVJ7 - Ug1tE2mBhIZmfx95++/+LPF+1MaIRz0YqqggpkKvzZx6qQp6Xg/w3f6w7q4fSxgdl5j43L5DGsmr - DJrH7UQeQ5Zp9KBaDNjxLGAOlTFsTXyzYPY2FJIC03Wp+g0tOMi35k/fFPPjF+bonLFpwMak1v74 - F/i0OhesvkrdqdICFh5y/CHmzcWUBPVW/unpuS1qJV7FATmQi6uNRN/vI/7n99bfIMSnKbqCzRb0 - FsAPDogdMI62zLPt/cV34g4bpvNla0VYS92Itfo1x1t5F1poBNqNyOyoasKzyizpJ0ojtkIWNzRw - DjzEa9nN6D4pDZ8Vzxn0x7oPDse+KoT7fmIwdFdI/ElQ3PnPTx+vzwgHenuhwxbLD1TGzh0Hrn5z - J57vK8gcxBCnthLG6+PbhBJ8pBeidG1J6YvceEAf/C1Ym/5C14B3RHgN1W+wtct1PzFQtYDjeZO4 - D/7nkt1/Qv7ijeTU609tX/8ZbNuRYmfqLsX+vixwUUoFe/Y0FLu/XMLmywdYHr91vDJkZOA0Nwr5 - 8yP/xQclgR1J+C4taOyBAC7a64aVpnm7//iC57LRn/9Gp0aAEsw7esPB5QvjqRW7FAiv7owLOczi - Z6q8UqgcYkg0JyLadGtoiVL8WjCWXqdYGH7vAIYuheR0t7J465nfAjJtVbH/OcZ7Bv6VwN0fwXJ5 - r+lnbUMRMQcpnJnF92P+PbM9DKbcD8DB6dzt29QbFC8CDciez1gaORuhsBkZcbRXV/T0aejQroQz - VsfLiy440CU0VtLtj581g5iNMxxYm/lb34XwasoKTIX5CfjeeA9bu3gtBNdpwo/KeTaL7VxMGDew - wv6djWPayeDxl//Aez7KXeSz4PzDk8Avejofa1aC0+vwCIS7Yg78eucsEFcHl+h6ae/5rbEEwbTX - fOrqT0xT5ZeC9+chEO2Ny2YpbWeEt037zdz6E7XqOoIRhJmXkSSZgLv6Zcz+86OVroVg09YugX20 - STMsL0Hcqwe+hfo05QG9Mq5GMh6IIPuaKVHZ/NXs+bNFuv4kdmYqKQETy+Xtn58RHM4ZjcdE9N/g - pt/keZk+QBt/R+H9lw8kp5t0aMj36yXgKW4b1pwIa8tfPicPHnrASY/Jpc8kZ6GcJD3Rh8BzOdF4 - h/AqXQHe8dZd8tO2IHavmY3b2w2QXT/DLkE5Tu310yzsB4zwY2IUHOs76/75yTB5fe09/6UUwsmI - 35CxnSqg0uIPgpPcIyClfRe8pnRzN9h0Cbx1bkEct7Xc2dVvItj9+OBclvdiK0ODRbveIdqVGTQa - 3e4qjIUckmDIRHf+00P2DWZES2a5obseQiop6e5X93QTnksFuuSQz7SUNneqe9eCUoOi4GDHcbMu - zKIiWwqv2M9bafg3vnzfvvCff0jMuzTC6FYmGGetpwl/+b79eeeNzV/Djt9v+PUfzT9/ZOG/Wge4 - 8HXHpq2EBZ+8kXOUpqYKzhZQCnqPVRG5XcVgC/uxu6VeKqPdbw7O/lFyicYzCdRteCDlmiZ01CQi - gksAtqATnpW2jBWFUMPLhr3u9QSTfAx7SLeWIzu/L+Z0U3PImT+MlTWpNK7YOAf++VFW+xniTbh8 - O2CAABANVCpdGbs0wacxqj8/rfkXj084vhA/OTDFz/FzS3pmQML+R/Xc2cLDBmtNhAF3qge3OyG8 - Ab8E14Di4xBvrphU6EyiE/Z89q4RjVNEGNxflz/9UswX5h1I6CN4//BntX2mk4qOCfFfPng7yDEL - 46meg0N7O4J//nDs/3jsSVExVIfn7w12/xgn2WBrkw6WGg0YFuScXdyBvp1Q/JevCWvQan/5DKAM - 2Q2bf/Fq1+/okfMO8dkyjXe+1KM9f0a0c/UF7M4HQVowHnHjZhmWFTmi9Jff8RlFHjb/yWX/z44C - 6X/vKKgiayBOV/2azVzkCt2c6w373rUZKP8cJKBQjhJ/aQ7a4pMlQvXq+sFsSuvu6AkBcsPxSCJZ - bsHPrC8d0NvRIsnRPlMhS7cFiqo14l1mUP5+UkY0zEaNlajAxSLnHgs5g8L5eAlqd1x8f4SXEzwE - Imz9hl7iKQeXl3LCN+SxLj1/1A12rXqcWal5DYN8zxNodT3Gp/CqFZRc5r2KzQdhJXt8wcY3dg6n - LtWIMX/f8aonPwdN26Tj6KYHBduYxz3jU/6C4/PZ0OlmuyokzLhgYzUJ2LJnw8PVegfzwb983e2+ - TDNMuUnEQRy4YF1Mn4dAcgwiG15V8IrVj9Dxyhyb9eYCId4OEYQDq5Dw+DnHM/8KA3QywispHP/Y - bIpVz2h6jgF+oBRo9LrVEbreZUpu5/7irtNFkhEvsIA8HVQV1OZc5sjB4ExOhJ5jrn5qD+SpOUfw - 6QsBCQ+2CS5WEQXL9fAB7GcEJvrMeU2sg3cfFmfsJZgw5RsbmT1pK9/bIdzfR/CTpm7YRKMb4dEr - S3y9XXKXZ5hLjuQ52vt6FqTYDkeFRVE+/bCbvmK6na9XCbqRshEFdZU2k8eTBWN3i0mZH0OwwaUS - UUnxjZjE78H+fma0jdkNO29OAMth0kL08E2eGI9u70uypSIMhes6k9ONxqtrgxoagPPw9apnLivf - vwFUTDEkJzJ6zUZy9ABDHOFgHTQNcKmuPxBdOnE+QqYfqCjnKrSeexeGRf+B9fD7LPBIwJvgg3Wi - wvha3ujX8pgUNPRd4iayiMxEnbFt/j5gq29wgWZsWSQdCrZYPr9wH1/5FIiqo7vLaloM4pJjikuo - /WLe8F8hSvwhIEFt8cXk2rRCh6bMiNNFlTY9tkhF/PN3w2f18hjYqZBneC8En3iPdz3wmX2SYMyc - XsTBIgv2/zcjlW4N0W7N4s5TsDmwK6sHuaYoLqY7B3P4lDhC7Dn6NVMx1CGk2T2dRz1h6eQ0K49K - kc1IajpCvHhiG4DyFw1zN9ETmOmpFRFnrBCnp/dX27T5naKTzuqk5C9PjfdU2qG7IlYkYNuJ9o9f - BZHSrwOxkUHiKQvSFrVqzJDTR0B0izxxAf71dZy5nvOB8KY9A4fph/Ftv54W97pCk2zVxC23CxBU - Rs4R5JKSlN8EU1aVJBEOTp/jZ6V0Lm1TJ4THDxRwfOtZSpzC6NG3/M6BdGG7Zv2b//VTRcEBvCWw - nklloQuZ/eAPT5bHM24RvFsSxhvrD7whMiV4vxuDmPVxadYg8XuYJz8HW/dJ0JavK6qSEvIMxr1e - xRvD3DPIz2lFrPGWucJXymeAQcQG8y37afSzn3SPtqNL1HQ8DQInrCoSlcjEaoZ+wwqYTw19Ls1n - ET47uuHTFqC/39vng7t+3o4Mxc+XnY/FNBXL8ZUwMNO3nfH6ykAnN+kRxdwL3xbxBlbhDB348Bt7 - XhH/G7jjclTh8/C2sKJeHs0aHQweCaF6xxbfHymxxDkFlbQ9cSYFLVhRLpso2h4ixvefUqxLLrZA - OapPooXSaRB+hcXCcI5/ROXGGnRluvWIyeYEW72yFnTlS1Z6uyXCylo4w1IpmwR9rXvgeLTGeNua - NJfsjZGJ/1aKeDmXrxGwL+k1g5TciynkRxF6VnnCrnIfi23sxAcSvdeIldcpLH6X8tbCFwd5ct7x - hN36c/5vPMVpz8g5hd9Lf+v5+YcPf/PfVkKd3Ga9cqlT8ixcrOGxV7EMirm3QQsXUplEp/5Do5/b - u0NpFC7Ev5wWsFx7JUCIfxvEubBWw9UV20kWVUJcUpQV7DOXVWjYe0Zh6cN4uQTtCArhTfAD9wxd - ws+zg5NyL3DeWiql6mDycOMkds5PeCxomcsWzG6nBWPwlugPFWuEzjwbkLDKDZe9M1MpvXihJNb9 - 6Q9z5C0b8q/NfqYpNxp+puobnngYz1xyTQd6oNSCt6z1icvlffEvXqtswBNntTeXvEYaINNYJazK - J3cQJOdtobPRfmaYD6eYp3lXosCHAb6xF9UV0DmWQHt69Nieddmlj9/EAq2AOpHzMQdcSJ0K/l5+ - SHA9l4DTle8bCMolxSopZMD9orGDYSz+cBGGm7bFog9hGfYCtmDrD+z5xUUoa6UzVjDUKL2yRXlM - WS7CsW+t2lrfoxDdsrdP1NiSmkUqlQxJLzfYqxhW8foLwQOq6sEPFlqLgNg850CkSzaO0k9NhZ+Z - 6ij2BBHrd7aLZ24QEmi/oyOxExWAff4n8GcrMz5L7hUIr8FR4fwuZBIa8ccdbV3UUQhNBzsgxq4Q - dpMDr+O7Ivdh9Ci/b8GHjKxX5Pb6KS5rma8IfhDEpEhfMRD4UqmRevYU8izvQJsu5bkFydX+Edd7 - gGa8QzZC8+XcYmU4T8VG8+oB5WRR8ENOlEE4dh4PP5e0wLf+K4DtMeQW+vv9y2piugm2q8N7ea6C - 7XkJtUU6pT2ktwvEDqdOBbVpvsGstsVAavFpoOePs8BYlT/7/Y9gqAwrR6WCFhIeyFzMUnzxEFP/ - VJKW8d7X2DdYxM8bnTc5WOK5ta45oF/njrWmteK1DOw3OhtORCwXHwZiULIA9xQ8AqZgjtq2ibYD - y0IRsCfk1UBjUkoQcLeRBGL2jrt0OzjwtukdMaaC0bbl8hNhPn+FedLgu/gtpsFC9/x5ztzjFTfk - 9xg86N8dEatysBTjq3UTqBYfBSvvTXU5ST1BeJ42cz4eczTMZN/hBePAD1ipUf79PZDSxcd3XQLx - 2rpQhAN/1olj3+yGr29wg5YsFyRupsndmgOfo8HpcnKSn9BdndrqIF16EeNt6ijR60xEr1GcyTny - DSAIxuf99zyzpA2HYpPrnyx1wYSw61bvYU3VOIRZMBLsRy+5mbXBhnBVEcbm6X1yl3m8vuGReQ84 - vwC/oDfm0wLCzAt2D8PoLjsflR5l3wRSlouAlnsXsf35iQ6BVXD85VFDfHM+JHhXSKM/C0cQ2Akh - Qa2cm/nFjdERjlFCnBZ/B/IzU1MKYX0nTryGGtXeqgn4SfRJVlzCWMhr3oS/Je1JgPsHWMP1nEpb - u+YzD14fd4N3kkpaYDfkxLSCtjj9OiNLLmes3yetIfUv5CFvfiNis5dao9VmbqCBK0/S6JMW26ca - K3D/XDvi61IRU5vTIIr7wJwFc0Fg+1TvCh4/+nnm9+vptkml5FwgR+THdWy2SjqwEK/JaR7a77uZ - P3fHgXs8C7ZY4cB87m8P8FsWRLxw7yt4N7Iaikpo4kenOy5/fV1UaK3jFUcA6cN2FRYGFahXiBwW - R5d8ETIh4zwrrHV3qVn+5msYSz+ivqYUbDNLFzgruRu8jigoaJZfLGnH8+B4aZZ4yc5QB8XMSASX - eG227/jlYcI83kT+na/a8vllI7jq+QHbgg2G9eawATRinM33t1IU6yw5JcCAnIisqZrL34xP9V/8 - OAyexlvKs/zHDw5lmsYEDpEH13OgzUg629pMbl4InymTEHdcX5TS/JMAR2yuRJVWpqA7PoIy9N44 - 2E5qPD9+FQMNkB+xdX9ODU26zIH61SnwKfx4dCUvlEBejAPi7Xx28YkYwT/++jx9IV08zuXhrjcw - 5uKjuxyM7AH1drYIPlWiS9vkpsOmISSY1N+tWNJNsMA9Z77zsQApIDanMeBOHTs4fZ0OrKlaRFCQ - gRYsKNS0hXQogG/3GJIn57HFZNaXXvx4UUzcPMfaIoIi+rf+D+KixIPhaAs8PX9XHN+a0GU9fu+6 - Zh3GAHB5H88rSkak9HQg+/MX5ECBI7HxMGFsiw+683cIOq28/sVjjfp85yBz0jlsBMnDpc6tfMBK - AwJRveJDt7bIGFAbVRMIHPlo83E/Q7HzyZlh2wkshlKPsKk5m+gjJwzzMzZUiJ3jSjQGrHRkvLsH - LlfzFmQ7no7o3SdQ/LivWYTt1GxueWSA8KsEbHLXzqWkq1KIHllD8lSNtC3ylkWaqHsluI1sOv9q - eYS8wINgc5wG0AF1JuASdfl7PwW376mFQzzXf3qQbte3kP/FL3y6n5aGooSJ4Od0+gaidFLd0dAK - Ce7xkPyN73wQsg4aUh1jJy5f9M1tUgL3+Y71O/Dd7fo+ZNDXPBe7vugW6zrihwTvjkSwYp2bcT1J - zr94bK6fc0Pb5GwiI96rcM8HpdiCgIdw178k96M3GP/8gOLyqLDxfo8a2fENBV85JdY0ahrLrYoF - InmD2FLPFqUp7/XgT8+WCveLt31+o0j51QGK+ADwnuKU8FkdVRw3T635F6+F8LEE0/DQCvZUZwvs - a7XFruPfBhr2jxScurM3i99fP6wAaA6ylUgP/vBpKeMsBKXI713XMltjg1uSwh1PsJt7xjAKcVXC - wVAKkvC9Ga/10y3h5+jz2NKXJJ5KLC2SUScbNjTjUyyNE7Mod0KbKIkk0TU6+Dws2dOB+E/np03+ - mC9gMLSCeNfg4NIv1EQoi76Nk+uK6cJnrPq3nv/0Qzx+3UVGlnxUsA0Zp5luRtWjjnNiYhjDZdhU - Q07QweEbYlmJEq+SemKgfflu2B4kFbAIH97QsPjrzM+HV7y6GJt/+h67oT0Vs9xqObyObRWA3Ps0 - G7npEZo9/Pinx7YUFKkU4Pg0w+BxppulXEuwBe4nYB/quo+X3kH0FRmCD3hslvvxJiLJQiPWsaI2 - VPIuKZzzMiJPxToPm3C6iQBYYrnrv4SyU2GNsLJrHrspucfbV4l6uGlJRB7dvoPqSsoF2u/wOK87 - 3+xmxcnBlL9qbC1u0AiughOonDaeeIXMNbOHur0K8vc5b+Yz0n4H2V7+4jcJPCIPfFbaJYjkBWKd - +ozW6smsSmXvnmchMJWYg0K3QKvrMD4L9OwKWX534LbEHJFLXtRm6Tyq0qYtH6zu8WchHefBdXAW - 7O58+R+fk83Gx7s/09DLGXrQPbsedruDW9BbnGVQ9PYztxmJB7oEvQrty2fDO78qljaCC1i502Nm - j/YKfqcHDdFfvNXkdooXrYItUE4LT+5L89S2z1210B8+su6da/b4W6PQ8OugjQ+mxmWNnUCSHmri - lIYz9MehTuCfH6K8gou76WetR7uewhq8KEA4/axeuuHawHfTVJp+978km/kd8elX9HR9bJGMBpik - xOy4d0GD8sfD/f7+4u2w9ebZQ3a+PQg+pGs8zYB2sLcFHTuP7VCMn2SCcOqWFCduGtId/0PgXOqa - aNdo1vZyvAG81Sgg6c5XKL3cFqn7vFsc38uhWIoyCGBw6BzsJXFF16yxU/jbT01oT8A3S3p6MQi/ - lhybk/SktJG+IypPVolzYt6GXY/kKPHSC7Z3vrm5hbXBrjTduXrHVcHbn68Edv8CP0XGoURkqg29 - RtXa+bDc0CVG73/+kXsFzTBh8aEDk/+EGHMGabb6xi7weWgtokw/ViMH4VLD0eBXLD/CL938fi5h - 7KJoZqnPuP9+P8PfS1AzDUtnk9YiUkslwRFzcQvWp1GPXnooEXv3837Jk0LE5IqP5YrQ+J+f+rO1 - GRvCI41Z+U48eKdtia3g02jUnEsP8j+bJfpS/WICTvYC4fcFSLSfiNouGWtCrWD0efMKg/KvTZHQ - /BZirHiaRYnPVxbiTeswV/v/20IyqSAd8Z0E8SVsKLm0G+Cgd8ZYwWlM+NfFRGyDc6z9BCfe+7iz - oOkeFlHN5+ZujHJgYcKo55lbTUI3JlkztFjYDQSukwu6PfAMd/zE3nH7xuTpFAwI8PlE9PPNLnh1 - uVdw158zijqjoBI+zH/8F+tvwyl6+QtbODPXieCNnYa1PA8MfMOxJcY8/1zaK04FHcZJ50O3cgWp - 02sEuk/bEmNZX8OclOkDfKnYk6yQVW1W9yrXu/7H6iBQulwHKYd/88c85FVMIzuOoPYRN6xDVhuG - L0I67EEj41PefdytaIs3CNpWI+ZTvsTC+BLf4LmoJTEZOWyo5IzOP/9Ezj+8u/uj1Z//Q4KrrMZb - GZgl1KVvM4siKMAai4r+5x/P2+n4orxgazqMlXdEnuCdg5ENXtLRtU46dpX0OyyfZGIgvV0hUT9t - 5BIOFBnIp+mML1l4Bv8+XznvQvYOqsWKnkUH4ONJsS21DaCPdx7CXY8HP8j0zc8UrBz86ecHU7+K - GW6RCbuSWbGBungYHzWCkK0T9k9vFlPphTmM3w4789qRi9fa+lZwbuA0F7n3GQZLbBN4+vLHf34y - VQ/Ht0RONy4o3Eof6HtdN1hFe9eDXlnjJT394L946x5jY1iA6ur/9Ctn3D1tdZojC6Xjqs7b7idM - 3Vw6YB+f4KAoHmVPbxuCv/mgG14MWDh8TbjrSxKRQqbLNqrvPz+YJLu/tGr3py59tdeXWN8Fx9zX - ymtILt2PWLt/tV7bZoafmeWw8iB2Q+9M9ga734CD21mP2d2vBJfqzRJ1X8+8lToBbE/qlchQL+mS - XU89SFKSBjSoKzB99cVBWns1Ar7eBrCH8d2v3CjGMRC0XY/sfKqsiOuLQzwGtzIBqbVccBRJq7v7 - 9fw/Pj5LDFtslvJ8gEvlvIi75ycW52fV6G8+4K5fGsJ4VgJ3/xdbInvV9nyDDsU3CbAJSDBMKvf2 - YH5plhmQTxHT7XGa4V7mhNx1qSi2ScLJ33rc/UUVDI3/SyHK6HueIuK42/n6FIFCBUpMAYnauMdv - KFmvGw4IX8W0MuQc7PoAWzJzp5tIvBGqqvkl3nGoh5U5BRXc8084x4dbs/2tb8dTT8RnT6O2Zm+p - AmJp3GZxvGUaQbFhwvsbXLDyKh/DIt+/HmLXR0D+4sFmi7/yX7xVrOzqzsFrqaDwfNvENu6HYSFf - T5VEml2IGiYvd6szrYXRj9Owe5Of8XYQwh6VvX3GmtiH2h7fAyi97OCf/lz9/veGtmdcd798Ahu5 - eRG0NqvHoX5i6J4PmyGO0ZF4IZ8165TIPNz9fPy8CT2gyRVv//IF1o0FdLGs6AHPPB/serMYtuJl - qUAtgUTsy8UEBBjhG22cHOC8xd9m5XslhML2PpATlL/aliK9Qj9syDs/idzN/hAR/Pkfj2dtutt9 - ZiuAnfuD+BE/g2XxjRmGBq7nwzlQiwUfLvD4IaSYDwrmi9+d1TyQSuJ73tcT2DxFfQADZEdyKo8n - bT5fnxKo+cXDjtDd4+VpHXqw3aMDccXTIaZCnqXSg9m2XT+sw5Q8AYSaT0Ls7/ydxmtgSnt+IOB3 - fN0YOHrgGqyHmU8f67AkzfmvRsAVWy5+DuvN1mT0Vb15Riv5xLQ5uzNQaFFhVZZbuvP/BIAz8w5+ - /ff6h2cRPJaqjXHXh83k0WcNjfH8DLjaMwphXh8R/NUGP79QJ2vcn3/0t36vmx7HW/dpTMAnrDkf - 5+g3zG+YyGjPVxI1VjhKZvIxIYdMgSiPTqdrvnAsfKYwwSePpgXhhKMM7Tx1sb7c9IbXcf6A9a1g - AuYv//j3Pv70c3/CY7x2/bqhsSviudEzDQxLUKuwK+GKVa/um+VPb/Z2vv7xmWatYtlCf/lEA39t - bRGPtY46dpZ9yZ4FsO36Euz+HHbLjQPLufyNUKT5hThbbzbzG5YyZOH5hQvyATE158RDSSGq5HFp - t2b804uAK8ZZ8t1Km7AviyimUYC1e/Ci60sIW8gb84j/4h2tfxkLMLRz4r+KvSsRG6dQVfpk3sxs - ioVt2x5//hFx7G+scVI2iJD/uexM9afVbLOYWvCTiBa+qUvf9GO3PKBCap0EBH2038BpIsqb9PyP - j+9+Xw+TQlIDSiR1WNVj0MJ0SAWimi1PJxxI+r98r+ZjjtZ5py9g99ewxh4ee1dlH/75DcRfiREL - qVd18J07OtbPkT4IudCxQLoGVRDL7VRsxbvOYXGR/YB+GKxtA0Ee2P3sgPH4T/znpyHeGEcSsRHV - 5l2vQeWUNlh58HMxtX6rw1W71X/zvVhFNs5RV9aP3S+X4/WY300oUrbDRgG0QkCxr/99JiopKlDF - 8uYBqQq7Pf8ku3NIpv+r6wH43zsKusfVmQWO+wKS31oW1Y/miJXzei9WghIVPGxuwPIqdvFqR7YD - le0bz2P0SrX1yKw1Sj1WIFdXLrUuk4QZDt4gEu+lsNpq9HYHG3hlg1XbfnQrLpqF1suFD5hItAH1 - 856VblqmY7V8Mu5vvh1D0FPqYcW+nDTeIYkOGQ98sDdusFhicilhACtKXMIgd3G/PwuyB2IEfMgr - Lhcn1ER8tu6Modbd7d0DD+Af3s8QmQyd7sOhhdqQvgNRPTPuOhfGCC+HoMNYA1Wzit/HDO8q/gRh - 0CvFxjVVji7tT8P6Z5YBK46RiTJeh/jcNYG7uIDOEE2CHtB67Qo+vHsj6MIZYuW4vYYtGqwHfKVH - GnD98R3TTxjy6Jr3G3E9R9K2Fjx52JaTh02XOdN1O84mlIOwJGXSk2azLlmGwktokLyYDsX+/i3I - r1d95owvR+m1pTyaBPjFJ8GMtOZZdwF868ccq+Hv7QpbYOVIC4uAnNT3B/y4wevh+Lk5ASEfRLfA - q0x0vasN8bbLraChxi9QLB9mIB6Mu8vikDPR7RucsEtj4tJZKkoYxN0Jp4F3d6f45/dA9vBGgnt2 - Aos9NhV6R68fuf0ki64CeSXoxG4XotbNZ2Dj2VbRcWSOATdnR7Dh9RlCM4X5fn1Hqb01CfS1tcba - gefoSraqhtJLtHD8RBXg8XqN4HCNrFngK46SV3dLYXpsvjM7D8rAZ7lRI6eaIqIm2gkIv0/kwPlw - ZIn/e9nNlkhhB7mLKJHbJtgNm0mHEdbxuSRpyL/cZeMfLBCmccRxvVqFUD60CgWvMCXlqQCAjplv - wRsi6rwNH1FbuzxlEFNv8V7z4tQICEEL6vnNIKeePRRzWIghTD1ewJqmpmDU+iqFnHDxcHKNk4ET - WzWE14X9kmcuJIBzuEaCXuAZJIRZWyy+8pZQ/FEM4jyuWsGeHwsLXymgJLCBrRGGvejwnAuv4OlF - Rsy15VJC2NQmsRcr0bYMRyq6yI5FTDVttKV81Qt8Xn8tth33WmzOu3sjFUs5TtQexevb7yKkjPqV - JJ1yp+z5IbJo/uXHoLkOgUZI+WLRz9ffxL0fbLrZahQhI9I8gkfTatiTLW/w13wrYlDecDm0jjU0 - OA7j81GI4+VXzQt0zaOJZcjUAy99mhb+h7Qr6VYVRsI/yIVMkmLJLAISBVTcASICKjIkQH59H+7r - Ze96+c55914lqW+qUJlR3VG9Lz/R3LEgQGp1/+IU5Sc2XsYqVrb254ofD3xlE2obVzHf15xsZ3KL - 5ruvL8rf88IL1hAXEU1V1OBbY7ty7YxTyCOEkzDc6K2jx55bnyd6JHZID9qhYWReNAHEPb/Fgf16 - Rwuebyc4PrUtjtInXxPxFUggpfaF+vur63EVXAL4nGeBupe06qejmuTg4tOWmvA2Mr4JOKIsWpqQ - GT7rPe63kpOnB6VE2eClZpPqd/CsGoV6m+27n1GgTcpnSCyqxesQgtHa6/DaumcCwz7IGJGjQjFv - 5BjMkxz2c13jEM6PY0j4k155HPm1Lkp8y8TGCFzEquu3U1b8wNdmc0TLk/UVNI98i0Nv5hD7dHkF - XHFi2JpeUTa4VihAFW7WxMTi0PKdmlhJDolPk01KjUkhl1C5OtaF7rfrrSJNwA271rBHfGTmp5+V - 6WTDeBVzbCVbnS1oS09QSF+LWuKpZRM/xzl6JZsHEceijpYq61Ww71cPB/VnQbM8YgFEYjCsTXyJ - ZnImHSzfj0/Dt/KLuJ50FZz1CIL+eFaZiH9MB69LdKrCRq+F8aFWihaJO2r3y8Ujxeamw5nd9/jx - +2QZu5hjBbf5QKh6++rGTJe2VLgiZGRr09boRwvroN68A9n8qB+Jk+q36HkfTjisOYyE902xYa0f - rDqfHRqNdFfAoo1P/ECZZyxyOOZg338hjvO5NMa9n+iKnrA9kTcC1zPltFwBGwbFqsz/DOo3mqxE - X6pQs7oHSKw8zgX8qXqqz84lm3fOqUN9xY9YrTd2LUZOVCBSPCvqZu2xnvLEG2DJt/BXL9li26qv - TG8I6E1LxmwIL+dFAdVwsWZ/zhl/CDVHEaXWwF6SD4wV6l1StocowMeNqyL+frwFIHzuI95rj6dH - jMIhUAg4DnbVoewF23Z84O71mTDOOiJO1UsZSlEM8b75xBl3LTkVTe9NgMNd2hrT74JOsP86NvYK - E/XspHdXaL9YJEv+LAymOuWAhkIO8POtUKOvNaeFogMhoKq61AxJngpVCBfqL6dvPZyUjQxZVinY - XxDfk3p/KhQqvhB+0veDcdcuMpXt86Fjb3ju2W/vn1RFv5qYRpAvGa08cFD3OJ1wsvKZgLbfUBFH - MtCno0TZpO4Ok7IdFpcaOD70fCUcU5AD26TX3k8Y0ZAcIx1CgzpDeew58rqUMB+W8z9+EQpF/yhf - +p5oxiJqTBd7uiq9NKRkWfFsaR+fAGB2LjRf63mRw3cBFi9ifFwKN5tH4gmom+8ZPpH6mnUCd1SV - zeYm0uCTytHSHrIWHKBVIPT7r0H2TNcVdI7WKddH1eOerkCAd7c1DhZ7QvPeP+noqVQRXTvb9V/9 - K9NjpFS1liWb1q4X4Owd01RqD7WoOu2gjK+FkUjY8cYsfa+DnEcHE9tbzNhS70+50rUV+acnmFhr - A5ynAWPjHj2Midw2BRyXcj3hwFXevJfJCfGRr9PikG5qOveyDpuNPlHNEFHNzK9mKuvzw/brh9jU - k6r8wx+y+aRpRD3/a6NhGUKcqnOfLdsCD8jdfTcY0/cD0bh6OnJ4lQwaBWTM/tZbrhO/C+SE+2TL - uh674BVesWEJm2i+YmkAbGVlIF9SvRY9L+3AOJl7WpSikr3tm1cp1nmwqN0k515EkqEqj3R2MXYk - rR7KXmqUQD7o9CFp3355X9sW3tV4oZ66Jd6ozEMJ+x+3wbod3NAsyjmHAJKFvOrPaHTF5qlCGFch - mVNjMmiGeAdk48njIzdc+qV66zbk3Anj5xKzesSaHcBj8z4SpJlPNHfzboHPt62DnZTaiA/nUwjd - 3s6p8fF8gw8KUYBjrqtEvNrXbLJbm4PTLsPY/d4vbJHTyUaxHKUUpyKHpteJctDH8o1ex5Nai6Mh - f+D8XiS6v2dtNm3hrgKKfi+yM1s562bUyui3y49kkzZqxP/xbejBgP1fktSzlPcBouS6p2povr0x - pe8KJXS3p/H7KGRjdN1XyGqxSu378d2PxfXUKJdi/yDJ87xDk9HDBLvYPJIQuB4t6HzWFe9hylQX - z6Sfw6UZFEgaGiiPaZ2RteQd8KVwxvtTvVv10SChnHtfqe9vdt68iWQZOHU7YN0+2B7/VaMTmiVh - wWp78TL2ff50cGJPoRoN65qGjdSBZS8Ee09Pj/gGCRVoZ0+jplf5Ef19yOePD4JhudyjRXBuHUro - R8WBf4ijX9YsKnJ3J5GueiNaqrdrI/wpe+oNzy8bK24CEPfiFrt+FfXi0HshpPaXBlBIac8k9rnK - ZWxgup4xygSmkxLlp9xf+ThmvDKdTHjmmRNsZwd5pBs2CaT85YC9AxA27o9DDlf3YVNX1y89PelV - /IeXVCdy5zGu9U1ZcQ0Nm/rb61kt/qo//YyxkQrGdI+oityb8Mb7tz/V86DpqiLA+xXQc3xji1N6 - Mvzp3yJUUE3+/Mzz1n+CRVzfYVj5aFedmgbjX6h5ItI6B7JEsKj6wLM3PZZ9AnW5nGjwQQ1ajMvG - RIg0ItZP5IL6QpAX2Jr1ELC/en1wbgCzu08CfzM8EHvNU4qq3/NENehTRh1b2cBgxz96zIZdT1e9 - jRg/BrgoF68XPsfDB3za3YLvsVO95RNcVeX7arN/Pz+UQmOC83pa2L6HYsSS8BWCehV0+kiOTURW - vFayrFRw0K632nxSpYPdecipUd+aftnDy0b97eRgiyR3RrxMK+FXyi3Gojj17E+fbIINxsbqV1i/ - OSTwD3/zxjBIWY4pWvGCbPEs9+MmWmRwYKyomma/en50tQPCx/5gT90GHlf20gc4K91TNQ5P0Rx9 - Zx+MffWiaiz5/Y8yAODU7o3xTG7Z0vCfVR8ogE0h/6E15IrhrXQ9kQ/EN3rc4wJ9FqStU4APhije - qw44K9lj7wNuvRiFShScfeP19w/9sH9EMYyJZOP8i7fezG30CQKoWEAem8abNFoNirsLxWBjf27e - eMihk2V1UchGEXfeKNLfFXJLBKop/jti6kFxoRwajiZ3g6DhdlQkmIWHRtPomjLGoGjhR0QFYzw4 - rHu2k74RhVNIdRGgnur5Rf7yB+zsucxgnk9teOBqwH52twzx9/l80HUEnfpxR/tJZs8WxVfnhFNJ - H6MlsswAuKZocVC/NE/QFHtBqrz1Sa+ZW7TmAQTRKJkD+PPDYrpd9Z/jrPtB9/70Mdp1Jw2H79vR - YPf+VP3jCzu3CzbnG36Azhx6+pB5wqi2PTTA/XwX2xVOvCHOnzHKf7GEw9kwen79/8qKZ1Sfjbqe - 1Y5eYa0nmm80yoY/PbHWBz2qOPNmuUcJWvkPn51D0C/F+RKArThBsKx6tT+AmyBVVnysqm5dMwlN - G8UyU4Xs/O2GjVc8DUp+YlGwBG+IxoXIH9A3gPCxyGg22fMooWpRBXp+JNXqH1P9b/8EgsZLPcvk - doDcqnjqve7HmvmioyuImwbCHSexXuTcL+V3lQYYz793PbWKsYGmtwJsSexjUPrYnEDSqil4m/Bl - 1MFOoxSHqsF/+nccPL6Cri0JXddr1e/vEtb8JpDDfmCzfTNKSOKuwy6zhmiqkLOgQjjG66w5t58W - R20UwWxjak9dE7HhKhGAT7DBvpKxmr1mKUF6Mu9pfHoes5W/fLi9d6dAuvJGPWeNrMI5LVMcHNJN - z8ST0Ug9sj18KLig/sNP9E4PlCB1GxjC8AVdFjIPY1Pc3xAv7pwUsE5aGnCyFA3ccSaKfL9W2M+K - K1tWfQeuWz/Wz+9Hc/lRAuhmO8YqPYT1/OjFBqooyvF+rC/eYsSvbt1IH+yZserxWEhbBDV/xBqZ - dx5Du2eBvvc7ENgMDzbrRtFC9XMONCT3bT1mn6AA2Cw1NdM9GMtOVzllWieNKyjrDdY53AY+nRrT - gOPtmp+uRgy8813oUZ3e9VLe7BgELM/Bsnvu0KRoUaEY4bIN0Ot+7Bemfyqoa1fD+eY7eK3wKQFW - PYCDtCmj4VXdy7/nS+3d1/LEJjOvwJP5gx/RyfiXl0Ei2EADZMz1RH6lo/zpIcOotWhCi+f/8SXe - Vw8Z/ZYdMUFtWELdASKDzjVN5fIZDVR7c1K0NNvjIn+P3A1HAldnc51kEwq8e4sDXNjGZK63igp6 - WNNjt7cYO+4HAsdfi1e9nWZMaK6OQopHhdX359LTEnoZ2OHy/pdXLqYubuBW+wlW0+zQCwcJucit - 9wY25qtkNNZOqsB72DL2/EmI5nZQW0C7MqCB/Lhki+CseHROCeFJ5HjDYRQ3siKMM9XPuMx+x+lX - oih/PLEhRxKbv2p2AmzZd3qsN3404f1Vh/MDh4Gc7CTvlzs5B/r1fsVr3obW/MmFSrSeVLf0bTYu - 76hU1jyV/vkjTsuHBt3MfIP3R3pmXCkM5p8exudVDy3vV+7AZ0gtqn0uOvqH/9L7J9N4W0DElJN8 - RX95iyEHX4PwpypUeLfLsR/mZrTmTaryh+9ux3ar/6jL9Z3jmN6uWlMvY6xIqHyeB3x0I71fBM7S - lWSvZ1j9iE+2PJrsij7frqa2tyu9wRH0RpGm75kg9X5mgmRcTvDHz/Z4Kvvlg24C8KR4Bor/Gtl4 - IZsJeWZ9wU7D3TxxPyw+/On7Q+QkBs3kksBr65wJE7g6GtDiBUCv+x/du5fAE8nEpaAnuYoPwvmY - 8Sxt1T9/TNqneDVmIaA5+su3j7/XOrX7zGQ4hVJMk4a+o6/7HH2IxU+F1dC0DPa8a67SPcIT9vfw - WfPfRIB3qT5wcNHqaM3PS/jTe7Gof7z5KKuN0rTJddV3AROUm+vAU3N7erhWiPU0Wt+o+51e9Oi/ - jkgMz3IFX6/4YH/l5zaZTB91z04j4nUI+6FeNg4wOZ8oLi9lxE8/LQfLngjNteMJTTK7degFS0mG - VY9SMkEi3av8TT31PqP2/nk7qLJ+R3yB4491RDQDmJ7LPfjy8r0m8FI66GYzxtE0ITRbrB3gPmWI - iGwg0XghwoK8Sd5QQ9hdvDlrFh12XagFws0cvMkvXBOt+wXrt4eXLTvpR+RAZGeqyQ9aL5o9SjBl - qki2q74aNs3Gh4/z0dc8rvOWhidEfqS5gfe8fO/pXKWAbvr+iINQ+rFFU+wJObLeBZyQH9AUXu4L - XPtdgjXx1xossE8nZc0DCf8Mn/07+u4C+IIsBe9mWt8hzu7Nn56j/m8TI04/z/bf96d77yNFrOeq - GK38S88cbup5cH824s+HhKzn+mv+OPMbgORDCX/aR6iH9J4Ci0MIlqoVo7kxDz7Ql6ZSz4xLY1aX - HSDFOj+J6CI3E59VGSiIfMR/+mn1cybwR/0YXPpmiabm4lcQ7yCiq3/JuG5XqPIoxwk9mHVbT000 - 2ZAS4Ujxma+iebrdFpQORY5xO5hIXPl4N83+EPDW94LmR9c76JmbGj2VxpoftNK/+qR67Ozq1zn5 - qf/4V3MOpB6VgiRozRMwzh5nb721LEYTQ00wr/6XbNcTBfUmLQhL0xrNXjclCtkijjrP8x0tv01r - g/76cXQPBvNmLIQd+vs+aXGrI0Y/qgRhLN4DuXwH9XzGBwDFip5kmy610TrqxpWJgS3qs1z1RFu4 - n2DNU3EUOGdjuij3AG6YZoQTR85YPkZVQmqfWrxnQxCxW6QQ+MuHClzfEHWsV6nomSNRv2AtW/kl - QUKb37Dm0A7NBvVVNF9U+qd3+lUfqehYDBK1zYZkk7hNAqiP54geop9ecxI/u4q7W7uHo6j3c1+g - Dm6bnA9+ridmS2BoqiJsOi+YaVj3bK7SDax5A17fraqX8zbTYRdnMTV2bceGh3X8IG4xRXwXrk9v - zUcI8FF9oAd3ZvUUia2N6trRKK65Sz38+Tt//I7UlUaUsbW/B92zXfWrcoi4FV/hfctFagsSjWaL - 4x1Fel8Z/cPj8XUwPuBQK6L35FPXy2w5OhzmdqZGnQvZBO5SwgnNKnaGcqz/vg+8to+Eupu5Ykw9 - 8C6omdRTLzvF3oJ3L1kepTMJmH5rGX3NUgqPcrMNpjWfFVc9DTblbWruTnM0P400hx29dvSw8tvy - h4f5YEz4YLZpNn1qJ/zr5wRQHP1a2EkvgrYdLYmYyA/EtjdRhnL4cPhYNi1icy+r0IT1D1vHZGNM - yugIQFQ+xhfPehnTM75MUF+EHdn9tmnPnjXXKe+gcTEu08UYfiVZYIydBjuvNMr4qbvIf/0ArOep - H3HbU9+hUiw9evNedj0NDgmRN0kb/Fd/5c1/5X/rTY+H8ZPN5JQGiDP0Kw2+qlD/y/tOl69PJEuN - 2Lj6f6W/4AKb6T43+GX3sWHLKxvsccKQUSO4c8B9hDu1X01nrPmarST+3iTisSs9ehd8/S/PxE53 - 4wyWLVcT/ENe41VvRMxsHyVYzLn95WkRQZuQU3KLB2zotxZNv2ca/+XNwTzxKhIR6QGsx/m3+hWj - Jv1xipVcaFX8+OtveF7awpBXD2rf2Ysxzwtb5Xe892v/94AmZ/tqwYkPCj3OypZNftzrf/0r7F2D - V73+WwX3xr2p3b069C/PgO2+I9Lq97hPrYbK1kYPssTOvebzvZNA7/8kslvHoCzPdlL/6n39vrE3 - JIae7Fa9RPeJrLC282P/X56pxSXz2OXWdyBv+QfZbYPAm6+NEUJKDzG1jjunJ4X9GmBh3hzIEdw8 - djx7E2T6NgmQIm3QEDc/gDWPpXbUtRE7Xdoc/eUXqOhE9A9vf5jlgVBhyVsk4xLCnrdyjH+3kLHV - r/3rDwvjqay71X/DtkvuNFnXq+YeSQNt34b4+vplbAazG/74Ajsnb8vGQ6i5//hBFTMrm16JXECI - jGPApXvwpvOV+Eg2HEL3/eXApvv7RGA/BJQeIhJn//T1/3GiAP73iYLoe9pgPQnGmlFbqGB/ymWK - LfSL2KdENnzFQaWh/6D19Hh+OhBq7on3ZSCwqZkOhULrnNG4zfa90NIvgaDKJ5outhQxT3vF0N7O - NT42h4oxyOcPOI6pYZu77tBUmvWkfH6fE9nOzM7ECKZU3vymHh+K1jaWsNckwEvQ4f1S9d5i3ctF - af1PQbUejoj5u4KD7+f9Cq7y89jzrj3L8GnOl6DyH7ifsOaHqMfXD/Wfr8oYD00jK86dePhwca6I - zfCO0eua+NQ8OGO9IM+zAa52FrAvsxkrtNMVBmqW9IBLvx4ya3DhkkZ+8MbHWz/KC5PBl+qciEvl - edyybEu4D3OAn53uZIKa/lzYucwIkBXMbLpfLzI0IcbUjn9KxD5WsKC3E/jUqLbrVaX98lGuRlXQ - i3DG/Xzx7pOi3tSI5vpul83l19eBelcV+5Y+RhPOp48ilrFFLxVl/XBpnqWUnbNvwH2/VSbop0RX - Xm7T0nvH7JrF3HsDWdOjYAM81GxkcaOQw+tJtdnl6yHNNyUoU53iYyhdMnF5hxslb7gQx8tjvSdy - vWcnWg982U6RI+YNjwbNJidSry/MngyZVcAvHQIaTk3Q86dpnMCy+IbGBUo84Sd3oZIakYjVwn4j - JqAB4JLtrlRlz5HNXaKrMMRoTyTKJoNNgkmUPAocbGTteu/q2VNRvsz9esa1N6ajd0ngMoUutd6D - 3/PvZ60redpJ1OwGwVvuzykBN7jW9BK6U08hnxtlKvgdzTOcRusZ2hyk6d3RLNMgY8s7BLQdRw1b - 0U5D3KxVrfJ+mB2N6LDtZ+V8SqG9RTX1AiFDg0M6oqz7Hds7d8NmOSjXd+U6RK132BnjaH1yRa7t - I8Wb5JdN+T3Q4XY3N/gpHFvE7S3FhbiQLBp/wqjn+FG9Kn1q9NT3th9vMmG4wluSAjLr333U17cu - lunbVOj5Jb+ipeznEDLLTkgNtVv/rRck+vVEg93Uotn/XnRl37URPSmsiujvoTfwWECndsk92PKS - llLRr5cJJ5SdDPEhXIgSBBbQPW+9am5THlVYPj7C7rWve9p1BqeQ2fnSY01VQ9xtHjYsmIRUHeBW - 86lyMpW/3299lcwTIslwlevyuQbvjX7s+VDXVOVWhwn2997L41xnDCEuyxN2V7yYtFzzgSqdj9Ny - PGULjmwT/PfZwffdT8pYbjmCsuIBOZ3RO1r8A79OiO8OgXLojki0ynyAsJsTbLxOp54LlYgo7y+j - QZOfvh4Hk7BAuRh3etAK1Zhnf6qU+pCmeD+Sj8EeSUfQ8vj12GiOv3oUvclRHvVjpGphW4gvRGWR - 2cu8YZtVcS2Uy12ScTZo2PtRlk3tVhZgefQ9PUqWlglK0QB08FWI/EbrofXzbCvzsP3Ro/Td9Mv1 - oZ6Uub89g03+qRgTm/QDP+n3JUL8e2Szwje6ci3Bx3fwCWKhdC2AHp98sD0P34xrfqWgfDM5D0RN - OBjCWY+vymXJtoHcFkHGDsKHQLjtBRwl+s9bWN+G4E7dFEgB/vbMjKJCWT9f8Eq4uOf5/CUpUZiW - 1HO8Dg2wfQmKlXyORHhcvj25ahmArY4q9sSf5S1m8Alk9E7uOHXmM5rP9yiBIrM56iLf8obTvpHR - 8GNvwozwnZH+J5UQHcQTPqa/KBoP6j1U/vjhQI8/b9oZaQqjiC7U3T0ixt34hcBpM2B6v4qtwVDy - 7MBDpUf1/vphjP6MQuH1PKOXOGr6MfzELRpkycSuvOj9MnUCB627ienxd3Mj7jus15h/fw322Rtl - s7XDLojl1aJ+yotsuKV2Ik8UEnxWi6gX17maMFC7pBqxNLbsZqeUr/47weHT+0QLX184hXurI74f - ZxQtl1HWAZ6Hyx8eoMFMEgLx7+tiS+I+xrgngq54YAj08NlDNnEuSuGvnmLvnnuL98ID9Dj+4Js8 - 9n132FsBaG/XoIfNperZSS1B+djiF+N3UGdzc3cTGK33gSYy3mbL+HF0OLdPH6tnZGViThUTHi+x - Jnx9uBqLkyeSco4+BAcX/M2monsFIOHdF/tyFUc0q5CArk9xoP5Q7tE/PpsO24zqv++lF3PvVSi5 - ZH8CUTnpHr/WB5xnNceh+PpGk0IkU1n5ERtmOXrM0l9EER/vjFrZktakspCARPeyx7eX0nrT0J8a - xZafQHpJ9BnvpdGkhLfapB4vR4zZ42UDQ7zbYzzfazRRog6KZAU1vp3LJ+Oa+OGA6nM7nETG0DNz - sx+UicQBvc5n21uWchygzjuC1bl9IeEjyi6EHUtodv3e0VJe343yt97hLXUysWnqBg4w3Gla5a9a - 6N7Xj4x/v5Q63nD2RG+4NKC9HeMfHzNjtgtlxScabqSKTf4mtpVfhndk07U4Wtb33ZXVT5FfaBge - r1muA+Vd+uDQ5q1MEJ/vWH6BxOETOnmMHoTPoOxvu47sisCoxUnwB3gU34BwvS3Vy/INrgC34Y2x - L+kZfxUCFTmk+WHjU0jetAS1pAB8DXr9lY6xaN8uVVTPp/RcxTWaIbqZSqZglx4n8mbThk8GGMqh - p8+MRGysfc2Fs2xdMd4kh4wVh20LzB/rYIv4kI2lPqXI/uKWbJonqmkEUqoc54kEDT6/sj8+R84u - IhTvGjNagloUgBzqJzUS/WCIxbsHOCAT45OCHgbp9nWjzHy1o3bms3riRzVWuP1niw+13vZLO/7U - v/qh9v508WYjaVQwRMqRRXztsyWJeQ6Y0f2wt+qr5bC3fPl+KtSATYlrCB6AKlfnOaK6uE5B9BwN - QHkLF7r3Qykbhj75KH/6rrjgfSY0qGsBzOJMcjVwosXswlLJjCKgQf7RkXCodiU8bGNLiLk8Pfb3 - ++5ml69TiuNsfqjqCcrPkSd/+DzE64yRxs56qm/VRz1Kz1SFSS97HG+VOmqdVreV2PdyrP5EA3HP - WROUzzMVsOUy3htkYncgzoCp1dnUW5KpcmEXXSPqRU5dT1iuP8CehY/3gXboJ19kBWJWyOjBuPje - HDwMSRbj8kU+B9b3cxIcZPlmcR29WveDIa54irTYaAL+PQz90Ou9Lv+rFyG30fKIlAKdnt2N2lWN - DU7siwqOpLwHqHx5bCrLxEbL6KgErJyy+XpeUriMr5Je8Ff2ZjloT6i591uyHbavaAnnroQiPtCA - zxLJGw87qYF5wpuAhyjPps93q6O1PgIh3qveqF6QBM2QrB2a6pXR3FIFdL04LbYqGvXDFkchHEpJ - wN7Cq56wP1+vIMbVC9tv+92TqRME+OPP6BYYSChPPiDt/SNUr7detPjvV6fspknDuXS22FQlxxYV - gpTQSzx+vZ86l/6fPiTPTfKLquNV+KA//6Btix9b7i/RBDroOsXFuYsGr1uC/65XKe1rxodiCiZy - n9hXnmM2a5bryn96UA/8Ei3AizGwl337q0fEePdkg1VHIVmki18LNXklSuo0Cz54tmssfTxwiOeW - L9YOG50tcsYJiGfug/qrnh2ZZxMQSF3/4W0/e2k2gWy1T+wLzpnNJKQDwvEC2HVuNFs04qlALheD - SGP1qhdLgQSSoi9WPd/UE9jrPZe38Ed998SxiWVvF8yv5FE3kK1eDNrRhjERH4E0VlrPV3vqI5u4 - YyDfrzFa/ZsMRp+86Yq/bPp8RR3O2qahxiEOvemA+g0kc+KQifQt+seHGT+ltGieqF/1jwr9pP5o - QYUrm7kEb8DJ4gthbPPNlvYM6z0tlo/zlc8nmDYL3O3TJwDmSay3QFOVvjlaNPwdI28m4XcA676X - go13uUQTQlgG080f9PKtpXpQiGQr88Z2sOvaZT0N4y2EwzPsqbHq6zliDxntC4FiJ+mviIWbrS2v - fiK43wGhaaOHqmw6XEQ43Ndo9auTbLZ3gWqHpoyovp0ruJz9kJo0UbNlm0KB+Nt1F0zlfDPoW7Jy - GJ9ThZ3+PvaLXF0K+B7Wo9xHL46WzREFf3xG5h+TjT99LF8ydA2Q47lo2r9+Bfyy4w4bzEDe1N2V - BD29RQj4OFoT78Usgb8QSuTuIkeT2BelfBPKgarbjmTs5r8EMB9kDobnq/LotYsF0NLND1vvYahJ - 5cfrfKqqJZmb37OZYxBK26bbY3MvvxGbBJ+Aym0Huu6vaCBW5ALfbg1qoado9N9DSZSOPxzpWXrN - 3vDPv2XoSjW5M9niGTFBleDY+EyeTTZF7kNXVjylOFIujItv1xMEm9M6dd9+eES/Ti3iLwPFJ5wE - bJLoVCjle3CpPTw0TzwVGYDwzn+46PUzOyu3nQ4yR25UvadZPzHxXKBUc/XgRb5bjzmb2UXXi9v+ - 069CXEoTbIS9TPet/PJY/otz4ILSxOv8ZkPU0PMD186wg48/mf3Ugx6jX0oCesw2lTE/N9cUxb+3 - i/c5Lesp5+QrKE3gYaMYU292zoaqtPV+HyB2U6J5d/psFJT520Cc2J2x/p7aMNaqSHa3c9fPe1Ob - QPWFHXb4TM7oLj0UKFOOLtbpdMgYkzhOcXA1/9Ob9HKVN7B7RQPV//b/cVRa2KpRTL2FLw1mwUFF - 2v36xO59ErPp8SQdcvvlHCz6AXlvb0NT9HwaLrayRDLmiF0kZOb2F6/Pr15StyHKd1oQeelHky1/ - +Lv6Wex9fWDTd0g2YKfyHdtYi4xFR+YJhGF3px5nfNlUv21JqSbRCyS7+NXT/BbCf/704rLLegud - V8JfPhUbdskmOu0TCDzY43Os4popU1aA/s3xqte0nvPmlANOdTC9bffEGzZ6qEPQvzr8zKvdvzxJ - eZyOd6qy3RSxXrRMiK+xQPobOP20ZUQCKfIgkDdnCS2FoCewrg+2vgryiPI+NqhZbzXZNacpWpby - PQC3b7YEkuaQCSK6d7BX5C/9w/vxKtg6HLPQok74c73p0jwr9OwEgq136BrsfbwH4Ew+h7XVzzN9 - l0hwn4wa21Kr9QsbyUbmVBdj7NIgm8K7aivNRl2wahxJ9o8v1nrG/sq/U1ldJ8UIxSu11Nnp500j - n1AhVRU9rP5kPol2ooRKpQVSqr7rf3h6Sm85Nnfp0eB/51eKujKkRI4hzOipiEAOeGpiPGy1jCvW - W/fEeYOx1sOIaJjWBVIv6QFHr44Zk3V4t1Dtv7vgLZxxzb4jXHca9izSvnabjPX30Ibrkx+wJ4k+ - EvLm6yuabXr06L3ujAX0OEDMlgb75Bah7iXJJZRiHAe77t4Y0+m343aNfe+x+n68IraXThXk9HWl - qs48xC/3eQFCqxyr1tSgucdiI9Nbj4NdYmFWH7NeQH/6f3/4fr2xubsppOX4/tOPiJATFytUoHus - KkjxZrRVXBDC4BIM5MbQOmPW3FVWYVJff67zhN/XD6z+Ez+NZEHMvIMtm59QC9gtMNgs7/ISzjQ9 - r3ps8CaD1ja8s6IMhGaojRnXTQm/u2niP38xIvvCQbj9Cau+r6K/eld+0Xyg+o1z0VrfApzOYUU1 - fiPX1LHOnPI9HBg+V7GBxFovOrCUoqdY2zcRWfWJItfmkSiqbjDxNvEF2HQScQF8Xv/L5waUUfwv - 3/y1ZQ6fs6EFoAZttuq/HKgw7ulZP5poCu+OvVv1G9m0t5ItRj3Lyi+QOnx6Kme25pkTbJdvSXbu - sK/5jLc6GDLOp1G1fbEx2m0qJGQRxgcFqd4kxaar8HC8YSMXAm+xxGgB6woGzf27gwSG1xkLLmHU - mbUbW8yA+HClV43ANbtkrC7cDcR8QvABLb5Bf3tBRsEdlUSWl6pnnnMAKKVNgc2tUmcT1EqFHGkx - 8P4XG/WQh2O6zjzar+9opt5EPbQgqrQ+fX6fM5oPzSAhb4FVL80zm8tx6OCkmBZd97u31OSVwl+9 - 7XuP1stk9wGqehiw4XmFMd4lwYVVTxJ5zbf++AB26GFRJ8DfevVH3K5vsIWPp+8HMeujxGinDeut - U4YRiSk+b+D3ziJqmrFTT8VAJbRbEg/7j2VC//JN1s8ZNe/jVI+Ug+7PDweffSf27DAF5l9eGYj6 - qa9FS/+R3TE7WfRWBldEj8q0gDAzCRvU1TP+Hnclam6VSx0+S7Npi7NQ9k9Jh+MRDzURpqctL9r1 - Qbba3syE2x4+6HPb2Bhf5QAtmCwJPHzFJCjdvWq28u86cyKkWrO9eO1f/+CP3x/e647+6hklenzC - qqmxmta3KoYHqEBNVKtMGJQ0gT+/ueMxzxhP+gHyhfXUNreffjp6jwTy/KzjA0p+9fhM3UV24uyE - 7WG7+Vc/u+w6VNh3TzGaRaFJYILoS83T8+ctIX6sM0S2cfBe15/Nhr3qU2ioYdpuzdkS44CjdCa7 - 7m56giVGExTbbUjN/PT9ywsHuNBDF5zc5ofotQYfUOhY2PfeRi02+CbDaXxP1L4mpB7otzSBfJTj - v/206nkB8k+RY7UqnYg/+an77+ftMlR7HmWvSq7bPKSucdj3bHjKA1r7M9jkPo4xlVWxQLU3A6yC - efZYZ0k+tBw9Y016zX/5+QDfXexS/BC/iO2lpER/623387VedgH7wDeTcqweMfKms8BsiA27IuLj - UHvT4X7Tleburif0RKNmu83DhOGRX3H6p+///Pn6/IPtin/Dms9AVlV2wOdmVS/98hRgrHWR6rpW - ZmPm3hP01tGZBsBDTzzgdEV+FQYObuUFTYLahWj13396y/in59b8fc3zqpoup/0J+tNmxk6ph9Hw - Gs9XRAdVp/dJC7JVH/uwTOkFH0LDMPhq/w3QPzz5qlK06oUcpp8WrfnuoV7Ul7YAq8gLu1Wu1VT2 - romy8jUBMgvZ+Cz7FIWvoaD6RqrQNOAmROIv3VIXxU/Ezv3FR2v+R7ZEOGYkvAj+7i/PxtdyiJh2 - qq/KqtcDjspK/SPhl8Bwrc/BNrQPSKwIDDCbgojd7iJn7Ba5BciJxHAWkJdBlvJNYPWbwVK/W7YI - 5JQqP7XkcfznHwpBT5U0nHxqvkzfGJ6Z4AI6fHhCvAufzcNRkmQp3Wt0L0c/b7694xNccLPHMT5r - kWizzQd17GXgv3xuIUw7KX7dbej+1JQGFR/zBvpNUvzr542Tc23QkVR3IiSvqp9vhy9ApXqHYLO7 - fqLWvn5kmFT5FVx3bsGG0uwn2aRXFLyNfNfPta85cEtHB5st33mT9b5vQAk/GsYZidA4HCUZdoVx - I+Ln5tYCt6gSpDNnrvlWYrDzrHDoT996/nuMyLlwWvQbrgk+8lXH/vyg9NdPwhdP6Vlk3E3482vr - fvjXD1K4TytiR9439S9t/RTQV63X51lGs5EMOvTi447/8nueG7NWxlrZ4sPxV/bzIL1dpJrnDmvl - e/nTVyFKH89T0FD5Uc+jRXIZ+3igzgiNwVigNvKmdV50Px/zrKt5XVXQftMTziGeQY+VWSgTC0Yi - vea6//MDoHK5RuTnzvPW/CBRgs28+etn1KL1Ua6ovow/bA+PlzH1eq0jDzRh7a/qjH+m+gKDO47U - O9/DjOq7RP6HL+a6/5ZLeBzAa1mFj5VK2LxvL4nSnL4WDV7qO6NKEJSgxFT48yMZeRrGAP7gH7FR - 35tsOtyfuvznr6esxtn0vKwzgIq+wJYPB2P6uKaqdF5yov7e07xVn5rKH9+dfyw1mI07gO6hpwF3 - sj71PMTnCh62tsWe0p8RITwG+Z8/bjTL+8uroArKDWFrP4Z/a5OuvOM6I98g841l+doxrP3LoBFE - oSZBvRVQZeUmfq78tOq/D6CcP9DLeQq8Jf6eE+UYX1T8LDmVzV4aLWhUglPwJY5TD+O883d/+OO+ - X3w01O9AAi5K679+Qs3yX56jwvavOE+aQzS/tUkF3et6ao4/bEzapfygJjxirBNN8qbXedRlHK8z - ztb+KacVWIbW1DC2CaH1qIdeAk0t3rF6D0s03zPDhQ+PnlTfFGW2+qEV72D+4y82e4JjwsBgix1i - bhhxZE8G+WhhejjFMyOr/gBlPFvYKTi35w68F//1i6lPbowNf/4Dha5Fnf5+7Kfki9v/50SB8r9P - FPTDOvXVnqp63vubAVx2Ngh4x1803C8XG9iRDdSY9HP9+3RKAUGxyYJt3X+MKXd3nVI/7BN1p6vv - Lbt1Sp2Dnb/EjtTskqgOSF10DljcaoyX6D2Fre/nWDvcR4/Q7J6Azzubo5gfPI8zemiR9kt1UtRn - 1RtMLi3BRDXDKkQ0myOkVooqKy51DuO+5/tf1CitkLbUen8rj5alUQHZ8nLA8bMezen4qCA/bDJs - vb+6wR10e1FuoP6wpsdC//f54fDhSCBK1hLN5um1AbfcC2Sz7H/90lL4IJ63AnqaVJOxsv2liBwm - lSjkds6Wxv6t/Uy+J7vv3kCC/mw5+OGSw49vmCLxETJdMS7bkB4Dl2Rt65wbyOKSp87YK/UQG3eA - M00OwXIbGmPeP5YC5KOt0ke6naKuHvel8t3uQhomspQt3FEf4PJRXuR3CULGeVmbKvqpHqj9ek71 - SArJlVH6MfHhRisk7mepUHzp6lHt+uzY8LJUQfktgoLtXFWZUF2yBrKx1zB2tcpbkO+XgHa/E85u - t0PP65mVwrCXrfX542zpkiGGl24esP0KODSbfqQrj+FCqSHEcT2LaUDgp7URjUj96jnh8c5BTYaZ - Ppelz7i3INtKazoYh2ZsZOJ2o58gjsqCXtgdonmJV8R/tR7VEzmJBPFqhoolhBaOpfiVce2NdpCa - KCINXacScZe2geXaGUQOuMLj7ppkQ1qdclok/gGRI3dXwQ6uFc394Z4xCzIJlksT02TslX50sWMq - zi/uaPz4BB7dz1IOP9pTHLzDb892mZfAFA13mt3sETHxp0zAL8pE1d/jzcgj81MlPDQWLkztUgs/ - eCXKuwCPhs/HzZiP3+cA6v6nEy4zsDeJyjZEZtFY+F42b4876MEC+YMBNZxJ8ljBfAH4rRNQ0zxa - aF5iKUXVUMtEiD7PaLFm54R2yXCgoXHivJkUk6ug1ZrI0k/oyU+dUuVhnkNskNBC0+LbuuJy14Va - 5rdHRNgkJ3Rsnzb2WY4MZsVYgl7Pn7jIiRZx5XpmPA4LSo8sKyMxeR0GgMn54BiPgMYf5BIoWXIi - 8iltWD/ZGxmqRb5Qa6u60fwwPIDB/YnU/miOx7HhKYCr6R0O9Ordz3JPHGgP2hOrHrohbu45V6Gu - IVCHC6Cm+1/YwO2wnPApYlovcr/QRNJpf8VefU+y+ZUsVyXaXSsyBcWVsTk/fEC16gZrb1Pq5+Ro - DAocJZ8e0k2RzT8m6koljEIg8ox6vGacc/RJcBTwycuM5g/1UxCJ3AdnpWzrRX+WguLFjxEX+vnA - 5mR2Jljud54eg8z1eG9DQdadZ4D18HaPBKvtUlCtV4M1QTn0vLc/ypC/A5teBkHpWTcNE/JTRacu - +aiRKP74RYmHtgs2+Lavl68XcUDOXEGP1DVr7is+FnDxRsb65zyzYdTbRcHhqcF/n49eEseFzEtb - 6peXqyfsx4cOWV/X1NmFXi2WTVgok/ZB2HunWzanc1NAeMw++Dz1dj+Z0qtQnD53cDY8hYz1WvlR - vN2SrFMnz70gGS7AhvARPQ9phxgMlaBI0anGzmbOMoYc3YR1P2KzumvRPAhOCg52CcZ3Z59N8g1a - QDU5U7O+3nt6iWYfzM2oUn+73qv8SpZY2Vjjnrooq6JhnjwbDubngvEzdTOBc9jyr/7jIDgaHElz - Ar+Q6PTv71PsK8G/euJvW7/mNvO8UbbfYk+Lt9YjmgZOAvtmw7D3hlvE7HycUOm3VXAC/sOWss0l - sE+5Ro+e1HvTH54sl09M3UxGbBbtH0EnMDWcq07k8Z0pCzBv8Y7MB2eOplt7TVGdqy+cCrfob3+p - ynH75LD520n10n6vw87cUJUGRTEg1vvfAd6tmWAN9ydj+LV1qliJDNT3Fd6bPBZf0eNy0eitI1I/ - tKbeAtvEOr4bfBdN1+2nhbBeNKrmtp/NbTT6cHgv22C+BtiYTUNxYLvJeZpwQd7PZLm4yu00bQk8 - 2SZbOIdNgPapiANXz9li3j6tMh6OHfbEaEJMF38hpHcXY+9sferOM4wCtgcNU+MSb/7qLYY4qgoy - r/tbmJ7lVbEsSrG54gGLiriFEHEFTvVXVC+2w52UCn/8YKLHc8au0nmj1Ar2sGUd6qzf3H8l9EYZ - 4OdWOhg0aONECWdW/Hu+TKdGohRfU6P5yzlk9BEiHaxMT4OIaJ23CMdPAs3SLfiiWnEkVj/LVFp0 - lrBh01PPfDGYYP6FMsXGcZ9xqj35yi5/dfhmT1Uv5rbtA8PIpXe/G/rZ23xB+avnQLoPaIF2n8JD - 9zjqPeS2Zi2X6LBVMptA8XYz/mEYAMIraanjn+xe4Me4Uq5jIVCPniuP3rXsA9DaTrCD0o+WiR2v - wEL9h63+NtYtNhmnJDSe8e1UKd5ysUUZDg09YZxa234afntTEZ7Rgcg/dceWQctNmDhkED45OfX4 - 7FEH2bWLsH18Jx653lgHD/I8YhfkMJtKKQLos09Pr0eBMUJvbqFQO7hQs3KsmmOv06BQufFpUBzP - xvI0wPnTR9TcqQob0k8igHL+D2lXsqUsjIUfiIXMSZZMIgISFEHcASKCIjIkQJ6+D/X3sne9rlMq - JPmmm9zEITYFu2qW1yv04aGWYor3T7fpgzCC8KVGLxzU1GlYIc42olw+YeP5uHnM9OwE9F3YECR4 - vifA60OFzjk8EaGsvUbEY8nDXI87bHFxN6yu+qn++IQm5EOiOef8GVYDJThIH/tm+QTqG1651cHY - W6ZhNaVihtY5lqnvj0pEtN4P4W/gg7/3Yc539LPUq1doeL+9L4l7zCXEa/4k8LbQZrYf7gUcJs6i - uOrKYTnE1xbt/KCg2lMIcyHPCh+OP5tiPdeNSBz1q4XebHzRMG5OuUjzc4qiV7inlhSuHlNN5sDJ - CGAglNrVXITakUFrJiZ2czVnIzc1GtR9QzktqHKa4Y6sNzidixT/6Um+yDABNX77OOYfw7DMCeLg - j8kjPunWPLDxMZQg3s8SQXGlDaKo6gk4VFSih+hjNfM+BQnY9A/1+cqNVimxQtCA/UTzx28Eo9N6 - PPTaj0e9VFSGZbqY17/PC0De7SNB37klvPyoRk09rMD6BMlWEddcfLpOp3w5UaGFvnQp6DE6eZFU - jXOCujJxsXdO6ohFg15AweNtqrWqzXiRvHzopnpKNz2RCz5uVng2TB2fwmJpJtY9UgjFw4ea4HAA - S+m9eHSUoY99+6hG0xcsAfyuxkK4xKtzttzUDlJXF3Gw6ZPlx3YGfN+rDza9ugEM+GcNHrJZCsQr - cPNFMcQShF9pjx2l+eaLjboWylx1wo8YW9sOztUAP57LqXGfvIZdDVQAclFP+AL9M5st/lJB+io0 - +hCmZlgVrxKhc9JDrM/QyDd9lUJ2hF4Axnk1mQFkX/nTgwckIDZQashw418C/fEeTR9jv24Vgh12 - dm8yMM3OR8giO8W2KsuMKF7Fw4g6Lc1IbA28szn2zj0EBAW5a0o74xwC7b5WWI+gB+b692vB9j6p - htanuVQH8Q2DQkT04CyuN9+uSgaGiRzpv/UyfSAPu/MBYfdwbdmkq6wCHvfr8GX5vr05FUwfmgHX - BIw0r2YeTpYPAklT6OXBHSJhOsEM/Jg60uBzOTTixg+qsO5mshx+ei4mhdtCs/ICHIg/3RNeMwmh - Qn4Oxm3w8ZhVnQ0YiV4cCL2QeLP4mArgi8EUqKItDauRn1VkB9ftHu1AHihLywTqSSDQ8jHch1nY - LxWsr48HdWkjN/N05kR4FlN543cpX+nNLeDtOIf4DJ66J7xJNYJAtjrqZ1cydL/3tUBcBVca72qd - LbZy7+CmvwMu9X+MFXYQ/P0/fZ5eSrQOn7OLNMHwMFb5zBwaYVFRl7uI7m8kZKs/MBdoFcPYe6SL - t35xvf75NazjjM8ZVlIHqtylDwTr6wHxafKuej9/PaqXL2UgrvqpYfBQR6p9vbpZzoEuo+39/vk1 - ttQosqFrWHdsZ4MAljepCHQCe0f18HRgbNl2g5CfCugf3rG4wRd1iU0ueOt9C9bs+ObgJLYM66jq - huWaX9I/f0G68p1GLBk+Digvwv4f3q9E362Af/UePWBz8uZvM6/wtQd9oCjoFK3wWqfgvY9+eE+V - j7nc73OFNJ2YG97KHpOIT9QR+Cdse8KYL7eulmGU7+709OXXfNP7Lvz165Pi02tbD27To6y5ejTK - Dudhtc8XB1C5INTuDNq8w2moQD79dIwT0fLmxPFblEyFGNBmsE1J+qFVtd6vPd74eZgn7rwCdEl3 - OE3YPhICbcnQUH8yvOUPwwy1dwrt9q7hJDty0SjZcQD3qQzxkWVBzu9TcAW82ORYl6c4ZyvMU1V2 - nSRQo++Sr2PgqHCovxm1juicDwcovf/pD6f67Nh6uM8GkgSQYQyPe28O4EMGIHtbNETrzlwiN+kB - 1o42ttnhw9bp9VHhUZIfOHlS68/fpUhfyooMsm1FUquO9T/81GMU5Ux2Dx18rKNLNeHJD/Ps1VdI - fjIIkFAcQLfxORh9FuNAkgSPDOhkwVTKMfankTZDXX0D2HO4DuBFtzym1+UbKsaN0uM1fzZLV5g2 - 2t/hgG96fgPC9bbd0jAAhchbPrEulu6ilJwN7NImbVaDiDIMPjsXH7hbHM3PqjNgTYY0UMPMYqvy - 3PMwepsS2VVd2ZAv7lf4qrG14f956xQ5zZA+kxdRIJ4bqqy7K3RN18EHwCfRItfvFnbonlC9MRdv - ojsdqskdq/jQcZO5FPVqQbLs7thIlJAxPVje8DO7IgGbP5yv5hmiP31/udyUfBWWpoTfH4xwibsm - Wt+cGSJyFkt6ENs6GrlpMFQ1dkps5Z92mO1P58D+6ST4sJxvw1wj+w3Nu/vc8ED1ZoMTOGiV7Z7a - V+dm/uVlYBJeFj4cd6Un9NqgwkvY8tgY+Zkt7S0s4ZkkWQAW/uWxP//250/2lnwYpvIZiBB93v6f - v41WNso8QMdw3fTPZ2Ab/v9bjx88Gib5aXIGq3im2Ow0g7EJCRfl4PzugfT7O51z7hy0+Yctf9GH - Zfe4FXAQ+YSGrdqyPzxAzzQc8DEOLoB84t0F3tdFCMrmXJlzriAe2NeoDoBkCN7Gt5oaKlyDvVS8 - D/OvOlUw99IOnzr51TB/N3bqQbLP+P6sYrbetCED0VuXsP4wjkyIgFOBc+6dMDZL01uuN68E/Tfg - 8enwpRu/rx269i+f7iUQsfXSn0NY/1YH6zK3mFTYxxp80+c72F0tOZotKKdgXpcPkQ7Fzpza+tZC - I3yNdNPPDXVVVQOPW/nEh/d0zv/wDS7+rsKBdVmiZdl9ekjbW0jEVndM+v0OAdz0MN7yz2H0taOP - js3vRe2ofeZbD6X+T7/hv3xmrj9ZD1PrcCBrz445X/EnA16v7xO+CouR8yZWViAegvEfv0/P77j1 - UpAhPd7nPh//9JqKfPCnl81ZDoAN9hT0gfT27mA4Jtvzr2qMtRPcRT93MCBaxZXDeu98m6XmhQCC - qrEIkG+aKQi1JqOwXRLsZsgc/vnhqPIT+ugS11vOr1ZG4f49Yj2t1u2eeLcE8ifVceTMqSk0LyBD - d7qa+Lr51+XI+SFsjsrW8XBpvTlc1OIf/+amH+fb8xBgubcjQZ7smdL+elCRPno8tsD6a5Za8R14 - X5lAKjIobC12xxLuxa2CTV8eI0t0C6DsBftgtr0xJzd4zVCx7WA+QHnfkB/8ZfDPr9jX+wpmVHE+ - /Ib8gabnUm0WQmwfYr5CFF9j3tv4U0WdXNnYMXMrZ1OfhiCP3296uqDXsOXFFWrF3gt2vnFs5t+7 - KAAtjteAo293WGl+z8DytDh6bq4+W39yVoKDqqzUSJQZjJes9qHD6pbqM6yj9TWvK9RSslAXecSb - JXd0gWcXIX2uL9zM7lahpW0cYus4CkMnklcAz1L5JZz5RFsPx2cPW7Hz8AkQl/3pOfinpx0/bJsh - J5kPCvWQ0MB9XyOhjfQaffF8++c3Vh1oxl++gk967OfS1B4TkGCTI93lfAJ0wcUKxePV3fK3zvvL - w+BkhgPdl+wbiS1HoFqG9EsNRSXNED5kDuZ+ecNabiBv9q3UAX3o2zQd/RNgcsKX0B5vO2wL9585 - 8rwwggsQS2rsz2BYiS7N4DBBi+q9c2jGZ+o6kD6wGSDSnUzxSk1ZOX3zG90+3/zLk0Bgjgu+X4Zo - y1OFGWx6CPvlx40WhVUJ9NzzQliWTtFcyTkH4FUFAXc+sIiuVVjBZLilm/9uh/Xathqsb12P3YAv - zb98FpyWb4TNDgGT5eQSwKARxmAuugasgX/S4KVfKT3eyq/H+kaCcH/nBoq/Hsrp7yBYUEg0gx75 - 04uJ5eg40EytGRttfRok5/guoBU9Enqq47qZ3du9AN9B26465y4Do9SVAVu9N9X0H89Y/TvZsMgN - l3BS/GiW8yXloXkFDTZFU2ZMM/wV7mvziO0r6KP1Ju8LsGvTlNreex7WhNIWfoOx2/hWiAi3lw14 - sF8A6++DlgvccS2R3HmM8I/4kq+7VufRPcgR9o70GonqdxjBlsdseFF5S7B3EliVs4bLm5M1C3q5 - BPqp8P7jj2HWbDmAWA8EagxxxZYYvAM0C3CledPzZq/fXAhLZGpYV/DIZqiNKWRX94BxM7Qeeds/ - H6I8C6n9xYVJYum3QqLNlEb2STHH0ouvUPzevgQVtNhOcu+Mv/pCsPugXz6ufmBAqtQPap2NA2OG - 9LogGdy04LeNF31aTget803e/NDAPn/5RELqD9Vm7Q3mflSv6l++7iT1sZG4OGshl6wiOT+ifSNJ - a9RBviwRWTY/RaU12noGuAesb9fQrbp98BFbj2+qB3LBZsHVir/3Q7X6wIaqu307OGixTn31dR4Y - 95gL5ZFWQfCypHgY7ZlewEGyzjjTjQaQN2de0I/+KDnFeNNHXiWiKl7plsd8BsZX0Ic293wEfJ/P - 3qp4nQi39YL/8G0Sl5JT9Ov+RpbVFSOW8KYByU5S8TG76EB0VF1EarfbBRyX8eZc1NP7L9/AOlqs - XIDpKAL9erhR41VyQ8/tZe1PD2KvPzFznlRDlDlmbfU7uWnWvgDhX/5CFB90+TqRC4Gb/qbp41uZ - yzk4yrBw5BFjpbXNMTeiGS4H7bXp34+3WH5uQHVOj1hziBf9m29bHrXlI7w5xuOxU8N9OwbSe1ry - f3hgHaMs2DVQZ8v9vevBaffgqSEcQLTAa7zxU2LS4OaozWf+LiNayVjh49TXbFEj1YcSWyB25++X - Mau6a8BQpy8N3nNoLrxydtBeCJJAZKk+LFb4g5DKJcFOXxgm3+YXFelLUeF4p/URS4t1/fu+YNn8 - /gJ4XwNtFS3Y/Wl3MGf1UYV2fDsHLcjmnD3yVFU3fbHlW0OzbL9PdYXsRXEb7M01ll4z5A8F3uob - xUC8bJf+5fHUzoaYzbmRr1CTGKLO5yDlhOi7GRRfJBPunNLNJe1H6AbAwy7yAlO4n7MechW3YoeC - M1i3/BHurheVROKVbxb+fHLhJJMzWWQPbe9nDdDn+Kvw3lUIW5+7yYHjziT4mHFcNLc3E6L5ujrU - SZvFpPJlqv7lf9v7BOyYdb7ypx/+8qj5zz/91Zt4gr7DRFWgwUFPZxwbkmZK/naZ5Y4rBeooOmYs - xn0IlaLpiVSj/bCsflZB1h/sYPnEfEQa4ZNCF0MV5259aJZb16ugfMMGOzdL9/g2IBbc6j3/9Lao - 31wOSpMIqeY8cMPTIS1g9vInolTRL2LOxUjgXj202N7BL3ix7pFB2fP39K4GP489b1MHhQsv4DwR - Lt6yf9sQgNebUaOtp2bNk/sK78dqon/+Yi4j5qPdEHWkw4/Im/HRmMHGxzizVxxN5lf14d1tC+oF - rInm0pAKqJ/sjnyDdcnZGJ9addPf+AR29sCnSuaAwForrMWXZRjZQ58RcrCJ92thbfWAIoF/+B+d - +K8360MI0aEBFja3+rlogmGE4uM40E3/A2mbr6hEukb//Og7XNQSbv4Va0GZALHYHQu4re9g3PJB - IouJDdv72aDGg/vmc/xVx/9nR4HA/+8tBYDcsqA9ClkzKp1eAqo/TsG8n4NI5A7PAErd90yD8TMz - dt6nHHCkd4edevQa3hlkF3XbxYv2WbWGKXlzHfC+1REb/MQzpr3jFMpzbWIcQWSuYmQXapaS7aJx - ZfaYejpX6KnfG+o2witfrpxswYbcMQ6eyxlQ+uVnKCTzGaeXl+wxqnYu1Lz7gRa59wCzT6AMbw+X - 0dP1JYJF7UIbUPN3xUG4jB4tQz5A/KRzZGmamzmymhLY3PscGz1bczZ8DirqpPxKZheCaFVPhopM - Ld1Te7f/gXWUxh60LDvRaDWnZo5CN4O2r8f49MC+1+2a6oIUdVQIf39a3mopogw9GCJcZh8LiK0l - Juibvr70kCmkmQ8vFKiZqH6o79Vjs0ifxkfYNih2VzCzZa+qM0C8cKaX22SAWXtDDbXyUadhAQ6A - H3Ujg+4jD7FWgANjyrcW0WN4q/TxNd9g5JvVB/s5f5O7OOQDHwLYwuiW9jQtrR2gJ/kcQHfAR6y/ - PdPk83X14eSwbdNwX5uzmnRv+O5HjO+KIW6b5piBXk3j4X1edubSDRWPwP3d4gNWtsiKm210SuYC - u79eAU2ggBYdwLmjLn8oPf5vfKAbr/RkW5dBbJSjjR7TFgVQrwPr13ZE4B1OL+pEXzCwUtAKVF2e - N6KMkd6IRyEmSCzTDJfgkwyiqHkBLDleoI+Dm5hSo9A3zI3qhu3hFgy8SE4a+HVWTcNecE0xbWkH - +ZHT6INH35wo5TDD+770qHOSfcCXmRmia4woDY/iDawPO1uBx7BC2Nc8DPzUKhoMPt2Rnjq8mtMv - u4mqdO4S7LYzyufAAy76m9971f9F/Ouzvb+n9aC3aVeaix/REbbqzQmk9ftjU3GbtjbQ8Iiv+XId - WC+GKrqnmkzjTnCAMMldDalY/ejz9Da3NoWyBWHDHsFoK69ofn26FiJP1+gld3VzNSI5Q/QlMSIq - Koz62u0NmCrinWq3A2GE8R8RYVm1CH+6zgPxP09f1Tt7wkbuvkymk/QKf+qAsf3kbSaYse8Af1fJ - tPgm54iX5KcIzdtNw4EhHYdV9roK2rffAeuZOoDlgaIOVmEUEgU+r8Oia1wKL/gh02OdlYOAlzlD - 5dZlqzSk37B8KrNCxrx/YDtV+0HkG5+D6dHzqCZcSDR/05aH58694bs4gGEt4HOGz0w44YMUxh7P - O2UGP2A2g3midsNX0rGE/Xq+4+MNqTmrLskbPbufjU9ZjAfRza0MzZdGxzrR8lwIf08efneLS7Wa - Vg3d5hvcOyzDGtC3Nt7GuEK0lfCjC3bAql0+MvRiPSNAE6KcV5Q+ASjpVuy9zg3793z/5uelUhmR - va6GT1qbNOIC3ePDbklQZ5U6gUceRYxvoq3R5dcKfj/Ygvn7eoaqvq81bO0OeiPOlROAorvusKVE - Dht/dyVB38l/4MuRac16DaUKAq43AhjvZsBrRy1BQGL7AMy3KJIyYBloMFod6xyvmiR76gSe6eGC - z+fflc3N1+Bg/h0W7Gx4wE5eUcOEg1d6fnumJ41aMyMvl2/0/nzWA7vgZkW394FifLuDfIL71ke9 - CDG+6bs2ny52aYH7obtsz5+B9e1bKRxp/KbYgbecnVr5+o8/9Olx39qG33y041Of5m9PixbLHC4w - r4hI5NvRBPwXMhu901NFz7tbzqQvGw2YrruC7NefPgjVFLvob30d/J0f/a1P5axOFo1T3fUW1fJE - 9RVyJdZe+hIt4e8pwh5f9zRKzRdjy40LIey7DOvzTfTm3S7i4D26WOS7vOxIXG7fHooeGPA+AlUu - 0uVlQ7E5YvoUey56pzJaQeaqJ7yXy8wb3elSQXCCPN7WL5PW/tdJrz51aJTFa86eza4AblLGFB9O - XUT0IyphvWYy1Y+Nl8/vJZ6B2oGUbnjaMIQuEH2X3QWfvPDZLLJ3llETfm9Ur8gbsDBZeOTYIAvE - K//ylrd6FeF9X3g0uuUxkB4McfD6NBh5I3j1JE8KRhgDcif62n3NOZXRDGNHssju+j56M0JLi9gx - fwTMdFM2H9BZU7PnT6f+wuKmO12HVnVWsNLDajme+Dm1K1LX2MT7k/725v7tO2DfIiUYzd2b/ezb - oqHdM6EBUMkJSPTpJ3B/tw188vNTxIapK6EhwgxfEDeASRObCu2ly4vw4ydqJNTTN2SkUOjF2S/R - MrrHEjrE3dpkVT9v9S45hAoTIL4loRnxqH7M8CEYH7x/CTVYJ12qQZogi+au3Ue94LAO/dh4xaki - fTxBeDs8PP1uRxq5o+7x2vQuUF6NIg5pGeeCU5sifEbyhWbtKW+kJvZK4AdSH3CpJAzzOmgXlT8n - OJiW6uiJbBAyKL/lM02KrY1bHuBtC4Hg0MP3a7L1/GtL+MefmOiRtx6FeERBfHthwydwYG+zb+Fd - W2Icyr4LVm5oCvgYWhUfVHdpNrx4gwtIL3SvRYSxXXYO/vgL+314AqKunwxgVuuA8X0Wve/b7N+w - pqJLb/DlR+IBNisislnTP35fPhYdoR4MBtXIxYmWpLB9cMgUgzr8eGtqX3Zbpbpfrzgpf0q0XPr6 - CqvwHAaVIMwmWW17hj1O9ljD7685jNHXgH2uCzjdr00+Nx51wImHIFB3P9sTRMm34XCvITWMsxwx - QSxFFZA4IwvaD/kSWmCEZzYf6R1fqccg0xwUqCkKugHVA/skHx4es2NMg2Ng5ZueecMcXr/48Kzv - jPqkDCFyRAUb34Q3p0SqNXhZ4wDvtShgEzbPCTqafoaNaC+Z624rYZWcKFAtvj+HuXjdE0RCtl1b - c9rn/OU1hGDjT2ylV7FZPO1dQK0q3jTOS8djwHpZiN/VExlr952ztX91SJrCA1lMukbEoOPWljJp - g0W7XHNaQJKCP/3wuHFXsKonVwafp/TD/sfSGO9mXxeKFXKwexWBR9VSzSB9WFxwMc5ptHQpKmFO - KkINq2PebDw+HAjK9ENvXUijpXIUDUrvk0mPM/QBccUuAJE3y9T+/HbRkgMlBKlmHMkO2aa3HMek - h8s+TfDxt7UJb6vt4l/T/WA36iewTFS2YSHTT/C9sI+3Wn6fwP2pCOldz3wm+QXK4DOTTth+NTFb - To+6g0vzFqi9p4u5XvoZorI5WfS5f969v/kHa532+HhYDtshLVGD+/n+pgYt0MCu4wuiy5nrCL9C - 4q3J8d7C7fdS1zJgzhaLGdDm1J78zec6VXJN/dNDCMtbAPs8Eljs3jVhz9czZ/sn9MEQPuUg3vBp - MdqPAZ/n0cOX21SDxXzAFvDyMFP7q875+MBzCdtKKbfT3kI0SZ/Bh5z2NGkAT/XAkO0Vf3yLXXL5 - NIN5TWS4S6KBqO38iGaElDe0ok6j6cdso2Xlbz4sXwaijoicRlpYZoPLu4mx7tonbw485kDIW3vq - NdplYPd5Cf7hXTRK1bDG2VqifX45UmNNMpNV05qpT1qZ2E3ebj7j5ATBwa0K+jdek0xFA0Yfv6Fp - 9M2bXtKnNwh/Q0iNaQoA6zNkwV0PXzgpbg6jf89DE8fE56a5ecLJsLc2mGQgO/K+svlv/lsBOtKN - 3yNW1rENSIDPgVqkZiQsKxQh0FwYyEYIvMX+3VU4/ECNXedg55L7NgvkiiLARsjaZny51gqLc2rh - gHsyj256ArA72RNhKXlvbauLA/hdNdFN/wzzlzf6P72xzR/FW6ZrEcLQ+vJEFvA9WrmaGchZlRVr - 5NLlhC4vC8WXkOKr1YJ8vqvOBb66QKdOV72Hde0jDf3zP1e8yZ7nSYP4WdyD5arRgWTmpMLEt3Zb - x4uVzX96zWh/KzaUuGqW/bPk4Iy5iAb29cuW6H4s4adyL2TxH1+wzS8NBFo7BWs9OWApD20Fa33q - CWdmXi740ZfAGBOdSI/wGK21WxuQcPKTXlcYmPNz64prZS0gvxtSI6LGIIGTUjywZkSzt8iUM8D9 - fAR0vwOpyZJjFcDvM33TErdltAS+voLdbooD/v3sPXbeh9y/9xFVxyFfPh2DMJrFmKRBTppZ8acO - FgU90f3r8jKXaPQJ0Op+IGvUpax7q3agDN5kBktFLLZ8kU7gB0EXP5bqaPIfkI4wIvEHe/mjB7Ps - eRcoh6ecCJR+zN9OoD0Ib3ZDTx7WPHF4vzL0Nz/1zy305iL4cGBZUkIjLBOPhZZdgHRFRVAk9Tos - 4Wl0gT9CL+AsUwRTEcAW4Yw1FP/AseG9YxCCTf/gffNehpUmp/DP3+Gi3KsRyX/XGqX5JONAiWxP - 2vgTus/vDfvcywXzi5wN9Op8HVv6EXmrPPsdLKK3h5+PEx9N6bW6QKVzfIy/+slbXkSqYcxLBcXb - +mAXPMywwvIPa5bxNBc+O6nQb/cBUcMTBmvafjvYVqCke7f/5dMf3vqNcsAnPT/k//DtMzxzvD/3 - ON8+v0K7bFBIsfm7pQv3BpJoGeCDXljD8o5nAkZ1lwSCJs4N3Z27Gb6z+zdAgVt4m97O4BfvIbYd - 2wPzUxAhVLe2rOGmf8lzZ/XwNDQhPfVVY44XGxdqsWvrP3xrFkWROYgq64FvWHEGkXxbF8jCRaL7 - tgxMpiY6B/70ml78Msbi/Girx9suwB4lBzY33teFZVliuunzRijDkgOnyj/QO3zyzcyFUIWIl87B - fIoSr9v0PTTej4HUkzuZ//h+87PYMbk+2uZnDz/Xugr4cljMP3+sBodXh2PpMrL5ec54eG/6Hnvl - 7RvN+aoG8MfINdg593iQHsO+QlueQZTNXzHhaFzU74Iu//B91Xb9G6rrzaQH7wxZH2drAcX4lmDd - /gWsL7Dnw5XvfwH6xPFA1UXo/vgVe0KtAeGzjKnylXlM9eRcNWvgh+lGTN+Auw1OLlG1ctF0vevY - Ol3D5u/7YXayrtTZ8JKahmhABi8rtkM/jogmqu4/f+JvedZoKvoK8u9voVqRtl7Xj3yr/tQfDgTp - 4gOmqq0Nv7KIA9iHEyM7gQtBemlFAmmhAjLpUoUirj/RA2MJm/c/L4R/+s/M5Ku5vqJLgUZey/F+ - W69jMD8vECX9uo2vytY9OGZw8zcEfVt74GHqQvCnR81fZuS8EpcW3LZ3YkMnYjO/yF0Dffv74sf9 - WDfLhnfgLSY69gytYozdtRnJyrAPLDMLTPpRVwv8zTdzqQbAUs94o2TvWuRnjihvabIPYf9+VtiH - LB9o7MQj7EUOYywJAxgawwng07bvwa5MX2w9GXEJP9ZJpla4ELYOx9NbHazZoW4vHPIl0bIaPrzg - ioPXx2XS+eX30ObknvrRno9eRcC3aL2GJj4SY47oYjENfZ/ZGxub356H4yr++T+sP3gn52eQ9NBR - VkrNbfvR6hdk/ctbsNOusUk2vIMkHHV6uuXMo3GzVKizCp3ePsp16K7NqVPL3tYD9nztInphswZl - 7q4QwbmnEWNheP3zg9gWd1r0C5TyCs+vKNuaLpBoRWkVwNVEOVEewdIQuOd5ROCY4outWJ6UXMIe - vXuC6emyHsDy494WOvpxQWTlakaSqJ1F5LeHYBsfjW355BXuJrfDx/bZNbNqCj5MPnX/b/2s6kI1 - WCdpRbPdr/Vo30yVKn75Pb1b12PEEmIlaMsbsSNmLZs+JyeEv+zyo0e27P74jYNrUrg0Eo83czje - 5f4PL4LD8rJzgT8/Srg71xI+WEoN6DnQM6gpakAxuLieMG3XYsjKb0+dbyyy7Lx3r5CVdkT4m3PM - WU2vK9LjD4ePz6cxMOXbi8BQ3BeRFWnvrVwNNPj3d8P3MjDvf2YIzvHQYfMTpxGz1H0NL2fY0TSV - L2wZyadVLTeIqecJikn2awj/5SMnbqlMBsDcIv+cZNR8vnb52sxpr6h0jak1QMdke5AaIIKFja99 - kLL1JXGtSp/Rnlzh6ROtsdi6//h4p9IuYvIjNbZDihesf9QzYA/7lW7N8c/Unrv95g+oCx1byTb9 - OJlDUakEuGgRsd5owsYfu+ovz/mHZ1u+F8C//MSIOhks9xLY8jZ+ATcb1OSHS3MBQ+wSuvEFWz7W - lwBOjSJsfKxmmCf6K0H0CRpqa43lLdPDJ3CbT/j0xzd5NVqgujknWqyK4rEHEzg1XoeYLN/u5bHm - wWT48SyB6glvRMLHokQNMu1G46W8mqvpPXkgZSzF+xlc8unl5il8t+YdH87drVmjWqvAtv6D3y2T - m+X+HWp41QNAfpJ4NPvgoWwlqjqjwQA/+V/eDf/865ZHmLOp6LPaHI4jDrY8bhJJ3sM/Pgpmg3pr - or0cuG93CvW/SuStQy5DsOWD/82XhrxPVChefMJZZsKEv/x20x8B3Hurt/zp5S0PIcrv/jFXbhgK - +N53jF7ShOSslvcBGBf+ih2EgoFQ9V5D6dwnRJLC2JzgTy2A+ohabK+qGM0wdbl/+WUgz+9oCa5q - oL6KFhMQqY33V49QE3l/I7P2fuXLjShvMLq+i5PcB96WD6moZJ+eOtMRg5nVdARnCDysZboXicnn - dAGuzp5kF/fjMJvfTgWxUl1wuPn5NSkKHnyewo+o73IE813VQvinv//wliTay0W+PIC/vHQYqJl2 - cPu+QBR31V9+F0LuLk+b/tubyxl6PjyWohfI/DEGbHjLBvyaM6N5ReptC+xSweniq3SrP3jzxzoG - f3kuTiTtyZa/vOChZCzgSFSZyx8+SJH4CMRtPpL7d3X/9DO+bvpgic8gha99MlL/8zUG/mPpgWJ6 - NAhUQZiiWdfoCuC+5Qj/DC5stRROhcZ8eNC//HksD5oBtjwraBONmOTul1f4bItdoGx+lw9Ml0BB - ciSifkHP1i2fhZJtvKlxUnpv7UXjAuNrIWLf6uZ8idD0BjEY7/ihtJdm4jgtQH95AOLwA3SNR13l - 4tSISAEBHvnDpw0P8KFMfDDOoOwhx3HHf+uRlYJTyE0u1tgzmrqZ6bPnYHv8qf/0rMTv8AVueQTe - p3pv/t7qlYcXulZEXFUx/7eetvyJOh/TjhhCGQcyG9/wCVx1tiJkJfCYeXEwh6e1+Rt/9Ken1I0/ - Vyu+rCgs9ZI+rWj0lpYFM9TVISNolB/RatDR/svDsFHukTcLl3sCuMNVw4WzJw3d8jwAuzIiIuiG - gWx5GHAf95Caf35XOL8tINSpic2XrHpk2Y54bX6ROhUHoyU+uhB0N4PQwBnqhsHbOwFLdnQxNj6w - 6SKeVH/5BrbE+xit+Wk7AjBAkR7KZASLVzihEp24XaBu+cp6HKcQ3uV7iQ/xpDc8L0Q2+kEhwQ8+ - 2zfCd78GqAk/N+yG8zLQPDgkiurU67/xZVL0sOHhJXGB/Fypt3zRkfz5AdJxVRixV3GvwUzclR6z - a2wy+2bOkAhSTuojq4Y1iB0ebvVC6qfKFK1gVWp44g5o0+PGwL/IWUPONzD+mxf87soVylLB4fOD - dyLxL+/QP3KLddULwD/+uIltGQjr79Wsf3gT6/Jxq79xXrPlC+jmvm3svf0dW2saOPAxxxQ74XqM - RPtXVWirl5GVe01NB06zg3bmyGHnK8sDDYy3Bf1A6LGpmNGwaJfbBV67ssTHLpCGsRsuPrqadwNH - bbVnn9BiIzo2H43q+uPF1uuYX8GUxxD7t6ky58l7BKCrijs+WbHJ1tUOZjXO7ws+wQp78zuubbhX - yg67+P3O500vwR2f+X96K5qpv11bLzRP6sG6ZX/681/+nWx6SWhvkQ29z3YkD1+xt9CTHcBrwzoa - 1M44LJbZhEgzwj0O0wiav8pZDPij5iPgd4dXM+OSy+BPE3dELG2pmeXSrlBoffhA2PiFcXxdQcv1 - Y3xVoo4xe5UKSAzVIZ9gXtn6zKpK2Vu5j09sVYbJjC0Hfgcjwa57T8BfXgyOZpBh6xgcvPVEMwdO - UpjgYnL7fOYbNYDrT5Poo8OrNyf57g2zIWTUQYg0C17mFH0zSgiU3TBnznCukewVLcWXOfQWYrAU - ILzwAaXUyKWuNh3ENdeUeoUtRgt4SvXf8/7jZxZxrgj+ny0Fwv/eUqDfd3u6vytVw5SHQcB9EV2q - UWtv8rL1u0DTiy7UqdPUZFLocbCVzGuw9rwZScrdbtE5mgm1Rqp4nTG0DjAOchRkja8zaZm8GeRY - 7TE+4ZspFHp6haAqHGzAkuSjDL0ZZmf0ILBoJm+8fl4V/KWZTbgVg4g6p+IN78XT3k55TsP8zbsV - plukes7UeViFpzrDVyWaVH/6MVg8Eqjg6k0tPhYpHWbtdO/h9Za61CX5m7Hx8rKhgCuKn4s5sYlb - nBZ9gOUGJNRbc30V/IoG41JiU5vZsAQftkLO/xxp1E8+m/O4K+EuwkIA6+LpLbJOVHhYrxH2QrAb - 1nRWOPCaph9+GtrV40khlOhIrjotpHMTMed7WGHbyjrWlOUSMYyiAvpdesbGM6ZsHWtkK9LH5+hD - aCqPPdbBR8Z+hrQYLSFnz90Lgkdhjti+h3w0C+G2kT5QCXWgWHqtdfj6IJIfasBrymmQoJMYaDpF - LvV28J0vntqVkEvOP+w/9gYTfgckqkU/WwFCHx6QPuau4KUrDOP9ycjFMlJdKMbmVqJtrGi9uZqG - Xl6xI+wkRmA+bxJ2P/YWNX38NedTlRKkZ9yBOmFZADFX4LZFQb7Qw1VKB/HKDyuqtV0SQPJwcqY9 - Hh38PC8REQ4PnPNlOViwaveQcF1yjKS5q0vkfOgF+2j0cuGTHgMIjEqlWekk0TqU+QyPDuSCxY4L - wCfk7cLrfOioy9GSLVKTXaHy3Mf0vs0HcpQ0Geo3gVBn99QHcayRBfnpsqdJ3e7NpbrdR5iu8xfr - 4dMBgjaPGgx9Tzspcb4AEhwDH9zORUZ182B6kvC7c8gDxR7H/K1tpPeZhvB51B40d2fH5B0UVmgb - z0Ay0MNbrtQh0G9DFafrXc9F85f10H+MlF5b0QY8e4wc0HZuSIOSRCbB2dGGvKvd8eFCBLZMoK1h - eRAamsa1ky8uXjMUYAMSwdc3Sm7GFu5KOSXzeCyiZSe8VLST3zKN++cOvE9LW8AwP3LYyM1+oOXj - fEXXxerxUzsmjEeQXSAwapWedC5spHfmEwhaGWA9sePhN0p7H8bft4HLxO2a72JLxt/vo6GyrNEM - jt8ZNnXUEBVvJWJSoBLSov5gSxqThu3qvIJuI6aEGL8qFwTelVUvOWxy/0qiVTTMAuDT/oHT5Zt7 - C3+88jA7RABbcannkrfXSySc7ik2as2JpMc6BHBcPz+sP0yWz0q7yKjXD28ynR6WJ1L+4cLhHBUB - 2taTNHd9qW7zITifLtnQRkdE4KfwVGx7MmnmqVpadCh2GOvHejDp/eqnsHuphCyvOB2kg8Mu0Lm2 - CNumFTWCNaoBsAygkWUffsAawjuB+WmJ6Jkjh5xvnlkLhXN/IKsm9eZaeleCTBmX5MejJl+Ek+iA - bOo06sj8L1qhl2ZgGCAK1vxT5bM65AHyUv+Os+p895gRvnxovFoWSEExD1ITNxnCz4DHDi3TiLcy - 1ELKHwi1va40V7QaCcy3vvtnPJyGPrsNHNTZ8MGnHZHyZcM/+Cq+V+rFDyFni73T/uHrNR2BN1uZ - 0KLnue2C3Red8knWiQw5ZtfY8p25WW71UoDKzwtsdKj1FtPWQug0X0Dm7Q7rrdBawd23bIiyXlwg - LsclRUxWLXo7H44mDZ9vF8kjP1Az2iX5Yiszhzy6vGghd08mJsreUitY6kTYi/WwfIS5RuNh5Wkg - mWK0FHqYyE9bsWnhr9doyQJ/hdv448AG+0bUi0hVd8k1oK74uA91lnc2cD7TJRix983n3WgQJOua - QOPq6jRCY0wG+LRSgU3XfudSmmo1evfqhT5fF8Gk9+IlQhb3KdY1X80n+NZ5hMoB4NMnXJr1s91c - mOTQpJmS1sP8CWoDHrNDFCxT8vrHP8iSLyYNfijx2MQvBJyc5k33F1izJfvuIIyRyYLrbU/M5Ufc - NzSVoKLb+x4Wa1R9yL8+NT183IO35LLKg8/JgfS+8tog3aZLhvKLYRD+eYtyfiFxBSmmI5F8wWSi - ZI8z3PiO7kvvA5bd5JcwzD2OsPA15lO69eXfxpf0irN67EWWFMaDUgZfsfYHIRt4G9315YP3817P - 5/0XXuHlJWFqXc6R14EjnWGmCU4A4kec8yGuXAR5VJC1y+do4aL7BfacTvGZ5CkbMffxUf0+Gdip - sNAsv8/HQSSPB3pj0tVk623rq6n2M/VtxfCEy24J0bR78Ti+jJdIktfiDQ8neMb3IsXDLLTfN6zu - fkwvsv/zNj0zIng/fnCx8bW0TObW9fD2oRteD394hbpKGfG9XOphaYyPBty7I9JyxXkkksTp4ZmU - mPzNfwEiQQOWX/jUCT7uIBy5XQnBm72pO16MiOhvJYHhR6iImN8TNj4Y5P7WP75V8gvQHQxGqDv8 - jPc+q3L2IkoGv+HE4/vN4Ial5swOERcnZOlqm/F4u9m3dus64MhzYKv5KWt4HP2etFcOe5J4dWz4 - ft1sfDRfST47Ee5g8M40Gom+Foms26to4xOiZqkN+o45WwTSYIqb4xoxr4SdclDlB930mbf+nN12 - c15Y4jt6ndh8vuoF+uzyNmgOuQeWL8ccyOsFxuEgJWDYW3cOmjHkcTTgemC3w6mH6Bc/8KYfPR49 - PQ5+s0gj0KqoucLXoYBi6+XUmSRvmF+z58C9He2oY7kGEJvPLoXnmo2BAuwPWDumFejJpAtZjM+U - r0/RmOHNnmWsaULbjAceWHAWLh128x0byCAHENiBTLAfnQpz6X6vC/rjnz1thmhxqhqCc72M1KtG - OZ80vnMRdwsHel0a3mPhXuaU9chgwDwPROtlX6Tws1Yavd8nyVvs6O2j9fNlhAmQgvXJVT4yqz7B - bmLrzbr9fnDjiY09sY2GsUa6DBuxOtMDxy9g9eJHAa5kd8HefoQNc9grQe5wOWG9u4g5443OgKJy - P1Bjw/9J3jfGv/U549XyZiRLLuTv+o2mlHRsLjU2w54aC3VMW/KmoqmgkhxoTA/yQKOxr74h3PCL - FO7vPMx1cCPwQY4mLnfSEs39pInoD8+8p/zwludFzmDD7jK1ueEGlu5xIPAnv+70gT5XtuITraGS - 9jU+vnuejTU6ysq+PojURf2BrfM+tNDXuxj0ckJuLpWEWmB/zFJ8zN/XiG78hSSvLqmjYwWsCC8j - mk5nFxvHYe9JuuPNoAvXO/3D3+Ug8Pyf3iHt/pREi7/TV3Ddhwx72UtjM78TWjioCARzjPKBiZ+H - CHF5WqlRa10+H99uDfPGueHr4b0HAucyEU4m5ehB1BK21j9QQ6f5AHx/iveGSWI4wtWXY3on2mdY - 8+jLQ+X2qwJp4mqP3XBjIUlHl0A9G6LJ+uejUh/Rs6beZ27Y9v08aFguE3i6uiZ/WtoSyAhpWLel - ddjGV4OFwgyqvXxuILYZ+uA4nDqa+78sX/u7WsL+8/xsfT+TZt2FiQpKPZuD0+nxNhf9whPYt+WX - Ou9Xxn7gWdV//oNeFjxEM+RjEYgrd6W2qy/5pHX2G3LzzsMaSHfmU05/KaRD0+CAC61BiE9xCPFa - vIjoblvwdOVYgPujcGiOt5vn28d4AUK9FvRQJb75p3eh6xgvwr2ttzcb2yn0k1is+PRZD7kw9eGM - vGcf4CPcyebYbzdV1o85wI6ha956dz8B9CxuosHR6vL1sLtqcGzeQ8CNdgrYfwAAAP//pF3JtqpA - EvwgFjJJJUsmkUkKARF3gIqCiAxVDF/fh/t62bteet47XqEyIzIiq7JS6ezIbxm9aMGKQT53qThA - 9aMpdY0DRfSP37b1/lt/tDzmVyHPaFHw5YUuudAmoQQlFOp2qnt05/h8TuWuKb70vO/Q+nmGYgot - +pww5i6rPj/DKZNR+bDoOTG5atodOEb+yw/rE6k6zxTTA7JbHlKlCRyXTE83RAnjj6Ta+HKVL/EE - SVV52Keq2vP7MRnAouGD7G6BkrM/LVtQlr9/vqxc9XXuvKcDqyU8qSrgCFHpKLLAzXP2r74eHFkm - 0EKDsTsuaT9Z+ziFIXwkdPv3au6RnYC/Zgz1t/p7CRKPAeGbXLBy7rebTdk7D9TNAnxijk6/7m9+ - DZfoElOM205fkv3JkDqhBmpNih8t4pyx0md3a+jxIDY6PVJFAY/yJjVK1//3/SjnUx3fC2aI5oa/ - D9Ci7wk7N352lziMHGTtGYWIR2lxP1bZAdxsnNGTVjb5wu6VRT4VU0iv+ulUkd1ONeX51/5o0meK - y304sYRQGSSyq3rLXVpvJTCziUtNUXn2qwM9I3tek9GjJsv6dF9ZgPHd+jj2UtXdnpdFa/1LcOH8 - 5uqXfsNF/pXMmch/8Xg+YwO25/3TK/0wx+8E2GrY+0wc9fk0FGkgTaEG2Jcfj2jmWEcCO+pKIi52 - gEgxKs6fH0CVTrlVhITeG30Eecbq/fPT1/dZM//i1Z8m+ZrP0ePA/vkb9IqMd75w+5FB+yoxyPws - mnx6iWUDVBWMDQ/ZfIpvGCClpeTTJlEqnokj7Y//8elM7XwJD3H29//9j3jk9dEwxwKJdfDCSvU5 - 9z+iYFEy13Air22LOJ3NnSby92+w4U3Y03N9eoChixq9D/Sjz/4HTSg77+5Ud908mpjvK5O3+hPj - 5HNE7KR/C6Aab1LfPXXr9M72IWz1N1b3HUK/iyHwf/oO6+E2Z/ovHvP0wRF5H9Fq8yNKxHTvK9Xc - cF5XByoGtauqY80zR72VRcGCppFUv37XasVaV32S7dy44MdP5vXJw3cebIthfCp/02j5vNoMFPWk - 4/OzMCOunD0Rnj93whgUt2KnH3hiu7/zZHkrVs4b/DmV79H97fPJJ0eDY0Y+8HT44tu5f0cLCb0S - Qs5A9JRFERpc7WqA2Q0ff1vvdWbqrwIbfhLo3MrdNofGcF1HAysbv0z4qA0gS/eF+rVh6PwRPUVA - 0Q+T2bWviFveHQ/6hWGp9dODiryPbwmEnfQkfHHX+uauCSFyy6XGrnIpo2kogvDv7/nUZLHedj9j - AGy2HXXMS4t6BRmATlmHsCoV2naP0NiBMdYv7O8JWenvIcbwCKsD2eHWcVfv0LRyKvkFEcfLZZ2f - ZsLCElgazRe+1lfnPU3yN3V/fiK+uWgxjtSH+9M60INL2WohobHdy4Jlv8faKWeTeGLQ+DuoOPOv - cr/Kt1QEmdV22D+3IVosL2Sl58+ecMH4qj5Fd8MAbl4zbGPlt66b/weh5VCf2Xt7fRxudxGxjnbD - /uvW9+t9qTz5QhTOr5/XKFrcuySCz70v2ENquC5OwFp/v8+P2Eulz7yqEljv5mnjr/pPbznSbzGb - DT9avZPxTPaf5a1QPX/YaHpncyj/6V88vVKde7ROCGdeTaneuFd3ja5nTd7i2wdWnKL5fj2m8qUQ - S6zdvDHfZocwkFQvDx+no4G4xVjf4C832PDSdNn08nBQoDc8Nl8sg0bgng2KV0/FG79FEy45UZau - w4FeDrzWT0ljDvA6aB7p6uoRTbVjEambHZt8bkcpWss7XwLrXzmsHoLDSlmtVOTdpBBsD7aV//N3 - 0N3PybzvcjQ/fTb4w1OcdO0NsXcIM3lpGo56XNa440OV//mpvnCz5XVadmkGz3Pd4usSHCP2ebgb - sPm/WH0WTTTJTxfQr4Qzxvbz288/dwYg+lTRO5WZvnv/1hKF/vdNlaFf9Pn70nlZHYwCx18kr0T/ - ZS1czUUki8seKzZZylD+XaKRap550ifr+fOQmH5lf8MXNBXnOgEY8jM+HO80mtXtXg1dF+5b/Wbl - rFwphnwwz7t//vPiorf3x7eEuc5cvm58L2/8hY+lqK7d2IdvlKjBm5rqvUHT3nZq8GK78u3beHWX - XvQZtPGr/3kGgMhdEwJIfrsd1Z/+LV+KUbEgsfmBHg5GES3FaFkgph+Z2qnpRPMOX5w/PKSqbyiI - txpfQdxFrqh3NvY97ac0BbGjMdYQiBGVL/ECCqiCT0d+V8301vqgsu3XR9P9rK+5nvNoqy+wftHf - bhc8ugzNnjD9y8e5/f1C6OvKou4u86vpPEIrtM81wS7WxnwdHLcFz6sz+owknM/0VvoyT8mXKoMN - OfXsbkK29nb9fRRSnTdGBOjKDiY9E5lU48ZX+7vxqLF+uxxzjp61CZlvJ6eH33av2juRHbhr1xNW - 4cLmw4mxNOlP72Luo/dcxt7e0vM9yFRz2W8/GVWuwINJEBEMtV0XQhGPVn4aad5pP528eApoEaiD - bXEM0TpenRROmjHjGytX0XhoeQOJqsb53RG4anLM3AfnsHeoZ2v1On6PaQtJmAnU4cfOnUfLsuBo - lgVVXfu6Lu59EcF6OPbf+9QXgcHhH/9i6/cx8ymYpwmkV/ahxngmaPXDMUXZ7RZS1y+Ffh6Ek4fu - uygl8zI+dI6DNoZzdnr5I98K7rLV69CwSP6vfmaETwp14M30SvW9O7P0VcOWDz5/vWr6ugOTwNe2 - emxcD767/Pnh8+Kz2J1GteJT/5dAvPoq1qrDLprfdfAAvci/5Asy2y++bfpIGFfLR5t/v0qdXaB9 - L/r4nDuqyxpVroEiDDlN61eGBrZxUki6nYqPdTtHy+Z/wb3+Cv75xE45GU+9D6/EeuHrWAzRtr4W - jJ2pU42abf+HR6gZE5b66WeqJv5y5mWt1Rt6qn519b0HYQ1bPYudY7ZDI6h7DyT9fsVOlprrZz0F - II/6yJD3fuXQnx6B6Hv50NuT31dre5KL/R8eHurmhNb93SGgrYOD88v9EhEXvX24nE8yVU9hVk2P - R2UCaa0aa014qtZaub3BRLyEcfGQ9M1PM2SLiYqt/3B0hb/1bK/Y8xlj0XVeOzoayrrqS+3+MuoL - 7QUClfXVqcKr75U6rP9Gmx7yG4Fk7jLBUsveQEefpZ26+S+LBlkITx+G+IOaDlwTvWYmpZbeDmiC - 7N2hFmqMT9OT7UlFChaVzRGwQURU/Yj1SeTraXvrCz1V07IL0j3F40CPjuPmw/ZZ9ppQwv/eB67a - 8G89sP66Fu6fvpA2f50wqS6t0+mKQgiZ9ojDp3DoeXjhB/h1quA4XNt1DVRghV5xj2T/8bpNb5YK - 9J/SodHcdVW/+U1IYNAdO7szW62Htx3C9rwYX7vHOt0hS0FVwobw7VxsfuPiQ/ozj/QZF5+8Sf1f - DGf76FFt4VN9mb/tgBjhxvic7G5ThYvIh5pigm1POEZtIewNhMuLgxUmat11rpsEFYFZ0T+/YRrT - wkFP5RH5ILZPNIu+8pATOCZEjjN1Zav9YUHM/nWhzqXu1yWanEJ67TgFO5N2RsMW/4g8Hga2d9vU - jR33kyCx2YEsjPDKh8AdFNjEqz+ns+9yer6LIasNFutCBdup/iWUs+MZ4adATJ3b/CC4vmuK//Q2 - tS6LBh+T2Nia3rU736pHBxs+Yuewrn/440D+di/+yxTCavEUvQE1KkN67vpf1OOqDaC36JkQixUQ - tejoAXvTrwRt+S/82G/295naRDn07LIw7F9++fv3K9SH6O4ZcHf2V/xEj0vFCjfkgMilPPbFo+ZO - 1f60IDf1b6S9vNuIvHaHDCRPffn7ceJ0ctd2ITAHO8YOen30dfQHAD+ww209LH3rTxbyIXuP9Lhe - HtH05ze6BozkGxIOzelDjtHWX8R20SruhJnRh+n2mLGhlVm01bei3NDCxbGyP1XDr65SuSdGTNOt - /l3+/MY//2rr5+bE0uUMMd7X9qXKe6Gx41sNZcx0wcn1eK4mHX4K0qbPdq8JvvSLWu9j+BS2RA/e - +jfleeeAdyeUuufxsG7vLwWqsSZ9nE1ZXyaRLxD9ekec9X5SDbVMDWnTq9SN6spdG4Uf5ENliPjK - v4dq2PqzsItOnM92TRItb50sf/0VauTfap0gPHhy0S2Gv9dnc51+WjahQDJ8fG3mdZ0Cd9D2+u4X - /fnT+uY/iNAwTxsbNz9Af/iP0F4Jsb1LXVfgSihR8fJFfxLMG1oziYnhYTMSNu5T0y+P+fcAj3DG - 5t+W+RIPfvzXryD8X3/q1pwVudG7Cz0t4refyu9IYNOv1N7yff7zt0L/88YeK07/+E42b3VAZi5N - qvWnqhogSx6pfv961W/rl0v/z5YC/n9vKShXX6LqSTJXfj1cLekLioHd60erOHK1CFwCv6K+nqgV - LWbZgYJcJGpyyy5az6D6cHp8P2QnhPG6CLaTAk81nbzNA9XXJ4MCeLRzhjXxzutrkg8teu4Hnxpm - 5/WzyFe1bB7biB4xfrvTG6Ul3FvjR80zb7iDtmxXrwhpiovtWBv7FYZQuqh8SrWXaeSCebhYEA0B - ponT3Ne1ZaQQJn7fYceusvyXS2ECtuy71LPlXzXHx/NbNmdn589DiNGS/14Pedg/Vmw8xTLqLlHA - yF90tLCrVtsgy4/oo/yaKTTkTC1ajt5qoXTaG35XuW4+zjueQePlHRBxqvN+fbwdAI47X3Dq1c9e - 4Po8Aea3n+nV9LJqqjti7dFn1xApn/h1sl+PAO67kGAT/dR83dVIg0r3OpqfFzXnDb2d5GFfrDTP - 3UPO4WOowDo8O7K+n+9oOqDoLWuOeKGR/hjdwValDAp7aOj1uMu3q+XQAuFvbLCR5agf8uP1DepK - AmzdUlFfDrKdQtvgn787xXbUNoxbI8qVCjaqh+4KAQMLKIlqkp6T3X6+3N+lHNfCDmv5b5evcGUl - GC5lii0/V6v5PkZEfq3eQrPWCXN2L91ZuLtxhB3Na3pe1HpTji6m4/9934KTkwJPcd3G60CQrxF1 - arjT3Rf7k3mpOM5RGzmTbl98tl4a4uPEeIOR1wzNWceJJvuVBBDtx8f2eyuX9dVZAkaMgOxc9HFH - NihFmTnZOb0Ga9xTpFbiZjEA2S+eVa0W9xblYb4s9JZd03XipCQGsooRjtu74wqqrabyW21k8n2y - brUgejCReMpMqo08uEv9ax/yYxc0+Mzsf5VQULuGpPRyGlwkb+XsWS3k2yQCNto2jeZF1jPAN/WA - kzNfu9yHHxtIzmxAz9bx0LMfZecj9zAjGvhPMacn8cLAvnhq2JJUJeISKeOBkFijVyavekK1wYQy - KWps4924Dvl3bSBh6g95V8a69pdnkMm2jAyyfsUmWnHbT8CRIyabeVdRLx9bSLipx9H7cNAFD1Qi - S/VlT5/ukOicnokMaKr7JPCK83w2ZpuRdntvwrZ1c/NtT84ic83eoRGrh+s8NUsKhVa+aLJ4Rb92 - M+pAkrgDziP01Mf6/lJkWRtZrOu/PGfl2kvQ4zckNKWZGfE7rpdQUJ50nFS7HVpuHBXR71yfcDLd - 8nyijNbAhbUYjAPJ0/kAf4jM5FXj74jxdBelPNcy1yAH23t7565IrST54TEK2WXWC3GZsh9AucQn - ihvxVk1Hf9ZkW3/e8SmftHWhleXAzhQdfNajYZ3y47ME39ZP/rXCpcsOrOihVvndsP1JJ30956MF - 5MrzZJQJ6ZeYLxv5ck1bmnr1rp9//GiCURYJNnfY0AWf6iYsh/OItXW7rpiSYyoe6+zlt8ss6WtP - LRPWhRGwl8xvd0mGy1s2GLbEkf7Lo1lxjua/91Vk1gXx3U5k4FGoBqHxpawE7hA4shg3HsWpOVfz - 17wmYJ8dirM1Eaolej4zCCd/xcf1I/XTyfgUQIPuR+1zurjb81twLf2IGh/t0k8my/ryuIQNxtGx - 6ydGuscQX7MJq4/4rc/nmxDCfEp5bMy87/KIHgy0902BGmaAoxHJWip13jDSo9Sc0fCYDwDZwKTU - ka4EvbhmluTuy/nbDsVjz4ZWQGStUXh6+5xeq6CDMwj9Do7UeSa3fn4oex+6c32ghcK8Vy46iTwM - 91tCk4qd+/Uzsw4al90TK1v+sQ2jNyjN4xXjcR+g5QWmB6zS2riAkkHrOd03kFkH9R//Cfe2C8Hr - axMn1r102bM/aXJguA09HL53dy6vjg/l4/rG+k2Tq1HSX5Mst+URZ6trR93SNgv6UbjScxGeEW+Z - EQv76mfhixb8okV8+wxQqqz0tsXnHM1WAfd2fVPPsQQ0X1dUwnE4P6l5zfho8YshhgxHJvWYN9Xn - eccAaFBq1GrUd/S76WMAVkOP1LIYQFOTrYzcT72Kj0Rt87ktYwNulyWnpsDSasqNHiD0vwcf/apt - 1+1VzuALmuHP2TPIWUf4BkDT6ouV5nBzBWzhAdbEe1H/Q5yeV4oPL+u8RsjEhhyqbVVKUZ8bm9fK - mWhS8smS40fNYV0uEsQ9pTMvC5lTY4M7v/uxC14SAk3Vcf6YLX2uFHGQy+RRk1vMxCuHiiaWN/zd - +Autg+bPb/lm3mMi1xev59ar5cHNby44oMZunYjxAnkquxe2o0zLBeyiAmzylalznES0sEUZy3Mk - 6fiaqV0u2FRvwH9877RgriWaA70J5E+0j3ByxZbLbnwqrVjJaWj355Ur1lX5h4/WIZXcxai8Dr4J - nulRULDLD4mmwfhIHOqUzIBW3/9qKGgTg2prpKBRMu8Jsq6tjoPyZa4Ll7K1/LbvCB/qe+2uqU8U - MV5e5+1qLr2f1voQy0YmHqj3nKyV+1vvcNoP1FYYfp3lKHrAXLY3bChtkfO7ZUrknW9ibB40t59P - Qhn85RONO45flyNuiBy++Ja6+seoFneRWRDz6UytUK3/8MQA24YfuetodZdX0SVIu7Y9jrvOqvhv - yhjwWv0FnxRHy7vEm1s4nPweO8rtEM2qThcI3GuPPYV5o0XaB458NQTq7yRR6GdPynnwrTjGp4v8 - 6sfk6npAyVEgnIsDd0k+vAdJe7yR/U5R3QWFxQS5IrFY8ck3/7e+z2Lk/EUL5HzlDoEFakIFsk73 - yR0a6cmC8bKxL2mNjkbuNz7QEtcs1m9nrxqrsmhgF19vf/EdrUeGWyDsujc9xq0ZkXHINXl7/1TZ - PXKXz3+vAmWXKaK+gL76jJ1DLf/xcZxwKdr4rIXhvftSHJc+WgI8DmDod5lIxylFXbcTAWz63mON - Odj6YkbZA9Z72pC3OHzctpoPBTwK3djGQC3rnFxdH7p2cnAup6U7z3q3gO3WD2qanIe6kxkliEXT - D+ON3+b9r2ZAtYOWpuoiRLM9qw/p3RQx/csHoptxLPsJeVLNPFB3OVV6C7uqLbGn0BXN8qRP//io - EBK7YsPXPQQKw4FmY5XkVMElAdl7dPQwnxBaoz7hwet+Do3be6dPH+PNyJKSP3yRZk00bvG5t2yY - fcFlTz2l87bl5HG40mS6oXzxJi2AXqx25Fn3yCWfyrbAm60rvWXNEQlO/2Rhyxdf3GV1PqHx6YNZ - 3Udq1f7LXW8qTaHfMUeyMy5aNW14AKDpOrbGNHHJLoxD+HTZ05dVueqnKOMYKKVsh5UyFNC0Gr8H - DFh1sT+UIRJYRwjR3/vxLXpYZ9y9Wlh6U8HnWXqv64F6BjoUEaX2PvXd+SxFCdzu/Y0g9Lqj6feV - DOR/jA4f7wvazpFjAKfEPfUkGKIBndZY/qVTSM2jgvRpPAGPLiqbUvNTGH98sw3SDlNSXnoZreIs - WXtkva/UN0cuX1hmt4CEFpUa7d3ROe0VBJDulcM2kmmuhuurWFD6Lvf0wt7f7pLC0YdAFmN6Ppd2 - 9ZePSD4ftqu9L3G/Pg6bxW9YPE5vqegO4ndqQPjhFh9fJ4wmM3XFf/WGdjrH1fLa7QH94W/WzESf - Vf27gG8lMXVuyzH6w2ckvtXc7xLP6PncvLGw81drGxM69EtFcQ12mrA+1+rmes9vTIDm3LDohnf6 - mPDUlAJ+wDRdlZ+77MIiROcXP/kogyRa/vTXWTzuaXIpzLVbhqyE9P3eU1M+rWg1bUWSf5S5+osU - XPNxrvz2n94L2PCCuOSqe8i8HN70j//WVxhM8sNgd3Sr51C/998l8MGNx7763FWTtqiOrBF2opGz - V6uJu5pEfj3DhEiV20f03l94QKPbU+9jn9zZDj4ZcvTnBWvicHCFWswLNFRihZNtfafFtRaJlYQR - Y5s0/fwo7yYi6rUj86kX0FCfZB4Z5SOhhwvfudSmbg1bvYD1d7BG/XA4O0h3PybVnb3aT8FJ4FGt - 73PqW2Wyzg9l9uFZYY3apPmsSxDdHpL1fKn4sPt981lyti3ISmf7nH3aoWnDRyQIn5XaG78OxSsO - gP1Ed7/1bnO0fLTRhPFSBgSYq4L6tO0mqdwTkx5+fKuvKXUMlNuEYCz2N/dnXb0BypqlRAJnyqex - Gy2IlX1N/V885rMyOwV8Tq1NvVfV5XNVxs0//exj5LqzuE7an36k5ven5/zTm1q0uwQXagz6gJYp - lU1p43d/1z0gIoIrM3LdLovPLFGss+JXbEA6fip8yDPIqfqZyR++4M0PiDjgK1O+gAq+zL9tV0j9 - RoH2CU8cffojopr2Nv/p1+OmjwdSH1iIP6aG3eVqodVj5EAKgj1g/cPz7iDWHg9ssg/9vdnYiAIy - SiROeYNNX12if3w3nS8ZPm6N6kkV2wJNvDfTx5kMFTU/swdlzVNsZMGYU+NyTBCnJhK2XOXk8i2u - PDmdPNdf8t8uWnlmWmTr2ulk7o0bmrhseQB/jhdsyWn833zc9IrfO3On/+ENpHvtQI8VLvVlKloW - zOH8JTSz1HVmPc4Bs6+Jj0Z71ZeNH/75KzeuKvKu0BpTXuKGxadn8unXniqGfP5RQjXtOUQreuEF - /XRf89diUHWq2nYKux/6YRVFDfoXP/Mh4rB2Py8VOQ+Jhm7mMyYoZcyVB1uVYDcfKHa9S1GRe7oz - YHte6oATRPzJzGM44peN//TC/CgvJhCror6sOO98KtQphYcHCk5+p8vK70Ef4E9/5tfPu5qHRpIQ - UvKEKqMZ5Px5SBR5uhU59fexmy9CS0KwCavgu3jpKhq5C4M2P4rItv1zh/lcmghdvzlhPs+8X6Ad - J7ThAZnKV4NmvvIt+PfZNuN82XG9CFu9S1iNk9bZk48psE8t+qdn+WyyFuRV9wNVVMlfifiRCPy+ - QkI4Re/QvB8DAofDscNaLvrRIgyhBmfxsMfKraR9j154QuA4hr8TSwf153Ru4PQxF3y6kaWfvL7k - //yMf/4LjQ95K231/b96i2j468m/oD+TSS77arlMdoAQqnjqHtJGnx7zCYA5BHdqHb4/fV0vWiJj - 8r1QrXla0XJPBRNVOqqoyfGKy0VBncLPPSr4MGunnt/iBW593OPkL/7/9E6QtQv+w0/uKd1Y8Pzv - SJjpUlerHUYB3AV7pOrjsLoEJwflXz0YzgWDJjRrIHNUcWnCLbt8+ApDIL3QYSI33eWi5aR9azD7 - hvjsnQ90cqrcFjY9T21ucfP1J2YMrFU/+RU1+nVZD08HeV3vYOWPXyPqNLDxMX58SFetPCMu0Ofz - D6vpQF3KfEkD9tmiGG/5MlHGqeUMJRUZ3+/eHf3TPgHbZn5k1X8oX09cl4F78nSq2aXec8INhcDJ - WYIPXhtHVGRHgrZ6heo9ztw51sfpL3+pLp/bfgk/PPlbX2oIONSnbPYLpGxbeo+vE10n+goDOEwP - H+uBnqzr5ZmmUO9AIFzZLtGqMUwoGTx9Un3pSD/sGbWWX49rhi3Eqr3Qu+IDzlnb0RtpPmisaiWW - g5smU094CevaUKUGIdQrbAsfr2KD044F2Ss6rD0jbWXpvSkhOLPiVq+rvVBedyIMxXCnqaY20fh1 - dAPURmPoSd7Dukrfrynrt935L/6jRTeLGLy+MakzLoeIOzh+AxOlNVVPvbD2c82+0XeJfNIF26nN - 4/DUYHserH/64zqz49mHOvLeNAz3x17gjCdAx59upPOY7fz37AKqBYEn/aXaLtYxL4m8+ck+pHW1 - XXwpxvCcPydqp/W13/ypSe7z9UdSb/WrORpjgiZNxtgcWidaD+0wSW8Y739+WjWcvrKJeOZw9FFR - 2/1i/aoCGS8XE+mZ7Kvhy4oD9Ma3Jty703ruj4/lUEFkvFVGtPaWMYCUiB32D3alL6/nXYItnv1y - GlZ9jevd+0/PYbUI55WK54eJtnoYh/lYunN8vL2RoPcpxfY+XnkNf30QT6lJjVY45r2VSg3ojnjC - p81vWl/UNv7VU7HNL+4gxVkHMh08mviBmk9XVZTQn1/o2Omgc5vfgA7vCTb/CevDmUQSPEqxwLfC - kfJF//UAGpurVP1tWyguiuTDt/7C5gfs3SkWSAjSUEj0ULZLPpX1MQFvr1/8/T4l7jr1OQvmsYvo - 6W4fdf6d6ArSz+6VasFg6396B71p4ON844euT+VGcn/MzYeZJP3cloWJqnPDkZF///Spv1MNlo6T - Nzxzq9JBuYJkjbLUI1aE1vJixGBERKG++nxWxC9TA9LYIjis76neKrlooe394SCMHZfK89zBeLQO - NP3uzuuwkDQFvkEa2T1fH7S2bxXgrz9xkolfCUdGnsCWPZd8Yt1C7CETHqhwk5za36yMpuO5riG6 - iwZNZO3Qz68x8hCboNAPBWNGpTsfGYDvJ8Iqs7f7RSlGFtor98D+xVb1OXW8Br5Ptcf6wVQioQjP - Ifqrv0400XvhT4/pjnSi1tZfWMTPQtDtmAb42nAamsPoycBecmLqM+K9/72PqQKnZTHwQdqmOGbn - dwNGNCjU6lm9Wp9534nhSfRwlBundUY7DmA4Wif8h/c/IgUJyIxx3fRxExGV7xrggk79qwfdcSzz - GiAtMb4HF1L969cMJj77Q8yUiJKLxspdbohUt4RzPofr5lYd7TtN86yNFvEjDfCjao6Vxz7q537M - fKkZFA8/Nz92oTvxAfcsvxJx91mq2TnN/J/+w+aLf+ujuE112fwy7N7si/7P30no+UHd0vFytmC8 - GqT6uvfLhWxTWZhpAcJ+PPrnn/P8so9Ri+Y9db+Tj8if37vxiT+/eg6tmvY25BKHD7+zKyna9FMH - lq1yVNlL1jps/RHQHOlC9e9PyNfuoidwzWNE//CUbPz/58/jnJP7fh2RqcmB9pqplv+e0T//ejg6 - J1/uEXVp+0g8GHqjJdCNz3x+/76Pv34bVqPH3l3JReNhbl9XqvvPOqKb3w7N/cZgk3AW4i9RykC0 - VDd8KqVUXyuVZGgW+Ac2VG3f95Kle9C/A54+fgcmH7Z8Qg/B/WB9uge6wFk6gUhqM5xeP3y1Vm+t - kJmQDoQ1t6kWm/6Adbh39LnVF6O87GLE1k1NXerq+aCyMEg5aQ4+P7RdPq3Hu4a89+ThYrgsFdn6 - NehlGWd8uPCOK2jPLIXD4dCRhYpeRMzE1P7w3p83/brMy8zLMYTHf3w1+Y/OQ+SpIOpu+nshn3VA - l+Y+UNeZO5daF5NFMicnZI4ee/3P39pHM19SZavfpvyjKNLm9+OTD04uCOKtAPIpLf9P300auWTy - 5h/h2+ekruymr6UB667/159cV5Z4e0N/ytiupgJNN3bx5UeEHWy8+heaPRmnwHPnExkvslrxKv+u - ofraB/psS2+d0Hj10GEfWkSSrj5aFVwO8nfd69S3LlYllOlkyozw1amf0gotjmyJ//qF+BT/orU7 - P2vQQyPCf98nHIb0DQG3Rth/RPyGLooBO3+2fOkgX6vF86TuT98RthW+0V88/NVHWN2bVrREz2sK - BcsdsbHVU/zZ9lNwsj6j5k7h3LEZs+Gv3tr8A7Zfkt8PoJK7M8ba++Wub3d+/OvHOvzs6ctvyEvY - 6m182fBm07vGP79n382xPm/xAiUOHmThTC2fjFcyoS4MGfznt236yIfj6OU4YF/Gum79EHQNXyrG - 8XmHtn5FCuKbuVJNvCc6r01uCH4yPOl5qycW+j4CzPms0hvUUbWq7SeATV9jLTmM+nL2FmePVUGh - ym7s3M3PYuXjgw3w9VSUaDr3bQK3Yxb47zh01/mvH7GcUkJ2Wz/l/eWaVJYZ84rN4naPpv7+VSBx - r/rf+q8d3YnFtsXyQE+JRddpyiQAUSy//vyN2rWXz5caFrHCvmSnnsulXdtKPy0ytyNXT7ThRwzp - jzA+Kp0hJ1yianLTHwKa6jsOrff+zkInOBcil6W0TlwmFbC8A5PeCifL5zAOHJnX+5Lq198+JxU9 - NgihF48tiynQctVIDanHtKQfGAPNflBLEKOrS/89z8k6+/v/Z0uB8L+3FJwSQaKaKLLVCqGVSWnU - CiSuFztasPXwgQj3I7XhNkbrlBxCmZlWzkf2nqvm2/LkwdNSnZov544Wve5asMRgg9CdGfGvlQ+Q - u2MdHKzlteJe722X3dOJqL57B2heksmQz7k3YFsYXHdh1qKAnrx9f/+tK3ehRlrA8P0kuOg60V1R - MiaQju2R5vuf5nILZRX5npsqdV8ORqSsLR6mWxrgzOl2LrntrQWcT5KR7LKeo9X4VprcvQYeG6cX - 1ftJVkNo9h0QQIcmWhB6MXKeSi0Z9gLJl4wuAXznhqNhqTsV2Z0dDapkWLGe/d5onL2yAeHwehPQ - zxya1PrIwomcw+1ukKgX7sczkXfZfKAp4cqVuGbsQ5J7D+ySEq/rdukF5DMtsVNef/34PHUPuK7p - l17awwYxM2fJ4vvj0rxVEJpK8aQgEl6u2Cxfu3UqeF2TJ1IqNCug6qkQ9wkSh8QlZefnPSucal+W - e7fe7uJh3VkpXyFw4DvY9Jjzyr67Ww2/en/Hpl31aIwbP0ZdUyfYuQuXnDetnQPVRAxs2b+hmtVu - mmT/nkY4MaQTYsMoeMtTNlOSXqVHRFs2IrIYiystbnHq8mWtsLKzaou/84Sny00EabK541MiHfpf - vo4OTGCelIAeM8/MWfKqLNjWE5+uUhBxu/TmgFWIKr5fZrNnnYqIcDuJVxqKYlwtl6qd4KM+WKqG - 3AWxntsz8H5MElZi9toTg0gW2GGo0eKVgkvcMfUliLMD9edg1BdsJZ7sO2xOw9dXiibvaQO4j/yF - t/jNeQd3BGH1i6g9fWWXZpeTBYXSnKlh9rrLtwcpk7Mrplip4Vlx0ZnGcEfxmV7ll1GxbRy08uMk - 2j7bJTd9UYbJgYN7ueIbbb8uLxniG7hnr9Ijd1d6LvHdDI5TvKfRvpfQrF6zCS4X9oGVXfhdJykF - AjdeftJr5pnRIjY2Aw/1c8ZHnb9v8XTU4KcwJnYqe7vL5fsKZa597omlQFdN5XYKo3/+7oQ7aLd8 - /RXBJF8sy8RZ1OgRf//Wi/zUA4eGQpNG3IOCBC7zm7G53XY45iYvAnEQ4zOYKGh9OzGBi3870Dxi - cTVN78ECMsRfagqF5nLVeAOpeeMaW5U+VbOBqAcoHD3yqdJXz3KE64CUOqW60ijr1AxRDU/7ZeP0 - O/g9K1+CCdxsyHCAvapfzgXng4GHK3au6i+ah/fvDddHwFN7Oh+iCcZokCXjHZO6UdSci3OelzV0 - b/w6WV2Xu1xvovTZOwU9CuoUzXR9MvD8zTfs5mJULc92XLYtUSF2T/J+G+zIlGCWu5YerZOVC2fo - TDAfOcWOEx8jrtBuAMfA/OGDdd/ly3oxJdCilaHOaLg9v7fvD1BsxsQ6p8G6QPyBv3yiTt4dI/q4 - Hi0o/b1NaJ4L+pCsiiYX592EvZM3uYvPmJ18KjkXZ758yGfpo9fomnAPesjMTy/U7p1Ar8om/ctn - YTqmPCz793nDT13nRsEqwbWcNw4Xra3q2+mkAewmFic+90XLPZ1ioINwpH6aV67QrOEgi0Ps0rTS - p37mD7Ep69vgR/d4PPXr+dIYMD1/GGdZQaNJ7G9EOnS+hXUF0p6LGzNBr0eQYa++OzlZcAvwcfSc - mtHjgxZC51QW6iyiHtYbd0rp9SGb/DH1QXkSd43ztIM8FVsaHv0y4uPbLYSBfxz/5ds6vHdk/wzg - TYPz7VwJbIoD4f6YLXr1eDOfgzFjQV80BZ+kLq64ryZpkBUH7AvBeYimjtxrUFbV97momfMJW4om - h9vgYqmyzxH3TQINvHFZsDv8boh7vqzib31ovMUTMbTU/4tvnOHors8pr6TyCe067KiaG0275LxA - cn4+KL4Jx5ynTSchEa8a1k+Rtq7iY+Hlwydu6SXGtP/LT8jvk0WvEA0VfYad94//dvDtq1WSfzFc - zN1I9fdoolmh9wGkZ7f67538rn5klBQYBKGhxy8rueszfPvyydc1X2rqay4ww2kbFNmpRIDIq9iv - Y1twSjiJmuyVddfGSwb0Pl7e1Nlvd2+r1a+FfR0a2PVuP7Sa4ChQNvVCFfJSkaDS6S37cldhZcvH - +acjBbzAyPFZ4a/rrHFKIJ/WXMeHfa4jzhLdEEIxvGC/GeJ1mrBpQbm3OvyozmRdbOS28sVyTMKc - kb/ykuIDMNupqdBEmbu4ZuHDUcvO1M3FtZ9FoazlYs1uOMj6U8VbV9GDj1qwuPiZbfSPfzd+pU9P - 2LlLd6EsmCctwKkj1L1QyI4Fhl8x9KY3DZp0OU3lMlYkHLPSHPV2JtboD39vlljpPGMuJQgRlvw9 - PgSI3+oD4OxUo4qiz/3EioYD5OVb1LPnzu3a1uPhPjxLauhNvG5458PJdt9Y15ypn2VdsiDQQ9YX - +b2B2C/+GrCkhxanpm/2gsYlhTyN1y+1st1QLUYeW/JZX2PqvTQj6k4Z8sGd8Tb4V1YR+xA8DRQF - m/hondp8PtziSU7KBNNIgbSa+M/Xke8H5rydqqiipb0FqTwi/kiEvc9EC5fNhby7J7Lfb/UcMfLY - kXiBc3BgBruIFPd7AIvhnEmrQNfP/nBjke/w+T/8HYyflEHAG4C1o1/mi6T4DBhyt/Mn7npCLDWY - DpRPwpPVO3QreW6D3BJ9NX1RphOqpZ04gNGcvtRr1Mxdk9euhrihd6zRdxw1j5kN5KfYOfiEeS9n - O3KpYV8HBjbMvtLX/XaKxFWoQ0TCKegPH5CVai//K7+MfqRZoSH9OD2xfzNUnX2tpQmBn0fUOfR2 - NKfYy+S2+4H/mLSLywps6cFYZ9QXvwOp1jQ2LDkzfgJNvmqEVoxehuxTxiVzPHjuctsrk3x8ty98 - Gm7vlVTWPZEkutexzV7sqL+EmrPf4tOX0ujTL/rZaEEyyvhf/E8BMz9ksk4KDqAs3Wn7ffL0Ndst - 3iZE7umU/MUzka286Zcy6Hh4mZxG04NCqmmNxQEsci6pHi/DOqT0WsCOShw91VparV3khGjFa0Cm - rR6cCvtnQCS3F/zARFnZ+XbpgPcXjR6s6VP9Qk/NZFcZHWqseu5OtF862Ht1TrPR6Kv1JJWm/JfP - XvYO3Elr5xSdUi3y14dhret8bmMgzp6hN/uluuxrG+0oOLnmM8vj4NLrgA2QQn+gxw2v+WD/GuSh - EjFVUTG584D1t8QXj4z81Ytz52slpKq585N3ekFjIo0JoE9kYOeX7PLRa74BlIzikFrTPu5EpmuD - ur3jYzeLKzTL18AB3dcf2Cp4DbHv7lzDi523LRPGvhqaw7NBGfkdcaE8iT6zk6zAs0Z7+sfnpL2l - GZR9Efq8eCjzFTv3+q+exLpbeNUo3JABny7q6cZ3EcvWxAJzDEuqfPBh5bvsnMHDGydq9t2MyBi6 - orTlNxn+9EzW9hZop5KhBfz4fBbg8Ib+lj2oSmVTF7SmU+DJmyF5nktZH1y1eKC4UhKaLejVr1qR - vYFD6kxNT1f0CbMvAL4oMsLylp1zu/vOAFtuZ/wfAAAA//+kXcnaorwSviAWMkmSJZPImDCpuBNE - FAdkCpCrPw9+vfx3Z93dtiZV9Q6VVNK8cNa3Nl86FIKdQ4rAD73lmskpBK39JJ6pb2p2TAwbvPgQ - 0vz5EtjEP98u7B7kOMrim6tnAZgPOJ0vIdHfoZzPzTsowPmsS8TbhVI3GbdWhiUQ578/H828sOGa - P1gqOJwsYfwa4anb4LXlN3uMLtsFmm/yWfMNd99HH3LoVMYijcwIgdE7r4NtP5VGrzwr63nFZ9Ru - bTzy0lFL5jH0K3jdaBmJxc7qhOzRXkAX7F6U5Lnk9ZrnyXAPrhmNynQDxoEbeAgLrifB1nqy5VBu - 8I8/0+RyhPWE/SeHbgdRJwRwQzJbdR9DO6cNVc2e1EsJvQncb9/tuD0ACKbLKV3j09yQ830YjHHH - 0aey8i+ib5DeScW3d2FkNzyenvDWdZkDWzgFuxN17sPgzep28H/6GH92tmLQsXnEsN2cA6rOcA+k - 3Mp6ZeVv1OSVKJmiEyohyj49xR0XMkbA14K/+F35aje/5baE6qkpiX1SuHx+ZAunbC8xo1oUvY3p - YjcWeDSLR/3+PiZsmKcFGu3zQ03peE/meH8SwUHh8C+evKn6hm+4De+M6DIRu47xYIK2e3QwZ6s8 - YIN07KGicQVG3E7pZunMTFiw7EzV7+vaLaMtXOBDLGvqGO83ew7t3KIV/2nsfq18lprPA07D4UOD - Z3fsWGzNjbL6B8S/eaNBV76NeD6MV/7mJ+JxmELIjQRidDMe3WSLhgI0lb6JVb8DxidizaGOZ3jk - m4Dkgj+JEzQalZKbwb+Mcbd1WhgFj5Ts4mybL7P6keHKl4hhahaj+S1tYLH9ZnTne123bAtW/ukz - L0jzbmo10Cj74DERdcXHZXh9FThpUKbGZOy9aR/LBXB2G4d6Rv+px/sYpiDm6hQ/k7EAswD8xxbu - 6nT9vgNYpmuaIfp+21jI5KFm1gHr0D1rd/yq4FxT4VGur3yE04jOft/R0Ds+IdZ2OdFLn88HXXn7 - IACoXeM1yJea34SwSOuG7Nd8675dgOFGOmKKT8uTTbN6HsHLSlMa2UoO5lMWK2gR4ZmEKJ/BdDG4 - CjoUnqmFvqExfVzN/eElMXtxSBqozhOE7oXHLHXwH95CM9pJZBdY13zOvaoAVSZf6Kn2oMFe8I6h - 5hbvURKuVb3045Qh1zs4lHT1xmB7b1PBvlYIwcmtrJejBWNYVOJ9XFb+9+dHFF4/kTAJ97UIiKqi - nx5Oh3ljrHhswW296yi5LFtvGbgXj6ZbR0ZxYU9jcuu3AhVg1MQQDoaxjIoqg1VP/vysfFj1IUz5 - s0D1+3rk9cdfN2Zl0Z0wnLrpnaEnXPU/5pTHegSq3UEI8oj96jkbsVz1yMR3juz4ZQekyslHWIsb - gwYDiuslV5wFNCjgiRqd57qfRNcFx0YWCVn5/fr2sQ602/tIsMhD9h3qRwU5mh3Ivi71fN6pIY/K - 0T0TT1o89u2J9wC6/S2JEY4NmEEumNBh25k6K95OqcoqtHxDjXpy3nrUs/MnXPXk7/fVs2+m/J9/ - V6/xvshvjUMjW9R/9eWnx8v8fad6dItzwZhPPSSpx9Yj5BswmV8lA7vqZpNVz7GlCh8iNGi5J7d1 - P6fSfZhwOPYnogvXsZ5ybKlwsok0LnoMvR5atx5wwvdArGMYAClBtYnmBcn0p6cncoTFH5/f7Usn - mUSj6OFPTzg38cjmq/8tfvhP3YAOyfAtOA7yqa7jT5uOyVwaMQf9HCsEe7vHzy/TIROciNxqx0iY - c5HfcBcv03h9bXHN8kVpoWvdviQwHDdZjzir6Pbcbomz8v2XLqjxH97vj7Oai4dQn6DKDEytJ/E9 - qeQMF6o7600CZ52y9+gzDtxv3RZvVrx+omfgw4u+21BtxbNJbLMeHnC+G+WsLuomMk8F/ErXAwYv - NjB2e9s+pFtbJWZ6AgaturcNoZvx1PIuGhPZwmdQT2aOevv90M2RNsvo+13Qzy/LxZUvIjH0HhSf - NwtoGnVpkFsVCrW26mJMPW+7MF2vtIQljWrelXwZNt/wSk7dw0p4/6ZBKDgXHfNJ9vKmMxdWKNuf - OOocseHN9mHiIfNNhxYMpgbTOotDjjyvR6I5NVm2zrWANRBr+rdf0hBZaPVLaQmmu7fmowx2qi9T - a+VTS/j2xj89Y7qWY1C/WN6waTtI96TBHr8V7j5a/YORTzUjmQ+nSAa53WYj71qOJ3BK/Ubko5jj - o9mPdS+22VrfjinVTWfJ52ZbF+ixMVzMdDfshp2aiXBw1yOx5SWup0nUbXgQzZGeQDsmtNr47p9/ - Iq3+2tDNBwj04MGNg+G0CbtAzVXM+kvp6t+CdapZCxNXDKiqRd+6jbG6/PQdsbDwYey8trBH3zyN - cF0focsuOlz971FY8adiNxv/8VOjNG2w5rsI7f0U0eLmYYMX9GT8yy+iXutk+cJOhJWrfYkx+hOg - xrSt4DQ+VKrrcWH0wQGU8NUVJr3Gx6qbh52gQsi3h7EUtp3Bx5lYQGmxOqpn663UnldXfhccyQ3v - JG9O31YKj6Acx+30uRrUbUcdcroQELyUL29w1ofQrEvfjAydP9709VwXovOyI/rt4ueiYSEbZll1 - oiv/SKZ9x19ANrR7up/4R82u+6gHggZbcjhcP91Y85sYvPgYYlT3Vc2ey3kEl1NAqXUMBzbf7nYJ - wyZ7EnzexKxf/V/wvfvHP33B5CXkYcbAnmJHctmKxzL4+XPGERzrhVmXAjSAPxCnugneqA9bF1Ch - 29AgGh7d8vOnfv9et5cwZx/U+r/fT622ODMRuGUBWaXdie1K6xHaDR1BeBD7cfNZtIRpHeaU6w5G - 9Lj651NyrVT4/M7euKz+zHIF7gSk17xQZ7s9exN34fqfX0P8jKuSxTsvGJ3kcP/7/JqXqNjA4rOv - RmW6Rd2iguf750dhoVuuCds4iwJ+g/9P2WHKWZb6Lsx23I3uy0f5888a+H2CK3Gi186Qbm8bA0ul - GTXmj8joUbi+4V7AZ0L4+lNPP39V230szOz2ydb+SqpQPq7oT8/2L0d10eEgllTNHjWYcQZ4SO9j - Q3Rs9slC9ClEdE9PGM2ZXNPXYfChGy+PEV32XD4WuBGh2n0ESoRymyxrPwDGWOXHaf285beeb0vk - CRHKc/LjI/Bdxj71vaYyJuz3HPyyBY8//2XejhcL+EH1IOFXrtlcnbYQrn4jNdrZBQJ/mk1gXjNK - VFipBv8SWuv37ykpq10iOtnsQ1nwjHGrZxhQnDyt7eovEs8qSbdslQoiLYlKEsy6ysTDcsDQB1d3 - 3LYbx2AZUG34lK41NdeHxcbnthLhBZ5ueJuM4+pvzCkQgr1D/HXozC/+UfDNlxGt+DKhZ4B//jdV - R+nczYFQpbD47CpCxmbIWbnOt/vzd4g3dzQs+Td8jk1HzV4MktcteJTwx3f99KDnooPvI5LenLf2 - D6p67rJYh7rgf0iQRHE+eVpRAOv2tqnGa24+P8Sq+OlDcpicD5tOL8KBHlKLqETQaj4ybwW0bHfC - 3QwEMCvy/Q0TP+hpdvWVbu6JV0Gu56/UMpWBjQITMlibNqAuSZDHNK7nQKovFln1dde3t7sLP4pX - 4GkTf8D8yBQIxfnp4a3XumBmiveA2oZ/j0tltN1TqDQMlcACNJj1ijEucS7gDMQNtekUd7TdPP1t - Q+viL16nowar7fr9cTGzNpmuifyGoMqfo6SZojd2z0qGcSWitb/YedOKb2jdn9/+M4lLtAuyyjMl - B/u6SRgLpAVu6333199ou9vmCPuiFAle/aHp5Ps6POa4JEF8VDs+OLDiz/9Xb8jpKoymApajfaYX - ZfOqF2W+FEA4mReqOYHuzcFDT9Gjv8bjqndrkZphiXLxtU55c+R8iLStDHld+uLS2+mMjVANkXtq - dFJEAjb4x5G9UdWV8Y9fdbMteyF8jm1HfW14G0vLrke4tN8Ki5pwq/vCuVuIdB+P7EvBTFgRNj5Y - 9TbxB2olksuZKhoAv6e3akiSRXypEH1q+UqNp8KD2T8pPFz9WbI/13Yu3vdFqtT5OyGufz8kQ2fy - KpQ/ZUcCeHfBEMt1ihLny4/oxqX58oU1D3dKkVE1CT/diJlkg9UfIaq7RUmb7YUQXuqqIaseYTRp - AxNcvuxDdHuZciYkbQojY06p+YgPf/Xsh6f0uo7E+fktYF0fqo10NP749rvjnkSDO5ywT2tieHqN - hNrg8QBtcGE+ipqtSbJomOr+lm7fcLLWqdkRGBn787fpmk8f/mIs8hQVaPXTRs6AUz1d7r0Kuw4e - SewHx2TxoN+Anz+/X/mTWNMohXB3T4nrtjdvdqkwKVnSSsTNkl0nLe0zVFZ/mHjpNQDzLWgL6HJe - RILLvkxY5SQjyvrrSHPxycD441MmhZ+//WVW06sQXKVuXP2Euv3hxzasGV3XMx+84rRA9bq9Umet - bwJ8m0+417OIauhbetPP79MbMFI/6Z/G3Lx35f/18IH830cKHHqbqDO9O4PtnhVE8mkKicluSbKc - SMJBCNXteFdilQmGwx4oG8iG7NObx1hXvC/Ixu2e7g7vez4I5AlRjcSBmC9HT/ggcyr4zqOaOBws - DGHLWAGjbCqppuzsXGoYgKBSzIj40tJ4c15wMnDG4zIu8eXpjVaALuBUpiIJXUy7STtcW3iMMkzd - OPmAWR5u/jooek/J5jokS3aYMNqcr5QYY3Pv5rza6WhXiB7ZAzerxSa1W/QxfEyjqcJgBE10RMWR - e5PgG0jJw+h5DomxgjA8xjXgO3EyoZhqgCbHl5C8ltZu4Tfn7sQCE8eW23JwoYZzHYcd6HOmDU0I - 2V2piZa9nh5/mzgLTs6s0uKlW96Sa/IC39PcYHDHIGkd8TMBAb6OZN/z+3qSg06B1ng90kMNl5zt - ng1E2ya+0lJylW6G59MEhlkdaCD5GhPHy+uItGf/pQewWJ6Y1MkFhtUjGzt7e+tEExgYfQCbqK3S - OO+f77uO9oa3JWrWP5IlDr8hvJ1BRQKpjHKhOu1GGEwNJEEog45FzeMNG+mVU6PNHW/MQVFA2YIj - wYfsDSanVznEvCek+KZLCashiGHu3CV6kCOcS889KxCSG4ucwE7r+Pa7ecNDG+2IJUUimA5A7yFf - 7BwaBYIGluP+DhGrVwqXvd6GNAr8Ar9jX5NwToJOuuAtBJpfPOitwXUyIf/4hLLl+RjmBsiXWdJE - mJQLHdHAV+wZx1kKbTLvaNzyRzB35/kJKdkKVJ2ToF628dlExWmx6YU7HtjwaVsFIDVTSWQ+ToDf - H+0eyrtDi0XLlvKqfHx4+Oak/ajwM8yXF1Us1MkvgWjX6FlLaXRV4dezN/Q6fJqEmcdLD0sBcwRD - g7GptwobGOY5JVcpyoCE3SmFwmkf09337hsLYFGBxmM108xpvIQtL68EXOm6VN/eHt5w3jUKJEJF - 6GX9/9lmsztCRSAWMV606XpzXlzwy9/k1r0Bq7eDC+/xlx+FGsZrq/ubgs3uTcenv73WYxMuFQIL - isj6eQm7OfaChNMupul4rxPxrT9jmHXRjagO/XTDifdLsP88NqNEUsMTntr0QKJY3qnT0jtgDQMc - OOj8naquJnmsr91G2d2rkeS3uTbYp2E8uuB6HJ/tPs7F86vAsNvmJ7rfzLqxvOa9CAqw3uo+vLVc - qMUphbWxqYl6vW7Z6OOqhFuNk8blZJm1GOqJjsDiUGJWDxkM1SXh0TWCFHMkfXn942C2KJ2sG7Wv - 9dETcR+PoAltifroG+W0AS8OfWm1I6V2UOpJ6UoXYiPjyPUQ+zVjEnpCWt8udB/GSS5Mh6MLyhKc - 1vi0DN6cFxs+38qRYHg1gfi9qQtktXGnu+f69vWM0gV0n0KiWtYCg6UYK9A1kUB2y+XlLXF+v/zi - lZrHiKvHRdd1xPdKR9x4IWDZxpGFIkstSKpPTzbWx7qH1afrqNPlj5x/bxMX9bxl0l994yFcHsiF - yg1vOQiNSXkrIXzdlRu5Jdt9zqdN9oa/fEzyEueM2iMHTw8iUX07R53Q37sn/BYJou7J3OQsfKUl - 6j6lRLA15N0vfpW2+/rk8qJtt0zy7Q1roAREw/s5Z0MLW3h+cT4NPOwCFmxzGfY+B0ZOXO+dPJ22 - grodB1Sbhk8+Rx/vAZMbGAh+XuRueet9DE0Vb6jOhedaEvzG/fv+JNl+8nmj8iV8LPw6GPpyrPms - +qiAt32H5nyGuzFUKg5i069wpZRHQ8L7B0YRPOpExbltzPB8m+AluEzjdnp33vLm1CO6PHYJlsj5 - YvC9YelwtrKAnM7XHIjdvMhba68u9BJbJJ+CG6gA86lCTPm1vh23eA08vhJMdnsbd8/v9T7C/dc1 - RuhjPf/hB3rb9Z3Y3cE2pib+vuHHwJjud4/ZGI0msqAYy4geNVCyv993VXWCmS4ZhiAeHR/GihVQ - I7j0gJ2GuYKP0dXpjnmw6z0HhOAqFYyqO5vzpo7dOURfZwXDC2fmYn3e8jCdcoAV4xgYojDqFXLN - jYDlR0G8Zeq1EU7l7YFrXn2ApRPLRelvPcKD5GtAQO8wRCteUe/Yzd0CN/QIjeN6sOLyZPk3xZWP - Kk3/ErO63lkfFEMGy0qSx+YtVh6/00oME18dSLryiSl5uQXIOMEgEd7PySTM+xRZtjPhTWiphmi8 - XAjTvS6u+VB289kSW9jj3XZkhhN3S+E8ll89JAfvsDf43ERPCIabTzRHkcFwCe869HkpovhpOx7f - sTtEH1CmJKfBCwjHZ1X+8JseLaPKhTbc+2jO0oGcN07aTYO/Dn7nNh31vYdWC8J+gegaTxGxtC/J - WevwMbxx8Ruji7frxG5WZCi5+m7cxv2h7pwgycCTzAENho+dsI1yL9HxbU3EX+NBwvYGQv+hzGQH - SwvMryh9bK/xEpGrfogAv+YX2kNyp6ac9fXCRcaEStpvKQkt1fu6d/iGi16nxGfWp1vOTZsCjjWE - nAZN9WarZTIKy91Mo2tkdnOxSC5KaQipVR99Y4LbPoP3wKF4qVAA5ulQ2hAl1xI/3vYxmfcwi4G8 - 8XlyjXap0TzCakLpJGujOFwC0B+5jIclHbdEp5WUzP1z7oHBheVar+/57B5hCeGpY8Rtm7pbns8t - B++394Ea+9qoBxwIriI+het631HLmfpoXJDmQ0bdXz3xbN+HZ5U9ieY0TjIG5+qJxKd0HUFhxEBI - NNpDL8EWtcBUMlYdygbmOXclrj2OOTsN2wc044228hOLTfQxteDruRtq7knPfvgGofk80Mhpvjn9 - Wm8X6cMU4UnpcPeH9zv6DIiWecyYFY490SuMcnpzmQCGp/OooNFJ8ijNm8ljXJ/48Hvd3ahp229j - CS5cCjzto5Pd4Wz/8NcGz6ebEpfvX/mc2AZUZq5N1rdcpXpe+TSQeL8nCWOtx+T2coE7PpyI3T2q - daKQ+kBlwUkYRIPWSeglcn/1L2/fMJnVVw+Vy0MW6DH0z8bsELeA+Agf9ELPwJt3tabAm6VX1M3c - yBNdubGhqel3gsGJGYsrXHTIzx9M7UZrwLRT1RLBbyyt68sBurtfRKg8riYNlsRmE3+vjz/8JvtB - q7wGCnYFt4cqp7dUOtVj+14mxB7BhsZGqwGBHD4u3KcTwltH3xnzQGceZdn9So+au8+FyVFDyC38 - QN3YovlUZ5cFrHydBut4QVbulAaeP0q/6gdodOEDH+GX5RbBO2h60zZ7qtC/J8MIdSCvR+jvFeTt - +kX0uGcdm8sPhnNnUaIqvtWJysvD4BLajK58P//spcSET5kXyblAhE1NsklhATqbqrhRO+HHB4P9 - J8Hjil+96l4reDhediMzdY8tK38Bc3YcqBdomjHL05DCq6qSccpuDpMseje3hnXicVcYCxjfiuLD - 0vcO49J+ynwZ/JsJaJwWNDoFDzDZj/INZ2v4UkICi63rEwNrOGZE3RkfYxRa/gJfdxPRY33sjedb - 22E4ajyhBziJyZJUuxhMi/ilqiriTtKGKkTnxHdJ6NBPTYfl3ULHFkcSHLjB6P3AyaDunD2CD96Y - TOpu2wBQpHjdT6lejOZsbXs+r6h3lF2DP+pwgRUICCnrws6FGBkLcIpLTHxL1DxB8DQTfcexJmTT - vsDf5zdicSXFb39qcTrCLtnN1NTrPmf+fFdg1u80al+nsWbYTC304w9ZX02guSYeD++BR+numV9q - 1kZjDKsD9cbe32zZEHU0g29O2JNTY+894fOYZOilB5Pam6uXS18OmtDahDIN34LCqNrGNhq/MSNa - 9xHqv3xDeAL0eL4ZBv+a7y7qVD3B8ynQGeX6HMMVn/70xHzqLwU0lfyFBW0KuuWUSDwQQJmRYOXz - 7LRcM7DGD/522pzPThy+kXzuJ2oddrE3cHN4+dNzqlvdPDaM+oRWvYZn9XBLlvHorPy62oyMvedu - OcWtBYj8Gai79kTn0szfcJpkh+7F891YxGW8KOmkaMRf13flZ+tgZnUmzrWQwOKMaAI7L9hTvVhb - gJKp87Ahp3QUnk1iME24xECJugfV6WaT9Ct/UEzthKj9KIjBEquQofK4mUSj/Giwc7jv4ecjT2Sv - ilM3Scrco1LwuVExBMFblJfho19+7cFp9n56AO4EK6a757HuRleIdRRlS0m1+K7nksX7UKl78h0p - uR3zxRkaHfr3aCCBl9dJ+637FnGVHIwKfbN63MZnC7z45o4Vfi7yPz56O28rUjCPq1lYTW/EAqzi - mr+5gL9shQzqtJ/JyR3WI0Roo8Nid3iQ6E34jh2fexue1flJbDVs88WKvAqu64mFgYGOGl78/vFf - ur9KPVsIbXiopnd5xYfEEJph1hENaYb5y1n1hrwKVJhvKo0WlydLpuQaFuBXz82bKHvdMLoLGD9p - QvR7IYDha8wpAvuNjdu8axjzF6mFJ+pm1NntC4+9L8MT6rlKSHBph3p0hkqHDTmkGK365Bt1n0yx - w3czsqAvkqnbbHiohYea7Fc+y4ZlbEGdpV/cV8dX1ykm91Tw4VRS6yOk3nIb5hit8UTSY8R1c6Ke - IRxNMFC8+OsRdN7HMGs5gxjRlmfsfXd4GHEfjpD0ZRusoZkFb5dBx4o94qTZaUcMd4IZ0+v3QsHY - ZM8HrI8XZ/V3bKP9OHYF0ct64O1uD43FCoQMvfgNIi7de3W/7DC/vb4kOiqc+c5ntWEWqE/3PTk8 - Ba/mo33mQ2DxLimHZK6Z9GguSj4XD+pyzjVfmsMxQ7967C9bYkzybqvAo2yEo8JYb8w+yyCc7Ean - KlZCr0nufCpTvEgjWtf31YbEB2t8070if73lx5+J8CBkV84OYNri2+DEtDO130Ay5kbBMrwS3BMj - CNKcj/YhRhRPErXTFhnDy5fbP72nXiUXjNzh027lvlyIfifXZG6WQlG4RRx+fCena34ppnzdUe2h - F94yXkEBLyWOR+mzDqId+MMIjlIwkt1BnsDAw2WCGJbvcXrUXj5FxPURv2kG+sdn7Uf53Jqxd6P4 - Yn6SWe0dHwptIxLLMqpkPt4vR/jzU+w0G+rmlEYu3L6789qSdb0/Pn7b5CsfyyewSKYrbl9+diHZ - 5trlzWUxLjDWxD2J3sVgsPXGJ2Q3qJP9XDXG1DZfHia+SPBTn0yw6NcMwha9euK1b5jPYY0yGHWP - inqsD9gAi0EGaDubxHzSOZmeH3GC6QWIxHjxm5oFm8mFc6dENPCGhVFsSxzcN8c7Vu6G+08/qEcb - kuwavbtFuUYYEXy2SEnSl7H4x7hE711hkBXfawF9Rh0ek3QkP//w5w+htq0wNWRuYfPhIlqwMPET - L3SgYN7DMAaPnBbU9zdbMPuTzv/pf/tsYq+j+zOGHNt0RE32dsd0NS4QP5XhKM2L1C2q/S7hWWlG - apuwZdPPH83H8bbq4X0iOEQvIDxWAnGDnkvGN6emSLYcn6hdYSYSOUwF9BLfIrYJ3Z//aKOfnlKv - bZwL3KjHaHO+Ueqeyimfo1GoUNSOHP7ii2WIL7pYoKn7nJzELqylEUYq+ukz521oicCr9jply06p - NQRCzsxj3KO7zyf0sn4fartBrKhHF45QRiGbUv5douI02eRwC2cwS1fm/9WvVb/VTAgEBZrkXNB9 - rR+S+axfFojepMLzxpDz+ek8HlA4yfzqN7Nk/PHRkI4ClhvNBvyRC3n0LSaDnuZBrRc8iU/F2usL - Rofby/utJ7oL5mW8Z21uLD5uChhx4YP6yP3m07OOZfQB84TFITgk9BY8W6A2MjeO5M3XTRPfnyDk - zxnNX46Z3Dh+t+5fQ/DDCCfW3ybOhPl1l1NrSd6MBbBVgbHzReoxDiWtKSELLNqwUE047wGTFzMD - j2sHcUeDHZsF0nNw5dN4MfNzzdxCysB7VxpEFTbYmLLCsxUixxHxxvvun99e8pZKST90yUQEtsB7 - fTtihTHf+LZ4W0KbsB0GBsGAYd8y4XJIjnT148HojMIC11ebqdsqzJi2Wa/CLPM1euaklyGN8KxC - 1xAl6pyWvTEMdBZhke2fZOcd9p6o3yEPXY7fUH/Fi8kPnAtwqigh+jZ26kWC2QI2HGJjUEqWNzlT - zyu/+PnxuXl3AxM8fO39KK58SrL6mIMk8hyqrXyKnb2OV354nFZXDSyb20UHB6M1iJeLitGXDyrC - 0jswaombT7L4x0sJv/YF4eVeHMA0tY8GjsfHvPIT6tH8avtQ/SzqKF5Cpe6npWigGfHGeqt3Ab0W - 7yuIv+OTkCtyvP7cRhf441O4FEq2pPO3gRxrCXWuxQnMNUh9IBXLnupMsROBCeqEjvHdx9zqf0lb - uWmBX2K86vHKGHa1JoPTLK9X0sg1nzpxsqBUjh/M5L5Oxmka3rAR2XZEY3YD0yxPMgyrKiPXw+1l - rPXFhOy+1zCwt7eaDe9wgr96MZ29Np/aIRgh87NyBMcuqld9cVRo9FDIXvTtjgetffn5TdTh2r5u - jeZsQibMNWa3zmKiq8YYeJLSYP7btHnHeFqAsIBs7d90oN/BJVS89GSO6KWWYJ5CJf7L/yMoacL6 - Wm9RUl/jcX7o0Bsl0+XhI89UUniPez3vnqcGHXTxjuWVv8/v0zTB1V+m+ybgjHmz1S/AaHuFZu/v - vpa4PvchyB89wZ9vBdh2K2ZbEsQ2BluTGmt+XGDpqScambBhi2qPJayPw4tiyVVquvrXcGKNR0pr - ADVTP6YKHZsfx6de+/lfv8BL6geW3Lw1ZsW4VcpjSKtxc53Cek7UiIMiOWXU9EYesJNQV4qYGoCs - eO5N8m6WkUfa+4jqBtWLvA+5H/5Qa7gMbFnwSVbMz7fGY8M7He9ZL3e78o0Rjpe997VVHsPXzS7I - dcw2YDQmw0LaDT+p8zbuCTNw1YOTPywrP6FeY7wVdWuLCsZo9UsnhrcYvofRIdZDeno0GnAJqk9K - qG4Lbc1WPfn7fcROs6D7+Vlow7WnH/9J2HoaDHJeZpOLcQy85UUXE6aX9eEw9akZU5NIqfLeNF+S - jqnLpva7eYJrsiXjY81vMXnfK4S1oiQ/f3nd3xbmg4L++nW0v8HqL1/W9WN9ea5MqAiBRf3vHa9X - DPYLXOs1WfmVwbowfPz03khX/2TxiehD3sYOnvpLWvd+oF3g9VUl4+q/1NPPfz3ixqOaalD242tA - C081JW46gHFTIxmUVVUQI7aChB4f20wxrAOPD6s+nPSbqsOfnrZWfTxNwzQh8zUYGMT+t2PwfDeR - 7uQefpiOa0hXqT/+9B25QQcb0ut0K5UjYQ7eEBUnrF+vuK36l+DmcO/6IxeKyIuzJymewtAtd/tQ - gLqzOqLTzS3/fh6yAt1TltPImCtjgVz0hCvfpzZmCejjI++j0jsxqq39VCkGxQin9YomHXyWzM2w - VeG3WAzMjssAGlxrLSxQ6JOCJaoh8rV+QbEaGCQTT1uwGE1kotcyatR/pYd6oG6pw2xPARbhya4X - PnNjkDu1RPzv+K5nhQNP2MXLgeyvks8k9N2ZSFUqnWZrf2QyuqsMA6s8rA/bi2B++XIDHeqmxDGP - z44F8KHCILclovNy1o1rPkDBqEdi47uZSONWl1FOpeuar5d6tt6Z+usfY0QUL//zy1TloZN9uLuw - oSsPBQj2r4QcH5LpLU2qNujktOnIV6GTS2l0UNHNOsD1WRkvEeD5tsCjzC/016+Zi2VjgwbjI9Xv - X5yILNDdPzwlpXuv5y0DBShQ7P/6MQZVjIpHtL5eSBJteTBcskSHW+hc//HhWsYWDIb96c9/fi2t - 2qBl2xajCEqSz1V85//8ol//YtigMQS/epWt9W+S9qSB2TndYGmtz7PPQg6SZPcdFbrvuvkxBBAe - TKYRH500sFzP1vTje3RXX91kubW1i9I9n6395kP+/flj6Xi74DZeKFt23DmFl9shpD6z9t1QvO8x - WvN7FNd6sSwOr0O568JxiW/Am7TDoYFh4UXjlHERmDcweyi//Y6magQ0fxP4fz18sP3vIwX3comp - +eVeCVvyQ4a+83pLdug6Np0qdYF0ySDBBljqHsphBWkZ3Ma3eFQNYY/ZG2Wmu6OuVg3JmHMR3p5v - rjQCco8NcYM3Txh/5AOJ5E3EhMzfQVTIyCSm6907CRxrFe7TE8QLvPne/IkHC274pMfTZn+vWa42 - JeS+4ZbcXp7rCea5boDNbbZjL0kfj33EaAE9nDyaV6zLZ/rNHhDoo4Ylvt50Uz/PF+gvlUH0BrgJ - 73DGguQY3qj9eHAd+3yLCrrfl0S0/bHuptKtWvTSBp3aiiLkS97bLuy3D4nik7vzZiWhHIxK/0ZK - xXjXkwerAj0G/YyFz31t6fO1Cql1VojFwkcuTadegeVqjreBW+SLcm2e4PnYSWNZSQqbSfadYHvH - Flm9Q1Zrtl0Am0NbmtP0ABb5Zsgol0yeZu536Jg+ixkwXptyfKjbZz2b/vuCPL88Ust5x3X3aiUR - nm5cQ4zKf3RCebqVkE2XF/Uq5uWsOVQumslxR2zxZRlzIxEMmzdENIDVDvD7odThObwJxCP+Aywf - UpVru2s3UlSrTJiDpYdxIeREO8R5vpDlKkIsvSp8GkWHTSpqj6DTbUwvrsw6dgqfKRQne08s/6R5 - 0tV5Luh1OwujyL10j79RfYJ+LMs07YqMLftSVVEb6F9ibLzIEA2M3nBH4pLsEofkPD+2KWwD9UvP - 5AMS1l8dF56elULINTrlYnfSSlhAnFHPQhUbcqirMI7yAc/7Y12PGDyeCItxTXfeqCeiyU49EseA - 0r0puYBPQu4IGZEiEmhk6Fg9ThNaxJ6S/Qw/3bLB0vO3X3QHcZ/M7lNw0ePg8yT/io9ECrpqhG/b - q+kucWjSn+s5huebLRE730fdZO/DJ1zjixwOlg2Ew1HUYahoBo2IkoKZa7C/XX8vvaJvayzVS31D - MUg+mLPdFCxe1k1y7dKA4qzJwKzNGYQOTGSiGqKTiMNlyymboDgQXb2UrJcNtUUbPMcj933p9eLc - pwc4v7kr2ZtSy/qOFT3UFLUm5dSpidB/jCP61YOTHZ+YVI/y9BfP5MaMjiVfyCkjik5EE3Ybb6xj - asHjRq1o5BZasgQnu4T58qip2/Ggo2UDLEi214lcwUlLpDGBGZSidVD3/nv2+Hh7vsD96ROOf/l+ - 7+wYDo/wRQq9tnPBenw4UBWKTm5LPSUMX20btEra0H2QQ2NE8fRAcINk6nxtsVvU90NGoZYciRHM - O0/4clMLhUhWaSRsU08I9dsE+XO9H8V0f02WVgIWyFwjIfh2/hhdE4gjlNzXm5xCv60X/lnZyL25 - J2ql+2suIPG9QDFZwnU9H/UzPMZPdFWnluyMm5rzxXYRYdR8N//28wW7Ej4LvyHGUf0Y0ttULtBK - M4PsFc+p5+6CTUjyBVJvfnP18PA/mXIXPl88TcDKhWzLi+h7eoRYmLZ9N/Knh4zy0/VL99Il9yT0 - CRdEv/GZ7gJfNJgo7Euo4fVITq09k4V3Xy38vMyBrPkFBKPxMQQ5X5OLVgUJb+6MC8rKzxNvYZ/l - 7MTlPpzwtFA3DS9eI1TOguTLYmKuHo/5su43+PRyTAocnPKFlo8SfT37TE6BogEpkg8VGm5aSOMQ - m/m0PZxHsAxPf+xfhcPmx7lvYFXIOvFDd2Ktl3UL/LgaI2cS+574+eyO8O5ijSb1UNQSyDl+O+jf - C7U+QK/F7nupYFX6G6ImVZZIRuQv0D7fKqoNbewtJluf6Ohsh/jdGCf8WGciciezotomUvIZf/QU - XXcpIE5oabk0VtsGbDPLoMbBj415uIpPSNPeJtdwW3S89LUsNPvWTPZLJLIh0CuM0lF2yNXKZtaX - qE4hj/p6VBLgdkutljqsR/mLBVGfwGQdZhvVYk9I6QmvvO3tRoFDa7o0x1kAJNhAC2AsLFSNrhH4 - i+8QhacVb+NaOB0uPXTu4pmaD3NZB8mLPURsqeh+YnUyWA8KoXryPRpVsQeENytH6Lf9ldzcu9tJ - 6hjI8PTdecTdGNgQytOpQGnXCkS307mbyCxnQB5ybnx+uV0unqCvws0DUozQ1/WEnbzllMNhqKjG - Pl4ujv75Ai6RYRPzSGPW75UkhEcJA6Jp47ae8s93Ae05q2gOAZez0OJcKJRNR/KwPdYivzuL2z0u - BnI8LQFYPvuNCtlTHUlIk8JYaNkW8Jq9CbVP/bMew01uQUeBgOxXPF82OS9C5zN8SMrfJmOybKbA - ZAE2Mflb6A33ff6EHksGatVFAfgo2PEIXntGikMieOKrLkQ47heOnjZpAASrjTK0PNxyFG6xadCT - 8bHQyh/oVan9nHmDr8JGfNuEAHDsBNECLqze6os68ynr2PgOCrir/A8tZUVPpDgOTWRrHcAbZxDq - SYq+GAZ3e0MwPJB83mqlDPzp1Y9b7HzALFrMRtk1/BDD7T75wj8bG+HDMacWf7aYGIlWut6Cd0mg - PQswaYd9jDroy8RISNZJT+swQrK9TcStwzafnofFRseNXtFb9LHz+XS4jGjYySN1pHQGc2YpNhQ9 - 2BJnG3XJ2xaeMuL6KiCG36hMcIIsBEbBA1LOKqmFVKIN/JKxXfF49uYTf9eh8fUXor2sijGlvV2A - /pgiku53NWDfz/owyflSEf2zvMDczOACzOsF//GtUc/0FDVx1lP8vj3Z0oP6DYc96fB042C+aNx+ - grwJxT9+OBFTq9CXyXuqVkvULWv9+9UPWoRuyJZ5K/HQEo4e8eJY7aR2c7Rgh5Ut/eM38Vin8Kl5 - dGwPsml0eTw/0Mpnafo85gmjqq0jT8AmCfioBsIniEJkloNHrfRdG8xbB5k1fDf/1Z+J7oEKm67G - lERQ6qZKS2T4Qr1BjPKZ5bMThDGqlkvx21+2vKfYUiapqqhup1G9zI8LB9Z6TfY8DpPF5Z03cPOt - Qa7+M0iEfltcYEny11ibI/YY86EInTt/xqjX74DJ98RS1vpLE0891sI734qgkbY7YidBucYHCeFu - vj+pfjNLb3nVKQ+X+prj/G5fOkFx7CPwb996Haw7sMk+f1uIxbCmlnhUPYEWeQi0zXamRqw4+bTW - f/hQ23pccOQysZKiFl16UyMnaVsxdi8NFR62CqRGdY/A8EgzHqz1g5aVdGFL5jhHeNT6Bz6ufHj2 - TG9921cKqGUvqGPCVs1QLRs+rjb7e8eoqupIMW7dyH8CESz3Y6Uigi2b6JZug2VYShF+vi1H9rd7 - 601xX9g//oHBV9Tz+Xm9usASUo8c7eXaTfjJXMROrYTni7LLmaSbC/CPtk8PqrMxxtSCNogASIgf - mIkxb/bpE6r5VNCkmRKwZPjqKueEOgSPowXm06delMbSBSxzfGMwbvsVgaZ/2PggtMx//BWyDPEE - K5mwDhYFFahBWBF8P6qd5NrrLSoQnKnDX8V83sNHCSUn/lLf6P1OFPMk2678gQTmwUsExVFT6Ia3 - A55r55Mwe2lCGMjwSc/3wemm9n0qYKe7eJwdlNdTZdEebs6iP4opWBKKgmMI2UX2yNG8jsnItYeL - knGYEs/O01rKrvcnKih/J4UuSzXbpUIMwHNjEbMAY7LIsdUA0PgXmoQZMuZDzWK065oD0Zp7AObv - 8foEnA90osWdkYsHOalQ+AhKrCDFAf17f37CWfSKkV8ex26JRJwCejR2Iwq3sKPJl//jd9RSOpr3 - /by9wFkZBnqGJ8fo1/gDfkoE6ovkarB9K4roMNQ7QuKprxnd5Tzg/K1OjqTuAPsqbgiFSFEJEb7Y - 4+1SKJAU5z61wO2Z91DOKvguW4/it7oxZoFvdZgkEaI7y5KTaaxD8Ye3eLIvCug/8/4B5H6njfMh - BvlCazH800c6jlwgflI+XI94JWT/xTc2JJW7QP90c4h1kbtuup41Hz5EG46K+faM6VZsR/hCo0G9 - UpwBi+PMgrGduBRvSVQPXHg/wgTTjlpOZOTScnTeEDT4Qk0kHZMfXwQrH6N29xLqBd7PFlz1JHGU - C6lZAi11OyfyiSTlU85pnYohCouU0Jt4rQ0WoHmCgde8SFhWNpPW8a8Q67s9nj4yNdhhX6kKtXKF - EpPo3oy3eQaCdLaJFzEFNI2nm+CJ3AlzGNTevBGMAjnXeE9snSpg+Wb9tL4F62LxdRbzuWoCDAeu - yamjXGjNnJNbwr3k57TUF5xPiBoTFHaVQ8uT+zKWaB1D/VJKirn7sfrxYwut8UMdddbqGfqyCIP+ - OfzWtx5/f/+nT1JlzmrhpUmpcg3qA7HWeFiugl/A9Q4a8asmBaziYANa7QlIFHd1zvjecCGherji - 1Q4wf3OwYNPiiBjcqTB6SFAJbyiWqLNs9LqLmNbDFp/eZNU39eDETwspipL/8Y9RPb8aoBdJQ03e - rRhry2cBrtvHiTgG6pMpWyJeEW6bhvhG33cM1FWIHq6njHy3X5+iujwfCJWxNVabYgJj6/oYRO37 - iPmLu2FzEOxFqKq0xugJTW8GQ1sCf3kYuM9fqJ5s/3kB6rA/j7IWfZLBi+wFWJpNqZ5drWQxR0OG - 1lC9iF+7msdsc3tBv/yJo/4Ept0z6tE4VT09Kd63Zk9NUxCMk91Pr3RzkYcZegRnTHbSxvWW8wY+ - QNPdMXVWvOuFYBqh+X7Mo5yvb6Pq/PWtDPXnMXaX++MfXvJROmCYCFoyvzD/RBfBf5KsHy8G/ekX - t6swDVtXAlOyvt3KDPNNCobSZDkrTQ/X34ep5piJNGjdUfnV89IK8uTv+1/E+52u++e1vuthGIfW - RHR1R+slqlEI5kOQUjfX7GS6lgcdVDvritFVjxK2ySYf/fCPoFoFvLhceHgQjh3ebiMvn+mdmlAz - K5d6ltMxps9cpqz4Q7AV5Lmw6j1gWuBNnVtesdlXuBHytu9iUa94Nj/STJSzlxmQsOmfybDWUziP - J5G4+jeql/oSVii6II8G/nPIqSiQcluTpCRa6pw83vb7DNrGMybacNABLxt2C1c/DQtbaNSSBGUZ - Hfwnoiv+1UM7hRayMi6l6gTeyTq2yQekOmHiB7JtLFF5L4E4Ekr9H586D10Jfnzx2tU5WA5dGcL/ - cXVmPcgqyxq+X79i57s1K4ID3ew7JgGZGgURk5MTUEAZRIZuoJP933daV87FuQaige6q932qUl2J - 5oQu0HOCxThZy0/vxUsfpKQufE/skvGBbqroBNwBbBpANmvXW1fXiz3ProBh/ugHvP9Au2f6UQKb - OdeQqV1re+JdNmUptkryjS8E8vsQPrnz4FGednT5+pEF749IrtNJnYaKs4DaPQleisFMGf9YQdyO - Ok7UR1Nu8xyH0HMLHvmeUlHyrkz85VHIi/o8mHvl6Ynr7VPCTXmHdHr05zOUykZBCoiMvgNGVInp - uDrhWctbe6weF0vcS36GNH+59RxbjyCMb0+i3fipn+XNsMATHfZIToQ6GNe8ncHtpS1Y/sFqV818 - DL98SEs+df/bv53cACSdTKWkbrn2Qa46LgkrXlY5MBEN+lrRoccpVoJ5c3McwFWV7PGXdKfO5Upf - IOzTN2Y8qyebx6sSL2FSIiOLD2CLi7kTWXwj1zgdeprnTSj6LdaJcbpgulw/CwStVetIPWzPwY+n - WVajI5m++2Bh+wUo6lH3Vm6wtxmP8YGQBj7xhPgCaHqAZ/Cu9dHz/XAsp6WbN+IAFxvJ8q1LuyxM - OLDFVCGa8+iCWTXOFWB8lKg21/et5YcCFNbZgGSjP9Mle/q6WFUKO+ghFu122p8TsXoZW7wvqkO6 - Jda7hfWrt/ASP5qADtZOBy4XB8jBnG9vikduQXp3TeKYfmaPojpo0DkuF+Sen01PvYdkim6Q2chd - PrdyVl5TLHpRH+N2xZkqffHvnbCxVx3RxtuSzuIGT6DSUhUhtF6pY3nY+VD1NZ/IZRaVdFD1Fu5D - jpDbCR365QnrDMID8IjylK/9Qib6AmIPBcZ7DHsBSFJEDYdsGK2vq9tv/jHCC8QSWWRA6yBZCeqx - fiM50ad0IRN4wY17enuL7AX0d//XPztN7dnDZos7KCgmRo6y2/b0pqgL/K5Pw0OzOjihm0CWn4na - Tmxo2LPRBUPGCjFU3ATbWd0V8DYZEjnM47MfYq2DQFFt3SPJGvd0uOQDDAtk/HjxpFlXT2D7wdvc - +VpdlpvnffWtx+t6nOJF/kQ/P24pn7lfvnqIf7MpQcL9E8yReuwA05fEZPmotbm1Iry2+R4p+pWd - xc5VCpSq3drbBS4r8d8ODnw5+smbp7Qop2thThCVzQvzu/BW0nutVFA1/Q7Jtr4G83LqnX2WZDnS - +wj17XOhvrjfSzZKozei33wL34f8hdTdvu3nMyianz9i8ZNOnATusH5GLjF8p+unRVQEkOTYQtJH - puW88p+h+NonPl5NTtJvYu/C/L9S453hSSUPxu4OgiAQiWZ6Zrp02i4GN//Bpt7wTk+UeZOAZYMJ - Mq5n0+ajjRZBWVBKb2ORiHJfP8l4MKZT15STacTVjzcwf54udzK18P1pV+RIDoT2/SS+AOO53h54 - VT+d96cEvvaxT+5BxI6r4dQGnDIvJzLYjMHiiK4A9fNjII5DVIqjK5uq5C0LUk5Xs5/9SW/h4apr - mG4gUZ+P8XOHX96T9WKc0ql6WaKgD2ukXD+zTTzVbcGX/59h7qiUUGUQo1thYKb3gtlVCgd0oK+J - KTor++PwnQBY5yhRqFH3Y6wv5o+/uTzZpiN0dhw8hx8ZV0zfUmXoGjhUsCEhix/TLYISYH6TyMrL - K+esCgeo+rr/fT74+V3m173uu/6k29jBr95Cq6FWqbmFGgyDrY/T12lFf++rVF6UeJmvML1aLfBU - GRgdyV4Dc1eeOfHDIw0vvlcFE6ejMyzLjE3QhEilkJ9DeBFNnxiC/ekpb98K+FixqYInVPd0ZS8r - Ib0lEubXyVUloZdbEJhvRNwwk9SvHgKMJ3twuzXU5WisJIgg0YhqCLtfPIDq6eaiw0gxXXbOsoHm - HXME7UgPxkUbISjyEiLrkEj2hvEEGC9Uxqu4jSnVZWknEDM6IYXFj199Kd2lM3GTySzxGjZ3UK9l - CeVOpqmbZ9QqAtPvHh2rli6Dyw3ix7ZuROHqfdBmiMtEcso4Iknrkc5fnt66m4TISZqXpO7Wmz3b - r5j5PTqz+h68fgwbKXmp0hlv9zq8D2/X49S1bm/7iS8Ai5eYZtUuoE97v4Jvv7gjJJasZZv7KFCK - S5PV22p1QYU2ARNJEjl2pwQsSW4JED4wRV8+M3dlwgmf3T0myX0l060yvBr41XPb6KjS5XBuNJgf - 2VSvYmjTJZSL8Pu9kPbJ1yUN21MnbjdViyIrMcqNfJjPMEvuubc7l0UwtJ2fiLFmHhjfftLpdb1k - 4pef5Wn4AOz/SpB/zx46NPGT1b9eETy1/ZqoRLkHOB0kCzI+4ImwqOkQPStNfBwiQHTn+rTngTMb - aNVyQ9wl7ALK26dCTFpuJK7hNIDuGryDc5y1iOU3dSvUdgO5j3lGgXKvU8LqhbC13jpR8h1Vl28+ - ZOuHaEZCVQwUa/nxNJu3X+pskNqBJTplrD60orSuBwkgEBsk7dZNT2OytOJqI47ImM1zP+lqq8Ev - D1SdtgBE4xsB+qs6RBInVzZ1J1hA9jzyD6GozjQr7qJ43sREkuyYfuOBuNrtNCQHnNGzepgPUyEy - 8Z7FMyoB24J7uU5R/HplZX/1h/DLN3Cd0SydLiiQRFRWL+JzcqV+69Eiyy/E8dxtsIjn3UuAqxaQ - hO8Nuk2eiQ7xOzmiI7x+VApbqMF+272JhYV9irOm3ImvZ9WjJABdPxd+EcG8HRrmF6A6zXb/gmth - Ckk+kjQdL6eXI0qXgPMmIXB6kh6gD/d7xUbu7V2l2DhZ05fn4GBjJupM7oEPT10VEfOxK2wcym0E - 8qORenXbWT1vn6Tpq1eQvV5udElXNweKea0S1zpXrF46RHCNkwfRUWnTORHrEJ6DSEOM/5c/3gUM - /0xMsVcp9QOQwDKJYjw1xAL8yTp64OM8IqTcwA3Qexcl0Pq8t17L8ivNk6SAb82sSTTknD240kmC - /7QU/PWvf/0PaxD407SPrGaNAWM2j3//X6vA39u/hyap629jwR88JEX259//tCD8+fRt8xn/d2yr - 7D2wXgNR2PG/doM/Yzsm9f+79Bf7wf/89V8AAAD//wMAK1XkCboFAgA= + H4sIAAAAAAAAA6R7SY+DTLfe/v6KV9/WkcxkqurumAwYMMVkjLMCjDFgjJkKqCj/PbL7U6JId5Vs + Wuo2chfFOc90iv/xH//8868uq4t8+td//vOvVzVO//pv37/d0yn913/+89//459//vnnf/x+/l9X + Fm1W3O/Vu/xd/vuwet+L9V//+Q/zv//yfy76z3/+Bff80WXT9TUsKVliMDVphc99b6rc6N4rCDjo + k0y9O5TqN1DATr8DLO+xFy7H+VAhwc8LErLmNtCPXLlQ8W4K0a5CVC9S1HcQ+geEXSezQ25+PRto + +rccG93lFfb15oyQXYZoFqkvD6zqQAlKLLjOm7k09XwNVgtMy8xilwkie0vQLML6MJ5IMgtOtqr5 + sMDb9XVwl2zXgTnKnBZC28rxiX1cs0VICheSfXcgdtAf1OVwe1iwciHGAZopWIedJCJ9sfy5Ol44 + dX3cAhHVV17D5nOq7AUFTgdS0ASk+JyGYbaLMIZrajXu4dzNw9YengoiYEZzf2mUjKmGsgehcovw + fbrss6XUGg5Z5WshR2+QVM5GIgev59kktpQ7Krea9g4mBdGw9Yh26lbM0g49p6NFimOs1+ShChI6 + hdVC9FceZeNG1x00pLTE+lQK6jrhrUVcnF9Izkdne/7kdipuCrWw4m56xgzqdYcsgfDEMZXYXi5x + n4IPCgWMs1ytOcUuIHzsbhE2E2+lS7YcPJjSwsbnc1vYDH2pFrr6QoR9mWKwBPPUQP/geVgjdWBv + ZuaV8A58be6kT6KusfEo4MwtR3JhzCzj9c/gwGsqZSQjc21z3Ga1SGY0gi35vQOr2coQoZ10J4+9 + cAc907cexJWrzbzmcPVCtWpG9BMJOKhupc1Z7/cMIdYSfDZKIdzuV8QASKlC7Eh9AT4iW48mz7mS + i3fhwlHfVw7MpadNsiWD2VJs1EQ512ZENWzNXrYd9uBvvz0wWTYhzimCx50EsboZ/rDNuqKhz9bk + JH7E7jB7MteLy3J7E4N7uDV5l+aGoOo1OLr5z5BbDFuCzOwvRKvlu0on7SWhG+tRog2POVsO+0BB + l1iwcag7R5v/rFuK5s81JbisrYy9QNlCXrG9Zs4YfHuVL0Zx2I9jSAyanuiYlmYDID/uSGEnZrZQ + ZhOR4rgcOcZXQd3KR2qB4WRaJL00VbgCPQjQJ4jOJA0rKRtvt8kB5RjdsXxNjGHJltVDyuYZ+Hq0 + 2fpXHxDDQ0k0cUxr9tiYGsjieodV+aRkVGnLBGEuxditplxdX6rfoqe0CcSQzIByFJceytwbR9zg + 6QG+e55m1Jx2ibtZszIwFfQj9ObOI7bYsB7Y5+BUkHmXHjEfg6TypSZAaCiIxekWKMO2vIccPhNh + j6PYkzJ2liwOPXyGzge1OKo8zCYLtocUYOdb/8v+IOVo+KS3me4bGbAG5jhkEv2Cj9OtzNjp0ceA + 0x0dn315rNf82cZ/zxund61mV7PUkTZ8bjj+cE+6PI+vBb73czqjIbxn7OXFSWBjxAKf94dYZfnz + uEFuOrPY3KdytsbOKsKt6TC54ncDliWfRFjcrRM5PXEX0mNtcIhp7Q+R3HsEWrLwDEwvqz/X8sbX + tIr7BggHhsHupVrBemC6Fsk4PeJc31N7zeWjCG2lYGcooTXjYkUqkOvi3hV12Qn5Y1cFaBHqGUth + ea1JvMIKaI+rji9pBsAmfdgKekRicLasus1sjeKiy9tMicJ9sM0VQuEBZi+05K6xz3Dawl0ML0+e + d+Epq4aNWmcGuuFyx9nT9ew1xcwMX02u4vyUKfXigrQE58v7SDR7OdvklYy5+KsHc+SsYb3YC0Tq + 8TgQzaGeSsN9laIML3ccK92cbZ9cTVG3PExih5JCeWDBAuTJJyDnvu/stVa8HrW+8iLKVJk1tWu/ + R+RdbsS/FedwMUplBOEGNmwacl3PsmTOsJLrlzvbSRcu9dsw4VFTF1cMqzJbZE5TkLDOEzFu6xzS + +1lLofR5a9h56aXN5ON1g+n9cyK5eHHVRUhiB67SwGE7kFVA7frW/fgOJ0AKKdMtrxjQ50OaVxzV + YFOGfQoHWVKxlgRKyN6KukJ22kJinF6qPV+rUhCnyAqJum+edBzUK4RWrxU41WUn2/CzMAGpo/c8 + etZ92BJ6a6DHm/CHf9kEXusmZqU0kTx7DWAjbVUhzMrdzLBSNSwBI0nI0doTcV66pPLHGjNwsobG + 3fhuttchcRVYNk5M1IPDhdQXXO1X3+R0LN/2KrKfEqIPF5CTwFU2zxuHHg6HvsNnmZEy1t96CAtf + 112R+s96i+ELomR/rrC8Hg2b5wWZQ1by6NzlbazZmNv7CERm3uAHsDWwUiZe4JQHKZElZqEL22ra + j29IuHcFdRWbhUNfvnfp2f8AKhO4wP3+yeOYwnf460f0x4ds9xi2k/OcoQzgmyT79BmOb08T0Jie + dBxo8dXmP/5tB3kw5CQ7v7lsrQMzQV+8xNFptjNmqaQYCPZhILcnNkPmnG46Iqf3h1gtcQa+PaEO + VFf9SuR+L2dsUb0DFFyYjRTTGYc08kIL6Yvpk7ASX+Hi2kqMgG972BKSLvz89M3T7BZ83dVbRlGQ + bJBtLjJOLngB66veJHRgdA8b6XIOt5zLE9F1z71L2C0JaZ5RF733Y4rN1/oClC3RBgpf08n5VKXZ + stYnDzoRlxDvbawh3aufHdIA6Mi5bKp6EeZnhI4vgSXY39NwqRzZRL/7+e5fvfL3vILvy/4+M0b8 + qJc6PzBwdhZhBtEI1I88pC1MhFzB+pXPw+GqvAKkrY6Db+B5s1dXSkQoP/oIH/nHi/Z342gehLMX + ENW/nGte7DMIP22ZYHu8CgPN0s1DZzkVidxLVbgRLvCQ5V2e7ujkaj32nS/A7Cq8iEPYFCyNQTr4 + 1WP4OKncsBrHTwkD58jg023h1AnbxARJBbz5ExNWpU4TtDDLuOe8NZmifvVHA/dJaWL9izcU5bMO + hFsUkyyeIdhUX4wg4HY+li/anpLMVkpUGqJKFL5zbe4arCa6v/UD0Z/JMlDu7ZvQIwqDcZIpgGjm + iYEDaht8guIR0I/vQ0APb4O4d7mxNxKLCzwcBQHfE30Nt5nsRGh0Czcf6rOe8USfRZhHU4yV7nEE + HOfgGXz6IpoPczyDpYu7AMqCMhBjy3q6mVlSAUPZs7MwclY9o/e1PLRrrZLz7bhk45cPIbnxAnGL + T5LRzyqm8CwnIlEPlaTyv99L2I7zavlPe+vvWgwN1ji5G/chNnkeV/HgrOZA7sPnrdJeGSwYnIsM + 49RI6ZYURip2uTIRJ+lcurT7yISl8iq//RVn7LGYesG733Yz7/UGXZyoGCE8rSyxFk8Ck3F8lug+ + SOy8O1w4MJZaw8B35kkk3ycL+NyKoYTAQdp88MctpBwvidA6dhrRbr6crbdiqKDlj6bLiOoxW/sp + caGvPjBWn08BjPx96aEGDh1Od2lvb2kEJLCz9OcfH69uucZIdVCN8/ms15O/VTuQuDlL4u5+yZYl + fwlQGE/izFVXMnS328uBDqu9//TnGtBagJ/UPRKrnHrwWQM2haN4uxAXpllNvbukw3knONi3fNlm + eJSYUIhU6u5OqRWSr56CyaBeiZn5wUDndLFgOh0S4r6OBmUZ9jHCSGpGl4txp273exIAQV0brHjF + ribVQjqQ7uw3OdsNtGnK7OOfvid2f4mHJbf5CBJ5WrH19Sfbo7g5sArNDOeuCYZ1VY8ddK7Z5CIo + sOEaalEH0bS4JJ/cd73WT8H61QcxP+ypZsfDO4XZEsB5d2vZYdklpYKkey259KunuZTNcrg/KC0+ + JvQ9LE4Uj+B+vgBX3AAPOvdy7Q5d6R6Iq+xEsGbllMKCOR1c8ft8OuzYAez17U1uHCPZLD85HogO + Z39mxFGsCdt6Lhru8cWlszr9+QdRduUCP0zBARx0bhWMooWfO6hyoHd2dEE/vX6MSA02NB4g1Dvl + hJ1DTNTl80520BjHjaT1PNQbs5gz2rneSLDEfNQ1W+4WjK+9QBx8b0JatWkMo7wn7jbbCIwO3bmi + rp80rEZpkHF+clp++EZwZRfDAtfROpxXkBCtL3H26y/QGjVHHH1P1aXOVwZap0bC0VdvT5G1SLBe + GwXfv/z+5dMd/OpZcjp3bk2d3bWHeZV45JaYTzqdPamDsd0wGNOFy7YjzWagXR8udm1lN0wMex3h + 5Eg20VipqtdVEDz4kciVGEb9VJdtZwQw2GFzRqdKzBZ36Dd4ECQHn7KNp43hBTtgeD1xKWsGNSWt + m0BrYffYsW/lsPz8bpHRan4+q1Ulj3nagKHFOZE8Vhrog5FcRGSyklNiPsGkjmGFUPcYyJlMPVib + e9zBkho7ou90D8zWPUhg4hYsNl5eOdCxcSpUP/Y2Ud3IqZlz/2TgPmodrGdBDybZEi2RVyUeX6rD + WV2YS5gioxR27v/GSw9Kt4jFsWuUNd3VpwLqjX7+06MbOxDnEHVIwfKrZcBfPYedcyEnln3adEVB + /tOLBDNWYw8l1j3IcXODTVGO6CZZhQLBHYcu3/jPYZtwkYOBHUdSpC+mHuE6muBaWTU+AV4BG7WO + nFgu5QcXj93TXsrX0UOvsjRmVDkcXQg8pui8jxWivkAbLkWtpnDp/Ac5ymZvL8wlS+DXj+KE2QX2 + ouNAgZ7Vplgzxk/2p/c6VWyxW2ktpe0J9TCXapuY0v4J1v1h8uDXHxCDSDBcPvpSIXvbh9hNX9HA + gePOAqobWURWNpdurO1u0Bl3Dyy/d1LIP5qkgLen3uHzdNmHVKj2/e/5uSBSX3S1BVjCJds7RPdZ + sV7visuB3/qU7pSrU/42F9g+PYZo+R6E6y5RBXSRLzd8/OxWujgHr4cjz0nkDNgtXIow68Avr7lW + AkOXPW0lALNkwIUwPuu1sl/Kzz8RCS5nm9dvIP/VB3GLvWKzW8jFYLhHF5xx951KH42X//Iacsa7 + T70cDnwD1bS7Y03tjsMisbYGV1cvsduQnb26g97BpOUdbBxtdlhiXezAJ3WOc3+QUU2X8bnATPfJ + 3Ca+ZbNgwTrkQ18nJ+XR2hO8WlDcXP7srr4E7f68Z2a45z97fKyFUV11RtjA53Va3fMZvukc3KwR + xmo+Ye28EXuVgRUB5sTGWEZ+EG6PZLdBThQI1rriXH/5vwSGk9ff/Manf/sZMsFt7nV5DNfHaTDh + 8dZU5KEVj3AV2Wf5p89dJxvCaTs9FfTFfyy9DT/kP/a+BN7ZJi6tD1q2OTu6QZN37hhT42mv13vf + ArOFLj6NyQIItNkUfubUw+GDlYY12dkS/OYh8/tQknobZwTh47gRrL7fu6zzcgqhPtcpNnumG9bx + pkPkGKdiXounp37xwoGrq5U4+BQa2I4h48BlahSia70Xfv21ABKhUL7+TQrZO78W4je/JNYvP4xH + PwHo0hnzzIcRoG+yVDC4bTO2ZGTWrIYcF16CHXannf+klBZURHqcha6hW0y9xs5BQC9iP7AzucYw + dbFmwYP4fmJpOl/ttRDE9OeH5wPgK8A/X34Kk6WxcE5YEWzBTZlhO0W8uxnTs172H29Et8kaiO6c + lJp+/TD45p8u7OyGbsu7zuG11R5EuopHdfOrqw64HTdg7ak+7E/OLSWqiFtg6ZtP0WEDMfz6eaKY + aUrpSBkPZXpIsP6rv7Mn9cjQovwPLyY84gaqVupi6+IK9eabqQLlsPFxqkCjZnZJJ8Fa7Q/zALi+ + pvezk0D3Ot7mdZ5ARoKDIUFyen1IgnI1W5bAayBlPzaR5KCvl18+2I0exN4vbyjuSPv5yxndjl7I + ndp5g998iYQ2ftNVEk8p+O6nKxZDB9pXt8ToUDMyvg8hCsdc7hW4ioNCXDVqBupe6gUtXfgg9kY0 + dbnEVYLSU7Gbt7H+1KTpIheFwVC71Bbu9uiCtALA2Wt/+dNyO6EcvpgxwMfisR9oVCoCrE7ZHTuO + fgBroRob7GBtE+sRFfaf3+bYKyJ2POeA7raDA/f8sHfZiNSUhjdSQbwLDGKPU5Wt6WPMxX6fOUTi + Q1gTAJwO/p7fGbBBuEhR1cOvn3bZw/NN13i8JQdFoIm79/dhOJoLSAFKcI5P2rOz13snj/CT05To + 7O4Uci3jtvBq3l5E/+rRMb7WEeSRomI1y6i9vD1HgL/8wtoAT8dKn2foT67zxR/d5vIYCmA4azrG + e9zV7PaRKhj2tCfa6z7Wc/gBiWgt/B4re0PKuK+e/+WrJLoKTD15gVXBYIIHHNuEoXN5248Q1hUl + 9nhNBgbDsADs8onIsUUeWLjrxYNcjlqiRMKofvVn/MPvXx4cjuMn5QCX71usGNNzoGToGHhRRgnf + 5tgFq4jn7sClqe8+bU9SGSCFEvz5xy8eqouw8zVY7YuJuH7h2j8+gDKjkxlM4zPsnrbpitaNw/j0 + zQd/eTsYbPJw2eSOwKJNSwPDJboTKev29giWwYGfSf7Ml+vSDCtsxRl8P585fQxUNjrem3/Xz5ar + NqNNQvPTz6SAy+vHfx2ULsmBnLtOz5Zj0iYwR8ZIcPU0w7WGnAVVPQ+IdXGTel22XICX271098Fu + C7f9DDi4d3INX93uRakiTZXY3qxxfvGPI2DvxjOA3/oghtu9wJhZXApfQu+6u2PcDpvB3lv4sqYj + PgeSPawsABq8XaQG+5z5oVR5nnfCT4/8/OeYJE0AP9onxIl9NMJvP7cQrbvUFR+9AVYzTl3YFGb9 + l4/OYar2iPVMjjyS48Hu/vKzS9/i81Wds6ll+lF0i/sBS1Mt0fkyIA8yRiB/1zMMdJuHHt75q0lc + LmLBR8l6DoBD3RLJSBb7ee/kGeGtCLELUzDM0PFLyHFjQ+xv3kA0haQ//4PPe6+kVLseWnB73Fcs + f/0q4XRhhMu6uCT7+h2KdQZC3JoSPklfvY7jZoa/fPpkVCal71LaYOQxgMimwNQzWXgOfvEEn9u2 + yX54jOCePRLlUzSU7OpTDkZ5WeZqrD9fvnJ34Ht/RDleOJueNarByqeMO738bKD6IYDgeh5NfImI + SpeSYRUURpKF1TtfDUR6aDpcEOMTFb41wPpqOKLffMwc6HtYL1k3Q37/SvB5Gj72kj1PJfjVh/pg + pZo99+cZ3t2xwtfTq7aple8CyDJvD0sUJ3S7370AzNx2JPLXb7Iv9daCX7779fv2Er8zDfzySO8Y + z+H2tvxFbJ8BM7PdPqDLh5dGtETHiPz29+tfNXgA0CT519/T7nkaIcpPCVF3rwpscs/loDjkuXu4 + zpFNg/kw/vLMH1+pBClPBSgMm8+H6YrBYKN4hP3+5szVl9+Zz3NX/dZDZJkSMO7pLAE+DHWXgxpR + v3neCE6EV7C+Nhn9zicjWNLj3zwipCp/08Aeyzd8us6MOou9oIGbOfpEtQVkrz//8+WPeVd8hGy5 + V0qODgG2Z7ElY/3nf755Kb7ctrZedBFvcCeyLsbjsAJCHDn+zRexfdX0YZbLjwWnsmhnDlNh2OR+ + V8BffxnwxYTf/DqBuhvaxCqGjg7Sw9HgVQx6F03DyV790M6hF8zV9/ooHI8HnYM7cxKJ+ZwUmw0i + J/npSay/0yCbWemQQ3muIbae44ky/fXpws0CvttyqAuJtZkF/OonF+UWq9IkWVLExcWFnMLey4af + X/3pH03tXvW2mzYBvevUxBq3k2pO1FgHCZ/mNVN5u9arH6o5kolY42+eoPbWpJjQhoWMzZHr/13/ + n5e9uverOofksoDmh/c4M55L/c0fInictokYNR/S73oSVOAH/vm3ofvh99zP8p/+Gosw7H550E9f + 12uZhox4S2CJ7XV52d/8RYRffv/OEyaV76xdCw9HUZiX/TrR7VlmGmQeqUmOinFSF55HIyie0QWn + QtJl4yXuE/Bbz9ENo2w5YJlBP/16/+ahpLnWFXTM8ojxoksh2YW3GXI7ZiAOE44ZGaNoQaobW795 + 6fDNN4UfH2N9Pmg17aRnAP16KogkzoM6PUUmgBVxCiwHFw0wx2ROAKe7Orb4yzHjop6Jocdb0C0o + 9tX+hzdfv4Uvn90KtqdXx8i6LzbJG+NpL6EmLDAvXO3PPy2zxXjQud4m97B/QbBEHlbg2uY8lp2w + tqc6MFPxmx/96UVOqMMF+S/tSOT+w9fj7YQK8JvvGUf7MmwDGhf4r9+pgP/53/4fThSw//WJAnWD + KpbQTqW8NjsBvKd2gc1xr6nsnjxicAhxQU46Dwd6XbcRmi/VmIdPXVG6gkOPqLVE5EZ7yeZqaWnR + QziHBPvSuWZPqiLA48kGMzE1OeTN120G9/PuTOR51uxNDyOIDEedyHnjroA53XcezGFfu8neouEc + G9cSfoKPh4sDNw/b+Hj0guHIE7G1cgDrw0g9GKcmQ1TfWu31UoEZMNEGiVx97vZ4PDUNPE7agWTc + A9vbM5JSNGrXN7Y2SQabWZscPE2CT5IkHMIxbdMUdotzwhEftQMJTksAru+dPfPmqADih/YGRUfv + yDk8Gvb2Pu5jGJ2TD7kWgWaz7nCOAN1OHS5uZmAz+0kv4Pmym4kavVSV81I9hW1gRiQ5AC/k9U/c + wLUlBj6enX24wWMnwnaURpKJzGdYw9Bg0OehTOQ8TmM2q9pNhE8lMXF4Jg91je4vHT1u6Uz0Ydfa + k+47OhTSsiTqsL9k/I55iuhweETE2KkMXcQ1dGBLPi6Wa6CGjH1bExjDxXTBZjFD/9ZLEy0dWPAZ + lCOg4rzFyLxe99guD2e6breKQdspzty9L03D4lF/hHyf+C7XGyttHmFdIWQXBtH0ps3Yg+87yJIu + NxKW7xbwE2fpiDXrya1xS7P1MN9z+N4t2OWsWFY5eUhz+JgjEWMnTupVkvgA/dYb3AJ2WPeLacHs + GQXuznuW4SKGrQmXcX4QaUyqgY1vpYsSfVuIWesDoLEUCfCwuR7xDp9Pti1MYELgODwxHd+oJ2m7 + a3CoHYvc96wRrpt1FeDwFEus295n2G7m00Mi7U9Eddh4GEO6dQf5fb0Qaxre2arpLYciwi9YW80r + 5XpD1pDmLx1JrKNQT0YcjKjxGoec5RXZY5/mO+i7soWvun3L+M9zSVGa0j05JffCZvh9nsKPcNBJ + EDAkW65xW/31ozvye3U9s3IHf99fKOE0jPQwcnCGuUyu4qCrzAsXG0zPvkZMfmvqAfZaj/LF10mO + Hi+63tNeg90sFkT/nD/ZZ1+yDoKh+MZWY3zoYh+vHBxyGJKUMgHlirfnwMtLv2HtrIzDeiqxCRVE + Uvytf5XbnkqMxM+rJjb3wCqXqV+GQWJDXOSXA8vwAoe2ZSLf52EDPpVYBsLSO2LfZpKBCeZRArTz + MTaHRaK//gc7pGCc0Htvb/vNl+BVHi84z9dTxtV3yKEZmFd8nxupZkGftLCOb1dsdPdwYIGwzVDw + 6Qu7emfajO5SFw0GK848tjrALtKQw7yXMZESuQnp+5pZ0B0jip0knyk97zYFRagUsAFec709TrUJ + kyekWHlFt4w5Y6SJzuchu7w5VpSRF81FcyQ8Z/4mIbCaTpFC81o65NINAqAGwrFomJlNTueprCm9 + FSK8Hoxu9qxMoRsNSgcuD/U6ocDMwnWbwvYgx/JAMMPIw7a8DBe1V63E8VTVdHtfrAAa2vLBmEOT + zY/VLYbvZuqxst6kkLvlgYL24fEwH9KPA1bOMwo47LMU325EC7l8uOsQFrsUH/PPxaYf9mkhZbwt + 7vvZB+D3vFHJKT1xtfwQzu96TKFyftlElgxcz8qzMKG038nzNmlHQHhIK8BfQgGfhfRSD65mjrAD + R0I0LwVhy4t9D98N6efDlx/YR1OUMG2YF3b7m0CXqHnP6GlEkTuP/MNeHKgF6MtH5CowPmXSq+BB + l8MOUXAuDdQP1Q2poFrJGZJFXWOuKdBiHW0SWlcvnNHN72CUggardaIOW08TDzqJfXW5B6zCNStm + CANvm2dmCCrwxQ8LQrTtyTFLfbA9uSwAqS5J+HY3Qps7HcMN+is8kcRWtJDHQ+/AS365Yxljq152 + vLIgr2JNXNi8rXJdmghw54jSzO/QPVuz7TFDuR4p1hrHrumF5Vt0LUuRxIwYDEx2phB+juaF2LVy + y+ZztyTo2fAYW3kqDZzr3SDkMt8jijFG9mSZt1K87ZcTVk/3N6CMpya/50eiFnXZ0sn3FiyWYWP5 + SaJhmZVHDveTWZDInDZ7VN3AQ1phHnEW8b296soTAsZxzviLf9nmpW4CJNo0xFnvis2E3g5CkXYn + rOjbMLAgO/YoT8iLyE/C1ORi3VywHYr+hw/1Oq1dhLiQ3WMVt2HGbWe/Rcr5bbuVvtnD9q1PWKeO + jm+DZNtcREwBmmORzEJzwSoXxKcS/fSGpGFGXfbQTyF5P3hsjTMYqPnyR6Rc7w1OhqWkzPP+gBCw + moIfzFpkG/usA1B4dUPw+ZUNK90qB2WcV+BIELSMPx2s4o8vLvp8U8dCbDR0sV0JP9LGtrl9VO/A + t17Jt35qltEzBbKsmpJzj1t7y8VOgrooeMQXFwNsI9Jm9D4ejuRm6nv6GbTFRSsYQnLkGg8s/CIG + 0Jc/08xbJaWNAx0PkjhKcai5Ddhu5ieAtrwG+HJkvKEH66KhoXYtcv7i2ybsDx40GFHAUnxv6+XI + 0g3gZ4ZnYTqMAxVnMQaPFnzmRRVvGW0OZw0Gunghd7HVQjbXDzE6v72E+NVYhluVtA4amU4lnudf + Ke1PNwgNoU6/U8ckWyBYCrQNtHJLtKsphQ0nofp4nLA+505IW+aRgi+e4x+ekZJeKmTHpMB2MGT2 + Kn/kFrQS0xPHtt9gaSaVg8+tvH7xIAuZT8drUHZOAVaHowP++PXGjDHJr+ehXkahgugs3Fhs+7lg + L5p22cFPMHjE3p8ae9vrJwb2lrO4PY8bsNE2gVBS8wuWP4+nusoXj4HJJ9VcX8t7dT08aAz1udqw + 23jnkOZQEKAF+eOMmCOw6TweNzRg3yb39wyHLe4zF9yP5wAbOzUCZG8GI2Ic90xk9awDXuryEe5l + mBOt6s6A1n7dAKUQWfdQnq2B8vMtgfGdxm744k70bz2/+nBAyFHSt4UD82qzsV66N7AEKQ2Q3SQt + seYXBsz+dp/h0DLjVw8+stneVAE2HKMQwxwrsNC8bFG56oXLLC4JR6U1RPjOLeAivCfD9NWLsDKK + et4ilKnLe2oW+Fk7hdwfRg+mgj4L+M5N4Db+1VC5i7LO0Lxe9i7ZwsTeJnpw4Y5cjblnTudhm41e + EmP+Q4hXPfpwqW+hjszzo50PPLyGW6KmHbjG/dN9GykMaWMmumgPn57cq8dhWIIUeFDfc/kMVm+0 + e3gsBVgexWxmC1alw8W6OfB6OHbYePYbGJ/3K4Rb7TLztnVqtk7LvgRyqfkzx6uFSq+rOANH3Aai + Ly9B/VSvMkDxxe0w7sEnm+rDTYGVysg4KI9xRq510sKXN2b416/s+5lVcFLMHfn+P7pWBnDhS4sQ + vpSaof7wAxrCM/3qt2RY9pObw/65+UQZtn3WuwWjwVlteGyMm6vyrfpNuHVJIo/XdaBLvrjM4WR0 + GTa8m6OS/uRD+OVjrL8/w7A2QZLDp4LBzA7rojbPE3FAf2YDclbVOtt2EnWhbJYLwSAwajYIhQ4W + qvTBtnw8gHlhUhP0kXHC0vd5/N2vjuczsbv2as/La1HEG9in5PTMz8N6TfYJ7B8WxAqzYnsV0nGE + /knfffXeCbBGnI6ilZ5XYh5kgy6r+nTQYTI4ojH1h26P5BzA0N4txMkqXeXYs1iBH/4ptLIBqyvP + HbB48UBUiW6Atsw1gcLhesT63T7+8NeF5vne/uHLrDxj66dnv/gMBnqNzj2U5ePD5TphBpQcjy4M + 1GNL0jBbwB9/16aYE6l3wmHtWCeAxhrExE3cz/D1nx10ZXPF95ek2syuK3uki6LnAvl4o6PbMTmK + 2zIgSa0PdDtoVxN0rV1j01aakDLFVMFTQgVyupEmW1n706PidV9mYfWzkH6CqYBTswVEReIajtZK + FPi2WB9LYr2C5asvwb1xNJwLngL+/O7XnxCVkiegLSs58Ktn5nXoxnoAjAmh9DrkLv86NpRyfCNA + kT4gNkclySi9xaL49V8u6nGrDreiEmEh3uDM0QGH2+ihCp7nOicmMUlNfn48s/UM20b9AMtKlhQW + r8fiikdPHhgrqhY4NUvw9XfRMEo924Av/5PEaxWVKdldCi0SW/hY7vCvPgvYXvUSnwQ/UCkiYQDr + gzLgozE0dO46KqGblomuyCbe8Fvvnx92W+M5bOxzCMDjsjjE2EvSsDgPU4GDwYtEuUOrprrwrJBy + gh8Sf86nbCnZXQKnxyAQ/OPviJgieACWxcfYnsGayKcNvQ8DN/fPj1pz6bProQGjE07u1ZytQRUs + 4Kf/A1EK7PmRHAOkSfnOpbYvgKXzyhKtl+yOf/g9+kIZI33CJpGsrAILeBcCOB6Kqyvqj2ZYuUea + ADlWB2I3fj5s84cRRe60b11Cq8xeBdSlonByOaz517dK6bG14HUUrjOr5DLYAnpeABTNO8kjg8k2 + McEiGE8hxRp3Ten6DtYUVnTnYYk5DmDt1DZHv/1Xi1NZsw3iOLTmzOxugvNUtyy4zD99iOXVsbL1 + MywLZOYhwkqMnyEZzvwGke2LGJvaM6PCtncgF/J7l99L5UADcQogaz4nclaRTSe++Ui/9ZL7S6pV + Wgi2CyVv7+FffkKjyv2eq5BOWN9PVO1QnSqQQ0LjLsw+Cn95C0jrCuDjvi7D7yHcAAF41bH04m8q + 3TEfEUwP5kjUo3kOmdJKFPipoYilqN3CaRxvI3TU78h6nsNwedVLhKrl9HSb1eTp+miKCvD27UHk + s5pR2pZtB0FQzNjSrV6l9ybNYey3OjbdlKrr/eO48M2pEXEOlp0xScaagD4lm+jFPh7WRJY34GlK + jS8BLVWae58RhEJx/85NtnoVXyco3vBjcteRx3T1NGeBc+t8T/zv5YHXU5jDzT9YGBukHRZd8jX4 + wsny9YOHcLFqTYDXxxkTl0/MjKNtsoPfev3q1Wz4fPUX7Dcwz4der4bl0+11kDWQwXlTbAO5N0GB + 1pvznQC+jiFNt7CDQm1g7Dx4afj6TwseY17Fii+2gKYSyyG9Ol1cWuj3kFQz4UCX9B02lQSHFArt + gqJmZ2FVrKp65SamhEROXFLIt5e6+nfNRDtyMdzeD47/zpu4LPSw2ttayLtPbQfyarFn3khhRh6P + cTv4Zf+dsJvfiUdFZ3hQdNnN5DTKaKv2CTg0TxPHt4XW9IYfEK52rc3MTVvCTU2sDsRwM939esMD + jSqdA5zoKTjQWgio/Dg5P31JXAG29ofRQwmu+0LB9hU9w9GSRAm0y+5AzOng1LNhnXJASpd+8WlT + 5yCWK5jQ4D571cPKmK7xA7gojPG9nyajibVZkMDWw2oZOCHzWL0WPnB5cXcwYkB3Z+/FL+8hTmQw + 4SQakYAszTKxZGUK4BHJAuhBUrpQ29/sLQvuM1TWK5rFr15jBVSmaPUePpbvqWivbPcS4CmBR3zq + mDxsl5cg/fSY+9Ryy6as/PRgiF8B0XW5rakqSA3yG1/G5/h+ASt+rgwor+4Ru37W0fXLJ2jGu8ht + xWKxlx4l/V++d48+DZ2ChRFQoX9sfPvVF3gXIrSbtJ2Z/sKr5JVLDPqk+vPLzwFdhmZzoUjvEOs7 + atVcBZ4CvAmRgHE+cXQsLU+C1lBn7rzfi/b4y2P55ycmyWM4AJLxvQe//ekeRjyHVKnfCuqqp4yz + xof12rW9+evHGbSmR3mUVRX68i0xXvspJFIXjUCKXtvMdYJLt/NtKmB0EGNs9JFBZ+n6meHFdr5n + 3uoeLI/q3EHpBXK3KcIwoxXaFvTtf6JhO7GXs5x+37BCIlbU62EYXf3TiG13Ru5hEMNhE98pAw6l + 0GK9N1awXIi2+/OfUSvBYfrpwRRlIXFGOwOb97lFUMLD66svE5uSSvRE/dO22FYiSL/1nv72l6hm + CW1av6IYJJPUEkeaZMrusrkByEsjLGXjp14e1bGHrOx9iD6GJd1uhyKAqxZI87HU3vY4pawIxSp+ + YKlTO/ubF4yA4ROPXK5HPtzYfRLDLz599dYAPj899X3dwN2/rgPYYGRLcOcIEokkFalzEz1j2AGD + zO37Yw/c10/+8k186vWqZvv9pwTxkgw/vaiuzu5ugW/+ja+qebS50j1sIm26iTwedFZnW5p1CDuG + 4vh0Y8PppicJLFetIJcI2oD/1fO33t23BOOMRJXOQLvctPmVfy7qckzcETL0/SSqdfWy98tBIujP + fPDzj8PPX8LDVTljR/AUSm+etEF2TYVZgDeuXgROEoF7Td9uV4pI3Sa6OjCfUUZU3lgGYpWjBC+9 + 9JpFmSX1WL+RC776HmNaAXXZmNiFShaE2OUnBWzl6nTgstutxNIfWv0B2bkDu9PRn3mB8cFyPDUt + dBtQuVxLVJV/9ooEC25N8ZGnFHzxiwHf02HkcvPbkHb5Z4FtcW1mONoA9Mr5lfz0Dza9ekfX/a4P + YMNxCtZRY9RLD98MlHJVxfLLautpv0gWwsB/4xO5HGuesZgNffMLN3w+ccaxu3f1l0+5jTdlM9Yv + HXy10McPNR1tcq29FqnbTsVn3t6y6XzNG6CUTomLJVjVjWNzCcjz0v7pGfrlG0jurwL7qWKHtBf1 + HdTakXE5sfDUwfC7HXzuyNtdJP6VjfrYBdB3VYsYN+lOl7nUSjDlaozNr/7q+GULgOCvL4xHyxmW + Xx4zdsHrmy+y9hpHfovEexKQ+Od3rajawFhHN5KfIjpMH5PVf/kEvoYPNdsC+Q3B1tkScZGLwgUC + 3MOvHsKnr99cphSJYCzw3mWe8zFb85ptIOtEOQm/eL+Zaw/h+8Oov7ywZmKF3eDh0QDi1beAzspe + dWBtCjnRHhUXElvZ7USotAg7vibZY7JbGMTeHwcXfutx6/i7CaKrr8zo+wYNJyaGAK9x9ySmhGsw + LrugguOpkOad95TCXz4OvnyLs0ff1/PosRWiR8bE2RKr9ba78wUkNwjn9axmgCW3kwDPQexg5cuH + C+CeHFz3IfvLczPOsE4FRH0wut88l1IZngt4mT7G129UYHvrnfXDAywTZKjrq5Vd+HRfycy/9lO2 + RvdJA6wGbGJtYp9t2/nWwLmVd/gcpnLNszW0oH/AZ+zCiKE0OH3z1gM/z/uAf4JffsmqoFxJqluW + vR4eIAKzcb6R47f/qXdmLdEjzgu7Wn7LJqh6CvzlbWYp3u2FCcYAcGtt/OY12bhdfShWVdcSnTux + v3wggMFrFt0ag4kSZ5ADVJ+ZzhUc/12vn8GAELxT0d2upxMdD/eqgCf38HDR3EjDOklWBb7zNRf0 + 9yH804ttShSifD4UrIg5SlB/we+J7+8JjHyaIEy84TQL476xt+O+McVi5ww4dVfw5VtL/OtfTW/0 + jP/5y998wh3FKqOqfUhhplzKmc3SFXz5T4JDy41//rHkzlwDf/7Hx7ivZ649CIC87/xfXj5pgtPB + X163T5tBnauk/bc/dnhg2mzd6xr8+vuZWVwcEjUNS/TY9w0+xVEQfucjAYhQJbjbkX0A8vOnLurv + WHeYd0jt7+wzbqtg1ud8zMY4MGcYNdDC3qng1X/XZ1APLnOGrLreoq1E9rGVZz+iXbjud5WH8uq1 + m8WHKdpLMDcSPLpB5ALnzNo0ee9S4B/O5znmTpeaqPxj+fv+x+tqg3XliAZXJsVEul6xSqAwL3AZ + xwdJbOiAiYxbL7JBG/72K+zPth0LX7zHtsm24XZ3Ew46vHnC0vMlgy++blDJvJCo3LlT2UlSKhhe + 2JO7wPFef+e3DMQuFYljLBe6KXvbgecgcvBvfvqdV1iwRVFMvO98cOsvtYPMgnr49NUvg7Dx7oEE + z2EWzW4JBzz07m8+Qk5r4WftF4/++jff3dxwxvq9P6Srq2J8CrWQ3QeZDr7RGpGdEw0/33qE5wuc + 8d+8/PMUUvDNu7762Rj4b/4PZaHb/+pRpcMwMtBckxcOH+rJ5qPVX4Tv9eT00y94GxmYKdcSG4dZ + DL8JWQGFZbnO4FMrYONHqYJjIBGSfPGIZh/TAmdZqvBv/ssum+yhW2Ao7oc51Nk3L5jhd//nvfTB + 4frzY/8fJwq4//pEwfEovwnWxne9BafGgyoTE5frz0JNzSAv4LQ9JmLE1TsjZhaJ8BFFLpHZ50Xd + jO3Rw8k29flwtDawiNG+gPHwaIijxW7N9zeBA62EcmK9357K0suow4uZ7IhbTZO6jlnQILI7NNjY + VhNwkXD6jpPmgyucvHWY1baegZSNZ3x7qHuwbbeqB2fF9okDOjGbrqykQ76w5xnmNZeNL8HmIHcu + OHevVr09B7NWwA5/UnJNuMqeS2O2YGVdKD599gRQVzV0JHsgIkfmaKn8AR5iKKjS5jIMsQYiw8EC + 5dVuib3YUs0UT8YSSZ1R97lcebBF4bNFRBoVIheFNbBOFHXwPJQVvhvmaK/ZnM9wPw060Q92FS76 + 46xAGqoCOe0sRJddt2ngrJx87D1Gh25P9uXAj9YdSSSsTbaOnBgh1XwToqVuZ3/c7zvlQh7kWIlF + Sjf/+472SToVxJGiCCxGXCvIQ3ZJbJW5Ar6F7IyKen+bOY5/11vUSgJ8uVKOteVE1PVFTxAeq4NB + cHbistWYJAHVupMSG8dqxhOi9ujcdC0uTFerp/gmC2i7Mys5Wh0/UDX5pODwODLYSZ6wpn48BDCI + eOgyUYEzhriiBJXjciXXtHnabLMNFZorpsIRAs9hG9Q1QZLdtm6pHD51a0OQQMcaVayUpkZZt/B3 + aE8OZyzrvgIYPj95ELzVgpiVDNTZ6nMNGPv8RfLP+ZVxdabEyKh3jOuizc9Gn1skJJ2iB/HRy6zJ + 9pY0sOJUIsrZyuy1pV0CnbYWiPt5qyEb6ZoJm08oYS0qSLZy57JEnqnJJFwBtQn/oS30mTSYD69b + lHFQESykhKWHY+alU/YUXhd4oLxPtG3v1ysblxAJ1JOIcRSEbDOvRQyXvmtw5Lcb4LrlYqFvvZEL + c+xtDr69GHH39k6ia2wP27XY6/AKdhIOl/VCWcQedOAny4Hcmf6RkTe+69BYx4n4ieWp64d9KECc + 4hN2qhCry8vSNvi8BBE5vW5MuByd14j8g2QQFUOhXtw6ZFCRkhkbk7yo610OKvQINIOEvh6rzJIk + AnQrtBBJB2pG44HT4NGrb+7qwr1K+9GzkHDt3iT88Pt6Rb4nIM/UZaKIqj1w49kL0LgKuUu3BwNo + c7wuEHs7Hp9dpcrYRTEE8Mgca2658EiZ5jRH0DISjMNH0agffewLUO1dDivw2mYzUG4zGixHwsmZ + O6tc5Q8FFNvijM8ttQEfox2EXJOnONu17PC/SLuSbVVhLPpBDqSTJEP6XoKAiDNRRECkD5Cvr8V9 + NaxZDe96bymSk92dcFhzeTmgtdQ3Yl5Sx+Wjoqgh9K0WGx5Hq0X4Fg6aTWz7h+Loq8ukwRme3iYz + s3hj6HweAogyg+v83tgid3VfVwNyQ5z46KVGKjP5WSPSueqIRC7vbCuCuYGmdcuIEz0Vl4bb5wk8 + Z1axtE1omEN+iEEL0gex6hM/jJZWWjCOPmA+eVrnLq1bGPCHDXtm8kAGfPErRXiMsyc2Z4JdsjhV + jh71LZ63y5IMrHksPNB1P+QziixF/G18luD+Vpr5tJwad6YP2UCNYDT4QunejYxXBfVz/ZsPDWkA + 8VWsgeul73yOkXWXLd/TArZAO5F7QVO6uZ+oR4PjSzM7ZCLd9usXm7Fh5ouKWnXTl06BFYhO2DQl + ACinMYd/+K98wtIlp/TuQPt+t4iXfp7D8sIxAy2Zicnj4sgZvY1xiZqPqfrbofup3UvYn52I+LPP + ZmFTcc9uDaB+u1+J22e/aobK4qB+OSQkfKQuZcDpYMDr+/Eh9s4Py1ETkn/3y7P2GR5j9xT+6oPI + MHOjoYFoBFWSyNhkPh+w5EOkIMEWZ+Ir+VC1g5aEsL/z7lw9lcbllkE3kC25OVE+XAUW27clqLlx + iC9loUVsd7g9kSvWT3zb1pZuWRGmEEzgMQvTZwTzE6aN2IaqjbVjJw3jvr6o1eyO3HjQuLTW3ws4 + tLlEjFDpq8W6yU/0uigPIsuDmVFrgh6sf9IJq0UrD6Q6W5JoA+Hl044/DuvFxyNcCduT9Bp/3YV8 + LglCdHdIrWqpa+6sKbowaUgehn+JVi2oA3RIk7s/4KTK1ivqDfiHFxczk1wei18JvVuoEgemJ7Bt + rJPC60ui/rxIOeClW12ixz7TaPC9Rl3e5aOG3Jur8dl+NpQusRKjay9EOKuHGXBjuyjIzY/qfHAK + PeOP0wCho4gyDn6LlHElp7boZ3lnvO/PXTHeA4QPTELS6TNSkitnDppC0xHLSa/u9tCeHnzlW4hf + uZtU3MXWGRRUgMNSpLzAajw+NQIHWSY5yJNh+cWOBreaueKglMyBo4cuhI16rsjeLVK3OmxjZJ9B + 8ocHw2K0lYA4+agTLAddxBxaUYOqcKiJljPqwK6LAaHZcwtRguaeMbZvK2i/PyRkog3Q4teL8HWR + HuRR2EK2Dg9ogWPSVf/qeeGlroC32TNxECkIrPkrmNEWjzOO45xEm0PjAvUFQ4giXL1qx88AqUxM + sH3ZLHdh6yGEc5Az5Bwfj8P6dMIDYr5Lhs31NwzkcRRGSCNZIM+xq6pl6QX/b38Rzx9L2ukP1UKS + 5D1JgJtj9afXgIn83Bco+8vmUKo4lJOXQ+SdLyf94Vpo52/8qj+uun2OngZ3veYfIxMO5AtvIRq5 + 4oLfkfkcFml+PGC+cqd/+mxs5HKD+/UTo6exurn9VqAHag5Eeh3OgFHkwEMp/FyI7nqniLpOIKC/ + +xP/8a8x9k/o6JZFXj/UuYs/xiEMN/Kc+ZkQdwmmiwOUqAyIDiqZMtL3DuGhH02CJcNz6b3aCtj/ + 5sHnu++FLkdticH++STk5BWszxk4KCbySJ7zrRyYWvqKULtrLtGHTATzz80L2HLLlyTCrxi2Jwxq + eKwrlbgjKbOty58BYHv08YUWrNkyF6IIrNhTcLzv9+UrawkgtHrMW1WXgJ6vJoQn+Qb/6t1d2c2a + /+kbn4tP2fLU0QH+5OTio+FYAsL7EQOxmFjzwrk7n5FLA3WqzD53L5SBGsekh9Nyboj2GguVTrO/ + QORPJ6KFDlNtel44cPCeJvFtqFb0cVl7eA5DgdiaxFYUPWZP5E/UxFbsfQb6We0NvF2jIme+BMNy + U50n3LSvSfL7J1E3PJkNXBKJEAlcQ0AvhWOBpDu/9hlFx2ppXy2Er4f1IjEbeRnNX1MNs+QQzIxe + viMiGmkgfu3CJ9I93TJ65BUGHUv3OlsHJs/mrAs5sGDZJWemP0btJ1gstK/HzJ4LRiXrq/Phdp6c + XT+/aJu4dY4CRn35/K6vlq0yD6JfHhfsFHaazX96S7GkHEd3xx44q3v7wNXJ3T91R0K3SHZCKLl1 + g1/v07Xa2tO1Bsvb2Yje83d1Ys6OdppZPyDWWjXVZBztBb41/4dlbtifoR0yCX5zRyXyWxmzMb1+ + FnRaf86MGuyodHVtAdQGHXxmvWzDNp73Djm4nIhpedRdmUQpgLOaNTFNKQOL/BUe0Hyi4J8eZRq5 + XODsTjci7/hMCs+1YAkhwUbYeNHIRxYHf2qdkltSmhlfim0PG0Frdn79ZPN271vYnRcLWwfmEI2x + 60t/9w9LmXHJmLN5baEOnZXIe4ORE+Owhq9n4ZJ7l/nqYp7LBnEEuiTg3GvFZbcLhCrKt5kebRXw + v5QeIBXljOiJ1WUL6e+LuPuJmbm2Y7V4wzsV6QJSYsvWXV2ekM0h/FoeufE3LWMCSzgA+2bLWGex + mS3xyxBhNPoxkXDzHpbrfkJq7sac3K4HfaCn9OIgOCrWfMrfB/ef3gTZZ8T5Q78B1n29DOgZmv+H + j9UynPMR3p10JcHrMNF15Lbkzy9hu6ACpbcS9f/0c15kYzQ/9buBtp/2xEac6BF9yb9UHNt2JW+d + 08C//ZaFSYa9/tqCLbtdDnA3GTi1g8swO31sQIYVlXkRzyQjPZs2f3oCn426zxb4Yz2oWl9CFMXV + 1AWzwALPp0qwe5xP6vpRf434aL4Zlj5PHWx11m6wHj4m8WrZj7bey1J4tR4Hny4rS8fGGTxg4vMN + ywqrDUxhXsI/vsbqy1MzNpvjEez6FEtId8EYTHcHGPrjSbySDyh7+hxyKPMC77P8p1WpL/oNeBv5 + TMzGPNHlRVkJnDj/iFWxaqPhrdQB0r8h6x9cQwLc+R5osOOvnH8sQOdSVM39Hz8QLPUTGP/4ZfdL + xHMZI5uvQuvDjyI0//h38k+nGWyFXxCDZl1G//jLcKQLTpW/RPI4NqjnuRBr1gFVFL/PIXQ8ScMv + p6nd1gKfFuz1j/361bjE/S49Mrm4JN7XdYc1F5Yn0pflh+8h1P/8rYiEYBsINh7GQO350UNDODM+ + cONuWIgvKtDkkpKc20oDvB1uIjrohwFr3MsemP79buBDQDb2k+5ebUFtOlBMksZfP7CsxvTaLYCr + 88df/Vbbrr9hcbMbHIhnHG3zB2/g6NrrvIpmMDAcr9To7/oD4R1EDHP5lmg75Q5WUsNVR5arHWgf + rBr7nJCp2/me7ieCQ4x9tK3RJhIxBrcix0RRr3K26Z7FAE3xMHaiZ+mO6dvq4SPTu5nd843t+rKe + wDvSklhR86WzSLYEii+/xGYzZMOSM9kTnJEYYMUPD9XoH2gDsf+1fPChWzbCnNlgyRkUY2v+RMMV + 8yJqrr8Ldl4XQLdfnB9gdGcaLMdWEjFemR/g/ZJed/1bVNuuv8BK+J5Yn9c94s0jq6EjAef5dA2K + PU+69TD3jqw/m9rPXfd8B0SVccGS9LMoMyaohm0njdhXG6JuF14TEeqvIbF0/wYYl3lzwGF/23zc + NpjN9GEbsNaqGp97Vq+Yc8k+wOXds7NYfZNonDuQgPP5k/lIKZehsH1ZQiMpJ+z+1YMipx5cSHjH + 58kuMnKCawxvpoH8ueKdiB24TIBujtQZXLRyWMxz38Bl7S3/7+8NnC4+tIt09JnH1oFNy+0R1mH0 + wmouKtk6HOME4QOX+DyrVxXJSfOEFjOMGNPk4E6fde7hQOmMrfDZDlSgYY6+mnjHuge3aFZi7SG2 + 3PbFsg/f7qrd6xEVbsdg414oFRvp0wiLUw+I7msspd8+SVERgzdxBQ7SNTFtBfzhnZo9nYj1vYsG + 5WtW+vQ+D9k62ZcR7n7pzGSpnvGWHSuIvRDeJ2wv0K37xfMf//nbxWPopOBfCsPiNs/Mrmfn4/bd + E1GPIfIC7kNnHOVF0BJOw/Ken63VdtZgPzc/ctYfZ3ed5yCG8yGOsHHNLUpD3w7gjlfYqb5cRnf9 + AHEVf4ld0BRsg3fiYHTLBYw5JnGZPf+Ci1BoOG47lC14FGfIBxmH7d0Pb7zEpaBlyhw7+NC7w+2O + fJj2buVDRaFgvrdMij7wK2J7ev3AYgLX/7se4r/ZZdh2PSju60Nkffq4f/X2933+qwIkI5J+9qHM + 9ou/MvfLsOulGu75Kt75PGO+gsuAlxp8iM2fi2r5BIsD9zwNK/njO+z+xhePWZRibIeVSr7wHcBz + 3TfkTx9Nk32f4UsSKAmuiTCQLEw1eDxZAo7i2neXy3HJ//IEIv2WIqKLUz3/5UshnXh3uB2uD3gr + xwT/y2sS05bgJ5LOODzSOiP87RmI0Z1rsKbIRUbCmz1C0N09ErC/CHRfqDwAi66YqHenq7buGnHI + VrLvX72q65MHNSy6T4zVs/aM+BaJDRwfgkCiJJzc2f1ErZglMMC6Fr/c7S8fSundx1Ll1GDElRhC + 9f0LiTvxX7D9Xu8U2qzywdpFWd0/vfmnZ7G+gXFYv1Q+wI331B3PdECF2zZDe9i4+QC1MFsC7lJD + eZUAkRrlk827HkZEzBIsB6OgDukBcJDA4UWc82hntA+EB/AMwyfavW8i0jLZ/Lcf/vZfRX/4qol/ + ekflPv7AvHrYwJrZtjlzY7taErd+wj894j5/IFrmYhPBX/14VtpG48uIH2iGhjej3S93jpyL8Hos + LPygg1rNumo9/vibRC15qputv/K/PJqcf/dftHl49WH6zHosnyofLK/0FUDmKOnkAjM3m4bjMz79 + 5UvXh1O5m/BlJdjkJN7rr4r4S6c04LR+HaJ2/Hv441Mxb38+PqvjBDarSLa//IS4vmeo/I2ND/B7 + C0yciwlVxyr7+TAe1y85W7G6nwgMYrivv8/v/nMIdYuBQeKif3i+Dhc6Qs87OMR62/mwyNFF47cE + stiR2ytdwOmgwSzQYl+0ezyQvV8AzQoyvngqUET91f+XH2ETt6u6KfKkgZwxJaJPLgXjkLwd8elf + OKwI17Eaz0GigS2re6IyeKKj7AQ9wM+bjP/6G6tRldKf/yIaDgW1P5x/PhRj401MERd0MjNLAU10 + c4gPtS36ux/g4DTF/Pf71lwQctjZVkTeB47Q5Y8vTuJ0Jnr6rN1p/fkleF1bjHe9rnILcy5h2X9l + f93z63W2FwvV5V3DZkXf6op/C4cWrLr+yU9syqA26+EZn2zsmtxl4JrmxoHj+S4QM/A9sCSnqoSc + llCsPcuSjqJ7VOCI0vPML+/W3Wz4hHA8tjEO1q+oDgnDFXC5PETiqd6qdg+OG+Ehje/4vqlVtDCX + bwH365871EB3jBozAUv7eM2ooS5d0tUuYQkPhOz8oi7pW+ph5sY8zqaodonzDT34lw/u+A/Wr/6J + kQ/Pj7/9qpJP3ufwjISAPPurRWlxGjZgmJtDzt1UutsfP5cV0bF1jb/qfPTPLfw8nYCcXedL//Gp + OMU2fmuWTpeiXCXosN9tFm3jTFcwgAWowB9mLtuqbDmXbIomdMz9/lS8ouVvf6719USejvGL+j2f + Bbu+w+cHEaLW1NwZvJP6OvO73u0EeFz++MIX/+pTju4G3PNUn9WEA/jL8+FdXyCxDJhQItDHE7bG + 5+bDiCvUDf6CGIrpGOPHelfo4DqBiC6arRH/dgYRMay3A50feyK2m58zRnwdBfBz8nj2ZqBlTM1P + DzjotYuvv+NzWKqM+MC0rhl2nMBVO4/AB2wz28MqjD7Zv/6PpvjY35JkU6mVxQIQVGWb93zapbwe + pfAcF0dyj43yT48/wa7XfH52zxF78fEsRt84xVbg/OhiF0WM9rzdPy3XOtsUoa5Fmw9aclHYetjO + ZVAAJHgbkf74JydNDs+vQcFn6FzcZUxQI56zFGD1amFKm/RViDfW0LCiuLU6le3si02Vrz4NGdZd + 65u7AZgHGO96MFv2+gdZGGfzaft91cXu2gXuefQM7iSn0/ozyr+8cwaLKw1MPkQSVGP9g+2fSaNd + f0IoKXlFVBWXw1+eBA6JEeIzCplh/UInhX/5qhEqTrVA8VnCvd+Bo79+SMGmsbjWtxPWxXs9/OsP + kepOsZXkSsY/6vQAP7dW8YXNtLLtKhQeeull64NCjyJqXN41fEki/eefhn5MLXgupHXmRVyA8TuP + EP75D7MZQLXu/Rz45//didcB/5cXoPF7J9oyLXTTcnlEi7i5s7u4RbWtQ1XA62Mbyb9+Ah3lA7Rv + rrzr22/1L38XvqWJPS2Zq5Hopwbcbt4+Q7tvotFl3gxUuZrDf/1ZJm1lDdHr5Ui0tLDdTfo2DHSv + vERU8ksz+nf9+jdgMX69Lru+HGd4RaGMreVuR9u9hSnc+5NYJy9m6LIMpf/8vc8JQN3z9ACdG3Ei + dv7O3ZXrrOCvP0N2vwA277NpwDAXx6deIVbzuQxKVCylgL3m1O9+/24BWAo6MdefWzH8Uw7R93QU + iPxJfup2yb4WDPnbZedrI6NnzyygPqcC/utf/OtHv5PmSrxnlUSkOFULUi6BjR+1u7nz0F5qMUFs + iPd+tjtv5WDAXd/ONa1otv+twbL/yTPd8yPy1/9KuGMyV+SXRru+aGBniB7R9PIYEZxoDGy+s+Cj + c1788WsAPLmWZpa+5z3vcri/9fP5Hf8X8cULcP/9+E//clzGzxBV74SoYUCzLfUOHpztd4BVBp8p + O1hPBraltRDXcbxozb7PEErKsyKXa0grgi7TBs32rcxkz2P//AJgp3NLJOVq0sk8Fj4a/NEn711f + roxYjuD/OFHA/+8TBSVxXZ99ZCdKrdQIoDA+WH9Jup7Sx9N34CSAkZgfkwwkDT8GqvnsNq+JqlS0 + j8sSIe/k/fv3VbjXBix9LyHPu9BEm81tB2iu4uZzJ9OuGK0uDjAAbjTDfPbVLetiCd1uyTyDDASA + Gz7LA77EfUoZs4aAYj7UoMCaPJYEf3I3hqYzzFDnE+8uNNkaR/0CVdF8En/wz+rGU9OBquDesZuY + v2G4DYsGnTcySHZqR7rcxthBV1lqfMb9dO6qCGGI8hv7ItLFsyoeseMMp7C/YrXFa7YU47UHArr1 + xJpMUC10fhsi56UvovMnK1tf3EeELQo74qIjBcuirwHavw+rv7ud8T3bzdA8wpm8J1epmHexORCe + yon4RvCttm/3KsDQvHr8WOUmo8bR2uC0DCdiM5cjmKVX/0Q60BWSvKYbWESViZHjNb+5CCaTMvsx + RMRJi0suoqtkbHRIG3iRXhxxfFRl7PN9SZDzjTr/YFgD7R04zlAYgI/dWO3p6m6lhGQCzthSMx1w + s8gycPp0+yH5eB42PjYeSIxmD3tQU11mzdQUmc1iELs9SQMnHboecNLmzkJ/5uj6Y+oDvAe1RR7A + SwaODS8FavmDSVTp9nXZOesU9NRODJYOCpetP01PERkTSDDP0mrZBH2E4ico97dYRBHfJcUBmZRh + 8VX4ccM6MYIE9IdzJp7MP9xxOyJRPBpOMzOT/3VZtQE5FK5WMB8nVxm42nku8J4mMcn920mdtJKr + 4UVCL3L+KE41AnvW4PRMaoIxO1XU6iZDeGqAwfJrYLP1+7kHUE89h1yuuqxu9rt/ABYKGokM18+Y + PEp9BPmmx16aaSoD96nM3mimxLj1H3V5258aldkyYp2Wcja2y1OB/tOx8dUHEhD6ej7AcIMXEjNz + 7nL2oXLQ5G8+uVUlzRb9BAxYxHB/1P2sUTaaBR823FMkuZoUdJO4NUc/TQ2Iai59RBkHpeJfPdlY + DAdqeuUGhbjviC5YV7qF981Cx7ua+3OffqPNidgYHbagwBeIpoiyp7yEUx78SKThIeKqX9vCwnz8 + sLZlFCyJYHsw2qWwe6ttyimWsaH1GHxJELByxUvwGMAX6RUiV4djtir2yYGePZpYf2R3QKkHGHhs + P7x/ivq3y01TJgBZTQziE4NG26TVBVSvwQc/KOgBZQbYwAVjButHRYzmeDAfyHL1B1Yq26ZMK28i + InWzYB3Bo7txJGJQ6cQBfoAKDUvbDhy8f4V+5vLhnrGqDgMgyIHj/+EX21xHH9b8/YZVGX7U5XcN + HFic/WXmG5DStb2/C5j1W0J8vXNdynScA7vkFWKrvy4VNY7SBr0fGWYmsjOweDepRN7xxRPppDFg + JbfaglmdN9gqDTUbOl9YoKVfLj5D7+w+xU6R0PvEXIjvQlYd17H3IVAH6m81otni3awS2AyT4ddX + 2CJiFJKC1omziarNnsskaDvAwkx//mn6+RWPntcZTKakzLx6YiL6QOcEHt0DwZHMmBG1fnMP5Wcx + Y52qRTWAR8tBf7t/iC5qKeAvYa6AbO6fxBG6kzreAFMiJpge2CbaPuUyED0wDbcE6+nttZ9BpyLk + vMcL4+vnlTFtKRqwlHqZqC3ngvX0eqe7sJB8jXQWXSNDYqBzXQPyhydbKFUOcqR8xmqpSWA5cWGC + wqX4YflQdhEjumMhevlHIepUn2jzeC0luhoMIZcsdVU2r7wevkBwJcl7ZYZl22fS+Pf5jaWHILjz + izkWkEuMCZ9/Lz9al69hiJG5elhjmXu2KTfiwDo52ERWbzmYkdeFEFIfYQ99vhlzLZYevZjDl2CG + stG4yjCF+sM649vrpqpMZ9btP7x/+IlFl7T4GVAXhnSfkZMAap30J1gFyOLkADZKge0okByCI7mG + wxT1ttT1IBitD8mH6Qw2J5sK2D1uqV8IBs2GT+kcxKusNP70vV+q7TEFAmym4IL/8d/7jRfIPK8j + uZ6mFWy2deGQngQmTotOVldhgS0kTUmJzsVjtJwkWUI9TLx5OLUj2Kpv78My1F44iL++y4XvQYA7 + PszG53twV/WgSahnGom4If5kPDh9GuRzlx+xhmhTW73sS3HnY/ys9KtLN1sq0FUTRpzF/Tfjoak2 + qD2Jjv/qFmFYv0LHQMczJWyH42vYqkRmUHl9Qnx++7LKPX/XGgnreSX+jk+/D/1siPmhI7H0eXHX + t4QlCNftg6/XVxpxFUmZ/alNET+mtgBLXzcQltPZIkladC7dyPpEHviuOHWeB3f5uEkuXLwvIVcE + 3+7yFpQRxWBWsctEWsa6URfAKdZWktzUpvrHh4W7xCRI4dVllzNbwOD4kYhXPxBYflA20P0R3Mi9 + 9zt3WTP3AdVLmpF3SLZsq53nBj31cfO35nGt1u9lEZB4WWx83/l94yl24EqtEb8M814t56YVEMd9 + ALFpxlNK2cpDmyHX5NxGXNQ7DFPCcsLWTM3Fydbj72Kgoo/e2AWjXS3n8dHCN6NYJDR/h6wWVSZB + 18+bIVLGnapJuNcaihyfI87USpQbHpIHB1ss/34PHdJu7ZFQeseZDYKuWt2tlxDnxwWO/ShWF2P2 + JdFchW3+lfUKmuPv66D7V+yxI36f7nJmHA7+rde5kTx30Rg7gYPLfIntGF20RcQLoFxF03xqVwMw + 292DcO2eTyzFxjmjhS616CZpNr6bw3d/S1EK4RCZ7tyRwc34T0ctaJ98y4cHqXFnefBS6IXiQryy + YSJ6KM0nDA91hb1Kv6qreh6fsO7jdhZqwY+Wn/spIdlcgyhyHGd/fI/WibFJ9IU/l7/RNoD/7o9d + fFz6eYQLelGpJBfYGBnH0HQEnrlo5E3ROaMdX1jwVnxuWH487IGaw1CA4fYU8PPwbgCRvNsMbYbL + sCR8GXc5mScPOtb4wZc08QBB8bdE5B2c8Zvm3sCeXVJCfSpH7L6sI1jEcw9hz5Uqca/F2WWT662H + 27VCc3D48Grn3Z4N3PzoNlPp9lWXkxAsyHp86b/67Ha8AwVuH9grVA6Mv2tqAf9dtkRH8K3SSwU5 + sH8eOb/9j7tel0kDolCZxFd4yWU67rwBNasv5LHKRrTJ4rhB9VXERN+ejbvcorMF6o6Xd/w80M3x + zhb0evtK8i50XD49PSS489f85v27u/EhhkAtsjOxik52+Qt9edAXpgvxf7k0bHzVbPAnfxuiWZZK + KVhPKaTwoc/sIivRxlq9CDfr7c/87/TIvm70CVF5ExufTbQN0Muab/DrDxAbr4kH//TWse5WnNz3 + E7/ReVVgOU6f+feOGvUfH+rLycNZOJcq3cgpB089y4hpeIdh2QrkwGe6iv7CUtudMycLYHCaeWxp + y1wt2lNY4HpYDuS6PY3df2ALqnfnR3znEFXbSMIY/NWPal7sgb+TIYUke5gzOC3NsNWxm4oXja9m + ll/9YcnLpYGrKAh+k9NIZU/zwYO+FarEWWUjW27quAByf2rzMXnndBul1YfDtWBJvInMsD381IHD + VfWJwUeFu/LXZUGW+5WxVWkanRZDT05wDUXsoiJylz/9GzxbC7vibKl89sAzyBU1JlKQFGDRT9RA + t/kXEaXOw4rxAZD+/JYvyDfb5Ubp5AEk7dPkoOxntDsGMVqP4ddnHK2h69n9lSBcyh+RD6pVLWdG + 4UBQiTMx4lYBrPp2Q7h2+RM7wOOqje16A17OekLutvUDmyWsKfICOJErRyeXpkHfw2xTILENv3Kp + 8V0XdHtrIg6N7gn4YloUNPTsbV4i0qhbmUoBOhzSO7njbKVbJsAUNl8p93e/oG5h9yjh1zgtJDk8 + N3W83q0cbc79Qs7DCIapufU93PUIeRlzrPaPbzHDrBEDv+vST0ZBuLRAD1MZJ7Ag7lz9ih7qFffy + hZ1vxm5+NTBrHh2R4EvMtmz1vFMzhRfiAh27hDYKA9tG0bB++1zVVbl8Ysj95BJ7CpsNW3RlQ6An + oUkkYTrT9fm+xFDNtB5btTBHI044CN+84GPnnJoZzwxMfWo+TorPmssN1PgtHlyXScF+t/Z0/DGB + IDoFgEQSvrFKUX0WYfCYdexeW4OOev8YT6Tfn9k9fvcZBk82BLAMLHzv+NKdfj23+09d8tcU/TJq + 7gnXju/Yy/GUbXVVbdDxy34GWcxlpONbC5S/x5FY3xtWRyhgH/7thyBIJLDZUteC3c8SIz12gPa6 + Y4GgfIY4eG1PMLX20UHilGbYNyyXMkU95eBO6hO2B6qrFBaPRjxsYYE9pGgVKwg1h3Y/SM61GABO + 4k5PWN6EBr/9ve/0p19MqLVEX4rKXRJ852AXq62/vOcjWE+YzQGXSsucNi8nY8WR36BOY26/H6VL + 7wZUYKkVJr4psRBtB+A8ACPP7Xy0asX9h38B6EWi/FJe3fHuIJbG08Fh2dvqIp5LKJLIiX0o86K7 + xu5W/10vNmCBVbaxlBDteh7LhXHPZiu0noBTZn8+/PZntkUmEsFgKE9sc1dYbZYTBNAUra+/lapf + UWPqIIjOv6vPbBmlqyC9DBjhT+rru3+ejlaQwCvWShJ113EgY27WInc/UGzcetllcreVwO4H/ORY + TtH87a7lP31o25ZJaecvC+zIIPqs/5TUjaHBjAj9ldiSb7ZK//IO8daEMzmfnIq9Ll8D3t6GiB1a + V3S5AViITXP4EPfUepSrDquHOlWj2H3kc7WAduaAzNt0BuJsuQydbxokgL9i2/S0iofJAOE9LFwc + cGtfzUhbDST2cCVmzUN3bQyV++NP4h1h566vfaYKaXMOK/lW0jXRjwGo2XdMzkVlA2Ik9we85npM + PGk90JlLPOYv/8Jm5Y7ZAgXsQc/tnfnUho062zfRg+Zchti3Mk5d50hg4F0kX3842Z67NoesgQwO + EDFl/+UuXfN9QP8bb/7Bi57Zdnja7d/+9m+FzES9dRd62OkKt/vrCPTSoWv/+eXHhuyM3mgRwnZt + b9hSxWbYDh/6QJFnnWZhcNNs+/Pni6oDbBzVcRgGVR3R4SBK89zSLlp6BsfwzvFvgm1VoRzKLQ0N + foCJPX8DdTk3hYiu8V2fe5/tqj1v0OBTVuf5VhRXd8lF2xItcwbYyB7ngfWWqkGdLnE7/vgRN75P + B+BYnohjhuPpNgt8Cm8mcyUS+IUR6WtFgLu+wkofAjDxrwKiDA0+VpVMBuwECw9xH3zf8wsnm7hD + awHkIJs4YOCj7d/+HcnH566mWrXG2WDgPX76RFWFWp2nFyhhHRkqPheDOjB5JqV/+mHHiwEsCb5w + qGWLFw6lZAPT8baMoqD6Z6xZv3ogmH8YcCi/NVZl5hcR69e0SGB/ObZ9uLrTD14d8JePIuU2uUuv + kg3cPF8hcqk8M3Zhmhwi51ViF56Eod3rFxZ5583UcOdsK4NUg/XRrrDGju9h1aLEA47jICLt+m0R + 3bEEXnPBxLZ/1rC8cZTAe95q2L2nNNrCGxjhru93v1y58/GkHuBhSV4zfHAmoGXhFfDoQoLv82SD + Xf/m8GFchf/mi6FUWcjQooEorX90u6sNHVAH7R2/LBXSZbPHGgpJM2LF6CCdOCNNgbnkCfYNYmTs + PMgp4qziRmJLctTunJkiuHPsm7isIEXM3+/d6x1fMllTt8drKdCtzl6+0J8Tys6D/YD6dynIfdf/ + nbL0Gtjx2heF7u6SdP1w6AXCq48k0QFrdO18SE4gJG7SWNlYXM8a7Ax4whJ8PbLRM4s9v5Jz/9Dz + hsv85TvZy5N2fnMAKUktghoR00cqQ7LVFR8e3POY+TW1B9D9ommD8rOcsb37iY2phASaB2kglyc7 + DVs06RzY650o70WLNml/JnYKnRkr70tV0XH6QTg90g95Hg05Y4UNGHDPr4mlYxyt/FVYILofgb+W + Cow2ORsVsHnXmDhBF6lrg8Uc5n7PzACWazXteluEKKU4kl9Sxpze9vZPj3uPt0TZ5z5TZ89ziFn1 + kzr66hDC8mNi7LvGFE08sxZwMhWFWH94MP5KBziv6kmcyZZcZuFSBpJeKLAv0Sri//J9x7HQDG51 + B6ZZeSiQMWUH7/n0wM5akMM9TyN/n7+c5t6BkHoI5xQCdVxeNgdv18fgx47WANrldwuqt9HF+mUa + wDe53lr44h94PtifNfrnv/Y8nTgJRO6YoA2eore8Yryll4hKr0MBm0rLsL9JgruxqRtCVd+sOdz9 + MrvzPzjq7RFLKMvo9pUaCxpS9iW+j9/ZNqzpAl4M/BJPYUE1miOuwV89W5+fMvTcgfGB8/o8sW19 + ztE638sacD5jkutlGuhmOWkgYhmIxEVyGG3M0Banh4MPxERvhbJL9AuAilBJPJUil1KPctC5AIeY + DRDorp8EWBq5M2+t/3bno8R4ECU6OwdBUtB1FrsNyqktY8d7fMH6p+eRaaq+4NQ3Omkq4mDIJQvW + iGOp7PG2zKhITtI/POSRfnbEAluUnKUoyJb3zS3hccyQv4hO4FIjl/d85VHNJ+fruIvfPz1ohfwP + W+0SV8tySzWQ364csTqO0Ml7awv8y3v/8gWy+1+g9j91/opeWI2ng1NCYWIvPi8FWbUNa7Ahgf3m + REbP2Z20KPdgdIu++LzrYQpbZ/nLZ/29n+Mun/7twavBEZ871ANdk+aQw52vSH6+89VcQ3GBex7j + V3t/ZTzd7g0Myjz8h59jvgUH8OfP5YwfKH0MTflXDxhj9Ism5ysZMCh2MGM8EQwpSJ/w+AQ1keNG + yphOnz0ofq2W+Pv3/ePjeynV5D3WrbodHq4HvGThsM7wvUr+1vOpvlIsvzxm2A5hJKGgDTOsGu4c + UdwJDtz1ls8GxMmW5fx5omEmL4Ijn7qjZ7YW7GK5Jf/0mG1ED8hpVo+De3al9E6qB3JuU+SDuByq + 6YmXAyItfBFtz38pDDYP3tpLNe/8NnDPG/LhreHNf/5//EX3EcSoNeZ21l8qtT5QhHoca/j2O4kZ + NfyPjwhj2vMSf2d1WZkw/dPDxEB5MKz55cvAPb8hEeYRGNsCtGDP7/3jroeZQq9nqM4vG0tc2NFl + 5090tLSOWGo0usuWH0bAFJgSZym/w+TNXwvqH/FB5KPcuyuZ4QzqunhjZ9cr25jai3jTxdBn1lcY + rd4tbqAaxfl/+VPvwxGuKCmxmz5WsL64TgRy6so+LNQEjLvfgKRPT3s+VVDaJS2E5OJd5q2ybfCn + n6EcxsL8e3EV+Je/i5X3ncdUrOny50/3fJ8EYreAJd10Ecj+Id3x8pzRuz96sGngh6imjemS9q8Z + hEJA8XVF32iN4cOBhZ30+GyY92F6HR4GCIXt4XNpirP1dD4qUD192bnqRlqV38AvIEpM1gcc96Hb + EAYSOp6FjSQ3V8q+yv1SwOvZehM827VLg6l6okhGKrlrThOtf/m1+BIU8vDZbqBj4Utg13/E19ea + zgpHhH/44Ir4F42a+tnA737b5rF+vMDyAdz+hJnjYlPiE3XRIsf550+U52yoy1qCBmwvuvzbX9P1 + MsaQAjHHEhtbEXdR9iewzOpEnLX4uXu/14I/HUXY3vM3ysS1BNeFKNg7/KSBMCA+gD9/6e78RQuU + ptCTnzG+oKevbk6EYnjzHZ1oVJmzzr2UDLpg9U7+8sH1qwQFKuy4x3isLfcfnufevGLVKdlojZnu + ABshRVhtb4O73BgtBmbNqP6f/+EtaxLh044+xBWbOVpa0Wn/8jWCb19RJXgtYgh7JcYSz+uUbsEy + I+ZxCvYZ4++qPc8XDV2dkcXJrd/zvQ44cOivC5bu2RWsvxFucM+r53qavoCMPvHgjZ44bOukzFay + UAfmkn7B7p7fjH/5JGOWKzHlhAP1cu6eMH9/u3nNUtddhc7L96keKvHnXzgs51yY4e3dfLD3jPpo + eo0ggPcK/uZ61kbwp/fRUV5O5FIqMNsq/95CUrYTNtFBrZi/7/P0+EFUYrOg1TdFRF8DLERbX1u0 + ZQLzAGV3U/wl+Vzc9SgVFhRnhifWaIvubDlBiPZ6mKl6r6LVdU/a/zOjQPjfJwq6e1YR63IyKP1W + 1wY+xnPng+Ur0En0Hj6M1EYhkkNCt42HD4fWwpiwCoGUrbLWcChfiL6/xWB/7+VvtCB9/UZidLeZ + rp52hdBZn0f/xMFbxTHPxRDTb+/PdRvr0ZBw6z7H0dKI3Nga4MLXusDrR73MHAJnugWv6xMqRlRg + Lbi83S0WpgZu9WiSwA2f7oxzi4FbZ978hVUqd3q9DQccSXnEesCIw/b9Nj4QmKtGMGpGutzTm4Le + 97XAVj2CoeU7ZgP4ksbEfn9ElU6jH8KHXozE7fkMbGj6iRDEIUeMrPfVlc/XHjFa/cX4WRQqkcPX + Ac5Z//XFL1OBNe7uHqjzs4PfJCldPqkLEZoVbYhsvYpqc0/hhjhJUXyCky5axk9kwccisNg/bE60 + SOU0Q0kzr//WYxsc3UNTELxIIn70jL3uCfNXIYXf3ekr4mLh28BjE81ESVoESD7dG3hkPNcXF+WV + MRx99OjVUTQnMoDZAs/Hp1gsY4ufIPMilvM8CJN842ewJapLRXQYQaiWM5Z57pvx29Hy0WSnHQ7b + az5sncSlKJLNNzYfz3dG6xHkUEk3dV6LrFUXu7I8ML/YM8nX3XEdr3cIP9lxID633F0Wea6Dssgv + faa4ygPnKecYpua0krOaHsBw4UYJeuuz9NEPhZQ7hJMCO12KcAwFLWPT9xjAJFXs+RRPdkSpuS3w + +rBfJJJSDXDOizZIxW8JyzCTALPXK+iDc0PyCmnZ0kDGAtA5UiKBqKOLqC8xOiL3Q7z+wtJ9PSE0 + E1vDryMQs3X2jAXCc54Q43xLXFbtJR+mDz8m5gWWYHsIZo4eEmzwTdjfY8NblgSf6v7Mlyp81XVo + ixR1g2CQ+FATQJsD3CA8PxN83+7TwKv1LYRsGGTknTiPjKH65iCfthN5JIkAVlubJPFFnRh7+lpU + 9HivfGh9+pBEKHeijTx7BqBj9ZxP2shE2/c7e1C5kAdWj86Vbsy3bNCtD3VirHdJfT6ZR7m/CRLO + /CHvsmlafgUqvuGMz0XlVLxUNwniifAmzuPwqbhNDgRENMbw0UU/7u8hlTWU8TNPzM+VqNS1wwY9 + zCkmEXPCKi/zkYROwiGfhbfsubxXrwv4QGPxS/RpMgpHp4WpvzyweYq4YWteqQKd9z5zJIz8iP21 + mfW3vjgBvQEYqHsQ0uPpjuO3Mw8zmamP3GgbsUEGVWWk8jsj5tVJRCpyzaUur1joKgYlNi9QAdz8 + NEpkvKw79r9qOnCew3OQZRrL51qmppukyg3S1sGbGWpxKikfogPBB6R+zT77ihaXKkbOMUyIN36d + jK8vS4Oe+1QooTwcqs1cMgkEclxhWw5dwGn5fYbPRUzJWasugMZT/wTbNLz8Y+4N1YpXbp/50jhE + 36ewrSQHT5h8+2FeMW/R8YcLEd4W9oDtF+sPTIrrEoGpNHF40IKM1Ox0gEPMSsTM82Xgu8eSoHHo + FKwucUTZ+Gz0sFW2G8aPrXJJxFsJNI65gcMfdrJ1dfn5rz6xPBt8tpZiHoiQcWPseIM9MO+7VKO+ + HG1y9S7LMHvOkYO2/Hr63Bc12cY7aQuF9z6FbD7qKl0G3oevyNOxGq0B4D5OYkA2O6/+wp/kbHkb + +wkY5jQQzVC/A71eGA/ueObP3HJyt47cE/Q+iV+s2S/fnWfhbsDAiU5EDVscsczbmqG2dh6RNler + pkAbfNgyJ58EJDZUnq8c4d9+dt2XWE3Ndc5FWCcOVhjo/sMjGKiVO9MbLVUCGdZCs+SP2Lbm79An + J1lE4nRBRJdCj3LBqVDEHY+wYzODy18uzQFq1nsgimME6sZ/owJOL3rCTmxWET0yjYY82jlY5v1n + tSI16CFvSyORnZFzV+WWlXCc2B4nbndSqWHrCbpLICTm43nMqPJ1WuCIY0D8CtXRT+eLUDSFfJ2r + w8+lm/KLAuDI5ULMU5QMG3o6AvzysYg1MK3Zkn6gAKWVgeQZPTFYy6QQ0VkIa2y8DsrAHW1sQXqy + hhklFEYb5PUFYTjcZmohyeUegvkEzLkC/qFf2YxkU9HDnH9Roj9pnvHT6Acw/RjWTOU8Bfzv0pXw + ZW4uUdrrYVh+uBX+6gMH7PescpWzpUhObhesm/bgrm3OhshpHxXR6XAZ1qzFI1hN6YIvzpiow/0Y + jyiFhfxX7xXXO0KNHvnPnOmjl6pxS50SLouT74P7HMBNzqdA1PafODtcG8pdm5cH2bts47h7NWAs + 0quHvPRhEH28dBmtawmiuD/7+Kmv0sB+31oM+wA3JBGWzB0bxm7RQ7QM/NKqFWzB6/UE+/8n50Iq + Kpb/1Q64Oa5EtO/hPfBn6a7A01tUiGeIpbu80jpE31s6kNwVD+r48fkE/u2f4NJ+KP3bnyd0nbHK + fcVhyT5fBqQPL8bvcLkA7kMy58RsdoIvvnEYVpnaC0o/mkWSo0aiyQFYg546g5l5T0L1c8IlB9Mp + EbDzK3C05dGth/GYcbMojV8w4ZV7ooPmtyQxDaLW3WAZaCxin9zev1ClAWeOyOw5TPzD1kfruIYC + 0tNiP6O8JxYsFArQKz8NKztebJRYT1SG6zxvf/z/bKIUWI8t90GYOBkJOHNGPF4fPusar2ErXDuH + /S3A2P3TE0emMaBZrQ1x7IusMp2PCsjGbxWfdQOAlVf2KWmmdCHm8T+kXcm2sjASfiAXMkmSJTPI + FARE3AEiCipzgDx9H+7fy9712glDqr6hQpVMo20kdgCtVxvi56RMdL4JZQW/ysZgC8gaYGoctRB4 + ueJz2JLy9e9+xnVZEV82poge2HsBeW6JiJQeC7qOSaDAp54FxJZGnbKS787gD6+0g/yhHV3vBvq7 + vn/4Cz2+gI4rCLPwuFb1H/4jq/+1RH8dLg4/Zl0AIvj4/f1ePkavXy9Kk7Ng7wiyvNP9C4TBxZmw + s3xSMMhzVaH2F4xYU5pD3p+VOIV+1lzwI26+dFxhHaLYPL2wnNmyw4DbI4Gy0B/841X75vTAXkrg + 6qAmrn/6gEU6LCFKZDsh+A9P6k3SxIU7udjNhK6mf/GqGReVuPHvDXY8tKH9uorzyazDYRXLvhFr + AB7EmN+vepn71wGW5f2G7V7kwfYikQ1xduvnU2pewBK9SAv4I+kI5rmyXkdRz+BL1wWsaywHZlK8 + OXjIjXwGUtdRWlrFG5DtspGn4WvOng9bsPMXoqCXEbHL9dFARlKeMznJl4Ed1CGGvXm25zWczXx8 + DbIA9v05L8LxOmzxT2oQfXzGeUh/l2j1NDGEQijf/MPzCoZpFrsZvjrBmqfH+e1QIRDf8HP/RNiy + VnkYY6ZIANdUNxwmegQ41LAp0LKDPx+1x52ST/347s/oXfHzBrR6Sx0ngAnPR0QJhyH/mRwjAtjE + NlHsLnPWRRUaOIR9il1X+dVEn2YNDrw97a+L6r/PLxxwiZYvhkrBIVdETR7Rn35wOFfRY4Cec0j0 + /UnCzYtF6Q//iea3FVgj8GqgmMw6keJnFbHXJ4hhcQbP+TT5IiW5VTdQx5dpHpD7ydf0OYZQ8ZIz + sV5h5GzRw8/A8SKUJIifUs4dpKL945f4BjSJbmwU+mA2jhk2JNbKOf3nuuAxBhXWbelcc7u+4pGj + mkSvzzVdu+fli45p5xKFMHq944kt5myFidPHK1gNjTHEPz2gt3wF5kYuKhgUW4Gdw/ULlsu9rcCn + m1NiL8ojWu3bZQbeyPTkedWMnL1qS4n449Rh/X6/0nVb4AaZOCdEqVLXITNnlUCd3B8JfxuT/9T5 + XsLmVxbELDZd3cSJgzD6fBgc+Kua80nTinDlDtVcbU5Tr3/7S/mmH3LDehNNWfIeoStXEU4+6BvR + P7738Z07cS60ipZfP2xox/s5A68mosL9o8BFcjHJzapVl/VVZWDWlm2mQnQbutNpKkDnrLK/CvA+ + rNq2jRAlT3mu+y8HtugUHCDFR3vm9451Y0Y5H5ypsPd8T25gvWpCCbPrjcPnLP+qtGksCPTLciFm + 3ak5zx5WC+z4MFdpEVI6ZO7hX3xyj8M+B/IifCHLLQtWpuqSL3PfHYDYxD9syOmWL9aQpNDGiTm/ + j95Kt4a4BljP7glr1fVVky442NBq75LfmO7PoW0WKyJrMK95n2YIpq84vMGBPAesyqVA57ZoWjRU + oeifaumV/+lBWOi3u79GlzWn73psAaN9P8Q5r9gZoa4dRKfvn8QVmtmZG6IZf3hLLjvfJcL79gaC + 4nqkaCSsblVEIZxipsZYqn55B67ujB7LsGK7v3mUfYtJAM2M2NhDo/bnD5Rw/hlPf1vfSs3S9WKg + s/XWif/qgl1vqhZ0WXbDz11vr0Z3suGnepr+apB6WAZ0TsHPtyA2ytc4jPxLCU5TM0zE/jAqYDYc + KJB9mx+fTd63nFJTXP7pb+6cqTW7tkoI93w8A9mNwHx1whhWn2AmZQ6oupwPqvbnZ2D8+jLOAIKh + BAU1Jbz7I4B+OSVAZBJeWCl7oq47f4VWgQziZaFac6tgK4DPcUzU3LMHZs+PsIDxBQevJlW3jS9b + oDzfK3a3yFSpmMkxAlNlEte/PFQivgEHeVTLRO7qKVoM0x2hFy2YXH/jBIbzR+LQ7/TSsX+8Mvly + Y7wA7PHnc7u+mjg1KyHiGgOHJr4M7ZeRWyhi5rLzz0tEI17an/AJc+xLdZ1Plh5k8MIK7rz+QiPi + +7rnwO4/+MLlclBpFp4LCMhIiPkARs0UKYawzbnNP2z0W9PLtL6hnJ1uxNYMP1rUwA/gcnY+2Ime + DmWk9zRCc5J4HBrjr15KxilhQJ8ZMd11cZYWBQXqefNO3NeY1Qt5aRqcYq7GqgRm+k+/9Lx+J7YC + QDRXjlzC6Hbcp4KcJqdlsQSRbgsPrOFVyTnz5FVwzfMXdp+Hx0BLK36LtjgH/tz7Q7Qx0lTBq754 + +LbrTT63hi+4j2VAXCW854OIuBn6xXLC/pd5g9E4ZBZU14+AVSnVKMfy+AsC9eVg83X92/8AQvdy + e2CvkqSBxlwBYSltHLZXatb0c6xsFJaHn1/vfHyJjHGBubm1M7pMbdTv/hn6hYxFtKN5p6utn2OY + F45AJMXmKFWbW4AetYqJ7BtlTZJjvSF3Ph7mU9786vW7rhIyxe5ObF98OmvxPFXin34O6quSLwXy + FKhPro2ds687W/Zwv2DHH/w0Vl/d/aACoE2SiPcy4noph+AA8167/tMPlLckCYrHpcK5WVkOc/KN + CoVs99n9icqZPsmFgUxepLhIZSei8eUpwKWZG2zu+EXz4yqh6bGedv5q5+Q3jhkcTLckem5XDo+n + qy9Kmn79d7/WQp0PkOW2BUtLlkWDe4St+DmY7bxePh+6veMgRIGlX3A8jEVEYZ1aiL2rZ7z7Q+Bf + Pn1Xo0P2+HSozwEN7Os/o5l7D9yXVBmol2eDDe/GOfQYCDP0+lbBale96fp4+hZE8srNx5KwA62P + DiN2Df/AdqPea1LWzwzgkfMwnj48XcQKuCCl4YItj2frbbGzAkpJhIgp4Xc+NerHhu9feSLa6f5w + lgdeFySlS4WjV7kO646n8PCtruQW09eOb/sTJDK9z/TbNdFyQVcRUg6q+Po0w5pfhqMLxSlC2Pmc + j+q0XVcRqnLX+cdHJw8L9Zv2j6+SqP8mYOH86xfufsh83Ba7pujdbGjKPxec34oy2mAUpGjnJ9he + FBQtWQoSaBVHg2jVVa5n7AjF6Xk+JFjRAMr73Q9Gqb9lWE1PSUTulhn+5UviWR/V4T9WNsL9fhLj + nNX1EqXI+ssvPtAJAkvBhG9EKt324Zef8jZHSwZ2fbv7e2fASGbPQDvbZL+xxMahzOiWcDPWHmvL + 5QaWtQ9F+As5i1i6qDrrslY2GpylIeboXKIey1wAmSF6YwP0Bl3kO+YAPdkDMc+33zC5+1Q2mBsC + waH3A739nQ3AD8kd61/pHdE/vXhf+JcvOhVXb95jfEPTkI/zIU/P6nqIUQswK3T4opgZWPtW08SL + ZX1I+VGFesmHVgKuC92ZL2wYTeCqzbDeDibWB4OLJtVD7Ynb7BORq8OmjuWQHmDbPWOiPcra2eR4 + bmA1qsV8bJ815eC5dAGSKUfU3Q8ZoxTZYE34HP/5UexHO5eg1BNIDF4p//npkJ7dAj/bpwpWZ1tE + yLxjl+DrL8iX5F0FUDR+EtbnqgRURNwoelZ8xQZKVbq4iJHE0v96/mfHm0nTnhucH7yHz/F0zr/i + dDjwm8dF2NNnbVhKIxeAuB7PxKAtW2/cGcZASzILe+skq9tk71MbZCshUfmjf/o7gEV4BLPoi0dn + ml1jgwJXj9h5uWNNCy634IE8BuwmXBq9vJvdApgKAUlcZnRmLX5WkDDbdb4wR9OZuB9mxKbKKXFt + Pq7ZtC0XsGL0m9EPbWCpkerD+v5biDo9rtGeX+Df7xG9CvWB3nJHgnzLcuTvevkjMxsQhIa/83Pq + kCWAMZwRDHH2q0g054o8o3N6w1ifEEN3vdXDHT/84+ZJA5dGaIMbN538JA50sN0eeQsq/pn47CM3 + nVE18w224edFpPd0qucg7iG88cIPJ3IaRtsxOsfwc97ORIvmmO566gujmdd9evgNdLkMgiAOksP6 + W83KlD7zsw9PTJrO4Ozr6jZ9mgyZz+xKPOG1Od3iDpr45/cY9+QOuvczT2E3GzPe8WRY3umpgjTQ + gnnoeUCn4wkn8AlNjzjN96quun8/iG7NSOR+8sph2/3lk4i5Cz6zlHPm66MfAfy+956yUKFcHY0i + 5EKZwe7VHunsxZt0Ul/bjHd/3ZkyT3Bh3CpfYmrkAGbAnyy4dEGPNftL6lUo/RDWfOWRxy9rKdXD + 2oWufqp3v3FWp9DbpH/1m8/TDIdtJEqA7Iikc2cZBd2On/sMZS9k59eYDWDTY8DA68y1RNn92JHS + bgTNW0iwR46aSk/jZfyrp2AjDj50ix5Ghq7sWBBViPh6ml1/v5/kNPMPYAzMkLoxbO+9jc8ecxrW + e0sNeJ9bAV/jSAaNqAsJ2N/v19wnq9fcc7k/PMCuN1OH2FJloDlvd/yEvToamPehaHwkX6i/Zs6x + 81WDWH3yROm7DSw5ElIoXw4ydqNi77FRWz7kBPCbF3+to2UxZBd1QenNtLaRswiwK+ABty+S3n71 + sI08s4HPHJZEV8l7WGBvS8BIm4jsJ42G1gvaDWrCXfQRa56H5TxsI+SOMMCW69jOPz4yDXOy+83d + sP2+9huGcmIQx229eqT+2AKTC88zfB4e9e5Xj7Dho++88n6x45tQQDwyHla0lEa04Ha/ImqgLx6A + C4bJCgR4OiuY6MmbzylzKBiABsvFmVprDtdJhxSa2WQTPPAZpXXmb9B4XmWc5P2sblKplbAIaPSH + X/l8kPaA+lYbti6Xg7PaABsAZ9ce//mLK/czGRhezsEMzitRx/mGgn9686HVF7p2YlzA7FMCv856 + aSDOee/JflNm4sCmqJeGfhK0dGFP/vzzv/wB3rrjzoeQTnQ7LypEf36+x5rnmjN+1Rv2OXPF5u/L + 0mlyRQvu/+9v/9Np10twMSAi5reS6bjrWdABEmBtGGE+K26Qwr1+gaVntKqLM5gx2vPxjq/qzm+L + Cko9smaR9RZn+4vHphs0X7AfnsPC3ykFOz/AWHS1fElQbUGhPdn47FqzMz+coEISIzfEIp9B/eNz + yEj0hcR7/ZZqvAP/1Uc9NS3B2KK0gEg8Jti1Y7teirdiiQDYHTE7sc/pJe8sMCrf37zP9VW5VAk2 + dHT2qcyy4UVLhfsRrPj42+MVApJYSQx75aNhVcWq+o+vyINUkGIP4KlNlAVWHcPg+4OdhyY0Uxv8 + xaeXUJiTXQ8BfMniP3yvW/e9WmivZ/vL+RvU6/FkxjAbcbfzjwdYUy8SoSkOdyIf+iQaDy+rgPwQ + 3+fTnaJ8va2wB0S51f4puTOAGrOdwep67nzh2STq+lrr5U+P4Wz3J1e2vCaITuNKQkC7fL23QINq + kjBYLqdBXRa6LPBxzaY//jXML7s0IKf4PXFAaeWEmuIGv1Lj+u8GJA7/vXgu/Ntf8jxXzl4vEMHn + 57HEHlsGTJ3bCP/PiYLT/z5R8GwthWR4DtR5a48pFA4V5x9UPIPlbZM31O56h73Z+EXr42gm8JL3 + CsaPz6+mcxJzyA6pMwN3lQEPhmEDVfk0icR6W01/Z1RCIROuxPgBU+XTh6jAz+kUYP/mqpSO4STB + /pKeiLcFX7BMhdECcW0nfHlNOh3jLonhszi5OMjZYVik9mWj4uoLxLOrIlp/QIYIVK6OH738G9YC + kgJUY/rCV7o9AOXnQwaN3j4RS9q7ztj4sz/jehCwd7SJSmyQiuK1v2REpjeOLsFNK+EYWrZ/ULrP + sPh72xrzQTOi+Yusbic22dDjo7jz0X8AtW+1vId+crgQpdknxnTBg/m3Xg/5yzjrOTrMIL1/1fko + oa7eYlz1KFyYp88F6qYuhuX5wOG7du/qL0aUe0MfBuKsE/NgShH3sQ0LffhqIHjuSL4J0aKhY8ol + Pniw55qb/cgWEz6zZ84kGxhtYa9gLMZGzE/zdjihi79o7o8m0eD3W6+AMBDKsXnCzieWVO6xMQVi + Lq0x/3x6HEhSNxXyMqfCXsLkOZelqY9uT8ruCP2qR83jRzS33/ecLCweuGqSD9Dnv5iYITqq622Y + KvgUSpk8OcEfOEd6pTD+SoA8aivLuS97eqOENxysCYXprHuXCxDrGSLeGdtOa11vMbQ/dCZ2/dUj + /m//JKMTY+uWmTn7A2cIHTZSiQy+nLpdP54F1XfxIZHoKXQ0DDZEsTLesflemGEz+HUB1aZ3JJmS + k0Oy/Ux5WnYuuR5EO1r1U5ZCc76nJLS7NyC65QmQE7IH9lWRB6shvmOUIrchxfJzHe7R2i4sOcEg + 0qpSZzkKrI9Y62Jj8607Nd95UwBzPiqJQ55ZvSk6N8Ik2buui0GjrvXZFyFYKg0nyrF3OKItHCwE + /k78arwOTPQobLjMKSThUFUOH7ZYg3/rZS+apm7yEtrIMN4pCRoSO6v4UWY4qanhC80d14t/FmPQ + VTbCPiGKs5SqKaKB+12JTcQmXy2TecOq0N4Ez6qhzg29tAjIhxHLIvBUBr2lDTH80SH26XmlPP0l + C6xfRoQd7mEOi6Ptz85fnZhg0N6ibY0yEdxA3xHzaw8RvRhVitZnL2AH0PvA7/F1ej/9FCv47gwb + bDYJBZlmYmtNbwP708YEXpxYJerb8VWO1HwLNr074gC/3IHNfwpE35Px9dm5GMD8sQ0bRepL3Ssa + H9Dv+x9d1uHsM7dPN6zMnQawvMIzsaxbBig3Jm8U9JmBdWLGgHlZZg80NXsTpXW6iB5I/oV2NX6w + DvKIbuLAlFDUHyJRH5XusBfvUiCh+j2I/Jp0wDnHSwpXJF58TgqKmtfWewoNg7kRZZX2OX3JfYbS + m0Xz7/yY6tVYLQUe+uDg0z6bokVbrAVmoa7M7DN+5lSDTgsPP+FObCs+1bNuH0ooZUtAnMPv56x0 + PIpQY9oSx8FaRNONNTloQPZBzHtQO4wtSiE6j6Xuo2CWat53MxEeuzLG7g3rziqMng1pkNn4erOf + oHNTroTpvVHx8y+fwGZT4GIvOTbcJh84X39ZSDtNP1JWxhjNfvM7QCKWBXbj6jbMqpU0cDK0Hv/l + p1HqTgbsY/0xsyCPAE2L3oAq1eoZ5HKhLhKNMiSjwCKSv0/NuPqShAQvELGN58Dh2apI0OvQZP4v + Ka7DCn99A3lrLogqCg7lhnOUoWR+nfxh9tuIqlpiwC+XKiTe8zH7YCcFVBI7kST1LsMiNGqBzHS+ + YPPu1NHKM7cK9n56JfGTdM6oi1RCFhImrJmuDba37mfQt2bBD+35Xe/xKQDlIRoEb9YHMKsvL7B/ + Szw5f5U+X2WqzKB/zQL2Jymu+etkMKj+PnN8foRyzTcgT2D++t58sa08QBdfKWHEP2pcMk0PCGpe + CWLTz5m4wt5T5laBENDW4Ymi6mO9CI1TwOWxHXzx9Nz98YRu0G1PDZGMUXOYmgsFdFHNdT6FOAbc + EioQdbg6kNz6vfPlPVQ9+mash+/BSQFMy7YW5Ny6w0ojn+nG1pqArCx0iaT8tJybb6gE9/WpYZXu + kHkNhAbWiVMQU1SqgSuAz0CUmvqMsugCOFNlFDS3zZu4ez5kj2MfwxNZNhzECRstz28loHNhG/hy + liyH+8PHgi4BiWz/5KxMM1XQiW8G3uOTLi5sLdR6g4YVXDoRa14SBqW9L/toc37OHHa/GUihd8TS + mPbOxi1PCYLK13H+sKualX5Shd5PN8Uxcvcz+L7mIg6Y8gzdS5rTG5lnYBVwwRYypnyqD8WXm/R9 + gu3Z7vN59nMLWb1g+wLD+w4XjfgLHjdjI572fEUs300BTMujg53QjACb/+wD9MWQ+uxhZ7zl9/VF + fXMvSNIOi7rowfMLWXsgxGpKHG0+VkvkMnY2c7F1ARtzs0f4YGPH56JD6KzsT8/ESV8G/HC7io5M + dK5QO4iPmZGiB6XM000BPyaIKM6RocMeX2KwPSnW0ms4rKOXi8C5qb2/nMIwp0mmuMg3kojc9iYg + 9JaHNhK5iSPxjt/bLW5T5KrugySpINbk9KMQ7XiI3Sby1A1MbgqD7UGxx39TQN2jNaKIf9Yz2OOv + UVWvgGrM2kSXE5KTZyeXaPy9wr98OFBLHWKQxfQ7H3DtUdpe+R5YBEUkDM5MvQXF4wue/nHD5vNy + cJaCZUe0Dzsm5tWo6z+8RnKsn/DDO4Z0TUdUwPV9e/jgGAbO+jZ+irjzmRmQpzjQH1sx6Jvx3p6f + P5SS902CrnX5YiM6bCp9DV0MtRP5ES/UwpoLfpgD0sHYiDroSb4Er8OM4IkdyU0/3Jx//G3nH9gO + yru6wt+7Qca9AiTvyQXw4vPVwEtAXGzDVHXYTDS/oGHhgs8z3Gry3ace1ap9wvI7ws6yZc4+BxBt + PvpAky7lJ4VAi+YXNne+NVZrtONZre58C+SLdPB66P/CAMvc6g0z/8iyv/zv5zu/ZvkSKDAtB5e4 + xvqtty3uGVEJmgGbYtvRVfzYI+jLMfaXSKrVnsu2N4SvTSJq8k7VrRNPAYQq8yWSvaqU/7teeext + /Lcea5yDvSJ/CedFkCXnHx+/Y2ARZdm7Vsoy50On6XRi3rkxn+nwDAV8wNHMDu0h2krGTcHGAUDU + Q/ge6B8+pndBIbc/fsjF1gK35IKwXnZJvt1vUgCzZ/rASigoKjGOtASBz1/mlS+SmgqfQoMrEi5E + esZvdbtFQQkH7nPFPn94RbMjdRl0tu+T+A3HOnP6DFuwHGbgt/nz54yNhzPwt74SXFuwDF7TwG9a + tETJJ3ug5bf7wj+9EPzKV73V2545OOZA7FTBEe3S2xsMlegTz+0qsLH39xdqSa7jv/zY5M9zKL7V + Y00cvhPVRT5eG7jzQXKVhm9EPusqwWhLM2I0r2D4xw/y+gDntdvnlL4okP6dWHMjXR8WdapEeMzf + IsEluNe8WF56OIPImBeer/Lty8sFvKIIzQLMd0X/cg7id9gdiNvmOVvkSRsMK/dFSjWeBzo/j7vj + oLfYpOcoH3vBUiBn2i/sGUkBuOX7rEDN0YxIzPtcM/gK38AC7pmUkdJElD5gCbnJ+fmVKiS7fmlb + 2GgzMy/PWHG4Y3daYPrqFqzecz1f+FQOYEoiG7t53Pzjz/DDWgbx22Cg9MukIuTz8Uj011sdOCdm + D/APz0ITjyr5Wp83Oh74gsgZEQA9rWUAc6nNyMVjl5r+2JaDRchFRBavNSDa9opRh90jLip/yinf + uDbEJ9smvire6NqhjoFXtgpICantrJM/MJCGC8H31+0VLdz1laGj4wJSOF+iLjs/RFHCfrBqIQOs + p9vyheeZ64n3fqzRP76QGJZPpOZsU3q5ZD3c9ZIvqtmqjjToWii4B+AfrupxoFl1F6G0PFMf1A6o + h9hprT9+MK9nqXVm1hcSePGVH/at8z43eTpagJS/1hcXrVFHbbE2mBbhbxadLohoECgzhJdC3q8X + q1MbfN9Ab78HrNizMvCtPBiwUaRg7rpXBZaf1XDArbkcO5fCpuz5+DYAwKFJ9K9wrRfwoyEUfckh + Oa8GdOcfJTAP041ouVY5NNCDEmbaucXmKrzUTejiBt3rV0+sxdT3ZzLTUTQ7KcDe5d7VvQVeX3S9 + hTxxx7ebL1HYiVCtDInY42eq+/nGlojScSTRsWbo5hzvKSyub36Gka7Xs3xiCniGi4avFzI7b1pN + CuLPUo4d7f2uedBHDPz8/BHj7vDNxw3fZ7Dna19MFRKt0k96o8Urj8SPlCZf01t6ANj+bthy1jWi + sSsY0IddSuQJ6g6b3lIIw8p/+cdLYuV01QUD/otn7a0MTNyVCRxFlsH4mrfOulhrDE+T4c+/Hg/q + UjZnBeaG/CauZqZ0fcokgLmaHHb9rahrUS5fuOnDEdswUvPxMNuHP/zHz8fnN2wFMBiEq88Juwf3 + kc8NpAe4+W6Az4AT6ZIMB1c8+Rz7t5/B1p66RNz5MVanU01nfBkScCo27POUwGFJXipE9feR++z2 + Guqlc7QZQtZ4/9PTG1/YJaA0nchdXpN8KYVHAzRrr7hEyzys+aNtuY/aONjFe09V+GxFKE0b9bcE + yXRbo1AEV+0bYSn6jvmsrG8DTXzyxefXTY6YTgpLVFrx7CdrJdTLnn/hIIXBH97V21ogH8walOcp + OW/RqrLvBjXnFRF1fk7qni8VxLxDjZgsqujwk3IL7PwCl6ik6hKXjYbK79fEZ4vU0ZLmlxL1sfkg + PmVef/HaIONmJeSSkZRS+D6X4u53+BBLOmVlOElQWEBBpOjrRv3pKilwamJ1/vBJrM6dXjd/en9+ + 7f5Cm+aXAmEvSvZnnqp8Ld9VCh6/bPXfrhaDaZDvI/T5BmOvPIhgI4a1wT9+L1XaoM4f5tUA4eDz + /nocWDDKzBCDkS1Gn+z5vRjv3w2sqAlxnPddRJJM8YFmmAb+27/0a00VaD7xhvVzNdMtrLwM7nwV + 379m72zvZV3gGHMzkb/pDMjH8FroaLI5HzlPr1kvT2LofcYrwVyoR/ziKwUqwRETzHmfepwucfbH + v/AfP1iv2w/C0/a4EfmCf396Z4T8Pcn8HnVsTn03FFF6DjS884+BuiVuYFoiB2e/RaN/+w+eJs33 + L4J7rPf433uijJ/dz6ryXV98IV0lC9tE1HLubEQCWoJnTfzrHnWm7JTiVQTp7i+aw3o+vjX0I/cB + u+yN2btLqCOarCcmf+s9XRKwwdtEMHGf92ZgELefyESBhZN6/Q2b6SUJnPLnhj3pKoNHJuIvmMFP + J87MrPX6PW3Kn5+G/Wjy8vVRSRVyGSvDQXuKhlFhaQhvIOln/h6oDmto2l5Bgh65K8UzZ8WPPYOL + qq+7Pmscek23EHbh6+13vBGqo7g+mj89vutjChb+VX/BWfqExKSkqJf8KYdAnPsz9l+3Qz1dvHsB + eDG8EYV5WtHaRX4KV7e97n5Xoi7tGW7gcX/eiLt6bL4OrgOhhL0c59LjDZbpUmRQlLKV+EGUgHlW + WwFBZqln+Lxr9a5nN1gzBofNpLjW3E+4p7CbihSnQqINu580/uE9luXXpabP36n603ckDAXF+efn + /sWzvzwHlST1+Ia/Pn7j5/eJAXGsWkM/dNX3E0Oj+sf/IbM1Krkeq2hYy9GewY4H/tV2eEBabtnQ + 7q/6h5wf6f59FezkU0N88+7ni62+WyR6s+v/Pk8lYnR9imFwYVlimH3kjFLb2VA6aBuWZ1kDu1+c + wG+7/Yhkhl6++08C5BD9+PTTa/X2Xk7bf+OV/6aUtoI1Q4X7rUQxWXZ/5v/5hlfxlP67XjrZYQu0 + Rqnmk1I8o3VzOxtWEj8RF4LBoZdL2MOnG/m7//lUx50/wKvgMvjaIzZaWib1wcNhIfFPcVRvSSi9 + EeXMC3FFBVFSQt8Aux+HdU56O1NN+0Rchv0EJj1qKrvrHXhxEhV7u7/dNh5OwR/f//MviFuaDURg + +hLT2pp6OeUnA/BicCPl3Xs6257PoPpcpL98EnHzjS0Am0cT8Zmur1ffuo8Ace0D//kj9LjuPV4P + Pj8fS3AfljBQFPhzzTOWP9tn6AbXOYCGPSw+uwIl37hMfEMuO2v+ZjS1s5yVbAY3EPd452902io0 + //EPYk3Rjf75dwCbgo9jh6dg2v01eDwtEdF3vNpGWZZAVT5MEu35iO7+IaiIrvuccNfB5uudBaP4 + LJMwqh2HRnbg/sNfPOB0mJSuyv78X/9AyFvdNPYuAnMYGR+U+QZmSS2Zv/1AXOeFIxJdlUK8YYef + G3+Qo39+2VA3G7kObRlxMrFdeGXfAVaz8TasRz7+AvCJfCKNkR1tHTy7sO6cI/F4CdfTUeIg3PM7 + Vktjjqhbml/oj7f7Pz7AHqrWEsv2MGL7hnC0KM6Tg6kD2xkEnFyzKU9m8E3L1j9NQ5Uz8vH6hf7x + CokWshKY29MrhvRDQ+wXvyvtdz2Eokv5wFbB3vOZvfcNrNfxgpP2G0QrW0SW2PvZ9V++2d6k44D+ + EbMdj650MVAmQIYNf/5B024D9eSqBx/WNohWMy2YfzLd0LmsBqLXZUnX++ylcIgCim3UXfOllj0X + PIVCxi7khpzevloKH3Hm7/7zW10BgQf4Cm4K8W2qO1Ri9xOj37El1z/9d4kdH17Fzx3b9Ng4dMiO + GexJHBIXSx86wdUV//xxbPInqE6wEBJQ0OKCdz1On4fPGsKHw0MivyOijsWgFuj5/Cx7vcqM+Kxj + /H+v64acRvv/Z8Duv2LDJCEds8caw90fwQrzbKMGPisBSXZ5mcWl9yL2yGk9HFbf87n81zpbUmwb + BMJv8V/GJctpd0pbeHqfUyIJvy4fhstVg4oyXHa8edHF9mMRuUx597f4gNTWDd0ZmtV6INau37jH + OlZg5097fmqGdfenoPpjJ3x9xs9oseyPAZ13UGFD/UQR3fHxr/6BlacrO2ulmTb6dL/Lv3gm81UT + 4RqqpU89xRgY83y1wK7HiGFqZ7qMgVuAf/WUxfxEC5ecEuCfFZ6cf2kR0elsjxANZjsjI4G0Yp/O + CA6Cm5IknoGzMEXNwDZvSqy5PwiW7yrEcPf7Z7FJ/Kj7+kYPJfzK/NN1dqIxeecCMG52QqShfkXr + OeJGcZNEdl7SKgajrfY9fE7Y8U/9RtVRPj4aQNBZmrf1C9Q5Gs0G3Ox0IvYKjjVhqyIGScpt2N31 + z0LK7xvufNFfnNvk0MHoGRigtCOKiV1nv/8uTDwAsKPcD85iycqCyiS0iBUPd0AeMzjAnpUzXET6 + p17D1Bmhf7xB/1SWjLNeH2oB1Y9zxkpuyjn/5usKOpfDy193f4b34ikENt5+/pT5m7PYghBD03vm + xIoCE4yL0wlAGgzsx9rjkW9dcGWQmWfsfrZgiFZxnhTomeXf/hTykY3vBTSMKiXKL5ci+lePG0LI + YF1cero0s1QBCdfZfOKNzRlhn1tQZOTQP+z4snhHSUF7PQLj8CcOa3w5h+An9i8sVT0TzbfSHmGh + VDHe/VuVwVemQvv/nQ/84ZWvKts3sMq3euevjkNVkY5g9/exxipBznm3B3eKEv7j3183Od/1gID2 + +gb2PDFytp/7lRCyn73/qC0xn9+6n8LDHR5JLs9XdaLjUQDMPaf+FNAq2ix954u7f6zv9YnR2Koe + SlPJEP+Z1Pn03sIMnl8vvNcrK5UVRt2G8OdYRMHlEG1/+6NbSrhP6VXV7S0WBsi/XYXP5A0o+cu/ + 1vN2JX/3v5cmMRBF/SliR1ZdZ/7JYIOeWUD/0F6HoZ9ezw1IC735y1McorU5NhXa9TI2h89DnVp4 + EeDNXcO5OoVbPlc844u7H0h0PSd7fbhcRCnbAmwe03Cgz22frLH2k7/6+Qmsf/yifEwc/vMv3md4 + qkCdnAucmrJVj80svVH0WgpStldn2C52JcDnjVFxsuDvX/09Bn/1TW3Hq2Xnp8jqRZvo5ZyoG5OG + PboW3ZHIZ/0HmJ0Pgj+/3+vHZViLNhPEyPB+RKkTadjCSk//nxMF4v8+UUBkdyB4mbp6PWxLha4I + 37HTGPWwgX4Qwav9UCIHwlFdmCHYpwTUnj81z7WepQPvo4qmJ3K5H77DkE6fBrz0xiLFi71Qrm3f + C3TWYMT+I/Ip56vyiIShe2OXjfcuIqXLQJONwLzE6O1Muv0Y4fl6l/ytZb16MwKUAVp5Jr56D8bZ + Pty2wWM7n+YVwtfQWmEfw3YUMdZSQ81pnZUbPGKEsN76P0DP33MGl2xTidUnTbQpwd1Gj+Cs4SDI + /JyXglMJuUfT+qdVatQJHrIDLDxmwWohEbDwknqAc5D68/Gk/5ztMKEZXhIkYMs2HbAM9sTBTuR0 + 4munKmeAa4+wrva5xkfJASzDH0OYjJVMkkt6iSalkXyEOelGovPvVG9Q22Y0lK2Py3QB6nL5bXtX + CoGSOwuuzmrdbQndb38V+f3oZOgC/yTP24V49HuJuCyvS+Rf3iyxVADBbNKTASZ+CH3wnD+A/3aO + gbqj/yY693sMy/mQifArSw3WnmCk63s6BzCAk+n3vdgO9GmlI3ygoMCXV5s5LAKfDFVHZZ8b6pF8 + beGFQaq2dtjjrhGlfHET4Yd6GzE1qVIJXzwFcAaXiDy/YwC2SawEdEvMO1GdvAcc1MQZtU56x9Ym + 8WBDSx2gs11yxDiIaUSNlhPgIt/I/MM9jTY/Ht6wGlkX38RH6nDn2PShcU4DouelW1Pu6ZVgv/++ + 6PgqYF1LK5GaQGGGFemH1YfdYTfULXJz2G7YJvXKwMtUN8RTryZl2UfVoPPvi0lufL18FKxFQPol + mbHDwg/YrAQuUJECi0THkcnpvVnGv+/b94vmLKMsHJBsyAkOxksXsb1yCVDW3XziTYjLZz+uKzQm + UkrwY33WRJtDBbEluuPw3ZUDXyTVDGGV+8RPyHvg4ZHnYI7xi9jfGwP235tRp2w1sXmTgJGBmwFv + j7gkt2yNcnLZxgxO+EOI+Va7erz8tgBq5nqd36zC0Gl+rhwauiYl2ePIR6t7/4ZgTd79PJHVHIjr + JgLS1RfET7f7RWu5NQma9UIjgdg/VV44Rg2KiPUkEktmtd0FHzrV8kg8/CbqiDXuiw51fSC64SBK + A9wuwHOvp/lU/jzAI94+QG48YRzvs/To875VyG+1F8Ef9Qq4q7SU6NjEBQnFAVPO5m0BaqDMcDwO + rbPE9z6Apm7xOFtLhpIgvfZo3x/+NpdtvdzftETkZxz8w3YQAfU2yUKb/3X9v3yySTn9oiJdRKyE + P29gKlIWQJQcnUi381Kv/nPqoUVPNnaub16lx/XHiSs+IGzISRVRoEwFXJ52RaQYpw5DdHsD20Ok + fmcrnUrXTfgCM5dt4omCOTBXuirIqnwD48+3G9bK1r9Q/4nZLOqflm6No/hodb4VwVJROavC9hKs + oENncUmnYX2W8QFe1V7B8srKw/ZOmh5l4frG4d25g8U3RxsOv/w8H7Nnt//eSYGHUDpjZVrKenvB + K4ceEvfAMuBOdATET0Ccf584zfgvoC8/MFBz+QrYcc6ysxLR+gKm257EiHtzYKW954t0fHbkbMEX + GPRM6VE6hDH2z8yaL2cMF/FSughrd9cetuSgcDDl3BInTDJGy/mVfEUobxLx2jiPFvO7jgAvh9fM + zfYjJ19xFKB2bUzsL9uYb+7Qlohl2AlbWhmA9rVXePqrxpGSvVYqf/7KGfIPveeja23Sv/wr/ovn + bKXRGg5jBnFgaaR8mpVDr68vA79nWmJMND8fNWP4Qv1QGES7klJdqgfTosMr3p/5vy2AknH1kc1W + OlHm0qo5K2EWkV0eAU6aMR34xZQUuMcLOY+PIKJbZIxA4kaCL8/jgS5t/2zhJfzk+LFmCqX4YHBQ + QNw6l/gx5uulWCw42NGCfa8DateUa4hGvvJJ0p51h+svEyN6TF6Qv/1JAlxtyBPoCeuSrde8g94N + vB2YeEZumwxrpFMX4sHwiJeGff4Prwf5zRFN0zZnspfaR079EPHZXZ2Bc/3GQjUOm/nA5WbE4Uda + IEcqMA4qTXFYxVTFv3yAffYqOdsLPhjg2YxG/O2QATZFfQX39SDWJygAM3t8C95Bl2D1eJYAUz1g + C+Nv1eFY0zZ1M+EEofn68lhpWW9gyhsbovq6n0H/nDR16b08PfnXU4if+m1Vt7B6B4i4jEdw/xLr + 1QvWFP3lw7/427J8KOExdDwffT4CGLkPa0P0+Z7x9b28KSuonIYCsRaw2sttNA3vXwwrmp2Iiwsw + jAIqY7j23ozTTboBVv9lCuzoTyIP5vzJSSNZGkqDxMFe0mGHY0Zkw9VpKhI/gUuZb5lC+Jf/ogcj + O+wveIXQ8kdMHtw1Atyaym8kRI1Myu0g0rlTdiGkrR1xjwKIpu7UhMgR5S9WVXXKF7+pSri/H2fa + Ux544eNy8G2KOQ7qhAdLy4oW+vv+KDhhuk76oMGj86n8E2gClaLM6KF20yFWm3TKly8RN2jzsuhz + e/xuQ5Yt8B0yH/Kw6AjatyRkaIzOC3kSbc7HKfi4SH2dFHIt5Kpe2pRl0J7P5nWRl2haDTMB4D4/ + sHNLrGj52ecGVY0REl8ojmDUr08G3MO+9Bn3coroVnY+DI8sj13eqoa1/xQiFLjPSCS5bOre1Y8+ + FN5CS7SKO6j09TwJ8Lr++PnVPRqnX1h9gYp3f878R4iiKYgdF8pyf8LyIi/5vHZDDD8pkrFVVIrD + rwIvwK/bG3s+QTmRgnVXA73nC9ss08l75y5YPqOHHw8PRJRgKEB4fWgEf77nPb7h9sfPdiyanKXT + viVqHm5GnOgEwPpthBb+5cczubV03D6pgOrMnUm03XXAvxS2gbwttfORHo/59pRPkniEd4RxYTVg + tZfahU8oEeydE6km4e8MobB5GJuBZ+YLs94a6E7jgKMm9XK64xkoPG7BpvoYHYrPXSZazbf20TIK + gB79xoe6vcpEhdjKmWtbvuHrfPj88T26Ig+HsGoLQrTj71JPKXazk+ApMdH562+YS/sjihl4P4ht + DIFKd/4B/EPrkUs4BhHLhoYBI6/vdn7/dDb0lEuRMfRsPqjBx1ktj7zFmFxq4qgxr27GtM6oMdoZ + 269CpfPxI3Fw55vEKqq3Ss/ZVwTJLHPk2mdJvh0ttwLGdmyJ9/DyaJtW+ndC0JgZoCGwgEdTwUYJ + LjO7v3/9clkh+peKJfr3M9YUHo8M5DfNmclVbug8VZkNOaV/+kd1ZsGMnucShHaLiBk9kTPqOH1D + q3INnASh7bDR7arAiy8k+JZ+NLC9aXVAnB/KRHcYAYxH4Bnw6PwqLGFejDafJzZkX3ZHtPM7Aevl + SBcompnt/7jWzzcxuFriwJHFXx90ibb0OmoAlIZIvF0PLUr946B2PzTEsfObShNqjWD8JEfsZjUY + 1sOV8eHvPZTzg89z5+//ggASk7jzojo899QLoKTXjvjHk6uymYDTvV0+Mx+iMFHn8vd2IS3eyrwW + 01mdyMMN4N2c4z+8ppvDXGNwiPGNqKV7yNc9P4JP3DTYT4hSj98yOMBn9j5h5TFPNfU2y4bK186x + Lgcu3fyvF8P8Sn1iNVMXbWxjhXBSipSkf/tNFwAHJ4Nj8d/6LbeTkMHqblsE/zbBWXBw1+Da49mv + Z3jPt0t3s4Ao+L95A+vNmZuiUUBAD56/xxdYNc8JoVz8FB9JB1Xdug/y4RZeLiR+yEw+R+JJEfKH + EhG99LC68Z6TQP1QGvOh9yV1eK3RCKF/uuHwmgT/vd+C7Yw+G5M+mj0xHhEQbgPB9Kc4E+0cRWTT + fMIyiku6DZYAQRAWN1I2H139Ww80GQyLtYorHWo9ivIvXxHXtT90j3cFWE1T+9wFfNTRAGcN3F9H + fV6F+wQW4CojdN/6mdjmyufT3/W0DFqJm8wrncn54YKU80v/adbHYZY5O4aPuH7NW8tO9Vr9ziLQ + x4DH2s5/t/4hJdB0xprkrhZGWzK+JPGwDDdirL8zJUVSjTD1beCLr6IG601KbVBG9jJT8ys7zMaJ + I5we2etPD9I1E8wMWsDC2OroUq/YKUNoOfzPX/W7DCbFdESYws0mGpxOzvSS0xHu64/tBbyiRiF2 + DLOjKGL18PWc9dEdU5jwhYPPm+Hk6814luL+OjHS5yUaV8e2//I50e35P6RdyZqqPLe+IAbSSZIh + 0omARAERZ4CIgoo0SSBXfx5qf8N/duZVVklYb7eSlXPDgurpINjygXo/cVcsCnMgXPUIvR6rFlAt + hSKcVaPG+3YZTaILmxBxG6bUWhLTlG1j54LrmUC8W4DL2X0MetDgU4tPqflbZ7SdBLTN7FcoREEI + pAXlGVz5DudKv575X/k6o/0cNrQ3Cyl4uwxuDPmDzcP3NjChFlJgxCggoiH0A7+y2EPTzbDCP3xi + 4pCdwJgaGT5cDgdTerZJCmWN7LAVE3sYw7Yu4WxdCho5uRMvieqX8JrfZWydtSQmb1lj2tVZE7Q8 + exdzGJoiguV4oDiJNc5e0l2G4Mk3VH96v5h0Xc/AOfoWVKfNxl+kvQnh8L0dcERbzJdnLxrwPvca + 4aY5xRMJTzr6zNIOB1T24ml0Tz1CiRNT92ZeBkb2LEEfVDXUY2AX8+FyFeDb4Qs+Brbpi1qyaSGW + jStZrt4zXuoXduCH/mZsrnw5tj+e/61PKP7gu+HzRYyQDb5VuGzfXbOIRZFqdDFdIr5vZz6vegwc + I/AJ4VOa+VJyq4MsroV/+D7fpZuKVO8wYgcHRsNODzuFm1sW0fstOw+8gDcVCIparv4v4UqZdiNc + 8wLsNOY9ng/W0kN9SSJadTkBi8FLBmsHbsmaB/CfYOU5+Mub9mUeNmsec4IHWZOpa0hSM3W9qgNj + qzyI1nRR3O3MG/vjb2qfNH1Y86ESKFQF+DBoMP5CUhlaeAERWV7nXSwdeMbg75ZgXNXGuZCVavJg + eW4kutfuqjmWeuloxmy98f6Pf35vKYClFjG86vX/9Jzwpke85jPNLFxgAF8vP8A7qfeLpUrdDCp3 + OuJwVuOBe+f1RI4zL/igt+0/PwbW50/4tVv8QX/FJ2Tn+476pTjFjKbjB/y6Tqbnx6biy1RHLvrD + xw04S80C0+SFQHTPwr71nVi5VtsEalbzotg6H0C/v70S2HKHYG9nXHzOC94j29D3+JCYO6DIafbR + fmFu4zz+7OJO6vpRO6rzFpvPX89n+xvpaJ6slO5cty3m+fyT4aoHsK4zbeCKsQvQ9Z5W9ChMczx1 + Rz6uJzIsjO/zZiCROUF4BkmKr4lxNpmcFAkIouVF3QIRc/nTl4CjkF4209tnbXZrtUrsPvi2OEPB + b7cqhCqpPWxdrjXn12qbwrh5IWo1TG7m3HwKyGEsx6FaPjjL5++IHqlb4ojfbgP/858Jci7Y2RE0 + 8PCuLnCbCx75uPe6+MtrwL+fn4++SV3ttKDHSFxs1ZXO53t2b6H+zVzqH9VmoIMpuECydids7S60 + YU5lMVix6EBtIxVN+jSkD8xbYcZ2pH85a55hCb3vFBMu5kLx7/PteriEf/kO8RRDRfvDM8Fn0viF + pNNXj+52oFErvXd+T5sGIlRKR4x/BY/Z7nNfT8Jjgu1HnMay83oEsDY+JQ4Ia0y+HYIAPuKzSF0B + /Mzxrx72mQTo4/35NUu0WA48lL1NROtrc+kunTXkJ36MjebqNpO/PbmobCaLfKHDYx5oyADudL1T + /XU6NbzJ0wUYRXDGx62VxtS5XhwkLk2Oj+jrmeO5vDLwtD8uNV908Zm7xyJc804CDhfKOT48M9RU + Xz9EZNALlq9zt1f8xPilfE0i7X0BzPl2v+LnoZC6x72Gq/8kEvvYBbs3DwJWv4ltgjy/G1v4gdzc + k9V/TwMTw0KA99VXrd/f52+Ul/AcainZ2g+pWP1lCoQ0/9Ddmj+Pq38A55b1NFv9x8ge5xqeUlnE + dtaK5ixRL4d/78+xaeuYm4kZQbmrF2yhwvS7DThasMupjsPw+vaZ5QwtOF+q9U3KLrG0DGoL9JNc + Un26npp/+U/jqXvsPJHss3hTlPAxji7Fe9+IWU3TEiob/CJACgvAHLCz0FYKAGG19TKVMWgs+DzV + EX0kcQ5G2ZhfW/AzLewcm++wBPVRgGY/QBqM8AzG2wuUAAvzGccqivz1XpoMpBd4oZ7hlsVM5vXM + PKYcH+C+9RdMtBO82L4Sfmy/N/ts6XLw558j13wORP1GDryVzowdqYyH0f/eITxvRv7nNwvSbusU + Yi0XCSu/UjO7x28NMS17Us6P99BJ/ieDtSNs/+XJS+4dOs3YzSi8LtwauDrNCwydz/CXV8UMRZ6l + KQlcsCWZ9sClJ9CBMryqcOPrgclZ9hPh+E42RFKFFydeCT3AZcZD5PKAK5dsCwH6wQ8NgyYG8p1d + Hbj6S1o6o875+Wm00IDjniZhV5kLzTe65p0PXxrEGxwrL79/QVEcf/S45le8bUwChwlKGOePQ7Pm + by1Y8wbsSncrFuNNXIH1edDdWs/iK8rDPz6mLruWnA3lvgc7x0xDvjnUgF72Jw+teWaobPQBLKPj + Z3D189gA8788U4RLW9Z0J/VDTB9DmQBJGS84ReLsj+4eyyBVKj8cTSwWc3NcZ6Yw4UkNod42fDN0 + L2Rd9/BfXkr6u5tA7XEf1rz0ahLbOLgQ7JsQO7USgknS2xPs7wojyNsUMbs3VwI1Lnr0fj8WxfzZ + 4ASaonOmf/2aIT/9UnhKhjd5a5bnM6OhInhdTE7xuVVjukFeCq+pfftXP8sYshTEJTph2/HvfDmN + wQiLRfvScESvgVWIlLC+ue4ffjfsx4MPbDxtT/d8O/C5oHkN0t/vRjaCnpn0cLAd2F42F2zuhapY + nNc1QDSQjzScLg/OtuKv/Me3q5/ziZWealgYlkfx6v/ZsPUF7WpkF+qP1dNnu4R/YLXdmVinzcPk + L03vEdvezthY9drK7yEsjWP4T1+zSty28G3cLmT++BOY6T2IYHQOehy5hcAnI5sIPIW2Sp12zJrZ + xEyGa56P4+evB+xcPhYIpuJJfSkEnM9WVMFReYU4wGUxzEPZGeBQ+Rrd3QRnmMBOb9HxwkJ819Rv + wz/X5+nv/acuZh/OJM2q0V63d9iHdeT/+W/wl3/kre8Uq16owft+qahjvgiYbe9C4O0AXkSpkVGw + BL7VLb7HBZFVX/Z/qdK4YGOIHyIF1wDw7e2Vg0deb+n+kez/+kUaiKUx+KfnmDg/PmAoq82f3jWX + 517NNQn3y5pvzAOhzQDhEsVnbK76ff7eKk97a6USoj98XfkLgEuqExSe54GbxrOEZEivGO+bx8A1 + O9bR180mgu7gHc/DZuiB3jY13pns08y7iCRgyJxX2PXbK1j7DxGEJTmsfunUjMihH2iDdxWiO7AL + 6fAVIpg5W5l8pkU3pb/86K9+r9CJ43myGwfsOXPIJs5+w1jqifWv37TfRxKfjFFy4Ds0FLo3rhZf + 83sRbt9q8sfPxZi9fzqUb6GP9eBtNRL1+wpq0nUTbpTSB8vf81j9Z/jxtTH+wz90gyAkY/Mz/Z/v + LQa8qfWMg5r2zWJ9teQ//A0k1PDL/uQiowjPK98dTCbCxUJHZmyOKtorgJOd3v2tN8ZvUwKLf76N + 8GrkF2qs/oZU20CHYLo9cbnmnXw7WAGKe2bQs8yWZvzzi9vGHImw5vn/+mtTI4T4L69YhxJ+YC9/ + RqzL0iVmQOtEEK3b0Yz56PuMMZ5CLUoTwkNvipWOGtVffkT1mxqbkn4pVHg/bkQCXOw281OSXbiL + RReXl65v+gjrFRyYZ9OjeHjHnaKvO67XPPpPj/Pu3vVQdAUjlC3bAMxEwgdaG1mhppLInAieZv3L + N49sVPkTYlEEa76GzV9cFeQv71bl70iPP8OOpV9ad/DoyRbWd5U1iKqrqkCbontYlOJUzNR/VfC0 + r4+h9Euwyb7TMQCVKR9CiX3e8SiMJxn1cjvS9U5Fk1C9TuD3pzVrP4MUE5A+Oqx09AylwV13fjCe + o5XP1v6zHnPzPTnw2p26tX9vDtL+dLeg9HR/NLQ33+H1hYsL/vJYx73rBY2qu/7/2VEA/veOAjem + PuG11fkkuH1EdBSaLd7x5l4skDQC8H7SgB056WJ2iw4elA7fiHzlZ2ou9u/8Qg4UFZo/hzIebO1L + YDoOKnWPO9Gc0WvbwTd/SCH6zj8+1xfTRflmK4bqbnMA8/zyVI2/XQvbgyf43dn/nUBu8gAft8ne + lBtfdGF9u76xtdlCnwfULiF7iiJ1qIB8XnxvLrzYeyfktbzzZVpwBz3m6REu9svyubEvTgBu/YYe + drnQjP6w+cBhT9qQHTLBZ5/CHuFUCz+MLbHmrP9WBLpJ0Ye3YbMrFrepc1RMs4l3W6ID0RwjBx1S + C+Ji/zsCfgQNgdNdsUIWzl2hNG0wgkaMIMaH+TmwbalW0OpmMVzIto0X5XSSkav1C3VKTzPnGDxk + eBmnAOPYOnMOhtCBvApKmpU9bebykmXIvpxsesHTpljW60VhMXGTsN9X4owSU0bax/3ivX9KzNc+ + yUIYJdsc46RrfZHt3RwFwvdId9T4+N0yBD2kzdkJ++GNONfi2kG0+utYh7eC9d90hMWY2yHf2Hdf + 8U5vB3FV2OM9iKnPK3eooRl3e5ylh3IYFeXeg7H0F+ofsz3gqtbU6Gw8f/TmcJfPDn0myOnSC8XV + 6z1I4WdroHxJtZDT8xawqMEnuJXVnKYXrePzs40TqDXTC+NGkvhsLPUL0qfq4ty9PX1Zc64R9HTP + JWJ9ljhh3S2FIdp/ySwMu0E65/YLkbt9ptgy9kB2r4YHt++DSL3j89AwbdQ7+LFVjaa5cmjE6vpg + sH/eS1puo6e/qF9BBL/7OK5TVN1CriuzRsb5lNKrXwDAzuejC7XGNIlS7tSY5XkqoOW1xNimn30j + IwRdaL53NjUqcVPQMOlO0IGygr3uevVp1p9S+N5fApz2cjJIxsc4QU8Xv7RwlARIMok1uAsDm57e + 508x126rob/PC4+aWShNVYvwmAJOfWV0+dhMF2ud2tiHpRvZsXgM10SreTk02A8xn1scGagl6Z4e + 5m1jztt1h891OH6w1fvXYr63XYukh5zjh/FDMVOPXYSkQL/SUtnfG6WpOhER0diGTX4JTQLKp4hk + /9RS++wc+BwbUYTWeqVB4riNvBtPBML3taYGl21fBPP4gqI0Y3x14jjmRV2xv/cPhy56DWI8rgps + aHqKm8e6B+tOQjC9Ll98vvUnTiRxnRGR5Sl+tEvKOegSDynvqCRqKV1j9gyMBf09r0DAO6C00zoV + sWoaHCwfpxBbOEXwYalXeo/94yAHqagBeStH1Ep3bTO+L08ZTsVtg33j+Y7ZZr6eoFqhDa6ESmqm + 3zNU4eg5F+oOqeeLB+8dwWg3y9Ts2WtYmktXwse806mhv81C9vctQb4ZZkRBxs9nzvXEtEVUGNku + eGlYtg0+UGoTRF158x6WxZkZkr3WpnuoPIulsvcG3HyFM9k0fegvsxZXKBTkYzg3bVSs9RLBY3pM + yFIbL1+5Fq4Hos3PwsHPEOPllH57tOIHjkThCOYXH14wQeUGJ49EBCxsyhcUVZVjvWLrjhTbkCF7 + ehccbp8imD+sTVDwywJ68XJqcpXYEbI6+0LDq2gBKZY43L6dfsLm5vkZlj5gHixSpcSH4GXwedjQ + E/w53KbG49TxZVMmLTjttIqIUtXE868YdEgl4mOv+CyAfScsw4aY/A9/AXueSQ+/+09AL3P9i2VP + 6l+Qt3sUdvezzsVhNg2or+fR9s/caGT9rr/QyPmWGtLhMkwg+DpwF9/2uIqzouAqulfQOh8IdaBp + xLOxdDV6k4iTjbvpmsGPHwZseXMgYh4EsUz0oAPxbzzhKzydfFE8TA68mMTF7jBuB9I9txXUHtsK + x1T1zVmMphJKh3eEqz198OmQdwZCQbwnci+Lw1xmRgrZoyA4bN8/czTuOw0JyoCoTm4hUBwrceDX + jQbqve6XYtmkjIDMkCZ8vCKnUT7YzMGpBy9qavTYzOueYdjVDaIugJ+Cz0c9QG8bhjS+ZFMxueFu + QU4YH/DReJ8Lmd52LprczsT7sRz5rO9/KtoGSoit/qsD8XC8hrBxbhPGk/YoyCZVCTSiIQnRfawH + xRZUF2b25kzQWj8KOtUatJI4wgf1kBTSxrJ08LaFED9+t86cs3A4Qfi1HOx8LDDMxseL4CEeFMIO + WWXOl0ofQU20ED+sI216eed28G5CNexVfWn45BQWfN/bZOWTL6fEFwQ43yOETU2TiknZnypUXJ8A + 37OqMiWnMS2UzGcTu8XL4d09OOlI/uiY5qq+DJOMRgtU0+mE45XPpGHzjdDvTkZ6n+S44Ed1y5AY + LB416uMBiIV8zCGtHIueN0HGJx9oCVCD0KS2Xh8H5fu063WK4H/8In2R8UHx5s3oFcTU5D+nTlE2 + BjeynG6fZiZb2YPs6V5oMenrmZubVEFR4hibPfBWB+YvgD/eOS6jV1r8FvGoo0fOFXqQcy1mu9PQ + wSBWmpA/9l9z/LSLgb7PmOGdOOu+EnkfAv/wzt0dGZjLMxa0GL1imu2yrPmrf1ROE6U+mpeCd9PA + oOA/E3otu0Mj/rA6oir3RvJ4qZK5zOzrarO4tXAotqLJVj5B39Ih2J3s1l+uyTzCmqghDm/R3eSv + K6lgxkaI3Z348pfdu0pA3wQGvSNJiKeIewZklcFosJdBw4XHbCEPfM7Yyl+A831t1HDVBwTuYG7+ + 1S+olzHCj+1xKJbb+BjB7ugL2Ei0OyChigNt/1FNmt8vI/hpJOy2lZP8Qrby5XIel3BrnKMUH9e/ + z9bvByVVeYRsqxiNHPt5D9WTvqdnKwLDW8TghR68tKmviudhxZfVcSIPO8DZxZQPXYsEzTZo3u2+ + A3/hrIMHfEjo/rQhPj2rYw1HORCwI/dXwPZjIAI9qDmh1TTFPyw8dHjOnIhwU2ImSYHk/ulhfLym + l2K58ciB6/uKE23mDc2Wjwdrdj4SabYeYG70gwznNniH8pg7QD73egSNTispFrzAVED1leFx89HJ + xizSgreyI8J34eNVP134csqZAxR5yKnvKCLgoKIifFjalSb2SW+kwPc+kPuOSi276Ap2gjcdBvqu + JuvOZ9CTgyqA774NCFhaPRb/+NYEcMRhB7Jm1dcR2ASvPXXP3bugVvf+ABdv9/TSb+RiOpdKBSTV + 16l5Ob4HUuD1FoPHNyfxqv+4PozsDx8JTviwOtazgeBR16jdi2RgeGlHRNyWhgpUnjF1l6CH2OjP + GPPf1p/nFopAut8udF8LW59ldq/Bmm1GHAqu40tZ2JwAKfMF68LG99kz+xl/fEIP50fTjNro9lCW + CcHu1zdiMQPyC87P/Y7u3nEQk/uHfMDmC89hr4S3mBnp/gXW542tSx7Hg5ZGOngWukJXvRGzi9s7 + YKBJTw1t+jb0ABiEr72ywY7+igfJWYoInnufhovt5MOye6ephhMT07C564X0NUgNSksPsP20Ey5F + 7GRBF4N9KD1SDUzVKGSQKvYBB9GVNKRIxhKehJ1D7Y9xGUZ2WBLogxeiONr2/iJ2gaVFg7LDx2nw + h2VWfi9o/xwXe99cNpfKxjqAyvLG62jChoeuoaO2fD/DfkqunAXSoMEv11OafizQTO/BrWDwHT4h + fCEP8G9VtNuEtS0OttHOF6nWW1D2PjYN7uHs862+L+FLTE/U8B4tWM5LZYGxahXsf89J0eF1R9S6 + XiH6q9ev6IXQ1u5OeJXHO1ikmeXg/Huc6NHtc07QfNfga8o6+sfHFOeBC1CzDfG5Tv1BudvbD2Si + kIXftNH9uQxTHelxWfz7/fFoie6fX8M7KVLi+dftIni6GAZNtKI1p/v9EyL9CxG2T+Dl80c+9XCP + 13mIgLfD3GWzAy7m6GJdyG58uhW7Gp5Q+sXGo2DD/CsaAy6VgHFomjVYtsIhg87nTenRDIxmutVT + DnxQI7LZNhoYufLSYBBLDXVy5ddw78hdaCbpB+9Pm9CXD4v6gZ2U72mQnU/xopI5gJJSPald6H7R + DRyuQzn7N/aP5FosNHIYvI8IYj/DfdGH0uUEF18eiOK4ftP320cFYDvssB6Tg6kM36WH91ncYw9I + XrPyM0GC3yQU39g4TH9+7OWqDr4WeOMzIBgMVpNAw5f9av25kl8jEsJeDUVdvPrTY1v2Wl8viAju + c+tPDv2lcP9W1jOa/juewQF58Dy2Ir1eIAHktbmLcN+ddzTq7zlfPrDqYC9tBOy5rct/UscMYZBP + ET0qADaczWcC2auJsRmLhbl0+caB4jma8OF6s03lIMofMD9Gg7plTwfecdyBl5ic8Kl9TDH7yqIH + P2LV4YPT7Xw5uH3kv7yBvGdrA5Yns3swyHAOl7q5FTMWHsY//+mrleEz+9iWgHqnHb7U2tFcxuH0 + QkE/e9iR1IrP0e8ywt2nHv6+Hyd1cWuh+S09vNNw5k/uHmeg29cqfkiGOUj60WboV8tniiWjaTjr + Hylc64nm04GZU7ypIySr+5HajzQH/IP9DKz8h9PxHQ7c8Ozwjz9CsUenYoCilgHvdwjw0To0DeMi + E5Dm55DIkirw8YfZiHydxyEzKxiPGtE+kFcqwIag0oJrBVIBqQOZVr/ry5xbnBvwOvVDKHpEHZZJ + 60b45USi3is6NstTcQ20+mWy+VGlWYwZttom8UIcTL93M28sy4Du9xli+z1+zEnF5ASXR0/C14qP + pMBui06/V4tDoboMVEWXCpZZTehdeU8+e/tSDV/5pglRGI58Wf04pHLeYysPxnjxDFcGqx+i0dvz + huWPX0Q1SKiXHdt4+dOzz6UXMM4E3rBHr2Zgcac9PbWPY8FQOQQwv75xKOWS2bBPq+nwkY05XvOi + Ybn6dqbWhePjHfNC/oefYK1nopw2oSlWz8DRNtsrxnq8vwLlqbsVlB/Ol1rUVc1xd5wJigbvhfeg + Svm86juoeo/7+v8H8WI9phBakZbgoHGjhinavoUnMy7xATkXf270nay9CP/gcE83gF3lvAPny++I + j8Z6a9xfPR/AGRFFHu+cS2bYwevNPdDsiTZ8xJ+wggn7tBRXDjQXz9BFdDcFlTBhM5g8vloCxGmZ + UHsXOY30V+/P7Lv88XXDOldO4Llb5lA4VFuwXN24QoeftglBZx6H+Wt8XvBmejt8S7+j/5sfJ/iX + z+Cwudcxpa9DDWvRPlFT+tq+GCZWCl9k/uC7dTAHWbnAERJFhtRTzLlZbqx20Z++/NNfTF/8ADqf + L8X2yn9dtyUWfOT7jLqBFcekbmiuHXE80gBxNV5WftDySbzikyA2xRx9BgZu7Nfho3h1Yt6xO4Gm + /mqoqbU2X/z9SGB5FTHd7555seip46KC3F//3sfxj//k0/0Tznl5AIwZigB9M8iwkyuHQVrmwgHJ + HJv4qE4S/9623Qvu9R5ghzE5XtqWdZAd6pDu5/ZSMEXDLTgnAiHorrjFFIOrrPXONFP8C+tVgf1q + sAvuD7zbBCpno16c4LHrb9Q8FUHDnb1jwDfZRCETK7Xobm4pQj95p/hBUhdIsR2E8HS1HzTY7jbF + KL/j+l8+s/oVLn03sAZRpgvYtOmZK7VcWn96GFf83DTz+1m6f/kf3T1CA5BHyBN4M2yNnla8WHKj + T8Ff3uIE+jeeNqdXhLq8L3Gwv1jxmjfpCLwz8Y+fGx6Mcf3PzyVr3rKseA+O+Dxip/gZw+y8JQPN + 7lJgP5UfnPt3PwW3a99Q87GtfXqWlhYZoXIiMryducTNywmu/Im9jtfDvD4/KLw/dSi9lYmPeyIw + YHX7C7ZWPhK/ohHAZKNa9DA0Vz6t/AYzq42JXH6aZhz1VY8ZzY+a+SX0xetPzKEBdR3jajoWMo8z + Hbpwx0izUVKTb3W8nvEdVGq+hd/A7meuwZ/YJbRy0av5kuwewJe9vPAxNG1ztuuzhyzsnLDjm594 + Pl47GQpndsf+fdfE816Ya3hiZYCLffXx2UPTW5RlWYr3Fxhy2b16LjzvvIF6zwHGv0p+EVjcTk96 + KJ9HoOxr7wU3x/Cz8o8ABtAlLlj1zJo3RQMZ28qFrNIZDcRLHUu9ci6hLI+EXoLkBObWvfaguEVP + 0hdzPoxShk7q1dHff/U49NbjHfzDm/Qh9nFnCUkI0/5ThFO7vzWT9EQ93D5OMa5UCsCyG7MR2noB + yBxyEhP1K8sAnmSBGvFy8dnqX6F2lHch3Nejv9x4boGSuRLerfqNTeWBaGveQI9CSZu5TZAKhbBT + iRQkDFDekgAW2cdY87je/8uLNDUITKxfdrdhfBU5BANXjtiT1bXf4KciqIul/69+vea3QLy5Zzhs + us5kweYUoD9/Jj1P5fBRyTaEf3pmuAeDyeTXr/3Tc9Q9CwlQovPTgQ1dbtRoPmq8rPkkAEcrpJfH + 0sZzl20dsH4+2X4NvRGtWRIgikNK5FX/D0r3y//wLhSMrxJzzz8E//LDnTjXJn+0Nwjs+PkgfM0H + ZPFVh+hZGMo//bT6OQuWVxmHyem+NP/yPPcHY7rbdEYhVo2ga+NdzajNmq75y/fhmh9SHJJXPMtc + WcARrjNHu9ECUhlW+hbhbAg1w7wA1vSDC5LR2tHzTcqaWepUA/lXo6Bhs5N5/cx+OmwXuce6bZCG + TJwkYM0TsEW1sz9/2JiAiF3bUAmMKaZ//SB48h5EsVED2KNnGco3QKQmPd/ALAid8y+fd2rI/WVH + jR4Qf4xpddSamPUPXYWFad5CvhnDmN3xAf75eSIXv1fzI1vB0+4c29Tbl7ovjuh3gsWY2fgR7s/m + 8reejwkUhDWTaM6mFJUwSE8d9r44jNmnOBL4lw89DpfMJ6m93qrpW2t97zq+8ksGrM94XfVxPyw3 + OdDBNnAp2RqBMqz6SAfZqKrUn3RSsGCThfAr3hKKmW1w0ZVmD/USErDFnsbASAV6iHsoh23vK8X8 + MHc6kqMwCAV+boZFfeUCXPMGXHTS5y8Pc+BXLBKq37qeT+f8+AJ+rCo46dOHP08VJpAq+wM1Dipv + lj5QPXAz3R09qtOFU+VJdbA9NhN19AkUi/qVRfig3Q4/jvAQK8gyOpheS4UG14TGbDTtAOGrx+kf + HhNwMj/wjM4xTVe85E+gCBCc25lis5ALNt+MGn7uTx3bej01/M/v6q10o64zvzh/G28Pft3TQI8L + T3zOH0aqrXlUyJjb8cnfujnsqCeEou8ZptJf2At+pMOe6tvTHLPOzMv1zHxPA3R3AV/wOuVfLRgO + Fyn3OXip0R8+hODrBI1y2Zx7cDW/NVnWvGgZrooGz+NHxOt6gn/6bsV7rB8ywWR4cmVoRL8ERw/7 + afI0sRl83PItEaVNPjCnFHu00RMf+9l6LrmoqwU+RLfFHkRxIX77i/bXD8CheAticV1fcLmuzBV2 + TsNPYxiBfVIK2Hvt37z5BOcSnVgVUH3Nq3jNew98uZFSb6/LDb8YfgfF5yYgQnyMm2n1/+hm4woH + 07E0FVzKDvx7n4IVPwkOb+J/+sBue3NJvjsHRZvBIuK7r/1p+kIDHmBqYSu/iuZyXlIL3q7dekvz + UMcz6u413DbWlZaTOMXEECIRRb8bxM5F6wDnDy+B0a+A4cYSdSBDMkCITnP/14+Kp82RJShKOx3f + 1v7GEvt5B+0wvVPzzZ98if2oQ+LrN4SarB7A8pt3HeStjag9Wxu+fBzfgILGn3/90uZff2APsjc1 + vWcPSG68Eii+hoHw1e9JbcEiFHX0TtDKP4oTuhn0f7ZKtk63M2epY/o//ezvtMQfCx6XW/2II2ok + GuJDH6wzbNe85x/eZNehh/vL4U5kPwz9metNCkm9vaz46Q6rfh9hxf05lCi8+gs++wwmaZOFq58C + kzT8ICwnSqmx6buYHcOuBBYAWcjivQJYdb0uYH/x7+GsYdXn/kOKoPTeleutTxHnq1+DRnzh4fZr + 1M3vnz4ZgxvNkQvM59qfg/JWjHC5l4tmZpG25pkHHR9f2aYhpjd7aO0vUr1N7IH3WV/BHTCP4aZy + oD+TreCCTStOdJeXB/7XX4DbwKPUCKWk+Kev/x87CuD/3lEQf08CNrJwajh15Bfcn0qNYhv8Yv6p + gQO/yqjTKLjTht0fnx7KjfjA+zqUOWvZoUK0KTlNumI/yB39Ehi+SkbzxVFj7u+eCeyu5wYf28OL + c1jOH+i61g47Yrpdx783DH1+nxPZzNwplBiyXBN+bMCHqnPMJVrvDcRL2OP98hr8xb7VC+qCT0V3 + AzwCHmwrEX4/72eYao/jIHnOrMFPe76Er+COB4Z3QQQGnH5o8Hi+zOnQthpyb8THh4ubAj7DdwKe + aRZQ6+BOzQJ834EwdYqQf7nDebU7pXCkVk0PuA6asbBHD17yOAjf+HgdJm3hGgzUpiTK8vJ9cVk2 + NbyNc4gfveEWsp7/PLj1uBkCO5w5u6UXDbYRxtRJfijmHztcwNsNA2q+Njsu2sPyQan5qui6j2aY + L/6NIf2qx7Q0tttirr+BAamf6jiwjSlmuGQfpNSJTS8vyofx0j5qtTgX31D8fl+FbJwyAz29tqO3 + njsNT8S3AIt2AKEAJdjwiSctIofng+5mT2rGvBRqiNi6ZzhSL4WyvCMBla0Y4WS5Jz5N13t2Yuz6 + 2HGrEnB/vLdgtkSF+kNlDWQs7Ar+8jGkEWvDQTqxiUHbllqaVCDz5Z/Wrx3oWMF65bwBl8EI4aXY + plTnj4nPfWbocEzAnqiUM5Mz2SKojEMXm0XnFJJ79nVQLvOAbdQNJjv6lwxeWORR+z0G6z3ZjYHK + vFep1Y+yv9weLINemDb0EnlsoLCcW8QqaUvLAufxz1HcEqrs3dOi2MGCL+8Igs007bAdb3dAnHev + Dr3vVk9jOm6GGZ1POeyucUP9UC7A6JKeoPV9x87WE/ishfUJoaIH1H5HvTlN9qdEWuMcKRayX8HK + W2jA680S8EM+dkDc28iDSaXaNPlE8SBKk56iITcHGvibj88sOKbwraohmY3vPh6aa59o9G0hen5q + 6xmSYY5gYTsZaWDjNX/rBTMjPdFwyzowB9+LgfZ9F9MT4q+Y/u5GC+8LNKhTi3e+PNWlRkZ6YTij + /GQqd/lCUBjakO4l+9mIQn3U4fIJAPbSoRlo35siIrP7pceG6qayFe4OXDCJqD7CayPl6GShv8+3 + v6jw5Vg1PZQunzR8C8ZxkCJjp6NrE2U42PtPX/TcKYJJXZ+wt+IF25W7AFLUBzivp1Ox4NixYPA+ + u/i2/akFL21XRisekNMZvOMlOEgpCmF/CNGhPwLFrssRRv2cYfN5Og1ihGKC3l9Ow7Y8fX0RMnmB + 9WLe6GFX6eY8B+yFmkOe4/1EPia/Zz0By/03YLM9/ppJ8ZmL7s19onrl2ECqFLRo/GldscNfSSPX + y03VcDHusP+jvGDdRpPhch8GelTtXSGjqoWwh19EtDdQOGfn2UHzuPnRo/oVhiW96yc0D9dHKJSf + F+dKm3/gT/19iZz87sWMpNZAaQ0DfIMBATxS0wrS40MKN+fxW4jtr5bRt9DKUNnJB1M+G0mKLkux + CbV1UjY/yB8Co80g4zgzfv7Chy6CHutZqIb4O3Arjiu0/n/hMxOTQZLKp4riKK+p7/o9GOHmKSM7 + +xyJfF/PvKa7AkJHn3TsKz/bX6zwE2rgnd1w7s5nMJ9vcQarwhGpBwLbH0/7VgPjj78JN6N3QYaf + WsP4oJzwMf/F8XTQbxH644cDPf58tjXzHE4KuFBve4+5eJUWAk/CiOktVTqTg+zRr4mCT40h/XBO + f2aFJKMs6CWJ22GKPkkHRk21sKctxrCwXhZh5wkJPf6uXix+xwxC9/trccDfoJjtLfagUqc2DXJJ + 4eM1dzKNUZjhs17FgwKmYcV/p6Y7Yu/4sp3dWkuDd4ajh/+JF6m5iEh86xO+HWcQL5dJMyB8HC5/ + eABGK8sITH5fD9uq+DGnPZEN5ENTpofPHhZM9EAO/+op8W+lv/hPPMIBJx981aZh6A97O4S7t2fS + g3B5Dfyk1xB9HOWL8Ttsirm9eRmc7PeBZhreFMv0cQ147h4B1s/ALpSSIgven0pDpOaQmotbZio6 + xx+Cwwv+FqzqnyFU8faLA+2VxLR4ARmkD2WkwVjvwT8+Y4dNQY3f9zIopf+sUKk6n1BBJ8OX1vqA + 51kvcaQ8vzFDRLXQyo/YtOrJ57bxJEi5vwtqF0vekJcNZKB4lz2+PlHns3E4tcjRHpAMqhJwyc/X + cwXXxqK+pMWcO9NFgGOy3WM83xrAKNFHpNphg6/n+sHFNrm7UA/ELc5icxy4JexHxEgS0nQ+O/6y + 1NMIm7InWJ+7J5A/iubBqOcZLdLvDSx1+m7R33pH19wtlLZtWniA443mr/LZyP07/Wj498up649n + X/HHSwt3b9f8x8fcnJ0KrfhEI0F9cRYIiYN+Bd4Soe9wvEDOeqQO1Ce/yDR9aWd76w5J9YMjR7IL + WXm8E+0JVRGfwMnn9CB/RrS/bnuyrUKzUZgcjPBefUMiDo7aLMs3TCG8jm+MA9UopFQOdeCS9ofN + T6X6bAkbFUH4NWn6q11z2X37HOl+QOn5lTRghvHVQgXCHj0y8uZMkLIRjvU40EdBYj41wc6DZ81O + MRayQ8Grw6aDPJiacAOkiE+1wXLgfHFHhPYBGhpDNUfHmZGwxedn8cfnwN3GhOJta8VL2CgyJIfm + Qc3MOJhK9R4gPAAL4xMCd5P0+6ZFs/TaUqcIeMOkSU+QuP9s8KExumHppp/+Vz/U2Z8u/mxmrQ5N + hYpkUZ77YskSSYTc7H/YX/XVctjbgXY7VXrIWeaZ8joTVnud55gaynMfK767gxC95QvdB5FajOOQ + fdCfvqsueF/ILeg7CK3qTEo9dOPF6qMaFWYV0rD8GEA+vLY1vDvmhhBrefj87/NuVl9i/N0mxXzX + 9ROsP0eJ/OHzmHCjha1TDNTY6PdmUh+5DplRDzjZoCbu3M5wUBL4JdZ/ignEx7yT0eeRy9j2uOSP + GnF6qMwQU7t3qL9k7OXBbZzG1I/dpmFYaz6QP6oA78PdYWCBwivA7YjTg3kJ/Dm8m6qmJPWTfA58 + GOYsPGja1RZ7mtq3g6mseAp2idmG0nsch3EwBkP7Vy9y6YDlHqMKnB79lTqvBpuiMlQveCT1LQT1 + 0+esrjMHLJOrE2iXlM/pecnhZXrW9IK/mj9rYXcC7W3YkM24ecZLNPc1rJIDDaUiU/3psFVbODMs + hBKMy4J9vhsDrPURysle9yf9AlTYjllHQ/H1LGhp6zJIL26H7ReNh3GD4wgealXG/iLpvrw/pylU + ktcTO2/nPRDWyzL848/4GppArk8BBLv3j1Cj2fjxEryfPdoytsOlerY5e2XHDlSymtFLMn39nz7X + wZ8+JA8h+8WvYyp/wJ9/2G2qH19uT8WCdDQMiqtzH49+v4T/rVet7hsuRUoOLeA9cIAeUzHvbM/T + /vSgEQY1WKCkJJA/netfPQIueScH2k0ckUW9BI3ckGeGcrdd8MF3PHMZklEEkrh88e4gGHzRClEG + EvfuNFj17MR9h0CZNM0f3g6znxcManb3wIHsnvlMIjoCnCwQe+6VFsuO+Dokl4tJ1On1bBYbwWy9 + VaNa9XzbMOh4L6hdox8NvJPIGS/eHrS+qr/es20PSthNDpwy5R6q02s3SK89DYBDvCnUbmkCVv+m + QXPI3nTFX84+X8WA553QUvOQRD47gEGA2Zy5hJGhA//4sJBYTqv2AYZV/+hwYPqPVlRO+SxmWIBu + kVwI58K3WLozHGEG7QCXK58zyIQF3pzTJ4TcV/lgw52OhvZo0+h3jP2ZRN8R2re9Ggr+ZT0TAbAG + La+808u3UZsREdVBs7DuuPCcumHjdI3g4REN1Fz19Rzzuwb2lUyxmw0p4JGwcbTVT4S3GwSACUak + a5YrxkTEQwNWv8o0q7vJdHdo65gam/kFL+cgohbN9GLZ5LAC0jXdhqyeryZ9q3YJpwd7YXe4TcOi + vS4V/B7WGVZHP4kX4QjCPz4j849r5p8+1i4FSEPg+h5g++evgr/iuMUmN4HP+hvKwMNf5FBK4raZ + x8WqoXQhlGj9RYuZMlS1dpXrkeqbnhT8GjxlaN3JHI6P58unaZ/IcJcLv7UjPDbkFSQlwrtXRwqv + vBWzyGGkbtp+j6299gacyQGBurgZ6fp+xSOxYw9K3cakNngo5vA91AT10uFIz+pz9sd//q0AKd1p + vcUX30wIeMmug8/k0RYs9u4GWvGU4hhduJhc0xMMhVOMj4lz94mRsg5Il5HiE85CzlTKKlS/R486 + 433nK6eqgFB+lz9cDcaZn9F1a0BNJFeq3/JiYFw5VyDfeUb4JN+Nz11h9kB68bp/+lVOapVBQd5r + dN9pT5+Xv6SEYrjeWhekhqnswOMD0950wk/ArIEN0EjALychPRbCy5wfQpqD5Pf28L6kdcNKUUsh + akMfm9WU+7N7NnXUNft9CPgVxfP29BEQKIJNqDB+43y45Q6cGl0h2+u5H+a9tWNQD+QtdqVCK+g2 + P1SgQEcPG5QdCs5VUUQufs3/9Ca9pJoAt894pMbf+3+cUAc3epxQf5Fqk9vwoIPdLX1g78aUgt0f + pAfesJzDxTgA/+0LNAePh+lhu8hUc475RQVW6Xzx+vyaJfdagr5sAeRpHC2+/OHv6mex/w0gZ98x + E6CTazfs4F1sLgawTuvMuhv1RXM9g/12VPRiih+qTvVr2PyWo3/+9OLxi7kct34N//KpxHRqzijb + ZzD04R6fEx03HLGigsa3xKte2w2iP+ciFHUX0+tmT/xRMCIDhsOzx4/ytf2XJ6H76XijOt+ymA+K + bcEkTWQyXKE7sA0nKlRjf72X96yCpZKNDK7rg+0vAj5B72ML2lDQwm17YvGy1O8Rivt2Q2DWHgpZ + Abce7pH2pX94P6WyY8BjEdnUjX6ezy7t4wUevUyw/Y48k7+PtxC6LBDxbvXz3NhmKrwxs8GO2u2G + hU9E0ETdwxh7NCxYdNMd1Ar6gnXzSIp/fLHWMw5W/mX1K2XIjJSU2vrsDrPQaidQqa8XPaz+ZD4p + ToYi9NqFaq6/m394esqvJba2+dGUfudnDvo6okRLYFTQUxVDLZSohfG42RViNX41qMwCxrsBToBG + eVMB/ZIfcPzsucnsw7uDr/13G77lM274d4Lpdod9e92LLRR8uEUOTB/SiH1VCYBctt8A7RzLp0f/ + eeM8pMcRJnxpcUCuMeifqlbDWkmScNvfWpOdfltx2zq3Aevv+zPme/X0giV9plQ3uA+k5TYvkNBX + iXWbtWAesNJq9DrgcJvZmDfHYpDBn/7fH75ff2pvXg7zenr/6UdAyElMEJXpHusIIH8GG+RBOQov + 4UiuHJAmQtb2ZVcWDYxHCv78AVz9J36Y2QK4dYOOZn2iXcivoclnbVvW8Ezz86rHRp+ZtHHgu6jq + UG7Hxpxx09bwd7Ms/OcvJuBcRBhtfvKq71/xX72jXzwfqHEVPbDWtwxP5+hFd5KgNdS1zyL6Hg4c + n1+JCZTGqHpoo2qgeLdvY7LqE6Q11pEg3TC5cmVSBR3KFFxBqWz+5XMjKCj+l2/+urqEn7O5C6Ee + dsWq/0pI5WlPz8bRAiy6/R9pV7KtIA5EP4iFgEiSJbMISBAQcQeIKIrIkAD5+j74etm7Xr/zVJIa + 7r1VVNnWbsVvhGsvFVv0epbR15c6HNzRia165gQ3y6ciO2fY10IumB0cct6j0XPzYGO0455AzCOM + Dwgo7iTFhoMEeLxgvRB9dzG30QLNBOq08K42EBlmEHEOYdSe1QtbDJ94MKGJSmCSn3NWlw4HYyEl + +AAWT6ffvSgD/7o2rcvLs2eufYCwkrgSGxtU5xOs0RPY0qLj/TfW66EIxwyexmVPTfzJ3Im6YAEU + tR69f+4zmA+vQQLuAle8NM9srsahgwEyTLrau7vU5JHBn7/te5fWy2T1Pnj2cMC665b6eJVEZ92S + mhJ51bd++QDuwM2kto8/9cqP+F3/wiY+Bp8GMLNBMdipw4FGrq5H2wyfOPh95xE1jNiup3KgEtgt + qYu92zKBP32T9XNOjes41SPlYffjw36z77Y9O0y+8dMr/a0W9PXW1L5kd8wDk14qPwH0iKYFijOT + sE4dLReucVeB1+XpUFvIs3za4DyUvSDtcDzioSbidLfkRU1uZKPujVy87GEDmgtnYZzIPlgwWVJ4 + 85BBQLZ71GzNv6Buy5Cqr83ZbX/1g19+v7mPK/j5M0i1OMCKobKa1pdnDG9QgdQAtcLEYZ0x9OOb + OwELjAmkH2CxsJ5axqbpp6N7S2FRnDR8AOm3Hu+Zs8h2nAfYGjbcn//s8mR4Ys8JYjBvxVcKJxh9 + qBHcv+4S4tsLWtEm9t/r/bNZt1Z8Cl9UNyyn5i2J8ZCndCa77mq4ormNJlhuNiE1iuDz0wsHeKaH + zg+c1xfQpIYeBKFtYs996/X2hS8yDMb3RK0kJfVAP5UBSYOOf/a04nkRFk1ZYOVZ2ZEQeJnz9/9W + FSq9APLHU67bIqSOftj3bLjLA1jrM9jgG1ufqme5wOfe8LECjZPLOlPyYMvTE1alx/zTzwf42cUO + xbftB7C9lFbgd99WPyf1svNZAz+5VGDliIE7nURmwVi3nmR7O6xbLK4XDb2uTkytaavXbMfdDDjc + igRnP3z/4+fr+fubNf4Nqz4D8+fT8oXCeNZLv9xFONbalmqaWuVj7lxT8NbAifpQgD1xIa8h+VHq + 2L9UZzCJSheClX//8Jb+h+dW/X3V8541XYJ9APuAm7FdaWE0PNa9N3RQNHqdVD9f8bEHlyk740Oo + 67rw3H988BdPPooUrXihgNNXjVZ991AvykNdIHuSB3aehVpT2U1StOZrAsks5uO96jMQPoaSapz0 + BNOAXyHYfrMNdUB8B+zUnz2w6n9kQ8RjTsKz6O1+ejZOqiFialAnaMXrPk9lVH9J+CFwSOqTvwmt + A9g+CRzgbKxvHHZnOWeXyCmhnEoM5z556GSp3gSufNNf6nXGrUiCDH2VSsDxjz+UopahLJw8ajwM + Tx/uuehAcGgEQtyzkM/DUZJkKdurdC9HX3e+vOMAnvFrj2N8UqOtxbgGdGzdIrzqcwthaoC8uuPo + PnitM6dvMwd7Li3/6nnjZCcvcCTPKxHTx7OfL4cPhE/FPfjcLmmi1lpH1E6K/PCTnVOyoTL6STZo + Avy3Xuz6ufZUG16y0cZGK3TuZL6vHERho2KckwiMw1GS4a7UL2TbXJxa5BdFgtnMG6u+lersNCMe + /PCt673HiJxKuwXfIUnxUXh27McHpV89CZ9d1LNIvxrwx9dWe/irByG+abfYlvev+pu1XgbBR6nX + 86yiWU8HDfbb2xX/9HuBH/NWxmrV4sPxW/XzIL0doBinDqvVe/nhqxBkt3vgv6h8q+fRJIWMPTxQ + e4QvnTFfeclcaz/ofj4WeVcLmoLAnusJbxNXp8enUaKJ+SORHnPd//gAVPhCJfJ957qrfpAin5u5 + Xz2j3poNSkB9Hr/YGm4Pfeq1WgMuVMW1vqox4Z5pCxyccaTu6RrmVNul8l98MVb7W87hcYBuy574 + +FQIm/ftOUWv4GNS/6G8c4p8v4IopuKPj+TkrusD9AbviPX6us7Eut41+cevp7zG+XQ/36qfXoBN + Dx70qXEMBXVuGlBv76ruik8N9Mt3py/LdGbhDsLupmU+H5hNPQ/x6QlvlrrBLupPgBABQ/mPH79U + 0/3pVfDpVxxhaz1GeKuTht5xnZOPn3v6snysGK71S/8lbsWa+PVGBE+zMPB9zU8r/msgKIQDPZ8m + 313izylFx/is4HvFK2x2s2gBI/ID/0Nsux7GeeftfvHHeT+EaKjfvgT5KKt/9YSaFd+iAKXlJbhI + X4dofquTAjW366kxfrE+qeeqAa/wiLFGVGnteBs1GccTxMZaP+XVEsuwNVSMLUJoPWqhm8JXvb1i + 5RpWYL7mugMbAdypxpVVvvKhNd7B+Ze/2OyKtgEHBjfYJgbHiC27MpSPJqaHIJ4ZWfEHROPJxHbJ + Oz1/ENz4Vy+mHrkwNvz4Bwgdk9r99dhP6Qe3/6ejAP13R0E/tBndW9OznvceN0CHnXQC3eM3Gq7n + swXZkQ1Un7RT/W06VEK/5HJ/U/eNPhXOrkP1zQqoMyWeu+z2V2mdP/FT7EjNzqliQ6mLTj6LW5UJ + Er1mcON5BVYP19ElNL+m0BNs7rgtDq7L6z1sgfrNNFLWJ8UdDD6roAFqhhUY0XyOgPJEiowcah/G + fS/03+iFWjFrqfn+PF1aVfoTko0g+7wwa9GcjbcnLA5cjs33R9P5g2Yt6AKVL1a1WOx/vx8eGp74 + W8lcotkIHhx0qr1IuGX/7ZeWwgYIgunTYFIMxqr2mwFymBSCyOWULy/ru9YzhZ7sPnsdiNq95eEX + Vzy+fcIMbG8h05B+3oT06Dskb1v79IJ5XAnUHntUD7F+hfBE04O/XIaXPu9vSwnlo6XQW7aZoq4e + 9xX6bHYhDVNZyhf+qA3w3KAH+Z79kPFu3mZIC+qBWo/7VI+klBwZZI2BDxf6BNv9LJXIkxKXqsm9 + Y8PDVET0XUSErUJRmPg85y+Yj72KsaM+3QV4XgXB7hvg/HI59IKWmxkc9rK5nj/Oly4dYvjQjAO2 + Hj4PZsOLNHQbzpTqYhzX8zbzCfyqbUQjUj96Xry9C6ikw0zvy9Ln/FuULdQaNsahEev5dsNpAYyj + qqRndoXRvMRrxH+0LtVSOY3EbWKEyBRDE8dS/Mj59kI7mBkgIi8q39nCn9sXXJJOJ7LPly5/VSUL + Zs+goGXqHQA58lcFWn7ypIU3XHNmwlyCy/kV03TsUT862DaQ/Y07Gt8a36X7WSrgl/YU++/w07Nd + 7qZwioYrzS/WCNj2iyYoLGiiyvf2ZuSWexkKDy8Tl4Z6rsUvfKToXUKXhvfbRZ+Pn/sAlf1XI3yu + Y3faok0IjPJl4mv1erv8QfMXWNwYpLo9SS4rmSdCYWP71DCOJpiXWMrAc6hlIkbNPVrM2Q7ALh0O + NNQD3p1JOTkIrNRElr5iT77KlKGbcQqxTkITTItnacjhk4WaxqcHROTSABzbu4U9VgCdmTGWYK8V + d1wWRI34ijc1FIclpUeWV9E2fRwGCCe7wTEeIRi/sJAgytOAyEH2Yv1kcTJ8LvKZmhvFieab7kI4 + ON8ttRrVdnk23EXoqFqHfe357me5JzZsD+odKy64AH7ueQdRRxepzfuwpvtv+IKXwxLgIGJqv+W/ + oQGkYJ9gt76m+fxIlwRFu+RJJr9MGJuLQwMVs35h9W1I/Zwe9QHBo+TRQ8aV+fxlWw09xVH0twKj + rqDqpwI0KY58IX0Y0dxQL4NbIvf+CVVtvWj3SkRufBtxqZ0ObE7nde/z9SrQo587ruByFMqaffex + Fl6ukWi2XQYV8/HCqogOveDujzIs3r5Fz4OIetZNwwS8DGnUIY0SbbdfYUHx0HY+hy/7evm4EQ/J + iS/pkTpGzX+2twU6mJOx1pxmNoxauyAcBi/8+330nNoOzN2spV51TlxxP940mPd1Te1d6Nbb6hWW + aFIbgN13tmFzNr9KGB7zBp+m3uonQ3qUyO4LG+fDXcxZr1YNcndLSvEmOfWipDsQckSI6GnIOsDg + 8BSRFAU1trk5zxmwNQOu9oiN51WN5kG0M2hjh2B8tff5JF9gC0FNTtSok2tPz9HsQYMbFept1r3K + j3SJEWeOe+qA/BkN8+Ra8GA0Z4zv2dqTbbPlz/9j3z/qPMkKAr8h0ejv+yn2kP/nT8Jl49U8N88c + 2nzKPS3fag9otvYs7l8cw+4bXiJmFeMEKq99+gEUGrZUbSFBKyhUenSl3p1+8WQ5NzF1chmweWt9 + CQigoeJCsSNX6AxZhPMG78h8sOdourRJBupCeeBMvEQ/+1LQcXPnsfHdSfXSfpJhZ3BUoX5ZDoD1 + 3meA79ZIsYr7QB++bZ0hM5Uh9TwkuJPL4gTczmeVXjoi9UO79gwzLtbwVRe6aEo2TQvDelGpUlhe + PrfR6MHDe9n4c+JjfTZ0ZMMNVwg05f2in8lydtAlmDYE3hmXL7zNJgj22Rb7jlawxbg0LRoPxw67 + 22gCTNt+Q5hdHYzdk9nUnavrJdwcVEz1c8z9/C2GcfQsybzatzjdqwSZJqXYWOMBi8q4hSHgS5xp + j6heLJsP0BOvW0fo8ZSzRDpxqEbYxaZ5qPOeu34r2OuVj+8b6aBTv41TFM6s/DtfplE9ReXHUGnx + sA85vYVAg2auZX5E1M5dxGOTwtfSLfismHG0fX5NA7XgJGHdokHPvK0/wfkbyhTrx33OK9bkoV3x + 6PDFmp79trAsDzIMHHr1uqGfXe4D0c+ffek6gAW2+wzeNJen7k1ua9byqQY3KLcILN9OLtx0HULx + sb4j6wVWLwpj/ETJWIrUpaenS69q3kDYWra/g5UXLRM7JpCF2heb/WWsW2wwHqU0nvEleCJ3OVtb + GR5eNMA4Mzf9NHz3BhLv0YHIX2XHlkEtDDjxQCdCGtj1eO9BB/Oki7B1fK899RfWwRu5H7ED5TCf + KimCsM+bniZHkTFCL06JqOWfqfG0zZpnj2BAVH551C+PJ32569D+4SNq7BTEhqxJRYhO5wDrglXV + 8+MReHD/3J7Xl8ScuvODCMKHHD2w/6R2zQpxshDl8hFr99vFZbprJaBrg5ogwfVcAcY3Gdqn4EiE + 8unWIh5KHubqucUGd277xZHf1S+f0IS8STTlnDfBqqcE++nNrOe3L79gzC02xu489ou+LSZonM4S + 9bxhFxGl8wL47Xn/dx76dEVfQ47dQsHmel5b7jaVEC/5ncDLvE6ZvTkh2I+cQXHVlv28P8cN2nh+ + QZW7EORCnhUeHL4WxWquapE4qLGBXmx40OBcH3OR5qcURY/ApMY2WFwm68yGo+ZDXyiVWJ+Fpy2B + Rk907ORyzgZurBWoetruOKPKrvsrMl7geCpS/MOTfJFhAp745eEzf+v7eUoQB79MGvBRNaaeDbe+ + BGdz2hJ0rpReFGU1AfuKbuk+ehv1ZKYgASv+oR5fOdGyTYwA1MAcaX77DmCwG5eHbvN2qZuKu34e + Qz3+fZ4P8taMBHXjlDD8UoXqalCB5Q6StSKuOPgYr3uFj1RooLcNC3qIjm60rYYpQW2ZONg9Jc+I + Rb1aQMHlLao0ssV4kTw86KRqSlc8kQserhd40nQVH4NirkfW3lIIxf2b6mC/B3PpPnh0kKCHPesg + R+MHzD78LNpMuMR95my+yC2kjipif8Un85dtNPi6Vm+su88aMOCdFLjPpq0vxsDJ550mliD4bE1s + 7+pPPluobaDEVUd8O2Nj7eBcNPDluZxq19GtWayhApBQXpdHeCc2GXxYQfooFHoTxrpfdm4lQvuo + BlidoJav+CqF7ABdHwzTojMNSN7uhwf3SECsp1Rbt3Y1gEBvuEbjWzOXtUKwwfbmRXqmWPkAWWSl + 2JIliZGdW/HrVpWGZuRs9Ly9MvbW2fsE+bmjbzfaKQDKdamwGkEXTM/vtwHreVIFLXd9rvbiC/qF + iOjenh13usS7DPQjOdA/fxnfkIftaY+ws48bNqoyq4DLfVsczp+XO6WC7kHd52qfkfpRT/3R8IC/ + VXY0vHH7SBiPMANfJg/Uf4f7Wlzzgywsm4nM+6+ai0nhNFCvXB/74ld1hcdEArgjXxvjxn+7zKhO + GoxE9+wLnZC4k3gbC+CJ/ujLorXtFy0/ycjy4yf1K1/qKUvLBKqJL9Dy1l/7STDnCj7j2406tJbq + aTxxIjyJqbTm922+0ItTwMthCvAJ3FVXeJFqAL5ktNTLYtK331dcIK6CCz1vniqbrd21hSv+9rnU + +zJWWL7/+396Pz520dK/Tw5SBM3FWOYzva+FWUZt7iBqXkjAFq9nDlAqhrF7S2d3+eDn8uNrWMUZ + nzO8S20oc2HnC8bHBeJd5x35evq4VC0fu5448vsJ/Zs8UOXjPuv55KsSWs/3x9fY/ESRBR3NuGIr + 6wUwv0hFoO1bG6oGxz1j89oNQr4yoL94x841DuX5rHP+S+0asGSHFwdHsWFYRVXbz3Eepj9+Qdry + lUYs6d82KEPB/Iv3C1E3C+AfnUv3WB/d6VNPC3yYoPN3O3SMFhg/U/Ayoy826e6tz9frVCFFJfoa + byWXbYlH5AF4R2y5wpDPl/YpwSjfXOnxwy/5ivcd+O2WO8XHx+oPTt2hrI5dGmX7U79Yp9AGVCoI + tVqN1q9g7CuQj18V40Q03CmxvQYlYyH6tO4tfbv9okU2Xg8Tr/m5n0butAAUphucJsyMBF+ZM9Q/ + 3xle9Yd+gsprnRFxVXCSHbho2FpnH5qpBPGBZX7OmymIAS/WOVal8ZyzBeapLDl24svRZ86Xwbdl + 2D8/GTUO6JT3e7h9/eEPu3pv2LK/ThraCiDDGB5Md/LhTQIgexk0QMtGnyMn6QBWDha22P7NlvHx + luFhK91wcqfGj9+lSJ3LivSSZUTbRh6ef/FTPaMoZ5Kzb+FtGRyqCHe+nyb3GUPylYCPhGIP2jWf + g8FjZ+xvt4JLenQ0YLrNMfbGgdb9s/r4sOPw04eharhMfZYvuNMulB7i/F7PbaFbyLzCHl/U/AKE + +OIW8N2DHZFWfWKZDdVBKTlp2KF1Wi8aESXovzcO3nOXczTdq1aDT9KnvhxkBlt2d5OH0Uvfkk3V + lvW6u3CBjyc21vh/qumKxyG9Jw+yg3iq6W7ZxNDRHRvvAZ9Es/R8NbBF14SqtT67I92oUE6uWMb7 + lhv1uXguBiTz5oq1ZBcwpvrzC74nRyRg5YdTrJ8g+uH7MLzs8kWY6xJ+vjDCJW7raHlxeoDISSzp + Xmye0cCNvSbLZ7vERv5u+sl6tzbs7naC9/Pp0k9PZL2gfnXuazyQ3UnjBA4aZWNSK7Yv+k8vA6Pw + MPD+sCldoVN6GYZBw2Nt4Cc2N5eghCeSZD6Y+YfLfvztx09MQ9r3Y3n3RYjeL+/Hb6OFDRIP0CFY + Vvzz7tka///88Y0HTSdfZd0yc54o1ltFY2xEQrjb29+rv/3+3s45tTZa+cOqv6j9vLldCtiLfEKD + Rm7YLx6gexr0+HD2Q0De500Ir8ss+GV9qvQp3yEeWHH09MFWE9w13ypysONq7KbitZ++1bGCuZu2 + +NhKj5p5m6GV91vrhK/36syWi9JnIHqpW6zetAMTImBX4JS7R4z1Unfn+OKWoPv4PD7uP3TN70uL + 4u7hUXMLIraE3SmAz+9iY1XiZp0K5lmBL3p/+ZvYkKLJgFIKpmV+k+2+2Ohj87w0UAseA13xc00d + WVbA7VLe8f41nvJffIOzt6mwb4RzNM+bdwdpcwmI2Ki2Tj+f3ocrHsar/tkPnnLw0KH+PqgVNfd8 + 0nvY/fAb/ukz0/OddTA19nuydOyQ8xV/1GAcv444FmYt53W8W4C494e//D7eP8MAI12C9HCdunz4 + 4TUZeeCHl/VJ8oEFTAo6f/tyr6A/JOvzL/IZK0e4ib5Or0G0iAuH1c7+1POTF3wIqtogQLoouiA8 + FQkFzZxgJ0N6/8eHo8pL6K1NHHc+PRoJBeZrwGpaLdEs9U4JpHeq4sieUl2oH0CCzhjrOF7563zg + vADWh50+Qn5u3CmY5eIv/+a6d87X5yHAcC4HglzJ1bdmvJeROrg8Xld61PNz59nwujCBVKTfsaXY + HEpoimsFmz5cRubo4kPJ9U1/stwhJxcYZ6hYO5j3UDJr8oXfDP74ihVfFzChivPgJ+D3ND2Vcj0T + YnkQ8xWiOD7z7po/ZdRKlYVtPTdyNnZpAPLz60WPIXqsMwyUCjVi5/obTzvU0/dVFIAWh9jn6Mvp + F5pfMzDfDY6e6thjy1fKSrCXdwvVkt0EhjB7etBmz4aqE3xGy2NaFqikZKYOcok7bZ3BAa5VBPS+ + PHC9zjFpIG3OATYOg9C3Inn48LQtP4TT74gtYHPvYCO2Lj4C4rAfnoM/PG17QVP3Ock8UMj7hPrO + K46EJlKf6IOnyx/fWFSgaD99BR/Vs5dvx+aQgATrHGnD0xHQGRcLFA+xs+pvrfvTw+CoBz01S/aJ + xIYjUC4D+qHaTiZ1H9wkDuZeecFKriF38ozUBl3gWTQdvCNgUsKX0BouG2wJ168+8LwwgBCIJdXM + E+gXom4nsB+hQdXO3tfDPXVsSG9Y9xFpj7oYU13aHT/5ha6fr//0JODrw4yvYR+teqowgRUPYa98 + O9G8Y1UCXec0E5alYzRVUs4BGMvA5057FtGlCiqY9Jd1RknQ9EvcNAp8XtoOOz5f6j99FhznT4T1 + FgGd5ST0oV8Lgz8VbQ0W3zsqMOwWSg+X8uOyrt5CaF65nuKPi3L63QsGFBJFowf++GBiOdg21FNj + wlrzPPZb+/AqoBHdEnp8np/15FyuBfj0ikYLxoU9o9SRAFvcF1XUL8/Y83u0YJFrDuG251s9n8KU + h3oMaqyLusSYonkLNJ/6AVsx6KLlIpkF2DRpSi33NfVLQmkDP/7QrvlWiAhnShrcWw+A1ddeyQXu + sJRIal1G+Ns5zJdNo/Lo6ucIuwcaR6L86Qew6jFrvKjc2TftBFblpODyYmf1jB4OgV4qvH75o58U + S/IhVn2Bav25YvMZvHw0CXChed3xeqdeHAhLpCtY3eGBTVAZUshiZ49x3TcueVlfD6I8C6j1wYVO + ztvvAokyURpZx50+lO45huLn8iGooIVLL+5G+9UX/M0bffNh8XwN0t3zRo2TtmdM2z5CJIGL4n/X + +6J3w26hcbpIKx/q2funTyTk+abKpLzA1A1yLP/0dTt5Huotd84ayCWLSE63yKy32yVqIV+WiMwr + n6LbJerghXP2WL291HxRrb2H2HJ4UdWXCjYJjlL8zocqzz3rq/byaWGvnFXqyY9Tz7jbVOxuaeX7 + D2N77gdroiHYb40TzlStBuTF6SH60i8lxzNe8ZFbiag6L3TVY9494yvoQYu733y+yyd32bmtCFd/ + wb/4Nopzye3U2LyQeXHEiCW8rkGy2cr4kIUqEG1ZFZHcbjY+x2W8PhXP8fXTN7CKZiMXYDqIQI33 + F6o9Sq7vOFNSfngQu92R6dMoa6LEMWOt30l1vXTrDr5VfyE7D7T5MpKQwBV/0/T2qfT55B8kWNjS + gPGusfQh16IJznvlseLftzsbXq5BeUoPWLGJG/3Z26pHrfoIrw/n4dDKgdkM/jpOOP+LB8YhyvxN + DVU2X1+bDhw3N55qwh5EM4zPa35KdOpfbLl+T595QAsZKnwYuyeb5Uj24JbNEDvT58OYUV0VsI4H + pP5rCvSZ351sZAp+4ossVfvZCL4QUqkk2O4KTeebPJSROhcVPm+ULmJpsSy/7/Pnle/PgPcU0FTR + jJ2vcgVT9jzI0DpfTn4DsilntzyV5RVfrPpWX8/r75MdIXtQ3Pimvpy3jwny+wKv9Y2iJ262SX96 + PLWy/symXMsXqGwZovZ7v80JUTcTKD5IItwppStLMgfo+MDFDnJ9Xbiesg5yFbdgm4ITWFb9EW7i + UCaRGPP1zJ+ODhwlciKz5KL1fBYfvQ/fCpvOjrDlvhltOGx0gg8Zx0VTc9EhmuLFpva6U4NK4Vj9 + 6X/reQJ2yFpv98MPPz1q+vGnX72JJ+jTj1QGCuzVdMJnbavoW29rTWjDlQK1dypm7Iy7AO6KuiPb + JzL7efGyCrJub/nz+8xHpBbeKXQwlHHuPPf1fGk7GZQvWGP7Yqgu3/jEgGu95w9vi+rF4eB2FCFV + 7BuuedqnBcwe3kh2VfSNmB1qCTTlfYOtDfyAB2tvGZRcz6RX2f+67H4ZWyiEvIDzRAjd2XxZEIDH + i1GteY71kifXBV4P1Uh//GIqI+ahTR+1pMW3yJ3wQZvAmo9xZi04GvWP7MGr0xTU9VkdTaW2LaB6 + tFry8Zc5Z8P52Mgr/sZHsLF6Pt1lNvCNpcLKOZz7gd3UCSEb69hcCmOtBxQJ/MX/6Mh/3EntA4j2 + NTCwvtbPRR30AxRvh56u+B9sV3tFJVIV+uOjr2CWS7jyV6z4ZQLEYnMo4Orf/rDqg0QSEws215NG + tRv3yafzRx7+T0eBwP93SwEgl8xvDkJWD7tWLQFVb0d/Mic/Ern93Yfb9nOi/vCeGDuZKQfs7avF + 9nNwa97uJQe10HKodZKNfkxeXAvcT3XAGj/yjCmvcwql6aljHEGkL2JkFXKWEgtr6W5ymXw8Veiu + Xmvq1MIjn2NOMmBNrhj79/kEKP3wExSS6YTT8CG5jMqtAxX3uqdF7t7A5BEowcvNYfQYP0Qwy21g + Aap/Y+wH8+DSMuB9xI8qR+a6vugDe1IC62uXY61jS876915G7TaPyeRAEC3yUZORrqQmtTbmFyzD + duhAw7IjjRZ9rKcocDJoeeoZH2/Yc9tNXYVoJw87wl/vhrsYO1GCLgwQLrO3AcTGEBP0SR8fus92 + pJ72D+TLmSi/qec+h3revmsPYUuj2FnAxGZTlieAeOFEw8uogUl5QQU10kGlQQH2gB9ULYPOLQ+w + UoA9Y7vPU0S3/iXT20d/gYGvFw+YU/4iV7HPez4AsIHRJe1oWhobQI/SyYdOjw9Yfbm6zufL4sHR + ZmvTcPfUJzlpX/DVDRhfd5q4Ns0xDT3q2sVmXrb63PYVj8D11eA93q2SFTdZ6JhMBXa+3Q7U/g40 + aA9OLXX4fenyv/uBznmhR8sIe7HeHSx0G1cpgLotWD6WLQJ3f3xQO/qAnpWCUqAqvF/IbojUWjwI + Z4LEMs1wCd5JL4qK68OS4wV62zuJvq139AVzrbpgq7/4PS+SowK+rfGkQSc4upg2tIX8wK2Ls9En + J7uyn+DVLF1qHyUP8GWmByg+I0qDg3gBy83KFuAyvCPso+97fmx2CvTf7YEeW7zo4ze7iPL21CbY + aSaUT74LHPSzb1P2vhH/eK/ndzdu9DJuSn32IjrARr7Y/nb5fNlYXEYNchw84Dif4551YiCja6pI + 9NwKNhBGqX1CKlZfej++dH3ZaZIBYc1u/mDtHtH0eLcNRK6q0DB3VH3RIilD9LFlRNzJMOqeTqfB + dCdeqXLZE0YY/xYRlmSD8Md46on3vnuy2loj1nLnoTOVpDH8yj3G1p23mKCfPRt4m0qixSc5RfxW + uotQv1wU7GvbQ79IbltB6/LdYzWTezDfUNTCKogCsoP3uJ9VhUthiG8SPTyzshfwPGWoLAuMS237 + 7ed3ta6RmMwbtlK560W+9jiYHlyXKkJIoumTNjw8tc4FX8Ue9EsB7xO8Z8IR77fB2eV5u8zgG0y6 + P43Uqvlqeyhht5yu+HBBcs6qMHmhe/u18DE74150ciNDU1irWCVKngvB987Dz2Z2qPKkVU1Xe4Om + zTKsAPWmT0QbFojWEn4UYhssSviWoHtWMwIUIcr53a5LAEraBbuPU83+nu/PPsNKZkRy2ye806dO + I85XXT5o5wS1RqkSeOBRxPg6apAPP4b//cIGTJ/HPZBV86lgY7NXa3GqbB8UbbzBxi6y2fC97hL0 + Gb0bDg9MqZc42FYQcJ3mw/NmArxyUBIEtsz0wXSJom0GDA31WqNileNlnWR3lcAT3Yf4dPrGbKo/ + GgfzTz9je40H7OgWT5hwMKanl6u720GpJ+Tm0oVe7/dnz0JcL+jy2lOML1eQj9BsPNSJEOOLumny + MbRKA1z3bbg+fwaWl2ekcKDnF8U2vOTs2EjxX/5Qx9u1X97JxUMbPvVo/nKVaDb0PoR5RUQiXQ46 + 4D+QWeiVHit62lxytv2wQYPpsimIuXzVXqjGs4N+/rX3Nl7088/dSR4Nek5Vx51lwxXlR8CVWHmo + czQH37sIOxybNEr1dXHThQsg7NoMq9NFdKfNJuLgNQoN8pkfViTOl08HRRf02IxAlYt0flhQrA+Y + 3sWOi16phBaQOfIRm1KZuYMzhhUER8jj1X/Zdum+7fbRpTaNsvOSs3u9KYCTlGeK98c2IuoBlfC5 + ZBJVD7WbT6/5vC6PAild42nNEAoh+sybEB/d4F7PknuSUB18LlStyAuwIJl5ZFsg88WYf7jzS45F + eDULl0aX/Ay2N4Y4GN81Rl4Ixu7W3foDPANyJerSfvQpldAEz/bWIJv4dXAnhOYGsUN+85nupGza + o5MiZ/evSr2Znev2GPeNbC9gofvFsF3xfWwWJC9nHZtH9eVO3cuzgdmgnT/omxf7WpdZQZt7Qn0g + kyPY0ruXQPNqafjo5ceI9WNbQk2EGQ4R14NREesKmdvwQfjhHdVb1NEXZKTY0dA252genEMJbeIg + epyrr7u4YQ7hjgkQX5JAj3j0vE3wJmhvbD6EJ1hGdfsEaYIMmjtWF3WCzVr0ZUOM09327QrCy+bh + 8Xs50MgZVJdXxleB8moQcUDLcy7YT12E90gKadYc83pbn90SeP6287l0K/TT0iuhzJ8S7I9zdXBF + 1gsZlF7SiSbFpWU09/HaQiDYdP/56Gw5fZsS/vInJmrkLgfhPCD/fHlgzSOwZy+9a+BVmc84kDwH + LFxfF/DWNzLey85cr/HiBUKQhtRUIsLYJjv5v/yFvS44AlFVjxrQq6XH+DqJ7ueldy/4pKJDL/Dh + ReIe1gsikv6kv/w+vw06QNXvNaqQ0I7mpLA8sM92GrX54VI/PclpdtU1jnFSfnfRHHbPGFbBKfAr + YR3bv1jWBDucmFjBr4/eD9FHg12uCjg1lzqfapfa4MhD4Mubr+UK4tazYH99QqppJyligliKMiDn + jMzI7PM5MMAAT2w60CuOqcsgU2zkyyny2x49e/ZO3jw8ZIcz9Q++ka945gVzGH/w/v68MuqRMoDI + FndY+yS8PibbpwLD5exjU4l8NmL9lKCD7mVYi8ytvmzWElbJiQJVztd7PxWPa4JIwDbUgEcz58NH + H4A1f2IjjcV6dpVXAZWqeNFzXtouA8bDQPzmOZLh6bxytnSPFm3HYE9mnS4R0ehgQOGYNP6shHFO + C0hS8MMPtwsXg0U+OhJ437df7L0NhfFO9nGgWCEbO7EIXCqXcgbpzeD8UDul6xhNVMKcVIRqRsvc + Sbu9OeCX6Zte2oBGc2XvFLh9HXV6mKAHiCO2PojcSaLW+7uJ5hzsApAq2oFskKW782FIOjibaYIP + 33VMeFNVC3rozhs7UTeCeaSSBQuJvv1PyN7uYnhdAs1jEdCrmnls6xUog/dse8TWoz6z+Xh7tnCu + XwK1TDrrS9hNEJX10aB38351f/YHnyrt8GE/79eXtEQFmtP1RTVaoJ7FwwOi8MS1hF8gcZfkcG3g + +nupY2gwZ7PBNGhxckd+9vxMd7ki//AQwtIqwN4PBBab15Ow++OeM/MOPdAHd8k/r/Fp1pq3Bu+n + wcXhZXyCWb/BBvBSP1HrI0/5cMNTCZtqXWNjGUI0bt+9BznlrlMfHp89Q5Zb/PItdkj4rns9TiS4 + SaKeyM10iyaEdi9oRK1C0/c61nbhLx4sH9q61gjZ9XZmmQXCV33GqmMd3cl3mQ0hb5jUrZWwZ9dp + 9v/iXTRsq345Z0uJzDw8UG1JMp1V45LJd1rp2EleTj7h5AjB3qkK+ruvUaKiBqO3V9M0+uR1t1XH + Fwi+fUC1cfQB6zJkwE0HHzgpLjajv+ehia3jU11fXOGoWTzs7qQnG/KK2fSzf8NHB7rm94iVz7MF + iI9PvlykeiTMCxQhUBzoS1oA3Nn6XmXYf8ETO/beyrfOSy+QI4oAawFr6uHhGAssTqmBfe7OXLri + CcCuxCTCXPLu0lShDfhNNdIV//TTh9e6H95Y7WfnzmNcBDAwPjyRBHyNFu7JNGQvuwUrJGxzQueH + gc5hQHFsNCCfrrIdwkfrq9Ruq1e/LF2koD/+E+MV9tyPCsT34urPsUJ7kumjDBPP2KwTLxY2/fCa + 1nwXrO3OVT2b95KDE+Yi6lvxh83R9VDCd+WEZPZuH7DalwJ8pRn95TnaYC73TQWf6tgRTs/cXPCi + D4FnTFSyvQWHaHk6Tw0STrrTeIG+Pt0FDkIjawD5XpAcEfkMEjjuihtWtGhyZ4lyGrieDoCaG5Dq + LDlUPvzc0xctcVNGs++pC9hsxrPPv+6dy05mwP2dR1Qd+nx+twzCaBLPJPVzUk87b2xhUdAjNR/h + Q5+jwSNAeXY9WaI2Ze1Ltvxd7466P1fEYPMHqQS+EXTwba4OOv8G6QAjcn5jN791YJJcN4RScMyJ + QOlb/24E2oHgYtX06GLFFfvXI0M/+1Tfl8CdCv/NgXlOCY2wRFwWGFYB0gUVfpE8l34OjoMDvAG6 + PmfoIhgLHzYIZ6ym+AsONe8e/ACs+Aeb9WvuF5ocgx+/w0VpyhHJv/ETpfkoYX8XWe52zZ/QuX8u + 2OMeDpge5KShR+up2FAPyF2kyWthEb1cfL8d+WhM4yqEu9b2MP6oR3d+kO0TnvltQfHqHyzE/QQr + LH2xYmh3feazowy9xvSJHBwxWNLm08KmAiU1ne6bj79469W7PT6q+T7/i2/v/p5j89ThfP38Cm2y + fkeKld/NbWBqaEtLH+/Vwujn13kiYJA3iS8o4lTTzamd4Cu7fnzkO4W74u0MfrAJsWVbLpjuggih + HNsvHKz4l9w3RgePfR3QY1fV69JGXMjFpnn+4ls973YSB1Fl3PAF7+xeJJ/GAZIQbqnZlL7O5ETl + wA+vqcU3Y+ycHyz5cNn42KVkz6ba/TiwLEtMV3xeC2VQcuBYeXt6hXe+nrgAyhDx25M/HaPEbVd8 + D7XXrSfP0Rn1v3y/8lls61wXrfbZwXf8rHy+7Gf9x49lf/9o8XkbDmy6nzIeXuuuw255+URTvsg+ + /DIS+xv7eu63t96s0KpnkN3Kr5hw0EL5M6PwL74vyqZ7QXm56HTvniDrztlSQPF8SbBqfX3WFdj1 + 4MJ3Xx+9z+eeyrPQ/vIrdoWnAoT3PKS7j8Rjqianql58L0jXxPTxuUtv51sqVw4a46uKjWMc1L/v + h9nRiKm9xkuqa6IGGQwXbAXeOSKKKDt//MRb9axB36kLyD/fmSpF2rhtN/CN/JW/2Be2oQeYLDcW + /Egi9mEXjIxsBC4AadiIBNJCBmRUtxWKuO5I94wlbDK/bgB/+E/PpFhfHlFYoIFXcmyu/jr40z2E + KOmW9X5ltpjgkMGV3xD0aayeh6kDwQ+P6t9My/nduTTg2t6JNZWI9fQgVwV0zfeDb9fDs57XeAde + YqJiV1MqxthVmZC0603f0DNfp295McDP3vS56gFLXe2FEtMxyFcfUN7QxAxg97pX2IMs7+nZPg+w + EzmM8VboQV9rtg/vlnX1N2X6YMtRO5fwbRwlagQzYUt/OL7k3phs6nTCPp8TJXvCm+vH2H+8HbY9 + PbwOWpzUUS8y+ehR+HyDljjQ8YFoU0Rngynoc89eWFv59tQfFvHH/7B64+2cn0DSQXu3UKqv7UeL + V5Dlp7dgu1nOOlnjHSTBoNLjJWcuPddzhVqjUOnlvYv7Nq6PrVx2luqz+2MT0ZBNCpS4644I9jWN + GAuC+McHsSVulOjr78oYnh5Rtg5dINGC0sqHi45ysrv5c02gyfOIwCHFobUz3G0SBh16dQTTY7js + wfzlXgY6eOeCSLtYj7aichKR1+z99X4UtuqTMdyMTosPzb2tJ1kXPJi8n92f/yzyTBX4TNKKZptv + 49KuHitZ/PAmvRrxIWIJMRK06o3YFrOGje+jHcBvFn7pgc2bX37j4JIUDo3Ew0XvD1ep+8ULfz8/ + rFzgT7cSbk7PLd4buyegJ1/NoLKTfYpB6LjCePMGKO2+JrU/Z5FlJ9OJISutiPAX+5CzJ40XpJ7f + HD7c71rPdp9OBNrOeRBptzXdhXsCBf7+rnluBibzqwfgdO5brL/PacQM2XzC8ARbmqZSyOaBvBvZ + cPwzdV1hpxNzCeCfPnLk1rH0AEwN8k5JRvX7Y7MuMk67nUyXMzV6aOvMBKkGIlhYOO78lC2PLdfI + 9B6ZJIbHd7Scxcb5y8cbmbYRk26ptr6kGGL1LZ8Au1mPFPQwO1Fras2VH1AH2tYuW/HjqPdFJRPg + oFnEaq0Ia/7YVD895y+erfqeD3/6iRa1EpivJbCk9f58btKozvdhHYL+7BC65gs2v40PAZwcRVh7 + G3U/jfRbgujt19RSasOdx5tH4GpP+PjLN3k1GKC62EdaLLudy25M4OTz0p/J/GkfLqtvTIJv1xCo + mvBaJLwNSmQ/Uy70PJexvujunQfbjKXYnECYjw8nT+Gr0a94f2ov9RI9lQqs/u9/L5lUz9fPurZT + 9QH5bsWD3vm33VqiembU7+E7/+nd8MdfVz1Cn/SdOsn1/jBgf9XjRpHkHfzlI3/SqLskysOGZrPZ + Ue+zi9ylzyW4Lt9V/9WX+rxLZCiGHuEMPWHCT79d8YcPTXdx5x9eXvUQsvte3/rC9X0BX2bLaJgm + JGdPyfTBMPMxthHye0Ll6xNuT11CttvgrI/wKxdAvkUNthZZjCaYOtyffulL0yua/Vj25UfRYAIi + uXZ/9Qg5kcwLmZTXI58vZPcCg+M5OMk94K76kIxK9u6oPR4wmNiTDuAEgYuVTHUjMXkfQ+Co7E42 + 527oJ/3TyuC8q0IcrHx+SYqCB++78CXyqxzAdJWVAP7w9y/ekkR5OMiTevDTS/ue6mkL1+/zRXFT + /fS7AHJXaVzxn6nPJ+h68FCKri/xhzNg/UvS4EefGM0r8lxbYOcKjqEn07X+4E5v4+D/9FycbJU7 + m396wW2XMZ8jUaXPv/iwjcSbL672SK6fxfnhZxyv+GA+n0AKH2YyUO/90Xr+baj+Tnep78uCMEaT + qtAFQLPhCH/3Q7YYO06G2rS/0Z/+PJR7RQOrnuU3iUJ0cvXKGN6bYuPvVr7L+7pDoLC1t0T+gI4t + qz4Lt5b2otpxXSvXiVoIz3EhYs9op3yO0PgCZzBc8W3XhPXIcYqPfnoA4vANtLVLnV1oPxHZ+gS4 + 5Bef1niA92XigWECZQc5jjv8+SMrBbuQ6lx8Ylern/VE7x0Hm8NX/sOzW36DQ7jqEdhM1U7/vuSY + hyFdKiIuspj/+dOqP1H7rVsRQyjjQGbhCz6CWGULQkYCD5l79qfguNS/+0c/PCWv+XMxzuGCglIt + 6d2IBndumD9BVe4zggbpFi0aHayfHoa10kTuJITXBHD7WMGFbZKarnoegG0ZERG0fU9WPQw4t2tA + 9X9Iu5JtVWEs+kEMpJOEIb10EgREnAEqAiLSJEC+vhb31bBmNXS9t7xCkt2d5OTP73KX1gBcnelI + f4uSh9f9iNfuF4ldMTBer44LQX/TMAnssW4ovLUpWHPHRUj7wKaPWVz95RvI4O9TvBXn/QjACHly + eqYTWL3SDo/xmTkE0p6vbM40h/Au3p/odJ3VhmW52JJ/kEvRg83NhvuaWyA34eeG3HBZR1IEp/Qo + 2fX2b3ypED8seHoLTCC+NuKtX9nBf34A90wVxvRd3muwYHcjTp5cdWrd9AViTihw7dBq3IKrzcK9 + Xkj87DjHG9iONTwzJ3nX49rIvvFFke1voP03L/jdjwkUhZJBlwdrx/xf3qF+xA6pkheAf/xx47tn + wG2/d7P94c1VFZ29/sZ4zZ4vyDe3tZDX+ge61SSw4WO5EmSHmxPz1q+q5L1ehjfmPTc9OC+2fNAn + BtlfURxJoLUG9ANuQPpRj8dViW4RTPrnEzl9IIxTP0a+nOh3DcVdZdJPaNBJdpqPQlT18aZbMhUJ + mIsrRP5trvRl9h4B6Kvyjs7GVafbZgWLdC3uKzrDCnlLe60taB6fPXJR2xbLrpfggc39P70VL8Q/ + dFDnmhfxYN3RP/35L/9Od73EdbfYgt5nP5KHEuSt5GwFMGloT4LansbV0JtQVrTQRGEWQ/1X2asG + f0R/BOzh9G4W9GRy+FP4A+afltAs4tOq5ND4sAG38wtl2LqChutfUXKMe0qtTSgh1iQbf4Jlo9sr + r6qjaRQ+OtPtOM761bDhd9RS5Lr3FPzlxcDRgxwZTnDytjPJbTgLYYrK2R2KhW2kAG4/RSCPHm3e + khaHFuZjSIkty7hZ0bpk8jcnGEPRDQtqj5daFr2yIyhaQm/FGs2AjFY22G9iKIS+1m2ZaZKMeKXF + xyt4CfXf8/7jZxozLg/+ny0F3P/eUqDeDyYx78eqoceHhsF95V2iEMPUWdH4RVD34ojYdZbpVAg9 + BnaCngTbwOqxcLxbnXyJF0yMiRy9Xhs7G2gnMQ7yxlepsM7eAgokDQid0U3nSjVLIKhKG2nwiYtJ + hN4C84v8wLBsZm9KPu8K/rLcwsyGQEzsc9nCe/my9lOe87h8i36D2R6pXnJpGTfuJS3wXfE6UV/+ + FaweDiSQeHOHnDIj46Kc7wNMbplLXFy0lE7R24Icqgh6rfpMZ2a1O/kDDDfAodrp27tkN3nUoifS + lYWOa/ChG2T8j0PiYfbpUlz7JzzEiAtgXb68VVSxBE9bEiMvBIdxy5YjA97z/EMvTUk8FpfcU3Zw + opJSuDQxtb+nDXadqCLluEYxRXJcQr/PLkh7XQndplq2jsLHZ8iDayqPPrbRlzVzgaScDK6gr8Mb + gkepT8i6h2y8cOG+kT6QMLEh//Q64/T1QSw+pIBVjudRgHaqyfM5dol3gG2xelL/hEx6+SH/YWqU + +51kXiqHxQhk+cMCPFyZBLzVI0XIPGsF/4wlF/JXfS/RNka83VxFkd9eecD0zMdguewS1pwGg+g+ + +urLucqwrObMidjhswR8cYT7FgUxIqdEyEY+YcdNrpVDGkD8sAuqPB49/LyiGHOnByrY53M0YNWZ + EDN96sTC0tdP2f6QCPny5BXcJ3MCCLRKIvnTTuNtfBYLdGzIBKt1LQGb4taFyXLaL+chT7oKTZ7A + 48u8kvs+H7AjKCJUbxwm9uGljvxUywZk58gkad2Z+lrd7hPMtuWL1PBlA05ZJgWGvqecj9diBThw + Ah/cLmVOVP2kewL3uzOyB0oTXdlb1wjthYTw5SgPUriLrbO2HFbyPp6BoMkPb02IjaHfhRLKtrta + 8PovH6D/mAhJOt4CLH1MDFAObkiCJ451jHLHgqyr3NEpwhxdZ9DV8HniGpJda7tYXbTlcoA0iDlf + 3Sm5mTp4eIoZXianjNcD95bkg9iK5Dq8DqA9r10Jw8JhkFbow0iej0siJ6sxoJfipJSVIY0g0GqJ + nFUmbIQ29zEEnQiQmlrX8TcJpg+v31ZDz9Ttm+9qCdrf7yPhcd3iBTjfBTZ13GAJ7SViXMpPSMr6 + gwxhSht6qIsKug2fYaz9qoLjWFeUvPS0y/0Exxuv6SVAZ/OBsvVbeCvrJCzMTzFAxvWpFoJnqk+Z + O98zpNWKHQuPbQzgtH1+SH3otFiO3SrKg3pq8Xx+GB5P2IcLx0tcBvK+noSlH57SPh+CyznKxy52 + ZAw/pSchyxNxs8zV2smn8oCQ6tSjTu6Jn8H+LWG8vq/ZKJxsGkE76WRk6UbccMYkBcDQgIJXM/yA + LYR3DIvzGpMLg08F27zyDnKX4YQ3RRj07eklWNZF9MQ/Vm6KlTvzNsjnXiG2yP7iDXpZDsYRysFW + fKpikcYikL3Mv6O8utw9qoVvH2rvjgZCUC6j0FybXEavgEU2eWYxa+RyBwl7wsTy+qe+yZuWwmLv + u39B43kc8tvIQJWOH3Q+YKFYd/yD7/KbEO/64Aq6WgflH74m2QS8xci5Tn5duj44fOVzMYsqFiFD + rRoZvr00661eS1D5RYm0Xu68VbeUENrNF+BFiUOwF1orePg+G3zcIhfwq7NmMhUlg9wuJ0cn4at1 + ZXFiR6LHh7RYrePCyB5Z36QU+xfl06NpSBV8qpgz+XpcP9xSy9NpY0kg6Hy8lmqYii/raJHS35J4 + zQN/g/v4o8ACZsOrZSxJhzQJiMs/7mOdF70F7M8cBRPyvsVymDQsi6rCkWuV2A3XaLMGPp1QIt21 + 2kLIMqWW20GKyOsdcTq5l28e0uuQIVXxpWKGrcrK8nME6PwJ12b7bIwN0wLqJD9m9bh8glqDTn6K + g3VO3//4RzbESCfBT049OrMrBme7aYkZwZqu+fcA4VXWaZDcTKyvP+y2UD8GFdnf97gak+RD9v2p + yenjnry1ECUWfM42JPeNVUbhNke5XESahtnXLS7YFV8rSBCZsOBzOuUFa1rgznfEfHofsB5m/wnD + wmMwDd9TMWd7X/59fPFwtDePvvGawet4fAZfvvZHLh9ZS76r6weZi6kWi/mFCYzeAiJGdIm9Hjhk + gbnC2QG4Pq4FG6LKlSErl3jriyVemfgewYFRCbrgIqMTYj6+XLdnDdkV4pr19/nYMi6uI7lRIdHp + dtv7akrDQnzrqHlcdFhDeT68WXSNpigWxK1s4ekML+heZmhcuO7bwuruX0kk+j9v1zOTDO/OB5U7 + XwvrrO9dD28fsuP1+IdXcl8dJ3R/rvW4NtpHAe7d5slzQ0XM49Qe4AU/Ef6b/xyUOQUYfukTO/i4 + I+cwhycELW2JO0VajNX2mMLww1WYL+4pnR4UMn/rH90q8Q3IAQYTVG12QaZPq4K+8TGH33Bm0f2m + MeNaM3ovYxeleO1ri7Jov/mtdus6YPBrpJv+edbQmfwBdwmDPIFPbAu275uFHP2dFosdox4Gba6Q + mPeVmKe9Kck7n2Apzyww9NTeI5AGEdQ4W0y9J+yPJ0l8kF2fedvPPnTQJuET3eX3mS6XRC3lz6Ho + guZUeGD9MtSGrFoiFI5CCkbTuDNQv0IWxSOqR3o7nQco/64PtOtHj5VfHgO/eaxgaFRE3+D7VEK+ + 8wpiz4I3Lu/Fs6FpxQdiG64G+OZzyOClplNwBNYHbD1VSvlFhQiv2mcuthevLfBmLSJSFK5rphML + DLhwUY/c4kBHPIoBBFYgYuTH51Jf+987kv/4xyTNGK92VUNwqdeJeNUkFrPC9q7M3MKRJGvDejQ0 + Rea4ORQG1PNAvEVmmcHPVinkfp8Fb7Xi1pe3z5diykECthdT+bJeDSlyU0tttv33gxuLLeTxXTxO + tayKsOGrCzkx7Ao27/ooQYIPEfLMCTbUpu9UdsfojNQ+4gvKar0G+eP9RLQd/2fRbLR/63NBm+Et + sii4kL2rN5IR3NPlqdAFDkRbia1bgjeXTQWP6YlcyUkcSTwN1TeEO37h0v1dxqUObhg+sKOj50FY + 42WYFV7+wzPvJT689RWJOWzoXSQWM97A2j9OGP7E95085E9CN3QmNTxmQ42cdmDpVMuOeDTrE09c + eTjRbTFDQ/56kUais+wWwhMTA5hOniGnaJOY7PwlC179JLaKjmCT0TrJ8/niIs0ZTU9QbW8Bfbjd + yR/+rieOZf/0Du7Mcxqv/kHdQGKGFHn5W6ELe+A6OEoyCJarXIyU/zx4iJ7njWi10heL07o1LBr7 + hpJTawKOcSkPZ50w5MQrKd3qH6ih3XwAur/4e0MFPpzg5otXcsfKZ9yK+MvC4+1XBcLM1B69ocaQ + BVWOAumi8TodXo9KesSvmnifpaH732dBQwsRw3Pi6ux57Z5AlGUFqZawjfv4KrA8Uo0ob58ZsaWH + PnDGc08K/5cX23CXnnD4vD5738+02Q5hKoGnmi/B+fxo9VWNWAyH7vkldvvO6Q+8qvrPf5BoRWO8 + QPbKA35jEmK56lrMSm+1kFkOHlJAdtBfYvbLIBmbBgVMaIzc9XwNIdrKN+bdfQueenRKcH+UNimQ + Nsdb95giwNVbSU5V6ut/ehe6tvbGTGu03qLtp9DPfLmh82c7Fdw8hIvsvYYAOfAg6tOw31RZP5YA + 2ZqqeNvd/QTQM5iZBI7RF9vpkChwatoxYCYrAzSTLq5cy+BNSlYMi3XIxAk2P5IRzzAJIH/8to/3 + 3/iD7bm+S3kFm4Kub3AthD6NJFjBUt1Pdc/emlwumTx05ZdcjgOgn1ckZrAHnzNC3JXq6ytachlU + T5tcUotrloPJMfLf+rA/sarzTLk8YX4vIqJ0oevh5eVFIGWCGTc7X1L5miwwbRofBURVR/44pxO0 + SfTEh3uoFOxPyzeQF/UvkJWbTtfBf7mQ2sKLqAKKAZFOIgu5dc3/6evJlWUMe9gh5M1bNi72Mcng + FD1Tsv97s47ASWFAc4YEu/7ewtRnoPBNr0i5jHyxQPbBQ+LlITozJ3ekx3vQwmt8TQhC/aBv6fFs + SIPQQmIvShBv4pqz0udw78jJFDudnIiiQJ/wFjEqL/j3/aDgMx09SmaK145/TLAH3zNy7/zqbUkU + u8A+MgoWT9LmfexqgPDuoJyctaorNvaobPK5XCJy08/nBh8OqiWvv/5H0jFXPO7DiRWMlEnCh2a0 + va33KYYrm3rEEpXXSF04MrLvdzk5abKsLw/KQjjXfYASP1O9/XlZQNtfikr3tza/7Btt8q9iLlj+ + m4+XCzLg/rx/fmWc1qROIdtMx4BJ4rFYpjILpSXSIArk5zNeOdaVoBMPFRY3JwS4nBX3Lw8gyqDc + G4wjvwYfQV6R+vj8dFpfNOtvvgbLIt+KNX6a7F++QW7AqIuNO84MODapgddX2RXLW6w6SFTB2PGQ + LZbkjiDMSCUFpEuVhmeSWPvjf3S+EKfYIjPJ//5/8BFPvD4b1lwCsQ3fSGk+l/GHFSRKFo0W/N63 + iJPVOmgi//iGO95EI7m05yc0dFEjj4l89DX4gAXkl8OD6J5XxAvzfefyrj8RSj8nwC76t4RE4y0S + eOeBLnV+jOCuv5F6HAD4XQ2B//N3SI/2PtN/87HInhyWjzFp9jyiAsxQ34jmRSulLmwY0FNVR5pv + zXovi4INu05Sg7Zu1Ya1b/oiO4VxRc+fzOuLjx48dGyGCYj8zeLt8+5zqKhnHV1epRVz1eqL8PXz + FoSg4jXs8oO+2B8fPN5qxS54g79k8iN+1AGffgowuVYcQJ5MX3S/jHW84civYMQZgJzzOAaTp90M + aA3TJ9jHm65M+1Xgjp8YDl7j7ZtDE3ijs4GUnV8WdNImKEuPjQStYej8CbxECOIfwqvn3AC31QMP + 9SvDEvunhw2uT7UEhYP0wnz50MbuoQkR8KqtRZ5yreJlKsPo7+8FxGKR3g8/Y4LI6gfiWtcejAow + IDjnA0CqVGr7PULzAI25faPgiDElv6eYwGfUmPiAetejvtn1ciYFJRbn65WuLytl4RbaGik2vtWp + Wy+L/M28X5CKNRdvxokE8PGyTWJ6hG02HBn7vSxIDkaknQs2TRYGzD9TRXlwk0cq3zMRyqx2QMGl + j8Bm+xErvX7OgkomUPUlfhgG5FaaIwcpP0r3/A9GtksC5ugf9Xm6P0TAutodBe/7ONLH1vjyFStc + 0L5ucbx5D0mEAVdfkQ/UiG5uyNp/vy+I2Wujr7yqYkgf1nnnr/bPb7nSb7O6HT96fZDRio+frVaI + XjwdsNT5Gsl//hct70znnr0bwQuvZkTvvJtH49tFk/f5HUBWXOL1cTtl8rUUK6Td/bnYe4cwMG3e + PjotJwNwm0FrGGx3uOOl5bHZ9enut03zyHqzDJgh9+pAQn0V7fwWL6jiRFm6TSa5mrw2LmlnTfBt + aj4e2uYZL61rY2lYXQd/7icpptWDryAb3DikmqFJCatVinxYFIycybGLf/kOeAQFXo9DAdZXwIZ/ + eIrSob8D9gGjXN66jiM+l3fe/FTlf3lqINwdmS7bIcvh69L26LaFp5h9mQ8D7vkvUl9lFy/yy4Pg + V8ELQs7rO64/b4UQ60tDHkRmxqH+0QpEwbcmyjRu+vp967ysTkaJki+QKdZ/eQ9v1ibizWNPDZtu + VST/rvFMNN8664v9+vlAzL5ysOMLWMpLm0I4FRdknh4kXtX9Xg1dFx67frMLVm4UQzaty+Ff/rx5 + oPb/+BYzt5Ur6M738s5f6FSJKh3mMapBqoY1sdRHB5aj47bQT5wmcO7zzdtGMWDAzq/B5xVCgB+a + EML0dzgQ/RXci62cFRumDj8R0zTKeCtn24Zi9pGJk1luvB7Q1f3DQ6IGhgJ4uwsUwF3lhvgX4ziS + cckyKA4kQRqAYkzka7JBBapCQGb+0Kzk3gdQZftvAJbHRaeFXvBg1xdIv+q1N4TPIQerLyz/1uPa + /34RHNvGJt4hD5rlMsNe6F80RR7S5oJOrtdD329z8oolVKzkXgUyT/CXKJMDC+I7wwIcrfaCYxwR + nTdmAMGNnSxywTJu5p2vjg/j2SL9fj0VHLloC7BqtyDmb79XrU5lFz602xmp8MoW05mxNenP7yLu + o49czt5r6VVPMtE89jsuRlMo8MmkAAuG2tMNE8ADyi8zKQbtp+M3TyDYBOIiR5wjQOebm8GzZqzo + zspNPJs9bwBR1bhgOEGuWVyrCKBrHl3iO1pL5+8p62Ea5QJx+Xnw1tm2bXiyqpKonnOjm/fYRGg/ + XefvfeqbwKDoj3+R/ftYxRKuywKld/4hxnzBgAbRnIH8fo+IF1TCuE7C2QePQ5zhdZufOsfBPoGX + /PwOZr4XvG3X67Bjgfxf/8wInwy2ob+SG9GP3sqSdwv39RDwt5um0wO0MPw69oiMmxl4218evm4B + i7xlVhs+C34pTGigIq0xD/Fat+ET6mXxxV8os+MWOFYAhJnaAdjzeyoNTgmOoxigS+GqHms0hQYV + YSpI1r5zMLGdm8F0OKjo1PZrvO35F3y0XyG4nNmlwPN5DOA7td/oNpdTvI+vDefB0olGrH78wyPQ + zSlLguyzNAt/vfCy1usdOTe/tvk+wqiFu55F7ik/gBmqRx9K+uOG3Dyz6IeeQyjP+szg+kg58OdH + YPy9fsj9xR8b2p/l8viHh2bbnQE9PlwMNTq5qLg+rjH2QB3A6+UsE/Uc5c3yfDYWxL3dIq2Lzg1t + lXsNLcBLCJVPSd/zNEO2mbjc6w8nT/gbz/6G/IAxNl3ntZOrgXxovsQZr7O+kVHAsLG/OlF4tabE + ZYMa7H4o6ASce9sCt1b2JzIHLBnUPX/ZNJhH8BXAKfmAboCeBd4rkxFb7yewwLweQA9bhM7Lix1x + g0sWVN0JIgOLoPlh+5PKt/P+1jdybpbtEGZHguaJnFzXK6b9s+x3kYT+vQ/U9NHfeCD9fSu9P38h + 7fk6ZjJdosv5BiIYMf0JRS/BHHn4Rk8YtJmCkoj2lIYqZIVR8U74+PGH3W9WChw/lUvidRiacc+b + gMCAB3IPF7ahZu1EcH9ehG7Dky4PmGdQVaIO8/1a7nnjFsDsZ53IKyk/RZcFvwRenJNPtI3P9G39 + 9hNghDsTcLK3dxUu4wC2BGHk+MIp7kvhaABUXV2kMHHv0bXtUlCGVkP+8oZlzkoXvJRnHECxf4FV + DJSnnMJTiuUkVynbHM0NMMf3lbjXdqRbvLil9D5wCnIX7QKmff4D/HwayDnsXTcO3E+CqcNOeGOE + dzGF3qTA3bwGa7YGHqcXhwTmrcEiXWjgfqp/i+T8dAHoJWBL5/Y8CN7qlqA/v03s66bBj4UdZC91 + 66335jnAHR+Ra1L6hz8uLGrvGrwtIWo2X9E7qMZVRC7D+ItH1PQhHG1ywdhmBUBsMvuQves3DPb1 + L/zYb/73mThYMUd22xj2b30Fx/od6VP88A34cI839ALPa8MKd+BCkct4FIgnzVua43kDXhbccX+t + +xi/D2YOJV99B8d54XT80A4RZEwnQS54f3Q6BxOEQehE+3jY+l6fLGUzr2dyotdnvPzljZ4BZ/yN + MAfW7CknYK8vIqfsFW9BzBzA5f5ckaFVebzrW1HuSOmhRDmem+nXNpk8YiMh2a5/t7+88S+/2uu5 + BbZ1OQeM/3UCqfHfYB74XgM5s1xRejtdmkWHPwVoy2e/1wRdx01tjwn8lI5ETJ/+dXk+uNB/YEK8 + y2zS/f1lkGisRZ4XS9a3ReRLQL7+CeVjkDZTKxND2v0q8eK28Win8JNsNoaIbnw9NdNen4WH+MwF + 7NCl8VbrePurrxCj+DZ0gZHpy+WwGcFRXy26/LR8AaFkBOjWrZQuoTdpR/3wi//yaX3PH0TYMS8H + GfcgBH/4D8BRiZBzyDxP4CpYgfIdiMEiWHdAc4lJ4NNhJGQ8lm7cnuvvCX3MGXt+WxVbMgXJX70C + 83/1qXt3UeROH67kvInfcam+M4a7fyXOvt7Xv3wrCj418llx+cd3snVvQ7xyWdrQn6pqENjyTPTH + 129+e71c+n+2FPD/e0tBRQOJqGfJojw1b7b0hYqBvNtHazh8szG8hkFDAj1VG1KusgtLfJWIxW2H + mF6gGsDz8/vBByFK6CY4bgZ5oum4tkyi0xcDQvjs1xxp4oPXaVpMPXgdp4AY1uCPq8g3rWyd+pic + EKq9pQZZBR+98SPWhTe8Sdv2q1eELEPlfqyN/QpTJF1VPiPa2zIKwTKvNoynEJHU7R6U9owUwYU/ + Dsh1mrz4FVKUQkcOPOI78q9Zk9Ollq3VPQTrFCGwFb/3U56OT4qMl1jFwzUOGfkLTjby1GZvZPkR + A1DccoVEnKXF28mnNsiWoxEMjecV83rgGTBf6xCLS1uM9Fm7EHLc5Yoyv32NAjcWKWR+x5XcLD9v + lnbA9hF8Dh2WioWni/N+hvBxiDCywE8t6KEFGmx0fyDFZVML3tD7RZ6OJSVF4ZkFh06RAun0GjCt + X3W8mCCuZc0VryTWn7M3OaqUw9KZOnI7HYr9ajmwweg3d8jICzBOxelWQ5XiENn3TNQ3U3Yy2Hfo + FxzOiRP3HeO1gHCVgozmqXtCyMANKqlq4ZGTvXG9PupKTlrhgLTidygovLESnK5VhuygUJv1McdY + flN/I3nvRgV7lB4sfHhJjFzN70Ze1EZLjq+WG/x934bSswJfIt3b68CwoDFxW/gghy8KFuvacJyr + dnIu3b/oYr81wCepUUOjaBlSsK4bL847DWF8nJ/77208NlBXCTJiDPHBAx9vZsNKlJmzU5BbSJOR + ALUR94gB4uPm2w21uVqUp/W6kXt+y+jCSWkCMRVjlPQP1xNUR83kWu1k/H2xXrMBYlpAPOcW0WYe + elv765/y8xB26MIcf41QEqeFaeUXJLxKPuWcVS3l+yJCZPR9Fq+brOcQ3VUTpRe+9bgPP3cwvbAh + udgnc2Q/yiEAnrkCEgYvsSBn8crAY/nSkC2pSsylUs5DjBON3JiiGTHRJgtWadkiBx1mOhVf2sGU + aT+4bgxKx+srzGVHBgamX7GLKerHBXL4hPAe3jXEL+Yeptwyorg2TV3woYplqb0eycubUp3Tc5GB + muq9MHwnRbEaq8NIh6O/IMe+e8W+J2eTue7okpjVI7ou3ZbBUqveJN38cqTDCgYoSZyJihi89Ll9 + vBVZ1mYW6fqvKFi59VPw/E0pyUhuxfyBGyUQVmcdpc3hALY7R0Twu7RnlC73olgIo3XwytoMQqHk + 63yIPlhmiqYLDth4eZtSXVqZ64CLnKNz8ChQG0l++oyCD7n9BlyuHCeoXJMzQZ14b5ZTsGqyo78e + 6FwsGt1IY7vwYIkuuujxRJfi9Kpg4Ojn4NagymMnVvRBr/zuyPlki04vxWxDfON5PMsYj1vCV518 + vWU9yfz2MK4/fragUZUpsg7I0IWA6BbczMuMNLpfV0zwKRNPbf4O+m2VdDoS24J0YwTkp2vtbel0 + rWWDYSsU678iXhX3ZP17X2VuXwE/HEQGPkvVwCS5Vo3AmaEri0nnE5RZa7N+rVsKnYtLUE5Todni + 1yuH0RJQdKIfaVzOxqeEJBx+xLlkm7c/vw1vVRAT46Ndx8Vi2UCet6hDKD4N48JIjwQmt3xB6jOp + 9fVyFyK4njMeGSsfeDwgpgGOgSUQwwpRPANZy6TBn2ZykroLmJ6rCWE+MRlxpRsGb65bJXn4csG+ + Q/E0spEdYlnrFJ7cP+c3FXToTsJ4gCfivtL7uD6VYwCHS2uSUmFqysVnkYfT456StGHXkX5W1gXz + dnghZV9/bMfoHciKhCI0H0OwvaHlQ1bpHVTCigH0kh07mNum+o//hEc/RNAfWwul9qPy2EuwaHJo + eB0xze/DW6ubG8DqeauRftfkZpb09yLLfXVCOfWceNj6bgM/Am/kUkYXwNtWzMJj87PRVQt/8SbW + AQMJUSi57/NzjVe7hI+e1sR3bQGsNwoqeJouL2Ldcj7egnJKYI5ii/hMTfR1PTAQarDSiN2pdfy7 + 63MI7Y6ciG0zECxdThl5XEYVnbDaF2tfJQa8X7eCWAJLmqUwRgij4GsG4Nfsu25vcg6/UDOCNX+F + BesK3xCSrPkipTPvnoBsNEGa+m8SfLA78kr54WWd1zBe2IgDraNKGRgLY89aOQssSrHYcvJsOaTL + ZQq4l3ThZSF3W2Rwl3qch/AtAaipOiqeq62vjSJOcpU+W3xPmIRyoOwSecffnb8AnbRgreW79Uiw + 3F79kaM324f3oLuikBgHumDjDeWlGt7IiXOtEJAHSujgr0zc0yKCjS2rRF5jSUe3XB0KwSF6B4Pn + 90FK5laBNdS7UP7ExxilN2R77M6nEkVKQSJnvFCupFT5h4+2mUneZjT+AL8pWslJUJDHT6mmwfmZ + usStmAnQIPhqIOxTg2g0VsAsWY8U2LdeR2H1tujGZWwr184DILN9tB7NAqyIyfa+7Fdz6eNCWzOR + jVw0if9abMr9jXe0HCfiKAxPVzmOn3Ct+jsylL4s+MO2pPIhsBCyTM0b17NQhX/riSQDx9PthDos + R2++J57+MZrN22QWisVyIXaktn94YkDHgT/80AH1tnc5pEC79SNKhsFu+G/GGPBNgw2dFVcrhtRf + e2iegxG5yt2MV1UnGwy924h8hanBJh1DV74ZAgkOkiiMqy8VPAzsJEHnq/we5/Tm+ZDgk4A5D4Xe + ln54H6b96Y6PB0X1NhCVCywUiUVKgL/Fv/F9lTMXbFooF5QzQxuqKREwXR6LN3XSi4XG20GBpHU6 + mLnf/ARb0rJIv1/8Zm6qsoOH5Hb/m98xPTHcBqNhqMkp6a0Yz1Ohyfv7J8rhWXh88XuXIL8uMQkE + 8NVX5Jqt/MfHScplYOezHk714UtQUgVgC9E8QUN/yFg6LRkYhoMIoUPqI9IY09E3K86fkD6yDtfi + 9PH6ZjVL+Cx1Y28DtdE1vXkBHPrFRYWcVd666sMGHa99EsvifDCcrTgFLFh+CO38th5/LQNVJ+xJ + pm5CvDqr+pTqrkzI33rAupUkcpDiF9Esk3jbudF7eGj6CvkKoWCVF335x0elkDoNG70fESRwMkk+ + N2lBFFRhKPvPgZjrGQAajykP/eHnkqR/DPryMWpGlpTiGYgk7+J5n59H24FrIHjseSRk3becPM0b + SZc7KDZ/0UI4is0Bv9oRePjTODb0V/tG7nl3AoI7vli4r5dAPORtsYD5FUCreczEboO3R+8qyeB4 + YE74YFy1ZtnxAEJN15E9Z6mHD1ESwc+QvwJZlZtxiXOOgZWUH5BSRQJYqPF7wgmpHgqmKgIC6woR + +Hs/gU1MuqLh3cNttBR0WaWaUpP4BjDLmBDnmAXeepHiFN4f4x0D8H6A5feVDBB8jAGdHhvYz5Ej + CN0KjcSX4BRP4EwT+ZctEbFOCtCX+Qx5cFXZjFif0vjjm72RdpTh6jrKgIqrZB+BXd9IYM1csbHM + YYMS2FRi9A9X57R3GMLsqJh7S6a1mW7vcgNZXR3JlX3U3pbBUwBDWUzI5VI5zd96BPLF3K/2viYj + fZp7xG/YPMrumehN4nfpoPBDPTq9zwgsVuaJ//SGdr4kzfY+HCH4w9+8W7G+qvp3g4GdJsS9b6f4 + D5+BWKtFMKS+MfKFdWfhIaD23iZ0GreGoBY6WcoGXK9b9FHcmRCshWGTHe/0OeWJJYX8hEhGlZ+3 + HaIyApc3vwQgh2m8/fmvi3g6kvRaWnTYpryCWV0fiSWfKaCWo0jyjzC3YJPCWzGvTdD/83shG10B + l950H1hXsyZ//EffUbjIT4M9kF3PgfEY1BXkwzuPAvV1aBZtU11Zw+xCYveoNgt3s7D8fkUplhpv + jMljvPIQzN5I/I9z9lYn/OTA1V9XpImT6QmtWJRgasQGpfv4LptnbxIrCTNCDu7G9Vk9LIDV24DX + 8yiAqT3LPDCqZ0rMKz94xCFeC3e9gPQ6pPE4mRcX6N7HIrp7VMclPAs8aPVjQQK7Sun6VNYAvhqk + EQd3H7qF8f0p2a+3iszD71uskrtvQVYGJ+Cc8wEsOz4CQfhQ4uz8OpXvJITsJ34EvX9f4+2jzRac + r1WIIXNTwJj1wyJVR2wR88f3Os2Ia4DCwRghcbx7P/vmT7BqWYIl6C7FMg+zDRPl2JLgl8zFqqxu + CT/n3iH+uxmKtamS7p9/DhDwvFWki/bnH4n1/ekF//KXHhyu4ZUYkz6BbclkS9r5PTgMTxhjwZMZ + ue23LWC2ONFZ8St2UDp9GmQWOSyI+lnxH76gPQ+IOcg3lnyFKgxkvnY8IQs6BfYv+ELxZzwBomm1 + 9c+/nnZ/POHWZGHysTTkbTcbUJ+RQykMjxDpH573JrH1ecimxyg4Wp0DCARGBcSl6JAVqFv8j++W + yzVHp71QvahiX4KF91fyvOCpIdZn9WHV8gQZeTgXxLieUsCpqYRsTzl7fI8aX84W3wu24neIKc8s + m2zfBh2vo3EHC5dvT8hfkg3Zcpb8dz3ufiUY3XXQ//AGZkfNJKcGVfq2lD0LrenyxSS3VbqyPudC + a2xxAGaH6tvOD//ylTvXlMVQap0lb0nHovMr/Yx0JIohX34EE017TTEFb7SBnx5oAS0nVSeq42Tw + 8AM/pIK4A//mz2rGHNIel63BlynVwN16JRhkjEV56KgSPKwmQZ5/LRv8yA4G3J+XuNANY/5sFQk8 + obeD/vzC+qyuFsR2QwJZcetiKdUlg08fKij9na+UP0J9gn/+s7h96madOkkCQClSosxWWPCXKVXk + 5V4WJDgmXrEJPY6gg1kFPcTr0JDY2xiw51FYdpyfN62XygLg9i0w83kV4wb7eQE7HuClendg5ZvA + hv8+O1ZSbAduFOGudzGrcRJdffmUQfalxf/8LJ8v9gb85mESRZUCisWPhOHvK6SYU/QBrMc5xNA0 + TwPSCjGIN2GKNHgRzSNS7hUZR/BGC4CuawQHsXLBeMnWDp4/1obOd7yNiz9W/F+e8S9/IYlZ9NKu + 7//pLayhry//wvGCF7kam+26OCEAoOGJZ2advjzXM4SMGT6IbX5/OqVXLZUR/l6J1r3seHtkggUa + HTTE4njF4+KwzeDPOynIXLXzyO/zBd7HZETp3/z/8zth3m/oDz+5l3RnoR98Z8ws17ahThSH8CE4 + M1GfJvUwSk3lnx6M1pIBC1g1KHNE8UjKbYdi+gpTKL2BueC77nHxdta+LbTGDgfsgw91fG68Hu5+ + njjc5hX0J+YMpM24BA0xRrpR8+UCfxhdpPzxa0zcDu58jJ4fPDSUZ8QNjsX6Q2o2EY8wX9xB52IT + hPb1shDGbeUcpA2e63r05uB8TKHjMD9M9R8o6JkbcuidfZ1oTqWPnHAHEeTkPEWm3ycxEdkZg12v + EH1Eubcm+rz8rV+iy5d+3KIPj//GlxgCivQlX4MSKPuW3tP7TOhC3lEIzeUZID3UU0qvryyD7QEK + mKv6LaYaw0SSwZMX0bcBj9ORUVv5/bzlyAasOgqjJz7hJe8HcsfdB8xNqyRyeNdk4gtvgdKOKC0U + Ir1BjvDxGzY8H1go++WAtFesUZY8ugqGF1bc9bo6CtXtIMKpnB4k09Qunr+ubkC10xhylo+QUun7 + tWT9frj8zf94060ygf7YWcSdNzPmTDfo4EJIS9TzKNBxbdkafLc4wEO4n9o8TS8N7s+D9M94ois7 + XwLYxn5Nouh4GgXOeEE48Oc7HnxmP/+9ehC0gsDj8drsF+tY11Te8+QAZm2zX3wpJvC1fs7Eydrb + uOdTizwW9IcznwbNGs8JBosmI2RNvRtTs58WqYbz4y9Pa6bzV7YAz5inAJStM272rymB8fYQll7p + sZm+rDjB0fi2mKsHbeT++FiOFIDne2PEdLSNCUqpOKDAdBp9e78eEtznc1AtE9Vp0h7qPz+H1DJa + KREvTwvsehhFxVx5a3K610DQx4wg55hQXkPfAIrnzCJGL5yK0c6kDuqueEbnPW+ib+IY//RU4vCb + N0lJPkCZTD5Jg1AtlpsqSuAvL3SdbNK5PW8AZr3APX9C+nTBsQSflViie+lKxab/Rgg1tlCJ+tu3 + UFwVKYDf9gv3PODoLYmAIyhNpUTMqt+KpWpPKfSP+jU4HjPs0WUsWGidhpicH85J5+tUV4B+8W5E + CydH//M7oCZhgIqdH4YxkzvJ+zH3AK44Hde+Ki3QXDoOz3z905fxQTS4DZy845nXVC4oFCBrhCU+ + tmNAq6uRQCPGCgnU16vBQZUZMEtsjKL2kem9Uog22N8fCqPE9Yi8rgOcT7ZJsu/hQqcNZxnkO6Dh + w+v9AbSvVQj/6hNnGQeNcGLkBTqy7+FPotuANXPhCUovLYjzzat4OV3aFsYP0SCprJnj+p5jH7Ap + iIJIMFZQeeuJgfD7iZHKHJ1xU8qZhf2Ne6Lg6qj6mrl+B78vdUS6aSmxUEaXCPzprzNJ9VH482O6 + K52JvdcXNvGzYXA/ZSG6dZwG1ih+MfAouQkJGPEx/upTpsDzthnIlPYujvml7qARTwqxR1Zv6KsY + BzE6iz6KC+NMV3DgIJxO9hn94f0PS2EKZca47f64i7HKDx3kwkH904PePFdFC2FWIfQIr7j5V6+Z + LHQJpoSpAMFXjZWHwhCJbguXYo3onladnAfJiryPN/EjTfBH1AIpz2M8ruOcB1I3KT567XnsRg7i + Ez7y4obFw2drVve88n/+D1lvvtZnce/qsudlyLs7V/1fvpOSy5N4lesXbMn4LZTa2zGoNrx3ZWGW + DWL245O//Jznt2MCerAeifddAoD/8t6dT4L1PXKAalptyBWKnsHgNFK8+6cB2o7KEeUo2XTa6yNQ + c6Ur0b8/oaDDVU/hrUgA+cNTvPP/Xz6PCk4eRzoDS5ND7b0Srfi94n/59XRyz4E8AuKR/pn6cBqN + HsNhfhVr/fs+/+ptSI2fR4/iq8bDtX/fiB682pjseTvsHncGWZizAX+NMwbGW3NH50rKdNqoOAer + wD+RoWrHcZRs3YdjHfLk+TOZYtrXE3gK3gfpyyPUBc7WMYylPkfZ7cM3tKm1UmYiMmHW2rta7P4D + 0ukxkNeuL2Z5OySAbbuWeMTTi0ll4SQVuDMDfuqHYqGnhwb8evFROV23Bu/1GvC2jQsyr7zrCdor + z6BpmgPeiOjH2Eot7Q/vg3X3r9u6rbycwOj0j6+W4Dn4AL8UQLzdf2/4Qydw7R4T8dx18Ih9tVgg + c3KK1/h51P/yrWO88hVRdv22FB9Fkfa8H50D6BaCIN5LiD+VHfz5u0XD11ze8yN0/5xVyu7+WpqQ + 7gV/9UlKWewfDf0lI6dZSrDc2S2QnzFykfEe32D1ZZRBnruc8XyV1YZX+bqFzdcxyauvfLqA+eYD + 8xjZWJJuAaAKqib5S486Ceyr3QhVtlgyI3x1EmSkAZsr2+K/eiE6J7+YDpdXC/XIiNHf9wnmlNUw + 5GiMgmfM7+iiGPAQrHYgmfKt2XxfGv78HWZ74Rv/zYc/fYTUo2XHW/y6ZbBkuRMydj3FX5wgg24+ + 5sQ6KJw3d3M+/emtPT9gxy39/SBs5OGCkFa/PVp76/NfPdblV1/fflNRwV1vo+uON7vfNf7lPcdh + TfR1ny+wQuETb5ylFYvxThcwRBGD/vK23R8F8DT7BQrZt0HpXg8Bt+itIpRcDmCvV2RQrJkb0cRH + qvPa4kUwSKcXuex6YiP1CcK1WFVyh23cULX/hHD310hLzVnfLv7mHpEqKEQ5zIO351msfHqyIbqd + ywosl7FP4f2Uh0GdRB5d/+oR2znD+LDXU+ov12WyzFg3ZJX3R7yMj68CU++m/40/HchBLPctliY5 + pzahy5JLEIpi9Q3Wb9zTUb5cW7iJDQokJ/M9Lhv6XvppsbUfuXqBHT8SmP0wE4DKnQrMpaomd6MZ + kkw/cIA+xgcLB8G9YrmqJLpwuVTCrQ4tci/dvFijJHRlXh8rot9+xwI35NQBAN48sm2mBNtNwy3M + fKbH48QYYA3CVoIJuHnk3/Oc7Utw/H+2FAj/e0vBORUkooki21AY2bmUxb2Ak3Zz4g3ZzwBi4XEi + DrzPMV1SM5KZhXIBcI5cs963Fw99LdOJ9XYfYNPboYe2GO4QerBi/k35EHgH1kUhrW4N9673XXYv + Nyb6oQ7BuqWLIV8Kf0KOMHnextCyhCOug+D4bRtvI0ZWwun7SVE5DKJHQTqnMJv7EymOP83jNsIq + 8qOwVOK9XQRw1do8XO5ZiHJ3OHj4frQ36H7SHOdXeomp8W00eXhPPDLOb6KPi6xGsDsOEENgdvEG + wJuRi0zq8XQUcLHlZAvhd+04ElW62+DDxdVgk04U6fmvBvPqVx0UzHeNoX7hwKK2Jxae8SXa7waJ + R+FxumD5kK8myTBXUexZSQDTwn8iD1eI0v3SC1ispEJudfuN8+s8POGNZl9y7c0dYlbOlsX645Gi + VwBYKvGsABxdb8iq3ge6lLyuyQuuFJKXsBmJkIwpEKfUw9UQFCMrnNtAlkev3e/iYb1Vqd4R5GDg + IstnLpSth3sLf+3xgSynGcGcdEEChq5NkfsQrgVv2QcXNgs2kP0f0q5ka1WeWV8QA+kkxZBORJoE + ARVngIhig3QBcvVn8e5v+M/OeK/XrUlVPU0llcOvr2e9nSYV39KYnC0lQHwUh091ymY6pheljGnD + x6MqJzKjxTVJPbF6abzqMmPBG1+6e8I0IkO1N2I6Krvul7PBhQnsQAvpPvPtnB8ftQPrfpLgooSx + sEmvLjiFrJPbabY73q1HGa6BfKGRLCf1cqqbCd56yVM9Ek6I972Og2c5KURL+Es3WqPiwCGKDFo8 + UvBGb0ixAkm2o3gOB3MhztlXscvnNHp8lXjy7wcAr8wfZI3fXHRJOyKifxE9TF/Vo9kpcKDQPkdq + 2Z3pic1OydTsQijRXnCvhfhIE7ih5Egv6sOq+SYJG7UM5APm2/PVXLR+cmHnnS7kSpuvJyqW/ATh + 3ul0L9y0TjhjL4P9lGxpvO0UNOuXbILTiS+Jtom+bFJSGOEqqnd6yXw7XuTPgYNSfx/J3hRvazzt + DfhpnE3c+rC+5fJ9RKrQ3Lejo0FbT9V6C6O7/26jsDOuOfsV4aSeHMcmWfwxY/H2fS3q3QxdGkmf + NBZKCgp43G8m9vra4ZDbogyjizjMkVFD7OkmI5zwdUfzmCf1ND17B8Y++VJbKgxPqIcrKJ8neRGn + Nqd6thD1AUWDP77r9NHxwii0MFYmpab20dj06eMX3A+PA0m/Pe549RRO4GV9RkLi191yLAQMFukv + xL3ov3jun78nXMpQpIfpuIsnGOJeVaxnMr4+mp4LSS6KqoFuH/w6M88TTperrLy3bkH3kj7FM2V3 + Du6/+Uq8XI7r5d4My3okKiJeoG7XwY5cBXa1aejeCZxcOkJrg13mlLhuso+FwrgC7EP7R3bObZMv + 7GQrYMSMo+5geZ24PdxK0A6cTUzBALZA8oa/fKJu3u5jWl72DlR4exhpnktmf2aaoRbHzUT8wJ+8 + BXN2qwaV4JEMq7t8Vt7mC13OQkl3mf3upJd3G6HTVZv+5bM07VMRlu3zuNZP0xQGyanAc9wniRaj + qV/XIDAANhNPzlj4ouWWTgnQXtpTnOa1J31Y1Ktyn3g0rc2pm8VdYqvmOvjR2++Djh1PHwum+4+Q + LCtoPMnddVR2LXaIqUHaCcnHPqNHGWbEf93cfFxIA/B2zZzacflGy0jnVJVeWUx9Yn68KaWXUrXF + fYpBu48eS/K0hTyVGxrtcRWLyfUaQS+W+3/5xvrnZtzeQ3jS8Hg91hKfklC6lbNDL75o53M4ZDyY + i6GRQGmTWvgaigFZsSNYCo99PLXj7QUa0zEW4s+cT8TRDDVaBxcr9eEYC99zaIA/LAvx+t8VCfeH + U/ztD03WeBotI8V/8U0yEt/MORW1VA3QpiWubnjxtDkfFzgf7yUlV2mfi/TTKkgmzCBmEBuMyeUi + qrt30tBTQmj3l5+Q3yaHXiDua3qPWv8f/m3g29VMUX8JnOzNQM3nYKNZo7celHvL8HOjPuvfOCga + 9JL0ofsvr3jsHj2xGmDTwMrndcklrg/WQZGtPkoQ+zX/dQ8OBGdBoTZ/4T328c89eu5PT+pu17e3 + 9frXwPYVWcTzrz/EbHA1qD6vhWrjQ0eSTqenitW2Jtqaj/PPRBr4oZWToyZe2GwIWqgGLDfJbpub + SHBkL4JIjk4Ef/qETROxHai2TkvK+jiy5YC8Rj05rj1yR4SZqGgYgFtvTUU2yrzFswsMeyM7Ui+X + WTfLUvVSC5ZdSZh1QS06F9mHt17wpPjZTfwPf1d8pXdf2nhLe6I82IERktSVXp1UqK4DFq45ejU/ + HzSZapqqVaIpJOGVOe4OmfxCf/X36si1KXL2UoEUEwVvyS5E4soPQDikBtU0c+4mXrZcGB/Yof5h + br22aXwRbv29opb5Sdha7zAEB+9JTMOdulk1FQdCM+KxLG4txH/J14Il3TUktbHdSYZwLtRpuHyp + k236erHyxFGPJkuo/zCsuA0yhMGbyTr4V9URX0q+AZpGbLJ3giafd9dkUs/VmdBYg7SexPfXVW87 + 7rjeqqjjpbmGqTogcT9KW8zFi5DNhbq5nVXcrXxutPLEVURJcEloh5t4LG63EBbLPY6NBm034/7K + I+yK+b/621s/JYNQtIAYe1zli6JhDiy13eBJuASIpxbXgvY+iyPzdy0b7+sgt7PJbCyrdEIvZSP3 + YH2CL/U/euax82PzguRDb8SgzyT+lDMfqne5dUlARD/n2/H0gu0rtIhld7XJtustEk+j7iiPgob+ + 6gNyUuOBv+rD6gaaFQYy99Od4Kulm/yDVTaEOI+pu+sO8ZwSP1Ob9ge4nIyTx0t85cPwyiiWv/1Y + szSxHDWzfhI9f/UYMYIeloop541z0vvect1qk7p/Ng8S9NcnG2vndlYUujXJgT8d4u4UGe52jU+s + pPG7W8yj1YBiVcm/+J9Cbi7VkU0aCaGqvGn9fur0tZs13iY03tLp/BfPo+rkn26pwlaEhy0YNN1p + Yz2xRO7BGY8VNZOlZ31KLwVsqCLQ4GWkNWtjN0KMsHCcVj44FYefBbHanEhJRo3x8/XUgogXg+6c + 6V3/Il/PVE8bXGoxM/cm2i0tbP1XTrPB6moWKJWt/uWznz1DbzKaOUVBasSYlZbD2HxsEhjdLUev + h4fu8Y91tKPk5gbmlnLn0UtPLFAi3NP9Wq/FcPvo1b6WCdVRMXlzT8ynIhZlNv7xxbnFRgWpbm/w + +Zme0HBWhjOgd2wR93fe5IP/+YZQcZo7vgzj7U3jdPmgduti4mVJjWb1ErpgYrMkTiEaiH+2xxc8 + +Hk9MmFt6/6zu39QNv72pNDuoznzk6rB/YW29A/Px+aaZlB1RYRFeVfljLi31x+fJKZX+PUgXZEF + 7zbu6Ip3Mc+/RgfsIaqo9iY7JrbZMYPSHyZqd+2MxiHyZGXN77H/0zNZ0zlgBBVHC/iJ+SzB7gnd + NSupTlXblIxPq8FdtKPxfqxUs/f0okRJrZ1ptqBHx4wie4KA9JnavqmZE+EfAGJRZCMvOodc2Nw2 + FhzUZiZJXhzWtzbfBgjB7kCKwA+95ZbKCaDWeRHPMjY1O8emg958CDR/vQU28a+PC92TnEdZ/HD1 + LCDrCdM1C4nxCeV8bj5Bga5XQyLeLpS6yby3MpRInP/9+2jlhQNr/mCp4HC8hNF7hEu3wWvLb/YY + XbYLWB/yXfMNd79nH3LqpYxEerSOKhq96zrY9lvp9Mazsp5XfFbbrYNHXjrr8TyGfgW3jZ6SSOzs + TkifbYa6YPemJM8lr9c9T4Y9uqX0WCYbNA7cwAMUXE+Crf1iy6nc4D/+TOPsDPWE/Ren3k+iQQji + hni26z4CJ6cN1aye1EsJ3oQe99923J4QoCm7JGt8WhtyfQyDOe44+lJW/kWMjWp0UvHrXTg6DY+n + F9y7Lj1AC1Owu9DDYxi8WdsO/p8+xt+do5h0bJ4RtJtrQLUZ9kjK7bRXVv5GLV45xtPxopagpt+e + 4o4LGSPoZ8Nf/K58tZs/cluCdmlK4lwULp+f6cIp2yxiVD8eP+aUOY2Nns3iUb9/jDEb5mkBs319 + qSWdH/Ec7S8iOikc/osnb6p+4Qe24YMRQyZi1zEeTeC45wPmHI1HbJDOPSg6V2CV2yndLF2ZBQVL + r1T7vW/dMjpCBk+xrOnB/HzYa2jnVl3xn0buz85nqfk+YRpOXxq8unPHIntulNU/IP7dG0268m2V + 58No5W9+LJ6HKQRuJIDVu/nsJkc0FaRr9EPs+hMwPhZrTu14hke+CUgu+JM4gdlolNxN/m2Ou+2h + hWPwTMguSrf5MmtfGVa+RExLtxnN70kDxfaX0p3vdd2yLVj5T595QZJ3U6ujRtkHz4loKz4uw/un + wKSDTM3J3HvTPpILdNhtDtQz+289PsYwQRFXJ/gVjwWaBeQ/t7Crk/X7DmiZbkmq0s/HwUIqDzWz + T9gA96o/8LuCuabCs1xf+QinUb36fUdD7/wCrO9yYpQ+nw+G8vFRgNR2jdcgX2p+E0KR1A3Zr/nW + /boAw0Y6Y4ovy4tNs3Yd0dtOEnp0lBzNlzRS1EWEKwnVfEZTZnIVHChcqa3+QnP6urr7h5fE6sUh + bkCbJwA34zFLDvgf3oJ13ElkF9i3fM69qkBVKmf0Untgsjc8MOhu8Rkl4VbVSz9Oqep6pwMlXb0x + 2d7bVNDXCiE4vpf1crYhgqISH+Oy8r9/fkTh9RMJ43Bfi4homvqnh5Nh3pgrHtuwrXcdJdmy9ZaB + e/PqdO/IKC7sZU5u/VFAQWZNTOFkmsuoaDJa9eSfn5UPqz6EhL8K1HisR17/+OvGqmy6E4ZLN31S + 9QWr/sec8lyPQLU7AJQf2V89ZyOWq1618IMjO37ZIak65CPU4sakwaBG9ZIrhwU1asAT7Xid634S + XRedG1kkZOX369vHBtLvnzPBIg/sN9TPCjiansi+Lo183mkhr5ajeyWetHjs1xPviQznVxIzHBs0 + o1yw4MC2Mz2seDslGqvU5Rfq1JPz1qOek79g1ZN/v6+efSvh//l39Rrvi/zROXVki/ZfffnT42X+ + eVDjeI9ywZwvPZDEY+sR8g2arJ+Sol11d8iq59hShU8RTFruyX3dz6l0nxYM5/5CDOE21lOObQ0m + h0jjYkTg9WDfe8QJvxOxz2GApFitLXVeVJn+6emJnKH4x+d3+/IQT6JZ9PCnJw538czmm/8r/vCf + ugEd4uFXcBzwiWHgb5uM8VyaEQd+jhWCvd3zzy8zgAmHI7nXBzNmh0z+wC5apvH23uKa5YvSgmvf + fyQwD268HnHW1PtruyWHle+/DUGL/uH9/jxruXgKjQk0ZmJqv4jvSSVnuqDt7A8JDuuUvWefcuhx + 77Z4s+L1S30FPmTGbkP1Fc8msU17OOF8N8ppXdTN0boU8JNuJ4zebGDs/nF8oFtHI1ZyQSatuo8D + 4KY8tb1MZyJb+BSMeOaot98P3XzUZ1n9/Rb1zy/LxZUvqmLoPSm+bhbUNNrSqG5VKNTeaos59bzj + QrJeaQlLeqx5V/JlaH7hjVy6px3z/l0HEA6Zgfk4fXvTlQsrNd1fOHo4Y9ObndPEA/OtAy0YJCbT + O5tTD/K8HonmtHjZHm4F1Eis6b/9koajra5+KS3R9PDWfJTRTvNlaq98agk/3vhPz1iufTCpXywf + aNoO6J402OO3wsNXV/9g5BPdjOfT5Sij3GnTkXftgydwSv1RyVexxmezH+tebNO1vp0TaliHJZ+b + bV2oz43pYma4YTfstFSEwV2PxJZZVE+TaDhwEq2RXlA7xrTa+O4//0Ra/bWhm0+AjODJjYN5aGOW + ge4qVv2jdPVv0TrVrIXYFQOq6cdf3UZYW/70HbGx8GXsurawR9+6jLCuj9ClmQGr/z0KK/5U7O7g + f/zULC0HrfkugrOfjrS4e9jkBSMe/+UX0W51vPygE6Fy9R8xR39C1Jy2FUzjU6OGERVmH5xQCe+u + sOgtOlfdPOwEDYBvT2MpbDuTj1KxAGmxO2qk663UntdWfhecyR3vJG9OPnYCZ1SO43b63kzqtqMB + nCEEBC/l2xsO60NodtY3I1OvX2/6ea4L6nXZEeOe+blo2qoDaVpd6Mo/4mnf8RlKh3ZP9xP/rNlt + f+yRoENLTqfbtxtrfhOhNx8BVuu+qtlruY4ouwSU2udwYPP94ZQQNumL4OsmYv3q/6Lfwz//0xdM + XkIeUob2FB8kl614LKM/f848o3O9MDsrUIP4EzlUd8EbjWHrIip0Gxoch2e3/PlTf39vOEuYs6/a + +n+/n9ptcWUicssCWKU/iONK6xHaDR1ReBL7cfNd9JjpHeaU2w6O9Lz651N8qzR4/WZvXFZ/Zrkh + d0LSe17oYbu9ehOXcf2fX0P8lKvixbsuWL3I4f7v82teomIDxXdfjcp0P3aLhl6fPz8KC91yi9nm + sCjob/D/JT1NOUsT34V0x93pvnyWf/5ZA78XupHD8b0zpfvHwcjWaErN+SsyehZuH9gL+EoIX3/r + 6c9f1XdfGzOnfbG1v5IolI8q+qdn+/dBc9XTSSyplj5rNOMU8UAfY0MMbPXxQowpVOmeXrA6p3JN + 36fBBzdanqOa7bl8LHAjgtZ9BUqEchsvaz8AIqzx47R+3vK3nh9b5AkRymv8x0fgU0Y+9b2mMifs + 9xz82ILHP/9l3o6ZjfygepLwJ9dsri5bgNVvpGY7u0jgL7OFrFtKiQaVZvJvobX//p6SstrF4iGd + fZAFzxy3RooRxfHL3q7+IvHsknTLVqlA1eNjSYLZ0Jh4Wk4YfHRzx227OZgsRZoDL+lWU2t9WGx8 + bSsRMrjc8TYex9XfmBMkBPsD8dehM3/xrwa/fBnVFV8m9RXgP/+baqN07eZAqBIovruKkLEZclau + 8+3++TvEmzsalvwHXmPTUasXg/h9D54l/PFdPzkZuXjAj1GVPpy39g+qeu7SyABD8L8kiI9RPnl6 + USD7/nGozutuPj/FqvjTh+Q0Hb5surwJh3qgNtGIoNf80boXYDvuhLsZCWhW5McHYj/oaXrzlW7u + iVcB1/M3alvKwEaBCSnUloOoS2LVYzrXcygxFpus+rrr2/vDha/iFXjaRF80P1MFQJxfHt56rYtm + pnhP0Df8Z1wqs+1eQqVjUAIb0WA2Ksa4+JChKxI31KFT1NF28/K3Da2Lf/E6nXWotuv3x8XM2ni6 + xfIHUJW/Rkm3RG/sXpUMUSWqa3+x86YV39R1f/72n0lcrGeqXV4pOTm3TcxYIC2wrffdv/5G2903 + Z+iLUiR49Yemi+8bcM5xSYLorHV8cGLFP/9fu6uHrsLqVEA5OleaKZt3vShzViDhYmVUPwSGNwdP + I1Gf/S0aV71bi9QKSzUX3+uUt4OcD0d9KwNvSD9cejuDsRG0UHUvjUGKo4BN/nlmH7XqyuiPX3Wz + I3shvMa2o74+fMylZbczLO2vwqIu3Ou+ODxslXRfj+xLwYpZETY+WvU28Qdqx5LLWZo6IH5P79UQ + x4v41kD91vKNmi+FR7N/UXhY/Vmyv9ZOLj72RaLU+Scmrv84xUNn8RrI37IjATxcNERynajx4ceP + 6p1L8uUHNQ87pUipFoffbsRMctDqjxDN3apxm+6FELK6asiqRxiN28BC2Y99ieEsU86EuE3gaM4J + tZ7R6V89+8NTeltH4vz5LWhdH6qPdDT/8e1Px72IDjscs29rYbi8R0Id9HyiNsiYrx6brUXS4zDV + /T3ZfmCy16nZRzQy9s/fpms+ffnMXOTpWKirnzZyJkz1lD16DboOziTyg3O8eOA36M+f36/8Sazp + MQHYPRLiuu3dm10qTEoatxJx03jXSUv7CpXVHyZecgvQfA/aAlzOO5Ig25cxqw7xqKb9baS5+GJo + /ONTFoXvv/1ldtNrgG5SN65+Qt3+4cc2rBld1zMfvOKygHbb3uhhrW8CfKwX7I30SHX1V3rTn99n + NGikfty/zLn57Mr/18MH8v8+UnCg94kepk9nst2rAlW+TCGx2D2OlwuJOQDQtuNDiTQmmAf2VNOB + bMg+uXuMdcUnUx3c7unu9Hnkg0BeoNaqOBDrfTBiPkgPFXzyY00OHBSmsGWsgGM6lVRXdk4uNQwB + qhTrSHxpabw5LzgZHcbzMi5R9vJGO1AzdCkTkYQupt2kn24tnI8ppm4Uf9EsD3d/HRS9p2RzG+Il + PU1Y3VxvlJhj8+jmvNoZ6q4QPbJHblqLTeK06tf0MT1OFUYjao5ntThzHxL8Ail+mj3PqWKkqBjO + UY34TpwsEBMd0fj8FuL30jot/HLuQWw0cWy5LycXdJwbOOxQnzN9aEJgD6Umevp+efx94myYDrNG + i7dhe0uuywt8prnB6IFR3B7E74QEeJ/Jvuf39SQHnQL2eDvTUw1LznavBtRtE91oKblKN8P1MqFh + 1gYaSL7OxDF7n1X91f/oCS22J8Z1nEFYPdOxc7b3TrSQidUvYhN1NBrl/evzMNS96W2JlvbPeInC + Xwj3K6pIIJXHXKguuxGCqQEShDLq2LF5fqCR3jk12/zgjTkqCpBtGAk+pR80HXqNU5n3AorvhhSz + GlAE+eEh0ZN8xLn02rNCVeXGJhe00zu+/W0+cGqPO2JLRxFNJ2T0wBe7Az0Ggo6W8/4BKqtXCpe+ + P6Y0CvwCv7GvSTjHQSdleAtI94snvTe4jifVP79Atj0fQ26ifJklXYS4XOioDnzFXlGUJuCQeUej + lj+jubvOL6BkK1BtjoN62UZXSy0ui0Mz7nxiw7dtFaRqqUaO1vOC+P3Z6UHenVos2o6UV+Xzy8OH + k/ajws+QL2+q2GonvwWi346vWkqONw1+nrOht+HbxMw6Zz2UAuYIBpOxqbcLB5nWNSE36ZgiCbtT + AsJlH9Hd7+GbC2LHQh3P1UzTQ+PFbHl7JeJK16XG9v70huuuUYAIFaHZ+v+zzWZ3BkUgNjHftOl6 + a15c9Je/8b37IFZvBxce0Y8fhRqitdX9S9Bm96Hjy9/e6rEJl0pFi3ok6+fF7H5wFlW47CKajI86 + Fj/GK4K0O96JdqDfbrjwfon23+dmlEhiesJLn56qKJYPemjpA7GGIQ6dDP5BNVeXPNbXbqPsHtVI + 8vtcm+zbMF7NcD2Or3Yf5eL1XWDotvmF7jezYS7veS+iAq23uk8fPRdqcUqgNjc10W63LRt9XJWw + 1TlpXC62VYuhERsqWg6UWNVTRkOVxbx6OwLFHEneXv88Wa2aTPadOrf67Im4j0bUhI5EffV3zGmD + 3pz6o9WOlPpJqSelK13AZsqR2ynya8Yk9QW0vmd0H0ZxLkyns4vKEl3W+LRN3poXB14f5Uww3Cwk + /u7aAqw2H3T3Wt++ntVkQd23kKietshkCcYKuJYqkN2Svb0lyh/ZX7xS63zk6nExDEPle6UjbrQQ + tGyjo60eba0giTG92Fif6x6qb9fRQ5c/c/6zjV21522L/tU3HmB5qi4od7zlAMxJ+SghvB/Kndzj + 7T7nkyb9wF8+xnmJc0adkYPLk0jU2M7HTugf3Qt+RaxS92Jtcha+k1LtvqVEsD3k3V/8Km3380n2 + pm23TPL9AzVSAqLj/ZyzoYUWrm/Op4GHXcSCbS5D73No5MT13snr0FZgOFFA9Wn45vPx6z0hvqOB + 4Fcmd8vH6COwNLyhBhdea0nwG/ff9yfx9pvPG40v4bnw62Do7FzzafXVEO/4B5rzKe7GUKk4wJZf + 4Uopz6aE90+sHuFsEA3njjnD9T5BFmTTuJ0+nbd8OO2sZs9djCVyzUy+N20DZjsNyOV6y5HYzYu8 + tffaQrPIJvkU3FGFmE8VYsnv9e24xWvg/I4x2e0d3L1+t8cI+59rjuBjI//DD/Xj1A/idCfHnJro + 94GviTHd756zOZrN0QYxklV61lHJ/v2+m2YQzAzJNAXxfPAhUuyAmkHWI3YZ5gqeo2vQHfOg670D + CtFNKhjVdg7nTR17cCp9XxUMGWflYn3d8pBMOcKKeQ5MURiNSnWtjYDlZ0G8Zer1Eaby/sQ1rz3R + 0onlovT3XsWD5OtIUD9hqK54Rb1zN3cLbOgZzPN6sCJ7sfyX4MpXK934Eau6PVgfFEMKZSXJY/MR + K4/f6SWG2NcGkqx8YorfboFSTjDJEe/neBLmfaLazmHCm9DWTNF8uwDJ3hDXfCi7+WqLLfR4tx2Z + eYi6pTg8l796SE7eaW/yuaW+AA13n+gHRUZDFj4M8HnpSPHLOXh8xx6gflGZkJwGbyScX1X5h9/0 + bJtVLrTh3lfnNBnIdXNIumnw18Hv3KajvvfUa0HYL6DeoulIbP1HctYe+AjuXPTBaubtOrGbFRkk + 19iN26g/1d0hiFP0InNAg+HrxGyjPEr1/LEn4q/xIGFnA+A/lZnsoLTR/D4mz+0tWo7kZpyOiF/z + S90DeVBLTvt64Y7mpJa031IS2pr3cx/wgcWoE+Iz+9st16ZNEMcaQi6Drnmz3TJZDcvdTI+3o9XN + xSK5akJDoHZ99s0Jtn0Kj+BA8VKpAZqnU+mAGt9K/Pw453jeQxoheePz5HbcJWbzDKtJTSZZH8Uh + C1B/5lIeSjpuiUErKZ7719wjkwvLtV4/8tk9Qwlw6Rhx26bultdry8Hj/jlRc1+b9YADwVXEl3Bb + 7zvqOdOejYuSfEip+1dPPMf34aqxF9EPzSEeg2v1UsWXdBtRYUZIiHXagxdjm9poKhmrTmUDec7d + iOuMY84uw/YJVrTRV35is4k+pxb9PHdDrT3p2R++AVivEz0eml9Of/bHVY1hOuJJ6XD3D+939BUQ + PfWYOSsce6nv8JjTu8sENLwOzwrMTpJHad5MHuP62IffbXenluN8zCXIuAR5+tcgu9PV+cNfB71e + bkJcvn/nc+yYoMxcG69vuUr1vPJpJPF+T2LGWo/JbZbBjg8n4nTPap0opD3VsuAkjI6D3knqW+T+ + 1b+8/UA8a+8elOwpC/Qc+ldzPhC3AHyGJ83oFXnzrtYVuNtGRd3UPXqiKzcOWLrxIBhdmLm4QmYA + P38xdRq9QdNO00oVfpG0ri+H6O6RiaA8bxYNlthhE/+oz3/4TfaDXnkNCE4F21OV03siXeqx/SyT + yp7BhkZmqyOBnL4u7JNJxduDsTPngc68mqaPGz3r7j4XpoMWArfwA3Ujm+ZTnWYLWvk6Ddbxgqzc + KQ1cv0q/6gcwu/CJz/BjuU3wDixv2qYvDfxHPIxgIHk9Qv+ogHfqNzGinnVsLr8Y5s6mRFN8uxOV + t4dRFjqMrnw//+6l2IKXzIvkWqiETU28SaBAnUM13Gid8McHg/03xuOKX73m3io4nbPdyCzDY8vK + X9CcngfqBbpuzvI0JHDTNDJO6f3AJJs+rK1pX3jcFeaCxo+i+FD63mlc2m+ZL4N/txCNkoIeL8ET + Tc6z/MBsDz9KSGCzdX0iZA/nlGg782uOQstn8H5YKj3X5958ffQdhlHnCT3BJMZLXO0iNC3ij2qa + iDtJH6pQvca+S8ID/dZ0WD4tHBxxJMGJG8zeDw4pGIerR/DJG+NJ220bhIoEr/sp1YvZXO1tz+cV + 9c6ya/JnAxaoUEBIWRdOLkSquaBDkUXEt0XdEwRPt9TfONaEbNo3+vf5jVjcSPG3P7U4naGLdzO1 + jLrPmT8/FEj7nU6d2zTWDFuJrf7xh7SvJtTcYo+HR+BRunvlWc3a4xhBdaLe2PubLRuOHU3hwwl7 + cmmcvSd8n5MMXnKyqLO5ebn048ACexPKNPwICqNaGznq+IsY0buvUP/LNxVPiJ6vd9Pk3/PDVTvN + iPF8CQxGuT7HsOLTPz0xX/qsAEvJ31jQp6BbLrHEIwGVKQlWPs8uyy1Fa/zgX6fP+XyIwo8qX/uJ + 2qdd5A3cHGb/9JzmVnePDaMxqatew7N2usfLeD6s/LrajIx95m65RK2NiPwdqLv2ROfSyj8wTfKB + 7sXrw1zEZcyUZFJ04q/ru/KzdTCzNpPDrZDQchjVCe28YE+NYm0BSpbBQ0MuySi8mthkupBFSDl2 + T2rQzSbuV/6gWPpFpc6zICaL7UIG5Xm3iE750WTXcN/D9ytPZK+JUzdJytyrpeBzo2IKgrcob9NX + //Jrjy6z96cHYCfYEd29znU3ukJkqMd0KakePYxcsnkflLonv5GS+zlfDkNjgP84DiTw8jpuf3Xf + qlwlB6NCP6wet9HVRm++eWCFn4v8Hx+9X7cVKZjH1Syspo/KAqzhmr+7iM+2QgoG7WdycYf1CJG6 + MaDYnZ7k+CF8x86vvQNXbX4RRwvbfLGPXgXremJhYKijphd9/vgv3d+kni2ENjxoyUNe8SE2hWaY + DZWGNMV8dtW8Ia8CDfJNpdMie7F4im9hgf7quXUXZa8bRndB4zeJifEoBDT8zDlR0X7j4DbvGsb8 + RWrhQt2UHnb7wmOfbHiBkWuEBFk71ONhqAxoyCnB6qpPfsfumypO+GlGFvRFPHWbDQ96eKrJfuWz + bFjGFtVp8sN9dX53nWJxLwWfLiW1v0LiLfdhjtQ1nkhyPnLdHGtXgNFCA8WLvx5B530MacuZxDxu + ecY+jwMPR+7LEZK8HZM1NLXhng0GVpwRx81OP2PYCVZEb7+MorFJX0+oz9lh9Xccs/0enArUt/3E + 290ezMUOhFR98xuVuHTv1f2yw/z29pboqHDWJ5+1htmovjz25PQSvJo/7lMfkM27pBziuWbSs8mU + fC6e1OUOt3xpTudU/avH/rIl5iTvtgqcZTMcFcZ6c/ZZCjA5jUE1rIReEz/4RKZ4kUZ1Xd93GxIf + rfFN94r885Y//kyEJyG7cj4gpi++gy5Mv1LngyRzbhQsw43gnphBkOT8cR9ileJJok7Squbw9uX2 + n97TbpKLRu70bbdyXy7EeJBbPDdLoSjcIg5/fCena34plnzbUf1pFN4y3lABWYmjUfqug2gH/jSi + sxSMZHeSJzTwsEyAofyM07P28ulIXF/lN81A//FZ51m+tlbk3SnOrG88a/3BB6FtRGLbZhXP50d2 + hj8/xUnSoW4uydGF7ae7ri1Z1/vHx++bfOVj+YQWyXLF7dtPM5Jubl3eZIuZQaSLe3L8FIPJ1huf + wO5gkP1cNebUNj8eYl8k+GVMFlqMWwrQqu+eeO0H8jms1RSO3bOiHusDNkAxyEjdzhaxXnSOp9dX + nCDJkEjMN7+pWbCZXJg75UgDb1gYxY7Ewb45P7DyMN3/9IN2doCkt+OnW5TbEasEX21SkuRtLv45 + KtXPrjDJiu+1oH5HA85xMpI///DPH1LbtsLUlLmFzadMtKGw8AsvdKBo3kMYoWdOC+r7my2a/cng + /+l/52phr6P7KwaObTqixXunY4YWFSo/leEozYvULZrzKeGqNCN1LGjZ9OeP5uN4X/XwPhYOxCgA + zpVA3KDn4vHDaYkq2wefaF1hxRI5TQV4sW8TxwL3z3901D89pd3aKBe40YjUzfVOqXspp3w+jkKl + HtuRwz+c2ab4pouNmrrPyUXswloa4aipf/rs8DH1WOA1Z52y5STUHgIhZ9Y56tWHz8c0W78Pddwg + UrSzCyPIasimhP+UanGZHHK6hzOapRvz/9WvVb/VTAgEBSxyLei+Nk7xfDWyBdQPqfC8MeV8fh2e + TxAuMr/6zSwe//hoSEcBy43uIP7Mhbz6KyaTXuZBqxc8iS/F3hsLVk/3t/e3nupDsLLxkba5ufi4 + KeDIhU/qq+4vn151JKtfNE9YHIJTTO/Bq0VaI3PjSD583TTR44VC/prS/H2w4jvH79b9awh+muHE + +vvEWZDfdjm1l/jDWACthsydL1KPcWrcWpJqo0UfFqoL1z1i8mKl6HnrAHc02LFZID0HK5/Gi5Vf + a+YWUoo+u9IkmrDB5pQWnqMQOToSb3zs/vPbS97WKOmHLp6IwBZ41PczVhjzzV+LtyU4hO0wMglG + DPu2BcspPtPVj0fjYRQWWF9tpm6rMHPapr0Gaerr9MpJb1Ma4aqBa4oSPVyWvTkMdBahSPcvsvNO + e080HsCDy/Eb6q94MfnBIUOH6hgTYxsd6kWCdEEbTmVjUEq2Nx2mnlf+4uePz827O5rg9HP2o7jy + KcnuIw7I0TtQfeVT7Op1vPKHx0l109GyuWcGOpmtSbxcVMy+fFIRSu/EqC1uvvHin7MSfk6m4uVR + nNA0tc8GxvNzXvkJ9Wh+c3zQvos2ilmo1P20FA1YR95cb/UuqNejfQX4N74IuakHr7+2xwz++BQu + hZItyfxrgGMtoYdbcUFzjRIfScWypwZTnFhggjap5+jhY271v6St3LTILzFe9XhlDrtal9Flltcr + aeSWT5042SCV4xczua/jcZqGDzQi247qmN7RNMuTDGFVpeR2ur/Ntb5YwB57HSNne6/Z8Akn+KsX + 09Vr86kdghGYn5YjOnfHetUXZ4UenwrZi77T8ah1sj+/iR64tq9bs7lawIS5xuze2Ux0tQgjT1Ia + zP+aNu8YTwsUFsDW/k2H+h0soeIlF2tU31qJ5ilUon/5f0YljVlfG60a17donJ8GeKNkuTw881Qj + hfd81PPudWnUkyE+sLzy9/lzmSZY/WW6bwLOnDdbI0Nm2ys0/fz2tcT1uQ8of/YEf38VYtutmG5J + EDkYbS1qrvmRQelpF3q0oGGL5owl1OfhTbHkKjVd/WuYWOOR0h5QzbSvpcHB4cfxZdR+/q9f4MX1 + E0tu3pqzYt4r5Tkk1bi5TWE9x9qRA5FcUmp5I4/YRagrRUxMRFY89yZ5N8uqR9rHqNaNWi/yPuT+ + 8IfaQzawZcEXWbG+vxqPDX/oeM9+u9uVb4wwZnvv52g8hvfdKchtTDdoNCfTVvU7ftHDx3zEzMRV + jy7+sKz8hHqN+VG0rSMqGKurXzoxvMXwGcYDsZ/Sy6PHAZeo+iaEGo7Q1mzVk3+/jzhJGnR/fpa6 + 4drLH/+J2XoaDDgvdUhmngNvedPFgiRbHw7TXro5NbGUKJ9N8yPJmLhsan+bF7rFWzI+1/wW48+j + UrFelOTPX173t4V8UNR//Tra36H6ly/r+rG+vFYWKEJgU//3wOsVg/0Ca70mK78yWReGzz+9N9LV + P1l8IvrAO/iApz5L6t4P9Axu7yoeV/+lnv781zNuPKprJmV/fA3p4aWmxE0GNG5qVUZlVRXEjOwg + pufnNlVM+8Tj06oPJ+OuGfCnp+1VH0/TME2q9R5MjCL/1zG4PizVOOQefloH15RuUn/+03fkDgds + Su/LvVTOhB3whmg4Zv16xW3VvwQ3p0fXn7lQVL0ofZHiJQzd8nBOBao7uyMG3dzz3/cpK+Be0pwe + zbkyF+COL1j5PnUwi1EfnXlfLb0Lo/raT5UiVIwwrVc06eCzeG6GrQa/YjExOy8DanCtt1CooU8K + FmumyNdGpkZaYJJUvGzRYjZHS30vo079d3KqB+qWBqR7irAIF6de+NSNUH6oJeL/xk89Kxx6QRct + J7K/ST6T1N/OUjWlMmi69kcms7vJENjlaX3YXkTz25cbOFA3IQfr/OpYAE8NgtyRiMHLaTeu+QCC + WY/EwQ8rlsatIas5lW5rvmb1bH9S7a9/jFWiePk/v0xTngbZh7uMDV15KlCwf8fk/JQsb2kSrVEv + hzYZ+So85FJyPGnq3T7B+qyMFwtwvS9wlvmF/vVr5mLZOKjB+EyNxw/HIgsM9x+ektJ91POWoQIV + auT/9WNMqpgVr9L6lpH4uOXRkKWxAVs43P7jw7WMbQiG/eWf//xeWq1Rl21bjCIqST5X0YP/5xf9 + 9S+GjTqG6K9epWv9m6Q9aSC9JhssrfV59lnIAYl3v1Gh+66bn0MAcLKYTnz1oqPldrWnP75Hd/XN + jZd7W7tqsufTtd98yn9//lgy3jPcRgtly467JpDdTyH1mb3vhuLziNQ1v0dxrRfLcuANkLsuHJfo + jrxJP50aCAvvOE4pd0TzBtKn8rffx6kaEc0/BP5fDx9s//eRgke5RNT6ce+YLfkpVX/zekt26Do2 + XSptAbqkQLCJlroHOayAlsF9/IhnzRT2mH3U1HJ31NWrIR5z7oi317srjYg8IlPc4M0Loq98Ikd5 + c2RC6u9ALWTVIpbrPToJnWsN9skF8AJ335u/0WDDho97PG32j5rlWlMC9wu35P72XE+wrnWDHG6z + HXtJ+nrsKx4X1MPk0bxiXT7TX/oEZIw6lvh60039PGfgL5VJjAa5MX/gzEWVI7hT5/nkOvb9FRW4 + v7dE9P257qbSrVr1rQ8GdRRFyJe8d1zot0+J4ou782YlphwcS/9OSsX81JMHVaE+B+OKhe9jbenz + tQbUvirEZuEzl6ZLr0C5muNt4Bb5otyaF3o9d9JYVpLCZpL+Jmgf2Card8hq3XEK5HDqluY0OaFF + vpuymksWT1P3N3TMmMUUme9NOT617aueLf+TqZ5fnql9+ER1924lES53riFm5T87obzcS2BT9qZe + xbycNafKVWdy3hFHfNvm3EgEQ/MBlQZQ7RC/H0oDruFdIB7xn2j5kqpc2127kaq1xoQ5WHqICiEn + +inK84UsNxGw9K7wZRQPbNLU9ow6w8E0c2XWsUv4SkCcnD2x/YvuSbfDa1Hf96switzb8Pg7NSbw + I1mmSVekbNmXmqa2gfEj5sY7mqKJ1Q/sSFSSXXwgOc+PbQJtoP3olXxRzPrbwYXLq1IIuR0vudhd + 9BIKwCn1bLViQw6GBtExH/C8P9f1iNHzpWIxqunOG41YtNilV8UxoHRvSS7i45A7AyPSkQQ6GTpW + j9OkLmJPyX6Gb7dssPT62y+6A9zHs/sSXPV58nmS/8RnLAVdNcLH8Wq6iw807q/1HMH17kjEyffH + bnL24QvW+CKnk+0g4XQWDQgV3aRHoiRo5hrsb9ffS2/qrzWX6q19QAziL+YcN0GLl3aTXLs0oDht + UjTrcwpwgFgmmikeYnHItpyyCYoTMbSsZL1saq26wXM0cr+3US+Hx/RE1w93I3tLalnfsaIHXdFq + Uk6dFgv91zyrf/Xg4kQXJtWjPP2LZ3JnZsfiH3DKqB4vRBd2G2+sI2rDeaNV9OgWerwEF6eEfHnW + 1O141NGyQTaQ7W0iN3TRY2mMIQXpuA7q3v+uHh9trxnsL99w/Jfvj86JYHiGb1IYtZML9vPLoapQ + DHJf6ilm+OY4qFWShu6DHMxRjaanChtVpoefI3aL9nnKaqjHZ2IG884TftzUgnCUNXoUtoknhMZ9 + Av5a70cx2d/ipZWQjVLXjAm+X79m1wTiCJL7/pBL6Lf1wr8qR3Xv7oXayf6WC6r4WUCMl3Bdz2f9 + Cs/RS71pU0t25l3L+WK7iHBsfpv/9vMNXQmvwm+Ieda+pvSxlAzsJDXJXvEO9dxl2AKSL0C9+cPV + w9P/pspD+P7wNCE7F9ItL6q/yzPEwrTtu5G/PGU1v9x+dC9luSep33BR6S+60l3giyYThX0JOl6P + 5NT6K154993C920NZM0vJJiNjwHlfE0yvQpi3tqZmZqW3xfeQp/m7MLlPkx4WqibhJnXCNVhUeVs + sTBXj+d8WfcbfXs5IgUOLvlCy2ep/jznSi6BoiPpKJ8qdbjrIY1CbOXT9nQd0TK8/LF/Fwc2P699 + A1UhG8QP3Ym1Xtot8HV1Rq4k8j3x+92d4eFincb1UNQSyjl+Oxi/jNpfZNRi98sqqEp/Q7S4SmPJ + PPoLONd7RfWhjbzFYusTHZ1zIH43RjE/1qmoupNVUX1zVPIZf41Eve0SRA6hrefSWG0btE1tk5on + PzLn4Sa+gCa9Q27htuh46Wfb6uzbM9kvR5ENgVFhNRnlA7nZ6cz6Uq0T4NW+HpUYud1Sa6UB9Sj/ + sCAaE5rs0+yotdgTUnrCO297p1FgaC2X5jgNkAQN2AhjYaHa8XZE/+I7VMPLirdRLVxOWQ+Hh3il + 1tNa1kHyYg8qWyq6n1gdD/aTAmgX36PHKvKQ8GHlCH7b38jdfbidpI2BDJffziPuxsSmUF4uhZp0 + rUAMJ5m7icxyiuQh58bXj9vl4gV8DTZPoFhVf64n7OTt/5F0JkurwkAYfSAXMggJSwRkEEiYxR0g + oqAoIIHk6W/x32dI1/lOV6W7d3Ka/hpyZL1bCrN3LUAR6jY2MhKxyZLjAGYiAvh4nKV2KfsvBcM1 + b0gJwa5kgbk7Q77+jLgMhqwVuNNVkCxU/XB2oT6gvbVXIevUGQckrnRK6qGCt/yNiX2ZunYO9qUJ + HRkCbG15TvclJ0Cn//U44e6Lvpg2k2FMgY0N7h64v4dVdtBl8Y+YbVUBLvRPnAJvE8NVGvOu8Gor + Ac4W3ZHLPvEBbw5hrtDnuZ75e2To5KL3prL5A7nJrVcy9+ep8CO8bYwByEZeMMEZNm/1RZz1ko9s + fvsVPDVeT+qDrMViFAWGYh9HgPbOj28XMfwi6D/sPUYwxeUqHesD8JbXNEvI6cEqmMxW8lvQY/08 + 9iXluo+toDQricldTSaEgplsU/Bn7B+7CizH1IqUEXoHrMc4H8XOTGeIpfuCz20wlEuXUlvJ9lpD + 7mFvl+slLWbldzrMxBGTFay5KdtQcOGAHSkc47fNdwdlNzU+1r2PynjHzwOgVxzA9arilk9E8oFf + PA9bHq/ueuEeGtS/HsXHl9kwJg/3AmjPJcSJdWoB+/bbYZJr0WCtpy+wflZQAONWoP++NWu5liif + KJ8Iet87RifQvuHPwiNa7jtY0uPOWiBnQOG/Hy7YODbKlx0sojY0HOnGvz9+kCo4B4yukshBk89c + 7EaROorDPjPhiGSJ/PebaG4T2B1dMg/pwdDHMlqfyuazJOmyMmZEtTXF5ZGBfS5sAd/7YaAY9c8l + ZvJudeZui8w+3Lj+589CLKDCz9gigkMojktzjA/wpUw61usuL1fHDyKloUX1976MvpfIlBexaYhm + J2FL12exAxuvscWhIKZnznmDcynp+OZ1fsxPUlXAGpevuTVm5DLmQQE6D+6KlEl7AHZ4xKa88ZfE + rpq1/LuUBPARpRO2Y7/e6gMH8LQ+OqLdjdqlrzbhIG1vJSofdjHysmNnwLt/222x7o8t9vU7QCQE + LTGFTHV5UpUBOO6lleiR7JTLxn/4VId2pig8M6ERw0EpJuOIL6LUMPaodRWmkgyJ3jxC8HsmOQc2 + fpC6EQtGc8fJYHacnijbfHh1DXe77Sv6xLSpMjJeUnOlPegeavbWY2REVTVF1u/jzPW+AOgja1QF + I9PGmqnZgP5oLcD+O+ywdX8M7hJNlf3nHwh8Ba1cu9vtDEw+cXFm09u4oI6dFXYZRLQW8qlkomZQ + 4GW2R1LV2etzYkIbhADE2PONWF/3VtJBtVwqEn+WGNAc3c7yNSYORvNsgvXSt1T+mBqPDjvuo7Od + 9BXAUevZ/MSkLv/8FbJc4TCSc35bLAoa0IKgweiRqaN4trcpKuBficPdhHK14LOGohN9iadP3igI + ZZxLmz9g30jdmJcdNYHn4J6itXX6mNn0E0D/ADtyffyccRnelwqO2hnNq6OU7dKYZIL7q+DNQgJo + TBQ/CyArDi7OjNscz7shLeR8hwh27TJpxfz26JSKcA9caQexZaeEjwDo9iY2KjDH9BCZHwA+XkHi + IFf0NW1ZpJzGT4qPn4cP1m9268DOAxo+RqNeCukhbpTg6ddIVmQHTG/r2sFVcKuZo89spKGAEkAy + /TQrgQRHEn+5/35HTHkk5TStUgFX+fcjV3hx9GmrP+AlmCeegG86swZBUNJfe8I4WqaWkVPJgZ0n + aTjD7QjYVz4HkA9lFWP+i1zOrvlKEaPSIya4d+UED3kD3/XgEvRW9/rKc4MG4zhUyMk0D/Eyt4Hw + l7dosQsZTP1qPcFhOh3nNY1ASUkrBP/7Iw2FZyD0CRdsX7xibH3Rnf3i5kyhd7k72CwO47jcrkcP + PgUbzrLxdvXlXkkzfCmzTtxaWAGLotyEkR2fCZJw2P52wSODMSIjMZ1QL0WaOW8IPqgghiJm8Z8v + /gMAAP//XJ1Lz4LOsu7n61Ps/KdmRUCku/eMm4DcGgQVk5MTUES5iNwa6OR895P2XdmDPVaiQnfV + 8/yqrAZMjxGrr/lyha+bAZmfxEcpxSWNoCHvl0i84iivxIyUsRCg4B5j8hQepUY9tMzQc9oaB3lh + 0R0b/wp99WD680ckGj2bhSwRI5MI1rHqLP4+S4AXLxZ2QiqBtnVUHVTInv2ND0pn2fLaHR0fJxNb + KpHA+k2GmZ0Fa/tCfROypWg9H46bNiNHKSUlPV7tHJo7NyO5uvrZjIg2Q/5QHEl+tWttDdkY6lrK + ib95XYqfPjYQWz/kKC9KuUBXFKA3VOPv/pbT7/0/fxJLS1LytbKLpYdXnrHB1sP64N07ZP9Bw27R + xoAWG9iCTqkADk99mVFu0GyIiRqwfHUA1N2eDdh2foi1zfWuDRCjHD7RaUeO61Yt+5AqA+z8a4OZ + vynH46kykCRJ2Z/+mORb3QL1HrVE5+yC0i6v7uCxf1/xUUNDNCdryEn8c9tiVxuGnoKyCNDbdqSJ + 6012FFVavRHKT8ZUbO8zmDrb9UHYNRefS+0tXTzPFKAsk9JHFdSdBYxdDtz1rflDVqNyttwqBfJo + 3iZRCT/R6ITWCgzFIkRNHka06pMmQmMsauyWtuJQS9+n6Ld/TuFwBfOhCgc0zcVArpLzLWmlKBKC + p+jw8yv9cs+CBL29m48Pu63trLctfIO2f/nkyPLdwHvzBPXmvUxixs5GVblHI43l5z316ev9n3zJ + hfHow4hXoqX2uQqlvFvhZJhSjfz8i90XPgk6ewfmiJ3dSjW9wXeK4mi9Se0A2e/ziXLUo92o9Bfp + F89zw8uiv++fCq8XYc/P6Vzb8eEpMGasygdSrmGJArCcvZjYmWJF8yM/q6A4GA8fPdQwottkdtEv + /2FUyoAT1pSDZ/7S+/t96GQLeREdKnphE8c49pSqyyaRWP7BvuFlGc/8HtAN0JDjMyvo4kqbCXKW + a/uCWnB0eceJICa17uGgHapoZPEULtNVwLb6Dcu1TIMChSlyiOdWY0YEHuf7Ekc5VuLj1eEsd0ig + pVUnrIxnFXCiZnWQ8TSf30Ot3O2gKKKzWyHC8l85dnNgICPZxESeQROxsU0uwMXVx64nWtoa5q8c + CBMmxP3pqdvY5+CnFx99mYH13OcBrJA14zP03Wg1Q3v903vJ2kcZqYvAR106PvBNQ27EHYDQACJs + PX9bXc/OsnjSBJ+Pfpj2X+j0TD/KQFieOrb0a+3MvMemLCV2SX7xhUB+H8MXdxp8ytOOrj8/sk77 + I1bqbNbmoeJsoHUvMq3FYGWMf2zg1I7GlGqPptw9n1MMfa/gceCrFSWfypp+PAr7l/4ZLb368tF2 + 95KnprxDOj/60wnKZaNiFVzMvgPmpULZuAmnRX+2zlg9zjbay0GO9WC99RxbjyBObi+i3/i5XxRh + WGFIhz1WUqmOxi3v5HB3bguWfyatqxY+gT8+pKffuv/bv53SACyHllpSr9wG4Km5HokrXtE4MBMd + BnrR4UeYqNEi3FwXcFWl+Pw5E7Wl3BgrhH32mRjP6onweFfoHKclNvPkAHZTsXSIxTdyTbKhp89n + E6OgnQxihueJrtfvCkFr1wbWDrtT9MfTbLsxsEI/fbSy/QJU7Wj4Gy/aO4zHBEDKooD4UnIGNDvA + E/jUxugHQTyW89otAhrg6mBFuXVZl8cpB3YTVYnuPrpo0cxTBRgfJZrD9X1rB7EEpW0+YMXsT3TN + X4GBqkplBz0kyGnn/SlF1dvcTfuiOmQ7Yn9aWL97e1qTRxPRwRYN4HFJhN2JCxyheDxtSO+eRVwr + yJ0RaYMO3eN6xt7p1fTUf8gW8qLcwd76vZWL+p4T5F/6ZGo3nKXRN/8RJcHZdEQfb2u2IGGaQaVn + GsZ4u9HG8iAGUAv0gChlfinpoBkt3MccIbcQH/r1BescwgPwifpSrv1KZvoGqIcS4z2mswIsq0if + YjaMNjC03S//mPEZTjJZFUDrKN1I2rH+YCU15mwlM3hDwQs//qr4Ef17/88/u03tO4OwmzooqdaE + XVXc9fSmaiv8rU/Tx4s2uLGXQpafidbObGjYqzEkU5lUYmpTE+0WTSzgbTZlcljGVz8kegeBqjmG + T9Lt1NPh/BxgXGDzjxfPun31JbYffOHO19q63nz/p2993jCSbFqV7+XPj9vqd+nXnx7iP2xKkHT/ + RstFO3aA6UtisXzUOtxWld675x6rxpWdxc5VKpQrceuLkcdK/LeDC9+uEfrLnBXlfC2sGeKyeU+8 + GN9Keq/VCmpW0GHFMbZgWcPe3edp/sRGf8F9+1ppgPZ72cHZ5YPpL9/Cz+H5xpq4b/vlBIrmzx+x + +ElnTgZ3WL8uHjEDt+vnFakSSJ+TjeWvQstlE7xi9N6nwbSZ3bQXEv/M/L9aT6LpyyUPxu4OoihC + RLd8K1s7XUzALXiwqTe82xN1EVKwChPB5vVkOfxF0C9QkdTSF2xyodzPTzIePNG5a8rZMpPqjzcw + f56tdzK38PNtN+RIDoT2/YzegPFcfw/8qp9P+zCF730SkHt0YcfVcFoDwtx/EgUIY7S6yJOgcXoM + xHWJRqfLlU1V8tcVq+HV6pdgNlp4uBr6RAVItNdj/N7hj/fkPUoyOldvG0nGsMXq9bs4xNe8Fvz4 + /wk+XY0Sqg7ocivMiem9aPHUwgUd6GtiIXfjfF2+kwDrHCUqNet+TIzV+uNvHk922QhdkYOn+KtM + FdO3VB26Bg4VbEjM4sd8u0AZML9JFPXtl0texQPUAiP4XR/9+V3m1/3ut/7k29jBn97Cm6HWqLWD + OoyjXTBl73BD/+5Xqb4p8fNAZXq1WmFYmRM+kr0Olq48cejLY31aA7+KZs7AJ1iWOZugCbFGIb/E + 8IysgJiS8+0p79wK+NiwqYIhrnu6cdaNlN1SeeK36VUjsf+0IbA+mHhxLms/PQQYT/bhbmdq69Hc + yBBDohPNlMS/eAC18Obhw0gnuoruKkDrPnEEi6QH46qPEBTPEmL7kMqOwHgCTFaqTJukTSg1FFmU + iHUJscrix199KROzhXjpbJXTFjZ3UG8VGT/dXNeE16VVJabffTpWLV0HjxvQ17FvROXqfdTmmMsR + CXOOyPJ2pMuPp7eekBIlzZ4lqbutsGf7dWJ+jy6svgevX9PB6rPU6DLt9ga8Dx/P57St4ez6mS8A + i5cTzSsxoi9nv4GfoLhjjErWss19VSgnpcXqbbW24kKfgYVlmRy7MAVr+rQlCB8TxT8+s3Rlyklf + 8Z6Q9L5R6E4d3g386bnd5ajR9XBqdPg8sqlexdBma6wU8e95Yf373JY0bsMO7YSqxRc7NUtBOSwn + mKf3py+eyiIa2i5IUaJbB8a3X3R+X885+vGzZxY/APu+MuQ/i48PTfJi9a/3BYZtvyUaUe/RlA2y + DRkf8BEsajpcXpWOHocLIIZ7fTnLwFkNtGulId4adxHlnbBAacuNxDPdBlCxmUS4JHmLWX7TdlLt + NJD7Wiccqfc6I6xeCFv7YxD1KVJt/eVDtn6IbqZUm4Bqr388zeGdt7aYpHZhicOc1Yc2lNb1IAMM + EpNk3bbpaULWFm0ENGJzsU79bGitDn88UHPbAhCdbyQYbOoYy5xSOdSbYQHZ9Tg4xEhbaF7cEToJ + CZFlJ6G/eIA2oqhjJeLMntXDAphJF2vas3hGZeDYcK/UGU7e77zsr8EQ//jGVOc0z+YzjmSEy+pN + Ak6ptF89GrH8Qlzf20UrOolvCW5aQFK+N+kufaUGnD7pER/h9atR2EId9rvuQ+xJ2mdT3pQier+q + HqcR6PqlCIoLfLZDw/wC1ObF6d9wK80xeY4ky8Zz+HaRfI44f5YityfZAQZwv1cd7N0+VTaZoT3/ + eM4UCVaqLeQeBTDsqguxHmLhTLHSXsDzaGZ+3XZ2zzuhPP/0Cna2642u2ebmQvSsNeLZp4rVS4cL + 3E7pgxi4dOiSojqGp+iiY8b/yz/eBczgRCzUa5QGEUhhmV6SaW6IDfjQPvrg6z4uWL2BG6D37pJC + +/vZ+S3Lr/SZpgX86FZNLsOTcwZPDmX4n5aCf/3Xf/0f1iDwT9M+8po1Boz5Mv77f1oF/r3799Ck + df1rLPhnGtIi/+e//9OC8M+3b5vv+H/Htso/A+s1QJLI/7Ub/DO2Y1r/r5f+xT7w//3r/wMAAP// + AwA++uuXugUCAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f35396da3a172e-SJC + - 991ac010fa80cf2e-SJC Connection: - keep-alive Content-Encoding: @@ -3055,13 +3056,19 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:17 GMT + - Mon, 20 Oct 2025 18:59:04 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=WiFbVmYTQuBZSeXDFOkK.DAYdIVOUGjQJXyg81CQZVw-1760986744-1.0.1.1-5kzvh2o5K55H6bJoWZX0oLJtrYxD36n0TqkN3GS9gH6h5HhnshBUIvofH18kM7uxCUUK7a0EfMUOQE7hWeK5JBx3vEzpeJLn7MC9SDbOJtw; + path=/; expires=Mon, 20-Oct-25 19:29:04 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=B6O_EUrvuEmCw74WUgv7n27mFL5p__uwltnDi0EgQCA-1760986744798-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-6c6f89477c-4mn9p + - envoy-router-84b9b6f796-nnvbx X-Content-Type-Options: - nosniff alt-svc: @@ -3073,7 +3080,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "366" + - "209" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3081,7 +3088,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "390" + - "252" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3091,13 +3098,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979820" + - "199979816" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_39e0876913514c6ba64fc6f1f6e5b4fd + - req_45a8352095af40dab168b5e945e65e1e status: code: 200 message: OK @@ -3121,7 +3128,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3131,7 +3138,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3147,122 +3154,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+qTLumz79fsfKe2jsyKFV8Z8wylwKidjodQURQZKyCqp393zu4Oj2cmIgE - 4alnuO+L+s9//fnzT5vVRT798+8//3yqcfrnv63HHvfp/s+///z3f/358+fPf/4+/78ziyYrHo/q - W/5O//1YfR/F8s+//3D/58j/Penff/5xlehBXJl7scWNrbf8ntRHCOVeqeec5rlEa6ojbSs0bM5p - UsDhs9xIZMyHWlBkW5J3R1EiTjpWoAfHIIf65uIgdAicWDiBiYPNLmREj4cj40eFjfKiUYOkZ/cN - GIbPQipFGuJNHCae+MS0kvWavsizcB4D6XaXEqKKDci4ZsdM7HbPEpaqi8L51toDPypghPuw+RKU - mXI9TYMVQvzwMUnO1PJ4GquWXHOvAgXPrxuLl/GC5WXIR5JuGiMTXOuzgcCBDYoF2MSztOFcSHpx - SxzUaoALkWvAa55CohnnE5itV2XL3yPIkXZ1ARvyuFVkHGQX4sSuBoTs27Yw6rUL8mLlNQhVOmH4 - MkKRGBtG2HLT2U72nmxCNtsH8VgZ3Q6euf035DaMgGXaZy388K5HfCcYMv5jhglgNkjC7dh1+ii+ - kxCM5vVAjtE3YpRu7bvsAd4gBa4YIG/2UeC1UGJy207+wPVUpfLp/FSRLdviQDxF8f/GE11vTszH - WybJ4stWSLJhCHSMhC78yk6GT5d7HrP359lAgsMJ0ykFA2PvewIty1nQ7auJHv1sMwP077sdVqAA - MS1gMILL5S2T5CkfPQFcpkKyyfGB8tLZDtQ82pL8oLeKmMOCstnsNFtG3lYjxjwcde4gEx84nPYg - a/zqpS9UF87xeYuKR8p57BjbLvy0O4/ERJNYZ4a5Bd/V0Ue38jZ5zGVPAfLaF+Ll3eQxtqnCyUVR - 7ML9ba7AMqSdK1mX9okcpRdrdqX3t6zSrUeCUOHY8Lv+21J8FO8/x4GcDNsFUfNQsBC+DTYut4aT - 985lj0EHeTDtWWhBdzfn6Nm5cSzu4+cdatnAkDXd3/VSoEyAxnVySAi/3bAIjarB7T6s0SNpODAv - XwfD1955kmf36fTllGYQDnv7QC7v8u3hzpt6cFb7lDhRconHIuNyiAfXxEx7njzO6OAI7h8OoOja - Zqzf6cpVXusT3aBd1bPDJz38Rg0jbnLVYt69cZqoqQcvZAOYayrcyitUcMYhBW3sYfFuaiG7nopJ - Ud4TXVyfHyafe4qc2znw8FRMDeTntEd2haaBymGZyhv7FpBHR9xM2E+RJM9caxDD4u71EmpdDo9I - 7dFFcGu2XG+vFNySPg5pCJaBZndzhl+iZ+v9VTH1xY8ENW2uUNKbR0+Mbxcq7TbsiKwZvuuZPl+j - 3E2zTQ5phmMKUyrJ1ZUGa/7MHlOyz1XmL62K/Eh+1svViyVZd+4v4gtNWc/+p7fgmQNfZKItqdln - iAo5LuCWaGEJAIWPMoWVXwXI+8beMDtQM2T6knS8sT+ux718R4KfT8Khxyhw9VgJyRVuXgcBGSOW - sr/Xr/ezT07t5svW6+eShpCLRTsOa74r2AisCtkkmEZFF6VbFMGK1wJy2TGsL/s9K+UYzymK6fY4 - 8Kc03si5xUnE46+vbPnqLx8s+/dIHn3gZn/re3P13+gwvGsm9uK4gd2TW5B7MdL1/8AI6SYZiLL2 - S+HwnjaQC0SI/MvZ00U9ao9wXe8QVDsekH0pHSF7fWSimzaIl/KgRvLan4kZWzfwvvDOBkTtWQl3 - HdZjvqqtFEqkaQiSUuZN597K5fJxDcn1pAdszaccdmBno+MQtTFhqbGDxv1eYvlw59iCGquCt2qO - 0fMQOJmAIlOCyyMZSTpaN108F60Bsfe6YHZprXrBfdzK0gRQuBmUmIkXZroSE3qNqPqBZostqjnk - hDMM9/1rZEJGlF4O9gedhLbLZctox1jyrF2ONJR+49krYAvdvs3x+Cj5mO6naCcLDexQgU5FJgi3 - 9i4rmsdjAVTvGMupncLpPRKUXaPUW+JDvJH2d+6LOTeVBsy/lCuMNaKETR6+AQmTzxHeD+CNDg/J - 8MTbO7ChcrjW5LGLSm9ZTOzDIHNGoqH0EFNpLFMQ5KKO9Ld4ZOI8XdZ6t01y69+it9hzroATPHXk - 8jZxhvegTGRx2J+I1Wk3j4XJJ5LFU9KhkxPBgbUJzSHvVCq6HlJ9mECODaiYxEfmvTIzccOkcH8J - tISE1IiBWHPPNxQl9fRbr0w0yEWC4XK9k7OTfgZ6CVgEJmu5YnoQTzVV21CDmSpFSNtmi76QxTGk - TtEzog32wePWeQVRNt9QXqUKWPzTK5el/rJDBqN3bzY6boTh66Ojp7mXAeV9swS3rRYRS+pwPQYI - 9nBO8RTSagYD2999DuYvX0Kxfm0YM/n7DIk0pEjVK9vjGMAzdJIbCafn18148A4NcHKUK1rzEXCn - RdPktT7I7bkRPSZWl6usnKs6VFShZbg+M1eem9IgWcN7tXAXyhbUd68IucUygdCIwII26gjxzcHL - 1n5/hUVpH8kx7GWdknebwzX+ocTGFxO6KLMgKQ2MDtE+zLizQCzJ1oMDMd/9Z82v8ipzmqQhj5PU - jC8PzvHXP9GZ36OY9w2rkdzvCWMQuqm36IXVy4CYIrrDjZDRbX7ZwPbmU7wIwwJIcL5wEKWvgTxO - RgL4lnu5sicTg3jXyQMkaRQLXJv9B3nysmXMxJ9EjqPqgoxDJNW40Jgvo7upoQd37uMFjQzKnX51 - kGlF5sDumfSW1vpCyqo/xPU75GtJRear+WRs1VcQBf0NOcO9Gtq6xBtYiM5rnfckowktR8ifZxUV - 6zzE53ccASE8KugavAKw6G9owdQYN+gWUjEm28szgRqIXsibFB7MQVoZcgoSmaRzYQy8LTo5rIN9 - gdknaga8Xe4C2JXDiTj8YQTsKD5nKMfFh3igOdetFDg9rOpUIEEzuHG/0+27XAqGSKxPefNETrnk - f/Uqasc4XjLQHeEvn11CRq+lLubgEfdXFKaTA8S4NEN4uE8HzO+Fj76cxS6BmT5HeBLF3mP7u8FJ - +ubsIOU7t/HSXcMIkhc1cWVHh3qWv683BJG4Q8b0/rDl4lsFPB0ualh9vVMmbA5KKj+CfB/W7xzo - /Z6jEjgqk0ZOoxnpvJl3FexIa5OIu5wyqjXl7hffdf05QEmaKTC5RCnyh+CZkevjieH6vHg+4YdO - kwFEMLcEiXhKmcZzJhEFHvqyIGfMk4yZUAnB8y0hoiiVHM+aklNYjO8dCdf+yAxPOe7VN+8Rv+BK - NvMjppC1pUaebI51huElhwWOEDLz+Qboayjf8gPZR3J+IzLMzyTPoR5v3ZCKEGSj8uhD+HE3HDnc - r2+PdVsDyoN4PBBdeM316BWwh2XXhugS07dOlI5yUGiFjhxK+1pTLgsq+Msn/bu5sxHMGMMHZ+zD - nQUCIGJ4KWBeSSfibcuXvrivXIHclPfoTpI0Fk08pZI8XgSia0YWsyZ9NgAkLxSy3SiB5ala972g - uCqWeCnN8DpPAX/pVSyv6z0iRbPg19Zcoo+pVYvJM+qh77UZcqb24jHuHCXyN7VddLrw1FtQ0VQ/ - vUHM9IMGdg+fWFKkgQv3plbr7LKX3jDr3xJyvOMl6y1VkaD5PNskl+yypnz8qeAy2TqxDibSydmZ - fJB4WoqsSgzBMiLVhmJ+kEKpPabDSK8Ohvkpq9Ehb661KN3uR2h8HPrrP/FiBa9S/unXX77OkpX7 - kMddRJ6+LDMaS/YIf/pOMZ6xt3Cw02Cx118o5GtnWPDCWjkWhzb8UPrRmWFE3P493/1wEtXNQNZ8 - kZW4r5EpX00dp7mC5dx0ahIORQym/AME2O3qO3HhRohnY+5doLoPj9j6bQIsCz6uzFNNxXXmWrUw - jUwD6zxF0Wl7qmkjMkPedplPFMzZmfjSny084vZKXC0VGPN3rQ3k1/uDsjrlGXMPZQgvfJmgYigY - W6gBWkiPtzNm1JIYnliZQ3YdB+Ra8TiM+4Dz5fnaTMgXGmUQs2Cyf/mO7NrWY5qXSi8f8msRtk9v - GpatDArwGsET7396PFRgCw4sm4lDFW0Qf/XhlANBHqi9bG7ccANPZtcT9GlZPM2BFcL+atukiOZE - n4n8GqHKtRVxTE3X+YxjAqyfdx+z+Ah0HMjtDM+74xlLm0gFbas6AkxqvMXkKLGBjfdnJbn8DSPt - +jkN9EDZXX6ejV04cAbPlkeRcdAVTZMoXvPQJ33oKuCdlRyLQLrqi73pir/1HMZdB5iD6Cwl52ZL - VGei2SJcsQ2TSm2RCY39wFx2EcAQGDNSKYY6A/rIgdU/E827nQYWT60Ft8GZJwUaOX1CI9jAEDoD - QcJNjtnLDSx59aMhWIRXTLc7JYKychBDse53MbGPn3Tf6EcPPa52wgTpaebQCO0SPazX05t5SW1l - 1X166LD6qekWqSn0zlqODibCA12stgBbXuRxdvMGMLmtU/zVK8dukzOu6FVJPp1Aj5DGy4D9+ANP - FfXHC7JxiULhN/9Rtgiv7G994O9yIbZV7la/nofgNtVvZCn5R1/S9pVCrFALWYpKslnvv0d5l2Qn - 5AGbr+mO/xR7xysf6BdPvN22R2g/HxbyDu/UmzlHxbLBTAczK28Y0TbPHTBPSkmcGvhM4DKzhPox - Y0j103yYr40KYQGvCIXaw9W5R04U2KeRTcJfvJOtk8o85gH68Rjan8pSNvKoDDfao/dGaWdhyAMT - IAP5jU4P+5L7+S+kLI9ooJuDncCuv92RSenHIz+92plHJ1z0qvWoqEsbuL8L37WfgnjuKJfAaYYE - w4IrAZ2KzxtOaUPQz88x7dUeYcLKlDjDXRtEovtQ6iR/QTelv9Siepc46N48jJlQNDFVS6zAibbW - uj4PMG+8cIQP5B4x9PbbmnQmLaBzmR8IHVWZzd3+NcPgeM3CzwJvNUOxNIJuNBZ0Nm8ILDyvKvKj - q47Ees7GQLm2vUKrCmykpfdvRl+FOcJsLCQsK7is2W1pld+8R+jTxhmfj10Enm6FiFKzqOZWvwoj - 7qOES3X9MnZ2PiE8319fdLvNFaOx2lJwk1OAzEeH6qWBYASJp6TIJDGJyUu/9FA/ty90SQXD4wKV - +HBg+1vIydJd72XpuZFWPYfBzfNYB/rVP5b9hagn39bFHaERrDvIEzXoW30ZEMBSv4EzulemH7P4 - 9qTwXYAHCaHPwHxzvgbU6/lF0lP7BotwCu0fb0LRIc/YnPJcCWffNdBxV7TZ2D9CCVpUeaJncGX1 - og+vCrKPlyAz/ZCazrbZSCWXlciW6ymb4QtjUAs+j/L3y9Mp7YPy5/9Dfp+RGEsfKoFRH2dkbRoj - 5p7VayfnaXvCgqcZTCgZs2EthDyWjkKVUfJQCpnGmxFvN3HLiPe+cLAB1EUOhtowT/6LQvN5sfHi - p7Be/Uchd/rdIcaJn+MF9vYGxqreIVdgvte+fHUnZ6JeY+E6vgF7+LYmu6zGxH+UfDYz3eLgoZEP - yMenbTaXG7yBorFTUAy7Y02a9PKGrXPLiP6JrGF+9FwOvdPTRE6/Hdly7jIJilPThq1cTzHx9ne8 - /+nvAx6wzrLts5f+6u1VT7KjeJmhmhIPuVWp6byicTYcsnAmrhX79fp8sywBoQllySyGRbw4Gvjx - HvvZ6JlgPwK4M4ePjX7zghMezQwPd3JA7uvrxyt/zaU13kSLHktN3azkYGxcL8jklf0w1/yLg7xT - qiSMOwfM2xN04aq/Q6qGhxr7pi1AUfc7ZP/0+/PABPi0uR1RX1Ue40iLE+hYMSErbxlmd+JaOHTp - HDK+vYN+1MoKUlMY8WefoXjeurkLvdjNMX0oh4zTd64LzQ4sxDjCe82dDU0B70l/hOs8HZZRskKZ - P1OV2Ey5DGwzRr6sn/sXCvJSiVtv0gx4Wsrrr5/Gy7kPc9iA2UUmeu/ZOJlcAl+D+iSGPksDyX36 - BrjYmSRASZkxwbqnAPKvkFyTQwCmxc9amMT7Fu/BnALm70obku3OIPmaD6QQ7pWk+m4V7s8s0NlP - bz/j24sYWPsw+riWvZzc3BRp8z0bZsUmKfjN31+/Zds3DeWKuUF4+2oXnQ+5GEIu4CHSHso3o8nA - IiAT/EZuJmmewL2kDUStciPpoXyDcZ+8esgRWyXHu2UP2LRbCe6Mr0Qc25liwbiUEjzC+UqM7nv0 - WFBRDEp0DMMSc3Y84d3LgMkm/pIg+Gz13/wEv/7rv1+eJ/z6+cNr9nhbveOY8i/7Dp3P7kEOiMfZ - LFmJD/1GyUh0ht+YzZy/kyynfJLD4xnGlL9HG/Dae0/kPbkzaLGpUjjG1QGplhdlk6JBGxKYTnih - ONdXPSKAPLYkYl+Nup6yBl9hupES5L8tPlvmpAnB9vbl136DVp53z/dH43hDh5uM46l9Nke4qZYA - eXV6BizoWhuu64ssq7/FWBrL5K9edDN1zCh8tAlceWtIdQkwFla2DVe+s/rFPps5LY/g+NwQnEzO - UV9WngejYL6QxOKkmgYCSODqPzEByGYjMF8t1Cb7RbyoUgcccSYH74EbYapLGaPzuc1hSCYNqfcC - xrPwwDPcbZYjOUx0l5GLem/BqzyG5Kptdh6RuZHCZd+MyMCaCcSVxwPoXURijdZen8odmH/8Dvmv - x+B9tmZWAVnvQhJ8KFeTH8+/bZUI6Y9r5i2gByVUzMkPZWmTxNPKf2Hz4BhxxVAFi0SzClSNFBD/ - tjnHdJymt8SWLFn1bh2PM+5GQGM4rvxRB9PHAxQQqUtJXJyO4Kf/4WyzlBjz8R4vnte85WPBq5iC - /aL3g2uXQHBBhHShsGLue3QESHQBE3/H8Tpd/cH+fE834fw90xqHr2AHW9F11nkT18u5i3eQHO4m - 3o4hy9Z+OsImd3JkJPs560Kg3vc//2B9AGZUTu0EHi7OTJDiOAPNb1kIcJZi5NPOBczUy6Osw4GG - 88orJ7trGijvPgIyOl+KR0S/NuTkSMXbldfTUiobGLUXJfw+VJwtkdKU0JSjJ1rjPSzuDWpwv4j7 - cL83qoEodXAFOVgq5Dr8OExypkDZlq8P8vAu7sAbb6cEWd7VJJDMTT3lT+v69/79y6yAmV65Izz3 - 9hklKz9bdOZU0PCfTrj3jmK2KNDqgYz1ACk0bWN6tbIINKGeY67OTdAEckuBqNYRMry+0ZedZrly - rUbByjeNmIPC6y0LW17Cgvsl3sIE7MJzaG1CovEyW0LgXCETWo08p0PnjYH6DeHnq3jkvolejN4J - 8H/vL1BSq8e/vHK/vt9BKBGdmPTds4SK1HE/XsXmJbIE8NMfrraMw/jjB9txU6PAOCo1//HYLG/3 - fr3ymb2Hd/xUgIMLZmQV0s1jp/YyA0nGDVHULNbp8VlSCLtTSJSwl72/fH6dZyTI+mTgrtevBbfi - y//pefa+TK+NjAT7hqzsuvdafmxm+H0fXVzlh6VmFzXqZYdTHiiGoQTGfCAaTA28CXm0RfXKu0ZQ - MTtYncjExuWrYjgW8TXMV/15+eZR8eO/GMZs0H/9Cax6IhREd8cY5C8JPHa3HsvRtYxn7aD5sikf - n+QUIBrPQ54kcH2/h9T1fZzw82urHkLpRbj9+vcIMadfiHO+XuKVd1F4HpVz2N3Ogc6m8n6HflBl - WJLO/hqvJwULd9mE9SdqatrDTwPSpDoTb/U/3S/eqz4K8fdVeLxDunx39woQNlV+81jc0B6+Meaw - XGpKJv6dj3vrE0rZc8zIj8/yidXjjxWZNe28qYUfv/dWv//xxn0AQ7DqA+Q/zG09h8i1ILx8RFSQ - rKsxuEw5nCqBrPz46zE+oInc08oOd6ufokd3kiBkvEjcj+PHQuTYFDqHrUXWeo8nVVPfoP0mlJye - yYHRCgUYAJo3SDPOC1sCV83laGdfUPFYHLDy1TdYeffKszbx3/tZ+QMG8rIFJPpOPsS34RIuVtPq - 2HDiAo7YIkj9SAcgxo3Uw++Go8j3ifd7X3KUP1/NQ8jcP/7q57/zpFFy02OHJqIwPNt3dGbHj06y - TFHgqb5fUdC3pT6uelUOvtmI7ENa1/RLygry5StG2rSc4rHbdzNo+YISo37OOhM2UgSv4e2DrNBB - nvDjFRQOCdLGHRiW17YLpVKwRHII4W5gtSqV0JZ0QrzhqGb0s5ta+M9vV8B//evPn//x22HQtI/i - s24MmIpl+o//s1XgP8T/GJv75/N3GwIe72Xxz7//9w6Ef7qhbbrpf07tu/iO//z7D9j93Wvwz9RO - 98//e/xf61/917/+FwAAAP//AwBe8oQ14CAAAA== + H4sIAAAAAAAAA1R6SROzOrLlvn7Fjbt1V5jJSNSO2cxissEdHR1gY8xgYyYBevH++wv8Vb/u3niB + FYJIZZ5z8qT+4x9//fV3l9fFffr7X3/93Vbj9Pf/2J89sin7+19//c9//PXXX3/9x+/3/1tZvPPi + 8ag+5W/578/q8yjWv//1F/XfT/7von/99XcaXB/YjtGLrFXHlMI4XFqPKkYxIvibU7x8yBSkR+xH + WRozvsKjcbvhaBLONZuZxkHo1OSERVqr829qPFLYXgcLaR/PrBnlMFFQjt4Eq2ISKNQc1aMghZaK + r697A9ZgwhYfA92aD3ke2xR/qAoBUNsLP7Mit7HTJXeoWscBmY7t50yEnw0k3w15UOCMgWp7e4Tx + 0n+w23wFggv1GsJyjGdcuGfdZvKnpAvv8PVA4jOzIjpjklmYnfuIs1JVc8YvWwbe2vSNcsd814vg + xiE80OSIlf4lA9ZpewPKdgaxeCfBQO6ibAhLb+dIOlwF5buanSg46SfBSnaUAR2NaQeFr5cg+0C/ + BvY+Tj1sso3FrkVwTe7XiBNWRpmRLYtuPSX5iYLGceo9eAzwsAB66GBQvW1sXcCQM0VWpKDxk9iD + SdjV+OkRHgx6c8axyUTRttlpIdj3ScXBB5IBlxqtwlvSRTh4185A9/O6Ca8OScgmBQOmRCtVqH3Q + gAzXMCNWDqODIJj1EZ+liz90k+npsM3LYE777K5suvvs4abo4wy/MhhW+LJi2FxOC8qQx9oLpnIV + 5JsceRPqQLR9m2kBwrURcOq9/Jx9uA+dvxjUAwXBdBwI5Rq84HqvEjvHAA0btGVHSD0sY2vJfYV9 + gmcK8i9zx84rf9XrJr48CKbgiJ5uTdmrxBs6RKlj46jTjlH/bKAMvV61UUHrk71Q/pOBms4eZmJX + dzKeS58SsF8xHtXZFSDK/fTmo7F5ID01WLJIWt8JBT3Y2LukTP397W+wjoPStvXz8XxKeJBeudO8 + Dq6i4LerU8KrTviZvW3sMKr9bMEH5dzR7zzYdnxmEL0HgowxbOq9fhg4XlYTa8zyHbaAfulwjvsa + ZRqmwBa7txneytcTZ/mhI8QBgIPfPj7j/DU39khnQgEkzF+xGE/XCLObmkKiMPpMvlFgM3MxNsBD + Po+e9uWlDBduiYW9PtFVPFX1ekTqDKW2IPjsaXJEt7a6cN9HZHqMMiz1dpz8FCrqQCNPcIycjCAo + BBIGM37etFihDlJnQbmQr8ihNzfH3Nd9Q8Pruz1/p4EMqn8V0ClwcRg5ls3Ia8gL2HV07LFcrixj + +42hetIGdJ/5mmw8Cd6gF8PAOzyKFWzfpl3gXk9YJ1IVrRHWDpCYaYWy5uTbzPfFFTwbJQE681ZT + b+49GIXJh2es37c52n7voykLYftdY7AGySUVAqeTkK7DUiF7vQiErSosR0xZE0BbMqyPxzdy4gGT + VcRVIVTXi4TtIQUDaSP/Cg1Td5BRmfa/693bQnkm99SyaW+7MRDKJYUe8kRF8yVrOqi7NoU048Tn + BEeWDg1TdXBQnz9kidOq4dmhPs9UAL2aAnTdAVqyDax/K1Fh8Ff2oGQeXJx8D7Oy9prSCBLmruj6 + DvyBOd7IQZBPJcTuwXzly5t6xWDy4vFPvGneDDahpMoWOXt8KX10DjBZ4ILcj3+tqVwcFkg97gO2 + l9EAdPKZDtB3PhDZUWsrlGZ0PjQnuve4QKDt+fbofWiCVsDOowT1elGlUGDLDGHveLjmTbqeDkCX + RegdfUqpmZlirvAu8C02LWMbJhowdwFeDA/f9NElBF7WO/wc1DPKodeR0WwaCHmmf80nVaOVhdyu + /Q+vUJKLZs6YuGVgT+CEi4JNCR3EnQo7b73PTMSeldVI6k4At6PvLdkSEapAl4rfzwfb2n3LSXkL + SngzedFbbslI6Gj0eyGFrIy9XqDsjUbNm+9sKvvDZ1tYOR0s30s4d1xNK+uR2zjh7JdflElakbNa + kWaCWgJ6pq7vVsGdzV1hsagYhbF0tUlONwXvfuN1XtsLD3Ao+im0mA143wk2+USpdAy5J6qRo8aq + veOhCrvX0uCQFp45mYuDA5U7PWAVf87RelT8N4huRwVpbu0T5lYmDWS5RsPZO2Tt1S/vDkAH+otj + PZsHbFyXVFiXR4i9gk3Bdk7oUDC8rkNpdIX2at3kOww5XkLhdtXycZFmFWYicJDSFFpOa0cgn9DB + irGYLRFgxPuzg5RFB6iw1S5nQXI+wOkw3nD4ptqcKES5gu16y+fDJAZk4QdPhl0sB0gqHuv+/WnD + s6cow/rzdrZpC8ceHJcmQ+HMi8MvH4QGsCdkXG43sNJtM8IU0jLK28vBJop5MUClyCHWtXmOpiNy + ZjhU+uT94Z/b11lgVBk8Srr2o2xdklHQveIEiePRsNlHPVOw8S+x99JFK2fo9hADjrqnKHtm7sAe + pkoWbA+uON1KNifjI0kFkli0J47HThnrMLIEOMUqTo61XVOE9UdQSnXhHVtaA9T9lVs//sMmz9o5 + e7Oed7gKJcKRXUGyOW1aQjFIe4/P2heh6jC3IO7GEWlz7+XUcMYhT5qTgWWBa3PWQX4qWG4lI7fW + pJxGkekL8iFV0NM6o4g6qJeCP59u1Ly+Tld7GbtrL4wnjUO+aTP5upqdDNVU/M7c4b0NY5wnHNQ+ + 7oBv0ScGjK2+LMFQkYaV9ebk4zCXFhgmt0VStx7rtekvsXCWtytCHgQKZoDiCHftIqOAMvqImEoE + hbAcbSS1ljZs49I7fGrSAJ0tKiRUElgNTPNN3POpzVfCJz3c6uKG1J1ve0rzDvDxMQvsmCYGq275 + Iwz4RULJu/rmOHLrK0jzRUQ7XoBNxFCHpycUUDCkXISPyzOGC5YrpIyYBmTIKlUAjiPgdAzVgV3I + 6Q6VVqrm03B6DzPosw3wA+tjsTmNYBW35wIbYDVYZNkg6uvPqYdzlTG/eERD/uWuwuO0cNjVzZvN + Hpck/qNX5fYd1X/4iypJjnXAzPYwHbwFLqx3Q8rAm4BZmIsFTfmizXTst8rypr4xjLPxMZdM0ecb + EJuGf9xuNvKu7y4iFDp4kCsqb24f+ByROlhLuE4si5C3tmTLX0wGVeGwedXwDWy2s5erwJLx4FX6 + nYu+uAgPoLQFCT94LiDsozxVsDZjA4f7elJIJYTxxZBwxrLUsIYvIELtXV2RHhalPRH+2cOjLZJ5 + u2QPhWSHIYRoqHgsWfRV2aw3FqGN4wI/rhc8LJpRhoDWZYTFqy5Ea2s7G6zmksU61RaA5M9s5O5D + YGNp8ktC6nhm4Lk2FBzf0igiOpvs9VGhf9c7c1saYcw6Hz9aFg+E3ZwUvjdgead7Be25OlshpEhG + Y/NUNPmijyoUPgiesYpOC5kNbuzhiV88dDsVTTRr342DGhV+sfid03op0KOCSv85eNv2yupRl4sN + mtW4eRxruYANb0nxwyvsHclL2b7eXYQn2RnQ0y6vEcVFj4Kn3gmLXdTl0Sbenz1YrZfhLZIGbHKz + kuJ0xZU4nxYryceM8XSQx6E4b0rf23jIql2feja2n4MesWu/9TCpnQcyb3qSbw6ofCG53C10P3mb + vYbe9Q0PuHKxRxSUE+74vPLh0d68zSW1QgSH76AnpDxSszXLh74ueTgvpolDNS7JAmy6gAx/17Dl + 0r4y+pcRAj3ur0iKD8hesSE5MA8T4DHn8yWf3ftthoJyrJH0ZNKIubaWD9H7S5CzCFJN3lZQCj/9 + 6ppZV6/vARqwf10iXKy0UK+6lY5QCg0Va4kc2RtVmzI0buSF1G9jgj/8HN7Q16uPVassQrmMJ6su + HK+T1sMwakbpCwMf1sgrRqUel8MyC4fFrbFRV+GAOy5nIHZBjqXXiVG2L2d5oOleFjZDbwIb/6Qt + 4Qg1ev4OJ71mcjpkwPQua1ToWUAWTEWqcM0iB3u2auQ04Z8dHOV7hp32zRDioDQFP70UxhKjLHks + ejDSuxj5yCNkNZKhgzervfz4nMy3s19CLlYHhLZlBJOFY0f4JvOE5J3P2KgWVBhynITcrlHI+rgs + vbD3k97QvaeBvMshBPeTUsyMk1f1VsGxAe1mL1h3cnlgb1Zyh1tjz8g9PS2w8YzHwx+/28qNqrG9 + XkPY0I2BizyPlfXDBAvEC1djuWMVhW2PhIF7fGehH0E0+iZHwXtpRPN6dUTwzeMbAx8Rg+cK9mRY + m08pg+l4m5EUgiDfSq0uhFmWTK/iPzQhdJZT8HzVNGykdFHjOjhVQPw25bxRTRot+vGbwV1v7/j3 + BevKKCW/+cwRO2d9s5dz7Rkw36YOmYlyGtYpMGRQSBAjo8+gsmmiM4K1i3Ls8lwAFmAaFtzPE9+H + LxXNGwsOf/jrhzckiwVdAJ+p9uAivOqlcEoP7vXpLd+Zq+cg+cgnd4A2yrpLTKj8SpdQCMQXihXz + aW8PZu2EXLBt9MOT8XR+XeHTL+5IrqwZbCeYZuB8PWvzzcDDgL/yqYIkaG4oxtu9plZ65QVzYnvk + 5A8BbCN5lvDHVzmD3zmeDt4GcW346DF/XvnyuaQL1G6PFJuLxUZTlEIPMNuxQVq9NWSt3pIH6cLT + kJjE2F7a68cX1uUZIvUE6Jq0UXo9ZcN4RzpZNjD+9PmxW3UkmvY13/x4nQVJ0/SZp7V3Pe38Bghb + Vhjlo0MoG15KmNRgQxp3uA9LUa0QvmIuRHLkWArNRliFtXk1sEQKUo+38JsJ8XqBKEmaZtiu3lIK + xpV5evTH+w6jPzAztBNaQK4C3gqhXJETckc1kRGLISCg4Hy4dkGOLGA0Ng5vyR1aoJO9I8909rrr + S+iuVYddxgPRemYoB6ZYxfOC3yUg41nrYCEdMNJ4Z47IRqc+VHj/ilV2kgf20uYc7yX3FaWITyKm + LXgKfq0Bz2Bw39Ei1LP408fINdsHWN5s0cHQqOJ5O9PHaLqRKoOeORbo5w+tkh9wv3r3usvtRkhj + 8CP47f+4XtCwvXxJFcas9/F57tRhoxXuDjfjayAVmJ+cmLd2hGZWgXmr07Le9ZcICycNkXKIo5ze + xK8Hdn8K7/EhdFwHFDz0X91beftDiLvROnza7geFclArC4O5Gez+EtrxP1pkOCxA5dIrkkAzk9k9 + JG/IM90L5Xqv2rQNsQExlHKPfPwo6jLnyfMSt1Yz/TS86LvXo7D361i0bobCRGMVwtEQGYx4plMW + TrB7PuLjBUUWcaI1Y54zvFugwLJXkWG14ceAB2SU+HJgGrCo/WyAgRrPKAv7nCxSTqVQyAsVPY5V + l8+f2jtAM4ZPFLZvUu96poLP4RP/6a+3+ER7fLrlT2RTxjT89AGgXyWNMu5lR0s4Pcof3nv8UcAE + x3M4g7BQF2RpohpR3HvlBKftLjNdbyphI7eOf37azEK3yrf31y8Efi76+ZTFX+WP/r0mVwv98HVL + tHWGpAHGTMUzJIvovQrh8S5MfGYfS7QdnK8MHSbpkSvFbv61TyslzDRuZ5a3mmH9lIYsDBcF47Mf + 0Tk5lfoCJeLqSKaFY74FCZbhjRNF5HeXoMY/PAfSmmGrkPRhCZg4htqJ1dCuRwl5eoCHODvcvLlt + JgU7APAnhQ+v6Lz3/9vp8qz4Xc8htTJaZeGlhIJPQmxkbBdZYfSSUmHcFQtWjYcTrVQaLELKhm+P + kR8F+PEx0DNvw4jNlJzVqN7gfvkrPy6Kwvbam4K7H4FUojjKSsmiCPZ8wIh31nrZ/bI/+GeB6JSv + v/z1Nl/Gyu5/rKcD1GGOU84D4kevx88l3SDMxn7/fs8mtwfhoRZxcMfvRzRPnzqF0zGfsS18MNg0 + UR2h+72uHrmds6HfbL+A8rB951dZIuXf+3+Z+0xPwTlnjkrvwXs6rFhZ7Kze/RIHXDvl6dF0Ug3k + BRlPiC+WhM+en/zbTzwgq0TK2Ij1kJ4rAwKPSpDJ+Vu9clRxh74e28ip65MyiRrlQzsMXlj7CLw9 + v4+VA/b+C2sDV9obk1kesLevh3O3cofJ9u0O9u8TnkGaJfZ6HkQV8jLU8AVkov3zf/jK31rv+PEc + sv70NkpPJRade0vW0vN7YffzkBMc8uGn90DONtijvPILtqNSeUJZvHMve4eJwpw6Av/gr6pJn2G5 + oHoDRWa1yMgD2aZxkR3gYqo3HJlZu+u7YIZOwsk4VHrLxp/B4GFqsgC7DjNF7BqXPOxOMMNO4yKw + KaF8BSZKZa/e/fw5fb9U+DwlH6wW7lFZg36lwOXaLMgBtAVoGmWHn78xb3t/9ONPuPMVVrlqHtZr + EDvw5Yw5vnDkE61zJMT8KUtfWMFXryYfKZxBQKISiRWD7O/uX8GBms9IMu/Inn568+c3c9H1riy0 + OswgpGQeK4xSkTnkihS60XZB+vlM5wsTMD2A9YdBu59c//qdE5OpKTqH/KyMav82YNC+XCTX9QUs + eWw4f/hCYvg0wlW2xELaDA5WLDLmJBTTFI5ykf36EWXh/M6AKeu/sRhxfb6eGejBn/6/fZCvLMZU + LxACNcFh/uBrohA7hhtDjPmjQDPCYhM0cMv9CotxJdmzzmoU3P3PmeXCe7Q9ufQO88SVke7LsCbM + Z17g/BFCrIg6l+MfP4k55eLwK3P59MycDa7qYUSic9cAA23LAb9+xcHaScFHBVDwOrUA6fFI7PfD + tQvgPSQXuz+/8ufnZ9oSIa+75vnKP4cS7v2bRwtdpGB4WQt46gwKW+tXAqv6tHtwzg4OVk/gUq/3 + 17jwLfxESMuiqp6JfOvAGzkTMsxRHWbeHDIQfaYrjp+5D7YBbRR8SOiCtaOUKSu6MI2w68uZZ1mq + /jI3bmcZFCJHDvSI/jC3DbaBPuPzk6aVZX2W1uljn0WPM4qNTD4zQfhcGHPX6xEh1TniIDh66j4/ + ouxfvGDDBA8k0a81/4b2K+QqGFhYGmWskAvHxbDdzAUrUmzZWxYPBdj1MRJ7aOXkkPi+kMF89YCl + d2SWH0wBwfnCIPl95OvxkH2cn377wze7XqogkxQHr+WdOd/s8/UO1dIrkcm4FNjeFyjDfT7msZ5W + 5VOMhBQYt/WFFAjGHHsfEQr7fAQXd80CrHI/NYDWpwZrzuWo4HZM0tM1CxyMJiDZS/akYmhOxgXF + K53lJGJvFRS8XPe43c9aN+VagaCtXeQeqy4iIj9cAffJs5m3lRcoE57bwPw5hsjNjm9leX10XZA4 + 3Z25clFrRhjWRmAPNDMvc4rtRdo8C3bYNr1xewlkudtmCu3vIuO7wHXDFEwf6zd/wdnudxEiDz7c + +3WUykc/XyVeVPl9voOMo28q808/67V2mAU/3BRS3nUGvCbywL/+anRJMf8fv6cRaypMlEWY467G + O17b46UVKvB82SvyziQFy873IIuq968fVRbfXBgYz5KDleoNAf4kzR0urHPDdgjigW7EjwUjaXWR + /Ka0qBvU9SCsbXzb/YkTGJjPe/n5eXPJsmtE+DjshQsDH+gu38EwW28sQ+B4gneoXyhapmdCgeOj + c7Hdvad6tup1hppufb30eLzV5XSvKngr6+cMonZQSEDzI6DhMHkCF5wU8vOb9n5pJpxe1jv+O8Ku + p3A+ylu0z1t3/UBrPz1fM9OnzoT+kPqomG8pIEWyjTA8fa7YWqlEWabnk/n5Qd5r05x6vQIrg43m + 5TN1aB17eQlPBgQcC71+7x/IBbQ9MCfrgs8K/ObdL96D/j57/e5/06xw8Tn9c9S8Pp5uwz7PeP/0 + +kwPnGjTN9JnIMnlt7fI0Qgm0xspSPB1mEvnrhGycW7z60+RBL12mL7N3QKvJeWQ+GyPNeFgL0O8 + thxKpfc3Gtfqcf/tj8/B62NviJJ94RQzmsc4b5ZsymFi4J6fWE2OjkLVd2775T82P2hRsH9YS7D7 + Pbi4vo2IPFu3B3e0tEj8nefPfz5q9wTFu1/B1vGbAqdp8rElaYdo8YxMhgcrus2UYh7teWEeBjxd + 6syDb6qr5+SuFDCRmQVJ9fkMKPVgvaEijQSZBrbrFUWSL7jDwUbWHr/FymcDJm4YeY2tajZRo237 + +ekozMM2+jOPZVMvRYa0FvUs8cEsHK/2iJBP1fUffNm/D0nfYxBNZ+nGAWfwVmztenlDlBVCXNPt + H/6kZF/04T06X3Z8B/s85FbxX6FnMPKPHFgestX8W48daGnY49PBv3+3Av7zH3/99b9+Nwze3aNo + 94sBU7FO//zvqwL/ZP85vrO2/XMNYR6zsvj7X/++gfD3d+je3+l/T11TfMa///UX4P7cNfh76qas + /X+f/2N/1X/+478AAAD//wMAcmzw7OAgAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f3539a4ef4172e-SJC + - 991ac0138c3dcf2e-SJC Connection: - keep-alive Content-Encoding: @@ -3270,13 +3277,13 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:17 GMT + - Mon, 20 Oct 2025 18:59:05 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-767d6694dc-wzjhk + - envoy-router-canary-6c65c69d9f-kj7zt X-Content-Type-Options: - nosniff alt-svc: @@ -3288,7 +3295,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "43" + - "290" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3296,7 +3303,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "63" + - "372" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3304,7 +3311,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199999" + - "199998" x-ratelimit-remaining-tokens: - "199999930" x-ratelimit-reset-requests: @@ -3312,7 +3319,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_0398f9b6c9f846eb959e67393ca35744 + - req_1e9aa6f6439f4cb6942933a789f22983 status: code: 200 message: OK @@ -3332,7 +3339,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3342,7 +3349,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3473,7 +3480,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f3539bdd3d22ae-SJC + - 991ac0171c889434-SJC Connection: - keep-alive Content-Encoding: @@ -3481,19 +3488,19 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:17 GMT + - Mon, 20 Oct 2025 18:59:05 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=ig0rhINI9r52Nc.Y1IIvItXuYEjmqtPHHuyInsaE1VY-1760573357-1.0.1.1-P_rq.59S_3l2d4SRXKNUewr1imSH4etBe6gCs1Z2ARyMvfADeRhaM1_kKAv8DkeGyS0lD1oQ6cR4.uqhEtLg.Wcxv9u4zNmdcDN7SHHvAg4; - path=/; expires=Thu, 16-Oct-25 00:39:17 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=9cE6C8LctPL3VMTSfKqkWkHk2IkmcoeK_r85Q1CJ9II-1760986745-1.0.1.1-9kPKgOnwBpNqNHFj9cfkRTgGm9fuJE9Db1vvnzMBUgtRkdQYzLgv1P5VoNmFLz4rLse.XnBE0OG4noNeX54hl5hBsJvBq5A9AYhFvqO8hLQ; + path=/; expires=Mon, 20-Oct-25 19:29:05 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=4oDt3YyJuJaPd6SC.yVA9v8GgVcqwkfdnriqeqvwnw8-1760573357614-0.0.1.1-604800000; + - _cfuvid=Rmk7Nb3EpJOCsvkpSo8_XFTeve8xCDyLouxwqTL6ykw-1760986745974-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-55c4f66dbc-mbt6d + - envoy-router-canary-6c65c69d9f-kj7zt X-Content-Type-Options: - nosniff alt-svc: @@ -3505,7 +3512,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "146" + - "213" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3513,7 +3520,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "165" + - "451" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3529,38 +3536,30 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_5a05952220e6449bbf2dac5fbc360761 + - req_b06ec83e49f047e3bd2db78e1cc20bad status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n a passive characteristic - of a model, whereas explainability\\n\\nis an active characteristic which is - used to clarify the internal decision-making process.\\n\\nNamely, an explanation - is extra information that gives the context and a cause for one or\\n\\nmore - predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy - and interpretability are two attractive characteristics of DL models. However,\\n\\nDL - models are often highly accurate and less interpretable.28,30 XAI provides a - way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be - viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable - DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL - model has correctly learned the input-output relations, then\\n\\nthe explanations - should give insight into the underlying mechanism.\\n\\n In the remainder - of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin various systems these methods yield explanations that are consistent with known and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn @@ -3613,67 +3612,53 @@ interactions: \ We present an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 Shapley values were proposed as a local explanation method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6362" + - "6414" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxA6JYAd2I7tFL4F2xQIUBTFtgWC1guDljgebjSSVuR4 - 4wb57wvNOP5ody+GR4/vkXwS+ToAMOzMEoytUW2T/OjDx/mX3x8n+7/sHw9PHz5W/9bV/Jfb6d+f - F79N782wMOLmM1l9Z93Y2CRPyjH0sM2ESkV1crcYz+9ub+d3HdBER77QtklHsziajqez0WQymo4P - xDqyJTFL+GcAAPDa/ZYSg6MXs4Tx8P2kIRHcklkegwBMjr6cGBRhUQxqhifQxqAUuqpfVwFgZaRt - Gsz7lVnCyjy8JI8ccOMJ7rNyxZbRw2NQ8p63FCzB1dP94zWwAELK0ZIIIDfkABWsx8zVnsMWtCbg - oJQDenBkWTiGUYPPBYwVdDbIEBJmZdt6zH4PjiiBJ8yhRF39/Ov1Me5rzbYGzASxUgpQ87b2e0Br - 24xKsGkVfCmmS5oyaeniBp7uH4HDLvodCejXCKKUZAkVZ9EhONqRj6mkw3Cp1oYLqb6SIWBwIGRj - cENA5wqTim0By+ULaARWgZTJsT0epRx37IolwttaS5Wx86gNjrLvLGvI1hhYGunLbkjr6AQsBth0 - buZCt3BVTCsmFoGurGuIGejlFBBFR3W01zfwsEPfopYEF16gauZNqyTg+ZkAu2Jxw551P4TDe6ZA - IuUrZ7Laf7jYIAfAlDzbI6FiR/2/HDetHGI7t1prOfTsG/izJqHz7DX5BChSLq809KXFotNRW+3U - S68XJh/sdLDZn1t1szLD/lln8rTDYGktNmYqz3syXoW382HIVLWCZRZD6/0ZgCFE7TOVMfx0QN6O - g+fjNuW4kf9QTcWBpV5nQomhDJloTKZD3wYAn7oBby9m1qQcm6Rrjc/UpZtMf5r0gua0U87g+WH+ - jUZFfwbMbt95F5JrR4rs5WxLGIu2JnfGHU9nxyawdRxP2Hhw1vv/S/qefN8/h+2Zyg/lT4C1lJTc - +jQ63wvLVPbuj8KOXncFG6G8Y0trZcrlPhxV2Pp+JRrZi1Kzrjhsy5hzvxertJ7eLuaLu2qymJnB - 2+AbAAAA//8DAPKsDGcgBgAA + H4sIAAAAAAAAA3RUTW/jRgz9K8RcNgFk13Y3QFe3YLcLpJtDT0GLupCpGcqa7oijcjj+QOD/vhhp + 3SQtehLERz6+R4p6NkN0FExtbMDsaJEiM+ni/eJusVlt7lYfNh9MZbwztRnSvlmt7/DLl/wR14+P + 8fPT8Zfz6Sd5+v3JVEbPI5UsSgn3ZCojMZQApuSTIqupjI2sxGrqP56v+UqngkyP2ux2u79S5C0/ + bxlga1IeBpTz1tSwNb/dP0Bhcgm6KPDzaQzoGdtAcP8AN2/eRX3nrccAD6wUgt8TW7pdwoPCKPHg + HSVAOOIZNAIeonegPYEKOlrEroOW9EjEgNZmQXsGZAeelWQUUmx98HoGz+CIRgiEwp73MM1zFmh7 + GrzFUBqOJHqGUch5qz7yEoobiwwtwcHTkRxgUaTHuEhKYymylFINnZekFTg6UIhj6YFXVUrQZoXM + r3QFgk+Ps4xq0pzIRnYVoHOlmMqYGIuIVLy/aEpLuOfXOPgEdFJB8NxFGeag9qiw9wdKMO3zpFMb + iznR5PsNY7E5kPbRpatdG8o30fnZ8j7EFgNEgRDLsF6sTAyzB0xAXnuSAovn5C3ctNkHLYE4re67 + 5XfH3ist2nh6d1tYi4Gp4IcxJl300cINjmOY2ndKUnbup92VL4HPM9HtEn695l/1d9HmBGUuV42v + Nq69xLzvX9gcKk7iO0LNQoCq4ttcbFWQskjclw3O9bNPG3Oh7tBqnodSRiyY1B/ozeqWW1PNNyIU + 6IBsqUk2CpVbWa+2fNnybrczlz8rkzSOjRCmyKY2xK7RLGy+A4n+zuU4TM05hMrk6X7rZ+N5zNpo + /EqcTL1+v1lVxqLtqbFCk4rmbco/uBC6/8OutaUDjT0NJBiau+G/+S/ouv83eqlMzPo6tFn9WJlE + cvCWGvUkpjbT3wLFmcvlGwAAAP//AwB14Ohy6gQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f3539d7ff567dc-SJC + - 991ac01b19779e52-SJC Connection: - keep-alive Content-Encoding: @@ -3681,77 +3666,227 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:19 GMT + - Mon, 20 Oct 2025 18:59:10 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=ZiNiZGeWFNQC_r7Uk1NKjt8y1g7uFX0qj_3cPPKzqp0-1760573359-1.0.1.1-bWkC0P3cZLtceqRMYmItF1pfEUwLje1qU5OxZSumdjoayW.bEZ4G_rPJ5Q896Y2aabbzkmtsJcKtTIF3TRGQvV541owcbDSJva5hUXdQ9Cg; - path=/; expires=Thu, 16-Oct-25 00:39:19 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=S8c9r08zWaHrwX3obrqfo6hQ5SHUTthZQZ0elqBM0bI-1760573359704-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:07Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:10Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:07Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1929" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsPdbWWd6jte1qt5cw + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1950" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + - "4649" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6455" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAAwAAAP//jFJdaxw5EPwrTT8cDoyXte8Wbudt8kEwCUcweTDchlmd1LujRNOSu1s+ + G7P//dDETkiOg3sSqErVVaV+xDkHStijT64GOtfMTHb+2/nm/HJ9uVlvL7fYYQzY46zHcX3x/t3L + yeWb97++ivLH9eF3uXXDy4/YoT0UaixSdUfCDiWnduFUo5pjww59ZiM27P98fOYb3TdkOXrc7/ef + NfOOH3cMsEOt8+zkYYc97PBmuIKmFBQOWeDNfUkusvsrEQxi8RB9dAmu2CileCT2tILB+ywh8hEs + g00EQgeShin4aBQgMtgUFejekxTroI0h9nkuTrXRMnsqph2Yu8+c50jaQS4li1WOFknBcQA/uZSI + j6Rg+W8nAa5JS2aNi8MrOBtEIpkDMnBp1cHl+mL7YgWvh+sPA0yuyfyfVHB2M1y9gA+Sj+JmOHtb + mVvCX2CY3DfVjxPBIVJqCX2qgRTunMRcFQIdYjOeWTuYyaYctFsyuFJS9G6BWjORjaQI2eJndn6K + TJDISZu4Wroy8hPH29pqiHPruUi+i4GAWhZ+Umvyn6suiZ6u2i/+rAlFKET//U0gH/Wr1YlSaZSq + JAqVA8myDwvPpKq1mvVBjWZd7bD7ukRCie4cexrVZ6G2TNsdn3a83+/x9KlDtVxGIaeZsUfiMFoV + xidA6ba22rHnmlKHddnv/hEjl2qj5S/Eiv3Fdrvp0Ds/0eiFlojjj5T1My7kwn9hz2/bBCoTzSQu + jZv53/zv6MX0M3rqMFf7wd9m3aGS3EVPo0US7HFpz0nA0+kfAAAA//8DAF+XjuUKBAAA + headers: + CF-RAY: + - 991ac01b192967b5-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:10 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:08Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:10Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998477" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_4fc41724d5914f118692de4e3306fad5 + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:08Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsPcrFRshwqH7JahZU + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4691" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n A Perspective on Explanations - of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 - \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. - White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of - Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, - University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health - Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: - andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi + P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n + \ D. White\u2217,\u2021\\n\\n\\n \u2020Department + of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department + of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n + \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n + \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n \ Chemists can be skeptical in using deep learning (DL) in decision making, due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which @@ -3811,67 +3946,54 @@ interactions: a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6387" + - "6439" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNTxw5EL3Pryj5kkSaQfMFJHMjCwckol0tl2h3opHHrp6u4LZNlRto - If57ZPfANIRc+tCv6vnVq4/HEYAiq1agTK2TaaKb/PXv8e0/1wu6jZ+/XW+/XHy9ur7/Nq3+Pjf/ - TRdqnDPC9iea9Jx1ZEITHSYKvocNo06YWWenJ9Pj08Xi+LQATbDoctoupskyTObT+XIym03m031i - HcigqBX8PwIAeCzfLNFbfFArmI6f/zQooneoVi9BAIqDy3+UFiFJ2ic1PoAm+IS+qH5ce4C1krZp - NHdrtYK1uniITpPXW4dwxokqMqQdXPqEztEOvUH4+P3s8hOQgIaK0FmogmkFLQQPkcMdWfI7IJ+Q - I2PS2RKBUIFFjOBQs88BH8+vPkHxAiKjJVPixqCtZRTJIalG+LB12txMtuHhA3idWsZMlWoU7LPl - CL6fXYKmRiAFQF/rrLJuG+2h9RY5m1A0hWr/oEVDUmRtOwhVhfxa8pYcpW4MP1spHuhnbd4CZot8 - /+eoODPMAcYKuSjJ6i3uGIvit3qe48knJi9kcoru9Y3hviaHb54HzQi3rfaJsql3CA0mJiOQap3A - YoXellcTt5LuA6eaPErxfmDxEVwMSgBtMpfrwDjNVHWFoVjh9cGpSaNvskeRg0GR8aDTZaQeUjHH - 6FZQoAr8+sXcIRKImhOZ1ml2HVATA+f5BPJgamxIEne5dmR807nzqyEfGO1h15JFqLsYyjBI3xwv - eUL6wSiG+ZAOMyexZQqtgAnM6PZNXKtxvwqMDu/y9GzEBMa8ErPp2j8NF4ixakXn/fWtcwNAex/2 - w55X98ceeXpZVhd2kcNW3qSqijxJvWHUEnxeTEkhqoI+jQB+lKPQvtpzFTk0MW1SuMHy3Gz+5XNP - qA53aAAvl3s0haTdK2A+fodyYzFpcjK4LMpoU6Md5E7ny5cidGspHLDpaFD775Leo+/rJ78bsPyR - /gAYgzGh3RzG470wxnyr/xT24nURrAT5jgxuEiHnflisdOv6M6qkk4TNpiK/y4tP/S2t4ma+ODk+ - Oa1mJ0s1ehr9AgAA//8DAAhVC+9UBgAA + H4sIAAAAAAAAA3RU0W7bRhD8lcW9uAZoQ1LtImaeAqRoE+QlQIsGqArpeDcUrzruMXtLyYKhfy+O + kmKnSZ4I7M7uzszu8cn0ySOa2rhoR4+bnJihN3c39zeL2eJ+9rB4MJUJ3tSmz5vVbP5x+B2v2uG3 + h49/Nv6TDvP5+/kcpjJ6GFBQyNluSkBSLAGbc8hqWU1lXGIFq6n/frrgFY8lM31qs16v/82Jl/y0 + ZKKlyWPfWzksTU1L8+nNOyqdfKY2Cf36OEQb2DYR9EY0tMEFG+kdK2IMG7BDRZbagOhJO6tkQ59J + Ew2SdsGDJu0UWCGDQK2GxJlSSx4YKMIKB97QT28/XNMg8MFNiFv6owPh0UEGJY82MDJpJwBtcSCF + 9Lmm+fXE5dS6CTHogQQtZOKgHchjU2pSS93YW6aRPWRSeMEHVgmcg6N90C4w2TNpy56cZWpAA8Qh + 7ODJZrractpH+A2uzjKLgtJi02mZa0u4iehf0+Ka3o95Mu4s3Qro82hZQzFjB+qhElw+2Vd8pTEX + Afvu8IVK7tIYfWGiMmaFryiGLUiRlSCS5DX9fH1aF58HeWQnocG5kYOoDfzCZNrbTL31uKW/uhDx + Yktna4oDeO45cU+tggtFf8K7zvIGtomH6tsGIRczynnuQK6zYp1CQtbgykrO8iradxDYfBpW7u25 + nMk6/U75xEATuWgltIdp2dN8tpE8XMgh8U1vt2U5gySHnG+p3Lf1XpDzdE+gqyZat6UmPV4RWx0n + ifT2w4lapubwYsmaUpxO64vSC6xYpR2CfHXFS1OdHpkgYmfZYZVdEpTHNp8t+bjk9Xptjv9UJmsa + VsWExKY2YL/SUdicExmfx/LaTM1jjJUZpx9A/WQCD6OuNG3B2dTzu7tXlXHWdVg5wbS11deQ2SUv + sP5HuUttmYChQw+xcXXff4t/zs67/2ePlUmjvgwtZr9UJkN2wWGlAWJqc3qM4s3x+B8AAAD//wMA + r13VZSsFAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f3539d7f54cfc0-SJC + - 991ac01b0c84cee1-SJC Connection: - keep-alive Content-Encoding: @@ -3879,86 +4001,70 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:19 GMT + - Mon, 20 Oct 2025 18:59:11 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=2TMisZ5V2Ewvrm9DubfQswDONPBB7qS1A38RKWheIV0-1760573359-1.0.1.1-JveQpVh.UA.NBFTUQ4MZcp7x4xG.IQ0cE7L6cd6_w4BWYC8DaubT.Pr8ZTzm86nJS9AylY7ASuv4ZBFh6XrzhMfPHO40d0hCPjwxT6kAg_k; - path=/; expires=Thu, 16-Oct-25 00:39:19 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=oX6rxt7aqU8BScr5jHiinpjCD_FdS5NQBDh_BBCZft4-1760573359758-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:08Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:11Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:08Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2013" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsPacu92V8kryDapB4 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2031" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998470" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_8951976e731e4a50be3db017987653c5 + - "5432" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nnal molecule. The counterfactual - indicates\\nstructural changes to ethyl benzoate that would result in the model - predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 - similarity between the counterfactual and\\n2,4 decadienal is also provided. - Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, - which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure - 5.142,143 The resulting counterfactual, which has a shorter carbon chain and - no carbonyl\\n\\ngroups, highlights the influence of these structural features - on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other - molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod - to obtain global explanations for the scents. The global explanation for the - \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around - many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language - explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe - explained by the presence of a heptanyl fragment, two CH2 groups separated by - four\\n\\n\\n 20bonds, and a C=O double - bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnal + molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate + that would result in the model predicting the molecule\\nto not contain the + \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual + and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n + \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, + is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has + a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence + of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. + To generalize to other molecules, Seshadri et al. 31 applied the descriptor + attribution\\n\\nmethod to obtain global explanations for the scents. The global + explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering + chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting + natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D + can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups + separated by four\\n\\n\\n 20bonds, and + a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe importance of a heptanyl fragment aligns with that reported in the literature, as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, the importance of a C=O dou-\\n\\nble bond is supported by the findings reported @@ -4007,650 +4113,51 @@ interactions: the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6381" + - "6433" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//fFTBbiM3DL37KwhdehkHThwnrW/BpoccCizaYpFuvTBoiTOjRiNpRcpN - EOTfC2lie7Kb7WWA0ROpx8dHPs8AlDVqDUr3KHqIbv7h99XXjxrvbz/vVp9uF6u/9nefPv/x8bel - 6cNSNSUi7P4hLYeoMx2G6Ehs8COsE6FQyXp+fbVYXS+Xq+sKDMGQK2FdlPllmF8sLi7n5+fzi8Vr - YB+sJlZr+HsGAPBcv4WiN/So1rBoDicDMWNHan28BKBScOVEIbNlQS+qOYE6eCFfWT9vPMBGcR4G - TE8btYaNur+5ayAk+PUxOrQed47gJoltrbbo4M4LOWc78poaSNRSYpAAA0kfDAN6A0K69/ZrJobM - ZApMYzaQniAmMlYXmRhCCzuH+mG+C49QZeEGIiaxOjtM7gmshyE4qr8QU4iU5GmS4wz+7AnoUVOK - AsayzszEIP8GuL+5OxBbT7LokL1QalFLRjdy8zgSKvwNsU42SkhvsDP48D+B1u+D2xMM1tsBHege - fUdVGzy8TT8xsKSsJSeqiBNKYIUPBZE51GiJGxjwwfquqDYA1nJrPwpJW5jERFJP2pDAhKFITI8l - nM/g9v0ySk+Ac0qhQ6FX0QuZmMLeGgKPkhM6cOi7jN34nO5psBrdRJz5Dkt3p7kbIN+j14U0ak3M - dmedladKsObgQq00xjLs0eUj/ewNpeJWU6IrralVGrBDZVj0SJmlqbyy12FPqZwelZ0fbZLIjcR6 - G3l0yjhbxXgnd4ChSN4whNGhmI0tBh/dXCybUwxco6S67Vjy2UY14xQlcrRHr2nLOiQq0/TLxr9M - Ry9RmxnL5Pvs3ARA74OMTMvQf3lFXo5j7kIXU9jxN6Gqtd5yv02EHHwZaZYQVUVfZgBf6jrJbzaE - iikMUbYSHqg+d768et0n6rTBJvDlz6+oBEE3AVaLA/Im5daQoHU82UlKo+7JTGIXF5fHIorc4YQt - ZpPav6f0Xvqxfuu7SZYfpj8BWlMUMtuTzd67lqhs+R9dO2pdCSumtLeatmIplX4YajG7cQErfmKh - Ydta35XZteMWbuP2Ynm1urpuz68u1exl9h8AAAD//wMAheZuCo4GAAA= + H4sIAAAAAAAAA3RTwY7TMBD9ldGcQEpXbaESmxsIIS2CExxWIih17Wlj1rHTmfHSUvXfkdOW7YI4 + Jc57nnnvzeSAfXIUsEYbTHY0kRQj6eT1ZDGZT+eL6e38Fiv0DmvsZdNOZ3M72370v96/Ww38ZRi2 + sv2g9z1WqPuBCotEzIawQk6hfDAiXtRExQptikpRsf52uPCVdgUZHzUul8sfkmITD00EaFBy3xve + N1hDg/dv74BpTSygCWg3BOOjWQWCt3fQk3bJCWQhV2AflXhgUuiN7XwkCGQ4+riB0bLcwF0E7QhG + UTuFtIY+BbI5GIaByXmrPsUzvYL7qy4+2pAdXV2wKZeOa2M1m3BSF00pIGCiA0di2Q+a+DmmnVGw + Jl78wCoY+zBZpd25MawTwyppBzaULNfejlfHqkwbJpFyVCMPcgNfOwLaWeJBwXmxWYQEbJeSFO/X + JlamZJVOKZjsPEVL8MKlvuig3UCsUsHnT0/viSGmODmfX1bws8jXseeVKelSDg6MtakfgpeuGtWO + ZGMtiYAXMI/Gh3F+msYaOTrisP8zo5tRbkdhGOda5s5Z9Go4p2xN8Sjg15fIDF+N2yZmshr2Nw1W + p7ViCvRooqVWbGIq63XbxGMTl8slHr9XKJqGlslIilgjRddq5ohnQGibS1ZYxxxChXnc+PqAPg5Z + W00PFAXr2WI+r9Aa21FrmcZs2ueU6QVnMu5/2OVu6UBDRz2xCe2i/5f/hM66v9FjhSnrM32v3lQo + xI/eUqueGGssf6oz7PB4/A0AAP//AwDB5g1CHAQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f3539d79dbee17-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:09:19 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=tb_lE1NIwiae0VWRsBujWSDsqoFn9wxSqWNrcWC1pVw-1760573359-1.0.1.1-EOwC_hHNlQIKazJX36ScfqamukIk_jQr7Vw5jtqHYJfcN5UNZfpaslVcVlOZLyOvDb8jvrlBDhAikhQ9tmcC038g3bWQ_VkEnlQ5fpYgQZ0; - path=/; expires=Thu, 16-Oct-25 00:39:19 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=9Ey2uP2.ggT4vvV2gpnzpV0lCSVJK6vGHX6q7cuz68M-1760573359955-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2171" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2198" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998469" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_30460bfb86a4438eb946cb7b946ccc66 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity - relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) - Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n - \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, - R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials - science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding - with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, - 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6403" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTBbuNGDL37K4g5pBtANmwnjje5eRfbwIctiqDtBqgXBjNDSdyMOOpw - lDgI8u/FSE7itNmLIOkNyffekHwcARh25gKMrTHZpvXjz1eLf36f/bb6dD+/i1+u/vrmLvH66uuP - Pz8/XFemyBHh5gfZ9Bw1saFpPSUOMsA2EibKWWfLs+lieXKyWPZAExz5HFa1aXwaxvPp/HQ8m43n - 031gHdiSmgv4ewQA8Ng/M0VxtDMXMC2e/zSkihWZi5dDACYGn/8YVGVNKMkUr6ANkkh61o8bAdgY - 7ZoG48PGXMDG/FET0M5SbBNEKimSWFJoOp+49QT3Id4qoDjQ1DkmhUg+y4QU4Muu9ciCN55gFROX - bBk9rCWR91zlVPDherU+nsD1ag2sgFAyeQdlsJ2SgyDQ4C1LBas16IMmavQXcGRZOch4j7UxWFIl - hRRRtMVIknpSnTiKWbPrSaQAddeg6ATWCVis7xwp2CCW2qQFJNwFCQ2TFn18Q6kOTqEMEfr7y+Ui - aRtEuZf1QqsAVKi5qj1XdTaAZe+O59usPzIlBEqAfgIf5tPZ+XFf47ITyWmPYFXjHhgMQa8B0Lk4 - iLM1ek9SkYJ2ts71bhi1gBI5Cumec4qdZnGwWveclEjy5/MF9XQ+dcFjc8/CcASXdBO7vvLHPaUQ - XIMCR/Crx11+y+DyeAIr5zi3NHr/UAAnoF3rQyQFbFvPFjOoudwdRg6dggsNsmixtzsrJaFYPTwb - NxgdPNnOY4Q2kmPbp+npS9ib+RVt7enuwMH5fKD7jbzHe0yJ3oKTjSmGno7k6Q7F0lZtiJR7+3wj - T4eDEKnsFPMcSuf9AYAiIQ268gh+3yNPL0PnQ9XGcKP/CTUlC2u9jYQaJA+YptCaHn0aAXzvh7t7 - M6+mjaFp0zaFW+rLzZaLkyGhed0nb+A9mkJCfwCczz8W76TcOkrIXg82hLFoa3IHsdP56YsI7ByH - V2w6OtD+f0rvpR/0s1QHWX6a/hWweSTJbV/74b1jkfLO/dmxF697wkYp3rGlbWKK+T4cldj5YR2a - oRu3JUtFsY087MSy3c5PzhZny3J2dmpGT6N/AQAA//8DAMay4NscBgAA - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f3539d6b416af7-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:09:20 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=lnf_CaqItZntFgIPpGZhRujidd0KGJB33sfSAfJspBI-1760573360-1.0.1.1-rUOBD1tipL6O6UeV41j8etArzlkNHA_zXbWtll0U1RzcAfc31KJLh2gBY5boN3DWTacz5zc2Fg71XcmSbbIYBS0RtzvJpdFqWHKRLlkpUuA; - path=/; expires=Thu, 16-Oct-25 00:39:20 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=1KC_lugyeMmQidDK4zEEhjQdPfq3xRdOqjKwqQGkQ3o-1760573360512-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2739" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2751" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998473" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_79a5f0fd822d469b8d148721c2bd5719 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 22-25: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nut to models informs the - XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain - molecular property prediction models because users are more\\n\\nlikely to trust - explained predictions, and explanations can help assess if the model is learning\\n\\nthe - correct underlying chemical principles. We also showed that black-box modeling - first,\\n\\nfollowed by XAI, is a path to structure-property relationships without - needing to trade\\n\\nbetween accuracy and interpretability. However, XAI in - chemistry has some major open\\n\\nquestions, that are also related to the black-box - nature of the deep learning. Some are\\n\\n\\n\\n 22highlighted - below:\\n\\n\\n \u2022 Explanation representation: How is an explanation presented - \u2013 text, a molecule, attri-\\n\\n butions, a concept, etc?\\n\\n\\n - \ \u2022 Molecular distance: in XAI approaches such as counterfactual generation, - the \u201Cdis-\\n\\n tance\u201D between two molecules is minimized. Molecular - distance is subjective. Possibil-\\n\\n ities are distance based on molecular - properties, synthesis routes, and direct structure\\n\\n comparisons.\\n\\n\\n - \ \u2022 Regulations: As black-box models move from research to industry, healthcare, - and\\n\\n environmental settings, we expect XAI to become more important - to explain decisions\\n\\n to chemists or non-experts and possibly be legally - required. Explanations may need\\n\\n to be tuned for be for doctors instead - of chemists or to satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: - Chemical space is the set of molecules that are realizable; \u201Crealiz-\\n\\n - \ able\u201D can be defined from purchasable to synthesizable to satisfied - valences. What is\\n\\n most useful? Can an explanation consider nearby - impossible molecules? How can we\\n\\n generate local chemical spaces centered - around a specific molecule for finding counter-\\n\\n factuals or other - instance explanations? Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n - \ to explanations and the local chemical space.149\\n\\n\\n \u2022 Evaluating - XAI : there is a lack of a systematic framework (quantitative or qualitative)\\n\\n - \ to evaluate correctness and applicability of an explanation. Can there - be a universal\\n\\n framework, or should explanations be chosen and evaluated - based on the audience and\\n\\n domain? For example, work by Rasmussen et - al. 58 attempts to focus on comparing\\n\\n feature attribution XAI methods - via Crippen\u2019s logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch - reported in this work was supported by the National Institute of General Medical\\n\\nSciences - of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas - supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated - Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n - \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; - Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; - Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep - learning methods in materials science. npj\\n\\n Computational Materials - 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, - S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine - Learning and Computational Chemistry for\\n\\n Predictive Insights Into - Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: - 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for - computational chemistry.\\n\\n Journal of Computational Chemistry 2017, - 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, - G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials - Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, - L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, - O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n - \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n - \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n - \ 24 (6) Duch, W.; Swaminathan, K.; Meller, - J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and - Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n - (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, - S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial - Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; - Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n - \ cial intelligence to deep learning: machine intelligence approach for - drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6390" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxA6tcDYsJ3YaXNLFnsIFnvZ9rBAvTBoiTNWViMpJCeN - EeS/F5Lt2MmmlznMEx8fHz+eRwDGO3MNxm5RbZ/D+NO3xcM3CXj7sEh/PUy/3n79ctvd3Fz9cfWQ - 701TItLmnqweoyY29TmQ+hT3sGVCpcI6u1pOF1cXF4s/K9AnR6GEdVnHl2k8n84vx7PZeD49BG6T - tyTmGv4ZAQA812+RGB09mWuYNsc/PYlgR+b69RGA4RTKH4MiXhSjmuYE2hSVYlX9vIoAKyND3yPv - VuYaVub7zV0DieHzUw7oI24CwQ2rb731GOAuKoXgO4qWGvARdEtQKZ8UUgt9CmSHgAyZUybWHWQm - 522xBWrh0gBTSyygCXrSbXICukUtIY/eEVDJHbGECLSJa5ITjUCPjmCzg01A+3O8SU8H5gn8vSV5 - R4C+L5l8LP0QgkGIQXkQbQBFSAR8eyAAZIJAyNHHDmxiJqtgt9R7iwEy+2h9DiQNYHSwYe86qvI6 - zLAh/ZcoAlo7MNpdfeOjEmcmxY0PXncT+EI7sFsMgWJHUkz8fnNX9IXBETBlJqGoVX7x9E01v9Gk - mzRQ/G7O3BblwerAJL834Kj1tYAT7uogWKp22jQUUS1aHbD0Ax1mLQG/OO982xJTVMDB+dL1VwnV - FVFpwCWriUvmUjA9Yhiw0u2Ho5oYi88FxpyDtwcz3pc32Vsh5SdZJVc6tyGbejo20Mcu7MD3OXEZ - 7WIfUzcE1MRHx90gymVchbQIkcnKNPthZwr0WJxYi01MZehn01V8OV8RpnYQLBsahxDOAIwx7ftS - l/PHAXl5XceQusxpI+9CTemHbNdFf4pl9URTNhV9GQH8qGs/vNlkkzn1WdeaflJNN1vMD3tvTpfm - DL48opoUwxmwXB6RN5RrR4o+yNntMBbtltxZ7HR++VpEmYB0wqajs9p/lfQR/b5+H7szlv+lPwHW - UlZy69MJ+OgZ030dmY+fvXpdBRshfvSW1uqJSz8ctTiE/aE0shOlft362JXV9ftr2eb1/GK5WF61 - s+WlGb2M/gMAAP//AwBNy5AANgYAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f353aa7adc67dc-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:09:22 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2221" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2245" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998475" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_f4cb792be5ef407ca2c4ff31501409d7 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual approach, - contrastive approach employ a dual\\n\\noptimization method, which works by - generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive - explanations can interpret the model by identifying contribution of\\n\\npresence - and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6347" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbyM3DL37VxA6tYAd2E7itLkF7m4QoAn6iS5QLwxa4syw0UhTkeN1 - EOS/F9J449k2LXrRQY985OPX8wTAsDPXYGyDatvOz9Y/Xf758+1yvv/1u/3qh99+nN9+T2vv5aE6 - 9O/NNHvE3R9k9bPXmY1t50k5hgG2iVApsy6uVvPLq/Pz1bwAbXTks1vd6ewizpbz5cVssZgt50fH - JrIlMdfw+wQA4Lm8OcXg6GCuodCUn5ZEsCZz/WoEYFL0+cegCItiUDM9gTYGpVCyft4EgI2Rvm0x - PW3MNWzMLw0BHSylTsGx2F6EBGzsg1Kq0GqPHujQeQyYpQqgAILG6KGKCd5liAPuPMFNUq7YMnq4 - C0rec03BEnz14ebua+AAtqGWRdPTGXy4uQPkVkAjdCnu2RFw0J6V9wR9cJSyFMehhlhBKSF0iRzb - YxrBQR9s3FMC6frEsRdI5IcsG+4kR9SEHDKHQ8UzWP+HLg776PcENQVKqNmJDphbLPCJtYGWA7fo - oSLUPhHYBkNNAtqggid0WYvjqqJEQcfJTiHm30yJ5aeUi4Nw3ahADNDET9kbvVL6HKDUBm3DtCdw - JJzIQezVxpbkDO5Jm+gEPD8S3N/frN+Vmqzfz24fHo5toQSYCBquG59jkStNG0n8stOlZm30ZHuP - aSRhaIBMh0oM0XaUCQowwzpEUbYlBew6z7Zo1Ai7qA0kqhOJZKZsYX2e1YptqT0oyqMMM9GOVWlD - QtCQ7/JsUOoSKQxrdzhmVOi4zSNU7DnlngfpMFGwT2cbMx2mPpGnPQZLW7ExUZ7+bzfhZbwqiape - MG9q6L0fARhC1GFM8pJ+PCIvr2vpY92luJO/uZqKA0uzTYQSQ15B0diZgr5MAD6W9e+/2GjTpdh2 - utX4SCXcYvnNaiA0p4szgi8WR1Sjoh8Dy6vpG5RbR4rsZXRDjEXbkDv5ng4O9o7jCJiMhP8zn7e4 - B/Ec6v9DfwKspU7JbU8z+JZZonyS/83stdAlYSOU9mxpq0wpN8NRhb0frqWRJ1FqtxWHOg8aDyez - 6rbL89Xl6qparC7M5GXyFwAAAP//AwBXM97JOwYAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f353ac0906ee17-SJC + - 991ac01b0d6c67c1-SJC Connection: - keep-alive Content-Encoding: @@ -4658,191 +4165,166 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:22 GMT + - Mon, 20 Oct 2025 18:59:15 GMT Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2101" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2127" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998479" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_67a62ecd2b9e442da3235021c8686372 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented with equation - \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) - \ (2)\\n \u2206xi - \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) - \ where \u02C6f(x) is the black-box model and are used as our attributions. - The left- \u2206xi\\n\\nhand - side of equation 2 says that we attribute each input feature xi by how much - one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) - is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In - DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 - This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent - gradient based approaches are mostly distinguishable based on how the gradient - is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used - to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used - graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and - explained the binding logic for these predictions using integrated gradients.\\n\\nPope - et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated - gradi-\\n\\nents to explain molecular property predictions from trained graph - neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, - open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. - They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 - smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining - outcomes of classification as well as regression tasks. They concluded\\n\\nthat - CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat - creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese - gradient based methods to find subgraph importance when predicting activity - cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the - most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for - generating explanations (local and\\n\\nglobal) for graph based models. This - method focuses on identifying which sub-graphs con-\\n\\ntribute most to the - prediction by maximizing mutual information between the prediction\\n\\nand - distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer - can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar - method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n - \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n - \ 8(LRP) are based on backpropagation of - the prediction scores through each layer of the neu-\\n\\nral network. The specific - backpropagation logic across various activation functions differs\\n\\nin these - approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre - and Azizpour 74 showed application of LRP to explain aqueous solubility prediction - for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method - that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP - has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 - It\u2019s an additive feature contribution approach, which assumes that\\n\\nan - explanation model is a linear combination of binary variables z. If the Shapley - value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) - = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed - using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n - \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) - \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n - \ Here \u20D7z is a fabricated example created from the original \u20D7x and - a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x - and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should - be taken\\n\\nin constructing \u20D7z when working with molecular descriptors - to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of - acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations - around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. - Equation 3 is an approximation and gives contributions with an expectation\\nterm - as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization - based feature attribution has also been used for molecular data. In com-\\n\\nputer - science, saliency maps are a way to measure spatial feature contribution.81 - Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural - fingerprint components (trained\\n\\nweights) and input features. Weber et al. - 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives - subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:15Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsPb7MyTLYkhDKsozs + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "9198" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 22-25: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nut + to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nthe correct underlying chemical principles. We + also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to + structure-property relationships without needing to trade\\n\\nbetween accuracy + and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, + that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n + \ 22highlighted below:\\n\\n\\n \u2022 + Explanation representation: How is an explanation presented \u2013 text, a molecule, + attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: + \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n + \ tance\u201D between two molecules is minimized. Molecular distance is subjective. + Possibil-\\n\\n ities are distance based on molecular properties, synthesis + routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: + As black-box models move from research to industry, healthcare, and\\n\\n environmental + settings, we expect XAI to become more important to explain decisions\\n\\n + \ to chemists or non-experts and possibly be legally required. Explanations + may need\\n\\n to be tuned for be for doctors instead of chemists or to + satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space + is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D + can be defined from purchasable to synthesizable to satisfied valences. What + is\\n\\n most useful? Can an explanation consider nearby impossible molecules? + How can we\\n\\n generate local chemical spaces centered around a specific + molecule for finding counter-\\n\\n factuals or other instance explanations? + \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations + and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is + a lack of a systematic framework (quantitative or qualitative)\\n\\n to + evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n + \ framework, or should explanations be chosen and evaluated based on the + audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts + to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s + logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch + reported in this work was supported by the National Institute of General Medical\\n\\nSciences + of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas + supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated + Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n + \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; + Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; + Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep + learning methods in materials science. npj\\n\\n Computational Materials + 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, + S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine + Learning and Computational Chemistry for\\n\\n Predictive Insights Into + Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: + 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for + computational chemistry.\\n\\n Journal of Computational Chemistry 2017, + 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, + G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials + Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, + L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, + O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n + \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n + \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n + \ 24 (6) Duch, W.; Swaminathan, K.; Meller, + J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and + Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n + (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, + S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial + Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; + Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n + \ cial intelligence to deep learning: machine intelligence approach for + drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6402" + - "6442" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4lACSYMmWjfpNCNA0KBIkcYCmrQJhRM7uTswlGc6s - asXwvxfc1c1tCvRFWPHMnDlzfRwBGHbmFoxtUG2b/OTVx8W3u+7DYlFtPmZ79/vPzW/vtzfzr/cf - ftU/zLh4xM1XsnrwmtrYJk/KMQywzYRKhXV2c32xuLm8vL7ogTY68sWtTjq5ipP5xfxqMptN5hd7 - xyayJTG38OcIAOCx/y0Sg6MHcws9Tf/SkgjWZG6PRgAmR19eDIqwKAY14xNoY1AKverHVQBYGena - FvNuZW5hZT41BPRgKScFx2I7ERKgh+SRA248AWblii2jBw5K3nNNwRK8+Lx88xJa0iY6gU7IAQdo - oyfbecyQMjm2pTzQF0Cm8Hn5BpBbAY09V06ZFDC4Q8AzJ4EWHcFmB0OdH/Ys4PmeoM6YGgjUZfQQ - SP+K+V7gxet37+RlT+iIEnjCHDjURwGvMzqmoJMNFr178WOQzjaA0ouqc+liidCbSk9X/r1avh0D - ZoKG68Zz3RSzKmbQhjgDVRVZ5S0FksJ0yGmIf6pKTJR1d57pFN4WfROsQxRlC5hSjmgb2md798vy - /RgGzTHAXYPJ0w626DuSQRN6iccGDrIqQu0KpJp505VQU1g6x+ULvd+NYcvSoefv2LdJyTaBv3WH - sIKeKdgdtJiGMgi37DGzHt4yDZ3XCF1wlMv4uaHcz3q52QE7CsrVrtSD2xRzmdSDSIGYQbpN31eZ - wqeGhI7D1ZBP0OI9PZ+PmOk0RsOsBgeaMUjCTEGnKzMeZj6Tpy0GS2uxMVOZ/Z9W4el8UTJVnWDZ - 09B5fwZgCFH7CvUr+mWPPB2X0sc65biRf7iaigNLs86EEkNZQNGYTI8+jQC+9MvfPdtnk3Jsk641 - 3lMfbnZ1sd9+c7o35/B8j2pU9GfA4og8o1w7UmQvZxfE2DJq7uR7OjfYOY5nwOgs8X/r+RH3kDyH - +v/QnwBrKSm59anfPzLLVA7yf5kdC90LNkJ5y5bWypRLMxxV2PnhVhrZiVK7rjjUZZx4OJhVWs8v - rxfXN9Xs+sqMnkZ/AwAA//8DACHR0Q05BgAA + H4sIAAAAAAAAA3RT328kNQz+Vyy/3J00W+1WV7ibt4KQKBJIqDwgsWjXm3h2wmWSYDu9Xar931Fm + 2isF8TTKfLa/H04eccqeI/boIlXPK80psa3er25W1+vrm/XH64/YYfDY46TH3Xrz8w8/3n97727/ + Oo3f3NevDj992HwfPHZo58KtilXpyNih5Nh+kGpQo2TYocvJOBn2vz0+1xufGjJ/etzv939oTtv0 + uE0AW9Q6TSTnLfawxV9v70B4YFGwDN+dSqSQ6BAZbu/g7auzWBiCCxThLhnHGI6cHL+7grsENjLM + Qk4GeYApR3Y1kkCRXFjsDEXYB2chJ5jj0Q4ad1Coyr6R80IGh0ju0+qQT+CZC0QmSSEdn9qu4JeR + oVBhAR/UVVVWsJFsnjexjdkrOEowcixtevMmVe0fGhQoeaDWqxCGp9lAwi98LouwM3AjT8FRhCIh + uVAi69XMRaVIJjeyQkhLmZqcISQXq2+B1GQsAzmrFOHIiYUaewcDk1VhIDMJh7rEskjvZmkPJCFX + XUJJcxcIF2HlZLRYeNvi7p7D5tb5Mk67thDHxfTdkhlVG7MokH/IjoxhyAIEb17ynlNo1ocgah0M + Ocb8mT0czs3wmy+OgRQICtnYFqcm1TU7qy/bFo6LyDEUhc/BxlwNTMi38eRcFXLnWUFoGRVho0OI + wc5XW+yWiyoc+YGS4526LNwu7Ga9TZdt2u/3ePm9Q7VcdsKkOWGPnPzOqiR8ApT/rO2KYp9qjB3W + +RH1jxhSqbaz/ImTYr/5evO+Q9cWuXPCs+7d65L1My5M/v+w597GwGXkiYXi7mb6b/0Luhn/jV46 + zNVe6bv50KGyPATHOwss2GN7/J7E4+XyNwAAAP//AwAFS+VpbwQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f353af78876af7-SJC + - 991ac039eec69e52-SJC Connection: - keep-alive Content-Encoding: @@ -4850,64 +4332,54 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:22 GMT + - Mon, 20 Oct 2025 18:59:15 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:15Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1891" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxskft5oncH7ouQ394s + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1919" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998463" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_5bc53be1bb274c218cf3e650f20d32be + - "4729" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, @@ -4972,67 +4444,382 @@ interactions: is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "51146" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAAwAAAP//dFPBbhs5DP0Vgpe0wDhwss0GmVvQ9tCD97BboAXWxZgjMTOqNZRKSU2M + wP9eaGy3dbt7GkCPj3zvkfOMU7DssUXjqVhepCDCefFqcbO4Xl7fLO+u77BBZ7HFKQ3d8uru8aN8 + Hlbhb/vHG/5AX7ZXf/51+wYbzLvItYpTooGxQQ2+PlBKLmWSjA2aIJklY/vv86k+81NF5k+Lm83m + cwqylue1AKwxlWki3a2xhTV+vH8Hyg+sCXKAt0/RkxPqPcO9ZvfgjCMP7ySz925gMQwPQcEyR/BM + Kk4GmO0mcAJm5MmlrLtLeD8y8JNhjRmsS6akxAnquInzGGyCnk2YKt+JUabkZPA7cFMMWq3Ng5xk + 1qica13vyWwXfXg6TSSxYGq4Zsa5qhfKLsjsJmUtJhflRdQQWfMOlP0BH11Ml/BPZFNNHhouaJCQ + sjNnMieWymBbdfpiGS5WwbMpnhRWlQf3J97rUKrgBzK5kD/EeRR0AS9Wq/vXb1/Oqi+OSR/iO3U7 + ynSc4NHlEYRyUfLgSYZCA19e1FgTz/ooRg1kRk5AylAS22r6e2L/vaR+BwMLK82JmXO9ZwFWmZaT + URdz0F/CHSnDyD5CEctaT9HC47g7TZloy2BYMzmBqGydmYkNRNLsZrd111JdeGeObb3bMvQ+BLvo + tVJ7UnWsEFknnotmWSn40jvv8u6n5pdrbA4Hruz5K4nhLpmgXA/9bi37tWw2G9x/ajDlELt6ckGw + RRbb5aKCRyDxl1IvHVsp3jdY5n+vfUYnseQuhy1Lwvbq9mbZoKkb6Or9Vg3decl3XJns/2Enbp3A + ceSJlXx3M/1e/wO9Gn9F9w2Gks/1LRtMrF+d4S47VmxxXhSpxf3+GwAAAP//AwD2UnVKpgQAAA== + headers: + CF-RAY: + - 991ac039e96067b5-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:16 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:14Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:16Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:14Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxskj73LkQJ36EQG1vx + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "5416" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6399" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RSTWvbQBD9K8NccpGDndi00S2EHALtoTSUlqrIk9U42mY1q+zMihjj/14k19Ru + 6Umw743eB2+HXWw4YIkuUG54plGEbbacrWZX86vV/ObqBgv0DZbY6XM9X3z69uH+8fHz9WI1LFcv + /ssyf1zeLbBA2/Y8sliVnhkLTDGMD6Tq1UgMC3RRjMWw/L478o3fRmT6lLher39qlEp2lQBUqLnr + KG0rLKHCr7cPkHjDScEi3L/1gbzQU2C4fbiEx5aB3xyn3qDx6rIqK4w3HVsbGwUv4FruvFraFqA9 + O7/xjkLYQsdiPoqXZ7CWDC7uYhbjtCFnmYICj2pCI0mhpYHhiV3sGAiy8iYHsBgDbGKaJM+lSMFa + 3kKf4uAbBi+WvfmBIUvDaWynGaXjBvrEjXcHGZIGKDFMES1CFhcHTqB9Tj5mhcTh4Kj1/RTPEvkp + RENGlxdTJ2Oz0LC65J9YYaDD7Wkxo+suBnY5UDqxANM4tAAvLuTJojvr5bQWMHat+NfMB+d9VJu1 + 0Z2p+PG4T2zjvzpyrReGwJQm15PcWQXHHh0FoL4P3h0CX1ZYHBaSOPBA4rhWFxOPS3lfyb6S9XqN + +x8FqsW+TkwaBUtkaWrLSfA3oPyaWRxjKTmEAvM03nKHXvpstcUXFsVysXx3U6Aj13LtEk8m6nPK + /IgnpuZ/2PF2VOC+5Y4ThXrV/cv/gy7av9F9gTHbmb/rRYHKafCOa/OcsMRpVpQa3O9/AQAA//8D + ANrKmXfnAwAA + headers: + CF-RAY: + - 991ac03e8ff0cee1-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:16 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:14Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:16Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:14Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsot7NbMo2oRegwVNW + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4748" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented + with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) + \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) + \ where \u02C6f(x) is the black-box model and are used as our attributions. + The left- \u2206xi\\n\\nhand + side of equation 2 says that we attribute each input feature xi by how much + one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) + is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In + DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 + This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent + gradient based approaches are mostly distinguishable based on how the gradient + is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used + to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used + graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and + explained the binding logic for these predictions using integrated gradients.\\n\\nPope + et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated + gradi-\\n\\nents to explain molecular property predictions from trained graph + neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, + open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. + They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 + smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining + outcomes of classification as well as regression tasks. They concluded\\n\\nthat + CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat + creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese + gradient based methods to find subgraph importance when predicting activity + cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the + most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for + generating explanations (local and\\n\\nglobal) for graph based models. This + method focuses on identifying which sub-graphs con-\\n\\ntribute most to the + prediction by maximizing mutual information between the prediction\\n\\nand + distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer + can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar + method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n + \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n + \ 8(LRP) are based on backpropagation of + the prediction scores through each layer of the neu-\\n\\nral network. The specific + backpropagation logic across various activation functions differs\\n\\nin these + approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre + and Azizpour 74 showed application of LRP to explain aqueous solubility prediction + for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method + that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP + has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 + It\u2019s an additive feature contribution approach, which assumes that\\n\\nan + explanation model is a linear combination of binary variables z. If the Shapley + value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) + = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed + using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n + \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) + \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n + \ Here \u20D7z is a fabricated example created from the original \u20D7x and + a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x + and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should + be taken\\n\\nin constructing \u20D7z when working with molecular descriptors + to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of + acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations + around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. + Equation 3 is an approximation and gives contributions with an expectation\\nterm + as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization + based feature attribution has also been used for molecular data. In com-\\n\\nputer + science, saliency maps are a way to measure spatial feature contribution.81 + Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural + fingerprint components (trained\\n\\nweights) and input features. Weber et al. + 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives + subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "51106" + - "6454" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbuM2EH33Vwz4lAB24EvsBH5bt1ts0C1QtEXRixc2RY2k2aVIZoZK - 4gb594KUayvbFOiLHnRmDs+cuTyPABSVag3KNDqaNtjJNz8t73+Wjwv7/tcflr+Xf9z/ZZff//j4 - Icz86oMapwxffEYT/8m6Mr4NFiN518OGUUdMrLOb1XR5s1isphlofYk2pdUhTq79ZD6dX09ms8l8 - ekxsPBkUtYY/RwAAz/mbJLoSn9QaMk3+06KIrlGtT0EAir1Nf5QWIYnaRTU+g8a7iC6r3u/3n8W7 - rXveOoCtkq5tNR+2ag1b9du7O7h4/xSsJqcLi/COI1VkSFu4cxGtpRqdwUtgrJAFoocWY+NLAe1K - iGgaR/cdCnSCZYLJReTAGHMA9twQG4TAWJJJ1gn4ClptGnIIFjU7cjVkx2QMQXMk01nN9gAlYjiH - XHz78fIYdwV3PW2u9SlmSm8xJw7eOtGmWhu0QaBzxj8gg0TuTOwYJ4F9QI4HYLQ6K2woyBikMw1o - gcJ6X04KTqUUmpmQ4WKz2VxCQG4xp+R6xduuIEvxMJBwBb+cfbL0JWnukk2VNrHTtnfJ9Q9nmhLF - MIXoeVLoZOzrCMaT3YH9A5UIOr+Ue0hOqG6ipFZ4aPzjwJfWl6m/RyJyle1Sf+FoAKFcwXeeAZ90 - mvPxV0oFjHYgXV2jxJN/2oJptKsxzwe1SRPCZrM5utMbMobHhiwOantdVUN1Y5NwMJ5PfYAC4yOi - G9RQoU5N650aCN+qcT/ijBYftDO4E+MZ06jPplv3snX7/X64JoxVJzptqeusHQDaOR97AWlBPx2R - l9NKWl8H9oV8laoqciTNjlGLd2n9JPqgMvoyAviUV797tc0qsG9D3EX/BfNzs5vlvCdU52szgBer - Ixp91HYA3N7ejt+g3JUYNVkZ3A9ltGmwPOeej43uSvIDYDQo/N963uLuiydX/x/6M2AMhojl7rw3 - b4UxpnP8X2Eno7NgJcgPZHAXCTk1o8RKd7a/lEoOErHdVeTqdLCoP5dV2M0Xq+XqppqtrtXoZfQ3 - AAAA//8DAAJjC383BgAA + H4sIAAAAAAAAA3STQW8bNxCF/8qAlyTAyrAFq6j3ZjRBYCDJoSgKF1WxorizIiNySM/MKhYM/feA + tIXWCXra5b4h3zePs08m5RGj6Y2Ldh5xIZkIdXG9WC2Wl8vV5c3yxnQmjKY3SXbD5dWfD/J5+6n8 + dX39dfV+ecDfPz083B9NZ/RYsFahiN2h6QznWD9YkSBqSU1nXCZFUtP//XSuV3ysSnv0ZrPZfJVM + a3paE8DayJyS5ePa9LA297d3wDghC2iGD48l2kB2GxFu7+At3v9nzRqm4IKNcEeKMYYdksN3F3BH + oB6hgTwq5AnUBwF8dMhFO6geQWAWHKtJIEUujAqWRsBnSyiMY3AaMglMnBMk63wghIiWKdAOWqrS + QbGswc3RcjxCIHAeUxDlI9hSYnC2HXIBf3iEBpSQns9943IqjB5JwgE7yAVpIXlmhw1yi+R8srxv + YZzJPn75Ig01q0eGHdviYWtrNy9Ib+CbR0Y4WA55FkioPo8CMewRfrv93NVNY3uRlLP6j2zHrgWx + Y6s4Nj0gqXTNyao+M0NC5y0FSQKWa8apWMYRpsxnwJpNntXlhFLDd7GOx/QSRDuPcccoUpdqZS8X + rd0zpsdYYKYRuc7UCD5/e+kMkt3jq6vZHisch+2s1TekklktOayJjWGakJEUApVZYUKrM1cqbuSZ + aosXa9M9TyJjxEPdPIjLjHUib9Z0WtNmszGnfzojmsvAaCWT6Q3SOOjMZF4EwYe5jqDpaY6xM3P7 + Sfon09wHzXskMf3VL8tfO+Os8zg4xpbK8Lrk8qwz2vH/tPPe6oDFY0K2cViln+v/Va/8j+qpM3nW + V3yrVWcE+RAcDhqQTW/aRVgezen0HQAA//8DAAIMaDVPBAAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f353aadedbcfc0-SJC + - 991ac055a87167c1-SJC Connection: - keep-alive Content-Encoding: @@ -5040,74 +4827,58 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:22 GMT + - Mon, 20 Oct 2025 18:59:20 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:17Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:20Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:17Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2640" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxt5gNhDLa8CEHf2sfr + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2656" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249999" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29997716" - x-ratelimit-reset-input-images: - - 0s - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 4ms - x-request-id: - - req_d58dae6c0db04977a4722a2dfeb55f8c + - "4548" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 28-30: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, - C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions - of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n - \ 27 conference on knowledge discovery - and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 28-30: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining + the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD + international\\n\\n\\n 27 conference + on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, P.\\n\\n Explanations based on the missing: Towards contrastive explanations with pertinent\\n\\n negatives. Advances in neural information processing @@ -5171,67 +4942,51 @@ interactions: M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships in real-world drug design data sets using explainable artificial\\n\\n intelligence. Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6379" + - "6431" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbaiNHEH3XVxT9lMBYSPLdbyIkYPIQyG5gQ7SIcnfNTNl9S3WN1sL4 - 35eesS1t4oV9GZg+dTunLk8zAMPO3ICxPaoN2Z/88uf5v399eMz3p7uLP/jj+u/Fb3L/e1jSnb96 - NE31SHf3ZPXVa25TyJ6UU5xgK4RKNery8mJxfnl6erEagZAc+erWZT05SyerxersZLk8WS1eHPvE - loq5gX9mAABP47eWGB09mhtYNK8vgUrBjszNmxGAkeTri8FSuChGNc0BtCkqxbHqp00E2JgyhICy - 35gb2JiPPQE9WpKsINSSULRUYIfCaSjwJclDASFfmYEm+PUxe+SId55gLcotW0YPt1HJe+6qN/z0 - aX37cwNferY9tMkOhQqkCAEfOHYQ0PYcCTyhxPGh6lOAo5JkIR2DY3SgPbFAFnJsq84FhuhIKkdX - jeZwqxAoTljRwfGUqZIWLMq7yi57jDjaNEA79MP4A6mFT+tbQN8lYe1DaV6TgqMd+ZRr6Gr2bWUv - 5bZJwPqqect2iljdhTqhUjjFOayd4wqg9/sGWKHnrvfc9VrGNBxyEsWqWWohkArb0kArGGhUfqoo - kPbJFfD8QPChx+xpD5UHlRF3ZLkmBBWiqTAOWdLuTdxjBuxZ9/OROpcqbqFYm4sFEMLglR0Xy9lz - RNlDy+QdoHMjq9iB7dF7ih3Vjh01pGKjfjIUrT/rWyj7olSFzSjKdvAofl/dXArI8YWS7SlwUdk3 - EFBJGH2BYrkO06sCji164IAdx26+Mc00y0KedlXAbbFJqM709SY+Hy+AUDsUrPsXB++PAIwx6TQX - dfU+vyDPb8vmU5cl3ZX/uJqWI5d+K4QlxbpYRVM2I/o8A/g8LvXwzZ6aLClk3Wp6oDHd8nJ5PQU0 - hztyBK+uXlBNiv4IuDq7bN4JuXWkyL4cXQZj0fbkDr6HM4KD43QEzI6I/7+e92JP5Dl2PxL+AFhL - WcltDzv9nplQPbTfM3sTeizYFJIdW9oqk9RmOGpx8NMNNNMAbluOXZ1/ng5hm7eXy9Pr88UdrayZ - Pc++AgAA//8DAJ5wBVoRBgAA + H4sIAAAAAAAAA3RTS2/TQBD+K6O5FCSnSquGtr5VpaAWKg4gBCLI2awn9pL1rJlZp4mi/He0dkIJ + iJO18/oeM95iE0rymKP1pitppIGZ4uhiNBmdj88n4+vza8zQlZhjo1UxPruql4s37vbhsXv99eHz + vJ1fvnt7t8IM46alVEWqpiLMUIJPAaPqNBqOmKENHIkj5t+2h/pI65TpPznOZrMfGnjK2ykDTFG7 + pjGymWIOU/xycw9pUqmwCAJ369Ybx2buCW7u4cXRW6JbOOuMh3uO5L2riC29PIVPNQGtLUkbQWhB + kuIKTeejaz3BU5ClQmBIaLQyvjPRBQbDJZi29c72b83AsfVd6bj6XcYVzL2xy9E8rKE3FiiR4kNL + mukYGiqdNR5cY6rUFI0uNeshGori7CCQjgSewgemZ8qgLdmk0Xi/gYa4h4CTJFdaodi3pZF/+vJo + bO2Y4D0Z4QSdcB5NJHHGK3y0rp+d2m5rapxG2WQn4LjsdXO1l7AKfpVcM8sUa/ZT/WFqr12hCULg + /iHUcUnSLzKFhpX0l7GOoF1VkUYdcDTFLQlTCU8u1gdLEkYrycVBdVikC9ij9jYOxGJNzcAiimFt + jRBHiAE6JdHTKWbDmQl5Whm2VKgNQuncrqa8m/JsNsPd9ww1hrYQMhoYcyQui9gJ4z6h9LNLvmHO + nfcZdv0fkG/RcdvFIoYlsWJ+dn05ydAaW1NhhfqjKI5Lxoe8kCn/lzv0JgRqa2pIjC8mzb/1z9mz + +u/sLsPQxSN+F68yVJKVs1RER4I5DmuSEne7XwAAAP//AwCrUqf1LAQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f353b94dc667dc-SJC + - 991ac058fd579e52-SJC Connection: - keep-alive Content-Encoding: @@ -5239,64 +4994,54 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:25 GMT + - Mon, 20 Oct 2025 18:59:20 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:17Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:20Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:17Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2879" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxt7x3uaPbpPATLB78G + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2895" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998476" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_e84124129280414d81104ff6ca0a1d74 + - "4626" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) @@ -5362,66 +5107,52 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "188634" + - "188687" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW/jNhC9+1cMeGoB2/BHYm99C4pum6KXLVqgQL0wxuRImoYiFc4wiRHkvy8o - ObE23b3ooMd5fO9xZp4nAIad2YGxDaptOz/7+c/r+7/vG7r/tPr04cOvvlr+8fH31i7xtF39Zqal - Ih7/I6uvVXMb286TcgwDbBOhUmFdbjeL6+16vVn1QBsd+VJWdzq7irPVYnU1Wy5nq8W5sIlsScwO - /p0AADz33yIxOHoyO1hMX/+0JII1md3bIQCToi9/DIqwKAY10wtoY1AKvernfQDYG8lti+m0NzvY - m39ubuGHX546jxzw6AluknLFltHDbVDynmsKln6ERBUlAY3QkjbRCWBwoGSbwPeZBLRBhRbvCLQh - 6BI5tiUdgVjBzS30MQhwUEpdIu2vKxw5OEpFuOt/aYQmtxhkDreh5+o9PGnhaaMnmz2m0QVn5ikU - MyyQhVxhocEWNPERpCNbfI0IJB9FU7aaEwnEVGjKERxEc6h8LtbHVqYg2TaAAhJ9PrJnPZVSsRR0 - Dh9jAnrC0hdTsDEXqxVazeiHuByJTdxpTLMjFpm9xnC+EhMBtZ2Pp8EAOwrK1QledaIH22CoX9Pm - tkOrg/+xzDn81ZDQO3bPdYBH1gbuQnwMYBtq2WKp5GC58zTyV3IvjVVCR8uObW/giMIW6hRzVyJ6 - FwOJUhqjJZaRsCk4amMQTagc6v5lyqNZDOAo8QMBB+G6UQHHiaz6E1QptuBQcb4306GFE3l6wGDp - IDYmKq28XOzDy7jxE1VZsMxdyN6PAAwh6pBJGbnPZ+Tlbch8rLsUj/Ku1FQcWJpDIpQYykCJxs70 - 6MsE4HM/zPmr+TRdim2nB4131F+3Wi2vBkJz2R8XeLnenFGNin5Ut74+b4GvKQ+OFNnLaCMYi7Yh - NyLd/rR6M4HZcbxgi8nI+/8lfYt+8M+hHrF8l/4CWEudkjtcuuFbxxKVHfu9Y29Z94KNUHpgSwdl - SuU9HFWY/bD+jJxEqT1UHOqyb3jYgVV3WK0315tttdxcmcnL5AsAAAD//wMAjYYDwgwGAAA= + H4sIAAAAAAAAAwAAAP//dFPRbttGEPyVxT7ZABXYjuXAfDNcB02KBgGShwJVQZ2OK/Hq4955d0+x + YOjfi6PsWm6RB4Lgzu7M3NzyCcfUU8QWfXSlp5kmZrLZ5Ww+uzi7mJ9dX1xjg6HHFkfddGfnv119 + mfN8+DjoL/brl+vHu+8f5PIzNmi7TLWLVN2GsEFJsRacalBzbNigT2zEhu2fTy/9Ro8VmV4tLpfL + vzXxgp8WDLBALePoZLfAFhb4x80nEFqTKFiCu8ccXWC3igQ3n2AkG1KvUJT6Cgc2kixkMKZIvkQn + kIX64C0khunY+g6+DwT06EmyQU/qJaxIQWlL4iJURSM/cHgopOByjuFA7wcag5rsWvCpVK2181Zc + BKq+2FUVhZOVq34SAz2UqQZXp2CDM9Ah/YD6vPobUx/WwT/PuvWavB2Z1ubZYrYkb3UmxtATW1jv + 4McQ/HDEuyZnReoBuActKzUp/lAJvI6F2NOxDpwUDbyBu9uPX6eZ329ub78dietpM9VfQrcEG2IS + ZwRctVyE6HhT3IbeGJ0CV5qCdTlLcn4ghYFihsI9Sd2UHv41OMuSMontQCgeKIaQq20wp/cKMdwT + aIplFWKw3fEVT0Se+DhCWFWmLblYz/fTnE4m2nXhachF2EgqWRsYyEiSszRqA1I5XrM8hbreElbF + CHLSYGFLcQdJgGnjnr8sHXbvOO93C2wO+y4UaevYU6c+CdW9v17wfsHL5RL3fzWolnIn5DQxtkjc + d1aE8RlQepguE1suMTZYpl+xfcLAuVhn6Z5Ysb14P//QoK/Zd15oyrV723L2ggu5/mfYy2xVoDzQ + WH+abj7+v/8VPR/+i+4bTMWOS+dXlw0qyTZ46iyQYIvTYjjpcb//BwAA//8DAOJljVe1BAAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f353ba1ebfee17-SJC + - 991ac05dcf0967b5-SJC Connection: - keep-alive Content-Encoding: @@ -5429,51 +5160,43 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:26 GMT + - Mon, 20 Oct 2025 18:59:21 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:18Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:21Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:18Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3881" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxtBKxA2Gk4kaKi2EJR + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "3922" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249998" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29996942" - x-ratelimit-reset-input-images: - - 0s - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 6ms - x-request-id: - - req_192ad78817384fa2ba8789d862fe4dad + - "4983" status: code: 200 message: OK @@ -5482,80 +5205,81 @@ interactions: '{"model": "deepseek-reasoner", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-af8c6c3a: - Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations - of deep learning (DL) model predictions, addressing the ''black-box'' nature - of these models. XAI aims to enhance human understanding of model decisions - by offering interpretability, justifications, and explanations. Interpretability - refers to the degree of human understandability intrinsic to a model, while - justifications are quantitative metrics that defend the trustworthiness of predictions. - Explanations actively clarify the internal decision-making process, providing - context and causes for predictions. XAI is particularly important in chemistry, - where understanding DL predictions can guide hypotheses and ensure models are - not learning spurious correlations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\n\npqac-95b8b564: - XAI (Explainable Artificial Intelligence) refers to methods and techniques used - to interpret and explain the predictions of machine learning models, particularly - deep learning (DL) models. In the context of molecular prediction models, XAI - helps uncover structure-property relationships, such as blood-brain barrier - (BBB) permeation and solubility prediction. Techniques like counterfactual explanations - and descriptor-based explanations are used to provide actionable insights into - how molecular modifications influence properties. For example, counterfactuals - can suggest structural changes to improve BBB permeability, while descriptor - explanations highlight correlations between molecular features and properties.\nFrom + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-61467535: + XAI stands for Explainable Artificial Intelligence, a field that aims to provide + model interpretations of deep learning (DL) predictions. The excerpt defines + three key terms: 1) Interpretability refers to the degree of human understandability + intrinsic within a model and can be perceived as ''knowledge'' providing insight + to a problem; 2) Justifications are quantitative metrics that tell users why + a model should be trusted, like test error; 3) Explanations describe why a certain + prediction was made. While interpretability and explanation are often used interchangeably, + interpretability is a passive characteristic of a model, whereas explainability + is an active characteristic used to clarify the internal decision-making process. + XAI addresses the ''black box'' nature of DL models by providing tools to interpret + models and their predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi + Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction + models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. + URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-a497e08d: + XAI refers to Explainable AI (Explainable Artificial Intelligence). In the context + of molecular property prediction models, XAI is used to explain black-box deep + learning models. The paper discusses that XAI methods can help users trust predictions + and assess if models are learning correct chemical principles. XAI approaches + in chemistry include counterfactual generation, feature attribution methods, + and various explanation representations (text, molecules, attributions, concepts). + The authors advocate for a ''black-box modeling first, followed by XAI'' approach + as a path to structure-property relationships without trading accuracy for interpretability.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\n\npqac-8504aaab: XAI (Explainable Artificial - Intelligence) refers to methods and techniques that make the predictions of - AI models interpretable and understandable to humans. In the context of molecular - prediction models, XAI is used to explain how specific molecular substructures - or modifications influence predictions, such as solubility or scent. For example, - counterfactuals and descriptor-based explanations are employed to identify structural - changes that impact model predictions. These explanations align with known chemical - principles, such as the role of acidic and basic groups in solubility or ester - groups in scent prediction, demonstrating how XAI can derive insights directly - from data.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\n\npqac-e2d220f0: XAI, or Explainable Artificial - Intelligence, in the context of molecular property prediction models, refers - to methods that provide explanations for the predictions made by black-box models. - These explanations aim to increase user trust, assess if models are learning - correct chemical principles, and bridge the gap between accuracy and interpretability. - Key challenges in XAI include representation of explanations (e.g., text, molecular - structures), defining molecular distance for counterfactuals, adapting explanations - for different audiences (e.g., chemists, doctors), and evaluating the correctness - and applicability of explanations. XAI is expected to become increasingly important - in regulatory and industrial settings.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\n\npqac-7e6508de: - Explainable Artificial Intelligence (XAI) is a process aimed at clarifying the - internal decision-making of models, particularly deep learning (DL) models, - which are often highly accurate but less interpretable. XAI involves two steps: - first, developing an accurate but uninterpretable model, and second, adding - explanations to its predictions to provide insight into the underlying mechanisms. - XAI methods can be intrinsic (part of the model) or extrinsic (post-hoc). Evaluating - XAI involves attributes like actionability, completeness, correctness, domain - applicability, fidelity, robustness, and succinctness. These attributes help - assess the quality and utility of explanations provided by XAI methods.\nFrom + doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain + leading peer-reviewed journal.\n\npqac-31f0bf23: XAI stands for Explainable + AI (Explainable Artificial Intelligence). It provides a way to avoid the trade-off + between accuracy and interpretability in deep learning models for chemical property + prediction. XAI can be viewed as a two-step process: first, developing an accurate + but uninterpretable DL model, and second, adding explanations to predictions. + An explanation is extra information that gives context and cause for predictions. + XAI methods can be classified as global or local interpretations, and as either + intrinsic (built into the model, ''white-box'') or extrinsic/post-hoc (applied + after training to any model). Post-hoc methods focus on interpreting models + through training data and feature attribution, surrogate models, and counterfactual + or contrastive explanations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi + Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction + models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. + URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-e544992f: + XAI refers to Explainable Artificial Intelligence for deep learning models in + chemistry. The excerpt discusses XAI methods becoming increasingly important + for interpreting black-box models and connecting explanations to structure-property + relationships. Specific model-agnostic XAI methods mentioned include ''Molecular + Model Agnostic Counterfactual Explanations'' (MMACE) and ''Explaining molecular + properties with natural language.'' These XAI approaches are used to interpret + deep learning models by generating counterfactual explanations and descriptor + explanations that help understand why models make certain predictions, particularly + in applications like blood-brain barrier permeation and solubility prediction.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\n\nValid Keys: pqac-af8c6c3a, pqac-95b8b564, - pqac-8504aaab, pqac-e2d220f0, pqac-7e6508de\n\n------------\n\nQuestion: What - is XAI?\n\nWrite an answer based on the context. If the context provides insufficient - information reply \"I cannot answer.\" For each part of your answer, indicate - which sources most support it via citation keys at the end of sentences, like - (pqac-0f650d59). Only cite from the context above and only use the citation + doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain + leading peer-reviewed journal.\n\npqac-9f403e51: XAI refers to Explainable AI + methods used to interpret molecular prediction models. The excerpt describes + several XAI techniques applied to chemistry: counterfactual explanations (based + on equation 6) that show how molecular modifications affect predictions, descriptor + explanations that identify which molecular features and substructures influence + predictions (using ECFP and MACCS descriptors), and methods to generate natural + language explanations. These XAI approaches help understand structure-property + relationships in tasks like solubility prediction and scent prediction by revealing + which molecular features (like functional groups, heteroatoms, ring structures) + contribute positively or negatively to model predictions.\nFrom Geemi P. Wellawatte, + Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. Journal of Chemical Theory and Computation, + 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\nValid + Keys: pqac-61467535, pqac-a497e08d, pqac-31f0bf23, pqac-e544992f, pqac-9f403e51\n\n------------\n\nQuestion: + What is XAI?\n\nWrite an answer based on the context. If the context provides + insufficient information reply \"I cannot answer.\" For each part of your answer, + indicate which sources most support it via citation keys at the end of sentences, + like (pqac-0f650d59). Only cite from the context above and only use the citation keys from the context. ## Valid citation examples, only use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) @@ -5573,7 +5297,7 @@ interactions: connection: - keep-alive content-length: - - "6992" + - "7134" content-type: - application/json host: @@ -5585,56 +5309,52 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//4gIAAAD//8xZ7Y7buBV9lQv9mRlAVj2fyag/FpNNUribFEE3RQJ0ioAi - ryzuUKRCUvYYwQJ9h75hn6S4JCXLHmd3kiyC/rMtkrqf5xxef8qkyMqsrs+e8Muz09llLfjs4gKv - ZlV1jrPT6/nFfF7N52dn8yzPTPULcp+VGW+YL7hpO4VeGp3lGbfIPIqsPH1yNb98cn5+dZVnrRGo - sjITiJ1DvJtZZM5otLShMZKjy8p/fsqkFniflfM8a9E5tsSs/JRZozArM+acdJ5pT3uM9qjJgBf3 - nWJSs0oh3Fgva8klU7DQHpWSS9Qc4fj9zeIEpAMGtUQlQKCQnKwEb6CzZiWF1EuQ2qPtLHpGvjgw - NZDBoJBZTQuCG9BZ2h6XeANMCIvOgW9QWpC6QYvaw1GlGL+bVeb+CDTzvcWcllisNoC6YZrTiU3f - Mg29FmjJt2CGb6zpl83EnEoq6Tc5/NK74GG0LwemBSAFQCeLj7uPjM9Y/ZRf8XN2UoQ4TM8AizXa - YLdvkF5hpXaSg8ClRSSX900adkoNLEZg3xBgFuFjz7SXFLoVQoveSk4xYR4E1qjFJGzgbe/82ljf - SI3ukCOM0zlqA1wxK+vNYC1azRQI5NJJo2ctu6OIddZwdA4dVBswdY2Wfg1Fcu/D4Zz19Lg2did9 - B+IFrVHIe8WmK6PfLof3NwvoNTcrCqLztueU2VlnTYc2hFdFDxrZuRxczxtgDipljJhVlkkNFbNW - ooUObYthcbDQGdUPee5dqAPkjZYfe3Sg5B0CNz0FoGbc90yFTQIdt7Lzxs4q5nAviGNxY4iniV1C - +V423lE4DTRmPfG4NWKSVqlr1YcOSv5JHEJ2fVk9rS6vLk4KeNtgCEtKAvhNJzlTiipmZdQKHQhc - oTIdOcU0MM57yzxC1Xvo9aTMFaYWI998g5qai3ZN3cph3UjeAGcaqmkJH1e9VD66ReUSjjoBYwHv - xzWs65REAZ1xftYYfpIceoJXl/OnAk8KeLFiqo+JMXVwrUXfGOGoopykvgDmvZVV79GNOR5CnHKY - QBFjgXNjLXIfvwjTUiEEU/i4oZYC4ydrqt75bWe4nnOp4+6AOFTqbhoU6r7QpA+c+Qk3wBumFOol - Ukq56gWCxc6iQ+33owvHWCyLHFaSQegeYyf1MVa8O8mpr2WCxeG5CAjNMTTabr2SL4J1D19IS4Wk - hkJgvZBUcAMkpEwEUCR0nYQxLNgJYXIez8TZ2byenxQhd9JBx6yXwUC1gZX0TBGY8QZb6bzdUEiX - PXVJs+mMb9DR+1G73qYicpECYMWUFHEjZ0QEUnPZKXRgGWE74Z0G1/VWmt5Fa9UUrGXIGvJEPUsq - A9l2xsaoSQ0Wl71i3thN3KBF77wlSnPoKRL7oJXDntdZnkV2lXr5YUuUL6V1PlAQEKSEqpGuhNvs - HYG0dBStH24zWIDGaB7Tbo0WIrI4owiPCb0bHHBFDCBbwKIODwbQFQadPvLQsBUC6kRotbFtiEcO - C3CN6ZWgUlQbuM0W1NHa+PTa4jaDZ72H2pp2enJi0SMHnULtCe+nBwOrTO/Jl+JW3+q3E5Oki4e1 - vfKUNXCmt7HWlAIuhzoDx1qEUDMKiVH+gthKeFPAO1SKrZn3COiBqSKHtfQNCEmcQ6x/hxtXwqEE - DYiZvj69nF8wxqq99KWvQwMXsIC2d56sQwilGV5BhW9NZyXzGIAW2s0YN32rqes7I7V3D+JX0vNZ - aI1A77EBHyGjirhx4Y9oC++pKKiGBvim6O3KpePnr04eo5keSqX0rhvZhuVRL+EfrJYGh/Ylkgx2 - PUoRDbRCLkVP06F/faRAitoo+LGridI5L6ZI+SVaaHAugYvfRTxKOUFekKAj6EVIXZn4+0EYS8e+ - ToQ40MmeNNmVcr+nU9KZP3vsXDloha1KSJJzkAOHtv64LwWmnD9EcsvqW/Iuv4C10Q9H/Tjyabkl - 0gRrD7kwH1ktEmBaiKM9Q7FHLhuk144OTepy20V5lITPnj2b6Mh8IiLDoVsoX1sCkCDhHZfE+7Xk - 4PxGIbmpuST2JaFs4v0lT0B6Np/D2ljhglpLmksZvURbwD8cEjLFqEZc8qE6Se+bGiguic6NVpst - FkUiDTsGJgkG/zzoiy2eBbw6LeA5qY2oNCtrmFDRxbNiwC6Q3kHX286MrrSd0ah9LJPzAl6T4yau - 3NJuDug6JLyLUDq2Sdh2UcBbQxKPbgGp7MPpYxGEZS+iXEDGm6A3CEVc39E7UBCJDHFyyVFaE8iD - JSFFD0t4SSHa448kY4bb6wR8f/Pu+vzVQ/AdSJEKULHKhA6bovhn0XNXsw2JDFRpLJggfyihsfB2 - NM0Edx54F5YPcHLgmuMmewYKDXvepOvGVCcaPVk9ciit3rbsZMVAumHFjWyTag0NwLGEN9ZUrFIb - IsohW5FJLU6SlrAJ77twbTGTwssHhTqhoL3CeWesiD6XcLPbcgW8Qg8tAsm1lvnoynPL6sji728W - OTyOvPNpAYVbeeo794dMPR4y+IGrtQf2CD6f3uC/6wTkcyxv6u3cY91IhY+efmzJ/YtmH19C8183 - wWhQdW6YY/zfjzEOTRwcjmD8HUYch+6R8rCyCtX98OaYlMT0yjiKrcNK62Fm38Z7V0j7741WvmGM - sjsv+cbhSMj4d5qMfPPs41tGGt5MboGfH2N83QBjZ2ZgzRq+fmywPZwY5G9mnVPx8rutPilhcbQK - ug7F9q5M1J4HDThIylTmvsFNgEBu2pb9yXWMEzkq2YYDpKa2QT2OVcJ06fi3bsjRtEW40woiOxoW - hDnCqCcjF48mT2RnAa/ZHcJWjI36VMabblAtJPdIAEel5gelFhn571FpxnwHZTymq1Zm/YC1XyFd - icOXJOXDrGW0toTTy0jo6aKD3GhRwul8+uvbRlpRwln68Qe4CTWmNjnNRj5LYkVRfJYLbjP477// - E+j+yIHR2wAGO5+h9zSzMlBZZHcUB2HW8TryUuqAzWEAlAY1FQIb7wcUOra0rGsIMPzaTFXwAoSh - 4U+8rnnLNBK8TcY0fwbnJb8j7pHcq81Ax8M4KSiyOJWZsOwoO8fx06g4QyXHWw4tSLOQ7Nc8U2bZ - WVO5rNS9UnlGHe6aD3FGlpWZ86bLfv1XnvXDH06dNW3nP3hzh9pl5enl9Tn95TT8ybV9cH59nWfe - ePY/AAAA//9smDEKgDAMRe/i7BCLYDxNkLahRYvFiODQu0sdWhXX5PN+MoX8pdTUOKr2TSBj98kv - ktF60s6aoob0A37qa5JXTKHHVBxuHjlfp4VPL3iR1yqpbeSU3QZin9+4fJJyQMiRmPWgsDM9UtxW - A6iAOCLNx81q0gUAAP//AwCeRqwJJxwAAA== + H4sIAAAAAAAAAwAAAP//tFjbbuS4Ef2Vgl48A6g1dvve+xB4Z2eB3sQLBDPJDBAHRjVVanGbIrVk + qdvKwP8eFCm5L/ZcNsg+qlski1Wnzjmlz5kus1mGZ+X5yfQaJyfX6npypvB8cnV9cj25nl5cnk2r + EnGBWZ65xW+kOJtlqkYulGtaQ6ydzfJMeUKmMpudXF4cX19dXF5M86xxJZlslpVEbSBaTTxhcJa8 + LKidVhSy2b8+Z9qW9JDNjvOsoRBwSdnsc+adIQktBB0YLcsaZ5msBPDpZp6D8/DuoTWoLS4MwY1n + XWml0cDcMhmjl2QV5aADIFSaTAkllVpJoMAOWu/WutR2Cdoy+dYTo1wnQOU8SNBgCL2VN+JVoPWy + Pr3DDrAsPYUAXJP2oG1NnizD0cKgWsHCPRyBRe48wav2d1STi5Ozi8vz0/PXBcwZKIYdoAvk43bs + u8B7Z6AtYU1eVz3oKsUQUkygnPek5HVtlW4NhRxa9KxVZ9CbHrSFxhmKj3LVljz3O7sPMeHZ9SUd + X5WvC/h0M4dSB9Z22elQU4AF8YbI7uRnoY3mPgeEViqzpiEzqkaPisnLegWeKkNKdoK6a9BOOluS + lzqWsVYr6zaGyiXl8Y4kZbQp+Tlsaq1qQMV6TaYHZTBmYFP3EFpSUuS9LDmlOv88xbfEtSsDaKtM + VxIsjVugEdQYp9A8K7oEoi17bYNW8lrrAk9qpwDb1jtUteQ4dBJbgIpSZZHZ60UnW8if3rsl8pCV + kG6nXCdHVai4Q7N32SHq05PqeFFNTwUYFlRNjQ7s+zyWhEnVVv/eUQCjV3S43ZIseUznlxSU1y07 + v39KFxKGRzgMwQ/xRYyiAYN22eGS9tfWZFrwtCY0ENh3SlZOngDlyaQXa91KroExrMJTmoIzXcLM + c+jR+dnZ9fW0yiE+Xldnx6d0fvK6gB97ybnpJWquKRCwc5JOyQeunS5j0wFK5VH1k0OAAnssaeKq + SorSts5HLHoyOuIvgbak1ri+kZ49rEOWZ4mstF3eb3nnZ+0D5/FsaVuQu87gLvtYIwvPfLqZ/+Uu + gzlYShyDNmzIwwIDleBsXJl4hwQYlumBC5hX8Y/hWTbSNnSVsBlZzmEOoXadKcFTa3q4y+ag0FrH + w/7FXQY/dgyVd83uTjFST0cBWkOWe3AVaFs538SaAS5cxxDJNDiIm0p0iqgs7uyd/bAfVNy+6QwL + 30BwnVcRQ8aA0jwUCwI2BJGJDMGih49kDG6QmYAY0BQ5TI+np/k22l9c5620ZgVvBfvSnR9qcr6P + +HzrmrZLXVrAO1T1cDTUKMzexeaQCNKlVtTPYI8MBoCNVDc8jsUeHr+AxgLm0Agvd4LCiMUV9ZGv + lWaKnBsk8qZ/Koa9s3+lHlqnLYdnRZnJ/5MI5UiISW6+Q8meCd68gFe3B+UAgbOOSNMhByqWRf6N + bBCr4nUKas6AuglbdRxb5ZAsXXUgkDuEnI/COCLiuSAWh3Q9Hn8U9bD8tnoNYqh36LI4kLRnhd25 + 6E9UaatjuLEeAJOY610SmcFPtPREctmoYrCrYolntoIhAl4P6XrxenLEux1mncHHugcERZ5R293L + bTBAgyV9cZ9fuhAhMu709w4txwYQRSb2WiVYRU+RJ+FgCgzkvfNfSL9AUiggMuyWQp9swEi3o1Tu + Zas45NC056EKf0W9XpTUpNpvXpTsfJv+N/QwFqJJJxbw6p/otevC2BpDRO9HD7EV1hnc3t68fZd/ + XQq/qK/FNwRNzv3VbfIdXdh4IQ/JdRIInaQhcG8i3hBC5P4Y6ECmM2EQpQPloNzgNVv0uPTY1tJ1 + kc2nx8ewcb4MOSw6jvVcEBhnl+QL+EfYZ8oAyPFksqWcG0ikLtK6ck2Db0KLiqAkoxstvrlFObcm + FpYOA7JefY1gXkdCfD9ahyTc8dax804KeM/oGTaaa0AonzpT4vl0M4/Lp8VIfaA5QNv51gVKQGxE + 3jFafYoGEU3yv1tmkC1OxRLa8eLA5Jtk+kbAyEtnBbyNlRHL13qNTCYt/+j8YOVmcKOb2F3oXWfL + bcoL+BsxNASuY6MtDVQ/t+xd2aXeZieXkuYXy8C7GhBvwwGWDoVCYiCHcjuAWPRF0EAth9kz5soP + cPvbHl2MW79EATdta4b39jI4g9sdOj5g4XFDT4bWaDkCa7//Z/ChbykMJd1x1OPa9dCrT0vf2SBo + oaj3AyqBJWlJ9nds3WAHSPI4oGjEeCzdTeQzYQi0JIfseKAfQAaWlVhbrdj0I4+P3iyWPjartoJO + LVNXPnYisLM01E5yTp4Bu1JLsHHpz1qMzdDkg4lbkAT4rINF3nnj4rKfPFbJKPyvk27lVDd4zv/z + nPud4+3oI8jWGEsXp1uB+FZF5cSFuNKKfIov6GXNUiDhyN2BrySlQ5rTPA3iOLd7tllM2Nc8Qxof + dABqxPcnIqaBVeKlJgv3MDoLiRRDkHtvahIfLYf1B+O3Gv3qdg5/PlhLs6bBesjpKIbP5+o0++o0 + 3mzNxYtDNEpyOKlFDPoPDNPxZIHmmNdJg6vk45wiufbzokr2Bq4cZUUZ+QpQaZJcfdeEjeHlIfvP + n6xf0P3vcSV/xkz9x+ff3U8QUgeZygN0Vrm1EMu35nJhRTEHAZWP1GGXWzd3mCmhnbc1qVUUtVHz + PtQ6QCm8FGkmeo2T8yfhS86RHlq5fTDSxiZ+tRLHQ2UyI1r8vTIuJHIcKH7k6tTaQ2fNYH60pjQM + SC8krxJGQhgG1F8daLtGo8utq0nUnuT8FlcE8ZB4tEyqT6P4QBs/wBxqXJM9YiE6QbLtuZYM0UNq + ki2T6/9QkT3mmXHL1rtFyGa2MybPxLKE+j59MshmWWDXZo//zrNu/JzZete0fM9uRTZks5OL6Zl8 + 0Bw/oW7/ODmb5hk7RvP02/Ty4iLf3+G+JEZtgmytBBfl09vHjy9svPv+9sPGuOR6On18OiBud1/r + bbDHB/81OoS9mzzmWegDU3NfafGZQobyuaRq76tKXU6vTsqzq/vWu/L4anp8X7VX96t13Ct7/C8A + AAD//wMA0HVPWYMWAAA= headers: Access-Control-Allow-Credentials: - "true" CF-RAY: - - 98f353d40f751f54-LAX + - 991ac07f187f9e6a-SJC Connection: - keep-alive Content-Encoding: @@ -5642,12 +5362,12 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:09:26 GMT + - Mon, 20 Oct 2025 18:59:22 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=c5FM1s5z9lyNXWJE2A8FHUynUrQFiN2kUVeKEeR.wII-1760573366-1.0.1.1-NaxRnM9DIW44nrAGNofHQIESfxBQJYO4rsSlE4QDeA5jE111cdqV0XXKtXrTC_wbvzTfdr5eA4gzHdtyzdLzJIkL8mfIitdqb3Uw8NVr3yU; - path=/; expires=Thu, 16-Oct-25 00:39:26 GMT; domain=.deepseek.com; HttpOnly; + - __cf_bm=6CIdqZ57TPm8rsGuQWkOVJ1VWqKL04CWin1UzDdiHec-1760986762-1.0.1.1-f4Rhi3ZOi2iEBEEknsGuZd7CNu.__WyQ4xOB2sSxMcSfG9ZkQU5pYulfEPLnZQflLUE53pMPGEhTeznZepv7l3k_25uaEXFVGEjFYmaJjWU; + path=/; expires=Mon, 20-Oct-25 19:29:22 GMT; domain=.deepseek.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -5660,7 +5380,7 @@ interactions: cf-cache-status: - DYNAMIC x-ds-trace-id: - - 67145dc89cb3e0407c9d56b0ba81dee3 + - 2984e0d8347e457802cdaa61b715f558 status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml index dcbef1bfd..0671f7b0d 100644 --- a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml +++ b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml @@ -22,7 +22,7 @@ interactions: 257786462, "PubMed": "36972469"}, "url": "https://www.semanticscholar.org/paper/1db1bde653658ec9b30858ae14650b8f9c9d438b", "title": "A Perspective on Explanations of Molecular Prediction Models", "venue": "Journal of Chemical Theory and Computation", "year": 2023, "citationCount": - 48, "influentialCitationCount": 2, "isOpenAccess": true, "openAccessPdf": + 49, "influentialCitationCount": 2, "isOpenAccess": true, "openAccessPdf": {"url": "https://doi.org/10.1021/acs.jctc.2c01235", "status": "HYBRID", "license": "CCBY"}, "publicationTypes": ["Review", "JournalArticle"], "publicationDate": "2023-03-27", "journal": {"name": "Journal of Chemical Theory and Computation", @@ -46,27 +46,27 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:25 GMT + - Mon, 20 Oct 2025 18:59:01 GMT Via: - - 1.1 ad0f81beb11a40b80a59b548e3794d00.cloudfront.net (CloudFront) + - 1.1 edc643c7c426bec36e205453aa531064.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - dPi3jwMZuAjlnrKaQUIJgkPmAnxz5Ij-lV0HKan-tdkUu9SuPqdfhA== + - rQ2qjFvWTS63itzkloTjDyfQqS4rwnynbV71-LrRMLBht_yRkN8alg== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - Sg23JHzBvHcEs8g= + - SwnybHLgvHcERiw= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1398" x-amzn-Remapped-Date: - - Thu, 16 Oct 2025 00:11:25 GMT + - Mon, 20 Oct 2025 18:59:01 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 84e4fd3a-e5d9-485a-a7f0-004bb853df7c + - 549183af-fa2b-44ad-bc0b-a84f67503bab status: code: 200 message: OK @@ -90,103 +90,103 @@ interactions: string: !!binary | H4sIAAAAAAAA/81ca3PbOLL9Kyx9mqkSabz4cj45tuM4r8nGnmSy49QURUESYorU8mHHk8p/v90A ZYmQ7Ri+u/fu7s6OrEcTaHSfPt1o4PuoabO2a0b7o+pyNB4tZdNkc+m3NysJ711X9fa7V7JuVFXC - BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjKn48mVsPmvVEsXjJz4lPhXnVOyLeJ+z - f4JQ/BSGtVyN9mkcERFyFrI0ZePRZgA8ECQQox/jUS1nspZlLv286soWfiOS8WjVTQrVLGQN3z1Y - ylrlWekdLuQSXhTeWZUr2d54vxwcnv0KT1RN0+GAEnhdqFyWDfz153dUTt3eOSM+5mMW3zEh7hPu - s/ickH39P3tCUZwmccgI/gdGn1dlK8t2S7VXVQ0/mcoiu/FV6U+zG3gmGY9+//AGPl207arZv9i7 - 2MtrmbXqSubVclmVTVDV84u9fvDNxd7k5mJPBORib/QDBjnrYHVqPaej305xAUlAOeHpxR7VQ6FR - CE8tMz2NI3WlcDReNTM6a9r6BgdVKT9rGlm3cupPbuCbGzWPR9l1VsPy/zmCRROChiN4rprqZ+K/ - 7nmkmq6NDQcGUu6R/+PLj/G9gxfRA4OHBR97z1Uly7kqJZhCOR97x+WVqqtyCbrHj7Ny6p3XWdms - qrr1zm6aVi4blxmHVMT0pzPW4/x3zJiE8WbG78AOqhLM+rRsWtV2rcS5n8hS1vDmWzk1Ng8mD17i - MKsPPDx5S3mcRtHPZmbG4zCzLxvTn1bLTJXay/pXf+KnddU0y6y+9GvwHfDfVrvHLCsaCX7TLGCh - fBQBv5A1OGBboM+OXgV61QPvfCGr+sY7rJarrg1wAusBTP0VGMF9fi3GLPwCqt/SPGH0Yi/Lm+Br - 3uYBywllHG23n+zXqqtB/T6IUTmMAgcPvnkPFv4UOWi6L+h+yO9AjlREFPSukWOlcXfEqEh9RiNE - 4wYGkuObh6g8AEYNbf4tQuJCrFEyJCi9V9qB9x7wZyVzBBQPfOf426rISm1XDRrT26qQeVdktfe+ - RnvCD+BNQKlGaxYeob5ttAXPvaqKTs+MpmgJXQsLpu3ntw+Hp0cDJKvqXE0NfqEp+fAP83kcMz9K - Wdz/GiwFzBiNSX99tN/WnRyP5jBgRM0TCZ7uvQ/g27NsqQo0uE+yKMCY2xaXpJH/6lAH8P5M1U2L - YmczVajMGBaMbA0gEpcLkWGAf2Pv91JpmIbAAR98qPIFrI2sx9sv38lr7zNETQ98ncX6NzBm7wyi - LLiecelHagAWO/R5IsjjNPBStpl3MFDACcDaQg0nn02nysCFkwYQQY63AfTfpYz18A9wWNuDP5PN - IpvW/+XDf+RaRpGIfZ7qiPeItTwopzU8/GhozgtlW/J/lTa+IB1cTjTl4hQj3QZwq7KApz2Ih9tU - To//UuKs4T0A31y19KeBawuweXKx1wAHYcInjMEaxFz40QhX7FYs02KZi9h1HAClLGt5FdAcgjqJ - h3K5lstd5BIYy9ccQosA6jSUJrQ04Sotmy6zgBGaEhaD1Q1Ehlpk+JSJ6wAYTzDeW7OOtNDo8UIZ - jWFulCc0oozEcUJgoGloTT/WYmOn6cNvGkrASmHtKeQXJEx8S2yixSbuYsG0SC8WJuDzodhUi02d - LBV+c0TPDknIwvRoKI4SY/nEQauR4GgyaKDf1JXP0PyvwlW09K+swdLer57kWHGitQC2ljBbC9R4 - FnVyrR3BXCQ+swQb16JOvmUEMxauoSCkyc6IjZdRJzejYPJfA1XOZl2jXS2gLABqaIk23kYd3E0k - YQgrn9V/KICYlECyLcLUlmscjjp4HKVJhDbMOSoYrBfSb+LfWHKNx1EXlwONXuwtZrIJRBTQICR/ - YW5gD9j4HE1uyeGatEPsv8owNfFUCWGmq3UqM6vqpQ5mQDkr+LCBSLWVmd3yS7bNL0fP4e3LSdYo - 7xyD543Mas2uqQX+1LiqJqeaD/o9n47j3fHpAQDtLeeaDEP49mjTQmpR9vEKKfOLTNUlDHPsHeSa - Y2cTCMcQUTe5ZYZfvtkefEIHg++qIlteq1J5r4ajT6zQZYCBOQDDrYeJCBaepj5J0iS2cZEZTGBP - wATwsGjtujzxrfDA+mjrggkRgUXK1DKbB1c8UTxgsaBarLU+v5XeAeReM5UrbTotEH81x4XZ9w68 - 466uVjKD76xWdZXlC6+tIMHJ4Ut67cz6dDoluNU4GyzMrQjIJiEb0JWa8dbkDC4xC1WYQRWGqNJB - al53edvVmBaOIDn1NJ/zXlZdIwPPe150UqelHhi+h6M99Z6rotCETM0XbfPMQzB/5m2o5vX1dXCN - UhZayLy6AvrZtCvUmg/WV/jVzK/1jy/2AmtwBpeYEw0wkId5btki5CUBiQNiEyBmoIm5QBMQtIu9 - VZk1CHgkCgW1PZYZYGIuwLRtQYIoFrAkJJZYA0ss2V2k5wq8duz9FjyDdW/bCl4fBtupsTadr2A5 - aHrmHUCwJZgYkF2vAFsqATPQBpuuvpI3Adim552+Ojw49WnsYXW1WVQrRA+JUlWZTQqJK//LHwen - v+KC0/iZt1p5yUUHrznl9ioaGGN3U458UwawpvY+K7JcVWPvDCb3pssVJAIAXPDH265UwPbfwsuD - xVJOzVdeSgnA9gpeHclyLgv8rvdHprwFqGBSVZf73nmFdaPGyzyQMFOQGsxqyEBwktqkt2eYKaOK - O4D19Pj4+GLv8OML7cd1ua5tDcHWVHVk7X3UtT7tGlRrisdRZJTF4zgMhvEPzeH08PDjJ7AvBmQJ - fgTmK5hlE9zAK78bXu/X6utuATZyFHgfQFGvs/xSp1CB9w6VLEHBn+HFmVpWjf7WcYDzmIBO2qpW - ulQHeAMqRHUdDwzCqAvGS7SCHtTNWTVrYSmkdw6Zm07vPsLq3loo2uzHrFBT8+en3ggb75fTw7Pz - T9rqGNG6pFHc211M7tQkfD8kLBWoSQKaJNzOhUw84Q7x5G4G2yTcioHcRBTuEFEGxIoBzMBEeEwt - uX3+5kQyDTDK+Q1YNg4Y8wUapZZkEw+4sDkHTZJwmxXEZDv4vK4W3vvA+zRkBAiD68LjAzyFi3bx - oLW87dHqTY9W1pBNlOBPZq8RAU4s0p3FMyGCO4SIodwE5caRHXK5CRLcPUhksHJXPFKUQmYqQou8 - chMl+N0Z4xYiDNeV7zoN8tvq3XnI0Uo0AKUiZgmNt5f8nwCrc0CLHUZirzi+7Z2ePrjCPaN+J1sd - cDQA6FG0Ml+UVVHNFVDvX/qB/WpN3AQY7pTTmmqBJsHNstZVEibsuobBWOFAYYfuS0kYkDQWFnYL - gzjCAXEsy8IsTkTEslhh4Ea4EFiwo4s9IMMxjSwyIwzICL4bRN50EFFlPcfAq8PwGynxdR8DnHMl - jwOYn3Q3SF9OgzFE+2+TDsX/Hngf4e/nuC+mmcDY+5QVwAsWY+8l/PECBtE1GMDGGGYX18h6FsiI - 8KsnABeybc3Hx9MGYllX18hbm6YCHt4iYTgtc/j0lsWIOApNQBFxLCwqI/pKl1upy9R6KA0hp+E+ - ieLU/3ZXinDgXWXAsHVofeevZN2AsubAT5qNj9E05NteeLbIVoW88d4EMONtvi8MKgqrriYMqAkn - 3oszSOPEx90f4kdhikX/v5htfQbXxN24di/+hGTXHhnnME+Is/jvMNqe8Juqs0BH13AeEWZoAmHm - 4PCtd3Z68vroCIxzG4/yAR69LqvrQk7n0puqJq+uZG1yZCAkmbdUu0FIGPAVDuW6oUvHCBXA/G0I - MtgmnLAtAbE0FjzkKRJIGgdU0JAn1oKFBt5Clwxdl2dwH9lHcPNTXxCLm4QG3EK6s9Ik1OnWLYXg - A0t+D+9OvJNhPCF3LK17JWY4PgOS4VM5GawUD4BEUotGhgYuQxdOth3WQwzrNKbCXiWDOaEL5lAC - g3m/uGk+yKu3AHPI3JsAYgYwVGLRhrAvtbsk2SZoMB7xJAo4EwCWVogLDc6ETjizqeCrJUZkyiKL - O4UGY0KnYvtAbDIhJGEGFW3Lwo2nD8DnBybIto30Q9YsO3gmcNIAAtA24IYGAUJ7+YwDhw4ObJtb - BOa2HvJmL8M4b+RUXtsUMBJGojDeKWBExnkjl9oauAIkFkaVwaoqZQBhjlDbIiLjdxGzcYFzXeG8 - J7M4A6qR1fDfrxkq/f8hv4iMY0cOjj1cwVCzNWpXdSLj2NETyAQ6himQUsZ26piR8ejoyQmRppeE - 2XtyUb9/9nSfJjnyKivERcano5/yBouEnkEUWMi//Te62qOLCM+Bin7CIsarNSfFdz5INQP+h59l - +C1IVLHI8Q+FPPETZq3PvLf5YVE1MKax91rX0oprWRTARPFXqmibfHFZ6YrSMZK0DIsW3kHb1mrS - 6bCDpO2kzlYLO5e5t4r0U7N8VHADciun3suquhx77z4DYz47GOvqyKAYwniKmzxAZlpVFLoKYiFr - ZOArSmz3TJnOfzZRewCIn3EoH4Zumf4kaJdmXmprXqvNvJq7gnZkUDRyokGm4LHC5pr6tuIR2bQ1 - NkCqUWfIVxgTwy4hPtjG+dwBIr38ef5719In/ytEig1KxzsUi0NgfgBKF7W67JZZbVpw/q9xNDYB - IHbach2mHixJQ+FHf1ELSmMD0fGTIToF9k15lFjhMDYQHT9hz/Xrcr7stx8gfhMLSmMD0fHTGhyW - coqlxyCdQFZp8+/YoHT85E1XvT0WCmbvusZ9n4MT9+o3oJv8tuYIKY4FPbGBntghd+JAMCi2Euve - 4ibgAXBnkVrFzNigRuyEGven65vODAMZCdkNSse1rj4cQdhYFy0+63jS1VeAvNJsYHxU4DFlq0PR - R9V0WaH+RuxbqDmMxy+yG1l7M5mhVO1+mTeVcgXIqWPKM6sZ6m1VtrXEHmFGSAriqyLwINDSsbfy - qFXDSAx4JE7bp71SEsZ6+xDw/5azJMa/E6fqk04n4zDxWSoiP/Rt20iMZycuWdXQmrGdIiLE/9sS - bFw7cXLtW/7MgD5HLKTUsrjE+HXilEwNOh5CHG5qN38kxqmTp9aiwS4oABGz+X5ifDpx8Glbbgh0 - XzCLgiZ989KTyyERJMMkFjvmYDw6eWo2hesWYGnPwuPUeHT6xFIISxKwXZtZpMbTUhdPowhrVEQJ - mkGiN/6iu2qFunNcYf1yqTuczfEAudn33S4Zpsk2DXhRAxwvMIF9MUhgU+O/dk9MajwwddprQtVE - SZyEln+kxutSB69jHMEHj+HwPuzbZdPSk4XUpyTqGw8IJYTGrNUNpK3prweIzAt41HCDcXXbJT4o - rw50dZ6Valm1lXcemGadzUyMp6e2IRlHTZ1zpFzhKYWQtJY846CpU9BF74MMkfmMYlUqy0MRSkuu - cdDUwUEZxY0WSMbKgJNIxJFFPNK+s9DBN4ciOdA7u7lw3V34hC6ivtkHu5sZj+wuIojwvWi6G8Vf - dGNY7mfeSVaNdXr4h8JXh/Dqc9ZUpbo0KSakiZgxHpoc8qwr8W3vSM00KW6V3hk/y7PZrCqQSnvn - tTT1/f6wgvR+W7Vqqf7WZtn3XjzAsNfMGpI+MN8GbV6ff9ApHwvsKfZNjsSJcu9YD0mndmca6bsc - yVMZN6O4OQoxz+7AI32bI3GACCskYegIAeRtyX2XI3Ei3bY2JlkqYlty3+dInLz+tqsWzJOe2CL7 - Fkfi5PiI1WVWX+zNL7MstbsGYDK9ULctYqErSXb1l6RxmnDw2zQhw8T4vCqqpVRWLf+xWSbj9fSx - 2zSXrts0entbq+AJOQHV55+QpUGUIL6NVetO6Htaoe/TLjah7m6ARYxz3ACDf0d0sE9yUmeTKr/M - 7PZL8Uj1kv/gLhi97dd2yy4Ap3jI4ojwWPAgX1Dbctft2m792ib5zJvJV0SFSPc+k50O8x7K3Dq2 - MWR/XQL9FSGb2hJ7CHNq1d5NWsJ0Jw2g605tl1ZtqwbLctCBzdfpulXbqVdbLxzYwQzVqw+P7vhE - D2NOrdrD8eJJDpYmtuAeyqjT+QhbEZjR2YJ7gKDuAIFAztIUbGIn9vTN0NStG3p4lKdpq29YQSfc - zopo3xJNHXuiYaqHMQQgFkXiwBa5PiCxs1/D4gFFfqnJ8estMIKEI/w5GCHMPwQ+0yrv9IkwSGiK - m0aZpqBa5tW81AfK7AH3fsyc/ThXHEyXidyW2Psx22mGYwkb1FnpoCb+Xk5rOa+azCRYG4i+qzr8 - yvytyzhW+RRIXgMv84U9rh4EnPqih1UGPMASJjvnKvquaKr36S1OfLioikK2Y5iU572WddZst3lf - 4huBqnQ/cGgT0b4vmjo1Rpu1KTWwxN9sib3/M2f/z0sshhCyo9Xe8e/pU34MokQT7C61Y1ffqUvv - adV9xFEuEvkpEdQPbcm927u0rm5lm4ykmS2x93qXjlUjUUndMyUubYnr81BPOBBlzoFABgdpeSrs - Ch7te1Upd4qzSFG+rhYrYAM8tvOavpeUujSTboygWtVTbQTgArbg3rNcukk3B87S/jgMDam/Y169 - bzn1k/ZGAH4AS13bEnvf4necN7i9x+FQInbrXPa52rRp3mxvVwJQvO8m2FVxUWI3fNUBgp91yyUW - avCXh6dHHg1FCoAEmXPWLLF7YAtVYPB6o6PMJyooC3ihFuYISd6Lu9jrf+b9kuW4hSinOhUGju6z - 6FcbiPpWUerWK6oPq5ZK6n5s8MzETlr7RlHq0inKORYd1ddlgy1sfOf8FO27RKnY2eYbtEuwQXbw - obqW5kz2sPq3E4xlPeuWgfeiyK6q2lZT30hKnTpJb0kQntoDyCJhGO5EmL6plArns8dpnIDvJilL - eSKAEtmuK9bnI13QYNi7glaGW8Sp3TVJ+25Ks7366AXGavVshZ1XWJxJIvBfm3f3/ZjUqSGT4agn - k0kQpTAFu7+c9o2Y9J5OzAescdlXpRoakSikdjMi7bscqUub4yZXwlamyWh9rYp9J8qGB92e/++v - R0HeZw7TmMo2CKhqNVdb9oy3sRRZOe+Mg0gs6RaqvNSH9O1biWCYTaDxGi9AgGnAW9MZXhNz/zUq - 64tg+utUstWq6GvJ+sej+29JQo5bTkFFW7+BDwFXVzLXh5C0kv8Dg9x+hPP4GrVURVar9sYHCM4v - da6PF8LIVdXgrQoPXk1z18UxwmfhOUn2Q7JPdi+OSZgA2kn6i2OavKrhlxTvW1jfGPN9tKoVhg58 - +Qh13a+pH/iEbrJlO+aqnq039G1bD1+Os30ZRDO42GsNtv2VXd8Hd3dtLpx4xA0/8Iys6HOkK+kr - c5PTvRP7snsFF6jC6OQhw6ll0a/799Eia2Bksh+cvkxpbVAgazS+vVzpzkNQ/5pd6WrzEBiqyVeZ - t/o6ktHp2dk7PQuI+34a6QS+f83MHU5NU/ZPhKf3jzbDgbCHHfL4/Ntfo/P0X5KAXm1dlSrf/SZu - o33Ry66Hohf5dikeXucfP/4H7FUKuINOAAA= + BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn58mVsPmvVEsXjJz4lPiPnlOxzsi+i + f4JQ/BSGtVyN9mkckTSMmIgIDcejzQB4IEggRj/Go1rOZC3LXPp51ZUt/EYk49GqmxSqWcgavnuw + lLXKs9I7XMglvCi8sypXsr3xfjk4PPsVnqiapsMBJfC6ULksG/jrz++onLq9c0Z8zMcsvmNC3Cfc + Z/E5Ifv6f/aEojhN4pAR/A+MPq/KVpbtlmqvqhp+MpVFduOr0p9mN/BMMh79/uENfLpo21Wzf7F3 + sZfXMmvVlcyr5bIqm6Cq5xd7/eCbi73JzcWeCMjF3ugHDHLWwerUek5Hv53iApKAcsLTiz2qh0Kj + EJ5aZnoaR+pK4Wi8amZ01rT1DQ6qUn7WNLJu5dSf3MA3N2oej7LrrIbl/3MEiyYEDUfwXDXVz8R/ + 3fNINV0bGw4MpNwj/8eXH+N7By+iBwYPCz72nqtKlnNVSjCFcj72jssrVVflEnSPH2fl1Duvs7JZ + VXXrnd00rVw2LjMOqYjpT2esx/nvmDEJ482M34EdVCWY9WnZtKrtWolzP5GlrOHNt3JqbB5MHrzE + YVYfeHjylvI4jaKfzcyMx2FmXzamP62WmSq1l/Wv/sRP66pplll96dfgO+C/rXaPWVY0EvymWcBC + +SgCfiFrcMC2QJ8dvQr0qgfe+UJW9Y13WC1XXRvgBNYDmPorMIL7/FqMWfgFVL+lecLoxV6WN8HX + vM0DlhPKONpuP9mvVVeD+n0Qo3IYBQ4efPMeLPwpctB0X9D9kN+BHKmIKOhdI8dK4+6IUZH6jEaI + xg0MJMc3D1F5AIwa2vxbhMSFWKNkSFF6r7QD7z3gz0rmCCge+M7xt1WRldquGjSmt1Uh867Iau99 + jfaEH8CbgFKN1iw8Qn3baAuee1UVnZ4ZTdESuhYWTNvPbx8OT48GSFbVuZoa/EJT8uEf5vM4Zn6U + srj/NVgKmDEak/76aL+tOzkezWHAiJonEjzdex/At2fZUhVocJ9kUYAxty0uSSP/1aEO4P2ZqpsW + xc5mqlCZMSwY2RpAJC4XIsMA/8be76XSMA2BAz74UOULWBtZj7dfvpPX3meImh74Oov1b2DM3hlE + WXA949KP1AAsdujzRJDHaeClbDPvYKCAE4C1hRpOPptOlYELJw0gghxvA+i/Sxnr4R/gsLYHfyab + RTat/8uH/8i1jCIR+zzVEe8Ra3lQTmt4+NHQnBfKtuT/Km18QTq4nGjKxSlGug3gVmUBT3sQD7ep + nB7/pcRZw3sAvrlq6U8D1xZg8+RirwEOwoRPGIM1iLnwoxGu2K1YpsUyF7HrOABKWdbyKqA5BHUS + D+VyLZe7yCUwlq85hBYB1GkoTWhpwlVaNl1mASM0JSwGqxuIDLXI8CkT1wEwnmC8t2YdaaHR44Uy + GsPcKE9oRBmJ44TAQNPQmn6sxcZO04ffNJSAlcLaU8gvSJj4lthEi03cxYJpkV4sTMDnQ7GpFps6 + WSr85oieHZKQhenRUBwlxvKJg1YjwdFk0EC/qStIrcD8r8JVtPSvrMHS3q+e5FhxorUAtpYwWwvU + eBZ1cq0dwVwkPrMEG9eiTr5lBDMWrqEgpMnOiI2XUSc3o2DyXwNVzmZdo10toCwAamiJNt5GHdxN + JGEIK5/VfyiAmJRAsi3C1JZrHI46eBylSYQ2zDkqGKwX0m/i31hyjcdRF5cDjV7sLWayCUQU0CAk + f2FuYA/Y+BxNbsnhmrRD7L/KMDXxVAlhpqt1KjOr6qUOZkA5K/iwgUi1lZnd8ku2zS9Hz+Hty0nW + KO8cg+eNzGrNrqkF/tS4qianmg/6PZ+O493x6QEA7S3nmgxD+PZo00JqUfbxCinzi0zVJQxz7B3k + mmNnEwjHEFE3uWWGX77ZHnxCB4PvqiJbXqtSea+Go0+s0GWAgTkAw62HiQgWnqY+SdIktnGRGUxg + T8AE8LBo7bo88a3wwPpo64IJEYFFytQymwdXPFE8YLGgWqy1Pr+V3gHkXjOVK206LRB/NceF2fcO + vOOurlYyg++sVnWV5QuvrSDByeFLeu3M+nQ6JbjVOBsszK0IyCYhG9CVmvHW5AwuMQtVmEEVhqjS + QWped3nb1ZgWjiA59TSf815WXSMDz3tedFKnpR4YvoejPfWeq6LQhEzNF23zzEMwf+ZtqOb19XVw + jVIWWsi8ugL62bQr1JoP1lf41cyv9Y8v9gJrcAaXmBMNMJCHeW7ZIuQlAYkDYhMgZqCJuUATELSL + vVWZNQh4JAoFtT2WGWBiLsC0bUGCKBawJCSWWANLLNldpOcKvHbs/RY8g3Vv2wpeHwbbqbE2na9g + OWh65h1AsCWYGJBdrwBbKgEz0Aabrr6SNwHYpuedvjo8OPVp7GF1tVlUK0QPiVJVmU0KiSv/yx8H + p7/igtP4mbdaeclFB6855fYqGhhjd1OOfFMGsKb2PiuyXFVj7wwm96bLFSQCAFzwx9uuVMD238LL + g8VSTs1XXkoJwPYKXh3Jci4L/K73R6a8BahgUlWX+955hXWjxss8kDBTkBrMashAcJLapLdnmCmj + ijuA9fT4+Phi7/DjC+3HdbmubQ3B1lR1ZO191LU+7RpUa4rHUWSUxeM4DIbxD83h9PDw4yewLwZk + CX4E5iuYZRPcwCu/G17v1+rrbgE2chR4H0BRr7P8UqdQgfcOlSxBwZ/hxZlaVo3+1nGA85iATtqq + VrpUB3gDKkR1HQ8MwqgLxku0gh7UzVk1a2EppHcOmZtO7z7C6t5aKNrsx6xQU/Pnp94IG++X08Oz + 80/a6hjRuqRR3NtdTO7UJHw/JCwVqEkCmiTczoVMPOEO8eRuBtsk3IqB3EQU7hBRBsSKAczARHhM + Lbl9/uZEMg0wyvkNWDYOGPMFGqWWZBMPuLA5B02ScJsVxGQ7+LyuFt77wPs0ZAQIg+vC4wM8hYt2 + 8aC1vO3R6k2PVtaQTZTgT2avEQFOLNKdxTMhgjuEiKHcBOXGkR1yuQkS3D1IZLByVzxSlEJmKkKL + vHITJfjdGeMWIgzXle86DfLb6t15yNFKNAClImYJjbeX/J8Aq3NAix1GYq84vu2dnj64wj2jfidb + HXA0AOhRtDJflFVRzRVQ71/6gf1qTdwEGO6U05pqgSbBzbLWVRIm7LqGwVjhQGGH7ktJGJA0FhZ2 + C4M4wgFxLMvCLE5ExLJYYeBGuBBYsKOLPSDDMY0sMiMMyAi+G0TedBBRZT3HwKvD8Bsp8XUfA5xz + JY8DmJ90N0hfToMxRPtvkw7F/x54H+Hv57gvppnA2PuUFcALFmPvJfzxAgbRNRjAxhhmF9fIehbI + iPCrJwAXsm3Nx8fTBmJZV9fIW5umAh7eImE4LXP49JbFiDgKTUARcSwsKiP6SpdbqcvUeigNIafh + Poni1P92V4pw4F1lwLB1aH3nr2TdgLLmwE+ajY/RNOTbXni2yFaFvPHeBDDjbb4vDCoKq64mDKgJ + J96LM0jjxMfdH+JHYYpF/7+YbX0G18TduHYv/oRk1x4Z5zBPiLP47zDanvCbqrNAR9dwHhFmaAJh + 5uDwrXd2evL66AiMcxuP8gEevS6r60JO59KbqiavrmRtcmQgJJm3VLtBSBjwFQ7luqFLxwgVwPxt + CDLYJpywLQGxNBY85CkSSBoHVNCQJ9aChQbeQpcMXZdncB/ZR3DzU18Qi5uEBtxCurPSJNTp1i2F + 4ANLfg/vTryTYTwhdyyteyVmOD4DkuFTORmsFA+ARFKLRoYGLkMXTrYd1kMM6zSmwl4lgzmhC+ZQ + AoN5v7hpPsirtwBzyNybAGIGMFRi0YawL7W7JNkmaDAe8SQKOBMAllaICw3OhE44s6ngqyVGZMoi + izuFBmNCp2L7QGwyISRhBhVty8KNpw/A5wcmyLaN9EPWLDt4JnDSAALQNuCGBgFCe/mMA4cODmyb + WwTmth7yZi/DOG/kVF7bFDASRqIw3ilgRMZ5I5faGrgCJBZGlcGqKmUAYY5Q2yIi43cRs3GBc13h + vCezOAOqkdXw368ZKv3/Ib+IjGNHDo49XMFQszVqV3Ui49jRE8gEOoYpkFLGduqYkfHo6MkJkaaX + hNl7clG/f/Z0nyY58iorxEXGp6Of8gaLhJ5BFFjIv/03utqjiwjPgYp+wiLGqzUnxXc+SDUD/oef + ZfgtSFSxyPEPhTzxE2atz7y3+WFRNTCmsfda19KKa1kUwETxV6pom3xxWemK0jGStAyLFt5B29Zq + 0umwg6TtpM5WCzuXubeK9FOzfFRwA3Irp97Lqroce+8+A2M+Oxjr6sigGMJ4ips8QGZaVRS6CmIh + a2TgK0ps90yZzn82UXsAiJ9xKB+Gbpn+JGiXZl5qa16rzbyau4J2ZFA0cqJBpuCxwuaa+rbiEdm0 + NTZAqlFnyFcYE8MuIT7YxvncASK9/Hn+e9fSJ/8rRIoNSsc7FItDYH4AShe1uuyWWW1acP6vcTQ2 + ASB22nIdph4sSUPhR39RC0pjA9HxkyE6BfZNeZRY4TA2EB0/Yc/163K+7LcfIH4TC0pjA9Hx0xoc + lnKKpccgnUBWafPv2KB0/ORNV709Fgpm77rGfZ+DE/fqN6Cb/LbmCCmOBT2xgZ7YIXfiQDAothLr + 3uIm4AFwZ5FaxczYoEbshBr3p+ubzgwDGQnZDUrHta4+HEHYWBctPut40tVXgLzSbGB8VOAxZatD + 0UfVdFmh/kbsW6g5jMcvshtZezOZoVTtfpk3lXIFyKljyjOrGeptVba1xB5hRkgK4qsi8CDQ0rG3 + 8qhVw0gMeCRO26e9UhLGevsQ8P+WsyTGvxOn6pNOJ+Mw8VkqIj/0bdtIjGcnLlnV0JqxnSIixP/b + EmxcO3Fy7Vv+zIA+Ryyk1LK4xPh14pRMDToeQhxuajd/JMapk6fWosEuKAARs/l+Ynw6cfBpW24I + dF8wi4ImffPSk8shESTDJBY75mA8OnlqNoXrFmBpz8Lj1Hh0+sRSCEsSsF2bWaTG01IXT6MIa1RE + CZpBojf+ortqhbpzXGH9cqk7nM3xALnZ990uGabJNg14UQMcLzCBfTFIYFPjv3ZPTGo8MHXaa0LV + REmchJZ/pMbrUgevYxzBB4/h8D7s22XT0pOF1Kck6hsPCCWExqzVDaSt6a8HiMwLeNRwg3F12yU+ + KK8OdHWelWpZtZV3Hphmnc1MjKentiEZR02dc6Rc4SmFkLSWPOOgqVPQRe+DDJH5jGJVKstDEUpL + rnHQ1MFBGcWNFkjGyoCTSMSRRTzSvrPQwTeHIjnQO7u5cN1d+IQuor7ZB7ubGY/sLiKI8L1ouhvF + X3RjWO5n3klWjXV6+IfCV4fw6nPWVKW6NCkmpImYMR6aHPKsK/Ft70jNNCluld4ZP8uz2awqkEp7 + 57U09f3+sIL0flu1aqn+1mbZ9148wLDXzBqSPjDfBm1en3/QKR8L7Cn2TY7EiXLvWA9Jp3ZnGum7 + HMlTGTejuDkKMc/uwCN9myNxgAgrJGHoCAHkbcl9lyNxIt22NiZZKmJbct/nSJy8/rarFsyTntgi + +xZH4uT4iNVlVl/szS+zLLW7BmAyvVC3LWKhK0l29ZekcZpw8Ns0IcPE+LwqqqVUVi3/sVkm4/X0 + sds0l67bNHp7W6vgCTkB1eefkKVBlCC+jVXrTuh7WqHv0y42oe5ugEWMc9wAg39HdLBPclJnkyq/ + zOz2S/FI9ZL/4C4Yve3XdssuAKd4yOKI8FjwIF9Q23LX7dpu/dom+cybyVdEhUj3PpOdDvMeytw6 + tjFkf10C/RUhm9oSewhzatXeTVrCdCcNoOtObZdWbasGy3LQgc3X6bpV26lXWy8c2MEM1asPj+74 + RA9jTq3aw/HiSQ6WJrbgHsqo0/kIWxGY0dmCe4Cg7gCBQM7SFGxiJ/b0zdDUrRt6eJSnaatvWEEn + 3M6KaN8STR17omGqhzEEIBZF4sAWuT4gsbNfw+IBRX6pyfHrLTCChCP8ORghzD8EPtMq7/SJMEho + iptGmaagWubVvNQHyuwB937MnP04VxxMl4ncltj7MdtphmMJG9RZ6aAm/l5OazmvmswkWBuIvqs6 + /Mr8rcs4VvkUSF4DL/OFPa4eBJz6oodVBjzAEiY75yr6rmiq9+ktTny4qIpCtmOYlOe9lnXWbLd5 + X+Ibgap0P3BoE9G+L5o6NUabtSk1sMTfbIm9/zNn/89LLIYQsqPV3vHv6VN+DKJEE+wutWNX36lL + 72nVfcRRLhL5KRHUD23Jvdu7tK5uZZuMpJktsfd6l45VI1FJ3TMlLm2J6/NQTzgQZc6BQAYHaXkq + 7Aoe7XtVKXeKs0hRvq4WK2ADPLbzmr6XlLo0k26MoFrVU20E4AK24N6zXLpJNwfO0v44DA2pv2Ne + vW859ZP2RgB+AEtd2xJ73+J3nDe4vcfhUCJ261z2udq0ad5sb1cCULzvJthVcVFiN3zVAYKfdcsl + Fmrwl4enRx4NRQqABJlz1iyxe2ALVWDweqOjzCcqKAt4oRbmCEnei7vY63/m/ZLluIUopzoVBo7u + s+hXG4j6VlHq1iuqD6uWSup+bPDMxE5a+0ZR6tIpyjkWHdXXZYMtbHzn/BTtu0Sp2NnmG7RLsEF2 + 8KG6luZM9rD6txOMZT3rloH3osiuqtpWU99ISp06SW9JEJ7aA8giYRjuRJi+qZQK57PHaZyA7yYp + S3kigBLZrivW5yNd0GDYu4JWhlvEqd01SftuSrO9+ugFxmr1bIWdV1icSfB+IJt39/2Y1Kkhk+Go + J5NJEKUwBbu/nPaNmPSeTswHrHHZV6UaGpEopHYzIu27HKlLm+MmV8JWpslofa2KfSfKhgfdnv/v + r0dB3mcO05jKNgioajVXW/aMt7EUWTnvjINILOkWqrzUh/TtW4lgmE2g8RovQIBpwFvTGV4Tc/81 + KuuLYPrrVLLVquhryfrHo/tvSUKOW05BRVu/gQ8BV1cy14eQtJL/A4PcfoTz+Bq1VEVWq/bGBwjO + L3WujxfCyFXV4K0KD15Nc9fFMcJn4TlJ9kOyT3YvjkmYANpJ+otjmryq4ZcU71tY3xjzfbSqFYYO + fPkIdd2vqR/4hG6yZTvmqp6tN/RtWw9fjrN9GUQzuNhrDbb9lV3fB3d3bS6ceMQNP/CMrOhzpCvp + K3OT070T+7J7BReowujkIcOpZdGv+/fRImtgZLIfnL5MaW1QIGs0vr1c6c5DUP+aXelq8xAYqslX + mbf6OpLR6dnZOz0LiPt+GukEvn/NzB1OTVP2T4Sn9482w4Gwhx3y+PzbX6Pz9F+SgF5tXZUq3/0m + bqN90cuuh6IX+XYpHl7nHz/+B7dE6KiDTgAA headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -200,11 +200,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "5612" + - "5613" Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:25 GMT + - Mon, 20 Oct 2025 18:59:01 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -255,7 +255,7 @@ interactions: Connection: - keep-alive Date: - - Thu, 16 Oct 2025 00:11:25 GMT + - Mon, 20 Oct 2025 18:59:02 GMT Server: - Jetty(9.4.40.v20210413) Transfer-Encoding: @@ -1334,7 +1334,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -1344,7 +1344,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -1360,1694 +1360,1694 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6SbSY+DzLfe9/dTvPpvHcmYqU7dHWYykykMGOOsAGMb8MhQQF3lu0e4bxJFuqtk - 01I3tI2rzvB7nlP+j3/7559/vfO6LPp//fs//3pUXf+v/7b87ZL12b/+/Z///m///PPPP//x+/l/ - 3Vk+8/JyqV633+2/i9XrUk7/+vd/uP/9l/9z07//8y/uXSs+i80HYvv6YKIh4e9EXdlWxG+SfQXv - dXegmWHsIyat3QxOfi+RvWMF2iRiu8I4ikt6OsRzPkd5FQIIeEv1o3HUZnOWG3jz04rsTy9X4yJt - SqH8bHOi69xT++47r4Ndk5+G1TXatgK7gg72anccmJjUjAbWNkSPQ8kRLdRjd76PKxlapXN+z5NP - PGlHQPxH9Men83G73cYrQf98C0K81akdA3fwIbsriJr1Q9ImNBETqg8QcnTfrJ0iYZRxh+bj0CiY - 18b+NcvY7YlOzOZSubOKwUNRX4Q0/ZSt2z+vUQWKv3r4SOSGdt5utybenYXd8DRVNd80RjAjbzfF - 5HTcrd2xGbkZ1+QzUDM4rNm48b88KJpqUwWQp3FG38oQSEwnO5NbRdNmc1vh43rr0JDyu7ovz5aC - pawaqWKf4paKs6rCBptX4t55MZqajVrh7UqP6Tk+7d2Bsz1HvqWuQ6ygMlvefwsydrtcoKbOJfl4 - DuUKLb8Ts3prtUBkogCo2yPZ69HEppF9PNivVZt4p7R0ufeDOfhQjzE5KmuCxq3Y3yBVuIC4Pg1d - 1p5vDchRx4Y2qk816zbrBM7p26DX0yvPhU2WB9AYSk7T1KtzAUnfJ043QIn3aFeIqaqq4Ov0Lumh - rJ5ue+CeHrCrhIfZPfPReBGqLy65VCS5zN/cze36mmEYrIzoK1uspyYeLHR9Rluqt+TRcpYRDnjj - egnNeMxHvaxXFoiXg0OzYwL5XHa1hc+tnFOP3+v5tD6uA/it9xVLrtvD2g7AQTEiKooO7izloY6F - fZPTU3sg7bANklK+xcaL2grxtU6+iTPmuqYm1+1wj4TH11VgdfqMVNfgok3twdBxJ3Qz1Zvz0M7p - pVLxZ6e4JLjeDVdo7TDD7njN6e55cVxO0u4+xp7aDGCEAZomfJyliVghVTRqR31jpCMyX7Cil76x - 2r94/VwqgWppL2rT2ZRNNF4Cm2bapdLm934O8Wou9jQlg4K6k7W30LLexHT4HRp34iHAoZruyEEy - N2z0dlkJ1cO4Uk0ds1pQw9RD7Iow2Z1dNZ+L8Jbi+fr1ibd+FxpLD/cnPqSZQM1ZCmtebm8B5r+G - SC1XCBBn5vaAj5Q/+eOmVFsOvw8xnjfHgTiFVrd8KXUVaH4TUOWjKBH3iVIA4/nZkGsVq+040rwA - vQzWJPmGSi4cJXnGkuYJg8DA0IS+vjiASSgTX73t3TlqxwIv+T/wzUV1OS7geezsqyPZgn3L+V3g - +GjqR4O4e9TVc8vxGYxdAUTZ+3rNXdXAxE9yOJP49rwzlomPDjwiZ8N0/l7yDakSC9FXciG6ghON - 60/dAG53FogSi9ucbfYHGS6XlNDIYA93tNS9DFZVOtSzrLc2esmLx/lIv3S/RwVq7pbAQS29V8Nr - txG0Kf18CwR9OhGn3E5o7lTxi2PPNEgYacydCtfg4eE48iCKjykXXtyYYThGrc9fZy/iyngO8ak/ - dcTKVieti5XuiU6kNkkg6eCOGXkMkIkxR4oxNV0eK2qIUQBn6ggr4vItt0pR672f9ITzW9RHOz+B - QFwL/oq4VTtfzR5gfVEKEpE8cNna158wNo1GstFV66nZODe01E/qKaWbd/O5K+Tb8OGpGcWOOzuv - EbDnbr901x5IPfX5XP76B4l/+aGLUYbh1lp09ypVtiFzl6CMOxyozvoXmtUy+OKl/tJtq1jROK7v - X6yDONME0j2bN+cwRnHkzkRb+kc3HNMBdkLb+8+j/a4Z1k4eVOa183ER3tDIeE7Fqlz11Hm0Q82s - Uq/ADFqDbLX+ijZuf5rhOx0cGnP3fT3Ko2kB2l83S/xq7XyWpQbmcrMlRzGJNV5zNl8E/rwaxntS - t1NvXUsIFEUljnZRNaF4ahUOdjKiJj+qLWW1IsqHeo6ptnIrrXv0L4DAhZKcZuTl0y7FHNpg/To0 - GlzcsebsBt57BRH16Ug5Jd/pK++jd0/DQO/ccTDUCjevSzPI47JfHxQo+NIMNvXvlqLxdU5EaJ/5 - x4crGVy2JysTOjQe6S7HvDa/Aj9Azjorqb1ZvVzWa1IDE3FCugexcoWCPw9QP7M32eFcyYUhkAEs - adZ8bDl3NvJuouB4mh5k7612+eYbH2Sc+afGn/jLhOjSb5Cavhty/tx0NIqbJ4B2KzNKinDSmI1i - HXOqEtNTk4v1NAUjj7lzvPc5cvmgmX5gBPO6EcgJslfN3c+mgn/9UNXraz4H8XaAx6i/6EGO76yb - IOZwURgmubRVgjiuOfNwb1FBU2ry7ng4v1NsVYVDSv3otoIaBj7q6KOl8SG0oo0eV+Zfvlqvj9cK - pwg3aB9kJ/rL9823foV/9f2y8NDMSubgWxAc6BmxRzR+b2GCHSMnxHsPn+hthYUOzzuM5ArinLPn - 6c3/eIkURjiicd9UCjaskBAruu/r6X7JR3k/TOB/L8pZY3FR+1jpm5S4F/J0mWFeZsTLsUF9tM3c - 2XhIHvTcKqXx2pmiscUfGY/z+kPti1rV7HPdplh0FI56hcbY2ItbHQdRmFJPWF2jKToVFZxUdhkm - rb+y8TrbHCz1aBjTUmbt4eh8IUQn8LmjlNXfx2MT4vIiuiQf7bM7Pob3DCepSoglzk3dfq52KmnC - GFHPg329Gd6IA9fsUmKhRszHdVjFeKnf1BndqmZXPAf4jAzfv4OtRP2x2oogSVZNHemZ5czgyQ2G - TRET1T3z+SxE0g0S4y4Qted4rau1q4LGvWAPD4NtomlXqF+4yfxtGF/ulm0m5fsGRVNsYt25If/x - IXocbyd6wifsMm50AtD8Z0B8d7eOOv1W3TDaDyrdz6nvcqkxWZj4g0jVjzK2o6TdPditZ0bsfK+7 - vZ18OCDc90Gs5mu0U5jdY7TF0Y5aut7k7Ns5IzQKiKTEwhRNVeavYPjqwgB7bObCbTfIoN/vCfEf - YLR8fqBPtGqdaOC2qwGxMX8n8JrLjvrfsdUYp6QVWurzsL5ENqPZ+3STNneqUVOuad7z4dgA/92J - 1LesNJ/uQZaBEnpAXZlXNGHbyBkcBPU7cGF0d8eHr2dwMSLbl24bmvcBYSvpA9aXHtbWK5pCJ3dg - mtSC6Mv+j9fyycu3wu/pvgyIxtiV0yF18ZWWY5rkXLhZO+KP52CodzXbjUMHY3Pk6cK7+VeIphvu - RW8YuEst5HRQmhHCc6fQXz585XdewInczWG1i+eaHR4BD5Y0atRWim3OiqdbQSPDzt/YXyOfhNFy - 4JdvOuUF1J1rZQD+en+TJIq/7tStvtxP31Brnb+juYQpwboq1STlsal1Cz+iC/I29LBCscvs1hBB - dPjtsMmgd7/n7OhBnsCLOH4vRtPwZhyUD9+gnhl92hZHjwzi0/5I9cbLo4mEZIU6W/TI8VFs3c1x - TnXA5bX3Bflha/2jusUgrNoTNa5j2E7f5mbChsNn6uiHHRPsbN3BgXajz7H+xWa5fYeIKo+GuGG1 - YoMq0xSZRvSm7vsK+Y+/0W+/t+9Vgsbt+xTD53ieiDO6ajvl23MAJotzciomhBYe6ODHD9zR2GhT - N8Rv6DWd0Gu8edXMlSwTxq3cU70X7Xqj1UIJ772Khg1/37ST/RxVXPbmyp/NWXf5334t/ZmQePNq - R3P37FCRHyQfz66M3qKx8aTulknL+qB8DM19Bg+0532p2H7Qm5tyH/DGf9H4mSsuHw5egRJxvx/E - KJYjKqlBiDlVjX35lPZoJD5T5N7fl+Qq6h7aLHoUyuNkDJ9hJ7jvyqw5/MX7J/Vect1OwlUCqKbQ - Jp67o9p0084q/Pih1I9tPUnCe8Broemo+So+GkunvQNxHopUFW5NNLucnIDGhtHnimrV0qV/yjd6 - 0YiNnuGvP3ZgadyJEoLLdmz3oyMHmpBSa9+RnJlJvUKbEfHUGDQWsYI/dMAJoJBo+hR1v05GHeZV - sCWZ34v5eD+bKtQ5n1LzHfhsHjXhCTLVCT2h55312u7WASrEDbG8lv/xcokEj/lEqXerdnD03QhD - 1Lj/WV/zTxrDKdslVPWLG1viI4HqINi/9c2nzSObYdELxBsSLmqIz1QkvJ3Wh7sYavPCh3DeGmui - dsKtneKjUiEWre8DtZxZ6zLSD+hU+RdqzbbSst9+nSmdqLeLq7w/9Fr141Vq3l9fxHbjswPNaDHV - 7OcBdXepSuGC/A3xbPuG2CUoKvzskUe3xPfqjUInEaak9MhWHb/5gIzWlJf6SU7BzWPT3ooyvOyH - P+o1dZmkpgEon9uGlGp/i6ZkfS5Besh7utNVpx3teSxkeXVQiX40Ni7DeqDi3/5ZZLihuXbnG2hN - NP49/3sV8zEs+ozYmn/Upk21X0Fbu5HPqHjPp7dUBsjQvY5mus7V1EaFjuxBrogqHVXE0Nn05Wjs - PiSIxXs+y6kR4NPuvR+Eb8AzFlEjw4GiqtTb42fEelYnMGdTSX3H+aBRTNwUFj1KirsYutMgqSrc - VScjO/nxcedVf1PwePafZDfsnmy67/dPqHPNpTv0vKOJbrAH4hYN1MwRRNNnF1T47mgRsUYUt8Ia - rxLEbpZLFb0m2mRrPg9ttLoRN82VWlj6DUxh9iH6sFlr45xcv3DddFui9NyDzaXU3aCVrx61nxc5 - GsfO/yImDxnR+WvOFr08QlU2M91iGUUzedYinisjJVbmTPUs+cEA/guvqXaS5og1HirQz2+If/Wp - iZ8WIn3ckoiK92g+bh4qbDQjoNs1eIjLsVtAZ8se/elV4fnkfVSF74QcXhizP30oIhlTu9h+2GhN - whueu/RGvMowcvbT7z+e3L4wRpNRJm+YdppHtPm7+fknN1RbjTp0toHrEdztCPiUbYe2Fm20+Ckq - SP1kUk1bPduuvKO3rK1bz1+5u3X+bQ39++eHGVTvNGacxRkZFXf108l6seE1ft/w80f86Uzdiahy - g+5sn5CdQA9svJYDD+3qRom56J0pGNMYfbWiWfybAxtpqIkYR0k5vGbUReP7gSzwUVHR0t1dI6Zd - Dw3O/GNDbHi1Gv1CsMJqu+uJj4VDtPBGg5b48OUh0d3Z3bIZZKW4EPc73N1F31XoetJ9st01FA1y - aoTw6PiAhJ2gtBMMSAf+9KYDrXY0msXLoEN9NQdCuIPidoLIRgCH5sRQlXc7CV4CeCj7bBCkJojm - /qZ4IK7hRvJa1/Px/ok9yKtYp0YUBtF8mA4BWtbbl41QqXkpD00ZCVeD2pOzbbl8f+jQt+SUoSMo - bufN51aBtTN7og2CVfOn0fNBPs2J/zjElTY3KZN/9alf8XuuntbmR8SXtL4SdWpNl77iWIVhl9+J - J3NJO5+UrIRv+WKD8CorxD/rewj7tWKTA33JLStv1QDdLZV8tNne2aiPY4eBG9ql/qr1nMeQojbf - nP1x7zf1/OC14qf3qJ6Coc1BfTJR9ZA7YkVxlr+Pq+CGFz1G3CW+xlOaJ1AUO5MaHzWrZ7HnAmyN - wvh3navs8Yv1z7ug6lH65n0hrxuI8con5iEU62mQHBXwBAdSLDy2+TZvHY5xiYbmMn7rSTp58S8f - BmHhA0rknQLjjD80xp7mjsvzQDpJHnWu6rcef/5gexWBnHabk9bvxb0FZ8OthvFuBxFvnVcznEow - 6bVe/I+pkEIUrvOrLzty2z4e1S3BaqNsSS7PwKiqOioYp6tKTf/WtNP9Eo14uZ+q5qxrLDmpKX55 - 1XpAtfhhVNCbEEfiq/Ll16dA3a3IeCQ2L536tn1wpy/DBdS1FRLts16j6eSF4k///enn+cqfBsAf - waF2b5b5RKrSQlZI8M+/c2d0lAJY/C8fXnJdT1q9LkHCvkmtLq7y+RCA+Mvvxc8BNghB18HSL4ne - quGffwnHtCr91Zy92C++pMikZ58z5zjqQEYVeorXgmhF83bnh3no4DbTjKrfrR0J55VfweP2ef35 - t90pjWLQel8je7Vk+RTKngi4l3tqjJ0QdeZuGEAnpke3ZWW6m23X6+ilv03i7sJ3LVx9pYL7Pvos - erarhwfvFrKd5+tffW8F9XDK4OcHnU8Jp3X67VvBabAkErIPFw1X/toBTp4cNQ9h2m7aexSixpNi - an3DoJ31t+FBvru/qBronTYO06tEhhUQel0L52jYjjKPRps9iX+N7u2ifzlYH3SFHPLORzOoZSAJ - ne/731evaFyz1RRQODGk+txRbU7YQYHvJunp1j77ORO4RIHz2pkGFEw1axd9JP/i3d4ZhrZ5QWui - JZ99zicYTT895KzTki76Lu/bex7Aol+Ghe/y8aM5M1IpXIYf7/z0PgxecCA2PWoutz+9339+dvmA - R730vzcI9k2kFo9Nl33dZwqFhDrqz9mOjQ/MO7//p7smT+sR7wBg4Xd/CtQ5GvdxzsOnjHVyPqYP - Ntdtacp9kjyGYXc3kCB3dx+W+KCKuHu2PW6fIaQKH/iwx8+cnSL8BDu6m8Rksrv4260Fv35QOs6H - zSvAmbi49tQNphrRKoxDsDgpItmiL/7qY5Q4Z59T17t2XvxRwJ7SEO21b9mw2mtfzCsxT69qy6P2 - fdh5YOTVgxgmN7jd7u3q8v21kZb+sNW6vMMBPNRwS3xJaxFz0naAeVdby+cX289Y5+pv/+nO/h7b - avFrsK0nEdkt9aZT+cMNTplYU+U7oajbvq8JCG+rJfsivLHxlUozKuEwkR+f9dru3cFn9HyaLPkx - hbIuwrFotoQU1yYapVqfoVFWIt33jfXnJ/3Ng5T8u9H6n7+XXL6Y/PZ/DjR2w912Mqlap49osJ1P - ipb1GIbu8Wmng0cd9OMzsyUb9JsnwMLz/qCUeTs7p2pE7z1nkdNm0upZ0Y4mXuZVZKtNtduhS72C - nx+iNb6ONscD67DYXTBRKf9qR30UB4jM/vzHc+Nm+ylQFIoaMV1BqTe7FPPA80FFkuBYu3/zrccl - D5Z5SFozchlDdE6/BvUPytblwLVnJO2CjBonW8nZx0cealNFI2VtDtGPX+TTpmTDSlQjbSKRMuKF - N/74d1IUxYLl89ALtD4bwbVHuEr3E1UirUKj9+QV9H6nqT/99PK+PuuyJswRcRzZrYeF5xA4fT7I - i3/z9VZPEXYX4zJ8Fv9vkwXDF11AUamhrCkafMnXUbdlpi9rwcCmZH0o0KV4qUt85GyS4zGG33p5 - oqqyyT3YCpoOj4JotxPHuiR/W+g3LzFOBnZHHu1G+OmT9fUgulP6qQosJdf9gBb/n0Wl4IMi9m+S - 4POzHr2E8tDVH0LMWZpbujocMlj0K7G3gYk6Lfo4cO+Gz8CtbLGdVGkoQW6Vjpq9zkVj59Qx/PqB - ++jfUfubZ5Zn/u3De7Dz+aePeT6slvvjqFv8EzjMtky9D1Vd7uF7KbyL/UA07hohyn8/BSz9iHjC - 1mbCbEwJlEdm+E/UvDUaqu8SFr/XF8Mbx6Z5UDK8XZkxtYfdyX1/b1kCpVpRYv/qSzVUIp6fK4vs - ropSc4sexy+lqQe0DU7afP7WKfZRWRHTfiP2NvCsw3UzbMmPJ1jTXVXEVvXo55Y5RL1t5m8Y7elJ - IrDHmp00msKRmQO1qnfE5t0tSLF8bcmyvwS9F/8MQnQE/7vo0X6Jf8hDQyBk429qJheRIqdteiUK - hgYt/osM9vVaUX3Heo0fzsMTVteZH9bGfdCmfHIVIOJgUUct7Ih15r5ByzyUHKTo4/Z9Lhfo8Z57 - aoW3GE12cufw7gA+OZ3dKqI7xipY26NJdsfdWvsYk/QFdRu3VPVJ3/b1rhmxCINDNPet5aN1fItw - zaSGGJdZjyaTbEMAJpVUt99t3Slt48D/en4dbU7tqkD+ujKIWqdGzr9ucQlvnq38a8iO7J1jrcCL - PieRHM/ufD9ECUbrxqXXxr67E4msEQ62r//N2ybppMewvUutj+QZ0LR/rVaw+FXE5MeqHbZb25TT - 6HAmXvx0ckGd2IjNm25Q63MQWH8ocIIu6f1KbQbHfM6EboR//U4F/I//9v9womDzX58oEKxOJboq - aozvNUigfa5L4m0lXeOG5lohDl4X6kUMWsZlIQeyxa+H11eq2CxqnwGbfhHTC2cpuYAuyhPz+SWm - voT2NW/yKgeag7iBonarCXn+4ZH0UH3qItDz6ZLHgPXDuqeOMJ+QMHdDALL+df10r7Ooj2ShAEGV - AnLlp6GdMk4JJRQbHbWOeYsYOsoB6DjdUFXyJ3dCZS4jD62AGveicHu/1xtAli7RKz/57VxVtwwb - B/Iijr5XXSauUx7S6RbS81tttV56ORlkQWqTMHy+8n7t3EJUsswZJDnR3D418xmCQ/WheqPs8kkm - 6xAusvWhSXjUXcGoLymaN9KbXA9e6HLx41kBUUNKPTKqjJPzJAOsNDE9PdZBJAz0+Ya0Rzvi76q1 - xp6xJYNZBB09yOKnZXfxNWJnHfZUybK27a2bJEP9VCySc8ZVY/bWcLABX0r3rH2iXrqCCe+Eu1ML - tGO7sW6TjGU+iql7yjg2vhQtACHrfeKsTS3iTtk9hTBTNH991Ub03ko3HU+DQIni1R0avUpNsLCq - 18QYgkXBRhWHm/xb+tDce8Ty/M7BuGsCf1oMkcc6jyo8PcsdVVztmfP4Onl4JX1Smt/8JxK+H8fE - b1Ho/XvCWD7fPFzAhbMCn5/wVuNd5hRwGBqZWOlCYJO6C/G8lnwSGvOmZUUlOsBVaeCzur9pc3tJ - dFh38pXuOr5qOSULfAzP1Uhd9mjRLMYxAFdlAT3A5pPP12IOIK85gW5daRdRe7u3YLexlhMF7q4e - jXHHQbbyb8Rzo087fh/bAB83T5uaxZwgWshTJyW715GawuWVj4cdz2NvdCeyt70T49b+pGN3dXvR - Ah1FRkM17LCm3jyq6RZ2u3jfrWCrbF2SBvdzLuD8lv3Wlypf7oI4c9WVEDuSSUMlpPn83JrPv3x0 - OWOtjTFMb9hF3ZsWXd673Sv1ePgEukrPyWBqm3Xnz9AG2Fjyq4k+cxN/8eV2N+k5bR9sMqtMh/0l - K6lO5Wfe7u4bD3dq9iK7Z/Gp5/QrzLBti4ie9DjSBCsNAiiM8EzUO+7acb5fLSgv64zYlrCLuF98 - fIXjnTpGQDRh5bYNrDZlQ+19fGuFJb+w7tgD3V4dF21e3qOD9dDpJGvFtBWeDVgI4Z4QdW9uNYEs - J0Ski0/IYV5989HuDgoU0MXkmKztXPBK4LHAWycSXUal5q7x+wsbtDkR+8BFLb87hjOwY/0g+wdn - uYL31Bz8dHoY+NfnjTildQsYDIPQvflpIuY9XQfmqeOI3+kDG8l6VvG+TkXiHuShHo+cZsFtCBjx - Nuk5F6ZNMcqv/qX461ao6k301X1cg3IfVnmCWzbtywyOR/BoNL1ENHotDeXvgbpUu4y3elp5KxnG - 86sYznKiaXO4GT1wRyT0m9c5r8f1tUmkj/LpqOM423ZK0pePD2N6I5lk12zcb7MQMO99iU4vvbuZ - o08G+mdqydaPlEg4X1QVb/X9ehAUYe/Ol5eQwXjPcxIB0iNeYRcTDOJnRHXp0R1X9O7gU/N5+Q0n - hGjJHw9fZOdDvb6UteEsFRl8D71L99eMaINpriyYH8N24PXSyIfHQcuQdHyJRLtFsfbRXLGDa36m - dKtfUdT06PsFfXp9Byk6KC4ngV/AjsUP4i35MZ+d3YCF5Jb5r/3hmk8Nr4d4vogqvWzpgXH14R3A - 47rzqPcqlZZ972zGcHUmuhXTUWP3F1fhKLq49JheCRvU+/YN0LoNUYZWy+cgecewPkdHf3M5V9FI - 7KsCZhF2A+fRCo1p9XTAK5I1dbpj6M4oc00USm+FLPHv8vdYm0GrLJueToYebT5y5kFw7C/EmanD - WFCrI8b6ZJHERa7GX8xUhCEclGF1iS75xDE6wIeJjChZ5tasEXZP3NicRAtpE7aC3mkiPOTbkVrW - K3OHqrqlWMioT9xqUPJNl9oAYbcl1PtuY7c7ZZ9UvrqeRQjyX2hyUi3F7/N+pKcxerfzJPVPlPqR - Qww2xi57bmgK+0ta0mwOp7bX6znA2aiYpMzGD2Lni6qg16HxSTmXu3Y86qsCHVFTUUu6qS5f6T6A - 3AQWcb6btuXGr/HF/lN4UnuHubpb0Y+DJDf7Ejv1u3qs5jT+xR9xX36UC6V0qLBzbB3/aazcdqyd - wwpqzJkkR1fX3YhUFCF1zGRYjxzROC2wb3ipd1RvFcbYTZgSUNtIIH6/Q4jR57bD/urTkMvbv2uc - HqwBlDLdkqM9lPnUBuyLvifa0J3I8nb6yKGHE6aUv/jPN+ojKyHJ/SvNHuis9dKV0zFCiUIOL911 - heQUyWgedh+6tONamHOkQuasz5SY4dOdLgdRgbYYA3pWsOXOSd4M+FdvY8yttc+wujl4Eq8R1TUU - /PgkhGV/hrm+zOzZaxCDH3MZCTKhQTMonwTycBuSLN/u3U8x33R87GeH2u5JYRObpQD4jSkS/YOf - bLw+IhltFc0d5qUes/f3G6Jb1n6GjeScEfv1s+hlHumhvesRv7w+Ps1BShMs3KIRzryH9Xuq0Uyi - p3qsnTOA59QZ1YQmzafvbSzxwnv+Mw5rNu+epoKTx7kn2/Pei8YfDy71nKgn7Vb3OveoMNewK9mt - xtydD8NdRiant9RW8NtlJ76e4Xu5JdSrX7nGMeWlQ/+4hEQtlL3L7qdtgItGTOjh6rRsuimRgsvC - 3hCrTEV3HvKNDPlHCKgjeI07CrHEAazGwf/cHg93is4pQHoQj8S73+8ak8rbCCshtP3T7frV5ujB - MjjdSrbUy73Gtvgtgnhnu0EOHOSOl+tjxnfPcOlpAGhHqc19xNeHiJhNl7h9U6odXhF+T7U6MNFm - v4cO7NArqBPt9ojZVlSgxzbc+LMwOO245CdY6Qr5x4Nqs0kiCgfc86FThbl8NBivwYNlf4mx7Ncs - 5XWIN4r3pvvTjSB+zC4DxEXXErtqr243TdFffFP/7lRovjXKE19v/NUfpQeN+nmzk6GxecmfVkfa - dj9+6TL/sXy+XBtfqc7BzSnUH9+6nRZsK+BWZ9Xv3qudtqGb6QtiaYP/tFZpzjj1HMIhmWF4ruR9 - PoarMyf/6vnFN7/RjDLNxP5Vew3r8nmqx3JwUsRqJ/G74wjRFGe7TEat9KXH9U7KR/XTBiD4Qz7M - lGvz9sWCEW5BWQxSMJl1W/FnC27V5U2UQJlRvy9fAIIn88O6xlo+9gZ5I3PQD8MsH0qNPTz5iS5V - 0v71l093DULcys830Z3jB3VrXzJhfnRbknbk5FJ0sZ5gEC8jV+TvEF+H7RO0Z4zpfvWY2TT1rgPd - W8EkeuzNeo4NLYHamjJa4DBt2Tj4BYib7EDt4bHK3y5qdGikgidqaPua8HLDFCtPT6HpMW/Z3Hx7 - S7oFRUF2/uCy4TDcRYifkkS0sWkRSw2rAPcQycMqi8b6IZN1gK6PbUT9c1Av8Rf54FzfI/Xncldz - +0/6hvGYvokV3KW8u7uyhah+somnnb9RH8q2CrtjtaeGZ53yHvGXUurK/EzVTNvnU5yRFNZaCMQl - 2EdsjrsOMm9eka0s2i2XHmRR1ubjSB33u2MLD1i41E8CVTr3w6ZdeAlh4KuJ2j++fBbfCi28/8dz - 3MOaZvTmvhLdlv3csufmlYJkvwxip62BmM5CHz6i8aJOv0nzwXg9fTi79Eq3aoXa0ZvxE175lPsi - 3AY01rnhw5dID3pm1xHNm94K4FOGBTUhi9BoYy+EJd7oPlE+7aI/OxA9ayTB+NZc7hrfvljNzcAX - g/s5GvDYFLjVIaRXm3bawlMegnldE9NLm3rSub4C97MTqTORpmWjcf7iUThzw2qzzTUGBi4Bp1lI - Tbec2HBv1io0101InO44u+x6iBxkcalOrq2gtkJFVQ6WeKV6/KncMTRuHpziQhlYyg9a++BEgJ1i - lP70aBo2qxMnwrYWgJhL/o2LPpSnkzb5wsFq2Bu/Qx6c+wcPXERJNCVXXEFwpBe6P19oTWs/HGFQ - 5Jzs3PjajtwqyED71pO/eUTbls+UaoRH1Z18FhZHtz+tjRRNq8Cgmb5XNWEc/BK0LHGIIrxJO94j - q4S98bwRV1APbN6eWQJxMbRkr3QNG04VU/DCe/4qi4J2rnRzBbtoeFPjEd3/s36+PqlH9fdFacdY - t1RQ3Vamfsg79Xxs7xX+6eVLjm33xxswkrVIPW1dukt9lpE7SgLxsu+ARpGzB/xbP/HTabUgY/EL - B2e0SbZ3hnx64LBBb21/IvHCr0PlHkN8zGzFF5NSROx7UG54WS9CWGy1/aoNEhyxnUU1U63QfG/W - CnLs78ln8qppJ9nMYjQnUUt3o1TkTPbrlfw+k9Gvz1LuLvEYyo1U8mTR22zEkmnCwq/DbHhbNDrc - ZURzoV9ooHhcPurBeoWOT5eRrVNkbPwYUwYXzgn+eGoqw2eBF7+D/PQBt1mbPL5Ucetzz9uNTdrx - +P3xIbEZOO6kuWMHvSEcF7101zpreH3BPRxk4ibc3R0nlQQwjHS9nOC5tSP32oeQ4H1LTWXraUPP - bAWMgTvRAzpW7Ldf4G9JQAz/PaJxs/Y59ONL3RDHum2tTIWnAF9/VLw4YlrsxKieVUSU3fMWTeOe - hZgW7m7h+ZQt/ZlH1/mtU38t7jU+6U4rWOe6TDxpM9e0kKUOnP3GpXqHo5qdmyDGuHrc/PugC2x+ - 3coSVYfjlWonyKNZcZMOaOIMhNS3r8akU1bA9csbZJuOTJsLAXywhnVMleLk5tzj/FDQihYO3SKU - tGxq7hXyHqua5E1708bt4dOhk8MXPqLWXM+bhwSyzF2pz+1nwkZUdR1szpxLokjattxKKYo/vW6u - T892zE93BR5iN5JtFkjRqG4bEezkHFCNFFbO20hcgdTnPPHyPkffH99dtdc08JVd/fSzgwzD40g0 - 7uaWPju1xMv70Z3tG/VkytEbDC0nC18p7aylkQNj9NKIYphPxERrw+P+8on8VZ5c6t7Hax69yPwm - 2s4gjFkSP+LMejpki8OqZgSaG6hyt6fn2+OhMTHQLayjR+BXzcmop+0+lf/2X519PRLGRJfR4ocM - sPh9/eKnSQtvkK0rvfLl+b7wmnzXj8okzif1kRWIpAeL5C+fRdO+pABug/RB7LoxmsLQeSNPmC2f - rz3STtL4StDCn+R4rgBN1VPyfnxJt1t4oc/1rukwX2SVqK59j/rd9qugdSVL9KefBmMlxUiZfUZ8 - q5gYnbWphOvJR8OprJxcuJ+2IayJviP+PmnyCfTZgaUfEI87etHmlARP2LIg9AUh2rjv+d3/px6w - bZmLOqnRRVw/VYv4d0dF/HPMQ1j41l97NEVMeu8HoMEJhiVekGCexxJ/wuuBWNZLdlkYGQD8WTeI - aszH+vHTCxvhW/u3r++4c2ofAtBdHNH95v2sJ71VGtxZZ4UY53XijsF1C4g/mwbZX+Q3m+7XSsRM - XsX+bWpHd55G6wvZyrvR9Cw+tO4pciJ+PCWXJL/4Ct6DDFqQNAMmthBRtRg53G+/d6oNTshmMqom - bOsNEFUYnJrbbO4i8BtdJPr+yNeU9oECn1v08R/CXnbpz4+9GueEHsJEdrtJ/AY//euvxWFY9PRJ - xQE9KqR87KFmH1v2YPEbB1n2AiZsj1WFiXmtqTEEPaPTJh6R3H3GYVZCEjFd31cwiEmy6NkdG57p - eYDHXldojosvmr16/wbssLv/WfydcWfMHF4nsvnnF0+Ey2SQ9pNEiL6R2oE3bFFe+qUvLfczhhwR - eWb8JJq4fENjGz5UOHxTk/x4fwjNtoID94qpYwU5Gj+GlAJEp+cfr8xemKXyebV6Er8OgM3TW05g - 7P0ndcwI3ImruBIFk/WkWiRta177+CkisRkT8rh82CQJmy9UDXwW/+JWj0geQnjVj2ywHP3Z9g/f - kGHiwivRC/Ptzul3PaLFD6XpNxSi6RyLGSAv6qnTiJ37MTTVB4+ulhO/VotG9EEKfF6iQjMlgZr+ - 4l//sHagpHNb7hkoOnip5RKzsqv6p6/R0l+ozUPCWHveh4jLmgMJv7Hh8rPlhPKXWT1NBGXQKO+U - KjzOOiNx7m2i/hyLKei0udDr7/XP560HZeFu/PhIjqjjy+RPfw3t4XKMmH32O/gKpzslFjHQ02l6 - HqFyFxJfFG/tuE4TBTaquif7NFNrFlsKD/NH3gySKPE1e3DjCr0T/u4/Tg+sMU49BCDRfU49XRpR - /4pAgfU+qAahBcq6kOwdZG0tTIxPgiLmbxIftm0ZEfKQNXf+Pr0GRZdyou7bMrXvte9vyNDOZECC - ekCMMe4JZnC9++uHrGlCa4UKnJmdk8WPQIz6fIN297tCw+LyjMaHJY2w8OQAfSm77asw3ug8jh4x - tGlVz/vpG8JeUFVCFn958rHAwfl40sjiJ2jUFm4ONg77FzHVu1FziafPP17xi7gnOdcbuy+MjCjU - DuI+p/Lu+AZxkx5ILMWdSz/T+MQ5/aqEEDLnvd97DWo07kYOw33S5uuxBTT23pM6SlK0s8vUEpb+ - So5b343meyOoYFuN6KPtJ2Gfh/5eweJ/+FP9erhDuBF9WPwGursbFzaeP1yBsu8rIfqr7tFH06sM - QWs3RBdOXv5X/4PJeRKv3HFofO0OT+xMekTTxd+aU1VdIabdzvS6TVnbF2Co+JGJKcnWppb//Hf0 - +7z+JcLRvL7RL9DEGogZi6eaRfOFR0UfrXxOmox83qvHBhSvKejF/DQ585svwI8/Fr+w5hZ9D9rK - QjRsT6E2qJLmQf54F3Rf4g3rDrsVL7/3PibubK3zTyzeuJ/+WfxdtZ765Rt4F/GoDzwWlJxHqgBw - 3XoVdSS7Rv2zqCpAdaUOK1FU6ik9kf/000Jh+NYUPR8VfgecRYodr9Wj0+9KWOJzWPW7HG2smySC - plYe+Zuv2eOBB5XteGIu7yfMmlRC1aw+PkaWx2b/3peQ9tKOpNOzQrPYvk3gt+GOLPOoaOkvIRxi - fBrYbexz5twuCio+O4cuejGfxqPdgHPerMivXm22pedAYV/3REvPHPvTW8s8bhhX1zuabeOyEr5u - N9HYOdpofClugI6BnVFPDt2/eiqrY/ci5lY/u0PSXVcI2WJJvD1/cUenKHx0sejOH7efG+oJF4ry - r17upmTTLq8XwoHPJL9OpCHqvo/tnx/iozR+1XPSnQD22ox8LiS21quPsIT2iUt/shIFMZWTMxRh - c/AZf2+jMX48b7DSNZWqec3aWdgYyt+8wThea3fuoYffvG1ggJp8HL/GW37erI5kVoDYbPIOjzwl - 3hPF1cyci0F6w+d7IMRszCpnN0FKYDw/igFv6YSm9LRTgLPmjuqLn3wvYvMNP/2Tid23XuZ1IvKC - OzcIxDXc7tQWb0CMfobN1m+j4VPyIRif7YOqTme53HnL6/BYUXtYzVs/6poqumGvdJolv8OI/5Sr - EP3WCzXtzaU/fdrfw5I4p+alsWkTz0DpfBh+89Fuur0HyKzGIWXOeMa0Cw0WG/Xjcxd7o41OXd3w - Mq8cgvV6OfEnVgGOTp/1sAIk5+woagBf7ET+pK45NMJ55SNXrPyhfHyPbFj61d/rZ9+N207gX3UY - r5lP/WpPfvnFwboTr/R8s1zUJehQymL/DKl1n5uoXfJZ2NeZSHbb+Bmx2LL4P33n0+22nYbkM4PY - NyHVDue3xlFZLYEz8c6X+Oulnp61yIH4WCPq+VESMddcjsMt9Tf2wk87fFe+A6mjJzQOuyqfvKT2 - 8PzeBYQs/NIuPC3N/qUbxosw1a3OMh9yXGZUWVc+ei75jn/z1qJ4+fUgxsVKUsynRqz7rEfC9ZA7 - f3rRirYze198uYL0JA5Ecwxo57uWVug3b3EOr127CfPXEyZXWZHtor+mUu448EqrIT89vHlXwVv8 - PM2cWu4uaqfxARxw3vpGnFSXo1lTDk8oLvppQFtNc8cbGysQI6D0wPK6XfoLj3hS3MluSo4tl0pT - gKvvWvXvy/Wet8Phx1sDhCOp52d67v5/ThTw//WJgtVgv5YzYa9oYkfdg/r9pL50lMV6smqvhDF1 - e6o+i5fb3fxmBckj9qmVVUdtpj35gvKOd8O6u8xobgkt4ShHDSVN5debN0pnhIpjTomKAk04cJ4J - EbutqbV/9dq4K+cGY35qiG2uLcRn9oeHVejIPjrnU9vZl/qLqrO3J9cDv0bzZ119kRKvA7rnZ7nt - LqubA1urHQeRRnzeXziXh02Q8T7Otl+3T2w9g9y/Z/RA0jvquGDlgLR5MEJwRNHUjCcV71u0TNxz - m3FVZycQ0Rv1+ZNgo35rIh89ifag/qgoNV/utJVcXBD4H10X0Piw7098rXWN+hVxWq496W+IBK8i - Iey7fIbaG+ACrUn16FBp4zbCKkSFK1Jz6DEbKQt1dKumAylc0WOMK44eNBoYNONpk4/aNkuxuCKU - 2u/nK/8ozynAfF4WhOx+/FNcfPCKTUntQI7RVIZMxd67vtGtW53Qxl8fBzzcd+dBYvdXPX2/ighZ - yBXEodLARi9fJlbWtKO7QeHz33Xcb9KM6o2qtZtvG33xWRufJGShrvXIn0T8touJ7tWj0M6TfU6Q - mvcbopwNqMdQyH3okjX4MzsRl+v1rwIbKz3RZHW+u5w1oAoLq9udnF353rJwnmK88bKn/+pRGz0S - yU0BtZ1GbDjpjIf7tMJrae8TtbyrSJj6TwCdv75QDX3lurv3hY6UMX7SxNg+cj4qqwQfpB3z1evz - 0PbuNVBw7nhXepBkKxq8OdDRTltt6R73uTuHq3cKyGpF6tYHTRMqi7OgsSKFaOOX5kyDscCubW1p - ItUsp5JVfyFifjSs7DrOOZBSE2vqGJDwejdrgSSvDprX+kC3WXSoZze6AQ4FTqHb8CLmLL2VCegf - riHJ/J7Rhj0MB+uqNdPkJHwQP0lBgtXWvNCDsHZb9nhRE74oVEjymI9sYytvGTmmLtG8293yQXX3 - Jgzj2NPEMINoVNlKRkc1tIk/GSQaO4ObQQm+R+rbNReN/XHTYWvuLOrGN5FN+2vE4dt11xNb1Udt - euC5xPGz2dG0SRONl2tLhHtymf7iYWbnRIeTfcr8yXyttRmPNwdvC+VFLyRY1/PXD0Ts2s6Wkil1 - W546txCvHtzFR6cbh9hvfYyHL5BtElU5d/gII7JOijn0oWmwjRgOMThTQcgZTg1rTfdbIZzNPPmf - pF3JsrI8t74gB9JJkiHSiTQJAirOBBFBEWkSIFd/iv1+w392hlbtcmNY6+lWCPieNBl17CNFHQg1 - kgbfwBBszStgkegBwUDzgFwrGwjX+iWPx17sp96aNuhIx4Xpt8b1hPN7esPXT2hJAEYeT8FvclHH - vx7mz13AF+8NO3g3ngKVClmMadaGEFVW1eEXNyMw1+HZhdO1PGMkLLEhHB99px6SuGOe0z37GUy4 - gvLVy5h20vRs5vGcg7qNDGL3C8qGpPESMKvvO8MbTc6Gtf9hYrwg3dh1C7h/KW14OxRHKh5/eyD6 - JFIhufcZwdTFYLzsjDuaN+BMxeV86YVXrqXAvD8hRsuoxVI7wQI8nE1D4ZU2HkPv2UbrZ3JqsMin - /DmvePduKWrkrzca9lYDr5/UYqSFlidBHrRg0d87liVlyqcVf9F9wXuK0AiMudz3jho5RUYTVWmN - aRB+OgTvq0r0QARgmupkA0e0TnR9UnkMn28uLNKzw9wkyHtegESApT4lrNDqfTbvXkmFBIUZeHuQ - Wv7D1NUhez8DLD+tppbn8RXCx/S7sOOKX2v/2sgv8YUVQPO4xG+FDT0ovRj544eQKBfY13FODpvZ - yZbn1Vege14CZuncj3+EBgKo/WZPjiv+zOxb6+h60ynDdt3yXs7sCNJ95tA62nyAvIwfG+UWKFgw - LDWYh3SnwRqGEckU3ayF4XAokZTlOUn3Q8vn80/PoXd+ZnSH1dEbH5XiqlLGHWJJntYPOZls9LVv - P3ZN3CabQ0wm0Ei2xoISdjU3/DlHx419Z843PnizaQ0hpEGqEOwV+57mt+atRm/ngWV82/acXNgA - Cf117LbffrypGvYXJBMXEl2IHINXh1eKnl8zYs9sOMXLO05ChGhxw20T19nyPKsuPBb3I8mGg5ZJ - umeZqG5DgwUt3AGezF0KbU3Z4QbWBRD/7td2RzAuL1qz8rf6hmVVfAipqobz+lolyCFJTNJfTIEM - Gk1HA73qFHmelcnbBEC44i+5Cbn2xy8tumPBJ4eb6xpCiW4+SrfThWXuZ+Ds6T0kuODmx8hpTsCy - 7HIHgi2NSDLrl1p+emcBLdVXIuZweADefPZv5GTnPbvPu0s/02tn/vUriWl36MUT+EUQZVbF7r9N - FK/1kqDGMy5/eJDxoo8V9Lp4FsNB8YuFouhMmI/Rm3mdb/SyuTlo0JukmXnP7OaJuXnU0cRKzsJ5 - XgAf9ncVnl/wzs4+VTIeV9AHIxrfWHosTb2Y7brneBkckvM3AtO3DSn66iYl8dSxmN+YWf59Zp7R - +bG0fYYhygqfEkP8ON7ESxDBUiqEFW+2/Twqi4rs5J0Tdxb6fpCRM8DaChT2fD/qetq0Dka5GBsM - f9067jUSO4iezJzFvrPls7ffFmDzkR54I2mtx3JYLwiraHWgyKmZRjLn736QpNM9Y6negwNXvYaV - +oE89rMOFwQS7UTCm5X3/G3fC4izaMe88aR6TP1GC/TODmOe1SUGb0S9RHInbZidygEQR7l0EOxv - J2Z9nrua7w6h8sdPf+uRzeef+2+92C1Qf9kitGYE+8P3TqdhZt50up4uoNtGhHluuV/1wg7C8JUe - 2EGQPLDY36iExn2hWKj8E1/Kd5mAfIIOO9fPGSynLXBRG8wDe96/VS+d9tYGBtvQW/UB8ChIihKG - u/TDrrNUZksyhiX8W08rfFfZIl1gCmA8PrGckDmbgt5Vwfc06SQRFK3nnya5gGfMMooKWIHFNVoN - vv0v+Kt3bzlIDkVkOWOyz+NdxmeMNvDp3UMMH78KMP/LJ4jw4tBdNYn9Wt8NLGQ6YuHu6z1/DE0H - L2fUsOP4Ko1Js7AAjdjaMT9QhHp5HDT333ocv40Rz5fD3EEa3BV2yF2xXu53VKridDiQvfl49byf - byoo7aVmvoMA4GLm5vAj7w8s7KWLMQX+tYF1+2Zsv/LhMnWdA4Cyf/zVY837Vwrh5Zc8WL49+94M - yuANQaKfqBjRJx9euZOq9hBipnXSkvF8qATknqeAFjur6EcUVBuwmUWPGcdgG/comRwkhqZLJ2Xg - 8fh8/TDs+MdjR9d8xt3hkBTIaHiOd3ireDN5Xjs1nNlECJFSj/3prYIPBclP/NiLazwFKkRueN6q - jPNXq2L4cGDzT19NOLMmoBR4YUFmp5ym992w48cuZPsCNzXr9J8AT2f7S6zuvsR8KoAJv2NhsAC2 - Qzbuyv2EOp8c6HJrXONPXwNC+w7LP23pJ5K24b/7Y6/6b1b2UQse7fZvvTOw7H/KHU6ZGDL9kxux - mInRBKvTK2Ve/NmCblJ7E/7hgWMPfj2u/gruUy1lWe8fMln6KR1c9frKr6+MtbXawlNgOkQH1008 - LnahwWg6esTMTqdMyKLzG7bHYmaHHhi17KjRGz6UxGOnEuOYy8elQbsJ+uxWTedaQLdIg+/nZqEC - RQYQnpt6Aw/hKWMW+f2yRWx2pUpH60gXSxzqmTnbQcVxnLLDnaR8ud/FCm5sx2ch+JqZlLXpBpTF - vCc2aw/ZpHNJhQ65xOwYbp9g4ceHAytFKdgjsi0wFfjlolXf0s3ibrz5fg4VFLrngZwtfgVSLYw2 - 1L8mZvug2tZz8cYD1Hw4s+ThU2NKLvodmvqjIPtbqvBlKB4dtIVwZPHBGWoa6DcbFamWE8f7WvE0 - vb+DGtrazCJDNAHfXGwKV35e/WoLJj/bb2AjmRq5p86ppxERXAh6alBRDlnGrL5t4NW6esQrLl22 - vOuzDx35zJi++qm/+gGrv/vr/3iK06+qfgsrI3rS2NlydZUFHjc3m/nlD8f8vO9TeFXoFqulIXK2 - BL0PpOd8JXgLzF6YonWiMAqcrPWTCX6eDOD6uP6Iox498KfHAD3ZOdODKeSC+sAFtI6liHdS3hrz - QywakBWYssPb2nEemZYJCL1siLPqm/4tv30UxKqEtxDvPbF3JhO6jSXh2X38vBkVmw5ac/Bh+1s8 - gvGv3/jnErHgtrczVtwd/K8+b9IrNkZ5vnWAP7rn+lD2L+NfQ5lgfC1P5FLKD2/uQN4gr5WiP/0c - T587iqAhOSY5lcc66y3wKsGHJFdind+NN9q11qF6Cit2nF5e/8+/nc7ml0TuZP35WxVtCrdjTpna - a57QdXCxdwKGJ/7r+cO76zD17xVzUWcCKXciFd0vUk/8P/wY76SBdvlxiddcbvXcPA8u3O2bL97l - fW0MSnAcgKWod3bAt2c9P5bZhvR2a1Y+I/F0+m0X8LOOExWOWdhL8qd6o9PeTMmff5PW/kCfr+6u - fO7VY7Q+86KIyoeY+iczppwoNlSVC1n7d46XuOgSIHGXMM1w99msbhQFrPhKjGBTefSSOx28/vY9 - XfMMPod9m4Bz8a1YENkfPgr1cv/7vQSbbdbPzXpymlxIIbE0ZWsMqVE30L1bDkYNXDw2vpIFpoPN - iW8qr/oXQVlCZcVPZOULPtWPYvMPT63+fjFWP7aBvlkmxFfOJV9ewi8C20/ds6Da32IxBh8TxXKN - qTCi0vjDb3hXZRnXX/b1OLZCDFY+JME+dLiQRY83rH1lJPvFZMb8XAQVpYIVMWKCK5BP1lMCR8oW - quQVBPRxPdp/eRSx8M+qpaNtVQBubYHufv3FGAUOLkC+HjM806Pqlflz1hDB3UicuPr1vLg7PvyV - ayIosrJna14BFbvW8FhCt5aLPlOgoIwGRcm+6rl8VBuotZcD3t2mqp9KdMJ/eI2nq/YDs/PaDZBI - 1wfxTpmezWs+hVpFuuDdt6njMbObEj55NvzhdcYeA+1geDEoMRFv+0WUlgKdhuVGju9+iSnrBVV9 - y92HHA7F05vWfkeuexPI8TbptfDYBwNUlQ4wq3yKfLrxJkUwZk9mFifIeea3G/CnH73i4sYiPbwc - KGqswvNo9hk/dKcW7ktNxsGq34UpTnR08w8T/lx/Sv0vXzDuhY5hwkVjOFI5ge3vSeksbFk9btFn - gkOXcObbepa1z61EZV+rLEJMIIM5BqMJb8/iyzAuAm86HcIU5sE7Jgft5nCusZsP7aTJCR5c6T/+ - TDbvDyOXOe2XrrhJ8CQsCnG7zcUT1/wLHkBikntjoIzfkUphlxKR2Be58SZp2/igUtSCWCb9eT/z - PGI4RkaNJdsWvFFe3ini4g8Qbzl8wb8868+vap479QsycKsettueaah6efJCtxLsOJBxwBfmjX/f - VwvRjDeX2ymbqCi/oVTPXxJ8ZCMTAuAJgL2dF/vXD2t+Ald+IS4OPj1XfrBQdZal5FBYFaeO/Azh - zVjWQNYqetbGOwrfT7iwLPgoGfMv6xkDO6iQsALYm/izrKB/PAKmL1EZz03A83/50u2sKn37U84F - VF7KhfzlNf/87KKHATnL3jsb4kPuq0eXNn/9Cth1e2whufx8dnrhyOtqHl2AsXlgtj+lv3qCbi2h - 1e8TU9Y3xtSm2RvOcZAQPZzyWHIubvd3fex+jAZA8RIragQEQtynk4OJpGX0T/8ejNsbjFV5j2C+ - iyN2CMgHLG5DUph91Bch4Tx7/Km65j//RBxpADNCrw3M1icQ3JNje/PNruhf/kt37z7KFvn8aqF+ - TVW234gvj47Z5CL1GF/Iml/WbQA8CZr6s2AuCY4Znx7tBWxOEmaHxG1i2m8yClF2qP76r+bX8Jyq - MRMzpn0k3AvuODSwe6odfcT2sZ7X+oGrnyCaloB4Ijeug62gxMyawy9nEjAvaGO7PpVY+437l4tV - +NPKIymoZXA679ILTAeTsxQPGZ8dHtxhqqULs9e/59v4haGceR050gYDfnmNIUxD02bFz/U8KrR+ - uDtuzDs7V/fa++Nv+Oq8ZK2/OhZjNbqAP3/nxZ8nmGV9vKu9usVEvzcjWLazROH2VefMu2S2Ib0s - Uf/L9//ySs6c7Bv98xv78mhkS7QpU4gk/saLGPWgvz0UAa55FN2MVmnwvqoHuDtHLrPX/GAJorsm - /zRBJPaqt3mib1Y/P0SYgw/ph9/VkeBkCAueGoBiLg6FCxf745BDQuZ4fr1GDaz5LNO2X97Tg8Ow - Gk0PmRh/+k2WpBBIa3ZrPHcjp5JVUuBk1z0JxuVbr/UCYWLUcOULmf/++Pv5vD+ZheyXQV2j1YEr - cpc533Qx5jKSJOCd3JIC+dD3/N2kFZw8IWaXbcH4nJt7DQFhj5m19s/qFyuwQSUhGhs0Q7xLYwUZ - dLZYeaY6WP2Yg5BhmcSz2NNYju9JQteTEaz8cOTyzum7f/ri8HRPvbS4XxX8+fnADv1++uPj1Z8Q - 97WpjTW/0+HTS0M6S9svWF4W0mBSKAm5xokS9zmSyr95CgsO4RT/tkEzQfFt3kjaxHU87+ZzDgXr - TGjpEdBTP5ErQIflQbdK7BuTVR4r2Feb6Z/fmuzN1EFxMGVymeu3N5RB5MPn4b6n4uUngPkEXiFi - /nwnXlTOBhMzt4ByIYTssfL3vM5nAOoKlwWBXXnL2O9sKCaZterXdz0AgN5w1R//9Mkif7oGPvL2 - SC4EWvWaX2pw7/wmKmbvoJ4GEUzAguqPKmueNTvcStEgXV+YvpNHPN+boYH8h3bs3J2/cbvqXaA5 - m4pYPlXin6p5FJhzeaUy01SjXeKnAN3mIK36+syXP/0wH3CDIbpvwKxuJgXyI4TrvOQSD9bk5rCy - xAuep20Z/+Ov9wEmf3oz7neHUEU+DAyGzRbUY/Mk7r/r0eM+yORYIAqYNI9QV2JmJrUaKuCtdjxy - ucG8n9ofi4DhWXdibwrf6K9aXkA5PvrE0JxXxpMFuX96EMPXbzHmzfgWwMo/dM2nvcVy6hR+X9OW - JY9D7Q3DgZRgWK4RnqM0iAUCSKfesjwlf/jEp0eZoL/5GRc+72zik+Cra17M0q357pf9b0pBfl7P - mFrnGeNufymgNvT6is8nb3rsA6pSYYIkUEdSL5sXmtQDuJjEmsK3MSoRvahJo3Isn4noLY80k4Cq - JIQcXu4t4/cAULBxnYxubeljLIqQTnDNo6lExwcfsupSwed17Ohm0rReYEZsQr99lcRX7zxe9Sf8 - p9/3N1yByc1DBbDSjYhLIiFbTKVL4aw2d2a8BLdebi5soDIqNjn/6Rl7o7SqER925LCb3/2sW20O - dW0vEP3a6Jncv9INXPMjPClfJ1uYW4bIeuEW71Y/M1Fx+4Z+Xi3MmJgat8FPcSA8DPO6Y6nsx+kw - QKjH955pHgH1hHc7GwYM1GzvpxYQ3fAngLV/mO8rE5+d1zygv/yEiHFZzy2sS6hv7YH9zRPoEOw3 - ME2yPdGI9am5pr03cOj0A/GaE62HRdvdgZa0b3K5yI0xRnArwF9eSsR9b3Atjf1sohGft8x290eP - 78tGgKVx0NghTtJsHuXWgW/QCsQ6/U7e0uOcQtmV9mR/So/1X/4FS5UzYogd9/pr+EjhSch9dvjr - p1VvoUXcjMwW2yJbts80hIjmN+bgAYDZ354UcFRND++Ul8qpkZYVeiFJJmZ96PqZHn4OyHZv82+e - VEvhc47Q3/x0nUcbk6F/HOi/6xPD98TOFj+RS3gnjkKuf3nD3zy6pMWZGa/duR6gWwvorIdHcimX - xRvWPEOd5FdEgthLelp+gA3vzBPpuObBg8bBmh/L+788xxsF0TZh5PMLHUMvrf/mv/By7Hx2OBRb - gz7aZPqbb+GtGJf9ZOijA9a8j9aNQLPZJ3cVRq074K0LnvESvQ4CnO/KkRyxGnjC9P5SuM532FrP - 2XxWCwdOmRwSLdUCLj5MX4BMcSZm7kt/zfPzCDpGUrMYfnjNNnaw/LveKuvznu+UqgO28mnZYQCH - mm2NMkIFGzALK6k2ll0SDeD/saNA/t87CuyTccTbwFaNKa6bFN6mYsHTKev4MgiFDT/KoWd77TV5 - bD1gB2mgjukERp1zipcKXWUxZCT+MbDkgWlDPxwu7InNxlgOca1DaYsnvD16x1rcLOECmychVE5s - HM8NryHaCt1Ip/YYAqHwwgja144SU6QRmASlMqHxvkokuGYDmJu27aBwsULmvXGTzbOnChDa25xp - +RLw6XK7upDtD3eif/smaw/70oEa/dgsuyRjPLWR6aJr8s4x4OupMtF7idDX/2XM0m5OLT00qMLk - 7CbEWprZmyj6NADwrGP+kwC+6P7zovJFyFmgCE7PYb7YsHhvfsy2LQ4Wb9n7yNy+PEJO8TGTiXdb - YFKUlD0qW69FbEYYKiGlbH9NPjEPkocDhC36kcfZarJFE1IKVSrvGM4eGzBWrpujppp1lhMlBXP+ - e4fo2HUt/Z6mQy1boi6hcny7LJm5nkkwVjoYDYHA9DSpe+Eq7yMUT/yDoYfauHuZcIHuvMUkMGBn - cHMfmcjY1AEhF98CUko/Amz0k0H8e037tR7uyKsjlxB9NDxpfhk5ygbHZlpua708fFMVlGPjUumU - S3zOsrMLN2NyYCddvvQSsF4lkn/qgbnP7RuIYnfT0W6+UWLPUASLS8UU2e8GMOfg83iGpShA+s49 - jB67OJbxtdygEGgiyZSblPFGvg7g2rqYHdD9no30FdzV+7uqqSQdP55Q37MCRrbvUTATvRe/33yC - siQl7JET1RjYfEnhSKwHw6bn1YP52mjQ7buGGVJKjdn9gM3O/FwFspe/ojeP1S2E7b502SkNdGNK - GhWDfHRMllc9zuR2bl0EDPwjhgJMQ+7A8w1j43pjxi151VMw7t9IO/sDIYq57dvh4uvQZNKRhJ6k - AUXqiQ4x90+sAOgBpOcjdpEeXDCLIOPe/DOADf2vhshFOlqGoN6cCPbXcMdu2ullLE95LlAB4pCZ - 3qsz1n41Vb5BPXGe76j/138n3HyZhpWEL85rcVCjxwZ+I/cTcxufE2T3fkmyIh+NRV5wA1Nda9n5 - qvSG6OfKG4ra8iVHBnj/bz3QSxaI7bRHLl3LC0XI8j8snfb7WuieJIWXjups/4bbfumNnQszrz0Q - O+c3sMACQOh+ZwnPO//pyc2Qp8B+STazL2ceLz9fKKHtDi9yNVmfzYzl1b//Z8FY5WOlfu9o0q2U - eFlw5GIMdQkxsEzk4M1bb3mfDQGpv4SQpxOgfrGtTIW/XUKpNBq3TEqPvg+oAX2saqleC46WR9An - u5QYr/wVc7+eXBiAZqTquol2rlSWQneLU+Yg6nlT3jcurP3gTI7tMNVzWZUSbHaHH0VAyjOuXacK - 6fVZYdY4Cv0MQeJA06Efgi3RBO3gOcMfHmGovSSPVSddQ7s0OTGyPMV6uLSqC6d+O2PhU/Bs0aW0 - AytekevW5PXgWaWO2Kc4MvcSeECW3dqGExNemFcOrmX53NyB0CgBFcyNsN7fxwX6asNIdM1sPtWf - YoHZCTLiamlVd//wxkQls/w8BaJpPSRwEewH84micIYks0Jmj24k0KMJjA12EyA3xpVYT57VUxrG - C3zI1YPsj+eHJ6z9AY+CpLFABh5Y7heSg3DusgCV+TFe0o0mwEX4xOwAjoa3GKR20d/1Hbxo7y35 - t7qjb5d+SJAmv1oWqT+pumaZzCu3htFejLBC8nNga316hnDV/Q6+Mu3CcvEk9DNjSQnr3+ZJLD9X - wNBkpIT15T4SY12fOT7YWIX3FybrUzLe3OkMw2k9U8W/X54Ze2a3CFp1g0ggfj6ZQANtPUUSv5kZ - 2IIxpp8hhaBLAvI4SYYhcCK0aNdbNomNyPmPf364vzI9xtd+evOPAnTBEcnzqS188T+qDk3d0liS - VE3didtfB5L9u2K5BALA70nwhiWKfdybd6HvlVTFarDgGNfnQxTPRVkq8LeFMdHo0PTzhbIJOrvz - wIr7PPfLDF4LWvGX3JybxpePA1tonruF6ZvbEM95UUIkJpcbLVE0gNnV7hfoID8n5y/BnnynvQJt - xR2D2y9FYLZfgol+Cdoy7NJXJvzUuUFf1foyLKWC0Z9Pt+bfeqZb7+zx/FOWCMN3T2I//mQCWt/y - YGThDZ8WqvST9TkK0P0Ye4JXvFvY7iWgqkogMX7vvSFVyqdE+fJjTH9fY/6Ri72Eiq2rsX04s36+ - wo0CZ+3yIpG+SQ0p3TgCIr9AJSdlfHmzjBsBbh8vh2Urv3P+2peo+lgzOYP7xls2IMKKMt0mdk33 - BeAfe5lQb1Ym8T/YzARu7hJoSs7MCnFouJxGVguTs5OwotASILaZ9YZgtHRmuvXGW3pjdpE3+Vf2 - aN8/b37uwAWGc5ux+5sv3jQeoQQNsKRYeg2Xf/cP/fTSIbf3rHmyzrY2nNE0kGzb3uJZpamCVnxk - WnRQDH6WuI+kGTXMHo1d3P18oYKxnLl00SMXzNf7y0Yft3+Sw3x1DY6R+4YVsQ8sHhrR+6i7BCOJ - ZpwdN68dH//0VnivJKbFG62WIjv0YbJvKqYXH7X+GfaLIuH30+lObX7xWq8aUozpRW7PPjFme9im - 6lE9d3Q0YOc1zPzg//jvPuQeN7irwm152jCPDn6/oMOvgBF5f9hx/b656AcfjrD+UcGMDp7wNZAG - nzftTpwH9r257co38o3pSGLT+/TTBu80eDX4k7Zj4a3nLhoOnKyNgwFsPv2wO8McrvjPfPG0jkcu - hxzWx7wkTgfO9Ry/hhJeX+WPqqKA47UeKrh8e5vpOUk8Ti4PG1lacmTF+P568ntsQ3h9bKT1mdqX - Nz2qakKyPtUstUvbk6U5fYNDJZgsfKtBP31OoQkDbXdd8erYT9vWywFRNZmcy923H+zjtYPHDb4T - z6+EjG/HowO3B/9Fsg30PabUYoVGHWKSresl6u22grWkDkR/BJonA9xBuNYn05t94In35dvB85ZQ - esJ4V//mOS+gx7IbhSb9xFN70ATEOsQZ+Qpb0D89KQKnpb0R17hL2XjqvgpY7xdzf89nPPNPEIH5 - l6F/v3c+nAcFvEtus2P+0zJRydEGaJlwYmGRH4z5eB0kGAvtmR23zw+YwHEMgbE/6MzojK0xi9/A - h9vucWbX+ep6gqR2GqyUX00fkN28qYjJBL4TC5j/2u498XZ7+PCzGUNmdb3W86/VqPCv3g/VbPDp - LB4TuLSFQWdD1Gv+1NQNHBbvRJd713lf1O8xWvkVAxQtYJYxlWBd1YhYE5QBVXOow1/7msn1dXB7 - aTlOG+impkDHs9XEPN5uGigpH4/cnbKKl+N0jMCfn9jv/K23cGe0oR3PGwyIZIPxswUOHNJIJlZ2 - oPGinpQBImZu2O17sOvpcns6cBykL9PkMq75mO0H8D0qDTsuxbGX+02fwv0gESr49wZMWdkJagsO - H8pPCvGmwdMonHo040r4xrFw/dIQauxuMAudbDCv/APsfXKg4l19GtwiLwzHWyiy8KoJPe95a0Ma - 95hhhstsyXVtQmMT6CufWTEtiK/vFoCVVc/F/fSnf6cmPxDLeTmxdIlIAxbhGzNc22W//OlRvGQJ - syUxikVP8My/fsTKST56QojSFqAPfdP7b8D9lB/DBH3a+w8jU2w4d39fCuCbNsyNNk79h79AnjBj - jnHSgXyWAIafvx3SR1niPPdcDK0BXVlx8r+A386nHK34yG6P89gvl1fXQCVwwaof6vWta/sJ1boA - yGnVH/LpO+noUDwSKp1/jcGd5xQieJ1u7D6AmS89hjk0f/4bK1/tY/Bw61bQ/p4n9sQTj5l+Uwp0 - nFDIfHcLs2Ej3Lt/+FWE27TuBRZ2sK5eCNOVD6fCC0NwTJI9SZYn66l6mijcfmmJp52FepZGQQfX - 9WAa2qje7H+Bsjs8o9PKZ6RnL31RoGNcDKLZ09mYT8krhO/j70WOwZxlU8TEBmwDyf7nb/kxfpnw - UcOeWNGW1qzefzXo7qeA+O3j0MtOB97K/dpciH17S/0EM83/0xuEDGrPx7CccvXc95DpySGJ+XBF - KuyMyiYEm7YxcLEId3aPS2Z3i756oo8ErFJwSDzwdzZcv02IFuArmEP3m/GvWpdQqsI3CUg8elzV - YgnuLdpTVXBFb9g+HAcg3GyZayE/plVBMAyw82LX+K6BZWf83mD1sywI/R/gJXFNUKPyRELn/PSG - y+3poj/8soWnx2XTf9xBzpQdsTcnk3PZ7W1Vc6Insc6VWcvnPFGR0eKGBXq0zha6Yw7X/iP5vcb1 - EIz7BkHT/zINjBVYOPpR6IJri9Uz2YI5OZ8vwA6el2DT9m4vr/ULhXwQmZP9Ko9fukGHsw1tctPv - SryYDzUCIbVbKrrevp93fWDCWpcA05avbExu8KxUkyQuOUWZw5cu1BI1V+0TXqioerOuRCV6HYo3 - cdoPMaS1P9DoJy0JVrykNHF8oMFLSBdFqOpBKg0K9HuUEdKOsObua/Lh4CUdFqMtrufIuZsgeGUX - vNmUnE+fPbLhcPpFI5pTyWOqGBbwj88e6/0aJe06qChyF6IZdO/J9ucrgOODZsFOHAdOC+HT/eNn - Pw0cY0lUDcKwIwqehotmrPiyoIvOX8TIOseYvsqug914f1Ja1i6XuPOxYUZVsPrjt8GjZnDU+liU - LHjWfi0/s1OInosiEPc30Ho6XOkCztuAUmW5Op78V994D87Ef9hmLVWxp8AyMD3y3Bs/Pt7yl/7P - D7h3B2Y8n2oJzmgZGLllP49/bHUBF1TIhESoqnk0sxys+RXT1qeLqDUc73B3fSXMO7easRiiP8FG - ughk1csZv++YD9e8gYI3bmLqvFQH2pslIm7ciXxy5VSA5ZFkuP3TL5cZNHBD3ohh3869uc2sBno3 - c8FbiHJvXZ8WBiea4Od0ZEYbbdMGFrMqkX2iRaCPya39h8dJNh/7JTTD6C9PI/o1awA/LfyC7kG6 - ofz5Sfsp2qZv+CgtQAxw6vpWqYwWHQZc0E6nP2Mp7iSBxYE82VEJdS5d3dREhWcSps9paPDhG6rI - CvceHUP/xxfr1JtwfCp3+iNZ0vOGtb665jNED34BkMaH0aBiViSC4wrHgl+oBTh7UCUPrZVrfhG/ - CZRE4cL2hyk22M6vNeivZ5yZJFd7utYP+mxYSMwd0D1RkEofofZ5Y4YROWBIrTQH8s1ymRme5Xgi - 7FhCxwMl3pkIxx2n9gCfw9tnwW1TcTq/vALuiaqTYN8YvbzZhQkspd+XOP5m6Ket/pLQQy4fJJRL - 3g9eRtudW0U+sazo47GSuDaUF/T+81P1aMh2i44+KIim3KaMHnZmB6qCH/G0+iXe89KGDpf0td7y - TAKSXcBMDGpi+Nulb7ccLzBRbg7dKicK5p3amjCZ55pow6X0/vItMP0wZGTPZGMmj6EDNP7h//LE - s8QxPOiJRfThyeuluXoTXPU9w8uj7ocuMW1Ipu5BxXQ+gMVDfglfgjKRuzq6YLYH+Q6PzaywPfE/ - 9ewJholCxDt2dJQN6Ff8Au7WT0l620POrftQwvf33hPzzlFNTSV9g3azOZPDJrUz0cOvHJl5eGUP - x3SNn2peG/CXn1kS12IBMKzC9j1tyEkWzHh5u1qJLP+Z4u1RvnDxm98K2I3pkyXT8Wf8lvsRgg/Y - ZJhzMfUo270kxE7qFW/82MumPbvZ8I1YxPCKv8M2GB1ov9+A4KHJPNbz0kTxNH+wkHd2tuKBCoUb - 1Ig26kFGb1DYgDy/HvD85xd9/R7CLb1YNHVmlP1giaT15aeUOGLjZdP9kN5hpyYDK5g69lx4ih0I - Wh0wc28YfHLzpfrLa4le5nXMd+ux9X9+/Qk++0w8TB7++z5m9wWJ+eXZDnA3ygBLyh3Gs5bBCOTO - fF6fIIvqJf929798ne7W/IjF9xyqf/gXvrGWSS3vdNB9togdtdPeEKSzdkd/fkND0cDZbPYRdE9P - 8se3BjW6fQ4f1NVXv5h6q5+WADps7+yff0ge7QQrJ6/+Xb/IEsmHpwPSqdDufxl7x8cNnM4/l9y1 - VO9FXEwV3PCOsYPQjPE8JK4LJ2dAJMJnYAy1sFtgjaoTvkph08/X+8/8y3uJF89y9ln5BO7Sy4ku - WjvXvO7yHFpoSRgGCIGxdjZvxWtngehae6o5P9ESNhDeyDHqZLBktyyCq/+nufM7c1n1ni5Y8ZS4 - mzaLubGxfbiRsjez7PUJHveurPpzeLP9xgL1EJ2fIdDOeFh/r5F1VWyoIP2ccqKhyOezq0UJ+Mun - z4e2r+c131T31VVldvOJ+HT47hdlSrMtI66oc7HTvz7oA+vF7ExF3tzJtQTl3ffIDHLeGZPzQQpE - w+VIRXAvPDYsiQ+Lot1TLd6UNe9vxwW2Zrgl5ntpPP70NiG8/ICFlfu6o+2vHuUnZcStsWMIIQo7 - BIPPnh1PG7cXtsHoquLGX9i6Xv1846CC2usKsWKg0JsP7qtBf/pb/hE3mxU5D2Ep9V9iPR5nY8qP - aQLK2hKZe/RZTR+aoECtnQqi7WWlHojqS0Dy3C0dFv0U07TuKtiVx/Nav3nMpz5cECHnkrmvNwXD - nx+Rl+2bmOYmiSew3AfYfGoZL9YLe1w6PMO/+Q2GB7Pny7MtCqgtzo7djbsUU5J1E2R7647r3XfO - 2JofwfqhR+RYqXL2N18C3PGsNT/s+WzIdgc34+VAXF58a+b+GAWrvsPL1tr1vXZVSuij63v1O1om - v8nGgbo9/NhhMeR4ukcZ/dP77KEI644gBThg9Uvk4Mu9wbSKS7DygivBjSP0c29xDTkI52Q/n2jN - 13wfPnfVDa/5Zba8dnP6xw+MXBTusdNX0eBpM7fMBDGsZ9moK8jx1JGs3F+NhdfGHUnm647X/QXG - qEeT+jd/Yn44i/1S/KoEGvKupbtaMbLVD2MYCFtn5QvNm5/JbQD9KT/RSvUfxuRJ/gYuB2iS6+iq - YMrA3kXVNnbo8ncKvA2jVJ1LqWT6TQvBknQf+J/ebk+bbLhH2fA3z8LbvPNjue6SAk7S8UiwAjqD - V32ZoJCaLXMeePAW1mEB3MueM/d9eINR/Fr+33qwY3f5gUX2hw1Y9smTmMrJAf/0Qn8qTpj726jm - j3fSwUIpMywd2Ojx404f4EQuFbGwvXi8OR9VsCENwnNR3Dxm4/MFvoVEYYesKuvpbTgQol14obPu - HbM5kAwNHo2XST+f5e1x+gslaD3CM+2e2zfnGQTav3lNdoxnb0pF8Q7WvJPoa33+6w/rONTsqMDQ - mAYwdoDeQ07yNT9Z+SKCzq/riKlZV8D+rq+86yneTkfizdRm9p++oDTJPKP+wy/3y9cdKMqrnkfl - qUBDdDhLleMrq/7w+eANT2at17v8zc/W+Rp7PILGmM6aT+GeKDp7Hr1fP8cH7IPvS/OYtoGNwXaI - QNhepfmfPhnoUkWgeB12tL+TB5j2gxWqyJPc1e9d6uXNOhcmjn8gOuO2MRuDdwFBxydyeHEZsJbm - CVz2l+c/vS5um/0bXYZeZVrzbsAspBsTvtEYEd+XPt78nt8aPLXPPTEtqGXM9M93AJUoJbjfzwaH - cprCCpYxWf1/PSmHMYG1Ztvsb37Y7qZoQi31UmZ5de5NFyMsUc7zgeCTfwBTyRoNihu8kH3/FONJ - gb8NzKgCCC7rDnC/fCdg1UN4bh+vWv7zq+9j/2IWu458iR7dAIX4kjEPKyoftg/Ngf6Mz8Q+/2xj - dtKJIuf5iJh/k19x/3mdTCQgXyDnqi7B8nxkLsxev5nsM3IGC4qGBc6xGtMXG9491f1nAk99IBGn - nl9geWQxhsfwcSLedX2rmc1T+MfnbM0vwHvWdyn8Ni+RzlT3Mr6/DB34y+/+5tlLrjsLrJz1rRKp - 8ouHb5Elf/qe/sRxAGteEaFHmO7Y2avhf36BjGZH8PIwavlb3zT4feQpw/g3gx9R9A1KKJnYPl/P - XJvtjwuc2rCwuDQnbzZemgZXv87+6e8h0iJ0mchI5Wqu+WTMN+3/c0aB8r93FGi1XDFb9uyah/Gn - gbUtNngSdjuDamvCM102e+bMTZx1inKSEDDuA7GO6RYMB12S0HMiNrNrW/OE8uqH8BN4A8PiSPlk - i5YA3aelYRGhay2G3/KuKjU+0eESbvk7onOIrtw0mbYgEwh2PU/QreqQqp8zjuf5J+aw3V1LcgyP - z3WFUAMPjnZgSQPvGY0OigBPL3DG0ha8vTFIpAu4hluN6HBU+4nP9gXk08NkzvwcDW5erjo6XqyC - OPO4639UTzCIgzxhWlepxvxVaAQ38P1jAWgzwBNHliA/NCIzhgzXfP9Y39u9dWpiA7OMRwuMKlSH - TYPnfVKD+STeEtBsPy4Ja1Z5UnSYJOjD+MM03S3r2Vb0BZkb6uKve/vFcyXWJkwEXyBOdXLjuTVH - CqHsnZlXvw4x/z4+PiLqkLP46FiZ2N9VBTo2eeDXb3jE8lsWC1i8ycisK9v0Y8V3FTxsch/Pv+GR - yYdO7dBdGij9TA/Y87HYCGp0zVvySLBfS4bwWCOCSKZbdFtP0WjoBJ7bZSB+GHx6edg4GHV7pSMh - uz3A0mztBD3L/kmwtDy92e37Au5Yp1OeXlpj2UhOAg7LjNlNA3km1ckRwnlr9Mx+VjdPdE7ARXtr - 02AA0n0mBNqYwLcxzoycHno/Hp+DCS9a2+BtVEVclvSHDQVVi0mqOmYmxR8/hNKguhTY/Fgvt2qZ - YBHOBcv82AQiw3GDYBBrxHpzDYg3/FrAj80fdj4PZsY7sYagvNecBXvtx+ctK0P0uF4rpqGfVFPl - OEK4q5FJsvUVFXM52gLUlurKjppw8cQkCF2YPC5nRj5ZBSZPuhZob8GGxEMlcJ5tWw3yWZ+Zya8f - Yw6/ZYosxbFZLOkMzEHsLzAQ0gu5An/sxa99jWDCp4w97sY9E77l4qImHQaWK4UC5q0GU9Uzu4S4 - clHWvNGNC+xfl4hdFN2tF1YCDXDv+aBAHgVj3p83Pny65Ebc3jhzLi1LhWjQmey4OXrZe3mqkXou - kErn863Lhul2eCO5w5T47ujGwtovSFeEB7P04lWLZl4qSDaSECs3aVtPWbI30ffcyMzRODPm315v - 0CC+EvYMemLIvy/X0GFWcyrfvr4n376vEFht88Q/3jfeJO66N8zhOyOHpZYyLtapDq3f88Tctd9l - 9s1MCD6bIwn1kw3k3sghBGi8kbuhMY+Veh0hx7r0ZL/9Gob08j4UPY+zxohhG/38+i4OesTai5BP - pgPh7V8qtPk5d6I5KO3lcfgu8K//wPv0MRZQ7Bv0ebIj3W0PYjwEyHXhDTEPD0Xf1dwv4gQ9Gv3K - ggm6mUyvU4PW3VN0O1ubmpuWC4EY5BXxw8QDwq6/URi+3ZQF1XDqp02hpuB2YE/MH0HP+fZ3ucPW - c11mlYaRLWjX5/AqbYZ/9TwwJdxAeUZbcoxN3AvS2azQ8ogOJEmvxGNyiHUoCYHOfFuYejm9TReE - 6WgQPAQxF+lJopAk0ZVYyr7uxy1rI7h9ujY5nW9uttTfQwMPmcqI9dnK2ayGG0Fd8ZNop+exX3/f - G+kYOiy7K5NH1Q+R4LP8PTG0pKafv5+2hY8mn4jBHmbM78k1gusQnlgf5eSJ4uPiwkt6k/D2Kewz - 7t+VNT05/ZgHySebNTUJ//X3W4x32ZTS2wUl5fIhplG5gHJzhyFMvgqzl4rE8pM7FO5ChNd+sgym - PTMMSf/BLDnqtiHdKnUCDX9yhq2tytn2V9zVOCw8YiHmGfyQpQ5E6+599XN4ceaoZwe91408Pri1 - WYfkWUWtdt4w9zD5tWzsvGr3hTtKzKzsPcF4HOx/+OrpKuFLMhst3JpXlRydZx1POrk4iLY3jxwH - OeeL74QL/CrvkVl5KnlLfQYVbJtzR574tzOmQPtcUJVvT0yXg23GvbBLQd2WJ+bYbc6/iaA1arVs - NvS3vgJm7u+LAs5jx5jtJJd+/sP//uOrRL/d52za0FyBzeAAdpt+YbZc1z3Rr6p7E7u46L1gPIgJ - 6xZ2dBYMGC/B9zwhu7nmdHsJNE/KAtkHmQxULK7XS8uh7OCY3xZm7N9FJt01HMIJ3W0KlSIFUq7u - KviqsMewK2365XpIFaiYr5zc+RAYwqZYUnTODhHR51OfzZpjRYgJ9zdzGz/ypkPIJqDU/olc75+L - 0Y5MGBDuUp2Y5g1zUdeVNzLzr013AdH4QC5qBRUNZ1RY60O6gFOO9u0mJ6mYNlw47IMQavx2JLcV - X1iwE30UqbrF7CX7eVN41iAqgjMmcddovSCsO3zs9VTLP/0wjsuu/cNncvktM+A8HxOw3e0C5j7L - MpYkaupAHe9bRhr67IVz8tP/+I5pK7/zYDAjtONlz9IVH+nXly/wk6UOK16vyphOL+2CksiayKov - PN6cPgJ4Pf2E5H4WebJX+uqOiacLuaDNpp+23W5Cqm06LB0Yq4e/+wcuEqDyzwDxu3qWFejOlx05 - Tr8w5s5RptAarzsKzmrjMe8l5Uis1ZbFK95895lio4UPAXsKcmRML+E6oGeqYuav+DZdJ11Bg9du - mbdIYbacx7YEIf6a//pxyksnRys/U1h+CzDldf0GuiI9sKrvHDC8hCtFzfFTYLhsHj3/NccCpluI - iXZOjWzOdo0LP9L/kXYl28ryzPqCGEgnSYZ0ItIFARFngIiASh8gV38W+/2G/+wM91puhaRST1NJ - 6tMS99IpGsd3zxLezoOGXdACsObnlwl7Jb8SQ3hQbSvn1IFHqgf4NrdzPV2I18DB21hsKK0OWGDQ - FtrMQfFYUZCz9fPUEyh++5JcLs8pXHP2kUPfHQNyWp55vVViqcKlT32icfqJckngSGC+PW7E4aum - boHwMJAR3r7/8JdHltBA7TWCmQZtGW4R+13Q6zm0RM7cq819Hp0P/vKZ9bnN2fRwRE86+3jFMgnu - Q39ZrhDON2HGZnTIQJd/yxIxmjljVb7LYPp73lu8XPH9VH3qibJagOSaq7C8GYrNH29TDAnLI2/1 - q+9Ab8r6BTGTVeRErx9AN1QG6B//YJeBbvqyilIYrQ4+sWZHaWrMEfzju8YWVWCTgv304Od9mEFs - BsOqGNkozWr2Ig6O3/W25z9ovd4PfJHuAljVIDRg5Wb9fGCFwF7p6ZUAexN6YrNDEW7H2yeGr/dJ - /IffMzWqDV6u23NmBtzVi+aOXyAV15W8Ml0Dy+fk+0Af5oio0mqEgh9ODfxk/HsuqX3NWPlr+1Cr - L/YM6vc5mzHZZPDE3+u8uFNsLx7wG2RfHvPf58N1/EoBrHJ09aTBgvYoN48ZDpbozL/9lvkNDlIF - n9oxxEqhKsOY3kcPSI/yju9CGAJ2rLkIjKsXzgc5SMPpeZq+cOf/OK8aPdze0DYhLV4h0Y6gGz4i - F0mAc+ULOdvFY1iqV1vCnzcnWAvIt56x4pmQt+KJXJ6dpC1/79Pil008WTPosvMJyWkTRE7q6Nn8 - stxKoNl8SLQE77dKLg8IdzwiO78blnm8NpA3ihMx32EZcgUGCWSHezGjVJNCUuVhAx/MpZmJ2H0G - +sUwgMmjuhDjlQVgTUKmAA8tKUjyDuWM5yqn/eOX+I5VuabHpAoAF9F0xz8z46JidEANYIntnX/w - P+cQi31CTaJ/lpruz/NF/Nt1/ls/F+J9pZ0PEp181mF9+GEsXQtQYM+t32BmznkO9/yAvUT52Zs1 - twmgyzchJt88w2UxFAbseESit2xkLK8tBUrYqcOXZIvDhZJ8g4kdTuR0zu1hWiyxAMmStCT7xFz2 - Uf2ugju/JHr20OnWbz8ZIk+h+JE/tUFY1laCZhu/53Ff37RUBx+ukf8hj6/e0D1eFziuTojDff5W - zrEMiJ6/lGh/671c7A3pFDBzpGVNvSFwU6E1Ox5JmP1WyEMne4C8k3kGqejbLaqeJYD1ZHgsFz6y - VRarEfqiJs+jAXhAY3dhoBEAdz560WpPScgXYP352fztjolNL5xZQNkVOHxei69Gc/chA2KVmGhH - Vsv45aXkoDlOz3nybwFd9QkyECp2NwtRV2lj9WoreHfLBWun+Ao2TCQVnGfxg7XH3pfRyeLkTy/M - feCt9C9eQH+Ljvv6eNdTdpwt+K515P1+55+9fn+BJyUPWM3QHths/JggBV71GzFmGTEkc6e3CAOL - 89D7987+9CCU3Sz3jt9gzdZYzEtgvNSGyPbBy+YSsbMkxNtr/3vORgJYAwlxZJCH/r3UxCG/FIzp - 4pIkWXG41JBC+K7aBju/rLW7czjOaD39FmwLX5eyrhf7EPShhdXVOmmb7X4KuP6CzEODp9aC2SkG - qobeILon+zafwVqHlLttOL/pXbh51cWAO7/wjvmzHpbndExAqEQI4yAbByJjcTzu+Zu4iaAB7i0d - NvDhf623dp+7TcNOWqD+1F6ewHtazQ9TEMPjpY9nKn+jbBq/mw87M59JmnFUo9I3dGAw3H18bk5r - NgzKkAKcWAe8+yOAvtjNR5D3a6xuJtEWZvEKaJ5WnZz37+d698IAcA8jog2NNQgCs4rQ4OQrztgm - 0bbqUbSA86UNW/Rj0OWfn3JpTWIEaqGRY5rxcNfDRI7jKdwyJm8hV+eYxA2Y7WHYZB515vGMnX2+ - 6fU1QhAF58WTOuZUT8JHSmGnNwZ+lZs9tJH5bqGc61e865t6Y3g5RoMXZ9julGoY9/UMD47pz9K5 - M0LulUkb0FZWxjJ5ILrzgxyeM5EQLSBGzY3HgwiNoGA96dx9wz89Bp2Wi4n5Mz1tk/PChwfp/sWe - 97YpD8izhUEvCjjqf7+a8vJQwcC8p8Rw3CWjdbLkCCDyIIZrpyH1r6wMJ72v8LnlZrpMRdvCl+U+ - iLrFoCa6dk2hcbwHnnCAgz3E7gIRfLFPrL6hmv3jK/0Dv/HpazyHDeaJKjG32fam6jOEi5Y9S7jH - L87lgwrYd233QM6NK/HC1w205fe7QciPEGuuWAEScZIJSTAdsa5les3XP/wFV/ZoY/mFvHoVfgOE - Y1UX+PJ2FXtFLIRwX29YMfZbsx/O4qHnt1i8341LBsq24wiVMR1mdvE6rXt47wXNjW4RDcgPug6P - S/SfnioDnu56zUf3JsPE7a5PbQyZcEMgs+EshtqvXnH2ltHOB8ifv0MZ65FI6OE/cJouKtjq+2TA - 0M/tf3xsa+qxANrMX/Dzybl0zXq7BZ7zO8w0aqK945XMwEuzhDPF+iPb+ZgM//Am/2Wmza+MkaPd - byR4tsuMBLnCQr8xExysVztcJvpiofNjGiynpkxp5aw62tQnIGfrcckme+/KN3v6k1h2Vdo8V+m9 - 9B0/Ed7j396O90KC0oNZ8OXShHX7sh1R2vnMDBT4oTRI/QCl0WXXI2MebvuZPDSIwwW7CdPb23h8 - zGB/X2Lt/gNNNdsBbpF2s6Ru1cAFMWak8nxudvziM/pPr5JWxVa6VHTNjrP5x5fmw3vhhjUJHFHK - F/DEMnt8aKMsvGKAf4GL3YIKlA7KkAB5YxZszB1XL9be5WOfH6J9+Noel8vHgM+wkAgOyxwsr/N7 - QX/jGd/Yddj9phSmvH8jGUje4QrsykRH93CfYdU04TLcOQYWuazhoFaCmm0PBxO28p3B8lM9aNPL - U3jILMfBowlWwNbVegn/9GlcBjH45w8fqm88c3/6Wn7rGwqBe8Wh0hQhfT78BCX2dcI6byFtG4Ed - wLd8PhP8YpWQiPkpOfY/KcY4LCEYskOpoiyfU4yP841Of34YKn9XYi5vzeaiXGrhPp/ENsY6XG/j - 04RY8jVvu7UIrJfnVqF8eroeV1rd0O98H/QjvhM7XS+A+2QpC+fuirzvD9Vgua+w+Hs/LGfRPaOi - U0mQIsskZyvQbPrdu9b1IPoQhWds2u76Hk7mocbuZTmHC0jwDPb1RvAL/IbpqJ0keOpUkSjbubWH - 51io4O99vOOrClecdeo/v5Y3I76mz34soMcrYF6ur0tNs2AaQShEHb53WpZtantrJQE5DfFNJNZr - 5CYmWPr9DPqu3wk+sT0c2NjEJzbmw5nzl0ZamEAkOD+ulMSuyEDNt2/kL98sVjuXUI3JYz6yWU35 - rmF0QG3AE920q3C6jU8LLBnJ8L/xvnKPGMwRA3d9XwwzW/MebD5J/o9frYXsS3DRoE3OW+7bNHks - EVTjUMbnTnrZaxLyudQl8g2r4UcL108WsJIapIk34ma2iXk5zHBtbRc7J1Jm3yRMfOE6fUPs5as+ - 0DYDLXA/oUnMkefoPz6BZd7EelwpGrXUYw5WmY1J/Mo2sE0m60OP18DM8NvBHiUr3uDNrgcsi8NY - b+ckc+AQn0bsoFte59lNaoH7hD7xxWEcyH0mJdz1yZyfeGOY+AHr0l0RNiLrRkS5YfQgaI+3ct67 - w4PtnIQedI/2QtxffQuXQGEgNC/DSBReOA1LTWwZ1umVI3v+1rjlyRjwerY8crmDLRu/8Rj95UMc - YEooKeV1RuPr7GGn7th6teChghcvdj0Bq/LATbq7QfdzNb3b+XbKtmi1W5BYQrTrQ2OYjyHYIAmu - JdG/UApJ0UoinAb9hwuvDTT6+HX+P31witeopru/BL2ZaN5R4we6io3JSir6CZ6ETqq2Pd4XD4Jv - Us1SLJ/CZYj19J/edG42GVocS6W0gk+OlfZRDu3pM0SwItWMnd0f2EBxaSD4wMv80d9Qm3c9Ab2M - uMQ6phGl96yTpB0fiNm4xUCnp+uLOz/9lz+ny1MqQaAX2x6/KmWZOZcg/zmx2LDjMZybIEmOP/E7 - Ye1ifrJR6lrzr/5C1POVAXP07kxYHp0WWzMk9e6HexD/fJe8PlWnLZEVOlALPw0+udqkTb2rQHi6 - fTuv4g8BWLbX5qO9HjaTsMz3rlCPGfLlRuef0g2APgR7+fs88d7EG3b9OQKhW27YwAetXlJTGWHL - FSK2OuZT7/w7RYMXZeSk9aJG3i9m/sPj+dAHxsCdjjCCc2NY2MrgMdv5ogcXxhfxkxt/4L37C4BT - MfLI6KWUHltng+9fxmDr62z2eDMW41++kq+vrp4zV/DgtXievMMZnTOhKk4mxIcXTzyp2YaF18Qc - ulal4Is+Ebru3//nh81wBHW4Pd6KgwS42bOUU5Qtl0tXwmITKxIMdT2sLP54wFGqF9HZcwUWc7/J - CwQwJIr6iOzhhJMNnq6z4gk7Pi/GWo0w/rbBX30ro8XvEv3hB3YmtRvWy1OqoFsyZ6LAjxvOX5Qv - YNEYe6YH4VkvMXdv/umdxWXz7M+PgvdS97CTqjT8N15rNDIeN7/NrA/OCwvRGGAiZ5GQLe2St2Cv - h+HCpPuJodWLoJQ+LkSJi7Re5yszw1SeVFxc1jnc/aQUDp8hxKbRQjBnTNTDB/I3fBavjE3FJ8MA - qFw6rOCtBatU/Ba4488s7PySuEfkQO/MfkgaeFdKkcuWf/nRK2ui2uMtDhrUmcVM7LuR16tzPqVI - DPueKF3hAyo6vQj29TKz/TzRPz2ExvN2//Pna9YESwXz2Izx7i9r0/snmdC7J87u1zLhLL3HGVYb - ZHZ/UtWIKQ5fsNdTsfdrYDbjWc6hXu5XwiWHVVtk4R4haREw+fPrdnzKIW+txgxUiYClk/ocLFmo - euL6cm1u55Mg1tEPW+ZDtzeuDHU4iN0Fn8TDNJA28UskWVxFHOiP4WjXVxa5x8tCnn79yuiI8wjs - fg/Gp0thz+SalPDRkxtWlZtF1+OhGqW/9WV6YW9vn/ISgY21vjOKzt+9HiDPiIHfjmjM5oY0xn0J - 6iWs5sEkCJBDFyfQ+Bw1vOO5tvnuqYJFnuckWafHMP3p8/U3svj+KD/gt9c3wXkVc3JOR5hNgeJv - //yZy1L1WvsO3yYS5pp4h3vghys93RPILGDwlr0eujqnkP/DV2JCPamn+Gfmf/Mz0xAge7sx8AuW - zX570jFlwV4PSuFBun09Yfe/t3LRlj89hn3YGOH67bkYadW47fq4G5Z2HnTYzRLFtpMO2sI8ZRbu - 9a9ZmrlLNi73QoWCtnVES2LTHp3V2qCFD5uXd35sC7/n5MBQiLu9Pl/aS2ONDOioyxF1w1w2vmxd - /P/sKDj+7x0FoSCqJP3KV20CCEeQu0Le46MjsSkbvypo4k+HbeP5C5cxvMfQ6XoVn37rL9xuBssj - sRCsmRMnBfAjD3ggvGuTnK/VVq/C+ExhRdsb0f3gHPL3ulehS9EVu76ga6ukuTK8JvKR4Fv/s5dV - 5kvg1/qE/Z+v00nT4gSynuvgpA6HYe3Lq4UqnReJ4cp5vanDClF9HU+4cMvfsDLbqwQR1N/4iaQn - oO7LS2HyDY7EK08gJEeDq1DYxiJ2vgcSjuPRZKSav6VEOfs8XXS5KaCmjq7HPqfPsFaoW6ROD7Pd - 4VG0pabfDeFZcuctrQHtHnfQQz/3fOKdp2DguNvEwk/y6XByGFh73Z4FD0JBUmcBRV29vuWyR3oD - c48LupWuqvH0gOO7LT4NihQuLz0PoBszJ2LLRA7ZIY5NZJydgVxekNhbGCw6itgi8QQUXWo+TTZP - Quf0MlPjtoG5YsoY8SyzEWUqK1voYfNFSxiaRCvFL13cMoKQ/rQjthtW1lh+jXIUmnSeo+9wGCa7 - 00tUy8MbY9pkGXcuEg/BJOSwuvbvetyQ0KLmWU1zrkp4YJ3zpsJgrDBxT6eDtpoLKmFsegoJV+AN - /Mu4JvDU7RWv+JJmgsx2FRL5zcZm/TLAqtdWAo6Sh8jlVFzsdgzvEVzedCbu8D6FrGo+C9h1h2iP - v3PG9rIkQ8r/NKLXGq9t2fo04bLpHxKEL10bc+cUINhFD+ymLjvQ7XNtwD4f5MkYR3tW+m8FR4Ic - 4geRVS+/3kqgRqaEPLtfbZPD+mThZZOe2MZUAJt0VhNkQLEhfss4NnsGkgOnqTGIW7cbWKTTKUCz - ii7YOx3smied68AVC09idW1ab/qLHyFoUpfYz7DRtgkXPGSLUsOv6tjbbKctPPwaw4PI4/c2CEk2 - WhBzMiJBJpf7me+XDiNc2VgpTxpdJl61EHPsE3LXz1G21WI1Q5jqhneYVVwv1mol4K4FCCuXTM2o - JAsScvzDjVi3SzPQ3znab02S9x0UkhESe1Ba1DLWgJXf5Gq8Oi8bch53mzjP5Eb5w5UfIXqpAdYc - 8wyW268qkRi/ImKs13u9+Fm/AXZSO6Kb6xBuB6GMUKlXR3yx2MfANsJRPRpnJsFWKtgDvd4qGRm8 - bGKz4e4DG2tODIncaESXTp7GMdu9BCa8HHBi1c4gcPcKIuAyX4+PD+Mwfc3YQpT/aH/5KGtjQ7NQ - nghnbyvabtjquxbBF5NcCG5wCrZ9vpEffc9Yfl8jIOTdPQDBsFXEcd5duPx+9hc6FvvBFsWRtvBr - VECHPCVyfmQnm32/lRw9b9mTqIZ+AqzWKjkcAy/y+D3/8CxzSaDVNjFR7e86LNntMsP6Op/mrrtP - 9bbYogFTxlU8voqmcFNncYGOMqkzgOA1UEMaWsgc24RcLPZYkypmCnhxoU80mf72M18HCfaXssCx - MmSURMaPgaoz5cTetNrmh8MSICG3Tt6i3eWQzQJLgs/PHGFFIid7mb3Jgpe6t3BeGzkY3JeRwqvQ - aPi2sCRbz8eVgYcvzLC+OdkgIHTVUXd0f+TBbwMld8NU4VWxnlg5+zEgfhQ38MrrHTaNgqFd3HYG - bOruOR/UPATbkKUG7EL2M9NezbWlWWmKlsExiex8tWFlMllG0a0F2GIW3xYyH8aoPzh3b+aU20DJ - ZDUwJXNGzod9y7Pg0RTd/Enw+mlqQ5qPsQGrJlGJ742KxiHxaYEh5Cbis+frsLJZnSPpml6xe6rq - cGvGXw75Wb+R8Lt19vQ4hjLqhnzGrtRbYGW4IoZ16Q1eOD4qumUOA4Ft9MY+3x/A9cw6woEmApH5 - R59twhJsoLlZAlZFKaoFeDRYJCw0w/ahUELOHu0Ybm5x946nwAXLr1dTWCxKjf0g6odxq98xajnF - JEZ7VjP+Xg4eQKefSNRBGGv6ZrIclisPPfhMOLqat3CDgvhoyEn66TbnqhtEo2Ivs8Q0EWCXywZR - KosHErF1ldEh93u0oqOLw/GhAh6qiQPZ07nD5we+UJqRSEQPt3CIVjF6Jvj3ZwrqC9Xx6Wze6Pah - 4n7LO86JjphyENSzJ8JHhk8zF3RXwCEQMmjHV6LmlWOzwZZG8JHBDcf0zmnUvPsi4mzewAWUTJs7 - lfYXwuvok0Ccj9nGRKiEHyEzsOt8M225Ta2JnIOm43PI2iG3PWMWjSqjeKgwfvYcv+4bYEqXweY4 - 9/ZmWS8d9gdGxzFXlbWAiqVEi2sm+DWrpCZTGDlosXtmXqwssTf9xcxgfOgL1g7xCKbjRW0F4+wN - JDG7PhtjwzZRNcq2B52bZwuCTWZwelcbOV3Cdyi8H8iHKSfYGO/xzT/HnoHmy6IeCMc+W6b73vXo - NuXkHraLtmry6wslNBBi0QyHezwWaJGKbBbRegVLkksjFC+56R2wENhUL7lAcj/5gB9J+dam8Hos - UXgt8lkKtiellpfnoCYFIoqWb1r7LqxeGpnXhpWND4btj2+5bt17x87eb/m8bg568WpIXnqma1QO - VQsp8ZUnjx/3rpcxbRN02cQneTVYoqOf1BBZF8XBlpu74VIdxwSOzHPDSocf9uoz5ogs7lfN4ih9 - wt+032p2yaYL2flTNmqtUqCnu4beUTTzYfNemQ+6I/7NVH172ppN9/3M4TskcaOy9Zak0xcUyoFi - fH0w9tq9TiPaf49Y07Gut5y8F0R/yhG/Miegm9O4OeTKV+5xue5n600VCgmqtjHTMJGG5a2WIjqL - xCVeCj6UHua7DJvh+sWXzt7Cdbp1Ecwc8iP7eNUsRzEPSDxvxESfePiLD3R/PEYSK8Ld5pfzxMKd - D/29v0YDVm2QIySA3Pb4F6K94qv21MGGkO/r6/GbwS8zCXZYb6tHW/stkMeBiF1bx/aWshmEl94l - Hvv6nemC5YsMzJdUYq8+HsCMUmohEAnazrdAtgjzs4ffmPGxcyBeNgZbGsN7n/vebefXLJQz4+/3 - iXp9fOvNjNNI6pm8xx5OO7rVYj+CCbIPjw/vtdbNQVXBHU/J6aQmIT3JXQRvXdIQfTA1yhncb4S9 - FdhYvvNxtnrvrILb4PozvTuHbDLEbwnsUTPJpatNSpfGsPYdbSdy0soxGz0GVcIlvIczV5dM+C9e - iZEBYhtdNWx/+JjFpkoCbTpoy80xF+jmK8Kus8XZRhXZ/4dvFjkoGvm1lAdcKwQzk1/jevUOUIdL - xQbEuuNKW7JEriAfX274ssczScVHDBmNeRGtjTj7b30DR0iBV36sXzY3IynAzhexdWnbYS1LtoHY - zH9Ee9wtQKPx8YV/eiE6Xd50+yzrDO0oOfy3fgE6x8D0e49o1t9RjUn9wsA5nLBX5W/wzbf2K01j - XRF5TKVwlcmngU3zsEgKzG9NbOetQ+UXpQQ/An9Y3dNxg+wYwL/1lI0WHmQYZK/hj+9ma0h9CeLz - LBGHg4+ao7Iy/8u/UtmXw+Zpawm1GTMz3fP3cohsXnrSlzvTQ+yA5ebIG1SU9k3SxpgBnYeDCcn5 - 0uLzzheJp4v7AevvG8sWzgGXiLgBxvOekgsrXmqurZwK/PGnl8A14Tbe8gKW6dB6o97GdH3LbQu3 - KGZn8TWoNnfguwV67WXBf8+/FMPqw7OdWfiy6g2gd1lN4EvRz0RxtYFuh9hkIBTYAzmrqzZwosWr - UBAGYX4E06iR3OUqdEkPOXH22zTWDu19nOUoJc/3vNTLW20l+NODcP//epjR4Rqh76Qf8N14TDbl - o/Ef3yGylSXaUlgPEXJa7pN8b3K+jxcLHTUnOLyRd7j01TVFf/okRD4Jl6dx7pFdHT9YueCzveVb - +YXmveqJXuM1XMxrkUK3aDxy1l8WXfZ8DNGoFR7Hz2s9KfsZ411vegCCw7D64CLBos0eHvsVJNrK - nKjDumSSmdn16uwaYgx7xWqxN3wFba19bII9X3li7NeUpA9xg1dz+848qf1wPV7UHtK3o5CrUmE6 - MVwcA6GTGOxNqzpwj2Omwt8ROnO5rSXYND1igKdVGT45wKLC9Vap4BZUJvE45Vav6zcM4I5/5BG8 - fUpl347BUVvvRP7l+5la3S+g+Jl+2Luf39py5tgGue67/+PH2jZzZr5vpPGxdVQ7rYPKtUdemgoE - l9QZtvX34OG97Q7732PdO82pQEGdjCRsI05bj84lh8xScTPQ65NGFFcvYX+AOr6ySTGUp5erItEc - M6wmUlXzI09Z+KdXLufmO+zj3QOOkNkT2oSEFBVLhaDAHwgWuCZbOCmRAKPttwQrYA2X72KqkLlO - CTl9hJPNnxoTQmYNKg9+rmZGBySq8Ka8GqImkjpwmlakcHMeFLunuLUX0Kz+X76c38o8aMuub/74 - HZFvS0KpuRIHDu6MiKfeVW0hePnCezscsBHeNXv8mYMKRX6xcVolv4H+8cc/vFNhVdhTq9UM3Kh5 - xTIgEt0A44qS7lUcOZdDYm8P6fGVXqjPscvCmk7hlAXgIW3YYyQCB0pfIUSC9ky8w7Ee6uUzs18o - hGpFzs1yohQzUgpeuBlJQF77ji0GlWCfT2yIzAyWDR1a/jnrFt79Bo2Y90SC73vFeUyVK3SZomoD - 10sV4r/8P3tVYKAXF3yxUtlKKIzClqKncbG8OHmL9eazhxROnOdjGdSHei0PTwvw39yZy9d9CzcW - qA16n12GnI3HpE2wWlVUhJtOsKE/w+5Aewi4lgtw7CZUo++c1f/puT9+vzCpUqBRAU9ydpzKpuyz - bNDjpMfE/5uPq3BJJXuzRW/xyhMVrBHJf3xi77Lk1f3RlVW4ORmdb34dhYTjtRJNUB/nr+sItMtD - JUdydb5jszPKYX1Xsgx0wIveGGg3e74eLy3cz9Jj83qQABWCvUvJzo/0lh+0abHWElycgvfQIvD2 - 2KwgAWXVdN5XQ9FQ6S9+BjZoAny1L1048kJggHsKDOzJ12bYtAqVoDXzDeNqmum2Fc8Ujmlj4fho - 9fYShOsCxTszEyfr52GS3lMDMeyMedk+p5r7889kZ4z++Sl85Gw5CvTf3iXD/mgzFzcpOl0+K97j - S1vq5Qfhebndibzj5+Jn1QLvfeF7DaCcTZlkk1Cu5Sfsff3vQL0cNxCNq/3Pr9vEKYQwHs+dp92d - Q0g1M42kP3/Gs7cyo/dm7wJTsWeskFTPuFWnIioWrSbmlR7qcWmzSrLQIcHOA56HJWECHZnwOGJ9 - LNjhJw7h+O/5LRaBbHTrbIOYDX1it20DWPsypX/8Gt+0cfcDuTiGoD9su/8w1MXvfehBeXyd/vR6 - veZrpaLHyYixUUVutvOLEu14g5+pGw0E7Cc4dn9jRt1Pszn0YBuw+4MkvDuvjGuNfgO/8r3t+qyx - t+u9CuCOH97nyQT1JJOp+dPjM7hHdD9TSHugnx4B0bh7Ttfp9o7Bnz43tgNTT3l4yYEsqXdiXzdT - WzWtSP75pzs/C5dwzGewcvWd4IfBZYufDBBCZsp2vVft/RTHFGLZWHd/LLZH7dKKaNGXaj7cF73e - 9ewMX3ePx67yvP3nX/zpp7hX9IFetq2FqB5a7OXPK6XPqSth4I4bSXa8X5D0/G89/8X3bGROBVNL - rvCVuXsDaW6ajgIHnYgeGaO2/d5C/8/fiZMpBJsnSzM4Cd3by3Z/bWq4ZUM7//DYOhvrye6cEt6U - Z0Mu/s8b1txXW7TnW+99ydSQL75TBKdh5f75rUS1HxYse2fDF/g4DfPxF8cQm8WPqILjZtwyJiK8 - MfTr8b2i1yvPPXhIuBJjp/8ldGs7c4any28ll/jG1ROzvSr46J8JSZY4HBb+to1guxnvmf0Or5r+ - /d4QChNRlHmw9+frIZl+HtHuziscTW/vCvZjWfz8VFy4OGPigc+PgwR/32G93iy5Qu85u5KLFqJ6 - Ei1GBXg2S+zM4htMn2v6lXJ1Toic7XeeHua7CjXb0PDZkb+gTf1DDsx72WOjTG2bePm5+dM7f3gX - UoQeBsDf8k6ep9PL3uRAayC3ljI+pVUTsrlz8kH+u0/EDsc+pFp3HAFt9SdO3o8uW+NqKODluB3n - lW0eYPfXGUh9YGFbrz/2cPtmDKikavXAd1azdQ76Cq4mUv70hr37N19Ql86A5dsi0hk/nj24vbeM - GK5zp/Nbig2wnVgPJ9mXzeYBrjn86X64nwgZ6j89Bw54PRN/52+bEB33fUyfs8cc5NOwmY+HCQ+f - p0Iew9O2N6j6DpzGd0XcbU0ysrZ+ikQmiTzxNVQaFfGRAfmjYT0w6tQeazov0F+EL1EvIw5nT95G - qbNtYW46T6nX3U+CPAs3svOPmm1YyYHaovp4f36wiTb7BbWSecQcZ0tbftPF+cN3ot4UX5vPN0OE - 9zWasKmYc7hq8v0Lt0pIySlqVY3dvq0pwfY7Yq+ocbj1d8zDyEjaeWEMpeZGcugBAEHnHV27zDjp - /flCNrpBcqo0OZv//PTZ+gVYgacbbeuHX6A/v3rnH2AutbSBChl9/Dre/XBxdepI/GzcyLl85XT5 - 2R0PLqdv6h2aLNaW5SJB+AurryfufuxffeKf/+XJpy6b0TGc0fslDkTVppe2pvSZQO3qUOx+qlu2 - +4smaNhRwerVHbJVapoE5rbhYZ2tq5AuP4eBjkJUYpXFKVvVSyTDrGlb4u96czlwgwe/RvfA+llr - 7FW2cQrDx673yuITzgyfS9C3wQMrwQOGc8W0MfjjR49V12lhe+8YxuAOicy7RJv+/L9n1C1/9YKQ - bU+NB01PgP/075aTbgFdPynYSj4Bnfz8HUGYXDnsFsZP+7off+/67PnzYTTdkM2npodCuGGPgqq1 - 6VYFG9zrId6kXNNsW/ukhW2MEqIQr7MHa+RkmPuvKz4v1zfdOqbhEWcbD2/tNETb9ZPPMEgnhjjj - pu8nLp0SJD/164nvTzPQHo5fmP9uE97xJdywxKnwX354FWFI+8OQwtKxVbzXo+y19s8WEjr7uuuR - ns4MH0nwbA1Pj4NvY2A/7s0Bq/yziYfTC13XOs9BSPCfP/zRdn8kBlTphf/qacNRaiE52+282je9 - /ny8bAF//vTjXQB7qTKNhetvKbDG3SGgz6WN4NGRpBkcX9dw+DhG/zefnkCPtjZO1wECzYpjonfe - u17TJW6kP74vtE5kz3fV6uHRsV3vyJZUGyt+asBRctDM7PW6efdvgcI3E/njj3NZwAg8MmbDGvJx - uMH8W8HN83RP2PXf+jqlLNzysSfn18Wx2Zce+VBdAMRncGHstTWqBR3us0k0XUvt8XzPVThEnxRH - z+lTL3EzjH/x4ol/9bu4qnMYSKGJLVtSMmFiaQNzK357rDW4gzD5zxRUp+/H+1bmZm8HoY3g60Zy - op4Z057/4m1opKsXrO4zo678YVHLbRw50+OgLVXiqjA47TUQKxPtP/z/w+Pdb5Drta30Eh23hsV4 - 9nq6FK4/gr0eOR8oXAHJQmDC1L8EnuhcQ7ryj8VAZuLfsbb7Y9tqHgPgTvx7r2+w2hR60ghX37xh - PTIcja8jvUT7+pklW3pnNGCtBl5cryZ//vim7bvoRuX4xMoC/YyXsbMd93qxV+/xt2SBKiIjzhl8 - ibIwW9QvLyNfq2uvuGRHMJrXIoGzHR2I/75Ge/2CQNC4mPeqTC61f3zxj9/u+cUegeHPUKgCjqi6 - VQ9k1xMw0D8YX1a/1LjycLNgatYmUSZzqGkVCi0gRQyIVTUqXfcbdoHcTSU+8THQ5j/+MQvgRi5e - y2Ttz+5YqRNfEtbrzBlm7ZxtsJV16AFuGIcum14bELRX4h3PyRBSitgSNVg9Y/fn5+HcfhURBo6b - zAQL2z+9JpUadQhWW6LtfuIocVrh49OTCYblEGks/GUW8aQiPILF9F5f2Lguj631Pdl1ND4asNdz - cNRDs54/dKlQeM1z8jgndvbnp8PHidXwk+e/Gl3f5wh8i+aB5R0vFp4NA0Rb3iJYjuNwOdzVHnFr - JRO3y36A+4wwBuUwO7v/tAyr6qSslDnTjygxLw9rSm/J/2dHgfS/dxQ8kdwTvNRdvV6qskSk/z2w - dQ3rYa3KgQeke7LEU94HbZuZMkAiT7H3vXZrTa7g7CHRF4+kuAnt0HkG14C7C88kZ5crFd6fbYST - mkxY9UePspK8jmjlnhU+zQBnW1I5LLzMh+MsUPU9zMkBtTCOJtVjOcMNV79CAQga7oxz78LaNFKD - Db7dWJgFqatBd1CkBMoJj7HLBZq9EXPeIItciL3X75dR53iJIWcFGtHKvKm3OX9YqN2Qjm/Pxsv4 - UX4UsNhy4sHKbcKpUoEKAw8u2GYAGagdhBLkGdOfxfD3sxeznmYYfRURG3VgA5qfXR5aa3EiynUo - M673+xF6pZNh7z7bQDjdSQCbJFdI5keBRjzB95DJ5XcSScGxXlc1mNEHRh5OvQhoC7mrAcrUhiWF - BiOwFE9JRl9RByQJj2W2HifgHTeTvxKjXa417ye0QKz65Yh7HiGYe6OVQNUOgScuxdfmxVdmIN77 - VuR8uD6H5cT2EvwGzgd70Jm05XS8OHAyp5s37/O3aIekhVUv5vgah6nN2odPirzSy7Ah+iSjv+PK - IvHT9djOQKRt0iTwUFrelLh9+tLI+fpiAUi6kARJeLUX11jgXzwR178MtvC79zP6G59LigVAY6j5 - aCp5nuAeJ9p69w0Iv/iQzr/vh9ZrA4cKjv3V2feQJ7awxxt8MiYmZ8Q4dJOiKQb2S3K9Q8hogLue - 9ALdg/E4L0+1H5YP7lXIv8YzibetG2h+PrGwzIeGWKA9U55G/u5oqJj4h8UZ5mcti4jRPYIviH7A - wlXOAtnaN8lDeLHZejZKFjKsqHqH4aSBxTVEBun5LcaPQ99pgnjbb3HkqUdsM+OHaSm1EpUXOSGW - mr3qMRlVFbkv9MBXLy0G3umWHn7N2iVmVlaD8LXOG6RXUBHsXlmwTqs8o5uf1uTczEs2cVJgQDqO - BcngFtpT7zgpvHoTIer31mljrmwRJNGkzcS9snRUFIVHB2tJSJydBW1bek4C71H6zOTKnbNpuRsi - 4rsO4lcLf+G6IDZGSwR18tznUzjDukHtrS2J5YlT3a3GKiNiKwORv+WijSr+ftEQ/BhyLi1EaVyJ - CwgvH3EWw5sLWPubSjA6TBg/pYKEi1RUJfoenZKYeXoDHFzKFBmVnJPAgpjy5pSK0Hf6FAfjqbW3 - 8G5FUGdzAfvpj63nT33r0fJ7DR5H3bbe/uJ/Y7+MBy+CBNZB8E00H5irhw7qG9C3Vn9RpS4Qq9rN - HdhW8nJQsvRETjBY6i05oB4GLmfj8+UmaMtwEmMpaS2EL0+vDDdPfCbw/CtKIidFYnPFZM0AG8bq - DY3RaZvTiT3w3w+HnAxyHoTIWA10br8nfP7I3UBtl/vCg7UlM4yjltJECixUl/GbaFevtP/WN2QL - Smfq9NNACdNI8FVbKjYgq4CVC5seRfKlwoH5Tm1ao9yAbPuy54N66wbhl19UeLuWJlZgW9RUk08S - entFjlWJHOmUmV4KvIv3wml//YLtHpYGqrpNwFr1UeyFd5MvsJa4JJ5engdBc1sWip+hJ+c9vw7S - uPXoebciLOfLmm08g2Tp+cwh9oy7BTbvpUrwXrMFvt3QqG2v9dNLo9HL5ELdTFum53UE+/jNbDhk - gOC9z9vf82pxOmZr1bUFKsFpwvKhCLPhuT2+0NlanmRKX2oszNcULTR1PTDxZ7rQGkkSNViTXOMP - Ddc7D1NIJ1YjwflY2mv/iUVoO3WBlePHA8Sbsy8EJ/lMNGgXIV3TpkW3O7sQfUPLsJyO+63ZZDwR - 7yaYNWeFUS5x0xHjm6wmA7+kpQrl89wTc9N8betifgHwtxBc7Hi4PJJXC+vzKcOF89C09anwDHRF - Q5qDQzhma3MqHehywoL1fgO04/J3gIy+8cjrfTvZ7OH8FKX8c8+Jd/vgjNSGvyHbzo7YRvGp5p9F - 1cBbAm8zD5gbWAhLdbiPB7HTuLep0ZUl8u2KI4Z03gYCv7WHzttbwpfRsgfuEbAmsh5xMx+u3Dnk - 2izJ/+HNLUpUm6MP1gCa/+2xFeayvTxyBIFnRTqxsy4FnOynJdxuik/co5QD9qAKDXiv3R3rRJKB - wDBOA82T2OHcqFa6GOdZhkYpCdgWIjfj7tEnQPQTXLHSd1pNB2Mqj8ZrveJAcVZt4czNR/ZLdIkD - TxLdDrd3gtB49ojSbmW41bOdwlN6dz3pyYpgQoeTBUfOuOC7Z1dU+HlfHV0nW8SXu9Nq0/g65zCY - 0iPZxxvs8Z/AtLvN+OqNd8AOSqrCphlkEsxeM8yNYMro9LEsjM8U26zRIQt+8qUkd7w4lNdzE8LJ - gi8SHkfF5vLbO4bMGGESP/wQsNpTqdDvGinkuYVSPRu3tQI7PhJrx/NRTqMYpdbxg3XOmLKVuHIB - zVcj46sNlIxPKoeH9j3O8GPHwzWnqYn+8C2kCa4Xwu59vBal8MQ9/hZMjQpC8ADY+VRTtjBsusE9 - 33qciM4DjdR0gZrQfEisZpPd45OYIhxcF3I932dAJOPkIEE9quQ1eWX9h4dIDb50Rmq51OP2un/B - k/s+sQErs16p3DXoavVXor5k2d6k6cACOs6FJ4zaMdzavrPgI7sJ2CDPclg3YZTgNH8GgvfvH1Z6 - sOBWjD9yupSMturmA0JZv4O5mz/vrDueTwuMhMtzZh9TpM0BC0x4D+YjVi1IwHiEWQTv60XFpz1e - +fNLgNBwrNMs3QDK5vB4zeF+pM+D6VfVJnm2I+C1i4sf8gGE//hl/3po5PyRLzW/dc72x8/IzXGn - bDU3PkXhrUyJHg4ALH4ltvDlSyJWba/TxjI3RVQW4kyum38C3Hz45NAcxWaW2O4wLIn3cKR5eCJs - VX0zLFpSOzAEyYLPw3qgg4IfEBbpzcP72Ux7GadfA/lJHnCmGO6w0JqTQAjSBZ8mfbTX1TiqUjcY - jUdfX3FYZZv1IGo6hSjnzrRZUym+8NSoH2LXPtJo4788mLomIXK+XMMRCyN/zKQ5In/8d5RvvCo9 - 5KAgl4vlawsTvxnQv1uPFF/ohxw/GCp8n6SeeEn7spehflvSEE71zETyJ6Ppl2yS9XnXxNg8Qdua - 7T0jPZZn7JwNPRylWubhzjfJib7edPMxz4MXOvEkvy1xts1hXgK7P/z29bD3AUchRPVaGLNw0RDY - MkYvoZyweAZSF2eLVPSlVGQ5JRf0HmsqvwgLU8735/64NjX5PCUL7njlcXPH2yTojzHY8YhYezwQ - J0squOdzHCWmZfM8w6mwq9s7vpZHHayCWDJIQbxCFGCJYAzdpwVfd1xi79BKIRU+xILmSerIpT7E - w8pxdIHxl3G8b7h59vY73CJJUe+bd3hYS7h++VwHbVQBgsN0DbdIuzNwz7cE00NMaW0kC7D2/UMn - 9gzAMvGNBz9bL8wP6mb2+rinOejEzCRuams2W0RcAlT51hGHBo7GfaZXDkn3YmfxFN7olNPAhE9+ - VmeoozOdaxv68N98r/6bLkbHmaC84fuOd0y2RWfeB+vDr/HFndV6jMRS+suPWE3zqaY/JrHgh245 - xlvq0EXIUASL9O4R5SF34QYqM4BqOCbkeZQgXW/I5iFHVBabxfVor3BpU3i7VvsOuULMVjt/6DC8 - /ESvqe3HQIXPzwTXsmpnyHj3jBS/mgc73/Xsg9sCmk8ggFMbah7zK1VKfwvyIHEuPgm4K5uNVw7M - YlmqETFEH4dr+QUBfDmWMfMrRLSxdW2BsDjd8eNi+TYndx8V/hxh9AT+3tfEXvTxjy+S8ydQAZFG - qZeqez1hmYZFvVmuCMEeH8S/Nzql82JaqAUlj0/Nr7AXgXEKWMiDQHY9QJe0TySAPsvXQ/D4Cafq - /IgAh1/GvLbeBNZiUkf40U4XYjlPAYxHgVOhot424vbMWpOpmhzwPXqll6rZYRhj34pg7t33Pr3R - FK62dJHA240EbJXv1l6G0xLDff5IWhiBtpnr6kgnkcZk5190mlZ5hF/RAN6fHt5+yU8C7qNfZwlI - yh9fHeHON70Fql9tHV/n4m894Z3/1Nu5KQKoQdp62/enZlM277sQ88AiapeIYA6ztoWfWxz+H2nX - sq0srwQfiIHcJGHIHQQkCIo6A0QEROSSAHn6s3B/w392hq69xE3orq6qhG5kl+6DNoexP0PUVBIK - jszRW6MDucEXVlykm7qXLbzDSNJ04CViPrNTPXWJ5MI7csW/z/THj+l8HQhi3uowz++PAs3ACch9 - zBswVj5kYXfpS2TUZNTJCaBAjkIjIWbQ6brg1CcDqOcWIncRD/qmz1aw4TF6bv7FrNYhI3+FUx3s - sRoAbhz7G+Tah4ZOcaXX/FafZadJ1mAoOj0TwsWZocLgNzKk6D6s6oojoFLVxFv8DDOCuiu/H5IZ - gLpKsi3eb6A8aDekn+uDzvW+kULllGoooLbpTdW3zKHOXTJy+bRWvPQ4K2GhfAXkB4ezThLohVIz - +Ss6wv07o4Ons/LgdAfiN4xElzifeNhOMUMspfnSybtuPbjQLv35Lx41y1qEmvg4oBPlEF2jqNEg - 3xR7vBztiU4SfEK41XdkreuhxnFW9rJdajHxjfsl2/ybUD5GQUO08arGq4ptBsr7bEVWJmuAXZ/P - BipCdMOLB17x3GxCxBS+CzoIyzSM042msADaK6Dp+K7nMjYiefp4RcC/sq5eKPQCacMzLMfCqV5E - 7ZMD8466gOO3Npu3uBnhyjYMcWZ/pFu8i3K3P209MDhtO7D2TuEhzyNSsPFpWN3hOwP97uToquIz - 5WgljvDztHjkj++HPh+1qIdTXEYkIhQP6/r1Z/jcXRQsOoqpDwdJKsBPPxkhCurNjwlh8LQ4cpR8 - Xh9Vs3NAtwhPvHfEhHblfj9C3lJmYourMnC//EZNKSEjixj97fcyL4HbEGPpMKqxsOndHx9E9/R1 - 8viHIFs/vP7hYUxUF/SSwoxvpIqKAWi5M314ufIz8sLzqtOEWv2P3yInuT1qeuBzB65Q95AKsJet - l82h3vAM2V4RD/NCD8zPb9nqb5PNZM5nELvkgdlNzwz1sw7lX709Kt8pXi4pxODwnXnyDPiC0vdj - deQfPop5ytEVx+dKHl9TGpDsbekcWg9nePz1RPKPx2zgr9oN1p8VI5O9X7yZifRe3klnC9lXoA5c - eexWacsPlGuhWLebfpc8775HAfvu6XqhmvLnd5nPXeMtsnPgoVPZ3a/eZvMtOPnyMkdP4hz9JcZn - XI/wk9QG8nphl+G5l0U4jmWC4ncX0k0P3AAsk4pY/R7r9McvtdMjINfL+vbm1DnMEjycW5TapyFb - P48ggMXF8VDw3Jf1gtZDArOXJhPN7fmaqujEyFzppBtfe1JKp88oN/Y5R1Hd3cH8058CbS/o4LTy - sMS9s8JWSkz8fQRlxvedqIE3nXOUnIBLibsLVznmLAdZYaJQaubH5s9/so2s8ch5Xxjg1HIhOjoh - qWeuMmaIT9WBeBlgdcz0lxZu+I28if/QGaAih1fxjTAjEAZMRzFc5Vn8hMFHxSzFKqhE+YS4M0r3 - Ty8Tfnod86FE9IW+h36811A208sRHWRE47k4yykogT0hnVhJLDTh04f918q2Lsd1vM4k9+G6Xtg/ - P3jc1vOnN8hTu3zrpeXPFuza1cTr8WpSIVgXSX4+aYQUeX+Ip5//Ilu+iKtaojolzCiBNX8+iMd5 - IaXag8dg81P/fn+czhdLxoF3R+5RdWP8uX1EwNaRQ9z9cfXoUUcsFNM2xKBmSb1owesmf0/ZMRAe - 25QsOhEM3TQ/IIWPPjqOolH7+cVEaddDJry3E+xznp7wbtPbs3J6YrDpTXTY9QevO8VjC9PvFf/8 - rWHmjIyBzzlviSbnX2+J330Ot+ePmafOgvE0ChbIhbYlh02/TPiRJEAPm548mbdaY6VRSyidExYd - s4JS+gjdAsawuqCDZZfxQqEeQIV3KPJZf5c1993RgDvVVpE97t/e4nJDA64NoxNteF1iNrduHWjs - JCfH+yes6Zf4Fiy7xkLBJeY9KrlDCRGaHeI1Ny2eAUpy+FZ3DeZYOwOL0b8MudiLEMsf8KJsdYod - OHyMiKTvLPMmhNZg7xjUQMfp/hnW7/4oQdGyITEi6wRGG2c5eL9eETr/Pk83cAOZNJ6JEr7zYX1F - 3giWC2ARGswazBXtQ7j5gUE1wSEe7oxYAHc+lyQt6Ssj78fqQjdc1219YjC2ygNC6XxmkTJWTkZ2 - 3zCFmx+MJYPn6sVvryXse1/BRRC22feSJLc/fW8+px6sfXMff/oruI+5AZalefFQDtYeKep3iemm - vyQ3nFfk08bMFtymcDsl/Ai4i+zry9J8WYinycb7HaziKX75LhAFkQ3Eu+lTAQ9fFiQX9kOsn943 - DttU5QQeSQ4eCp3T99rA335H/DaKmDLXpyMdr/cPMeCEakE/uBVsgvlLtDPj6GsAKYbB0+AQmuvD - tt/SlcDylBKZhmjEvCjr0u/3iVvdvEzwEymADldciTJsPVRE1o4A49bXgAFKOYyqWbryNfWsQIaf - 0Zt/ernIim2Dphf0NeVsEQYH/0kUfB9qnHR5CDY/CWWaPANsP3cMOPrJMejfE5utQ0gSoK3ui5hj - ua8XbRYrmf8OkFhrOccYM1340/fIyJprPIr2wYGb3402fenhR2qE8KDUCxaDJYvpBAQMDWd0yU/v - rGaLbpBT8Yk496vlDZt+gzs7++Iqf7vZL9+B8BkoOcZvMcb+O00g719uSDGSsl6ds5KCn59sH/QH - pd7sjzC58B+ial41zJeGKeHmD6KzYdzpAsy8h6nF2yTA3EBpUqQ5ME9LhtkO3Gpcf98W9NP6gtT3 - qxhoUXx8+UCLgHi98IznZL3nUMPLghT5koCpy8IctvHZJe6j2g0z5D1JAn5+JseoKQFVXdr/8U0v - np/xrO/CXv75XYfdDdFF8WDwV69++okmyreD5eV4/dMPcxn7EVRZp0fPt8xQHAVHDIPzab+txy1e - ymO5QkUIb+j6DPuBlrfnCrng+iKmugeUfmmVQqtvA2Sq+wwst8oJgFpSQJz4Y3sj3Cml/LnNAUpC - 41MvXP4K4WBtJ+hjt6Xr2T838n16q2jj6wP97ef8/I/ifbWy5cqzN7D5UeSAVQzWKDAxTF/ghVcZ - axn9isq436Fdhtcw5YZu80PAdzAavPdif1iUMKrAsnP2xL5+nXj84fFp6Y7ImZ6Pem7BrgVjxe/I - ho/xQvp9JNXKSn/8IBsv3qjArf79/MRhfVwmRuKbfB/Mz8eGr3dogHY6MXjjm8PMD+oNNkxyRQ5n - PQF9HqgiW1qOsfxa3zG14dAC9QVK9Lv/5bVnzkDKpTb4cskVzN93GsGfP2gfP2E8+e2zgqJ9fAXc - kpgZHyRBBEEhA9z3taLz/lfsfnhG7pUTx3MBKh5sfAkzn+A7YIsYiqxyESJamHL1P30IWoG4dm3U - 9LBwLHxcnfOG74lHgsvBgOLS+kg3L0bNxe++gG9F2AW8dPfAXBEPwv6Z6cHwksd4NfbLKre72sEl - m+mge6NKgz/8c7p3X693RzrDcUiXbb3lmoK4dOStPpKtHuoLJ0WG/C6z6bgqkgBmdglZMH0OBVJC - gQPz9LiP8HJjLgR10I6nbb3hBb5f6PYWQbx+5caXt/0xUlzztf7TtxP+DFjq61Ifp13JykG3HtHP - r1jvx7CHp0M1ItfgL/VyCg4G6LlTSo5D6ILlzukRZMzkjGGQTTF3pGshqwlvEX1Csc4590GEG15g - 8SA4MT3arfOX/897/q2HOzMXf/uzlja1cb96MZQjwTohp7YNsMZZ18MXatVgd8caoEQK2r/nYW37 - ZThQUwMm0UPc9lPutKq/bwOkQXT+xeswHvcPCLf1IpbzMLd6HXbQnyQDeWfRGDjlLLJg83eDPMim - 7C8/pULxgp1NkU5/fsDG/wJIm3eMZzHk5UUYx3/rtwplCG/fqEL63sHDJOe8AiF8lcFsJOUwl1yc - ytzBLTa/XInX+Xi04PS9dUiPTT3j6+9k/Px5YsgnzauyZlXAeX/7bH7fzuv2gvx/TT0A/32iAO9j - HbOq9gF4Ae0sk9WGCHGnx0CrTq/A4T19kasMHZ1jee9C/2tL+NvVF7r2ttrK9bkRyFkrGr139tf2 - 93fijSJbz1/728H+ObDBTrz28eIV1JHt9rEEsM4OwzI+5VF61DcDHbSAHQZW+J7BM4kPyFJTW+f4 - 9axAtkQdCm4TzNZ2ujTwoZUsCcIZApqSuwMlnagB12RqxkZh7cqx9SgC4Zkaw+r1bgcGU6+I+p5l - Ol4eBMNjpuUBL9iMt3pvroQ3JPVIF+SSLlmLeeilJApusal6y3sIC9krTxrSvKcycMKzsuRi9CGK - P+sxm9tMx/B42LmBPL26TJBvYwm+CQ+Ry62vYdVWJ4Xym2OC+dI19exd51WOBLwS48hL+uKPhId+ - f/CRyoFTPOcLjqBW3h7kWluknov97SZ7H8MkyTPcDauR3n14p4KG92XLxyvd6ascTXmNji/tCT5+ - 1QXwStQU+XBoPH7Ku1T+qvGR2GU1ekMRjdtcyDkPXg/KxOtl22EsF60hXl3dvbm6JeyW4X7AhHMO - OC43LflTpDbSPYZk9GxkJfTs0Eb57GcDEXWZB4FTs8R1Oidb9Bft5C1eyN16HvS1qF43maRuTPT+ - 8x7Yi3zQZNdq94Hs6JI389XuBpe4S0lSr109jzd6ho6vlltTFF5fv4XSw3vK2uh6418eK72uLmS1 - KsAL0MUaT+Y3gU5rTxiMqgoEXLwr+cFziBiqZgNBDVUJLq8LSw5B7tTr+1mK8OkrErncv4dayBEa - 4RYv5BabL28lsBDB1gARZZrgZBxD4lLOmW1O++yDgbbiZMDFSfZYDGpRpx+3ZeQ7K52RUh5syhuJ - b0D0VRUSOFTOsLHcQgijVUBHYUkA3tYbMu3LR8m1OQ+Cw683eGmblmQduHi8dYkZuJdKg6Rd3mZz - bTaSfMlOJnG+pZ4JO6o08LsTeKKMukUnmnM+zAUUB/HamDr3HsIcfpjAJAfXO+vrLlw1Wedah6gf - XOvLXFUNRMIyIouDSbYGSdfIABcZys83uaapdYvkSL9dyek9PyjbPm+sHBbpFHT3C6Lj9X1iZS+b - G6LC6aDT+10L5OuZ+r/nH/PuTeGh4+sl0cSL6XGW6xcQ1SeECpBE8boAPMNRUj1kK7tq4FaXpjAU - so4orNLGizTiHjz7pUVZ8ohiXHjVWQ76IkHnfXPV6W1gXbmaoxzzyy6hs9tXWBYHwyWqmaiDgNxF - kd339Y2OV8vyOFI8Cvh7fuHeOQ58+mQroPJJSNCetvX4cisXpjkH0cETG7pu+AeN67JDp8CllLTe - 04BKKyXEhonrsUJoFnB3MXmivaQKrClwRli+J53ooa8P7EE+9/KbuAgLidqBpWySfL/XdYrFbE9j - GmO/gkQUd0TZye9hvTXLLJ++Z5c4nvMaZjvkV7jGUYKX+hEM6/dOK7kcKytgQBJly6XbBTCqDjqG - VfgCwtB1GsD7k44MqlM6X3OhlY+Zkv/Dpy7NWmgWPoNO7JPzFsLlFeTDckUHb+u9e/xGFeRgkCDV - OrLZcpmMs3yO8iPJ7B2pV9RcIlk/3K/EOX0NIBhi2ok/vAzUWwtoYcwaLEKQIyO66fpfPsNJN4n5 - ar/6ajFnFuC0uuJli7/VHnoRLvfUQ0cLrMNqSDse5gNYkV3Scvg9/x/+kHjyvjEXZVIPXUVwgqm7 - qzp3eNYRbN6hSZAha7FgNXMrC/VnT7zrPhjG4i5Y8FS9bBSdihTQlyQXMNl/J2IUkaavyiqWMj8n - M94xYKKdHj01SKgXYOH29muOueU5KB55iIpORIAvrcmCQRk4yNJOe4DL1z6Cr1Qt0H23zeUjxSOH - 5U4+oQt7KeMJvTpNPmnkgOV3zGarrVUaHJ7xjExzHfRpAKoke98nQxBRAyCkg6HB79ZF0V3HM1iN - JYyA05oTcsunRVlyjS2AA68h5jk80kWthhkawkcmfi603nKsQkceZxaR+HgdspEb1VVmM+Iiv6lP - HifwL0fuCkVHx8YZ6/l9OIjy60kROnZ31eMHWXDhsDMxChT+ASajdVaof9ElWL1nOXDdV/ThTvnc - Ma25IxCKaZbgvYgjZAzWOWN7rbkBc2cFqBimD53DUxbClmkOyN0tYJijTx9AhotFzCj8g9K2n2/g - e5UCdLeeX/1Lwm6GNVLt4K3JK11SFRjwfjESEmzXG2FJNKhyEYOM5SMMxGmUQo57GWxTAwqd4w+x - I3PDwUB+h3K9awRFkYFxQyQqj6s3PrYzzdesQSi/XR4e/2U+kQxu0kgugXAC9EQPs9xfK5coyuUA - hFo6JnAvVQZ5qsKlxu81ZUFywibRlvqYsTfX7GBc8SeCvnt74OaqauWHN80ku+5xvZJsjuStnuF5 - J29zTNNWg2scJiS6jwGYUWMG0Dl9QnQ0ZxfMbeZhAK5cior4fQbfj/hQ5Ap7ArFXIulrxns5VFk0 - BuDrf//wSt5XwoJ8yVYytr8kCSRHWiJ9jeeNH5wCkGRMTO4+uVJadV4lD8/TTNwyWLM5Eb0ZDu4S - kzu7HCjH0K6T0+7wwBE/sDV1GieXSnNvIo/lWH051PNNfsc8QeqVbTy6iqccTnPuocChj3jukqCA - kj6pyCiiylslgXEA2nUqOW38YspvrgbTb0DIFg/1uhiqIadsFf74XDzn/lrCFq8enjs51bEl2RiQ - PTyh3GsGb5ZeTwcUtaKgW6aVA65UwkpqHurbemIwBC/R2FdzmAczq7TZUoJLtTee/Rk59ZuJaTXe - OpigTxkIyk6rWeGctrAxc5s8bN/2vubLq2RenS2C5Odp4M0xVuTs8XIRylmFkrPTdbLCfTVySm4f - sNSj00BMXxFRhxR7WGjHHLpWs0fmwF+H5RH7M7h3rxd+XWtSd8V9Z8CjsgaYN61Vn5o9F/74MHJ7 - cskWh68SON9nhLJg662YLXwCBYM74uW4f2bzx7mvsJLKPuB3rTXw1ly6UODwgxic6OtsXFx5SJ1e - x4LJX7JFnJIZ2guNkNOmSU1b72lJPptlRIU5u+3goRnqOz4hz+3+WP8rtVDsNZF4st55i/L5KnBe - JhHPWieC78W5tSD8jgEG5qjUwnO3YnkyzyMyM3jbpgJlFjjtXYccYq7JJv/OScAS9jYpUMdlmMBE - Al4Za8RG5XsgVjM3cpICFZ8f895bgnk78aGAA/ZAP3rzqi+azL5Ciaj1Aw+L5jWj/KbdFMxcXtWT - fPfbX/4hK/JEMJ/qhwGQ/jgRB3IiWN9rysPCu45IYRUr41FX3UDDagtSb9Ab1gR2DExzARJnn1bx - tCKngh1cCXL2qRZz+qOtoMINGtHKY6SPbcK0gLB+GUyOnuo0eIkW8C1JR0rMnPWv8KwMcJlZjnjF - YMV0qdwKTG+nJ+6t+sSTxCki/MVv5CfxwPb3ofjx1UBWrHRYCHeupA0PyHFOlEGIFKYEx7Lx0VYP - KIvfOxFMd+EQMOxLyvB9xTk8D98D8l0HU1Kd/Bz24WQTz96hgWS3yIC+YisbX+m91Yd+Lj3Gj4K0 - 2POGOav3LdyeF1LLjq9poBUzUNTkgzx8num8TJUix6N6DDqrvdXLcAQS/PHBgn1JMR4etwreDvYn - YK+lm61y9/KlhyC+kCcwqicc2V6BzTsyyTFdF28Z1k8Hf3zL1ey3t+FFDuwpZNHGH72evaTrT98F - y3G/i2c5cgPIHMtTkJ6VIqPVGPYg9hEiHnw99UkwHhJ0c6cjx48ggDHejwog9BCgZA29jFezfQG7 - QtODlwl3YJR5DsplAq9EJ8UtxqHU+PCSxeavntRrxKgBHJNVI8/61sRY/bauDGIHICuZXmB220cL - BW58ENc1mmE+Ma8IZKzjI7+M8nqUvssNis/1i1RZnMEsA92Cb5ScUFB0L2+Wvvsb/NWHQ030GKPm - EYH9vWMxsDHwpmOhazAozJoEV/4br3NCFegCpkW2ggNPkKmIoWdHNtn4WrwMkapA+cNU5GCsYvbx - lqMCo6mokZI+r9ncXNvxj8+6q/zNeingQuhzxfZ+c2Pq3emJGMD3VEHmqz3oLHfRMEy2Hn9OO3j6 - Eh8ULPf97kKC4joO+MHFW1O7zkan436XzQnSRJixrh8089yAuV21WY6FBAdgFM8DsQ9jKlFVUPBc - 5TwgzflbwG5GgNjPtKnXH58qh5wl92eBwXhzjx0c5oNKYhlm+kolpoMkihmkdJYd9w6ZNabrwuin - 9+nMD6ceKqUdI+3wyuJNr0mweDEYuZpt6mxw5CNgNqxC7NoiA72FBAK/hCFKudekzxeRSjDvig9C - Z0HNfnoSjCk6YnJ/7IY5cbkVsDz7DdgLvQ9znpIAfoXRR3qna96PH4Pr6ayiG3c4UprYcyWD49tD - aDoXOmXUdw6XwNh2mMBESbzeO/hhfBO51XoBRD4/b+A5sCJKOFMf+Aabo7zxJ2K4WV3TausSnFi3 - hqQmnXUs78pIfj/0gZj8NQWrcx5YQMioocR9HgG113cEgz5PgmXpc9CLsVT+5YN2l+v4D08xCviN - f8kUC+o8ykUyHAMOpyAef/h/lc4AqVlJvNn5HEdQeh1P8jSu4pmOewmGTDAETOBvJ4jY2wy36xHL - fR7p8jBvlrzVJ7w4i6ivnT42UvjFAbIup3e9ys3ZgjynIoRUpaKY3xc3KGH+GTT03MVj/xAb2V75 - BrlKes6IzpoVvCohIfddNILlnHA3OOFrG/DpfaSb3zLCi7V2SFXNSV/23F4D++ASk7TW3WypR2Wb - uR2eCdrymf7y52AxMrIfE6XrlHc3cDvfHVIEj+OweAVwoLY7OIFAT7pOv9A14ELzGzrOkAH08waO - 2DLtAemZGMRLstwLMOFLi9dve6T8ufIlSUUgRE5Q3/78lp+fROzwKtaEyZdeNg/4hTRLvtbLxu8g - o+we6Fh6R50eFtmFUR1ckP3u45jqllDCr1dn6PiOz9l8z+1C+vlfTrVTPE7d9ywA0/2AbCfde2up - PRnwwi+A5RkWdL3SooGXyDiQ5yvd6dt6p3CVk4r4HYL66t4UVq4aBuCl3A/6unQsD7F0vhBbXq1Y - oG58/umxn19TL8xg3WDu9L982A+rgutUBrELgv1R8bNN3xaw8hgFZVv9HtSPAv/0koH9lz4t4r6E - 3euBiMoczIx7h0YEOUVtUR7c9Yzb+BIMbz0kx+3M7JJZii//8nXT8/UMAPAhuu4wUl6KNHTDGfsQ - fIYbOVRaVE8rIa6knjNMNF0R9S3fGUmxjRuKQ3+barLx/6crd+hQxba+hLdHD18hXxEPv814bY0c - w69jhBvfTr25mHlH1vVvi5yBRtloXzwJcrvvK6CPk5st/dexIAzCO1LZ+TDwcehZYIk+DnLOR6f+ - nJ2uh+0D75G17Hj6i0fIyM6R2NC8DOtbQQ2YcTRiXmfcAd+PK5bWUp6JFinbG1L5twHn9/6G9M9L - pHPBeSG8+NWdOMni67PRvRn4y18GK4L3HXg4Q6zvE5QqgwMEluYBLNN7RZx42GXkbMSlLDSDRwLa - 2zFXh/AGNrxFx4g71UKLRh/u+9FCxWLVdAVv34cbvyGH40kBhDtsJ2SlZU/yMoL1kt4kFziBYxBT - Dz4xLt01+POP7OGs13N9WBV5v89Xon0v+3gZj/q8vYN4JtcN/5fgfpzBT29ufoE3G7u3JotmlSFN - uj7rZXVBCpo70xCDGYuMQKsaf/4lngVyqvlxMH0ouA2DDMYqPaowjgbNffIIwJPH+lQ2RQ6s1UuQ - d7CvHqeELwgfemMRSzvdf/iHf/UFD0bYxOTdDhGcgrojRmIEWw8Ko4Wx58nBuuk9vtSuEDLcScTT - Mb/Q9bN73gBzeUpE1V7fjPaBzkCSOjG5m7pP68OyddTYBTXy2s6ka/VSXXm+rwgp6tLqc1d0W0+E - 8YU8/1jTNa9PJfzxveJwabN1ryqN/MOfw7MIKM+cege2cTEQdcPX/ufXnH3xQRADjoDdx30BTzL/ - QUdxz2QDIs0MvO+DwfOHi4ZptXAIN/5MDpegjIU2Xs5Q2huYFDcmBHN5txhwuxQpHlT3OuDHEvii - B5qKoPg4g/7qXkZg3h5HdM0Os/51nSaAe9O9BqNRFPX4nuQeNqSMUaQ2AFDz3Y3whWuA19cXx2MS - 3zSQ0oIhGsYXj/782E1PB3yVjNlcHyQFBE+HQ2h8eNnsql9eSt5eSAw2J3Sdo0mEGPk8pn2yeNOu - L0JovAODIPHaZ1S1SS9J6VlDx49wBeMZAQVIEz2i46X/0lUU23CbPTcF9B0cwHpQ9xJkueWKfCHq - dJpaYSgPp/SCof4ZhpZsUzcze5cFmPH6euPLDSymKCCOoV08AbAlD29cdCP+dxBjGmdRA8ydEZB7 - ttaUqh+H+dVfvHpPpebNzpQgEHGPl0Osen1RfVOon7f99hAL9WymBwemNGeIL20nTsrkO4NA3r+w - yL9dj52zMpBLr+eJ2e4aumqrcoOlj53gyjVrvLoQtjCq/QvRvoKW8ScfG1L/mu/kd3/LwwwtuNVj - YoOgqtdAsAMwUz5HuvQyth6yiiIxn6YI4PV4GTY9ZwAVGiqJZP9K6eYvyv1rvW94u9a1yB8MeCq0 - L7KdYapxtjBnoH+PF4T0+ARoaIIZHEwwBDv/O8Xj/LZXqJXpA+8+lxr8+Qm5b7NEmaX7sC6Z40Kr - 5Tji3k4r2PzQFazUOP+t5/LAIYRMSbOAt6ogXgZwECGS6wdmi6jSO4uBkqRcBIMYzDZ1W0/3IXz5 - ZwPdDllIZ6a7u7/vYyar2Ji+dloDj5zx/fFrfb26jz/8R0nk3QAOdq9cPp9ugBjDtaN4kpEChm1K - mnEt+2z5BqMCPI5d8GrJwjDfm+8ItIsBibb5Ecv913PMO1yJnyQa5X/5L+gLQLYDNe/nx8AWPt5B - mT6F7MfnZQUWZiBdmHrY/FEJ3imnoawY2nhekp75+ftEN9OBEnSbMIDRLGx8/PkX//B2zhzy83+X - Y3VzgaDeNKKO1aUmvh6IILkLhNgVB7w/f3tMZg1lX/9Qc+q+YqHelDzxmIDQWQrevpwe0oV4bPOs - JzjrPfTSKSK3b1nHlL9eJfiSREwMFPHZ2s1rA+PTvEPIGCe6fKPFgdl1uRPT+NTxxocLqLnsRFTr - eM7WG5h56b2+s2Bh529NElus4KFdQSBNnKZzh3pO4bM1beK11yVepdi9went9kRj9s6w1R8H2u1z - QQH7SrMZ57cEjrsZBuwE/FrYcyEDJFHPMdXOT281JIGHl5nnfvuXYF6mXoFtPnyQM1QyXT+FuEL4 - OZ1RvrolnenpPcJO0BgMxUPmLRNv9PLPzwxAssajEwY91Pvwg3yGib2Nv2PYHN8Lcm3kx/yTHQIA - DcUj4aZffvt5f/X2pw/bfa/m8rFsfaJi1GYrc+pdsPE/4p0Mvl45Juvgs7VtLDymmJLgNRuykwkF - 0lct1/nnnFjQvN4B0oVxzEZHu0P4y88ND+N191ks+WNTC69xXnpT1gMGPvTW2vgkGy+r1YaQsecS - +bpY6kslTbc/fzIZBVKTMF9ZuZuPAKFI+3qLz7kGfAVEDsRMUwY+2kMDhtd3TyzO1GtsLGEoS5Kj - oFvNr3SRrbT786dU8H7VS5St3e96AeUcB6zJ+yXCrT4RddP76wWlDLRHVP309j//tzz5LXH88OuN - E9FCqBl6j4WKy3Tubs2JrNfPBs+zdK/5pyief/s1GEq2Ev/wHL4j+kAqzM/DpHKPUdxj70TUU6jU - 40k6O3J8rWaknWPqLSdzwPDnfwqSHHib/tagbJsRCcDHAjht1A5u+zcBAPfrQIvvMENFiS/BbtOL - EygOLKQKxX94S3EoskBk6ksAl04A1DKvEYjbOA/YqRe9Jbq+K1jdv+kvfvTldu9D+FsfIDAvvRsf - ytYT8Hwn4VOkenm8Oh18yF2Eri6T18tc9c1PL6PDJVDimelOroyJxm56x8iW9SUV8M7YYTAfD9Bb - WJNxABMpZOMrh3hunyEPt/snP721XPXs/P+cKID/faLglBsMskpjqtf+3lbwbIYSQUr2jRf2DSw4 - vvPtnT6b1OspT3qY8fCJPPTm6znm7oVsLQYlxd63B64+XLd3rNmZpNVVjKkpnkJYdpcamfRd1evk - n1qYPAwV6Y/XHsyGREe5f/EhltjFyjj2HabSN54HZNwPlj5fvluXCcHqkfmJB2/Wtx15M40Koq7Z - EcwRX7DQOjtjkCXrcRAuxkuCxDodg7pq0LDsCQwAwWtL9Muh0kf4YiV5HnkP2cdtLvXdendAbgyf - OHI21XNKPQ0WpZsFu66x9eXjzxFc9a4kDjj5MR7BaMEMZH7Q2eA6ENGoJfg4fHJMD9DzhIo8S3gZ - zQAlDOtk/Mk9uBBfdCOYH8ayNQEyJfg81YhYZiLH63gsGKBwjE9QJKhUWL9RK4sRU5DzVUUDlQ6H - WXbFc0xuyN1nsyjlGuRTSUF6Ek7x2sVlK9PTaJJid6PZSA75LJ589A0g864y/h10mlwBtiOXaLDq - lc04Bq55LQUSJ8F4fs1sI8uhWhKzCrl4EiDOYX0D6Zbhl4w/1hojYxtG6JHVMSDD1uJqGhQPafwj - H+b1OeVAaQ2BHPamMYzr811AwzcCcvaFYOCPrDxDwVQbEr24mye4ixvJty8RtufbemudQQit8+lK - 7HuLdeoElQKLMrbwSv1Zp3A0sBwmqbPNGbQyPu1TCIzvaUDqWxv09Y3eNygdmQMJitwfBPaha/JE - CpF4jMx7qzqWN3iT15oUy24eSPk9NfKNUfcktO/XuOs8p4RXwn3Js+vgQO9yxILX/aEiBawqYG+7 - qJGfzLknmXHbgeVTKCksu2tNXDpnHlmlHsvKwZmR/3GYeouXUJYGDRCFlH08hlqby81BOhL1Qb/Z - EtBAg3bbMShWuw4Iy23rSs/kJolXOx5YVlVS2fjGA3GVc5st0x4mkL2GIV7emqd/m3tfSj0fyiRn - s9cvvyLITMwd147g1jwVVwZOtA+JesMdmOvmrcnnaY5J+gqqGC+m1sBxP2tEg58HXT0SlbJ3ec3o - xJBQZ1P6xvLzIkNiiMyrZq+PhwL7FwTIlNgmI8anZmWYKB8SZJ6ic/L1YUFhSiOi5fO15u5saMi1 - cdbIweUzT2Bx7MreJUqD7yIeB14IXoqsDtUVuU/j5Qm37BHBT6iEyD7XYjyb3suHxynw0cmNQm/V - QsuAL/7uoOu5FrMldzteRnn/xuGFvuPZE9+R/Hj0TrBseLAdtBjhnRyu6Hgww0HoRx3L73zgAiza - H4+PpnaFhz67k2OLFX3uPKWST6KUIruVW53eUqn9iy/PRt8a32+lIy/RdyKoTU3Acg3WpFMYJsgY - 8ZmydvidJeusqOiYFjSjCpZ46EIwEC9+qR4/1waEe+MpY2j5Ap37ULXkLT+JPafMsB6rMpQFhVQB - u3OqevZEt4WLq3Z4BdXDm58Dq8kbPqG7/sbDauh8BX/3I76aT8Z/eYWXhwE/Auk4HXTW2rGRvHLe - LoD+Ocjo827x0CwEHl3Z5Outx6qL4L1OSLAkzWegfEgL+bZeYTDl3XlgndciykTlS+KeYQ/Ihqey - IkUBZsvbB4zi1xPhp5t36AgzM5tRabkSyJ07invxBGaei3PIw4glpsQaGT4czwyQu6HBixu+M6zJ - Ygl38RAiW1XO8RQJh0BOz1ONlG/yzRZ3LyXQrz8XcrhHMRXuo4Z/8UEK5tTpa3JBPezvvkcCu2/p - 9nuFXJRORtKpagac6GcWbHiIjJ2jDdv9sxD70Zn4U+DGvLF0EFJ6bJDq3UG2vIxnAKfAMogh2UKN - v4LlS7gR7+h0m+OBy/cggdGFfxF1RJq+5o9ulAjgbqgQtDamx7vJyvnMTughNyCm1cPV4D6XE6Rr - CwNw/ujwdkjJ/YuvSRt4TfbWp0DQhjdLp3opJHhuyf2o5BmVtxNO22f06KTR6xbZdKFiYJ1or6Ua - 5p6ZRdlt4g+y3nadrdd3eoMMPx1IcbJ32bp7ONqvPqFgFs2Mu6qTAelmOgoOSnTKvzpRtm4FRs4W - P0vBnALoNqcPMh/emeLh7vGgGbKRmGfOBn/1bP/+ZORQvi6D8LyphXzXrDZgzVbzhCNXOpCpwhzl - NfeJ591bNOTLlfrIfYWTt9r2guX9+50R1T2ndBxeQAIn+WKj4sB2HtUqpZF/+dGYnU9Z4UpnmcG2 - QQJfOetzEPAaVNmTjVShqIeVH5VRNiupRvkUPSnrfh4OtAtlj0L7Og6LfBVm+Vd/Ek23vPkjySPU - kx6j4yS/gJB8XBd+O3QjET6k2XyvLo3c7PIbun2wkwnflDZQ3bF3crPWV80r03uVRuaSEjRs76Ad - 63cH9aTUyYWj+2x5YKuQC/btkMds19vc0Mb6PV/MDzHSF7QqvQwacMANmnWPr13XgWMOW3RiJjMT - dtoll6TAYFHOPnx9HGg7yn177/AiFHotkAaOUJz1EDNlt3UR3jMJ3MXlGx3GRcu4TsUGgP35ixQR - iN58imNRbnYfnRQH1tHXZuxTue0bQm6xVYN1Kj6GjJedR1w6vmuq0dsIa8UZyKmQzjUebi8XfuN9 - gnTBPWQzyVAD7eDQBMvpdaIke4YFOB/IB3OMDWqcASeVj8ZIg9IKX9k8p6MIitzGv/yPqatfedib - 3pPY+t6hfFF78A/v71f3EeMvX5cyq1t7YqGC1pTNy7P86dYdUppTB1Yh+CrwEj9dEiTuxZvNx1mB - pluzWHw1drYeWW6Gu9H9Is1kFjq333cj3a0vE1ARuTrf22CU/OcpIq4E7Jgj2QKhLfEX4lZXMSNa - 5bSytvWkuEeqnfE3Wxrhx049fH4/nHjd6qXMakxAHAdqgCvLfQn9ZybjZhgKsPyuF4A0R1ZYn7OF - npUQrvqex7zYfzLM+FEDf/XcL5lHTUiTKrBV4YCuT9zE38M1suSNPyKTIzoQHPnEy4LSCsiWKhaQ - wuY3xTMjYg0x8eaDEQWQUbWYGD5X05m36h6GO81HtsEchkWHdQGOBqbE/D78bI2Zsy8dDsobN3ox - DCsD3FRKHLEn93t40DlokR482roORHAas1GJU0nyoYWRy/EWoLdxSkEQrTdinCDSBaMLKmiaMA/2 - /dejMy06C2z1BneXiND1+o5SGI9LSfKolDx6h6IDiBAqxN/4yrLxF9iw6hKsL070CLdzGriWgrzx - 0TybY5to4PvMuwBO0Q50v3rTHruOqIP7ysbvVK5g47PIYvh4+34dwXmEPNrquSeEhZXCy6d/IZWZ - 3hkx3ZaHgpL76BZbOhDkYFKApx4x8YLCixe7fvXyr36HqWjS9d7LHQii+bbpmc/QtV3pQ/+zv+Kt - vtS1YFot6O+Bh9RC/NJfPsHZazWiO0JfTwlZgz/++4u3xbldC1i57RMZ7jRls/xKAyk9F0eC/KkE - y+vyOUMctlfi39o3mGlRWjDCnxBLuefX/JMuN5m2zoqQ+3bjuY5zEeyN4IN876jRpRYaCWRV/yCo - LbKYiEmC4UQ+NTFiPc0W4+nN8PZ2nkjvxRNd5OtuBkZYQfQXTyn1Nr59sjD/EF81tcfxButX/SR+ - lDf13HBpAfe36ku2eKT06pou3Pg/cdKLOfAL+7AgTeJHwD9EdWCnz9MB416aAsEyz2BxLJX54R3Z - 8JcuVvPR4POUNkQzmROgpggYKB06G1Pe7MDCOVn6h7/RHINhHqmhQFIbX3LmtKtOmxoxUI3EGEsS - +GTUQf4IM3D30elXz8VnsMK1bD7BQqu93hnSSZGNZTHJc50jMCcPYYQ79BQD6uwv8bpYiIHdXXyQ - LNuLdPInx/rxSeQFeVnP596OoHV2x43Pu/F6ZOUV8HU/IzdzkuGn36RhkGmQzhwA60LXm8Sy/hUL - xbcGC/sOb9LzeBGIo3RlPU2dWsHlMEfE9j1loC/gp+A4JUIgqktSTz42c6idjBod58MEZv/AFX94 - ty+u53jOjCyA/DOZsAxSSacF35bS+CZJsAOam9F9+y2gxy/b1DEeeMude+RAilIh2BtdUy/YM0pI - j9WE2ViXYiomxSjtc3YgJrfgYX19Xjy8aqsYNGZbeWPiG9IfvnqXadJH+2Tk8tl0ET77+3u2Kq7i - 7qVDb//pOXpJcgwLm47kYPQkJsGtduHNuerk0A58/eXsGcubPieJZs4A//QbEeqEqPvOoDMWjRYk - 79FCl01v0Nl+aHKkLhyxN/7ChksSQrst4z/9OX2VcgSlBQm6WHekU3aaC1mnuUvMLlE9XlwGCFdW - /KIY8x+v6O27Bjf9QY5yk2WzvTu14I4lNfgW951HjY/qgmevdeToMabH5u1thqMDpO16L+9v/WYk - GigEq0p/+Ak7k1gBJtQYlsaJbsDwrYAcxqWKF+PZFqDDFxdZGS7jeR7SBD5OjIcO3CH16OdCFZmp - MjuQREOu1/GYMPLNuegB06/3ejlcUwv29zOPhd27H+hLeo3QLrQ9QvlZysa9d6hA5U4uQqx4yGiN - WVauJ2tBqE3fdDoykgRPYT2SH15SRZlGuHL6edNvpU6Fda+AQlyf6NirQrYYM9MC4W6F2+sdDPiA - kaRg1amHrNIS4yX7miLYffgP0uY4q9dqf+5ll/B7PF5fpj7rvRXBMnMs5Eo7uL1xctcgK1Z3pC9a - rM9Szp7hob/fiU7Ap172cyLK3OXjBVK0fuv5u+Mj+NOPlyq8xCsvg/JPL1+65KVTB322KYWOjU7m - EdWLDocCnk0HkRtA6iAoWGJhSM+I5P4ZZ8QJKg320tSj3E/2f36SvPF34lI8x9TVOOdvfV837IBl - PxcifF52MNivOxGsDNBu0LRsG/nnHmTkLm9TIl69FPDLY45n5W2OcCn8HV4e9JBxkvLF0ATVhxyJ - MXlYCy0LWmNvEtvSXW+p2l0BwqOEkb7xEyoahwAmkkORYoWveHlkIoTy+VohPTTUTb8EvLTlG0Kp - E2Rzew0tWSfhilRdx9lyZ0ML1rftRNxWfxfxac1yNccJOaa5M1AIJQesV6Yi2/8fzz8/otQqLZA2 - /veHf6WX5RtfP+r8XjsVwBrXGTNMHIHp1MaztLSCgXydUT32SmweugQHyPAFPEz8va5AS60DiheN - 6osims2fPn1tz2clyoj377x2cSWPTDZXamVBF+4HpJXYB4LNXH05huXWE8W40zml0/irD8gT8Dnr - F9Nt4EfszsHu6TX6rESiv1+KS4+Cx+UVr1w6t3B8Twlxn5YHeKlZMNzqIdKrqgHz9Lk60vvtoeCH - n/UgZzwYJf1GjGf88SY5kVJ4vR7fyC/WZRjL4HyWnSuwkRp1src06TH48cVg4L8UYE893valxRsE - HfkEsEOVtPC1wOx3/966+YMS2hdqwHFEpxTHYwMfjHQihlGP2frRqAuJ5VbB7q7W+vrqjBLmnGIg - 1c9PGU6huZ1kOfDI8YRK/+W7rDnvA/HX2AUUymcedmtVEfS6S3TC7ouVt/qDLmqkA27LXwhxP5Cg - x41O7Mk25OYgHvE6AL3mdp5ZQTcrBXQ61dvURndiIVMgghwxOeobv8/hKczUgC5Kl8330zGHpmXa - JDxjAywFcw/2SysTvPOnks7Oa5HkTT+gRPwfaVfStiyMBH8QB9kk4ci+QxAU8QaICIjIFiC/fh7e - b45zm6MHFZJOdVV10pkidXuFywqrVn0vuyubDfMwPgM07dbDWWG/yaKpVA2gzIXI2y+SS6LL1RFf - +5Yi89EF7j4+VPafvop81wIM78dQfD53gj3hdz8qVpQHT2siL9zpe8u3zs8oeH5bC0IX2lPx+dux - IJ5ItZAkqMejYzcPrckokS/hZty7SqxB6O8qcnNGjZdT6WdQxY6JUXHN8vVp5zvwZ8/DBzkAm2h4 - EJjRFaKAtjey33ZvgMbU6/j6eRF3e6F3BotpvGHtLuOGKPUYgdhNJ4SW/dlMhz8C33OfLudZ4OOV - S5MS9vpsYDT/vs2KfL4/axvRkdkrHdg/aE5BRzQbZ99UjZk//vQwmhjbqWs1+53DPLgHVwcZR/5c - 5Va6QnI5unOl/dos9bkYoJrBNej5lANEoUsNft1TE+xZOzb0xxiG89/zxxf/Ps6hGrLwE5545FEf - JacpVahADGsHK3/6GAV5InhNMaDb7znFc8OjTljE+rlsfKPlDIiKGvzWzkTe5RH8Fy+3jtEW/tDP - +6H3wJ8/aB588Feekg7GDW+gx1/+s8QHDbiHFiJ3a0mM73wUwjbqRawGJ4lwjpIVUNzi37J9NIYQ - juQH3t4HLHtZN26f8XmFR75Eh78aL07pZILO3UMkpzsVb+Cy0ef9Dmskl8J1XA/+ArP5/sWOP/9c - 0ul+C0/o7gf4b/5ls1NgKq4NlhvRibmSVWmoG2hfRPaiuWx5ITREbzPG0lP5qsRrhekP34N0EQd3 - MTjP+8cPlL/1Rv1MAR7+KrZ3cVHxSQ41qFz84J9e3W3o7VDXqQIZzt2K//kTf9//44ds7oWd8KT4 - y5EvzXHbd6cHkpCeUUBdrL/1tkOxTwNkdqcQEGlJLfg5vy7IkZJNXbF9XaFjag427OgLtry3KvDy - 7xzSiJjEq/prjlu91gLpogJc8o+v/cr3QrVt4/7xdfHLD1fsHPG4i2DW4BisCbof80mG8SfBS/iQ - g+0+7mBBSXj0pM7MYLWyuiFi9WLhwT/xwX/yeUrOKbit+QUb2gWCWZdbQ4Q7qyIj32+AHPUBoIXZ - BRsFeaurzISl+MimAXmnoSYY5PcQ+lK2oUDbonge9XcEVrdV8FPagnzrMfD+/D4k+S9V5c48SwF7 - sFRcnBY+Xn+LW8CH8Y6RXmh2s4L5vcMcRG9k40lulsFKUvFpJ8ZCqxWbz4ceAeM4PbHn+jXYIos2 - wOFPYASMF9gpjwmB912n5c9/xnVppuc28BAyo/sUryiIE/HwnwJYUWLTJ09u+Zuf4HQWbcD96ReV - Ezgk60jIyZY6JQyTiqBnz7/j6fDjodgaXsCp554ceiIT//yi2/ci5cRRolJcJ9rFf/l7+i2dAw// - YPnUIZP/+TvCGAAZB4j6uSSu2/Aff4peXznm9HM5APN0UZDPvzKyj78tFM1uoLD8kap4wZKiwEiu - Xvi5unwz8z7bg9Srs2WFXD0SavtC+LGQFayHHz8e+PuX74I7uT3J/Ao9TbgUBhXUP+0Mdv61WbDP - ZAvpb3twN9DYFFSVQEby4bfiZ2wJ8IHd+8Imo9PQ6k/i/+VHexbSmMgXkQazUu/Insiszn/xXOZs - irw9HsgmSL+JJ/YtwfbdEfNVEx4S/NNrRzy4R/0mFf/yn4EvbTxeCcwgSq8Nuntu1RD+BhVI/F+K - PDqXc+YX5ZXgvazvnx4ctzXUDfDHP/Qrt497k2cRMNDpGuAD71cuLQthROqEffbSqhv7kGgh/RVv - 7L3OBRjhWEtiIznjQsSr00zvV1uKsZtNC/SiZvzTA7C70NLCef7R9R59U/Hws5Av1mHDurKfgYvn - /5CmFhXZvmVjgD++YF5fCqG7+75Djr3MWAFVlE8DxQvQuu8Fku+z2Ozk/OyhaXM18tl4Ifup1FPx - yD9YB+cW4JJdKnjU54LtPosj1pJ4ggd/QLpxb/Pt9aYE4dDzwflsonzr4FzApw9KZB9+EhmDVhIP - PMf28JXd9RFKmpiXTx0feK/uUi5AuAElD9aX2MWrscglnC7vE/LDa5Rjrw0lMLBWhHW30AB5u2cB - cg8PLGz4/jWsJ0mKeNQHliY0vHhjx+QK11l/B13KsQ0+8Ab8xcvr5WruinOzg+4i2zj52IG7//kp - lP6UUMj0Etm0l7oDsw4uQdvVFpnf6oM+X8zhgpHxZdTpr75s0Uvzb3zJrBQFeP+uCQp/iR3vniRJ - kNjBiPVDf+6/dl2AZ/wCJM8p766U9gyEbPYO78y7ugz1QwLcpwdCulni5sCXFLKvV4rU4FSBf/jb - kfsLq75Q5QR5bAhtql0PP/BKtg70GhyE9oQQDSkylxQQIL/KIQ7MaWumP3/go54NZLqWM9KK6V7h - 2dpO2M8bcsjyUwnOTKJj+6jHEXtH/f+zo0D83zsK0u+UYVcGdbPqfjBBSlpPixCJv2YyThoFG5+b - sPrdL01/G/0S8kJXBFw8derWi79O7Kg9xM6bcwExwh8EymJhrFfZQvZ5DTVoFGMUrH0gE47gRwaN - T18gs3tNYM76cwrPznmf7al1XUbapx7Mzs1ebmYkuZiZhwrqZXwoqDN21/a2dmLfXFysBo05MkNN - WtEu9x47XfMep/Ot6WA0+yCgilFpttHyOwjOVI5QVygqZyvGLi7W9EMKOrHjul1+A+zxigPGAnu8 - lfcLBdeCMIvQ879x1b5wAS/GDnA+rFqzVeYvA8+3pizckl7yLd7PDtzD97SIbKQCjnn1NPRPLY0e - TZwBLvZiRZyZU/Q3HmD4WJcWontIY4WfxXjJa5uHt3S1AzaEbbwtalTCxS0lHCETk9883ysxwmKE - s1Xn8/W81BO8uNuydIsWEYbP+0zc/xwDG61kciOuFuonpSEpX2tAM7tVik9dcbFU6wNZYl1iRQ11 - EKnfTmrYKgAtRBdVQbbB1e6OHlMFJUsPUcyl9siefCaDs93pSApVNG5OCq/wXWg20sYTPa4OX1Oi - 68srVu7SNV7ZrFygKU8xzo75oG+jXsB1kjacj/2Y0+GaGaKueQi98Fl1met27EEK2idObQ025HVd - U/G8Tw42cZiqLIXaSDRNSkd5f33nHH3HA4QGSZY6TSt1uzVWC5Ns0BaWZUqX+wFLgUIUFjjreXvE - 0deWYO4qNU6r5uESXnUhDG/9FT92X3Rn98Zr4mhfBxyjPMjxSecruLP3FalteTRTYUAKVal44DuG - M1hh5NNwZ28rDnSvU/H9DTMxzkMd3YB/i+kWbqkoY8nF9w+5qzvnnSYYdb6+bA8auduYoAi8llZH - WXX6uMz3uyxQzRqI3RfgwK6TgoX2GPrYwqk+EuvB18B4ALCsxv6Kt8HgPQB3zcbFN6Td9ZSGjmg9 - xy3Yj3iekmNHgknfIqSHvQ5I7xmKmMzLhi2PH8epePFX8Pu4BkK9CFTCLicebq31QuVsyzFTC4wi - DmaJsc+xVUxnyW+FQ1N1KPwuEMxnBvIQnWi0rMBqyFhfSwHmcnTD1jNx4vUXjhCy7xuPraCwXLa6 - nFg4vZUB6UPzGVelXCz4ho8X0rPLHXDo6DkAK5PFuoVgg3+r0sJsLEOUeb0M2J7dNYDJK0Gq8Enz - LYiiRHT5pFn42y8h5Hb7dXC5NS0yThmfk9VXJ9HLeg+rilPm60SbiqiUZxJsDxq7dFS9K5ATcA0E - /aupe8XADN76JA/u1tg3RItCVgTtc0axWduEACpd4VpsDNb34tgzXONWmKxXgHzh/oiZRc1KmFKX - GpmRZY/0dp0FyDGBgQvTE3MiU94K0lZUj/GUYi7nbruoWNcxIG1pNpvsNjQkLl1i98AXdhj8HW73 - QUBIDXd1eSn9Ljph36Lrc+tjnJa8A2+18cPO201ceptnBW5X0OAgqd2GfWx7KSbyAJCSb6eGuO21 - hL5Evig5b0a+pqdLKbZ5YaGCddh8y+S1E4ffnuJjZ8XIcOEAIao+V/x8ogGsb1Kz4m7DBgVnM883 - HygSnAkCyI0ecrztkM8gt5cYOeRsuvviTD38yweoqY5eiWDzIA60E3YEoQXkm+5XMYueJkbwXquY - L1zjL36QrnROTidPdRfDbXJxdnn4Ki3EcIFjYcjYDK7ZiJ/fOYAWLE7Lxq5eQ3/Ho2ulzpr4Bs6j - OyWylUJDTQiyhf0eb+dCXAGfS07wCNau2ax+4qFRW/LBoEZ3u+2v4V/82v0K1S1Ufjt4WauM4vs1 - AhyrCSz0rPG8CMTf4pVWjRIM/vRGV/4Zj0d8SeLp9aKRIyG+2UfJms5TgCUsO8IENkExV6j1VorQ - 7xeSheqbTJylDmKVtxl3ZRhtAdrnIePYwfw4Xcu9h0GZKig18yHevt9u+vf+alJ47j5lTw/Wwn4K - xI+F4l1kZw22VMXgm4WKcX3sH0eMe11azi5N5WRc4gnylMEh6bsUZL04XS/+vM+AULysgMTUI4I/ - ykFIuYUdGeQnKWFe6ggj8Urlm03qK3y23XMR59keWboLE7Fr1PX4PQi2KKDbv/hFV+sbk/Vja6Ho - KpQfANu65ETaNkqU7ZOLLNmox/Ed2xVcdC9ASR3ZZMZ9m4rf0X0ulC9u8fqp1VTkuWOPfIBsd6lP - DgUFKomC214MLhmaJDzu2t3Rq9evMSuyH0088AZJJA/zdSyoFbqJImC/JGbO5lfJ+/e+pbHWI6fH - nQeL18nBkTdOIxm2OxR1lguQmzvTuDY+l8GgRjSWfkbfrJnVG/ATmObCm7mT00dfX+iwRY8l6WKM - TDq3tWiuLIcNRaldfBdADZOqtAOSFJ66n3wxgyZn/JC9y5M69BqhRYivG4r7RnS3u/2loE/MEKEM - nEay/kxNrDjVXs4P9kzWO11IMG1P6gLpzCIL2scBchQVI/nTpe6kHI6AWTY+svw1ynd3VCEM8mH8 - yw/qxN2zUpQV6oY9x9Ib9vMOJzGdoYf1x+Oi7q1YaH/8CCNLFhusRSkLw/qJkMRPVbO/99WC7qO5 - YWX+OupfX2PYS6caqTOwmk3nJEPkP+aCfPy8u0SPuwBonvZe1svXc2nJfArwWM8LvVtuw25mwEMq - kL/Ib8N+XJ35U0FptsIj/y7x+uOmFWr8a0GGVOrN+iqyFq7LbiHrtc8j4QdvhXl+47GE7ucGLwUM - Ib/S6G881LUwzp6gO4V8nKGwGi7gqxLOJ/xaWHXHza5TWQQOfoRtly7zI347UfepAjsxE+ackBUe - LIoSIzdnlZi+01dJHD/pG4ey7efcOZBT8bpDHSuasedkLhsLcjCAAcu9Y7IlQkqDjlFUpEUwbybm - q0qQi/hn4FmtrQ5X/lqASS5SVOKP1tCPL17AMR/ossXjSFT4FKBaSSOSHtU67vITlEC4rdzCKYk0 - MnLyjsD8zFkc3AaNrByVR0AimYr19O3EpKe0EJgcM+OSEaZxqTuXhn982bGn8/F7pAB7fFGD/fTT - Y1oaj4rxGUtY9ccKrPvIOtCcVxtJuea7KxZvHZy+UYGRkboxXbzWRGRJ4qKA7er4yCcFZJ+VgRX1 - ZhA6tC8hZFM5xTcPyzlLK/EODzxEjnrfmjlixBSOnfvBnmqaYAObvIrtFvpIpishXpblHcDHbKzL - cSVxvl5LoYdXdmORnGpyswcBNiBfVh+knsQGbKv3lmA0FVwAatfJiTmwJSjPjY6cB/XN15KzOghW - L0CXNdcAUy11AMTLkP/LlzsdPgtw4BV6lubliLeohcYJn7CuL824FQ+JhVR1uxz8WHFnf5au8Hje - gBe7XSWvK5+eu+bgvx4nNoMgKDQ8+PXCadyjme7KbYe4cSSEMryMW2qME+Sve4qU8sz/8XEaynX1 - /dMXI+c+XorwYtxggZHsqHT9eVugOu8V8rvJBavR2B2IpFzG/ra/1C24JS2kIStiSZltsK/6uQa3 - dLexK9TzuF07j4b55orIfNjfeDrRcQVA8OtRMnCtuz4n1YI1F7WBKMbv5l/8BLf0jGPqYcZ0EHgZ - 2JluwpK9mA17u8SDcOD/Qt0DOed+q9PB+M0FyFOQ7DIeFYRwqWUbScPwcff3Y1PgaHzj4Lzdkpw8 - Kv+446hegrMDuXEl/SaIuSvV+Mif44RImUBJ6xh817jHSN6xXEFWZAqsOphvdlFbWFjdCw6pm8Xl - W98OBQxSKzz0gZzTnB2u4A+ftbXFbk+edPGHtzi+WzLZCsmeICxCLSDP548QPV6Cf/jzFO7neLfL - zRFVY3GRSc+P+NeysiAGIBCxHWgh2YitRqB8vgIUnMnmropS7/D6dCRksR86J5FkebC3qTHY8tQd - GaaKa0F5jy7WJOU8LsXt1sGTJUw4MNa6Wc/m+wikaEJq8WnUNfXjADK39IHkZGLAPkrSAm9oP2H7 - 6ptkxcl1h/WVAjio1lTdIvXkCLRJxGChXh3YFJumYLwkO9JMts/3IVBSKOWuuAyrnsb7lN088ObP - GtberEhWf0A70JbMwYbwm91VfoY7TIRmCmD49JtDjxbgxY8/pOLXRyXWY63EoMwUZOKQd8nj7A0C - dWo9hFxmyvf+uUN4Gk8P7PDD/sf3HXj/sC9sDVKmYleMO/GpSy5OqPoybruzWyC2qgWbFLuq3eTl - FdBFXUKSG2nuLlheJ/7p8xlfDJXb9+cggK+v/csf+0RddtBGxQlFB55x1LQl4mkUHwhJ9AI2J6Wv - 8HyeJRQlV6qZ4pgJ4GVoIfIwE+RM745XcFPjHHnTfMvXl5oXQnvzkoBb0i0njZpS/97HfArRONL3 - bw8PPYWsd34iBD9WRVwfcYZMB+nu+ngsEkiyXsPPbT+pu8clOyjPbx2Zp/pDVsm8CVDtwid6nrAG - /vDjn56Z1rcWcyvt1f/wM9j3OF8/H7OHhqE52H2+6HHXqSiEn+tVOHoWWe7P/lQ9aCo3Qc72o8Hy - xwdZ2kTIbMEa/7j4G/zpo4CcRBWQSgxaeHHJgqVDTxK+UA0xW+CIoltxB6wJxxS2OD4v+4Fna69d - HPH7/SnI17W02RiY8JBjTg5C8nRryJ/eDhacBrwnaX/vx8MrS9jlDIZSnebN2eGbBxpyfmsYzxaa - V6i0Wb3QjrvGWCboCp3ZsRASTklMhtu1g1ZmJ1ji+W2cj/gQRB0IyPTaWV2LeZf+/g+5PHVR99fv - 3cK7WrMLh8PUJRC+ebGqCvlvPefro21K+OqvMSoudhMTpJGrSMd1ia27XMfLAgdBoOOqRF786cb9 - e+ktiCX6jrzT957vGLPtX/wia5AE909Pw8OPwOah7zflTvXAji4aUnepdJlRcFlY7BGN7Oa0Nquj - ViX0rlkW7K7wdsmffuPTiCBkQhNMr1fJQn+/eod+TePd79LjRMN1R6jlP+Peoy2EVKB+g/pyV+Ip - rNMMstmKkQFuCtnLsnXO7un2CE56pTV/zy/2xaTgP/1MOoUroJPwCU5LoSMbXSup2NtwRIhvYnc+ - /AhYxbAIbmZUqXs5zTRIqbgOyKFPDnyxhKShWmQeeLzeRr+At1r7Ia04vxty2yYofO7GBeUX+UaI - 3bkJiMwHhzyRswmrr2kL5soNkLJiNd+cDZSASQUaGbjH+b5rSi8mb9/H0sbFZP3jDwd/Rsq13dTJ - e9IQviLuE6zMysd/6wUk17lfWBidYoxMroP4Ys/Ygy8qXp7nzAKfkH0h7ddcclIUeIelqFbI0uIt - 3l7OZ4DpgsPlZEKTzCoAAexS6CHl4BvTwR/F6DdXWMm317gZl2KAD1kRkPUyOLDpkzPAqEP6stUP - O6c576nATWt9VLKdktPBw2bBge/owPtmKZZiggYFAUb9Nrh4YUAGjs9ImuJ7TJTVNcAf3p7DRwrG - x1MO4ffa3ZBVKpI6OXwNxc/gUMherG+zd+ATQNwAbaFG/US2S17xYlPZCbKMRh057rlRoku1N3z4 - F2CN3ywvPsxwOvTBHpM8zzIwNauMyiN/cNQb8PCU9yp66hrfrA93ukKj+EWLFhw98P7yK9LeT5x6 - 3g1gs4A7uDbYXhhwdlX2er0LIilcGkn7ceuMdC4sePhRy1SOZ/LHR+DbCHV8qRiPzH94VBqCEZwN - d8qnM2wz8Vjv6PC7mkW/P0p4GoMb9r/tPh752YP9Xpn4HlyFhrAV60H2WonY5hPaXZX86EJo8AZC - r1zLt9JOQ4CdtsX+N32P+2Vejx3LlBewvG+TjTGLFCj65xoQyDhgy/pzBlxAUzgbrx7Z+VrogPX8 - bdjlqc1d7lntQZZlO2xNsI639qnsMNWzDZuJvLiHfjJAnxQhTh4zasjz0dTw+36EyO8k1h16tEUw - s53vQh/59vADF5jPVxd588M98OvXwSP/IvPo+fCrlsEDVuYmGEXONWaEx1aLZ1jc8eEHHbd6VMY/ - f8w2XC9n/vzo69OSlg36PsDUcWfK4Xdg3f727p8f9qcnDj38jTlbCVbh882/WHdeC+lPp5SC8885 - zuwrokueYq+BceMNfOkiH5CLqpV/fBhpZ/sXL3p2m4AnBCUO7AsYV4q7r6Bheg07TW7FOP5kFgRf - pAWs8PNVOviq1fls5nds776orgmrCCDV0w2FGxeD7VwwKxDfwYyU++SomxmEGby8P2SBXTrH5G15 - BhjkQAzgkxB1zuS1hdmuPg793Y0boA0JXnJpQAbLlOrOfOcJTEsc/fM39wvYA3jooWAbqGbcvo9Z - guHDwdinl2++WwkHYbZQI7aVu3j07Lxp8Dg3gU2XvBv2vfMWDLZiRUpi+SPzs+kCYvJM/vG3nW1/ - BTj8GvznF+2C4NCgVlCLJe5Kky0RnwastMxZqNR9/tdPPPw65N0CnvzVF+CxnhBK2EEl+37rQSzQ - dyypn3Ukf35389T6I98yzXJuTQreio+A5L6Wcpq7R6VYtfG+gL6K8r17vWnx4HvI82/XmIm+YAJ3 - I/KXDYMXWIsXn8AjXtDVfmXNXn2FBcbo3QZ7ddHGlWR8AMkWMNi+3ypCaNAG4pGP8DXSaDIscOD/ - 6bnA0CayT6S4wm/Gmn/8BizCZFtQmp0QG3P6VHEzPHbI7QXG2bk+xxPffMI/P3LZSVi4GHZYgcs7 - 0oPNKn/j9HgsCkTn7omNODUbElOXSDSvRAo+md6BRbr0PWTfdx45Td7HLclWD0aF8MGWJ7VgTZCj - CRzjGX9+bMOat+Ef315eLa83TPmJe3jE00IxgjfOqdEs/57fF2N53PuK88Tl9m7xn1+2N45UwL/P - ypt5u80f/yvjWcaOer+Mu3HCPR+CIg0+wL/lWBRPEXio6wXdpb11J46KI/G2dP4iZ5VG/vnLh/45 - /JjPuPtKEUJlQ8+AFuTVJX/+y7FekKTItDtL0pKd9Wy7LyfhxMZbR8cKFIwGICmKZcCs5M2Kx/oM - znVOq8de4RYc9RCEmETL6XteCGDWzDtWd4lyB8rrJXjkd2QoAVH//F2+UK0QB1BtmlV8uiFkPhgv - XN31+d4Z9QJvI83ivOYqdbWEBw3dIpyQGU+GOiVPdYWlk76RLH0+Lom9XIEgS23k5aWrrjV1nGAz - oymAokurkyefW+FZJsPhD2755tWKAN7JNw/Oxa6of/EOTq/jlvWzCWKCzgwNG2bQsHnfQNNWzGUS - X5H2Rk6i12TF78yDZfWGSKH7L1nP1U8CzuXRY7MFYUzG88USscTeA/GbyuNffRIe448MRVFUurju - gghf6wulz2SICWzqHR76JuAnqOTb9eRCcA/vGzJu8gOsSv4TYIeba1CRfM1XzT0nAqeO74VjxbHZ - X2FdCK/IeONDD6ikGS4rPOpdWDnifWr8Uwol8XWcwfduhHzQuMNDvx18knNxn6EJrPtHWJijXrgw - 388ESQlcpF28QKWvpTBArCU7Uko5clclbEsYW/WylPWVbsiiig5UNDb8b765Z3Xwx2eQjPFCNuD7 - HvzVOUaq4lBHvaaB4oc4FtbVclPxoc//5S/76n/Btn566/w33yodruOmvfUAYva0BTwVfQGmBCD9 - 1U9RXnPHrQ9csoreXWCw/uMQIYrthHAB935hpVIfieBl1R9/Cs5WRcd4zfUUrggK6KnxZrMWV0EA - H7ZvkN4NsstOcqnBgFtqLBf2XWX7p0DBMBJEbK9P1LDPMS3gwW8W+shPa9Ps0d/4or/6U/Xu5wye - C14//OSfu72cuYdk8xh0q9nIJfU14QG7tjT2wufckJ9t79Cm2xmjeAkJeb9VTxzB6bf0dz8+TuBF - KzAQfUdZFaN4PvI1rGKqwOhGNfE/vo2drl3eAdnybX49WUFW4O3QF8bITJNjAfjaX8iO3xuY3WZb - Red8UpExcJq7gc5L/uoF+Lqgr7ueTiEUm/CrIcfrZcJ90Lj+1Zux5uUKYG9DtIv/8AiWctNv/FBC - COgEuUmZAMb2fhUMLnwZ9GbuxBP1Swzon28KVqnHNz/wf/p/dhQw9P/eUjC+T1FQR3weLwy57OB6 - t/3g7JMgZrbq5EDdIBesU+vabFrXsyC8ej3S+Z9LGEXsHfFXJy72Bl/Pl16mJmDqoYMck6LJ+hyZ - FIJ0URGCNzHeXsYHCsltMJCngdVd2/Jdibh4NticyvdIbLm34ONyQ8ipn/E4v28aDaP3AdGByLu7 - /uodWIOnidO9f4KNESEPud9AsJyGnEv0S6gAprvdjucbwVQ4WiDGgg0WqrduZIkcvMBAFHLkSeWe - b5xgHk0L3HhZEQ1iwhq7IMovycBoPP/G496+Gjxbxce3nzs3u6wMGaSUzw1510eQ/77lGonlyaKW - NY5VsPtbwh8lLxGFv5sGaE1LEvG4BA77A1ya9TmKmSCS+oMVrZnInmlNKPajsSDdQZu6Y3pYARye - F/xcPNXd0aeQRKf9yPhqVyagLWNPYPclIbJzx2zWfq1ZUfjxAn5qU+vOwUNJAeB2smSCnY/MNHsd - 1G78gMvCltwVUpsDX4/cRvZNVQgz/GoLvudvgLywr+NVNKwe2o8CoaQ8s/mujo0iTifOQXbn9up6 - ESVaNF50i5S07MHqNashCk1YIpnZpPxTkbwTt/X3w8bYPgHnpAUPT9uNwUHSRCOnKmdHLGxXCdZb - 1oONDS0WpOJcYV/2wbhR3FqIlqmmy5nUckwnmr6LfdTnqDgZycjer7kDv0+PwZG8JirHPXEPwdu6 - o2Aog5H56AUEY8TXOBSejsoU66mF1chKOJ9R7y4PMT/aAice9oXMA6ztqaHomB+MX6N/B7sTZwvg - RcQvrNeagCPQglDIaAfLp9+mzlZpZcLpFCbIZy5iThwRHIcMdwU5KPjFrNxbLTzGA0fPolTJ7/Za - 4ZcZ7YCM8k+de2ZW4N/6SJn8Om6CFFIi5UIevy6cBWhrSmv4HPofzr6dqm4VlUrwGI9gFLp3vJNL - 38FJ/0g4rU6yuh3PI562O7NwlS42w6MWFKid6xTrjxnHE/jcWHGjOmcBYbaOc3N50ULUZzOy2/db - 3QZkpXCwuQBJLW+qbBN4FlAyi8fpi73E9Au/jovJjBNS2MoeNzdIK/jcLsa/9bUhgbTQFYC/QLq+ - unvAL1d49/wzduOlHOluljIRniSEinf8A2v2VitxKvwCqV49jNxp9yh4/yEXS1uzNNvZ6mhIrsId - JZMMwHY8LzSnzUcKDm8ubdJLBt93Xgm258NoaOZu17C7iQ8k86ww7teH0Ypa8TaQvbNoZLS8zcRo - 5WRkvKU8Z/5+7/7zXYx07x1Pwm2toEXMDNlf+xmT82Xa4frUGpRJvu3+4RV0f3qy8F4a50zwcDKg - ptKGlOTeEK5x1lLM+zBHj+IjkNkN0hoOVaDh5Alkl3OaSyJ6l0hdTn/4hwTSiYTZqeArdh1YjbmE - AlOXEpLuq9zQkZYmwGf7E7LgaKs4y8+J6I70E+VVKzWr3pkV/NGOElCdvAI60sJEJM3JDI7ni+nH - gzbE9kxJyFjLc7OEkbzAAJkRykzqSsiZUyjITKcNyU5xAuutPq5B6OANv5hQdZl4VCcRG+sdJ86z - BusmqIsY6BgjLQACmOSr4Yn+t0UoMs6fEVs2JYGpbiOUVWYGiPtqr7BsxBb7jnl394Lvr1DixwuW - ZyZzyVh8PVFtPA+HYiiR7RyPEfzDqxNaVcD2HnHEX+dXuIzXnHDN6TjE2ITlcvtk8shk880RVdQ+ - sSJqXswCi2nPYcZo+ElYx13tfqwFd2SfSOLNLd7kY5P0N7B0HN7Xd7OlJRXCQKYzZMQ8A/Y1uSrw - vHbS8mN+RswUK9fBz34fkf/tq5zuE9mAVsog/HhUUjMeLSDAxR58hKxLPs5EiApoByGNng6xCGum - gcUHn8LCl8Te3S0JXylYsuWGtaX5qUvynUt4Flke+0biukR/fHjg3dwUG0PXN8f8QJEO0AUZvv6K - V4+60OJ+je9Y457tuFXpRotSx2UBkz3eLnHSqwA/V8/F9zi7Ae6hlEfbprJZvh1/dTl8DVZYuLy9 - ZPH4VdcH/aTh8iP6sl2hBbaMv3Ri9h3zgOtPD3ULqKoVopWRsVlcL82APoUiHPGCzZdpuWx27naR - 6nwVHTcBgo2aoASO/Bo0dFo3Q/l+S2Ix7WsAdNYH3BROCfzDR6tdfXUrDL7+N/6R1kwA85hU4hRQ - zSLOatz8w/Pqp53xi263eL+fzwnE34HC+q7/jrZUhQSV7QdRHPBqzBTJk4btsn+Q6Z9qsMbLPQNv - 9abhp0N60nsp6cWis64o9bWPy7ChRcPcje1/65MRmGshHvkE3eTbbWR5Sh1g3xYRvpMmP/ouABY8 - O3MMGPnGjPu38stzvQRB8Nl122V1rJd//ATH4amPZ15+HVtsdBP72qSpKzaMAVb6y0Wmxcb5Zs2f - SeS88Y1s34TjbjZOBx1RvqKcI85ImFOTwqNsgsziujXb6MYpqCwvwkYULISoyubAg28hz059wDAi - FIB2EwaEtk0Yv4U4VJD1FgffXc9T2YEhu3jLxxorH6ZWt/WBJyikpooD9WrFBBZJD2ZxVrHR2QN5 - VYxjnH9hdUWFYp3jdeD2EHr8ZgRNP67xkp27FeIh05H04Lrmd/qZClx4hkHJo2zyrU1xCO7hygdb - kBou162eAYm9QKxKDB+vnn8KhKHVHwvPB2O+tc04QSbsbVzsOXY3Raws8T1/gqBRuRpslHmj4cHn - sPxmtZzJ6amFnqH1SK7pR4OJu1zhdunOSC5mmiwg3iX4AXOAJNgidSopORJtMmXINVVOXeUu0gB/ - Wxjsr/RrJH/4+qQaCmsK1F3mHI8hsMmSIdlGbENWiS7+8gHO6MUa13Pw1kSUJHipymubk5iWe9G5 - X62FwdEeT0NUaPBaJ30gzOXVXcSN8kDbWzaOm+06ruIjg8Bs8gHpKJUazh6/AZTKh4G0BwT58scv - 3Y8nBwXu05hk9oEXcbtg9DGIu4sbG4Ae8h9cnl9YJbX6k+CxHnHwegYurrI+AQyeeOzk/kkl5+Ln - ga8QmAv3kNR8PwvJANVLekOGIekq5w7VLhovtkW2ss9gfRapAf/ivaKTT06625DAV2GFuBShR2iP - PDOolqOPDIm7NaQQ6wpKu8T840crW4ZQTL+6hh+T+nA5Kox3WPHuD0nkbMbr68oeh1xuDUYmLY7r - 9npD8VZmv4XM1uLuJ/fRwfOyW1jnKuiuDt6pP36/xH51Iq+EApWQx/gZnE00jhPgfsu//LBR4uto - EgFD0NYjCO6c0rqklHUFFhx0UXzE087iaQcvIV6xKZDVxfJjLaESiE8UUgGrTruce9BUGhXL27Ue - SRyMBUzBoCAfhV3TM11HQ/8xzgu5iM+GMB+7h7PhSfjB/LojvjkPPmhKxPpXsxpOprMAnOnXDSFL - 9PONaWILXvJCw7oQR4AYRA7+4V05OlW+c0VUiptS21jj80xd0fKmBN+/asjMBiffCC4lsC58hrXP - bx4nd9IpqMdrg4vCyeJ+u84VyPw8xG7DB+NmaLMGfRW+UWg8rHh5f9wCnjpaRQkN7jk77sYKHc+Z - F9Js14b4i+uBCB+b+rHaxfsluC7g23BRcMRPzLxvHvuHT8F57IC764ItwCcHauRLyMjZ7dkU4qeJ - ADLFriMLi9sdPrhJQ6qNCZi4rKHAWET6cjpZBKycpHhAPvEzVjJaHsnaRYMYxRzGGfnwYKuLIoRF - ivZFoLpHvF9bVRGNz3tDaiH1YDI/sibG1wKjENEgJ6i2Euh+AhlrfdHm+6doJNFqpQGH5PzNSSn7 - EjTefRGAs4DH6UE/WXjwLfzQzjvZ7+ctEZlJ3JAZHU0K+ISiYEVHVyxRwpfs2WCXcKq7aCE69QU7 - DHUJ6DI1BaSQLLBferaA7vYellOauyOD+u8CKWGXF0Y07IZQzEZBy15fOL9yQUxaGEB4D07S8p4Z - QZ1Uy03gU0pf6C8+9y6lFGDEs4Ddp56q66ZLATz0F87jpWwO/BlAhedbcE7mH/inJ/J1wiju2jHf - PUbloc1s/PJapKUhWz33f3wdy9blHW+7P7EAMsO0cHcubo5DhOX5PMlywCuq1qzjSV7gRrUOSg8+ - Sgcev8JzyHyRXn8HsDLbGMGDzy+0Aj9q/whOAzjyObYcUXLpvdsyMRK8FlvULXTXI16B+J4WHHb1 - 4m6BwVYgfHZucMPRnh/zHYHJuprBZiN2xBfJ60TvlNdYO7d2Q9d64AG8xBlSnGEbt1Mwh3/6DqWB - IsT4ImmdKD/ePNJSynBZpY3bP/2EtJfugG3iZUVMUSshRc1Ed02jqYe/+uqi5HojZEJXKYBvQ3OR - uSJ/3L3BLKEcgQIby/3arJU8rrDsphH5yV42e7T6Agxt2V/44/0I9/z2UAlOT6xbn8Gdphtb//EB - pFIvMydv+KihL8Y5sr8McklDc9UfH17woUeIb30UMVFZhKTyquVEvEr7H34EnBKtzfQ3/gnZukDQ - +8LdTbFNoAkYEblO7I6rMScQvtq2RUUtrmRKo3aAAwNC7BZmTbDVvlbBfgsN1oBQxytbphRs1/aJ - bl/NGpm0ZCMgLwaL3SM+NyWVKXDPrBw5lZmRDfcPR1jupwA5v9lSSUI4A8p+gLD25uWGGaWSAvrT - MnAOZbohUIYCtDVwCShgJ+5wv8YOfNtitXw/waxuMStZoj6kJ4SUx9Csjfcc4BgJdSBu1RbvriRl - wuGfoFKEE9mmaKAhmZMBoSn5NqueDAGclyEOeBfcco4amEo89MYCNK8DhH7ugfAyPxF6oCcTr3Xo - 9PAOVAU7skvF40/fC1hcvgmy1NlthlF0PXiRoiFgY/4GlsLSJ7i7jIoUaZcA3cF5OmcXiLD9qKpm - 7WYphc4j74Lz5lkj0yyVIx76HGkgCJttfuwR3Hv6hv/yO7ZsVoEfxtiR5YJbjA++BQlf6Uc+fI5T - 9ZUpcOAbRif6M47orgrCYDNBcO4j39001nDgq3DCYJ+7RcXBUHogSjp2oVVByOfhbBbi7b77WLou - d3VVLfcKHz9SY4+uryqxrnshnl0rQ9qxXqeKxRG0ooAg43YSCDmJdgYPv2s5JVdj5FhD4MEfH7Ud - RckZWac02NKvHXkng23Ih5w18IcH1yOetvXxXQBqEhl5xKwIcYdqFWf6XgX24ScuEVCugL1ZJTqu - aAS74NWt+Pd/7cxxeTvSegh35VUhP0dFvnjoM/3FF0J3ah5Hb+MD6Jz2PGA58U3W7fqpoW8y7JHv - loY8z2IlbEpl44Nv5Lu2CyVMU+WKrJ/vEPrnesPf+sWW9f3Gb/HTdqKl/gcAAP//pF1Jl7IwFv1B - LGSShCWTyCRBJnEHiAqIyJAA+fV9qK+XvetlnSpLyMu7796b4Vk6sphk0cnN1BWZu4UftOOXvvDi - huFBefhIuzysQnA2foBRXBHyx98pif0Nhk/mjtz0nURTwK053IJMIxqDaTFFnfqSzzdDJc/ojcD4 - Gi69FK2V6ssLe2jmlV8UKMoXEYvhM9MX5hIYIF6L7B+fbY+Vn0GjPeTIfz6wvu5+I3zzao23ZNx0 - HDPt3qaWvaNMag2XewpKJ4svKSBW/bNcahwMQ2Ym7on5e6VHfCutm7zjP/J5V6GcrJgZ3Nbwh87Y - 6hsa/U7/5v+//FkfIlIgZuHrj98Uk1Y8emksgxMpwsWO/vBHTs+k3fHtG+FBEQMooLwnKiMfoqWv - KgYyPXRIcfne6e+5b/HML/fAd+FsFoJ9vVSQpYOAzhpTF3MbXHOYXxlEEC85LjuBcoK7n0P+5ksj - +E4M12mLMAxDu9g+grHJHq8ekFueNUBpOmzgojNvfAy6k7t9ylGBD+bNIEWhhbvqR2qBiX9+kSpH - WbSmHNfB3c8mz/wUNktSx7Xk/XBKLtQRI+z/VAVykhgR99q89HUhr05OsXknhqkeisVJ7v5x8LqE - 2KtnNX/8Gez+MUpSKWu2d4406TTkB3wF4kdfqNztbYNxihk97qONzUQN/ul9ZwVXQCtPLUH43q7E - 4/wT5QJycGBlz3fkN9JIf8lx6EClJPzOv7lxOXXoBRkbrcR5DpASeyQ+9PTkTU5vcHSXvkqhUMbx - w2ddB1M2CCIfyG+MiXuPPX2bi3MFdv8becexGWmgHzugJkNDlN3PXsmjxBAeNIROwqvct8xBAyS3 - 5UKy6X10V+HZOZIW0ARviL5d6nV0gWIyceR0KLX9SBIypcoPbuR5sCK6dfS5/PkdSL9fQnfOQ5DB - +izckZ8Nt2Zr7koLGh0UfpeXYvPn58DhEFL8Pdr7lmz7F8Cj6+REd4rPiJGzBfBPb9iS2eprfFsz - CXDqhPQ0BxEBL3fYj2iZBB1V4tIYXA347J9H4uZM5P7pJ1BIRojDnX/yFXQ26ZBoHpZYLaV86JDp - j9/6R3xfwdoHJvuHfxgWXksXELovGDDlRqI//WLysQTO5BUj55r4Bf7TM4M43DA8mGmDhTIvgX9r - OqTsemNxiMTAZH7ckee5bUOrbvSlHd/3fG2K9TNQRzJaOceLQd4F3djjC+z5hK5KAlw6XFTpn99+ - Jhsa6V7fgWRGHjrNvRvx78PsgzUtqv3Q9zT+89t3PwHlqrDoi0zhBPbP44NcTYCukRLDP/6t4vcI - cH1dHVlKbpBoQlWB8TdmPczG489fufUV7c/rwe9+FY1g1yd9g9zoQQ/UF19MYQL+zW/DMCi5geeb - 0o1dX3B79BKxylovttj+hRBkk45uz/7Z0D+/oI401uf140vfxGyu4HbTKl82JsPFLz0MoXD1XujP - H1rtvMigqvMTUeZNG7mZLTXxPNGLL0ncHK2oJ3ubAI3BnBSFdKt+jASX/FYS5xMMxZx2QQhO0ON9 - Uh+wTurIj6GBY9k/yJVH+cnIMezeFov53R9ZXl7vw17hW6LKh8GlXVKnMG0nHpnCdXG3IXi04Ju2 - dxQ8+rDBg7KE8iyYX3/Z0KvoqYyd4zXDMuYeFSjmbb8kju+YBKmq6gF8lKoBRmSwkcvbzUjXuTbE - fMhr9MffaM8MDGzrH9j5twOER/xM4Z7P//jT6GSx+M//o0HEjzt/ykBUnF2iXSVTX6aXxACGGVOk - fThN3/2N/ZKnW+rzG7tFC8sFgbz1fOLDz3IeFwOFmxzR95PkyTa59M9PTO9NgVmneugbPZSDVL1M - hAynkt2t3+4p4OpSQcVej0nDHl5AsrUI012PYDh0G6ChHRD31b5GavNND7xroKPTuZQKIjzIAHVO - 0QmqIxgt/TKwYPr5+E+PN/ut7znY/Xt02evnT2FwCyY2t5HCK1O0na0XD/t7IBCPFydA3ZPTHp8j - Unzq3iWwwGkOYC/ZFTpPldrwx1PkyOdcTvdLkE8NZ4m1I+9+P1LP1jr+6dfjH1/TfvZSrDf5okH3 - AYAvjbf90kjf3v74BP5KNND/vf/Op4i+bYm+7n46DD9jh3/312tcu1vP/tP7yJLnaIk6u4aHZyPv - 76eN/F5v5N3fR1rUXlzqNPcYkm/PoPDysCIOv20MuVvwQXbG+mDTSKZB8Eyf/iG4vOk//+QmLza5 - NK42drz09uV6UUx0fvaHZhWe2IKny31G/j21I/beLi9ZPMYN5vULjgbRViz5b/3SCp+iS3b+8Kdn - kQq8qNi+0teH5wd+IEd/Cy5pPqEnz+pPQ2F60+l3j6cs70cIvdP3TVeogwz8zVdd5F7R1hI5Bfa5 - z9DpJet02fWcNAfz3vZ4RcXm5rUDzwLTI/+G2mIVO7n9t17nxi5sqKofOnhbxydBadw1q3O2jT/9 - Rp54UiJOsRsTPuxFQ8l9RsXy4dIQMoXeE3PHv3/rraLZn9CNaaHe81XAQPNxfvi0St8N/ehVBUVd - YjCTDUJDj5P5kmf/KPlQdVp9De3wBQevTdCfv0yRdy7hUOUebgS0Udq+Z0/kRNdD2nqTXBwmrQWF - Rrsh8yelgB+CpAO+yucIvZOzu4LasWAgsCl6UH5waThJ/r/5G5dkc1fmfWghvsbbzvRxs5ygkslV - 6M74UNVBsUSdWssMaTviqELg0vaslyD8/Dq/Znlt5D4DteQT1+bEnRo++qdnQ+H5IDufj+jNdDXw - /2wp4P73lgL1fjiR0/34aujxoWFwX3mHKMQ46axo/EKou1FIrDrLdCoELgM7QY/9bWD1SDjezU6+ - RgsmxkSObq+NnQW0sxj5eeOpVFhndwHF3nkbXdBN50o1iyF4lRbSYIWLSYTuAvOr/MCwbGZ3ij/v - F/xluYmZDYGIWJeyhffyaSIVjfO4fIt+g1mVfcg1l5Zx457SAt8vXifq00vA6mJfArE7d8guMzIu - yuU+wPiWOcTBRUvpFL5NyKEXQc9Vn+nMrFYnf4Dh+DhQO317l+wmj1pYIV1Z6Lj6H7pBxvvYJBpm - jy5F0lfwECHOh3X5dFdRxRI8b3GE3AAcxi1bjgx4z/MPPTUldllccpVs41glpXBtImp9zxvsOlFF - ynENI4rkqIRen12R9kwI3aZaNo/Cx2PIg2teLn1soydrpwWScjK4gj4PbwgepT4h8x6w0cIFSy2b - voSJBfnK7Yzz1wOR+JB8VjleRgFaqSbPl8gh7gG2xepKfQWZ9PpD3uOkUe53lnmpHBbDl+UPC/CQ - MDF4q0eK0OmiFXwVSQ7kE91El7wxou3mKIr8dssDphc+Asv18/ThaRoMonvoqy+XV4ZlNWfOxAqq - EvDFEbawHcSQnGMhG/mYHTe5Vg6pD/HDKqjyePTw8wwjzJ0fqGCrajTgqztBzPSpHQlLX1ey9SEh - 8uTJLbhPZvsQaC+J5JWVRttYFQu0Lcj4q5mUgE1x68B4OffEYUhFV6HJY3h8nhJy3+cDtgVFhOqN - w8Q6PNWRn2rZgOwcnkhadyd9fd3uE8y25YvU4GkBTlkmBQaeq1yOSbEC7Nu+B27XMieqftZdgfvd - GdkF5Qkl7K1rhPZKAvi0lQcpnMXSWUsOXvIeT1/Q5Ie7xsTC0OsCCWXbXS14/ZcP0HtMhMQdbwKW - PiYGKAcnIH6FIx2j3DYh6yh3dA4xR9cZdDWszlxDsqS2itVBWy77SIOY81TJxWszdfBQiRleJruM - 1gP3luSD2IokGZ4H0F7WroRBYTNIK/RhJNXjGsvxagzoqdjpfoKWhhBotUQuKhM0Qpt7GIJOBEhN - zWT8TcLJg8m31VCVOn3zXU1B+3s+EhzXLVqA/V1gU0cNlpCtAxaXcgVJWX+QIUxpQw918YJOw2cY - a79XwXGsI0puetaIu8U42nhNLwG6nB4oW7+Fu7J2zML8HAFkJJVaCO5JrWTucs+QVitWJDy20YfT - 9vkh9aHTYjl2qygP6rnF8+VhuDxhHw4cr1Hpy3s+CUs/VNI+H/zrJczHLrJlDD+lKyHTFXGzzK+1 - k8/lASHVrked3GMvg/1bwnh9J9konC0aQivuZGTqRtRwxiT5wNCAgtdT8AFbAO8YFpc1IlcGnwu2 - eeYd5K7DGW+KMOhb5cZY1kVU4R8rN8XKXXgL5HOvEEtkf9EG3Wy/ZwvK/lZ8XsUijYUvu5l3R/nr - enepFrw9qL076gt+uYxCkzS5jJ4+i6y9UzBr5HIHCXvGxHT7St/kTUth8fs66IrGyzjkt5GBKh0/ - 6HLAQrHu+Aff5TcmbvLgCrqaB+UfvsbZBNzFyLlOfl673j985UsxiyoWIUPNGhmetTTrrV5L8PKK - Emm93LmrbioBtJovwIsSBYCk5e0FD9+qwcctdAC/2vs9zqJkkNv1bOskeLaOLE7sSPTokBareVwY - 2SXrm5Ri/6R8ejwZ0gtWKuZOfD2uH26p5em8scQXdD5aSzVIxad5NEnpbXG05r63wT3+yDfBqeHV - MpKkQxr7xOEf97HOi94E1mcO/Qm532I5TBqWRVXhSPKKrYZrtFkDn04oke6YbSFkmVLL7SCF5PkO - OZ3cyzcPaTJkSFU8qZhhq7KyXI0AXT7B2myfjbFgWkCd5MesHpfPfu+qnZ8jf53T97/6IxtiqBP/ - J6cundkVg4vVtOQUwpqu+fcAYSLr1I9vJ6yvP+y0UD/6L7KP97gak+RB9v2pyfnjnN21ECUWfC4W - JPeNVUbhNoe5XISahtnnLSrYFScvSBCZsOBxOuUFc1rgXu/IqXI/YD3MXgWDwmUwDd5TMWcnx/qL - Lx6O1ubSN14zmIzHyv/ytTdy+cia8l1dP+i0nNRiOX1hDMO3gIgRXiO3BzZZYK5wlg+SR1KwAXo5 - MmTlEm99sUQrE91DODAqQVdcZHRCzMeT6/aiIeuFuGb9fT6WjItkJDcqxDrdbqsk/6RhIZ551Fwu - PKyBPB/eLErCKYwEcStbeL7AK7qXGRoXrvu28HX3EhKK3s/d+cwkw7v9QeVer4V11hcYfW8fsuP1 - +IdXcv86TuherfW4NtpHAc7d4km1oSLicWoN8IorhP/mPwdlTgGGV3rE8j/OyNnMoYKgpS1xplCL - sNoeUxh8uBfmi3tKpweFzF/+o9tLfANygP4EVYtd0Mmjr4K+8TGH32Bm0f2mMeNaM3ovYweleO1r - k7KolRRYO3XtM/g50k3/VDW0J2/AXcwgV+Bjy4Tt+2YiW3+nxWJFqId+mysk4j0l4ml/kuS9nmAp - z0ww9NQqYXtqEEGNvUXUrWB/PEt7Z84Lurnbzzp00CJBhe7y+0KXa6yW8udQdH5zLlywfhlqQVYt - EQpGIQXjybgzUE8gi6IR1SO9nS8DlH/JA+380WXlp8vAbx4pGBovom/wfS4h37kFsWbBHZf34lrw - ZEYHYhmOBvjmc8jgtaaTfwTmB2w9VUr5SYUQr9pnLrYnry3wZi4iUhSua6YzCwy4cGGPnOJARzyK - PgSmL2LkRZdSX/vfO5T/6s+JNGO0Wq8agmu9TsR9TWIxK2zvyMwtGEm8NqxLg5PIHDebQp+6Loi2 - 8FRm8LO9FHK/z4K7mlHrydvnSzHlIAHbk3l5sv4aUuSkptps+/ODG4tN5PJdNE61rIqw4V9XcmbY - FWxu8ihBjA8hck8TbKhF36nsjOEFqX3IF5TVeg3yx/uZaDv+z+Kp0f7l54I2w11kUXAge1dvJCO4 - p0ul0AUORFuJpZuCO5fNCx7TM0nIWRxJNA2vbwB3/MKl87uOS+3fMHxgW0fVQVijZZj3Bts7nrlP - 8eGuz1DMYUPvIjGZ8QbW/nHG8Ce+7+Qhf2K6oQup4TEbamS3A0unWrbF46k+88SRh/N+Ki0w5K8b - aiS8yE4hVJgY4GTnGbKLNo7IXr9kwd1PiaroCDYZrZM8X64O0uzx5Aqq5S6gD7Y7+cPf9cyx7B/f - wd3pkkard1A3EJ8Citz8rdCFPXAdHCUZ+EsiFyPlPw8eouqyEa3e7+21W6eGRWPdUHxuT4BjHMrD - WScMOfNKSrf6B2poNR+A7k/+3lCBDya4eWJC7lj5jFsRfVl4vP1evjAztUtvqDFkQZVDX7pqvE6H - 5+MlPaJnTdzP0tD9+1nQ0ELE8BI7OntZuwqIsqwg1RS2cY+vAssj1Yjy9pgRm3rgAXu89KTwfnmx - DXepgsPn+SHnXkqb7RCkEqjUfPEvl0err2rI7rZM9SVW+87pDzxf9Z/+IOGKxmiBbMIDfmNiYjrq - WsxKb7aQWQ4uUkB20J9i9ssgGZsG+UxgjFxySQKItvKNeUfdt+Ad7RLcH6VFCqTN0dY9phBw9VaS - 8yv19D++Cx1L2+9FNVp30UbswAtfbujy2c4FNw/BIrvPwUc2PIj6NMwWD+vH4iNLUxV3uzsfH7oG - MxPfNvpiOx9iBU5NO/rMZGaAZtLVkWsZvEnJikGxDpk4weZHMuIaJwLIX33b4/0Xf7BV67uUV7Ap - KHnvS4p9GkrwBUuVKNxzdtf4es3koSu/5HocAP08QzGDPfhcEOISqq/PcMll8Kr2LYAm1yyHE8fI - f/lhfSJV55lyqWB+L0KidIHj4uXphiBl/Bk3e72kchIvMG0aD/lEVUf+OKcTtEhY4cM9UAr2p+Ub - yIv658vKTafr4D0dSC3hSVQBRYBIZ5GF3Lrm//j15Mgyhj3sEHLnLRsX6xhncAqrlOy/b/ZOsin0 - ac7sfWD6ZgtSj4HCN02Qch35YoH7Fgni5gG6MGdnpMe738IkSmKCUD/oW3q8GNIgtJBYi+JHm7jm - rPQ53DtyPomdTs5EUaBHeJMYL9f/9/9BwWc6epTMFK0d/5hgD74X5Nz51d3iMHKAdWQULJ6lzf1Y - rwHCu41yctFeXbGxR2WTL+USkpt+uTT4cFBNef31P5KOueJyH058wVCZJHxoRsvdeo9iuLKpS0xR - eY7UgSMje16Xk7Mmy/ryoCyEc937KPYy1d3flwW0/aWodH5r88u+4Sb/XswVy3/z8XpFBtzf90+v - jNMa1ylkm+noM3E0FstUZoG0hBpEvlxV0cqxjgTtaHhhcbMDgMtZcf78AKIMyr3BOPRq8BHkFamP - z0+n9VUz/+arvyzyrVij6sT++RvkBoy62LjjzIBjkxp4fZZdsbzFVweJKhg7HrLFEt8RhBl5ST7p - UqXhmTjS/uo/ulyJXWzhKc7//t7/iGdenw1zLoHYBm+kNJ/r+MMKEiWThgt+F85bJ6t50ET+8Q12 - vAlHcm0vFTR0USOPiXz01f+ABeTXw4PorltEC/N95/LOPxFKP2fALvq3hETjTeK7l4EudX4M4c6/ - kXocAPglhsD/6Tukh9mvmf/mY5FVHJaPEWl2P+IFmKG+Ec0NV0od2DCgp6qONM+c9V4WBQt2naT6 - bd2qDWvd9EW2CyNB1U/m9cVDDx7aFsP4RP5m0fZ59zlU1IuOrs/SjLjX6onw+XMXhKDiNuzyg57Y - Hx883mrFKniDv2byI3rUPp9+CjA5ZuRDnkxfdL+OdbTh0HvBkDMAueRRBCZXuxnQHKaPv8ebrkz7 - VeCOnxgObuPSkLNieKOzgZS9vizorE1Qlh4b8VvD0PkzeIoQRD+EV9e+AW6rBx7qCcMS66cHDa7P - tQSFg/TEfPnQxu6hCSFwX1uLXCV5RctUBuHf9/nEZJHeDz9jgsjsB+KYSQ9GBRgQXPIBIFUqNXeV - /HmAxty+kX/EmJJfJcawCpsTPqDecal36no5k/wSi3OS0PVppizcAksjxca3OnXqZZG/mfvzU7Hm - os04Ex8+ntaJnFzCNhsOjRomVyT7I9IuBZvGCwPm30lFuX+TRyrfMxHKrHZA/rUPwWZ5ISs9f/aC - SsZX9SV6GAbkVpojGyk/Snf/D4aWQ3zm6B31ebo/RMA62h357/s40sfWeHKCFc5vn7co2tyHJEKf - qxPkATWkmxOw1t/z+RGbNPrKqyqG9GFe9vrV/uktR/ptZrfjR68PMlrx8bPVCtGLygZLna+h/Kd/ - 0fLOdK7qnRBeeTUjeufeXBrdrpq8z28fsuISrY/bOZOTUnwh7e7NBR5Fk4Fp8/bQeTkbgNsMWkN/ - u8MdL02XzZLKAYHe8ch8swyYIffsQEw9Fe31LVrQixNl6TadSHLitXFJO3OC75Pm4aFtqmhpHQtL - w+rY+HM/SxF9PfgXZP0bh9RTcKKE1V6KfFgUjOzJtop//g54+AVej0MB1qfPBn94itKhvwP2AcNc - 3rqOIx6Xd+5cqfI/P9UX7rZMl+2Q5fB5bXt024JzxD5PDwPu/i9Sn2UXLfLTheD3gleE7Od3XH/u - CiHWl4Y8iMyMQ/2jLxD635oo07jp6/et87I6GSWKv0CmWP/lPbyZm4g3lz03bLq9QvmXRDPRPPOi - L9bz5wEx+8r+ji9gKa9tCuFUXNHp/CDRqk5fCeq68Nj5m1WwcqMY8sm8Hv75z5sLau+v3mLmtnIF - 3eu9vNcvdH6JKh3mMaxBqgY1MdVHB5aj7bTQi+3Gt+/zzd1G0WfAXl/9zzOAAD80IYDp73Ag+tO/ - F1s5KxZMbX4ip5NRRls5WxYUs49M7Mx0ovWAEucPD4nqGwrgrc5XAJfIDfGuxnEk45JlUBxIjDQA - xYjISbxBBaqCT2b+0Kzk3vtQZfuvD5bHVaeFXvBg5xdIT/TaHYJqyMHqCcu/fFz73y+EY9tYxD3k - frNcZ9gL/ZOmyEXaXNDJcXvoeW1OnpGEipXcX77ME7yv8tqwIJ49LMDWatc/RiHReWMGENzYySRX - LONm3uvV8WFULdLvybngyFVbgFk7BTn9rKZZ6lR24EO7XZAKE7aYLoylSX96F3EffeRy9l5Lz3qS - ieay33ExmkKBFZMCLBhqTzdMAA8ov8ykGLSfjt88gWATiINscQ4BnW9OBi+asaI7KzfRfOp5A4iq - xvnDGXLN4piFD53T0SGerbV0/p6zHqb7PfoOPw/uOluWBc/mqySqa9/o5j42EVqVY/+Np74JDAr/ - 6i+yfh+zWIJ1WaD0zj/EmK8YUD+cM5Df7yFx/ZcwrpNw8cDjEGV43eZK5zjYx/CaX97+zPeCu+18 - HXYskP+rnxnhk8E28FZyI/rRXVnybuGeDz5/u2k6PUATw69tjci4nXx3+/PD181nkbvMasNn/i+F - MfVVpDWnQ7TWbVBBvSy++Atldtx82/SBMFPLB7t/T6XBLsFxFH10LRzVZY2m0KAiTAXJ2ncOJrZz - MpgOBxWd236Ntt3/go/2K/jXC7sUeL6MPnyn1hvd5nKK9vhacB5MnWjE7Mc/PALdnLLEzz5Ls/DJ - lZe1Xu/Ipfm1zfcRhC3c+SxyzvkBzFA9elDSHzfk5JlJP/QSQHnWZwbXR8qBPz0Co2/yIfcnf2xo - f5HL4x8entruAujx4WCo0clBRfJIIuyC2ofJ9SIT9RLmzVJVjQlxb7VI68JLQ1vlXkMT8BJCZSXp - u59myBYTlfv6w9kV/uLZ35DnM8am67x2djSQD82X2GMy6xsZBQwb66sThVdrShzWr8Guh/xOwLm7 - LXBrZW8is8+SQd39l02DeQifPpziD+gG6JrgvTIZsfR+AgvM6wH0sEXosjzZETe4ZMGrO0NkYBE0 - P2x9Uvl22Ud9I5dm2Q5BdiRonsjZcdxi2n+WvS6U0L/xQE0f/sUD6e9b6f7pC2n31zGT6RJdLjcQ - wpDp974Fwmnk4RtV0G8zBcXhvsQZqJAVRsU94+PHG3a9+VLg+Hk5JFqHoRl3vwkIDHgg53BlG3qq - 7RDu74vQbajo8oB5BlUl7DDfr+XuN24+zH7mmTzj8lN0mf+L4dU+e0Tb+Ezf1m8/AUa4Mz4nu+oo - sGXkw5YgjGxPOEd9KRwNgF6JgxQm6l26tl0KysBsyJ/fsMxZ6YCnUkU+FPsnWEVfqeQUnlMsx7lK - 2eZ42gBzfCfESdqRbtHilNL7wCnIWbQrmPb5D3BVGcg+WHmzHrifBFObnfDGCO9iCtxJgbt49dds - 9V1OLw4xzFuDRbrQwGZlr1so5+crQE8Bmzq3+0HwVrcE/eltYiWbBj8mtpG11K273ptqgDs+IudE - 6R/+OLCo3cR/m0LYbJ6id1CNXiG5DuMvGlHTB3C0yBVjixUAscjsQfau3zDY81/4sd/872diY+U0 - stvGsH/55R/rd6hP0cMz4MM53tATVEnDCnfgQJHLeOSLZ81dmuNlA27m33Gf1H2E34dTDiVPffvH - eeF0/NAOIWROdowc8P7odPYnCP3ADvd4WPq+PlnKp7yeyZkmVbT8+Y2uAWf8DTEH1qySY7CvLyK7 - 7BV3Qczsw+VercjQXnm081tR7kjpolg5Xprp1zaZPGIjJtnOf7c/v/HPv9rXcwts6XIOGO9r+1Lj - vcE88L0GcmZJUHrbb4nU4U8B2vJZdz84GTe1PcbwU9oSOXlUiQThd3Cg98CEuNf5RPfxyyDRWJNU - V1PWt0XkS0C+3hnlo582UysTQ9r1KnGjtnFpp/CTfGoMEd34emqmfX0WHqIL57NDl0ZbrePtb32F - GMW3oQsMT55cDpvhH/XVpMtPyxcQSIaPbt1K6RK4k3bUD7/oz5/Wd/9BhB3ztJFx9wPwh/8AHJUQ - 2YfMdQXuBV+gfPuivwjmHdBcYmJY2YyEjMfSjVu1/iroYc7Y/dtXscWTH/+tV2D+b33q3l0VudOH - hFw28Tsur++M4a5fib3n+/rnb4X+p0YeKy7/6p1s3tsAr1yWNvSnqhoEljwT/fH1mt++Xi79P1sK - +P+9peD9GiSCrqFJ+XvxzaTjwTOQET20RuBjEcPlgWtiUkGl8/v7cCDazXFTqw4RvQdqCGVn7DAc - m5huT3PI4PHgG/jT3Yi+HF03hqK95sjUN44uiw17YK2LT7yAemBTpqiVbdhHxBvc2l1+ltXCF7B+ - xAg2w51KU/Xg0hgZSvzwNArH0cul/JnfyCmQjUKQR86AaG4RyQ/hg9L6D/+Xx4A8x87AkC9hCgdv - cMnJvP6alURrLb+U/OCLionAJjzXSt76jSKl417R4GUvRjYnZCHEE7ZYhk30QWRtCrktmhZtrKNb - QOsumv89Q7cgJTQZAA0mwMunLYrtnDkQNmmSoKuVPEf+trgpDI/qSrLhmDfbVOHyGDRRhyWrEnQa - ffwAunVKkEHeakHX36hBMc4Gcv8MasFqar/Ij6Gn5E61U8Ej/IawWd0Ri3ZRRyt3oLX89ayEhEdp - dmfPd3I4TEtHHnQpAHuaiw325btD6sECI5be5xruz4t03hT15aTdS0jv+s8XX67TDKY29uDaeApS - eFF3uRLADdYv7oRnLXDH5V5oL5lS4YBUKzmMqzgaEsyf2Q0pzqo2q9XoWJ6110bK4hW63MA8WPhS - 4hjpvL430zwXpnz/SWd/ulVusSpvWYF6QUJ8+N2CYhkeUgszduyRT45JxCvpu5PV4v5Fcc9rgM0X - toY2nBhy4+5ORKOPGcDzWa2Q+00al03yKw8Prg4x83M/xQyTRZTD6lKQ0HsmLtGEiIXMy4KYt89W - s/yoJsqH130j6cfPKP0xZgxL1IeoVBbHFaTkncnvhDngedZcSoXkY4LhlprEr2q4X91oVXLC9B3K - R+/XCBX4tTCYl5yUg+dRrv1eS1k5LRD5B5jpW102OfwU8gndubl1hUSaO/hZg4A8b/Kp4GoZOeAv - v5KPLo7Y1XkNah3SkKselYhbDw4PSzJp5DGOzUikBJqQo7BF59sB69P30XTwrbyeuL9UlPbaFOQy - sqITpu61i9b7ByzwLp0veP5OOJqwPffw28ERPT77qcWDqm7yGt2PpIyeqc57Wc9AbLkPzDvPotic - 7M5IMM8WpLDILZbAUHm5Tm2HVM4j3FsRhRk8fNo3eYpmOdJBBgMMHtwJ5eL3Gc12vSryik8UqUFa - jPyrLHOguEpKIvdqRsKlARI4XRMdxRlVXP7IP1lANvGCkudcuJulbQN8nAIG2e/R01nGS7AsPZuP - z/bS012mSm3lS6Y7yOilg0utSyPJcZUqmM+rN+BT8uthmccXgsLh3tAlWjV52r4PdJpVXV/iu7jj - W+Cg8vCZ6GLp5AU10w39/HZ+uazE9QHYmvcdGY616IuVzRZsFInDTa3ikb7A0slmuvQknYPDSOVR - NmHUtClyXNPYL+5pTHiL7zPSrAcu+tK0PRGLTu1PbiXpiz1nJhzDUEAXva3dJVs+tRz53gsFn7aI - VkX4aiA+WilJhnsC+BCLDIyin4pfov9qWF9/OfJY+x7xgbRGtLzeUvh6VQSFZS3Q7V6QHK66T5GP - WGnceutTwkrRfsQzz5u73BfLgiUaQmIEXDKuR6UN5d/N75ChF8O4GpdHBq9Wt/w9n76K6TmE0VHh - kUoN3+WmiPOAcXVEch5m1OAdr6R728/k9FCvAJvzB0KrzDOiaMtnbML2KsmbePSRphTnkXMuLyz3 - X4snRfB907/x5stEsQjq9TugumA7EBjLiTzvUU25MbJ4KA9zSvKpWcG22qwDqiV6IpUjHhV8v+lA - mRgUqXESgKVYUw86oWKjKEqZkUbI7uDvm6jE4H2TssDNU5gyi4nuffJyBRormrzjNbmY0cOlXpP7 - cJafNTLIR27IQVUXGffKGT3fid0Mn0e3gb1ekcTtryMvOJSFubFaqOKbX7QMFWagBV+UxPv8XLtv - X0INjDWxcl4A1BaLF+Tv7ye53AY+WuDbi+HhdTsT1w2JTsv9VGN1CnRiMKimfXOWA5iw5zMxXRaO - y/aMGJn5PFV0smBfUClhDRjqaUEuqCfN8t2ACAEZT75055ZidZo5h4JhGr5E/aDgde0bw/E8fpF2 - F+4uy3Kkh7+r+CbWsXVG1rsnvMyzDsFif1mLbq/34EgCgk5v5eyu3zCw5A9UOGSETgo49nDlZe+M - W2SzWQ0I/W3av/zO48qKtodpTXLzYj44XVFMhfbLx/IWxRG5vXRAieZda/mi/RIMgt4b2bbsPRj6 - WrLHR9F5Q1Oh3HvpC+lRqBWsqoIS4sdXJio5iWA91UosbzTX0SOPh4LdHH2AOfk+SAjbt0svPh/I - xnqN0NP/Wi5fFg2WYqYsSPJQr5Qz6kiB1ygY0X4i16Xl1Rsg/ETrHo+93WtUa/B64R1yPl0nsN6C - rwPE+2AQDbaqSxxR9sEeL3Sfbial17Zt5R3fkRFsrbtJ/MUSQ/q5ott608ftck9iuUv7EzmLhq3z - +lxByCTviSDty9M1D5oKvk79HSE7Lgu+WpZU9jMNIfPuuMUica9ArpzVJ/fHxNMNGR2WT6rfk7Mu - Gc3G8DIL0192JS66thHdkrMBg/6t4CIeaEHnXkpBKLIjKs+F1QhDzygwxfyK0FnSxiG4X3soS8OI - rHt10ul6IBiCoRiRc1lrsG7M4siVgogvpKMwLuni8v/qvw30dzE9CuDBQ0IEfGCWoPiXj/R4vuOj - d1ULyqTTAh3NZJEptd9iWe03lEfZFnxRgnLxN79gyNx4TJ8pAXivDzC27at/dIAOMOUuFXC/PYvc - TvWaWUxgB3MpyvwldoJmjT/JBne8JV7tmDrZ+ZbclXZAHIIKlz1p170xQBwRVQm+0fIwuVY+tisg - ZVNnYK9nPWRe6EsMj/pgCw15gmHzg1jushv4Gd5PgW7JHNFly2x9LQOpgq6s/HD9dFrQn2euhLxd - GMjI3Y1SwwM+PLYvB8Wb93KprEgbfEqwIjt+gaHfaA72zyPnwj1dWnYxA9e+/VuCFqIV/1Re8r5L - TG6ZdqDY0eNYFo/bkzjrkbibm9Eedt3yQpe7QsH2h0dAChKUPAe74WA67xaFcSK3jaTFvOMvDC54 - INpPAmCtvzwPffnjkGsQDTpNpFCS77n+8EU176JZTFFw3PmezzHFBeAD31hQBY8bKZQeFPQb1jHE - fSTiIHBBMQ/93YJTnd1I5ZdnwL2+hP2HP+A1tCM1xacPtXRvBbjn56p4hwxmcXrGYsVq0RLgtYJL - 4+q7nkjA1FlGCOvOfPrCemvGTbklDKxBfUBaWQtg57cV/F1lD/lPPhxZ7nVLAbrUT+IK2YnSX6/2 - kHE6BcU7nlIpgQZ4gRsh6mP03e1hRjl0POGOl5dfuYsxSQbY+TlySQ72U3hPCC/zcyDOm58i8gmj - WCa9F5LTcwb6WoceDwoWZn/5N26n6djCu83f8Ce/yYAS5t4fb214I7bDcMVyzg481IpUJS652ZTl - nkEA5YN4IqjbW+XZeskD680eSUqFN6CmePPhEVkx+as/tIsQBt07VTBXjHGxWZrUwzAqeVQdoOhO - uAo6SKxbj3RbRoBal1H8xzeUdx03W2JICjirr4jctA7rq+N/N+h9t5iYH/cc8Z2VloBvL7nfDW9j - 5H7hkYVL9rT8pXSncRXGZwtfycb6jL5c9MYSsQfOnWgRu4xbfXqen6HkZwoiWcf/3PWoTCHY+YS/ - Xdg02v701xoVR3LrVTP6bT/pBa03fySX7U4BRX4gybv+8wEobgU2Mr+H3u04oPjwTUbe05sYxMzv - TdDx3hdrEQSLzMfGgcRRNRejWYcv2Iwrh9zv/RBRXVAdOcTWQpK9lSrFvw7Ls8Dc8FLzoz7dTpwE - r4w7Ej+xLwWF6qkC74Um6PJRTi57y8ELnAWlQek+HnTXy1L2O8xIL4du3PHdAd0UjZi+ZtGd489j - A/KTT4jJ+YOLlalo4ekdZMi0LRr9YnQ1QX8+mWTXU+MSnm4SkNhjQXytTJt1Yd4OnMKnRtzH4UO3 - zf5VUv58aOgcyd9ijdHdhE/Fsf3tfTwAatQHEex8m5gFHzfzIWUDaBTg4TfZuEbbfZk1OMnGFcvr - SS5aax4W6U/f2L+p1ymT5gb444+q2ufucC/KCT64GOMj0Rf3H/+1rsd2H5+52AAnlfANApucuftQ - LANtO3BtfIWYW+MW22ddtD/9SM4Foxf8RQ960F6VhJhEnEY6/S6a1F9x6ks3F0YzUC+MfDjVq3+8 - /GKdP89WB5f+0+z1Dxazdbli6Jy/B3QaUiNi1akxZZW/yL68ZbbLyu9OgZ/9VFvGSGdAjopmyo+X - e0AXgynA/OlPLFysUEOXc2eBJSsenrTjOToNdw5g8II8VF6f0Oeegz1OA21b8HkXHTq/b1tETSFw - 5Kcj39El+hqAOrX4AsM5W0lgblNE7MvVg5ezRJD2p8/n39cHu9+CfH25uILhUU92v63tL4/mEC2h - EfCyu4UGllbpDtYy2CqoLtOG/K2N9S1bBAwT+1b678Np0CfK0gB+J/9EUP176esYWSx8m+qAu92v - WYvryYERnVb/cMypvqxsG0DuF/x2flWAoTQ7U3a/A4tO3/Ezbhz7MuQzbP4aI0zRX30HJcGaz6ye - GuHvw85glYMfOqFvB7Yof2hQMG4c0kZ/i3C6pBp4LOcYsy/OpH/8D7LRkfzxlQh/toMB4bN3CIqY - QOc9fYyhYFwd5PIGirb2cTLh2lPsC4tW71t2lgzGVayg4FQllPOP0QSvVruge32omyVbch4gmSbE - YKWg+Iu33N+Ugpjn1XXXw4RDeHhZKori39DMQhJKIEP2DVMV/FziXl4+kF96ideDVYxrDuYFtG9r - wcfp1oHFxdiC+eG14eNXi91NUUcIJZZdMCN1EqXbcMvgS0njvR4Uf37NBpB1Pf3xA0qEYcBQOnwT - zMbsACgcFQx5wx2QJiA/2j7n2oTnr31EJ7AQd2gezwVcbrzhMw/HLsb759rBzMg35DuPbaSOqPDy - t0wKtPtvBU5PxSRNN1z6m2sLIwau4Mmx7V6x8EjGZhG5ewB+mi4QU0advsyVDOHSZw9yKQ8/fYtz - LZXbESTE1QMr2u7mzQT53kjPlrHi8glhY9hBpCCbvV9Gfo8v/HmvET3McIv+8BLcf3BD+cFXG+Es - HFlYJGeM93reLP1/AAAA//+kXUm3qjAS/kEuZJIUSyYRAQkCIu4AEUFRGRIgv74P9/Wyd718597r - w1BV31BJyo6Cf3juxA/mktv0VqFGRYxT7rxBrFX09ZaiyqWX67B1x2tQFPLeKnVyczZ8NEXToQLL - s0af4+QgGhSh/8Kq56n7Hdx8OZFsA86np/73XvVsdl/YQn/63wkqBbECZS2seIzT3atrptBMBSiz - 3Q+rWkFdenr5LfDli2B3e9PYH14qg558SHuYe5ck2S2BU9h2q/+B8vkqdxk8Ms6gh5Wvc6TsQ1Bd - PcHOmYtXi31c0Bw5NvXcMnOX+3wfwEiChbrp79sv1SFZ/t4v1XojNNjp5b/QPnndqX15UDZ1dh3A - nconbC9y0szJS0qhDwORwLRbopls/Vqu9uKDGmJGVn9I+yqvJ86xs/W1nn+e0xJeiOvoxQ/fPbll - VazQNFSoPWDJmDiuesH6frG7zbxGIMctB00bdNhpHJ3xTdhWkL04CWP+qvV8H2MJ8i6403t7aSPy - vTcm3PfhhmrnHtiqH6y/ePvzcxp2RxBAD7JFTf+wj8TDadOCezJe1OPQzvhtBrNFRpufSD/0Vb/c - rIcF7pU+8Ik3Dmz6LE8fxvpV05CeDr2I8QOAhHxK6FfH7iDyPaBq6nkyTLslXw7GPlFW/8wH2DU9 - W35pDHrAn6hmba753MBzUvZaTsg9jPxoOhqxgFxxxlgPSmfNP5hkOo53ep2vTTO6/t1CF25/8Hnr - fOzn6ddUSDx+MNl+jR0bVj8WuPXasA156j3ffc8O1IInk46XzIh9lNcXTuGrW/2kxpjq5S7DcZh/ - fhc/mDFFE67hd70NWG2lmY3+q7SQFryu+M9f+sNzdHvRlFqrHubiTPRB7U2LHpKv5X67u9z++VfY - WP2m+R0e7X98qlj9m0Guug7IPfbow3lr+QwXSUZWoer0+OwHg1/jCWl5DPg4E5+Nch/JsJ2CAicI - ZHdxiQvw+1w1ejKRE83jJnPgK14Br+/PZTdUhvB+xoge8GZxF0P/JCCZj4s/33virnqPA/aVI+pM - 9cFY8dhE0eaRUENDR+NP76Dn9MI4Nmfb+AmXsZWrfXfz2Wmb9IzbDjpS6GYi31b4GRPvYh3S404h - q79nNMIWqajcN9zKByM0wdOM4Y9f7K/DwxiOY2r+8RNcjn7CfsVbMlEPkoWzCzv2lG7OHZzTak8j - egub8S+/6Omjk1lHb7RczEWFKld9ao+N3wjMuXN/eoW04s7u+WEj1kjZOzl1r2EV/el5aPrKpH/9 - CeY0hoduNA/9mL0W1Kz9WyiyZ4Sd9f9fpGrkgJFbiU+zphkz2w41wFbpsfOt1Ii3JS1Bl59vUR35 - Ri/Om6qDhegn6mVe3k+8E3YITAjw5frVEcP4sQFx18b//Kk+QyL86SmsPTsjEpO33kKVR1siWZPR - /MWXdKOeh/MmOTH2gAtAxk0nvL/r0L9dKUjAdIcr1YtHGxFj6Np/9dbf+d//8tU13vB99Y9ZsLMr - 6Arx7D/hViEiuzqn7IVBonbInd0ln0AHYh/v9FJevtHsNtmK378cH+oh6mepk305PX49XCrnW7Ns - hbQEDT2uRJLR0kz763MBqrSHf37j6DWq+s9/073HxVj+6tu6nhTnW8/l1v4SVO+t7A/hwYj4FqYF - us/To/vlqkbcHx7eZX5HfSXwEVWftgNrf8ef9iWPVjw2lffZr/xaY3K04kEHonnhqbX2C8jaH4GP - 51zW+iLmS3hjCYT2hOif3zCciL38+fP4rgd9z+jW0pX2/J6pZl8eDXue6w5muzytcwNpPiS55cGg - xx8iS59HzpRELMF6lg027N8uXzhuWSD5va/UXfF0/IWzAIzxW3yoextx7Cht4P7Ob9gecGrM+snP - 0PETlthXzru+X+PxT//R827Z5PTzpTqqheiNDY4GBm+sW3hx6mU4XWShWfhHXSiyKfZEyB5DP1ef - jwB1/+5ouvqT46rHUcULL+oCMXK6+jXy9lJavmKibtX7yupmeh6OEnVpxvEX16i/VmesvQfHFd6F - nP7hLxH3Z48NkpvoMN2H2t9BdmymfFoHOWiJ/eeHsum9ZB5a+zUU8/kdzSv/Q5ExDtSjdeeO43px - /eeqJUT5jDtjvgUbe4deckXNim/RsuLbbraLEz6x0ckFRTgWsHwH24dr2UdLs1wy5RFcMA74RmPi - Rxk62VN8ztccxevntPWLnSZgBWtwv7vsvKt9RTQjB7vB54mWl40LmE7ziXRvXmvEAoUvaITbnl7X - 77fqcw/xkXAk2+Tno9k5VYNiCTtj5QN2wxfvyVJmiRrU8D4NWg56CvDXjzKG8Rex/Ym+YNXj+Fwl - HuOaWaqhyJoIW+QluHPxnkxon0/LB4+7NhPvZB30d6MgAl4+xpLsSQY72Z2wyRrb+MdXV3xb+xeB - If42/tqfZRm1Hca7419+PhyZkOlZc/3a7wHQ+vCMjT55utNeP5ew2N8UH0XTM/751SvfxsWab0y8 - jCas+uqPLxvso2xjsLWhXPuVej6Hb2tCK39Y+5F5P9TF2YdNN+R/+rmZbONToe951rAmHrY9W7pH - Cr0nJFSdgmTVf3kIpw88aIFasVmyfarCFmkaTUQ5iibCXQKImjbB9r4YjT9+vTsp2fZfvCxIaDll - M5lnXAxChWZXShP4ipbrr/3NZt72s6z04ncgCz19mudp16Z/fgM+zft7tPg3UYW78zGw8err5mvr - 3wKtfjo1jgplEzlmACjz3j5vwzfqHX//Av5lYH8znjxXILY0ye2zsbBtcQ807VwjBpZuNv5kLUNO - 7vlZV17CO6DBFAjudKbj6teFFyJBKLOFf3QF/LTJolc4ZP0U3yZH8XWxokap73Kat58OQfcWsDvQ - ArHDafOCtb9NnlNqoulmmTJ8IHfp3/eZQho5u/9nS4H4v7cUnBJRprokrRfVhXYmp9FXJPFrOUYL - tksfiHg/0CPcxohNyT5UNhPjfXTc8c18Wx4CeHpqUOvp3NFivLov2FIwUz3fWpHwZEKA3C3n4IBV - 14Z/1usuu4cTUWNbB2hekslUzrk34KM4uO6yYUUBPal9f/d5Ne5CzbSA4fNOcNF1kstQMiaQjt8D - zXc/3eUXyqnKPbc06j4djEj1sgWYbmmAM6fbuuS2sxdw3klGsgs7R8z8NLrSPQcBm6cnNfpJ0UJo - dx0QQPs2WhB6bpQ8lb9k2IkkXzK6BPCZW56GleE0ZHt2dGiSgWEj+9VonL2qBXH/rAkYZx5N2uvA - wYmcQ5w7ddSL98OZKNts3tOU8BUjrhX7kOReiV1SYcbsBKuQz7TCTnX99ePj1JVwZemHXr77Bi3O - zNuKVL9dmn9VhKZKOqmIhJcrtqrnlk2FYOjKRCqVZgU0PRXjPkHSkLik6vy858TTOiW1d19kXhzO - ndXqGQIPvoMtb3NmXN3dXvB77e7YOjY9GuPWj1HXri3Qu3jJBcveOtBMxMT28Tc0s9ZNk+Lf0wgn - pnxCXBgFtTJlMyXpVS4j+uUiokixxGhxi1NXqF4qpzhMX/ytJz5cfiJIV6ytkBJ53/9yNjowgXVS - A3rIPCvnyLOxYX2f+HSVg4jfpjcH7ELS8P0yWz3nNESC20m60lCSVgu0+U7w1kqOaiF/QZzn9huo - y0nGasxde2IS2YZjGOq0eKbgEndMfRnibE/9ORiNBduJp/gOl9Pw+ZGjyXscAdwyf+I1fnPBwR1B - WPsgepw+ikuzy8mGQm3P1LR6wxW+ezlTsiumWH3Bo+GjM43hjuIzvSpPs+G+cfBVypN09LkuuRmL - OkwO7N3LFd/o9+MKsinVwD96jR74u9rzie9mcJjiHY12vYxm7ZpNcLlwJVa34YdNcgoEboLyoNfM - s6JFao8bKLX3GR8M4b7G00GHn7qxsNMc55wNn2eo8N/HjtgqdM1Uracw+sfvTvi9fsvZrwgm5WLb - Fs6i1oiE++e1KA8jcGgotmnElxRkcDe/GVt0L6IxtwQJiIM2/gYTFbHaiQlc/Nue5hGHm2mqBxvI - EH+oJRa6yzfjDeS2xi9sN8Y6OAVRD1A4euTdpM+e4wnfAakMSg21VdnUDtELHsfnEaefwe855RJM - 4GZDhgPsNf1yLngfTDxcsXPVftE81L8armUg0ON03kcTjNGgyGYdk1erajkf54Kg6Oje+q+EuS5/ - ud4k+b1zCnoQtSmaKXts4PGbb9jNpahZHt9xAYHqIXZPyq6ZnmRTgVVtv/Rgn+xcPENngVXmFDtO - fIj4Qr8BHALrh/f2fZsv7GLJoEdsQ53RdHthd7yXoB43FjZ4HdgC8Rv+8ok6eXeIaHk92FD5uyOh - eS4aQ8JUXSnO2wl7J29yF39jdcqp4l2c+co+n+W38ULXhC/pPrPevfhy7wR6TbHoXz6L0yEVYNnV - 57V+GgY/inYFru3UOFz0b/O6nU46wHbicOLzH7Tc0ykGOogH6qd544otCwdFGmKXpo0x9bOwjy3F - aI4Yu4fDqWfnS2vC9PhhnGUFjSapvxF53/k2NlRIez5urQQ9yyDD3uvu5GTBX4C3Y+TUiso3Wgid - U0V8ZRH1sNG6U0qvpWKt8wJAfRCXxXnaQZ5KXxoe/CoS4tsthEEoD//yjQ31luweAdQ0ON/Ojcil - OBDv5WzTqydY+RyMGQfGoqv4JHdxw390WYes2GNfDM5DNHXk/gKVab7PR+2cT9hWdSVU29GXm+M5 - 4j9JoIM3Lgt2h98N8Y+nXfy9Hxqv8URMPfX/4htnOLobcyqoqXJC2w47mu5G0zY5L5CcHyXFN/GQ - C7TtZCRhpmPjFOmMSeUiKPt3/KWXGNP+Lz8hv082vUI0NPQRdt4//NvCp2+YrPxiuFjbkRr1aKFZ - pfcB5EfH/Hqr1M2PjLIKgyi29PDhZJc9wtpXTr6h+3L7uubiZjjFwMpOIyJEXsN9nKMNp4SXqcVd - OZe1XjKg+nCpqbObx37Rmt8Xdq/QxK53+yFmgaNC1b4WqpKnhkSNTrXiK12D1TUf55+BVPACM8dn - VbiyWefVQDmx3MD7XW4g3pbcEEIpvGC/HWI2TdiyodrZHS6bM2HLEblf5WI7Ftmckc8EWfUBNuup - qdBCmbu4VuHDQc/O1M0l1s+SWL2UgmU3HGT9qRHsq+TBWys4XPysb/QPf1d8pQ9P3LpLd6EcWCc9 - wKkjvnqxUBwbTL/Z0JuxDh4xlDRVqliVcczJc9QfM+mF/urvzZYaQ9hYSwVihGV/h/cBElZ+APwx - 1amqGnM/cZLpAHn6NvWOc+d2368nwH14VNQ02pit9c6H09Gt19llUz8rhmxDYIScLwk7E3Ef/DFh - SfdfnFq+1Ys6nxTKNF4/1M62Q7OYeWwrZ4PF1HvqZtSdMuSDO+MOu6WiIa4UPR1UFVv4YJ+++by/ - xZOSVAmmkQppMwnvj6Pc95vzeqqiiZbvLUiVEQkHIu78TbTw2Vwo23ui+P3K54iZx44siLyDAyvY - RqS43wNYTOdMvip0/ewPNw75jpD/q7+D+ZMzCAQTsH7wq3yRVX8DptJt/Ym/nhBHzU0H6jsRCPP2 - HSOP2y6GxGCWLyl0Qi95Kw1gtqcP9Votc1myXvQVt/SOdVrHUVvOXKA8pM7BJyx4OdeRywt2r8DE - ptU3Btutp0hclTpEIryK/uoDslP96X+Up9mPNCt0ZBymB/ZvpmZwT1ZZEPh5RJ19f4zmFHuZ8u1+ - 4JeTfnE5kas8GF8Z9aXPQBqWxqatZOZPpMlHixDD6GkqPt24ZI4Hz11uO3VSDvX3iU/DrWakse+J - LNOdgY/c5Rj1l1B3dmt8+nIavfvFOJtfkM0q/hf/U7CZS4WwScUBVJU7rc+nTB/ru8bbhMg9nZK/ - eCaKnbf9UgWdAE+L12m6V0kzsVgawCbnihrxMrAhpdcCtlTm6emlpw3rIidEDLOATCsfnIrjz4RI - +V5wiYnKuPl26UDwF53u7end/EJPyxRXHR1qMiN3J9ovHey8V06z0ewbdpIrS/nLZy+rA3fSv3OK - Tqke+aw0bcbm8zcG4uw29HZ8ai73JJsaiU6u+5ul3Lv0OmAT5NAf6GGt10Kwew7K0EiYaqiY3HnA - Ri0LRZmRP744d75eQapZWz+p0wsaE3lMAL2jdTZ3ss1Hr/0EUG1Uh7x0/e1OZLq2qNs5PnazuEGz - cg0cMHyjxHaxbkmtu/MLntzc0f1s7pqh3T9alJHfARfqgxgzNykqPF5oR//wnHxvaQZVX4S+IO2r - nGHn/vrjk9hwC68ZxRsy4d1FPV3xLuK4F7HBGsOKqm+8Z0KXnTMovXGiVt/NiIyhK8lrfpPhT89k - 394G/VRtaAE/IZ9F2NfQ37KSalSxDFFvOxUeghWSx7lSjMHVihLFjZrQbEHPnulFVgOPtJlanqEa - E+aeAEJRZIQT7GPOb+9bE47Kd8ZxXhyNqajfOvCn/REXJy9wl3sqxYA6+4VdU982LIkMG725AGj+ - evNs4l6tA32NEyIJ7aaZeWTWMN2yAOttIOXztz0V6HbTRezuA7GfjEcnQYmE+d/PiZkXNqz544vF - xo+WIHwTuPZbn/q7eHYZXXYLmC3+rPnm9796CDbKtQwFejbPCiLubfHg8Kk0eudY2cwrPivdzvYJ - JyZaNJPAq+C+1VIcCr3V82ndZag/7d8U57noDprrSnBA95Sey3iLyLgZOYBiM+DTznqx5VJu/T/+ - TKMsgWbyvddGeVwEHWO0GaPZaoYQ7Jx+qWoOuFlKcCf0fPx2ZHdBgKbsGq/xaW7x7TmOBtlv6Ete - +RfWt4rei8VvcOBsfzl/esGj79MjdDCd9ld6fI6jO6u70fvTx/5nb8sGJd86hG57W2eLwwGJuZUO - 8srf1pbpOZrOV6VcJ4sM1O83AWMY/Sz4i9+Vr/Zzu85SVK/fEttXeZPPdbps5F0WMqqdz60xZfbX - QvV3cak3PEnExnlawOheH2qKyTOaw8NVQBd54//FkztVv6CFXfBkWJew0PeMQxPYTnL0N7bKITaK - yQCytil8ZbOX+1m8MRMKlt6o+nvf+4XYfAa1UDb0aLQte43d3Ckr/tPQ+Vn5LH4/NUzj5UNPrz7p - WWjNX3n1D7D3cIlBV76tcFwQrvzNi4RknALYEAy+8jDqfrIFQ0aaSltsNe2JcZHQbJSeYz7hviec - 894kTGB8VYofBvc2yH537OB8qmO8D9NdvszqR4KVL2HD1CxG80f8hWL3S+nec/t+2RWs/KfP3FOc - 91Onoa98ONUTVld8XMb3T4ZJA4kak3Fwp0MoFei43x6pawyfhjxJEKNw08T+KyIFmnnk1TvYN/H6 - vCNapnucKrRtbZ9PpbFh1sXXwblpT/9dwdxQvi6X3YKDiSg3b+hp4CYv8LV9jvXS4/JRl1sPnZDS - rfF6ypeG2wZQxM0XH9Z863/9yYetmPjUvy4vNs3qjaC3Fcf0bMs5mq9pKCuLADccKPmMpszYVHCk - cKOW8guM6eNozh9eYnMQxugL6jwBOBnns/jo/8NbMM97Ee9P1j2fc7cqUJVKGb02LhjsDc/1ytCi - JSJ/r5plIFOqOO7lSHHfbA12cLcVDI2MsR89ymZJLAihqIQnWVb+98+PKNxhwkEUHBoBYVVV/vRw - PM5bY8VjC3bNvqc4W3buMm7enDI9ekyEhb2MyWlaGWRkNNjgL4axEFmV0Kon//ysfFz1IcTcjaf6 - 81z34x9/3ZqVRff8eO2nNlVesOp/fyPXP3fZdnsAlJ/ZXz1nxJeqQTH95wbvuWWPxOqYE2iErUFP - oxI2Sy4fF/RVThxWz7e5GSbBcVDylQSMV34/FfWoI+3RJtgXOGC/sakr2ND0gg9NqefzXg04pSTO - Dbvi4rLfgN0a6favxEZAvmhGOW/Cke1melzxdopVVinLL9CoK+WdS107f8GqJ/++XzN7Zsz98++a - Nd4XqdU2CmGL+t/68qfHy7x9Uv38CHPemK8D4NhlWFvr52T+5BTtq4eNVz3HliqoBTBoecCP9X1O - pVObMCbDFev8nTRT7lsqTDYWyaKH4A5gPQa04X8XbCXBCYmR0pjKvCgS/dPTE06g+Mfn94fyGE2C - UQzwpyeODyFh8937FX/4T50THaPxV2w2wMW67n+6mERzaYQb8HJfxr67r//8Mh0YfzzjR3M0InbM - pBb24TKR+3vnNyxf5A4c6/HDJ+PoRHOjSqryeO12+Ljy/bfOq+E/vD8ks5oLl0CfQGWGT60X9lyx - 3BgOqHurxafjestePaQb9Hz0O3+74vVLeZ08yPT9lmornk1Clw5w8fM9kdKmaL5n81rAT7xffPRm - I2OP1vaA7mwVm/EVGbTqWxvASTlquZnGBLZwKejRvKHu4TD281mbJeX3W5Q/vywXVr6oCIFbU/+2 - XdD3qy5fxakKmVo7dTGmgbMdiG/aHgclPTecI3oSfH/BHV/72oo476EB8MdM97kofbvTbRNUSnq4 - bugx8Q13ti8TB8wzj7RgEBtM662NcpTmMy7SjRotu+O9gAYJDf33vsTxbCmrX0pLND3dNR8ltFc9 - iVorn1qC1iX/9IzpWEeDesXSwrfrgR7w13e5Hf/0lNU/IFysGdF8uZ4llNtdSjjHOrr8Rm5aBX9k - k9TfA2kGoUvX+pbEVDePSz5/d02h1FvD8ZnuBP24V1MBRicvfanMwmaaBN2Gi2ASekUdiWi19Zx/ - /om4+mtjP18A6ad6Q0bj2EUsA82RzeZH6erfovVWsw4iRzhRVTv/mi701eVP32HL5z+M3ea5A+KZ - VwLr+vB9mumw+t+EX/GnYg/b/8dPjdK00ZrvAtiH6UyLh+sbHK9H5F9+YfXeRMsPegEqR/thg3gT - Wg/tVTCRWqW6HhbGcLqgEt59YdJ7mFT9PO55FYDrLqTkd73BhalQgLhYPdXT9VTqwKkrvzsl+OHv - RXeOWyuGBJWE7KbP3aBOR3TY6PwJ+0v5dsej1yVgZcOXMOX2caef6zig3JY91h+ZlwuGpdiQptWV - rvwjmg49l6F07A70MHF1w+6H84B4DTp8udw/PWm4bYjeXAi+0gxVw17LjaDseqLUSoKRzY+nXULw - TV/Yv21DNqz+L/o9veSfvmDSEnCQMnSg/lF02IrHEvrz54wEJc3CrKxAX8Rd8LF68C7Rx52DKN9v - 6ek81v3y50/9/b1uL0HOPkrn/X1/anXFjQnIKQtglfbEtiOavZCvW+yCizCQ7WfRIqb1/ka+7+FM - k9U/n6J7pcLrN7tkWf2Z5Y6cCYnveaHH3e7mTptsM/z5NdhLN1W0uLfFV65ScPj7/IYTqfCF4nOo - iDw9zv2iolf750f5fL/cI7Y9LjIiG+mBr+llylkaew6k+82DHsq6/PPPvvB7oTs+nt97Q3y0to8s - labUmD8Cowl/b+HA+zeMuebTTH/+qrb/WD6zuxdb+yuxTLmwon96dngfVUe5XISSqmndoNlPEQf0 - Sb5Y980hWrA+BQo90KuvzKnU0PdlXI/sLDVRssMmJ4X/FUDtPzzFfLmLlrUfAKGvcmRaP2/5W8/W - EjiM+fIW/fERaMvQo577rYzJ94YN/Njikz//Zd6RzELeqapx8JMaNlfXHcDqN1Kjmx3Ec9fZROY9 - pViFSjW4N99Zf39PcVntI+GYzh5IvGuQnZ76iPrRy9qt/iJ2rRL3y06uQNGi87rlQ1eZcFkuPnjo - 7pBdtz0aLEWqDS/x3lCzOvY5ee0qATK4PvxdRMjqb8wx4k+HI/bWS2f+4l85/fKFKCu+TMrr5P/5 - 31Ql4q2fT3wVQ/HZVxiT75izcr3f7p+/g925p0HJtfAi356ag3CK3o9TXcIf3/Xii54LR/9JFLHd - uGv/oGrmPg110Hnvg0/ROcwnVysKZD1am2qc5uRzLVTFnz7El+n4YdP1jTdoAGphFfNaw53NRwGW - 7Ux+PyMezbL0bCHyTgNN757czwN2K9gM3J1apjwywjM+hca0EXVwpLhM2wwbFOuLhVd93Q/d4+nA - R3YLf9qGHzTXqQwgzC/X37mdg2YmuzVoW64lS2V0/YuvNB/kk4XoadYrxjbRMUM3JGypTaewp932 - 5e2+tCn+xeuUaFDt1uf3i5l10XSPpBZQlb+IqJmCS/pXJUFYCcraX+zdacU3ZX0/f++fiZtIyxSr - vFF8se/biLGTuMCuOfT/+htd/9gmMBSlgP3VH5qunqdDkvslPoWJ2nOnCyv++f/qQzn2la9MBZTE - vtFM3r6bRZ6zAvFXM6Pa8aS786nWY6Ue7iFZ9W4jUDMolVx4r7e8HaV8PGs7CThd/Pmlu9cZI6AG - inP96rg4877B1Qlrlaovwz9+1c+25AbwIl1PPW1sjaVj9wSW7lf5gsY/mqE4Pi0F9x8XH0rejFgR - fD206m3sjdSKRGdjqsqIuAN9VGMULcJbBeXTSHdqvGQOzd5V5mD1Z/Hh1ti58DwUsdzkbYQd73mJ - xt7kVJA+ZY9P8HTQGEpNrETHH0eUxybOlx80HOzlIqVqFHx64jPRRqs/glVnp0RdeuADyJrqi1c9 - wmjUnUyU/dgH6/Yy5YyPuhjOxhxTsw4v/+rZH57S+3olzp/fgtb1oRqhxPjHt9t+88Ia7P2IfTrT - h+ubYGqjukbdKWOecv7uTJyex6kZHvGuhclab80+I8LYP3+brvn04TJjkaZzoax+GtkYMDVT9hxU - 6HtIcOidkmhxwfuiP3/+sPInoaHnGGD/jLHjdA93dig/yWnUidhJo30vLt0rkFd/GLvx/YTmx6kr - wNm4Z3zKDmXEqmNElHS4E5oLL4bIH58yKXz+vV9mfQcV0F3syeonNN0ffuyChtF1PfPRLa4LqPfd - nR7X+sZDa77goKdnqim/0p3+/D79iwj1ouFlzN92X/5fgw+k/72lYPvFE7WOUsemO1ZBQTmcse4c - o4gldrSBFw2+pK4jlQl6ZdTKg7NVnKyjG+Z9L2SKtyEHqh6rp0vOWgwKR8MBH6NFN3hBv1UgfsYG - H+7HwhDcJUqhIFNObbKzXTHD/YAwb4fY055fl00GVdH3U1PCnWjTj4N0T9B0MAVclAPtl0G6txCT - wKfOSfygJdjTGMQLO1ALPcZoEnU1VNxKI/hwKJ75JDhvXZHa8oTNxksbkd+krdLncKLnavJz+vs+ - E0Xkuw/W+6aIXn+/P/8EyZ85aBA/DKoHO/eOaH4o9Oi7WykkrzoN3vPKhk2xzfugXq3Oj9lx6Ofm - JsVQffQa49R+uTzdbiyg7Uml8f5puezuSwR++e3jM55Hze/Zfgokj8crPhTpoZncpZfh3O0Seq2k - pWeCflSVLPPvNPS/cj7//f73U1GKjZPGuCziE8UK4UfPX2LlokOaEIhefslovx+I43QWKnfuM1En - aeN8vJqapbQC2uFThetouZrHGPqH8cCH+XLuBfny7uDWxQre/x4IscNHr6FWfgU9BbqN6P4zVFBn - Q4edMm7RGi8bpRtshZrsJzYLOuch5JMi/Vtf7llGhVLtTQvfOKStlu6jhV132WPHTwXElHiRICtO - R3r5lhqaCnwGJZC1CmPeaA3hYr8IQDk1uNi2p56/qL8BRUVV03RfNcZct0kBbJt7/mwmKJ/1QpNh - f3ZGItdRzd4xfAPwjadFLwpK0GQ15xTo4SJQmx5PDSvDn6kYeW3T0HKu0aBcXAcpU6Him4KuiE/U - dICdc3/7O76YUHsUDxPEODfJLmCQT5PYWcpLu/HYK71XIy7GSQXHDba02CZfY45VeYDtuivLUBhr - JtEpVLS4c4wf8/vmCsOgFqB1KKQ4cDxjKbBWKK4CM80DxzXmIspb5J9Lh+4Vp14vQpZkkI8epmHf - QP4v/hh5WNhC+IMG0dI6dJnVMy7J3KLJ6kcH0ttPJCzIw2Z2ul+KBG3zIK++fzSjmtaVsijvAK+f - F7FhsImidbuQhtm+iThmmCFomVJjsyy+7jhKXoKe9mZDpjY31lnJVa3oGanp/ls+0RQog44eZlBR - s1REd049l5NJkxJcXJTGWHYnJinT0V3Ii91Cl/+Ong9j2Kf0r17MH/66QZvXzcZZaWo5b62n9NDD - aLBphXIzHhq1Ayz4ElFizWTCNm10hVvOFFuZICFKRMYpl9oUfdG4v1eIjsl6S0FJdTRdkOjzTEfz - j5OoUfwCd+AdQVfkztzj/H2VGwa3MgQSFRt8nz0vYptC+ULmRTeqho/I5c7au0Qn9kmwVcb79SJ5 - 3Ya0rS94P4GJhIsabKA0m4oe+Bdzl7MWb9C4VBI93bV1l5lPZPiLF81I3i6z27leIY9Sd+aVZuiG - 50YZ1W7AulgFOQv4s65swrTASbZ/ReORsAnU7jBQ91DUOWf3hqOI+rKnf/WN9/nl3/vwt6oPxvJI - Og/W940fu/DQCzF8a9CkycJ58fXdpemwBcch56nqB+eeO67nst78QaHYG7Yuu1/NUqmhFbC2cfN8 - 2aa9Kjent4fPL9rls/radiCcZYz3cT2j2Xh5HRQb4lJ1Pzv9rBa9BOr3oBJpXxmuUGXZC06P7kSt - tvnk8/vdl+BWBsGuV0j9Ip+HELyHoFAVDjcmEvq1IPjoJfba7tNPkm9mQM3gRR32TCKRc4QJOZ19 - pGmIcT+2z7MF30tl+B/zlBhcauu+Yj1lA/tMtaOF87cSbC8+IYsYdIiZeZUpUvq++RKSMkPcVq0O - Kz7gy++R/9Wrl7SJ0oXGLcLuxFv9F+3cB8I2OuybeXdCX7C/n9O/5y/0QutgX1kHIp8+es5doFKV - xyeqsSnadjNj/lcD3JcT3RvCbPzVYwjzAeiFV0q2fEezBPHVnX1ukQxDqJKbB+/AwtRNb0PP3s/z - C3S51ameW0o+io4boPH5WqgFeOPOj+S5UdZ897cTZ/ZcgW8AsDDwd3F4ioRQ0Svllj+YLyeJj9gz - 0wTY8FffH5BV9/M9PyXyXRt9/3WsdPcP/5SN+fxSD33mfiEqzmAfOFef/2Eh7yJpspVrvPywelMq - g75/YwyTbHzJeIgrl6vb0oejXYw4MjbRuqs9SxF53UxctGg2FqIe0j+89hdO2zbsajsAl9oS6emi - l2gp8qQFcs50Ar0T9jMRWYLas+ziMLEOEZd44wvSQ+9iq49ENOwfTx3Ox21A9exiI2FBGijnqxzj - jMxvxDF5KsFO2idNSrPKRayJnnKTgxFnKz7ObpdmkONDT7VU0xiX4xqU2zc+Y/cl4n7Ko1cCVrj5 - +Yuo7nOhLh2AWm4dsi2kuOmsTxQgsR1P9PgldrT0w7lU+EWn2FnjgXfkrQTmI5mwFut7tBgPud5d - Zv2M8/QXuqLRgK1wat7QgwtDxPTKmBQ9H6S1vmqol89DDc/jNsbapHzQsuYTWq1YnNBlgyhcDEkZ - zvxC0xM1e6a+Po5yuEyIHne5xxZnGVL4wWX0mdL47vL6bUzY5bfef9EsMZbUkBK0nqjDQVZio3uE - Fado+VYixD/4ORmpxIGeEwnbNBONKXOfLyRo8MDJ6fPMp1ArSigWxmE92zc5Sw+7DcRbP6a6qO4j - Kvp7R7459zt1rzstXyJJclDv72/UbvuuX3hrsMEL0AufXuQYjQEfVMp83KaE84Ow59XX9gvYCC2q - WvXDWHaXzReWrCvxfj6RfC7DXQvpt9Gwa9ytaH7dK4JgoirViufAZiZLBNK2utBk//vlVHsljqLf - Bs9HfOz3//A+WbgTtrZ0YRNvNV/lrZ9yepvvHBpcUlfQ4I9E5C2hiDmkCYDXTw9q7p+tMfcSidEk - bXWsVZWNptdPeSHmri0szN4uOxIukM1TFmPdcsRonrexhTZ6MeAL73U50wsngzaEGXu1u84abKta - yccN73Pkp/VckX8seD/NN32s9X2mCAZZ0IGnt7t2Y/MmllOoPmpNb88A5UusPjcgxuRJDc87u+L7 - nnpweVpPrNNwYTOsW2TvGvWpETs/d84OValUX136V/+H11MWQLq+Daq2vd1MRRQlyuxsCdaKoMl/ - j/D7AhwHBT2b1oUNh084KUmibWm5TzXEJ8HHh9bQNF/e+iabRUuTFDv93enluw4GcrvAhiSEkR7H - E83Z69m16FJZLjUT3+nne+S8/vgcdnlu1/yKvEwgL439yq9Nd1GLlw3+pVkIi3vJZUowV1DJxgub - 4pf183sUfXByn2L1OFm9GKnIRzs54KnVxAh9zKaxIbW+PC7ENDD+6Ql3sz1Q/8KrSKyyTEDrv/02 - 25v58CiVAsx7YpJNdnEZk07goBWv6T5aNGOJ9qcY3oGJyRwYR8ZLvvnd7Y1o57c0ZIg2d9kDDYkp - kfumzKdO2prob/2i17XuWVWT9k8fUB1hi4kxVAt6bf0Um2T3MYY//NtrnkKDUkmM92e8+CCcJUwj - rxAa1ry5DSqbrKNGnPk9H0MVKGxIHXyuqi8bsSYQeE0+xY4YDIwqwa4CIVJc7KAHiVZ8qpAxFD5N - wo8Yzdcg8Xd/fMZEV8cQBadY4IguGD8G3u4FdI5CdKraGHuCqLlcBLOqWLrerPj47odxOsZwwsMd - 3+JFyic4qRkcrN1MzVUvLc193vyLr71tEjbvPy9dGafao9efNbk9EREHf/r0dNcythhfP4Rflp/J - Z2PIBr1dtwX88cUQYQut6zXBii/UKl9uzscmmGAZ6o6ezQRFQ2rrnmLcaw6rzplvprp0Sih8CdFo - ZxiG+Lo/fcXc+oGvvEqDkZFzfVC7/UB4CVVsOS1OCqHHal9ombdOBb0Csmr5hn1xStEcaOOAoGKB - 34rVnLPUmFpFNKeZ7kc/zGkoTZkyH+SCHn6fh7v4/DIpf3gqfYqHwYx8l6ElH03ClePcL2wjJ6jd - GyM1t+LFWPTKrWG5fW1qFPbzr/518v3RausWLCn/i0dgYzFhfT1VtLTjvUBtpByoj9YhfvdI5+Dc - oYRs019kLN3QlWiYWU019bqN6IQiX3aDw4a6nouNRfI9CbYtNvEpCEk0yzdxgpVvYDfOpn5Sztqk - JJFikPmH+ZzVpeEpSSMxioNs7tnr3W9gd8jW29y8ph+eWWgpSS3f1xaD3nPR0ffkGUSZjHac5PM2 - +OoQ3I4d1mZSRJ3VF52yqWOPoEpizVBnRwsZRVX6UrYp3KVMkCcb9FnhyCw36yzmqVWi6d77v6Jy - kGB++ODf895/5Y4NRU4t8N/3Gj8KifurD956aqfBev3qchab/QtuymXr86v+JVUWtkrbyCI1+Hho - louaAsins7jiQ8j4Pz2tsCb0RUVXXfL+jSZ0nanRsxezaOWXKTr/1kFHqiWgri6dDTpVrxgf+UHI - h4B/Bko99Jb/HpQvm339QGCXJje6fv98wYpSgXaVAmxp3RgNi6haYPG73N+98TX6njZXVd7Z2Y+I - 3nA3lqOIJ4iflyf2dSeLZu1FOvR4eYHf1tET/ZKAejLyD3fq8q/YnfePZ6gIKhxx/kw3PdvEPwnq - kQ7U3UVds9yvng/nj2Bi/2Nw0YJONwnwId/gfXq2I6ZfJR3cjXLw5Zo7s74sBR+IVoQ0Oig0p/6O - y2D3DY/4GOgH1k8sLWD66K0vNDFik/66pIqpPRSsvagT0e4bxPIZxIUsbdPmy7I1EnQJjwcc72e3 - Ee1assEkgYNvQTRH8+Z5qOUP/22oz+ZiPdLRpsr92RKqBRGO5t93J4Ao9hFBSj0YC5MlAF1+6X/1 - BH2ZPBW7lW8StOq/97o+SLJeI9WZ9ssn5Xyc/ukbrywclzEd1H98xdN10ZiUeymBe9d7rO2GOBci - aXIUcwpEaqzxSOZ1dvyy+QlYTxIP0Rk5/i5pZIbVT3E3WMeNpRz23YAPu+jY09tVLOQ/v8J4p0U/ - 272bwsoPyaYPeTRLoaWj2VEIPqS/ecXnhQP+bP3IZrve+pjjzFM8Oo00GpO4n9GNTDv8iUp6wuxj - zAU+erDqY2wM78qY1LQLAb+9muq9MUc/bvO0oNk+UmocxiPiJMdV4WqJb+z5eOqnYQqTXd19M3wJ - jA59T4IRQvKUD/ih1KPBFuOkQ5MX6p9fYKzrz0FZZ7HfJft9/i9/zPNtxKq4A3cepHsM2mFTUVtb - gmZMvJFDaz3B3qoP2HtsB1g2vYAPiq4awrGtQmgX4Uydj8EiagwHGQhLSn87m47x73mnrwo4V8K2 - XyhbZwkPPwsnx+971R9hpoj6tMfm1lIbvuOUDWwvHsHeth2buQznl/KHp3/8j8U2v4H303r7rPhN - 7nL3pxJNtlvQw8aQXRYq+gQbrUzw8edH+ffzPvpQCvmArW6x0VSXeqH8Dhkm08cT+zk6WiUgRRqp - tss7xux2V/3xV3rcuYdo1e8VOGDz+PR+KGxsblOsPJKzh31ha0YcnNQUflKw/5cvTPT3tuJNs4l9 - xw5z0SVhqCTvLV3Xc+qZ+eEr5YVz239tE8vg4Bwu6PzlMhxTJ2iE3D2bipzbPT5NgxaJt8MX4PAa - LlSlGe8yb9G/SobMiF7X9Z95Zwzl07mTCf/aBmwaISmVoFXtVb8s7pzhxoPc02/UsrI7Y2r1XiB/ - aDn1xO+lYb+hIzDdDrWPVr3MREvP4HhL2T9/bHw/Owv6cbPzldVvFOCkSsppqkyanonaLLzfSvIm - yhZf/LZvd833TFEzF0ja57mx4PmbQj9AQ4/p+Zcv+6aWlBzve5/T9YtBF2OvIz8sKvIxNlz09ci5 - QkXAp/Q6trlx5513CPIpEv2gHKdmbEfiwTPbZXQf6y2bd0c5QMrzJVB91avfszaWyL88F2ohfEBs - W7y+KPx9VR+9WsuYnAVkGJda8pV4uUUzNcQKXRti4KPS+dGSRzknz9IS4j99NM3bSABlKlWqlvd+ - 3QISkT+89jf77yH6luEuAVk5HPyd0vk5c4RWhdZcL87e5R4ign+R4V1biPpixaL5j//sH7ZK0zp/ - G9z+8VP/noe6Smg1Q5U8Ccy9+MLeeXNw+atXcHC+7dRVr73zaY3nf36lzrRjNHffr4BWP4yoy85y - F85SbDm4mgSb2X1wmV65E+CX5xG28in+9WQWrPFHj8bFMCa16L/yzS5mHE2c1k+7o6yjVd9j3blJ - jBoDlkG/z9yaD58/vyCDVxVufUnXE3ehYv2Cm13OVHttKSLPxPYggkwnHBxkNp61YgDrKRk40eQF - EW9zreB82LwwLtJjT1Y9DgeJjvR4Pz8iZj5+Eyxd66+3zabuDJc4RWs9o3jg7eaPTyrPjnd8CGne - C/tHWiO/zgKqyd4jGrT0HCCzjDNa0O7eT//wWdcbX8R9zci+HzvIti4i002p3CXggwmCxEzx/Tu+ - o+XirUd0pK3uz+vnTUY+ff/8MSLGTucy3hkXgBN3J7O9P7NlMbxFBrrssLGL7F7c7b8Z7K6JQQ+H - sWO/q3k0gZjPly+cRIvx7TssUUzDl79o3ZD3q9BB0qdi2AoPQ04+b22QQ+h1Mln1w514vQsh3nox - zV8ibeZ9U3dK6M4emWcC+XAxO+5ffQ9K79msfGVQii15+hv/QKLp2E4TPNN1EDPbbYzJW0IZ1c4k - 0/g4HRqO01EAR7scsbNPK8QS7xLvBk8wfGG/I4y58ieDDq0tw0D/skW5+xnEy/lDdf8rR+T9vMX/ - Ie1bdh7ktSXn+ymO/ina4o5NzwgQQiCxCZAEpFYLEkLCJdwNWOp3b5Fv6wxaPethlAHY2LWqai0v - w5+eefgEFJTqnAY1eWdNbUlOKW8Tc4Wb34bmSemM9cS8cuW33yXw9YrlZvoWzG03IggQDtBvtYMK - H7oA76NVTCkTviV1Fyn1REOgFr/8Buxz45cvGP/Gq7yPaoi+W7zmtv0pkwp1E1enpts97yaC33J4 - 4tfjoLnLtv7Vbf7J6TK9i1nezw2Yj8eVnD593/ebHpfta+0iIAdOTw/F0YF3rjvig2yU7rSNH/z8 - /j1/6oLND9agWnw/Gx88p+L7pmXqjy/qqfUM1hUcGfi+czb2xOjsLtX7Y8JW9lNyGKqdMct7qVES - aLb43ghOMe8JmwNdbcPps+1vIYBLrhZq9MDamXx6Kvr3D7Slj7rl2w5gyhJYwhQqmGjJxBWD9fI0 - +NpfLYLHPXLnUbsrP/6Ld9HHo+siajXU4mM9dQnPg1m5Cjac95aD5Ld2paPTvROYnrR4mncrKpaT - clXgxvfJnn8Qum5+E9i+JzmR49STfT9KoJW9FONSOBVjfos2uB4FdAlpEsxXmOu/+Sf70B+C335T - n5/KRPwjb8G8iBdT5amxR8VhPFJhYR83+O7lGUeOhgyRyVldWYfeQUKvo2A5FHYHSy19YWvjz9NI - ZkH95aOu0XsEq4RM6af/8Wmfl253KGwF1juYkkgQc2Nxp8sMec8MCObLqzvc7PKkbvyWYNxpVPyO - pwnOwGDQ+6cXdtFRg/nespBCdn3ac8y7hjy2TzjsEs3gmXBNVB+2OvbFRQZ0JIupily9I6dkDIoJ - xpn+8+9/8ZNS0XIS8GoCCR8Gvi7oyrolHHF3xfuGOVGhaitTXe1BJ77/vaXrrnxKv3wGWvtAAL/1 - Apt9HWBD9ct+Pq87CYrVIOJdtN7SAT6/EmzhfcTG4WkG3Gn1JXUsvhnZyzChMzhGGtz8VSTdkNvP - VVWc4M+P38kwplOz7Dkgim2Ao+xk9FTbjuB+jlM4qeV0TAU13mtqN51lcuRPbiDcw5cAg1O5kkx3 - lGB+pMQEu0a4kV885dmc+chd4lww2kdvOmMZNGC5CydyyKW1GO6mxqnJ6RLjkBV5d/q2hgVvvPzC - Z/WYB9QRJh1GcnEnJ8fj+upQaI3KVk42CfSCwcwxCwd3NhTwL/9MJB/lAAzSnVyX8xQsSMcDNM6V - icBiHt0lv3kMNObnd2L5oO/XEZ4hbLv7busCr7tL9rKGn/9EMAZOMP/yOe+DFJGQdGnfNOW86dND - gT4fjtCFDdsIZuHTI+gs2mD86bdtf0/SKpXu+s4C5ufnT7PzBu4a2vwAbbkIJra1fHfdRfaqvC1J - J7FtEjCdx1n7/yopkP/fJQXxKfOJdbtWwaKFfKR68oHgA/cYjFUe5hUmzxJirHIrHaR1fsD8eAyn - orA1g1Ml46MiLJjEeW8nhNvEtGROyYRJ9qAfCLFCcji9uSu+eJ8LFYfzHqqv9brHOtLfvejr1IQX - w4CIP0Ynd9EOowPBE/cI5Pc3nVFjJ5C0Jxn7Uee4fKPTBoCciFOlC1+XeslFAFkSueQ17/qeosj+ - wCLd7ka7OGy/VOwugZkxG3i/vzqByKSFoJqHR0Ys5sz0K6udSnjBo4jRZesKUGhzp+LpxJJd1PDp - cjYjB7JPRySHxtu7c4IIA82z9MKXnV4X8zYf6jEVIrQYqeUKX0mH8HKqFOx+q08qXl+DAj1/H2+d - Ih/pjBqJA+UjKiefVxS6gKydYQQtEyPJVWmBIjsHy+6qkDhpb+7C2IWklsWJIwHnj/2i324ecDXx - MZEvXwbzKNY31RD9OzmjDgetWYkCfO3q9u/5QpyzGYxzpyI7t3RTKn00R6Wts8fWtbCMNQ4IguwY - MsSEyR6I9ynTYUoOHDa3qp5V2s+ZqpnxdcpFX6M8lNcBzsGY4n1+Svtldx0F+GpKFl0P05HSS+r4 - oKgiREKjpenaKqEHi2neY030NSBc9XJVrVvFTwp66K4IT+sAuVmSSOSyEV3Poaap4fXW4rM/Xgyu - x2oNubOeYRfYOBXrMQkh5+UdubxrUCzlIjuQE0MZm/vbPRUUZckg01p3YnNZTon3/Zjw5twHJARy - QadL9GnU8soUxDkZeiGar8Og9mScCJ6pA/h7M93g1TN8bPzmWzY8To3V04SPhvFNl4mIDxitH4sc - j9UQ0L66OurranLYP3ufQJC3W6O1khbEqc6EjqX79iHxZwkbbH3pV1n2SthdRh1n6dfuef0jWLBy - dgZ5RsnVnRvqDvI2XpIlRmfM8tYFA3j3Fqk3Gm7rW8slJ38hgmY96lc5jyCss17Ch8U9FuJX6Wol - 1qUQI6V8BpMse7XaVefzJElvvZiLce7A8eU88GGOu4B05TDAuB0KnL6BFgh+XdzUHx5kM3enfOlI - HLRiWcaaUhjpqjkqUvLb7o7N4Mj027zp0DTD7e7bfmcs0iPKYFtaBbGxB9JBFVML1vZuxvfc2e4O - UocQMn6Gt2Pjscsp6JjBa/z1plnJ38Uq+ZEPM8Yr8VPP7JQ/d1t7r4ev46sfzMV6PjQnUL6GhpzO - JjRIsZU0XKyjTGxzEvoFjr6k7hv2hjWm3rtcechXWE8iS+zdM3RF4uEBVgY9Tsw2P/QLUh3kOgmw - O+Rfo414oYaVotY4eZpdse0XW83KW0QssDxdPmpvKwxE5TKpeloXX0j1UjUT2GILUy0VoeYr0Cpa - lsQxd3W3nZLB7X2xdYu+hgBhcoMTsnXsRPhYLEPAmDBks+0unAtTDFLVnBTBpV/EhDcr5a8rJ6it - llw2fBzcya9WSfUauSH7T5W6wobPaog+MbH3OU/ppItbY2j5g63gUBbz0FYdfJnSiOPXOwICG5/Q - 3/fO8s854IKgSFT3/iqR/AiilPpCeoKOZVNi7oJr33pju6qZg0wkb3g0R2dsgYAJfRzti3u/Xio9 - U+NHE+NQGXeAu92vpeq5T49EjGv2S1UfV5A9Bzy1VniklDUeDUTHyMAH5rQUfeCBFdahTHH2Gk8u - 3w97HzZtvSNxhR6U3+ZH3vCToJOnU/HSJDnsQo7FpuNGAX+NTyvs8T0ne4/47hzvXhNkouGId/fZ - D7jyHQmq3GhvcjrulJSCag1VxZUUrJ/SXcopu7YBE3J0cmDphc6jKTRQ4mwbX+r00XP3RbBU/BQW - vIufQjBJUu6oklIe8a2V1mAIgiL6fd+JLjvXpUPN6FDmzR4ptT6DtUwvtkqFE8Zp86zSVn7aCpQW - zSX+ZzvFHR6gDrbxE8zUvrtIfGSCrAwjbPUvv+C/u2SGDPlE5Hgr1n4x7tYAzbPyIqZ8LIIhQQTC - RmhcEszYBULkMyssT6cnvmWZ0/M78pRglZwdbH1KZIjmRXxsEofHLlyXfikK6QEWhOFUMnSf8q0x - mPDI5h1a9rbjChc3SRRgXF5/8UNQDvENVOf7Aeu97wdDswYefFU+wJqdyMXsmUcBcMYjJ+Hlw6Tz - fWEsGM/hgOPIuxX8Lak62Zy2FP7bQS6ddKzB3+9Msh/GCm/OAxpzhwluHyUdvgywYLfLATb9O5vS - 654ToNbsv/iK94Ru8VGByftgY6vivX4M5j6HHsQDQZL6dPkb2nOq4g4UxzHHu2LHPFaIvytDfs8X - quYdqRn3eU3MZW/QITofLJXRrR3JnuGpp+38MKHN1AeMKHvreZ8AC27xm5wzOXKX3TQ+oJmZNfHP - nh6IH7x1Xdr4DLcL+IIq9yOCyuvEYOfNYpeOaOLAzF3maU21L5i/DDVVLmi+WL+vX3cugshW20B5 - ECtcLMrdWStUm/nk4GOFHoBO+O6rv3iyf4VRL9ye/ARnbqspoKcuXeqzbqtort8kNiQ7pd8wmdSQ - mBM5X8AC1lroTNhyXofP5r6hdTeVknpEM8KHHGrbtQH2CYSyBvAFSbjgSfFqYJiuHXZZd3FXWdnp - 8MgOC3ZOWk6pKeEbaLXogm+BXACK6yOC5dHK8aHd1+7cnNwEbHhPjp3EgAHgT6iWj7Lf+FRlLEFp - TFBbxBHJ3y9M12Q6DPCV5jw23uW7X/FxyVWbKQ/kwDAeoFDzJdjMmkH8L/aKhdxEDhbNx8X4Y2s9 - r8PagYR0Cjmx5z1dm5cRwrSn81R6M2vU+Lh8VEUPIXmchTRYE3BnfviGcfktAKckb0/tpsUlRqkV - BvVbB0JQsws51LVOF//mapC/A0Sc+Sv2M/MyJCjNnPnDo3Q9vz1f3eLr7/tS2nyCRNn4IkFf4RIs - PkwUUNpKjA9g9gyKaZyBLf7ji/s9G3y4nhJ4HQ/p9BUs5NLrHgqQac07Yj/qu18utn5T4tPDJxll - b4Xoae0KlFe8x6egeLl0wi8PXulYEgvWWUo7Jpx//Aj5XJD0IiqbG9izS4WtXB3p7HltB3/4aAqd - tnVdSj0AanUhxsAc0x9+wxBN+aRkvUOFil86NbiYOg7F19ug3/cHQlJbkLhMfAHDj9/+1tvlEyWU - llLsQ67zCMpQuzWy5voH5C+vM7HkSO0pYrxIxUxqIbKNb03Ai4GC3XfTvD+K7h8fpLVu48Oo2mAd - KyTAkFcYbD3ELp1D8LBhOzZvRMtVT9f+c7bAhof4JkfPfv32haNuegTR/rJP1xCbNWCu5YnEncTQ - oU1OJpjPBx+fw3sQULYtcxjH+YP47RSApZdGS0m+xREfDd7qV4YpOqVDSECyfmmMjb+vwIrJOtXM - OeuXc5drsE6vHP6Lx8EzLUGmwBwbOdF6zjOPHNDuY0yOSSu4FMb+B258lxzE7tQLG1+W64ln8dm9 - uQaPLnkEq28QInYYv8HGjzzYdnlJbnF77Ld4/4CN0LnT8q7TgpovPMDME86b/lqDYXwK3i8+4Bjj - KSC3w3VSSqIQrO2ksOCr9V2q4d7+4Gv2Eou5S0sGvCRqYUPMJ2M23pYEmAomJJO2u+zVjvpqwZdX - fOBeZ0B3SB0A7g86xl/NSDc9mKu9Lb/QYhEnHSoS5zB1cTpx5vuW0pFDHsAiu5/kCkEwXEm5AqQz - OsHgSvpREdsEWlY8kYs12AUBbiyAiy7yPzw31rGyBJVQ18JWbg+UBl3PAcV/G/i68aOl1roQFldd - w4dt/wg3r3qo3URdcmLZyp2Kr53D4045EXPDg6WmiQ7r/g02Pi0VsxzPAuQMP0ZyUSo9MfvvB2x6 - dVrFN3CXOxI8uL0PPtCvA7j2XHrwensFGKn8iw7+K1nh9Zge8dG59/2C5YsNcdnuJrCeHUor+ThB - aRbMjW8sYJUyyYLJyDpEb3vfIKV08eHWMI78+LbonY81LPEtIedEuAX0Ho4QbHqRaPrIFzMWjha0 - njsB7za8XiZy0OTjNbrjZyZL7u/7qxv/ImlNC2MF74WDjPyosJ/y9ob3GoLKZ3TQWlISLPc0M+VU - 2roW4nYH1kBLH+Cqq/YWfyDovfOqgVasJwSVa+HOTUUf6i8+akhQwHKNTzOkH8VFS/wU0rlvVATb - QHoQvU5IsdbPLoPHaEhJIB9QT5m04KBRS0fy6o3KWGsx+cCw+swIimZebO9jqVr4fRBTtnbFpp8F - WBbaiI216QMC4+QDN72M/dmLqPjBkqnMR/aKUWb1YO1G+IBO8XXx/voNwXp9PDjw4xM3ry/SRQ0D - Hxarf8FbvADLtb7q0FA/F4zA7VGQ3W7MYCl8JHK6LSytlenSwHwQa7wrWGCMrVFaKqdtekq+ez3Z - 8fsSeA1oCEJ1XszhJ8zBpkcx5oShoPVBfyjatHURELuhX6Rm9lTLu4NJXNy2WEKX+6gbH50+9XNJ - x7CEDmA+3Q0xKs/SLd4JEGjuBzH+YLrrpXIyELFoh9raUOnMvrgbmJ9BPIHp8A3G0pEEcFw5Qn56 - fwnuhQTlPqywKb52LlWcNlGdh6rjZEV3MFefZVA3vkbuv/cB0kVQr9Zhj60Nb+YizyOVv8sIO+nT - cRcWwgx0fYvI3ugbY0RSPkF8T+ZJZE6Xgt4VVVD6Ey6moo4//RrsDAm2OayRcuJ3dMPj7WIhqfzp - E0rI4/uBQa8hEmeDCObb/ETwZQ41fuy6MFjkthmglhpPVKqMGQhMNeiKUcwnkolBQmevuwzqXtjl - xD7Wcdqppev83gcfTyYp5ptzDgH/bkPiTtAOft8blCf0RCLDeHSWqvyk1tlzIdY50QAPg46DrIF6 - pDx8N6VGx5qw+JgO2btLX6zDHdnKxnfx8bOmKd/gNAPb+iC4IDmdjXGaYPD2jghqEm9Q4zkJEro9 - zjjxrDIgzUQR3PysTQ9dilV+5bn6WrdGzXY9gLFwtETZs98M76L+7vJdN2yWon3BbnXSgSDLUQ27 - 685CYsUZBYf1Bqrl7DEkro0nHQs4W2qsK+Efn243fAS5zZ6xE1PbmD3v3YHN7yOuWnq/eFUDsh8m - cinOWxcLxHiQfcAZ+1l4MpaLrawgtrQLvt7dIB03/FDdw+WJL3Z8KoTRva3AQ98zknT/6q6wSCYo - 4EM/yc7d7Wf5uzPBFfcGttm1BBS5zeY/TAXZF3clHSoghxCb1oDUPekobW+DBjG4HLFe7mZjbfMS - AU26TNMafe10kQWJgdX3Ek73JqipoMdTCPHFFnDaCSUd5DrqQHuEGFssl9ENjx2VvB50epe6atBL - qvtQUhIdY8oc+0ZXrFzNutqfwHht3OF6qxy11JsXRpwY9/zt/EzAb30ZyjL3M5sPKywhlLHGRmUw - /PT+xIc5tnJ3Kpr+cY1gtws5rKlcBf7278ZPN39ODxbTfYUg1ofzn3/CTzZr//HzoFz1YG4ptEHm - nEw07xnJoNHNEmClsPUE6l0BBvhYN/9h/fzhl+jVS6cS0ijEf4EhXe5NHaqU1BY5yOFEZ98KbKBU - /AEf1MQP/vy07X+8c8s+WP0T8H94jySXlcCKgB2CRCQe2SePK9j0kAWUF2LQE33HYosngvrHv2fa - gd7nuxk4D1YnTvrsjBVCPwQoTxJytOnoNprHKZBgf8Dn2+zTVcpmSy2qBOHNz3Gbel4TtY6wOCke - 2Kc8Ke4NfPH9dqoU1QGVPrYDNv77488ub9xZB16P8fHPn/nxORgAdMW7nV73cxF4tiotuouRkMWb - n6xFqmam16kyetv46V9l0zfk6ME1XY0km0EXuQY+fjvGGIrRPkHZmT1yMsGNzmNv5ZC1ckIiVtv3 - 802tsv/WA/d+VV3jA37+gnWLDu4fn934O3bCo2VwHXoMYD6q1+kXX5dNTyrz2H6xXjVzOjds/4F7 - 4fxF3M4LKMfmwwzMLzfgM36gfjTuaIJl+5jwPnttJSqbfuLOWoYxGy3BoPXPBJq9M5N9uFJK7wov - KMHF0sneaOpALLwmh/sdqxEbDO+UwMSBgFWLPRrxY+r/+OP1VFjEem4Xi0h7W1emyMJI8KbKWO9S - hn7+NlIoH7kTvsU36H2eX+xU3tLP4dX0YPUs0MRO9zZYvaKtwU9f7Hb7JuinFt8UKwYyRpu/uIZc - qcOQlxjEefPLWK4xf4Kb/4jE4poHFFXRDCewvic5I3GxfM9rCcN07vCxH9ntltHkJIe2//r5EWmj - dtRTiyZ3cXzuMZ2r20WCqZt+8NGQmnQp7l4H8zquiCZBw1jVJY1gMTEncjbtrp9VMdj0Q+di1Oa0 - WEu0hOrP71s3/cRteACRmhUTKD5awdWzEoH6zarkMBHbXdClicDmbxO0+VmTzgoImOVEsJWebZdv - Pe4G48L/ID693CinPnsN7vcXc1rDsi6o/JFKON0VG+8dp0/XIskHSD6QJeezQYz+No41yHGMkNi1 - ZT9X13cGmUjySJzHgA5tXShAftc52fzrYt7tVQaC57knuIoNY/CesgIT7UOxkyZ2+ud32cA3JpHd - rUWOn8cH/OHb85FH/eKFH0cNYcj+6f/hdn+W4DruUxzwwslYv906qBHfGNPG94ItPwIV9wkqsvt6 - at/6N1cHicVwxPFAlU4eo5s//Y3NAxHAiPyIg1fcGtP447eQOjWM67Im982fXoMEQECv3G7DL0Tn - rjFniIKbh+0DFI051ogHQ2hLqL1MSz/vpLGDcsLcMd745J9/U3H3bMpUjaEzNi7Jb/zEBB8dLKxj - rtAtiwm7nWCCBQYfTsVLYU7KFp+pkb18GMo6QMqbxcZSVZcQUth4ZHd4t/2iXOIcxqP+RVCtq36B - 8jopKTwyk5odIjpOW5dnzenxH38cdplagzZxbki4s4dg3r0mDbLiwSTH11sCP38Azsb1jI8nYTs+ - 1ukC/M2fvuH5cCtH7rfesM172pZvchjIn9ndxLlrtK1XTVJiS79gc8OPv/zSrJCFHA3JDoje3k4g - 8eQdDuHdNDhpu9pB4hwbiaPa0LlD4aDGjy4mx88Kgp7FXKZyY03J/pyOlKLKW2H7zBKy+Q3GFFkZ - I2/+9KTEwpHS+9aFlxUDF9uMatA/fbLh43/87FtSNaCr8Hnin6MUzKBpGchZ5RNb5ySnq6wcdagM - gU2MtquMjZ9poClsjTiilfQzNBQGdrvbX36KbnohVza/lCQbn+Qu/VrDib/l6OfnLfpHMKGWHROM - x0+TUlTm4V9+7NhZbLEq06VTWStscHZbD4WI2cX/5TMQeIM8GFCjJaokenucnPg3XW9elamxLHU4 - U9fMXWSvNWF135/x4b286Xpx/QQC8c6Sn374+cUw/eD1tz6KIXyXpoo7BRB0Or/dbb/XMI0uFdGz - SxcsOL/kKrG5njgh83XXyMog5BKrwWYAnlRgSlDDrCt9HG38iSAmimBlAYucNJ4Gc1yzDlRIdSKY - TalBvtNW1GaXAnbQ42OsWll50Ev5DO/KPUN/+wNEEjyQ5H6v++VC9Ebt48uIUdP7PT3fIxP+/EAj - J3k/RHGtQL7ZX/HhmxZgDj+PfOPIB/zzBxbUew+VQuFO9LWNgrXQtJNqL8MeH0bl4BJlXryfnzqt - G59bVKV3oOvECX5cYEa7cAdDWO7nx/SusyxdffYDf/4EuX/T4m/9qUptIKJZsxj88r2Ks/XruY/2 - gQqAOBa0ef2IrSRt6MqwDxO+XOdLdH4vgw0fJZU1Tj0OaNL1s8R6PjwOp5ocPxo01sbvP9BQopD8 - /LLpcl9P6ix+OUR54eQO7Xnw4F988IKyJ/CkDCDlR3V6uElMqfoNTjB+zTdi817ujmdR8kH+6F+o - 3X+cXkSVN8MXez5gR5RiuvmlJ+gEsUkOG56v4Q7e4KZHyNl2TwHVvnz4lx8+bPi8hCW0IYrnCzG3 - /TsHQZ9sXbSSn78A+C0fCpLlecP7xzEGq362PjBdUxnVG/+lda7kEFGpItl05fqhDBcN/qek4F// - 9V//cysQ+Kdunlm1FQaM2TL++79LBf4t/nuok6r6FRb8Mw1Jnv3zP/5TgvBP2zd1O/6vsSmz77DV - GqiKxP+VG/wzNmNS/V9//Wt74P/+1/8BAAD//wMAi7tKgboFAgA= + H4sIAAAAAAAAAwAAAP//pHtJs4JMl+a+fsUb39aOkEnyZO2YZ0kEVOwVKCo4IFMCWdH/vUNvdXd0 + RK26NzdC5WqSZ3iGk/zHv/3zz7+aoi7Pw7/+/Z9/Pat++Nd/+753yYf8X//+z3//t3/++eef//j9 + /b+uLF9FeblU79vv8t+H1ftSzv/693+4//3O/7no3//5F9fUSshS64nYtt5ZaDwId6KtXCcR+MO2 + gmbd72humtuEbdZ+Dsdw2JCt50T6LGG3wjhJS3rcpUuxJEUVA4hYpcbe3OuLtcgPaIR5RbbHt69z + iT5nUH7UghgG99LbbR/0YD+K47i6JmonsisY4K7s/cikQ81o5Kgxeu5KjuixkfrLfVrJ0Cm991tP + MQukmwAJHymcXt7H720+KMH4tGdCgtWxmyJ/DCG/K4ha9XOjz2gmFlQfIGTvN6ybE3GScY+W/fhQ + sKBPw3uRsT8Qg1iPS+UvGoYAJcM5ptmn7PzhdU0qUMLVM0QSN3aLqqoWtk+iPb4sTSv4hxktKLDn + lBz39tqfHhO34Jp8RmpFuzWb+LAVQNE1lyqAAp0zh06GaMMMYlvcKpl5/rbC+7Xq0ZgKdj2UJ0fB + m7yaqOIe045Ki6YBj60r8e+ClMwPXquwujJSekqPW3/k3MCTb5nvESeqrE4IG1HGfl+I1DK4QzGd + YrlC39fEqhq9FolMFABN3ZOtkcxsntgngO1ac0lwzEqfa57Mw7t6SsleWRM0qdJwg0zhIuKHNPZZ + d7o9QE56NnZJfaxZz68PcMoak16P76IQ+byI4GEqBc2yoC5EtGlfOOOBkuDZrRDTNE3B17kp6a6s + Xn63414BsOsGj4t/EpLpIlYtLrlMIoUs3Hz+dn0vMI5OToyVK9XzIx0ddH0lKjU68uw4x4xHzPvB + geYCFpJBNioHpMvOo/n+AMVS9rWDT51c0EDYGsW83q8j+O33FW98f4C1G4GHUkQ0lOz8ZVPEBha3 + j4Ieux3pRjU6lPItNd/UVUio9/JNWjDXP2pyVcd7Ij5bX4HV8TNRQ4eLPnc708C92C/UeJzGbsku + lYY/tuKT6Ho3fbFz4xz707Wg9uvi+dxGv4cYB9pjBDOO0Dzj/bKZiRNTRaduMjzMbELWG1b0Mjyc + 7i9fP5dKpHo2SPp8smQLTZfIpbl+qfSl2S4xXi3nLc3IqKD+6Gwd9N1vYnmCjSZb2kU41jKb7DYW + z6bAzkuonuaV6tqU16IWZwFiV4SJffK1YjnHtwwv1zYkwbo56yzb3V94l+UitZZNXAtyd4uw0JoS + dXwxQpxVuCPeU+EYTnypdRxudile+P1IvLNed0K56SvQw0dElY+iJNwnyQDM14cn1yrVummixRmM + MlqTQxsrhbjfyAve6IE4igxMXRzqiweYxDIJtdvWX5JuOuNv/Y/C46L5HBcJAva21Z6o4N4KwY68 + EM3DZBJ/i/p66Tghh6k/A1G2oVFzVy2y8IvsTiS9ve6M5dKzh4DI+Tif2kvBk+rgIPo+XIih4IPO + Dcd+BL8/iURJJbVg/HYnw+WSEZqY7OlPjraVwalKjwaO0+hTcHgLuJhoS7dbdEaPuyNyUG+a1fi2 + eVGfs097RjBkM/FKdUZLr0ktTgPLJHGiM38++6YAT8+TR0l6zoX45qYcwz7pQuG6BAlXpkuMj8Ox + J06+Oup9qvQvdCS1RaKNAf6Uk+cIuZRy5Dxlli9gRYsxiuBEPXFFfKHjVhnqguZFj7i4JUNihweI + pLUYrohfdcvVGgDWF+VMElJEPluHxgumx0Mn+eRr9fzgvRv69k8aKKVf9MupP8u38SNQK0k9f/He + E+DAV1tqdztSz0OxlD/8IOmvPgwpyTHcOofa71JjPFn6A8q53Y4abHijRSujFn/7L1U7xUmmaX1v + sQHSQg+QbdnCn+IUpYm/EP2LH/24z0awxW4IX3u3qRnWjwFU1rUP8Tm+oYkJnIY1uRqo9+zGmjml + UYEVdSZR9eGKeH84LtDOO4+m3H1bT/JkOYC2V/6bv3q3nOTNA5aSV8leOqS6oHt8iyBcVuN0P9Td + PDjXEiJF0YinXzRdPL/0Cke2jKglTFpHWa1I8q5eUqqv/Ervn8MbIPKhJMcFBcVsZ5hDPDau40OH + iz/VnPuAZqsgor28TUFJO7fyNmkGGkdG70+jqVX48b48Rnn6xuuDIgVfHqNLw7uj6EJdEAm6V/EJ + 4UpGn23JyoIeTXtqF1jQl3cURshb5yV1+dXbZ4O+ecBMvJhuQap88SycRqhfeUNsXCiFOEYygLNZ + 9BA73p1Ngn9QcDrPT7INVnbBt+lOxnl4fISzcJkR/eIN0rLmQU6fm4EmiX8B6Lcyp+QczzpzUWpg + TlNSenwUUj3P0SRg7pRuQ45cPmihH5jAuvIiOUL+rrn7yVLwDw81o74WS5SqIzwn4013cnpn/Qwp + h89n0yKXrjogjnucBLh36Ewzagn+tDs1GXaqs0dKY+93ohZHIerps6PpLnYS3kgr669enfcn6MRj + gh9oG+VH+qt3vq3f8V9/v3z50MJK5uFbFO3oCbFnMrW3+IA9syAkaMZP0jjx2YDXHSZyBWkp2OvY + CD++RM5mPKFp+6gUbDoxIU5y39bz/VJM8nacIWwvykln6bkOsTI8MuJfyMtnpnVZkCCnJg2RmvuL + +dwEMHCrjKZrb06mDn9kPC3rD3UvWlWzz1XNsOQpHA3OOmPTIKkGjpI4o4G4uiZzcjxXcNTYZZz1 + 4cqm6+Jy8O1H45SVMut2e6+FGB0h5PabvG6fTz7G5UXySTG5J396js0Cx011II60POruc3WzjS5O + CQ0C2Nb82CAOfKvPiIMeUjGt4yrF3/5NvcmvanbFS4RPyAzDO7hKMuwrVYLNxqmpt3nlBTMFcoOR + P6dE809CsYjJ5gYH8y4SbeAEva/1q4KmreiOT5PxyWyftRZusnAbp7evMn5W2gYUXXGJc+fG4scP + 0XN/O9IjPmKfcZMXgR6+IhL69jrpjVt1w2g7anS7ZKHPZebsYBKOEtU+ytRNG/0egL1eGHGLreEP + 7uHDAeHaJ3EerdnNcX5PkYoTmzqG8ShY23sTPBSQSInFOZmrPFzB2BriCFtsFeLNHmUw7vcDCZ9g + dkKxoy+06rxk5NTViNhUNAd4L2VPw3bqdMYpWYW+/XlcXxKX0bw53jb8nerUkmtaDEI8PUBobYmG + jpMV8z3Kc1DiAKgvC4ouqg85h52otSMXJ3d/eoZGDhczccPNjafFEBG22nzAaelu7byTOfYKD+ZZ + OxPjG//pWr4E+XYOB7otI6IzduUMyHx8peWUHQou5tee9ONzMNZ2zexp7GF67AX65btFKybzDQ9S + MI7cpRYLOiqPCeJTr9BfPbRyU5zhSO7WuLLTpWa7ZySAs5l06ipntWDnl1/BQwY75N3WLGZxcjz4 + 1ZtBBRH1p1oZQbjeG3JI0taf+1XL/fQNddZFkywlzAdsaJuaZAK29P7LH9EFBTzdrVDqM7czJZA8 + QR35HAa/PeX7AIoDvIkXDlIyjw3joHyGJg2s5NN1OHnmkB63e2o8giKZSUxWqHelgOyfZ9Xn90tm + AC6vQyjKT1cfntUtBXHVHal5neJubh83C3gOn6hn7Gwmuvm6hx3tp5Bjw5stctfEiCrPB/HjasVG + TaYZssykoX5zheLHv9Ev3mqzOqBJbY4pfPanmXiTr3VzoZ4isFhakON5RujLB3r48Qdub/L63I9p + A4NuEHpN+XfN/I1jwaTKAzUGya15vRZLaLYaGnnhznez+5o0XA7WKlysxfCFX7y++ExIyr+7ybJf + PToXu02IF19GjWTywaa/5Zvv/qBiiq1tDk+0FcLNWf2ghpuLEDAfvmn6KhRfiMfgjA7SdjtKSSon + dKNFMeY0LQ3lYzagiYRMkYdwW5KrZASI/+pRKPezOX5GW/Sbyqo53OLtiwZvue5m8boBqObYJYFv + U32+6ScNfvyhNPZdPW/EZsRr8dFT633+6Cybtx6kRSxRTbw9ksXn5APobJxC7lytOvrFT/lGLzpx + 0Sv+4WMPjs4dKSG47KZuO3lypIsZdbY9KZh1qFeIn5BAzVFnCTsLux44ERSSzJ9zPawPkwHLKlJJ + Hg5SMd1PlgZ1IWTUaqKQLZMuvkCmBqFH9LqzQbdvPaCzxBMn6IQfXy6RGLCQKLW96kbPsCcYk4f/ + n/21+GQpHHP7QLXwfGPf/DhAtRPd3/4WM//MF/jqBRKMBy55kJBpSGy8LoS7FOvLlx/CSTXXROvF + Wzene6VCLFnfR+p4i97nZBjRsQov1FlcpWO/eJ0onWlgp1Ux7Aa9+vFVat3fLWL29OpBNztMdfe1 + Q/19U2VwQSFPAte9IXaJzhV+DSigKgmDmlfoLMF8KAOialNbjMjsLPnbP8kxugVs3jpJjr/xCCej + pj7baFkEyufGk1Ibbsl8WJ9K2DzlLbUNzesmd5nOsrzaacTYm7zPsBFp+Bc/h4w3tNT+cgP9kUx/ + 629WqZDCV58RVw/3+sxX2xV0tZ+EjEr3Ym42ZYRMI+hpbhhcTV10NpA7yhXRNnsNMXSyQjmZ+g+J + UuleLHJmRvhoN9tRbCOBsYSaOY4UTaPBFr8SNrD6AEs+lzT0vA+apIOfwVePkvNdiv153Gga3DUv + J7b8/PjLargpeDqFL2KP9ovN9+32BXWh+9RGrzuaKY8DkFQ0UqtAkMwfO6rw3dMT4kwo7cQ1Xh0Q + uzk+VYya6LOrhwJ0yepG/KxQavGLNzDH+YcYI7/Wp+VwbeHK9ypRBu7JlnLT36CTrwF1Xxc5maY+ + bBGTx5wYwrVgX708QVU+FqpiGSULedUSXiozI07uzfWyCaMRwjdeU/24WRL2CNAZ/fyG9NefHunL + QWRIO5JQ6Z4se/6pAa+bEVXXECCuwP4ZelcO6E+viq+XEKIqbg5k98aY/elDCcmYumf1wyZnFht4 + 2dmNBJVpFuyn3398Un1jjGazPDQw23pA9KXlf/7JDdXOQxt718T1BL46AT7m6tjVkou+fooGm2G2 + qK6vXl1f3lEj6+suCFe+vS7azjTaPz/MpEavM/MkLcisuGuYzc6bje+pbeDnj4Tzifoz0eQHurPt + gdgi3bHpWo4CdKsbJdZX78zRlKWo1c+Pr3+zYxONdQnj5FCO7wX1ydQ8kQMhOle09O1rwvTr7oHz + cP8gLrw7nbYQrbDW2QMJsbhLvnzjgb75EcrjwfAXX2ULyMr5Qvx2vPtffVeh69EIiWo/KBrlzIzh + 2QsRiXtR6WYYkQHCsaEjrWyaLNJlNKC+WiMh3E7xe1FiE4BHC2JqStPNYnAAPJZDPoqbR5Qsw00J + QFrDjRS1YRTT/ZMGUFSpQc0kjpJlN+8i9N3vUDZjpRY2RWzJSLya1J09teOK7a5HbckpY09Q2i38 + 51aBY1sD0UfRqYXjFIQgH5dD+Nyllb48Mib/+tOwErZcPa+tj4QvWX0l2txZPn2nqQajXdxJIHOH + bjkqeQlt+Waj+C4rJLzqewzbteKSHX3LHStv1Qj9LduEiFfvbDKmqcfAjd23/2r1UqSQoa7gT+G0 + DR/18hT080/vUSMDU1+i+mih6in3xEnSvGj2q+iGv3qM+N/8mo5ZcYDz2bao+dHyepEGLsLOJE5/ + n3OVO7XY+DRnqu03bTGc5fUDUrwKibWLpXoeN54GeIYdOX/5GN8+GgP2aYnGx2Vq63lzDNJfPYzi + lx9QItsKTAv+0BQHuj991wPZvAmod9Xaevr5g91VAnK0+aM+bKWtAyfTr8bp7kaJ4JxWCxxLsOi1 + /vof83kTo3hdXEPZk7vu+axuB6w9FJUU8gKMapqngXm8atQKb49uvl+SCX+vp5q1GDo7HLUMv4Nq + PaJa+jAqGo8YJ9K7CuX354z62zkXkPR4GzR03Z0/twyfoa6dmOif9RrNxyCWfvrvTz8vV+E4Av6I + HnUHqyxmUpUOcmKCf/6dv6D9JoKv/xXCW67rWa/XJWxwaFGnT6ti2UUg/er76+cAG8Wo7+GLl8To + tPjPv4R9VpXhasnf7Jdfm8Sip5CzljTpQUYVeknXM9HPj8Zfntauh9tCc6q1qpuIp1VYwfP2ef/5 + t/0xS1LQh1AnW61kxRzLgQR4kAdqTr2Y9JY9jmAQK6BqWVk+r/aDgd5GYxHfjptavIZKBfdt8vnq + 2b4en4J/lt2iWP/6eydqu2MOPz/odDxwem/c2gqOo7MhMftwyXgVrj3gw4uj1i7OOr67JzF6BJuU + Om0cdYvRmAEU9v1Ntcjo9Wmc3yUynYjQ61o8JaM6yQKaXPYi4TW5d1/9y8F6ZyhkV/QhWkAro43Y + h2HYvgdF5x6qroDCSTE1lp7qy4HtFGj5w0BV9xQWTOQOCpzW3jyiaK5Z99VH8i/fXds0df4NnYW+ + 9RxyIcFo/ukhb52V9KvviqG7FxF89cv45XfF9NG9BWkULuOP7/z0PoxBtCMu3es+tz02zZ+fXT7h + WX/xrwHRvUnUEbDls9Z/ZXDeoJ6GS26z6YkF7/f/1H4UWT1hGwC+/D2cI21Jpm1aCPApU4Oc9tmT + LXVXWvJwODzH0b6bSJT7ewjf/KCKZL+6AXevGDJFiELY4lfBjgl+gZvcLWIx2f/6250DPzwoPe/D + lhXgXPq69tSP5hrRKk5jcLhNQvKvvvjrj8nBO4Wctra75euPAg6UB9Hf246Nq63eYkFJBXrVOgF1 + zc4OwCyqJzEtbvR7u/EN+f7mN198UPW+6HEETy1WSbjRO8S8rBthsWvne/9S95nqQvvFn9puu++q + r1+DXeOQEPvbb3pN2N3gmEs1VdoZJb3aXA8gNk5Htuf4xqZ3tllQCbuZ/PjZoNtND58pCOnhWx9z + LBsS7M8PlZDz9ZFMm9pY4KGsJLodHs6fn/Q3D1KKlteHn793uLSY/OK/RDq74V6dLarV2TMZXe+T + oe9+jGP//HTzLqAe+vEzqyM8+s0T4Mvnw1Epi27xjtWEmi3nkCM/6/Wi6HsLf+dVRNXn2u/RpV7B + zw/RH6GB+P2O9VjqL5hoVHh3kzFJIyTWcPrjcxOvfs4oiSWdWL6o1LydYQEEIarIIdrX/t9863kp + ou88JKsZuUwxOmWtScOdovoc+O6CNnaUU/PoKgX7hChAXabopKytMfnxF/nIl2xcSVqizyRRJvzl + G3/8d1YUxYHv/dALdCGbwHcnuG7uR6okeoWm4CUoqGmyLJx/enlbnwxZF5eEeJ7s1+OXzyHwhmKU + v/5NG6xeEtgX8zJ+vv4fn0djiy6gaNRU1hSN4SY0UK8yK5T1aGTzYb07o8v5rX3zo2CznE4p/PYr + kDSNzf7OVdC8e56JfjtyrD8UjYN+8xLzaGJ/EpA9wU+frK87yZ+zT3XGm8N1O6Kv/8+SUgxBkYaG + HPDpVU/BgQrQ1x9CrGWzdHS12+Xw1a/EVSML9Xry8eDej5+RW7lSN2ubsQS5U3pqDQaXTL1Xp/DD + A/85NEn3m2eWJ6EJoRndYvnpY0GIq+/1adJ//RPYLa5Mgw/VfO4ZBhk05+1IdO6aICq0nzN88YgE + ouoycTHnA5R7ZoYv9Gh0GmtNCV+/N5TiG8fmZVRyrK6slLqjffSb9pYfoNQqStxff6nGSsLLa+UQ + +6ooNffV4/itPOoRqdFRX05tneEQlRWx3AaxxsSLAVd+VMmPT7BHf9UQW9VTWDjWmAyuVTQwufOL + JOBONTvqNIM9s0bqVE3CFvsWZVi+duQbX4Kar38GMdpD2H716PDNfyhiUySED/mayedEkbMuuxIF + wwN9/RcZ3Ou1oobNBl0YT+MLVtdFGNfmfdTnYvYVINLoUE87uwnrre0DfeehZLdJPv4wFPIZPZtl + oE58S9HsHu4ctncQkuPJrxJqM1bB2p0sYu/ttf4x500Lmpp2VAvJ0A21/ZiwBKNHdL/Ri8nZNxJc + 882DmJfFSGaLqDEA25TUcJuu7pXu4cH/Wr+B+GO3OqNwXZlEqzOzEN63tIRGYKvwGrM9awqsn/FX + n5NEThd/ue+SA0brh0+vD/fuzyRxJti5ofE3b5s3RyMF9b7pQiQvgObte7WCr19FLGGqulFVXUvO + kt2JBOnLK0RtZhO2boZJnc9OZMPujA/okt2v1GWwL5Zc7Cf41+9UwP/4b/8PJwr4//pEQev0GlEq + SWc8o0EMe2FdEueyMXRxkWmJrsH7Qj2pBTRdV8sE0ZKvxke4qdiM9M+IxTFLad44SiGaF+WF790l + pd4FbWvxDQsHZPNmY1VEqs5R8SSg7qmFVGemUczvNAU8qGig5nE5IuHUjxGYwhiHiWuwhC7y+ww+ + 94lIEc9jt9jlTtsIx3tPDbPo0CLv5QjYNuWpPi2zPx84JKDGKYGST3H2x53zaKCRjA2NbStEzC1u + OR5n/01sWVYRS9pGAKlUdjRXNp3eS28vh62SuWSfiu+CevIUo12SeyPv9no3sq2/QMPCD1UmxS7Y + Tl3HcB0eH1puL4bPNfshQ+5yacie28c+Px1fFay0kNLwmmpMvBVWDuPtkdKYX0eJWOBDAyN528RG + 1VpfxtSRge+Dnp5i5dPNK+k94Wj4TrzWfddRNd7IMKSRQ86vQ8lYLJsWrj4epZrSvhDdvXoLWjm6 + U+L7+4LzbrOMk0VMqXIVODbBRg8gEnchCWysJ6JL1QxC2mih3OkT6sJNZOA8FCnxuapH89QsBxx0 + 9ppoGd6yZc5jDmtNWIZLhgfEXp8dB902IKFw2TH2itOkwrGu2TQotFchXrM5wJ/PJ6Pxd32cXeUW + 3jXiEL4HxIo5CPAZXlUWhZvdXdU55ZmfYV3eZGJf4qxmO1WMcXC+hCS+H/huMs6OB9YrJSGbxVvC + VPVlwClsr9RIharjmiQK8aQuE7Wvzw798gteVR7RbBt9CrZVtQgKMRKpJ5d2PQjq1oFdknk0/76e + ovTIgR+GN6Id6aebg1KN8HyMXRp+8mMxzvGt3ySdvqfbRHoXC2e/BMxH9kzsT3BkQre/G3h7h4YW + UrDRR6LFPS7TIKBqs8Z+X1r9Cg67wSfHXXYqxF8+lqt6Tb0XuyD+Yp4r+MDTopdsR4slDYUXyFux + JF4Ea30Jx7kBgTUNPbrj4NPjEQS455JK96/R0rmqDxdQtcH81tcjaepH2mJPuVt033dPtnQfz4A3 + sUqqlG5TfPg7H+Ciyt/EjZVPzYazuMD54iT0KEox433vFsHWjE9EG7m+Y8mdOCDI15yYqWgnon9f + DvjtzXdqXiKic7GBHjA+ywe11PTWieo6E3AvmyPdEtdHorN6NlBMZ5NEbzXrBHvTO+h9GQghqqnq + ovJVdN02JOSkWW3xrXcFwnOfkl28dgvu9gQBfyznSFLhrdS8uW1acPHzSIwtl3QisuMFvMV+En0V + Ob5gvXQPb5c7Gpf3p0GC1KIz2PcPoW71eSRTN/genF8SRzzHGBmL1pWGUZ1KxBrksZ66QXcg+RiM + aP39VIiZGPTyxriqISRiVXNWa4RYiqVqBGmL0XLcljn84l1uXxJiUUUP8mFHfer30q2e7sFKhgG6 + 01joW12f57sSwMGGdiQ0K+olvWn5JlY+PbUET+2YmB1DrCnZjRxPbs3mxfHi3/VESS6DLyTBJwdX + 4zuiz6KScOuHpuFydV+PUlpsfcZOYg6FWhQkypCRCG5/sYBfezkJrWLvTya9e/hi3p/h4zLGSAxy + JcDb3PtQWy1lnU5KUMK6PvnUynTCBjEdHZBcTx1BEAw0lDs9Rzf+LZEwyFLWbH2phzzkKfWjEiXv + FuUtjGrdjlMxKD73dlc3eF65B7GPe4ktylEccWxLx/CNqqs/HQUjxs9B0uiFT3aM00AKYHe1A7qF + vYKW250tuCPeTNWZTDobb1yFf+u73mfCxnuuNpDa9EG2YasX8/nQpOANJA1FDlfJMrtEgXe3DKNw + Syo0i+nLg2rU1tSvNzs087lvIcttFBIbaeJzoZUsUK8ahybMNBLuI+cBrKPLhZhnzdeXba1N+POY + HXLsrr7OP61MAsttlXF9fFz8uVCvC9DYYSTwTn69aKL9wsi/begR83HHb3pdAuUc7antF6duGKpb + hmVnHRLnMCoFLzw3AFNxj+h290x96lI3k3/4ZCXtG01apmc42mwnek2Kplji87ZFw3XtEeuYpv5i + 8jQDjNOS7uV47obreYnwdlIskr6DD5raU+Wg6cptyY6b7G76fMIMWf6joubzpvm8YYTwhzdKt+s6 + fj3xLZYs9qKeEHL1sMUnDzVF3hL3afY1GxcnxY3hron1DpOCt5XdC8sR24avnPe7xd2pK1ivb9Zv + v3yhaCQJROt1GFHAEV10yOaG9bouqeGLjM3eaj5AWxCRGFGE0HwY1B6/CvdB8nN418VPeQVgY6qS + 5PUsi0kskgp940+dtVEUi8HiANuJUv7yvxDEY16ChcIrPTU0Y/1w5QycXSyFJFbj+9/jfwsqVvbX + cRH0WlRsXwNDXp+of4hf/sxdGwWs8hbR04dz/NkuHiMe11uD7l/OOumuZhRiKycJdW+HnT/ptRwD + H5nzCPHCkudNhxQOupGTuCoeaNosmxhO5iUm+7W69f/wdyalR/0XUtiiKZ8UHk9LIsHOfDGmbZj8 + i+8o5VnfLU3bxijOru2I+viElnWIHTBta09L+2YkgqZ8DthZoowmP7ysT68Ai3Oq09PqdaxnRT8B + bBuW0/BYZwXL37cS6+h4Dsckr+tpelkKXu/3A7H3TZCw4EEqtML3kSi76Vb3krZ/4fLBrkTzpsL/ + xRfxnNJR08CNP333E9zcOFCLvgtd3CtHAygbYqJ/pwWTHu0iLFqPA83auGOzuIkBW4HLk8CwpII1 + 4l4G2xUjutWmhz/vtxsOutU0hk/p+fSn/JQBuHdpT4y+vetMK28TOPuXG54cvdVn/8lyuITjQgwu + 3SYs9jOA547Z43ody2jhOHPB28D06SU0oGOs80NEKB8ThcC+o8dI6/F0FbaUUGIhcbXtewj2zZn6 + VbdFy3Ndn9HzMfIhC54emsTkk8HVa1G4nzcuWyYWTcBa1aDGYyPUff8eA/jGlyg774TmpajjP77g + dDeC+Dy/jDCfgo6EPLv69DXrAObMadQ8vSo0tw/lhTdxdQ0lMaf6kGniCpBfbcIZBbQbKypyINbx + c9yYaqEvoWdwkJmRRhOr6XzqkLmCwQracLxVti6277mF6+hCeGtWWTHt0ScE/hSvxp7ttwUT+ZMk + 2+hEaXKo2oTtEt3C7nJtRv5Cj/WyEdoUFUN1CF+nCZIfXslxdmlpdLQ3xYI+RQT7Lv7O/j5d8Xk/ + bxPImnceZ1O09M+t+Tjw48t6tlo6+imPAPGmFEawsV4smkge6MvPR1iiUp/4pn0hntM6SmiG6mZz + jWJc5K+GmPPmg3or3FgADFRymA4HRM2L8wJ+7eRkNzIbietT8QK5kIC62nNhjDDkQe4omFznwKqX + Q8wOsG3mnMZSkXWsRKszJKK3o+airbrP7mg4EG/OAtmOTqgLLz/OMBMc5S9/J24695sVQEHs69Nn + QzLeJQjz/Yb8+PvyMJ0zmAaVR3RcL/UjJ+sIWfk2ocqDr7/5p4ewIY/pj5+Kh4/TgGs7DfEXsin6 + 9tQ6aInfLgmyqK1HrGwsiJJlS/399oD6t3ApNx9VzKlWytuCsdM6A/3+AmJ1OERLlfY9lIW2IkHj + uYibPFmS+3g3UXVkNvvyAQeb3FGkQeN9GLu/cAxcuszU/PHLx7mtkLdJoy+/9hF/GNQRNZK1oar+ + WLoJ3mIG8BZNovqc2U3oWYWQZOb7r7/0/fsVwiSR6y9+3ZR0+PXD05DLbiNiUc6HIFnzi6br64TY + 5eVEoCvad0LdJd2CAGKI6binX77asSN8GniBM5HjU9d98ZNGLb6Lryjk0OqU9Kn4OOMzBzHde36v + z6r5dtCrWtckkNijXhJ0qcA81xK1t+TRLcw8tTgTT9xf/Xz1SQlqIcdUMeZFH/THWoPXaMZETcoZ + LV9+icBIDbJbn7WO399jDu7XaUdV5VP5k7y6OWCYNh4r2xpZ44wOQBNvL6G0Wz/YLK8fEnx0BkT5 + 1Z/GDpX81RN/n3/291gAeX3C47obSbK8XkMFwca/UKtSaDIclWqCcpILoqzTazcXYpTD6a3P4bJL + 1I7/dEv/67/h6sv3xs/TTNEX/+lh2mq6cBjDEmy8eETprwSxPpZKwM/qRqy1tmOTfGIH0PuxI4bI + P+ohrpiCw8qXws0riTp2uL5W8LiFDdV2yb2bPlsUo9MmC6h6vijdjGR7BZ/iLVPzvvbq+dTdK7zN + nQ9NmpNbzIuwyuBI1xL1zkJZfPvzCrEbLxJ7aUfEENuMWMfJamw3kV7zjSGN0MPZJVf8HAv27c8o + 0bdHcpWEGI2dsY8xXu+UcFlKCS38Trlh+dldiHuRHTQ+H9EBH3dHh5JWrdCsP9YK+ljeMZTfp0fH + yq2XouFDO+qt3udi+eweB/mrh8PhKRX+TFXpIIPvCcRddy/GnpJgQXO45SN3m1TEsIo5VIFxobnk + c8W09NcVwoLNiJ8XOZvUWT2AxAvRH5+ajPh1xvtX7v/hqZitBAEHS9qF6IVujA17s/3xQ6LapudP + W3/qoT0le6I/8V0fn+OxhWXeysTxuPv3xPA6gq9eD9e2dusmfNvGsMZuR/V1Geg06l0FhHE60oxN + FfvhHWzufkSUvJnQV59I6Mcv1Ws26+3g5NpPb4RTN6X6lFI5RTIbEdHe3i2ZPlsWY3OLbOJLwUmf + yu60oPDIGdSrpa3OLf1xBYNvyCQo+6Uer/KmB2E7+796rif1ckvxsFXP4fsTiGx6u6sKyVu+pNsa + Fcn08A89lAdvJGYHrT6fy/wMcSuYJMgo0xlb9SHcu2tKrdviF/yTNxXEt5FHg1o+dPNaUyuUPMKa + lA656cs9dxvUq+MlnPXHUs9ffi3X6ZWGnPUhbLaLvof3hvPJnl7UTpyU4AxGuPPI9rq8uj89mjb9 + RJSjvUmWRU0l4K19RElSOIXQc9IK2E0UyS9/unLz+fI/ex5x/qi6xUuuHmJPhyM7974U47PXSrxq + DJ/ql9Cs5xNLGjjxNiFuUSrdhLPEA2/y9R//++YXL+Au28Sh/GIXNuDTVUbre/kh5u5A2NxthAnz + beyR8Lmr6kkcuRtwcrOle+n51Jc+MhwcPHbbcISDWU/uNpP/4k/irZFw88zJSI/BH9nqBGhQ22K1 + wfhQEpWb3t3EndkIOGqjsDzs02Ie3faM4tfdIYVjsvqb7wD0qOsjp/RT8sXrBxrS2AmFTCeI8Rs7 + Rl+/iVwvd0BT89oEeFA3AzUi++1/+Fw34DnIGlFM4Z4MD/kDaKjkzQ9vGD3npwzR2GPEu7pzTV2q + 5nDKCmU8aZZXiNNjjsHBmf29n0cxYWPxgPO1iDi3fZBw90P0gsxz4nCllHzXbO5DCZdPeaXOa+aS + 4eCkEj4cNIf4pqch/joV8c9/+faTDC11sx1hORVoXN9ngsQ+nkqcLtcd0c5v2Z/lxAQ4mo1JnDOX + sjfJGgWO9usd9tXW839+ElyyS0I9s3nVU9gpD2wbWCFGKxx8psazhJRjbn77VcPmTVZJmBV5EvZq + O/kzmpwW/DC40WRwHozupYeEZenpk2wzVN3CmlIGFsWPcfXJxWT0zhOHOSLfaDi6MWOcsFiAjlsg + DrgeE86wk0CQbhIJ+VSoRzxECnz5XVh972eIylUE4bQ90LQ35ILOUh7BNXhewjV+jl89bWu/fkuy + zxbq5ePKAXBjvRvlTo8Y9zhXFZaEoqZqGA2svz05Dp3e6jzibEeSZbPDFdycw4EYytZm4/JyR8gu + hkKP87lFbNhvm7/9b774z3Sz4vBykC0aXm6ZP3lcLgNY/IZor8emoz++esjuOFw3kHTza8glFLrT + ixjsOXfsZTw1MNrM+q23G5/rrgRs1Ck1oqhAjJqfDJ7s+KI/PGae1p5lt1y9iL46AZunRj7A7RK+ + qBEm4C/vJc2RcndelKwltea3t/KMjtUh/fFRNj1EvoX1/fyhhvC+1aySyxiY4CmjTo6vbjgWvAz+ + S7sS5WY1/ryS6ITIw4loEsZiMj1SKQeB0IFakdT77bGsQsg/mhtupnWH5rhCCnz9Cvrb/16Pdv/Z + b9p173ccXCbjr5/pnlvV/Kn73JBj3zpqlHBgM/EvMXp5jx1JZ8n0xeXYhnKuOwNNq8uYjKVXan/+ + VxbJfN0/UikDH3MXmv++v3nNAQjHug+PSnTw6am0Jvji2fhSL/tkHk5hD1qN7tRls92928MgoNdo + x0Q9X24de2eWAu9Y2xIjFbR6uTiKAMpLE0buq5eW3L1rSPKtOqTHB9bnmbsHgLaXgtrRZkKDGIAC + 90dTfeuRsr5wth7a5QEQwu/R9wm9Qwjf+iGBK+v+JI5wQyouZ6rvUitptCv+PleyJ6Ow1naIDeqj + /a03BFfWdc5RKwUK9VSQrx+BWImEM+Lmi0LL/vxKWON8JvjyyT892RUfvkF8fA5IiKZV/dPnoNqa + RgLTt2vW4TcH1v6oE2suXnovr24ePg/Di2iHu1mL1teCcPfsFB77gRTc5nN8wWR1CjXX6uCPD3vf + QMtnO3IhboeGozS9sDgfdOIlZCkGR4YHShPuRuLWnPWJrn1At0vwooZxOHezy7QSgt3+SqI59BMm + H0QNHk9DCtHVOyTNYDQr+PofIfSbZzGUvBTCz79UL+aFMf/zOCN2tA8keBej39GTlqOfH2MqYdCx + nx8zXtonsQ82h1hnqy8MdyWhp1w6ofnLZ9FDv53o5VixrvfA1PAhlzJy/uo9Zr1tCdnGWqHOJcEJ + G4G0UE0wEkWSjvVyd7CADgpdh/NuNgt2ds0HTHA7f/25R7F4jxbgM0kG/eJnzePdc4G5NBA9hddY + p2FaR3/6nZghzwarLgW5L0pMzJu/Rp26jjh8vxRCKNwS7Ttf2RrovjppI5tFpeAzTQTA2/5O7ZNb + o/7b3/78UEFNlXpuUAnotHuE5CrkbT2+Xs8Kz2vDJjEX62z59GIJMuvRKPF2gYTx/ZHAfq4C8puv + zVp1F6CtdeHn5xZ84W1K+PqxofzhA7Zo9FLCSJ42KUyvQovZNRZ81Nj+8+MXWdvFcFyph5Hj0qFg + 6rhV0FU8etRGp7aYuL37AB3vVuTXr0T+Ah6UIt1+/VuOTZtrFsF3PjOKsnxHy/UzyGKG+pmW4ttF + E2z8ACmKm39PEPlouj05QV5uzZu4r+XkD0gmK9R9pJJ4y3DxWWSfQ1SAb4esk29d7+51Rf71S+07 + z2G3NQoh3rVS+JbeYz3uuznGqDy/w+85seSrHwCaW4zC5dK7CfW0qoRDOJ+/36d0S3rzcqQN1hh+ + /YVk9lXrAdn01qjdrVg3f/kgLGNvEHVzrf0pGDHA7bW2xylDj2KStP1D3k9OT9IoQoxtGk9A+/AR + kKDQrEL86csTbxJic7gqZm+1OUC+eZ5HyaUz+taPArKt9b95QlFJltXA9G4CWs5tm3zndRIimycb + uQ6ZRR9tggbiKfmMGxm6ZIhKIQbq4CcNw87xxd88Kw6pO6J4DuteLJIbbr328a3vOBFWehijtXDY + hFLW3fyxMXEJPKkuxFeKd8I+uiHATlXpqMljh8Y5br5PgHEeSVIi6nN9oRH6/n7IBIXX56GNbz// + eDymeZNMshWnuOkwHrkv3s9iwCkw3l5piOQVh5bcX4WIj8tg3EX9QafDeT39ff/1VvtouoRXA6pr + HtKvnmQU70sOKEhXug8cHw3O9V7KPz1tJ8FD/xB/H0ufqyyS7ZO+EiapjgB6O7nEL1S1m+bDZwG1 + kGLqfrhGF4fNUoK53dih3EyXepbmhoObuUbUkpPDV4+gCAJlCkieDZ9uiFeh9+c/7q91VUzWoQ5w + 6dgRCV8rqjeK8mw3u4Yfxk16nllrsDyEuhtzqvVahJ7feseHg+KQo/QO6/E7P9kwq9KJNxyMhPvO + j5CriR11+pHTuyJsq58/SbZfP3FejU2JAlzmxNq/7U6ciuMLTrdgTcJrWrFpK/fc3zzkdMSuL0a9 + qkj5wSro9lgl3bKoZwmmqLgTN0JyskSh+oJ8kE6j+PU7luo5VfDWgdJUW9fdjE9HGb3I+U60+2Hf + ieXmHuGsYXo4OEONeubGI3z9uhH8N6mn7fXU//+cKBD+6xMFh+PzTd3GftdT+EkjONYtDTf3tfRV + fOcSyPz+PoOUvQsaeqkMjE0hdVp/r7P8RluIceSMS79a0GKW6xJO7ftB/YKGidA9GwEt/aegRpZE + idDEvQXDsVlRx+wGfTpkywOf2ueDBCvfQQKDzwL7otqE/HWei35XsxG1m2xLrgJbowlpcYvO9+OO + KitJ7nrvGVlQiB0d4fAWfHobfQFI6gnhgsPW79VLWsKu5HN6iNd3RPdG6EG7OTESDoyiRZrfGq4a + mlKLXV0mPskpB351XsJZ972O8riI0fmVvKjKGiURmJqG8qOlXHhfx2K3uN7uhVkUaJRsRK8TuZ3R + QJxLFTnOTl8s5RKMUI+dRZWNXiVsXQ0atJUtUWePMJsLJQ7QdH1G5KKSrT4/N/sANvbDpJfd9VGw + NfJSzBU2pU7FvYsGjfcIp8V4JtrbZYxth60Hq2ooaSBwabe877WG6yC5UaV4H5F4sfcLdvE6G5E8 + vOtpvigSXA7GhTjpierLa/oApPunTT0BhGKJ20nCk+bkVGGhXgh+n7R4evYvEh1Vg4394S5hpcoW + 6gu52C2HwylHOHQ54q4LSBY1RzHclQLCqROJz9mrD8D1IB1pLit3nyspqvC9hoocPsd7N/HOPcPJ + YD3Dd9I3yVu30RmEQtKJva6NmjeqeYVZ9QyJLj80JOa3TwRHi5R0i+5Ip2UEDlqvpifNsfEsBD+r + DriTiygMt69d0fPcpGCcZ1caqZWTDOJ9CtDz1qrUvBmFP0PbZFC4ukSN51VPuNEzHLjJiUIC/kmL + 6eXfbvhwfKg0WhArepPXX2DnSzxKuyYtxK0ieRilTUSuWWF98+c4gcPsHQ3hvmOLmEaAz69Iob7a + SsXiJ6sDqE36IJf5tCB+xZne336epUPriwJTDjjcahe6l2QfsXNBLNheQoWcp/WecY+da6HolW7o + 7nC9djRNthZE2jTQ/XpF2CLNVEPB+HKJUTlEn8nGGME7lCl1dg2XzMfI7PHJB5uadJTqib4TDsc4 + GYlt7iZ9uqyWEpP5YdPI2Rx0br44EuD9ZfrLhyluXga8Xu9TKFf9WmdzG3m4PSrv73rWf/mF272g + 0u397HdiZ0QxFhPlHKLE5dBiqO8JLvooEgvLVcHHgS0hQ8iC8X+SdiXbisJo+IFcyJxkicyTBAER + d4KKgKgMCZCn78OtXvaulx6rriH5800ZqBXPZNzPClM48QbGZdc27OeEtweYl52Ij9WxKyZTdQl6 + +aWKc3M46tz7DB6wS8MjPtqGD7hVeUDonL83fK55fljOVrVDeftbaXj4eb6wv1QtlKz2iy1xZcm/ + 9tOWuuG8jKHO3MNIYHBJODLHhGPU/akQDb+wD6fLIfHXC+EteBLTLFzcJNF5p/ZXpb4PP4pt6Vks + 72PYwTOnF39nEgp2TF8l8LxQx67coYEkdIhA9TNu/+YPzZzVgRfhAAgXZD+fdaDS4ElfPTJ7zgEI + xboqsEk+JfaCDx7G+KA/kAL9lEjuLhsEV6gCYF73u5B/y2oiDLugBo4cdkR8Zp1PzMdioe0zvhkH + QWdT/NIQe+VfslCtA+N1T1XwcPtfKBSSAURaHmcQHByZXnZpzhb50vSIk4lK+MoA+vw+g1KRK+tD + cvHy1Rdc/TR49i4y1v0fAEt64Hb/8P+QFC8w3gfXg3xzdajleuXAPqbBwWWFKc2P2qFgvzqtkeBR + PeRfSce+O6hokC/tIORStWPirXpFcHZOZ+ott08z7ezZQ8fYy+hFO/qMi7/EgvdwfVETDHvAYveb + Qfy+lDiUQqeY57yU4O7TH6mZcJ7+HdVpBlt9Yh1eX2B2aKOhDhJCHRgNSd+EXQx/me4RaktvIHYf + 3kLdM7lTNRcawKb4p0I2ljF+PFYjEXrnUqG0GEuc2PqXsXSoc/irk4LIv2wEYypID+VySFwcXAcV + TLZbWeianH40btbOX78DnsHWv9Tgy75ZUPEq0ax5N2qfX3axCPcggAx9JXwEr8MwVUauKqb2vYfg + 9NkPyzPHIywfqKfx+/P2l2d+yJCd9gibxcNma5adcpQ1XEyvsXZKFv/YRsjDXh6+17Up5mS6WbAq + BRcnl0T1+dU8G2jDX4pfBxnMgtznUEm+LKTS9wE4qWhrBN1CC4fTp9OZ/exbuD7DFlt917HVz+sU + Tfc5wU8ICBCMadaQQoFORI+ZhVA2AMLTejvgktPVgYMs+aI/ftdQ6OncxXQjRCjM6KNVRjYmJhKg + V9x+1C6ls7+0ThlAf7+Lce7uskY0gjeHsLYXcPhY72AtnocWWeh8oOllyoZ1ed4MaNjzGRfKZA/C + HV5jaJ/5hqbDIdZXPfqmKPMvGQ6k3+ZA3o2EuBM26XGyfgmXTDcDWse6pa436ANPHx2Emq/M1Jnw + tRACQ9bQJUgZvXzrFczy21OgPpc3+hCB5K/4Ah2w/V64S5yuWeLAreD95Thb/SCwHmuVIJczCC75 + N00Wb04rNJwkSk3DCxoRXdUI7VWHYpsYjj+vLxBDSldGTWfeDwyq9Q7d+rzAdvkehvFgSDPsa1Oi + J/hqmvn7lUJ01WydWp+6bn7NJXHQE2937jyzfTO3J/wAEh8+w/24+wyjh9iKrMfkUXM8OGxMH4WD + Nv7Gz+fTYwvSAwfWHHqH0nOGA+WkT4x4E55wts3vrV5usG07maoYKT757lYCdT6n9GA/Un05fOMK + PTY179zCI+D0feSgE7qfqLfn5WR+OpH0x084mwktZr/3SlhbqUMvLf4Vmz6N4WNXFETp9tRf4f3g + geYQRhveHJiQFDKEoxLY1EeLD1h1iytIWmUMFRWd2BLEUQT++C8y+QWwiww8JBJzpNFjqAdR8XgF + NnnlU/34UMCkNqSC2JbeNJZANawHFrXwrz9N7lNv7SkjIAVTE0oOXYolkBUFPF9Qw2f8UoelddIQ + bHxA5H1Rg1k5XSB0xj3ABxG4YH0KEkF2JYfYUHZysarafQe9acUhU9oaEGA0HAxzyyHcteYHhsal + g9ejN4VcBLVhxsTqYTLIb6qFaqUvsCcznO6LvOlBrlnrJfLg96za1Et2esNU59VD/uKJ9Ohf+IQ5 + UhgpucJs7D2/r2Jp9J8AKu/RbPwFAOvUWwnVy/m/emBJt4SrdDhKVVVN/A0/DOBmv/vGf/tkzusc + Ql6u7jRe2qBYb7d7C0HaR2RVvGdCj6rkKBEsQ+rL/lqs3LQlxFHhE1dcHsN4BrUAQL/49LDpieF5 + rhzkuLlLxG5ijK7FNYR/9amysGQDddIH2tX0EYJNX83eO7eUgHy2O7DOuU/+9Nblkj/wyVTdgQsY + DYHSiteQTTlla7zrQ8h7Uodvj+u5YbxmjsAd15Uajn7Vx0q+SvLWfup4p64hDP5muDvHn+2M2Jqs + n9egwvre69R3D+NAwuQwo2j9eGTvQU9nAP8kEPBgCPkrXIcliPPo3/gY+3YFLDTrCkgBbaiFlAKw + oPneoHGXo396VPju1hFi+LtQJxZVf9TcwYFUNCgO93GQ0K8rCVDl5pzmNWcX/E/69rAUy46eK+M1 + TMeL993udHOxGb93yfS1iQo9JvvYjbVTwd8Fs4Vp1K/UTG86E+1n3UIAoE+jTQ/NhqF1aIylgD7v + 6NwISbFAaNrdSsRB1YGIlmYHrR4V1FX4X8EESx6Vje/JcpLHhhVonypq88mpFyhXfWVns4Z5+w1o + 2vRGwX+KfAe03D3gQ9TbBft9LAU+DJJS+5k9BybByYD61XnQWz2aw+xnJw/VVuYQYY12/j+8eHq/ + EadH6QIE43a0YFGlIfVPn33DYpeMsPmNC72f14mts6bd/vwS9ue3xNgpn/p/+jlXijGhmu5aCDpB + iQ3uaCbs64qB4lvRQjf/A9bzOyMQvUiBHe3zBevBPuzgnFYqvqnoBEa3ai34HTONzINIfXJgeQfx + 1faxXd/6gi3ZO4BcYVLqyp2hz5INAvBXr1qby8myXh1NOfBLgQM+NsFSx98VGvBlU9d1w2RG0ZDD + 6dLvQuHr8IysUeEAtXnn+CCMxsBdzEMMB69l2H3resFdFe4LNn2Kw+gS+DRcZA+IiVZS+8pFTABj + +IDuuRTDlVRffXUF0oH6UhNqvmWZse7DGyDk6z22quWrf2WJC9BjCvlQ+txUwHnvyICf7iqEyun4 + 81dShT3c/DwNgucEyJYHAGrHMbXVnTWMCvqGMI+jjt7OVdyMk3ldwWG/7QgHp1+xREga4fFXnnAJ + 4d1nNSw7pPFdjPWZomb1ahRDHVQGjk9GW/Ry/RqBeYU53kAaEGmpenTkx5oeLsQv5lSYSyRXxgeX + 1sUsFn2ZFTQ/bj3VzJs1LM9B6eHmX0MUk9+wfIObBo88qWmo3gzAi26sII51Az7GxB0EXsQdpO3k + 4mNYXJutPkI4v0m34XH99zwzcM797a9+G5ZeFguW3anDF+WAk7lmewI2P0K4A4gGwQNxi9JGzfGz + JFEibPMDnaWdhw119BNqZUYIvXp8b3q1SNbfJbf++AHjm7wkM3z2KZh4C1M3Ox+K+U3yGVwFDm93 + ktTFdGmkHm56kwhbvrG+UqcE2Q7UVD0GnT6eom0+jF2NDZoWw9of/QqMfhdhLH13jLQfvYOXw8kN + ueGw+mOcciuMPx7D1u/yan5xYCto87tYlXXAFvogO/iXFxyfSqZvfmwHwTFNsYlfVTP/rnIMuLoY + qKHsrglv87yBpAsLyfrHX1Is9lAPAAvfFvj4KxhVC8zVesI+JzlM+OMTf2pHrA4i1RljnIKIYMY0 + dNULEJcdFkDeDithSgsLYj5kC37Z0GJ1aM2Gc7nzDVjXlSfr85np4/XjZ0AtT2UoZBkdmil+qWjj + V+xcvN+wvI9OAIdyd8Xe+14VNFFeKZTfGgy/w+Qlos0KCSpU1sn+fKmHlfeUDvJc5/zVw7Dy4mFb + kSnHEFD9B2ankEe46P4dH61FK5YLTDP0zJRLKEhm0xAwWiW0RDziANg7fwriRw/dGhBsdOQ7rGBe + H6iOuyu25M+akFBpb8p2nhF79fj01+CejqjtJw4bEdQa/hIdRzj3PaD63uPZzHNCjir186Rh9YFs + UWZnB/7wTusEL+GZdzCg0fuvkHf3QzE7xTLCxGiN0Iksc+Cf+2aHFO3JwmHDz/WxGgQKhaKHe/PG + MfK4fvK/9hJ+KKg+SvTMQUpnRt3cu4JfyMWpNHw1AzuqK4LF5pEBi+Pus+WBR3/9KGoK//yDOt8d + tkixHMENr7APsTDMCvoGUODyN7V3aQ6YeboKMOM16a/efN5MmAaHr2rgc3pDxWItHoHC/sn/w4dl + vVo5GMz+gf1tPH4HjEK4zYeQ8zg2jOPI5WhfvwAOj8kHrLu9H/7zqyru54ENxuOrkISOFPPty/+r + NyjyuRb+6VUSOSiEZ8WbQ1B9T8N8Me0v3BnmB+Ofohcc/RQcaO5lRf/mA3ueKw8C5Czb+L2H+YzL + UDFzlmPfII1OOYlG0Ei1jvqX8lGQz1EmMDxARq+vvTRM10duwOIWSLgQ7NBnlziq4dZ+akvPqlm4 + kJXoG0rL5oeEYQgw/4DH2MlwsfHjDH1ZhV0aHHE0XduBNtcxVbYixmp/rorxr15d7xrQhwmT4TeK + 6wMI5ITpwVR/zXyPGwF5p+b9V6/6bPJ+C+/slWJ75MtE8MCtg/YAJZqbw+RPZ6K3yl9eppvc3V8L + f9sR+nSP+FCmb3/6UC+G4vxMqKZ4b8D2n2cOU+P2wu54W3z2vfcONI+jjbUiGIdlywfh0o06Pe7e + JliNc0yg6lsCmbk5LpaHsrQQPCplw8dXQaKy8tCp8zNsHCWR/Q7QF+Cfv3cV3i2W/ODcAGNrSD0R + dwlN9wWBnb2vsUff32ae81RSiH0v6LE/hwP3rGAHzYcykXtM3GbeHdoS/ukRHV5BwvphVQDsuIS6 + sP8mRPKMG3rttYDMQvxpvp1PFLgPoYOL+0ln0/b78M9PXqOq1JdeOz7g2BorDT/DJ1m09BXC8rHv + sX+4hIBdCxRBLVYtmsPIL8bdYSzlQOFutIwPjb/S31uFW1601V+zjUfcgXbmvU0fPYdl+R4zpb02 + ITY+aAIL7Lv1Lz/Z9Lelc7813UH1W9n4EntMHwP2CeGwP7/psUh1f7HGKIXAKd6hkMRD0dvQmeFt + oYgs6lTp86lhIzwoxKM6UR7D3FSqKkxCxGPr65zZwoSHAaO3k4T8UGB/ci+S8IcX4VK7KFkKQDwY + WrLzd4dustLfpALjMKjUut/YX36lKfn9LGDT8MZm+tqdCi4K7Dd/OTHiXKMaWOhywHjcfZp5+Goq + lBMRUo0cJX344290uz2p/bArNjaVo4FNv1NzTtdklUNhBZiGFZHe0jAwE30f8OylCX2KFt3ObC8q + ymR0pHh3b/1py//+8W9YEFXnPiKqISe91JDXRQ3MJJwdNGS8sfHRU1+HdyWgWQBByPeBywR/LHoY + 3K8uPorhaeA82V4BG+8S1atnAOYHZTV8zSHDx2WsGUkdrEE9kI4EVOevz25yAOHnaaS4vA5K0tdL + VkFLeyj0Ty8MArNG2InzFT+3elja0qyg8T4GpNnyO1ogMQP3zLqT1fr5bBH5Xw0rolH6197Z7uce + yjAVcTLT1ifqbw1g2cUq2fAfLEf9lKL30bzhcNjNbPR77wHzexrRh/1w2AqMQQCbvqHHu1v76x8/ + Bxw1sX8pWzaG6NjCRPIi6uqHN/vHp1XJubgY9mazzuSkQtFaFgKD55GtPwpm8DKzgWz8Oayf7pz/ + rX+Ew/10T1j0GTsIO16mDyn8Jj+1ITXY9B12mCHp/XwGBMzX8kw4ZScnv8Hac3DLk0K2985s3vJ2 + uDUi5FG1A395PuQxB6j/EjM23RqvhNrdzEJ2SSqdtY8ohV5WpjjpDpr+fTqRgjZ9QFXPAclUx9T7 + 1x57SI6FmOtPCLb1HBI+VqMQFHC8Qd80fJw/53KY//zqmTsU2F1UrxnubLxBvjQDfHS6VzF7p8mD + lVmH4a5zV309dYYENj9HtnzaX49uk8O6mfe0/F5rMDkKLcH8/EQhuLfHRDy890T5vqIcO0b5Yev5 + HaVow89QDL5tsb5z46tseTktgd0O896KSpDz3Er1qyMNY6lYD/gtfG0b7wjMazf1irNzANanHLO5 + OqGv8sf3ln1udTq+SKas67qEUu/z/swfixV404xxuFrXYoas6MGKuIIworz1Pz0LtzyaSJH11Em9 + ZDV8X88DgVt+KHxejQoTdnxhn2UsmcNoByFN6ob6jVUPrG5mCeyiLMbqz+KG1Vz7HP7lq4Hdec1S + msF2SWpk42LTM0t/lnIFdqK8+alth7GU51DR7gxrWqYVXF7nO+hEoxkK3tUp1i1/R8/G+4ZScU90 + thbP9m9+Up/MMuvrJXfgKYUzEVKuAuNvLSEsI2+gYVeCZr2wnwWjCrcb35lA/CkyB3R6utJDimb2 + p78QqJQX+cfn05dV8FkII9380DD98V9vDIc//dD86WE4KqGND9WHNNM2f8E5a1t8r45dQpcd5uBY + zsL2fdgI5mMxUCcuexraDwfMWm1xcNYvKrXxNS/Y0ucOPNccj03FPfnzgEcCtV92wM5Uu8kC3jCH + ersdt1kQN/Tn05RD9RQENLgIIPlpqhChbxZO1Fqjx+YPnQheyHjd1kMBmHdwVYFozf7mJ5VklKuo + RrtXLeGD7vfDCu+uA7g6N6nzlvxmWw+I0d96nY6+H3396W8H8gY7UWPNrWL2s0v1Vy/beOaMaTp+ + wPn6OFOsv89syzdndIlLF5+ws4Cp/71G5TkdYmwY+xSQsAMWPJ8GnvS9zortswEzqzgQoDruMAqx + 5cALJ57JB1/zZJ3Y0kFDuAUbPu51Kl85Dm7tD+XDWg1//AwMjVPJfEnJdmKnF6Dt3MZQGItnMp8/ + ogRP+uxh3bOPvrjzbAJlbciot/3+xn8O/JxxhA+OcWScsCvnf/mbvThBwmBaxlA/cA1NPY414+58 + X2HD7zVSZ3L5zy+AyJG/1D1Sm9G/9TgUOiHNXK/R16zXRvB/7CgQ//eOAu36ccP9Yir6sgRdCWV7 + XUKOv/VshVxowU+uD1Tt+tkfafKykDM8E8ILvMZmEK418iCKqNb8KGD9rbVgW30zWh6/nT7vgkaD + a5otIUSd24jfVV3h16eYANUMk1U4GCris2wibHQiwBlGFMPc7gi2z1MMmLLEBtSMRMBOvR8BS755 + D3X5FVEv+nUFO19vHDx0+5Ie3eDImOzbHsxrdsPOpe+Kb5epDvTJy6L3Vzkly/XEeYj7wDIU9+7P + Z+d7HaNxfBf0UCAnETV1VOBkWil2yHvxl/fR7IDRiT0NAxPqizXTWNn+PzXkwRlmHmsWXFrlRw9e + xQAjyxKgkN597OeiW3A//7pCrZwJTTNLa7gExR7syG6idpG8EzalRwcIVP7hVIZdscjAIXCvYYVa + o7oDZHaVEq3rpNG7LeZgvs5phA4o68i4ULvh90QTEJgqj8bLRSt48/Xt4Wl0OerApBmEs/HK0EWl + 73DB/LcZHGNcYXoAIT4w2Ovz9RAb6DfSIzbjwASiA00OrtpRx6rWkGFWFuuGvHTn4WA96b5IKlai + 4s5Z1J5NdeDTT64AMNUeEadCYAsoTA/eptSmcS1kg/AJThVKfopN1WHfArHsXQ05+Ylg5w54sHbk + nSMpCwH1Cp8la1S9OZj7nBfueSlJ+NM72iEjGPltBVkolje0Z7B8rZAeXujmE6NEtXL99Q3hzOnt + 8+ADHnA8fwMC7r02COEnmGGUCSl9qKGij8pi5XDFhzu1d5KfjOcXUeGj6Dqq3hjRl+48PmTvSzl8 + UCjvL/efG8GOBR49BV9NXx+aFwM1ak162tdhwd+Xr4dCPfxhL1IMXawAbqE/Fjn17smrYeV7aRHV + 8xE76mdf/Koz1OBzv7r4UvAqkMR+r0FjKU/0UcA7EF933UPlMQ7pOSfMn58QaPCWQYTLnWPqXBU7 + MZTFQKZXZ3zpbCe+Hog8hoiqutnr7HLYOUqVvgesi/t4YEGSaLB91B8a/pyULeFtddDLvVhhldB3 + smT2OUXSL69wnomTvu6WXQftOfrSKxAHXVDKbwudav1gf6+wgQ1UjiBcGId99eMy4RBnBHGd9Kb5 + XB4arn3sc6jsLI1iVd8P68P7eVD0Wxs7/O8K2DkCENrdJIWL6T99AaqwBM1htahDUpbMg2SUUJSk + F47HZCjWGw3qf7+nKa3STOr4uSFhPeTYtb8uE25gFVB7f8zYusx7nxUp41B6TTGOXgYaWB4DBU51 + Toj40q6FMIHAAfChuuHM5VrDiWqwnXnjc+xNxStZuXL24BPUE5F7N2eLOtIc1tjL6fE1+f6M750H + j0g+Y12K5mY2VFWAdHxuN7XwZbG+orlGanOSqD2N3DADzQhg7vRvrMtvs+hzTxqhwLlWyOyQB6T3 + NBUJN/VEt/nAqEhvHhSflyXcmQdW/OEd8GKuxPkjYA3RzUhDsaO4NCSBD4RJbyxoRekrFD07bLhH + k91AaOUhEWWOS1gbHjP4uNUUp/fRYvPnHa7wvSsJdkdWN78/vJnJ4Uktp8gBz8dIAG6d3al/USU2 + fgWjRvzhcMN6qS7+VNV9Cnbn/QW7h6pg7JGxFTLxcccqSu++mD/7EBq6pVK1MHzA/OVZgra8yce1 + Kt1kxcYswcP3kNCwcXSfWTjx0F/7zIdw8NnwiW9Im7g31tL013B6XY5Kyu7Ghmd68008tUYOHelW + n77OHw6wh/INZvTy199fwajgWQqf2ChaaRgft30FN37B4WkIm3kYMk/5wmOIDT29+stXe4bwD5/8 + +vwsCJdeY5gkNdrG611wv2TuEbwJLcXHitOJ8S5zKJfqEZ/7Sdf5ErdfZAymha+S4+rz+Wp7kO4+ + F6o/j5eBtS4vgeun4vFpr65sSR+KBk/aQaX3GnfN1wO/FZiUe9H4sh7BerihFi7RcAx/j4Yb+t5U + OuXak1tI+FecsB2YJfgMgwRbt6EbFpc8Z+jKp5GevGUZFsi9VrTDqo2Tna0yFjrjF6Z8t1Lby8dk + /UQVRMdUyMn7cBrBKhyVDD6PTomvSRj6HCaDBO0YhpN8vCCwSK/WQO9W3lP9Jb4KwVReHWqy94ea + 6oM1g1W6D+UlLSFOhu7sL/67qtCrrAZ8TeN3wVkjq5GhwjhMt/FY7q3MwejUHHBAzTuYa/skoaPa + Qqwv+4POe/tzhVrrQKnb37Lmg++LgCC1VIpjjQ7LFRIJWlH2wqnI5br4nh0OBbKr4A0P/TUrLQ56 + x5dD46r8FUy/HSpUvw8LvhjRrpgTjsWSNJ9nmo3qA8yJrI1o6EIDe8ZqFJyN5AieBWOh6X3smCAL + 5xZOppHSy6tNgXC48S20kalR83Ld+evDe3moqZwLvUrOz1+1AWTw82oLmh3D1WemNgpw6+9QMocs + WdJPJCFjrRx8UhfVFw+UWvBDyxFHbnZtWE0cCWnGSaCHzJL0ORNYgNbd/U1tY5XZcA7aGo4h9gjH + 3zywotvJQr/+89xu4fL0+Yq8Ft6mzKYnDwt+18tGiDb8pF5XyYzcWALRU3kI1P4gteFsKwpg0MTb + Ckqo6P3DOhFUfq462SnvX8Lqd6+imS9fuPj06Z/+iRS/P/XkpZeD/wmNc4j67Yyc/hhKf3aZp0Di + nhH1nrtgWEP194Adrt7UZodfsqz3MYAv/vMj8niyfd7TJxXGYnTDYW0EPsv6qEVVFbn46njvYV7P + PxU6t6Ik3UH2BxH1zIE+v3NCeft+JEqQww3///C2WZOzWMI/PvNuyrlZdq+ygoVi/MjuzsJk5pNT + DW9nYFGfrQlYdvej9fd7ND21H5+/TN8IdpMiUPMhvHyWF/GMaFo29L57Wj7fLnkL2no2aMT048BW + GKkwVfkLttnBLeY3HEqgFaOIo2f3KWgF7A5WxLtho7S4gmWd68D0ErzwmV98MMYNX6NtvuHTpwkG + TvnSGgqWMGJXDlSfP4Q9hI5RG9Tq1KPP4/XSwyb7fMijfMhNf1+CB6wyeiVyGr+TNbZmDhFFZlRb + vqo/utcuBkGbXrG6s4WCzqoogYZoX+qon2eynloUA+Je0H+fV1NHCdCZWlTlfmoheOW0A9dhPm39 + Y+sMPQIBjkZ7phg83mDhL8cIjDg50IPp7/U17VDwx4+0fGeeL/jKTYWWzX/JgyNXn91EPIIN3+g2 + 331euh4DSB6/iPonpg6zmWQK/Kt3TD86mw0gp/BS3jQiV4PG5req7CA0mxNZneAH3tVwCNHJDN+h + eJ5WsGZlKMCPCRA+kEwcRrcfNfj73hd8PtTewF3deQdvucqRPvp1CbvtSQfV7YxfvFzqZNM3Mfjz + E9vz+Cx17haMlPculCvXLqh2LAL4kHcidm2LJOsfn3t7Y0efiWU18/mKHahC4UMP2Tdplq5fvuCN + 1Y6G5L7taJhBDne7ByaydO3APBgKp9hfsSNILrA/d6eZwD1b5rB50kTn3CuJYDYoOvV/kQXWP730 + 4wOLCJf5qc/HwxLCqoc8jTqHG5YX+1pQbD4hNbJLVcy2ps5IFlwNq0/R1MdN78iHIZTwwasSMP/p + X7NRbeyVlZMIx9O+Aw8rSTZ8qIaFtrqHsviSUvfBxQlXKsCAllw8QnQWXJ+HyPmC+qj1JNKacFix + q6aoRvUv3J6PrfZRJCBKSUfxAznNUtV1Btxou7ONRhrgMgGE8Hn0SqxlRGDry/BCGJTyhSZT8AGz + dD6VyDjOIy3a+zSw1+vWQevugU0/ND6Ln8uMlngGONr0B+98Zg3J+utM4OY/V5LPERLd8krT73Nh + jJVlCflL3oY7sn/rc7n3amiJp5me6pklpI2lB6LYxRS3IxzGDHj9P/wqm/mSfD1DJRCqx1043uJX + MTepGoCOiw442il0oLiLCDzbpArnTX9OtX/s4b5Yf5tfUfw1HMpAvg7rifptgMH41VYJOrymY/Uo + nfUFSksA6fHwwu51LooZv/gOFHfBoka0HNmcmIsBf2o54AO7kYbusa3C9jUesebc7UF47ZVRWi91 + hvHBFoa/9sHcvKvYMJSBUbWqSsXPfUhtmUsTtr9MCrSa2sKHPLQSekK7QC6AV9Fjt2g6ZxX8Cv70 + xCm4tMXYfrIIvVEubvPhU8w7J2mhEXINxo9i8udFTQT4KuuB8PPEgdFzcgdMVaJSXVoDnRgRDmEd + Gi967ncqWFvv2gI5F740WB4/wPSzYgB0LE+4UN4PMJ6v2EM/rb1u7feZ8JunDAxPbnvrYmSw5V7e + dkoJ+u2WcstoBLsxFKTIQkdVLY6AuBN/JXwUbYdvIgqT6TcuHfo3H2lUg2Uv/Ai0bPEbytdwD9bf + /M6AKCmvI0sHbxB2vwuBn0fOU3z51v56WUoNHjNo4YJFUrI0bR//4SlB+8NhWG/bO7iWeAVUF++i + vuEdUZ448nDB2w6bPSdylE/dxyG3HxR/Vpe4QrnstThwWqxzEYhDZOP5i7X4fvVH28oDcBvjiMib + Xh+vXEPASVgLvNVn8298TTL3//T/v/4rOJaFK7gwttiHyYIhtz4n6cQEn0pQfUB/nRsaS95UUH+5 + lEqoeSu28XTwxT9+OL815YjkcWT0pJkEoiC/Ye/7dXQG5BnC8qTL4aIuqr6enXlFN42+MBaPjj5H + +18PD0flQRqn8ZhweJoa/O0EsPnjVl/ZPlCVfSlU9PBpgoY/FKcI/XDONn1Omj9/Ajb9R3Ze5vji + X32vqn3GrtQbDd9dgQQVpPo4kfUfo2p50v75Ae9mw2KO50aAH/oYqRXGP3+Fx34F7tMTsaWhullp + Q0uw5VfU6k4eoO7DvUFVfKXUSjJVX38cnGGSdhxWNW4s2EV+BnBPdiFB66VLaPHqHfjckRjrdsiz + +bBzOAiSfREOahb462kZOujTFm15UekzlvAdNKeRhbvt86pJvy8MuocdlulI2G+/3+7QOcfCP7/e + o8zdvi9t/Nj4YsOv+C9Pw9jadWCOVpah7e8TrmjzgS2S08IXuwPs590w/NYX+6LovN4Jtaafvl6v + +xTWH/9J3Y0/+b2eG+h4ljA9OiDSmVVFCnLGl0cG9fNjzD0VBpT68kIGfEsHNki5o/Q0U7B1+B4B + zzesQ97sCPiwr8NEDC79AzSDpOBH9BGb7TUsOQx5Ltv8fJKM9W6F0Oehgx3TVQDd6gd9ChzhDV98 + /karAOnS80qPxHIGqlbfEry9xfs3f5aJyBXc6ivcKfqR9dIkjPCgqkca7K41o6QCD/h4ChrWX50+ + CIGt5nDzJ9j7WuMwe+C1oss1uOPEfrKBTj6J5MNcB9itbm+ffBzPgiCW2z8/1UyuIHzREYoPbBj5 + XJDwY6xg09shv/klRpTIgp2+alu9lYXw+1oPmL+mBqvra/V/T5UI8Pk9O4RVJ7L9+9yA3ffd4IO6 + VP5yNU0O7H4epOqVivpstWUPxOYdUqd5OcXaoiaEzRqZ+M9fMaUd5n/jZ8b3ZiApTa0/viQKN9tg + FSCsYNa1M34+Rg/M7UO8/eUrVLU/72YuFWag68kfKM6Tvd9v+AVq7OQ4P6nb0bBbWUGkrAPWTgA1 + NPnmX3AId2dsdcwquNJ+lWirB3qChqf3v+enA3teftBjuKoJ93qFChSMcYfvXWUkM73MFXqJ9BLO + bzFjfNq4D1iC7/PPH+m/SyVDAAulCBXtmhfkrJ4UpD4eWSgD0fdXDcoWHNEQ0+AaegXd8lFYiBBs + +c9toESJDDSAwztUop9V8F7gK/B6zFV8wMnRJxC2O3B9F3bIfWc6bHldBN324ZPbLkSgj6pJgFN9 + I9hviV+sge3coGBxIy3y8wTWW/fuQSHuAHVmX2fLZTuD7KmEYNcpmmTVzVyFv0NV04v+PhSCQ0H4 + 9/eop99xsnL5d4TCxEAoSFeYMFSXMehL90yD8RYzhq/9DRaytm5vdZ0TsuGNQleOwxd4VAuejr0G + Nv1KXWc86MInnW/oz2/o6W1k42IMMRSYjfFxaid9muelhJzXa5tfzH02DC8B6Pb+Rv/8A7e7f2c4 + G7D+137hVmcBzNK7RuRR/RXj07zuoPJ+ezjicm0QtvwKMj6jVJO8KWFqongQSV+EU+wDfYLcb4Xy + bZeFz8TqhpkmP+Mv78UGnoThPaj2CL+JdyIc91maeZCCEipgl1K9r3f+xMeIk7zvxGEPp6eEwdOj + gps+w97tJ4LlGBcxvGtvSu7S98y4jf/BhnfY9z5FsvKzFUAtK1pqhL/nsFQ0/4JcdlpqflbQTJs/ + BfHbG7EW7HV/yGOmgMthKXHgbGe8C1VLQfKTbHp9foZmRY9vpVgmVajHipgxY3p2IhvYfsMXjXFz + Jzpg02PUKDTkr5WYCJCrB5caeirrs8juEtzy8e3M+aMgvWwEEJD2QNTyWjEWP+UVkmjeY69cOp9t + +ANrVzTD/RFnCfmrx8MY03/8yUOk9siZ3gdqrVdvEOfsaCn727hS6/04DYv0BjVELwxDgGHkz+vp + 1KFPVbeEVcwrmGbA9M8fYvtcnnXmdt8ITFeZ3/QmZVRTWwnid/TY3gotNcR/BwKIG21HaH84JfTd + 3GqYxed0q99yu5Mw2vh9elGHCASM7ecR/fU/PkavNJkT2RvhIAEx3P3AtqNp48tt/SacC2Ng6+8b + PiDTZ5kWn6uQTF7abzvezVvY43QpxvV07WAO4hibbSoWU78cNLD72uamF0d9cQWh/8sz8AGeP4zs + fk8Ctrw+lI+yXPSvSKqg64ottexQLcQt/4ZSnv6offbFZJaMgkB441paHvC3mSVncMDfegJ+jD2j + RcoESHfvC1Y3/7TOZqOiPz9iXiPSbPznwaDNrqGgeW6xhuqr/OMHartv5tOMfFWY7KYvNVgMm/XC + N48/PYbjjGSMLTW7IZCgIuR+8aCTPq4UdLKikprBmR82P5TC/nb4EAkm+rD54RDyie9gJzir/qZP + xz89TDpfvutz/A12cOgCA+cbn/75PwQy2yU8XxF9ifL6q9iqUNHwdIsA0yQT/tPbf/nXlMT+CAQK + fqHChUEiHJr0AUFmulgfQa8v6VClSA3S71//+ywUCQeSo79Srd21gFDuHUDRfVypfVt+gBVBuQPt + s31gn7cdsPlPQ4ml7BTy8y5uFume9tDX0yJUbDL5M7XWGRr7rP7Hl8utlhXwPQoo5LY8lrahmUHl + M0o0pNsO1KsrQbheqoz86/8Tz1S4nCaDNG7W+uw9qwLEXXomdS689W29RIX6qfLow4wXfz6/+QfY + xg+HW32unRhEMO6Chvq5EenspB0J2PUB+8srk3l0vRgWbtfjPzwda/uqgN10y0PlOYVg2V5/B7Xs + 2pIafE9N84dfIGJCuHylV7M8JSzB1DQYPWWXM2jq31L+4z9DObY++1s/29bX6KnNOn2u16CHjyen + 0dT0f8NSW7sAaC/Vp4fte/qDe/i3fopxYnUNjYs6A4HsK6TfhXewlP45UHJf8LAtN1nD/tYPZsex + sdOslv6XR4KjQud/+DqeSZlCe8me2KE/R+d/49KiBH4UaoVNB9aqexjQLVD8Tx+tlyVV4dsXD9je + +GlUSzMDorzLMRbcRWfPOc8hGMsEJ+M1bJbMvqdwX2kWDZyW+t9I1GZEQzunpl+XPtsu5EUb32Jv + 0y/zQjMV1vCxYv354JO51G8atO7O5hfsHiy0aCPQ86P5r3/FP79Kj/qLus9sYqy430bo61lB1eUO + dMKVswOdVTnj4+5p6et28yFiLzOh4eX00n/+62QgAwUcLoW6AkuSFR4sXu8FG5yZ+bNalSvU6C4h + w+/VDtMuwCnc8liMm/kF2KPQQ8hr5gn7v6gDY2bLKtz805b3sKGLtV8Ou+zOEyE8+MXKFNiBtl4N + arZCDGZbc1Z4u3k11qryl9D84qewhGNGutUZwQyfc4xwbcg0k66w+OcX6qPaYzO+6w0fNlcVmpV0 + pb7erMPXWrQdSok/U3Perc0qK28NpNreDPlAPPmL85lV6D4dkf7p77GK1Ri5cjIStJsbtvSLq/4/ + dxRI/3tHgdqINbVE32pYlLw72Fh8F86cLOtE9b0QztnuQJ2lS4pekk4CAvptxKab78Foa4KAnjO2 + qNVYqs9VlyCC76M/0pCfCJst3uSg9zTVkEfo0vDRp7opUhOeyJhFe9bGZInQhRkGVVdkAM5qlhl6 + dRMR5X0Ok2X58SX8ypcKu5H79Bf9hTpoO6pN0w7eChLbEgdPL3AOhT1o/emYChm4RHsVa3BShpkt + VgbKeVuRWp6TzozsoiE3Mx/YWSZ5+BEtDUFyLFOq9rWiLx+JxHAH2x89gm8BWOqIAmR2x1N9LMKG + He7be7v3ToMtYFTJZIJJgcq468LlkDZgOfHXFHT7TaE1tPaF2J4FGMDkTVXNq5rFkrQVGTvihR/v + +kuWmm8MmHIBh5365CXL15gIhKJ/pn7zshP2ub8DhJWxpInrmAU/3BQJOha+h6/feE/EVuQf8NHi + 7a0RdDdMNZNraO/KIFx+470Q7V7p0U0YCXnPdziw6bHjlPhSfvE9DYNG0Lm7CmEUi2SPrro/Vx2Z + wXO/jjiIju9BHHdOiPqD1OOIXu9g7fZWip7V8MShsD79xRuGB5RprxGWZ1993QlOCrYNKfSqgrIQ + mtSFcNnrA7We9dXnnRPw0MHcdSEA+aHgjuqUwlafFopPd22Y3OdowEz9duE+rmMmCtrdgpyiJjhX + HKMQkncQQWFUPAIs5jbrtV5n+IiWBy2CxAA8DZMOwWOiYrNlKuCv4WsFP7q86fk8GgXr+QaC6tYw + ejyoP7bsaRWh++VSUxX9hIZI7gSh3CADF4xTiqWaLA6qa32hrsplPp8eIw+m9+xM8Xs7c+gLlwc6 + mLDDyVhzjBX7rwrZoi3UYJe3vkSfKkem5Fg0ETQKlmMSrPDI5Rm+gGAa+I91iWHK5oLeb/qt4D7V + 6qEuH0daSg8JLHsV5opv9Cn2xEfVsE7TMzi8sphmkuY1K62ACpj/vBMgTpy+HM67AD49fMXeoJ8Z + E9a1RuTYG9TduX7Rrk8lVs4PpJDlfO2Lcb7aLRL7kODAm7yE2+YL0iTuTk3t8Wp4o6wkJOppFEpX + Yd/MRXow0OfcidRRGdWX32E7w8a/Uvo8brsYfh+mIntRSiJeP4EvXj+vCJjf7hn+2ND5My/3LSxh + W2B7bYSC8U2uQfP3PFFvm+8i/RQGBO+diyPtZG2bGkoIAZqu+Kar1KeV1sTIMbMBH/YfXRde/pug + p7uoFOuWPiyvz+qge6K+MH4XGuDaIKvR7ufcsOqgfBCn8bPCv/kH2tNbX8Hj0KH3k7pE3tt8Mh6R + 58Eron44Poa+YcEjSdG90y70OEOvEMll7hDFyY/sF3PXMMP0IOCPZY2DKPUBJw9XAqN224FQj6dh + 3j2UHFxt+gzZ/Tgwtv9lN/j1PY+ala4XK5KHEl6E3fivnkcqRTsoLmiP3cQIB044GzVa77GN0/yC + fSpGoQYF7qjRwOLmQcyvc4ZCMuk4HI8J48lJIBCn8QWb0qEZpj39xnD/9Cx8Ol+9Ym0+dgftQqHY + fO/FYlGiHads+InV09MdtudrkRZChxY3afaJ8sYCfFa/ZwhNoRuWz/v7hfeunLFO70bCbukl3o59 + m9h8Syef5++ZB7P8KoT7J3coWHCTQkjx6Ud9iN/Foipp9G9+t3wiF3NOrhlKq/WNDb32AGGGHEKY + fiRqrTVOxCdzCJQjFG7zydSp+ixCiId3SFNXs3ThWisz6NiT0dDcK4zuf4+bkkQPH5uI+jqzi9yB + yPO3J7FfjDrK2UGtJAw4ANdv0SNxUdBXPe+oZ89BI+qyX8sfKBNsFNXgc/rdtv7hq68pmK3pon/h + 3rgo2HWeTTJrOHMQ+V597I5iydbAiVb4kdqJmmUu+GtzBjX8duceP8OfrM9H9Z2hutyfqCYe9wXz + o367vLs6Ucf6luyTcmqn1OtuR3664LNluK0SOE89pZaTZsPyh//DO1Cwdr0txbwjpQS70QH0Ov+i + Yr3YkYJedd9i65FpA6ffsQGbL+zJwukwWY+f84ys7lKSfXZUfaE4igEoRKCE/NZeUo1VD6fyulL9 + 0D4K4aaGEZzRzSJQeuRAKBW5hq869GnoCbthvdi5BCXjVeIbG486t3usOToXdoy15TQUi+qYMaLc + raVeF8T+bEd0BlITnPDl9s7070S5EYV9rmHDuIaM1zSpRUb5sYh8xCobcabUUFLDgnBbfQgZOJXo + 8N2VOOfzjnH24RhBlV1dfN3whR5lPkCxopnUWoufP0dnFaLH8RzipO/UgeNA6kAruXT/9MM0rfL3 + D59x9lsXwFg5pWAvy0fqPasqEQRiaECZbnuKO/IcuHP60/74jqobv7PjaMRIZtVA8w0fyScQM/gu + coc+Xq9an08vNUNpbM540xc+605vDryeQYrLoIh90a8CRab8KcMZ2u2Ged/LM1Isw6H5SGkz/o0f + yARAxJ8OkrZ+VjXoz5mM3fkXJcxxRQLN6SITcFY6n/ovoUR8o3xpsuHN51BIFlrZeKRPToz1+cVd + RvTMlZAGG77Nl1mT0Oh/t/P+QlSs5+lbgSj8GP/m41xWTok2fib/Ie1Ktpblme0FMZBOEoZ0In0Q + EHEGiAg29IHk6v/F837DMztD17IjqWbvXUkVrH8VWMu2fQNN5B+BpB0tML3Y2yJ/7U8V7HXgkfZf + u4LZAQZIuWZ6sRXHrwM//KfDvt2rOsf3jxpez6OOfNABsJXnpwUHtbxgU7hTndRL7sEjNSJ0Xbql + nW0cvOEYEHZXtA3AApN20GUOasCKglJsn4eRQfE71Ni2H3O8ley9hKE/Rfi0PsqWNGKtwXXIQ6xz + xolyWeRJYLner9jjm3fbAeFuymZ8/f7Lv7zsCG+oPyew0KirY5Kw31V+PsYOK4V/cbnPvQ/BXzxz + PtelmO+eGEjnEG1IwdFtHOz1AuFyFRZkJYcC9OW3rmVGtxakKTcFzH//95quF3Q7NZ92pqweyUrL + 7QzbVF3+eJ1TiFleDraw+Y70qm5fkDJFg0/08gGUyHUk/8Mf7DpSYqybKMXJ5qETa/WU5uaSwD+8 + a5KkAUSKtAAmn9dhAakVjZtqFpO0aMUTeyh9tWSPf9B5vu7Ilm4C2LQoNmHjF8NyYIXI3ejpmQGX + CAN22bGKyfH6SeHzdRL/5e+Fmg2B9oU8FmZEfbvq/vQFUnXZ8LMwdLB+TmEIjF0J16TNjIUwnt/w + U/CvpabupWCVrxtCvbXdBbSvc7EgTBTwQN/Lsvpz6q4BCN+ya9+Xv/fH2/SVItiU8iWQRge6k/K+ + L3B0RG/5JX3jEjhKDXzoxxiplaaOU36bAiDd6xu6CXEM2KnlEjBtQbwclCiP58dp/sId/6OyeRsx + eUHXgrR6xlg/gn78iFwiAc5XbHx2q/u4Ns+uhr9gyZAe4W+7IDWwIO+kM7YfvaSvf8/ToaeLA0U3 + 6brjCcnrMhmftClw+XW91kB3+RjrGXoBYq93CPd8hHd8N67LdHlD3qxO2HrFdcxVCGSQHW/VIue6 + FOOmjN/wztjvBYv9Z6RfBCOY3Rsbm88iAlsWMxW461mFs1esFDzXeN0fvkQ3pCktPWZNBLiE5nv+ + swouqSYPtADWyN3xB//zDqk4ZNTCxmdt6f5/vjL/8r3//MfGwVfa8SA28Gcbt3sYp9KlAhUK/PYF + FuZclnCPDyjI1J9LnKXLAF2/Gbb49yNeV1NlwJ6PcPJSzILl9bWSM3bukZ2RNF4pLgnM3HjGp3Pp + jvPqiBXI1qzDxSflio8W9g3c8SU2irtByUB+CpQDlaJ7+dBHYd06CVpd+lqm3b9prY0h3JLwg+9f + 4013e13htHkxivf92zjPMaH8+OVY//P3enWJbFDALIlevFsig6sGncULcMYcOn099EoA8CtbFpCL + odvJzaMGsJ3NgOXie7EpYjPBUNSVZTIBD2jqrww0I+AvxyDZ3DmL+Qpsv7BYvv0xc6nNWRVUfIFD + 56366rT07wrATo2wfmT1gl+fagnex/mxzOE1opsxQwZC1e0XIekbfWqeXQNvfr0i/ZReAEFY0sB5 + ET9Iv+9zGb0izf74wjJEwUb/7AUM1+S4+8ernYvj4sBXa8jB73f+udv3FwVSdofNAt2RLaaPBXIQ + NL8JIZYRY7z0Ricj4HCB/Pq9ij8+CBW/KIPjN9qKLRXLGphP7Y0V9xAUSy2ziySk5Lm/XooJA9aU + hTQx8d342i328C8HU776OMs2FK8tpBC+mu69d9Xt3P68ax/b6bciV/j6lPWDNIRgiB2kbc5JJ67/ + qeD2i4pAHgOtFaxeNeVmHExsBEro8gVsDUi5K0Hl1ehjEjS2CXd8ERzLRzuuj/mYgVhNZISiYhqx + gsTpuMdv7GeCDriXdCDgw/+6YOs/N5fGvbRC46E/A4EP9JYf5yiFR3tIF6p8k2KeviSEvVUuOC84 + qlPpG3swGm8hOr9PWzGO6pgDlDkHtOsjgD5ZEsqQD1ukEQvrK7MGFbROm4HP+/dzg28zANziBOvj + 2xkFgdlEaHLKBRXsO9NJc686wIUSQQ79mHT9p6fYnYXNSKt0fMwLHu58GCtpOsekYMoOcm2JcPoG + izuOROHl3jqekbfvN708JwiS6LwGUs+c2ln4SDnsjbeJnjVxxy6xXh1USuOCdn7TEoZXUnkM0gK5 + vdqM0+7P8OBZ4SKdezPmnoVEgL6xClLwXaY7PijhuRAx1iNsttx0PIjQjCo2kM79N/7jY9DruBRb + PyvQiVJWITxIty8KgpdLeYAfHYwGUUDJ8Pu1lFfGBkbWLcem568FbbO1lIGM79j03Tym4YVV4GwM + DTp33ELXueo6+HT8O9ZIClps6JccmsdbFAgHOLpj6q9Qhk/2gbQX1Ip/eGW4oxc6fc3HSGCZaRJz + Xdxgbj5jvOrFo4a7/aJSOWiAfbXuAJTSvOAgfl5BV3+/BEJ+gkj3xQbghJMsiKP5iAy9MFq+/aEv + uLBHFylPOWg34TdCODVtheyXr7qbzEIId39Dqume2+3urYH8+FZr8Lty2UjZbpqgOuXjwq5Br/f3 + 4LXKy9twsA6UO93Gu538x6fqiKc7Xwvl27tA2O8vD32KmZjIoHDhIsb6r91Q8VLkHQ/gP32HMs49 + k+R7eEd5vmqAtLfZhHFYuv/wGHm3UwX0hbfR48H5dCsGtwOB9zssNHknLYGDwkD7vcYLRca92PGY + Av/yTfkrLJffGLOUd70Ro8WtCxyVKgvDt5WhaLu48TrTJwu9H/NGSm4plDbeZshEewB8du52MbvH + ModLYDyw4za1y3ONMUjf6ZOg3f5dcrxVEpTuzIps+x233dP1RGnHMwtQ4YfSKA8jOU/snY9MZUxm + obPkURxt5GfM4JLpeF/A/rzY2fUHmuuuB/wq7xdJI83IRSlipPp8fu/5iy/oP766T3Vw8rWhW3Fc + rD+8tBxeKzduWeSJUrmCB1LY412fFOGZAvSLfORXVKB0VMcMKIRZkbn0XLs6t7yE+/5g/cO37rTa + HxM+4v3OcVzvt03Pr1X+W8/0ym7jrjflMOfDKy5A9oo34DaWfPQPtwU2733K441jYFUqOopaNWrZ + 7nCwYKfcGKQ8tIM+PwOVh8x6HAOaIRWQvjVq+MdP0zpKwT99+NB804X749fKyyByDPwLitV3FdPH + PczkzL3MyOAdWScTcPeepeczRk9WjbFYnrLj8JNShOIagrE41JpclEuO0HG50vlPD5Pr3wVb60t3 + uaSUOrjvJ3bNqY236/SwIJJCPSDXTgab/SCNXM4PP+Bqpx+HHe+DYUI37OabDbhPkbNw6S9y8P3J + LVhvG6z+ng8pRXIrqOg1EqSyY+GzE+ku/e5d6AeQfLDKMy7tdn4PZ+vQIt9ez/EKMrSA3d8weoLf + OB/1kwRPvSZilZw7d3xMlQb+nic4Ppt4Q0Wv/dNreSvhW/oYpgoGe0/K9fK0W1pE8wRiIenRrdeL + gmjdtZME2Xvj0JLFdkv8zALrkIX/+DtGJ3aAI5ta6MSmfLxw4fqWViYSMSqPG8WpLzJQD90r/os3 + q9MtNdT+ThyzRUv5/s0YgLqAx4blNvF8nR4OWAtcoH/rfeHuKVgSBu78vhoXtuUD+P5k5T98tVVK + KMFVhy4+kzJ0aXZfE6ilsYLOvfR0tyzmS6nPlCvS4o8eb58iYiUtyrNgQu/FxZZ9WODWuT7yTrgu + vlmchcJl/sYoKDdjpF0BOuB/YgtbE8/Rf3gCKbyFjLRRdepoxxJsCpvi9FkQQGaLDWHA62BheHJw + J8lJCby67YgUcZxacs4KD47paUKefC3bsrhKHfAfMMShOE4jvi24hjs/WcoTb44zPyJDuqkCwYph + JpQbpwCC7nitl306PCDnLA6gf3RX7P/aa7xGKgPhfnkVq7xwGtcWuwps8wuH9/itc+uDMeHl7ATY + vgFSTN90Sv7iIYoQxRTXyrbI0/McIK/t2XZz4KGBdpD6gYA0ZeRmwyfQ/1ys4Hq+ngqSbG4HMkdI + dn5ojssxBvtUzUuNjS+UYlx1kgjn0fihKugind5/ffiPH5zSLWnpri/BYMF6cNT5/UDa22IlTf4J + gSSfNJ3cX3YAwTdrFilVTvE6pkb+j296VxePHUqlWtrAp0Rqd6/H7vQZE9jgZkHerg8QUNlvCD7Q + Xj7GC+rLzidgUGAfO8c8ofRW9JK05wdsvf1qpPPDD8Udn/6Ln7P9kGoQGRXZ7VejLLOUEuQ/JxaZ + bjrtJ36z7PgTvzPSbetTTFLfWX/1F6ydLwxYkldvwfrodchZIG53PTyA6Bf6+Plpen1NnNiDevx5 + o5Ovz/o8+CqEp+u3Dxr+EIGVPEko7/WwBcd1Sdc/PZevCV1+aj8Cehfc9e/9OHjhYNz55wSEfr0i + Ex30ds0tdYIdV4nI6ZlPu+PvXB6DpMAnfRB1/Hoyy18+Xg5DZI7c6QgTuLxNBzkFPBY7XgzgyoQi + enDTD7x2fQFwGpIDPAX53pXfI/D1KxjkfD3iTldzNf/FK+Xy7Nul8IUAXqrHKTic5XMhNNXJgujw + 5HEg7VPpeF0soe80KrKNGdNt//4/PWyBE2hjcn+pnixA4i5SSeVite2+hhURGxyNbTtuLPoEwFOb + JzbYcwNWSx4MACIYY1W7J+54QhmBp8uiBsKen1dzayaYfrvor75V0OpnJ3/5A3mz1o+b/ZAa6NfM + Gavw48fLVy5XsOqMu9CD8GjXlLu9//Gd1WfL4k+PgrfaCJCXazT+t15bMjEBt7ysYojOKwvlKUJY + KRKhWLu17MBeD0OVRY2CpVuQQCm/21hNq7zdlguzwFyZNVTZ2xLvelIOx88YI8vsIFgKJhngXQ4J + OosXxqXig2EAVO0eqYh0YJOq3wr3/LMIO77E/lH2YHBmPziPggulss/Wf/ExqFusudM1jd5yb1UL + dm9m2W7e+ZTLYjwMWO2rEFDRG0Sw+8vCDstM//iQPJ3J7U+fb1kLrA0sUytFu76sz6+fZMHglnm7 + XsvEi/SaFtgQyOz6pKZjSxy/YK+nouC39+xCi1JCo35iFGSHTV8V4ZbI0iog/KfX7fmphLyzmQvQ + JAzWXhpKsBaxFojb03e5HU+C1JB/yLHuhku4OjbgKPY2OomHecRdFtay5HAN9mA4xZPbXljZP9or + foTts6ATKhOw6z0InezKXfAlq+F9wFekqVeHbsdDM0l//mUF8eCST20ngLDOd5GT83evByiLzMBv + j3WG+DFN0VCDdo2bZbSwDPChTzNofo462vO5TkL/1MCqLEucbfN9nP/4+fabWHS71x/w2+ub4LyJ + JT7nEyzmSA3JP33GXptB717xy5KFpcXB4RaF8UZPtwwy+3j4da+Hbt4p5v/yK7agkbVz+rPKv/1Z + aAxkl1wZ+AUrcV+BdMxZsNeDcniQrt9A2PVvUq/6+sfHUAjfZrx9By6V9WYiOz/ux7VbRgP2i0SR + 6+WjvjIPhYV7/WuRFs4upvVWaVDQSY/1LLXcydscAh10IEHZh6kr/B6zB2Mh7ff6fO2ub2diQE99 + DmsEccX0dA3x/3Oi4Ph/nyiIBVHD+Ve56DOQUQK5C+QDPjlil7Lps4EW+vTINR+/eJ3iWwq9ftDQ + 6bf9YnI1WV4WK8FZOHFWAT/xgAfCq7Xw+dKQdhOmRw4b2l2xEUbnmL+1gwZ9Kl+QHwqGvkm6r8BL + phwxug6//Y4DX4OwNWYU/kKDzrqeZpANfA9lbTyO21DvXS8NXsSmr5Qt0cYNyu1lOqHKr3/jxpBn + DRJovNBDlh6A+s8gh9k3OuKgPoEYH02ukeMuFZH3PeB4mo4WI7X8NcfqOeTpaijvCura5AfsY/6M + WyP3q9QbcbErPKq+tvRLZLRI/kLyFtD+fgMDDMsgxMF5jkaOu84s/GSfHmWHkXU38qh4EAuStghy + 0rfbS6kH2XjDMuCifqObZj4C4IV+h06jKsXr0ygj6KfMCbsKVmJ2TFNLNs/eiO0nxC6Jo9WQE7bK + AkFO7JbPMxJI8jm3F2peCVgapk5lnmUIVue6cYUBvr/yGscW1mvxS1e/TiCkP/2I3Der6Cy/JaUc + W3RZku94GGe3N2q5VcYXQvRdFNy5ygIZZjGHtG14tRORhU5+P5p5KTUJjax3JhqMpgZh/3Q66Ju1 + yjVMrUDF8QaCkX+alwye+r3ildp5IShsv89VIy6y2qcJNqN1MnCUAhnbp8p2uym+JXB90QX74+sU + s5r1qGDfH5Ld/s4FOyiSAin/07HR6rxOiu1hwZUYHxzFT0OfSu8UybBP7sjPfXak5HN5g30/8IMx + j+6iDt8GTlj2cBglTrv+BieDOp4z/Oh/rYsP24OFNpEeyEVUAEQ6a5lsQvGNw47xXPYMJA/O89vE + ftsRsEqnUyQvmmyj4HRwWx73/j4nWXhgp+/ylhhPfoLgnfvYfcRvncyo4iFb1Tp6NsfBZXt95eHX + HO9Ymb7XUciKyYGIU2QcFUrtssn3acAENS5S65NO15nXHJk5Dhm+GeekIK3Y7GcwDTM4LBpqV2dz + MnDTIxmpdqEVVFIESfbCwxU7V/s90t85qaAQK/sJCsmMsTuqndwxzojU3+zrvLasRPbuNxd7j+xK + +cOFn6D81CKke9YZrNdfU8tius+t3C63dg2LgQB21npsWNsYk4NQJ3JtNEdkO+x9ZN/CUTuaZyZD + Ti64I71cG0U2ecVC1pu7jWyqeynEylvHhnQKdI4htxpY0D6gzGm9UeBuDZSBz3wDPj1M4/y1Ukem + /Ef/i0dFl5p7T4dMOAek6vqRtDc9gU8mszF6oxyQfb/lMPmekfK6JEAo+1sEopE02PNefbz+fu4X + eg77QQ5Fib7yW1JBDz8kfL4XJ5d9vdRSflyLB9ZM4wRYvVNLOEVBEvB7/OFZxs6g071TrLnfbVyL + q73A9rKclr6/zS1ZXdGEOeOrAd8kc0y0Rdy7OM3aAiB4jtSUxg4yxy7DtsMeW9ykTAVtH4ZYV+jP + pZJykOBg1xVK1bGgODF/DNS8ucQu0VuXHw9rJAulcwr2VkUxW0SOBB+fJdl7bJzcdQlmB9rt4KCy + NUsw+k8zhxfhraPryuJiOx83Bh6+sEAG8YpRkOWLIfdH/4fvPBkpvpmWBi+q80DqOUwBDpP0DS+8 + 0SPLrBjap11vwnfbP5aDVsaAjEVuwj5mPwsdtFJf3xvN5XX0LKx4X33cmEJR5OTaAeQwa+gKRQhT + eTh4t2Dh1OtI8bzfscZLgc+HwKW8ENBcvoazEAzz3MW0nFITNu9Mw2EwqToniw8HjDE345A9X8aN + LdpSli75Bfmnpo3Je/qVkF+MK46/pHfn+zFW5H4sF+RLgwM2hqtS2NbBGMTTvaGk8Pax5OZg7vv9 + AdzAbBMcaSZghb8PBRHWiID31RGQJkpJK8CjycrCSgvkHio15tzJTSHxq1twPEU+WH+DlsNqVVsU + RskwTqR9pXLHqRY2u7NW8Ld6DIB8+olYG4WppS+mKGG98TCAj4yjm3WNCRTE+xufpJ/hcr5GoDyp + 7rpIzDsB7GoTKOeKeMAJ2zYFHctwkDf56O9nRjXAQy3zIHs69+h8RzalBU5E+e5XHtYbxiiE8PbI + QWtTA53O1pWSDxVrGB5RiQ2ZqUdBOwcivBfotHBRfwGcDGJG3vMr1srGc9mI5Am8F5CglN44nVq3 + UJQ5lzdRBSXL5U61+4XwMoU4EpdjQZhEruFHKEzke99CX69zZ8neQTfQOWbdmCOPlJUnjVEDuTJ/ + 7pI+bwQwtc8ga1oGlzjO04DDgTFQyjV1K8jVWsurb2XouWi4xXOcePLqDsyyOkXmEuPJLGC6GyvS + D+kE5qOtdYJ5DkacWf1QTKnpWnIzKW4AvWvgCoKLF3B6NQSf7PgVC6+7HMKcE1yEdvvmH9PAQOvp + 0ADE01Cs8+31lZ/XucS3uFv1TVeeXyjJI97vPKB4t8dKXqWqWER5u4A1K6UJinZpBQckRC41ai6S + /E85ontWv/Q5vhxrOb5U5SJF5EGpE5QlaHElY1Uvid69KmeQJuZJkEr4aCR/eMv32yE49m5UEOFC + PPnJazF+GoWhUyXWHFlNLzy+/7hXu055l8k2ER/4+UYSncKshbJjqx5y/NKP1+Y4ZXBiHgSpPbq7 + W8hYk+xwv2YRJ+kT/+bwkUG7mG2846di0ju1kh/+FgdH0SpHEjyLEPRH9Fuo9gr0rZhvBFwPrxin + b41tSZbPX1CpB4rQ5c64W/88TfL+e9iZj21LSvxaZfpTj+hZeBEl3tsvIVc/y4ArjbDYrppQSVBz + zYXGmTSuL60W5bOIfRzk4EPpYbkp8D1evsjuXRJv87VPYOHhH97Xq2U5iniA04Xss+vS8c8+5Nv9 + PuFUFW4uv55nFu546O/5dRqx2lv2hAzg627/QrJXfLWBesgUyt2/7r8F/AoLI48NSDu5+m+FPIpE + 5LsGcknOFhDag48D9vk70xUptgKsp1SjoD0ewCLndJ+aJOg73gLFKiyPAX5TJkTeAQfFFJE8hbeh + DIPrjq9ZqBTm3+9j7XL/tsRK80QamHJAAcp7SlpxmMAM2XvAx7dW75eoaeCeT/HppGUxPSl9Aq99 + 9sbGaOmUM7nfBAcncpFy49NiC15FA8nohwu9eYdiNsVvDdxJt7Ddtxal69t09hNtJ3zS66mYAkZu + BDu+xQvX1kz8z16xWQDsmn0zkr/8WKSWhiN9Pujr1bNW6JebjHyPpAWhqhL+y28OPqg6/nWUB1wn + RAtTXtJ2Cw7QgGvDRti5oUZfi0xpIJ/aV2Tv9oxz8Z5CRmeeWO8Szv3zb+AJOQjqj/MrlveEK7Dj + ReTYXTdudc2+IbLKH9bvNwfQZLp/4R9fSE72i5LPui3QTbLDf/4L5HMKrHAIsO7k9Z6ftC+MvMMJ + BU35At+SdF9pntoGK1MuxZuCP2/4ft8dnAPr22LXexlQ/SU5RvcoHDf/dCSQnSL450/F5KBRgVHx + HP/wbrHFNJQgOi8S9jh4bzmqqMu/+CvVQz2SQN9qqC+IWegev9dD4vLSgz79hR5SD6xXTyFQVbsX + zt/mfkdyPFgQn+0OnXe8iANDNKGJvi+kOKgEXCaiNzAftxzbrGi3XNd4DfjDT0+Be8dkupYVrPOx + CyajS+n2UrpuvzPBLuJz1FzuwPcrDDp7RX//f63GLYRnt3CQvRlvQG+KlsGnapyx6usjJYfUYiAU + 2AM+a9t+J8fhNSgIo7Dco3nScelzjWznhxJ7w08EWy8vIXwqSY4fr2Vt15fWSfBnRPH++XZc5MMl + kb+zcUA38z67lE+mf3gHK06R6Wvl3EXI6WWIy4K3wb5eLPS0EqP4il/xOjSXXP7jJ7Ec4nh9mOdB + dpvjB6k2OrukJPUXWrdmwEaLtni1LlUO/eod4LPxdOi6x2MoT3oVcPyytbOK7t0f3wwABIdxC4Et + waor7gH7FSTaKZxowLZmsoXZ+erim2IKB9XpUDB+9zmXIbLAHq8CMQ1bivO7SODFIt+Fx20Yb0db + GyB9eSq+qA2iM8Ol6d4rk0HBvGkjdz8WGvwdobfUZKsB0Y2EAYHeFOjkAYcKl2ujgWvUWDjg1Gu7 + bd84gnv+w/foFVKqhG4Kjvp2w8qvrN0NGmEFxc/8Q8Ht/NLXM8e+Zd9/DX/4WCcLZ5X7QZoQOUet + 13uoXgY5yHMBo5p6I9l+dx7euv6wv57awXufKjlqswnHXcLp29GzS8isDbfPdznpWPWNGg4HaKAL + m1VjfXr6mixaU4G0TGpafuIpC//4in1+f8d9vQfAYbwEQpfhmMrV2shQ4A8YCdy7WDkpkwCjBwQ5 + Ktji9btaGmQuc4ZPH+Hk8qe3BSGzRU0APxeroKMsavCqPt9YyyRt5HS9yiHx7hT5p7RzV/Dewr94 + ubzUZdTXnd/Aav0fAAAA//+kXcuWsrwSfSAHcpOEIXeRWxBQcQaICIjIJQHy9Gdhf8N/dsbdqxtI + Zdfeu5IqpSbyZU4otRbiwsHDEvHVm6rNBM0tvHXDHpnRTXPGjzWoUOBmB6VV8hnojz/+8p0Kq8KZ + Oq3ewZVaZyQDItIV7DxB1P2KJcdySJz1Lt5b8Sn1OfIYWNMpmrIQ3MUV+TuRwIHSZwQlXnsk/v5Q + D/X8xky7dY2vyLGZDUrRTkzBEzUjCclzO7G1k0qwrScyhR0G8yrtO+6BdRttfoNGrFsiwtetYv1d + lSt0nuJqBedTFaEf/mO/Ck3pyYYtUipHifiRX1PpYZ5s/5q8hHoNmH0KJ9YPkAzqfb2U+4cNuDZ3 + cfm8rdHKALWRXkdvR47mfdImWC2qVESrTpCpP6LvnvYQsB0boquXUI2+ckb/03M/fj/vUqWQRgU8 + yNF1K4cyj7KR7oZ+JcFvPc78KRWd1RH82S8NytujJP/4BDHeT7/uD56swtXNKL4EdRwRltNKaYL6 + iFvP5ek3j5RckqvjDVlfsxyWVyXLQAec4I+hdnHw+XDqIB/NCFnnvQgoHwrrHz/SO27QptleSnBy + C86XZp5zxmYBCSir5uu3mhQPlf7kMHBAE6Kzc/pGI8eHJrilwES+fG6GVaukEnRWviJUTZiua/FI + 4Zg2Nroe7N6Zw2iZoXDbYeJmPR4m8TU125QcE8/r26jZn38mu2P856dwsbvmUqh/EJE1561h9tqk + knF6L2iLL22u5w+Ex/lyI/KWP+cgq2Z464vAbwBlHbpLVlHKtdxAfhu0A/Vz1EBpXJw/v24VpgjC + 63j8+trN3UdUs9JY/PkzvrOWGb01XQtvFXNECkn1jF10KkjFrNXEOtN9Pc5dVom2tE+Qe4fHYU52 + oS5Z8DAifSyY4SMM0fj3/DYjgWz06myFiIkC4nRdAxjnNKU/fo0u2rj5gez1CkG/Xzf/YaiLz2vf + g/LwNH56vV7ypVKlu2FekVnFXrbxi1La8g16pF48ELDd4Nj8DSx9P5rDSnemAZs/SKKb+8zYzuxX + 8Clf66bPGmc936oQbvnDfz92YT3JZGp+ehyDW0zBrIy0B7pxD4nG3nK6TJfXFfz0ubnud/WUR6cc + yKJ6I855tbRF04rkzz/d+Fk0R2OOwcLWN4LuJpvNQTJACHdTtum9CixiM6YQyeay+WNXZ9ROnSDN + +lzh/W3W603PYvi8+RzylMfln3/x00/XXtEHelrXDkr10CE/f5wpfUzfEobeuJJky/ezJD7+7edf + fGMzcyuY2nKFzrubP5DmoulS6EoG0WNz1NbPi+///J1rMkVg9WURA4P/vvxs89emhp1XaeMfPlNn + Yz05X7eEF+XRkFPw8YclD9RO2vDWf50yNeKKdorhNCzsn99KVOduw7J3V3SCd2PAh8/1CpFVfIjK + u17GzmMiwMuOtj7XK3q9cOydg4QtEXL7T0LX7mthaJw+yzYVga2n3fqs4L1/JCSZr9Ewc5d1BOvF + fGGmHZ41/f2/IeInoih4cLbn6yGZPj7Rbu4zGi3/1sL6wzDo8a7YaHbHxAfvDwsJal9RvVy2Hosv + nJ3JSYukehLsnQoQtkrkYuEFpvc5bcVcxQmRM6Br/B7fVKg5poaOrtyCLg32ObBuZY/MMnUc4ufH + 5qd3fvkuopJ0NwFqyxt5GMbTWeVQayC7lDIy0qqJmNw1ApB/bhNxorGPqPY9jIB2+gMlr/s3W67V + UMDTYT3ghWnuYPPXd5AGwEaOXr+d4dJmO1CJ1eKDFqvZgsO+goslKT+94Wz+TQvq0h2QfJkFitH9 + 0YPLa82I6bk3il/i1QSrwfgoyVomwwNccvjRg2i7ETLUPz0H9mg5kmDjbysfH7ZzTO+jv9vLxrBa + 97sF9++HQu7Dw3FWqAYunMZXRbx1STKydEEqCbsk9oXnUGlUQIcdyO8N44NRp85YUzzDYOZbop5G + FGFfXkfx6zg8br6+Ui+bnwQ5Bq5k4x810zCiC7VZDdD2/GAVHKYFtZL529xsW5s/08n95XeiXpRA + w8eLKcDbEk/IUiwcLZp8a+Fa8Skx4k7VmLXtLBF27Yj8okbR2t8QB2Mz6fC8M5WaHcm+BwCEX//g + OWXGiq93C5n4AolRaXKGf346tj8hUqBxoV19Dwrp51dv/APgUksbqJAxQM/DLYhmT6euyGHzQo7l + M6fzx/ly4GS0qb9vsqs2zycRwk9Utb6w+bG/+sSf/+XLxjfD0iHC0uspDETVpqe2pPSRQO3sUuS9 + q0u2+YsWaJhRQerZG7JFbJoE5o7pI52pq4jOH3cHXYWoxC4LI1vUUyzDrOk6Emx6c96zgw9b83tH + +lFrnEV2UAqj+6b3yuId4R2XizBwwB0p4R1GuNp1V/DjR/dF12nh+K8rvIIbJDLnEW36+X+P+Dv/ + 6gUR0xmNDy2fh3/6d83JdwbfflKQnbxDOgX5K4YwObPIK8yP1nrvQJA2fMP70fIiJp+aHvLRNoUQ + VJ1D1ypc4VYP8SflnGbr0icd7K5SQhTif53BHlkZ5sHzjI7z+UXX767hJNYx7/7y1STaLe8cwzCd + dsQdtykHdeyWIPmorS+83s1Aezi2MP9cJrTll2hFIqvCP3x4FlFE+/2QwtJ1VLTVo5ylDo62xH+d + 86ZHeop3XCzCoz08fBa+zIF5excXLPLHIT5KT3RZ6jwHEUE/f/itbf7IFVCl5//V04aD2EFydDq8 + OBe9fr/9bAY/f/r+KoAzV5nGwOUzF0hjbxDQx9zF8OCKIgaH5zka3q7Z/9bT5+nB0cbpPECg2dcr + 0b/+q17S+dqIP77Pd27s4Jtq9/DgOp5/YEqqjRU3NeAguhLebfU6vPm3QOGaifz4Iy4LGIN7tluR + JgUoWmHeVnD1fd3nN/23PI2UgWs+9uT4PLkO89TjAKozgOgITjtn6cxqlvY3bBFN11JnPN5yFQ7x + O0XxY3rX87UZxl+8+MKvfnet6hyGYmQh2xGVjJ8Y2sDcvr58xh68gZ+CRwoqo337bWWtzrrnuxg+ + LyQn6nFnOfgXb0Mjnv1w8R4Z9eQ3I3XsypIjPQzaXCWeCkNjq4HYmeD88v8vH29+g1wvXaWX0mFt + GISw39O58IIRbPVIvKdwASSLgAXT4BT6gnuO6MLdZ1OykuCGtM0fWxfrEAJv4l5bfYPRpsgXR7gE + 1gXpselqXB3rpbTtHyw64iujIWM38OT5Nfn546u2naIblcMDKTMMMk5G7nrY6sV+vcXfnIWqIJnX + fIdOcRZls9pyshRode0Xp+wARutcJBA78Z4Er3O81S8IBI2HOL/K5FL744s/frvhizMCM8CQr0KW + qLpdD2TTEzDU3widlqDU2HJ/sWFq1RZRJmuoaRXxHSDFFRC7alS6DAI0gfydSmRwV6DhH//APLiQ + k9/tsu7jfBnxKzxFpNeZO2DtmK2wk3XoA3YYh282PVfAa8/EPxyTIaJUYkqpQeoReZ8gj3DXKgIM + XS/BBPHrn14TS426BKkd0TY/cRRZrQiQ8diFw7yPNQZ+Mpv4YhEdwGz5zxY2nsche3lNTh2P9wZs + 9RwU99Cq8ZvOlRSd85zcj4mT/fx0eDcYDT04rtXo8jrGoC2areeoqdQzx0ShRDvOJki+XqN5f1N7 + iV0qmXjf7APY9wivoBywu/lP87CobsqImTttPTQ5eVhSekn+nxMF4n+fKNjfy56YS/Gt6S4rS+kr + kjvym6we1tgZOMBPJ4Yoj2av0ftuDiXlfXT9/uwvNWHBx5dKRT6QxBO/WdfXbAPqQj6Ss3w9U/4O + qhGes2RE+nz2KRNZ51FaQ6VCMtZRtrTVyMDL/njAQLVfA9blxwhP17fic0bjRcvZk3xQR6fjdi2M + cZaqDTE0F1XAcBZqMJAgTeDyMRGSqak5VD35K9TvLEQu736yNZW/KSxyWyOW/GhqyudfW7ppho5u + 35Of8Qf/UEAlbIg/u0pTk0lzVMiozYJ8KySA3l7aDgaCgPAu6j7OcsglDF/VW0CoTR2wBPLEwcur + Moj2GMuMX9R+hGZRpuiY8g7g+wSFcLJKhRTsEGqE40tf2kXjjVy+2aFe8GnF0lXsfJRpCGhreQtD + 6SULDMkdIwaz/k5lKbBcQEJSlNnCTeLu0HzsM1Hz9Vxz3zIqpPuKWSIzDgSTUCccEGkW+lystQ57 + fAJToodrRexP9BhWjxFFaDpug6zAnzQarycXxrOS+NMl74ZVMLsRij3MUXjJU4ddBDaV9NXM0CnA + JKNH5SxI8LL0SAm7WKNieeSgwpwp8cvhWRMnRBCc03dELvNydmi4n4VfPBGDhj3gh0DE0scdU2St + Zx5QwkaBFM07jpifT6Itc9DC7UxzhqfTmdarrDst3MGTi647nDj8Fm/Ql+WA2MfFrWnnewUoLM7z + aSnrDhMYTSGRO9zmRZT9MCNLVOEvHou3+B3o8cIysLqjhsiwtjS298pG2uKHZJ7pDqSoA0FSwpYg + dGbeYFaqcYYqYY7k+dSZbA7rYIbvPlZ9OAsaWNDR2kkQ3q/o7IxfjdfyJZAiDvjEdhouG1FZl9KN + zgnxtrmaWBlDVTrORoriNC8GbicEPbx3g0cc8KoG5nY/rnBmPxXRp5kB62cJsBSoYU0cqZsdklmr + DV3IFOR+U0Mw0tm9wrtzJkSp6FfD5S0M4LdzIZ6GF1NPGXpxUiwKCbnIKh8t+sPgwLVsP7gyhCPA + 3ukqSAZ3huhy5z/ROvP6VRJZWSdn8/HU2K+kNZL6nksitwBrPXtUZGn1p4G4hCN09AOzlUSV7Ijt + uhJdX/tuBPTIsng93jzA2NAWYbe8A5RUJYlWplhLqcz0kvilcAHMR5BTqQj1nMQgRZSL2l6AHxen + KGH2nbMi1Y7hwJQ8emzvM0Y520t0cAYffvyunsd7VEgySiUfiqsI1jNfWpIm7M7+PEgvsMq61krn + pgNIq6k3MIO1KwExB4NY03euV3v1enjSzg7yDpTX6GwIoagKoYScLyqj5X155LCOdiVBwjNx+Dvo + MeCclvX7pPlq6xoLGGjKyyXOdT4OTNsvqrTaqYF8SfkOc1+zLQze7R2Dg9zRxRRXW3qE/ot4+Vo6 + s32zZagFhGLJWaeMyntdhD3qFWRHUBlmEOv9H16GY50661WCJtzwF++2eGZW/67C19JYyND7ol5Z + +S1Kd7jmSCuWA8Ua9UPw+YZPlHy5FqxitDGOR8Ej024VZyl6qwVGsc2xDarjwOmmwEB4oT3x91Wd + fcUp7KWZ92OkB5clo/zi6aKxWBLydqwN1qitRHhWrQIVD2PU5rv/7sWoq2TiaCjTFls8M6B1uSem + k5Zn+Cu48O953TAbszX6CoXUz68JnbZ47mDzbSFVR47EolVqzPmqpNJLwZ6/4OVIZ2/wenHfChYp + /JZG85XPU5jvR43Ejlg6awRMBp4OxwIpeYgysn6GFrZX4UgspSq0Vcj0TgLBPP/Wf1huv67ZuWsQ + 43Swaj6MY0HsCwWhfP9JMv6czip8xX5P9JMbaOuzaBnwPAoEnZlhry3mB3WwuHkZCqNKpQunXneQ + 62wRx6YwZrOaBS6M7vWMLPsG6kHLl/CH9yT3qOFw5AuhmFw2hxMSBHDmzauU8PsDUozEqJl4ChvI + dTDCu9NyAYuCNR3KUeUR5wx6hx6+cyldHilLtOtpHXDw0Xzplr0OSLVcZ+CcNLYkizEbzN75Y8Tk + cZdLl8L1UTBICuAfId0BuVV7pDui7MwX5EFwSBqduPWQAoa/iSU07FdAZEPKAScnnxLcL5cbOiIg + A1YxYAe7NfmixGwWugDky3AKdjzynNXLGOZihJL54s7IwL1WL8PRyw8ivYfoAeNFm7+qGkgZgh7x + b75Yr/5DSaRgp/lEY2gZzTs8pDAzjp4vtNHBmW77tw0PrH1CKedWlH8hU5cej0hAFrPvNPw433II + vOJAjooKwFRaOIHl94FR0OIbYC7idweXcC+TJGuajBh8IkuLXdnoNLDI4QdvsmGx60qSDBeX8mae + QGgU3ZMUU6A4DPaXK0R5jkj0CCPA3h/nSsKbiH/SXoymJ1IqIK1ev3X9Atq4j5qrlKinFvnn45TN + G97B5cHIKJsTZeDr78jB6pNm2/PxgJ5ob0kYu4hcIEF03bGODj/4Xvh0NQJtTmlbQU9/gH9/72Db + HOzmhffBxB+HJWf6ESpv4U0urrfNZDStVIpZaSZRxGJAYvPtSm+yOTLLWNaL7bOM1K49xYsbz/VU + P/kWxI76QN4lt2pqoFMj/fiGZwyyQzt7L4AT3T19njEOEV36gw3b42HrAl+UAzVnKEJisCNx2ekV + dSFDbBhmwYdYyXenzR90gNB2PgB/NKlyhl6+zBDD9wOzvBHX+IMdC8KveEDaaswOcW2QwIp7q8jK + 76rD39iPAOdpZ2AJhJJD8HDOoXjGvr9oukKnCQ4BKCzGQ+lFAdFSzpCBG98jR+t9qnkwj+uPn5Er + v07O4tNrKrlykBIzZACgem910IhbAZ3661cjRZ0IkkpkTJ5nxgBsJBslTDy5xbty2A+LePlaIiAn + CfmkaYY1s2v3jz96OtrTvrkeIAx2io+Qwh2dpX7yDbx51oAut6uXzeuRFQFL1Bn5D2N01jD/mqKm + Xt8+qB1hoJy7zdGmikKOpLccJlZ2Laxi80388C5ps/J8+vCHZy63P2tTX7nVwR/beMPzz0BeyDTF + ORILopdRoK0JPe+AQqBL7usuiLaeMv/wTWGGp7N85bMvsunhhWmgvrP5/Hmu4vdzr4mBA16bVapg + 6ajHGGnWQdcIyGUOJgINiaLpL7rOlFvBcPhyJLxZ12xp5rwEHjh+iD1aWUQdqYZSP/omPrCGBJZi + 15RQPI8+Fp3mmq14sktRyxpKNKUeayqWiIHbemJMmqYml5ttwy1fbYqeczB/uIfg+GggcY9Eysgu + 6ypIlNJEuXyyHcYXLip8KvCGLizVwSoK804aRlMhp6ETAPnt951Rlwht+3dO2qcN34fqS6zBug7z + g4tmOCSr43fZzXeoulxcMQiGxRdf7hytTppbYOZSQFT+sET0rPHbCfq0Id6B3rS5EboRXGxzj47J + CYClI4wP7890h9PRyrLFL8Qc5PreIortaQ5/qC8JMMdDR4xP7Gpc8iQ5FFuNwXzaX2q8C1QXGq6t + YvGcHSl5Gm4Af+t9euMXnW/5JQb3y+1GTOjtsvXUcAFwIKy3HjqaRpKlFGEG8AG55mOq1zPf2VCq + uRydLrVL17h+xJBag0+st/KN6BBbIeSNMiGBIUG6SPogwk1vIEtKD87az0IKVcIdiXG4C9kWvzrs + H4jz32F8HygLPi6YjrjD8HG7ZdN27RUwGbf3teu1A5T9OCF8SkT1FyHTNGrVng81bAR/fHs6XZKd + EC5ivE2hQNEilE4ITzvVxBvfow0jRSO85o8bik9u4DBxb6hwrqLRPxRJH+HL3IwSF2sD8U1HzaYu + sbH4jY8T0rVLUS9Z3wlgiw9yOb51+vseko9cDlnJt3AWzhgr+IlvPDk+kjddLoIggswQWh88329t + i78AHO3IxCBGE9j06QjjdjkRJ1b5Adfmr8fBYSGKfF0o8WPJBbpTYP+xPvbDKL/FGKbFs8QMRFM9 + Z+N9B1p1/stnzhLEwRXiY1OTa2+F2sLUiyU+j8crMe27TfFnCUYYKSbwKX+swbrHnx1YTnjBbJIo + Gf+c0hHCevf66UFtTZ6fAk7nOUCyvZ/r9dTsQmidbp0vGKHqjCbJOLjlQ6LdOmGYjrXVQcFII6Sn + eVE3v+dlHSwik189ZwU2SqC/F2zkzM7mgIg7LF4OO5HIX3SmUxLYNiwV9UBO6HCu15t/NqVDDnry + 47eL1x5luPGR7fs3gLA7OP/4NvJPu1EjLCC+ZCzwSqzdV9M2fi2DQe8hUhvrpK1alq/gncMGPQPr + W1MzD3YSuZ8qH3qtD/h6FP/lj8ut1uq/fL19H//jmFrGoT6Z4WO3vpGxxet6sYoQHB6Thvme7Ye5 + 0Gpf4p5Y9//wiYuTBLBfM0F20pw05pUyKTydCxWpL8bIcPSdcyh1UkbS192s5xMGJewfHof09hPV + OLMHVxxucEX2dHtnq3+njCQk44l48CjSRX94HORP/I54RvGlZFs/oOxuKVHMx95Z+JAKkAqvE8ra + V6Ct+1RX4SOxDxiQ61RPqVHKv/y+daE+0cmL514Sd2FI1Nq8OMvVlGPJDqqGeB+gaL94gebpsyI1 + qlTA1s99A290TTCYk1c9g2Bv/uIXqct7AsS1aQqFon/5Mz6/6yV341A6H6OHD3eX35xxYIs3Mlh4 + yR7nemWTWwJ+8bVkj6VeX7E+wgczbj3BlrFeZ/EuSBtfQHrhqvXqL+8rfFgwJCF/OGe0Hw4zgMck + R3nlxpSbamuEPvI55If3h7aembCF+6gJycVJ8EDBPM7QfT5kPOOzUQ8mYxfgp5/MD+NHfMGQADLE + Zol79TkN4znRgZqCJ4ZMcYsGqJxmeDetmdgWlQfuud5jkKyMiI63eKc16PHYiSGvRRiykxL9xc/G + 11DO7c8Oi83JhofTh9n8DEHDJXFW8Zm5b2QCSx9W3mMDKHzEGR0VtGr0Tdse8o+9h2zXfdDV6EYL + 1nviILWOnIyqvBDD0d2PSEdlNKwJve9+fguy1qHJfu8LUM8/8Hr5ztlXKLVA+uVb02imaH3F7jYn + muFIKMoFpZebaknb3/O5MWfpMkdMJW183m/Ax9R+7wt9cV8R3RTc7DveqgRueIUcfhcDWoZRL33R + bP7p0209sEiUykRXuTrU75sqzmLCSweEdLunqzKGsvTD1xMjNxktrDsH7RV1v3yb0fZ4dqWNTxJn + 6ZcISx86wks76Mjb8BEXh0mASt5d0bXaB3RBGkgAt/oVsbIb1uYfv7xEF5+EAnhn86R8oXj/5i1K + b2TI1vaBfTi+XQfJAJT1+lzvV/hWRYnI3MjVa3NddhI6WXdkdNdSm2v4GaXs7uYoKpY72PRIKjk1 + viDn8pKGFfXJCrf3xfXP7zunggo2/wKdv9CO8EkoV2nfihaSS0amc19LDTS68Uhs6dI4BB12Ovhc + TgFCHSb1rFTNDNM6PREl7BgNT/m7hUFWLUjBy4culoJzOKPFx6u4TUH9/X1OqX1/dAyGYo9ZBcki + Uowi7+Vk7E+vc50lEr9u3+CbphqUEtfzkLmcaUT3Fy8FH36YkHqzrhFzPCMXyuOaIetT1dpS7VwX + iq3CEDSgbzQdrPsMbecNyFULvvV85xgT0itnYP6RGJSh9CxKlz0IkfVWThH+579YAiY3QLVZMvMd + mAKnIMcmDihVT+YKPoF8Rja7XiMiVaz55zebwsemk8zeOlBetp4ByXV1ZjlEDNz0I95ZIaFr7C+J + tPll/mEZ5e0O3xPDA2udEEqkjzZZOlS3Q0pHcuToKeOdy6OExTsNMR1OhjOLGsEgHxMPeUZxAt8w + c1tYfp+YbHxooJU+7CBg9JbYyuPrLKfJzqF9DC8Y8DsGjCHzsUFmiC1xnecrm1rxegXV3PUkr1pl + Ozd9LuGzKRikUp3SJQ76An7v6gU5oVVGs2LTEL6vLt3y6W54Y3Oy4PBCCtIvt7ezsOXQAFULNSKT + +hLx2WI1ILv7OZEPXlD/+T9OmptIZw6csxYQ5PAxBhZBqFS1WSrMHLa4rjGvqBlY3X7RJboPRLz5 + YZTXW6rD4p2EJHkU2YBLoq2H337TDtlnWIvDJEL9zm9mhHwGOHGcEjx844w2Px9M2SeLwcy7MVEH + nGeLXIIRbPx00wONs16oGED8RHt/+uCedtdKKEBTJiXJ2emVTUmg2hAhc/nDszGTJQil+8ygY1xb + 2UizMv3hM57jnK0XseXLH55i5dO1w7e02uTHX4n3wT1YweMgiNVSaH6RPHSwBKPCwWK49uiHJ3Qs + bF1ESF+Qkj+NYWmSQQZTphb+7rRztSUYTwxEzMHArNhVEYEStIFYCqy/vI4uZXbXgwAuuvUhmu1E + gOnBx4Q7XvbIMytkuuWf5s9fvkKviJYj85RFdHt9COowqjkx6Cv4i4+TZVraKn0ohgyxWGQuxale + j2ZSgs0PRaf8oEc8c6cikMORITbmnIwBt9SHD7a6/b53RAvmE4J0oTd/Lre57G9jtqWvDsztfUaH + hnCIoS6oFP30Gs0/NwG2LvMkp/drqMlx5wbge5cvP//FIWdtvwPPd+j5nUKYjJoTuYKdnL6IueH5 + wi1WJf3i4aTPcz0FcRLDzf9FWt3eolGT79ZPLyAdpAhMQccEMGb3Mz5IYrb1nPpguLbQJll6zZyV + TZ7Jbz8T/XQ3s/7dnK5QPX6+uIptO5tvdzQD+cZT4u4/QjRJo3iFBD4SpMa3sl49QS7+8PPEGg86 + hzwc4UW3P0Rno2qYy3dRwkIYLRSX5p0uigF7aHT4SFCbDnTRQJoD+XzIMKNwST2JvWFCgz9ekL7U + xTArz5srbX4C8U/Ns16G9ZvDk/pYkZkXNwffszKHjJbY28/3w2p1DidOuzgmaH2X2wlorYWqdVeR + D9ZntApmiaXf/nEJh+hyMFz/L19Zm5+10sOhgSt7SbAoWROg9ygPoarmPYq1y66edv6EYRrfD8Sb + 2CRaN38QXm9xgm4/fnq7oxXS3fNFzC8AdCkZNYVXsfeR+QUZWB1D8MH5S0WCEunoTPM+KP/qTXlu + fGq61SvgtS335LjvWrokLtNIR/GkoJN4PA8//AU//yMfNTOju1nPQf85F0RXNQwovLzxn37ZMXc1 + oxgSRjhoQ44Xs2ez4Qo1GQRqUONF8F1A63FNQQbGA/GPvRWN2/OD5zvwkDN2j3pxk30Prm21J3KM + 9tHc9gdV7J7mSn7+84bvMjTbfYCMW70dUW8KVXxNueCvpCij+dmNOtj8GHz4yMuwWsM5gaKf3pA7 + WU+wXVGWpZBnRixOt3e0PO5DD8oAlUguopYu4+jHgC/W1v+C9jas6bsPIaOlNjrpc1BPYruvIN09 + Xr443YyMQ1ccwmxmD3jEjayxypJ0cMe5DLlZSRStyzPkwDxBA3Pp7TuMPGnkv3oTkmK2HrWYNeHm + xxOfNHr9V586X/IYyc/3dRjjy1eH3VN0EGIOes36hVhAJtjvfV6bt6nC0gDh1CPDbx77MaKNqKzS + j39PMqcO3UV87SCZggXJp7Kv//B50z8/PlPPz1i2pNrGZ6Kw4kmjL7HSpX1Czt4ssfxW35IhcF9S + gY7Hmh1W+/EdodVzF6Iy5pGOg+vqMB6nF7q3FET0zTGu9DFnlaS0WGusFX0Mt3oNlvK11KZxPzPS + Vq9DyhK+6LLpE3jO0hEdl+VSrw/5pIP3+57+9C1YPja9QlqaMZZEeYpYDYSF5HKiSeT7OdJ4ZpuC + 9ssPe2tvRYv8aC1YXiwLXbd6dr/hBWRoaBBN1tt6qPQaSoaRnpFRjDpYvFjo4eYH+eumf2Z1xO3f + epjGjdeIoPQ6bIYHj7zSeUQvsTd0QNI1/sXrQHbHnfzj58TRCyPiA6/s4KYXkSU/9IEHucUAlBfI + vxrNlP3tz+4pOP7C35FG1eXhghxxlr8Yybue1qXkfvH59/2mTa/BNRerrX6OARnXVoYFXUp/jW/l + MO9wnUr+KSy2+rMcraY3mXAYgg4dN33LS5WkQxQmHUHtR3VeDa10QE/5h2x6xul84fF/TT0A/32i + IEmQhpni9QFjNnOzdI40iNRD+RiodIxa8OZeX2Q2SUfn7/Hkw3EYDrjVowtdZKBUEuZlnqQ3paZf + rry1sPvuRaJ1HVMvo/rt4FLWrA/mVx9RNtUsKRAPiw8z6zTQbJlmkZMDHdnpSsFXPx5iUFzQCZmn + +qix15aRoeQ9P8iCKszmZX43kI0shvjJDoI5qu8WdNFR9mH9VRz2Fmm2JETfwgfmVx+o+k47ML35 + ithZKNXTNdxjmLR+7kPnsnOWz4v9dTHtkTZ0JV2OQsHBPQZn/6LwikPFYi6kVn+pSAa2PLD1VzUl + 4ugQXdy7NyzxtcYwEIDtr4+hyxhl69JUHiuIzEV8DauqJgVMIm/n85e5qVctLFepEa4rsStN1Oh3 + Rhy02JeLFFyfo3WccAjHdXyQW3Ym9WIyViIFxmyQR/veD7OWf114k/cqZo4PTqNhoHGSkHQ1Qrt9 + OrzLpvOhR+8ZOsJb47Bj0aWS7z9d4hyqYRh4P8dw53YX/5Mqu2ht89KUpKVtiBp87xlFWcvAkuld + X+yMHDBNezElXcYWOi2ADDMVQA5JYx1RWAwZINkyrSD6Zgw5+nvLmdWm7iRGNL4k4L4nbR0fr0Ti + 3SIieh+9B/7MH1QpwunB30e3A1hbhiTw3MopeZrvrqaGQWPYvr8lUief02bjLvewPZVHdEteL4fn + rzcbGlD1MXsWhXrSj4cr5IXPiAXrpAD+lL4r6TucEJGn7gj4Z3gWof5mGeJcRquepbQUYGcLIinY + 9VSz13A/wif7KEg4eC9n/vQ7CGzMDCg4KlbGKwetlE5+cyWZFIFhKZlJh9vzYymNBG2he06ULlof + oxNijzVjn6EO8fEgk2PPSNnY0ySAwV7kkJLLt2zq/cD8W++LyscDn1/WHEZs0pLneZv8hAO6g+Dr + 6iTWxtZZGiUWJcocTKJzhpZxTDs38Ds5HNG0sxlN7fntwuxJ7n6+jobGJa2cQ3OwDeIsSqyt9zRU + JbFVLaI9uVpbZho2sGOVETlvdM0WIekaKfLCDD2tVqrnGHWhxJ2C7cTL7kFZ75Uw0gjw7Nd9gupx + +LwYSUubhii8btFFyypfekXEJdbbtyJ+6AIOPhytJE7y2O74G7CAjeohlOyrMJqzeTdDLX87yG36 + amAPM73Cg0M7cpzfbUT3ZNcDBXktipg0jLBhrrH0GtcrunrxbbsTxdgSN11zLO66K6V4XLEU3Bmb + mIuoDOzeWGTppH7eSA6p6XCPyCugaMMrCVniDewhZlpwvXIBcUDY1tPBXW3onS8SOg5NQ2enNxm4 + Jt89un4PlBLH3+tQe/dXogql7fD316WAxbB1NfPeFVi/kjXCmbtrxL3xWsY8DnovHaMwwDvT7sBS + jDf3kI10xUJPaDR/KljB2pT3RI2+72GWS2WWOkG2iV3R10Cf1XWFTKVe8WyH/rCc8rqSyrI9+qz/ + DbOlGJ8+FM+KhmnKvgBjLMcdOMVfDekRonTZ8Ff6fOccnZ+ll9FbDlo4lt0enYeVAX//H4dwRSjk + A4dU61rB8OtfkRremWy58Xos5Sv0/vBnnstLKHHJ5UbMy0UH/JvcoeCX1YC886sFs7GgHViiZ470 + /KxpS99uikFEBjF37lejV5lhAKj8BO8xrLWZY1MBZhl20HF/XIc//Nu+D0KlWA5Ue+Ee3lLVJaEr + fCPOvNk9dJ77k18PnUyZc6aFcPUbnZwEV43YEMut9OiOB+Ikkg8mbfiYkFDviIpdkwJKDK+ClDtM + xHQiVaP61JVSZIYE8x6atCG7EBWiN/HxMkZuzd2rPAfvNAlQspQIcONpMuEP/zT5LDpkvXxDKMF3 + gZ4kd+nCd1MO9/hwRpeuKOsxyRNV4mh2wuLcMtm611cVrpQs6Liyg4Yj6SxKXHrbEXP4+oATns1W + ceAGoqt5DGhRyFewPS9CnWNS9sxpKsiPfEPs28ur5+KdbRWurQbzfbQODZuNEVILkfwgDdkI8XmV + ntvcEyUmZ4dz9osl7XtBQ0eeG6O11k+CVMp1gLxSVxwW06MNPXjHyOzvj2F6dNYK1ekZ+yJty4HL + V8GFdXRMMEW1B/jsVYoQTChEphbGGff96gmA5ytCGYw6baERCGA8lCdkQwEA+qp6H4YtEvDOch50 + yW9zDj4M56OoMDut18Juhvn3oPqTiVZKT+GgQ6aSr0Tbfj7eGrRViK47ZMcKP+CklQuJDixAD2d+ + UCbTqSXF15eO0OOe18O6lLLkxBCRmGFXZzqnm4LOdYTuQ58DzqZ8KAXHdSRR0Z7BDPF9lu5MYRMz + ep8GdnGmFNaOqpMccZcaq3YqgHuZGkQ2zl7Gv7NLB3t6PZMj2x4HhnmrrRTD90yyRMJ0CR5zKKlV + nmJoGW86Cw9O/Xufyzn1wVo9WR/+vr/WWTag1RWsoBS+KUroHA9DyHiyxBCNJ6rGidpfvr3s6egD + /fCtx1us2lI9OwvSQyRnTGNfr1Af+RKdXtY8UGVRTNBZYkTut/ZW0089VFI9nxZy2kvb3Do6zJAf + XhF5LLcTZSW26yS7YkWc0Jmp5zlIErGjioGcRWE06t+CRGKRiZG5h9scOGsp4fOR2Mga0EObdbhL + 4blTFGQ6UeWscuu74IhjhWS2uIsIiGwVbvuNHNEe1AvZK/IPH5GBTlCbrUdVwkPIuZhb7FSblujD + gQMnnNF5CAeH8tenBdAyyuimTuVADtx+Fn1caiR+r9jpkfzRD8OQZ74kWG22vvO4P3xL+4Kc7f8v + 2/tB26Avf740as0L176Fu894JHHxOoLe6EElXfBoEJMdzgNHMZUlIf3ayFRDmU6fs9BJXnvZenjp + H7CE2Gogp59DoiILO+Qyjzn0L/kBefrzBpaTPM7gVhkl7rLtHu7x8dQhJ6Q+FmGyaqRxjPjHh5Gq + tJdsPizrFSpijFDAn1Y6xlqbwuhz97DIHZ/Zamn3Fb7ec+/vO8cE7DxsU5fi6kG899vV2O17wbD0 + NQxE9ZJt+WOGflWHyNlr160H024nejTLfnx8WJX0OcNEtW8kSaBM2ZmmLbRgJRA0uZ0z0/kgQ4Yo + PF5EVgBDn1gVqDLBw/TMyDVvqeEq3atkRPZdTX771QTVkbOI1vDNgJ/1ZQU7brtjJDnsgJ/Hmwo2 + vkqOsvQe8MZfJK+9qfhxKg8ONUWXgd/C5LC/Z0ZnBbGiStULikQDDh4o78ejdCnHyV8IrerpEMMW + hhf7jPwTEMBiB5IOBvV+JvZdFcAytj3344PIEywz+/ErsMb9glTFdIZlbxxUuHsQSLyvUUUYn4QK + VieOoO10U7TN46xgq9cq0X7845b6LbCe+dOv5XOqrVBO7O2Oj4aMqI/qYXBDHZz2I0OMOzAjuh76 + Agxy0hPDsD7R+OObv/gNrCoamMfFKSDlwOSzI0mz9UCYq3isbgFxZkUeeIbd5eC86C6Sz3VMmQu/ + F0C9c07b74sZ2X4O693phDz6wTXeuzD/5TsiRxEC+MmHOuSrWibIab9g5r9jLtKSV5Cx7J1hDadT + C7f1QnbDcPXyMXYz6BTxg04cnCm9dJUsfeQp9N9nManp7jaIcF8LN5JuegVbz6SCT/P28WkY29nC + jedcXJL8hczEVDLmzNsy7OqdQcwnvzi04I4d3PY7UcXg7azCB+dgOecsco34lPXVTVxhb6HO30bL + Rus7Tn1YpK7vW2leODQ9By3Y8JIcDf8ZkZc/ifBsw47oVciDcePbQK5OPsoPkpMxYnEqfvzX79jz + HoyVaEDpMeg3Ymt+EpG7FLvwIlEDKSzD13S9vELoHUOVxO+wiUbMmLY01QxAXnR+gTX6PloYx+WD + HC9zM8yJfA7/1kcpglzDm76BGu6/yPXaGSySVJvwtjPPyFrnl7Oa9JTAH/5qT07Txrl8hKB6CAxm + nxA4E1/WKiSeUZNjLH/r+fLZ5oSOVbt1xfYddsIChrsPPhI/zIOI8tVZhrHQVuS4vA+gvb4lGQpJ + XyMXD7dspSk3wt1jgshbbl/whezFhdmpn/BSKob2VfbPHbh8iYw8g5w0bi0qDO9lYiCnxo5G2VDG + EumcC7G8rdvJYabxn967Gf4+W/LnKkDh2SN/zIUG0KJVZ8mbrthfw3ucTY/YLUTJecp4R14cGH/r + wU+1SBTfa+rZVycTilBnSCjOGEzH+NFBFxkyeexOmTaDXdHBz5XukHxjjtGWz9Udy7rhT+/TVW3P + PayRFiJXwlm00P1OhAd5xUgVA0Pj5Nb0wcXuZKL1CRnWR4YEIDw7hM7GOGkLx0QiLD7h1rVzr2QM + bXgb3OWbj1ud7of1tH9j8P7kX3+O6H1Ye+Xpw/bRuAh9gQIoipoEOKWsoBvkPbri01xJLu85SBb6 + QptBesnhfhR6cmm9iZLmeepgUwUmOvnva4Y58IyBBUsB3SVPGzjSG6M0PVafKE+5ruddsb9C5gob + ckmzWZtapbxKtgQGcszXFCz2CBgw+ImKoo2PLSN+h3A4JldfSuqH00MrbQB/fPhI54w6WvbGokoK + vHJ4ORgSHTM4d5Je854/4w5EI/O2W3gxOoBQ3RNnoZk0AgXGHDnf91VEWe4kQkX3R59XpINDt/ni + P7wmGqo9OmPZMqUN7zCUdUGbz3s3F7f3QRve14tZ6iaE5R2hTS/RSXb8HH4vZu0Pl7Grx+tTaH7+ + A3JtNs7wIWJbqKsjIaF5HAGN9EvyhzcsL4+Uro96hOox7ZAXr5O25SsVmOQUkWjDo/WXX5yvHBPV + 75po+e2f3OAkJFfbWOOrKMQgii4WybHjDfPSDRYMhIPtr8ZH23pmiBZcj02CjLuzAzQzekuon+YJ + OdrJj6hV3CvgKkaHFzb2KMfRXBRznw/QMZwTh7HfQgofjTkQbz4KNWmeSi/JuflCmqvd6DKDhwyn + M30gg5ddugSTZMOzsrsgL9GiaDU/xxIOYp0h/avFGVXZWyX+/C8j7GWHNaHNAOcpnRAq7YOzevFz + B5ruDDB7dwpKo65ottM2J5Jx1V4jFi5SWEO7Iif4gNpKUpmRLkYPMKPAQVvtgeFgOjYxcV6FGbG1 + p8VQYj8r8SvyrudYa//wzRdW+TDMxyVKpRS3wOceHzejDMsVsPF9GeVve8z69xxAOFSFhdTBe2mT + DE4lvPhfnygH1siYi8OE0JAPLUqlTss4w4cz3Pwy4l4/q7bY8uxKmJUDtBkwNQW840LCIoz8EIrO + V7/tXHgXngnxTBTSaRunKW4/J9qLF7Tl5e5F0X4zCcpvfJ2ttevG4OAsHTqJ+VFbtWrqIXr2L2L0 + 2Ijozw9zoRsQY8vH1AWmJf2eT3nMYTaVwSDC6c1W/v6V2tmi14IJN36PHP1wGphMBzbQn/T4Fx/N + oHU9BLItIsV0Obp6MGigHOk+sdnPZaA7jTRg0x9YnE17wC6jYjHZnQkx3lPj9MLt2wCwnBNkDFig + dJizALqeeSf+nnG1VV/ZHbRd6vmMW/BDn67jDDVmuqL0crYA9yCuD51JqYi54dno+VEpvS+ZQ354 + yh0IjEGmfhVkt8255rX76EL1m5vogg51Pb/D0YXJydbIxn/BNHHUguPwPZBsLGG9onm7ubjp72O9 + frTx6IW+VMlcjgx00OpN78qSdC3XzU88RGtr1TOk9hyThOyb+uf3goG+CDp97pqzzOCiSl5zzdCJ + HZ/1UnvOFTDXXUPUbioGkpzUURqNj4cFJJ5rVv4YLty/hR3yGL50fvgDu0UtfOa9Ym2c9aIErVdf + kOnFN4edwgVC+mZMYq3yvcbRPcCQpA7EzS/fnzMn/POf9PfqO3zmNS30zjfJP0iTl/H37034vT/+ + su6F/vwN8PO3DWn5ZnP/jHYQ9WNELv43jGrMSP8j7UqWFcSh6Ae5kEkSlkwiY4KCiDtQREBUpgTy + 9V34etm7XlrPeiUZznTDjQ2Th1BjLUJ7NvM3zVUWYcJ49esGw+/PBB1heK7jVdfMLo4l/OmJ8xW0 + OYVu2Cig8lO85gOMu8SuDQX91BPTL8S6U2W9gnVq3olzsQIg3s5yAcdOeGPXfWz6bo84Cta8edqd + kxMgkj6FcNXPRH0mZSSoiRbDywFOJGZc2DNQWzJYDm06jat/WZvXw112LGtycAvaf5X9qwHD/hXg + yJip8X2WHPrlRaj51oUxPL9KB0X/FuFinAFYn2+Aa/1g2lB9qsk9kHSwfckb4sv3s7fUpiZD37Qs + RBNzyBmIXBXEcyPgfep5+bw8vpOcvEBIPNsljD3RKEEvgcK0TJvZm4ZxCuHekE2Cn1mXL9V728mv + 103HzqW99GMFZQiqbhvgw5f7MoraNgSrPkCyWjiA7hVHgO94vuAD2n6MWbDDUGHuEk9cTvu89bY7 + FzozuaHquOtqSrlrA3/87JXo7HFvgQqwNvWU+FdJithp0Bsw3ikiMS7qtcdZugHz9AwmmbVqzW/P + vAzpN+kmYdXH/affZZAWJ+m3f+uZvzk2pFW8IRp4ldEvjwDz+/mc1tf0PVG/h+jH38SQ+4bR0ilv + sHWqA7oPwhLRcQtb+C3tMzk8Kz3nuQGp8kOPr0Q73D7GEkpU/+XlJNjsqpoltngCa/0De2t9hI+7 + UpX9o/1AEAvnftZIbgKpGzQSV6cLm+PuoysPPbkSDAnPam12TMj1+hdjkx9rkvIoBuTjnLGx5imz + iQEFQI56xAmv0Zi07LJAdyffJ/mi1WD5DDRVfvUCLUTXfknOkgvxe+SJN6gLYBl/XMDZ+MR/9aT5 + W6kQtsd3jmZ3RNESKVcJHi5RMc2qVxmfwrnrcpzUJtGes+qJy/kbQnfgTFw0YciWubu68FIY2bQF + ExfRpjh9INerX+yOZ2SwczxOMEm4EEdH8+qNoTaXiqWbgAR78jUmrBITDFlzwgcj6HJWuL4KHo90 + nvh2FHvaul8KjgaEBDvCBKhpSwkclPFCLAHojIvqo6us/Iztp6J7y5o3wMV7tagSsJivfldVwv2y + R8pk1f2STq4Mf/Wmq8u10exf3Q0MHRYRIz/39XS17hN4sJuIszUfYNPaYDaKLjax1rz6N56AqKZO + 9svjHE2GNUnAkQkhwcYBHl3rezA4hDo++nen5i2ocxBGsUD86krYvNYTlI+sz8QVDo+I3HZrk6gx + OJFM+dTRcs8P8h9+WCIQcorkqoHum9tiZGYjo7tgtqGSPq8kiE91ND9NvoA7lU4EPR9xTueynOQ1 + 70KcknzrP/8N3xlAS5bpBue+aPbnZ712O0fLjLIUPl9LR+ytbvf0h4e/PNW5f7KcFYWdwEAPFbQ9 + f/xanPfhBqR8dJuAUD28+emLMkzZicfqjf+AmRH533qik4kKW7altED25WN8Ol5Ltqx6HK54NQm3 + S+7N25nrlF+eeXhFS0R++fTYcW+8l4+Rt+r3CU6LtuBge/Uj4brJETgv1COF0hyi2eU2J9CMRxX7 + kzf27/Sl3ZTucVrvJy3anO2fsgWkejoTdUiFepY1b4CBnB8mkAdRTaqOmkqSicWf3xRK1lrwt56C + 7XXICS84EhTL6ko0ad9FtO40S/Ejz5rk61Lmk596G6iohfXL96MlcYQQXiK1xLqklhEzlDGFxuuT + kHTNqwaanjjFejoAr/m9R5VNZ/78GKJr/ZMr+cGET47vyMEnRjT5gxoq44dTcUZeC5tdW/7AYZnu + BEXDs16si/755bUIEmD37HE6SlDIzpvVz28jFsNMho2Hq9VfPRkjiqdCc+Zagm/XrzcE3SmEnHz4 + TjMxcoP/+SESHOqJ1w7Xml/1/K9eM83gpUY/PP/T1whEcU+W12RLaz2XHPRRrcnXNH1lv96CZTY6 + 82hq5xOsRec+cSv/s+s10v/yvbX+7K36/QN3NWCIb8dLv8Ahp9C28jNaLvI2H/r3l/vp0z+8/fkj + IGdGguSRF8GSyW8E9tS4oy1VJG8J/HMFCQyyP71PWSyHUCd3gER9LOuPMIYFnPbSlZwj98uea/4I + qy084QhFt5qdBrf5+WWsPhM1WuZu7dl/lzniH0wzX4Q+K+DqR5AyJtCjE4ds8PNTztQ5EfvV54Qk + oeTnL1a9Ff+fEwXwv08U7MiwwYH4HiPKe0kFZ3aTycHefSO2HT0LGudSJdm5IzU1t20L5zp+YKss + BTZv+GuhtE+TkbMSHHoucd4LPD0lSqIRSBE9d1oI8aDV2B/0itFgf2whnSQN++Z7B5ZkPVepTAhP + c7NYuZDWZSdrod9jNx4sY9l/NQl2ddHhAEe9N1/DclGe2akggY2RtwCh4GDD2QOKozDoOUl5ClCc + XiHqNw3uqUl9BMKwe5PDgCuD6FkjK1ZueVjdnZOeqd9XA/zN4BFNu431cmGeDmk2ZYin9sGgjy09 + QVQPJcHuxY+GLzdY0JjfGD238NKPG5PJ0HT62wS6q7fev0FKKLpHhIvt0c7FQd+50LyLBtodzZkt + 5psXoEoYIqpyUaLF7aYNSGLXJ5Z31hjffatWiWu9IPd3gfv561yp8rLjiDycZJczTb7pMHA3Knbm + ZIyoG9FW8TS6JykQWE6CcKBSnLEOcX1Z5VyQ2LqiAulDbsC26rmszxvYMxEg/glgtFDKNcpL3ZcE + bUI+GnK4uUHX3mYYL+M555z6tFFsWz3hpG8iMFr8bCvw1XjY1+pbP2+4IAWFGYok8I5mThb+XMDM + DRG5H2PUcx0fUFgJu4bc7nzq8b7UnRTzy0TsOU7rzWE3QFhNfELwq52MOb6fVIjeb2uChy815u3L + nBTi6jY+RIqVizCXIXjz3x67POwNqmA+hadJd8i+Vf2en++RrqBHJRFzeQoeGxlNITxmDTnPFu3H + 4PtsFO85yiS86Je6q66fEmp49yVZ+oU9fZYVB9y7o2Fru2hAMCW9Udb1SJL0ugVLaYcZ3J5ATYxO + zL1xkOVJqWRI8YE4m3oR92WopN8TIEa6dNH0BkmqsLgIiJuN35zFzaRDIocbfL17HyBYqeLC53Tb + k9vmEPWCtaOJwkHQE61Z2pxa2i2D2aYJJ2Z//fqbbuVQxh9bISd6e0aUSM8T3GdVPPX32K1/8wVN + TQ7JgTt+wCI2L135ZHZEItGoouG20UuoSqpOAul9ZxQLS6nw/JPirCChIQjsNSm+pUHiqs9nLXT3 + uwpPa+K0t0jjjSkxOCVAXEvMg68aXN8GFoy3pxPxY3qpRR2UpsLooP+ND8+m2lWyU3JDT34X9FyX + aKpSbd0LVi/7p8fbe+UETU0KsRY3UjTLp9mH7Yh8nEd+6NHp0prQ/hxtXABf8pjmfgRFBfJnSpzk + FS2V9DopvYRstJPzAPCe7Q9wlz8veD9bYc+TIZoU4+gx9KL22+PKR7LAr8CuROVT1VjOp7BSvqKV + YX8xWoN+91n7t770R/itiZCWtvIUziOxknwPxL0fyPKghglG6hQzThiugzzeTQ2buxfLZxBlMvyb + v+1W87hvzEG4AKZMgh6IbDmGmqXIA/4SLXpuctZXZajYzeGJwMGu6sWU3Ba+j+fvRJXLPV/ePacr + kR77+Hhpp55ivi1g12MBbe/NO+eQEAqKZrt3RMejYwh7qTkp7UfcIi49o3w5XBMBzkgU8ENiX4/1 + 1ecEJZYQJCXNu5+lo1EolkU2qKXfuOel5ywp3lEuCSJ21497c5aVSOjQtJDrO5+2X0+CvvzZYrO5 + 7fOZK5JMTgb/im+VdARL0bIbzJDLkT3mzH76+KYMHq9DMy3b6uURurcb+NRAiNFgxdEkiw5S9Gau + sT2zb84Czc3g1hXPRH9FEeMfrJqgSs2QXIj/MehkbTto5aZHzG3fskXio0KRVTsnx6BuesLamIIV + D7F3sPV+nlyBgxhvYmIG2I3Ee5dCeIuODQ7iCPQ0MAmCh+3GJEYjiGwAhWDKTgOvOCtp1Itfzcvg + Z+0psU8kjS0rXsiRu0/xuTfaaO6vZ04BITfiROpBNE+9rMNbHiQYs34DyJKkE9SlrYuNnfliJG5a + XRGrh0jcH97cizyDv/0U7bRbzqrhMfw+4xM+9KAfTzyC7r3QiVOhql/whkqKIBzeGBVanVO1yFJY + re9EXu/2Nqcr3kPjHvl4H+/2uSjZigk3m3c5bbfLmc23pyQpr7SYMPoe3jk7bI4IyofdG7tedTZG + 7w0EgPrHQLwmPYA/PitffU7M7+3cc5ujVigJd3oj2Wl1T1z3B7w39g2fbfqul/wlmcruzXysDdzo + Mf4wT0qma/kPD4xhvuYC4O/nAz4f+Y9H6ypslNO3h9Mg7H0mrP1clGfhmX/zv4xI0GH/3h3w4aLV + PfVf6qA8jlaNUy16MKF83234KdQdvn6OA6A0PVDlfjMRyZXW8pghKwP8Pa++ez4BTxXXhViKUhJG + myxfWHVuFKh8Uly4nJ1zg8BKeMfclRT68qyF73CeZEt0MmJfqqPHfWr+A7O2NMhDYbuc6lNSKPvk + bpPzS68Nyq/3RK/7c1qONo6WpqOdIpy3/vTtI8PjHMO1oaOoLb4s4T7nP/Z+kDNkcziXaj8ig25R + pVTGzyRtgVHz25c//PTCtLtaUj2rWpHB9qq+MOZmPeftFpkg69IvdjkgeUsaRZJyIL2x7hfbWNdH + pugpR8gjr2tAN+HFVK7n3iPaY+3y1rLPAH/8dnSKOCI7V3OhrzsJdrPRyWksPRrIj/cKSbf3kY3A + oBUwlPw90coGNZGBnSl5rU7otQmfOdOzQQL24E3Eqy5mtFxOBwEeX/hBgsfNZrw6AwiV9Z2+U3u8 + R8M63n98HSwNq+dHo8bKliVb7Kz8SMPDV/3tH2Ltj2dvyZpGhZfwIkz0pB9yGrYvCi9p+8Xu/jmz + 2f+cS3lIHQVBe3ANHrJ+kGdyPBFNhodILPMZwioTzsSsUikf6PfTKgWkJXncm0POPXA2wIejn6ds + p9rRHz9a2ywgKIY6EFtyLWEUbDdTB5UCsN//m7F+w+pZi//wHJrfWZzAI3p7oxEtDZyu0VoR2t7r + Mb5nKjQrtcdxfmnq/vxaLGXVj9i7ngzA9cJRUC5lJ2L8/XBgeiTtBKkAMUFIIN5c84sLU82KiNvw + NVvGbdT+8aUqJE5PB4FVgFoVI55U+/myl5pQ3iLpOXVbre+XnM8KeYPijoQrX4jyl7QgHb0nouw0 + 5OP+5U5yD60Jq0pmgflS3DPwPS0p8b8QG/z3U1RwVPwbWvDBYwsqPhbYUVWd6BwRRrNhySAY5pKk + OJc9Kii2DX7+QV/1ChM+bglxs5/XN28kb3Qlu4GPEChIdPlbPifBtAHldXgj7uCr3h/f/PSr982f + /fSG6gKUTv1gGwhRPuLOOMHDpRGwcSKqx7WLkMDl0D1Xfnrl04//MC19fBe+BhCPLFABfwwmYtmR + Vy9c/eyUe7xWCF1pz2h+Gz/ge6IpOXHFx+tWPQe/7tWZUq+o67qjQgsM5+Rh28q/7Lef4CHvdOLd + 464mLlkQrLcDIkYtHCJWOGIBQbo8sI/GMafjodNleuoCsue9EtBvc4mhfyouZOUHsOiX0ILd+xJO + S+r7NedyWqpgLl2w3pzdaEbXGweiqnhjA/c6++k7wKnCnVhSn0d/6yXBfU0C3cly5j48Cns8FNiv + pCOjiUMoeJUVxNiIiLc0cq7Cwj+bE7xLz3p+cn4KzXFbEH25N/WCJreAWZd9iQ7uHFuicu9Cwwk9 + ggJp3/N7brTgpOECwbuk9VxgEh+AUBjRclBjwKL4uYFW77fErPInY3Pz1v/0+GFwj2AOdt5m1Zr2 + mgB9APvxbV3fMnJf+XnhmKnCoLa/JM9Rwpasfmwgyj+nPz0yv5JhgKp393FOriCn5aNYIK3oB0nj + tDO+vXxUlfc870m6zCfAquEywOPRkBBsdudo9sXt+k4evJN0/f70GW1L4cfOxpoglzXjD4cEfvab + gVhd60bz0VUEcN1XFB9iJQEzvaGN/K1eCzqnAgDL5bT48mOML5Oi+zWgB728yRfuu95jXpfRtL0+ + K+g53Il4l6OaL8/0VgBgthLiByNhZAtfN1hVUo3NKBz7pXH4AtKu5qZlSuNoycwcwfMjG6cdd5Yj + FlZJI59eLEG84Lj5nD6+Bdx01x3er5dos9cU3IC5XwS0bT5NTc9XroQFJ0zTpjfWhlXhhspFWA4E + yWg9wXPVBBjJFYf6pay8n36Dd4i+Pz43pvho3pTx5eLpobBrPp9uNNl5rXVY/XrrzZ7tT1Br8EC0 + W0+iYXEjF4pJbRDVlIS699RyUqL2HJD8dqRg+Pm3s/hOyOHrmYxdL9wCZrG08N07NvlyRIquuNc9 + T1QaJoawzEkIVz+Mg/Z+68fGKj9ga0GCc/6Bjfk8qYVyi24u8W6J5v3xTcjBL87X9fUQJGkDb311 + Ifb9lec/fQJW/Ydqrdx6q/9AQOn0D9G31d7j2cOmME23Mgn24dNj9mTe4GG9lSHZLhrjfnrUOzML + NfnF7Ol2PoWgHGVEMDdX0bLMyQmcFs3D6LUva6bu5AQu1PWw6biZNzeJoSr5JFqIw54SzUnQbhTN + 1wwkHnfXennasgWbiyRO2/rVrXnAkcLp2cnYXvF1XPMX4E9XF1vxzclnjpic4pTLgg/g/GIksdwN + BGo9ECPso3zm8X2A5yiKiV6cSmPZ2zsT/PDpUOhiTs3t1IKj44ZIbM2N13bDNgOYYu/Pn7Hddy+B + +0V+Y6QEeU2XXdMpG3mSp8rb743f88LNRC28Jypk7Dfeod1ecfB6RMZy2nIhpO71SlwG3jWFW0tS + au/gIartvjXzt8IJynGsk8cyniO623gl/CafDc7IrmRLWFxSmI7xAV+kCNdLP3kFHF82XvWa1nPT + W+ZgF8WYxOl5ysf4ftJhnM0dTsLLzph//uY6rj72Qmg0P4y9Dd1vKkxv7mgDCrdIgvsqh4hZtQSo + WpxS+DKjA3atB8iH5aqUYB1/tHmqNFr05DX8/PwkKomTi/nu2sG6r97EdL3RG2xNsGDuCnvi1osD + mAkeGSCBPGGHnB02y6cdgurjw/Dh7T4jFtY2hINtVOtnLf/lQ/K637B7KFH+4welDG4LdkVlypf8 + RS2opwLB2osSRstHQhX9Rs5kn8l2v7he5wOby6qVH0C0cHp7U1a+QrQPX/XcWo8NVEXxho3zFBj8 + hj8WAIcWnYBhnPKhORmcHLfAxD8/K8zlW4D1dkI4OMZTT4ZTVAG92Tj4xuvM+OVpUEQehz4DxTVV + R7js1vmdJm3Y5Istn3TIwV2Pnc/RBzy3eftKa0suQc/NlS0CG4cfP2CtnyPv891nDdTtIUbc6dQY + 9Dqkw+550npsXpNnRJNcbSGOlIQgn/cA931pE5Sb4o6d074B9B0dfDmURIx++Fluyl4ASQ5SYjWv + tzes+hha2e71049gGlAcK/0bHLD7nBSPyVmwKskkRl8+5bzpnQfNjjvrJnGWOAHcLw9d/SfOfZt5 + LDxBJJcvQUOK7htspv7QQG60jgSd5SGnPldbMFWKCvE/v0A+cQlnwzfxz1+MxWnPwebwEjDCYmXM + N12jyiNWHLLfIhcsucnJcF+1FbHjUmbEhBpVEqgxfAuIsf6eqYU5mnpikW9jjMt4MZWw4dCfnxB/ + +VwHShFn6fdWcyK8U/jZRATj6Oaz4XlUb5AWbxXJO/WTL/MxuMFPsj+Q9P4xwfK+XbtdchjnifOP + JVv3k/zLx/Dx/D4ZPz6B1eldTbttcajFTNq38CZS/89PDR8TVeDn/1UVqN58OzauAsfzBeNXizw6 + XyMBPl3bINe7ZwNxG0RQUYKFEUvoLoxRs/Bh/e60afH3557VQbaBBcdN2DMtP5qeb0EAP7+7+/nl + /deRYI+nAptOUPd0+wwq0OQbA9vreIyrvoX51j0QG+eZN5Mhn0A7+j65VdIM6C0YIPgs8e+mrJnR + 13LrYHH77MkDXZnHXPzMoE0vCfGZRmrGiR4CM0gHrK/+hjhT68I1T5i4KpUilqdJAdH7ZZFDdXjX + 89Cn8W4653sckFfbM9jfY6A30CEhuBqRsLO0Ddy0dUTUxrdr9lIIBxZqexh1ewpW/o1h+frmxEZ3 + Wg/LbujgC1KKKnoVwbz6Q+jYeY1kt+lrLhvkbPf7/Sd6vYCfnv7pIWzorZ4LvCGXYLhVLkG9keUs + +/RI7upbh0N2GqLh9MaFrAin+yTFtZlzkAwVALeNhXVYIkDfnJ7CuN39qydpW+cQHMfiRPxmd84/ + v/3SR5KFT2WYebQgDgcuAw2xEfYsGn2pCuF6kx2xT5XKeOTIN5hlh88Exw3P5tXPwTXfJraZtT11 + FiWGYvI0fvlRNHAgy+TZ3YbYT5dNtOpFKJ37T4VdQY77ZdUv0NriN9Ge09db1P29gTXJA/Tlzlm+ + HHb7DdR5syGOlLk1v+ad8Fu9l4ndedPjNmXNQW4+RD/8MObTkA0wnC0DPbKy8waT+j785U8OTQ3G + +6IowzVfJZr7nIwRyaEK2zlA2JvymdEM3hZY8psbDpKLHXGwdN0/fRHQj9qLih+2sriRjsTZFoee + rv4UFJ9mh53Qsn/6bYGR8EFYjdQQ0C8v2dDd1UesAZkypjoxhT98DYLTGyznU1qCX/6OHkoSzXIV + tbDk4Q2rVwN4s58yFwJlveWDvmrvp9eVjSDERF3X43wCign3Gy7Bj+8nBnPBHBWy8qoh0REXQLb3 + coB2fDogIcyqermcsABXP0vciitzQl/XFMg0PxKVO0FAcpuzlHX88KrvPOrF2QkUanYk7sr3c8WH + hcKlUodN+qqN6ZO/Q/hFLcX7XDoZk9MfE3DIPzo5bjbIW9erD3V7irF1fRiGUO+sDfjhSbIlUrRI + fH6Dm/YZ4eDzdOolfGgL5K/FE9vloBsDk61Y4Z3EmjYPRcjHQu8LoNn2neg5qgD7hKYFjD1auwgd + HoBO4tkHm+ozTrzkBmBMC9Hc/fIN7F6G9baEKFFWP40kiVOMHsriBI9374jE88YB/M+/NBdZxIHu + yPms6V0BqVUy/Mv3p9trP8E6z3y0NZOvweJXmCm/vOjmTer6/apQnEHyiCpdAoMkvOBClW1WgR/y + +XwNP1Q+eBeNmKz6erM0xyHMt/YBp/lbizjpNnWAM0cDW6TNampXc6h8k27zm69osOZ5A6dj+SAX + 6kv1IN3aD5BVN5/EXVz1C5tFCM+kthEz3y/W/fz2W6swykSpMMgn9E25PNcqGnbmDlDr+LQh9nY2 + 9hWn86g17zbwHuu//DzKRz1KZejEfTopcu/Wgi6WEhzn1MTGCNKf/+KAX7ULVg/ywIYktxuw64UU + 77eoY+z2NSXpV08ysafkS3G5mvDMJooPATS8RU5oqvz4z1LYK/o+OT+DQxrX63iW0cwhqMNfvvuX + 31tPr5Q7bL+xitSyp4+Ct0C2uXYYheLSs40vn4CvewkaovFeszwtbvIvPzVXvbKobUhlPaQVwdbp + 5n2nflEVb9/1EzzObj1Nj6ZQ+ssyTCymdT/P90iF4Wwa04YLvHwWsZgqW6ZtsPWqw5pL5CAB8hB8 + 8d/+uCCmg59eCMqHzgS5PS3wV6/wxPKUjzxNZdgclht2O6bU88cOBkiuYoUtN57YfCnOqdKQrUl+ + emkyhE0JGwAktNN2Sj+SIRqgMTYB9qpLk1OPPXRZqMwWrflmTn0zKKF28wqMJeYYM4c4VTk6dkjU + y17z5o9NTQX43z2JlXdmsLV+B9VayJFkZm29ePBZwHIfbDHex6d+QkVpgp8/9h87E8wn35Hh+XID + E+TMby2+VVVX8hbE0/fh+wa99m0MTwpfo3L1l9NcEgFwZ9XECfmaHrP8dwtJoTnkvtaL6S9PKc9P + FSffj8qY+zAW0IndEbX4Ytck3n/D3fqZ2NWHN8jZ3EjwxU2/+rXOfvkIgE6c4IuSOBF7q6oK0aXo + ieu/sLHm0xPoDA1h75tK3rw7jq4sgRTi4ODHHrd8HzJ0zwHG3qYhNRHsPIWrHsWOtS0BvQJm/eWl + tnMv88XL2xDeLjHF+kGN2fJZu3RERbjFTmxsGPFpLsPufQ6JdQjnevrlA7ahWDiQe7cX9IMXQ+ud + qMREAWM//gaetuyJudbLl7O6Hf7PiQLlv08UxD28EjzuqnpR280Aq/U9ax56XzbuZ3MDP/d+IGaY + 4/oD70EB316VI2g+2ohmxq5TsjI5ErXKfI8e4FUCUaMSYnX6xGbOLW2YvfIYwXrWai4MrwXUHCnH + +0s75uP2c01hI5T1dBgqzxOlO/wA8HKu092Vtn1fju56hjNn2D5aJKfuTW2VpHBcYmyeh178CEaj + SN7pQyyoP/sxRVELczLKSEFbPaJFFbQwt1GOkcvrhlhqyaJ80uaL1c1J6Gf36HSwbocJyTdjiWbC + P2VYfIEwCdLatdyltwUopoLI8deV5DY5CJhQ1abZPx5zGmdXBC+vuZu42jKAmJgfDjLf5HBuhBng + 8D7SFXsvnohmRVP/0U5zCS+WyRO96ZRoJPxXghyADhJct4kYypYMTqOukuOGo8b3NrxLpYjniGT5 + Rcpn81ZR+Ll/h+nZiicmhrmdKUNg9CSwTrQm+knS5f0T7TGK7drjnlJaKM+r7BHN6DpjsE6qoAB9 + UrBPryoTD21eQkEVdey5auWxYoAl5NsgxNcMOD0P33wG76Kwx+aS4Hw2jkMM1W28ntnyOcAe4rJR + nPE+k/0tiGtGNpsO7q0mIqFePXt+7M43uFjSTG5C0udCJ2SWYqsU40v2MTwueC0x3E+3O8mvAqxZ + mKup4rnQJSjV04g/YfOkGLtqj49p9MzFItl2UPu+w2nA+oPNyzltYDQgc1pmpfD4kyzp8GVwN5JW + me1NX99RoQrbilze/NWb26SHMD+XMUmvGuwndk5Nxe2kjhT7O+rJ17dLqDk1xepuvYcvyEC6HrJI + SfSQR0ArQaHwq/OUBOq5NcbmecsUY1fucU7cc8RdiJYqj5Pvk5OXX4x52mw/UBC0/QT7AYHFCh8u + 0GbOwvdYeXmC2m4maAc9JHo8SR7zXjcBVthExLsf9z29Xj8V2O56MHHm9VEvzUWyQVipDolyxHks + fqmu4oyPGW12JyEfiVpmypnyJ2ynt31PX16rK/BULUSTvB4MiSnF4JX3FtZUAIylKrcS1LZmge9K + pUUikve60ssdISbmy0j0wXWArB1afGo6JR/u+gBhW3+OE73addQv0SRD7YJictjHbkSVjyfBZXYk + Yq/jz4fGVoBtKHf4sHm++uUiFTac/eCBnRO6AOEqNa5yat8CMS4BNIgbLh+I7nqIr5qmAb72Fx9E + Vp/g/blOvXl/XBLlm1uvSTCti0Gr6ttC+XxpcHDzpX6p/HpQdmHpE004FDnl2UVXvpLGEAxm4okP + fb4BLiIxkjTBYMt5GjJolZsMZf31E9Hf/uBCZcSne+4wiqhEYXU98sTTtq4njvGjkWurR1jtztdI + FJ2sgIl3rTGWS6fnDWuUoTYLFom/X6VfWm9UQZbxOgkGrNb8ydwLP/xB4vV4qNngMg5+P2lBbOyY + tTh/7wsMb5WMrTpdIvLS7UVx1LLBl7b5RFNzkVxoou5DMG8nHme1dx269qEma9P/WiRdVSif2gV4 + LcfU87nmCpjQ9xs/nNjKqbSZC2X4qDYu1vWydFrYKmo8pUQXz8eeK3QZwtt9H5FzX3f9ct5VglIj + rsaWS/KcXlFlQjzkMg4eby2ilJcyuHt1ZBUEh5yt+A3bujsSiz9l+TSUsw8vI9ySw4wasLyGU6xc + wu+BuJ99FZHdB1hwbooztt5XNxeNW7QoFxS6JPMPgSFob3+CndJpBE/FtR8cECB4Fo7qBF6SX/Pv + tWulu18O5DJUvTcS9ZNCqXYZxtbrYrDwOg5g5Qt0/OC2nuNpkODAxxoxmNh7FDWPDirv5UzccIQG + M2/fBZxEVcNxP5yAGJuZAA/pYzcx5s0R4zf7DTB7+MSPI476dX2pyuYRcdjNL1JE68vO3j13b5Ug + exkAw9fLAMNDesH+3B3rMchYplDRguRwOHKAwoVLgGQ/NZIUg9QTudA/UPM/Og4PXBfRh58M0IS6 + RqzS9HN6vCo+fH02W7SMF2zQtxCYEISqsOLZrV/odu8qhRtok7LLNz1zgTHAvOtEbD3Pd2PBTfJR + CLx2GHtHCtgZX0/rmcUQGyNq2ceaowIax2NIEH/c5PSHz/XNvU1w1zs9/8OXo48JVuseguWtcs0f + fuRxEzHWnZtQySshQFxgHXNmz8eNcpqYh41oW/Yfe/7e4IXdEL7l1Kmn89SkStlc7iufzhF7PaNU + +c1P5hR2P2xPvQ45tnAorrLOmx1qhZA+0Ixv4BMb/MU428qKN9h8TmG+UA4N0LwimRyAf8iFcxb6 + f897WkjV8+/esmFSeC45W9HQM6aIUHHsC8K/+Zrl9zuD2f7CkcCNPvVi2LYF921kT6xt3Fzc3A0I + OzX8EvNrWr1YDFyl7PNJIP5eeAIisr6CUp/YiKoPP2L9VkmgELVfbFnOEH1uacQp9OHPOHmeFY/q + 4C1DvsUhDla9w/jPxVTwDJxps3x2bMbyTYW6ifVJyCynJs9L3sHeRhHe2+ElJx/BaOEPj9ybccqZ + NRsQWqDqyfkWcPW0vWeF8lvfWgH3NR9n4aDMM0VEm/yjsXwE34QvQ7gR7+0oEUEvSYBRpGCMkFtG + zLdCHyaCcSbGd2fX/XmqJfgdH09sdZNds9ygrkKf7wnrXn7xfnwDyiN8Tsq98T2eRYoM+acdTGDF + J047FhwE7vONTY/75MvmcG4guqvher/AFC2VACmMwXta+WJfL88qa2Ax6jbWEjD2f3/3DrxEAmGR + jfGE/RAS2UT4pxdWPmhkiw0aPthfuxZ2G1pA5VE/JiaUpKaN7p7A2FUmCXZ50bMLMlvl9/xunYa5 + cLxCH678hy2S6ZEgskZVhnP4JOf5GeSCGB9T5ciVe3J4oMWbn1VkwmVaAALr+p/b4cOBS94aWEMo + ZyN9MBX2p1wOAK0co1vXO8gMNcXFNJk1VwpkAZiUPr5e2j6fm+S+gZBwHXa1O+0X6QNaoA2xOLFZ + VnvhbD4TsOpT4kUbs15iM0/ANpYNYpoPN6KFyN1A2ikjOfb10E/mseegld894gzcrl9iM4rB00wV + xOfvfSSIm66A0eatEsyjEszv3nIhkmMHO+ExyNnjsu/gJRVuBIueF3G4VRMF2MjDAdpW0conN7jR + 0wOxQvtgcPx6gvjSBymJ77aW85XGFjhCoGJjxU9y0+83KLy2L+IU4QHQl3ikyro+8H53k+shzo7r + Cap2nuiXVjlzQ/kDT+1LwMY20KL5pa7t/F9mi9GhrMHy9TUV7vNBQHJpuvnSuW0CDCffY08U397c + C58WetRG+DIjEwjaYbEA4uScIHD26uUujjew4hU+c+6RsSs6NRBuH1viPN51ToVHKEDt+wpXfax7 + 5LKjMTxbjYe47LoY6/6VdtfQmf/2T8/HugSnbQanmRVXNh0Rv0DaTCoO3tXUU9fyBrjyLbbrXmLD + ZqNSqCzxm5xRbPYcvzr2J9qiiasy1xApX0ogsZISo2vmARZnzgR+/KIb2cNgiFgNPGrThqCSuN5M + u10B9LfuEDOnY8/AMnAwVrcK9s7wHY2P0SiBmDsfnFl84y3LNrLhqqeQog3PmnKxmYLKknakyOZD + JNyCWwaOB3cgh1Wv8HIUIdmUAJmUx1vL+a+QtbDZXAKsyUjzhM6dYpjzgYMdIXh5s3aadWgmjwhx + GyXJWWAqJfBCa0IsbERAt5+jrLQbvyL7SpDAIC9TAh3P4knSb68527G5hPFTu5NV39XLU5gW+MhU + AdvOXswXHLo3eEvVcPUHWi6KcSiB4QA/xF/13ueVNDclCaWFPKxeY0vt7wYY8LaFgMJ/Gf2UBYKf + PA5Xf7AzWN8/3b/1/dMPnwM8ysrTzBTiu7eQscqvEfjh7d6Gs8dqbVmgXCYa3m9sLl/OWerDpUEd + knLq9bx5qxb5xzc6iXf9iMm5hYbvDkRfSFUvk3qUlHV8f37NYF0fubBq4RWrdMsD5h3VDs7DaUsc + 6B0YyypugdnHBcSPjAtjOwWffniHZJ+1YPGzRoblUC1Y/Zqffhk9PYYXz5Om/hKkBnPpPgRTtTeJ + OmwU9g8AAAD//6RdydaqPLO+IAbSJwzpRKQLAiLOQBEBEWkSIFd/Fu/+hv/sDFnb1y1JpZ6mkgpV + i8MGMo5xyBl7s7swjLpBUb1NAZMe/YYK5+gB6Eh/CAnCx9i2Sq0UdBp05N580V3uM8Sy/2V9dLaY + qdj1IITg497Jzl+LRXgyDvS3/EXO8imP//BK2dcPiXa+uZzgRQSfMptJsIwk/nxdUIGY+ajI+Iam + uxxOU6dIi68F5Issg615ZZMn+W4iZ7z3BR34Swf8KDmgUtSOjYDVS66E3jNHp5OCx51fJX98Ed2E + lYmn6nZ1YLKaCtLaIBgFbylC0BunAqGRu7qrY7me/H4vaSD4YC028dwz8HVw73u+j9xhPn97mIby + hqxzdqBUjxZdETiaI/VKj+527AIVnHrRJFd4PBgLPvMD+BpXCzlG9aFb8z7K8JTaTxSn/dFdhKTP + FCse3riyKzPmrO5R/8ufvhfGxVZ6pwl+zqFDjnrE/jefQ87KwcFVnHHwrHACFr2l6I9PzjfjacNT + OCJ0xB4x+pt4c2AdkCYQvsAAlIFlC0WuISSw8CumdtFYSsSwI7rveoyzoJtBolEJs7+f0qz7xWXK + rl92fZU1dIs7EbZn10Gn7XVt1j+9vc93sF5+Jl1i6crCThEELAhrGeNWcDYofwoTqW8jbOa3Ni8Q + npgKC3WzxPj8QQm00txGDvymzXIq2g4ahnIjO14U867/5NfrJCHV32Zjs7tahbcRZcgep5Du899C + EOo85v70IeHeopLgSSXhcJWKrUubEl7OYoxScW7iP/xTxsoqifsFbzp5y7DJl/dSInW6d2Ab+d6E + R7Ck6OSj27iVb76FByF9odNqy+7Cno8M5JjySHb+Fa/ojidQ49VA+p//YFpAhjwoKTJOytIsC7fk + EA/RPeAy5u2u0yg6MPzxFAXW2S4m7VLycLxWHjLvcxZvZdazIHpXFLnA+xTbR9dCGGuoD0jVaZTs + fg+UPj1Bx8tPp1ToP5bUG8ciYJe7Sf/8AaVwoE7S+qSNNNdPDxjzS0qel72rcfeuMyXhqxG5Hy8C + OKtJBJncW4NsKCpj28qZBf/i5U+f5D7K5NkpW+TNv/u4eEh5QD5uf8h4Ru9mPa4elLeOuaBwOVzp + 5n3GFASCL6BjGZ4p6zzsFvzhw1mqjWI7WiAHquCwSIs7suP71iv9PHvE4X8xXY57F+aw1s/IJNpq + kKfQQmhlpA2EvBbjVXhlCQCHecDgKB3i6fkWOmga87TzOaaZh3GwgXawSuRM46VYX9prg9cUVUjb + 9cVGztx//tFmcbYx698igL+Z9dBpDGuXtJ7kKe/7uyKqi1/jsp+QhVYoywjdRAGs9W0Y4M4v8MLf + zoWQZooOi3q/ZStw9EIo/Z/8h5doz/cN+VWPf34qOTVocKenP+bAm22AvONyM9Z3XViADQ9zcHi7 + GRj95R3+08Mm4tR4Pq0RVIQ4ZZAv8t9m+1XXALbpy8BS4B/o8n0voiIflCvSy5Mx8rdWY5QrflxJ + 8ZLPYKnflqiIy2NC6hNvMX1mefpP30YJzgz+8y5E2JSigZ5/+Do6MIE6BcLMW1znbqc1f/zD3xx+ + 03GKkLcBX0ZnvFDdNTjNusn/9C+Sq1+zrIeHDdPrgcNvWkp0sddfCf/4cnQsvYbc5lsAf8A5Bkud + Ty72EVsqFr2myNzjl2TtuYSHV5kQu71tgIoR4/3jlxlzkZulr1IPpuICiX9vWHcJCk1WVMe2kOU4 + ZrH5oPfA8WJ/yLmG75HWc1gpl1vgBRx0z5QWmZeAIDomAUCRA5YbOefglyUMCf3NN1a7G2rgP7iF + mL61FsT4Rh70P1ZH/F6u45X9bdsfPyXnZ4vdrbo9HMCnSUgucYfi9TUbNRSeEkIeG/Pur8zeKZxO + TI953Ct09wMHGJeiiwLv5Bp//jk8G5GL3KHt4nG6yiF4nQ8pQWWdxKwWrbWie9mN+A9xK9ZIXnTY + F2m460mv4J/NPQJylWh4x+txdoCH/+EF0vZbk9ZD3P/pCWLKt2/MijYKZXJCX2JuKYnHt2gzUPfy + GzrXjuJSz8o8sPMjkt9zH6xPvS1hKwoHpGaPX0Net2MPfn1eEs++g3FDwXcB10Y0iTPe7ZhErWzD + r3GzAhp8fUM4FVdTQqf4RvbvN9bPFPFg94NRzv9isKD204Ofv01o99cMepOWFF7WO8XwYs3xqsK/ + e7F5ECy+RWOSB1ULG9xkROtRN65835mw/XkDsum3NJZYerJAdmiETG0BxpqgKIJqcp0DwLybkaaZ + osKXkBKi355fd4ubG4QRw4/E720FkEA+qpDfL7q1VO9NWXPrbfjb4IJMbvRHftdvcF9v5BwldbPu + 9QvwDUKdlLYVuxRzuQhwZLTEMS3OoEI/W1A9pGe89uyzWazIZiFjkgbptSbS7c/f0nhwRk5lDjFd + f9cFPLfsRtDHW8A2n8kARTfskcX/OIrj5sbA1+soIdur1II/PKNSkQayYV6Jo2LjXhqrVGasIF2J + k5iTSnffp1v6+ICEF6A3SUxhtakayphL3qwuyDFkzLkJIGLNP/4awLu/sQTd4oquf/57NVUbucuU + NcYuHeCfXkSnnz/RBW4wgfUjPyG9PXYFBuXd/vNviba/L9n9NHiqJkKev5cUk0vAhXCPP7y+3o9x + Mjukw/c3MAMmfvzc6eNiHR5x+SSGPp7o+hEukfLndzVz0AECyqz/4xcoWG8/4/vnT6DH9iHa362D + EpVVOVOXEzLul3PDv+u8g2xXAnyBwrHhf2Pcw2S1lD2+/GJyLAP/+/3q46mN6+n49RQrm9s9Xp/G + Xz0Clq9rS447fjdlKvTwLX3Uf37pKtKtkmYkRsE0qld3yn2UA7VWL6h8Fw0gUGki5dTLJv7T6zQ1 + K14Bc4p3P+YzrvkMPTh9x2cglvfF3f0DHu7rBalswrrkdfMHKbZ+KWYZhY9XgakZ6CrGjh+8BjiG + aryytJOKjCJgjb3e1YL9/0PnXjYLwbQmGQjq90ZszTwUox6JKvwwpxo5v5Qa1F/ekajfp5BY+dbE + C/3tPUbBF+O1lftio2yN4YXs/uLOD9bgI7HQpOyE7B+x4kn/xhOMUvhGBtt83O3rAh3qX/WMTtHX + NdZTZKfw8MBzsLIOpXgcf73MfOshkKdxLejR2mTQxuQRCGOoG3Sv7wAn+nFEPR5BTGN8Ff/ig1iJ + DuOvBy6TkpR9tfOfmm5x7njwIP0AUl/rt1m1SFJBrPk9OdVNGC+FpNlKeMpvAa96GvirT8I30fGf + njf4IN9kxTHUCj1baYi3VtA3+DsyerB3aij+/DdwD911x/P7uATFWYaHpMmCufKXcfHAL5Dnh1Dh + wzUcGwriyJPFrHuTM+8fdz/5vcC93kVMpcvB7OSvDDpK3BF/OV/pWmtgg9Ptq5DAIUIxBe2rB2Iu + KVjuZjziyrtO0CpeLkLKOTAEJ5QHiG/1hhyJidx/+XnXg/iqR2yz+8EWFEsdYTpTZR8fPfjjM8iy + T8Sglff0YMUAjEweMvHCnWOoTP3ew/oSrg1RIr/6h1/7eI5bJZ4fkuHZE/L3993EJ+fAv3rTZnG9 + O9ndqEJB2Xd0j6FqcOsvXRRX3zhyZh1EN/MxhBBdhB8W/+pR2T2voKgQM+AYm41nL/9kkC9tGYXS + dGoolzgyyKjXIDfvNVfoVGz+q9+dTXAzuCDcd0jrWPlXj97rmw+48xu8JtEv/qsP/at3+Jf64b7h + V8khguyRlHt+WRF5ttDVFw4l+T1yaZJ9VfBQbEr2enS8Jei+QU4zZ/KnL7ahajxFKNwe14saj9T/ + 1CzoA/WGUvuEjKnVnfCff+rJtybeBlbI4M6X8XfXj4sJFFm+dfYV+aSxRk76OSZYzKFC51ReR8L9 + 1kWB88lA5tE13Z2fpLBLk4y80u/XXS7Ht6rY1ctEluppVHCAO8HJ10aih6wOhEejb8oMJZV4e319 + OK15CS8HM0Wq/kgBf7/fKygZXhy8jcExplPYOZC9n3US5Ou32Ixv/v/aUcCx/3tLwf1tXIJJH/Nm + OlcrBmf1HgSwnIOYO1YvB6pefCGOhZeG4rnnwTkTv8hnzy5lBZw5yr2OXGIcumOBfa2cwL0OXRTI + NUtXzr9mcLEHA2nWQzEWpuVY2RRKC2ntY3G3dtYqpVWPLTEy8B7X8Sba8JLNCHlyEY+kIuYCgVFd + 0E0HorvCMHPgqPgncrsPT7AVykOEu+FKjEPEg3UriCwf2usVadYyjrN7MQPFyDWAV8lPmzly0H4F + 3lYg5D22YsHSV1bCCSRYURHYN23XskIZ0SLHlv2B5fP2BuA1jE+K93luKD0POfz7fnM2Q9B/OjVS + UKAesNwQA9A3TFkYVyaDindsAoE3ulQpXOVLNHrHzeIPcy2/jPJDPPybmiWA1FOEsCPIPV5Wg5aR + wwK7f19IVv8Ml15bqCpF+9TI81KeAJc/thR2YxEic/NPzZYvOq+4xSSTx49ti3m8RgngK57HGT4V + I48/XgfrzzKQG6+qLh2ZiwPhSs/IvFQ6Zb+GHsLRfwXo9D7W8QabvofCOUEoda98QZ9boyvj9eYi + vXN6Y5NNVVSis/lBZyj3gLLFYinO1JYIpa09dvwGOmUpfz1RYVm6bHT2RFjbM0dUpEYjx+o/R4lt + pAXwxPTjmqgiDx7uXBGHc8G43hb1oYRXI8PCaGgx67nHTUF6W6Dn10xHFnmjA40i5EjID6khFAHq + ob6YGdL3w7Vc30wsSA/mm2S4cP7793TcVHI30i+YlNu4QHBIXXL0gQcExTRCRf0+CYm55AZWi3MG + gE+xjLfxfBr5m3FXIdk3eWrP1xpj3xYdeQWPFNm1qxTLqoyWknOMjvTC/8UsS7IWvqhXksdwLY21 + 3g4L/BbuOWAC42fgvTwCAQ0d9FieybjqYiUriSuK5A5lG/DOWewgzKsfSby3ES/fY2/CJypuwai4 + 73j9ZmIHdeOnkkvEa8YSP8VcGdoDh5WNV5peLhwdMm85I/oKiTE9KMcrdVk7WLbwMmKzOSyy0NYz + svrqbazZQUygWccBcmz+ZAjJ1bNBxYciKdRobzOnHXjoEPmAbJqfR7o8xAqK4H1E3vIdwcZvtIVU + GT3MwCpxt/cvSODhtUrkFE/lKKxTlStDABGK0uAH1q1qKmWejg90nphhZNnhwcBaOrnE0t64WQe1 + Y2Fm4Ru6Nm8wLs/wwMKrvProGCxXl80+QQ7ZYdICcLlZDc99fjV8gOcdBWcij6uSda3ypZqFgpJF + Ix/Eba60KtHQsa2KYn8fFn5PvksCE71j7JyXFp5aId/n8xkvcQY3GARig/LD8+wuzviBMMyUFEsT + GxesMMopwFW2In+7NpR/RGqpOOyjQNFLlOMpDuwaNkFkkOT90Fxua7RUOb5SHYu1q8T7eHVKXwpq + 0Cy/Dqy3nqhy0zkqCoxQa7g76iPQ18sB6W/XbrBZ/FJF+sInuq2a2izo9K0gO2At2Dp1AcIGw0jR + YnAKABBjg/Mq1lJema4imzEkSr7kjeE1OEQoTaOrsQ3ZxkD6O63IK+8HsJgHWMNHv1xJ/psNl2+H + ZlJisb2R2GdqsOlSgxWT+xJkzZoMJtuzPOXwaRFKmPMHTPBYmiBpswglbyUHSx8mCYxPn5b49fHm + rj8xS6DHjxfiu17ubvl48hRwSFzy8haVLssMAhj+Ovovf7LIaxyl548VKQAuqCBcoQ6JHc744gva + yAkT5yiT0j6J21teLAhXVpVe+WyS2yA57tY5bi33pHwi/a2t8R4/PEwRPJL7ar/p6pVlCC05vKNT + zHOACldWh9fowuJOnayYT6fTABeHDMg5fKtCcJ6aBX3ng8ht0jVj+AjKBoRn5CPjVj5cEtpbBd+l + zaLkG9qUm9jNlODJs0lUGJu7DfEhAY9+uxJbynqKUzyX0CWDSI53wXWpdT+KYM93RM1PfbMaR6oq + O94iUz294q1WVlbxHCElAZHakQrZhVUYscmDNeLf7mptLQ8vluqS7JZdgSBtCgNft7zBv4FPXNZU + ygla5aPE5f3wjRcXPFl4XtwTBurDBlQS1k5J3H1/0irdjSViwlb+w5vj0oW0P5eFLI+esBL1Zdku + ByRrU4LubCB3vDSAmtNDBU/mTYPu+37HP71fVeUgykuwSjcfsH34SGF0xzpyys43lr/1scZtju6F + ObtzSJpKWVymxQftFTf/8vUqsxJ5uukar+/hl0KkMQzRsuHnbpRCFW6XJ0QXDRgxh577+0z8B50q + qwabvLdQm65Hk1yHrae/Kot75dSZCYoU4+NyiSqyf/n43/rkCcs+lINvcuiWcNdxj38M93gmcfIs + KK/9AA/S62EMhITjxqWufUsaXP0SkMvn7PJH/lj+8RPyujW9MX/WQwqPtXYidjaaxvJlrA4S+nLR + 6bPExXJgP5PiUPRGdnuG4xIXeQfDSUpQUiTOuF4OcQbXTgbIloK12cQozsBn2g8pIBvT5dVrDizV + 3EXaPr7cN4YMqD/bgPSOk9y2jeUWdtPgkOJvfUhcvCkOiWviM5faWMgdTdA6A4P85Zftde5asM8n + MYvyDUr0kS0p1JMEZQdditedT8AmVOzgC39LPAPJWuDXLo/I4Pou/t36r/6H7/t8NMVy+aIQbNHE + BxKKLJcdCLQg80whUT9EjKlyQJ2MDeWOFckeCyof3Ql2S3smMVcSd7kqoa2kw9sK8IGrwfYRuAV6 + 5ZoQ78eaxc5nWlhLU4/sg36PiZEHyd96Qqbns3T61bUKR/8ZIEutkUHuvBYpzBPekXN7CcZWMlsI + kmaXPOH2Grdrck4V+SocSDDIR5drb4UH1rjLEcI236zntc1gOtoNid6uPdLi+jaV+swQPM9pW2za + dOmVMZhsvKXm1sx4v/aolnAf8FmYFPPhxITg2ptnknh+ArZ7lUNwfBcD0oub2vD5eApg9LhbyOp1 + UEymnufwV7ZSkNt11tAinEs4yPZM9MuRuitGaQR8GX5IOIjE2HogQmidJYN45RwUGOdZCgwjk4gd + oYNB86PkgdxxTlj845PqwA9wXsMr0qT30eCEddmU5tJ9EMLRDJZj0lvQMV59MH+zj7vabZ5C72GG + 5OoDj7KB/MxhR2Mf2dnt2qw/bqvgU1U5YvbHNaZMGkKltxST3ODr7rIONjbYtPEPueh+iqnYWCa8 + XeeWuOOmjNvWvaEC8/qH5azH7roavw6OAbbJsayhu4SPWIcTPKg4v10PtLxEI5SZ9vsI2Es6jkTs + zxjqZvjErHp6Fat78Tyw/W5icA2OrbuwQ8JA+7e4qPyLp8L3eOA/wUKc07y4s/RWS3jylCe6yB5v + YGkFNnzhUSeaK9XFejkU2b/8dTKDLu75m8VC/0NnvJmHZ7M1z3sPX5mqklSduniDj5MHZ5NXSIB0 + u+GmjxOAQ3u7IpVn/WKTVmpDVQlNgtxnNK4XbY0gb0OJPIxzVSz8Qy+V0kzPxGjvubEFqR7I++eR + K+rOuPzh7cODOVF5di6ItLdBbj5VQ66He2b8tMSvADmNIfnjw1s+zyrsT+0bXclqxwS04wOy6WKg + myndCv5QWAv0hAhjao8JXV5c4YG8Wh1ywW0XU7ZrU/AEKArYnY9y0sPj//JTIPE9cNdnIcmwOoIa + 2e5iuWx5pQ9FP5Qysq21azDDmBv0hd5EdhtTgC9Rw4A9f+ANnShYRFB7oETLTLQd39e+0wdF/b4I + eURfEWyoeYRwxx8MHOseUzwaugKP1xVZW9ID3E+aqWA2ISgMeFBsj7eYQsViNBIsYlvs8aMqY6QO + JHeFb0FLNKuQu7PPYP0VZCSyPsvwNoQHcl/pRtdw01Jl9LgVGaVUNbSaMANdNkiI6+RfujA/qYQ8 + l1+wcim/YGlWFoL6zU8BN2w2WB2Gf8Dj8zlioYFuIZyPwgbPc6njJTyfG5rc3gzsi+pFwoUP4v37 + IZTiQscf8pTozKpuCv/0VHDnFndrslIHJ3iUiHsxMmPPj7v+ZVtyi6eyWab3uwPv5/sWMOZxcP/p + CSFsCcq+5Vhs1GggvCmfCkc8wA0dfnMPrzL1//FfGnRQBmAbZiwsc2SMh/KbSw1c9WDh9y1Ltf/e + YF1WDooe3tkQiJJNUHkoHVKP3gDWv9/7c7QSH2jRNj25IwyCQG7IcYCqK2TdJVfY3Gx3OwuBNfA/ + DLi/e0xujo5dyiZpD9RrbgcZDbdiW5NHBC6zeAqUr8mP085PFd0wGuIy6rnht7X0wLwYBTpx0zqu + /NMPYfQcVFSothxP5oGtFXD9iChooeUKWUNb6FkgQw59O4Aq1ttSzmumoQDcFHe1I6+Hf37Ffe/q + O/2Nr+pXLjI00S9WPv+W0NDpg1i3S9KslT0uUE2WEe36ptna3pch/c0BZu5c6G7pdOqhrDcl8dVm + cPGiWx1UjvMJ+enzVKyVe+7gzreQe/FRsfXsrfrjw7jHn3e8qCqnK8Z+C5hTL2ax0FeF//JHsORw + oZPK79es1Z9vwOhbAbbFbHPIFz8FGT7rjhsDOgi1pGpRytoLnZK+HSC90pAcr3pNZ+39auUvHRqi + mre6WRCyGehU1RM93coeWWvqcuDSTiDqHp/LXVplwDhqgU5Lk1N658+RTIpvgLS6t41tojcLDgGD + iOpctYbLxFIGoq9aJDRMNl442ePhxaSX4CAdr0VfHQ0HrsH9jfGCZ+Mf3luXVUX27zE0Sxk/B3jk + uzpY7soaUwSqXHaMZ49uyWGi1L8PLLzM0YDO6vXbrMpzCCAjbUkgZrfrKMCVq5Rdb2DB2EtOd18v + 5e72jFDeFFxMkeS08KYXBkGKrDSDx9cZfL9fKdIvyIn7AAIPqj3+BaBTrgU29iYEf3wXeYsKeBEp + reSFKiKnVauajTHUB1Qehy5Ynz97ZAUcOsquz5HrhGFDL30UQcRkV/KH7yTVeB1u8n7IDvyuzSS5 + ufNPn5ie8RwnMKwy8J/SQixt/IAfI7eOLAhcECyAemABXOfA7RtdgpXNcDyTV2CD0y/nMLPr32kV + vw/FPGGfqMt0M/b1mcC+dmsSwCoxdnx5KHE1Fchr+I9BMHeI4Lu2KDp+XjLdEvNewicsPSw5sTUK + Tz2H4OR3MjLTl16w54IxYR1+N6RJPt/QKTibgF3mLwr/4oncTxgcm0hDp0l/G9tQhIvCTrQPnKwP + jKmjUQKKj1ki59eMYGnjrVXArUSY9I4wfuLpGMI1ulXITLXHOL8/nwluIEDoD+9Gte6DP/8uoDf4 + pquWHGsouHf+n3+wEFfp5bp+nPee4aeCbpJcQuPGJAhpP4cKm/AYYHeAIwmu6onW+GN2yvGV6HvT + haWZ//RX+g0+aM9fxlYcNgxzW/KRo0l2wY1hiuHu1xEz1eC44RpvUEb8HRn6fG3mLb6U8FslOjl9 + FloQq9Qq5diEGol2PB5H6VnJosjvh3rxoZnPfKX+/X4s6CAzaNOEJng/mxs6nWShaX9PnMFd7yHL + qrCx2jc1goy9vvGSMCvd8XVRMn25o8RpTJdlSdgpz6QLSRBqdkF5y7SVtbuUeDs+jZiF8ntTchv4 + KDgHKuUY0UpgitJ+9+/6huL+4/09Y1Z0O7BwAlFhcbErkrlLt7chnis5L80juf7oOaaaYqZK0Qjt + nt++8TzYdgj9xvoRv5MP8aI/Geaff3ZXtbvRsyTroBimfWBKjlXw0msuoXFKBbTno5HseAEPnw6R + 86o4LqtXjwXm4s8izqkRwXu85gl8QBxjYRHOBa2IuSmr9DkgK2t1sE1ijsH0G16YVT9Hlx6aUYWJ + 82OQIzuFS90htkFv3b5I/ZAsXsr4OkAxTHoS37uo+eM7Mn/uUmIsVzGe2/uqwiR8JOSsmJWx/I2v + Pjn7ETzmUNDTLOVS4tVXctz51e7XWYBUywld2iijy6fEvCx9byrOs+0TL7ZnBZDh+BSLzK2Pt+Xc + 65BqQoQ8nbuAxVUvFThc9iMZ2nikrMq8nH/+lpXlY/M7mXIHwsXnd/7NjdT5vKo/fkTOwwQphg8U + /MUHMVdJcmnKjiK384lA2vWjwMTUASXaZmLYnGdQzAkREDwjRvZzaEZ6S381aD51QzxMDbA9HhBD + PFvon9+xPu8PExykyt/5/X5dhHxlZGNrrvjgrm93UW574xnf5MieL2KWE4gu7/4sidAppvR8PCzg + D4//+C++vosMfm7kjvyndWuW+qtOABuHe9DyotisWzXWf/kJ97+H0/xq+e7B9hfkxLKGT0EufRRC + 5fkxyDE4tsamQ62SWVOaUHBaQTyjFxig+kusPz/UXbW7ZsMwu0m7nopdyqQZBKb1ijGyNm0U/PvA + y0PHexg81JSyfo8muPOPQD7EK1iSzmL/8h/m3V9Ld7+pgp/FoyT/0y990/Lg19hXdA5PwTgp+bmD + 85ym+IDttJmH4/AAzq3okLbrjTVhcgaG2jFHlte3zfY7u5a84yk+MFlTrMsa8/InXgu8oOTtrkH0 + a8EgLw4q7QW4W3i8yMqkvn/Euy1o3LrksACTRx7yuM6NBdzPAWgBKLHcfKZxG4psA2EaRiis5MXY + /c4FvPLjF3M+mMD2eC8JvBwOmNj1awRz42iO8rYPkFi307MY/Yfdw0b0v8HhQqp41bvCg/WbnfC6 + 68l/zzt+BAs/pO46fXsdvmuTkqQo3/RvfiDzDgE5hoZRLGV2j+Bi9wYqP88XXU4MtOC7dNiAG2Bl + /NO/VlmWgZiNpjvnUx385SMUt80ab2JUZPD6LfctZZE+sq/l1ok7PwkWnp3jPd424FCewfzXj+i6 + 8xO460eiOu5QELWugj/9ETSHBzZIEuEESiBkAu5P70bugGH4ayk+aL+B0nqnCMd6aMlpkAZ3EcYt + /Yt39KcnKVyVCqC0uqOkPkXGPNhqpPzluz+/7oeeT16KK4vBsuwAF//Orgl/zX5NY2f7Li4lZoAm + 6c7IdOtmpKaETYHFeo3++NsqkJyBez0LefLHAYJnHlJ4OeYY6egyGj0nmyxkc6vFGyT8uMTPJQP5 + Q3CJ/8wt4+/vwe4nIp+56MY61m0OT5CkgcRvW7wYnBoqp8hJA166nMZVDLZNiZv7i1y0dXIpNfEC + K24s8Go9nsYKwNTJIXaCv/qeu32glINV+h5Q0G6Y4p59VeDTMzFm0+vo4udgbYBe15CcxWM1bolG + e/CnR09cLRc4ndDwp0+JQ30Yb/C918N+Dt7nt26Wr9qWAM6cs+sztcGvM27BtbfO6PzWp3hN1IWH + p89DICqgE9jjK5Re21cL1ttNBssK/BA+Xr8SHZuDFrM7H1VOcE7Rha2PjRCJuqO8388U+dZtBcTJ + jqV0aJkNGfi9FGtn+hbcLi8YLINI3K32fxuEVjviKVpDg9rKLwLPmKFkr1cY2+6nw4iQL+7mVzUu + GxJZKN9MiWhyOsfbX/1iPhQK8bhFH9l1uahKEwX6v3hYw+2cQP3WMqg4FnbMnisJw/Trffbx3ZvC + HHsLFhenCuABv5t//omtTGdi4PE0fmr5Eiim8LCQOtUHuu58EcLZn9FpEc6xEIxL9VfPw7CZZvqD + YWgrPT8pyPHfokt2/gBf6fmHrDqIi1WQTwHk7vzzz09z5+mje4oU33WUzi+1aR983P/xeeKww3u/ + VbDIwDNYZaReoyqmzldJwc8NM4Sku0GXu4k9uQ4/Gzo7Z1SsjrE5cLwyPbJvU1tsZvdsoXAJPGI9 + j7DZLOPVwcdrLMnZibt//PNPv5HXhagxL2uNBX3Q6vslNMhdMpaP4M4/ScDN00j/6n2EnY7ostej + hx4sDGSqsQwW5/puaKwz5Z/fjBcyC/FiPfhKuZsfKWCdpjXoW4sqmOX9FaVb0tMtc7+Pv3oi7r7+ + Rml8kk3xL/+aHZSLKRMSEz5a/oaOOpsCTjWvwz9/0fWyk7v0kWxD+TalKM7WoVjz6U/P2AKJy8/m + rrteg/f7sv6rH+96KFNUUMx4bZ5hQa1SqxW4ZR3x0zh06Z02D/CXnzFk9VHY+Y4i70133erAx/vv + LeEj/j6Jjgo93sAlZ8D/Z0sB97+3FETc6Ugcl6/ibUb6AA5i7hAPxUeDfW33AJbmKyLW+MiMLcGu + DLPudQ2YoTNiwS6sTnk5NiboUEnjaEhHEVDNyAKUHzTKbWdXBKa6jQj9spvBur0dQos1z8gJGFzg + QBgXyHuXAvPyYwIkfK8V/BblGQsJA2Ii2lMLwYdYyK3LeVysLNvgi4QfkrnHZVwT31ngKpQGcbU0 + LbZDiHQQausXneyWjOtVljooPqFDfMZv6ZKqbwuGrbmg6w3NMX7OYqfcg0IOnvqpM5b21W7KPdtK + ZPcyHVe/pxssf58zeWqjb9DEEUuYXBsu2Ibjy11Fh5FhIHoR2tudjvQHJAYMj+sPXRw3cYVh5kpF + fbYaKYeuiTcin3j4XVoNoaqO4vUxxA/ItI8I+U1F6HK+KaXEVhlDipv+AhvmgKc4C4QksieuWM/s + GwJfRTM6XXI2Xq99VSrfJifED44Z+AS5EAL3dlYC5Xn0R+F3T3XllRUOOc+fdqQ3y67hZq0/ZJ1T + nXLEUjo5K/ZTLjrHuZMU4gRo3H1DaLvrhXCxBweybmwho07NmPKHF4SvYFYxj+N4XJzwEMDYxybR + OOFrrPW1x8pn5k/Ea08PwD/cRw95WY2II5rZyAfCuCkXWUgDKHJ2sXB47mEgBhGWTi4qhC4CJhxU + CWKF/M4G3+y7MNPciJDf3dxCUPxzAENlkchFldJ49fv9pK8BQcDOzANwzakN4P0u9MR6xSVd1FzO + 4BrfU3LJCAGzU4csPGQSIWe0aKOQIN+EMayPpDzLR2MDP2mCqjV1COWNDdiH/jBh27T3eQTaNs7r + jG3wFGBOzPJhuKz9kRgFMMkRXW9jF3NBfghhtvdRLYWHbbCyrFZKclaVYPWc57gYTxvD9WrLKGcG + rRAQ6wywsiEhBf5aQHCeDxl8bBwSFa9xM9/Q3YJcZ+bIHHKOrp9vWsOn4zck3962ux3cLVeONXPA + bMHLLn64j+Hv81h0t4exfhpNVg7AE8lT2PSiL2srgyPzVpCGpAHg4/uSKLLY/9DzdksbDn+NAPZA + lojtHsOGKwU4QAm1EtL2eB7z48eDd6fSUb69e6M7hCcdXsvpTm7DfYvXLytMkObkjSWrNAD3C58l + /N7xBxmpnDZLmYIKtk13x50FqkKwEZjkPqU6CWIJx1s30B4IkvREsZkW7mbFCQulDwVIlX2t4L3b + Wiry+LwhZJztWPBfYwCl1f8hr7RpsbTJRVSeDmrw27uaLgd8P4CCBJ4BXeTK5XAiW3LDLlmQWkAt + uuTrD9CWiYzUPMDNkkxap8TKFyF/M8cGY9vLoHK0Jkw1kI1sgJsAPuqIQcFyjqlQyHkEFg3pmJm1 + D1j24gg8OL+YhI5yKthxHTro6ZaFl/txMGh1TbDi8U2Dq0/QFOu8pSaYH+5hj/efsUZzloO/eFlO + 96pYAjwGytFV76jA4r1Yc+dtw0fWsQHjfJeRT/UmVzyKOWQJ5yzmwqffQZwWmPhd/6T0vWw53Nc/ + erkH3/1xZsHAp2S0SDdyoaBP2HdQfBkJ0ff8sqgvpMLvffqQy5kAd1uun07J6PANZOMSuLPoMCJM + pK5Ghvxc4u16fvegE4oH0pWhc5dvWnlQON9EzKRJCKZcOj3gKMp7POgO4L/WJVO2LjJJxGZ2PGt1 + 6yhUUQeiqVJaLPHxoisGfr7JywtflDsfWFaW3rKBmdOrHmm+d1VIsMMSCxZ8vAkSW/FxI1nkdpwT + Y6s1uMFP82qROv6ODTtncSA349714wz65sXIog6IpcRB5SjfYr1cNqw8TxlH7sbXjtmoVvR/73N+ + im0h3Cy1Vl6uHJEouXMN0aoLD8EmZ8juS3ncn1nlriCATJFZm3XPD1B3PYNcRFyPKxp1CwoVSgIu + rd90u5WapehuYBCd0CtYx3utA05wW6LvpxRX9n2AUG8RDV4MxcYyrkMLR8eqiKqhZaS3g+NBcDy/ + idGuFqD4uW/sercKCW+WOvJVrefKXUoNvDRmXAj4d6yg2R0mzEPHoHytweUfHuqr8gEL/3jU0GPp + AfPxdXIJnQcbnh46xp8w29zFkS8ZdA7+LRjI4I3cgTctpYsuH2QebK3Y/tYH7VxE0DYkYOgNskCZ + l46BHNTXgm2K0FFoPr8xxctiUFX6BRBNP4KK05o1BA4fT7klFw2p941r6J5flFFSRvIMYRIvx+Et + K7Y0LOT8dXSXb10tUShzZNFlEKKYk7tHC9O6j9DlrKORvqpvC3/6ciWvvOnBdqnqScHg/UHRjteC + jegEy6/wIXu+LpbhfVsUQzyPKDKLGqzihbPBp+p5UtylIuYPkTjABykRBunqF7x/ZiFYo8Qjmuo5 + gC9SUv/FG/EfmW6Q/nrO4Z1RXngJqxudEf9goLfIJ/RC0Xuc1iNe4Ll/rMhXzKrYvJtUQiPWWJQn + bwb85b8/fMS0XS3KDo6sQk5lmkDcX48eX0wNf7zd435cA8C9sWj940daFqeANsWhh8gYVJK7vBpz + evGRFRxuEV7pwxx/175/wCZ6IYImtDXrPn5StW+Bc/vnzaWvinTwgpMS3X6hT+l5vGTK/AR7XzHL + c2kXURMaW4XQq7Xuxa8v7wxkrYlFL8aqx3XT/QEyn/cDqSE6FkImugx8XqwDZvmGGGtyuWXwSW45 + OQLgjnQ6Fx5UiHAgulnogL9WKIMKiOeA58UP2FIhfCgB+UZYsM6zu6RSvcBXw4rIxd+OTra4S3Le + 6ZFVd7SY9vwFvk1GkOfNj3hp5neknFanQ+64jPEmQ50FicuNRDsl4ji3g+0oMA1H8jwi1l3NVi6l + QQUwoK8FxBsqHxlERq+S57YK7mo+WU/RuGLDtDEIWM+g8pTIKFNkeIFGt6x4PcCe79HpfUrGuS8v + EFolvBA/eK+ADrPyACWNY6Q+U9jQ/qrlip7IPvIOCu9u3PJlIGzfJ2JrdVXMehjrEK7GASs3y3Tp + WRMCOHzXG3m+YE8XLzcWuP2sjTihIgAsc14rquLtSo6+Qpp554Ow7LYCp8LnUizf7oTh5fQ0UCkV + a7P98oVXzEeQIVMan+4WqmIOLXwRSPD5ZLtkPg2wzZU7uU1sQul9QCWcvrhGjs5xBhl+PStdzRtP + 1HQ4NcvhvJiK9sh1kuF+7zrjvkzA2mWGbDO4xlhhLrZyPlolsY83CSySd5kURN8uMo/Po8t6ubsA + VojuRPuStlj3/A8ncZ3w17bTZn1/Vx6M84Miu/1pBr1y3AAF8SwFh5Itiq3MFB7qrU/J2fj2xfbN + hhrKrHlDiXixXBYfjA0+7iNDzvU5pVS/Fx38RUeAEvVxp/QtLD08D96VlO/kM9LJ/7KwzvwqEKam + LraPaZjK8fa+BDL34w3KXJ6sbD7jmhy1pqH09Z1Z8Id/fPZ1DJ4Tut2yEg/oCF7buM8vhH98R9cZ + ppiPauiB3/zuSV5kubsYqVNCJiw+5Bw90mbdknQDSnyzAyP9tcZyCEwMJVf/kuD+KOm44xP8fuyY + 3N+PMV6/gGNAeOUT4ojVOk7nwWohMomD3Nc3Mt62L2VQuXxbdGRvJhBKlQuh5KpfLG7eGq/L714B + Jl9scrvwc7x2OowAwzgFsU69S/nffGagXDIvDLytdenmBgGU42pD+rE9FXz3qhbFnZgAmddCoPN0 + ymToMLaPThynuhQOnwBeN2smOpv1xfLQExMmyWMMlF2/UMXXAgUc3Te5HbKwWI1RnGCxkjs56iEp + yM5nFDn5QKQ/cxVsGK4PhRS6ipJYvRZ8EUUyDN+hTnxtnN3tj2+oXPUlr+ENmnaxswwOwdFH+oWh + xnIpq1zh1tomUWVxlH7KI6O8i7OBvF+rGQJlq/w//dsmToHvCsiBHjs/PCThVGzqg52gyLoe+qcn + Fr6b4MbWFVYUUy2EiOQYuCAYAoaPjYZaFnHg+1e8iCYeru7882wWHt9+gU4U3dw5D5QNwkxH6E8v + LSE0M5hPOCVmOV+b9Sv8Uvhxa+Yfn1n/8GWd9Ou//EFVReHhsXIuyJavzrich6D9x0f15j4Ya/+b + WHm0E0gc4xIYiwmBKu96mfi7/p2VZ6jCY1qeiB5yQbOFR18H72Yx0KNsp3iVxHmCOjgFyHy3q7u4 + NHaASC0dy3u8fV+PHELu+cqJ77NdsfRKuCkvV4zIi6GBQbJptZSoY3/kwseqyxZh1kLm2fKYER62 + u/06A8NzWHskgM1rXMXDyCh8IhfEZjrFWOZLAqFhTAEKcaW5ywM8F7DrO1QAbWt6rok25eRvEV52 + /s0fhYMJ49yD6JbMPZiKc5TCJ+/xwVp0o0sZWVTl0U4h8hm9jJfn4siwVaIaM8433PFBdZTwUD+J + s215gwUJ1qAi5wVplfgzVpxslrLrnb1kfivo6/thIbdWNrnzQl0s3ewzoI46E4PY74qVMdUB3qu9 + K2t6ZYuNWwiEO38Neh+pjWDOVFfqoEnRaTqdi4V82PwPP4NuwbxB9j6jYBTFN3LE6jKOxD6IMuIi + gmuWfcfT9b6Ukq8dLsj8HuJinty5hiI1dZIcnx9j2/0W8O3Qk5yqsWi28+OdK396wPxGJ8Bnxe0B + AZMeyQkVu4Ve/iJo87yOzKiFxQ+PNx4+iqJGXnIejOl0OKeQeXY8pqcfiTdTriYwkuBGDMdc6Soe + GgYsi2YgS35M9Hdqbza8TbIaEBRpDTdFzaLs+RYl/Ik3VkiVDbpkg0EL9y11F9Tn0Ma+jl6JbTWs + Oz1ESFhj2fHcjfmKLSrxIh03vCirXQh/fOUG/S448EEBpj0+4fshflExl3W8893qzy8gCDWJOx+0 + mwq7QWwDsX5d9pLUV4VWyVwwWz4alxIpS+CKOQO5n64Yl9DQJ7iFT0pcbzMNbu2ICJ3PO8Bint4A + n90cHraGzhK9CEM65ezGw0ei15gKXQK6oyBYoNSGFlkWqGL605cIlk/rEtSdcjHGJmwXWMvVj5wH + /HPHSU8gqIkFkPtedXf706utEtZIVa4knnEhJlC6xwaGtHEKOqhWrzwFJsciuV4pFWaLhT3JNHK7 + ta2xnbhlUfyFRkF5WjiDnrVDAOnVPJLzWLDNxjJt+acHgnHnu8LxHG7gj59fL0dlpHMrin/xiHT9 + EoElwI0n/62HsnU1Yz3wpgk/Z5r/i49tehcLXLyBBIfWkmJcPOcFHF39js7zeRw3zFFPmaaQDXD7 + iBsKHFmE5yG4Io1vo2atvMSG3qCOQXo1GmPNeG2AhcYHCP1ObUOroCzl90P+Yq4f2uaXX1ldOt0D + lTg+dwab3mmRYo2vMzLfdmawWeBEcEw/GfG39eaucaLpyv754MC9dz1bnTKFNskbnS78XGCY8Ays + eM37h5dsmdIaAuOuEPdUWS5/rhgdcGzKI2fn79OTfdVgubMaUpW1j2ldc6JSdPBIcr3VRxpcugni + k2Xjj+iV8Tantiz/PVcpkI2lzboKmprAoeCdHBvy57eVRTIj7a9rWz7DDnKdlWPwF48nJwn/+Teh + G9yB8IeP/0falbQpyzPdH+RC5hRLBERkSFAccAc0IjggQwLk138X3s/y3X3r7rYxVJ0651SSGjJH + ZDvz9fapL/7lUB/SLdbfjc7H800pYIqeDTlun7tYFC6DDZqEtmS7+FeTaGeAtqV7IMGBfrr5O2wA + tqe+ZhdmrP02V60cncp1zTbx38Sn6GlJumKWf+RorlbxEF7aBp6TJFIhe+1qsSvLo77weeZoecCn + v2WLK1/LCQ49vUWcXoQUzh05kB9fnX74QprdH3PU2M3EBx1tHabNmpnvR2JxqZkDeDzlkCoxErMR + brOm//xe52xZVrc1jxXKT0bFdt/+jfheb0uQZZthsuDz4m+YSHekCPdcADT4908Af+59zbZr69bx + 964MQEzbnhnhd9EPWeL+e99mffOsUVudPRhv0oY5xdlAsseogbbBtmZ+7as+nV9KArt6fSLuNCpx + Xz5PFFxfVXG9ua9rvvtTMMz3pMGQDRGfx7yT0CqTj4uefmSNkWopKpk/st1jJ9RjPXyP8DoTl9nZ + HtezFFugLPqQbK9kyOZ3ixoYUJOyq/skv+fH+r6YP8z1FyA9t+2INm8nwAoqmCVGT19ATyNwWF6u + Ke/p2hrVHx79+JugFJWAVuSSMluU6pqr7M8DtVqHZPN4CV1/1eVUC1/XJzNGZHXiq95rGsoNWG6V + /SBeXTsDzCtFVCWnpuZnQBrSuTKw69Zo6mHxN9CPjwYOPaJ57WsJbEgwkmMt1lY/FpKLMrsFTO+e + WM+d1nmwZpPHQlo+a4quzROk2pNZ8JFaf9xOjQu7a54zMxWunN9eswBL/4JYd/TgM/my46/+EnJy + nW7cx6UA71Z7MruV6H96bJWJR2bvqdyNujoECG67G53kQ2GJZHZPYK6/Jf58KgmNbj8G0K1qnW3Z + PMdze9/m8D0YEzsUVPWnszY94ZaMBeby2Yx//B1eF+iXfgfO5kWfQby+cLLb5pta/PG5z/jeEGuJ + jwm54xvWCWJ0yL9Cx6/5+4gG0u2wuvj34269Py0HVf/jP3J17UxwmiZjueqkaNh82wTkrtsQo1mO + ZMx7S4OberLwV12P2RCYPoZYGx/kmO76eFIOuguLX8T25NR0s601FNlpIfz8pnp83DaSLp/4m/n+ + +V4/G+lYggfpl5AgWqNhyeefP0T8OHTiV5SMoMfvQaC0lUU06+ZLguIjvliyvap83pcrQ/3FX7j0 + JyYuaRSY0HvktPDb4fKoMLTrAZjxbtJ4dBXLAWc+vYiVNGE9k3hfwe1qasQO9prF5cvD1ndYzpk1 + Fjtfetd6gpKc+3g+uZa1+CcmUuasYVaAhnhurM8MG4tbzFzibXB0WqH3MX7hZyal/hju5kb/i9Gw + +HUbLi78Dko7+cMgrnr0dBXfQb7UJgue9WiSZnNGPXcjQrJIyIbuCQrymisQZ6eu4qbytxc9ONx6 + rH7ksObQDoEyfF4Dc03iIxqDkei/72M15xDNHUuOv/dBfN3I/Xl93Uba0covdCUPWj1HgX+Ec+ru + SNR9t52UZPcC7teTQW73TcPH01gE8vOd7ego3NtunsW7gpb1ZZc1bevvEm8o2VwLQt66UE+b6+0I + 4doaiFkkxeIXawk0bvWmEAx5xjPtuPw/b8fOkdD576e/P/30DvP6axKPL9Md0f16MbBurzbdv/4B + 1mVKDPmy5d/4tDfQatQ9YlC78fnHlt4IUFqxjfH3l/GC9g66HooYy0567/iit5Y5qFcqH/YbLven + t4PG5+u86M+OT4rTRtrSfyI+2hy7vuzSFfLj45bYcpTW887dr4A4OaX8jh6Ips/eAC/dlXhSM+xL + x+f6BGhyBWJ8LVg+rzrqP/1/2FmOJb93DYaff2QiUtfDXnisoJjxnuyP/tOfvR1t4X3AGXGOKvcn + c+t6sPQL8PBCx3gyEK9+fiS7lunX+gaSEsFeYiFt0ouMhrz+C2Dpj9JlvWrxGnwKqPTrlbmvedsJ + MmABrMOqxTp+HPjwdwhsqPTzlRxL58ylZp05oNNRJPvsb4O4pYb/+kW0H9zGou19W0Brfks8PV5C + zQKdYCDFLSaul7ysKUCBAuL8OhJvfriWsL+KuV5kl4F5rlDUU3drDWjk04eWr7uIpvc5TNDiBxNf + Gg1/wUcMy3Q4YmdSatHFT9MfuPHJnTshp8qnTvSf/5oHRsTni5zk//yrJX67vvLDC8JntMfim1T+ + z39DP/4fCdah5kcpgX/6ylv842l7/J5+/g6z4GPEksuJB64nMRZI6ZaLPz8xhnLLci4AH9XofUK/ + /Pj1s3qT01xLvSxkQXmssx//0j84kklUl33c769iAWI3SBhtLpd4ils6Q2xUnBHHqPmU1+dAF2LN + wVPrOXxUilZA6BZgcjNOgjUt/Rb1kz9iRt69aQmpMAsgXdmeGBFEaD6sHIp+/vQme/u+LIZ5iYqX + KWPJG29oRhSfQF2lGtk/4zeaBrovIGUPmyWL//f7OerbR0Slxx/l86maDH3hxyz4yz6IJ1NIYdEH + zKVNm/Gxixd9dquIP77HjLt2Kegn0Yio7reXmAvZwYTQCAdmO+993UpFIWn/ny0F0v/eUiAYksb8 + 8OxwwSvcRDM/pUMMbpq1TLSGwtHDFfPPvlGzSx5iuJUhsACNa2vcrw8ebKXdh4rrwynmY58mMK4l + k7arlFnT4KMTOOGUEutFJGv6IngiaPOQ+W8l9CdWxE9dkJUTs/in8vl4TZ4wJmPD/P5rISo5jwAK + RUjIeSNvOznkuab9WceEYSmxM9llLxeEOIrYpT8W1liK2hHW9jLqZDjdu3YdVUe4G1XAXPj71hOq + D5W+vsgG1vdX0o3+YSr06PHmxNs4ef1ljbHSQVi7xH8GQsezU1OhZ6MZ7JZUZjwGbx6hl3EO8It9 + PUQt5WOi/aaIqNCkWTeRMgX4PoczKZb/L6RxdoFQfE3sVEdpzK9kFamHJntR+TVKfPYHGkGsOIz4 + xXnT8a3rO6Daz5alnrfJhO++GfVT3i9DuIttJyqzaUB0vX8pGErFZ6GNKz3qT2d21JOho5e/NoVI + jd7swMQMiecrmuHR/jXE+rtB1t+rawXzQAmx6VmJp8K75aBgv8EwqUHcvnWUow36rLESPixfksde + gtUcAH0JPPAn2lalntzjNdnbt3U3V4Mw/3s/wVxullGnnOqhk8/s3OvHTLyu/wTYahATe2jenZAY + yNG39MbxUD/8jFdSAFBQhqmomFE2wdV7/p6HOHZ2rqU9md56fps+5BAsLYfP9Kzg0SsrlmDRi2f7 + uhyLez/+CI7F2peOykMCcIhGBX/7yphqGIoulYecnR/KaRkIHgtwmk4K1fzCraedZ4J+iIaZpeM3 + qUdFdCIw78KRZA33fDH6mxL9NF0U2r7B5+PYbTHqrdlhofAH2fiW3ULXx+ZD7ub0raUr3J5w6u2U + pcch4OKrfOS68RGAWHKdWPy8s1Kgzd+WHIfx6UsMDW+4v9yIpeFtGU1rrj1kBQ/EjmSvoGEwtyvg + p9ok26NsxPKh8iTIN73FUlGuu953AwfcMH8SR1dpzK63ugV2DWL6jkset19lvOjbgGypep/e8ZRT + f4S7bzm0RC9q9XtvaOArux35665bSzY306z78aCyW1dfLOF8S1ZwPLE/ul5FWTdPTw9rdtqMZGcJ + vj/p4jTrwrCcakvCYz0/PTMHoQwerGDL3eZT07UwFpstuR7Fu0W37WTozPtyYi/5ItcnwKjt3As7 + RcSpZeSiGb3ga5GkFw1fSAs2IpWcAnK3iiwbR2F+w+SddGJ8D4ElqvmW6vflLhowVnd/jt6bp57b + tUc2X23tj4USS3p81jYU5vKBpFejNvA8BCGz0+XUW1IfTP31F+fE/9zNehaPigeby9Mj2f4+WFNn + sxKa/bHA8aovfblMkgjV1jYhrvJhfNy+BhtGPe1pc7RpN/8V41unddCwOCvW2Rgg3YENVi7E8ve2 + JclZbYJSTQPBSUJRc1FcV5GwM+DhvdesKbNdD0jUyuQfHg7TudKX9SS58MisUb5cHbS+RRd2PNhn + JJtls/qXn2VJy1oSj6OnPw84ZJs+n+o5eFwv8C5bRqJBkOs5C9cpgJVyYjBV67jqn08gfosvs5N5 + 9qcqTVxIeBWzzeV47ubCFY76J1+9iX0t2m5Kx+EEbTaz3/NZ04ldPfDFUiKGwbEvVKuXi76skJm3 + azDvHXbMNSEpB4btPUEDoi8A2XRuzGwq1X84l4Om23c1JFb12WXicC6pLu9OEjuU7YPLwf4WKZFg + 7NmuFm9o1nMVA3oEW3b4ChWXn3oyQ7o7XNjxg6eOt529DKaRC7K/oqAWHxOv0Ovez2R/9yI0I0ly + Yfk8clfOKzRH7/0bGr43/qt/n8C7wHTKd+RPuZa++NDJClaMv9jOePz5E1l7HqxHVpHgHK4sZm6m + Uf/9/kVrPet7446G/qwoYX/37tAJL1wrQPTXjhy1/TfmG1qsoB0TgR2W+OTbg5LD5n2tWKDlMprS + rCvhGZxLth0DqeYbJTgBV32HGXudWZMYEONf/u9FVMWtp+oBPIzPjjl7Bogzyld65scbEr7yJhtL + T3BhrWspC98jq3mTdADfK7cxZGzMuNXpKQzqxcFodYky0VjvTnDd797EpdLNF73PuoHHp3mw/fbj + deL+KEq6kFQDHZPDlD1FpT2hunVnsqwfmsXj6Op/bimSEHcXJPe7g6ZT/K6J+XzXPrWDjYRk8jXJ + pbm41vReJ41ufZ2MJhifuFSOl5M+5WPMckdFnBnsUOhfY3ugetMFnbjiSQBo5Z3JZSesOdf4pOhF + UJVkLyIzk7s9yiEckM52gq36c1WVJ31+pRb5S69tJkxN3cJ5Lf+x4/FYol/90EtFjcm1dl1fss1T + oWXzKWdJtD9wUX1xG1avqCOhO2o+P8pBC6H4mdh2VogvfdBBg6t29Jh3HJbBCUSa0SusbLb/fAx/ + SIrQQfu9a5HzM3X4DMLpqf/5ZyCbeVUjfujGQF2+H7mtt1Y2Gg/xpP/ie+O+9pYQRisASQ/75dST + xOe3zgt4re0bMd+f3Jdhii762HiEhEs9nbMgOuk7tMHsKH8kPk/s0upbZ9Uww3va9fSrx61THhlO + 1s942pqyC/i0Tug2oTzj34uXot/3PW09txYedx0AgzkT82CL6OWnmwZWr2NHwqVeTG9jvWyHX3dk + 8xUqxK115OnO+sowshW5G6+VL0FxCk7E87xHRv/OfgAPOVOpHIRRN06FFEHk1QnVn+7G5zQKRtCV + FV/w4JPN5Wuj6LV7FrEyb/Vs/rwjG3bKR6H6/so6ljdMgNx+eFjgtZVRdB5StOAHsdIprCndwRus + +nPBY19G8TioIoWXOVfMvYtbi64mZOp9Fx6YdSJZJufu4YkWvsJMnH8sLuxeT/0bfjWWHc2kW+pZ + A8mqe7NQW+OOb1d/DcjeXqerSrr639Xpa8DCp4lz2u2t6XBoC1jyg3b9t0aNGovlL/8INvHMJy/v + MFy1yCM3D5f+/MlbCofXs2D+ko/feBtXiDSnljiJdfd5dhdWsHWgYbdxkOPpAOVb27/tE/tTroY1 + lbF90rtnemekr5nP347Vw0WK7iSQQ96N5j0eQXOf54Wv7GvJU3UM59J22J/1TtCw4C98pnfHAkdF + aKTDe4a9r3ssSvUvH9W/StO7Fbph/eq+rd71S1fTQmHGs56EHRvDOgDJ/15ZfCJo2eJbRXCI2EwT + J0E+Q8evC9fqeWUHK9shybytBdjvPQtrNnl2M7QMw6sNBxY+3Yc/GWtygnScd3RdSGY8pqtDAYpI + LLLtzHNGX3f7CPsiLfFY8LrjUrqVACG6Jv4Sfwu/LeAtqgEJn+IRiaN7PaLhu7ozE2wnHvHz0MPC + 78lFvFSc56veRX+xNbK91YfdHCErhSbmNyqs6F83FnVqoBKdvmSf1iieh/sdwH75HdvoeR/3sW5F + ehPBkYUHDVnTeAxatNR/tr04djdK19sTnqJ0oF2R6YgXqSqo1+p9ZZ70FDOOgcyw8BXmWMqeiyse + Bf/eD1nJk9U/GbRoGysqu75XDzStBPkIftacWPFK9jU3CJtR+f7TqRZtThm/vLQnlHUjkUPzlhG9 + uOUbZv3+IW6GSTcWSibAR9Vksrvmp3q+YVVBCS9jdg7O1JqE4TqDn7Un5kbjLpYqU2rQ7KtHXHpP + u5OX54dx7jys/O37br54pIGrLAlYvXxeWfFxaIK0KNqzbXuua6rvi0IbG5eww2v19efChSNKV5cR + ixd+icfzLVrpfsxUdr0vcwhcNS0hNU2VWeNJ8KeYGJqe/dErnuXPBTERFU/YeJuW5I17RnIs1DY6 + UfXBLLxsWRjv46hj4bRmByIMfueqxxLuQyiQcK7W8ZTLy8Xuq9PIjopoWvM6k6jeiO8LlbV3F/fo + fZ6BH3c925bP0B9X19cRdWl8Jhtwt76sSlmO2jivyZnf7W5cBYmkQYiGf3pnVq3QQ+07bukPD4fc + ClsU9Zcz252sNhskoXv+00+b3YrH3fwdJfQwXju2KdsNGht/J6FEOqfMoatLPZrfjffTAyxQ2dua + cln1NKbeNoSE0qeb4+vNgb5JPayJ+hpNwnAf0cK32S5/n/mSLxFofpbj14dP1txdBucXP1R8+GbX + JUoqaAsfYKFrNfGsaGmAfvxxp+PUb3ie97DkO/3xh2kodRdS8qrY7ugOGV8nWv7jzyyAVZuNF+vU + ou4qrtlGOPrZfKxLU++u8prtl3onPUXjiX74tb+ivhu1uafa6EtXLJx8qIfBDFf6TpwnvDa9kyV6 + 7+QN28NfvdQ/8Gm/3rTLFpw1sTfIjoX3EDv6Sdiv8fRa7X0Zf7YAWx6VpLjau2xYu0dH//1+4KgZ + Gkx4jZC83yYxDtxFfBbDSBstFchG7sSuT86gwd06xxiRdI/6i3VqUBPsXsSwzTmeRmfE+r5RMxKM + r60/HaB5ouKWT+zww4OBPiJY7zVGAmQNWf98747oX30QWJiJphMH+qTaPtaXeJwP9ijpxt9lQyfD + vaHJepkp7LvTRLwhPcXT25BneFOS4EEe25h2mzqCc7nsVNkYZcy7uBFg1WxnWmX5ho/V6uUBviYU + a57M/9UHkO/Gl2XBLkPtdfd2dHt9FIgX3l7dTKG09bVqUWamYh/Pc00oGk7UxOsvMuJhv/smoBfy + l2yu7TIoYIkfyUAiCYJ2rpk+niVUKiim6Menle8kwU1WGXFJlVus42sbxGcQMH/3jKzFHzmBv3n4 + ZLezSMxXZOv86gVePe0qm/4uZQKH8rQhV3V95iLe1CMs+UrOq2dVz3Gfashw72fml3qUCboiGTrV + lIyZh87P+AuKI6DgaZBbbbR1751iE202Q0HX5vTtWNWOFWKtlf7zb+ZW1gUUW3lHNQ7vbhZK6sI1 + Dka6ek4nf3Z4p8Du4A5UOgkan/6SXQ7p14mJdz5ni8XvSmi1VW3miRG2htPTo3Dp/eUUL2q7CUxj + hnj+tGT7pdiaiq7C8JBvKtmgB8u61fbeIyFdWZhbsZe1pvqoIHSK+be+3T/8m+6v9IdfGZUAjZrH + LjkW6FnJKLSfQG/F7kBVPHX1PJlqjgaVycysurc1NlIIgDZCwZyp/FqTZlcXfSDymdkL3+Mdlx2U + iX7N8Hk0fPmqCQnYn89mid8wk/f1BYORKh3J+GGOuTM7FGEwZnLYHTa15Fc3AawTYVTk92c9q9SK + oLw9eraVdjxjlWQDSEN+IpkXrNB0kSrQS8kO2Km9rzp21SDRhtDENJWeYjx19mcZ7etQvE5OkcUK + hhqA2duwgFx8f/4ybwU3GTHcvqHj088/mRviEX+pr7M1pO8f3yW37aetR1lyZ4iuf18SHF8sGzZ/ + qzes9wojm+X5Z89qG72Ni5pWh67LWFPdLqBpXkvFT4C6f3zuUSU285LC6iSV+kfYYO1CPOl5jn94 + hcpD4TKcozQbB1Xvf/nL9nTbdCOkjvRPHxi2eYzHyMQ5kt/9H7O9gvGpT8wIYozDn37is/xKEtjt + c5WK8XO2ZvtaHDWnyu7MzTDrWCtMT51v/ez3/N3i36Zw+FNadrf7dze48XjS2WnW2Y5qMh+DsWzA + 6lBFbPcWcKHxiQDPS96SoDiYXCjoO4fubChkK6abTpBkJsCTun8sea7fcf8eYhuWOzeZP7fAf36E + /jV2h5+fU083gAjaAm/Z/vLZxvKtKirwKv/JtoWp1U3v2BRtbtnh51d04/e7NqFA3Z34srLjs+Q8 + MKijUrHUPO066T6vFSCbQ0Q/ukg6Wge9gTpWz7RV7nPGZ3F71OkfeHjcpHXHYUpOEOvngG3v+jUb + W/0w6kv808tuhy1OI3tGkqwTEqZXL573ThBoJ+/wx+5Po677+Bh6SF39+Xj1SvbdFDArR2QTR1Sc + D2o9gOmOcLbqNxVXz+VUtLk5gq4Ap8P6bVtz2Nn9z78l4c2qLW5ogwZqvxFx3XnLKcb1uvrn/+w9 + NPEB0WGF+qi/krS4ldmPryL1zRNmvuJFDx8+HuyUYMewKbpZ+4tnUtshCbU17eZgs7e1TDMIS+/O + 7LM/8N4Q6mXAbnGy8X/xjtLcNZnxPfSWcC+VHOlBg4h50kjdXytLgrHMc3I73LRsPpc+/PKd7abc + i7k4eh5YQY1IaL0VxPsjvYD6KBHb9vqc8fe4u8D3yc4YHb/LLWMjEsDepjFz4LWzpPOKu2h78y9s + h9W99dM76PI9YZIi3+ONtqNvTRvwDfODcfWn1wUcpIXSTN8LPv2Lj1f10OjsPtq4+jIP0JZmnJn5 + Pkb/6lnFL8bSj7hblEJjQ/AQKPmrtDP/jo4SIPvPdhb972XDzXlQiLVy+0/fD53l5uAPsknlSHj7 + U9g/FBhCA7Od0OFaZpYuALuXd8rGm4vEzv5UiGpaxrziVsbTSbVLeIWlze7SadtNi1+AmpK1ONIO + DirXnWvCz1+wu2HfTdE3FKAd9D+CN4+NNW6M/g356tYRElRGLBmfzRFdz63DDCWwkEy0ksLle8Fs + n9ZZ9tNf6JH2EcmLg4mmOGIr2L+dEwvn6p41O3oF+Pkdezu2YhGu5huINhq/fgof0z+DKlXXBOQc + nLE1CckZ4MRHTLbnO/PfVVVewBTyKyPr4l33su+1P33EfFn5IIqM7glLvJGr0NF6JnNSwuyjI26X + +B3k+CjoC34seuXgz5MamD9/niU3rYm5dvZ6UM5iTnZdF3cLv8TaEq8ky4JbPamsKWBXsAvVn+LM + eUQPM4jkvSPuY6ysfiNG9j/8wlF1triYGSfdCx93timtIJNAyJ8/voDVR2/FgiwZ80//MVssjFjS + czVA68cZ/dN39Of3Ln4MhsYVEb9dTVtf9CGmOdLicRS0N+z3D4GR8eZydr11DXwM88I87MgZ36X1 + BdDVRiw85WHdL/wfxrVgkmRKum6Opoupywdx+r2fmHdN1cLiz+Kff9Fj9nbh3iYDncv+nk2k+6Sg + 52ZFCK7VbJLjowSeKl7ZPvx7xuxqPyRY+C3x66+LJEFwNVjJ9xuxI0jicd+tUrTqVwUxt2sZdY0c + u1CsbJHdkmbVUb5ZrRBo5EX2/Ea40B7jFlbuKSX5VZXq6faZc33hJ3Tl2H03mzdZgrOyb9mVajLq + n28SIbu6PFko5ZbPlv6Nxj1zh/XFX5vmZ6+hpZ6TvLXmeoDeTlFtRAfi//oph0Ob//Qa1ckxiAeb + OA5cW6XGs7bfx/PSv9H3w7xj4VWUOb9dPRst/jYLybrwf/4F+vkDlrZtu16+XG10GLc3qrpEjceL + ygJ18QMXP/eNZoaGp2qVIyGhPHqZKIT7Eoxtg/FP300jP6d6QQdMDmW74WJG8re2+F/4vPMDxF02 + uGr5vutLSzhHP76m7y6ZR5wjf3TzV7snEBz/drT8Kptafh6PDViX75Ylf/ug5lp5dVGRaTuqtgSj + Jf96PaxvFsM5dmvxNIyODtHVXvKzRjPyEvjXL9xh9WvNuz/2hOHRxOS01GuJzEkF4Xg9EdtsJH/K + bMOFZzfssHjXr/F8uGktiPfrner58RNPoby6gJfeRxIcDq41HkQ5By9XHbLdRJElnjBOwHZJynZW + KHaUzlr/41sUqpXQTdltD6AT50CwEj+y6VU+CnDY80oMovh8ekyohGQXZCRWJite9K4Li7771w9e + +g0J+BY8qBAaZjZbysdAk3fRialJmU/1fMKQBmNGzhfHruevdk1QXxwMYl+iZRBszhIwheLKLF86 + 83/9VDNx7+xAQrnmr9w1wPnbb1jUvuJ44QMRLPqdONllsKatXLVq9NXWzHQfbTZfGknQf/F4NbIS + zVXVXH79UDyA5tcL/mu6aeQ9FfLNJa4k7iQ/v4GQ8/xXz4fXzgaSrH/4Wsff+ZbkaCyshe8YjE87 + zwNY/CEsb1ljfY12W8J+/BA8EsX/9WtAcz9X519/ehp8fgIsXNZYcG896p/bydTB/UbsD2LJn+vH + IPy+Px2ZqtWjw9L8nx9UaKc0m3/9Hv7ld/bDi/4gygWKyCSS7VHPuzk08BNedzrTLkltxEN+0gA9 + rYCFJf6LJ93jrfr/2VIg/+8tBSs/Uxme3kI8dqnbalB/3zQ+FvuYTyHG8NoMLsPYHKz5GohHPba4 + iFfIEev5+bhLcP/aJrOlpPBnL0wbCFEysZApTiw627eLvCnyyemiXWvJprcE+Z82Zrh6HrKxOZe2 + ruzcfpmF5GfjSulzKF8XgvXUrf2xtZoS0GdzITcmKz4fsuECJbF37Dg8TV8A0Tb0O71s2H6TkYxd + Q1cCP28icn/iFer7sZkhoGlBY0U41LwqalPHuSER/H5PdXd7PTA8fUen3Cre9Thrm5UeqFVF686h + yy4qMwJl1kSWNNyL+1nbrwA7ESdmf6oQO4tGAe/1+U5X6iwirtkfAV7K+UiKoYw7YVymWmu2umV/ + xC1jerwJGGTDKMje4aSey+3dADD5nYRwan2697UCqiN8WOKv626+SqKra6+vz04sR4j3dmijSLxd + Cfm263qUzdrR7zQw2F+pPX2Km+yCyhT79NnaWSd/dNvTIakrKjiF4PPbYXMBbzr6ZB/cDlzaMvUJ + h8smJ3iHOzS4Mz6hh/+8ECzScyYvx53g/sUWceWpr8d+LEddKsaYJKtXiITuZlR6jA+cpvHtbvVo + rqmuzA1nt8FPfKF3SkVXqmrGwqq8+4I8+Kb+6J2U6urzm/H2Gowg7d0Ds6zcyeTaqwMQJs0k+M+N + asna3Dy409OG/A3Y6aTSLhR4ZP2VnbbeKebX0BUAO6nA9p/XGcnvt78C3Jcawap0yXqOWhe8yDPZ + aQ6go8ZRabW74GyZVUaDNe2yd6BL6zFjp0+kxTy/7AEg9iuyxG8mSG1L0dfdIeb5e92n18efC37e + Rsx1XpYvCLp30fV7Rol3mu61VM33CPx8PLAk2Nq1fJGMp16+AoyFu3OzptUz8uBdnK8kSbJPJp9L + twLiWhu2U5DRCWrapYAvisLux1RDs4/TER4T3Ek4JR/O28tyU6o53dlfJznWOJP9CpBzOxBbNP74 + 5MvOCu4raUv2ZDNl/Lbs0g/C+TbwS9Mu8XY14PC4VVSVvjd/7DNj1MXr6JDE161YbvvnrItDuWe3 + uU5i6XLPNWgu4kSIYyv+4EmOAMt6YP2gbPz57J4oaOS7ZUXWk3o5oRZANfQfFp56M5O8IC01aLqa + 7PevsZ4ClQTwGv4iWjXBA4l2v31D48uUhcQxrFFz6ido7bQncefiTuhY2UDglin5K4J/+eD93j8J + Ne0bz1t2q/6tV/jpbT6iue516Zle6EffbDLpfrtIeiOLKm7Yy/el3Z9maDLRcvbveaI1WcGbDimx + LRrHc3r4k2DBJ0JcTa0nt8AlgOp/mFvWbib/9a0DjfNhxM3/drWcd1+AqsZf4h2362zyHo4G33i3 + Ytgu/U6mu7CAu4AdQrIV1Hx6OAZ459lmbk3ceAjqnQuq2yiUriOJs3gqTf2o1COx+JEhLqB3q7+O + W58kkb/N+KuuGwTupmDuoX51UqrpLWjn/Y5ZqDzUQr9tZvCP5gHPY2LFQsfcJ1Q7WpG/+v203pc7 + rKBmJ4Ekd/+DxvZanoDUtcvCZK59uczNXi/TwGexQEc0Qmk7eoTVkLhLvk8LnsNrOBMSM8zieWvf + Kq3cSy7Zc5R08hQ6GAWhkhJsF37WD3kDcPDjjIVf7+3PNj0kuoTb45Lv72yuimuhR2KdYP5MqD8b + H+UNMhgNO1Z9GUv2VT3CXX07y/NZ/jjk5UqrAniwH55LT/86Klq02bM/pjkdf+xaAe5xYRB7H5xq + YY48B7Ru42NeSH082ZfhCa+N7uFVrU0Zj3PD1MPySPGqeh5ioTEMB+obnclevN2QfPaaErRy77H0 + sl+j74okGOQpakhq//1Z0/odJfrxWHcEbwU/Hidls+RnV7BwOu0yQbq0GlJVZC73WJj1KBmVpMtS + 07CbvWPdSIsHBg81LosfVV+zP7MNQMJphHlid/VsW7cEms2OMvc2OGiyh7CH+u7M+KnlRd399Z4B + R9P6MEJazZ/d+xHr5IgsrLbZNZNpHibgZaZFeR4EPzx1oZlfGsMjFnzOX+8n+njniuGjM3SzM94a + EIPZItYh+KJxfrU2hOM4M7MJNkg+i2Wly11aE3Ma644/eAvwe993o79yfuJlpD8fO4u4+7OFJHxE + F3g4eKkn/dmanPRtQ9X0LYm/AuVzZGS9Lv55Dl1d35jL4pEq4JWNw27alPr88+m9Xzwz3Hu8Gztm + PPXH5X0jRZyHtXzibgD1FwQSe5cmnsh3p8BDDgp2f73X/kRWRPitJ0nw9OyEXz2ItXjFYlv6+NMa + KYleiyeNFGnCeNPdmifCj0ZlyZbUlnxnZgLf8KrhVVVGSNr9zSbcG9gwvMTPqEtPDF4575h1rL6o + 64blot93XTJ7H50tLp/ZEQ7vbpk1R0c0u/vUhfqOOdbfFxtJPzwGrjbkF79SsbmU+j+8kbK+no+3 + k6u/ODkxN8l2cRseEAYdo5a41rRB0iHJTdBItyXW3miy+VycRl3kFWGnu51wLq0/ni5Z84GF97KO + pzWKTvp9tXLouvRW8WxbU66r33SFqVJIVr9+2VR75YNHzhas+WDGQwDSLY0pNZK2m11Xs1FQmBlx + y0/DWWF7KajxCCQkbrngH9Z+9QzzVx8iqTCLFlQ3lajSZV/ObugbAWnqLeaSPaLPRXb73/dndh3c + EFdM9gSk+/k/PP40zTPSxeboESsPgk60N68GBGhMEt6L2uLnu5uAVvoe1UPB6CaiE4okzbvhSnna + qAevd1BQj3eyg/XGElckwoByK2bus9vH4yoMUr1KnBe+5fzsi2syRlDjN8Wrk0LrUS+frt58XjK7 + Jd8Y8eT5sPUydTyq8M5H/CqXoy5n7uPHBzlNXzrVNHKzCN5Qr+5u6HFU630+YiUKX918noUGHls4 + keISUc5TfVPontcY5N5c7mhaqZGjy1Lb4NXDG9Gw1sYjyOfxQZXT+d2N0sWTQBUeJos7h8b8t34f + W3wwq4LBYsrmk0P9lCS24HHN/wbPQy/9c6Da5pshnqhfA3w9OpMr+hpcZu6rhXstWcus1po3rNyk + +iv4cxk5OJnPS8ds4cePkjnu6n/PJ93NM7H4KfJ5etzkqBSlGOtqtbfG9tqc4PsnrtjxtQz+2d9x + i54RM7Byip2MSV9mQ7XCHQu/gZMJk7Lpf/yI7R159Efdf2Lt8XH+6PqtFWj2gmMJymbucaErl44m + yt8FNJvbxF6Va59W8zWC41AP9KjCy+fK5lOg8oUxCQtco/HblR68hc+duMt5azlrHk/QsdouFy9q + Fq3v9zfS7uqOFHEx8Pni6QasjE5l3vVv3bHz3U3Br8ozXqbIZ5y64fPHJ4lVSEHcy4lvw0fadcw6 + R14sTzJ1Qc7MkpnQb7lkJ1MKR36YFr0zZfRIwdX0Jxrplz4Ufw4hc4GYyZqdIltaPn/7hoeMC+ae + YicW5pdnQMlWmKb2n27ROIUL8ufmwv7O8OhmT04r0NvbxHaoNiyeXzYAkubeqK5p+0x6ZHcb6gIm + 8qc+9zHv6csEom72JGYR6fipaE4gd+Xzn57gj+UQ5nP7BFYIqVjzqXI8QHl8plp8XtXLlr33Pzwl + jqNknO7CHOHckwkxDbmbA5IqEErmROy/Xul63Q9ciE8bGStrHVtzGokzaGOHGX4Ekz87mToDrLI3 + VvevqGvNdlzpODclli58mxWJGYAA5Yad0FjEk15Hpl7avUdlfbOJx3Xdl/C+bROSZBunEzi0R3QM + Hi+2bzM5o1GfCXDw1ISlp2ndDVsaClDxd0/C6vSspwATDNHpe2CpfYN62hyeK/1eU5O4SB5i3jT9 + ET7drmH4ciTWiFx/RCvjq1KBPwHNp+mUwzN6rkkRzQNnC35p/jU9LHhgIvlXv/ClFLEWn4uuPc/Q + AnpM15+e9qeNPtjISxUTf5W9VrPCqi4QkQ1mlnfcoYXPjVplXipmCfMhnm+1XoBuZz2z5CSq558+ + Iorqkr00qB2/b70Kgq97J6SSVhn/u5qOpigmZ5YxvuPxazQe8qTWZzguqcWvVSn9+AwzW+ERT9F6 + t0Jl+14sddnw+dk33tBct5zYuBGzBhW+AN5k7vFqXgkdFw7vER49zrCqiVo3Byg2QGJJwshf+tfN + iXK+QCAcaxaqZcPf23Rq9fDstixe9N5cC9cKjrtHwzBUl272wmOjLf4BcfUDtfoZeY5ejs8T5rkX + xMK3LyP4Jp81numq6ubowiX0iZYtkGsUcukwxCs9uvuEqsaWZNLduowQiiMjyVF91f243CLmf+YT + IR5Ws/kVXBUgf7VJwgE7NWs3dg+RNl2ZO+pdx59BXQBJfJPt9VeW8Zfa9ZrymSdC2tU6nnc7dQU4 + d2Vm7aqdPy58G2lp5zL3T/zwvruVTwQ79IdZbv5l88K/1Yh1McFxMaA5zk6JLh7nPVaWeJucFJvw + eYlf/HXjyRqW+FSX/KU8d5dbpJ7vHJD8SMk+Z0I37BwnQJ/u3BIc0DCbgieJADhqyN7YYP41VwMG + UZkxC1/my5qd7EbRwz+d2P2Gc3+ULpWmS8/xRorXcUJzsSnKn95iOKOEz1Y/YXi7nxOxngm1mqne + jLDEE1Y3V4y4ShmFptpKxLP//vyxs8sGPS59ylJrA9ZIhccRwtId6PymZc3PdyPRF/7NFvy2phCR + HPzDMughPhf1qAfBEard+0FV9S/N6F9bRKjGwkiS+35Xy7FTGvrC70gaDWtrtozJgeN1apn9N6r+ + nMFZ0F8DwVRxN09rvtPLDB8i1yQsPCueN83Yo8ey5d9Vw6FjIrxniIuHyExuVKj/msZJF81oy+zz + 89r90wvxl2uYk/nr81Hawi8f2D7ezzHdrKJej7XDirgR2SJBm/0WyF9nMdzSYz1Oyp4iXftyYsn5 + ZC1+hIdUN5HIEl/1ZBwCDUnP6krIDYPV3VmVg3RrziTMEjMb+6wU9MDyUuI+2Z53L6V7IzAff2TZ + MtVNG31rgM6+IzOXesufoVXq97o3mcsebUfJCT2h2VxHFia0qicjegr6orfxwDSnHufnY6WfyLRm + luQcLM72Wwo/vNkf+DETSbMbQWdoJqQz14jf07ZErw1zSdgJLz5KF1MC8di65LS8z3GOTBsel9OV + uKsvjf9bL32nUIG64DPNZgKKtO+FWB8zRII81LYe3x4Ks2xpZ42rOsgBO4lAQv29r+ezm/fw0xP7 + brjw2bbUHJ5obTOM7SEefBmvYMFrTK8VjefgOWuAP94yeKeufn6ZAy8lPJDjmFr1bIBSQaWseho3 + KY5nX0lb0G2//cfXuDZ+QF/wnbif6z57/fjXrx6ExDUyya+PPWiShZmVu4EvhRB7UP2938SO7Es2 + DruvieJbrWBhHwj1+yrpi944rBgpHR3942sLX6frG86XO3g+OUTa44wVlQycn1w3AG+bbIjd9Chm + U/B2QVEMzlwz23D5e3rmEK8fOrNe7dDNu91B0TFoOtl7apQJX9O46B/yeTBcVZPfevL81NXCVdk+ + ymaLn7iLgTSPLYk171DLnRUAyF7zRxY8joVZ2wAI07zB+st+ZbNxjJ76909eMdepTcSvYanAzx86 + 7YSTxcXmvdJf+utAropqxHOi6AlUO6lmxGiu8Wx1k6PXp5yzq755ZIs/BUgNFXnhK6U/ormj8Ck/ + LQnh4sXsnplvWGUdYu5ax75k9VOgv58kpz8/Y+SHKkKPbHWjyvO79yXSxm9dgNak9BLQ+Of3osd2 + dWLWCs//5UNkWwHmkhl1fe+4Ehwe1h2v2vHIZ1c4ulDvA/qPT9PjDTBIezPC3H/vajbeXwJSv9Wa + Nt29jWd7OBy1JtiObPFvu59fDgvfZKGYNlZ3kcoWlHkWSCjYjTUu/i9I3/FC58fFiOW/S2uCX6Un + yq3U8V+rp4LhkHUFceuD2439tpyhFJ8Hlqw+2JJfqtX+y68wF+p4RHtfg+Pf5kv2nj4ilurfErxt + umF202dxr45+Cnf1ZLPjm5Yd762X8fOnaLGZO0v6u1xyqHjRMS94Fda0UkcP0OF7IaeTJ/t8xu8E + wlc10HVB/+LhV4+01xQQEx1fPius9vLz96hyYx+f//wwr2wdgv1jkElXX3fB18srW/hHvPCjApXE + 2THXeVQ1z1aPBi31nyTL3w/BkxzRkq9YP0gl/1ef9PuNMuvVD5yfPbeAYG3UBFMhjpn4oQJa9Ms/ + fTGbbaTAE4jDsJH71jhre0A//2z/3Vz4KKy8HD2M/kz290zoWEK+Hlr4AwtTu+pms00UIHW2Y7go + om7khzaCUJwZI/h446Lr4hzgqJYLX7Q7eal3KEyrlsq6taknv1p6Y4t/ncznDk16OBrwqoaIKju5 + qkfp0ipIZ+rM9vL65s/3pOjhk8pvEoZzGfMiMbG++D/EVBW7lorr5fnrB9BVrRz8cU2eFLDjzVjb + i3/xKHXmjB7Q30nx54zZfKS5A0E935f1LrKxY00DC98g7uG+tYTvxfXQO1n2+EMl1YPdh294ZFJC + LAd/4p//C09pvcNKsHvy+Sr92dpDLkoWpk7FhxUePT2I24KF9+Ui/vfLF6CqnWZ5333MT24Z6ejj + X7GQXJT6n18gZ8eKrl/V6r98a6qdxBa+Fc+b7yiA6pYynYW8RnPt3Vv0y5e9sLnV/OFWKxB1LWBh + kJfxtIF+BWVahFTF64PPi6HFSI6amiRLfR/n5xdAEo2MWYnh+9ImjnpU456RMBwNS/67th6IPMXM + PcrbWE60hwvq2jKoop9xNyx8X138RYLTC+nGYTZAh/BWkDAqDS4t/S7QyoNP+cHdx+O3NwKAZnoy + K6Vdxn78GY6oxKuTRnnPyk2CXjuyJ/t0c7IWfpfqsctnqnR3L57Mb4iBcNVne2m4ddP6NZ7+xddS + z7J50yj0Xz3ah9/JZ1/DfoOyMzq2p39yXQpNVfwXPz9/3dlOVBeH2Wfmj1/9XSoT5IfxJvibHLtx + VfUJKgl2mft/pH1Lr7M8l+W8fkXpm0afwi3Yrhm3AOFic0kIkVotSAgJJCHcDFjq/94i51UPWjWr + 8XOecxLbe+211t7e7m6OO7WjcoUr/yGx+/5UTN7TDZCz3CT+eZ0a5b9ICiv5vcO1n/BgMfNwhFGj + 9vQiHeSO1c+u/OULiiN7YIO+fR1/9RZKrhrKWZf2G/CrPxhluQP9WKjOH95K10fjTuJ5Lblmnoul + 0XfAJJvdGz5T4zVKI+nc94qvEMMWUEtCJfv5y6A+bbYUv99hNyblSdkBscrwAnBdTdudV+4quZBw + 2h7aeFGi9P2r34wc7nkwaqcAwlpJEMHq0rmLdQshkk/5YWRfDv/pc9Sop4msfqG+1O55+el5LOsq + dN9P+579/Cuy+nku+7x7DYrOUhBLDpX1YWV2hX4WNURnSZCXv/X1/OlC04C82MRvnRoIcpBRP1E0 + dzmU0REF9BGNu5Wfi6d7WSBiTdtxt/oBo2VdpB9fwume6Do7HtaWmVOpkRSFWBfIkb2R28vRyu9H + wCrBDX7+CPU74a0vqY8y+DHQE6O13kjT+rH6951L/Kox4nlTpzaIPPYhumaasfiBhoKcrrTo5bSL + 9dVfh+jxMW4U8y0H2GNpuT98tx87O+fAwZXkEuCYGC486T286xBKltYR/ZK47ogRO6Im5Llxd52P + gL3lioOP0LtQ3Qw+3c+fAiu+ELL6j90w7T34rIzVT79cq0H9DApY/WxysP0pn7jIOUKghvE6VfKk + c1/Vxn/1v9SzDCZcm40Bfv4ADrhRX8zrRQDebqnJyh/0P392rSf/4Vcj6ZWHSHoxyOVQTXE/Cd8n + 9Hw5G7/aMDJ2KpUnKu9vlx7kOdOX/Thf0epvjIwbJzbBe6/AX3308g4Tfdru+hqs/hO1k60Zixeo + HiG4Ho7E2HIFmC3LPMo73RGJtlH2nbh+XznsQEn014jdiYudKwyOXUiM1d+Y5EVvUePyI73kJwYG + /TRc4a9e4LflW58g369+03kYd5tdrjcs1DBa+flf/A0ErVNIg/lG9S+HAbddW97K0gioQ8LCnX/1 + NnTsRuqXsI5nLX7h/9HDB9J/31JwoPeJHqZ3p7N9XUIknaeAGOwex8uZxBsIobIbH3KkMF4/sCdK + B7Il1vHuMtZd3xmycWvR/en9yAee1BBVSBiI8TpoMeenhxK+87BaS59Xnd8xdoVhOhVUlfd2LjYM + QFDKRkg8cWncOb9uJHAYk2Vcoqx2R9NHGTgXR4EEDqbdpJ5uLUzCFFMnij9gloa7B09ItyjZ3oZ4 + SU8TRtvLjRJ9bB7dnJd7De2vgkss4KSV0BztFn10D9NwKjEYQRMm6Jps3sT/+mL81Htug4RIRhgm + UQW4TpgMKBxVQOPkxcevpbVb+M03D2KCacOW+3JyoIpzDQcd6HOmDk0A2UOuiJq+ape7TxsTTodZ + odeXZrpLrkoLfE9zg8EDg7g9CJ8J8PC1DjrkrGqS/E6G5nhL6KmCS872dQPRronWQfqO3M3wcp7A + MCsD9UVPZcKYvRKk1v2XnsBiukJcxRkMymc6dvbu3gkG0DH6ADZRW6HRekvioSFLd3dESftnvETB + N4D3CyiJLxZhzpfn/Qj9qYHEDyTQsbB5vmEjvnKqt/nBHXNwvULJhCPBp/QNpkOvbBBza0jxXRNj + VkEQwfzwEOlJCnEu1ha7IiQ1JjmDvdpx7Xf7hqc23BNTDAUwnYDWQ+66P9DQ51WwJNYDIlapD2Kn + r7cujjy3wO/YVySYY78TM7yDQPWuT3pvcBVPyEtqKJmuh2Gug3yZRVWAcbHQEQ1cyeooSo/QJvOe + Ri2XrIPG5xpSsuOpMsd+teyii4Gu58Wm2SY5seHTtjJASqqQ0HieAWcldg+l/anFgmmLeVk8Pxx8 + b0RrlLkZ5suLyibqpBdP1FtYV+IxvCnw69pbehs+TcyMJOthweMNwVBnbOrNqw1043IkNzFMgYid + 6Qj5sxXR/ffh6Qtg4RWNSTnT9NC4MVtebgE2heNQbXd/usNl38iQ8CWh2fr32Xa7T6DME5PoL9p0 + vTEvDvjFb3zv3oBVu8GBj+jLjXwFo5ht6PcItvs3HWtvd6vGJlhKBBYUkvX3xex+sBfEn/cRPY6P + KhbeWh3BtAvvRDnQTzecOa8A1ue5HUVy1F2+VqcnEoTiQQ8tfQDWMLABJ417UMVRRZf1ldPI+0c5 + kvw+Vzr7NIxDGa7GsW6tKBcuryuG3S4/U2s7a/rymi0BXMHXJqfTW835SpiOsNK3FVFutx0bPVwW + cKduxHE5m0YlBFqsIbAcKDHKpwSGMos5dAshxRtyfLn982S06DiZd2rfqsQVcB+NoAlskXroG+a0 + Aa8N+tJyTwr1JFeT3BUOxHq6IbdT5FWMiaiGtLpn1AqiOOenU+KAogDn9XyaOmfMiw3rt5wQDG8G + EL53ZYGs0h90XzfMnWZ0XED3uYrrW/BAZ0eMZegYiCf7JXu5S5Q/st95pUYSbqpx0TQNcb3cESda + CFh2UWii0FSu5KhNNRurpOph+em6dVDlM+feu9hBPWca9IdvHITLEzlQvuPdBkJ9kt9yAF8P+U7u + 8c7KuWOTvuEvHuO8wDmj9riB5ycRqbabw47vH10Nv9cYUedsbHMWvI4F6j6FSLA55N3v/Mpt9/VI + 9qJtt0zS/Q0rIPtExdacs6GFLby8Nh71XewA5u9yCfbeBowb4bKel0NbQs2OfKpOw/rwwMd9wvgO + BoLrTOqWt9ZH0FDwlmqb4FKJvNc4f5+fxLtPPm8VroDPhXtRq8mSikvLjwI42zvQnEtxNwZyuYHY + 8EpcykWii9h6YhTCRCMKzm19hpf7BDM/m8bd9O7c5b1REpQ99zEWySXTuV43NTibqU/Ol1sOhG5e + pJ1pKQvNIpPkk38HJWAelYkhvfb6HC5uA5NXjMnesnFXf2+PEVpfRx+hh7X8lz/Q264exO5Otj41 + 0fcNPzrG1No/Z33Um9CEQiQhmqigYH/f76ZoBDNN1HVeSA4ejGTTp7qf9YCdh7mEz9HR6J65sOvd + AwjATbwyquztjTt17LFB9HWRMcw2Ri5Ulx0Hj1MOsKwnvi7wo1Yix9jyWHpeibtMvTrCqbg/ccUp + T7B0QrHI/b1HeBA9FfDoHQRozVfUTbq5W+CWJlBPtBTDrGb594hLD5Wq9iVGeXuw3r8OKSxKURqb + t1C63F4tMIw9ZSDHlU9M8cu5gnTD6yTE1hxP/GwdkWkfJrwNTEUX9JcD4dHShDUeim6+mEILe7zf + jUw/RN1yPTyXHx6Sk3uydC43UA3BcPeIepAlMGTBQ4MeJ4YU1/bB5Tr2gOgDiiPJqf8CfFKXxS9/ + 08TUy5xvA8tDc3ocyGV7OHbT4EkZrDbbjnruU6143logukVTSEz1S3LWHrgI3jfRG6PM3XdCN8sS + FB1tP+6i/lR1Bz9OQU1mn/rDx47ZVn4UKHmbE/HW8yBiewuh95RnsoeFCeZXeHzubtESkpt2CgG3 + xheyIHlQQ0r7atmE+oQK2u8oCUzF/ToP+IaLVh2Jx8xPt1ya9gg2rCHkPKiKO5stk1BQ7Gca3kKj + m6+L6KAjDSA1q8TTJ7jrU/jwDxQvJfLBPJ0KG6L4VuDn207i2YJpBKStx5FbuD/qzTMoJ3ScJHUU + hswHfbJJOVjQcUc0Worx3NdzD/RNUKx4/chnJ4EFhOeOEadtqm6p690GPu7vE9WtSq8G7POOLNT8 + jaqHg5oz5dk44JgPKXV+eOLangcvCquJemgO8ehfyhoJtXgbwVWPAB+rtIdujE1qgqlgrDwVDczz + zY049jjm7DzsntCIturKT0w20efUgq/rbKlhkZ798huERn2i4aH55vRrvh2kDVOIJ7nD3V++39Pa + J2rqMn2WN6xGryDM6d1hPBjqw7OEeidKozhvJ5dt+tiD39v+Tg3bfuuLn22OwFU/GtmfLvYv/9qg + rp0jcbj+lc+xrUN53rQx0V8nsZpXPg1EzutJzFjrMqnNMrjngonY3bPsJsgrT1RcNyIG4aB2InoJ + mz/8y9s3jGfl1UM5e0o8TQLvos8H4lwhTuCTZvQC3HlfqTK8m1pJndQJXcGRGhsaqvZY3xJn+uLw + mQa5+YOp3agNmPaKUiD4jcR1fTeA7h+ZAOXnzaD+Etts4h5V8svfxBrU0m0gb5dwdypzej+K52ps + 38uE2NPf0khvVcCT03rL6jghvDtoe30e6MyhNH3caKI6Vs5PByWAm4UbqBOZNJ+qNFvAytepbz6d + nBV7uYGXj9yv+gHqXfDECfyy3CR4Dw132qW1Ar1HPIxQA5I7F/BRQs6uXkSLetaxufhgOHcmJYrs + mZ0gv1wMssBmdOX7+ccSYwPWEieQyxURNjXx9givoLOpghul43980Lc+MR7X/NUrzq2EpyTbj8zQ + XLas/AXMaTJQ11dVfZbWKT43RSHjlN4PTDTpw9jp5pnD3VVfwHoly4OF557Gpf0U+TJ4dwPQ6Hil + 4dl/gsl+Fm84m8OXEuKbbF2fCJhDkhJlr3/0kW+5DL4eBqJJlfR6/Vb3GI4qR+gJTkK8xOU+AtMi + fKmiCLgT1aEM0CX2HBIc6Keiw/Ju4cEWRuKfNoPee/4hhdrh4hJ8csd4Uva7BoDrEa/7KVaL3lzM + Xc/lJXUTydG5RIMLLIFPSFFd7ZyPkL6AwzWLiGcKqsvzrmqg7zhWhGzbF/j7/Y1wvZHrb38qYUpg + F+9namhVnzNvfsgw7fcqtW/TWDFsHE304w9pX06gucUuBx++S+m+zrOKteEYwfJE3bH3tjs2hB1N + 4XvDW+Tc2JbLf56TBN3jyaD29ubm4ncDDWhuA4kGb15mVGkjG43fiBG1+/DVX7whPAGaXO66zr3m + h4M6RYvxfPY1Rjd9juGan/70xHzusys05PyFeXXyu+UcixzgQZESf+Xz7LzcUrCeH/zt1DmfD1Hw + RtKln6h52kfusJmD7E/PKU55d9kwahNa9RqeldM9XsbksPLrdSgxe8/dco5aExDpM1BH50/6XBj5 + G06TdKCWcHnoi7CMmXycZJV46/qu/MyBJVRmcrhdRbAcRrQOGvctql2LF1tEQ+Pg+jD9yNdNrDOV + zyIgh92TanS7jfuVP8iGekbUfl6JzmLzKkH5eTeISrlRZ5fA6uHnI03EUoSpm0R57lHBe5tR1nne + XeSX7qFffFngPLs/PQD3vBnRfZ1U3ejwkYbCdCmoGj20XDQ5D8pVT74jJfckXw5Do0HvEQ7Ed/Mq + br9V36JNKfmjTN+sGnfRxQQvrnlgmZuv+R8fvV92Jbkyd1OxoJzeiPlYwRV3dwCX7fgUarSfydkZ + dlX/RlsNXvenJwnfhOtYUls2vChzTWwlaPPFDN0SruuJ+YGBjupu9P7xX2rdxJ4thDYcVI4Pac0P + sc43w6whGtAUc9lFcYe89BWYb0uVXrOaxVN8C67gh+fGXZDcbhidBYyfY0y0x5UHw1efjwhYWxu3 + edcw5i1iC8/USelhb11d9s6GGmq5st6qbYdqPAylBhtyOmK06pNv2H1S2Q7ezcj8/hpP3XbLQTU4 + VcRa+SwblrEFVXr84r5MXl0nG5taxqdzQc0Pf3SX+zBHaD1P5JiEm26OlQuEowEGihevraaS8zBM + 283aYrrjGHs/DhwMN58NIceXrbOGpia8Z4OGZXvEcbNXEwz3vBHR2zejYGzS+gmrJDus/o6tt5+D + XUL0Mp94t7egvpg+n6IXt0XEoZZb9csec7vbS6SjvDHe+aw0zATV+WGRU827FRda65Qqk3NIMcRz + xcRnk8n5fH1SZ3O45UtzSlL0w2Nv2RF9kvY7GSaSHowyY70+eyyF69vNGlWwHLhN/OCOEsWLOKJ1 + fV9tQDywnm9qydLXXX78mfBPQvbFfABMXTwbnJl6ofYbiPrcyFiCN4J7ovv+MedCK8CI4kmk9rFF + +vDypPZP7yk30QHj5vRpd1JfLER7kFs8N8tVljeLMPz4Tk7X+JIN6ban6lO7ust4A1eYFTgaxc/I + g3ngTiNIRH8k+5M0gYGDywQxLN7j9KzcfAqJ4yFu2wz0j8/az6LeGZF7pzgzPvGs9AcP8m0jENPU + y3hOHlkCf36KfUyHqjkfQwfu3t2FasbBcf/4+H2br3wsn8AiGo6we3lpRtLtrcubbNEzGKmCRcL3 + ddAZLLwNZHeoEWsuG31qmy8HY08guNYmAyzaLYWwRa+euO0b5nNQoRSG3XqrkPU+G+B1kADazQYx + ajrHU/0RJnjMgED0F7etmL+dHDh3ckh9d1gYxba4gVaTPLD80J1/9IOS2JCkt/DdLfItxIjgi0kK + cnzpi5dEBXrvrzpZ83vFo8+owSQ+juTnH/78IdS2Jaa6tFnYfMoEE14NXOOFDhTMFgwi8MzplXre + dgdmb9K4P/1vXwzsdtS6YLhh244osWV3TFOiK+KmIhjFeRG7RbHfBbzIzUhtA7Zs+vmj+TjeVz1s + xfyBaFcIk5Injt9v4vG9UY5IMg8eUbqrEYvkNF2hG3smsQ3o/PxHG/30lHJro5zfjFqEtpc7pc65 + mPI5HPkShe24wV+cmbrwoosJmqrPyVnogkocYaignz47vHU15jnFhvBA7SM1B5/PmZFEPXp4XEyz + 9fNQ2/EjWUkcOEIJBWw6cu8CXc+TTU73YAazeGPeH36t+q1ivM/L0CCXK7Uq7RTPFy1bIHqTEs9b + Xcrn+vB8Qv4scavfzOLxx0cDOvJYalQbcMkm4ND3Oun0PA9KteBJqGXT0haMTveX+1tP9OCNbHyk + ba4vHm6uMNwET+oh55tPdRVJ6APmCQuDf4rp3a9boDTSZhzJm6uaJnrUIOAuKc1fByO+b7j9un8N + wU89mFh/nzYGzG/7nJpL/GbMh60C9L0nUJdtUNwaIjLBog4LVfmLBZi0GCl43jq4Ns3u2cyTfgNX + Po0XI79UzLmKKXjvC50o/BbrU3p1bZlIUUjc8bH/x28vOFOhpB+6eCI8W+CjuidYZszTvy3eFdAm + bI+BTjBg2DMNuJzihK5+PBgPI79A55IA6rQy06dd2iswTT2VXjbiSxdHeFGgowsiPZwXSx8GOgvw + mlo12bsnyxW0B+Sgs+G21FvzxeT5hwwcyjAm2i46VIsI0wVsN4iNfiGa7nSYek7+nZ8fn5v3dzDB + 09e2RmHlU6LZRxtIQvdA1ZVPsYvbcfIvHx/LmwqW7T3TwElvdeLmgqz3xZMKsHBPjJrC9hMvXpIV + 8GtnCC+P6wlMU/ts4Jg855WfUJfmN9uDymdRRiEL5KqflmsDjZDTyb0pF9CrkVVC/B1rQm7o4PaX + Nszgj0/hgi/Ycpy/DdywltDD7XoGcwWOHhCvi0U1Jtsxz3hlQkn08PBm9b/EndS0wCswXvV4qQ/7 + SpXAeZZyGj3ILZ86YTKhWIwfzKS+isdpGt6wEdhuRGN6B9MsTRIMyjIlt9P9pa/4YkD2sFQM7N29 + YsM7mOAPL6aL2+ZTO/gjZF5ajCDpwmrVF4lMw6dMLMGzOw60dvbzm+hh0/ZVqzcXAzJ+rjC7dyYT + HCXCwBXlBnPfps07xtErCK6QrfWbDvR7uASyezwbI3opBZinQI7+4j8BBY1ZX2ktiqtbNM5PDbqj + aDgcfOapQq7u81HN+/rcoJMmPLC08vf5fZ4muPrL1Gr8jT5vd1oG9LaXafr+WpW46XMPgvzZE/z5 + loDtdkK6I35kY7AzqL7GRwYLVznT0IANWxR7LGCVDC+KRUeu6Opfw4k1LinMAVRM+RgKPNjcONZa + 5eV/9QI3rp5YdPJWn2X9XsrP4ViO29sUVHOshBsokHNKDXfkADvzVSkLRx2QNZ+7k7SfJeSS9jGi + qkHVIlnB5pd/qDlkA1sWfJZk4/Ot8Nhwh45zzZezW/nGCMfMcr+2wmH4uttXchvTLRj1STeResc1 + Pbz1R8x0XPbg7A3Lyk+o2+hvWdnZgowxWv3SieEdhu9hPBDzKdYuDQdcgPJzJFSz+bZiq578fT9i + H1O/+/lZaLtpzz/+EzP+kGlw46Y2yfTEd5cXXQx4zN4ZtZRa1acmFo/ye9t8yXE8Omxqv9sa3OId + GZ9rfAvx+1EirF4L8vOX1/1tYT7I6K9eR/s7LP/iZV0/1heX0oAy75vU+z6wO2mNtcAVr8nKr3TW + BcHzp/dGuvoni0cED3I2PuCpz45V7/lqBm+vMh5X/6Wafv5rghuXqopO2Y+vATU4V5Q4xwGM2wpJ + oCjLK9Ej049p8tylsm6eOHxa9eGk3RUN/vS0uerjaRqmCRmvQccg8r4dg5eHgbRD7uKncXB08Sb2 + yU/fkTs8rC1c53shJ4Qd8JYoOGZ9nrZw1b8EN6dH1yebQEBulNbkWvNDtzzs0xVUndkRjW7v+ffz + lGTonNOchvpc6gvchDVc+T61MYtBHyWchwr3zKi61lPFCFxHODlgg+ngsXhuhp0Cv9dFxyxZBtDg + Sm3hFQUeubJY0QWu0jIUKb5OUuG8A4vehAZ6LaNKvdfxVA3UKTSYWhRgAZ7tauFSJwL5oRKJ9x3f + 1SxvQA27aDkR6yZ6TETfvYEUudRoutZHJr27SetUrBNeWk4A88uTGnigzpEcjKTumA+fCvRzWyQa + J6XduMYD5PVqJDZ+GLE47jQJ5VS8rfGaVbP5TpVf/RgjIrv5n1+myE+NWME+Y0NXnK7At14xSZ6i + 4S7NUWnQ+dAeR64MDrl4DE8KupsnSPWd68Y8vNwXmEjcQn/1mvm6bG3QYJxQ7fHFscB8zfnLp6Rw + HtW8Y+AKrijyfvUYncp6ySFa3TIShzsODFkaa3AHD7d/+HAlYRP6g3X+859fS6s0aNm111EABcnn + Mnpwf37Rr34xbNEYgB9epSv+TaJFGphejlssrvg8eyzYQBLvv6NMra6bn4MP4clgKvHQWQXL7WJO + P75H99XNiZd7WznoaHHpWm8+5d+fP3Yc7xluo4WyZb+5HGF2PwXUY6bVDdf3I0JrfI/CihfLcuA0 + KHVdMC7RHbiTejo1MLi64TilmxDMW5g+5d9+h1M5Apq/CfwfPXyw++9bCh7FElHju3nFbMlPKfrO + 24l4Q9ex6VwqC6RLCgnW1xvAUApKSAv/Pr6FRNF5C7M3Sg1nTx21HOIx34R4d7k74gjII9KFLd7W + MPpIJxJK25DxqbeH6CohgxiO++hEkFQKtI5niBd499z5Ew0m3HJxj6et9ahYrjQF3HyDHbm/XMfl + jUvVAHuz3Y29KH5c9hHCBfRwcmlesi6f6Td9QqCNKha5attN/Txn0FtKnWgNcGLusNEXJEXwTu3n + c9Oxz/daQuf7EolqJVU3FU7Zopc6aNSWZT5f8t52YL97ihSfnb07yzHdwLDw7qSQ9Xc1ubC8oueg + XTD/eawlfa5SIDUvMjFZ8MzF6dzLsFjN8dZ3rvki35oa1M+9OBalKLOZpN8Jtg9sktU7ZJVq21dg + b9CO5vR4Aot01yWUiwZHU+c7dEybhRTor20xPpVdXc2G986Q6xUJNQ/vqOperSjA833TEL30nh1f + nO8FZFP2om7J3Jw1p9JBM0n2xBZepj43IsHrc+qI+rDcA84aCg1egjtPXOI9wfIhZbGWu/YjRZXC + +Nlfehhd+ZyopyjPF7LcBIjFV4nPo3Bgk4LaBHSajWnmSKxj56A+QmGyLWJ6Z9UVb4d6Qa/7hR+F + zUtzuTvVJuhFkkSP3TVli1UoCmp97Uv0rRvqgo7RG+5JVJB9fCA5x43tEba+8qUX8gEx628HB57r + UibkFp5zoTurBbxCnFLXRCUbcqgpMArzAc9WUlUjBs8aYSGq6N4dtVgw2LlHwuhTahmiA7g42CSQ + ETEkvkqGjlXjNKFF6CmxZvjpli0W699+0T3EfTw7Ne+g58njSP4VnrHod+UI37Zb0X18oHF/qeYI + Xu62SOzcCrvJtoL1lvSgkdPJtAF/SgQNBrKq05DIRzBvGuzt1u9Lb+jb6kv5Ut5Q8OMP3tjOESxu + 2k1S5VCf4rRJwazOKYQHGEtE0YVDLAzZbiNv/euJaEpWsF7SlRZt8RyNm+9Lq5bDY3qCy3tzI5Yh + tqzv2LWHqqxUpJg6Jeb7j56gHx6c7ejMxGqUpr/zTO5M71j8hRt5ROGZqPx+645VRE2YbJWShs5V + jRf/bBcwX54VdToOdLRogAnJ7jaRGzirsTjGMIViaBJiWt+Ly0W7Swat8ycY/+L90dkRHJ7Bi1y1 + ys558/nZgPIqa+S+VFPM8M22QSsfG2r5OdRHFE1PBLdIooevLXSL8n5KKFDjhOj+vHf572ZqIR9K + Cg353dHlA+0+Qe5SWaNwtG7x0orABKmjxwTfLx+9a3xhhKLzepNz4LXVwtWljZy7c6bm0brlPBLe + CxTiJVjX81nVQRLV6KZMLdnrdyXnrrtFgGHz3f6zny/YFbC+eg3RE+Wji29DzqB5THViye6hmrsM + G5DkC6Tu/N5Uw9P7pPKD/3zxNAEz59MdJ6Dv+Rlgftr13cidnxLKz7cvtcQsd0X0CRZEv9GF7n1P + 0JnAWwVU8dqSU6l1vHDOq4WflzGQNb4ArzcehiDnKpKppR9zxl7PUFp8aryDfZqz8yb34ISnhTrH + IHMbvjwsSMoWA2+qMcmXdb/Bp5cicsX+OV9o8SzQ17Uv5OzLKhBD6VSi4a4GNAqwkU+702UEy1B7 + Y/+6Htj8vPQNLK+SRrzAmVjrpt0CP47KyIVEnit8PvsEPhys0rgarpUI8g23G7RvRs0P0Cqh+2Yl + LAtvS5S4TGNRD70F2pd7SdWhjdzFYPcRPjr7QLxujGJurFIBOZNRUnUbyvmMP9oR3fZHQA6Bqebi + WO4asEtNneonL9Ln4SbUkB57m9yC3bXjxK9potkzZ2ItocAGXysxOo7SgdzMdGZ9gaoj5FBfjXIM + nG6plEKD1Sh9MS9oE5jM02yjSugJKVz+lbe93chwaA2H5jj1gQgbaAKM+YUq4S0Ef+c7QMF5zbdR + xZ9PWQ8PD+FCjaexdLMnCz1EbCmpNbEqHswnhVA5ey4Ny8gF/JsVI/Ta/kbuzsPpRGX0JXj+7l3i + bHWs88X5fEXHruWJZh/nbiKzlAJpyDdj/d3sc+EMPQVun5BihL6Oy++l3UY+nYaSqusUIWH0LhnI + Qt0mRkIj1ltyHMBExICo6rirpvzzXUB7SUuaQ7DJWWBuHMgXTUfyoE0qgdtfhJ2FrwNJzosPlo+1 + VSCrlZEENL7qCy3aK7ylb0Ltc19XY7C+HXaQISDWms+Xbc4J8PAZPuTI3Sd9Mm0mw3gBNjG4e+AO + DyuvocvWtzur6xVwob/nELz1jFxPMe8Kr+oqwNFaNvS8PfqAN9swRcvTKUb+Hhk6PesfE638gd7k + ysuZO3gKbIS3TQgASccLJnBg+VZe9DCf046Nb/8K96X3oYUka7EYRYGBbLUDeHsY+GoSwy+G/sPe + EgxPJJ93aiEBb3r14w4fPmAWTGaj9BZ8iO50n3zh6sZG+JTk1OQuJhNCwTwi69k4xFfrK5jUkxWh + DnoS0WOSdmJtnkZIdveJOFXQ5lN9WmyUbLWS3sOPnc/nUzaiYS+N9CAeZzCnpmxDwYUtOezCLn7b + fC2hTV/6RPcahfEHPw2AfuUAKWaFVPxRpA38krFd8/HszmfuoUH96y1EfZklY3J7z4D2nEJytPYV + YN/PDsP2kpVE+ywvMDczyIBxW28JrHxr1FLtiJoo7Sl+32u29KB6w8EiHZ7uG5gv6saaIGdA4Y8f + TsRQS/RlkkWVcgm7ZcW/H37Qa+AEbJl3IgdNPnGJG0VKJ7bbxIQdlnf0j99EY3WEterSsT1Jht7l + 0fxEK5+lxzrJY0YVW0Mujw3ic2EF+I8fBsgoBpeax3elMzeTIWy4bv7Dn4laQFmH7mBKQih2U6nG + EnyhXid6Uaf5fPCDCJVLdv3tL1veU2TKk1iWVLOPYbXMz2wDVrwmFoeDeHG4wxs4+U4nN6/2Y77f + XTNYkPw1VsaIXcY8KMDDg7tg1GsPwKRHbMor/tLYVZKKf+c7ATTibk/s2C/W80ECuJ8fNdXuRuEu + r+rIwaW65Th/2FnHywc7Ad79WxE90Ac22ZdvC7EQVNQUEsXl6TUPgLrdzVSP5EM+rfgPn0pbjQsO + HSaUYtiirDdUchZ3JWOPQlfgaSdDqpePEAzPY8qBFT9oUYoZW9LDIYGJ2j9xsvLh2TXcEn5T0aem + vaCO8TslRZWke7jcWo+OUUXRkKzfu5H7+AJYHkmpIIJNm2imZoNlWAoBfr7thlj3R+tOUX+1f/wD + g6+g5XN9uznA5I8uSezl1k24Zg5i51bEcybvcyZqxgK8xPboSTls9fFoQhuEAMTE841Yn7fWsYZK + Pl1p3EwxWFJ8c+RLTA8Ej6MJ5vOnWuTG1HgsbbhGZ5vdVwCq9mHjk9Ai//FXyFLEESynPJvBFpSg + AkFJ8CNROtGxvxIwgX+hB+4m5LMFnwUUD9GXenrvdYKQx+lu5Q/EN05uzMsH5Qid4H7Cc3X4xMxe + mgD6Eqzp5TEcuql9n6+w0xw8zgeUV1Np0h5uL4I3CkewxBT5SQBZJrkkMW5jPG7aUyanG0yJa+fH + SkxvjxpdKfcgV00SK7Y/8hEA9dYkxhWM8SJFZgNA42U0DlKkz6eKRWjfNSeiNg8fzN/kVoONBzSi + Rp2eCycpLlHw9AssI/kA+rd1qeEsuNeRW9Zb6KGAj4Am+n5EwQ52NP5yf/yOmnJH876fdxmc5WGg + F3g+6P16/oB3JDz1BHLTmdUKAjoN1Z6QaOorRvc5BzbeTiMJqTrAvrITQD5cJ7PyX+xydsFfkRjl + HjXBvc57KKUlfBfrLf23stVnnms1GMchonvTlOJprALhl2/xZGcy6D+z9QRSv1fH+RSBfKGVEPzp + Iw2HDhA+Ry5YW7xiYn3xnQ1x6SzQO98PxMykrptuF9WDT8GGo2y8XX26X3cjfKFRp24hzIBFUWrC + yI4dinckrIZN8EhgvI60Ng+hnotLcnhD0OCMGkhM4h9fBCsfo3b34qsFPi4mXPUkOcgZqVgMTWU3 + x9KZxEUt5bQ6CgEKrkdC78Kt0pmP5gn6bvMiQVHaTHQ/E4ZY21t4+kh0fZitVGRq5jIlBtHcGe/y + FPjH2SZuyGTQNK5mgBo5E95gULnzltev6HCLLGJrVAbLN+0nOLSmg4XXRcjnsvExHDZNTg9yRit2 + ODsFtEQvp4W24HxCdL15sS8PtDg7L30JJ/kJX3JB8eaRlD9+bKL1/NCDMqvVDD1JgH5fD7/1rcbf + z//0yVGe04p/qeJRvvnViZjreVhuvHeFhbWq2bI5AlZuYANatQYkjLoqZ1yvO5BQLVjz1R4wb3sy + YdPikOib81XvIUEFvKNIpIdlq1VdyNQetvj8Jqu+qYZDVJtIluX8j3+MyuXVAO0aN9TgnJKxtqiv + 4LZ7nslBR308pUvIyfx92xBP7/uOgaoM0NNx5ZHrrG815Vn9RKiIzLHcXicwto6HQdi+E8xlzpbN + vm8JUFFohVENDXcGQ1sAb3nquM9fqJpsr86AMliXUVLDTzy4ob0AU7Up1dKbGS/GqEvQHMoX8SpH + dZlt7DL0i58o7M9g2tdhj8ap7OlZdr8Vq1VVRjCK9z+90s3XPEjR079gshe3jrtctvAJmu6B6WHN + dz3vTyM03s95lHIrrCaNu73lofo8xy57PP/Jl1x4HDCMeTWeX5irUcZ7NUn7MdPpT784XYlp0Doi + mOJ1ygLTjTe5MnSMl4vc9HD9fpiqByMWB7VL5B+eF6afx3+fPxMeD7run9t6jothFJgT0ZQ9rZaw + QgGYT/6ROrlqx9OtOGmg3Js3jG5aGLNtOnnol/8IqhTACUvGwROfdHi3C918pg9qQNUoHeqah44x + bd6k8pp/CDb9POdXvQcME7zp4Z6XbPbkzQg523OwoJUcm5/HVJDSl+GToOnreFjxFM7jWSCO9g2r + pcqCEoUZcqnv1UNOBZ4Uu4rEBVGPh7PL2V6fQluvI6IOJw1wkm63cPXTML+DeiWKUJLQyasRXfNf + NbRTYCIz3RzXt8/fcTfQzAOkPGPi+ZKtL2HxKIAwEkq9H5+6DF0Bfnzx1lU5WE5dEcAa2RM5QezF + ixU6yx/fS5cuzumrDDBqs+FGLjryYm4PhDegwtbH2/p8cufZl0d4v3X9uPtCt1v5owKE+W4Q2zi/ + 3In3pR7aqVPRH75QyO+O8MFFPWY8a9ny0yPLuDsQ9ZVP+tTXnAP09kHXQdF2vvofGzg2gzlm+u1d + iff7eITYL3kSYK1m9FPb48+PIjjp7vHcaQ+MtuJDGd/VFbLp1kURVKq3RjSQWF0LrKRG+bAJx9m4 + N+5Q304O2ilBQYxguXTceh7BMb08qHHhp25WhX6BIet3RM3kVzxsebeA4qkp1/wz6m098yn8+UNG + 9n11f/Hbqm9AlNDWKuZX2wDcdc+nx5pXdQ5M1ICBUbbkFqZaPAsXzwNcXauYP+WSPlcbc4Gwyz/j + 6md1VLg9a3Q6ZhWxinQPxLGcW7TiGz2ned+x+/19REEzmtQKTyNbzt8FgsZ5mUTfi1H856c5ztsk + Kvt08bLGC9D0g4k3frxzVz8mAHIeBxTL6QmwfA8j8HmZAw6C41BNSzsLqIeLS1T10uZtccw4II5M + o4Z3a+NZt6IarP4o1V2u6xonOMpQ3hY9Ua0uYkvxCExU1xomepAit5l2UYbqpyWOu7Le5yJ1Pg18 + PTtnXNLbO2a9I5nA59KYeCMXuEJ5uzuQXX2benZQuAPSewN6h+VE/Ojx7hi+KTby48Il/vK9VLP2 + nFKEky4dmw1n6+zJfyRZcDctNYbLks9IGCdQG7lOCNlu9KHaSwHUAyOgalUkFet1s4G7I0fpJST7 + bnnAVwHhHmCqPdRzt9CJPQHqoLz6PZa7AKJoyBiPCVFgYOriL/9YxxMcFbqogL3ibCPrh9eHqNl6 + 65xO4AkFP/zgRcUx+/v5n3723i/s9oI4tlDW7JF4miR27KLpC/ydTwuTWe+9o5/BNT9TvZkYm8PH + 25QtddSopY/vWJx1qYSXyVLofh4eXZ8aLQSa7pqYZtuxY/3p3sNjSaw/v3gynDOW13jAwpV/6cty + wfjHbzFvmmk+Luo3+dPjjvadu+XHh/gPwyMnX7/xnOiHFqz8ktprPmpcbqvJT/G+I5p5TvVl5moN + KrW0xVLsryX+y3pr1TNDPE95WU3n0p4gqd7PkZeOl4pdX1oNdTtoieqaWzAvYeftiqy4E7NLSNc8 + Fhag3U5xSZ58CPvlW/jZ359El3ZNN0egfP/poxU/2cQp4Apfj8SnVuC13bQgTQbZfXSI8lVZNW+C + xxE9d1kwbiYv64QUn1b9r71GycJKxYOhvYI4jhE1bGznS2tIKbgEN55qD97rqDYLGViEkRLrHNku + nwhGAlVZq7Dg0IRxPz25+sEjm9p3NdlWWv/5Das+z5crnRr4+TYbeqB7yrpuQk+w+rl4B3DdTdEu + zOBzlwb0Giegoianv0FY4DtVgTDEi4d8GZrRraeeR3U2JuevDCe8rA8Znu1uDiazgfuzaYxMgFR/ + 3IbvFf78nqJDac6m+ukg2ey3RDuvt+ax7jfg5/9H8O7pjDKtR8mltMaV78Wzr5UeaEH3ojbyNu7X + 41sZrJ2jVGPWqxtSc7H//Defp2I+QE/iYHT8qmO98lum9e0b9jV80+OKH9MlgQpY9SZVtSeu5qI+ + 9lAPzOD3/+M/vbvqddz+zp9yGVr441tk0790ZovQgMdYDMb8GW7Y33pV2pNRXATaylfrBYa1NZID + 3RlgbquIQ1+eGOMS4DqeOJNEsKoKgJkAic4gPx/hCdkBtWT32zHevZTwtjEbvAvJq2Mbd9nI+SVT + Rn6bnXV6xHcHAvtDqH8sFP3Hh8DqJ2Moipa+HKyNAgmkBtUtWfrDA6iHF5/sBzayRfIWAdrXkaNE + oh0YFmOAoLxXkDj7THGF1U+A6cLUcZM2KWOmqkgytZOQaCt+/NWXcimfqZ9NdjVu4fsKXltVIXev + MHThkTSavPJ3zIa6YUvvcz36us6FatxrFzcF4QpEw4KjirId2Pzz0xtfyKia5feKvtqtsFvjdVz1 + HpvX+h48fy2XaPdKZ/Mo7kx47T8+5vSt6YrdxJdgxcuRFbUUs4e728BPUF4JQdXass19Naiklb3W + 2176QkpjAjZRFHpowwws2d2RIbyNjPz8mbmtMk7+SteUZteNykStf77hj8+JyUFnyz56G/B+2OdE + K/smX45qefztFzG+923Fjk3YIlGoG5I4mVUJ6n6OYJFd71iKqjLumzbIUGrY+9XffrDpeT4V6Oef + 3fPjDayfV4H8Z8Zk/04fa/3rmcCw6bZUp9o1HvNeceDqD2AEyxfrk0dtoNs+AdT0zg937jn7DZ2X + +qb+cmxjxrthibKGG6hveW/ApPcowTktGrLmN12UX+4bcl87IrF2feV0rRfCxvmYVLtLTF9++XA9 + P9SwMqaPQHOWPz/N5d2nPlv05cGKhMVaH9ow9nr1CiAgtWjebt8dS+nSoI2ABmLNdtRNpt4Y8OcH + 6l5TAmrwbxkGm9eRKJxau8yfYAnX/0+C/RHpMyvKK0KRkFJFcVP2wwO0kSSDqDFndWs9LIC5nNjj + bsUzpgDXgTv1lZP0+Syq7hz0x5+/Mb4KVuTTicQKIlX9pAG3TiVZ69FozS/Uw74YLyiSnjLcNIBm + fGcxMXtkJhw/2YEc4PmrM9hAA3Zi+6HOKO/ysXhXEno+6o5k8foQWRmUCbw3/XvVC1CfZrd7wq08 + Hel9oHk+nMKnh5RTzOFJjr2O5nsYwN1Oc4l/+dT5aIXO9PNzxliwM32m1ziAYVsn1L5JpTse1SYB + 94OV41fTOh3vhsr04yvE3S4XtuSbiwfR/aVT34nqtV7aJ3A7Zjdqksplc4ZeRxjFiUFW/7/687uA + FUTURp3OWBCDDFZZko7TmzqAD50DBl/vlhDtAi6AXdskg873I+Jmza/snmUl/Bj2iyb9nXN7XwkV + +E9LwX/853/+r7VB4F/v5la81saAoZiHf/+/VoF/i//u39nr9Wss+NfYZ2Xxr//6pwXhX9+ueX+H + /z00dfHp114DJEv8X7vBv4ZmyF7/3z/9x/oH/89//F8AAAD//wMAq1OQk7oFAgA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f356cadb0b4705-SJC + - 991ac010ebd1175f-SJC Connection: - keep-alive Content-Encoding: @@ -3055,19 +3055,19 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:28 GMT + - Mon, 20 Oct 2025 18:59:04 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=c0gxxgs0zmhc3IPUq2tpalsxWvXSr7H_IasE3LCQwE8-1760573488-1.0.1.1-50jS2BT2xNaFAqsQjWlPZPrfZFf9oGSwWKHAbe.UMaEmGZOdRAz7_f5l8B3w7XB8bVvcrY7SWKY5vzDJByH0CocIK_1vob3ggcMkq9nSeN0; - path=/; expires=Thu, 16-Oct-25 00:41:28 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=DxlJYENH9jleKzCiRvzr4BKfhyYi7wF96YrE6jJTmjc-1760986744-1.0.1.1-iEehlirON9NSm2crr4xg0bo60Ctdowm0oNqKLtM.M8h0Q.lwHhwAuvG.Y5ic8vF5TroqveABIq94vWEZYXnTgeizGxt4QtQGhot1q4Bg8DA; + path=/; expires=Mon, 20-Oct-25 19:29:04 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=YKFON_kA3.z809x0n2JKU4bzHRIhS.KU3LSn8D1BKts-1760573488359-0.0.1.1-604800000; + - _cfuvid=ucULKTQ3c_Eau.pFu8q2IaFEn18jRLr3gqgsVrnJgFE-1760986744811-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-7dd6789466-8h8pg + - envoy-router-8c6b547d7-pqfjt X-Content-Type-Options: - nosniff alt-svc: @@ -3079,7 +3079,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "378" + - "239" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3087,7 +3087,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "474" + - "267" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3103,7 +3103,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_87ec509cbf1d45c59176bee0adbbd4ea + - req_406b1385d5a5452089c516ffef99e574 status: code: 200 message: OK @@ -3127,7 +3127,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3137,7 +3137,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3268,7 +3268,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f356cecfe54705-SJC + - 991ac0139eff175f-SJC Connection: - keep-alive Content-Encoding: @@ -3276,13 +3276,13 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:28 GMT + - Mon, 20 Oct 2025 18:59:05 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-67666d8489-6wswp + - envoy-router-848c7cfc5-pxkpb X-Content-Type-Options: - nosniff alt-svc: @@ -3294,7 +3294,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "50" + - "101" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3302,7 +3302,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "245" + - "120" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3312,13 +3312,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999930" + - "199999933" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_c7e2128538414138950de2395744fb14 + - req_c43db7385ee6471ab79390994fc24ef5 status: code: 200 message: OK @@ -3338,7 +3338,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 2.3.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3348,7 +3348,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 2.3.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3364,122 +3364,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Sa2c6zurqlz9dVTM1Taiv0tucZfQidCZCElEolSIBAGkJj02ztey+Rf2lX1ckn - hRB9xtjjHeN5/Z//+uuvv9u8KW7j3//89ferHsa//8d27Z6N2d///PU///XXX3/99Z+/v//fncU7 - L+73+lP9bv99WX/uxfz3P3+x/33l/970z19/V3p+I8uNi/tu7b43KC2nfTCerAn0F9WN4PPzccny - xuxKs6kLYS2BmfpeedfnbLxoKOLuKs195pTPgRk76NJcTYzp7gSWQWUKkAwypXtueLhE8FEA6/cA - cK7ZAeBTlE3wxDIG9pk1Avw+ujMwCalHamt8xPNi+Bk0vHeAcXWg/brbGwasvPSAccR2YGEqCuWr - dpACfs+O+VSAOURlWF1pUU9KzMlSM8HmtdaENvdiXc7Ml4FzraGgKtcvWFVfecPBrgC1Gd2L2aEI - M5Q0do5zMepzaoIwRRycHJo38tjM0atK4f31VPGxvD3jtR1sA1D20lBnWp2cc14mDyUqCfhmsFpO - 1u5bAAdkNZlmO2jWRH+06KJ4mOYymfL1MLwHtMjGkR738KhPPPwkcN2rN3rHn6jnZXps0Q15ElXO - 17afy1fOQwmaOc74yM45odELxHUJwEmY7tz1uoMa9JqPiPHTiADXOdcztB+PFz127ywWjN1bg4Op - RdS844e+MjSp/vz+kLhMM2C1G2D5vh1x9kQNmOdWCdCzsL+4iAVlZfcNmOD7URxoYJpMM27vG1yU - AJPvZWf0vOPNDjKZh0iLrtd7TrkIIuTrNKSnneS4/No9CiThQqd2JaoxL8yThj4XK6C6YU2NAN78 - BBWUMdQB8zufE+WcIWFkfIyH/t2vPiNlaMgYh+5TtYyFxnc04AwlxI7gLP2k38YAiBcD0pzDUbyU - of+E8NS96XUhXT8VE7KhHFQdvoVduy6rOCjgnVchvdWC0M/766NDQ0JKqrj5EE/Vo8/A23t1GFec - ok/olaUgC12LKq/IdgUpc1OQMl9MvbTCMcGSNMHvY1ipNp0sIFxUN4RjPFtUWZ9xM9OyLlDK9Bgb - paNu60exUN+yhJ7oDa/Lar07RF5vShUO3PTFafkQdF1DyHS/PAHXxD0BkYg6sohh506SaTrQkPCb - iJiNdY5TPxpkjP2H/vbf/JJOCzqlS0VtzMYu9T4HUZ7O04KvnqE2wqmrReROA4eLHehj/ti1CiCv - J8WmNiTr5OfiE9z2bxb7Cxri+as8UzQ6yZP62Yus1KKmBZN92OHr21v72a0mD51ZrQ8e7ODlPPuN - InQ6qwU+C59Hzh/H9w0druKADwtx+tXl8w6cznqBVYPNe5LSNADvdA5waIZ3sII3v4D9Oc6wK/GW - LrCl4iBrNZ74PN+ilQrHsYPWt9PooT5OuaD6yhNW/dTgC31EOR8AhUHTN1DJ4lYETDK3nmGRwJy0 - ewmDVr+NHnxr3DmQ36OYP2UOnOEYhndccNy1Z7f9KIfsc8aK1Jn9RCLTgAR3PNZkpeipaxQR3HHH - DseCZOSzlU082h2uEr3z3s6dWa+xke2Ckno73gbrC341aM4RoP6rcV0+H2YerIrmYF94KvqojKIN - 3YlwGB+h0vOlpiugbfKV4ubOrPNb1yYkvQ8NQeyt65fvPa4ATcuFNIYV9uRY9jJyUhRjKzl+wMqc - 7zxsuJJib1K0hl3cowXuVp9Twwy+7no6DgF8yIJDveTluSwxnAp+y2NDjfZZr3Nm3Rc4yN0lAJod - rPReqQk8B9kLO4faz9fzNx6A61oUX62u0oV7pZ5hGdZX6g3o20ykwi3k9o4ZMIOjrstdLBR4raYB - R5YarqyZnzVxVN4hQV6s51MYnC2E2GtGT2Qq4yXhvQCuA0pw1O9Ll0KGRIB7miE9TNGrH2LEWWj0 - OZ+WZZ33EydPBhJV18Au9IOerS3rDCW4z7Gaj/K6mMUjRM2MLIod6dN//ZoW8MbvAow/np1ze+69 - QCOq9jgox33OQr+TYdrSC913xFg5VAQD+BjtDu9FEAP2e5Jb2L5tDl+dVxNv9SGD09dTA9SkMCdf - PgsgY7FfejYGAcy3G29BJVCeNBJDx+WYD2jl6G5K9MSccD5veommu3bHDrm83Pn2kQMo7jMaPEPP - jKdgbQ2YDecvPmRn313QAELomMudxnfzAXiwVz2ELgXG1sfZ61RzpRRyxeGCw/ak6qs5JSHCvqth - /1sEcUecJJBMM3ewVidzsxilWMBcC2u8D3LD5QNgQ1hdTwmRZgcD1qElA7Q8c8mQt0/AWTzHwOA+ - tTh5ctd4rq0pQeVeKLBl54+YqJdskJ25DagBoZKv2aV5o+pmnbF5gbeeP4rdE2a37kYd2e+bvhAm - FpF5iqn7vbor5wNiw2jQSqzujTcYlmvcQtkOd0H+vfbrLDT6DWlPdqSqlZ7jSb7BDjK+kdDwfjEA - f9czDxadGOPErtN+W58JSk/Vg14vcaL/mS+WKZ0AyFoJpjy78bBhilvwfD2+63Qebw7Y/Azda7MQ - LziaanhAZk1NEJ3ziUjWGfH069Ny93ytE1ZrgtLHYOJTexX0yfK8CKTRXAY7eJvyxX9fRJgXhYnz - oDPXCe7aCAmpcgrAUSXxnBLiAaEIFbz5qXjCd8qDxzH7UstxuXXtjnIAxH1K6dV56fmi7HobKpJ8 - wjpKtYYzRNNB67XoqSp+aDMzHO9B1kxu9Ki+2nUODR0iqOML1Q4wcTe/FCGaeywtdvrDnfX+uKDs - nM3UXs1Jnw39kKDk3RvUB2UTLyWrZKBexBKfyt5yVxIYHfSjoMeO3TXu5FWWhw7SW6LOdfdpRkuV - HRjRxqbG6/EF81ArPPJPNME4Hji9lbk1QaGJGOpfx2e/JrcqQadyXbAuSEa8ikJJpKhkAcbT+wta - x0xDOJ4rm+r86dCzRLIS9FuvESXLOh1TXYGDOUvY0KmzTupo2eB+yO6Ei44GYOvSV6D1bTUCHoXd - 86e3XPz2O80tWve//QEdT7HJys4BoAu5ivALDgm18kTphSb33sDyiwIfLF4Cw4ctbKC/u3MAcD25 - Y50sIvyo9hn7+f2qD9WjyUAjBvM23+zmz1gNXjg2wcXDe/XzJZ4i9IpvEGsacwHr7VlAmJuzi0sZ - Le7E7/saqnEiUPu4U8G0zq4Dn13iY6fsynhGuRKh9BUQ8ihbxh2dl89DbEkX6guTtE6bfskO5whU - 2fzuk4f0DJ6ylpHd2IRg4E/EgHpICmwqIV2HRblBaGK3wJaZ2vEyS8D7+RdsBcuhYdVkX6CfX1Y4 - fV6XWFVSJHmjGkhhmMf8+dIOcNNn0kWGka8fcOXh5qcDfpu/bfw2nJoRUUOn3TokpE8gVz0/2LN1 - TqfRqEYwnbMo2F2XvTt+l+8in/vTRDFKsmaOvMeA2HnHUsVfEjBRdiJQIy+V4lWW3NEvvxqU8E3/ - 1c9m+j1vX6YejldG1ZcJaBnM3gZDU1jO/dpr1Q1dP9qFiMW4NJMzXGtYZtFI/U+866ejH4jAZXGB - teIaxIKn2B1c+StP9ge7XIdvgwLA6IlCSyuKAYt5Usk39XSgegvauLsZ3xSCy+UdoPTwBdT7qCKq - myCipuGu+iTriJG1QmSp9iyVeL4ggQFL4lzp4Zx/wfrozmeodJ6NoxIdXP49whv0xOmAI/C8xpM9 - Mwmc02dOlU3vhOdTqsDl203Ub99Pd938KRx9wQ/aMN/r1D5OE1LGYcZhh0owNubDRo3ozVS7cWsz - kd6dIMislga0OOozEswUsn2U0GCU+XxqV4sBW/0hi51K+TzuZQaYaDnivXDjmlGAmo12tcVinfte - 9UXZNQ56JFIUXHwaN7NEGRY63kypaX1St9cCgYfKJLXU1/xjvFQfZMH1MBX0jJgDWAD0FfjO6xAr - qmHoS/QNeXTcrx9qXiYNCCzwIxlIdw0fB1PsR3s+OohxTtv8CnrPbnqAHiq5ESDxb32KqVz9ybcC - N6gut1dqBvmt3fx7/WM8RlA2ljM1D93RJa77ZeCmH/RPPlrcqwWyt8XgfUeeYH26Mg+/7iRT9Uum - zU89PZRFsh3UdnrN1yp6s3DcwS+9pRXOqbEjChR10aKFZ18armtCDWq9kZJ14vt+uVXvGkilE2J8 - +Yjx0Dl8Dd1nc8Tq8Rw102UwGIjPn2fQi1Efj5NwhUDIawbv3+ujodd5vkHmNj3wlZubftn8Izzo - DBtIB2lZ5865JvA8H7/UrRZRn32rPqODipfgo81CvupNJUM1/HBYMcP7OvVgIOIHKRZVW+cUr3Ev - W3/qSRTutZUydh6CYuI97F2kPF8a5pSh76nBRPj0PZi0dqqRG7xSnEu85a7AkTp44fiEanRzcuUr - Z+H1o1yIwIkymB59msDjZFPszqBeyVsU36gV3wZV8zFbx353smFrFS320orGq6ZwIazK5w6Hb75e - p4cUyWgJvIowUWy50+5st7AZVJ8GaUf6GejpAi3pjP88//d1D1uUAueN99erkvO3e2tAQbPuf+aT - 042wQll4sILlWSo5O8inCnWZ8MCB9ZXi1e0vNUAJ9am2+dM1JOkN6UKOsEdGRh/yLOHhw71NOJJY - Y+WysdRgqJUnenglh1y4nW8pdA3BwN5j3+j9E00eMIXqHbwezjOeCiBFsH/vB4KEZ+WuIcwVCGIW - 0b20Mu5SXZcaRnXkkulDfH361cfzVGk4x/Wk0xvNLXldgB/MHi3WJY+BA+DrvP7RR54xavYPzzjb - uZoL9AUdWET4StCmf6vbHi3YLskVR8RJdYHnqgJ5vLrHh4PaNiteiAFDc8dQI1DPjdBSq4Zf4CZ4 - 8yvgiV5RhrTeSoPf+1hi1c6gnfEmNsoz0ElzudkwSLQEH6yucslRrJ/QzlgTR0dBiJeP+dSAYkRh - IAkP0aXaUzTg4KnPrd5HYLUt+CdfEO74YvOF/UYhlF1FpfF5R8H8dasaHEI7xXcvbuJ5iksbOiCt - 6S//TqTXJ0A8wAZsYxo9r75OIfRf+YOA6PV1ly44TIDLOkImDkB3Zl8PHt0rEwWCJ3zj33iAF0s9 - NdRy19DPdCegfyUmTghwdWFH/DOU6k4O4JaH5l997mIeYyeCpJ9f97CDulHJVE+LQJ+3PAK2/Ehg - 3hqAb6aMhy0Fh0BeMc3pQahZeZEFkTorxvGyik8FPorvGyv9d4rncj2ncFRPAnXIxdTZ5PTsoN3V - EQ4MP4lJZk5PdOeiABf1VOWzOlQMasCY4XKrr+vS3BdY7Y4etde5arb5V6DbLTCYvyTUp8vgQbDl - OzLHi9C3eyjfoDKSecvvoJllqVngg7msQSWU/DrRL3yDRbjgQNDve7B23SRL74Op4pJRXHe9tEaF - GB7r1D+ETrzxQxuSr5li7zKqG4/5tpD3HzMh0lPX1yY3ntKelX3s2aCMp8f+XsNx/6qxWey4fr2m - y4S4rCV4G39PgslgUfwUcuzW52hd781++fmngNv5Uv+8mDpB16NVUsWOeTB3zjGBv3qRjwl111++ - Z7Ex4Uz9OPoozJYGV71esbP5Gx7v2QwKj5uAo60ervuzlcLEr04Yv1q/X+GhLhBVi4pIr+QbL8JO - fsJDKO2wWuFFH3l0PIPzh9tjHT1hPARra8kn7w0Djky7fBbmQJH4wX7ic+q5Ln+F7hMuKnWo9ync - fDESNkHi1BRY/9wcd5HtMEOTKAcYn9w1Xyv+2/7RI03NkNuVXy8CotGPWJtO73VKSJNANT4L+PAx - 7mAVv3cbbvVz87Ohvlb3DsLM8X3qKEDqp9962vhUIFbiI+aaoUt/74fuC89fp8NhFEHoFlqw6f+6 - jM/OAGqjG8Gnk4tmfe8+BfQ8MaXHXdfGy2n3b14YsFnj93PIH86wOrH9xsce+Sz3X++XDwOW50m8 - 4D2boiPsTBrkDFopktNO2uoTvpCvrRP1EDpo88v4+ri+3fmCdhAUrXvEKhbYfD0IHfvzT1TPtBYs - I2oXiHdRQS07V+NlqvUBnYGKqJM3Wj4bpXWD2/7HVl7J8XS/mh3q649OlQtq8nmY3Awm38za/EbT - LDs9b4H9DD/YVviLPm08GWq3w0J9XjHjT+jcO+C2qkxxWYN+2CFVhlseJVOBqTt90qsCj3tFweHG - i1k9qDuEMijSze/nS/5ABGx+kB7LtnDnOpFFIK5RRaZmf43nNWdluGSZgfHiGL3AJoYGrnb+pL56 - +ujC4VtF0BOXAw707N3M5SvmYauPb+ye2tpdxmVo4f61+1BNVpjma6mLA0d4U6jKhx99eimPGgQN - eVCXeNd8wZFYwW6MJupPj08861FuwQsVcxoo0ezSkzje4IG3QmoWu1OzXrIDA70w1wL0LUj+leJ5 - QG3dediVHK4fH64JYd/yhLBxlTRkyJANTTQdseO93vE6n7vsz+ciFiqwdF0gwqrWMMa7p7luPN6C - G08kizU+8kEzuAEok63S2yR6gEO5EsJdbbD0zqzLOuTtJYU/vp1uejFt+QZSdA7pXi6Dhr27rgG5 - KWKpv90/aXeYAc+T02COZD9fNp4JvZo/BsxOV10inzMI9i35Bvm9MXPKJp4GlC6wt/6EH3P9uygg - l+T6r77o02GiNjSJZQScc340Sz13CoSvZMVWtUv7P/PrGpxBfd7b6e3rWgVSJekPuvFQdzGHhoec - Imb4bKZtvpyZBwOtLv/i3/g5jG0Dnm7Hw6bfk/vjyf/mIb2yX5fk7tfStn4D+a4pPVd6Jwfe4bGi - 1pPU7spFkIdbfcMb79bnKBvCn38h60sx3Z++gswfeRrUBgVDKdcG2J4HqwL7AGtRLA6C1NwTIDmn - fnYYrwInsDtvPLMAS4w1Bj5mi8f76LzP5zenOCgF9pvspOslXn/54M2MFjYnQPT59/42fooP7t3v - x2L3JbC6XhIaRPFbn7smVIBgn22qIdrqm9+xgUwCgYjik8QrSNkAajd3CeZtPVPCmSI8xF+Vqvqh - 6RcdGQuQkWT8/Gy8uvcEwiQuAmJKtbqN14F/9JHPk6qZkXZ4g19++unx/HyQCA4ZdLDSnlR3eOI1 - QlsexEVVnfTXjzdei8uN6rYar5PzuKcQVMoD3z/7F1jAXg3QxtewRpzUXYTd8oRanrr41x/47dcf - v8IH1m/Xzv18LLDxK2zNtwVQkb2GAi3GO71fR6Nn8zWv4KmcFxyEtM+p5s4pMrxnQAP55sfcwT+f - AeEiSC2YYX08NZqCyvNk0Fjt3Jjd+h9yVb53ZNr6F/zGC2Gc9gL+8evZ6Jw3+Pn7TV/jcfNX8qZP - Abq3H0CGdeUB2akhIQrzaL5DrbCwf5sDddRP53aMUfN/+ituua90ItNjh8JEfFJ/5fhm5Qw5kk3b - 9ujGO/UFnxjmTz9NFpylWZnHkYGLbB3J5s9jng3zN2RF/OvfeLkgZXoKBRZVWJXiSqfwRd+gP19L - 7Gy8f7oIqoFSd/EC4dnwMfnxZtN2PKolmuVyP37/UZ0z3pdT28+bfwf6lPY0ThoHTHVpakgoIoUw - rPnSydxPLWp3nzMR75wdk70RZ+BK1C+1Xm8vHn98z9p7K02Nl9JwVzG2pS0/UbXCkSs8r1wKDevc - UO11cfoVn1so+mXZYtsb7v20LFEC1fDF0cO1qMHirEuGbs/HLuBGkdP/8Hr2pXzxwT6l7vh121oe - 1YtAMv8eNmtlPCPonIoOe6YC9V9/8pdvA8Y0i37x0nsCt/H98UvLtTFEGOeZFCgdKtc5UYoUikhj - CbvxXNZiDi2canjGheqAfHX7soKs6Jdkl5/Vde3DRkG25rrULPZ9PPPKhQcnsRipzs5kXXa3KAGo - Emdsz49TvgYeVMCp1FyMSZ675OdXvkLbB4zHtrrwgl8FbOsD+16J9JUojvGnv/HTxx8vhG/znQag - WlKXA3q4oCJhchqg0sr5P3njy3j018+ij+Olk4f52xGulkWwbvUKoEqescOSsZn55e5B5EY9dnIK - 3aV2qgXJU7fHzneac/LjY6YqPrDV5PdmtjKRh6NzfhJwajX3x/fglhewPX17dyFNJsPy8ugxvi57 - fT76ogg3/o9/PIvVP48E4ZuA//Cnhak+DHSGOwyW/ctt2MP0caB637t44zPurz8iS3Ur4yTd2/0U - KnGNustZxFZYM/mW3wd4WrBGhE5mmsXmDm+o23pD5GkvgTUa1RD9/TsV8F//+uuv//U7YfBu78Vr - OxgwFvP4H/99VOA/hP8Y3tnr9ecYAhmyqvj7n3+fQPj727fv7/i/x/ZZfIa///lL+nPU4O+xHbPX - /3P5X9s/+q9//R8AAAD//wMAR9bRdN4gAAA= + H4sIAAAAAAAAA1SaWQ+6Srvl799PsbNv6TciIFW175hE5mIWO50OIA4oMhdQJ+e7d/R/crr7xkTE + iDWsZ63fU//xr7/++rst6qqc/v7nr7/fz3H6+398r13zKf/7n7/+57/++uuvv/7j9/r/3Vk1RXW9 + Pj/33+2/D5+fa7X+/c9f7H9f+b83/fPX3140lPP+NPpFz8vmHVYP0/CeprWA1jSLEOZSbc/7+2mv + jozXxxBMdCXHhpR0HeazgvJoL5NYVJJiDXTVQtz7csSWpqb20npVCnZdTshplB7FZHrIg1MqAHyd + bQ/sr5y4QMGYNXxU+BDs2XxioA6BNTceeUSblqMctt7Tw4rgkmHz05cGQ0WysFJvPVg/wNeAa04H + 7zDG07A9YeCjTIsv5OYlUrTnJHWBb/ZTz/XwrOhq7y4MJMQ7eBPYd4BeI/8JU/0uEoPRnYjbTX6O + YO0X2D8lPRip6pdIKQyLxEEy0U0OlhJ2ySjjDFSvaHOV1gClQmuiaxer4F7qUYRb+eDxVbHUYip2 + XQ7Oq1LPjO979Uq0oEXrEmNy5eKlWIWbPqIL1AISSWmgLp16juHjE5QkPg3hsD8vcosOsiSSo6y1 + wzpVgIOfMSlw+kyMggtqWiGrzACuuA8D6P5QKvCi8gLW70YI+MU6pFB6rG9SyiSP2GvPKbCexIDY + 3fxQN5N/3f98HzMro85v2rcQcq8AR9O1BlTgJQ+F5b3Dt7qUKBtciwVmJ90kRlnu1FmXIg/obRXM + 8/DSBr7QZQtF3iqQcAvUgd/Ah4Xh8+WTILpZNlu+5Ar1oqUSD53liH9tvoJsU/fI8TQuEQ8+3ALx + tWGIVrNNQfutSRFr9C5W7HNTLKxwyZFwCC2i7+ybymWuqADinxHWTsM2LBa9ekB8l5DE3RJGlFGu + L3jg+4ZER74ftnmdDKiH2YAT6Ld0eYajAw4X1ifZBviB1rnco7bYKmLn9RhtQQ0q8HL2PT7Jm6Su + 1BAzsNzPOrFRbNicuoAM7OgBE8nqPDpd5QMLM8/fiPwOdcAu/uBD973XiUE+UU254Fkh9U58/Pv/ + q8RKOmo7aSaxc/ejrT01PdrzDSHmVBR0yYvUB9uOn2ZkRS/AduswA86R2xncsg5sN+atQ73hX/Pu + w0cq7wcnBQrx+UNOpEnA8hCTDakGcydauUXFxGe5Ia4p3HA8VXLNG0MoIHwX9rgYHkO032sfCDaL + nbE0uDFdQld4AeFesfg3HlSR4wzhun0TrzsTdTrwiQ6dc9njpGBosWkP30GnNPx4I2Adm6vXMES6 + HlS4OHWPgjeRXqKFy0asHnlroKo3bOByARW2vbEYRvRqUwBPpofLj3EFW3LUOdCxQ46P5kFX9/gj + WUionRc+624YzZ9w6qF1YhRiyvlS8PEmvWAAYI39RQkHPmV9BtV+r8wgmWewulydwvMq1XPrnYOh + Mz3kwBMjp94yPwTQFEc7h+7cljgRnpeBP+SfTEw7dsF4xx+LjQ/3GmQxx2GzbaqC0IgJod+5PS73 + jlZQ/3nn0IGTDyS0gp1NjwU1UNPebsQzqGlvHt/p0A8qQBy3sW3uoAYiYObUxKYbyOrEzZkBtyFn + sWQ+pWGffyIJlL5KiTo8GbpidVuQx7rPmf0YfbFigY7A8vn93IPNH8jyGUTkVF2EPcB9hhUBxEHR + PBOMh7cS7T9LoIM4IwWx8LGzv+vfg35FLGLD1rHZoybeYfdIXsSZ1CelR2GaIf/UM4+PeDca0eUR + w8jPGywpd7dYbn7E/vQdF9x4V/kdWlOoLfOFaKze1UsZkhZWi3L0mCKU6+XaMxKMFjji+PHx6f49 + G7Own3Q80yxViy2QGh0hI8hJwR5v0WIxpQcvkxtjv5NuxSQ95xDkj2NAbB29i/m7/pHNHF1SElQU + v3qAiA1UbAPqFXucNCn8/l8s41Wky9w8fKSysk5MhjZ2B2tSQXiyPWwwm1F89WeDHeefsP1yTwN/ + 3/UcfNHbmbhWpFH+KjMjeD6cHcaQiQD/wlYLRy7e4zh61hFljCWHk1IqHh3PcJhORPTg/ix1JN67 + PNiEE6fD48q+yRXsTcDxV6iJ9yk5kPhS4YLmn7OAgiK/YumB3vY2hr0Hl0jnvKFTjupyGQUNPtW8 + w9Lr7drUmgYfsol4JUnbPwAbSA8HDSDEWEVEp2SHDjGsmMsZBztRostOePnIeA0qdhoZ112vJfrB + eewsbHjntd4+F6OCvLc8sDQDzeYRaCHUL+94Rg8XAx7qdwVejdCZX8XwAvtSTxV4dGGLY5ReImp6 + 9xjBuKiwAvSHOotCzopLIThE1TSpWOobbZBahik+aVIJWCvtW9jwaUm8y3FU+/AkCehcLxFRQtam + e0tlHHgMwhvWBPCxpyxXW5hK19gr5HKg61DWJUqO2Uzk+ZnWW3Mde5gUZUyy5KIBVoCiAYN5jHB5 + G7KCs1s5RkhlHyTGbKz+GS/mdnO8VTndwEKEkoOXpHp7I+w6So8+tMDtLWvkxBM+osed9IThHdXE + OXzSgapDmqKWPjxyfqaNulzM54y2qD3inAt4ldrPMQQwvlTe4atPVIlOEI5Vc8RX4aGry7y2IfoA + J/OEuzVH9HVnHKAwpYQvG0yi9VwRDmRB0xGpwntKo4voAdP2CTkPtjpQMbUduPligs0kV2r2eXp7 + qD5zAznGPakpjTgfXpN7SfLVaum2OipEv/VsvXexvSbTGqLOfLEkBPrDXjANNpSnzUq88rKoyzm8 + xAgztkZkcKyjbRX9FGBVu+Gy8HV7vWCth10p9liSptqmrzvnoNJuDsTN3x86qkpvwRETgxg26Yat + L3wOdfEpxtoLsLRzuTpGdeoy5JS7r4GSZIkRqQeKlXek1Vt4kkTRPRgQ//SqvTGtA/NbdiKSmJnD + vjKaDFlh+cQXft0obYJIgjtwFLB0Siy6ncPUAWe/un7rpwa47oYkqCmCOu9lzRh4bOUVTJ/tiVRe + /ByWbI19qN4kfV6szgPzg5gC9O1LTBxMpYHL+rEBdppWWM6IaM+kmQ3QpFvqwZ2x2LMohCzEaZZg + c/Mv0bh/RjngS2Ulhvlk7bUoYwUKCYxxVTXvYYtiP0TXuwSxV8tnQNt3BSF/RDZObXmzt3sKnvAU + 3XmifzgZrPeDbcH7XnKx/dXHP9+Xq4qfx4+BwPxSXREKp+OZHNPrgdKnDEKxrxSOqLIy2e+v3gE9 + sYp5QVIwzMKJ0aCg9BXGSkXq2T5AAdY2qbD+TIxog+LgwPO50/GRhGbNkuT0x28Su5FWSs/yPUP8 + JZC9QxwXEbtrhBGmbOLPxO20gt6tToQJlHKPZUppoENtG1B5yYi4M99TIjtFBun2+uCTnLF0NG5B + CK8tF3q0bfWCgPnSiDH3WMlxeOUR3Vx5REjBLDEv+xhsL/M+wwdKFHIUnodhZu6mAl12VLE7aVK9 + BASnQN29HOxXnaz+/BeEpsCQ0jiuw+JCKUPobJ3nXbhs9Sq8uycsrGoiSp3thtXg5gX8xuNbTyIu + SdsePsoNzm5/vdUzek0eMOhdIpeeRoA/TvMohh/ZJNhHbdRfCjOD7OfTeOLL6b7rSRbQdJsD4vge + ValfeoqoY40lzipIEYV6q4Dhw1yIqYMOrFzJpbByDANHgmgWXJjBEj5awcQBw17qhZerDI4wK4i1 + chrgR3C5gw5VCzkd9ZdNf+N7RZHt3S/GqR4/4X1BfCmtOLmKt4IUumwgFGgrsRyB1gv/GhYISr0l + 2PoE6iKHxxje3DAm5oPhik1VPgpojaqdF6M8FPRbH8E3T2B5d9/XowA3AyVvhsV69bmoy2GlFhLi + 5OMlBRNFK7MwLLwv3UI0a5cOHdn4DeJ4bYnbpUG0DC3S4YtIVxJ7sglWFbkSPFw4H9uipKlLtfoc + slv1QwyaKIA7JG4lepdJwedmFQqirauFHuI7JC5K1YGld1VCKuTKefF3jbo+9PwF7evj5IFulm0W + yiGDmNavMT70hJKtQiE0gzQlVjAF9mzmBwaeuuZK5NVi6mmndTrYMp3B1sq9wDYccw52vSGS47Qu + No1V1kGG71leC7SLvSzPlIWlF3fk9qpxMQ2HSoL7JdNJUoTn6E89rfNXMe+DdBh+/h8409PHFpML + 9Tjf9Qrmj1OArQsX1msRJAqM9sXbIw88RJO9u0DwzUvYlKKnOreeXMKphA98Hux6+KOHndmw3tbk + G/3pOYzkR0fUM+Tpcj6FKZpvePFmU+SLTfB8EX79JFZQfKWrH1iWQECsEyuRE3XDY6//qSfXyFAi + 8pSBD8adZWNVMYtiHfV3hbb32ZtZEgxg6Z/SE+2ZNcPhVOr2aiCzgfPLisnpFoeAE6eChXQfn+dt + UkSwWdSIIZZigs35UatEPGQNksVGI9a9yuvpUR8NGL+4FlukI+pi0cSBC152OKPJky6/+WzU8j7/ + 9GOdcdbCt766RDXtedicfTZDb89h4kIoREP9llrkFmmDraSQCu6dChp0577ENrN/1JyvLXfkyBfN + 298fUsGfwfGOquL0wKcLPURr6PAzCKjtkq8eF3T/aUukvFSE5VJl1OnkvDjYoXLBXz9CWd0mOqxv + akz05GwWnPqGGVTIR8XK1arVgTGWDNTAeHgfGL6iFe7NEL4cvp95yNwLutcKDb7NOyK2yTP2Gkbh + E16Kpz3vTpGrLr/6+PWf+GwrhM4XBSiidRlsb2/Qii49A3RgnHOKlcdOqtlbEbIwVTQZ58ZVLtjo + Nlowd2k+83G4A9ueWXWoLeMFx5GRqXuF8yvEXo86ts+4jZbxymiQ63iG4FBLa57h0yf81Xf70Ajg + XbDPHJ1M5ewxdNLttR6EFGYic8RanQOVjJljwLeSxt98fbdndNpa+ByXI74kEh9Raacy4KuXHlPL + PCD0nWmwHoMXTr68iLKj00Kwr44zOrRsQS3h6UN4iGVSqpAA2rD3HMgqzHCUpXW0mfHNgCK4P0mY + yHJNDwZlwaCqnMd8+cVemt4+/M7vLH79BlVe3QKSYz7PgmNBe6magEN0QaLHVruWTh+QacBizeE7 + /7toLNqpB2BfHnHVqLbKd2hKofiuoMdcxa7+k8eyT4+xlT/nYZ2x3//hT3JIPZU+9FsFCjjBmS0G + Dez1Z89BesGWt9QLKab7QTXE5lkciHapcPT1ExLUqscbm7BZvvUgzeDNOPBEeqCjyrOj1v/qKf76 + PZWMuv9Cs9p4OFb9e0F/+dgfUI5vSZbXNBqmDSbk4H79zr1e2ESTfjzGE3TPV7evPwAMaC7zbz6G + CuUltMi8YvkugPqbBzlYdzXrzWTH0fWCnR5885UnvIcT2JgVNsLXL+Cw3ixA5zy+//IIwZtrRUvP + UA0e31OGvSKUhw2GhxZ285vO0wur6sq7kXE4q56LNam71Qus3Cc8Kpcn/vpjQLv7tiAA2xlrTHkf + RmPVWPRdzz++SGmSfDYouqPj8Q8oglfO1D3Cqn4jdpZyYPnl2yPbJHPVnYlNHWcO/+zfs/q2InLD + ug736kyx3J+0gitELYUsZjmcVp+DvQ1nPYMXw0mwhEZ32DpVqZB/fj7mtbx2Ef3lRc247vAR71c6 + x2YQgjmTT1gdz7CersuZET8BBz1W6nYDPSC4HFoYv3AMsW2ztj208H78WEQRDvawfF5xjJLJvmIn + f1n2L38ifp972AxGWmxvpmsRnAHCx4ZA0DsnJwUCCyas6nVTLx8SxX94hvPlLVQ/IgNO7BR47I9H + LWcLwll4u0Qtj4dha66vHm4WN3uicX1E+4LtM9jm5kpMHbuUrsEkgC9v8ZhvnqMszjXwzQ/eUDFV + vcL6U8F1kjKSMVsbLcJp9ZC9D3iPpqY70IzrUjiZ7YCNwXkUNHwdHMic5qu3Wx9ztGBfy9A3PxEF + xYjOuflpDofJ0H88NJpZc7HQK4M89v1dY9P8cxMA39QBPn2ubLF98yjMTppJcK+1gMqk3eBv/n88 + bvPiaERwPiDyzVPDmnzSEgLYz1jiejGi3mXf/1mv3zxUbJ1g57C5PHWik10d0TSwXwC9sg92vfms + rvb5nkMDXrYvrzhGjWRfe5C3gUjkww7aXz8owm8enWkVEntdg06CYRJLODJtr+ZfWOnRyt8FYqXs + rViDJ5pBnMcGuXz509d/saAM+vuMCHNRqZXEIvzWS3zKXW3g2p5VQD1GL3JKso/Kh2Tx4JDP5p/5 + XxOrFqG7JA2WguFpU/cFW1iB4UO06o3qoQSKDkm+SMSc9h91ES25AbmZPojjTZdi4xzjDtOOW4h7 + rD7RqkS2/seP6oy2AGIY7h2Wce4TIxiSevv5KQvuZG8N6WwP9nEdkaRwDj7uvf1A2iWBv/GeuSJK + 1PnUXw043cYAO4XfqFQ+5zmsJyHAV2t3B1uRMhCCp4WxqX6O9MtHdKjrUTUv/PIYxoP3XsDBeUnk + 6gMHcGJx96ESxiwpv/57OnXnDBr92OH4qxfLWeKfML2lPsG49GoOPwYNfv0skVy00dUbxhQ8OOvi + LV/+tYK5KSG3PkOPzc6yTYwhF8DO4Drvks36QPDmKOAle8a3P+HW+wnMOQz1mzrD4dmpS70SAz6M + VPW2RH7Ui1OLEhwCgWJ1UrOBXqPsDjt9rxG915h6eDpbeIgP0YN8eai9GFDlYLFqOQ6moi1Wexcw + UM2H7ltfvPqPnxG3yfnq92KvO0Z3INs5EU4+pqH+9PNAQKp7aNKkgZ/cowWr4vggdrY87XWKIAe/ + 9Q1rBJ3o9ipKHzrVEM0HrteG6bW9BBCICUeU1CBgsncBBO2DO2J5gw+wVbenhY7Z1ZhpuSYDRW75 + Aoxjp9/+wc2mzPvJwGYNOazT6FSs3OxbKO+Ezwym6/nLPz4cRMxBx8qizer2m7/6rQOMy9wFs9tf + ZniZcEyUqWxUCvW7BOI8NYiXrK26TafBAb98/NMPWnOsB/ct2bxl537UMbscBfg6djJRtqAeNvCM + OaA7iYYdgopo22QNwrh2wXxsexnQc5VDmGVr+M2z93rjZfMJ7kW7EBlNdrF++SR0HGjh0yjJxbj4 + dYjMo2vi8NSd1Y+54QoGS3H9r35A0F2z3/7HsTe9wVph2UP4MNvYMLjM3n5+CB9GG4epgekmThGH + fv7+q1+0/+Wxb78Mm/y6gVG4jAvn2MmVXMdMG1jA2ndY+jLFsvIY7MlxHhmSP75HbPftRmzrpSlw + DxYk3inE0ejUm4TmRtDI7YHtiI894Ikpf5Jm4fu8PLA1D94MwONTPNrf5xN78PP3DlOy6hgQHIvo + Ipy8NY4/gLiE9sBUrpf5HdUPdfCfdxa+g2Ai9rd/Mdx3Tw6g5NFjuaH3aGL4oEc36/4ixu7A1fRd + 5or4rddffuGqi3RgRHDl9OcsyJetpmkXMNDPw2BeyEdS2foGGvjj7S4vOQWnLjSDPF0f2P7yaYLV + XQ+a9nrDp29e3Dz+oSGT7R2PrgKnkpqDHvy+J/pgHcE+0FUDlSyTYtlO22F7tEQHXSn0JNsjC2xK + 9lYQPT3lmTne3uq40KX98bVZyCaDEmuqw1//iBjtzqZzc6x8wLzvlGSsJdVffZYO3/xEFD4LAMs7 + SQYNy6qJmSnWQNMnbwi7iW+xtSzXYX0nWwz95MASy2+eYP35653cSx5cq726HLxpgx5ZWqxFRmbP + et024iPaNfMFNn69pW3s/eF1hmNBdeq3rvrlWw9UTDWs3n2K/+jPkVEjdf3ub/jVe+8Uhzf6hzfA + q8fO4jcv7c+L2UIziFNcuR4otu26u0Ozlm8zFGX5D49Dv/6Cvn2G6Oe/wDzrE9FLdqZbzIQOmHpn + xW7bJ8XW9lACnM84v/1XjPLVScG3/+gd7nyrsrVqSoDlyhrbggjpz1/86W/8/Dedut0MP8DLPOG7 + fzgK7zO6tFtB1G8eZA8NNH78+rs+xmiKBSEUwXps531dCGBJU3QH/mtb8Snip2hZxcmBk9kP2P5Q + aC+f8L6hw2TpWBPntZh/fOy3f7Xqfa03NTY4CDHzmtHeVewfn4PETxDWIB7s7fmyRPjrJ3oNOamb + 4GUC/PL/Lw+NAZ9xjxgdGB4Tt7/uhsV/8MxPfzz4nOyaM+OzBb95Dqu7Z2CvAXB0UdkEEfuOZQzL + KKtPtPJPAWt0ZGw6WHCB3oUoM6gYpt5Su+th6pJ6Zo7HA1jhXvbR379TAf/5r7/++l+/EwZNe63e + 34MBU7VO//7vowL/5v89Nvn7/ecYwjzm9+rvf/7rBMLf3dA23fS/p/ZVfca///nr8Oeowd9TO+Xv + /+fyv74/9J//+j8AAAD//wMAofreDN4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 98f356d19e52ccb8-SJC + - 991ac0163b8c1567-SJC Connection: - keep-alive Content-Encoding: @@ -3487,19 +3487,19 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:29 GMT + - Mon, 20 Oct 2025 18:59:05 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=M8HsCuiJRm0P8Qoe3CdJZA7ScS5PjtHLp8CrDWICsJY-1760573489-1.0.1.1-4BNp6R_9BUi6e4ssMTx4f5rDcWFb5W7p_28KTbk4.D6QculVh8plJojO7Syi0t2nObzQm2C9hMswkp.r2dWmHzN_DiXCLRjxb0NsJdGCUzE; - path=/; expires=Thu, 16-Oct-25 00:41:29 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=CI2am4l8NPzPB29HVOxxL6YCiSHP3ZmqyfmwhYjohis-1760986745-1.0.1.1-1WrAbY_.g5heKVT068PtqGrRRbOMj3sgQNmntMfc3ibZSv2AygmH_1NLlkH4O6eg6eor1MGPNkxTHBp440Z8h96spGuN22ZnJOoEnCMOiXg; + path=/; expires=Mon, 20-Oct-25 19:29:05 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=ML4sM9Adfp4x5wA7UJEy5AS9JudjA76U4Vt1KXRLBQQ-1760573489115-0.0.1.1-604800000; + - _cfuvid=WWi15pnysLae4IESBqU1Wly5y2dqS.kq8OjXVct8Lcw-1760986745428-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-7dd6789466-plkd9 + - envoy-router-848c7cfc5-w6px4 X-Content-Type-Options: - nosniff alt-svc: @@ -3511,7 +3511,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "80" + - "36" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3519,7 +3519,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "128" + - "54" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3535,238 +3535,34 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_4e9ece441c14409889df128ea3257c4f - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n a passive characteristic - of a model, whereas explainability\\n\\nis an active characteristic which is - used to clarify the internal decision-making process.\\n\\nNamely, an explanation - is extra information that gives the context and a cause for one or\\n\\nmore - predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy - and interpretability are two attractive characteristics of DL models. However,\\n\\nDL - models are often highly accurate and less interpretable.28,30 XAI provides a - way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be - viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable - DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL - model has correctly learned the input-output relations, then\\n\\nthe explanations - should give insight into the underlying mechanism.\\n\\n In the remainder - of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6362" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4ioGVIcmynehmtAbiopcURWGgCoQROaudikuynFnZ - guH/HnBX0UebXAQt37zHx0fOvI0ADDuzAGMbVNsmP/7lj1t5fsH54/qL/LbVm/2/r1+2d0/p8+e/ - 9o2pCiOu/yGr31nXNrbJk3IMA2wzoVJRnd7fTW7vb+YfP/VAGx35QtskHc/jeDaZzcfT6Xg2ORCb - yJbELODvEQDAW/9bLAZHr2YBk+r7SksiuCGzOBYBmBx9WTEowqIY1FQn0MagFHrXb8sAsDTStS3m - /dIsYGmeH54qiBkeX5NHDrj2BA9ZuWbL6OEpKHnPGwqWKmABhJSjJRFAbskBKliPmes9hw1oQ8BB - KQf04MiycAzjFrcFjDX0SUgFCbOy7TxmvwdHlMAT5lCqPvz6+9Wx7qVh2wBmglgrBWh40/g9oLVd - RiVYdwq+mOk3TZm0HOAanh+egMMu+h0J6EsEUUqygJqzaAWOduRjKtthuFTrwoXU4KQCDA6EbAyu - AnSuMKkkFrDcv4BGYBVImRzb41LKcceuRCK8abS4jH1GXXCUfR9ZS7bBwNLKYLslbaITsBhg3aeZ - C93ChxJaCbEI9LauysXR66kgio6baK+u4XGHvkMtGxTRC6/HYFA187pTEvC8JcDeOa7Zs+4rOLxv - CiRSvnImq8OHiy1yAEzJsz0SanY0/Mtx3cmhto+us5bDwL6GPxsSuvSE3JbA0PMmwAtrA9sQXwKk - Zi9s0Z/FNBw6UdYhxvLiy4VcL001PPBMnnYYLK3ExkzloU8ny/B+3haZ6k6wdGXovD8DMISog6vS - kF8PyPuxBX3cpBzX8h+qqTmwNKtMKDGUdhONyfTo+wjga9/q3UX3mpRjm3SlcUv9dtPZx+kgaE7T - 5QyefzqgGhX9OXBzmBGXkitHiuzlbF4Yi7Yhd8adzObHQ2DnOJ6wyejs7P+39CP54fwcNmcqP5U/ - AdZSUnKrUwf9qCxTmcA/Kztm3Rs2QnnHllbKlMt9OKqx88NwNLIXpXZVc9iUbudhQtZpNbu5u727 - r6d3czN6H30DAAD//wMAX0ekUioGAAA= - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f356d3dc08d883-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:11:31 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=c01KMnzJPiE1ScIJ2N6WeaK6lnuY96x__Ef7atedSY4-1760573491-1.0.1.1-d79GOLFgoDuob4J.m5QymnxVElkSkk9lCP2SdKmdNBi6NiTcZArUKMz56epYTfsDph4ZllchLRGZNpfvkAIHFRme67_dShzVbhxprqzLvAs; - path=/; expires=Thu, 16-Oct-25 00:41:31 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=zqSa9VU1t5lKVNg5ZOGE6RG18iBmUEMhw9A7.sbAsO4-1760573491524-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2208" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2220" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998477" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_aa7199c6939f403eb67ef61c48ce0e8a + - req_2b54f88600694472a93373696bde7b46 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nnal molecule. The counterfactual - indicates\\nstructural changes to ethyl benzoate that would result in the model - predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 - similarity between the counterfactual and\\n2,4 decadienal is also provided. - Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, - which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure - 5.142,143 The resulting counterfactual, which has a shorter carbon chain and - no carbonyl\\n\\ngroups, highlights the influence of these structural features - on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other - molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod - to obtain global explanations for the scents. The global explanation for the - \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around - many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language - explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe - explained by the presence of a heptanyl fragment, two CH2 groups separated by - four\\n\\n\\n 20bonds, and a C=O double - bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnal + molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate + that would result in the model predicting the molecule\\nto not contain the + \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual + and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n + \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, + is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has + a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence + of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. + To generalize to other molecules, Seshadri et al. 31 applied the descriptor + attribution\\n\\nmethod to obtain global explanations for the scents. The global + explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering + chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting + natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D + can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups + separated by four\\n\\n\\n 20bonds, and + a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe importance of a heptanyl fragment aligns with that reported in the literature, as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, the importance of a C=O dou-\\n\\nble bond is supported by the findings reported @@ -3815,66 +3611,51 @@ interactions: the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6381" + - "6433" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA3xUTW/bOBC9+1cMeOlFNmzHcVrf0m4PLtBLkQVS1IVBUyNpNhSpcoZuvEH+e0HK - H0q32YsA8XHevDcffBoBKCrVCpRptJi2s+MPX675/tO/0zD99PlvvKL1e/f57uvHv740d+VXVaQI - v/sHjZyiJsa3nUUh73rYBNSCiXV2s5xe31wt3r7LQOtLtCms7mS88OP5dL4Yz2bj+fQY2HgyyGoF - 30YAAE/5myS6Eh/VCqbF6aRFZl2jWp0vAajgbTpRmplYtBNVXEDjnaDLqp82DmCjOLatDoeNWsFG - 3d+uC/ABPj52VpPTO4twG4QqMqQtrJ2gtVSjM1hAwAoDg3hoURpfMmhXgqBpHP2IyBAZywzrBwRp - ELqAJZlUIwZfwe0acjEYyAmGLqDkjIkmuhJDkl/mI/HQxFY7nsDaZa7s5FEST+stmmh1gC74DoMc - BpmOKQq4T+mOQi094CDM+JgEVNpI1BYwuXe615nElMgmUCc+/IYFPJvEvmSws9o8jHf+8Zh4Ah/+ - h53c3ts9QkuOWm3BNNrVmIuqTwLxDQNLiEZiyJXQVjAACZ9sYnlyTsgF/GzI4quiIyNwDMHXWvDU - gMQqEmgX5WWbxAN3aNIEgGmwJaMtVKiTFp7AXYOM57Kia7QzCBIiSwHaGGSmHVmSQ9G3VfLPsfvk - oPStJnfsSE7AEg6wSy30eyrJ1aCzlvNovBwWckx1I3mGfG9naGCyUUU/6AEt7pO8LRsfMA38bLpx - z8P1CFhF1mk7XbR2AGjnvPQFTIv5/Yg8n1fR+roLfse/haqKHHGzDajZu7R2LL5TGX0eAXzPKx9f - bLHqgm872Yp/wJxudrU87ry6vDJDeH5ExYu2A2Dx7oS8oNyWKJosD94NZbRpsBzETueLswkdS/IX - bDoaeP+vpD/R9/7J1QOWV+kvgDHYCZbbS0P/dC1geolfu3audRasGMOeDG6FMKR+lFjpaPtHUvGB - BdttRa5OI0b9S1l12/nV8np5U82WCzV6Hv0CAAD//wMAPiIPvjIGAAA= + H4sIAAAAAAAAAwAAAP//dFPBbtswDP0VgqcNcIo2W4HFt562Autl2IACy+AoEhNrkSmXpLoURf59 + kNus6YadbPk9ke890o845EAJW/TJlUAzzcxks/ezy9n8fH55vpgvsMEYsMVBt935xcfdoh/ueE93 + X8abb/lLFlvcfsIG7WGkyiJVtyVsUHKqH5xqVHNs2KDPbMSG7ffHI99oX5Hp0eJqtfqpmZf8uGSA + JWoZBicPS2xhibdX1yC0IVGwDLQfk4vs1ong6hoGsj4HhaIUKhzZSEYhg8H5PjJBIicceQuTZT2D + awbrCSZRe4O8gSEn8iU5gVEoRG8x8zO9gduTLpF9KoFOLvhcaseN81ZcelLHrhZQcBwgkHqJo2V5 + jVnvDLzjox9YJ+d3s3XePzeGTRZYZ+vBp5rlJvrp6lRVaCukWo/mdKdn8LUnoL0nGQ1CVF9UScH3 + OWv1fmpi7WpW+SkFV0Ik9gRvQh6qDtqPJKYN3Hx+ec8CnHn2fH7bwK8q36aeJ6a0zyUFcN7nYUxR + +2ZSO5Gd96QKUcHdu5im+VmeahQOJOnhz4zOJrk9pXGaa527FLWT4Txl66pHhbg5RubkZNw+i5C3 + 9HC2xOZprYQS3Tv21KnPQnW9Fks+LHm1WuHhR4NqeeyEnGbGFolDZ0UYnwGlu1KzwpZLSg2WaePb + R4w8Fuss74gV24vL+bxB73xPnReasuleU86PuJAL/8OOd2sHGnsaSFzqLod/+S/oRf83emgwF3ul + 792HBpXkPnrqLJJgi/VPDU4CHg6/AQAA//8DADWYGp8cBAAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356d3c98e2518-SJC + - 991ac0176f16ebed-SJC Connection: - keep-alive Content-Encoding: @@ -3882,274 +3663,61 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:31 GMT + - Mon, 20 Oct 2025 18:59:09 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=2WyFbWkdYcXBO2kbILco8hiQkTtde8EQ_J.AK1EU2wg-1760573491-1.0.1.1-aIemBL7K7D90YVlAeeGtzJ.I.cYggoKE31D8CCwnLOYUkujgkmKvLvS6JYeA9i.w8FTSg0jr4bE.yIf2mmIYHjKiqpvpP5D8Fuc62jMDYDE; - path=/; expires=Thu, 16-Oct-25 00:41:31 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=iF49XU4bz4cDZWe3fV_6uIdRMBTEqOdl4FqpQfKBz7Q-1760573491609-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:07Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:09Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:07Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2234" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsM4ZGeM7m7ZLp4Bp9 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2288" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998469" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_6333aea2028541b4a9811780251ffc0f + - "4208" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity - relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) - Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n - \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, - R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials - science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding - with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, - 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6403" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNb+M2EL37Vwx4SQvIge049q5vbpuD20MX2RQNUC8MhhpJs6FIdoaK - 4wb57wUpx1a32YsA8c3He/P1MgJQVKoVKNPoaNpgxz/fXsu9vd9TML/N4n6zX3769Xb2e3d38+f0 - H1UkD//wFU1887o0vg0WI3nXw4ZRR0xRp8vF5Hp5Nf/wMQOtL9EmtzrE8dyPZ5PZfDydjmeTo2Pj - yaCoFfw1AgB4yd9E0ZX4rFYwKd5eWhTRNarVyQhAsbfpRWkRkqhdVMUZNN5FdJn1y9YBbJV0bav5 - sFUr2Kq7BgGfDXKIwFghozMo0HY2UrAIe8+PAow2SYPo4eY5WE1OP1iENUeqyJC2sHERraU6ucMP - 9+vNjwWQM7YrydUgHT/hQQqoWLeYYxagXQk6BEtGpyLKJdyvN0ACJYnpRLAEchAbhKzhOYKvILB/ - ohwTExHXu+ZYXzvJdI5PlWdotWnIIVjU7JJTboUUgE46Tg+RtZOgk+zDkVJZMook0DTaWnQ1Clh6 - RHgg3aeK3Em8hM8BTcp4rJKhmDkn1Qi/rG8/rS8kiwrsa9Zt8VYI8C6/RzSNo787fKccSXxFaMtj - cnTI9QHkIBHbnkbrLZrOaobAWJI5lvGuQcFhNxuqG0t1E3M1qQ2eo06N8lVfcwetfkyK15tTAnIR - OTDG3OrMzhjfufxfgLZU55LuKTbAWHdWR8+HbImxIaNtapxQiXxUJJ1pQEtmcfPHhcAF96z8sJsX - fYkbTGx+ImsTzdtkKJdbVfRDzGjxKWnYifGMaZg/bt3rcPIZq050WjzXWTsAtHM+9pTSzn05Iq+n - LbO+Duwf5BtXVZEjaXaMWrxLGyXRB5XR1xHAl7zN3X8WVAX2bYi76B8xp5sur6/6gOp8QAbw1eKI - Rh+1HQAf+mvybchdiVGTlcFJUEabBsuB72Q2P4nQXUn+jE1GA+3/p/Re+F4/uXoQ5bvhz4AxGCKW - u/OsvmfGmI7s98xOtc6ElSA/kcFdJOTUjxIr3dn+/ql+kHcVuToNMvVHsAq72dXierGspou5Gr2O - /gUAAP//AwBSuWfDDQYAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f356d3db40cf1b-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:11:31 GMT - Server: - - cloudflare - Set-Cookie: - - __cf_bm=OqmdRr.Tc69isYdSgxXL_wSGV1dPgKmdJp0NJvvyueo-1760573491-1.0.1.1-32bG_FxILwOCQrGjABYtPEjxU1nblqPQNy6xAOGH7X.XcTd5lG08YPv3KJ4nOxJdS1gj8WF3u9w8UfGPsVdSqYE3Vp0QQnacec1RaOpl2ls; - path=/; expires=Thu, 16-Oct-25 00:41:31 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=5hFP3SXLx1en4Vwndes7zZ_gRYG0J0BqufTfExPS15A-1760573491728-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2395" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2411" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998473" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_79629bce39fe474c96009b0643ce7b22 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n A Perspective on Explanations - of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 - \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. - White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of - Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, - University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health - Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: - andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi + P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n + \ D. White\u2217,\u2021\\n\\n\\n \u2020Department + of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department + of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n + \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n + \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n \ Chemists can be skeptical in using deep learning (DL) in decision making, due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which @@ -4209,68 +3777,54 @@ interactions: a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6387" + - "6439" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFVNbxs3EL3rVwx4cQJIgqTIcuKbkSat0faSBqjRKhBG5KyWMZfccoa2 - tob/e0GuPtZpctFhZ97wvTcfehoBKGvUNShdo+imdZP3ny757u59+Hn2u8FfPn7+6/PH5s9OpPn0 - x78PapwRYfuVtBxRUx2a1pHY4PuwjoRCuer8ajW7vHqzfPuuBJpgyGXYrpXJMkwWs8VyMp9PFrMD - sA5WE6tr+HsEAPBUfjNFb2ivrmE2Pn5piBl3pK5PSQAqBpe/KGS2LOhFjc9BHbyQL6yf1h5grTg1 - DcZura5hrT7sW4fW49YR3ESxldUWHdx6IefsjrwmeHV3c/saLANCZckZqIJOTAaChzaGB2us34H1 - QrGNJJgtYQgVGKIWHGH0OeHVT7+9huIFtJGM1SVvDGhMJOacIjXBxdahvp9sw/4CPEqKlEtJTUw9 - mqdwd3MLaBsGCUC+xsxSYmIB9AYS49Y6Kx1sOwhVRbHnx3ZXC2eiAR7rDvDApsF7YuCWdJY/JDeF - X6kDHbymtiDLy9ZrlwwNFPfPjeFr4mIhHqV5A3R0uORMi7VDFESqKBYpWb6hXaQiuU4NekjeUMxd - Ncd86yVmMTpDDhrG8FhbR98QAIwE/yT0YnNXHggakmg1g9QoR2ZDLy54KL/gi6+PIUrdTeHDCzGA - Old1HWiH0VaWuGgoxnh0YEhbtsFPGrzPPWhj0MQ8HowN7SUiWF+F2BTWgNuQpNQps7vvm6oxMZWp - etGf0g+GFqNYnRxGlw119IBecr90TY1liR1UIQ7MzE+zxKTzgE3aGFqKpReut662Lfft85zK/PSz - ByaAD5ITuzz/3KZoQ2LQIZ7A07Ua97t2oKJpwzpEyjs3n63983BDI1WJMR8In5wbBND7cNimfBu+ - HCLPp2vgwq6NYcvfQFVlveV6Ewk5+Lz5LKFVJfo8AvhSrk56cUhUG0PTykbCPZXn5ot3b/uC6nzo - BuHV4hCVIOgGgeXqcK5eltwYErSOB6dLadQ1mQF2tlieRGAyNpxjs9FA+/8pfa98r9/63aDKD8uf - AzovO5nNec6+lxYp/xn8KO3kdSGsmOKD1bQRSzH3w1CFyfV3WnHHQs2msn6XD4Ptj3XVbhZvVper - q2q+WqrR8+g/AAAA//8DAF1xaKO1BgAA + H4sIAAAAAAAAAwAAAP//dFTRbhtHDPwVYl9cA2dDVuyiuTwFdR5SuEUDFGiBqpCo3ZFuqz3uhcuT + LRj+92JPcuw07dMByyE5MyTv0fU5ILnW+cRjwEXJIrCL64ubi/lsfjN7O3/rGheDa11ftsvZ1a93 + P376Zf7wSfnDWnD7ZvhZytC5xtlhQEWhFN7CNU5zqg9cSizGYq5xPotBzLV/Pj7jDQ81Mn1at1qt + /i5ZFvK4EKKFK2Pfsx4WrqWF++P9R6qVQqFNVvrwMCSOwusEeq8WN9FHTvRRDCnFLcSjIaZNRApk + HRtx7AtZpkHzPgbQpJ2iGHRQGFvMUihvKAADJbBKlC19d3t3ToMiRD8hLum3DoQHDx2MAjZRUMg6 + BWiHAxm0Ly1dnU9cjqXXMUU7kGIDnThYBwrY1py8oW7sWWiUAJ0UPuOjmEYp0dN9tC4K8Yk0SyDP + QmvQAPWIewTiQmc7yfcJYYuzk8yqoJbYdlb7cn1eJ/TvaH5OP41lMu4knRX0eWSxWM3Yg3qYRl+O + 9lVfaSxVwH13+EKldHlMoTIxHYshNJTiDmQoRlDN+o7enB/HJadGAcVrXONUyEONo7wyme65UM8B + l/R7FxNeTelkTXUALzUn7nljkEoxHPG+Y9mC1+nQfFsglmpGXc89yHes7A0ai0VfR3KS19B9BwWX + Y7O6by/pQuztP9InBpbJJ9a4OUzDnvoLJwrwscQsFz3v6nAGzR6lXFLdbw5BUcq0T6CzdWK/o3V+ + OCNhGyeJdHt3pFZofXg1ZMs5Tav1RekzrFplHaJ+tcUL1xyPTJGwZ/FYFp8V9diuZgt5WshqtXJP + fzWuWB6W1YQsrnWQsLRRxZ0CBZ/Hem2ulTGlxo3TD6B9dFGG0ZaWd5Di2qvr6x8a59l3WHrFNLXl + 15DZc1zB4f9iz7m1A4YOPZTT8qb/Fv8Sver+HX1qXB7t9dN89n3jCnQfPZYWoa51x2PU4J6e/gEA + AP//AwCHrZaJKwUAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356d3dfe3239d-SJC + - 991ac01769152393-SJC Connection: - keep-alive Content-Encoding: @@ -4278,196 +3832,165 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:31 GMT + - Mon, 20 Oct 2025 18:59:10 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=7nOlq9gssN05AiND1p5d44RnALtvdSCXBjQuW_4WwAk-1760573491-1.0.1.1-tjKyeOLwlU54cacud9dCk3PwbGpL_6BjzKrQHTfeQDNAy5EqdveItKT4hg.zy30sIXs1yLErXsApOinUVQ0UeabpLBfrLGxm1YsdvdZTd1I; - path=/; expires=Thu, 16-Oct-25 00:41:31 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=TGU5W1w63FhbItJtatksJG72euDI5i2gRuFIvj6xv3M-1760573491996-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:07Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:09Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:07Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2625" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsM82mftfHrHDgxeDH + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2642" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998470" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_2eba363d004f4676a4602141cc9c684f + - "4418" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 22-25: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nut to models informs the - XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain - molecular property prediction models because users are more\\n\\nlikely to trust - explained predictions, and explanations can help assess if the model is learning\\n\\nthe - correct underlying chemical principles. We also showed that black-box modeling - first,\\n\\nfollowed by XAI, is a path to structure-property relationships without - needing to trade\\n\\nbetween accuracy and interpretability. However, XAI in - chemistry has some major open\\n\\nquestions, that are also related to the black-box - nature of the deep learning. Some are\\n\\n\\n\\n 22highlighted - below:\\n\\n\\n \u2022 Explanation representation: How is an explanation presented - \u2013 text, a molecule, attri-\\n\\n butions, a concept, etc?\\n\\n\\n - \ \u2022 Molecular distance: in XAI approaches such as counterfactual generation, - the \u201Cdis-\\n\\n tance\u201D between two molecules is minimized. Molecular - distance is subjective. Possibil-\\n\\n ities are distance based on molecular - properties, synthesis routes, and direct structure\\n\\n comparisons.\\n\\n\\n - \ \u2022 Regulations: As black-box models move from research to industry, healthcare, - and\\n\\n environmental settings, we expect XAI to become more important - to explain decisions\\n\\n to chemists or non-experts and possibly be legally - required. Explanations may need\\n\\n to be tuned for be for doctors instead - of chemists or to satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: - Chemical space is the set of molecules that are realizable; \u201Crealiz-\\n\\n - \ able\u201D can be defined from purchasable to synthesizable to satisfied - valences. What is\\n\\n most useful? Can an explanation consider nearby - impossible molecules? How can we\\n\\n generate local chemical spaces centered - around a specific molecule for finding counter-\\n\\n factuals or other - instance explanations? Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n - \ to explanations and the local chemical space.149\\n\\n\\n \u2022 Evaluating - XAI : there is a lack of a systematic framework (quantitative or qualitative)\\n\\n - \ to evaluate correctness and applicability of an explanation. Can there - be a universal\\n\\n framework, or should explanations be chosen and evaluated - based on the audience and\\n\\n domain? For example, work by Rasmussen et - al. 58 attempts to focus on comparing\\n\\n feature attribution XAI methods - via Crippen\u2019s logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch - reported in this work was supported by the National Institute of General Medical\\n\\nSciences - of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas - supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated - Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n - \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; - Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; - Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep - learning methods in materials science. npj\\n\\n Computational Materials - 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, - S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine - Learning and Computational Chemistry for\\n\\n Predictive Insights Into - Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: - 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for - computational chemistry.\\n\\n Journal of Computational Chemistry 2017, - 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, - G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials - Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, - L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, - O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n - \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n - \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n - \ 24 (6) Duch, W.; Swaminathan, K.; Meller, - J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and - Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n - (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, - S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial - Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; - Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n - \ cial intelligence to deep learning: machine intelligence approach for - drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6390" + - "6414" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4SoGVICmyjOhmBDkYRdGi6EfaKhC45OwuEy5JzMza - Whj+7wGpTzvuZQ/7OG/evPl4mgAoZ9UGlOm0mD756cffb/jf/d2iefx19Lr+pfvt8eOf3V8j9X9/ - +EdVOSLWX9HIKWpmYp88iovhABtCLZhZF7fr+c3t+9WHRQH6aNHnsDbJdBWny/lyNV0spsv5MbCL - ziCrDfw3AQB4Kt8sMVjcqw3Mq9OfHpl1i2pzfgSgKPr8R2lmx6KDqOoCmhgEQ1H9tA0AW8VD32sa - t2oDW/X57r6CSPBpn7x2Qdce4Y7ENc447eE+CHrvWgwGK3ABpEMolHuB2EAfPZrBa4JEMSHJCInQ - OpNtgVI4V0DYIDFIhB6li5ZBOi055MFZBMy5g84hDE2kkuRCw9Bri1CPUHttvk3ruD8yz+CPDvkV - gXZ9zuRC7gcjDIwEQgNLBZoZmcE1RwLQhOBRU3ChBROJ0AiYDntntIdELhiXPHIFOlioydkWi7xW - J6hRHhEDaGMG0mYsb1wQpEQounbeyTiDn3EE02nvMbTI2cTPd/dZnx8sAmEiZAxS5GdPX1TzDmft - rILsd3XlNgsNRgZC/qkCi40rBVxwWwbBYLHTxCGLarSRQed+aKuT5IAfnLeuaZAwCOjButz1s4Ti - CgtXYKORSDlzLhgftB90oTsMRzExZJ8zrFPyzhzNeF3e7GAF559oBG3uXI0m9nhqoAutH8H1KVIe - 7WwfYTt4LZFOjtuBhfK4MkoWwrOtqg7DTujxITuxYxMJ89Av5tvwfL0ihM3AOm9oGLy/AnQI8dCX - spxfjsjzeR19bBPFml+FqtwP7nZZfwx59VhiUgV9ngB8KWs/vNhklSj2SXYSv2FJt7hZHvdeXS7N - Fbw6oRJF+ytgvT4hLyh3FkU7z1e3QxltOrRXsfPl6lxEnoB4weaTq9p/lPQW/aF+F9orlv+lvwDG - YBK0u8sJeOsZ4dcyMm8/O3tdBCtGenAGd+KQcj8sNnrwh0OpeGTBfte40ObVdYdr2aTd8v36Zn3b - LNYrNXmefAcAAP//AwCLb/ohNgYAAA== + H4sIAAAAAAAAA3RUXW/sRAz9K9a83FbKLtu9rVDzVgEPlRDiBYHEXmWdGSdxmcwEj2c/qPa/o0nu + 0hbEUxQf+/gcO86rGaMjb2pjPWZHqxRDIF3drx5W2832YfO4fTSVYWdqM6a+2dzdv3w+5F+34y/8 + 7em7n+Tx5a9+ytZURs8TlSxKCXsylZHoSwBT4qQY1FTGxqAU1NS/v17zlU4FmR+12e/3LymGXXjd + BYCdSXkcUc47U8PO/Pb0DIXJJeiiwA+nySMHbD3B0zPcfHgX5Y4to4fnoOQ99xQs3a7hWWGSeGBH + CRCOeAaNgIfIDnQgUEFHq9h10JIeiQKgtVnQngGDAw5KMgkptuxZz8ABHNEEnlAChx7meS4C7UAj + W/Sl4USiZ5iEHFvlGNZQ3FgM0BIcmI7kAIsiPcZVUppKkaWUauhYklbg6EA+TqUHXlUpQZsVcnin + yxN8/+Mio5o1J7IxuArQuVJMZUwBi4hUvL9pSmt4Cu9x4AR0UkHg0EUZl6AOqNDzgRLM+zzp3MZi + TjT7/sBYbI6kQ3Tpatf68k10vFjufWzRQxTwsQzrzcrMsHjABMQ6kBRYOCS2cNNm9loCcV7dV8uf + jgMrrdp4+nRbWIuBueCbKSZdDdHCDU6Tn9t3SlJ2zvPuypcQzgvR7Rp+vuZf9XfR5gRlLleN7zau + g8TcD29sDhVn8R2hZiFAVeE2F1sVpCwS+7LBpX7xaWMu1B1azctQyogFk/KBPqxuvTPVciNCng4Y + LDXJRqFyK3ebXbjswn6/N5cvlUkap0YIUwymNhRco1mC+Qok+jOX4zB1yN5XJs/3W78aDlPWRuMf + FJKp7+63m8pYtAM1VmhW0XxM+QcXQvd/2LW2dKBpoJEEffMw/jf/Db0b/o1eKhOzvg9tN58rk0gO + bKlRJjG1mf8WKM5cLn8DAAD//wMAoDDqdeoEAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356e2d9e8d883-SJC + - 991ac01768291746-SJC Connection: - keep-alive Content-Encoding: @@ -4475,380 +3998,167 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:33 GMT + - Mon, 20 Oct 2025 18:59:10 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1750" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "1772" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:07Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:10Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998475" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_b84c9b4af2cd4f11b637366d866b47b8 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual approach, - contrastive approach employ a dual\\n\\noptimization method, which works by - generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive - explanations can interpret the model by identifying contribution of\\n\\npresence - and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6347" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//fFRNbxtHDL3rVxBzagFJkBRZbnQz3LTwwT6kOQStAoGa4e4ynp1ZDLkb - CYb/ezC7srVpnV7mMI985OPX0wTAsDNbMLZCtXXjZ7cfr+TvxfGuKmxRxM1fv3/6eOhO3dflg+La - TLNHPHwlqy9ecxvrxpNyDANsE6FSZl1ebxZX1+/W75c9UEdHPruVjc7WcbZarNaz5XK2Wpwdq8iW - xGzhnwkAwFP/5hSDo6PZwmL68lOTCJZktq9GACZFn38MirAoBjXTC2hjUAp91k+7ALAz0tY1ptPO - bGFnPlUEdLSUGgXHYlsRErCxDUqpQKsteqBj4zFgliqAAggao4ciJviQIQ548AQ3Sblgy+jhLih5 - zyUFS/DL55u7X4ED2IpqFk2nOXy+uQPkWkAjNCl27Ag4aMvKHUEbHKUsxXEoIRbQlxCaRI7tOY3g - oA02dpRAmjZxbAUS+SHLihvJETUhh8zhUHEOt/+ji0MXfUdQUqCEmp3oiLnFAt9YK6g5cI0eCkJt - E4GtMJQkoBUqeEKXtTguCkoUdJzsFGL+zZTY//Tl4iBcVioQA1TxW/ZGr5ReAvS1QVsxdQSOhBM5 - iK3aWJPM4Z60ik7A8yPB/f3N7Ye+Jrd/zP58eDi3hRJgIqi4rHyORa5v2kjij53ua1ZHT7b1mEYS - hgbIdKjEEO1AmaAHZliGKMq2TwGbxrPtNWqEQ9QKEpWJRDJTtrA+z2rBtq89KMqjDDNRj1VpRUJQ - kW/ybFBqEikMa3c8Z9TTcZ1HqLfnlHsepMFEwZ7mOzMdpj6Rpw6Dpb3YmChP//tdeB6vSqKiFcyb - GlrvRwCGEHUYk7ykX87I8+ta+lg2KR7kX66m4MBS7ROhxJBXUDQ2pkefJwBf+vVvf9ho06RYN7rX - +Eh9uOXqt81AaC4XZwSvl2dUo6IfA6vr6RuUe0eK7GV0Q4xFW5Eb+S5W61cR2DqOF2wxGWn/b0pv - 0Q/6OZQjlp/SXwBrqVFy+8sYvmWWKF/ln5m91rpP2Ailji3tlSnlfjgqsPXDwTRyEqV6X3Ao86zx - cDWLZr96t7naXBfLzdpMniffAQAA//8DAGy2ZVo+BgAA - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 98f356e3aa86cf1b-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Thu, 16 Oct 2025 00:11:33 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:07Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1925" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsM6nsXMzpWd29i5NF + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1946" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998479" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_c2ad2744e0fc40c7b1b763e71ce35d3b + - "4836" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented with equation - \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) - \ (2)\\n \u2206xi - \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) - \ where \u02C6f(x) is the black-box model and are used as our attributions. - The left- \u2206xi\\n\\nhand - side of equation 2 says that we attribute each input feature xi by how much - one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) - is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In - DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 - This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent - gradient based approaches are mostly distinguishable based on how the gradient - is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used - to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used - graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and - explained the binding logic for these predictions using integrated gradients.\\n\\nPope - et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated - gradi-\\n\\nents to explain molecular property predictions from trained graph - neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, - open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. - They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 - smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining - outcomes of classification as well as regression tasks. They concluded\\n\\nthat - CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat - creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese - gradient based methods to find subgraph importance when predicting activity - cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the - most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for - generating explanations (local and\\n\\nglobal) for graph based models. This - method focuses on identifying which sub-graphs con-\\n\\ntribute most to the - prediction by maximizing mutual information between the prediction\\n\\nand - distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer - can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar - method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n - \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n - \ 8(LRP) are based on backpropagation of - the prediction scores through each layer of the neu-\\n\\nral network. The specific - backpropagation logic across various activation functions differs\\n\\nin these - approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre - and Azizpour 74 showed application of LRP to explain aqueous solubility prediction - for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method - that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP - has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 - It\u2019s an additive feature contribution approach, which assumes that\\n\\nan - explanation model is a linear combination of binary variables z. If the Shapley - value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) - = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed - using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n - \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) - \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n - \ Here \u20D7z is a fabricated example created from the original \u20D7x and - a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x - and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should - be taken\\n\\nin constructing \u20D7z when working with molecular descriptors - to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of - acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations - around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. - Equation 3 is an approximation and gives contributions with an expectation\\nterm - as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization - based feature attribution has also been used for molecular data. In com-\\n\\nputer - science, saliency maps are a way to measure spatial feature contribution.81 - Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural - fingerprint components (trained\\n\\nweights) and input features. Weber et al. - 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives - subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6402" + - "6455" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA3RU227bOBB991cM+NQCtmE7jrP1m1Es2gJt0N0GRYB1YYypkTRrimQ5lBM1yL8v - SDm+dNsXAeKZy5kzl6cBgOJCLUHpGqNuvBm9/fta8M/tx+3d16m/Wt3KX7vuanFz/+PhjztUw+Th - tv+Sji9eY+0abyiysz2sA2GkFHV6s5hc31zN38wy0LiCTHKrfBzN3Wg2mc1H0+loNjk41o41iVrC - PwMAgKf8TRRtQY9qCZPhy0tDIliRWh6NAFRwJr0oFGGJaKMankDtbCSbWT+tLcBaSds0GLq1WsJa - 3dUE9Kgp+AgFi25FSGCPgV0rQI/eIFvcGgIMkUvWjAbYRjKGK7Ka4NX96sNraCjWrhBohQqILpsE - HyhC4wzp1mAAH6hgnQSDLImM4V3AgsnG0RaT4yHKEKTVNaDkMFVIskJ1MBVA2/+9XX0aAgaCmqva - cFUns9IFiDVxAPTesMacj23y8DVYagMasBQfXNgJvHp3eyuvE+NDrRd8nacQuzPiMoZPifoIK+sk - sk5ZgkNdk4DhHcGX96vPQ2ArngMVsO3gS43eUAd7NC0JlME1UGFDiaYLXV8CGnFQkOjA20MVJWFs - ExRj4G2b0o/hK0uLhn/ksn5Wja02bcG2AkHDZHWXtRJu2GDg2EGDXvqEL43SzlrSse8IpJl2Nquc - m+jb+MJDwIWMJ+8LRe5qEoL71QeIpGvL31OZyE0K4YPbc0FJkNSg3FEHtXs4jAA0uLsINwSfJi13 - wHSpcbqmhiWGvphTewqMCHm8H6OM12rYj3cgQ3u0mjaiXaA05m/W9vl8JwKVrWBaSdsacwagtS5m - afM2fjsgz8f9M67ywW3lJ1dVsmWpN4FQnE27JtF5ldHnAcC3vOftxeoqH1zj4ya6HeV00/nksOjq - dFou4AMaXURzBlwfkYuQm4IispGzY6F0mtTizHcymx+LwLZgd8Img7Pa/0/pV+H7+tlWZ1F+G/4E - aE0+UrE5jcGvzAKl8/s7s6PWmbASCnvWtIlMIfWjoBJb019GJZ1EajYl2yodKe7PY+k3s6vF9eKm - nC7mavA8+A8AAP//AwDInJ4YJwYAAA== + H4sIAAAAAAAAA4xT72sjRwz9V8R8SQtrk5imxfvN6aU9QwtH6NGDutjjGXlX51nNRtL4EoL/9zJb + h95dKfTTgJ5+vPekeXFDjphc60LyJeJMMzPa7LvZ7Wxxvbi9Xi6WrnEUXesG7bbXN4v3/uH7HH++ + W+L9j+Wnfffrm7fHX1zj7HnEmoWqvkPXOMmpBrwqqXk217iQ2ZDNtX+8vOYbPlVkelq32+0+auYN + v2wYYOO0DIOX541rYeM+rNZQO0WFQxa4fxqTJ/b7hLASowMF8gnWbJgSdcgB57AKIUsk7sAyWI8g + eECpmEIgwwjEYD0p4FNAGa2BOgY55GH0qjUtc8DRtAHzT5nzQKgN5HHMYoXJCBU8Rwi9Twm5QwXL + n7xEeEAdMytNDNdzWBsQn3I6oULEA9XizNrAgNbnqM3Ux49jouAnqLIjNpRR0Calgw89MUJCL0zc + zeHN6uHdCnpfWfwfU+CbD6v1t/BOcid+mE96DUPP9FiqFBqqV6PkE0UErA35wqbS+1h0ansJ1U18 + zQlGwUjhIq7HNNZgURSFwhFl2iLskw/H2T4/wXSEn1fN4bce4UCYIvgYBadNmBStFoIvloeJQAN7 + 8gqkWvDin2BXkrcszyD4WEhwQDaFREecTuC+SB7RM7xnynylrxWTnszgU5eFrB8oQMRASplngz9W + EXXAlVDXWzXpM3OaK/AKnzCl+tYxv/dkCG9zUbxSuEsFRyG2yTHPsFrDHaUE+QAPtZ/ON675++oF + E548B9xqyIL1+pcbPm94t9u585+NU8vjVtBrZtc65Li1IuwugOJjqYt2LZeUGlemD9m+OOKx2Nby + EVlde7Nc3jYu+NDjNghOKrZfply/4oI+/hf2Wlsn4NjjgOLT9nb4d/4/6E3/NXpuXC72Bb8fFo1T + lBMF3BqhuNZNh+MluvP5LwAAAP//AwAT2c4duwQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356e58e83239d-SJC + - 991ac0176d5ece38-SJC Connection: - keep-alive Content-Encoding: @@ -4856,64 +4166,54 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:33 GMT + - Mon, 20 Oct 2025 18:59:10 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:07Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:10Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:07Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1758" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsM82spWc17GUtXaWM + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1781" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998463" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_fa116f202ef44c628c8a8fc03c2822e4 + - "4857" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, @@ -4978,67 +4278,549 @@ interactions: is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "51146" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RTXW8bOQz8KwRf0gLrwHEvKLJvQZCHosgB1x5w7Z2LtVZidtVoKR1FtTEC//dC + a7ut+/G0gIZDzgy5TzhFRwFbtMEUR4scmUkXfywuF6vl6nJ5tbrCBr3DFqc8dMuLP1/c/PVmpeX9 + azf+e/v2it/zP36FDeo2Ua2inM1A2KDEUB9Mzj6rYcUGbWQlVmz/ezrWKz1WZP60uNlsPubIa35a + M8Aac5kmI9s1trDGd9evQOieJINGuH1MwXg2fSC4FvX33noT4BUrheAHYktwHwUcUYJARtjzALPd + DJ7BjjT5rLI9h79HAnq0JEnB+WxLzpShjptIx+gy9GTjVPmerZDJnoewBT+lKNXaPMizkiQhrXV9 + MPZh0cfH40TDDmwN1844VfVs1Eee3WSVYrUILZLERKJbEAp7fPQpn8PbRLaa3DdcmIFjVm9PZE7E + lUGu6gzFEZzdxUC2BCNwV3lwfeTdxFIF3xurxYR9nAdBZ/Ds7u765vb5rPrskPQ+vmO3g0xPGT57 + HYGNFjEBguGhmIHOz2qsmWZ9JiWJxo6UwQhByeSq6a+J/XpJ/RYGYhIzJ2ZP9Z4EWGU6ylZ80ig/ + hDsahZFCgsKOpJ6ig8/j9jhlMg8ElkSNZ0hCztuZ2EAyon52W3fN1UXw9tA2+AeCPsToFr1Uam9E + PAkkkonmollWjqH0Pnjdftf8fI3N/sCFAn0ybKnLNgrVQ79a827Nm80Gdx8azBpTV08uMrZI7Dot + wngAMv1f6qVjyyWEBsv877VP6DkV7TQ+EGdsL15eLhu0dQNdvd+qoTst+YoLGfc77MitEyiNNJGY + 0F1OP9d/Qy/GH9Fdg7Hoqb5lg5nkk7fUqSfBFudFGXG4230BAAD//wMACXGGq6YEAAA= + headers: + CF-RAY: + - 991ac0344c1a2393-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:14 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:14Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsh8oRDA2L9vsNCGJ2 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4527" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 22-25: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nut + to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nthe correct underlying chemical principles. We + also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to + structure-property relationships without needing to trade\\n\\nbetween accuracy + and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, + that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n + \ 22highlighted below:\\n\\n\\n \u2022 + Explanation representation: How is an explanation presented \u2013 text, a molecule, + attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: + \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n + \ tance\u201D between two molecules is minimized. Molecular distance is subjective. + Possibil-\\n\\n ities are distance based on molecular properties, synthesis + routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: + As black-box models move from research to industry, healthcare, and\\n\\n environmental + settings, we expect XAI to become more important to explain decisions\\n\\n + \ to chemists or non-experts and possibly be legally required. Explanations + may need\\n\\n to be tuned for be for doctors instead of chemists or to + satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space + is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D + can be defined from purchasable to synthesizable to satisfied valences. What + is\\n\\n most useful? Can an explanation consider nearby impossible molecules? + How can we\\n\\n generate local chemical spaces centered around a specific + molecule for finding counter-\\n\\n factuals or other instance explanations? + \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations + and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is + a lack of a systematic framework (quantitative or qualitative)\\n\\n to + evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n + \ framework, or should explanations be chosen and evaluated based on the + audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts + to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s + logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch + reported in this work was supported by the National Institute of General Medical\\n\\nSciences + of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas + supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated + Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n + \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; + Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; + Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep + learning methods in materials science. npj\\n\\n Computational Materials + 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, + S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine + Learning and Computational Chemistry for\\n\\n Predictive Insights Into + Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: + 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for + computational chemistry.\\n\\n Journal of Computational Chemistry 2017, + 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, + G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials + Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, + L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, + O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n + \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n + \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n + \ 24 (6) Duch, W.; Swaminathan, K.; Meller, + J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and + Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n + (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, + S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial + Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; + Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n + \ cial intelligence to deep learning: machine intelligence approach for + drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6442" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RTTW/cOAz9K4QuTQBPMBNkkNa3dtFD0NMCu0CxncLDkeixtrKkJal0vMH890J2 + 0jQtejLkR/J9UHowY3IUTGtswOJoJSlG0tXNaru6Xl9v12+u35jGeGdaM8qxW2/++PinxNsbPb37 + x324nf7W/7e309Y0RqdMtYpE8EimMZxC/YEiXhSjmsbYFJWimvbTw1O90qki86c1+/3+X0lxFx92 + EWBnpIwj8rQzLezMx7d3wNQTC2iC96cc0Ec8BIK3d3Dx4szqe289BriLSiH4I0VLl1dwF0EHglnI + SSH1MKZAtgRkyJwysU6QmZy36lOEOR5poHJ7gSLkKjktZHAIaL+sDukEjihDIOTo4/Gx7Qr+Gggy + ZmJwXmwRIQEdUOd5I+mQnIDFCAOFXKdXb1xEf9AggNEB1l4B3z/OBmR65rOJmayCHWj0FgNk9tH6 + HEiuZi7MmRPagQR8XMpEeQIfbSiuBlKiEvdotWCAI0VirOwN9IRamABV2R/KEssivZml3SP7VGQJ + Jc5dwJSZhKLiYuGixt08hU2183mcNHUhlrLK5ZIZFh0SC6C7TxaVoE8MCK+e855TqNZ7z6IN9CmE + 9JUcHKZq+NV3x4ACCBl1qIsT5WKrndX3bTOFReTgs8BXr0MqCsro6ni0tjDaaVbga0aZSfHgg9fp + amea5aIyBbrHaKkTm5jqhd2sd/G8i/v93pw/N0Y05Y4JJUXTGoqu08LRPAJC/5V6RU0bSwiNKfMj + ah+Mj7lop+kLRTHt5nZz0xhbF9lZpll397Jk/YQzofsd9tRbGSgPNBJj6Lbjr/XP6Gb4GT03JhV9 + oW/7ujFCfO8tdeqJTWvq43fIzpzP3wAAAP//AwA7rP/VbwQAAA== + headers: + CF-RAY: + - 991ac0330f5eebed-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:15 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:14Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsfxcDDCqCsEUwQwSA + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "5027" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6399" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAAwAAAP//dFJNa9tAEP0rw1xykYOd2vnQLZSQ5tCcCg3URZ7sjqNtV7PKzqyJMf7v + RXJN45aeBPve6H3wdtglzxFrdJGK54kmEbbJfLKYXEwvFtObixusMHissdOXZjq7//p0eRf8/Or+ + 0+vj9aObX352C48V2rbngcWq9MJYYU5xeCDVoEZiWKFLYiyG9bfdkW/8NiDjp8bVavVDkyxltxSA + JWrpOsrbJdawxKfbB8i85qxgCe7e+khB6Dky3D6cw5eWgd8c597AB3VFlRWGm46tTV4hCLiWu6CW + txVozy6sg6MYt9CxWEgS5AWsJYOzj6mIcV6Ts0JRgQc1oYGk0NKG4Zld6hgIivK6RLCUIqxTHiVP + pUjBWt5Cn9MmeIYgVoKFDUMRz3loxw/SaQ19Zh/cQYbEA2WGMaIlKOLShjNoX3JIRSFzPDhqQz/G + s0xhDOHJ6Pxs7GRoFjyry+GZFTZ0uH1fzOC6S5FdiZTfWYBxHFpBEBfLaNGd9PK+FjB2rYTXwgfn + fVKbtMmdqIThuM9sw786cm0QhsiUR9ej3EkFxx4dRaC+j8EdAp8vsTosJHPkDYnjRl3KPCzlein7 + paxWK9x/r1At9U1m0iRYI4tvrGTB34Dya2FxjLWUGCss43jrHQbpizWWfrIo1rP51U2FjlzLjcs8 + mmhOKdMjnpn8/7Dj7aDAfcsdZ4rNovuX/wedtX+j+wpTsRN/H2YVKudNcNxY4Iw1jrOi7HG//wUA + AP//AwBhGnUL5wMAAA== + headers: + CF-RAY: + - 991ac0375d971746-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 18:59:15 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:14Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJxsizAvfR5XEotnBYNv + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4382" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented + with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) + \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) + \ where \u02C6f(x) is the black-box model and are used as our attributions. + The left- \u2206xi\\n\\nhand + side of equation 2 says that we attribute each input feature xi by how much + one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) + is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In + DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 + This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent + gradient based approaches are mostly distinguishable based on how the gradient + is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used + to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used + graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and + explained the binding logic for these predictions using integrated gradients.\\n\\nPope + et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated + gradi-\\n\\nents to explain molecular property predictions from trained graph + neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, + open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. + They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 + smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining + outcomes of classification as well as regression tasks. They concluded\\n\\nthat + CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat + creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese + gradient based methods to find subgraph importance when predicting activity + cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the + most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for + generating explanations (local and\\n\\nglobal) for graph based models. This + method focuses on identifying which sub-graphs con-\\n\\ntribute most to the + prediction by maximizing mutual information between the prediction\\n\\nand + distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer + can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar + method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n + \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n + \ 8(LRP) are based on backpropagation of + the prediction scores through each layer of the neu-\\n\\nral network. The specific + backpropagation logic across various activation functions differs\\n\\nin these + approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre + and Azizpour 74 showed application of LRP to explain aqueous solubility prediction + for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method + that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP + has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 + It\u2019s an additive feature contribution approach, which assumes that\\n\\nan + explanation model is a linear combination of binary variables z. If the Shapley + value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) + = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed + using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n + \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) + \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n + \ Here \u20D7z is a fabricated example created from the original \u20D7x and + a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x + and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should + be taken\\n\\nin constructing \u20D7z when working with molecular descriptors + to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of + acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations + around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. + Equation 3 is an approximation and gives contributions with an expectation\\nterm + as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization + based feature attribution has also been used for molecular data. In com-\\n\\nputer + science, saliency maps are a way to measure spatial feature contribution.81 + Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural + fingerprint components (trained\\n\\nweights) and input features. Weber et al. + 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives + subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "51106" + - "6454" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW/jRgy9+1cQc0oAO7Cd2E5zi/uFAL202MOi9cIejyiJu6OZKUklMYL892Ik - r63sZoFedNAj3zw+fryMAAwV5g6Mq626JvnJz38t5O/ftXDr22sfD6sP94sF/0nzpW8WbMY5I+4/ - o9OvWVcuNsmjUgw97BitYmadrZbTxer65qdZBzSxQJ/TqqSTmziZT+c3k9lsMp8eE+tIDsXcwT8j - AICX7pslhgKfzR1Mx1//NChiKzR3pyAAw9HnP8aKkKgNasZn0MWgGDrVu93us8SwCS+bALAx0jaN - 5cPG3MHGfLx/gItfn5O3FOzeI9yzUkmOrIeHoOg9VRgcXgJjiSygERrUOhYCNhSg6OpA/7Yo0AoW - GaagyIlRuwDsuUFrhMRYkMvWCcQSGutqCggeLQcKFXSOyRiSZSXXesv+AAViOodc/PLH5THuCh56 - 2q7WZ+0oo8cucfDWiTbXWqNPAm1w8REZRLl12jJOEseErAdg9LZTWFOSMUjrarACex9jMdlzLmVv - mQkZLtbr9SUk5Aa7lK5eib7dkyc9DCRcwYezT56+ZM1ttqm0Tlvre5dC/3BHU6A4pqSRJ3ubjX0b - wXiyO3F8pALBdi91PaQgVNUquRUR6vg08KWJRe7vkYhC6dvcXzgaQChX8FtkwGeb53z8jVIBZwNI - W1UoevLPenC1DRV280FN1oSwXq+P7vSGjOGpJo+D2t5WVVNV+ywcXORTH2CP+oQYBjWUaHPTeqcG - wjdm3I84o8dHGxxuxUXGPOqz6Sa8bsJutxuuCWPZis1bGlrvB4ANIWovIC/opyPyelpJH6vEcS/f - pJqSAkm9ZbQSQ14/0ZhMh76OAD51q9++2WaTODZJtxq/YPfcbLWY94TmfG0G8PXyiGpU6wfA7e3t - +B3KbYFqycvgfhhnXY3FOfd8bGxbUBwAo0Hh3+t5j7svnkL1f+jPgHOYFIvteW/eC2PM5/hHYSej - O8FGkB/J4VYJOTejwNK2vr+URg6i2GxLClU+WNSfyzJt59fLxXJVzpY3ZvQ6+g8AAP//AwCxxsOl - NwYAAA== + H4sIAAAAAAAAAwAAAP//dJNBbyQ1EIX/SsmXBaknSiJmRfoWlmXJgRUHhBYxqMdjV4/N2GVTVZ2d + UTT/fWUnIwiIU7f7lf2+eq5+Mrl4TGY0LtnF40oKEerqm9V6dXt9u76+u70zg4nejCbLfrq++e7n + X9/+Rj/q/Xu/HNc/vOO78n09msHoqWKrQhG7RzMYLql9sCJR1JKawbhCiqRm/P3pUq94bEp/jGa7 + 3f4phTb0tCGAjZElZ8unjRlhYz7dPwDjjCygBd4fa7KR7C4h3D/AV/jpH2vWOEcXbYIHUkwp7pEc + fn0FDwQaEDrIUaHMoCEK4NEhVx2geUSBRdA3k0iKXBkVLHnAZ0uojD46jYUEZi4ZsnUhEkJCyxRp + Dz1VGaBa1uiWZDmdIBK4gDmK8glsrSk62w+5gl8CQgfKSM/nvnElV8aAJPERBygVaSVlYYcdcofk + QrZ86GFcyD58/CgdtWhAhj3bGmBnWzcvSG/gc0BGeLQcyyKQUUPxAikeEN7d/zS0Tb6/SC5Fwwe2 + fuhB7Nkq+q5HJJWhO1nVZ2bI6IKlKFnAcss4V8voYS58AWzZlEVdySgtfJfaeMwvQfTzGPeMIm2p + Vg5y1du9YAZMFRbyyG2mPITy+aUzyPaAr65md2pwHHeLNt+Ya2G15LAl5uM8IyMpRKqLwoxWF25U + 3MkLtRavNmZ4nkTGhI9t8ySuMLaJvNvQeUPb7dac/xiMaKkTo5VCZjRIftKFybwIgn8tbQTNSEtK + g1n6TzI+me4+aTkgiRlv3t5+OxhnXcDJMfZUptcl1xed0fr/0y57mwPWgBnZpmmd/1v/t3oT/q2e + B1MWfcW3Xg9GkB+jw0kjshlNvwjL3pzPXwAAAP//AwDgWJZBTwQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356e2dc562518-SJC + - 991ac0375a2cce38-SJC Connection: - keep-alive Content-Encoding: @@ -5046,74 +4828,58 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:35 GMT + - Mon, 20 Oct 2025 18:59:15 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:12Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:15Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:12Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3571" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxsizvW1U3vfbAXH69B + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "3594" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249999" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29997716" - x-ratelimit-reset-input-images: - - 0s - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 4ms - x-request-id: - - req_fc5a8d6e905942969bf4c7f7caf30fd7 + - "4466" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon - pages 28-30: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. Journal - of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, - C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions - of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n - \ 27 conference on knowledge discovery - and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 28-30: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining + the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD + international\\n\\n\\n 27 conference + on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, P.\\n\\n Explanations based on the missing: Towards contrastive explanations with pertinent\\n\\n negatives. Advances in neural information processing @@ -5177,66 +4943,51 @@ interactions: M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships in real-world drug design data sets using explainable artificial\\n\\n intelligence. Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6379" + - "6431" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNb9tIDL37VxBz2gKyYTvOl29p0QW8KLpAtwVSrAuDmaEkNqMZYUi5 - MYL892IkJ1Z304sAzSMf3yOH8zgBMOzMGoytUW3T+um7T+dyt7zecPi0kS9frz7iw0bjX39efXj7 - 91tT5Ix4952sPmfNbGxaT8oxDLBNhEqZdXF5MT+/PFtdn/VAEx35nFa1Ol3F6XK+XE0Xi+lyfkys - I1sSs4Z/JwAAj/03SwyOHswa5sXzSUMiWJFZvwQBmBR9PjEowqIY1BQn0MagFHrVj9sAsDXSNQ2m - w9asYWs+1wT0YCm1ColKShQsCewxcewEfsR0L5DIZ2egEd4/tB454J0nuEnKJVtGD5ug5D1XORv+ - uL3ZvCngR822hjLaTkggBmjwnkMFDdqaA4EnTKE/yP0R4KCU2kTak2NwoDVxgjaRY5v7LNAFRyl7 - dDloBhuFhsKAiXaOh0rZdEJR3md3rceAfUwBtEff9T8QS7i92QD6KibWupHiuSg42pOPbabOYb8q - O8otYwLrc89LtgNjTk9UJRLhGGZw4xxnAL0/FMAKNVe156pW6ct0Qs8qOEDJ5J2A53uCBpUSoxcQ - y7mpBdiaGhZNh0GmS10FjoSrMIPxFNFLBMtKWWIXHA4KjqPMY8j6x57Ysx4KkM7WgAL/1Nh6OkDu - FElfjI/j5ZP/owoW20mer63RewrVMQPdHoOl3ME82d5ub3C2NcVwDxN56oN2YmOifB+vtuFpfHkT - lZ1g3p3QeT8CMISow0zz2nw7Ik8vi+Jj1aZ4J/9JNSUHlnqXCCWGvBSisTU9+jQB+NYvZPfLjpk2 - xabVncZ76sstLhfXA6E5vQEjeHl2RDUq+hFwtVoWr1DuHCmyl9FWG4u2JjfKnS9XLyawcxxP2Hwy - 8v5/Sa/RD/45VCOW39KfAGupVXK700q+FpYov5O/C3vpdS/YCKU9W9opU8rzcFRi54cnzMhBlJpd - yaHKl5WHd6xsd8uzi/OLy3JxsTKTp8lPAAAA//8DAJWmMETQBQAA + H4sIAAAAAAAAAwAAAP//dFNLb9NAEP4ro7kAklOlVQPEt4KQKKJwoAckgpztemIvWc+6M7tpqij/ + Ha2dUELFydp5fY8Z77ALNXks0XqTappoYKY4uZzMJhfTi9l0fjHHAl2NJXbaVNPzj5zm9+nLurmv + w7xP837jbt99wgLjY0+5ilRNQ1igBJ8DRtVpNByxQBs4Ekcsf+yO9ZG2OTN8Slwul7808IJ3CwZY + oKauM/K4wBIW+P3qGvKkWmEVBD5se28cmztPcHUNL0/eEt3KWWc8XHMk711DbOnVGdy2BLS1JH0E + oRVJjit0yUfXe4KHIGuFwJDRaGN8MtEFBsM1mL73zg5vLcCx9al23Pwp4wbuvLHryV3YwmAsUCbF + x5Y80zF0VDtrPLjONLkpGl1rMUB0FMXZUSCdCDyDr0xPlEF7slmj8f4ROuIBAl5kudILxaEtj/zb + lxtjW8cEn8kIZ+iMc2MiiTNe4Zt1w+zc9r6lzmmUx+IFOK4H3dwcJGyC32TXzDrHusNUf5w6aFfo + ghC4Z4QS1yTDInNoXMlwGdsImpqGNOqIozluSZhqeHCxPVqSMXrJLo6qwypfwAF1sHEkFlvqRhZR + DGtvhDhCDJCURM8WWIxnJuRpY9hSpTYI5XN7u+D9gpfLJe5/Fqgx9JWQ0cBYInFdxSSMh4TSfcq+ + YcnJ+wLT8AeUO3Tcp1jFsCZWLM/nb2YFWmNbqqzQcBTVacn0mBcy9f9yx96MQH1LHYnx1ax7Xv+U + PW//ze4LDCme8Lt8XaCSbJylKjoSLHFck9S43/8GAAD//wMA1sM6nCwEAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356ef2f90d883-SJC + - 991ac05268e52393-SJC Connection: - keep-alive Content-Encoding: @@ -5244,64 +4995,54 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:36 GMT + - Mon, 20 Oct 2025 18:59:19 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:16Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:19Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:16Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2341" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxt3TRYyz56aBYctRDH + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2384" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998476" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_270c66c3caa84ae9b60565185ab24c54 + - "4871" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion + This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) @@ -5367,67 +5108,52 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "188634" + - "188687" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.3.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.3.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW/jNhC9+1cMeGoB27UdJ+76Fix2AaOXol0ULeqFQZMjaWqKZDlDJ26Q/15Q - 8oeaZi868HGe3nucmZcRgCKr1qBMo8W00U0+/nLP5sefN7NjjIfD59Mf85829FF+/fTb/MtCjUtF - 2P+FRi5VUxPa6FAo+B42CbVgYZ2vHmb3q7vlh2UHtMGiK2V1lMkyTBazxXIyn08Ws3NhE8ggqzX8 - OQIAeOm+RaK3+KzWMBtfTlpk1jWq9fUSgErBlROlmYlFe1HjG2iCF/Sd6petB9gqzm2r02mr1rBV - vz9u4LtPz9Fp8nrvEB6TUEWGtIONF3SOavQGv4eEFSYGCdCiNMEyaG9B0DSe/s7III0WaPUBQRqE - mNCSKekwhAoeN9DFwEBeMMWE0v2ucGRvMRXhtjuSAE1utecpbHzH1Xl4lsLTBocmO50GPzgzj6GY - IYbMaAsL9ragCU/AEU3xNSDgvGdJ2UhOWGRVLhenEFOImISQwdEBgYPLe3IkJwgJ2KCXKXwOCfBZ - lw4Ygwm5mKq0kaxdH4xFNomihDTZ6yKoU+N1n4hOCNhGF069VLLohaoTXBRpB6bRvr7kqqsKjQxT - ncKXBhnf8DqqPTyRNHDw4cmDabAlo12JPVO5NAbOpgHNXbSld0qu2pAl88NeMxmoU8ixRPLGO7Jg - GqIli4GmafcCDbrIUKPHpB39g1dPODlHe4KErlfcUGTQJgXmy9Mgj8sbHMmSr4E8U90Ig8VER7QQ - c0J3giqFFqwWPd2qcd/YCR0etTe4YxMSlgafz7b+dTgOCavMukyjz84NAO19kF5TGcSvZ+T1Onou - 1DGFPb8pVRV54maXUHPwZcxYQlQd+joC+NqNeP7P1KqYQhtlJ+GA3e8Wi/myJ1S3rXKD53erMypB - tBvU3d3Px+9Q7iyKJseDPaGMNg3aAenqw+JqQmdL4YbNRgPv/5f0Hn3vn3w9YPkm/Q0wBqOg3d2a - 6L1rCcvm/da1a9adYMWYjmRwJ4SpvIfFSmfXL0XFJxZsdxX5umwh6jdjFXeLu4f7h1U1f1iq0evo - XwAAAP//AwA2okbzIgYAAA== + H4sIAAAAAAAAA3RTYW/bRgz9KwQ/JYBcJF7cNfoWZB3aAQUGbNiKzoN9PlHWNSfeheS5MQL/9+Hk + ZHE29IMgiI9879076hHH1FHEFn10paOZJmay2dVsMZtfzBcX1/NrbDB02OKo29XF5eKDW/z50x9X + QedZNu++yOKXT3efsUHbZ6pdpOq2hA1KirXgVIOaY8MGfWIjNmz/enzuN3qoyPRqcb1ef9XES35c + MsAStYyjk/0SW1ji55uPINSTKFiC9w85usBuEwluPsJINqROoSh1FQ5sJFnIYEyRfIlOIAt1wVtI + DNOx9Q38PhDQgyfJBh2pl7AhBaUdiYtQFY38wOG+kILLOYYjvR9oDGqyb8GnUrV65624CFR9sasq + CmcbV/0kBrovUw3enoMNzkCH9A3q8+JvTF3og3+adX1P3k5Ma/NkMVuS1zoTY+iILfR7+DYEP5zw + 9uSsSD0Ad6BloybFHyuB+1iIPZ3qwFnRwFt4f/vzr9PMp5vb299OxPW8merPoVuCLTGJMwKuWi5C + dLwtbkuvjE6BK03BupwlOT+QwkAxQ+GOpG5KB/8anGVJmcT2IBSPFEPI1TaY0zuFGO4INMWyCTHY + /vSKJyJPfBohbCrTjlys5/tuTmcTbV94GnIRtpJK1gYGMpLkLI3agFSOlyzPoa63hE0xgpw0WNhR + 3EMSYNq6py9Lx907zfvNEpvjvgtF2jn2tFKfhOreXy/5sOT1eo2HvxtUS3kl5DQxtkjcrawI4xOg + dD9dJrZcYmywTL9i+4iBc7GVpTtixXb+w+LHBn3NfuWFplxXr1sunnEh130Pe56tCpQHGutPs1qM + /+9/QS+H/6KHBlOx09Ll26sGlWQXPK0skGCL02I46fBw+AcAAP//AwCEvRQItQQAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 98f356f12b5bcf1b-SJC + - 991ac053df79ebed-SJC Connection: - keep-alive Content-Encoding: @@ -5435,51 +5161,43 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:38 GMT + - Mon, 20 Oct 2025 18:59:21 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:18Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:21Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:18Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "4231" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxt4o3ZjEmsF3JdjfYm + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "4269" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249998" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29996942" - x-ratelimit-reset-input-images: - - 0s - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 6ms - x-request-id: - - req_bfc0b3767a614e8f9854b7df4d744076 + - "5951" status: code: 200 message: OK @@ -5488,77 +5206,77 @@ interactions: '{"model": "deepseek/deepseek-r1", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-91399209: - Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations - of deep learning (DL) model predictions, addressing the ''black-box'' nature - of these models. XAI aims to enhance trust and usability by offering insights - into why a model makes specific predictions. Key concepts in XAI include interpretability, - justifications, and explainability. Interpretability refers to the degree of - human understandability intrinsic to a model, while justifications are quantitative - metrics that explain why a model''s predictions are trustworthy. Explainability - actively clarifies the internal decision-making process, providing extra information - about the context and causes of predictions. XAI is particularly relevant in - chemistry for understanding structure-property relationships and ensuring models - do not rely on spurious correlations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\n\npqac-95b8b564: - XAI (Explainable Artificial Intelligence) refers to methods and techniques used - to interpret and explain the predictions of machine learning models, particularly - deep learning (DL) models. In the context of molecular prediction models, XAI - helps uncover structure-property relationships, such as blood-brain barrier - (BBB) permeation and solubility prediction. Techniques like counterfactual explanations - and descriptor-based explanations are used to provide actionable insights into - how molecular modifications influence properties. For example, counterfactuals - can suggest structural changes to improve BBB permeability, while descriptor - explanations highlight correlations between molecular features and properties.\nFrom + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-61467535: + XAI stands for Explainable Artificial Intelligence, a field that aims to provide + model interpretations of deep learning (DL) predictions. The excerpt defines + three key terms: 1) Interpretability refers to the degree of human understandability + intrinsic within a model and can be perceived as ''knowledge'' providing insight + to a problem; 2) Justifications are quantitative metrics that tell users why + a model should be trusted, like test error; 3) Explanations describe why a certain + prediction was made. While interpretability and explanation are often used interchangeably, + interpretability is a passive characteristic of a model, whereas explainability + is an active characteristic used to clarify the internal decision-making process. + XAI addresses the ''black box'' nature of DL models by providing tools to interpret + models and their predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi + Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction + models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. + URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-a497e08d: + XAI refers to Explainable AI (Explainable Artificial Intelligence). In the context + of molecular property prediction models, XAI is used to explain black-box deep + learning models. The paper discusses that XAI methods can help users trust predictions + and assess if models are learning correct chemical principles. XAI approaches + in chemistry include counterfactual generation, feature attribution methods, + and various explanation representations (text, molecules, attributions, concepts). + The authors advocate for a ''black-box modeling first, followed by XAI'' approach + as a path to structure-property relationships without trading accuracy for interpretability.\nFrom + Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A + perspective on explanations of molecular prediction models. Journal of Chemical + Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain + leading peer-reviewed journal.\n\npqac-31f0bf23: XAI stands for Explainable + AI (Explainable Artificial Intelligence). It provides a way to avoid the trade-off + between accuracy and interpretability in deep learning models for chemical property + prediction. XAI can be viewed as a two-step process: first, developing an accurate + but uninterpretable DL model, and second, adding explanations to predictions. + An explanation is extra information that gives context and cause for predictions. + XAI methods can be classified as global or local interpretations, and as either + intrinsic (built into the model, ''white-box'') or extrinsic/post-hoc (applied + after training to any model). Post-hoc methods focus on interpreting models + through training data and feature attribution, surrogate models, and counterfactual + or contrastive explanations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi + Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction + models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. + URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-e544992f: + XAI refers to Explainable Artificial Intelligence for deep learning models in + chemistry. The excerpt discusses XAI methods becoming increasingly important + for interpreting black-box models and connecting explanations to structure-property + relationships. Specific model-agnostic XAI methods mentioned include ''Molecular + Model Agnostic Counterfactual Explanations'' (MMACE) and ''Explaining molecular + properties with natural language.'' These XAI approaches are used to interpret + deep learning models by generating counterfactual explanations and descriptor + explanations that help understand why models make certain predictions, particularly + in applications like blood-brain barrier permeation and solubility prediction.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\n\npqac-3068a32d: XAI (Explainable Artificial - Intelligence) refers to methods and techniques that make the predictions of - AI models interpretable and understandable to humans. In the context of molecular - prediction models, XAI is used to explain how specific molecular substructures - influence properties like solubility or scent. For example, counterfactuals - and descriptor-based explanations are employed to identify structural changes - that affect predictions. These explanations align with known chemical intuition, - such as the role of acidic/basic groups in solubility or ester groups in scent - prediction. XAI helps generalize structure-property relationships across molecules, - providing insights derived purely from data.\nFrom Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain + leading peer-reviewed journal.\n\npqac-9f403e51: XAI refers to Explainable AI + methods used to interpret molecular prediction models. The excerpt describes + several XAI techniques applied to chemistry: counterfactual explanations (based + on equation 6) that show how molecular modifications affect predictions, descriptor + explanations that identify which molecular features and substructures influence + predictions (using ECFP and MACCS descriptors), and methods to generate natural + language explanations. These XAI approaches help understand structure-property + relationships in tasks like solubility prediction and scent prediction by revealing + which molecular features (like functional groups, heteroatoms, ring structures) + contribute positively or negatively to model predictions.\nFrom Geemi P. Wellawatte, + Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\n\npqac-c9e2d30b: - XAI, or Explainable Artificial Intelligence, refers to methods and techniques - used to make the predictions of AI models interpretable and understandable to - humans. In the context of molecular property prediction models, XAI methods - like molecular counterfactual explanations and descriptor explanations are used - to explain black-box models. Counterfactual explanations involve minimal changes - to a molecule''s structure to alter its predicted properties, while descriptor - explanations use surrogate models to attribute predictions to specific chemical - features. These methods enhance trust, accessibility, and utility of AI in domains - like chemistry by providing actionable and interpretable insights into model - predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and - Andrew D. White. A perspective on explanations of molecular prediction models. - Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 50 citations and is from a domain - leading peer-reviewed journal.\n\npqac-e2d220f0: XAI, or Explainable Artificial - Intelligence, in the context of molecular property prediction models, refers - to methods that provide explanations for the predictions made by black-box models. - These explanations aim to increase user trust, assess if models are learning - correct chemical principles, and bridge the gap between accuracy and interpretability. - Key challenges in XAI include representation of explanations (e.g., text, molecular - structures), defining molecular distance for counterfactuals, adapting explanations - for different audiences (e.g., chemists, doctors), and evaluating the correctness - and applicability of explanations. XAI is expected to become increasingly important - in regulatory and industrial settings.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 50 citations and is from a domain leading peer-reviewed journal.\n\nValid - Keys: pqac-91399209, pqac-95b8b564, pqac-3068a32d, pqac-c9e2d30b, pqac-e2d220f0\n\n------------\n\nQuestion: + This article has 51 citations and is from a domain leading peer-reviewed journal.\n\nValid + Keys: pqac-61467535, pqac-a497e08d, pqac-31f0bf23, pqac-e544992f, pqac-9f403e51\n\n------------\n\nQuestion: What is XAI?\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the end of sentences, @@ -5581,7 +5299,7 @@ interactions: connection: - keep-alive content-length: - - "7152" + - "7157" content-type: - application/json host: @@ -5597,50 +5315,48 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA+JSgAEuAAAAAP//4kIwAQAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC - AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIA - AAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAA - AP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA + H4sIAAAAAAAAAwAAAP//4lKAAS4AAAAA///iQjABAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA //9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD/ - /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//5xY224byRH9 - lcK8WBSGXF1sr8WXQN5sAmEveTESA1FgFLuLnFr2dI+7uinRhoH9iLzk9/ZLgu6eGXIoeTfIiyGL - M92nTp06p6jPFetqWW3Izi+/fX3x6tvrlzdv5vIuPFzfyF/f/10u+DbG737gT1Vddd7tWJOvltU7 - 9Btnq7pqnSZTLStN1AnR9pvhh7m/rOrKrX4hFaplpRoMC+XazlDg/KbyhIF0tTxcXFeqcaxIquU/ - P1fGbTrvVlItbTSmrtZsWZoPnlCcrZaVBNdVdWUx8I4+fOVTtpoeq+VFXbUkghuqlp8r7wxVywpF - WALakNA4G8gmpN8/dgbZ4soQ3PrAa1aMBu5sIGN4Q1YRnL2/vZsBCyCsmYwGTZpVKgeCgxa3bDcQ - GoLOpw9SxQJuDS2qhi2BIfQ2PZPpk99+/XeHPrCKBr3ZQ+Lw8MzZn3+cHR5kG8h3nkIGiFZDtJp8 - qkPnXwUHTWzRSg2otSeRHgx7YNuQJxvgvloZVNv5yj3eV2AxRE9w1n1ENb+5vL65ubq4qaH899Xq - zerV65ezBby/vQOyqYkoQgKh8USgnE//WEVdkCWcnx8hZMNhf34OZ4mL8fIMb34CWxn0HPaJJSzV - zmo4P/8lSm4BZg7TUR8j2sAhdx1aCp6VwA4Nawyp0gPlEHyU8OB8SKSLzOrM1/k5DS0e8aHKx2UQ - w21HUH779T8CmhQLOzvv+9t5p0gyDS5uGsgSegwRTb5GYRQ0wFZ40wSZndA7W8CdhdYZyl0/hl16 - XWe+A6nG8sdIAoa3BOfnysVE8BpVvirXYg/0tGy5RQMSfFQhejTpvAOFgCaQnxIls54YTaI8d8H5 - +QqF9JPTJXrvNhioBwmG7fbksKRA1VDLCg2sKWsr3eAJopQJiVa5HfkRJM077zryYQ+eTLmu4U5q - kKgaQAFxJpZ2gfOwMs7p+cojW1ih90weOvItlcadTZTbC1nd0JW+vljNFvCuIcnaaZxOhPDGwgOH - 5gCbbYiczjogSBJOxpFloViz+maFwgo23sVOgO0JSJJA/vhTlcR/1OcC8/ri9Ru8vtLjgDVoVZqu - JN4aUCWRcTm2CDiGcgdb0K5Ftr02MnoJfg+rPZCV6A8WA7hzrEG66NlFSVM7Mp0PRZ2mMzUnz9KB - is6zVdwZkucNgq701dXF+mK2gO8aNIbshlK9ykRNoCkZc4YxKF1n01WH4V07D1NVZ+/CLs/zsQTz - o5p35IUAo2bKVJ3RYrOoh/oFdrIAZdgm57bD2NMOTcTTIwsRKiR/6Os7KuguSGrgQ3qJ2875Apwt - eNpEg8H5fT6crY4SfAoKoZAukd6Xkz0KcJAiniRYz3qTTkSloke1n586JmywK11ZO+mnFbNmslUO - ltLjHYT9pB9VXXlaJxcaIrSkI9tNtaz+tsV9DXdgqcwkWnkgn2We7CaTc1/9o8GQgu797d2f7iuI - cki2vAzowfYW8CMFaAkkoA9JgZ5Ql6eLPxKqJg1Pert/CcgGz5QtY4Oh6e/f0h46xzbI4t7e23cN - wZq9hPG1EystKqOMMo3qkMprp7LjOAsjxQnRNF8Hu32Sli/GjHzRR2RSBLRkixgTzCH4ygSeNrKG - aX71SpzEzyKvFpP2c3GbDOyFHILzODKfPT+b7LMBmQbnJA6fAzMkIBUEX4m85KCcPDl6RYBGHFgX - Cv8vJFk47YZBOZhSgvBHhl+sKFlVuu5ZtxolIaSc1aeaGNaV1M5UBIasipgXlpMw/Z0ozUCexOEQ - Gfx8cssCvn/ENnvlYIA5fPdTBxxZyMLH9ZpUCoZMCA/g3r59e5RpPeX547wXuGcd4Zjwnij2+jRp - gNquQeFPdMRQi1sSuL2bRPl0Sav7+T+qJK6mxfRyOqomz0zOWJky/IeJW1J2SNBCU5bFGLNTITa8 - aUzhQWPAuSbPO9IjO5mQv7joQ3NinbO+1aue3aHPz6jkVBmTmuqh/gRzdI/eYabmUXI+m00ay9Ng - P4zNYJ/TxX9aE6/Hkkb7TzmrYl7U+7Hs84dt+uol49U15HVeRi88zsRiEv9jZD27ARyHrafOk5AN - WDr99aWgHuO9bAL9C8dBnobiLkyc5//N6sziz+6hBtnb0JDwpz4GhPokWmZhsMDk++Hdccb0Jpn0 - kxv+YjJKk/4t4AfaA0pHKhTXfhodU2cutU/tfgHvDo428P37cn1mr6+BEg5GY/ZPHfvY5w4jPenz - zpndtM/jan3SrtuuM2NW5Q11/CIRhQbdHa+cYx58JQzg5359URyorBjpq3Qxl7yylzAKKa1lAT/h - liDfm59VBrlNXV2h2pJOa0tZTwqQYiwLuM0IPOloNVq1r4spgXDLmZoskdKi0Q/zSf1WZdwmuZxJ - plx9+fKvuorDHyM679oufAhuS1aq5eWr/HeQ8S8l4wdvLq/rKriAZvzV1cvLyy9f/gsAAP//AwBX - W3rRfBMAAA== + /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP// + QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//4xX227cRhL9lUK/rEbgjCVb + F2teFoovC2Ftx4sE2ACrhdHTLJKVaXbTXU2NJoaBfMS+5PfyJUF1kxRH9sZ5k4Z9qTp16pzqT4pK + tVY1uuXp5cXJ1fOLy4vTZfnT+9d7/48b892P77cvf3j+7Ppfe1WoLvg7KjGotXqJ2N24KmhVqNaX + aNValYgdI26fjH8sw6kqlN/8jCaqtTKNjivj285iJO9UoUxAHbFU64e7C2UaTwZZrf/zSVlfd8Fv + WK1db22hKnLEzYeAmr1Ta8XRd6pQTke6ww//5yu5Eu/V+qRQLTLrGtX6kwreolorzUwctYsSjXcR + nUT60/UNHL2676wmpzcW4TpEqsiQtnDjIlpLNTqDCwhYYWCIHlqMjS8ZtCuhCrrFnQ9bhhKZaoel + LCEXMXQBI3QBSzKCAkMVfAsCGVjUwZGr4ejlmwUkWLmATodIprc62D3osgzILItig3CrNlab7XLj + 728VOB37gOAr+cYIvOeILcNmD8bqQNV+2EcBSjTE5N2y1Vv5tQveIDMyHHUftVlenJ5dXJ4/Oy8g + /avPri7x5Hm5WMGNg9ZbTBHJtg5D3M8yKkDgwwQcQ88DPloO55wVxNBz3PkQG3Lyq4B2hxIh7BqM + DYYMBpZgGmzJaAtdIGeok0O1pdrBjmIDpW81Odg6v7NY1jiEP483QkkcydU9cYMMG4w7RAfHUz30 + hizF/fHvv/5P5wh///U3BnINBnQRmr7Vbtm7EoOQpUyc4Bh6I4DLLlfCMY6EyYcVsGvINKCNkNPu + oUaHQUdk6DzHZeMNBC2Iacmp8gG4QyM8O+DHYT0WK4Bbd+sEY911wWsjOek7T2WiRAy6pHwqaGP6 + oM1++TjTtAqXvqqEHBUFjlDiHVrfCRkaqpvluBlevhm4mMrE/YbxY48uCh27ziZSpdxdygYimsbR + x37i0rPT6mRTPX22WMGPiZhTrwQEoyPWPtAvWIJmOK6t32h7DEfpzuWOSgRyTHUTeQE+wLH1Ji3o + MCwfgJphuchN2IdEpJJEtErpPp9qHuQ4cwxHm55sXJKDx/AUgKt6lQoYUZprACAffIz3wxlPxkIe + w5FAQZJDFTEIviStvPgSgn/ifg4ROWP7EsH4XqKotIm9tnNAGY5yOG/fXr94tRh5RSW6KB3TkqNW + 21lXtr4UGg27tY0Yco9PrCoyRJgVQ8cYaNMnGMfaDHe+evH6/ZO31y9e/CBSZgJ10QdeQGx0TDyx + UpnEirEfJKfK9uiMXOr7aHw7cQHPz86urp5Wg65cVWcnz/D8dLGCdxKLtmC1q3td4yEEEq7xzmAX + lxvNuZ5D0YYVkohlD9h21u+z5Fpy24Nuin6uKEm8CBksbRHY237oDx9gY70vlxspJGx0CIQBOgwt + ZpZ/K53v9rAJVNaCQRY938eujzzXreXU8SPFs3pW2kgcSSwmXJeT2Aa0OemGOhE34+8wiHSSRZBz + Y2bflPkdSuiVD6125rFGDrE/UFQVKmDVs7aj72ZLJVertfp+q/cF3IDDDLF2vBPGNwhC6ATOrfq3 + 8INYsvn7rYJ+sqxhiEjVjHgfV/AGI7SipzpEkaPa57XB93UDqE0zWNq4BVCaGFMxa52aPKDFO+2i + UE+ylChWopOvRduGDEcNhRIr8Z0EtWb4C05fgKY2hTW38UPXntHsT1znCyk+GiznbzPDmVtNWpWV + 51AUsrEM1j50uyA1i2OxgmtpiVakQjb93HOcSwNnK5auD2RYBJoY2PfBoJRvi/vkTIL+RjOZjF0y + mBRSSVWVYqbp/oih5QT+O7yPjwYICEhxsMGvwX9TTC6ord0DfWPaSEhP6Y3ildr5kaIO9jsG/hXt + S/YEuo+NDwzc1zVyBA1x55ccsZsMdz1YphhICRqmISxXshC4XDZHSXJAVZclTxT2+ftYNnJZljiG + fQpPAB+vEwkQl9wnUA+aVSihXclyXnL/MdRhnivyZCD0/AvDQALTWBmKKxoKNEKa7DOb85PkwCnM + yU4nKxySbdB2M+3K+WSl2OxhGJUkrIlA6ba475BHAChA14fOM/JD5qPiJt3r08Q6iehhvA+IFpkQ + yT/T4e7PvCaj4J1DEzMG0X9LhbmQSbfqbeoWvNdtGlR9Na/yLIvRKKDEqMnyfCL4GnkPOj+LKX7s + M3cuipk1H65MVvNg4cVXkx+nsilqbvwOuiD6InXuOVn63B7TIGikaLNOTB3vdwXw3skDhH7JOk68 + TijS41ZPWE1slMXTqFkApqqOGjCVMhVn8BA+THZkYJEjvtOBfP+gCUeHkHLxNQngRcYo05fcTIkf + jHx8O2V8fR+BtUkaPO+zFbwbHHKQp5l0cvGFcKZn4JeD6BT9vPWKWd9Nw+jiQTkPRvDE+uJgess5 + zpl5KEBR85ZX8IIiZv+VN2iWoy6QjmhFitTnz/8tVD++qLvg2y5+iH6LjtX69OLpubypx+f+9OHy + 8rxQ0Udtp5+enp2cFIcHfBgaI08gnz//AQAA//8DALvYZ/CxEQAA headers: Access-Control-Allow-Origin: - "*" CF-RAY: - - 98f3570e6dfa1b45-LAX + - 991ac07b2f80405d-SJC Connection: - keep-alive Content-Encoding: @@ -5648,7 +5364,7 @@ interactions: Content-Type: - application/json Date: - - Thu, 16 Oct 2025 00:11:40 GMT + - Mon, 20 Oct 2025 18:59:21 GMT Permissions-Policy: - payment=(self "https://checkout.stripe.com" "https://connect-js.stripe.com" "https://js.stripe.com" "https://*.js.stripe.com" "https://hooks.stripe.com") diff --git a/tests/cassettes/test_partitioning_fn_docs[False].yaml b/tests/cassettes/test_partitioning_fn_docs[False].yaml index 8c89c39c1..6e971f3af 100644 --- a/tests/cassettes/test_partitioning_fn_docs[False].yaml +++ b/tests/cassettes/test_partitioning_fn_docs[False].yaml @@ -156,7 +156,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ab2d906cf1b-SJC + - 991b1d43cf1c5c1b-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:56 GMT + - Mon, 20 Oct 2025 20:02:42 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=dOJf8V7VlQHXDmj0fW5rR.69kTI_9L.kTwc_wjJX3YY-1760990456-1.0.1.1-_r2BkaA8wOhCkazpQ5EqaQ.YY9tFUsmq9Q.rjpWU8iM2UTCjCDxHQw9oRugNAEEGYyci5D.zbft_KiVhavK6uzxm.yarBiEj2PrGTSZF0Lw; - path=/; expires=Mon, 20-Oct-25 20:30:56 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=VDJ634yLCMCD26ANVluzq5XN7_DytDTBXs_7GL5cizk-1760990562-1.0.1.1-Q2NAmmjTAPoygDud_2I0blHNmID22iwZZhq8WrhXkZ38tC0Go8o_aFHmRURqxLgjBuLF3lvMg3KJwbIUlDgt.pGaoES0Y5WwvPBww8_FRsU; + path=/; expires=Mon, 20-Oct-25 20:32:42 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=K0cxQNAncmkINNGLHj8dzU0_F.Y44IpbvKf2Mx5aNso-1760990456928-0.0.1.1-604800000; + - _cfuvid=vZwfp5IsAeusLiVphFIxj.lzWVMf4Nig_sr.n4ADo6o-1760990562024-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-canary-6c65c69d9f-kj7zt + - envoy-router-848c7cfc5-ncw8t X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "48" + - "53" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "82" + - "74" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -212,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_304b4e49a38c4d6aacaf91b70090468e + - req_b45a59b8d71a9ce587c78c22dca275b6 status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaXQ+6Orvmz59PsbJOnR0RkN6sM95BQIqgiJPJBBARFJG3At3Z332C/yd7Zk5M - oAQptNd9Xb/2P//1119/N2mVZ8Pf//z197vsh7//x3rungzJ3//89T//9ddff/31n7/f/+/KvE7z - +738FL/Lf43l557Pf//zF/PfZ/7vRf/89TdUfemxp+WMmP1dZUWViz/4fJbfVb+77gsQNieLSGnz - DhdIz4noh+1xnNSdRPtp344w98JlFPapETL7JObBMF2C8xRuKbNBSQ2fIue9b29BuLwNwYdrRc+j - gG+ITmXm5JC3wpWY/b2qJql/JnCPjyY+7/ZblfZomyPrcLDx9cQbDjvxBivWd40n8XOxnZ3Y1DYq - TbsZdxd7g0Y7Al/4Pf+R7250zvmphPbqsvisRnM6Q3DLkc1aPlE/SpRyWXhtoXnSO1amR0OpEh9L - xLtpTUxYejqe+i8jXref2gsnTMKZcG8DmPZlj8xYl3SpqZ/DcJhNrM2VWe12FYlhd7NqD1JPTye3 - inv0fCUPLJ3iU8qcLgcfHMJgco7dU0p5p/Phhc82ydx7QjnCTxsE24Ih1vbsOiwx7AnwF474Thmn - mi6H14K2B32H08KWQ5rbbC46RbElSfsgaHb7tIU7qzHYco5uNzO5XAKZKgMfNGmsFlavWRGluUEw - 9GI45G5yBsa4R+R40Ce0SBvi729dYBILHaSUqfOSETfhuyKPb4JDjrf4M5rMDEbmjkbKbId8BM/J - W2+3PHfOpH5HQ9yY1CcK2QQOFaKOQbuFqcnj080dTfLmhUbH7LF28BPEtUnpicEpRjgwWS1kX5vX - C6qk/BDjjWW0480+R/LLfBL1u00dtv0gQIYTZ95OQa6zVIUSiE1ic9h7n3OHu0XJBu7y6eR1z7gJ - p1I1FXjwKh4nq8fqazq6Bchx6BFNE9SQUWtqiVhoAevOkjg76wuB8HRuHtbn/Iam5G3VosIuM7F7 - VaaMHcc2aJSdPL798s6oZxsDTgv7wOb2pXe7UJEDUSZHjTj4MaizVy25eNICFeMBvely4G88wKmz - sJp6ardj5soXjxZNxvbGIDSNl3ePxLjUsVQZUke9z+yDNPAPkpFRSGdjueRwQxt23B6Nczptr4oi - xt9TjXUm3VSUywIDsOlp2BknF3GCqhio3RkVceOsr+bqfK3FvLhXWLHcTN0FHdeLdGQnbEae2H3t - 43wWl40njCLf7SnVu7AXWf7Mk1utfhyaMDtfxOjaYal40GreHHgftlZqYMM4HBF3OVkNGK7peHwl - zc70ERIPWJpl+P6+dWh0yDRCHZ4lnAkHIV04IWlgarGOtbEu0dQei0y8m0XsvUN/F458ny9wnsoz - vilZ1s2u7tsiHS0ZHx50QbMeUltkaZ6NTcpL1cx+bQ1e+36P1ccLOd/S249gzsWbXFBVOtOidWfA - oXTFYSbK6e5ZphkUuGOw/EJZ2kaCPEEWCSX29kydfhsBgbBErwtR28sbTQHtashDeI77uFOqnaI+ - eDBdImNZYLhw2NwDBe3MGWH3inZoSTvhvDeVzYFcRimv2vf1a8Ar8mWM1+9HZ2qPSHRVljj2Juqm - A2coYu3GB2Kd7hJl861VIvZ5U7x6+dQpZYwYoGYXnsh6m3XTVm18kR3wmazjr5rJy4mg99TB272M - S8re92/2147d9X23rD6yoNnWRHDjNinVN2KOwrt9xndRflVz1T41EHPdJ/mt6MI+YpUNOm7C3uM3 - hq7uDNKW6JRUIj5UhhKy+/SzgVhnRhzR3RCOgXXywW9rdSzeku3sOk9xYdmfc3yrVVOlbdK6KOrx - B6uOZjgsm/IREHY5Yuvz/FQNt/cmWNJsJucye6eTIRzO4OH2iq3zJDq0Y28vgVWrC5FplKkLub0K - cZ1/3u7WXVLm9d0A+Dcce7xz7KuJpFIC0T5+E/3gSCnzDEUWZdf3CR+z4VBN3ngLRBGBSE6959DJ - 1OUNtEZpYumzKGgyBDkCsIcTScVeTenVCRLIpleJ4/7YqlQqxh6Uh+WQ05AtdCqt5whdPpX49hyy - cHncW17Iz1+f3BCUDmVPpwIeZaaRXB5qRLFa9OLpI7n4LOADmnpzcUFjng+i2zczZFY9hbjqUxId - T3lIs/DRQvlWLjidyzca67sH4OHm+qsP3TTU50L033JHDPG4OLPnxz3E8lfG0ayeq+kVlj6cyaHB - 922zCenJewbi3Sxj7GrbbTfWdwNAfToF0crPyemO9BgjI7ff2Ds4ijN9572EKjGYPDS+n+osZUQA - 6+DY2LqfwmqZxWcpKrNwITImL0Q/ZqYIetOEJDh5B5UJ3MKAyFoIxhsfOxNLC17Ut68D9mWPoiUS - Dgu0RmGS6/05qLSYxxiG520gqlq36E///bA5YtvxJvUl9d9YvPCaRML4E3XLWekUaA6ZRdKKicIp - LGFCjMnK2GSMtqP+wajBrhKTJBF3VdfvexbN7nQnymEa6PJsuhy4CJ0J3uhqymWiwoN5vE3EoK3c - 7QbJOMMpeYretOof/YyPEjSsusR2F8VheaWIYOISlbhNbatzvH80IOtPHZ/lZdvNWXP3OfbyIuSh - dEz69UckgXytH1h5Vks4+7nrAbkvQGTHG8NJI9Ikfs7tmzjcqUppww4WiMj3iKU823Qytx8X6tjL - vO1yuqfcTO0eROdqksOqT5NsxQyabmVE9NC/pNR6vzPx0Fyzoy+yXzqyeRWA8+p7nIwt6sbn5dBD - 4o1bj5dDNexZNmWF9fuOpXd6hTRnvj1wGieM6Blb6ZyYkiQWFwFGwTo53WJlZQEM2jZY0TGXzu5W - TMAeuBHLmealTJxYErqeBmFkY+WgMsfgyYuXdq+Q2ymm6pzuXQ3oJDgepwDuloqNQFRQdyQKPT0r - ttgnPrCXmmA9OArqYB/3Z5CE9DkCKot05OpJEFd9GOdVH79ZYNXAf1+vVa/KsF+6kQEjlBUSOlqt - 9j5oi7jgNifn43xK523hAnCBxK9+5BVS1Yx68KSLifXtfl/Ru6WWoNznAp/0x0Tb8VMkIDFMhKU+ - f6fdnHg+GN/gMPIqOaXsUbp6YL80dtyw3LPr5wat9f9r4dAeUUrlWk7Ex0XceYzJfWhvMakGn2M/ - EvmFIO33d4cB0JndmH5MHc1V+9XgaFs6uY/+jU6761yAtB8XbLNWRJm7CC3kR6XFxn2uq+XUP1kh - 9eU3UcGTHboPJ17s3MEijz3hu9UPvITgsFx+13dj+0EbmCyn82glvNF8UPgFcYOdjoVX8ynp3+UC - MsEaOUSgoQnb1ggdNBhfXEtXl3U8iVetPGCJg9U/HkFBxbZGP//RLZn5XMRE4YeRu0XPdL5tlghp - mWtjh2mjtAxr9ILKN+korv0jj9DV0M9/XnaM1rEKTW304fU7yWquT8dHcWEh3ZPXH7/L8U7lQ173 - LUk3QpvOz0dTgoQjlSi+VDoMLYJR5HcJN25aHtPpWKsN7DgpJP46n5cTySY4YuWJlVdxVakOdgnh - 9Q34JHy7avZzzQNsuhoJ1vE9gTFOwup/iFTfANGit0oU8bIwbkp36CZ+EBqhWpwj8faMETKP7CEh - afP2PMgd26l2u1JD/Ku3RlEWi3RudeYFwWG6kPNeVtAO95IBo6P3o2gpl/V+SytI5QLEjcrKmZlx - OotxNaZEzxrBmblOlOC50z2v0fxGXcIjZ8OrNM7kMPSj0x00zMDt5g3jhp87Z97uDzH6+a+DrH7R - rJ0kV7xW85m4h0sbMqX17dHBHzli1kcSfrc4t0Aeywt20EdA83IcA7jUUv1n/PfPUGTQOv7Jr17Q - j/bU4HiBeLyjoKbD7/nch554i2LWaLnol41Y+TolelgXDltgokDwaRVyWftDmCHLofLG8zhpDl/N - +ypkYPVjOP7lk3zQGRC6cjt+SGKp9fUyu2DHQTW+3MpOF8yJALt313iDX/XqeryBJHkGxAc6VkOr - yg2secTbzaGnMlq8DeBYPpLV34bV5IO7ALflX+SA82+3ID9l4E4sESvdPa1o0PqN6AXJE+v1oKQz - qdlAnJ/T4tEGtmh+GXGJdoVxJ6Yc3xEdaRRA36GEWAEbVtO49QGO1pxgrx40h4JnN7Bs0Bc7XTB3 - 08cfQXiUuTaKBb8Lx4NDR1Fy7IjI6kQduqA4+lP/ZcfzUu5yklphHA4GxhKuQ2qYjgUl2jhEJzet - 272ytwtFzy7YuxVOOgmPzQLRc5JGdvkYIUU7z4LHxo9ITDvdWY5RMcL3ExJ8fHqSw8pT4wKqtJ6Y - t+gZfn5+tHwTbWQ661P98gtU/Usmlm3P6bwc6wA86WpiZSM03ay9vsA95TYiuvkZ0wV9/UCM6jYj - Lj99ujmTTwvQSsmx+7RGNPn7E4u4knyI9JZsdcmbrYQO9oMQ8zM/nYVltqsf1g7YqBumW6K6kMSH - tWjeM7E1Onr6LED06N/YqO8WXUpTZ8QTf2sxtpDVsSV9SZD66hs7rNeoPTq3LVwr4z1yWVir02Zz - LNDB7zliXa+2Qyvl0MN3KFlieRdR7fUZjdB3XoetoQbab4eoF+9yeBo3rmXQyd/fWBDfqonN+ohD - VnjaLYq0t0K0sVbQcLW98vf+8e1AXGeH2FZBw8GIMeYjHU3XTVxDEIVXotyVlDLYRS3s5gfyltVP - cfahLGGrFi2xGDlD3KAdbTBACcZTrxbqwKWexzsxf8OhxCzqp9yDAjNlXBxK3zqcwzvfwlEVNkRi - Y6+i7OlWCNtl3mGPvAJ1Lt9GDOfv605UiVmcLwUuEWFbMuMUaWE1u8SrwfJ1GV/MTKlYFTUTnO+L - 7e31l5TSW0+anz4QjPmjM6TszQZRCTbEBDHuuN98eKdL6M3tWQmZ60mIQV1Kh5ha8axm0zltkHrs - Px5SizRdxmh+QSS+Auwri95xyaJEIr4K1NucuFc6L9ytBF1Q5zUfQUW2L2eCtX4RaeBidZlP6hmp - 6oliT0EDnVhTGaFXjumf+jNngfQCa9NlWOb6Gs3TdumBoOY7Cu5SqhPfPDb/9rNcdgx3waVSwBQj - btzsGSPtXFmOBF3nbXzTX0W48qEMsPzt8YOc+e675nexjvfOuN/Zh5DEYSHBw7vikeM/T3XVkxZe - e8Ve/fijoyfv64MsnBuCn8A4SxKIPKzzBWtGyKo9qIiBlWeN+5gdw/lcRYVIYr4gv3wy41BtRaug - k7ck+lWlGyuL0fw0VKIc3qW6tO+DBIfNq8J2N7B0zTMjKC3k+HC+XBHnnT4LJDem8kTV+YR//O7q - j/FKsDqCdoYNb71yiTsHfbh4+l4QpmOv4tM+fXWD478CtPoTcrS/SrWgbxzAu4r33nb1H9Mvr/Uc - GYhkWnd1WTKHh+0jAnwc/T0arckNYK13Xne5RX94A4rRRSKSV/PhZPi5Iax66VGXqoiWX92F5870 - sKWSefWfuwQIar8ekxtJNRwtVYMyn48E54za9Tdvawif7pX+8ns6bAttAyeuRyRTFAGRa3ZwRZDg - tvqxLOS8z96Hq62fPd7rPmgidxTBQ6uvv3rRzc636eEuiD4+P9VtOtjP1ACa0WjN30lKfCNt4LCp - K2K3D4xmvP2yaGdShJ29JDs06zMNqZfLEV9u3S6lr/tsiExxiEZmmb1qZ/lbFhwZKhK/yIgmhXuC - OD+U5k9eXH5+qOm907i7Fd+ux3RrweCPG2x9+jCd9xAHf/JU0N1RNVlzYaPouUh/2v/kUc4xZfI7 - Zo6XMws36N7kUJwP3U+foDgR7MU344MW9f0IwN4iy/sos4po545nwTqL95Wf7enEb76ZoJ/6+ziv - ekTMcinEkr3R8Tffd+J1e0a72+6Cf/cbV94hPBKnJDbXNx3DN1cAzk4Cj96twSGrXxbk6+tBTiuv - mSE45ajYCC5e865KJnVfg5Ry+jgFoDqL/8pcwLulwGqvqRUjkyz6w6vM/q5WrEJDC9Rzk+OwEnS6 - TE/B+lPv5HMdOuyOJMZvPGDvWst0aRIrgyhhD8Q6bN/dcnhNlrhHbx4flAy6adUv1HjRC2Po7yF5 - hJoBiO84fLyjqSKXENW/fOaxXvsKZ8fvfWD38gdnzXyh00/ftUa6k8cbV9WSKtiAy1I13t7qfcpI - Yuyh+BvW4262ypTuSumMTh5pvf35wqHFfQKLnveswVb7jdUlsG4B+OZh80cvmP2h1GD12+TaNySd - n9T2kXlMJ2LM6rmb7byxgHHH+8jYjNvNZk5H2M13RHzbL+gcdS9LSC4tS45fQUmpei888edfjAFp - 6u433pnCicZGz4kzHapXIK68aKxp+6z+5NnlpIoeExYe6s+dEoP9Mljijhez2j3LMAdTgYNX4G/Y - TZLou+jXf/a0MGg5ngzl55/Gl4C/qH0P4oS0y1b1Ng/coJnUGx85Dkm9quTsauXNNZqPX5EYCSMj - SspPjlY+hT3psFObA+dJaNU/8qgKHdWdNGVo1e+RnVWmmjYeJPCcvGWcz+knHXTpFkMvBvr4OfG1 - M1GXB7ThxiuWL98x/CampIDzGnssrzxoaG/RGVZeOravaUmnOm8Z+PDmHZsBeobzh6AEHmlxJPma - F2a9NRmk8YNL5Me+DGkxogyoTcBDq99+m8+6Bd8qv0QLu6Sb1jwN93jPYtcNiEo19sOg5ZBesV69 - 86ppYf+COWEQceZSRztlUC1gD1NGMn4yu7nLZ0m8wfdNrGksuqk+MhKot1IgHiV3uhyQxsBmvvse - n/JSNyi3bwJkfHTebast3SJy6oJWfoItKGlKlzLkwXw8bI9lxTuak2mTwz2MOmzqeybsD9XLF8Ot - cMdefd2ntNwzEpyUfeyFHyUKF+k8MWIsNKdxMJ8bOlTDWQHh2AUeJLxQdYVyCUQ68Q5xyhk585XO - E6R7aYftUFjS6eZxBsx836w88pgut2JexJ+/sSonQ9NJS3JER2bC+vK8OCPzOpW/erzq71Od/fTk - i7/5qwXBB03XBmtoT+gbK2dnoE2fpoBWPvLT25RTLkmNtOi7YJMt44o9II0Vfv1z3btA55s8RFAT - K8CXlWeT88McxS1/PuIH9Pd0NlQ3gvNUnMelo0a6q9WLC12w8T3Grexwecxa+/MjHrfy3em3foQ8 - kVv9sxdOA+dE8EjLI1ZuQpf23N6YkL6tD95+I3PpmgcV+PFNHOxO6Df/4CPzGTkLyaWapPAFe+H2 - eBPt8Si6mV6QgJaTLI78qm9zXNkbGC7vBCfPgHPm+uwqaF3Pw8evUIa7IJg0uCk+hxUlWLo+ns49 - aJUtY+c9Piib2VkPQWm23rK20++bjfbWIzkR+02HjhySWwQ/HuZ34tjNXv1OYAMvSvLs7jsD4QYN - RmbuV17HOaTbuwW038Af5x9vRY2bgMtr3ZovrI6mz7QAuYoXbFz0V1jo9uSJcpUsf/5/ihNJEdf8 - 6sGOlpSaOF7+rAdcio1GuUHTbVGxvIu34JZzxprG+U/PvK9QgTONl6GHCfyHNyvXIp3Om96Gypxy - khQ4pVN580txVr3olxfUqeVy/sdLR6bh3uHc+6KNPjETkMc9vVeUi7gETM6c/s23rTPbwqzudaIG - 5TNcnk2VQbbFrIfW8U7su+YDz+o1cY4oTZff+/2t52QrT1gie2rElQ+PTLJpnWWfkg3cCuuFwzeD - U3anIF4gQXfD2FX36jcxLQVunJZgY+XLjHNnJdjd7BqrK09lW3Tp4Z7nHna/zEndufGe/6Nf7pGV - 0O5DaAzGW8twql5IN/CM0ojHnvd+vDz8raf94TP6bCkpK1atAi518bh+j2q+BJ/+z/qJ8vg2dOIC - NYBKfc0Y2wfSkauTxEhIGJ84UhWhlRed4cHLmFwxvVfU2nx5uLsxQ6JrnztTKk2KKBy/AZZDYeoo - QRWPZvGjjTszUzoq2YkEqhpSog6B3TFhCQtMM9cRU+uGcEgOCwj7mZMwzrcknNiD2KD8oWnYWflb - fxehgVrYvMflx3+QLPGiINY3rEeVRhehEmteeE4mDplJR8zqf9DRtnWvFLkhXIRjwSOvottxd+t2 - 4Xw+yox4sew9XnlLOjV6wAD/rV/YKM2Ns9hnORLn57IQ7eALdDyKL090jppB1vXolH7o4oq6dFmI - UZq5M272mxHK9lNgR3htq7E7By50rnTDSRofK/aSB7EYk2IgmnTr0fI5LYz4929XwH/966+//tdv - h0Hd3PP3ujFgyOfhP/57q8B/cP/R18n7/WcbwtgnRf73P//egfD3t2vq7/C/h+aVf/q///mL+7PV - 4O+hGZL3/3P6X+sf/de//g8AAAD//wMAX/Ywv94gAAA= + H4sIAAAAAAAAAwAAAP//VJpdD7o6u+bPn0+xsk6dHRGQ3qwz3kFAiqCIk8kEEBEUkbcC3dnffYL/ + J3tmTkygBCm0131dv/Y///XXX383aZVnw9///PX3u+yHv//Heu6eDMnf//z1P//1119//fWfv9// + 78q8TvP7vfwUv8t/jeXnns9///MX899n/u9F//z1N1R96bGn5YyY/V1lRZWLP/h8lt9Vv7vuCxA2 + J4tIafMOF0jPieiH7XGc1J1E+2nfjjD3wmUU9qkRMvsk5sEwXYLzFG4ps0FJDZ8i571vb0G4vA3B + h2tFz6OAb4hOZebkkLfClZj9vaomqX8mcI+PJj7v9luV9mibI+twsPH1xBsOO/EGK9Z3jSfxc7Gd + ndjUNipNuxl3F3uDRjsCX/g9/5HvbnTO+amE9uqy+KxGczpDcMuRzVo+UT9KlHJZeG2hedI7VqZH + Q6kSH0vEu2lNTFh6Op76LyNet5/aCydMwplwbwOY9mWPzFiXdKmpn8NwmE2szZVZ7XYViWF3s2oP + Uk9PJ7eKe/R8JQ8sneJTypwuBx8cwmByjt1TSnmn8+GFzzbJ3HtCOcJPGwTbgiHW9uw6LDHsCfAX + jvhOGaeaLofXgrYHfYfTwpZDmttsLjpFsSVJ+yBodvu0hTurMdhyjm43M7lcApkqAx80aawWVq9Z + EaW5QTD0YjjkbnIGxrhH5HjQJ7RIG+Lvb11gEgsdpJSp85IRN+G7Io9vgkOOt/gzmswMRuaORsps + h3wEz8lbb7c8d86kfkdD3JjUJwrZBA4Voo5Bu4WpyePTzR1N8uaFRsfssXbwE8S1SemJwSlGODBZ + LWRfm9cLqqT8EOONZbTjzT5H8st8EvW7TR22/SBAhhNn3k5BrrNUhRKITWJz2Hufc4e7RckG7vLp + 5HXPuAmnUjUVePAqHierx+prOroFyHHoEU0T1JBRa2qJWGgB686SODvrC4HwdG4e1uf8hqbkbdWi + wi4zsXtVpowdxzZolJ08vv3yzqhnGwNOC/vA5vald7tQkQNRJkeNOPgxqLNXLbl40gIV4wG96XLg + bzzAqbOwmnpqt2PmyhePFk3G9sYgNI2Xd4/EuNSxVBlSR73P7IM08A+SkVFIZ2O55HBDG3bcHo1z + Om2viiLG31ONdSbdVJTLAgOw6WnYGScXcYKqGKjdGRVx46yv5up8rcW8uFdYsdxM3QUd14t0ZCds + Rp7Yfe3jfBaXjSeMIt/tKdW7sBdZ/syTW61+HJowO1/E6NphqXjQat4ceB+2VmpgwzgcEXc5WQ0Y + rul4fCXNzvQREg9YmmX4/r51aHTINEIdniWcCQchXTghaWBqsY61sS7R1B6LTLybRey9Q38Xjnyf + L3CeyjO+KVnWza7u2yIdLRkfHnRBsx5SW2Rpno1NykvVzH5tDV77fo/Vxws539Lbj2DOxZtcUFU6 + 06J1Z8ChdMVhJsrp7lmmGRS4Y7D8QlnaRoI8QRYJJfb2TJ1+GwGBsESvC1HbyxtNAe1qyEN4jvu4 + U6qdoj54MF0iY1lguHDY3AMF7cwZYfeKdmhJO+G8N5XNgVxGKa/a9/VrwCvyZYzX70dnao9IdFWW + OPYm6qYDZyhi7cYHYp3uEmXzrVUi9nlTvHr51ClljBigZheeyHqbddNWbXyRHfCZrOOvmsnLiaD3 + 1MHbvYxLyt73b/bXjt31fbesPrKg2dZEcOM2KdU3Yo7Cu33Gd1F+VXPVPjUQc90n+a3owj5ilQ06 + bsLe4zeGru4M0pbolFQiPlSGErL79LOBWGdGHNHdEI6BdfLBb2t1LN6S7ew6T3Fh2Z9zfKtVU6Vt + 0roo6vEHq45mOCyb8hEQdjli6/P8VA239yZY0mwm5zJ7p5MhHM7g4faKrfMkOrRjby+BVasLkWmU + qQu5vQpxnX/e7tZdUub13QD4Nxx7vHPsq4mkUgLRPn4T/eBIKfMMRRZl1/cJH7PhUE3eeAtEEYFI + Tr3n0MnU5Q20Rmli6bMoaDIEOQKwhxNJxV5N6dUJEsimV4nj/tiqVCrGHpSH5ZDTkC10Kq3nCF0+ + lfj2HLJwedxbXsjPX5/cEJQOZU+nAh5lppFcHmpEsVr04ukjufgs4AOaenNxQWOeD6LbNzNkVj2F + uOpTEh1PeUiz8NFC+VYuOJ3LNxrruwfg4eb6qw/dNNTnQvTfckcM8bg4s+fHPcTyV8bRrJ6r6RWW + PpzJocH3bbMJ6cl7BuLdLGPsatttN9Z3A0B9OgXRys/J6Y70GCMjt9/YOziKM33nvYQqMZg8NL6f + 6ixlRADr4NjYup/CapnFZykqs3AhMiYvRD9mpgh604QkOHkHlQncwoDIWgjGGx87E0sLXtS3rwP2 + ZY+iJRIOC7RGYZLr/TmotJjHGIbnbSCqWrfoT//9sDli2/Em9SX131i88JpEwvgTdctZ6RRoDplF + 0oqJwiksYUKMycrYZIy2o/7BqMGuEpMkEXdV1+97Fs3udCfKYRro8my6HLgInQne6GrKZaLCg3m8 + TcSgrdztBsk4wyl5it606h/9jI8SNKy6xHYXxWF5pYhg4hKVuE1tq3O8fzQg608dn+Vl281Zc/c5 + 9vIi5KF0TPr1RySBfK0fWHlWSzj7uesBuS9AZMcbw0kj0iR+zu2bONypSmnDDhaIyPeIpTzbdDK3 + Hxfq2Mu87XK6p9xM7R5E52qSw6pPk2zFDJpuZUT00L+k1Hq/M/HQXLOjL7JfOrJ5FYDz6nucjC3q + xufl0EPijVuPl0M17Fk2ZYX1+46ld3qFNGe+PXAaJ4zoGVvpnJiSJBYXAUbBOjndYmVlAQzaNljR + MZfO7lZMwB64EcuZ5qVMnFgSup4GYWRj5aAyx+DJi5d2r5DbKabqnO5dDegkOB6nAO6Wio1AVFB3 + JAo9PSu22Cc+sJeaYD04CupgH/dnkIT0OQIqi3Tk6kkQV30Y51Ufv1lg1cB/X69Vr8qwX7qRASOU + FRI6Wq32PmiLuOA2J+fjfErnbeECcIHEr37kFVLVjHrwpIuJ9e1+X9G7pZag3OcCn/THRNvxUyQg + MUyEpT5/p92ceD4Y3+Aw8io5pexRunpgvzR23LDcs+vnBq31/2vh0B5RSuVaTsTHRdx5jMl9aG8x + qQafYz8S+YUg7fd3hwHQmd2YfkwdzVX71eBoWzq5j/6NTrvrXIC0Hxdss1ZEmbsILeRHpcXGfa6r + 5dQ/WSH15TdRwZMdug8nXuzcwSKPPeG71Q+8hOCwXH7Xd2P7QRuYLKfzaCW80XxQ+AVxg52OhVfz + Kenf5QIywRo5RKChCdvWCB00GF9cS1eXdTyJV608YImD1T8eQUHFtkY//9EtmflcxEThh5G7Rc90 + vm2WCGmZa2OHaaO0DGv0gso36Siu/SOP0NXQz39edozWsQpNbfTh9TvJaq5Px0dxYSHdk9cfv8vx + TuVDXvctSTdCm87PR1OChCOVKL5UOgwtglHkdwk3bloe0+lYqw3sOCkk/jqflxPJJjhi5YmVV3FV + qQ52CeH1DfgkfLtq9nPNA2y6GgnW8T2BMU7C6n+IVN8A0aK3ShTxsjBuSnfoJn4QGqFanCPx9owR + Mo/sISFp8/Y8yB3bqXa7UkP8q7dGURaLdG515gXBYbqQ815W0A73kgGjo/ejaCmX9X5LK0jlAsSN + ysqZmXE6i3E1pkTPGsGZuU6U4LnTPa/R/EZdwiNnw6s0zuQw9KPTHTTMwO3mDeOGnztn3u4PMfr5 + r4OsftGsnSRXvFbzmbiHSxsypfXt0cEfOWLWRxJ+tzi3QB7LC3bQR0DzchwDuNRS/Wf8989QZNA6 + /smvXtCP9tTgeIF4vKOgpsPv+dyHnniLYtZoueiXjVj5OiV6WBcOW2CiQPBpFXJZ+0OYIcuh8sbz + OGkOX837KmRg9WM4/uWTfNAZELpyO35IYqn19TK7YMdBNb7cyk4XzIkAu3fXeINf9ep6vIEkeQbE + BzpWQ6vKDax5xNvNoacyWrwN4Fg+ktXfhtXkg7sAt+Vf5IDzb7cgP2XgTiwRK909rWjQ+o3oBckT + 6/WgpDOp2UCcn9Pi0Qa2aH4ZcYl2hXEnphzfER1pFEDfoYRYARtW07j1AY7WnGCvHjSHgmc3sGzQ + FztdMHfTxx9BeJS5NooFvwvHg0NHUXLsiMjqRB26oDj6U/9lx/NS7nKSWmEcDgbGEq5DapiOBSXa + OEQnN63bvbK3C0XPLti7FU46CY/NAtFzkkZ2+RghRTvPgsfGj0hMO91ZjlExwvcTEnx8epLDylPj + Aqq0npi36Bl+fn60fBNtZDrrU/3yC1T9SyaWbc/pvBzrADzpamJlIzTdrL2+wD3lNiK6+RnTBX39 + QIzqNiMuP326OZNPC9BKybH7tEY0+fsTi7iSfIj0lmx1yZuthA72gxDzMz+dhWW2qx/WDtioG6Zb + orqQxIe1aN4zsTU6evosQPTo39io7xZdSlNnxBN/azG2kNWxJX1JkPrqGzus16g9OrctXCvjPXJZ + WKvTZnMs0MHvOWJdr7ZDK+XQw3coWWJ5F1Ht9RmN0Hdeh62hBtpvh6gX73J4GjeuZdDJ399YEN+q + ic36iENWeNotirS3QrSxVtBwtb3y9/7x7UBcZ4fYVkHDwYgx5iMdTddNXEMQhVei3JWUMthFLezm + B/KW1U9x9qEsYasWLbEYOUPcoB1tMEAJxlOvFurApZ7HOzF/w6HELOqn3IMCM2VcHErfOpzDO9/C + URU2RGJjr6Ls6VYI22XeYY+8AnUu30YM5+/rTlSJWZwvBS4RYVsy4xRpYTW7xKvB8nUZX8xMqVgV + NROc74vt7fWXlNJbT5qfPhCM+aMzpOzNBlEJNsQEMe6433x4p0voze1ZCZnrSYhBXUqHmFrxrGbT + OW2Qeuw/HlKLNF3GaH5BJL4C7CuL3nHJokQivgrU25y4Vzov3K0EXVDnNR9BRbYvZ4K1fhFp4GJ1 + mU/qGanqiWJPQQOdWFMZoVeO6Z/6M2eB9AJr02VY5voazdN26YGg5jsK7lKqE988Nv/2s1x2DHfB + pVLAFCNu3OwZI+1cWY4EXedtfNNfRbjyoQyw/O3xg5z57rvmd7GO986439mHkMRhIcHDu+KR4z9P + ddWTFl57xV79+KOjJ+/rgyycG4KfwDhLEog8rPMFa0bIqj2oiIGVZ437mB3D+VxFhUhiviC/fDLj + UG1Fq6CTtyT6VaUbK4vR/DRUohzepbq074MEh82rwnY3sHTNMyMoLeT4cL5cEeedPgskN6byRNX5 + hH/87uqP8UqwOoJ2hg1vvXKJOwd9uHj6XhCmY6/i0z59dYPjvwK0+hNytL9KtaBvHMC7ivfedvUf + 0y+v9RwZiGRad3VZMoeH7SMCfBz9PRqtyQ1grXded7lFf3gDitFFIpJX8+Fk+LkhrHrpUZeqiJZf + 3YXnzvSwpZJ59Z+7BAhqvx6TG0k1HC1VgzKfjwTnjNr1N29rCJ/ulf7yezpsC20DJ65HJFMUAZFr + dnBFkOC2+rEs5LzP3oerrZ893us+aCJ3FMFDq6+/etHNzrfp4S6IPj4/1W062M/UAJrRaM3fSUp8 + I23gsKkrYrcPjGa8/bJoZ1KEnb0kOzTrMw2pl8sRX27dLqWv+2yITHGIRmaZvWpn+VsWHBkqEr/I + iCaFe4I4P5TmT15cfn6o6b3TuLsV367HdGvB4I8bbH36MJ33EAd/8lTQ3VE1WXNho+i5SH/a/+RR + zjFl8jtmjpczCzfo3uRQnA/dT5+gOBHsxTfjgxb1/QjA3iLL+yizimjnjmfBOov3lZ/t6cRvvpmg + n/r7OK96RMxyKcSSvdHxN9934nV7Rrvb7oJ/9xtX3iE8EqckNtc3HcM3VwDOTgKP3q3BIatfFuTr + 60FOK6+ZITjlqNgILl7zrkomdV+DlHL6OAWgOov/ylzAu6XAaq+pFSOTLPrDq8z+rlasQkML1HOT + 47ASdLpMT8H6U+/kcx067I4kxm88YO9ay3RpEiuDKGEPxDps391yeE2WuEdvHh+UDLpp1S/UeNEL + Y+jvIXmEmgGI7zh8vKOpIpcQ1b985rFe+wpnx+99YPfyB2fNfKHTT9+1RrqTxxtX1ZIq2IDLUjXe + 3up9ykhi7KH4G9bjbrbKlO5K6YxOHmm9/fnCocV9Aoue96zBVvuN1SWwbgH45mHzRy+Y/aHUYPXb + 5No3JJ2f1PaReUwnYszquZvtvLGAccf7yNiM281mTkfYzXdEfNsv6Bx1L0tILi1Ljl9BSal6Lzzx + 51+MAWnq7jfemcKJxkbPiTMdqlcgrrxorGn7rP7k2eWkih4TFh7qz50Sg/0yWOKOF7PaPcswB1OB + g1fgb9hNkui76Nd/9rQwaDmeDOXnn8aXgL+ofQ/ihLTLVvU2D9ygmdQbHzkOSb2q5Oxq5c01mo9f + kRgJIyNKyk+OVj6FPemwU5sD50lo1T/yqAod1Z00ZWjV75GdVaaaNh4k8Jy8ZZzP6ScddOkWQy8G + +vg58bUzUZcHtOHGK5Yv3zH8JqakgPMaeyyvPGhob9EZVl46tq9pSac6bxn48OYdmwF6hvOHoAQe + aXEk+ZoXZr01GaTxg0vkx74MaTGiDKhNwEOr336bz7oF3yq/RAu7pJvWPA33eM9i1w2ISjX2w6Dl + kF6xXr3zqmlh/4I5YRBx5lJHO2VQLWAPU0YyfjK7uctnSbzB902saSy6qT4yEqi3UiAeJXe6HJDG + wGa++x6f8lI3KLdvAmR8dN5tqy3dInLqglZ+gi0oaUqXMuTBfDxsj2XFO5qTaZPDPYw6bOp7JuwP + 1csXw61wx1593ae03DMSnJR97IUfJQoX6TwxYiw0p3Ewnxs6VMNZAeHYBR4kvFB1hXIJRDrxDnHK + GTnzlc4TpHtph+1QWNLp5nEGzHzfrDzymC63Yl7En7+xKidD00lLckRHZsL68rw4I/M6lb96vOrv + U5399OSLv/mrBcEHTdcGa2hP6BsrZ2egTZ+mgFY+8tPblFMuSY206Ltgky3jij0gjRV+/XPdu0Dn + mzxEUBMrwJeVZ5PzwxzFLX8+4gf093Q2VDeC81Scx6WjRrqr1YsLXbDxPcat7HB5zFr78yMet/Ld + 6bd+hDyRW/2zF04D50TwSMsjVm5Cl/bc3piQvq0P3n4jc+maBxX48U0c7E7oN//gI/MZOQvJpZqk + 8AV74fZ4E+3xKLqZXpCAlpMsjvyqb3Nc2RsYLu8EJ8+Ac+b67CpoXc/Dx69QhrsgmDS4KT6HFSVY + uj6ezj1olS1j5z0+KJvZWQ9BabbesrbT75uN9tYjORH7TYeOHJJbBD8e5nfi2M1e/U5gAy9K8uzu + OwPhBg1GZu5XXsc5pNu7BbTfwB/nH29FjZuAy2vdmi+sjqbPtAC5ihdsXPRXWOj25IlylSx//n+K + E0kR1/zqwY6WlJo4Xv6sB1yKjUa5QdNtUbG8i7fglnPGmsb5T8+8r1CBM42XoYcJ/Ic3K9cinc6b + 3obKnHKSFDilU3nzS3FWveiXF9Sp5XL+x0tHpuHe4dz7oo0+MROQxz29V5SLuARMzpz+zbetM9vC + rO51ogblM1yeTZVBtsWsh9bxTuy75gPP6jVxjihNl9/7/a3nZCtPWCJ7asSVD49MsmmdZZ+SDdwK + 64XDN4NTdqcgXiBBd8PYVffqNzEtBW6clmBj5cuMc2cl2N3sGqsrT2VbdOnhnucedr/MSd258Z7/ + o1/ukZXQ7kNoDMZby3CqXkg38IzSiMee9368PPytp/3hM/psKSkrVq0CLnXxuH6Par4En/7P+ony + +DZ04gI1gEp9zRjbB9KRq5PESEgYnzhSFaGVF53hwcuYXDG9V9TafHm4uzFDomufO1MqTYooHL8B + lkNh6ihBFY9m8aONOzNTOirZiQSqGlKiDoHdMWEJC0wz1xFT64ZwSA4LCPuZkzDOtySc2IPYoPyh + adhZ+Vt/F6GBWti8x+XHf5As8aIg1jesR5VGF6ESa154TiYOmUlHzOp/0NG2da8UuSFchGPBI6+i + 23F363bhfD7KjHix7D1eeUs6NXrAAP+tX9gozY2z2Gc5EufnshDt4At0PIovT3SOmkHW9eiUfuji + irp0WYhRmrkzbvabEcr2U2BHeG2rsTsHLnSudMNJGh8r9pIHsRiTYiCadOvR8jktjPj3b1fAf/3r + r7/+12+HQd3c8/e6MWDI5+E//nurwH9w/9HXyfv9ZxvC2CdF/vc//96B8Pe3a+rv8L+H5pV/+r// + +Yv7s9Xg76EZkvf/c/pf6x/917/+DwAAAP//AwBf9jC/3iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ab45e0acf1b-SJC + - 991b1d4539125c1b-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:57 GMT + - Mon, 20 Oct 2025 20:02:42 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-5f69ddd4fb-lvr5p + - envoy-router-779bd7b4d6-4cqzj X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "86" + - "57" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "128" + - "135" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -423,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_a4049344045642929e83a4e60331503a + - req_8661640395c7443ab43263464e7f2fe7 status: code: 200 message: OK @@ -469,122 +469,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6WROyPrPn/fspnvrfOqcEBJK8dyyyyJIgIOLU1BQooiAqW4CcOt99Cp+pWW68 - ABSTdPdv6f7Pf/35888nr4rr8M+///zzevbDP/9tvXbLhuyff//57//68+fPn//8ff5/TxZNXtxu - z3f5e/x38/m+FfM///7D/Z8r//ehf//5p+m9C7mwps+XsZQwuNwNg+CP7VRDxlQI+dKzyO2Ln+6c - scMGxu+cHxd+8Dvu0pcCevdhifk5n9hylScbUmNrUvVRTd3sS3WL3Ny9j9vlpbHdNxcClM3QItfj - 46Qvx7zYgBCfdIzGVKmEZCQKZKooEX28qZFA09SGB20/YmGb7AG/EzQTqdGEiRpEUJ++/a2Ubclx - RhhcHUZt++OB232jUzN5h4xvH/UeCiIox3kn0ny8648RlBvFwmh6H7pd6Tgc3HWWiCd4fbIFD40D - NacuSfzMl3xKAueDaMXxNG9VHkwhWTB4d1tClRjqFTsN+ojQrAV4y9FzNR+9eEGMLm+qzPnOZSCR - 9vBcHR/EJ7mV83h2G4j4WKKn8FO6nLsvHMDR6kY1clV1PtKaD7zc04QEx0vUTTNNS3jI1SOJ/ZMZ - TfFFXMBmYiYxapZ0C9MbDvDJJqRncm6qJVSKEB7q5jyK1ZXmU+8oAlLe9E49x1fZbvaOLeJrTqXZ - jr67iR5fIWLok1ASXgTGMlUREUcfN3pDRp5zVV228J5fz/SSelXEzaN+BfCc6yM60X3FBzES4C6Z - ybgEj65aZqglyPVfKlW/plJxSrIvYGZ6X3ormzeY78ZiIji14tgegJtP4J0myIDIJ+epiKtXZ00F - LJN3RA+pRdxd1Xw14ElpQyxsR2xxa/iBn/c4UMN19jl/nu4Z7I17SbSpIi6/q55X4JelQ+4c14HF - n5QAvXE6k1DJ+WpAg1TAcyTrw9YmWsQvyGjBkTcI0bneyfn4I2+AepB2I7dcOX2wIiJCGasKUehR - i4TlcWhlbe73VFHTI1jOcZ7BYLIQ8ehFByyLyifEkmAQj5zLvMXDaMtysq2JIttGxXVPmsJT36dk - 3d9och4TRDY9MqIBKERtlu841JRCjLfPu8f4sFQLcBX9DTX84tFxopgV4OH3wggfz4QxoO4SCPsE - j3X1mhh/9B8CSiPokD2MHhG7ZLCE6/sp8S8K+xADtPCXf/qLf+vT94JEROGcEp17J+5OL4UE2Im+ - pZjrpm6wdC1FTp5+6dE5WPmkfCUb6dkpIZbJld1MmbWH8Rx45CoMZ3dXOhoHsNY/qdNqus6iOsTo - dTil5J6bRsRdzR6Cd0hzqjiK5zIl2U5Q+cTqOIXFDUx1JpdQ0AxMTK175TvJW0q4xiOJXJS6r648 - a8ip24LuwxOMJp5+IAwkGNFAeJ0qfsREgBzlRnI0u64r0QE9YVbvU5rLXqlPyzbRQAf9bpTCk6Av - V1m0IabbkTg1C/LleXtNsLpqe3pYrj4Q/GtUg6c/IWo4yov1IR5s8ND0kjr+5e3S7f4rwvp8PZKg - tSowLdtC+32fhMF1ly8DvtTwjj6U+tWZY4stBiI8qPONFvpFjCbd0BL0nl4OVT7i7E7n5b1A9ZPZ - 46s/hhF3tRYFfSNHJnYRTmBpC/MDsMQZNAaHZycE4jyh7g00auzowJryU0IwfTiLRsEr7IbgfSqg - H+oSNY/PT8XEN/DgYro58aZKqxYJFA58aGpJitT6sG6tV2ipVYcWt6MVtVvml1D2KaX4xfmRsDMv - GWwPW4/42OOqkUvLBpbcTaMGtaKKpYfvBoJIiegBpa98GCu1Qdv3KyXHwuDYCDjHga5W+iNXcxUQ - fnjhc48n9UZiRAIeGhtlGVet9fYE6O2aKUDqqjPRRWMG8yeVG6gVL5GelraqZtSdY/TDp6w/9u4Y - SxqGLxxWxPkizHaN8nLg5RPLVAuu55y/szBFbXHkMZwKHDG/Oy1IPNvvUbaeFzat9QpYmaSTo3er - u2ni71c4wJNEtNFB1fQW9BYGfHxZ8VDTOT7nAlh1PaOXW6Iy1r84DlnV7o3B8fmMBmXXhOCWayL1 - 7tEA2DffhABzoozlzhqi8StZMTo5HsWT9ZarKWJ9BoPerMmBlw8Vh64nB1m1LeJlrV9zxVoB+uXT - If70PEVzmR575PuUYHmt52OlyzbcSc2BFOPVqnj5GAXI8zcXYm8udjeLVjxC+dyYZK2fETdfJxni - rjOolUzY3Xlm8gSllPlUO9h7/ccHpEn0XyS/O2E37d/0CudcuVObF7RKwGooo6uZ7MansOwYvYeV - jFY8I5qwnAEfvwcRvvjMomlQivoXL0GLLPW8wVJRlvnc+COEVsW/MRoOA1i4c/4E0ewZNL9ejGoX - CRIHlfveo8V4fVcfVdq0YIs3BvVd8Zyv+awgljsDJfV4AvO3CzGMedmkxl6womnOKw4xOr1p6Eqz - Pgma/ZH29/hDD7Z60Xej/rHhN+S/9C5Jgj47RV5CuRMpPauvAcy3jznBORswTVIQuJNM5xTkmdxS - vIRbfd49TyncdYZIjwTP3fBbzwDP0sj0bHGp+AYYAJym5B5Vp2hyuaBBP/5AfnwIH1vnb31RH589 - 2/H3wwibc3MnGjl7jDe8qYSFB7bUfBSC3qt4uqL9p77R/CBvXJZXjYK8/LmjTp+UOTcMQIFHXPs0 - GlNfH6Q+38AVL7BYnF/uYEtXD1pqRwgucoNxZ+vbSGGhL6M0hCRiKtqb0KxT7YdX3a4KuRgR7jtR - 55cf+w/3RA/pGo9SPFrVrF5fNfC7aKB6t827xVQWBd4ljSfYNt/ubBTuHpzn4kFcoc4B32epCQ4q - u1E74076cN7vbSQk+Y7q+MhHsxsPKWz7K080HGrVjJfgg5xSq/HUJz1b+c8EczOcyH7lQ3ydPm14 - Me0nNVMw6X1pOwUs8jSg3vZ0zGc93pfwkXwzvKnbEcwb5WLDgl4+f+thlze2DWgWUeps9Qx8diG2 - IeigQIrBjxkTv0oAQR9Y9Ix9Wx+MQt9Dryx0QuIh1ofoXGYw4FWbmFpzdEdqTCUa5/ZGcFVO7hK4 - lwLaaNlTbROw7vtAAYQixjopbDUE7cstGnCKDhHx1Hzr/uojmIwBUhsnesQ9to8ErOunNvYysOzY - PIKF5oSa10sHuk7hG7AtWo54m8DSOdNrFtDOmUrVe2xV09U4i5DzdY6aWw/m7B0fOaBXbxdPNXrl - 08euElCXRk2O4fzovkcJ7UF82J1HEIMDWAYgycCqrwfquRTqjHesDdIr+Ur9fOPn09W4y7/zx8ev - 6v34zAbRua8JXvebyfO8IKnjPsRWaqdiFmsyaGVAp94b2Drb6lcODrBzqCGUwF2E0tBgSSth/Maj - 1fX0dYRopxUNVdXH4E7ydiPKbj6pNF1wES2HW+CB0Sklku3nHixsz0SIzktOrdd7ztlH9DS4O5vl - OD8+NZs/5+EJM9GaxkEiOuDS89sEVzPe0YteWe7s6qEA53t7IcZ5cCK226sKWvJ9Q+7PWnV5YVPZ - MI4MD4NHQdiSNkyBiVNbNLmTwV28ijaglFKfxOHpGjFLsEuQvrdP4qUyrGbO2HpAkLyZmHfi6ywS - JAGu508x18B8mnZzjdRB0/AGYaFaTk7MQaNWWmr0SVOxXvqWcvtxPHoUxgnM9AFLyGu6hedmoPrC - TBvC7cT7JJG9Jmd5NWrAS179ylcsV+CB0cMGJy21jW8MmPbUU3BBgUGM51cFuyQK9mh7oN8RHLZh - tFQnb4T12VWoactjtLTMTqFdlwH+vriomsl+Wvn7F9LDzbtEi7a9FvBi7I5EUSPUDVNWlsitx9fK - D1j1dz/DQl3IXpIpmE5fIUC/eD/grM3/4stw3/c0b01HH/cCyMABlTINtOcULQp/kqGQDDZJD14N - mrsWf0ARaO7IH4RbPtvyI0DCWbsQz6Smzj+I+EEvbn5hIRUA6Cf+fAW/+qHzwgdMyHUaGIWUw/6p - DSKhT+QWbGe7IP7FL/Ox/swZysWbTe3pTcGkxNsUzlW3jMvlYADBE78xqvlYoReITcbhp5ohpsoS - sWVB7KaIk4ofHyMWOZvVxOpTAr+HNzfy63nOMhqfUJnD1yhkzpPNunLn4I47D+SHv/PJX0L4wkFF - fng2n6dzBo+48UdZ1vdAYKayQU4yUZJsj0G3A+o2/lt/val6VqxRFywbs3ihQR4onaCLSgFwGSl4 - g7O9ywMhfKI1fsZmPV82avke5hWP6UUZDMYFZxPLcx3EP/3UzdMlv4JVL2BRqdtqGcsZy05upPTU - eRZY3Kjdw1seH2h42R87obidEoiTQSYkg1c2WfOoAHVWc6KuemLcmkuI9jMXEvduFDmrmocCjfuo - UHvN73ZkgQBFKd5SIyzOFfs6VQ83hw0jhNGfvuGekKnvD6bv+uyObflZQB1WJjWWVq84Yik9vMwN - pZibaraeXwabkoupJZkjm7yEn+Cq70lksKpb80WBVZmMeFraA2OxuU3hK3z55CSUuTuP5CqCq6k3 - VGvmxJ37i67Bb5+NeOlA3LGiP5co7k8K9bEXV1OQ5iG00bSnyWErVhNPyw0E5wQS+0QdwJTLRYR7 - MzVIQrCb7wr1mKAiN7fjtPoH48starnSrlt6yVAQ7WJzl8JKap7EP1htPtifQwvEfHqseFHl32tb - yiieuhZ/l+vAhheMY+RQGhIP7PhuSWhsIlCKGklFo6tmvt0UQDgrF+qeZ9fl74a8h/icXImTm243 - v81sA9d6QzRr88rn3igSCPEBEz2TaMXejVSAQLdVaiE1q5hni5/f/owMkSmiMd9P0OcERn1ZCHNh - kGsOxMX9SJVHxucMH582bCd2Jwew/7jdj6+b98ki9sGrGVv3A0R4zEcREcedShOl8Icn4Rg3+nSv - dAe5KuhGYSd+3SkkMgYzlBoMU/laMc8sShDgp0lN56DqzPi+OXierw8S3N0+Wt4aX0K12GnEV8cn - mLIgMiEKqy1RBfZyX2nSLXD6CBbees6os5Y+N6hIDhy11PapT13FXaFpltEvniMe5kcBVlL9JNdm - PnQ7rjn1UHOaknqr3zU/n0EAQtzG1BYNt6LCDX7AuYoexCWHACxR82zgxZmu9N5bt+j7e/+QuQ96 - GM56x78ZCGAYwg3J4Pnpzr2RxHDlt3iz8pVlucMaknD5ElPS3myxgu0TngruS9wP7LpFr8wRiv77 - Qb15eKx6ycEQ3nYI87230ec2uDwhDvMjsQAMXE66XRaYFTtAXS+tADWrUkavUC6IXZ2By4aiFNCE - ripNo3yoVj0bQ/lwMQmBodVN4cOb4EvWVKrl8gIm9moz6IidQBTtGeT9ok4eWvUIda5Bmy/GGMbQ - UmGJ+Vp0AD+lOAOO73/HOYigO2yDpIWGSiaiJm9JZ4V6ScCD80W8SS2b7Y4XXEMOjbc1Xo18BpUs - //QZCV3pqLO9pY1o1cN/8XX6HKYMYunJEUPv7W7p9rkG1VnP6f4rjTqzL8uEIB8sRM84kA9Z+YxR - 6lz2xAPwAHZd3Ibw1VXTeHozJZ/GrV//+DcWeeFZTRs1LqCT3Aocr7/3WfED5JDNmOv9LpqvCfSA - Abc+cdWrF00qTBcg8kpCImMkOdvF+AnWek5/+c645jSizuhbeku4kc1NcNij6HDfUuvn/9E0cGA/ - gQHXV+9QLc6WT+Tx7rDVr1GqJW2ABq80yn76KVruEfUACKlGVn2fj6O7vULzvlgjz0l9Nz/vGwf8 - 9P+qRzvuaskaWP1fLF+g787JIj2hmTs+dfsTc9uXL/Zwx302xAuuLZsMn3Ho579knGTmK58UITkb - 4fja+oduyeNOAKve+sWf2z83cQB++mXNF5d/m+EGeP55h4GH82h+QFeG4BzD8Yuio/vzY+CqR4h1 - 7HQ2a9q8QSue0h+/mDVqeFBMdskoGUMO+qIO8E8/EdfDIF+K2y2GzUQWovSJx4RmfoqiUIs2yWH+ - dZeM9iX0eXtPjj99Zj1zDq58akRF2HbLFzwKYIvVBwMv1cHyTloMVHgpqUK90R2/+ODA4+E8E20q - MsZ++q7SpoAeqlKIeoMoMvydd7rgTd6fNqICFxRsiLrx+m7yAa8hmbdr4j3erkvXeIcTsidqNh+u - GuMdskEcpTdC9GfUsXN1qwE5kGoEWy/RuYjVKeTyp4FR+WAVbxSuCd+TmNPgvNRsvBVtBhxrr1A3 - M+yc5jXYw4M5fuhhOUvVeI+5EAbleKcB9Ua974WrCeXy2Y7wsn/p/W0byPDreAnJp2DDps3ILci6 - Cxjz+znSuYk/F6g59BMNR+fWMe3pptCRgpQqsj5HbHqHMar7vUuP02lb0YAj4c+/wUszC26vYvGv - nsPfmyfltK/fC0yd8URwu3HZRFi0+fkXI1vzhbts7QJGRe4Qf8SpzkohMeHqH9OTUAL90zsKh5ik - XHGBcFJNd+40IsuMDuMO6/du2AnOXhY0C49C6+67JdSmFK1+08hJMmVLMloaXP8v5t9jrw9deVag - l7x7suoX/a8/dUCCu+rjd7dcpcqEqlNeqLL6g9TE1AYmdV/E/KqN3puc4iAV9jO9+7HXCTzwe9nV - nj5VtHfdfYQxkoF4dt7U+YpZt7T3qIfKe7hTXT8h1pfZc4/c/HCnzlJybIFnmMnRYQ6osfKxVa5o - UOS1hCjvccmnRwdboBhE+Ou3/eX797r3aCKMTscJCqthWTqX1V+95sxBPQQ7v8roX751rk7N7z7Z - e+o2H9pHbwL4Nhbq7FqWj6t/DaWw4YgVPIxo2r/fBVj7A+SmBzd3kdAUwNV/I7qLRHcqs3YPt/yU - Eqx8umj+nF8lMk1fo6b6MMEs9REEilFZo9jyCZsP908D02IYyOqfgOXz5hbw83/3Xwm7U5odMFzX - R9Rm0fOxmVsZqgWvUV8dNcAFlzKBQchNJP5yEmjsnStAo9Zaugd7HAnX1yaFUR9KI4fvNRh9uxFB - zSuUWuetwoYGQw0qxQIwON5Gd0FtrP34KrHK28IavTJ7+EyGBzHUaBfN4Y0mf/tnKXu+8umnD5I7 - VkdAg081ucwtgaM5PLXzDevmvRwI8FBHJl5ose8m7ZHuQdXlT8w/vyrbhdtMhEa28PSHR92muD2h - xO9vWDzRli0Kf5Nh6Z8Loh07x+WKoHrCq8iVGLwXD/TPUFVgeKAH/BbVunoyfeTkAtWfEQWvxp0s - I1sAXwsqMQ4Cyqc2fIhon/UjOb+eyB1gfhF+fgFePspB57BPWtg5SY0fqz5nWiByMMbTk6rT3dbZ - R9wrUOLNG563Sad/YL3BEJf1kV6ni+z++InM1+X00//6/et0I0DhLhjnbpHyVX/24M0/T9TQ+083 - r3wI/Pov6Zg2gHXRCYNDnjwxdxL7fChKeYHK3fTWfIgZlz+GFq76EoO5foGZ6FUAO0i6UTg+7Wra - nx8bdOz47Ofn6/SUzw5a/X3iG19ccYvSOdAyjwd6VV9WN+nzqZZF7Ok0c5VTNdSduqArPWZ487Hb - ajozToDW19QJedc7ffi2vvPTD1ha/fDRqnv80880rc65Pv36azHf8ET1twWYGT9/0MrHRmhviL4j - wiMFK37/9Vv720YXZN6/eETdJq67SLDz4P6ununan8o50OgBgjceUQc9lG63uT8bJNJZIjgTefbD - B1jk+y096JeiYn53W4CZ2z75+XHzyRu8H/6MQyJV7vJykxrec9ccy/BjRtz+/b6Cz7sfSDh99Kh9 - iON17eOp5Lz6LfMN2SXqjPwyTvCMf3izB6oh3klWi/tut788EyRIeKZ6K88RhWCK0Skq6r/7M1VV - 1PztvxZVngOWh3khPfEeEz+hcjco3mcPO2NsR+HupIzbxWWAbE1707U/wrpJ7GWw8jnMVa3h9uj2 - 9JAK83KNr9ztaCyPsq99crxMHz3fsZPuoJu2PxGrfL716YjCEjpIDMl+OW/ZMp02CuTEOSTOjlrd - TgNbDax4/Lf+zlZ8hXCGoPnLZ6a34H6gce8VcjVp47LhQE145NOSkH2/RGNTpsmvv4N//YIdkqvw - r/+C/cDo/q6n5O4aRmu/lFkcKKAjbi3647N8pI0tvHxal3rB1QHLPXp7UOqED9VNpLlzZNiTzFOR - JzflPrnDwbc3YMNfFOIHOaqWcxylML+X9V9/YNi+ghT985sK+K9//fnzP34TBs3nVrzWwYChmIf/ - +D+jAv+x+4++yV6vv2MIY5+VxT///t8TCP98u0/zHf7n8KmLd//Pv/9If0cN/hk+Q/b6fy7/a33R - f/3rfwEAAP//AwAbrduG3iAAAA== + H4sIAAAAAAAAA1SaWxN7zLbu7+eneOu9tWcFQbd550ycWhCRXbt2kYggCKLRq9Z33yX/WWuvdZOq + 0EXrwxjP8xv9H//466+/+7wu7t+///XX3+9q+v79v/Zrj+yb/f2vv/73P/7666+//uP3+z9aFm1e + PB5VV/6a/25W3aNY//7XX/R/Xfn/jfZne/QNXVJpGheknkJw6GUdKZfQJpPuhxLMA8tEgfepnA1v + HwoGr46d6cvojTQhEitC1y596kEvZKGE0oJCMBpY1l/LuMy8NojjtX7OK5EUwpp5Eoit2pgoL5KL + SlqXon7v84/CVarp8IslqOgBj7wsl6NjX3AW/NDW16eiWAP0Om+GGKa0j4znDZAF0N+7YLqKM5O3 + aEfzoeZcoCNBxd4ohYR5vzQNss+xnBdWwuM31c4CYD6T7m9SexppeB1oaHQ15xONrciiPxMbJsK9 + RCF72/KNt4ZezJk7g7OEZcBquKEB7uCIsHNe1XplSD2Lnlwgn1PZa0T0sNnE/pX1+BS8js7qWrwG + ZfX0QqeKMnOaVKCFXQJ5/Nza0mFuvW+AEuUP7KqZrB5fMttD+hkk6DKvUb7eGK6EV/50Rtk7MqJl + K9MNXPyDjozqmYykjtsJRIkQ4lgR2noxNt+H8We4zhzJcL6RU8n+xh/7bCcTJnblQeSJJOMQvjuw + VrYeivv7sP/WWEJos+TEYWMKnIpCnrO5Uc7w+dCuOHfbOjquZ3IHzdvUZpqZtZqW4gcLw9cazoBW + x5owoErExvnK2H8BqWYvPJ3BntU++H6Wuj/jJ45lyMzVs3dykrRcIq6fi4eKPr6T5vqWMvhtcIRt + SUcOWzU3A3Bm2SKZQRFZ5+beQ7prv9hwGi0/qhhn0DmDEhlyihyWCcIUtBM8oScA47iMeAnEpQhW + lLklE00huBUwU6L1Sx02RaXP/LsC8PVAyCwHO2eoPqOAAT1+BiFDq9guEQfV9SYj5TAq0TEYbokg + WaWGDQzOgGSvMYN3+IRIw6kKNk0tWxikio4cwpdOP2eFJlzVvEGyUen13t8U4qlJUdS7eUSYLIDi + orxoZKnsMRrp3KTFGhixz9mKS+jgsibA8kUKWyfuNdKve1YAcFiYmXprCVll0oWQiodoHp7mQhgl + llnx9/2W9H1FRM7uJZyGqMEG7ylqX+j5AEvomkjZUKcucudx4qfUb8iIT4lDmxq7v+9AYfXjLfm8 + j6dI3eEHx6fAzFfuc7NEPvGuyO78ctziT2fB8+HuoCs1Xh0WzsoCKjOosc5yqroUjeKLp/eaoicu + 9YgtRBcCXB5zrHwo11nJeljgO3O1me/CByDcyy7ha355yMj1d84cj9sdluj2QGEjXp2uf3aKWNJV + gR0hhNHGYAtCi7MifKeqS80WB7zBA55mdFmPs/N6K48K0gSmOFrjcv9eXQC+q48zlc2sSn7xha8R + Rmh4Bvl6GJi9P76GHSPzwJG21QmIgBOx5x5adX4iUQPS/HxiV362YFbDEwcjxT2jUHnVYE0vhQIX + b9DQI74d84XK+QYe6HTB6nOlyW++oaTrD5xBn6tXW6sSURIYGxtltu7jcdzgawidubFQGB0zKZRE + 85UIyFnEBZASG+UvfuEHNqvxqAyvRdQSU8FqdcR1Wx9lCyTWYuLUNcNxAvS7gOsl4rHHXvt6U8rR + hc9WzZGWTUq9LF/fhs6ZL1HQZB/1c0w+mjhGvI2L882uP+dGLOFN7DD2GuBFR8CdEpi0uYtQztH1 + jM9BC2OJV7C8aFG94NONgr24hFiWr+/8+/m8WnE+PlJUGApNJpMINnR7zZ1JcK3BkUKSC9nmUmEj + 1/WIXr6GJU7CVOO8ny7ga7iZBj55fkVKr65g8c9DC+/+jcMPqq9r8h26WPzlp5y6Tc60yZUPj7Nd + I+cCfEKzn7cNPS8VsBffrjnN8lsq6tSJ8elS9qN9vjeRSFY3cx8/UxclbVqACk9FhX1qRqIpzxJ2 + xktAp8oU680+qzNELbyhR7kqKhvGcQADMSY4ZC4yWdaiocUqQJ1Psd2LfHOBtcHVLLh9PX0ByRvf + B+cxPfow0r8R/vU/86XZB2UukOVQ3DN47asG+TJ3qmknZ2xRzjnWX/iAqZdOsFnYTtQJSbR+iYh0 + XSdxakfkCwe7A9hkBg3KeXhCsZ+bNa3aaiAy1nBDzqm0xg1X8QwZKjOQWny16PgcJAG+T0THyA59 + h7WjtgKhZntYmkZNXY9HoeCvqf5GIWjCcbvR+A5H2D+x/GWUmu4EhRW/1xnMve9y6vd4UwXR5uoH + 8gp8BfREixx0LomJQ7rg1M/CLYMo5k/KF22hzDdw8Dl4rG6tD9PgCzZzHCtQKrSOi9uwx0vxRkP4 + dV0c+3lXD25btADom4H17HDNF81tNREH/oyNkLqMv3gDy64ysE3TZrSwuUqL3OR2OOLmNVpPjbnw + lBX0WDUPKWGi1LKgcjj3OLzdWXV5bGMJ0SHA+DJNX7Dxt3aBKyX7+M49AmcRT3IJPvY2YJm/HVTS + GHoKz5nI4VReVzCdMwrCe2QKM22hLf8mkmODmIpTFCLjEm0ZWVoxtHKE5V0PMWtmG+C7ahTWBF4j + TFLwMzQG6okM2vVUWs2CEhaLJv3p35z6wV3M0/sDnz8c5Sxfs5XEo2ccsW5dyvw40I4EXbh4+FwV + LsG+eVfgykycT97q25nC0XVhpSKEHIbSyVGbuYrXY0LmY3pD0YoWWoEacJVfvhqPURjH4k18Y+wk + eqYSOYurn16YxZY16zU8vhswj+YXOxjmI9njFVzdhEGapnfOdmhzCdyT6rXrtRyw4tmywVPAd2w2 + 9KX+gnNsiQBfWawgg4kWP/ZSuLoxg5AkKjXJ16UXQ7eofYppJ7I9bukC34m9IHvXQ/T9HFqwK/oK + m6OwqPNrEzKobFOAlZY759sE6RJmJzHzuY82g80zeAtyztpjedX7uu/t1AJagjHW8ZiOvf4sLLjv + tz1exWSRKimAhgdNfE8cS52TMdIgIyUqUt0gVmelkDIIbNlC5hYEYJ6p8i4C37gjPyoWZ+lSvoDC + aujYlDqSD+X5JUFhytRdX4b5YEdzBSLjEaETSyiALSvzwR0+IDY9Xo3oLl0LoJyHBqu1nAEyhOsA + OhwhbGJpAEMf6QMoIUsj/WmYKnukjRbwRJGxAUKzXhmt4+CbEAbLgQzH7WLLE8g/pu0Ll+2dE22N + EuA+xRpl/e3lDIzkWYBP0HXm1ssJbFrDU2B1Jgurxy9UV/Z6pcRc3e6/fJCvNntggTbmi598WXfP + xxIlbsnSIB16M1imet3EtG16pI6WXa8FMTKoDUTFSFUsdTECSENJONrYDx/AIU+gKzC4A3puWdPM + Z61ZoWgpWYslt/866zhjV6DHXsa36VFEW6QGFnC5iUeB85jG7ahFHLx0c46RIK35KlCTAic5ec2g + fTRkCwKvgoIJlvkt+iqgRXBVwKt1j/j2IKazdUHFQhu3N+Q0lV2vjLpKojffW3RLatlhlbJ24eSd + XZ9FM6q3D6tA+Mu35+7zdbbHdJjB/dh4KGfMu/rT74BtrhUy3hjWv/6D90CvSG8TT12Unmchl54i + fPJymG/x8dyImZfJ/pG+sPW6nGgaNmo6Yv/jtPUa8bdScHvDxdGxXsCavO4lzEbV8EFuYHWhdQ5C + dvl66BHabb58zVkBdSVOWNJT02E+wnuCtyc1YG3tYrDgoY7Be+Z0pFeuDI6dK2micoj6mX+IYbTc + 8mmG8/CUsOo7c7Rc31YKo7GJ/OYOonq9iGUohjcZYsdubuoqrW4BPR2fkSHkIpj2+CV2nPLGUuGT + enHsVRKxyGzI9yMMyJ1lA9F8vyFGHRryVbuhO+QpOOHr83kiGB+cBGxPTcBZvC4RSW66AB2Nt1CG + Py1ocRVPYDop9swu+iPfBEEORNRSN6Sjt6EeF5T2onLhW3/VRwCwirsUYL5dkPWie0BqdWjh83NX + /IfcBxHbjPYAQLUUyGTcMv/C1ysTl+RtYcWTMVi/MUohKo7LfFhGHex6KBa1My3hQPIMwvzam/eB + Q6pCc+PSj58KOJfYRKe4N8jix3oG9c+TngGM23pxRL+Cj7h9zwfDqgg5eU8a1sfxi375lxTcT89Y + NfrlM6LiLoNbUXgzx7caoGl9ocTnoGEUzWkwMpP8jGHbCwxyY6OqN47ZKkEIpBs++0Qa6fS4FIC6 + RJJ/yGjNYTy4VWIe56e5fMVztEoIaPBMvj5+LqNOmKvypgQ/dmNUBCkzbveTU4JD/sl80FRDvSTk + NQv8wKf40cuWs66ZveuP4ISzz+M80hzSEwi/NwH53+dD3ZTgset/Jken5mSCiY7DUJx1K0Sn6VHk + 66s9SxCjVsL6lX2pn0JaBMjx7gFLxv1ar081mqBxEgja/VC9Jq+4gl917PxSPl9zbHbWBp5bbmCP + 6tWaNg5LDw94nrGN7k29z18G1WWJsTZcZ7IdEn2Bu79H+Xmtx21eKAkOFjv7gpXY6p/5visPDwWH + S+4sazHRQLmAFvvZnDjbJa0VKKQJ9g85F4+rPh5LcfeL2MVyXC/zFYTw8kw1HFxErv7FRyhefYhO + EmuD5XY7cVBvGh3dHNfJWUGQQ9F3CmoWxuroTPZQ3AWL1g74poAgoq9cF8P76FdIfYtD/j3c+AFc + kfXCyLAq8DnVgSDOST75fTHP6jcGdCxWaxQh68AwIxE62hBjVlJQvvv1heH8Ajxfyw37T+w47KJn + GnQs6o6MunRGEq22APd4g9TZf+eLqVEJ7Oy3j9xjiOuN2m4V+PEE9cFm9bJ6/QTcZnzPvAKWaNa7 + +wIv9Ezw6SGG+dF4xzQwqesZGx5hcvJ4bxa8LOMT6e97B8bSY2w44t5E6G03ZN/PIWAeSTZDxrMd + 0hheCmfv3qPklbcquX4iW6yLaJi59vBxCN0LIZBX7+0TyN3rZR8/MNqUgU9JLatbcegWaBz6EoX4 + NEXrW7mU8DYdFKRqbAUWqakN+HgfD/t+6/LOQc72068+0aVZJZ9XSP38OvbKtVKXpI7vUL1rITJY + 04zYFL9YeD4uFbpm8WlkP29mgolQlNjZeddy8IIAEEaIsf1QnGj6tvcGyKrzQv6DDgDxW6WFwNfu + ONr7Pzg12KDTdi8s84k6Mrf3GMBIoSkUu0nlbNZsxDB8WW9/05aYrCntNpBbhM++vzqy+5cKEsod + kOxt47jWlDHDJFNfWI6oEsxkEHzYYQB9SpQode0TvoIPqT4jO16DnJWnzwy7HAFsNUI94t0viKDa + CiQdLsBZSRGwYualMo5U5lsvTKfE8AC/BlKOmZlvmQYX+OF8GRuH+wZW55plcAGARag8ITDtvFD8 + 6fXfet79cAzvMl36/L4/jsVpzkBdnIcZMCZ0JhexA8Txc0GO3fAqQddPCJbOY/zliayadduiga0j + PHZ+oOdLdB8EaJw4giJuPkfr+7ANYvtwjn/y6zaNSwbBaNB7PrDAchBtCtrIyXY/NKtbK26TeCml + DRmIE8D8LJVYjIWzhiQCTuB4yu3wj54Iy480ko56NNB8p75PZ1NVb8M1zn560T8f7Vkdd/4DGgav + vvBQxmjZ9TgwpchH9lS70fJQOBY8rTRB1/SGclJivwK7nsYSbwz59nkzs8jrzYAf1DYT8kIfTdzX + K/aul7ZeqfdiQ45xRr/5Pk71tpq0IARiQnZeI9Xr5Zsr8JCPGbZ2Xrl+8oMFPh1R0Omles73l3+d + QbHm9RZN46I/Cxsg28F496Mj+9ODrfVkfaZNPGeLmk8Fu1HxsAIxcfp9/8Pdz+z8eCDbK1Zp8cdf + dn6ZLxr4cLAj4nnGKX8Cq8ONG9CDcvVZJhDHb280AVBOsYcNq784dIxDCqxSx/lU+MhVwin5Hj9d + OH9O57MzObloQcJwMVKUl0q2m3KmxC/KGmzRbwyIq+oB/Bg4mVd9zMH0eUi+KA3uA6m9C/JlzwhQ + uHcrkpyHWx85JYIcq2oWunHMx/nDz7J20VDKtxqhXS+noc885pk634Zxi5pXBdLE+fj8AagjKbjB + B4l+KbF0P83OVHm8/ef5v/i4/vzdleYQRitmI3ziFxbybZ+g2/Sg8hlSqQRTiqOQQeRpXE/0Rfnx + EORJs+NMwYVP/vAkXzrSNXaWhwV+36NVRgRWsH1LwPJqPR+xnaisdI/vUHr4ug+0J6kZCQED2nSQ + 49BXGvLzS+BgpxKWhcAC07jlGqwzpceqf+HrKRLpELZB+8S/9Tu9GWj89OMsBN1bne1XQEEtsxJ0 + XnyKbHoXb+LDDX2f76NIZW90V4iYbxZ8q8zHuPPSFP7yjdJya/SLF+L0mBycyadDjZX7IYGQqWqf + utQMmFM/LeDhmqb+l+S8gy2hm6HPCRfkBchVN+6qUtDOa30mtwnl7Ez1BXTmyEZeJ6TqeusNAz4+ + QYtTDgN1IKeSFlvNpf3iyScRicl7FqXWOc2wYZ75d5sES5jOB3/erKM2LpNSpmK7MvxM8xwmS/jt + lJ+/9smBHgnun50E6+owIWt//lp/7RZeDdaZmfLcjVsyRgYcLu4Nu/1Wg0kETwlUTv1GJz9s1Sma + FvvHp/Elldzxx0sE+PVdrO587LP7cZCehe6XX8eFZuoelo3+xLu+JjiPFE38/XcXl1G3uHMTwfx8 + AmwfbBPQ3bFX4OlVJUgu623cbps7/PYv9pSPHv3R+/eKc3EWTvbIbnxUQl2tbtjvTvd8Oz2/EshO + hwzrD/lVk7Ovt7/7CJ2nQz4DOBlAeJ0J1u6AjF+yHhfYaj6NZPmqR0tWmBUIrRtCd6l/OGTUghi2 + 1oPd54dzlnUWNMiD+IpkrRujpb3qpaglurLHM+OnVzSwyMCc+eB1VUn2tFp46/kZOWaugMWsGwFQ + cR9hfT36zubfPj7MLyqLdv7szJEuULAJbirW168C6EkpM5hV07LXnxinc1+AhRERBozQw4/o03VO + YRhvwq6vGzCBC8uBXV/v+VIiU1O7CtzIBn34yGdn4aVGgQc7k9CPXzR+1U7Qad8vZI/VUSW/9RxM + k4HCNH2Py7l/ZeIz3uSZWEZPto3PS8BGM4OtkhBAfvEAHTvDX46yNhL46SXgOlG180SZHClK4KAj + DAxWIQfHATzECkoSnfvg8x3IzvMF6HioQMbpYzvs2tYF7E7w5XPI8xxcwgXCS3+1/N4RO7UigIoF + j1j9LJRW62xwtrcfP0DuiYg5mR2ZE9HQzCg/POA4p/jDAnl61T7PMSeVWd3n8Ge/zsL63fVASsPj + 7V7929+/GVqDO6/3D9/3qPa/+pRVLAFOpKvg/MZH+MPHP94SFfbZmUF1BcEsci0/7v5zArTdXrBb + vnpAmDvYwPBqNJwaWwsWd377YBWzly9M9ZR/23DYoBnMHpY2ISZM34kD7DAPff5kvsH28+++a47z + Ty8Q/FgpMd7e+e6PO/Xr5S9b/NWTPL7za1b2gA3fR+a080dz3JYkcYUnZak4DM4XMv34xqCt//ZD + qw61DWKOUpE/oKOKWcqz4a4q/MNweTtf2Lg+7LU02ONRru58a/jj104sKQC5MOde7LWOmuEEkbr7 + yRTkwUZj93ZWyOR6EStAS3eRuhZO/ofn0z5zxXt9Kj+qRR2IWy9TWPdKaaT5Z9iKP/9lJyxDtrAS + G6hO0wEjJynq9TCI2x9eYTHPi7q6N9GF7+JhzNiJamdxRKOEI0LWjA+yEdH5cmwA3TVflF5uSt0z + nH8H6AZllB+iNd80tW9EfgDpzNW8H9HDc5RAclmeKH+F2sgwYZiISxGuWN157JyAMhZ3vuWve71g + sS5qC11TKtF5z9dE5h2D32oLId8LBfAnPxbXZJiX3EoJM+RSIFpXo8MmyFe139a78ONhPlUwOpit + h+KKe/13rxfd848HhUo4QO3mA7dVczqJiS3OcxkjLy07ddffzR89r03tgez1HAmmHhP+8ass1WAD + 3A9cjU9dKJLNciGE14m082A6p3Er5rGHGDUSuvlh62xRcjBg+w7KX/ytv3JpJfCjFLH/qxewWV0n + 4Of/dB3pI73zRvHgj4oP93opudN5AQM3MvFJhXpOu4gaIEwrB6M+s8FyiUwXWmDrf/U9Z92cfhH2 + +iC6c4/F+Z7qVAAna5WQZt3Ees24KIamODVIX78VmadxScW/f6cC/vMff/31f34nDNr+Ubz3gwHf + Yv3+87+OCvzz+M+pzd7vP8cQ5ikri7//9e8TCH9/xr79fP/vt2+Kbvr7X3/xf44a/P3tv9n7v13+ + x/6i//zH/wMAAP//AwCEwXU53iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ab62c0bcf1b-SJC + - 991b1d46fb1e5c1b-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:57 GMT + - Mon, 20 Oct 2025 20:02:42 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-9rpxw + - envoy-router-5f69ddd4fb-bvqqc X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "138" + - "298" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "158" + - "402" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -634,7 +634,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_fdcb6b0bdf8e40f0b921c7c4bdb92929 + - req_2746256de2714f949b635921f2d85d3c status: code: 200 message: OK @@ -680,122 +680,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SROyyrbl/P6KE2dK3ZA+M8+MTkS6REHEiooKQERARJpMmhfvv1fo9+JV1cQB - ZgCZ7L32Wmvv//jXX3/93WV1kU9///PX369qnP7+H99r93RK//7nr//5r7/++uuv//j9/n8rizYr - 7vfqXf6W//6s3vdi+fufv9j/vvJ/F/3z19/84Xn3S73XMuEBPxV83CIZF/HFHrjzGOaQgiWjSnIx - HPatKyY6UM3B/nzks+3T7WX0umo8Nj7tdeM/bQLhUjyeWGMFFXCIU1K0k4aI7ne+qgvx9VkiR9ZU - 7Jx3ib7AULWR9qkxPbxDp+aOei5CMBgPfDOJXQu76DxDGWoz9k6TnXHlcUlRzUYzPaUvF7Dng1mA - NPIdqtLdwaGPEc6y0i061tSbOkxtsbPA737n+X0YuCs1RygGS4Hxvg4G7nhVXGCfMxM7Z7PLSG/u - CjgpckyQHz+2CT/FBjHDk6eGgONslUSll88gjqitInPYhEvQgovkX/Ch1pdwM95DC97XRfMb49SD - rZ60M0yDYIfDC4wGVpEOM4x2w4MeIFIyDkBRgYwIS3/LmzZkISp5KCk87/fHwnL48wPm4BLjFHt2 - ruuba00GnI6pjTO2r8C0u48azJ1coifN3tfbyiwM8kOp8Pmy9sPtbpx8pF7ZFWuiddTZ7CmZSOrj - kB7S2wvQXEk7+RXue3zs9CsgreG68GR1Pk123tFhhbcWIEZNED0dh7fOra0OwQs1MzU/3m1jxSwy - kR3vCHaObQi2c6356K27KbUjJa6X7/7A3pgrGl1DbxAy8V7AZ9022HZiG7DH4sCjfCocfNs/ULhc - uioVA0PzKVZScxAMTihl73mesc2wjsMjuxwlqPbpn+d9THFhECgUDQf5I3M4w+da2Jnsgs/q7VnT - 00PvQCkWqr9NxajPW9KxgNeZgupepYf8De4iCE5vzd9MVQVcJ/kzfNlQI+LO+zjTyj5kWJ7EAzbp - a3GGXXKKZSXyM8JO/NlZjheawqqYTHw5lO2wnjIkw5AwAzXrBuhLG9Q+Qlx0xNe7/A6XSGsasJbO - DluX7rk1Pa1ctOPMESsHVspWHiwjSnW3wsrRu29zS3MC6N570oyBPJiE4slDDkd3el33UdZNw2Ij - xe+P+ID4QOefy2jDij0lWH0QHtBdO53liG0v1M+KqF68T+ejZDmKPnPnXZ0VpXyGjZp5WH0eQDa/ - L2kDyzsjU7MFr3pQLnqDvGcw09z3I4c9p9KM2M/qYr31mm0Us9yA404eMZbUAAi3ykigaq8Xqrax - NfAtJ/pw7KMMFy40Q3KNwhnmzP5NzenOOltq2QFUP6yBs0lnnBVodYNOip36yyXXAOlNoYB32dvw - fVb7YVrCpUC5XHb0UmbVsJB9ooFDoVTUWcIknE2u8WHGyR322/Jab+e3siKOSVx6DRdWJ8GxTiAD - 6wfee8d9xqHt3SD7vbtiz3Y7QKUMitDR8oLsdEdytkoUczlbUE6tjgUbTVIcwOpO79SC5s35tBU3 - ooG4GBei9HJIcEtsuBsbAaf3z8VZvZvdg4d1OdF0Bmu47aLzisw0dagx8Wd9g9bDhGGa6DR5Z9ds - lrmaIOPQT1TPG/O/4jO5aow/x3yebaN2b6BFaEz3HbeB5Z10EdKYg0AtGflghBNrwoL4V3oY6j0Q - 9t6zQGN0Q9TLYmtb7l5fwPPGH7EebPbAf9qAQbYZn3FhjaO+VY6uIMP1LjTC6+iM54OfwyWVKx8y - macLJoIdMG9JhSNFnevZcrgYUrgYWIvvTLh80D6CPzw3RZyDRQkUGZaXu4mv6W2/CVQbTAht28dm - uXUDn+SBjLISbUR6LnW91h+2RLF6RdSTw2JYrF1xht51O2PFuyfOrPSABUuZs/Qmuz1YHioboIgq - OgGKhwcO32UN3ivDxaq2AX1VL2wCtbxYqefHDyDcq5sM5FQvSJRGcr0m8q1FsA4f1OIau2av+GaC - xGZsbPBxW0+r5ZxlWIw8vUwM2miN1QYmWh7jk65fQnIoxxlKbuDRVCFSOHtVJsLDYOxw9rSGcJ7b - 9xkK0XCm+0NpfuuN5cqycff86cxH4XJ8RRZKlnKPA/q8b7O5PymyExYH6s1yGrLyPqjQkJwWar0z - IZvKxIthnjxjXPBPbxijZ2xAmloxvsshM6wXN+7Q4LqIavqpybYpIR1URoJxRlXD4YbrXYGxCErs - BP6+ZoPqmaJK9Bt/ZtV1mHNWb+FTeX2oY3OqTptnbkBerhJs1k2mz3ZrQBi7W0R/+LVw1VlGUg4+ - 2KNLoC/mZ++jJzJUHJ3kT7aadkbkM+Yamu9SRRcWu/Phq1Me+BAurDOSUoNIx4fSlwqbAZuEWBvc - eHtPj6ny3lZ8uTWQQbVF9/CwOMT2TCifdHoj80vcZSNzFUskKEZPTTdRw+2pezJ0ecujxm6315eQ - eUG4lAXr8zeQD2tRawQFO2um5xSt28wFi4vsMKG0MFyhXpkB2/Dc3h4+QrKecaxPW2B77J1evOMr - m7/4Bz3d7anmGbK+ieFuhYVinelpxs9hOcvvBLrZYBJ+mfyQI/rOhSA1eaw82sHZpqTtIX27Gy1O - blnPjSnZUHR9jqzz+1BzZ/+8/sGXI001XXhtpIEFCFiqXJBb0yWBFuzym0b3Tn8fNpOWI7ppxyfd - L69q4HY4MWCw0pl6TeBvi6SbIjRcfCHgnT6yCWCtQeblHmM7uyrb6l5cUx5P7BsHJb2E7yg7N1AM - toIIRZ1v9NN5ItxfZoee0WnTx8OBmeEXL/0X29J6G2ZHAalNJoq7g+Ms4PaA8D1eenyiSuRsr1fa - ge/+/aUy/UwwT50C7p/mis2Xrm28a87Wn/e/OqddTcOjYqAfv7Amg3eWpdon6G2TF4E3s9S5I6eI - MMfJHueZsA49b3sjxBHzIFzHhWA5iWqPNomwRGKNCSyXrk/AA0SuL703lI25dm3AN16p1vDDRu6B - 6ELh48n09tJssC126aLYmxEu9lmzbXr9UqCwsxLsLdIUjt3tZsNOk1644Kq0noHUn+XRWG2fEUpl - YK/gNaIf3il+7jjcbjecYfHcroQeN3sbx+MiwqVRNxzARc2EALkxfKF2Js9JsPXFWuwI3rKOoep8 - ZMIlMcUODoplYz+ZNIeDz7sBn60jU58BBVgq7TjD7BkpOH1KNFzaChE4XXKG+q/3e1vMeCVAvukc - NRQ1GAT1roxINMaeCCflOSyRNjbwaPsmthxqbcuMZRn0O6ukhvV8OWMU2hbM8pvt9wYT1l/85WFQ - GRG9DvULrMFxSGGWsA4+tW21zWtUnZEmlyJWvvm55r0cQ1GxNWrZ8wVQnqYEdgc2xftv/d4YzQpg - lO597MvLG8yMsXfhdIcrttSDkJHMAgacizmmiTAehmXlRAKk7d7Q/C129XyszFTmdVjg04PEgL+r - Tg5vqAtouptS8Kd+XOk9pfvcsTL2ZJQEvbt1ILt9PdcfZbWsH17T4DzuM5qRb/yVVYR9BQThnM17 - DabyvMenHBnhfLlaBA7taNCL8M7D5VGDErThUaOnxVqy+YiBLOXabo/1zHkCIpbFH37lf778du1G - ukpaBN9YlcRSX9ZWZ+CSihXhv/Vwq8Q5R25iHnxxMmJnCs+3GJ5PvOCXn0ejd+by6uCKmo7GZU2y - z/BWZ3TxzKO/fev5vFfTHF6XYsLHNND0Jb8l/Y/fUvzw9g65Vu8Rrol2pUp6f+qEuwBR/ua330/y - K5vb3TGHsygF5HNTo411g2MKGQkeadY+cT2Gzl5BMZ0xVvZ6uzW7+EEgorf+G69FuEx1MALreNxT - 32588LHCY/fje1jX0ru+Vi8E4fWcMtjM7CNYw3rToBZCht52L+ywr/ejhe1xaKg1gAFsGcw1+ACx - S9afftlZzgyOA+fgtOgsZ/vqCXmCmkj3r8YdtmiaDNgTS6AHwWey6XihCXS0oiA6uhXbMqm3ApLd - gOnxuehDt39kNljHZufLt1u68fPucoZ7fZX8rWGEYfjqO6R/mjdVa2ZxxsLOR5jK654qqD855DRU - HXLCg0y2xyXZlvzdtCiCZulLSusNQiiFgZw23PvPeaz8bS0gA58P7HIgqZfj5Z3CJt4VRLYPqB5p - pxjwDx+d1b7+HCZnBi3qLHpU4i2kyxGn0CD+mwgTJzvLi0l66HB7F+v1K3SECJ1YcAJnSNgvv9k8 - t+6gt55vXz4GwfLVRyDm4qe/pobuzE7vVJBlIvaLL5W+9WBxUdnrhB6q7ao3v/2yunvGwXe/fN7L - EQxOxkCTh9rq43UJIlTfuI8PzjtRnyX1BuFO+kREChPe2fyKJZA78Gds2wc0TM5umOU1fU8EXt9i - tjKMXMBiWz/UF8py+PFboB1EGxtpw4LVpxkBcbG2dH/bAkBQ90xQa388eoAC0sfCjkZ4hbKB/ZNb - DuuBTQyID7JGj2LU6UuT3xLw5ZM+3D5NODviI4dU7Sp8sRcPcJLui0DR3RVfT4pav3ixZkDy0QK6 - l8xGX0el62Cq+xV25DEfFvPjuRClgkZNkr/1ES1rD7sgxv7nfqLOptxsCyFLmMmuOwz6wscjgWK1 - zv7wTF71lrKxLO2ag06Y5M2AMZs9Dfz0Y9Ds8MD5N1CAjkkiHIZ9mS2G8uyhALBLvXJ3qLnUyxkA - z72Oj2Av19/9E3DSp5v/06NCd4I83PfRRmTegOF6YxIbmJWo4KtCT9mnXasCxZAfsetdmpCcrrsY - zm/pTa37Uc9mb7V6SNh2j5WYh9mP3wI0ZxFVoeQ56xM3Mgqr50BW17HDGbtJDI+9UGG3s2p9m7tS - hIvIdEQ6mpWzSLHsQsy/Gh9YU+Msw1tdpfcC4FcfZ84XrwvpoDAm1bYk1ddoEC14NtaUHmXX3jgp - Xv+ct48MBOpPZA4WvI3dG7vl+zms/k4p0Lc+YdzwOmAvV4VAt7EBVZRtHMalf7GQfQYJzXl5qJdn - /+DBy2Y0anqnRV8Hm9fgUzy6WHu+mmH+8kmoJc8W++d9kM259mgAbz5ZrNT8K1y+7wPqYi5ooh6E - cOnDOIeRpyzf+nXYWJfYBgDK64aPJKPOSKN8Bgun5lh/TkG4rp8TQd/8o5qjlfpcxkECO/luYbcP - Sn077CUeHqq34zOT9QmnNnrOcOzjjKBK+Ppf79VA9Zw1GD/xzhmE7RSgOA5WMioXEH75nAHZ6ypT - 5asn1t/3BYWmESa+9MN0tnMf8BrDUa2+v0M6N1UMX532+OkrnffRu4cPBjgEPcVrxq9g9GHyqFbq - Syu7TdPjbCNajIy/MqWScYxAbBjmuxu1Nx2HE6uEPUyf587flTHN5qVMchhVb52qOTKyWQ0kAtnn - OfFn9jSC9dMGEEG1S2n+LJdw616dBZ+DQbHpHDdAsivWQJZlT//ZthpY74Hoy9/65O8I7pzPY7/y - cB74DSuZydefD36IcLiFKT74Xe9sMVe5YMt6gm2F3LLPDjQj9MztQzZTfW7rNUlj8OUXOG1vNRi/ - egjowd6m6QXX25b1xxJ99Qo1GwNvvKNJDTxFVCP8TRvBYjup9rsfNko4Zmu4mgycHFTiC/UG/Q/f - g29/wG7dkezt8OcS3sb+TXYtaYf5dvgU0OkUipPHqQxJGn0CWeXFJ06NfQ2W9TpriHlDgZpjY4Qs - Y3g+HIfIoA+LvYIlEXQWff0BqgplV6/RcRZlpixGf36Jj2wN92uEbuHRxsFeb8E6h1b/82PoNTp1 - oKcgHmFVUBNbRqGCOZi5CDUxKqgT4nPGnnQsg4MCTXpZizWbq7nU0Jd/+NdAZrJN8joGCsSmRGLy - l06X4yGFleR6OE2Tads6vRTho+ITevTx6NBdRUb4yYsUG4+p2BbvUEKYcWKHE820s/mrv6Fwaw70 - 1JHSEZR9wcI2dDQCHjtVn9MOy/Cl5T49kYORLbIoFeAjlyU+fvn7fKz8FB4EZyMyXS1nQRttwOep - 6mRRtK7efn6Iu+AEq1+/dDm+cuvHv/AN7NN6voJphJt2POFLEe4zLhdOsWSNtoJdG43b9POPf/rc - pxIAW6zzLvjpga//lH3Pt4NVZh2oeRDdYZ7kvSHP18DByXtY6s7kRv+Hb/6iaFZNnngU4XadKnxp - Xrdfve7h48RSirXzMRu/eIbCHYywiYgRCuKVj+HDup6oUSPJ6c3xzMDv9/K/eJ/94as+kzY+swXm - Tw+L0k9/zKQjOnuQ+hX6GuDIKoj+sMXXTwWPkGcJfT6kcBzfa4NK43EnFTptzvTzUx65JNGYQ1bN - 2beJEQA0LHqDxU4nX/0ISd3k+Nq4oN62TV9ReUzP1L5/OIcoJ45HaH9e6Dc/wvXnv0m59PER6j86 - pdpgwGsqr9TyD0rIXrhj+vMnfLF2kLPtKkKgfFM5f2D0g7NMEzHB108gb1CI9eoKegS3l+VSbLEC - WGJmK8Bjkqqf/ghXfSeukDnKC3U83tfXI494+Xl6n7F9MINhbGlEfvqKZtAxwvWsbusf/fvTOwtL - VAPAc6djt5W4YVTJmkA4k+M3f81hKo9LgrJG3v3Rh/PlFXXgGVcHbLzi+zCJI5rl/FpPPvB44ixV - aedAu9YI2/ZV2KgThWcUbs+IJsExzVbZv83we/7USToebOK7NuXdo0rJ8tWDKw8kAr7+HVXG2ck2 - /pQq0PN71V9Kf6gpWPcQ1PuTivULZIc5ul9LWIq56ksGfwC82FwiqCV1S9UAkpAYrNYgch8QPe6p - MGxTl6XgIdwUagiPud6UfczCb/z7YOilmor7gYfBp3ngw1lssvluFrbchcAnxYP5OJshJBG8K6aM - 9Ya51mueeS1UyhPGVtM3oJncRwdpasf+geFqR9C32woH10c+Ympxa5cTZSEAEyDS+dGG4wvYMuR3 - e+XrV73qKdlfeRSlB59MwwkMK/kYPniP197f2freEUg++bC/NfiXb8MmE5zCP3xR2Q3DlD6VM7QL - 3sTYdaps0e2dBq+puOIfn1ysUO3QV89Sc20LZ/nWS/in/vfJttHV8yBoUrGnXsgdMi7dWQy0POP0 - 9XccnTM/ng/uQnfH6okrdHYpgwJJO7HBBbTHcHkxQY9c1Cf+jlfqbeOAIsOv/sAeU4tgSwqPBYbV - xT4aZz1cGKG14S/+skoF+owWuQd2wZpf/zcE4w+fn3XTYP1xSUCP5E0GNWQbrJvyaWAPB36FhYv3 - dB/Y52yjc1KKFplimlmT4YzUtNhfvaT4MHjDSkExAhyovf/5+nHLJ5gJvM53Az/29TwsjHOroM0l - Kk5uVVELmWvxEOwrHyv0rTrc7LARNKw+9pevHhSGsx2D1A9Hfwj8/UA/gtyB3VVp6Z09NdtE9oGG - Zm+eaHZ7H8EffLifzPrbr2CHWRgUFgV8B2keXgt97k+fEoqKpdHD1y9agGNoKJerjgifQXc2bLAK - ON8umi98+3EkuAU2OrUkIrvj1oNNPd5TQAbjjVVd50LK3o49OO18C5tkVMP5c2xSdHqNA0HvgzFM - Z6j4yDc5lfz4wbQUJotUPbCp9e0PzUYWtah9WRG9X02/ZlkLmrCmN9lfv/4iPTKaBdTstvz6efrq - aFL7q0/ULrpOnyX8kn/5iYP0rjoclT4z6JO2JXPqmRsPmBH++itf/mYPiylKEAhJUxCuzmm2ZTBS - 0FxHO5z7Pqv365QEyPHqzpfOtBzmcwx86NmEw+pjr2a82NxjkGquhN1MOA9z5WEGfv02rHeXSucq - EicwvgYZvhJ2cjZZXWcIlPfNZ1THrlmi2YHUOw7Epq18wHY/T9YffAxx2joUvOcG7Su+o0baRBun - FDkP9crIcd5pD7CMWdbCj8609ODOh5DNRjOHW0cdrOknI/x9H/jdH7b219PQgRfDgPaBOYxfNKxX - bfRy+OsvXs5nGi5dL7N//Njc4ijY/KhcIUlNxgeddHDGavzkkNLxTb9+I1iyU1jCEQsRderAyrhr - Ka+QbYQr9RmN6tvX/5G//QVsTUasL6cuEqF/5Xt8KGoIltVyAvj1H8hWsuWwPuvARV9/DeteVYfb - r//19ROxU6nA+fpPwS/+CTrzbDYA3i3B12+n2rc/uUayYaBjsRIf3YmSCXPXiX/qc/mNB37e3c/Q - s0eOWlh6gNHwlB4dLiWh4ff5yyDlAXRLTKlKFdZZrXV3huqyG3/5X6+mn56lHx5rRm9tgqmCAB48 - RcJ2c2rBzJFFRH//pgL+819//fW/fhMGbXcvXt/BgKlYpn//96jAv4V/j236ev0ZQyBjWhZ///Nf - Ewh/f4au/Uz/e+qa4j3+/c9f0p9Rg7+nbkpf/8/lf30f9J//+j8AAAD//wMAt4T5ud4gAAA= + H4sIAAAAAAAAA1R6ya6zPLfm/L+KV++UOgoQgu1vRh+6YDYQQkqlEhBCgNCDaY7OvZeS/etU1WQP + 2FbAXs3TLP/nv/78+dsmZZZOf//58/ddjNPf//F59oin+O8/f/7nv/78+fPnP79//7+VWZ1kj0fR + 5N/l338WzSNb//7zh/7vJ/930T9//p4R4zstPEvD8agYNUwhzeP7RpsDTdt7DrnnNSGSECsWU5uu + hu7TZmFj+WGTdXswPLq9eRbrgnXb2UPTQrhmhxdW2lIEbLgIMXrxVkBE7Isyi701R4vai9h6JJG/ + RvHLRGSSMVGl1irZq2pz8D2kT5xRiVmy3FEaIYuoBUuPxExoRRVjpMv2QtLYswEdxVoIbifTIkpv + nK3R8u2c99IfGUtiIyZTOD114CLhiT0xOw8sFWoL1JR7hqW75w6sGLg6sLyjhsX63SbjDzzEcD7H + 4bwPP899nEu9Qr3HsESl9XDYu81l+XfuXYmon7RhG5o8A+hIXfG5MVd/60urBpoj6k6PqX7Y1lTy + oOWOB+x6TDAwYtEskL/IT6Ixu5AwzyMnwPEBc4d3u9pnRVFgoUNttNPRom6x5WtMQebLCT5fFlne + 2/KiQKibJg56uhgI60EJ9u1yIsmLVcvV1AoJseX6dJjs7fjr+/Ay0Yy5DZttbciMXBoaSk+mT+Qg + rq3Rk/uFd+qpx8ayRxZ5HUYddufIIT/WaFhMVngu6l80IndmaeQjegcCcJhxJYpS3XfmHdIa8tEw + Ywu4PtjSqnBQCtyYqCId+mttRgrIw7YgP5Z4GY6xNhXwulMVtsrUBLSc39jffMpSFvnrdnw6x8bb + HKKCUEtoUzvb/JprC7ZZ3rKYiHW5k1LWMXbQgq3uu19uXCQcuk1iHWPtXcB3tKw4aMvXTrRJbgHU + JNnhSm6Ud6rjOLAWW0YuIyP7DD7gAF6cRHL4n0AEdFTMC1zUVpwZ3ugs4kkHCnaqe8aYPa6gD98/ + Bb92czyvZe5Z66PCMXw/DQ3fHLoe1u2BeDhftoGcTQDkxbNlBxm0buC4VRp/dW1lBHRODtiIj81e + l0fJRilXj1gXptOwhcZrQZ/zwueae+zrENobmJjpRdLbhR1G5fJiYYLHB4nk7gq6b/1cHrGBMXt1 + 5aMfjyZ0ZzHCxjU6WkTtkfObr+qxDsqtWjgHle6VcbYHsmX6OcMF0uvxgu19BNbShHwFCdvzxCTF + 2x9Y06/QmisL8eIwsNhHaiwoPUo2Pg9ptU+ZkirQKuMJKwbvAvZ8qyLYGcWV6GqvD8dj3zqwMPQE + p8e3VhKSygsU1qklUhzS1uqi2Ib3oVWwtySUtaWUnKNLPCcOc6akgajXWwZJ0+0408/9MOZYzJCW + pi2JClQkizq0EjD2qiC//cRYFQcqDdv+9qOVn/MNGci2SbpWtDzdVDmCbm7lWOkaNWFC5lih9H27 + YWPzWkBeY0pDiRMeM3NfT9Y2WNzIf/ufWVlgH2sXu/Du4Acx9SUGgx9dR6Q9BIxvjlcB0qmtA/OL + cMQ/h0cANu5ozoDX1x+SrtLmryPeNkQW1ib2Knn+wpdPDXqdLhMviW/Ddu73GZWDNhHT7bR/56fm + sZTDRX2a7Kw7VVCT/BuxFLiDdffbAJ2555HI7u5YYx1UJuRKM/rUt2bRzeuVoRpMkJg41ffVwGYG + dVzo2Hn9mAPtvXIK9YzmYe+BRnndtVJA3v19JdlrH5NJNJwU6g71ck7B4+KzjpO2gD2NBY4keSkX + IF5DKJ5VBSsvmfK3cnsH8G4cMBGLMQX7oiw85CKkYS/T1J2RukSDPZQcLKWndmCrR86j+vRmZrpT + y3KjhipH/goQOVuHbNioyxzCvsUeVqgwspZJAhAwUkSTRPN6sJUosFFKc+oMDgAnjHs3JbjHio3F + wgTy7lN0AK+csxF5+HmCo2YZPDizt2UOygNfLhY41Ygt9yeRl5NZfvsjaO6ziY34WsuzQwOP19zx + SDIRUfL01sUWiqIb4ucRXP3xWz9cAy8kdNWTv556i4POCR6wHwqDvyX1LYSidfPI2aG1gRHjc8Dz + Wmc6pdsH/h5Pio7WMlDx7VvvoyfaPNrnMxGRHPvMU3AL5EnqRuSf+Qjm62UKodSJIY6Uw8Uaf8pQ + gfM5CvFP6VDDdpa0Fs2Wgoji2FWyv5yshdpDwjjSrop1tO8X4Tf/TVKoPm3dXjE6uGzlcNJ7S7aV + KWsYU2JLzn0k+qP3sBUI7TjCUpQl/nqTaAjffnIlmFdf+84+Ch5xftNjYexdfz3Jbw+tvCvin4rt + kp2k1sZL009F3J0TZPaRRQ60iJ7hs77T1vR+FRB9+IKzY5YCOzIqD+happJvf1x/3K6CpAc6sTRj + tSbxp+b4aW/i+TSDgzX6dz1HWK568sF7f6PUCw8bb3GIHBqqvOJ3LUC3jBkHyHU6LEpWzIhFcCFX + oGy/540kJiAk9Mujv1be04HC4Z07HBXJyRF2zxoQSn+Qp8C8k62auwVeWWUgZtOd9u1iHDboTdEP + ic7FK9mOyy2C3vV2nvnednza1LANZ51isfQcB2vVD2wPE03Zya095+Wi5icTGgtPz8eLei4ZV93m + 3/5yxk9JZs+S08KLqdPE7Hq7HKfG1iHNdhJRWfcxLHa/jOjzvcS4/xQDM6WcApXHmRDZV5x9b1SN + g9fiGM5It55gzBWvQteCCbE5XkR548aE5RvJbvDj8gr39zgUOTSmIZu3u/CQp+2BOBgquUVip93L + qTKoBUqD9XDqJSDlJg6DALiumMgXz3dPOkAIRqbHvtsHycIAvgKHzGS+fOSX7wAChRCrZ0oqj4Ej + 6OjmdS8STtqhHG1KEH7jo58Qa23L7R0hA/bvmVGtXKZVmHPQIqOKM23dk+5kX0Y4G8VjZr2nD5ZG + XWeEuoKZ2X2bhr149BEgC207DOuiYV6kcwusx7Mjyjsbyjm0OBvetYknV+Fmgr1Tcxsps41wuOrV + vtTvtwCbB4wwPhaTTyjHMOEnn3GmnOJyuV/6kOf9wnQoyxYGGhjMgs6nt4rPjmFZx9c8eNBZbte5 + 73RzH73tRcO78t6x9+GnzGkbw9/4vwxkykuemwGkUUURh/uh/L1z9BZyM2dgFYqSdfzyv7tGeHKm + /Az85mMn6wJ25zvxt/N6mWEW5xRxjKDZN50pauCGJUPsJXcH+psvVhlNMxr917BEnJ1DPs40/IsP + bm/yoO+CnOhK/bZIEMQ6zM2r4fRO65fffIG5FwUk07faWqwHiOHYVBYOk7TY1xvePPTFPwVmh+R7 + PtDYJImIeXUF4z00NyiawR3r8FwM23blXNjyLwc7ddaA1Q3eOgzkasP21h6HkVYSBWpPPSQPXzgP + i4eiGRxkVBH/dmnL9eFrBb8WS4azMxMC9sAmEWRh5JL4g8+/+LGmTExUwOnWkVLzGZEtHmeqOJK9 + 12tOh++HcCCuG6jDRBNXQdm0+VgVkSvvMaVKMOtyFWfvWPHXyNNnKOuVQm51mMqLFwwt2CVRIgl8 + rMmS20A6JXKiYqduXsP45ZO7YhlOpbbI3x710v/WmxDOubzQV5+CKYpe8/bBw23jhRSJD+nsLPgW + JmS53MNfPVDfqKoc1P3awi//ydBCrGG5rgsyaNNwOM02k1WCffTLxySZk+RVjtseZn4jEeGzP3Jf + zyO8/PQRkQB4+cSPR50f36niVF3zTjZduOfQuqnB/FKNYKcV1YhhYdEG8ecn3sdIeAu/fEdwg3f5 + PlSHGb6Ntf/ka+bvwlPIQZZ2KhGrCQ+t59zbL9/Durg+5M1pEITK7CCsSpoBNp2SJbhWAUWeMY8t + tnjgGkqTXxFtdwewKJwtwVAprJn/6BdWiJIRiMbFwvHF0q0tVR4139LmiVgabQ9bCpACGSs9EjW5 + UcncWc9/9+NLo2T7coddDKUaYIIfBzUZtGpwwK5Dyjmsr3g/kjsTwrL2OIe542MyBGFeI9GpGiJS + 9zWZXNseoUVmlZwt4iZzOkktSsmBn7lnHZVL/VBqlKL45SzudBnoOZRdvhzVmihGhK0t1bcMurmR + Y/2zfme2JoSjLj9meL2ifYrergC/fFRbDoPcHyhAA4V1deJo6+5/9hPDe+i186oR3lp/Dp/4ZquN + z83oW0f0lATgxSacKXDhy5VX9xF6pIiIGjNw2NvhXYB7YL6c7enL1iqtoIAfPoWtaivkpUE/NkJx + ORNtpiK/YQ9jCw9l7uHrI/qx6GbrA3jw4ECumV3740wtAeL8d+8s+MTJm66fIDw8p+tMWzlrrUOo + bFCMHA/b1ysC42SlEc+28jSzM8Ula6b1BcwqsyNOFeZgdR+XCjT30cTi4UGDbb0DFnj+1hDhZ/2x + xjt8RYhL1AuxFwfJhD1ULdRerIqlNM+HlSaRAvOrJhGzv7bydliMCBihBRzePVfl7vHPFO5uWmAv + e14A20kUBF4GV3xffli/WClFAiyMXWLTW/WtnxbublZgJX+lwzpkkw1pdpCIYh8aefzwCQhFx3F6 + 7BNrE+NeR6uPlxnAepAXpYIz3IN5ceoQv8vNaRjqNEaNMm/XggJjJEwS+OrH9K7igW4akAF8sQPs + ffazWGCt4RkQm0hidi6PiE158C4oGTuf+E5So/Qgd943Z5lsz6InH7KQ0Pk+0/kLlnvg6CZAayVg + n4g/Q3ejpQzppjli475XPmE2EsI+ezfk4g+ytVWnqIeLMytYaCMIZg6lI8hcEJCLW1+s7aoqPLp2 + l2GGdGf6H/0RwheVFNiCl1JeP/ocJibfzuzdKqwt9EwboujeOGvjluCLRyf7kABi72NiMQYA2old + HY1oJI/lvdh1HRJGi4nKD+ZOQ3WzoXXfJedYh1DuDAAU+KlHfPng16dfZgiRk4lVWMqAqY/CDLNX + Boh+ksZkplSVg4WgRCR28FDu6uPAg0viScTEzLJ/4wEV72Fj9dVXw7ofuRxeDLHG1ktyk7WKDy34 + 4vVXD2+c6Sngw1+J229HfxUNLYUA0OtHz5/3Y1LzOmhE9f7xJ4g1DaG9gBf8SbB15lx5w0dxRuTo + vIhaXHN5YX7cCJL+pGNzgrm83s53FooGtpyNC7pyZPp1hOyxTmauDM3kqBFPQQf5UGFL0Klh6PjV + RQSkZC6iDPjbobQVqN03nlys7rGvYoxD2NmOPFMf/UxINTqAFzyGaDto/DHPpRCWLPv8+j8ysx2O + /ff9M5CEW3Jkj7YDJSrePv4BXZIg8ExkjArlsF//6hTMJgzO/p3YdxWXc1/K9Tf+DiOPxFpNnUth + +XrKRL5xirUH1mmG7y6MnIXU47AdmhyiuyfE5OeFV39P8laHSgcJFnOJtoi/HiTQznvqvF+6BPYF + RjH/0dMOTJ691TZA2mBGwh2r9/Ukd8MP4eCaHmMsNufe2tlls8EhlWYsvrTb0GWrMsL159zNwGpf + +5efgDVvb9h7VJU1MtqrABfhZZIfUyv3vXsaOWKX9kmkRMTlxx+t4P1KxHnVlxHs6GlK39/D8pSM + yfpIauqrH3B4Y/p94suVg2gOe4xp0oNGO27515+Y4fFdD7smddnvfp/pPZenceIgT472C19hWYJt + eAoSMk7wSORVUnzmcZrMr19CAl2KrPW9lTRaq5AiekG35boLPwLP0vzkMOz2TBYPSC766E38mE41 + 2MIg6r9+DEmg0iXdNrMLdOBZw1hexWE16muAdvOVkcsQegmd9U8eFNKikeirD7c1l9CVW+5Oxv1Q + yfpOIgreo5jMx48fNH/1bnnKL/hmw2nfjzf3U39aRKQHGi0Co2yExpolWMZstn/jD2dlbHFKd2ay + d2GnwUMbnEnsbrnFCj5Fw12SpXnLVtFfOZbw0KsChzylSvnylQLcSJ5jS/NMsNCVE0PpVe7zaiR6 + ss/KswJkZdQZ0ue2XL7+Ue40NyyarVquJyfVYWG5BX5+8H+7hpcFsuTl4uDjD7HloehP/XETsK4c + JnleVm2EXuGciXj+AWD3c1YHpLy/v3528osX3+/XgpsNdsQGHP/lx0/2uO6dK48ebB5U5Jzuur7P + X787uxoFjoB4L9cM7DW8HvSZ6GdgJKMauTNqAu766deKz1KXOoTuAH6IxbGnZNAEX4LXCj2cvb/A + ZBNWRoLjTaqcxXtr/kInEzzd7XM4n8J5lukGmBs87Qkzs5vsDAujdQXUbW+fX6/25JOEeBUyhvI2 + N824W+Sb39fpcSKR2usls83UdlzHSCfxGx/80TJHDUI1TbHvbcDfSnrf0AfviXP2GWsugLoh/uys + xAjt0V/drQy++vDf/a15JgIcE28jYm8LPntYjBjevOHlcLSKkm1ZnRl+/A+nY5aztX76DXDodznP + yo3bd7aWg6/f8+uP7C9vLwDNXYqv/vCXhuY26PbhSuQJOfImSIjiv34SvluuNfdRMEPez03yIJoi + 761RbjAG4DXPSPXLneoWDrh0LmMLbMxAukWKIKP2xgzyszZM2c9PhJwTdcBKLUz+xqFgBJ3qnbFw + eT6GaWguLX9a/dn5nL+1KHycgonCCOv887jPIt49lLmngNzedJxsH38VfvodOVcLC5ZGLj3+47/M + Jz+nPvhhfDrXZpDL5FjJVnq8ALM8kxzu1Qz+vOQqDQi3ivjTr4ct4M45HMdIcNBongH79efYN6iJ + 8cmH33h/vodISXwctvUniUEjdgKR/Xopl/pc0zA0QsFZv/nBzsMGS5Z+YmUIq2Rb8gvLK/lNnZOC + 76xN5NoAXvnwhM/G8VZ++TmU6hPG548/Xi8Sbr/9wjn3fGmxvWiwMIsLyqF1iZMrOX/ScBRe/Lzq + p7qcV52n4O2lithgnLc/4XPDog9/n/vKAmA1bFoCr6XsnT00VIv+8R4OJCcO4/ttW4dff94K0IUY + qzoMY3x2Q+iiWvvoo8JanvenBK+cveGz9YD7dgh+WtRv0CKOiDJrbz3bgUYl0lhNrX0nMb5AgOag + J6JlnhM61zrp6/98/B1L/r4fpHSQYf1uZzLzk7gZUubl4xd0o78fd6FH+9W7OeAVlPs2LAIP3bk6 + YIcfOPDJTwhCPF4d7uXI/nY+1SbkfyIZ3z7zhJ09xT1o3PZM9Ezwk/FHffLg/rArbHhpPLRW7bNA + 4vUKyx++95l3bZA+EJWIn3nFXiiGwhFihCRNWhmQ5BLRX7wkdlRewPLRq8BH3ew0lE+BNfKEGQbC + ScHe3VuGBd6N4jsfwQmfZuUxuUQs9KrQwRqtiAkzXqoANgF/daiPHqTz3AzBqxhW59Vs6kBIzbeA + a6KapEe52keeflKwHJSJXJ+uATau3CN4SdmCCB5DD5vu5zQCRwGS7KsvC7vLodYuIpEWdNi/8UdW + H3bzWh1kaz31MgfAogoO0IxVnsXANVEJ+mBmHq8erNXyiEHL0g3Ws4KRZ0489WD/kQwsASD6H784 + /PqJM7vqCpgiI/fQB5/mLx7Pgs/S6OPHEO3md9av3rtEVUBu+OKULOeOGvTXE3JAyWz7/JnvAKdH + nDPX2XnfKvNeQ83c948f0cpL9PPmv/vBSf0SLeY93mnAp1I97+Gg7XQkTAJslHCeD8nbHJb81nHg + M/+ZV6skyZopgYK4kD7g64efdfXcuojmb52zh3Q+LPdscGALNAbr50JM2HKbQtDS+gmrwuJ9/ToK + lpW+fvylQj62sI4ge6wSfA8eU7K+kTfCRjzfHdqUzZIxet4+1YBAjNmsA1ufI/23P7reu05I0gkV + knanJdrEB/uvHvniww/fPYfVDUENS46qiZo+zv6RedXpl29ig0WKv4bWI4aMLWRY1NWfpD82FAX8 + w85gfLz75VLPlxQqZRWTRG2Iv4Ctp+HX//Voi4Bduy4bpFFNfeapWjLxyT2Fo6u05OM3Dptzl/Ov + H0ckmejJ8TL321dvE2MziLzkTK7wa6fvWLHyUF6NB83BPNo6LBYjBHtgDC5sbMac0Szlw/bIXBvV + p4bB8rUp/dW4Bikk3cp/5w/WGqaZC756Fw0cbXWbklbgg89ER+yrXJ6SoiMtq4kDxVhIjp/5JETp + wMz5ZogWDcRHCFGXM598f4IR6kKP3Jc7f/3jYX0D24W9SwjR5TNtbRfxGcLR9odv/ZebTlnS6TZT + JywvN32nG3lw4Tf+UnqrwR4sIof+fm8F/Ne//vz5X98bBnX7yN6fiwFTtk7/8d9XBf7j+B9jHb/f + v9cQ5jHOs7///PsGwt9uaOtu+t9TW2XN+PefP6ffqwZ/p3aK3//P4399XvRf//o/AAAA//8DAMHo + R/DeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ab8dda4cf1b-SJC + - 991b1d4a9f395c1b-SJC Connection: - keep-alive Content-Encoding: @@ -803,13 +803,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:57 GMT + - Mon, 20 Oct 2025 20:02:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6b6d784995-p6rfj + - envoy-router-84b9b6f796-9zgkg X-Content-Type-Options: - nosniff alt-svc: @@ -821,7 +821,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "72" + - "96" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -829,7 +829,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "140" + - "138" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -845,7 +845,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_a45a662539d3458d9913513b1869f493 + - req_ecaa5dbe29ec46f4b3d5c7135932a6a5 status: code: 200 message: OK @@ -1006,7 +1006,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1abbe89bcf1b-SJC + - 991b1d4d6ab75c1b-SJC Connection: - keep-alive Content-Encoding: @@ -1014,13 +1014,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:58 GMT + - Mon, 20 Oct 2025 20:02:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-85b94c5584-pf5nw + - envoy-router-7fc5f9bb9c-ptcbx X-Content-Type-Options: - nosniff alt-svc: @@ -1032,7 +1032,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "169" + - "63" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1040,7 +1040,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "189" + - "122" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1056,7 +1056,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_0fa5bbe13d5a4fd3b6e2fb2a7e76bb99 + - req_912533c738ea41bf918f98ed0763c746 status: code: 200 message: OK @@ -1217,7 +1217,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1abe78ebcf1b-SJC + - 991b1d4e7be55c1b-SJC Connection: - keep-alive Content-Encoding: @@ -1225,13 +1225,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:58 GMT + - Mon, 20 Oct 2025 20:02:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-8c6b547d7-j6v6b + - envoy-router-6544466cd5-vhksf X-Content-Type-Options: - nosniff alt-svc: @@ -1243,7 +1243,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "74" + - "55" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1251,7 +1251,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "95" + - "118" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1267,7 +1267,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_1c483153b2724c4fb4344690732767ca + - req_54b8a645e9d34dfc85553eb515f88446 status: code: 200 message: OK @@ -1313,121 +1313,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaSdOyTLel59+veOKZWiekk9y8M3pplERAxIqKCrBDhBtpMoE8cf57hd5fnKqa - OEAMws3Ota+1Mv/zX3/+/G2L6nYZ//7z52/9HMa//+Nz7ZqP+d9//vzPf/358+fPf34//787b01x - u16fP4/v7d8vnz/X2/z3nz/cf1/5vzf98+dvHu9feH829V4I08KGEhNMJlRJBgvTqIHT2upwoNsP - tkjZIVeOF/6MjUWi/bwyvRUItrrQEFQ5JqeD5ijWksl4x2m7ghf0XYbYDTvYcDMxniJONZWC7BPs - ZfzWEDcnkNAGDwaOlnfsT+LBleGw5yhOF29tkMO1ekH9zDp6FI9Tv9j0BPINPQTqFUWGWPRijfJC - 5ptqaEn6xdnvVGjepKNuV3QVG55kgiJ0rvh0f6+LKbw5DWz3WUfTk7xDQlf5IVIuc009z4zQ2C/q - omhXTqTOXUJs7Cp/Uije3bBptT2bn2dC4HCdMd1htWbzNplViCetDLahV/bzOg9vyjFsOqxZYlfM - WA1MwDgKaKgUasHxMpei8sq2FCt+hdigPgRIlYtOj0WXFctJW3mAx7gh6/etqNgNjp1SEX8iorcY - xfIsdwTB9rKnalSe0bw2ANA+V3h6z5x9/6l3Ds5g+jSjW8/nzdXmBkakHugpmP1issT4Bhv6Y1An - WmNE3ILpyrwX7kGr5GbMz+k+hak9bHHoWRQxk7Ib2m2fFuGL3SpeDgF5QRx6JXWILxhcsEUmoLUy - 4KCcNJ/t5kFXZhZK2LZ+FjSlh8xRHPsV07SMep/JJMtR1M4qVU+XI1r8J/9U1iMm1I+mOb6F180L - /Eo4Uju+eojjezEBPZMd7IsL7ZfSE3dwQ0+BmsGTMqb65gpO3FDhnTrEiF8bHIBpdSXd1bQzmHwi - MpS9uKY711HYqObZCr19QPTiPX0mvtqAQILsGe9LfempResbQPWjBHytC/2yXdkrqHZnB3u9Uxqd - wu9zVPuGS03uoReiRU83ZcM7F6xrvodE+V7k0HvVBXv1YTbm8Kbayn2f32hwz2+IvdpggFu9vmHz - cpr8eU73CUQCL1GMYlQR+V7IcJzuXbB+K2NF3tUhQlUJJbYs0Sn4lG0bcOwmxk45vQxWNC8Pznyw - o265Viuxq/QF5JcC1IyMK2NHGZmwGceC7oKSocktQIfzlfnUeYeywVrrNimydhqw2u09o1egymBm - kUR67qAxXjy4mUJSVaDHt3arZpkcMiVqUIa9mvqG6M+LrjzbSaKX8hD64j3a7ECrshBnMTLYHL+4 - Bo6u+8Y3sToY0+ZHyxSDJxpOo3WI5niITUU7vBycuc4dkUYQAnQl7yu1H8e7P42Ow0GzeXs4krRD - zIDPZfDSFdDtZXuuhCxkntJ75YW6YpJWU3HfevAcng62NEktRCnTZYgsZ6K3ohDQAnycoSwaEdbK - 0qt6wS1l5YRDDxunfo4ngg+Jkr7Jgg08asXiFkhFkUQf1JO0fTxswlqGXP4xqcm2gz/Q7SBA62Q+ - ToInRkK/CRdZIf2egG25aILmniHxKfnYyZU1mhnbJGilx7cAvGfPupeYB7BkXEitKJJjJmWeBFWQ - htQ5yT2af/ZRpEBvXumN+LEv9vNmgrw2BmxI4YgWo61uym27ssnE6tYguy5Q4cCSFquoynz+ZhqB - cjvJTTCUh9BYho23wHgR98GqnDRD7DdZBGV5kfCunHSDO6QXW76dpIaeMLZixuvnXHn7K0S9xbsa - jMx4gd2xUYIFVaKxeJX/gDpYzsG66OK4M9vjDZGTfMOatzTF4nVPFVzaIey6J4hf58xsUTbYBnUA - vHgR3UsO5D00OM5cvxp4/SErCnnvaSi+Jn8cHSeBKnTOn343fX7XBQ/A+7yhTvDcM65LcAj8Tnpj - q36E/XzShFbZLqJBWGnQfvnUV0lOl5KqmfDyF3MlreB4GzUCJ/mNWHjd2Mqr91y8X0+rnv4IPwOk - tv3E+dKefJHXzxm09qOi1lf/LqPigQN6j7Xr81kt7cWZlAMfhDR5E8GY9TK+QbISNOwpuVHwqUxM - iNk0U600pp6+E2tCjyzDNOJ0t6Df9Wmnmhcs7k+ClpjNJsx77o6jR7rx6Vff+oqzqF+WdTXzvSAo - k7zF2HscFZ+MEkyA+M7C2mN7qaal1jmwLnyJrxBIbGJs5uBijHuskYJUzLI1FRQuaIJ1rZ0r7nnm - A0Vb13eclpFvsMO1MkF5ZjcaRsYdzStuLW80lk5YZ/WPP2XutUWn61Gne8U3kWjvD09os6TH1+hw - i/lGWBHAB/NE49dLqYi16gCMSXvTkNO9eHJWGOChSFuqc/q7YHv1bULpWSeKMS7jJWXYRO6VxWSu - H1ElKNBLIBZFRz/667OcZC3M9+6HemYPbDm6Ugt+pO+pe+pJTDDWGzgtHApmjNt4Mh/iCoF4GMkk - vkJ/9hdNlTd7rqCXN4mM+WqeA1SHryfeY/wsZvmkSGAEyYPu3OaElpRtTfj8HuvFRkAT8F0G+Hqy - g7UgnCs+QZ4JueUN9CSRmvF9l4QQCaJEvvOWP4d1C4PVjNi4NGP/eR+C8lA3NJDwTWP8ya2cX30L - Sbcz+GryAihuIUekqOTRGG5vLwRiPAbleoaePc/jAI5wZsHS7Q4+X4smgfne/mC7pntffET9Doy8 - msg0Gc9YGNUyhcs5tbDTda3P3lU4wZe3rtrZi/loKG2E1usBa2fr0b/7pzKB12wugTje7j1xO0mH - Z9c9CHS7nSFm2k8Hyiuy8Vbxfxg56rmDPnyC3dB79EvMNjbczJ1AXbSEPedcdF1J0UMm5KNf/Ku9 - EnjvuYrQrvipJq18gyK3y4Btz9oh4Xludr/8ktr2i43raF79zlejfswV65+wgJTvfGpE0zFe7FWy - gmfGZZ/7TbYwNgkg2PoSNNF6QtNuRg+4P+VTIMXIQCw9OC004vykR8bpPdsmTx3SLXj0GMRLMSsg - Z+A5kkmPeFSLWTV+LnC/xreg1TzMZsUMV8p1VSukEplfcdXkEditBAsHRZEiyjM7UbRiQ7E2AlRE - i46rL39SQyJb9OFlgO6ovfB2vN0rNqVRCgXBSTCe+iHuU7k20Zd3rNIg/SK4XQaydhyoWsgUzUeZ - M6Hnuz2NrHZgZLpuEphpvcUp9yhjdnQnR4ngEeKvPoq2xXT4zAe6u0sbNL8LFirPBoU09bUHYl/e - 0XG1xk4ZdQbD26oB1Rwo9pg9+3MYKDZ02onDhsj6nsEIuaxwu+Y7jwxG18L05Sl8ksIeTctQpkrb - 7WKscQcb8QXxW7B/+IjqmVD5jA2GAD840vHOda5s4XshVe44tLHGOLP/zMcU9KOVBTzjntXCXiMH - xowO1Eo8vV9sQbjAfVpjskmpXMz+U9BBfCgG3ptyVvAfvUKpOHc0Z/bBF+dgFMARCkaxF+8Lfk6t - VJHMjhFAz9xg0ZCbEOjHNGApVQqyXdkA9XR94lAN7my+jrRDfLAc8LYstz0R3GemkPNiU6tcP/sR - nX7kjc8WHrtlafd8310i9PVHlkQaNsVD0aDkHb3/zWtdV4bQWd6L8IrvIF416A1Zt+VNA+k2xl00 - PJpvvQl86jMf9byDMVdqbF1Nu+IaYb2DDNSKhlj1kaC3mwv65ceu2PbiV9/Xj9WaYpoa/XRRXA++ - 72cnVosxjhsjQkGtNHi/nLNPf15XEr+cdOyyI+mnKS05mTuHZ2zBSNhXLyHXjkB1rHZsEg+apLSK - bJA1DDN72fu3rrj3ofjV3zkLWatw28uB7svyVdG9BE/5y0uaK0TFpOXGRbkG05WIpx7H806dbEWV - 4vuHr8biw7sh3Pfpip6Tn2e/aGW7QiX9wdQMTJ7Nh6tsg5wJO7z9+CFGtpvkWw98fwNfMaO9AKof - pU428dAUjEMqp3zWL7nXK6viXmK8gzZLe2qKNmcsUviSYUpv6+ABShPP724Kv/1JTmg5VPNcZ+lX - /6h72Ur9zLE+Ba3KQyLrts46e9+qyodHsF1sOMZw+mgUtMuAyNHjgthXL9eL8BNAjEo22PtSVRKD - HqjlnlYFvRskgGPYet/+qTrL1h7KQ/bEQAieBDHVIDe0e0cjNS5OXH361QbetTZYy9xdv7zaawAu - rQuM7cQqvvyJ+Gf+xPtLHfa/erDBxMD+2TQq8ZFrw3d+YUsQVtUoaqsclAursU/Tuhq6aheCsqQr - Mly4wB+f7YbAz1OKf3lYbC9OiA7+eostxj37yRTfN9jvZIXuHkzwl+XFOOW853q6V9FUsClAHPr4 - A5x2O+zTMM0beXLyLT1wVGXcoE6pct8nK5x33dbnnNUW0IyHLc6ZPRvDXGeCEvyIAXWvplnxjzwb - NudiU1FrPefVsvbzlYQn5YTtBzcbMzpRGWkFotS07RrN+f3SoWDTp4Qj78Wf84Z5MCX1Cdu+pjLW - 7A/h13/j6HI6GGwJ7gIS9+lCNZHtKuF8fzogyVs/EL3ELSaTcvDLY86bcMYUbk8mGpeTTXcATsGG - uZqUbnia2JMUrVgOqWVCqCIR25o3Mcr1vICExOoCdH9fizm/Jy3MVZIF/NVs+mXlP1ZKv1a4YPTm - NmaW6AMc1pVIlG7zrKZmdSSQviwZu5dt9uHbKEA3275hp9sRf3pOIVHW3IDx73z85CfKqm9s7NvJ - TzGaj/UFlXvuBztNrxr8MA+LpOrsh2LG6p7lzeJAv15zgSRpQcG+/gDO4ZG8aWr34trf3ZBGuzXe - M9ZUsxq9LuhyyhRcAJ7ZdPeTHSjhK8U6qOeYsOs2gb5cXakj3du4d3f0CVBfa5py+k/B4sE00UOR - t9iwzjgW8hPfQtO/IurWq7Za/OKuonjeuJ/6tjET3ViC6hZO+H7ZHnsWv8YGiWtDJvxbWap5a4EK - ebNJgrnWpb71qugB2+vJo1onP/rR3QlPYBWn/erVlJPWU+Z1+YNt7a0j8Q64Be5Yujg/XUK0yKef - DPpKsDC+Gm4/lbkfQMmSB95aAo2Xonm1KDmWZzJ7yS4Wo+OqQa3O4kCO1gGbR0dNwAo4F1/L8tV3 - Rz3ylMYMFuoCjhhn0QZQfCnCoA+iUzytY+eG9lMZEHKSHTZKdykHvAjrYH7UaTVhNXjB530H0tcP - eUX9hHCwt3T38Xf8oc5esIPVNWgDA7HO7xL918/uu41ecbW4D77zKFC6ou3nRzQEqCihptesab95 - Uwv25p3jy9IK/sBQlvzmZYaKjrFw9+MdHMm7xFa98npyci+d/MkHcJqdsMHT9J2AeU4OJCin0p9b - 6z6h1uwQDsRq9iezvd3QmdYxDrV3jaZAWqnQh84R7x+vrF/00lxBJP84Qa9exZhWFO2AjnsBf+ZD - zGjapkC5D13HQRjzgjwKKJSdNfVq2hssdZ8eiFsqYyfJbKNlbCOA8ngKhH/USc8++gU/pdrTnXS3 - 48UWVhe0xVFEoHdUn1vxdoasx2uhabPfGkslPnbKaYyfGHebsmfe4qjou7633abuP/mSBH0QDb9+ - ehbdp4SyNmU4WLzCX2pbCyG1zScuuEPJBrO9XX7zPbhLZ/Sbj6BS4rHB0nc1eN2sKl//lqtDwubX - ag6U/YW/0usIQvVewZCjpl7nwebL2+1OmYBsepvarK6NiRv2qVwEaYK3UbSJl0fUD/Dxp9hzmwyJ - WXb2oM6VNz1/1tfM63n+9ROf/CuqFueiqWCE3psa9ePQ887efMAzXU3UyQTVF6Y0F6DguyO1Prw8 - arm3Am2+Oh++Mwx+vs4cfOqJXYmYjDcm7wL3Ea+o5oePeGotEkpd115oUmyOjCP4nMCWW3xcnPp9 - zJeeSNCnPniLlkPPvZNr9PUzNJj0Kp5C7Ddg/4gRmexXyZYpzTm4/Yg2Cd74bgz9U4hg7V9t/MmH - +k9enSmbKklwvEi0mlWDXuT1U95iVWjBGO9w69AgxjxWLY+hL+/Bri6vXz/d8x8eUL7+yUYVb0w/ - FkTQpTAETApHxrLMd+TQbvCH14OK3fyWwNK12Xc99cMVmKcQ9CAYQyCyiV3TFA7e9k6IZ4ZsCQN4 - ffUNa9Y5LObtPn8gP/RqwlHnZYznH9cDtQt+Aiou+2qOjusXqtVWp16zr/2PvjeQ1soTu+X60bO7 - 0QRovXA/dM8dVLRsE+kJVthFhJGcr7gwUF6ocN5AfW/RCk6fMoBHet9SLZqEmF3NbCenqabTa6kv - FTukZgNc72lk4/Jp3JqP9WrzmV/YicojGqLr0MC2VBHW9w2wyba9J7QRZYHIOK0SaloT5LWziXHR - sXj57g+gy/GCVdct0Ht0nBSRk3QLZo4+0IcfBOVweKnYBlWM58bWFoUuAsX6he+Noa3aCG7nKcCH - xDN71qwuO/jwJ0ESMdAITSqB66/9YJXxlsFf+cSRllXi4EtRnNj7Hi0BIKcfCIyjbLx/kmmCrp04 - vGv2ps+uY9NBNW80aoqvwHg7FlHh7l8//OBnPnutpgBdl4zQmJ7K/sMTjmKL80JdNEvV8GrTHfoR - Xgb2TrLHlnCbmhLLr9InfzJ9/ua/BzT6mhWIMO6ZmCDXhHH1w1OP1pW/YOw10B0tM9hc6qVfWusU - IVWff/AWxhHNy9AKsoh3OT0XnVB0FHspcue7+eUZJJLtnCjGpcjwV6/n+JqaSORI/MkD9IL/zr/z - vWPBaF5WxQTEkBRnsH2MFd9AZMWtM4hDp6QhbVSfNZY8QVWuSmyf5IGR+MXZSHTrJ7YB/Hj++DtZ - P26z4GXbFuKnNE6/eU2weSthv+y6QId92AXYFVlbDdH19VIWy1IJGuHULyc3aZXP+sVBjFQmxq/6 - JfPTNf/yccye7XMAJ30yvC2Nfb+UZU7QZ/1Si2zsnt+utjc4jYcn3TYXo+fIfAqB680y4MZxZVD5 - 1Mjw4SF6wWqNeu3MVrDFYfSp1wMN3/xwc3jufv3VfDUPOzj7a4OayfnhT6fs0Sqltz0R/vpUq998 - gVWCRgOsvtgihrIEr+3t/JmHXTV9+hO1oBb4GA9OLK796Ibc8vn6937HO7Ej5ZMfkvLDCwtdr0O0 - xK6Ecfno+7m9aOGv33ZdPi2mqz/t5E9ejF37+IiHT34OxLZTuk9+1F68R3OA3iOtyMiYXc0x2zS/ - /2cvLkG/XPi4Q1e1swPmLXXMvvttF1gdyfPDu7NlZzqs0KOhnnTfFt/1Cjo8Mqrvmwti7o4+0Hc/ - 49Pf/cT36wTiWyRR7/LJBGSSZd88g6xhfKPmBqmDgnrdUDdrvGr55HfKGExHfNTypmDf/DPe3Sa6 - Lddazy7NzZM/PPfdn4rJt1+OA9vQ3YULDKFNuhBE9+dJrbcS9cuXPz7+lgxiFRmLmyRP5bP/FMxS - GLBpGd7Jt1+o++2/jz4qwUki9JtvzF1iT0AnZUv4aEqKabeJ9F+9ye5SgZiaaytlfdDv+Pt8yuuH - DFb9y6bx1dz2k1eZD/SZnwQ+vL/4xUmHB+h36npJG88KLDlUk3EONE16xoO/aXWUgV5hzJhVzQSH - nCL0L4/mF476rE3iBT56SgOttRGv8JYEmT4XNPG1kg1+16tIluiOrC7c3l8E3ZA2wXlKg0V8UaP5 - Pl/JkYJ17W0iYXMvJdguvEHVdIUYcZLnU/FLGH/3P4kebVdgjqqG7+XDr7hDfbC/8wir1LGN5WqG - g7I6SenvfBFTFrw2WfJTYbXrX8ZMcCaAxYVPfJbCDrHSE4hM0JPgbz5D5mufAArNkV56RzVEZSQZ - 3DZ9ECzN/u0zXj/kX36jvkQqttSiuVOS3jtQ3X492HKU0Qs+/ERWSq7FTVTrppJrJ8D+1egrlmm0 - ha5duADYyzPEj38ANQ+3GIvLWP2+3+NO+vRPyhn0w+Mgw+2C/a5491QMl0zRykdLFDSn1fCdV+fy - ccH7eDALvivGCO167xjI2WlvsPLMBiUBONN9vbJ7kb3qVIaf0x5jNPPVKLoXWTZusUrWwYSL8cvf - M79TcWFlLB6/+6lB4t5ooA4RWopm6CDPB5Nwk6HGImNSCpOTbalhie9COGmC88urN7OXEYuOwgsi - 7fyghhTu2W8/++VqpPhaVv3MXlyiaPwuo3s0C/1S3ANPdmTfoFYcBMUcXV82GsPmhu1Pvi+ef1QH - uqPx+ubHxtwIqwH+fk8F/Ne//vz5X98TBk17vdWfgwHjbR7/47+PCvyH+B9Dk9f17zEEMuSP299/ - /n0C4e+7b5v3+L/H9nX7Gf7+82fze9Tg79iOef3/XP7X50H/9a//AwAA//8DANq3PAneIAAA + H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 + VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k + 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U + FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE + pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi + dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi + sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM + itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW + suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO + NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd + RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa + bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J + OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we + Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d + sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh + efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g + qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu + 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI + aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx + tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 + U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH + CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz + qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN + VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 + 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf + ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT + k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L + 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx + 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC + 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz + E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 + RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z + vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 + 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR + h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G + LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 + ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts + hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T + iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu + Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP + 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te + AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj + AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 + 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 + ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU + E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t + 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD + SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX + aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E + 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s + F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc + 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G + tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e + lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i + czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ + Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 + ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c + smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ + 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 + CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 + Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY + Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx + ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV + w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka + pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR + dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj + LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD + UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb + F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs + 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi + tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz + oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d + grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 + KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ + Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD + N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY + F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd + l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD + WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 + 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q + QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 + K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw + beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B + lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib + MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u + l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 + OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M + Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS + yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 + ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF + IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz + jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn + +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX + /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H + qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp + ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r + /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN + ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp + yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy + suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h + Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T + n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC + UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f + h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc + XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o + Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp + NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ + 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z + X/8HAAD//wMAybDCut4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ac0a84bcf1b-SJC + - 991b1d500d975c1b-SJC Connection: - keep-alive Content-Encoding: @@ -1435,13 +1436,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:59 GMT + - Mon, 20 Oct 2025 20:02:44 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-lmlcx + - envoy-router-84b9b6f796-6k84x X-Content-Type-Options: - nosniff alt-svc: @@ -1453,7 +1454,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "283" + - "164" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1461,7 +1462,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "332" + - "290" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1477,7 +1478,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_9f4c660af8d14e619da3f5175c11716e + - req_fac256968a904cd78e145a47b8733086 status: code: 200 message: OK @@ -1638,7 +1639,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1ac3dc45cf1b-SJC + - 991b1d53293a5c1b-SJC Connection: - keep-alive Content-Encoding: @@ -1646,13 +1647,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:59 GMT + - Mon, 20 Oct 2025 20:02:44 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-st5bc + - envoy-router-68d9d8b7d-zhh29 X-Content-Type-Options: - nosniff alt-svc: @@ -1664,7 +1665,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "101" + - "91" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1672,7 +1673,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "122" + - "129" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1688,78 +1689,55 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_1486691998fc4a10911d07e5111c137d + - req_94e54bb128bd488c86e42d870512f392 status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Answer in a direct and concise - tone. Your audience is an expert, so be highly specific. If there are ambiguous - terms or acronyms, first define them."},{"role":"user","content":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_0: positive\n\n------------\n\nI - like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI + like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not directly answer the question, instead summarize to give evidence to help answer the question. Stay detailed; report specific numbers, equations, or direct quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. At the end of your response,provide an integer score from 1-10 on a newline indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer + in a direct and concise tone. Your audience is an expert, so be highly specific. + If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "901" + - "950" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.6.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.6.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFNNb9swDL3nVxA6J4HzMbfJbS0wYMCAHbbushSGItGxVlnURLppUfS/ - D3LSOO06YBcf+PieHx+ppxGAclatQZlGi2mjn1x/+/2FP66Kxaft6lrf4KW5+rqiH1c327bs1Dgz - aPsLjbywpoba6FEchQNsEmrBrDq7KIvVqliWRQ+0ZNFn2i7KZEmTeTFfTmazybw4EhtyBlmt4ecI - AOCp/2aLweKDWkMv01daZNY7VOtTE4BK5HNFaWbHooOo8QAaCoKhd/29QcAHgykKsGhBHsNGfQbv - 7hCkS+KRxxsFLlhntLiwAw2R2Im7R2AM4loMAkJ7nSy/UKaQhTtGoBqkQdhTsrBRWXajAB+id8aJ - fwRuaM+gQ64lZEYLMWGNCYNBoAQ1BRuQeboJm3B5PkbCumOdUwyd92eADoFE5y30Ad4ekedTZJ52 - MdGW31BV7YLjpkqomUKOh4Wi6tHnEcBtv5ruVdoqJmqjVEJ32P9uVl4c9NRwDAO6WB5BIdF+qM+L - 2fgdvcqiaOf5bLnKaNOgHajDJejOOjoDRmdT/+3mPe3D5C7s/kd+AIzBKGirmNA683rioS1hfiv/ - ajul3BtWjOneGazEYcqbsFjrzh/OWPEjC7ZV7cIOU0zucMt1rOaL8kN5Uc/KpRo9j/4AAAD//wMA - QIkmHdQDAAA= + H4sIAAAAAAAAAwAAAP//dJFda9wwEEX/ipjHRVvsbZZ29diX0pcSmhACdTFCuo2HyCNHGm8Slv3v + xYalH6FPA/ecYbjMicYckchRSH6O2NYsAt1ebffbXbPbN4fdgSxxJEdjfeib9vbI99P99dXd5/bn + 9Yevh0/gmzshS/o6YbFQq38AWSo5LYGvlat6UbIUsihEyX0/XXzFy0LW4eh2gKnqFSNEDV6mxIE1 + vRqWyMErqvFmypWVjzAVoryamp99iSZ4rdY8sw5GB5jIBUHN05wVznT0xSR+xGq966iTTjabb0g4 + egkwNyEXuM2mk7ah8w9LVfPUF/iahRxBYq9zWaquoOJphgSQkzklS/Na252IZZq11/wIqeTaj62l + 4MOAPhR45Sz930Zz4QU+/o9ddpcDmAaMKD71+/Gt/5u2w7/0bCnP+mf0fmepohw5oFdGIUfLs6Iv + kc7nXwAAAP//AwCRI8MyHwIAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 991b1ac6db99dc0d-SJC + - 991b1d54cf628ea2-SJC Connection: - keep-alive Content-Encoding: @@ -1767,121 +1745,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:01:00 GMT + - Mon, 20 Oct 2025 20:02:47 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=S3pENwQccl_NiR1lyGHW1vmHUH2xalNkXhAKnM4FH3g-1760990460-1.0.1.1-tukT64D7IvTZFTyg4_G_mJNMUR0pbi2eTkCYI.sF6LF8Szm4gVUNyx8TDKNrTq6eLNwrUr8thIJFoJisJP7nZuN0R3tV_aByBY2gEl1KQ90; - path=/; expires=Mon, 20-Oct-25 20:31:00 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=6ZMYw.yid3NjRZbi3hCrKvFviaAEQ_8zjoYwpH1bOIQ-1760990460724-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T20:02:46Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T20:02:47Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T20:02:46Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "608" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUK3isPGw2bj5ry6xFCS5 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "692" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999807" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_9ece5fa5bd6d4d8ba962d11c824b9518 + - "3009" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Answer in a direct and concise - tone. Your audience is an expert, so be highly specific. If there are ambiguous - terms or acronyms, first define them."},{"role":"user","content":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI - like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_0: positive\n\n------------\n\nI + like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not directly answer the question, instead summarize to give evidence to help answer the question. Stay detailed; report specific numbers, equations, or direct quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. At the end of your response,provide an integer score from 1-10 on a newline indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer + in a direct and concise tone. Your audience is an expert, so be highly specific. + If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "898" + - "953" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.6.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.6.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFPBjtMwEL3nK0Y+t6u2lHTbIwgkBAgQFQfoKvLak2RoYhvPtOxq1X9H - TkqThUXiYsl+857fvLEfMgBFVm1AmVqLaUMzffn5xzv+SF/vpX7/anut99Wn13vzpTy8/fBiriaJ - 4W+/o5HfrCvj29CgkHc9bCJqwaQ6X+Wz9Xq2zGcd0HqLTaJVQaZLP13MFsvpfD5dzM7E2pNBVhv4 - lgEAPHRrsugs3qkNdDLdSYvMukK1uRQBqOibdKI0M7FoJ2oygMY7Qde53tYIeGcwBgEWLcgT2Kk3 - 0NAewWjhyU4BOUtGC7kKNATPJHREYHRCLToB8T91tNzVX8G2JoYQ/ZEsMliKaAQw7ZxB8GXSiFhi - 7Pcx3ZWkSx97hZ3bueux34jlgXWKyx2aZgRo57zoFHeX1M0ZOV2yaXwVor/lP6iqJEdcFxE1e5dy - YPFBdegpA7jpZnB4FKsK0bdBCvF77K6b56teTw1TH9DF+gyKF92MWOt88oReYVE0NTyaojLa1GgH - 6jByfbDkR0A26vpvN09p952Tq/5HfgCMwSBoixDRknnc8VAWMX2Kf5VdUu4MK8Z4JIOFEMY0CYul - PjT9e1V8z4JtUZKrMIZI/aMtQ7F4lj/PV+U8X6rslP0CAAD//wMAmaE1w70DAAA= + H4sIAAAAAAAAA3SRX2sbMRDEv4rYRyOHs1NDT4+lFEootE3oS68cqjTOqdGtLto9N8H4u5czNf1H + nxbmNzMLu0caS0QmRyH7OWIthRm6frHerbfNdte025YspUiORrnvm01b6s3jm/bd/v0rtJ9udzev + p0P7gSzp84TFBRF/D7JUS14EL5JEPStZCoUVrOQ+Hy9+xdNCzsPR3QAj6hUjWA2eppxC0vxsIkL2 + FeJMR29NTg8wOlfNkKuOzN2QxCSOKXiFGG+mIknTAUbAms5lWr77Gi8p48Xosmz++g1BTdmbqWKP + Cg646rjj1eojMg6eA8xtKBVutep409DpiyXRMvUVXgqTI3Dsda5MP4HgcV56yPGcs6X5fBF3pMTT + rL2WB7CQ27y8thR8GNCHCq+pcP+no7nwCh//xy7ZZQGmASOqz/1u/Nf/i26Gv+nJUpn1d+m6tSSo + hxTQa0IlR8sfo6+RTqcfAAAA//8DALJn9Y46AgAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 991b1ac6db12ebe5-SJC + - 991b1d54ce0ffae3-SJC Connection: - keep-alive Content-Encoding: @@ -1889,51 +1837,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:01:01 GMT + - Mon, 20 Oct 2025 20:02:48 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=TBN9XwDJW9VlgHxjiWmVJA91aGaNQDNonAYmeDhuvGU-1760990461-1.0.1.1-7W8QWYphvDhvdbz.gVq3er0LhZ32QXyyX7oHhGrTX.2ZLAJGfw4Q.mArfPZAKhd1uZf1d3s6asDaV8ifX5SB3pXBejx0SNnKu6WN3H1CDjs; - path=/; expires=Mon, 20-Oct-25 20:31:01 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=rxzsHUD7jwrXicQuu48sW6qi8cpdb5uhKx8_gAT6g7Y-1760990461157-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T20:02:47Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T20:02:48Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T20:02:47Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "926" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUK3isPn5QkvJ4sairZc3 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "962" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999808" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_0e467345e8ef494eb778931da0a86165 + - "3516" status: code: 200 message: OK diff --git a/tests/cassettes/test_partitioning_fn_docs[True].yaml b/tests/cassettes/test_partitioning_fn_docs[True].yaml index 950d2fa57..c99b994f4 100644 --- a/tests/cassettes/test_partitioning_fn_docs[True].yaml +++ b/tests/cassettes/test_partitioning_fn_docs[True].yaml @@ -41,122 +41,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+6Srfm799PsbNv6TeMUsW+Y1BApkJQwE6nwyw4IFMBdXK+ewf/J6e7b0xE - jLGo9azn+a36j3/99dffXdaW+fT3P3/9/WrG6e//sV8r0in9+5+//ue//vrrr7/+4/f6/91ZvrOy - KJpP/bv992HzKcr173/+Yv77yv+9af+Gl7AokBYNsAI1UbDUJxkZVKiEjDiFI3xRXY6KhkCyGp5c - SvEafLG2OS1Yi6+lgvjc2zPQfIaMxrn3xQtj5djzm1PGbyQMpEukE+TRSRduRqo+pUOY0l6Q9yrh - x7gLRCO9fzz21o3hKE2eI8oc+HiU0nPaKgWsDkh3XpFR5abNDdSrlDaFjTzgyry2vZQHJxqDBr0F - EZjNgnb0wAlYI1aQmBHOlJgGnB0/9lbGHcmE9a2EK985OJTDKOO6l+eDC2Au3jZKfLg1R7+DIS/a - yPC+YFhUNjMl8+UjfHXuFZlp9OXghdlWrEqLRth+ayNJay7MLBRdHy5Gd39DX9FUrHTjNmxALhIo - o8sZn7/+0ebl2N3gI2YGnIZQAfyts3TQ3tYnDiVeC1dy9nyoOp8JOU0SAKIaSyLF16JH19vDIdsU - Wjp0C4pGXlA0AzG7WYV695ZxUL5qGxtquokjwBePW94nm9kigQPCc1Kw8VVf2kYIPcNSDllss8Vk - jy6tUNLSCy8cF64crh82NaE3XAFOr7qRcen1rMLtDSt87bezxjHNWQXHJ3NBavmqNaYhQgBfHPxg - ZeRi8k0XUEqBR4vzbz2Jxn7esKHWDMdF/Gonoako4II0xDb7CbJVKG6RJB2eGSr87AVm9vuEYm6H - GTZZ0xuYaYgiuNIwwln0DslYfOccvt8AYcvMDMA37qGE8jgWKGorF7AzQ1ti+74fsEYp3bAEzGOE - Z/DsUWHRszan7KWDHbiEM3OLjZZvmOMIhYZR0SUgD5uPa7+XTOEuIKuRvZZ08+d4YIaoxQbvR4R3 - s2cJu8fR8nIIHsPmL68SugWkPWotFZu1sPaGrjPeUGK6HcBiWfvwqbEuOtqfU8jzRpNInwLESIkN - e1hcWoHS2+TfM4CUkU1qpsoSq8wxUpAIyNbVdge2N1V5B7h0GSvrrxIUXuki41CV4CEoRgT1WrTn - 9qI3hBENuZTwzauQKzl6RuTYXWBqtCM2TP0bLih5eLDKlhU5KKLCBfF+TfkTIyOdqp2MzzTJhA9P - tLHjWw+NtDE1QkUcZ3zhTEtbhZSRpb1ekYvCZCApvJsgFmCJgjZOMybulRy8KqpEivR9hrMktKJU - 3W5vlLsXQNbPpfOg+a4PyGjOFVjj4NJJ5nKasWW+Jg0XldQBq3VNz/niD2Dax6cWD2lZoQwyqj1L - 15WS7lVwQGfz2oVr87B1yC7pDTtfbBCWyZQG3hN0R7LUPAG+2VCHojoFuLIOTTs15WMBzVSvs8hf - LMJB8g2gqEkQyZyNwDZxjAyNOwk8EiqyzQTh5Qjp+DliTaQoe96+Wym9EoHCGteTdk04+324rlmH - PCk8kUluQAmutUmhsJItm23K7wJvVeXPUlSb4epotSMJY8Lh8Jxp4YpbuZRSxHNzVNltttJmE8HD - woUe02KqXUTHPgL31rHIKB49WBLGG8FmERb/1o/pjVWQ+GhcsM56ojbwHZEhiJo7lqWxt8mur7Dw - Yxdp3fujbcXWM1CjymLGtjtp5OUOFDzd7h4KAlEe1mJor5LmJyy+dGPQjrEpMKJoazmW6dVp+ZCv - SojSwUNm41fhOnmDCKow/yBHCS6AiG0jwjurJsjYugcgAvIiWK21j7JqrsHa0VUiYuKbSD8kdLaE - RXmFrwqWyKrAQFa2aBhJCcc3vnlZPiwsG3RSjjeEXD87AV4YrhG0NIHFvoIR4coszqU7200oFwza - 7qxjasIXJRvIaN9uyPVFzsFyzEvkso83WIStZSSvSXJk8Po6zKl4DaTr+33GcsP6gLDLMxd3PUcX - lz1kW1/kDDzfPN5jnboKVz5JZ2hQvo7S+p4RFr++C7R6QcKBo4B2xuPDl3SSVR4pTiOZb8ZNBKfr - csD3wySBWX32DHgSwmLXv8gDX2qfToKtcPPWvV42Enx0WGsZ2vVnbrfWu4nS5cid8U8/2MlrRSjT - aEW//TfPhXGVQLxqyHDmMpy9++cJV7k/oqRqjZaBynKVvmgz5kX80i0R216E0918oQKFQruMj4sO - 2UBSsNGKPCDM16whGoCALavus1cS5wEwfIagtODOGXeq0hFqyUgjhRZGbUmwo0NN5+R5akhO9lV4 - S5waXmfKvd0GhuUBhOwq9zjxFqDN7LOJpInnWqTt9cWZletAHuYe8vf1X1sjSoF1fFg4H/qTxvJM - N8JLNJnYGSg84Kf5iCSaleW57tW6HYNk9wyyo+MqL88DiyhfhUw/erhAhUTWfmuvUpEMMdbOeCIk - rv0Oft48j/VDUoW8JVlPmE1ow8dBJ+3W4rmG0rUIcHYAEIztA9dwDR4ajlqpGNatEK6iYi069pqF - 17b+JghwWx5XHMerObDFhetg0gUrtiL7DNhTcWMAwz4mlDejFE4dpHT4mR8jPt22tV2bdkxgoS8J - OkfHPtyKhLKgv35o5JDbsWX699eBe73g4or9jMTK4yrl4mfGGnPRBxa/HoukcVaIrfp0yTj0rh1p - U6sBaxLfZmMrlyJcL/59piPBGdZd/6Rh4yzkRr3bcqcqmGGY4cdMbnNM1p9+/va/LpdoYNMF5JCX - jq0nbHj3g46mSxZhC3waNBcsAW/LMExLftfH0t7c60gB/xAy82rno720ktRAZUufyJMK22YN/7sB - UYs/2NMyT1soLxKkiLVjrCI+0njWEWs4MsOKFO59IOt4fvjSpUwkLHcvom1lVuXwOovhfLk5Xvjr - 9+BxudfYaZpE2wwueUMjaTpsKceNzPv/A7sfQCpjfeyViukRCpNmY9R7djtMEmmkoK8RDrrKGDB9 - tzqY18kLRV+0aOscIUYIx5jDqESPlgiWNsLDVbmic23GdncL7Tc07qaEnKj1dj1tISQMtXi88zzY - ZNdLYMuygd3mNtlL2iQyDPTvggLZicjsL1MJpcM7Q4ptPoat9WkP1B9Rw9aXJdm340F5GCENsEbD - E8GJh0TAdx+M5X3/k82VVQhKrkWn5VaHPMkNURS8m4v0Gx7InPIihMGYedgrAyNckluViAOwrhiJ - sQiWV5BasLIaA8WsguxVOLQR1I/44fHDZQSriJM33PvvzOz+d9VeRiDxfviaqf5yyb7Xm1zCyDDm - uSxzp53dRaQgq+gqsqKKybZUzAPY9erXW31BIyQ+qr10gz7C2bfUtDU/JUdYHZgUp9f0AlZxPYig - uuoQu+fjQkZLWRjpPV1TXLCDY3OaG5ei7moDNp1BGGYzb0VoJHWHbpwQDJsqLwKsbXzHp8tVAeyu - J5CWYIWdALXtWOVbKmHofP74+1W6lSkAnuPhPD/b2hZOXA+FMeUQIn2rkaQvBIja14wK5njIlsyd - IJgXI/JIlyuA/zRmA8wRHrE5NOuw9YeeOfz07dePxyTgdLjrE3Ks51HjT6fzE07B6YRsnhPtXuKs - N1A7U8VO400DiZsD/NULVuPm1k6Ofq7h2FgFPlt3C+BuPG1At1cFhzkwBtY/QRlap5XB6iMvtG3x - Mx9GrZ+ggqWjYas6X4dwZBh88jI4LBqkj3/ud2uBHkhKbTn82ImG4ipQAd8EzFEy+bXFrrnoIUPD - 2gTn0o5mPl67dvU/xx7M55OL5Bu62ttmPjhJd7JoPkQJA8b0k/ZwFYIHQtahGZb+a9XwyNMiPoJT - 0W6aW+Wwfx/bWSy4b7akWj1K8ep/kSafLzarHtarxJ9KHV+4950sp0s2g0Y+lTje/ffW8+cG7H4H - XeO8txdXf0GYhT3l8V4VhV/56JiQ6oQZVcrKtksnxILU5g5Gtpk02sASdxFlHdKzeE1XsHysbobJ - 4ZHNe34MFw3yOqwOXIostt7I+PPTnS3JWCm7E+Bj5XuF88wN6AQcyd46je0kJR9OM9NmjLZV/ZpK - e/0i5aZ+7c0Zlgi6UWjN4lU3QtKN7gbBSTjiW9fLZOkWQIFN4SMPmOPYjg13eUq+MFTIE/0sI4Ya - bGB//sg2GyNcqvSuQ9PgAFbpQbGZ4uNa8EuPGPln/QhY+itC+Kv/P3nyKZgUsC9Ax9Y31gaGqPoC - j2Oto0t/lm2+c6NS8tzDB8saFbfb63xaoKrJBxxZ3tqS7juWUNRoiMyrE4B1o00K6N1TRjc139qV - ivkZvuVHjpPHhoeFn74OvLhmiC+M6wBGejUBWE62gWT0jW1MX2UVjM22zc2+v2d3vvQSzfY3b7Gr - C1jDN22KwWA+sWK/17A7bWMENrUYsGNWj3YrQtDAyWcyjyt0mUzF8oJgz9Pzd/he7FVTigjUXZPg - 0+CGGhGNqwBwSUJ8ZMal7dTtwAHrcT3jbOAXjcxPnYEv2l9RWQ/MMMLWhFCtSxchuvqQNQGeAyO9 - uiOttVBGAuf8hJzS01h+HAUwJow3Q3SZ8S+Pkal9n0bpFpMMW/zrFq6fqOdgeHZcbDVWSHjB2kmJ - Ud4QeujlsDzn2hI3U+TQUfaXYcPuSkl7/8CqCxPw2pQmAhsWKJwemCLkO4u1QP/WW+TQ1jkkfXWZ - YXc81BiVdx1swpuyoFZtlcer/WWYu1rrpJNYx8jn4Wf3d3IjidbdQP7Kn0Iu3ZYrsKnxiFF+fWZb - EeUMpPVIRaeYZzRMvbj5j57Y6HQflumk6VIWqt9ZHN5DuPz0bTu3tndo3Hu71VsRiaer+UQ2pIxw - izMxh6sJPZzueZ0JblsKj/SAsaMEKyAqukaAj28nlA3tq11IW6WgNOjeO4RsE87IEEQYK1fFq8/6 - E5BtWSGkMOWhnJaP2ixx6lsKBuuJd788zCNOdHGencibaU/TuFLUF5h8+nzuFU/Q2srvfDhEio1S - lV404kfXKzRnZ0YnNZjC2Z+P1p98mjfe1Hbuh3vD/BsfZwAZVeOTkfekPS9iy6NEjSBvScCl0gJP - bK4HbUSZ1cCo6TVUSM472475msAfv9HarrLxrR9SsTo4J6x34DVMY5c8Re3yrRBCQw6IcMG9SMio - 40rya5sc1S6Am2XXWOVaxl6dp8DAiXc8FIMU2uPJExPAZhfb4800JJsUh74UnO76fHagFG5TuvOh - vqSREVk3sGJ9y4Go6hI2CrcOl2E+mWCi6wQrdu5ohO+ACnf/jX79hQmpmQJSKhb7Lpi1TsvmEp6J - X6P06o/DnByxDt+KvWIzMnyN364DhHu/Rvns8i0OGc4EmAQmtqzoZS/gcpoh/a0G5DSNYE8Uh2Vo - t+cFo+Cp2mw/dSPsX6WH1DjxM9bzvQ22N/L01vNjJuOL9Bv88URUto7Gmrcx+dOfiBxy4ZaopwU2 - Lw4iuT1n2dKf/Lckj0cTJUOztnM47LxJ3cmEVoZkE1NVB6WOZU/8PkywdCz1hsq6Iaxz7AjGaSiv - P3/8h+8sDVl8yXL4K3IHcAbc6+xuUMnlBas2etijZLNPac9XM917Q7ucQkmFny115ttSnQbSxtz4 - 4y9YUTgc7n4ZwiwdS+SZ/In0e37jd16G4sKts1WoqB7cq4OHUTR/MpJprCXhov7i5Cb1ZAseyVES - 18zHSh+ewp0PzCAL5e/MXNwmXIWK6wHXqZvH9lgLl4a7v3/9F9+WmxzyheJFIDx7LtIcE9h7v8uh - FHKSR58DDBaVZ0ponQiD5VoMB76b8RHYNJy9g7MlNp5PVQMvgLvMm09rIe4Q/Yc3zT+eS6pQeUqV - VRu4EnJpmFlL6iBdiRx28vOgdbv+/anHnfcQjK9rDjcFKR4LrZfNPNHCgVOez8jJz7ZN9nwJmFa+ - Y3Pna4uWzTn8vFkeWfUdkD/7vRWDBFtsNA3Ejb7MTx+RHvdnbb3F3+2XD5Be3boBo62/QhATDWk9 - 6xGeb5cEfi9fAxm9pGYMpjcBHt9HgC62qbRMLY8JjNBdmHkbtoCws21CyfJN9OOVG3YPFNz5m7f0 - tR+OxXPgoNptMXJ5MSSLXwzcn/XinOLQTkv/TKF+ijnkfA+uPc2RwUASBdtM4u/NnoJ8FaWd3yJv - jBgNm2dqBt03vXqrKl+HNZ0DE97c9wVpnisNWHw7DvA7xfIW93ltWTPFsvCeKIyOnsUTpjjBGoDk - nuByLR/2yC9qDQMvfmFXuV+ytVIfPnA+HwdrjzsfTuGz4ER51E18VW+hvcmz9Ia7f543xjLswbon - PVxa/oS0/nEM2b3/wn6yNHSkD7LGmN5TlH48QemSzt762yJInHr4zjxsvuGeN2vJf1v2ztPClsgk - 26Bj+gcs059POPmfY/fj8/hoF7W9Gan1hqn3cdDujweSNs8SbNa5nkVk0hm5TccZfuZ29Ch+MsmP - p8JmFHIcP9hbtn0yRZaMS2XO/Y833eLHJlGdOM/UlUNgkcubD3cePoNKeNujiaUacGfpvO9/0i5m - +GlgVWjZvNLzGyywlSlo8zJCl7I7kZ33p5BmVdk7UI86I7/+ufSBjy1qe/30P4FdQ5/R2bQ07U// - 5Jnljv2zb9m737bgWbzKs3B4U+GW1OwRumQu5yUYlYHfXFMFzVmR8Im6j2RiYWBKYZrz2Nl5CScJ - rQATDN/YuHFDtrh12oPDwoRIu6VTtsDWpEDICza+PmqOrN3dMaHgzgJWzxsZ/vCIXd+wzN1Ym7AX - yRQL3dTwxR2u2phXDw+cbO/oQV66DzsvK0FvyiJWbhEZRlJzR1hOR4KMfb1JWny5P/wjegiZvbYd - 3p+HmCOPtFq7/Pjlk6ysx8UUaZcGXB2pfCUURkwgZNhP2A4+H/4Dn5bq1c7VuV6gHTwytPvZdt7n - P6AVhQkr7sDYjXfHbzFcmAHdm7gkc+VYOrRT5GPHms8Z63+cHtTqIqKKp9zh6TaAgulz9/do4do/ - /CtcuAGhVsnA5H8nCMcjPs/jtfPJ3OJ3A6VVeGN0NvthtcbGF2mJqv7w1dU1d77KbR1Cki/b2OXF - En602UMuyY82K1AvSkJLOiGLGKdhs65bCUFU33HV8NywBnIr8P2cTOjUjgIYX/F1AbufwDpHb9pW - it7yX7yFYxKyxObCSU9yrpGrXed2ZNm0h+nYs0htH9WwTbc2hcmny5H8OCagY8XCB6X5opFcxg9t - 2ec3YLA5xQNfuIHV/aQWdKNDhRwJjfYWS/YRapwZoqTRU3vMq68Drqpxm7dZuLZM+t3zi7Wyf/Li - JlbOCAvJsueF8bd2pkragYBlRiTTRWOvPK+qUvw60djL3SdY02Fh4O+9QX0G0MAg6eHPn5eNmGer - fDxagJFQg/VClwH/clsK3D0Z4cwDTEaOrSDAJzzRyOKzxR5p2FmgfFpXbCuKq/3hvyn7uqEzeyfZ - WjiMCidK1LB7xX5I2AtrSbROxXMPDvQ+X1N1ScS1j1Lz5WrcJ1NUOBTHAeeWMA+b+Zib3zwUR/t+ - fQVp8oYvo7si102yrN33O1SPYesdNPVG1p13QWVd0EzytQm7aSgjiFL5gAOfbsMNyLcUVioXIC9a - J3sTNMeB73MB8LF9HcIt3YQIPvSnghWJfNt+58eHRbof0NGSg2FlDgID5GcSzqttKgNXYyjD8rl9 - sTUEMuB3Hi9Jq39BJWnbdpsLdIUalRc7L5A0IpadD/ODdEcmldZgSiRcQ26hA2xYtg2YQj4IcPcf - yNn9NlssE4St5vvIZ9IYDFPeC+BCagOl++9xsfhdpJ0n4X3+QpaO5Z5gz0voRN0dwKRaPUvih8l2 - PZftTRu9Be5831u7xs1IfLS6Xz2jrJBMsC7nbAH7fBrrzNJnW7Gca1CaH3o+IIUmq3kor/A4bQt2 - c/2UjenzEMEqv+vIvHzrbBllOZced+OG5T3vYPMIj+Ivb5+Ksz6wrtlwP/1Ex30euHZ0nEANWRby - GCVsefk65hBXWedtD3MbCBS7BVRr4+Pjo4faNlMVhOkzGubJXN7Ztuetnz6gG2uIw0rriipdlUJG - 6Cs+tGVqxRSexCb2ALvGLVNomfdnXqZup2PGhRPVwfxA33/6OCynSzhLbKo+fvVvb43NvCXX0WUs - B+NjWNNBYKDlVt+ZvZWGNvNyI8DDmneorNkDGMwj1AH0iP2bt4RrHNw7+Pu+NtNXe9YsyoR//04F - /Oe//vrrf/1OGLy7onztBwOmcp3+/d9HBf7N/3t8p6/Xn2MI85jW5d///NcJhL+/Q/f+Tv976p7l - Z/z7n7/4P0cN/p66KX39P5f/tf/Qf/7r/wAAAP//AwDZThF23iAAAA== + H4sIAAAAAAAAA1SaWdOyPrfmz99P8dT/lN4lkyS8Z8wgUxAQtaurCxARUJEhAbJrf/cufbp6OLHq + hugNycpa1/Vb+c9//fnzT1+0VTn/8+8//zybaf7nv32v3fI5/+fff/77v/78+fPnP3+f/9/I6lVU + t1vzrn/Dfzeb961a//n3H/b/XPm/g/795x9R6jiUXycdsNe40mAxijukPVg1EQJHXyDGlxLdqhlS + ukuVSk665kPCQmzBlhuuBQRh8PC2tCydmHvuSL0rlUSbdLPgOzvJZJpqFGkns2/X4qp18lN3hbDo + XhplEXIyiU3lV7iEypSQY8JcJAXqr3DfqLy+HRUuBvx7XZFV1Y7Hbd6pkeP4cww5mQr6Jj/jUNpV + Ngy5tYPezCEjBtzAT0TVYEEFuU8rwFydNGTFfmrnyt8qeP74PrmVQVawVstEIINRGMomEZItYese + gkPuIaMAoNhy1nPkSawROQbenU7xsOehlFYr8UJHp8KyJpkMqxPFrDMNyerh6wt2KdKICt/buHxO + QQrFw+dAEFwMj93b8gazQzqSlOxVwK0gd4Hayx25snc9ofMJR9AQyYzQRU+8lbWVi/wyzAHl98lv + 6Qu7FrwM7g5ZZtOMy+5daRCImULSm1sXZNnnmzTWYxzKPmN6LLIdCai1rBIlI0999bM7hsUOsCTI + g7mYOF/T5BU7T3I854q+riB34AcugJQXzS6EzTxoULqUd5K27kH//Q2uqnFEaHvU+m/9YJf7b4IQ + e6ZjQsZKVjxbwjLvCcnGafYAnfBWkKuweyZTEu8Y0PtSQoKAiYulDM1Mdj6XAiWn6AmmHTmVkhPe + C6IEdTjylcBn0FrrM0k8NWnnvg9LeE1sRLzL2QYs2h1y6DL+DVV6HgDBFvEm1Z/HnpgN14+bfXss + UA/ZAR3lN9anw/kxQUe+RphNC7vlK8ROsFdEDZUMeXhceqwHOSCqiLxKCBMqLBy73wqrJSryMsrL + ZlrB7WFHoRf2j3H1+VMFPStQwz27Uz22fOkDvEnTCVXQ/HhzNS0+fAlqgA56aybCFDQX2R/sMzoc + Y29cSkaF8rzeX5h52TaY372myPIUZkh7s4Bu+eRN4CbiKpTKqS8E9WPmQK7C4O/6N03xzqC+biGe + rlpDhaelVLJ0qe4IeazlrVYoL7Ci40QsQ/skKz4/Qphbyoa81GHabeGjmjlZFxUpTOkXQl3NDgx1 + xiemda7pkmV4guOlx+RIL65O7bpTZNqrPVI+1WWk++4TgYdbVuj6UPORD0y1BvOjuiMrOnbJdBBa + SZb62wuVUQLoalRiCLvM3yNvOdXe1t6Pvcw8DzNxxuesT3tbXkBBpDlEefsG3OQJpSQP4R3d5UgF + mDdXRpa7UEJ2DHudRjqwoLuEJxKoyKbCi1cb6IDiitQs70Yyc5MGcXONSXRGDZ0v3LEDfSoKmGtO + LuXMcJ/BO3wCZLkNArTGnQKfgXcM13OueHz7PhpQhN1EDNgzBRbkrZK3p8EQZZ1pu61WIe3ruX0j + /RSZdI450IDvfXTPddfj0+6zQHMcIyy/SidZTLA48qV0eHJJ3rq+rEtUyVG+mLiGZTuup30Tw+1u + HUM+PzJ0GzBQQINTFun72wA2POAFYKngiJGDO2BHcWVlVoErCe6zmAwDpgpEH/5KfD8ZvI2/iTFs + n0mA1JP0oqszDCwMEq3GI3eaEwqXQoK6xYXodmCUkS5rksofleVILg5xMo2OuEhvsiuJr3Q+FY76 + roHW5R0iJDzu+iZdJw2EAXwhzeOPYH2IDQ8XJ74g3VYfYNnvmBjCRxShk3Wuwaqc7470HAwHWZ62 + K9apYFJ4E6cKaVs70gW0DSszJ+dF4suzHBcfxL3M3zaEDHMyAeu3aQZ/z5esIaJ89RZK2Uz6GRXL + SfGm7ZI7sOlTBylvJkj4ovR5OD/K++/9wXYWE1Yey75ErjhsBVH2RizvHOtA1FWMAH2FRippjz2L + To6wL7ai9FnoOaEYUjW+J+tKcwxpqFjfeC4ol6qfBd6HTiY5KUBLptsjkhXVrkPhCKeW5MRkQKVN + e5ItRAYTKQcW/PKvc8+Uguc0u5fzHp5CgTt0ydbrtvXLb0iRIW5XrTAleTtaB2JXo5nwq5VIUK+E + FRnuRHXcFO9UTpiHjhz3UiXTDds17LTQQFfhbres5iipfM9eDpb2w66lNTNI8Gk7T5TQUGxp4x5d + uIoHhfiWIYANypcaSt1dJF5nPb2Om/wQLFpE0fW4HQrOq/IJIkPcoYAdp2S5H6EFd5xm43HPlXS6 + xMeX/KjuCd7P0WnkU2NS4GJEA7meNqDjum0ymVyz9ls/FI8TN9mH3/qLjr/5Hx58DtLPzSVHzzN1 + 4V71E0Ta3iGugRdvEu01k33Tk3HxtOp27iN9kq+LYpGyaA6FYF1q9/d75HJ6y3Q57NpURkA4k0O0 + zXTBsO4gDu4C0b/ryQec28HIFDZi1idK6RuHNVzZQ0zOXgBHMhx3NZSbQCfJa3cbqd6JkbT4kUXs + ZhR0+llFFnZRkJLrTXUAt9OyHiqitpIDvzsADlTPHhjiPKNbUskJWQ6VC8fhMxEHP9d2Oy/lBUIS + XZA5d0NCf/e9C9p985fR8vbz48OrbjgkzYqoWER7TeVBJpg4H9Ma+Xp8LHLISDEJ+vJYcANdfHkX + 2yNxe9AW891nJBhlyxmzju+PW9p9xy+SiyxbC1pupTGGfQ5aLHriuaV+/82f3JVFHsuhUdgbYw2b + Jm1DFjhqInyO1JLPQlASv2oC8M2/BhSDQSAqL1YefVm+9ItvDO7nyaMuvDVQS6QOeerV81hAPxjk + rv4mqvwO9dVieFbWU+FMQv+TJULkSTXk33RFhtzvKbWcRyQ3MJWJqkCqb9V7V0Ic5Sk+12OYcBu9 + uyC7nWqiM7eLvjRc/4LKoPXkIO42Ol21GIM8U/fI/uRv76t/JiiUxCNKhuzkI7r0JS9uhMi58uwR + U9ft4SVynig38KJvlcCkYljseOLm/qPdwqc+QWm6pUjT7as3fg5ggDHtZKRteqgvGdOK0BYrEspR + tffWRN7lALaRTWxwmD168C8KjLZ1QRlGZ31+GrcGxuFQoOANH+N6fd5dcB5DnWhPlnpDCqdmn5hv + QILNM1t88okEVhUREm583S4nvtbgbz/pE64TQVmdXOLJGiDUbSOdY1mCEMlCSNSdbScrclEnqTmT + El2LJbAw99yFfmnZKD4/kbdkVpvDhj0/wi01Z+/vfAoWvuN9ut3bBbbvWFb7XYdFbCagf36iCnKS + QHH2qP12uj8kBvaKpCHzZLHF9h79GLa3+BMKCdRbqhy1Qaa+gkg2EF1f02tvQFKkObndgiNYx2Iv + ARprkLjVtOrY2C+LzGE2J5fj2/cEdrYtKS7H8bveood/+VDKyh4dfS8e12JVRIhCcCXoqxd4weRz + qEzKnfha19IpbrZcvvHTG7mkAOPa92EF2iRC5NKbnr5domyA1W7gkX33Wn0prUCEZxpglLx3e4++ + +QCCRGpP4c5hVcB5zKUCVIIG8djTCjY7GMSfXkSHKZL0edMzCwYHxURaZho6e4mvHYTc0UTGdpWK + vpfdBjCBoxF9xvNIo2QPIViyjtj7Q6bjwDzUEOO8JGZzcgFmc5MB6XhTSTYTe+QwGSEsdnuWaEF2 + 05enWkSwPUYXlB20bFzTa23Br78jhnqD4xKAu/F3/CHddiPVja2GN2bSUXRGGmDvR9aQ+3zfEvVx + sBJhmmsH3O70hAV77tt1pOwAaKUGCPFq6tHp9ODlD08zLGuI8yYf5ANcrPiBLI5pxkXr3Rp+/QDR + X7tbu07eroTmqe/w/rh9ip/fkuXe75E5GUePj8Q1lW/qZpGjIF7bRb94AzDQeiP3Ic7o2sHrC3QX + f0HV8z14m8aYIuxjoIRA4i7Jp2KhAftMxCi/TVxLH/xblIF6IQil+iPpk02epP2zhnh/V9eRJuce + w/Aol3gRZpgsAThbkMN8jpzI3ii57pRc/tVHQ3JM8NWLKbzj14jMwpK9hbDPTqaRbuINZaxOy2bN + 5fRa6Qgtj4+35nslg7grDljSsK1vR1He4DuBBvnqrXYh/sj85jcEkTP91acyzfU7UkOvKLazE2+A + XaUbCvzKTtbOuFrwNWqA+AxRPWF+zi483iaCzh/JANxvv0N6DNFxEvV2PctXDWT62SLaI9VHDoSv + BU5SbaHq8FE89sZY+U/PE/fhn+lqhdwCf3rl8q1PdHmUFXwpNkSme47HVY6vFgBiqqD0BLaWvit7 + +M0fqcIDGbeafnzY+2JCSqXzgdBKcQie0LaQfo3O4yzh2gJ4yDH+zNGpxe39OMj6bsvCHf84ggW2 + JJJiv++IkRVL8nHiqQHbaA7EjspHS2t+rH77OdzEWElmTjBFwIZwj0mQHgtqlHIM2mN8IXoWJfoy + RWwP3o9dSvx+XeloKR8ebEfjQI7+uCQbHl4LdINoRbmN2YK8GAfC95EJkFanvb6BPfbhLrOvSIc3 + VNCdceigSQaGuBYWwbR0GEMmcQnS/UdFJ2vkJvmb0YhjXE7t0pwGHg7tFBDPviaU/cVz3jMnpI6f + 6rcfrf0v31iELMX28zc3Fi/E0/Zd0Z2yJgYm6RlS4NctEaTp6YJfvg+V/NBu8/bYID+udxLCpwUW + 94xdePO2OmQfbuxN6K738rf+o7hOe2/L+qiRRf5po9OemslPHwKLq03y9WvFFp58Fo7xoCH/prHt + 3CivDU58fUEHcL8W9OZSS562ZsDClI/tsntnGgRFcQgXpFzbZUdulVQ8xCcyvv56HROphK4ZhaT4 + +fVx2XJoeJQQpJkrWK5DmgHFNk10L/TnLz9UYA/aPty8rEmmL7/4xWv4MrUOrGGuKTCDcYiulWok + OOC0l+zt3Y44UorBVB3EUPrml/B993Sd/62vDasbfpYnTX/dkBjB4Tl7qKy0RV8vQXqBT9PByOWG + mZKbxLp//Wk6X2f982SzF0Q7wcTc9/vCeTyH8t59QqLoq6QvbKekwF7uScgM9r6dSt5toN1UOkpc + 9VVsfLBe4PVmfpCxXiswkXTMJaVRzK+efxYkOfeTVJNHhZzJLMFX31RSrdcWqRiz9rYbEmNY1sKD + qLnEen/1ZnRZQnSPWVhMpBsi8N3v4ZY/k3b1siSSv/wBf/OTvryulQYfu3yHDHo9geWUNRE4VBkk + xs2tk021zAt4tcqFOMe3r2+3N9CgZwQuOhmCPbIfOWTA+RlWeG+2OPl86yUMEqVG2aOeRhxySIOD + Qlficm6ks8QfIdxuRo4uYipQzMyZAU5r5pBAzp8erbMnht/6jX5+Y+beSIFn67iQQ/7QPGE/9RN0 + zThExlfv8qcSbxCcii6k5wi30ykcePjjiQf+7uvsblem4Kvv8ZrnfEJt5zlBKMQQ2Y+xGL98o5Gn + oHNQwZ5WOpermcnGNKWYCQ6pTqNkZYBa79QQqHsHrE+2ev3ii7j3aRrnnz/lGOERctZZARSNSyQL + OUmR7yeux9Z7GcNhnBaiP+41IK176mRyTVss8e7YbitfMjCZGhNf9dYsaCdlPZTSciW2FZBkZfIS + /vWnJu5MOixV7ItfXoZim6+95epWL+BP5k+/vYsNa09Xrov6Q07NaaDro+4N+cujyI8vUSnFPEi6 + +oPly9wkC71kL1Bfmy2UeqAn64W7vuBkdy2Jv/mTrVcmBl9+hCxHAx7xReUCb+YGQrqGBCzQ6xqI + HMASRT0m41dvO8ATnDmUB3gG5McD4COOMHe0tBav4X2BR0JmLP/84fN67GS/NGxSsZk8zk009/BS + ujwxjfOHjtNcuzA8yS4K1vFNpz5QSzjv71ooCUMH+FmrMfjV70P58Lwvz9tADLorOdzUHmwaH5YQ + BzcB+V++9DfeJ765EPWSzyO1lA8Ly5p7oBB9HLrZt88G5T7skdIxHw+n5ZBCnaM6cqQ0pNxbUS7w + lx/VTNIK/lE0IqzPNUClbqgt51vlBc7RQ8JbZnbejw/DeNfZyPCmcKS6v2dg54dVyPR2ROdnWfDw + CrUzMug+aVdmKHh4T19HTC/Lns6+lebQce78L569+dC8WegG8Yp3RXvy5mOwSvLxOqvIwSalv3oD + vrwr5A9NWmzfePnxIqRptjxO6Oz7YD0EXgj6V9oK1jKI4vkRLr/9RjknnmrwcswLOd/HGkycoXXw + Pe+exGeVY7GY4xoBuUY+Mb98HWNpHqQe8A5J3Sn56p35BZfV7zFUO6f4pMd+gPyDmsgNb0Yi3AY5 + hkcb60hpGEVn/SKVZLtoRWKYfu8tXKmIckU/E+bF6pNQ5aHW8pe3E/V1SNrluhUb/NZzEvjVO5m1 + 0VhA80qPRGmY2luLq/uCwVX3UTCWp3FzuK4Be/lxxwKVdsV2dFgMxeM4h1zDOe1cPDQF9q5YkpTp + T8VyyY+KzNy8A35NZNJ/8SR7gjtjuoYI0NvARRBPlycG2vU1Yoa71QAU18P3+Wi7Itd+wRGPOd6k + 7QXoVVAY+HktCN1e0NJXbhdkcOdaSshbWl1Q2ckwRCMfETN6dWB2mvECV947IFNKdP1v/bSM7kpu + q+d6bHVYQug9HBWzsGeS9eA+DbjW7g1Lua+OQpZcNLCrTEh0KM/6vILYkcesF4i6e5s61/QthLZU + vogmb2NBd6w7gFjpE+RGt7lYV+/67df0Hjkij6ebcYAONDos/t5vXC9BeYHuKTmRgB85b2m5WZHS + a6mTZAnTZMLswwX1UhnhKojXcY2f7ACkuJS++YGO5AwyA8ZcxyL9upyK9RjsJfDluyh9uzlYyyv6 + rodUIvvrB5cfvyTvEw25L39ZkWT4cmamMtFpKI6kzp4T/GzLgxgpeH555LJAA84FclhWp5O4W3lw + qZyZWDvm5tX1Y5dLVtSNKF2vFcUq72pwd7Ej4vLDoeDiJxyA3PkSut7V4/g8PUbm1+8iLhj4dnMf + lxoe4mxEwQeWBfn6PcgTGuCxOkcteWOrgexOfJLgCYeRJrsm/cunLaN568spHNgff0D+vO68wXhI + FQzOWojMO2d4ApVNRoZhNiFlB81xG/itgrrGXkluh/y4Nsub5U/lZUbOgxcBZgeDBV89QSxX2/Qf + /4UskATikdeFbjd74eXD61Sjw36Hk7/+S5ReHPKb5j7+9fO//l1Yibk3DqscAYOdd8i7Cg99zfdO + Bti3pIUwTjawXubc/elJZN+8yVs46BmweIoJivQ193AyffyfnsYMn6Ut1/QjA8DxyhP35lv6ViE4 + QQNjD3MM3VrM3O7+j5+j8HBoii03NEs+jvOO6AR346IpigjF24chKrRZ8Hhc+gESlDpf/laO33gI + gbMvGqLNuvLzpxb48YNrErPFwpWOCL+/h1R/XIr5218AYzUk3/0R6Py79XmYSI8TstOSFpt07TR4 + Y7BOTJBEySYdnq789Qt46lZF59+eZsn3tDuixHkEOrv2Rw02dTqRKKjxSMM6bOBaOzeSuA+OvmF9 + ecG1cVL01VNFfV/3PPw+b8inx0xfU/Wzwe/zYvjtzwzmh8ng8Jn2335f+9NfOQRsFiNjvs4ejSh0 + 4PVjAnIA932yKaGTw+IqqgQ940876izo9rRTJaR+eQflRJEFOLqkGNJaHYXkPSkwd7TPt3+jAD5N + G+nv+5yI0bZbU5D01y8jSl/J+o9nQhTur8gaUQ0mHqIv//RiojK2BzjT2ovw5ZroF7+68NsPO6pE + 6AwP+ThIn0EE+2Nto2xECuCl/WeRLedlE8vUOro+2awDziPfoeBZ+n/ruSwuXfHN54r3N56/+TEE + yj4oKJ3dHhREnNGtCBywPPfFAsgp5YjWsoNHX/yhBkRNlW//Y0d/fA4KMV6/+tL05l8/hxxPNjKP + r7qg151ykb+85i8/mwE/QulMEQ4Pt4c1sge74WWjm0R00HX76z+EEvah5KJghEkinJOyhMnh/Qnp + 876NW6SILLCsV0TMtYP6Bs1IkdWOIbg5PV/FWhz0CQL98vrOjzTSzVQ1+ddPPyjtQ1/iRsohX2yX + cOvYcysEkRf++nu/+lkInVT1P36FrHutj5ta6ViGcvwgrhFuBU3u3Uv+1hfi0/oxbkMosnAb7QGz + 7WDR6ds/gYIx9aga7P042PLIgC/vRGqZ75J11a891DxJIep6Sbwvj3bgP79TAf/1rz9//sfvhMGr + v1XP78GAuVrn//g/RwX+Q/iP6ZU/n3+PIeApr6t//v2/TyD88xn712f+n3PfVe/pn3//Ef4eNfhn + 7uf8+f9c/tf3H/3Xv/4XAAAA//8DAMgaI0XeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a8ca82d7ae5-SJC + - 991b1d1b7f271613-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:50 GMT + - Mon, 20 Oct 2025 20:02:35 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=vpHxG.bkDdfoXfVJNiqJ0ZqMuqZP3Z0yqMYEjecj8bs-1760990450-1.0.1.1-B59Y1s5kHXcBJJM7ptuWHXmqDbdhTe66.bvc0ACPOCjHTFpt__TpCem4MyLi3cHhS_mkreIwU9tKDgVZ6QBBiX0g34bsT8JVf8xtFn9Q31E; - path=/; expires=Mon, 20-Oct-25 20:30:50 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=UugOQvNmk.ztCrj7PCojUbjknWcMHS4z.uPY6IgdrUI-1760990555-1.0.1.1-PeTBUMRHk5QAqSErdSUsNlFZnEgq4dV1MTZcXl6Ombtz0LLXVcZp_9HyiiN20kuWxrdSzCpLCP3ZfIezJNiAIAoTww7L5QuHrq4ySsoRVcs; + path=/; expires=Mon, 20-Oct-25 20:32:35 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=8whaxI1._OJeNO1dmuSM9EWv_WFbWRMTdwFjsyXxvYE-1760990450988-0.0.1.1-604800000; + - _cfuvid=C_vSzdOkwS0pk8H0YQYKoQSU1jpL1fedUgi_HveS23Q-1760990555702-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-779bd7b4d6-x5nbn + - envoy-router-8c6b547d7-xj8tz X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "167" + - "123" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "193" + - "197" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -212,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_6ad7ede34f924547b0f40ce7d1a2d93f + - req_64a3f3f770c946209108deda8c672506 status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWw+yyram79evmJm39o4ISo2ad5xFQEoOInY6HUFUUETAKih29n/v4Leyu/vG - RAoPwDg87zvqP//1119/N1lV5N+///nr71fZf//+H/Ox6+V7+fufv/7nv/7666+//vP3+v+dWdRZ - cb2W7/vv9N9i+b4W49///CX895H/e9I/f/29rPvSR84jRuJjF4k4PDZvcuLJq2Kf0+4Orm7aTHGX - r2jS1fiC636xp0PhK9M3cWUOnsNPdIXPVrTyN+ka9mbOSII250zkj0sNO38h+m8Wgj59l7IHFkhH - OhgI9LHIsgIySE5MzbWq4pKpFpAtjltywqulPjBECmQ02CHFK7dcMdVFGeuL+5qdeOm4En6JIVrW - i4aO3WuRMV3NU3nS8jcx5f15mjxjqKF95SJJ1WDsht44l2gfewHb+l6SiakptRBnUU500WyqEQ3f - Esk7vWYe2fRTP/Q7AVd6VvmFsmDRpOtHB3rJcKm8TMqJF+d7AXvruiXOZ7utxEXJUog/Su0L6GO6 - Q6+lA7KN8EaUzzHIxKO/O0DQAmFpuQ0yvjx1ByiI57Ds7F0msfUHjnBsrJjlGV4mpUunh+1O2JNb - jN2JX5/PGkXha0Wid6Lq0xMnF1za3pKlpc7QtChQC8t3LhDls/PQ8BTHEtSuM4kdPWk0VIYoYlsP - t8xQU1x9i/QSgzntEmZuVgOaCKL3jViEW7brtkombZ+agLX6VbGz6JBoJRztGB2rfkGn4EYnQbgt - KEi7ovN5Uaxcfm2ohQXpfWA7MQyzKc6yNTqWfc0ifh07vjw0DWpPrCd6sLwgaaxLH+M4RqSQJiOS - 7sHzCUG2eDPfuKhIlCe4IHtgD+a8UOZK27cL6Fh6F3/zfnvZ+H7xEJ9qUSLaNyhcaUUuC2hfWPPv - PW6iwVzVC4gv04EKwi6IXl3Y3+HcEZ+ZONCjVVjrNk7vHBNvSS+utJG9i7w2PoTs+fKMhu2zqXET - iCNzbFWdVidj7cDeLJgvn9K122erwoLmYd2IftyaSDipjxAH173JyEb66oP1KQus8Vqf11/TWC12 - a/C8aUtsaaF3oujoMT41p4w2wwKhKd2aA+pF0SRK/1HQ6MvBASQbbiyTNbkbNGdVgqslIoWvHmdT - nIQa3pBjTRxzv4hGH0INyMkyiFfEHhKlreajXCwrtg9efcUf0an+PU9ie3aui7qxHfDOpwPRlj1G - jbsPYtyECaZipm8qzp9Rj421t2aRqL5d/hLMA3YXUUeIJU4RNwfbA9ovLbLntz1aqYbdwNPbOv5G - w6M7DF/Hh8deyeb47dB3YAcK7sFQSFxbcjbcIqeH4EpM4kusRNP1NuTYVZ9P/5HzVdW/O8rBHC4x - KYYp78aTMTj4XdsqsaOBozHxJgdXB+dI73M9GqymNSDI+w3RCorcxvXPFJpH/GIxepTuJEvuAXAp - nEi2/6qZkNEshziPBOJlyjX7MB4IcNfrkij9pkbdn3qi9kdGnPCFxt25q+G2W5d0rXy0SmoaMj/P - SiWed5SqvrmVIVKvG0SUzFqhKXqeDhuNizt2FtssalaHjQXSqVeJIQTx7/opYk0nMsu+J2ioNNHC - 6sbeMe8hKJPgummNlunV8x/0VWeTZ64B4g9fM/93PzTdPuDPVY/ZtkJmxSl0CXwKvfe5px+zlble - idgeyJGQN2zcpjIWIuBIYExZpo3Lz0ucoIjWMYms5hnxlow2RIEZsLDU2uo73180P29/Y11NXfpc - nBbh7RYTL7pqkXS7vBdwCO+UJMvzN/r+4nXnLSzaKNhxheZWHsDZNgW5Wck2GnrrckCSu3wT/6Ra - 7lxPEtjuxD3RVOM9tY+gECDp1yNLI++VcWPaxQAf50TM4w27w/2we8rz9TDllGQTb1Phjp1tW/gj - 2x8zUdeIAst0mfpYd/pquO+VAkRyfzET75RMIpsvR8H1GxAz7XYVD97nEJ/eBmYZXbrVeDsFC9ju - 6i3RraeGhm39SCA8nQN2FXU9GxOHX0C55yXJcNLqg3Bb9JC7gssOnzOfBtcPKOxjqH7xWo2d3ymy - qAaHP/E3DJ2aw/KVGyxG37ob1zA0WD4evPn7HHcS96EH9IsLRub7JfzqizY9M3bmvIiGJGQtaFNy - JIUkvRC1mwVABvGJRG/udsP79bzjET0+TBtG7g4rsu4Bxy+VZN0prqaHW8YwLTYNCbrXIpriOAjx - eb1ICQnGZUY9UgM4wvbO3O4Ud42/3Keovi5eZP9+qmhUzZ2C+qZm/kCm+zS2GZNBZ5FDrOUnisYK - qyUuk+LIzPT2cid3jxby1jEilvR8p4utN2gwf55ow4e4fL+8r/EhUBxSqM6EJnnacTgJwpadePvV - x9Lxc/gUas/UPOlcHt9IC8093hNl+eyrGnWbFMvxoLDkkyTdfL81iN+DzYrom1QTfsCA1sFFJdt9 - 32YTQXUJJ0HcsquvnvTR7McYD+OxYL4if6cpf6MCXP0d//pDJghHDoCT18gs0qjdSnLFGG7SEfyF - kE0V/9yXJRSo89g+2GmuxB/3BOZ6z0gXO/rgm6SHMNmYJMmiZTc01899/S0PjMVCIGRtTV0FTivx - RnZiyKOxuOY+rHUZM69IacRL9SDg5pG82K4jVTasta8Hon/fM11bt9lYelsPCrLIfaH2r5l4vbU9 - uPrWZvbrpkUjVE2DmNAmTMXNMeP2c5Xj96l5UTe/txFbXKcQRDJ0JDhrqOvJatfAhJ2Fzx9U19lT - yh15rueUStMzGqH+DFCrN5kC+drZlE1LAJM7CzrYxO0GIeZPiMLth3hfV8r4gV8v8Ny/KTEE1c/E - 1lsrqM9eEuXDeacLvRms8Vn+auwmbid9EFIw4GbLji+8WoLm/g04X0d7pkXkUa2qpXOAbxkyYlog - 63R33sRg4dOD4vf9ntGgPsj4fe6OlH93mdvM/Rts4/4iZJOVFb22VPjxATu/T3X0lbaCiOf+zfLi - HmRT3gGAOa7XM488owG+SQP5Wt0Sy24205Sqegn28H2Qw0Ueo+ZXX6gMyZ9+0aje4gD+tXXoOuqD - TGrqrfPrR1Tsi0dHA5qtAQVXmwTdFWUcdeMFr/go+Bvr1ej9yepsyCWFzfUNIXYnnQDfSlVpMdfL - UTjtDPAuismOb36epi8ec3hmFiembCaTeBjyFtaR0xF1z+qKn9ecyjfx+GSG7anudOjva3wRPjYL - nNu645+7dJd/9cRMq7r7qntPA0d4974U3F+IT3lK0V23EvoRy3XWO0EowtOVDLYXtwbikm5TeOR3 - Qo6OYeoDfkYh5ttyR8w8UrqVOaEFal8UmNn5fTaqW5XjlWX0VF6Gj2ySV1qJZv4l+jt5uHcnyp5w - qTNOYUkv+lcywUD6PahY+OBGJx1456DwtLmyYzr1Hdv2pgjL8+1J9rrjddLiOh3AVYWW3ayizQbC - 7RLuWmIwtVo8kHi9lRSvrHpNh09AJm5s9Ce863XEkq8/VSOi/QDKvSjJ/p6fdI6oXMLycoUfv0z8 - Wj19ICfDYPFrIWWDkxcgLxtisT3bAprswq5RZZwRlT+nbzcmrjzI13G5Z3vRtSJhPh9li9feX+p+ - npXBJ1RQRA2b4hW6Z/zhxk9QN82RnYJUQ9J5rVhA57DdvJfHbFpkvJQ7dkHMIn3lTlQeYlwmNGP7 - /Cm7YxJgBY7P68F/pe9GH9vz2wFDpDGb+T/r8Gc5gL7Qerp5Vy0a8O2colHWTWK8Lh80uM7Bw31r - RoykmzaSdPnco7XeSsxBIp3aOPNteHj8OPO7jAbVW4Twig818YbslTHdvK6RunF2zBsiLZt49TBg - WUNDgzkeGZG+Cmz81cUXPmGNuCytZHz6HCfmuPjuzv1bg1fINfbjw36YvAIE9xLTzX27rvi1rATg - tnIkAT8qP74RAMcJoi2q7en5XI02pEv+pFUQOdkwSHuAc09qv+7lXp/fL4B+ryGLjYFWtMgfT5j1 - iD/6uq+vjqdlCNlyeyZb34iiaRXnIux878lswf+gscgzAeoCMFGdd1Zx9BkaPGn+gyhFqGXj8pyE - +NPdBx/jdol4u19f0FyfmduxazciXocg29WF+aoTTVxxAwVk+3EhpDMMd+z2bQNhmn2IPuulqfeW - tvzINZ3KxmoVUdHVKabyImHk3U/uMDZ2Avs4PxHjVfuZKOkKlcluZRETn+toIBvXhtwVXaZFJ6MT - hGzlQfwpOTFOupvxR1CIcJZAoZv3yYqG8L2woSB9wuKPb2bDigwUKh0xoj1qxRV/vP+K7z2zBzGd - Xk7YAIQJMimPbu9qeqJjAzOfM0PYjRnXFSsEX3G3ZMuLppuuxdpY//qRYQy046gZQnzXk5w5qHxn - f/jpwuWCbDml3Y/HUFpWb+bixNH5zDto/j+MpI9HNnyVg4If+WFHdP4SOl7XioJn/vSbyDMj9hoD - GaSd9yLEutjT5IYrAc/5RFwc2p0oeoYBBXRPos3/n818C5u8flKxb2t9lHb4iZrQkNj2vnWy6UA/ - DcgnTWRepuCIUtxRsJDVET/CUPXCTezxhNGBCp/QmobePMtwHdmWqDglkXAyW47k00Nj+vuidey0 - 80toK08hYWl5rmA1rYU+bZkSkn5NNGh4XYNWb0/MHhbZJC7TrgWjXcr+4vXc6au1ymu4TGnLrMzN - O2nb7i2YeY0WB/M2feH50daWHJ/J+ZiO+ksywQJXeXqkMOo64uizbqEuFpjplexXw0ZubTlMNyvi - vyD8+QspwDm9MvO8Fdxmbb8LrDx8gS5KJaqmLfVr8MlGIRl9a5X02DYCzPnvr2be/sM/K1Oomf8a - 9l3/XG2cHy8wNZXTH08lsA6dyIfHWovEY+CkgMvEZVahP6oZoReoUPKPz70oy3ipB09Yh3Y0+1Nm - t7qMZYLVVp58tF895/VzDeChkRHdh6jvnWwA9SNnTCvqVB80Yzqg5PaZiJlKVOdzPwDJvWaEvIXE - HZ3g/oQoeF+JYeRvdwxf2gDl1nvTVXoq9R/vyVKaR6wQ3H0lNI9KA+VRyL/8ybrD9xHKd+3pzPXp - HvFSOeTQBeeenPVg3bX2c1XgB1Fdyh+LnU7L5UH540+slddDH4VEoUBOiUOsLLp1UxyfD3Bz7IaZ - Vi+4oxLu1zDnC1HsTtTZU8wGoHJ/oMOF02iKyuSO42a4szRKPxNXwqjFBXYHf9W1ycQN5MVIcFpt - 5tVSnxanjQKz3p77nfTTMxTkRCmIezZOaLW8nvhP7/h8OL6roYtvJXT3LCa/50dTVXT+8K9KV33E - DWFH5XH/1MkFXZ7ZNyFCiI6Vz5mbe9o04DwNQe3sjb8J+nX3y2do4tOXmcfbVR8TH63BXvpArEzf - dH1UQghxqy38L5eSadhWjYeWb6yw3dwPxuW5COXAZx8fYctwOW+OHsi27hPjFI0/3i2gb5KPD9/o - EvVPeVJg7r9MX20Ml6b6QpaHxTMjhmpLHUtNUwO4NIhdhAS539vx7OH32z6zbS7lkRi8zwewYHX0 - MSdvNI2fLgG/cJKf/skmXjY9xJfxQIqDuUTsvu8s0NmUEM++Xroev7IGOnqpmDHz7U/voMrIEHFp - pbqcLnoD5etgTwLcrH7908LePojocoP8ShLymwi4iiuWpT1Fw0kvFewXcsO04bitph8PyccypFB4 - H/Rtz8z+5TexLlM019t1CPa4/7LD2kPTeAsPFnIPlkKsrx91c/z1GC5IZb/rWU0PQ4R8E72Ymoe7 - ToqTiwbZYqv6oWq80UQwC2G3yWy/m+//WFRFLsdZkP/h5TkeenlZ5zmV8Oqm97gM73hDVpwKl06L - VkpCUvQ+f47k8tm+O3a9rQv5ZU0lc/O8QcJXSRVIl1roD3b0dXvXPdTy+53e2G3mpxFejwtq7sme - zHpX/96Scw2iMhmUR5HuznrKA0Py70TNNb0S7QckwMTOIvtgr1fSgVf2n3hPlqY5jfBubdDvEyOK - XUWuaKwcC8g5lomZnjSdF+cmh/K42DGyqV7dEJ0GGzsrc038MoVuDJ9Oina+/yR7P7jqbBXGFvTZ - WyKO8Rmm3omyGjqGtr6kq8+IHxPvAGn5eJOzvjtWo+q5LVytw5UFsx8+bVRiweyX+LLxOUwr59D4 - v35IhY9VZsPYKDEi7qn1UXeTuqm5ezJiq7QhjuCnOj/6uxDyNsCEiETURTvjs75aOyyxPZZND7eN - 0XW6jcz7+YmHtrGBIj+n6yHx0LBeVC3ojwCx/CHcJ85fsSG3r0Jks/+Tjc7h7uNsaZ7JnE+6cItd - C24rKaXtJ2PuEJVCiC81WtBy1m+8bpTh995fvu9+1xNJS39+JtMe8raS8vdUwLgXdv6rKyM0f7+H - NuRU+ygFAfFPLmrg7acbrXux7T7mGgtobbi6L6O6QaPkLmLUJiz2y+jtVH94fL5+tl8tVcTF47ZA - hzs3iPJ5rKamOxQKgnNTsRMv7O7tGcMT6XC3KdpwoZp0Nb+AtKMjFXv67r5mv4khoolP20tTu+M8 - 70AFoQlxnYBOzZMPGhgS7cnumPPqi3h9AMizF33gO8+4fZUFGMZTQXTr/oh4zdwL1D3sWVJU344f - XdtGi2L0mOJKZTT8/MkCd+DL5n6RPddWTWFv+h/mnr0LGppzowBrPiJxPhnTx1qQ1qjS0InofHWp - Phf2eUL76oFtg7uJxGOk2zDnIwuH47YbcBEouIDPk5m79b3jhqwDkHMiM23ZX6dR2goCXEe899eS - qHRskW4uMPb6yg8cwruRSRFFI1KvMy9P2RA9pjUYzdLx+bK/orkeFHCqk454RSNE3/BjHHBHnfn8 - eJONkikYMF+vnyzHJOLF5S7gme/pm12WOhU9w4LwlAW+hF8bvaXqK8S4jF3mnO7I5agfB+gbYUX2 - vOPZKO0l69cvSaQr+2xe5/hY0cWsz3LE93pboPMGBuIYq2PWN9dHiSvt7BIXFo85X9QDnvUDUenn - jQbVXyooY+8XcdOeTq237QCp3WXJtsFzm63WqlyjtFInojq3tFotT8dS9lzt+tNHE38J+xDSpRKS - gO1XUb8rThRLqbcnx+Pt6k5k1YdgDmn8hx9EkZizn1McfOSYTjT42Pgzn/IRdsxqiC6bA7Tpfj3r - OT+avhq6QIIue2KratfR19oa0Ow/+FAMUjbujasFTRhj5qBFgMYKKbO+9XJ2Dp7H6ufnb+b4ZHut - vXdT3iARFfgDdFrhVzdOubOAX37ny1pyuRLlGjJHeU3s162MhPx1MCC93yVCxO3kUm/37GGTWQrZ - M3KbBCfJeziYeuuPecu7YZDMxSb3rIDpuvLNvk70Sf74Hf/uZ97rAkGeTyxLh0P2NUVs/PiJXbkk - zpYp3MG7lAFdly6f+DwfAmmXd394/k++rKyYE/XsLKqbfVV8rD3ryR/neJ0+kaLh51mMfSlIy2ns - 7Ib/mQcc8dGYVurBdPAhKBMfZv/qm5jr2e8hR5+JN3Cne/ztobTg4f/R66/Rc+C88QqWllU2jeFN - KfFP32z3vRP90Svv1BnpUFxeEZdX2EHndR+y3H5dq1FJthdYnpfD3C+wO/tNLTz80WSaYD6qMXzr - d5jnA75smujHU3M9Ob/YTmyzbPCx10Clnyty62LH5cvDvfn9PkUUte7szy0A3aAixy4hmbRtvFi+ - 8tt57g9r/dNbjQavaLjM86MiErpDooAhFTWxZj9VmudRv3pHVN8NdKEpPmsIT+hKlMJXkPTVphTu - epyTA+pZ1z83vMERjX12pKIeiQeWh3/0ldJ/tewPP6wMwafz86i4F7z7H08Q11Gbafr5kU0gjMR0 - 7qz7XsY2RgrryZ/5yBSfwhTm+RyLwu313/M0Cp7ALqemcGc9qGHiHENi2YcBTaswNtDsz1CUe9rM - S60CaaVPzPkQp1sh2nP4PqeObXPyjfrsGxmy8mAKUSlm0dgevw262Y0x+2lW1//i+ecv/OJjTKxh - jY+lfyFqbpn69DntyrWtH7Yky2MTSV+8ydHxUdj+ey98I47aUUHXaYnpONcDLlmqgMvtYkNcx2wz - vjdKAc6b4kmcU7Nw+e48JnhlJXyu9/JEzyD4eJPFFrtkCnNHNoUeRvp+Xo+vqGcbn0J7InfiD2hZ - sd88ob7mZ3K5wL4SoitPcZB7X2Yg3HfTb777929XwH/966+//tdvh0HdXIvXvDHgW4zf//jvrQL/ - If1HX19erz/bEGh/uRd///PvHQh/f7qm/nz/97d5Fu/+73/+kv5sNfj723wvr//n8L/mH/qvf/0f - AAAA//8DAKBpPgTeIAAA + H4sIAAAAAAAAA1Sa2Q6zPLOlz/+rePWdprfCFFz8Z4QpBAgmQAhptVpAJsjAaAPe2vfeIm+rh5NI + AUcBu1z1rFX+z3/9+fNPnVe3Yvjn33/+eZf98M9/W65dsyH7599//vu//vz58+c/f5//38jbJ79d + r+X38Rv+u1l+r7fpn3//4f7Plf876N9//rnYauWPKYqRmOdMUIB/fPHRn98RmZLNA16lYlOvKd/V + 3B1embJqyIGs4asyAp1MYNTmM5lPqRUJU2RLwN4xxZdKvOR8KGcfmIvPxq9fPERj7mUBKMI3JpuH + BTr7ZugGA83O1DW9qpqU2/YGPDns8Llha318W/cPUvjGweeDZrnCpCeycio4iYb+03G55v0J0YVP + aiKh+6qj2hVe8qDDF6vW6sLG6Rh84HBKBZz1wtQxc9pkKAnHgOq+kuRCdPu2oK3OBXZEXFejlBw+ + 6MWzD91G955R0jWcMj/OpZ+4KdXHoDg5IHbgkMmvSjYb8+MGb2h22LpYu0p07XUKaVfX/iTWpjvu + 83REwsu5Y/0hH3PhHe8DOPcFpvfQPOYjProBfOXUoacizRj3DoMVmmjAUbdrPFcQTWeEu/U64LR9 + umxk3WuF+NObx+H3tNVnf0wyZUwea5qzA0Vs1bktaO2Lw5a79zrWCccSirwysVpVJBpXRiIo0epm + 0YO2UiKC3SyGSzGc6MHzRzTtfN/ejMTfUdMa1FyoWo1TfOta0VNZ4kiIPlKKvEZFZH0UCBPjkBBw + 5bn3xZfIuwzXvqU45yqgxvcRuvPhmUsoiL0PDSN/6litpC80nb89NvdKhsRnX/rKYe4RTqOLEXHb + V/yCTg6/1H6/t0hsI8gQr9Mn9U6b3OX4S6GiF3plPtKYl7PzXQuVjUBErCn45vJu6awge19dv7bL + OppLbK1geR4iDPyZfY+h9wCKdj7FIOgRX86RrezKUME79Z7lwrruQ5k8Lxjbr88FseFlf5TDNE/U + ltQt4/bn2gFurREfVg8pHzxuZcFn/tyxp/YmEuvtNlS8jWJSexIGfRz4+aaMqqxjfXN/M3YXLxJw + cWVjZ570TrQUPVBOtEtIawNCcxSdRiSliYk91VcRu3hTDHxW3OlVVuVu8ibzBodTJpDNxMX5uC9n + TTHD5oO3tFpFk/KcLQAzM/D2LXtIGNjsoH1yq6j/mvpqfFvnj0LYscLbdFPonCbueuVaJRPWtqtV + XqfRMVbklwZEQttNNc4vvf+732KD+7psZu9AYfK6w97RY9XINCkAJ/la2PHFAxKrpK5BIsj11zKa + 3Ln6ZD48/UeOj4bTIYrRg8Dl+FLxWb3L+ahenB68zdrEpgMlmpxILRTj3r/8Ieh5RlWRzCCrYYzP + 533RTZ7xcJRoa2vYUp/MHeuQOUplfBJS73i1miTkGMA+wQabRSqj+oj2LcTb4E3P503pzjsBBXA/ + P844DORtLtRxV4BAIw4b4nTNOxYeOeg/bYm98+7dNVrhBXLc9yeK2/aN2H7OPyDldkXmAmuV+PLv + EmzEbotteRb1flkPtBWvCBtFI7iTctsXGyjJnsZimbHGSTYW8Lt6i7eKFufTkh9RgKhAndsm6Vjs + C5ZSmNKeugNTmaCEdoku+eT6jUg/+VzeJAAThRLF3FR0v/lXrnsWU/tGzGqUIU/gcKCDL4bFyeW2 + HS/87mM8lrLbomAlQNkalHrDVLvsMikZ2t3KeNl/r2hS90cb9gc+oJlfd9EQrXQfBTLr/dnRTZ3D + h6xF6LNWsF/xWsSHH3EFyftFcNRNQ0Te8TaARndUUj7AcfnXQ/Ngs3vc8Lmdd/r4vsgeetr0i316 + sVzx+UwTWOoJ9mldV50qkhF615voNUzfOcPrSwx+EZ6xH7SKu+TvVM7H3YnuD12hj0H6eii1F958 + 4eyecuFa3wB4jZ19wd33FdvdHzc4DtKbmhdbzQW/H2Zk7MwQ2224j+bHcAkVQQCFHg3HZdP5elzB + 02t3+BDuNTSdL88ErPZ6pNEm0PPZVOYElKNU4uR6anWGu1UPr0Ps0tttP7PJzZ4EnIdd4cA9FNG8 + xJfsPg/B3/ibJPFYAJipQa9u+OmmAh61Mr89D2f13nEnFoc2FNvtnTqr0y4Sl3wKLCpyenmcbtWY + S+sPWIZwwtHXeCPye9/bgTvja+m63eTfuIdydg8t3dt0dqfzSeohez23OD0MMRuPqzkARbrW+CKM + q2h+x9tQydtbiv1vvM77nLcA0mj9oAfTDt0mf19TFIqfNzaSaYsmJ9kYaH0RRn+9TZ46u3+pDJCv + nSUfRNXYwlQqJyE7Uf/QvN3xUuaC3ElpRE+Ns9e51B0tCKWSYqf/YndsN6qk7EdwcF4nDDFps5+h + TOIdjb/aoM/7PSkAP82BuvtN587RjbZAJPuAnV3ZV59d16SKxPUqDT+7pJsslK2AOJz9+15ND7sY + kXBMtnj77tqcDXHygfA17+hRU8/66JtTqiji80adZziw6a6iEm7RPaYu0fScD+wZ4LlvJmqsv9tO + +M5WAOowIZ8rMlaN7YBLENzKozugmsvfiJrAer7p1LqeHH3eH3EP1/fBxCd2XHfswhNViDWP0iBF + HKphQCqcxOSO9VU7R9MxKHw4R4JCVX5Fonm7VTlFt7Q33d39Kh9dfrChqDyf7g2t7VgznT04rOXC + 5x3vmvPKu+3hVa5t6nqhFrElHyPtPCfUaj6nfDqe+UKBst+TrWS1UW/qVQJKyfU4Nw6ooyHX1ODM + 660/RqGuUwG7mfy1zjtSL/lhWZ8R7B3akHW7sXMWsDtAeLVWZCMd3G5OvuELgLAa26+zmP/yCzTK + neCtffFz/rMVJfTZnmSijOe9LjbGJCmnYdLolY+YPr27wgDXafc+9z3iblziUYnc84EeHO5ZcceV + HPyNH4sYcjScL00MU9KVBBrj0ZG+D2QFRfhEuOcud5vxXH9++R/7h6ysiND6HOzMjUbzXHiz4Rgb + gnLeaneajNdjN0phAfB9jhKOz+orYpdNUsM5nnZYpdymYiWn3+A0vp/4CGxibfQZM3jKUoL3z/jT + tX26CkDiW4es1u0x5/n57EDyeUiED7VnN+y5XPrLt3lWo3yy38dMCdAg+Jy3r6OhXyMDdAso3a3X + kA9p3XGwe6QNyc3ccn/7D3YbMOm5OWX6LCjPAjb7bMZ7QU+Y2O89AmPcdvhwHT4Vy4LnSm7g+aJu + nqpopPdRUpjD2zR2rlI394/zQ/7lk2V818uqp8HCZz5b8st4FdIWqU9SkGEzSS7tlXmGdUcN6qws + A82ZJpEfz+IkFU199q5VqCzrh1W0UXP+3RUWuog+UKdP+27UrGlWLjYMZFrdn/ko6uENNYbhYE/W + WP4MvO4Fai9OZO32mT48jN5GONhXNCKO0Ymvd+eg52660hNHetRb4VsAt9q9lnzgdbx/jgLQWdzS + ayK0+SS/7fLHQ1TdKU/EK++SKMK+lcgYXzEbRYf1UFhcRONlP7OUeCMMY1Li/eFw1ucHJ5dw+x7g + xy9sdijng/tVDRpcHDGfo2ytyps8sqi/eQBikKYlQh9FIeyUDN2kW04vxyf9QB3HsSIu531Ax6nx + fXG9LvKn3WgqCrapTfiL/cjHH//y+8eJnq5nDYlYXPKlce3JCiunfN4IZSa38w2o+h4qd75yQaxU + Tzmnu+Yku2NzO6iwY4ed3+zYlzHp/XWgOWkxNZuauA0v4BEeldWRdTp07uyFlxQp9tnE+JA2aFSC + wFMeAh/RfS+1keDvmh45sybS3cUgrNG+Nxtet/CEvRWV0Ui8Wwj0G3+w/zDebm+FA4e6721PddPU + cnZwtgYUnJ2Spd5V/Uu8qtCZx8wfb8IHTaNhrpRC2zC67+DhCumWanAUbxq933ay22cf7wYGck6E + KySpGi9lxP3mBx/9WM2FvclzcH2FiNQ3xdbfvLb1oH18avJ8d07OKt1XwQy7j9+tjF6fPsKwAk25 + hDQ42KQa7vzzBT++2Xy2vi6+HBpCf1tfsDHzUcT8Ry+A2aQvigW/6dhD6zio0niFtdjJ2XgVgloZ + I/LEzkbU8rlPhVBpp8fs84WwRiwc7AwNunaluvS4ot992Psso26dRIwVqwDALfcZNtaC4Y74kNUg + u3mD/YSbulFjd0MuytAgK47xEd0YEVGespxQk1jMZYVcJ7Dm4jNW+ZWfc0oQ+HLTDBbWOvbRp+/F + teF1SFzqfsDoBD0/eWAjbcbaSXDzcWXchB+Pk1W6sqLpt76Pp3eml8vazOeADwjY1ppia7tSXUEQ + bA9uuO/olla36PPj0dsKGWQSxW81vpBZg7EJtnR3iaZ8ntYfH3YM7zDW9Lqb1uAX0sLr1MiB5Kwj + Y6iQghTUuljfbgq2RwItba8Yyz3pxg03W+i+1r9/6+n41gigumKUOsXumU/hZw2w1DNsCxXXjdf5 + oSraSdb89/VjRkNhbFfwvBdvrOmezeYlXn58hPVAsjuuczkDGqheeN83X0YDS25hqbdEPGgffVRA + eaDuxgnU0SPHnU71voZCWAnUy2ylIt0ezaBaYYdNpik6xZ3Q//QvAU60GCNdI/x9/+1njyPO+bQt + EuOjRi2qazkFm5R/9VC+MjxX5Hetg2AXphgrpokWvfwBttmdqbalOeO3ad7+6q+vXGGvi3eklfAK + 7JZijIpOCPHgwKW6xeTk5Hc2ZP6mleq6vuCkscfoTSXQ4C9vFu9PNN+bugXTlxVqmE+/YoUpB/LP + XzC9JNRHK0kKIEVf0IN3ZXm3RedMqXYZR7gii6qpe/ofcGZli09s1ipR3aUcLHrHV+RR/fFaDWpZ + f6iqGAe3R2XjgM77K2oUUtpxr9WyHyY59ldCoEWc5rQp7K4fh25r41mxxphkdJKCxkdZnedTo29f + AFUd4fRGzI63xDJRdC7kfOnNvZb7+w/c1+vpVz+jZX1GCIU2p2axT6PR1KsYZZsDwyboRJ90SyOw + 480cu5mT5DO5ji8oj/crdjefrzuRKRx/8UPW07PUmRLgWf7Vi6ibDhHvltoKyk7bEFj0f/Osgla+ + lA8Hn6zhEY2uNxYwP489PplEyjv8Ot0UyBWHKO5zrw9JqBrQcueAMM996tP5NBL4ypmDLbO/d+N3 + 1wTQJFJNtejKuRPfKhKMo1Vggxk8G0rBHYHrvYBw5EwiJj6Fh1KZjwfNVq+GjXqot4qlRNQf6fus + T0IMMZqyj0Zd3i71KX5dVPhSqcL7qhbYFN5vBJoT3PBODc5IMNoz+ekdf/WKvtVIo/VfPsbLfObU + 2SbOX/51T34fMRZeBHkYHjrON+dXR/2C81HzFWa6faw0Ng1lGoJ+ljY+nFqpm3/6ZWirgVrm9apP + fu5KUN8twNu43XRELYsQes9B/rMVEjaJVPLQomeW+JEqFvsrS1540+dfveHOtmZ6MN/uB+yv2yln + y3xDTD6Nr8hqVlF2YQYEX8Wn293VcIez5RP550/gMRK7nhi8BsouRfS0V2Q0jPnFUy4740LVUS8i + /vndB5CP5slXku8XjWqBEljy8a9e5Cwu0x6atgnw3XPWOeGjzoLF3/nrL5H1C9XwpXJFPbPGaBTX + zYzKOELYJ2jrjp+3Z6D4tD3gpPnw+bhrJkvZVkNE0CryK76rqQCtHlQ0KjqC5iNMoNQHv6ZOJ++i + aS2dBNjKtyNhxaFBg3zBNsTjbYWNIou6ua/r8K+eCrcUMbbwBZI4omJjv466McWPXln8DOp9v1HO + e0MswAff31S1233H242jwde4Mf/4LL5oKkYagnjCnv/+zX909lO56vbF4p9t2Jye9rVc7MYrWX3j + e0Rfz/nxq/dE3ohaJFolTpG8f57waQy+qA9YnckLz1PrlddIPGU7AKjayJ+ie48GyAJBPonxnQbX + usjnKZlK9AjCA7arzayTsmw+QGXXIOLU6DnzC/CAU+cHxrGqV7wQQwIXybWwm3/1SCiOzPsb79HX + MNk8Z60NS31Z/KXIFWWSWUDoQ8aeW23ZvL+kxU+fUG+tvPNpdx1txemOEsZlAt20DeQUvb3yhb3M + vlYDlTgN/PQsYm/DRkZwiD4gbb87X/r5LTsNAti+3198IqdTNeqh28IyX/S+fVfVvD/cLVBz9PUn + uw4YpwSpj8ow/5K13ZX5FD8eKRJrvfVXvCaihV9nZMtGjQ/fJNVZvd2HcHlcV9g75YLOGaCpf/3m + m+rQfFz0FCqj80T3i584Wy/bBtcrr0ReeHpev1gL+naPaD6wB5uEmIvlvi4Fqs2tli+86CsLz+Ht + RTJ0bn7kFhznb0pIo1J3XtevUIGxU0gtqU/GTKKOyvmwW/nybsIuWV3DFG5qK1DndN9VPOH1DOpv + j/2uTiI0Wy/VRto6+iz9CQ79/DH4+FVOmkX/1u7mOiI9FXVf9i81Gu+pH6Nkc078V8mcam5E+4My + ea9Q77raopGTvzd0RSv958/pzTEnBjqv4orGaqK5b/mtPtBr01tk2k7c0u/oM5AjayZyJ3/zPuqb + GAzZd0nL1I87zZ4koaX/gXVmkap9eQ8N+u+nx1ZznhnpUyGAa97V5JH2c86+Z4eD9Rbf8IG1z2ie + SzeDK0gHej7QoWPxrTYQN/GHhQ/KaK4GVMDKOYPPM01x32fLInCSwoaaRZohVoWSCuONF/DOaghj + L/8soYUX/sZfc+ebF8gvFai+uZuIq3rdhltnFzS5WLtuil9HVdnj4UWNMXx0s+gtYze+TPWovbLp + GBsc/PQKdxXVjjppkwF+7gb/HB7mbur1akb3lXn9q9/mwzOSIHvfXZ99zCta/JvbXz5yDMxFRC3j + QFniC++FcJPPdRobcAufjp/vaBJNkAWcsvhp5HtO1/rA3V8avJXv0Uc9J7EOtmaonPjCpYbfI3fi + zYkDLI083iF9zkdPFS3Y2EWNo5V3yCe5f84KF31W1MqlAk1ozDJEpWDE/qKnBtJMpbL4q1hf6u/i + hwVKvA3f+PDL7z+9ZvXnN/ZHa2C1ucsB3btwTXdb2P3tb6HV/jJjw7mmlbg8n5ytrOvS35AZm9kQ + woFAiBN15CuyP+6I8vOvTky7LvujDyFT7IhMfWl1wq9+sbA8+kpzdCLW7w0CL04sfN51zWj6HDYB + 9MdJompV+RFDPEpgILcD1vS8y6ljWiOydNn1R4uK+fgSrxokjq0sfmDo/uYXjj3k9IaVU8QMHAeb + 5f2o4RaPbj4TJPzVr9K0f3ejl8urv/oklWfRHRd/AEmDJi56p4y46K0a4MyqiH2XzGh4U6OHD51V + bC78KX7Logd02jX++prN3ZhNSbIZ186RYus5dPTibZK/fseZ3knH6o+ZgHkARs+vS+CSs3A1fvxE + L1UtoGEveY+/9W21+K3z5wMZrODRLf07uxuLCD3gIgQz1j+mwi6QPHylvjmzLy7xyqpw1JRFT/pK + uC/Z6Gv2DKM2nnFkxgbjTrrpKItf5m8EXUD9dp3eYPHP/ad1A3e8x9ceXnfv7itH+ZHPsVI4YDf2 + jR5pnLNJfqvl7/d0K1lONB6/VEU3RRuJgvy3vvh3DvKlOqRXbXWNJvv0zcC4oBFb5lVxWRx+CPQH + 06R/80MdVwVMdSX4TDqifNhpXABWf3pTPcrzfGpP0MOvn3NtjoveTR61Eu6ThKzCXesu+mj1l++u + eYxz7jyCLftmdcE/fuqqUNLAmu0MO3v3FvFFY6mAnfKDnSlOOi54mCM4JPSxsR+POv85NhI8d+yK + ceupSBBtlgL9pAVOD5gismNarTgk8GlOND0SVwRCcC75C2O70/K//LD4l2RZj2r0jG8P35Jq2Lfm + mo1OG4VwmMYJH4wN7ejh2MZ/+7WOfUvQCK2Wgm+8MS12w7Wanu1GgrCwORrGl1s+flVVUxZ9j7d2 + PaJRVg0V7T1kEZ7NWjd7iaNCoSFGDd53OvEawwy80XX00Dx6RgOnCuSBueqi12g0C+XwQkUZGNis + kdXRfu/1cMpWLzIu/s80e6OkWLOTYX2Jn9EAR5M05u1wsegBfun/oPY67/2v8B6in9+NLo/7iqzK + lI9mzttyCvuEm7/+9DyI5Qg/ftBabuWOaXRMlIsQzvRwdGRGzL0RKlwXWPQovWg+PpjmKWrPT9Q1 + ips7HCRC4OxEj0U/rKvh1385K+kFRxo6VIJ61lJF6o2Bmot/xr5njVP++Z0K+K9//fnzP34nDD71 + 9fZeDgYMt2n4j/9zVOA/xP/oP9n7/fcYAumzx+2ff//vEwj/NF39aYb/OdSv27f/599/xL9HDf4Z + 6iF7/z+X/7X80X/9638BAAD//wMAog8I/t4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a8ffc4a7ae5-SJC + - 991b1d1dcf361613-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:51 GMT + - Mon, 20 Oct 2025 20:02:36 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-lmlcx + - envoy-router-5f69ddd4fb-fjnmt X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "319" + - "238" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "356" + - "277" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -423,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_af36edf7ab184bb29ff0d3b131ed5670 + - req_49567fa005884c428da98701bea87183 status: code: 200 message: OK @@ -469,122 +469,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SQ+6Srvn/v0UJ2dLv5FJqjg7ZpChCgUVO50OKCIgIlMBdXO/ewf/N7e7Ny6g - Eqzh+U1P/ce//vrr7zar8vv49z9//f0uh/Hv/7E9e6Rj+vc/f/3Pf/31119//cfv9/8bmTdZ/niU - n+I3/Pey/Dzy5e9//mL/+8n/HfTPX3/XmXHDKVmGbH4MBxeQa2BiFAluNIr6SYEtUSx8bLrSW0Q9 - 1aCjEX7ijmrQC5+p4OXTI32ipdRnuu7g7EDDohbBojD3qzSxnXwvQTHJn7dG2fuzCeU09m0cGfez - voId0UBHZRXRACmV0AVPA9rEFzF2D2rE0qh1oK4WI9rvngbgLbG0ZE2YETaOJqDL6fBopTNI3Wm3 - 11w6qo4YglzWdKLw7InyxRob0FJ35cTJOcnGL1IlsM0HzTY4ZKzadiw8OL2IhFEo6cJXFxd+fLHA - D+2zZnPkSa2clixHjgzmAEU3DYFxxiHRO6pXtP3qkywtTYggK1+reXnEq2wE2oc4cBG82bjdDHiN - Dy+sUNfOuEUCDXxaxp6c0Vx4bGIzLqCRkBPrWqs6K7/4FnpMeMEZqqNsESynhu/OPOIo0K1oduxk - BS8/M7E+7y9gIfaFBWeOP5ErMZtqxTxC0GNOl2lNF5LR1Vd42bzrT6IxF5XyFlo6WTRjlSRI/4B5 - sc2TjN7thRy6D08X0w1F+VPccnLbx1kmVJd5gmc3vpJze64iNrSrO1C+T2PiHg+j4ikcV1jXBzzt - G7mP1sQsU5nOqkYOw6pUbDeyOQQ8+yXP7PHp5+9Ds+RkScWp0m9eth6+yUU+DWqA87dyqT7Hw5xD - VhIiYiQR9rhDedCA3IYNPhy0iFI29VuYtulIdHQ3Mg4nJIXb+cK/8UKvl3egeuIBH1WhBxStSih3 - O2PBsb5w0QTLWw7ZU24Hr6bTdO5jnBtwU0aMcV+5Hhs+JAY42shPknFlo+FyxSIMuVHFOua0iE+y - vSTRoTAIVg4nb9VzL4UfyYPY4XsdrBDNJXTulonNpMhBFwVMItk2qPGhcsyKH1mcQO4RJnhb34jy - 1QxlwnEUBzrH69/0KbCyEzJnxNmlT1lmOpbAfC8MCdbHq+fK1S1B1s7CROf9ha7f+/UE+fziTSM4 - z5TbHVReXl+Ki7Gwe+krf/ULuH2fmHes0FbEfQc1ObawH9gfnYJHIMpaFyRYDW8Xj2uvfAkUW9+R - wy2a+0Fl1li2u/hLUvy2f/jgyNn6umDcFEU/r5PtwA8tfHxOjavHRt7agoCtK2JdPF2ncrMimefH - BD+E3owEH0AR6KGXEQRjP1vmdDfD0Wb1af+sH2D9SNIdUiQj7ErsO+PX5HSHGZQf+BijDLwfta3J - yvmUE6OsYbRCsYWQT+aI3NfLuWL7E+bhUBQEZ/P8AS+0jDkUjTYhZ7EpdLpjeQ04dPlOksXw+nLV - RR+aISA4+PJhtlxe5gxVITWIJfkB4AK3qsFLhQyxQ/tdjZ90NMARP58kqGkDhrnci1C14iM+79kK - rK9brsGg4w2cnIDgLWX+raEaGjM5tAqnL1+pEKFYvh/kWDzFarHs8iJfDc4lChssHoWGzcOYy52p - I81JFwp4hLIW5hL22ngGq9o1NSjT2CQ5OJY9F4LjLHuXnUbUHPV6TT+qAbx9YpNj5J28ES3vHA7a - bk/QMWyr5Sj2PuTMKPtznmnMMC484scTx5/Lh37H0834838utWhXfSg/Ctj2mBBdU4KIY9V9Cv3r - 1cfO0LPVlPFhA3fVQyNuMUUV7W97Bq79/UiMa/jOhpYeG/nePhL8ECuWjhqRXDjvan/aF68K8D++ - eLRcSdT0ZkYcX10c+Z3dqw1vz2CyxM4A0ZBdsRXUC1iSuGtgDE2RhCOsKqoRO5bZ093GYawOHjFA - ieCCpAprhxOibHXkXIh0USKq+bpm7JtoicwZ7xWxbIei1Zi4VRai+j3Ruk315VyxFyCMZx3ne7Hu - qWXtCrh+vhK2pZtcUUOkHVw58YbzcdV0/jbUIYSCT8kpLDR9zsqYlWv6bBAzrqU+rGmDAPQmkejy - eQTr12EuwLTZPdq/6zEiCxRi+bt3CNr3nFTNljykMD6caoxT41Bxp+fblQ1VFNB8M7iKOrLLQ393 - OWAv8M7R+ny9BjmUPiESNzwf8l1nwMx1D/ieN3bFk1gPZZ9FN2wvg9PPGq5XiIrVxn4nGJFwPyoS - 3PiEYA0gj0Wx1YH4wATE3LM6nTOQSnv1e3jjVDZPYGn75x1yn6Eg+G1rFTvzJ16+DdI6deZb1CfD - ppKcwd0Do9S5At6xRggVk7HJZYeF6Hsdi04235RBUtoW2Sp8GBHW9NEgodZGMJudl4PdExrkGtpm - xbH9l4Vv3/HJ7UU+VX/w0AT2C7L+7Oc8abwhI5YZifOiZ7CexxXB/pJaRB9Uu1rRO2LlLzN8yK1Z - F31p++t9z5VOSzwR33TBTRMHLgPXknTDA6q+vAJmeUxIet+PgFYPfv7hEYnBMfRocXoV4H7jO2Kr - /U6fraOZwIK8RHIB6dKPxjGH8MB8pEmcjLWf3AogoCrzDT/u/rlat3qR69rDxLBdjQpk6SxQfWOZ - BI1vUAGR2wT1tSmwueG/0N+LAi5Fq5CEnvhoKqGSyMfr/UFOJ5fxltVrFDkIGIF4Rl5kXJUBBT7l - JCBplAb6dJI95qenEGsuNRg5ePfh5XbF2FsPJuWrtyjtk3y3TqJ0xhF9A0ODqnrXsNUczV5wpDiU - 2z4g5JBf0o1PjFLOrSSZ9i9iVwu/f7fA3fUjsQOYgZlJNAWuh4n78Yu3BAUwAFOtL+y6NAPbersg - PFQPoqXNWSdMwDqyRncCsWDLVdR/jwm8gjuHLWfQKjqxYSvD9VIjbkkGuj6RM8NAL2esb3po04Ob - XhRfxDf6WSe93uUQv5wjOTTr0VvtQ1zA3brcEPiOE6B78DUgD94fgkry1bsdFB1wNK6EKP1yA1/7 - PDlw6CC/4VVM6VqGMZTzwiaPG3D0IeIqA9beqmHkZVE0Mt6cwujzcjB6eyGYIJoL+bmeHthLudlb - g/ibw92TMYjZnCnogm6G0JhWHWdiGmU9p6IG+MclxqonM2Bc5M4FH+kAifP29YiH5TEHZW3VxIkP - mUdv/jIBm6kw8Su2z743bObgG3QsdrrU1gUx4Sdw0juVePNs01UEVxbeYsAR+5nBbLXQ0oJnunMQ - 83i9s1XP9RSA+FbjbAal9+Wx7AO3uF4nnmVcbw2YmwROyHAIajkYraVyZWRPW+8/PsjmyxVLYONP - lMPYj+Z6mRkZrnGNnYGfwOo2r1Wun7DF7ui61VwIlxTqoWAQfzCdaMUinKFsVS5BgQC89WVyFswU - Kk3dPrMz0t8WKCvP6U3sSzV6sy3iUML3UCUPuckjWo2K/8NTfIvNAawy1Vl4j5mMaLdkyRao+RbM - Fb6Y5Mav6ey2cgkvlT1NwyPRgdAFVwtwH0Ug57GyvbX2Vx6ChUmxcWjcatWCoyIfsrnBN+aoenyR - UwdiNHpo0U1czSzSFfjj23Ddjd7KVmQC8QEG+MyHd50WO6cARy4rsRufYLXurk8fvKiy4MA/BtFa - 7W88LLzz6be+Gd2/j7XcUFdDy0vkqx+fwKfqdwTBZ1PRVjuwEm0Yn8SpNINF7mEBqVHZiE4PolO+ - EiGsmMDHz+bcZPN5DhjwCt8DMbf5CQfhPcA2OHUEv6azR52GxuDh1Rbe/AHghHtoyA6l30ky51NE - v1sx2PteIe6UTNFaQieByegf0ecjRNEaW/NFpo83JG5d3aLlBoYcvjv7iJVhJ4MxOs+FrNvWmxx4 - kf7Xevr9a8X++iJgkYAVygbhAPGuSpfN+we5//weOfrErYbdOcuBdy8kcnVPc7TcRE6Cr/Xs4GN6 - e2d14tYDGE8nb6LJ9ZHRlVtCuc6sGw6usaUL+6PYyjA9N2hHNZCRTS8Apu1m7O/rFlAl6Bo4Af2F - jCALIwFr0gSu0MkxUs9FNkiXVypD5e2QILkSQBe4i6H3/szTLuFNwJnsIZavZaKQtIdWxX3rYyrP - yUnE7tUQ+5mZbiXY8AMbK7Kqxb1xFzj3lJuY335aNC+hyeT1JHVTSSk0MAuzRRix+j0a+tIUGoK7 - 21BhVDh2tI6sncKHpaHtPBuAT5yQkQ37TvDJ24c9u9XHH/zFb7v8oy+lj3a/kWdTKD2f5EUOLsZT - QYxWGR5/3K2l3LNXb+oTNEWUmJ4BOf6MyFnMTCrEZ3OSdjEb4wtsuX7OIShARc07WnzSVZv+mKRN - 35FcX2ywXDvJgJv/Ikd1OPbcWTif4LlUAfbkx51u+lgBWH9n2Nxpdj+54ekkv77hCXsKybM5jY8K - lIZJIfqbf9B+yxdg4CQ7onXDtVrPvd5CKCCKbZG8KjprcQnf+6xFla1fwBh+RB6IVWSRwEN6tfnX - ARayNRF7yGu6MM0zhbOkxMT7jhOdj8mZhUpcc3jTk/3yCCcDbnoCCSV7oHPh7hJ4jm4BjvUm82aO - 80UwN6AhSlddPOrFVIOGnRM0c1kMlmi+FvJTeakEhziuZp+AE/zpmfhxEas16GYGsqCE2JwWF8w/ - /zBzjomjzQ/zLlxOMt6tzMRqiZBNppbPkhrDHUn1QxhxTHNN4P2ZlthX+C4br+qhA+41fBGVPZSg - q96zJJ9Hr0dEA5M+0V0cy1Zgn7DWmhxY1rq25IY62va9PppdmOdg07PEvkLPEzw1NeCG79jjGK9f - V81lYPA++VgZqnf/069Q/XII282XVOti7EsQA0UhjtWl0WyQtgbREn0mFhxnfSx6f4Zly1Cil/4p - 41uvFoGs7E4ECSLnrT/+LtX+iZ1Nv/Ymb1rwT72YS01X66264MKj+8R7justxA0SuEpzi6+vptHn - Q6K7MmPhfhKO529GDdAhkE9LjWak3qt576ICHBPXIljYqfqy+WvIVPPrl3dFix6bBby6mYbtUSgB - VYRIg2xU7bDZnqusITKYYLQrTbRrl0lfP3XJyHn1ZYnDGqVOVba+//wnNs6CHXHmY+Fh1/klPl3g - oef6uzlAn+kK4tfCWZ9RFRrgVrkxsTrLi4ZuhHdQ2Z8XVks93PxN2cDpYdzJvR5S2oJPtsLtPbGP - hd7zNd+HcPOjOGGN0vvhJ9zyESQku5jOYuXXsH4yLTaP/odu/qWE9xvbYbRyfU83fQCl/PkiqjcU - YDqPEoKXz05GMMkYfRFv3xLyMArxhofZHz1qEAEQZauP6Xe+2NeaY9UiwJtfqcLLGR5UEvfeWM1b - XgDF6mhh95cXLI/7DPWWV0ngW9Sj/MtN4fP74fGB6zAYr/rsyw+vsQiSxy5bdusa/vwF4pOPC4Rs - ynOAk0c3LTECYBxI00E27wlWF2avr9y6dwG63gQkf1Kn4tVuqiGarXw7r2a/ys9Ogk43UBy616O+ - nq/lJMfQFhFoD3y1jrcihUKSsxjzmQOWcZ8y8DFlKTkcgklf9/Y6y3xZrPinTwbQabHcZAcD66Lt - evw+d09wdACYLpap9Kt6DVp4SwYfra9dWa0PI86haF5UdC6LSe/v6u4OKv85o3lO+mjW3jAE4kgC - rH00X19++MV+4guOjA/O/tTnFeQcMV+nLlvTLzfJxgo7kujKROnZuxnyL68xVtRUW/7qwq0eUNM/ - DxHd6kma7inFSOwUulQZ0P7Mz9rha/RHj9wWqmHjNgQe2f7fn/xBMI2hn+/P6QR+/t+RikPPr9OX - AZueRMKlCrwZF98STg4KCH7a1Ou4gzPA4Z0wGO+1jlInrFh5OPoJ2fLLbHnOX/HHL1PrdwdAnbDn - wUedZyTPtgx+eAUmxw+IpUZnj+N22go2f4CYQMj0ZfIBA+39V5kqGx29SUpGB/746VC8dLo855ck - b3xKlDMmgIrZO4Sj1F8n8dVm/eg3IZIfrvjAFnyAbNl/xhie3GjBGHz9SsDaOohEHxx8j6YW0HcN - C6gKiYFjczGoIOQZCxkr6CfBenQ9fUjLBQhL1aF98dK3fNhF4F7uC4LO5pQN7eHrwmkHZqzzdlrN - QvudoLTUIfG0iK9GNlEk+NvvUMqZbIwGR4F4NzNYz69Dv6yiqcmSC+utfr1+eOn7CwRLuBDbK1h9 - SNiHA1omfmA8NBGg7DjWgMOknOgnvejCldQJfJaMhaRiohUXFMCCfORn5Kq1NZ1kTkqBNAwKUZHj - 9COcegN+7EtL/MO0rwZ4NE6Q6NqTxGw3RYO4v1s//Tjtj9+3PuYPhYGNX1zwOSkYSoWFXWV2kBCa - HSbS+evezmX37szkMdsPQIerl8DNDxO0dks0/+qp60SPPAxxRwdbxCeoqW6FBEHmwCDpTg65E3tE - 4yvdZ8Npd52g+W3O2B8jX5/ZV8VAltsZW76PMy46iyW0tN7Dmugl0ernFwtWndKQUCmh/k3NkJU/ - YpKhs/O+VEvBvCfZO2buJDnqE4zjW1KkQYqCaeFno6cfY07k5TWKEz1ZhM7T5apBWCkBgvpj0Cd/ - ERQoCs8Be0cF6HP+TRtofJE38bX46SkeKhfOqLhteUoFJn/ZKeCm6M2mTxt9ConiyvubuJBH2/o9 - t77kQnIuZUDcjK+9thkiHoi38kOslUn7uYyrAZp39Unw+cToRMKaIW/5HbHIgaWrfbiX0vN8C4na - PW3Ag7ejQW1FF4xBvmY/PQ8i3uOJK7FmJBTn0JA1lfVJqsduz+aQFvCj5TeiIPXeL7f3HQLLrlKC - 7tGrmqeb2fzeY/O722UEK74LvsfDSvRrTPvxx68/vNEMbEbz/vHJwXx9Y/wo24dH9biI4dwv3LY/ - YrZu+R7URSfBbkj7aB0Cs5AhNDWi4pfV0zmpFcAIO3sS4XLVt35IAy+VOWHVjTQwQ4mdQHg1IuIT - KQALsL/o15/CPt7r3rDlV7CUOY2gINMA/8P7DW/wyYdSVjdDxsOnijpiIBZFbCHkCTRtfr/tf92T - hmtEsOlrYqw3hZI5GTQolBJEXFlM3sqPsQatEKlY+UBW/4gJP/zp9yDnK0TLOyIX+PNX19B+9/T0 - OKZyMeXKJNh8Wy1T5d1BWvLcn/Vbfniw9c8QSz9GT4tzYoBHK5Ro/5JUymYgFeEfPshOEviuL7mE - zzV8oP057+jc9YEELznO8WHhXE+Q/KiE47Eu0cq+fDBt/guqXwGh18afr/bKFNLQGJ+JUd3GW6wl - XcFvPtYZydnyRaooHy7+tO2f7I1fdJCAbe9rJH7Vg84NOu4gLvIWdXI4eqtYiCy8P5OSuA/D0dce - swYUbu4DrY7R6+2aTgh+SRKSy+speevs7Rqp7pKZOIx71our4P3JNyZ4mPY9zZ/+ALZ6J64ytoBG - k7cCY5p1EuVlA1bDNC8g7JkSMZd8yEh77lboBZJP9PUUUzbJgw5u/hSJ3OkNFivTQ2iku2FijqGz - 5dULI3+PXEZsEzd02vTmr1+JrQeHKvaQeC7UzucDOcVnG8yB8h6krrgb5Klez3T65Rubn0FMJHTR - 4s4GD19xqv/Z/0kZH+7PP6Bl86tDUkAEh8scks1P6GuYzB3c9h8752sO1m6ntvLxgJlJOLtY58Lj - KwZx7lISbP1TMlz1VFoPqo/1EXvZul96H47S90q2PD/jtvnJ+/XI/PpvPbfpSblhAwmj7MXReboF - NUwAuyPa85tv+DdOoIznAP/Wfw4usg/1kDOm5uJV3np9NwXcjeAwkeZsRTxbfQagpM6IwxOjRd1Q - THfw7QoVny94+dOvlH98O9c2qtg88gwg8fcnPj8eRs+x59NF7nbWQtStX0x++PrO8urP+iz6qDcw - u92LP/2eH57uH5aCsF8PEhhuimjAYKd1k7hLEiokuAhlq04/JPjyc9SDw8CAzf8iWejNbGwKzZd3 - Mi6I5sM0a9W24yXmFt+Q+Pb1jP35h9hIztjKbg2lXq8VMF/ECCvqvPvjV3/5DMbZw+7ZdcIuiA9h - TaxylClV8zuEA7K/0/AIDv08rl4Li+mu4HyrJ9oFTwt+2bDAGntZK7KWyQXKsaWgy1tXKS8fovTX - z8Guz5g9az+KUL5/PRWBrX81swLIYf0lNvm9F54W6n78QrZ8ql9eQHAgV7otQeOqeQt4iINUTSKH - 02E3Z1PiJAxg5GKHNaWXq1U+RAmcrkWNN79IR7MoEvnv362A//zXX3/9r98Ng6Z95O/tYsCYL+O/ - //uqwL+Ffw9N+n7/uYYwDWmR//3Pf91A+Pvbt813/N9jW+ef4e9//tr/uWrw99iO6fv/efyv7UP/ - +a//AwAA//8DAGb6hJfeIAAA + H4sIAAAAAAAAA1SaW9O6Orfl799PsWrd2rvkJEnWHXI+SRQUtaurCxQREJVDEsiu/d278P/W7u6b + 50J4KhSTOcdvjOQ///XXX39/8rq4jX//89ffr2oY//4fy2/3bMz+/uev//mvv/7666///P39/+4s + 2ry436t3+bv9d7F634vp73/+Ev77l/970z9//Z0O8IrTfT/08/OxScGY3G1sOaqfDB+0hZDOjYP3 + 81AF80HyVlCQzhJRro9dL5mSJiFoZmU0fTjjc5sxF47Jw6Y6e7CeSVLToZO6LohghDoXizLdo5Nw + dHCmGSeD9Rq1QX70tpF67bVa6DVqwvRpbvCuDbaJ1GaKC/XmQ6IZ2yaQTxvdRqMGI+xvXMAn4u8+ + Knv6PhG/zE+oAC4hQJFkUJxKMReE19GEVw08iTxaNB/pd0sAETQzWt8uXi+GeSZAY82VaLW9V5xV + qmTDBBxLnOvdnM/bMPuglzCINPFjEfAirWxgEYqpyXqj5pZcEyQhPYrWT+1cz+bZnBHW0w+1ElsC + 7HzdmFBMnyXezicnl79j30Jyhht6tdMyEGOX+GDW3gWN3O02ESTH/kBQmmd8e32Snh/XnxK+/MMB + pzvLThhR3Bl438DCdjanPbdY+gHbM4npsa7bmmNpFUH5kF4I63uaT4XFJGR9+INu1cuWC0/32SHX + YFt6fUVvML1PrxiNr/2ZBnMn8VkwmIJm7VXQRMd5Ls/xvoPWLTzTx3GuEzEzkwYUmWMQSXyYteAH + dwk+hRMmE9b6hMu2niFXfenUX+opDeyYwfStfWnSl+/+9/6QQmJOyq8f9NP0VVIUDbsdfuB9WDeb + VZnC/fWc0PBcREA4Xzc2OK+FF3bvVsLZ+hh+YGJLI3Xyk5kL+vuRwW/ilBgfTzgQQlDdQIMGD1/f + tO/neS73aPfYT/gs9GJNpJNXQJuaNTF4rRvSST11YHl+rH82fi4aSJVAc/RkIgPMOXF8rEAxvm4x + Jms9kdi06dSjyExqjO8D4GQPMpjdZYj1V2IGk9hoFZQuxML2yS1B52xGRQ2EvsHB2rfq5XkvUEO3 + C76bZZ5M3b2E6AURx6GaSnWvlG8BKZ1/jBRPCrm0np8ZsIbNinrPz7OXb2NXgM1NkMj6dE75LNrv + FNZHdUe694Vx8bR/SiitFB9v3c0zmSo/LOGyPo22d513TM87+Os/Xd2+jencIwXBdHPBoSmngaw+ + 0wJ8z3hNMX+znOCdfkFVdvvSInk7OROHr4tk75ViQ3XKnl/g24XbCYb4TJxzINeVLoBgJ1RUP3VG + MiXvKkLV5XvBaR1bifweIARTbOTURGkYTF/5wSCKBINAa3MHU3/2SxgexQjvdOmVS40el7C9e3cc + U+2Yv8NG1lHHu4K6XwYTpjcfCJGrJPQ+X0+17MZrCYb7geJE4UVeb3eognfDvNDUepQG54Nkg5N9 + 7wk0Zclgq6fiwsfTodgTN/t8Ak+RwWHoTGpweweEC6gbEFXuirqX+4vT8Hg3wf3RPyjeeO9gSJyN + AjczPOD0K9VgElfj6vf/+N6LcsDBxWtgGjJKfc0QDR6nJYRRerjTi3dVaqZgPUVffvDp1kYMsM33 + PUPt62NSmVacCMv8RYqpq9j8dgywJrQHcMtuFj3ZStWLd7JliMBEpy4dhvr9DiYTON/SoScTxvlg + pGIB87bfUOOUfOrJn/MQUr/Psd7LejJpOxLBb2KVeN993/V3HW/MP89zHyen/u7lewmN/EGpdw92 + iXTRrxksVnmIdaoJCdXNsoNQtnRqv9UkmTprs4Lb8xBTo8pfOYkf2xa52fWCL74i1GNTdT40vWNA + 2ODWQCS0dKFyu1fL/VYiTY3tIhU0NU2H9QmMNlZNEH6DMzbG9wT4XKktlOFBoYfdqq4nkzlH5DHF + wflNHYKhvs4RtKldY/vKIi5z8+XD7yZUqfYZz7m4M+MbOoRbMZqtJkrmjr5mdN+5bwKeVWawtmlS + sH8cDHyV0qbn04Bv8OxsVKz5d1RPdFN3cCVpV5wJSDek8tLsYTw0nBZ5t+XMr00ByUbfRnK6rwy6 + NtsYhKKuUOfAR8BoTGIwXi9ShAxlNMbf81dayCJ43qr1JFhhAaWb1OBg03u1pF5PPmp6RYnkZX7N + vaRK0KeFh3EOTgZb54cBbR/rfSSW/ScYLMd34axUHj7uUqeWvju+R+mwumJb0Nye3Qpzhq1d2Xin + bsxE5EBTYf3OLYq7Kgokz5cqAPJ5R8N3Y/B5zjbxJrmeXjhdOfG/30dzLx/U/b70WjTQLKFOnhH5 + 7iwlGb9poqKVaRR4m4VnIC7zBZ6E1KH7zygn3wPROrT55qtI3PIyn1ZmAaEue22EpvMIGD8GFSie + gkVvd82qxZB7AgyIFtJ49/7w3mJFBz531fpTz6kxWhOZUB/pLqxPYNbFOIKZYdvUPWycZDJaQ0BG + pLzp9TFMBhPNS7jR5PJDw3V+4X/4QvVeH3oy7pIxVU9QwqUe9L48Dz+4tgDB/ML0rt72wWw7hxso + AtJRo23XxoR88QJL66rQlBQTICSOIMQ13hAGr3NPAhD4IGTKFccXfkpYh1iLHMnBdKufdC6Uj04H + ncwQxXFkculzvBLItFWJnUbbGULRaje4jYI1jWpFMsja39/Q02nu9LJNV8H8ClMNCStbproGy1w4 + d7kGHbzf0VwJd/WIEVjBbC3I0WZfNmBkPtzDUeYYB9ejxcUp9tKNrvd84SOcsEg0dWi8NB3rBbV6 + Kbo3R8S9HaPWW7jyOT4LFao3YUrkwXBqZh+sD7iE+Uh34joHfEO3EAZSIeLffOShAVxgfP0n/l0X + ztPHBlGa3Km++p4MctQEFzXHQKbREYv1PFzGC0SgEfHv+5oORPsgVyrqCAz1wDm+XRgcecewvfCQ + vMsrF75Cs6JmtmXGUEhdBpNpf6BW7h3yqfLNEl57L4ukKyOArXzPhXeOvtRM8y/vzfETgr6pKXW2 + 4wV0elq4cOlPfK/Ykf/4AT72F5emgubWpE1qE74fqf6HRwaPsRReqqeLAy/agxFtyxLROLtjDRxZ + wIl2LaBS2hbVxWYG36e21eDCp3gPr3Hfve+kBQNBMbam1ar/zUcwmyOigWQZyR/9j6uqoW5UZIAt + /AYewxpTe+H1714+VSDaSQK2JMUxJC6mBLjGvKWayx0+O76jwGeBBRr1BcynRS+AoAROJJiHV85l + kqQgEL4NzpzimXfq9e4CljwuRE5iD8zV5KnA8JlL9UGHyWRtzyv0RiSngRLuepZyqv76NeqAGRpz + 1u9XaOErHG6OBCzrzWiGnw+OmpNfs+DWZrC71wYNiqtrzL1zE2CuPHzq+DMIplERddgrskLoOXEC + 6j0PEHmi3lLTSsZgiiSiqBa8bOlNvhQJTz+lCxaexnHoDmC+NoYCsSTl1N1IU84iMdR//UTEiTec + T/lY/fSMjF5mABnMbx3cnVCmt+zmBLNpVxL8zUvXnPx6PuwmDT17pcUHQreBmI+JC71oE0Sbdo9r + 9nC4Bn96mxnbMZiChhJAL8cdflD/ZrCwd0tQvt4V3jYprJl8eYRgmwsTdmx/Z8zC4Elwqf+PZ/Ip + 41OD+pW9jdjVlGqenUwBDnbZUcu6tvVEv96gXj9SSLP3hQHWFbCEMq7taOJnakwcuAosVtcQn3rc + 5vMrLPQf71Dv+nICeVBOA/yu/Y5ureIIJhMbN6CZgo0XfwAk19VMdOfrLxFqO06m1rwRKH+5RnWr + IcmM4ecC9wfzFLW6mdST6uxT1G4PiAaAXg3uG2EFfWgcsGfpCND7XSuRYBUviqsHr6fl+0cS9mZs + PUcK5ojYexRlV0ixH3T5H32pr9pAL9nKqwc49QUQ4UeliRCwZHY2LxWump2L44K++kaSmg/IWRQS + cMzu+bQ1D0fkf6sr3sUP2xCz4PNBi35FsnIAgE6DcwOJmDEcEP0D5tjJWhiTixntT8U+ES5J1oGb + IhTYqr9lMD7O2wwt61FPyyiYOFof4Qr2jAgbZgHxI3yPKKxKjRbGyq5l+T5lyB87BUeOo/SsiK7F + j8fwth3sZb69Mui9zwJRPnZbs4tQVHCf+w2Rn5uKs82XMijExoix/jKNeTb0GBYv2OBAaJ2E6e9z + Bhd9Jus4MoEQ6NoKNU5DcdGDfS+JNj3CSfFFbH1IVXNzpfvqPDdXmqorrZfsh1aApZ7RWn+Zgaxq + cYuo9g5JtdSXRSEwYZtYES2UrcWFzdWS1KEdjjibKrGf811QAlnxrtGqOXU1e+mTpC58RxOrc8Ak + 3TsTzkrp0eJEDr1Mnqf0Dz+FF/tuzLJzhyDYn3LsPis3oNV+jtHCi9hTn0XOtfypwTRqNWovvP55 + ZaUERzSsKV78NXO0eoBDJ3FsvNVnwrpCqGD6SN5R2+bnfKSaMoNf/uCTq1FLk1cOsC1WhGJmNpwn + 10cG1ak80mU+8Sk4Wgwu/h4vPNkz8xNpcL8uxggdNN/4U+/be7vDRw/kwewcbhAsfEfd1k+DyVYM + HW5km0VTfzz2/DE5Jbr3T41aVD4m01T18e/7oie3UurffIQnN4bYRpYPJqBtFNi99hY+YC3IhVh6 + xohZ9pqgxT/Q2oiYyixzTdMk3CeC/j5f4Cu0K/zrF3quPALyvVZRg9dV0PXtXkVmkwzR5+WShIg7 + 4YLsMYnxLqxFMDXctNG93uvLen0yXVFUAP9bXmnEV0EgUVc14bppb3g3xEE/dcRXIZftEFvo9urZ + /UxSeHEPEfZdm9Zzk3kV+OUJXupnNQ8qtwGPkL8Ij08sGW5FyGD5zjjdVjjORbBpGEjXjwPFORAD + Jh5nF46T/MChEr+D/sfrYx86WGew4by3tzGwszkjbKf4wYR8dIGhCj84O3xaYz5eah+VG9AT9N59 + AzbImf/Ts0itwK2elQspQejGNvW/x20yXyxHgBYrn/gqX4aET/mrhIt/wtH2XoGZTIYO7wlfY2c/ + tUG7C/MZglZ3os0gEIN9XvEKTeVVoNtjVS3zzizhZN0S/ONNySwOElz7xwqfMsfrJWN9GuAG6SW1 + 7+nJYJZUumBoyZFGkRsk43UYSsBk/sSRbe3B7H3nFtYFvNFs4+a8+62/XKfOVBm94H77PVz8KD4C + /AR89NojrPm+jVZme+STOw0NXJX2F+8C8K6nvbOuYBEMHTa6bd8v/pFACPCT4mQswZi8uwjOJkXR + bHwQn4TwWsG8wHtsi/o+FxzmEdiVBqTbpT+G5FGqqGBRgX96Pe+SUkI/PS7Ou7FmdKqO8HH52tgf + VKefjt6NwY2ibpc8bgazTbsMhmMiLXy0D4blfaAfr+ufTZczrZ6PMEw/jwjdvj6Q/YQU4HX5doTL + BIDxdZQ6mOtnhgNAN8Zs7LwYCNJJikR2dLlgb4oGbqLijhc/mc/VNVPh0Akcx9A9JPMbVh365X18 + PUnJfMm0DEqpKmCLHV0wXbi/gq/inVG9z4jBiFsx9NNr0wMgoPvTfESC9zKxxokH5GqvxrAY3oDc + 4UXr2RreG7gxL1EE2ltVT6hqMii9DrvoVuhj0tUBvYD4KM+RMI19Mm1RGII2cSLsX6MwmQVDUcEk + aCk+Bxjn7EuLApw3qkhD79jlM+xeBCke7OhDDQif/vj1Ja+JjFVbT4SWPjzZjz4aHk8v4YYk2uqS + t2FbXWk1O3e5Dtc3OaNh6Z3rafPELkjFXMfbLg7B8MuncBS5BDI89BPLiwj8/L+1fM/CB3krsLEc + MVKN7S5g8OlVkF7S3U/f+27yPgMMM7bCRnbp+AQOiYDkw/FCr3S2A6YqngKzzcYh5Dh4gA9vMIOR + f1iEdi/UE1szL8BLPzu609RTIOdmpYLFH0SCB3Jj3tv9Csb6USVk6Rey8CqMP7cjtr+SwZmqbFX0 + 0fUXDbcHCpirWiE8OCAl06rO+2FoWYQ20e2Od2YJck6e9yNURzBhPXRDLl2TL1T6RHDx+fv4Blx/ + DSVc8j58mrjJheSSC1Bh00BW+qNb9P1QAHvnfCK08CQ3V74Ptv62pJ6/IgFpDc+HpHtMWN+zjC/8 + RmBUQ0x/eR9tDqUKzyJLcbbarYLxol60P+8PT/bQ/3gYmeehwY5Lgp7ux28KnQkyqu98oaZPbwzB + 4gexrZtJP7/FewOOVVAR0binhihY5u3nh6NNM/FalCxgw2L7yWm8zFf6CvwCpFGj0VAkbj9YNDdh + Js4fqrdow0l5aWKo1dGDPrqKLH4N+lDxVt0fnqZxWq6gp8IUF0O94jNvhBl1mzaKAPMSQ54Gp0CW + 2jCausEdsKIAF9iu3QuNQDMlv35HXaAF9JBH65qINk3hUM5NpGhHKSdr/1LApR+iHtBNQDrNmaGe + xifslkZo8LfZ6DBgtUWm3RPnItp+KvjugY/tfXRJlnzAhrQd2mWeAt7bK8bQqSqlKHuc0mQ21ieC + vjzxidx7BRh939+r4VGOCE9ns2ebVXlE6rwDRHyOlPMlf/zlV9FUfAeDgvmtwf2bDr/5YLAnU1u4 + D+eAqIP67qfG5z5c/D/V/LgGw7K/8dNH7C/6Re5o7//mC31MdthL4Q0N6vlZ7Bb/V+cduR510J9X + b6rlryyfCycZ4OZ1eFAjOKKaFmlloiW/o/5rI3B2+g6Z2pfXPfWciwOkw+ujw1ZrU+w80JzzYR/O + QPvKEt3pkpUIJdZMtBMvIT1XwO9lHSUlXPh58SO3fMJtCMG1DzJql9Oz5mfD6n7X8ZJ/BPTkDTbQ + 9S+nen3mPXVjWYDmYRawY7lWMpHs3YJk88Q4X/icV9r+CG/ru4iN5KwEvEg7E/Z35YwjvuoNvt2J + JVpH9y11yswG07hvTNCis0Om4Xo2Fr5oYYPFEe8ebx2wjyio4Fo0MfUGIQq4UH8j+JmBhK30aeTk + ClQVHslW/+XfQL5W7E//4OvOUvK2fwQStE2po64RR4kAuuICB61VycxgA8ZIahWw8DXVNnutHtJ4 + 0OH6Q0C07ioSzEt9fryKrTLi/L3sx0AIdk+sLXkXO1aPFNZr18bX0nv1M26mDC16SER2/PA5pn35 + 8+80NGbeL/svKjzsZDtaM9ME/GG7LnAJfUYg41suXYGqQARa8Y9f7rxqrODiVyL+m7fnHql/eMoe + b34g5TujgkRx6wi9yC4Yf/mD/uG76IVur7pO+6JRrXT/JsJZfYEpzDMJHJ1oi6PDAeVzHz0VFH1M + guOriILB764qyFbbNlp5hmfIyFh3EHR+G71tfwzYK/sIP/6hVtm7xq9+MAnne8TZqzO+i55Adyfs + adyiDWBvQiX1N8+CJd8p0i8gwDif94SN86bn1gMOIPLIieKQfgB7JfkMlv0Cel3nLZi2r1ME5Ff3 + jGB8HfrxnmYzfA1xSLX6c+SCVKAOxhsPRKs0eIFpoxl7qDA+kB8vzNfkuUKLH6FbTWr5OJ4nHy35 + PtaQEtXS8dL7ULXuHs0C0+nn4ix+1N/68eeWGuMv31j8z7/90NZqVLhOI+NP/ckMkA8d5xlGqBle + OflKYQSb5LanmfPNjXkLWPcnL4uGugAzm6YPWvaTyHzaYUMm2uEGFv2m1ofoNSmchKjDZhdicxqD + nGVNH8IVOZzpkufn4vbI9+g5P1e//bdeip146Z6Nig0/Fvkkv8cGPtX9mgZ8KGpeZ2gGEx1CvOit + wRc9gYVwROSbm3UwyVhqIIkNjww+txPx9nh/QKHuR3xDk2F8eyW6gIX/cJzFUz4N9qdB6QlfCNC8 + qJZ/+d/CczgVH2Yvfm5zivLMnqgF11NC99b+gswzaf7kUbMXGy0cN02Jz8ohB9zzutVGZyXGblSo + gLKta0L1kHYELvmtUHv7PXocqzdd8jbj87jcVkAzdDFiBrFyAsoqRLvdo6SR0F7zbqmn6sZuFili + ZOTC8Kh9FHnD6ec/DNZFcQPX2j7B/omv+R8/2J1fCTb60ukl/4ZtcCuahmKbIT7LjxBCYgcfQtTK + 6+d3Az5w0VO8n3ZtwMFMdQjNS4ndLZ+TUXUuKTwDYkenu7XlstkmPtBvobX4K6uX+zvbI8Z7PZI+ + 5zfgiZIXMJIeDvVKz+oFyYk6aHppQA0Y+YC5/juE7Sb6UCfd68HcTEqp0pJJOIlPLCeVq6xAsr6t + sYNllCx53xF210uDt01Q8fFB2AX9/TsV8F//+uuv//U7YdB+7sVrORgwFtP4H/99VOA/5P8Y2uz1 + +nMMgQxZWfz9z79PIPz97T/td/zf46cp3sPf//y1+XPU4O/xM2av/+fnfy0L/de//g8AAAD//wMA + WwvW294gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a932ff87ae5-SJC + - 991b1d213b871613-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:51 GMT + - Mon, 20 Oct 2025 20:02:36 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-84b9b6f796-pbs7k + - envoy-router-848c7cfc5-94vkz X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "56" + - "311" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "95" + - "326" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -634,7 +634,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_008840b5eeb64fd7aaff7311812553b5 + - req_c6df6193d83549ed93021482bb651f13 status: code: 200 message: OK @@ -680,121 +680,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaSxOyOrum59+vWLWm9FdyUJKsGQIiAhJOInZ1dQEiAiJySIDs2v+9S99du7sn - DpDSEJ7DfV9P/uNff/31d5fVRT79/c9ff7+qcfr7f3yv3dMp/fufv/7nv/7666+//uP3+f/dWbRZ - cb9X7/J3++/L6n0vlr//+Yv/7yv/96Z//vo72iyRO3Z7deChuWthiLYyvkqSNQi7F8vhQJaMOsmo - 20KozgZyXc7GZmmK2fzKXjIi5Spi02NXJhBuC2G/PCqsQ3EPxJKfUxRtWES1Y7vXpPvVL1HP1j3G - TpmE8/a2t5A21pha3M6uxXc2bqFsKw+ci5FV8zyoRph38oyN/mBlIqf5Kcoab6YPtXaAaMI2BmLQ - 2nQ/cEd7TJ28k7P+rGFLC/fD+DlsTIBP5QPfI+448CMwRnj3pgIfdsAbBHwucwDs2sC2c+uG8WLQ - AuZDHxO+nEqNqlnSoD09CfSk5nE2Cx+PyPFGjij2bsYwa9u5AMnHumCTsSVclGloQavfzu4oRv3A - /DQIoOM5G3xf5GjgrfE6w9p5PKg1QiWTgJgo8DYmlcvmug3Ft6SIkF1lyW280bQlFjo5QJtrirV5 - p2kLmu465G+xhYP3sRqmI4UqfJ34Hc1P10O9Jvqqoux6v7vb+eSGbNT3LpIVyLCqH0+auM9uBgrM - NaSqBF6AUN8q5eV26vH56l2HqdWgAwdJcWlydE42/2lXD2XVFlH/1L81qeNCCIQbv9BTnt6YBFLe - QNwOEGxkuxDMab66KNxFKXXrcxwueE4UcGVmRf0hOA/8x0MVPF2MBpvviwWk/UcSUX1PbZzmIwqX - viOuFG3iMz2xzshELz868m1QKXZZY9vCdS3zXadZKTaGBtvDyD05dCCKihPvntmSr18qaCXRgtMN - eDLyKFgH2JRq7vK5j9qis2QGVpAWFHtUC4XC3CQQoofiyvf3HojOWMxQnU2VQP7xsYniUA6G7mxg - e9vzdhcgP5bRvk2JaMpBtrTTJoXtMh3xYyO1w4LeSIbPhAzUDSugLYoXumhu+RPOk/gdLpXbNEA0 - 8Aabs/BmzXO/euhluyM263WXza65n1H6VGpsCPadMf8ECQiE05Om90QE9Nw/RSiE24IGLy22+0ha - LJRP6gnrvuBpvPVyLFgU+yvG3EkEJMrvrqyKxoW6nhsx5gqdi7TuJrqS5Tqa1G3hDIH0OGNtjkA2 - BxergVC0ZOoMw6seGrduUEo7SmP5HNl8kH5m1NqBg/E+bRh5Px0dtlgcsb1TPCCxUM/hbVov1DhB - cxB2YOvCUfay7/4Y9VTs6xkihN50f8t5e35FqQfLxNFxznucPW/NukER4lIXfuvReB/eBZStA8P+ - 0PUZPZ/9Aqmj0tFrklbDOmDTAPtZrygmfBKyg6C7MBbEDquzemWLUs4rgm7k0Kso8CHhLnXyyz+s - TM9DxvPpu0Ezecf42Gw/NpVUuIU7I3kQ+Hrv7DXB20T+1T9lOAJGHi324PE+3KkNuDTr3/FhRDMx - MY5g+bLH1OpcyOelhFP3drHn58PqwSO7+DT7DGs4b111RdtMtKlhykG4LCY24L2PNBpcyHVYMqoR - BKVqoifFMkLegDSC0p5s3NXQ8myeBVTC73qpncYMrOckidAxBRLFSuIOo6boFiwL60rP19MBSL/9 - Is8zok5qm2yxz2kB03o94eOltgaRaxUO1ToJcG4OozbHOlPQOB4uNB7kAUzHR5HDuTFqd7Oxz5p0 - I3AEpOcr7DnKXC9pc4ghi5861vyeC5eeHBI4fTJMT/s5B+twKmWIDzcDB+1yYMLOHAyocqv7p96K - 3+8R8/dbMp+Tul7ST1MivbkieqJaMTCf4wIoHYcAa3Of2Eu/s2cAOZ7R0Gh6sAhn3kOtBg0CJYYz - ia97Fba252AtUIC2OpCP4M6JV2rWxgPw2/DDAb64LuR6FeR6zeVTi54aflD1AK1aPCk3C1h5YWGd - u7Q1OSi2JS+kE6kvEsTo+PQbmFZJjCMcRYx44zhDDjpneq/wLmQ+zrZwZ8ENvi3HIWSb6zX+rZ8e - 8MMYpNw9NvLhfdLctyhE4VIUvImkx1bH+QXe2SqLXilzvHyk9q1PQ5Fyc4HM5LxQ9UKkYdSuKIbp - 8Izx5YHONmWmocOl12N8oxo3rNymbRB7OIiepa7J5ovjdvAw9hgHVqfbfHw9KxCYrMT29nyo+bTy - U2S83dpdrPuasdnQejhMt47qfrKvKUihDmtHTfDJP2ThSpQGwl8/x1zyZGxzqWREKfj8qT9rtr8E - aA/KPQ793SdbV5AR2QqEF31UWNH4X364+vaBf/k/uo8VoojLnq7gyhxg51QPgHvsD1RbkzdbPfXT - QEW6mvT8MpZsSovWlJsTuxHQhZtsely7EuXPpqfm9bzXFkFFMgwN/Uytzeugrc4iQBiKLe+ycpOD - 9VCtBJkPfaahNq2MzfHTQePsUHqNbKleTQlbkNSodnlu0L71gbaAf3h3eqHcy17I7jZDy1cGat1V - WVvSkK5QvG19Ginuc1gKU0og5NmRsGV0Q9HLsQOP/iphbVUH+/t+WujpOqPezinreXp+DBgsHE9Q - ax5r8bu+P/VFAXtVE1pWNDAUG54adnYORyMYTahNO5UqsnEf2D2fR/TrD8dXUw3SxtzqMKE1pQcC - XcaY2m6hSvHlu1+PbGrdtUGGP13xMX0pjJ0hEOX3Mr+xbx0v9at/Bg08xaAg/P1918ZRmSCsktmm - RV0zjeYhmSEQj6n7bhxaz7EOFICgNVFXMWyb+WyzhffHpce5EER/+gl4FIbk7vahm/3WB0yfv+Jz - 81GZKBmlieC6f9Kg3G/YFKqzju73cqbn6iXac/AUEhS4pCXyvig1Iau8LZTP8wH73/j54BMa4Xa/ - PsgMzBCsg74nKDjHjKyHdgKsO6UJqO+J7c7ZijIS2lIHbqP0oXZ/HdgkfhIHeruTTH96dyG656B7 - biL8+PY3dqAvBdaOkmB7F0/1CIePBYv80+BYeKb1yuq+kr/1wl2yUhlEAg4j2qm+gU8Bs22R2kMM - /R1OSXU1rHrazQsPXQ0xHEbzPhMdCGOo9r1AXtPd0lan76OfXqSmd+RCdg62HVxL3cLWBuyB8NN/ - sqjJFBOzAKvsnmbYHbYKvh62NFzf8ZnAUxBx1PXbN2PlvlrBpdsI1IKJN/DCxxtR3m1nwn/jdV0F - WMJW4wzsDBeTzVqXyuDDxif99ndA5CE14ZLtPPf18MOaGVcgwm7OI3pvwtZmamenv/jAyUWt2PyK - ggA5yXaLjZe4yebtLMcwYa5K7c/lMow86AkM+DHFjmBXw/yJOg9e2wvGula9AcuLlwkxztevHpUG - eqJAgffSu9LkcD0Oq2eaK8jDW0N9+9HVjAZiIT88vsCXAsRAMuQhgcW98WhwSVIwf+ziu//nlOKx - MjN+0j2ChKAayPbyWMJP+0hM2Djlhua8cADTQ/Z0FK5qhE+b2dMWwbwYEDveAd/bQg/nSU/IT6/Q - q17m4WpSUIKYHVSa6Jclm+/7MdjZAThgJZ8q+0+++O5guK8Uo3CeXw9uhxTnja1vPLPyFnIwec8V - mT92NyxffYtUqTBdTtnF2Wgntxj6iiq7bb/U7KNshAb+9E90t8jQ/fRiEQeWKwJsZWvO98kfPaZM - kqotu5vZw5gdVWpYwSGjDB07KOTtlZ7KzbOelsLmZUUoXXe47V4Zu+m78ve+Sb0oERNIfkrhMuQn - 6jmKV08tF0G0VLOHdVi+tFdIKPnlO1UvaqHNWzCPQDrtDxSfHR/09ePUwQ9/6vAp1+/azL8mCPlQ - 5PABn05gEURNhVYMOepbDNu/egvzMGvo/nMfbcYEqELoxg6Rmu1JEzJqj0DMJhtHWnX8xstkya5q - 7agZKc7wxx8d/VmiGuO4bPrp+25jlEQx7w9tfh5vBfz5TWUramCYO+ACiO6KK4mnlImDfYmhHQVb - d8uOEviQZ9kibpe/6dffZdMOjR2Uz+uBKo7iDfT8UjvUCQ9ARNNN2By8oxZxq/V0QeecB2n0eEX2 - 3FdLbWBje9G7IIVY/ZT48JGTeiXzMYZ3jxYEgA7VpOkVBZrp5or3adGHH2IPPNivvEl15cLC7/Ok - MKFGR4T0JdsLGroeNvbJwW5dh7YYrT4E+uBCski6XH/7eQex6t6opg5wWBPn0IOYq54ur2qavR7u - WQWh5TBsnw+Vttb7xUOdKJE//u31e95taAb42u59WyqbNPrT/4pwaTXaSUqEvnrB5V1uq83b8ANh - t3tFBH3rN7sRnkDZSQO8j1IEaMdlUP76RSLgdpst4ZoWkLbrhzr2thxW731ugJXnFtZxxIP53mQi - QLz4puq78W1qdH6C3uhzpq5yhmz8xNEInSLVsXFD5bAy3tT/1JtTGXbaL54BeWLkbpt9Uy+CtMnh - uDQVvrbXM5DAm2yB4zcrjgUbsXozRQZY36lHj6dDoy2i0XVwgNwTm3szHxZNODtw3wwqtVDaMupL - VQ+x1jru0O+pvYqJbCKj2MyE871BW/fVSKA+ttR99qdXPcPNu92dboNO+LHlwFTccg747sfAQfTC - X94CChBvthG+bD5ltujT0sLGth2qNu2xFsXXyAGj6jWsXhKZjdo9qoCZoqsrT1pgi4k/ipCUs0jQ - 8QVDZtWmC957T8HZZwiyD36sxR+/eeTrJiRkxvEfP3aqeM1e95zZw8ovDvjY8jAjiT/yoJ2vEcW5 - dLYXjCMZHXO/J2ICrHAWHDOGpN7U+KSUtbb8+vO1LzoioKKymeqlDnScw8sVAajBzw/v4gbArz/O - bP7+AeoOqKnxR+/O8dY04ddf07MILcbHVuDAsbVV9/c8/UGxTfjNR3wKhWe2/vQxH9xt/Mtn8VQr - BG54FVCn3Yw2PePDFoq+k1DvMQw1O7kbGdBeVum+hzOb+deLg655cLCrr80wu3NSQtm+txhPg5ct - WkM78POfRte+6vm7HlAVY0H9myGF3/6Tw0c8L9it5iMTv/0SiNYlwUr3oPakHHIeaMMpxzh/euHK - PnuC+m38pFbQldrq9XMEe/5sYlzhUmPG4SPCMhlsd1eZn3r81neYlEVOlqGzMmmTqTpa40eDbdCh - oac730PcPBNCfrwBR1CHSF5l6vBeobHN9RHD4zvQyHKK+oweBMcFPRfw1Dxc3zW9bYIA7oz08fNX - msTQsf/FGxEF6ZoJC8hd2JzllWqLwrPRClYLmfcRuQJ5KJm49pwFPby5UX1TuDWJ3mELlXXtXABs - ai9haeZQr2qNql//sdL4Q6ATxYnL7cE4rFyrQNRpZkrvq7eEy68f62NDsQJMBohsPVTQcpvS7VpH - BUuobg1ZKG6+y77+4qMfKhFCTmRYGe7buntmj+1Pb2EL6b3N7v4aAUU2CLa30TXr91UzwmHKOiK4 - ypOxuy/Hf/RobN5rMC6+X4F03J2obyk1m4V6V6IvP6SarmEm/vxIx4Y94Uo8gkW3LRVe6/cHH4Vx - zFbZuqrQA7sSXxxuqMfP6bmFX72BXcUY7Jb6agn7Tf8m8ui14E8/mhqe4vSxltqUbT6eHAneE3tb - sQZreS1V9POfagP1UGq0yYX2bdbpfWmuYH6KjEfffvrlLV39208Zm9boii/xkc3TLvCQUR8sfJlY - C771rP/xGBp3Xge6Hw/98U+9qvbD189H6HFDBd1b9yATFpXKwFO2Bo1Nec0YED0V9SIk7n3ectlS - HRMOXrYVIZsHadgU11IMQ3k84+vlPDG20bxv/rkJtR1tAPRCyAgva5vhr35lS3X0IIwFvsP+KbKy - 9csn4QV2RxqVU2lLw53wv/wnW+G5D+dn9pDhV6/QJJb0bBH3pwIEx6TEmtFYgHUTl0KMMCM8tMyM - 5S5uQJEcdDLn+65mPx7C+8cEO8NwqGfr5Zg//oqvVyGtZ+M4zfAeHHwcf/WSdHdCa8eZnIIPLpu+ - /qed4R9/bl0AYHtedMDX32JrvCbDH70esuRI3fDgDOzU8J0sXR0bBwdv0bqvPoRIdFN3g0YznDDO - tzB+fypcVNKtXnMn7GGMTEId/nGyxy9vRputGeHzJdJD/tnGAXxkV58e39bO7uXXysHj/XN3pW+9 - nu/woMLtyXi5Oz8ywt/z75IqjAlaW6JJXduv0BcfPNlQ0R3mxb9VkM8riRCl3tVj/K6+/pBeSaNc - WEbya6rCnbPsqPexzZqf7CbeaqNuUq9fNtqEI2hAUpc5vtEbCJe2rVfUqm1IT+NBsAl3OIiIv7gL - VdvDGK4//natX59f/obTWg8KdC1xpRZnKKFkdLcUciB8ujsuQTa7EELgbbiLbnvzj/aSFsQCWXzo - SWu6W7auhRZB14U2VWdVAvOHqwsw9lP18x8hm3fJCoWbuFDzIrjaYkfEkH886csrbPrTJ19/Rb98 - RJsNISQQq0NJ+jsJ/+QTOHmljlWDCmAy5TX58TPCB5KRUfWyJOisixtsn7ZTOH/1CIi26hHrG3C3 - x9ifePmrp1wWJsT+40fTa4Z+/qYmdaQFCLJbRFMQp/bSt7sZ0md4p9aX984QMUv+wDQl268fXLny - swJauSeqe7GdrY+PrEAOtYorT3Sox9h/8SAUznvsei4P5lF4lzBQecXllPwIxHW+RNBz3y1V43li - VJ2qBs3pA9Gj+JCG2eqHGPjHi0KNBM+MNdtvvH9/n6ukXT2mPhD/8BszlpqMHfqzKCtbAkhydD72 - GqEkgsCRd/goPq41K917+8ffYTR2WQM3tIHWxdLdU8XXtkB2txXecwu5oiBJ4etzpzzEeLcj/GS3 - 9WidUw6+N3sFG1n+CsfAv4rINY8O6bs9AEv4jgxwzMPe3XDqweahd3bhrc0xvo3ZAv7weV9+nak1 - 0WEg58SL4dtsvzy/rrI5iDcq/Om/U64jjUnJ0qEf71BZXNgr5zkuRPDFYyXhGaMX/rwFRcr3VL3m - x0xStx0HpaL0f/MJ7Vefwc+PnoOm0CQQlgUSH3yDc/40huueU3r0DNbEXX795diVMmwPi4L3p2UL - 2O/3b9N8cTfaS9PWtRctmD11DSfrAjR2y3sCOMU70tMmDbPxWw+BkDkNdivpNgzGlYnA9PIGu+vW - H6QLaQmsMT78qefz5yCZ25m8Ypp9XA1M5mHL/3gOdbL+PLCvXwWWf1/d15fHzUs8E3j0bjrOTtU8 - fPthBS9CtMfFVBa14CSJCL/zGvyd79mSPzYe/M4bXDRvi1D69VfZOjJ3GLRDNn50awTAgC2NWNww - Yi6Ugx0aJxqhzQnMcaUl8FC1NTXZnR+YVHg80toG0mTNivCPPx2RsqfnI97Ui2LxKiKV9SHc09ds - lhsMgi8fc3/+fnRDxUKbrRUR9uPFPTmnoDXLFhtmI9R0fN5a8OPheD9/ZxOXJkVr1PVEVpEOxoqW - Lrr2eUdyu6oBHe4tj8zasej58PnYq5zyLfoIekQfVHRrSTJzA355u8vtMdMIh1bzpx9dwuTjj2e2 - 8LsfVKdKpy3oLcjwx0sDMd/b0rn/8KDBwYsAtzEY764OhIGhTgSKkTUwvu4VcGzK+5d304xJZqSj - SvM2+OYvPOumt+mhQ6j17mLF5bAm+eDC8V0JX728z/jgiVLgK4qM1dctAOtvvlUE5oIPY1RpgiLH - Cdxv5+zLlyd7PQnBCL+81V2/fFzqNODsEmJDjDfPD5gn42yCpTE1HO2nNqPGNDfoq/++ejFi/+VH - vv0hOEyPYfUi0ELvULTUSeJjKBwfcQ4dV7Kx2ez1eqlO5/Q338L2IHrDJ725HNhTW/jNF9n8HFAO - f3oxvz1oyFhh8fBYmz0NdY0CNrbzCuujvHFllBqA+o9dDi+L01H1fVSHefK1EvardKFKvjcHQWHW - CvOIXeneYlRjJdrAXbBAHqsvLdaYpPJbmI3cB7vVEwLGQOb8/AIBMimHRfx4DhpGTcB6ea3DRZeb - 5McTsbkuwJ5v+8IDAWOE7PyFB309wBzcC7mmeD8/65UauomSNqXufCZKJtLc3MLmqDFSfeNBCDfn - AGrUE6iprA9Az8Hco88aEeqNajms+0MeQaXGlDoxx9tMWh8BFLJhwHrY+/XqrTa3+/IjbAPJrAX7 - CLzfvBhbX/3J7vxzi/7+nQr4z3/99df/+p0waLt78foeDJiKZfr3fx8V+Lf077FNX68/xxDImJbF - 3//81wmEvz9D136m/z11TfEe//7nr92fowZ/T92Uvv6fy//6/tF//uv/AAAA//8DAId0CpHeIAAA + H4sIAAAAAAAAA1R6ya6zPLfm/L+KV++UOgoQgu1vRh+6YDYQQkqlEhBCgNCDaY7OvZeS/etU1WQP + 2FbAXs3TLP/nv/78+dsmZZZOf//58/ddjNPf//F59oin+O8/f/7nv/78+fPnP79//7+VWZ1kj0fR + 5N/l338WzSNb//7zh/7vJ/930T9//p4R4zstPEvD8agYNUwhzeP7RpsDTdt7DrnnNSGSECsWU5uu + hu7TZmFj+WGTdXswPLq9eRbrgnXb2UPTQrhmhxdW2lIEbLgIMXrxVkBE7Isyi701R4vai9h6JJG/ + RvHLRGSSMVGl1irZq2pz8D2kT5xRiVmy3FEaIYuoBUuPxExoRRVjpMv2QtLYswEdxVoIbifTIkpv + nK3R8u2c99IfGUtiIyZTOD114CLhiT0xOw8sFWoL1JR7hqW75w6sGLg6sLyjhsX63SbjDzzEcD7H + 4bwPP899nEu9Qr3HsESl9XDYu81l+XfuXYmon7RhG5o8A+hIXfG5MVd/60urBpoj6k6PqX7Y1lTy + oOWOB+x6TDAwYtEskL/IT6Ixu5AwzyMnwPEBc4d3u9pnRVFgoUNttNPRom6x5WtMQebLCT5fFlne + 2/KiQKibJg56uhgI60EJ9u1yIsmLVcvV1AoJseX6dJjs7fjr+/Ay0Yy5DZttbciMXBoaSk+mT+Qg + rq3Rk/uFd+qpx8ayRxZ5HUYddufIIT/WaFhMVngu6l80IndmaeQjegcCcJhxJYpS3XfmHdIa8tEw + Ywu4PtjSqnBQCtyYqCId+mttRgrIw7YgP5Z4GY6xNhXwulMVtsrUBLSc39jffMpSFvnrdnw6x8bb + HKKCUEtoUzvb/JprC7ZZ3rKYiHW5k1LWMXbQgq3uu19uXCQcuk1iHWPtXcB3tKw4aMvXTrRJbgHU + JNnhSm6Ud6rjOLAWW0YuIyP7DD7gAF6cRHL4n0AEdFTMC1zUVpwZ3ugs4kkHCnaqe8aYPa6gD98/ + Bb92czyvZe5Z66PCMXw/DQ3fHLoe1u2BeDhftoGcTQDkxbNlBxm0buC4VRp/dW1lBHRODtiIj81e + l0fJRilXj1gXptOwhcZrQZ/zwueae+zrENobmJjpRdLbhR1G5fJiYYLHB4nk7gq6b/1cHrGBMXt1 + 5aMfjyZ0ZzHCxjU6WkTtkfObr+qxDsqtWjgHle6VcbYHsmX6OcMF0uvxgu19BNbShHwFCdvzxCTF + 2x9Y06/QmisL8eIwsNhHaiwoPUo2Pg9ptU+ZkirQKuMJKwbvAvZ8qyLYGcWV6GqvD8dj3zqwMPQE + p8e3VhKSygsU1qklUhzS1uqi2Ib3oVWwtySUtaWUnKNLPCcOc6akgajXWwZJ0+0408/9MOZYzJCW + pi2JClQkizq0EjD2qiC//cRYFQcqDdv+9qOVn/MNGci2SbpWtDzdVDmCbm7lWOkaNWFC5lih9H27 + YWPzWkBeY0pDiRMeM3NfT9Y2WNzIf/ufWVlgH2sXu/Du4Acx9SUGgx9dR6Q9BIxvjlcB0qmtA/OL + cMQ/h0cANu5ozoDX1x+SrtLmryPeNkQW1ib2Knn+wpdPDXqdLhMviW/Ddu73GZWDNhHT7bR/56fm + sZTDRX2a7Kw7VVCT/BuxFLiDdffbAJ2555HI7u5YYx1UJuRKM/rUt2bRzeuVoRpMkJg41ffVwGYG + dVzo2Hn9mAPtvXIK9YzmYe+BRnndtVJA3v19JdlrH5NJNJwU6g71ck7B4+KzjpO2gD2NBY4keSkX + IF5DKJ5VBSsvmfK3cnsH8G4cMBGLMQX7oiw85CKkYS/T1J2RukSDPZQcLKWndmCrR86j+vRmZrpT + y3KjhipH/goQOVuHbNioyxzCvsUeVqgwspZJAhAwUkSTRPN6sJUosFFKc+oMDgAnjHs3JbjHio3F + wgTy7lN0AK+csxF5+HmCo2YZPDizt2UOygNfLhY41Ygt9yeRl5NZfvsjaO6ziY34WsuzQwOP19zx + SDIRUfL01sUWiqIb4ucRXP3xWz9cAy8kdNWTv556i4POCR6wHwqDvyX1LYSidfPI2aG1gRHjc8Dz + Wmc6pdsH/h5Pio7WMlDx7VvvoyfaPNrnMxGRHPvMU3AL5EnqRuSf+Qjm62UKodSJIY6Uw8Uaf8pQ + gfM5CvFP6VDDdpa0Fs2Wgoji2FWyv5yshdpDwjjSrop1tO8X4Tf/TVKoPm3dXjE6uGzlcNJ7S7aV + KWsYU2JLzn0k+qP3sBUI7TjCUpQl/nqTaAjffnIlmFdf+84+Ch5xftNjYexdfz3Jbw+tvCvin4rt + kp2k1sZL009F3J0TZPaRRQ60iJ7hs77T1vR+FRB9+IKzY5YCOzIqD+happJvf1x/3K6CpAc6sTRj + tSbxp+b4aW/i+TSDgzX6dz1HWK568sF7f6PUCw8bb3GIHBqqvOJ3LUC3jBkHyHU6LEpWzIhFcCFX + oGy/540kJiAk9Mujv1be04HC4Z07HBXJyRF2zxoQSn+Qp8C8k62auwVeWWUgZtOd9u1iHDboTdEP + ic7FK9mOyy2C3vV2nvnednza1LANZ51isfQcB2vVD2wPE03Zya095+Wi5icTGgtPz8eLei4ZV93m + 3/5yxk9JZs+S08KLqdPE7Hq7HKfG1iHNdhJRWfcxLHa/jOjzvcS4/xQDM6WcApXHmRDZV5x9b1SN + g9fiGM5It55gzBWvQteCCbE5XkR548aE5RvJbvDj8gr39zgUOTSmIZu3u/CQp+2BOBgquUVip93L + qTKoBUqD9XDqJSDlJg6DALiumMgXz3dPOkAIRqbHvtsHycIAvgKHzGS+fOSX7wAChRCrZ0oqj4Ej + 6OjmdS8STtqhHG1KEH7jo58Qa23L7R0hA/bvmVGtXKZVmHPQIqOKM23dk+5kX0Y4G8VjZr2nD5ZG + XWeEuoKZ2X2bhr149BEgC207DOuiYV6kcwusx7Mjyjsbyjm0OBvetYknV+Fmgr1Tcxsps41wuOrV + vtTvtwCbB4wwPhaTTyjHMOEnn3GmnOJyuV/6kOf9wnQoyxYGGhjMgs6nt4rPjmFZx9c8eNBZbte5 + 73RzH73tRcO78t6x9+GnzGkbw9/4vwxkykuemwGkUUURh/uh/L1z9BZyM2dgFYqSdfzyv7tGeHKm + /Az85mMn6wJ25zvxt/N6mWEW5xRxjKDZN50pauCGJUPsJXcH+psvVhlNMxr917BEnJ1DPs40/IsP + bm/yoO+CnOhK/bZIEMQ6zM2r4fRO65fffIG5FwUk07faWqwHiOHYVBYOk7TY1xvePPTFPwVmh+R7 + PtDYJImIeXUF4z00NyiawR3r8FwM23blXNjyLwc7ddaA1Q3eOgzkasP21h6HkVYSBWpPPSQPXzgP + i4eiGRxkVBH/dmnL9eFrBb8WS4azMxMC9sAmEWRh5JL4g8+/+LGmTExUwOnWkVLzGZEtHmeqOJK9 + 12tOh++HcCCuG6jDRBNXQdm0+VgVkSvvMaVKMOtyFWfvWPHXyNNnKOuVQm51mMqLFwwt2CVRIgl8 + rMmS20A6JXKiYqduXsP45ZO7YhlOpbbI3x710v/WmxDOubzQV5+CKYpe8/bBw23jhRSJD+nsLPgW + JmS53MNfPVDfqKoc1P3awi//ydBCrGG5rgsyaNNwOM02k1WCffTLxySZk+RVjtseZn4jEeGzP3Jf + zyO8/PQRkQB4+cSPR50f36niVF3zTjZduOfQuqnB/FKNYKcV1YhhYdEG8ecn3sdIeAu/fEdwg3f5 + PlSHGb6Ntf/ka+bvwlPIQZZ2KhGrCQ+t59zbL9/Durg+5M1pEITK7CCsSpoBNp2SJbhWAUWeMY8t + tnjgGkqTXxFtdwewKJwtwVAprJn/6BdWiJIRiMbFwvHF0q0tVR4139LmiVgabQ9bCpACGSs9EjW5 + UcncWc9/9+NLo2T7coddDKUaYIIfBzUZtGpwwK5Dyjmsr3g/kjsTwrL2OIe542MyBGFeI9GpGiJS + 9zWZXNseoUVmlZwt4iZzOkktSsmBn7lnHZVL/VBqlKL45SzudBnoOZRdvhzVmihGhK0t1bcMurmR + Y/2zfme2JoSjLj9meL2ifYrergC/fFRbDoPcHyhAA4V1deJo6+5/9hPDe+i186oR3lp/Dp/4ZquN + z83oW0f0lATgxSacKXDhy5VX9xF6pIiIGjNw2NvhXYB7YL6c7enL1iqtoIAfPoWtaivkpUE/NkJx + ORNtpiK/YQ9jCw9l7uHrI/qx6GbrA3jw4ECumV3740wtAeL8d+8s+MTJm66fIDw8p+tMWzlrrUOo + bFCMHA/b1ysC42SlEc+28jSzM8Ula6b1BcwqsyNOFeZgdR+XCjT30cTi4UGDbb0DFnj+1hDhZ/2x + xjt8RYhL1AuxFwfJhD1ULdRerIqlNM+HlSaRAvOrJhGzv7bydliMCBihBRzePVfl7vHPFO5uWmAv + e14A20kUBF4GV3xffli/WClFAiyMXWLTW/WtnxbublZgJX+lwzpkkw1pdpCIYh8aefzwCQhFx3F6 + 7BNrE+NeR6uPlxnAepAXpYIz3IN5ceoQv8vNaRjqNEaNMm/XggJjJEwS+OrH9K7igW4akAF8sQPs + ffazWGCt4RkQm0hidi6PiE158C4oGTuf+E5So/Qgd943Z5lsz6InH7KQ0Pk+0/kLlnvg6CZAayVg + n4g/Q3ejpQzppjli475XPmE2EsI+ezfk4g+ytVWnqIeLMytYaCMIZg6lI8hcEJCLW1+s7aoqPLp2 + l2GGdGf6H/0RwheVFNiCl1JeP/ocJibfzuzdKqwt9EwboujeOGvjluCLRyf7kABi72NiMQYA2old + HY1oJI/lvdh1HRJGi4nKD+ZOQ3WzoXXfJedYh1DuDAAU+KlHfPng16dfZgiRk4lVWMqAqY/CDLNX + Boh+ksZkplSVg4WgRCR28FDu6uPAg0viScTEzLJ/4wEV72Fj9dVXw7ofuRxeDLHG1ktyk7WKDy34 + 4vVXD2+c6Sngw1+J229HfxUNLYUA0OtHz5/3Y1LzOmhE9f7xJ4g1DaG9gBf8SbB15lx5w0dxRuTo + vIhaXHN5YX7cCJL+pGNzgrm83s53FooGtpyNC7pyZPp1hOyxTmauDM3kqBFPQQf5UGFL0Klh6PjV + RQSkZC6iDPjbobQVqN03nlys7rGvYoxD2NmOPFMf/UxINTqAFzyGaDto/DHPpRCWLPv8+j8ysx2O + /ff9M5CEW3Jkj7YDJSrePv4BXZIg8ExkjArlsF//6hTMJgzO/p3YdxWXc1/K9Tf+DiOPxFpNnUth + +XrKRL5xirUH1mmG7y6MnIXU47AdmhyiuyfE5OeFV39P8laHSgcJFnOJtoi/HiTQznvqvF+6BPYF + RjH/0dMOTJ691TZA2mBGwh2r9/Ukd8MP4eCaHmMsNufe2tlls8EhlWYsvrTb0GWrMsL159zNwGpf + +5efgDVvb9h7VJU1MtqrABfhZZIfUyv3vXsaOWKX9kmkRMTlxx+t4P1KxHnVlxHs6GlK39/D8pSM + yfpIauqrH3B4Y/p94suVg2gOe4xp0oNGO27515+Y4fFdD7smddnvfp/pPZenceIgT472C19hWYJt + eAoSMk7wSORVUnzmcZrMr19CAl2KrPW9lTRaq5AiekG35boLPwLP0vzkMOz2TBYPSC766E38mE41 + 2MIg6r9+DEmg0iXdNrMLdOBZw1hexWE16muAdvOVkcsQegmd9U8eFNKikeirD7c1l9CVW+5Oxv1Q + yfpOIgreo5jMx48fNH/1bnnKL/hmw2nfjzf3U39aRKQHGi0Co2yExpolWMZstn/jD2dlbHFKd2ay + d2GnwUMbnEnsbrnFCj5Fw12SpXnLVtFfOZbw0KsChzylSvnylQLcSJ5jS/NMsNCVE0PpVe7zaiR6 + ss/KswJkZdQZ0ue2XL7+Ue40NyyarVquJyfVYWG5BX5+8H+7hpcFsuTl4uDjD7HloehP/XETsK4c + JnleVm2EXuGciXj+AWD3c1YHpLy/v3528osX3+/XgpsNdsQGHP/lx0/2uO6dK48ebB5U5Jzuur7P + X787uxoFjoB4L9cM7DW8HvSZ6GdgJKMauTNqAu766deKz1KXOoTuAH6IxbGnZNAEX4LXCj2cvb/A + ZBNWRoLjTaqcxXtr/kInEzzd7XM4n8J5lukGmBs87Qkzs5vsDAujdQXUbW+fX6/25JOEeBUyhvI2 + N824W+Sb39fpcSKR2usls83UdlzHSCfxGx/80TJHDUI1TbHvbcDfSnrf0AfviXP2GWsugLoh/uys + xAjt0V/drQy++vDf/a15JgIcE28jYm8LPntYjBjevOHlcLSKkm1ZnRl+/A+nY5aztX76DXDodznP + yo3bd7aWg6/f8+uP7C9vLwDNXYqv/vCXhuY26PbhSuQJOfImSIjiv34SvluuNfdRMEPez03yIJoi + 761RbjAG4DXPSPXLneoWDrh0LmMLbMxAukWKIKP2xgzyszZM2c9PhJwTdcBKLUz+xqFgBJ3qnbFw + eT6GaWguLX9a/dn5nL+1KHycgonCCOv887jPIt49lLmngNzedJxsH38VfvodOVcLC5ZGLj3+47/M + Jz+nPvhhfDrXZpDL5FjJVnq8ALM8kxzu1Qz+vOQqDQi3ivjTr4ct4M45HMdIcNBongH79efYN6iJ + 8cmH33h/vodISXwctvUniUEjdgKR/Xopl/pc0zA0QsFZv/nBzsMGS5Z+YmUIq2Rb8gvLK/lNnZOC + 76xN5NoAXvnwhM/G8VZ++TmU6hPG548/Xi8Sbr/9wjn3fGmxvWiwMIsLyqF1iZMrOX/ScBRe/Lzq + p7qcV52n4O2lithgnLc/4XPDog9/n/vKAmA1bFoCr6XsnT00VIv+8R4OJCcO4/ttW4dff94K0IUY + qzoMY3x2Q+iiWvvoo8JanvenBK+cveGz9YD7dgh+WtRv0CKOiDJrbz3bgUYl0lhNrX0nMb5AgOag + J6JlnhM61zrp6/98/B1L/r4fpHSQYf1uZzLzk7gZUubl4xd0o78fd6FH+9W7OeAVlPs2LAIP3bk6 + YIcfOPDJTwhCPF4d7uXI/nY+1SbkfyIZ3z7zhJ09xT1o3PZM9Ezwk/FHffLg/rArbHhpPLRW7bNA + 4vUKyx++95l3bZA+EJWIn3nFXiiGwhFihCRNWhmQ5BLRX7wkdlRewPLRq8BH3ew0lE+BNfKEGQbC + ScHe3VuGBd6N4jsfwQmfZuUxuUQs9KrQwRqtiAkzXqoANgF/daiPHqTz3AzBqxhW59Vs6kBIzbeA + a6KapEe52keeflKwHJSJXJ+uATau3CN4SdmCCB5DD5vu5zQCRwGS7KsvC7vLodYuIpEWdNi/8UdW + H3bzWh1kaz31MgfAogoO0IxVnsXANVEJ+mBmHq8erNXyiEHL0g3Ws4KRZ0489WD/kQwsASD6H784 + /PqJM7vqCpgiI/fQB5/mLx7Pgs/S6OPHEO3md9av3rtEVUBu+OKULOeOGvTXE3JAyWz7/JnvAKdH + nDPX2XnfKvNeQ83c948f0cpL9PPmv/vBSf0SLeY93mnAp1I97+Gg7XQkTAJslHCeD8nbHJb81nHg + M/+ZV6skyZopgYK4kD7g64efdfXcuojmb52zh3Q+LPdscGALNAbr50JM2HKbQtDS+gmrwuJ9/ToK + lpW+fvylQj62sI4ge6wSfA8eU7K+kTfCRjzfHdqUzZIxet4+1YBAjNmsA1ufI/23P7reu05I0gkV + knanJdrEB/uvHvniww/fPYfVDUENS46qiZo+zv6RedXpl29ig0WKv4bWI4aMLWRY1NWfpD82FAX8 + w85gfLz75VLPlxQqZRWTRG2Iv4Ctp+HX//Voi4Bduy4bpFFNfeapWjLxyT2Fo6u05OM3Dptzl/Ov + H0ckmejJ8TL321dvE2MziLzkTK7wa6fvWLHyUF6NB83BPNo6LBYjBHtgDC5sbMac0Szlw/bIXBvV + p4bB8rUp/dW4Bikk3cp/5w/WGqaZC756Fw0cbXWbklbgg89ER+yrXJ6SoiMtq4kDxVhIjp/5JETp + wMz5ZogWDcRHCFGXM598f4IR6kKP3Jc7f/3jYX0D24W9SwjR5TNtbRfxGcLR9odv/ZebTlnS6TZT + JywvN32nG3lw4Tf+UnqrwR4sIof+fm8F/Ne//vz5X98bBnX7yN6fiwFTtk7/8d9XBf7j+B9jHb/f + v9cQ5jHOs7///PsGwt9uaOtu+t9TW2XN+PefP6ffqwZ/p3aK3//P4399XvRf//o/AAAA//8DAMHo + R/DeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a9489c27ae5-SJC + - 991b1d255a441613-SJC Connection: - keep-alive Content-Encoding: @@ -802,13 +803,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:52 GMT + - Mon, 20 Oct 2025 20:02:37 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-cdhcn + - envoy-router-68d9d8b7d-tp5j7 X-Content-Type-Options: - nosniff alt-svc: @@ -820,7 +821,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "131" + - "110" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -828,7 +829,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "173" + - "143" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -844,7 +845,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_5ddc182ce46e43218f21e10abd9e38be + - req_f68c12cac7cd458e8cb4c360aa32bba4 status: code: 200 message: OK @@ -1005,7 +1006,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a992f067ae5-SJC + - 991b1d287e301613-SJC Connection: - keep-alive Content-Encoding: @@ -1013,13 +1014,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:53 GMT + - Mon, 20 Oct 2025 20:02:37 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-6c65c69d9f-kj7zt + - envoy-router-848c7cfc5-lbhx6 X-Content-Type-Options: - nosniff alt-svc: @@ -1031,7 +1032,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "213" + - "162" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1039,7 +1040,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "274" + - "179" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1055,7 +1056,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_6a0666a4f09d4774b2a5b4bf090c7d5d + - req_b049f7e5defd40d59cfdde81f90e8229 status: code: 200 message: OK @@ -1216,7 +1217,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a9b99f37ae5-SJC + - 991b1d2a0b8e1613-SJC Connection: - keep-alive Content-Encoding: @@ -1224,13 +1225,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:53 GMT + - Mon, 20 Oct 2025 20:02:37 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-7dccd74bd5-55s2k + - envoy-router-6544466cd5-x4vxb X-Content-Type-Options: - nosniff alt-svc: @@ -1242,7 +1243,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "57" + - "114" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1250,7 +1251,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "75" + - "154" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1266,7 +1267,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_9e44b0b130bf478caa6cddcd1786fc2e + - req_0e58d951e926475ba23eb403cf1edefb status: code: 200 message: OK @@ -1427,7 +1428,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a9d0b857ae5-SJC + - 991b1d2bca291613-SJC Connection: - keep-alive Content-Encoding: @@ -1435,13 +1436,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:53 GMT + - Mon, 20 Oct 2025 20:02:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-68d9d8b7d-8zprm + - envoy-router-84b9b6f796-qhfts X-Content-Type-Options: - nosniff alt-svc: @@ -1453,7 +1454,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "90" + - "88" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1461,7 +1462,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "208" + - "124" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1477,7 +1478,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b4720a78f3cc414295ae45a1eb5f1838 + - req_91c59070544d41ce81a5cf93d13d1ad8 status: code: 200 message: OK @@ -1638,7 +1639,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1a9fef457ae5-SJC + - 991b1d2d5fa01613-SJC Connection: - keep-alive Content-Encoding: @@ -1646,13 +1647,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:53 GMT + - Mon, 20 Oct 2025 20:02:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-7bd546d77d-mrcxb + - envoy-router-85b94c5584-kqp7z X-Content-Type-Options: - nosniff alt-svc: @@ -1664,7 +1665,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "83" + - "88" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1672,7 +1673,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "128" + - "108" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1682,13 +1683,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "199999993" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_a85d8430bd404992baf7d0b177274a08 + - req_c535dca2371e4950ab09191f6a2c236f status: code: 200 message: OK @@ -1849,7 +1850,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1aa159397ae5-SJC + - 991b1d2e7bbe1613-SJC Connection: - keep-alive Content-Encoding: @@ -1857,13 +1858,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:54 GMT + - Mon, 20 Oct 2025 20:02:38 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-zqdmd + - envoy-router-canary-6c65c69d9f-kj7zt X-Content-Type-Options: - nosniff alt-svc: @@ -1875,7 +1876,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "61" + - "104" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1883,7 +1884,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "79" + - "157" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1899,77 +1900,55 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_f9a7e791974648bd8ef5e7ef35834976 + - req_a0aacb8a883c4ad3837e7ff0cddd15b5 status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Answer in a direct and concise - tone. Your audience is an expert, so be highly specific. If there are ambiguous - terms or acronyms, first define them."},{"role":"user","content":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI - like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not - directly answer the question, instead summarize to give evidence to help answer - the question. Stay detailed; report specific numbers, equations, or direct quotes - (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. - At the end of your response,provide an integer score from 1-10 on a newline - indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_2: negative\n\n------------\n\nI + don''t like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo + not directly answer the question, instead summarize to give evidence to help + answer the question. Stay detailed; report specific numbers, equations, or direct + quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt + is irrelevant. At the end of your response,provide an integer score from 1-10 + on a newline indicating relevance to question. Do not explain your score.\n\nRelevant + Information Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer + in a direct and concise tone. Your audience is an expert, so be highly specific. + If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "898" + - "959" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.6.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.6.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFNBbtswELzrFQue5UByZbn2sTkUBXqLgaKoA4EmVxIbiWS5aydt4L8X - lBxLaVOgFwrk7AxnZ6nnBEAYLbYgVCtZ9b5b3N79+NwfstXX/PaXLh77bOc+HFB/oRo/3ok0Mtzh - Oyp+Yd0o1/sO2Tg7wiqgZIyq+brMNpusWBUD0DuNXaQ1nheFWyyzZbHI88UyuxBbZxSS2MK3BADg - eVijRavxSWwhS19OeiSSDYrttQhABNfFEyGJDLG0LNIJVM4y2sH1rkXAJ4XBMxBLRkphLz5BZx4Q - lGRK9wKM1UZJNrYBCd6RYXNCILRserQM7B5l0DTU38CuNQQ+uJPRSIDxYxWCqyM5YI1h3Id4SdSs - XbhQYW/39v3casD6SDImZY9dNwOktY5lTHoI6f6CnK+xdK7xwR3oD6qojTXUVgElORsjIHZeDOg5 - Abgf4j++SlT44HrPFbsHHK7Ly/WoJ6aBT+hycwHZsexmrE2ZvqFXaWRpOpoNUCipWtQTdZq2PGrj - ZkAy6/pvN29pj50b2/yP/AQohZ5RVz6gNup1x1NZwPg//KvsmvJgWBCGk1FYscEQJ6GxlsdufKqC - fhJjX9XGNhh8MON7rX21fFeuynWdl4VIzslvAAAA//8DAO9FBAm4AwAA + H4sIAAAAAAAAAwAAAP//dJFPbxMxEMW/ijUXpMhBu0lDqc8g4MCF9oBK0Mqyn7JuvePFMxtSonx3 + tBFR+SNOo3m/9/SkmSMNJSKTo5D9FLGUwgxdXi03y1Wz2jQ3qxuylCI5GmTXNe364/v7w7h+8/Du + x/Xb21er68/j+uGeLOnTiNkFEb8DWaolz4IXSaKelSyFwgpWcl+OF7/iMJPzcHTXw4h6xQBWg8OY + U0ian0zimIJXiPEmJsnpEc5s6YOJhV+omXejU9UMebklc9cnMTFVhDmMw1ghcg4zdl7THkbAms41 + Wr77Gp/jvOXF4hMy9p4DzG0oFW6x2HLb0OmrJdEydhVeCpMjcOx0qky/gODbBA4gx1POlqbzOdyR + Eo+TdloewUKufb2xFHzo0YUKr6lw96ejufAKH//HLtm5AGOPAdXnbjP863+mbf83PVkqk/4uXbWW + BHWfAjpNqORofmL0NdLp9BMAAP//AwANi/dpNwIAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 991b1aa28e8cfa6a-SJC + - 991b1d307ddc6807-SJC Connection: - keep-alive Content-Encoding: @@ -1977,121 +1956,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:56 GMT + - Mon, 20 Oct 2025 20:02:41 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=qli3aZrkz5Y4.fT..NekrWWovB4gSKcn1JqsvaOOFB4-1760990456-1.0.1.1-uCTEwuHvhSsLDaOUJCSu2oAM.El5lEZmR15kt0yCoeV2ZC9OCOk4kC4RWwbHDpx4s0OTg7sOhq9OC5pAprLfyI7iUZl0itlcR7hXiFjkr0o; - path=/; expires=Mon, 20-Oct-25 20:30:56 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=diasSK30O4LrNEo09hcSfxFdhwFroE1hCc5VbRx1aAs-1760990456137-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T20:02:40Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T20:02:41Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T20:02:40Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1794" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUK3iSbX4FqfpP2FaGdtU + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1836" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999808" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_b6ff1dd09bce488085b7b82e88284d6c + - "2724" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Answer in a direct and concise - tone. Your audience is an expert, so be highly specific. If there are ambiguous - terms or acronyms, first define them."},{"role":"user","content":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_2: negative\n\n------------\n\nI - don''t like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo - not directly answer the question, instead summarize to give evidence to help - answer the question. Stay detailed; report specific numbers, equations, or direct - quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt - is irrelevant. At the end of your response,provide an integer score from 1-10 - on a newline indicating relevance to question. Do not explain your score.\n\nRelevant - Information Summary (25 to 50 words):"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI + like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + directly answer the question, instead summarize to give evidence to help answer + the question. Stay detailed; report specific numbers, equations, or direct quotes + (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. + At the end of your response,provide an integer score from 1-10 on a newline + indicating relevance to question. Do not explain your score.\n\nRelevant Information + Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer + in a direct and concise tone. Your audience is an expert, so be highly specific. + If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "907" + - "950" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 2.6.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 2.6.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.2 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xTy27bMBC86ysWvPRiB35FiX1reyraW3MJ6kCgyZW8NUWy3JXtIPC/F5IfstMW - 6IWAODuj2dnlWwagyKoFKLPWYurohp+///pWM3+Nz3VKuV5t8ufddKV3q4+7T6gGLSOsfqKRM+vO - hDo6FAr+CJuEWrBVHT/ko/l8NLufdUAdLLqWVkUZzsJwMprMhuPxcDI6EdeBDLJawI8MAOCtO1uL - 3uJeLWA0ON/UyKwrVItLEYBKwbU3SjMTi/aiBj1oghf0neunNQLuDaYogPvoyJC4V2DRgjyApfoC - NvgPAo42CNIkcciDpQLylowW8hVosMQdXoZ0rrmDpzUxxBS2ZJHBUkIjgO2XNwihBA0eKy20RWD0 - QjV6AQk7nWyvAku/9I/X7hOWDes2PN84dwVo74PoNvwut5cTcrgk5UIVU1jxO6oqyROvi4Sag29T - YQlRdeghA3jpJtLchKxiCnWUQsIGu9+N88ejnup3oEenp3EpCaLdFWt+Zt3oFRZFk+OrmSqjzRpt - T+0XQDeWwhWQXXX9p5u/aR87J1/9j3wPGINR0BYxoSVz23FflrB9Iv8qu6TcGVaMaUsGCyFM7SQs - lrpxx+1V/MqCdVGSrzDFRMcVLmMxmeb3+UM5zmcqO2S/AQAA//8DAMZ8157LAwAA + H4sIAAAAAAAAAwAAAP//dJFdaxsxEEX/iphHI5ddN4ZYb4FA6UNf0hII3bII6ZIV0Y42mlnHifF/ + L2tq+kWeBu45wzDcI40lIpOjkP0csZbCDF1frbfrTbPZNrvNjiylSI5Geeyb9vrt5upO3r6E2/v0 + cCi7Nu6x+0SW9HXCYkHEP4Is1ZKXwIskUc9KlkJhBSu578eLrzgs5DwcfRtgRL1iBKvBYcopJM2v + JnFMwSvEeDMVSZr2MALWdDa1vPgaTfAq1rwkHYwOMDFVBDXPc1E409Fnk9MTztaHjjrueLW6Q8be + c4D5GkqFW606bhs6/bAkWqa+wkthcgSOvc6V6RcQPM/gAHI852xpPr/tjpR4mrXX8gQWcu11ayn4 + MKAPFV5T4f5vo7nwCh/fY5fd5QCmASOqz/12/N//TdvhX3qyVGb9M/q4sSSo+xTQa0IlR0tZ0ddI + p9NPAAAA//8DALC9ex0fAgAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 991b1aa288f8cf5d-SJC + - 991b1d307997fa72-SJC Connection: - keep-alive Content-Encoding: @@ -2099,51 +2048,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:00:56 GMT + - Mon, 20 Oct 2025 20:02:41 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=iGGiuWzWh8C__5176bWmuXIwSLEOIcJmgbjaGADfMNc-1760990456-1.0.1.1-Eo08XX.x.RV0IKPLkC4QIlG4bOU87hT82ij2uQZ6upJMvqHb_Q_nB.xsjAy5aPHiVWSoa0qlO3klfZl3cqWkWpRrSpDTrGFALEvxf5itj9o; - path=/; expires=Mon, 20-Oct-25 20:30:56 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=6Tk4Qhg33weXDSRYDxyApW9NZxW3M93BRo2Z6B00PIw-1760990456598-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T20:02:40Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T20:02:41Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T20:02:40Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2340" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUK3iScWjso2EXTkMacgF + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2352" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999804" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_cd850ab7845a47c5b73aaedf50ab7822 + - "2832" status: code: 200 message: OK diff --git a/tests/cassettes/test_partly_embedded_texts[False].yaml b/tests/cassettes/test_partly_embedded_texts[False].yaml index 86372837b..8aed4625b 100644 --- a/tests/cassettes/test_partly_embedded_texts[False].yaml +++ b/tests/cassettes/test_partly_embedded_texts[False].yaml @@ -15,7 +15,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -25,7 +25,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -35,124 +35,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1SaWxOyuram79evmDVv7V1yTjLvOMs5CIrY1dUliAiiyClAdu3/3oXfqt3dN1YJ - EQyMjPG+z8h//uuvv/5us7rIx7//+evvphrGv//Hdux+G29///PX//zXX3/99dd//j7/v5HFOyvu - 9+pT/ob/Tlafe7H8/c9fzH8f+b+D/vnrb/IeGJyF4ZItk2EXMFxeAzb6BNbrzhVzaOFDh33jPmiL - McgJ+la3lijKrQPrrAY36YQjJkjW+hUPStS30pFlWqLb5zWj31VR0cgNCn6sUq1RhlEtFOJJI4fe - jujsnV4zIO+JwY5nyS5dajWFroKOWOU+Tb1cnbssFubOxH7dOC5PpmiH4nvqYUswdzE1XKYF4pQa - E+0+D5e25icHJBOOJGWv55pFtlVCMa6HoOmTvF5EQZ4QWvuWGCJMXU67iyXk1IMZrCVa6pXszjpQ - H5WJrXUYwEpt4YQ6uxjJQSRTPNojx0EdxPO0hyemXkKzfCN8+FJi7eeeLsVZCODuwRdEr1ouo83l - JSO9Yipi+MGuX15e4cAykHekOLKyy3WqFoBvlbbkBh92vT7Sp4XQNTRwfEpjQKUozNF18Uf8yDtJ - m/bnQwQD0aTYPn8bdyEXWMF2rmSSD46ljUMr6qAoVHciURf37OdkmQCyuzux82SkdHjqBTyz2ZVY - 32fZUxlXE2LKb0wex2mIhzsDLRjF8oPkkWoDTn92K4wDeiZWaR5rVhtpB4dIkAKGT2qNP1xdB3LN - bSLOfUni6cJ936g+qAnRdtdXvfiX8wTFyqpJwXUmWIzBSmB7Dy5EY3bnvis1mqDamSmOTo9PPy7Z - OIPdTCnxbKoD3h8ZB8402xPv0NN4vud3HZ6jw0IUEx5cruBeq2QGVo0vd9vrOQEOEBx3MTcJpXns - p0P49qAhZgDL3z0bj7VmnaB6t1ZipG6nzXx1D6HZeF98oekFMPJ+rtDnee1wcGTlP+eltBF74ttm - rnEe0xYwvn6EYLRN6C73LF8hl4stka886hcYNCYse4/FZzUK6WSfHjkw0vsHB0XsaKxmRjMKWuuB - b4489WOPHjmsfedArMjsXSLuzwLa1tvEnTIz5t3OkUDBmscpeUw14Eh5LUD5TD7YUnY0I0vt3OAS - 7Z2J7ZYmZsEwOwjflAP2c0HpZ1gQD9aTnpHigY/xohz7BNiK7GDXOGk1Z9XlsLs4n+/0zqwAsCuq - dAjVjiU+ZtR43Z4nrI+MSI7f2ImXnXYqf+8XByM7ANqaJJeQvMi4aLuyZ5lTkIsjNyn4MPluTRJg - cIidlju+6awa82UXSyC+NgK2zk4N1tFuBjjIzzfR82dFl6dOW1Bo7hrMl/kLWG0EnZisTobPp2ee - EY+WDirDNMZHPp5rqkgM94vPie6ues3e0dGE07F6YTerA7A2n8mBdTYeyP1yKLVx4CUJDCPJJ7hz - gph7jTcHGv5Xxz49eGAwA/YFOzR8pyqOUUabIJiBdBevRJaB3a/nkFHRZGvFNCyDHi8WrTjYLY8D - VjWvjgdF0qtfvOPiphsuRw5rCvnLMQnAiTPjVUrRCe4ebEGKKXvS9Xw7RkiNo1cgKpGV0c5pHfi+ - MeEkWs1bo7nM6jBPQB7s0qoFa+yrM0gcSyF3sagzDsThjOLpVBInYq2epuKthN+2vBJ8WhuXMt0g - QQZKLFbGisSrOoATNGfNm3IUHDSuXncTZB7DDl9fWO5pAgwGAfAipFBGK1uy93gCvgoxuX8Tt2ZG - NazQPW4LnKaU0rUpwgRKRu4G61NMwaxEfQcTXyqwy5QloGcHT1CpyRUrb7z0KyJPE96PRwcf0prv - l4TOLUJdcA0OalfEtHbOJUp36UyO0sXOljpSLVQ/Hi+shqHa87wzVQBXpU9CVrA0Lp3ZF/Kz7L7V - q7yeWP/7graiOliJCpvyVlXekLZ7NdganbmfdeHooTN4Ojj4WC+tneCrQGXLPonug082rRyawRh8 - Z3xhXqrLvSvlhZ4LY2L1Y6h0lR8DB9N5NnCuf26U9dl2Bvs7+pI0GWRtEEk9o2294UO55n3LyeUN - XHcCJhHuxngCktjC+uX5JHs/YD/H40FG6/3EE3968nROj0qCdKPrseeeFY3fD28Vnd6JROyDZtec - tXYVbJLXCT+eIdYW1eVPKNXRBbti77vjkjUzDF43FV9U46AxH+rJ8FUlKTHyG9FmkfQrHIN+xt6L - 7+KZyPcZ2EdYEJtfNJcFdSRApwMuUW/vTFuGVjRBH2UZdobLETCWNsqw+jIPrHWfh0Y5HtzgfXeX - Ce6Mr0ZOmE7Iux+jab29M5ch+PGCfumYJDwNSzwoz7GA4kxqrNLaA+xTBy1EsXXCcad+wDwckClI - YTiRo+sO2gzP1xTC8XEhv/mRfKEBMkYPk8PQk+zlKsuAXGV/JMFJAO7i3ZUJ7CqPElPkVI1jWTVH - xQ4+yFW7AkqtpfJAG3xKopyrqubedlVCMnANOeyPXb2KxfOEtnpCTu3eo5OPdiH0GYYn4f5rZ1Qw - bAjG+HadkMzzGi32ygD76JqRR/bwew5Zlgf3N+wRl9vpGX8HYQGqt6ni09godD1N+w5i45RM7FPW - NW5v+jl83mY5mP0rrX/5BMGzbONHZ9jan+sN8BSTQsN6v6TyfoYSfSXkdhCQu12vhfre1ImdQxVw - l8IpYZbXE1HHta/prg4D9NMbwVyd6+l8O4ZItXIF34oR1Yu5ozdY8nk67QO9qCm9iBwo82aHcRxa - PV/s7QmYnIMCdGp3dJmfxxVd+ieamNt1yVpvdBloT4FMgk+RZKsbDRYIVeUZ9AJpwGK/nupPL2K8 - pCbgSy+MYKKrIdGUmsbdLAglouZ6JIH6xTX7vYgn+H27BjZnQ6a8XlY52uoJMa/vqJ7V3BKgVHVq - wKlLpDGhbxS/8QS7qKPLWPsmnC7dmQR+g+LR9hQIr9n7g72M9u4sWo4Aq3qaiJooNSCR2gRolq2A - nIQn7odrDVOY+XDCKXi+6dyQaIar1Zoki7tcm9e3doLv4jXiTT/V0/mbmT99Euwp58Tf+XmcIRFN - K9jpt8WlruhNwAumiASmwPTrT28W5fmLI9+zKbH1ewKfQXXHWmgHgIrBYwXNyZeJsbcqd9jnVJCc - F70RmYElnb/p0sGlzzFJ9Hjqe/bMm4CkBsK/9cpZNy2HcesRbNTFpx5KmLRwtTqTaIavaKONZBOy - PmsTBS+Ky370HSfJ33OP0ypQ6RC5kQNfic5i+4V/+rCb4BIhhwTTctJW4WVIyK3EhljhawJjyj8l - eK9wMTFb/R62fAdP75O01d8JLNcKmlB/v/bB9Ts/NMIr4YTOhmCQx5N7aetjsbw/87mxXk+7qA9u - YHjepS1+3Xp8BqGA0EtvyUP8uIAJd9oL+AzHE7eRmrgtkrn6vR98vHw5l77uqQwfWn8kWK0AmLv+ - NcGKwJCYwqmhkxzWKjopnY29G68B5tKQQVx3sUuMNlbo7DxQAvqbVGLLoWP88yOoMToZ51gSsuUZ - pALc8j12dFbNGDgKBfB2/puoUOHd+ZyWHVi/7xtWA+uoTaPdTGDLP9jMYxDTYBlT2LTiEnBrrcfd - pk9Bpc43Ejzwkq00lSx4PSkc+eXXJdt7KfTqTN/091IPcS0GwDg8Y3KGut1znep6cAgCi7hU6uv1 - vbgp5KTDAwdhXINl8fqdZKSPT7Db8iPtQMHA4PpsiXlGVT/nlaJDMOwFbJWD2fPf6xOi+vxJJmrn - psYjJRZgUcgusTiwUOrzxxucePuLreZ4B9Q34whdmlzDsnOWAFn30QSDSJ2wPA87d/yKkwfhWbW3 - +lJry+87c8Di9Gy+sF9FUw1RxJ0O2K3XGDBZWjMILNOTuA9vR8ddRt9w05fkdA4abW0+bwfujTLD - ab9/uUTZ1E3OFZ9gbuYwG4dHxkD51Ep/6vN6mvgWmZR+g13blXULXpkHymkfBbyNoLv5JRPWk5lN - tLBZbaHhORDdIKBYKZKCLntvWdF0ac8Ea1YI+OJSMrC/CSU2/XEP5rZIPNSAozGh+fuNlyGMVISr - yseq81Bc5mBfVelcDm3ANtjWZrUpJigtWCXyoY20FVlyAFe1OgfrlJY1afa6gK5lfMVOa3mAipxs - gkOcMFixRqumuRMl8DKKR6Kl6rOn5ijsYC75Or7PXztjyZs7wbE1HHxrrYEOE3zl0pMUCzHTzs34 - 4BqcoHUfnvi612XAalhQ0Z1I8r/r3yc/vyDv5ZTETb7SJbAyCQ5y/cb2YR9ScuCDWXqfpgf2z41G - GWNtAihkz4jcSNZldDoDAQpXd0d8ezi67BHvblK1q0Osh2qmrZveluLK3E0S35FskL77FUqLr2K7 - F8Js9txDCaKRVYhyeO7iqTDeHdwDuyTy0wHxIj6+HVSl0zfYb/VxfTJiDrwdfgdT8z6AVX68OIj5 - YEfMzzul66YPxSh7jMRbj6AeQmZKwPZ7EjkPRWMy2Zuhpi4CvkZg1w/6zbSgdcz3wd7JpprCRBlQ - mZQ6zieV6xfuI0O0rS9yOIYibbRC5KCj8SY+FL0F6M0zWuTkiUv8EZY1PfH5G4bGspvWLd/zW72B - S86mmz/q+9lunieoPvkXxuKnBzSmdYLUR2mSUAZ2vaxTGcKnlQ6bfsko/7YqD27+A7tm2NGnej69 - gaOxJlGl8FyPGh9KSL3ezoEUXhq3H556jj4w1HB6vbaAfrJ7BOlwTXDSrprGHqxwAlap7YMtvvq1 - wK7wyz/YyG9YW1uSmvDMXq944xd1/5wMB+0ngAJJ+6ba8gHtDtiiXAeMRe4xZTRPllQp+Qbw4nPa - fPicWqiXj4DI1UHOuPBUmTCXsE5MzmOyVapuL5BBXcRHvCgaA15ZAK/4rGMzEb90lJTkDe7CGRM7 - Fup+vo3XFrav6I6P89vSfv4DzZ8gJjqf1C75qFwAfn5krg5yzP385Zb/JvDJlZqcryGE7H5c8BVH - U73c9DmH9++MsZ9GXr3yt9mEYdimuLDltzbNwlzBR+4k02rJe0qxo1doNxjKn/WyxPGnFZWzcw2W - Ad5iyjvvCnYup+Bi/ygBfcXSDNZe5LFzEO7u0MVGJ6HYOf3hQdOm5yVuaY94i/dsnfwCAs877Ugs - +rd+TeqPCUVq8iSoWTPjN94FWT6scbLVM8I2cgKUz4ML+JN0qGc3pCVy2icf7G1WrFeeHiaoV1y1 - +T+cTQIcdpJpqSvBwG619ThLKRjnd0jM5mHEywgGB/b75oizzT/z4gWp4Glq6fS5215N3087goI8 - zDj6ekm/tPsoQM1hfyf+0oQ1uz0P2BitjO/mvo2/3uCW4GYPKzFWvXZX4aybsFrjCdungwWIX6wn - pLU5Qzz9I4E/60F4qSl2K87rObF4JigZszUQMt7LRgeDAL6UVMf35mDWzIl7hbA+cuK0k2KOro9F - 9sAl3yFspZSChdeOCdpXQ4SvziDW5Ia0FZl9cgvmo6bE80NVJ+CdGB1jro7d2VXECQbc+CCa0NbZ - ZGS7GfoPV9r44LEn52WWET1fjth6tj5g9FBI/tSzFUl1NgaEmdEelQwxvIiPVwydHRTFoJ34sK/6 - ddO7cIuHHy+q1zKPUsR9bXcSuvuH/vyhmKXLEWesIbgrfGsc2PQc8XHgZ0t2qSu06Qdytr6f+Bd/ - iC+4A9Fv12M868I1ABPvfoM2Vte47f2nCU/V6x5Im16Z+JtgwvPtxZHL98PVNLiaCXw2rxofmt27 - n/avsISMds+xvESxS202LmAZqDvi+rXV86z3DcHejoSA94yxJ4jfvWGzpDxxk7Sq5+OhFFAavwNi - 3sMyXjQ+FNDDrx9Ebu9Xlz7NIYSHb9EQi0YKGDrd5YAIkTENYenXk/bBiWA/Ghv/6huz7roboJ6k - BkK/192l7r4BNInOkwNNebAUE2bgJ91l2AfQpNzwmVe0+Vtiy4nicqLphNBB0QO7S25pVObdN7xe - OAfrVZtkC+MILRy4oNrup9RMpDACzJ7RBdvjzQP8ls9hB85nXJyLefN79gCRTOVpD6ZHNv/8gmsZ - 6vY+7z3t71kAG75sJ3EojH7wXFxBy+xyrITyO17PihRAWDf2tBQwprN+Mx1I33GDsXthwZDkRwH+ - /Kd2WYt+XahXwbPdVtg5xl48PeyHIP30rvaRkowa9FzC6mzw2DuRte+zh2yBq43jAIHkSNkXOkXS - 3XunWO2mlfImXGc4vfGZyPdnn/14Bfw8dI+E/E3PNh6/QscnJ+K+UlsbNfM2Sz//FSWod+n1KHbw - HUJ1kjiLuqRghwJql6rEOmgsjV1RZ8JI/rrYuqsC3Xi/g8Jqz5LDSfr0dMu/aIunaSmSHV3laWqh - DReZyPHzRb/++1FBOzUxCcxoX/ej2JeAeoJKFKq7PTVe2QTFBw2wU4yoH9JSswAnGY9JihcCZg5X - AXw27zrgm3SpX0rvDCC95zlJHTpm8y4uWvjTqwcb5doC6khCm54MhI33L09WnOHGl/AB0oM7S8fS - gvd7NZDDLDHxUvCNCTc9Ma2rMvezFb05wGiPHOvevtTGzU/9+G9AK9K59MCbK2SfzkqMByMCkgCf - gUbxSTFOs7M2XN1zAn//75TMSsbIe6GC7/r4mPj5tI/Xt92VMD0G0gSPptpzgfJ5gzwRc3LQPlq8 - ts3KIGFtUmJ+FKXmb5MNwWeWnwTzDykbZpuqYH/zPSwfW6GnW72Q1u/rRsK80TXONu4t7G6ZQg7g - AwGlz0ML//izTypnXFW6Lbj0NSKbX6JU7YEMhPP1ScxUTzKy9RMA3wg+wS9xr/XUElTJeBEHH3p7 - BeTCfkOJRKqGL2pXZOunf6TQYy4p1mL/kzVOG4XI9n02AG7GazTRawtt8ydGDF9guYLMkmZN6Ceh - BW5PRrEu4VOKT8F+4wlk4y9gGs4mMfT9tR5bltkB9mmt+CxeStD/+geeWsxEbUOcMS3HRhCjE8EJ - YREl0nwyYXGRbhu/srV1jB0IibGWWDaHjhK3c4Qfz5za/oq15dHWEcybMiZqZ93BpmctOMtOgHHU - xfXST/cW6sIuxrj/GNmqp34FH2LiY3lqnIwR32aFZn8VMV4lzZ0D+xTAV5vbPz/sUgG8Ovii4YC9 - 9Fpm/TCbocghFhLNNzht3foJPx5MLK0k9ZqvtELMwReDRYvEeHyy4goTx1GwPz0vYCEXpoJHtZaD - eR522tC/LQsCcvGwRuhX+/FZ8L28DWwwSw/mSzJKUDIKd7veNVvj5sv85ovDzV99dceTwcYrJngi - Uc3hupcAs49sssVXPczpz4/lH3LY6svk2oEAL1bkYbXOWHfjuQ7S7cwiduY+s/UaiRAK3Jn96fO+ - 2/gCPIXY/tMPWTY/A5ynikiw8XSGa5UIKGfrSo7xxle+qy3DjZdgrLyZnrzuqSp+sbknymrpMfvz - jz48L3/86KLhWRa9XrD/8KE/vLLMP7tJnA9sPaOr2qH5qVc42vgDj3juDR72opLHYWr+8Bl4HC/V - 5i8E+qn46gZ+/ZPN77uLz7YrVKLFCNaLGMUrOhYqDJPVDrg+fNdNP9076NdCTe6fQNLGh+LcYEh3 - Mta0/tX/+Nkvf5Egd4V/14cou4/E0s0XGIInCMHPn1qipmUz4woQTFe0Eq+7mj0rPr4tDKYoJIfH - Z3bnnSNv/Rd6x/gZEm0OfT+HP95mDJVJ+a1fCvW9rmN1ybJ+YTlnhrt7qZD4VhouB+J0hvW6+Js+ - MGvu15/kTvkNX2HzqKc411+/fIj9bOCz1cvtFMVTUhJTdZG23vLDDPZ8pm3z03tuOcsSmrCNiW4R - lI3yBQvwvnvIQckKlrsWxruFN61RcFjco35h7/0AliYpSPDrR0z3svzpP3KYqFxzhTG18B53BbE3 - fzQ3B1GC8SHKsONW3ebH/BYG3QMS4w7deLnpQg5MS16DKXdTsPz8Emd5PPY+Z5+u/FcUwHUnYSz/ - +gsqQBZE18jAilAgd3aEU/rrvxGreJ01poRFC89v5koUmTmDP/zJ8mYfR96bAYukFG/YVdJheqPH - qs0e9DsoidMhAGF4jLks6QPw0wcO67mAtV9PGW28FZvhkvYUMH4Cr8JckCSPs4z2OuOgH5/Ht/qd - UUO9pHDjtUTrXy/3/fTTF9SHYcY35s2B4VT4gQRubYYPt7ymy0E8pFDGO4soOVtmJNF7C/792xXw - X//666//9dth8G7vRbNtDBiLZfyP/94q8B/8fwzvW9P82YYwDbey+Puff+9A+Pvbt+/v+L/H9lV8 - hr//+Uv4s9Xg77Edb83/c/hf243+61//BwAA//8DACkL86veIAAA + H4sIAAAAAAAAA1R6SROySrPm/vsVJ87W/kLmqjo7JgGZCgEVOzo6ZBBBEZkKqBv3v3fge+N298YF + EFJUZeYzZP7Hv/766+82rYts/Pufv/5+V8P49//YruX38f73P3/9z3/99ddff/3H7/f/e7Jo0iLP + q0/5e/x3s/rkxfL3P38x/33l/z70z19/Z43L4PN1WBxq28cCuiAe8NGIYb18r2IGoUJ77JzOg7Yi + Qb4g6Sm1xJj2HaBDM67SUPucn8biS5uQAVxJ44cP0dFnTRdlfqoo2gkKTnym1qgpqhbiUaMRD4Uh + nfe7twyu4MJgWShkhzbTmsARnU7YksC7XqwZyuIzvxvYwKLtsIKk7lAWJB5WerDTqBXELSjujDrR + Pnw4tKivJVDT8kRO7u1c87vByuASkdkv3ySjc17JE+p2nw+RxzVxmOIrlvDdU8Nn33ip6Ru9XSCK + OwPr1WsAtMZWjMLhPpLDa56iCeYX7vd/Exs7TL2cnLlBnX2m5M/+VKnlw3PVPwi+q1y6pFkso4xL + nkRe511P4XGyoYrdHXksRHYY16M+qA5xS4IhOda0viwWYizhgK/+M+rn03XOUCk/Rxy3paQRYPEX + GNohxVp6f4HVzLIKktmWyT3zTErc8KuD+rsep8o3op6RGcEAyjXMidl+R0qhpBdQjcwbcWur7Gnp + VRNKlSUip+QxaCTpBwuiqnyQAIEj4F/NfYXH4XEm5q4/RWz+oh3MdF3yhe08+SoHNmRjaSKHp3uJ + hkr9dqi9NBfiqeOrpufqPEGZtWqS5ycDzO7eusBvtl6J054vaY8kGqI3gBRn7PfTD1rvMeBOa0rw + d9AB81lfNgy+9Z7g3qARtctRh/iULkRjd6bDDNHBkPhHXONH/HZ79qwiCwCv5ibghQEYIt9w4fx4 + AKymJhuR7Tyhe3NXor2kTqNh6AUw1ocvjjT/Cji6kytU6MfuF4/aoviolEYbdcTw1kxjPWoV8Jn0 + wC+NL3TWJnRXOJNvSxSLRf28rQcuhc7iW10E2ui3JAFMfP5g63m2NTbRwxm5YvLAj7yZ0qmycAk/ + fmESuxx6ZxIgK6DD59NNMxENjfXt+w4s0ThP149bA/Yy3AqQxeEHH2tEU9JM0h0GCnUmmB7eESv2 + gY20b27iY6Ur/dL72IWL7abkxFeniJLWuYORHWys3nytZvJKHnZbfk+f8OUDbmZWHXLWjiUex6sR + 7QsIofqMRZKsgh1t8ZOhup8uGDfWAJYcPALJnE8yvgnHsuce/F4Wc71TsCqbTjTsjbOE2uKY4wK9 + 1YjVE20HHu5JwNYi1WBNzMMAL8bYEF+/V3TOZ1r+zt9naPsFPH/rG9E/TSnOFzdLx9/3pbsgxKcg + m+mSvXQOJnV0mZA66jWz5osNjcZ/YcVJfTCLb9+Ge/9pknAyHzU5R50E2sLJJ/Y1+xHLr3cbjuCs + 44PSeT3hyvcLwinopu/7jlI6m/4AUHu8Ee3AHNMV+S8V2XKdT91j0qN1qFcOivnDwMdbVWtjdYgb + OGpJjR8AHxzuG1UJLOLz1afK2dDmZkExPFffB7nvzk+6lM0pRM7JePn0IVoOveetDZVDHEyMqzXa + 6h/OOuxXPvPh49X2q8qoMxjSTCFnMalT1jzNM3o+gyc5HEcLLPXuXkIvLW9EDYa3Q1XiSjAf7ix2 + s4pE9CCkMRRQdJsKsTI13pn9CU55tsOBFskpzSNWQFyvE5JqkZUu+DkmAMQuJuG5c2q+l8sK8UtW + 4Jg9UEprLF/gXZdtHxynBKz7q9PBC7YLjA2zBLSJ9xNErXPD/vW69PNxUgw43jwba/DG95RZ5RZd + b77ka7pb1GutHEoEM2smF/55TFc7Xy10A+kLG09Z7Vny8Auw1X9yXs6WxsXT+YVkieYYe3lWEyH8 + vuDITjbGvHuk7PEe3FFpwTfGgj339EOeLrLL0cZqhd9RdzeZCs3O+0ms9fZxxleeM+CD0IzzZ6w6 + rHl7vlBHLQM7006ls5tnHDwFyQE/5OxOecEWZuCj85dcT7YcTc4YzSgZ2xT7mv8AnfgIQrD6GSbx + bI7RZHnfAWqU8cjNiGE/K91VRnB2BXJIOp7SW7Zc0Os09ViuborGfTtDRdqnkoh/B8ea5b5SBZPj + K8YPOGCNAouPkeKK1w2vXDAR5zxDrKsqDvvA1NgNPyEVpoQYJjdRalo996ufWImKTlt+3/t4CQXx + HKw53AwrAT6Sj0N855Rq9LE7qsBjcYot1z8B9nUeZVj2+gNrffjQ5h1x7tDicmWLv5YOgkcnxLye + 8cSEaeqw1zt+QQ2vB5IBY4mIlXgFZGFfYSs4eQ4fqn0LMyaLcXGSPmDpW0USm0IfSeAtgzarrpjA + 1dCuxN+VXk8arvbR7SkE5FjsB/Dp9kuL8L4PiPHhJbA+TssKLqxFiVk4qsYjqmZoWy8puiugtLqo + MRCf1ydx8rSqGdGvSmgO9zfBzqurt/2PkXPSX+Q8hi4dP+MUQHsW+D/xOB9ZUQBpZicTw754bQkc + ZYaNsqQk4a9ezzZ7wYLuaLrEaTI95XeDXICKnVQc865CF8t8TNDssmRivVnXeCvxMkhmS/alqafR + ehNCDgEuPuK0uh015ipaFhSBEJHCS/V+eThkhvFLuJB0xyFn7UTSwrdqHIgrDirgr5ldQkZIJ6LY + sK/p8px9hOJgT4z79UyH0+MZoJmLFVzQBNWUtNodaux8n+Z1LmqajscVDN2CsJLIFuBvr84GsTQh + f3eLdnTuGGVFG9+YWG5dQFctPQPZp68QT28u/fxZBwtEl1PmP9/6G/zhfxtfxN6G/+x1lEMYZHZA + DOu8Ru15bkvE76uAOJ8rrhmAbzF8SOSAnfguU/bxrjIke75CjjIf0rmJWgEWd0710d0NNaaz3wUU + rtHhx0fpxg8MaFu7M1FVGWlDKSkQavz02fCoT2m7txmo9+tEvOlcg3EwDz4KpdYjxUMMHMI/swQm + eTbhk79v6No66gxFERrksuH/uro0geGQjFir81Ibv5/UgJxcI3+3PBz6FaVlhoC7HH0K0hksqMom + kO7CkPhGxPTzfL6VP76AUyu2o9Gx0AUGhZFjvX/7PVXQfgIvftgTH72rdIw6ykgpy9/JVk/pzE5K + A4tsxiT63sb0K5W8AQ7mDeFfvnLcu85gVL0IPtTrpx5DsWnhxp/JxgfqqVADG8r6ciR6bCgpa/DY + l5zk2+N0q2/k9qpsGMkZi7VFLvs5+9oTXPWDTRxvibUFPN8SuoHbi5jhawKEs5Ud5ON9MVGZqyiJ + YXCH5Q6KeKs3YD24rgG9+uT7IVYKOoX7uUOm1B5IKMSvaMWkdSEnxpicH2SIOsnz72DSDiI5fp5O + RK5uKaAfP06miwM4DdAXMAyVJ8pbf9MuE+cChpeXgc9Pl0sXpxJkWHCPE7FqHwD6iF8THKNXQIwI + vqPhYlIVyc/wiN36owEeB6QVVcVxiWm1CqX6Pr8AyeNKbKbGGC3WM0zQ3tjJ+AxmIaX60xLgnsu/ + WLZiNWXazKp+/I6YWObAAkDZgL3N3fHxcDtFRBLPHQi7rMSWbIGIptqYwaL1Fp+BnkbbjZ+CWZfv + G79eNryTLJhjkSWuyRd0fp6yDPKKqRPP+i50PFZHH3TJO/rphZ4pxNSCN4+ziGFe+3r1WJBA1wUP + LGtr3S9P1E9SWGmtP2cTcKgoTMwfvmo85apfxY+iQ4MQAZv62+gZ+n5CtPH9aaeLhsZYkArw3Vgu + kaXrQleheBZ/4te40Bysuh6FqG1mDVtiJIFJ4qrppwewm0MEpjWdXNjq3ZGoZl9rq6tPAXy4kTB9 + N/xboKMGqBdjE3sfLwIcm2sMGjz/SfQy39HRKOsGMn65J0nKvugc+YYPWVZP8aY3nSnZZwz08qLx + eVsN0onNHQZqn1LCiRjd6ewOZotm0re+MKZl3cl9bwGVxZEv7h/QGbvyZkD5ZGST4I7str4mFOer + xGDrYhd0q+8rqt7lmcjHKQBscZEZKHlMieWk34NtPS4K55M10QPzjZbsHKpIo5yHDwWjOEy53mxp + n80ff/nWR235ot0EP7qpEitfQo0+uMCH1bs6+3PAlXQ4cbqA7qRPsGZEbk/veWkDi6kY7GiRFc33 + ZA3h6/MMCf56z351i3YHlfGg40dgHFN2t3DxH371aKyBDtdr3Er3G7cQA1ZOyj9efgwTp3ziZLeT + AZv7iYqO4U4hylPp6vVzY18wtANKsvW10kXepxxEndlgxwsDOgTIFyRUVY+Nv2uUAx7rQ9dGIcle + 766nhQsEuKb8jijv/clhTX6nSq2LA+wS+b7hr32RqHXZTeDMkHRKm/0K8+msYhuQIF3nO5+AfflV + ySFvdxG5qVwHn/ry3PgI0GZ8PXZQ0JLeBxs+UkYUM6AU/MsnSWuCte8YDj6Mbkd8kCZ0tWgDxffy + mYiiMaAmp1NRAN5zvyR9I0XjmtCdId+yAo50d9dP6fViwWW1kM/076mm1/g0IIPJdJyKAtfP3RBA + 9Po+HuTgNFLd1N2Xg2odGRirtQXmMni3iDarQ9QmLOvVYd0GNuIIJ6g8jpS7cKwPnZZN8IbP/Qzw + KYa14rywNoIe0KSmF5RVpUluRXmsl+soB1A8vgYSZodM4zf/BOLlU2C/3zd1eb3GHRDz3CBKDs90 + rKZZQhv++aw3v5zWfzMZqoGg4bthtWBZHiiEn+5wwY+y1zSe3IIGNOee9bUxs3q6CCkDo+7IYR1Z + WFsLNbHhpn/w5l/U/fPF2uhgpsifxzXRVta/qUCL2tIX3/c8mscICBLv+V8fUo3T1kqMW/iM9z5R + fEVOmdMnNOAIrjqxhDOTLp+r3QLRKUV8C55KxDdc78P78avjY1F+69/5g331xsRntRosznproaHa + OY78i0lXJZsv6Krdo199cTa97wPazI6/+IocsXQ+DHCrf5P4B/9sGcKRKAt+kONUL8d7kEAZWz52 + KsGNFgxKAyI/u+LbXWkiYnzLCr5b4zZxD2Zfrz+9cEUnhRh51tX0+OACkdlJNx860l2j6q6p4JAW + Cg4BW4LFSKQZ3FKPx8f3PU/Hp3tpJPakxsSk+s4ZH++ukKbbfMJHfN6l62RPEGx6jFyf6r1fNnyH + axzyxIoiI2Wj9dXCuGFqfD983/X00xe3FPM+G2IzouU5KlFwyAWfffZivTyczwqjsquwp7UY/Pi3 + VNrSSnDntNoK93YMVr/AROf7g0YPsutDhSgnfNr0M5+7ngG+3OM2fb3MrVcyHkN4eMJ5y4dLP496 + GP70FzkuSlCzU3Ft4TV6yTgW7LbuqQxKcNL19c/50M8uVn/8FP/ibZLrNUasOjMEy5kE5rZe4p9e + +VP/WL57XlBnX6nPxZLrTF2a+tAhsYYDlBk191KYGJ5aW5xoHnF0Tk9zAALMIYyFLwWLJy0hOoVx + iG/XRKzH9yXikMaud1/c4m3ZpeEEpiujY805Rc4WXx1Mo7EkuOxrZ9Sb3Qy7KZV8qgandBD4QP7p + DawOvgf4GlsXiG5AnFC21v0UN68ZbfyJqKXFR/PFBCqcD7vPxJOpSueN70J59+V/flG9Xls1QTBQ + nGlZD596PN6TRHT05YSDcRUcWrhUAtt+E/f69NL15NcV2vgDuWToEy3bfqMoW03iH5hTRM/6MQSj + ve/8N7cu9IucxYD2KGc+F+WqM0RlYkAgyRw5r4Sr6eNlXCAGsMauIjf9IJllCfuVzbBchpGzviSt + gIZk7MjvvDgD3VzQ6ZPoSyAYHbK/7Rqo9BZP7HCs6tU8zAKSCtXb8r2M1oUthT/1UnGFBFBCoAuF + d/Um+vur9Btec+Cm5dpUS9Crf/6OWIQ3G9vD+uzZLT/Axv99xlR1Z9n4DzxnDE+O9pUHy0nYM3Cx + /RQ7JmtQ/v0IVsTrdCEqYGXA+VznwrI3Hviw+QX0NTkNNMKLjS3dufTUVpMWVp+i2t6n1NwhYgT4 + 87fs7+gCllzPLfTN8xmnjDRr64JuAzTnSJ6APTzSxWyzBFY3TyWO0uf9MsmOD2un/G5+3CEd5fO+ + grG6ZtjdOY22Ml7nQyn6WtNafyNK4bGxIS9qb3yIviwYJncR4OZnks0P6RdmhhU8lHKNzbp16GTu + ZBk0VmBgH8eXdJ7qcwl/9cWMtNX5yu3sgok+Il/ivRNl6htjSDu9u2F3w3M2z1UGNjU4E/Xc9f0A + m3qGzABdkm56dTk8mBXOxz4mG57RgY73WZq5i0ISJ+idpcjFDm75MonhnToESm4BO14tsfYQLY0f + AtuGTiM6WHEFgS78GtroWvAMUdbDZ+MrJURdS+VJuNg7ujL9roW7ey4To1NeUV/UjwoW2YqJmez3 + 0XdXOyWASaYR7+w7/fyu0gkmGPvYUXrUT3Jfb66XmE9IawmgP/0Sby7BPn4PdSNx3QDq4ysj2fU5 + pvOlKFp4I1DF6oanVGtVCRXFkPn7n58pSuIMrWJwsVJWZjrDQLagJRcj8ZiZiZZ2OhuQmNdxEppo + 7tercZEAOPYZxgspNVIxxQq9R0J9lM+dQyvmssIXu67EunuSMz2FkYEG2idYPb7OGoEKe4G/9V3A + QUkZ9WA1UHyen1s/Y6+t1vleQrbhwMRt/hdf1NcKgOM3I1Z21erNf2R+/g/R7kCpufgqQsCG8Ek0 + cpZSMlzXHXDHg4u1Jhb6pQ3kTrp+sjtJY1HXmBV6L3hFkULs6g3BGrHXFyyv7oFc7ExOGb9wWhAX + GJFNL1FqykAGVus9yVG5XJzRbOM7+OlnM9qhqD+SqyStumljVZxWMFxlUZYU7a7htFyKdNn8cBhE + JMFWyr5AIzRhgHarx/rrVi8pe4ws5Lri449/udhLx/z487SHngMmsItKWK587K+WbfTEUp4MePeL + QfS2vGtTWBxs8C3bFScPoXS6LIhtuMz+TIzzDae83LxDWPglwecfv9ypLxtueEB0tzpGa36y4Z94 + djmro2Sv3eHPz5yeyQ5Hcx1qIQyTMiJuDnOw8OvdgqHUeVgxk6hesh61MEyqCLtb/s9TnVewGS4e + 1rjcTpnXYlRIdCoRa+FNc5ZTFftw83vI3XdezhKtrw6qj6Tf9MPTacvSDER/PMJtvzmNmg+c/fxg + okxPUi8DX1dIcxTpD94PHXNc4ZavWNv6GetI4+JXr3ye6jtt+L5aCzLyw8P2tf9qcz0/JlBe/QPe + 9GNP8whJ8EIujr/Q3S1dg/2RgY3tRvikikHaB5IDwV1Siwk+lbDmRBZIYPM7yHHMhXpw84yBv/7f + YcMX8tOb78Z2saveWWcGV9VGbEst4vDlM123eIWeeGCJIuxB2gmQlWDEPY7ED2+98+NXgBtVSOwd + c3DYy3AqwLvVbyRIT4uzKPNXhiT6yhifFKYfbcuoRMav9j//LeLakDY/vb3pVQTmpzTPouO5R6Kn + GaTkkkYTsoXHblrcG1svn6vaoahsK/zzuxnTaVbA2aJKzvflDSi64RXmgVkTjD5S9Fpy9QKiS5RN + 7rc+OcuitNyvvvvgEoX1Mvo79edH+/vNX/xIYt796YdF5CxFg2PYd9gfQhmr2vHV0/7qWvB2mmpi + xorwX3r30i3jr5/WTxPjBGCXVBSbuqH98SOAA8eV2Fxo9LwcHFv489OOdTE7M8YBh7Z+x8bnifbH + f5hu64lYJWdQbtNbUKDzAR+zW9rPpSIxUPZchVzU29a/0K0ZkvPbw/KPbymvp4U2vwIXmv+gI74x + L7jpKyz7A5+uz/stQU1ml8Q6HpG28c8ZxMlHww7Y6z1/dUsJDfwh+N13CDEeAqyXaueXjGQ59KZy + LWT1UcHpJQr7OeTAAB4vqfjDP9ZMnDNI1UEnZjPKNX9Tdy184TXf/J6ULopw42Aydil2+nsHVkVF + LbyuAJIDyzjRXGtJBrb+nD+BNAEbP5F+/ju2o9ajqzSJwo8PY3ucLY2Ze2TBX374QYic5RYxya// + RszD/qzxW38Iirf5RpwDPvfrcLZkuNVDfGIUBlB1N1VwVg1veg36qtHf+WdVZfqMtTtF3MQ4IaiP + TYb95eEArq4WGRVygbD3sJN+6xdd4F2SCxJvfvriHV822vp9xL9kTbow+08M15TdESPKK+d9coQX + DDxhxlEecWDsdmMlbf2/X7+N0oEzEzjsK4uYJ7tMB5N1dPj3byrgP//111//6zdh0LR58d4GA8Zi + Gf/936MC/+b/PTT39/vPGMI03Mvi73/+awLh72/fNt/xf4/tq/gMf//zl/Bn1ODvsR3v7//n8r+2 + F/3nv/4PAAAA//8DAMZWVEDeIAAA headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db6524590c67e2-SJC + - 991ac130e9ba67d9-SJC Connection: - keep-alive Content-Encoding: @@ -160,23 +164,21 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:28 GMT + - Mon, 20 Oct 2025 18:59:50 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=_w.CUcYUie9PVM5vSAB.aI9.D47mYgbIYZRa_0ErXH8-1754953708-1.0.1.1-d8XTyew1hJsE8A0PCr.IJn1j6cnoM4LKaHtlAuRQ3Yq_wayp8r.8MCfBf5UGlTjKWVyrw1hQ5qQ43o..4Un0RZO9vANWz_ZFc9hAvY6Bqp4; - path=/; expires=Mon, 11-Aug-25 23:38:28 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=SML_ajbfA8vjfyl0ug0vR4fYyldINzDLIz6pUVW6zn4-1760986790-1.0.1.1-EghsX3PwP_ECFjL1TGXuA3_oHxMkqdaD.gWZxJCZE4JY5gLWJbhPvFXXuRBOTkxoSFxprnuV9k6rYNmk4_nSbhKDp7yH.fFmmHmNS5qb1xQ; + path=/; expires=Mon, 20-Oct-25 19:29:50 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=k9RYXJvNezThXwC.yRkqrEMXpKqjyuhZHB5xZXQvzjU-1754953708442-0.0.1.1-604800000; + - _cfuvid=V9CVd07f4RMIyu2a3A.y.cEW208MGzJeNn62JThCKDo-1760986790701-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked + Via: + - envoy-router-6b6d784995-n7xd9 X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -186,17 +188,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "123" + - "68" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-c98c4dbb7-z25bw x-envoy-upstream-service-time: - - "178" + - "88" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -210,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_5f1855c382ed40aab8cbb0a1c19c6f51 + - req_7d8e0160a12541459f82dc29c3a7d5ac status: code: 200 message: OK @@ -230,7 +232,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -240,7 +242,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -250,124 +252,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1R6SxO6ypPl/v8pbtyt0yEvqeTuEBCQVyGg4sTEBCiKKCKPKqA6+rt34K+nZ2bj - AiqQojJPnnMy//1ff/31d5NXxXX4+5+//n4/++Hv/7Fcu2VD9vc/f/3Pf/31119//fvv9/9bWdR5 - cbs9P4/f8t/N5+dWTH//8xf331f+76J//vpbCH0jeKaGhbiPqNaK6vI2vtQnuWqv7KEqF9puqCZX - YTU6SiQrXZd5AUiTWU2XbTPDY/dJgk0kWZWIsPyCx+6d4IteH1xxWPum3Df+iUxDplV8aLoARhXU - FN/jJ2MXlYt+64O2dMFtdurNQPz0PeMECaQaUa4QhKbNCZ/OW7sT7JxlyhhsNJqZho/4etW90AHf - OuqccOuOpAEbRTwvkZH6dT6sddbDUdy4+ECQ3zFe/spAjVdA98Vwz/lWvJzQ3Q3vOE+Hmk2fPHii - 9WTo9L7fXOMJXc6pYr5qGwdC/o0njT8VKHRxhfd7so1nXvwY8ku+XskUXg3GT19PAssbJbxrzlXH - 5DlooD2ZGt4yL3AFtvqGUK45i17BUHJC+/sIStEW1LJP95jPdqMELNJSwibr0PHnjX0F78VZONSU - 2e3XZqbJcRp5+FLeEjbzkmQqm1650gKKYzc7JyeA6nkeyGr75dy5kfsAHW/BDusHqjEht55E+d63 - CfWpYTLi90yCWBUDahzNdz5N4WyDnqcm1aRMzcW5uBswvXyfXipdZ6J9OZpo/XEoddsL0UW+Dwul - UL85Vd177E6nQx4p3/6xprepOKNJvG6vMGTnjKpHSUfc+MlN1GWJg4uvqnWiuy4DxRaGK86b56qa - d5/bCJoftFTznN4dudZxUCCscxr4FUYCf3Dkzf4R3gP+/SE6tYY7AfoUO6z7xTMXEjMhIO5vAnYu - H4OJ4/sSgRpHFsUPz2ZsuE6qci17n4anx1efb6JkK+Wt13HY3A4ud18zGdSpfGE/WhPEVsHlqfRP - uyVrsUXV3Ct5BDU5xcFqdho0H+dIU0j6EMiqjzf5tC8ORFk5eR28tpHPxHVUtsorlym2zShjS/5I - MJvnA9Yd0+p4GLagHEpJpf6FGjl/uaAHELmRqZ+HOJ8CV3E2Lu+l9CJm0BHlVGrwWNsnMs8ynzOn - 5E8KX8MBqxG2K954dyu0O2V9INKr74pOqSRo3+ci3e+/t3gaeClSUrK2sbk7lrFgIjtR2kl0Al6/ - 79Ekv749dJ/yTX3pPrBpcwpDJbuOMQ3X6bObh0p8KL2q1dibv0LMtG7TgPOAECe7KsiF7PDSNnLU - SaQoz1YuNtYjUxT/dcWHfU9zEuVNguwMEnyTN6tuvN3WMkomh+C9UAqo0UQYQdgbR2zYsY7mSdhr - wHGCjzM1euaj6CgB3Eh1wqoys24avaemsGI/YlNdXxHl1NwGsXvLhD2ZgUZmmw6sGiWmx3Nc5nPl - 2xyIjV5hQ2nknD3CvIcB7gXeWWObtxClEiiqMWPVP2mInGU5lNVB8ahrZlnOODV3YG2VKt7jR8+Y - XCkenOZniB1pHVcDtQ8y+uGfHxCSMz4Cgoq6NekBPrzeb911ATjWWMCq3HHHuesCeKkoo/vvmkf9 - YdXIyvI8st6e85idWu0pt8FXJ9yqNtwFL0O4GN2L4oZ8EbM/9UOxzvcVVe8II4a18AThKdgQuPZB - J6qxsFLW22uCbzZobLRs5QSV1XwIF/IGYl2SzlCSeYfPt3HHGN3EEkBZ7uhR6EJ32pBKRbnkOgE7 - qXrMazpdodk8HnBcPI1YvCuyCWNVXfFezK5VD7QJ5bU8mKSp1cDl02OXIqGMTewnk1z1z1UkQDxe - FZx9B8Vl0kYVgIvIHjvfeatTwWapojfvkl6He+iyWBdSUBx1hw+nYMzn17fr0ceT1UBuOxM1tauH - yi9e7eauu8JNoDY8388K+wd7HZNycwrgmxcK4RPO68R3eQ1gsw2OWBuntz6tu0ZW+EFVaCIfq2rE - RmSjX3zp+RygMXr7DjK+h4gWdtu6rEwqAYzIfuHfec7r3fAA6K4pvfSFw6ZP+1ihKLdnfJvPt2ra - FxeC0C0EetopddWud+8H1K9cpb7PN924dddXuPXbLbbMF+vaHf8J0CM21tSSxEQX21BtFSUZXFqk - fB1Pu0N5UgSv7XG+xGMDB0jhjWwfX9Zw6ybZ3YHSSoFJt5asd9zkr0+b/A4XHL99HlHteg5kOQIb - 3zy8qZiiqqZyhUuE/f2rcanWTQ0q1C4na7N+V9O17iRUbcYOB09pzmc51QzodpcSb7nVhpGwvDzB - L8wNxofnuRo1kZuVa+I9qWetD+601EP0uX1nmm2kTcyyfnqBPOE3du+W2M0SLjnlfX09cJjtjZyT - +k0AsrWaqWEHd7bgnw2+ELfUNIU+n/ZJmCnlWrCCjbYz3WFUrIeSCpZIPTucENW6TQvbuGsITONY - Te8xskHldwg7nOkjdvSKFhq9LWh4R5QxPCscHC/Hgtqf8qIz5Xl1YB1qW9IU5pzPesIFaMiOGd2l - npWL/kZS4Wyan2Cz8CP2hIOm8C4gqmcHHQk3c9uCymcutc/5g037YB1CyUsczmRBd7m1GWnwhO5A - 8RS2/2d/8xBjfy3aMedYSaQcXyeOmlB+qnGOw6vyq8/mIAr573zh9U0z6uAgcafb9fn61QNsSDTp - hFhyPbhsdz71LrDRp9RtDaSlnkqjFTe5dKdVqfLAjw/GnS13tLBQAQu+/fC4+oq1MwKc5S3WTr7k - dqLvPgE8qcOeQ+uKiStZhUy8XYLpPX1ymt3uNmS785GQd2MhVjN+BJNvHBy6d+YyC2ZHKcsox/sK - 9h2/4AkYvfgNkP10Kt5W35xiyy+dpsVa0scVG1NlLHUrIJN3d9nBkV5KJt4vVHvSi853Q6rKCosk - bPtI0Bt32xkI9qeE7ofzWA14ywSlLMOcmoR/6N98HDwZeYGM1UAcWC/ObQo3UT3TS3njUCdtbEHp - 3PlGz6vvvSPfNLQVhYUSLlT7q09Sm0kwNBsLu3ASdHbJUg1O5X6F7+XA2FR9JhkypI9klBo/n4J3 - KCnZlA1k/fDshU/bNXCytKEOKpq8RtrqCu5+r+ITM9VOcOe3qQjxlAfiiVLWW7aSwHvnPglnB3c0 - vCISgtekRbC5cJuu975pCDV/02hyuDnurBf8AxrL47H5uOJK2OylFvL1wldFSOL58ibt5qAn8YKP - lTvvsKuClpwvVJX3Us7WOvag9JptoKhZyeaLn8vg3CUfG6Vaur98g80oGNR0rR7NvEhN2bg3AQ3z - luYswjaB9k53WCeDWs39kZig3i/3AKJYQfNR7Z6b4mvnNLOLFZpVOmlK9IzLoN8LKprSY5fJ3JcT - l3hL9VGe9gmsv18jGH98kp6qBO7pTaZH6YbQRK7JA967/ZNGrvruvn5pz3/wPnjRp8v9+MPjpkb0 - cD1cO8ZHHIH8VTPqE7f8w++UIOHPgbTk52wiNYFDkh2pVcu9zm5d+FCILt+wudn3jOnleAKxkx18 - i9aEsdW1BfQsO/jDZ4X6Mnnw45Npk61dtrGik1y+hJmsOF7OZ8S9AF5BblDHqDQm6EMA6DO/roRd - O449nPtHBU8fd9QSvGfHCnJuIEhzQvXtq+6YdzUcJPOGR21773TjYfWQ0dGgO2oNb6Wb/aS0lcpq - P9Tea2M+d9a1AXeYLtQ/Fvryvs8VLPqJWvfDyIbyGCaK/lAfhF/0Sa8omx7xK3ONnY/WdbNeKA/g - 6uhB+Ne6YfwhOaYg9XH3q696nx/PDRyDNsXbSOC7aeDHSAlj8sJ23cQ5PXpFA91VuNOF31bDq3dU - 4O3shZ0yfOjjkq9w4K/nYMruIxp78j4pj5sWUZOZj453ZKhBTG4eWa2UNp9Wn3BWKuWsBcJJX7Gp - rkMO2qDTsYmasmOi7z7AqLyaqi3s0FQOlQErdayw20i6y3P4YsAJ9jGBeNOz6XUba0X0kxu9nc7f - atakSyg3gvAiNIl8XZR0LYAsRT22jQmz0b0oAux7YpG5wYYrpOejB1J/6AKhWYXV9Mi3D8XE3wL/ - +OH8y+cFr8hr4cMiF/Qv9DUSTN1b7XUzRXPww1v60wMz/jg9WvITB6ddiOacBBKI+9HEh6mrXOa1 - txqZjX0n44WtGf0cSqLsgvVA4KKz/FOvbfOnd7E+3r2cS8ek+FMPdgf3EE+l2KfgaGlF3WGykeAj - PwHd0TlspMXDHdz08VRKrSd06yRJNY/TKCnlRbxSK2+O3U/fgD/TGHvxpkdzm99DSKLPluJnfamG - Z/UdwZrvCWH0+Gazudv3sOhRMq3NL5q6IdSAWbqG9+FlZv1OPRowNMiizpraSFz296snNCjPn3zU - kzNBL2Pe4n08DTmL+ZcM8XkNdB98PjpbG6kHTRqJ1BUQdv/oEw2Ey/L95Zw9nfYBEzoiMt61Vqd9 - jGfEH2UcoAW/h1vLqYpYgojVdap1XCNbPeTaleKj0I16z4ckAzUOLXrTuLn6g49HzRupYxoDWs7P - Uxa8p841OsVMdp8FjLO1x85hp6M5u/NXRZCIEQi5HMRsc+zmXz7jPQtUnbsEdvbzS8h6p546Nqx3 - 5m9/2L4rW8QlSBCgXqdHrB30A6NzcTbRJorOVLsJccwrld0ic9nQon+q6fM9r2QrC6s//JZ7k8dJ - Ob21N+HU1q7Y+D5EsLHiLcbn9lMNR046Qdv2Ob5VTqf/9DoUeTPS4ClF8RR32JSFz3HGu03+ribY - XUdUo5JQ/Lnf45kiOVD+1MO7da6Itb8I4EojxffxvNNF+0Me8N5r+1+9quj7nElw0uQyqOLQR0xR - bRNc93ukO6olSAgPaxMt/kDwco8XJrhZlqD7l/OoXUk3xmqmjChIL4QGHJ/lU2w8JUhvGxOfUKS4 - o3Z/agp2yhm78qvNJzXpCkju2pd6u7cas5veJT+9R93rrqzm173NkGpHU4CQRytW+5capr0vYk/8 - qO40mxIH7nScsPMdbi7Z7KUG6lt0CJh/WcWkSGIDLX4MjapBY+LRO7WwLr4keAc9xE3wLAw5NUId - n4/Bi00FNWyw0z3Fd05V8ymJuJPymJqe7sW7WpGprl+w6AuyRvGJkSXfkNdKDPv4FHfskoWq0nyT - DUkX/OezxEmgMJ7acv5xxdz11wNnViPsy2rKJqWyG8U01ZxeNoc+Hq1zMENTHKsASYPMWPEwPfiY - pUGDthyq6f7WOFj4PxkWPJwIRyOwk08aiKV+7fhffCz+GpmhU9mCHyd0RPcn9j18WfSGv4IF/+jW - Zt9qOa8ZbXnWY8u9XfJh0h49kOrp0f0hkqrB0xMZvPPpGkifcuNOw3p6KZySB9QomzqeLSqocDjJ - LXYdna8oL5eysvBlMi7x3hy3qYZW9wQH8/36jMfyUQMQ68ph9/V5dvSbbQHdV8UbW+/L1hVUutEg - oFyP9TgcEBFVK4WIFyWyyrHoDtxaqFHwHdVgM9IuH9ZXs0BjubXoaaXN3dtNm4fi8dKees8i0/ma - a0MYkpAEyuIPjd8za+Gpyg42i/cdMdxwD6i1EP7ov34n5ATy+DlhR5U/3bT4lfA5f0xqvA9lxxri - vVCRmhfsquq+ap/Wh6AgOmo4e5dqJxqrPIC7gaqAvf0j43IrCODYb3ianys1F7siMhQtnDS6lX1D - H7vIKeBbX+MFz7lu9sKLCq7bHbHeBx0ab7guwBcO7R+9O6kIN/Kil4L2o7kdWfSdAmdpSw1BsZEQ - vb8tejItoLgcGJr8Tf6En99pe1nnTqb10JRCOApkEm9BxcJkkiBB5hbbn3KzvI9WIBUVImlOt7P7 - rQQ9+fmFRIDSqoRbc+zhsFEJPl6GKJ8NdapRehYyui/mKhcbYrwA1ipd9FzYfYuNX8Cn+do0a7zZ - ncPD2kCrm6LgRW/qc5SdT3CX3yv681/Hg92G8HKEATs719aFJCEOHONo/uM3CGTHXiCpjxe++Ost - 6nGQX0EE8PB1P10R7+wDE9ohGP/oIbL6Oi/wfU2k+Puh3Rx5vvTjH2SztSBf9D8gX/1g8jC4LZqz - Q7/ohWuAIyU2dbaOvi3Efijg/WjV+kgrB2DR9/ieGWk1iiqSIYopR7Ejmnq332UFLN8j4L9SUPEP - vPZkCG86xSgW0CgJ8wMYZ1+DXIi/aKTJ5gnaN9KwirSV3pvPiwnyS3WC5shPTDgokEKc5G/Sfb5S - NzHXBpQN3JEWV3/rTru8beVF3xIevY5ovIl5K//wN837Mv7xO3QmhzP17q6es8+XK5QuOznBZrRM - nU9spEHAcoMw6zS7I9BHpExd41J9/XjqY9ZWoaI8PWHhJ1M8yFmToVzaO9TKrLYavW8awaKnyUqE - JJ8F99DD1zjhQFribRbcCwFNuN0IWGaX9/0pegERzYp8U8QY7QwhgRzRkrD2qurz9lWT331qYZPr - xtOucSBz+wOO1w/NZUt9lTfG3FP/dN537KOHIbQfxwg2Qimwn38H4XD8LP4aRd/zRr0q92tSks2L - p//F1+3UpQG67squzx7fFYzXbMBmHSD3VcpaD+7c6/SPn7wR19xP/2L/LC18K705sOA7vX1ltasy - QZaQuL6WVI1tEo/5azaUJR6C9WnaMrYRRQFdilqkwXDQXeY/khDO7/6E7dW1ZeOiJ5DZNhwumE6q - GR5tAleJQ3TxJztuU9YS6AXcaHI0dzlrQ7VRXD5IqRY/644FpwxQhyygu2BSY2a8xCtwbuyQNR47 - 9LTKVw2LXqD+vcSI6eN+RvXromL97R/R7PdMBq6aXbz1Fcy6AzqZcLGKPXbf+MOadfEaFZu5O+yr - 2RYJdaM1sPjfeOHHFXs05ArPrPQD8eEIqH+ZyIHzm5ywTQ5Bx77ZdqV8Do+MelG6RcIkbFXY34Nr - wOn9qmOw20SQ5umET7lM8mnd3mVwPhpQbelvzUe1eoJJfDdYj+edSzx1VQPcYMCaGo45fUiqpMRn - BfA22T3csYm7J7oKpxo7zjGIx7NxtqFKyZeqiSy7jO/TK7QT7+AfPxNLYS2hBV+xlpsKmxkNBPjc - uhlr1fBEPf+wBWV14N74GljbfK62qycIXtMH4csbu/nqygLSRTcImPeQqunSGCs4Ttwd7xMt0Mdg - /Dxg6T9Rr7X4mI3HlQDuqelw4E4vd2z1jYqOnq0HU7Wd0HjchppyyO5bap9uoktXHN//8SvTBQ+G - 6jNJ6LTLBKojR+lIAXYEiz/0x18abU5uYZx3e3zoqhkxU3pqiF6CD/75K/zKV1SRt9MX3keS1bWn - Juzhqad3vOsul0qUNjYHtA2/OKhD3xWF0nTk3VBlVE22XE5cz5bBMSTpD54zZ/+sYemn0LPOFS5p - OaT+9AT94TEpktyA215WyLjfPeNprSMCNq2HYCX3ezQ+a9VQ0mOyw15TO/n0w6MfPvGbfNct/p0G - aZ1a2LPDAyM5MWUwYyxgl0aMsQveEaW9NBe8J1LejfMGWrT4eUP5+Gxdgb9fEyDF+4mt2/hGf+5/ - p/2FJnpfVE09j4XCYLjRn3/Q3L6ah5Z8J10jVfoYvXcO4qrR/eOHND+889CKx6ZVTB1zz5wGCAlf - up06XR/Z+fGC4X0aCdWOb/eH1+DFd56I5ivuZuVUqsrS38AJWDQf5h3l/uixcfEn5rbdECAJ3Jd8 - CHKu3m4B8tksMG5xwiZJGwg8eF8PVq6RMdGo7WIjPZsGq9zZQ3zcpwZIoxPj/dQcdFGtLilsbzXC - +rXjEKPl3oZ10REcdFkc98wObEju6pdGK89l/Oi12o+/YFO4iPloXCQBEnmayBO6B5uHb9qAb65c - bAlWUc2Rt5PBTt4p3r4nK2fC+KilKB64P35Vs/QXYOYVlWZEL6uxnj5XqNL+S6Pp4uQk3PQRnPft - Cu/qB0MTffSt3L/aNdngh8eGO7uGcMLJnh54qLoRX1/yjw9Q75Cl7iBpb/KnX/vDZzYP0+NPf0KF - zYCoZnhXuGZx8AefBjtUQ0WNFDGQ6curpm7XcuiQpMdf/7xje9EGYGO9o+ZmmvWx2bcBWvwnaorr - Op53WFeVpb7h5bxdzkcbDg47ocHWFEiIMdBWsN6pHc1u0juezvcXUSLzcaFxe1XdP/W8yoMV9Zf6 - MX/rbw1dupZwsFKc+I/fuehlrPGtw/ijr9vKjRUq3Z2OYjeL2zBV/v5NBfzHv/7663/9Jgzq5la8 - l8GAoZiGf/vvUYF/E/+tr7P3+88YAumzR/H3P/81gfD3t2vq7/C/h+ZVfPq///lL+jNq8PfQDNn7 - /7n8r+WP/uNf/wkAAP//AwAkUor53iAAAA== + H4sIAAAAAAAAA1R6SRO6Orvn/v0Up86WfkvmhLNDQGYJAip2dXUxKIggCCRAbt3v3qX/W7e7Ny4w + xZA8+U1P/uNff/31d58392L++5+//m6f0/z3//heK7M5+/ufv/7nv/7666+//uP3+/+NvHf5vSyf + 7+o3/Pfn813e17//+Yv97yv/d9A/f/0NhEkJRhtbQNj1VafEcLVRJqVyMybGYihoZ0rk0DBhszDs + JiuTxh8D9jOZ8cZ3PYZz+o4CKbpaDf8+yi+oJ0qCYohOOd9SX5bHek0wu8ZaIwz6CGHI8R2xrrsn + XU+vJIIFI0VBpWCYD+ezYoPecK4o6U1Ml+565MHtdLqgmxfZI688aKbMdK+Tx3M+Ahbx3gtEXjuS + w8f6eFvk+SE41Q7A23Lucuz3cQ8T4eShcrocAa1PEgPNdxIQb8WPXBATKQOF4z/Q+brvmu3q4SeQ + G1YnEXsomk16CqmyWpGNzLIeYnqoug2M1rVBurnfx9u5Fgq5W8ISyzkwGqG7QRH6yiIiJJRNTj3A + 9FBnXQ0Z53vgsZgfQjjMrEUuFYVg2g2PBdpMcCeIdR4xVxiqCOV3d8PL0zmNrGnYFXwmqYXSc7QC + cvEHWU7fvI/iQ5zQNRRSU1m3tiTRSTqPS219Arim3oR3/In1FspMAQDM5YC0GmmUu3sbViKLO5Mj + /7D0OVuoCLMBHInHtm2+vc6aDTfGMInqz2rOL8HOgNkgHcnJtw2dK9aDBmRwIeQYDVjnhFW9K3l3 + yomxWHG+2jaIlP0n3ZGYN69gbbq1gD7NM4Juiw640zmTwUdMXHRnK23kNWUNFHnjClS0NtOsbnpc + 4G63fch+RCOg694NAB3ynBwzHwH2ccnuEoXJI6CDM1PcnhCGG7P7IENlnrnAhgmGOJ15pJ8tgwq1 + e4ugW0cW8VnV0Zf1vaqKwKZHcn03g04hEW3lthQGuvjxyRMGvWGgqysv5Nx5DNbQvD0VrlUHTMcH + aOglHyNow0scSODdA5rzT03xaMjjJQRSTqNnjZU2IXUwT5cjFfim/iiNHRCkTc+MLjXSRHhvyQmh + 2LFGAa0nqJynHYPpxho5d7iOFWxcQyaqxSBv9feQlwQ+TEl2rBVv2te1Br25TzCfJNy4vUfuojwv + YYTUwLIbNnU9BtQKngJ6qY8eh+TZB0ZricSSyjLe2FmMlNxEzrd+61ggUpooemw5AZyA6y37wZmg + qN864hJlbjbjXYWK4k4xOZf9EyxRcq0Ug4065JUTH1O+GXooBSJCudYGOWc/zhdJCy2Ki6m0co7x + w0xBR7tASXAjHn4e0wQUVpKg++PBjBvMCQ8qU8ZIdVJhHPw9ZCGJkjNy36o+UqJKJtR57YjuhvfM + aWQfA7gT4ityrz4dt8B9agqcbwvS2EMxTo8S2HBLahmLnmAAyj4uJvTPx5hkNlfna8iIC4wN1KCj + U8g5vSX5BNN0vCMNXj6gz8pUhPGgbsi67jSAt9jtZVbnfIJ0muXbc8xNeCurHfLe14luYV36sG+D + EGnmJaYz/GgakJPhjBB3xuNy4gsMHo1pkgJTTp9FiDL4+HRbsA3Y9ZZP4wV/9oe71ziAh8WWlfHy + POFFW/OY7nbaR67XUsdg9zG8L16GcAvpiwRwNwDKp2altPzIEBQ2obfEchVB+NIkzItuMHJp2THK + VKsJSq6dRukQzReYorD74dW4vUx7gz98yEL+QDdH0EX4fh0OpFQfYb751QYB9xndQFFMPeb5h6rB + ezufULjlRswd7I8Lo04vkK+LpT7Rm73IpVC7uIr1wOOD25gCrDQHZDwlmZJOj3jI4hCiewwhWJh7 + yMPrfHGQ6TzUmIRqnCoJ2Nfk8fuemu0S6KfGAeV8ueSrux8nwOzvaiA7qwn6VGtCxS6dlqhHT/dY + R334UJe2BjnlZ9dgq7hEUD8FDGaU0h+FLioCaB2eZ3RA9xfdfvNtSYlCkk/QNKvfbCroDe+KtFRD + 3naFswnmtI3IY0g+Ho0kfYOe7r9QsvuwdIVormA+qilJttmliw0XGeiPZEPx7VzS7VncMPh+L0k7 + 7R1/GP5cwKlvVOKekn5c+POjgCC/7dG+H9i8d9RrAAbB3xFHeiQ65yfLR1GMg0fug9TFW6DvL4rr + dhMqi2cJBhkVKdR59YjOw60clwfgROW7nsQsWh0IQJ4ZKdD6DBUnkxsn72MG8jF62SiyIile6Kky + Ffa5j9HvfaYjPi1Ap16OYSW3zfL5jCLw1nRELmA2j85XTYWm7VTIPM5SPDGt9IRffYBcv702q79n + eSUFryext90ppw7rsyDTj5QU7kOKV2k9veAQNu13vDCuWXZiFY2EFcq43si5NnUCOE7uRnTLe9CN + e5Y2jLf8Q1x3nvI1MNVMuUS8FUhlYY4Tka1KObZXgZh3sI7kpTsY3ofHG8NuW5pFrzcbDskJoIN0 + PI50gUwHuca9k9t1JZS+liML1ba+EzUEt3jx4smF7FDvMMF4y5eSNUzw4uuMOJNh5ex5FFXIfp5d + IH/10fKwTqayQgiIdnF1wA9C3UHXYDxitEtFtyZ9hPCYGSwqXKJ7wnzVNNjuvBM5iORD16/egQCU + MTKSp92wlHkFysBdWBI82Xe8SdelUGp6DcgXb3NaJhyE2t7IiN6oSb7a++gF7VBN0eF8TUahh54P + m4/jE63aSfo2LpkK5veikosfr95EjnqqfPc/cqVUHic5yu+/8ehxL3bN6JSfBaYts0duYkv56LTe + HcYuO6Ig9Du63ZBswK48p8Eudt4jHiixYWQJZ/xEjTUu9npe4J1fXHQXEuottfUMlBkFGfLVzgFs + J+kqnItrH2z+3m3Y73jlk9k6yVsk6us4LqmSCLEXjF99tqqofymHYXcjRn656ey6CVCWnlhEbhcJ + +of1gAGofE/IMbYWOte+zit12WfE67yy6cXlaMiyEsjIOgtYx6GeFdAX7SuJzAsFQ2HYsoJvuCTX + Y/cAE3NZbOXwSkT0YG+Dvi21LMKXWdrIWhhe36xU1CAfnhl08VdKl1N6YuDR8hYsXeOjt2RlKP74 + HnOGYAPuzqUdpPEiE8/xP2MHfVxA8XNQUcF36ijwzsFVkoLLgiXrCMWueUxgAvQarxdSeeTdMyHs + 3eURSHIujfO5TkMYdKVGrrLngKXUDxVkVYNHhoxRzB9B38He0hzkXZykWaLk8ZRkJ43IMVwbbxFv + owp/8+l5TzFffng5LlALxNasKfVKIMN8sI/IKara2+aoyqB2vOjk8GknsHQdCuTjsiBSChLJqXhM + MYyesYnQtlObNZ4CE6L09giki6WA5VtfUnpMcxKeBAZQoq6molhCHcxPoIItjHJeZlxWQM4mXulS + XJwErgxnBqL8jL2lsWjy43Ny608AUNIlFWSt9knOd7MdR20UN1gdtAbpyfD0+KCfFniCr4iki1CM + 66qxG3T7jRLtPNUeLymxrMTMEAf0gSu67aiawNgyzwTl7qSv8aJWyqXrSqQvwUR/eAOD2XTR7c5j + +qsHIFoe/KNnBeNV+zBBk08iO9h5lNinTdYflw0L/kfOl7p9QajvcoMcyl6jQoJ2KvjOB6bbpW6a + jXurP34jLj48R/oWhB5aSYOJUxbduFX7lwnKB/SIHwduTqN8r4Grmx/IYbgp4/Lxa1t59PhNbNlY + 8k0yYA8Pg3L7vR9dJTXWoGO1F6IjeaHkFFeJ0jz7CvOO0nh4pzkLaB/mDjniYQR/+Kx3t8e3fnvK + tYdDCiPvPf74VZ/6u9DDqybfkP/lE/pi1UjZnboX8twuAjNycA8LJ3gQlZcsfZL1zIBP/vJCWrFW + +hKnowG1OT0HS1wv4I9+LRk3ImjbVaMAxqmDW7k/4s3ff8aF3tRN2XJPC6CXM3SpxWqBnP/QkUPs + elwup7yCgVG1xFY301sro7EhZ7JPdAxX3WMf1s2AX7+DmWaZ6FYVaqecmKIkoaUNzbYZTih/5w/X + lXvUeTXR/vgnFLwCRLfGKWXop+YBr75teDz3PNtwbOtPICxa2Kx42leKxSh3pJsoyxdxOZgKAI8Y + Pw9ZkHPC3e+BhvyAWPLgj9vv/j89aTyljFIkyj3AVzZC1uUcghXesQiRk5ooPr4ab2P48g5ap7hj + yVJ2dN4ue6zwMsV4Ydctfz9c2wVGexCRnVz8nGcz9g5rCV6QKfaneD0HRQFhGDZEZQobsKY4J7Dn + LRbpR7PKp2ZYnoodL5j88GKVhkVUNP9aEMMIz2ApyqcG/TOKf3oX/OGzIhBU4ruPW4znelignIxn + zKm3Tl/aj9NDr2hzTOkygO2nF3kaa+hwZDc6yxfOgJIdW8QBbxuwl7fS/fiEaEP4zhdPsjowoI+K + 9mY555u6GQxE8hUSnUZvnR6H3ob8mgl//NHS5mqofP0ysn777ZN/Kvh0Ofn3fDrl/YMHz60LAvD1 + K3h7GqoSvF4C0seTNrJP/b1AehIJeoTNok+77J5Btw4tcqrNrVl7f+fDwEwXYg7PGdCjqoUKp+8W + cqjkS0yjj5ZB4fRwkFMwOtiqsC2U23I3AnGrg2ZJKm+DwbzDyLrWqs4xfprBmBljLB37y7iez5wL + q0SHyM3LPeAeIs/DLjIu6JBIJzqT3jLBoGdXYn7ucczKbPoBGnOSkJFltKFlKmYyYxk15tXIH/lw + Wi6KpjEtZr96Yvv6a7ijzR5pqHk3eEftC/RzNkf5gx31VUBeBM8PdiGHsY7ilbq4kz+FtCGtnttm + XTW4AFKfMdnj+hHTo+pGymzOFrLE+krnSZY2eDV7gu7GcNB5br1X8Ja4diB8rhKdauSKv3wjIN+8 + ZjmPogYHWTmTgBESIFi3RwC++yV4f643yr3TLAHpm/WJZep3nVpuyYKuPhCyj8XM2yKosT9+QIUu + Kt5Xr2uKzLcb0i/6J19c37tDsbt8iHG1VX1t8RhCcNIbYohp3VB+dC8g3btbIJQZoct0uHXw2J4F + tL8Q1aOPU8/Cn588fvU1mW27h0z9jAK+vzANdkjjg28eQ8pw1XX2+OQ/cE2dKZjKFtJPIGBbNttC + R2WavOia7l42vFg3gk7f+y87nb0oHwWO5FcPM3K6Hp7PZYS3W3GN8ZJFAXD7hX79bTyu16hSlfrs + WPjsZ+4omC85gajFGvLfYRxvmiL5sGPSEzLHLKU0f/e9ElKYkzwkU7y2SbDBlOfagN8UudkCobMh + 55c6Cfh0bqimRSLk1GOGqy8eUpVBEfz6n0D88qfwyzsqppzwOlxVyq6JEgBPpk+kWdEtXxm7ZKBw + Pj5IEH6GZhte8wb2NZjQFx/y+ZqpE+R00ycq7kU6f94vHjJNVgZiuUoeTZX1pQwFDchhwV1Mr1Kn + /tYPff0wnRpxlRW8y0NM4czqY9RZDIh6MQhEAT/jRRZ4EUaazyLnlD+9OTjvF6B8thahW7T3+JC9 + afCUqDPyigh7c3a5pvCbh2AWUSGfEsZ8ggql+0A+bWM+rQ3fAaW6WSQ2riTvkotYKWI4OeSQxZnO + Dzs3hDJISMDfSwzogzQdBJHmoqObPsAW3tgKnk8TRCc4lvEk1h6G7JStyCrU90iVc97/9BKxxLUe + 6eUz9eDHp0eS2fpgGm8MHqqjoYvEqiP3zdNgNo9NsFPYMxVmIwig0CscySBSR7Z/boZilfs9cZ3Y + 0LdQz+7wmBTxF8/Zcd2CQYWDvDsjE0zjuN07PoN6On/IaeCaZjUNMsl88X4HDYi9EVskMpS0hXui + y5wN+AM/fMB1rwXE1m0KqOaADjaz9MROW47edto9GMhsNx5vKwmahbudRGgX0R4Z+UXSt+v9eQFn + RhNwN2YpGBZKE+WiDzespJvVCEHbTlCQVYyuoI28tfDqDrTclhFTjpqcTU+vHn75CfPffO7z5UMI + pNYmscFt3nrSHgb46XEdolO8KMv7Au/zUSH2NDTjWsRuCFPlPqOAK2ydjQ53F740vP3qQ+fVRn/B + 3en1QrdTrnlfP1RAWFQ+irK0APw5Ykx4E5gFeS0SPcJK8gu6/l0g5nog4x//yLRhj4EKYP7VtwZg + dcHHHSb7cWlQoUG5nQIUy1dT365X5wNjf+LR4cuXqyu78L/y6b2UNhsWPR7WxUjJn3qoFDeDSi9n + wY47B41wtUkhM/6sEU1weLBw1faC6sbug0TaBrDUqvOE+TvSkEpeTEzK6mZCApdDgCNjpazYTylM + eaHFT2YSR8oXNgRfPUZOw1UFVD67T7kQsg5zzPsMaPLJnzIvr5hknFs3P30HeGGfftdHz+mrNu6K + Ld/tYDNUU2ftONdgcrMMvDJ08/7ow0PBeuSA1Ke+mE89VMCt4pF2EFd9rrr+An75hmGmn+aXT0L7 + 3EuYfv3txsK1h2t7R4FCxA9YK27AsE6lElMQj+NkZs/Xr5+A8e1NG9xqZgJN26uwWDaqToe6wz9/ + QCyE2XFTld6E2w6eUBS8NW9tE3OTgyeeiG7lzkjNIAyhwXyMQKSAp5QNCwxN/vwmx4ldxk8nhIXS + Cn2LpflOxq9eef34PWB2bZ0TtN4YaMcbRsangGPrj9EE7+lLJyjvMVjy/sH+8gykf/P7b77hwslN + JHLeNXnejHMGwVe/kiPD4Hi7oc1QnKGhgfAw9pSKB1EDh9dFJJr11H98ksCzmF6Qx9UfusWDpQKu + E1mUbjVu6I8vFFwBYhdcPAr5aIqwXNQ7Sdb1kC9FUPXKMvFXYl+zbtz8SoZgF74VolmG+qe/AadP + 7mGFZL3XgPHVwePI7IgfuqG3zfWwgYS7qQgp7BlQ8NLlX/6B9iYI9T46XFzY3GUHWU7a0U/Qvxbl + 64eQ3Zp7wDZq1MOa91WkCpzfLOIuKKCIBhRQn+dHQq65C12Tv6D9OAcjrU8ro3zzLBLU4h4IZXUy + 4Ctg8oD55snLKZQiWEjhii6ii0cqvJEMZ4OHxNJiC6xcSZ8QlCc/WNf0kM9fvQM5e5rRzz9NNlxE + BclniA6lW3nLlIMP+OXdyFGDmAbs24C32zYQdKtkb+HctILfvBOp8xTHnMzuWBBvtw9CkaTQdR8H + PGz0x4Z8lzTexNxTXvn6FZTv/H3+/d47lLoyCLIpX8bN4uUNpNRCwWqfxYZqKcvAb78Doed8pOta + CdWPD4hRK1y8VQ/MQ8sJR+TtPi9v1e2bCpIjuw/YQFjBsm47BpKbsCdBrAo5Gb3z8ievLB7z2sz7 + ew1B02X8Ny9RRmy8+wgKOfsm+35I8q8/+UA9PjjoZN02sP7ybYS091cvVTpH3e4lylLxQkdeccCH + 76oJrp56R4dFvVF2UkQWfvsnyC3PR4/zQz6Q4TBmxBpyNseem8qwvBYiuRyCzVtSoD3hFx9I0dr3 + kZhTrsKo2xckvboFwN+8B4ZSBzGrMs94lSyAIWfjOZD5lwO26K4ayi8vPt5CN6c3H2jwdM+8YFfH + h1FIDNH8008LyHqKpzIyZfhGMYe+/EZXfDtgBfPqDTn9KQfbWYcYuPrudYSptPe4YpiSX/6AjifU + gq/f/oAvn5G0bCp9vCjVXfnlifpuxfGH554GGBgy4qf1bHR6a84m2PaLRy7BwIDhXKcRDPOMQ84j + Wb98kWh/6uu7v/VVRdUL4vJO8UcLWo+aZxH++AFvlR6Pq26fVOWXH16+fEQU7cFCF+cJXhqqj2tw + djZoXIzHdz8EI/ddb3i8XO7I0Q4JXZA/Y3jojnrAfv0oq9QtI335DPnzzQdsvdoG5Ooo/uL1Sed5 + 7KSwBRn44hcLNulxs2FXWwRZhhfr83pibKgExUDumPModzcy7U+/xb4EQr6pB5uH+1qa8Oubj/70 + KqxF00N+a9+brXHOMiRze0X7JrDydSlPkXjSFJYE90byxhdrh1DRjip5jHLd0Kv9LuC+6wdybyLX + w+pniiAjacxvPcGiWf5Trvidivnl7dNpp8MENnfRIWVza8a18RMGAo7fCCKfK8DLjvvAd8pryEI4 + abZyO1WwmjsbOS2YAT4kUwHRJoQ/fgCET6pQ+fqx4NtfaNaGk1nw61+FvCePm0FsCGfvbpCAuW06 + VcwsAuFpfyVqdeoaevOpqnz57YsPusdyt5sI5aPbI3flRLBkdGNg86pGcmeZNl5OfIKVJ1vcSH6D + qidYoEjhZQoY4n/zxG0Qhg56TCOiY3V24j95J+PywpcfXCqQa2wrZ/ajkl+/jRIpTJS/f6cC/vNf + f/31v34nDLq+vLffgwHzfZ3//d9HBf4t/Hvqsrb9cwwBT1l1//uf/zqB8Pcw9t0w/++5f93f09// + /CX+OWrw99zPWfv/XP7X90H/+a//AwAA//8DAHf2HP7eIAAA headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db65266b4267e2-SJC + - 991ac132bc0067d9-SJC Connection: - keep-alive Content-Encoding: @@ -375,17 +381,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:28 GMT + - Mon, 20 Oct 2025 18:59:51 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-7fc5f9bb9c-n8fx8 X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -395,17 +399,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "71" + - "149" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-d4df5c7b7-cgvt9 x-envoy-upstream-service-time: - - "89" + - "165" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -419,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_bd8d09ad2b6b45768a7b9718702b89b9 + - req_330d7467499a40138a29f0bc24d88ae2 status: code: 200 message: OK @@ -439,7 +443,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -449,7 +453,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -459,124 +463,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1Say9KySrel+/9VrFhdaoeASE5Wj7PIKTmJWFFRIYoIisgpgdyx771Cvz92VXVs - IK+8QM4xx3hm/ue//vrr7zavi+v49z9//f2qhvHv//E9druMl7//+et//uuvv/766z9/n//fmUWT - F7db9S5/p/++rN63Yvn7n7/Y/z7yf0/656+/RevzxPZOV3v+dutN4JIJT/AaBY1e5agBkxgdxtGu - rBcnVC4SZ0tnrJ+OpKdu1DGwO7EryXYnMZ7GLLSkrJFFfGgVN+d4HxL0nLCFtQO3jecRBbp0lZUj - 1spsr7EKDAK6e4KG034XocXOziIkpCX4ct1tYnIbtCd8ErcjabzO/WwK71IM+5InfnI8O0t+qxvJ - OgQf4odNgqjH5ADimHbEboSunl+JPwOerRu+CPWmp+1NaEAck47ctauLuJ2cJ2h8Gg0xv9cflVVe - JZ0HgbjuChpZ836WNOdZYF00erreW3+CBe0wUSLzRem9e8ggPa5P3yX4ka/nR1lIB7npsCfxXT57 - sq+DTiKfRB9BzrdLxUao2rz3RDl/akQ1ueTB864qCeMuy5ejwtgg5+g9obDI67WAYyetD7pMc1Bq - +fp03AlFjuURt7AvzqJqAChnXhzJtN7LWVDdCzBX2SHHfm87bMbsChAWCEmiLk5O8VYrwEYbjejr - BqPxmFNVWhzz5jfHix6zNPVSCPnbHgdTRRC1oL6gCtnGJIDJ1LO7L56wL+0H0VeH1/iLnOvgaJ8R - W9hSnDVZBlV6xoGA/eNhRXQOLUuS0jImJyx2aHWGNkXa4yYTvUxTZ3ErrpImD0/EhWBPyzr9PEGm - /JE4wclxuHazDUDIeAvrD5sgmsHegrCveCJPFaGLqrEM2KZeYcsdYsSpGgtwLpuKGOeo01b2NIng - o+2G4M1WouTefVQkCgEiGVM5lP+9zz0yF3w4Z2s+GeRVgFO8JX95qXy/KIzJQDKcLWzDu6xbWZMK - ZB7wgfiBquacRE6FVMTJFfucbSPOnJwLOKV2w6YULtrcFbIpxbdLQQ7bS4Hm23kaYPq8C2xtrwRR - rpcSkBtOINrljOpJveciaDvn47MHbawHDYcp2hZBiU07sXLWo/sGbp0fY2M3P7XlcU9sKDaTQzSj - kmsWsMqD1X6A7HnpRufq0FvwuY05kesrRTTMBxWc494l+jkQtbU2ilmybqTHnrpxaGdH9RW2ubqb - PkmoUNY+7DIpeLo8CRWlqFfMPTJpfWkZdgrX0dhCrkzpaM0CuRlT4PBstHNhqyUBPg+Zrs25qneg - 7Q4fnCtTqK1uFmaSeOwUHN3sAC0lrXVpX2cWvsRW6Yw1z/vIfR9vxFbw3Zl1y2Jhv+VsHCdFGM82 - iCK4wgpEC/bnmqsDaksX8XElHvgpXdLxbf9ZL+q33ng9WEUwDGsm0TXdOquWaRky1hFh2T04dW8d - HqIEY2Zj/OCWeDVuSyJ1XrpiS3gr/YrbDtCabkuyfypePIp3QwS3e+vk4J4GZ+RSlwePfzr42ukY - sU8cmuJU9N4EwnhAVNDuV/T7fWe73aBVkT8Jkrv93ReYqqctnW0fLLcMiMxEYkwP3EWArdgFf36f - 8sYaScoVbuTCOLGzZXaHGT5tP2DrY49o8dq6kH71ycR+G49258vAhdcWu7TKHL6Pal+K9mLjv/xP - oC3izl6hcLeeP9u+onGmZaXAvnQB28qsatt7MNhidR4aktyxEc/2YXeR8pxBxNSPN21uNpsVboso - +es13Wo0XfoSuq148fnLI6G9yXMFihqzwKp3aXKaMg8AZykAK3EnxO8Hp7doai8aUZrO1igShxTW - vmxwFmpOPThqKUq+o3jk2ukEDYYsJJDJ1hl7M6c73GEpSqhD9U0sceNR7lmRAA7ys8MH4RX0c6zw - rbSrqDbNikb6hd1efKnV5gc5DNnTodlsMSCgmzrtVOOD1ua2M6VLbh/w4fVi0FTG2xls06zwhRon - h7fQIQFXH2piffVvKUbJhsG2e+yYu6peNldrlvZHPyDZk/LaHDB1AchlFGydL1rOJuKkg0nnhRis - NfeT2BwFdBQyTPIHOTikUh0L7Nvi/J4fWj9I0YEj7R2nSiOgwTizDDwoaxB91F/1THqelx7iHmOD - LwGNiwAzrEZnYH3jXuNFHiIWDP/zwEe6CPViIoWF2/HhYTM/TvVyYWYA4kdPn97gXPN1dPQl5XEu - 8d3c2HTOsabDY34WJG/UO5oRuTM7/cYTrIH6zufrKLVoyx5U4oSOjrZ58qhgsK0eZ1NYxH/0VA/1 - Eyn4SYqn2EAyrBup/fUjbZWkDcC33glmlU8+P/FZh0e+OxH5JTzixTludOQwOJmk3T2qOYPLBWic - vCOy7T+cdZmyFl64exOvnqGeB7VtIbhWLvGeaIqH1Isq6Jor8n/1sDw7QUWOKI3TLjYDZzmbSimO - I5uTo2NG2spGOx/tXOGBTfZd9fPuJAnAp1ASOUszh3rPkw79KRyxnws8mh2uy6A896a/6eNzvX3S - TgfvaA8k1MMXZdcuCcApWGV6fvstn9+NFrC2jlhO87GfDbrwEs484ktdrdDt6x5bkB0+Ng7rvatx - 3/UKvh+wE1umvEN0oyjRt979sZ6hp3dtHIDnj9RHyhQ62w95TvDiocXYCz1nO5yRCzHQZeIzqYo5 - PX2k8NUHfKD71qFyHcxA7oOGz7uzHbO3ZFFRRzYD/ultPwrjDG9iXHyqFPeevHaZCq8bf5+4I3E1 - 3nmeGqirwsT6Nn3X5LazZRT5zoxNwS779YMOJsxByRMzXoOePyeVKl0qlk5EbWOHrdvbBK8be5/K - dfeuafQ4g3RrmAGrvOEi9h6lLky265DTpX7SMYwWRvIF9oot87LUK6lg/eNvcEqOMXVcToX3pc3I - qc0Mje5vMw+Xiqd+NW1m9EefOLM6+bui1tA6hVYL6X6pyP3sqGhJZoUBdw82Ob+9NV9cEDOYT7JO - 7oou91TQTlfAXlz4Q4YxXROnZKSPG8JU9tSptwsRpz/PVxXkUz6t1Ex+7xcbFx5qopQcA3M838jB - aPfo65cBduHxiTWluNfLBqspvKU48vvLZ9Q+SWro6Ne/fPk19YvyshN4i0pPDko4O/NVZHV4vDqP - pO040Mm47RLQ4tDCQaI94mVSS0tqSyvEOl95dBuQlQG2b0wim8wOzWxOAylOUUBiopRosYxXBZmW - yfgcix86n3ZaBVRvCcaBvORz7EsmZOGJxdYw9miePDcSH1XWkIgLY20dbyaL8hwQToagR7M5PNKf - 38P7g2Mi/g19C/vPJyJ7aa6ddXOIRfC8QsV4Um90WXo+lQx23mN/x+j9aqFDCss4nvzN2anosj5H - FjTIA6LOttovKs9fwXc0b+JUIn79tWnCgf1o2FNOWc5+9Qo1zrkjsf0JHX72Rx54/kSJNp69nKWp - kUo9Yuj37y/x/LiJOvjPQ+pvokzqiea+ZWBheeA4ju/1nIykQ12xhljPh30+mYcqk3SpMImmbKp+ - eq6WuptCkcPqRzd7tifgo2R7PH/vv6FzQfsGvV/N549fW5nuEQBa+XpiYLTQFpWkQO0gfojzLMb4 - Mx7mDs5Wz07bn397qpcOhmF5Yf/ZmDX3MO4BQGfVJOBaB/HpfLiin3+U192+Z8/bEkBxKoZ4R0dD - dIGd/dNDrPfXhRL9Hl+QxO2a3/OKJz4oLsK7OqnYv+IJ0Tx5lKJQz2esluNE53JVZNgvRyAmY3R0 - PoSKIC1+qk+QYULfV++sSj89PYA11fMjoO1v/RG/PTxrcmivhXiFXCdGM0f5+vWXUjjNt2k7xTie - G3k2JVKiO7G0fsxH0VSCP/9/+tXj9dQKDKoeeUDkSOfoct+LJswW72K9WrV8kXfnAFyQa3znz1y9 - HJgrIMtU1Il5Nk1PbSSz0qD1tyngr0bNr54W/Po3kTcmq83okIiwufKSP1nQxKuczAFQNjKnBK9h - TR0qpPB2i5IYyV7oKTM4KXz7/cQEqhp/Sq+VJVW6NNhuKactDQ4aadIGaZLG1xWtWHl3EJyjl7/0 - yoOSqxfK0tGoQ2KVVyYfcs63wZFbG+O7aNLPtz9JzzgSfGbSJ7TuxumCyqs4Etzu43qpXrYJ6vG2 - w/a+d3P6PI8+CIKXY+u4NXJWt2QefdZLhT1JDfqVHGZLwvSiY1naaDXLtssAS0T3P79DCRWLFNyD - 88KeRl81WSoIwHw1u6lcDQ+N3HyYYPCyCMt0VPKtcrWCX37F+yCs0PzLl8XOl4h833FoQU/KSqNy - HcjhiuZ8FXzEom8+wPnJxM446PYkNtllT04nVq5ZQ55TKbwlDM4/0d7hH4kgozce9jgS2EUbrFfG - S5s39Yk6vPWa+wztc5dJY02UM1zqhe3yVZBl6YTV7/kzy25EhDNMfvkc0Q8ZJlRwm3TaOfXqzNWh - tiGIlhPevz4yXZEXBnC7BypO6TWgc1WRFX39PzELwa23/aRaINxi22fN5JAv5kMHiD6JQVymZTUa - Km8LTbA1iC2Dla/cUs+/+sDyS1Dy5avnUCT19k8e/OWHnz75/OZzy+f7PWmh8uejL45M0//pL6eL - Qv3K2Lbx6m0dAEZwttPGSat6eZLXBLpuiPiQPbOeEify0bqbCnxIP5NDd7M8SV9/ibElHuP1+qRP - 6av/2C2bdz9K5H5F+iC/sRn1ssZGqdcImM/fRNHDF6K/+0UXxPlcqfj5bMhCCnsmyaYGpWbP6xoU - KKaxjE2UNvUMqp4h/51J+JoMC6WNo7tA90KKbVKdtbG/7RPAs30jnm28aSe7pAIn5F4k/vrJpT2z - LnrjaY/xK8MxdzlxLYz6EBPzxbT1YglERs/Js77Pt42pRGMW0iKY8Wm8H/vlcpI6ZDi5OC2StNaz - b4AMaDgmvnRThP5TYPUJH5U6BCt62RPdSCsQj61CjJGf4pW+LVuabeWN8dcPsMlIWuC2x8NvPSA6 - 9u8Ewko1sJ4cDv08PnIfzJYt8X6KSUw/5DkgbfKySRJjN+ZD6jcoq2jsM5udTxfTkhMQmfmAw3dR - o0+jRrYklNVKTBdHlOWbVEBWsIn9tx2d4rW8WhWavdCfKppa9RjehQusbbTxl3Wb/pu/aE5T+DvG - 0x3u17/5zt8THdhA+9UHfNeDP3z51SfuElU6o2rFmrJR6+2bl3x02IqdL3Z52y/tGXyEH/AixUNr - f7yphb1zu+BzFPH55Axt8oeX/dYTTwh14RjcKmw3gt0Puep24rJneZwbIdY4Pf0kwDAfY9KAfzhr - GW9mJAoRwpr9WRwqt36ButpLcPirz0NeyFAG1hF7HZ/1q+boDFjEsf0Gbtt4IgS5cBs9Hu+fyhj/ - +BGYeDr5C+2DmOXEkUeqaG2Io1YdXeshMkHX9yLWtZehtQbd8aCcJ37a1V2SL1onBOCObE9U72LG - s9X5JRq8SzTxUS87nOc3TySU5Uq+eqTNaA5cyZTiCiv49OiX/pXpKBAnHVub9NV/+ZIAxRQNPhiz - otHNc2URMguK7YudO1TYhi44Xlbh8Kv/w+Y8XeFbb9NsMmc0Z0+2AQwCh62s+dTkyxOln/84ituk - nnfM4kuSu9xILovbuHeNoUJvsr/463Ys86V1pRnI0zEJ3uxf2tqQ0RfLwD5ix3F38dw6+QCntxpg - T+gzxI/Z2YbElj7k0uVtvRjq5fLLE9j75q2luH77fch8CJbuYc/5SVICJzYzMWVedljANg9Kbx+J - t7uv/YTbjgGqnC3izJmmceptYeG6ijHWrFCnXLy9XME1EEN8ist4jiRZ2N3t9kqC++5It+p+l4DH - Nw6ON74X//IFmvK8wTpew577GGME33xBrPOljufTzql+fnmSuvpBKew7FmrTTCdnu73TqReaCDac - ZGKMP+ecuvdHJk00SfDVv5B6PZ/vg3jEkYn18QTxcDtPE/rqHXbDA0U/vwfXz+GGPd289pzWzYG0 - AmNgdVNzGh2NIYJzlHU++xxHuq6eE4hfXo796OLXK+e0E5wsNiPR49H25AO1LanEnbAj+FtKyc1M - 4cuTpiZeg3o5D+4TGcrugL1HFuSzH4lXxGTrc9ox3lMbyXS2QWCmj9/ej149H46bJ+rXq0r2vPdy - 6G3QGnhVYYUd/1r2c86ZNor58k2cLJQRvZlWBX1qRtPm64+2oT8+0Y8PWtOq5NtstgDWy35PPF3k - 46/fScRfvj9z6lrT0y1poHdsZdp881aL5sAXX4nRYeWlpv2Q7IcGdjMg7I0voPRoiNXPb/tczCo1 - 9+1XyO1eOnbeHY2XIVQsyRbGK1a45oI+X/6EmAauPsrCEs3ireal/fKUv3lqG8+CqaxStfIEq7u2 - o0S5WhHEu9nH0fDW+3Vgri7crnI+SftU64evnsKhuTv+9psHefbUCEI2lBa+ff3uZ76oPhyO2jBR - NdrF/W6WBwBOZ//wpTm9mx0cHzuFKPenr/UG4wEUnJRO85cHrM5QpihUs4mEXz2g3/wuJayxkkP2 - FOqhIo2Lvjwf77Fo0+Vib13h588VLtYdnsCuRevF2PvCx/Yo2x92FkCEeSKrfe0sBbYb+D5/X/rW - 19df2IgZveYP7/vyj0508ueFBPZjiz7f+kUozHWsEUVG37yfSPR6yvA+5I7x6iypjL68+MsD1Jw1 - XL4CVVG3fplXjLMYXCxIk+07+JcXRp7dZHBa4EEi35edhTLdAKeFeWDHYkdtKDPdRnx/rrCz450/ - +iJmyTv3H5FpIBalcQpvlfQ+kw0BWuzOVyFWCx9ritPSIXuyT0lZ2c20/cCpX66HpJU23MbEWMgU - jeeer0Q0rtz5549jOkbVAD891S+C189c0q0oNZs9Ufmd2W830raAEzYqclB3Wr9tln0Aou5W/vw6 - MfF3PYhgNE9Mzp7zQt3hTBlwH3qMfzyJVPEmAKJULjbHh1kv1Hm40GWxRhQ4lw4lWdBKob0/TfTL - 1xf3MIvQabxCnLv8pKseiAJk2+KMzSrv6hnNmY++6xGn2cGqt74TFUh6FE/ifoLUWd6JGUlfHjSN - Q+HGy5dfolI7CFg+M32/SHUYgPDcsNiLSJrTlStbkdH3BVa3YxmP/hRmP737+hm55/h28RHH7qtp - WnOznhu6a/7cz1ePevrW6ISiT2r482V9xat0AgGFwBynatoEdL6bmfrjr0Q+XPY5/+K5f+uX0fZX - 9EdvUOFcv/1Z6Jf+hhMwmEggzrffb6Mpy+Drx6eVNwb0LmzeRcC8X8SscrteDegF6etv8UW/Nzlt - GGNAx5SZiWFslJ621RSJnPicSf6dJ4x7l1GhnnOReIfQ13iO6Vxozu+K+Psk6um81Vzw3xdp+jh1 - pC1+klTSl+/5ayr49WwOn+S3XohtX4J+vqRxI4W7YfozD5ofPD9ANC77iQuzJJ9/84uf3uSMlKM1 - vCiMRBf1jn98mRzUMAO2f5okOOF9vjpMckXR9dh+ebuVL3p++sPHiO0vbUy/7xs8DzO++eVvP36G - oLNrrOihQVczLVlpyJ82OckscWZaa+tvvkocrzURC5whgKUu+U9f6uk7X0NIw+5EQ+I5C6Nqwq42 - 9dTfLvwYvyzhrUInIglrF1NHW6dZBLiYN41orY/omCZVJW0UYcTR9rPJp135ZgC5oPzh7dwrfZjw - 8MgdH/jO1FbOKQcpYoOUaNz8crbe867v9uy7xh7TPbXvPIb/1RdO56BD9OunxfWWTtj86ssItz6B - 7/VI+s0X/G6csh+v8TeN+3HoQQ0v8GSn05dP1HQZtror7T5RSDSilJSWh7wF+6HSaXN2VPp+0kqX - 9ssJsHss+3oOgnsLQx2xvjQrdszng64D37l7rP/6cW2kM7znUiQ6N7Ha5B+Z5pc/sNXkn37YZ1Em - RXuhmcBrjnRIvUsFP75ovwc9307LLUKh0R19uhddunyiepB2uX4m9siYPYdO3EX0NOJhZ7Nw9ejl - oyqap1yZhNOK+/Hnv388LdZMqk3L/pbCIEo3YhZ6hOb7/dqBtAratGaaHG9/fKHJsj2Rle0n544K - b4FmpdvpPPcios6GLyGkXkmsb///M+/eKOJI3N2j7ufdk00kEw8nckAL3//mx+JPv4xN7+fryWdN - 9J3vYhywjsYuWWmBE25f/iaQw/g3/4O/f7sC/utff/31v347DJr2Vry+GwPGYhn/47+3CvzH9j+G - 5vJ6/dmGMA2Xsvj7n3/vQPj707fNZ/zfY/ss3sPf//y1+7PV4O+xHS+v/+fwv74X+q9//R8AAAD/ - /wMAj7RUa94gAAA= + H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 + VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k + 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U + FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE + pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi + dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi + sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM + itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW + suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO + NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd + RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa + bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J + OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we + Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d + sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh + efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g + qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu + 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI + aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx + tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 + U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH + CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz + qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN + VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 + 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf + ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT + k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L + 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx + 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC + 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz + E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 + RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z + vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 + 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR + h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G + LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 + ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts + hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T + iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu + Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP + 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te + AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj + AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 + 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 + ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU + E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t + 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD + SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX + aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E + 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s + F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc + 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G + tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e + lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i + czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ + Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 + ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c + smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ + 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 + CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 + Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY + Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx + ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV + w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka + pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR + dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj + LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD + UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb + F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs + 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi + tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz + oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d + grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 + KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ + Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD + N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY + F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd + l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD + WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 + 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q + QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 + K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw + beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B + lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib + MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u + l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 + OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M + Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS + yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 + ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF + IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz + jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn + +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX + /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H + qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp + ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r + /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN + ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp + yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy + suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h + Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T + n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC + UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f + h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc + XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o + Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp + NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ + 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z + X/8HAAD//wMAybDCut4gAAA= headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db65274c1a67e2-SJC + - 991ac133fd6367d9-SJC Connection: - keep-alive Content-Encoding: @@ -584,17 +592,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:28 GMT + - Mon, 20 Oct 2025 18:59:51 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-6b6d784995-rs2ls X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -604,17 +610,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "207" + - "61" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-7d9c6b8bbd-bv7k7 x-envoy-upstream-service-time: - - "242" + - "84" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -628,75 +634,55 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_847886c7ce5f4db9ab081058f2c90aef + - req_d3b773d8242a4acfa2477335d824b013 status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence1: - stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: What do - I like?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "873" + - "877" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJNPi9swEMXv/hSDzsliO//YHNvjQttDWQr1YrTy2FYjS0IzDgkh373I - TuJk20IvPsxP73nmjXRKAISuxBaEaiWrzpv558Vrv/+Sy96/HtSKvv0IL5/W6136/PJVGTGLCvf+ - CxVfVU/Kdd4ga2dHrAJKxuiabVbL59Vikz4PoHMVmihrPM+Xbp6n+XKeZfM8vQhbpxWS2MLPBADg - NHxji7bCg9hCOrtWOiSSDYrt7RCACM7EipBEmlhaFrMJKmcZ7dD1qbAAhaC+62Q4FmILhfjeIuBB - YfAMePBGK83mCMSSkYBbycAtQk8YwOhdrPWBDdJTIWajX0CDe2kVlqRcwNE3S2+8J6xK3ckGKbJa - GsLCnu+bDFj3JGNGtjfmDkhrHcuY8RDP24Wcb4EY1/jg3umDVNTaamrLgJKcjcMTOy8Gek4A3obg - +4cshQ+u81yy2+Hwu2xzCV5Mq57oYnGB7FiaqZ6nV/DgV1bIUhu6W51QUrVYTdJpz7KvtLsDyd3U - f3bzN+9xcm2b/7GfgFLoGavSB6y0epx4OhYwvoR/HbulPDQsCMNeKyxZY4ibqLCWvRkvqaAjMXZl - rW2DwQc93tTal3m2xvVqqZaVSM7JbwAAAP//AwAd+80NsgMAAA== + H4sIAAAAAAAAAwAAAP//dJFBb9QwEIX/ijWXXrxos+q21DeOPVAh1BMEJcZ52rhxxsEzabta5b+j + LBQoiNNI7/tGT5o50Zg7JHIUkp87bCQzQzeXm/1mt93ttze7G7IUO3I0yqHZVlfz/ftr/TQc31U6 + fP24n67C3d0HsqTHCasFEX8AWSo5rYEXiaKelSyFzApWcp9PL77ieSXn4aht2wfJXPOpZmNqknkc + fTnW5ExN9z3M6hk8TymGqOloRL1CzMWtSXGA0blogtgL08WCsBqe5Qkl8sE89V6N9jAywQ8o5xV5 + U5P9UVaQ8Og5oJGQC9bSalvzUnPbtrR8sSSap6bAS2ZyBO4anQvTTyD4NoMDyPGckqX5fAh3osjT + rI3mASzkqrdbS8GHHk0o8BozN6+NX7zAd/9jL7trAaYeI4pPzX781/9Nq/5vuljKs/4ZXV5bEpTH + GNBoRCFH6/s6Xzpalu8AAAD//wMALqKnjjECAAA= headers: CF-RAY: - - 96db65298edd9447-SJC + - 991ac1357cb11588-SJC Connection: - keep-alive Content-Encoding: @@ -704,119 +690,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:29 GMT + - Mon, 20 Oct 2025 18:59:54 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=yw9dBHN6NEhRm2L4JYv2KgA13sEf__PlvnUSVh9w5q4-1754953709-1.0.1.1-himr9C9caqduXPhNffS.1pZ.bIcQcBKDuiYIg5iY2gZJhaMB6mBI.RV7w8USZ2Uk2_uoHcE4D3vw6TN27QoW_0I.3VZWMTsBtadcACVe4kM; - path=/; expires=Mon, 11-Aug-25 23:38:29 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=ml2o2WeT7AZjfLewgFjrffK_BhRMqkvnn2B60t_lnvY-1754953709662-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:53Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:53Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:53Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "516" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxvim7YTBgg7zzZKDim + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "538" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999817" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_b1a164c97fa64d6389d83ee41beda382 + - "2662" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence2: - stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: What do I - like?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "870" + - "874" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJJPj9owEMXv+RQjn2GVBFgEtxb1sj1VaitVzSry2pPEXcd2PRMEQnz3 - KglLoH+kXnKY37yXmTc+JQDCaLEFoRrJqg12vlt87fbvGvvtyyd/fKIntUs//PzossP7zS6KWa/w - Lz9Q8ZvqQfk2WGTj3YhVRMnYu2br1XKzWqzTzQBar9H2sjrwfOnneZov51k2z9OLsPFGIYktfE8A - AE7Dtx/RaTyILaSzt0qLRLJGsb02AYjobV8RksgQS8diNkHlHaMbpj4VDqAQ1LWtjMdCbKEQnxsE - PCiMgYFYMhJwIxm4QegII1jzigRKMj0UYjY6RLS4l05hScpHHJ2y9Mo7Ql2aVtZIPaukJSzc+Xas - iFVHsk/FddbeAOmcZ9mnOgTyfCHnawTW1yH6F/pNKirjDDVlREne9esS+yAGek4Anoeou7v0RIi+ - DVyyf8Xhd9n6ErWYjjvRRX6B7FnaqZ6nb+DOr9TI0li6OZZQUjWoJ+l0Wdlp429AcrP1n9P8zXvc - 3Lj6f+wnoBQGRl2GiNqo+42ntoj92/9X2zXlYWBBGPdGYckGY38JjZXs7PgsBR2JsS0r42qMIZrx - bVahzLNHfFwt1VKL5Jz8AgAA//8DANV7SjGkAwAA + H4sIAAAAAAAAAwAAAP//dJFNb9RADIb/yug9z6JkywKdIyck1FvFhwiaTCemmXbiCWOn6rLKf0cp + rPgSJ0vv89iW5ROmMlCGQ8xhGWgnhZl093x32O2b/aG53F/CIg1wmOTWN+2H9Pr65m580158fPvl + G/H7q8O7qwgLPc60WSQSbgkWteQtCCJJNLDCIhZWYoX7dDr7So8beSoOfd/fSeGOTx0b00GWaQr1 + 2MGZDtcjmZmqFDb0OOcUk+ajEQ1KYnQManSko8npnkwMKs862B9jKmV6CBzJSyyVtnFt0/Hacd/3 + WD9biJbZVwpSGA7Eg9elMn4Coa8LcSQ4XnK2WJ5OdCcknhf1Wu6JBa59+coihjiSj5WCpsL+T6M5 + 80ph+B87924LaB5pohqyP0z/+r9oO/5NV4uy6O/RxQsLofqQInlNVOGwPWYIdcC6fgcAAP//AwBD + +ZcJCwIAAA== headers: CF-RAY: - - 96db65298fdafaec-SJC + - 991ac1356ae4cf61-SJC Connection: - keep-alive Content-Encoding: @@ -824,51 +782,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:29 GMT + - Mon, 20 Oct 2025 18:59:54 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=d4jzhBCkIULKSHmXzcCS57TQQOIVFPc5FzW7kbb1N.o-1754953709-1.0.1.1-ZIykQuWjgO_qK6vBSkWuD_JQ1qyN8UMUa85US2lW9Lj0fEzjr.q22PxCQt1m7RvQagdkminRZl.y1QtsTFOjXBguWJEhpqgoLPCfOq24e.4; - path=/; expires=Mon, 11-Aug-25 23:38:29 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=yllY0TiDRDi6PE5u8pr.h4nVOb7lBN7qPU8k6O61NRE-1754953709956-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:53Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:54Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:53Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "573" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxviksUhK5Q3Yt55Tue + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "844" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999818" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_77fd6ffb0a714951853d3c13425e8e49 + - "3331" status: code: 200 message: OK @@ -888,7 +838,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -898,7 +848,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -908,124 +858,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1SaWc+yTrfmz99P8eR/au/IJFW8Z0wqcyEgQqfTAUQERGSoAmpnf/eOPp0eTu5E - wNsKq9Zav+ta9Z//+vPnnz5vymL+599//nnV0/zPf/teu2dz9s+///z3f/358+fPf/7+/n9Pll1e - 3u/1u/o9/rtZv+/l+s+//zD/58r/fejff/5xdxcHOXNxGdkry3ASC5cn5o6bQtn2lXRQl0TFmxPC - NZSfmQzCh5TgTi4COqzzFsPteFuJ6QaYzva99kTnczCImxBunFgHBODs8Cqx32mvUXfnM5IU6g7K - v5+JeF9VOGFL89bW3eXb+Sl4cJd6Eh6ZdxWSTet7CG9HlSiolHOW3xs6vF+hiNRzL9pr1TSB1LzF - CqnLnI6UKCCCumzZHqyLh0ZBzekgZUeKDMdb8+2xPDPpwBYNeVxcnC/He2VA5fkciLnMFl0L2/BA - ThJKZDktcrpaYyEpqUWQfJYW+nkN9wHcxPGJ7A4vzeyadDlc7w8XnYKrmnMNn28wY6IcZelm2UyZ - 9T0cwU4hl+fY5nTC9wCIzGMkuuO+wwEwkQ9nt3+T7F3M+UKrD4YAqh/irqkTrr4MPDi5boDfcuqO - vHp916DjA46oyqnKyaEFHBQNSyE3UXFzVtl3GC5j4BN5uAz2+uEWDh7O00QCY2eGm6+4E+xO/JOc - Kz8C2/tgnqCiKicSFf1CqdUIqrRfggpFq5aFdHpnJTzvNZ2gaVFCNkpjHyrWoSDH2Zg0No2MRSye - x4zom3XXOsTdNim9+wKyD51js7ZoLJJ9OR2QkVy7ceFuTws+ikYmJyZI8kWLBBU+cQ9I0FqpzUDr - pcO59VkSsfhCsaGFIlxL0uAdKg/2iFg/kHZx8yDH1pRDhgVWBd+fQkD2xWlzXvNaDPstNPB+Snca - JWGrwtSMTXKW07mhRKERJAfdI9F3vRxReg7610VHQeY88/Vs6R48dR7r7WpVDocz7UXoji9MTkPP - 0K3hww1+dv6F3M+fa87n9uzB6spM3v7w5mwaPdoTeJ58BT3Oe07DmeuX0kkQQ7wvPpO2cEehgAy8 - OijU5hGsn8cjAo+mH0gy8wHgTsd0gNeas4i8maG9ovNOhaPax0hb15vNXUSLg5YFz6SwmNZelZsc - SIbBOcRUpZDSW9zU8DYzOXIO+8De8ruWQcp5OUFW0dtzd6kt+OBigxxT5hjyqSrp0tYFNbLJ5aJN - NapjGOnDjhgX966t5esjS8nzQvAipzCka1EYUCcD9piJdBpPylQUpZ3VEvlqf2wq3g8qeL/UGWVk - 7wIKL8dMcvaBjlITZ9rmCvcKoqlIkL+qfv6pZEWAj+WxIHM2ObvVuXyAKaQFUqPsra0VG+7AxXRv - KBvl2t7Sh2kdvvmMc9ylzXafuFgK48MZr+QD6Mq6xwWY8emNjgp7tpl9eHfA+1iZpLzNr3AVqnGB - v/jIRm8064u1a7i6ZeCJxXgOt0NKC2mqW4TK02POqekVPtS7JSEmZCoNj3taQnI4eZ5Y3pVx0wdh - ky7bU0PX7vYCVIdgB9v6cffa/KODbX8WY+C1hwwVIUWA3fRrD5lLwCBzTdSc3k1SAm9NZOLvb7bG - DkASeM84RfhgvG/56vTJCU7KWBK3z6qRIy/VkdYX7yIlGFfw6ZqAg8Lz9CAWz3N0a8veh0vHHZGd - BwHgLvGzlKqkskj4jOdm2nTNkoQyl9ExiffhWlDcg2NUIZTxzj6kx/LWw4myFbkE44Vy44mLpR2V - jyRdEzXkuf3rBE/PbUDmC+oNvw/ECbZlNSPjtTcB7fALwz7vRWTm709DD8bVl+63+Y3KuKsbrA/L - BoWpDzFYsaZxbdkHEDWtivwxmQA9cG0tRYF4IUXsK5T3PJuB8qG3UZqyJN+0612GnPl6E/daHzXu - wGXyL/+9vjk547obFUea9mmE1/ms2qv2EDJpmzPb2xmXM+DUtzsdbGhekKHHRr7gF+9Jr9U4Ynj2 - SThdqCTDRnpBFDDwCHhGqQXp5oCB6ObChpRj9h5Aveyi5Ixe4Va/ewbq3ZaQlHZnyqkWsWDTlFf0 - za+cPZwXX9pGaee9arpqy3i6ROBbz8lZqfxwboxNlj7t3ULefBbpNlPEwI++6/DzLjtgw0bTA2JH - N+LI9N4sVJIDqSucO3pA3dAwRaUMC7oJ3uKGlUaTriygZF50dOU2FC6GIEN4FIodScLtSLdO1qAk - s56M9wLcNcvN1zxJb3URpadn/9vPC/SqByLnN2Pm7BNfDHjvhwTZdi0DJn3sDDG0TgoytNEf2XdM - HNjdlgA9rsKLssrMqVC8s3eiA10GrFO/fYhKdCT2ihttzeUsghzeNZh7ODeb8bwuAu6zPHvic6Aa - 1uGzgN9+7kFHDCi3zmIMfvF2BiTbK6xTHSayWpLTHrN07SXaS2NtifOwrka4Ie6xQd/eQQwvLyvc - pK2soAknhsjSyweMLR8M+D7WJnkcV38cDGHewdFzLBT3nDhuj1KYoH5l38Q893bOTvsegiLBD+yA - EwP+8sJi3R6e0A3PcN6nfiX96nWImOff9w+2J3cjR4wwoO/3IMBvfUS6vJoj/+1HUjttMvGU6tls - lRwlUH3CPbqUZ9RwTLtuEupVl1jn18n+9RdwRUgk527uxjXYsQlMYxOhY00v9vp5yZZ0D8MCOfur - YvNqnsTwRBWAgZzdGr7sTjKoj6GJqVVu9pTsggIw8ObgjwRUyqBRFyU9CzekVWigqxd9evimgYwQ - l+kjc6pn72+/O0aqrTEcLkXolkuPzARPI85YToDbk7kRTZSbfMvvdiISEp4wG6m2zcZ3M5b2QfUh - HijYcVH2hQch0FbvNRuOxmRsKkiBd+KRU3npyAc7OYFgXuMvv1j25t+nQOIVqyPmpIYhXS9d8Pd9 - ofbJalu7+BAuy34m7tkdtI0xcg+6WXT3oINAOLtdEEHnqW6euK5GTufNiMCXz0jmxVM+KzfZl66+ - NRGrEZKRP3BTBcJSXYh1ERV7a16NDveLXxHEhgrdmNA8wWEPeWKGRG4Y0+M2eHgjH9nfLY9jole/ - 9XrY0lT7c97HAdhl0uAJrfC2vzwiS2d69xHqjx+6CdUuAO94zZBqHR1t7KtKB7PpFUg5DPW43XO3 - h+vtLWL+frs1yz68e/CIPxy5LBFtCNxHPTgV6YzXRHlqOH2YBtwz04giRXBCTkDHVtSCLPL6Syvn - rPQuDXA444lkzO4AZi/6DHDWlws6HbcnnatmDESClhrJSrW3McMNJfxU8h7XDHyBkVEGARSuMZDb - ZurhojBdDJTT/YKOFhOAzYQXVarO75TI6u5lL3TLErgQnCMNMU97ZdSbCKXDlCJfqfYa6QpJhXH4 - 3iOdrya7D3Kz+ptvh+3x0mg2KJX0RNaNnG8zY9Mv/4rncDdhiZGeNj1wUw3Hg98gz3kVNne6qbG0 - DpeEpMwrBKzT+yfpUHJXgrwF5puAjp0kGoZCkmDUtL/xfj8+C/rm4ziJTs3BUox36MvP2vJ4vDDY - D6BB56N+1KggkQg+oNISOZa0nAwf34E/vfSuwJTT1lVPsKJdg/R9ctVWM+UNmL5PMlEbrm02JlT0 - H797nTsMYHFnawB5MV8xTeTdOPWjUEKtGV9E/8aPP4zcAMclcVEKGVljsdQ4MFFWm2S888hX7WrV - 4rc/4qVOnzYnts8Y8rM0EsuU7/nC8I8SvnP0Qi46hjYngpsOX2zro/idNzl+LM8EpGZkIvf8YXM8 - 7kEJVuCZyDHjnbZirk/gL55HqbmORLLUVjpzBsb7kr80E1leJ+lbD7w9Gz4pfYDPAnFc8l5bZ7Y9 - W+1LhouGviXfbLSZ/bSRdJffO2LtyZ4uj6QWpXOuX0l4vlTNhNhtgSjdRPIo81POdwGy4FdPEKVq - nw192tEGPRmOeK8PLpje/TGDA5Nq6FF8HI1DUO5+8SO62jSUHDIXwqJMgZfU+VVjo7T0gTwmAom9 - dW4WP7gksDnYq8e4kfWXd2GfDyIWPHlsSPOSut//J/aq2c18990AandoeNxWSWBG4yOBrbo7eLsY - PUL6cLP6l39Y5J19TqxmUSV2dWZyOYSPsJUEJoIsFeyZMp6pYc3LPFi364w5VBxtUi5UkI545Dxo - xjt7GU9pDEgzB8S29IxuAnI7YBiMg8pM5MCY3+8CMLNqQ0ZafPKVv7ICMCFmkIFrK2e5+lNB+/Og - SKeQD4njmy3cnyCDLHeMwDwAVpRKSS5+/RuQztYjSXQ6BwuvvUm/+iSGYrQ/I6c9rPaUDa0Mf/1G - Vvg6JEeRc2BpWJAY9+U+vtqX30rxaTmQUrxuYJusZybd51ODfnp280kBwZe/yAWdJW2rr4IlTTc5 - Q79+vAwPh4HZqWu/eofXNt4yamlkuIRo8BRo3IuNVciHjO7th11H10o2BXF7GALSufQTLsvJEOG4 - ZC5eFfPY8MHOyH77BR295D3SqWhbADUjRI+SX0fS5AiD2HZ1FH95ZBGqNADfekeuyyRT5jHkLdic - e4aFtDBztisSGbLDWfNoEANtDc0mBmf68Ilu5RPYav8cQeb8mPAm3iCl2/USQ3SNCfIUcxfS3Ygd - 8ONZzbyhnMkvQiXW5hwRNe6ncfvxSNJILrHjNwiXFwAM/PF7/HkG2pcPOTCG4I2On/aWr/XOOcE4 - fO2Rlh3ycfXv6QZR06nouF9zbdm/XAGKTut465rH+eat2SR6Tv348tvSLOnaMWIFywPetgcFVAxt - A7ihwxC0T/2cXslDhZMomb9+N/7qK7zVwZugr57d7ru3DLPUV1Hx81te4BJJzRGXHhQEEvapduug - /ziMxH9Aoi0eZDt4rRmLPL56dGMTzwA/P8jYp3uN6qPtQzVjr0T/2Gu4vJKglDqz3mNmCBh7YLih - +N1Hceba+cLJ5wHmtR4grVaOGv/jX0ZTnngpWSekP/3QXU8MQVzWNovDuCX03q2A5O99/vOarR9P - fvXBGyyx7PvwhNo3ir796KvXS1FsvAwptmiPi/S2B3C6SbUnRXkdrrKTJeBzHnTkWZqq8efd04d3 - 9lF621c/bO+3nx2qS/ZEPz6agmnzpEQvPp4EWUtjzLTtwZSXry8/tHRTjoMO7vJrR371euuKoRJV - sJzI+dyV4OcfiY3DnD2wT7p8ve3aHVzdIiDHZaookw2TDO1imPFGO64he8PhYL3rGG87cg+65M4Z - g2/8MY2oa6+y+BnglBcvUlwPZbOu9QH+6h9SXvtkpFzjVXAXnCNP3JMHZZ73907axv0OKdOyA9RY - 2QG6ztlCmgN0jR0v6QSp2HfojqGYr0LVLPDrbyAHFro2ubPVw3OS8Ki4Hnbjx9CUBFKjaElAAjWk - nnaF4KdnPoLZN2vDKwHgwoygo9O5IY/Oigoe/t5Bp2sd/vQhB88vV0LGflFDDnOiKP70+FGx0Lj+ - /DruaBceZ+xpODnHnQc+lbr/8ruSc6/zaYFPXuG+vN3ZlC3NAm6dX5MyVF261M9QhrKAdkh+ddu4 - 1GiI4aWRH+jnH9JZO+jAO2YcMhX70EyrfYSwXMsei+k5aOilb3twf9YEGdR9AmKsUg+Xy90kZmtZ - +dI/rQ52ahojN3suYFo+gw/fVVujiGOZ8S/fH7VXSeLv+teEry3QXocbXtH5bpNsMKu/vGxlB4eu - aHxkMM3eGbKPy2mkK3YYKOivAzp1UTVy0hZX4ILbkKSTSv/mF3yN1EDeJAv2GPeRA+UHq2FGsDXA - xkfCAC1IIg9ymzwyPx7ydvhJjOgkhsPbOnCgN/YFFg6h3/BZ4jNwJswH+dX7RFlfpo6YSEtEtPK+ - hIubpxCwsRGRTFYuzddvlGH8ZAMU9brXcM7R9OAhyyxkOrZjM2q+cXA3ijkxm0fQfGTx2cPPhu9E - tp+vET/KZZK+/ghe1N3RxlZ44oA4RBpRp/SYc2EXJXCKYoi0UNkaylu5CqLWroldQS5cod8nYIms - Nzo6Vm0vFWuWcOLqHVKiu5Mzy6f2pevp1iLV/VR0jSA/wMW6Prw4E2q6FXYwSXRdfHQzLnEzC/rR - g9QoW+LawnOkRa9tUO52M+beeRMukXcXRVUtcqT4B37styvgxLuq2t/1Bc0a8mIL7eV1Ryfh2TZL - lH6/fy5Mom1CSrcDF8iA3wkFBscjsim8uAk8HDXvr//CY97NYNozM9FJr9mb/NFKcFM3DenGZ2tY - n6gF+PqryCjPMmDwWMkw7+o7UZ6jHjLVpT9BexBkUoS3tqHG+7wdNFe5EQ0xijYJ1SUA5Vr0+JNg - Z9yGhKgw6fPE4+fSob94ScKrGhA6vGON6RojAp4YxMRQDnG47uBB+OlZpBq7T4hlkbGgq0tPJEf6 - Kfz5XdKL7XyMG1PT2MQMxB/vIvudGhrDF50Hfn6iF6NHvrAO9aW+VVhkeunaTHyBHfi50Amd38zn - 5+eVgBuqBOUr1mxenU0VMn12x1utD+E3/1r4fEYZOpFwygnmjxnctduGN+aC88/CDD38+s2Yq3br - iNdLuIB7lh+JMxfrSFmxkiXeu5+JWx6PzfZK9qXYKH6Igm//X2qqYfDCZUfOH1Gwl8kuE6A8m8Fb - Vb8P17GxMuDz8ETuIzHAkp2tAepb5BLlFps5VY5M+5sP4INMcL7efdcHVbG7Eu3r580x3lRQU01G - 3l4ecmrCsfrFE518vgjX3/o9lrPx4SKdcnqiIIPOq5CIZybWyCHutkjfeoAioFdgMjrfl+xwuxEn - 9p9gOe+1DQTzO8dTSAlYXqfnAlKyi4lWiWrIfPPloEnl5B3iSzZutpgHMDEEBtkl9x6pt748yGHY - YB6xo0b9+26B5qUviOEcejAHeSRLX32LdEWYws2/twGct9rwdsNLpnyHXxNsl2lBlhc7+Qz9PoPR - MhjEsRjdZpSLs4PNXjZJ8uXd9b4rqoN1PRP8diDWVtkJMvB7Xj33mYY5psU//YuQ4akjbfLzBK9Q - WpHnM31Iq8RI4Je/sdhdrWbO8aeFfMjpXvt9P7R5SS28uGPtQanpKO3kuIDwFV9/84dwbXjTh1eL - EuQOfafRWVtPEmt1D4IqVwYcgkYn/fx+wypiuu68upeuUccjRfWNnJ83Ofo7Dzu8oD7SVo08+J3H - EKP4ZHRS9oUDvvqBxJmgAv56EjowGeuZyN3M5lPV+JsUHaoS6eik5/x5EjpYXnY6MfbpQ6PxHUdQ - IyjFBFZhuAS5UkPOfL89oIXMuNyfYwn1S14Q/X2sxy0CiwG//IuU8ozGnx8JO1eyiDbfVcplLCdC - 3VSfuLHKwP763xD6MLmQ8CTew82hSSHxxZShx0pmm2peO8HLYBieNGlSuHlrgOHL8VsSTOkrX46B - GECppz1xkthv2PViBsC704VoX338zY8e/OW5ILpotCtYVXJ3oUNUBr4olrayBl/+J/aJ/+SLm192 - EnO+T5gXxKFZNt02YH2Db7w7Pdx842qoAkuyTGT6XDOuqeqfJKnsZeR72r7BVJoDwJ6BQmRRgfbw - 7TfwkOwlLH39pr/+yD28FMTv5mu4NlmNJe7Zq+SqYz1cNS3lIHuZTO/gpZdmVeadDJvjVJJHvO/H - rx9wghF7CokSjBfA8fnBgQJHAUH6MFOKYK6La6qevQqxB/Cbr8Avr3vb9gjpJN+XTuJujIh+PP3d - v9lPX3qdLfjhQrcgk5Scc5GCyipcrODD/erJVx8Abbk9gQi/++9vPdruZgSlMuMyfPj6J0xnY+ZX - n1BqvG/h2qM2AXhtfCSz8xnM6etQgLFYJW/lhV5b80IQoGvmE/n6nQ0nVJwPX7WwkeMBKSGud3EL - s3WQiC1nt3HN2DaRInt5k6+/YpMyukaQck6Ojg9U5NhSSgMWr+aFXJ+fm7nbHxLIi+WFoGfUNEu4 - 8j781l+kQpMP5+98WPjIdY67erFBnzsIQ6Snu7/zIPy0VV86jJ8cT4f9ZpP0EQ7QsZLWYx1L1ZY7 - Eje4R7yFnPeGte9+xeJGz70n/OaXWrUXQMx7HvrWz2Z9x8Q7rLeXSOSz5H/nqYou/eYhudujcaMj - bA+FgLSfngaU79ZO+vLfd/7Qh5t9hxi2hO7watEe/OYdwAtciKvMYsAG/U34m1/coT+HpN+SDQIV - 74i9WThfp3nxpZ8/mUTrhS5Xto6gcJJP5DdP+87bORhOgYa7kdwaTv7YJfA1vfPgd56wISi38J/f - qYD/+tefP//jd8Kg6+/l63swYC7X+T/+z1GB/+D/Y+qy1+vvMQQ8ZVX5z7//9wmEfz5j333m/zn3 - bfme/vn3H/D3qME/cz9nr//n8r++P/Rf//pfAAAA//8DABQsvYjeIAAA + H4sIAAAAAAAAA1R6WQ+ySrfm/fcrdvatfSKDUsW+YxYBKQRE6HQ6gIpMIlNB1cn57x18v5zuvjGR + ITVQaz3DWv/5r7/++rvLqmc+/f3PX3835Tj9/T+2a490Sv/+56//+a+//vrrr//8/f5/Tz7b7Pl4 + lJ/i9/jvZvl5PNe///mL+e8r//ehf/76u2abC5JX7jqwVVNzopI4xcycG5ly0D+0UPU4xa3jiauI + 2mgpJMzlMTcH2VeHO1UiaOvZil3hgNXRtZRUsKzkhDXlxmVTwmcWsNKPgq3C6YIlpwsjcqHjIP9E + uwrfPdmA/SFV3NVedjZZT50Lj+bMze0uKIL5apodLImoYBV4UsZHY6zBDjFHZDWKkK3DN/DFPDMK + dD6VyUD9BXjQ8izLXXzxpRJy0CF43D8Uadp5zZZLe01FqMAKJ99mzlbWWkw4iN8vvkxvi/7GB6kQ + MhhlQm7T3gS5+IlmjBTTXWmXSdMMxAi/kSFpC52XS7kca/ZzQchqlYxpdJuDHZ9nKDt+LZvBbddB + NCkyTh9inVHXf7jALD8DvihNE3wJ1Tz4Xg4dvme3KaOh+50h+bZfLNPeCdZt/yCO9ev8vqHLwBjL + 6Qm2/cGqVRT2+BuPHQwZP97ZJWNfJ4PAluE8rCd2b9MmXzho6OGIgyY4B0smTSO04OuNnXYNh5Wb + vwY8Xr8GTh6vhS6kMxXxcyEvlLp9qhL50T9hPlINn81KDjjJaEMotsccn87SqPJ+f5aEx15OsPMA + ZVVr+E5EsXEO6HSWHJt/cYdFdOrnEaHPpc1WXVwNeIjvEtaJFWdrFR8UaDw9gD3qxIDpXd2Eucqw + OLXQVR2lIhAgivfVvArhMRuY3vNFf7Rf2PgASeUu376AhBRHZG37y01Y66FlZadZ8I47dYEPdQdN + rj/jC6BTQN6SGsIyDl0cG9+Hus2PQBweNBTpxTujSllbMBUixhXkSAp6dIp38PFZZ+wczwwlohgQ + qH6XKw6BecsYLr24kOO0weWwxNkLyEMfyHwoo5DqXIWza/EUWUa5zowujupKLTOHVa47KHXU0SYO + 9wpBKjs9vn6pD9g3OLcw1jkL29XogyXdizvIVkyEnGi42/wxSgXoteEJJ9OltokYFL7Ym4qDTwMX + 0KXVaQlZtcuQUrZXsErPKoLyS0ixps6dPb4hseAozyY2ypMeME/loolHtHsjJ3756oSHMoLEj3bY + imFO6fZ9xebzGGeWSWBASZCbcL83Zhc8lFZlXTPhhPSaNti47r72Qu2jArCRTiguHxdAwKtJRWuJ + dBRkTEIXYf8o4C1bYnS/++7Qzec3hKUWLOjEv7usAekww3vH50iao5YSn1QcuB/lO7p5U5ktgxxH + x2BGxzmQ84Quz8aIxNJfT/NusAClst7kwH/PH+TK/cnmHDxpoDwUZ+zlclOtHgIL7PRYRrrFmdX6 + yIcSHnjFdw9XeArWq1fl4nkPXfR4Z1O2gDz34MKbCb7A76vCeq2W0GyfrrvlR7B4nwMRG1ZUUWb0 + DSC9NSpQUV9PdwAPDSxmbUVAj74puiOEAMcc2A7unwL9ky/o20YtmL/ZHstgslXO0df64JTkNhPe + uts0GmMDsjx64lM4FAMbB6UjxsfsgswRL8N3nxMCm9p/YSUnvErEoPNgHCk6clvsA8Z3rk/RPnYW + vuLPVM2aolpiUFEZXdBxr67J2x3BvekQuqrTPlge5qmDof4tsF+2V7rFeyTuak3H/qVXAqbudANe + WKVH2oy0imU8YYTWm5nR6WacByI82RlqzAKQ5qvfaoGS7okN//2gbLXLYJLjgsBi7vxZbFRVZZos + 9uHDHxXkC2QEa92GpZgr1hWnvSpTNs8AAzOTsdFr6HBGpGqS4Od67rDO3nWVT6ggQXcXYre0FGdY + 73h1xCy/BPNucZVsMfIuFRlhtl12/z0NPE3d+LisjY9OxmraqzZ9XPFqFMq8KDKuxi0eYFclIrqa + qw6Y/uQfRAHyPT4JNhsQuX/54Hh3LijZl01AVBAz8P3ZxTih+YkyBGADkoK7oS2+MjZyJE88PSzT + raZ1VRclkyXgXGQf69/Rq6bB8CURLYmFzO9JoIsHXgxcJeM7t3NzsUmxD2pQuPkd60v0qKh6LHwx + BPUDRWNiqmO6FyEUSpd3j15bqHTfujnsOlFDiW2h4DcebA1zh6/Ht6EuPK8exHYQpJkB1S5YX4/A + FdmmENAz2HfZKt5iBmZj5uLLyzlnfJXLJgyIHyN5f5MAY1xcR+j0VEZK+/UGVpuwA1+66aOwdRrK + RrBVoMOdH9h+chLgxM8phK8X1bFVSpW6fvU+hHruvmdWuNxtTh/bELT2rLskrag6nSs5h0riFi64 + hD7lNvwBjr5+8LnfSTa9e2cNmvv0gZ3nzFKaQ7UTQX29TnOwNwMa7F4EnngCZ5ZWlkrD7FnAlisY + jI6iB7hJT8w/eBAxPAI9OVx2kF4dG4VPKGTrWMUjjGXxgxGS7Yw3niYErJPi+SwYDCAtKDSYsfen + y70O72DaR1Ih1r5i4Ry1b5Vu5wscWu6OXcucATWb/gAdMNdbPJwH/v0OFTHmXAmfj8G7WvlEC2EW + 5HvkKTKqOPxdiTjZygXbfGrYTO9eLBC9EcBqJrcD3Sm3AnrHCaHTo75mq5ZKlnimdo4c1Mo2I3Fd + BPG5Eeal4O8VM6ycBu7FyZyPt5zYYxIpORhvJ28urlihzKnXBJHd7wk6XdWeLouVdLBRUgnZ1qQN + zJV9+H/wzj0dLcpN7E6A8Wf8Ik0XR3ueWO4A+UsYYTnmq4yueDCF7XvPu9PRAoycJpEoOl6H3VVm + B5KL0IWz91rc6ft0VP5AvgexPHM80u84yfjsWuRwd9Lv2Mxda8PT3BfRbm6wsoAgIMM18qH8rvdI + XSRWXZ9RAeEFnUbseHIfUGkHLPi5LC93/xIFiu9UCWHZK8Tl+beZEd88hGDDR3z7PMZhdsrFE0c1 + HbFRCvHAmD2sgXfnFmwSW7ZpIVYSdJu4wFYwyBX5vBIDVlV4wLb2lCjn8dwMBYt6yOkuejZSti7E + W1hObqGmcva9AS4CnHSeXaFGH3u5+qEkHt5XD8mB9K0Wh7oueMXvFDmR56p9igsJPDWSo41PDath + PzqY1AjOghTfq+XHN1qp4fFjhZROXBx2wO2aad69jwXFVX42oXeQBnRNfCdgGpvTBEdpU7fdBVLG + zuHsgN96E8YX7OnzPvdwuIY+soLhXc1WZ1vC66m9ESqdHZi8UXjC2Mt3czOFbdZfXeEAsn7s8YOP + tWAtTtwTnC35ivST64PFlGVD7G2UYMPGjb2Ey8YjgJ8hZdTf2eKBOwetr5Ygzxf3Ku6GiwIF9rNH + VpuN9jB9kgJI+/k1ExI2KjFeayFu+Qdre5ux6aE6zcJp5sb5QOy3TTLRKWE4xCVCcpnbzDEkkShb + 5xin4TsAfDR6higvRoRVe4bZcnabVsyOjozvT1FV2YXkNTgPx+W3/mGs3z4HJdPYIReOvbogpmkB + t1Q10p97jRLxg0LokUeNT09RtWd+Khy4el491/ltzEinKgaEyq5Cbvq9Bctp4c1fPGHT7uuK3CYP + Au/Us+40vXuw7nOBgOmZ3GYgf3fZpCTxE06fe4PdyHUC9nIzevgAjIOiSyWpDONXHvRpYuOrOr0y + Qtz0KVz3nfNnP3jtcfXhfV1HLMPqkdHbHj3hkVYN0vldYLPVeNdgyzAeum7xinP2GgOsjWekFQub + ja0OSlAeyjOyfvyZu8Qx5O5Zgh0tuoFxMJVavIXFNItn5AfjxgfEc1x0Gx96U4K/xwXa1u7gFktj + AdwNugR33Z6bj6tX0unUhaGoubyIz14rqdzVJYIoRfUNe8ylqKabrzBQzXwBJxY2MubwxhZcE+mA + 1Zh9V+SyhASqSjjMoq1e7PEh31JoM7q68WlH5aC/tPAikh12Fq9WxzARITzMhuKGVnxTGV7cmaBx + mAMO536qVmZaYwgNe3H339wKyPuYSPAq7cDMxd5Ax7M7tTD5rio2hMGqJhqJ/o9/u2QKxAGfKYqh + vBLBZYzlFSwvaD3hFh+zCL/7AduFp4jAryecHttXVXvXOoR+oaiTqDHnYHxDwYI/fs2vvjZghIOD + aLGIc8U7FMGy5U+wu199fE74TCWlIbagNyUHJUHH2x2NJwaYnUmQ2gTfbAkTFoJNvyCnT6yMecZJ + Aa92RtFp1nk6ZbdzDZuHRJE0ijd7YsFNEHUY5ygd/QaM2/zEB+CcmVXomdL5vo9gZHxOSL0nC8Dv + dyjBNcX5xl/LAN9yw/nhLUYvMQUf8i1q0anzI86qkQDSPN+p2GhGjbT85gR0vl40AMX1im9qK6o0 + 92NLpL2ZolfVeAMFD8j8wUuUzLxKFuNQiqfWiLG++Q1sXrYGPMya4vIu01LCoiMj7HbjAVny+g2W + MjkIkBdnZ+YOL71if/HUfw8DUlr3M6wLCWsQ+nmAsgGvw5Rq+xn8+NJrMe7Zn/2+iMsOx3ImUT6K + 7A6EDZvNtAnOGQ+upgQ/6KW6kPpAJTdGdYEmVgg7aTCC1Tt+PGg3n3Hmb0dI1+69RvASchjZ8ncX + rL/868LORuZCUMYfUNcJ3vcdYmTsxuGP3tvxjwtW+zMISBwPB/jj75Gf+Oqi4RcBsbz/IPVS3jNi + 29CCAtvskZYes2E1y4T8/BTkxEKmLvt6OsAtP7iMcosyclL7QrjYwguhqlkqGmZRIbiX3XHmr08K + ligcNLB/Hii2KfEyyu2wArt4PWPXfksDV+R+BA970mIVNwMlLn+SoCaECooS9aUuh1UOxY2fuUcg + 4Kpf0nsLxT074IxnsUpmn+1hrDMWDr5RZ1NB2png5wdZJrcPFsYfPHjsmxuWZWMNliRSnmIOd/sZ + vL6M3W/zhyfvFqFsbe1s8eGphP4B+kghoa4ynOjm8HR8FDPDTU5AHGdgoHR4Mti9LHVFIkF8/vIJ + 0rb7/Hl8WD/95O6P5QfQWfP++DHoXsWjvVzU2BL2XJQig3Q2WDUVzGC8sLW78n6prlohxACHgoY0 + 4aaobPdeQzho1ctduEQftvySHvn2+UbK+VMNs9v7rrhK2tdlE9tSmb1cd6A7GQ3StU9N6aZngJfJ + IjZ5ObBJ+bAkgU0PBlYj6WWvW/4R4kjSXSp924EMc7iDY8/42JSzgvLvdy7BDd9n9vzg6BxEOQdz + lWPddXm8KB2i+w4s0e457/nZAQu3JD38FnWLM5I8KxJdz/CX/9C5EeNhHYNdAfssC93DJ3hRTmg+ + O/GVoh0ycbQbyHnWZ3hNgIVUB2sqO53OIxwsrf03n/YQXSClWo+M3tLU0ajSDpZnhkf5xxGHbjsv + kByXGt8GXQnoPWcPoEPc0f3w7y7Y9JwLaClgdHlnl4Dd/CNQKh8HXVYY0D9+G7NvINK397lHKuyE + nx533AvKyOyLPWjcKneBoFEVC9LOAhRwO/dYAjnjoge3wLuccFgJjq29+E6SQ4MdS3x7pRe6Ek+V + 4G+9FgfJQIo8jWBTey8UteWcbf6Z9vPjkJHyRzrpVgPhOS67WWT3frX++Bk5pzM6Od0bzMxB7KAj + JiY+OzsrW8un0P7OOzpTfgFT/eo9GMiHEuXtygxL8PUsUVEfT+wvgAY/fgE2PjOviOYAb3wJ1vrl + jhWBOJSeKUrhK65SdN7wc62akYEalg/Imo1iYEBlFOAGYIBf9xdV6bdRnjA5f0xkeA2fDZe5dqDL + 69pMXnt1YNgCLaC6dqErzIY0cKGgExDIQrnle4H2ln4Wfvs7s5ueZZ26YGD7iL8oYnKD8mWpjsJO + lELsEnYJ1qZIILjf8hCH2vkaULuIJfjT46kqugH/Vc4ubIbSQpajOjZnd4T78UespFWg9k9+7eAU + 7B74EovNMLJOMYpiC/KZmqOejQyMCBBOtYrV7T/rM2EMBUWBSDqqpCKVBBRQ7+5vLNUCFyyQxjEw + buUHuafnG5C1/z6hE/o7ZEHqZLz9UTzx2dk1+sUXsdlPD22plFzviktKGrkcRSpLHgquTaROH4t1 + f/iFpdF6AyJLFYGbHphXiqpgOe4mTvj5c2gx+Kx3nIETPrpio1Py9iuSsH0N13TKkcXc6orw94BA + 2MdnrG7+2eqcShNcRi2dD5qC7OUhP2KYKsBFchOfAU+4RwqxEU/4ss9Ue33kVQmMgFP/rJ/HtlKA + zV9F7vsoAR5cJQmebsIDWw9RC5gdYxqwHQ4Sjje+Srtn7B43/+2P3sGAkX1gvpxybj4PZ1hajBVY + 6+jusiLrUA4mJSd+uEOPHNaIVDYjpgfQjURbPSAKSM6fIcDnj/DjKwG+zLULq5B9o03vqj+/S4Sp + 6879IVYDXtmXHJzd1UaXDzJVLnlFFtjVho42P25YNj4sgkZkkVmPK8W33HVgfdkPSN0P32AZB1qC + n9+YlpJqb3618lvvDPukDxZJTGuYHLx0w4Mxw4S7pRBmApn3CpjAcCNpB0/HVzGDH1+IWLqAq3DS + sTuTdVhk3pNEOzia+OTzevWLP0HwigCFPgfpcjqpPfjhpf0+HGwC1WcMdPz5uoJQdwFplTQF8sc0 + cHTdne1/54O7c8HqfjhnJBO1Ah72Szsft3oFwcEUgtR83rBp6hPFwYUo4Bm9JKQahz4jIc2K3/qQ + ziR5QBq5H//wIXghRkYosdOfnsNncbYGPtjdFxFPTIBuSlwAzPSeJ/78C6tX34A4TsWBzV+Y+65f + 7GWxrh3w9n6EdW9SAk57nbnjlt/cHb6kwyIcBv/nt6CzMn6GdVpYF+51WM+753VQqdg8F3gszAc2 + 62sH5mWpJfHkqwKSE38MaBDWPuw79+SySixR5t02I8xradn0oWOPm58HddqbeMMTm89fzu5PfHgq + a2XUD2B9bE7BOncHdlYpsyol+Pnd6uYXY3xlCAiAMv7wIqMmuY9wfz6v6HL8dMEfvXM5IH4mY2EF + Y18nNazMWXOHJ1eAdY0uNWQuVenSNWkpuR7aGLZhf0Oq+KqDhdjnEBY9xchc7m2wLubb+NVTsNZJ + EmC+UteLNT18sf0FEV07jXSied/x2/hmxgueF8KNT7jr4GjDwnKhC3/vK8ckU/FlHh3w0SUbp3an + AG7jx2B9iyaWHxObjd5nIeK65C8kCbmWcXZptvBWKdof/3pFt10IC6Jmc+tGQbDp6xI2/PBxSXdg + BmJ+sieM0D3DCETlsCTIc2BB5AypuoaGVVPpCK/J0cLS5h+x3MsQIE12r3kkvG/TDGQQPobuijMu + fwT0zXe5+JlgipKpm2wyYa2DQDqc3d3xJQb0vfNn2E51jfPu0mQk9FIfKvDTYcW5ehUPmLMP8HG/ + YJkpdsMvPwJmdBl8+fRXlazhTRFXmV6whpimmqt+LoFePS9YKr1vtjD4vRMlcpxmCNe+WspiMKFy + lppZ3Oplq6I6CojG6PyHn1HP8Axxy38o2fTpuivFCLyTl4wNd4VZn4fS+MePAdX1S+dffQyvlxzf + BfsW0Cz2Z3Hzs/HD6jR1DeaE+51Pdxem14qcpqcElwg+cfYJu4E+ONmApuEHWH9/r4A7FV8HWjcV + YHnz6xdwTKFA19Rwq4w5AvrLX20bHV0hfAd0tkupFb/fUEB3Y+3s7fymMNkXultu+7eEi5KKwjK7 + SNr09brVa+CtHjuEuBtQN30hQELKoyv86rM7iYEikfp0pgc1AHwszQeQJZLx00fBkj/qGBzegYck + OJjZuPEl8EovO3eBQ/fTXwdIL/aIt3pAxTjUcGDZSwQroy4HM5u3HQRDCbElxfdh3fBZ3OaDlQxq + YLxnt/BP/ep8ZfIMW55rwtM3aNApu03BxEzHGD6G/ortr1lVRO7vHtzqP8joRT4Y245ZDpu+mUd7 + Z2ffTd/BoU12yI2VUzZOJvHEnz74YobY4+5BeyjhonaFrd5A37t0hj7NbOSM3RwQ0wqJ8M7sxoWF + 1Q7r5YAOYMMnJKmsFSx+4vrHzW/Fl4t/tbfvqYnRLE0/P3eg18Wuj5te3M7LGSx9fW3FtNLP6FcP + X6903OaX7eaD8O0AG7FgAT9/vuVVBlBlXzLw9TTeM/92TurE45j8qc8ZjjVna0YkT9z8TvzSrSsl + reLH8NM4Bj4TlbMJM0octJMnmifGvlPm/QJPsPFtF36cR7W6jVfAv39dAf/1r7/++l+/DoO2ezyb + rTFgeq7Tf/x3q8B/8P8xtmnT/GlDmMe0eP79z787EP7+Dl37nf731NXPz/j3P3+BP60Gf0/dlDb/ + z+V/bQP917/+DwAAAP//AwAkSa3V3iAAAA== headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db652fbc7567e2-SJC + - 991ac14c199167d9-SJC Connection: - keep-alive Content-Encoding: @@ -1033,17 +987,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:30 GMT + - Mon, 20 Oct 2025 18:59:55 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-5f69ddd4fb-qw6cl X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -1053,17 +1005,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "118" + - "109" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-5db985b4df-dwfwp x-envoy-upstream-service-time: - - "150" + - "168" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -1077,75 +1029,55 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_08bbdc48fa714671802357b8d5467269 + - req_3a388e798d0a45b3ba6d411f98d7dc99 status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence1: - stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: What was - it that I liked?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "883" + - "887" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJJBb9swDIXv/hWEzkkRO06D5TrstmEYEGwD5sJQJNrWIkuaSHcpivz3 - QXYbp2sH7OIDP75n8lGPGYAwWuxAqE6y6oNdvl9/HX4fhqY5nX593Bf8+ct3h/sPx09Ybr+JRVL4 - w09U/Ky6Ub4PFtl4N2EVUTIm13y7Kd9t1tt8NYLea7RJ1gZeln5ZrIpymefLYvUk7LxRSGIHPzIA - gMfxm0Z0Gk9iB6PNWOmRSLYodpcmABG9TRUhiQyxdCwWM1TeMbpx6sfKAVSChr6X8aESO6jEvkPA - k8IYGIglIwF3koE7hIEwgjXHVBsiW6SbSiwmk4gW76VTWJPyESezfHXhA6GuTS9bpMQaaQkrd76e - LGIzkEzBuMHaKyCd8yxTsGMmd0/kfEnB+jZEf6C/pKIxzlBXR5TkXdqY2Acx0nMGcDemPbwIUITo - +8A1+yOOv8u3xeQn5vvOdP0M2bO0c71YlYs3/GqNLI2lq3sJJVWHepbOx5WDNv4KZFdbv57mLe9p - c+Pa/7GfgVIYGHUdImqjXm48t0VMz/9fbZeUx4EFYbw3Cms2GNMlNDZysNPLFPRAjH3dGNdiDNFM - z7MJdZHf4u2mVKUW2Tn7AwAA//8DAMVkVqOnAwAA + H4sIAAAAAAAAA3SRTYvcMAyG/4rR2VMy0wZmfC5LKb2Ubk9NSYzzsnHXkVNLXmY65L+XbDv0i54E + 7/NIQuhKcx6RyFFIvo7YSWaG7l7t2t2hObTN6XAiS3EkR7M89M3+/vTx7kP7/u3r+ubbUafzu1bP + 4Y4s6WXBZkHEP4AslZy2wItEUc9KlkJmBSu5T9ebrzhv5Lk4Gobhi2Tu+NqxMR1JnWdfLh0509H9 + BLOgSGaD85JiiJouRtQrxOjk1eiEi0nxEUZr0QR50ZH9Makg4clzQC8hF2wT903Ha8fDMND62ZJo + XvoCL5nJEXjstRamn0DwtYIDyHFNyVJ9vtJdKfJStdf8CBZy++PBUvBhQh8KvMbM/Z9Gc+MFfvwf + u/VuC7BMmFF86tv5X/8X3U9/09VSrvp79PJoSVCeYkCvEYUcbb8ZfRlpXb8DAAD//wMABYzEtg4C + AAA= headers: CF-RAY: - - 96db653148039447-SJC + - 991ac14e3cb81588-SJC Connection: - keep-alive Content-Encoding: @@ -1153,113 +1085,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:31 GMT + - Mon, 20 Oct 2025 18:59:58 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:57Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:57Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:57Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "668" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxw1h6Z1mBV7mPUkrS1 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "757" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999814" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_043ed284f77b4fa99536a4279fe48aeb + - "2746" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence2: - stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: What was it - that I liked?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "880" + - "884" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJJNb9swDIbv/hWEzklhO06D5TYU6GnYBxDssLkwVJm2tciSJtL9QJD/ - PshO43TrgF504EO+Il/ykAAIXYstCNVJVr03y5vV9+Hxy6du//WbvE1/fPx9+6g3fv95t1OrVCxi - hbv/hYpfqq6U671B1s5OWAWUjFE126yLD+vVJktH0LsaTSxrPS8Lt8zTvFhm2TI/6arOaYUktvAz - AQA4jG9s0db4JLYwyoyRHolki2J7TgIQwZkYEZJIE0vLYjFD5SyjHbs+lBagFDT0vQzPpdhCKXYd - Aj4pDJ6BWDIScCcZuEMYCAMYvUcCJZmuSrGYFAIafJBWYUXKBYxKWXpiA2Fd6V62SDHeSENY2uNl - SwGbgWR0xA7GXABprWMZHR3NuDuR43l841of3D39VSoabTV1VUBJzsZRiZ0XIz0mAHejzcMr54QP - rvdcsdvj+F22ySc9MS92pqsXyI6lmeN5Wize0KtqZKkNXSxKKKk6rOfSeatyqLW7AMnF1P9285b2 - NLm27XvkZ6AUesa68gFrrV5PPKcFjHf/v7Szy2PDgjA8aIUVawxxEzU2cjDTSQp6Jsa+arRtMfig - p7tsfJVn13i9LlRRi+SY/AEAAP//AwC1UvjuoAMAAA== + H4sIAAAAAAAAAwAAAP//dJHBahwxDIZfxeiSi7fMbrKk8S3NqSWXQCmBTPEottjxZkbeWvI26TLv + XmbbpGlLToL/+yQhdIAxRxrAQRiwRlpIZiZdnC3Wi1WzWjcXqwuwkCI4GGXjm+X1j328udl+Or++ + ujz/fvt4+uELXiFY0KcdzRaJ4IbAQsnDHKBIEkVWsBAyK7GCuzs8+0qPMzkWB13XbSVzy4eWjWlB + 6jhieWrBmRY+92Rmz4iikpiTj2ZID2QCqtgTkzimgJp4Y7RHNdqTkXq/paBHT47iuxbsr9mFBtoj + B/IScqF5x7JpeWq56zqYvloQzTtfCCUzOCCOXmth+A2EvlXiQOC4DoOFerzbHSDxrqrX/EAs4Jbv + GwsBQ08+FEJNmf3fxgsvhPEt9tw7L6BdTyMVHPx6/N//Q5f9v3SykKu+js5OLQiVfQrkNVEBB/O3 + IpYI0/QTAAD//wMA5PLB9yACAAA= headers: CF-RAY: - - 96db653148acfaec-SJC + - 991ac14e3c0acf61-SJC Connection: - keep-alive Content-Encoding: @@ -1267,45 +1177,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:31 GMT + - Mon, 20 Oct 2025 18:59:58 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:57Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:58Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:57Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1025" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxw1qmn264tEK4JjBox + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1055" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999815" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_83409e6537d74107a438ce8a22688819 + - "2749" status: code: 200 message: OK diff --git a/tests/cassettes/test_partly_embedded_texts[True].yaml b/tests/cassettes/test_partly_embedded_texts[True].yaml index 755472642..5264570b5 100644 --- a/tests/cassettes/test_partly_embedded_texts[True].yaml +++ b/tests/cassettes/test_partly_embedded_texts[True].yaml @@ -15,7 +15,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -25,7 +25,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -35,124 +35,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1R6WQ+yyrrm/f4VK+uW3pFJqmrdMc9QKIja6XRAEMEBmQqok/PfO/idnO6+MWGI - WsP7vM9Q//Gvv/76u82b8jb+/c9ff7/qYfz7f2z3imzM/v7nr//5r7/++uuv//h9/n9vlu+8LIr6 - U/1e/z2sP0W5/P3PX+x/3/m/L/3z19+Agyy+P+GSL4N9LWH6TQbsZCxstusbPMnnHrtmM2jzmZtT - NKdTS/yj1IFluY+M1OfqEGaF+ozHhw1a6d7NH6Ir3pqvwuehItavFJxT1GiUE2obIZ/RiDE9j3Tl - zicbRJ+JxbiaZG/xjscLtMTggP28ezXrx8/FffrNTCzTq+ux3npkUFbaPsZVzsT05CQtOEyDNu2O - 8O4t54OVANjBAzlduFMj3A27gm1vcWFbXG6U5mM0oadwbol8vV48/uN/K2hccyukh3BpaDsbPug9 - 08SGdR7A/PHFBDX3eiRWNU7xcHqlPPRDQCZwKthmzpzqjXA4rsTTdj1dv5c2hM7DuhO5+PL5XJx0 - GV2B/SDBq2H6BZaMCw95y5AkvMkeK9H4CPKX3JITFpyY1sliI0tMDBxFXQzW4hTd0FoXIy5ALWnj - +WClsHdVimXReXlL9IU1/B5CmRwa3orHwb/KIL1kwdS/Ydxz/E40QbVMBXEfykjnQNJLOOrClZhZ - U/U0MeoJJcz1SIrIHJpJMwcffmv7TmJ/5wAue2UrVGFzIhqFh5i7FnEHu70shTDsG41bGuDCR9JN - xLTXNB531HkjN3VTop3Is6GV/JogiOWGnB5vE1A/u6RQvq9nYiIc9+1q0RQpfEtxceE/+XhyChaI - R4sShXvpgF12rAuzcccQK0c0nu8V0qEe5wuxiWN5QvbQM6mqhic+7Fm/56Q40MGBabgJdfqhn4TG - 9GGX7CCW/YxrJmVnRzC9JJT4Rt9pq3ksItil+hcfMu4MOA7MNSLrt8Peyd9RcrkGkcQ0Y0+sMb9p - rCS0JeRTLIW1eoQe/bL+CsNsaUnIlqhfOmiY8H6ZOXxShSgexAZfwLByH6wcLVfjOngc0MEd7vgW - ZlM+NtG9gq+stIgM296bFP4loh6CbmL6xdQEW80YMJurOp3jewN4IjolENXwgy2pp/mUjl0GXd1y - JyarXzG/J5WLrsCwsBtpClitFPsw8aqcXOD50KxG2KegM2wXO4uhNSx/nwcmlfAyTdkjBIJarjrk - uJQjsn9TmzVTAhk6D3tPToB1tXW1nhUqfCbF7loNYD2e7hfJiRwZn/NdlbPpWMD94zUpWMWx15B+ - x/FI2qECp5yixizSNAao1kPEQZE2YJao0cJSWd5EE8eazlzeVODVx2so5MwX8H3lm/uLcsxxdolu - /fQbH7u7HfHFz2a68LuEh6fmnE5oeukNF5QHE5Yv/onDbTxzPUwunIbFIqdOu1Pym0+GI8UkVGMY - C5zQuXD8cDrW+iDwpuHDPSHG7H3q3AXlKzamGXySICPG9HJ+9awi5fWppoYt9GZR65WH7Jib2PzU - jUZGj33/9js+abbhCfN9vUAPonPIHoGprfs+SKDzMO7kIuwfdLkUjyPC7NqEAgNtb86D1oVyNR8m - Ljq/tVVlXjK8XqxbuDuXbb8GjMqCDU/J6W02ObfH1Yw8V6+I055ssJTIrWCxiBnxyPgEs+4ODCwK - icPu7k5iir8ggfAM/ClRbpbG6V05QRzNO3wYeLlfo+AlosllCUlRZeeztwYJ4LgLJsdJ8TY8lWuU - LXqJTztKm2UfVyn0Rt0LQelfwGymfQdTkJYYj6gC1FF20w9vcOClS087+eBC7nhysSPzQr9eUNWi - 3XXOQxvwZbzssVGhNvNnct0/nX45n2obvYP4iY1EUHu+YcsSaI9nQIq3YWv8C56eqHW8AhuFXsSk - jvZP2Bmui9Xp4FDWKucMfR/2G+tKPvdzOi4+Io/Rw15ZPrXWCJ81aoLiseHJxyPRdxzAMjxmXDze - qifU0fJE2vo0saPYKp1ZPPCwus86PkVGRgWtE2dQeNyXZEksayNLmxlt9Yb9tL33LXajDNhDhEma - qmMztvO3hb//H9Me9tRcLRlBSRSIZTACpVOipIiadY8DaigaPzS8ipJbKREn452GK5Fbw9S6JPj4 - emDt1+/QYXylf/bvkBnGDPOXqeK4niyNq3Sow55Rz0TTMdGoJeXrDz+x90adtvzw1sSXgii5pXls - Xx1FmEqxRyxGyrX1E31NIMpejq1bcADCYCH5Vx9Yg909Xk5OX8LddVSIps0tnW6BNqGMKIdJYKTc - E0Rz94QGKg0SU7jE5HkpSrgwTb31Vx+woeq1UKueCb4/0QesTzjz++ZejSTb+Maqu/sLrMr+TPB4 - CwDZTTREhJ0jot+ltn+v3jIg4YYjYsMUePMsKzzY+gmx+ELVhMOy3pBU6ndSpjKg9OTUEUA7WhE8 - jnXDvdu6gsmufBH1tnZ0jR9LgoQiakiqU58OSGUS2Om6QDJBdnIa1g4LAoO5TsK54OkaF8sM3Y+S - k5OQBD2rebYPP2/sE1dN9JxdfbkGv/VIXF+hf+ohNp+XCSBf1/jDYbxBKbDlUJB6Gs+ScORRnugO - vnGio/F70tq/+SGX2tX7WTfvM+Sel5SkZYW87fsGWN1XfcNPFbDJQ6ogKuhE1EnpGwruUYi2+ibh - jE+UML0SId66KLgQVNSs4ifOIP9NrhN6NWWzxsV+BZx8YLDraXYvvJ7fFfSIQSF49wydxf6xIkV5 - wQm27QI6IgAWvvJSJoaXpjnV6kEGunA9he/58QKzOz1UZNK0xZ5NTCA8b/MR6u86IoFl0vjLAbFC - /U6NCHZL3PB5cE0gE1MDy/4gU7Z/Hm/I3bsKscLp2NDP0Ipw64fhjveO2/y9SviCZ4OY/dLRZf2M - JnyK5Yl4doDiqSwUCNlb+cG4Kvp8pp4k/uEr1ho0gIiWEaIv9gNyrorIG4bWv0Ab+RPOcPyms1XW - M1SEwSTnrf8vnNAkUPL1EavTsYpJovQuXLKGCZfj2Y47bz3M0G1dO4T5dQbrW7+toArWI3F5wvaL - n10rKExOi9N95GpD7gQpzBazxPrzGoKlFMkEKn/YkUAVa2/4XuJZ+iQ4I54eVXTZUeUNf3hyoZcJ - fIWdFYK9qSD8q1e+jeIbnI2BYPmdfZqJ0HcLN/5M/OWrxEP/rExo6QeLBNFZyTn5ODHSR3B6HF93 - Kh3Pp9qFj7jlsLX18/njdxO8SXuXBIKWaDRvOQm9g8OThHs8AbLHBwYehk8xreBQ02HDW3g5+hIO - dnQCK/UGE+qvGwpjfywb0uvRhG6ZbJBsNz+19THa/p/xFI9X3/TxvkyB5KE9wQrx4tFxKxH9+PFN - yT3Awbs2A4ZbBeJOh5fWbvX1Wx+cHwI+X4vrRYbc4Xwg9iSAbf6TFfY7OSLB1Xw1U5vEKsoT08Gq - p2tACK7ktpcD4hGHOyl0josxBXewVthnPmO8llf1gj5pKuMLPYv5otxtEdL2+sVK+1ZzYUftDGS+ - 8iZKmwjeyp7n7drNsIPoIR454TSBQIfVtj5AWx/teIElN86hoMo6bevhbYO1eWYbv17ytZ4lG4b2 - whOdMe/afDv4N0hqohMbnpdmnCsnBJH4jUl2OTo9i03Ph6vcOUTFcd/Mqgpu0OjPd2xHoAHL89bz - 0u7bf0J6CoC3VPIk/uGrsn+reyqdDzrsMyBiv92bPeenB4iuX+s07b6BqQnrpxFhGYs+kYV2obPT - Pco/47fcogDLgaMhOj1vGtaPXwlMSFPXX31h29ujjX+HPjTrzCGyeG3itfXDCN6/vTQRA8H+h8co - amcL4ziIAfe8NSzqPmZNNH9kGuIdtTcsFU4mqfx8acto8SEcapjjk3B6eiO/u7HQ3ZufUNQ8DMbn - rWeh8molfG9BRhfm/WnR1bS6Db9K2rFx74NI7OOQJzvojUF5NWHXmvm0TjKnrZDh6v0OTBQboC7p - Ip+VFYGXfCKq2USAuz4qFt7BXGEZpjswH09vHxnXqzUB9vaN19BUVTTqTIDtd6d4bGZ8Vclm/E+I - krejLT++9V5jleBzcdTWRZdDiIiUhGCr78HndRFpy/2KPQr9nsq57IKPfmSxzrR2s/TyMYWq9ToS - GX4f/aqHIgP7Aek4Z29OzomWefnVKz6beGhGQUtukjeqC9HbvZfzdhkmcBrYB77HWAacd2xVtPF1 - opVh18zY4J6wd2VK8uu40k1/S3AWP29srOxBm7yRgdK3du/YZ1qNcl5ohLDP0JEk967LZ5UBLOTk - mCGKYR08duyZVApEIcI2THONXouslBbmDSfK+gQQluAVRsaoYkMVonwWG+sCWuQoxNkfmXj4JuYb - Run3QSylBDF1w2sH31HShauaONq66Xfw29/dpbbAzOInD+FXYojsSRdKRcvw99NARoLPN9CQH760 - uf8l5YEqGivzcIA/PXJ7WgwYYcnbkHnOTCjF9dSsXXUYEG5YHZeo5HuKOxmi2xncifqdefpsky8P - MaYGVh+q461FxLXIG02P+MpQNaumDh1E3gIn6u8cKsz5K4QGPF1woAp9v+bBIYFxen9iMzv2gOIv - TdFX9i1yr0anmRkcRbDP5YHE2pRTYfNPoLTbFfjHt+pQYXnAjleTeO/hFE++FEk//R0K1fQEX3Jm - bwj5UMOXbt+Cua+CI2wzJ8WFb2ka93rOb3C3SB2638XuqRR74g9/cFAYWKPRaptQW4ortgHPxN/s - ZbjIgwCFuzu8aNRiWgagQqzDmZ4LjfLgpkuYrl0IKOA1aqxJCwsiBESdjnLOkYtqwrMX68T6+my+ - 4Lf7BBMz7/HFghvfbb0QnuSrgcPm8G3Gy9UswXkXhESzqwYsP/7sGm6Br3vWovP9EaVoZd/xD19y - cj6YLjjFNzdcp6Mc80Z4GuBD+XwnpIqqNiWvWYTfh7Li7Le+wxBd4KZvcLCyfjw3e9mE8n0+4+y2 - vrURfaIafql7mWaY7uhyl9ka/fhuQPWuma1SvOzvcL2G6yvKYlqK7xqyfq3gRLpWgOpTN/zRu667 - FDmpozSVBsokv/2dj9pbyqStP+EN7/pFPk4QSERmyOHDZvnS7wQVdropkMD7mDkHznoLn+9bgw/G - 5UXH+iBnwNU0IVw2/4c2SVOhPtuL4cLF+2bBj88Kp4F/YIPqOCdzPobS4nYrCd5Gq63p2F3Asusw - 0Z+ZEa/e6ruQROMRFzsaAvbjFyaYMnqaPk/kN5TpnSOUl2HGiSOl/TxDNfzpL+IEfNQI14vQwk+a - yDgZnW/T51+vAmXMrsQyo8ZbLtfEhN17N2E5AnY/2HWdoI8esQS3QAL03T4SyDz5C/aPnd/z8WNJ - Uazf11AURC8fr488hJvfhw/cyWw4P9UTWKr8fmJkladLiSIbqN0bYTnqKKD87nFET6064sM2H+Ng - azx6CN01XG9UieczV08//xDrox17S2U4EyTheCeBbzXewMXlDD8vbx/OQnsA02mcZVQ+6QG7DyXY - 5kdMYSR+9hP9hE0/au/njITZ54iRvIR41kygwinn2wnIct0vG9+Fty8nEK32UfOHX2x6dGJ02mqD - cdwPe5oWB5ytWPSWINMksPE5Yp3LIN/8kRqN72UhsSx/4pl65xaFo2QR524c4pXi/REUnvANRy9d - mm/BHVRYw+ctZNCsgKF/tiacHJYnce/zDY33aQoxOzdb/3/3Iwfm6qdnsB5msTcjS6thnNYM+a0X - 17JfH9T2WwyX9jT2JHxMbxifK4HgcFc3y4+vfXEYEPuaV/G8p5WINj7yw2MwX9HNh+Swvkh4VxUw - wru3AlRw9tSwt1Aj5V5Z99X8dfGvv/Fm2pWgIIwSSrtZ96h3vIZQ5GyRKBkngJlQwkIlmXKMz5NJ - 2bKIVvTzB/HW34ST00VQKs07Dja/YE7H/v3HH8A3P+2XUyC28MRlNTb7VYkFx9RF+PO3jLfhA4Gc - Xy28fo0TvoXurK25c51hcJJ2E4XdPV92E7zAGj5U4jinol/ZuA/h4rX9hABr5BNSSQ1Bot6ww+hv - bd7Fbgg9VzGnOepiuvocb0Lxab2wv5x5b7igBwt9LDcb/yn7P/5u99HrP/hEbLOyAZFZE7vnJc3n - 83KqIE2vArYncc17cI98AE0Qh6D3D1SQYk2SDt50wcb0XCn/kmsW5s3uRMJG6XNiSfEMNz+dnJKP - ntMvq6/QRl5CNOTbdFw/0iDxVqaQ+87rvUWwvh006UWdKBmoNwSSX0LPNSusxtTWuM/QmVDXCg8r - TirSze930VAJHNn0SL/AJoLIy9XdtBw4hq6ETi2c0CITJROetLVLXEMq1Zhs/Ip+jbW/ARW1KrH4 - m9fPe5JP8LzD4X/xSzZufGD0p/uEvDcBi8XULtz4Y7gzwyV+v+SOBaEr3sjtvh/z5XkpWyivs4a1 - rZ/Sy/UoIVLPZTgX3QDmWXZY2Lt6gAPwtDY/rrLhlm+QIDmx8XzhTiZ07tYwMeJu7umrMhmggua2 - 5ReVRlyH4WFS3GjI76POm18wXaFTuyvR3oPkkX6HWJhN2gU76SuhI/PmjnB/tW/kdgRKztacXcOV - Le7b/trFy5S4FQRPBky7cVR7oSXCG1wvxo38/Fs65yuLnNW4ELzzlYbTuz0EbHGrSCgykjemQaMC - qVB8HBS62K8KkCdpboeMpPOia5zrBi3cXYlCrDuE4IcncMsfSKHZci4wHWjB1u+J0qb6pl+ADNBu - qYh2RSdAjtwzA5c4CojlFoh+93GbSiVHXaw0r7WfqpejS/K6arisd2W+qsz9Ai0BX7BNrq/8Wb3U - CA0Vx4VAmwRtftuNjbbxE8/fvbw5dzIoPU+3bqJ94eXDW2+esLnf45BTRROMlaEMYKunbX4zbVKZ - lwqc2l5xRLKq77xVd+GAGULMucI527CvIxwwJPi+5UdT7uguzAU1Ix57c+JljFz4Zz9v+dbPL4bw - 8znep9qkWKPkTI9wYtiYKE1SbPuts2FS1MHWb2JKK3kc4M1WY6y9GSNflmas4a5fA+ya1M3ZfW/W - KCvMPbbMSPNoGiQh1IXKIQenfXoL7Z8dHE/igN1XXYHv5Wre9rF4hcQ/fnltWT/3288PJnoqkYbm - X61Ga1SAUKhu+2by1usKf/67suUZa3fTa5j5lhxK/MRoQ1zbNhSPXoC9Ta/88RssMTWwXzk9mPm8 - kOBTr72NP1z7hZI9C+f9EOPCe2PQIs2DoB/VclofyrFhkeYxQIWdQzQ7FJuR6SALfQo/xElPfDMY - YSlC65P6OFB5ztv8XBftLsQm/hE88mXbr/DEHjiinhfgdQr/kmCkE4cY3an31oZNb6DwJUiwNBje - jw+Ah9BeyWllF28l0JHh2jxkbOA324+Jkk57dsp2ROf2esy+9eYNY71YsdIkCMxul7PibMwO8Z0v - 0sgU0wlZgsdM85YP0eet7tDwgDX++d2b09aB0OVUElnwBTb/bYX5YdcQp0n22tOu6xTcvySZzEN9 - 8OZ0EVe45S8hSl7HZnnYkwpPcemGgPV77SnRoPvxN3KTTCme3nqXwZ+/YGu3Z0/fz5sND7uuJiZ7 - F+kfvTsN40h+zweJ5hH45X8eRZo3d7cWgl/+6Lue2bPF6dpCte8iYjbK7C2PQN7yl12x8Xmi0UFD - Nwg75kBkYW82bOtbN0jNp4HdL8l7KloZC20mUkg2HQyP2+N2ho/XK8Amms2Gt+uHjbZ8Aceb/zva - TFLBTV9hVz0K+fy9fC9o80+IWVZIW7+xMAM7wxoOsKD3nONWEgIK2vw/AwKSKFiE23qFdUxtb2FJ - +oTDuldwGhyPYLkWeQsufFgSc8sjFvSJKrjpmS2/lBv2isInJPVabn5PTucL+vKwRWH+q19ABS1o - YSzm8I+ftLhhewO8FIlhV81Xb+Mn0s9/x07zCujS61cRmI8swtoB2xqXvQIbUvNt4B8+0iP3vACf - Mh+iTvJJ43/9q1mrK3E+7Kn/4z8lRRXgLFFYQEtxqmHrHt3pVZxWbTXCYoJAUK1w99zy1IcPQrC/ - ujesBIIHeOHzkJEZpQj79/bSb/lLCsePWJLjecm9dcMrdOE8j1g7/52v9XBOYNmMDHGO56Z/jdHl - CQ9jO+NreuL7ccIolVLzkm96vaE/ff3HL9LDW+UNb7u34d+/UwH/+a+//vpfvxMG77YoX9vBgLFc - xn//91GBfwv/Ht7Z6/XnGMI0ZFX59z//dQLh72/fvr/j/x7bZ/kZ/v7nL/HPUYO/x3bMXv/P7X9t - P/Sf//o/AAAA//8DAC0jkNneIAAA + H4sIAAAAAAAAA1R6SRO6Orvn/v0Up87WviWTJDk7JpkhKIjY1dUFiAiIyBQgt+5379L/W7e7Ny4w + xZA8+U1P/vNff/31d5fVRT79/c9ff7+qcfr7f3yv3dMp/fufv/7nv/7666+//vP3+/+NLNqsuN+r + d/kb/vuzet+L9e9//mL++8r/HfTPX38LXMfg+Kav2cZrhwIutTtiFV9gvRjOIYfSXu0xnvJRXdQi + iFHx2jpiHZke0GHviWJm7wS/6MdGnW6hk4u7RHsT7RBt2SJusoJmUZNx6lxqdd2Lm4n20FeJic0z + XbikYcDT1hns091+GDm/SqAKrRN2M/lVr3HrRgdWF3V8XCQ7Y27zeYfGxHWxfdx24eIdmBLkD0mb + YS48nEXEfAKIbZ5I2KBLzZmKWUKA+dkn3juv1/0qzejRqh3RDiBxmLT5lFCpHcOnJVzrNTocXTA9 + bQM79jCC5WwJEbrn3ERU8TWHox23Igx5usz744up13RfVuh4fVGiTcKoUk82fejow4NoypvLVreI + JFTtgpIonrcb1pPr27C9wx2Jnqzk8BwNY2A3Wkeia2eFdEpOJhpfzBE/2k84rPE5yJGoPSd8gZoY + zteIP8PkplCsadvLWafRraC8VBK5k72pzrD7aAASxZ1fLxoOvB0KOmi26k6kZp3o6ryZAr559UZM + 7loOW2lWMyrnw5kk9DWqswxyE3pr8CCPVrYAGxJ7g2efXAh++KeQkUDYw/DiHnygq7XK4Xaw4UfY + ZoLhIQ5Jzt1axMa7mJhi0tRbbV1muBzLmoRKr4NFLZIY+r54JWpsXpwPA+kZRbNJcXIS39ncctMC + WIlQIiGqAf6kaD4EGOyIXOq03vafSYOuoq7kaAPDYS+k2cTusdT4hkx34Atp0oBf77mZe4PTMNEg + duFKa4hxjdlwqoIugmM/UuJ1r15dNW8KYHg0PzjfyitgbGGpUJA+P9jeTvt6dFyUix/lNhD7cMxV + 7jp1BSzwg/H7wxE6SxTlG7wupw9Ruz0a1p1/0eHllrP4ITdBPYp4n4B3tr6x++Ftld10ZUGbtTxw + dExnMO4QzuEB6QbxddyDyV5fArq1YJzFMdVDznTtHYiy3p2D0moc7n27FUBRlTeWngkdiLH0KRzv + jj2L5+UV8vextNH5gAysxLY8LJfi4cLSjTJySZNTuBwfTgyyWLOxHtzVmn/Uwbj7IDLOnWP4gPHI + psFVElkir7pSL656l+A10A6k4Ew7XACMcmR1c4wNbTcCKlFSivNe2uPbeiwHrq+RcNianYyt4OOE + 08d8ich2LnccfQIl5FlIN/DgjgJ2i6wG3/oY4e4uv4iJtoqu40BLcNcc6qPu1TscmzjxIVzSDJ/K + +Z6NEy1t9Ji7Mz5rzULXW86IUJ+NeBbERKu5Eck6hM+iwYZ7ww7dbrMNRXQxyJkdH5Toos0B27ne + 5wM7+yFDGNuGT9vSsI9qdyB7/9LAgxZMMxlOKKO6t1tAYN9vBF9dK6PwGilI3NNibphBq+nlVXFQ + L1Qd2198I24RVb96x3dbPDrMD8+28RL7LNnr6mI8pgiK+7Ugj/v+Sekzlc8oqP3G38bMzFbX7mwo + 9kswo6ZpVVpILw0eLCfz+f3QDcs53BaQdolMEu9QZ+xyLBdkr+OT2AY0wTbqYgNrR7gR6+i9HHro + cxF+BpvFXnol4daOQwRV6Jzm2PoYKnfc5hn6p2SPU0KlbP2YLwHpWUNIvJlmthzwPQEWF2GSJaJT + 84m5VOh2EgpcDIDW6wqlMzTx6PjItROwkpvTQ9SnBZYOWwnW45XM8FriG1Yqfx2oE8k65NFqYbce + +GybaNmh05EfvM3zipre7WOJ2oO7kOAErGwrTpuJ2GHfYGPBysDdiV+Apso9cuvPpsoFy6tB3/XE + cjnfQwK8WwMrwFkYt7JFWfYTpOiTaS9sy9YyLNJ6cpFUHGzs1FNNh9xiKpSb65Oop8c7GxvJW0C9 + ey34XtaKw+WZ3KBOhEes7D4K3WIbclCr8iNOgzalXMUmC/jiBcnmpxROEQkXxBRShg30LJyBbmUM + Zp/BpMgfU0324qeDLit45OG94UDJ+JZQOzQ8Udaep2sdrDHqFHvAinGRVX4eYwVp1iwS+VFYNQe2 + tILlB0Y4dxmsLonzjlDMHK5YkWoXTK/sskCgKwrObM1QmcnINbi904QY7o2oW8M5GwTAWb582oer + od0ZYDnanWBnUR3WWDYBNu/MIf7TzMLt1twU0G3XDDtNfAJsbnsSTO/uA9t1/lCXhAcpdE6sTJR9 + 0NVkxfWMrOkTzdxtzhy2lB8NfEm6TrLbcw0JeHoFzBmjxkencgG714YOBqEZ4fOzfYP1w6y7wzqX + 0x8+oi/jlsCzqF6JUnjeMCor9dF6GDGx+sME2od5GtGjfp+IEsnA2YJ8nUHpLxuR25Oi8h9my9Fc + CA8SCBiqK4VVAMBglERnn1XN9MG5hJ9Mf5Hjju3rRS2eEZLypCZ3yXDpyFVFAONo4Ukar1a26Jeb + AHY0vs1bIPEqld3nArvtkpFT/fAGbnfpXPi5v13ibJWWMYwvpeC3HtdnqqhrM5MeSnx3mfevVFO5 + Ib3n8HQBwG/LJ62pLiocOr8kC999YKksEhMTjnYTkhN8amBpJbLA5yWIyf0hIWfR4KOD5j3WiCWU + CuBTKy3hGT5mcryvQ734eemjsxvsiH43LuGsvNcAffEDZ8sN0eVdhyns1+42/9l/0evGAYWddtiF + ugnYm5UqwGt15O/iaEe3mn1uyCotOC/YXMAQvwADi/osE1eX44HutdEE4+P19EklvcAf/ffVi9iH + UAfMWi5n2N70gDixQdXOFoQScUQMiF15uGbr4BDBY0WOWBZKiXLdrcrRl0+IrOfnmrKfRPjVtw/X + w1llHJct4Gu56sQwk0Gl+OLpcGTFCzFqHqmTsTwFKN79N8bhNjhra4gCnOp+JtKXT8lZufjo7o4e + Kd4iHqZDnyfwBN0Z342ypRt9nhfI6oJOit2Wq1s71hG0MnPCzvwsw9FfHB0OlrHzD3Xh1J/zvC6w + f7aWv3dvq7PIYOxBRreQqE7IDMsnsMqfXsDRerbDMXa8GN5OYoF1hfOHTd/2M9g+wp4ch13lTOAa + lqIZkZR88ZSuSJN7mHomJrm8n4dPfHj7oEpkhO1Hlqms/a5zWCQmwWZO3nRurHaEa67oRK0nmY4O + CXS4r58WcU1HzpjTinXxdGQHfDp6qjr77dmGaGRYjEe/HFYpTmeY6xebWNwlUre+ZkV0398aYrHz + nJHk/NzBvtsXs/Dlb9IYUgoNphG//EucFfmuDu223PvRpSjo5MvBjCS+OZJwMBuV7hfBhbqTY3Lp + 2lH9iP0uBVK4HojjHx11Zn1JQMVr6ci1VRzAI482oI8LnrgfrlU/n0Gq4D2NdJzCgsu2pDElyJfO + ibjcEwCqedEGOSIE5Hi+vEICrqqCdvXZ+uK/Cnj0JPnBFXmH4Ptepls3eTEQe67EdrpN4fKulQSd + jVjCmXEQsvWSCQLsjOMH291Nybj2ZhaAe59aYoYWB756vQDqp02/fBPU81f/gvM7L7H/NEG4fGqU + wC+/+CxHlXoIldYFRpSnX329Zsvu0Zswvk0s0ZrwEa6fHUzgSb1qxHtuaz0v/c0HGn8PyS1SreGr + v02ozL5J1PIy0C8eJ5Da6gP7GV8Pa5IPovjO6NuHCQ+ctTd3AjQ+9444LKwGCtXVhIl0PWCDCfSB + T85PiLgrjmf+lekqc5VDATpi4xBrFldKO+ZZQEmdPvjIBndAN109I/JKVKzfZuCM1f48//YXxpyO + wMwMswu/8018T6nD9XIoXHjj9nCu8QUOdDtuAUI8NLA8gxAwXBIyyNC5J3F9dVdPdylsobKsEom0 + 7aWuNIh9GBzLDKfNvnGmzswFeERi6x+ULBjGdgTMn/qLTveUrs387tB1CT/+MqMy/DwbxwXNjZ59 + Yf+Bzphllg61SMznw+XEqtszf7cH+KwYbGZOQZdT+NzQyAoXImEzAHz4khjow6bEJsPuwfd9XDSf + bsbMnbRPuPWBoqCmKjzs6QfZYVzy0UX2LbU+tY+WurykYoPhBhTi8M5Z3XaX0ocJ41/8/eiX9XwT + NAH99NJPj27ea7FBw+wYrG+mGdIqPZ+hJJ/ORA2E57C8b8nuj3694s1y2KRtI6jdVhs/hNNYT2kY + 5eJA0pWol9LJmKtTRJDY7hNH+4cEuA53CuIenPSH/7ZHfmxgcpMoiaxso+vbdETYBo8WG+Y+oCRS + 9q5YmPoDyxWvUqayLj4MkuOZ3Pm0zzbeBwJUWLIj1ik4OdxN3qUiyNQAm1c7pds57M/icYl3Mzjr + xBnND9lgp70UjOE5GNZ9ci1BuB0U8vP35Mm3LQzfU0nM5x6Ei9/eeshVUeczJrVU2jGfHHzzCb9s + bNNZecpwMDbsHTleXwldXlwUHLaCTsSnCNTkwPgxwGnwIYX8llU+FOAIf34kCNfdQLZba8LbJu18 + oJ7mepVieUSNtmg4tgVuoEa7QPTdXwRH2UFtteLDQVFRdYzNq+XQk8N2iBc4h6grLOtN0mAPQ/e5 + m9mnY1EmvLM+vJbeDePiPQxfvRfBS3GtsdEqA1h1MYzR9DQNEiaiVa+SGwQwAsv41S+5ypRm5ULl + 8i6wfxpWtaRDNIMifenEY7pYnWNeEhEz9JEPhWMD+j7VchQiqOKrhDrw9bvnnx/BubSqKueQoAWP + yz7xrYNhDn/Wj+Mv3M8/qYtDEh2G7OWGzVbahx+5vNjou76+sO8SlRqtsAPDI3r66CHdVdqZbiIS + Xux9AFxO3SpLG2GqGD6RZiRlTJ6ddWjd3xpxUcRk605LO1CP0gFfjUVWua0HPrTuL+2r3z90ykOu + AG0h++SHZ9tMDx0UGP+OL83L/HcedRXEkDi6Wjvf9bNBWEaOz/W6FLLq9TjCea3f8+5xkun4vgUQ + juSz4kCd5npt0ZJA7+li7HCNG64ZJ+mwCpoE519+Gb95AFxHPZ4Zau7rFV6bCqnwKBN7H/Q1HfZH + 4ZD2XOKDvZeq257GFVQAJ3/3VwnWTbcX8B5YHjuv5p6NzzPbi03ERT98G2bmKsbixkon/MuHljHd + QfDLh3JbSYdlMQ0d/vjuh8/M6a11f/xl/BBe9Y9vQSFSzueiwqhpZtUlCtLXwafd7lCv74zfYFht + FXYfH5yRs3L3RcGJN2L1506lH0bMgSK1ATGc9aguKzPaMPHYE747lQ/4NMx3QPD42/wCmRvS8/w5 + w7hKFnzXSDxsz73i//wXwd+8g6nDawd7VZDwGV8/au8vTgPeTLmRoy7WzuYdGgUqr2HGilSZYH6N + 5whZXskQ7XQXwU9/QztSEmyqozuw0esUo6g2Np9S23WIHGc+hHKk4RNr6DV/VJkI4j4+zKL74uj2 + 2JUuWHctwma3UbBu8HRGewme8YlUh3q+2DWHyJtLff5bb8vabzP43U+K69D51lcP1eBQ/nnf0fgU + C5SxIfrbqp6d8bAu0s9vYPv19gCvKEL84895uUT1MF1IsyDWWRii5Sc+3IYgUyBXxd2MaFJla7rv + SojJiSfexKKaxrmSoOZ9c2bwnt90su+idMiE6YQLcRWchUtCDvz8OM48L1vBNayQlp9WUnjqO1y+ + 840QvzP+5HNrIFj+HzwcA5aqn+G56vDr1/1v/YMxTQUdsrzGkVyXuXoTEi6GdElqrB+qdiDWPSih + Jck5dmIjdKhTqBXsTW5HNGE0B27pby745b1M9pmyWT4WPTx/BJ5owrGi20+v3d3ZI/JnKEPKfgIB + qQEof3gMtno/unA67l7EiF/yMH/9KOj2B3Xu080L56+LOZSyZ2MrkJ8Dy3/EFPCZrfjCUGvO9tU/ + 0CcST9yt5MFmlZiBjeFn2FSPOmWfqbShXz6IpYvssCchdWF69x9Y+/CmSgsOtJAqvY0tVYmzFapC + B0FrV9/nyTXznjQGHicuxu7x5gL+i+dQ5g8XfNuiRV2ee2uEKYr38+5lPbKlq8cECs5N+eZ/94H+ + 6vPLL/Muuh+HaZ88KriEdo6dwWxViuXeh9R4mTP6eCGlX7yCs45f2GM6ziHHw8pAzQhqIoVrMax3 + aWzhu8krrKK9W08ZJ2lgzSUdq+ohzlZ0ZUto+B6HrQPZsm6ipflH3+zI5US5/KUpYrzfJdj3Txvl + GVgtcOKcC9Ee6jD88grYTZFL8inQsuXYMRt8pjgi2pdfJzfqG1FvZ5lcfDg42+5x66FRSeoMA5Y6 + ZGDzAv70skosU+UmlOowKl8O9lxboAthFBvNccgS6XZ5f/VKANFv/rZE2atrPRcdxPkkkaNaNrR7 + tLiCqWdj4g7TPvyMAygBDQKV6MnDGWjVODPkGh5jmdZomGdUawAMx3IGZCFgKc3Kh8uxqv/k+S8p + Tkcg9VJO0nSbsqUK/Q5m9ahinU8yul7zs4ieRnf3OT0YwaqqNwYyh8DDkl0azurapQklUR+JIhRM + uO0/Lx1Wxn6aGTgvA/W6eAfWMMux90alOpnazP30k89/8t5ZjE+8wf1T34gsXkVn7KY7A9W5TrDr + ZRGdjx17hh1KcpL6RM7YdN9VsO9QMYt1vleXPkhLOHq6OHPsUxn4wn5XQO5POfnltwubKAziz8+E + uFdJrtkPc4DA0JknseVVzH5+B8ip52LLvgvDGr6kWCRvJiWXstFUvuTvDVShIRMnJhBQteQ7+O0/ + kAtJpIz1ItCAbeYROX7H02EYJEDZy5NYaIkzkuRNCn55lpk5Ozp8ekERTW2wsWZlG5hj3hREo1JU + nB63IlvBgBPoRGGCfcVvQat2SoB205H1xSzl1e1xVk1UUe9Bfv2N5TanULyCqJ+ZSXCd6ZsPQ3YA + kQ8OSB/G514egV7IXy2Z3OiI6FEB+6e24fBtlE4ftIwN53lHiBX1OGPfJzaG6RQQfNolO3Uuz5EN + v3xA9JNmhcvnJkLYfuwSS+rY16NwTCEcxl06v84Iq1sY0jPM6BISzOl3sBDGNuHqpx7W3sewXhSA + OqjyfoitSDkOK7qiCjKHs4dVrrEz7qsP0JevsKQ/VIcqcePDlhut73o037yg6f/033z5/XS6Vnov + h95bIdHFlVPp16/CW8znBFcdqb95eYWMw1P4w/fTeT5s8LtfsfvtZ6zTqFUQ2HvJp4BBlIyJacJX + RTysfPn5T94wvrgj/uHB+jEnEQ65aH/vdxtWlloMvApCiIPRDZweQAcCbz0/5m0vnEPWXB0RfPNW + gq1WqEl7GhnY68mbmFrE1dPPb0q3nYv9y8g63zzXRiQnJsHYfmZLd/vAP37XfY8gG4b9UYTvdm+R + 4xdvFhG3Cbg4HCSm/Tg6jFo8YwDM/EbO19vqbLZwkOD+yEoYH1/MQETPbA/60O+JPhtayPmL2sKo + Pm7YE/qds3jqLAlU6WyiFjZS5/M9nFG6hbv5UOpsvc7J1qP9SarwL+9mtWs8g8aaFBLW8wtQw8cb + ZJah/vO979aoUmDcsmRWz8bJ2So22SCv3E0f6tK5/j5Pgb5oW75Amk59VbPX/+mHFUYhhiPn9yns + VVHCBuibYZVK14SmYtfkD35SVrfhVqzTr582zFqXBeDX/7PMt5ptH3yQgIsuG3G++4G5nw4drGY/ + IB4jL9l2thYObT65Y9kLiLp8+1kwFYoT+eZxlIP6NYe/fNueg2ygDOwXGKNSJqGuHR1ecpMFeq3l + YUm86TX/60/S85jiiJqPep6NqIFff/Unz1/a6pAge52ff+b3qz8XEO2wil3hqAG2MQIRDZoXkGPW + QjA68V6AO7va+dW3/0GffNvAR/iU8cW0zmAtp6ED8isuiLxOZkZ/+mQPXZV43CbVnHwsul9+RpR1 + yOg3nxX/rQcMvQfLsrs3v/7fz/+Gq9EKORBFYfGfJyEBtEWLiKplFDBuFY+uL+MjAN0pMMafzFT5 + 54RMKPHtEf/e99s/zX/9N2LG9UXllXLu4K8e9QFeBirEiQRXP/Fw4szMsD5kv4VpupnztLw39YsP + Pbw0reHDCJ9CLgzBGSRtm2Pl9XYAd2tOEnqde4RVHCXDlshTCj/dWJD0kWXO+uA1Hf3yeXWr22xL + FSOBdXjZE7M0K+ctemYDsdstOHAIN0wcup/FX17y7bfRJRf4BM55YRLtyZYO2WmZCf/+nQr4r3/9 + 9df/+p0waLt78foeDJiKdfqP/z4q8B/8f4xt+nr9OYYwj2lZ/P3Pv08g/P0ZuvYz/e+pa4r3+Pc/ + fwl/jhr8PXVT+vp/Lv/r+6D/+tf/AQAA//8DAG1OomHeIAAA headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db65121e2feb36-SJC + - 991ac1064a7315b0-SJC Connection: - keep-alive Content-Encoding: @@ -160,23 +164,21 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:25 GMT + - Mon, 20 Oct 2025 18:59:43 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=EAz8ez808b5HAxKuM4BO.ejbuZhFjerDKLttLzwBucw-1754953705-1.0.1.1-tCTezjL_TkMIopDaFrD09uro.URNa4_fFDPi9_Uq.6EdBEhPDmiY7g1d7ukMmgZYjBQiO1hBdaBbC457nE4T15J_Hxcna_CWYrXn5vMGhdc; - path=/; expires=Mon, 11-Aug-25 23:38:25 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=xQmk9JxjcbLDmz99hM4DKgKv0d0hevWSBZcyjYjfocg-1760986783-1.0.1.1-9KEVJkhwr6tVo16Cpi6k07r_WIkXqvpqDkUdiLWQjwLC1a3AAOYESMotbYhHHP0wXZIBdBC2nH99Yrx23_f6Pew8mmoPBwXzi7S1xdn.wz8; + path=/; expires=Mon, 20-Oct-25 19:29:43 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=iyBg5GQtOuTkd2P0.B69SVvKgT4YFXOhrqu2mW47fm0-1754953705535-0.0.1.1-604800000; + - _cfuvid=j0ZPG.rnlwQL6.caNx0o2uuzDWu7JDunI30hpAFSuEM-1760986783915-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked + Via: + - envoy-router-canary-6b9f8cff56-gbrvg X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -186,17 +188,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "117" + - "96" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-f8dc4c597-sll9x x-envoy-upstream-service-time: - - "213" + - "121" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -210,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_27051155f76a4a18b0e3129a05245bdd + - req_39403d2ceb384aaa93a1420d17cfa0b1 status: code: 200 message: OK @@ -230,7 +232,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -240,7 +242,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -250,7 +252,7 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: @@ -366,8 +368,12 @@ interactions: l8GAoZiGf/vvUYF/E/+tr7P3+88YAumzR/H3P/81gfD3t2vq7/C/h+ZVfPq///lL+jNq8PfQDNn7 /7n8r+WP/uNf/wkAAP//AwAkUor53iAAAA== headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db65143d4deb36-SJC + - 991ac1086d1115b0-SJC Connection: - keep-alive Content-Encoding: @@ -375,17 +381,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:25 GMT + - Mon, 20 Oct 2025 18:59:44 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-6b6d784995-4zwfn X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -395,17 +399,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "105" + - "143" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-5df48d76cd-jwrs5 x-envoy-upstream-service-time: - - "165" + - "170" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -419,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_987d3a42ccc5461fa007c7d274315659 + - req_4f2cda492ef8457a8c61603b07be9b55 status: code: 200 message: OK @@ -439,7 +443,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -449,7 +453,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -459,124 +463,128 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA1SaSxO6Orvl5++n2LWn9Cm5ScKecRO5SRAUsaurSxCQm8glAXLqfPcu/b91unvi - AFEgJOtZ6/fkP//1119/92mdZ/Pf//z1d1tN89//43vs+Zgff//z1//8119//fXXf/4+/78z8y7N - n8/qXf5O/31ZvZ/5+vc/f7H/feT/nvTPX3935rNBxinXRqHPUhOeX9sJ78+OqC/lNeygwMkj0je9 - pJt/Oz/kaHreEYo3Mq5dIjFwiMSNPHlXirATqJbs6aKEnKLwXBYM8ALIq7aR7XhCtAKqGHIVvy7o - EKxHndU3jwWoKHV0cczIXWL2I0F7nAiKd+JOn5csaqAYGgOJ3vMyrhMvlNI49gI5lejuLuSqd7L4 - WD7EeAqXceHwCGEymwNxXDzUtAzzBV7P0xMV2nuXrtpOrGCPxYHEI+cBYTTTC+DbV0cMMwsBPqzK - JoNmEYlvHQGdthdY5MNs5ci81yOlxY3BMOA+PvHkpqWbnaoKrNrH+XTbfV7pppAgl62IGZCjoSFd - rgxW4Hmn+aToMyUVdkPTARICiygvqwabwZcYkpOnkef1nKRrrOQONOXbGzPWMaUbou0g3wN9w0vs - 6O6q2BADFTcnYuPHHawHnEEg5TZHHrQ7pQJQpgc8u6xLcl1zXDaQ9zncCjEgcfBwU4ojvYL4dTSI - m7II4Pej1uT2wT/96UONiHcucwyL+3pEt2tFwLqy+gBI5BiYpwcmos8DbmDnayXx+IrX+bcAFJjE - +xnpoFLdTRAmTQZzJiDlsNvACoLEkiPLikjsLaO7KnP/AM9mVYi1pVdAT31byWJZEGJvlq2/ztm+ - gXrUXYnmRa4r9MwxgOUjtxC6vAmg7+7mQZDzPDleK0KpUTQMjMulRl5gR4A9vA0I+ZvzIqo8Dvpa - xb4E8fmikHwaGX2yQosB2dgDEqeJS7lCZzYoHc0Vob27udjruBwCIEBflO/8uNbuUYMFmS2Ehnep - f9z29ACFoNvEsFkt5UZ4y+Wrk2TItE0HcPMEHrB5uBlCQ73qFDSBKV8xkxMT+oW7FnY+wUZIc+Te - P4u7OsN8gelpFol5wCAi3DRKUHCOvS9x6VyT0+cVgtjzSqR2gZUKU/Xu4MbmETJa1OibODUOXFHu - En27KzVbV9oGAeAg8UfvWdNPDCzYuK+UGPGegoX/eBpUisglh/Ut6b/1IQtyNCIzeLjRiJM6g26A - BVwqvko5P7ATOdVFnsSslNcbYl+JXJ/1BGm+5epCsgs12eV7kaT3T+Cy3v3uwU0NAhRUsk7X3f7S - wXe8/6Cix2ed+vkrkf16UFHRGgFY+1E35OUCLVSY52KcEjcOATu0T2IyeuGu5tFi4XJ8OigdwVlf - 2psjwQmakBz6/F5zHyty5EtyzYit6jFdW+XoQCXmLeTOrJKy7U2T4J1lF3I+9IJLp7q+gPTTAqTp - paMPsfWS5BdSHITwaY2Wk3++yE4ubUjfeWq6veUHBK0xlsSf7qdoDuOrBPMZGMSvuymdtczj4cu8 - uCiKJQS4Y75I0nIhHpb3e3ukfVpcwGpZLkI22IHFt/YJaMpj7kuBMEZ9yj98GF5gQA7cWYqWln2I - MMzCgDgFN4ItNbZQbh/skwSHT+QKF9FeYGJFE/KFeR4p5mguI+wYWM7zN52ur1yBR37q0SGuElcY - zpEvC1jq/PrRBDptrg4Pl/p28ik3qzrLiH0I090iIuUwazovXKApHT9ZRwKxPtTf+33I3ocHxM/v - GaWEFBv0dhv092Yl6JQsaQkvLf/wZXN303vbbUPQfvIcncy5S2lSaQqEJAToeLjt6k6hbA9IyuvE - 1zVHXyHKHlDAYofie+1SYm4LLyvwdSJFARZ3ZnZiABvdSJDVToYrZK5fwmO5vYkmKSfKvcMigOI9 - GZDbvAOw5j7fy7Kgq3gXyGRcU3nw5TgqX0Qpt8bdLFlk4HM6KHjd8R+wOdePKQfv0EZI2XbpTJjj - As33UKHz8XlzeV+yL5AHU01MVmLqxaKyAxOAR2SgqKqXQ9UvsqY7AQk4l9fpDKIHxEynIivZ6ykX - K7kFPzJciFtYS4ojiRNBZVmIPDGwAOn3owGV4uz6S40u4+ZsqwHbXVKge72JYDq8DQYWBBrE2Ctt - vb7SjpdfzxQhP9dll2iLt8DiHR6QGbtZtLVWKEJuur/QtRjFmsZoFaHSnk5INymu/9Srt1U1/r4H - 95q1zgdfvrqvAj1OJ1df+poakKthTgrDLABt+J22v88VQfZFfKeLP8wNwK6tEWVtDcAG8prDvvNG - FNNDHgkF52OoL+yNxE9b1ueOdyAUzvcPCb/rje69UpGXZ38kp+XxSRf7aBtQP91v5Lj7vCLaroUB - tF64YlF9hDXLsa4IhfdtIAgYL3fVWbGHgly9iZ80kG662vc/v0J0hcE1Lj9hBTM/2ftrF/TRus1v - BogfG2Pw1aflLJ5L6QKWlNwkM9QXp7mbwAwuFVJcr0ppeJxFaOpGSQ4n/QZoNwoWTFA7IVsTeUBz - MCQQM7eDL4+ne83eG8eAPctP5AKHlvLSqwlgAgqCH+HkpjyKrz38ONuMfE6cx+UqqbycNDbxF01X - Kfsb78C1HRQXmqcLKZZ8KK0Nh0VB4t05gzgD+yqiPn4QONIgOU3w3srU3w312WXVgsVQ6Lw3Mufh - 5HIfDXgwaVyCRSurIv6UrTHcbb6J7NfYu8uhKhf481uxujmR4HnnECToPaGjOhfpcO7nBRrolPq0 - DUp32l8sDV75sMD88+Tp3LTeOlhwkolOX70hye6hgP1BX5E+NeVIHck2oessHDk2TgDYxAs12b4u - GE+uErlCwD0xtI/WjNu79K63W3mHciLFEzIHxQPcTeItqDqKSy7TqaH4pquMfLCaDOnbda031Z22 - n94S6/286uvBbTV4sZqEXITXQadf/YCDmLP+2GUL+KNPlA9vPiwHHaz6re/hlZkrcjlbGqDxrEqw - FCaHRHK0pWvuPDJYJL1B0m/9WAdVyOBX/31yeSO6HqEiyWl1BhjH1K3Z6j1guJOkA1IP/c2d70N8 - kUVhJd/1CKMpslsGcr6SEfV5PIK1A4MIf377ePSKentmVQwXaTz5w7fe91//AhTsWMhVdDzSp+ok - 8LbIEznevcVdxNyw/sz38I2nejr59wsszgcLFeL+FVGglpZctckZmdLzRLmO1xhIBGySA932YBmj - KJDPDxSQSBBLsHhcm//8ETrv+A9dyYtWcF+VBB3HfHVX0zyZ8M6+WaTdzuO4MgyspFsEu1890mnB - mRPwPixAedKPYPHHVyxrOyVEqjeYgFtZt4evVQ6Jd51qd2VzXYKFhnVkfuCTLg8lfsiK5R2RgRNj - 3HzJjuE3X/gwOFV0DVOZhb/7tZyzlq4Z7DKoagXCHHeW0uX6ijWI76uO7AubpNwWFAy4jepAiu/6 - 4MP6xMM7Hjfib/4pZZ36GsvSxrBY5t1HRO/ZYMBIaW8+867kdK5nHsIDPr/Q7ft+1tknA6gmfEbq - lR7T+Ym2RA7ch/m9nyolz0PX7V0955BqK+bIScIUghqf79/n7+hCrm4HrEP8QV5nN/p22r0CaMpd - jff9xwLcCIsc9BbzIT7kcTToajnAuxxRzPfHJ11e29BBszx0v/+vhXdXeNCUm5o8Hor71d99BiRJ - FcnhLh1H/qgHED5zniHGE+jj6na2A+ENAoS410pnbNQVMN/3DtmZlVBynJ6OyBxGDR2PAR43dz5b - Evtg7+h4OGC62EfVgOmyh8Sx64FusfUSZRTzBqajuuqtHe012djDlHzna70uMe1l7WOcidHXTU1k - bsolZkAGQcwQpgsu9Uw+sFmBBd9H0SqJpSY3vF4Qc2HmcfZSNYCnp8aQ4KRWI7XeIgPUO0VEoTFH - t/v1YUK1YDykPHN9XE6rHfzGA12mgqupoWXwV58w5/Zduh2tRZSNqXjibC8dan4w6gD2nT8SI65Z - fdXjRoKZKMn+6xB30SofggAq4OHglKJzvTBXMYY84ktiPz5iuk37MYZVvAV4t7YKHfder8hfP4KM - d8zSTWuCTvb6DGI+HbKRzjuhgz//BdX2RSfLeynyq76diUlWGZCbnfuw/Bg2Om2trY9B9Crl8RIL - vuBIGKz3IY+BfXRm4vlD9JuvJkwP6h75deeli3U++fCiqhmyOHpIOfOo8IDP8xfSX2IwLsBWLBkV - lY6srNZrLiLqBJEyHpG/zxk6P474AePHu0UKo7V0kiIvgACaIu7Y/gSm6L3HUDcv0R8/zMJS9MDu - mR6RFS3VuAXEzuHsYJkonMu7C80iVhZ7ZSTHjF/SjS7pAr55Gt0OBx/MtedsUuBoR3JbRoVyzG4J - 5dNTYdA17I4uK/m9AYLzxULRxK/RbDYJLy/rzifWRzFqThJ7ZR+nckMOzONBaaLzoUiN0w2hHq86 - XZtCAqJACbE12IJVmaYB1Fp6w0CqN3f7TNSBtXa/ISQ8FLr+5tsOKRpKuyygdPEID4bU34j2xl7N - PdrNgogKjr8X3nb6zZsQFu/gQLxrz+prJ70t8PUD5FTLlrvQnb78/Dg67lk1XY9Ka0GpOQp/7m86 - X1oeCO/r4PMlfaZUAUYPjWm6+5z97MY/9QUU8t5/ff0L5Y1MgY+yEDD79Zv0HLYbTL3rHh0SNRlp - 9gn/7bc1ecDujyfIquz5yPqE14guA23kQMNHZCfVe5xHWGTgVjVv5A6OonNh/JREnnXfP54Btses - WfDxpoLPM0ffpcxqhZC++xh/EDFHAQLvAU7VTkEnz+soBUqTAE8wZBQtzkq/edSCeuXFSP3w93r+ - DMcLPBRSRk6V1evj6OwqyBdtQ8435u1u+7fhAaWojkg/rShi/SPXwwpcQqJ+pL5emwMxwDd/f8e3 - 1xd2X7M/P40uw3BNtyCQMUgP+h5DVdjqjZddCKvWvvpc7IlpX4paCRVldImOSZlOWdhVMIeLSnTd - xtEK596RTV59I+vcaoCbfdLDQlBtdGt3AVg/x1sCyWs7oIPE2uMyJMCHnTmVyPV4Eq0Mw5ag5toH - 3irkRexzyDuwnfXLd/36dNupZQIDprFRMrpNOty3ypQl/7ESQ3mHVKhhDMEa14H/cbxbRNVIrMDi - rw5+zY1F5y8v+em5vzCXuF6eJ7+B7bIVPuxswxU8fMhh6fJHoick0FmNWg28mbjxu3sB6YdfLpos - XfGGPD/RasF+PUMghubgryPpx0XMPQcIat+Sc3Po6y3Ahwnq+/MDXfYhn847Kbn84WVKn1wjYXRp - 8Cdf+I7igHm3zzrJvSc8Sm0P6fwp21+gK0MRH3nn5a64KyYAbwxA+sdb3TWDOAfbWb2gq1a04A8f - qwvxgg7FmIyLYbMMDO7U9WcrF2o8GGMApeYgIIfAWd+YJokhe+puPiisIGJDdJLAM7Z2xAweY7Te - rcqB4BZJyADuIfpcG5uH4FbxeCnaS7rKVR/Anz6dDNGM6DdPgrDyQ7wb3oorZH1cAkcJNnL98slN - JoEnXxlSIUPjX+Mm7UQFFMlgIIPh2pFWDRZ//t4XeEfV16beWCA9tQ2ZmpG61PPOAYw/WYUuGv+q - STozGYyX+o1Xcr0DyixGBV0949A3D0WzvaqK3A7tCwU1utTUI6ovX/D5+SdffuS3lwN9Hz18QD5l - Ss/hvECk6Sbx+K7VV2TPWKoL6YLUXt3X25qM069eIfWpJ0Bwb3cH3rL7hzzHc1+vTyQ94L46U+Sp - QlhvtnhWoKjnH4JW4TyyzONSwo/MLMRtrorLNtnA/+Fzlo62cerOAwOL/m59/Z2uc9dGZf/Np6aT - QbniPWQwyyhDvvmgXr/Pt//yMpKwQaxzp+vnAs9G5aIvv4y42X8PgJ+EDrkUnUfODuUQ3p3jQpTb - rv7xhgqehSLE8Ph40S/PYOF3/mJkmAXFyZ0PYQ5fB/TlQ+Mf3qQb8IJuZ5HUX36xSD89NL0J6iSX - 8AAej5pDxtmggM5SMcBL8cmQf5GyUWBWJZB//l7pEy5apMgLYUKVyWf21UzX6epepE0bEEKG49PN - uCf4Tx6597t+nD8a9eVPORGkep1A1/sQx9DY0gKPzTugy+4CG/DTGz33g3T9jhe4+VqDYVXUdP75 - N9Fzer9i3ROlU0UagIVAJcqK2j/8G/7mi77dy3G7C2YIBLl8E33xFfDTE7jJToiXWeBq/vR6luDH - B13prKa8VfYQFnd6JIo08NGi6H0mYZ3TSPbVU/rl1T+egWF3uOofuSpD6Vu/kKrTGOBdnXXQC0uA - zK/eLIU85PCXV5cfPzwz7Qb86WAgy9Novf36A0b8ypDvhOk4MEcrBt985NPFL8FGTzUv+1dFQbZx - E6Ltwp+xbDcPgky/HfVJTpMQvvalj4IZGCPd48yDrGikmC0WfZwrGouwNCLXF5fLQedO4jkQlyyw - UPKth/0DbA4U8DhgeTzt69EoywkOL4tFSvc2XJo/4wHOXasQM0Ru9LngE4Th8LliLpgTd5HTIASf - 0MAk05fXuH7a2pLvt+tGTvki1vhWxB74+QkHJQ7dZK8PRGmbxS9/Mlwh0u3pNx6+xB1OlHXUjwWl - a8ET62bU7lruHhXM7avmA6ht49p7Qgziz6lD/r6awWI4IpYusvUgmczzY5/rTg7yItJ/fgZwp+vr - IkdPIUHWeLxGSxzHFqC6efnyAC396lsFXRILPl6uTEq5qRZl1dFcZLxaHcyDustg5ysluX1uSrrV - vDNBU8Uv5ONm1rGILg64locKOYHgRhQnYyYZcZ35k9wcADudaAxvoz74uxoF43YljAZV3J2Q+q0v - eFdfGvl5LBnM2ffbuOzQpZeZxTXRkb2quuAr11765j/ibw4T0VoOJyg1MUUaH5/G5Zu3wXf9EtXh - zJGbeKGC1/e9IkoR6SPXk3cAecSWPvPl/aRqOgmG5gWRgNFa0HPniIHhvgy/13u5848ffvk5OlmV - Wa+ufvZgftvp5PiZS3fVb2UvR0dww7sVKPUfvpC3uUq8DTZ0a62HCJu7dke+GQ/1JpPEB+2pSdHz - /bYiPmfDB/jmPWIIz9hdk7AL5a+fx/i1etH6vT74zg/kxPE40tPnFcD9AljkSV6cUnVVSsmoaf5b - 3zX+8ndIyzj+6qkycm6nOqBhSI5nzzPpGkp29+d5dJP647aCaABf/+JDKWgjqh+hCL6//6M/2/6Q - aPA9Gx05XNJjygf4gKGRG8mP9wI6BEUG2Ch6IrXwxZF+RPKt74xIdCtEOqfMfQKvyfrCEkoG8L7Z - sQe6mnREsz4OXb78TqblJUZ3I+1SGnDXCezFfCGuDNRxTUIcSj8+mke2G00Xw9cgKHZ74ojE17ns - IQXw+k4rokM5HLfhHXk//oyJyIXRyryaShbPHPbBQfTr1d/2F/joNUr09xyM21LXnXy/NZg4Wjv8 - 4RUQk9nAbKZdxi0RNU2GRN8h/wRTsN3KMyNzW1cg7au307cfAHf70iT3pDqOi9JeenDbriNev/0Y - Whcm8+Nj5NDNfbTms/aA0kR5/8sHohkEiQN4gGvk7cihpua1ZOVlXzoktT3i0u0RbfCrp8Q+NSZg - o+kqwmi7p6Rg8Cua38uogIAQD0v4eHIpFeplz56am78zr7hum8PbhJnvysjboAH4uF1FyHiyRny0 - AkqKKKzku9rP6KZXu3TeghsDfQmqKLxmbs06zdmEHHILdNBsU6eGHkxyzWY3YvF26/IPn0n23Har - kfV+Nfq3H8NDvl0qlFvuANbszlfSHUsYeQekudM0uhf4vR6JxoOic4+GSeA3v/ncOn5c6qvnB9QX - /vbrf9J1Lxue/OUrBAmPktLFcnv4uD82zJwDGJX3RjNkwNYQmdf9WNP5iXr44AfW53XZ0TnRMiz4 - 40cm28/0z/vNDpP063fR6XnyO8j5WoZOAH9G/LxpiXzL+hZzWhpTXHhOBTmUpMgaXSNl7V4OQdRo - sS8NT4+u6zma5Oau3IltS+YoHB4HTVJadELeqnN0UtpskE4iUPHu8kYAa03SQCayFBQgi0aTUz9j - 2JSH/E9/eVPiaYBkyAy86zMlEnZjH8Py5JnE5rZPysXPzoJ+Qw18ha0E6PPQNbA1PiXxhflUr0sW - dbKN+Il4T6UeFzCwF9lA2Y14u5Eft0uINemPfumdn1L+1Wjg299FzpfvCzBfLBhHUeuDbz9tLV/+ - Av/+7Qr4r3/99df/+u0w6Ppn3n43Bsz5Ov/Hf28V+A/hP6bu0bZ/tiHg6VHmf//z7x0If3/GvvvM - /3vum/w9/f3PX/s/Ww3+nvv50f4/h//1vdB//ev/AAAA//8DAMMZRXveIAAA + H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 + VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k + 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U + FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE + pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi + dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi + sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM + itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW + suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO + NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd + RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa + bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J + OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we + Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d + sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh + efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g + qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu + 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI + aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx + tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 + U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH + CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz + qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN + VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 + 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf + ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT + k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L + 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx + 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC + 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz + E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 + RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z + vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 + 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR + h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G + LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 + ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts + hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T + iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu + Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP + 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te + AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj + AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 + 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 + ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU + E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t + 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD + SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX + aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E + 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s + F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc + 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G + tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e + lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i + czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ + Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 + ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c + smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ + 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 + CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 + Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY + Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx + ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV + w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka + pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR + dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj + LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD + UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb + F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs + 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi + tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz + oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d + grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 + KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ + Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD + N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY + F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd + l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD + WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 + 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q + QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 + K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw + beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B + lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib + MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u + l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 + OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M + Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS + yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 + ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF + IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz + jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn + +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX + /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H + qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp + ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r + /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN + ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp + yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy + suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h + Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T + n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC + UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f + h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc + XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o + Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp + NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ + 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z + X/8HAAD//wMAybDCut4gAAA= headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db651589a7eb36-SJC + - 991ac10a1f7515b0-SJC Connection: - keep-alive Content-Encoding: @@ -584,17 +592,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:26 GMT + - Mon, 20 Oct 2025 18:59:44 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-779bd7b4d6-xsh9n X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -604,17 +610,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "132" + - "64" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-5db985b4df-jlbp2 x-envoy-upstream-service-time: - - "181" + - "89" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -628,75 +634,55 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_f4e76e43d81245e188271bf07ec22568 + - req_94fe7d22d9f64fc3a17f67729f096394 status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence1: - stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: What do - I like?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "873" + - "874" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJNNi9swEIbv/hVC52Sx87XdXHtoDy0UupRl68Uo0thWI0tCM0oTQv57 - kZ3EST+gFx/m0ft65h3pmDHGteJrxmUrSHbeTN/Pv0V89/Ky+/D889Pn19ePhWq/ovuy22z3kU+S - wm1+gKSL6kG6zhsg7eyAZQBBkFyLx+XiaTl/zFc96JwCk2SNp+nCTWf5bDEtiuksPwtbpyUgX7Pv - GWOMHftvatEq2PM1yyeXSgeIogG+vh5ijAdnUoULRI0kLPHJCKWzBLbv+lhaxkqOsetEOJR8zUr+ - 3AKDvYTgicHeGy01mQNDEgTIqBXEqAUWEQIzeptqMZABfCj5ZPALYGAnrIQKpQsw+Bb5lUcEVelO - NICJ1cIglPZ022SAOqJIGdlozA0Q1joSKeM+nrczOV0DMa7xwW3wNymvtdXYVgEEOpuGR3Ke9/SU - MfbWBx/vsuQ+uM5TRW4L/e+Kx3PwfFz1SOfzMyRHwoz1WX4Bd36VAhLa4M3quBSyBTVKxz2LqLS7 - AdnN1H928zfvYXJtm/+xH4GU4AlU5QMoLe8nHo8FSC/hX8euKfcNc4Sw0xIq0hDSJhTUIprhknI8 - IEFX1do2EHzQw02tfTUrVrBaLuRC8eyU/QIAAP//AwCvhSxHsgMAAA== + H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isCzMthJsza6DSi6W0+91YNMyEStRaJckW4bBP7vg9sF + +8JOBN7nIQmCZ8hloAQOQsJ5oI0UZtLN1Wa/2TbbfXPYHsBCHMBBlifftHctHnbTa/5ye4+3Nw/5 + 6/HuNe/Agp4mWi0SwScCC7WkNUCRKIqsYCEUVmIF93i++EpvK3kvDvq+/y6FOz53bEwHMueM9dSB + Mx08jGQmqlLY0NuUYoiaTkYUlcToiGp0pJNJ8UgmoMqnDuzHmEqJXpADeQml0jqubTpeOu77HpZv + FkTL5CuhFAYHxIPXuTL8BELPM3EgcDynZGF+P9GdIfI0q9dyJBZw7fWNhYBhJB8qocbC/k+jufBK + OPyPXXrXBTSNlKli8vv8r/+LtuPfdLFQZv092n22IFRfYiCvkSo4WB8zYB1gWX4AAAD//wMA8jZj + oAsCAAA= headers: CF-RAY: - - 96db65174cfe67f8-SJC + - 991ac10bc89b1828-SJC Connection: - keep-alive Content-Encoding: @@ -704,119 +690,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:26 GMT + - Mon, 20 Oct 2025 18:59:47 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=HANEq4ZnGEKJEmtFfKVgha0kkUQF_R6_Rbn.uZV.9lA-1754953706-1.0.1.1-HvhIC_FxcKJkK4XVR5kDDgO7pGOCKFvAPBDgNTI0DFPb8NS37czCYFC7lDY6h72SfZ4ChBnLD7YwtjD89hwGGVAgAfEqsVVIBVQluTpfA5M; - path=/; expires=Mon, 11-Aug-25 23:38:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=X1evwgSoJ3hW_frRGyoTRq7VtD6nUt8DXKG1vc63cZI-1754953706776-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:46Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:47Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:46Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "576" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxvEHbyYRpFfpJGWoy6 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "593" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999817" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_6b740aabf75f4ffe8409c7c1736fd15a + - "2429" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence2: - stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: What do I - like?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "870" + - "877" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJI9j9swDIZ3/wpCc3Kwna82W3tLly5F0aU+GIpE2+rJkiLS1zsE+e+F - 7SR2+gF08cCH72vypU4JgDBa7EGoRrJqg10+rr51hCt//HRQPy1++LI5vmsz+fhx034+ikWv8Icf - qPiqelC+DRbZeDdiFVEy9q7ZbrN+v1nt0u0AWq/R9rI68HLtl3mar5dZtszTi7DxRiGJPXxPAABO - w7cf0Wl8FXtIF9dKi0SyRrG/NQGI6G1fEZLIEEvHYjFB5R2jG6Y+FQ6gENS1rYxvhdhDIb42CPiq - MAYGYslIwI1k4AahI4xgzTMSKMn0UIjF6BDR4ot0CktSPuLolKU33hHq0rSyRupZJS1h4c7zsSJW - Hck+FddZOwPSOc+yT3UI5OlCzrcIrK9D9Af6TSoq4ww1ZURJ3vXrEvsgBnpOAJ6GqLu79ESIvg1c - sn/G4XfZ7hK1mI470VV+gexZ2qmep1dw51dqZGkszY4llFQN6kk6XVZ22vgZSGZb/znN37zHzY2r - /8d+AkphYNRliKiNut94aovYv/1/td1SHgYWhPHFKCzZYOwvobGSnR2fpaA3YmzLyrgaY4hmfJtV - KPNsi9vNWq21SM7JLwAAAP//AwD6nMkppAMAAA== + H4sIAAAAAAAAA3SRTYvbQAyG/8qgy14mxQkJ6c6xUJYeCj30C+piD+OXeDZjjTuSd5MG//filG23 + LT0J9DziRdKFhtwhkaOQ/NRhJZkZutqudqtNtdlVt5tbshQ7cjTIoanWn19/2MY9D3ff7+/254+f + +PTu7SsmS3oesVgQ8QeQpZLT0vAiUdSzkqWQWcFK7svlyVecFnItjtq2vZfMNV9qNqYmmYbBl3NN + ztT0vodZPIPTmGKIms5G1CvE3LwxKR5hdCqaIPbGdLEgLIZneUSJfDCPvVejPYyM8EeU64i8qMn+ + DCtIePAc0EjIBUvouqp5rrltW5q/WhLNY1PgJTM5AneNTmVZ/goE3yZwADmeUrI0XQ/hLhR5nLTR + fAQLufXLylLwoUcTCrzGzM2fxi9e4Lv/safZJQBjjwHFp2Y3/Ov/puv+bzpbypM+b233lgTlIQY0 + GlHI0fK+zpeO5vkHAAAA//8DAHKv9r0xAgAA headers: CF-RAY: - - 96db65174a04ed3f-SJC + - 991ac10bc9ca67f4-SJC Connection: - keep-alive Content-Encoding: @@ -824,51 +782,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:26 GMT + - Mon, 20 Oct 2025 18:59:47 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=G2YwPkSqxUoBeW7DYk8kiGcs5aYKydU4t2Aq8TirWW4-1754953706-1.0.1.1-vtgPxLkvvW8YA7Ug6kbif0QsiVTLTnEoemK1urJLYTrpkgmOM72dviefR9AdDCpBgA6_QVnWkvZGFIyLm3VSkBfSr3cTj1OBKpPgNj3S.b8; - path=/; expires=Mon, 11-Aug-25 23:38:26 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=LnVU9di8qogmPVTKrizd1EulQeiogpgoBQaM2b9TPPw-1754953706803-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:46Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:47Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:46Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "603" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxvEG7jDXrg3fARLqEP + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "623" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999818" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_35e2a48f90bf4c33a344d6e76d1eafd9 + - "2737" status: code: 200 message: OK @@ -888,7 +838,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.99.5 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -898,7 +848,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.99.5 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -908,7 +858,7 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: @@ -1024,8 +974,12 @@ interactions: rTFgeq7Tf/x3q8B/8P8xtmnT/GlDmMe0eP79z787EP7+Dl37nf731NXPz/j3P3+BP60Gf0/dlDb/ z+V/bQP917/+DwAAAP//AwAkSa3V3iAAAA== headers: + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 96db651bef89eb36-SJC + - 991ac11dfb6b15b0-SJC Connection: - keep-alive Content-Encoding: @@ -1033,17 +987,15 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:27 GMT + - Mon, 20 Oct 2025 18:59:47 GMT Server: - cloudflare Transfer-Encoding: - chunked + Via: + - envoy-router-7fc5f9bb9c-gj57n X-Content-Type-Options: - nosniff - access-control-allow-origin: - - "*" - access-control-expose-headers: - - X-Request-ID alt-svc: - h3=":443"; ma=86400 cf-cache-status: @@ -1053,17 +1005,17 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "285" + - "124" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" strict-transport-security: - max-age=31536000; includeSubDomains; preload - via: - - envoy-router-c98c4dbb7-jls67 x-envoy-upstream-service-time: - - "352" + - "141" + x-openai-proxy-wasm: + - v0.1 x-ratelimit-limit-requests: - "200000" x-ratelimit-limit-tokens: @@ -1071,81 +1023,61 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999993" + - "199999996" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_d449e217d7ff4ca884793874523f028b + - req_5f04629ed7ea42c98159ac60ba92f4bd status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence1: - stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: What was - it that I liked?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "883" + - "887" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4ySQW/bMAyF7/4Vgs5JYTtOg+U29FIM2GHAUGCbC0ORaFuNLGkiVTQL8t8H2U2c - bh2wiw/8+J7JRx0zxrhWfMu47AXJwZvl3eoh0s+77+bzx4dPh10lK/Rffq3jt/29DHyRFG73BJLO - qhvpBm+AtLMTlgEEQXItNuvqw3q1yTcjGJwCk2Sdp2XllmVeVsuiWJb5q7B3WgLyLfuRMcbYcfym - Ea2CF75l+eJcGQBRdMC3lybGeHAmVbhA1EjCEl/MUDpLYMepj7VlrOYYh0GEQ823rOZfe2DwIiF4 - YkiCABn1ghj1wCJCYEbvUy0GMoA3NV9MJgEMPAsroUHpAkxmRX7hEUE1ehAdYGKtMAi1PV1PFqCN - KFIwNhpzBYS1jkQKdszk8ZWcLikY1/ngdviHlLfaauybAAKdTRsjOc9HesoYexzTjm8C5D64wVND - bg/j74pNOfnx+b4zXZ0hORJmrpd5tXjHr1FAQhu8uheXQvagZul8XBGVdlcgu9r672ne854217b7 - H/sZSAmeQDU+gNLy7cZzW4D0/P/Vdkl5HJgjhGctoSENIV1CQSuimV4mxwMSDE2rbQfBBz09z9Y3 - ZXELt+tKVopnp+w3AAAA//8DAMtV61unAwAA + H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isCzUjhujDa6b+2hlw0pUGweZEEmajUy5YpUkCDwfx+c + LdgXdiLwPg9JEDzDmHqMYMBHV3pccSJCWW1Wzaqu6qba1lvQEHowMPKrrdZ3n9Lx7kNqHl8+PoWH + Tf28ax4+fwENcppwsZDZvSJoyCkugWMOLI4ENPhEgiRgvp6vvuBxIZdioOu6N07U0rklpVrgMo4u + n1owqoXdgGrCzIkUHqcYfJB4UixOkJUMTpQMeFIx7FFJyRKRb1rQPyZljHhw5NGyTxmXieuqpbml + rutg/qaBJU02o+NEYACpt1IywU/A+F6QPIKhEqOGcrnSnCHQVMRK2iMxmPV9rcE7P6D1GZ2ERPZP + o7ryjK7/H7v2LgtwGnDE7KJtxn/9X3Q9/E1nDanI79HtvQbGfAgerQTMYGD5Te9yD/P8HQAA//8D + AP2tvAgOAgAA headers: CF-RAY: - - 96db651e7e3267f8-SJC + - 991ac11f18d667f4-SJC Connection: - keep-alive Content-Encoding: @@ -1153,113 +1085,91 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:27 GMT + - Mon, 20 Oct 2025 18:59:50 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:49Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:50Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:49Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "531" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxvTaopu5dgcmp2wTfu + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "548" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999814" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_cd0d2b26b8084a758fa38f551d1d57c9 + - "2403" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Provide a summary of the relevant - information that could help answer the question based on the excerpt. Your summary, - combined with many others, will be given to the model to generate an answer. - Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": - \"...\"\n \"used_images\"\n}\n\nwhere `summary` is relevant information from - the text - about 100 words words. `relevance_score` is an integer 1-10 for the - relevance of `summary` to the question. `used_images` is a boolean flag indicating - if any images present in a multimodal message were used, and if no images were - present it should be false."},{"role":"user","content":"Excerpt from sentence2: - stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: What was it - that I liked?\n\n"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": + \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information + from the text - about 100 words words. `relevance_score` is an integer 0-10 + for the relevance of `summary` to the question.\n\nThe excerpt may or may not + contain relevant information. If not, leave `summary` empty, and make `relevance_score` + be 0."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "880" + - "884" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.99.5 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.99.5 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4ySQW/bMAyF7/4VhM5JYTtOg+W2dsAuxQ7DsMPmwlAk2lYrS4JIdwmC/PfBdhOn - Wwfs4gM/vmfyUccEQBgttiBUK1l1wS7vV997rs2vsLvDj27/Rf74/HW9fni4O5juk1gMCr97QsVn - 1Y3yXbDIxrsJq4iScXDNNuviw3q1STcj6LxGO8iawMvCL/M0L5ZZtszTV2HrjUISW/iZAAAcx+8w - otO4F1tIF+dKh0SyQbG9NAGI6O1QEZLIEEvHYjFD5R2jG6c+lg6gFNR3nYyHUmyhFN9aBNwrjIGB - WDIScCsZuEXoCSNY84wESjLdlGIxOUS0+CKdwoqUjzg5ZemF94S6Mp1skAZWS0tYutP1WBHrnuSQ - iuutvQLSOc9ySHUM5PGVnC4RWN+E6Hf0h1TUxhlqq4iSvBvWJfZBjPSUADyOUfdv0hMh+i5wxf4Z - x99lm3zyE/NxZ7o6Q/Ys7VzP02Lxjl+lkaWxdHUsoaRqUc/S+bKy18ZfgeRq67+nec972ty45n/s - Z6AUBkZdhYjaqLcbz20Rh7f/r7ZLyuPAgjC+GIUVG4zDJTTWsrfTsxR0IMauqo1rMIZoprdZhyrP - bvF2XahCi+SU/AYAAP//AwAyreeRpAMAAA== + H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isBLL8pgp02R6L7DeihQbJeiLmROJmKlNpWJVLAg8H8v + nH5tHXYi8D4PSRA8wZg6GsBBGLB0tJDETLq4WqwWy2q5qjbLDViIHTgYZeurul7ff/9aX9/fHHbH + m8369pawX9+BBT3uabZIBLcEFnIa5gBFoiiygoWQWIkV3MPpzVf6PZNzcdC27U4SN3xq2JgGpIwj + 5mMDzjTwoycze0YUlcRcfDNDfCITUMVemMhdDKiRt0Z7VKM9GSk/dxT07MlZ/NKAfZmdaaADciAv + IWWad9RVw1PDbdvC9GhBNO19JpTE4IC481oywysQ+lWIA4HjMgwWyvlud4LI+6Je0xOxgKvXlYWA + oScfMqHGxP5v451nwu5/7K13XkD7nkbKOPjV+K//Qev+M50spKJ/RleXFoTyIQbyGimDg/lbHeYO + pukZAAD//wMADMBOkSACAAA= headers: CF-RAY: - - 96db651e6aceed3f-SJC + - 991ac11f1e441828-SJC Connection: - keep-alive Content-Encoding: @@ -1267,45 +1177,43 @@ interactions: Content-Type: - application/json Date: - - Mon, 11 Aug 2025 23:08:28 GMT + - Mon, 20 Oct 2025 18:59:50 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - access-control-expose-headers: - - X-Request-ID - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T18:59:49Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T18:59:50Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T18:59:49Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "735" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJxvU7JvBzwmd9JJwEjP + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "777" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999815" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_a643a65618ef440a91e94b79eda96db6 + - "2645" status: code: 200 message: OK diff --git a/tests/cassettes/test_pdf_reader_match_doc_details.yaml b/tests/cassettes/test_pdf_reader_match_doc_details.yaml index ea0e95df4..f4d369554 100644 --- a/tests/cassettes/test_pdf_reader_match_doc_details.yaml +++ b/tests/cassettes/test_pdf_reader_match_doc_details.yaml @@ -1,65 +1,43 @@ interactions: - request: body: - '{"messages":[{"role":"user","content":"Extract the title, authors, and - doi as a JSON from this MLA citation. If any field can not be found, return - it as null. Use title, authors, and doi as keys, author''s value should be a - list of authors. Wellawatte et al, A Perspective on Explanations of Molecular - Prediction Models, XAI Review, 2023\n\nCitation JSON:"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Extract + the title, authors, and doi as a JSON from this MLA citation. If any field can + not be found, return it as null. Use title, authors, and doi as keys, author''s + value should be a list of authors. Wellawatte et al, A Perspective on Explanations + of Molecular Prediction Models, XAI Review, 2023\n\nCitation JSON:"}]}],"temperature":0.0,"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "410" + - "456" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xTXWvbMBR996+43OdkJE6zfLyNbqysFEqhrFAHW5GvY3WKJKTrLiPkvw/ZaZx1 - GezFDzofOvceeZ8AoCpxCShrwXLr9PD6dnY9v9k81aOn6tt89HV9+/jZP+zCw+NNHXAQFXb9QpLf - VB+k3TpNrKzpYOlJMEXX8Ww6X4xH6TRtga0tSUfZxvHwyg7TUXo1HI+H6egorK2SFHAJzwkAwL79 - xoimpB0uYTR4O9lSCGJDuDyRANBbHU9QhKACC8M46EFpDZNpUxdF8RKsycw+MwAZsmJNGS4hw09w - Tz44kqxeCayBLzunhRFxugC2gjurSTZaeLj3VCoZAbiLg4UMB52faLi2PkTH5wy/k9bip2AmIAah - M1wdeaVVkWMarTNzyExRFOeJPVVNEPrIOAOEMZa7SPGK1RE5nLaj7cZ5uw7vpFgpo0KdexLBmriJ - wNZhix4SgFXbQvPHYtF5u3Wcs/1B7XXzSWeHfe09OFkcQbYsdH8+TtPBBbu8JBZKh7MaUQpZU9lL - +85FUyp7BiRnQ/+d5pJ3N7gym/+x7wEpyTGVuTs1fonmKf4V/6KdltwGxkD+VUnKWZGPRZRUiUZ3 - DxbDr8C0zStlNuSdV92rrVxeLir6OJ1NaI3JIfkNAAD//wMAt5s/VL4DAAA= + H4sIAAAAAAAAA3SR0WobMRBFf0XcZxnWJgu13lrap5KSQqDQKOwK7TRWIo820shxMfvvRW7SNi19 + Gphz5jIjnbBPE0UY+OjqRKuSmElWF6t+tek2fbfdbKERJhjsy93QrddvPt9/un7aHg/v331ch/T4 + ta/XR2jI95maRaW4O4JGTrE1XCmhiGOBhk8sxAJzc3rxhY6NnIvBOI73JbHlk2WlLCRIJAujLN6q + K8plJi/hQCqx+nCco2MnIXFR6Zu6TJF8jS6rq0xT8A2oy3ZesdA/81yVXcqlJd5YfKEY3ZMTIUWi + XLS4ffamFJrDNUbLi+VxHLHcahRJ85DJlcQwIJ4GqZnxDAo9VmJPMG1Qo55fwpwQeK4ySHogLjDb + TsM7v6PBZzrvP7wWfvFMbvofe5lt+TTvaE/ZxaHf/+v/puvd33TRSFX+bPWdRqF8CJ4GCZRh0L5v + cnnCsvwAAAD//wMAC8nr6TECAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8769984aaaf-SJC + - 991ac822b91dfae7-SJC Connection: - keep-alive Content-Encoding: @@ -67,51 +45,43 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:53 GMT + - Mon, 20 Oct 2025 19:04:37 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=aasQNABEhNt3snSL2Zqg8NCydmInniMDAvP1eDtQyco-1758910253-1.0.1.1-S3KAlkG2Q2O3SyPDPGI5PyMU0PYc0eL8uRi3kB3Mc69yp_Fv3lkbkFXhIcu8Nu8CUaGp8jSeZIHfywQ5LlpRiCEmXxN7xH9nYAl7izSbyu8; - path=/; expires=Fri, 26-Sep-25 18:40:53 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=j5DTh9nrw_JfE1bMR2fi_.Pokj5G2c7OmuDxsy88OtE-1758910253135-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:37Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:37Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:37Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "467" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyHdoo1Nri2jEF8dKZh + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "495" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29999919" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 0s - x-request-id: - - req_b0a97d7ec841498fa85c91f91ac5c645 + - "2398" status: code: 200 message: OK @@ -133,14 +103,14 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/62TQW/bMAyF/4qhs+W4buZtvgXN0PUwNOgw7ND0wFp0LFSWXIlOYgT+76PcAWl2 - 7QzoYD75eyT4fBKBgIYgKuFeRCo6DAF2KGnskWsH51+k0YHeSXv0QTvL6lWWZ/lZEdVJNFAjMe00 - pYIcgZEew2Biqci/lHkqNGHHb48nsb6/i5A8K8rl9XK7qFvs/FHvZZEXhXxt9nnBcBiodX7+YKf3 - GH1vETudbDJWG+i0Gbn2G42BAxAhVwO+DmjrOEGj/dw9NI02GmjunFkWuij/snqeh8bENcmD4x4C - oRfT05SeDb8jQbK68LsFq1p96QVK6WgA5qOGqwh6b/cTQwvK/3fD+4ebuzXfaon6UG0X24XztVaZ - 87vtIudH8ilkWS4/y+uv5ae/C0FLugZCJefromrABEzP/Vvl8ZCsL1fU6n+388EBnjhOgRPWoI9A - JZ9HWbvBkqiuOH+aDAMexSrZMKDHmpiUOJt8O/YG7OwUIvSHM1gPBnyy8ah0HQUuKjRBvLnE0Moe - veznoDOdZ/BjjDz/QJ6ktgqPosrjeODrVnKLMed2MGaapj/h6A3gaAMAAA== + H4sIAAAAAAAA/62TQW/bMAyF/4qhc+Q4bpahvgXL0PUwNOgw7ND0wEl0LFSWXIlOYgT+76PcAWl2 + 7QzoYD75eyT4fBaRgPooKuFfxEy0GCPsUdLQIdeOPrxIayK9kw4YovGO1UVe5MVFEdVZ1KCQmHYe + Z4I8gZUBY29TqVwsytuZMIQtvz2dxebhPkGKvFwtb5a7uWqwDSdzkGVRlvK1PhQlw6Gnxofpg705 + YPK9Q2xNts1ZraE1duDaL7QWjkCEXI342qNTaYLahKl7qGtjDdDUObMctEn+6cw0Dw2Zr7NHzz1E + wiDG53F2MfyGBNn6yu8OnG7MtRdobZIB2I8arhPovd0PjA3o8N8NHx6/3G/4VkPUxWo33819UEbn + Pux384IfyaeUq9Xys7y5XX36uxB0ZBQQajldF1UNNuLs0r/TAY/Z5npFjfl3Ox8c4JnjFDlhNYYE + 1PL3IJXvHYlqwfkzZBnwJNbZlgEdKmJS5l329dRZcJNTTNDv3qLqLYRsG1AblQQuarRRvLmk0MoO + g+ymoDOdZwhDijz/QIGkcRpPoirSeBBUI7nFlHPXWzuO4x/IQXe1aAMAAA== headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -158,7 +128,7 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:53 GMT + - Mon, 20 Oct 2025 19:04:37 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1237,7 +1207,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.109.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -1247,7 +1217,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.109.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -1257,1701 +1227,1701 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: body: string: !!binary | - H4sIAAAAAAAAA6R7SY+DTLfe/v6KV9/WkcxkqurbMZnZFAYb46wAYwwYY6YC6ir/PcIdJYp0V8mm - pW67G8M555lO9X/+xz///KtNqzwb//Xvf/71LofxX/9t+9kjGZN//fuf//4f//zzzz//+fv6f70z - b9L88Sg/xe/tvxfLzyNf/vXvf5j//ZP/86Z///Mv3Xgq3swyb7CaqsSBrxi88HFIzZCrKlRCKjBn - 8nx9T+qShSCHsTcesPc9++oiIqtEiF5ykrNkTde9pATwXbIykTl6VdfH266hpZwQ1h3XUfn+KccQ - dmOKjZ5p1PZI3QGyPY0mdk/knoucTIOfPb1Osw4qSuDw8kBRiwx2rfbiLO/E20FzzWyS0MIFq9Ck - A1Tdh+jBefqmY28NJSz7KMM43t36OXQmDzrpBRBTmQ7qsluwDo+tj/H11tKeOrtCRNkghlPtIk5d - xWIV0QSeGtaHR+ksx4/rA2j6AXl+8j4dVhLmsP2ub++QlFM/e+JZQdvzmxpPUVKW+jMH3M9ywdFp - t3fmz8ysiL6vEzla5p7OgtdxsDoHFlEyzVUZY+xFyJiqhs0v2oV0gP4O0Xl0yN3ydToWd1NCDNrN - xDqrYT/4dalA8O2eGPdnQaUZWEvEM8KVZPrXBVPkZLpoUtXGZlzqPQu5j4jcIeWJ3PSRQ99llwPI - 9QLWu1at+M/wlOCzuF6xgeWlooFp+TAWbAufxFfucGxObRSo8wWfwxqDpT6daphWwxkr1Amc9XSU - athcRntqvP2NrvMTJ/AyaEfic0uasuMr9WH9llLyZD5Vyn+NpENLrxFsO/cdoHfmDFFxbnOS2nnl - dHsl8mGdnHYT0hmump982SFFGQScKVzhsNXzs0ImGRJ8tC2hWs8HTwPos5eJrsfvnrGPwYTY3o3I - Zavn+AkCE56Vh0OSVwTTtRgqEz3jPCXu7qSlq3Ld+zB6yjYJC9FJif26XyB3lyDW8/Cc0vOp1BA/ - 1ilJHhXup6aPdPGlHT9EfyNPJcZdWBHr1hW+LeEr5FGWSnBvfGdiWreHOp/gW0LoFC/klKIpnd/R - qqDazhx8x8ejwxz6NUGu/0wJ1gXb4Rb77KFgiqppDd4+WBm5ag73RAqINNmWOgK+HUD9bXfk7qRm - OpPPKiKm6XiiAY6nS1DYNuiLwSa+OZfhbx7R7dOeyOO6l5xRzEYTHK02w+bBNMBsCWcfEUYz8COB - bDXXhy6BIbk/ibz/JBVXXloTMBggbAuO0s/hvYjRWOkYO8wzC5e3vTR/19fFQ1Cxej37SFHPApH2 - mQ8YM7UmJGlJ5Inb7zP79nxBwnKYsF2rVc+5RtZAdap9Ii2SFDJ9GEPo7xcGXy65Ahbj1WfQTpg9 - jo+plLInSeTQa9K46YCPR5U5XpEN/Y8IsL3hwVy8pQx14vqYuOGhOAzvcxyyx/KKrbguUj6+2Qn4 - 1K2O3a82VHN61UuY2S7CcnvTKi6yJB01+/MdP3z7RVd6Oc7QOzT3aRXoI+WaPtKAmZUPrLkoUnms - wAneji8eO24o92skLBx8oBiTK3N8O3PBPDjYF5NN1LZuVSrWBoc+d/5LsCEnTl2bPAMNA+6mKkr4 - cD3fuwK8TX/BWk0WsE6K0KHLoB/x9Xilzsw2bw523CROy2AvKfsEc4J4gfQe169uyF3TMkAnBo9Y - S/2oGoRd1oAbqXQckgiA+c1dGyiIEoMzIdYd1j4EHtITMyb2focdrvM9H1he3JCYs4pqlC+7CGaB - wXvC+VD21O1PAtwjKcOXrvadRX5rJewFScWJ4CjVOq1dDDb8JMcot8FoOTATZfvIkhMltrO+Egki - 5XzoieFzvrpqnpIjFcMHjtRySte0qxKkjKFBpFRVKHe2sgjkHysg2n78gNm7FR0CQdSQHz+tUHh1 - yP5mKwnH+FSt5Ue5ALtTV2wf24pOohdPEGZG63V53YbzPrmZcHx+ek+0gqKnEmEU1JjrSOyxn6rZ - ZrUcuiesYeMyFg4rnPkVmlS2yU2LT3QOncaFsm2w2AGumtLmYbVQSO8yzqkYUj6wrwGwE24/7SO3 - 6lddJAnUdUHBtvNQVHZ3rkpUFTn83R8gPt5ph9chD4l5PpTVD+/hdGpzfA80N50d5SSAcMc8p9e7 - e6SzLx9aSCMTYO0YHtJB486lOL+EkYT01IP1fC9LhDO5nA5vpezXHvgSyrXJIrpcSyrXpFiAckta - j+77yaFvxdPhjz+MD+LUGc2eCfx+lxO89z/Oxu8FhGYQEE8TSodZ998Ofstdu82TlHKLaENYn9ej - txezVzUfnEhC19fyxqfLzkjZWymLiMyf2mOBsPTDPnmawDy6Nc6fXw3MgG3gb742vJjpoigXEzGl - dCG3ORWqnx5BY6VhD6nyF8zBbpjhhi/4mbGfisENJ6E/Puz8Z7os0bmD6sJ8SK4JpTpdfEZAN/LS - cVbcbw4n618RlinISOJhzpnDexujTU/ga704PYN2UgTG57sn6TKaId/sVwVlM+mISb5uz+k2asGb - LW8EW5OccsqVD/76724nuJr3sWqjH56lEXyHWz9GyJf3eNNTbdgW2qBBa/Zn7JuHNV1N1eR+eglf - BH4Gs1+XEgJYxxhTeKrmQzq44iF7IK+s+Lha3Kry0D0Y7ljn9TdYdRt1gJVag7gZSdI//p4uu5g8 - 1mkJ10q779Cy7r9//bVw8TlGaugyRHo/abXWu0VDPg1iYt+HZ7XIb7eEn/aZTTxNnhWVHncG7m/a - PDGzC8LuO3cd3PjAg152r/qt3xF81g5OoXV3KLIEDrbYu+KTWbzVFj15eNBuc0jUbT65TwwEOF1g - jI05FXrqOuUFvTtbJNZbKSv6QquPrMf77jVrIIWTwL0EOHKXNzFcJ+nX55nU0KovIVZudy6d7+23 - +MNftSu5cELGXgOX682d3mfKhnM4KA2Mluk17WNZUfndoash1aGJLYimdIH6zgZmxdxIxHnIoS8k - +jCtpvPWT/tw0IuyQF4UqeQkxp7DHMOXiUYpORCXjnM6n5+yC02yUqxJkQrIFX8Z6Jj6G5tDd+xp - 85BbYBx4g6gvUDsrB+0BGk+fx+fBXsJFdPMdLD/+YYJXpKd8ZUwixOL3inU9PvYsO+IGBOp6mVaO - ncBseGYER6L0xFvnXl2iq1mCs7DnJ3592OqQVuZw6NuPSszPnoDpp89GaX8g3sWM0/nQiwmMUIuI - mgaSynq5ncDrXewnJPMvZ10NLYErX5keX++IM5wecn7oMrMjPt1/QmqfHRsmjpji40FJqvk2R5FY - QG8kVsvicHaCi/anHyKfiVLGukFRCA6TNC3FaFBqz9MAf3zgfuKd03u6XKCpdacJ0J7rR3OqGRjr - vkSujr2k3925L+D5vmjTfPisFQ3fPvfjG2JpmZxSi4ISVmff8tY+PqaLMJs2vOaVh43S5AGp17mD - PH61OHpeOmc+qgn8+RsiU2njg/YcoX1zrnCY6UdK2GCdAIACSy7L6bLx95WBv8//e/5fXzia0JX9 - FtvJKIQr2VfzD/+Ix7y/fffcHyOYhMuVqA81Dele8xU4fAUXP2RedvhXH2tw5z1Hb60ms5qswo8h - AvhG7OshAPTV+zr0OutOnCoxKr484QFuetmDvtmq69kwI/D7vE5e7ugwufsLcGW+JZZ3gumi7nEA - +M4QCB71qKeJ+olhLbALxs1F6Vd0Pfjwu9Tpnx5Yoci2cMM374A9Vp29O9NCX44xiZbzp6LuwdTh - /BJHcnplVsWlA5/AyWrAxF87tqfSWCiIKOvOm8FXc9gsBBmcD16DrbT6pIuVRy0wnizvoTAQQP9t - OPfwmx/duAJnfe5PEfww94O3vg5d2g2C48FD3H1IpnCSw8pvtwA36XCZ0M4RKXn7UoDGdL161EYj - WONKYcRxd8pxvOEzu/lRCKf5T0+l3VYfxOnXhmx6ACyH5wHC474x8anxibqU6l2Bx0xYSdqpfbUA - vp3Q43AZiKm8vypNlpMN12wnEBOudTUrQIxgSrrRE75olw4t2tliuh40bM6PIOVz7j5A9ebfiHq/ - 5/38UnxdFKb+9puPdLkxtQ6Wy40jhuXScN458gxnJ5a2eqR0HOpCg+MyKHjjv37x0HsH78F0J/rs - e3RhR6P505fR8ChVsuz8AW79is245/p5JWkOnnzvYX3zn9NJM2bIq5JLbMEpq+VTthf4iPqIKEFW - UEpYPoIPNrSmA/cQ0/VliSvcB9kJ23PH0o8+BDtwrL3B28lyoK53Zcrg8/TdYZOzin6xrSIH1Kb5 - VPSXhQ4ZHicgFvmDGJUk9cts+QF6DuFCnLwpHZI3aonQMeyJvM+7fraMZoCH7InI0bHP6Zh8ywwC - KLL4VAcFWKJbVqIhebo//q34U7sI8P6KXHw6Xbp+CDygiEzT8viyei6lR6wm6H44HT1BMIizzFbs - Qz3S2M0/FOEyLt8cikfxRBzRsfuFDFIrSt1BwWZSMGAOwXMHf3xw+uHh+V4WULuEM9HNU+20tzm6 - QOGZ19hhi6u6COVpB5cnCTxYZa90vs35BUi3diBn/cjQYeN7YHtiie3rrID18Ykakfdgi+9a9kpX - FB99dH9d3AnxJUepDNkEtW9bIUe5bMLf/cD29X0S/A2/YE27PoabH930Q5DOvzzg8AkSrB3tb7rN - o4R+8ye9hobOb+7RQP17c4j9FV5gWVjkwimmE9E/AIardChy1HCfEBvf9dJz18cuAOpbsInCsR5d - XNXjIPfQn1hheKlinFXI4bIm319/qTMXPTuI+FjGEsu86eoaWQ03/iUW9xDD+XnYdYB4doJ/eDit - n3aGj1KiGz6CcDbGSkA0OMYYi++lmtNKmuB+0SXi4scaUvnktCAuGB8/V8DQ9frgfLCCusdBQV4V - FezjluewmCgOdAGH2jSDC5e7xGQuSsr7mNPB0YcRfp66nfrnD3dCjn7Pky6O+Wkh99Ce2IngMV3M - HZDgIpUFlgpm58zPA9fCrf/w6XBj0+XIJxngk8tx6mWIqvX5fM1QZ8/tVN8eFmB/+dKyux6JRfom - nXo0SOJj3GMPbf570oq6+5ufI68N6vyZ2hXsv7PuBTz3qabv3LUQuwzBxsa/K9jZGYjtY4RNlZzp - XOYTB4e8IPgovU7VxgcX8MsftvkJ5yVQBZTfds+JhNEQzt0bmPDSSiW569Wz2vx6jcj8rvFPP4yl - elb+/OJpnc4ha1T7DHgoJd7uHGnpLAp0/fN7zjS9fp8nB8YCPexk9dyT/MpGUJ0aH2e0ltI5T1IN - pqQdpynZkXDzFxrM15L8+Aq0b71i4POupthggrZf8a4R0I65JxO3pn44Y2Z24YHAAich0NL1Pmsu - 3BW1Rmyy+cUCLhewzYe3/vpxKQNdhLfnkcinRu552r4GUCd4N4XD7QJmxZUauHuIIz6xtVlxGoIe - tOoo9JoNP9dPTEXkHer7aWkLplpl/SugkKRPrDo7vR9YjlEgo+5f2OD8CKyaZ+c//zfxJC8B+3WX - CIZ9beHn+SICWhTlBDtuED2mbV509b/zgJRX1BPJnJVwCdbhApj0nHj891tXa8upGfR7mBP1RI/q - 8t3xOtj0HTb3Ytq3t51foM2P4ZMqW2DFTyeC++6mEzWYk2oFI+Oji7UnWJUutsPd/aJDduRmRNn4 - dCzEfQ0F1/OwyktCtR77RIG7MzzjjKuMinF9U4OKMglT/Z67aoE39wLzG3xOrPIEgHyGmwSH5v4l - d/6qOlRlpfovL9vwt5q7N7VRvxcgvoXsTR194WTCb8e/JnGrF/ti8xUGZWyQBO5bddMfAcjN6umt - u2ffvz9lESHTr2Wcjxqk4+F52MEtTyXS1at7eq/VGXkBXxA7BFpI1XqNURGF8rTXhU6dNMR4yNLD - wuM47+FMHLQnsPl3okXZ2VlGijKov7IA69l5D7a8TIC3lT6w5AiHdPn5+92dt4nj4zylF2Zygcr2 - 6JffOTPNDv6f3wHxUtHFqPY5fDilTuTnoXTWd54NokZ6l+ich9RJ9Ifhp6exZB6CcN7ySKji3cOb - T/WHLqkuaoc02988lC0XdejMvgEDq2ZYuaatQ8/d0sLzqCZEWWUr5LOdV8J+PDXEoX3UT/U5vEAV - eSo+eTlN6ZO6wq+/yREOfDhseAs1ortEOfS6w1c3pAGNi3Xs4KCt2N7wS3irnY6o7jqEpPeAK2o7 - fo81U5J6Thc/Cdz8JXlkC6NO53tXwtgzDzjxNaaaThqe4U5vGKI/grhnNz8KrsbpSuQX7/c0sK8+ - POf3D7Hm56Cuz/OnAT+9Ep/lOx2qLOFAP+IGYzF79Ys1xAz8Xd8p7x745R2HFCi2941rKeQWUYFQ - vggB0XYDUbe8XYI/v3EMGM+Z67suQa2a5mkO743av30zEH/5pLXlg6y5Awr49Qe7xAgsVVHU0HnG - OXEGdt+Pv3x6w8NRDEGdLtdPN4GrUOQTHIVA5Yl+qqGzk87Y2vqfu/ttCxV9Tkmi0ne4/OZrzaBA - zB3SHRrfoxg+vmAgNtyb6twizoZfPJyJyktxtUgGhHDT796SKWtIwQtw0M1aDfsbfy52jDjRPHr1 - 1PD6EfCBKQc/P07cK2rSsT9EAdydd2cPbt/TJEQN3HdXHSu7p9OvjpiasKuyGj83fptPQ84Jv3zo - eHtWPfELLYBWfQhx4p4NSsd70cDBCe4eqBKjX5htk+Jf2jc+4eegEvmkdmgJZ45cvhWf9v3ZcH/7 - D3wMmMkhcO/E4qbfsfcJ5WpC8cmHs5NI2FKXvqelDSZ4ffMm2fL6vg95oABOvzVEEShKMzOVJ7Th - MXYPV9BveVYBt3yI4OoDQnI8PxNoz/OAPZAW1ZZ/daA73hd8HLOXQ7DUDnDjI3L7oMihzPsi/Olp - XD/rcIaVtsLuVPJE2fzWsu1n4LszRaI9jqw6HICxwgh1CCv7ok5n06YF+lxP+m+fUE2O/Y3Bhs9T - 4ZBvunx3ex1cYSMTnccsWPYT1aAkAepNbp729MCXDHBc08RpvKh0HT+sgmbkW9g4qVU6XA7qDl5O - WUDUwdMAO2jqgCZ63WGF5z79+s7MCYbceMfWdfo66y2yMhDvMwXrmJcqdusPeGfqEj+NQwno7u55 - UH06Pj6FQUzpxM02eB69I/Gukuyw6HWYwG9/sfl9Z+aX1AWWNavYV/wp/OX/4glGdELDIVSX5ujP - aMsfiCG9X84cp4UJ25ExSYJ9j67M+TDDSLrHxNj475f3gfUsZR7NtYszPw1BED+6EmJlcJ0tj5Am - sN3PxJfmDfTeNRJ+8za9jlADLFV23e/+iJRzpB+hvjPB/YCP3lINE138+FWD3P0oWL+2KZ3RTrrA - 3/Pa/Gy1ju+vBPjcSvHph1c9iCXwmzcNQ+TMB2DMP/6e9v1ZcJYjH2ToFuPTJCrrUM2S+vF++g0/ - 9L6p5gPAK0z6o4dt4bL2w1VdEvhIzwdsT4ORTtj92lADyndit35ekn6Xw9B3R4KLlglnrVEv0ILY - 3fqtrfrXOGjwcw++Hl/YVr+2nJPBS6uUxPa1SzWUecPB0/stkuP9ojhM67kxrPbfCVs0Dx0idN8M - bnz043/KP8NXBLt9KnmjxrXhwN7iHFr6ufAO45ehdPeREqTk+oVgt7imXfmxI/hNu+lPn88JWwpI - CEsTb/6sYprw7aL54DYTC4dbuOXvMRqQXWKpzkXam81qwuI6yVj25i6dG/X5N7/ePSmnivRLX//4 - CSdWOldrOuzjnz8mcnIK6cJMUow2/Us0a+eBNjkuJuS7o+B9Xk4ZTn1C27/8TulfbLjip3oRt7wb - H7f9CXX7owht/CzJsYSjyq33qYFWu+Om/ek1qctjcSTox5NJbDuzQrrhNXiS+YLzJmjB9NunqF05 - EmX/vaT0il8Mequth2/b9YdrFDaw+xQG9vRRCqePfp9gcJM64oLb6Izn62VG0ZTbf3n/+pUEASa7 - a411AWjhYmI5gMr8yolyWvqQjAfNhhLnP7GZ3zTAJv0uA/hZHrGy5VOcBJj8dz3v1V0D2j6QmqHz - WXDw9f5YnbU+hxGSB9chz9Z6Ocs5NGdoSPoRK/EpU6lfaD4Mbu/OQ3cAt/x82kHZKlj8m8dBnoSd - qCdjjFVWsVO2foQzws/iSGwz4SnpX48ExAA9iRMerynVM3eG//qdCvgf/+3/4UQB+1+fKMBLpmKz - O6iUuyYwgHin5li/PzWVyW+4BLqPc6IOIwTLQkoG3rjwOL2SZ0kXHlkdWrP5QvyLLaX8iIsGHc6n - C7GO6FRxSrIykJEBO5X7UVZZuPtyQFg6jzjmXevnQ8pA5AbGSGzA3ABrAc+Hp2/DedGBo9WojJ8M - 3pjFx0/cTf1yn2Tv8OmtgRgnuQf0JXYu3BcCR7SBWRza+EAE5WOFRA3qtB8/4FLDd+seSMiUHqC3 - ck7Q1OIP1pJCBrTSWxGqT+FMLq+8o0T4JAn8SpmFM2/6OJPPzjmY1Nye1h6rzmDoYIVuN7VEr2zD - WTv/GcA2hV8S3Z+aw8x0vABBl1t8i2+BwxexXkLhZE9ECleFctdvk8BAGi7kLr/9kNuXUQudXDXw - aR33Kj2nsQi/w2Ugz/Lx7RdiGAyyhHwk8i3pU3J07yJMDcbEj7bL6fKirI70I0eI8WSanvRBpsNb - Er+I0R6vPRu3sojKYH8hZk1YlV77yoWWijxsfSo1ZHPyiiHTXlRPHPIFfBmjMNGpfM7Ye6QDmMdv - ECF7R/ZYUoITnT+vlUFiPD08jqlGsHrfhYG5NPse955XWjcpLdE+Kg2iY61J2f5+dlGdvmJynv0G - cIey03/19lqpoj0FyxjDwYp977DsZJWbxSSDXe+KWAubOFxeyidA30LGOHrFbL+UWWzD+2n2vP0p - K0Iq9o0G04fyJE7Blz1nhoWHXrw+E5s4PVhsQ4PQCEqfXNX915k7s/ShZJk8kfjGUKdOHk04qZlN - 0kAzqt/zhtZrfWEvnb/9zN1ePgKhaBHLBVE/uto5O3ze+ysxxc8nnRcz4tBNChd8srwb5Vwsa2hX - Si25K4VAx0RZBwRr3yX4LCBntA13B0317eDHktxTZs2k5Pd8iWZzD8CMgpvDh3XWSSY3JF2R3DR/ - 8+ik/o7OEzm38EPnluR9PjpT9cw4KCRQJs+A6CqXD9MKs/PxSNxQr8OvWjMdwtJXJ+FYv+l6KDsN - nvdeTlSsftJuLK8uctbyg6W3860WC/Mr3I9uSPJ2CVVusmcfPm76HTvqeeiX/LU3odX1CcaDYISc - WQYRqs5sSY7HAKvcx3VqSO5KTZzDteiZ3V7g0PMxTls9HMAv7XuARi0dcdSrcc+cLWgCPv5ibAu9 - rPK3q2cCB0UYX9K0S5fmtkgwnYoLDri3lXLb/aJ3XdxwZC1SxYSG2cEEjTcse0HYM+F1XSF/7N9Y - e3Omw8vPyka8zcJJiPWvw9prmkFAH5jIu74Ol6bpbZjIDIOtQp/oKkuKjvgwE7D8OE7V0jSVCT+l - T/Fpqxd3uUAo7p+p5CHhUlJOWC4e0vL5OXGxj8BC1jyC2Jhdcrl/BbBWk7cT84V3iG4tRUW71BPh - 6xs+pvujUFUqcZILn82lmza8qtajfdUPzuHQE81/yD1d0M1GY5EV+KIoFZ07swvgeRy+2NvqzwjC - PYIfBfVYXS9SyFqPUkFhfd1P0JdPzkrOfA6nc5XieIZayNLnSYdzMKVYXvOrs2Ky2MiRx84rpUMA - tvlxUZvuvsTKvqI6lgeYQLY4OsTaYUzJVh8I2VWeaPU6psSSaQ6MNxWweZXPVZ8fzQGeysdMTqrD - h+9EESeoZEY3ARJIDnez8wKic/vG1jYfcxV/JsTz8Ob17/CZzi1XBwg9oEKe1+uZcpMt+DDF2CVH - Q5P6ef8NV5Rr+Urc6zCrS53UJUpuskNSDWI67JNXC/cgrLGyBGo/5755gcmxijzRN8pwqweEnVZO - 01Y/QG9X3YZne9oTs9LOYKmPQAf0BiV8iaPQYc+XaoWB4lrkvOu1kP/xTTcdMuyxB5vOclfOaNYO - Jr6Ql6Nu/c5AettJE5LyR7pyDJ7ggR0oVifeqejtyzeIB+2B3A980HMPVRVg8SoicgKPe09u5Rwj - 7eB4WCEfKeWT+A7hK3ifiXGCl5T413stnvjYwsYBfQAd4jBG2sDOJHk+2pRm2diB5KY62D0Ul3Rp - NJzBdsxyEoqnBQz3R+Cjz6zp+Ho5ds6ye54hEJbWw9H3ZPSrIHkx8Oq5JMpJVxz2XuQQ7neDiT01 - 6HuWCNcOBdy+IUapsOq06ncbLIe1w8bLGCoqHuILsvXXDluGH6acYbwadN/xllf4o9Nv19vB5SHo - v+flcPvZFOCtF6NJnDmssi//XqDeMHJiqAdKZ0E4R9DvUx67WQDAcmleA9qDc42jG1NQ1js/IXwN - g4yjNsr7ZbXDDowfvibH5y5N6UssXbSEWo7DY6yl7OEm5tA8NE+y4W84+feLho59LmFf7xyHjSJ1 - BxyZdMRILLXi7kavwAgYd4ID0jj09BQkuMsYn+Ti2XSWb6ZN6Madj+R+O+zDLtnNNlJ0EJKTWJ6d - FdV2AG/SeZnmwVqrOnKyC0SVmeBofNdgDmQrgl1xD3B8m5y+09dZQ+8TZxN5QhKd6+Huw1XoBGyj - XUMX3qEcECvDnfiXMfQU4yQAv/nij+4dUAY/TPi92VeShboWMtvfR8e5jcn9JRQhRW7kooNqqiTc - F7eK9uoXwiIGCcHdFKeL3ko5eslG5jVhVlWLHHMSytnXiHF+dMNF854N2PAce/5a0IFljyViavDE - XvVNnQXuXhxoGbMnkrRvHSrdKw7CYL6R7XWVe3u8Bl/iEmC9eJyc9ey/fJTpQ0TOr0dPF3xYIYoF - lsWn8Cw465BdRQj73icW+NbOWlwtBr5yYfI6TGpAQ2hCCMT6iqXWf6kUi8UM0WOneFt/q3SnVgkc - TvqKZQWewtnamQKkfKVP86gBZz4y7Iqu8OSQq2jAfnUfwAOE3kNsHZ7XdDRv5YB+ehWXrA6YwssG - 6GpSRrTeOoE1lNQCLG3Aejv2YIO5OVkxFEeR8W7vp0UXKhcMfEejRpw65ujkt54L+VfgYGOr13LL - 1ADN3/hDTFBiwH0SNMH6e+mxDrNnOi1Y/etvojzcEsz8o2jQ1r8eMkMSToD9iPDdegdvWRySTtfd - jYEyLOsJmm6qrtXzwkBZYBRyPt16Z3z55xJ6IJu8dqgNlck0eYLWdIVe85DilA7WN4A7rKCpD2+n - dGbPXyhG8ZGQa2l24Wy6VEfZhX4muvXPcriJGfg89NRrnRcMqVZxnEiEd0eivXVI1+ILfFiuQTax - q9c7/a8+SuOl0z5e9aotna8L3+u7xV45rf0UPw0Iz0zCTULGqf3KhM8WVOp8ntClztUFCF0JwK3p - iaq9QNhlzyJAVbxrsSuF354c6F2BkJ1lHO23HD+t4wY6PZPgwLsbYNMnDXysEBFJdFe6zkxqQ+Ur - IHwfPb2aX0kYwSI+JCRmHnE/a9Mug6KinIlW7/dObwJGg5Y3c1i5E09lrGCNkb2dgPj1Ly3rk3no - eSHFziI4dCrZRYDmAx2weZv6fqVunMEzoOIEVsqE9Y3ZuyBmrZB4blL1i+qrHnzx2kyOZWFUrPNt - W+h2Q4u1kRz6KewTCXxwaGJb33chaU1LhyTkTkQT7Fs6bvrj4B2fCXET7ZSuVkJi2KsJxOb97gGq - XbcT3Pdkh83WtQA/5skg/vjaE8+muukBE91fKk/M1v3SRSjGAF6abiFW5eg/fZ4DhR/8Pz338xcg - 1NYDUY1m7WnY3mLY3ckR2xV77GdIVw9ml+VDTo9L3E9019hQF9In8b4D6GeJPhpoK2zmUaacwJry - Rw9K1ashV/41g0VuWh8Ovv4gWpuFgLooCyD/XK/EPjTffvOfLWSSYsZPS1Md9nGZO7TpfQ+Bx70i - 5x2ToXNcBCRYT4O65C/eBMO+L7HE7+pwPU+nEg5ZL5Bjxtb9cj4eOuSrJ25iryBVZ3p55LDV14BY - 32WhxHo/Fai/xhArfLEAelBUD+x0U8Ph56D0nIgC5s9PGkJXOrR2Cxfau0yeIHOaqs6eYgjhen14 - iyLX9M+fBOEeYlmw4nTNh2YVvyFZvMPdfNPvUwtEKLUjmg6Miys6fE4lxFf+QeTFIeEUvIMBGrKS - YsN+Pvu5mOcE/n4f5Y7cM29ZmaFV+ZG3f6vXdPJO1wxs/E8etaeonFjscrjxDZbmFwZbf+bwe+wK - vOkhunq7KoCFV/ZYi8y6GoYqlNCm97wdcP2eGlqzg1c/askpd179/Dz0HrAH6BIpP0n9Gj+NHRw1 - XiTOjdgVZfqlRHvb/ZKU8y1nvX6nGJ7Vz4Gc8k+ervYU74BxenP4pPgTWBRwn1B6/4CpXAK14vOj - OUErqy18WdwppT0qa1BV1xtOvU8AJsthA7R/3iWP2fT3XJ2LAoVF/8Cmp5r9tPRFhHSKTSInzxIs - m74BjTvFHsVp3c/jN7kA5wB6opZdli4huZRizlaj976C1JndWohErg84rDljQ//0o+JJ94nrRblf - 9feJAVWXPcg9jRiHvob9DngrT7G74TF1wiWBc+35f3pq/hyjDGWx5+CfP2Bv+4ZDaTUMHp+/CrqG - HttB/jlfsXu52+nyZIsBbv4TyxMq6ORDvoOjxopY2Y8vZ97wBGbf/c5jDa3ol4Z9BFBhzgM56a2r - TvP7K8FsEm7ED9eS0mvfe/B4vvn4uM3b+jrlAvjlH5rIL2FXR50Ct3p5DPe8qOsgiD7AgQ2wmTpF - OJ+8MEClGxpYcfFdpcCzuN88EBOIJ5X71T82ZhGfzrs1nMjzO8BBfDjEfSdhRZVovqDk+Iq816Tz - dMPbHOCdnP/0Wzhbc9TC92GasKLuOpVefDGDQyIesdcuVJ2VfebBOf1cyOmAnZThgMYAi5kdYupe - 1M/H27kEshZVOD6ZhTon1b0G1xf38KjRrBW98V9G1LSeePuRYrrSLxxgFrsOjrZ6MoYEMyjaBxvL - W36xCKosQcdkZqxEwSGkVlQLMLwjn0iOYqb8+xPvoHH6cPjXP+1P36332zzNR1L2M3CeHhjePoPv - B37th0e+5qjzGZdsG7BwRmY1QECfGBv5SwLzI6Y2tK5PFbta34DFU94ccurx4gnv7lGRp4tFkO/s - Fh/vMaa0FaMZSdHOxnZil9XWvwVscvdE8rl5qyvn1yba7sf7yP2xWo1TK8IbQ318ulMt5MmJ2QEZ - m84knGsISOym0eF0SZ7YvSyffsGUdj/94mWbv5i3IBfc9a+Jf3ndGj8xhLfcUCcmnuZw4+sCmK6n - e8L4xP0vzwGbv8PhlifOfnF30WKikSje/QPaRFCln37DFpRf1R/f3UgjEEPfOeHoavcM7PySYrmc - l4osjpxDoOvc5B/Odspm3hJBk4lNbHS4Tml+X214TW0fO3vgqvxenEuYt/Ds7Q8W5/Q6QTnU8vW5 - +SsmJFs9EeeLJnaXjwL4ju+DH1956HOLAV3acfrh9bT1C2Dj0M+Rfbmd8eaXndU8shAOiXDE0i28 - qXW7nRA3btPHG1PdduZ6OPvwx/fW6DXV/F79GkWnUcLq7RL9Lz/2628rpy1d20ARkFUFkVfs6tlZ - L3zcwROsC3Le+GNqJA0itV0cnCR22f/lC73n1RPa/PegP3wGrVX+IsenGtC/51Hzd4h/eMzg5CzA - VWgFbOoeV41rM0swfDof74Ox6EzcM/ehsR4jksuF6AzGavt//MUs7hTOnMUrP7zF2RDDainsxIV9 - /Aknbuf5lNsO+aNz86mIpAQjJZ17mYGmfcm08gJWV0YbSzgldoQtqTPoYMeHCU7IlH55LJiFK2qh - H+HCe235DiV7ZUasMOnEnJLYWY+gE//0lZJdD4AEnNWKG196glSF/bKQjgE7i2mw7nyWfr4erwrM - xUzH56sPe/I4gRI6NbkQg0/TflV0K4aTpDZE3/Twaqt2Jh6I0mD7KyN144cI+o+oIW5zhc56A3UE - lMvQEEmIZMqe4JSBQJou2LWjL13l6t1B9a19Nz4sqsUCXgAD632aFBE1/Vh6bxH+5ks2hg+Ym8Nz - BnPt+iRkH3y4gK+QQHV4jsRZhB58vafiwf1uMj0ovHswD1Uqwew7SOT3/IlF5QDmp1s/tZuf5OJc - 0uD7xNhYm5qyYtnsXv/5M6eOI7paDgqAIQ5n/BgPR4eTJVsX+RqO5LETp3CU450C3btLcWpjtppO - VzOGT9w+SNDaDmDvk+zCi3H7eoFeXwHZ8Aee+MSa3n57Den7Pg3QKD4v8tOfH39FHNBfJMSGnxc9 - vTCRBONrc9o+n1LNsVlwf/NMXzeuooq/KOAdKqVXcTNS6Y5ZXMjvrynRt0Os5Ji6ErQtWE5M0BM6 - YnO0ARYvEP/8wco9owCO9zXEW/4O6NuGNfAdbiHGlzfUFiOUAeKcztP+ej2DRWjqBg6358sTIqqq - bGquEkx3xwRveQRYTrDJwFO9SiTkP426OpY1w1RL6z8/2R304wC2/A+f2m5H//y/LHAK/un5uU0M - 4Q/P7a/QqITlZxu9k3uD5cg4VnznXlaUwX3r3TKCU87LjAY+1ZtETsUypmQy2BayH/eM060fJqn3 - G3RQbRVbPz5xlKwFkgoLHHbGotLv0kPwceqGuEOc9ctnKHO48SsOcsMJl/3to/zy8A0PI/UbOMIO - /q7PzuCdjm9kepAtDIfg9+5BZ+tVF0C9hRG2o3EE37ezJiDIlxp7t9hNN70D4Sx7DbY5iwHrL/95 - ns2Q+AG4gy0vW4FN2zvZ+KIfAHwrCNkwxs/QUFP6dA0B/O5X/kYoXH2472CnFROWa/VW0V//NAbd - e/Pxdkzn2mJrOItCRm4b3i+vtw3hob9ov7ywYm7FcYXyMkCSX/ogHFsj3PyonxFpz7N0FNh8EpWv - iH77F6e7CzODyh3Pb/muQhdsjiawT19t2ulEStn1wwswxPWLSB+h6kmbrSUUkp08CakjhdR6P6W/ - PC0nXBdO5f1aIs4XTOx/BLValPGTw4MrwWmR7XTzT5YAw6Bx8W+/NtN54WAZ9Ry2XoKUsq52z2Fk - ll9PWHiX0h9fObls4GDLA+irF3SovhIDy2JoqL/9GJRc9j6hrV/oOo0S8A/YJtqWp9MtP4TZF+2w - e8vlit/nmQ33jXHCcpsydM2erQ+3/cwk6toL0G2fJ/gOs5BnW9jOphdd8M1fd6Js87/Q51EXnbX4 - bP703m/8ocDIlnKscvPDWdLbYAPc8obHWUvRD9wQDOIsuw1xbMz2S2ukAfwmHO912TyF4yTKASrN - +u1x39OnmkUtluCRiURvdxqtcLJVJf/lr57w8iRAJU1MwG3RJw+uZR/OOm5quOc/CpGMN+3XiH1L - 0NkxGsaWVjlz+hohbD6GMTHusU6XvcLWYuEVPT7LNqDzles4kM3xCetY01N+4xNITyzGtm+U6Zbv - JJBxx8dEtzx1mx8JToY9EKVKFufFXZr2L/9/rlUXjlt9Qex/mQk05bEnbT+0cMsXJ9CzfTgO5yaA - KXy/ieWNpsPkSqRBh8PWRJnSo0OT0gLF3Vpjo0yCkL+zOw/YT/vgraR/AvLVHzk0z0mOJb75qLOv - Mhy889lxsup8cIZPaE5QiqCNg2LkVcrk2AdNQr8ev+W366laN3/0fUxZy7fh4u9XH8n+YT8BRhfT - ed1XEGqmHnr7VGLAMpynAGz7vSlUvWtIsv45w9vVtfH59XAAJRnR4EdPMDE/GVanfJhmuO1H/viC - PPZyJLpoCn7zU32F4h0IfJgL+CRfm3COzZaDhc1YWFFVuZ9n31rhDz/sc9KqrBopJfzgs+ntU/AI - 1742GWhyDiAGdKJw6ycfbnoa39Lsm47dvLPhrRciEitjmdJPRF3UmdjHXigR9SvHnHK43sZhopk2 - 0/4ldh4sEz0h2FdcpwHsR0ALp5k47J5eONyK03r44e1PLzPb/1GCj7LvySmWV9o9sf2Xr+Hjlicu - cRjngBnLBOtbvs5v+T9MpMseO51YUjqOLvO3D7mqe8thB4UxhW0/Q377rLnGUPjxJ3YYXQzXeF1K - KBTmfaILVJ2VG6US0vJCyC2xqn7DTxF8EfPCv/0vb1HZR9t+2RuPY9VvecEEeX53m1AU4Wr9+bH/ - jxMF3H99osAy7h/ifL6fcA1dxofxYBOPP0OhmgcD5hC9biORKu+TDo2p7eCLjT1i5eZVpfJIOhhC - X5/YGqxgvuU4h56Y1uTkml7FvO7mCtLdKSVqdfdVDoyDDovC3BNdL0Z1mZ5KjbjmUGN1epuAeU/3 - FcY38eCx38fSkzqiHRgt/4Rv+rwHtP+UJbAR8Yk9e2I/nK++DZvDZ5rWW8Y5k9f0HLwWJefNuf0F - g51fEoi9b0Lih1Cm06rmNlQli8HW6UrA8pp5BbGvz4W4H8GinHQ9JLD5xKsHP4IFSD73HhCUT0O0 - fSOFvHtgErFYb8AbasSD5WstDcriWSFH/Wz3LGfVLURsUeIk9oZ0TrthgjqkOjk9sjKck/KkwF1L - BSI/BERXqioawMrhjG+i49JZjY4u3AX+kTyOjzpdKrmLEb+7EWJ840/f9pPso8XUM+zlHqVrQB82 - VFyUE8s5XfqZeakKUtu+IB6pboDH+ntFix3GE/+NPxW9eYUArbTO8KlSJ0rR6Q7hp3sbxHo0XErb - yhfQ/polxIhVtefZvurQTJkG3x1XC4mNZQGNnLYQO7/xPV2FewLAcmexHWNY0fmYBvBe9dBbZh+n - rFx0EjyaxY3EZfJymD3nlOhcMSUOD8urnzE9X9BMucZrpbBVP/EhjeGd+Co+xbFG2Ud63qHRunpY - E0sFMMn97sMzp+ZENmWgTmAcNDBM7ZvkTPNO+SVfI7S97h1hHDgTGH0JqW39JOGtM0PiKpIGnkEg - k9OZpA6dKjP+q4d9ktWQf9w0Ez64XsIGa5B0UR2pQPjryiSTRppOqqV20CJcMDGifElZfGh1hAPG - x7HE6pT5dLcZhq1xJtL3cK5WMZwhanwoEUv+COmKil0ESWvW+Dx1K2CW99tGZeCu5FZfOoft+zlC - kWM/yPVIHEDrFutwApGEwyNzpWyXCDsQ34QDude4cMgYPHSoO8NA7rXvh2va5CIQ7Z2FdcpgdYHC - ZYI2KC/EYt9MSFF0HFDRMwbBj7tAV6+pGLTND9bj26xSa6fkSFNdg/guF6kMn7UCNKm1EKv8qv0S - sI0GOeAk3pp/9yoN5tlGX9b8kFhM99VqXAsB4a8nE51NnJ7X7TlAwypk3hL0DFi0tzHA4KPwWC0v - Zcp/jzwDilt9nl6BeaQ8PHoXqFQ+xls9w97a/iei9HUeq/TbpMTX7xOawEXCZxueVOZgpDmUjeaE - ZSd3AP88bBvQa5bgRIzYfrnr0g7d+cNKzO/HdtjEK1p4C+ov9pyQhstSSTba+fh/knYt3cryzPIH - MeAikmTIXW4SBEWcCaICIggkQH79t9jPOzyzM3Qt9xa7O9VVlU70w0VYQ4PtVUhg3GNGuMcoGtTv - XhCFrT2FLQljsD5uFxt64HUOmRglhvhNwV0ZVPCjwTw+B+ZyZQWNH8upn0q6zwphicDlbhvYv6kI - jLbrZ8D4jXcaZt1uIPKyOvBgHPdEYHIHWKCrNtzyR3bWTwMSVnUOHng+x+EpD4dxf0hKxPn8mex6 - kA4C42YHuMoXhpxC1ET8CLAF5uq1hK+K1idaebKRe0hbHAWSZLAp1nRknM89Ef1dC6jOURVUbdmF - cxNbvrQ3jh0AfCDTvHYyxjb8Rb/WU8myrTd2aIZM8TnSk7u374yVTHsdfhdDwZq4A2A9XATuH/6b - vPkeKFP3Hgym3qFehouBqf5ZgPrJOdNLX2j5/H4LFUq4px5Kgd3XfSze9W0mOwglvmprEXy17Q6R - x5mqivtllFcjD+VznP6tD7ZbvsSGn8qu6NH/8mC9gSyGLyMvsGnrjr8Kn0L+qw/q2+bRGF75Ywb8 - bOvYVq9vsF4I05EPW0Jxdh6Mfn+UYmiVvEuqa/4BO+5r2Whf1SX1e1wDNsWuCqeDE//DQ2F/+L7Q - H56WVO0Yk45VAflLnROZL0dAmkyulNcAHKySu+qPU6TayEusnuaN3+brZ+VHkO4UlZoq96tX4awV - 6Npxd2pkwSFfdTkIoGoWe+x+J80fWbbLlJMIH6Gs5Pzw9/fQ55YfjYn88RlXnlLEYoKwxhcHtlBN - y9CZjTEt6/iUzCtvBkh8xEX4vgZ1PovK71+94WJ21FwKzI+JTqZs0CDg9oB9ZCWDh0vEwson5SDO - d6FCrxs7hv3j027922tg3isNNu2mZYuW6Wf0e3QJTrM9AYLfvnQ0Xw8GEZXFyqXm50O44S9+Qk0d - pM9ad+ivvx973zME1+wj1PFCShNeGdl4viEJNrr3o+FjvPiMV8fgD3/xtQdpLTFfFJCwUmlbXw8w - D593gwi4aTRvgnRYhFIxIf9tLjgjw2EQBuJudyi5NS19MTbWX+Sc0XXwU+z6lOVMa5iMrPfBoqb1 - 6pOdeVVMaKRlQ8PqaAzC4yFB+MnJTPF8vm3xuukIameBRv11BSvCPwV+Y/VOC16W/XU+jAEok0cT - At5u60Wk++1AQ3TAp4eMwFq+XwRd1YLgQhhosuq0eSHWm4Q6TR3Uwjebo7/X/+p5eXd+DDvDFqjz - l/8NH5CgNTnWm3DICZWyEbafi0zj7FnXa/POwr/1RQNS1axTMHP+8JjmmsazVYpwCY6v9RECpfkC - AiVjRXH49qgddE5C7o/BQZOlXvHlEfjGeiwDB7ZIbEKuzyGg1PqmSLgIJxzdDsWw2LZSwtH29tTM - CsWfuu+6QjUbKbX78WysOaleSGYtT81+PoI//ELD8D7RA7/uk7k9zDKK1tnBjz1H81Xu7wXs7cCh - N83scybcmxh6++ed8H1P/Xl31kJQa3ZEHQ9pTKSzC2GmFQfqQNUHf58Hle86hZxyPLHZolEAtvjT - M7AWMAdqHqLPYz/SE+mrQey1Dwe/XeZTrN0VMB4q7gW7W/GhpUJe+SK5UQOLbGdQLSeVP39vwRkg - 8VOHS3Za8r/8A/Ny1nHsdeowf29mCpJklxOeQxWYo/IKYV9QgA/N2fMZTzOCgvx9xL5k7HPm4gcH - bbnE4bI9z5aPGb4G6UB4URGHGSqnFpZPbwwlctSHZXqmPyjrn5bi3n4Z7JxzM0zhSaaGnQr1Oh8i - 7188tvqt//09RpVMTfEp1mz5ElOpL/kBB6x95+teuUmgktuaWrMDwJbPAtaX24GeYjc1FnT/tv/y - GVArBqu8KA5w8/6x9T++Zn7XQfhzswe9ZL8gXzvyaKBjeiei/OxnMlo0C5TWa0Lqp7s1X/xJFxCy - G4M8lHeZT6d85cAztHyqEo5PutMlctCUZw5ZrkdWk+t7H8K/+rTO7oMNj7ApkWU/HyFTZzmfGSd7 - ysaXsat9s5xCK0yhJMMSX083d5Dwjo/BPa7vIR8HlLFh9kL4vs/tP37FzNdHAIZqM2qJwS0ZB+JG - +28aR9Te+hG5RnsB9qL3xfpNX2smwkGFNxob1O2lcRjPt/eMpvzpkj1RPGMGy14GPsd+4XrT12FO - TWfbBLT2VNv43yr3cQEu+0NNNXGXgwUvzh3a3Tui1ulhJMLhrs/wvPTZv/7W9cA3YWcFFLu9FNQk - Bt0KP9I5o1EdHnIRys4PPqympTlJ3jmJnF8Ht/jhg/jjEjKdiQqP+4uHwzo+5WImXhpou+1CvS80 - aqFs9eZf/edaFSbLw4tbNOtzQC/Keql3GC3w7/1kZXcDSBLHOPin73z/1+fzy3EzpbdPLhFIPNYs - 29NCudm7jFrlKWNslT8lLMxXQM9+Z+bizXY4cAj3Gnby+eCzzceA6fOe0BDEz+2MO3L+8kfvGFnD - bF4WDwVTeyD8L+D8Pz2Djt5jxHEvXoH4FI82vOXqkepiw9dsTskIVz9aaM6Uic2JU93hVq/4j/8y - 74p+0IvkiT6v62hQVe/tf/1cV19WveLdLlJuu81RqzgTsDltCTzwyh27rOgAQ8cTB7kmU/Glf5yG - cYrOHhw1SSeAZdQfv1HWwrsMfKwp2S9fa8cK4PO3pzRQPTNZd1lugucPUOzSx95gZXdtlS2eWIsd - CzDVd1aYjJcDtdQhTJZU9zPojIQLJWiJjLgOcMDNFjOs58gcBNd8x/DZjQyrp72Ri0PdjCBGzx4H - /t4Hk664NhhXpaC63UdMMoeyhF7QSaGy8bnFF7kWPH8S+ev/bHaPFxW8Xh6PLdHvjSFezADNUymE - c4pUIIWP2YSlh3YhPye9v0zP8vfXH6j9yKeBnFt6B0uRxvTQK3Y+XboshObqtPR0pXEyQuXWAvqL - nxRboM83PBxhcDufcMY/H/58AbBFj9KO8TEYUD3vzo8YijvZxImIKzBE9mkEW/1jqz63/pj/oh9K - XbWivsD5w7xKUYFO7/GL78plO4O+RArKSPyjloLtYTk19x/MjY8Qcte6H1bVVHSIxKqixiMygTil - lYJcKxywfhLdQeCkZwsvjuZiz85uNXOmqwcvkvINITWretMnIxi+4Z3aTHwma8w0G3a3d7v1d5zM - 399zBWq2zASJRTTswnFt0LGSM3xuxiiR2PlSobssefjY9H4ych/Tg40ZfTDOLnkyFyDT//oDPj74 - JVlX5XcG22tq/fFps8wEwJVqiB0PvQFRiuwHodUPZNecPYMF++4MPpVfUyeLW2PU2ZpCEpQVdskt - H+ZgBwowq78TtjOFN8ZTW7fwd0J+KD/260Co1KxwN3oM46Z5J0PgHxQEzt8T9gUesBVhjoOiq7b4 - eN2lhvB4cBzE6njBBgavmk1unwJoDQPVFHBLBAwt849PkpncX8Zcge/vT4+HVbr/+qy2XiEYhjLC - h05y2K6NpwZWzXnCKkHUmC/srKDgdotp0KArEP7iW8UJI8IvgWCa3d7+0yPYtX9WvfNelxQcbU8k - SrVPk7E2QAqi+6UIdz2QhnqKNRVxkJuwcXX6YU2CLoA4bG/YVx+vYXw52n/rb4K2V+/i/SBDZPcm - UZqyGpaHd2+hcLcPIeiXalhu6B1CTXqNoVRvd2zN59sIM4E+MG50fVhcvbkjR9fTUH6kdU0/e7uA - os2PWJsZl09/60mKB4K9h9ANc7aLS+Tt7zeMj86aTJu+V6JU/2C97J/+qhTNiGqEBOz3i16LR/wY - 4UNeAQ1tLLJZF+wMed/rNtGVQ7bpGR2oS1Bgew+9ZFeNmgkb+/kOWf8ecoYuSwebcRcfB76z8j+8 - /+PbYZ9VMluGuiHwZCpGOB8zgVFRuGZ/z0sE6NJ6PN9E4Q+PqKp4mT9UwmuW21Iysd3YOzBjeDTh - +qy+f/rMX4ZhPv/pw3/5XhX/FsFM+BXYbwJpYPY2YX4egg91syoDbFf2EvS7VMaHq5r6IrMSHVZu - Z+KLFqJ8vezuBJr5TsTu49P6c0mkM/C+cYnVauyGn1CgENqR0YTKFzEw5szM0JzfFGzO9y9Y8W4I - YbmfzxRDfQbraJBO2fJD9Uf99qXfm0pwvqp6mCl3mk8JPobw9CjnbRTrlK9P89BBddLa//AY67kM - xNx50zBIX4xpherBzU/b6vMzzFNUeMqjMLLN76oYwTs+gps/Rn0GSp++c5dAQzUZPR0teaCPVDbh - 7qfKOOGz0J+tdq6gLC6AGkrySub9ISmQFBUrjVNll3cv51JCR1dTXIJ4u7/Hv6mwE8zjpmebfJrv - 8KW872uLda97DeNfvYJ0Cuh1/kTDYOD4Dt7iA9MgQH29oBOTUIt2DbaoyW1+cN7Ad30548BXCkOg - itLCephl+gD6CKYoSSJlh88YB+L88NmfP3Sx9iHGFdcAwr1+8V+9Uf8UfcB6bmkGF4t7Y8OHM5id - wXP+6SeLfcZh5XqNgw1zDHrMJQss7LgSuPlFhPPF2F8DdmogussK3fAqp1u80feMUxw0aMd+T5BL - 8E/fWx5z8z//AFjFeqR+47fJuOcAgaZwrbD9rbt6Obw+jXLgUU7NOAkHSZxgC4eQTCS5Om69QFUo - IHpfpg2vQTIrWSyBj1wk1GXct6Z793xHThoH5E8PDjePKNAisoPPtWXUNNh3KdyNDqMP/pOzOWTT - HXrlvPz578mf3oFsSH5Yr7oQLE5/jKB/km2aVk/fJ7o6wP2Bl+808Xa1v/xyS4WbX4St06NOpJxU - FVhevUd9TXuClXymu3LLDyFW2XMCs9BLKwwsv6C4KmxDdJaGg06WHfBjzphBhvUbwsi2WmoGnpHP - XBFlMLIPbbgLLqPfn6+ZAOOGR0ScuJexXPZ1B7d+Rp3gU4I/vSIWNBCwo2UXtq5G6cBHacbhYsl4 - IHWUSXDMIiEEtoWSNXVICAt7crCWnZaE+R1SwSIAlQbbHcPT90k95eP20l891HSXpgHorucf9ch3 - YlT11RXcka/hoIPfep79Vf3zp2nAy7Ix/NJdCIeL/aRebL0Yea6dDR5V7tHQF1eD3bxWAYwvnwQq - p2FgwkmuYOwFCY2uL7rhp6ai6DWF9MjEGpD2zFVgVRyMNTaphvDZHSvINQ8tFDb/enmFkYMadjSx - U7+exvIZVQnVSRKEoPq4bCcOww/eHkcXH2bjBASffiXAdYu86YtgWN7PuoWbPsGBOtbGyB+eOtz6 - PWEq7fy15wv4r9+mzmHPBpdLXzAQdGXzo5e6Z6E9w/Uj33Aen+tkrfhPAW8OSsh78++IFB1KcBK5 - B4H+3mfL4XWrYLGkM/173nnjV/CnFDv8VPLGn5RjFcD6W2oEnJgA1gAsEQLqJcduwBZjuua/Ehoc - jGhJVYfN3DRIgHxtj3qnuvJZNbo2fDS1tfn9DZt679jBKwojekj5D5vL1mthG4wuTk+jxZbwpalw - pv1M9v35yFj5HARwvtk/ssuMeljJ55Ohv/71ttEjmc1v0MJn2u9pFCRfoztUXAVSV6+wWuNd3e9q - n4CXVaSEkXZvDL3FC/ASfXehvNUnO11vNtyXYRtyx4IDc/6eIeTaBlKz1NOEupxXQKwuabgTmlcy - +6V6hqusnv/5g72kzgqar5ZBtQqCZLRPvPdP/+FrdMylOXpCAPRHSkJvNnORao9txLXzcVGJxbCM - 4TMGSSLmOOyhn/RQhSVMfscAm437zuflM3nQP/5wKHvcaswLMQUwSfZCNn/aX1LdyGCwyDzNBFaB - SR74AlxRcgrlo31MBJbxd+WRwyvGgvhlf8+PppqTwp3aNvm2fzAqoRx0tLhazbC8rLkAyqdb/+1n - EHNISwh+vL7hcwQWcT5WStzIEB/9Ftcrt6BRqdyfiQ1haowR9CRWLtVvCdnjJPqLlwwr+PP7N72d - L9tZA3CmRU52pPgYrBK6GZ71cU8YuJXJZB/s6h+f5f/8w9aoTZiP1gs7dsGSjX9CaD+5ih6FawXW - wDypAM5hjA/qVxjWlFcyyF/KO/Us0avXxCzaP38E3zY+s4pT91IOBt5j/7T+fV+5gFV8YjisqJ6L - gHYcbEvBDJej6eSrKKkB8hK9C3mFSzZ/hDaQaiujlh0rbIhn2fnzSwi4Zi8wOcsI4byQgRp9Bep5 - +dxsWCbPZjsrbAHh93BlcI/fd+qr5czWU6WNaIsfOdjBq555yXj9+T9UsxHKScG/FfhrsfbHH+pF - 0kzuj39izb6TZMpEtwJGWjQ4+s6tQQMfy396DxtHNaz/+B4qco2nlui7/iJDSfjb/6K+c8wG9vf8 - LyET/8vvLYQEJtxdw559dZPZK4sMHq5Pis3aZuD3iFAGhes2US7aSt3dVDv62z+h2szKfJanLvrn - j256ASx1/J6Bj2cvlGGtsOn8nCtkHLkd9n3nN2zxMUHoZ+bfflIt3G+nGKUwkekhfXyNVSs/DuR7 - dqI6Se2cZftvAbf9iy2f2T9/E1KuutA/PTIWpiGg5dW4+KQKq09HTeuUZhRjbAXwDMaszW2IHgeJ - 9JsfPMmCb0ICco0oj9gF09/+F+W+KaF2mSXrw9F+ULhywab3+GTTRzPc/XQ5XKzLa1h05eGAv374 - 9U8kXwpNUaDtkzHkmuszWcN2J8O07jxsacejL33WHYHJhU/p0VbZ5s9zDtzhPMJ67R3rneoXAnSY - OVOtugXJYiQwhuupq2maLqwe5/O0Quf+NQjp8wIs3RyXYH1+OuqQ4VBPLVJDtPULGltNbTDJ0mfw - /5go2P3fEwXFNAQhVwHFWOtrmsE5DqVQkI8/tiQGt93akw8UCz/qT/NxsVESXi9EtL46Y8dIr9DN - mTDVHH/219loQrhchZReFLc1lu8+5mAvkCXk9INbSwKvSlA58wlZeO3Ilg8xIGokMhEGfxHY3WEU - w+sznbD5Y/Ew64fKgUmHJWze8OSvh21GV2ofEfXnth2YK99nWJdJQQOz3m4J7nYeBJxxw3osfPMe - HyMVLuHeps/yNiXL9X72EB+f3yHYZ33O0s8ao2t62/pd6dTiuYMrvHH6Geu0XvyF460WTGz3o7a6 - ALaeBk5SLolTUEMKnIFdthUt1FVPnYPOwFIpWoCuz97Bpii4udTt9gRmRCA0FxO9Fi63WIdOV07U - e9ifetVTdAZRavX4lvAfMOcwI1DPwZ4ebgY/0PapFMh5HnV6X4VsmAdZiFDRKjsy1IdDLZhnXUJH - Q/Vp/s71XNL3WQvdzyJQP4F1vssWLUa86n9Dbo6Guv/7fhoBR3x05F+ynIRVRdGFhVgPctuXjntr - htnlY2Lz2ZGcaR/7jszI9rBu9IYvTo86Q4vS2dRgRM1F/rCPAYStS5bC2RnsfhN1qDyaA82wkA6C - tdcKNEqhQ1UZfPyduXd1dK+sBbuuIfnsxVkZ4uMfpJaSsHqZh8sME9bl4e4ZJ8nu6s0ceg9nEZf8 - S8pXr/rOINZ0TAP7fBtI66BVUd9KRSS/a4B0+eYVbKQsJopa6INwOxYz/F7uZ1rY531NpiR9wb46 - FtSMJb+evheiQknmPvTgkomt11Bs9wq3Y1hdeNFflfoWwcSGHk3Cq5bMFN9T8JUDk6bRMxx2kZqF - 6O2EP6yVsWmIVcZ3UF3rjBrh9Z2skv9ukO0WAz7ad92nxSfQ4RYvnD91FYDUeOqQF50TvbxZ6QuW - knjIQ21IM3hi+XL+DjZsEhnh/He0DCG6OzEUo0ChmRW8jdnaayUK5t2J+mftl8xZV5oKVKYfxuYx - HtalqySoe1xH9Va6GCspdAeV/a4MJwl+EsaweEZvoXnh9M1NyQIZ10JcnTt6qdFg7PKq62AYS1+M - y1LwV/FzC+Cw4xnWD8RlYl/ZBHFF9qGFvWqJVIT4DJ9WbFDfW/hhfr96Dw7teMAHhu85O/W+DPvq - vQulJXn60mCNDrBS3aKHZ8ySBQTnBtqi8MZ38hv8RZ1hBbNiEPBhlPbGNJDvHTkWynB4410mZdmq - IKPRKXZ+Hu+v9JEIqDpkEc57ivIlX30JTpHZE96Jb7kwyDAC9udlh4h4ei2+0yKGHzbdsEnTt7HA - ixpCNrUT2Vl2Vq+thwvIJCmjVmD5/ir1dgzVDsXYG9O5Xt7JrEBXH3qyWLDw5yZWK1Q9LYm6+k8Y - 5lgXVFg/fi02L56dDxzJRnjxjkEohKGUk0Mcq6j/CRHVOSIm9Lf7eZDlOQvl7sb85TV1FcivZo6T - pWHJeKOzjsTec6kWyYEvnENDhwBldbgqfVgL5nyRgPhsDCLtgbDlF6Uw/ikU3/TXwVgPlCNQQCbB - 4Vt91b3w6Vb4dsQXVS/3DOxUjtOB9pUeFE+9nEwgOLcoX05XfPhlMyBpcA9AviRXjE9mYcwHmylQ - UO8lNsPk4Qv64efBPF1Vqn4cf1hd+MxAuyr88btbHbYcdU2FB3iLtwkow2deWXuotUOCNa3T/CXO - 9TuqH12L8dfuE0nhx0i52pZBjzgw2Y9lc4XQS51pWWR+srux8Qfz4+tC7+AtDEy5mRmELH1irXrL - OUnk5wumWBqxyV5hzY7TN1QU/3bE3vFxG9iLf9ow+nIOVVuuzMn8vXnwoZYIG9bvk0toO/Mo9mVD - sZQKySgKMIO61x3xHZpGsluMc4dsd7FxOZROzV781YYyrlMa3t1rzgTJ6gDVRxFf/TszVkT3HDRf - k0qjSfzWXWfuW3AZxzdNHOc4rEIxNfA8D4dw9DVx6FDtecrTastw/LYnNn/kSIAwCs4Yl+d2WL/z - c4ah2k/0Xu6WgXWnk4Q2/MVxSNWaSVoxwvR2X6kVl2OytKcZouV9L0ijXUewHJ5eDBXz/MBxvA99 - 0XnlEN6035Mc0h/nz0LYmChhqUq1y+udSyrRWnTcWV8aVhJLuo+cSYrO3UKcufklX9NtAus8n0d8 - CtgnF3VoVOgixd/wvgrysGjKXoByxjTs4nfpL5qyCOgP33TlqRniXrMapFxOhAbHqK+bJ9VWVP1C - ldqGSoc1/3IQ7jjlhR/CmiWC8+sE9HJ7BUfT/AKLzrUyHO8Phz6TsPcXMGsvNMPbgm/4zflLB7jz - jjxulKYb/jBTiUf0Oq8mtmrZzEX3d4vgxZUXmopLywQRizOM782ZxjF3BgL3+bwgPx41+hcf1pqL - h0Kxu/77PHbLhhR2XLFNFJSrz9QaEjhVyi3khi415mP3klH0hQ4+5xYPFsF8hpAXixHHknZLGL13 - Mkq6o0TN5ikbbPolAYqCd03dz7Q3uqo2K5iqvkOE5uINc1G9bTRF9Indp+cZq/lSOlji9EBvJ4Uf - Pu/0HKOtn9GD/9wzwl3PKlreZEcPy1llgvZSTWiL0puGnzOoexy+CXpxkCeCKPQbP1BU9IfHhdmd - k3UvEqgcp/ebtOwx+g3iLx4y7mWPj9mx8NcsUxQ4a61KvYcf5AzAfQo73fxQp676ZA6HIPrjk4Rf - AxtIT66A8HeEOT4cLkG+fIZXg9o1cnFkjJ9h5YAD4dvZvchrwxNBhYkJGyM+hLAXP4BWblHA6h0v - 1CGrkCwD+WZw43fY7opLvSZF8ILN5HyJ7KZhPWNRa2GVGTY1XtZ5WEiJbOQ1qkuvbv/1JfvknOGv - jCV6HJa3PytLNSNlkit6partS4GYjX/4StM3d8xZF6kOvL+XFIf6wR3W+ydvAMavHS7f1jcnQD8Q - mLBfjo/9V/BnN9oHMHSjNz7f8NEfX1exQh94PuKyWoJBzAq+gmtpj9jc6mMeHwqE4rM16PH0O/rS - 3/+boGOQsdqLrH9wYwXLKLkRtPXzNWbRjP74n6kYaPiZdaqDEqoZPkSB5NMuchzgknu39ednzZoL - 8oC88ojazfGdz/5+lEFxPhyoFU3brww9JwLC0TzRjHQ2W1ZpXGHXbL+SkjsfwGzn6IBt/4MGV5k3 - ZsQ/HOgr+wu9PT3Pl5qXp8IUVydyGKWbv0gRL4NNb1DszJov/L1/J6IT9Tc+xPqLrcBOFFvqfwWj - njNvn0FY6yZZe1VPlgrcFbgT+RNBOGjAp1K08B++8Jm1goWVoQR7eID4KKxyvt3Za8M+Qwt+FLM3 - 7MTsxUH/dIlIc/Ha//hOXro+zt95lazJrfeANdcF9UeHA7OsPTx40hcllB+u44/Wdqto46U7rCs9 - qee958xQuEfcVj8HY7lK2ygLKL9UM8qELU/nLQOSqg3FCucOu2c6ZHCY4yNR8Lcd1vYwmspKaEW2 - /j2sh130g7FoDeFbnpJkd5a4CIKkMqgLqJ0vnTJ2ACQvgyxK+UxmN1pCiPaNSJMdEobZLh0PetoO - U+dXv3zGkWhE7HwxsL/xx9EvnHD/uUkyxt7/AAAA//+kXcmWsrwWfSAH0kmSIdJJJ0FAxBkgIiAi - XYA8/V1Y3/Cf3WGtsqxAztln733SNAFYfvz3h0e6YBkBO4T7FTAXJdzwoQDbhkUdWWkaEjlX/YAN - P70Ku4U83PWrmfYPf4F9uXlTikPXXr6KF6KN77gMFBtKY8xP4ISThjjrx6iWGcsrMPndRPRdLgP+ - h5frLD7wOX9x1XpxEwvq3ONG7jvjA2g5HmN0WIpxy7cxpXMqNtARdUC0+7Oy15FdZvRiBIATtM8A - Z7WzjF7sOZqYbX7n6TN7yK+NhOTZY1VWs3BiGDZz46JKfSvL62o1UL0tMwkjsAYDegk52uKDOPMD - 9GMTWB08K2FD/JNwC/q0LDp4r3PsvhX3la42lmJw3scSzvuKpOPlPk+w+cq5e9jqDfG7RwM3fCQW - exbteU865lBziU/Oku2mJGB8ATbtpGCVvq/BIpqLA2c8Fli1xbRf7eGtgw3viEKFM13U4eJA/xJ2 - WK9vEx1/9S6PhTM2o/iU8uJtHQ7ZQ46w/e64fj0Gkge/r8MRazzbB+R7dYUD+qSAKM45DGjgjTsY - OqKGdXbRKZkfjncIH25BdJmTFfbCXxOQ4/CEc1kuAVnVJkThowAu/3h90jV5BzW88HONZcYb01lo - ghWeM7GfuDZj++FYGCqw6m5PNNF16HBo9xbMZqMkP/2zcKuZgZu2tsR5GV9AkZmo4KgOPo5O1sMm - uzO2EKuHdyz/zufpijEHm/7BOo21YIHRXRS1KCqwGwdqxR5vqojOStQQqWE8wILZLH7zh7M4PdPp - x1/esG2JUreVvazJfYUtyzfu/L3twfJ7XkdduMnuD1bKWeVnhclJYIn8lcp06QZHhtme0Tf+IQTr - LrKiX3xPO3CR7Q0vDLhTLEAMvuYVCl6zDDRSW9jLIoP++Ia4PtbLz2+xqe/KNQpu/htjpsMKi2Dp - ovjqffEZ1ak92mzrAW8p3YluepIcVkYG3XmXYgfrMFiTcnbgvhcal3m2brDU+hcCnXveXJAJlNKj - dda3U77DERxKDkw2lhL4rtSK3J7noR9prjPiW/Lpj3/ZTP75MCDphrfrO8VAh7OudbAUixS7AjpV - 62v0ICzbHrpr6e7p5LDehHTr9MIaUYyK3m/3Ds59Xkzj3FqUSehbh+GjBPg8V7VCdzNUxUrVX0R2 - Codyj+vLQ/KkUnzU1qlaUOLuQJ2gcVqub8NmLs+TBC87PsS2/FArdoeAADe/A8d88q1GXzrqyIng - TFTaQXsuoor781eOqv5N19fUdeCH1+fJKrc9OXsHeOQWkNPOtlLy4yd3/3L96dWKaC84Q3RoWCwp - y5DSHjwdWA+cM823+k2J8xUN2GhigLX0ytLlULUM3J7fbcPMsZf6BDqIvyoiVoSzdInYaw5LkeFc - hnaZvWD3O8CnE1H31sUz/V7uwgR5tuPwia2uds+/tz1xlnHC2dkz+4W/SRbk0/mKLf72sekzqhIE - 0LCbVusSg6XbzrBJtTPExsOdQDt1QYvqoCmn/l18lcUt9jFU+tOTOGdbpux6N1Rk5uqZWGrjKZQk - hYh0zoDT+1F/6SzBVP3xk2mY4xDMftNC8RtHALsX/ww4gSoNanczi+VmcQOOlZIGFO9YxLfuwVez - r91iaJ+MkLjuLlCGJaXSzw/Cpk5AOm3xg4rMxtiMB9lma83z0MZfCP4+LTC0X8EBCnO1/uUPTu/F - j/+5MKhVpTsRboDixziTU+NWwQB3dg5vL07BZ4MqPf8UvRDWx3uLHdkafvVhRccP88BhR9d+fAWz - IB5unYPdfHgDgsxEhzeCKiwzdlMNnsC1qDkHOT7J7ZyO94bhAHtOTZfZ/Ec6nvY7cPyU8t/8cp7W - lLDi2RK77o7arSBPHDwsrDFx9W0CtPIN9e/7VcgW9noK2RhcRxmSkzzyyoI7OAHY3TEx1YPRL+2z - imDTDgrWmpQGcxr3M4SnrXHaOpU9KYDuIPsU8+nHRzZ/pICaUsz4tsXzxn8T6FaLQI5M9aYrVhQD - 2a++J3r7gmnXnAYdyOMc48sywGr+vJxtRWHeY3x7oIDUQhwDPl2vWHePesouzDFG0V29EX/ze3pJ - j2WQf9mcSLq07bA65SIUJwfhZHqrAb00RYE2P9alx1NE+XI0E5hcjILEuPsq/Q/fNz7sorN8A8Q7 - vkT0xrubK7yBBZYHNC1YW71PpNk1bYLeowqtVD1gCzRpSmx568ge762742rd5jsBcDCNZglbZuDY - w6ZHAEXAcFlikJQStnPgT++GboDsrtcRBy92MmGtQrY9J5GRwEyZB5Kp1djTOb/uwBbvxDjvFDpn - qEwgOMoT1pZbtR1FGku//CBXxT2mPM569/d74qwDDv744CPpBRdu+Dy/ILQApOhKjPDl07VTkxw+ - ILdOB3palGF7/+LTCSkOnpxkM8U1sYCLbogYmnNUtniO0FPzFLLV14CsbepDeZe62OW+AyU4vRR/ - fpujgNje/PJ//NWR7tv3ifH8q7dYEYoq4PAzMqBVt/tJ4JNvTxL03UH7tFg42fxSthiLEk4Hi5Dz - uxyDeRsPjGCB8H16AjocX/cVira6upmaN2Bh7YMBJ20wsXS9rnYjNZ8WagfLm1DBLsEf3wo6/UqM - z4L6EcHSOTyOGsX4W18qar/cAnJXJsH4eODByjvAhx/lxU7X0+NaceS5d8Hv/298qFrAufFgTtOa - uMzzCRYBxRl4Po2KnNgW0J/fA7691WNDFvT0O3eqDqr8kmETMGdl9ZkyA+9yNshTNXq6zOeDKsYN - Fsnml1Y0ZOtakN/PPdG2/gbbGTcVHFazIuYsoHRl0kCEn0ax/vQ4nfMHhLGdGNP8vT3BmMWh88Pb - 6SwdCzo/iblC3rxIWGsub7BIq+vAVeVll/ecSCFmOHLwdVlnrLiZofBFUUwos15Hom76nnuXYyKC - pKbk1MUemOspLeHncRLdfRBgMLfq0qDYnqpp5j5WSjf+Bud70GAzKUO6eLQNAXqw7M8/2eobM0OO - xE9s+GdBGb3LWQd7lp6mIToFynRbuxJa6T104fxIq01PrqgdLgVxD/KUjvl+58Djta+wFSyhQvdX - cYbfsuJdNuTP4K9ebs/jCmE2KKunTSW8rdmBxBuek9/nj+Tcus1iLj0J7/cGGrHlYyk48unYXOYd - cM5EIxt+K3NtNQ001dLAslh/6Ka9ObD50e7e8A/pd5t/2ER8TY4iL6XM5n9Dkc9aYg0pH1Dq9h38 - 6a/L+GiDtQyBBOyLxP71P8hpVFbY898YH3uXSVftpEhIiqMM695zqujm78MHpz9csb2YYH4YS4Zu - UZoTY/Pnf3oa/vywk3eB9Fef4ctwOuwVRRSsdh8kyL0fbu5qnfpg3L0KEWHsZMSKLLZf3sO6nUF5 - aScQQCXlonZ0YW/tT9jZt/uewMocQHDz3lP/JY+AXlO4g0U4qzgcLyKgLnu00G/+5kSelPVIAk/8 - GnJBtOXlgVmdr8wfXkVmtevJ5r8DM8OTuyeCo2z+ZQdzqplYW7JOmel7DpGRCx+CiTDYa42mAZx0 - uhLz3NQ9cXTNgZewuxOHlTqbrt9hBzZ8x+bwNf/8DXEwOd/l44OvrJIVdnBvzKm7bvqAloY8Q2rl - JT5y4QJm+rFkYF6tnYuC9G5PlLu6ENTG4ac/6WKoBoRjKdwnMbyb/Ry6igSZ08OdXrlf29R3ZhE2 - zyyeRuzUdL47tgpVT7WIn/YzWHud5UDzzGPsvi3X/vOfRr2oyDFTvIAS4dyALb9woHXvYGWSbYfB - 1s/B4zdOxwsjysA6uneXPcUuWI0I61B1z93UyoIe5J42Fb/+hMtj9Ko2fgAh5Q1KAm+WQVHpSwE/ - QvEkNhgqMB/L6l8/z3fSRvnzBxlJVUi0q7791m81wIXPTKK593c16ssTwt2+nLGRzE01nLTSBW6C - 1+kTdbk9k4GXxLMi21gecVTRX/9gTg0Nn4ikK9RWQQkCt5+x/ogEe1JLJ4TFVX9izLyNgNX8V40u - MhWJFq4fm4IkV+FSHn185uA7nW8So0Jtxse//krndW8LSO4aYXOrX8t1aWN4sdUAb/2wakXrI4Ql - XfW/fnFvCv78x+/kHf3rjxRo94Y9Vkl6AnPcRirsQ3fd/Dq2ovIoypBknoiP5a0DND6HIRg4x3BZ - xX0F/E+v7rjP5ldak7LuYdJC/h2l5ESxGAx6LhnQT5oQ2yqnK8umx9HWryFSShOl34cvFf3y/3Js - X/aysKkO99VlxRYSI5tqL7jCc2NFU+0vNSDnkThw6+dgF1xKe73vFffv/ahfuemHjR9DATTLX7+r - 5uJvDJF6mScI7na6Dj3MweZfkb9+9q+/e3CTF1bq8UsHj0s9aNVh/efHr89i9rcDzwQSbnqG/vQA - Lxc9Pom6UjG3+iv98oHoB8Ck3SNadygpT8tWv9Zq1YxwAhMBqsvvvIs938kswdoKeXLsA2APXiL5 - CKnBPM1cWVVUPZjS/3NGgfDfKwp0FlTElq86XbTl3UDFereusIsEOvZO4sJ1lmViL0OQtvv1xSGw - cCO2HlRK515tOJRIRCPSbpJstv4MBrQWeyTa6zZRCpEmQHp+HV1ox7eK20mFLj5OnTPV7F5X+hO3 - eGh6CCoxlKMK2Kf4GiCMgsvEPIcznXV8zaAdKwU+RvLTXvbC2EASDieSk0tmE98QGGgN/c2l77yy - h/TWuADgco9tcxD7eQGRBYynppBTPQ10PVsnGd0PS4G1YgZ2W7h1BxY0hMQ4vUSF3gbXh9SUBiJp - r8xe3+NHhLzqc0QLOldZ2nzp0Mtn3tgdikIhEJ1F2KXd20WJV4FZ3pke8ODDwqkrljb/NDwRygpt - iBQ+imoBB39FzSeS3AlH32DWUGXAqBBYfPxgK6B9+ZggUJUrkQNXp+vN0hyUukVGIvmlpew+7CAs - 18/L/RzoI+A/J62BBy6YiKZdUU/weG/g4oeOewjlR8o0NOmQn7XS1EjWds9qiwex97MWB0boVEyr - ORBe3U6Y+Iu4naLB5TOYyW7Eau2/e77ZGy7ie+OLA0jzdEEPPUbn1+mJ8X592utRtkuoLpMysR/9 - Q2mzNxzwHdkzeVzkLOWPkgmhsH/2RDeFu80Ojm0hRMrtRJfrsWd5+RxCEWkzMTpxb3+tdpCgsWSl - C2/Ip0xeIBneFC/AXpapKXcYBw/ukG9Oy4k1leUWyTPM+8OD+EasAlZ40Aal5f6IVYaXAJPiCwfq - +dyQR4/UdH1OtQE4a08JBv6XzqM2h6gH6YtYZcBWU+8/IJQbU8VZBcR0ObbRDIUxj4h6uEU2E+iz - CyVShkS/wxKssnDKkYDiN068hlVW1+QhvFFrIcocvoO5fhUxYlCrk+zVE0CDHVzhCXsRvh7R2DPF - +vHhUnopeeysJGUqbbWQVbUjSeK3AOj9NBbiNHLbPZfXbY2aWrkwoIlP0vZtBXPQiQwA+/Qx7bWa - CVb8nhw4EXDHJpQjZSa3skG8PmlEL+grSHdMl4vf9L6bGEv69sTafQp0puWEDeZkVVxXNxHqPuqT - mM3uVW3xKyDhXJxcMGrbnq/qqKLGzHkiDweirKLpN6j6PkLyVDOs8N0ukFDglPk066Zj81Z9YUCa - 57073dUmpf1gtVBDUoKxl3D9mjxiGQYz8InLETdgozY1oNr4Jr7uOx1wlIMCnMjhjkPbmMDgI8VF - p2AdsIyxovB9eZ0QQV+J6IdItSm3kw3ENEO57SGSAXfL9BIdau+O1ReMe76NeQ4OoDPcw92r6bIo - xwYxe+JMq3rgAuInovXLP7fXw66i7qUK0Qn7EcHXo5Xyt8vcoKyk08TLu121OqEtAecYVlhqExvw - 3XCfoEWsG9EX4QIWubBioLZB7q76t6/Wac/l8KBGFlHeuWJTfwAZ3J5nWuK7ERCzLkTonA677fYM - t+e8Y1gi4Vye8JOtPEAwO+7g3/P6+dzzWTJHyGpNGctFGFDm8406eGyiGzYOXNUPt9KIoEJyHV9x - b6W0Rp8OKm2+YCnS+XRhm0kV9es+xKbTmz3j36UaxQU0SUbjOSV7SFbYjIfUZUfUpMv92baQwcyE - j+VJU2jc8y4ME0/DZvy92IwUNzq8nx7UPTS7Y7/mQmvBXXzvic493/3MF6oDy7f6csd8PthL0d4j - JKDkjdXncAZTIdx1+HnQA5GtFgccbwoTfGimQ86HTlOGvdq7sGIOLonLVFd4ckqYv3yW87dYDejs - dmJ0Ey1sFYqtrKdQcGC5O9nTYtZlMD4UzUHCazdgYzYa0B+l4w6J+hkRBfoO5U7h7Iqx9F2wqTG9 - zYmXZveHX/iz3eOJj1X9Gx8+G1UVLLnMGehwYS18avWMziz0mm0Fy0hOds3Z83JLy23PXocf+XxQ - 6OBpEfqL91e1T1fRTGpQT45H7Ojwph9ukDhxm5+pqRSbLolShaBFO0LsfhelM+9aAuw8A2Bbei/9 - vGuhAC1aQ5KeMgzmBBciMgW/xtp7J/fc5f00fuOZxKyG1bpL2Bnd8/Q2rSGSbPY6fwowogq46/3B - pmPzlCYI6IES+9znKX8bXA86sX+axPgdAy63viVs76VNTD7bpev7GAuwYFCGn2N9VvjzZY3RyFQX - LCVjby9BzvpIb5OKqJ/+0lP3vh/AU/Mu+KnVYfC9LOGAdkfhiI0r61bcwxJq5OdEn+ZzsafdaIol - FHz5MVFsW9v/fxWI3N0Mp/K1oTzLPBw4348mfjjlxx7159VBPcPp5JzGX5tGtQRRbiMXp9dF6pk4 - VkNYz7gh/uCn6XBjzBaZRqzjZ7FfwPqUxgLg7uz+1WuGL1QXxMpJIspx9+y5vXSX4WeyZHJq8tKe - rbj20esU9+Q5abtqvFxvCfzlT6CrL7qWwRyhqb4TvMVnTwl6MyAUnRBf6PkCfvX5sAsOEb7Ju10/ - r9ScUS0zBrnUN0JHM9+r8CiuYFqei6DUKfJykPCNgKXhjqv5ot062ER7fhLKtLGHw8Jl6MC4LQn3 - OlHqrDd0lEz1mTyKpx+sPHcaEPuVMTGYU1fNr84XkNQWe6ILxEvpxLYFuNyAii0/stJ5eRkZKtNx - nA58lqdr/KYZOFfN091us02HQb2t6P3R7i4l+qOfM2Qm8HPyMP7h2yw+NzyYrg0xr5ejwhkZKuDM - PBVsf3UAaOgRFW7xQHBi0ICOd9GDHGEu+F7eRjodhbyAr3VlMA4OKmAuOGjhGH5kd1kHKZ2PTBjC - 59UtiHPQx2CplW8B328pIMflkVW0NyQZvvJoc2wHjXJl5kxgtc8hsea2Cb7v5a4jWVmav/rL3VM+ - g86VESZ+q7dL7OgzKvJTS6RvebF5Znd3QE/Qh6jn/ZgS8Lp1oohOMzYd5d63z27zEBd7xJqtRn0/ - sUWB6ps3YDxpu/7LyWEMoTFf/uKXvNnAR5JuvrDUWEebaW6PCJa5Bd31+Go2R/SSg+qQVkTu1zeg - dFf4iH00V+ImTl9tP3timF1tfFqzb0V/+Zp9F4WomJT9+g58F1rW5TDtjdQHiw6SQvQs+0E0sXxV - s6GvMixP5xibvshvezACC+Ig6Cbml6/g9WzB9jNxAy6v1rZmk21JkoCdJ+T6iZV8Drosl05ceP5S - +hqcHDi7ZSHJe1XtVf9INfiqYkjk40sPuCh71NCjeTFN3+Ol599s6kGte9sTtZ2TTd7VBQIfNnja - ueTa//4eJW/zO71exeUXHz7kLofYFRoA0qGm3wmGLmNP7/BS2guVxRIW5jvAp3A59kMcOxE4NuEN - Px5tANj34Z2Bz8nH07x+E2WKskcDH5V0xfkTqNXsI9vZ1qgHRIPrkNbLN+TA6zubxAL7O1hKRah/ - 9R3bnvypyJeZVLjpISKtX1GZuSL1YM8Bh5xURw/WVhJXscwNSFx5cW3eMbQMGK8yIGoRvMCCQlGC - r1PSE8ckBZgt5lXDEsoawUVeBKzyBCHc+Pa0SNG2hl+sCnjxDmTqNeedrodx8OH5qZvkdPEDe+3q - KQLgJeQkcICUcr2UtTDM5wQnpJDo6pLSBXb1TDDemUbK8IXjgCiLn1i1JLNiklfpCkKqnMg58So6 - F/GlQc0ZOeRIGa1i4u0wpKFwMHH1eQFz2SmcmPn8E2st+7KHjGYZdIY1w6froQErndoCBLddTJTH - /aGsjPQSgTkwHcnvqp6yhjrnCAeXDmvP9lr98eObyU/kuJ09Pg6tkYP9aHzITR158BY/9xz62pT9 - 8YE5hjqEZ/bN4GcyKykbRq0Ibasspqr81NUaWn0IZ7V+E3/61sG0q8sBGq8iwNcRNcHycETrx5fJ - cR2KYL52/YqY822asvNUV8v9w8oQHCEm0VNtlXl5STkwL/EyrXVw6/uNnwOoX2X3sOX/Mh7WAX7P - 4m763C8c2OrPDh4uvDXxu2SxyW3QfbDl/9S/TrG9Il/It3vnOXw8V41Co9qAf3zACjWl55P9RQVd - /fUmYqQ+nS+vbAdN8dZNPGOXdPDvRgOXZp7xmVUuKXX33x3QIuODz8VzTenS6zF0r6IzVWa20AXY - mQUkCg9YGa6vigTezoKKcJfcynY+9oy+yk7c+OzEGTMFhPPsEqT9vsdW/BboFGZ1i9SAE90lN17p - GkhcDF2nil0+Npee4mpowaw2b2JnErbH5Fp3YpQlT2LP9WRPF6Lqv3pLUtM2laH9nhrAlM6ZZBx2 - 6SyXCoQJVStsHtlP+v1cnQn98FU+P8+UdcTIg3JCLHyyFbVawOOaQ1bY5S773skV+14uOgoTf/Mj - dM/mFEJVWN+vK843vb2O/MGCyrDXXWHjx7RPzBBs+YndQzOAIYSMcfgw/UjMhVEAtxwlGXZf++0e - judbSsuTOP/8iO3vlYrTbD+CsaVfJ7Z5hjaJONmD+8swkXv1pAp9JYoB6ePpYRW6TP/1nmny508c - BTABun0e3QKnxE6wI8riXacc+vmoE+P3/S/BkoE0KiHRla/VM627CNAS6wt+nqtYWVM+bwHa5wvG - 20VRtE+OIdL34YmcNn+AtCXgoHc5yb96FazCHrbQpDMm2UEf0w68tz2S5kvDx9vKpPMMRgfY/J64 - QmsqyvhWkhyKTa3jS++6dntjji2cOcHHTs5cgtWepQgtpZ9it1wrm3SJl0DUS+cJ7lg9YN1F5MBl - 5nfuTjZ3yiIV9wxWmrQdl3/TK8419xDmvkhd7gWaajk/lxJ+ZjMmx951leVw3HnwBMkbn3lgU74v - HwNkeofHd5Z+qk0/5bDl9sm242O25xR5GWIM/k60QEmC+fFSVegcowr/+VH1JW5hxF7vxEQWCKZ2 - WhIonrHvrs22g+4VSRB9C++BMQnllEcdKuCtICVWNn5Dzywri+XV8t0anPpgDl1UwAs7n3F0hzLg - xx40QBDEzRS83ezvRLgJmnA+YCd8V/Z4+lrGX/3UZkalzN7ZN39+kXVcsLKeAwDh6Xh7YFU6SP3M - qqME7/PKbfXmVNF4X1io0uTZfY15DBYmHGb4PpTtdHjhtvoa0TKjAbQGUT6nO52hZoZwJdutLnuZ - o2tf3zxkHQNMtJucK0TdVyv6puluYqjxqVZfWCQkd987+flt9DEcWlEejTu+SWe5X4MJyfBttha2 - Lq5mr2E2dGBOSxMH2sNVNr1TAHBW9hMD3bBa7NXbwZcsRNOyjXddjpIE21wq8INAw2YqVy9Q9zXf - 5FTGTzB5jwsDS3OI8XZdfTDPTyLAoZ5qbDwCidLzfpHQq2bFv3yYkveQQHY7w0b9WIXNYuVtic3h - esWyxz/AoinTDm7vCx+rOaXdFv8iL/Tfab6/35Ti1PORbWgXnGR1VlFSxQYKrpWJHZ/7guW+fHfA - 1iWbHKOO2MvmT4CNX09Q5MqeVb+FD47OvsLq4cbZC5KFCa6zJGNsKiVd4egaUDDewsZn2P43v2Kt - 8g98Hh53Ol6uzwR8vcjFWpfzlE733gG/8eoHnq3WwkoyKOoYEXWVynQqpqsOh4N7INZ0edjLb76f - V6fA/jVf+mWrp3AI5yt5YvGlrHGwGsgIPvdpLzt1MBfFewfnBio4rfZ+xdaPvQOZMUBYni97ZXpk - iwjR5f11d9/vsZ+5Nax/eEPyyYzA/HKvDdzpSTQdBs2iSz4zK2rt9wX7ZZ0HM9C8GO2f5xHLioWU - rf5GP7wlZ5wcq1FoTvDQ2VOE9eWys7/jddaRhuQEOy6OFPLzEzb9SDA6Kjb/84uk8RgS7ZJsDvhl - NH58z525FoHZZvztFp3FdOEPz+6kSMDmBxPH50zw8wdg/o5kl7SP2p4zmuVwaJYOO3Z86zf9I8L8 - LhrECd+KvdRLYaGPPdfEHkdcfQ9HzoNOzpdY23c6pT6LObBLxJ7gIfuAgVOvO/i9RwKR/OmTduXk - ykAerTt2dKEM1p9e3PDDFWjBVYv4GEq4bcL5519y4WMANit8cXx1E0AdTlXFXRO+yeOsCNW6k1oV - PE6tM6GLDIPxc1UnWJS7E1Yqg1Om9P0ID5t/S6Rwtyokqo0d/NWL00XczigIpxr6Ac6m3fysKNeY - uQM2vkF0A5fBKKtnHYjCJ8W/52frbess13Lwhw/2BEfdguTuZDg1FAXMaJ1FuI2HuObHS3/+KWSj - j4TtZ5yD9WOeDHHz07GcQYXOr2254lPzL24HmxEMg/pcIWqrM9aIZvc1+KYy//M3Vcip/WzrqQA+ - BTbJkXfYaq3Mbeco6AzsoPGo/PQd8C9GRBI0UZt6l9CDmQ3EieWyfTrGjr5CqlcD1ud5qKjFpQak - +mvASj+NVYFxNwBBEDySKo/BHofwWcAhXK9TFtc6mN4jEcS8SCmxRD6suJ8f/tMf7ElbwXqyFR9u - fIS4i3QNNnyBMFKUgdgHS+vnY5lKcGlZ7k/v8l9m0qFeiS4xyGsFmx4J4WE/+DgdR1JNjnycEMtV - GNsTy9BNb3Xw1E2eu9udpZ4XXmiFWmxCN7dvWr9mR7sFuwBELnsa9J4sJ3uF2l4riOO7Bzr++gOL - HW8Hg0M/WJfADOHru5rEzNqQLk4hNVB6nDRXxM+eLkfXVMW3Z7PuQRrl7dZl04UXV7hPaOPXa/Ku - E6Tsk+vm3yx955HUEEkzZhiH9yTt7CaN4TvXJ2zcz3k/B/GhgDgb3OlVzdsh6CecwO/Inwm+XUK6 - DKK5imbASCTePv/zZw6bn73lP2eTLd+B8/LXzV+XKaO+oAi7g8ZgdfZGZUjxhTmUrjtiza3eNpFT - wYFeKzfE0sy9PY38wYCVl3VY72VS0RHvfFjcijPJPkm74WvlQJ09VFg5pFNA3P0LQn/R326NT37/ - x8c2/jBNcJdR+vNzy0PDTUWb9GA+nAEDk1v33a5A8NKRze8D2OobNu1KVWZwuwyw8EoBHynzrrZ+ - SYKKT5YRlSv4aowdd/35hxPiqN6z/tMJ4dvsLCwV8NAvRkt1WM3xAYdFcARv9dv6QOKUvVvm76Ra - TmeH+9UD7NzQCqatn4bOhvEmErl0ylg/eBcCXOxd/tOcUuYK3yo0lSdPtC1+ZxcJMSSFdcRyfJ1/ - /qi7Ee5mosq5CuZSPzqIKd3zdAhllM4d/GZQfLYvEvB21S+ns8qB3bI+ieknZb8KqSgBWagDYuTw - 1vd7L14hbR7A3Z9Cs6eHvhygFxQXrFTEBPTEHTz4w3+HPX37JXtaJRSbRifu7XpWCOydGmz++CTu - d49qmcmn/fXPpmV5ZP3f+Dc/Cxumt6242/wKkMCDuz4dN/12osfAn7+lyiWf0mKXMdumFAdfq5Nq - c4G0i+FzOlvExXxCqZO4KzyS6xFfg25S6GtQc3jzaICt6YLsqZfCDl47df2rVzMFWAe/+nE8sV97 - YSyegdfAdCdm89uG+w158IffgZld6BKJYfbn53Rbv3QSTb/+9VuIqV+zavboO0IPvuzIzz9f1HMH - wXPC1oQsOtJ14bcd1/56+/nzFaPeixJu+IetWfrrVxjwlg8O0Wqyo+Oml+B7JyEiXRpZGTY9C2pA - PHxcHrAfWceLf/oa48BfFEo7PkROcjtv9VXpl0jMMhh+Fm3ifnz6h5ft+tTc/VifbW7nf2PAC98v - Pi2hmlKLCwwoJ6OFDdWYbGL5XoGODqqIqpi9Ml6jC4Me3/dMEs182uvC29vznS188vpnOqTbiqBT - RiNs66FVrVboq+LXTL5ERnmXzsL3YADX3X2mPQ0ahbNkb0UikLtNz5yDv/Ghy+c7jSWBgEhGFP71 - 785GpQRrlF0biESYkWsxp/b46xdmJsPg+MpO/YdUsQV++alv/dEpPs4cQLgJyIkNWqVX0peBxvEz - uPvj26t+7wtu/NE9vMkDzORbifCSpXdi3pcoIPxdyGByGpKJP1CULsoCO0DsoHTBxDK/flACDfpq - XeFFI4Wq+2r+6bFtRa5Gl1d+jRB5DAvZ9Gq6GC1Q4Y7zmZ+frswVnWe49S8mQTKtdLjBXIaVl3dE - Y6jRj+NBnKDaeKb78kBks/rz4cBffEm7qbDnDU8BFEeWyPbM9IP6YoT/Z0XB4b9XFGjfVibpaFyU - SSY4hEEk8C4VDsSmovEsISCvLzblxyegQnCK4Pkkylh5Lp9gnkKGQ+PEWxNjjEfAqRzgwLsKDKI/ - 9LWaR/pIYPCOr0R2/FPAzddOhnKFLtiOeVWZF+ssQZfzDkT9gAZQzW0K4L7CET9xqFbjmY1C+HXP - Do51vu8Xu7hYKK45gShHKasWZV0gyi6DhuM8/vRzJeAaOJn6wlcaPPqlHN0Eupx/IPIaAYXYOlsi - U4gErHgMCQjk7roYR9eEuDbm6CpfwxzmZnt218f47hcJfWdxkGhKNAYeFbrQaEUHP3KnORpB8PU8 - 0EFj2E7pGd4+YCt3ZODdeH9xhHvGXqRHzgHt28kTu4TfalGlokNZXz/ctfsudP1WDwsswbfF8uco - BpRVHR/q0U4jZkikgAeRbiB0MnqyjTddBH9WUXfOby67hGbFpDe5E4eYs6aDpFJ70ndFhMZwtxJ8 - eJY2t4d1g37zoYRZQ1eTVSFsbsoBmwIjKUzXhRm6XPZ0Cg903w+vr1qgm9e/sBSNacr0eeyioqcs - Vof1VRGEPi0qlYSf7qWIe/7sljL0kxUT/Yj2ypzOqIA4do/kmUduz5bnSwzBVwUk8s0k5Z7Mt0RL - tNrYsj46mPeZFYM23SGiu6rRdzI5hfCqBROx+5cW8OvxnMP8uw+xxR1PKWNIogQT8aSQI1E4ZZmW - h/G3B/Lq62pAyHaPplUbd2w1Z6anzePYgm0+SLLTD/ZkZU0JX3vkkMuYWdWsdlYM949DTB5fu7KJ - tzwYKKrNAxuY8mBlJDlG3K6uiWeUjs3XoHPgCBidWHy7gvmsaT7qlrOJz+/Krphud3bg+8k/yOnV - JtV6vnADHDjrTE4jqZVfPMC8lFT88A+dzUXPgoNJ09/JmXlfe84vh+00f2+710MqbP7VYBWWnW/j - 81wodLY42ULct4vJ8/4M7TVbygnqEdRckOS4ml+VFYOz4iOMr4mcUlXiRXSU9ldi3M26X9EpzOFn - uycda+5Jmc7rsUXPyeoxtoezwm3uBVohtYn5jq+U+42ffco+Vql36un68Qv0FnBIFPZyq5Z4l6xA - vJdf4pptH6wVX4ToUa4HLD+He89T1rQOu5MYYx0Hdr/6WSkh1y+MzYG+9Wz5cXy4S0OZyLnmKpxa - 3woAMm2Pr1zl9PzklRDdNL9xD69+6MdFjHQkBJqyxU8D+lmjFiret5O76s63pytQPPixBJMoYpH0 - i9c1JfJK7oTtwxACfsMvYNlrSQwHfYNZ+tgNZCbvjXXch8rcdWEO5/IAiPZINZuvPkuGLu/0QSRd - 1QCvT0sGr+wUuvsrn1U8ns0YmhwTkePNWnoqhocJHk1ZnaoGj9V6tQUdetP56DJWOAbrsxBmKFZ3 - eRJq8OzXp9i38IOMmLhzdaDTEu1y6FmZt83Px15Ndy/C72nOcWhamTLl+mcHA3bMiLlTKpsNz3OE - ZsfSXPhcpYDnL6II3VseYixOmj0f3dGCctBZ+LFX0r7LnnoClXuo4GDDk/l9WHZw93ZSrF3CtOef - 6KKix/f82eJ9UCaoGzI0FuuBrex0s8e6jGoo3osvVtd8R7/h66vDqLrmE/SzAKyfMNHhli8Ts42X - 7pYqQd/UMYgbvpV+qVJJQta1BVj/ONt9dh6MUJ7Xd3c4Hq89tUerhv5zSonWuzZlmStNkPq4A7d7 - XNpg2eYfpkwskzzvjwr3w8+csiMJVnpJlz6sMrS+kgs+a3oVLPPwyeA0qVfyIN+vPTCHQEJFmk1Y - jjnbXs5sHsGnxH3di3Av6XyvXAHYoahv8/0GrLlbhl89JG4Td+n8cHwOJKzFY/dyDStG6yMGbfUB - G6l4DJgTtSP4w2eGnc6ANvO6HWbwqvCT5bt+CKpXhHD7MohOetlml6J3wa48CRvYD9Uq7tIMDrAB - 7uEds3QursEKe+FeE+n2VG2mlVeIpnNPJsGtQ/D3sycJexIypzJdl8rrENvdz/gi3GXANl7swLvx - +W4rQEy6ziQUUHHfOeTY7NSUicEYgfhLVSwHxpUu56NQQySCjCiXXdFz+OQK8METbWLyrQN+N0MZ - lRHzIkeoOzZPViuEeZut2PMwG6zdzRNQMzY6zhjRsNm7bzcQPiEmT2E8pAtNUQFLttfxmU4JpYcx - NpBMFBWre8YOWOkRMShXp6PLPZ8NmNLLbQV7OCKsF1Nnrz58Sts9oSqOkF5UvPKeC7TlD/YHQiqi - BqGDYJTsppmtYnsRErcDlanO2JG+oz1OyqHg0cnqyRV+u3TruxkozSTbPcxX1+Zlm0wAHvOVKPfg - FXDsHXnQu/I2drb4ZhPa7aD+SKh7UIYupZf3pUG/fAxJOyszlp4N3OaHHB8eDrZ4zNEd7dLpAA8X - MPtXcYAb/rm7NPXtFbxZWdzqO761xUsZ6OVQ/H2el9cHnWk/xMC/uDvipumq9EzWTeIk7ld8Di5+ - v+5bwAEJVd2/77teVgfFuhyQh5OqypoHsoWY6MyRG8++qnkM2hiJav0gHo7FatAuFUS8ODpY9udz - QIVDFsNJRCu2dvrdprwtzOg1VOXEhVYTfCTvEcNzfDa35yMpqT5LjtbwfnW5wch6miupB4Yr+Uxz - 83KVhb2dOGCRV0AuMGeqmbRjA+T3k2Ib3Xf2/Gi2W3jcx0r03bWqlpx7zai5HQ84I45Pl2N/zqBk - B6nLbXgxW1feFZfS1idYYBHMilwIyH7jM3ES8Kb0PN0kGPeXBmvnzxos7vUbwscXfwjWWb/i9+ue - A40+reR0MKN+8Z+7Cd3fh4EEJn+z//gbD/GEZe92V6g9yjVSTjEgfve9AJ7klxryInGwYgsy4Gbz - xAGctwRbhrtWw4X9DHB4+gLW9xDby8qkEELRJO5uyA1ljcODBPZ7rvjxL3sRX9RC3+ajYANmoF/U - 4tHBWzx52HV5NyVktaJfPXD9i3kEDHNI5d//J+6daar1drJiMSmcHuOp/NJF0bsZMPfw7oLlUylf - yy9LOJD3nriPQxysjfQNf/hMZGIolI+U2ww7o7Tx+clG6Wy2aQnj3ehN6FPu++EqNAUwko0/rqlB - 6bHWLTiEZ41g6Tb042VNZZ40NJhYsd0F69PNMvDiUkBM91v2C6+ZGTyfBJn4CbtXaOILM/zls7wr - o3RlRcmBwVnKsYXzYzDtW8qBg3bzJ/5gRtVSLFCFSRT6G16WyhIpUgkP5feKzf7+qiZRuEfw+XWf - xIWEtcfIlFuwbnfZlY7/Sac+Jzn4vV/dVdt+Zgumhn7dtuRo3ixAL+97A//0Ary86PLhlwkew3hP - 7F2Fg9mxTwmQ5s4luGGLfvWA3MDTsNfwMUmK/r1f20bc8oOc27sYUIa71vDO3C1yU+qmmkbnpUIj - YBKi2pWXzoN2WKHE63ASY/mdklOUSlADz/7Hd1OaGdIOardJJOYC7xU7H44d/MW7MHdFv7bskkHN - Irtp2fB7fRHAiQ0C5wkJ5/OWr/MKhVf9IpFXTmAF/d6AknRusRqewpR4SJChirgXdnZuBti8wzUQ - UZCQUyuYFbMrnRI8YWuSTL3U1SpfsxyGVt+6X6eN6LJf2xq2TMRM3K9+5dx3hkfBnPFv/PPhsXgQ - pjcL68eiBkt2leM/vmyfxZ5S8Wjs4Pph9kSzFqXnFMjuIKtUhykI3oMyTWe2RDHtH8TsPgKYD2jy - 4E0Kk81Bniv6NmMRPkM/+OFFP4nCJUTZqO5x9EKjTc/hYEGgRRaR2CpWZh7eGdhojkce3M4E8y20 - GSivGcGXN3kFs1VeEvTTJ4/1RALaanyH9iX7xhKkJ3vZr0UD97e8I9KpXwJ6u7gJ1Ha1S1TmaVGK - HmIHF6jkrljslmrYGfcWnlr54EJP2ffzBEwR6psiEtUGKH3Ntirc+PC0qMYHjIsuRLAlyQebgswH - dOP7wIXk4/KbXpiehbDC6pV/JsauvGCJTLmDDM4kkuh7HGz6OALjV9xh57DIPbvlIyzu0JkK7lqA - 2UhqEehKmeIt3ilf6r4OXL80iNot12oex8CHW/0j0fTy6PLM7QiMdLkRadMfy1P1cjhcxw+WfO+l - 0Adb10hCr46YRqUp8z0VQnGsMg8fk/WrfLPjpUMs4nhy6k5Ov3qfOwct47snxv01Kt9nreVIvhoD - 8ZiQVWYYmBmE08pMIjxpyngI1QJWe6jiVEvvoLrnSEZEGFIs1WJZcSpHGfjTKxv+9dv77sCG1y5r - xCSgynsukajre3Les3W6drdYBAx1V3x6gCWY7dmQ4bqMMVHevGZz6sOAv3xwxcfFSOkvP25oXxGp - FuWe8ZU8gW/nTrF9jFqb7vqXBy9j7kyDaPbKIn0P8o/fkfOVxHQNF+LAO8kRcY9AVmYfzw2MWXuP - XaFT0gGJ3Q4u0Wzj5AI/PbUOOoNu3euw1cPcHh+wEqExON7Gj0S6JOeHIHpfnyUGpjewHMR7IzaJ - lWHjwlR0Sjw7AhYssQsmAnvaxgFEGYdiF72rvtrwroHcxS/JKQs1SkHb5SDC9UAyI4pSKmtjDXB3 - 7LCh6hOgrbZvudOrtrFTtkSZtvcHH1rOubtGOtI//mveywCfHTr0o/v19Z8+w8c3OQa8ya8JOkro - 6gbxS6iWjNknsNFcDx/9fl/RNDy7AJTteXqVzzVYqCy3qAzGHdn4mTKCdJHRLVhVsr0PpfduHQRd - zPr4GkKqrGnFqMhUm9P2PqtgzpNjjj7FtkIudkqb3h5FjS5XNSKPbT6oIx5ccePX7s59apStRCTB - JScpcVfoKv04P3cga5/ilFp+GBCXUwr0eDDDVF0cnn7vzjFDsAhu+MeHqYdmCWzx7RZMeLXH+WC2 - 8P6VMNbMvQhWeBfWP350uj16hQjPVwHceMe5osBz9mSc+wzMHezcBmhhXyic3gGIPB+nnvStxqH0 - ddApQMeOeqn7WT+cMzCGcMX2drfu0r4fCRxixsLh1+psGiavGXKRO5HjFUz92CVjDaP7Q5vgXtIq - 9ueflRfh+uensIuzZqgePy7B4vRWiG7UCRLurwX/8JKO8w3C5+lyI+7L/KS0T/0ZqoJ4dae4Y1N6 - 384EPL8d7S//1nuGa7jCxcZ5j1W64jGA8HbGnKt04T5YkqfoiMQL3+R/pF3Jtqq8En4gBtJJkiF9 - L0FA1BlgB6j0AfL0d+E+w392h67tVkkq9TWVpGQXPPNVqpsPVPjEwphetzvBdCqiaNYqYtdgV5Gp - zidpdwMXrILB6rcTAjrynOuA7ceOet9jHw/otFiYWAMCOXlX3gp1Ng6JMzQ1EG7OLYOb3sSPsPqC - 1f6mKfzxZRPHfXVbX7sOpNeHQQ6NstDtDioVOTyfYgOJh5wy5/mJcKln+JpOST788mM/qu0Elq/m - cfGVrX/xS+IueeR8sXQTyObXuumz2ltbp4x+/DOoUi2KyRndamg5QTKJ34SC9SFVHdgbp4jY2reo - NryMgLNILsYCz1TEnPYFWPrpTBxntbUNby7/5q8+ptVc3YsJfE7VmQS/+XAfOYTLfcw3vVeCZboN - GTwE6UyshT2BQVMbER0zuZzQedYrdjCWFZ6+AY9dZzsDnjDOBZL8csG386xvXfTWBi5x32DbOR3p - isb2Ce1xWEm64f3iDrd/69mhZkfHfeKX8CKGJU7DzTVnTpqOrAEZJEjQoC3rS+ggmViVxM0Yg+Vg - SRPI4gMJLpu/NrRwXn/6OZg3/Tu8Wv8JHeVWE/8cB/kshmqD0sB0g5e9U2N+uIwJfPYLR4JyjgBR - 9KsLz5m/Yv10NPrpN9+M5H6J/PAPORcNFxFe+vgTiFdHr5Z1uvI//MZO973Q1W3tCbajthA8OFw1 - uuujhIF7u5DEX+N+jk7rAMTX5zUtUf+o1tq7uvBOhZEE49h7FN3WDt4e54D4ofaoSBJYH5hZLIuz - peTi+fC+BOBicZCopyCu5vwolyid8iMJriqio+0yKrAC+4l1e3yB6Wy5meSz9wsJKknXWOv5VeF4 - LzVsyP3H6/o7KcDuXHTYOt88b7x3Vv2LN7Lli2q+ktYE8iU8k1RBD2+5RloNnydZxsqHqWOBeFwI - lEwYieXbXUVv+X4A/UW/4fR0bfM5avs7lJ11P62bf7c8+4WBZOc52A3Huu+bS84Al1GXYL9Oar64 - UVfCj4iUQDQflTebj+wDfnpEkUWRTnv91gHmHeTEpuK5IiA1XdC92WBbX2w+eXAp4Gd9xsSR8r5a - PrUMAftYLHILsssfvgL+aVgBs9ZGv5rR1Ybc+6aQK1Y8b32poQ+jWamI6qiXnJyaMEN16ScBy1pl - TFO8Z0DDJmzAGrcVkIXeZxjfzm9i5gKOSVBGs/QMHuv0eaZKtfrdzYVbviX35/le/fN7q3uItaN/ - Bkt8ZT/gouQB0VvX1WZrdHzo2v2O+C3CdExOpgh/9QvjbU8x/cXDVxWy7U4kVWPTT2NLtPkMGLc9 - jhfujHkIW7aZFqVTKt66kgnUwdoGwst75rwVvz/ww57grx6QT7J5vMBNH2F7z5zixrqGd/Tz53wz - vPQj1LIaSrgJ8e16DuPl02m6NE3miejJo6DLnW9XsP9GWcAx4Yku23YS+F7WT0C547n/1ScAbFKT - bHzOm9J9PKFwaQYSkOGhbfhzgfvFpthdylO+COuog/RTKFhWDn2+hHV9gUlvBliTqzKm+tdnYDhh - hej71MiXlY3hn/66/fTmlesD2MbOFf/yJz1edhnc8HDDq3c8RXwhQb0HVxyYFxiPnt9koI/tI84l - cKb3j/xKodOfIXF7nWjjIa8K9Dg681avsmKBMZLg7+8G617iBZB2Bpsfi718jKqxD14JPO6OHJaX - +yd+k/fmXxlBOKHEPsRCwiYdNJhPENDebLw1nqMVpg9Ag7G5ZpvfdmlgbRwuxGh3DehkysnwGD6O - 2Nr8loVhah7J3CcLmG299x71Jxh/DwyxUaDn3D7xn2CU1U/Av991v+7g8IGhdRrxY+c9Ynq9cyo8 - Sc22x+Yex5RZ+gxauFexhi6KR7mb4KKh9Y7E+3QdnSI+keDAWLeAii+z56blZIP7evaIzKiuRjO5 - KABGjwT7+PPWlj5oU9AeO+FfPe1gSQOUZdxMku7I9J1b+Qw2fCDRmgJv3TWUhQIb3rHcniFYK6FJ - IPElaYJcFFb9xJgfmH3aawAlx9MG49hDsOErwa7xqn71PYkLS26iepN4I1XdDjoJCALBflLtx19A - dPSZaWcdgDZu/i1YLuFIDt9yVw1wgAmwx2nFP39t/dVz1uKuB+x0Hb1ZMjIWbvmHGJbje1zfJD7k - ngLEeu8w3qKZ5YxEa7KJLGuZN1ydQoWP+p3h6Da+KzrV+QAHNUaBqGHWm+eyKuB+JPbPn8gFg6U1 - /NZrGSxTf+i5jY+BLsrqoDTr1fsbD//7KIhaQrsfN30MtvUXPF7+LV+q4M2iH583qn2vUf6M1J8f - QJwqEr3hnjnFXz1AyTK5mplSfyJmp1N8uAcdncEubIA47PJJeIerR2YD2LBy31Gw965xtWTX2UTl - zj9jGV+kfo3sfQR+ej/gMjYeSCANcGYuCZbt0te4TW+hbX1M/DN99evEujXcB1JFTItxwZru4wF8 - n84NYx+E+VbfCvb6LQdB5LCKNy+6KiKYXhisz0Kc0/jzkdGW74LcyPeA/PhLBZIdyVQ7oWOVEAgO - 914InkR+an988cdv8c575IN8CKefHiSy71Y9+fnnYqNgbBvhU+OO4smFuKls4i27vlo2/APvabtT - qKtVuqgiNMHn4Dzxr947/vhHce1PBDcvxuuR64jSxvcxrgs/H3MrX2E3hPCvvtRu+Rj01eMS8PTS - x/TDs0/U96WF3Tws4sn6KCLc9Mj0Vbw1H0q3YqRajn3y00vzeWQG6cePZCaLeipllIV3zyWBkMV7 - sPHlD7TDUdj8+BY8/XNbA75oC/zIRTuebDqXyFOKgqT04uU/Px1GBqvhx4vZugwL5xBohnjFyoYX - c8jGEdrqv8S30zSet3owIkopE++dfwEn3GEKrt7kExdNc790sjRIv/oO/nByT1fFKP6fHQXSf+8o - eEZ2T9zm2VarOctPdHXPV3zwz1VP+UcvAYVylBzmaqfNBzJHqFy8QzCZ0lKRZS8EyAuHPYlk+QNa - szw1QP8MNkn2zpEKl3SdoajaAw4OekD5m6UMqJ+MEitRjvNZznwWcgaF0/4UlN4wHw4DPFlwF4jw - c6joKR4zcHopFr4in/Xo8a2usPmo+4mVqlffy7csgXbTYWyFZy2n5DRtt9i8EVYu9y9Y+crJ4Nik - GjGmbx0vetK6aFxHHUdXPcjZytzfYfAt2mD/eFR0vDqeCgkzzNhYTALWy6Pi4WLXwbQ7nL7eepvH - CabcKOIgDjywzOaBh0ByDSIb/jPnFbsboOsXGTbL1QNCvO4iCHtWIeH+fYwn/hUGyDLCM8ndw75a - Fbuc0PgYAnxHKdDoeS0jdL7JlFyP3clbxpMkI15gAXm46JlTh/OYPQeDI7EIPcZc+dDuyFczjmDr - CwEJd44JTnYeBfN59wbsewAmek9ZSeydf+tnd+gkmDBFjY2LM2oL3zkh3MYjaKWx6VfRaAa494sC - n6+nzOMZ5pQheYq2vp45ydfdXmFRlI0t9tJXTNfj+SxBL1JWoqDmqU3k/mDB0FxjUmT7EKxwfoqo - oPhKTHLowDY+E1qHyxW7NSeAeTdqIbofTJ4Y92brS7KmIgyF8zIR60rjxXNACQ3A+fh81i8eK9++ - AVRMMSQWGfxqJRm6gz6OcLD0mga4VNfviM6NOO0h0/VUlDMV2o+tC8Ost2DZte8Z7gmoCd7ZFhWG - 11yj9sNjktPw4BEvkUVkJuqEHbN9g7W8whmasW2TtM/ZfH634Ta/shWIqqt782LaDOKSfYoLqLUx - bxxeIUoOfUCC0ubz0XPoE+2q4kLcJnpq432NVMQ/2is+qqd7z465PMFbLhyIf6/Lnr84lgRjxnoR - F4ss2L5vQipdK6Jdq9mbxmB1YVM87+ScojgfbxzM4EPiCHGmqK3GvC9DSC+3dBr0hKWjWy08KkT2 - QlLTFeLZFz8BKNqon5qRWmCi1kdEnLFAnFr1V1u1qU6RpbM6KfjTQ+N9lTbopohPErCfkXb39gmR - 0i09cZBB4vESpB/0UWOGWG8B0TXyxRkczq/9xHXcAQj1VoHrxxbj6/Z+mt/KJxpluyResZ6AoDJy - hiCXFKT4JpiyqiSJsHe7DD+eSuPRT+qGcP+GAo6vHUuJmxsd+hbfKZBObFMtv/gvHyoKdqCWwHIk - TxudyHQIfvlkvj/iD4I3W8J4ZQ89b4hMAeq6MohZ7udqCZJDB7OkdbF9GwVt/nqiKikhz2Dc6c94 - ZZjbBfJT+iT2cL14wlfKJoBBxAbT9dJq9L2ddI/WvUfUdLB6gRMWFYlKZGL1gtp+Acy7hAcuzSYR - Phq6YmsN0O/ztnjwlnftylB8f9lpn49jPu9fCQMv+qriw/ug9HT0kg5RzL3wdRavYBGO0IX3Q+VM - C+LbntvPexU+drWNFfV0r5ZoZ/BICNUbtvluT4ktTil4SusDX6TgAxaUySaK1ruI8a1V8mXOxA9Q - 9uqDaKFk9UKb2ywMp7glKjeUoCnStUPMZUqw3SlLThe+YKXaKxBWltzt56eySvCgNXccD/YQr2uV - ZpKzMjI51Eoez8fiNQD2Jb0mkJJbPob8IELfLizsKbchX4dGvCPRfw1YeVlh3p6K6we+OMiT45ZP - 2LU7Zn/zKY7UotTND530W8+PX374xb+jhDq5TvrTo27Bs3C2+/t2i2WQT50DPnAmT5Po9HDX6Pta - NyiNwpkcTtYM5nOnBAjxtUHcE2tXXPlkG8mmSogLii45+8hkFRpO1BFn7sJ4PgWfAeRCTfAddwyd - w/ejgaNyy3H2sVVK1d7k4cpJ7JRZeMhpkck2vFytGWNQS7RF+RKhI88GJHxmhsfemLGQXrxQEPv2 - OPRT5M8rOpyr7UxTZlT8RNUaWjyMJy45pz3dUWrD6+VzIB6XdfkfXqtswBN3cVaPvAYaINNYJKzK - ltcLklvb6Gh83hPMeivmadYUKDjAAF/Zk+oJ6BhL4GPdO+xMuuzRezuyQMuhTuRsyAAXUvcJ29ch - JLicCsDpyrcGgnJKsUpyGXBtNDQwjMUW52G4amssHiAswk7ANvwcevb44iJ0+UhHrGCoUXpm82Kf - slyE44O9aEt5i0J0vdQHosa2VM1SoVyQ9PKC7RbDZ7y0IbhDVd0dgpmWIiAOz7kQ6ZKDo/RdUqE1 - Ux3FviBi/cY28cT1QgKdOtoTJ1EB2OI/ga2jTPgoeWcgvHpXhVOdyyQ04rc3OLqooxCaLnZBjD0h - bEYXnof6SW794FN+24IPGVl/kuurVTzWNl8RfCOISZ6+YiDwhVIi9egr5FHcgDaeiuMHJGenJZ5/ - B9Vwg2yEptPxg5X+OOYrzZ53KCezgu9yovTCvvF5+D6lOb52XwGs9z6z0e/zT4uJ6So4ng5vxfEZ - rI9TqM2SlXaQXk8Qu5w65tSh2QovpSMG0gdbPT2+3RnGqvzefv8A+qdhZ6hQ0EzCHZnySYpPPmLK - ViVpEW99jQ8Gi/hppdMqB3M8fexzBujXvWGt+tjxUgROjY6GGxHbw7ueGJTMwLOCe8DkzF5bV9Fx - YZErAvaF7NnTmBQSBNx1IIF4qeMmXXcuvK56Q4wxZ7R1PrUizKavMI0arPN2Ng0Wesf3Y+Lur7gi - 7b334eHmiliVgzkfXh8vgWr+VrBSr6rHSaoF4XFczWm/z1A/keV4gTAODgErVcrf/wMpnQ/4pksg - Xj4eFGHPH3XiOlen4ssrXKEtyzmJq3H01mrHZ6h3m4xY8gN6i1vaDaRzJ2K8jg0lenkR0WsQJ3KM - DgYQBONd/55nkrR+l69y2cpSE4wIe96z7pdUjUN4CQaCD9FLriatdyBcVISxadWWN0/DuYZ7pu5x - dgKHnF6Z9wcQZpqxt+sHb974qHQvuiqQLpkIaLF1Eduen+gQ2DnHn+4lxFf3TYL6iTTa2jiCwEkI - CUrlWE0vboj2cIgS4n7wtyetmZpSCMsbceMl1KhWqybgR/FALvkpjIWs5E3YzmlHAtzdwRIux1Ra - P0s28eD19lZ4I6mkBU5FLOYjaLPbLROy5WLC+m3UKlK2IQ958xsRhz2VGn2u5goquPAkjd5pvr6f - wxPc3ueGHHQpj6nDaRDFXWBOgjkjsL6f9RPu3/px4rf303WVCsk9QY7I9/NQrU9px0K8JNbUf751 - Nb1vrgs3PAvWWOHAdOyud9DOMyJ+uPUVvBmXEopKaOJ7o7sef36dth1xwxlHAOn9ehZmBuWoU4gc - 5nuPfBEyIeM+nlhrblI1/+I1jKWWqK8xBevE0hlOSuYFrz0KcnrJTra05fNgf6rmeL4coQ7yiZEI - LvBSrd/hy8OEuddEbo9nbX63lwGc9WyHHcEB/XJ12QAaMb5Mt1rJ82WS3AJgQCwia6rm8Vfj/fyX - P3a9r/G28ij++MGuSNOYwD7y4XIMtAlJR0ebyNUP4SNlEuINy4tSmr0T4IrVmajSwuR0y4+gCP0a - B6ulxtO9fTLQANke27fHWNGkubhQP7s5tsK3TxfyQgnkxTgg/sZn5wMRI/jjrw/rC+nscx4PN72B - MRfvvXlnXO5Q/0w2wdZT9OgnueqwqggJRrW95nO6Cja4Zcx32ucgBcThNAbcqOsE1tdtwJKqeQQF - GWjBjEJNm0mDAlh7+5A8OJ/NR7M8deLbj2LiZRnWZhHk0d/634mzEveGq83QerRnHF+r0GN9fuu6 - Zu+GAHBZF08LSgakdLQn2/PnZEeBK7FxP2LsiHe68XcIGq04//BYowe+cZE56hw2guTuUfda3OFT - AwJR/fxN109+YUBpPKtA4Mhbm/bbGYqNT04M+xnBbCjlAKuSc4g+cEI/PWJDhdjdL0RjwEIHxr/5 - 4HQ2r8Fly6cDqrsEim/vNYnwM1arV+wZILRPAZvcufEoaZ4pRPdLRbJUjbQ18udZGql3JvgTOXRq - S3mAvMCDYHXdCtAeNSbgEnX+jU/O9TQbYB9P5U8P0vVcC9kPv7B1s+aKooSJ4NuyvoEoWao3GFou - wQ0PyW9+p51waaAhlTF24+JFa26VErjFO9Zv4OCt53p3gQfN97B3EL18WQZ8l+DNlQhW7GM1LJbk - /uGxubyPFf0kRxMZ8XYL97RT8jUIeAg3/UuyQ1SD4ecH5Kf7Ext1PWhky28o+MopscdB01huUWwQ - ySvEtnq0KU15vwM/PVsoXBuvW3yjSGnLAEV8AHhfcQv4eO5VHFcPrfrDayG8z8HY37WctcrLDLtS - /WDPPVx7Gnb3FFjN0Z/Eb9v1CwCaixwl0oNffpqL+BKCQuS3rmsXR2ODa5LCLZ9gL/ONfhDiZwF7 - Q8lJwndmvJQPr4Dv/YHHtj4n8VhgaZaMMlmxoRnvfK7cmEWZGzpESSSJLtHuwMOCtXbk8HBbbTwM - 2Qx6Q8uJfw52Hv1CTYSyeHBwcl4wnfkLq/7W808/xMPXm2Vky3sFO5Bxq/FqPDvUcG5MDKM/9atq - yAnauXxFbDtR4kVSLQY6p++KnV5SAYvwroaGzZ8nftq94sXD2Pzpe+yFzphP8kfL4Hn4PAOQ+e9q - JVc9QpOP7396bE1BnkoBjq0JBvcjXW3lXIA18N4Be1eXbb70BqKvyBC8w0M13/ZXEUk2GrCOFbWi - kn9K4ZQVEXko9rFfBesqAmCLxab/EsqOuT3Ap1Py2EvJLV6/StTBVUsicm+8CcxnUszQqcP9tGx8 - s5kUNwNj9iqxPXtBJXgKTqBirTzxc5mrJh812y3I38e0mo9Ia3eyM//wmwQ+kXv+UjgFiOQZYp0e - GO2jJ5MqFZ13nITAVGIOCs0M7abB+CjQoydcspsL1znmiFzwojZJx0GVVm1+Y3XDn5k0nA+X3p2x - t/HlPz4nm9UBb/5MRU9H6EPv6PnYa3ZeTq/x5QJFfztzeyFxT+egU6Fzeq9441f5/IngDBbOuk/s - 3llAa91piH54q8mfMZ61J/wAxZp5cpurh7a+b6qNfvmR9W5cteFviULjUAafeGdq3KVyEkjSXUnc - wnD7bt+XCfz5IcorOHmrftQ6tOkprMGTAgSrtTvpiksD30xTqbrN/5Icpt1jq807utzXSEY9TFJi - Nlyd06Boebj9vh/e9mtnHn3kZOud4F26xOO2qQV2jqBj977u8uGdjBCOzZzixEtDuuX/ELinsiTa - OZq07TreAF5LFJB04yuUnq6z1LzrD45vRZ/PeREEMNg1LvaT+EmXS+WksJ1XRLQH4Ks5tV4Mwq85 - w+YoPSitpO+ACssucEbMa7/pkQwlfnrCzsY3Vy+3V9gUpjc96/iZ8877K4HNv8APkXEpEZnnil6D - am98WK7oHKP6zz/yzqDqRyzedWDy7xBjziDVWl7ZGT52H5soY8tqZCecSjgY/ILle/il66GbChh7 - KJpYemC8v8+/4O8pKJmKpZNJSxGphZLgiDl5OXugUYdeeigRZ/Pz2uRBIWIy5YDlJ6Hxn5/aOtqE - DeGexqx8Iz680U+B7eBdadScCh/yrcMSfX62MQGWM0P4fQESXVBbracLa0ItZ/Rp9XOD8q9VkdBU - CzFWfM2m5MA/bcSb9m56bt+3hmRUQTrgGwniU1hRcvqsgIP+EWMFpzHhXycTsRXOsNYKbrz1cWdB - 1dxtopqP1VsZZcfChFGPE7eYhK5MslzQbGMvELhGzul6xxPc8if29+s3Jg83Z0CAjxbRj1cn59X5 - 9oSb/pxQ1Bg5lfBu+vFfrNeGm3fyF37gxJxHgld27Jfi2DOwhsOHGNPUerRT3Cd0GTedds3C5aRM - zxFo3p8PMebl1U9Jkd7Bl4odueSyqk3qdsv1pv+x2guUzudeyuAvfsxd9oxp5MQR1N7iinXIan3/ - RUiHHahkbGXN21vzT16D4PPRiPmQT7EwvLaTJ7NaEJORw4pK7uD++Sdy9ua9zR99/vwfEpxlNV6L - wCygLn2rSRRBDpZYVPSffzyt1v5FecHRdBgrdUQeoM7AwAYvae/Zlr7tmPv28zsZGUivZ0jU9yfy - CAfyC8jG8YhPl/AI/l6fOf9Etg6q+YIeeQPg/UGxI30qQO91FsJNjwctZLqqNQU7Az/9fGfKVz7B - NTJhUzALNlAT98O9RBCyZcL+9GY+Fn6Ywbh22YnX9ly8lPb3CacKjlOe+e++t8VPAq0vv//zk6m6 - 29cSsa5ckHtPvaf1sqzwGW1dDzpliefUauEf3nr72OhnoHr6n37ljJuvLW61Z6G0X9Rp3fyEsZkK - F2zzE+wUxaesVTsQ/OJBN/wYsLD/mnDTlyQiuUzndVDrnx9Mks1fWrTbQ5e+2utL7O+MY+5rZyUk - p6Yl9uZfLedPNcH3xHJYuROnojfmUoPNb8DB9ajH7OZXgtOzZom6rWfeTt0Afiz1TGSoF3S+nK0O - JClJAxqUTzB+9dlF2udsBHy59mCD8c2vXCnGMRC0TY9sfKp4Eu8g9vEQXIsEpPZ8wlEkLd7m1/N/ - fHySGDZfbeVxB6en+yLeVp+Y3dYu0S8ecNPNFWF8O4Gb/4ttkT1rW71Bh2JNAmwCEvSjytU+zE7V - PAHyzmO63q0JbteckJsu5fk6Sjj5rcfNX1RBXx3aFKILracxIq63Hs8PEShUoMQUkKgNG35DyX5d - cUD4Z0yfhpyBTR9gW2ZudBWJP0BVNb/E3/dlvzBW8IRb/QlneHet1t/6dn3VIgfWGrTlUktPIBbG - dRKH60UjKDZMeKvBCSuv4t7P8u3rI3a5B+SHB6sjtsUf3ir25exNwWt+QuFRO8Qxbrt+Jl9flUS6 - nZgNk5e3lhftA6OW07B3lR/xuhPCDhWdc8Sa2IXahu8BlF5O8Kc/l0PX1tDxjfPml49gJVc/gvZq - dzjULYZu9bAJ4hjtiR/yl2oZE5mHm5+PH1ehAzQ54/WvXmBfWUBn247u8MjzwaY3837NX7YK1AJI - xDmdTECAEdZo5eQAZx/8rRa+U0IorPWOWFD+amuK9CdqsSFv/CTyVudNRPDzP+6P0vTW28Q+AXZv - d3KI+AnM88GYYGjgctodAzWf8e4E929C8mmnYD5vb6zmg1QS62lbT2D1FfUODHDZE6vYW9p0PD8k - UPKzj12hucXzw951YL1FO+KJ1i6mQnZJpTuzrpt+WPoxeQAItQMJ8WHj7zReAlPa6gMBv+XXlYGD - D87Bspv49L70c1Idf3cEnLHt4Ue/XB1tq3j704QW8o5pdfQmoND8iVVZ/tCN/ycAHJk6aLvv+ZfP - IrgvVAfjpgur0aePEhrD8RFwpW/kwrTcI9iWBj+9UCNr3M8/+q3f86rH8dq8KxPwCWtO+ylq+6mG - iYy2eiVRY4WjZCJvE3LIFIhyb3S6ZDPHwkcKE2z5NM0JJ+xl6GSph/X5qle8jrM7LK85EzC/+uNv - PH76ubPwEC9Nt6xoaPJ4qvSLBvp5O/HbFHDBql921fzTm52TLT8+Uy3PWLbRr55o4K+jzeK+1FHD - TvJBciYBrJu+BJs/h71i5cB8LNoBijQ7EXftzGqqYSFDFh5fOCdvEFNzSnyU5KJK7qfPWg0/vQi4 - fJikg/fURnyQRRTTKMDaLXjR5SWEH8gb04B/eEfL9sICDJ2MHF751pWIjVOoKl0yreZljIV1Xe8/ - /4i4zjfWOOnSi5BvPXai+sOu1klMbfhORBtf1bmruqGZ71AhpU4Cgt5a23OaiLIqPf7x8c3v62CS - S2pAiaT2i7oPPjDtU4Go5oenIw4k/a/eqx0wR8us0Wew+WtYY3f3ravyAf78BnJYiBELqf9sYJ25 - OtaPkd4LmdCwQDoHzyCWP2O+5nWZwfwkHwL6ZrC29gT5YPOzA8bn3/HPT0O8MQwkYiOqTZteg4qV - Vli581M+fg4fHS7atfzFe76IbJyhpijvm18ux8s+u5lQpGyDjRxouYDig/57TVSSP8EzllcfSM+w - 2epPsjeFZPy/uh6A/95R0NzP7iRw3BeQ7PphUXmv9lg5Lrd8IShRwd3heiwvYhMvTuS4UFm/8TRE - r1Rb9sxSotRnBXL25EJrLpIwwd7vReK/FFZbjM5pYAXPbLBoa0vX/KTZaDmd+ICJRAfQQ9ax0lW7 - 6FgtHozXTtd9CDpKfaw4J0vjXZLokPHBG/vDCvM5JqcCBvBJiUcY5M3et7XhduIl4ENe8bg4oSbi - L8vGGErdW+sO+AC3uCJmYTJ0vPW7D9T6tA5E9ch4y5QbAzztggZjDTyrRfzeJ3hT8TsIg07JV656 - Zuj0aTWsvycZsOIQmejC6xAfmyrwZg/QCaJR0ANaLk3Ohzd/AE04Qazs11e/Rr19h690TwOu29cx - fYchj85ZtxLPdyVt/YAHDz/F6GPTY450WfeTCeUgLEiRdKRa7dPlgsJTaJAsH3f5Nv425JezPnHG - l6P0/KE8GgX4xZZgRlr1KJsA1vo+w2rY1p6wBnaGtDAPiKXWb9Byvd/B4X11A0LeiK6B/zTR+aZW - xF9P15yGGj9Dsbibgbgzbh6LQ85E129gYY/GxKOTlBcwiBsLp4F/88a4PXRA9vFKgtvFArMzVE9U - R6+WXFvJpotAXgmy2PVE1LJ692w8OSraD8w+4KbLHqx4eYTbGftse39DqbNWCTxoS4m1Hc/RhazP - Ekov0cbxAz0Bj5dzBPtzZE8C/+QoeTXXFKb76juxU6/0/CUzSuQ+x4ioiWYBoX1HLpx2e5Yc2pdT - rYkUNpA7iRK5roJTsRdpN8AyPhYkDfmXN6/8nQXCOAw4Lhc7F4q79kTBK0xJYeUA0OFysOEVEXVa - +7eoLU2WMogp1xjjr2NVAkLQhnp2NYjVsbt8CnMxhKnPC1jT1BQMWvdMISecfJyc46TnxI8awvPM - fskjExLAuVwlQT/wDRLCyyefD0otofitGMS9n7WcPd5nFr5SQEngAEcjDHvS4TETXsHDj4yY+xRz - AWFVmsSZ7URbLzhS0Ul2bWKqaaXNxauc4ePcfrDjeud8deumRiqWMpyoHYqX+tBESBn0M0ka5UbZ - 411k0dRm+6A694FGSPFiUXvQa+Lddg5dHTWKkBFpPsGDaVes5cgrbKvvkxiUNzwOLUMJDY7D+LgX - 4nhun9MMPXNvYhkyZc9L7+oDF1B1RO2fn3jpaBAAubx+cQaKkI6nsUzQzvyk+HbDKZ1BU7tIf6fF - tFumc7xcfXVFv/HCK1YAG0+KjOTg+z8AAAD//6RdSbeqMBL+QS5kkhRLZhGQKKDiDhARUJEhAfLr - +3BfL3vXy3fOu/cqSX1ThUqN7cq1M04hjxBOwnCjt44ee259nuiR2CE9aIeGkXnRBBD3/BYH9usd - LXi+neD41LY4Sp98TcRXIIGU2hfq76+ux1VwCeBzngXqXtKqn45qkoOLT1tqwtvI+CbgiLJoaUJm - +Kz3uN9KTp4elBJlg5eaTarfwbNqFOpttu9+RoE2KZ8hsagWZ6+MjdZeh9fWPRMY9kHGiBwVinkj - x2Ce5LCf6xqHcH4cQ8Kf9MrjyK91UeJbJjZG4CJWXb+dsuIHvjabI1qerK+geeRbHHozh9inyyvg - ihPD1vSKssG1QgGqcLMmJhaHlu/UxEpySHyabFJqTAq5hMrVsS50v11vFWkCbti1hj3iIzM//axM - JxvGq5hjK9nqbEFbeoJC+lrUEk8tm/g5ztEr2TyIOBZ1tFRZr4J9v3o4qD8LmuURCyASg2Ft4ks0 - kzPpYPl+fBq+lV/E9aSr4KxHEPTHs8pE/GM6eF2iUxU2ei2MD7VStEjcUbtfLh4pNjcdzuy+x4/f - J8vYxRwruM0HQtXbVzdmurSlwhUhI1ubtkY/WlgH9eYdyOZH/UicVL9Fz/twwmHNYSS8b4oNa/1g - 1fns0GikuwIWbXziB8o8Y5HDMQf7/gtxnM+lMe79RFf0hO2JvBG4nimn5QrYMChWZf5nUL/RZCX6 - UoWa1T1AYuVxLuBP1VN9di7ZvHNOHeorfsRqvbFrMXKiApHiWVE3a4/1lCfeAEu+hb96yRbbVn1l - ekNAb1oyZkN4OS8KqIaLNftzzvhDqDmKKLUG9pJ8YKxQ75KyPUQBPm5cFfH34y0A4XMf8V57PD1i - FA6BQsBxsKsOZS/YtuMDd6/PhHHWEXGqXspQimKI980nzrhryaloem8CHO7S1ph+F3SC/dexsVeY - qGcnvbtC+8UiWfJnYTDVKQc0FHKAn2+FGn2tOS0UHQgBVdWlZkjyVKhCuFB/OX3r4aRsZMiySsH+ - gvie1PtToVDxhfCTvh+Mu3aRqWyfDx17w3PPfnv/pCr61cQ0gnzJaOWBg7rH6YSTlc8EtP2GijiS - gT4dJcomdXeYlO2wuNTA8aHnK+GYghzYJr32fsKIhuQY6RAa1BnKY8+R16WE+bCc//GLUCj6R/nS - 90QzFlFjutjTVemlISXLimdL+/gEALNzoflaz4scvguweBHj41K42TwST0DdfM/widTXrBO4o6ps - Nrd1JkYqR0t7yFpwgFaB0O+/BtkzXVfQOVqnXB9Vj3u6AgHe3dY4WOwJzXv/pKOnUkV07WzXf/Wv - TI+RUtValmxau16As3dMU6k91KLqtIMyvhZGImHHG7P0vQ5yHh1MbG8xY0u9P+VK11bkn55gYq0N - cJ4GjI179DAmctsUcFzK9YQDV3nzXiYnxEe+TotDuqnp3Ms6bDb6RDVDRDUzv5qprM8P268fYlNP - qvIPf8jmk6YR9fyvjYZlCHGqzn22bAs8IHf33WBM3w9E4+rpyOFVMmgUkDH7W2+5TvwukBPuky3r - euyCV3jFhiVsovmKpQGwlZWBfEn1WvS8tAPjZO5pUYpK9rZvXqVY58GidpOcexFJhqo80tnF2JG0 - eih7qVEC+aDTh6R9++V9bVt4V+OFeuqWeKMyDyXsf9wG63ZwQ7Mo5xwCSBbyqj+j0RWbpwphXIVk - To3JoBniHZCNJ4+P3HDpl+qt25BzJ4yfS8zqEWt2AI/N+0iQZj7R3M27BT7ftg52UmojPpxPIXR7 - O6fGx/MNPihEAY65rhLxal+zyW5tDk67DGP3e7+wRU4nG8VylFKcihyaXifKQR/LN3odT2otjob8 - gfN7kej+nrXZtIW7Cij6vcjObOWsm1Ero98uP5JN2qgR/8e3oQcD9n9JUs9S3geIkuueqqH59saU - viuU0N2exu+jkI3RdV8hq8Uqte/Hdz8W11OjXIr9gyTP8w5NRg8T7GLzSELgerSg81lXvIcpU108 - k34Ol2ZQIGlooDymVzR4S94BXwpnvD/Vu1UfDRLKufeV+v5m582bSJaBU7cD1u2D7fFfNTqhWRIW - rLYXL2Pf508HJ/YUqtGwrmnYSB1Y9kKw9/T0iG+QUIF29jRqepUf0d+HfP74IBiWyz1aBOfWoYR+ - VBz4hzj6Zc2iInd3EumqN6Klers2wp+yp97w/LKx4iYAcS9usetXUS8OvRdCan9pAIWU9kxin6tc - xgam6xmjTGA6KVF+yv2Vj2PGK9PJhGeeOcF2dpBHumGTQMpfDtg7AGHj/jjkcHUfNnV1/dLTk17F - f3hJdSJ3HuNa35QV19Cwqb+9ntXir/rTzxgbqWBM94iqyL0Jb7x/+1M9D5quKgK8XwE9xze2OKUn - w5/+LUIF1eTPzzxv/SdYRNFFf3y0q05Ng/Ev1DwRaZ0DWSJYVH3g2Zseyz6BulxONPigBi3GZWMi - RBoR6ydyQX0hyAtszXoI2F+9Pjg3gNndJ4G/GR6IveYpRdXveaIa9Cmjjq1sYLDjHz1mw66nq95G - jB8DXJSL1wuf4+EDPu1uwffYqd7yCa6q8n212b+fH0qhMcF5PS1s30MxYkn4CkG9Cjp9JMcmIite - K1lWKjho11ttPqnSwe485NSob02/7OFlo/52crBFkjsjXqaV8CvlFmNRnHr2p082wQZjY/UrrF/f - Af2Hv3ljGKQsxxSteEG2eJb7cRMtMjgwVlRNs189P7raAeFjf7CnbgOPK3vpA5yV7qkah6dojr6z - D8a+elE1lvz+RxkAcGr3xngmt2xp+M+qDxTAppD/0BpyxfBWup7IB+IbPe5xgT4L0tYpwAdDFO9V - B5yV7LH3AbdejEIlCs6+8fr7h37YP6IYxkSycf7FW2/mNvoEAVQsII9N400arQbF3YVisLE/N288 - 5NDJsrooZKOIO28U6e8KuSUC1RT/HTH1oLhQDg1Hk7tB0HA7KhLMwkOjaXRNGWNQtPAjooIxHhzW - PdtJ34jCKaS6CFBP9fwif/kDdvZcZjDPpzY8cDVgP7tbhvj7fD7oOoJO/bij/SSzZ4viq3PCqaSP - 0RJZZgBcU7Q4qF+aJ2iKvSBV3vqk18wtWvMAgmiUzAH8+WEx3a76z3HW/aB7f/oY7bqThsP37Wiw - e3+q/vGFndsFm/MNP0BnDj19yDxhVNseGuB+vovtCifeEOfPGOW/WMLhbBg9v/5/ZcUzqs9GXc9q - R6+w1hPNNxplw5+eWOuDHlWcebPcowSt/IfPziHol+J8CcBWnCBYVr3aH8BNkCorPlZVt66ZhKaN - YpmpQnb+dsPGK54GJT+xKFiCN0TjQuQP6BtA+FhkNJvseZRQtagCPT+SavWPqf63fwJB46WeZXI7 - QG5VPPVe92PNfNHRFcRNA+GOk1gvcu6X8rtKA4zn37ueWsXYQNNbAbYk9jEofWxOIGnVFLxN+DLq - YKdRikPV4D/9Ow4eX0HXloSu67Xq93cJa34TyGE/sNm+GSUkcddhl1lDNFXIWVAhHGOafcDtp8VR - G0Uw25jaU9dEbLhKBOATbLCvZKxmr1lKkJ7Mexqfnsds5S8fbu/dKZCuvFHPWSOrcE7LFAeHdNMz - 8WQ0Uo9sDx8KLqj/8BO90wMlSN0GhjB8QZeFzMPYFPc3xIs7JwWsk5YGnCxFA3eciSLfrxX2s+LK - llXfgevWj/Xz+9FcfpQAutmOsUoPYT0/erGBKopyvB/ri7cY8atbN9IHe2asejwW0hZBzR+xRuad - x9DuWaDv/Q4ENsODzbpRtFD9nAMNyX1bj9knKAA2S03NdA/GstNVTpnWSeMKynqDdQ63gU+nxjTg - eLvmp6sRA+98F3pUp3e9lDc7BgHLc7Dsnjs0KVpUKEa4bAP0uh/7hemfCura1XC++Q5eK3xKgFUP - 4CBtymh4Vffy7/lSe/e1PLHJzCvwZP7gR3Qy/uVlkAg20AAZcz2RX+kof3rIMGotmtDi+X98iffV - Q0a/ZUdMUBuWUHeAyKBzTVO5fEYD1d6cFC3N9rjI3yN3w5HA1dlcJ9mEAu/e4gAXtjGZ662igh7W - 9NjtLcaO+4HA8dfiVW+nGROaq6OQ4lFh9f259LSEXgZ2uLz/5ZWLqYsbuNV+gtU0O/TCQUIucuu9 - gY35KhmNtZMq8B62jD1/EqK5HdQW0K4MaCA/LtkiOCsenVNCeBI53nAYxY2sCONM9TMus99x+pUo - yh9PbMiRxOavmp0AW/adHuuNH014f9Xh/MBhICc7yfvlTs6Bfr1f8Zq3oTV/cqESrSfVLX2bjcs7 - KpU1T6V//ojT8qFBNzPf4P2RnhlXCoP5p4fxedVDy/uVO/AZUotqn8s6JmLFf+n9k2m8LSBiykm+ - or+8xZCDr0H4UxUqvNvl6ww3M1rzJlX5w3e3Y7vVf9Ql+B4X09tVa+pljBUJlc/zgI9upPeLwFm6 - kuz1DKsf8cmWR5Nd0efb1dT2dqU3OILeKNL0PROk3s9MkIzLCf742R5PZb980E0AnhTPQPFfIxsv - ZDMhz6wv2Gm4myfuh8WHP31/iJzEoJlcEnhtnTNhAldHA1q8AOh1/6N7d51RRyYuBT3JVXwQzseM - Z2mr/vlj0j7FqzELAc3RX759/L3Wqd1nJsMplGKaNPQdfd3n6EMsfiqshqZlsOddc5XuEZ6wv4fP - mv8mArxL9YGDi1ZHa35ewp/ei0X9481HWW2Upk2uq74LmKDcXAeemtvTw7VCrKfR+kbd7/SiR/91 - RGJ4liv4esUH+ys/t8lk+qh7dhoRr0PYD/WycYDJ+URxeSkjfvppOVj2RGiuHU9oktmtQy9YSjKs - epSSCRLpXuVv6qn3GbX3z9tBlfU74gscf6wjohnA9FzuwZeX7zWBl9JBN5sxjqYJodli7QD3KUNE - ZAOJxgsRFuRN8oYawu7izVmz6LDrQi0QbubgTX7hmmjdL1i/Pbxs2Uk/IgciO1NNftB60exRgilT - RbJd9dWwaTY+fJyPvuZxnbc0PCHyI80NvOfle0/nKgV00/dHHITSjy2aYk/IkfUu4IT8sM4IvC9w - 7XcJ1sRfa7DAPp2UNQ8k/DN89u/ouwvgC7IUvJupN1iY3Zs/PUf93yZGnH6e7b/vT/feR4pYz1Ux - WvmXnjnc1PPg/mzEnw8JWc/11/xx5jcAyYcS/rSPUA/pPQUWhxAsVStGc2MefKAvTaWeGZfGrC47 - QIp1fhLRRW4mPqsyUBD5iP/00+rnTOCP+jG49M0STc3FryDeQURX/5Jx3a5Q5VGOE3ow67aemmiy - ISXCkeIzX0XzdLstKB2KHON2MJG48vFumv0h4K3vBc2PrnfQMzc1eiqNNT9opX/1SfXY2dWvc/JT - //Gv5hxIPSoFSdCaJ2CcPc7eemtZjCaGmmBe/S/ZricK6k1aEJamNZq9bkoUskUcdZ7nO1p+m9YG - /fXj6B4M5s1YCDv0933S4lZHjH5UCcJYvAdy+Q7q+YwPAIoVPck2XWqjddSNKxMDW9RnueqJtnA/ - wZqn4ihwzsZ0Ue4B3DDNCCeOnLF8jKqE1D61eM+GIGK3SCHwlw8VuL4h6livUtEzR6J+wVq28kuC - hDa/Yc2hHZoN6qtovqj0T+/0qz5S0bEYJGqbDckmcZsEUB/PET1EP73mJH52FXe3dg9HUe/nvkAd - 3DY5H/xcT8yWwNBURdh0XjDTsO7ZXKUbWPMGvL5bVS/nbabDLs5iauzajg0P6/hB3GKK+C5cn96a - jxDgo/pAD+7M6ikSWxvVtaNRXHOXevjzd/74HakrjShja38Pume76lflEHErvsL7lovUFiQazRbH - O4r0vjL6h8fj62B8wKFWRO/Jp66X2XJ0OMztTI06F7IJ3KWEE5pV7AzlWP99H3htHwl1N3PFmHrg - XVAzqadedoq9Be9esjxKZxIw/dYy+pqlFB7lZhtMaz4rrnoabMrb1Nyd5mh+GmkOO3rt6GHlt+UP - D/PBmPDBbNNs+tRO+NfPCaA4+rWwk14EbTtaEjGRH4htb6IM5fDh8LFsWsTmXlahCesfto7JxpiU - 0RGAqHyML571MqZnfJmgvgg7svtt0549a65T3kHjYlymizH8SrLAGDsNdl5plPFTd5H/+gFYz1M/ - 4ranvkOlWHr05r3sehocEiJvkjb4r/7Km//K/9abHg/jJ5vJKQ0QZ+hXGnxVof6X950uX59Ilhqx - cfX/Sn/BBTbTfW7wy+5jw5ZXNtjjhCGjRnDngPsId2q/ms5Y8zVbSfy9ScRjV3r0Lvj6X56Jne7G - GSxbrib4h7zGq96ImNk+SrCYc/vL0yKCNiGn5BYP2NBvLZp+zzT+y5uDeeJVJCLSA1iP82/1K0ZN - +uMUK7nQqvjx19/wvLSFIa8e1L6zF2OeF7bK73jv1/7vAU3O9tWCEx8UepyVLZv8uNf/+lfYuwav - ev23Cu6Ne1O7e3XoX54B231HpNXvcZ9aDZWtjR5kiZ17zed7J4He/0lkp1HNWJ7tpP7V+/p9Y29I - DD3ZrXqJ7hNZYW3nx/6/PFOLS+axy63vQN7yD7LbBoE3XxsjhHQdCGMdd05PCvs1wMK8OZAjuHns - ePYmyPRtEiBF2qAhbn4Aax5L7ahrI3a6tDn6yy9Q0YnoH97+MMsDocKSt0jGJYQ9b+UY/24hY6tf - +9cfFsZTWXer/4Ztl9xpsq5XzT2SBtq+DfH19cvYDGY3/PEFdk7elo2HUHP/8YMqZlY2vRK5gBAZ - x4BL9+BN5yvxkWw4hO77y4FN9/eJwH4IKD1EJM7+6ev/40QB/O8TBdH3tMF6Eow1o7ZQwf6UyxRb - 6BexT4ls+IqDSkP/Qevp8fx0INTcE+/LQGBTMx0KhdY5o3Gb7XuhpV8CQZVPNF1sKWKe9oqhvZ1r - fGwOFWOQzx9wHFPDNnfdoak060n5/D4nsp2ZnYkRTKm8+U09PhStbSxhr0mAl6DD+6XqvcW6l4vS - +p+Caj0cEfN3BQffz/sVXOXnsedde5bh05wvQeU/cD9hzQ9Rj68f6j9flTEemkZWnDvx8OHiXBGb - 4R2j1zXxqXlwxnpBnmcDXO0sYF9mM1ZopysM1CzpAZd+PWTW4MIljfzgjY+3fpQXJoMv1TkRl8rz - uGXZlnAf5gA/O93JBDX9ubBzmREgK5jZdL9eZGhCjKkd/5SIfaxgQW8n8KlRbderSvvlo1yNqqAX - 4Yz7+eLdJ0W9qRHN9d0um8uvrwP1rir2LX2MJpxPH0UsY4teKsr64dI8Syk7Z9+A+36rTNBPia68 - 3Kal947ZNYu59waypkfBBnio2cjiRiGH15Nqs8vXQ5pvSlCmOsXHULpk4vION0recCGOl8d6T+R6 - z060HviynSJHzBseDZpNTqReX5g9GTKrgF86BDScmqDnT9M4gWXxDY0LlHjCT+5CJTUiEauF/UZM - QAPAJdtdqcqeI5u7RFdhiNGeSJRNBpsEkyh5FDjYyNr13tWzp6J8mfv1jGtvTEfvksBlCl1qvQe/ - 59/PWlfytJOo2Q2Ct9yfUwJucK3pJXSnnkI+N8pU8DuaZziN1jO0OUjTu6NZpkHGlncIaDuOGrai - nYa4Wata5f0wOxrRYdvPyvmUQnuLauoFQoYGh3REWfc7tnfuhs1yUK7vynWIWu+wM8bR+uSKXNtH - ijfJL5vye6DD7W5u8FM4tojbW4oLcSFZNP6EUc/xo3pV+tToqe9tP95kwnCFtyQFZNa/+6ivb10s - 07ep0PNLfkVL2c8hZJadkBpqt/5bL0j064kGu6lFs/+96Mq+ayN6UlgV0d9Db+CxgE7tknuw5SUt - paJfLxNOKDsZ4kO4ECUILKB73nrV3KY8qrB8fITda1/3tOsMTiGz86XHmqqGuNs8bFgwCak6wK3m - U+VkKn+/3/oqmSdEkuEq1+VzDd4b/djzoa6pyq0OE+zvvZfHuc4YQlyWJ+yueDFpueYDVTofp+V4 - yhYc2Sb477OD77uflLHccgRlxQNyOqN3tPgH/rpmModAOXRHJFplPkDYzQk2XqdTz4VKRJT3l9Gg - yU9fj4NJWKBcjDs9aIVqzLM/VUp9SFO8H8nHYI+kI2h5/HpsNMdfPYre5CiP+jFStbAtxBeissjs - Zd6wzaq4FsrlLsk4GzTs/SjLpnYrC7A8+p4eJUvLBKVoADr4KkR+o/XQ+nm2lXnY/uhR+m765fpQ - T8rc357BJv9UjIlN+oGf9PsSIf49slnhG125luDjdZItYqF0LYAen3ywPQ/fjGt+paB8MzkPRE04 - GMJZj6/KZcm2gdwWQcYOwodAuO0FHCX6z1tY34bgTt0USAH+9syMokJZP1/wSri45/n8JSlRmJbU - c7wODbB9CYqVfI5EeFy+PblqGYCtjir2xJ/lLWbwCWT0Tu44deYzms/3KIEisznqIt/yhtO+kdHw - Y2/CjPCdkf4nlRAdxBM+pr8oGg/qPVT++OFAjz9v2hlpCqOILtTdPSLG3fiFwGkzYHq/iq3BUPLs - wEOlR/X++mGM/oxC4fU8o5c4avox/MQtGmTJxK686P0ydQIHrbuJ6fF3cyPuO6zXmH9/DfbZG2Wz - tcMuiOXVon7Ki2y4pXYiTxQSfFaLqBfR2K/4b5dUI5bGlt3slPLVfyc4fHqfaOHrC6dwb3XE9+OM - ouUyyjrA83D5wwM0mElCIP59XWxJ3McY90TQFQ8MgR4+e8gmzkUp/NVT7N1zb/FeeIAexx98k8e+ - 7w57KwDt7Rr0sLlUPTupJSgfW/xi/A7qbG7ubgKj9T7QRMbbbBk/jg7n9ulj9YysTMypYsLjJdaE - rw9XY3HyRFLO0Yfg4IK/2VR0rwAkvPtiX67iiGYVEtD1KQ7UH8o9+sdn02GbUf33vfRi7r0KJZfs - TyAqJ93j1/qA86zmOBRf32hSiGQqKz9iwyxHj1n6iyji451RK1vSmlQWEpDoXvb49lJabxr6U6PY - 8hNIL4k+4700mpTwVpvU4+WIMXu8bGCId3uM53uNJkrUQZGsoMa3c/lkXBM/HFB9boeTyBh6Zm72 - gzKROKDX+Wx7y1KOA9R5R7A6ty8kfETZhbBjCc2u3ztayuu7Uf7WO7ylTiY2Td3AAYY7Tav8VQvd - +/qR8e+XUscbzp7oDZcGtLdj/ONjZsx2oaz4RMONVLHJ38S28svwjmy6FkfL+r67svop8gsNw+M1 - y3WgvEsfHNq8lQni8x3LL5A4fEInj9GD8BmU/W3XkV0RGLU4Cf4Aj+IbEK63pXpZvsEV4Da8MfYl - PeOvQqAihzQ/bHwKyZuWoJYUgK9Br7/SMRbt26WK6vmUnqu4RjNEN1PJFOzS40TebNrwyQBDOfT0 - mZGIjbWvuXCWrSvGm+SQseKwbYH5Yx1sER+ysdSnFNlf3JJN80Q1jUBKleM8kaDB51f2x+fI2UWE - 4l1jRktQiwKQQ/2kRqIfDLF49wAHZGJ8UtDDIN2+bpSZr3bUznxWT/yoxgq3/2zxodbbfmnHn/pX - P9Teny7ebCSNCoZIObKIr322JDHPATO6H/ZWfbUc9pYv30+FGrApcQ3BA1Dl6jxHVBdf+0j0HA1A - eQsXuvdDKRuGPvkof/quuOB9JjSoawHM4kxyNXCixezCUsmMIqBB/tGRcKh2JTxsY0uIuTw99vf7 - 7maXY/zdxdn8UNUTlJ8jT/7weYjXGSONnfVU36qPepSeqQqTXvY43ip11Dqtbiux7+VY/YnGOu9T - E5TPMxWw5TLeG2RidyDOgKnV2dRbkqlyYRddI+pFTl1PWK4/wJ6Fj/eBdugnX2QFYlbI6MG4+N4c - PAxJFuPyRT4H1vdzEhxk+WZxHb1a94MhrniKtNhoAv49DP3Q670u/6sXIbfR8oiUAp2e3Y3aVY0N - TuyLCo6kvAeofHlsKsvERsvoqASsnLL5el5SuIyvkl7wV/ZmOWhPqLn3W7Idtq9oCeeuhCI+0IDP - EskbDzupgXnCm4CHKM+mz3ero7U+AiHeq96oXpAEzZCsHZrqldHcUgV0vTgttioa9cMWRyEcSknA - 3sKrnrA/X68gxtUL22/73ZOpEwT448/oFhhIKE8+IO39I1Svt160+O9Xp+ymScO5dLbYVCXHFhWC - lNBLPH69nzqX/p8+JM9N8ouq41X4oD//oG2LH1vuL9EEOug6xcW5iwavW4L/rlcp7WvGh2IKJnKf - 2FeeYzZrluvKf3pQD/wSLcCLMbCXffurR8R492SDVUchWaSLXws1eSVK6jQLPni2ayx9PHCI55Yv - 1g4bnS1yxgmIZ+6D+queHdl6H4hA6voPb/vZS7MJZKt9Yl9wzmwmIR0QjhfArnOj2aIRTwVyuRhE - GqtXvVgKJJAUfbHq+aaewF7vubyFP+q7J45NLHu7YH4lj7qBbPVi0I42jIn4CKSx0nq+2lMf2cQd - A/l+jdHq32Qw+uRNV/xl0+cr6nDWNg01DnHoTQfUbyCZE4dMpG/RPz7M+CmlRfNE/ap/VOgn9UcL - KlzZzCV4A04WXwhjm2+2tGcYIAHLx/nK5xNMmwXu9ukTAPMk1lugqUrfHC0a/o6RN5PwO4B1X6eg - e5dLNCGEZTDd/EEv31qqB4VItjJvbAe7rl3W0zDeQjg8w54aq76eI/aQ0b4QKHaS/opYuNna8uon - gvsdEJo2eqjKpsNFhMN9jVa/OslmexeodmjKiOrbuYLL2Q+pSRM1W7YpFIi/XXfBVM43g74lK4fx - OVXY6e9jv8jVpYDvYT3KffTiaNkcUfDHZ2T+Mdn408fyJUPXADmei6b961fALzvusMEM5E3dXUnQ - 01uEgI+jNfFezBL4C6FE7i5yNIl9Uco3oRyouu1Ixm7+SwDzQeZgeL4qj167WAAt3fyw9R6GmlR+ - vM6nqlqSufk9mzkGobRtuj029/IbsUnwCajcdqDr/ooGYkUu8O3WoBZ6ikb/PZRE6fjDkZ6l1+wN - //xbhq5UkzuTLZ4RE1QJjo3P5NlkU+Q+dGXFU4oj5cK4+HY9QbA5RfgY2w+P6NepRfxloPiEk4BN - Ep0KpXwPLrWHh+aJpyIDEN75Dxe9fmZn5bbTQebIjar3NOsnJp4LlGquHrzId+sxZzO76Hpx23/6 - VYjXW8o2wl6m+1Z+eSz/xTlwQWniq3/VDVFDzw9cO8MOPv5k9lMPeox+KQnoMdtUxvzcXFMU/94u - 3ue0rKeck6+gNIGHjWJMvdk5G6rS1vt9gNhNiebd6bNRUOZvA3Fid8b6e2rDWKsi2d3OXT/vTW0C - 1Rd22OEzOaO79FCgTDm6WKfTIWNM4jjFwdX8T2/Sy1XewO4VDVT/2//HUWlhq0Yx9Ra+NJgFBxVp - 9+sTu/dJzKbHk3TI7ZdzsOgH5L29DU3R82m42MoSyZgjdpGQmdtfvD6/ekndhijfaUHkpR9Ntvzh - 7+pnsff1gU3fIdmAncp3bGMtMhYdmScQht2depzxZVP9tiWlmkQvkOziV0/zWwj/+dOLyy7Gctx5 - JfzlU7Fhl2yi0z6BwIM9PscqrpkyZQXo3xyvek1b75lMOeBUB9Pbdk+8YaOHOgT9q8PPvNr9y5OU - x+l4pyrbTRHrRcuE+BoLpL+B009bRiSQIg8CeXOW0FIIegLr+mDrqyCPKO9jg5pgIwe75jRFy1K+ - B+D2zZZA0hwyQUT3DvaK/KV/eD9eBVuHYxZa1Al/rjddmmeFnp1AsPUOXYO9j/cAnMnnsLb6eabv - Egnuk1FjW2q1fmEj2cic6mKMXRpkU3hXbaXZqAtWjSPJ/vHFWs/YX/l3KqvrpBiheKWWOjv9vGnk - EyqkqqKH1Z/MJ9FOlFCptEBK1Xf9D09P6S3H5i49Gvzv/EpRV4aUyDGEGT0VEcgBT02Mh62WccXw - lUGcNxhrPYyIhmldIPWSHnD06pgxWYd3C9X+uwvewhnX7DvCdadhzyLta7fJWH8Pbbg++QF7kugj - IW++vqLZpkeP3uvOWECPA8RsabBPbhHqXpJcQinGcbDr7o0xnX47btfY9x6r78crYnvpVEFOX1eq - 6sxD/HKfFyC0yrFqTQ2aeyw2Mr31ONglFmb1MesF9Kf/94fv1xubu5tCWo7vP/2ICDlxsUIFuseq - ghRvRlvFBSEMLsFAbgyROlTMXWUVJvX15xX9+QNY/Sd+GsmCmHkHWzY/oRawW2CwWd7lJZxpel71 - 2OBNBq1teGdFGQjNUBszrpsSfnfTxH/+YkT2hYNw+xNWfV9Ff/Wu/KL5QPUb56K1vgU4rbeYaPxG - rqljnTnlezgwfK5iA4m1XnRgKUVPsbZvIrLqE0WuzSNRVN1g4m3iC7DpJOIC+Lz+l88NKKP4X775 - a8scPmdDC0AN2mzVfzlQYdzTs3400RTeHXu36jeyaW8lW4x6lpVfIHX49FTObM0zJ9gu35Ls3GFf - 8xlvdTBknE+javtiY7TbVEjIIowPClK9SYpNV+HheMNGLgTeYonRAtYVDJr7dwcJDK8zFlzCqDNr - N7aYAfHhSq8agWt2yVhduBuI+YTgA1p8g/72goyCOyqJLC9VzzznAFBKmwKbW6XOJqiVCjnSYuD9 - LzbqIQ/HdJ15tF/f0Uy9iXpoQVRpffr8Pmc0H5pBQt4Cq16aZzaX49DBSTEtuu53b6nJK4W/etv3 - Hq2Xye4DVPUwYMPzCmO8S4ILq54k8ppv/fEB7NDDok6Av/Xqj7hd32ALH0/f9dbfjxKjnTYcaOQZ - RiSm+LyB3zuLqGnGTj0VA5XQbkk87D+WCf3LN1k/Z9S8j1M9Ug66Pz8cfPad2LPDFJh/eWUg6qe+ - Fi39R3bH7GTRWxlcET0q0wLCzCRsUFfP+Hvclai5VS51+CzNpi3OQtk/JR2ORzzURJietrxo1wfZ - anszE257+KDPbWNjfJUDtGCyJPDwFZOgdPeq2cq/68yJkGrN9uK1f/2DP35/eK87+qtnlOjxCaum - xmpa36oYHqACNVGtMmFQ0gT+/OaOxzxjPOkHyBfWU9vcfvrp6D0SyPOzjg8o+dXjM3UX2YmzE7aH - 7eZf/eyy61Bh3z3FaBaFJoEJoi81T8+ft4T4sc4Q2cbBe13/9dq4VZ9CQw3TdmvOlhgHHKUz2XV3 - 0xMsMZqg2G5Dauan719eOMCFHrrg5DY/RK81+IBCx8K+9zZqscE3GU7je6L2NSH1QL+lCeSjHP/t - p1XPC5B/ihyrVelE/MlP3X8/b5eh2vMoe1Vy3eYhdY3DvmfDUx7Q2p/BJvdxjKmsigWqvRlgFcyz - xzpL8qHl6Blr0mv+y88H+O5il+KH+EVsLyUl+ltvu5+v9bIL2Ae+mZRj9YiRN50FZkNs2BURH4fa - mw73m640d3c9oScaNdttHiYMj/yK0z99/+fP1+cfbFf8G9Z8BrKqsgM+N6t66ZenAGOti1TXtTIb - M/eeoLeOzjQAHnriAacr8qswcHArL2gS1C5Eq//+01vGPz235u9rnlfVdDntT9CfNjN2Sj2Mhtd4 - viI6qDq9T1qQrfrYh2VKL/gQGobBV/tvgP7hyVeVolUv5DD9tGjNdw/1or60BVhFXtitcq2msndN - lJWvCZBZyMZn2acofA0F1TdShaYBNyESf+mWuih+InbuLz5a8z+yJcIxI+FF8Hd/eTa+lkPEtFN9 - VVa9HnBUVuofCb8Ehmt9DrahfUBiRWCA2RRE7HYXOWO3yC1ATiSGs4C8DLKUbwKr3wyW+t2yRSCn - VPmpJY/jP/9QCHqqpOHkU/Nl+sbwzAQX0OHDE+Jd+GwejpIkS+leo3s5+nnz7R2f4IKbPY7xWYtE - m20+qGMvA//lcwth2knx625D96emNKj4mDfQb5LiXz9vnJxrg46kuhMheVX9fDt8ASrVOwSb3fUT - tfb1I8Okyq/gunMLNpRmP8kmvaLgbeS7fq59zYFbOjrYbPnOm6z3fQNK+NEwzkiExuEoybArjBsR - Pze3FrhFlSCdOXPNtxKDnWeFQ3/61vPfY0TOhdOi33BN8JGvOvbnB6W/fhK+eErPIuNuwp9fW/fD - v36Qwn1aETvyvql/aeungL5qvT7PMpqNZNChFx93/Jff89yYtTLWyhYfjr+ynwfp7SLVPHdYK9/L - n74KUfp4noKGyo96Hi2Sy9jHA3VGaAzGArWRN63zovv5mGddzeuqgvabnnAO8Qx6rMxCmVgwEuk1 - 1/2fHwCVyzUiP3eet+YHiRJs5s1fP6MWrY9yRfVl/GF7eLyMqddrHXmgCWt/VWf8M9UXGNxxpN75 - HmZU3yXyP3wx1/23XMLjAF7LKnysVMLmfXtJlOb0tWjwUt8ZVYKgBCWmwp8fycjTMAbwB/+Ijfre - ZNPh/tTlP389ZTXOpudlnQFU9AW2fDgY08c1VaXzkhP19956K4d7MpU/vjv/WGowG3cA3UNPA+5k - fep5iM8VPGxtiz2lPyNCeAzyP3/caJb3l1dBFZQbwtZ+DP/WJl15x3VGvkHmG8vytWNY+5dBI4hC - TYJ6K6DKyk38XPlp1X8fQDl/oJfzFHhL/D0nyjG+qPhZciqbvTRa0KgEp+BLHKcexnnn7/7wx32/ - +Gio34EEXJTWf/2EmuW/PEeF7V9xnjSHaH5rkwq61/XUHH/YmLRL+UFNeMRYJ5rkTa/zqMs4Xmec - rf1TTiuwDK2pYWwTQutRD70Emlq8Y/Uelmi+Z4YLHx49qb4pymz1QyvewfzHX2z2BMeEgcEWO8Tc - MOLIngzy0cL0cIpnRlb9Acp4trBTcG7PHXgv/usXU5/cGBv+/AcKXYs6/f3YT8kXt//PiQLlf58o - 6Id16qs9VfW89zcDuOxsEPCOv2i4Xy42sCMbqDHp5/r36ZQCgmKTBdu6/xhT7u46pX7YJ+pOV99b - duuUOgc7f4kdqdklUR2QuugcsLjVGC/Rewpb38+xdriPHqHZPQGfdzZHMT94Hmf00CLtl+qkqM+q - N5hcWoKJaoZViGg2R0itFFVWXOocxn3P97+oUVohban1/lYeLUujArLl5YDjZz2a0/FRQX7YZNh6 - f3WDO+j2otxA/WFNj4X+7/PD4cORQJSsJZrN02sDbrkXyGbZ//qlpfBBPG8F9DSpJmNl+0sROUwq - UcjtnC2N/Vv7mXxPdt+9gQT92XLwwyWHH98wReIjZLpiXLYhPQYuydrWOTeQxSVPnbFX6iE27gBn - mhyC5TY0xrx/LAXIR1ulj3Q7RV097kvlu92FNExkKVu4oz7A5aO8yO8ShIzzsjZV9FM9UPv1nOqR - FJIro/Rj4sONVkjcz1Kh+NLVo9r12bHhZamC8lsEBdu5qjKhumQNZGOvYexqlbcg3y8B7X4nnN1u - h57XMyuFYS9b6/PH2dIlQwwv3Txg+xVwaDb9SFcew4VSQ4jjehbTgMBPayMakfrVc8LjnYOaDDN9 - LkufcW9BtpXWdDAOzdjIxO1GP0EclQW9sDtE8xKviP9qPaonchIJ4tUMFUsILRxL8Svj2hvtIDVR - RBq6TiXiLm0Dy7UziBxwhcfdNcmGtDrltEj8AyJH7q6CHVwrmvvDPWMWZBIslyamydgr/ehix1Sc - X9zR+PEJPLqfpRx+tKc4eIffnu0yL4EpGu40u9kjYuJPmYBflImqv8ebkUfmp0p4aCxcmNqlFn7w - SpR3AR4Nn4+bMR+/zwHU/U8nXGZgbxKVbYjMorHwvWzeHnfQgwXyBwNqOJPksYL5AvBbJ6CmebTQ - vMRSiqqhlokQfZ7RYs3OCe2S4UBD48R5MykmV0GrNZGln9CTnzqlysM8h9ggoYWmxbd1xeWuC7XM - b4+IsElO6Ng+beyzHBnMirEEvZ4/cZETLeLK9cx4HBaUHllWRmLyOgwAk/PBMR4BjT/IJVCy5ETk - U9qwfrI3MlSLfKHWVnWj+WF4AIP7E6n90RyPY8NTAFfTOxzo1buf5Z440B60J1Y9dEPc3HOuQl1D - oA4XQE33v7CB22E54VPEtF7kfqGJpNP+ir36nmTzK1muSrS7VmQKiitjc374gGrVDdbeptTPydEY - FDhKPj2kmyKbf0zUlUoYhUDkGfV4zTjn6JPgKOCTlxnNH+qnIBK5D85K2daL/iwFxYsfIy7084HN - yexMsNzvPD0Gmevx3oaCrDvPAOvh7R4JVtuloFqvBmuCcuh5b3+UIX8HNr0MgtKzbhom5KeKTl3y - USNR/PGLEg9tF2zwbV8vXy/igJy5gh6pa9bcV3ws4OKNjPXPeWbDqLeLgsNTg/8+H70kjguZl7bU - Ly9XT9iPDx2yvq6pswu9WiybsFAm7YOw9063bE7npoDwmH3weertfjKlV6E4fe7gbHgKGeu18qN4 - uyVZp06ee0EyXIAN4SN6HtIOMRgqQZGiU42dzZxlDDm6Cet+xGZ116J5EJwUHOwSjO/OPpvkG7SA - anKmZn299/QSzT6Ym1Gl/jZu0Lp+sbKxxj11UVZFwzx5NhzMzwXjZ+pmAuew5V/9x0FwNDiS5gR+ - IdHp39+n2FeCf/XE37Z+zW3meaNsv8WeFm+tRzQNnAT2zYZh7w23iNn5OKHSb6vgBPyHLWWbS2Cf - co0ePan3pj88WS6fmLqZjNgs2j+CTmBqOFedyOM7UxZg3uIdmQ/OHE239pqiOldfOBVu0d/+UpXj - 9slh87eT6qX9XoeduaEqDYpiQKz3vwO8WzPBGu5PxvBr61SxEhmo7yu8N3ksvqLH5aLRW0ekfmhN - vQW2iXV8N/gumq7bTwthvWhUzW0/m9to9OHwXrbBfA2wMZuG4sB2k/M04YK8n8lycZXbadoSeLJN - tnAOmwDtUxEHrp6zxbx9WmU8HDvsidGEmC7+QkjvLsbe2frUnWcYBWwPGqbGJd781VsMcVQVZF73 - tzA9y6tiWZRic8UDFhVxCyHiCpzqr6hebIc7KRX++MFEj+eMXaXzRqkV7GHLOtRZv7n/SuiNMsDP - rXQwaNDGiRLOrPj3fJlOjUQpvqZG85dzyOgjRDpYmZ4GEdE6bxGOnwSapVvwRbXiSKx+lqm06Cxh - w6annvliMMH8C2WKjeM+41R78pVd/urwzZ6qXsxt2weGkUvvfjf0s7f5gvJXz4F0H9AC7T6Fh+5x - 1HvIbc1aLtFhq2Q2geLtZvzDMACEV9JSxz/ZvcCPcaVcx0KgHj1XHr1r2QegtZ1gB6UfLRM7XoGF - +g9b/W2sW2wyTkloPOPbqVK85WKLMhwaesI4tbb9NPz2piI8owORf+qOLYOWmzBxyCB8cnLq8dmj - DrJrF2H7+E48cr2xDh7kecQuyGE2lVIE0Gefnl6PAmOE3txCoXZwoWblWDXHXqdBoXLj06A4no3l - aYDzp4+ouVMVNqSfRADlfDlhg7fLen69Tj7sK/FCsfV06y44RQAvOXrhoKJOzXJhshW6yUasPx83 - jxmefUVde6qJwnu+x0P8+A9pZ7KtIA6E4QdiIXPCklkEJCiDuANEFEVkSIA8fR+8vexdr++5KiSp - +v+vkooMnVN4xFz19BoejRULCy3pkMkk3bC68rv+5ROS4jeO5oLxZ1gPBKMgu1nN8g7kF4yZ1UHI - W6ZhNYRyhuYpEYnvj1KE1d4P4Xdgg9/7MOar8jXl2CtVZG3vS2BucwXRWtwxvCykme2bewb7iTEJ - qrtqWPZJ3Co7PyiJeufCgivy0ofj1yZIK7Tt3lYtNpUXHR8kTJpjwZPilCnRI7SIKYSrR2WDOnDS - AxhwlRobC/d0RNAaqYHcQi7oyEyNCjVfl46LUjvNcFXMFzieygz99CRb5giDJ3r5KGFvw7DMqcLA - LxVHdNTMeaDjbahAYs0CVpJaHXhe1lKwr4lA9tHbbGYrAynY9A/x2dqNViE1Q9AAayLF7TuC0Wk9 - Fnrt2yNexkvDMp2N+Pd5ASg6K+K0nVvB85eoxNDCGqx3kG4VcdVFx3g6FsuRcC30hXNJDtHRi4R6 - nFOlq1IXeaf0GdFo0ErIeaxN1Fa2Kcvjhw/dTMvIpicKzkfNCk+6oaFjWC7NRLtbBiG/fxMD7Pdg - qbwHqxxE6CPfPsjR9AFLAD+rvmAm9Z4FXS5yB4mr8SjY9MnypTsdvq71GxneswEU+CcV7vNZCPgY - uMUi6XwFwo9gIUdqPsViK10LRaY+oluCzG0H56qDL8sURL9OXkNjXSkBPstHdIb+ic4me64heZQq - uXFTM6ySV/PQOWoh0maoF5u+yiA9QC8A47waVAeiL/304F7hFDoQootwy78Y+uM1mt66tW4Vgh1y - di88UNUuRkgjO0O2/Ltn1qtZGBGnJTlOzIF1NsfeufsAK0HhGsJOP4VAva410iLogfn5/bZge59E - Vda7sdR7/gWDklfI3llcb77EUg6GCR/I33qZ3pCF3WmvIHcft3TSZFoDj/l26Lx8Xt6ccYYPjYBp - AoqbRzMPR9MHgaBK5Hxj9hE3HWEOvlQeSfA+7xt+yw8yt+5mvOy/WsGnpdtCo/YCFPBfzeMeMw6h - hL8OQm3w9qhZn3QY8V4ScD2XejN/m0rg88EUyLwtDKtenGTFDuInCepAHAjNqhRqacCR6jZch5mz - lho+49uNuKQRm3k6MTw88Zm45XehWMnFLeHlMIfoBO6ax71wPYJANDvi5zEeuu8rLhWmhitJdk+N - LrZ07eCmvwMm87+UlnYQ/P6f3I8PKVqH98lVVE73EJLZ3BgabpGVrnAVYl1wSFd/oC5Qa4qQd8sW - b/2g5/rza0hDOVtQJGUOlJlzH3DmxwP83WBd+Xr6eESrHtKAXfn9hMFNHon68Z7Ncgo0Udne78+v - 0eWpRDZ0dfOK7HzgwPLCNYZOYO+IFh73lC7bbhD8lQH5xTuaNOgsL4nBBC+tb8GaH14MnPiWIk2p - u2GJi3P28xe4q15ZRNPh7YDqzFl/8X7F2m4F7KP3yB4Zkzd/mnmFDwv0gSQpx2iF8TMDLyv6IotI - b2O5XudaUTVsbPFW9KiAfSyPwD8i2+PGYrl0TxFGxe5Kjh92LTa978Jvv94JOj629eA2vZI3sUei - fH8aVvt0dgARS0zsTifNK5yGGhTTV0Mo5U1vTh2/VdKp5APSDLYhCF9llc3Xw0Jbfh7miTmtQDln - O5Sl1Iq4QF1yZXi+c7Txh2GG6iuDdntVUZofmGgU7CSAViZCdKB5ULBWBmLA8k2BNHFKCrrCIpNF - 10kDOfosxToGjgyH5ycn5kE5FcMeCq8//eHU7x1d99dZVwQO5AjBg+XNAbyJAOQvk4TKujOWyE17 - gNSDjWy6f9N1erxleBDEG0rvxPz5u0zRlqrGg2ibkdDK4/MvfmqJEhVUdPcdvK2jS1Tuzg7z7D1j - iL8iCBSu3INuy+dg9GmCAkHgPDwoRxNmQoGQP42kGZ71J4A9g54BPGumR7Vn9YKSfiHkEBf3ZulK - w1asKxzQRSsugIsv2y0NA5CwuPGJdTE1V8nwSUcuabJm1TEvwuC9c9GeuSTRfK87HT7xkAVymJt0 - le4WC6OXIeBd3VUN/qB+hY8nMrf4f9o6RU4zJPf0gSWI5oZI6y6GruE6aA/YNFrE56uFnXJNidYY - izeRnQbl9IpktO+YyVjK52pCvOyuSE+lkFItWF7wPbs8Bps/nGPjBJWfvj+fL1KxcktTwc8XRqhC - XROtL8YIFXziK7Ln22c0MtOgy3LiVMgs3u0w2+/Ogf3dSdF+OV2G+anYL2hc3fsWD2Rv1hmOgWbV - WsSOnYvx42Vg4h4m2h92lcf16iDDc9iySB/ZmS7tJazgCad5ABb24dGff/v5E8sU98NU3QMeKu+X - //O30UpHkQXKIVw3/fMe6Bb//9bjG426gb+qmMM6mQkyOlWndFK4s7R3vtdA+P5O55w6R9n8w8Zf - tGHZ3S4lHHg2JWErt/QXD5R7Fg7okARngN/J7gyv68IFVXOqjbmQFBbYcfQMgKBz3pZvVTmUmAZ5 - GX8d5m99rGHhZR06duKjof5u7OS9YJ/Q9V4ndL2oQw6ilyYg7aYfKBcBpwanwjsiZFSGt8QXrwL9 - J2DRcf8hW35fOyXuHz6xBBDR9dyfQvj8rg7SRGYxCGclKnyR+yvYxaYYzSYUMzCvyxsL+3JnTO3z - 0kI9fIxk088NcWVZBbdLdUf713QqfvENLv6uRoF5XqJl2b17SNpLiPlWcwzy+QwB3PQw2vjnMPrq - wVcOzfdB7Ki9F1sPpf6n39CPz8zPd97DzNzv8drTQ8HW7FGHcfw6ophb9II1kLQCfh+Mf/l9un/G - rZeCCMnhOvfF+NNrsuKDn142ZjEANrAI6APh5V3BcEi351/lBKlHuIu+7qBDZeVXBmm982mWJ8sF - ENSNiYF4UQ2Oe6qiErZLitxcMYY/PxzVfkpuXep6y+nRikpovUakZfUaLeLgVkB8ZxqKnDkzuOYB - ROhOsYHizb8uB8YPYXOQto6HS+vN4SKXf/m3MPyk2J4HA9O9HLDiiZ4hWPFeVrTRY5EJ1m+zPCXf - gdeVcrjGg0TXcneooMVvFWzy8CheoksARS+wgtn2xgJfYJwr5baDeQ9Fq8Ff+M3hz6/Y8XUFs1Iz - PvyE7J5kp0puFoxtHyK2VgiKE9bb8qesdGJtI8cozIJOfRaCInm9yPGsPIaNF9dKy/desPP1QzN/ - X2UJSHmIA4a83GElxTUHy91kyKmJfbp+xbwCe1laiZ5KMxjP+dOHDn22RJvhM1of87pCNcMLcRUP - e7Pgji7w7DIk9/WBmtndKrSkTUJkHkZu6Hj8COBJqD6YMe7K1sPx3sOW7zx0BNilPz0Hf3ra8cO2 - GQqc+6CU9ykJ3FcccW2kPZUPmi9/fmPVgKr/+Ao6aolfCFN7SEGKDAZ359MRkAWVK+QPsbvxt877 - 8TA4GeFArIp+Ir5lMJSrkHyILsm4GcKbyMDCry5ILXTFm30zc0Af+jbJRv8IqJiyFbTHyw7Z3PVr - jCzLjeAM+Iro1gkMK9aEGewnaBKtd/bNeM9cB5IbMgIFd0eDj4khSsdPcSHb5xs/ngQCY1zQ9TxE - G0/lZrDpIeRXbzdaJFqn0HNPC6Z5NkVzLRYMgLEMAua0pxFZ67CG6XDJNv/dDmvctip8XroeuQFb - GT8+C47LJ0JGpwCDFvgcwKDhxmAuuwasgX9U4blfCTlcqo9H+0aA0LoyA0EfTynId8+ZkEtVnRzY - 44Py1eg40MjMGent8zgIzuFVQjO6peT4TJ7N7F6uJfgMqk5KypwHSogrArp6L6JqX5bS5/dow7LQ - XcwIya1ZTueMhUYMGmTwhkipqvsrtJ7GAdkx6KP1Ilol2LVZRmzvNQ9rSkgLP8HYbfmWizBjiTrc - 2w+AtNdeLTjmsFaK2HkUs7fkXKy7VmOVa1AoyDuQOOLlzzCCjcds8aL2lsByUlhXs4qqi5M3i/Jw - MfQz7vXLH8Os2mIAkRZwRB+Smi4JeAXKzMGVFE3PGr12cSGsFENFmoRGOkN1zCCN3T1CzdB6+GV/ - fagUeUjsDyoNnAjfFWJ1JiSyj5IxVl4SQ/5z+WClJOV2knun/+oLwe6tfItx9QMdEul5I+ZJ31Oq - C4+zIoKLGny38SJ30+mgebqImx8a6PvHJ1L8fBN1Vl9g7kc5ln983Umfh0ZgkryFTLry+HSLrEYQ - 1qiDbFUpeNn8FBHWaOsZ4O6Rtl1Dt2r23lfoengRLRBLOnOuWv7eD1GfezrU3eXTwUFNNOLLj9NA - mdtcSresDoKHKSTDaM/kDPaCeUK5pjcAvxjjrHzJl+BjgjZ95NW8Uicr2XjMe6BsDX1oM/dbwPbF - 7K2S1/FwWy/oF98mfqkYSYutC15Wl49oyho6xDtBRof8rAHekTVekbvdLmCYnDXm8jm9fnwDacpi - FhzMRh5o8f5C9EfFDD1jiepPDyKvP1JjnmSdFxlqbvU7sWnWvgThj79gyQddsU74jOGmv0l2+9TG - cgoOIiwdcURIam1jLPRohstefWz69+0tpl/oUJ6zA1Id7EV/823jURsfYY0xGQ+dHFrtGAivaSn+ - 4oF5iPJg10CNLtfXrgfH3Y0lOrcH0QLjZMtPqUGCiyM37/mzjMqKxxodpv5JFzmSfSjQBSJ3/nwo - NeurCnR5+pDgNYfGwkonR7G4IA14mmnDYoZfCIlYYeT0pW6wbXGWFW0pa5Ts1D6iWbmuv+8Lls3v - L4D1VdDW0YLcr3oFc/48yNBOLqegBflc0FuRyfKmLza+NTTL9vtkl8sfBLWBZayJ8Jghuy/RVt8o - B+zlu+zH44mdDwmdC71YoSpQhTjvvVBgrO1mUH4UETOnjGwuyRqhGwAPuYoXGNz1lPeQqZkVOQSc - wLrxR7iLzzKO+JhtFvZ0dOEk4hNeRE/Z3s8aKO/Dt0aWK2G63neTA8edgdEhZ5hobi8GVOZ4dYiT - NYtBxPNU//G/7X0Cesg7X/rphx+Pmn/+6VdvYrHyGSYiAxUOWjajRBdUQ/C3yyx3TMURR9IQpQnq - QyiVTY+Fp2INy+rnNaT93g6Wd8JGuOHeGXQRlFHhPvfNcul6GVQv2CDnYmoe2wbYhFu9509v89rF - ZaAw8ZCozg01LBmyEuYPf8JSHX0j6pz1FFryvkX2Dn7Ag3a3HIqeb5GrHHw9er9MHeTOLIeKlDt7 - i/WyIQCPFyV6+5yatUivK7we6on8/MVcRdRXdkPU4Q7dIm9GB30GWz5Gub2iaDI+sg+vblsSL6BN - NFe6UELtaHf4E6xLQcfk2Mqb/kZHsLMHNpNyBwTmWiM1OS/DSG/arCgOMpC1luZWDyhT+Iv/0ZH9 - eLM2hFDZN8BExlY/5w0wjJC/HQay6X8gbPNVqRRNJT8/+goXuYKbf0VqUKWAL3eHEm7rOxg3PohF - PrVhez3pRL8xn2JOPvL4f3YUcOx/bykA+JIH7YHLm1HqtAoQ7XYMZmsOIp7Z3wModJ8TCcb3TOnJ - yhjgCK8OOc/Ra1hnEF2l2y5etE+yOUzpi+mA96kPSGcnllL1lWRQnJ8GQhFUjJWP7FLOM7xdNC7N - HpWPp1q5a9eGuA33KJaYEU3Y4CtCwX05AUI+7Ay5dD6h7PwQPUrkzoWqd92TsvBuYPYxFOHl5lJy - jB88WOQutAExvjEKwmX0SBWygcJOGoOXprkYI30SDJtrXyC9p2tBh/deVjqhiPHsQhCt8lGXFUPN - LGLvrC9YR2HsQUvzI4lWY2rmKHRzaPtago435HvdrqnPiiSPEmavd9NbTYkXoQdDBVX52wR8a/Kp - 8skeH7LPJdzM+4cSyDkvv4nvPcdmEd6NryBbJ8hdwUwXS5ZnoLDciZwvkw5m9QVVpRUPGglLsAfs - qOk5dG9FiNQS7CmVPk9euQ0vmdw+xguMbLP6wJqLF77yQzGwIYAtjC5ZT7LK3AFyFE8BdAd0QNrL - Mwy2WFcfTg7dNg33T2OW0+4FX/2I0FXS+W3THNWVR9N4yCqqzli6oWYVcH21aI+kDVkxs60c07lE - 7reXQBNIoFX24NQRl91XHvsbH+gmKzna5nngG+lgK7dpQwHE68D6sR0eePvjgzjRBwy04tRSqc/3 - C5bGSGv4A5dgha+yHFXgnQ48r3oBrBiWI7e9mxpCI5EXLPT6guzhEgwsj48q+Hbmk4Q95xp81pIO - siOjkhurfAosVcMMr1blEeco+oCtciNU4kQhJDzwF7De7HwFHkUSph9jP7BTK6kweHcHcuzQakzf - /MLLwqlLkdvOSjEHHnCV3/y2ZP8bsY/39v7u5o1cpl1lLH5ERtjKFycQ1s+XTuVl2tpAwwOKiyUe - aM+HsnLNVJEkHecAbhK7JyR8/SX348vY2hSKJoQNvQWjLT2i+fHuWqh4mkrOhasZqx6JuUIeAsW8 - JMOof7q9DjOJvxL1sscUU/bNK0iUTcwe43nA/vvuy1pnT0gv3IdBNZzF8CsPCNl31qackfgO8He1 - SMpPeopYQbzz0LhcVBTowmFYRa+roX357pGWywNYbkrUwTqMQizBezwsmspk8IxuIjk882rg0DLn - SrV12ap04Tss79qoFX22bsjO5H7g2cZnYHbwPKJyZxzNn6xl4alzL+jKD2BYS3if4T3njmgvhInH - sk6VwzeYjWCeiN2wtXCoYL+eruhwUeSC1uf0pdy7r42OeYIG3i3MXJnPjYY0rBYFF37vLPzsFpeo - T1I3ZJtv0HJojlSgbW289XGFylbCj87IAat6fovQS7QcA5WLClaS+hQoabci73Fq6N/z/c3Pcy1T - LHrdE97J0yARE2geG3ZLqnRmpWF4YJWIsk20Nbr8mMH3C1swfx73UNasp4rM3V5r+Ll2AlB28Q6Z - UuTQ8XuVUuUz+Td0PlC1WeNQqCFgej2AyW4GrHpQUwUI1ArAfIkiIQemrgx6qyGNYWUD53cNwxPZ - n9Hp9I3p3Hx0BhafYUHOFg/o0SufMGVgTE4vz/CEUW1mxSvEC7ne78+BnlGzKpfXniB0uYJiglbr - Kz0PEbpou7aYznZlguu+O2/Pn4P15ZsZHEnyIsiBl4IeWzH+yx/adLtubcMvvrJjM58UL0+NFtMY - zrCoMY/Fy8EA7AdSW3llx5qcdpeCCh866jBbdyW21q82cPWUuMpvfe39nR/91qd0kieTJJnmeots - erz8CJkKqQ9tiZbwe+dhj2KLRJnxoHS5MCGEfZcjbb7w3rzbRQy8RmcTf5aHHfHL5dND3gMDsiJQ - FzxZHjbkmwMid75nolcmKivIXfmILLHKvdGdzjUER8iibf1SYe2/nfDoM4dEebIW9N7sSuCmVULQ - /thFWDsoFXyuuUi0Q+MV82tJZiB3ICNbPG2oopyh8ll2Z3T0wnuziN5JVJrwcyFajV+AhunCKo4N - 8oCP2Ye3vOSYh1er9Eh0KRIg3KjCwPiuU/xSYOwJnhCMMAH4irW1+xhzJiozTBzBxLv4dfBmRVla - hR6KW0ANN6PzXjmpcn7/asRfaNJ0x3hoZWcFK9mvpuPx72O7KvKaGMg6ai9v7l++A6xWkYLR2L3o - 174sqrK7pyQAMj4Cgdz9FFpXW0dHvzhGdJi6Cuo8zNFZYQYwqXxTK5ZwfmB2fEeNoPTkBSkuJXJ2 - rCVaRvdQQQe7W5us+uut3rmAUKIcRJc0NCJWed5meOP0N7Ie3BOskyY8QZYqJilcu496zqGd8qVj - jDJJeHsc93JYePxeDiRyR81j1elVKkU98igkVVJwztPg4T0SzyRvj0UjNIlXAT8Q+oDJBG6Y10E9 - y+wpRcG01AePpwOXQ/Elnkhabm3cigBtWwg4h+w/H4Oup29bwV/+RFiLvPXAJaMSJJcH0n0MB/oy - +hZe1SVBoei7YGWGpoS3oZXRXnaXZosXL3AG2ZlYaoQp3eWn4Je/kN+HR8Br2lEHRr0OCF1n3vu8 - jP4Fn4R3yQU+/Ijfw2ZVsGg8yS+/L2+TjFALBp2o+OxES1raPtjnkk4cdrw0T190W6m+xjFKq68U - Lef+GcM6PIVBzXGzgVfbnmGPUgup6PUxhjH66LAvNA5l1toUc+MRBxxZCAJ597U9jhd8Gw7XJyS6 - fhIjyvEVLwOc5HhRrKFYQhOM8ETnA7mimHgUUtVRAjlTgm5QngN9p28WHvJDQoJDYBabnnnBAsYf - tL8/r5T4uAqh4vAS0j8pa0yp8FTheU0CZKlRQCdknFLlYPg50iNLMNbdVsKqGJ4janK9D3P5uKYK - Dul2bc3RKtjzYwjBlj+RmcV8s3jqq4RqXb5IUlSOR4H5MBV295zw+HRfBV37R6cIU7jHi0HWCOtk - 3NpSpm2wqOe4ICXEGfjph9uFicEqH10RvO/CF/lvU6Wsm39cyNeKg9yYBx6RKzmH5GYywVk/ZdHS - ZUoFC1xjopsd9Wb99mZAUGVvculCEi21I6lQeB0NcpihD7DLdwGIvFkk9vu7i5YCSCHIVP2Ad4pt - eMthTHu4WFmKDt+tTXhbbxf/Gu4buVE/gWUiog1LkbyDz5m+vdX0+xRaxzIkVy33qeCXSg7vuXBE - 9qNJ6HK8PTu4NC+O2BZZjPXcz1CpmqNJ7tb96v3mH3xqpEeH/bLfDmnxKrTm64vopFQGGo8PqJxP - TIfZFWJvTQ/XFm6/l7imDgu6mFSHNiP3+Defn5lUqPJPDylI3ADs/YBhuXs9Mb0/7gW17tAHQ3gX - g2SLT4vevnV4P40eOl+mJ1iMG2wBKw4zsT/yXIw3NFewraVqO+3NRZPwHnzIqHeDBPD4HKhie+Uv - 3yIXn9/NYMSpCHdpNGC5nW/RrCjSC5pRp5LsbbTRsrIXH1YPXSEOrziNsNDcBudXkyDNtY/eHHjU - gZA1LeI16nmg13kJ/uJdNAr1sCb5WilWcT4QfU1zg9bTmst3UhvITV9uMaP0CMHerUvyG69JJLwO - o7ffkCz6FE0vaNMLhN8hJPo0BYD2uWLCXQ8fKC0vDiW/5yGpY6BT01w87qjbWxtMPOAdfsV0/s1/ - M1AOZMvvEa2eiQ1wgE6BXGZGxC0r5CFQXRiIegi8xf5eZTh8wRO5zt4uBPdllIrL8wDpIW2b8eGa - KyxPmYkC5k49sukJQK/YwtxSsd7a1mcHsLt6Ipv+GeYPq/c/vbHNH8lbprgMYWh+WCxy6BqtzJPq - irNKK1LxuSswWR6mkpxDgmKzBcV8lZ0zfHSBRpyufg3r2keq8ud/YrTJnvtRheheXoMlVsmAc2OS - Yeqbu63jxUrnn17T2++KdCmpm8W6VwycERORwI4/dImuhwq+a/eMF//2Adv8UkGgtlOwPicHLNW+ - reFTm3rMGLlXcH70wTBBWMPCLTxE69N96hAz4p3EKwyM+b51xTXzFuDvRZEjLCcghZNU3pCqR7O3 - iITRwfV0AMTagcyg6aEO4OeevUiF2ipaAl9bwW43JQH7uvcePVkh8/c+ovowFMu7oxBGM5/gLChw - M0v+1MGyJEdiPc4PY4lGHwP12Q94jbqMdi/ZDqTBm4xgqbFJl4+iYfhWoItuS30w2DfIRhjh5I28 - 4taDWfS8MxTDY4E5Qt7Gd8eRHoQXuyFHD6keP7weufKbn9r7EnpzGbwZsCwZJhESsUdD0y5Btipl - UKbPdVjC4+gCf4RewJgGD6YygK2CctoQ9AWHhvUOQQg2/YOs5rUMK0mP4c/fobKy5AgX3/ipZMUk - okCKbE/Y8id0758L8pmHC+YHPunKo/M1ZGoHxVvF2e9gGb08dL8d2WjK4voMpc7xEfpoR295YOEJ - E1YoCdrWBz2jYYY1Er9INfW7sbD5UYZ+awVYDo8IrFn76WBbg4pYbv8tpl+89Rtpj45asS/+4tt7 - uBfIOvWo2D6/Vnb5IOFy83dLF1q6IpAqQHutNIfllcwYjPIuDTiVnxuyO3UzfOXXT6AEbultejuH - H2RBZDu2B+Y7x0Mob21Zw03/4vvO7OFxaEJy7OvGGM82KuVy1z5/8a1ZJElkoFKbN3RBkjPw+NO6 - QOTOArHaKjConGoM+Ok1rfzmlCbFwZYPl12APIL3dG68jwurqkJk0+cNV4UVA461vydXeGebmQmh - DBVWOAXzMUq9btP3UH/dBvyc3Mn4y/ebn0WOwfTRNj97+I6fdcBWw2L8/LEc7B8dSoTzSOf7KWfh - tel75FWXTzQXqxzAL8VxsHOuySDcBqtWNp6Bpc1fUe6gn+XPopz/4vuq7voXlNeLQfbeCdI+ydcS - 8sklRZr9DWhfIs+HK9t/A+WdJAORF6775VfkcU8VcO9lzKSPyCKipae6WQM/zLbE9AmYy+AUApFr - V5niq4bMYxw2v++H+dGMibPFS2LovA4pPK/IDv0kwiovu3/+xN941mhI2gqKz3chapm1XtePbCt/ - 5S8KOOHsAyrLrQ0/Io8C2IcTxTuOCUF2bnkMSSkDPGlCrURMfyR7SlM6W18vhD/9Z+RibKyP6Fwq - I6sWyNrW6xjM9zNU0n7dxlemqwUOOdz8DVY+rT2wMHMh+OlR45vrBSsllQm37Z1I1zDfzA98VUHf - fj/odj08m2WLd+DFpxrydLWmlF7VWRGlwQpMIw8M8pZXE/zmm7HUA6CZp7+U1HJN/DVGpWhJaoWw - f91r5ENaDCRxkhH2PIMQErgBDI3uBPBu29dgV2UPuh71pIJv8ygSM1wwXYfD8SUP5uwQt+f2xZKq - +RPevCBGwePtUuH08HtoM2JP/Mhio0cZsK2yxqGBDlifI7KYVFU+9/yF9M1vz8Nh5X/+D2k31inY - GaQ9dKSVEGPbfrT6JV5/vAU57ZoYeIt3EIejRo6XgnokaZZa6cxSI5e3FA9d3Bw7ueptLaD3xy4i - ZzqrUGSuEuacaxZRGobxzw8im9+p0TeQqhieHlG+NV3A0apkdQBXQymwdAuWBkOLZRUMxwydbcn0 - hPQc9sqrx4gcz+seLF/mZSoHPymxKMVGJPDqiVf8dh9s46PSjU/GcDe5HTq0966ZZYPzYfp+9n/r - Z5UXosJnmtUk331bj/TNVMv8h7XI1YwPEU2xmSobb0QOn7d0eh+dEH7z85cc6LL75TcGrmnpkog/ - XIzhcBX7X7wI9svDLjj2dKvg7vQU0N6UnoCcAi2HqiQHBIGz63HTdi2GKH0t4nwSnuYny40hrewI - sxfnUNAniVdFS94MOtzv+kClT88DXXIfWJQEy1uZJ1Dh7++67+Vgtr5GCE7J0CHjnWQRNWXrCc8n - 2JEsE890GfG7lU03SIjncZKBrTWEf3zkyCy1QQGYW8U/pTkx7o9dsTZz1ksyWRNiDtAxqAUyHUSw - tFHcBxldHwLTyuQeWTiGx3e0Jnzr/uXjnUy6iIq3TN8OKZ6R9pZPgN7sR7Y1xz8Re+6szR8QFzq2 - lG/6cTKGspYxcJWFR1qjclv+2NU/nvMXzza+F8AfP9GjTgTLtQK2uI1fwMw6Mdjh3JzBkLiYbPmC - Lm/zgwEjRxHS32YzzBP5ViB6Bw2x1cb0lunmY7jNJ3T85ZuiHk1QX5wjKVdJ8uiNcoycrEOCl0/3 - 8GhzoyJ8eyZHtJTVI+5tEiwHuXohyVLFxmp4dxYIOc2QNYNzMT3cIoOv1rii/am7NGv0VGuwrf/g - e8nFZrl+hieMtQDgr8AfjD64SVuJ6pmTYIDv4se74c+/bjzCmA1Jm+VmfxhRsPG4icdFD3/5KJh1 - 4q2p+nCg1e4k4n+kyFuHQoRg44P/8qWh6FMZ8mcfM6aRUu7Hbzf9EUDLW73lp5c3HoKl7/VtrMww - lPBldZScsxQX9ClaARgXNkaOogQDJvL1CYVTn2JBCBNjgl+5BPItapG9ynw0w8xl/vhlIM6vaAli - OZAfZYswiOTG+9Uj5FS0LnhWX49iuWDpBUbXd1Fa+MDb+JCsVPTdE2c6IDDTJxnBCQIPqbnmRXz6 - Pp6Bq9E73iX9OMzGp5NBItVnFG5+fk3LkgXvO/fF8qsawXyV1RD+9Pcv3uJUfbiKLw7gx0uHgRhZ - B7fvC3h+V//4XQiZqzht+s8ylhP0fHioeC8Q2UMC6PASdfgxZkqKGj+3LbBLDaezL5Ot/uDNb/MQ - /HguSgX1TpcfL7hJOQ0YHNXG8osPQsTfAn6bj/j6Wd2ffkbxpg+W5AQy+LDSkfjvjz6wb1MLJMMj - QSBz3BTNmkpWAK2Wwew9ONPVlBgZ6vP+Rn78eaz2qg42nhW0qYoNfPWrGN7bchdIm99lA8PFkBMc - Acsf0NN147NQsPUX0Y9S7609r59hEpc88s1uLpZImV4gAeMV3aT23EwMowbKjwcoDLqBrvGIK52d - p4KFAAMP/+LTFg/Qvkp9MM6g6iHDMIe/9UgrzinFpuCfyNObZzOTe8/A9vCV//SswO7QGW48AlmZ - 1hvflxyz8EzWGvOrzBd/62njT8R5G3ZEFSVnQG6jCzqCWKOropgpPOReEszhcW1+46/89JS85c/V - TM6rElZaRe5mNHpLS4MZavKQY2UUb9Gqk9H+8TCkV5bizdz5mgJmH6uodCzckI3nAdhVEeZBNwx4 - 42HAvV1DYvz8Lnd6mYB7ZgYyHqLs4WU74rX5ReLUDIyW5OBC0F10TAJneDYUXl4pWPKDi5D+hk0X - sbj+8Q1k8tcxWovjdgRggDzZV+kIFq90Qik6MrtA3vjKehinEF7Fa4X2yaQ1LMtFtvKFXIpubG41 - 3MdaA6UJ3xfkhvMykCLYp5LsPNe/8aVCdLPh/iEwgXhfibd8lAP++QHcMXUY0Ud5fYIZuys55HFi - UPtizBBzQoGfB1oPa5A4LNzqhcTPpClawSo94ZHZK5se1wf2gU+q4nwC/V9e8L1KMRSFkkGnG+tE - /I93aG+xRZrsBeAvf1z4tgq49fto1l+8STTxsNXfGK/Z+IJycV828l7+jq5PEjjwNicEOeF6iHj7 - W9fKVi/DK/OYmg4cZ0fZGSODnI8oDiTQXyb0A65HhmREw6KeL2cYd1WFDl0gDGM3nH0lNq46itra - ou/QpKNyaN4q0bTbg67xWMRgKhKI/MtUG/Pk3QLQ1eUVHc3EoOtqB7OcFNcFHWGNvPmVPG1oSVWH - XPR6FfOml+COzf2f3opm4m/X1nPNnXjw2dKf/vzj3+mml7j2EtnQe29H8lCMvIUc7QDGDe1I8HTG - YTGNJlRUPbRQmEXQ+NbOosMvMW4Bu9s/mhlVTA6/Kr/DfGULzSxWdq2E5psNuC2/UIZ91tB0/QTF - UtRRaq9CCbEuO/gdzCtd73ldS5ZZ+OhIV2mYjMR04GfQU+S61xT8eDE4GEGOzEOw99YjyR04CWGK - ysnti5lt5ACuX1Ugtw6t3pwWuxfMh5ASR1Fws6BlzpRPTjCGohsW1BlOT0X0ypag8xx6C9ZpBhS0 - sAEhRC+E7mk4CtPEGfFKm48WcBeev+f9y880Ylwe/J8tBdx/bynQrjuLWFepbqh00zG4LrxLVGJa - Biua3zM0vOhMnGeWGVQIPQa2ghEHa88akSBd7VY5RTMm5kgkr9OH1gH6XoyCvPE1KiyTN4MCyT1C - R3QxuFLLYgjq0kE6rHAxitCbYX5SbhiWzeSN8ftRw2+W25hZEYiIcyxf8Fre7e2U5zTMn6JbYbYh - 1VMuz8PK3eUZPmreINrdT8Di4UAGsTe16FBmZJjV47WH8SVziYuLF6Xj+WFDDtUE3RdjohOzOK3y - BqYb4FBrjfVRsqsy6OcKGepMhyV40xUy/vtAon7y6VwkXQV3EeIC+Czv3iJqWIb7NY6QF4LdsGaz - xIDHNH3RXVdjj8UlVykHHGukFE5NRJ3PfoVtK2pIlZZzRJESldDvshPS7wmh6/hUbEl4+wy5cU3t - 0ds6+IpuzZCUo8kV9L57QHArjRHZ15CNZi7cNtIHMiYO5CuvNfcfH0TiTQ5YVToOAnRSXZmOkUu8 - HXwViyd3FWTS0xf5N0un3Hev8HLZz2agKG8W4D5hYvDQJIqQddQLvopkF/KJsZVoGzNaL66qKg+v - 3GF65CMwnzYJa429SQwffYz5WGdY0XJmT5ywKgFfSHDboiCeyT4WsoGP2WFVnuouDSC+OQVVb7cO - vu/nCHP7GyrYqhpMWLcWxEyXHiJh7p6V4rzJGfnK6BXcOzsEEOi1TPLKSaN1qIoZHhzIBIudlIBN - 8cuF8bzviMuQii5Ck8dQulsJuW7zAR8EVYTahcPE2d21gR+fignZ6WyR9NlaxlJfriPM1vmDtPDu - AE6dRxWGvqcepaRYAA4OgQ8upzInmrE3PIH7XhnFA6WFEvbSNsLrREJ4P6g3UrizY7COEtbKNp6B - oCs3b4mJg6HfhjLK1qtW8MY376F/GwmJW97+BwAA//+kXcu2qjAS/SAG8pKEIW95SRAQcQaoCIjI - IwHy9b04t4c966Hr3uURktq79q6kCrD0MTFAObghCZ441jHKHQuyrnJHpwhzdJ1BV8PniWtIdq3t - YnXRlssB0iDmfHWn5Gbq4OEpZniZnDJeD9xbkg9iK5Lr8DqA9rx2JQwLh0FaoQ8jeT4uiZysxoBe - ipNSVoY0gkCrJXJWmbAR2tzHEHQiQGpqXcffJJg+vH5bDT1Tt2++qyVof7+PhMd1ixfgfBfY1HGD - JbSXiHEpPyEp6w8yhClt6KEuKug2fIax9qsKjmNdUfLS057uJzjeeE0vATqbD5St38JbWSdhYX6K - ATKuT7UQPFN9ytz5niGtVuxYeGxjAKft80PqQ6fFcuxWUR7UU4vn88PweMI+XDhe4jKQ93gSln54 - Svt+CC7nKB+72JEx/JSehCxPxM0yV2snn8oDQqpTjzq5J34G+7eE8fq+ZqNwsmkE7aSTkaUbccMZ - kxQAQwMKXs3wA7YQ3jEszmtMLgw+FWzzyjvIXYYT3hRh0Lenl2BZF9ET/1i5KVbuzNsgn3uF2CL7 - izfoZTkYRygHW/GpikUai0D2Mv+O8upy96gWvn2ovTsaCEG5jEJzbXIZvQIW2eSZxayRyx0k7AkT - y+uf+iZvWgqLve/+BY3ncchvIwNVOn7Q+YCFYt3xD77Lb0K864Mr6GodlH/4mmQT8BYj5zr5den6 - 4PCVz8UsqliEDLVqZPj20qy3ei1B5Rcl0nq581bdUkJoN1+Al32G9V5oreDh+2zwcYtcwK/OmslU - lAxyu5wcnYSv1pXFiR2JHh/SYrWOCyN7ZH2TUuxflE+PpiFV8KlizuTrcf1wSy1Pp40lgaDz8Vqq - YSq+rKNFSn9L4jUP/A3u648CC5gNr5axJB3SJCAu/7iPdV70FrA/cxRMyPsWy2HSsCyqCkeuVWI3 - XKPNGvh0Qol012oLIcuUWm4HKSKvd8Tp5F6+eUivQ4ZUxZeKGbYqK8vPEaDzJ1yb7bNPLkwLqJP8 - mNXj8glqDTr5KQ7WOX3/4x/ZECOdBD859ejMrhic7aYlZgRruubfA4RXWadBcjOxvv6w20L9GFRk - f9/jakySD9n3pyanj3vy1kKUWPA525DcN1YZhdsc5XIRaRpmX7e4YFd8rSBBZMKCz+mUF6xpgTvf - EfPpfcB6mP0nDAuPwTR8T8Wc7X359/XFw9HePPrGawav4/EZfPnaH7l8ZC35rq4fZC6mWizmFyYw - eguIGNEl9nrgkAXmCmcH4Pq4FmyIKleGrFzirS+WeGXiewQHRiXogouMToj5+HLdnjVkV4hr1t/n - Y8u4uI7kRoVEp9tt76spDQvxraPmcdFhDeX58GbRNZqiWBC3soWnM7yge5mhceG6bwuru38lkej/ - vD2fmWR4dz6o3PlaWGd973p4+5Adr8c/vJL76jih+3Otx7XRPgpw7zZPnhsqYh6n9gAv+Inw3/7n - oMwpwPBLn9jBxx05hzk8IWhpS9wp0mKstscUhh+uwnxxT+n0oJD5i390q8Q3IAcYTFC12QWZPq0K - +sbHHH7DmUX3m8aMa83ovYxdlOK1ry3Kon2yb+3WdcDg10g3/fOsoTP5A+4SBnkCn9gWbN83Czn6 - Oy0WO0Y9DNpcITHvKzFPe1OSdz7BUp5ZYOipvVsgDSKocbaYek/YH0+S+CB7fuZtP/uwT84Ln+gu - v890uSRqKX8ORRc0p8ID65ehNmTVEqFwFFIwmsadgfoVsigeUT3S2+k8QPl3faA9f/RY+eUx8JvH - CoZGRfQNvk8l5DuvIPYseOPyXjwbmlZ8ILbhaoBvPocMXmo6BUdgfcDWU6WUX1SI8Kp95mJ78doC - b9YiIkXhumY6scCACxf1yC0OdMSjGEBgBSJGfnwu9bX/vSP5j39M0ozxalc1BJd6nYhXTWIxK2zv - yswtHEmyNqxHQ1NkjptDYUA9D8RbZJYZ/GyVQu73WfBWK259eft8KaYcJGB7MZUv69WQIje11Gbb - fz+4sdhCHt/F41TLqggbvrqQE8OuYPOujxIk+BAhz5xgQ236TmV3jM5I7SO+oKzWa5A/3k9E2/F/ - Fs1G+xefC9oMb5FFwYXsXb2RjOCeLk+FLnAg2kps3RK8uWwqeExP5EpO4kjiaai+IdzxC5fu7zIu - dXDD8IEdHT0Pwhovw6zw8h+eeS/x4a2vSMxhQ+8isZjxBtb+ccLwJ77v5CF/ErqhM6nhMRtq5LQD - S6dadsSjWZ944srDiW6LGRry14s0Ep1ltxCemBjAdPIMOUWbxGTnL1nw6iexVXQEm4zWSZ7PFxdp - zmh6gmp7C+jD7U7+8Hc9cSz7l+/gzjyn8eof1A0kZkiRl78VurAHroOjJINgucrFSPnPg4foed6I - Vit9sTitW8OisW8oObUm4BiX8nDWCUNOvJLSrf6BGtrNB6D7i783VODDCW6+eCV3rHzGrYi/LDze - flUgzEzt0RtqDFlQ5SiQLhqv0+H1qKRH/KqJ91kauv99FjS0EDE8J67OntfuCURZVpBqCdu4r68C - yyPViPL2mRFbeugDZzz3pPB/ebENd+kJh8/rs/f9TJvtEKYSeKr5EpzPj1Zf1YjFcOieX2K375z+ - wKuq//QHiVY0xgtkrzzgNyYhlquuxaz0VguZ5eAhBWQH/SVmvwySsWlQwITGyF3P1xCirXxj3t2P - 4KlHpwT3R2mTAu2T57vHFAGu3kpyqlJf/8t3oWtrb8y0Rust2n4L/cyXGzp/tlPBzUO4yN5rCJAD - D6I+DfukyvqxBMjWVMXb7u4ngJ7BzCRwjL7YTodEgVPTjgEzWRmgmXRx5VoGb1KyYlisQyZOsPmR - jHiGSQD547d9vf/WH2zP9V3KK9gUdH2DayH0aSTBCpbqfqt79tbkcsnkoSu/5HIcAP28IjGDPfic - EeKuVF9f0ZLLoHra5JJaXLMcTI6R/+LD/sSqzjPl8oT5vYiI0oWuh5eXF4GUCWbc7HxJ5WuywLRp - fBQQVR3545xO0CbREx/uoVKwPy3fQF7Uv0BWbjpdB//lQmoLL6IKKAZEOoks5NY1/5dfT64sY9jD - DiFv3rJxsY9JBqfomZL935t1BE4KA5ozJNjz7y1MfQYK3/SKlMu4TzZlHzwkXh6iM3NyR3q8By28 - xteEINQP+pYez4Y0CC0k9qIE8SauOSt9DveOnEyx08mJKAr0CW8Ro/KCf98PCj7T0aNkpnjt+McE - e/A9I/fOr96WRLEL7COjYPEkbd7HrgYI7w7KyVmrumJjj8omn8slIjf9fG7w4aBa8vrrfyQdc8Xj - PpxYwUiZJHxoRtvbep9iuLKpRyxReY3UhSMj+36Xk5Mmy/ryoCyEc90HKPEz1duflwW0/aWodH9r - 88u+0Sb/KuaC5b/9eLkgA+7P+6dXxmlN6hSyzXQMmCQei2Uqs1BaIg2iQH4+45VjXQk68VBhcXNC - gMtZcf/8AKIMyr3BOPJr8BHkFamPz0+n9UWz/vZrsCzyrVjjp8n++RvkBoy62LjjzIBjkxp4fZVd - sbzFqoNEFYwdD9liSe4IwoxUUkC6VGl4Jom1P/5H5wtxii0yk/zv/wcf8cTrs2HNJRDb8I2U5nMZ - f1hBomTRaMHv/Yg4Wa2DJvKPb7jjTTSSS3t+QkMXNfKYyEdfgw9YQH45PIjueUW8MN93Lu/5J0Lp - 5wTYRf+WkGi8RQLvPNClzo8R3PNvpB4HAH5XQ+D/9B3So73P9N9+LLInh+VjTJrdj6gAM9Q3onnR - SqkLGwb0VNWR5luz3suiYMOuk9SgrVu1Ye2bvshOYVzR8yfz+uKjBw8dm2ECIn+zePu8+xwq6llH - l1dpxVy1+iJ8/bwFIah4Dbv8oC/2xwePt1qxC97gL5n8iB91wKefAkyuFQeQJ9MX3S9jHW848isY - cQYg5zyOweRpNwNaw/QJ9vWmK9N+FbjjJ4aD13j74dAE3uhsIGXnlwWdtAnK0mMjQWsYOn8CLxGC - +Ifw6jk3wG31wEP9yrDE/ulhg+tTLUHhIL0wXz60sXtoQgS8amuRp1yreJnKMPr7ewGxWKT3w8+Y - ILL6gbjWtQejAgwIzvkAkCqV2j5HaB6gMbdvFBwxpuT3FBP4jBoTH1DvetQ3u17OpKDE4ny90vVl - pSzcQlsjxca3OnXrZZG/mfcLUrHm4s04kQA+XrZJTI+wzYYjY5/LguRgRNq5YNNkYcD8M1WUBzd5 - pPI9E6HMagcUXPoIbLYfsdLr5yyoZAJVX+KHYUBupTlykPKjdPf/YGS7JGCO/lGfp/tDBKyr3VHw - vo8jfWyNL1+xwgXt6xbHm/eQRBhw9RX5QI3o5oas/ff7gpi9NvrKqyqG9GGdd/5q//SWK/02q9vx - o9cHGa34+NlqhejF0wFLna+R/Kd/0fLOdO7ZuxG88GpG9M67eTS+XTR5398BZMUlXh+3UyZfS7FC - 2t2fi713CAPT5u2j03IyALcZtIbBdoc7Xloem12fLgj1jkfWm2XADLlXBxLqq2jnt3hBFSfK0m0y - ydXktXFJO2uCb1Pz8dA2z3hpXRtLw+o6+HM/STGtHnwF2eDGIdUMTUpYrVLkw6Jg5EyOXfzzd8Aj - KPB6HAqwvgI2/MNTlA79HbAPGOXy1nUc8bm88+anKv/zUwPh7sh02Q5ZDl+Xtke3LTzF7Mt8GHD3 - f5H6Krt4kV8eBL8KXhByXt9x/XkrhFhfGvIgMjMO9Y9WIAq+NVGmcdPX71vnZXUySpR8gUyx/st7 - eLM2EW8ee2rYdKsi+XeNZ6L51llf7NfPB2L2lYMdX8BSXtoUwqm4IPP0IPGq7nM1dF147PmbXbBy - oxiyaV0O//znzQO1/8e3mLmtXEF3vpd3/kKnSlTpMI9RDVI1rImlPjqwHB23hX7iNIFzn2/eNooB - A3Z+DT6vEAL80IQQpr/Dgeiv4F5s5azYMHX4iZimUcZbOds2FLOPTJzMcuP1gK7uHx4SNTAUwNtd - oADuKjfEvxjHkYxLlkFxIAnSABRjIl+TDSpQFQIy84dmJfc+gCrbfwOwPC46LfSCB3t+gfSrXntD - +BxysPrC8i8e1/73i+DYNjbxDnnQLJcZ9kL/oinykDYXdHK9Hvp+m5NXLKFiJfcqkHmCv0SZHFgQ - 3xkW4Gi1FxzjiOi8MQMIbuxkkQuWcTPvfHV8GM8W6ffrqeDIRVuAVbsFMX/7XLU6lV340G5npMIr - W0xnxtakP72LuI8+cjl7r6VXPclE89jvuBhNocAnkwIsGGpPN0wADyi/zKQYtJ+O3zyBYBOIixxx - jgCdb24Gz5qxojsrN/Fs9rwBRFXjguEEuWZxrSKArnl0ie9oLZ2/p6yHaZQLxOXnwVtn27bhyapK - onrOjW7eYxOh/XSdv/epbwKDoj/+RfbvYxVLuC4LlN75hxjzBQMaRHMG8vs9Il5QCeM6CWcfPA5x - htdtfuocB/sEXvLzO5j5XvC2PV+HHQvk/+pnRvhksA39ldyIfvRWlrxbuMdDwN9umk4P0MLw69gj - Mm5m4G1/fvi6BSzylllt+Cz4pTChgYq0xjzEa92GT6iXxRd/ocyOW+BYARBmagdg9++pNDglOI5i - gC6Fq3qs0RQaVISpIFn7zsHEdm4G0+GgolPbr/G2+1/w0X6F4HJmlwLP5zGA79R+o9tcTvG+vjac - B0snGrH68Q+PQDenLAmyz9Is/PXCy1qvd+Tc/Nrm+wijFu75LHJP+QHMUD36UNIfN+TmmUU/9BxC - edZnBtdHyoE/PQLj7/VD7i/+2ND+LJfHPzw02+4M6PHhYqjRyUXF9XGNsQfqAF4vZ5mo5yhvluez - sSDu7RZpXXRuaKvca2gBXkKofEr67qcZss3E5V5/OHnC33r2N+QHjLHpOq+dXA3kQ/Mlznid9Y2M - AoaN/dWJwqs1JS4b1GDXQ0En4NzbFri1sj+ROWDJoO7+y6bBPIKvAE7JB3QD9CzwXpmM2Ho/gQXm - 9QB62CJ0Xl7siBtcsqDqThAZWATND9ufVL6d97e+kXOzbIcwOxI0T+Tkul4x7Z9lv4sk9O99oKaP - /tYD6e9b6f3pC2n31zGT6RJdzjcQwYjpTyh6CebIwzd6wqDNFJREtKc0VCErjIp3wsePP+x6s1Lg - +KlcEq/D0Iy73wQEBjyQe7iwDTVrJ4L78yJ0G550ecA8g6oSdZjv13L3G7cAZj/rRF5J+Sm6LPgl - 8OKcfKJtfKZv67efACPcmYCTvb2rcBkHsCUII8cXTnFfCkcDoOrqIoWJe4+ubZeCMrQa8uc3LHNW - uuClPOMAiv0LrGKgPOUUnlIsJ7lK2eZoboA5vq/EvbYj3eLFLaX3gVOQu2gXMO37H+Dn00DOYe+6 - ceB+EkwddsIbI7yLKfQmBe7iNVizNfA4vTgkMG8NFulCA/db/Vsk56cLQC8BWzq3+0HwVrcE/elt - Yl83DX4s7CB7qVtvvTfPAe74iFyT0j/8cWFRe9fgbQlRs/mK3kE1riJyGcZfPKKmD+FokwvGNisA - YpPZh+xdv2Gwx7/wY7/532fiYMUc2W1j2L/4Co71O9Kn+OEb8OEeb+gFnteGFe7AhSKX8SgQT5q3 - NMfzBrwsuOP+Wvcxfh/MHEq++g6O88Lp+KEdIsiYToJc8P7odA4mCIPQifb1sPW9PlnKZl7P5ESv - z3j58xs9A874G2EOrNlTTsBeX0RO2Svegpg5gMv9uSJDq/J4z29FuSOlhxLleG6mX9tk8oiNhGR7 - /rv9+Y1//tVezy2wrcs5YPyvE0iN/wbzwPcayJnlitLb6dIsOvwpQFs++1wTdB03tT0m8FM6EjF9 - +tfl+eBC/4EJ8S6zSff3l0GisRZ5XixZ3xaRLwH5+ieUj0HaTK1MDGnXq8SL28ajncJPstkYIrrx - 9dRMe30WHuIzF7BDl8ZbrePtr75CjOLb0AVGpi+Xw2YER3216PLT8gWEkhGgW7dSuoTepB31wy/+ - 86f13X8QYce8HGTcgxD84T8ARyVCziHzPIGrYAXKdyAGi2DdAc0lJoFPh5GQ8Vi6cXuuvyf0MWfs - /m1VbMkUJH/1Csz/1afu3UWRO324kvMmfsel+s4Y7vqVOHu8r3/+VhR8auSz4vKP72Tr3oZ45bK0 - oT9V1SCw5Znoj6/f/PZ6ufT/HCng//eRgooGElHPkkV5at5s6QsVA3m3j9Zw+GZjeA2DhgR6qjak - XGUXlvgqEYvbDjG9QDWA5+f3gw9ClNBNcNwM8kTTcW2ZRKcvBoTw2a850sQHr9O0mHrwOk4BMazB - H1eRb1rZOvUxOSFUe0sNsgo+euNHrAtveJO27aNXhCxD5X6tjf0KUyRdVT4j2tsyCsEyrzaMpxCR - 1O0elPaMFMGFPw7IdZq8+BVSlEJHDjziO/KvWZPTpZat1T0E6xQhsBW/91Oejk+KjJdYxcM1Dhn5 - C0428tRmb2T5EQNQ3HKFRJylxdvJpzbIlqMRDI3nFfN64BkwX+sQi0tbjPRZuxBy3OWKMr99jQI3 - FilkfseV3Cw/b5Z2wPYRfA4dloqFp4vzfobwcYgwssBPLeihBRpsdH8gxWVTC97Q+0WejiUlReGZ - BYdOkQLp9BowrV91vJggrmXNFa8k1p+zNzmqlMPSmTpyOx2KfbQc2GD0mztk5AUYp+J0q6FKcYjs - eybqmyk7Gew79AsO58SJ+47xWkC4SkFG89Q9IWTgBpVUtfDIyd64Xh91JSetcEBa8TsUFN5YCU7X - KkN2UKjN+phjLL+pv5G8d6OCPUoPFj68JEau5ncjL2qjJcdXyw3+vm9D6VmBL5Hu7XVgWNCYuC18 - kMMXBYt1bTjOVTs5l+5fdLHfGuCT1KihUbQMKVjXjRfnnYYwPs7P/fc2HhuoqwQZMYb44IGPN7Nh - JcrM2SnILaTJSIDaiLvFAPFx8+2G2lwtytN63cg9v2V04aQ0gZiKMUr6h+sJqqNmcq12Mv6+WK/Z - ADEtIJ5zi2gzD72t/fVP+XkIO3Rhjr9GKInTwrTyCxJeJZ9yzqqW8n0RITL6PovXTdZziO6qidIL - 33rch587mF7YkFzskzmyH+UQAM9cAQmDl1iQs3hl4LF8aciWVCXmUinnIcaJRm5M0YyYaJMFq7Rs - kYMOM52KL+1gyrQfXDcGpeP1FeayIwMD06/YxRT14wI5fEJ4N+8a4hdzD1NuGVFcm6Yu+FDFstRe - j+TlTanO6bnIQE31Xhi+k6JYjdVhpMPRX5Bj371iP5OzyVx3dEnM6hFdl27LYKlVb5JufjnSYQUD - lCTOREUMXvrcPt6KLGszi3T9VxSs3PopeP6mlGQkt2L+wI0SCKuzjtLmcADbnSMi+F3aM0qXe1Es - hNE6eGVtBqFQ8nU+RB8sM0XTBQdsvLxNqS6tzHXARc7ROXgUqI0kP31GwYfcfgMuV44TVK7JmaBO - vDfLKVg12dFfD3QuFo1upLFdeLBEF130eKJLcXpVMHD0c3BrUOWxEyv6oFd+d+R8skWnl2K2Ib7x - PJ5ljMct4atOvt6ynmR+exjXHz9b0KjKFFkHZOhCQHQLbuZlRhrdxxUTfMrEU5u/g35bJZ2OxLYg - 3RgB+elae1s6XWvZYNgKxfqviFfFPVn/3leZ21fADweRgc9SNTBJrlUjcGboymLS+QRl1tqsX+uW - QufiEpTTVGi2+PXKYbQEFJ3oRxqXs/EpIQmHH3Eu2ebtz2/DWxXExPho13GxWDaQ5y3qEIpPw7gw - 0iOByS1fkPpMan293IUIrueMR8bKBx4PiGmAY2AJxLBCFM9A1jJp8KeZnKTuAqbnakKYT0xGXOmG - wZvrVkkevlywn1A8jWxkh1jWOoUn98/5TQUdupMwHuCJuK/0Pq5P5RjA4dKapFSYmnLxWeTh9Lin - JG3YdaSflXXBvB1eSNnjj+0YvQNZkVCE5mMItje0fMgqvYNKWDGAXrJjB3PbVP/xn/Dohwj6Y2uh - 1H5UHnsJFk0ODa8jpvl9eGt1cwNYPW810u+a3MyS/l5kua9OKKeeEw9b323gR+CNXMroAnjbill4 - bH42umrhL97EOmAgIQol931/rvFql/DR05r4ri2A9UZBBU/T5UWsW87HW1BOCcxRbBGfqYm+rgcG - Qg1WGrE7tY5/d30Ood2RE7FtBoKlyykjj8uoohNW+2Ltq8SA9+tWEEtgSbMUxghhFHzNAPya/dTt - Tc7hF2pGsOavsGBd4RtCkjVfpHTm3ROQjSZIU/9Ngg92R14pP7ys8xrGCxtxoHVUKQNjYexeK2eB - RSkWW06eLYd0uUwB95IuvCzkbosM7lKP8xC+JQA1VUfFc7X1tVHESa7SZ4vvCZNQDpRdIu/4u/MX - oJMWrLV8tx4JlturP3L0ZvvwHnRXFBLjQBdsvKG8VMMbOXGuFQLyQAkd/JWJe1pEsLFllchrLOno - lqtDIThE72Dw/D5IydwqsIZ6F8qf+Bij9IZsj935VKJIKUjkjBfKlZQq//DRNjPJ24zGH+A3RSs5 - CQry+CnVNDg/U5e4FTMBGgRfDYR9ahCNxgqYJeuRAvvW6yis3hbduIxt5dp5AGS2j9ajWYAVMdne - l300lz4utDUT2chFk/ivxabc33pHy3EijsLwdJXj+AnXqr8jQ+nLgj9sSyofAgshy9S8cT0LVfgX - TyQZOJ5uJ9RhOXrzPfH0j9Fs3iazUCyWC7Ejtf3DEwM6Dvzhhw6ot73LIQXarR9RMgx2w38zxoBv - GmzorLhaMaT+2kPzHIzIVe5mvKo62WDo3UbkK0wNNukYuvLNEEhwkERhXH2p4GFgJwk6X+X3OKc3 - z4cEnwTMeSj0tvTD+zDtT3d8PCiqt4GoXGChSCxSAvwt/q3vq5y5YNNCuaCcGdpQTYmA6fJYvKmT - Xiw03g4KJK3Twcz95ifYkpZF+v3iN3NTlR08JLf73/6O6YnhNhgNQ01OSW/FeJ4KTd7fP1EOz8Lj - i9+7BPl1iUkggK++Itds5T8+TlIuAzuf9XCqD1+CkioAW4jmCRr6Q8bSacnAMBxECB1SH5HGmI6+ - WXH+hPSRdbgWp4/XN6tZwmepG3sbqI2u6c0L4NAvLirkrPLWVR826Hjtk1gW54PhbMUpYMHyQ2jn - t/X4axmoOmFPMnUT4tVZ1adUd2VC/uIB61aSyEGKX0SzTOJt50bv4aHpK+QrhIJVXvTlHx+VQuo0 - bPR+RJDAyST53KQFUVCFoew/B2KuZwBoPKY89IefS5L+MejLx6gZWVKKZyCSvIvnfX8ebQeugeCx - 55GQdT9y8jRvJF3uoNj8RQvhKDYH/GpH4OFP49jQX+0buefdCQju+GLhHi+BeMjbYgHzK4BW85iJ - 3QZvj95VksHxwJzwwbhqzbLjAYSariN7zlIPH6Ikgp8hfwWyKjfjEuccAyspPyCligSwUOP3hBNS - PRRMVQQE1hUi8Pd+ApuYdEXDu4fbaCnosko1pSbxDWCWMSHOMQu89SLFKbw/xjsG4P0Ay+8rGSD4 - GAM6PTaw3yNHELoVGokvwSmewJkm8i9bImKdFKAv8xny4KqyGbE+pfHHN3sj7SjD1XWUARVXyT4C - u76RwJq5YmOZwwYlsKnE6B+uzmnvMITZUTH3lkxrM93e5QayujqSK/uovS2DpwCGspiQy6Vymr94 - BPLF3Ed7X5ORPs3d4jdsHmX3TPQm8bt0UPihHp3eZwQWK/PEf/mGdr4kzfY+HCH4w9+8W7G+qvp3 - g4GdJsS9b6f4D5+BWKtFMKS+MfKFdWfhIaD23iZ0GreGoBY6WcoGXK9b9FHcmRCshWGTHe/0OeWJ - JYX8hEhGlZ+3HaIyApc3vwQgh2m8/emvi3g6kvRaWnTYpryCWV0fiSWfKaCWo0jyjzC3YJPCWzGv - TdD/03shG10Bl950H1hXsyZ//EffUbjIT4M9kD2fA+MxqCvIh3ceBerr0CzaprqyhtmFxO5RbRbu - ZmH5/YpSLDXeGJPHeOUhmL2R+B/n7K1O+MmBq7+uSBMn0xNasSjB1IgNSvf1XTbP3iRWEmaEHNyN - 67N6WACrtwGv51EAU3uWeWBUz5SYV37wiEO8Fu75AtLrkMbjZF5coHsfi+juUR2X8CzwoNWPBQns - KqXrU1kD+GqQRhzcfegWxvenZL/eKjIPv2+xSu5+BFkZnIBzzgew7PgIBOFDibPz61S+kxCyn/gR - 9P59jbePNltwvlYhhsxNAWPWD4tUHbFFzB/f6zQjrgEKB2OExPHu/eybP8GqZQmWoLsUyzzMNkyU - Y0uCXzIXq7K6Jfyce4f472Yo1qZKun/6OUDA81aRLtqffiTW96cX/MtfenC4hldiTPoEtiWTLWnn - 9+AwPGGMBU9m5LbftoDZ4kRnxa/YQen0aZBZ5LAg6mfFf/iCdj8g5iDfWPIVqjCQ+drxhCzoFNi/ - 4AvFn/EEiKbV1j/9etr18YRbk4XJx9KQt91sQH1GDqUwPEKkf3jem8TW5yGbHqPgaHUOIBAYFRCX - okNWoG7xP75bLtccnfZC9aKKfQkW3l/J84Knhlif1YdVyxNk5OFcEON6SgGnphKyPeXs8T1qfDlb - fC/Yit8hpjyzbLJ9G3S8jsYdLFy+PSF/STZky1ny33jc9Uowuuug/+ENzI6aSU4NqvRtKXsWWtPl - i0luq3Rlfc6F1tjiAMwO1bedH/75K3euKYuh1DpL3pKORedX+hnpSBRDvvwIJpr2mmIK3mgDPz3Q - AlpOqk5Ux8ng4Qd+SAVxB/7tn9WMOaQ9LluDL1Oqgbv1SjDIGIvy0FEleFhNgjz/Wjb4kR0MuD8v - caEbxvzZKhJ4Qm8H/emF9VldLYjthgSy4tbFUqpLBp8+VFD6O18pf4T6BP/0Z3H71M06dZIEgFKk - RJmtsOAvU6rIy70sSHBMvGITehxBB7MKeojXoSGxtzFg96Ow7Dg/b1ovlQXA7Vtg5vMqxg328wJ2 - PMBL9e7AyjeBDf99dqyk2A7cKMI938Wsxkl09eVTBtmXFv/Ts3y+2Bvwm4dJFFUKKBY/Eoa/r5Bi - TtEHsB7nEEPTPA1IK8Qg3oQp0uBFNI9IuVdkHMEbLQC6rhEcxMoF4yVbO3j+WBs63/E2Lv5Y8X9+ - xj//hSRm0Ut7fv8v38Ia+vryLxwveJGrsdmuixMCABqeeGbW6ctzPUPImOGD2Ob3p1N61VIZ4e+V - aN3LjrdHJlig0UFDLI5XPC4O2wz+vJOCzFU7j/y+X+B9TEaU/u3/P70T5v2G/vCTe0l3FvrBd8bM - cm0b6kRxCB+CMxP1aVIPo9RU/uWD0VoyYAGrBmWOKB5Jue1QTF9hCqU3MBd81z0u3s7at4XW2OGA - ffChjs+N18NdzxOH27yC/sScgbQZl6Ahxkg3ar5c4A+ji5Q/fo2J28Gdj9Hzg4eG8oy4wbFYf0jN - JuIR5os76FxsgtAeLwth3FbOQdrgua5Hbw7OxxQ6DvPDVP+Bgp65IYfe2deJ5lT6yAl3EEFOzlNk - +n0SE5GdMdjzFaKPKPfWRJ+Xv/glunzpxy368PhvfYkhoEhf8jUogbIf6T29z4Qu5B2F0FyeAdJD - PaX0+soy2B6ggLmq32KqMUwkGTx5EX0b8DgdGbWV389bjmzAqqMweuITXvJ+IHfcfcDctEoih3dN - Jr7wFijtiNJCIdIb5Agfv2HD84GFsl8OSHvFGmXJo6tgeGHFPV9XR6G6HUQ4ldODZJraxfPX1Q2o - dhpDzvIRUip9v5as3w+Xv/0fb7pVJtAfO4u482bGnOkGHVwIaYl6HgU6ri1bg+8WB3gI91ubp+ml - wf15kP4ZT3Rl50sA29ivSRQdT6PAGS8IB/58x4PP7Pe/Vw+CVhB4PF6bfbCOdU3l3U8OYNY2++BL - MYGv9XMmTtbext2fWuSxoD+c+TRo1nhOMFg0GSFr6t2Ymv20SDWcH39+WjOdv7IFeMY8BaBsnXGz - f00JjLeHsPRKj830ZcUJjsa3xVw9aCP3x8dypAA83xsjpqNtTFBKxQEFptPo2/v1kOC+n4NqmahO - k/ZQ/+k5pJbRSol4eVpgz4dRVMyVtyanew0EfcwIco4J5TX0DaB4zixi9MKpGO1M6qDuimd03v0m - +iaO8S+fShx+8yYpyQcok8knaRCqxXJTRQn8+YWuk006t/sNwKwXuPtPSJ8uOJbgsxJLdC9dqdj0 - 3wihxhYqUX/7EYqrIgXw237h7gccvSURcASlqZSIWfVbsVTtKYX+Ub8Gx2OGPbqMBQut0xCT88M5 - 6Xyd6grQL96NaOHk6H96B9QkDFCx88MwZnIneT/mHsAVp+PaV6UFmkvH4Zmvf/oyPogGt4GTdzzz - msoFhQJkjbDEx3YMaHU1EmjEWCGB+no1OKgyA2aJjVHUPjK9VwrRBvv7Q2GUuB6R13WA88k2SfY9 - XOi04SyDfAc0fHi9P4D2tQrhX33iLOOgEU6MvEBH9j38SXQbsGYuPEHppQVxvnkVL6dL28L4IRok - lTVzXN9z7AM2BVEQCcYKKm89MRB+PzFSmaMzbko5s7C/cU8UXB1VXzPX7+D3pY5INy0lFsroEoG/ - /OtMUn0U/vSY7kpnYu/1hU38bBjcT1mIbh2ngTWKXww8Sm5CAkZ8jL/6lCnwvG0GMqW9i2N+qTto - xJNC7JHVG/oqxkGMzqKP4sI40xUcOAink31Gf3j/w1KYQpkxbrs+7mKs8kMHuXBQ//JBb56rooUw - qxB6hFfc/KvXTBa6BFPCVIDgq8bKQ2GIRLeFS7FGdHerTs6DZEXex5v4kSb4I2qBlOcxHtdxzgOp - mxQfvXY/diMH8QkfeXHD4uGzNat7Xvk//YesN1/rs7h3ddn9MuTdnav+z99JyeVJvMr1C7Zk/BZK - 7e0YVBveu7IwywYx+/HJn3/O89sxAT1Yj8T7LgHAf37vzifB+h45QDWtNuQKRc9gcBop3vXTAG1H - 5YhylGw67fURqLnSlejfn1DQ4aqn8FYkgPzhKd75/8+fRwUnjyOdgaXJofZeiVb8XvE//3o6uedA - HgHxSP9MfTiNRo/hML+Ktf59n3/1NqTGz6NH8VXj4dq/b0QPXm1Mdr8ddo87gyzM2YC/xhkD4625 - o3MlZTptVJyDVeCfyFC14zhKtu7DsQ558vyZTDHt8QSegvdB+vIIdYGzdQxjqc9RdvvwDW1qrZSZ - iEyYtfauFrv+gHR6DOS15xezvB0SwLZdSzzi6cWksnCSCtyZAT/1Q7HQ00MDfr34qJyuW4P3eg14 - 28YFmVfe9QTtlWfQNM0Bb0T0Y2yllvaH98G669dt3VZeTmB0+sdXS/AcfIBfCiDerr83/KETuHaP - iXjuOnjEvloskDk5xWv8POp//tYxXvmKKHv+thQfRZF2vx+dA+gWgiDeS4g/lR386btFw9dc3v0j - dP+cVcru+lqakO4Ff/VJSlnsHw39JSOnWUqw3NktkJ8xcpHxHt9g9WWUQZ67nPF8ldWGV/m6hc3X - Mcmrr3y6gPnmA/MY2ViSbgGgCqom+UuPOgnsq90IVbZYMiN8dRJkpAGbK9viv3ohOie/mA6XVwv1 - yIjR3/cJ5pTVMORojIJnzO/oohjwEKx2IJnyrdl8Xxr+9B1me+Eb/+2Hv/wIqUfLjrf4dctgyXIn - ZOz5FH9xggy6+ZgT66Bw3tzN+fSXb+3+ATtu6e8HYSMPF4S0+u3R2luf/+qxLr/6+vabigru+Ta6 - 7niz613jn99zHNZEX/f9AisUPvHGWVqxGO90AUMUMejPb9v1UQBPs1+gkH0blO71EHCL3ipCyeUA - 9npFBsWauRFNfKQ6ry1eBIN0epHLnk9spD5BuBarSu6wjRuq9p8Q7voaaak569vF39wjUgWFKId5 - 8HY/i5VPTzZEt3NZgeUy9im8n/IwqJPIo+tfPWI7Zxgf9npK/eW6TJYZ64as8v6Il/HxVWDq3fS/ - 9acDOYjlfsTSJOfUJnRZcglCUay+wfqNezrKl2sLN7FBgeRkvsdlQ99LPy229itXL7DjRwKzH2YC - ULlTgblU1eRuNEOS6QcO0Mf4YOEguFcsV5VEFy6XSrjVoUXupZsXa5SErszrY0X02+9Y4IacOgDA - m0e2zZRgu2m4hZnP9HicGAOsQdhKMAE3j/x7nrN9CY7/z5EC4X8fKTingkQ0UWQbCiM7l7K4F3DS - bk68IfsZQCw8TsSB9zmmS2pGMrNQLgDOkWvW+/bioa9lOrHe7gNsejv00BbDHUIPVsy/KR8C78C6 - KKTVreHe9X7K7uXGRD/UIVi3dDHkS+FPyBEmz9sYWpZwxHUQHL9t423EyEo4fT8pKodB9ChI5xRm - c38ixfGnedxGWEV+FJZKvLeLAK5am4fLPQtR7g4HD9+P9gbdT5rj/EovMTW+jSYP74lHxvlN9HGR - 1Qh2xwFiCMwu3gB4M3KRST2ejgIutpxsIfyuHUeiSncbfLi4GmzSiSI9/9VgXv2qg4L5rjHULxxY - 1PbEwjO+RPtskHgUHqcLlg/5apIMcxXFnpUEMC38J/JwhSjdh17AYiUVcqvbb5xf5+EJbzT7kmtv - 7hCzcrYs1h+PFL0CwFKJZwXg6HpDVvU+0KXkdU1ecKWQvITNSIRkTIE4pR6uhqAYWeHcBrI8eu0+ - i4f1VqV6R5CDgYssn7lQth7uLfy1xweynGYEc9IFCRi6NkXuQ7gWvGUfXNgs2EC285uaVR2WRQ4e - WYxSQzoDNorDWl7yleDsJj1j0rMxlsVEpKS8J5nHV63Cyi7VtuDgCy+PWzDQZOvAZ1gyx19BZxcu - 0DorITnlvlWw+N3YcF9PdL5JYcwdsrsL7VJU0eO6WiPrNliE97N4I5EoJs12bfoFftQnS9SIuwLW - 90YG1s9FQkrC3kZsYMmGThRppHxn0MPenAUSTHKTBGs46xuyU18OXLYg0fsrxYv/ciD0nsUb7fu3 - 4F00YIDULyDO8pU9kl/PNiyV7kIMa9Q9vjelXM5viCClha+Giy8kgQ+QXMhNfhsN2ydhLz/PohOw - Q3rXN2VaXGh61xu6k/7r8ZIh1pB7jSo5cQ9l5NLAy+FpSY4kPo4SWNVbvsDrlX0i5RB96SJlEMM7 - L7/ILfeteBM7h4FP9XNBJ51/7PvppMGfwljIbZx9lsv3Hclc/zpiW4FDs1T7LYzx9XtgztTuBf2V - 4SJfbdtCedzpMf/4tpv80kOXREKXxdyTQAl6zG9F1j7tcC4sXoTYBUzAIKwAWrsJhtfgbpIiZlGz - LPVkQzwlX2IJpeZxzXyHUlejFtmNvjSrAYgPQTT7+NNk75HlMDdAXOmE6Eqn0KWb4ha+nLeDsu8U - jKx8DRfo5VOOQuQ343YpuQAaaLoh96b+4nWqfzW8PUOeOMvFjBc4x5MsGXWC205RCy4peF7WwKML - 2pR6Hne93UXpc3RLchLUJV4JfTHw9VvvyCvEuNle/bztR6Ii5J3l497YkamgVR16crLPdiFc4GBB - 61kQ5LrJKeZK7Q7hKbR+yLQfh2KjV0uCWkwZ4s6GN/JH5/GEisNYSOc0SDeYfOBfPBG3GE4xed5O - NqyCo4NJUQj6lFJFk8vLYUH+2V+8LWCsQT5XnIfyQDaLVfroLbil3JOYufUZhdZ7YDiqskX+4llY - ThkPt2N92fFT17lZsCvo2W6Nok3rm/Z+PmsQHhYWpQH3BdsjWxJIJuFEgqxoPKGj0SSLU+KRrNGX - ceXNxJL1vfGjdzqdR3q5dgZcXj+E8rwk8SKOdyyZQ2AjXYHZyCWdlYL3M8yR3z7cAm+oh/Dj6gWx - 4ucHbJismSy0eUx8pHfekpHbU7b4UxZA5YU9mhTZAItM7El0CqqYT+73CE788/Qv3uhUH/DxFcKa - hJf7pRHYDIXC47na5ObzVrGGc85CfdMUdJaGpOG+mqTBvDRRIISXKV4G/GihQtUg4OJuLRZkK5oc - 7Y2Lpca5xNw3DTXoz9uGvOl3B9zrbZd/60OSfT9hQ8uCv/2NchQ/9DXjlUw+g8OAXFXz4uWQXjaY - Xl5Pgu7CqeBJN0hARFRD+jnWKBWfGy+bn6Qn1wSR8S8+YfFYbHKD8dSQVzT4//jvAL9jQyX5l8Cr - dZiJXs8WWBXymKD0GmhQH+S6+eFZUuAkCB05fVnJo6+oDuRzoGuB1LW3QmCm894oclCxAGO/Yb+u - Y8NzyknEYm+sRzs/nUB9utbEPe6zt9Xm18NjGxnI8+8/QC3oKrDq2o0o+K0CQSVLLQfy0CBlj8f1 - pwMF+qFRoIvC3+iqcUoon2mhI/NY6ICzRS+CkRhdUdBNCV0WZNmwOtoDejYXTDcHeL18tV0LMxcQ - UF5SAgiZ/dZUZIHc2zyrDOBJyy/EK0Q6rqJQtXJJ8zsK8/Hc8PZN9OFHLVlU/qw+/se/O7+Sly8c - vG24EhZaZy1EmSu0o1DKrg2NoGHIXe86sOhylslVokgoYaU1Hp1cbMEf/t5tsdF5xtqq/7B0LlvL - 6jAYviAGIgoNQ+QkJ1sUVJwBIoryIacWevV74b/HTnCR5H3ekKawiYiCZWKFSFr4ANZuolNNM6aO - iVvTg/GJHRq4U+u3TRNIcO8fJTWNOuZLvcNwcP0XMXSPdZNqKA6ExknEW0k2kfhH/kyYE6shiY3t - bqOvL7nKhusfddJVX81mFjvq0eAxDZ66GbWHFGHwJ7Is/lV3SCw2gQ6aRmyydw5NNlm3mKmX8kJo - pEFSMenz56l3SzgupyqqaG5uYaIOSNqPGxkL0bxOp1xd3S8q7haeG80s9hRps/ZIaIeraMzv9xBm - 0zuOjQZtN+H+JiLsSdm/+tubXyWFUDKB6HtcZrOiYQFMtV1htr4ekEhNoQXtc5FGHlgtHx/LIreL - wW28VSlDb2W17cGsD380qHepzy/P1Rvimt6JTl9xVBeTGKqPbeuRA5GCTGzH8xvkd2gS0+4qg8vL - KRJfo964Hdca+tUH5CT6E/+pT7MbaJrryNizB8E3c2eIT17aEOIsop7VudGUkCBVm/YLuGD62Rc3 - YhnA8E4p3v71Y8WT2HTU1Pxu6OVvFyFO0NNUMRX8cYr7wJ9vssbU/at5kkN/e/Gxcu4XRaGyQVzx - 7Ebd+aR78hKfWEmiTzcbR7MBxSzjf/HPQmEq1JEzjYRQlj5bnk9lf3azxBtD4z1hl188j6qT1d1c - hq0ET3ut08TSxorxeNuDMx5LasRzz/uEXnNYUWVND289qXgbeSfECQ9HtvAgy92vCZHanElBRo2L - 0+3cgoRnnVoO+1TfU7BLVV8bPGpyI/MZ7eYW5OCd0XQwu4oflNJWf/kcpK/QZ3ozJeiQ6BHmhelw - Ph2bGEZPFujNfe588bmsdtx4mY6FubB8eu2JCcoJ93S/1GsplJ+92ldbQncoZ/7UE+OlSHmRjj9e - nFqsl5Ds7BW+vJIzGi7KcAH0iUzifS+rbAjqvxBKQfPGt65/fDaya41a2cPET+MKTeo19MDARkGc - XNKR+GqPb3iK0zIyYcpVX1uPGqXjd09y7TEak8hUDR5vJNOfno/NLUmh7PITlrZWmXHi3d8/niSG - nwfVsLkhEz5t1NFF7yJRfI8O2MOppNqHWFxq02MKRTAwanfthMbh5G+VJb/H/udn0qZzQD+UAs3h - K2XTBqwXdLe0oDuq2sZGr1sNHpJ9Gh/HUjV6f5cXKK60C01n9Oy4nqcvWKPdRO3A0AxGxCeAlOfp - KEqOm61X95UJrtpMJM5yd7lr86PD+mC5JD8EoT/fk20MqHXexDf1VcUvkeGgjxgCzd6fNWfiu/ag - e5HLuJVqoZrWyHwBu6Uh0etwm01NfcjR7aZviG+Fm44Zj3YLBZKmf7+PZpY7sOQP3uQCjubw9Bnh - 2q3w8slv8jmd5RnMmvwt+Ya776sPBfVanCR6NI8qGv3bstj2r9zRu8iLalr0WW1lB4/i5rKLpjEM - Srivdgk5SZ3drZNXm6LuYH0oybKN3+98fwt7dE/osYhXaByEQQTIhZ4cZPvN53Oxwj9+plF6gYrh - 4C2oj7OkE4KEIZrsqj+Bk9GGamZPqrkAn6Hn4yuP8hkBYuk1XuLTXJHbcxiM0RLoW1n4i+grVe82 - +bf34Og0ImZveHRd4kIL7GBdqfscBn/S5CH4+WP8ZzmKQcfmdYJ2dTtQbYI92mR20isLv1FTVI4R - O17VAtTkr6e4E0LOCfra8IvfhVe7qd62BWjXpiDOVRGy6ZXMgiKnJ053x2NtsNRpbPRqZp8G/XOM - +DCxGYz2/UfNzeUZTaf9VUJnRcC/ePJZ+Q1rkMMnJ/qWSF3HRcTA8S4uFhxNRHzYXHpQdkKOVcFS - umlz4ybkPLlR7fu5d/PorFN4SUVFXaOu+Xtop1Zd9J+evK+dTZvm7wVsOP/Rw7u7dPxkT42y9A9I - 8PBHgy68rYpieFr4LYiky8BCEEYCWH0Yr445kqGgnUZrYlf1gYuRVAlqJ3I8is2BZOuASQyMRqPk - YYgfY7Rkt4Xj4RUT65TI2Txpf1tYeIkY5s7mNHvEDeTyN6FW4HfdLOe8+OfP/EOcdazdoUbZH16M - aIs+zsPnqwDbwZYazNj7bH/a5si1Vi71jf6vGp9jGKOTUMX4HY05mtYoeMlgVfHyvAOa2T1OVFrX - Dl4n26Hi9hnr4N12T/wpYaro+lUst3yEbFRvQd/R0L+8Ae+sjOhFIGaDrtQBOiC1XeL1kM2VuAoh - j6uG7Jd8677dAcNqc8EUX+c3Z5N2G9HHjmN6dJQMTdfkpKizBDcSqtmEWGoIJbgUbtRWv6HB/ryd - 99NLYvbSEDWgTQzAS0XMYxf/01swj9aGWAf7nk2ZX+aoTLYpvVY+GPwDTww7L6/HzfpeVnM/skT1 - /LNLSVetDL73VyX0lUIIjh5FNV9sOEFeSs9xXvjvXz8i93tGwijcVxIimqb+/HA8TCtj0WMb5Mrq - KEln2Z8H4SOq7NGRUZr522BeVSugIKMixvpsGPOoaFu0+MlfPysbFn8IsXhbU/25jLz++HVllja1 - 1sO1Y3WivmHx/1hQXssIVGsBoOzIf/Wcj3hb9qqJnwKxxNlCm9LNRqiklUEPg3qq5kxxZ9SoB5Fo - x9tU9UzyPHRpthIhC98vdx/raPeoLwRLIvDvUL1KEGhyJvuq0LPJ0kJRLUbvRvzN7PNvT/wX0p1v - QYxwbNCEsrUJLpcn6i56y2KNl+r8DXfU32atT30ne8PiJ3//r5oCMxb/9e+qJd7nbb0T1JHP2v/1 - 5efHi6x+Uv34OGVrY7r2QGKfLyPkK8TMr5Igq3w4ZPFzfC7DlwQGLfbksbxPVngvE4ZLfyX6+j5W - LMO2Bswhm3HWT+D3YD96JKy/Z2JfwgPaRGplqtOsbunPTzNygfwfz1v7wo2YZOQ9/PyE+5AufLoH - 3/yn/9Q70CEavrkggBjrOv5r4zGaCuMkQJBhhWDfev36ZTrwtXskj8o1Iu6m2xqs08zG+0fGFc9m - pQXPfnzJwXC9aBlx1tTHW5aJu/D+R19rp396v79MWiadQ52Bxg1M7TcJ/E0hGB5oll2Tg7ts2Xv1 - iYCej07Gq0Wv3+r7EECqWyu6W/SMSW3Swxln1rhNqrxqjuY1h+/mfsbowwfOH7UTAJUdjZjxFRm0 - 7GoHwEtEavvpjkt8FhPQo0mg/n4/dNNxN23V73dWf/2yTFp4UZVC/0XxbTWjptHmRvXKXKG2rM0G - 60XHg3g50hIW9FiJ3ibYQvMN7+TavexIDB47gLWb6liMko/PbkJYqsn+KlD3gg1/cs5MBB6YLs05 - xAbfdbaguttpGYkWtGiW3XsOFZIq+u99bYajrS79Ulog9vSXfNwiSwu21F54ag5rf/znZ0zPdg0a - 5HMNTdsB3ZMG+/8BAAD//6RdybqqvBJ9IAbSKAlDOulJ6FScASIKKtIFyNPfD/cZ/rM737IhqWat - VUkVe+AenrTpBxObKFq8nC7hHuRWl06sY9gux4j1W8IfUZ+erTnVA9+lW3w7J0TV7TVf2kNdSM+d - 5iCqOkE/HuWUh6OzHYkts6ieZ1614InXJ3IB3RSTauc5f/qJsOlrY7+cIFD9JzONmt3FNIOKI+r1 - l5BNvwVbV7MOxg7vE1kJv3UXIXn98TtsIO5D6XUrYU+efpngtj5cn2Yq3PTvidvyT0XvFvrDp1qp - W2Dzdx5a5hyS4u4ijeXUePrzLyzf6nj9wp6HlaN8sTZ5MyDafKjgPD1loqpRoQ3+CZTw1Rc6uUXn - ql/GIydDyHanqeQOvcZGKV9AYTV6oqbbrdSBlTd855/xHR0Fd0neRgLPoJymw/y5acTpJhUyKudj - tJYvd7S3QWhGNrQTla4fd/66jgOl63rE6j3zcl4zJAumaXUhG/6IZ7NnM5COnUnMmX3W9GaGA+AU - 2OHT6fbpp5rdReDFRhBJ9VDVtFmvE8guPiHGORjpcn9YJQzatMHouovosOm/4Pvwzn/8gu7XgIUp - BSZBtuDQLR/vwU+f087gXK/UyArQAvaE7erOuZM6HhxAuH5H/HB89utPn/r9XrXWIKcfqfN+30+M - rrhSHjhlAWmlPLDlCNsR2h2ZQHDih2n3WZWYKj1ixNsRhuS86edzfKtk2HwXd1o3fWa9AWcGwmtZ - iX04XN2ZyZjhp9dgL2WqeHWvK5Iu+8D8Pb9mBcK3sPiY1STO97BfZdC8f3oU4vr1FtOdvYrg1/j/ - kp7mnKaJ58D0yNyJWT7Ln37Wwm8DbtgOX0dNuL8tBAyZpERbPjwlZ+72hiaHrhiz9aeef/qqcvwY - iFpdQ7f6SiISNqrIj88OL1t2pNOJL4mcPmuwoBSwkDymFqtIH+IVq3MgEZNckLSk+5q8TqMHnWh9 - TlJmMvlUoJaHcv/hCObKQ7xu9QAYIZmd5u1562893wbPYsyV1/iHR+C7jDziuW2lzcgbGPilK5p+ - +stymDIDeH71xMF3X9Oluhwg3PRGonWLAzj2suhAv6UEy7CSNfbFdcbv9wSX1THm7XTx4J5ztemg - pggQFDfGYdMXsWuUuF8PYgUlJQ5L7C+qTPnTekLQAzdnOnQ7W6MpkC3YCLea6Ntgsak5VDzM4OWO - DvE0bfrGkgDON23sbU1nfvYv+d98naQtv8xS46Of/k3kSbj2i89VCSw+xwrjqR1zWm797f70Hewu - PQlK9g2bqe2JPvB+/Lr7zxL+8K6XnNSct9FjkoQ34271g6pe+jRSocp5H+zHYZTPrlIUwLi/LaKw - ipMvT74qfvwQn2b7Q+fLCzNggMTAMuaUmg31ewENy5lRvwAOLOL+8Yax5w8kvXlivwzYrSAzsDdi - 6OJIJ45yKax1CxAHx5JLFWZgQKKuBt74dT9094cDP6JboHkXfcDyTEUI+aVx0cHtHLBQ0X1CZce+ - p7XSur7hKgVB0TcA8Re1opSJ7QxcAb8jFpmjnnS7xju0pC7+7HU+K7A6bO+PioV28XyL928IqryZ - BEXn3alvqj2MKl7a6ou9O2/5Tdr257f/VGBiJZOM8krwybrtYkp9YYWH2uz/6htdf9+d4VCUPEab - PjRfPE+F5xyV2I/Ocs/6J1r86f/yXbL7CklzAcvJupJM3L3qVVyyAnAXPSOK7avu4j/VRHoOt2ja - +G7NEz0opZx/bV3e7H0+hsphD1lV+KLSPaqUTlAOJOfSqrgIOaSxzzN9S1VfRj981S/W3g1gM3U9 - 8ZTxra0dvZ3h2n0rxCvcvR4K+2FIuP+42Cw5PaZF0Hpg49vYG4kRCw6jy9IIWJPcqzGOV/4lQ+lT - 729Ea0QWLN5FZOGmz2LzWls5/zCLRKzzd4wd73GKx15nZbj/lD324cMBY7SvEym2v+wk3ZkkX7+w - ZuFRLFIix8GnnxAVLLDpI1h2DlLcpSYXwKyuWrzxEUriztdB9qUfrFrrnFMu7hIYaktC9Gd0+otn - v3xKbltLnJ/eArb1IcpEJu0Pb797psEKPKKYfjodwctrwsQCzyfo/Ix6UtgedJyG41wP9+TwhrOx - dc0OwUTpn75NNn/6sJm27uewkDY9bWI0ONdz9hhk2PfwjCPPP8erC70W/PR5c8NPfE3CBMLjI8GO - 093dxSHcLKZxJ2AnjY+9sHZNIG76MHaTmw+Wu98V0GHcEPuZWca0suNJSofbRHK+oWD64SmdwM/f - /lKjHWQIbkI/bXpC3f3yxyGoKdnWMx/d4rJC+Xa4EXuLbxx86w001TQkivQt3fmn96ktmIgXD422 - tO9j+X8NPtj/95ECm9xnYs/vXqPHpoLS/jIHWKf3OF4vOGYghPJheoiRTDnNpk8pHfEOm8ndpbQv - 3plkoc4kx9P7kY8cbqBUS/yI9Zetxqyf2hV852GNbQYWGnegtIBhOpdEEY9WLrQUQFCJeog9YW3d - JS+YPbCn8zqtUda4k+FLGbiUCY8DB5F+Vk63Dp7DFBEnij9g2Y93b2sUbRK8u43xmp5mJO2uN4K1 - qX30S14dVelY8C42gZPWfJtYnfTRPETCuUJgAm14looz88b+1xfipzawjMRHooTgOaoB2/OzDvlE - ASQ+v7j4tXZWB78588AGmBm63teTAxWUqyjowZBTZWwDSB9ijZX01bjsfWYMONuLTIqXarhrruxX - +J6XFoEHAnFn858ZcPB1xubAmvW893sRGtPtTE41XHN6bFooHdroRkrBEfsFXi8zGBd5JL7gKZSf - stdZUprhS05gNVw+ruMMBtUznXrrcO95HWhI+gA6E0smUT4074cqmZp7wHI6POM1Cr4BvF9BhX2h - DHOuuhwn6M8txH6wBz0N2+cbtsIrJ1qX2+6Ug6KAewNOGJ3SN5jtQWYk6jaQoLsqxLSGIIK5/RDI - aR+iXGhMWkjSvjXwBRyVnu2+uzc8deERG0LIg/kE1AGyxdEmoc8pYD2bDyjReoNw6eutCRPHrvA7 - DTUOltjvhQwdIFC84knuLarjWfLODdwbrodgroF8XQSFh3G5kkka2Yo2UZQm0MLLkUQdewZLf10a - SPCBI/IS+/V6iK66VFxWi2TM+UTHT9eJQJJTGYf68wJY82wNcH88dYg3LCGvyueHhW9GMCeRXWC+ - vohoSP3+xWHlFja1kIQ3GX5da0du46eNqX7OBlhyiMEIapTOg1FYQNOvCb4JYQoE5MwJ5C5mRI7f - h6etgIaFNJ2rhaR268Z0fbklYErHIerh/nTH67EVIeYqTLLt/9Pd7niGIocNrL1I2w/6sjrg57/x - vX8DWh9GBz6iLztxNYy2Uvc3Abvjm0yNd7jVUxuslQRWKcTb82J6t61V4i7HiCTTo475t9pEMO3D - O5Zt8unHC+uVwPw8d5OAE83lGmV+SjxfPojdkQegLQUMOKnsg8iOIrh0qJ1WPD6qCef3pdbop6Ws - lKF6mprOjHL++ioQ7A/5hZi7RdXW12LyoADbre7TW8m5mp8TWGu7Gsu324FOHqpKeFAYYVovhl7z - gRqrElhtgvXquQdjlcWsdAshQQxOXu7wPOmdlMzGnVi3+uzyaIgm0AaWQDzpG+akBS9G+pLqiEvl - JNaz2JcORFrK4Nsp8mpKBamBpL5nxAyiOOfm09kBZQkum30aGqsvqwWbt3jGCN50wH/v8gpprT3I - sdlmXy9SsoL+UwhESTug0QQhETq6xOHjmr3cNcof2c9eiX4OmXpaVVWV2EHssROtGKyHKDSk0JAL - nKhzQ6f6XA+w+vQ9sfv8mbPvQ+xIA2vo5BffWAjXp+RA8Y4ODITaLL7FAL4e4h3f44OZs0mbvuHP - H+O8RDkl1sTAyxMLRD0sYc8Nj76B3yKWiHPRdzkNXkkp9Z9SwMgY8/5nv2LXfz2cvUjXr/P+/oY1 - EH2sIHPJ6djBDl5fjEd8FzmA+od8DwePARPDb/dOGruroGpFPlHm8ZMv4cd9wvgORoyabN+vb3WI - oC6jHVGZ4FoLnNc6f++P48MnX3YyW8Lnym6NobNzzabVRwas5dkkZ1PUT4FYMRDpXoUqsTxrAjKf - SArhWcUyyi1tgdf7DDM/m6fD/O7d9c3IZyl7HmMk4GumsYNmqHAxUh9frrcc8P2y7g+GKa8kiwyc - z/4dVIB6RMT6/rXNjlvdFp5fMcJH00J98709Jmh+HW2CHlLzX/6Q3lb9wFZ/srS5jb5v+NEQIubx - uWiT1oYG5KO9RM4KKOnf991kFSOqCprG8Wfbg5Fo+ETzswHQy7hU8Dk5KjlSF/aDa4MA3ISCEvlo - Me7c0wcjkddVRDBj9JyvrwcWJnMOkKidfY3nJrWSHH3Hof2zwO46D8oE5/L+RDUrP8Ha8+UqDvdB - QqPgKYCT3kEgbfmKuOd+6Ve4I2eonbeDFVlD82+CKk+qFPWL9er2oINfjCksK2E/tW++ctmjUiIY - e/KIkw1PzPHLKUDKcBoOkbnEM7eYiWRY9ox2gSFrvPZyIExMld/8oeyXq8F3cEDHw0Q1O+rXwn6u - v3iIT+7J1NhclxoIxruHFVvcgzELHir0WCEkqLFsl+3pA0ofUCY4J/4LcOemKn/5m5wNrcq5LjA9 - aUmTEV93dtLPo7c1fmd2PfHcp1JznLlC6RbNITaUL85pZ7MRvDPRG0mZe+z5fhH3UHDU43SIhlPd - 236cggYvPvHHjxXTnfgopfPbmLG32YOArB2E3lNc8BGWBlheYfI83KI1xDf1FAJ28y/JhPhB9H06 - 1CsTarNUkuFAcGDI7td5wDdc1TrBHjU+/XptuwQwtMX4Miqyuxgd3UtBeVxIeAv1filWwZESEkBi - 1GdPm+FhSOHDtwlaK8kHy3wqLSjFtxI939Y5XkyYRmC/81h8C4+J1j6DapaSea9M/Jj5YDgzKQtL - Mh2wSiohXoZmGYDGBOUWrx/54pxhCeGlp9jp2rpfm+bAwMf9fSKaWWv1iHzOEfmGu233HZWcys/W - AUk+psT5xRPX8jx4lWmDFbu148m/Vo3EN8JtAoUWAS5WyADdGBnEAHNJaXUqW5jnzA071jTl9DIe - nlCPdsqGTww6k+fcga/r7Ihu4oH+8huEenMiod1+c/I13o6kjnOIZrFH/V++P5LGx0rqUm0RGdpI - ryDMyd2hHBgb+1lBrRf2k7DsZpcyQ+zB7+14J7plvbXVz5gEuMpHxcfT1frlXws0jZNghx1e+RJb - GhQXpou3Wa5CvWx4GgisN+CY0s6l+y7L4JENZmz1z2rrKCQ/pbJgBATCUekF6cUzf/Ev794wXuTX - AMXsuefIOfCu2mJjp4DoDJ8kI1fgLsdaEeHdUCvipE7o8s6+taCuqA+MwIVqq8NlKmSXDyJWq7Rg - PspyKcFvJGzrywByfGQ8FJ83nfhrbNGZfdTnX/7G5qhUbgs5q4KHU5WTeyJc6ql7r7NEn/6ORFqn - AA6fPg40k1lCB1s9astIFlZK08eNnBXHzLnZlgPIrOxInMgg+Vyn2Qo2vE78rb0gLY9iC68fcdj4 - A9T64InO8EtzA6Mj1N35kDYy9B7xOEEV7Lcj9I8Kslb9wmo00J4u5QfBpTcIlkXP6Hnx5SKQBRYl - G97PP6YQ67DZszy+FhKmcxvvEliA3iIyauWe++FB3/zEaNry1yA7twqeztlxorrq0nXDL2BJzyNx - fUXRlv08JvAmy3ia07tNBYM89INmXFjUF9oKprcoerD03NO0dp8yX0fvrgMSJQUJL/4TzNazfMPF - GL8EY9+g2/pEwBjPKZaP2kebuI7N4OuhS+RcnweteStHBCeFxeQEZz5e4+oYgXnlv0SWedQLylgF - 0jX2HBzY5FOTcX130Lb4CfsnZtQGz7dTqNpXF6OTO8WzfDy0ABQJ2vZTqFetvRqHgc0r4p73jsae - VbjCCvgYl3Vh5VwkaSuwiyzCnsErLse5ii59p6nGeNe9wN/zW7644eK3PzU/n2EfHxeiq/WQU295 - iDAdjgqxbvNUU6QnhvTDD+lQzaC9xS4LH75LyLHJs5p24RTB6kTcafB2BzqGPUnhm+FMfGkt0+U+ - z3kP3eSkE2t3c3Phy0AdGrtgT4I3J1Iid5ElTd+IYqX/cPWfv0loBuR8vWsa+1oejtTLaoyWi69S - wgw5glt++uMTy2XICqiL+Qtxyuz36yUWWMCBMsX+hufpZb2lYLMf9O2VJV/sKHhL++swE+N0jNyR - WYLsj8/JTnV36Tips7TxNbTIp3u8Tmd7w9fVbqL0vfTrJeoMgPefkThbTXQp9fwN53lvE5O/PrSV - X6dMTGZRwd62vhs+2xozywu2b4UAVnuSZnB0fZOoxVYCFHSVhS2+JBPXtLFGFS6LgBj2T6KS3S4e - Nvwg6spFItazwBqNjWIPxeddxwphJ41eA3OAn89+xqbMz/0siMsglZzHTKLGce4qvjRP+vmXCS6L - ++MD8MgZETk257qfHC5SpTBdS6JEDzUXDNaDYj3g70Tw/Zyv9tiq0HuEI/bdvI67bz10ElPt/Ukk - b1pPh+hqgBfbPpDILkX+h0fv10OFC+oyNQ2q+S1RH8moZu8OYLMDl0KVDAu+OON2hEjaqbA4np44 - fGO2p+fGtOBVXhpsyUGXr0boVnBbT8SNFPREc6P3D/8S8yYMdMWkZaGcPPZbfog1rh0XVSIBSRGb - XWV3zCtfhvmuUkiRNTSe41tQgF881+/83u3HyVnB9ElirD4KDoxfbUkkYO4s1OV9S6m3Ch28ECcl - 9tEsXPrOxgaquYyxn3VjPdljpcIWnxIkbfzkG/afVLSCdztRfyjiud/tWKgEpxqbG56l4zp1oE6T - Lxqq86vvRZ1pRHS6lMT4cIm73sclkjZ7wsk5ZPollq8QTjoYCVq97Qg66yGYdoyGtfDAUvp+2CwM - mQ+DcfKyNNqS1ID3bFSRaE0obo/KGcEjp0fk9s0ImNq0ecL6nNmbvmNp3ce2Kii9jCc6HE2orYbP - pdKL3UnYIaZbD+sRsYfbSyCTyOjvfJFbaoD68jDxqeHcmg3N1IPAYB1cjvFSU+HZZmK+FE/iMPYt - X9vTOZV+8dhbD1ib98eDCM97LZhESgdt8WgK4Wy1KpGRGLht/GCTPUGrMEnb+r66AHtgs29iivuv - u/7wM+aeGB/LxQZUWT0LXKhyJdYbCNrSimgPbxgNWPP9JGdDM0ASQbNArKSTtPHl7bs/viffBAdM - zOnTHfZDuWL1gW/x0q6FKDIrP/7wTk42/xL1/e1IlKdauOt0AwXMShRNwmdrRDuypwmcBX/Cx9N+ - BiML1xkiWL6n+Vm7+Rxix5PYXTuSPzxrPcvmoEfunaBM/8SLPNge5LqWx4ahVfFyfmRn+NNTrCQd - 6/aShA48vPvrVpJ13D88ft/lGx7LZ7AKusMfXl6a4XR36/M2W7UMRgpv4vBdjBrdbnxCeocqNpeq - 1eau/bIw9niMGnXWwareUgg76TVgt3vDfAlqKYVh/6yISwefjrAY90A6LDrWG7LEc/PhZ5hkgMfa - i93V1N/NDlx6MSS+O66UIEtgoNmeH0h8aM4//iCfLYjTW/juV/EWIgmjq4FLnLy01TtHpfQ+Fhre - 8nvNSZ9Jhec4mfBPP/zpQ1LXVYhoe2alyynjDVjoqEErGQlYTBhE4JmTgnje7gAWb1bZP/5vXXXk - 9sS8IsjQXY/l2LR6qspRIbFzGUzCsgr9KlvvEl7FdiKWDjs6//TRfJruGx82Y87GagHhueKw4w9M - PL0ZOZH2hu1huS/0WMCnuYBu7BnY0qHz0x8t6cen5FsX5RwzqZG0u94JcS7lnC/hxFVS2E0M+qLM - 0PgXWQ3Q1kOOL3wf1MIEQ1n68TP7rSkxx8rW1mXLSogx+lxO9XM0SA+PjUm2vQ+xHD8S5bMDJ7iX - Ajon7LuUists4dM9WMAi3Kj3F782/lZTzudEqONrQcxaPcXLVc1WKL1xhZadts+Xxn4+IXfZs5ve - TOPph0cDMnFo3yoWYM9MwErfYtbIZRnlekUz34iGqa5IOt1f7m89pQenZ9Mj7XJt9VBbwJAJnsST - nG8+N3W0lz5gmRE/+qeY3P2mA3K7Z6YJv9m6baNHAwL2mpL8ZevxnWGP2/61GD21YKbDfWZ0mN+O - OTHW+E2pDzsZaEePJy5lpLjTBckAqzKuROGuJqD7VU/B89ZD1BP/SBcODwzc8DRa9fxaU6cQUvA+ - lhqWuR3S5rRwLRHvoxC70+P4T28vWUMmeBj7eMYcXeGjvp+RSKmnfTt0KKGF6REBDSNAkWfocD3F - Z7Lp8WCyJ26F29Rm4nQi1eZDOsgwTT2FXBnhpQkTvMrQ0XiB2JfV1MaRLDwsUrPBR/dkurz6gCx0 - GHZHvC1fzJ5vZ8Cuwhirh8iuVwGmK9gxEp38UjDc2Z4HVvzZzw/PLcc7mOHpa5kTv+EpwRgiBuLQ - tYmy4Sl6dXtW/OXjpLopYN3dMxWctE7Dbs6L2lA+CQ9L90SJwe8+8eqdsxJ+rUxC66M4gXnuni2c - zs9lwyfEJfnN8qD8WeWJzwKxHua1aKEestp2q3cFgxKZFUTfqcH4JtnucO3CDP7wFCq5kq7J8m0h - QztM7FtxAUsNEg8IxWoSlYpWzFFOnqVz9PAQs+lfwmHfdsArEdr4eKWNx1rZg8uy366k4Vs+9/xs - QKGcPojuhzqe5nl8w5anh0ma0juYl/28h0FVpfh2ur+0Lb7okD5MBQHrcK/p+A5m+IsX89Xt8rkb - /QlSLy0ncO7DeuMXZ5GETxGbvGf1LOis7Kc3EZvphrrT2qsOKbfUiN57g/KOHCHgCmKL2G/b5T1l - SQGCAtKtftOD4QjXQHSTiz5JL7kEyxyI0Z//n0FJYjrUaifF9S2alqcK3UnQHRY+81TGhft81Mux - ubTSSeUfaL/h9+V9mWe46cvEbH1GW3YHNQNaN4gkfX/NWmCG3IMgfw4Yfb4VoIcDnx6wH1kIHHSi - bf6RwdKVLyTUYUtX2ZpKWJ/HF0GCI9Zk06/hTFsXl8YIaip/dBnaFjtNjVp7+V+9wI3rJxKcvNMW - UbtX4nNMqml3m4N6ieWQgTy+pER3JxbQC1dXIp9oAG/53J33x2Uvubh7TFLdSvW6NwPml3+IMWYj - XVd02Yv651ujqWXtnnWNl3PY8MYEp8x0v5bMIvi6WwW+TekOTNqsGZJyRw2x39ojphqqBnDxxnXD - J8RttbcoHyxeREja9NKZogOC73GysfEUGpeEIypB9UkwUS2uq+nGJ3/fh60k9fufniXtmO7ywz8x - 3U6DQcZNLZxpZ99dX2TVYZJtg8PkRtHmNhYS8b1rvziZEofO3XfXgFt8wNNz828+fj8qCSlFiX/6 - 8ra/HcxHUfqr15HhDqs/f9nWjw7ltdKhyPkG8b4PtF0xMFe4xWu84SuN9kHw/PG9iWz6yeph3oOs - hWw0D1lSD56vZPD2quJp01/q+ae/nlHrEkXWCP3hNaAEl5pgJxnBtKulPSirqsBaZPgxOT8PqagZ - JxadNn44q3dZhT8+bWz8eJ7HeZb016ghEHnfnsLrQ5dUO3fRU7cdTbgJw/nH7/Ad2kgTXpd7KZ4x - tdEOyyimw3bFbeO/GLWnRz+cmYCX3ChtcNFwY78+rFMB6t7osUp29/z7ee5F6FzSnITaUmkrZMIG - bnifWIjGYIjOrCeV7oUSZaunChEoJjhvVzTJ6NF4aceDDL/FqiF6XkfQolrpYCEFHi5oLGs8W6uZ - FMm+hlP+cgCr1oa69FonhXiv5FSPxClVmJoEIB5erHplUycCuV0L2PtO73oRGdDAPlpP2LwJHhWk - 71GXZLFSSbrVR2atv+2hb5SnbbA9D5aXt2+hTZwE2/q56akPnzL0c0vAKrtP+2nzB8hp9YQt9NBj - YTqoeyknwm3z16xejHcq/+rHSMKim//pZbL4VLEZHDM69uWpAL75ivH5Keju2iZyK13sLpnYKrBz - IQlPsnQ3TnAbK+PGHLzeV3jesyv51WuWYt1ZoEXoTNTHF8U89VXnL5/i0nnUy4GCAhRS5P3qMRoR - tYqVSH3LcBweWDBmaazCA7Rv//BwvUcG9Efz8qc/v9ZObqX10BUTD0qcL1X0YP/0ol/9YtxJUwB+ - 8Srd4t8smLiF6TXZIWGLz4tHAwbi+PidRGL2/fIcfQhPOlWwJ10UsN6uxvzDe+RY35x4vXe1IyUm - m2715lP+/eljyXTPUBethK5H5prA7H4KiEcNsx+L9yOSNv+e+C1erKvNqnDf98G0Rnfgzsrp1MKg - cMNpTpkQLDuYPsXffodzNQGSvzH8vwYfHP77SMGjXCOif5lXTNf8lErfZbslO/Y9nS+VvEKyphAj - Daz1APdBBUnp36c3f5Y1zkT0LaW6cySOUo3xlDMhOlzvjjAB/Ig0fod2DYw++xMO97uQcql3hFKx - l3SsO+6jF8C5lqGZXCBa4d1zl080GnDHxgOad+ajprnclpD5Bgd8f7mOy+nXugUWsztMgyB8XPrh - wxUMcHZJXtE+X8g3fUKgTgoS2HrXz8OyZNBbKw2rLXBi1ma0VdpH8E6s55Pp6edbVND5vgSsmOe6 - n0un6qSXMqrEEkUuX/PBcuBweAoEXZyju4gxYWBYendcitq7nl1YFdJzVK+I+zy2kj5by5AYVxEb - NHjmwnwZRFhu4njnO0W+ire2Ac3zKExlJYh0wel3ht0DGXjTDmmtWFYBLEY6kJwkJ7Du79peygWd - JanzHXuqLnwKtNeunJ7yoakX3XtnkuuVZ2LY76juX53Aw8udabFWec+eKy/3EtI5exG3om5O21Pl - SAs+H7HFvwxtaQWMYPuGEvFhdQSsOZYqvAZ3DrvYe4L1g6tyK3cdJyLVMuUWfx1gVHA5Vk5Rnq94 - vfEQCa8KXSbeprMsdWfQqxYimbOnPb0ETQL52TKx4V0UV7jZzSq97ldu4pmX6rJ3os7Qi/Z7kvRF - SlezlGWp89Uv1nZuqPEakt7wiKMSH2Mb5yw7dQnsfPlLrvgDYjrcbAdemkrE+BZecr6/KCUsIEqJ - a0gVHXOoyjAK8xEt5rmuJwSejYT4qCZHd1JjXqeXQeInnxBTFxzAxgFzhhQLIfYVPPa0nuZZWvmB - YHOBn37dIaH57Rc5QjTEi9NwjvQ8eSzOv/wzFvy+muDbcmtyjG0SD9d6ieD1bgnYys2wny0zaOBm - X/h0MizAnc68CgNR0UiIxQQsTIu8w/a95CZ9O22tXvIb8n78QYzlJGB1037e1w7xCUrbFCzKkkJo - w3iPZY23Y37MDoy484sTVuWspMNekztph5ZoYr4vtV7tx/wE1zdzw6YudHToaTFARZRrXM69HHPD - RztLv3hwsaILFeppP//ZM75TrafxFzLiJIUXrHDHnTvVETHgeSdXJHQKJV79i1XCfH3WxOlZ0JOy - BQbEh9uMb+CixMIUwxQK4dao2/xeXTY6XDNoXj7B9Ofvj96K4PgMXrhQayvnjOeHAVUhqvi+1nNM - 0c2yQCcmLTH9HGqTFM1PCe6kPbG/Ft+v8vu5lwIlPmPNX44u92XmDnLhXiYhd0hcLlDvM2SvtTnx - iXmL104ABkgdLcbofv1ofevzExSc1xtfAq+rV7apLMm5OxdiJOYt5yT+vUI+XoNtPZ91E5yjRrrJ - c4eP2l3O2eKw8jBsv7t/+/mCfQmbwmuxdpY/mvDWxQwaSaphU3TteukzpEOcr5C4y5upx6f3ScUH - 9/mieQZGzqUHlpe+l2eAuPkw9BN7ee6l/HL7ElPIcleQPsEqkW90JUff4zXKc2YJFbQdyamVJl5Z - 59XBz0sf8eZfgNNaD0GQszXOlMqPWf2oZVJafhp0gEOa0wuTe3BG80qcJMjclqvsVdpnq46Yejrn - 67bf4DPsI1wg/5KvpHyW0te1rvjiiwoQwv2pksa7EpAoQHo+H07XCaxj403Dq7Dp8rwOLayKvYq9 - wJlp56b9Cj+OQvEVR57Lfz7HM3w4SCFxPRa1AHKGPYzqNyPGB6g133+zClalt8NyXKWxoIXeCq3r - vSLK2EXuqtNtREdv2djrpyhmpzrlJWfWK6LsQjFf0EdNpNsxAdgODCUXpurQgkNqaEQ7eZG2jDe+ - gSQZLHwLDkXPCl/DkBbPWLC5hjwdfbVCUjLtbXwz0oUOpVQnkJWGehJj4PRrLZcqrKf9F3G8OoPZ - OC2WVPMDxqXLvfJusFoRjp3ukBylPhBgCw2AELcSObyF4M++Aym4bPk2qrnLKRug/eCvRH/q69ZI - nh+gRNeKmDOt49F4Egjli+eSsIpcwL1pOUGvG2747jycXpAnfw8v36OLnZ2GNK68XAop6TsOq1ay - 9DNe9inYjzkzNV/mmPMX6Mlw94QESdLXcbnj/sCIp9NYEYV+3JyfvGsGslCzsH4mER1MMQ7gWUAA - K8p0qOf8811Bd00rkkPA5DQwGAdyZdvjPOjONc8er/zBRMWIz5fVB+vH3MmQNvKEAxIX2krKroC3 - 9I2JdRmaegp2uQFtEQJsbvl83eUsD+3P+MEJe5+12bCoCOMVWFhn74E7Psy8gS6NR2LURQHY0D+y - ErwNFBenmHP5V13wcDJXhlx2iQ84owtTaX065cTdI10jF+1jSBt+IDex9nLqjp4MW/5tYQzAued4 - AziwessvYi+XtKfT2y/gsfI+pNyLaixEUaBLltIDtLNHrp6F8Iug/7B2GMETzpeDUu6BN7+G6YDs - D1h4g1pSegs+WHP6T76yTWtJ6HTOicFeDcqHvJFst+Ad7CtNAWblZEZSD7091mKc9kJjnCaID/cZ - O3XQ5XNzWi3pvFMrcg8/Vr5cTtkkjcf9RGwhWcCSGqIFeRd22D6Effy2uGYvMUPlY81rZcrZfhoA - rWABLhcZ11wikBZ+8dRt+Xhxlwv7UKH29VasvIyKUrG7Z0B9ziFOzGMN6PezDSa5ZhVWP+sLLO0C - MqDfMvSHtyY1VROpjdKBoPe9oesA6jccTdyj+c7AfFUYc4asDvk/fDhjXamkL92bRK7WsF+3+PeL - H6QInICuy0FgocGdXexGkdwL3e5swB6JB/KHb6KpTmCjuGTqTntd6/NoeUobniVJc85jSmRLlVwO - 6dhnwxpwHz8MJL0cXWIk71qj7tbIrGX75S/+zMQEMmz7GhEcQqGfKyXew5c0aFgrmzRfbD+IpGrN - it/+0vU9R4Y4C1VFVCsJ63V5ZgzY4jU2WRTEq8Pab+DkBw3fvMaPueFQZLDE+Wuq9Qm5lHqQh/aD - vSJpUB+A7h+xIW7xl8SufK65d37gQSscjtiK/XKzDxzA4/JoiHrXS3d91QkL1/qWo/xhZT0n2tYZ - ePdvvTXWHelsXb8dRHxQE4M/yy5HijwAyu6wEC0S7Xze4j98yl09rSh0KF8JYSdlg67gi3CoKH2U - mgxPBxESrXqEYHwmKQu2+EHKSsjomtr2GZ6V4YnOGx5eXN3dZvsKPjGsVeopd5BTqd5rHqp25qOn - RJZVSdTu/cR+fB6sj3MlSxgZFlYN1QLruJY8/Hw7Bpv3R+fO0VBYP/yBwJdX86W53RxgcImLz9Z6 - 62fUUEeil05ASyYecyqo+gq8s+WRk2zvtCkxoAVCAGLs+XqsLTszaaCczwWJ2zkGa4pujniNiY3R - NBlguXzqVWwNlUN7hm01yhy+PFDUD52emJT5D79CmkosRmLKbY1FQQVqEFQYPc5yLzjWdosK+Fdi - szc+X0z4LKFgR1/iaYPX83wep4cNP2BfP7kxJ9pyAp3gfkJLbX9iaq1tAP09bMj1Mdr93L0vBexV - B02LLeX1XBlkgLsr7018AtaYSP45gDTbu/is36Z4YrpTJqYMIti18qQW0tujkQrCPnCh7oWaHhMu - AqDZGVgvwBSv+8hoAWi9jMRBKmnLqaaRdOzbE1bahw+W7/nWAMYDKlaiXsv50z6upODpl0iURBsM - b/PawIV3i4ldn+d+DXmUAHLWjpMUHGBP4i/7h++IIfYkH4blkMFFHEdyhRdbGzb7A16COeLx+KZR - s+N56TTWR4yjeagpOeYsYLyDis+47gH9ik4AuVCUMea+yGWtkiskIco9YoB7kw9wn1bwXXYuQW95 - py0c26kwjkOJHA1jH89THfC/fItmKxPB8FnMJ9gPR2VaThHIV1LzwR8/UlHoAP6TsMF2xCvG5hfd - 6RhXzgq9y93GRrbv+/l2VTz45C04ifrb1eZ7cZjgS5o04pb8AmgUpQaMrNgh6IDDemSCxxnGiPTE - sEMtF9az/YagRRnRJeEc//Ai2PAYsfoXV6/wcTXgxiexLWa4pjE05MMS7y84Lpt9TuqED6SgSDC5 - 87dao760zNB32xcOysqiwtb+FSL1aKL5sycaPZmVLBIjFwnWseou6JCnwE8WC7shFUHbuqoOGsmZ - EYNA7S47Tisk+xaZ2FKJCNZvOszbLFgH8a8rny9V6yM4Mm1ObDEjNbUvTglNwctJqa4onyWizZA7 - VjYpL85LW8OtDfVLLAliHufqh48NabMfYsuLUi/Q2/PQH5rxt7719Pv7Hz9JxCWtuZciJOLNr0/Y - 2OxhvXFeAbc7aNir2gTQioEt6JQG4DDq65yyg+ZATNRgy1dHQL3dyYBth0KsMZdCGyCWSniXIoHY - 606t+5AqA+zQ5Y03flOPdtQYkiiK+R/+mOTrqwVqEbdEZ52K0q5sCnA7PC/Y1qQhntM1ZEXuvmux - pw1DT0FdBdLTccWJ7c1tFFXWPCWpjIyp2hUzmDrHQyDs3mfEZs6OLr5v8lCWSY2kBuruAsauBN76 - 1NCQv6R6trwmA/JoXqe9En7i0Q2tFRiKRYia3ox41SdtD42xemGvdhSXWvohk37+E4XDBczHJhyk - aa4GchHdb00bRRElGMXHH1/plyIPUunpXxE+CjvHXa87+ARt/0DE3vLdwPnzBPX3c5n2+TYbVWVv - b3GsP8+pzx7Pf/mSDZMRwZhT4uWF2EbKOK/B6TBlGvnxF6evEAk6RwBzvM1upZr+xgWVkni9iu0A - t+9DRLH1WBiV/iz+4nlp+Hn89/4Z/3iQbf/cznNcBKPAmLEqH0m9hrUUgOXkJ8TJFSueb+VJBdXR - uCHppoYx3aWzJ/3yH5ZqGbD8mrHwxJ17dDiEbr6QB9GholcOcQ27p1RdmFTc8g9Ghp/n3Mb3gG6A - N7HveUUXT2QmyFqeg3i1YunyTFJ+n750Hwft0MTjFk/hMl147KjfsF7rLKikMJNc4nvNmBOew+Wh - xnGJlcS+uKzlDSm0tCbCynhSAbvXrA5uehriDlCrBQHu99LJaySy5b967ObAkIyUSYg8g3e8tW3y - AK4uCHv+3tLWsHyUgJ8wId4PT13HvgQ/vHjr6xysp74MYCNZMz5B5MWrGTrrH95L1z7OyasKkNRl - 4w1fNcmL2SPg34DwOx/tmsvJXRZfnOD91g/T4QvdfsOPMuCXu44t/fJyZ87fuiylTk1+8YVA7pDA - BxsNiHK0o+uPj6zTwcbKK5+1eWhYB2jdg0xrNVj5pn8wcGpHY8q027sW7vcpgcivOBwgtaHk01jT - T4/C6Nzf46VXH0jaCQ95etcFpPOtjyIo128Vq+Bs9h0wz42Uj0w4Lfq9dcfmdnKkgxyUWA/Wa89u - 9giS9Pog+pWb+0XhhxWGdDhgJRNf8bjj3BIKp7ba8s+kdc3CpfCnD+nZ99X/+W+nvAGWQ0utqV/v - AnDXPJ8kDadoLJiJDgO96vAtTNV44a+eB9imURB3yvfaUjPGCmGff6ZNz+oJf3s20inJamyW6REI - U7V00hbfyCXNh57e7+9ECtrJIGZ4muh6+a4QtM7LwNpRiOI/Pc1x3gZW6KeP181fgKrZBmL8+OBu - ekwAxDwOCBLTE6D5EUbg8zJGFATJWM9rt/DSAFcXK8q1y7syyVggTFQlunfr4kUzowZs+ijRXLbv - WydIRCjuygErZh/RtXwEhtQ06jboIZXcdj5EmdQ8TWE6VM0xF4jzaeHr2TvTmt7eMR2cvQF8No2x - N7GBy1e3uwNp4VvEs4LSHSVt0KFnryfsR493T9FNtiQ/Ll3sr99rvajPOZXQuU+nlmEtjT65z17k - XaYj+nhd80Xipxk0eq5hjHeMNtbHfQC1QA+IUpfnmg6a0cJDwhJyDfGxXx/wVUJ4BIioD+XSr2Sm - TyD1UNz0HtNdAZZVSZ+SrRltYGjCL/+YyQlOMlkVQF9xxoia/fpgJTPmfCUzeELeDz9oVVBM//7+ - x5+99wu5Ay9MHRRVa8Keuhd6elW1Ff7s00R40QYv8TO45WeitfPWNOzxNkRTmVRiatM7FhZtX8Hr - bMrkuIyPfkj1DgJVcw1Est3U0+F0H2BSYfNPL55154LEzR8QX3AvbV2vCP3wLeIMI82nVfme//i4 - o36Xfv3hIe6zdQkSi2+8nDW7Axu+JNaWj1qX3aniU7gfsGpctlnsbKNCudnv0D72txL/9ejBp2eE - aJnzqp4vlTVDXL+fE7dPrjUtXmoDNSvosOIaO7CsYe8dyqy8Y6M/4759rDSQDgfZxfn5g+kv38LP - 8f7E2v7Q9ksEqvcfP9riJ51ZGRTw9Tj7xAy8rp9XSRVBdp8cLH8VWi9M8Eik5yELJmb2sp5P0Wnj - /+pr2ptIrjkwdgWI41giuoWsfO30fQquwW3resN5PVEXPgMrPxFsXiLL5c68foaKqNaId8iZsj8+ - uenBE527dz1bZtr86Q0bP8/Xgswt/HxbhtjkSGjfz9ITbHouOgDU9HN0CDP4PKQBKeLzNq6G1d4g - LNGdKIAf49WTfBEa0W0gnkc0Op0vW1cltK5YDS9WvwSz0cLjxdAnykOiPW7jt4A/vafspTSnc/N0 - JNEYdli9fBeXIM1vwU//j+Dd0yih6iCdr5U5bXgvXny18kAH+hexJI9xvx7XiWA7OUpUar76MTVW - 609/8zki5CP09iyMkq8yNRu+perQveHQwDdJtvgxX89QBhvfJIr6RPVSNskAtcAIfr+P//juxtdR - 97M/+Tp28Ie3MDO8NGoJUIdJLART/gwZ+rdetfqkBJWBuuHVZoVhY07YJgcdLF0dsdKXw/q0BqiJ - Z9bAEazrcuugCbFGIbck8CRZATFF99tTzr1W8MZsXQVD/Oop466MmF8zeeJ22UUjCbo7EFgfTPyk - lLUfHgKbnoygIJjaapuMDDEkOtFMcf8XD6AWXn18HOlE17238tAqJpbgPenBuOojBNW9htg5ZrLL - b3oCTFeqTEzappQairwXiXUOsbrFj7/6Ur7PF+Jns1VPO/guwGunyPjulbrGP86tKm74HdGxaek6 - +OwgfV3nSlT2dYjbErOlRMKSJbK8G+ny09Nbn8+IkuX3mry6HX/Y/HXa+B5dtvoevHxNF6v3WqPL - JBwMWAwfH7HaznCFfuYqsMXLiZbNPqYP98DAT1AVGEv1dmSb/apQTmtrq7e9tBVX+gwsLMvE7sIM - rNndESG8TRT/9JmlqzNW/O6LlGQFo1BBHZ5v+MNzwtnW6HqM3jq821tXr2po8zVRquS3X1j/3nc1 - Tdqwk/7Hpdn0KAoDYPg+v2Lj1Uz8Qmn3hoLCAFo+lMFksykKCBSrfBRssv99U2ayhz03TXto+rbP - +yzmBUWBifV8vt72HojxJTlIXp76NX06GIaasRV8+8a77PMUw4GfJdHxKov9KmB27w9oW4Y30X9l - AXBpNWEq21z8NqoVEwg+cIAgJbwOboUGr9tAZjv782b19dQogUnWJdu/jk+fzyw3hZhOG7bX7VLm - UtlKoA9jikS+qYsVsUowfRge8jcXEjHRFwJq3ndsk0hcfQ15KM4P03TM1VbemK8vnmbNrEztdUZs - kCM3Fv3QmHNCakVGcqiz6DkpKx6yF4XjOWyQ3hte1e1UqoGBB6o2TWWmzcoVcMbkiJTpurD4vgMp - EPORsz1CtedxeoHQm4dMUayQD/cBHEuShtb+VK9EH+aAaBUY7VLcZ1yRLRMs1yRCYZbFefXp1MeB - b7Qk5nHUnZCvQJQXGXOm60Id+mgo8oXZh/3Cf0FPylZgTGWGZ5XOF/iGd6C94w/0AT4fKgcUaKBa - PO/MbFfLqI3LXILZragQ9uVn1adOGoCE1qX4LwC1660qA5NVd2RJw6KoObmZDZWTPz10K9+uWLQF - DlguNxban+9F1Oqu2Q08p/XnBlZ7dvEd4D6LgBlXKbXa45oGcvKhRwdCn2Y1s1ylG94ryJq8zvwV - jc82gAlR2d70CtGX1gGYtPjKdii3eI8hOQLPDzQk+H/+xbtk3fGYASuVc8eXMchxELZdyUx55pof - B/lhXwO0OctnmV+eAQbm4744UJGvPME4BXfNICyok6lV7xVXAd9KwduPH7+EIDAq6TUmQgxo4r55 - /6cKvC/e6xITMogFo7bGaTz6+a0gjB4VLR/N74YW8b0WrgFcSbMv3WDU0AaT/4bexIJ/3v4CAAD/ - /wMARUfxPboFAgA= + H4sIAAAAAAAAA6S8S4+zQNMluO9f8erbeiRzMxnZO+7GgEkMGONZGYwx4Bu3BLI1/31EPT0zGqlX + M5uSXKYsyIg4cc6JcP2P//af//zXN6uLfPiv//6f/3pV/fBf/9v6u/ttuP3Xf//P//7f/vOf//zn + f/z9/H9dWbyz4n6vPuXf5X9vVp97Mf/Xf/8P93//5v+56L//57+4b634LLZeiB3rk4XGRHgSbXOw + I4FPjhV8t/2J3kzzGLHd1r3BxR925OjYgT5L+FBhHMUFvZziJVuirAoBRKxS42ye9cVa5Aa+wrwh + x8vH1blIn1MofmpGDIN76+2x93rYN9ll3DwitRPZAww4bPbnkUlJzWhgqyF6nQqO6KERu8tz2sjQ + Kb3zdz/ZLJBuAiT8JH96Oz+33/NeAcavzQnxNpduCtzRh9tTQdSqXzt9RjOxoPoBIWf3y7o5EicZ + 92g5j42CBX0aPouM3YEYxGrulbtoGDwUDXlI01/RucP7EVWg+JuXjyRu7BZVVS28v4r78W1pWsY3 + ZrAgbz/H5HLeb92pmbgF1+Q3Uis4bdnE+60Aiq4dqALI0zlz6GQIdswge4vbRDPPlxt83qoODamw + r4fiait4d6smqhwucUelRdOAx9aDuE9BiuaG1yqsboyYXuPL0R25g+fIZeo6xA4qqxP8ryhjt89E + ahlckk3XUK7Q+ppY1VevRSITBUBTz+RoRDObJ/bz4LjVDsS7pIXLfV/Mwad6islZ2RI0qdJQQqpw + AXF9Grqsu5YNyFHPxi6qLzXr+W0C1/Rr0sflk2Uif8sCaEwlo2nq1ZmIdu0bpzxQ4r26DWKapin4 + MX8Leiqqt9uduLcH7LHD4+JehWi6i1WLCy6VSCYLpcuXj88C42jfiLE5SPXcxKONHu9IpUZHXh1n + m+GIeddL6E3AQjTIRmWDdD859HZOIFuKvrbxtZMz6glHI5u3520Af+f9wDvXHWB7CMBBMSIaik7u + sstCA4vHJqOX7kS6UQ2SQi5j80MPCvH1Xi6lBXN9U5OHOj4j8dW6Cmwuv4kaOtz1uTuZBu7FfqFG + cx27Jb1XGv7tFZcEj6fpit0hvGF3emR0/747LrfTnz7GntaMYIYBmmd8XnYzsUOq6PQQDY2ZTsj6 + wIbeh8bu/uXr716JVE8HSZ+vlmyh6R4c6E2/V/ryPS4h3iz5kaZkVFB/sY82Ws+bWI6wR9NeOgU4 + 1NI9Oe0snk3e/lZA9TIfVNemWy1qYeoh9kCY7K+uli15WKZ4ebQ+8bbfXGfp6fnGp/QmUmvZhbUg + d2WAhdaUqO2KAeKs7DDiMxUu/sQXWsfh7ynGC38eiZPrdScUu74C3W8CqvwUJeJ+UQpgvn88eVSx + 1k0TzXIwimBLkjZUMvG8kxe80z1xFBmYujjUdwcwCWXia+XRXaJuyvFa/6PQ3DWX4wJBwM6xOhMV + DmUm7APHR/MwmcQ9or5eOk64wdTnQJSjb9TcQwss/CanK4nL95Oxm/TqwSPybZyv7T3jSZXYiH6S + OzEUnOjccOlHcPurSJRYUjPGH08y3O8poZHJXu5ka0cZ7KpwqGfbX33yko+As4m29HhEOWqetshB + vftuxs+eF/U5/bU5giGdiVOoM1p6TWpx7FkmCSOduXPumgK8HEceJek1Z+KHm24YzlHnC4/Fi7gi + XkJ8GS49sW+bi97HSv9GF1JbJNgZ4E438hrhJsUcyafUcgWsaCFGAVypI26IK3TcJkWd933TC87K + aIj2fgKBtBX9DXGrbnlYA8D2ruQkIlngsq1vvGFqGp3cJler54Z3SrTiJ/WUws365drncjn+BGpF + seMuzmcC7LlqS/fdidTzkC3FX/8g8V99GFJ0w1B2Nt1/Co3xZOkTdONOJ2qw4YMWrQhavOIvVTvF + jqZp+2yxAdJCE0iPbOGvYYziyF2IvvaPfjynI+zFbvDf58O3Zli/eFBZj97HeViiiQmchjW5Gqjz + 6saa2YVRgRV0JlH14YF4d7gs0M4nh8bc81hP8mTZgI4Pfs1fvVuu8q6BpeBVcpaSWBd0h28R+Mtm + nJ5J3c2D/SggUBSNOPpd08X8rVc42MuIWsKkdZTViiSf6iWm+sat9P41fAACFwpyWZCXzfsUc4jH + xmNsdLi7U80dGvgeFUS0t7PLKGnnVj5G34GGgdG702hqFW4+92aUpzVePxQo+N6MB+o/bUUX6oxI + 0L2znw8PMrrsSDYW9Gg6032GBX35BH6AnO2toAd+83HZoO8amIkT0iNIlSvmwnWE+n37kj3OlEwc + AxnA3i26j23nySbBTRQcz/OLHL3NPuPb+CTjm39p/Fm4z4iu/QZp6bch119poEni3wB6WdwoycNZ + ZwcUG5jTlJhemkyq5zmYBMxd46PPkfsPLfQHE1gPXiQXuH1q7nm1FPzXDzWjfmRLEKsjvCbjQ09y + /GT9DDGH89y0yL2rEsRxzVWAZ4dymlJLcKfT9Ztiu8odUhhntxO1MPBRT18djU+hHfFGXFn/6tX+ + /LxOvES4QcfgdqF/9c639Sf8h+/3lQ8trGAOLoPgRK+IvaKpLcMEO2ZGiPcdf9HXDnMD3k+YyAOk + JWPvy1f440skN8MJTcemUrBph4TY0fNYz897NsnHcQa/vStXncV57WNlaFLi3snbZaZ1X5Agxyb1 + kXpzF/O182DgNimNt84cTR3+yXhatj96uGtVzX4PNcWSo3DUy3XGpkFSDRxEYUo9cfOI5uiSV3DR + 2H2c9eHBpsdy4GDFo3FKC5l1p7PTQogu4HPn3a1uXy8+xMVdckk2Ha7u9Bq/C1x2VUJsaWnq7vc4 + pDtdnCLqeXCs+fGLOHCtPiU2aqRs2oZVjFf8ps7kVjV74CXAV2T6/hMOSjScK1WC3c6uqbN73zJm + CqSEkc9jorlXIVvEaFdCYj5Fog2coPe1/lDQdBQP48tkfDTvc62FUhbKcfq4KuNnpf2CoisHYj+5 + Mfvjh+h1Li/0gi/YZdzkBKD774D47n4b9UZZlRgdR40el9R3udScbUz8UaLaT5m6aac/PdhvF0YO + 2dFwh0Py44Bw7YvYTWt2c3h7xkjF0Z7ahtFkrO2dCRoFJFJgcY7m6uZvYGwNcYQjtjKx3I8yGM9n + QvwXmJ2QnegbbTonGjl1MyI2Zd8EPkvRU7+dOp1xSlqhFZ/H7T06MHr7Xsod/6Q6teSaZoMQTg0I + 7V6ivm2n2fwMbjdQQg+oKwuKLqqNfIOTqLUjF0ZPd3r5xg3uZnTwdyVPsyEgbLP7gd3S09b+RHPo + ZA7Ms5YTY43/9Cjeglzm/kCPRUB0xh6cAamLH7SY0iTjQn7rSH98DsZ6X7P9NPYwNWeBrnw3a8Vo + LvEgeePI3Wsxo6PSTBBee4X+1UMrf7McLuRpjZt9vNTs9AoEsHeTTg9KrmYsf7sVNDLsff7Qmtks + TrYDf/VmUEFE/bVWRhAezy9Jorh1537Tcn/6htrb7BstBcwJNrRdTVIBW3q/8kd0Rx5PTxsUu+zQ + mRJIjqCO/A0Gt73ezh5kCXyI4w9SNI9fxkHx8k3qWdGv63D0ukF8OZ6p0XhZNJOQbFB/kDxyfuWq + y5+X1ABcPAZflF8HfXhVZQziprtQ8zGF3dw2pQU8h6/UMU57Jh5u2x5OtJ98jg0ftsjdN0RUeTXE + DasNGzWZpsgyoy91vw/I/vg3+ou3+t0kaFK/lxh+5+tMnMnVujlTrwFYLM7IJZ8RWvlAD3/8gTub + vD73Y/yFQTcIfcT8p2buzrZgUuWBGoN0qHm9Fgv4HjU08sKT7+bDe9JwMVgbf7EWwxX+4rX2Z0Ji + /tNN1v7dozw77Xy8uDL6Sibv7frytlvPB2VTaB1v8EJHwd/l6g99uTnzAfP+h8bvTHGFcPRylEjH + 4yhFsRzRnRaEmNO02Jcv6YAm4jNFHvxjQR6S4SF+1aNQnGdz/I170f1WVs3hFh/f1PvIdTeLjx1A + NYcH4rl7qs+lftXgjz8Uxrmr5534HfFWbHpqffKfztL56ECchRLVxLKJFpeTE9DZOPlcXm06uvZP + uaR3nRzQO/zrjz3YOnehhOCim7rj5MiBLqbUPvYkY1ZSbxA/IYGao84ilgunHjgRFBLNv7wetslk + wLIJVHLzBymbnldLgzoTUmp9A58tky6+QaYGoRf0frJB35c9oFziie11wh9fLpDoMZ8o9X7TjY6x + n2CMGvd/4mv2S2O43PYJ1fy8ZGt+JFCdxMPf+WYz/7otsOoF4o0JFzXEZxoSv07nw1MK9WXlh3BV + zS3RerHs5visVIhF2+dIbWfR+xsZRnSp/Du1l4PSsb94XSmdqbePq2w4DXr1x1ep9fy0iO2ndw+6 + 2WGqH94n1D93VQp35PPEOxxKxO5BXuH3gDyqEt+reYXOEsxJ4RFVm9psRGZnySt+kktQemw+2tEN + r/HwJ6OmLttpaQDKr+RJoQ1lNCfbawG7l3yke0NzuumwTLksb04aMc4m7zJsBBr+i59NxhIttbuU + oDfR9O/+v5tYiGHVZ+Sg+2d95qvjBrrajXxGpWc2f3dFgEzD6+nNMLiaHlBuoMMoV0TbnTXE0NXy + 5WjqfySIpWe2yKkZ4Mv+exzFNhAYi6h5w4GiadQ74nfEBlYnsNzmgvqO80OTlLgprHqU5E8pdOdx + p2nw1Jwb2cuvn7tshlLB09V/k/24f7P5eTy+oc50l+7R+4lmymMPJBWN1MoQRPNvH1T46egRsScU + d+IWbxLEStulilETfT7ovgBdtCmJm2ZKLa79Bubw9iPGyG/1aUkeLTz4XiXKwL3YUuz6Ejr54dHD + +y5H09T7LWLyeCOG8MjYqpcnqIpmoSqWUbSQdy3hpTJTYt+cuV52fjCC/8Fbql92S8QaD+Xoz2+I + //Cpid82IkPckYhKz2g58y8NeN0MqLoFD3EZdnPoD7JH//Sq+H4LPqrCb0JOH4zZP30oIRnTQ67+ + 2GTP4hfe+7QkXmWaGfvT7398Uv1gjGazSL4w73WP6EvL//knJartRhv7g4nrCVx1Any5qWNXSwe0 + +ika7IbZorq+eXd98URfWd92nr9x99us7Uyj/eeHmdTodWZepQWZFffw09n+sPEztV/480f8+Urd + mWhyg57smJC9SE9sehSjAN2mpMRa9c4cTGmMWj1vVv/mxCYa6hLGUVKMnwX10fR9IRt8lFe0cPeP + iOmPU4Nv/rkhB/h0Om0h2GCt2w/Ex+IpWvlGg9b88OUxMdzFVdkCspLfiduOT3fVdxV6XAyfqPuG + olFOzRBevRCQsBeVboYRGSBcvnSk1Z5Gi3QfDagf1kgId1LcXpTYBODQjJia8u1m0UsAj8VwG8Vd + E0TLUCoeSFsoSVYbRjY9f7EHWRUb1IzCIFpO8ylA63n7shkqtbDLQktG4sOkh9lROy47nnrUFpwy + 9gTF3cL/ygrsvTUQfRTtWrhMng/yZUn81ymu9KVJmfyHT8NGOHL1vLV+Er6n9YNoc2e59BPHGoz7 + 7Ek8mUu65aLcCmiLDxvFT1Eh4V0/QzhulQM50Y/csaKsRujLdOcjXn2yyZimHgM3div+avWSxZCi + LuOv/nT0m3p5CXr+p/eokYKpL0F9sVD1kntiR/Et+543QYlXPUbcNb+mS5olkOd7i5o/7VYv0sAF + 2J7E6d/7XHWYWmz8vjnVzrs2G3J520CMNz6xTqFUz+PO0QDPcCL5ysf4tvkacI4LNDb3qa3n3cWL + /+phFFd+QIm8V2Ba8I/G2NPdab0fSOedR52H1tbTnz/YPSQglz1/0YejdLTharrVOD0PQSTY180C + lwIs+qhX/2POdyEKt9nDlx25616vqkyw1igqyeQFGNU0RwPz8tCo5ZdNNz/v0YTX66lmLYbOkouW + 4o9XbUdUSz9GRaMJcSR9Kl/+/HLUl/lNQFLzMah/OJzcuWU4h7q2Q6L/tls0X7xQ+tN///Tz8hAu + I+Cf6NDDYBXZTKrCRnZI8J9/5y7ovAtg9b98+Mh1Pev1toAd9i1q93GVLacApL/6Xv0cYKMY9D2s + /ZIYnRb+8y/hnFaFv1luH/aXX7vIolefs5Y46kFGFXpLj5zoefN1l5d16qFc6I1qrXqIxOvGr+BV + /j7//Nv+kkYx6IOvk6NWsGwOZU8CPMgDNadejHprP45gEMujalFZLq/2g4E+xtci7j781uLDVyp4 + HqPfqmf7enwJbi4fsmz7h++dqJ0uN/jzg66XhNN7o2wruIz2joTsx0XjQ3j0gJM3R61TmHZ894xC + 1Hi7mNptGHSL8TU9yPbPD9UCo9encf4UyLQDQh9b8RqN6iQLaDqwN/Ef0bNb9S8H25OhkFPW+2gB + rQh2Yu/7fvsZFJ1rVF0BhZNCaiw91ZeEnRRo+WSg6uHqZ0zkEgWuW2ceUTDXrFv1kfyX74e9aer8 + BzoLrfXscz7BaP7TQ842Leiq77Khe2YBrPplXPldNv10Z0Eahfv4x3f+9D6MXnAiB3rWXe54+X7/ + +dnFC1712v++IB5KidoCtlzWuu8U8h3qqb/c9mx6YcH5+3u6b7K0nvAeAFb+7s+BtkTTMc4E+BWx + Qa7n9MWWuisseUiS1zjunyYS5f7pw5ofVJH2727A3TuEVBECH474nbFLhN9wiJ4WsZjsrv52Z8Nf + Pygc58eWDeCbtLr21A3mGtEqjEOwuV1Ebqu++IePUeJcfU7b7rtl9UcBe0pD9M+xY+PmqLdYUGKB + PrROQN33tPfAzKoXMS1udPv91zXk54ffrf1B1fusxwG8tFAl/k7vEHPSboRlX9vr80vdb6oz7S/+ + dH9oz121+jX4YCQR2a9402vCqYTLTaqp0s4o6tXvIwHxa3fkmIclmz7pbkEFnGbyx88Gff/t4Td5 + Pk3W+phD2ZDgnDcqIfmjiaZdbSzQKBuJHofG/ucn/ZsHKVnL68Ofv5fcW0z+4r8EOitxr84W1er0 + FY0H55ei9TzGsX/9uvnkUQf98TOrIzz6myfAyuf9USmybnEu1YS+R84mF37W60XRzxZe51VE1efa + 7dG93sCfH6I3voH484n1WOrvmGhU+HSTMUkjRNZw/cfnJl795SgKJZ1YrqjU/D7FAghCUJEkONfu + v/nW654F6zwkrRm5TyG6pq1J/ZOiuhy4hwXt9sGNmpeDkrGfjzzUpYpOitoaoz/+Il/4go0bSYv0 + mUTKhFe+8Y//zoqi2LA+D71D57MJ3MMEj93zQpVIr9DkvQUFfb9p6s9/evlYXw1ZF5eIOI7s1uPK + 5xA4QzbKq3/Tepu3BPu7eR9/q//H34KxRXdQNGoqW4pGf+cbqFeZ5ct6MLI52Z5ydM8/2pofGZvl + eIrh77w8SdPY7J4OCppPr5zo5YVjfZJ9bfQ3LzEvJnYnAe0n+NMn28dJcuf0V+V4lzyOI1r9fxYV + og+KNHxJgq/vevISKkBf/wixlt3S0c3pdINVv5KDGlio16OfA89+/I3c5iB1s7YbC5A7pafWYHDR + 1Dt1DH/9wH0N36j7m2cWV+Hrw3c8ZMufPhaEsFqvj6N+9U/gtBxk6v2o5nIv30vhmx9HonOPCFGh + /eWw9iPiieqBiYs5J1Ccmem/UfPVaah9C1j9Xl8KS47Ny6jcsLqxYnoY9xf325a3BAqtouTwhy/V + WEl4eW9ssn8oSs2tehx/lKYekRpc9OXa1in2UVER6/BF7GvixYAHP6rkj0+wpn9oiG3qyc9sa4yG + g5V9YTrMbxLBYarZRacpnJk1Urv6RmzZl0GK5UdH1vgS9F39MwjRGfx21aPDmv+QhaZICO/zNZPz + SJHTLn0QBUODVv9FhsPjUVFjzwZdGK/jGzaPRRi35nPU52x2FSDSaFNHyw8R661jg9Z5KDntop87 + DJmco9d3GagdljGaD8mTw/sT+ORydauI7hmrYHuYLLI/77f6z5x3LWhq3FHNJ0M31PtmwhKMDtHd + r55N9vkrweO2a4h5X4xotogaArBdQY3Dt6t7pWsc+L/u30D8pdvkyN9WJtHq1MyETxkX8BXYxn+E + 7My+GdZzvOpzEsnx4i7PU5RgtG1c+mgOT3cmkT3B6eAb/+Zt8+5ixKA+d52P5AXQfPxsNrD6VcQS + pqobVfVgyWl0uhIvfjuZqM1swlZpmNT+nUQ2nHKcoHv6fNADg3O23MR+gv/62wr4P/63/w8bBfz/ + eqPAOHsqsTejzvha6ROYavFB/I9m6KJzJAUSs+5Oj3cOOhZ8tAmCrtqOX3Wu9VlXDyNenDimRWQr + Lj8flTfG9S+m5lc61lyoahLsuj0/tt1G1XnY7DaIR4lP1SM2uuX1agA7Phvowa0vSHSFMYDyN979 + xKaspjz6lOtkNiAPIxoRe3TOTQqE18ouNh2aM7H1YHv2BEpUZXYZwZ2MUOMDtd9l5o5XJ+5BPxg7 + mvsHv5udsLxh7eN+iNpNasc0wRagCqSQ3rW808fb/XaDqjBskuTFB43NpSxQ9xi9ERe83vUWZCO8 + jsmXmvXTQrMwER/azP7RwJwMl8fCPUZ7Dn9JONmhy8nMusHZGil1dVdjwlmyCnjPfUzzVxJEYnwX + vuAqtU2MV73Vl/DxlSFHZU/DqPl1LOIuE64OyUD3+rfLxktxkGGMepsEXv/QZ9V4OfgWVxN1q/O7 + o4dzb0F4N57U84Jzx8kvVca+6Mb0KB95nXWnOoBJPfpE3WA9Enl3juE9dKJf+emCunKjGPiFRUqU + zOg7Vj20BBvvz5b4yftYs1cRcjhurMJnGzSghR5OEqRVQHz+veWiV3+KKnxXQpv6H/rORPd+8rD1 + Oqf0pn/fHf98tBa+9zrz3zZl3XQ/3HOgehn4rMSqzm83Tg6pEmOi7M9ptCAs+vg+zYTcR8xn7O7Y + PigXJfDnoC71xQsEG/ZG8aRaOVSdeHcUH3fiZqJacOpdNnxiCaheBTRWn7+M4U3owWBMInV3lR1R + EAYDsnfg0IBz9vV8SMUJ0ov8JMdN/+umV/UM8EZ2DtSiu4tLY+PZ7F5pdqbmQf10zOeFBT8sfSZ7 + zrow8Tc9FWyfgi/NlrsUjf4x7PFtF7j0yMXgjt9rL8M7fLkkp7eryy2f4IYTR99SM6nviIsTqKDO + ZoveYqDZxLnWG3xvWxBbvm31xRfmEsTj9KHnrzR0Pf/LBdjcYpUWy9bS+fQ0CsDnR5OSOqzqTtDj + Eaf6waK3X/pi03xwbLDHoqC692y77tCbHsb2+0MssftFbIw+I5yLIKIB7UImau0UgBW3V2L5376b + 8o7YwD7ijRx+9j4S7qcwwdzlV1Gn9IguqHbXALtuGqqlU9nxL2wLeNHvlLoH4iLutDv3cM1zg5zZ + L+1Efeg9xFVqQI6/VNW5pB9txPsJIckJtRnzTycbDuk3JsUBDpkQVbmAVcZdyNmXlZofr3YLF2lO + iWXTqBPca7jAufm8iHJvbVf4iczBpuYro6ycf66Qf1AO4ffgUyKvjNOaXQeUbcAIMaKRsURfLJzN + sUg0cxzrSdjXNvxK4Ih5PVwzoZoHRTZeSPF3dKxqzkaNj2/P/jNKF4y7ZboUNxDPsUfDkUhotq40 + lMW37v6dR82kppDhAx97DJ2jrs+veQpgEeNovO5wFs2Xm17sjAkP1MlHtVve1sfH+zkvSQZ2zRje + 3HywnKAjLu0HV1wuuxu437kj5s1RIr6JKg1/7vftKCb80WWo/tzgU5GMhEg2dD6vsQaG3GZEH5az + O0WPk4N/zx/zf80vRKJZTB5uM+dHSRLv6p4K3m2dHrrU3PNB3a/xgWMimOOSOKY7dqLeInHeS8SP + IsJ+3cvuQU8wpfYF4/r9ltoW5HPUjVLWKC7n5GMOjhu8iJthiS0bvB9xoOSRP1bjI5trpUlwaQQ6 + PfPViXESSQN4tMyjh3pWuiW4sAW/FGeh2ted9EW8NxUuL7NLM/FHdOrnzx6eLWnIXnjq2RLGaQz6 + WEc+unZVtFzEAoBI8jhulFeFVvxwYJtqW7qPyQlNh5drISdQVHKTrMjlXUdfYHj3B3qzkBHxrJI9 + KOVrThRddNg0lOGE2XK0yekSu7rQOpIE//JNle/ZpLtkAdpNjPjOz61noogtxr63o5F0DjtBtiIJ + /Hd+pk6Lb+7grBs7jfvxia9LSiaqXquAyT8Daou/CA3kdEjlk/O1yfHz+KD55uspBmpO9Hbjv9kc + RUcBvcOPSzQwY3dWZprCA/qCZj9rRoPuhQH+LZJFLlvphxbzNk9InRWfBF95j5aWFiW6v/qK7gND + c0X7uAHIo+BA9I3fdYLAmS3G1+hN1dDmonHaHELUBElL9LTo62UrSDFOHHX7rx55wX2+sbahrl8C + 56LpYS4aXJZ8Ty6+5Lq8zKUSqEy4jJudTnQut34l7hK9oBqYnD5/4JT89Sdi2wpC81Q/e7zgX0PO + elsywd5QCXpBUkkMetGx67Ue0UDFmpLqlHVT8ls83C3rxgq5GJlw+d0KOEL4WOszZUM8xwZ+jqFC + spq6rljxdYGs27alLtg644C2G/g+yJW6wL9dBvdUgZ/dB/QEF9td1Icx4lZ/mbTQJSWiAh84eBN0 + EdWv0sn9n/V6w+0olx7VX7XSx+BW+Y2k6aZB83l38OHZvEKy8oHsX/+VtMSlJDsr9RyahxgOkyyR + vea/2cQKtqAP+RxG3Oz6bt5unALlQLqRdd61m1VjsEFMnTO9qE+jFtb44PRspDQ7jmXE3mfBw7ag + 6PSe31Kd8ZeD9IcPVL0tabesfAfPUffxP92prtnFeivY8eeB7KWXF83by+ON1vomen8sGW03rwrD + 71EQ1SNZtvDzaUQhkVp62KdfdznWTICrZlyohy6ZzkO6N6BxXz7R1c3RXbTsGWB4QULPp65jU2NE + Ct51Jk+chyK5Uw0vAS72NqDG7dO402vYcdC1085/XZoGzdXBBujCMiHmmg/MbJUJ+HLz9O8s/zGG + Y3aDRnfYipdHfTICG0BudWsUiS6juducF6xtBpeeln7lt0uWoFJ8RUQ5S2dEo0zrsTprPvV2i4U4 + dMp7SHwjo76bHNGUclGAPE5mviTxDloG55CCe5N5P+rUA1umZerh+HkaVN9RUR+FbeGBYWsOUX7L + Fc38EIVY1/PPimeBy/2aYQRLDNq1WRZo5IpYgcXoNaqd7xWar8/pjdf89aePOtYUV6IMmZFIPpfY + tBvY/iKB44avUXqXmT4HdjPBTcg1elO1Lhue8akCobMTn1KwmCC9Ti2Ewav1a5um2RR0Vx/sRJZH + ykfHbql3N1uO2yult/fSRtMziCz8KvTPCDa+sKnZOSk6F2Hk1/kP1vy4vOU13+n5ethlk3JwY8gy + OR8nXWxRZxdKDxttuY8s2pvsGz2uNqDt6Uu8t750w6xKCmzPvvCPb0/ck/YowPlpZN93Ec0ea9+o + rpOOuscbqjutnUJ8pNaX7Kdvm9GTebX++BDJ5ilxR+EmvWH3hIxcw+8erfzkDY0JQG0TFjZLz8yH + 0CwxuRwLq2bBEiWQX183GuzPacZu5qaE7W9zouQybtxvc+NsMGpDJGaY+rpwu4cp/vwMhd63147N + auYHuyGPM6KOT4/18kuVABc7iXgddN10AzsFXCBpXDJN1N/u5xGg84jDdcOu7ua61R04qMZENfez + /+M3X3jJ8Yes/bjrr3fZRswkB3JsvDYan+POglWfUKuGs0tRTW+7f3hF+6O78OdtCvz1BuTgUR8t + 6sPr4RIlG+Lg8IC4obxN8gvzlHrGYutLIc823khIoFrU/OpFae8hXD/VTP0/ftlacoHCS07ocXt1 + kXASNA39bdj8xW+e7H0K6eSaRMmxiWbdC0PQPocPdR5K6g7z/PaBn7tyxWfUsS2P32C655vPru6I + Fo7jHehN/k1zX5gQuyV2AMaxzalRLBGazH2fQBdWCf3j5/NU/3roRJjInT/rrsDeU4vHpDr5SL1f + 67F6xzl2lm9Ig7np9VmY9h76hnpN9uqzqadFGSrwq2y36tGmW1xt12LufuLGrTRn+lxdjgU4SxtS + 3f/O0fAptxo4yTkkZBkWdwJabdArNAxypaPWCfx+kf70ydo/K3furpMNysJg7E7ewLp4lwI04/Hh + z9rQsLlyOQnChADR1/qbD1rSyk0kLv6uz156y+8XGVhkbkdJICSa9yKu4G2TO/WLmtZjbVQT7J6b + jOy9+6ObVj0B0+8x+5v5pXY8G7UJ3kZ/9gU5j7sRcrNEqupZNNweVcaTtijg+bQcYnI8+cvPG1wN + uSRGZZ5qFr2jEO7fqiN2umkY5YZawSvf8+FmBR27m3sNop38pf78enaz7aAQ+fXXo7ZqKGi58+IG + UIMQNeqNU7OezhX+08u58Di4zPTHHB68uKN7fC8y1jffDVrqk0j0v3zg5+uI1/4+7g4bvRYy9G1h + I9sHcpP7cd1iW0pEOfVC7i47dWN6foWY61dXLMMSmvPzVGL9ebkTv8xtNMg/JcGr3qaKMFVoqiKi + oDWf/C0lTcdk5xajnyp2VM9/ebYkSbzIZalTv0eXzF12vlTJSV0JxD53H52dircDxvGbj8y5q92S + lphDM7bv9GL2XMZwtZXRqneJid63epk2agj3yQqIAlyHFkUR8r9+TxRZL2t+sAUZX/f9z8fct2Tz + /D63gEM4k2MKTjdHu6kHELozWc+7HlY+CdF0lFf99HRXP8IDd8ywP8l62S2DhxPI4dhR+2K6dT8v + XwB+Y19oeL5XbJoeXQhyLxJi7vlp3YDdSIg9ywNxnOvMOtVrNSj78u1zURXrk3eUcwQnH5EDVcto + th0W4rze2iufT9lyCw8Corg3qaI0x0g8epcNTFIjE81PF9Z/n7sJbjl2qfr9RoxdKiXGP5Xv/Ebo + Rcb4l39DU80/qHH8ZfrMJqGHZ56MxDqhNppbS85hn2sm0Z8801mWgg+47mLqn3duJp7BkJCjcQ71 + djjpphnPFZLVpSaPmS91tmGHL3qJVeHv2Lqx4Oe//l98pQclbJn5/guSFq8bkq6KxBAghf5+dYh6 + ld/dNC8lgHYNZuKq9109I9HgYNWvdH/N7I4/3KUNLHUkkuM+vrsd7+4S2DtsGZfVn1j1s4PqxOZI + IKOlo1wVFvitSh49CpoZMb2KvvC7ZoS4WqF0kzXrDsCs63/8D81RZAp4OB5DH77cnQ3pl2zQQ6t+ + xJvegT6npzeHF65yiHkTq5p5MdfAK5aO9HxpGrZct4aB1+fxyxybjNH0K4M7XQKiXo9GxJWLsaBp + KI8jXv2+cWXuu9UvIDrffLI//QVJOQ7++b2NMyYmtxQN4tUmcauxernzWwDNR/o4bfwpWiQkT2hq + R8PHSULc+fwVC4SHWCOXTAE0D83Vwz2/fuOmGz/Z7/RmCryJpRFlZCXrxfkAqAydHXXHrcPorf+l + CD1vjFjKMtd9bj0riM7ucYyy2XEFtqj+P/9u1ffZgprKgbtuncjhEXo612+DCnooI58LiNB9zeL4 + P/WAhwMuoqtfhM1Ks4n3lDTE80MWwk37FL5slClibncf4WhnaNwKCkGcGkwFXvkpOX4vsjtj9QXA + S6VJ1Lw7sXfRpAp4YVj5zaZw3CnoTh4cfufozx+LGPqWDSabp0KMxyNxZ5KfABVtaBK7l75sueeV + hN/zGPv19ju5U1DaLaBuKukVdU09iLoBeNXnJE1PVTfhpZCBszb1iPObpPfireSwvFmelKTHkLEO + aRZQekLkD4/5MDhJ0F8midhXQWDDNSkVoLvu5w/r84zWdxPANZwTev97fT/dYmjfx8THYI3RH/7j + p4pVcjUw1POfPr4Bi0YhCwPGk09V4bXfUteEUactiwGtfHLkOZ7U86M+VhBxYUI84XFY9ftvhODG + KfRys1s09enwBUfa1v5P20XdvPYzHDatRX0mpu5yz1sZ5sNpR1RMZJcayg9k2dlhH5Qo6hb7deOQ + 9Jle5OiyuWPb9qXBHQcWSQod3H47ogLeZhbTw+OeoXnV13Aoti+6v7/XDdxHa8i6XnyIS0Vga39I + gFyt9z8/j50nLkGYb950/4jVWjhLfo42ZBORQ/H6saWw+RGuXP+l1vAp6ykwxgRqWSbj2j/ccUhN + GV5O9SCesXzduQgIh6wTF9BrpYvRtHzSG2QhGan6Er9dhzehDxezsH226nHGDZ3y77xy5wLRmFlz + CMa0Hca+A7cTWFYasOIhUTWlqkVa73J0CqWeeuOQsL/+gFb/m0ScaLpCKR9aeRumA71+yKjTizVq + wL8bRlLtx+v98klTOGT5nebr5/PnnepB4GWCfzePSTbot2SCZV+54yAfzzr7nf0evGr7pHpNLt0L + q8MGncdtSGwvLrtpfz8DHIX2SOz0pNWzd5pk+AgbYZT3TIhmmQtkdGnlyn+mHo7+/FgYBvVGlXqc + 0ECDXoGvGjfjpJ5ovfq5FroXNib2u0T68rQtH7KrFRHNOeru8ljyEh2f8kJNebTr1jOHBq18bpS6 + /oQW7te8Qblfnj4kX10Xfs9Q+eOnxMQPhtjNFEpkvHYKjfbiW2d1tJvgNLFqZOIBdd2ql1G8yV2i + bn6bmh0/cgg3odCI3sb7muFKlOA6uDox3s1bp39+9Rz9PkQvLmYtMhIvWDPqxL/FQDLu0V5a2B39 + LTU5e8jGJ/ANbH9wIte26hCtcfDGYljphKTHBVGrhx6pwrckiafN0cIVuYLW/r3Ob/JuanbaDVTx + /CDJlLqM2UdhA7pgSL64t1LWbjV7A20nfv3FkV8ZNQvJh8O7duihu93Z4iAjR3DoEmLdXmPXSlPl + o2d7XDcQRs/9h//6VLwJaRwOzX/+z+rv0TyWr2hKf9qIeNW+0qt/YNl4sM4WRi6k5Hr29WyxNx8J + OSVVqDnoOGLX/NGC1DYj0chyiSbfvAsoD3KFeJezmc3c7dyAY+c5TRu/6RYN3wBWPk7N1R/mfPMs + AGo8oImnnaIRIT2ApbVzam/fPKOXO3Hke+Fg4mzEjdvdngGH/+YhaJ3XTKfxaCOxPmojf3OUTLjz + IsCvi59Uc4612z9NrYKhlpURnq5Sz59yq/zz005V07KxmfgKc0W5J8US6mx6hZcKMiOWxomnGeLD + 4CqBX7ceUVf/YW7RU4Bc0wXiHkcl4/bkWvzxax/J4LHl0+ACXOVpk2SMK7RkU2rBZSn2xIxP+2hW + 1NmHu/W6jti/Du78uACgJSUOVXdGu25E/hqoyG9DjqGk1lxzAwfSauv/xYvNr1kK/uGHtMxPxK66 + 85agSGeaB9RxJ2Hf2Wi8qVd6aCsXTVQ9a/LqXxBn7Y+jQEoNXmJZEOP6vrvT+vno+/vsfeGyf7rj + ewgNefV/qfOr+W556yiE/rJI/mcXjjUt42eIc7dvfMY3n2j5O++1//vT7eJE9NFpN9ifD6Uvrfpi + 5aMF0llIfak6dxGj2CqBqLVGjVZj3XylvAEpzU3iJd/anY/dEWArivtRYkXjLvrvNcmXoe9IXoqI + /fUTtPr3xPElK+OS4veFungRojFcuTOw3w3E7Hcf57yb0fwpRQXMe9j/8VlUkMD6wnwrPRqpp5YN + JL8CSrgjP0qNb3SjEXlfUI/ub9z+kq4ekjBJYPUz6b95BXwSA4yUHkamdSQa54de4k+cvMiB7cJI + fJ83PtJyS/Y5ayjdcRsci7956Rr/TzTZFieA+st/4+rHdlTivu3ffIsUmiPqU6KTGB019vOlFc+X + fv3GTNa/sjExN99oCvklwH96U/zVcrbsEQMYflXoS8cdh5an7fuoNo7VGF3Ccz36bzrBwpUOOefI + 7dgCDwWKwfLp6jewIT2NHHRm/KB/fu9YyLMjf8YxpP4S1qx7CCFI0nATyT4d39EcmJIAn046rBs0 + ajZ9n7sFdtQ+Uevkf3Xh8guLv/mYvx39ez2Jty8HV1+XqZsFyapXswD+8Pdyzb7dOq9w4OFJCc2u + XZVNLKo9fPLdgOhNNtZt3zFrt86TR244z9EvE1sfzE97o/u9laL3ikf/6jc0R7+mp2J0dqUR6iu/ + NCJuhzoNrfMNuh/prH8PV7mCZx6P5GBg+Ken0fp5hJzzfSfy6FPBKS03xD6q1ar/QYLhYTfkXPqH + TFz9DimYwow6z3fUzUj0OEDkURI96OVoUj+nN5AkuI9rf3KXgxRUcLZ6Sgtc1d3cSPv2H/4rT/vc + cUfxFGBPrk2/PCk16lf8hevWOv/xV/anf/7/bBQI/+uNguP8+lISuZ9owlPjgZFr1MfVJNUT9r0C + jk03UOXUfNyx6xoZVGny6bFLz/rCnUgLG2Paj9spX9DMkUcBR5k01AXs18K++woojHFOHZQEOjcO + ngWXOt9SojqDPi1F1WBeGBri+RsbifHhKgASx52/Fbs56x/3qEX8zj6Skz9s0bKclxYt0/ZE9Ucs + Z+OuKh3AH0JH9KqFrC9kJIDhLIK/2J826+9NcwMtOGa0qLjKHSVtdOCe3xkxJZGiiZ/2GnY6MaYH + Vzgw7rzsErDthvk7VzigYcoyH/FL9qZGoyi14HuGJufLZ+N/Sl1E8+twemMhUnSqOsTp+B4ZDZSi + XZGz4fXZAhWM4BYXizplXUULokcNTG8vUT3sMZtrphlomfCJ5OrJY4vsvQKQdcmk5+zdZBNTnRQP + hUvpMXh9su7NnQJ89+WcGP3C6VOnDD5Y3vodhmGK0TRfaw1b9qOkpC4vSLzO5ojD4ZOOS2R+6mlf + KxKYbp4TC2Kqs8bbAaDzcU+Vly1kf+/jXWDf1h1+veO3nd7igM/f5JKdDL039rOEbU+aqVp7YjeZ + xSFBvPviyfGsQ82msAvBYA/wN2gmrmiEjgLX5HuheZU+XZHwWYV7pDzJvXo/u+m8zDEuW//j1872 + x16ThFIIs14nfpoYjDdu8wa38s4n+6LUkJg8fgG8C3Snh8ySWT8OnoG8KXjT21V5ZTx7hQmurobq + h+Lr1NFdqij459gPGhwDm9GDXRpoCR2V6jdyQ+y7SVO4k1qiyuOk60JBGhvqWleIsytpNqUw5X+f + R4OpY9m4JVEL+P2ORmnYxJlw3dkWPld9QJJLadUia/Y9VCI6UVUITzW7RAHgd9go9PBspGy+hEUC + wW5qSLJ8FsR3De9gTzMWenWFH+LsXZDgk6vd6XVfud3Cfx4WaFmokPNvPjNeTCQBEUHZ0bhRyq7v + TtgCKegHelvra+GlcYM0czwQeyMTnXliMwKuwjM9DhUXLbv9q8eF9rUpeSYSW8ZU5/CZ6gM5yPqk + z5pRVbi1yj29fC+Jzu1rWwLzfp7/5QOT3oIB70t987H/2urTdSodzH3zD70Ssq2Z6CsSFi6JSjUz + dTv+qpchvjtN4W87nUNLlFx6KPXb+j8ywioTWShySLAMe+zO/ydp19KlLIxEf5ALeUmSJQLyJkFA + xB0goigirwD59XPob5azm2Uf224IlVv33qoU+MT4a1jG0GYWIclt99a6EHUlmL1SIH5Cm5yeTocJ + TQVUSHZsfE0MjL6EC9v5xDNzFwi8NEGILnFGip/C99v679Ant1eqOEfH5axkfsO4iVvi04FFy+9X + Oeih7R3MIxdrbFiLDt6LB5vmPuQj+m0ViIIYj7hd/MhlQD050L/qCRaZHDKentxVRm+3oxpOH/0q + oukF16uZb/tdzZfkeoyBc040Ygct6mk19DG4pFxGtUYUc6opqwXfyxlNAjZbsNrvwIBP9nIm/qUf + Abd0qwzxg+WE7GwMxlli2R9eTVwTJz0v5XMKPCRCzJpRiTgI4QtYwPhM0tVt8tF4LwZqW7khQefz + bBXSp4rmCbYTOO+/7sjHDwUET6fFSxqcXP6HxwG4M3egUd2m9UKTqEPOpTtOfMoDbT1/c0W22PSa + wlBptUXgbiq8KKJMyI0BMPe1vvuH/1atPvtJMG8OZMbTombsFf0MbF2Cy2uIaVqZx3yBT/2FzDPT + 8IwvbfTT7M6AtS56GFz1phY3vIPr+5hQJXh869FWFAfdAyehifF2mZDesAHnGb+o6/N7wFJZCmEY + 7wvi4tnKWQ48Dt75yaeuYbmsPYyIAzgTjkSry2fPnlWkoirdTfTkH9roJ/lGCL/46kyv6+0DONB8 + DJRcxJKqxVqDpXn8FHhv55Bc8kaP+Dj+VugPTxNstmxZY7WAakDyiVfV0R3tScIyUIBNvPdLyccD + qQx0Fy4/msd2k8+Rv59BcnspVLFgV88nbynQMWsyaoS56S7+qQggQ7FEjpV07MeLaAbyk8wlZjjd + 92uUPAY49qeOhrf64254miCCMkhO4c5k7ILPKVq+SkgzzjzXDHl68Ld++HUX65xFl86BJU5scn6b + Ss71Z15HzQ1q1C3AAayvukuhpQc8rr1XCbgiil8oFB8Yd4nQaCwMujcc1uxD1DNp2BxdXzG60SAi + NxROgL81iorqLNcmIaGnXNjlPYQb/pL4rSg9R1etRUjkPKJboaNxiW4H6Bh5V3pX3wMbf+i+wvil + dlTv2hjM/lpY0KdTSMpPkdSi7Z445BOTJ8fAuIP58zm+kdufj3T7vF/ra6bDy2e+kGv4M3shAbcQ + Yvx80WDlw4i1pI3Rq9snf3iQs6nXJFQn5okavvqLBDY4OgwO65sqpaf14uVlKlAJXwslxfmW84lz + UJHnz4z+4fmyEEeGf/nzXvOSy0ax8MBlPn+xfFmaeuHprYAb/pIoHBBYxFaZ0BwqE4mlH41Wj+eq + v5+ppZy8mrs9ggAFD2kiViha7lrd+hBCveOo6f32/XLcv2T02c4sakbf9/TrtDO8nGyJlo9PHbFf + JWH0uBCNkkKq6y5INAuho1LQh2fs2Ro7JAP+SbhjeLZal04wWpF7Gh1KCLTqUbm7Frqciys5nxxX + W6f3tv6y/8aHy4jcidfFBB0+w5ncL1rRz6GRlfB7KA/ULws5p8etw2tIK0oNmsbaHPJqhaIp3FEf + jT7gD7vAQjK4nKldXg71YpqBhP6tzz6h7rxS+d960cI//PL5znMhdEpwmxY4U3fD1wT8ql1AlVd1 + ZMK7/UHYHGOTHk3FBfPLXt+Qu+IJz6J8ZmuaVDEwiGfSh9AsYA78HqP7OA70VrqvnkvZSYbPvedS + M8+BS8XnroKz+P7Q8JNV+Wo9ggqy6KH98bl89glMQXJ8Vljk8JKzcyHLYHceVJK9RaVnfh9nYJft + s0ksqxdgPy1V4LDfA+LYtuOyKy9NSNgtPjndtwq8VIw7+BQagoW7/wL08a1nWKqdNUkd5Xv2UZ4d + lIJpxIfSVftVGJIO8uutofrnVGks0ScOfuzDgbqjyNXsYMzOHz+nenHX6vViPjsY7V8iNVqbr9eD + OQ5yfWYmUerPM5/fy00GgzDVVEtPAMyv3Cn+8cOyeyYa4/hr8+95+vMSuazuMgvg/H7/i8eafVsL + wo8d3OlF97x8+T3QGx4rJ5yQXz1qKkVWIS/7FlNl5dd8XVjIodNTiadL4Jc9fS4vGfTa06Unb7dn + 3c+fLXRcUnea555FU/O8YRgpJ5eS8+Ned76plwjnjztG237b+MUkn879TPyaT93xj2+NWluS2L/a + vcDr+wRk1/0Nr+BA2VI/ZQzbVmrIrVUvbL7pFw4oGK/UfB7Serq+pPaw9ElAT4nf1DS2bxy0mvVL + 3K37YHlegQ7DfNKoY86DO3GPZUaP4mtMsm07GoslWwJjb3ZYnPdrv/zSNIC8ig5UnRPmLq9JrcDu + lNf0lPU5YOmvzeAEloD6ZahF4lNdOVg+7ym1Cdn3v3nodfiHB6628+rhalsCPF9hSuNwNnPe/Ekd + fLOhoY/X+ZkPYS23MMSzRbTzdxdNUrRT/taP6GJwzvnfg3/D+ZYt1HhoWs2rLHzDRQpcet7JWFtW + dW2QP0OPph291FzshgqMvXKdDiXUADftoh3Mol9OLdL+csY3v0reGyd74o7cUK9svx9k4Q1SaleP + lDFnx5fwLFjepm/0nBOf6Q6IAzoS7Xw380X4NDK80TDa7vfRr73tW3Djj/ScGCewNPjsoI3fTiC0 + d+5yLRQJnbrzQKLnegUiUH0HXkQFU9+v9jVLLrsBFq610AzSSVsjvGZwF15K8sd/50Nw7/7x54dK + hpomqm2gmz0UxLs2p2i5WFdPTi9woUnO6WAWamGCy7nMiUmyFrC3t+xgGMcKCbj9uR92R86Bcoq1 + iW34NbbvtoGmR1yi2XKXz+By8eClGyk9Zpmurcoxt8Cm74j9yA7aEpHvTpbP94Io18lwFzNtV1if + F5P6sMURm495Cs0u2+Ol/fA1nWtggZWOV6LlQO+5Jl1CuOUjcizeWi4Uh7gFn5l2xDRFFwzJ5eaA + M0lyqvI0YLzYTSWMNU7AUii2GhO2M0NeNk1/+Z9tfNcCG14TjH9t3fm/t4egkghY/q4K4A+k0uHd + snnM4eLn/n0fouX0oaq2H/sx/uwzsHzVkHqXwsgnO7IwlBbY0GyWQjbwh0MDRpI8qE+8Xz6LmjRD + 1ElncruMd3cZgNege7uGRIsWFC1yew+hceV0kmz42J+uxzfgH8GVkCRr3NH8zR2aZ+9FTR26/T/9 + NtfBlwQX6fSnb2VUDFlHzYAZgIX7rIOfhOfw3l5//Ry7mQrfMHlR/badIdsOiaN3s/aE2Kvdc9xt + 30DqH22i3ctbPfOl6ED4ElrM3V+1tumTAfyuRrbF36NmTbIY8HO4NORx0EnEot9jBXz6nCfukAW9 + +PqEb/R3/cnhFESCk31e6CDsHKIYqxtN0zt24LCmH2Lmea4tB9Ia8CCrZNu/SzTXQxaD+5IRqtSf + Y76afcuBUS4wwZvfMYgXq4OX+jJMe2t0tDnFVgowrl8UX8xGm171K/u7X+Km37xfySsvgD0JATl6 + 4l4bqBY1MMeLjZfFX10KeW6Fnr8y4lbKs24j+BVQudIzsVMI2JoQvPuHp04bJBGfdLsd3PCdeN97 + Vc/C+AuB3+576pbKLeJdcNHRw73609xwlbZwg9hB32EiHqLw6y63eHbA6dcFRNn0O2eH/hv+8SV1 + p1Ft3fwolHDHkPqVfAVCdCIC4GOyTmLswX4QAtv40yNEv+qnmu+WUwkUW+Ym4bNPonF23ATgx5Jj + +esKfWWcFwWlZTMSw0W/fj5klgcPgZMRqzlX+fAxnyl0abPHH6tyanG3BxJ0w99pWqvjq9/4cAMN + gk3M7vGrZ4azVfiCeMLM2f/AzLW/AZZxfSenaq/mK0reGfo9pmSb0VLX0zU2Kjg2bCDuWd/1kzCU + HTx99hOx/LXt2Ut4lci+hTdClucaTfnpo8qz2HyI7cWPfPYKfUAoO3ME36la/+k5eIUGoHpb8oyJ + zEgRNt0HPSYBZMt3lmRwNIJiwycnEgTzbMGdTZ+YO2l9vn6Kcwu7qFDx8eqecrE86SryC23Gdd1K + 9Tyc3ivc9C0G7cprI1d9Y3j/5dOEDjdaD1s+hemxZdTOjnne8ofDW3gp5Yn4lSyCxQV3HUpj9938 + QN9dWlNJ4ThWEfnjn6sg2B48GmFB1O8k5PPtkQbQAvrnL5+ARR9sAV65SSKk5xKXe+pMhaUb6OQa + qihfQkGeIO9++X/4sF6FJgB3pymJ6z5/fZfVPoZb/sXz9OTczS9MkbfagJDQ+IJ5Fl0M+a8U0yNX + zGC9qrtWvtTXgRqf59MV2EQFmNmWjbPNLxrA5Y5hkDczZjw65xtfekN+d/oS855r+V+8AMjpT2p9 + vIr9+SdQCauFaJfl06/jEWbyjkYpUUv4YuNFJAF8s6mhJLqU+fCODhMciLTS81OV+uGXtDrMD5JE + rvsFu3N7rl4whk9A1U9WRSww6uKfvxTVrdT3Mr6U8B5YCfnza1Yh/SnwNlc+ibPonY93C6Zy3HUN + 0RtQgT88g1/n6NF0W7leK8MEGOxDqO5ff/XmHwnog/o3OUbHncZoCd6wG1FEtKtSaHxoOd3f9dHr + cRwAxQ9dlxH1CNFi4e4uvzQIkcwQJna6vgFloxxCZ3Yj6l7wByzxZ5/CWGyeROcuizvXWLbgxt/J + UREGsMT0uYN//qsWD4a7qkY4Qe6046f98gzz5YSfLTTFWKZWZT7/+cWo/LCEbP5L1P75xX/63iKt + na9tnybgMxuYOpteGzd/B5bm90V08mzrOZNOhVymfE7N3YA3v9droL57PafERXbN7opeQP5pj8RP + QxCtT6ip4PyWIupH1bce7xaXoQtIvGm/+e2/BGIB7pTCJsVD1upJUqwMVp7C6CXrc8ayN8qgpM0r + daLvN1qS9ozhxieJs83JnbNsDOCkKAaNzNl1R/yFyuH0mDOalbfaZa7G63Dzi4h6F+uI1y5rBmrb + dqhJ3g+wdNEYyp0MMNF2nxEwYZ9MUD4/CkqSzND4/HlRYWIF5p9fyQbe/4bwvkOfP7/UXa25SuF9 + t/9gaCRD/hMTiYOFAODE/emR/SsaoM+HDtU2/2Dhbo4i6kTniPO7XBiTmp0OfTqEeJEbAsbN34Tv + U7ViFB5QxNIBOzCPThY5itdFW/LnXQHflijUHnPWD3y5d+TROwjEPqZDPaWm4IHhU3QU75WRjd8o + mIDbR0dinJNvPf/x182fpqcqlbTuMnwd+HOcB9U+bcXGjX8B90QdarHrqs1C2AgAWdlj2plG37M0 + TV/w2HMRvYI7ZUviLMpf/FIv49/udI3xCxxkhRDj2ysa7wj3F2SDvsfocVXB+qdn+njRiY8/D201 + +0pAueH6WHJqm/H73u3gQ0MOMUX73PPMucrg5J0kqh85r2eEj15wIPJKTiVfa8PFoCr8fIvzxIe7 + L1jz06jAz8TF5PZ8S1EnoqaC2urI1JAdyn6Jn8xwucw3kpZTHS3yia/gbvCj6ZsloB85ci3Bxw7v + k2iKLls/4+8FrTOe6Qlrj4iJc9VBABWRXNL+7Q5Ru3pwl6jKtBtnDrC/+oR8WTLi8N6i0fApl9Ce + uICecW2xeSK9DM5y6VD/+Xy5TOh/BhTj6+lv/7PJtu8tvI9GQM0EfdiqXrsGlji2yeP6ONXMGM8K + RF+fTkjJfLZMDHBAb3fdJJVTnc/yyqdo8q417uPoHjGYFs0/PVxE4VfrxefuBSrReZHTC0us37+2 + OVdpep3E+0eOWiY+ZvhRawEfNj24JveDAb05bPDBv+3A/PUqCF3Jg9T8hkm03V8BhZ+f4HXD21VS + lBTajReTLHf06GeagYzcBGlb/gPRX7xC37gfqK51fi6yI4XAX77tRLJJzzl5RRkcme6S6AKKnl32 + FIPpfMiJqu39uv2rx9U67xGtqp85c9fRgb6UECyu+qotcIw5MMR4mRamhWBR5DqG/XPY0+vmP9D4 + Tgqw8TXM1Ksf8dFKJnnTj8Q+ky9brHsVo81vxyi13vlffUBO+6ql91x798uf37ztT3qqIykfr0ej + hNo2Q+DEt2d3ubl+I2uIA4SAPamX2wG1cumGOjml/Vsbr0dcyhIpGRZ+mHcX7OTCv/1yutu3nJG3 + 24EzifOJZcJHW0VgzX/4PbFwuDMqPoUX/Ay3fuI2/1BYAqbDSUcV8dYbizb+CSHcry/qFssLLAJ3 + VsDmPxBneHP9ukpZCv/8Vc/pnK2DaWigTN4G2fJjzcRHOsu8uj8Q7za/+8Xy0uJfvdCrbfWfXoWq + o5iY8xorn22nClD7blq8Z9dIW+MvfcM//4CUpqy1t7m1/vySCb3nanMCCgi97USEmSWg/hf/BhFr + qsTs9Ff/5EB4O2fU48SZrfrzOaDd6VZP5J1X9Uy16A2rrYNh00M5/dOf+ft63Pjtp55zHG/Xp5rE + 2u+nejh5hxK8JeVN4su+0SY2UQ5aBArkrz4rCv1TR8XuvKfYf9vuhnfcX/2LupWT9vPf9c/KzBPC + zWd3KS7eBF8340h0/2rXy3gf0r/6K3FXdwW9E/gp/HCpR7V7eajbdJ94KL5lI/UDWub//I8/f/Sv + XsBq8FLAYW09DLJFrmmaBi8EoCoS30VdvzT4ZoGNz/3Vk2oxeTxD9Fc/NcL8q63gzlv/6m1qEhv5 + svnx8LHXJXLb/IZ/9ehTMV2o1ruXmu7OGoc61bNJyUcLGLj2OcibfiDKWMT9OA+9ATc/eWoHi/U0 + kHMdmo15nOatfjRJamPB5v24TM+nmtYLXx4beBYcj7pY3kejR/UZftEqYm6rz7E8HXUQwxpMdI+n + fD4fMxly+WvAe9/dZsJWIgcdRXeIopa+u9UPJ2i8rgk1V57lsyRjC+44Mfi3/4UBwhlKqT5TU129 + aB0jL4TtUtU0Gt6spr8TWiG97fWp3vBjq6834AJQS91ANuvxXz1uSckfP9CYCtYK/B8dBeL/7ijg + V83GYiHLGnsCIYWttFsw/xs7tlpLaUALk566czK7VD4/DdRmLJr2zFYZq73XC40tH1CHPChgj4du + QEvxEhqdn402++dIhYcgWbB0KO2ar37VCncKCabDwHA0zzsG0Wq+xkkCu6AXO1Bh+GXNRPyTGYLZ + R6EOueghELUPB8DWpu2gHo0BVYZXkzOrdDh4EqKCHq/LdiDOMh1oamJG3Jv/AR2NAwuKj49Br7tm + jFaBxA5STOWOeff4c5nxC0P0ej8LareBVQu1C2V4SJKYGPtpcZlLPxMoErOjmKiAsfm8D+XqMxfU + NM9Wz/Lny4Cpnv3oyVkYWLP56KEueHrkeHLtXFCv9grlUZrow8nUWqjJiuFuykaqPLxPNLvpaAGy + 938kP3FNvtC+nWC50w5U/b12YGxMuUBjzav0NtQ3d0m2KWc5J7cTPX7NWnz2q4BUZDn0rnBqLv6t + D97xHLU8r+6FGiwh8hLwwbK3b1n3U70VtuseE7dnnbb+DFVHpyXC5LRWJyAahwsHjedPI/4jmHpm + TUaGhAQ7xFAbzeWrT12g9gANqnz3Si7iIZXBA2TOdPgEAlt2548DcdmatHBI0gtYe1boKK4m9ebp + 4wq0vanolqGJGKHHA9aUpxSp0Q5QAgoWrWP/4WCDOQfzLyeKuLWudkiFFk/yZyXksxt/ORDcMkzN + Qs7cYTHHUj6tYT3tLp/Pdn19CX2h8CeOt9Re5Ppi/nueNL56BzbRKknhMl3u1BBdN6K3YKdA3916 + joXfpC0Hs8gOUH9wRHuIvDtfeTuA/lF3aPTtjmyNfTkEmWKd6KVDOBefVHIQt3Y/YnJM14T4tG+h + PoMbNfXlWS/JsryR95IG4qnD3u3gaVChfzQcUvaTAg4H7bF1BMAzza1v6XJmrjnosHthGsVv5jKP + 9SpUhBSR8vI5adz9moaQZfqBlv1UsVmFS4lkQgOqgrTTZvG882TwPffkiHdhv2appsLGEr70lJox + W9LmZaG98j3hxj58IqbrnxjJrVSRwIhGbW4obuBKhy8NvrTXOLWV3hDW3ZcohccA+9xuAaTjlxFi + yTYTp7sxIT0ePvRSy8dIPPv7FOb3SaUGnPY968jPgX0hmURdL7dtXo4L4fC6S1iSdg+XD8QhBYdz + YlCcfFjEfBgXELnck4RWszkaw/CC/KJx5FR1cj0U4jVDPTulRA1/NhPlw0tACe7mf+u7iGHNIdq9 + CbnrIuqXb9DLsOf0cdrv9zdXwPvBAg+QOpgFZ7Xm92jA8Lt+bkTNvGe0xD/F+dufE3/cpWzWfjSF + cOpS6peK666yJzhwVH4JsTljrmfxNgtww4dpn1ZFv4RW8EIrf5CoGt64fs6MtwfHn/Ahx0d8crvF + tgZ4jD4GFkWNB5NkqQrSRelM9fHCM7oDjgPRS1sxQxHL18W2JpCFcUHKbX2GVptVdE9Lm2qJ7gLx + c4wMeJfbCjN7h2tx26/gq3t4kg6Yi9g9vCdw/u0oudlvgy39C6/wremU+J/6VfdwTSc4K0tFj1KQ + Av6l3gVwYK87NRpeYtNneL+QqfEZ0QRlcelDdALAi9qVmKDJ6+UkaitUTPVOlM/+7vL2u8OQNYZC + fZq4Ww8nLYACs8qXAmpHaxHMEjzdThH9wxN22UcGivqJEn3vHt31+wkzJCtDQ05s/kV87HutbOsf + nXryotX9gygvhBRuplcxcjUO7IsG7jwvobcn4vo5/XAVzK/Tg2h3UwLUvdIKXuxw3Ka04npGlmHI + 5f6IybESb/mS7R8O/MMnYmWPnH5utxDeuQ4R/3L/5KLiKh2KB+NN3czntKEsvBSK+dsnd+xoGh/7 + eot8+W6QoChsbSaJ6cBHQa5UJ4fr1gB54cCtgTy5aeeVsa7uVBhGtkKT9+ertafwNoHmqbzo9ev7 + YB7O9zfUyquHhyDk875V5Uw+wvWCq4aEEfvKigTtcY6IXu6bnik9meHTRQPNJnfpl+PhuaINf0m4 + fBS2bOsHj8K6UgeTIZpvlxkiheLr1J73A1h1V07gWLQFuQs/7HJ7BUB41VVubNUDAkwaOB35u/ue + anvtmfN0/2yQa1++//D6p2W3Ug5TG5MzUC7ufO7mCime0pN8bj65eO+iFypSPcbB9Sb1s1LYHMRh + fySWeriDeRWfHNIFCRLnIx23tyJ93mg4nSk92edceyvFUUBGUB6pdTzQftkdJgmaRKhIxFVpxP/4 + lENLe5FJEDRPl5GbwcFwvtj0vi9+7uI3xwqVAb+Qc6rvcrZdj7QnH0qL7FT28w2tA3rrhk4Mrtdz + Adq/GJ7EYKHBxW6Y8EtOLWSqFNP0ycdAeDiXN5SdUaXHv793Pi4OevowobdA/LlrKuYJBEc9p2Xa + ru7sH4oVCjlOMXhWSbQcP5WEliq2SHwyFFfUB2rAT9WO5HZzbvWSsVRCinwTqDKtkrYKIPJQipYP + 1bf81Xkl94LXhrgTPJwdsBrp00D1DzwI9lZHW3tZfsO+kE0aX6CQv91tKuiGn/QkabI21SKDaO82 + AiW9oNSCoVcetF/riyrCSY5+FXp2aMv/E4cPv2gRu05B8xs+yYVVsbZKCknla+W303hFQ/6trQ9G + G/8hx3gpXNaJnQxJcUTUy3mvn8+7QwaV2Guom91/0eK9PA8iXfxNiLNNV7hfRgXuj++MuPjquSum + 1RtxWmCT4nb59PPr+VOgZ9Niei0Xt+eqlllwZ2ILH6LvJ6eC5xWQADz/4W294FAsoEm4ipAdvdRz + +oEV1GDVTTNMcTRz6fkFO4ka1KBtBFYcjcbf/6OpXXxdnqxSAN3XS6SeQ7cpv191Ri2DNS2O0HC5 + XGjf4KimOi2x6vfrLgl0aOB7Qrx9bOdrj0EFUjsVSeSW33yKT2IHz2CXkROrOHcu+psFo2Z4kny7 + X/r88i+krRUm0TfzevH9ebwgL6kD0bf4EH6ZA+EWn1QxIt8VH9Ts4HCK6FS4D1n7HfmhhMqcZxP3 + UT/RGp4UDtHxw+jphxR3yi0hBI85vRHSJ4I7Pb+mBNp8bakyho9oqfwxBCrvon/3O19PngSAYhrU + iV9KLq7lpALXjc80QJKprasPBchfuAtVXPYByyG/B0Av6ZFa0m6vrdb97sHqt1zoY/k5rhBImQLF + 8rNMqTukYOGP+xnYT+bTbb+7wt/vy2QMKDb2Sj+zIJHh4+w3lChXXZtNZsfw+XS0ifGKymbt1O1g + /QbnCdqkzd/+74wRQ+EH84d6BYzcsAC3+yHm5SsCOj09FXbiuJDkwzu9+JUVGVrfFEy/CjXRvIe7 + Bt4PP5eUn22GDbR/CfjTE2Zs7t2/+IC29UH4L17pw3U9yImdSHCeTtGMAmuAZPb29E4yo55JQixo + O82XGs4hqle5XVowe3NDj6Ns98JTcwtIu4ZMu/ncgEXcdZLcS2YzSbeQuMxJ5glq/HPFv7cSRaL/ + LgMoT7JGzfdogOV3KgowyMVpgurw0GbhcHTgQ075f/mPzYtk/PF7SjRz64A5BAMK+I9K3Lk5RYM2 + DtMhKxKJ+HsvArM7TAoE78AkWsxZEUfxvgE5AxE1xHw7Q7bx0fN+H1E768KIt6Veh87glpg1ju1y + Lte2IHOc5xRPPO4ZZwYxMkf1h7f7Y8uruzbAELvmTy/VC2+vGVCWjFLCbBVwHddj6Di7gqi3QWDz + 1XYwVO/oShMefMEqROcCPe7eQHM9Hvvl8MgauHovQM3vvXZX9XqckRptbfxH8+6K362D7d2d4wke + YaPN92sQIHJTbvSRzgtb1cgrIEPBB+/l4qOxyOka6DbPmaa9xKIRpFaJRLgQStIK9kO7lzu48RF6 + Ntxr3b7VYNNnxwP+/eZnvgZBEACvlo4kghoFtH5XE7x+cYV3vwn1U2DdO3i8NT9qHxfZXfgFWofJ + V89Ul1zSj+O6cn/xTfByvmgrQ4sHp9p/EQ+985ypNd8B6mcG1e8Pny2js+hwPLY90ezdVA8X76rA + jht84hez2Yvyc2glUVoTcpyR0K+PMPAgH/MKwX3Z19N9qSp5dhikTnmKIybFSIYb/yZGTgxt/I2l + d7jLXUVt0VA1Ib7zAvjjE6VO3jn130mAHB0eMJSO33wmhvaG5ay8ybF3Rped0XaGuRH6SXryHKDz + IumAHnOFKvzJ0yYv22NY3d9PejdEBSz74+8NTpnRUmLJP7Cys2yByVfO5Kz3JRhIQhzUaNyNHBff + ZULOoQQoR0Um5DzqbI2fwJF1KD8Ibnd6LcDbW0Z/8aavVgB4nj8UcNt/5Lb5DWOyLA168OmXWvXn + BZjO/SY4j/sW75bjHqzq95SAWWGVzwrT6bku/U5wOAcCVfvXy11A66nw1VQGSeuTFC1AcUKwxfu0 + lPqxX7Z36cFHiAHV1FzUFhzuS3nTsyRtLYutH6vS5XO5njF0H7K7ynCt/vglIa1ANHE6qBi5Y9US + 95zd3HEUJAvoonye0MbX6XxkE3g3YU62+Kz/Pd8tv2Eg33DN8mengyDMEwyzC2ObG2HAKKr4ET5b + waXGMXjBv3wWc9KYT6stVnL6bFbi0+bocu/XlQP2uEb+7pmP2nSLTxOcOi8j9v5nMnaVFAhdRg94 + rYiirU9TWREJtSdx3qkVLQf3NsFVfT2mPsgcxhfSSYW7OoOEKNe3tryyQpE3PfDHD2p+qc4BCuY3 + 9y+eV53uViBBm067DluuCHcJhMvRvfx7viJ3zSWYy5JLgnH9seH1fKr/9IAzApjP2q0WoFruBqoe + o5/L5lFewbFsRGLuhFe9KtOjAO5QR9TEbweMfWdncMMLqmiBoq3KWsxQPk0c0dR+yNlVJwEs5pBM + O/JqojFtOgvOdBcS1UoEbSaOJUEikxxX/Mlzl4zmDYyqYUcJO+RgfTiXBn7zlOH99vNSoV8LzVr1 + 8UWKaNR9UdrA9T0JRMFCCLpnbrewFBSTZOXF7tdfqYRw+cQJ8aKwAWsqRgliR2k/7dZn2s8bH4FO + YwNyAlrfd7smatGzdx7TkH1+2mq8aQw3fkhd/a0y4WO1OvJaiVD/4gfaxkdltB8Xfxrf2o+xHXF1 + GGMpn4a+j/v5fk0D+YZXmRhq4gPRb6MGbfthy384EtI6K0EIYpncYSHWq6SYKRSlOaFqWkTR+IUv + CDO+sgg+cDKgW/ygK9YCYoVEdcXzOHtIHsCNGq5tgaEapAJ80ceh+jcUtaVhhwrCb1/h5WPiuq0k + YYDA0z2Kcfhi45/fs6OZStTnQ+vFXaSkUOcPX+Jv/PSfHqqt4U7ypWH99Nxj/XAKDI9oMPq4A+87 + BmxW/02Ol3NTT05jtCjYf0uilHB26fnMTWA6ai5GcBgAm5fZgJ9np27xVuT8iRklNJ/HevMrV9Bt + 8QuTiremvWJOYHn3lv7vczfuKnd1wtMMXCeB//CByc+hA9S44T//sV80NQphFb1PxF0aVs9R3s// + fX4Xue7pn79qZOV9OmSy2c8rGypof+eZXLd43tY/gwf7IlErenzqTV/rqIX7jur4tgP9xocAnNqU + XHoE/8uPD9KrJwpuUD36odWCDy4vxOt6I+c671mgq6NcabGP7ailWGzA7uSXG79QIv7T72QorOmO + hCuvR+xBlApdrCjF621IGF+0dgm/u/eDXs1zW7dAu22zep0cg5al/bTbnYXtnX4JltHRzVeJsw24 + TjSkSnJz8mHzR+Fffle1Otvyyayjw/B843l4GTn/5+8ovqIQS558dxLqiwo0oTYxJ7m03/A5gJdv + 6U7llo9/IPAF6J6SiWjj3c2XxUszyEvKQEOpHcHylT4d6A8GoMfPVfvnb8Nn5UzEtuI6mltNUuCf + Xi9Yecz/8Zftc+q5lERLcpcGePU1gA+2DiNWc0MI/vjw5sfVMzdkGeQfwjJBxM01VQmcZfk0cP86 + +vmykFVgW19ElaA5aoKTKRm6jp5GfTgMbBJAjqGlk81+m0aN/qal+Oe3KdOauuu2nmBu9xn90w9i + 9GpnOHDF69/1c+JZ8GBkPbXpwDe/fIzP9g5KMXJI9uDVnO8T5QXfmkGp5h3HaG5cx4GmzSGSTBbQ + hrY/rFDOpysOZavpmXz+6X9+L1F7Vey/EhRbmIfTeZrjw1IvR34oYLvbxRSHl51LdX2MJajfOWJo + zTlaRDxV8DIUN+I8LiJYisANYWQ+pynSywvjtvwP/HuwzayN8mj5jYkH2c18U7ePHv1WD2gBTts3 + 1RcJ1HQ+7wMQCslAjN2kgrb4RgI4CeeC+HDw2BLOYQAs1zNpufGhVdinlfznt5tlFrLZf5aNaPba + nm7fZ8Kn/Xrg5V22M+kCcuft78FP19sU59ZBm7t5lODmj09g82/pKrw92DTqPC7eVLG1eG9nbC/x + nlgSbtw1t3YBPMv7E+ZDPdGmsR8FKKCMEoUYliakIOjQ00NHSrLA6YVl9B25z6WVmu/7uWd60b/g + PXhAvGoscNeUnBtUzup74gri5AyqRQxd+/ol5me8aEztpQDkl5Gnau7RelzmmIPQKEpibfxlXOZC + AMKa7aataTearGf2gsf0E2NBSwqNRa9qRZfP/UlNrp4AbVYcwGbdZoDG1zialdkZ4E1yRczuV+yu + O+HhwclUJ4xo0rPlxHAJN75Ib/AnRNMuzGZ4vi43/H3fl35wrV8DTUcIiSNMYj4ib1HB9CMnSgJ/ + 0JYlTbo/P4MozeNbD11KJ/A7JM0//vQLrbT6Fw+mWCu5sOE7PN7eP2qfRXHrwAUT/IuPCNVtPZu5 + a4HG53hi4nfHhj++AJ37lfz5tYzTIgWNRVf84yNs8/fhcA1vGGR3O5/PuyX9yw/Us/bMHdloKXAe + UUt104D1Gh61F3QI7EgZ8Qlb6LfOUNSNGRbCoteG9jrLSBOrgto04nNGeHV7XpfvNMNW60WY3DE8 + vGqLqBVR3I2fDsBq02B6OcJdYw/m7WB3rXSSz4a8vcN7weiXu9bE7tdJY0MavuXvrnlQzT8HYMXf + D4TaI37SP/9rSpJ+AHbPfngvQS8S8oor4ePq25t/1Gnzfp5j1OZzSy39N7iLV2IJJFRcqSJ83mB6 + 9ifvbz2o/fJ/YAHQk8Gnb8utg9kCaxCkgbz6rwDvTiSsmfx8d3/8ETPvOObsWqkz3E/rixxf19Vd + k+kngxvn7PCfP0/v4SWBHRukzZ+q6lmxLAgzuUqmtVPtfN4PTIHrb9Sn3617u0vwrYS/euP0yos3 + Y59jrsPfPrZpfnov7lZfyoB9am7EGQB2FwqGAIIpqKn+XgNt9v37BDZ+9udXRrNpOiHMrklH/vB0 + 2u1uAmg04YZ35h6D5a9ec2e/P//Li15BUVZQboCApV/7rFmkUggzrmL0fF38vv7D52dvPajqGG93 + +aufbf4aPQ9do80DKjq4o6lK00P561cVYA9cvoVLvU2/bn6/gk5iuPz5vTWV9DUBKw+kqSnVO9jq + bZYMf51DtAuX1OwzZg782IVJTGgY0Z8fCVI/n4kllyIYzR7Gf/ycHBmyNNHpljcSAZOpVooNWGg9 + 6XDIzyH5q9dtJ1EUuHPJkRjhoORTzvEJmM01JV6XL9piwzaFw76IyHnjZ0vgjjFMSHeiR3+i7g9x + 64x2Y55SQ0sKlxnHoEJbviVe1ZqArWWjwD6XV6LsJD5aJctRYX4eIFHrfdfPrv4OQELaE97Fl2ct + /unVl3d9UuX6GxnDcTZAcDRyqpSDzAaQBxakanb5d/9/fgoi92NI9aSotpmYTx0ZQ8uR/KVUYAGx + 68A/f5io3wtg+X1Y4fWFw+l7z979GNskhnJzEIiXnraZg6G2TT/yz0S52A0Y33sL/uVzSo7XNW9G + 85f+1V8n9scvxgx24Khm+l9+AascSytM7O5FzPj7q8cmBzGMv3oyNaM1gD++j7SlOtDr24f5P72w + 6TvyV//Y6qcK3PgbPW1+V5/zrx0qA3Ghp4Bb6xVHHwOcYvOED9V4dhlOAwX6fCFRd8OLUVSrEI0v + cZyA/KvZDOhN+X9mFEj/u6NAqcXXVmHdpn5GnwbWBt/gmTsctElxHQznZHek1tJEeSdJZwEBLRvI + yU73YDBVQUCPmRjUqA3F5aqrF8CP7w4U8+PEZoM/cdB5nBTMI3St+eBbZbJU4/M0JMGevcNpCdCV + 6TpVVqQDzqiXGTqvOpjkzwVHy/LjC9gerhWxA/vhLtoTNdC0FJPGDczyKTQlDp6f4IKFPXi7ox8L + CbgGe4WocJT7mS1GAor5rlNreYwa05OriuzkVBJrGQ/9b1JjDCK/iKnSvWRt+UpTCHfw/aM+aHPA + YksUIDMbnmpDjmt2vG/v7d5bNTGAXkXjCYwylIddg5djXIPlzN9i0Ow/Dglq+nKF0JwF6MHoQxXV + qerFkNQV6bvJwV/n9ouWF1/rMOY8jlivsxMtrT5OEIruhbr104zY9/7xEJGHgka2dcr5PpMlaBnk + jp+/4R6Jb5EvYfkmIz1d6a4fX+zwguau8PDyG+65aHZyhzJhmKbPfIc9G8sdJ4fXoiX3GHu1oHF3 + BcIgFKc9umnuXDXTDB77dSBe4H96cdhZGHVHqSMBvd3B2uyNGD2q/kGwsD7cxen7Eh5op04sTVpt + 3QlWDMx1wfSmgCIX6tiGcNlrPTUer5vLW2fgoONp12AA0mPO+coYw7c2LpSc72o/2o9Bh4nSNngf + vkImCurdgJysRCSVLT0Xoo8XQGGQnQkYzK7X22udYRksJc29SAc8xVGDoB8p5PRmCuBv+LmCH10+ + 9HIZ9Jx1fA1BldWM+kflx5Y9rQJ0v15fVEE/oZ4ke4TwUCOd5IyT86UaDQ4q6+tKbYVLXD72AwfG + 9+RCySd/gdkVriU6nmBDouHFMZbvWwWyRV2ozq4fbct4KTpJlkEjQaVg8SNvhT6XJuQKvLHnv8Y1 + hDGbc3rPtCznvtXqoCYdBlpIpQSWvQJT2dW7mDhiWdWsUbUE9s8kpImkOvVKK6AA5j7uExBHTluO + l50HHw65EafXLowJ6/pCk9/p1N7Zbv5eH3IoX0okT8vl1uXDfDPfSOzwRDxndCJu2y9Ilbg7Panl + s+b1opKQqMUBlm7Cvp7z+Kij76URqaUwqi2/o9qggX/G9OH3RBN/X6Ygc5GLSbx9PVe8fZ8BOLXN + A/9Y37gz/x8AAAD//6RdSbeqMBL+QSxkkiRLBETmICDiDlAREJkD5Nf34b5e9q6XnnvffUKq6hsq + qRz7GuawzvBlq/iMclWiwHP3vhJrz3eB/DINgi9jYl+56kAY1BxCgKYHTvd9c6RQqgAZ53jAp8NP + VfmP/Z3R21xlglVdHdbPbzPQM5Q/GH8zBbC1E5eI6YwUywZKBmEafxv8yz9QX7/qBl6nBn3fxJyP + hwsXji6yLPhAxPbG19BX1HmFEXo2yp24C7QyYb4vDSI47ObDemYqqp0tCDg3L7HjRzZgj8Njhn5t + JcQtx+uwMC8pAY8LeXv06Q6UHro4ha1tWeRcqGq2oeOQwzvPjP/ieSSiz0BhRQdshpo3sPxNK9H2 + DC44Su775D3fUyDPugpxdHYZhOSxxMibJxV7oxtSbr7yM8RRcMdn8VQN04G0ATy8LR1fbw8r26rf + pYGXTCL4/D0I2Sr5DCvt9RPL17c57M9XI8WDBslScbFn6Yt5+C66twfPfDOsv2/bwmeTL1glTy2k + aXQP4COAZ3z+ileb456xBePkwXuHN3vKqJOKHiT42hEb4m+2ylLk/8vvmguP2ZLMjxhFxfbFmlpa + YKba0YMw+olE30ocCm9qzPDoI2/Pp7NK5HfmQTx8PRKZiq7yj1JaQEPflHjng0TJoXulUui/bHxG + xFbpJUsMiCx7f5LLhxJDuhmoFvkBO+DRZj0SVgm18o3Zz5g6laAe7fL4g8cZa1kx2Kz6vOj/6qut + SJhu0aq28KDdJWwa7ypcFBwbaG4fNjZHIaebY/gb/In1RM55wttbdQMlbJtbj99ed1QXV/7GqMwP + V6II7iGjtt8noGqLKzH0Nqe/iJUbqdwYZu5Ufp/TmG4iuE09IboRxcP6V/+HryNh5ZGu2cLMuQib + 0QDksXR+tt33PdGfsq+x/oqVgVWfWINVC/t5ZVUYbu7vtiC9uefzIXZlm89cwQGZACSP27/vXIxF + D6f8sRH1VL8yPpU9Hy4o1WcovhLA59KxhJ/Ss4ln8cyw3S+JCEXtk+OUjq7KMq8tQbfsEmBlvQ7Z + KhvnABE2rYnVOIG9XHyyALFyrviefmO1nQg7Iq9PFKxpD49yiiLWSNvP+B5dLNMRx1IJRdnLZnaP + Dz4G1xydWibHCZc0lL2cXB/K9GHix15fiHvkHBRIypnoW9bZi3+TIXq5Nw+HfSMPLAsiA+rhvfnH + H6ZpO7Z/9RnH3bYCSvMpAofj0SXWuyhCnp81BUhTeiC4md8De4s65Q/viLzjO3VHLUBHWgwk2evj + /HOEGH6zxCCvz6dUl+tHjlEUnBe88wubNtcvCz5vJ8K5kwW2YBeOdCTcNcYxYphhOfTHBUm6ZpBk + JKQa/9YPxDyYhU4FYV2+ixL0t/iIzaXzQ2qYwgzP0/04g5vU2MT+8DniKqkl4V5vfqdM1NFGR5e8 + WSFQlw97H9E7kTzi7PVtuS+KiEa7PRB74/1su01tAXzvp/3LxyUvjBzt+DzD4vcCS15VNVBE/ulJ + ytEA44e9z6gxvy8PbsxzoF1jvmBygB6Wb4mardmxseCX/7bENbuTyvHds4C3y6BiF7QArPnlbcD+ + lF+JLjyouhVz6sAj1QJ8m9u5mkzi1XDwNhbrp1YDLNBpC23mcPJYUZCz9fvUEig2ewfMfE7hmrOP + HPruGJDz8syrrRQLBS596hOV086USwJHAvPtcSMOX9ZVC4SHjvTw1vzDXx5ZQg3V9whmGrRFuEVs + s6D3c2iJnLlXm/s+Oh/81TPre5uz6eGInnTx8YplEtyH3lyuEM43YcZGdMhAlzdFgRjVmLEi32Uw + /X3fW7xc8f1cfquJsmqA5IorsbzpJ5s/3qYYEpZH3uqXzUBvp7UBMZOV5EyvX0A3VAToH/9gl4Fu + 2rKKUhitDj6zRkdpqs8R/OO7+rZPRZQCxYPR93OYQWwEw3rSs1GalexNHBx/qm2vf9B6fx7YlO4C + WJUg1GHpZv18YIXAXun5nQB7E3pis8Mr3I63bwzfn7P4D79nqpcbNK/bc2YG3FWL6o4NkF7Xlbwz + TQXL9+z7QBvmiCjSqoeCH041/Gb8Zy6ofc1YubF9qFamPYPqc8lmTDYZPHFznRd3iu3FA36NbPMx + //1+uI6NFMAyR1dPGixoj3L9mOFgic78i7rS3uAglfCpHkN8eimnYUzv495rK+74LoQhYMeKi8C4 + euF8kIM0nJ7nqYE7/8d5WWv7mTLbgPT1Dol6BN3wFblIApwrm+Rivx7DUr7bAv68OcFqQJpqxifP + gLwVT8R8dpK6/D1Pi9828WRVp8vOJySnTRA5K6Nn88tyK4Bq8yFRE/wBm7k8INzxiOz8bljm8VpD + Xn+difEJi5B7YZBAdri/ZpSqUkjKPKzhgzHrmYjdd6ANhgFMHqVJ9HcWgDUJmRd4qMmLJJ9Qzniu + dNo/fonvWJErekzKAHARTXf8MzIueo0OqAAssL3zD/7nHGKxT6hBtO9S0f37NIj/uM5/88ckXiPt + fJBo5LsO68MPY+n6Ai/sudUHzMwlz+FeH7CXnH72Zs1tAujSJMTg62e4LPqJATsekegj6xnLq8sL + JezU7WeU4nChJN9gYocTOV9ye5gWS3yBZElakn1jLvsqflfCnV8SLXtodOu3nwyRd6L4kT/VQVjW + VoJGG3/mcc9vWiiDD9fI/5JHo9V0j9cFjqsT4nBfv5VzLB2i5y8l6l++F4u9IY0CZo7UrK42BG4K + tGbHIwlzaNXl0MkeIJ9knkEq+naLymcBYDXpHsuFj2yVxXKEvqjK86gDHtDYXRioB8Cdj1602lMS + 8i+w/vxsbrpjYlOTM15QdgUOX9ZXo9LcfciAWAUm6pFVM355n3JQH6fnPPm3gK7aBBkIT3Y3C1FX + qmP5bkt4d4sFq+f4CjZMJAVcZvGL1cd+L6OTxcmfXpj7wFvpX7yA/hYd9/z4VFN2nC34qTTk/X6X + n702v8CTkgcsZ2gPbDZ+DZACr/yNGLOMGJK501qEgcV56PP7ZH96EMpulnvHJlizNRbzAuhvpSay + ffCyuUDsLAnx9t4/z9lIAKsjIY508tAasyIO+aVgTBeXJMmKw6WCFMJP2dbY+WWt3V3CcUbr+bdg + W2hcyrpe7EPQhxZWVuusbrb7fcH1F2QeGjylEozupKNy6HWiebJv8xmsNEi524bzm9aFm1eaOtz5 + hXfMn9WwPKdjAsJThDAOsnEgMhbH416/iZsIKuA+0mEDX/7Xemv3vds07KQFak/17Qm8p1b8MAUx + PJp9PFO5ibJpbDYfdkY+kzTbp/JLTejAYLj7+FKf12wYTkMKcGId8O6PAPpmNx9B3q+wshlEXZjF + e0HjvGrksv99rndNBoB7GBF1qK1BEJhVhDonX3HG1om6lY9XCzhf2rBFvzpd/vkpZmsQPVBeKjmm + GQ93PUzkOJ7CLWPyFnJVjklcg9kehk3mUWccL9jZ15te3yMEUXBZPKljztUkfKUUdlqt43ex2UMb + GZ8Wyrl2xbu+qTaGl2M0eHGG7e5UDuOez/DgGP4sXTo95N6ZtAF1ZWUskweiOz/I4SUTCVEDolfc + eDyIUA9erCdduib802PQabmYGD/DUzc5f/nwIN0b7Hkfm/KAPFsY9KKAo/73qygvDyUMjHtKdMdd + MlolS44AIg+iu3YaUv/KynDSdgev5Wa6TK+2hW/LfRBli0FFNPWaQv14DzzhAAd7iN0FIvhmn1j5 + QCX7x1f6B/7gc6M/hw3miSIxt9n2pvI7hIuaPQu4xy/O5YMC2E9l90DO9SvxwvcNtEXTbBDyI8Sq + K+5nBDnJgCSYjlhTM63iqx9uwJU92lh+I69ahd+w77ivXtj8uCd7RfvUuT3f8Em3L9X6cBYPPZvX + 4v1uXDJQth1HeBrTYWYXr1O7h/dZ0FxrFlGB/KDr8DCj/+qpIuDprtd8dK8zTNzu+lTHkAk3BDIb + zmKo/qoVZx8Z7XyA/Pk7lLEeiYQe/gOn6aKArbpPOgz93P7Hx7a6Gl9AnXkTP5+cS9est1vgOb/D + TKM6qjbYyww06yWcKdYe2c7HZPiHN/kvM2x+ZfQc7X4jwbNdZCTITyz0ayPBwXq1w2WibxY6P6bG + cmrIlJbOqqFNeQJysR5mNtnHPIWzpz2JZZeFzXOl1kvN+I3wHv/2dry/JCg9mAWbZh1W7dt2RGnn + MzM4wS+lQeoHKI3MXY+MebhNQmugQRxM7CZMb2/j8TGD/XmJtfsPNFVtB7ivtJslZSsHLogxIxWX + S73jF5/Rf3qVtAq20qWka3acjT++NB8+CzesSeCIUr6AJ5bZ40MdZeEdA/wLXOy+qEDpcBoSIG/M + gvW546rFuqc53NeHqF++ssfF/OrwGb4kgsMiB8v78lnQ3/uMb+w67H5TClPev5EMJJ9wBXZpoKN7 + uM+wrOtwGe4cA1+5rOKgOgUV2x4OBmzlO4Plp3JQp7d34iGzHAePJvgEtq7SCvinT+MiiME/f/hQ + NvHM/elr+aNtKATuFYen+hXS58NPUGJfJ6zxFlK3EdgB/MiXC8Fv9hQSMT8nx/4nxRiHBQRDdigU + lOVzivFxvtHpzw9Dxe9KjOWj2lyUSy3c15PY+liF6218GhBLvupttxaB1XxuJcqnp+txhdUN/c73 + QT/iO7HT1QTcN0tZOHdX5DU/VIHlvsLX3/NhOYvuGRWdUoIUWQa5WIFq04YpLNSD6EtOPGPTdtf3 + cDIOFXbN5RIuIMEz2PON4Df4DdNRPUvw3CkiOW2X1h6e40sBf8/jHd9luOKsU/75tbwR8RV99uML + evwJzMv1bVY0C6YRhELU4XunZtmmtLdWEpBTE99AYrVGbmKApU/8f/qd4DPbw4GNDXxmYz6cOX+p + pYUJRILz40pJ7IoMVH37Rv7qzWK1cwGVmDzmI5tVlO9qRgPUBjzRDLsMp9v4tMCSkQz/e99X7hGD + OWLgru9fw8xWvAfrb5L/41frS/YluKjQJpct922aPJYIKnEo40snve01Cflc6hL5hpXwq4brNwtY + SQnSxBtxPdvEMA8zXFvbxc6ZFFmThIkvXKcmxF6+agNtM9AC9xsaxBh5jv7jE1jmDazF5UmllnLM + wSqzMYnf2Qa2yWB96PEqmBl+O9ijZMUbvNnVgGVxGKvtkmQOHOLziB10y6s8u0ktcJ/QJ744jAO5 + z6SAuz6Z8zOvDxM/YE26n/YOqqZHlBtGD4L2eCvm/XZ4sF2S0IPu0V6I+6tu4RKcGAgNcxjJiRfO + w1IRW4ZVeuXIXr9VbnkyOrxeLI+Yd7BlYxOP0V89xAGmhJJCXmc0vi8edqqOrVYLHkpoerHrCViR + B27S3A2636vh3S63c7ZFq92CxBKiXR/qw3wMwQZJcC2I1kApJK9WEuE0aD/88tpApY9f5//TB+d4 + jSq6+0vQm4nqHVV+oKtYG6ykoJ/gSeisqNvjY3oQNEk5S7F8Dpch1tJ/etO52WRocSwV0gq+OT61 + j2Joz98hgiUpZ+zs/sAGXmYNwRea81f7QHXe9QT0MuIS65hGlN6zTpJ2fCBG7b4GOj1dX9z56b/6 + OZlPqQCB9tr2+FUoy8y5BPnvmcW6HY/hXAdJcvyJzYRV0/hmo9S1xl//hSiXKwPm6NMZsDg6LbZm + SKrdD/cg/vkueX/LTl0iK3SgGn5rfHbVSZ169wTh+dZ0XskfArBs781Hez9sJmGR0+XPz+WLjc6/ + UzcA+hDs5e/3ifch3rDrzxEI3XLDOj6o1ZIapxG23EvEVsd8q51/p2jwooyc1V5UyefNzH94PB/6 + QB+48xFGcK51C1sZPGY7X/TgwvgifnLjD3x2fwFwCkYeGb2U0mPrbPDzyxhsNc5mjzd90f/VK/n6 + 7qo5cwUPXl/Ps3e4oEsmlK+zAfHhzRNPqrdh4VUxh65VnrCpTYSu+9//88NmOIIq3B6f0z7xdrNn + KacoW0yzK+BrE0sSDFU1rCz+esA5lW+isZcSLAbqNQACGJKT8ojs4YyTDZ6v88kTdnxe9LUcYdy0 + wV9/K6Ovnxn94Qd2JqUbVvMpldAtmAs5wa8bzg3KF7CojD3Tg/Cslnif8fOndxaXzbM/PwreC83D + TqrQ8N/7WqOR8bj5Y2R9cFlYiMYAEzmLhGxpl7wFez8MvwyqZSxdvQhK6cMkp/iVVut8ZWaYypOC + X+Y6h7uflMLhO4TY0FsI5oyJevhA/oYv4pWxqfhkGABPZodPeGvBKr1+C9zxZxZ2fkncI3Kgd2G/ + JA28K6XIZYu/+ugVFVHs8RYHNeqM10zsu55Xq3M5p0gM+56cupcPqOj0ItjzZWb7eaJ/egiNl+3+ + 58/vtywvJcxjI8a7v6xOn59kQO++zwQ41Uw4S59xhuUGmd2fVFRiiEMD9n4q9n41zGY8yznUijfB + XnJY1UUW7hGSFgGTP79ux6cc8taqz0CRCFg6qc/BkoWKJ65v1+Z2PgliDf2wZTw0e+OKUIOD2Jn4 + LB6mgbSJXyDJ4kriQH8MR7u6ssg9mgt5+tU7oyPOI7D7PRifzZc9k2tSwEdPblg53Sy6Hg/lKP3l + l+GFvb19CzMCG2s1M4ouzd4PkGfEwKYjKrO5IY1xX4BqCct5MAgC5NDFCdS/RxXveK5uvnsu4Svf + b0VZp8cw/enz9Tey+P4ovuC39zfBZRVzcklHmE3Byd/++TPmUvZq+wk/BhLminiHe+CHKz3fE8gs + YPCWvR+6OueQ/8NXYkAtqab4Z+R/6zPTECB7uzGwActmfzzpmLJg7wel8CDdGk/Y/e+tWNTlT4/t + o6j0cG16LkZqOW67Pu6GpZ0HDXazRLHtpIO6ME+ZhXv/a5ZmzszG5f5SoKBuHVGT2LBHZ7U2aOHD + 5uWdH9vC7zk5MBTibu/PF/ZSWyMDOupyRNkwl41vWxP/nx0Fx/+9oyAVRIU8PfmqTqyNE8iskPdg + cSL2WhmkhPLN7LBrPX/h+g7vMUwFScGXYf2F2zlieSSWB3PmOPME2HufbcBnLhfitv1WbRf6TGHU + ijeiR8El5I/7Gc1f8bxiy/NVupmWK0PxIx+JLt5/9vLz+AI8Km3Cz1A8V2P9aCLIMK6DHyoZhs0s + rhYaWF4kMr3m4aZvK0TrAWo4MM+/YXtJJAexy35wUttPQNXJS6H4UY7k1OognA7b+YVukr5PSdOI + Oo7dI5Uit3uQ88bydJnl+gWfhLW8bft+h40R0kUCW5URdfNP6nqjzYbw0nuzIDmg6qEJeihV1pXI + dA4GvrpNLKycc4ffKWXtjXszM7g+YnXmS6erVkYueqSoyccTpG6lq3iZLGDSqcXyOZBCmn1yD7rG + fCbm+SeHXBbHBnrScSD60ycZdexFQ4csTTzJjMxKeF6UVPp5qTlvv2Db9/wWMYrf20rUZ1Ha7Max + DfpbD28bm4p+OA3CVaqO2H76ssp91ihHVIGnuaizA5i4TisQQnaB9WbKMl6+Jx6SBsphO+M+1Tja + wojab9DMQaDigZ0vmwLbo4KJM6HDfk8pKuDT8E4kSu/eIOSHawRjIQEkf5lpJhRsVyKPxja2fm8d + UCBbCVClABHrpRlDn57vEbSZ+0Tw8DmHAhu7L6g2VbTH3yXjnP2Ew7kGKrlkKq9uzuFpwGOpfYm/ + XtRwMp1zgNLaeGCVi9lhe56uLdjjlyTR/WiTKW9KuJwml7wz3woXLFoJjJ8oIS/PKMFk9xML2W53 + RG0qgIXbggjhUazJ1Uwdmz81kgMtMdGJUxfU3jTm7KE1mkysuLVd8YfFdeCs3l9Ez5K0WmXAj5D9 + SS658L9aXcjxxUO6+Bq+blJvs8514aEc4gc5dcptEOpytOBH9RGJLnJhc5fmrcHeUWxspKNKV8wr + FvIuTEKSuo1sehHLGaq9oXtboOJq855pBISXArHLUMVeyOkioVODb8S5mvWwMn30gp3ol0T9HHR1 + Xo+nFlWnfsRnenVVHv2WDU3axSYnA92osFz5Ec5sEGKnTy4D/cCgQPt6kJNa3kPaNpIE0KR0RJm6 + IVybsEjQnm/Y8djHwAE7eR1F10qwMwv2sGV9KSP9txjYLrj7wMmqE8NfpKnk/Pp4KnuPLi34Gt0B + J/PBGVjR3yBKja3xtuQ4ZuQqxTpi4q+KTXlo7BboqoVqsTK8TdC6YfkoYQQ7bzSIfdvnrQpiU6LX + xl/w6TlFgH9JvxcQ660kKvA6lWq23cCeq79Yn7RIXVUxekFbQYCYt+xsc6/0lCP99c6Jpmtn8Pf5 + 7314x6ecVyxeHglUoRYTjTbrsMCbOcNSt5R5EsFUrafFUKBoRwdPlKIpXL9QXGB0faizwAzvYelG + 0MJDliTEa57HcHJN7wWlyrgSXOo/e5PygwRPsfbC6cfK1enQCxL8/MwncXu1soVaXALE5NbZW8ld + DtnqYUnwe5sjrKj22V5Tb7LgVe0tnOxTBnsD6Cm8PiIVJz5LspVZSwXKyZJh+xtlg/CxrwbiTfdH + 7ofvqE6P5cfA1u1zbFjPeBhPUVNDNMkdttMXQ/vg0+lwC1E+C1czBNTNUh0K16WZGSfI1dVeaYo+ + S27uU8LUbBMiWUbfSgTYFFrfFqwXjBGHi9gr4ecGlnBKa3hu5pw41mZT4eXRFD0OT8kbuakNF3ts + dFjqhkKuzHhSucB9ekCg3ETC/HIdNjGqckQj6Yrl9VKFa2X8Cihg9kaCS9/Z0+EYyuheLjNWr7Nt + L8frK4U7Hnj3DJXVFqYMBI9a0oniFV/A0nBd4DtpBXLyuD5bX7YigcTa730qXlHFdUPMItUXMmw4 + 26liHyc7hdMnuHvgE7hgtXolhbn6qXBykvthCqpP/FcviN5WSiboH2CB3zwIRHXCkS5fYcghOWzQ + Ww3E0TXIww0270dNdFXVbN4Hm4icYVjmQ2NEgE3vG0S1Lx5I3FZlRofK75HmuC6+Hq8KEBIlceAq + /jrsRneTrsqnFtEPzA45vxgt43rpmQJWVDV8ORg3utWSWMBKeOfE+JTFwJLji4UVwOf5OLtXwC73 + SEG1tN8jBxnHZrktjWAJ4IZvIuZC2tx9EUGb1/HbjQ2bf/mgh9pp8cnjxx9t6mWogMs9289EJmlF + OZAY6DWFGrazxA7/vc8dPzwhzxswu+KlAVfPZbB5tnp7Q9Zbg+uB0XD60IuKTd9ygUTXSPB92Tvw + cVg7aB6pPItnJclWGTAzMKt6xZeem+zx5KBGwHdvIEEZ9cP4cm0D1Yxmedv95QIh/xx6IPLzRnQU + fkIh/CEfyszPxqftGQJBGXsGXqpg8w6Z32ere/80aDhPObmax0VdRfndwMuTEGIZCQ73eHyh96an + 85ahK1jTmzTCy1ezPXizg4wWr1sqxd98wFF8K+hEr8cCWWz/nFcXPOmGRxiB5uoxxAhFlvZAsXrp + OL83bK96MCx1ASTwmKreYwwSZNv7vTno1ygheTuCptJzuuNFfOXJfZw+dG3CNkGBIj5JMPoSHcWk + gqj6fhysHiZXXbttTGC/Iopl5vKwl80xFsT072oG4DmozXd8JvAvfl2hIPb8cE4vxB5R5CHNyId1 + 4oEBpIfwnSG7eur2t34f/AnJvXix1VYUzx7064Fij78y9nJgzyMystO214cq3Ar+syAcfo84+AVB + Re9PN4dLODy9Qxz5Nm2OgiU1onCZt9GXwJqDgkWfG3aJnO4OsQDvMjz81gY7N3sL16DqIqhx9Ee0 + Fx9UbGa+ebC2r43Y3Dce/vgZqo6Pkdz18G4Lr8vEwndL9x0B94e6hFNQo9e5BeQudXv8vz41dHvq + YNVYVFtYH78ZcEdtwdqL36oJcL8Rrsp23PkltpfsPUDYa93iSQG50GWSTRkoavrBJyAdwNy21EJM + /FOxcviCbOnhs4ezzvjYYVfPJrJnpRC8CtV7FNcTEO51psD8EjpE7q9NtSi9NErfKxywZlUd/fsM + 9nrnCTvfGD4wKPcWnUzwO0hU+pW76B9f+uMT3En9LfCPj6mYj7P13mYlLIOPv+PTYZg/rd4CD1GD + 4Hww6DbIugdP0fVMPHd35PiRU8THJ4xmzkiYaqvrMQFTBwAx8acc6CqYCfzTFw+FO6h/8QTt5cpg + Yy7jbLGo78CjsLz++Io6Va89xo/4OrPVLa62bYUaFAM2II6NS3Xz1f0MlWve8Cn9fUIiiY8YVkh5 + /eUHIKoa1OCjBsj7PIafveuZFPDiXcU6D/ep0TZbw2ETWyJbgwWW5dU18E8vPPHjU9G6W2foxznz + 3/wl6BKDne+TEw6KYVmaoIHD433GLn19smb8JpJ0zKuSXN6lpG7ocWth8TtaJDxJTUh656PBpGJT + 4jCDny2nypxhFTZw5tH2zQj7zGT4Au+ByIfTedi80ZdgIswS2flTxVr1tf/7/2ZG84phm9W1gPYS + MjPTblq2RSLUJTgBdxZ6zrW3nb9B89N+iE/wPKz7YST4y6cfPj+/IZj++Mgz1z9YTXEOOFF+16Do + hJS4bG5Wghc5JZjz1iThkNYhjW/5C7p3tfKa+BhX6+fSthCwMTtL4aDYvIq65S++sY62c7ZRvPpQ + 9YCF7UmrAZU9JYEsqnVy6t4DXfhTwsDuxR6I8z2qw75zlYE1T8gcLeWojqZ3LlGagCexD28RbA80 + +3Ce6wdJ6GuploPSSvCvvqnJuQJk1xeolL8yvtHrZNM//kz7xiJWPiTqlnAPFkKa+yRfAsveNNdm + YV6MBKd19glXs7ymSIYtIKmRkPCvXiFTf3yxQYAOtuNWNBDkc08s/r6G//jCYEbeX/zQTfatHnYb + KTxhiFZ10uJHC4sbI3mgo4eBWo0pwblT797Bz0HVDe/dAX2+7jPsk98wO64YQ3qyWuyKLyHc7j42 + AG/in4duYa3O6CduMOjLZj6Glb+f6dtmeDoUMtn1V/WnZ8CpYxjsSJ0ysI2X6TBgfDy3p2cBFn9h + efBctwyfu7u18yTFAi6vGMSK11u15mwYwOjkOyQqrleVnm4gBfZ2vpMzUxf2Cmz/9S9+Tsz4UZcb + ZGtkraeBqDw5qwuJxVp6p7mP3bPSqf3zdO3Rzo+IrbdOtkrwwcML6Q7ESPFUDWx8fqHoZowkveQs + pRFjJvDmbNwMi9c5nFQxyqE8Fhq+noUyK9a3q6A4LDKs+VJZsbhTWfinV3Y9O8yS9GjAjrceEgqi + LulbLtGhaw47v6mz5WEkDNjxGl9svIZLLRjKfsbkQS6f/d7oqjYgfI9p4UFuMnZ9Lepwxzui+ZIy + 8DP3imHAH1msiO/WXkn+iaAe6HgmzXdQ12I5KjDmviVRb0tCqXwgDpwOL0ROHVTU1cFLA7/GcMAG + yRUwX6SdP3w1G+f7+i/kGLP/8M5sb89solbFQBqJVyxHP6BuJ3/WJHcuub94trf9eaXH1XpiPMKK + zt7XjkHENJ636Qsclj88LyXz4S2xPFTrZap7uMZlSbTGPFfLtFopaN/1SG6/d2xTPZ1qMN3RgF1Z + n8GWH4tG2P0PbB8gUUlzTyQ4XErOg0N0oluCFB7s+Yc1/zlmE7cEOvrclQbrKDyFwsZsKcrPEfSe + l04MqcYeUti0s4+1sDpU6x9fp5x9mGP+vYWUZ5UaoXBiiPl6TOqclquCvuGmEU1Ki6o/DpkM5PYY + 4OSYUHWxnpqGfD2+YKUdqnCF4emFhA94EktYPmC5PpcaPXg2JuG+HotOzJck/y5Hj9W1M+WBhGR4 + kqucuGGGw16IZAWayZ2b3ymN1FEiYYEcs+7mwjcEtYPhKUehf79jx+mLYZPvvgNIYlGveFS3jODN + bKFbRBjbt4MEqPgQN1i2rkl0yA/q7FtrAYRq5j3+UnNgHl92BC4iHLyqOVHwwt9mA+FQBzidHl04 + e88gBp1p63i/win74z9A5McNXz7pTJfUn1JI+9rCYfPqbSp+Pgu8l9tMlIbOw3jTphYi9XuZ2X29 + he4XR7Cv2ts/P4UXnC1HN/6OiRr335C891sXvuxpw3/8YH0sPwg54XonymT9MnrsggUqzBZ6tTxw + 2SoHioT663jGO/8Y6KXHNcTD2caZczira3ytIDwcCe8pUDtUi+ykhvTnn6gNKLLl+hQbaIjaBf/p + D/6hURH1i1qRCzMcKvLyQCqNCUmwfPtchjURAg35Hhqwer2yoC6GakRP7YfJ+e4Be+Sq/WbRoPLJ + KVzrgaNgiuHhkRs4zOvfjh9NAO+XasOKef5VqSviBux6hhivea3+9C8KkibGF31xs0VI5AK9Ny3F + IRdHwyRN+8wATeln+sf3UqtuwXWBLokH552x97LfAOt/tl2f1fbSgc2D5+rce51nBOpI0VTvt2bc + ZilxWJsekFoC1umu5HK+53Q76NcUJFfJwpZ+YKr54Zg58JPgTnS1NNSVqq8EbifxRmSNxuF6fOUz + 2PGEKO6Fy/7xS2NeM7zr14GenmMKryd+JX98bvyYrYhAmdQzvdy0atezG2wFj8eYe94q4a/+7v4D + jrenNqzpbRuhSUmLNdpcK1qwXQGd1aEk3fF++47PFAZMgLGxpIM6h6VTwrKXSxx1I87Gxgs1lI/o + vOvDUV0D/dLDeYtUcv/zBy7ivpcjeI7ew3QEMCvcsiES31NvYftJnZLFKeDn+qzJ7gUPG1CUFlnl + 7Hqfs6CEbHVFEZSGlSOXExvas1k8LBjhfMN/fg3pfnEM7+LrR86h42a8NyYiLD3aeGJz0qrVsDse + Ct8C/+P39NwZM1Tdy0rUouEqMtXvEn6tZ0Ie7RYO65AENZA4/fPn11RUCx4W1ItsIudzMNib7Cs9 + lKaft/ufb3VU8nsDpwvL4teH4UKKT0YAavsGyYXzwmrdLLlE45xdiVHbiM5QmXVwuUYlVrzTB5DG + SOO935AQ5Q40ld3mnwItW1fxXz4OGntIwFg4A3bpybYnUb7X0ItuzZ+/Vy056nTgJ/5959tvmz4U + 2kJO9eU93+qQA5DzQXe5T8Qejb5ahYs5AmhoT5wXqMtWVA6vPz9kFqvxMez+OgPPb2ziU/2pwMA0 + GQP2+PKOtFGy7Rr0JSzQV/UA/67sVfCkGbBe3mPvbojVrPyePYjDMvunP6bF0z2w3WsPBx+BzWb+ + fMrhr5FD4szCUG1sU7DAZ84XEupZoq720WCAXrq6h0LxPNCD9jCgyX1OJL0cbXt7+r4D++VUEffS + JRlZiJ8istaxB3e98Me/wPVgUI9JNGrP+DsvcJjuX+KQGFfzqdkcic9sYW53/2brxacFvbXYyM1I + XhXbAcmB2mnzsa6Y94GeA7YBTWV7ZFfW6qpPpgN3PCMXp8d0UlddhJ9TNGHraewzzLx7A51D9tj9 + eEXlvKY1JMHRRywzNQ7XG3hvkJ6Mdma//akS1geZgfeQWk862kUmZMGth5vAQSK/Rdkeuf4TwYtg + BztfvIfdM/Bf6I8PeHcjGWbzmtbwtOZXnDODHy73slwkZtZvxMt+ebV+tY4HphCn3pbnsbreTAlC + f791mPW+92Ex86IHlpjq5DxvnU2+x3BGcj8OxFS4t0qV7zOBveVsWN7xb7vJkwGehnPCerIOGX3H + dQK3e+PhP71Gmdlh4PNwOBGneJ0zWkwhhHXUtuRdTPGwKfPgwd54PLByB7W9HB84hR0fBUTZvt9q + rNtRgtkAHtgwPzAc406MwR8/SvybHT7F5xrA2r5DosYuUaeiq3J0eU4EY+V0CVnq1N6/n2sPKQk3 + hnQLeB7QCVufXxDOpXtN/uoJlgu+DRtv9EVkvmd/XvyvG7IdW/dwMGPP49WytXc83P74glecg3T3 + 25IWjsmUEPMhdfaQUE6Gv+J9xWZx/VB6Y2oepbX18AA2GbWP7/kM//iOw3laxgLBKYCdB3/1qR6W + G4QN7C63Cadx9A432eB0mHhGgf/qB725wws61FaxbBsne7v7Fwvtepmcu3tPp3daS//8EgF+9EH4 + 9jcDgOVn72exTLp+1jwHrwP+84e/6nJfuxjAtRf+9dP++VN7/Z/FPR/qYhhGcGuchPjRD9irlans + P71+Od8hoLnQRrCMg+PM7njRxk7cwyk+ZZ40MBadHxoQ95k8MbG0/QSDktw16Y/v884hyqbqbvVQ + dyrHO5CKqtPePwIDMZhZunIgJIdGSEAQsRPBEThU4/nqRKAEzIb1p49D+tfPSX6N6oErmuzVDFMW + JtzSk8vh69icoUU+fKEMYBubjL05ermgvCyNP309kGLKGEjiW4qjxvxWC6qHEXaPEHmowqy9fIUq + h/IpNHe9f8qEUlNraH76j8eXgztwLxXF4PVIa+8X15u9xJ0YweOGc3K5n4xseqoPESyMlHiPnd/T + k/dl0XbbOGL4tyFcvcRVYH6O4d9M0uwP/2GtjAnxNE+utrDUCsQ2GotPDO4pfY9LAfZ+5Hz0jM0m + VQoMSOAp9FhLD6ttDhYd3Zvivvur0kB94xiAWoo/2ONnNpw3WRqhPOcR1lvdUQUv0gp0ewlwlrT4 + M9AEWDUsHnNFrIGxAJVWdQHC5/jEWgT9jNcY1ztuggC9cPNP9lI9FBHtfgl2hUNor2PCy4iBGfX8 + cyBl4/H6Sv76H+Stqzd10sSDCHb/0ivDvFCpzVXiP//4shmFPa+r38O7q7NEvirVME6rkkIvOeO9 + X1movHO4WXDU9xMPJ2OoNrrdC3B8xYDs+oquDx1aACGzwHjX29Mf/9iOw404r5bJug2YonTmVGnX + L04295dsg1bmSN7m1sPQ+9N7A112iT2QJUO4AEErkGSXF4yJnlNiNSfx7/vM30re7NF6arq0BapD + LqcbUbetnwsJ0pePDZMJhvUXqSxkwTZ5qAyPYKPbu4SaMAm7f7sNn4PxaEElPHMcDkcjJO9xKVEU + OjmJToY9/Pnpf/0x/Ob3W4bB+nMAB9kHVgP7FK47P0WSyFvE1u1YXau70qN/ft+a/QCPRxiDYno5 + 5Fxny/DPL0wKt939fXnYLvSW/D87CqT/vaPg5modUU+vrqKXbikQK6sptnq3GuilADx4RVeOOEZ/ + UJdRWAIEjMrypq5fq/kJfh7CV/lIciZowDCJXAEE6FxIbnpXyjrvYIHMlk/YIKxXcQm+jogp3BIr + KcLDNjBwgaxwADM6qB8wkv3eN3l1ZW+LBjdc7MNkge10u+Bos1l7+72VGb6PPD8fC7ECbf+VEni+ + xRh7Y6ra6+/+2uBSdhDLY/kb6DiYMVyRpBK39+qQKnlnoXN41nD4NL2M0y/7faBRsnpo//lcvgcF + /ux82b8fGVbfrniYEdGepeTzyxbiTTN0yEnANg5tsDi1u8H+PWvEiI0iYxdTGiGkS4rVlbEBbzfv + AH6S4kQeUh2o5CIUHgq9JCZX3B3DhQdlj/R1wTjWY6Cu33sQoEVpWfJu2ghQ62vJ6PWAgLzps8i2 + eM7i402ar8ST12vF/Yrwhcxg5ohbsjCbE89gwCl8h94mqo3Naw3QUTVKJdFa5wlWQ7UYyM1jjTXH + m9RtuTwcKAF09j7PYzss5qFt4ZjCHOdzlNrs83J+oYczp9hl3sRertKVRS/bHLDT/CJ1W7j7Bvv7 + SslliN/V/CowCw48Csk1Wq/2lngy/IsncirsweYnX5rRwxlTrG5XASwDrHxUljNPDG9OwiX1Gwgj + JnzMxXWm1YI0u4Fjbjo41a+Jzd9NIYDPRPTJeewdunCem4LpM3ueKOeaLRjn6IXaVZZmODb9QDWa + KpB/LxeSXsZuWIUbx0J8HmriJqWhsqJb1Kj+6Zhccexmc70WIvLrmGDHAV+wrcu4/Pv32T7zmEaH + YoGezmqe1LvqsGQXg0Hd+IjxMxs6lfVvq4+qa+URjX3yA3GKsED+ubgT41G/K2J9FQWx8inFrzl7 + DQLKlhlejMElBv2UA//3PjPTLglGhAVU6OUZyWe+Itq1W4aRfAMdMvnyInHzDYaJTccYni8TId5H + 7tTJ9YMIymjV5t/msHQu4g+PznOeED8zBXVjeq4HmZ1O84cTLtkomLGIpm6FOD2lv5B+GS1GU1Jr + JEvzt8o2SK1ReC8K4qTSrLaqfJLRg+NGYshkUWcJ8w2qFMIQ9cggSt+VsYBseHAzKrBnc8o1ZWB8 + +vo45ywSrsJrK5D/agtiqYfbIAjCkiISsjl56Bqmwv2divAoSSmOOLG1aT72PpQaX8Ap0diQWN6t + RzE8jN6xy9uK9g/1haZAYjzheJQArRffQOOJD72/ekJlSEuEhhHgyy92B6F7MjmQwOFMzqqwhOvl + NvXwfn3a2EB03+u1Go1Eox7hPZ/D5X575jCiTEEs9p3YbN2kM3jMzOTN4qVT6SomM+D01SbYOV+A + MIqrgoyzfsYqGbtsfeffBtqFl8zL6dnS5WwqHiJF+iHKGBf2PuRZhrkgcLN4q6dh5Q6aBLN4U/CF + sU7D2nVRj57bqcSvr/AA9BI6FmzSzJ0lTuoGVpVNBSZ9fsH4XL6q9St/JTR4ZY7lZ3asxkvMpOBh + Bm+c/+wGbNdzoSO2LkWs0PfJpifRKEF4L4v9FpnLIESHdoFtiXui13KdtX/1qbp7Eb6065pRnE2y + lCQO3KeEWWAVrwoPlc144dRkRpUevHMp/dJAJufIyMJVNq4LmFXmM0M9yQdyc5/yXz5hI8jGbC07 + 8YVC9jxhDMXY7pWha+An9nkSKEahcvfnKUU/wngeoy8Xun3qlyLRWDTINVNpuF4XJ4XLNdeIL9Ii + W4YvL0LW+b3wORo9e2yQ3cCDlehELYUnXTmHbVH7Exfi6Odl2N7byUP9e9TISd+MiuuyGkqP3bD1 + VTvJuK54M8D/bT2RndBX1989XsD8aAnOeZGh9MvhFo4fLsPJKVTo8mV1Cd4GcJp9XRyz1VoKB6Lu + vWDZaKDaWvUpQKbUeuR6up9tTl6nSGqdKiOmrmFABr3YkHI/HPH5yZ4r7n3fani/G9eZMW9xtllJ + pcGAC1xy4ZTe/ofXNbY4YnB4y6ZbQj109rkj1uXWHjgtjQx0FppyXjnhEgpDlOTIeDnePsX+BFiT + rxgwP/UeW+6wT1nzEAR/70Nn68xmZbMvoN1/rsRCag64PLknYDC4GDvvlwyELYQtFC5jh8OmXulG + jxOEUJkFbKqbm3G9ywUo9ZXrzifUapUPT/nYvbkrfpjuqq6DqfiIVrlLzPQmVTS9rQk69JlHjAkX + 4Xr4ZSkE5wv2qOoc7TnszxacbpaJ36+2pDzGuobOvnDEZ+fQquNo3Qs4xfFx36EFwBhKrwiaz9OM + w8y6Ay7EkgIL5SCT26WuszFiWhnpnGdh17nijH+7kwVJkXxInq0OZW+3BMLYTwqSxebJFsbhFEMl + 38/4Bb8QsC0+leiMW5nkd1dSx/J5LcHvvPbEaC8Sndi0jtHl9/xiy7xM2XYVlhjqoyZjH8BTxocC + 5GH0SzMc7ni4ebQ30Gd2MEk2hOkqqpkBzcut8A4vzVfpmcYl3PAZYHOTp2y5TP0Gy+OX3aeAXoYt + A/0IVzP5kgyHA+ht3UiRXD4WcsfJDGZD/zqIXl2FvJO4qFZ0+bII8NY28yBd1PGm3hvQdN5/SLuS + bVVhLPpBDKSThCHSdxIERJwBIgIq0iRAvr4W99WwZjV8662rmJzsLiHngbRracfbGTmdzPfShahX + pHjbwj0XkL/xM9hC5hgvx81xYXI+88i0qnqkm+kz8Bq+ZuI4a0sHwD5dqH+nL1GXH6Oti/2D8PiI + JVz7QgN6vzMWKFvnBxadOKHz9AQ2xM12RKrGkxEbdy+DfG6c9q4BJ8BxmgDhMRssLOK77BEtWEs4 + GVEQLDV3aqcRjiGIuPCMkrcE4iU8+Cy0C1kjnnNyWn5dpg3ym1KQvA7mgnKntJKZ0M/Jvj69zRez + HlLbFJFu0l+MhzYT5Xj2MYmHiwFYQzFqeI6SDz5626FYUusXSj/9ISOv6LpxvWbUh53arUgRqRLP + Q3qE8PFcA6QrL8tb0OXbwQ8jjui+r48FdlcGmI9oQa7DTN5qXH+u9Lx92kBmaxFsvMy68BjJJ+LH + Z9vjJcR8YJyYb2Lju6xtvycK4CT7hHibdaH4s875sa7ShJys37cgzfX6kdTNrQja62f50cb8Gx/y + +LzCmK3GjwojPRiIl5dPbx261yCdf+cOH8TTu6CqSzZJZB4NsdFb0Kh2Om3y1ekx8kVFb+dUrDdo + 9DQiQeq+KIW3rwquvx9PqrpMiyX0YQdEoH3/8cHi8C2UnVdjYNoIMlhCn+0gY+kh5j5jWlAuc1kp + Pi6U7BF1u3WXAwtBLD7xMKcdxck7dyHPfJ7BAYq8N5XHewDYVZeJKfFyMadm1kCNLAYKlY/r8ULy + NuHlBW8o/tr6uDjrwsivrDkRve1FgN+HhwnHy6FGbjtIMfUd4kIORD+iETsd6Z3XFniozWvQoVvg + 0d4yOsmwCAl4x19iGvOTDl4RD0iAD2u8cprAQPH76Yj9mW4afSfiApQVKeh0AQBsi68HUM2Rjq8E + Fd6mqXkNvEthE2P7aR7PiO8E4Fb+EWcTfI1lnqSEw41SvD6uV4rt0+bDv/EDomnHE8qnEKo/NSHn + L3zRnX9rYHC3GzklZ6ZYYilNgMpMDXJjWY13fSvBflUlZF+7uaXdkrlwFvISGdfWp9Qpzwn8w1+d + O/3ijWuyCP6udUby9+5rRH2UoHtwWaSt+dGjgiDmkKWpTZT1LhZrG9x1ONRADupHcR83wN5sYOru + F8t5eBvJOWp5gAhrB+Hp0YNFqL0I0gtSA+Yaaxo9FHIAY3sOSfGI2ALDTNhE3agS4nMuipcVFxG8 + BaqFF9lk4ndJtAW2w++GnpwXeoK237Ie3cY52PV/S2yhm+Tn9zvu+lodZ6GSGilmrRmd4bmiy1xm + Itjrg8T+Sad/4yErvc6jXS+AZTamBkY1FYhXzW+6HNaeB+mv/gViNb01spXHBNCZmlj4pvO4XZ1t + gepndYj1uAnFXIk6A9e3vBG/vq4UP8+zDTQv+gZXgR7AbFVDAt2W1ljsx7ml9HRnQFb0AjqT3xds + XBNGkPklLYlMe3/n7KCUkidYKVFW2dOIMCgT9Dx8DI7O2oJV4r4SqBR+w9Tdb7HPVGmBwRa8/vyg + toizsHdJUULkYWZpF5ji6E/vBdvWqwXZ/T7shsYlPvFEgLNC7OHA5TFCHGno++95tbmRkFYpZ28t + s2cGFVp6yHJkr1jONs4l85NLxPSvl3a6VbkLQ7kS95m/tGsbXEz5/bsNRKm500i78KvD3f+SYsfP + CQtw+Vvff/owxg9AAlk8iSkxikbT2EO72kBqeIhQHNh0vSU+BslSv1G85xcL2rvkOdrxHSyOGwD+ + O0kZXNlVRXlsai2787P89aolGGmjFcK+PiGZmDdSzOQ+LgsNInAVHyZmHTiMa+G2wR9eBSz7SEcK + f30GLFfKkDl1jibsfgmWNFCR+XWMgqymUsJfLxfkltVmS0081vBmGjxSei5uJ+sJdIn9QoqsqXoX + q3unrDyKk/NPL6zj9uBh7QjMzle/Fs+hNAGPjsWOzwdvEfVWhC/x5aBMIaG2BH3MwOguifi4KXM8 + jUatyBfzrSKXk5x2KpJl+PND5Hxjrt72Y5ZQlnS1I+rpcorXBxT2+jxsyASMCgTBffbwUw4ZXgB8 + xbQLiQlZzK1Iezi4wGWtpXD6Nq+Ae7DvdoviJJLTW1z982NLzI2p1L0KB8v7fG/e5xaC7Rj3Adzr + f70l+gQ9O2RIgJKpXXnpLv7LE05zrLarf93TVXeKSIUPl2KbJGcBwbsv0VMmCRXkQpzgK4145Ai4 + pGv+UT9w07qI3E2Ax39+/UWyA5ZSpNM+qqQKgO+1QWrBBjF3UA8J/NPL1nrlNcIbvQ36u1Xjtf1m + 2s+UnAk6qb0QdELKyJHOScBbtKUdLxj6PZaPRnraNMbr4J5irj+Ly7/1FKLy4v3Tj+/tyZJT+xU1 + spJSlcLCfyN9eugjPQ6GD/uvtCCVTTdta2x+gF9eOKM9n6ELNXwfXp7EQ3Yced52EcQEZvdiQhbR + 4pG+JoeBI3umyKjGrtjeZ58F+/hjqd82r5cvNJS5zeuJWwdzvHI+HMCOZ6TkxYouj1C15TsnTIFU + mFy7dTnbyPGFy4NX8TW1v98LRebZkJ0PQF+pUQnZIscIoVcClvzeDrLE6RYyRe4EeCPJcqlZGxOl + WyS2n+NngNLheToiTfkOdLWmSJH/+OPPTy6/052HQvX9/vFtsS3WxZefnloRU2rXeD7c2wlq/Kgj + pzkeCpJ2ZxHueRmKuHNIl7cLEtCrwX5CpsIaPX2QC9X2GpCnQ9/FPj5Qcn/lB1XMfSzWYGSCf/i0 + 69N2JZ2Twr23+c7vfLsu9ouRn0F5R4ZAn5Ta8DbJf/VWBcsdrH/+k9GGKzLWlzyu5ZBt8AnNE65f + U11whyUzQajqJXpYsxv/6SGZf24WOtdUoeuznDuYGLZNgqzsiknZGB0M8HJBWh2RdhOaZIH+h3GI + //my2vyXFyhFs/7hP6UE4RICw0BYfpsM+Pf5sU3C4JX7bEsucyPKt+GdoNuOv5z6VAe5K6Ydf9X3 + 2Ce5BuUvz52Rm7A03qb2kQNU0RkZqEtjnoQHH9KjW6Dz12i15fuafPjeHuy/PJhoJ2fPZ2VA7tP7 + R2nMdyaspsDE0AcG5XjpIskttiJk+LYTk4qpbVkb9AMeLZVqf34A5PD7IJqfhHTb8yIAAj9EZq+k + Md71mXwTvDvSHei2ZB9/8Kcn1AfavG3QCAujlY/w2hNC10ew7vc9aX7ADLYyUhs+McRr5yCX9l9t + 0nSogiC/WEQ3qVNwfDvX0F/MGC+xY3hUcJ8DQDA7Iyc/noveLfwP9K8AE8U9zeNSy6P0zz8ZTPr7 + p8/gEadXzPcC502q81WBb0gf4ljPVzFZKZ8DtmJ/5DrdFIpHa63hog4sMt+Y0q1w8greYpwi63Cq + Y6q4bQQLC25IvTeM15WJbMP8hE7I8aW3tzrfsQbXq6oRjRyuMYvWrAfetJXEyJkwXstXaf7lGcjK + A95bCwhK+JeHuF9djenvwZeQvXstXi+gADRvX7p8NDOI5V0fctulteHlmkXksv8/sYOLezRiS0d2 + zXzH9XycJTj/KNzzhKggw90rgf36RejKBZeRLC4ogfpTEuIvn/0EuV4s4FsBiqz52nnrnUohdBKo + BMfkO2q9WvQ54Bq7JrHIvrzpMjUuZA7qinRNTrx/6/ssKuzu321vqpMwhUpv8hiAhosXDVsdvGTs + GScb+YARUDODZ/Zz/JcnL6HtdNKuV4L7wdbBZqOXBM9YGhAyzTWm1/Q+ScxBWVFQvI1iOWFPB7sf + Co7F4mtb3h1ZKLOcgalDmhgDMrmg70ou4PZ8mVcfRxG0x/JLgvUSA8G8CS7cLOVMymel/PFPB2+B + YpHwfajibV9PknR7fImXYNQK7FtqIAfCHzmTvWvQImsYHryORx5ATrwwh6wG5+vyQkFW6rFwIhoP + qFdT8qeneC10AxgHefo33u12yawI1C+aBWwMakCgEJryazzowXZtJm9zXZDBdBsoUrZQ0DblexPh + bWKfxIjysd3z4gQUR+WKQnlYvVniiATUskLBuOvttQeHFITVUJNTsxxjav3ERl6aEZKz3C8x/jFi + CEs8j+i08yVJ1qMOTyYIkPLNEcAmYUNI1WLDbECLmMZPAcOPCV1yTeyi+KcXj6/tQoIKm+O4lccU + 7nku/nKq620ZfrJg9zvkzNYiJfp7SGFen+4InVDdLtuvjgC5vC/oX55nMHCCny39klPqNyO9pEz9 + tx7QMzHulIrGNEABBhbRVmakiz+7JdjzOgzQ50ZnczVUuN20Kwr2PH77PS1f9mkTEKc5PuNtPf7K + P/2O3DVNwdz8lhJ+28zd8/zDuB7uI5Ze0pIQ/1nVYPnI2gcm6HFCf3+/OId6kIP2fkF2waM/fg/+ + 8dWff1rh8djB1XJyzESPGWyZ4Udw27IBVbeEafF0nTFUb/KRBB+ctWtTKhv8HvUMFb47gA1mhw2W + 129DFIkFdPtOWw6Hng/QCToFWN2lD8CetxC96E2Agbnf+XfTA3Sxft94i4NX+KeXiP/1PnS5Ml0t + C/zrhM6/4TLun7+AsEsIyVhoFkvB6D5g/XdF0KZisHDKFUNfQTXmsrvq0TUjvdgKqMRbMPGgX3Ec + glMUtphfD/7493zAIeHxX95KdvwGe/638+uj3fPUAZgNcyBuHxximhz6TRJqnv7564IIL1+BlAfh + X544bt80UKXqkfHBYc+z6FmHNhjqo4w5S1nHNRovGTz7ww2ZgfQEG9Y0RZYe9oyZbXrH2wWDAUxM + 8UTn6/1Dl9M7yED6a35BZ2Q3sO8/RPDb5i5yf7+QTp+MNLBwnCY41JJRsH/+KV0rDf/4TtH+8PoP + z0hRObH2l48Df8h0DGr7N5KVJIq871cSXTO5f/wHr9EmEpWVdPpvf0o3ygRZ6zX1SH2967Agkven + H1t217N//iCQXobvbT4pIKxaywj63S8tmJ422XiONu5GVQFjIV0YWHbZhvzrc2j/4fMf/u56pl2p + v9j/8j2dOznx0p42Wx5axz4DmRXAplgnBYivY4VU1HIjRd1vgsVRvf7td9C516EOFX9+oSSgIN4q + nvXlIl1UcmVv29/6TWDngwFzu77CUKxZeRk+510/vugWDcoATyCfkCqv15Zuw08BYSbnxEm+nrfv + D0Z//hOvn8ccsyaIKln5SCbRfnOs8UAuWNgcvywG9cGOV8E27T+9hS4v9Ud/YVI30DszOkG19I77 + 3KNQvt3cC1LdSQdLkYgDhDqjBoeqV8HWS/gDhTkXyB9+YhFJOgy8h/BP/1drw+mgWqUr0o7MA+C/ + vPsatjOxpsqI+e4QdnCErv6Xj41CcBZZcPI/SXD/y2uXW5P/4UfAFRzSNjWRfbDnGQGjVO92Oqw1 + L7e8MpFHTzc6fUwlgacoapGxQeLhb2oq+5mj+q/eRwpxnMv1t6rIX9645+sqZN5ij7SDqRX82sg6 + VNSsJ17qvLwmeUc2aB7Kl/jtyoDfnsf/PycKwP8+UXC8fjXMyMoXYADMRR4uB4i8JX2MixbRDwiM + 9w/p5dDTVeHvLuwUC+C2NK50UYPTR1a7WiBRBbp4RGfhA237IBEk8my7morTw/7QsnsfuUGjlyq2 + 5eM2r8ERxg7YsPropVub6Ogc+OzYB/4vAezHc5DVQUsTqpVV4HGxehSUIywW4/buIMEsJYGOIdg6 + 4tgwpuMpoDA/Ffw91Fy5D+UqYLX7fuZWdHtAE9AQhcMynU4PhGEVb2VwLBjGo8r7WkOZbAOyx2dN + aaJiCTLaNwniwDt563qtK7lbHBUpQqWMPPOJTFmCOkRP/XceadRTDKsFuIF4rfuCa6BfA+OzQeSc + 1te4nI52DnluZgJ+07qWNrdwk9nbZyPGg5U0Kj0ID+v85CPdUS4xTcQggiQMH6SKddLuf5/JPM0M + ktDgMK5+7vgwN1oVQ/XKa2uxv1eegK5FqG9y8OGbLIDuMhfIYYfO48Myy+UrKXyC8ssI+iUqMZRy + sQxaZmDipc5rU3YVpiPKkt+LtfuYLDR/lR8wOi4BlzacKZu1a6NzzZFxDXSvhuU1s1C46sWI2Y+8 + Ab8vWHK6Ydvbzjzt5dJxfuS5do62PptLJr9yMyYIv9+j0MCfKvdmdQwkYB/B2i0kg0/a5eSGkr7d + pixOYGm+ahQsB17b9McywMuwWOgqci+PW4nlwp9aBZiCk9jOm3FP4d1pZ7xY3Wlku+rayI4uI2LP + Dwtw1vsiQb+/s0QbCrulZaaIEBaiRJ73r9OypweaoN47FUmJ/vKWd4YhKA/iiJ5FZBeCgGkts2hK + SbjqYKTm4aFDZEdHzGi5qNHZNRm5i9UEeaVlUQ4Fkw6F6aGQ03mUi8kSsxCqXSMgQxVvHtbj0IRj + 8vNRSMxk5J/6VkL5U37Isz5ePfbXxgx886JOIqH5eCsxdEmWmNkgTpVpBWs96g5+n4QnHkdMbcqu + Vx+q1AqC0G0NjT2XSwlfgWuQ88dJtHUKG1UG78omAZhabXv/og7W4Dwh15DSYh3TrJN/QV6gYknl + lqqmHcmhKd5Ikn4fVACVyMpHJV2DYfNQS9xuZeWzI3bEq0qbrodsC+QoffpEZ792zH6dmoeafauJ + yp0Nj4UhrGCjOQjdpiBqNwCCBZ4c2UP6wjSjsLpxDltJ6Ik/Mh+NnqRqABSfP+jhNFE8n7wokRkp + TVFe+zdtgWPnyq8Sl/g4yyldwBph2XZCd+9Texr5h/tS5IuB3sixDNPjtPe5gm9opyR6t+eRfbh6 + A7hPEJLALz/tpGaNC5v6IiOUxG9tmW48C2XrfUDRBVFKvu5Bhw0NUmJcAtcTYvtawVrmOOLw1was + qyROMIo5jSilp41cCdlB9ooG4RUrPVj5li+PgY02fBwYGlOThQ1c8+5AtPj5Hrf1cVlkyehdom7B + a1ziMN3+vg9zaROMmxnFjbzlgxnIhzUq1kv/DODx+taw9EEvwLe5rQLrftaQE58oXazy9pHju12i + Ksr3HauX94HWU2TQsz5y3r/v/yTKhkzLRAD7r62Bf+OL3C9bbHTqErmpuzPJrBdp6bnlIlnl5hvR + 114HfH0HnZhidUDahf0AGui1CkX9VqLTcNO0ZWqeGZyAZxCnOf00+q7ZBYSmdMPrcGu1bdtyEXKl + 5CFfS7dxa20iwbKgG/Lraz2ulwcz/OEPeXDOLxaGIh8gvAl2MNnZSePjkEawP7A68SFUY/YwLh/5 + JFhHoqVWAMjXFUzYq3cLpcM1B2toyw30DHkman5RtfW59bXsQUywEPZz3B9qpML1057xgW39ltXV + qQSXOQtR9DkjILzNswn/8M/K0RFMc3yPYDTOFYq8i0+370Mu4Uq4C7o2bR3jfT7k4ntwsGhzbLGw + aqTC40ZWFFyWUZsP9CXJhnNjiAmU/T6zgVUhx5gj8RXl6q3VOYzA/rzIVCqTCobUmuDrPjui3bZz + u22Nt8Cc+cpENeKPtxwbxZZttUOkaM3RI7/xtcmON7rIZo2Lxyn8xZabGWrI1K2pXTd0FGWKRoTU + AiqA/8k3F86VjNE5YR9gyt/7O5E/6xos+y3cAl56HzIlyDDw6Blw4jOUoLCSGNlATwpBrLoM2OoH + oYfy7jUqOGMIkQQdFLA9AJvwdQPo9FTERwE8WspelQxUFh+goip7+jPDbIGf30UP6ui5UdrtfdAc + TkmJp7t9PP3Nz8NwGWTd38KIf+1SyUHOAXQT6gcVZJvashs5OnJbL49/AqkVmSQJItfra/NmUJUJ + 8IoaodKOHx7fMlYk1zY/kQvbR95mbMdFflmVSxRPcEa2OsoppFKlk6cNr+1clwML0DoYxF1f54JX + b1wPnzVzIXp1tUbWaaKP/ADvhURfEbcLbZZILof+julfH9Mk4lXYUD8lZZIEgD5NLoD/xl/kXbDd + 8xED67vmKIq7BAyzICvys9IEYjOzpC0pB0qIGToFLA9/MXFd1ZXHg7cgo2mVgtMTPoXieayRcuGW + kQL95II/vi36+UaX9j428nhwFoJEfys2SxgXCNxfTOJpcSiX0ayXy2LdcP5s2P35xVBiJ05HSsKy + 2haWYSa/XgxBp37qis04v2ooV52LXCQ+tJVvmQrG9HdCan5pPPopAh94qDuReNcXk32TVJh+U0K8 + GwEtbeBLkYOkCpF72KBGl7ypYVN/zlhk5lybo03YQHMUL+iyDaO3KBGxAX3ZCorosS7IK0WLBCZb + I4mdEm+Ar14/hopfBnBkPt72xfrnGMxbgqxny8QbnOz+b3wC5pWrrXCJpQ/k4s4iZd/b43Cox0Z+ + BbZB0Eu6jCyaNEV+HTkX+Tve4MXOevlkXVVSRukXLIdR7OCHO0fEwE/szdzTL+F9E4/I6+cbWB6k + XECezg3+nWcS98/7U4ehHgWYrtpKJ2O7hn96GJ3A91psphylsLtPCOWcSzXMrWkK+efFwzRYngUt + reMGFXEZA+ifTMCehdqF3Xt4EG3OfY13TxYPL5dKw+xwuRabNvELzF5jhGznmbZbygWMlLFxQfxC + Zosl78gCWYRTUulUofz7l39gemREclbevbcN+K5ALr4IeMkeRzCCY98AKYABPnKj0nL00GC5ttkJ + uSLN6JpUngmcn2kTNIXdiK+1wQP9/rZIGhBunAV8U0G3eCrxno93Me36RWaUg4fTMz56NJYhCy3z + I2G9/U3e9nBfqlzri0RsocDjlnj6JLtaNwdce27aGT/hB85dc0F24IhgC9azDur2eiH6LxQBvRxd + HtYATUgVGtNjcR9lwNKYFZnsyRvXN8wYmEwEEs2vm3iOArGB8s8kyJzvasyjMW3+9DVBhhxp89Lh + D2g49hng8pRrG3z1Jpj7j4bMRo3o7+xsOnioNUcsdzBjuuRDA159PxCje33jKfnUIvyr37go4oJ1 + I6+C37M1B4Ia5cV2UtlGyi/PcN9xVkaWue6quxQ95F3WhApFehD//FCwKLVUYLwFJQzlq4Pc4ojp + BENYQqSfLWJzCwI4ApsOD9g9EK9eB28ZZlhLFY4V5HmON67b8PvA5hvZ6OTNfLzEYbUAhVQfdOLj + hW5dtSkynt9+0Opb1q5sMkpQ1ZIbiV93Kcbuw2729kXfQBYqt1js86WU7Bv7Qtruv9grGBTYH3id + mGBYPdpfbz3801uK2769HS9KoICM3ftCOuBnXd0NWpT0weHHH+L1kEkBFPVrGRjAqLyt7eoPePsW + IujHP2P80mQJZme2J9apFz1SrVABxXoJ0P0zeoVQNr8KcvHHCj636QDmlr9CuXLLG3HdLmvJKuk+ + jOHB+OOTdrv4pwgGWaOS6/ndxSQXUld2n7WELPB+gUV+yx/ofcsH8eVPN9KUOUVAq2t/P8BZxvPu + b2D1xD+kd/IC6M7XcJGrC/KZ78uj4HfP4B/++mdVi8m5lSPALROHD/4bFOT2aFVoSfeWBN/sF6+0 + 2/uEjvwH2Xcn8Njj1GOo3YL91uh3GK9bfVLg9ys15NQx0vjmfrOy32LTIp8/3goq2Z8JJtMM0d/8 + 993R8GF72ma87P5ggCFiQDgQBaHdnwle0uA/PYWMuPU06qAFy8dBuJKzaE8AKzNN/vASPX/8foJq + jES469vgFZIObOLaLHKMcxwcRD4ZdzyspL3+MK1yHuAuuVd/eQE5U65r6Z+e2uefPMSNeLPrzD00 + FuNECjIVf/q/hzxHGHS63i1t53OVYVYlIqd3DyklwzrAQvruXZWeRUxnN2DgLx4wMlPT0LibwAcg + 36BCglgn4zJPBwiUUAxROcNZ205iLMFBcr/oPPGnQrB1ywXFGgd4novDuLYXA4PqOf2CYzrcR/ry + SAAvne4j94NOYGmdJAPRGp5Qyo5nuvFW3cjo8fJQcIwqbSXoXcIUKwN5SI+Zzofg3sNUq02EvkHq + zbvfBTKYRJSHX20U4vk9yVLABOQU5W27xPkhhQcz7Mht7BZtOph1KvP1cyLmrmcX0ows0B6iim6D + dAbLWnIRTA79dc8zKm/IjKEDKjUCpAVcGy8n7aXK2X3jMR+rcks4KezltjmcAzl0QYv/8J8dfIAC + st9JSVh5Ap9HwpPwwTcxbae79KdPgwPjHr01Yu0Ffh4pT07F7UxXz7BN2WuzER8OnEDpE5adZDhD + gOyJvtvtMOom3P048rtDQ0kgMhmUZ/cVTH3ft5P16Du5RW6LjNxLCnKk7wa+XpCQarhNYJMULoMU + o0/ADLeJbve8nSA0hx45+63FdM8TQOM/YpKn772rW1d38pZ2CVH3PGr3ZximNJKRsdmUUvZqZ8CK + XjYpr4fzuDgTsGHMX9yAcR6aRl3XtSFJYYb8WmLA0mtSKBpK6qKTlgfxej7cqz9/iqV7d6Z84EFe + ip40RG7zyjx2avv8L08ihlCKMRbK1yCn434nkave2m3Xd7BBVonU3T+sZHi4kCNNgpAdxTHFybeG + LCj2LhI4KZapueXSOLVfZFWM4vH3QWJB8ZUdhBAQwf7yuAQk4yrhHefpunS4g5QuDrlZH4bi64Bz + WMpRQ3zxDLXt9lFY+ZxVADO7H6GxzPKwfCVXov32rkQ3lSZ/fuwvr2nXR5lmcPd7wZaIx5HKWMvl + LDZBIG6rX+z+toIPICko/NBpHC6fBcInTi2kPF8vbZrFXw3B6YqIfh+Ngv3ZXQTB8/hG97884+JN + C5z6BhJ1EDZtNYzFl4OkDJF5s07txoDCh8+iwEjZ9UgfGYwPHeubEe9sRS1h40MuXW4CJsFfHmMH + BEt/85cS3Bbrn/5vJa5HqtVb2iZ9zgP06q3Z9YgRb4nnY6j92JBor3terDzzseXbzfgg83iIivmP + //iZawKaULf443+o7X3fPRE7oyDbwAXRw7OQvZRe/FnsbID6eTgiZ5Z5uvqo7qEPkjMxsvo6bumB + 1AD7+YSlvV5Jy2+VRGtuIR5ntPtZCacDiXrOkA2zo0ZvKkhgOQx3ojCLr60tf2X+5T2reBHAL5Wn + Bbbvd4qScrABd6V+AE/9qyGu3xxGMnhaLfv61yM72ca8pfoZ2PEWaSp7afnTY/KhZ4smykK/pfSd + lj7c9Q3Z9a83S07sQyT9jqSsQ9guaja4AK29QdSj8I1ny22Cf/mRHfoa3fMmRS7u2Ub0S3yMaeW3 + C7xnWUJuddTRFWbzAv78pnWUNG91DoYqH7ShQDoNnu1qP8cUnB2pI3/8P+FzM8luR8+Yb+dLy/7x + mW7CvUuDX3tLzIsqvBzTKuDwE2vkq1Q1uDZaioKTcfN473aBUDZCkwQCc4+n2V4w3PNtPAzHTpu/ + nyKCK1P0xGPUwBOirPtAH2hyIO1+j/PpV4S738T1XFzp9mAOGfjLt0+p9iuoMcQMfOV6TJ7uN4lr + b51tCM9pi06xblCK7i9X7u4YIY8jH205VRmGr1R57ePVUsoNpxr+6Yn4t36KhdpKJ0uXLkPK+Ago + 97nkNvTafCSn10HQRshEDVQm9kGsHf85mucVvADmixSDZcAwR90C+s1hMEdpNGJkBiHEfjYR+3Ku + Y6F5rQk0BhaTpJND8JdfgjTbMtx77G2cbwLji9pBb4jNGqs3fsJ3D7L+ekYl/pB4fKdJAB1OTYMm + 9yttTufHAMmjj9FVKgBYjlM/QeUWAyyefNxOVmyrQDcZhpif6eqtG1olGLsfIwCv/Y2SKRwUgJHC + /a2fYj13v03qr1pIvC4nlObRWYQw6njM73qSHBocwlub6gTR4+Atx/GJpSCrVWQz2g3gJyoU8BnB + GVnn348uvvlJwLls5oAvcme/w/jOwz3PQtb30mt73hLK5Su94iPTD+BbyncXFjIqgj53h5am7b2D + 8TkI/uUzfOcsErSvQUaM01mM17lQuz9/RNLb2tLt8hGZPz2KF6FSWo6/XyX46ocBs8lNAb9nc8+h + d0jFQNKR0FJ0/9l/9UyMPT9arun9v/5xazrXY/MiDOTz0+VJ0OgdXaa2zmB/dJ3g3v+2eOfbD9Ra + +0qUB68WwokwuuRVdkb+/T7PUEw4eXlAjN0/0Zf3DYBx/ZRIaep9x0uvFUnjlirgA3Idl56OOpA9 + eCLP8+dGadFnqqy0zZ14H7LQVuOOOhQe0g+562uOMbdWCdCvryuyrvACFlcoJuC/6RgcD9GsTXn3 + 3eD2Cx5448UWUGeoMzkfD+zfeiy2Ry66UOdnjhiUbuN67l4b6GIlIeU32dfHs4Zw96+BEMlBvBTS + UYT5o3jghaMvOu56Ujp8nzrRGGOPcPJ7CE+MrqO9vuli944LrS/N8Ta+2Hg9MlsH1az7oaCfAm1t + L2cMy14J0cW+ZYD8zEv9p/+JFlU/DRNIFBCeuwidhWooFt7yFWBpcMWSVAkjDTtnAsZngcR5Dxgs + B7NP4Y7fRPtsKhX+1r9yu4A9H1G9/b3h3T/dvwF5t0KxHC+rItvo76bjuh33fFSCVJtVFALrE29M + 6jIwsUFMvGM2/p0zwaCIJmHX489iFcTDB+Ik3k+k25Qux8Z2/+Uve74QT/4lEMHtRwixAwq8bd/f + g3/rJSs4J2YdqxHhoaj53T8SuoLA8GXoRCvxbfkZk5W0A1ThPSLPGbQxLVJBgtVPwcQqQr5YT0vT + wfamHJDJjjNdaPSyYZ4Yd2L3ThtvhWTkUL2ImCD3mxSrGYabtG6PItjs6Nf+89+7Hgm2PZ9lp7bO + IW/IFjlV6RqveSRlUPrww9/+zbjzjw0t/raif3wtJGIKUxrKgWwc/VYoM0UCpnUoMed5T28dpRsP + uQVzf/uXgD5m97/7iZZQy3Rlqn6DNJMTVOROTekhMybIaymD5d4qPKpw3SDzcHLQ2Wm2eP7Lpy8A + fpFt1rHHetDAcDudNqS2gR9zhTpGYIuhR56JbMWLuAYRmFbu9Ldeirf4W0tZqxufnPPzp9iq5+CC + oZOuxBUdvl1+jNdDK2ptLDNm3GL4qnU5GkmFNEYpNeFEeBP+1dOe547zgf5EuBEpI1pCh3jzvi9T + JqxlYnZK6gKfS4+BqdaYu75mY2olaQhVA9ZIn5I6XoTTo/yXt6atRuK5LhtW7pT9jaXm9PP+6eHd + jwWCdVJGPlamvWvscSCKHujaPK5KKPOSrqDHl93ocjXdHsox/yCK1b1aOhRRL5fVHQTM2bTBjv8i + NJwrs/v5Q7w0yGVgP8QN0vPpRVdbKhRIGvFD/HD8eX/7P9CMwYDFgBYa++eHXHrr8JaI95bXxT6B + sX9k8EaPSkxVUwn/6etgGxKw58eKuBLhQtyvpLRTeNJ9uTwGC9KEbAPUMDwMl+j3wIcKBN6i2bEK + D+09Ip7BWd6u33topi0NVle9jSv6FQscb/E1WKPrYZzw48hCTY8xOfNsr1EM7AW0728aHM4fAWya + cEvB0/TKQL54orfZN6OB1/GaI2+8xxqFdzeE4vUF9/Gt22HPt+H3Hd7JZTlM8ctHfQ9/3hKhmwnL + dnGavPvbX9znT4m3jpxcea9vYhxYvVjQa6jg8dJeguVuQW/lGWyDP773zKcTU1AtPAy4YSG2zSXF + P335f5wogP/7RAG7ZgeElOfcbtLdbCAvLhJxFuEXL8YETNgbmULukUHaTT+nA9Te+hPtXQRbqs6/ + Sv4qkJL83Vsj59jCBq+XZSHFTxTjFf9eIfxm5xbpyqmh6yF/feDlrJyQ6u87yodTu8hJmSIsyINZ + sEEbDpK7iiNSjm9T2/jXRYTA3gZ0xuzoUTdUNnkZ3Iq4Jn8Gy41jWDgkyhQk3/0WkoFbeXh5Xs7B + OJZopDdSBqBs0i9RsdpoWHslkvyrPh5yQi4d1+vP6MDWKT5Rfvn++0+eCdFJKgLx6Zt0vcdLBO+v + pSbq5PrtdGJ9E54+6BwMt+NtnCBueTjPVomhI3megPChht9CDlCEQrvgzurPhUZ30APhAVe6nr23 + BJdXgYjJBHK8YZ9hAMfxPjkH/Iny1k/9yJ0qVeThp2jvE3Vc9jOmMbl/7WOxPY5QhevAK8h5JXO8 + hXn9kadLb5CrfqEj5tnHIial9QukT9cUfH3tVdkGS0/Cz2C2dP1xDKwNTwqktwjj9SB0naxi50ms + R8LFONGqGuKe5shRg2vBtoPKyOVHj9CFNDHAb+5iy8+j7SHdupbjSj+PElQcFIhyPOrFrDjXCrKS + HZDSiYJR0MC8QDk5diR508zjhkWK5OT+FZBi2B+P9kUJYahebwR9TlhbtyBS4On7NPFR+C7a6ows + ll3RtZEHgFlw+DoqwDw6I3LfyqgtwXTN4DJLDjGHwh85UFJVdg+5SM7VifdWIC0ZtF5pRy69u4w4 + +506OX4cj+TZPVLaG65Yw5d2Hcgz+cBxVb4RCyTnekKoO6seL5lqL+s4HMhdSQ9gvb6VHL70b0uC + S1MUWJNyLL+OyoI8z2Ta1ffrUI7vLiCuAIZ4alWzlLM7fybeff0VazNWKuxzm0Hl3ekBu2QPF6pV + ZpAsMOKRTZUll82jNxKjiz8FtY5lCr+WH2LePvraT5nyTLJFRSblL3nFW3K4RHB6SHc8ZZzb/s0X + rOknJF4/9WD9dIYqG/MUk6vAN9pE+KiGnSWqe9+iB11aotayZ9wXdNfcUOMMamA5e3OQqHb9arnz + dVbg2agB8g/fztvrnZVbA37JGbmKJtzeDxNOTzciOotvLXcBoS7nTakSz8OFxwlYc2WOpnnwugvn + kdeCiyLzB/WGbKK9POHoPyL4eC0h8qurGNNbdPGh+nD9v+fxthf66FAwLzbKdUYsFnjpeTn0zA8u + 7+s7Xg3R2PtKf+zgGN3PgE2D/czq83RD2kUPR+5DNSyj08gFv/j3Afx9Njd4zeM7cTmqaIvhLo0M + TSZHp0H9aCvOhw84++uI1Ifwa7GWhba8ba+ZeOndAIK8nhnpFPopsuspofzr9FukUwxPSGtvtFg3 + PZfg2acjcW/yyROQz0IoWgcZM5ErUMqilynv65PoQsUU69aEocwC7xVQ1DXtlix7wnc89pi7J49i + 08ZElUnj+yi0un2HRUsbiFvKB/TVfgsO45qXb8XwCNjL5Ghcc0giWX6CQ8AZ56Cg8tfkobXdBHQR + rz9v3fZ3DqEWkAAyh++44rCt5LEmclD3bjLyO97KZfupiXKzhhFr+kWS1z4N8FHB3/0W7FGETMoe + kMsKRrE9aj6QfqV+R7cHvIDtNbclvGOVJZbz0keCfJYBplR0WGbGdzE/5L6GofYNkdK7STul/DGQ + X/q7RTvfFEuA8hx2NriS8xrGlBvGDf/VB8nTude2e4sGuOMPceLfh24zSyvZW/SC3JxXN5LjJWHB + 78nqSJHO6ki77MPCCgYJMZ2zG3P6YEMonC4dOj1voFhp9AzgJ1B14t6OQosfNe9LZcfe0VXE8Sjc + jkUKuc18ESUZVW0L876Tjs4xQ/nt9Ikpl71ZWa7ECVWXBsRb1rkqNOExRaeKMGDeHhmGnPR1/9XX + 3IypKgfGQSBoxxsqIy+HaTV9SP4Wy4LK+wmn/d8ot9zJG173dwAl/aMRxViakR6ZUJSR7n2Rtppt + sXwfUgbj9OeQ8mEcim3H+/2WbP/f/PAbmnWIv+0LA3tINWq+MlH+ZSlG2l4/S8ucAni9rV/kXJyE + khtbbODeaRMJ2qM1/uMz/d0WxIfP68iH4auS/WP0CdbjW/UEpC0+7MOsRLcn+42X8d3r8t/3n/pt + 9hZovbDsHp2CKE6W07nRCwl03t1CNzntva18LZ3sqYDBE6P5lH/f4kXOiKATXTkm2tJapgofwmoh + Jbm1YPPGZZLHkGlR/guflIXP2YbdWTyivJsmsDq2sMjgvAQkDqDprdVpXuDf7/V+8AU4/BxceHRA + RuLGyovVeXGdHD+z7L98XeVtBwmZ7iQ111fLCaGxSav0zolxqy8eL7VGD2Uz08jtvB6LlcyfSt7x + iRS62WpLABJTBoXG44PioXj5rssgh7rg4PobaR53vbg2jEvxgx5BYBSCqrwz6Y4VFl2T0tcmlpqT + 3KDTFzO01FrOGeEEJVNAeMm+YrvdtyCFwzV8Iytb1IK3T4EOrrHyQ5pyFL0VRFSUj+dR29eLre31 + kcu2VBNyFZoWbL/K0mXkeB4xhODdbhm1J7jrLfKorkk8b9nFhXSVU3QmtlOsZ4F08LGtbcD/nhc6 + 248lB9H18MXH+AjaGUhiLj83EQc4Cl57V5BJBBU4YKJWVI83rAo83DjtSU6eaFPhWBQQ3ioboUe9 + PrTpyce1nCT8kdiBQVvatXUinzJ8QH/8tYXXnwJ/8c0lJ8a5eqvQ6Qrc8RzTV2sV2282FviSoh8y + f8+VLmP3nqRL+mICuTy7Gqc8ikm6Fq+IGLxkxey3WSEUJLzfgnYVC1y+xI88lX1N4v3z2NEaJigA + JsBPTrTjBcpNLb8O0ZkYHVABm9e/Gr4fFsSEYyuw0OEEIfCiEvmzmBS7XgwhK9x5zGzs15uvvtrB + Pz7/41ucda4CA20aUaLNXTzKlWrKnTWWSJ2xBjhBPvHyNWyEfT2ygPRWimFgT4j4mCXelnCRC7dm + i8nJZlu6/Uxt+MeXp1/ujIvxpQ1YPjklrvD1vS3zdF/a6wMPqTGOG8NKlQTsZSDxCzka9zHRAC5F + 2wSHz3Uqpm8m8RIZGYzsp2+CJZgeOZAUPiOeIyFNiL+4gcXPLoIt6D26RDfbBEAJT5hZQ0KXPG1y + WMBfTSohk7zl9LJ9sA6sQjw9f8WLWw817LTjGrBvKnqkP2c9/OMf6Q//jmLFALW3+wAG7gEMf3zz + p1+ROr6K+fUN974aS49OrhIXMz3EEfSAziM/nxVP8JCZw8OteSH7Wb890mUfHk5h5qMk6jXA5aWs + AEN+zMSyL167OMNrkBlVP6HS5Q1Ka1Hugaz2Gbmv3nf8/c3n/bvecDRtP62debMBz6PrIZ8sP/q3 + nuD8SFVyPkdDO41+E0Hm2QXEHG9WvDydWwV9qXkiTxrnYgUfyZWQnp/JeZpqsKZXK4GPpbkR23+/ + wVJVoQnb4Bnibfcb3IO+MvkB6g2Zx8GN1yGCIniy7he5t59Kl9OgM0Cvtwfxp76IJzU1MaSHZ0sM + 65QX21aNC1Ti8Ins4H6hq2MfFlAyH4AQ25Nim49AgezimJiu+atdnlOZwelVPImNi66lHnQrWHyG + H/GGmqWLq75d+PEXj+hRYoysq84uFNT2EbAv4TSy38/BBg4fzIHEawmgrPFioH8MP2THX7oanaX+ + 0+PGUb2A5bkWDDwfoY2Zre4B7ZQx/4e/sXIB4xZunQL3+iVX0bxpVGsIA7dmiTE/3nb+Sv0J4vHi + o8sfnx8qvEFHKD/Bij9HbSxOJ10uXj+DJB8SASo/rAl+k6cY8L1wjbfQIAxM7uyDlAdBpJMwieaf + nkTOVtTt0opWBL9qMO163o03nn1sIGs/C1IykIIVEEaSfgVHg1ykAKxn2mRSp9s3zP3hraUqpRQY + skCsu1630/e7NjCNyogY1qwU63CDFWC3QQy4tEtjfIdGCXGztEijwTyu+Y2rIEwJi+Udnzc+KgJ4 + J9GMlyyW9jua0k4yIUgDyarcYuM+9wqa/H9Iu5JuZXlm+4MYSCdJhvQgXRAQcQaIKIpIFyC//i7O + 8w6/2R2ftTwkqWbvnarK74hPLQvczWNRCaJq5gPu/X03FJ/ZGjb6PM+cpUjxpvtVJ73lbCQeIvOw + nr9nHio3RgzI23+5k4F0Hn4884e187i/O3tlSySp5nlONHRzF/G1MMfhwlj/+Nx+HjP8hx/imWij + eKIO3CRNI4ZoCtrPs+oZKa3vk3KuF0C4+yeD2mClBKuaTum1T3qAjc7EUUXfxcJavoqw8uOIk/ip + xsmHNITQ9mIsH5/lMMlyOAK1FQku9vhE46muEL/WDtHli+Kyj7WAf/aDHy3qwJ23TiqkKLgSzJdF + sX2WcwuSileC73w9uJvbrg44pFFH7EdtuMLyERfYZlQixgc/3e0H9RLufBtXdFHoX/yEQUDMYLA2 + fVi+9y0DrOQExOziV0zXN58DWPkONlinbmh3zFMYK5KL/aDK3XW+NDK6vl0rkHQVNdvs8Qzy9bMa + HMz41tAllUxYvG1hXt13P2yTvS7wLkVHHOzxdfx+jy9wCBUXn+T8VCzD/GaRxfArDmq/1ciVySUY + h8VIvMc5duko+yMESpzs/K3Wtt/7JIOTOD+wLN2FYhGfTAv6mxoG0N3koXucHhU4hNqulzzFeNuM + DwSttX2x/nGLhq4i26NACY7zL0aGtnwXPoKRVZrYBQKka38QGdjY1Q1bYxNrK/DZBF7y843gMP3S + FRBeRDbXuAErBL99hlUawT/+mH/tS7wMaKjhy6wZHGOxpnQarQwKyLPwLTJwsz2nodpfkcAkBYEy + cDdOYqHehJjEdTwX0+2wMnDqPz2+L8lRo5isIoLFlBGlc5Zmj2c2tI8hP09+a4MtYSoRZh8BBiBH + Ilhv0pbB/HOwMOZLUBDE+zXQahMEEBVL/Ic34Nv7ybP0SU4F2xxPPRyL/Et2f3HnxE5NeChfBlED + 6LiLeD1UgDu0M/Z3fLIx2jGAvCRTvOe3eBFfIoSOAF4YC7ZS/Isv1sfE2KreQbFEV9lENUo2bGNl + LhZhXEzowpTgYM+/66FqFyRoNCV2JdrDJrmOB7LWfO35AcTLnx7xPc1qIJT2h/6Lf30Rl7t/+xqn + f5QcVEKwzAdWjsDonBtWsnmq4398tn4IPGQebYDx1ZyHUdRpC+6NesLZU6baSoTPG9qMxgatfcYN + RbI3H1ulcebn1DMFdRXVhH/82nmPHuAZJHhI61iHaKt6o6tB/fEvP2Bnzx8/W5fekKmSSwBd561t + 7iCOR8r4PQ6i4PlP/4KS8UmJRl8u4C6pMsM9H2LM12+wfFvBlrTxioODoF/p84JcHnCilRHvdv+6 + 446PYSkYH6w4yTpMu32iu0D3mX8DcrfnbQr+8GJQmx0FpEw8eEwTRicK4lLAik++hVgRi7/1u+sB + jo6kfzYl2KZZowvreW8Yh31EvOw5FkvEaia8JNErQPd7oy0FetcwTaCO3cE+FzPPXhaozBOPDev2 + 0rZEOo8o1LkTsR6eA9aznkjw33keGqkZK+fMoj3/7K/caYDrGaaFNdMOxE2nt0a08auj3R/mw/eo + NfxHu7xgV2QCfiRt2Qil47OQqSyCgxfy6Cw95BL2YawETMh0xeqHUwnzD9orcPeePrr37t6X8zoz + z1NNd31WQtaiD/i+viNtbcNggV0MnjMipdXsfKmH8FR6JCvtJ52lW/ACvrJX4HBUdhf2rDuo8f0r + DhQrcClyNP4fvypvJxsItUchQveeEmx+r3TtNcaDQI6U+cgPl4IunsTA8qnP2K5CT/vDe6CAQz0v + kv8aaMfcRCjhtsKOPDfD4qDpBU5o1rD9YLWYcPcph0zI2yQQstzdPBtsQL3bHsm/ywq2sBtF0O6c + w9A/K6WrCHt4KGuD3M536i7ifc3hNF8vxB1K0iy5N0SAB+GIfZ+/N5Mxmw5s7PI2gz89/HTlK8hc + PiZxc+PbrNs9G48vIzawCpUW0BL7Gbg38olcyVWLhT/8NGQ4Jnr9tZvVyLEITrB0sCtpC6BLvyRQ + /zwLoivPpSF/30dFjwaDnQqAWp9Kh32uNYGUGkPD7vj++Pf9V+Z1HcYULNsfHsJO+1YLnmGlEnhM + 5PyHHz0fpNLaJD0+H3YVMb6TXLofovt8CBm9YBXivUBWmCbWzlkAVnmMMpgRTp/5nT8vxgtA8Lun + ETFSMRl+PcO30KWsibNmnwEioBML+pscYoW503gSRDWEh6hGROafMuVa1SmhxQq/meVUjq4tdUdI + GdwTr8vaYeOP9wSO7U3Dzif5xdNNknIp/eIQy/bCxFttPpNj1uovbB62ZFir8F3CF9a+RD+PP3dJ + dfSG50fsB3UW58U/vcF6Jm/idpnTcBeksVBrrW0+rlR32T0ewmo5xMRhm6+2CtQZITZ6M3goVu+S + Kyk9SJrSwHj3N67qvhLc9VWih8sck1GRdRj4d3/H4yulMRg3yAp9ieU2tWPemh0H/ulXZveVB7a6 + hS/pDy/6pLSGRQykEeRdecT2Su0/f9vg3NYBxpYQgu032zbkjtczxmyyatuzei/wL77KOvsFSxTZ + NcgRFrBFQBpvodC0cH7LJTZvMnDXcxY7EBrzcwZi07h/eB1d0i0hf/6ypCdkw2sppvh23l8454ab + DJP4Iwe8+9vA1KbyCJ/LywrgAbxiap0fPCzejkCUU1kXoyEfM/CLrDPRrQsc5p+im4jfNg3v+M5d + BdGJAGWqkGh/+f7BLhXa+Sr2fnKjkTUXQjjX0YqtQxXFIzHOEeiLWiUR4fcZcqTw/vQ+HJwlTeOq + 7asCLdc1UgmjGG8TC0pYLSjGOFFPDR0nZYPGEDyxf4gVOn+OaYJ2e54lI+KH0UmHHFyL7k4sJnqB + nY+oABjqgfhUf4Bl+H1CIIfLNPP2xwfkKKbweHZqjOWUjvHm+TRFY+7MAeggarrrIMx/5xMcn/AE + 2D/+8rI2AWsvSyrWQ9hXcGkzioudL0+7Hv/H74PVFTv6d/+A/vSiuKJysbaqWv3dxxB/rj36L95s + 8MXNPzXgCrrjVwkVrkJsjH7uQl5JCAGWLfwQbCUWsMj04Jd8NBzU95yur9c5RBU7M0SPwzqeWktV + IVKyx7/92/WIEex6/nw4R6+Baq8vhJJt2cE25Z+mu3I8D/WXmgZVw1Xa1JdQlnY9J3j93fdt2dmG + km3YGO/+stD+xMA9X+KT+oqHeYpECf5CIZsP7c9pBPMZiv/lx5+YxbQ731lw1qPtT1/UJp3YNQj9 + NsP6OevpQuTbKP7dJzm6igba2XuP/ydfMFavmrva9yVDn9NbwMbOh7qBjjkUba/Bafetm/UclCo8 + 3J/Zf3in64tOIpP3xbb/rIc1LzkV/OGPU51twxIxTgDoekiD567vrD3DvKW2iEfitOFbW3d+ImG5 + exEXCCXoP0MkI2sxh3mFikMn4aFXaPn24yzt+Wmz3poMn+siz4vuuQWN798MueqRwbryDBv+t/kp + SErjh5WeqSk17dgEc7PyeNenKM9fow0ezdNEdv8oyIOI0r/4osAPovRo3UcYnMgL63w0U7rzL1Q8 + B4OoWHwDMvFBDZ+yIAbI59EwfgM6wksm+1jp03exVhtRpaUTP8GubxbbR7vXsL3TCivi5aSt5yCR + EWXKkFhMq7iLgRcdzePTILne59qeryEsfk4RAADamKrTs4Jv5XbAahlHxaSzsg4eghgRFV4Mdwvd + nwT3/Dsvev1rBO5AGHiutGTuLcfTNq/nExiff5/gF3J8Q47zgwe3dtFxefjq7lLk3xY+0PFEHq0S + uOufnnL93GT8OLcype6kbSDSmSTY8T8lrPOrj9q3PRP9WnPauOiVCNd32/zb32WgYwYCq0xx6QSn + mHIHAsH15gzEudyxRpfPsoE7/wywtqa7HrvXJm4ghNg6OInLVR2RoJw/MfYeR9KQxQIZPNyb7O88 + wT98SBr8IMrxWBeLWpghrARvwYEmJHTVWVuHFkwOOAglhhKLKSQYap+Q4M9tbeaf6wYQaKuJFfft + DLzngwQK3vlAZGBQOp3bRwVIUxlE2e/jtm0l3f+nogD974qC7MvmRP/Yr2YJfWaEI5XRzIPwF8+z + apjwW2kj8TBzpt356Ffw8Z7vAa2ZNqYH/dejQQ3OxLZvnrv2xxME4PomBF/OM92QG9pQzh5xADus + UOF1PlWQYL3ANgCTO2uXWwbN7qFNR8S7Lus/4Qia5GjPF9eXh+mW5zXMV0qx6y2kWCNct+gMTg5x + Xo41sOpC3+hSSR2xqvPTnSabtnA6X1CwboEar2PqtzDNqgK7fKVqQqryG7Ko+MPew+MHesp+PYzN + 9xIwC9riBTpPBibNwM9HaPwGitqRB+/4F5DbIuh0zY1fCrafKM/o+TkX1C9OAXyc7v3MDCcNCAEj + LhBVMovza5oDtvA1FZWmGxH89eahs9TzG67OyBKXz1FMbuQowo8BrQAds3e8LM6rggwKZPKw0pn+ + aC3UyG/uMXk8N7FYpzBaYArQfpNoRZQvL1mOVN0aSSB4SzORVkylvsx17BfrC/Dh0a4Q324usfqt + b6bWqHk0UhVhO1RlyjcsqGEzCQo28uPL3U4srGGdHENc8ofTIHQ/I4dcpxpYX11cLKcWJnDK6xM+ + iSUL1vCoMmiIuZU4vZ/Eq1oEM6TpEpMHc3gOnGZeathz9UrKFzcUPO4dE11eHcY3amqucO+3EJ4j + uSL5xYLN+v2FGYpH70ROiZ3FQp2yESqOs4GvXvoshIOLe9jE2mXuw9+D0iG137BaNn0WAq1yuQp3 + JnyyekkedmQPk++fZPgEzoucLfPmLo4zQLhe95ppL4J7r3Gno2qwe3Jzv8FAFDOr4ZFvFmzdLt+B + /gqQQWV538idMhOgnXFn4ZF/LkQ+HD506l5jjlQ3M/DFMy4Ne0XnDHFEd8nF568aNeTHCAv5Ys5g + bLFLD/MhAJ0vG/jmKx+Xo101w+N7QETrEwFsl6nk4QknAbH9izHs62uBbRVwltjHo9l0ufPAHHkn + kos2W2z2I3TQFOMlOKZXfiCREuaIY+8RVh6cMVDs8SoqI34jqtcPYBpsOwOseTCx9uOBtlKERage + kgrHXKvE/O7v6PmLCFGTuG64i3ZaYCt2LY5kAw1TpkEIlWMdzdB0mqb7veYdMe+I0+mceHudXQh1 + 5SOSU1XZrtBGhN8hVr9/z2dY4yNjQ9VAD6z1yRUIE9UdZMtXnuhDDLVJGl8dFKcgxI9JVwAf25sO + JCdOsZehrFi3aEvR7zC/560TUrqV/amFw4W8sUHuYrEMcjOiTtc9guFYDUv2/aroY0xswHAFcflF + W0tAOSsOQHLTtS0nMIdxVjXB5St28ZZFC4/o8zLhW5Cc6Fau3QLJ7ccR4/NzXEHwySgx50OA/Sq/ + xYJ9dipoFmuDT7NzGoSHhSSYb6pJqgNGxXYORhGAclX3/ZQbnheNDd2bcgjYtrDijUwxC0MnqYij + bvr+d3+DrsBLew/cpk1EszcUhcsbRwvTxWPd2g4kftAR6xykrvCefRUexaIhavVxG3Yctgql7gaw + bh4OzVp/9ArK/tDi29aZxcoflQqRm2jjdM34ghJ2eSE+kTIim5/zwMOzA+GGbjFJQrUHVJJePHoM + S4PNgCuKbT8PuIYWwNplUZr15XQVfNV7DzPZp3qnj7KDwud1Jm6h5sWcEcWDHv+RCWaeb7C4t1eC + cvtnEk+/vbTxOhcqJJl6wQrRnEKYUrqhobAdctunzvNtV85w6V8KUd+33J0vpymCGHXMTFfkNdx8 + XRn0MRiLlKE0DHPN2gmUPw7Fyse9xhvDTSOQZ30M0hNqm80nUITry1OI+TUHlwo+maETmAmxYwbQ + zSWnGbwtT8FXbY2A4HkOD39uI84o7td40y0zAI7nPXH0u8R/9iWj9aex2GYjsVmyrvOOh6KRCQbp + CKjgf0f4O4kZdvrhrM2U0ByBywz3d/xYQBPpnYL356mQy26/5G6pe48hq+Iz0fp4pV06wnQMFGJJ + leduleV7UH31h4D51lij5TLp0Npkfo9n5UBjajgIJnd1psaLGZZG0xZ4DiIBm15715abm3Yo+Tx/ + 2BLWBWxxeIugaUch9j6vtvnpR62CkuaHRK4bplhMaUvgIKfVfNztm7WnOkVPDAjGDICAjjh5w3Lq + Klxtc0xpnbIhyn6zH1ASngt63s4MwoC62B/A0/3xx1MJHUsOcPHMnHhUfkmGhP0iSMqWNV49vskQ + 4mqFxCFru7NqFipMQqcJomDvSTivbQhD/FpxLtpJzLHCRUeV8BGwF/hhsdhhtcBP60gkcDir4A7P + xUPCYgw457fXwDNn3oZV9XBIym/jsBy3K0QLv/uzXI5gjYJvDrOtYEkgXbtmmdTMhK87tud1t0/W + cRoI0/TdEU2xzUFYZ/2FYr/nCfaDl0sS1W2hLbengD1TL15j5Z7D5yv44dPhOzbD5xazKMT1ilOv + Re5ifSwGmu03/PPXYQl7S0f2DOx5e98kbSFglOF8fKgzK6eneE6zoYc03WLsXNnrQML9Tfa/eOSO + dlRs1RZDWA7bQK5CzGrT8ypV6GTmFxLkB6Ph6HMZ0RomAQmU4qxtgVDq8MmaJbGmI6JzFok8fCVn + jD2nq+M1oqENCb8rZsrLaYayoCJcG+GJDV216eYxsok+wTBht6iv7nIjZgCIab9m4Aee+y8eytLi + zdsen7hmqlj4uX6+WPXtblgkm3vD8SSGJE2mudlyz2NhCg4zNvTaaOivyd9/+4nd4DANFIveAkvR + F/d4IGmTFZYhXLIuwH94gW7eKZH+/NceJ7sRjI9cwU/YPGep2l/q+3R5AHZ89C8/bEKTtEjq55LY + 4B4WXOhDD85eS7AONDXer+FktF7qJ7k8Xb/gtcs5Qz99NIjqzpu7NVljQ3QxQQCmY0wXTswWYDqO + hm3KFs3k5bEMrZ8OA+8b21pn2HoGwjjMcPz19YbnjAcPvl7m4Wish2Gxr4iBOmR7bP9ey7DqR7cC + 3qE+zuITyYNg3J8RmPKYJ9ol0umasG4KHmKlETtrnJgiJymBlykTub+jcZip57Lwnq4uMUfpOGzq + q8nAp7WlQHyERizoW15BlwEyCe5jDf7iGxwj1sFqmfrFdvlwPZytvCTei3NjFt32ntl2c/f9ecUL + Pqwl9B6JSVy6mpSr3ucQ/jo/I+GyKgVv3psNUhvLWEWPlY43fsogdxw+xLdOFlgK8byg2zPzcfAQ + pJic4DmA/NnZZtGnr2Jbsr6DTxPxWPaA0qxAxSZk467FNn43YCkPC4Q/VhQDRrSdYm3OZgUCpBlY + Z9NvsWS62MPd3nF8iXQgyEJkAsdwCmJcHi5dXQ2V4PbMfRyan3NDP/qrgzkBB2KIdTMsXSlL8HH3 + Q+ymnVrMNSsnUFdYN9huv03bTmcdHqfYX4j82mDzu18iEdb7JF5uCnJtKgpjhjcaydg0t3mguuWO + sFfaDNthKVJy8GQWbnr4JWGV6QNHdeJIyImD+eBojiZQsojAc9sa798L1tfj1oPPhGXiJpdHvOlN + +obGb0ZELVnHXQ/8Lwe1EJyITvPpj7+wcDpfEVbw8I1HAJoaAIbrcNIe3+46jY0NNcZ8B4sHns32 + mpIEKI14JMmOTwTtMFYgOJkjkdFiNdx9bSJpx8ezpIVKwXmM08KVGXzsH3nF5VSGCeG8PE9YXcuP + u/q+osLvk8bBkffTYmXjqQbwEc2BdGWFgd7IKqHXxr4IVqA4jDYbpNA+zhxJR+k20Fv8rOHTmUry + l19pYFQ8NPuE3/O7UCyL05fwwb/DnR8ohSAEtQgWXeyIrvxmtyP7DTh/tjdSpolC10r+jbBcMyPg + jcePbnxSBVCcvJAkLjhq6/w4O6jXKhdr9pQ2/VtbGfS3v27wDOn6IVoA9vPB+l1Z3a2B0QzXV6Bg + n6pssXG+6MEYv34B983dQZBSGkkhfbjEmALJne/NpYV/++nw26uh9+ApIixvI9Y+ZaPR5EMd+HXq + G3aORw6sBg17yGLpQJwQW5TGKbvBpt0AMenpSumXf+QSiVg12J5RC6hWsBJURn7Dnnbvij+89Xf+ + 85ihLF6UJ+eBEN504oMGUbrjc1AJvEO8aJjc5XiVN/i7F0MgOo7frPejWoJpdH/Y6NJPvLyfco3s + 00vd461YLAfizVKrjz6WgTYWm6NtEMq4uRHXi7ZheY6zA7kkehDlPeXNnAtxi0qxdEn6cs7D4qKz + CJxNnknwPC/07cxFDVzmKOPAjXV3eYHxhR6ZjIKGP5oaf/mgXhICRf9vfUuk9IDHIYMjbTBiYZ7O + KfJeXI7VcZ/KemrZBN5ORxnfqMrEc2UZAUy8DGJv2Sve7dMQgpSnBTYIuLhbUbieFOdJGkgOtxZr + 6nQMpNC9ERWEcfF7fYTuH/6Qq+RAFzleVLSvF9sH03C3+2GCQHcWnWQ0Zeh2F80N+NzFxE59a7VV + fX0kaPDZHZcX3nC38pJlSD2k1fxOGD3mgeq18K4fM6Kd3LhY//7fudxvBD6IHbYvs4WwndhjwKRP + G3ShFY5gag8pNp8jC+ZWn2xIDnGAMS8uWl8m1+CPHwV/+gT9IuYNAQcI0VvuES8RbkzUHfQBh8/H + FbD5r8ggJY/jLJ4JahZXXx10cU8qxgrMGmpavAgfqetg90YuzbaPoIffTLgFfKfqdJulDwuHHAgz + KqZKG1Ux32AICx2rhznUpvi+dxh0/HPm5WaJZ9SSBAIU2Ng7qGm84l5voeScU6KRcC0mfn2F0mGj + Ej6d+Elbn+AlQw78KXBWSNe+XN9QShl+5nGcuevGP0XkhvuMpM44Dhs5axU8SHqMSwD2qe5GkyAh + 7isSTNkrngtG2qT7J6nwKdjaYU0j24ZR1F2xYlyuA/0i/g0VoX/gP/9dx+3CwM5XDaIaylVbnWzu + wJk1dGzt+oNQSwMP3WVjsSKqC92S61JB9NyKAB35p7vZj8yBnlhR7F0yuxjliOGhspUexs8t2/mn + yAL5Y1McSNyn2OLwHMKUBV3QrT9V2/l7Dnd9DWv7PIHlFnH8scmN4t/+U5J1Ntr5A0mrjzJs3M/K + oGXJKbm0VksXtVQzVA7LgOX0HLvEfOO9AoTtgzQ41hp9WEgEZkGbAO78ZNOLQyYNVv7GJ47chm2u + 7iV8vrwfPq2XZ0O1w1hKdyE442TEF0plz01B9D4LWN3IiXLpnNUgk68BxnDRio0SkIPVmVnsMBwp + /vItOtx+Pglqmmj/1jtHwekvvmozf3hDGBGrCQ7PTYwXe+oSQIZnN7Mtd4inobm2cOfrxEsUhhJZ + yHWA1f6BdWyeXUpCvEHvB2rsPz9r/A/PDHVznuGOx4jXFQEslsX7wzPFqFk3D3m/Y00szD6Gjepj + D6niSPifPrNkfQ/vD6LP+0T7Qug8pMI//JL5VC1YF90k8BXyEZu+fqRz25UjvOg6JKcg+YEx/xU5 + sJdln3M5XLXFiVwHlJI1BEeBuYLBuD9DCBv1gvVhn6IvbhFE+ktlsPNyvs0evwMoGZY20+/pQKny + qkVkT8oFG/1HG/jHR2FQEskp2fULsBZ7xQ7rjCN2K3+LF9F2crDzX1xCmmkc9xpEOBaLhnf+Ga8c + A0P4NA/8JEVV61J9y0toJtOdPGolBdN4HzdQ34XTzH9NV+MnS5AQglcWe/zh12zGEdqwXN1tHvP5 + SGm13SqI08wg6Vvw6PwXj9g6NQNBqkZ3emtshXZ/xydfMbR5/JwquDzmhFjf7zbQ73P2IMOGFrlu + V6mh32frwUka4W4vrLvgUpHQAUAT+8NdL9aIZjbgY/lDTk3+HNZ0DmvEfnMvOJb4RP/0S0D4yyUQ + HOiA5YpuObhnHUNSQ/G1jRXyFlTLcyXWFawu+XSRB9m4b4mbdq94K5htg0LGr//wBT3i0gSmHYYk + Zzgcb9+4ecFn+cH4tOtxg8KsEURE+s5oz7dbQnEP/Ur3sOVAh64tc2qhrvAuNnd9Ynie+hA84yH9 + p6cKt/j5QjtfIO5ob8WWgFqFUdGGWD9Tr+At9pSCayMqs9Am/t6+Vc6wEliHYEnr3D89DIq3st/5 + 8Dfm72KwSJ/r90tc5jnTod8yBupCf8X4YaC/+GSDfJNNkjwfPlj384FB+T1gra5/DRHlywg0Qa0I + vidgWNbs2/3Ld4F0tZsZ7j3Ev0Yzgm0++5pQJsl4fOjxley/r603/iWBs+Wt+AzeMVg299IBX8kn + bFxnR1u0YMmh85jYmXu6U7zzXxVcdBMG/MpTjQyp/IbBC98IhlE7rIWQ6n/xC8t1U8XLLUIsKIJH + 9E/fXOKrGsFP8JsCkeTNsOT5XYaWxBBiY/Pr/vF/2B3MvQLnjYbJsjkdQsQqRLO4ZyMMR9GGlgQJ + NpSLP/A5YTOYLJf0P/zWB78MSEypkj+9aHM0CYI9Xv3pO3RlhbsJjdPLmUH6vjf04Nn79Hja4KAy + RfqHnyDQhNO+/l6jnXFhwTmHV+KW5QLon96dXL0f1r0br5H0+mXgx1sl7GX7jMLndauQ97DoDHb+ + v1xvTxb94X3rmSWx4OlDBw5U9Wco3mp3q1k7hQzyZJz8XnmzbsSZ4UO9vQPW0vRiW4kdwD0+k8Bd + a7qkmh6horA38lBzLu7NjwP/+CLWAmukC2C9BF57xsJazbTFND9u9p9+S9QvuGtjId42+KohIfnl + c4yJlXIhdM7fbpYuVjmQb45VGFamHqD38isI9hgVikN6/4d3l048R+g7toeguytfdzpFdgd15Sti + C/3e2ru0Qg8Wk/rZ9dP3sHWvnyhtNbT+9NhG+DV7h5ay0bnqJKMR0Jl28JGpaD6eeN+dSp/O8B1E + Fta+g1JsZXL10HCZ3kSz1pJSR1tKGJLp/Y9PNQES3nDHp8T8w6+w3ZLj7s/BcCOXYU7SQwTOsXjG + Ucw1A+FELUI7f5vNv/x88GQepfd+3vWYz7B6xPOgfrlWAR9Vi0tPtc3D4fvd8QdlC9IZd/648+n5 + yPt8vHp5rMK0twA+nR8K4CRW4dGNhjK2dr1n2dx7B/7d/xwzvRD+7q92/Xzni4fi9/VtGSbM44V9 + v6DaEtO8F3b+RPDMNfEW3YcQOtkwz9vCdMX2LdQZHh8hT8q+qrVtqU8sDE76iP1rbGpk5ZoR/umh + pu193I3Gg/rvfsjkFFdb0K1L//jOro9QOlrq7S1Vg9MHwh5ft2ut8sBpHkXAdayqbeVCWtCYF45o + pgxienUuEN6Ppk509w7j95tbR+Rq4hNbgfWiu57jwca/Aey3h2+znuab/IcPiLF1YUzPx9X+07eD + Y5MrwwKdH/ynV6uRrmqCHrwk1K7vGl8M2scLa7x4+LJ4NQA739+i1NNBtTQr1nR8Ayt/uUmQOWlJ + 0IH7Umza5ZZLux42i5Iz7P6kjpKrSU+irqWh0b5fFwjeISYnoS7cKQpI9qfHE2vVL3RpNHeDUXFF + RDEuwjC9PocOZL+7NHOaSdy/eAv/9FNd+QUaZz/yfp95vWEjbKLin77vLw6dr8qLbf7Fm+NbCv/l + m9V/bgHKkF9j4wVnuvA+8mCD4xlrn4zZ72s0iPYWYKIhd42nnZ/D5HjGWFc/34Gej0f7mJfZiO19 + vf/wx57fA7r0X0CeqqvDJAgJfpBY1rih5xcE05Qj2vTAdImvTgjNSOhnRuKMgspxX//hp/3VcDae + YuWS7a94SzhRP1ZD9aCXQBLaDXa+puKy23eWIfhVr394m7tcJQbu95dEsWvc7PebJQztcpiXw/On + /d0P7TNNvlh7kS9oup+fQ7ZOTHItzJ+73Zv7G57WjMOXVxW59JtbMmj5hZJA6KeYzqffBg9tMpE/ + frEVheYhLzx851Y24uGP34L7HF5xUQ1YmxeYe9A2tpJoRtvEq3O2Srjj5bnZ+cuyfWdVutzGCzZE + 1QRsEzn2rvrX+NQf1oHs9oFil2r/8d1DBFOoimFGqn74uhtnnmVUXQsdm3avUN6BxQi5ehqJIt9V + wP3W14Y+ky/v+Upphj89T3yHV+yCNAWs+zzVkK3KKJjNq9OMv940oVWfNKK3xXf3b2f8/1QUcOz/ + LikA8zUP2hOXN+OxUypAlLsfLMYSxDxjPQIodN8zCcbPQunZyBhgC+8O26/RbVh7EB3UQdMh5lnS + hyl9Mx1wv/UJq+zEUiq/LxkUl5eGcQyRtvGxWUp5NptYzY6LSyX/XKOHcmuI03DPYk0YUYfNfMM4 + eKxnQMiXXSCXLmecRU/RpUTqHCi7N4uUhXsHizdDEV7vDiV+8uTBKnWhCYj2S3AQrqNLqpANEDsp + zLw2zVUb6YvMsLn1BVZ7uhV0+FgS6oQimRcHgniTfFVCmpwZxDwYP7CNwtiDluY+iTdtapY4dHJo + esoF+3fsud2hqSN0lMbjzN4eurvpR16ELgwRrvKPDvhW51P0zZ5fYuXHuVmsJwqknJc+xHNfY7MK + n8ZD2FQJdjaw0NWQpAUgljuT6DqpYJHfUEateFJIWAILsKOi5tC5FyGWS2BRevy+eHQf3hK5f7U3 + GNlm84CxFO/5xg/FwIYAtjC+Zj3JKv0AiC+eA+gM+ISVt6tpbLFtHpxsivEJ9S9tkdLuDd/9iPHt + qPIFvcZURc+mcbFRVJ22dkPNInB7t9jCx25YE2YxkZ8uJXZ+/RE0wRG0yALnjjisVbns3/lA57IR + 39SjgW+OJxPdJ6oEK3E7sH1Nmweu5T+JHX/BQCtOLlEdPa7zcYyVhj9xlxnxVZbjCnzSgedlN4AV + w3LkbjmpJjRH8oaFWl+xOVyDgeVnXwa/Tn+RsOccjc9a0kF2ZGRyZ9G3mI9709bNqFxi+6IH2CrX + QpRcECHhib+C7W7mG3ApPs70q1kDO7VHGQaf7kT8Dm/a9MuvvCScuxQ77YKKJXCBg/7s25C8X8w+ + P/v+PfQ7uU6HSlu9mIywla52IGzfH53K66RChtmrBoo1GWjPhxK6ZbJILh1nA24S9xGAfP0jD/+t + adtRFXUId+lxNI/PeHl+uhYiV5FJVDiKtqmxmCPyFOjMHyUY9y+nV2F25G97k/lMZ8p+eIRFSZ9Z + P1mG2fs8PEnpzAmrhfPUqDJnCfxJA8bmgzUpp108e7/CEEn5Tc8xK4gPHmrXq4wDVTgNm+h2NTSv + PwsruTSA9Y7iDtZhHM5H+EiGVZGZDEb4LpLTK68GDq9LjqqqxLhShd+wfmqtRupi3LGZSf3As43H + wGxvmpW5aI6X795Ufu6cK77xAxi2Ej4W+Mg5f6/Bvbgsa1c5/ICdekzEbNhaOFWw3843fLoiqaB1 + lL7Ro/uZ2M8veOCdQs/REjUKVma5KLjw92Dh97A6RH6RuiG7vUHDpjmWgXLXllkdN4ii8I3jCNtg + k6OPCN2Lks9A5uKCPR77FKC027D7PDf03/r+2WdUS3QW3e4FH+SlkZgJFJcNuzVFnV4pMzyxKKZs + E7cogF89+P1gC5bv8xFKivGSsX6wlIZfajsAZZccsH6MbTr+bscUfSfvjqMTlZstCYUaAqZXA3g5 + LICVT3KKgECNACzXOBZysNdmqq2CFYaVtDl/KDM8EyvC5/MvoUvzVRlYfIcV23s8oL5bvmDKwISc + 367mCqPcLMgtxCu5PR6vgUa42dD1bRGMrzdQTNBoPdTv79helUNbTJFZ6eBmddG+/hxsb0/P4Egu + b4JteC2o34rJv/yhTPfbsH3Sq4cObOaR4u3K8aprQwSLeuZn8XrSwP7ErInemV+T8+FaUOFLRxVm + 26Gcje2nDFw9XRz051+Wd/DiP/88nqVJJ5dMcdxV0l1eeoZMheWnssZr+HvwsMeJQeJMe1K6XpkQ + wr7LsbJceXc5HGIG3uJIn7/r04z59frtIe+CARsxqAuerE8T8s0JkwffM/E7E9EGckfysSFWuTs6 + U1RD4EMW7/5Lha3/dcKzz2wS55etoI/mUAInrS4EW34Xz8oJVfC15SJRTo1bLO/1sgCpAxnZ42lD + EYog+q6HCPtu+GhW0T2LqAm/V6LU8xvQMF1ZZJsgD/iEfbrrW0p4eDNKl8TX4gKEO0UMTB4qnd8I + Jq7gCsEIL2C+zcrWfbUlE9ECL7agz4fkfXIXhNYW0VNxD6jmZHSx0FmW8sdPId5KL03nJ0Mr2RvY + iLXptst//HZD0nbRsOErb3fp354NjBYdg1E7vOnPvK4yOjxSEgBp9oFAHl4KjZupYt8r/JgOU1dB + lYc5jhAzgEnmmxoZQvSc2fETNwLqyRvSuTySyDbWeB2dUwXt2UHEX+ufu7lRAeGRchBf01CLWfS6 + L/DOqR9sPLkX2CZFeIEsRTopHLOPe86mHfrRMcHZUfi4HPe2Wej/ricSO6PisvL0LlFRjzwOSXUp + OPul8fARixHJW79ohOayX+kGQh8wmcANyzbIkcSeUxxMa31yeTpwORTf4pmk5bWjpAhwCmnE2bsk + ptHt/Gsr+Jc/8azE7nbiLiMKLtcnVr0ZDvSt9S28yesFh6LngI0ZmhLeh1bCluSszR4v3iACWUQM + OZ4pPeTn4C9/Ya8PfcAriq8Crd4GjG8L737fWv+GL8I75AqfXsxbsNnQLGov8pff149ORqgEg0rk + ObLjNS1ND1j5USU2O16blyc67bG+JQlOq98xXqP+lcA6PIdBzXGLNm+mucAepwaW8furDWP8VWFf + KBzOjK0plsYlNvBZCALp8DNdjhc8Ew63faytehZjyvEVL4H5ks8rMoZiDXUwwvM+pveGE+JSSGUb + BVKGgm5Ar4F+0g8LT/npQoJToBc7nnnDAiZfbD1eN0q8uQohsvkjVr8pq02p8JJhtF0CbMhxQCes + nVN00rwcq7EhaNvhHNmgYniOyJfbY1jK5y1Fc0gPRIe+UbDRcwjBnj+xniV8s7ryu4RyXb7Jpahs + lwL9qSP28Jrm8eW8C7r1zw4JU2jNq0a2eFbJqEPOT9tglaOkICWcM/CHH+5XJgGb5Dsi+DyEH/Y+ + ukxZJ/86kK+RjZ2EBy6RKimH5K4zQaSes3jtMlTBYq5nouoddRf1/mFAUGUfcu1CEq+1fZSh8PY1 + clqgB2aH7wIQu4tIzM/vEK8FOIYgk9XTfEDmPmZ2THu4GlmKT7+boQltXW/oqTkf7MT9BNaJiCYs + RfIJvhH9uJvu9Sk0/DIkNyX3qOCVKIePXPCx+WwudPXvrw6uzZsjpkFWbYv6vaK28XXyMB4398/+ + 4EshPT5ZqxWvD4aXobHc3kQlJRpoMj4his5MN7MbnN0tPd1auH/v3mQAC7rqVIUmI/Xznz2/smMh + S394CGFxKOb8cZpheXi/Zvp4PgpqPKAHhvAhBpc9Pq1q+1Hh4zy6OLpOL7Bqd9gCVhwWYn6lpRjv + eKlgWx8rHJs6F0/CZ/AgIz80EsC9yQ2ZbvmXb7EzR59m0JJUhIc0HmapXe7xgtDxDfW4k0n20dp4 + 3dirB6uniojNI7sRVpqbIHo3F6w4pu8ugUttCFndIG4jRwO9LWvwL97Fo1AP2yXfKmQU0YmoW5pr + tJ62XHqQWsNO+naKBac+BJZTl+TvvCaR8CqMP15DsvhbNL2gTG8Q/oaQqNMUANrnSIeHHj5xWl5t + Sv7WQ1Jbw+emubqcr5os7B/zMB/md0KXP/vXA3Qie36PafW6mGAO8DmQykyLuXWDPASyAwNRDYG7 + mr+bBIcfeGHHtsxCcN5aiRyeB1gNaduMT0ffYHnOdBwwD+qSHU8AepuNfWAq625tHdmAPdQT2fHP + sHxZtf/DG7v9HN11SsoQhvqXnUUO3+KNeVEV2dtxw/IcdcVM1qeOLlFIcKK3oFhukh3BZxcoxO7q + 97BtfSyjf/wnwTvsefgyxI/yFqyJTIY51yYJpp5+IPEwbnT5w2tq+9uwerzUzWo8KgYumIlJYCZf + usa3UwU/tRPNq3f/gt2+ZBDI7RRsr8kGa2W1NXwpU78/i+YWnBd/Z3jBszIL9/AUby/npcKZER8k + 2WCgLQ+OgVDPWzD/rkiKZ+kCUjgdyzuW1XhxV5EwKridT4AYB5BpND3VAfw+sjepcFvFa+ApGzgc + pkvAvh+9S89GyPzbj7g+DcX66SiE8cJf5iwo5mY5elMHy5L4xHhGT22NR28G8qsf5i3uMtq9JTM4 + Du6kBWs963T9ImWGHwQdfF/rk8Z+QDbCeL58sFvce7CIrhtBMfSLmSPko/0OHOlBeDUb4rtYdvnh + /czRn30qn2voLmXwYcC6ZjOJsTi7NNTNEmQbKoMyfW3DGvqjA7wRugGjazyYygC2COe0IfgHTg3r + noIQ7PgHG817HTaS+uEfv8NlZUjxXPySF8qKScTBMTZdYc+f0Hl8r9hjng5YnvNZRc/OU7C+P762 + iYvXwTJ+u/hx3yWuLKkjeOxsD+Ov4rvrcxZe8MIKJcG7f9AIDwussfjDsq4+tJXNfQl6rRHMUuhj + sGXtt4NtDSpiOP2vmP7irdccLewrhVX8i2+f4VFg49zjYv/9Gh3y4TiXO79bu9BQkUCqAFtKqQ/r + +7LMYJQOacDJ/NKQw7lb4Du/fQMUOKW74+0cfrEBsWmbLlgeHA+hlNhvHO74d34c9B76QxMSv68b + bYxMXErloX39xbdmPR5FBqJav+MrPtoDP39bB4hcJBCjrQKNSqnCgD+8ppS/nNJLcTKl03UvYSSz + RZfG/TqwqipMdnzecFVYMcCvPYvc4INtFiaEEkSscA4WP07dbsf3UH3fh/k1OZP2L9/vfBbbGtPH + u3328JO86oCthlX748dSYD07fBGikS6Pc87CW9P32K2u33gpNimAPzonwcG+XQbhPhg12vWM+bjz + K8qd1Ej6rij6F983+dC/obRdNWK5Z0j7S76VkL9cU6yYv4D2JXY9uLH9L0Cfy2Ug0sp1f/kVu9xL + BtxnHbPjV2QxUdJz3WyBF2Z7YvoGzHWwC4FItYOm5KZg3U/C5u//w9zXE2Lv8ZJoKq9CCqMNm6F3 + iWeZl5x//MTb9axROyobKL6/lchl1rpdP7Kt9JN+OOCEyNtLvFsTfkUeB7APJzofOCYEWdTyMySl + BOZJEWoUM71PLEpTuhg/N4R/+E/LxUTbnnFUopGV9xIa8tHGYHlEEKX9tp+vRDcDnHK485sZfVtz + YGHmQPCHR7Vfrhbs8VLpEGN3xaoy883y3CX8vv198f12ejXrHu/Am08V7KpyTSm9yQsSj4MR6Foe + aOQjbTr4szdtrQdAM1d9o9Rw9PmnjahoSWqEsH8/auxBWgzkYl9G2PMMxljgBjA0qh3Ah2negkOV + Penmq5cKfnRfJHq4znQbTv5bGvTFJk7PWcWayvkL3t29afX5cahwfno9NBmxJ15ssPGzDPaHO5NQ + w6dZXWKy6lRG30f+xurOt5fhtPF//A8rd9Yu2AWkPbSPGyEa3WCxeeW8/ekt2G63izbv8Q7O4agQ + /1pQl1yatUadXirk+jkmQ5c0fidVvakE9PE8xCSiiwxF5nacOfuWxZSGYfLHB7HJH+T4FxyrBJ6f + cY5lY5njDWV1ADcNFfPx/n+kXcm2qrwSfiAG0knCkF46EwREnIENgiIKJECe/i7cZ/jP7nCvs457 + S6rqaypUobkh0OZ5lcAhx7GztQIpi6Ov+vwSTPfxsgPzh3taqhceL0TepmYiidpBVMN2h9bz0djq + T6ZwM/od9tp710yKKYQwe9Xfv/xZlJlqsM7yihabTxvQbzNWivjmbXq2Ui9hGbEydfUbsSsWLRtf + ezeCnyL+UI/Nmx++cXDJLj5NRO9k9t5Z/v7qBdrND6cU+MP1BjeHWsI7a1sDekB6AbWtgigGsR8I + 4zUcoLz92NR9H0VWHGw/hezmJIQ/uV7Japouqn58cdi7342ebd9fERhb/0HkrWQHC1cDDf7+3QiD + Akz2x4zA4dh32Hwd84RZil3D+AA7mudyzOaBvFrF8tGRBoGwNYm9RPDPH9lzc2UysO5KDw9ZQc37 + Y1MuzZR/twpdjtTqoWsyG+QGSODFwekX5Wx5SFyr0HtikxTuX8lyFFv/D483Cu0SJl9zAz4bKcb6 + SzkAdnUeOehhcaDO1NmrPqA+dJ1tsfLH0ewvlUKAr84i1htNWPFjU/38nL96tvp7CP78EyPp1iEr + N+DI6/khbjKoyfdxE4P+6BO64gWbX9abAE5JEmy8rKafRvq5geSFGupojRXM4zUkcI0nvP/hTVkN + FqhO7p5elu02YFcmcMpx6Y9kfnePgDVXJsNXYAlUz3gjEV4WJQoqtBM9zrfUXMzgzgOpYDm2JxCX + 48Mvc/hszTPeHbpTsyS1VoE1/9HnVMjNfH73NUx1BMhHEj3zi67bCG4vdUFRD1/lz++GP/26+hHm + ZG71SWl23oDR6seNIim/8IdHaDJosGTaw4V2u9nS8L1NgqUvZQhWf/Cfv9SX30yBYhwSzjIzJvz8 + 25V/IGgHSzD/+PLqh5Dt5/wyF67vL/Bpd4zGeUZKVss2AsPMp9hVVdQTqpxrKB2+GZGk6GiO8KNc + gHJNWuwsiphMMPe5P/8SydMzmVGqIOVxaTEBidIEv36Eksn2iUza81HOJ7J9gsEPfZyVIQhWf0hR + b+z1pe7oYTCxmg7gAEGAtUIPEjF77WPg6+xONsfv0E/mu1PAcVvFOFr1/JJdLjx43YUPUZ63AUxn + RYvgj3//6i3JtIevhnIPfn5p31Mz7+D6+5AobqqffxdB7iyPK/+zzfkAgxB6NzFAMu8dAeufsgHf + 5sRoWZHaZGs9hGMcKnTtPwTTy/LQz8/FmaTd2fzzC67bgiGOJJU5/+qDlIhXJK7xSM7vxf/xZ5yu + /GA+HkAOH3Y20PD1Nnr+ZeloawYUIUUQxmTSNboAaLcc4e8oZou15RRoTLsr/fnPw22nGWD1s1Cb + acQk5/CWwnt72aDtqnd5ZPoECpIrEeUNvmxZ/VkoOcaTGvvtN1i+ohHDY3oRcWh1Uzkn6vgERzCc + 8XXbxs3IcRpSf36AyuEr6JqA+tvYrVUiIQIC8qtPaz3Au1sWgmECty/kOM77y0d2E9yL3JRijQOj + qZuJ3r8cbL2P8sdnJX6DY7j6EdjO9a/5eSopD2O6VERcFLH8y6fVf6Luy3QSpqoFBwoHn/AepDpb + VNXKoFcERzRF+6X5nb/641PKip+LdYwXNbrpN3q3kiGYW7auLVb6gqiDfE0Wgw7Ozw/Dxs1Wg0mI + zxngdqmGL65NGrr6eQB2t4SIoOt7svphwL+eI2r+9K5weFpAqHMTmw9ZCch8ot+fXqRuxcFkPno+ + BN3JIBS5fd0weHpmYC48H2PjBZsu4Un18zewJZ6HZCn3lQjdHop0d8sGMAcXN9ome26DlNVfWbxh + jOBZPt/w7jjqDc8LiaN+oJDhK1/YjfC2F6Q20euE/Wiae1qiXbZV3Hr5O18mJVcH7h4Sh+T7QoP5 + rXrkpwdIx1VRwh6Xcw0m4i/UK9KjyZx1VTMRpJLUHqv6BR1dHq79Qhrm2zFZwLKt4Z7bqSsfN3r+ + QQ6a6r6R8c8v+Jy3KZSlC4cPV95NxJ/fob/kFutKgMAffpzE9oaE5fNoll+9Oeqyt/bfuKBZ/QX1 + 5D8dHDzDDVtqilx4nY4Uu9HiJaLzqSp17ZeRhXuMTQf2k6tuzIHD7luWe4qMpwVDJHyxuTWTftbi + UwzT7nbDXoekfuj6OFRT82zgpK1s9oosNqhe89Korl8fbEmHMgVjeYQ4PI2VOY3BFYGuupzx3jqa + bFkcNCnH8jzjPaxwMD2PtQPt7a3DPn4+y2nlS3DDF+GPbyUTDTctNIXmTgNYt+zHP//872zlS0J7 + ShwYvFIDn3GKg5nuHQTThnUU1e7Qz5bZRKpmRDaO8gSan8qdDfih5hXxm92jmfCNK+BHEzdEvDlS + M8k3p1Ij68UjYcUXxvF1BS0/POJ0m3SMOYt0gcRQXPJC08KWe1FVW9sqQ7xny7YfzaPlwndvZNj3 + zxn4+cXAM1GBLQ/tgmVPCxeOUpThy+h/y4lvFASXjybRa4eXYMrKzRMWfcSoq6qkmfE85eq7oIRA + 2Y9K5vaHWpWDS0txPEXBTAyWAxXPPKKUGqXU1aarck2a0+DiiMkM7uvmeWpe//CZJZwvgv/nSoHw + 31cKxGe5zr2Iq4QtVdyCMo19asXENvno8UHwdbrH1FOfecJuz0CBJ6VP0fRVzYSfvKxVyXoLTYPN + tu9E24agMzYIhTdZZ4La9zLoaqPHQUhPJr9r8wi2VHZxkFakpJnbT5B7CyVR1NMAxuv7UMH4I/oE + ildgEoEbKmiKGwfvdGnsmYLkBR6jZ0tPgTj1C+uKCV5yxaR2smTB5O2xAc4br8Wmymg/TfK2hWfT + CqjPNU/GSDUbcLhPFBdnazTpwvJWPT6pgNLQa805vvCLmrfFDZvqnvXLecsINC8fj97lZG2JnOQb + dHRTQIKr34PpkhEFSjYf4x2fbfrlbSoOUK7nD45aLQ1EbivcVFd1dRp91SaZVfutwESeNGx1dtxM + dtVcIAnyGOv+lrJpsYdim88dR2NRuIPpy/pQvaYapHewE4JldmsNBLI5YE0f180oRLuppOIoNcUu + Ldtre4qAAfYQqfZ53/Ne1hqqJwCfYmg9+7kVuhtkvPfBTjQbjDef169yeD91tJVeQjDeHygCl+6w + YBtNRsmrzteHCrw7GB0nK2H0dodwuOYbsmm4pJ8/lzuCn7Kw6P5M3uZSly5Rz2Oxo8YgXoBA+vAJ + 9wafUL0v81LEQrCop+iUo+m9uMGss30H37UfE+7W4JL3WKDBc3xVCDS5dS5vXd/UvXeKsd+ioJTi + +IOgede29FBImTkFMeBhdKgAUorhAiRvThEcC9DR/c2/MXa4KzkMqX6k16NKwfBKIxla/JVSTd7p + QDLCqwXFUbFpdGW2OV3pefjFF/ZV1QXCTr5oEBrVHvlBuvR0dFEI4veloPsiNQNJvnicKo6yjS9Q + axupFHAEv2V0pVmfuqYEZK1SA0vQkLrTryW7f2QCaydX8Hlp9JJ/f79fKPghpSfl7gBBrUMFDGkd + 0TDJkoS892cHmuZUYH3jC2yWLmINdXBsaGnVbjAfjbhQhZO4IcpSKiUZtrCFz0t6JpP2uCRL1R0U + FRWdTA9nwSi/fpvlMNqPKt6f3T6gBdFTFXbWB5/gLmPCvDMRZCDeUi+7Ro2gw+H79/fubps46CLw + ctdb5wa+aM9X8tqVkgFDFJ5ppgxLMh3n9wD3zqYmmzozgfhM1Rt0QuWFd+vnL1wIKlhZcU5qHFel + +HyDi6K+Nwb1hz1pFiyYE5gD/YpjTisDNj+tCQpyD7C97fRS9I/zTdWT8wnjzc1NpPHZI/isrh9s + PSpWzvX5IauOWb7IO9xbgTQeRgRzCK5IjY5VIEDuoyj8Rl7QzWqd4KWz/RfuxreCnXhD1kHSc6sG + xj3CYVT3zbDYQw7TnhuIisK8F8PBRFBLag7b70fSiJejkgFebQwif06vdZP2mcAiEBJatPyulJaq + aKE9fx3CWdrXXGBhEZXcmwept8+mZEnjuABI7w1ho/BJfvkJsuiyQcv6fJZwCJC6nie+Z+hcTmqk + u3CPnAVts+vU8ws2C/WWfwUcvOU8EchjbOHO7gkNa3JtWG8tN3g+v32cgRiVvewFHMR76Yn1RZP6 + aV1NBdGEj1R/XIRy3pUbDd5K7UVjTgPBNMVCq9JX26EtCVEwXDIiQ3UgNTYlNCVLnx06kD6lC9bV + ug2WwK0iCCGWicr6qCSbVrrAbfp9ELDwPhC2wiNVl6No0TOAbjLwhPfVep3DHapdVrIUTJxK7o8H + PUXmnYnl+Vkp6uNmkqUU654BWavVt+kI1FEcMWHr+Up8snfoWm/NWXCGBW416Yk18LAbIeTNQsFc + iij29W9yrczcB9nNRujZxO9yqV2DqG/TEmjCF24jdu+rAZ5uc8FujJ6lYARTrZKgiGm6WEIzDreD + COW4yDF6Z0pJPqPOq/alBHinH+ZmRhoXQv6tmfS86+uSbaTagdVrlyL5pT4Ye110R7X8xaTm55YF + y9tcHFAt9Ent4daYf/X1fig5dG12xJwmWjxhahkVDV7W1DPPKiLojOODOlHggNlPiw6wCKr09H1o + vTiKRqH+npdclEkpHoLjE8I0GYg0VSbjUxROUONhQI2H8AIMxmENhwRsyGqEBSM4Fi7UJtSTbhfP + YBk3j/xXb9DnZK57ZYzUV0X6eWL9Uuj9nNFLCq0PxlTv9LTvgmEzwXGr2kgoTsdSULrIVzXr+iBw + /E7mjKYzggw/KL7nLG+o9xZC1WUfHe+0XmhYMrxcFXn7nt42fcIm/aEr6rI1Jur1nBEI9+iRqqJ6 + 4HGmDHEiHlL4hO/ajfElgbhchuvpCU+8e6SFqnZg1nE9qE9lfuHLVroHwiZd53i9dy+amE1bLhHe + TWp7OvY4i+YaMDE7ukDVNJHGx7FMxP4ufyFOjZjMdbcveRE9IbiWbkjD087vBTm51/AkJ0/qjxuj + GY/BtoAAHu8ESubJJMi4GrCP4x3ONp9HT5hxm+DDcmesVVxVLv5xe4NuvefxcUo5wJwu6dQ+KzMy + hR+HCWy7hRAfvjVihdOv9Z+rofCsBvJ5vxEQrdF1oLrv7V99BfPL23TQejkajXGsJSJ4HxVVssWY + zIZjga5r5QvMbjtEffZeEoaL/XM78dWN7k58Bpbhem8hBvCGs3VT8Bzu9Iuq5uCF6MMPwPxomQXv + hobxUbqfwffUfDh4yFwep99r3bPPZt/C4Hu+YMPa2aU4Cz0HOzvjiOCfqcnc/p1DagUlxevnLXLR + uzAoTxuqrcxN9C+bHHY3PCIl6V9gboXqovYTTchGTsaSZbExwQjw0ipR2obchN6CGy/usL60rB80 + 924BvH0SvCOnS8KaZY5V1Sha7JbvPpliaYHARnNP7SqT+1Hpcl+9v589jac3H8zoWq4rsQFEqnwD + DetnmEPrZWk0VlopmFHCh+rnyxhRVz7BBl2LVNVaMuzzT50xt6c5WOs9Dt05LYmyP0C4maKYWug0 + g0k5jRXw5SDBO9+CzXwM5kJlubPHph6IJUvtfH1L47Cj3tatepp2C/eXn4LeWgEbubcP5W57ojnN + OjYLkTlB5ykuNHB8CYymd7/Io/Re57B+aDPk1i6F25NxIMdCPZTLOZEItPSDiSOVzs1EzpqotmOd + Y1u9XYN5u3EzuNmfJYo29gmw6n36QnOdU53Pa0sNCvQGnROqsWFTwSRt8Y22SdKIdA8uu4YFWmWp + ZL8Y9LIp/FJY8QRcmXPGuknShorw4KpaHt+otQ+2YH4a86DunmOAncfRDoSyDwYwOsuZhoH3LCfd + esowY5+edFWRNfNaf0EvXBj2N57GmHM8fmEnegpajmNZzg0bRfj5zoy6h64rFy4raqiw5wmnoecE + 0jw2C+RyxtH9PcvYTPi+hSf9AHAJ9DObuTkaINoOR3o/hK9+MrodD++Zd0OCZNbB7OjMUo1cj9Bc + SKK5/j5euXz7mtqvbcOmYKNOAD0CmcjazTdFKRUz0NSqhq3dsvSM3k5w3XxpUH8WuJLcYs0Fx3Du + 6NndFeXUJcoNrvyFOkeWNayaxC9I3zhExrJ5mkstWF/4CbM3xSy7su5ea/Ufvy5a1CfLMc18UG+W + hDo5N69z4LInnN/Ux9grUdLwiZfDFW+wGY0WEMOzHf74LlE/zpwwSD4VoN/UpcmIx2TKqyEDrYku + 1NaK0OSF3uN+eESA7T6DFe8QvC1wwc683ZW8dJ0mFXMZwms8stHlXBEaPb/HrrTTgqmvXgjC/TJQ + Kx+7ctKevAW1KeyRsnnl/cQHB6ROFX3QszJFP748wPGa5BTdGloOiCyFyt5XiM19ooG5HfSLCr6t + hpNgOpais11EmGu8QbXLewzW/MrVWZze9EpT1XxtN24K5/15j4P9kZnz8RgV6kd3XJp/N0IzxeWR + U0E2m9h5AN2UomUqoPp6x9StQ7+nh6wsgBdlhHQHYyhZZfIDHIRTiPdmoPciM7IJXrjbnUwVp5WC + cP4uIH45X6TKxjoHO777MPWbOw3bewqGdN1Mv6uPJf7VX8ICdYEvEGP800vL85ZeYAlRRndaf2zm + rfDJIJYQR4M66po5YgMH3zvxiHGIxXIywF6ExqE+4B8+Tfs7ecKtuU+pLUhfcxLRAJWfngzSCiUT + cXxe+RjCm9ritTXpmr+wPok7il4uapYVv0AohCbOnHJImHK/DnDV99hwjnMwn2rTB68kM4my6qMX + mwoIZfQuqH7GbTkfjElUj2oU02uzQybd6LqvpmL0oSkXaoFYbLoKJntNJHw+uuWf3t7dUECD8XDv + 50gNOFWSnZLa6k012fHIQ+gdLYRzF+u/78sDk183iXf20nxZFy8quCoJEdd4FMBrY8H084T48GJd + P953Rgb13JWQ4G/6YJnxe30eBsTmbnMzpxJ+FXhUlJrIix+B4UwnX/VicqP+UhYJ8beXAty21xlb + sfsxZyeIHTXTyxpNdHMK5oa9ePjRLZfeg31dTl5GDAC02CIif2v7abvTWqhPO+un38tpHO8QnlTd + Qp+tqzW8x0xDXXCfYRtevHIOv88CFgib6LHqP1JG+wocav6B0SlPgz61Iw0MijMQMlkPc6ym2Nm6 + c3LAvrbekrkv4w1uls5Y9e3LnNJTP4E46a90L9/Khh0+h0LdfHdPvE+8HRBM73SBCDo2tWn8ZdPu + so2h5CIDW1cKg+/OP4nQujQ19hP7w8ZfPKqaIRK51GmyQE2bwAeRE0U+P7PlFDUcuNCzgY2ZDWY/ + cm8XXrX9BjU+0RthxS9V7KsjTj430Vy+u70IOSPeILrywyV5ugX8/f8L1JxGVCYoQyNJJmykdtCI + iqlAefG3IlmQ45YCneZcvR0eLyQragnGNT6hHGkdPqKpTiblEVZQNlNAV/3Wj7tS0uDBrZ5I9qSD + yYztSYMr3ydqkTY/PEzhIZkt7N2jsl/cxujgEKgL1d3eMnlxwTLMN4c9EYzuBIQhVUR4yHye4vMm + asYhXUR4E7KaCCtfetauFIPl4DwxyrIqWflDDFOniNBbTRDrs401QCWTv3RnGx34LLztAqH2IdY5 + 1wiWuh+/8KjINTZOd5qMt8JN4Uk1LSLs1ytnb6vtfvlC5o1/ZOy2a2U43aBOo+c6BTPltUlF+02A + ksEUkqnfUwTljWXRPVr4ZuHMtP7xMdTf7X3Jr/wATK+rjqPyq/bMLDv5dz54X8IYzCBgrjKR44RT + 8NbYXz0/n3CBLdx82C/eoLPxCdqKm61J95M6/fAda/at7+fOSCI1bCYRVVacNJN++soQbckRa0iK + GybeeRcO8HJBx1UfTS2vf+F2zhDez9dnM70t8lWUGb3JPORv9qVHhrYrHlA/sT2wtE89Vnt097D2 + KnKT3yVFDNFrm1PrqZzKZY51Qy1qQ0fQO03J4l+kXP3l1671x5KceEeB8KyHGJez1YsaZ96g9tVV + ihfFCYTd62YA/tiK2F75OxFqXIP1eWMDOV0yXSpbViers+mtVYx+xfMOTtbXJhSbN3OpZllRSq51 + yCsJFZOdj1n18xdxeIttNn4hhvBBLiPGZeD2f/7OWSMlmeei7GcbW5H6PMPPHx/nf/jo+LVA/ZU/ + E26rXuAmz2wk25XKFu+e3/7yIfqedgnf2HsLjtuNjR3+1jZLdSxlsKjrHsq9++5ntp0htBytWf3I + DfgmuyYHIDYbavP9Ys7uoxHVoJGv+GZcuYZ+ym8HxXYRiMSUXSO+xipWVz5P3WUKGYvjTwiOm85A + 5cJ/wYRLvoBSeDpgXz/SZgHpSYGP9+m68je3FK1Rs1QgvTbU6WBuspEYIXx86J5scSyUk36qFVU/ + 6G+MRVtP+hzENVCHoaaW/WzBtOX9CrYXO0C/82bG9m6AIOAiRCQF9kO/f4dw9V+ov9XO/XziKhfa + bjzQn35YbuvUkt9575vRNxdqCAgapqLTnYM0IBkGZ4HCuzbUDfttQKNFzqGbbVKMcyY3NNtYBIZ3 + VUa0DTfNQpccQd+Cb8QdzoeffymCn79pH4+P/psc/AI8in6iZnzkm9nqPzFsxdKlYfFAzUw44yn7 + VynDwd0ey8mUyg56o1bQqxLhnon2hNQfP3SzLwzofl/wYC/dQiRvUmoKjdPL4HafbHpSE8LGq89X + 2189CoVyV/LEMXgw38SCOn7YNEzMrj6MHXOP9U7ne8omqVbc9P2k4Z6YvZSVn0X5+Q/6kL/BNFyA + BrmhBQSs/IStfhNgSTrScv15WPEO1JbpY30bxIDx3jf/08NHK2iScfm2LogONUBDowjNcpyAD8/n + l093I3g2o3SUn9CPW4ma7+gbLLLkunAvWJefXmHTS49lqJRfHyM7rM05izcZqBffwqbZOOXk04iH + B7d+Utx7BMzhY5+D5awm1G6B1E87UQ3BM5bOZLPmp/Cr/zD7XFAfUilYjvso/Pkz1Fr5xqL39gVu + 42imd+WxXoHdPbq/esU0z2iWKG+Xle4OWJMmVC7DFj5hExgM48OiN+Llfs5ggDINB+Nh00zZNWqh + z0pGRmbzJeO6LAbnBuyQOl+fPVv5O9CKDuEiE/VACp6BASXZKuklp0U/0neRQwlRHZvDZ04mHZnK + D/8RPW+mfpx3AYLTN3z88bkZyKoFE3Izqb7yo+kqywS4Jfnh19SwfTaLql/eW4rzU8XeOYgrGAbi + BxtrPSBHcxvCHfycsPEQbPY6rzf81UlYSOcMAmDvoyDCUdi/aBGNWzbb9hhtf/G306V9zxSgEPiV + oI/T/Xxkw1c1EIxvW0gtsi0SZtwTB57m6YX1utsns2mca+jJsYK9oVDM2UlnS2UXfKFexXYBb+/H + C6BOEyBhuJmmFIxfA6Cm6ej+M4zJHGunBSbPjUn1JGrMIXvearD6hajdVkU5hXbdqV4mjQiu/Svp + FdcOpPuuRNLaf2pvQu+A1f+j4bsfwJQ+jAUICGKMz2e+Hy6fQQYGwBBb4UtlXX6ys5+fhTg67puF + 3otQVkx7pPu4CQAZPe2i1k6hYD9ep4JYghvD1R/E2pO/BKzvjrmy8iMyg43SzJ1RxnAG1Q6n08UG + 4qbd3OCQyRq+iXLHlqeVV9IaL0QZ2LefeW0Dgem4Pr2t/vN33HwKgJf7Df/qy9I+vfjnt2DvhW9s + /sXPD08lcrqUS1vUMfQ9sqPXzzCWb83zUmibTUgNTHLzp8/AkCka2hwW/Z8/LkSU4t1ldpLve3+2 + wNo/w8Zy7oJf/wKs/jHdr/2QxdqFDrhkdYKkyLyDmSpRoe5gfyLK6qcIu1dmgFuyPdId1nvGtM03 + Ur7hXsM+e8flMFyAAdxYtDH+nAo2lY7HwS18joT55NHToBg0KHmbBwIyQ4F0mO7pn1+FJAU2cxcs + sfrT/0fxuk5B2+fo14/B+sA1jOxviwFFs/WwrbfPYLIK7gvX+oixE7FgXv1kuJWkPaokP07mFDft + n99zTL1P03unPILBwELS5KkExo5eQ3h+NCcCcklveEd5F3D9vtTbf+1efMjrHneGvkgRw0MzNGiw + YFXMJ5zl+ZEJIAA+fM6yiNf+Kpg9NIpg1XuEbK+dOZqX4w2ufiuSaMMn4/1E418/AlsxeZlM3gwy + PLI5Xs/DNQXzcryo31wZqXEfbskcRb4G24gfyHM/C+tSnH0K7teYYIO9tIA9QzWGrmjM2HWcMxvW + eqvubmGA4+dnzwb0SnJ1MqIjTWIQNb94hETYcUQqkQLG7KVmIK5OPgJxXJf09eoc8OP/xfp9mfzq + 4J++0lTv2LOCeClUen1Lna7SEmnkqA/3XUHpr96IK1+Da/+Nxm6jmqy/iTnwvWGHj2OVsWHybk9l + PR/qqk5TziVqB3U35zI+DXRoxtaxb/D4HAXEvWGWTLRCC3xd0EKDT9mw1a8I1VNb20jxHIdNm7aQ + Qd5NCOeyx5vT2j/dfugjoYHyMkzx09Q8LL/Mw3ucRz1TjiIBONVijM1LEEgwDivw8TgJAaCfATts + uRRqqqhgt17afrLZ5wY3RLBocS2rkvU3Lger30Q4TSBsjs4PTV31PsWP6Q0mmVwJRFoGqWmo33Ie + gkSEvDzXGJ24KVj1N6+Cq5yQ3/f79Vfgl54Haq79jq/Qk1r5f64UiP99paBiSKH6XnGYyOyTq7yh + ZuHg9DLWwdIugccINRSZmd7Qy6z68EKOCnWEZZOwA9QR3N/eL7KR4pQtkufnUKSGSWrHpia7cyCC + t24usCFfRZNl5dCB+3ZA1HK+YT/LYvNUnV2X0B3G9TroMK/gtbM+1DmIVjAYi+7Ck5Tn+LK+1sa/ + pSFWjrqYU+PhWKXk2EcXJkOEaea3V8Y6TonhJG6/2PeaovyUSpxBT0UBDT3108zp7lCrzuxv0DzE + GCzl53FTh+2NYesuV8n3mESc+gY7Fwd6w5cMv2QEylOh0VhwjGTZhcwF+bS10LcJgnKcNyIHxmMd + EXl6lj271T6EgnA44jx83ntJ6MsMcp/tTE9OWDTT80vcLXhtWqKUk8gm73GL4HUTE+yAj16yzRMY + sDHDLy0Pi16KltlN6rC9MFqWgV0KeBdrkA33L2H1vU4mGyS1avjykSbmbQwGT19Xw3lDS0+7TQmE + 5QwWGH/GFltFCfqh3J1qqDMSYfecy+Ziq14OuxZ/0GafeknXcsETUKHSsNXczECKOLhALdMd0gtq + 0M/Ha12p6VPaYKP8bEoGT7wCh2OVYxeVejNfx4SoDxYutOj8uOS3ypWH1yBNsG+EbS/KRu+oydHx + 0e/zFpztNXiXWUxgBqOSJdR/wivdvDGanGMjCL7eqoVyfuOD+zCAmGZWDa3yydF1CHUyeY8sgsl2 + vK1/bxPwSJ8VyMkJJJsAvIKRjypZ5fZeSU8RS3u6DnWFIh0g2S6h2zBXqGV1mI8LPRennE2CkqWQ + MDnBaXf1A0n39Fyt9VYl7zsfNAugtgPkfeFQYxRhsDw/3U29baIWH7jtp5Eu1HvCrApLGh2VkAne + rF/U8yRDbHVdnsyLahYQn3UbZwfxGQgvcWxhduAjenB3ds+/tA0CgT0DGqG7XNK9fOTg9nI3sKvo + WiJkSiFCQlKDnriy6Qk1BgdW2eWJPbwZ2VC+WQsz7vkidWMx1h/vUaF6KrAIe8ttwnDXT1AgO0y6 + kJGGhuXYwUyYepzUtm1KIdSJqjyPW3oPhswUzELmoKEHdwIfaVnO1uxxymYbTthzz0HJRm5eVKHd + +jThzZjNU7vk8GJUD5ot4aVn3xl8oaIINi4TcDfH5/Whqaox8tg0P2XJq88wA7fPkNGcFk4iboRe + AVG1N3HWbDZgOQtUBp/Dc4+z6VyWE+WMFh55l8M4UkJTjPCLqFzZtGhDrHuwaNXhqQot8LG39TYB + A3qjqLeQ08imcB9AKLTtALVjuqe4lc/NtEOzoXrm/Yr35WSwhTauDzeO7OODmQxsKnf3CiLP3KNT + g6uAH3g5BJ32OWPvlU8mO5SjC8lJFMmoEtIvqVi16vGUdzQPn5t+/oijA63qkmFngy1TQtR04GIf + RmywGw16Sna5vHsWD9Qts2KynroOZAsn4TCb62DJhmOtWhxf4cT8lMms+Tvn73ldCvcIxN+q0ttF + twhNj1UjCXbkq3LahhTnztzMb+eUQe/gU1ywTGqW5H4vYDwhhnfspfTT3npdII2+H+od8iVYv78L + TxVKqPUyjv3k8DxSxyVuMU52337ilGsK01MxYf2W1uZ8OEsxnPe5iK1ZRIEIqG2BLXIkajkRTkag + GrnyDYeR7pT2AIbbbENYDFxOfeVEwENoZ0X9vgW03lDc9XzsRkQ1Wk2k59f+wSQT+oPUb+CO+vfs + 3M83bYvg9/C06UXjaiYke1mEw/Wc0azh5569Zt4H47K5Y23NP77lzBbkZcowHrcRWB7QCSGvdR6+ + wIoD7JBvW1i4tv6Hf9K1+8Yw7J8OztxrFfAHNBlqZAUtte33NZhXMgSr26nG5tlQm1ExH5OqdtUO + Fyzwku/StQv4UHiih0t8AKLrJDzcNh8XH43okyxyjbj1/h2j5zU+52R2L/DasZqGviuB+cRABXfD + 4U6dUyEmC7oMKSxw4tCQq6k5zxsOQgNWBnVbvU4+Z3OMoNvSHXVdDv6WqHNqP/U63hG9K+euSi14 + Pi4ldSSeNlNp9RDG6G0j8GnWW7cntYBvaFhoLu5RyfvSO4I0b95Ya+1zIGEXD5Bl4YOiF/F7Ubu8 + RNUUDUImPhbA09OVHPSlNeGdIThg0srJVdPbU8CmesmAcFcOoioV/hNbwmH1Q6OHAqChm7i8za45 + N5o8qFV2e5JzyqVMAJc2Vdf6u+IXYIOB5lo9O9eUqM9j2Avs5IbwjNojjqi1YROxHlCdqu8De0lh + lBIOwAV65K1SfzfJYOEvVarOiWLiU6F/S8mjZgvR7X2lF+5UgTky20h9JdsEZyfsBvyKpwrDWklj + rz8w4cKY9lcfXTtXgsVqwi98Z3imO0nDgThkhgHHW+ZTv+IGwBB6GyDqMosaLNHAqDjXDLinzsRR + 9XDYIuT8U629K8D28/oMWI6IJqfL44Av+dPsJ/a0U9UqZJuG98llwu+842k7UE/jRDarSXKDc9Wd + saV1l1LcLFOmbpCDsWMbQT/vpSr65RNNv4LIlh1uiRo/xI4G5stqlmBReSiX04G6sf781RMLeh78 + kKsJWLA8Lt8MGKeux+n36zbiO+cs+GBowXvNN8pvFs4dtPeox752tpNZN+kCo+DU41DjarAo28hX + T9bakVZkqZ9DpRQhctMU74/qox+zUxBCSnYSEQIcBUv2EkOYdbsz2W40PVhAfJlgqSk81hB5l3/n + e7+MAlqMSC2ZYEcu1DMqETZdp2BolTsPrYeHkWK0JhiFz3gDS/rksXk+hM3YVJcWbtLT+RffCdtx + wgLj77emu7RzEjIOpaGuz59qm1sZiOXncQHFcUooksDbnLFvP9UfHqeZkIMVzzo41Js3xWmFwBLh + cYCWeVWJspty8P1uZAg9Wm+xwdmeuThJcYPsmreklodX0DWzfYG3i2mtY6AWNmenAMFvN/m4VPMq + mGfzu0AveN6o4wgh+O6dJAM8mD4Yr/g2bz9PDupe1NFcX6Rk9mb9ptTtJaW/fCCmk6YqysidGo5N + g2XfmB3cNF2FQ40yMKuTOf3h0UXKvIaPH9cYUjjYtBibrKQarghUw9uX2vMeAJb0mQjD78enaXf9 + mtPLqjlV0crbOki0TcY1PreuB2ckBfy+p3RmLuRv9olm0xmUSzgZEezlZkPuzx4E5NV4Lgxn90TP + RbsDkt/febjmC5I3xbOcwHhH0GmuI3Wf6BGws05z2G+4HdlYR6OZ1noAoWGa2B3zLCCbOI3h61vc + kaqrTT8lhcDBSik2WKtiCUzM+tzggPUAo6GKgcT7Ugx+zwe51GYz/j46uPSOhg+zUjNm09AC9iWh + 1NvmKJgPSpLB87U/EwAeVzB93ooF0Mv64t11Aet75BhCv8I9DRU4JAPYs1T95FNMnZ0GzGncQxEc + dT6nzuti/fDmCc1znJPq2KuAybPiboFbnyhyRqFceG6zQAUsOrW6q28KxiOKYL7V7HUk09wMp8dl + AXldbemRv9bBksMdgpEqp/RwqLzml49APdgbAvNj2rObXXTwZLkizs+5HAzye2qh9MEd3j32GExO + Hsh/fMPYH9JmeWy2EPzqb9HOxJx1871A5GYp9c/LLvnVZyDXeom+WWj1YumcebhBzEXyhQ390lD8 + hF6e8UjoTIddyzMXgbm0XLrWO3PMROookThgmjPtEyyb+BKDw0OcEChgliw//XWQd1uaHS8O+y5D + UcG8rrfUUfcMMMfTFPVDuRNalOhUjnODuj+9F/HxEQjZyQyBc7Rr+sM/9oijSb1Z/IaufA70W1RX + UIzOIkb6fdNMxqL7qkH4iSb+Vm8m4eQQ9XGPM6I0QZ/Qa38UIRiDnoYvbx/MXvQqgG/ej9iQBzuQ + nnJ5AUMjNzhbz3daAndReEUaMfZI28+36uoAop++ZN73Ehiee1UEVnXLqH0UvwH1aPCEK1/AZh2x + pB/sgw/M4OVQ09/q/RTtJRE8zW1JkVtl6+KGGcF7gw3qkXZdhZ6cb4p7f+jY3nze5az4ngN57esh + wdtvwLTWRyBJL0a9FV+HyyONIP9KrqgLz3OyvIzRgeOxigjkThro8+47KdWWONT+iJ3JcupboPQI + wVjuz8HHPYUDrJ48JQr0p3Iav6MLU237pOiTjuWszf4FvvadR8NH8y3npkrbP/2MMAiCWWaT8dOP + 1Hl/zFK8h1MHNsfoSK3BHNbB4qqjrPiONt8bTIgUqJz67JYFcUuSmrz8lluo7F4NtssCllR/zeRX + X/DqByQCFBtHPUIdIlWsvUDKUavB7g7vOHn1O0ANo3b+9Otu1ccDedo8TF+OgYPl5AIWcmqkRNEW + YvMlisEgP0MR8tk2Rlun9QCFwKqAPJUtdpC+JH94Nx2OBd7FggUmXe4uYBLDmd4OZGio85pDWD1F + iq0iGktqHXcZEPRMwW6g7QOxw02o5lMYoKX8bBImctOiuqevSebeOoNJKJYbFA/pgl01T//l46pX + UO/PX/NXb2C+NWy6a/A6mPbS8dAZDm9CC1dnMx8KPnT6J0Fg9Ji5rPjw56+cheZSfi9G66hL2vJ4 + f89ePeupZqmHDyXUMO5DwsADL+BjIgOxy6CbVPe8HG4+4IN1kLTgL35mOxGwcT0sDTkMmQHOzj0l + IOccJkJPV+BmtikOwuOlIdd8Y8H1+1If+lEi7p0yhTv88PBPL8y36uhA4jYUqZpfl9NFn3J4C6GG + s8/+yMQtNAf405/l6VU389AqCgBamVFtdKJSPAyZpk7nS0nRNg3KRepIDD3Ca/gqH78NTYKFA6sf + RVTP+wTDfKgcAE7vknCve9kvsBsnsNYDMlWPFsxig1z497PnpOWyEXoZrnyX8IagsDlUdznk70by + p2fFYnIXEDZXm2q6ghiRXwqBn7eUEUEzv2DejhGBtr37YqOUUbJIQ2zAg2xvsXauaN+DB54A9H0L + beTKB/0hn1u4fzkL3p/J0k9hX4k/P+PPf6GpXXbKyu//+BYx8DtUP1F/IJNa9WtLzosAAI1IAztv + zek27yHk7OhKXfv9MRk7GpmKyftIjfbuJss1lxzQmKChjiBqgZBEzxx+gp2G7dnY9+IaL/Dcpz3O + fvH/0ztR0S34Vz+Fu3LmYYjeI+Gm47NhXpxE8Cp5I9VvNgsIzmztjw/G84UDE5gNqApUC2gmLJty + eEtDpDyAPZGzGQjJsjfeT+j0LUH8VYxMsm+CDq56nnrCEpTsIxccZE0/oYZaPVuYffdB+O19rP3w + NaF+C1c8xrcX+TZM5OQF9uX8wXo+0IByb9JC7+BSjNd8mSjnP9UCZA0Z67oPRrTfZtDzuA9h5geU + bC98CxjsQ5MaXmX2gnQGMRTUIsN22KUJlfmRgJWvULPHRTCn5jj98pea6qHrl/glkt/5UkvCsTkV + M7oATZGvdPfYUzbRRxxBe7ohbEZmxtjxnufwuYESEapuSZjBcbFiifROzeVL+mHL6U/1cTsV2AW8 + 3kt9IN/goei+9EzaFxibp5aq0dlQaSg9JMZaqj2hFJsN9qRX2PDRfsNDNbx8sXFPDMbTa1vB6MDL + K1/Xe6k6bWQ4XIYrzQ29Tca3b1pQbw2O7tUtZEx5vx3VPG8Ov/hPFtO5pDDsW4f642Ingu2jFk6U + Pqm+7yXWz0++Bu8lQeQbrW9t7oa7Adfvg81Xv2MzPx4QfCZhTeN4u+slwbpD+BX3Z/INufX97zmA + 4ClJIumPzVLOinPM1NVPRjB/Nv2c7+UU3ufXnnr589Sv/tSk9iX7kDxkqJmTMSVgMlSMnaHzE2Z3 + w6TUcLz+/LRm2L9VB4icvUPg8vT6xf00F2A9AkyUe7ZthjcvD7C33k8i1F+jF354rMYaIOO5sRLW + u/+uBGFke425PO5XBa7xjKppYCZLn5v6p+ewfolnRuXDzQErH8ZxOVbBnO7ONZDMPqfY26ZMNPAb + QXmfO9TqpF3Zu7nSQtOX93i/+k3sQT3rj0+lnrgEg5IWX6jSIaQZivRyOumyAn5+oe/l6yWi2b0A + u57g6j9hcziQRIG3Sr7g88VXysX89BAafKlT/eP4yXzUFATfzzdc/YBtMKUSiaEyXBRqV91STtVz + l8Fwax7RdpuTgE19yUNn903o/urtTLHOTA2Yh+BEjWjwzJ/eATWNEC5XfPj2udoqwYc7IziTrJ+7 + 6uKA5tAKZBTrjzn1V2rA5Suoaz0LmsoHpQZUg/I0JG4CWHW0UmglRKNIv98bgqrcgnnqEhw/r7nZ + aaXsgvX54ShO/YCq8/yF4861af7eHNiwkDyHYgsMsrk/XoB1tQ7hrz+xVwlqpB2nTtBTw4C8UtMF + vF1IN3AJspJ676JKpt3h+YTJVbZophp2Pz/GJAT8+vpOLFkzqIJ5x0H4fiVY57Zev2iXkYfdSbhh + dPR0c879sIXvu95j03a0RLrEhxj8+NeeZmYv/fSY6St76q79hUV+LQScd3mET61ggDlO7hzcKn5K + ESdf+0+9yzW4XxYL28o6xbE41C20kkGjbs+bDbuX/VeO93KIk9LasxlsBAiHnbvHv3r/IUqUQZWz + Tqs+bhOii98WCtFX//HBYByr8glhXmF8jY6k+evXDA4+oCHlKkDJ0eDVb2nJ1HSlw7qIZHWrdt6V + 5mXRJYv8Ugb4oXqJtds26ed+LJDSDlqI76sfu9CNfIPXojwRefNamtnfz+JP/2HnIdbmKK9TXVa/ + DAdn72j++TsZPdxoUPlhyV+48AmV52mLqoWsU1m4aYGEf4X055+L4rJNQQfmLQ3eEwLk5/eueILm + Ry8AZhi1pVY4vqGv1yjJqp++0PV0gWpbxWXD2h+Bhq8cqfn+SCX7Hs0MnsoU0F89JSv+//x5XK6v + 07IROIYaGY+ZGuXnnvz518PO3yO1BzSg3S0L4dBbHYHf8V7O9ed9+/XbsJ7ctgEjR0OEc/c4URPd + nwld/XbYXs8cdojgAvGY5BxMluaM95WSm6zR/0fatXQryzPLH8RAbpJmyE1EwAQBEWeCiOAFuQXI + rz+L/bzDb3bGey/F0F1dVZ2kxxuaJbEglm5su05xTB+6KhBp8dtxWb/mEyok703M6R6YkuCYI0RK + cyPp5S3WrK6MXOVC2o+8vd5qseoPYP29pY+VXwzqsokR//q8qEc9M+t1HnolGz87LPZNm01sv25B + riaf5P15qce1X4OejnUiu7PoepLxuKWw2+3acaGyH412Yht/eI/nVb8u8zKLagzh/l+9mnDR+mh8 + aIh6q/5exjfr0flz76nnzq1HnbPNI1VQk3GOiq35529to1ksqbbytyl7a5qy+v3kiMHNJEm+5jC+ + Swf/6bvJWI9arP4Rub6POuNXfa30xPTwX3+SMX70t5b5UMmhnnI0XfkFq0VEXGI9uyeafZWkIAqn + 4zicVb0WdbF6Qf097OijKX02oeHio902dEZFuWDENFL26pdtTYqds1NLZTrZKid9TYpTWqPFVR35 + X7+QHONfxNrT4wVmaEXk7/OkXZ9WEAgsIriIxBVdNAs2eHawslMv9eL7Svun70a+kb7RXzz88SOi + b20nWqLHJYWcF/bEWvmUeDrgFNxbd6P2RhO84TPc+j++tfoHfLckvx9ArbYnQozq6bHKm4t//VhX + nH1z+fVZCSvfJucVb1a9a/3ze7btHJvzGi9QkqAYF8E2ssl6JhNqw5Ajf37bqo8w7Ac/IwH/XAd3 + jfsUXcKnTkh82qC1X5GCXHEXasj3xBSNyQsBJ/2DnlY+sdBqDzBns06v8IpqpjfvAFZ9TYxkN5jL + yV/cLdEljWqbofVWP4tX9wUfkMsxL9F06poErvtbgKs49Nj8149Yjuk4btZ+SvUVPqmqcvaF2Pn1 + Hk3d/atB4l3Mv/fPWrqRc7T66fSYOJRN000BkOXyi+dv1LBOPZ1fsMg1wcoh9T0hbZtG+RmRTTRq + PdCKHzGkv5HDqHT7bBQS3VA/3S6gqbkRELt3dx5ayT2PalkqbBJuSg5LFdj0mru3bA7jwFVFsyup + eflts7Gm+w9C6CkSx+FytFyM8QWpzzVj13MWmnHwUiBGF4/++z1H54S3/58tBdL/3lJwB2lLj3vC + R7PELh/lqhwOY5ibh3oBD2Mol2FPrUs3RHNmnkNV6U2Gtx9VqFkiPESY5MCiDm7v3WwIbgOSPM1U + Y60d8V5wBqQHgUfOGb7UYpv8XojvjYiS73DypuoUWOrh1Q/EzCQvW7wyz6EUwwCrHa69ya3kHF6f + e0Iij8oeu6vHBKzR2tNso+pICBLLUmujNajmAcl6wXBE2FI/INeO33T9++IsMIwcHlO/O7GpmtdT + AMKLJ/ZGXqKWVKcQFsVGo5jXn3q5qU9OzaTPbaRZMmaLQYwUjjUn0OjHufVwoYoBxxoEYohL7fXb + evqAwvT3qLx/AmKJcOEBo3NI7mIfddLJ0Ef1shd2tFC2Zd3fWexC8ZMLon85UjPx+9AgG8wHsW+s + 9cYraQsgZfylJ+tXI/bjz44qR0ePXiYfoenVqxYyyftCLANtakZk01DtEbR//9/jV4ZRxuxo7Itr + 1vFvh8dqGdPXKD5a3putjR6CHoQeMXXnxMSlP7wg+j4L4nxvXTZs1cJHJzLFZP97nzM+UakN5tO1 + yG7v9PW8eQeTepfziGQqHBF/PU6VWst3Nl6PyZ31gx8t6rDLGb0IkHo8XEperd3PjCfLe3iC8EOG + +qiSbJz088+bfTufIDEgpFoY25nwW2ofcFwYROOfQc2fuYMLz2Ogk3yX2x1f8ZwMVemkNHm0sTkN + fTPBvhZ5qoX1GfHPs8dBfNIUgstr0vX10XVAmkSDRrsNQsMpTLFSWuKOHjEdzOly/fiqnAUZjV9b + JWJ37wrQOWZFvMa2OyEs3RG9lwui5NerHr0e7g4EhniizqMzPUHZtokq8BdKTI08anFTbWLQ4ymk + 55JataBvg5cqoFzH8ud5NSebahh093ghtyz6enwopwW0271OnanVOnHivRu4H0emJ9lS0MKbygS2 + BgVxfu6XLcmvH+FSnR70wat2tBjqQYEr9wsI4VFhTon6tUGUbzuyP27mblnjWxXuRTHIsdfW634D + gNn85eP2ebxmLCy0Sf1teptcN4MZ8XptLWojBS4tOCmN+OnlK7CIz4W4u0zqeqMQeQg8ymHAlu4x + 149bsB76jmb3kdTz1PsOWKrWUNPaGpm0c7eyssYf8d1oqpmSkQBUck1G2hXPTrSr9wfW9aMeSbV1 + S1Kdwy5TDyRAV9wJkxL0sGTOjTxen7r7wx/AOqRk331+ERte1wq0LhCptt/tInaLokn1LDcbG/2o + Z6KEElHd0euM++nkZfzlq0zKcOHudG9MUz0H1w0HvH6/Eu2UxSbzX8cF7nIREW08bOslnscSnqeu + odq0OBnv+60NW7qnRHvW+0jiPUWDrPz8iKHXm2wyClGEbbrnqLk9ep2QPIcCvkpiE8fMoJ5MRZBh + kkOLksvXNofJkxzQ0tkfnyovmf1t1bvqT5rIfjlSNBX6anFvfi6JI9h5jPPMBqnmtqD2MX53QtWq + I9jx1aY4UU5MkIm8/MNPiTubpjRqaQOPj1iRO+f30ed2zznwxhdPCnb9IlZJWgy+Ve+pztu1J/Zj + 2Kv9onk0735TNzvay1bbaheQXXI5dsv58bFgo50CcnsYNFqG/BYqTio6xN6ztOPX50WPKs7I0Ujd + rD+5KcBuRjk1y8fHY7Y8p6oeLyHd3aVPtkTnb6E6G5ri5VeNHuO6tIUJTw29F1IZSc/sEIJWJ3/P + Z3rz5G3c7XQLnjS/Vqeavw1dLvWVeqBJXtvdoj9dHtRQ2BBzFOJa+NwUG8rvEWM1F/to6uL7C5T0 + 7eHFzudumYzAUMs0HLAYRadI+qaTC8FzWYh9Ma7dmp//4pFm2kHz/vADos76kuB1vUfzLtNS9Xbd + t8T+GJ45t/AUoTnTgurGemrz8lUWZIZ7g7jUNWoWXxdRNaSmoev6ZRP8niEIFBx6+o29SeVN60Ok + tRiz7bGr56g9xNBa+4GaYWqjRd0ee3gTbsaVXj+iduZcDc6n7EPd06Jks1kbWB2ZZGB2Fy+Z9AqH + FNzfqI8cyH4t1vRgwR2ELSWTxXtMMhMHBb/hSTWXH7opDg4NtLJrksO++XXz56ZY8HP7he7mUUcC + zGWlhpxbE2+7q9H85hSAO8CNPALuUs+yOgVqoWXm+ncTSVGHQoiV6kwO2RjX8+2bOBAMQUvuvyM1 + F6RmjbrvFGuUtZiYfHjgZHiR145G7fHmTW8HMGwpDujBeTDEPu30UjeReCWByx9r4RSmPuShxpPk + 2jURe5cX+a++0sDyNt7KT3ioUBuQ5JG9OqmJWx8+NOJo8XK/HlOkJlU31aSQ09ue62Zbyy8kqYFM + L+WmNgXchzlEhxphuVgCJFzoYsDdKHWqv+25m5vk5YLRjHtKjKZBvy7PRXhcWEldaYrZQqVNCN97 + 9CT70p7Qgu2bD+drIWKp2FtI8m57B56nX0PCqLc7cWd/StUd91/qhl1fM+PFO+oQZzE1Vj7W2Bhh + GHTUEt176ojfnnsD5o9nExutLbTtMZ7Uq7YQelu0tGbebe+qKP6cKP4pdTSpuzJV3QI7o/Q4ctHU + 5HOuwotTceMiIaJ1whLF83cuya7qxqTy4+5DPdjZ2AjPtmPH8iojOQszctytp04e3S0BcueBOFFc + ZlPFcwroOdWxKF6PSLhuiw9oXSiO4o215rj3twF0H3OHxedt6r6u00xwT7Zfar22t2xunMcLZrPL + ySF/F+zt83GgxgfbJYdo42dSmp1fkD5ik/hNVZtLwKUxeP7eHaWg0TI2X+iIxLOS4e7QWF1/dHIX + vVrtQTQ51E3pMkw2/K2nzg2HaO7c/KYe3DDC5/549kTklQEY4FI83cyxXt+vo6JGlWiwzLG31FS3 + VLkKjyNsSt+bhr6c1Pszr8h+jZeBBkdbIcZ5nfXdu+avT21lm52tCaNUenfMEPkXHHdaTMJLNrLF + 7PRCpSjWSHKG0pvaz2Sr57JoMLjR1I0BFyQwxvJznFj7yeat14ow/Y4Gfcj9WM+TkvYQv+4V3Vvl + YA7p/VJCFNsi9aIkraeual30HlE4zs4365bIOlhg7a2EJHtBY4LbnlsIH9igduDXrBWP802981uX + Yr/KvPkmVCPUg5XRaMWjxRI0W9Xy5EzwdQn+4Tnax0qEZfnqMJY9mxi26Y6j+coPxFc+ftCHu2hY + KKnV9YlKLYgbo/urf56I+VOvcmGK6YG+J4995dr+q8+j8jgVaJkDo4TE4EKcifnZo69wuMHR35h/ + /LcbqSQF4JEmGuvl8/aWL38Z0dk2MNljuUYzPEobxp30IN4gGkh4sNML9uWpo0c1UszxcniMCJ10 + h+TQjObSOncNpne3pbvZ2ni09ZsbjJ0cYsQJpTfVnFrC2zEMom8Ez+xbu7PA68yO6v3HjaRNyjlw + RlxJ9762Y3yQn27wtU8Ttfvf3FFx31uK+a7bsbmEsre8WuQAhYCj9+cgZizYCR9Y+Rq14GlHwt5S + NMDHIhiLTgNG8ejf0Pr+6DlOn2hOdKUC/fWb6X7MNxHlvUWDA55uI5zZIRM7i1iw5ZyZJN7rYLJD + cbbhws8HEn5aghYtSmN4FeVn5a+berIx85H44oEWSynUa31w4dZ945FzF65e4/cDH/F2Ivj+lLM5 + eQ45eliJTKy0kjrGqCLDyveJroCMhibpHTi7Vx5LET2y+XY+j1DM69bK6T17S/G4LsCUxxezdHPM + OvszceqKj/QScWpG5U3lg/vrdZofbkW0yJfJUDct746MT/R6qUooYcl3Kck/i90JZu1idM0PH+o9 + 7xIajlXGg8Wr6b/6vVz1uwy31O2Jd2he9UKeGwz7nXCiF41Czd7ai1P9h62TQ42HaPb5PIQw+v6o + +zBIxFoumxBfXpWR6zRASyvGJcxzsyFnaRhqarsPXmnQciKacDOQIOs9/qtPmDfQo2v6KW8hYvqF + OqY/eMuW3TWklmDip2wpbGhxlcDneyb04JZ7JGze6aQ8e1xRd1ueIgbRsQByZj11iiVg81fcuiCU + 2z3RG2H7XzxsHf9B7PLJZbN50hclvYSMWg/vY86869iohdalWNHGaLYGTYQ/PnIw18FqbiAb6K9+ + 6B3VvLXeftbBMwtxmpPQdUuEePCjzwHzvsejxVGSHvigyjAQV+mmJTctOEGfUuM93zv2Ct83qJ+f + etVLtfmmxalVlUPT0vNdsrPpqOwrYMr9S02qJtnyaypNWZxmIu5wGGt64FpbRfHrtPI3PxKeauCD + GkobzO/fVbZsZlNBp0/3Jvs1vvhZswyVsPXi+zwh2cpHe9DEiZJ7Qt5stIvtCN86ORNPJ9tuKlOJ + h0NITEJWPTV8m9cL+ky90P1r7LJl8zALuO06g+orfrLtMZ+Ux0Oc/ssXal05GJZUog462ejPr0B9 + tTlQQ39/a7ryFWQfsxiPnZaj2b6NydYwupj40IzedD29UjXTWwdvfvehXnb8aADaqA1uc3eORl4Y + 3W1znMZRXvX5uPIDkP3jlfjvLZ9Rc/k0aNC3LVlPWGXLw98E8Pazhhx0+Rj9okHF8OMxpnjXv012 + Mg4jkpMpXvVwhpbrs1LU9t1cSVgvcze1cpHDyt9XPA5M9oHZgFQkMcEg93X3M54TmD+bYRifGM3+ + h4zA6rtIrIuSI7aPpxJl0utGz/sLmBMf6+tFqVo38va9rOfjVKbqXj+71KbTxlxqjZbQbT+YmKwv + atYGeQgOC6txboQrGvWQC9BfPFzaYl/zbjBpav4qC3KerY25RJZuAy9dO+rsvK03285bVsXwEo7y + 8fUyl1X/wb5bZ1c7LzP6q99IPMsZdZ/K0I1/f3cvO5H6nl8h6olloPJM21EchpdsOcrHF8AZISw4 + 8s9bZl0AOD1+jJpVMbNh1adqbN83ZMV7JJTUa//qE3UeSljPERwWdN0dBOJfq7mm6a9dtzynEjl8 + 7K6e5G2vIBZ9LmQn8ihqf0qVw1DnCdkz2/BYddB4te+MK3Ey06m7r9t9kICvOcHPsEErnlvQzvpM + 8b3WuplHLFdxnBt0l+5br9+a3QuCkE4Uy3pVz7XN8+pDWwuJzdvsn981T6NO8U8/mYu63Y1/60+9 + dhdm4pe/9CA+I0ZIPGzQpJ1vAfoskkMOh3WLwtiEIqzxS062tDHZgass8P3XheysYKzZN00saCZP + Hje3O3iD/yE9Oqm/hNh//NDYm47aK1uZkkrcm9MU+jn8+XN/fHchsd//q/faxknY1OTbHN4CsqiX + fwY26O5mvdXpoOD3+n3TJ1xESJKbQv7e54qvBtx/1xMpfooZsU8rf2A6L7cx3r1wxJpP20JSXH7E + iT23nnbiF9T99bQl3vfIe5UWBQlsRWys/FbLRN5cJpBuDFP7gjwk5ufIhaPCfYgjlUk2a97VRmZR + y5jzK2S+TUP1odc+2uqPqt1ckrQHWjJ75MLwErVm+00BuXqCYeUf85+eye6ORg7VGZnDn16qDEeg + 3kbVmeiVcQ6Btx7W015DN6XmLKsaXVRia1bQ8e+dlqgbkVR0r+YT6lJUvVTUaFt6IJeZsXFMXbge + jztyoedTLRo5yJBupzs5b452JL3KGSC4igbm5/CdTT95KtU/P2Nv/gy01gse6r1zoPl7G0fT/BA5 + lc/VEznr3w0b9uKQAkeUmnoJTtiab7aaXgJGL8bz6S2dtbcQDuQt9XOvzKb7Mxth5UOr3jzUvVdU + FVysCKjDZuwJG+nkq6ueHrm//H1GhoZW/bf6hwdPEoX6o678daxfeIxodXBE9GQ4pm53XbypTetS + jcWNj9HGIh0NC2eBSxU9MDRzWE/oWPkACEb6yJIxoiEBDMWkBFj2+H1N//SxSzx7HIy0jeYDnlrl + L9/2yzroJts37R9+UaNA3/pXkmCERfjwxLx/v2zdWdbCiocjqE8tEsPmwMHqf4xb7q13L3udXa9x + tCDa+nsWEgQirPWORraMTckM2QizgB3iqHodLdT2FPjDe/zTZ48Or2sJ2d3VqP053erxzz/cd7JF + 06ktu5kGOwvEKRHG5GN0pkR+Yg6/BHfUX/nUfIDJ/eevXw4XyZu8KknBfbbzmq+5SdOhMMAoDj5x + 0fOdDS1uE8jK12/c7MqvN4/TzQZ5WHbE7Gw/k05MtUAq4gs1BI2rZyd8VWhQij3d1d+qnviP3iP8 + lVsSwumLxoe/CdEav3jLkrKeXujQIv+iUuo/woEtNE4L0Hbxa8XP09owKWTUjdaZPrZvDU36I5Ah + INGeuufaZWz149CfP/cv/ubALdE/PHWIkNEhvNooth8bSq6XqltEJMv//K9dNQbZ6mcF8ElvIzW6 + 55Xxt2ORgzoJFdHEyuqkqqctemdFO/KSodczv6GJEjr+iZ7Fd4eY4D0AjbkQjMgvK/bnj6DVH6dG + Gl49Ft3H/s+vIUabldHEZMNVByXfr3zUqgWZJD28L+g5CrN6ytivikdYnHbCUsTdI3Y51jZCx9eD + 3Hw0ZXOp+y5sHfygq//rLfXdaUDAWU7wrt+ZgqzKIWpO5EINgkSzZz/1A9FiX4ndLd+I3Vg5rbeW + 7bH4yF71stxVTdGPS0l3xqmqR98tXbX4KQXdLWLdLY9s9fTfYkP2ktr/+dm+OiU0xcqiyTWdDqoP + +c94j7MYc9m4V+QFWP0QV/drG00HfpKhMQJxFAO/RgvraIWmCfPENeprxNAu5ODJjT7V3WtpLu6S + K2CFHzJyP/3k/dOzMpkqEu7PNZuk6xb+9A7VHsxF/BoP6PHgJ6L9TM3kM6m1gQtvmLrouYsE6Tn7 + 8BCY+ec3ef30spTtKVls4vTbwJvZqIG6+uuEbN8aE6JBwCB9TvtRcOSDycYxcCC/qjX1AtJ5tDpo + Iizat8SICmM9fqo5RmbyPRDfquNo5Xc39XDzlhGehhvNf3yM2IJH//zF+WxrOTj8sST4mA3ZdNeb + 5Z+/4+bunI1VyVd//Ikezpwc1fk9vEFvbT7kz1/n++A5qjn+eNRa+RWDZ2jAJ5K/BFtsvUVIyFO0 + +rN0t7273pxnZf7PrwtXvFrjlUOFerEJ6Qq9lgp5k0LpLzwuw1pA84OdPvA5nPt//Qh2eXQlxBst + p7vkMtTDXnynYA4vhbqbh+rNX2UwEDnd7D//vBsV+nThKGV3vHXLL5rMzAVwUt7ByrJ10bQ1uw/E + dfkat9bUdd/r7hlC6i0K3e0OJZv9+Jegin01ivkg9OhlkK1tTDc3PAv4xZadoTTb1W/D4RHWwVm1 + /IH8uqlH+eaK2fAyNYDV3yJ+iDqPrfVNXd/PCEcPM/5gzzd1S3f0H3+ZToO0wOrnYnnV56/r/Eig + 3bciOWytGE1/ftsBjQX541tiU9QpTHhpiBZbFSpDOchhLNMbPdX7dz3biZL/48P41hnZvLyMWP1k + QjJO6IprIc/KQt1+D9oI5UH2hvp74P/0Jj4lk8H++alvRzPIZd5hU9Cv5kdd+3t/+qibRiULIK3W + W/904WOy83dIoA/uDzyv+UOH8GSrR/3hkZ15taLJpo6P7PryJe5vPcKZbWPtD39o8K0ic7o+JlAN + 279Ta9V30ydUeFBq1yZ66DgZv1vAUtb6SuxjfTb759kE2GyXjqz+R0aZzlL1TrbCOJ2y2Jt7OZJh + G616cMV7aiTfF1rxhdhn0MxR/e4C6GOtIfnQ5HXPLqqDJkI/BCNn8ubl5caQTEJM/75PEk0Z//FL + mjuxxSSrHH20rg893rnRXITHVkTaLnkR84VxxFwlduFPz+6L/Qs1q7+hKq+dRW7jaYrGSj98YB5x + MjZaTM35z9/eZYa3+um3iN23p1z98y+l0p7YUmOwwPZXbWlvzuyvf4m0Lx3obuVP4pr/f89LbDo9 + vPk9fVLlUogi0V7ZrhOgjkBZ8YLorXhErHduOex30onsH8cimktqtqozHEd6a568NxD/mP/rB1vw + /ERs9Y/+/KYRiHurf39+f3mkCz2iWu2ovd4iZ8Izo3pKMeLzXdyA8MoDqotxkU1oc/7AwEkDxRl7 + mYtrnW//r8EH8v/eUnCgj4kepk9nst2rBFW+TAGx2COKlguJOADQtuNTCTUmmAdWqelANmQfPzzG + uvxzUx3c7unu/Hlmg0BeoNaqOBDrfTAi/pgeSvhkp5ocOMhNYctYDqd0Kqiu7JxMahgCVCrWifjS + 0nhzlnMyOozJMi7h7eWN9lG9oUsRiyRwMe0m/XxvITmlmLph9EWzPDx8OKvmnpLNfYiW9DxhdXO9 + U2KOzbObs3JnqLtc9MgeuWktNrHTql/Tx/Q0lRiNqDklap5wH3L8HaWoMnueU8VQUTEkYY34Tpws + EGMd0Sh5C9F7aZ0Wfhn3JDaaOLY8lrMLOs4MHHSoz5g+NAGwp1ITPX2/PP4xcTZMh1mj+duwvSXT + 5QU+09xg9MQoag/id0ICvBOy7/l9PcnHTgF7vCf0XMOSsd2rAXXbhHdaSK7SzXC9TGiYtYEeJV9n + 4nh7J6r+6n/0jBbbE6M6ukFQVunYOdtHJ1rIxOoXsYk6Gg2z/vV5Gure9LZES/sqWsLgF8Djikpy + lIpTJpSX3QjHqQFyDGTUsVNTfaCR3hk12+zgjRnKc5BtGAk+px80HXqNU5n3AoofhhSxGlAI2eEp + 0bN8wpn02rNcVeXGJhe00zu+/W0+cG5PO2JLJxFNZ2T0wOe7Az0dBR0tyf4JKqv1J3HS98eURoFf + 4Df2NQnm6NhJN7wFpPt5RR8NXlskfvIC2fZ8DJmJsmWWdBGiYqGjOvAle4VhGoND5vUaRz5Bc3ed + X0DJVqDaHB3rZRteLTW/LA69ccmZDd+2VZCqpRo5WdUF8fvE6UHenVss2o6UlUX15eHDSftR4WfI + ljdVbLWT3wLR76dXLcWnuwY/z9nQ+/BtImYltx4KAXMEg8nY1Nu5g0zrGpO7dEqRhN0pBuGyD+nu + 9/TNBbFTro5JOdP00HgRW95egbjCdamxfVTecN01ChChJPS2fj/bbHYJKAKxifmmTddb8+Kiv/yN + Ht0HsXo7uPAMf/wo1BBGjKO/GG12Hzq+/O29HptgKVW0qCeyfl7EHgdnUYXLLqTx+Kwj8WO8Qki7 + 04NoB/rthgvvF2j/rTajRGLTE176VKmiWDzpoaVPxBqGOHQ2+LVFqUse62u3UXbPciTZY65N9m0Y + r95wPY6vdh9m4vWdY+i22YXuN7NhLu95L6Icrae6zx89E2pxiqE2NzXR7vctG31cFrDVOWlcLrZV + i4ERGSpaDpRYZSWjobxFvHo/AcUcid9eX52tVo0n+0Gde514Iu7DETWBI1Ff/Z0y2qA3p/5ouSOF + flbqSekKF7CZcuR+Dv2aMUl9Aa0fN7oPwigTpnPioqJAlzU+bZO35sWB10dJCIa7hcTfQ1sptPmk + u9c6+3pW4wV131yietoik8UYK+BaqkB2y+3tLWH2vP3FK7WSE1ePi2EYKt8rHXHDhaBlu1KCk63l + JDamFxvrpO6h/HYdPXRZlfGfbeSqPW9b9A/feIClUl1QHnjLAZiT8lECeD+VB3lEa4s7btIP/OVj + lBU4Y9QZObhURKLGdj51Qv/sXvDLI5W6F2uTseAdF2r3LSSC7SHr/uJXabufT25v2nbLJD8+UCPl + SHS8n7P1psYWrm/Op0cPu4gdt5kMvc+hkRPXcyevQ1uC4YRHqk/DN5tPX6+C6IEGgl83uVs+Rh+C + peENNbjgWkuC37j/np9E2282bzS+gGrh33Tf3JKaT8uvhnjHP9CMT3E3BkrJAbb8EpdKkZgS3ldY + PUFiEA1njjnDyplux9s0bqdP5y0fTkvUW7WLsESuN5PvTduA2U6P5HK9Z0js5kXe2nttobfQJtl0 + fKASMZ8qxJLf6+y4xWsgeUd43XKFu9dvveJ//3PNEXxsZH/1Q/049ZM43dkxpyb8feBrYkz3u2o2 + R7M52SCGskoTHRXs3++7awbBzJBMUxCTgw+hYh+pebz1iF2GuYRqdA26Yx50vXdAAbpLOaPazuG8 + qWNPTqXvq4LhxlmZWF+3PMRThrBiJkdTFEajVF1rI2C5yom3TL0+wlQ8KlzzWoWWTiwWpX/0Kh4k + X0eC+gkCda1X1Eu6uVtgQxMwEyPFcHux7Bfj0ldL3fgRq7w/WX/MhxSKUpLH5iOWHr/TCwyRrw0k + XvnEFL3dHKWcYJIT3s/RJMz7WLWdw4Q3ga2Zovl2AeK9Ia75UHTz1RZb6PFuOzLzEHZLfqiWPzwk + Z++8N/nMUl+AhodP9IMio+EWPA3weelE8cs5eHzHnqB+URGTjB7fSEheZfFXv2lim2UmtMHeV+c0 + Hsh1c4i7afDlG9TcpqO+V60X8+4XUO/hdCK2/iMZaw98CA8u/GD15u06sZsVGSTX2I3bsD/X3eEY + pehF5iM9Dl8nYhvlWajJx56Iv8aDhJ0NgF8pM9lBYaP5fYqr7T1cTuRunE+IX/NL3QN5UktO+3rh + TuakFrTfUhLYmvdzn/CBxahj4jP72y3Xpo0RxxpCLoOuebPdMlkNit1MT/eT1c35IrlqTAOgdp34 + 5gTbPoXn8UDxUqpHNE/nwgE1uhe4+jhJNO8hDZG88XlyP+1is6mCclLjSdZHcbgdUZ9wKQ8FHbfE + oKUUzf1r7pHJBcWK189sdhMoAC4dI27b1N3yem05eD4+Z2rua7Me8FFwFfEl3NfzjnrGtKpxUZwN + KXX/8MRzfB+uGnsR/dAcovF4LV+q+JLuI8rNEAmRTnvwImxTG00FY+W5aCDLuDtxnXHM2GXYVmCF + G33lJzabaDW16Oe5G2rtSc/+6huA9TrT06H5ZfRnf1zVGKYTnpQOd//q/Y6+jkRPPWbOCsde6js4 + ZfThMgENr0NVgtlJ8ijNm8ljXB/58LvvHtRynI+5HG9cjDz9a5Dd+er81V8HvV5uTFy+f2dz5Jig + zFwbrbNcpXpe+TSSeL8nEWOtx+T2doMdH0zE6apyvVFIq9QiXy9KOw16J6lvkfuHf1n7gWjW3j0o + t0oWaBL4V3M+EDcHnEBFb/SKvHlX6+vYKqOkbuqePNGVGwcs3XgSjC7MXFzhZgA/fzF1Gr1B007T + ChV+obSuL4fo7nkTQanuFj0ukcMm/lknf/Wb7Ae99BoQnBK25zKjj1i61GP7WSaVVccNDc1WRwI5 + f13Yx5OKtwdjZ84DnXk1TZ93mujuPhOmgxYAt/ADdUObZlOd3ha08nV6tCs3Y8VOaeD6VfpVP4DZ + BRVO4Mcym+AdWN60TV8a+M9oGMFA8rqF/lkC79RvYoQ969hcfDHMnU2Jpvh2JypvD6Nb4DC68v3s + u5ciC14yL5JrrhI2NdEmhhx1DtVwo3XCHx887r8RHtf61WvuvYRzctuNzDI8tqz8Bc1pMlDvqOvm + LE9DDHdNI+OUPg5MsunT2pr2hcddbi5o/CiKD4Xvncel/RbZMvgPC9EwzunpcqzQ5FTFB2Z7+FFC + jjZb1ydE9pCkRNuZX3MUWv4G76el0qROevP10XcYRp0n9AyTGC1RuQvRtIg/qmki7iR9KAP1Gvku + CQ70W9Nh+bRwcMSRHM/cYPb+8ZCCcbh6BJ+9MZq03bZBKI/x+j6lejGbq73t+aykXiK7Jp8YsECJ + joQUde5kQqiaCzrkt5D4tqh7guDplvobx5qQTftG/z6/EfM7yf/eTy1OCXTRbqaWUfcZ8+enAmm/ + 06lzn8aaYSu21T/+kPblhJp75PHwPHqU7l7ZrWbtaQyhPFNv7P3Nlg2njqbw4YQ9uTTO3hO+1SSD + F58t6mzuXib9uNUC2AQyDT6CwqjWho46/kJG9O4r1P/yTcUTosn1YZr8e366aqcZEZ4vR4NRrs8w + rPXpn56YL/0tB0vJ3ljQp2O3XCKJRwIqUnJc+Ty7LPcUrfGDf50+Z/MhDD6qfO0nap93oTdwc3D7 + p+c0t3x460XOk7rqNTxr50e0jMlh5dflZmTsM3fLJWxtROTvQF1TOJtzYWUfmCb5QPfi9Wku4jLe + lHhSdOKv67vyMxdK0GZyuOcSWg6jOqGdd9xTIy/ebJEsg4eGXOJReDWRyXThFiLl1FXUoJtN1K/8 + QbH0i0qdKicmi+xcBqV6WESn/Giya7Dv4fuVJ7LXxKmbJGXu1ULwuVExBcFblLfpq3/5tUeX2fvT + A7AT7JDuXkndja4QGuopXQqqh08jk2zeB6XuyW+k5JFky2FoDPCfp4EcvayO2l/dtypXysdRoR9W + j9u1JfDmmydW+DnP/vHRx3Vbkpx5XM2Ccvqo7Ig1XPMPF/G3rZCCQfuZXNxhW/cfdWNAvjtX5PQh + fMeS196Bqza/iKMFbbbYJ6+EdT2xMDDUUdMLP3/8l+7vUs8WQhsetPgpr/UhMoVmmA2VBjTF/O2q + eUNWHjXINqVO89uLRVN0D3L0h+fWQ5S9bhjdBY3fOCLGMxfQ8DPnWEX7jYPbrGsY8xephQt1U3rY + 7XOPfW7DC4xMI+R4a4d6PAylAQ05x1hd9cnv1H1TxQk+zciOfR5N3WbDgx6ca7Jf+SwblrFFdRr/ + cF8m765TLO6l4POloPZXiL3lMcyhusYTiZMT182RdgUYLTRQvPhtPZW8jyFtOZOYpy3P2Od54OHE + fTlC4rdjsoamNjxug4EVZ8RRs1ubozvBCun9d6NobNJXBXVyO6z+jmO234NTgvq2K7zd7cFc7KOQ + qm9+oxKX7r110Bzmt/e3REeFsz7ZrDXMRvXluSfnl+DV/Gmf+oBs3iXFEM01k6rmpmRzXlGXO9yz + pTknqfqHx/6yJeYk77YKJLIZjApjvTn7LAWYnMagGlYCr4mefCxTvEijuq7vuw2Ij9b4pntl3ULw + x5+JUBGyK+YDYvriO+jC9Ct1Pkgy50bBMtwJ7ol5PMYZf9oHWKV4kqgTt6o5vH25/af3tLvkopE7 + f9ut3BcLMZ7kHs3NkisKt4jDH9/J6JpfiiXfd1SvjNxbxjvK4VbgcJS+o4DmgT+PKJGOI9md5QkN + PCzT2gT9jFNVe9l0Iq6v8ptmoP/4rFMVr60Veg+Kb9Y3mrX+4IPQNiKxbbOM5uR5S+DPT3HidKib + S3xyYfvprtSwDq73j48/NtnKx7IJLZLlitu3n95Iurl3WXNbzBuEurgnp08+mGw98QnsAQbZz2Vj + Tm3z4yHyRYJfxmShxbinAK367onXfiCbg1pN4dRVJfVYf2QD5IOM1O1sEetF52h6fcUJ4hsSifnm + NzU7biYX5k450aM3LIxiR+Jg3yRPrDxN9z/9oCUOkPR++nSLcj9hleCrTQoSv83FT8JC/exyk6z1 + vRbU72hAEsUj+fMP//whtW1LTE2ZW9h8vok25BZ+4YUOFM17CEJUZTSnvr/ZotmfDP6f/neuFvY6 + ur9i4NimI1q0dzpmaGGu8lMRjNK8SN2iOZ8CrkozUseClk1//mg2jo9VD+8j4UCMHCApBeIeey4a + P5wWq7J98InW5VYkkfOUgxf5NnEscP/8R0f901PavQ0zgRuNUN1cH5S6l2LK5tMolOqpHTn8wzfb + FN90sVFT9xm5iF1QSyOcNPVPnx0+ph4JvOast2w5MbWHo5AxKwl79emvg5XW56GOewwVLXFhBFkN + 2BTzn0LNL5NDzo9gRrN0Z/4//Fr1W82Eo6CARa453dfGOZqvxm0B9UNKPG9MOZtfh6oC4SLzq9/M + ovGPjwZ0FLDc6A7iEy7g1V8+mfQyD1q94El8KfbeWLB6fry9v/VUn4J1G59pm5mLj5scTlxQUV91 + f9n0qkNZ/aJ5wuJwPEf0cXy1SGtkbhzJh6+bJny+UMBfU5q9D1b04Pjd+v4agiszmFj/mDgLsvsu + o/YSfRg7Qqshc+eL1GOcGrWWpNpo0YeF6sJ1j5i8WCmq7h3gjh53bBZIz8HKp/FiZdearRc1o8+u + MIkmbLA5pbnnKEQOT8Qbn7v//PaCtzVK+qGLJiKwBZ71I8EKY775a/E6KI+wHUYmwYhh37ZgOUcJ + Xf14NB5GYYF1ajN1W4WZ0zbtNUhTX6dXTnqb0ghXDdaBXPRwWfbmMNBZhDzdv8jOO+890XgCDy7H + b6i/1ovJPx5u6FCeImJsw0O9SJAuaMOp65Xgku1Nh6nnlb/4+eNz8+6BJjj/nP0ornxKsvuQA3Ly + DlRf+RS7eh2v/NXjuLzraNk8bgY6m61JvExUzL6oqAiFd2bUFjffaPGTWwE/56bi5Zmf0TS1VQNj + Us0rP6Eeze6OD9p30UbxFih1Py15A9aJN9dTvQvq9XBfAv6NL0Lu6sHrr+3pBn98ChdCwZZ4/jXA + sZbQwz2/oLlGsY+kfNlTgylOJDBBm9QkfPqYW/0vaSs3LfILjFc9XprDrtZldJnljIZPcs+mTpxs + kIrxi5nc19E4TcMHGpFtR3VMH2ia5UmGoCxTcj8/3uaKLxaw517HyNk+ajZ8ggn+8GK6em02tcNx + BOanxYiS7lSv+iJR6KlSyF70nY5HrXP785vWzZd93ZrN1QImzDVmj85moquFGHmS0mD+17RZx3ia + oyAHtvZvOtTvYAkUL75Yo/rWCjRPgRL+y/8EFTRifW20alTf18GPBnijZLk8VFmqkdyrnvW8e10a + 9WyITyyv/H3+XKYJVn+Z7psjZ86brXFDZtsrNP389rXE9ZkPKKt6gr+/ErHtVky35Bg6GG0taq75 + cYPC0y70ZEHDFs0ZC6iT4U2x5Co1Xf1rmFjjkcIeUM20r6XBweHH8WXUfvavX+BFdYUlN2vNWTEf + pVINcTlu7lNQz5F24kAkl5Ra3sgjdhHqUhFjE5G1nnuTvJtl1SPtc1TrRq0XeR9wf/WH2sNtYMuC + L7JifX81Hhv+0PGe/Xa3K98YYbztvZ+j8RjeDycn9zHdoNGcTFvVH/hFDx/zGTETlz26+MOy8hPq + NeZH0baOqGCsrn7pxPAWw2cYD8SupJdHTwMuUPmNCTUcoa3Zqif/fh9x4vTY/flZ6oZrL3/8J2LC + 4WYA56UOuZnJ0VvedLEgvn1udK+9dHNqIilWPpvmR+IxdtnU/jYvdI+2ZKzW/Bajz7NUsZ4X5M9f + Xt9vC9mgqP/6dbR/QPkvX9b1Y31xLS1QhKNN/d8Te+ugwAVWvCYrvzJZFwTVn94b6eqfLD4RfeAd + fMBTf4vr3j/qN7i/y2hc/Zd6+vNfE9x4VNdMyv74GtKDS02JGw9o3NSqjIqyzIkZ2seIJtU2VUz7 + zOPzqg8n46EZ8Ken7VUfT9MwTar1HkyMQv/XMbg+LdU4ZB6urINrSnepT/70HXnAAZvS+/IolISw + A94QDUesz9IWVv1LcHN+dn3CBaLqhemL5C9h6Janc85R3dkdMejmkf2+layAe0kzejLn0lyAO71g + 5fvUwSxCfZjwvlp4F0b1tZ8qhSgfYXIRh+ngs2huhq0Gv3wxMUuWATW41lvI1cAnOYs0U+Rr46aG + 2tEkqXjZosVsTpb6Xkad+u/4XA/ULQxI9xRhES5OvfCpG6LsUEvE/42felY49IIuXM5kf5d8Jqm/ + naVqSmnQdO2PTGZ3l+FoF2e8tLyI5rcvN3CgbkwOVvLq2BEqDY6ZIxGDl9NuXPMBBLMeiYOfViSN + W0NWMyrd13y91bP9SbW//jFWieJl//wyTakMsg92NzZ0xTlHx/07IkklWd7SxFqjXg5tPPJlcMik + +HTW1Id9BmpuPS8S4PpYIJH5hf71a+Z82TiowTihxvOHI5EdDfdfPSWF+6znLUM5ytXQ/+vHmFQx + S16l9f1GotOWR8MtjQzYwuH+Hx+uZWzDcdhf/vnP76XVGnXZtvkoooJkcxk++X9+0V//YtioY4D+ + 8Cpd8W+S9qSB9BpvsLTi8+yzgAMS7X6jQvddN1fDEeBsMZ346kVHy/1qT398j+7quxstj7Z21XjP + p2u/+Zz9/vyxeHzccBsulC077hrD7XEOqM/sfTfkn2eorvk9iiteLMuBX7fYdsG4hA/kTfr53ECQ + e6dxSrkTmjeQVsrf+z5N5Yho9iHw/xp8sP3fWwqexRJS68e9I7Zk51T9zZuJ+EPXselSagvQJQWC + TbTUPchBCbQ4PsaPmGimsMfso6aWu6OuXg7RmHEnvL0+XGlE5Bma4gZvXhB+5TM5yZsTE1J/B2ou + qxaxXO/ZSSipNdjHF8ALPHxv/oaDDRs+6vG02T9rlmlNAdwv2JLH23M9wbrWDXK4zXbsJenrsa94 + WlAPk0ezknXZTH9pBcgYdSzx9aab+nm+gb+UJjEa5Eb8gTMXVQ7hQZ2q4jr2/eUluL+3RPR9UndT + 4Zat+tYHgzqKImRL1jsu9NtKovji7rxZiSgHp8J/kEIxP/XkQZmr1WBcsfB9ri19vtaA2leF2Cyo + Mmm69AoUqzneHt08W5R780KvaieNRSkpbCbpb4L2iW2yeoes1h0nRw6nbmlG4zNa5Icpq5lk8TR1 + f0PHjFlMkfneFGOlbV/1bPmfm+r5RULtwyesu3criXB5cA0xS7/qhOLyKIBNtzf1SuZlrDmXrjqT + ZEcc8W2bcyMR/H9cfVmvgs6y7/v+FCf/V7Mjk3T3eWMSkKGbScXk5gYUUVCRqYFO7ne/wbVzHs7z + 0iylq+s3VFkFmzdE1IflHnDW2pV6Ce48ccna5f0hZbGWu/YjRZXC+Nlfehhd+ZyoxyjPF7LcBIjF + V4nPo3Bgk4LaE+g0G9PMkVjHzkGdQGGyLWJ6Z9UVb4d6Qa/7hR+FzUtzuTvVJuhFkkST7pqyxSoU + BbW+9iX61g11QcfoDfckKsg+PpCc48Y2ga2vfOmFfEDM+tvBgee6lAm5hedc6M5qAa8Qp9Q1UcmG + HGoKjMJ8wLN1qqoRr13bWIgqundHLRYMdu6RMPqUWoboAC4ONifIiBgSXyVDx6pxmtAi9JRYM/x0 + yxaL9e+86B7iPp6dmnfQ8+hxJP8Kz1j0u3KEb9ut6D4+0Li/VHMEL3dbJHZuhd1kW0EN1/gix6Np + A/54EjQYyKpOQyInYN402Nut35fe0LfVl/KlvKHgxx+8sZ0ELG7aTVLlUJ/itEnBrM4phAcYS0TR + hUMsDNluI2/965FoSlawXtKVFm3xHI2b70urlsNjeoLLe3MjliG2rO/YtYeqrFSkmDol5vuPfkK/ + fHC2ozMTq1Ga/uKZ3JnesfgLN/KIwjNR+f3WHauImvC0VUoaOlc1XvyzXcB8eVbU6TjQ0aIBJiS7 + 20Ru4KzG4hjDFIrhOqjb+l5cLtpdMmidP8H4d98fnR3B4Rm8yFWr7Jw3n58NKK+yRu5LNcUM32wb + tHLSUMvPoT6iaHoiuEUSPXxtoVuU91NCgRqfiO7Pe5f/bqYW8qGk0JDfJS4faPcJcpfKGoXEusVL + KwITpI4eE3y/fPSu8YURis7rTc6B11YLV5c2cu7OmZqJdct5JLwXKMRLsD7PZ1UHp6hGN2VqyV6/ + Kzl3XXf5hs13+5/zfMGugPXVa4h+Uj66+DbkDJpJqhNLdg/V3GXYWHfAQ+rO7001PL1PKj/4zxdP + EzBzPt1xAvqenwHmp13fjdz5KaH8fPtSS8xyV0SfYEH0G13o3vcEnQm8VUAVry05lVrHC+e8Wvh5 + GQNZ7xfg9cbDEORcRTK19GPO2OsZSotPjXewT3N23uTeOiVgoU4SZG7Dl4cFSdli4E01nvJlPW/w + 6aWIXLF/zhdaPAv0de0LOfuyCsRQOpZouKsBjQJs5NPueBnBMtTe2L+uBzY/L30Dy6ukES9wJta6 + abfAj6MyciGR5wqfz/4EHw5WaVwN10oE+YbbDdo3o+YHaJXQfbMSloW3JUpcprGoh94C7cu9pOrQ + Ru5isHVFR2cfiNeNUcyNVSogZzJKqm5DOZ/xR0vQbZ8AcghMNRfHcteAXWrqVD96kT4PN6GGNOlt + cgt2144Tv6aJZs+cibWEAht8rcQoGaUDuZnpzPoCVQnkUF+NcgycbqmUQoPVKH0xL2gTmMzjbKNK + 6AkpXP6Vt73dyHBoDYfmOPWBCBtoAoz5hSrhLQR/8R2g4LzibVTx52PWw8NDuFDjaSzrIHmhh4gt + JbUmVsWD+aQQKmfPpWEZuYB/s2KEXtvfyN15OJ2ojL4Ez9+9S5ytjnW+OJ+vKOlanmh2MncTmaUU + SEO+GevvZp8LZ+gpcPuEFCP0dVx+L+028vE4lFRlHzcXRu+SgSzUbWKcaMR6S44DeBIxIKo67qop + /3wX0F7SkuYQbHIWmBsH8kXTkTxoT5XA7S/CzsLXgZzOiw+Wj7VVIKuVkQQ0vuoLLdorvKVvQu1z + X1djsM1NeJAhINaK58s25wR4+AwfknD3SZ9Mm8kwXoBNDO4euMPDymvosnigZnW9Ai709xyCt56R + 6zHmXeFVXQU4WsuGnreJD3izDVO0PJ1i5O+RodOz/jHRyh/oTa68nLmDp8BGeNuEAHDqeMEEDizf + yose5nPasfHtX+G+9D60kGQtFqMoMJCtdgBvDwNfTWL4xdB/2FuC4ZHk804tJOBNr37c4cMHzILJ + bJTegg/Rne6TL1zd2AgfTzk1uYvJhFAwE2Q9G4f4an0Fk3q0ItRBTyJ6TNJOrM3jCMnuPhGnCtp8 + qo+LjU5braT38GPn8/mYjWjYSyM9iMkM5tSUbSi4sCWHXdjFb5uvJbTpS5/oXqMw/uCnAdCvHCDF + rJCKT0TawC8Z2xWP193Z3EOD+tdbiPoyS8bk9p4B7TmFJLH261Slz7qY5JKVRPssLzA3M8iAccvw + H98atVRLUBOlPcXve82WHlRvOFikw9N9A/NF3VgT5Awo/PHDiRhqib5MsqhSLmG3rPnvlz/oNXAC + tsw7kYMmf3KJG0VKJ7bbkwk7LO/oH7+JxiqBterSsT1Kht7l0fxEK5+lSX3KY0YVW0Mujw3ic2EF + +I8fBsgoBpeaybvSmbsOMmu4bv7LPxO1gAKbrsKUhFDsplKNJfhCvU70ok7z+eAHESqX7Po7X7a8 + p8iUJ7EsqWYnYbXMz2wD1nxNLA4H8eJwhzdw8p1Obl7tx3y/u2awIPlrrIwRu4x5UICHB3fBqNce + gEmP2JTX/EtjVzlV/DvfCaARd3tix36xxgcJ4H5+1FS7G4W7vKqEg0t1y3H+sLOOlw/2CXj3b7UO + 1h3YZF++LcRCUFFTOCkuT695ANTtbqZ6JB/yac3/8Km01bjg0GFCKYYtynpDJWdxVzL2KHQFHncy + pHr5CMHwTFIOrPmDFqWYsSU9HE7wpPZPfFr58Owabgm/qehT015Qx/idkqJK0j1cbq1Hx6iiaEjW + 793IfXwBLI9TqSCCTZtopmaDZVgKAX6+7YZY90frTlF/tX/8A4OvoOVzfbs5wOQTl5zs5dZNuGYO + YudWxHMm73MmasYCvJPt0aNy2OpjYkIbhADExPONWJ+3VlJDJZ+uNG6mGCwpvjnyJaYHgsfRBPP5 + Uy1yY2o8ljZco7PN7isAVfuw8Ulokf/4K2Qp4giWU34dLApKUIGgJPhxUjrRsb8SMIF/oQfuJuSz + BZ8FFA/Rl3p673WCkMfpbuUPxDeObszLByWBTnA/4rk6fGJmL00AfQnW9PIYDt3Uvs9X2GkOHucD + yqupNGkPtxfBG4UELDFF/imALJNccjJuYzxu2mMmpxtMiWvnSSWmt0eNrpR7kKsmiRXbJ3wEQL01 + iXEFY7xIkdkA0HgZjYMU6fOxYhHad82RqM3DB/P3dKvBxgMaUaNOz4WjFJcoePoFlpF8AP3butRw + FtzryC3PU7eEAk4APen7EQU72NH4y/3xO2rKHc37ft5lcJaHgV7g+aD3a/wBLyE89QRy05nVCgI6 + DtWekGjqK0b3OQc23k4jJ1J1gH1lJ4B8KCuE8F/scnbBX5EY5R41wb3OeyilJXwXrUvxW9nqM8+1 + GozjENG9aUrxNFaB8MNbPNmZDPrPbD2B1O/VcT5GIF9oJQR/+kjDoQOET8IFa4tXTKwvvrMhLp0F + euf7gZiZ1HXT7aJ68CnYcJSNt6tP9+tuhC806tQthBmwKEpNGNmxQ/GOhNWwCR4nGGPaUfMQ6rm4 + nA5vCBqcUQOJp/jHF8HKx6jdvfhqgY+LCVc9SQ5yRioWQ1PZzbF0JnFRSzmtEiFAwTUh9C7cKp35 + aJ6g7zYvEhSlzcR1/CvE2t7C00eiOjtapSJTM5cpMYjmzniXp8BPZpu4IZNB07iaAWrkTHiDQeXO + W16/osMtsoitURks37Sf4NCaDhZeFyGfy8bHcNg0OT3IGa3Y4ewU0BK9nBbagvMJUX2C/L480OLs + vPQlXMdQv+SC4s3jVP74sYnW+KEHZVarGXqSAP2+Hn7Ptxp/r//pk0Se04p/qWIi3/zqSMw1HpYb + 711hYa1qtmwSwMoNbECr1oCEUVfljOt1BxKqBSte7QHztkcTNi0Oib45X/UeElTAO4pEeli2WtWF + TO1hi89vsuqbajhEtYlkWc7/+MeoXF4N0K5xQw3OKRlri/oKbrvnmRx01MdTuoSczN+3zTrFpu8Y + qMoAPR1XHrnOWldRZfUToSIyx3J7ncDYOh4GYfs+YS5ztmz2fUuAikIrjGpouDMY2gJ4y1PHff5C + 1WR7dQaUwbqMkhp+4sEN7QWYqk2plt7MeDFGXYLmUL6IVzmqy2xjl6Hf/YnC/gymfR32aJzKnp5l + 91uxWlVlBKN4/9Mr3XzNgxQ9/Qsme3HruMtlC5+g6R6YHla863l/GqHxfs6jlFthNWnc7S0P1ec5 + dtnj+R+85MJkwDDm1Xh+Ya5GGe/VJO3HTKc//eJ0JaZB64hgijcDhkw33uTKUBIvF7np4fr9MFUP + RiwOaneSf/m8MP08/vv8mfB40PX83NZzXAyjwJyIpuxptYQVCsB89BPq5KodT7fiqIFyb94wumlh + zLbp5KEf/hFUKYATloyDR/7U4d0udPOZPqgBVaN0qGseOsa0eZPKK/4QbPp5zq96DxgmeNPDPV9/ + ZSdvRsjZnoMFreTY/ExSQUpfhk+Cpq/jYc2ncB7PAnG0b1gtVRaUKMyQS32vHnIq8KTYVSQuiJoc + zi5ne30Kbb2OiDocNcBJut3C1U/D/A7qlShCSUJHr0Z0xb9qaKfARGa6SagygXfcDTTzACnPmHi+ + ZOtLWDwKIIyEUu/Hpy5DV4AfX7x1VQ6WY1cEsEb2RI4Qe/Fihc7yx/fSpYtz+ioDjNpsuJGLjryY + 2wPhDaiw9fG2Ph/defblEd5vXT/uvtDtVv6oAGG+G8Q2zi934n2ph3bqVPSXXyjkdwl8cFGPGc9a + tvz0yDLuDkR95ZM+9TXnAL190HEpeztf/Y8NHJvBHDP99q7E+31MIPZLngRYqxn91Pb486MIPnX3 + eO60B0Zb8aGM7+oK2XTronUK3lsjGjhZXQusU43yYROOs3Fv3KG+HR20U4KCGMFy6bg1HkGSXh7U + uPBTN6tCv8CQ9TuiZvIrHra8W0Dx2JQr/ox6W898Cn/+kJF9X93f/W3VNyBKaGsV86ttAO6659Ok + 5lWdAxM1YGCULbmFqRbPwsXzAFfXKuaPuaTP1cZcIOzyz7j6WR0Vbs8aHZOsIlaR7oE4lnOL1vxG + z2ned+x+fycoaEaTWuFxZMv5u0DQOC+T6Hsxiv/8NMd5m0Rlny5e1vsCNP1g4o0f79zVjwmAnMcB + xXJ6BCzfwwh8XuaAgyAZqmlpZwH1cHGJql7avC2SjAPiyDRqeLc2nnUrqsHqj1Ld5bqucYJEhvK2 + 6IlqdRFbikdgorrW1kUPKXKbaRdlqH5a4rgr630uUufTwNezc8Ylvb1j1juSCXwujYk3coErlLe7 + A9nVt6lnB4U7IL03oHdYjsSPHu+O4ZtiIz8uXOIv30s1a88pRfjUpWOz4WydPfmPJAvupqXGcFny + GQnjBGoj1wkh240+VHspgHpgBFStilPFet1s4C7hKL2EZN8tD/gqINwDTLWHeu4WOrEnQB2UV7/H + chdAFA0ZY3IiCgxMXfzhj5Uc4ajQRQXsFWcbWT+8PkTNzClf6ASeUPDDD15UHLO/1//0s/d+YbcX + xLGFsmaPxNMksWMXTV/gLz4tTGa99xI/gys+U72ZGJvDx9uULXXUqKWP71icdamEl8lS6H4eHl2f + Gi0Emu6amGbbsWP98d7DpCTWn188Gc4Zy+t9wMKVf+nLcsH4x28xb5ppPi7q9/Snxx3tO3fLjw/x + H4ZHTr5+4/mkH1qw8ktqr3jUuNxWk5/ifUc085zqy8zVGlRqaYul2F9L/Je9B5+eGeJ5ystqOpf2 + BEn1fo68lFwqdn1pNdTtYJ3SZ27BvISdtyuy4k7M7kS65rGwAO12ikvy04ewH97Cz/7+JLq0a7o5 + AuX7Tx+t+ZNNnAKu8PU4+dQKvLabFqTJILuPDlG+KqvmTfBI0HOXBeNm8rJOSPFx1f/aa5QsrFQ8 + GNoriOMYUcPGdr60hpSCS3Dj113fXke1WcjAIoyUWOfIdvmTYJygKmsVFhx6YtxPT65+8Mim9l1N + tpXWf37Dqs/z5UqnBn6+zYYe6J6yrpvQE6x+Lt4BXHdTtAsz+NylAb3Gp3VdDae/QVjgO1WBMMSL + h3wZmtGtp55HdTaezl95/VX1QrTwbHdzMJkN3J9NY2QCpPrjNnyv8Of3FB1KczbVTwfJZr8l2vk7 + uxTrfgN+/n8E757OKNN6dLqU1rjyvXj2tdIDLehe1Ebexv16fCuDtXOUasx6dUNqLvaf/+bzVMwH + 6EkcjJKvOtYrv2Va375hX8M3Tdb8MV1OUAGr3qSq9sTVXNRJD/XADH7vj//07qrXcfuLP+UytPDH + t8hmncpki9CASSwGY/4MN+zveVXak1FcBNrKV+sFhrU1kgPdGWBuq4hDX54Y4xLgOp44k0SwqgqA + mQCJziA/J/CI7IBasvvtGO9eSnjbmA3eheTVsY27bOT8kikjv83OOk3w3YHA/hDqJ4Wi//gQWP1k + DEXR0peDtVEggdSguiVLf/kA6uHFJ/uBjWyRvEWA9nXkKJFoB4bFGCAo7xUkzj5TXGH1E2C6MHXc + pE3KmKkqkkztU0i0NX/81ZdyKZ+pn012NW7h+wpeW1Uhd68wdOFxajR55e+YDXXDlt7nevR1nQvV + uNcubgrCFYiGBUcVZTuw+eenN76QUTXL7xV9tVtht97XcdV7bF7re/D8tVyi3SudzaO4M+G1//iY + 07emK3YTX4I1X46sqKWYPdzdBn6C8koIqtaWbe6rQSWt7LXe9tIXUhoTsImi0EMbZmDJ7s46FnVk + 5OfPzG2VcfJXuqY0u25UJmr98w1/fE48HXS27KO3Ae+HfU60sm/yJVHL5HdexPjetxVLmrBFolA3 + 5ORkViWo+zmCRXa9Yymqyrhv2iBDqWHvV3/7wabn+Vign392z5MbWD+vAvnPjMn+nT7W+tfzBMOm + 21Kdatd4zHvFgas/gBEsX6w/PWoD3fYnQE3v/HDnnrPf0Hmpb+ovSRsz3g1LlDXcQH3LewMmvUcJ + zmnRkBXfdFF+uW/Ife2IxNr1ldO1Xggb52NS7S4xffnh4Ro/1LAypo9Ac5Y/P83l3ac+W/TlwYqE + xVof2jD2evUKICC1aN5u3x1L6dKgjYAGYs121E2m3hjw5wfqXlMCavBvGQabV0IUTq1d5k+whOv7 + SbBPkD6zorwiFAkpVRQ3Zb98gDaSZBA15qxurYcFMJdP9riOhmBMAa4Dd+orJ+nzWVTdOeiTn78x + vgpW5NORxAoiVf2kAafW+q8ejVZ8oR72xXhBkfSU4aYBNOM7i4nZIzPh+MkO5ADPX53BBhqwE9sP + dUZ5l4/Fu5LQ81F3JItB281lUJ7gvenfq16A+jS73RNu5Smh94Hm+XAMnx5SjjGHJzn2OprvYQB3 + O80l/uVT56MVOtPPzxljwc70mV7jAIZtfaL2TSrdMVGbE7gfrBy/mtbpeDdUph9fIe52ubAl31w8 + iO4vnfpOVK/10v4Et2N2oyapXDZn6JXAKD4ZZPX/qz+/C1hBRG3U6YwFMchglZ3ScXpTB/Chc8Dg + 691ORLuAC2DX9pRB5/sRcbPiK7tnWQk/hv2ip/7Oub2vhAr8T0vBv/7rv/7P2iDwz7u5Fa+1MWAo + 5uHf/9Mq8G/x3/07e71+jQX/jH1WFv/8939aEP75ds37O/zfoamLT7/2GiBZ4v/aDf4ZmiF7/a8/ + /Wv9h//vX/8fAAD//wMAFJW6Q7oFAgA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 9854b889e806ed40-SJC + - 991ac8426920f96b-SJC Connection: - keep-alive Content-Encoding: @@ -2959,19 +2929,19 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:55 GMT + - Mon, 20 Oct 2025 19:04:40 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=FKjSuuHZ1RSKSldmglwugGjz5MBUIo5gXVsirHHNUXI-1758910255-1.0.1.1-wv2cyPt4Cv7VM3iYWnx1p_Fa.MZpPu78GKYhtFdWIznS0zIhYbSxEQM0yhsLaTiWKwMRqy023AZRdaRRu8z640BMGkPRVhpqLbdG7_psOis; - path=/; expires=Fri, 26-Sep-25 18:40:55 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=mcwatbnjy7Gp9F94I1SeFUln6qrAGsaTGPVVbrOC1fo-1760987080-1.0.1.1-Qf2IiAOFA.S07Gs0BsaNtaIiQnNY3l0rAlqVaVqG0kN7PGuWiYU8yd1Qlo2rIN0XTsSfT7V1MEf5oVQWoisYuJ6w1Sq6JLz8zyyCxlj.B3o; + path=/; expires=Mon, 20-Oct-25 19:34:40 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=EkHsf_dJkFMa79kDAh1RBckQHvkelB0UFzY_UvmcDfI-1758910255938-0.0.1.1-604800000; + - _cfuvid=AhoVA0fjtuMaFQWt9o3ZVYjuc.SWPkDznQ614z3_.EE-1760987080511-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-55b84f9469-5hz5p + - envoy-router-85b94c5584-sj2fx X-Content-Type-Options: - nosniff alt-svc: @@ -2983,7 +2953,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "161" + - "342" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -2991,7 +2961,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "212" + - "366" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3007,7 +2977,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_d85fee9165d54dca8b558abeaf6e66ad + - req_4be5c4015b364654b93ee7999092f102 status: code: 200 message: OK @@ -3031,7 +3001,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.109.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3041,7 +3011,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.109.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3051,7 +3021,7 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: @@ -3172,7 +3142,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 9854b88c28b5ed40-SJC + - 991ac845bd13f96b-SJC Connection: - keep-alive Content-Encoding: @@ -3180,13 +3150,13 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:56 GMT + - Mon, 20 Oct 2025 19:04:40 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-55b84f9469-hf79m + - envoy-router-6544466cd5-69qfc X-Content-Type-Options: - nosniff alt-svc: @@ -3198,7 +3168,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "136" + - "73" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3206,7 +3176,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "179" + - "123" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3222,7 +3192,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_6a2c144c256b4f86a6ca220c151654e5 + - req_f711a5ecf79248e7a1683fbcc5b0678b status: code: 200 message: OK @@ -3242,7 +3212,7 @@ interactions: host: - api.openai.com user-agent: - - AsyncOpenAI/Python 1.109.0 + - AsyncOpenAI/Python 2.6.0 x-stainless-arch: - arm64 x-stainless-async: @@ -3252,7 +3222,7 @@ interactions: x-stainless-os: - MacOS x-stainless-package-version: - - 1.109.0 + - 2.6.0 x-stainless-raw-response: - "true" x-stainless-read-timeout: @@ -3262,7 +3232,7 @@ interactions: x-stainless-runtime: - CPython x-stainless-runtime-version: - - 3.13.5 + - 3.13.2 method: POST uri: https://api.openai.com/v1/embeddings response: @@ -3383,7 +3353,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 9854b88eeadaed40-SJC + - 991ac8473ed2f96b-SJC Connection: - keep-alive Content-Encoding: @@ -3391,13 +3361,13 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:56 GMT + - Mon, 20 Oct 2025 19:04:41 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-bc9b5ccf9-774zw + - envoy-router-5f69ddd4fb-6mqfh X-Content-Type-Options: - nosniff alt-svc: @@ -3409,7 +3379,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "169" + - "84" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3417,7 +3387,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "190" + - "188" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3427,40 +3397,32 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999993" + - "199999990" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_c5305f9caf7a41499166e713cf9b44e0 + - req_2b584941d40e42119208d7b1831417a3 status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\nnterfactual approach, contrastive - approach employ a dual\\n\\noptimization method, which works by generating a - similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations - can interpret the model by identifying contribution of\\n\\npresence and absence - of subsets of features towards a certain prediction.36,99\\n\\n A counterfactual - x\u2032 of an instance x is one with a dissimilar prediction \u02C6f(x) in classi-\\n\\nfication - tasks. As shown in equation 5, counterfactual generation can be thought of as - a\\n\\nconstrained optimization problem which minimizes the vector distance - d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n minimize - \ d(x, x\u2032)\\n (5)\\n + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n @@ -3515,65 +3477,50 @@ interactions: al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6294" + - "6346" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW8bNxC961cMeEoByZDk2I51C4wUMQIUPTRI2ygQRuTs7tRcDksOFQuG/3vB - XVuS8wH0sljwzcx782bIhwmAYWdWYGyHavvoZzcfrm5u/vr49V25/vf9vf62+/0dx8Wnu9u/b6/J - TGuGbP8hq89ZZ1b66ElZwgjbRKhUqy6uLt5cL+bLi8sB6MWRr2lt1NlrmS3ny9ezxWK2nD8ldsKW - slnB5wkAwMPwrRKDo3uzgvn0+aSnnLElszoEAZgkvp4YzJmzYlAzPYJWglIYVD+sA8Da5NL3mPZr - s4K1uZESlFKDVgt6oPvoMWBtKgMmArT1H7eeADNoR3uISXbsCLxY9FPgUDktzTzt6JsK2qFCLm1L - WeFrx7aDhlBLogwWA2wJ0CslcqACtsPQUiUBKWqlpzP4VRLQPVanKxXYjnrOmvbTMZxDCwjd3iWJ - nWzZQlPCqNlDm6TEmoXQiydbPFWeQzx7tk9BVQ2HOsJMkMWXLXvW/Rn80XE+uDCcQY93Vf8L5zIg - lExN8aAivpIOTvDo3dtbePXn29tfoJF02sOzp9I0lICDFlbeEZTgKFVf3dBgcFCClR0lyLEklpIh - kR9d7jjmyqcJOdRwh4pnazMdx53I064OaJOtJKpjX8zX4fF0SRI1JWPd0VC8PwEwBNGRpq7nlyfk - 8bCQXtqYZJu/STUNB87dpvopoS5fVolmQB8nAF+GxS8vdtnEJH3UjcodDXSL5eWbsaA53rUTeH7x - hKoo+hPg/Op8+oOSG0eK7PPJ7TEWbUfumHu8algcywkwOWn8ez0/qj02z6H9P+WPgLUUldwmJnJs - X/Z8DEtUH6OfhR2MHgSbTGnHljbKlOowHDVY/PhOmLzPSv2m4dBSionHx6KJG3fd0OXF1TltzeRx - 8h8AAAD//wMAO9fbajUFAAA= + H4sIAAAAAAAAAwAAAP//dJLBjhMxDIZfxfIJpOmqLS3QObMIDhyQVuLAoKk3484EMvaQOGWrqu+O + 0u4uLGhPUfx/jn/bOeKoHQes0QXKHc+SirDNVrP1bDlfrueb5QYr9B3WOKa+nS+uv9DnpVtd79/b + 8Pb6zYdI77x+wgrtMHGhOCXqGSuMGkqAUvLJSAwrdCrGYlh/PT7wxndFOR81brfb70mlkWMjAA2m + PI4UDw3W0ODNwMB3juNkwHdT8M5bOEAyMk5gAxk4zWIcd+QsU0jgIpMxBHUU4IWXYsTxLPCew8sK + yJlXodvA5wdJqNzTFXw06HjnhdMj44O3A1CClPuek3np4dfg3QA7JsuREzgSuGWgYBy5A1NwA0nP + YAODZnM6cgVT1L3vSrqdG6JxCgy6u8AlTjAcuqjToLfewS7LxUKAPmqewAsQjBrY5cClyiPvg3f3 + kCl4Ke0nhqQhX/xfwc3gE3Q+siuzcyo7H8dnpkeR/xrRVYPVZSuRA+/LINvkNHLZzmLeyKmR7XaL + p28VJtOpLcVVsEaWrrUcBe+FxD8zi2OsJYdQYT7/mPqIXqZsrekPloT1YvV6U6EjN3B7XqRXaZ8i + 8wc9MnXPaQ+5pQJPA48cKbTr8X/+j7oY/lVPFWq2J/7mrypMHPfecWueI9ZYPlhHscPT6TcAAAD/ + /wMAC163UVwDAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8911b47aaaf-SJC + - 991ac848fc9cfae7-SJC Connection: - keep-alive Content-Encoding: @@ -3581,69 +3528,223 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:58 GMT + - Mon, 20 Oct 2025 19:04:44 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:43Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:44Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:43Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1201" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJ5xuRMLfs8R54pBu7 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1220" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + - "3500" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnal + molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate + that would result in the model predicting the molecule\\nto not contain the + \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual + and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n + \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, + is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has + a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence + of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. + To generalize to other molecules, Seshadri et al. 31 applied the descriptor + attribution\\n\\nmethod to obtain global explanations for the scents. The global + explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering + chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting + natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D + can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups + separated by four\\n\\n\\n 20bonds, and + a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + importance of a heptanyl fragment aligns with that reported in the literature, + as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, + the importance of a C=O dou-\\n\\nble bond is supported by the findings reported + by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, + they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 + For the \u2018pineapple\u2019 scent, the following natural language explanation + was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D + can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether + O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 + Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple + volatile compounds.146,147 The combination of a C=O double bond with an ether + could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, + which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe + have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 + and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels + whose input is a molecule. These two methods can be applied for both classification\\n\\nand + regression tasks. Note that the \u201Ccorrectness\u201D of the explanations + strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular + counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith + contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 + of ECFP4 fingreprints97 as distance, although this should be explored in the + future.\\n\\nCounterfactual explanations are useful because they are represented + as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. + A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, + MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method + developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate + model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough + we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, + we show that natural language combined with chemical descriptor attributions + can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility + of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. + Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to + analyze the structure-property relationships\\n\\nof scent. They recovered known + structure-property relationships for molecular scent purely\\n\\nfrom explanations, + demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand + then explain it.\\n\\n Choosing among the plethora of XAI methods described + here is still an open question.\\n\\nIt remains to be seen if there will ever + be a consensus benchmark, since this field sits on\\n\\nthe intersection of + human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes + an explanation?). Our current advice is to consider first the audience \u2013 + domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations + should accomplish. Are\\n\\nthey meant to inform data selection or model building, + how a prediction is used, or how the\\n\\nfeatures can be changed to affect + the outcome. The second consideration is what access you\\n\\nhave to the underlying + model. The ability to have model derivatives or propagate gradients\\n\\nto + the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: Are counterfactuals + actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6380" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAA4RTwY4TMQz9FcuXgjRdtV0q2LkhDoA4wgISg6Zuxm0CGafEzpaq6r+jmbKstghx + SpT3/OxnO0fsU8cRa3SRSsdTTSJs02fT5XQxWyxnN4sbrDB0WGOv23Y2v+Zlfpf7Nze3h0URff76 + /Yvbj3Os0A47HlisSlvGCnOKwwOpBjUSwwpdEmMxrL8c7/nGPwdkPGpcrVbfNEkjx0YAGtTS95QP + DdbQ4AfPMPCAf+5icMHiAdTIWME8GbhUxDhvyFmhOLJIyEISBcoM5IY7rSNfwSfPAh2ry2EdZAt9 + iuxKpHyhohUEA0nGWsPk1X8yFOVNibBmR0UZzPNhfM+8y6wsxh2QgvPcB0cR1HJxVjIrPNlQH2Kg + DJagSz0FGfQ5mz6tQHeUlSsg6S6tTOBPXyhqgp7lXNDYk/3g0/mUdHD5+eVb6Nl86rSCJAwuiYaO + 8+gBgsJkP0SZ58fm1KcSOyDnUr+LQf0EgrhYukF14tN+DNkwnc04ElgzOE+y5W5wRJsNu7NwKuZS + z9UE9j44D5njeYZphB+sgYxykDaXQ7lqsDovSObIdySOW3Up87Ao81kjp0ZWqxWevlaolnZtZtIk + WCNL11rJgr8B5R+FxTHWUmKssIzLWx8xyK5Ya+k7i2I9X84XFTpynluXeexK+5gyu8czU/cv7D52 + yMA7zz1niu2y/5v/gM79JXqqMBV7VN/1skLlfBcctxY4Y43Dp+sod3g6/QIAAP//AwD5T3HD5wMA + AA== + headers: + CF-RAY: + - 991ac8491ce07396-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 19:04:45 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:43Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:45Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998492" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_3cfefcd009ab4760bcf24c0a2a88ec92 + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:43Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJyJ67bAYmAJRD2Ujwj9 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "3982" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 9-12: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\nthat gives subgraph importance - for small molecule activity prediction. On the\\n\\nother hand, similarity maps - compare model predictions for two or more molecules based on\\n\\ntheir chemical - fingerprints.83 Similarity maps provide atomic weights or predicted probabil-\\n\\n\\n - \ 9ity difference between the molecules - by removing one atom at a time. These weights can\\n\\nthen be used to color - the molecular graph and give a visual presentation. ChemInformatics\\n\\nModel + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nthat + gives subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicted probabil-\\n\\n\\n 9ity difference + between the molecules by removing one atom at a time. These weights can\\n\\nthen + be used to color the molecular graph and give a visual presentation. ChemInformatics\\n\\nModel Explorer (CIME) is an interactive web based toolkit which allows visualization and\\n\\ncomparison of different explanation methods for molecular property prediction models.84\\n\\n\\nSurrogate models\\n\\n\\nOne approach to explain @@ -3704,65 +3805,52 @@ interactions: works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations can interpret the model by identifying contribution of\\n\\npresence \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6305" + - "6357" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4lgRJseNat9RogCBIT+6hqAJhRA61U/Njy5nVRw3/ - 94K7kqUkDtCLAPHNe3zzdobPIwDDzizB2AbVxjZMHj7fPTz88e/u02Hx+5fNx4+l/a29+/Xxy/7D - 059zM66MvPmbrJ5ZU5tjG0g5pwG2hVCpqs7vbn+5n88Wt+97IGZHodK2rU5u8mQxW9xM5vPJYnYi - NpktiVnCXyMAgOf+t1pMjg5mCbPx+SSSCG7JLF+LAEzJoZ4YFGFRTGrGF9DmpJR618+rBLAy0sWI - 5bgyS1iZh9wlpeLRaocB6NAGTFibEsBC4Ehs4Q05QAE6YG1ZYM/aQOTEEQM42nHPAF9yBG0IOLEy - BuBU/ViCTacDCaEaKijKaQu5U5sjTeGxoSNgkj2VXuCfjqSXzB72DSpIxBBIFGyDaUtgcxccYNAT - 4aRU6zFd7s0euPZHolP4lPrSPpGDVizmQLYLWEA4csDCehwDguMTP5IWthD4ieARE8es+YKyQCfk - oJ6R50S9vmPvqVDfNumeKIHu8/kukil8G/oQNNraL25CTa/XEUpSFVHr3yO0Je/YEUhLlj3bUxQy - lAyBBMLeDr660HM0Y4j4VEPXhmL17bsAPhfokqNSO3IVxeSgzXVkGEM4QsyO/bEibSHHvUuZrsx4 - GKZCgXY1jLXYXKgO1f0qvVxPYCHfCdYFSF0IVwCmlHWYtTr7X0/Iy+u0h7xtS97Id1TjObE060Io - OdXJFs2t6dGXEcDXfqu6bxbFtCXHVtean6i/bv5uthgEzWWRr+D5GdWsGK6Am/nN+A3JtSNFDnK1 - msaibchduJc9xs5xvgJGV43/6Oct7aF5Ttv/I38BrKVWya0vH/OtskL1pftZ2WvQvWEjVHZsaa1M - pX4MRx67MDxCRo6iFNee05ZKW3h4iXy7dvee3t/evaONGb2M/gMAAP//AwA8ogPjkgUAAA== + H4sIAAAAAAAAAwAAAP//dJNPb9xGDMW/CsFLGkA2bMdOYV1yMJK0SFDkYPSSLbTcEbWaeoajDDn7 + B8Z+92C03hhOkJMAkXyP7yfqEWPqOWCLLlDp+UyTCNvZ9dnN2dXF1c3F7dUtNuh7bDHquru4/Ouf + h9X+dnP3+ebTh49l+/7T2+nLv2ts0PYT1y5WpTVjgzmF+oJUvRqJYYMuibEYtl8fT/3Gu1qZHy0u + l8v/NclCHhcCsEAtMVLeL7CFBd6PDLxznCeD3qsrqqzgUhHjPJCzQgF4NwUSMp9EwQvYyDDb7gzS + ADEFdiVQhilz713tg5mBnsPdCykFygw9D164B1LgHcUpsMLW2wjRi48lQs8bP9vBkFOc/bx48xTA + Sw3uGFbFjkM075JJzcsaUjGXIp/D/ch7INEt51ngW2GdJV9tR+9G0EghsBq4kWRdA5XQAwV76n8S + qgFJnm3TAL4GYrV3r+BvATdy9Gp5DzRNwbsjpqbSPE5EtuydwoqUe5jRnHipjz5Q9raHP4J/YLgn + 8TFZep5esW2ZBd7fffhyDYOXNecpezF9PbMsVdQSRCYtla0fBs4sjvXH7JMh60yl7pkTuRG8bFLY + sFbZvsKruX/mYiPZCzgkJzYNaFmv+QieYEiuaA1I8wnQKnA9Az+coJwvsDneYObAm5qvU5cy11v8 + cyGHhSyXSzz816BamrrMpEmwRZa+s5IFnwrK30qNiK2UEBos8+/RPqKXqVhn6YFFsb28fnvVoCM3 + cucyz0t0L1suTvXM1P+udpqtDjyNHDlT6G7ir/3P1cvx5+qhwVTs5X5vGlTOG++4M88ZW6yfvafc + 4+HwHQAA//8DAMYrxzdJBAAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8913bd1239e-SJC + - 991ac8491c85680c-SJC Connection: - keep-alive Content-Encoding: @@ -3770,186 +3858,165 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:58 GMT + - Mon, 20 Oct 2025 19:04:45 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:43Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:45Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:43Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1380" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJ64MsQ5idQ8BA1o74 + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1396" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998489" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_e15423fa9282426a934d52ac1b2dd3e3 + - "4184" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\nnal molecule. The counterfactual - indicates\\nstructural changes to ethyl benzoate that would result in the model - predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 - similarity between the counterfactual and\\n2,4 decadienal is also provided. - Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, - which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure - 5.142,143 The resulting counterfactual, which has a shorter carbon chain and - no carbonyl\\n\\ngroups, highlights the influence of these structural features - on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other - molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod - to obtain global explanations for the scents. The global explanation for the - \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around - many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language - explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe - explained by the presence of a heptanyl fragment, two CH2 groups separated by - four\\n\\n\\n 20bonds, and a C=O double - bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe - importance of a heptanyl fragment aligns with that reported in the literature, - as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, - the importance of a C=O dou-\\n\\nble bond is supported by the findings reported - by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, - they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 - For the \u2018pineapple\u2019 scent, the following natural language explanation - was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D - can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether - O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 - Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple - volatile compounds.146,147 The combination of a C=O double bond with an ether - could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, - which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe - have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 - and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels - whose input is a molecule. These two methods can be applied for both classification\\n\\nand - regression tasks. Note that the \u201Ccorrectness\u201D of the explanations - strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular - counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith - contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 - of ECFP4 fingreprints97 as distance, although this should be explored in the - future.\\n\\nCounterfactual explanations are useful because they are represented - as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. - A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, - MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method - developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate - model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough - we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, - we show that natural language combined with chemical descriptor attributions - can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility - of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. - Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to - analyze the structure-property relationships\\n\\nof scent. They recovered known - structure-property relationships for molecular scent purely\\n\\nfrom explanations, - demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand - then explain it.\\n\\n Choosing among the plethora of XAI methods described - here is still an open question.\\n\\nIt remains to be seen if there will ever - be a consensus benchmark, since this field sits on\\n\\nthe intersection of - human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes - an explanation?). Our current advice is to consider first the audience \u2013 - domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations - should accomplish. Are\\n\\nthey meant to inform data selection or model building, - how a prediction is used, or how the\\n\\nfeatures can be changed to affect - the outcome. The second consideration is what access you\\n\\nhave to the underlying - model. The ability to have model derivatives or propagate gradients\\n\\nto - the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nssion + challenge and is\\n\\nimportant for chemical process design, drug design and + crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented + and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) + of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN + model.\\n\\n In this task, counterfactuals are based on equation 6. Figure + 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. + Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the + ester group and other heteroatoms play an important role\\n\\nin solubility. + These findings align with known experimental and basic chemical intuition.134\\n\\nFigure + 4 shows a quantitative measurement of how substructures are contributing to + the pre-\\n\\n\\n\\n 16Figure 2: Descriptor + explanations along with natural language explanation obtained for BBB\\npermeability + of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence + predictions positively and negatively, respectively. Dotted yellow lines show + significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors + show molecule-level proper-\\nties that are important for the prediction. ECFP + and MACCS descriptors indicate which\\nsubstructures influence model predictions. + MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 + with permission from authors. SMARTS annotations for\\nMACCS descriptors were + created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, + Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n + \ 17diction. For example, we see that adding + acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. + Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate + that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes + the molecule less soluble. Although these are established hypotheses, it is + interesting\\n\\nto see they can be derived purely from the data via DL and + XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction + using the RNN model. The\\nchemical space is a 2D projection of the pairwise + Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored + by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 + with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing + XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, + we show how non-local structure-property relationships can be learned with\\n\\nXAI + across multiple molecules. Molecular scent prediction is a multi-label classification + task\\n\\nbecause a molecule can be described by more than one scent. For example, + the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 + \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure + relationship is not very well understood,140 although some relationships are\\n\\nknown. + \ For example, molecules with an ester functional group are often associated + with\\n\\n\\n 18Figure 4: Descriptor explanations + for solubility prediction model. The green and red bars\\nshow descriptors that + influence predictions positively and negatively, respectively. Dotted\\nyellow + lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS + and\\nECFP descriptors indicate which substructures influence model predictions. + MACCS sub-\\nstructures may either be present in the molecule as is or may represent + a modification. ECFP\\nfingerprints are substructures in the molecule that affect + the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. + Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for + MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, + Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg + et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 + scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 + rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, + we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 + and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE + method was modified to account for the multi-label aspect of scent prediction. + This\\n\\nmodification defines molecules that differed from the instance molecule + by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals + of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent + but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 + scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. + \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would + result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 + scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal + is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6328" + - "188634" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xUTW/bMAy951cQOjtFkqZNk9uWDRiwXQYMuyyDQUu0rVZfE+W0QZH/PshO62zN - gF0MSI/vkRQf/TwBEFqJDQjZYpI2mOn282q7/XrX/Xrct/fef3TvP0m7lh++332x70SRGb66J5le - WFfS22Aoae8GWEbCRFl1vrq5W89ni5vbHrBekcm0JqTp0k8Xs8VyOp9PF7MTsfVaEosN/JgAADz3 - 31yiU/QkNjArXm4sMWNDYvMaBCCiN/lGILPmhC6JYgSld4lcX/XzzgHsBHfWYjzsxAZ2Yus7lyjW - KFOHBugpGHSYm2LASKCIZdQVKUAGlBnAyhBUJLFjgtTSoQ+MFCIxuTSEypaslmiAU+xk6iIx1Gi1 - 0RgheVDeonY5H8XERS/BASNTAegUhOj3WhFox7ppE4N2yUPrH0flEH0ma2KQ6KAiQJMokrqCby0x - vW2mQiYF3oHVTls0IFt0DXEuCHsUrDckO0P9lWw17QnyE0bkpF1zKXsBFh8yllqy0DHVnYHaR+ic - opgHojKau7Je6fqQT6c8GCFEUrp/WL7aiWKYUSRDe3SSSpY+Up7VfLZzx/PJRqo7xmws1xlzBqBz - Pg1tZ0/9PCHHVxcZ34ToK/6LKmrtNLdlJGTvsmM4+SB69DgB+Nm7tfvDgCJEb0Mqk3+gPt38erkY - BMW4ICO8Wp3A5BOaM9pyvi4uKJaKEmrDZ44XEmVLauSO64Gd0v4MmJz1/bacS9pD79o1/yM/AlJS - SKTKcZiXwiLlH8i/wl7fuS9YMMW9llQmTTHPQlGNnRl2W/CBE9my1q6hGKIeFrwOpVrXdHuzuqZK - TI6T3wAAAP//AwC93xZd6QQAAA== + H4sIAAAAAAAAA3xUXW8bNxD8Kws+tcDJlZW4te+tKNA85ClGUPRDhbQiR3dMeOSFu5QtGPrvAXVS + LDtoX+6Am92Z2VnynsyQHIJpjQ1cHGaSYoTO3s5uZov54mZ+t7gzjfHOtGaQbjW/vv/w57vF3/LH + XXf/64e7v35+7271/o1pjO5H1CqIcAfTmJxC/cAiXpSjmsbYFBVRTfvP07le8ViR46s16/X6k6S4 + jE/LSLQ0UoaB835pWlqajz1o5BGZnBdbRCBkU4mKvGWrhQPhcQwcWX2KQj7SkAJsCZxpzHDeVoCO + I8sV/faiV0j69ECiuVgtmUOt81tvT2yazmwQ0p6VHlIJjmzPscNEeqEiV/R7yiQplI0PXvcXWPPK + tlDGDhzgJuLvhCGKTF1OZRTi6KiHIifWNAjxdgurl0ozYud87Iitd97+tGHx9kX73uXUIdImRUds + LUZNuSZmM7jm+szW0EPvA86UuT7OIUHI4dzi9TSyRdT/nfYBGVSkjpvoS+Gofruf+mbfqCkjTAn0 + fpTmuJ2qXZf0vNYpfTntgkPN6SQNN1HKFdWTg0cexnB0PKQomlkxxf3a3pjTzjuQjLB1Dw352jkg + Km8CLtRfLuqH4D9/y2lb4nF6Dufg08ntMcCyec7wx8vjxLb32IEcxGe4amZE1v150oakdB1EK432 + 2BNnEE9a1Z3tMXjL4cjQRcqwaRgQ3eTyamma6W5lBOw4WqzEpox6x26X8bCM6/XaHP5tjGgaV3W5 + KZrWILqVlhzNCRB8KYgWpo0lhMaU47Vvn4yPY9GVps+IYtrFm7e/NMay7bGqJ6WaWL0smZ/xDHb/ + hZ17qwLGHgMyh9XN8H39M3rdv0YPjUlFLz9d384bI8g7b7FSj2xaU39XjrMzh8NXAAAA//8DAGMe + uvohBQAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8915fdceb2c-SJC + - 991ac8491d041739-SJC Connection: - keep-alive Content-Encoding: @@ -3957,183 +4024,325 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:58 GMT + - Mon, 20 Oct 2025 19:04:46 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:43Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:46Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:43Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1411" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJ6B4HSZSakrrtB3vQ + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "1433" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998483" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_b3bb14ade7fa453480b466e1fa8801d1 + - "5633" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 33-35: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n 1\u201320.\\n\\n\\n(78) - Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, - R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation - Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) - White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n - \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, - I. Explaining prediction models and individual predictions\\n\\n with feature - contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) - Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features - of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal - 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu - Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph - convolutional neural networks for small\\n\\n molecule activity prediction. - Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) - Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n - \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, - 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, - F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model - Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. - Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, - A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; - Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n - \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n - \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, - K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based - similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) - Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n - \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR - 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: - Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output - Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, - A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures - using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) - Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, - M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n - \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory - Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, - 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; - University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, - A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The - Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, - 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of - philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical - theory of classification and prediction.\\n\\n Internal IBM Technical Report - 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, - M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation - and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, - S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n - \ graph representation for similarity computation, unsupervised and supervised - learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n - (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, - D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, - A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. - SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, - B.; Russell, C. Counterfactual explanations without opening\\n\\n the black - box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) - Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable - artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, - 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, - C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. - International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) - Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n - \ machine learning for de-novo molecular design and interpretability with - surjective\\n\\n representations. Machine Learning: Science and Technology - 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; - \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual - Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nsame + optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named + Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness + via exposure to adversarial examples. While there are\\n\\nconceptual disparities, + we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras + to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6342" + - "51093" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 + method: POST + uri: https://api.anthropic.com/v1/messages + response: + body: + string: !!binary | + H4sIAAAAAAAAA4STT2/bMAzFvwrBS1vAKdKi7VAfgw3YbhtW9DIPDiMxtlpZ8kQqTVbkuw92/mxt + se0kWO+R/PmBesYuWvZYovGULU8khsA6uZpcTy6nl9fT28tbLNBZLLGTpp5ezGjxgW6/3Hx+f//x + 6ybeb26Wtz8fsEDd9Dy4WIQaxgJT9MMFiThRCooFmhiUg2L57fngV14PyniUOJ/PHySGKjxXAaBC + yV1HaVNhCRXetQy8Npx6BV733hmnfgOipCygLSmYmINyWpLRTH50USB1MQhIbhoWBTLDNy08Qxet + WzqzN2iELno22bOcw6cA2jIsfIx2skjkAiwoJccJTmez2Rn0nDoeS4HX1PWei1fzBaSNT2zfziEw + lBZxvfHOABlnoUkx97ufeIrZW+AdIkHghtSt+DDlCDk02kPwyDqbzc5hSGlIE6RnM071fgMhKksJ + J3etE+hTXI2JMZBdUVBqGOISsrjQ/CvDAmgs2/wvzAFtaP8nakePDE7BpChy5D0ZgV/nNhA6yxZM + DCaxMoimbDQn8mBaCg0LnFr2vOeSvBB1mg+YwQJZ63aBxyWQxk7OjkviLSwY3BBnx0HZDoC7vgdm + SgNFz0kdy3mFxW4jE3teUTBci4mJh828mFZhW4X5fI7b7wWKxr5OTBIDlsjB1ppTwL0g/CNzMIxl + yN4XmMfXUj6jC33WWuMjB8Hy4t3VtEBDpuXapN2a1S8tRz0x2b9ph9phAvctd5zI19fdW/9v9aJ9 + rW4LjFlf8F3fFCicVs5wrY4Tlji8ckvJ4nb7CwAA//8DAKNXM0NYBAAA + headers: + CF-RAY: + - 991ac85fda61fae7-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 20 Oct 2025 19:04:49 GMT + Server: + - cloudflare + Transfer-Encoding: + - chunked + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:46Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:49Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:46Z" + cf-cache-status: + - DYNAMIC + request-id: + - req_011CUJyJMdVTCSM3ZFKTpxHF + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4796" + status: + code: 200 + message: OK + - request: + body: + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? + [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6361" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNj5swEL3zK6w5hwrYpOxy7KpatdveqqpSWYFjBuJdY7v2sGoU5b9X - hiSQfki9+DBv3vN7M3OIGAPZQMFA7DiJ3qr4/jG/f79/7L59avHz/uNNwj/ILw/vyAn19QesAsNs - n1HQmfVGmN4qJGn0BAuHnDCopvnm9i5Nss3tCPSmQRVonaV4beIsydZxmsZZciLujBTooWDfI8YY - O4xvsKgb/AkFS1bnSo/e8w6huDQxBs6oUAHuvfTENcFqBoXRhHp0Xdf1sze61IdSM1aCH/qeu30J - BSuhhNVUdajwlWuBlRfGYUCTUh9LXdf1UthhO3geculBqQXAtTbEw1zGSE8n5HgJoUxnndn636jQ - Si39rnLIvdHBsCdjYUSPEWNP47CGq/xgnektVWRecPwuzTfrSRDm/cxwdholkCGulrT8TLtSrBok - LpVfDBwEFztsZu68HT400iyAaJH7Tzt/056yS939j/wMCIGWsKmsw0aK68hzm8Nwv/9qu8x5NAwe - 3asUWJFEF3bRYMsHNZ0W+L0n7KtW6g6ddXK6r9ZWzV2Lbzf5DW4hOka/AAAA//8DAFcKWwxoAwAA + H4sIAAAAAAAAA3ST3WobMRCFX2WYm7SwDrZJCtm7UAoNDYXSXhS6ZT2RZr1KtKONNHLiGr970bqJ + m/5cidX5Rmf2jLTDIVj2WKPxlC3PUhBhnZ3NzmfL+fJ8frG8wAqdxRqHtG7ni+vrD+Pd8rHr3e2m + /3hvtxefP/24xQp1O3KhOCVaM1YYgy8blJJLSqJYoQmiLIr1t90Tr/xYlGmpcbVa3aYgjewaAWgw + 5WGguG2whga/9AyFA+uSySlxAlKN7iYrJ+hCBN6Qz6RO1sCPoychdUESOIGvl1fw6l3ZdEI3nuHy + 6nUFTozPtvAPPWvP8WUdRYYTMuWj1JzADCx3TtgCpecSpycJjGeK0IcH0ACmJ1kzOBmzQsekOXIq + whCs67agPUPIOmY9hbchi3LsyGgmf/AcWIrnwYagRAWhAx8MeXAFHyPr1CSQWBhD0lkfzO/dw8Da + B3sK78MDbzhWk+shv8AJJOiEO+PUbyEpKT//kvlHU8cc4Bg1l1MHoDU5STpZPHHOO92CiU45uiCn + DVaHoUb2vCEx3CYTIpfhvmlk38hqtcL99wqThrGNTCkI1shiW81R8JeQ+D6zGMZasvcV5um+1Tuc + 4m413LEkrBdni3mFhkzPrYk8ZdK+RJ71yGT/pz3VFgceex44km/Ph7/5o7ro/1T3FR4GfuxvOa8w + cdw4w606jlhjeSeWosX9/icAAAD//wMAL+R9ZpoDAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b89aa8c0239e-SJC + - 991ac8649b79680c-SJC Connection: - keep-alive Content-Encoding: @@ -4141,73 +4350,64 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:59 GMT + - Mon, 20 Oct 2025 19:04:49 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "25000000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:47Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:49Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "30000000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:47Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "561" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJQqiYxrUdwv9RW7GN + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "600" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998489" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_9cc4d9e8d9744bcfbfde3faa9cf5039d + - "4068" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew - D. White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity - relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) - Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n - \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, - R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials - science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding - with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, - 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities @@ -4264,61 +4464,50 @@ interactions: Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference on knowledge discovery and data \\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6350" + - "6402" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNi9swEL37V4g5x8X2rpuP4y5bKKWwtJQe6sVW5LGjVJaENA5dQv57 - kZ3ETj9gLzrMm/f03swcI8ZA1rBhIHacRGdV/Php+fhh/83S+iGn/vvq+aP5/PD16cuqTZ4PsAgM - s92joAvrnTCdVUjS6BEWDjlhUE2X+WqdJlm+HoDO1KgCrbUU35s4S7L7OE3jLDkTd0YK9LBhPyLG - GDsOb7Coa/wFG5YsLpUOvectwubaxBg4o0IFuPfSE9cEiwkURhPqwXVVVXtvdKGPhWasAN93HXev - BWxYAQUsxqpDhQeuBZZeGIcBTQp9KnRVVXNhh03vecile6VmANfaEA9zGSK9nJHTNYQyrXVm6/+g - QiO19LvSIfdGB8OejIUBPUWMvQzD6m/yg3Wms1SS+YnDd+nyLh8FYdrPBGfnUQIZ4mpOyy+0G8Wy - RuJS+dnAQXCxw3riTtvhfS3NDIhmuf+28y/tMbvU7VvkJ0AItIR1aR3WUtxGntochvv9X9t1zoNh - 8OgOUmBJEl3YRY0N79V4WuBfPWFXNlK36KyT4301tqzXDb7Pl3e4hegU/QYAAP//AwA2CaOqaAMA - AA== + H4sIAAAAAAAAA3yT3W7bMAyFX4XgzTbACRJvARbfDtguihb76TBg8+AwMhOrkylXpNtkQd59sNt0 + aIfuSoC+Q/LoSDpgG2sOWKAL1Nc80SjCNnkzWUzyWb6YLfMlZuhrLLDVbTWbv7eri08fzvP9V/lO + 1xdnH/X31dlrzND2HQ8qVqUtY4YphmGDVL0aiWGGLoqxGBY/Die98W4g41LgarW60iilHEoBKFH7 + tqW0L7GAEi8bBt45Tp2BV9ik2AJB4g0nFscQvBrEDRB01HGCKMC7LpCQ+Sg6oDYGdn2gBF3i2rsB + wBiBTuHzQ6eXy1fQstyVvTgfONBWopp3sGXhNLYcOrrYi3HakLOewuOBm5hOE1lfwHoP3zgEuiUz + BjagMM2g69fBa8M1eIF3DbfeUYAvzo9O8lmeT+Gy8Qpeau/IWMEavj9i7dX1qqz/9eFlLBnT39lz + OWgG695G5UPKphw2UEdWkGjQpXjjawYvm5jauwxoHXuD24at4fTEhgIlBhrb0zrwtMTs7mITB74h + cVypi4mHC85LOZayWq3w+DNDtdhViUmjYIEsdWV9ErwHytf9kA8W0oeQYT++ueKAXrreKou/WBSL + +fLtIkNHruHKJR4NV48lsxNPTPVz7FQ7TOCu4ZYThWrR/qv/S+fNU3rMMPb2yN98maFyuvGOK/Oc + sMDhr9SUajwe/wAAAP//AwDpabqungMAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b89f5f33239e-SJC + - 991ac86daca41739-SJC Connection: - keep-alive Content-Encoding: @@ -4326,185 +4515,166 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:10:59 GMT + - Mon, 20 Oct 2025 19:04:51 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:49Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:51Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:49Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "531" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJX5Waq1KY8EyVfQce + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "637" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998486" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_fbd62d54996942ecb1a50b3b779dd901 + - "4441" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nsame - optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named - Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness - via exposure to adversarial examples. While there are\\n\\nconceptual disparities, - we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras - to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "51053" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n + \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, + R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation + Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) + White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n + \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, + I. Explaining prediction models and individual predictions\\n\\n with feature + contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) + Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features + of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal + 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu + Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph + convolutional neural networks for small\\n\\n molecule activity prediction. + Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) + Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n + \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, + 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, + F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model + Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. + Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, + A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; + Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n + \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n + \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, + K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based + similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) + Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n + \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR + 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: + Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output + Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, + A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures + using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) + Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, + M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n + \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory + Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, + 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; + University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, + A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The + Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, + 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of + philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical + theory of classification and prediction.\\n\\n Internal IBM Technical Report + 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, + M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation + and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, + S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n + \ graph representation for similarity computation, unsupervised and supervised + learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n + (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, + D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, + A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. + SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, + B.; Russell, C. Counterfactual explanations without opening\\n\\n the black + box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) + Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable + artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, + 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, + C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. + International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) + Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n + \ machine learning for de-novo molecular design and interpretability with + surjective\\n\\n representations. Machine Learning: Science and Technology + 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; + \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual + Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + anthropic-version: + - "2023-06-01" + connection: + - keep-alive + content-length: + - "6394" + content-type: + - application/json + host: + - api.anthropic.com + user-agent: + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xU22rbQBB991cM+9IW5GA7Se340aGEUlJKaSmhDma0GkuTrHbF7MixG/LvZWUn - di6Fvgg0Z87RnLnovgdguDBTMLZCtXXj+udfxuefrr7fXVz8nG3ufrWX3yY/Vp9vvuLl+R9nssQI - +Q1ZfWQd2VA3jpSD38JWCJWS6nB8OjkbDkankw6oQ0Eu0cpG+yehPxqMTvrDYX802BGrwJaimcLv - HgDAffdMJfqC1mYKg+wxUlOMWJKZPiUBGAkuRQzGyFHRq8n2oA1eyXdV3889wNzEtq5RNnMzhbm5 - opiBDa1XkiVabdFFQCFAm5xh7ugIflQESmuFRsKKC4qAHmiNyT/cVST0QgJo3Tj0mCQixLYsKSrU - oeAl211UAyDUwZFtHb2LEFVaq61QBrG1FWAEdErCvgStCCxKHtYbxxbQcgGlhLbJkgx1ZQJremlI - 6jSHjpO7EIp+LsgechRhEng/m80+dJ4ivSgJHZce7lirZICEa/KKDpbsC/ZlzKCgOviogrotC/VV - 8yz61KcmxMMmgq3Ql9TZ5jr1kR7No3T5JMoUwfEtwWw22xnJ2bFujuYm2w5PyNEKvaVFtEEoDXE4 - mPuHw5ELLduIaeN869wBgN4H3XpNy3a9Qx6e1suFspGQxxdUs2TPsVoIYQw+rVLU0JgOfegBXHdr - 3D7bTNNIqBtdaLil7nPD8fHJVtDsL2cPnx3vQA2K7oA2GY2zNxQXBSmyiwenYCzaioo9d3832BYc - DoDege/X5bylvfXOvvwf+T1gLTVKxaIRKtg+t7xPE0p/ln+lPfW5K9hEkhVbWiiTpFkUtMTWbY/e - xE1UqhdL9iVJI7y9/GWzOP04zEen43GRm95D7y8AAAD//wMArVhRCQIFAAA= + H4sIAAAAAAAAA3xU0W4TQQz8FcsPBKRLlKakwL1VBdoKVCGoVBBBl+2ek1uyt3usvWlCld/iB/gx + tJsW2hR4utN5PB577LvG1tdksURtVaypz945kv7T/rg/Go7GwxejF1igqbHElufVcG98dLz+dLHf + 7S2WJx8X/nD59uKNOccCZd1RQhGzmhMWGLxNHxSzYVFOsEDtnZATLD9f3+KFVimSHyVOp9Ov7N3E + XU8cwAQ5tq0K6wmWMMHzhoBWmkInUBvWkZkYtI9OKMyUlqgs0Kqzyikx3jEYB9IQ5LIrAT+D1lvS + 0aoAXaDa6ISDPAMG5Wo4PB3AqUCgGQVymhiYlhSUhSsfFgze7RaUhnxY5+S7tUs4+fljZinA49Fw + OH6SMntHKrKyYNwNO1wqpvohKRc9uPC+vlKhhkdwYkQ32utF5trfch3C0X0hhzqTFL2s5T1FscbN + twL2DrZJaYQ7aedb/X4GH7QhJ2ZmNLz608mgB6dt50Oy0K4LMALaCDFcKN0IBSABZQe5yrObNv9j + yZWRxkcB35Ezbp79ubRKL+DSr3p/cUxF8a0SqqEmbTiTpAaPX757X+S3NqlOn49e94/PzrJ24yjA + zIcHYl7dFZMAx0F1DZxRTCafkWSfB700l98yOM7nxLK7bAwqEMRkYWLaXb1W6cY4Aksq5F6z2N8L + WBObuSvyRO4unHgwbkmB6b8MBL4T05rvuWABpu3sOmG6oLQYrSyorrNGbwUNJlhsbyqQpaVymirW + PlC6rYOJ20zcdDrFzZcCWXxXBVLsHZZIrq4kBoc3AaZvMQnF0kVrC4z53MtrNK6LUolfkGMsR8On + zwvUSjdU6UBZRHUfMryNB1L1v2K3uakCdQ216RircfsQ/ye61+xGNwX6KPf07e8XyBSWRlMlhgKW + mH5TtQo1bja/AAAA//8DALT1cCwZBQAA headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b899cde8aaaf-SJC + - 991ac8637ee67396-SJC Connection: - keep-alive Content-Encoding: @@ -4512,98 +4682,83 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:11:00 GMT + - Mon, 20 Oct 2025 19:04:51 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:47Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:51Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:47Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2306" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJQ3qgo5z1mtgkL5Pz + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "2339" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249999" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29997730" - x-ratelimit-reset-input-images: - - 0s - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 4ms - x-request-id: - - req_cf4d0bac9d3c45e4bb2f7d062a386f44 + - "6173" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 5-8: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n We present - an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 - Shapley values were proposed as a local explanation method based on feature\\n\\nattribution, - as they offer a complete explanation - each feature is assigned a fraction of\\n\\nthe - prediction value.44,45 Completeness is a clearly measurable and well-defined - metric, but\\n\\nyields explanations with many components. Yet Shapley values - are not actionable nor sparse.\\n\\nThey are non-sparse as every feature has - a non-zero attribution and not-actionable because\\n\\nthey do not provide a - set of features which changes the outcome.46 Ribeiro et al. 35 proposed\\n\\na - surrogate model method that aims to provide sparse/succinct explanations that - have high\\n\\n\\n 5fidelity to the original - model. In Wellawatte et al. 9 we argue that counterfactuals are \u201Cbet-\\n\\nter\u201D - explanations because they are actionable and sparse. We highlight that, evaluation - of\\n\\nexplanations is a difficult task because explanations are fundamentally - for and by humans.\\n\\nTherefore, these evaluations are subjective, as they - depend on \u201Ccomplex human factors and\\n\\napplication scenarios.\u201D37\\n\\n\\nSelf-explaining - models\\n\\nA self-explanatory model is one that is intrinsically interpretable - to an expert.47 Two com-\\n\\nmon examples found in the literature are linear - regression models and decision trees (DT).\\n\\nIntrinsic models can be found - in other XAI applications acting as surrogate models (proxy\\n\\nmodels) due - to their transparent nature.48,49 A linear model is described by the equation\\n\\n1 - where, W\u2019s are the weight parameters and x\u2019s are the input features - associated with the\\n\\nprediction \u02C6y. Therefore, we observe that the - weights can be used to derive a complete expla-\\n\\nnation of the model - trained - weights quantify the importance of each feature.47 DT models\\n\\nare another - type of self-explaining models which have been used in classification and high-\\n\\nthroughput - screening tasks. Gajewicz et al. 50 used DT models to classify nanomaterials\\n\\nthat - identify structural features responsible for surface activity. In another study - by Han\\n\\net al. 51, a DT model was developed to filter compounds by their - bioactivity based on the\\n\\nchemical fingerprints.\\n\\n\\n\\n \u02C6y + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature is assigned a fraction of\\n\\nthe prediction value.44,45 Completeness + is a clearly measurable and well-defined metric, but\\n\\nyields explanations + with many components. Yet Shapley values are not actionable nor sparse.\\n\\nThey + are non-sparse as every feature has a non-zero attribution and not-actionable + because\\n\\nthey do not provide a set of features which changes the outcome.46 + Ribeiro et al. 35 proposed\\n\\na surrogate model method that aims to provide + sparse/succinct explanations that have high\\n\\n\\n 5fidelity + to the original model. In Wellawatte et al. 9 we argue that counterfactuals + are \u201Cbet-\\n\\nter\u201D explanations because they are actionable and sparse. + We highlight that, evaluation of\\n\\nexplanations is a difficult task because + explanations are fundamentally for and by humans.\\n\\nTherefore, these evaluations + are subjective, as they depend on \u201Ccomplex human factors and\\n\\napplication + scenarios.\u201D37\\n\\n\\nSelf-explaining models\\n\\nA self-explanatory model + is one that is intrinsically interpretable to an expert.47 Two com-\\n\\nmon + examples found in the literature are linear regression models and decision trees + (DT).\\n\\nIntrinsic models can be found in other XAI applications acting as + surrogate models (proxy\\n\\nmodels) due to their transparent nature.48,49 A + linear model is described by the equation\\n\\n1 where, W\u2019s are the weight + parameters and x\u2019s are the input features associated with the\\n\\nprediction + \u02C6y. Therefore, we observe that the weights can be used to derive a complete + expla-\\n\\nnation of the model - trained weights quantify the importance of + each feature.47 DT models\\n\\nare another type of self-explaining models which + have been used in classification and high-\\n\\nthroughput screening tasks. + \ Gajewicz et al. 50 used DT models to classify nanomaterials\\n\\nthat identify + structural features responsible for surface activity. In another study by Han\\n\\net + al. 51, a DT model was developed to filter compounds by their bioactivity based + on the\\n\\nchemical fingerprints.\\n\\n\\n\\n \u02C6y = \u03A3iWixi (1)\\n\\n\\n Regularization techniques such as EXPO52 and RRR53 are designed to enhance the black-\\n\\nbox model interpretability.54 Although one can argue that \u201Csimplicity\u201D @@ -4639,64 +4794,51 @@ interactions: \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) \ (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6313" + - "6365" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBThsxEL3nK0a+cEmibCAEcquQ4IDKBSpVbVA0a89mXby25RmnRCj/ - Xu0uZUNLpV724Dfv+Y3nzb6MAJQ1agVK1yi6iW5ydbu8url+KO9zcZfOr/fNt9u7r3Tz5aK8/7xQ - 45YRyh+k5TdrqkMTHYkNvod1IhRqVYvl4uKymM3PZx3QBEOupW2jTM7CZD6bn02KYjKfvRLrYDWx - WsH3EQDAS/dtLXpDz2oFnUx30hAzbkmt3ooAVAquPVHIbFnQixoPoA5eyHeuX9YeYK04Nw2m/Vqt - YK0eagJ61pSigLGsMzMx6JC9UKpQS0bHgAz0HB16bNtlsB6a4EhnhwliImN1C0DXKY+BBcX6LUiN - AlLTHjAR6ODZGkpk4KQkEUon72VL0piZBgZ2slg6AvQGOGJimsKn4fgdP6aws4YAgUkgVFARSk7E - vRGNHnSNftvdACGLDg2NocGn3iw1kJmq7KAKCQxpyzb4SY9P4aG27dN4ScjC8NNKDfc1Rkd72KHL - xGP4WVtdd9598JPecOfdBzlqZ7pW434aiRzt0GvasA6J2qkUs7U/HM8wUZUZ2wj57NwRgN4H6Ztv - 0/P4ihze8uLCNqZQ8h9UVVlvud4kQg6+zQZLiKpDDyOAxy6X+V3UVEyhibKR8ETddcV8WfSCaliF - Ab44ewUlCLoj2uliMf5AcWNI0Do+yrbSqGsyA3dYBMzGhiNgdNT333Y+0u57t377P/IDoDVFIbMZ - Uv9RWaL2V/Gvsrd37gwrprSzmjZiKbWzMFRhdv0WK96zULOprN9Sisn2q1zFjbms6HyxPKVSjQ6j - XwAAAP//AwCQPAK30wQAAA== + H4sIAAAAAAAAA3RTwW7bMAz9FYKXXJwgaZsV9bGHDS02YMA6DMM8OIzExFplyROppEGQfx/sNGva + YScBeo/ie4/UHtto2WOJxlO2PJYYAuv4ajwfX0wv5tObixss0FkssZV1PZ3du033Pb77+Pn+w1d7 + +bh+P/90a2+xQN113LNYhNaMBabo+wsScaIUFAs0MSgHxfLH/sRXfuqR4ShxsVj8khiqsK8CQIWS + 25bSrsISKnxoGHoe8FPnnXHqd2CdmCzCAibmoJxWZDSTF3ABtGEYWj4pxNVQRoHUxQAtaxOtwCom + aKNnkz0l6BJbZ46EPheZwJ2CKCkLaEMKXxrqPO9gQz6zACWGUYgKNFTR0jOEmEA6SsIjWLKhLAwj + bXgHNkLP7VLcOMtAIDwIWzFpTiywbZxpwDQU1kNDhpjVxJYnI7gLg5dEosUAUdYmpl7DOnNv9xt7 + T1tSZWAF8pOj5NHbZHrRS1bldB6J/BU7aO1JZ6Yo2GdTkxE8NE7AusSmH4EL1pmXhN5262I/nqOb + swe7FDtOuiugZQourI9tT9m4sIqpPc6KljErbIfHn6PZxuwtkO89nMdUYXFcnMSeNxQM12Ji4n6B + ZtMqHKqwWCzw8LNA0djViUliwBI52FpzCvgMCP/OHAxjGbL3BeZhqcs9utBlrTU+chAsZ1fz6wIN + mYZrk3jQW7+mTE94YrL/w061fQfuGm45ka/n7b/8F3TWvEUPBcasr/RdXhconDbOcK2OE5bYf0ZL + yeLh8AcAAP//AwA3arRM/wMAAA== headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8a48e5c239e-SJC + - 991ac87efb6efae7-SJC Connection: - keep-alive Content-Encoding: @@ -4704,258 +4846,60 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:11:01 GMT + - Mon, 20 Oct 2025 19:04:54 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1660" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "1683" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:51Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:53Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998488" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_f2f09981807c449c9596b557cd969885 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\n a passive characteristic - of a model, whereas explainability\\n\\nis an active characteristic which is - used to clarify the internal decision-making process.\\n\\nNamely, an explanation - is extra information that gives the context and a cause for one or\\n\\nmore - predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy - and interpretability are two attractive characteristics of DL models. However,\\n\\nDL - models are often highly accurate and less interpretable.28,30 XAI provides a - way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be - viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable - DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL - model has correctly learned the input-output relations, then\\n\\nthe explanations - should give insight into the underlying mechanism.\\n\\n In the remainder - of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6309" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA4xUwW4bRwy96yuIObWAZFhyHNu6GUYPRg4FggQJEAUSNcPdZTo7sx1yZG8M/3sx - u5Ilpy7Qyx72kY+PnEc+TQAMO7MEYxtU23Z+dvfh6u6Pv+908fEGP/7Zf5L+85d5vfv54erhhs20 - ZMTtD7J6yDqzse08KccwwjYRKhXW+dXl9c38fHF5PQBtdORLWt3p7F2cLc4X72bz+Wxxvk9sIlsS - s4RvEwCAp+FbJAZHj2YJ59PDn5ZEsCazfAkCMCn68segCItiUDM9gjYGpTCo3mw2PySGVXhaBYCV - kdy2mPqVWcLK3MUclFKFVjN6AUwEjsQm3pIDFPDRogcuQV0ixdK4AAfQhmCo8qgQK6DHziMH3HqC - 23v47evt/e/TQqAN9QcUpCPLFVvgUCRbkjP41BAMLC6SQIg6RLNl9T2IohI8NKQNJbBvqEVbJJW6 - U9hmBd4TtRQKANqgvgSxZ+2BBTAAqibeZiXIQg40Au3Q51JvkBuOvX69vT+D21cciSpKUrIO4lgL - sfWECZr4ABy6rFARak4kRbt3sCWwDYZ6LNhGx1U/jDJm7bKWabCA5LomURnF/9r1yNTF8sCM3veF - 9TgG4Gocepfijh3tJdWZXZk4xLCvy6EeRQ5toG2YdgRY3p8TuYOklZmOxknkaVco1mJjomKg61V4 - XoXNZnPqvURVFizWD9n7EwBDiHsHFdd/3yPPLz73se5S3MovqabiwNKsE6HEUDwtGjszoM8TgO/D - PuVXK2K6FNtO1xr/oqHcfPH+YiQ0xxU+hRd7VKOiPwEuri+nb1CuHSmyl5OlNBZtQ+6Ye9xgzI7j - CTA5afzfet7iHpvnUP8f+iNgLXVKbt0lcmxf93wMS1Ru3H+FvQx6EGyE0o4trZUplcdwVGH24/kx - 0otSu6441OVi8HiDqm7tbip6f3l1QVszeZ78AwAA//8DAI1jY2aMBQAA - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 9854b89b2ea0eb2c-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Fri, 26 Sep 2025 18:11:01 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:51Z" cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3404" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "3417" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998490" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_f5e1b1bffbf541c6b785b4999cfcf76c + - DYNAMIC + request-id: + - req_011CUJyJitAq5HuvUNvqReSm + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-envoy-upstream-service-time: + - "4222" status: code: 200 message: OK - request: body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon - pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. - White. A perspective on explanations of molecular prediction models. ChemRxiv, - Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\\n\\n------------\\n\\n A Perspective on Explanations - of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 - \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. - White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of - Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, - University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health - Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: - andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n + A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi + P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n + \ D. White\u2217,\u2021\\n\\n\\n \u2020Department + of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department + of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n + \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n + \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n \ Chemists can be skeptical in using deep learning (DL) in decision making, due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which @@ -5016,64 +4960,52 @@ interactions: characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one or\\n\\nmore \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide + a summary of the relevant information that could help answer the question based + on the excerpt. Your summary, combined with many others, will be given to the + model to generate an answer. Respond with the following JSON format:\\n\\n{\\n + \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe + excerpt may or may not contain relevant information. If not, leave `summary` + empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "6334" + - "6386" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAA4xUwU4bQQy95yusOYGUREmAEHJDILWoHKqqVVEbtJrMeHcHZmdGtjdNivLv1e4G - EgqVetnDPD/72X7epx6AclbNQZlSi6mSH1x9Or/68LswZzNH6YHK7/x5FfyKvz3++DJV/YYRlw9o - 5Jk1NLFKHsXF0MGGUAs2WcfnZ7OL8WgyHbVAFS36hlYkGZzGwWQ0OR2Mx4PJaEcsozPIag4/ewAA - T+23kRgsrtUc2jTtS4XMukA1fwkCUBR986I0s2PRQVR/D5oYBEOr+mkRABaK66rStFmoOSzU1xIB - 1wYpCVjHpmZGBlwnr13QS4+gSVzujNMeXBD03hUYDMLR3eXNMbgAUiK0VdYCMQeLmMCjpuBCAUfX - t8fQDoAhjwSmxMqx0GYINwIVhmZ+DFJqgbvLG6hQymi5D1ybEjR3BKM9mFgHQcq1kVp7Bh0sWGRD - LkmkTnLQbbo+GB2em4DrW0iE1pmuVMNLFFfOIrjAriiFm84isFBtpCYcJIoJSTZA6LuUpUs8hI/x - F66Q+m3PbcM2IkOI0lZzxonfgLaWkBl+lSgl0lvlhKBbNc2AhwvV7xZD6HGlg8GMTSRsFjRdhO3h - NgnzmnVjplB7fwDoEKJ0Uhsf3e+Q7YtzfCwSxSX/RVW5C47LjFBzDI1LWGJSLbrtAdy3Dq1fmU4l - ilWSTOIjtuXGk9nOomp/FHt4Nt2BEkX7A9rJ9Bl5lTGzKNp5PnC5MtqUaPfc/Uno2rp4APQO+n4r - 573cXe8uFP+Tfg8Yg0nQZntzvRdG2Pw0/hX2MudWsGKklTOYiUNqdmEx17Xv7lnxhgWrLHehQErk - uqPOU2YvcpyenZ/gUvW2vT8AAAD//wMAhqNMZd0EAAA= + H4sIAAAAAAAAA3xTXW8bNxD8Kwu+JAVOhu1YTXJvBoIiSfsSoGiCVsGJIle6TXhLdncp+2DovweU + onyifSLAGS5nhsMHN+WIyfUuJF8jLjQzoy1uFsvF9eX18vL59XPXOYqud5Puhsurt8ur32/LXy9/ + +/XN9m8OT+/fvH47vXads7lgY6Gq36HrnOTUNrwqqXk217mQ2ZDN9f88nPmG9w05Lr1br9cfNPOK + H1YMsHJap8nLvHI9rNyfIwLeB5RiEElDVUUFvC/JE/tNQvBitKVAPgGxYUq0Qw4Ij9/dvvoFJrQx + RwViCCNOpCZzB1owtEM+pRkmZKPMxLsTJfgEIVc2lK0PVn1S8AqZEfIWbER4d/vqPPgCmsLiCwqo + eUMFG73Bo284kOgj/s9sjhBRg1CxLCdv7JskheD5bBZe/AFFMFI4QXcjJYQd7ZtwYqXdaC2BDGpS + g1XBRZFcUGwGwXSaOFLRi0dH0b7amKVFEyl4w2ZthjtKCbY51Ob4i4OIe0y5YITN3HgksJNcCxCH + VOMxux9sbbN80cs70JzqhhLZ3MEm5RwXG2muNl6EUKCgTOjPjJbJlBOGmryABmS7gJf5DvcoHdhI + +rUVGRU42zEnCmRpPjcF7ka0EeXnyAXBH3M8VuioNO8pIkQ0T42xydU+O/2Gyb7lerFy3amrggn3 + ngMOGrJg6+zNig8rXq/X7vC+c2q5DIJeM7veIcfBqrD7DCj+W1tZXc81pc7V4zfqHxxxqTZY/ois + rr+6efKsc8GHEYcgeHzJ4XvK5RkX9PG/sPPZdgOWEScUn4bl9DP/K3o1/ogeOperfadv+bRzirKn + gIMRiutd+/7RS3SHwycAAAD//wMA6ofw3nEEAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8a9b8d2aaaf-SJC + - 991ac87ef8fc680c-SJC Connection: - keep-alive Content-Encoding: @@ -5081,294 +5013,105 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:11:01 GMT + - Mon, 20 Oct 2025 19:04:54 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "1059" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "1101" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:51Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:04:54Z" + anthropic-ratelimit-tokens-limit: - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998483" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_9bc4aace153f41c183351c00cd2d5ac2 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant - information from the text - about 100 words words. `relevance_score` is an integer - 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or - may not contain relevant information. If not, leave `summary` empty, and make - `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nssion - challenge and is\\n\\nimportant for chemical process design, drug design and - crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented - and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) - of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN - model.\\n\\n In this task, counterfactuals are based on equation 6. Figure - 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. - Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the - ester group and other heteroatoms play an important role\\n\\nin solubility. - These findings align with known experimental and basic chemical intuition.134\\n\\nFigure - 4 shows a quantitative measurement of how substructures are contributing to - the pre-\\n\\n\\n\\n 16Figure 2: Descriptor - explanations along with natural language explanation obtained for BBB\\npermeability - of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence - predictions positively and negatively, respectively. Dotted yellow lines show - significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors - show molecule-level proper-\\nties that are important for the prediction. ECFP - and MACCS descriptors indicate which\\nsubstructures influence model predictions. - MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 - with permission from authors. SMARTS annotations for\\nMACCS descriptors were - created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, - Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n - \ 17diction. For example, we see that adding - acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. - Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate - that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes - the molecule less soluble. Although these are established hypotheses, it is - interesting\\n\\nto see they can be derived purely from the data via DL and - XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction - using the RNN model. The\\nchemical space is a 2D projection of the pairwise - Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored - by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 - with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing - XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, - we show how non-local structure-property relationships can be learned with\\n\\nXAI - across multiple molecules. Molecular scent prediction is a multi-label classification - task\\n\\nbecause a molecule can be described by more than one scent. For example, - the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 - \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure - relationship is not very well understood,140 although some relationships are\\n\\nknown. - \ For example, molecules with an ester functional group are often associated - with\\n\\n\\n 18Figure 4: Descriptor explanations - for solubility prediction model. The green and red bars\\nshow descriptors that - influence predictions positively and negatively, respectively. Dotted\\nyellow - lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS - and\\nECFP descriptors indicate which substructures influence model predictions. - MACCS sub-\\nstructures may either be present in the molecule as is or may represent - a modification. ECFP\\nfingerprints are substructures in the molecule that affect - the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. - Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for - MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, - Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg - et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 - scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 - rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, - we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 - and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE - method was modified to account for the multi-label aspect of scent prediction. - This\\n\\nmodification defines molecules that differed from the instance molecule - by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals - of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent - but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 - scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. - \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would - result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 - scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "188581" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA4xUTW/bOhC8+1cseJYN243rxsemH4ceenjvULQODJpcSdtQXJW7TGsE+e8FZcfW - y0uBXnTQcJY7s7N8mAAY8mYDxrVWXdeH6c2n9c271delhOWXz28/3v34Wtv3rz6svlzXd9lUhcH7 - 7+j0iTVz3PUBlTgeYZfQKpaqi/XqzfVivlytB6Bjj6HQml6nVzxdzpdX08ViupyfiC2TQzEb+DYB - AHgYvqXF6PGX2cC8evrToYht0GzOhwBM4lD+GCtCojaqqS6g46gYh64fthFgayR3nU2HrdnA1txw - joqptk6zDQI2IVhXRNl9QLAC2uIB+sT35BEoCjWtClBUBtGUneZkA3TsqSZnC7NwrIKzESjWIWN0 - CB0HdDnYVGr1mJRQKpDs2nKJcMh7CqQH4ATiMOoMPnAC/GWLy1VpA0SzP4DHjqNosooCLf8E19rY - oIAyoCgmaBLnXipoUTGxVe6kKnXbg0/cYIQ9Rw/WOeyVk5w6LfMTHLVSgQ3URIoN/CRtwbXYkbOh - iM9UlM7gH+oo2BQOFbhnVtZPSqBP6GkwFVpq2lAsHJt3FlBss6FIOBJdKDM9+zqDf1sUhJqip9gI - SG4aFD35/ez+oqrJZWqjgXp0JMOMKF4EeRRq4mxrqmNEEga8t9HhThwnLFFZzLfxcRyshHUWW3Id - cwgjwMbIemy4RPr2hDyeQxy46RPv5RnV1BRJ2l0ZA8cSWFHuzYA+TgBuh2XJ/8m/6RN3ve6U73C4 - brm4fn0saC77eYEX8zcnVFltGPFeza+qF0ruPKqlIKONM866Fv2Fe1lPmz3xCJiMhP+/n5dqH8VT - bP6m/AUYoox+d0naS8cSlgfsT8fORg8NG8F0Tw53SpjKMDzWNofj22LkIIrdrqbYYOoTHR+Yut+t - Xi/2y9V67fdm8jj5DQAA//8DAL5dQVtpBQAA - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 9854b8914dffd049-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Fri, 26 Sep 2025 18:11:03 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:51Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "6509" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyJiwe4LDLXtZA8C3xK + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "6686" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-input-images: - - "250000" - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-input-images: - - "249998" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29996955" - x-ratelimit-reset-input-images: - - 1m0s - x-ratelimit-reset-requests: - - 1m0s - x-ratelimit-reset-tokens: - - 1m0s - x-request-id: - - req_4d1ffd764e2246b9a7a4d3d7cc3e0b39 + - "4416" status: code: 200 message: OK - request: body: - '{"messages":[{"role":"system","content":"Answer in a direct and concise - tone. Your audience is an expert, so be highly specific. If there are ambiguous - terms or acronyms, first define them."},{"role":"user","content":"Answer the - question below with the context.\n\nContext:\n\npqac-12c335ad: Counterfactual - explanations are actionable as they provide local, instance-level explanations - that suggest which features can be altered to change the outcome. For example, - in chemistry, changing a hydrophobic functional group in a molecule to a hydrophilic - group can increase solubility. This actionability makes counterfactuals a useful - tool in explainable AI (XAI) for chemistry, as they offer intuitive understanding - and uncover spurious relationships in training data.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Answer + the question below with the context.\n\nContext:\n\npqac-3f926c2c: The excerpt + explicitly states that counterfactuals create local (instance-level), actionable + explanations. It defines actionability as suggesting which features can be altered + to change the outcome, providing the example of changing a hydrophobic functional + group in a molecule to a hydrophilic group to increase solubility. This directly + confirms that counterfactuals are actionable.\nFrom Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-0071854a: - Yes, counterfactuals are actionable. The text provides an example where counterfactual - explanations suggest modifications to a molecule''s structure, such as altering - the carboxylic acid group, to enable it to permeate the blood-brain barrier - (BBB). These modifications align with experimental findings, demonstrating that - counterfactuals can propose actionable changes to improve molecular properties - like BBB permeability.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-c99801c3: + The excerpt explicitly states that counterfactual explanations suggest actionable + modifications to molecules. In the blood-brain barrier (BBB) permeation example, + counterfactuals showed modifications to a carboxylic acid group that would enable + a negative example molecule to permeate the BBB. The text specifically notes: + ''This proves the advantage of using counterfactual explanations, as they suggest + actionable modification to the molecule to make it cross the BBB.'' The counterfactuals + provided concrete structural changes (deletions, substitutions, and additions + of atoms) that could be implemented to change molecular properties.\nFrom Geemi + P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: + https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\npqac-9c1557c3: The text explicitly states that + counterfactual explanations are actionable. When describing molecular counterfactuals, + it notes: ''Counterfactual explanations are useful because they are represented + as chemical structures (familiar to domain experts), sparse, and are actionable.'' + The text also mentions that when choosing XAI methods, one consideration is + ''what the explanations should accomplish'' including ''how the features can + be changed to affect the outcome,'' which relates to the actionable nature of + counterfactuals.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-ebe7b897: Counterfactuals are actionable - as they provide insights into structural modifications that can influence molecular - properties, such as solubility or scent. For example, the study demonstrates - how changes to ester groups, heteroatoms, or hydrogen bond acceptors can increase - solubility, aligning with chemical intuition. Similarly, counterfactuals for - scent prediction highlight structural changes that alter scent classifications. - These findings suggest that counterfactuals can guide actionable decisions in - chemical design.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, + This article has 1 citations.\n\npqac-7e590e41: The text explicitly discusses + counterfactuals in the context of explanation methods for molecular prediction + models. It states that Shapley values are ''not actionable nor sparse'' because + ''they do not provide a set of features which changes the outcome.'' In contrast, + the authors argue in Wellawatte et al. that ''counterfactuals are better explanations + because they are actionable and sparse.'' This directly indicates that counterfactuals + possess the actionable property, meaning they provide information about what + changes would alter the outcome.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-ee9d0c5b: + The paper discusses counterfactual explanations in molecular prediction models. + Counterfactuals show structural modifications to molecules that would change + model predictions. For solubility prediction, counterfactuals revealed that + modifications to ester groups and heteroatoms affect solubility - adding acidic/basic + groups and hydrogen bond acceptors increases solubility, while adding ring structures + decreases it. For scent prediction, counterfactuals were used to quantify scent-structure + relationships, showing how molecular changes would alter predicted scents. The + examples demonstrate that counterfactuals provide specific, implementable molecular + modifications (like adding functional groups or changing substructures) that + would achieve desired property changes, suggesting they are actionable chemical + design recommendations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-e74f8464: Counterfactual explanations - are described as actionable because they are represented as chemical structures - familiar to domain experts, are sparse, and provide insights into how chemical - properties can be altered. These explanations are based on minimal changes to - a base molecule to achieve contrasting chemical properties, making them useful - for understanding and modifying molecular predictions.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-42a817e6: - The excerpt discusses counterfactuals as explanations in molecular prediction - models, stating that they are considered ''better'' explanations because they - are actionable and sparse. Actionable explanations provide a set of features - that can change the outcome, making them useful for decision-making. This contrasts - with Shapley values, which are non-sparse and not actionable.\nFrom Geemi P. - Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective - on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: - https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\nValid Keys: pqac-12c335ad, pqac-0071854a, pqac-ebe7b897, - pqac-e74f8464, pqac-42a817e6\n\n------------\n\nQuestion: Are counterfactuals + This article has 1 citations.\n\nValid Keys: pqac-3f926c2c, pqac-c99801c3, pqac-9c1557c3, + pqac-7e590e41, pqac-ee9d0c5b\n\n------------\n\nQuestion: Are counterfactuals actionable? [yes/no]\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the @@ -5381,71 +5124,50 @@ interactions: \nDo not concatenate citation keys, just use them as is. Write in the style of a scientific article, with concise sentences and coherent paragraphs. This answer will be used directly, so do not add any extraneous information.\n\nAnswer - (about 200 words, but can be longer):"}],"model":"gpt-4o-2024-11-20","n":1,"temperature":0.0}' + (about 200 words, but can be longer):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer + in a direct and concise tone. Your audience is an expert, so be highly specific. + If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' headers: accept: - application/json accept-encoding: - gzip, deflate + anthropic-version: + - "2023-06-01" connection: - keep-alive content-length: - - "5155" + - "5940" content-type: - application/json host: - - api.openai.com + - api.anthropic.com user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 + - litellm/1.74.15.post2 method: POST - uri: https://api.openai.com/v1/chat/completions + uri: https://api.anthropic.com/v1/messages response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFZRb+M2DH7vryD8tAJO0aRpk/at6DBguO0GbN3DbXcIaIm2ucqSJtG5 - 5g797wPtpE7X67CXADJF8tPHj2S+ngAUbIsbKEyLYrroZnfvVnfv/uDF/buff/pyW/1+/euavzTv - nXxfv/9QlOoRqr/IyMHrzIQuOhIOfjSbRCikUeery/X1/HxxtRwMXbDk1K2JMluG2eJ8sZzN57PF - +d6xDWwoFzfw5wkAwNfhVyF6S4/FDZyXhy8d5YwNFTfPlwCKFJx+KTBnzoJeinIymuCF/ID6A+US - TOi9UKrRSI8uAyYCNPoKrBydwd0LO9BjdOhR7RliClu2BC4YdCWw12yGZo625PTITSsZqh3kvmko - C/sGciTDNRuoCaVPBF2wet7HlBYFDHpAJ5Qg9GJCp0A7fFB3aamDlpvW7Y5wAnvogiPTO0wQE1ke - bDBwneG7+Dea2XxhLi4u0ZYwHJcLXM9XdHV6Bj+EBPSIWsBSU+wGCDGFGDJBltQb6RM6MC36RuHk - 3rSAGRJFh0aRIbQ7m0JsQ6Wv6/2IzkGTQh/hM0s73WHHBoInkADsVSqaJ7i+YseyKyGkkZjdGNpg - qsLjTr3QsN3HlADkW+UcKheCnVUJ2UOFKTEliJQ6wkNEdNx4jTYgocdIiTvygg5q9pZ98wZP5+er - +fpyiadn8NF/9PctZXopBBVNopgokxeyyotpqWOD7pk8ylBjx44xKW4bOoU6wJBcAvncJ0XHKreY - SPbAAb2FmLTWGq6X4esZ3GuVNHGOmDKVUAfTZ42gZWfP3VQuTYimZdoSWMqcyB4p63PLpj0QqQok - Ts/aGjFob6N6SQAf/GzMCR1JG2wGxw8Ev7UYHe1gi66nA5W0Wtbr5dXyteRureVRIG73ug1Vfk2v - zXUkckuG80A4+4lgfVDjtcvYkpe9ZI40+6LBJuUODaZXKWunDYrKJbQklAJK6PKgwkGwDXmogreA - xlCUkHI5KLfTEUBDo1ASpj0Vk5A1QjbkBYzTeXTAcaCnolW1vl6dnqmyftlSQudes3EYNBMX5bFO - 9KgqOda020EiR1v08jyJXg4RHCo1ECsh6LwaRc0j2bc/Qh3SSHOWNOpwmjF71v+zYfbHwyMPx7ck - cTymE9V9Rt0SvnfuyIDeBxlLqQvi097y9LwSXGhiClX+l2tRs+fcbnTSBK/jP0uIxWB9OgH4NKye - /sU2KWIKXZSNhAca0s0Xq4sxYDFtu8l8Mb/cWyUIuiO/y/W6/EbIjSVBdvlofxUGTUt28p2WHfaW - w5Hh5Ojhr/F8K/b4ePbN/wk/GQbNk91Me+Vb1xLp34G3rj0TPQAuMqUtG9oIU9JiWKqxd+OmLvIu - C3Wbmn2jEudxXddxY69rurpcXVBVnDyd/AMAAP//AwDDdj6ztwgAAA== + H4sIAAAAAAAAA3xU3YobNxR+lYOusjDe2rvxbu1LhwZKSyF0KYSmmDPS5xmxGmmiI23WLAt5iDxh + nqRItmOv0/TGg3V+vx/pSQ3BwKml0o6zwUSC90iT15P55Gp6NZ8urhaqUdaopRqkW09n737bbPr2 + ZvHurzfDiF/e3v/e/XHXq0al7YiSBRHuoBoVgysHLGIlsU+qUTr4BJ/U8u+nQ37CY4nUz1K9hzSk + Q/YJccM6ZXZCHEGskw2eW4fLD/6Df/MihfA4OvZcUoR0BCeQC5pdQ9aX4RoThwecZaaeU+1eTq22 + yW1PBjU0gL31HaUeW5LcdZBEn3qre9qAU44Q0uypBbFLiDCUAumefYdSRCEnHQbQq/Ej68n1ZnF1 + o6/0xSW9DZGG4KCz40hjhLF1LlU5fsBBFmyyoxaas2C3VTmPGCMEPsEQC+keg9XsSFLMum7ZkIwc + BQ2xNycQ94st9Gw+v9XXF5d011v5lmCdTVsyVpL1XbbSF7xni21iGCikHvGUWxqQ+mCEnL0H/dnz + 6LClB3a5LLOjsKzuQzpd5wU0E2p4jOHBGhCTIFHYHKmv8u3Ylv+g+xbzxRSvZxfVMXf9qYnI1x6l + 3TkgK2QwBC8pcmE09THkricdvI5IxSw8jA5ySb96al0IZtJGtp5ajtEi0qvVanVBI+KAHRlHfb8X + dm8rGJIR2m6sLh4o34NJAzFpjm143DqribU11MWQx6+fv1ivXTbFowYOtaAhya0km/L+b5XcGLtr + FzbEKQzy9fOXyt+nkJ0h7FjhgylRxu4R7Ky8Wq32vOrF4ufprLql2FiCy3un/B/OiAewq3yWS2fq + 0gWL1T+1LFbvMEldt9+aGDp4akP1q8aYQhSyRQIWyMnUaqey+65lLD9H55PBocSmPQBgYaZ63la7 + Q46Kngq/d9cZioMZD1o1ZEvlAJ8qgcc7fSZiBa17iweQgdjyVowxjIhpe/BwQwPf79+b4dSs3250 + qew8RegwDPBm3/0clnr+p1GSwrgu0INXSwVv1ilHr/YBwccMr6GWPjvXqFwf7eWTsn7MaZ3CPbyo + 5exmdtsozbrHur6rNvj1y5TpIR7B5kexQ22ZgLHHgMhuPR++zz9GZ/159LlRIafTo+vZdaME8cFq + rJNFVEtV3nvD0ajn538BAAD//wMAFxrbqN8GAAA= headers: - Access-Control-Expose-Headers: - - X-Request-ID CF-RAY: - - 9854b8bcf8d3239e-SJC + - 991ac89b89601739-SJC Connection: - keep-alive Content-Encoding: @@ -5453,45 +5175,43 @@ interactions: Content-Type: - application/json Date: - - Fri, 26 Sep 2025 18:11:08 GMT + - Mon, 20 Oct 2025 19:05:01 GMT Server: - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 + Via: + - 1.1 google + X-Robots-Tag: + - none + anthropic-organization-id: + - f2c99ed9-038a-406f-9cb5-1f840b758a20 + anthropic-ratelimit-input-tokens-limit: + - "25000000" + anthropic-ratelimit-input-tokens-remaining: + - "24999000" + anthropic-ratelimit-input-tokens-reset: + - "2025-10-20T19:04:56Z" + anthropic-ratelimit-output-tokens-limit: + - "5000000" + anthropic-ratelimit-output-tokens-remaining: + - "5000000" + anthropic-ratelimit-output-tokens-reset: + - "2025-10-20T19:05:01Z" + anthropic-ratelimit-tokens-limit: + - "30000000" + anthropic-ratelimit-tokens-remaining: + - "29999000" + anthropic-ratelimit-tokens-reset: + - "2025-10-20T19:04:56Z" cf-cache-status: - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "4303" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" + request-id: + - req_011CUJyK4W8CckBKb6Aue8mN + strict-transport-security: + - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "4337" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998749" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_c1255b095cc2469697b35e63e160811e + - "6673" status: code: 200 message: OK From f9bc11a59b78fe3095fe63407aaae61b115bcde5 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 27 Oct 2025 10:10:51 -0700 Subject: [PATCH 4/8] Loosened test_images_corrupt to allow for Anthropic --- tests/test_paperqa.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index 034316701..e18ae6029 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -1732,8 +1732,9 @@ async def test_images_corrupt(stub_data_dir: Path, caplog) -> None: "What districts neighbor the Western Addition?", settings=settings ) assert not session.contexts, "Expected no contexts to be made from a bad image." - assert ( - "unsupported image" in caplog.text + assert any( + x in caplog.text.lower() + for x in ("unsupported image", "could not process image") ), "Expected a caught exception about an unsupported image." # By suppressing the use of images, we can actually gather evidence now From 5a8e421ccbe78560b8841a82fbf7451df0baa6c3 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 27 Oct 2025 10:24:04 -0700 Subject: [PATCH 5/8] Updated default temperature to 1 for GPT-5 --- README.md | 2 +- src/paperqa/settings.py | 5 ++++- 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index da19a500a..51fa93d25 100644 --- a/README.md +++ b/README.md @@ -901,7 +901,7 @@ will return much faster than the first query and we'll be certain the authors ma | `summary_llm_config` | `None` | Optional configuration for `summary_llm`. | | `embedding` | `"text-embedding-3-small"` | Embedding model for embedding text chunks when adding papers. | | `embedding_config` | `None` | Optional configuration for `embedding`. | -| `temperature` | `0.0` | Temperature for LLMs. | +| `temperature` | `1.0` | Temperature for LLMs. | | `batch_size` | `1` | Batch size for calling LLMs. | | `texts_index_mmr_lambda` | `1.0` | Lambda for MMR in text index. | | `verbosity` | `0` | Integer verbosity level for logging (0-3). 3 = all LLM/Embeddings calls logged. | diff --git a/src/paperqa/settings.py b/src/paperqa/settings.py index a8915d1b9..8d595d529 100644 --- a/src/paperqa/settings.py +++ b/src/paperqa/settings.py @@ -736,7 +736,10 @@ class Settings(BaseSettings): default=None, description="Optional configuration for the embedding model.", ) - temperature: float = Field(default=0.0, description="Temperature for LLMs.") + temperature: float = Field( + default=1.0, + description="Temperature for LLMs, default is 1 for compatibility with OpenAI's GPT-5.", + ) batch_size: int = Field(default=1, description="Batch size for calling LLMs.") texts_index_mmr_lambda: float = Field( default=1.0, description="Lambda for MMR in text index." From dd5c9c722c0ef0b47a44e26cec4f471f1153bb21 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 27 Oct 2025 10:24:26 -0700 Subject: [PATCH 6/8] Updated default models to GPT-5 --- README.md | 8 ++++---- src/paperqa/settings.py | 8 ++++---- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 51fa93d25..1f56727b4 100644 --- a/README.md +++ b/README.md @@ -451,7 +451,7 @@ asyncio.run(main()) ### Choosing Model -By default, PaperQA2 uses OpenAI's `gpt-4o-2024-11-20` model for the +By default, PaperQA2 uses OpenAI's `gpt-5-2025-08-07` model for the `summary_llm`, `llm`, and `agent_llm`. Please see the [Settings Cheatsheet](#settings-cheatsheet) for more information on these settings. @@ -895,9 +895,9 @@ will return much faster than the first query and we'll be certain the authors ma | Setting | Default | Description | | -------------------------------------------- | -------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- | -| `llm` | `"claude-sonnet-4-5-20250929"` | LLM for general use including metadata inference (see Docs.aadd) and answer generation (see Docs.aquery and gen_answer tool). | +| `llm` | `"gpt-5-2025-08-07"` | LLM for general use including metadata inference (see Docs.aadd) and answer generation (see Docs.aquery and gen_answer tool). | | `llm_config` | `None` | Optional configuration for `llm`. | -| `summary_llm` | `"claude-sonnet-4-5-20250929"` | LLM for creating contextual summaries (see Docs.aget_evidence and gather_evidence tool). | +| `summary_llm` | `"gpt-5-2025-08-07"` | LLM for creating contextual summaries (see Docs.aget_evidence and gather_evidence tool). | | `summary_llm_config` | `None` | Optional configuration for `summary_llm`. | | `embedding` | `"text-embedding-3-small"` | Embedding model for embedding text chunks when adding papers. | | `embedding_config` | `None` | Optional configuration for `embedding`. | @@ -944,7 +944,7 @@ will return much faster than the first query and we'll be certain the authors ma | `prompt.summary_json_system` | `summary_json_system_prompt` | System prompt for JSON summaries. | | `prompt.context_outer` | `CONTEXT_OUTER_PROMPT` | Prompt for how to format all contexts in generate answer. | | `prompt.context_inner` | `CONTEXT_INNER_PROMPT` | Prompt for how to format a single context in generate answer. Must contain 'name' and 'text' variables. | -| `agent.agent_llm` | `"claude-sonnet-4-5-20250929"` | LLM inside the agent making tool selections. | +| `agent.agent_llm` | `"gpt-5-2025-08-07"` | LLM inside the agent making tool selections. | | `agent.agent_llm_config` | `None` | Optional configuration for `agent_llm`. | | `agent.agent_type` | `"ToolSelector"` | Type of agent to use. | | `agent.agent_config` | `None` | Optional kwarg for AGENT constructor. | diff --git a/src/paperqa/settings.py b/src/paperqa/settings.py index 8d595d529..b7901c5c0 100644 --- a/src/paperqa/settings.py +++ b/src/paperqa/settings.py @@ -11,7 +11,7 @@ import anyio from aviary.core import Tool, ToolSelector -from lmi import EmbeddingModel, LiteLLMModel, embedding_model_factory +from lmi import CommonLLMNames, EmbeddingModel, LiteLLMModel, embedding_model_factory from pydantic import ( BaseModel, ConfigDict, @@ -520,7 +520,7 @@ class AgentSettings(BaseModel): model_config = ConfigDict(extra="forbid") agent_llm: str = Field( - default="claude-sonnet-4-5-20250929", + default=CommonLLMNames.GPT_5.value, description="LLM inside the agent making tool selections.", ) @@ -688,7 +688,7 @@ class Settings(BaseSettings): model_config = SettingsConfigDict(extra="ignore") llm: str = Field( - default="claude-sonnet-4-5-20250929", + default=CommonLLMNames.GPT_5.value, description=( "LLM for general use including metadata inference (see Docs.aadd)" " and answer generation (see Docs.aquery and gen_answer tool)." @@ -712,7 +712,7 @@ class Settings(BaseSettings): ), ) summary_llm: str = Field( - default="claude-sonnet-4-5-20250929", + default=CommonLLMNames.GPT_5.value, description=( "LLM for creating contextual summaries" " (see Docs.aget_evidence and gather_evidence tool)." From 8daa4f935545bf205f115f038348e1deef279aa1 Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 27 Oct 2025 10:41:18 -0700 Subject: [PATCH 7/8] Backdated test_pre_prompt to use gpt-4o since gpt-5 is too smart for this prompting style --- tests/test_paperqa.py | 1 + 1 file changed, 1 insertion(+) diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index e18ae6029..568b168d2 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -1818,6 +1818,7 @@ async def test_pre_prompt(stub_data_dir: Path) -> None: pre = "What is water's boiling point in Fahrenheit? Please respond with a complete sentence." settings = Settings.from_name("fast") + settings.llm = "gpt-4o-2024-11-20" settings.prompts.pre = pre docs = Docs() await docs.aadd( From c672891b71d4219de2413a4153493ea41cbb493f Mon Sep 17 00:00:00 2001 From: James Braza Date: Mon, 27 Oct 2025 10:42:10 -0700 Subject: [PATCH 8/8] Refreshing cassettes as needed --- tests/cassettes/test_docs_lifecycle.yaml | 2313 +++--- ...test_get_reasoning[deepseek-reasoner].yaml | 6370 ++++++++-------- ...st_get_reasoning[openrouter-deepseek].yaml | 6527 +++++++++-------- .../test_partitioning_fn_docs[False].yaml | 1459 ++-- .../test_partitioning_fn_docs[True].yaml | 1708 ++--- .../test_partly_embedded_texts[False].yaml | 1256 ++-- .../test_partly_embedded_texts[True].yaml | 1042 +-- .../test_pdf_reader_match_doc_details.yaml | 6098 +++++++-------- 8 files changed, 14075 insertions(+), 12698 deletions(-) diff --git a/tests/cassettes/test_docs_lifecycle.yaml b/tests/cassettes/test_docs_lifecycle.yaml index 6e03e25ea..b144437fb 100644 --- a/tests/cassettes/test_docs_lifecycle.yaml +++ b/tests/cassettes/test_docs_lifecycle.yaml @@ -1,69 +1,4 @@ interactions: - - request: - body: null - headers: - accept: - - "*/*" - accept-encoding: - - gzip, deflate - connection: - - keep-alive - host: - - api.crossref.org - user-agent: - - python-httpx/0.28.1 - method: GET - uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=National+Flag+of+Canada+Day&rows=1 - response: - body: - string: !!binary | - H4sIAAAAAAAA/61Uy27bMBD8FYFnUSb1qqWrgwIF0geK5FLLB1pa24QlUSWp2Ibhf+9SSmPXTlIU - qE7i8rGzM7tzJMYK2xuSE7UlPmnAGLEGag8dYGyn9JbW0tiLrSfQRqoWd3nAAnbeIfmRrEQJFl87 - nnxilRU11WD62oUyFrEw8om00OByfiSyrWAPlbtXCQu0E9odnM9DFoZ+7IeLhT/uWNk4OC5OWUxZ - +MDTnCV5kvzA/G4Xy2g6kvM0nmY8wW/KGWLQsAINbQm0VH1rSc580vVLLGkDGl98bOVQjz14auU9 - KK1aq7xvCNrgwyWuoLW0Uo2Q7YDz+W+OyEqtjGkEMoTHrZalHWhZidrA6Zymop2WLvVtlTz1eehH - fLHA83dfPzlOWRDxaFpMsg9THsdhGvIkwop55godVVkqtaXlRnQWa3A4AN99lUY+9TOfp7c88ill - GeXpA2M5m+Zxes1jEn1gSZqEKWOOx27Ql8QsoXGU4lmjel260MyxgDRjTBr6wndFl4cLzq20NZ6e - E54G3mfkDKxs157dAK66Grx7EKvce8D1rNdS9cabCQNOlC/C8Spq72Mt1i4wE62ohHcnDgTr6jCl - 3J+ZG/qxWQ7q8jRLn2VE1UDTFxgzqGGpxQBifM+9Vct2O3Tm4/d7vL6xtjN5MSkmdmyMoIK17g9I - e1Cqppg8SdgVEyfHlV7F5G0dg31TX/TWs6YW9raYbOwfe+dRe1JOaenCFXIruq6WpRgbbrhLG9li - MeTk36Lf7XbXyCtV9g2mcH/yPbTFpKtWt3D71nRQypXEvvtnvEY2shYahw67GMrtgNu1KHQKR/EN - R+DOEV6zBO4sIURLQD+Ic85vLIFnnKXThI+tbEql8WaYBhkL4yhyJvG7m4/YThJH+uB+/y+Ng7Sn - k5sS078xrZd28DJJ5mKMriFh1kDp9XuZyYUT/SWp02BwZ9rhrIwjz33ys4eRECRUWzq49oDGgNDl - hiIbztDbvq5Pp9MvI24pN1IGAAA= - headers: - Access-Control-Allow-Headers: - - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, - Accept-Ranges, Cache-Control - Access-Control-Allow-Origin: - - "*" - Access-Control-Expose-Headers: - - Link - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Length: - - "761" - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:00:36 GMT - Server: - - Jetty(9.4.40.v20210413) - Vary: - - Accept-Encoding - permissions-policy: - - interest-cohort=() - x-api-pool: - - plus - x-rate-limit-interval: - - 1s - x-rate-limit-limit: - - "150" - status: - code: 200 - message: OK - request: body: null headers: @@ -94,7 +29,7 @@ interactions: and L. Rankin},\n pages = {405-436},\n title = {16. Marketing the Maple Leaf: The Curious Case of National Flag of Canada Day},\n year = {2016}\n}\n"}, "authors": [{"authorId": "118523421", "name": "Richard Nimijean"}, {"authorId": - "144557636", "name": "L. Rankin"}], "matchScore": 106.91671}]} + "144557636", "name": "L. Rankin"}], "matchScore": 106.48929}]} ' headers: @@ -107,27 +42,92 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:36 GMT + - Mon, 27 Oct 2025 17:44:00 GMT Via: - - 1.1 6269ff653a8a0b71d436afa999909318.cloudfront.net (CloudFront) + - 1.1 11b74b29b8e5fb6f06701002e26ee6ae.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - F4KDv75aGAodkO2p8twbOudeYS6lSqivmJk-tBpxB-tAfjn9aeO8Pw== + - e8lgyImMiXvdkwIQTuqlI_Cj09ubhT6bmfofvP7itnCBe8ga2MeEFw== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - SwoBKFwwPHcEN7Q= + - THhW8FNAvHcEUZQ= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1015" x-amzn-Remapped-Date: - - Mon, 20 Oct 2025 19:00:36 GMT + - Mon, 27 Oct 2025 17:44:00 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - fbb94cbd-0ce5-4fa1-81e5-2c3cf7cc0439 + - 07429419-e491-4734-9fe4-7eb92e3b7aa4 + status: + code: 200 + message: OK + - request: + body: null + headers: + accept: + - "*/*" + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - api.crossref.org + user-agent: + - python-httpx/0.28.1 + method: GET + uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=National+Flag+of+Canada+Day&rows=1 + response: + body: + string: !!binary | + H4sIAAAAAAAA/61UTY+bMBD9K8hnDDYBFrhmVanS9kPV9tKQgwOTxApgaptNoij/vWOy3aTJ7laV + ygmPP+bNezPvQIwVdjCkIGpDfNKCMWIF1O57wNhW6Q1tpLEXW0+gjVQd7vKABey8Q4oDWYoKLL52 + OPrEKisaqsEMjQvlLM7YxCfSQovL2YHIroYd1O5eLSzQXmh3cDaLWBT5sR/N5/5px8rWwXFxymLK + okeeFiwpkuQH5ne7WEbbk4KncZbzBL+MM8SgYQkaugpopYbOkoL5pB8WWNIaNL74vZNjPXbvqaX3 + qLTqrPK+ImiDD1e4gs7SWrVCdiPO578ZIqu0MqYVyBAet1pWdqRlKRoDx3OamvZautS3VfLU55E/ + 4fM5nr//8tFxyoIJn2RlmN9lPI6jNOLJBCvmuSv0pMpCqQ2t1qK3WIPDAfjuqzTyzM99nt7yyDPK + csrTR8YKlhVxes1jMrljSZpEKWOOx37Ul8QsofEkxbNGDbpyoaljAWnGmDT0he+aLvYXnFtpGzw9 + IzwNvE/IGVjZrTy7Blz1DXgPIJaF94jr6aClGow3FQacKJ+F41U03odGrFxgKjpRC+9e7AnW1WNK + uTszN/ZjuxjV5WmePsuIqoGmLzCm0MBCixHE6T33ViO7zdiZ37894PW1tb0pyrAM7akxghpWetgj + 7UGl2jJ8krAtQyfHlV5l+LaOwa5tLnrrWVMLO1uGa/vH3nnUnpRTWrpwjdyKvm9kJU4NN96lreyw + GHL0b9Fvt9tr5LWqhhZTuD/5Htoy7OvlLdyhMz1Ucimx7/4Zr5GtbITGocMuhmoz4nYtCr3CUXzD + EbhzhNcsgTtLiNAS0A/igvMbS+A5Z2mW8FMrm0ppvBmlQT6Jk/zOmcTvbj5gO0kc6b37/b80jtIe + j25KzPDGtF7awcskmYsxuoaEWQOlV+9lJhdO9JekToPRnWmPs3Iaee6TnwOcCEFCtaWja49oDAhd + rSmy4Qy9G5rmeDz+AmA40rRSBgAA + headers: + Access-Control-Allow-Headers: + - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, + Accept-Ranges, Cache-Control + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - Link + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Length: + - "762" + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:44:04 GMT + Server: + - Jetty(9.4.40.v20210413) + Vary: + - Accept-Encoding + permissions-policy: + - interest-cohort=() + x-api-pool: + - plus + x-rate-limit-interval: + - 1s + x-rate-limit-limit: + - "150" status: code: 200 message: OK @@ -395,438 +395,436 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6Sby7KCTJem53UVX/xTK0JOkpk1Q0DOkgiI2CNAREBETglkRd97B+6K7uiIGnVP - 9kDRDZnr8LzvSv/z3/75519tWuXZ+K//+Odf73IY//Xv22uPZEz+9R///I9/++eff/75z9/f/+vK - vEnzx6P8FL/Lf2+Wn0e+/Os//mH+9yv/56L/+OdfnOpIOLb9gq5TyoZQzN3CXdbHQue9bTCw6XOT - JJkypgspTg16MPs91l5uX80YTwbcu0VK1ODAB4PFHmOUXsY9fjyOFu1ehtgijfd4Il1VltIDSWMY - nCeET0jB/YovFCI7UUasnI51tZ6Fxgf8rr5i31t3ytA2fg53ivrC97Lc9cs+9Rt0fDEZlmMmCObb - u9XQW1hrfI7YU8pKk2WBS0127upkbU/LxyxDj+MNrL65GMyHj8OB0TbfRFqK3qaGgCXw4QQVa2aa - BFRWRRm4Zi+4r7Nc2aNgOR4Y5eJNnocXouPuWYgIfc3L9G6/pJpPl1MOpyTqiBlZAZ1xeFnhTUwV - 987eUTqY3Ryj99o8iRZWfkD7c6aCh/IMyfly8Ols7lgV+hWdyLmDEaBfh1thmBJjYm6+0XN6MNeI - 9W4v4n41s1+fZwnCR/tmsJYbBmDV7mIBLklOxK1pqoyxuWtAUpxDfKpuerpeMmcHnpMaEG/S74DY - xSVCJyu6EHz9egH3kWgE6Qwl4h1KKWB3zgOCXhyeOBoPNWWW+sohyXMzcpwlmi6azwvow44WUTmm - qPjz7ZaAoUw9Yoe7HVhc/mLtLBm37pIVc9+TWRyginYaNu/V215IfXDB+i5OJD7nWsBc+EBDb/9h - kfjCALCo3cVA8nO8EF2T7YpANtLQjXF2RD/0rDJohaUhaagbcjve9Yoj51yC7/cxmVhjKW1u7LIO - SmwIcVJiv192zhUCp+lKkj+ZV8Cwby9DvvEwiM17FWXEfs6QMLYnclOfVrDeKsuHyVtScFZRq//u - 5dIXb8334HYl9qtFAIMIUsgZ5LrFL+vaDxHGo9bi26Dl/XrcpSJ8fe4qzgRuAstUByLs9l693e+n - p++nrgH5SS7T109HmxaPZIJcv6QkvnV9v0oFv4OoC21yYauwovXqS5BjqmVCrHWpqM99JmjLmU/M - kh3tIbrsGdFOjiM5uUgPGGlBGrQ/zUrc/CLZvGI9E5H4SorVkO1sKgeXCDFjD8i5OnsKhWykwvI8 - 5TjK3nq/RGxYolD8VuQifPlgrYNih+L7Ncc5QIa9RNngADSXF2ITd6pmWlMLyofuRY6AHAAZ2aOM - djO64dCwZjAf3KyEez7W8NUrDMDWt1SAxld28Kn4iMHMRCkDxVhOya3MCzDf3oWGhsOM8YUJjoA2 - 3mdGyHI47MNYqsbqDVx4e6oPnB4yM+CAE8pw/Hx/8dQEjFxRFVE1L7BZZYAOTwsYYNgtiVtLBuiX - D6eJ8FQ/EbF842XPy/HAgcPTmKdmf5YV3mVohARR8nDwdop+nvl2BdrNLLGr7EUwl3BREbAmCVvv - tqIsklUIt/xzRVFWADslhQuPhztP8KN/90uYuSK4Hav7dNeDq7LK57iBwtpfiG71uOdqcW4QhaaH - sfUS0iHw2hWa0UHG4SDvgm+hGy6yU/fj8h5/VWZQcgVi5VrCj3bVACt/KQM7JpiJKRUvm1TWW4XV - kSYTW3zE9FvokgsnKIoThFhShvq55rBv0BVje1JtLrkaPvDNVsZ5f0D90g6pA6OcpUTW+AulnFfE - 6Om9MMGIO1bsLz+PxbfEaXF/pzSfjQgugXDCz0d8s5lHzBoo1Pe7abczzxW//2QqXN6XdALP+agM - qgYzuG903g33NLG5fiohhOMYuVS78OmcS6UBXkb+xVJ/vCnsXZJFeA3uB2JfBaiMhHoF3B0PH+KO - ZKwoKYMY0ivPuTWjBv2s8PyMiuui4ku5r1N6spgJdmmVYNWjIaDmlIawNyQRP8L9tVp5KPkoge8c - G6dsUebAK1YY6V6M/aJK7FUq9jvImNOVKAhy9ljIWQMdL38Q7TjQfv3VG+IfU+JXga7wIRC6v/x/ - anYJ6BWjGDCvy0K8y47aa0ofEL6M7EuMl9CkS+yWDsJvbBBcLEbKYzZugZE+9L96Ncc3Y4az751I - rseDQiexiREeGh2bHV8GS8kkBVBqpGPJv7z6+Z5NFqzXK0vwEc/pFIp7CNSs5909vcbBXFRVLg6O - zhJ7GeWKFvvdBBx90HEKmnvKDtenB18HFBKVFZVgKlnSAbu5Czh4WH061JfAQshLoLumdRHw2vEo - Q+8UPbBtK2s1GIqSoaXwPBztpCjg2jWFcItXkj6Csp+r1OVERik9d8HPVzWWEVcjxL6yCZTVNVjA - WApQDq46OfGLHtBo5QY49p6IDS1y0+nw9VtIVmPGruSbFQu9wQdbfXC53Gjp4Jh9Bn/9VZWFtqfc - Nx7Qr58LuI2C1ciPNSKBcyUX/q6m/LCDA/xYcY1N9v4IeEuoQxhnKHCX7X0muvAMSoXjHXvLOato - 3ocDJLtCdBerwspizgcLPpsxxGES2wFheH9AV12ZpgNkKroi4zSh204ScCLKFaWNBlXoVPJIzgd6 - 7ZnEXzMUvg4ulvLoAaigTxkgp69H7o5gUxZ4GkQLl11xKIy3irst3xpiAfrkDpkK8Fr1liAcSTQd - qiylS30LhB+fYLNkz8rgWtKK7v7ZJHHdi/0Yu6WLxk9/Itqhk8B6CgIfsi60fv2sWmH0lgH9fiQs - C1EfUAOKHcCaN+Lse/IpwzitAfOWy4lWozUlfllJiLzXNz7mygVQxr5lB/GU2xN/iwzA8nHVoFfw - FYlyNTh7ee8lDr3dcU+0VmHtWdyzBhJPmY1t0ByCLjBv4d/zyeX9C2jqYxUUpYlJptavlAsb4MP9 - x1+we7+O/TcZ9gJUytLBJ2ooAQPcAwdEu/PIsRyuW74HIRz2MMTe2yjS+XgvNSCSD0fUoyzQaZDJ - BM3xpGP5cHB6Xrd9GZ2ZbiTYvJyq2V3iGD7ntianUzzTZSGWA17AcokeelowCM2nRFwSn3DeOkMw - g+XBQTt1PsRZu2/Qaoy7wihyKVEUm6mWXOsESKsYEP8xv+n0fiw7VDHZnhxbIQ0GUO4KEM2GghPT - cSvyhpWMPEGSp52dvNI5QkAD9yBWSLo7nQPqgzSE6enGuOzDLm2iWLcYOWfBwafsUlM67OAEeXFX - YKXJgnRhzsiDk3W+EhmeVoU8xUsEeQnAyVN0JqWX2JcRb4uza52se0qFt5WANBso0Y/a3Z4f6pyj - 5jbsp15HhC5Mf3HgJ4MMsafwkrLMQSghmPpm0wd2NSniuYbspUzJKU8ZQB/+EEM2QBGWi0q0Zxje - HEivLIctUa4Al3zVHZqKcsaOevHBlD4v/m9/XP7QX22uWbgOisgAxCrx2q82hDWw9sJxWlJ+SNvd - vTWgfnF17FiP2N541IBI5nkXnqsE/PGGIgwXEnwir1qTUaihVK4DMThfC5hSOOXwV4+NQ/xVqPlk - pEN1N+5Tb0cvZcD5OYNB5zwmJGq1sqQAFvDS3qjLfb0C0K1+gOcZ7sjWXxUe79UQssZ8ml6SCjZ9 - sUroFw8yR79g2PgCznmHpxfsnWqGd4uDr6AXsdLvw4rb+As+OOOAtVTWbKZKXQacj8iY+ttkAzar - viWYLXAiZixVdHLsxUPnUn2QBLrfdF5pkkOyK0Xs7K9yz5qPxoG3Vze5HDO5KXuJHBfq312Gzegh - p8P1ba3g2EovlzlePwEfVlIIB+fEuijTzxVrxAYDAu/iurM3SSljMIMKCX5aE/MqqnRRHeRA+Wwe - cXgln2DjlRIqOyFy6+DAp2Q0TzOUaZZNjO7m9rZ/DUi/6g4/LaYBoyRrIhyq2iI1+wnp+oieIUhM - cCBuIrig3a1xBk3XGog5m1Y/Z4OkAkYpPHcdX0fAjnbfwNEJn8Tc7SiYv/2eEz3VriZ+48vVuda7 - H29Oq5rQtH3EyALU43pyRk4DPoNSJPC93N/uep3mfj2++wbIH/VCjO/nrGx858C5Zq5YlYy0n5ko - YKCUSBHe+M5efve/P/BHd308+HQ5Ea5AYy4Qou3Pss2K1V3cEk8mOhqt4G1hTQTC+r24YNvPrb5a - sE9XdfrsPp9+hlJSwOIsTROqTZku8Kn8rRfJ5GlJhx8fPD+CO6Ex7egSGrIDj0/PxtGmN+f76zIj - xFbZhPLaUaYoXnykCNOFKPFLTwfTl1Sx9MeOaHqp/Nf+bfkwiY9m6gdOmVxQP3C49UcUrLubHKKr - G4/kgt5fQO/fIkLuQSjdZdMroz6nDDyRbCFKOQ7V/Lo6Fvx8oz0+vRjNZsLksIJiNBRyHxIFsEdK - Slg+dcb98SoRC0aDx7SLiPZJZjA9Ga9BwtFopuxciXTe8huwo/jG+le8K1Qeju1vv7ELuntFDUGX - Uf0xany37jf6Vx/i3XOH8fmT2jShhwh+vVOBbzfE9zMbLQYSg/MwZew82HPzRpZo1rk+zRYeUqp+ - QAS29XH3Tfe0aTAwEpRauGBj0F7KPJzOJXxYTIB99/Cx11JMfSgng4aVAejpuiNi94uHSUzOj2De - 9O6h4ZkQnx62bLO3Brlw4yF8/g6qQptJGeC+OfFE1q0iXYWx3YloLi44gnNVLY3aeJDTWoDt2Xql - U+DKO2jTHSJ2fPPsJVmqEllKXGIrPApKs5xpBG5Nf3DFA2HTBU83B37Mc4ftnn0EhPEUDVoMOLvc - cn0oM0deOWx20p0YrzdP6f5RJAgQriDOzVjSFrgLAx2H+OS4+SOzfV5mhJtEnsRRhcoUt58ORmWz - +9PvvHY9T+KPR/R+bsF8N145ZIwqxdKhlNKlZPwCqZA6GFc1DCjLzzLyM8cn3vWmpoN/rA349p+W - y7uqRNu2SXKYgq87HeRuUb5bfsEP9TCJ54yrpmfEtOh12IfTcnONdFk7IMJLe6V/ev7XH2FPb8V0 - sIYmmFn/XMITYOAk9vZJmd24VWFQyzGx0sRUNh7LQfk8Me5s3GH/FqHsAHrWC5fbSVxKL4scgZsh - xlhZLpASNsk08OS479Rd+Q/d+pv709vYohWmlE+WBFUvkbire/go6ylIfRgfMooxc+mVr/fkBUhO - vTdxbVRVy49vNh7FgdkZPfWaQwhG1rUmiNZjuq3vADXe56cd6A49TX1dhalWTi6XvfVqevlNBM/X - yf/xcEXPSjL81p9gehXS+afXqPnsp5X0F7oohWHAXvoCcjRhESwPvnHg5s9g9/lawXS8qR5KVGHa - 8ounE4xGCZ7voY59t4mrNZP9Foq5UxB3r1iUz0gvQ+euP6b2wgA6bXoXcpWR4iQMtYpT+smD16py - iSSu1CYR34Vwq9dYAfPcvyrj5kPTmxDW1aeVsvWsOsDiNJ1gi9HASj/GTsSnE8XSfjpVHESwBcpO - jLDCnUkw3j9+gS4Po8SP/feUcqRbINK56INV3c2VNX+nO9jMjysxg/4JKBl0FRa76k70536gf+9v - /cJlXy++X5mhiVCbyTXW6ZP0syY3Fti7G9/MfU3nPvZy0FwKkRihmPdLsvQFiJSumth94SrzvloM - FEUOJW73tQAFRBjQieTLxFqhErAbTwDumXpTkX+HYHiONwNWO/+A7U1vr5l3gD+9QRTzltgU79UI - 7tzLgs1YUihjZXcNdsxlJucPx9gDwfSvP5Hr1RwAheJxQrsWH6d90+3taWatHQzT0SB6cSyDpc8v - DhI+mUTUaC8qm79rgXUeoz9emfbZZ4Kv3azgTL9d00G/dCvM5ZeKcz5U7cVoCgPpt9j5Lz9n/zyV - sGDF+yRe2LXv1zZXoZTIEZG0M6/89Dr89R+7eVs9v47HAVbPKP/FX8qke5KL8uhFLiw9M13tY+vD - +70xJvB56oDsY2aGKxgscjONKaBkwBq0jfZG0s0voJs+Qv40lzhL3NBee2R58KKcAyyHNgnotzgO - aNObE1HbY8ULTqLCoywesTF5i032jzYB6q0d3L22Xqo1q7nuLx+l8xUrE9ntOrBO9gnr8cEKeHHn - yYh0dMZnO9lRwti3HLrw9pjY1dXsn15Gj4t8dyfjOKeLLNeO2IGOEA3OVU8ft1iCQhNoxO5ZlP4+ - L3KC3UwPSVDt5Ug/JQws3Zg4vVSC+SveLMhpHcCb/wzWLR/Ft6buse9kRrWK6BbBRbIAPqXXVeET - ukQIuivAmmSuwXo1YQsvKWqJOaKTwp9WNRQdZ/SJ7riLvQpjsUMbD2FTb6rqqzUWAx5q52KNtwc6 - HsZzA9OmU6b9oz9VrFJIBjxl4gtvz1OR40voYE+vBbFn65hS4YA3/fXmsLLVMy49siGkvHXC2nEv - 22wcP0S4O4IP/umzsf2QBhrLXOIzPAjBbHZzAmbfP7l7vzr39FuYA/y6g0kkCw8BxTc4iUzbzti/ - Tl6/fMyLCOe8xeTK5zFdgm5yobOPeXKS/UlZ3PbAiGS1ZmIbDWOPaDIc6AZvg7iS/63mvS1x0F5K - 2V3IDoF5un8K5IazTHLlhPpF+LQO/PE3PovffvP7E/iOv3iiU25UNLQ8GUkxn00HlPo9lXxGQlZm - 8XjTk2Ds+WOJahR9J+4GlWB19HML+xe0poN15wG5o1EWf/6LtpYtoDfPn9Du2i2u6AE2/el18b6b - WoyL/ACm7jlFhzzyXHzVXali0TerwdZPsBl+/J7GniDDsskZYpdcBTb9O8AHg/b497zD9wYMiJtY - xp6ihyltp5cMrb14JEokB+m2fg4oDLx3d93Xois5RxL4GoWKb+BV082fSuAr5BhyJoKZ0hkog3hd - 1ICEu0NGqb5+O/isTk8ipV5qfzdegQenKYgZ7KaAlg9BhjtfhuS87gZ7tubHDH48J1tepdC77E3Q - TEqeWKfHh25+ugqTV+wSzKXAnpj49/360+U3vnvv0a4GG09M7DlplPUsTP5hWy93RgILlkw7N1Dk - ILf5C8d0Ws4ggn1rYBcwRUS/86XxYGtmIcnoJVaGOReyHy8Q9wqzYL2WA/z5EeQ0OTMYLnk3g4bn - Qncs5qWac2xmUM2+PP7Nj6igNxncL+6RHF+ZYjP8Qczh47tOGDdorGZZuxnie62f+MhWTDUascSh - Z+3dye28rMF3tKsa6tLxTIz8ebX5xPkO8Ds8uwl+41ew+eUrTN9P88cjv/4ywY+Ju+kwJBXtaV4m - 8CPVHdZvShJseqL+1V+sM2kZbH6MBS7pvp34myJu/qO0Ir1ab9hB6yudxASE4MoMBtFviK/aRLQ0 - OPPJG8vvp1MNAS9s8d9jd2lOuk3s4h5BJ/FuOAfdvafgZiTiOXzFrqhWXUXetpz88X89rXY6559l - RV7xVbBh7ddgiKI+Bz//xQWoVbqbddmhO24FLNsFS2dNv6/glI4ffGu7Jh2Pz5KBIeAe2/5xdGmC - cwNZuZEwrrca1O8LVQRAWYjxHApK73I8wTVtWGyNN6ua/STM4UdqOheAg065MlC6wzO5mS70oKOs - MPU65HGssenLgJKnG2nQCTWfWKvk9mTj5Z+fTS4y0wbNy582/b+e3HLjo8E7ugw46sDBWlfQatR8 - XjxwXm2TP78mN+YJvoW5nmahrezRKi8MasP+ja0L61e8+gEhEChjTwGu9unmF5VAch4Xd2Qfkr3c - Y+rApDu6Ltz8J8rVowa3edsf/3JcPoQi18wefiBHA/Tp5hrc5q0kERxGoVfMJiB8AXc6oOmosP5b - 4qDiOIvLBx9ZoeIulqGT+DdsUKeq1tWNO2h6A8KGfiDVvD0f3Phsmpv+1a8NTlooD3qGlcKb7Hee - fBq4FL636eNb+ptnom2+jH/++qJeWg4Wz3qH4+cgUb79sjFUysIhR+F7C1YhyWUgFvNCHpfDCmY/ - yTI43l4zsY+L1dPxvCRQUfkVGyLogvVz71vYlUKCtRWLwcz7HQf281HH59QWQfsaYQ7Dr3+eIDs7 - CtdWTPubf+BUHKBCK+wNIJY+5l98s+Gh5OCRiQdsi0OmtDfDMYArjC3Rfvpp4CYD3rrL5HJh5afM - Vr+gWV3O2JqtnA4v28vg/nx7uZNZL9U2D0+AazErDqFmgPmnr5b24GH9Ubrpr7+BlFwUjLf68Zt/ - w+6rPfGJEN+mK8fGcNM7RPHWopqP7TFBbrjKWNLON5vzlKwT7atUEsOrTYVj4m8LhU8uTbMvzOn6 - uVcd+tfvVMD//Pf/hxMF7H9/ouA0MBoONe5FafY8ZHA2RBsfr2VP10eoDnDRVYvEkJiAGzOVQ5p6 - 9/Dz2D4DylaJB/2X5BDnyGT2apgBA+f7gvDtZRwD/pN/DDQtmUbsT/Sk6xtcani/Ys4VoeL0rLzo - NTp+z19sx2wXrKCXRVC0TwdrTQmqdfBVCdbWa8axwhzAqsJYQ0olC5MvMRFdqbKTYWxfKldULQ3w - xNNlKBYri22pJ4Ci71mEJ04945sySfZcOd8cHtTwStKl9aquXrwVfS+pSdRC5AN63xRi4pcKdnNE - 7DmgTAtHWBOSf+ovoGQpfNjFvOsueJswe54YgSAuKTZ1uaQzfxty6I73LaLkqZpLuW0RibYJ53uk - 9lgNXwiPoTHiyLLUngr+MUbN431yX3c965fxMxegGYsK+6dMtJdDE6qIlcOAqDui9+Qmpz70lf5B - zsv7qYwvXpegOXEGOTJtnxKF9xzk2fkXu3lYBQtXXRxUPXYOkSZBVdhvO4mQUY2QuK9DqNA2v8rA - FJuMKGYw0QVcryFyvsmJ6ETqlRmw2Qq94qESX7V7ZZEXXMPLrinIWQAWZR6H3IBy0RP3YH2CfopL - o0EWuFo4bUbGXjzpNKDpVbTY0bJ90FYRkyC9zGzi7rWtYu2/CYwfy0xSpX3YnGWaE/SV72OKwLwo - yyE7WuiSWaz73Vc9pa+ydFGSmBMJHOFZ0SSSZ5QuL9+9B66bcjvznMBWmhA5PVjdJufhrMEb3BXk - 9jBNyq9Mb8BRlCSsEudD+TnRGfRVNA2fpTYPOHroZdDJNo9VN1377yE7GpB5xAnRuhdVpgdxPKjb - /JVoQWLbfKEz699633OzAzR6JJx4suIUX2wP2PPxtgpQ/soKuab6ru8nzXVgV+pXbK+9oqzzG5Sw - VS4DuZfLZBMrvtbQ+cYnEhw+CmUQFizoNyeDeDrDVjTr1ATSscpdagYuWHyTSZBIA3liV6mz+yJ+ - xfCEHzcSZv7WIQJfQrJWx/jk+npAgSSUUL3BGTtSWVdDXbAu9OH6xDEkXzrvaluE3p0ORI9fTTVr - 9a4BE1YhDp/f1p6fwVKCnXwAExpvcr+oM8rhWW8bLDFL1NNvaGnQ7Zi9y9zkMaXcGKgwVbwFa0A/ - pX/5GbTZBV/GQQuYB1Ec4PnWkUQwDnt286vEdLcr8RELebBedT5GBYML7KwLBItdXiN0P4Q5vnhi - 29PbQxrQL35vtycM1kAtYzAK9zfB0D0p3F03JbjIB4mYjm/2a1P4EoTgyU5sP3pg6ddrA+W+WYkO - sRmwU7TM4NayApYuSgCW8ohF8XVsF3y0uyNY6rRyEK/DG1Yn8xpwWTKX4Do8RHJN8hUs+XdxUeu1 - KfaTjlTDemA0xO4klUTX4NGvKckTaOj5m2hfT7XZuQMJvAUzxF4SJOk6caIPW+FcYz0ssTKoHrOD - aDwU+LrHrUIP9rVGQX+U8EOPtJ6hLhZA873dyRHjtZo94AwQuuKFnMhgBNR0sxkcQ2ucEKpcexqy - HII5TeJpzMzR/osHp2wd/GDrqOfaThrgbAi2O1/7m0Jj8IkhFnYZsbBmV1SbEx+Qh3vH0derbYq1 - IkcZl7Tu98Yt/RpfAgh7DvYEL5AJKFdJxu9+ia1F7369XL8GNIZsj2NX6/rlsgcllP1wIBfHP6Vc - 7XgxGuZ9Mb3T1yngOT8toMhnDnlC960s74vnwxme2wnGvhCsn85nEESah4/zl4I5Tc0afUc7cyE3 - hymR+S6CIRid6UDfEHR1x6vwFBkEP+ydSbkQcSV4XhTdXbPdkq7n6FbAXn1J2CvFq0LLoZLg62DH - WOONM9juL0HnvXkmcoFasKzd14dqUj2JodiusljlJ0fudVVwqGWpvR7Yzw6cIotsDusRcIUMGFSL - yYCdcPz0SwpkFSnrLiJOdH/TdW9QH8LomRKnuGDAHdgPhLMezFjf6he3HlgDrbc5wkfHf6c0MKsQ - Wr7dYLc3k2ooX3oIwicUiLITVjCjRNF+9QBfBdBUc8v4Ncy+yoHo3Duls14PGXs4eGd84/Zyz/7q - NX1NX3JmAr2nsROqwG97HkuzSdPx+uE4xPCPBQfM+0BXmDgW0NOZkrws93QJH5yEjvuDhB/L/kSZ - 6eg4kGIf4WNpaj1rlZ8MRpXsupDJVrB8iVSj7yvaJrDGooyHJlPFSNFmcjrUazDFpdT8xc+5WOZg - adK79osfd3aJrywnceeDX706KoqurG50jmFxoSxRkBP2s/p61ciKwpncQc0E4zvcx/Be9jqRlerT - r/yriRC/z3eu8IFVwJtutoLrpF2x6V2ONoMXRUBG0Vr4kT/cajnrdgtPwDZdSnY55axJ1tDWT7GM - SNO/t/oFy500YeUifis2w1cBfq9N4PLvue5L9rZv4XpbI+KcLB2s02UR0F0TKEklWVWYLX6hpXAV - yR9iVlHjm4UwuqQUS2c1Czi9HgtwM+SWKKFrp8wsiRpwXspCdMvLA3IeThrw4fzEOjjvFfr8thYc - b/WVqI9r0w/HmyhCwCgzkS/JV6F8FkZwar0XCdyd2s+UvCxQrbvPJNjWu5q2eEQLlGXsyZVWcUvI - rLDh1o6cyke3OfYvD6lwb7mHz/2Srsqr7OD9EOXEaGsNrKXTFUCLwIPYHg/SRbSzErZsy2Ln1jF0 - ODuPFm737wqC3lRrIRQcVD6u7M6H+wFQ+zwXUPk4MnkEpW+zSFVzuPUHd3eZFnvox6yFpVboOFTL - IqA2tWX4Srgrln0lBLS6VDmsHtDBefw9V+t+V/hwheuMtSDp7YUynQYWnhFwHAW7fuVbSf7LP+vE - ve1BhtSDXjjN2Pm+uGDuK3OAxdBGxL7nkd2/Jb9BNUQpUQehCUh7CBvI3u6YmKy3guVJVxmhNA2I - dg1QNS/WKkB1PA4knpeETuAkxFBePYv4ybECi+G+GXH3LWacavtLQOcO5vAXH5HC2ylnTE0EJVZw - iNrVdb98LD8EXCA/p0WWwoo2qSEhOisDNumtCOg7TSxwq4bE3R3Ld7Vu8QORFt6I6yhpQPtWmWCg - SQ3e+KJfW2PLT7ZMsdRaKaA3OfCAOioD0ZdwAMuRpzEcO7XEGYj5nrT5VYI7n79P44552LPPaCva - eBA7Ay8ri/taVDTemivB616jVM66GV71R4HVQGHBnFyMGf74WVemwua39UNnFuhYttRHMHtX0QW/ - /vTUOjPlLybKobknItHeBwLoLhd3gKn3NVYBLavp0D82h8uWXaR+rmDRxMGA51utEvM1pdXy4rEE - j4BwRP4czv261XNY5ub6qxcVe7huxyM23jPjnFXWnXmO4ZSwHnHqA7VnGr4atN8HwtQA/RTwVvyo - IUdZMn3X8AzWE1t7aFsP4kApVdaLCkt4U/jcBfM7V9bOuIbol9+6i690NeogQZbCVFg+6FWwSIbo - wmVQa3zDvhHw8ZLlgE/yGluL4dl8/DkWQHBEjE/vO05/9RSsmg2IoWaPdLaFAP7idVoOnlttPJT8 - eBI/v9dDPzdFDMF1eIpEDU+STRlj4OBzYOHEpN1czek7LJHWcGCac/9C587/uPBRf018ckGgrGWE - cvHVfO2JHs7I3vLJQ4dmlkhgeDCdjWn0oHlqa5zspTsYq0sXg9elwdgRUiugb2ssxa1eYK1uCzDZ - giXC6v2KcHzvfEDb/CFDDZU+eT6WJZ3XA6Mifp/tyJOr+f4bgymEoeq8Xa6BZbrCRLUgQ8QPPrN1 - VJHbMtU/fif4AHowqykWAX06KTmGz3s6B5sz9JnpE+vJWaW0GjwBptIkE+caBcHWv2QY2HqJldDt - A7pv6Qq9B+TI6XM6V0znfxwArVHHcvta7DU3lxWmltTh+0MT0gnbYgYnpzgTo38x9pC+wwK5RDaJ - hFe1Z/Rpn8Dy7EnEuHc+pefhpP7xzV1uM2U5HT0ZvYWmxw43h0F78joG7gvIEf12UJQFXm0X3GXy - nSbpSe1VUgoHyX40YO3r1QrZ+gVYhU+DDUsPlFZkJ0HMXFHCUhoNtO6r44SeyY0Qacv35ds24iGX - Dx1R3/CVLig8qDAGxhM/qgn1s/g6SsDwhoHI+2OuMKmUGVAAqksup71jc1d6yeDz5FP3IAKj33iy - gPf+cMZnPWqqVobUR/tZDLf4ofZM5lsJvI+DSI6kzF4J1xog90JA9KPE07ELTQlezK7FEsuYCkWh - aKFT1UiTMJh8tZ6jZwG84qlOe2PXK5MdWAU0rrSd5tdXU6aQVg368dxu5CuFyg2axFPbQSyL9FVR - /So18B2ZEn4e/MIeH6rAgI1vp7ceySnXGY8IkhaOE38Aek/J0nqwGcsKK0anKMXZeXS//kWMvWIH - S7IcfYj3wxVr2ddM1515SuA9DFVsiKlhT4hZGuSY+Wfj574av3kA4QurR6Kpzwksz+qcAHPEI5G1 - 51DNl+4EYXKr9+7KZ2NKJeNrQCHFPt7yVWGb9KL97mcautqgc648ZdjjXCH3OGftEdhWgjY+mNZL - 8rXn8PudIMM/F+w8paInh6PcQk6QD25tWlW1fnDqQfbAiNhFUqasoiaX6I2frQtgdVbGnz7Z+Ndd - HHCx2QmqHgQTpC5wkZTOn92+haypORNP2yldzHjq4HK9n4m1DdaGPLRbsRDiDmfhqPfcYn05APft - Hpu38wksF0sroHbkXtgBMV+t4CQkkAcBQ84PpqRzKRcdOKjR1YWvcken+2AmINDkxt2FXaS8hSzw - kTbrMjHux489bDwLw0dibryRpvPuLsA//8dQM5ROj9AZoHzX3tOyA2o6vRlehJyiHzG+vN90GodD - DnntBic2Mw3KoMRWgWoo/q9fptOPx4e31WGnPgQ21/uRBYT5PGJbvrk2Py5rDA/bxOHy0kKlG3xV - RjufvePkNmoBRxVORoJmRPjcXoW+Kz+lBjNXkMg9PNTpF6lqBt9WZGFVqlpA0WEtUDT4Id54vKIp - zqHoiuuDKDE39YtqdzuIgIexTZDYL3t6bmGMs5FkO02y2driGkiswcEqZwx0toKghvMovEnO0Nae - qQIhLJm1xedv3CsEezSBua4ybmukDKUXE2UQNxnGz6woA7LpDWDo2Rt7k1Dby3pnWpjfJJ94SSCm - c6z7GgxQdZ5A8jIqbijnDpR2/3Y52R6V5ROOvoh8rcdKP8vB3DA7BpZ9+XKrUmOVj8LHLnw97ip2 - 4c0L1uDbzXClmYGP71PfL1YcFnCRootb1fcpGBrgFQircj0Rub9Q1qYmhEGbX6bklOXB3HSVgNAI - CmyeIrXnjhCGv/V1gdI+lElaaYm8unXdJbGIvUjG6sJtiD6NM6QB7da8g/041e6e/1g2z1RDAsHz - eMVHM5JSJir7FZyv++/EGp+lmh3B5AB/cXKsWVbdz1daltDXuY/b5n6kzLvg5sHFHVnsxt+xWn/+ - xH6gPdEYqlDeSxgXFM/zibiyvQR07WIXLLSfsIMVUdn4VEJbfky7sOPsF9YOJZyc8kycLT/W0ilL - +OMT9sILNtGu/gCja41IpGeZvTzUmUNrc7oTe37nNlXmXQl/fokaj1X64zNA2t3ovrCwC+g1SGTo - 1rpGzHKZlHmezwlMLx8Gb35Dv6BvDuHXFQD2z+mln0OEsr/6dhadO/irh868xy66nlv7z48oNj/c - ru9r9fMHQXJSV6JcD0eboQoDYWMUJklc5WCvkf72QfoeMncxoyJYN3/xV1/c6+bv0X1eMPCmsDnZ - 9HS1sDyv/eofOfWjR5nXTSvQ3oYp/l3PrWHZwcUxNWyGz0fF38HDgy2MJ+IqrkIXG2UieD1SFZ/s - 3ala3IvzX37xiYFY4U79PeKbWVrcqjk5FQkeew2Qh3PHfl0eKirw5gp9nfngyMi1gO/PjgFtbpcQ - R0i7lKY42kEc7GR8EkDTrwJMV3gAHHR3zesWzNaUGsCZnkeX0bJUWSxVWpHZathtBuer0L61J3g8 - dgVRT7Zjr496icCbSV9YGmq5moRX5ogivcg48vpk48F0B3eH3J3EyekVPth7EWwA32C3hFpFww8v - wPgl3jF2kFyxSZG1kE3rO5ZserYZNvd85OmXpwsqQwnWtjMGmH+LJ04/s1YtYmPu4Fl5ZthNrjZl - +p3pwcv0lfG2/3Sy5asIZ5UcifS81ind9NLhpY0jPnLQAbwhGhCKw7sjhsQ7PXs/fRxw8PsYO7Ef - BwOZnyXw6s6dVqX6VPQmSD7MZdBNoFPbYKgimEDjIHrT/nu9VyuZ3RyIif7A+oLifi4frQO568ed - GJOSYBZfpgz5aujJjxfXz25qfv4bybraAN027/jpJ5dWSwcIvfcNPJQNhzf/q19ecREiEDgFUeKz - DDgVehrQeulEol++6xOfQCtYj8R2sKDQ54g9uPn/RPWTzl6K0XX+6tvWb8Cf/4pw/SD6e1Z7emFf - Ldr8Iqye7MFu9YmPITupDTbOimDT5p3soDp1OlFNq+rpJ/9Y0EsTHZ8/I6usJ83bwbMnjDj9RHsw - as+6gQvrmTjc8nvZ9DO6mG1LkrItKREbRfrjM3xsnyn5zSPGKvyS84AAIJAcJmhQ60Y2PZZuek6D - YjGz+Pie+IDG8tGCB8m2XegmU/DN704NQv/VEovPLtXC3r0YHlF4Ibf+SCvaWkcfdrLJk9P9rNCf - /y9+GPjFx1kyFObQTyq4s2ZIjtPuAVZV61V49SN5kqM+tgegmTks73Lovk9yQZdtngF0ekOTkPuc - svpfRvz5d2TTS8oM948Gbt838WFJFHr0vxAYbcC603U0embHCCWMI+NEovcB082vF5E3CiE2J3So - yO5QxMhEpk3i/sUojVGnCWT2zMml12cSrI4/x8hNwIscb26nfLs2nKGnB093r0xqwNrusUYf0+ex - K9uXgNKRD8F+SjSiv4xXSuPPsQTlTp7cNR1L5ecXiHnh3/Gm7ysS1vEKX3csEsvvs3Q2hUbd5sAp - li7Dvv/bL/CeRuxQW6l4eq8a2BuD5XKGuu/nhAs8sSy9lDwHpbSHzsh8ePiGBEuWPlG66Us+BMTB - isfzyppwlvvnT2z5r7ALw7jIvTQHFyLlXJGscxLRUIIUn5+amM7XuIPQ+7iIWMyzTtt30WsQ4ebh - Ng0sg7/8+kzBxeVvB8Ve7PIRAZHPHXfvlTToMlbQwE8/wG0+RFbcrX9+i3IRzWo5ftz55++4NOam - atDZi4a8x46bBJaqlN3TUweFtj7i3JNXOnvX1YFfw5Txj8/Z9yX2Doz8OhCsTGrKuB9b/eND9+4f - gnUJ4Qqft0XCcqB90q67mzuw6Tfs7VKF8mmh1EA7XA1imSkLpiOEETxGY0asZQFgeWB7haYTP9z5 - ogR0flgyhx4gLMhJuVmUgufNAcXeqqZl82vHxqpzsFzTM/mt/yTfvox44rTztKveazr++o8fmZ07 - fuPent9FpaKfv2v0r1DhQrdywTavxJqRN+mM7SUGOZSHicd+m851gRw4TE9/Eo/8WNFhdUrIR0GC - pWR82Yxh1sJv3oZNfq/07KOzIyj39UrinSSA7tgWDfr5xYbK1crf/GzzS7AWHzVlyfBVhNv/c+dN - n42GOzKgzO0Vq9ftFOcBmi2ElTD85hE9lapiAihm6o33ymCcT1QCT50tJx6cn9v8YS5QF8w+VkAg - 27xUtYO4U8to4s6aWbGCb4TwMd8fBFtfiTKlQ2s0CumbqNs86uefw6+iaiTceHn+7Pjur96Yc4sr - +nlLDLrOTYWPp72jUGe4ubA3JgsfbS+1R86va6C+46NLMi2t5gbEBfQju8Nu9V4DmmGVg09IE+xw - elvRt5TU4FE89+6B3op01et3CZvafxBXiAW6BPWXgwzem3/+4lxHpYfOQy9hVS2lYIjKfoaXQQuw - 8WqPYHajKIeoD5eplJgIzNJ5VeFepxfsbjxAS71r4XhSDSx1nkQZrzgZkIXp12X32FAof5wEcOL2 - +z9+4dDeKWHaBvY0K46f8nuES3ju1Au5/fymnXmKYbTcLsTGzWAvRDtb8P/jRAH3358oSHrngpP3 - +lVWDL0MaT56uTz1w4pHkr470OtHJafoogGOMJWGsqWYcPZBt2qpOmlG2fF2cJnT8gS0eu4McCnP - IfbvSh0sqr7O6HbfvybK7UZK39b2G73ZHbBRvTXAdH6cIe+y8C6bfuSKYSI+FAt61ie2J1xF3SPP - QEQMAQeFJads+V0jhFTnTiRDkyoaKowGhVH7ul4kxD3nB7cGhDRTidvo357srkcfqashYz+/S/a8 - 15wdfCneRAL2awOaLaWPjmlVkvOcnRSuuLsd+EbrhE+vY9uTLy+L4ne48ORCsm+/VomRwJer791D - CitlSaFfwt/63ZPvraL++JLRaKSFK74WEoxrqkKkDMl2RseSg/l1qD34FOw7djujCugtqSBar2cX - O92XpIvxzAdxDlOAz6o19CuohAElIPXJaTFhP/Zx1sHs6D6JjeQQkMfjzIE3GyFy6hKmH7sxGqCw - ZnesnMJKIcVjMdDv/vWbToM5YtoSoi8zY8v8fOgaBEYC1yc4ETfsvYB+X2uMvs2ekHPoWQpzZ5cc - udzjRW7y7l3NqzSEUHzMEzkn8Fhxkzm6h3LqOqx1tA6WBKAOsSl/wFprSimL2E+LvCwMcdBesoqW - z8+EMq34uDuv46oZ3ONczC6eRq4H27PZk3F0IQ/nxN1XzLHiE61OwHX61C7w5iyY77aXo13I8eSe - fPlqZqLCQA/+PrqMud57jr5uDaxc4BPNhn0wqmvnwnaxbiTY4m/RTXuAc/0sidp2Q8BW+7uHjICc - sfrehRUnCFcR5A7NsBQJcbWimjqgMquKSHW4Kmu3mg7cPYuJZEfF7Rnx/umQG7kHHCi7jz1KWpoA - I7+rOB6lpp/9PPIgdL8MiWpD64kRThm8n9ITPn7uWToxr0mGz7LzSDrAWzove8GFF6eriESkb/Xd - WS8ZUul8JU83boM5eT0k8dMnCz42cgVmQLQGYe1lYGmvS3TIhSCE3wYR8qgkuxqcVApRzFoPjMXh - ls6vOl3hcwx1HN4PM12PLzmHY3CKccK7csCaTCzDtsmeJOu+OFhnZikRn30dnDK7Dvw+f8hl08HK - tp/DL56qHB4mshsXe/5fpL1Lr7MwlC04r19RqikqhQDB9p0R3gGCeYUQqdUCQggQQngZsHT/e4vz - la7UUs96GKGTgx977bXW3nbqZumRHQkxvjTnr7207deBP50YWDko67AhMbXg1TYabFuyq9DlE28w - 16sveShsYPPl82SCu2jFWMu+1TDS+DGihzVd8Z2Pi2HNkd6i7XUs8BPYDljD0zWC3VtfSFhet3r9 - yd8AXLVOJpfgM9WrnEMWXJrbQAwnGYZN5cXobz/NwFtgRqhXW/BxnCKCw1lVONmREhgKaYzdhi3s - te7bFIQTL7jodPTt9eZuC7qC4OFSd3mFXL+dXQQK1yY4eFT2ehfHGWrofsGW6m3hRNShgio/2MQo - K2pvH21g4MrCluS+pQH+ErGCiOFVxwEPHnRd1BMDR7l8u9RTG0okj/YnkLA5vllOrawXK+oQXeoG - nznrDnirz1iIR0kjSufDesneQw6bqBPI1cNLuPrXLAGaMW8za2ZnZdESTwb2i3znxtA+9kzYQQXR - rEa4IOVtOKrPxwyW6AGI+mHYYXY+ZQMTsXKIpXpBuADitifz5Fr4dQztbBMbLEL1W1gufpiWzU7h - O4HXI+PPG/dhlOXj9R3sv45NMLofM/K74hLcHmqG79qvHtZTYc8nFnx8ko5v3+YlMKgwooU6z7S6 - KCw7xh581w0ifkOEcDobRiEOgRu4k+NICv/lpAS1Szpg+ehBe3vchBH9ra+4f9/6ZtgUWg+uc3k1 - TuwZ4X6Er+3o40dPjgo9w7sJXwZvzVPz4AHlvpkEb4/rEUv0rGTzSFMTwlCw8OX4igFb1n6Agi88 - Eb0/imDcbiwHDz3hiBKQql5n9aYjEgoDTlYlBmt94ARwOL5uxFBjwd7U6scikWY6tmrdz1adNiMq - A+ZFHLeYlUVNvo74g45KovOMBx5GYwL/8ES6ZHK9518VeX7/dJPAMjJqHnAuivSh49e+/0hrewy0 - LYuf2ZvA2wt7njnxUBotdq+HpN7zoQc/VsSRgOmGcP1Kwgw1+abgSFsPYPV4NkHDU6mJ7SpfOmYc - gP/Wy7ddYO/PU5RqC8DR15eUtUBDAXWqEvI07TZcIfsx0e1nyjhP65X+jQeWSfDd41ke+Np6OVDg - ORNf3slhWGwdS/Bqaw1RSqsKyVjbEWCH1CPWuUkHIrVBi8gpPhMzOn7CzUNOBa/SY8LW+PaVHjbN - BrvVvBOvAhpd2pY44LkZH6I2v21YL2wiIX0aEnJ+3bZsK5O3hH7wXpAzyTBg3fW9oVpVz8TIy1fN - Zk7AwDxuXZe/zkbGbkO48xf03vkOP8yl4pXox59jF0mXjW4zG/Xo8Aki95R+3wrtOJjDU2fd3dM7 - edU8660N7KRD5c6soClf/vvLYYNDk7iM79vb2V4h2jT7S67FYaVbwGAJnORKImmtr+GmCXMCE3Fo - sQrXuj7S7M2CPf7IdV0Nm7UXORGXyHsT29WY7J2Cvc/l0HDu+IumcBGSyYJ0kFMitUxsrzd8cWH1 - wBE5X/iqXm8i5qACc4U8La6xV+1ZWsjuA83dxOacUf77KxCpmQD70isMj7l/Kk/PVWiItuWdvXw+ - 1ET83VL+5bPt2kY9KIWGI8Vs02Huc2GEn48fk2Q9Sxlng2IGdv947fnArzeODxOU58auYMiXrtym - ePA8fC/Y/LblQG3pHJyGXLiQQPZu2fFz2zYoyJaFscrINfWnoIGXR77hIL6PNRXDnwh3/MJmCSqw - 7vkT6In/w7mei/UcRZYITxWLsdlHM9jHz4re3ThgKTiaGb+KxxlOV9KRc95HNTGY/U6tLiIuBTJP - 13P+grDjSp1c4vabjSQaRPiVioAYobrzQX/QYfoRL8SSrrJNReYRQ2Y/tuvnwxxubcZBcc+X5I8v - 7vk3hyynmiSxn0fwQ1bagiwrSxy7XW2PxjzIcHuNKnk6jmQfH+Dcguk6dfNQ8nQgiRbmEB3up/lX - 9Gu4VgeZRctJFLA537p67gw7hlGdPl265+v5McwsoBK+zSKxb8pWp60M7VdzxffaKgcyn5oFfm21 - wrYRx9nmB3UF9v1NLOrMYJGGbYbDd8rwy1facFGTSwO5c8QTc4urjBYbddHnE8bYTWUNbHs+RSHd - 76waUs4mzq1zoPUTMFamr5DRzctHKGcgcbeBfgB70FUG2elNwHZ3+tpj/j6J8Aq8B76gt5Wx7FgE - UN38nCh+Wg7bYsk6aD+Dg63baNdTHb1ZWPDdBefMWmYbeTkmNE00u0x4Y8NuOfwWWBfMici+dLdH - lKYMSMv27J6as6Fw6TnyYFpOGbEOwRhuF/G6wKT/HAhWemTTQbim8KdPBlYPBU+XLyhL5IhCTS7y - a1Gm73hdIOd/9zPyp7xexDmtYEQ/Bb4obKCQdNUSFKJNI850+yrLHN0KhA7uyz01skTXC+tJ0PMp - v4/fUI6AnlSoxAcd22dkZezdoi3oz9sRK8ahBOzIWAlUHPzd+Utj045jc4hehk+cWjR2/SUuAPve - F0dO4Wf8u6AdKJ99/H/mz9LhjZUBxqdIU9j5J8Xo9fRKfJZeNBz1OWpBD6cIK9zhW2+N9izBmBj+ - DDOBAprpIguvN14hUsAzYG0Hf0R+Plq42PnTdOXqHG64f2LsJubeGCdt0O49DUeGAer5k1ki9Leo - wo+dL67nlRFhvlYzeX2uE1iuaxih+DSeSPpecbbyGx9BJCrr/E6+Tba+ul/yL74NoW+UeWFPJYwP - akcyLhzBss8X3OOJGOZ9BfRyaCLY9NduPkz+nf5K5gNhbosxURldqxdFzl2w5xtsnA66wmbvuoDN - 5SDNKGUEhdZHvT+VQsv9y2dsIWSxeEKljl8TPmcbyzElCCb/TK55xNr0ucUR+rXcjWhiudlE9r0K - 3cJxnIU+cuk4R88cnAJyJpfLtQhpqEgyslV2N8DEGkzY4UpoJJXm8k3tULqIlw7csYmJnJECrF5V - C/Bz02/YnOSnnRvzIMGGJDFOvt1d+cm5uYBRuJ1c+w8v/vQw7xQ2kfwKgq1bxwjUv36/U+BY2jt/ - 9uBJLiV8o6yYbSM9LGCz4huRTPOusKVrLpDBnk6eZWwMR+bI6XBKnsYMRlGin13vwe+yvbH9Koxw - lfQwRYOR0z89M/zpFdimp4kEe7zTLFciuOGVJ45vaXQZuqcEjuCw38G08zMBzTJKvZxi7Sm5dLO9 - cwfVQGbnxWXnYdo0NoehkMQuEkqiTMmn6pG8vhcsuaxbLzc21aH6rZELBeMQru47YGDWPh67XueH - aV1uux5z1JkVlgtgg8Lg4OHjRdhVMAfGjLcS2Bs6cuFFkxXSHJ86vErZNJ9YK6Ijk/4SsTrFFTbj - K1+/Ei0s4O5PYPw6FmGP27VCnW55xBpMFdDGkmRwObUS2fnYsDplUkBStBXZ80943JZBBLNrFHNz - oTRb35EDIYOzElvnRqxpX7UF+NzU294RKdH1d08tePaOA4nP13pYXsJvQ2+BGWehOzhgvdqsDIXv - CWB1j/8lKDALaPlExPW6UhkRqXP4W39fLDOdHdK+mgt40GzdPV3dRFneLstB62UuRHGXQ7a0gB/h - Hfs/l1urMaNhsvMh6KrEkMIvWO1SltGkKKtb2H4fbqc65OAQOAH2PKsf6Pd9q+Dh5k74+uwxoJ/j - UP7paXxuSBLSyb0E0LUjaecjqkKKZx4A7am+sbLroSk6hQuICnnCJtJVe7WPJYNid96Im90NOq2p - J6DXMxPnk/VWhol/Xhz4px9N5WHTf/w/kJMLVjk1UKbwdI3hu65j7H5zexhh6lRAsuBAVKdY//kl - pxsrAZJ/QlqTLLcjuN2wi81Xc7WPq2YmkHeSBivB+rC5VhNT0JB6IRerFu2hpImOju0nwY93cqjX - 61vd438LsWpomk3Y1qvQ8a1iEjNooL1Y9544M48JSzLpAXVupYMczyiwu8/nerHyDt4PeTHDNS7B - Qn4whbfTXXGX68sZaG7MAhyF+4noxcLbS/q+yeD+unkzNFZYz9m5GgFxK0Cso9AO62ewPbj7ZTh4 - aCld3wxMAVTYej6+z129MrbbQe8rOfhx8z/h1I8n9Q9f8cPmPsMHWo4J57rJyUs6HLJp0V7t3/rh - SzXYylHYSgt5sIF4xxdlg02zQOELAMZcdw1X5rWWSLbHO9FMzggnYess6J+ZEZu6VtcLez47sPg2 - lbus4ztbTrOqQni5jVg6En/4CU/kQfG5zTOiRkWP2rM0kcwdhR0vZrrW/ZzAg6ccsNQynL1t5VBC - 1FQd3tdHmVnOE9FSMMk8d0ce0DSDIghQiol0MEq6dXnI/Y9+PB10+4h5KUaZbq0uRE9gryZL3NMU - Gsm/+Vr+8EN4nmVsnavGpon2EyGjrt4cJ/JF2Yop6qDbBiX+8xv/9AHq36JCrJdyVtjEliVItUQh - F83680eKDcgDPGBnjUu6tsNj/Kf3r7v+3R5S58Lb/GmIqTwGukzhL4XRrEfkzx/68x9EJ11vu3+n - DQteBReG8umBdXzIhi0IXy389LnqHk5xNlAW/CSojkuAL2ve1vRlpu5f/BK/md701425CytWTrEj - bsgec95joSR5LM6rbwZ+vNF7cMfrGVafT7a9FFmH2lN/Y9MyKVh3f+H0x6+v2muuV4+HCfhy+o+o - hgEGykhFAnLofMgtjXh7fXhlC3c/ceYnsQrXs/7mUOGsuQs6gIaRWaQY5H6gE+diCPVizLWM9s8z - hLpcc5fm6KHdv8HO8bHaC+ktDupUJ9hh1jI8DopqovuhKIibjJa91OLZgnbqFNhekG+PX+ha0Hzo - kOx8lnLW3p63zxd2Re8ernLepnD58T5Wa68NeyQGFmxeEcGF6EqUA6eLA/n8+yGSc1n2Dv+AgdXj - GmH1DZqMntu3jHQ0H+blSPx6XTUpQa/p9Z6BOW7h3/sg+R0TrJHVUuZf3u/94tpGrNOpzJb4sqrw - tw7fPd4Ge/qO2gavFrRw8NSj4W//wBGVX2LlGa25K6AtVOD3iRV9PIbbI44j+ITkOGsOf1Y4XYAs - 3PWwC4vGHtj+WzLIdG9PbElYqLsKKx40FDPG4fOlhlT+3nQoOIcM27Hh06NijBG0cdXOzSF/h/Nz - LFu4+zXkzz+ZtesjBqbya7ETspfdT+EEuDSR6aIfocMai3EAL5Gh4OvOt3rDrQJx12tzufuva+6v - e4fO6BMjfz8ymqRiCgeHq1yhBBXdVOEFQYjAC1uZ/M02amcSuH7Efj4ylVYvD+6lA4a0N2I86KDQ - u3aV/+aLvMSRD7v1sDjoL99c+csjXIA6tXDXB/gfXvZTMUJ/C4CLLqWZscFT6P/8duL5ZZttoutv - YNy4hSjq+V5vlZpJf/yR6Nb3l+16MIK38DSR8wNJ9maLJx3ufHPud35L5e9ThQkeXu4fvyAEKwtk - vW7DWntXM5b82BSdrjd/XpdNG7jJPFnwcppSd3stwu6nMzqQ9QTjhMl0e2p6yMGHdi+wZcELnQgJ - GHRxSUgu7Qyy7nFcc4TfsTvXp14bFksLINr9d6KYsp+RMzhVUB3B+Bdfwwbc0gEGLT5uN98Pynp5 - TSZQ/J5x348DN3S2bshg13szlX8fZRHkroHO4ozkbt5Xun0XIdhPnPbEqT5ayH79jwkLp5ex/Dbc - kD0sMAXPlbGJzrqNvez+BgqM2Xe//srX0+5XgJ+fHP7h90iHyoUWS033susnrtGeFXzP1ysxpXlW - 1jX1RPSE03Gu+kKhxwe4NGDXN0S+ydbAm79HDK/ZxSbPGHzB3Gi3CsXF8sASkS41dQfgwIbddPJ6 - HZlsTN9PGez1BuJAvar3elACl0fvEWPH1+38tvK/esqMvmctPIpFYKKheoT4vBnfmnr3yQWXmX3v - 9ZP3QN3x0v/p23mJrilds5a24A8frK9hK3t+rFA3LF/yWPN22HQ35P7p84wLHbBUJ3GEJBQHl6mz - lW5l8pOhKEwu3v3vgYJQiGE8sxK5yRbZ6wFmDPd8g/V00infHlcI/Hud47PtqPWRLmIML819IGcf - ODUPDlqKlBjp8/bUo11f/1gQGPyADSexhxXzE4QyNxfEdiZHIWqQyQC4VuMCV2NC2r1rBu1+3Nwx - WWtv2pVhwGR6Or5M2Qg+O/8ATa+7bhuPV4X+6ZM9n2Psq6UypcCT0BfkyV99ZhjL05P7l1+4xhjp - it+/FGbcU8LO7netIq060HFD6VZuKNec2VwcgEdZ2/VYZP+r3+x6gRi/U1fv+SaFmxXd5gp3TT2F - NeREVgPhHz5RXvJoB2sil0Rn0ADGuhF6uPN9d3toIqD5ZoigcqOMuHxd0e1+YDmknL93ol7ZSRkf - 3F0Vg+BruWfz3QLKwbqEtGcoMXPxZ/f257Cd/HsqzyfmBIfpAc4NrC/pxRWv3XugnhyN6DdaT6zv - 83P80ztv2jX4uq5fe+P5NwfZVn7P20NLAUWH3oN/fAQcpq1ekjLd8ZIfsGu2zsDfCZvDiPFv2BVd - CbD3Y95ChjQ3cj8dWoX87ceHKMjulu5HV+9iM4OdT7tbEG9016PVnz/m1mu3KePnA8w/vMI6+noK - v+ADC3PofsiF4XWbdyQUg/XQctgZpY9C8b1YwHMsWfcgDmiYxydwIFvODxf5H+df/QSs5I3nhdem - kOb5IYFzPXHEovig0N2/QMc3/hG79w7DNhXnDh5KrSVe6XU2VYNfAddGPBCz8hrw6+72CMe76GF5 - r0esrmMVMF2ojM3KU8Hc58sMqPZ+upz8OdL1r366LVKEb+1dDTmEqxnu9XCsMvqnXrTk2MNXtfYu - FwxhRi7MfojT0woi7/i7TcU3gF7+mrFstLu/+/YEZCSl5i7rfAfjxDA5hDOVXbHb70wU3UMCtO8h - de9C39j09axGcFeLBNu996p3/cTCjTCjS94Oq6yfm7jAs36hWH8kKljUKVAhnw8OOUP+ElI+YNo/ - f30+Hnhj4Oe6dNFffTViTKjMv1Vc/tWP3XK9AsochPn/T0cB///dUSBXDw6bzFsK16rsG9jU45vI - 66Ar/CqYEnyEKkdSJHoZ9+JuMlrvHxvnBrLr5Xx2HciI94uLBskZlocjlShkiwcujCGmW3OLWaRt - vOGudnZW+GTLSxi0ZHWBGSUZq27agmx9TrA9W72ygaqqxIOtl9i0tIXShksh6Dwo40A1Dhkl4iNF - DIS1u1XLVVmKDyig+rVr91A7ycBmHyOFx3qWXIpgONCGCxjkLtKG71IZh/P16aYg6M4FualRn5Hk - y+y30ouNe6j4Z0gfYrdBV9kEbLgiY6/Dz16gZUssCabXEo7EXi0oJ8wdm332osvh11eQypaCL545 - hhsb/CxoXSaDOJ11C8ldDRLURB6Pcf0O6YaToYMn9nN0f7Oh1GswIQFm/H7rRmcdsyUkiQrh55u7 - aCUE0G9wj5DF/iISLo6cHVXG7eH49t/EjuRrxvujsAAf0IYojO/Sfnt5JrRqgFxhICOdC/pqYH8Q - GpJFd7Omn5OXoqOR6zMdJaemZzIXUHpLIrG94y+kN+iqcHX0zuUPg0nZTC1jhD6OQcIaQYWgN5sg - Zj/Q/pyEW8iNgqUDfFLBzIb1Kxu9BaVI8sIaq710H2i7Cg5aU+eD4+/Yhm3Fn3Vkek80r8bpTPnb - OWcgel0Becm3ZDiCTMjh43DSCN7Xg/skeQC79FHOYN8fC7DKDT22qiSPKJIVdnjKArrgm+cKQ+oP - XHF9z0i7uF8iz0VljwzoIrEP9Rt5/MCVsmO6ln/P5zE89wp3Io8SeUn1cSlQLcqv28kR2zT2sZWr - TD3eArb/Fw8Xz3TC7frUEygfly8JoqEcOJuoLgqjMMHROjv1wn4aHeSR+sT3QzwN1MRRBHL8YEh2 - 9k7ge3j6HQo6pcAqNKNhER5vC6nfS0180vXD9vVYFRqcb5DY82A9H/xkAxfFS0gRaAUY77dNhe+7 - cydYd6hNHcVP0a8zTaKJ5mEYrnQUwPZGMnnUimYvWV84MKyyGz4POQu6rC9cuL/vjO7ZU6ECdS1o - 4OCMPeGo1Fwk2zpUu6dH0iC6KvRyL1tktoWJb+P0GzatMgOIpyZxeU/T6Pa0mgCmOCZEP4VbtkTN - VqDD3X5g4yMYGbfHM7T9Z4PvEzkDLkalB29pvOGzOF6UVbihFuz7gaT0qAxc8nY46BDHxp4NQpv+ - ktRB8TGXcMpxK1gD6sywkI8HnHgdE04A3kswHhAliQ/tkB8vDxa2Znidj4fQUJaPtZiQ/+iQaPsB - /63nYwm+rcSY+UN8HYh7NiVQi/qZOGpgKJz4+uiQ/44xftxviz22zEWH5htH2BHU0l4YsPcovxcD - 34Xio/BFI7nQVnWGWIY3D6s9dQy0+GDGhlm3wzJ8uwqeikifT6A6DdOmVBw6HhaBPH3+PRzv38sG - X4vk43iQCZhvYsVBQoYJKw3t6vmgAws6r+2N9/2sbF89zpHXKCY2S17NWDt/eLBo3YU4aarQBUi2 - CdVskIhTojWk2ny2/n0+k84alqHyZ8CAnnNpV0zZaD0yFqrTqOLi7rUZq57FQGR4QuZlMuaa3PR6 - A9mNvmbWq9ZwUfm8gX/xkem6bq/FOFXA+R3uLjefrIzv+kSCH0a9Y/v8OSqUrRcW/lh8JuZpiGwK - x1SCF4dw+NJ+1IyPkl8LSWTbBJelBtiuZfO/8WDzKV0oe6veOjSwdyY20hRltcqrKNp12c1lNen1 - UbDvELrQ6F3glbO9visKUTfmDb6E1APrRpkYHqskxLJqvLLtmz1G+Pe8MOKsXtEhZ+CkRB/sMMFm - E/+OSrCfx8f39loN9OgDGe75yCX1OwTc9X5ooRirNUn1VrCp/3Ri6GR8Soy3nCmdsa0cGrKHgZ99 - HNsL0fsIvm9CTxJblQd2Dh8REp7Z7G66VgG6lTRBdglcoutHPZu1e9//Wy/DrPWBCy6DB4N2Wt0F - ysawRYYvIKIvn3mpkiGjMrqUwMd1j1UBeMMK/JSD/H4nim3+6LB0XCeC+7Rs2AufW0iWEkdQKg5H - cs39S01/SeBCLZosfCsMGxzZtYHogfxhPopbbG+fTprBLY02nAS+Xs8/v7MQu9EOX2CiK7yJoxgK - QVeTYhHlehN7eUQz8GR8M22V8qQfIbT9VzNv2vIdlg+wO0iRiv/mRxnvutahB0CMK1jECHe+wMHN - WBzi8mCpx5w/BfChe62LTq0V7udBY/jW7BDjnGnrSQ0vUNRDySRPZ0yVzQLAgaZ6SIlSI2hP7+fH - RGzmOkT9Rmq9FNmThYwSqSTpl8w+BlSd4f73M3sSq5ArgqWE3hdilzt107B+zscFwc8nx/GMKV3p - TEr4Upa7C16Nk03BhESINEXH137ws+lryRICE3fALu+nCutePVEc+OGMpYJzlOXuDR7w5YtGXpGZ - ZscMfAS04xG5lTdGWX9SkovX1ErIax/fom7XBT6vM8SO+q3CIzjPCXyR4EQcMkYZKzzeJuwGk58V - Rc/t5VKvOZJiVnWXKb/QNR6TFgJijuSpX8Z6Gsezi0jdHomtZzshycYWPm6jRyL92Qw0C8kMD0Jn - uCxLRDCPGw0Qw08Ep8ypUngmzR3wUUybGDcGDqvTSgviqXPCmlvl2Xp/iwxsjyxLgo45ZJva+B3c - mNUnL6E/2HSd+hTGx0JyYYn8bJmVRkDotjyxfkkopVqRz6IrUuTGfnMZ1uZyg1AXvzUxlq81HKe7 - xsDCGq/Yq6a2Xth+E5DgRxz+m6+NleEMnefFwGYe04wm8kX6F+++gYes27ZMh42M6bxyJc1+4+rJ - 6Iu+HjZvxV7xCF4xfGbciVhxWdFZu1cdvBd30233fLyaZ8GBGyvrRPdPDR1/RJoRQMHPrU/Lk9Je - KRj4Gm4blis9HhbrQlJ4URuNFOBJ6HIp+g7i388n98PQUSpcvQCUY2ARJZRaOjHT3QLfZjRxjF6m - PU33KwO3RT8Qi9pXm/PMgwv8AkVE4z2OEsP/jHBhRplo79+gzAlnqmjIMgMbMXJDjg3eFuSK3nEB - PkBam48VQi18PIlkih9l8327gDseYa0K38MyK6PIeaG/YkXJ+GyxnYYD+34mFi27bLVSXod35OT4 - vnz7er7eDw34Lu7gTj5/HthzfC7QT7tP2B0faz1Z6UGFN6Eg86P1fsr2tT8edCaxwJpSIEC73pPQ - 9dfK+HoCn4H9AKVHS5BfcFRRWhPG+i6AEy2CZVZGgE5sUcGrI2VE0pIPoGAeUvD3vsb7HmfDUXYb - OIHh7gLv+MtWVu88yI3ShnVrLMFiJN8FFmw0kVQHNOuIfbLAofpBoqi+Qrnrt5GAGOv1XgGEdMn6 - 2IEDaEx3qaZ2+KdHVl4+utS+OCE/xBILDTsS3c1jdXtB89WDFa4vxCm0rt6EN1eA0P8xLp9dVGX8 - AKVDyOhKkhudF248ZQPEdlJOzi4qw7kQ5kT01eWFfWu1al5G5xLeeFvG52H1bP5vvPvz+RTHRcaB - 7xrB14vH5DLSuJ5hZkWwOBgC0bfsN8zm9aRDBb0VHJyuWsZZo7uAWEGBy8chD+avHhfQaus7dvf9 - uSbWHEMGdByxmtxS+Otc6OL118jucbqXytK/cg9clCCZmSAVbRqkIoTZEZbEGkN14BvwXtAv1lSc - 9Z0F6LqdXCCWR4L3/BaOOTJ1qKuijQ0eUUBsT0rB7T4l+D4ui72Mt2pGB5ZIJCTDalP1wwoo8r0f - 8f7y38+wSugyk4qNcjqAJd/6Qlyv6Q1j0qj2Ot2vUNz1INFugLOX7xztnup2mf/wbJumJoeidndm - IJyu4aqaYwS6h0H/4sfufCpy0PjlPA60bAzpSfp5IEbflRhxyFP6rewFHDhpwsaon4ZNzrUU/umb - pycQ0M+t6oE1qwIXXJA0/NO/qUNuMxOqyzAaT6b9w2tikLVQ1p2/wn0/ERxgJRwPL0eEqacbxMzP - gr3rtQSS8pDNSC8MSpne7MDkFxXR0rXKlo/2jgDPVi3WHv6rpoM9OMB5LW+cHeUArMW3GCHyjzG+ - 1pfA/hc/RqpcifPMNns7OGcIKdLxzl/dYWFyI4cnV8jx1bkzYLldJxZ84NLPtY7imrv1TAKrHzkQ - PHu8vcxJZ4H0zFhuR1ojnItAKOHR7+C8LMxFoRmVWqTd4wZL9X5H0xLpxT8/IdGFEWydW83wYKsl - dobjCQyVIsvQPpwtbB7ZR70Y0yAj3wtlrIlbrNDutSXwzpQX4n7eJh3P8SWHSjmy7ul+aOtFlKMK - PYsixNaw0ZB26dDCs7hXKG6Pkq6PZ+KAtLsK+L7zq627hALK6E3H6uWgAHbHa/CzmjfZ+fewupEF - 4ZcRkLuY4sf+HNk+hUCOn/Ntj4fxS4ccjNHL/+P79SR48wYeKnPCGu/FYGs+SoBwVkfzZ1+f9dir - y58+cDkxaOw/fgmYgm3JeQze4SJEQQS/5BXOa2yp2RGc2wT+6Y3g1x0ptVCcA8j6ZB7JyGbjR0or - 6K/SgxTPC8roub/3f/jvsl7lh10myv2fvsaXN9nPLLclhDQ/ucRVD3+/2jIJQDNEEavaZa+A7Pr8 - uO5nIr2uCFfhdmxhEwU8cTOjBDv+q//4hBmxrL01pBOgMNvazB3X0N6E7zX4hx9Xr2brjQkrE0iR - 0+OiihpA23VxQfZla+yYl/Owbq6UI3ETKbb8w0qnXBFdKLJOSbxKWZTx1QkC2PUSPkdvqAzk0LlA - rkmNTeI7ypzfziIEZ2kh3sL87DFRoAdlermSq38d7Cnz3vstsHyAz80i2xspRhWy91BzRSQu4TYc - qgCFurhh5w0Vey6ENgUPcGDIpeBJuNnM0sH0DC0StYdLuC2Ru99iDCesgPmcHd+dvIm7v4LjfmKH - 1cedC37r90vOlC3D5RSYDOqVbsCRduFrqtV1hRxfx1j3PndKuWgpUC2q550PmGByL58IiutHxwrj - z4De/HOCvnWS4Tt4hcrnu3dEGVxouF3JN9n2aKwA7PzMFRrVzPb82Z1qp0qJEXfUXsOO6PDo3fE8 - /fHjE1tG4FnkIcnzNds7WlaI2ksr7nxVVJb1RAOwpB+RSAEFdGrccYGOMPTY4jifbhFkHfDM2BP2 - jdN79yPEvwp/RdzqJ9lbf6YzPEmOtfNzvT764ijCUb9F88mGXEiLC2dCL/oWWK/LpaaVMEbwVTZf - ogFjzabjaXWh4Mfcvl6VQvsr28BPOrVYSVUtY5NT0YiOky0zPXhSTT+/AULzY2VzS+qSHlfbluDt - 8snco/2elSVh8QKbj+TiTFstwK/b6qC3sU3YqAYlHK/izMAzSBd33H+1ZjGeXAt2PjSLsW3UR8b4 - BSCuNIzVAp7sZY8nVA9QxZYhfmzKRUIBfhyXEWNK23pdEBGBMeq+W+36bmNldoRnp85nGt4qZf0S - XoBlVlG3nPIfXefmLaGv3thE6S6bshzdew4PP+c5H/zPSLfjwrAi4xoY2y3SlbUzhA6OmvKdhXxw - BzLEEgePKjfOW3hkldX4HQpwNbWIqDOngI3UogD9QMhJDkgzzDsfRBNEKnYMNAw7n3Xha/y9/vyC - jNhSBqErv+z5QBpVOZYfLYatJX6JOlUcGE+BxKBWyF2cd69lIFonxsApchY/4PQOh7uaJpDriUYk - bTrbtHuJKdTd2w9LT17MZlg+LBCy+YMEl+/u31WPETLOWhFcHs82ry5BCQ/VAInsvSzAZodHDvh6 - xWSPT2WcpG8BK4nlsfJu1YF6qS5CoZgy4vAurfd8GKPdXyBYvgn14qImQRKZHLzrn+HP7wJDaqRY - +6dPRT9Bu//hsgV8KLSitwqo3cvDms1dsj+/5o8fulWdKjXnjCIHzTY3yZ+/Of8MuYJLUZ+x+z78 - 6qXZDikckyTB/inJlcXocgfccsYhbvHsM9q87zNc0q/o0lsdZcuxDmb0589iX9zPHFoBCyvZbIj9 - 3piavgIrhez6BO7qM25NsoSp/uLpz6/NRuZdBGIiCBK+kZmv+/cpKKBODAlrh04Ox+/vysHw21+w - tOt//k/fyToIsQIeurKcAR/BSnzF82k5OOER6MiB4rG8EunOKBk/XnwOSQ1zxna1euGWxGTXf5aN - Hdsi9fb4+TryD/OAnRL5IS9cE+8vH+FL9ZiHeX8ODzQLZ1qj3Kby9NTBH5+VhNLMOPO6qiCwsUsM - VT4OVJsvFtCsMsIpkL/1JuTfHu7+qdvMnEK3ESUC6DJydT/lrbBp0UgOCJwKzOzuv25//veq8yyW - fh+cTSwHNrHuZET+9DPtPhcXJqk0EnzLjZB7/2YZ9qF6I8+b+qnH7IMTeMu6F7nsfvFafU4prJC6 - YG1M5mxLC5ojkK2A2N/gnLENusnin9/6Ejt56LT+00Jf15150zWZLpPGBQC9MJhFcJfBapwGAQLA - wHnUf8VALANacMnAd7+cVLX3/Swgmoas+97vAJreSRGL0awLf/w5Yze4zCjJ4gf5w6MVZEsBrxzs - 3K92/obN73cSgKIIDX5ZSUdXFsotfC9GiZ3ncg1/Y7ul6FTEOvnT62O+VTnKKyd1GfWg2mvfuhHM - 2opz+9t7tX/x6LUolocP0V9RCnY/ZAN/fgVGR73mTMZp4PCr//yGH12zmyCD6MWAf/xsA99TBCsl - 90l8NPJ655fFn/4jkunN9b/6in7g7u6215uOfatH4H1378R5B86w/fFNH6yNe5q2LpxVXKRAS3rf - BTse/vE7UGYldZ/z1avJ6+67yGWIOrO6eQl3P2pGMq9H7sEoJYV9dYsAtVjiia2tPaDoDVN4FtaY - pP5hBZOaeBv6m7/LbNT1pkaTA8OVPZBgk97ZwnB+BU9pciCyiex691cauPtx5Jq0Kljt/QpA/icp - M3P39JC/3MsGtdpAsSMuwS6HriZYJmbY/bffsBCo9vAi+vuJv/AbbvzJ1kEgqhVWhfYWTn/+JToc - AiJN+Q+sL9JDYO+/uqY9t2XYxIYKUCEPHVtBNCnrHz+9E/2FJb4HYKksR4dlzpbucOk+4agaFx3G - G9diG2ZjTSeGNaFfHCJsEiDX/BCbLDh8hYXIWuaE/O7/Ist8pPNdPMK6t9lQAqfLr8P48rjbfdJm - HbiGH55cnXtBR/93cyFvCTrWGGag6zl4iv/02h+eL5efGcA3QzeX2f0xYvjTDG4fg3HRZbDpyupl - gN5JqWKt47CyWC7jwPrut+73Pfr1Br5rjEZlEt3TvR/C9WpzIzg9jGDH84auVqkJcCpFx/0KVAqP - g7A4MJ/9gLiqFGRUbzsI+Tb9Eb18yTX7fnsz6vVAw46yHun06nNT+KuP1OPNoFyBkAv0k88R4xBP - 9V/9D+3jcw9XNQMUfm0XSgU6kstYZCEtHlX7F097fUiqp/dWJlC8BOGeL/iBwDGQwJm7QGIsAc6m - fb/Ah9GEe/6O7P6oiaZom7LmsvBJwKgLUof++JANdT9kr2LLwA/ceqy9mTajR8jPUEcOwkowDMNm - rc8G8tWrmkPrdaTL3/vu8YfjPnlkxyNbJfDbzCbWLbnPlj5ienjoS4vEMw4p/bDnFkYk+bin9tOE - NL68XfjWn9K0Xp/Pmga30YJv5djicy3e6u9DLBfo6mmArXy+Kfw3eEX/5kNSH6y9tjjhwM5P8Dni - 7uHimrIuiov/IPj0W+j454eVOVdifefPVJC3HhBTD+aDzl32djOz/B8+P9WisqiwTmAKhZhktW4P - /JlFHuyRb5F4uA/2uuM93PXErre9et75Ltr1mQuAmIWLumkbRFGxYE39acMqlKEDfqlku8KRPdWb - yagN2OtxOA9jLeRnPoMA/wbfZZgDUejWyi783dN13jy2tUd2Oc8wmlWBqCdvoPQWey54TQcHO+OZ - gMV4Mg30q1jf8xEJx1eRebCl19Q9RKYYjucs8aD62xC28scJrOfgJp4U37ewEt5kZVWTZAHQVI7u - ahmsshkW6EWHvyOXI642bOpLZuFTiu4kgNqsUOtqMXAj968L4GIAVmbgBnHPMMQCslHTdFFMkHze - eN52f3L880P/p6PgP/7zP/+vvUHgv9ruWXz2xoCpWKf//j+tAv/N//fYpp/PX1/Bf81jWhb/9b/+ - pwPhv35D1/6m/3vqmuI7/tf/+k+RO53+dRv819RN6ef//eQ/9n/3v//j/wEAAP//AwCtBIL02oEA - AA== + H4sIAAAAAAAAA6S7S6+ywNcvOD+f4p936knkJlX1zrjfoRAQtUeAiILIvYA66e/ecT9Jdzo5o+7J + Ttzi3lprrd9t4f/6H//5z391eV0W83/993/+6/Oe5v/6n7/fPbI5+6///s//8T/+85///Od//f38 + f11Ztnn5eLy/1d/lf0++v49y+6///g/zf//m/7nov//zX0kiSfjBMRWlQXZJYLoeqkDM3Y1uN7Vj + IOtxNsnqZnY3Wn5alMnxEdubPdY09Q8WnImQE/WT8zXpxPMNZfL5iGP9ZscjHzgdUtiEJ3JzYCnd + F/cGdaIgrMw7HjcvrCHqTt8ZK+ja1GsXGhFYj/CCb8P1EC9W+S7hS/ZeOCf4MNIofrdoeVUFNvYp + Vnez6QykGmKDXeeq57zSZg6I+foQiMy1G7dHXSmQcE8LYwhuYLdvEweS5PwhWvId3fXLEQkcu1DD + QT5l6laHogJclvBBQ6XanSILhsCJwg+JUI7oEpWViOaJTZZXvpJ4veNPCWXRGIh/0GK67yd5gROk + cpDvCnLnS7/ekFctT+JXahTvZTRpoE+vCVFnJqKruF40SNTrQtwkS8E2uOn+934XOPrWyFvPtUE9 + PlZE7wt73GlUQdgd7hQHpWoBZsBnB7iA04n+1TNKFitoQZ9eEozfpZnTPJsOIPeZmDxSLXOX/bOl + SEm5M3EehzDmpmMdwShcJXLtNSlm6YYgSND0xJeNbShTEZZD0xLlxKxF6m7m2RSQNb8c4kZrVTMl + 5DNwUNSQeCt/AJvKnZ3D7MbfAL6Cdey2PpvgJSsNbOnPj7u56j0AFgd1ksyZETMTpxpIjmyHlKcZ + gBX0Zwt5HXsmfsa6lOiUM5BFhQOxr4ihy2MUDZQjoSXny8WsOdU9SLDP7Ww5Pcy3y2S9N0A2gRCf + 9TUat8xhIVja9E3ienvFrNiEBVoF3SLe06sp5xzCAvl+oZPCbB11Dd9OBDe5UnG2b+7Yj5uSifLn + wQWvzIlq+nx5BzAeAotE3gGPzClFIiTF3v36tcw3LxwP0PzqGs686wJWUqsitMPu83u/33F7nb8O + 8Dr+vHTImt21K7IFskufk/z6GcfdPpkHqLeCSy7LOal36RBJMHLGbeFe+rmms8zv0H57EbGmZXbn + SsCCOHrsTCQ1NmNGXB8GPF+jnRhGJ7n8vJBUnM9jjp2PM7j7cNtSBMInJNZohSrVKafBX3/iMJ7N + nGLKvJEqnmvyPC68+uu3AwpvqMQ39WS5q7xADxzP4pnYpF7qzR9UB9Za+SJ+qoku2RhZQZrUX3Gp + Duu48x58w9j0DPwocgswYzEKEPOOhwOhEmMqBjkDu+uek0cqVWA3m8pA5FRhnDa9DCgb8CsCvcDh + +1OU4pkb3QCqkVbiuPXsmGXPjQLP/EUnCWLamKnetYZuTFBhDC6ATiscNWDEp2swhjIYqf9NRWh/ + Y0SwqL3cvf30CxhdbVlGjBSV92mdIpDfQpz5VjVu3mrtgNznFzbMkwjWEmwauk+OhN1HU1MemxqE + jhjoAZgPKuA1QwpghB888f3vZ9yhX4qAR+ZlyXP/olLtfmuh8TRDogYtHvnbaW2RlrMh9q5YyCce + dzukxkvBZ0BRPWqGFaA+VrpA4O2E0nIxKhRHNwnfk8UATApVBqo1WInkPF/u9LIvGnw64L5s6C6O + ox9LAXy1hrgwSDjWQzi+S8ie2AvG10FzeS6xIjDZNwVHxReBjRtd7w9fiONsZ7pZaXhDKzwFRE+/ + cs0cyWYhtn688X0EH3cdOyGFJpvouHxEV5d1nYuFfvi7HAbNr7mx9TR42+z7sh5nWZ3RBm+wq7EY + lPmUuXw6RxBKjp0G29vl8/0j7Brg+73HuBSvKocPOwfLCJ2IdHOguhBhreBXfn1JoIdzTfdFvUH5 + 8+SCPl3jfE1Vk0F/83fOQJOve6gtsM/dDJvhnAB6Ft0EvlpNxGWhX+rVYdYIpe/5ieXTtqkrtaUd + 2l/phnO+u4Pt9MQHOPXlheik5FxS+bCF/Oo8iHPy6Lj+4c187nPyeAamyh+Y2/Bv/s/35Q3oV37c + gLueNpKeBepu4IAg5DqrJ3oQtDl9xruHFoa3iBXGVs5vldCBbtTNf3i1Hotuhfqu6STEyaTu8cm4 + oeewmNhX6Dumge80f9djXfFfIy2zgwNp0DO/+V7d2VYlCWKI+QBe8S3e3k4diCAfWYLBWam3/Vbu + oOw1E6djdc85WJEQjv0nIdq7VdUF0OMAUh0J+DqfxnxiVNVBdZ+KwekpVjHvnaoDRFb0wFID93pS + rLhAjCSF+Lovacw+hhH+45cyYd/j9jqUiwjyLAzY9PuqCXcxGkTHe76g8nGJ9+q2C/B9vphEimcz + 3uxrOsH3dxKxdX8F4xSyUQfZMSFYGxk7ZiiEEZDeGh8c/L6jk2LlBfw8+Zh4zr0b12fXTSjVj0LA + /97Phh9yg/qmuZBzBrScxWiaoGoIDfbZ6BGzNz5JYI4/UbABouXMMpgMKvj+jlPdKOrNXJsJ9lQD + AeJUrK6gvzvwj2+T5Ouq04mLJjRL5rKIU1rTnTU+CwqdQsD5Dy/2QJgkWDDpTCTlfRnZ4/ldoO9y + 9rF6VB9gj0/BDUj6JSSFRl3Kf4IUoqH1LjjWvteavQ52A122iMjv7wHGfl8keDD4dDmCS07Xb6oK + yHjqITZOgkcnHlc7Oum6TZ6iJebkauwBunhYJz7HSGDHkRpBubq55JyvOF7P5KKAMlUlbHTnMV7V + lziAgklmHNtSRLmn21nQyoKSeAu7u4R/xRIKJ+WD7R6dwQ4o353UenCXw4G3APu4xi3qal8kujNw + 7oYOEofe5flIbGZj3W06XCz04zus69opHj+vbwIxgBGxlaUHW8gTDeyrjcm5eL1yrju5ETRNZcMW + FifQdzqG0NsjD5tXTY35p9RzQLT3kChtewE7vNcJbMmU4OuprPLdciMD6OORIxgCgRLPPy5wWC4m + 1vTMG9mnEymo5NuZeMjX6+2+3m4QHaaaYD1aKf1Woge+0zsgGmKMeK4a/o1sodFxOFlTvFYEcbC2 + wy9RzLVXB/dY7jD7iJQY9MTU+80VBTgwEyAhn3zorBTbAV3M25HY3pbHP/3WgBULCr7ZZlBPJqgV + NJqrstB6e+XrCkcD7Kqlkjzc/fgfnrXApcEJgbdLDtb3hhK/87D2pE29YTQt8OEsFXbcQ5zvD+8R + wrr4xMRF310lpnHOoL0/+SVxWSbf6nBXkFp9tUBrwnu+azenBNWxo0R5SXd3+6hridovay4tE63q + VjzOHhyCkCHajs85RwThDZtD3GKXubt00YS5gc05yokVXRiwzVd4g4B+UuwlhejuTvT1oNrNHHbn + Qw345tsckFAFK5bFQzQuenmOYD/NZiCK94vLYJi2cPUYQOTM2cfVv0wdWLxOWRg9m8ZheloWvIcH + E9vR9eb+9KgFTYK5gJH6DPzTG9qgncmDhmFNE3prYJQY0w+PjZjZuE8J//BYkqpe3f2nxpzC/XZf + 3gf0iqdXMRfwYAuP5fAuGpUmYlHBdzPSAOltBbYffoBYs47kx68q252T2998LR1BQN1ydZfQvYko + set3D+aQ63b4w8Ol0TOv3kCZcX/8iA16Smrup79g5E8CVp2D4XLQLwUQH+/uMo/YBcxO+je4yaZB + bGDV9XxythAJ2/ogUeL0+V4cnRK2h0DEuOWVkcG94cH3wZgDNumDnN+SKYAMiArsrpuSz7ot7qDW + ildwlIdvzHzfYfJXnwAlil+zc2MxoLnf/YC/DVLOUeppUO9GZ+EuRZ1vjPvw4Hy4y7jcwm9M/cR4 + w/HLXIL3l/I5Kc3PCkltFQv3NUt3beE0AFdYDzh3mxYsjJSK8BQnDml/n58mJknAu3+eiM4+gnww + eKGAt5mbCPZKZ9zrSLLASCUc8HdeBuzFyVsYQ+1JgrdAwRpweBePlNQL+ulLek20A/z5mWXv70ze + u87DAYbUjkQnSpt/NLxmsGRebQC3bh23ZctbIMXNmdgP6Kv8+V558A+P3VDOR8qZlIG8PaW4uLGX + fId+KsL5kMvBJl/5/J9e4yZIiFMSxWXu+enf88S/d07cxl7KgZBczgECvQt++OrASG+N5Z2i7/ir + XwGXJ1yW9WYodDu48b/zIhel3/704gpPlhUu+2sb6J+egM5RcnF5Pkcxxe1rRSfWLZZDx3vq3zwh + tSvPxA8Y0yWHlxSK+n4ZiKVF6vivfu5tGRdBvCwjWZiDA+aJT378iOKVLd4JqkRmJrc96cH6fYcp + 4mhSB9yvXlMKXQZaVrcRTc+mmlrx5MDUVo5YsVPD5a+034FQCCrJplQFbL8d35CVARugn39YUr0x + IG8vKZHyywpIOK0twut6X5LPQ6S7sHcW+OMbVWbu6i6Ncgf//KqNm3u9Pvuvgv74PF3iK111a+rA + LVAP2Ojm3N3BfkpheZyf+NKNPFhpcbbQKf6QpTydJ3fLm4cjlr1hLtsjnXLq0zEFx+7VB8cEPN3d + GBsJun614UAoXuoqqvMb3p0mxo9n8HX31XBTmBaagbE8mPnqLeIA21qVl0NqPOL1VXzKU3WBCbYf + puJy/v4IIKdGIfYrRlOpdqITdNmZJ9bRqPLN6rtdRGUX4psW1fV64wwPjlwCsHScXy6Rvf0AD3WL + iPmpQnezOPpGw5N54b885rsvagaqFJ8CeOrZfM+nrwc9Tx+wJLqPeioK1YCvpPYDEbcFXeXXq4Qx + H96J3o083bxizVCF24rosbrl45TIDLzBa0QU6NTuLhryikZzV5btscOfXuQHaO7RgThy7dZ8MM+L + +PPzGD/HDlDG30q4dW6OLVuQ8h1RpUKFl3tYkzkYb+1aKeiP/8NLrOVE8zULQvtoByBapXqwyqGE + 9XXzFxEcNzq2wKjgsN0wuZ8drp7Ohdahsf8my6m9WPkKuVGEzfdEcRiYzvjHj/BjP6uFDYI23pRw + fsNuK8AitLGubpzTadD6ZDeiJI4d//RYBviLzQbrzYHulxd3D/xe/9OTXL4pq5ICpxtu2MEtpETz + PQd8vPd3qU/3L/3xW/Dnt7FxLTGl1+qcIea+kAAFzFfd1cMYwPxbUaxIaKD9bTQFiKQ8XITeqOvt + 5+//+Brnp6M17qV+T4CYHJxl94mcc6wxT1B6G/xyws1pXIXwq8Gv1i4BtVyTzuezkUKn5iLiZbSr + 18ISp7/zJ+7lK+RbfL1YKC2u4yKOnzPd109nQdaYAbFsoYr/9RvKPzY2fv5liiwmRF+tWXBqP3k6 + 2e+HBP/8Q5k9bzX9MkoDnz6siPq9O5Q/LrkCyyN5LiR7AUoSGrbwEwk5TtfBqFmZD0I4tXlATNWg + 7mxwQwJ/eI19hpvHN6y+EYRhirDXZU7OV2Jjgd98EkeHBljl4G6If/X191yvmTfndQBIwRXj25PE + y3xXKrSN3hsXxV0fWbyeIXqbwxebDSnj7TGMB7jVlwuxvs0T/Du/V+DeyU9f0u3WuAfY91ke0E/O + j9t7NFJkPZUGq0FLRrownAP+8jH9LDf0Tx+B8uWJxLFoOW6Pa94A8j28F7r7gfov37q9f3pKQg5Y + v2w3IQ8728Ibgxrz06togHL7hkut7lM89+XXglm2nLBztz/5phQn+Oc3iMeGmbs1DpPBQLM37Dyh + WjN2fjegztsrkQ3EuEQMYgaygpaS9K5NYOeOrwWNwJWXI0uOLnlLQIG8zNrELa7veKvqzUO/PJj4 + oiD+8qGDAX56jThsM7gkyfgFnspKxeHPv8zRI9uh9vY1/PzlCbuwVxbCvOWRX54MNufxeUNvFG8L + +8OPAbUH7R++BweDV1e9N1eoHvWeSDtwRm4/yRMM6sPzr/9y1kLHUqQMkwb0sts5/YhWAIlq2Atj + UxPMXdOs8DhrDrl81CXerIEYULrdruR8aKG6SpeLhOhSvPHZQIm7fpThn7/DWNNJvL+e8oQYy1aW + JjzKNadpogbLJpKxfEObO3uFkIHr5E3BqUdnuq5rOvybR/+CsTrb13IBPz+FPYFxYnZBlYJMMV+x + fx4PdPrlo9Byj49lFxvD5UNJVpBZ77egA+/VXQ028cQfHhCrN+pxu6SdBB93bBBJdNE49xv/Fsv+ + Oi3lu9Dc7fcYUni0Fv5bqvHWl18HjlwK8C9//su3GTHR1yPOmKtV04P1zf7pP++Id5UD+5aiLSgB + 9it1j//0MzwtW0esy0lXOSBplpie9IhIgr251KTSAUVn+YN9SWrUAR9EBtStEmAzmyY6w3Fu4bGL + tAWVsl5z66eyYFe0L2z9+IpslTDArzdXRC5ecr71JXHAj9+w23+skTf8SwJNNtWxjYDi/stTv3L9 + xdJjFegS7ccWjufijR2GCvG2XcMSyGOrBUfB8MH+etoTFM6TQ5SomeI1fU+DiIRkxY+oCMf1nm8i + pMENk/DQ3OhqFkEAXSURiLr7i0rXrGfE04tbCa4qxiX3tvPgSJBJNCHo6+1zlTj447eAqXkEtqrh + K9RzlkLO2RGN9DFbHkycr/53/fjL+zP4y/MW0H+sevPtSvmnv9bkHY0be24kZACOxz8/CSaOk9/o + yO3Dv3ruf34J3Rln4QngwfynR262L+DgwHdgrXC0IHV3tgDeWDZfbawN4lYpPbZ8eBqnvp/LU91K + Ac5rR6oZWfE6IOnXEEt//9+3OwU2nMMQ93CrwS/f6WB53Y5Yy7M+nvWHa8GOqRScuGyS0+4rK7A5 + KDKxPu84X3EfeOAvf1Rem0N31eUkcGg7Daf00dBfPpXB9y4y5JfP5Fs/0EaMViYmd/tQ0N0W7AH+ + 8jZimKcM9Noav+HTP1TEzE9LvN0flgKpvECCD6fJpfwyr0B3rAZrkVer9DSvA1S5A0/UH79u0uOr + wUcR+sQiCLgzc+0HWMDnM4CCKoyNScoGODUTLbudturOSKV4WnKnC/a2ZcFWa3MLhYvEkWc/yO7y + ly/88t+Adflr3XWhEcL33UvInbo3dd6utwKCcoJEew9F/NsHQKiz2UYkA6xgOnHZBLr34RK04bjV + VEjuBcTQ5/Hf/mgvDKOAOckkoqLf4d2EoYS9yS04EMv5T79KoldNT6y5LBPPVVhx6MxId5KNn432 + FyduYIl7jzg/P8xd3H6CnmcOy4Yur5iinN/hSTdtbNsHCH751wJD5TsuPC/Ucf98vDMI1nDA0nHL + 4u31oM0f/mLnWL/VXx7jAHpRu2UtkfjLH6sdIbW8YtkzX/kC72MCvvxkERObPB1ee2ZA/+p8sG4q + Xj0/OCGDdKM4gLZn/vZNpxQqeXfFt2W9j7vBC6WYDP0tWMvXUM+Ro2SwXNw96I7AzWk8yzs6hWcV + Y+W5x788rwR/+Ytm0y/tOPt8QEkIT1g1M5bu3LFfwOyev/iX/+czKCMGAl15BCDJOLqN57mFcZRJ + 2Ftz4u7MJFli4oONBGZQ0VUB1gD3PGKxFJhOvbc7U0JhzPqAnbClcsqZDqfDA9vBn3+icxYO//ZH + 6ign8dIcOeWfvjK7OBhnyQ4zqPj3lGQ6bOnnfA6SvzwimE/jrV7ye8mA3KEedjOJ1tNRM8XTX/6m + TX5D1yCoFhhXQrswkVe7ZM1eDEq/9eeXr0Y1L1VuAsx6vS2R2B3zf/u+p6HHwUeXJPeX73pw6fsg + YH7zvO71w/iXz59j4oxM2xehKNpriG+8aIx7czwokBySC3mGBqOuFvvJwNjQYDn2g6yy7CZxf34n + AL/9yE8fG1DOlCv+yxvonN0GeKgbhDWVIfUeeyUD//zTL98dKTWHDiIwFr88cgKtfONbSIMM//L+ + a76PegXRb7+M//L1rQo7DmK/O+CyUWSVkbrPDbpr5xGpqq/xXuwHBai7tZF4ZnawpzdYQLU+rURW + L85IcXzOYHYddxw43BBvogY6mCtdhrFoifH25rMd1G9kYv2ri2Bod1jCq/L2l6M9eirTwqb7t1/9 + px/SvJoAJ2H7Lx+sOXPbOXiOigmrL6WIB/40aYAfXx1x/eCh0vZ7sCD70JcArY8o53/49TevGCfg + qc4fdS3gnD5fwVc/bb/9hZuBpLB2/JhYC9Bfvf/4A+sfNcj3/WRPQMpnFSs//KBpprQw/AZP7Md9 + 5K5/5/PzO8SekqqmRbtlqGPeCg4OxtXlC7NoxbmZ3r88y1ZZobQ7mCSKtIjLbc134xYP6L/+7gr4 + P//n/4c7Ctj//R0FaGoMnF4+L0pPwqmANOZcbOTcWNOjl0ywbgWHFMXZBvyQMRx6hGyIr8fDM169 + 3gmhsjIe0QVQuLTMawZOXo9wautyzNqPq4WkjNEJ3osn3fNs6yD5qHwgPj9ezp7It0FDLw9Yxs2g + rqzzPoDNcj1sSRqgq1lqEjxm9oovCjiBXQadgaTJ+CwxBWm97+x8gIt8bwLWORkj77FfBTKByODA + CAjYGwaJUNQ8H2cRL7m7qNslvHzWC0mXOYp7m5d21PJfm+BHx/8+jxKBx7qoWH/OxN3Pn6aDxJkI + ibO5BzRf1whOLg0C/r3+NsxIzMBFVyi2t+1N9xXDEob1ZQkg6y71aoJbg9h7WWEjHqi7XHcbQuMd + zrjYRW3cmut2Q3DUleD7kYtxd+OqAvMi1DgCu+jSZmw0lNA1JvhVmYDkTB7AVDIfxMrlsp5H/NWg + EAY2kdbX6M6TI4XIKsseK7e4runebR6SlMEndh1oKifJwQGWUZIQM/ETdVc03QCvIS2IHvtLvduJ + niCxyHSCQ3FUN8h4O3zRu0aef49PhDTwrAYvgoWHQ/mcP1gwUWsSILaL3bl73VpUurKDc1ww7goP + bIdqw+qwaYKj2u+FlqFj2LjEJ6qs8vGhz+BX6jcS4vrhMm9wHyDiXo/lwY+bul7ys4OGKmWCjj5H + upI8CpDWfhZyPrXPmjLBe0XGWYBBkjtBzl0TlEH0iRBRaGjkROaRAftiqcj9oduUY0XXgqzlSdh+ + Wl/KV58vgy6cY2D/k5Yx74yjAn79iSU/onnPyWcLcnGXk1/91Kn9TiE8BORCVMtxc+YgJTtK8qDH + KXcawOZAZxdv7prjIkuBu7XoLcBTlqkka51D3ovngwffF/WCtW+hqlvXgDfc+vtEwhos7vRClwoa + d08n4dlRKVNdOgeSxrZImplsvfakyf7qH/ADF4D9jbUMffFPg8nBMPbwfL5B7WhfSXKWGXUto7eE + drm4YcnXzHrV6K2ExbEhWGeeTT350yeAz4PzxNfTs6drgUcR2u/jRILw0dbr3Q0WgNcC4SSkXU7j + wysDZX46LfR9UvL9c5lLePCZFttKmOZrchcNmCi9FMCbO48bb8QWzM63DeOrqudcIPMKlLnujG9s + Z8TcIMchSNdUJqlsJiPX8lASrXR4Y63ey5i+jOsNJTGosJJNEPz6M0XMtyjx03h0414U4YT++jfr + fFiv4abcwP2mf4itubrKZkcBQjJdJKKkju1u7HGXoHn4cgt7H84uXR29hW5b7sRZXTvmG/PcgWBB + Av7Nh7v5UqUAjdNWLO9UBluSqB5aXuEV6612ibnNX1vwmnSR3MX7DqjCbgFSqiLHt/JEVNKMjYFW + xGgks51HvtdJkEGv4z4Ef1rNZT8FyKCkVvA375lLGZJF8MKfGmwOXEBJ9dZEuPqfCt/4T6f+3m+D + wEmX8OWHd0x5JwJobPVODNXZ6/UgFSt0L0FE5PPXirf0BCcgxeK8gLXzwTzi34ZOLm/L0Omz+68f + 4H7z8J2L05Gp4TrBTyYEAWjvV3XD8/UGv91SEE3y3ZpqMIuAHgx3fHU/NdgXfS3REoptMFWfDdD4 + TQV4eXgjUXSBien6Di10vJ9lokbxZ1zn5GTB1l+PuPj162odwBtybDiR/MnoLme51Q0Jg/tcpiuv + x7ztgAoO39AjjwE1lKp8GMFa6LtFgL4Q768+YlAmOWeswYaCja36Bm0n+ghOUpyMJEJOCtX44i1o + vMN89NivBOWLQHDJizblLnu7g/5DrYDZzS3fHotZwArfjvjyqy8Vy1qCVcffsOYMPuAqXcrQe/Z9 + oj3iDmxWeo/gNOdPotZmoO6HxCyR+2lVHN1I7q5Tdj0A+SISIsW+DJijDBjUiM6Eg/7xHfdMVDQU + m21KTPv9obtuqgHkDTcnmvXFgJmyK4TXmqzY/uEXHwgfC911mGKr6D75Ki80hKxMW+zPRVYvh8Qs + ALsLJ+Khzw7o+qHGHx7g56q29Ta0UQOH23giLohzuvuZ3AgXBH2cZFAZ2XljO9S2aU/kaTDH7eQx + HrjmNY+dvaAuiduUQ8pw33BpPU90i6PJAUOVMCTa+iPdzriV0OPlyzhqV52yJw96MJaGA7YC3Rh5 + aPIV9OUMB1Q97ONaMWuDPkz6JWZDVzrVz8kSw51biev/HIWwhC1ixVki2sVcY5p+7wYsiHcIDuEY + xRt9BRn4FONEggKZ6ta+0A12zcgS+1f//eDLDXKYYv3hC1Mva/y8wcrEJtG0+Au2T5Wm6McXAT2e + 6pjf3WkAqAgu2OYZCbA7pAJid8nB+fkT1PTj5R0MFtMOuFgoKe/OioF+fIrx3ajHRpoLD5pJSLCm + hH3N6LkuwGp9xwF3P/Wg/qbPDv7VW2lmE9DosQlIOQmUXMajSrmDbzfwzAY1uX7kot6BNd3gvKkU + G9OhiLk9fVSg197dP/7h63YwwFcaNyLr9TNePlxyAB9YPbHkV0eVru+bA/PGuhDz/W4B4dNBhHX1 + XIl+SXt1dy5NBl2NeZHIXjWwPczNAeZUfhfu/PzUU/NSA0QAp+BboBs1/7uRCV5BNhDvN7+0W+UQ + DVfqBCu+nHN685UBdsNSEk9PDEBrXWzAbx6JGu4gX/m1KCETCAzWFplV5+fmN3Co+D04/vpzFx4r + B4UukwPBME9g859rAS39ppAyHKOcrxSmhKdxqAPxe1zH2Tp5HYyv0MTRdKpi+uNvqA7DBavsIQG7 + e1VLGD1WDz/A5sf/9FtbOivWxnV0dzRlCqiujYBvuXwY//AeYkyyH3983NnJ4xA6TLliLHVcvK7Q + nqAhMilx4vg6duP+fqMS9jkx0adV53FMWvjTxyR4uDv48Y2C1NyNiWy2KN5WLmLgp+gn8ry/c3UR + Dl0Cf/1FHj6qwfrrF1HowxWfF3CO/53XRZcoudTUzRlNTNN/eIh3oxm3Kog8cDCU5/LDu5pO2U1C + P/7GriNW8frKBgfstMiCv3ruv/6BsdmkxMvSXN1ejLrA4rK2OLwSdtz9l1lALh5yHBhFPq7Hd52A + rc8nYiXFBPY6rAuo3MI3vmmO4C6U1yWY3uLLMnvpI98+x3ZHlRQT7IeSoq5m9tJQ3jgX4nwWg26A + OCuswr7CWnRgwR7V3Qr/9LPmPauc/Z0f2pWriR3becSbYIoB+OOn8/C1c+5Pb7wmUyRKL//0/ZYd + wCLnDZav67ueWfUhAc8y1YBm4DJS5VRY8KJZGnHNMK+3H//BSeM54viKD2goSCmcN5kSBYGkZv/w + P/JvOXHWO6tSQUQJnNAWEp/tqLt/4leL7OgLlkoc9JgLG7+Bifoiy3vUfEBZJgmR9bzeSPB6ZpQu + 6vSGvY/L4LSYpbqfTD1BjZTWxIycC13ZnmbI5ZgaBy+1jvdQzgKIXKbBz0WyYsZARQk2bDRYRmXo + Mo68TSB8tSHG9wTn/E8fAXShgJj24ZHTV11DGJ8VshySLaj31y+xuTWJjuOUPeVULzsBXMhVJO7+ + kNxVTSYOhhFCC3Q/a72xjfZGkvqGC5COZ0o73nRgy39srCR5rK7d4qfimtrOcrqYyN0jLUwQMBqJ + FDSFLh1EP4T2rWvw7eBk7pT1YgLupRNgyz46MTVNlIk3b3SwLnwqMLdoEOG9e6S4QJ8I0HrwlT+8 + JHH02vKdERoN/fCehCvhQKeJZQK/VdUE63N+5yu4aw4kkdhhkzgpnae1bMBP3xE1GUZAXQYfQHOr + coKfn7u7m/4U/tUDq3Oq0ZXRKwjbRyT/9H2srlXRKrBsnjVWLWeMtyuIdxjfGI5Ice7X7E8PAUGa + TWygcHPpF593eAW3AaebJoxE4LMb/PEpca53Cma20Spk+YFNbLpoI/MUnxmsfU0iBvAjur5KXfs3 + zwVNC3VlTUlBp7oc8V9/dDIeGGiLIUv+/MLqfscAvLWxWSqGpe6OYWghVTEm7C7XmpITLG6gEOIW + G7KZ1P2v38WfvsaB5G70I3SvBZEZE6JmgB0pezWX089/E7mNX/n6TGwN/vFHKRQI7JIoSwAHzEiM + BZQqxwiTBu+lFZBnL3ouc95fBTzl0R7QPrRGOp26AjLdxcdKu37oGII6Qrf4kGCThtSlXsK/wXar + EIlYUrg7y3UeuHiMSIybxtfT4J0kWBtOh6W9sdVVTBwHfbwzWLjf89tjwQXgS6It7DUe6Mw8nQom + Lvku+09vTMtJbdHhaRqB2DO1usIDGkRRNyD2Qf2q93sStvBPP58ZrnLn02CtAD+DYqmes5JzJ9NP + //z5svqaOdJ8FcI/vsG676zj9eCgAapAYIljfNx4f6qvFL726oK9eLPdtVv0FH6foYqx8bDG+fGV + W/T8HL7ER8xYT+eUQqiYkkI8u1vAqgOUgQ7yM5Ezeap3WWmlf/qGfaxzvnHy3YJHEURYTQpJZXj/ + ZUA6R/XSSieL7oF8VOD3GankOvusu7wcJ0N7bfQLe0l7d+/zfoEB727Y/iZVTlbj3UE/K7mA3H8b + 63cCQniKNRErLClUetGVNyJs3gXHgPfoxPYggz88C0ChnF3+ITIhfJ1XGgjmIuVbip4dHL6Rt+yg + WXKaX4MBGvTlE/cyDpRQ353ExrIGfP7pSW6qew4cruERByrSwRYuXAGvcvvCThzzNQ0FK4W+c2SI + sX/elL6ktQU//ghgGh7oMmv3DGhe1AanFOL44+RxhKotV4iS+N98xj0sYM9GDnGwn+c7+AgQes+b + hyVcI/efXrhcsmZZH4OWz4V/PcB+PkpYwuannuVPX8JuesKFr54WZZY7sMDv/Il0bvOcuIwJ4V++ + IjFs7LLT2XDA/XmasK7MgcubWlTAy4GBpHi/47oPnUZBSaHf8DkejJjb2c8B+baXYp88hXEElWLA + dE1kUuxiM44nmNyg/lQcbEinDqzj/q4QRUOCvTNjxms7Yk/8OO8Hwcx1GVfWGQ5Q1jqM5WYSAT04 + qIMp9maS//CdWWD7hsZZ8rFPzhPdjL1uoDRpHxLem85djWKC8OwqHZZv2kDnT0EzGLUME0zgzdT0 + Ys3Fv79/UZ7veP75eeB1zAff66Bx6e42HdRTJiIFexfzrTAiAzoxCZa11ayap3a1g45V22BrX7P6 + 0x9vUa+iEUvPWYn3mpYM5I9lG/R3/xR/JseKIHroGtaZOYz38e2sMOxXC+NHNo77LU0KeI7bKFhg + ssREFMMKuRxXL51Mz5Svyh7CD3w/l8cvz9lBHwto9b8VVthYG7k/PX0dHCc4XcyHOlkH+kaouQWB + qDyJuwnmHkDh/OWWpR9p/Jd/wIgPPsGGG8flnMuUQcd9XbBsx1LOMLYrgtwz+2XFly3ek8HmQHS8 + PbD3qyet9b2F92/7DUb7nqpU1/gQThrLYR9sc0xP916ClyMZiRqmKuWephaBZbcNYpznLf7hYwDC + +rpgBeyiujfzKqHffCzH3dDGr6Wf3vCCDj7Bl+JAN+apvCHVsfDnj/OFzfYJok+IyH11iny9axKH + oPK6E50THoAiu2yhHHw+RG7COl9T2Zn+/GrwbQ+HeMP6oMCupgaxP89FXbkFZXA7YwarP/+2H5gD + hF4YQhy1h/O4xnAuYFUKMrEM8w6oabIZFKw6CNZfv+3JPK1APACd+B9rr1fPZSdwbpid4KCXXfYI + NQEmNrTJ5XE4uX+vB788Ldh/+n4Lv0L7L+8tC2S664aqFfrxqySSr31rmnFXA/34g3jHLqTc8dJW + 6KfncIGupsvyX2WAk4pMHGj3R/3D+wRugrAQ/ee/qJBP4h+/YDWK9fpfnvvnnyRJwCqbZk0kdIrF + /vJIly6FQgzg+tIdP8LiVNNH2nMw7r0vzgXGiBlw9yyYnQ4ZwQQN7hYGxgFaeqZg1z+343YF+Q5/ + eis45eE13vERaKAmXyk4/vzB6qrhjkQt8IOaXXuVKpm7QLmNKqLMpuf+y+OujPnCshsq6tzkRSJm + VFZwSuUs3yU0HiA+tv4C/WVU+X6rUqgttMX2PBr1hr2vAEGl3LELRaXm5dvUwXN+u2O3svycaR5V + hI7D6xXst1itV1e9rXC3wycOO9Og+3W3D9Co3QK7++hSHnN9CD1LV7EfFveaJF9WhG5qysQV+Sbf + k0HmTr5qz1haSg+winGXYDmdB6JD6o0cr5keEPbrDetIvsXTDHAJZG3AC6PFX7qJzppCevn2C8BB + Fy9/8zi5UbiIfniv1wocyj+/idVNuI30UFseFFviLzC1SEzttlfgnE4jsbk4rVeAyvYvfyMXi7PG + 8RsxE/rNY/CXpy7f29jC56XlfvjjjutWhgmKt1tFMGMrgL91qwP+9hsRGzfjvsbXDBaHRSKW5gjq + qgrHEPq1UhGFOINLe2Hx4Cf+6PjnF91/+auxdyUxb7o2riKzdQhcS4L96DyCQaquN+gPzBfr2kFw + dziIByh7nEkkYa7HfVCvDmQlxcJuU7Dx9hEqEXpVN//0jeSuopC0sL1oNg6loc7pCSYZcmDXkUcv + 1Sr55VvIM4MEO675dOdffowOR6YjuiQAMFfEXmD3Fq/Elf3HuD4T2fjn3//2JRsnnx345/9p+p3r + Ljl4FbAC9CVWn57rFU/SDdbLdCa5AunfPiKA5CPzRPrl23zT2Y6Y9U2PjSc0KX8YAg2M8ichFqc9 + wNbrowaFwX4uPnnexkndThms0/c9+BZuRWnclhwongQurClzKhXyRoQ+c5aIXReYruTgt/D7usfL + 4XUmvzx8kEDxBWxQtZo1MsPcvaF3bXRStB2mlE/fIqKoS7CikhNdFn0tUD6xLrkzoVB//vJaFUhG + cNr9LN5IJN2Q+72+iBdvvdpDRlvhvYrLQACjFnN/+dOb3Xn8dx401r8JsE+ZQSRjfuXrxMgt4Plo + CTY3fKvb9ygfRPY13P/4o55fa7fDWeBF4o/3It8YmYXgRLkCy6f2OP6rF3M1Zmxc32rNfW91Cwnt + nICB+3Hc/VMkidbCZOSmj+98eZpeBMG1INgZlIXue7S3wtNXPRx8PrxKA9YJ4E/PEF9dfJXjpSZC + YItOAe9zPiWVAkvxl09ie/fFfPM1B8IxcxD57ZvGcf0AA5qQuwVvNX7H/+bLutbn4PBS1Xz/6Wvg + PjInQOmH0uG3zwO0EPdgO7XHmjDBsMNf/of9I2/X+2VfVvibr4Db6VIvLXM2kOwv3EJ//o2BB3aA + QneT8d1I93rvxN2CFn9SsF5TN2bsl2Odfnk+scCo5Ux1dzX458e82/0Ur75f7P/8gJZybd4fhf4A + vifNx/lyVSn700sAVCfr59dZQEYwpXC5fwoiowmAVQrcHT496xHQ2yGmq4zfHGLvRUVsTnco5Xje + A7pQ1ovwy2sJyyQRWPqjT/7OnzzSnhGNs+IvdHzt+WQU0wFsr88nGBZrdNfqrmroL9+1rDCJmV8e + B46yaWNXYNp8Y6tXA2ypnBa4MF2++tPswe8rjxfuQud6TQ7eG9LPMcM46F8uK1uJAKl/X7FGoTry + HAtSSAthJ0/lI7h9+F1bJOyXG7broFH/7c9+fhrrPdTp1sq6CMVLOQf8dLTjJWV8BhjOd8fB64zV + 3/6u+5fn/+kD2oUrBy6XW/PTe+94wUeqgU/DfhbeBE+XTqeqQOe4ibAycIrLZ6G1iuJBSRdeL+ya + da5CAt8eW5BfHksZYaMVut/MDzGvx85dk/uuwbciGCT5y+NTdB3gyZEiYlxXHO/PJmTQECxv/ONL + 9V+eQejgYD+45/lc7U0H6tA8Bo/gnsfrMHcVHHp1wNha9nrbQMLBvHhm2KnHrt60yakA6L+Hn/+p + 8l2pL2+oRuWDmL0p0H/8bxFiY3OBo7tdLu8QmSyQsHQJJXUxl3yFSjfE2Lh8ZLDLL66E4Nl9l2FJ + U/Dv8yRNfMbGTbvW6+skNnDZOgtj0ZMofxw/FjxG1z4Qr66l/vCPATtSj8R0Pz88dWD7h8cLt8xR + zojg+IZkLM7kjPcLXbmFvcHqpZ6JZcLJ3UMNOfD/xx0F3P/+jgJ9kM749oK9ugu/72yX0vkVHMU2 + qZkvZ4qnT3vViP05GIAt+NhAzHpb8DPgrjW9TNKK8EKFACzCE6y7WVpAiuUEFytp4v3mROvvFqfX + wsT2TPd3DjVYHI0RB3gxAGsntwL1gs0FpzFWarZq+UJ0C2QsHKm4mh70LwOtV3fCVy1ScjaZohTF + VnInLr9J8TYYjAFD8bAE192/jZx1NVvgKZ5G8DD3I/lczxES3o2C876T3D1XvANU2GkhdwhcsB8Z + JUIb4d/EEWxd5bZiGYBnBwuWPNKNJJbfohhwPk9iS+nBHgZWBqtXKGFp1euY2tnewr/zuxfDtd5I + tynopOAq4EKb1IT/aBA94KHAphYpMQ2WJITT9Lxj/c7W8fZtaohcQw6wsrMkXxVUMuJ05gHW6WPK + 17y1JnQc8ogEjyscl3NeDPAo70+iXkEyzjucOSA00e871y0zkszjVii9kjs2EqtWl9tdttDr4fPE + 3XkaryLp3rCbwhUr+uVL9/fFyuALuToxujyMqThGN+SMOSH+92BTpt7k8q8fyJU3P/V6c6YETp+C + EHys5Jrdz5A7LfN7wHJWNfE2Cv6AGEhPWGnOUs55p2uHzNxKcPm4FvW+mdcFsdekDXZ95er123Vv + 8XleDVKEZejyb1Z2oHwXsmAzkVwz+cRkoOqPn2BtzCLe7CQs0eHz5skz4PiasufQQvbOLsFWSveR + mz9mC/0niYhxLsd4MhYngLO8XElszDPdVg1M8MJe38TvblPMKmIfoptCfOx/lqRmn+yHA41oFtgx + 9Vu9Q1h7QDNATaS12tXt/Lx7sKw8QoomDUZWeVwHlFvDCT/b+JsTjoIUyOFJxwVrtyO1X20Ie/xh + yD1njXwZb0EBcerqOIiDwp2KMlCgHQcheQjna74+ZCGCzlGpifcZh7h3sk2Bg7JdyD0yupgC86GJ + vphu2GvbGmzK3rbIrDcLm4UjUdJMNIHy9UTIrU3deAoeUoJO3/KB5Ut7zXd9cXdYOYmJz9FrpdQQ + 3iX8KvYNl4qoxPxOLAX6pvYk8fGMY/rg5Tdy/IeHn9Y0AHr+gPREtd7DqmkV9fTXT9/D7bh8tXlz + t/dzHZClTulvvluwgcD0YKkeTfx/kfZtPQvCWpv3+1fs7FuzIydp+e44CQjYIqBiMpkAIgIiCrRA + k++/T/DdM8kkczeXxkQrXWs9h7VadRHP/XI1ZARBDxrsHWdkzGRvCfBhu2+aqmqYCcr74ID0Sy7Y + KcSqJ7fHZ1CYcjziSzEW/fxW26+ijccC3wrZBzN27wk0SEjpubktNdNt0QXWW9KpXcVjvcARcsDR + xp4efavv55alMUD69kX4owgzIqWRC1Fyiqn7EE1DCJCawNMVXTA+gcJj80lIwb6iIloKJQDLJgkn + hSxCigRh+4gEhzshJd4sHtWLqvKWnTcs8IjsA9a9/RKNHzWr4FHoPeo1hHnT3ek3cOKblt5f0R7w + lDaDbIGjhe96cmMM2ocNdK28QvJXbWpyucXhLv7kOU4VqTbmmxV3ymPOGmyfwRVwWy7joHNT9/Qg + vmE0PZosh905lqjNiVM0Sy8vAcRqF8LUWjOmt4BluTb6L6HP3csbySYzQUC6GBf+4Qx47vQhYDjx + gCLicj0BZdlAPtN9enzGYcR4DhW7+424eI2vjOW3rfyLV6QfqeuJQH0m8JoUAZlbbmPMnu920NqV + HtVOPu8NtxGXoD90GX7wc91Pstej3Vn+nGjM+ADw63rgDck6Gb3hYIi//JGa1RHhoBSRMreR/O30 + EHVOrBriVlITRZz1HptbAgBrAmlQliRriHQ8nLzFvXAFdIRNh+aaXvvhU6YD3Mz8Ccek5I1pXmwH + BmLkkJdmiGDuc0+Fpnzg8fEyGd5YEtmB99vgYv85XABH2TNUmtzZUYt4MhiPBifAj+QJ1L5kVc06 + 9WwpeyHu8RXASz/pyoUDpKnPFAW15LFds+OUXu0tbCqbUzbnXTMov3p+rD7EYO+z6MhDkZs0eWm4 + F4ViSOCvnhi8rdcr/poKd3cz9GgjO5vrA25kWt0sHH03lTfaq6I8k4tIhN1H9BbpiQT5ozxe2Li0 + CaNRcApgcQgEmgLUR+x0kAgk2snAt1TdgmlkXPKLL7pvP29GJTmTwFNwMnyRYpDNqsylSllBgO+b + UjXmX3y/2UBpeD+20RRMvKN4h07H6Saa2XxRbR+e2feNPejpgAcI+3CfpA4+zu9tP/MHqkLQ7xq6 + 3wqVMfI6iMHrSALqtHPq0fy5tEouWRq1m80rWo47v4LZ8zRi9yoFdWe8uQV2FF7oyer2jO2/2Afm + 9tFQa+KXfjKFRFV8Fd/ovrkt/YrPqiLd+oIeti0GvMjmRcklU6NeTh+1aObLBsqvC0LKKbMzIeGN + SZnepycurFTs6d0PSsV67a5oUi8LY84Uf5XqaEVIWujTYDsVlhBYmytS5vejFt1JK+H6PFHX97bx + vsW7HBawdqgv707ehNEJKl/BeFN3fV7TQduaoHyGKk0e4RxNkKAE7iWjxcdyV9dcFswTeILCpXv3 + antcEC+l/HKSJ11PyXjP23zsgAxjCfUKGCN2y0YX7sE3pSgNL940nG4IoiSK6Vpf63mkWwFufMmg + tyhrvCl9lK5ivMM9WqxAy6bT91Aoz7gKcczhKOI+9GDuEi5oqObpncfuXeQo0/VrYHS/5v0kpg0B + FVAFekEc6wcyOgO8W/sLjXcHNeP7akNA2x8fWCPsVC+TbCRK3HvXPz4yKSMLoCG/DyueleCHPzuo + JAcaXHbnTEjccIGxhVy812q9notI7+AixQu+C8+hni/OQYYbiQcY3x4VWE5xuQH27fDB9/Qr14N3 + kWV42jgIe1+DgNl5bjn51Rlb7LUbJ+NC8UxgT97dWv/imr6xl8P6BCnafZnIlkuJIRyvqkXtMXn3 + JLtmMkw0PaS+G9cG28aeBYnkHugBaxpgl+VzgcY72NPQSUk0+7eLJI+029Fw8K5swXWVQ7XtHHo3 + Rr7/Nr7cAnNwSpy7ce2RavZ0OKv+niZOrHpc7J9aUGX7jpR5x3qqa0YO+dcVkHcozBGLtEpStoUl + YYMYXT1WAITQL6o7EgcpZ/ROEQdC2YiJaCRnY8oLS4fDZCIcbYSyp3PZTDAf8wr7UX3JmCJFFdjY + bUyxfSVgRiQkEKSnDMfLvo2md3Rr4I5NIvWIXmXLldRIuVv2BaOZ7le+rCYK5uwOwX0qeIRcOx+O + XYexf+CkbAr9YYCbFCSIZeULCOPB3CiYzBLWRuPtkbI5yPD6NW/4uNhuJjQRCWEY7XOKz/uyZ04c + 6oCEwMf2XfaiwR80Dr6a7oBv1a7MZvLxHfgazwRxF8RF31zbcXCk3x1FQnMB5GjLGxA1rYa2iWsb + 3E6IfdixU0ZX/h2xwrxzUMLaltpAU7xlw91TyPujjb3t7wyvUJaKchhquq+3k0Faep9gwm8fdJ+o + OZudj1xBah0KbOyT0CAb7pwoFxTuqc4/3sY0Fq9COdrWA0lNqzL26FQVrnwDmxqwDQ4IBxPqh4eF + /VfvZrwd1y14LgWPVdqXgHvsvglU7sabek3UZCxeuBzWW3CiGvDtVX+lEzhp0huHH+uUca+OdeCR + FxeqfTZlP+f+14JltQEYne97g3s26kVR3aTEltqziJyy+Auu/Rxjzx3e9SzKYw6cfXYi03dmYNoe + vhwEQm1Q3bA2YNmMz0F5gtzFuWIU3gjsqIT2sNx/+RUx/aUu8DSUexycN4AN97ssQ3WBFX4k7ttb + LnwhQ25KCS1yOK58k8VK5qz5svA4myThHcNVn5DvQ2y8Oal3CdjsXx+sx6wx6F08lDC7w45eXX0A + 8/q84JpPdO/bM1huoIlhT14dWflA3TeOoMKVb1JbtPf1ok6+C54fQcPuxbEMzr9HBTS6rUoWOZaM + JZgEsquALvzhGZfrXipvN6qF78lDyxYiFyXY0lGjVqJwHvMNIVGG2zpRo6rrTVx+UCnPkhsIXB6I + Uf5wz8EFb1XqPPMiWvS9qiurvsLuidRgSPVLCdd4QfNV8Ovpy386sKQJpsfbuQBLdo0kWO+/Z+yw + 16YOg6+n/vAQZ3N1rfvz4EwgeWgtQjZl2Yr/4R9ftQcJgsXmhhiseoKq0a302P5r+/DDTSq+5Lrc + L9yHTuC3fj3aXZjgBs4EzQdn0dg37V7sesv65QMB9lsz2lXvweP2W2LTXyeYD8C4KN97wv70+E+v + QDGbRxrX8AWWbcFi+C1Hia71grFOvZtg+m5tbLQmb8wRQ7ryq+/e10BsAd6pg5BLObLZIdKPkcbl + 0EzLK2KjQw1iPPWvEm12FBvVFtXLjn4t2NCHgrbSZRuxH76n+/sNn2oq9sP29crh+TyYhM/lA+Dq + SBTgpMcx9s6BAIbj8k2g9WkVNB2+ukHwdrRg9oxGsuBHXNNu94llJKEKH/f63KeTbKQQXZobdgv9 + Xn9flVYpyNwE9EBHE7CbSBcZ9otKV33Zz1mWFPD5QBX95YeovjIZFGr0JN25ZhlTAx/CGLISr05b + vRyGSwXe7+RMVdqrbOpusgt/+ubHp2eR7RYluV96ws2uDxjIGx3yrzPAaoxO2fr9E3A4RaGHeCqN + 8aNGJXxWz/df/Vz6BBVQ4oGFpleeGMs+4QQ4FupEzcreZvN++x5+34fmwzhkbIqCUnlDYlLUqW/A + xirUFSRgEZ2i/BtN9iMSYL5MIY6H6duzXf+q4G0vj3h/EjCYgm1fwnM+kPWUb2Kw1/UWQthPKs0n + akaUwTwEi9I98X6vNGwAoTGBfpBHbDyx6TEilhsFVTKjZndxogHXpaT88HDzORv9+NPrP/2I2t5j + gxmmA0S95GBNgqEx7Mn9ApP4esHe4eqBYb74FXATs6da+Z2j+X2Xwt0rHgA9vUxWk20BYuhZBsJ2 + 7B0zXrGdBLafssF+a908wdPSFOjBY6aaEMrZt+cTS9l9DgkOrHJbz11vVopnXiLsI7LPhndXVkqm + dZimnjkYfdekiazS84j1VvuCJQ9KX8mpd8eqrX6jeTjmHQymoCC7WS/B5LxgCg9ANJB8O/r9zz+C + 1Z7t6AE9RW/eXc46eKDDifCJCtkA3+EANBwCil2t7ae+BQEMamji+BalbHEvsABrPSZbNezq+a2S + DvZi6eMckVc0rPwPNs/8g68r/2mao+9Ai/NzGh7xNhvrA26hdmxUjC+8Z3DbsXSVL1Uh1h58acyl + y3FwI4kAH63rMVrCTCsVBwZXitvIjobt2LnwWQoDVjeorhkHNedPD2/H6zNjg8iZMLzPAzb46pR1 + cXQMYFEiSmaSVIxLH+sZ+ZU/HM4eYfMTogRGmrHFKvUEj1l1VsJtnXbYBR/ZGLi5lJXr17r9R//V + oy8DMMqYonQp2V/8mnvUod1hsDzeWtSL0rjVhJSOAW++qBjtbPJIyPJ8dyufFgX4eTx1bH76xvvj + o/nxGZNI8g/GInziDoKkLbGvvvYG945OjXKfvgY9bD3NEIRjqML+JRn0549MzQctYPVX8GHWS7Zs + xvVMqjztqbPq37kBnQvN7b2hKmh6Nu/zXQoD8o3pDz/Gyy4rZMnRzjQLsj1g7dAhaJN7gr3hmIH5 + t19yNOwRN7+yfomFnQrpbQrxGh/1n1+TaGpI79xcGV3c5Qiu/gc2TifFGz9NwEEp7Dh8M4wUdD10 + fSim5kKAFb6yOfcrCy7K94k1dmTgt75dldkd1S81qZf7HeZguZAP9YYjANO1RAm4DdyLXlb9Os9m + 2cKNGslkd3OriGl4FpT95XZHcrRTvDHZqRfQGJVF9/ezVC/B19CVdNItMl2ZHvFetw9+/jQ+3F6z + N4vFV4BvRig+VLsy4k6W6SjdQS+oF1kHwH7+45yXBXZW/4Ba28KFiaNDimVvz4RPmYfyTcxNrB7d + azQ/oZVC/+2d/p7Xdw8XFzqBOuF8L6tMIPotgKv+pn43TeAPf358Cu/fTfbnF9927pZsb/KpnhVb + TZTpHT2J8oyX6LcepT5tKEZy7UYkbd0QnkuNURtpZcaKcDbhqh+xzrl9Rlp6XuAf/7qFcf+LHzj6 + yZuqecdq8bCvv/Cvnlx2fDRJnhDDlb+QE2drhvgEkIPPD6ehmRe9XsymcqN841vx4+tR/3TrABon + eMFBaJrRvK9fFgRplGF3E50Y9z0N8S9fSI2GZzTs4dT+6SMjP189avSfC4DxvcV+Vh0Av+ohKEam + g5a5ZD0jtA3hUhsGtktTij7aK7zImhOcSHPkFmNRY62C62tqlPSWMeOSpvBbkRptb4+KsRJiCPp8 + +8DqMr2z2UKeCkop/BLuzPY1e5+3LthM7oV6u2dvzLFz12Fs+S7Ndxux7u7aFCifr/PE7uN6iyZv + USqoHVsVI+3V9kswbQZ4fRQyEhTkZHyQSF+4N8wbjV6fNltceV7Aqa4magryNZqY7ak//khN6/zJ + pqO9S2DDzSP1F1P1pg89WHDlA6TennA27+vRhOv6EbuCuB7Z25jgUY7nNV7MjHNeXKqY/jEkiwr2 + PV+aBxcW7+MNwUyR6uWOkQWas4Pxba1XFHNQgK+lL/A+lw+MwnnZKMtII3oUIMg6QdJyZZgsRJoz + 2/fL0V6gsgddSpFxPnmUbg4VDO9s+OVXP4t66YOzZ71Qp5CtsTyt0QEtL2zQZ6oE74NBuwGrfibT + 9/Iy5tnsGrjyXXqJ65ktfi+FkP9+vtSzwn0kWvHLgfHd1bHupCjiIw0WgAsLj6oGqMF0XKpEwa0V + Ibr6/aPz3Apgg5oNdtpZNoaNoYdwCDwVWRFRa8HVxgp+P+ORuvszMZiSB7KyUU8yGdrWYNyqV3/6 + mtpa5/biGo/w6h48ejOUNyCu9qqUF41vWBXdQ71cSe/DX325Y3+TDTnLN+C3f1qJq3rtn/z5nT/9 + 0M8w/+Y//kQgIvuIA+XiKE13j/70E+ur0QVQcyp6/HbPfrqSz/fX7yCLmqVsenXsC0JZi/FRUzxj + +fHHX/4+VrxeEt5YYOINFU7Cwgczg+kA3cTqkRJ5M5ukaKfD+6gh7JBp7Bk4S5cfHtNr8qI1/b2u + wtTAnixYbD1WB8HVFHOMvNis+ZalF3h64X69M9GvxQCcU2X1p8mvHzj4w4EDqUR7fPQtr1+2sgLh + X/08XD02MNvT/+JDFuLNr7+1UVa/n/RF0/7pO9AYpYUP5af32uEKYmColyNqPXo02E+fpKgg2Pt0 + pTGYQqAqn6RMsGYYcU9MY5Th/pEshHVk+A/ezdpOxYePMUbTpwwHsPbz0PuS6bWoHm4BOA3Vnurb + TwQWh7v58OLAC/35I8w3Nim89/HqLB8bRhzgy3IWb6NffWIiieoOHu5ySY8F7sHIt9L3x9cRd4tk + MK39UaCUXU5NI6jYZLumrCjh9UrVWz0a4+p/yis/QSZELZgqq27g8yAzqr3jDnzmdyHvNMHVf/wM + kM5c9Y2SHhAs/Gc/hX4zKD/9rJPsaPAvh8shLqdm9Qfe3mxomvzTW4S7RSlgL92N4ep3ElhrSz0F + sVz99hM75tnv12sKc4hV/oL9vawCjpPyFm4m50JPwdxGw5f/fOF96gzETifFIDuvWUCNrvKf30l5 + zip+/hj6rn4lkdLM+dUrfEzkwODqaMvB2yC8qN+rlscX9BiCd74I2JUOL4Ol/mYClg05BBdZ6cel + XPOrXRIkjJPvsbkcFjCZGibbDI/R8i5pAsvmI9Dju9gak5qyTtns3x+qWuW2Z0t56iBTlZam/q3z + mH3cFTB4fbfUTvkGfN83MMCwJQE2wLAx5iv6FvD4MvR1PXtv8LVAAK5zuCMhQjyb+0oYYF828R++ + iYunE/iO5ifeV/hVT/i8/8LheviiKe+inprqFIOcHu6rnpPq+VZdQ/garwT/x99d9cjq56N5lhKP + 8hzKYekb+ur3lOD3+8BbpjcUxqzxZgbDAWRRmGD9kTzqlX9yMG7cEb1fN85Y+lM6wc7WGNbnvQmW + +FmZcN9Tn6of7RAx6VK0cJkvDoFXx+7F6FUi5ddfvcYtNCg/ptNf/1id+SOYVc4h/z8TBeL/e6Kg + OCsCdkVLNabD023g055KeoC8ZQjCNlEhSWKB3ggLMm5UeF1Z+oOHr9etV88qLnw4hJmDlp3vA9bt + g1JhcXXDgfS6GkypW04hL9FBfLhy9gfKG1j59YS2qZlk3Hd5TcrXWhK83/hfg+28KpX1Q1Vi62tP + bL4EmQkEpdFwule3GRu0T6F8atggIb0cjWX3zFJ4ONQVWgBOer6F1wvctrctkhQcZUtt1rpSzNyC + 7zo8M0K54gLuzqGgqd9+wNB3RIYRK15IfD3u9dQ+ugU+FlfCx8t+s/KJfoLbE+TpNbtOxmB+Zgtu + xfCKcUAfbH7UbgUPH9fAZhQNxlRGBxeGnuZQ/1ucDbrzqkSJVShi655GbD4qfQMVfmaofWyNaN6Q + uwS3XYXIRpH5jB1SyYS3UMwQUGUKZjeyYwWbc0xvzlHPhKtfEDgGx5LiqDt6QuJKEyicR0Nt9I2M + L9JVHzIebxArjIENZvtoYMTyF81c7ETLvEypcnv6ezK9Jr+ejKkooMCVMjXEw8dgW7IxYcGsD1rM + 5mDwd1ENlXAf2zSpHWjQvooT5awFCi0U+Rzx8inVwXnhZDIVxQMM7/meKt6wrbAd6td+okviK/ze + eeH4qTVGc92fXEVIPhsiRLLGxJsGNzDxFEBPzjfpeeec5PAa3S26F+R7JOAEhpBLnyXh1/iYYlNd + lKK5lPTCzbohFvdQUiLwidEWiKeeeyKNKP61fVN/np5g4HdSItsROtP77nlkXBOfSqXxqpYQsfga + nEB3pQJx8ULC9uky/lQcVPlt6CHWX/ymJi+++UIC146NIvkR8+5tAsdb8KaXZih7/vvkkAIsO8GJ + 7Pn1XMYmAo+zdMfnjzWC5cnFAZC3zw1Ni1jrv4f+2SmN/nhgNdZjsLxus6vE8ljTuNt/Aeuepgqt + D2/TOxFhTStJEoCXlAk9JXbRD06rq1CJuCtFG8S8WTfmVNG8waEHCSjg+/gcVeDXvE5PEdx7c77O + xO4afMa4mvmsEzWC4Hh6XAmri7sx/V4n+KLhqyoYNf/pgQXf8imgcT/7bCoTtVXubeXgC80/2XwX + nRBedsMN8TK3r2eoxAg2aUjpfiiWbJIHvVDq0LthLersjF82VQVvp1eDz5avAXHzVmNofosFr5ff + rTNkxxZ0sabQhGVGLyTPQYB7TfXxxYSRt2iJ7Cv7mlPx7aLNgOWOv0BFV7Y4XPdnMNtrA2zjxdE0 + 6b2I04sPB2tueySbLLYNJj5KB7J1Tsvp+Z23bFCrwoeTeGQpU5QNR61TV0WrUTOJbYNLq7MOOcu8 + 4Bx1FJDcP7jQn68xPpjP0lt8MMXKscgtXMDHy+C9rAxhxcsbansh6aet/tEhRIhg+662/bx9SxXc + fqY9UUCz60nrLoLSDrlEb7v7s+eT8rPAG0oCfFeOk/d7HxpbccSOwDqD7M+eCwlMn9jePCqDFeut + 91+0tTEeqZkJ1vcWwLHTJ3rcuqax7M+eA+/jQ6WmG84Rc4MZwc3WU+l+Zi6YBDpXAOYbEc06GrMx + 3nscPLuxiYv32GbCRf7qcqbjiXCiQKJhsNkGPPp3QUCwnaNZmGADS4eccPocLG+5XO4tKDc0QbvH + xc14M3ZMuBWDK/b3b96YdkCdYPNmGrV7JwJTyGQVvtRIxGr4NjM+a3ctnGzqUdus9kA4l3H++z3Y + 9dsDE9b8gLng6/TYDka0BEhJ5adVfkh5iaxatGxbgi9m92hnBcSb+HO9XsIfNCt+BGBpW3KBGJsh + dj/iI1uk6TZA4nINju92xhb/OOq/+oi9z33x6JDcS/DYQQdnj0+VTZ3X67DOUIne+ikC4vn5qKB2 + hTW99w/JW5T7cIGzxVJq6duCfQOmCYqjnGwcH79nsND7N4DDe/jSc/HVe+6dfmIl2TCKpC1XgYlP + 60TxNQPRfaXb3kAS9wv3n1qj2GmsXkwCEMCPxc9oOsh2ttzUWVJYHVSECXyfLXO3K0FN+y82Ri7o + p/4kC/D7FQxqHjasX3xBkoF9lBZ8KsylHu+ExvDsYJ46hXaoWdlVLtS0m4tvVuMBwdhyUJnj00Dm + kb9kCxnKFuhXdcHJCTrG+PEcVzFw/cZal1qG0OvmBd6XqabJ+6Ib7DuHg7LuF47YbNbiRoIQVvTa + EAAe737+tKCDoWkGONuhMyPgeO6UfS2ov98XrXxBgEHlH+kRK1NNbvvdBdrl8Ebyy3Rrdq/SC9QC + L8I+77QROQ6yKt/b0qFR56UR+z2vMKlTum95AEZS7B2FBsWR+qZvshl/Rg4GUW7Swv5kHsfcmMBT + NLlkN5pVJK78Bb65BiPowrFfNO41KEZ1zvFZqhljD4rLX3yv+OoDYsOjDJXcsLAXbE8ZFdxQVRLh + rWLDjlNDvE1qKBsXW8NH5+VHbM9nPvCW057GJz3NBBvuJWVijU2zd6mwRVa7XPaSKqEPp2nr6buM + EwxHAWIt+VSRqONNApf7d0fNKo8zIdycTPiVLmfinsY8Y9u7liuhIJkIlrprTFBLvtA6NgO9j/kQ + jU92QorpyDzFcv6M2APl7W8/aNgaTT9fK0zg+8VZaNOVIBspi0LlxN0pDkJQGRw9+DHYWJ1Hj0SE + /dK3waQY11jCrtDk2XL6uBt4PUOOJttw67FyfDZQ0s8hvc7N1lsC4qbQTYmKNofw1E+TaUpKulVz + jPwNY4uxhRs5W2oBBYf20M/Vfi/BWKY11eOP2wvBgd/A88E84ht+tTX74b/LfAFf72pbT8zNCTzG + Bwfb4pN57Hg9qH/5ng923/eimrnQnDyOLFjlvO5xV3Xle6QB9g7g2893Qi/wvAgyNXesqgeS6B28 + zOCAhtcB1kuCJR+aKrHoYZqamlg0IIo8XHrU6587m358kuu0BRtJeunn3XWbwtzs9nSt78YCh28H + 4/F4osFG6NhcKoEFksJy13/BaRkZP7YFZC128CP5OB65XccNfA/Lhlrp5ehxOXqEIAmfZ2r4mhjR + T7gf4O6k6tQ5dd9ovNLO/MMHM9yiSNQMDcH0WXlo11z30evRaRDS+lNStOLXnJ76Ah6Pb4KN63pL + XXWrBaF5KBO2nFjsWSTHBPCnTKU6z3XZsq4P7sYgx9kBfGu65gO42qhH35XfiNu7VihS8R7wscnm + mowfbEKBq2SSKsLHYBF/DmCwJQX29I8Cps93UpU0XHR81J6vnod6RBTj4Tg4dRUWDY+7o4KnIFDs + 0KPSTzOPKui2MKM4Vl6AfYcsBG19m7E1etf+YwakgcqnThALw4+3cDvHh4OQM6zNWQmWfStO8FMN + I82/Be/1brBDIH3cAHVYZtS8wHMqgLNeU23aKcb8si4BpEF+RFJL2n56KDIEL7fl0SaM/IiPV0f9 + oTYAySseMvc9BrCKbJfuD0FXz9JTCMHDOkG0fX51RslYd8pWUEsaX/qgnu5jE/7inxpeVRp0ikku + R4bzwOGudGs+vGkNRGKkY0yXwOOCur8AHZh3MolBkfH+6ZnAG99jqj3zq0Hj+BvDTWvvqLf1PmAU + zwcL5mBn4PSA9pmIis0ESnQLkbLi1+BvrALO0vWKvc9M2XJPNhfo0Imn+9vZNbjiRio5DScdySEu + jYXDMAarviNLdZe96Ty5EALsPOgPz8WW1yZFb54mPq98Y/5qhxAkm5li/XSyjLFUEgturK+Hbf3E + AMlOagvyK5/gc7dM3hxhnSiX2lNpmI2zt2ySRlKUZ/yhp5VPrnqrhHZ2MzGi0rZfUiCnMrpXZ7zy + H2+pX3coX5FXU3uvCN70q+8rfyWy1slg8cMmh9zm7RHe747GghMYAIVnjHrtrc86ZUwFCHMo4rvz + GqIFS4cAfCxxpi46i2yyAyCBl8cN2GucXb8EiE/h5SK9cDg9KOijbeyAUbmESDB4NWPcWeCU+yE7 + EzG7Tt5oBqSFYmuKVEvsomaz+25gWROeepZoMGq3uQyZrdvUk2TJm4b1jBev9CnhN6XN5q/lDIDV + YUXdE6iyhaNaDJ6S1f74zX/wZdUrOJWOIVgYTwZ4wfsY7+136P3lj516R2pW0+LNv3pwHBGmvl6j + bIk1O4drfGFzd9qASUFHDhRaOZAXFS61GPdFAs3jdUv13hU9ZsVdCORF3qPX+WMz2u2TEpp2tyHQ + W+8YWFjZKsQVGrzvDQ1wxa2t4FqvaWzJA5hf34rAOvNLfAzHXd9vE12H7uPgYnd7ukWT/PZ05YN6 + Ddt75WLMnLkkkJMkl5qJeojGYjwkkGFfQMuHtmwadK5S7gaJsaEGrF6EzGvh5vg2sOY3JVu+feID + Zu4knG5cCzBFZ5JyE3YWXp8/4ONyewHWlDwp0quunzfHL4TPWAVo02hN1q7xBm8bciHRmq9jeupz + MDvGCRtboTXI570hYHLRDuu9e/Xm+5WFSgT6mAxJ/qjnb85N8LRZRgT5vPGWVJA3QG2TliJPfBrs + XoUxlPRrSKY1n4R7IsQQPyUbRw3j2U9/gudthKQzWq4n/MstYBhyNxqbZyWbgCR+FU+lDoI6Duoe + OTqB+cJDjPijlA1b/anCefdC1Fz1+HwT7xxY+QQ+qO8rm376/K75Lf7F5/Jo9i1MREGkehqWYGmy + qwm1dhiog7cMLMbHkWAOgEFE8Rl5LOLvIUxETlz5CRdN4103wSFsvjhWHg1Y9lzggvLi11h9xFo2 + O+cgV761zvCqH6NR9FwEf/XxdoBTRNbPBx8sSRjZH2D0uEpCEF6jGjur3iYr34btOFB6m5yPR0k3 + +FB98D519rj3KLXnABr1O/qLvyV8+CbkULRHu/XzJ2UJQ6XuyILNGOo93VWXAkiDvaH2e6IRi+qy + +/FDeqH5IWJrfV7voBiw9tK1XrBfJ0GeSNDgB3W5fhG2iQ54V2zpkd7KaEq9bqPwfN7jy+iJ9XJq + jEqxKhn//JGaGSgolKjLNXqqRwfQHz4Kp9HC6icnYF7ru+JEZYbjKPKN1ztrEnggoonGrdt4k7Kk + IcBPjaJ5sJxMdECt7qpUTqllQuYtTfawYJawAxlBc6sZdwtikORcRMNDn/XzOT1BJbFCGRudJ0ez + CyMEbLaTqX1OoTF+czjB723bYzWnJ7Y4p9gEk+vv8IMYlffj39CsPtWKX6q3JH1N4KSr7qp/rZp/ + X4YN7L6vC2FJKtSTqLU+TDlaYP9tTTW7WTCBLYEtxfVtAiO+zgiu+Pqnd9d8LqFITi3W7999xq/4 + Lrd1NhNxSdWaGV8PwpUvk7pUnwY33zIVesXxhqTnjRgL5ugEgdYhXFjIBWIra77yqciIkcR0Nt7G + YgP1q76g1uzOGYv7SwqsKCIEXDq75vF1h4DEdhjblb3zZpVV359/hp308/Jm55wUYD9ZGcVz1taM + 87YbsK4HvRerAkv25jqIo/pOppU/M84TIcxJOqPvfP+w+VRoqrJ7TC7VcTyzxWPXBOaBVJKZFUM9 + WTPhZIkB/IefLKq7DqKSfoj4nnA26s4kwOOu+BJghly06pMKcMo5/uEJYMU9leD0KDOam34Dhl9+ + d+sdEBZz+n6KDg6CvT8/6J4T5568VQAh/D4ORIha0xAsbZ/CYFO8qcNVwvpHheVGUc4mwin3nPqx + +qQXoKCSw+feeLIPZ8oJnL/invqbg+YtdpmmMD3tvr/4ygYkfizA4vL2598JtPoM0BuUivq3UPP4 + R62XMF9ESP3rx+25k7TLgRDc8Yp3ekRizS5+9eXPP5j6rpXh1rtl6601rJ7u/nxRKigKVA8TqWb8 + ZCaKzk7H1Z8b+p/fBVY8xT89yL/lOVE82BhI6vmbwbaMr4B59gKsrvpj6E+LANDcaqhb+SH34wcr + P6drvQS0+SwVdPythu2d+6kX/UVTuPp1+IKHjM1l7PvAAxefOsLjm80ovhJoMyAjuc5ijz3rivz8 + CqoHihNNuKsmuPrb9Oc/zpwpp9C9nmU0owixoXsXFfzkh4jaQfTp6emLdNlNBxVf4lFg3+2yFLAy + rxr21VKvx2p/lOHHJgfsGPIS8aZFCXTcR4SRLljRfCfvGCZhfSbKmPuRoO5G509/W4+tkYm74Cko + p72uYX/Fk0l9YR+segLrXkfrafXDFbhdeuzxwikSfnx71swbPlSEAPrTHz19R2Rnb3NvboK7CyZn + q2NtrVfCYXqa4FwwRA8q4Pt5tG8WUBMpxjEG73o2rTeB2fIU0ItQ05jsyZGAvhiXn94CDFdBAAYe + QbIRXT9a8cX56Tt8HB3UDy81W+RtQDZUFZfKYCvfhyufoXbwtiOx3hML2pF/poGFXgaJNZzD86VZ + /zUrOTJ2aw8ppCCfsBttiDfXjyhXVjylP/wSlw/Xyj+/9efvdE2/b6GQLkeyK3vDWCLPugD3epWJ + vK8MbymYJ8EWYI3U7lD0w6X1LbjixS/fvOl2tCRFxlhajx6q/XCAG0tuh0L67VfG/fzvtSVMHWuz + 85b3S01h8jEJon7QsXf6PECwxg8OztuOLZ+T/oVjgEusrn7/NwVLqpDStakhBRkg22XJle1+SBEM + Xqa37HSUwLMWKmhgDwq6n/+7+jfUbR8pmF/emfz0Kf3Vd3H5wAZ6S7ROvMafegJWYoH6XQDqfFOH + LRw9xPDOByd664Q8WgokFpCOm4IeR4fUsytmE1Qi4Yp2v35T5Fkx0N3l+vPbM/bzOwz8fKNt8ukM + svp5ANbVCcHgZEXLeMxasC/vMjp3S2D88EMZje2ewCE7RDOVQqKsfiViXqUa/C4LJCgfSpHuffgF + 8/TJU7jf3y/0nuhLRp5JuSg4bxpsv8a6nhC6+9Ah5YaeVO/Zz+FNayHuuO16R4gXLdnJ+U9/xf8Y + JpiGtwqVEQUGEaLQirjPa2qUHQIL1gozrNnnenRAGW8GutaLfvrA5gtPrXLH6kF+Ryw8ZBaIX2qF + LbM7R2Sno/Tnd1F3vn/+6jnQ4Trxek+mfp5IxMEff93zj9H46SF4vrQPbOEBgHlrDBa8OE6OuvTz + MsZm99FhqiwvbA/3oWavlPOhGLAzRleo17x36TgwdupEj2s94F5qtCh2ejiS4se/Vn4B3APf4aPV + JV6fhV4HBvcl0n3hFIxqNz6ErzCxsOuHgzH3oSLDWjia653hLpi9rAvhONIZicRP6+HZKMuPbyHp + Pnps1o5T+POvsCe4+Nef8OHJPHxQeyenepq600URwSwhdtr00eRvrBxsYB/i41Fu2HwTzxwcj7qP + BpVTI147TgHM3s+Q+igOvUngJPjrb1Hv8dEjHj5LoijWZY+Rv7qmzWcpd5e7eCdDfrGZIPnHEJyd + I7/Wg5H94Sf/zW3Et3wGVr2FYAV5gSL7kxmLmeqtkpVNSoOi2LLvvEwJXBoUUVveiT0Z8pME/urH + 3cD9IHAThG9DDYlwOofZtz58c7kuKwOJEE0ZfW3VTnHowmM9G08Gz1/e+g/vf/5nNpdUJHAbDBts + uae+n0ZJaaAl2BWJlyfPltzXXGXNP5ym6S3j/HeYwCyyHKy25jebl3Px/dNTp30YG9NVPREIcf5C + O2/XRPNX08KfHiUW7O41U2vowl7Zv/Be22TsbeGSg59LEWLDP58NThJpAK/Zh6dqmXHeomiSAAqt + GrDha9do9v3nRq7Dw+3H9xj5+WHWlD4x/vHnK1+1AGMrJLPkHRi/fUslXPGb6tVdNliRRDmUILzQ + C3O8nsdkDODnfnPpqb71v37t8uNzRGR8wAabV2NF12iAlkOf1RNTz8Jff8EDbJ8t16l2QFKYLoLO + dlcv4skcQGDwNc5CuI/ElV+Cy9SHCAguNRYtWRC8itVM5OfQeiS3NQJXfUKd+9gz1nvlBTwK28fG + +ULBfBlQA98vwcJ+plGDcrIXwIHubuudHLJBrbgL4K1zFYzbww7MFTktu42yO2Bj2us1I740AE9+ + cGj+HjiDiSD7yqMLFLTBeN/PVRNKEKjJlSYr31316ubHDxF//thAsCxfgJ8Jbam/xvNyl4wYHMbX + kUze55zRcemt/z1R8I9//vN/rAMC/2q7e/FaBwPGYh7//X9GBf4t/nto09frN1fwLzKkZfGv//rP + BMK/Pn3Xfsb/OXZN8R7+9V//lIXd7m/a4F9jN6av//udf6xf99//+F8AAAD//wMAzfQiI9qBAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac25129c4cf1f-SJC + - 9953ffd51925cf11-SJC Connection: - keep-alive Content-Encoding: @@ -834,19 +832,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:36 GMT + - Mon, 27 Oct 2025 17:44:05 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=2b7zn.S7cbtibW3SfRE4akE5Fx_84rCQXj0VQRir1Sw-1760986836-1.0.1.1-tKIjaiNb7M_hJpaAk3AZGc5Vy2VPwccwtxuodRlPdPaY.nFVSHiPQlpLyyqpM6uWUWK9BnAb8A81ESY33oNKEM_qhpWhFjKBJHy3I0qJI0I; - path=/; expires=Mon, 20-Oct-25 19:30:36 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=6Bx.0Tp1KC2z.cXtZoF28oauO079g7Yg2kPSs.98vs8-1761587045-1.0.1.1-cb9dNOwrpG2s0Dp_jBzSSxcpnEFfu8iuzjRd2KnyTm1P93zWgHAu1w1nBCX8FU_8aNgcQaYjr9_M8VKc9HMggscVdzYodBm6pRPhfeOdk00; + path=/; expires=Mon, 27-Oct-25 18:14:05 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=MBTZg9TI31Jr6Dv6rrXkRuMEPaXcR3ymj4bEikxUs4M-1760986836958-0.0.1.1-604800000; + - _cfuvid=lhNjKEz3vMmGwWsc5ZUkPm3LbWLMGsXUDF88eZiOl5s-1761587045750-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-7tsff + - envoy-router-78f9c65978-cknbz X-Content-Type-Options: - nosniff alt-svc: @@ -858,7 +856,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "132" + - "626" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -866,7 +864,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "192" + - "675" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -882,7 +880,74 @@ interactions: x-ratelimit-reset-tokens: - 1ms x-request-id: - - req_3953b95ac2d24c7e834c1ffcf13dea3e + - req_d32d9101b18f40ac9fc9fdd902ac9cff + status: + code: 200 + message: OK + - request: + body: null + headers: + accept: + - "*/*" + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - api.semanticscholar.org + user-agent: + - python-httpx/0.28.1 + method: GET + uri: https://api.semanticscholar.org/graph/v1/paper/search/match?query=Gravity+hill&fields=authors,citationCount,citationStyles,externalIds,influentialCitationCount,isOpenAccess,journal,openAccessPdf,publicationDate,publicationTypes,title,url,venue,year + response: + body: + string: + '{"data": [{"paperId": "861b64e8235a5948aec2f2af8a295bae203b3d59", "externalIds": + {"DOI": "10.52228/jrub.2025-38-1-6", "CorpusId": 279509683}, "url": "https://www.semanticscholar.org/paper/861b64e8235a5948aec2f2af8a295bae203b3d59", + "title": "Explanation of Gravity Hill of Mainpat by using digital Elevation + Modeling", "venue": "Journal of Ravishankar University (Part-B)", "year": + 2025, "citationCount": 0, "influentialCitationCount": 0, "isOpenAccess": false, + "openAccessPdf": {"url": "", "status": null, "license": null}, "publicationTypes": + ["JournalArticle"], "publicationDate": "2025-06-15", "journal": {"name": "Journal + of Ravishankar University (PART-B)"}, "citationStyles": {"bibtex": "@Article{Rajwade2025ExplanationOG,\n + author = {Dushyant Kumar Rajwade},\n booktitle = {Journal of Ravishankar University + (Part-B)},\n journal = {Journal of Ravishankar University (PART-B)},\n title + = {Explanation of Gravity Hill of Mainpat by using digital Elevation Modeling},\n + year = {2025}\n}\n"}, "authors": [{"authorId": "2368036338", "name": "Dushyant + Kumar Rajwade"}], "matchScore": 61.13331}]} + + ' + headers: + Access-Control-Allow-Origin: + - "*" + Connection: + - keep-alive + Content-Length: + - "1097" + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:44:06 GMT + Via: + - 1.1 0ac5a786563da4ae2e2a28a1fe210e04.cloudfront.net (CloudFront) + X-Amz-Cf-Id: + - T5VSmj8FSNjeW0_DiN6Qpi9LflhKb9SaBLVi8qn7FYonpRYyhxCxUg== + X-Amz-Cf-Pop: + - SFO53-P7 + X-Cache: + - Miss from cloudfront + x-amz-apigw-id: + - THhX-FkQPHcEsFw= + x-amzn-Remapped-Connection: + - keep-alive + x-amzn-Remapped-Content-Length: + - "1097" + x-amzn-Remapped-Date: + - Mon, 27 Oct 2025 17:44:06 GMT + x-amzn-Remapped-Server: + - gunicorn + x-amzn-RequestId: + - 35669f40-b4df-43a3-b70b-ad2bfd37491a status: code: 200 message: OK @@ -904,17 +969,17 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/3WT227iMBCGXwX5Og52Ds3hrtqVdpGQtqroSlvgIiQDuCRx1p6UIsS77zh0W9QW - KRfOjD3z/9/YR2axwN6ynOkd81gD1hYb4HjogGJ7bXa8VhYvUs9grNItZaUvfPGeYfmRrYsSkKod - Tx5DjUXNDdi+diEZ3SQi8ZhCaOh3fmSqreAFKneuKhB4Vxi3cT4PRBB4kRctl945g6pxclyci4i+ - mRB5nOVSPFJ/lyUbTUdNbqJMhGEWiyy9IQ0G1mCgLYGXum+R5cJjXb8iS1swVPGhVYMfPIz0enSn - EO2qN5vt6I50W6pd6hahRV7pplDtIPV1NSdxpdHWNgVBou1oVIkDmXVRW6Du339NHCbhB6FIFuMn - v0SMn3frbeJL6YSfKa+03vFyW3RImlxRIM9fYpGJl3nJZywy4SLjIpnJJA+iPE4/YolFlAoHRQhB - wrphXEzGXMa00+relC7wzfkhZhRTlr/Bq/jqcAEQFda0e85+3N/+nsz+jH5OplNGojo6oV7eLQ93 - o1kNpKUM5CtPwgeGv1W504DmMFLt6LYBYli4UhV0msZyBUPqxV72BYaUi5hIzESaizAPw08YgjiN - QyHDMwZbakMng9CPZRCkobsv/1kcyY2i0R7c8uF+Sg22iJ3NF+PFeL/f+08WtfG12SzGVH5Vw2J8 - bdKnk+Np+6/ctH1dL5eXV9VeoP7YuNLq3PJqq+XrC+MdMT7PWXrsbw9nJyTVIB9e3tDAQmHKLaeb - 5x6lE3M6nf4BHJ/mcBYEAAA= + H4sIAAAAAAAA/3WT227iMBCGXwX5Og52DuRwV+1Ku0iVtqroSlvgIiQDuCRx1p6UIsS77ziwLepB + yoUzY8/8/zf2kVkssLcsZ3rHPNaAtcUGOB46oNhemx2vlcWr1DMYq3RLWekLX7xlWH5k66IEpGrH + k8dQY1FzA7avXUhGkyxIPKYQGvqdH5lqK3iByp2rCgTeFcZtnM8DEQRe5EXLpXfOoGqcHBfnIqJv + JkQeZ7kUj9TfZclG01GTSZSJMMxikaUT0mBgDQbaEnip+xZZLjzW9SuytAVDFR9aNfjBw0ivR3cK + 0a56s9mO7ki3pdqlbhFa5JVuCtUOUi+rOYkrjba2KQgSbUejShzIrIvaAnX//mvqMAk/CEWyGD/5 + JWL8vFtvE19KJ/xMeaX1jpfbokPS5IoCef4Ui0y8zEs+YpEJFxkXyUwmeRDlcfoeSyyiVDgoQggS + 1g3jYjLmMqadVvemdIFvzg8xo5iy/BVexVeHK4CosKbdc/bj/ub3dPZn9HN6e8tIVEcn1Mub5eFu + NKuBtJSBvPAkfGD4a5U7DWgOI9WObhoghoUrVUGnaSxfYEi92Ms+wZByEROJmUhzEeZh+AFDEKdx + KGR4xmBLbehkEPpxOkmT1N2X/yyO5EbRaA9u+XB/Sw22iJ3NF+PFeL/f+08WtfG12SzGVH5Vw2L8 + 1aRPJ8fT9p+5afu6Xi6vr6q9Qv2+caXVueWXrZaXF8Y7Ynyes/TY3x7OTkiqQT68vKGBhcKUW043 + zz1KJ+Z0Ov0Dx0NcqBYEAAA= headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -932,7 +997,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:37 GMT + - Mon, 27 Oct 2025 17:44:11 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -980,7 +1045,7 @@ interactions: Connection: - keep-alive Date: - - Mon, 20 Oct 2025 19:00:37 GMT + - Mon, 27 Oct 2025 17:44:12 GMT Server: - Jetty(9.4.40.v20210413) Transfer-Encoding: @@ -996,73 +1061,6 @@ interactions: status: code: 200 message: OK - - request: - body: null - headers: - accept: - - "*/*" - accept-encoding: - - gzip, deflate - connection: - - keep-alive - host: - - api.semanticscholar.org - user-agent: - - python-httpx/0.28.1 - method: GET - uri: https://api.semanticscholar.org/graph/v1/paper/search/match?query=Gravity+hill&fields=authors,citationCount,citationStyles,externalIds,influentialCitationCount,isOpenAccess,journal,openAccessPdf,publicationDate,publicationTypes,title,url,venue,year - response: - body: - string: - '{"data": [{"paperId": "861b64e8235a5948aec2f2af8a295bae203b3d59", "externalIds": - {"DOI": "10.52228/jrub.2025-38-1-6", "CorpusId": 279509683}, "url": "https://www.semanticscholar.org/paper/861b64e8235a5948aec2f2af8a295bae203b3d59", - "title": "Explanation of Gravity Hill of Mainpat by using digital Elevation - Modeling", "venue": "Journal of Ravishankar University (Part-B)", "year": - 2025, "citationCount": 0, "influentialCitationCount": 0, "isOpenAccess": false, - "openAccessPdf": {"url": "", "status": null, "license": null}, "publicationTypes": - ["JournalArticle"], "publicationDate": "2025-06-15", "journal": {"name": "Journal - of Ravishankar University (PART-B)"}, "citationStyles": {"bibtex": "@Article{Rajwade2025ExplanationOG,\n - author = {Dushyant Kumar Rajwade},\n booktitle = {Journal of Ravishankar University - (Part-B)},\n journal = {Journal of Ravishankar University (PART-B)},\n title - = {Explanation of Gravity Hill of Mainpat by using digital Elevation Modeling},\n - year = {2025}\n}\n"}, "authors": [{"authorId": "2368036338", "name": "Dushyant - Kumar Rajwade"}], "matchScore": 61.07037}]} - - ' - headers: - Access-Control-Allow-Origin: - - "*" - Connection: - - keep-alive - Content-Length: - - "1097" - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:00:37 GMT - Via: - - 1.1 11b74b29b8e5fb6f06701002e26ee6ae.cloudfront.net (CloudFront) - X-Amz-Cf-Id: - - sn5wnuOmF0yUJMFMebV6UQfxawvzE7dLeUIPRjPqHg1ssgxlmo6G8g== - X-Amz-Cf-Pop: - - SFO53-P7 - X-Cache: - - Miss from cloudfront - x-amz-apigw-id: - - SwoBXHzSvHcEZHQ= - x-amzn-Remapped-Connection: - - keep-alive - x-amzn-Remapped-Content-Length: - - "1097" - x-amzn-Remapped-Date: - - Mon, 20 Oct 2025 19:00:37 GMT - x-amzn-Remapped-Server: - - gunicorn - x-amzn-RequestId: - - cfe35218-ace9-40e3-97d5-dbd842506d6a - status: - code: 200 - message: OK - request: body: "{\"input\":[\"# Gravity hill\\n\\n> \\\"Magnetic hill\\\" and \\\"Mystery @@ -1248,7 +1246,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac2599f91cf1f-SJC + - 995400064fe5cf11-SJC Connection: - keep-alive Content-Encoding: @@ -1256,13 +1254,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:38 GMT + - Mon, 27 Oct 2025 17:44:12 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-9gkgw + - envoy-router-canary-dcc5d69f7-r9sd2 X-Content-Type-Options: - nosniff alt-svc: @@ -1274,7 +1272,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "79" + - "132" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1282,7 +1280,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "98" + - "153" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1292,13 +1290,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999423" + - "199999426" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_fb0a1ce1063a4c448053246c5d50a925 + - req_aac8dfee409c48a99d5e5be2e44559ad status: code: 200 message: OK @@ -1459,7 +1457,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac25b1ceecf1f-SJC + - 9954000869dfcf11-SJC Connection: - keep-alive Content-Encoding: @@ -1467,13 +1465,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:38 GMT + - Mon, 27 Oct 2025 17:44:13 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-vhksf + - envoy-router-bffbfc7f9-4mcqb X-Content-Type-Options: - nosniff alt-svc: @@ -1485,7 +1483,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "90" + - "106" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1493,7 +1491,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "150" + - "125" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1509,176 +1507,24 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_9db95a2af64d4c258039f9fbeca32810 + - req_1150f246f4974508b4b6b3e241dc36d4 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from National2023 chunk 2: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, - 2023, Accessed now\\n\\n------------\\n\\n_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit - \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history - \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove - to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n - \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit - this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history)\\n\\nGeneral\\n\\n - \ * [What links here](/wiki/Special:WhatLinksHere/National_Flag_of_Canada_Day - \\\"List of all English Wikipedia pages containing links to this page \\\\[j\\\\]\\\")\\n - \ * [Related changes](/wiki/Special:RecentChangesLinked/National_Flag_of_Canada_Day - \\\"Recent changes in pages linked from this page \\\\[k\\\\]\\\")\\n * [Upload - file](/wiki/Wikipedia:File_Upload_Wizard \\\"Upload files \\\\[u\\\\]\\\")\\n - \ * [Special pages](/wiki/Special:SpecialPages \\\"A list of all special pages - \\\\[q\\\\]\\\")\\n * [Permanent link](/w/index.php?title=National_Flag_of_Canada_Day&oldid=1231946994 - \\\"Permanent link to this revision of this page\\\")\\n * [Page information](/w/index.php?title=National_Flag_of_Canada_Day&action=info - \\\"More information about this page\\\")\\n * [Cite this page](/w/index.php?title=Special:CiteThisPage&page=National_Flag_of_Canada_Day&id=1231946994&wpFormIdentifier=titleform - \\\"Information on how to cite this page\\\")\\n * [Get shortened URL](/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n - \ * [Download QR code](/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n - \ * [Wikidata item](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703 - \\\"Structured data on this page hosted by Wikidata \\\\[g\\\\]\\\")\\n\\nPrint/export\\n\\n - \ * [Download as PDF](/w/index.php?title=Special:DownloadAsPdf&page=National_Flag_of_Canada_Day&action=show-download-screen - \\\"Download this page as a PDF file\\\")\\n * [Printable version](/w/index.php?title=National_Flag_of_Canada_Day&printable=yes - \\\"Printable version of this page \\\\[p\\\\]\\\")\\n\\nIn other projects\\n\\n - \ * [Wikimedia Commons](https://commons.wikimedia.org/wiki/Category:National_Flag_of_Canada_Day)\\n\\nAppearance\\n\\nmove - to sidebar hide\\n\\nFrom Wikipedia, the free encyclopedia\\n\\nCanadian holiday\\n\\nNational - Flag of Canada Day \\n--- \\n[![](//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Canada_flag_halifax_9_-04.JPG/250px-\\nCanada_flag_halifax_9_-04.JPG)](/wiki/File:Canada_flag_halifax_9_-04.JPG) - The\\nnational flag of Canada \\nObserved by | [Canada](/wiki/Canada \\\"Canada\\\") - \ \\nDate | [February 15](/wiki/February_15 \\\"February 15\\\") \\nNext time - \ | February 15, 2025 (2025-02-15) \\nFrequency | Annual \\n \\n**National - Flag of Canada Day** ([French](/wiki/French_language \\\"French\\nlanguage\\\"): - _Jour du drapeau national du Canada_), commonly shortened to\\n**Flag Day** - , is observed annually on February 15 to commemorate the\\ninauguration of the - [flag of Canada](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") on\\nthat date - in 1965.[1] The day is marked by flying the flag, occasional public\\nceremonies - and educational programs in schools. It is not a [public\\nholiday](/wiki/Public_holidays_in_Canada - \\\"Public holidays in Canada\\\"),\\nalthough there has been discussion about - creating one.\\n\\n## History\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=1\\n\\\"Edit - section: History\\\")]\\n\\n### Background\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=2\\n\\\"Edit - section: Background\\\")]\\n\\nAmid [much controversy](/wiki/Great_Canadian_flag_debate - \\\"Great Canadian flag\\ndebate\\\"), the [Parliament of Canada](/wiki/Parliament_of_Canada - \\\"Parliament of\\nCanada\\\") in 1964 voted to adopt a new design for the - [Canadian\\nflag](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") and issued a - call for\\nsubmissions.[2]\\n\\nThis flag would replace the [Canadian Red Ensign](/wiki/Canadian_Red_Ensign\\n\\\"Canadian - Red Ensign\\\"), which had been, with various successive alterations,\\nin conventional - use as the national flag of [Canada](/wiki/Canada \\\"Canada\\\")\\nsince 1868. - Nearly 4,000 designs were submitted by Canadians.[2] On October\\n22, 1964, - the [Maple Leaf flag](/wiki/Maple_Leaf_flag \\\"Maple Leaf\\nflag\\\")\u2014designed - by historian [George Stanley](/wiki/George_Stanley \\\"George\\nStanley\\\")\u2014won - with a unanimous vote.[3] Under the leadership of [Prime\\nMinister](/wiki/Prime_Minister_of_Canada - \\\"Prime Minister of Canada\\\") [Lester\\nPearson](/wiki/Lester_B._Pearson - \\\"Lester B. Pearson\\\"), resolutions\\nrecommending the new design were passed - by the [House of\\nCommons](/wiki/House_of_Commons_of_Canada \\\"House of Commons - of Canada\\\") on\\nDecember 15, 1964, and by the [Senate](/wiki/Senate_of_Canada - \\\"Senate of\\nCanada\\\") two days later.[4]\\n\\nThe flag was proclaimed - by [Elizabeth II](/wiki/Elizabeth_II \\\"Elizabeth II\\\"),\\n[Queen of Canada](/wiki/Monarchy_of_Canada - \\\"Monarchy of Canada\\\"), on January\\n28, 1965,[3][5] and took effect \\\"upon, - from and after\\\" February 15 that\\nyear.[6]\\n\\n### Flag Day\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=3\\n\\\"Edit - section: Flag Day\\\")]\\n\\nNational Flag of Canada Day was instituted in 1996 - by an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order in Council\\\") - from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor General - of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o LeBlanc\\\"), - on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien - \\\"Jean Chr\xE9tien\\\").[7] At the\\nfirst Flag Day ceremony in [Hull, Quebec](/wiki/Hull,_Quebec - \\\"Hull, Quebec\\\"),\\nChr\xE9tien was confronted by demonstrators against - proposed cuts to the\\n[un\\n\\n------------\\n\\nQuestion: What is the national - flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6777" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//dFPLbtswEPyVxV56kQ3ZiANb1zYpEvSBNu6pKuQ1tbIYU0uVDydq4H8v - KMdok6InApxZzuzs8gk7W7PBApWhWPPEWxEOk4vJYjLP54t8NV9hhrrGAju/q/LZ8rGN35Z7dWuv - 7tYrul/HPqz3mGEYek4s9p52jBk6a9IFea99IAmYobISWAIW35/O/MCPCRmPAjebzb23UspTKQAl - +th15IYSCyhx3TIIBW2FDDSGdmAbeEtCNYH2EFqGj9Qbhg9MzUjI4KHVqoUH8lCz1zvhGrYDtNoH - 6zQJvGfrdgx3gcTwMIWbMJI9G1aBa7ACn1WwW3Ywn2cwW11eZPCgQwsEUUh0Z6OHgw0MjbMdCJMz - A1xkeZ6Dj9tOh/TMSdxPIfUwWk8qvbPKkO5Opr5EZoEro3/RlkMLNzdJ/ZYkkhtgvhzVFxmQ1GCb - RitNxgwQrN0DNw2rkPjXvHVjwWxxKhh7ctwbUlyPIY2Rpea/cg1Xkpydg2qphm2yoQWUlQPLc9zR - M5B/TvuNfzUHr0UxzJaXyyl8OiPXLyf0joY0Jbv17A5cA4nEsYGXpiFYULbruLOOAo+Gk8YbD1oo - 7qIb35+WmJ1WxLHhA4niyivrOK3KqpRjKZvNBo8/MvTB9pVj8lawQJa6CtEJPgOef0YWxVhINCbD - OG5v8YRa+hiqYPcsHot5nl9mqEi1XCnHo4fqJSU/446p/h92rk0K3LfcsSNTLbp/+X/QWfsaPWZo - Y/j7araYZZiS1YqroNlhgenX1eRqPB5/AwAA//8DAGmEEJvoAwAA - headers: - CF-RAY: - - 991ac25d6f4d9441-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:00:42 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:00:40Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:00:42Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:00:40Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxzDDyEjv6iRRQCJpBV - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "3546" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from National2023 chunk 4: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, - 2023, Accessed now\\n\\n------------\\n\\n2010.\\n 8. **^** [Dept. of Canadian - Heritage news release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 + chunk 4: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed + now\\n\\n------------\\n\\n2010.\\n 8. **^** [Dept. of Canadian Heritage news + release](http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) [Archived](https://web.archive.org/web/20110706182436/http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) July 6, 2011, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback Machine\\\"), February 15, 2010. Retrieved February 15, 2011.\\n 9. **^** [PM pays tribute @@ -1726,49 +1572,60 @@ interactions: \ * [Mobile view](//en.m.wikipedia.org/w/index.php?title=National_Flag_of_Canada_Day&mobileaction=toggle_view_mobile)\\n\\n \ * [![Wikimedia Foundation](/static/images/footer/wikimedia-button.svg)](https://wikimediafoundation.org/)\\n \ * [![Powered by MediaWiki](/w/resources/assets/poweredby_mediawiki.svg)](https://www.mediawiki.org/)\\n\\n - \ * \\n\\n------------\\n\\nQuestion: What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + \ * \\n\\n------------\\n\\nQuestion: What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6296" + - "6243" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJJbbxMxEIX/ymienSoJpJB9Q62KhAQvFPHAos2sPcmaeseLPW4bovx3 - 5PTCTTxZOufzeM6MDzhGxwEbtIGK41mOIqyzl7PVbDlfrubr5RoNeocNjnnXzRev4uXq0+Ju2H1+ - e/H+TUpX5z+WH9+hQd1PXCnOmXaMBlMMVaCcfVYSRYM2irIoNl8OT7zyfXVOR4ObzeZbjtLKoRWA - FnMZR0r7Fhto8XrwGfjecpoUfIZtiiMQfPY3fmLnCSipt4GB+lgUPpD6KBTgKtAO4hYuSMgRXNLe - wN3g7VCLEEylD97CEIN3tAcvTyBnpT74PLCr6mK9PgcSB7HPnG7ZQRS44j4VSntYrHQ4g+uBnzus - YclLhsRbTiyWswG+V061qeDlJptTvZGVHCk99q0DPyfpi4KLnEGiguNsk+/5gbBaKFTN78SAjSGm - bCAmoGliSiSWa+jKnvJ4EtjWSXjNHLZnLZqHGScOfFvxLtuYuM562cqxlc1mg8evBrPGqUtMOQo2 - yOI6LUnw0cj8vdRw2EgJwWA5rb85oJepaKfxhiVjs3i9nhu0ZAfubOLTbro/kWc/Mbn/eU936ws8 - DTxyotCtxn/5X+5i+Ns9GoxFf5fWLwzWtXrLnXpO2GD9tY6Sw+PxJwAAAP//AwD7LCVXKAMAAA== + H4sIAAAAAAAAA3SSUW/bIBSF3/0r0H2OJ5zUSeq3adOeWrWatEnbXFkEbmxaDAhwtS7Kf5/Aaeyo + 7QsP97v3cM6FQ0YISAEVAd6xwHur8i8/b37d3Hat/3F3//TZ7L7u7Pfdqvg9PH67/weLOGF2j8jD + 69QnbnqrMEijR8wdsoBRtdisi3K7oeUqgd4IVHGstSEv8yVdljnd5nRzmuuM5OihIn8yQgg5pDM6 + 1AL/QkXo4rXSo/esRajOTYSAMypWgHkvfWA6wGKC3OiAOpk+1JqQGvzQ98y91FCRGmpYjFWHCp+Z + 5th4bhxGSmt9nEs53A+exSB6UGoGmNYmsLiIFOLhRI5n23uppe8ah8wbHa34YCwkeswIeUhrGC6S + gXWmt6EJ5gmTbLEuilEQpsVP+Ipen2gwgakJLOnytL9LyUZgYFL52S6BM96hmN1ZrtbnEGwQ0kyM + ZrOMby29Jz/ml7qdVFbbqw8vmADnaAOKxjoUkl8Gn9ocxu/5Udt528kyeHTPkmMTJLr4IgL3bFDj + 1wH/4gP2zV7qFp11Mv2f+OjZMfsPAAD//wMAQl25rjwDAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac25d6a84cf9f-SJC + - 9954000a3b2415f7-SJC Connection: - keep-alive Content-Encoding: @@ -1776,200 +1633,70 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:42 GMT + - Mon, 27 Oct 2025 17:44:19 GMT Server: - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:00:40Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:00:42Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:00:40Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxzDEDH83LTbQXJ2gg3 - strict-transport-security: + Set-Cookie: + - __cf_bm=VaAveYQ6i1.Kz6ADbuLI421xS98E6wrQwGMab18c7dw-1761587059-1.0.1.1-qakXoys1ha8JqyjS6jC371BBwtU7xUHmkhR7CqLHxz.ieYhiuUM4q.Av2Y7ozQVxuux0I.0.YMGfzpByLdPtKqbeelnxlN4Jmqoz.IntUqg; + path=/; expires=Mon, 27-Oct-25 18:14:19 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=5sJXhZAZxZvqcrPXfVh747nuNMH36Rxm_qHbc6sq41g-1761587059539-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "3794" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from National2023 chunk 1: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, - 2023, Accessed now\\n\\n------------\\n\\nJump to content\\n\\nMain menu\\n\\nMain - menu\\n\\nmove to sidebar hide\\n\\nNavigation\\n\\n * [Main page](/wiki/Main_Page - \\\"Visit the main page \\\\[z\\\\]\\\")\\n * [Contents](/wiki/Wikipedia:Contents - \\\"Guides to browsing Wikipedia\\\")\\n * [Current events](/wiki/Portal:Current_events - \\\"Articles related to current events\\\")\\n * [Random article](/wiki/Special:Random - \\\"Visit a randomly selected article \\\\[x\\\\]\\\")\\n * [About Wikipedia](/wiki/Wikipedia:About - \\\"Learn about Wikipedia and how it works\\\")\\n * [Contact us](//en.wikipedia.org/wiki/Wikipedia:Contact_us - \\\"How to contact Wikipedia\\\")\\n * [Donate](https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en - \\\"Support us by donating to the Wikimedia Foundation\\\")\\n\\nContribute\\n\\n - \ * [Help](/wiki/Help:Contents \\\"Guidance on how to use and edit Wikipedia\\\")\\n - \ * [Learn to edit](/wiki/Help:Introduction \\\"Learn how to edit Wikipedia\\\")\\n - \ * [Community portal](/wiki/Wikipedia:Community_portal \\\"The hub for editors\\\")\\n - \ * [Recent changes](/wiki/Special:RecentChanges \\\"A list of recent changes - to Wikipedia \\\\[r\\\\]\\\")\\n * [Upload file](/wiki/Wikipedia:File_upload_wizard - \\\"Add images or other media for use on Wikipedia\\\")\\n\\n[ ![](/static/images/icons/wikipedia.png)\\n![Wikipedia](/static/images/mobile/copyright/wikipedia-wordmark-en.svg) - ![The\\nFree Encyclopedia](/static/images/mobile/copyright/wikipedia-tagline-en.svg)\\n](/wiki/Main_Page)\\n\\n[ - Search ](/wiki/Special:Search \\\"Search Wikipedia \\\\[f\\\\]\\\")\\n\\nSearch\\n\\nAppearance\\n\\n - \ * [Create account](/w/index.php?title=Special:CreateAccount&returnto=National+Flag+of+Canada+Day - \\\"You are encouraged to create an account and log in; however, it is not mandatory\\\")\\n - \ * [Log in](/w/index.php?title=Special:UserLogin&returnto=National+Flag+of+Canada+Day - \\\"You're encouraged to log in; however, it's not mandatory. \\\\[o\\\\]\\\")\\n\\nPersonal - tools\\n\\n * [ Create account](/w/index.php?title=Special:CreateAccount&returnto=National+Flag+of+Canada+Day - \\\"You are encouraged to create an account and log in; however, it is not mandatory\\\")\\n - \ * [ Log in](/w/index.php?title=Special:UserLogin&returnto=National+Flag+of+Canada+Day - \\\"You're encouraged to log in; however, it's not mandatory. \\\\[o\\\\]\\\")\\n\\nPages - for logged out editors [learn more](/wiki/Help:Introduction)\\n\\n * [Contributions](/wiki/Special:MyContributions - \\\"A list of edits made from this IP address \\\\[y\\\\]\\\")\\n * [Talk](/wiki/Special:MyTalk - \\\"Discussion about edits from this IP address \\\\[n\\\\]\\\")\\n\\n## Contents\\n\\nmove - to sidebar hide\\n\\n * (Top)\\n * 1 History Toggle History subsection\\n - \ * 1.1 Background\\n * 1.2 Flag Day\\n * 2 See also\\n * 3 Footnotes\\n - \ * 4 External links\\n\\nToggle the table of contents\\n\\n# National Flag - of Canada Day\\n\\n7 languages\\n\\n * [\u0627\u0644\u0639\u0631\u0628\u064A\u0629](https://ar.wikipedia.org/wiki/%D9%8A%D9%88%D9%85_%D8%B9%D9%84%D9%85_%D9%83%D9%86%D8%AF%D8%A7_%D8%A7%D9%84%D9%88%D8%B7%D9%86%D9%8A - \\\"\u064A\u0648\u0645 \u0639\u0644\u0645 \u0643\u0646\u062F\u0627 \u0627\u0644\u0648\u0637\u0646\u064A - \u2013 Arabic\\\")\\n * [Espa\xF1ol](https://es.wikipedia.org/wiki/D%C3%ADa_de_la_Bandera_Nacional_de_Canad%C3%A1 - \\\"D\xEDa de la Bandera Nacional de Canad\xE1 \u2013 Spanish\\\")\\n * [Fran\xE7ais](https://fr.wikipedia.org/wiki/Jour_du_drapeau_national_du_Canada - \\\"Jour du drapeau national du Canada \u2013 French\\\")\\n * [\u0540\u0561\u0575\u0565\u0580\u0565\u0576](https://hy.wikipedia.org/wiki/%D4%BF%D5%A1%D5%B6%D5%A1%D5%A4%D5%A1%D5%B5%D5%AB_%D5%A1%D5%A6%D5%A3%D5%A1%D5%B5%D5%AB%D5%B6_%D5%A4%D6%80%D5%B8%D5%B7%D5%AB_%D6%85%D6%80 - \\\"\u053F\u0561\u0576\u0561\u0564\u0561\u0575\u056B \u0561\u0566\u0563\u0561\u0575\u056B\u0576 - \u0564\u0580\u0578\u0577\u056B \u0585\u0580 \u2013 Armenian\\\")\\n * [\u05E2\u05D1\u05E8\u05D9\u05EA](https://he.wikipedia.org/wiki/%D7%99%D7%95%D7%9D_%D7%94%D7%93%D7%92%D7%9C_%D7%94%D7%9C%D7%90%D7%95%D7%9E%D7%99_%D7%A9%D7%9C_%D7%A7%D7%A0%D7%93%D7%94 - \\\"\u05D9\u05D5\u05DD \u05D4\u05D3\u05D2\u05DC \u05D4\u05DC\u05D0\u05D5\u05DE\u05D9 - \u05E9\u05DC \u05E7\u05E0\u05D3\u05D4 \u2013 Hebrew\\\")\\n * [Bahasa Melayu](https://ms.wikipedia.org/wiki/Hari_Bendera_Kebangsaan_Kanada - \\\"Hari Bendera Kebangsaan Kanada \u2013 Malay\\\")\\n * [Polski](https://pl.wikipedia.org/wiki/Narodowy_dzie%C5%84_flagi_Kanady - \\\"Narodowy dzie\u0144 flagi Kanady \u2013 Polish\\\")\\n\\n[Edit\\nlinks](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703#sitelinks-\\nwikipedia - \\\"Edit interlanguage links\\\")\\n\\n * [Article](/wiki/National_Flag_of_Canada_Day - \\\"View the content page \\\\[c\\\\]\\\")\\n * [Talk](/wiki/Talk:National_Flag_of_Canada_Day - \\\"Discuss improvements to the content page \\\\[t\\\\]\\\")\\n\\nEnglish\\n\\n - \ * [Read](/wiki/National_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit - \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history - \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove - to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n - \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit - this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title\\n\\n------------\\n\\nQuestion: - What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "5849" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RSTY/TQAz9K5Yve0lX7S5Faq4gxAGtBFppQQSl7sRNhk48Yezptqr631H6ASyI - 02j8nv2ePw7Yx4YDlugC5YYnGkXYJq8m88nd9G4+XdwtsEDfYIm9tvV09pC/zLXrPuw+cffxtTy+ - f9p9jhss0PYDjyxWpZaxwBTDGCBVr0ZiWKCLYiyG5dfDlW+8G5HTU+JyufyuUSo5VAJQoea+p7Sv - sIQKHzuvwDvHaTDwCusUeyB48hs/cOMJBmoZaBWzwc0DmY9CAd4FaiGu4Q0JNQRvaX8Dq2zQRFaQ - aDCaIi/gZR1Tf0qDhtUlv/LSwnNHBtYxyLXi+mVFcpYphD2EGDcKwW8YYgJvOpbxrQAH7llMb+Gx - 44vLYWBKChZhdfU8irjY99zHROa3DA3twXHg1fiX9sQ4qSeyjhNYRy+8/sK9KYf1We8ydNAuPss4 - tyH5npIPexDa+vbccc+SFUiasz+1lJ3lxLcVFuddJA68JXFcq4uJx53MKjlWslwu8fitQLU41IlJ - o2CJLE1tOQleAOUfmcUxlpJDKDCfzqQ8oJchW21xw6JYzhb39wU6ch3XLvHJXP2SMr3iian5H3bN - HRV46LjnRKGe9//yf6Oz7m/0WGDM9mdoMS9QOW2949o8JyxxvO6GUoPH408AAAD//wMAWHu1xFAD - AAA= - headers: - CF-RAY: - - 991ac25d6fcd67f8-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:00:42 GMT - Server: - - cloudflare Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:00:40Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:00:42Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:00:40Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxzDvtN67piKA4mFbN6 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "6246" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3855" + - "6289" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998498" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_ef78fbcce93e4d6aa3e7a99e16c77686 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from National2023 chunk 3: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, - 2023, Accessed now\\n\\n------------\\n\\n an [Order in\\nCouncil](/wiki/Order_in_Council - \\\"Order in Council\\\") from [Governor\\nGeneral](/wiki/Governor_General_of_Canada - \\\"Governor General of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc - \\\"Rom\xE9o LeBlanc\\\"), on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 + chunk 3: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed + now\\n\\n------------\\n\\n an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order + in Council\\\") from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor + General of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o + LeBlanc\\\"), on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien \\\"Jean Chr\xE9tien\\\").[7] At the\\nfirst Flag Day ceremony in [Hull, Quebec](/wiki/Hull,_Quebec \\\"Hull, Quebec\\\"),\\nChr\xE9tien was confronted by demonstrators against proposed cuts to the\\n[unemployment insurance](/wiki/Unemployment_insurance @@ -2025,52 +1752,60 @@ interactions: [Archived](https://web.archive.org/web/20110706182436/http://www.pch.gc.ca/pc-ch/infoCntr/cdm-mc/index-eng.cfm?action=doc&DocIDCd=CJM092444) July 6, 2011, at the [Wayback Machine](/wiki/Wayback_Machine \\\"Wayback Machine\\\"), February 15, 2010. Retrieved February 15, 2011.\\n \\n\\n------------\\n\\nQuestion: - What is the national flag of Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6544" + - "6491" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTwW7cRgz9FYKXXmRjd2u3iI5JECSHBgmaBGi6hZae4a7YSByVpNbeGvvvxch1 - 4rboSQO+N49v+Kh7HEvmAVtMA82ZL7yoclxcXVxfbFab69WzzTNsUDK2OPqhW60//vC8t08v5Je3 - n44/vr/7PH18+eeNYYNxmriy2J0OjA1aGWqB3MWDNLDBVDRYA9tf7x/5wXcVWT4t7na7373oVu+3 - CrBFn8eR7LTFFrb4oWfgu8Q2BWTxNLuzw1sKKUoDvBroAGUPL0gpE7ykUwO3vaQexCHxwDdGwRmK - wiu+sZnsBOvr6CEKpDKOPJZKgOgZ9gMdvnOgXKaqfglvAkbWenY4kkmZq6bxWFTYgTQDH1nDoech - V8mR7MuDp8WJaBrmLHp40BfzeBQ4gSi8noehgfcz33BqFr1Hy0tPUdis1ivYF3tq8Kr6J1U5sjnZ - 6RLeLMR1A+9MRoafRMWDDX4OnnpWeE02scFk7Kx1HMu4hHSRdIieAnrKsB/KrUI58kPDd0yJ4UO5 - ZbuEmkRNDIz3bKyJ/amrXjyKnZZXSDi4HFT2kkgT19F8bSm5zjRODURf5kMPEpALO2gJmKwcJTMQ - ZA6SgTNk9mSyRFKTfppUipmGSpCDQjGgaWKy2vFyi83DNhkPfKylzlMxrlv1/VbPW93tdnj+rUGP - MnXG5EWxRdbcxWyKfwPOf8z1rdhqDQvnZdHbexSd5uiifGF1bDerq1WDiVLPXTJeAuz+SfmKG1P+ - P+zxbu1QsxvZaOiux//yv6Hr/t/oucEyx9PS+mrdoLMdJXEXwoYt1h80k2U8n/8CAAD//wMAAc6M - 0hMEAAA= + H4sIAAAAAAAAA3SST2/UMBDF7/kU1pwTlKSE3ebKhUqVQIAQFakiY89mXfwn2JMVZbXfHdnZblLR + XnKY38zLm+c5ZoyBktAyEHtOwoy6eP/t9u7289/QmK831/o79x8/+LvD709l88UNkMcJ9/MBBT1N + vRHOjBpJOTtj4ZETRtVq865qtpuyuUrAOIk6jg0jFU1Rl3VTlNui3Jzn9k4JDNCyHxljjB3TNzq0 + Ev9Ay8r8qWIwBD4gtJcmxsA7HSvAQ1CBuCXIFyicJbTJ9LGzjHUQJmO4f+ygZR10kM9VjxoP3Ars + g3AeIy07e1pLedxNgcdF7KT1CnBrHfEYRFri/kxOF9s7ZVXY9x55cDZaCeRGSPSUMXafYpiebQaj + d2akntwvTLLVtqpnQViCX/DV2+ZMyRHXC6irZpO/INlLJK50WGUJgos9ymV2CZ5PUrkVyFYL/u/n + Je15eWWHlef69R8sQAgcCWU/epRKPN96afMYb/O1tkvUyTIE9AclsCeFPj6HxB2f9Hw3EB4Doel3 + yg7oR6/S8cQXz07ZPwAAAP//AwAiv480OQMAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac25d5e6f1692-SJC + - 9954000a3cc52714-SJC Connection: - keep-alive Content-Encoding: @@ -2078,55 +1813,262 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:43 GMT + - Mon, 27 Oct 2025 17:44:21 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=W6sX.IK_3JMsJmfxmrqEJl_n1LsRmyrMCpgH9CSAIc0-1761587061-1.0.1.1-QOKZMBmqpU9GG1u0Ej5VBJGf.YvIAzcNW82VoNAp4f8Rz.ZhamhG9.fvMD15AZzWoYYcdy1MKzSxmVKClcjwOyr96pkvZiBGdVKVOcC8ZzQ; + path=/; expires=Mon, 27-Oct-25 18:14:21 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=cfCOLKeuCSiRXOP.EQjAjYXi_e86_i89W2sFAJDa7Jg-1761587061188-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:00:41Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:00:43Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:00:41Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxzDHSUggogBaTrm2pY - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7749" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4892" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from unknownauthorsUnknownyeargravityhill lines 0-44: \\\"Gravity Hill.\\\" - WikiMedia Foundation, 2023, Accessed now This article has 0 citations.\\n\\n------------\\n\\n# - Gravity hill\\n\\n> \\\"Magnetic hill\\\" and \\\"Mystery hill\\\" redirect - here. For other uses,\\n> see [Magnetic Hill (disambiguation)]()\\n> - and [Mystery Hill (disambiguation)](https://en.wikipedia.org/wiki/Mystery_Hill).\\n\\nA - **gravity hill**, also known as a\\n**magnetic hill**, **mystery hill**, **mystery + - "7967" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998441" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b52e8f9a15a64c589fc46e5445bde038 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 + chunk 2: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed + now\\n\\n------------\\n\\n_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit + \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history + \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove + to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n + \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit + this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history)\\n\\nGeneral\\n\\n + \ * [What links here](/wiki/Special:WhatLinksHere/National_Flag_of_Canada_Day + \\\"List of all English Wikipedia pages containing links to this page \\\\[j\\\\]\\\")\\n + \ * [Related changes](/wiki/Special:RecentChangesLinked/National_Flag_of_Canada_Day + \\\"Recent changes in pages linked from this page \\\\[k\\\\]\\\")\\n * [Upload + file](/wiki/Wikipedia:File_Upload_Wizard \\\"Upload files \\\\[u\\\\]\\\")\\n + \ * [Special pages](/wiki/Special:SpecialPages \\\"A list of all special pages + \\\\[q\\\\]\\\")\\n * [Permanent link](/w/index.php?title=National_Flag_of_Canada_Day&oldid=1231946994 + \\\"Permanent link to this revision of this page\\\")\\n * [Page information](/w/index.php?title=National_Flag_of_Canada_Day&action=info + \\\"More information about this page\\\")\\n * [Cite this page](/w/index.php?title=Special:CiteThisPage&page=National_Flag_of_Canada_Day&id=1231946994&wpFormIdentifier=titleform + \\\"Information on how to cite this page\\\")\\n * [Get shortened URL](/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n + \ * [Download QR code](/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNational_Flag_of_Canada_Day)\\n + \ * [Wikidata item](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703 + \\\"Structured data on this page hosted by Wikidata \\\\[g\\\\]\\\")\\n\\nPrint/export\\n\\n + \ * [Download as PDF](/w/index.php?title=Special:DownloadAsPdf&page=National_Flag_of_Canada_Day&action=show-download-screen + \\\"Download this page as a PDF file\\\")\\n * [Printable version](/w/index.php?title=National_Flag_of_Canada_Day&printable=yes + \\\"Printable version of this page \\\\[p\\\\]\\\")\\n\\nIn other projects\\n\\n + \ * [Wikimedia Commons](https://commons.wikimedia.org/wiki/Category:National_Flag_of_Canada_Day)\\n\\nAppearance\\n\\nmove + to sidebar hide\\n\\nFrom Wikipedia, the free encyclopedia\\n\\nCanadian holiday\\n\\nNational + Flag of Canada Day \\n--- \\n[![](//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Canada_flag_halifax_9_-04.JPG/250px-\\nCanada_flag_halifax_9_-04.JPG)](/wiki/File:Canada_flag_halifax_9_-04.JPG) + The\\nnational flag of Canada \\nObserved by | [Canada](/wiki/Canada \\\"Canada\\\") + \ \\nDate | [February 15](/wiki/February_15 \\\"February 15\\\") \\nNext time + \ | February 15, 2025 (2025-02-15) \\nFrequency | Annual \\n \\n**National + Flag of Canada Day** ([French](/wiki/French_language \\\"French\\nlanguage\\\"): + _Jour du drapeau national du Canada_), commonly shortened to\\n**Flag Day** + , is observed annually on February 15 to commemorate the\\ninauguration of the + [flag of Canada](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") on\\nthat date + in 1965.[1] The day is marked by flying the flag, occasional public\\nceremonies + and educational programs in schools. It is not a [public\\nholiday](/wiki/Public_holidays_in_Canada + \\\"Public holidays in Canada\\\"),\\nalthough there has been discussion about + creating one.\\n\\n## History\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=1\\n\\\"Edit + section: History\\\")]\\n\\n### Background\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=2\\n\\\"Edit + section: Background\\\")]\\n\\nAmid [much controversy](/wiki/Great_Canadian_flag_debate + \\\"Great Canadian flag\\ndebate\\\"), the [Parliament of Canada](/wiki/Parliament_of_Canada + \\\"Parliament of\\nCanada\\\") in 1964 voted to adopt a new design for the + [Canadian\\nflag](/wiki/Flag_of_Canada \\\"Flag of Canada\\\") and issued a + call for\\nsubmissions.[2]\\n\\nThis flag would replace the [Canadian Red Ensign](/wiki/Canadian_Red_Ensign\\n\\\"Canadian + Red Ensign\\\"), which had been, with various successive alterations,\\nin conventional + use as the national flag of [Canada](/wiki/Canada \\\"Canada\\\")\\nsince 1868. + Nearly 4,000 designs were submitted by Canadians.[2] On October\\n22, 1964, + the [Maple Leaf flag](/wiki/Maple_Leaf_flag \\\"Maple Leaf\\nflag\\\")\u2014designed + by historian [George Stanley](/wiki/George_Stanley \\\"George\\nStanley\\\")\u2014won + with a unanimous vote.[3] Under the leadership of [Prime\\nMinister](/wiki/Prime_Minister_of_Canada + \\\"Prime Minister of Canada\\\") [Lester\\nPearson](/wiki/Lester_B._Pearson + \\\"Lester B. Pearson\\\"), resolutions\\nrecommending the new design were passed + by the [House of\\nCommons](/wiki/House_of_Commons_of_Canada \\\"House of Commons + of Canada\\\") on\\nDecember 15, 1964, and by the [Senate](/wiki/Senate_of_Canada + \\\"Senate of\\nCanada\\\") two days later.[4]\\n\\nThe flag was proclaimed + by [Elizabeth II](/wiki/Elizabeth_II \\\"Elizabeth II\\\"),\\n[Queen of Canada](/wiki/Monarchy_of_Canada + \\\"Monarchy of Canada\\\"), on January\\n28, 1965,[3][5] and took effect \\\"upon, + from and after\\\" February 15 that\\nyear.[6]\\n\\n### Flag Day\\n\\n[[edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit§ion=3\\n\\\"Edit + section: Flag Day\\\")]\\n\\nNational Flag of Canada Day was instituted in 1996 + by an [Order in\\nCouncil](/wiki/Order_in_Council \\\"Order in Council\\\") + from [Governor\\nGeneral](/wiki/Governor_General_of_Canada \\\"Governor General + of Canada\\\") [Rom\xE9o\\nLeBlanc](/wiki/Rom%C3%A9o_LeBlanc \\\"Rom\xE9o LeBlanc\\\"), + on the initiative of Prime\\nMinister [Jean Chr\xE9tien](/wiki/Jean_Chr%C3%A9tien + \\\"Jean Chr\xE9tien\\\").[7] At the\\nfirst Flag Day ceremony in [Hull, Quebec](/wiki/Hull,_Quebec + \\\"Hull, Quebec\\\"),\\nChr\xE9tien was confronted by demonstrators against + proposed cuts to the\\n[un\\n\\n------------\\n\\nQuestion: What is the national + flag of Canada?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6724" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RU224bNxB911cM+NQCkiDJkiWrT0mcpC6cNm2CFmkUCLPc2RVrcmZLcp1uDAP5 + iHxhvqQgV7bkXF74wDNz5hzODG8GAMqUag1K7zBq19jRkz8v31zOz/5+0U7k8cX566czLt/8dXH2 + bzV5dKKGKUOKf0jHu6yxFtdYika4h7UnjJRYp8vT6WK1nCxOMuCkJJvS6iaOFqPZZLYYTVajyXKf + txOjKag1vB0AANzkMynkkv5Ta5gM724chYA1qfV9EIDyYtONwhBMiMhRDQ+gFo7EWfTNhgE2KrTO + oe82ag0b9XpHwJg8oIXKYg1SwRNkLBFMgLgjeIGNJbgkrHLAGB45U2ZkenY6h+fJdZ9ikHuOkgqM + NISX6K1BRxwBS2kilYDA9B5KCqbmIQSypKPh+luVPn/81MdRCUUHOxOi+FTjOYmvCV5FZEvd54+f + ig5aRjZO2gDXEgmE4TcdpSAPs9kwKx3DHxTEtslsgAZDoN7Gz9IGyr7FuYQJwzlpcil7uuizh4Dc + h78ixkgQ3wuU2AWwGMmP4feWiOGpNR+woLiDiwtovGiLxu3r9M/L8Atyi76D2SpTL3pqEyGKXAFV + FemY4p5R4XPgXsNiDL/eterZw1adYwc/5Ltz7H5MnZMikL9OD87corXdF4wQBbQ4R058smNiAMPY + 1q3PNX5KgkwAh/6qf/8kf1TZLnUrCdbkyQkbClC0OZYlAkLTFtZo2Ik1JXbjjRr2c+fJ0jWypm3Q + 4inN33Sy4dvjafVUtQHTrnBr7RGAzBKzsLwn7/bI7f1mVIZN2G09YRBO0x6iNCqjtwOAd3nT2gfL + oxovronbKFeUaaer+bInVIfdPsCn05M9GiWiPQCz+el+RR9SbkuKaGw4WlelUe+oPKq5PJvdm8C2 + NHLAJoMjj19L+hZ9799wfWCZz1ffLXAAtKa0n9vGU2n0Q+OHME/pB/xe2P1rZ8kqDaDRtI2GfOpI + SRW2tv+dVOhCJLetDNfkG2/yF5WaPrgd/A8AAP//AwAnrr0fnwUAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9954000a4bdef97b-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:44:21 GMT + Server: + - cloudflare + Set-Cookie: + - __cf_bm=LgD6y94sD9Onl4Ny6Bi45k2W4FOHNNGy9lKx_5HY9Tc-1761587061-1.0.1.1-bQT7hW5OjGBcJTO6BTBS8l4SjlN97eJLD.uFffLf0yq96qtkHZwNQW_k3L_L274NjzBT.hddbGtzqAxxSS8obhnwRC35nWn3T8eE1xJlGRg; + path=/; expires=Mon, 27-Oct-25 18:14:21 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=JW3HmiyHnyd5_jVcxaRtRaS9BldzvLV4uxXy11vDx0E-1761587061327-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8074" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "8108" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998406" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_16ead2c454ab4b1789c57b2ea2f22cca + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from unknownauthorsUnknownyeargravityhill + lines 0-44: \\\"Gravity Hill.\\\" WikiMedia Foundation, 2023, Accessed now This + article has 0 citations.\\n\\n------------\\n\\n# Gravity hill\\n\\n> \\\"Magnetic + hill\\\" and \\\"Mystery hill\\\" redirect here. For other uses,\\n> see [Magnetic + Hill (disambiguation)]()\\n> + and [Mystery Hill (disambiguation)](https://en.wikipedia.org/wiki/Mystery_Hill).\\n\\nA + **gravity hill**, also known as a\\n**magnetic hill**, **mystery hill**, **mystery spot**, **gravity road**, or **anti-gravity hill**,\\nis a place where the layout of the surrounding land produces an [illusion](https://en.wikipedia.org/wiki/Illusion),\\nmaking a slight downhill slope appear to be an uphill slope.\\nThus, a car left out @@ -2151,49 +2093,60 @@ interactions: [The Crooked House](https://en.wikipedia.org/wiki/The_Crooked_House) \u2013\\n \ a pub (now demolished) with an internal gravity hill illusion.\\n\\n## References\\n\\n## External links\\n\\n------------\\n\\nQuestion: What is the national flag of - Canada?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + Canada?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "3356" + - "3303" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFNaxtBDIb/itClLYyDbWIc7y3EPfRYaEuhW3aVXcU76axmPdI4Nsb/ - vaxrk37Qk+B9nkGvmCP2seWABTaBcssTjSJsk9vJYjKfzhfT1XyFDn2LBfa6qaaz5eeH+4/3+/V6 - 61fruy/t8+7rcvYeHdph4NFiVdowOkwxjAGpejUSQ4dNFGMxLL4dr77xfiTnUWBd188apZRjKQAl - au57SocSCyixRPcrTRx4R9JwpU1MPNJpKadS6roupZRPHQPvG06DgVegx5gNNol23g7Q+RAU3sbB - fEMBfAhZfRSFl44TQxtfZFRAQxxYgYaBKYFFeGTIw4jeObCOfYKGsrI6IGkhcSDjFoaOJfYsdAMf - DMaDyYuCRPDyFFNP5qNcKj2QUEtvFOScUoCnQBsHGsGfm0s0uBxrYwXrGLaZdbRv8PTdoVocqsSk - UbBAlraynAQvQHmbWRrGQnIIDvP5a4ojehmyVRZ/sCgWd7O5w4aajqsm8blL9acxvfLE1P6PXd+O - C3jouOdEoVr0//qvdNb9TU8OY7bfo+WtQ+W08w1X5jn9lJKVEihBpSQWpSjV1gIAAAD//wMAsx6C - 98MCAAA= + H4sIAAAAAAAAA3SSQU/jMBCF7/kV1pyTVVqUNpsb6pWV6Gq1EtqgyNjT1uDYlj1BQNX/vrJDmyDg + ksN8My9vnueYMQZKQsNAHDiJ3uli8/fm7vfdG7/e/lK3m8Ftvbi5qh+2g97c/oE8TtiHRxR0nvoh + bO80krJmxMIjJ4yqi/VqUdXrsvqZQG8l6ji2d1RUxbJcVkVZF+X6fe5glcAADfuXMcbYMX2jQyPx + BRpW5udKjyHwPUJzaWIMvNWxAjwEFYgbgnyCwhpCk0wfW8NYC2Hoe+5fW2hYCy3kY9WjxmduBHZB + WI+Rlq05zaU87obA4yJm0HoGuDGWeAwiLXH/Tk4X2ztlVDh0HnmwJloJZB0kesoYu08xDB82A+dt + 76gj+4RJdr24GvVgyn2ii+pMyRLXE6hXq/wLwU4icaXDLEkQXBxQTqNT7HyQys5ANlvvs52vtMfV + ldnPLC/rb38wASHQEcrOeZRKfFx6avMYL/O7tkvQyTIE9M9KYEcKfXwMiTs+6PFqILwGwr7bKbNH + 77xKpxPfOztl/wEAAP//AwC7crXQNwMAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac2748a279441-SJC + - 995400325cd915f7-SJC Connection: - keep-alive Content-Encoding: @@ -2201,43 +2154,217 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:00:45 GMT + - Mon, 27 Oct 2025 17:44:22 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:00:43Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:00:45Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:00:43Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxzV3EG5S1HNKQfzy2G - strict-transport-security: + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "3241" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "3284" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999220" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 1ms + x-request-id: + - req_71bc5349f4ca488b8351b742114f8052 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from National2023 + chunk 1: \\\"National Flag of Canada Day.\\\" WikiMedia Foundation, 2023, Accessed + now\\n\\n------------\\n\\nJump to content\\n\\nMain menu\\n\\nMain menu\\n\\nmove + to sidebar hide\\n\\nNavigation\\n\\n * [Main page](/wiki/Main_Page \\\"Visit + the main page \\\\[z\\\\]\\\")\\n * [Contents](/wiki/Wikipedia:Contents \\\"Guides + to browsing Wikipedia\\\")\\n * [Current events](/wiki/Portal:Current_events + \\\"Articles related to current events\\\")\\n * [Random article](/wiki/Special:Random + \\\"Visit a randomly selected article \\\\[x\\\\]\\\")\\n * [About Wikipedia](/wiki/Wikipedia:About + \\\"Learn about Wikipedia and how it works\\\")\\n * [Contact us](//en.wikipedia.org/wiki/Wikipedia:Contact_us + \\\"How to contact Wikipedia\\\")\\n * [Donate](https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en + \\\"Support us by donating to the Wikimedia Foundation\\\")\\n\\nContribute\\n\\n + \ * [Help](/wiki/Help:Contents \\\"Guidance on how to use and edit Wikipedia\\\")\\n + \ * [Learn to edit](/wiki/Help:Introduction \\\"Learn how to edit Wikipedia\\\")\\n + \ * [Community portal](/wiki/Wikipedia:Community_portal \\\"The hub for editors\\\")\\n + \ * [Recent changes](/wiki/Special:RecentChanges \\\"A list of recent changes + to Wikipedia \\\\[r\\\\]\\\")\\n * [Upload file](/wiki/Wikipedia:File_upload_wizard + \\\"Add images or other media for use on Wikipedia\\\")\\n\\n[ ![](/static/images/icons/wikipedia.png)\\n![Wikipedia](/static/images/mobile/copyright/wikipedia-wordmark-en.svg) + ![The\\nFree Encyclopedia](/static/images/mobile/copyright/wikipedia-tagline-en.svg)\\n](/wiki/Main_Page)\\n\\n[ + Search ](/wiki/Special:Search \\\"Search Wikipedia \\\\[f\\\\]\\\")\\n\\nSearch\\n\\nAppearance\\n\\n + \ * [Create account](/w/index.php?title=Special:CreateAccount&returnto=National+Flag+of+Canada+Day + \\\"You are encouraged to create an account and log in; however, it is not mandatory\\\")\\n + \ * [Log in](/w/index.php?title=Special:UserLogin&returnto=National+Flag+of+Canada+Day + \\\"You're encouraged to log in; however, it's not mandatory. \\\\[o\\\\]\\\")\\n\\nPersonal + tools\\n\\n * [ Create account](/w/index.php?title=Special:CreateAccount&returnto=National+Flag+of+Canada+Day + \\\"You are encouraged to create an account and log in; however, it is not mandatory\\\")\\n + \ * [ Log in](/w/index.php?title=Special:UserLogin&returnto=National+Flag+of+Canada+Day + \\\"You're encouraged to log in; however, it's not mandatory. \\\\[o\\\\]\\\")\\n\\nPages + for logged out editors [learn more](/wiki/Help:Introduction)\\n\\n * [Contributions](/wiki/Special:MyContributions + \\\"A list of edits made from this IP address \\\\[y\\\\]\\\")\\n * [Talk](/wiki/Special:MyTalk + \\\"Discussion about edits from this IP address \\\\[n\\\\]\\\")\\n\\n## Contents\\n\\nmove + to sidebar hide\\n\\n * (Top)\\n * 1 History Toggle History subsection\\n + \ * 1.1 Background\\n * 1.2 Flag Day\\n * 2 See also\\n * 3 Footnotes\\n + \ * 4 External links\\n\\nToggle the table of contents\\n\\n# National Flag + of Canada Day\\n\\n7 languages\\n\\n * [\u0627\u0644\u0639\u0631\u0628\u064A\u0629](https://ar.wikipedia.org/wiki/%D9%8A%D9%88%D9%85_%D8%B9%D9%84%D9%85_%D9%83%D9%86%D8%AF%D8%A7_%D8%A7%D9%84%D9%88%D8%B7%D9%86%D9%8A + \\\"\u064A\u0648\u0645 \u0639\u0644\u0645 \u0643\u0646\u062F\u0627 \u0627\u0644\u0648\u0637\u0646\u064A + \u2013 Arabic\\\")\\n * [Espa\xF1ol](https://es.wikipedia.org/wiki/D%C3%ADa_de_la_Bandera_Nacional_de_Canad%C3%A1 + \\\"D\xEDa de la Bandera Nacional de Canad\xE1 \u2013 Spanish\\\")\\n * [Fran\xE7ais](https://fr.wikipedia.org/wiki/Jour_du_drapeau_national_du_Canada + \\\"Jour du drapeau national du Canada \u2013 French\\\")\\n * [\u0540\u0561\u0575\u0565\u0580\u0565\u0576](https://hy.wikipedia.org/wiki/%D4%BF%D5%A1%D5%B6%D5%A1%D5%A4%D5%A1%D5%B5%D5%AB_%D5%A1%D5%A6%D5%A3%D5%A1%D5%B5%D5%AB%D5%B6_%D5%A4%D6%80%D5%B8%D5%B7%D5%AB_%D6%85%D6%80 + \\\"\u053F\u0561\u0576\u0561\u0564\u0561\u0575\u056B \u0561\u0566\u0563\u0561\u0575\u056B\u0576 + \u0564\u0580\u0578\u0577\u056B \u0585\u0580 \u2013 Armenian\\\")\\n * [\u05E2\u05D1\u05E8\u05D9\u05EA](https://he.wikipedia.org/wiki/%D7%99%D7%95%D7%9D_%D7%94%D7%93%D7%92%D7%9C_%D7%94%D7%9C%D7%90%D7%95%D7%9E%D7%99_%D7%A9%D7%9C_%D7%A7%D7%A0%D7%93%D7%94 + \\\"\u05D9\u05D5\u05DD \u05D4\u05D3\u05D2\u05DC \u05D4\u05DC\u05D0\u05D5\u05DE\u05D9 + \u05E9\u05DC \u05E7\u05E0\u05D3\u05D4 \u2013 Hebrew\\\")\\n * [Bahasa Melayu](https://ms.wikipedia.org/wiki/Hari_Bendera_Kebangsaan_Kanada + \\\"Hari Bendera Kebangsaan Kanada \u2013 Malay\\\")\\n * [Polski](https://pl.wikipedia.org/wiki/Narodowy_dzie%C5%84_flagi_Kanady + \\\"Narodowy dzie\u0144 flagi Kanady \u2013 Polish\\\")\\n\\n[Edit\\nlinks](https://www.wikidata.org/wiki/Special:EntityPage/Q6972703#sitelinks-\\nwikipedia + \\\"Edit interlanguage links\\\")\\n\\n * [Article](/wiki/National_Flag_of_Canada_Day + \\\"View the content page \\\\[c\\\\]\\\")\\n * [Talk](/wiki/Talk:National_Flag_of_Canada_Day + \\\"Discuss improvements to the content page \\\\[t\\\\]\\\")\\n\\nEnglish\\n\\n + \ * [Read](/wiki/National_Flag_of_Canada_Day)\\n * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit + \\\"Edit this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title=National_Flag_of_Canada_Day&action=history + \\\"Past revisions of this page \\\\[h\\\\]\\\")\\n\\nTools\\n\\nTools\\n\\nmove + to sidebar hide\\n\\nActions\\n\\n * [Read](/wiki/National_Flag_of_Canada_Day)\\n + \ * [Edit](/w/index.php?title=National_Flag_of_Canada_Day&action=edit \\\"Edit + this page \\\\[e\\\\]\\\")\\n * [View history](/w/index.php?title\\n\\n------------\\n\\nQuestion: + What is the national flag of Canada?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "5796" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RSy27bMBC86yuIPUuF7FS2o2uvRYCmaIC2CgSGXEtMKZIgV3nA8L8XpGxLQZKL + Djs7o5nhHjLGQEmoGYiekxicLr7dff/9o/t5o/vuV7++KR8HfL7r/tziy7P7Cnlk2IdHFHRmfRF2 + cBpJWTPBwiMnjKqr7WZV7bZltUvAYCXqSOscFVWxLtdVUe6Kcnvi9VYJDFCzvxljjB3SNzo0El+g + ZmV+ngwYAu8Q6ssSY+CtjhPgIahA3BDkMyisITTJ9KExjDUQxmHg/rWBmjXQQD5NPWp84kZgG4T1 + GNGyMcellMf9GHgMYkatFwA3xhKPRaQQ9yfkeLG9V0aFvvXIgzXRSiDrIKHHjLH7VMP4Jhk4bwdH + Ldl/mGRXm6qaBGEufobXu9UJJUtcL3jXV5v8A8lWInGlw6JLEFz0KBfc6syNKUep7IyV2SLje0sf + yU/5lekWtqvPfzADQqAjlK3zKJV4G3xe8xjP87O1S9vJMgT0T0pgSwp9fBGJez7q6XQgvAbCod0r + 06F3XqX7iY+eHbP/AAAA//8DAJjr9hQ8AwAA + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9954000a4ab2ed40-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:44:25 GMT + Server: + - cloudflare + Set-Cookie: + - __cf_bm=rql_csJw04TKqFEm_HbPJXGMrOcpyJlETFGpXBQrdXc-1761587065-1.0.1.1-2Uhn5gPcby0IdfxbNADdlLHAc10IRLzujlwW4MOHocCkVQTUH4KzLJwMbxfNGh59SiBAe00wVhRVdwohR2kS4O4iMj2qBnOdkD8vpP9186I; + path=/; expires=Mon, 27-Oct-25 18:14:25 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=vD9_5kckCdgf2KggxESDcGIssVbOr314QG_EwRXPulk-1761587065949-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "9045" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3157" + - "12680" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998633" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_f8abe8f2bb24434490a63a311905a5f1 status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml index 51e25126e..9dbefb28c 100644 --- a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml +++ b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml @@ -46,27 +46,27 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:54 GMT Via: - - 1.1 412c0797c582f734d2a53446693c889e.cloudfront.net (CloudFront) + - 1.1 6778e3146eb385e3772c8de867b2c290.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - hlgO_H1WnjpP9fen-9dQfVMrqv1CwGcGXw80l6PhSaRojIyEDxvdwA== + - _KzaVtqqBjtUh7od7YrYn-UXWgk-oTvGLGZmkgc0uFGWCakG3sdm9w== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - SwnycFkLvHcEdPg= + - THekGE5hPHcEPRg= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1398" x-amzn-Remapped-Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:54 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 647afea1-8026-4001-b8dd-e7e02df7aef5 + - 89cfd31a-fe3f-492f-806d-92f55bfff0b2 status: code: 200 message: OK @@ -90,103 +90,103 @@ interactions: string: !!binary | H4sIAAAAAAAA/81ca3PbOLL9Kyx9mqkSabz4cj45tuM4r8nGnmSy49QURUESYorU8mHHk8p/v90A ZYmQ7Ri+u/fu7s6OrEcTaHSfPt1o4PuoabO2a0b7o+pyNB4tZdNkc+m3NysJ711X9fa7V7JuVFXC - BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn58mVsPmvVEsXjJz4lPiPnlOxzsi+i - f4JQ/BSGtVyN9mkckTSMmIgIDcejzQB4IEggRj/Go1rOZC3LXPp51ZUt/EYk49GqmxSqWcgavnuw - lLXKs9I7XMglvCi8sypXsr3xfjk4PPsVnqiapsMBJfC6ULksG/jrz++onLq9c0Z8zMcsvmNC3Cfc - Z/E5Ifv6f/aEojhN4pAR/A+MPq/KVpbtlmqvqhp+MpVFduOr0p9mN/BMMh79/uENfLpo21Wzf7F3 - sZfXMmvVlcyr5bIqm6Cq5xd7/eCbi73JzcWeCMjF3ugHDHLWwerUek5Hv53iApKAcsLTiz2qh0Kj - EJ5aZnoaR+pK4Wi8amZ01rT1DQ6qUn7WNLJu5dSf3MA3N2oej7LrrIbl/3MEiyYEDUfwXDXVz8R/ - 3fNINV0bGw4MpNwj/8eXH+N7By+iBwYPCz72nqtKlnNVSjCFcj72jssrVVflEnSPH2fl1Duvs7JZ - VXXrnd00rVw2LjMOqYjpT2esx/nvmDEJ482M34EdVCWY9WnZtKrtWolzP5GlrOHNt3JqbB5MHrzE - YVYfeHjylvI4jaKfzcyMx2FmXzamP62WmSq1l/Wv/sRP66pplll96dfgO+C/rXaPWVY0EvymWcBC - +SgCfiFrcMC2QJ8dvQr0qgfe+UJW9Y13WC1XXRvgBNYDmPorMIL7/FqMWfgFVL+lecLoxV6WN8HX - vM0DlhPKONpuP9mvVVeD+n0Qo3IYBQ4efPMeLPwpctB0X9D9kN+BHKmIKOhdI8dK4+6IUZH6jEaI - xg0MJMc3D1F5AIwa2vxbhMSFWKNkSFF6r7QD7z3gz0rmCCge+M7xt1WRldquGjSmt1Uh867Iau99 - jfaEH8CbgFKN1iw8Qn3baAuee1UVnZ4ZTdESuhYWTNvPbx8OT48GSFbVuZoa/EJT8uEf5vM4Zn6U - srj/NVgKmDEak/76aL+tOzkezWHAiJonEjzdex/At2fZUhVocJ9kUYAxty0uSSP/1aEO4P2ZqpsW - xc5mqlCZMSwY2RpAJC4XIsMA/8be76XSMA2BAz74UOULWBtZj7dfvpPX3meImh74Oov1b2DM3hlE - WXA949KP1AAsdujzRJDHaeClbDPvYKCAE4C1hRpOPptOlYELJw0gghxvA+i/Sxnr4R/gsLYHfyab - RTat/8uH/8i1jCIR+zzVEe8Ra3lQTmt4+NHQnBfKtuT/Km18QTq4nGjKxSlGug3gVmUBT3sQD7ep - nB7/pcRZw3sAvrlq6U8D1xZg8+RirwEOwoRPGIM1iLnwoxGu2K1YpsUyF7HrOABKWdbyKqA5BHUS - D+VyLZe7yCUwlq85hBYB1GkoTWhpwlVaNl1mASM0JSwGqxuIDLXI8CkT1wEwnmC8t2YdaaHR44Uy - GsPcKE9oRBmJ44TAQNPQmn6sxcZO04ffNJSAlcLaU8gvSJj4lthEi03cxYJpkV4sTMDnQ7GpFps6 - WSr85oieHZKQhenRUBwlxvKJg1YjwdFk0EC/qStIrcD8r8JVtPSvrMHS3q+e5FhxorUAtpYwWwvU - eBZ1cq0dwVwkPrMEG9eiTr5lBDMWrqEgpMnOiI2XUSc3o2DyXwNVzmZdo10toCwAamiJNt5GHdxN - JGEIK5/VfyiAmJRAsi3C1JZrHI46eBylSYQ2zDkqGKwX0m/i31hyjcdRF5cDjV7sLWayCUQU0CAk - f2FuYA/Y+BxNbsnhmrRD7L/KMDXxVAlhpqt1KjOr6qUOZkA5K/iwgUi1lZnd8ku2zS9Hz+Hty0nW - KO8cg+eNzGrNrqkF/tS4qianmg/6PZ+O493x6QEA7S3nmgxD+PZo00JqUfbxCinzi0zVJQxz7B3k - mmNnEwjHEFE3uWWGX77ZHnxCB4PvqiJbXqtSea+Go0+s0GWAgTkAw62HiQgWnqY+SdIktnGRGUxg - T8AE8LBo7bo88a3wwPpo64IJEYFFytQymwdXPFE8YLGgWqy1Pr+V3gHkXjOVK206LRB/NceF2fcO - vOOurlYyg++sVnWV5QuvrSDByeFLeu3M+nQ6JbjVOBsszK0IyCYhG9CVmvHW5AwuMQtVmEEVhqjS - QWped3nb1ZgWjiA59TSf815WXSMDz3tedFKnpR4YvoejPfWeq6LQhEzNF23zzEMwf+ZtqOb19XVw - jVIWWsi8ugL62bQr1JoP1lf41cyv9Y8v9gJrcAaXmBMNMJCHeW7ZIuQlAYkDYhMgZqCJuUATELSL - vVWZNQh4JAoFtT2WGWBiLsC0bUGCKBawJCSWWANLLNldpOcKvHbs/RY8g3Vv2wpeHwbbqbE2na9g - OWh65h1AsCWYGJBdrwBbKgEz0Aabrr6SNwHYpuedvjo8OPVp7GF1tVlUK0QPiVJVmU0KiSv/yx8H - p7/igtP4mbdaeclFB6855fYqGhhjd1OOfFMGsKb2PiuyXFVj7wwm96bLFSQCAFzwx9uuVMD238LL - g8VSTs1XXkoJwPYKXh3Jci4L/K73R6a8BahgUlWX+955hXWjxss8kDBTkBrMashAcJLapLdnmCmj - ijuA9fT4+Phi7/DjC+3HdbmubQ3B1lR1ZO191LU+7RpUa4rHUWSUxeM4DIbxD83h9PDw4yewLwZk - CX4E5iuYZRPcwCu/G17v1+rrbgE2chR4H0BRr7P8UqdQgfcOlSxBwZ/hxZlaVo3+1nGA85iATtqq - VrpUB3gDKkR1HQ8MwqgLxku0gh7UzVk1a2EppHcOmZtO7z7C6t5aKNrsx6xQU/Pnp94IG++X08Oz - 80/a6hjRuqRR3NtdTO7UJHw/JCwVqEkCmiTczoVMPOEO8eRuBtsk3IqB3EQU7hBRBsSKAczARHhM - Lbl9/uZEMg0wyvkNWDYOGPMFGqWWZBMPuLA5B02ScJsVxGQ7+LyuFt77wPs0ZAQIg+vC4wM8hYt2 - 8aC1vO3R6k2PVtaQTZTgT2avEQFOLNKdxTMhgjuEiKHcBOXGkR1yuQkS3D1IZLByVzxSlEJmKkKL - vHITJfjdGeMWIgzXle86DfLb6t15yNFKNAClImYJjbeX/J8Aq3NAix1GYq84vu2dnj64wj2jfidb - HXA0AOhRtDJflFVRzRVQ71/6gf1qTdwEGO6U05pqgSbBzbLWVRIm7LqGwVjhQGGH7ktJGJA0FhZ2 - C4M4wgFxLMvCLE5ExLJYYeBGuBBYsKOLPSDDMY0sMiMMyAi+G0TedBBRZT3HwKvD8Bsp8XUfA5xz - JY8DmJ90N0hfToMxRPtvkw7F/x54H+Hv57gvppnA2PuUFcALFmPvJfzxAgbRNRjAxhhmF9fIehbI - iPCrJwAXsm3Nx8fTBmJZV9fIW5umAh7eImE4LXP49JbFiDgKTUARcSwsKiP6SpdbqcvUeigNIafh - Poni1P92V4pw4F1lwLB1aH3nr2TdgLLmwE+ajY/RNOTbXni2yFaFvPHeBDDjbb4vDCoKq64mDKgJ - J96LM0jjxMfdH+JHYYpF/7+YbX0G18TduHYv/oRk1x4Z5zBPiLP47zDanvCbqrNAR9dwHhFmaAJh - 5uDwrXd2evL66AiMcxuP8gEevS6r60JO59KbqiavrmRtcmQgJJm3VLtBSBjwFQ7luqFLxwgVwPxt - CDLYJpywLQGxNBY85CkSSBoHVNCQJ9aChQbeQpcMXZdncB/ZR3DzU18Qi5uEBtxCurPSJNTp1i2F - 4ANLfg/vTryTYTwhdyyteyVmOD4DkuFTORmsFA+ARFKLRoYGLkMXTrYd1kMM6zSmwl4lgzmhC+ZQ - AoN5v7hpPsirtwBzyNybAGIGMFRi0YawL7W7JNkmaDAe8SQKOBMAllaICw3OhE44s6ngqyVGZMoi - izuFBmNCp2L7QGwyISRhBhVty8KNpw/A5wcmyLaN9EPWLDt4JnDSAALQNuCGBgFCe/mMA4cODmyb - WwTmth7yZi/DOG/kVF7bFDASRqIw3ilgRMZ5I5faGrgCJBZGlcGqKmUAYY5Q2yIi43cRs3GBc13h - vCezOAOqkdXw368ZKv3/Ib+IjGNHDo49XMFQszVqV3Ui49jRE8gEOoYpkFLGduqYkfHo6MkJkaaX - hNl7clG/f/Z0nyY58iorxEXGp6Of8gaLhJ5BFFjIv/03utqjiwjPgYp+wiLGqzUnxXc+SDUD/oef - ZfgtSFSxyPEPhTzxE2atz7y3+WFRNTCmsfda19KKa1kUwETxV6pom3xxWemK0jGStAyLFt5B29Zq - 0umwg6TtpM5WCzuXubeK9FOzfFRwA3Irp97Lqroce+8+A2M+Oxjr6sigGMJ4ips8QGZaVRS6CmIh - a2TgK0ps90yZzn82UXsAiJ9xKB+Gbpn+JGiXZl5qa16rzbyau4J2ZFA0cqJBpuCxwuaa+rbiEdm0 - NTZAqlFnyFcYE8MuIT7YxvncASK9/Hn+e9fSJ/8rRIoNSsc7FItDYH4AShe1uuyWWW1acP6vcTQ2 - ASB22nIdph4sSUPhR39RC0pjA9HxkyE6BfZNeZRY4TA2EB0/Yc/163K+7LcfIH4TC0pjA9Hx0xoc - lnKKpccgnUBWafPv2KB0/ORNV709Fgpm77rGfZ+DE/fqN6Cb/LbmCCmOBT2xgZ7YIXfiQDAothLr - 3uIm4AFwZ5FaxczYoEbshBr3p+ubzgwDGQnZDUrHta4+HEHYWBctPut40tVXgLzSbGB8VOAxZatD - 0UfVdFmh/kbsW6g5jMcvshtZezOZoVTtfpk3lXIFyKljyjOrGeptVba1xB5hRkgK4qsi8CDQ0rG3 - 8qhVw0gMeCRO26e9UhLGevsQ8P+WsyTGvxOn6pNOJ+Mw8VkqIj/0bdtIjGcnLlnV0JqxnSIixP/b - EmxcO3Fy7Vv+zIA+Ryyk1LK4xPh14pRMDToeQhxuajd/JMapk6fWosEuKAARs/l+Ynw6cfBpW24I - dF8wi4ImffPSk8shESTDJBY75mA8OnlqNoXrFmBpz8Lj1Hh0+sRSCEsSsF2bWaTG01IXT6MIa1RE - CZpBojf+ortqhbpzXGH9cqk7nM3xALnZ990uGabJNg14UQMcLzCBfTFIYFPjv3ZPTGo8MHXaa0LV - REmchJZ/pMbrUgevYxzBB4/h8D7s22XT0pOF1Kck6hsPCCWExqzVDaSt6a8HiMwLeNRwg3F12yU+ - KK8OdHWelWpZtZV3Hphmnc1MjKentiEZR02dc6Rc4SmFkLSWPOOgqVPQRe+DDJH5jGJVKstDEUpL - rnHQ1MFBGcWNFkjGyoCTSMSRRTzSvrPQwTeHIjnQO7u5cN1d+IQuor7ZB7ubGY/sLiKI8L1ouhvF - X3RjWO5n3klWjXV6+IfCV4fw6nPWVKW6NCkmpImYMR6aHPKsK/Ft70jNNCluld4ZP8uz2awqkEp7 - 57U09f3+sIL0flu1aqn+1mbZ9148wLDXzBqSPjDfBm1en3/QKR8L7Cn2TY7EiXLvWA9Jp3ZnGum7 - HMlTGTejuDkKMc/uwCN9myNxgAgrJGHoCAHkbcl9lyNxIt22NiZZKmJbct/nSJy8/rarFsyTntgi - +xZH4uT4iNVlVl/szS+zLLW7BmAyvVC3LWKhK0l29ZekcZpw8Ns0IcPE+LwqqqVUVi3/sVkm4/X0 - sds0l67bNHp7W6vgCTkB1eefkKVBlCC+jVXrTuh7WqHv0y42oe5ugEWMc9wAg39HdLBPclJnkyq/ - zOz2S/FI9ZL/4C4Yve3XdssuAKd4yOKI8FjwIF9Q23LX7dpu/dom+cybyVdEhUj3PpOdDvMeytw6 - tjFkf10C/RUhm9oSewhzatXeTVrCdCcNoOtObZdWbasGy3LQgc3X6bpV26lXWy8c2MEM1asPj+74 - RA9jTq3aw/HiSQ6WJrbgHsqo0/kIWxGY0dmCe4Cg7gCBQM7SFGxiJ/b0zdDUrRt6eJSnaatvWEEn - 3M6KaN8STR17omGqhzEEIBZF4sAWuT4gsbNfw+IBRX6pyfHrLTCChCP8ORghzD8EPtMq7/SJMEho - iptGmaagWubVvNQHyuwB937MnP04VxxMl4ncltj7MdtphmMJG9RZ6aAm/l5OazmvmswkWBuIvqs6 - /Mr8rcs4VvkUSF4DL/OFPa4eBJz6oodVBjzAEiY75yr6rmiq9+ktTny4qIpCtmOYlOe9lnXWbLd5 - X+Ibgap0P3BoE9G+L5o6NUabtSk1sMTfbIm9/zNn/89LLIYQsqPV3vHv6VN+DKJEE+wutWNX36lL - 72nVfcRRLhL5KRHUD23Jvdu7tK5uZZuMpJktsfd6l45VI1FJ3TMlLm2J6/NQTzgQZc6BQAYHaXkq - 7Aoe7XtVKXeKs0hRvq4WK2ADPLbzmr6XlLo0k26MoFrVU20E4AK24N6zXLpJNwfO0v44DA2pv2Ne - vW859ZP2RgB+AEtd2xJ73+J3nDe4vcfhUCJ261z2udq0ad5sb1cCULzvJthVcVFiN3zVAYKfdcsl - Fmrwl4enRx4NRQqABJlz1iyxe2ALVWDweqOjzCcqKAt4oRbmCEnei7vY63/m/ZLluIUopzoVBo7u - s+hXG4j6VlHq1iuqD6uWSup+bPDMxE5a+0ZR6tIpyjkWHdXXZYMtbHzn/BTtu0Sp2NnmG7RLsEF2 - 8KG6luZM9rD6txOMZT3rloH3osiuqtpWU99ISp06SW9JEJ7aA8giYRjuRJi+qZQK57PHaZyA7yYp - S3kigBLZrivW5yNd0GDYu4JWhlvEqd01SftuSrO9+ugFxmr1bIWdV1icSfB+IJt39/2Y1Kkhk+Go - J5NJEKUwBbu/nPaNmPSeTswHrHHZV6UaGpEopHYzIu27HKlLm+MmV8JWpslofa2KfSfKhgfdnv/v - r0dB3mcO05jKNgioajVXW/aMt7EUWTnvjINILOkWqrzUh/TtW4lgmE2g8RovQIBpwFvTGV4Tc/81 - KuuLYPrrVLLVquhryfrHo/tvSUKOW05BRVu/gQ8BV1cy14eQtJL/A4PcfoTz+Bq1VEVWq/bGBwjO - L3WujxfCyFXV4K0KD15Nc9fFMcJn4TlJ9kOyT3YvjkmYANpJ+otjmryq4ZcU71tY3xjzfbSqFYYO - fPkIdd2vqR/4hG6yZTvmqp6tN/RtWw9fjrN9GUQzuNhrDbb9lV3fB3d3bS6ceMQNP/CMrOhzpCvp - K3OT070T+7J7BReowujkIcOpZdGv+/fRImtgZLIfnL5MaW1QIGs0vr1c6c5DUP+aXelq8xAYqslX - mbf6OpLR6dnZOz0LiPt+GukEvn/NzB1OTVP2T4Sn9482w4Gwhx3y+PzbX6Pz9F+SgF5tXZUq3/0m - bqN90cuuh6IX+XYpHl7nHz/+B7dE6KiDTgAA + BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn98mVsPmvVEsXjJz4lPqPnNNwP6T6h + /wSh+CkMa7ka7dM4oiSiSUTTNBqPNgPggSCBGP0Yj2o5k7Usc+nnVVe28BuRjEerblKoZiFr+O7B + UtYqz0rvcCGX8KLwzqpcyfbG++Xg8OxXeKJqmg4HlMDrQuWybOCvP7+jcur2zhnxMR+z+I4JcZ9w + n8XnhOzr/9kTiuI0iUNG8D8w+rwqW1m2W6q9qmr4yVQW2Y2vSn+a3cAzyXj0+4c38OmibVfN/sXe + xV5ey6xVVzKvlsuqbIKqnl/s9YNvLvYmNxd7IiAXe6MfMMhZB6tT6zkd/XaKC0gCyglPL/aoHgqN + QnhqmelpHKkrhaPxqpnRWdPWNzioSvlZ08i6lVN/cgPf3Kh5PMqusxqW/88RLJoQNBzBc9VUPxP/ + dc8j1XRtbDgwkHKP/B9ffozvHbyIHhg8LPjYe64qWc5VKcEUyvnYOy6vVF2VS9A9fpyVU++8zspm + VdWtd3bTtHLZuMw4pCKmP52xHue/Y8YkjDczfgd2UJVg1qdl06q2ayXO/USWsoY338qpsXkwefAS + h1l94OHJW8rjNIp+NjMzHoeZfdmY/rRaZqrUXta/+hM/raumWWb1pV+D74D/tto9ZlnRSPCbZgEL + 5aMI+IWswQHbAn129CrQqx545wtZ1TfeYbVcdW2AE1gPYOqvwAju82sxZuEXUP2W5gmjF3tZ3gRf + 8zYPWE4o42i7/WS/Vl0N6vdBjMphFDh48M17sPCnyEHTfUH3Q34HcqQioqB3jRwrjbsjRkUKABoh + GjcwkBzfPETlATBqaPNvERIXYo2SIUPpvdIOvPeAPyuZI6B44DvH31ZFVmq7atCY3laFzLsiq733 + NdoTfgBvAko1WrPwCPVtoy147lVVdHpmNEVL6FpYMG0/v304PD0aIFlV52pq8AtNyYd/mM/jmPlR + yuL+12ApYMZoTPrro/227uR4NIcBI2qeSPB0730A355lS1WgwX2SRQHG3La4JI38V4c6gPdnqm5a + FDubqUJlxrBgZGsAkbhciAwD/Bt7v5dKwzQEDvjgQ5UvYG1kPd5++U5ee58hanrg6yzWv4Exe2cQ + ZcH1jEs/UgOw2KHPE0Eep4GXss28g4ECTgDWFmo4+Ww6VQYunDSACHK8DaD/LmWsh3+Aw9oe/Jls + Ftm0/i8f/iPXMopE7PNUR7xHrOVBOa3h4UdDc14o25L/q7TxBengcqIpF6cY6TaAW5UFPO1BPNym + cnr8lxJnDe8B+OaqpT8NXFuAzZOLvQY4CBM+YQzWIObCj0a4YrdimRbLXMSu4wAoZVnLq4DmENRJ + PJTLtVzuIpfAWL7mEFoEUKehNKGlCVdp2XSZBYzQlLAYrG4gMtQiw6dMXAfAeILx3pp1pIVGjxfK + aAxzozyhEWUkjhMCA01Da/qxFhs7TR9+01ACVgprTyG/IGHiW2ITLTZxFwumRXqxMAGfD8WmWmzq + ZKnwmyN6dkhCFqZHQ3GUGMsnDlqNBEeTQQP9pq58huZ/Fa6ipX9lDZb2fvUkx4oTrQWwtYTZWqDG + s6iTa+0I5iLxmSXYuBZ18i0jmLFwDQUhTXZGbLyMOrkZBZP/GqhyNusa7WoBZQFQQ0u08Tbq4G4i + CUNY+az+QwHEpASSbRGmtlzjcNTB4yjk0WjDnKOCwXoh/Sb+jSXXeBx1cTnQ6MXeYiabQEQBDULy + F+YG9oCNz9HklhyuSTvE/qsMUxNPlRBmulqnMrOqXupgBpSzgg8biFRbmdktv2Tb/HL0HN6+nGSN + 8s4xeN7IrNbsmlrgT42ranKq+aDf8+k43h2fHgDQ3nKuyTCEb482LaQWZR+vkDK/yFRdwjDH3kGu + OXY2gXAMEXWTW2b45ZvtwSd0MPiuKrLltSqV92o4+sQKXQYYmAMw3HqYiGDhaeqTJE1iGxeZwQT2 + BEwAD4vWrssT3woPrI+2LpgQEVikTC2zeXDFE8UDFguqxVrr81vpHUDuNVO50qbTAvFXc1yYfe/A + O+7qaiUz+M5qVVdZvvDaChKcHL6k186sT6dTgluNs8HC3IqAbBKyAV2pGW9NzuASs1CFGVRhiCod + pOZ1l7ddjWnhCJJTT/M572XVNTLwvOdFJ3Va6oHhezjaU++5KgpNyNR80TbPPATzZ96Gal5fXwfX + KGWhhcyrK6CfTbtCrflgfYVfzfxa//hiL7AGZ3CJOdEAA3mY55YtQl4SkDggNgFiBpqYCzQBQbvY + W5VZg4BHolBQ22OZASbmAkzbFiSIYgFLQmKJNbDEkt1Feq7Aa8feb8EzWPe2reD1YbCdGmvT+QqW + g6Zn3gEEW4KJAdn1CrClEjADbbDp6it5E4Btet7pq8ODU5/GHlZXm0W1QvSQKFWV2aSQuPK//HFw + +isuOI2feauVl1x08JpTbq+igTF2N+XIN2UAa2rvsyLLVTX2zmByb7pcQSIAwAV/vO1KBWz/Lbw8 + WCzl1HzlpZQAbK/g1ZEs57LA73p/ZMpbgAomVXW5751XWDdqvMwDCTMFqcGshgwEJ6lNenuGmTKq + uANYT4+Pjy/2Dj++0H5cl+va1hBsTVVH1t5HXevTrkG1pngcRUZZPI7DYBj/0BxODw8/fgL7YkCW + 4EdgvoJZNsENvPK74fV+rb7uFmAjR4H3ART1OssvdQoVeO9QyRIU/BlenKll1ehvHQc4jwnopK1q + pUt1gDegQlTX8cAgjLpgvEQr6EHdnFWzFpZCeueQuen07iOs7q2Fos1+zAo1NX9+6o2w8X45PTw7 + /6StjhGtSxrFvd3F5E5NwvdDwlKBmiSgScLtXMjEE+4QT+5msE3CrRjITUThDhFlQKwYwAxMhMfU + ktvnb04k0wCjnN+AZeOAMV+gUWpJNvGAC5tz0CQJt1lBTLaDz+tq4b0PvE9DRoAwuC48PsBTuGgX + D1rL2x6t3vRoZQ3ZRAn+ZPYaEeDEIt1ZPBMiuEOIGMpNUG4c2SGXmyDB3YNEBit3xSNFKWSmIrTI + KzdRgt+dMW4hwnBd+a7TIL+t3p2HHK1EA1AqYpbQeHvJ/wmwOge02GEk9orj297p6YMr3DPqd7LV + AUcDgB5FK/NFWRXVXAH1/qUf2K/WxE2A4U45rakWaBLcLGtdJWHCrmsYjBUOFHbovpSEAUljYWG3 + MIgjHBDHsizM4kRELIsVBm6EC4EFO7rYAzIc08giM8KAjOC7QeRNBxFV1nMMvDoMv5ESX/cxwDlX + 8jiA+Ul3g/TlNBhDtP826VD874H3Ef5+jvtimgmMvU9ZAbxgMfZewh8vYBBdgwFsjGF2cY2sZ4GM + CL96AnAh29Z8fDxtIJZ1dY28tWkq4OEtEobTModPb1mMiKPQBBQRx8KiMqKvdLmVukyth9IQchru + kyhO/W93pQgH3lUGDFuH1nf+StYNKGsO/KTZ+BhNQ77thWeLbFXIG+9NADPe5vvCoKKw6mrCgJpw + 4r04gzROfNz9IX4Uplj0/4vZ1mdwTdyNa/fiT0h27ZFxDvOEOIv/DqPtCb+pOgt0dA3nEWGGJhBm + Dg7femenJ6+PjsA4t/EoH+DR67K6LuR0Lr2pavLqStYmRwZCknlLtRuEhAFf4VCuG7p0jFABzN+G + IINtwgnbEhBLY8FDniKBpHFABQ15Yi1YaOAtdMnQdXkG95F9BDc/9QWxuElowC2kOytNQp1u3VII + PrDk9/DuxDsZxhNyx9K6V2KG4zMgGT6Vk8FK8QBIJLVoZGjgMnThZNthPcSwTmMq7FUymBO6YA4l + MJj3i5vmg7x6CzCHzL0JIGYAQyUWbQj7UrtLkm2CBuMRT6KAMwFgaYW40OBM6IQzmwq+WmJEpiyy + uFNoMCZ0KrYPxCYTQhJmUNG2LNx4+gB8fmCCbNtIP2TNsoNnAicNIABtA25oECC0l884cOjgwLa5 + RWBu6yFv9jKM80ZO5bVNASNhJArjnQJGZJw3cqmtgStAYmFUGayqUgYQ5gi1LSIyfhcxGxc41xXO + ezKLM6AaWQ3//Zqh0v8f8ovIOHbk4NjDFQw1W6N2VScyjh09gUygY5gCKWVsp44ZGY+OnpwQaXpJ + mL0nF/X7Z0/3aZIjr7JCXGR8Ovopb7BI6BlEgYX823+jqz26iPAcqOgnLGK8WnNSfOeDVDPgf/hZ + ht+CRBWLHP9QyBM/Ydb6zHubHxZVA2Mae691La24lkUBTBR/pYq2yReXla4oHSNJy7Bo4R20ba0m + nQ47SNpO6my1sHOZe6tIPzXLRwU3ILdy6r2sqsux9+4zMOazg7GujgyKIYynuMkDZKZVRaGrIBay + Rga+osR2z5Tp/GcTtQeA+BmH8mHolulPgnZp5qW25rXazKu5K2hHBkUjJxpkCh4rbK6pbysekU1b + YwOkGnWGfIUxMewS4oNtnM8dINLLn+e/dy198r9CpNigdLxDsTgE5gegdFGry26Z1aYF5/8aR2MT + AGKnLddh6sGSNBR+9Be1oDQ2EB0/GaJTYN+UR4kVDmMD0fET9ly/LufLfvsB4jexoDQ2EB0/rcFh + KadYegzSCWSVNv+ODUrHT9501dtjoWD2rmvc9zk4ca9+A7rJb2uOkOJY0BMb6IkdcicOBINiK7Hu + LW4CHgB3FqlVzIwNasROqHF/ur7pzDCQkZDdoHRc6+rDEYSNddHis44nXX0FyCvNBsZHBR5TtjoU + fVRNlxXqb8S+hZrDePwiu5G1N5MZStXul3lTKVeAnDqmPLOaod5WZVtL7BFmhKQgvioCDwItHXsr + j1o1jMSAR+K0fdorJWGstw8B/285S2L8O3GqPul0Mg4Tn6Ui8kPfto3EeHbiklUNrRnbKSJC/L8t + wca1EyfXvuXPDOhzxEJKLYtLjF8nTsnUoOMhxOGmdvNHYpw6eWotGuyCAhAxm+8nxqcTB5+25YZA + 9wWzKGjSNy89uRwSQTJMYrFjDsajk6dmU7huAZb2LDxOjUenTyyFsCQB27WZRWo8LXXxNIqwRkWU + oBkkeuMvuqtWqDvHFdYvl7rD2RwPkJt93+2SYZps04AXNcDxAhPYF4MENjX+a/fEpMYDU6e9JlRN + lMRJaPlHarwudfA6xhF88BgO78O+XTYtPVlIfUqivvGAUEJozFrdQNqa/nqAyLyARw03GFe3XeKD + 8upAV+dZqZZVW3nngWnW2czEeHpqG5Jx1NQ5R8oVnlIISWvJMw6aOgVd9D7IEJnPKFalsjwUobTk + GgdNHRyUUdxogWSsDDiJRBxZxCPtOwsdfHMokgO9s5sL192FT+gi6pt9sLuZ8cjuIoII34umu1H8 + RTeG5X7mnWTVWKeHfyh8dQivPmdNVapLk2JCmogZ46HJIc+6Et/2jtRMk+JW6Z3xszybzaoCqbR3 + XktT3+8PK0jvt1WrlupvbZZ978UDDHvNrCHpA/Nt0Ob1+Qed8rHAnmLf5EicKPeO9ZB0anemkb7L + kTyVcTOKm6MQ8+wOPNK3ORIHiLBCEoaOEEDeltx3ORIn0m1rY5KlIrYl932OxMnrb7tqwTzpiS2y + b3EkTo6PWF1m9cXe/DLLUrtrACbTC3XbIha6kmRXf0kapwkHv00TMkyMz6uiWkpl1fIfm2UyXk8f + u01z6bpNo7e3tQqekBNQff4JWRpECeLbWLXuhL6nFfo+7WIT6u4GWMQ4xw0w+HdEB/skJ3U2qfLL + zG6/FI9UL/kP7oLR235tt+wCcIqHLI4IjwUP8gW1LXfdru3Wr22Sz7yZfEVUiHTvM9npMO+hzK1j + G0P21yXQXxGyqS2xhzCnVu3dpCVMd9IAuu7UdmnVtmqwLAcd2Hydrlu1nXq19cKBHcxQvfrw6I5P + 9DDm1Ko9HC+e5GBpYgvuoYw6nY+wFYEZnS24BwjqDhAI5CxNwSZ2Yk/fDE3duqGHR3matvqGFXTC + 7ayI9i3R1LEnGqZ6GEMAYlEkDmyR6wMSO/s1LB5Q5JeaHL/eAiNIOMKfgxHC/EPgM63yTp8Ig4Sm + uGmUaQqqZV7NS32gzB5w78fM2Y9zxcF0mchtib0fs51mOJawQZ2VDmri7+W0lvOqyUyCtYHou6rD + r8zfuoxjlU+B5DXwMl/Y4+pBwKkvelhlwAMsYbJzrqLviqZ6n97ixIeLqihkO4ZJed5rWWfNdpv3 + Jb4RqEr3A4c2Ee37oqlTY7RZm1IDS/zNltj7P3P2/7zEYgghO1rtHf+ePuXHIEo0we5SO3b1nbr0 + nlbdRxzlIpGfEkH90Jbcu71L6+pWtslImtkSe6936Vg1EpXUPVPi0pa4Pg/1hANR5hwIZHCQlqfC + ruDRvleVcqc4ixTl62qxAjbAYzuv6XtJqUsz6cYIqlU91UYALmAL7j3LpZt0c+As7Y/D0JD6O+bV + +5ZTP2lvBOAHsNS1LbH3LX7HeYPbexwOJWK3zmWfq02b5s32diUAxftugl0VFyV2w1cdIPhZt1xi + oQZ/eXh65NFQpABIkDlnzRK7B7ZQBQavNzrKfKKCsoAXamGOkOS9uIu9/mfeL1mOW4hyqlNh4Og+ + i361gahvFaVuvaL6sGqppO7HBs9M7KS1bxSlLp2inGPRUX1dNtjCxnfOT9G+S5SKnW2+QbsEG2QH + H6prac5kD6t/O8FY1rNuGXgviuyqqm019Y2k1KmT9JYE4ak9gCwShuFOhOmbSqlwPnucxgn4bpKy + lCcCKJHtumJ9PtIFDYa9K2hluEWc2l2TtO+mNNurj15grFbPVth5hcWZJAL/tXl3349JnRoyGY56 + MpkEUQpTsPvLad+ISe/pxHzAGpd9VaqhEYlCajcj0r7Lkbq0OW5yJWxlmozW16rYd6JseNDt+f/+ + ehTkfeYwjalsg4CqVnO1Zc94G0uRlfPOOIjEkm6hykt9SN++lQiG2QQar/ECBJgGvDWd4TUx91+j + sr4Ipr9OJVutir6WrH88uv+WJOS45RRUtPUb+BBwdSVzfQhJK/k/MMjtRziPr1FLVWS1am98gOD8 + Uuf6eCGMXFUN3qrw4NU0d10cI3wWnpNkPyT7ZPfimIQJoJ2kvzimyasafknxvoX1jTHfR6taYejA + l49Q1/2a+oFP6CZbtmOu6tl6Q9+29fDlONuXQTSDi73WYNtf2fV9cHfX5sKJR9zwA8/Iij5HupK+ + Mjc53TuxL7tXcIEqjE4eMpxaFv26fx8tsgZGJvvB6cuU1gYFskbj28uV7jwE9a/Zla42D4GhmnyV + eauvIxmdnp2907OAuO+nkU7g+9fM3OHUNGX/RHh6/2gzHAh72CGPz7/9NTpP/yUJ6NXWVany3W/i + NtoXvex6KHqRb5fi4XX+8eN/ACMH0/uDTgAA headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -204,7 +204,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:55 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -255,7 +255,7 @@ interactions: Connection: - keep-alive Date: - - Mon, 20 Oct 2025 18:59:02 GMT + - Mon, 27 Oct 2025 17:24:55 GMT Server: - Jetty(9.4.40.v20210413) Transfer-Encoding: @@ -1360,1695 +1360,1695 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R7SY+DTLfe/v6KV9/WkcxkqurumAwYMMVkjLMCjDFgjJkKqCj/PbL7U6JId5Vs - Wuo2chfFOc90iv/xH//8868uq4t8+td//vOvVzVO//pv37/d0yn913/+89//459//vnnf/x+/l9X - Fm1W3O/Vu/xd/vuwet+L9V//+Q/zv//yfy76z3/+Bff80WXT9TUsKVliMDVphc99b6rc6N4rCDjo - k0y9O5TqN1DATr8DLO+xFy7H+VAhwc8LErLmNtCPXLlQ8W4K0a5CVC9S1HcQ+geEXSezQ25+PRto - +rccG93lFfb15oyQXYZoFqkvD6zqQAlKLLjOm7k09XwNVgtMy8xilwkie0vQLML6MJ5IMgtOtqr5 - sMDb9XVwl2zXgTnKnBZC28rxiX1cs0VICheSfXcgdtAf1OVwe1iwciHGAZopWIedJCJ9sfy5Ol44 - dX3cAhHVV17D5nOq7AUFTgdS0ASk+JyGYbaLMIZrajXu4dzNw9YengoiYEZzf2mUjKmGsgehcovw - fbrss6XUGg5Z5WshR2+QVM5GIgev59kktpQ7Krea9g4mBdGw9Yh26lbM0g49p6NFimOs1+ShChI6 - hdVC9FceZeNG1x00pLTE+lQK6jrhrUVcnF9Izkdne/7kdipuCrWw4m56xgzqdYcsgfDEMZXYXi5x - n4IPCgWMs1ytOcUuIHzsbhE2E2+lS7YcPJjSwsbnc1vYDH2pFrr6QoR9mWKwBPPUQP/geVgjdWBv - ZuaV8A58be6kT6KusfEo4MwtR3JhzCzj9c/gwGsqZSQjc21z3Ga1SGY0gi35vQOr2coQoZ10J4+9 - cAc907cexJWrzbzmcPVCtWpG9BMJOKhupc1Z7/cMIdYSfDZKIdzuV8QASKlC7Eh9AT4iW48mz7mS - i3fhwlHfVw7MpadNsiWD2VJs1EQ512ZENWzNXrYd9uBvvz0wWTYhzimCx50EsboZ/rDNuqKhz9bk - JH7E7jB7MteLy3J7E4N7uDV5l+aGoOo1OLr5z5BbDFuCzOwvRKvlu0on7SWhG+tRog2POVsO+0BB - l1iwcag7R5v/rFuK5s81JbisrYy9QNlCXrG9Zs4YfHuVL0Zx2I9jSAyanuiYlmYDID/uSGEnZrZQ - ZhOR4rgcOcZXQd3KR2qB4WRaJL00VbgCPQjQJ4jOJA0rKRtvt8kB5RjdsXxNjGHJltVDyuYZ+Hq0 - 2fpXHxDDQ0k0cUxr9tiYGsjieodV+aRkVGnLBGEuxditplxdX6rfoqe0CcSQzIByFJceytwbR9zg - 6QG+e55m1Jx2ibtZszIwFfQj9ObOI7bYsB7Y5+BUkHmXHjEfg6TypSZAaCiIxekWKMO2vIccPhNh - j6PYkzJ2liwOPXyGzge1OKo8zCYLtocUYOdb/8v+IOVo+KS3me4bGbAG5jhkEv2Cj9OtzNjp0ceA - 0x0dn315rNf82cZ/zxund61mV7PUkTZ8bjj+cE+6PI+vBb73czqjIbxn7OXFSWBjxAKf94dYZfnz - uEFuOrPY3KdytsbOKsKt6TC54ncDliWfRFjcrRM5PXEX0mNtcIhp7Q+R3HsEWrLwDEwvqz/X8sbX - tIr7BggHhsHupVrBemC6Fsk4PeJc31N7zeWjCG2lYGcooTXjYkUqkOvi3hV12Qn5Y1cFaBHqGUth - ea1JvMIKaI+rji9pBsAmfdgKekRicLasus1sjeKiy9tMicJ9sM0VQuEBZi+05K6xz3Dawl0ML0+e - d+Epq4aNWmcGuuFyx9nT9ew1xcwMX02u4vyUKfXigrQE58v7SDR7OdvklYy5+KsHc+SsYb3YC0Tq - 8TgQzaGeSsN9laIML3ccK92cbZ9cTVG3PExih5JCeWDBAuTJJyDnvu/stVa8HrW+8iLKVJk1tWu/ - R+RdbsS/FedwMUplBOEGNmwacl3PsmTOsJLrlzvbSRcu9dsw4VFTF1cMqzJbZE5TkLDOEzFu6xzS - +1lLofR5a9h56aXN5ON1g+n9cyK5eHHVRUhiB67SwGE7kFVA7frW/fgOJ0AKKdMtrxjQ50OaVxzV - YFOGfQoHWVKxlgRKyN6KukJ22kJinF6qPV+rUhCnyAqJum+edBzUK4RWrxU41WUn2/CzMAGpo/c8 - etZ92BJ6a6DHm/CHf9kEXusmZqU0kTx7DWAjbVUhzMrdzLBSNSwBI0nI0doTcV66pPLHGjNwsobG - 3fhuttchcRVYNk5M1IPDhdQXXO1X3+R0LN/2KrKfEqIPF5CTwFU2zxuHHg6HvsNnmZEy1t96CAtf - 112R+s96i+ELomR/rrC8Hg2b5wWZQ1by6NzlbazZmNv7CERm3uAHsDWwUiZe4JQHKZElZqEL22ra - j29IuHcFdRWbhUNfvnfp2f8AKhO4wP3+yeOYwnf460f0x4ds9xi2k/OcoQzgmyT79BmOb08T0Jie - dBxo8dXmP/5tB3kw5CQ7v7lsrQMzQV+8xNFptjNmqaQYCPZhILcnNkPmnG46Iqf3h1gtcQa+PaEO - VFf9SuR+L2dsUb0DFFyYjRTTGYc08kIL6Yvpk7ASX+Hi2kqMgG972BKSLvz89M3T7BZ83dVbRlGQ - bJBtLjJOLngB66veJHRgdA8b6XIOt5zLE9F1z71L2C0JaZ5RF733Y4rN1/oClC3RBgpf08n5VKXZ - stYnDzoRlxDvbawh3aufHdIA6Mi5bKp6EeZnhI4vgSXY39NwqRzZRL/7+e5fvfL3vILvy/4+M0b8 - qJc6PzBwdhZhBtEI1I88pC1MhFzB+pXPw+GqvAKkrY6Db+B5s1dXSkQoP/oIH/nHi/Z342gehLMX - ENW/nGte7DMIP22ZYHu8CgPN0s1DZzkVidxLVbgRLvCQ5V2e7ujkaj32nS/A7Cq8iEPYFCyNQTr4 - 1WP4OKncsBrHTwkD58jg023h1AnbxARJBbz5ExNWpU4TtDDLuOe8NZmifvVHA/dJaWL9izcU5bMO - hFsUkyyeIdhUX4wg4HY+li/anpLMVkpUGqJKFL5zbe4arCa6v/UD0Z/JMlDu7ZvQIwqDcZIpgGjm - iYEDaht8guIR0I/vQ0APb4O4d7mxNxKLCzwcBQHfE30Nt5nsRGh0Czcf6rOe8USfRZhHU4yV7nEE - HOfgGXz6IpoPczyDpYu7AMqCMhBjy3q6mVlSAUPZs7MwclY9o/e1PLRrrZLz7bhk45cPIbnxAnGL - T5LRzyqm8CwnIlEPlaTyv99L2I7zavlPe+vvWgwN1ji5G/chNnkeV/HgrOZA7sPnrdJeGSwYnIsM - 49RI6ZYURip2uTIRJ+lcurT7yISl8iq//RVn7LGYesG733Yz7/UGXZyoGCE8rSyxFk8Ck3F8lug+ - SOy8O1w4MJZaw8B35kkk3ycL+NyKoYTAQdp88MctpBwvidA6dhrRbr6crbdiqKDlj6bLiOoxW/sp - caGvPjBWn08BjPx96aEGDh1Od2lvb2kEJLCz9OcfH69uucZIdVCN8/ms15O/VTuQuDlL4u5+yZYl - fwlQGE/izFVXMnS328uBDqu9//TnGtBagJ/UPRKrnHrwWQM2haN4uxAXpllNvbukw3knONi3fNlm - eJSYUIhU6u5OqRWSr56CyaBeiZn5wUDndLFgOh0S4r6OBmUZ9jHCSGpGl4txp273exIAQV0brHjF - ribVQjqQ7uw3OdsNtGnK7OOfvid2f4mHJbf5CBJ5WrH19Sfbo7g5sArNDOeuCYZ1VY8ddK7Z5CIo - sOEaalEH0bS4JJ/cd73WT8H61QcxP+ypZsfDO4XZEsB5d2vZYdklpYKkey259KunuZTNcrg/KC0+ - JvQ9LE4Uj+B+vgBX3AAPOvdy7Q5d6R6Iq+xEsGbllMKCOR1c8ft8OuzYAez17U1uHCPZLD85HogO - Z39mxFGsCdt6Lhru8cWlszr9+QdRduUCP0zBARx0bhWMooWfO6hyoHd2dEE/vX6MSA02NB4g1Dvl - hJ1DTNTl80520BjHjaT1PNQbs5gz2rneSLDEfNQ1W+4WjK+9QBx8b0JatWkMo7wn7jbbCIwO3bmi - rp80rEZpkHF+clp++EZwZRfDAtfROpxXkBCtL3H26y/QGjVHHH1P1aXOVwZap0bC0VdvT5G1SLBe - GwXfv/z+5dMd/OpZcjp3bk2d3bWHeZV45JaYTzqdPamDsd0wGNOFy7YjzWagXR8udm1lN0wMex3h - 5Eg20VipqtdVEDz4kciVGEb9VJdtZwQw2GFzRqdKzBZ36Dd4ECQHn7KNp43hBTtgeD1xKWsGNSWt - m0BrYffYsW/lsPz8bpHRan4+q1Ulj3nagKHFOZE8Vhrog5FcRGSyklNiPsGkjmGFUPcYyJlMPVib - e9zBkho7ou90D8zWPUhg4hYsNl5eOdCxcSpUP/Y2Ud3IqZlz/2TgPmodrGdBDybZEi2RVyUeX6rD - WV2YS5gioxR27v/GSw9Kt4jFsWuUNd3VpwLqjX7+06MbOxDnEHVIwfKrZcBfPYedcyEnln3adEVB - /tOLBDNWYw8l1j3IcXODTVGO6CZZhQLBHYcu3/jPYZtwkYOBHUdSpC+mHuE6muBaWTU+AV4BG7WO - nFgu5QcXj93TXsrX0UOvsjRmVDkcXQg8pui8jxWivkAbLkWtpnDp/Ac5ymZvL8wlS+DXj+KE2QX2 - ouNAgZ7Vplgzxk/2p/c6VWyxW2ktpe0J9TCXapuY0v4J1v1h8uDXHxCDSDBcPvpSIXvbh9hNX9HA - gePOAqobWURWNpdurO1u0Bl3Dyy/d1LIP5qkgLen3uHzdNmHVKj2/e/5uSBSX3S1BVjCJds7RPdZ - sV7visuB3/qU7pSrU/42F9g+PYZo+R6E6y5RBXSRLzd8/OxWujgHr4cjz0nkDNgtXIow68Avr7lW - AkOXPW0lALNkwIUwPuu1sl/Kzz8RCS5nm9dvIP/VB3GLvWKzW8jFYLhHF5xx951KH42X//Iacsa7 - T70cDnwD1bS7Y03tjsMisbYGV1cvsduQnb26g97BpOUdbBxtdlhiXezAJ3WOc3+QUU2X8bnATPfJ - 3Ca+ZbNgwTrkQ18nJ+XR2hO8WlDcXP7srr4E7f68Z2a45z97fKyFUV11RtjA53Va3fMZvukc3KwR - xmo+Ye28EXuVgRUB5sTGWEZ+EG6PZLdBThQI1rriXH/5vwSGk9ff/Manf/sZMsFt7nV5DNfHaTDh - 8dZU5KEVj3AV2Wf5p89dJxvCaTs9FfTFfyy9DT/kP/a+BN7ZJi6tD1q2OTu6QZN37hhT42mv13vf - ArOFLj6NyQIItNkUfubUw+GDlYY12dkS/OYh8/tQknobZwTh47gRrL7fu6zzcgqhPtcpNnumG9bx - pkPkGKdiXounp37xwoGrq5U4+BQa2I4h48BlahSia70Xfv21ABKhUL7+TQrZO78W4je/JNYvP4xH - PwHo0hnzzIcRoG+yVDC4bTO2ZGTWrIYcF16CHXannf+klBZURHqcha6hW0y9xs5BQC9iP7AzucYw - dbFmwYP4fmJpOl/ttRDE9OeH5wPgK8A/X34Kk6WxcE5YEWzBTZlhO0W8uxnTs172H29Et8kaiO6c - lJp+/TD45p8u7OyGbsu7zuG11R5EuopHdfOrqw64HTdg7ak+7E/OLSWqiFtg6ZtP0WEDMfz6eaKY - aUrpSBkPZXpIsP6rv7Mn9cjQovwPLyY84gaqVupi6+IK9eabqQLlsPFxqkCjZnZJJ8Fa7Q/zALi+ - pvezk0D3Ot7mdZ5ARoKDIUFyen1IgnI1W5bAayBlPzaR5KCvl18+2I0exN4vbyjuSPv5yxndjl7I - ndp5g998iYQ2ftNVEk8p+O6nKxZDB9pXt8ToUDMyvg8hCsdc7hW4ioNCXDVqBupe6gUtXfgg9kY0 - dbnEVYLSU7Gbt7H+1KTpIheFwVC71Bbu9uiCtALA2Wt/+dNyO6EcvpgxwMfisR9oVCoCrE7ZHTuO - fgBroRob7GBtE+sRFfaf3+bYKyJ2POeA7raDA/f8sHfZiNSUhjdSQbwLDGKPU5Wt6WPMxX6fOUTi - Q1gTAJwO/p7fGbBBuEhR1cOvn3bZw/NN13i8JQdFoIm79/dhOJoLSAFKcI5P2rOz13snj/CT05To - 7O4Uci3jtvBq3l5E/+rRMb7WEeSRomI1y6i9vD1HgL/8wtoAT8dKn2foT67zxR/d5vIYCmA4azrG - e9zV7PaRKhj2tCfa6z7Wc/gBiWgt/B4re0PKuK+e/+WrJLoKTD15gVXBYIIHHNuEoXN5248Q1hUl - 9nhNBgbDsADs8onIsUUeWLjrxYNcjlqiRMKofvVn/MPvXx4cjuMn5QCX71usGNNzoGToGHhRRgnf - 5tgFq4jn7sClqe8+bU9SGSCFEvz5xy8eqouw8zVY7YuJuH7h2j8+gDKjkxlM4zPsnrbpitaNw/j0 - zQd/eTsYbPJw2eSOwKJNSwPDJboTKev29giWwYGfSf7Ml+vSDCtsxRl8P585fQxUNjrem3/Xz5ar - NqNNQvPTz6SAy+vHfx2ULsmBnLtOz5Zj0iYwR8ZIcPU0w7WGnAVVPQ+IdXGTel22XICX271098Fu - C7f9DDi4d3INX93uRakiTZXY3qxxfvGPI2DvxjOA3/oghtu9wJhZXApfQu+6u2PcDpvB3lv4sqYj - PgeSPawsABq8XaQG+5z5oVR5nnfCT4/8/OeYJE0AP9onxIl9NMJvP7cQrbvUFR+9AVYzTl3YFGb9 - l4/OYar2iPVMjjyS48Hu/vKzS9/i81Wds6ll+lF0i/sBS1Mt0fkyIA8yRiB/1zMMdJuHHt75q0lc - LmLBR8l6DoBD3RLJSBb7ee/kGeGtCLELUzDM0PFLyHFjQ+xv3kA0haQ//4PPe6+kVLseWnB73Fcs - f/0q4XRhhMu6uCT7+h2KdQZC3JoSPklfvY7jZoa/fPpkVCal71LaYOQxgMimwNQzWXgOfvEEn9u2 - yX54jOCePRLlUzSU7OpTDkZ5WeZqrD9fvnJ34Ht/RDleOJueNarByqeMO738bKD6IYDgeh5NfImI - SpeSYRUURpKF1TtfDUR6aDpcEOMTFb41wPpqOKLffMwc6HtYL1k3Q37/SvB5Gj72kj1PJfjVh/pg - pZo99+cZ3t2xwtfTq7aple8CyDJvD0sUJ3S7370AzNx2JPLXb7Iv9daCX7779fv2Er8zDfzySO8Y - z+H2tvxFbJ8BM7PdPqDLh5dGtETHiPz29+tfNXgA0CT519/T7nkaIcpPCVF3rwpscs/loDjkuXu4 - zpFNg/kw/vLMH1+pBClPBSgMm8+H6YrBYKN4hP3+5szVl9+Zz3NX/dZDZJkSMO7pLAE+DHWXgxpR - v3neCE6EV7C+Nhn9zicjWNLj3zwipCp/08Aeyzd8us6MOou9oIGbOfpEtQVkrz//8+WPeVd8hGy5 - V0qODgG2Z7ElY/3nf755Kb7ctrZedBFvcCeyLsbjsAJCHDn+zRexfdX0YZbLjwWnsmhnDlNh2OR+ - V8BffxnwxYTf/DqBuhvaxCqGjg7Sw9HgVQx6F03DyV790M6hF8zV9/ooHI8HnYM7cxKJ+ZwUmw0i - J/npSay/0yCbWemQQ3muIbae44ky/fXpws0CvttyqAuJtZkF/OonF+UWq9IkWVLExcWFnMLey4af - X/3pH03tXvW2mzYBvevUxBq3k2pO1FgHCZ/mNVN5u9arH6o5kolY42+eoPbWpJjQhoWMzZHr/13/ - n5e9uverOofksoDmh/c4M55L/c0fInictokYNR/S73oSVOAH/vm3ofvh99zP8p/+Gosw7H550E9f - 12uZhox4S2CJ7XV52d/8RYRffv/OEyaV76xdCw9HUZiX/TrR7VlmGmQeqUmOinFSF55HIyie0QWn - QtJl4yXuE/Bbz9ENo2w5YJlBP/16/+ahpLnWFXTM8ojxoksh2YW3GXI7ZiAOE44ZGaNoQaobW795 - 6fDNN4UfH2N9Pmg17aRnAP16KogkzoM6PUUmgBVxCiwHFw0wx2ROAKe7Orb4yzHjop6Jocdb0C0o - 9tX+hzdfv4Uvn90KtqdXx8i6LzbJG+NpL6EmLDAvXO3PPy2zxXjQud4m97B/QbBEHlbg2uY8lp2w - tqc6MFPxmx/96UVOqMMF+S/tSOT+w9fj7YQK8JvvGUf7MmwDGhf4r9+pgP/53/4fThSw//WJAnWD - KpbQTqW8NjsBvKd2gc1xr6nsnjxicAhxQU46Dwd6XbcRmi/VmIdPXVG6gkOPqLVE5EZ7yeZqaWnR - QziHBPvSuWZPqiLA48kGMzE1OeTN120G9/PuTOR51uxNDyOIDEedyHnjroA53XcezGFfu8neouEc - G9cSfoKPh4sDNw/b+Hj0guHIE7G1cgDrw0g9GKcmQ1TfWu31UoEZMNEGiVx97vZ4PDUNPE7agWTc - A9vbM5JSNGrXN7Y2SQabWZscPE2CT5IkHMIxbdMUdotzwhEftQMJTksAru+dPfPmqADih/YGRUfv - yDk8Gvb2Pu5jGJ2TD7kWgWaz7nCOAN1OHS5uZmAz+0kv4Pmym4kavVSV81I9hW1gRiQ5AC/k9U/c - wLUlBj6enX24wWMnwnaURpKJzGdYw9Bg0OehTOQ8TmM2q9pNhE8lMXF4Jg91je4vHT1u6Uz0Ydfa - k+47OhTSsiTqsL9k/I55iuhweETE2KkMXcQ1dGBLPi6Wa6CGjH1bExjDxXTBZjFD/9ZLEy0dWPAZ - lCOg4rzFyLxe99guD2e6breKQdspzty9L03D4lF/hHyf+C7XGyttHmFdIWQXBtH0ps3Yg+87yJIu - NxKW7xbwE2fpiDXrya1xS7P1MN9z+N4t2OWsWFY5eUhz+JgjEWMnTupVkvgA/dYb3AJ2WPeLacHs - GQXuznuW4SKGrQmXcX4QaUyqgY1vpYsSfVuIWesDoLEUCfCwuR7xDp9Pti1MYELgODwxHd+oJ2m7 - a3CoHYvc96wRrpt1FeDwFEus295n2G7m00Mi7U9Eddh4GEO6dQf5fb0Qaxre2arpLYciwi9YW80r - 5XpD1pDmLx1JrKNQT0YcjKjxGoec5RXZY5/mO+i7soWvun3L+M9zSVGa0j05JffCZvh9nsKPcNBJ - EDAkW65xW/31ozvye3U9s3IHf99fKOE0jPQwcnCGuUyu4qCrzAsXG0zPvkZMfmvqAfZaj/LF10mO - Hi+63tNeg90sFkT/nD/ZZ1+yDoKh+MZWY3zoYh+vHBxyGJKUMgHlirfnwMtLv2HtrIzDeiqxCRVE - Uvytf5XbnkqMxM+rJjb3wCqXqV+GQWJDXOSXA8vwAoe2ZSLf52EDPpVYBsLSO2LfZpKBCeZRArTz - MTaHRaK//gc7pGCc0Htvb/vNl+BVHi84z9dTxtV3yKEZmFd8nxupZkGftLCOb1dsdPdwYIGwzVDw - 6Qu7emfajO5SFw0GK848tjrALtKQw7yXMZESuQnp+5pZ0B0jip0knyk97zYFRagUsAFec709TrUJ - kyekWHlFt4w5Y6SJzuchu7w5VpSRF81FcyQ8Z/4mIbCaTpFC81o65NINAqAGwrFomJlNTueprCm9 - FSK8Hoxu9qxMoRsNSgcuD/U6ocDMwnWbwvYgx/JAMMPIw7a8DBe1V63E8VTVdHtfrAAa2vLBmEOT - zY/VLYbvZuqxst6kkLvlgYL24fEwH9KPA1bOMwo47LMU325EC7l8uOsQFrsUH/PPxaYf9mkhZbwt - 7vvZB+D3vFHJKT1xtfwQzu96TKFyftlElgxcz8qzMKG038nzNmlHQHhIK8BfQgGfhfRSD65mjrAD - R0I0LwVhy4t9D98N6efDlx/YR1OUMG2YF3b7m0CXqHnP6GlEkTuP/MNeHKgF6MtH5CowPmXSq+BB - l8MOUXAuDdQP1Q2poFrJGZJFXWOuKdBiHW0SWlcvnNHN72CUggardaIOW08TDzqJfXW5B6zCNStm - CANvm2dmCCrwxQ8LQrTtyTFLfbA9uSwAqS5J+HY3Qps7HcMN+is8kcRWtJDHQ+/AS365Yxljq152 - vLIgr2JNXNi8rXJdmghw54jSzO/QPVuz7TFDuR4p1hrHrumF5Vt0LUuRxIwYDEx2phB+juaF2LVy - y+ZztyTo2fAYW3kqDZzr3SDkMt8jijFG9mSZt1K87ZcTVk/3N6CMpya/50eiFnXZ0sn3FiyWYWP5 - SaJhmZVHDveTWZDInDZ7VN3AQ1phHnEW8b296soTAsZxzviLf9nmpW4CJNo0xFnvis2E3g5CkXYn - rOjbMLAgO/YoT8iLyE/C1ORi3VywHYr+hw/1Oq1dhLiQ3WMVt2HGbWe/Rcr5bbuVvtnD9q1PWKeO - jm+DZNtcREwBmmORzEJzwSoXxKcS/fSGpGFGXfbQTyF5P3hsjTMYqPnyR6Rc7w1OhqWkzPP+gBCw - moIfzFpkG/usA1B4dUPw+ZUNK90qB2WcV+BIELSMPx2s4o8vLvp8U8dCbDR0sV0JP9LGtrl9VO/A - t17Jt35qltEzBbKsmpJzj1t7y8VOgrooeMQXFwNsI9Jm9D4ejuRm6nv6GbTFRSsYQnLkGg8s/CIG - 0Jc/08xbJaWNAx0PkjhKcai5Ddhu5ieAtrwG+HJkvKEH66KhoXYtcv7i2ybsDx40GFHAUnxv6+XI - 0g3gZ4ZnYTqMAxVnMQaPFnzmRRVvGW0OZw0Gunghd7HVQjbXDzE6v72E+NVYhluVtA4amU4lnudf - Ke1PNwgNoU6/U8ckWyBYCrQNtHJLtKsphQ0nofp4nLA+505IW+aRgi+e4x+ekZJeKmTHpMB2MGT2 - Kn/kFrQS0xPHtt9gaSaVg8+tvH7xIAuZT8drUHZOAVaHowP++PXGjDHJr+ehXkahgugs3Fhs+7lg - L5p22cFPMHjE3p8ae9vrJwb2lrO4PY8bsNE2gVBS8wuWP4+nusoXj4HJJ9VcX8t7dT08aAz1udqw - 23jnkOZQEKAF+eOMmCOw6TweNzRg3yb39wyHLe4zF9yP5wAbOzUCZG8GI2Ic90xk9awDXuryEe5l - mBOt6s6A1n7dAKUQWfdQnq2B8vMtgfGdxm744k70bz2/+nBAyFHSt4UD82qzsV66N7AEKQ2Q3SQt - seYXBsz+dp/h0DLjVw8+stneVAE2HKMQwxwrsNC8bFG56oXLLC4JR6U1RPjOLeAivCfD9NWLsDKK - et4ilKnLe2oW+Fk7hdwfRg+mgj4L+M5N4Db+1VC5i7LO0Lxe9i7ZwsTeJnpw4Y5cjblnTudhm41e - EmP+Q4hXPfpwqW+hjszzo50PPLyGW6KmHbjG/dN9GykMaWMmumgPn57cq8dhWIIUeFDfc/kMVm+0 - e3gsBVgexWxmC1alw8W6OfB6OHbYePYbGJ/3K4Rb7TLztnVqtk7LvgRyqfkzx6uFSq+rOANH3Aai - Ly9B/VSvMkDxxe0w7sEnm+rDTYGVysg4KI9xRq510sKXN2b416/s+5lVcFLMHfn+P7pWBnDhS4sQ - vpSaof7wAxrCM/3qt2RY9pObw/65+UQZtn3WuwWjwVlteGyMm6vyrfpNuHVJIo/XdaBLvrjM4WR0 - GTa8m6OS/uRD+OVjrL8/w7A2QZLDp4LBzA7rojbPE3FAf2YDclbVOtt2EnWhbJYLwSAwajYIhQ4W - qvTBtnw8gHlhUhP0kXHC0vd5/N2vjuczsbv2as/La1HEG9in5PTMz8N6TfYJ7B8WxAqzYnsV0nGE - /knfffXeCbBGnI6ilZ5XYh5kgy6r+nTQYTI4ojH1h26P5BzA0N4txMkqXeXYs1iBH/4ptLIBqyvP - HbB48UBUiW6Atsw1gcLhesT63T7+8NeF5vne/uHLrDxj66dnv/gMBnqNzj2U5ePD5TphBpQcjy4M - 1GNL0jBbwB9/16aYE6l3wmHtWCeAxhrExE3cz/D1nx10ZXPF95ek2syuK3uki6LnAvl4o6PbMTmK - 2zIgSa0PdDtoVxN0rV1j01aakDLFVMFTQgVyupEmW1n706PidV9mYfWzkH6CqYBTswVEReIajtZK - FPi2WB9LYr2C5asvwb1xNJwLngL+/O7XnxCVkiegLSs58Ktn5nXoxnoAjAmh9DrkLv86NpRyfCNA - kT4gNkclySi9xaL49V8u6nGrDreiEmEh3uDM0QGH2+ihCp7nOicmMUlNfn48s/UM20b9AMtKlhQW - r8fiikdPHhgrqhY4NUvw9XfRMEo924Av/5PEaxWVKdldCi0SW/hY7vCvPgvYXvUSnwQ/UCkiYQDr - gzLgozE0dO46KqGblomuyCbe8Fvvnx92W+M5bOxzCMDjsjjE2EvSsDgPU4GDwYtEuUOrprrwrJBy - gh8Sf86nbCnZXQKnxyAQ/OPviJgieACWxcfYnsGayKcNvQ8DN/fPj1pz6bProQGjE07u1ZytQRUs - 4Kf/A1EK7PmRHAOkSfnOpbYvgKXzyhKtl+yOf/g9+kIZI33CJpGsrAILeBcCOB6Kqyvqj2ZYuUea - ADlWB2I3fj5s84cRRe60b11Cq8xeBdSlonByOaz517dK6bG14HUUrjOr5DLYAnpeABTNO8kjg8k2 - McEiGE8hxRp3Ten6DtYUVnTnYYk5DmDt1DZHv/1Xi1NZsw3iOLTmzOxugvNUtyy4zD99iOXVsbL1 - MywLZOYhwkqMnyEZzvwGke2LGJvaM6PCtncgF/J7l99L5UADcQogaz4nclaRTSe++Ui/9ZL7S6pV - Wgi2CyVv7+FffkKjyv2eq5BOWN9PVO1QnSqQQ0LjLsw+Cn95C0jrCuDjvi7D7yHcAAF41bH04m8q - 3TEfEUwP5kjUo3kOmdJKFPipoYilqN3CaRxvI3TU78h6nsNwedVLhKrl9HSb1eTp+miKCvD27UHk - s5pR2pZtB0FQzNjSrV6l9ybNYey3OjbdlKrr/eO48M2pEXEOlp0xScaagD4lm+jFPh7WRJY34GlK - jS8BLVWae58RhEJx/85NtnoVXyco3vBjcteRx3T1NGeBc+t8T/zv5YHXU5jDzT9YGBukHRZd8jX4 - wsny9YOHcLFqTYDXxxkTl0/MjKNtsoPfev3q1Wz4fPUX7Dcwz4der4bl0+11kDWQwXlTbAO5N0GB - 1pvznQC+jiFNt7CDQm1g7Dx4afj6TwseY17Fii+2gKYSyyG9Ol1cWuj3kFQz4UCX9B02lQSHFArt - gqJmZ2FVrKp65SamhEROXFLIt5e6+nfNRDtyMdzeD47/zpu4LPSw2ttayLtPbQfyarFn3khhRh6P - cTv4Zf+dsJvfiUdFZ3hQdNnN5DTKaKv2CTg0TxPHt4XW9IYfEK52rc3MTVvCTU2sDsRwM939esMD - jSqdA5zoKTjQWgio/Dg5P31JXAG29ofRQwmu+0LB9hU9w9GSRAm0y+5AzOng1LNhnXJASpd+8WlT - 5yCWK5jQ4D571cPKmK7xA7gojPG9nyajibVZkMDWw2oZOCHzWL0WPnB5cXcwYkB3Z+/FL+8hTmQw - 4SQakYAszTKxZGUK4BHJAuhBUrpQ29/sLQvuM1TWK5rFr15jBVSmaPUePpbvqWivbPcS4CmBR3zq - mDxsl5cg/fSY+9Ryy6as/PRgiF8B0XW5rakqSA3yG1/G5/h+ASt+rgwor+4Ru37W0fXLJ2jGu8ht - xWKxlx4l/V++d48+DZ2ChRFQoX9sfPvVF3gXIrSbtJ2Z/sKr5JVLDPqk+vPLzwFdhmZzoUjvEOs7 - atVcBZ4CvAmRgHE+cXQsLU+C1lBn7rzfi/b4y2P55ycmyWM4AJLxvQe//ekeRjyHVKnfCuqqp4yz - xof12rW9+evHGbSmR3mUVRX68i0xXvspJFIXjUCKXtvMdYJLt/NtKmB0EGNs9JFBZ+n6meHFdr5n - 3uoeLI/q3EHpBXK3KcIwoxXaFvTtf6JhO7GXs5x+37BCIlbU62EYXf3TiG13Ru5hEMNhE98pAw6l - 0GK9N1awXIi2+/OfUSvBYfrpwRRlIXFGOwOb97lFUMLD66svE5uSSvRE/dO22FYiSL/1nv72l6hm - CW1av6IYJJPUEkeaZMrusrkByEsjLGXjp14e1bGHrOx9iD6GJd1uhyKAqxZI87HU3vY4pawIxSp+ - YKlTO/ubF4yA4ROPXK5HPtzYfRLDLz599dYAPj899X3dwN2/rgPYYGRLcOcIEokkFalzEz1j2AGD - zO37Yw/c10/+8k186vWqZvv9pwTxkgw/vaiuzu5ugW/+ja+qebS50j1sIm26iTwedFZnW5p1CDuG - 4vh0Y8PppicJLFetIJcI2oD/1fO33t23BOOMRJXOQLvctPmVfy7qckzcETL0/SSqdfWy98tBIujP - fPDzj8PPX8LDVTljR/AUSm+etEF2TYVZgDeuXgROEoF7Td9uV4pI3Sa6OjCfUUZU3lgGYpWjBC+9 - 9JpFmSX1WL+RC776HmNaAXXZmNiFShaE2OUnBWzl6nTgstutxNIfWv0B2bkDu9PRn3mB8cFyPDUt - dBtQuVxLVJV/9ooEC25N8ZGnFHzxiwHf02HkcvPbkHb5Z4FtcW1mONoA9Mr5lfz0Dza9ekfX/a4P - YMNxCtZRY9RLD98MlHJVxfLLautpv0gWwsB/4xO5HGuesZgNffMLN3w+ccaxu3f1l0+5jTdlM9Yv - HXy10McPNR1tcq29FqnbTsVn3t6y6XzNG6CUTomLJVjVjWNzCcjz0v7pGfrlG0jurwL7qWKHtBf1 - HdTakXE5sfDUwfC7HXzuyNtdJP6VjfrYBdB3VYsYN+lOl7nUSjDlaozNr/7q+GULgOCvL4xHyxmW - Xx4zdsHrmy+y9hpHfovEexKQ+Od3rajawFhHN5KfIjpMH5PVf/kEvoYPNdsC+Q3B1tkScZGLwgUC - 3MOvHsKnr99cphSJYCzw3mWe8zFb85ptIOtEOQm/eL+Zaw/h+8Oov7ywZmKF3eDh0QDi1beAzspe - dWBtCjnRHhUXElvZ7USotAg7vibZY7JbGMTeHwcXfutx6/i7CaKrr8zo+wYNJyaGAK9x9ySmhGsw - LrugguOpkOad95TCXz4OvnyLs0ff1/PosRWiR8bE2RKr9ba78wUkNwjn9axmgCW3kwDPQexg5cuH - C+CeHFz3IfvLczPOsE4FRH0wut88l1IZngt4mT7G129UYHvrnfXDAywTZKjrq5Vd+HRfycy/9lO2 - RvdJA6wGbGJtYp9t2/nWwLmVd/gcpnLNszW0oH/AZ+zCiKE0OH3z1gM/z/uAf4JffsmqoFxJqluW - vR4eIAKzcb6R47f/qXdmLdEjzgu7Wn7LJqh6CvzlbWYp3u2FCcYAcGtt/OY12bhdfShWVdcSnTux - v3wggMFrFt0ag4kSZ5ADVJ+ZzhUc/12vn8GAELxT0d2upxMdD/eqgCf38HDR3EjDOklWBb7zNRf0 - 9yH804ttShSifD4UrIg5SlB/we+J7+8JjHyaIEy84TQL476xt+O+McVi5ww4dVfw5VtL/OtfTW/0 - jP/5y998wh3FKqOqfUhhplzKmc3SFXz5T4JDy41//rHkzlwDf/7Hx7ivZ649CIC87/xfXj5pgtPB - X163T5tBnauk/bc/dnhg2mzd6xr8+vuZWVwcEjUNS/TY9w0+xVEQfucjAYhQJbjbkX0A8vOnLurv - WHeYd0jt7+wzbqtg1ud8zMY4MGcYNdDC3qng1X/XZ1APLnOGrLreoq1E9rGVZz+iXbjud5WH8uq1 - m8WHKdpLMDcSPLpB5ALnzNo0ee9S4B/O5znmTpeaqPxj+fv+x+tqg3XliAZXJsVEul6xSqAwL3AZ - xwdJbOiAiYxbL7JBG/72K+zPth0LX7zHtsm24XZ3Ew46vHnC0vMlgy++blDJvJCo3LlT2UlSKhhe - 2JO7wPFef+e3DMQuFYljLBe6KXvbgecgcvBvfvqdV1iwRVFMvO98cOsvtYPMgnr49NUvg7Dx7oEE - z2EWzW4JBzz07m8+Qk5r4WftF4/++jff3dxwxvq9P6Srq2J8CrWQ3QeZDr7RGpGdEw0/33qE5wuc - 8d+8/PMUUvDNu7762Rj4b/4PZaHb/+pRpcMwMtBckxcOH+rJ5qPVX4Tv9eT00y94GxmYKdcSG4dZ - DL8JWQGFZbnO4FMrYONHqYJjIBGSfPGIZh/TAmdZqvBv/ssum+yhW2Ao7oc51Nk3L5jhd//nvfTB - 4frzY/8fJwq4//pEwfEovwnWxne9BafGgyoTE5frz0JNzSAv4LQ9JmLE1TsjZhaJ8BFFLpHZ50Xd - jO3Rw8k29flwtDawiNG+gPHwaIijxW7N9zeBA62EcmK9357K0suow4uZ7IhbTZO6jlnQILI7NNjY - VhNwkXD6jpPmgyucvHWY1baegZSNZ3x7qHuwbbeqB2fF9okDOjGbrqykQ76w5xnmNZeNL8HmIHcu - OHevVr09B7NWwA5/UnJNuMqeS2O2YGVdKD599gRQVzV0JHsgIkfmaKn8AR5iKKjS5jIMsQYiw8EC - 5dVuib3YUs0UT8YSSZ1R97lcebBF4bNFRBoVIheFNbBOFHXwPJQVvhvmaK/ZnM9wPw060Q92FS76 - 46xAGqoCOe0sRJddt2ngrJx87D1Gh25P9uXAj9YdSSSsTbaOnBgh1XwToqVuZ3/c7zvlQh7kWIlF - Sjf/+472SToVxJGiCCxGXCvIQ3ZJbJW5Ar6F7IyKen+bOY5/11vUSgJ8uVKOteVE1PVFTxAeq4NB - cHbistWYJAHVupMSG8dqxhOi9ujcdC0uTFerp/gmC2i7Mys5Wh0/UDX5pODwODLYSZ6wpn48BDCI - eOgyUYEzhriiBJXjciXXtHnabLMNFZorpsIRAs9hG9Q1QZLdtm6pHD51a0OQQMcaVayUpkZZt/B3 - aE8OZyzrvgIYPj95ELzVgpiVDNTZ6nMNGPv8RfLP+ZVxdabEyKh3jOuizc9Gn1skJJ2iB/HRy6zJ - 9pY0sOJUIsrZyuy1pV0CnbYWiPt5qyEb6ZoJm08oYS0qSLZy57JEnqnJJFwBtQn/oS30mTSYD69b - lHFQESykhKWHY+alU/YUXhd4oLxPtG3v1ysblxAJ1JOIcRSEbDOvRQyXvmtw5Lcb4LrlYqFvvZEL - c+xtDr69GHH39k6ia2wP27XY6/AKdhIOl/VCWcQedOAny4Hcmf6RkTe+69BYx4n4ieWp64d9KECc - 4hN2qhCry8vSNvi8BBE5vW5MuByd14j8g2QQFUOhXtw6ZFCRkhkbk7yo610OKvQINIOEvh6rzJIk - AnQrtBBJB2pG44HT4NGrb+7qwr1K+9GzkHDt3iT88Pt6Rb4nIM/UZaKIqj1w49kL0LgKuUu3BwNo - c7wuEHs7Hp9dpcrYRTEE8Mgca2658EiZ5jRH0DISjMNH0agffewLUO1dDivw2mYzUG4zGixHwsmZ - O6tc5Q8FFNvijM8ttQEfox2EXJOnONu17PC/SLuSbVVhLPpBDqSTJEP6XoKAiDNRRECkD5Cvr8V9 - NaxZDe96bymSk92dcFhzeTmgtdQ3Yl5Sx+Wjoqgh9K0WGx5Hq0X4Fg6aTWz7h+Loq8ukwRme3iYz - s3hj6HweAogyg+v83tgid3VfVwNyQ5z46KVGKjP5WSPSueqIRC7vbCuCuYGmdcuIEz0Vl4bb5wk8 - Z1axtE1omEN+iEEL0gex6hM/jJZWWjCOPmA+eVrnLq1bGPCHDXtm8kAGfPErRXiMsyc2Z4JdsjhV - jh71LZ63y5IMrHksPNB1P+QziixF/G18luD+Vpr5tJwad6YP2UCNYDT4QunejYxXBfVz/ZsPDWkA - 8VWsgeul73yOkXWXLd/TArZAO5F7QVO6uZ+oR4PjSzM7ZCLd9usXm7Fh5ouKWnXTl06BFYhO2DQl - ACinMYd/+K98wtIlp/TuQPt+t4iXfp7D8sIxAy2Zicnj4sgZvY1xiZqPqfrbofup3UvYn52I+LPP - ZmFTcc9uDaB+u1+J22e/aobK4qB+OSQkfKQuZcDpYMDr+/Eh9s4Py1ETkn/3y7P2GR5j9xT+6oPI - MHOjoYFoBFWSyNhkPh+w5EOkIMEWZ+Ir+VC1g5aEsL/z7lw9lcbllkE3kC25OVE+XAUW27clqLlx - iC9loUVsd7g9kSvWT3zb1pZuWRGmEEzgMQvTZwTzE6aN2IaqjbVjJw3jvr6o1eyO3HjQuLTW3ws4 - tLlEjFDpq8W6yU/0uigPIsuDmVFrgh6sf9IJq0UrD6Q6W5JoA+Hl044/DuvFxyNcCduT9Bp/3YV8 - LglCdHdIrWqpa+6sKbowaUgehn+JVi2oA3RIk7s/4KTK1ivqDfiHFxczk1wei18JvVuoEgemJ7Bt - rJPC60ui/rxIOeClW12ixz7TaPC9Rl3e5aOG3Jur8dl+NpQusRKjay9EOKuHGXBjuyjIzY/qfHAK - PeOP0wCho4gyDn6LlHElp7boZ3lnvO/PXTHeA4QPTELS6TNSkitnDppC0xHLSa/u9tCeHnzlW4hf - uZtU3MXWGRRUgMNSpLzAajw+NQIHWSY5yJNh+cWOBreaueKglMyBo4cuhI16rsjeLVK3OmxjZJ9B - 8ocHw2K0lYA4+agTLAddxBxaUYOqcKiJljPqwK6LAaHZcwtRguaeMbZvK2i/PyRkog3Q4teL8HWR - HuRR2EK2Dg9ogWPSVf/qeeGlroC32TNxECkIrPkrmNEWjzOO45xEm0PjAvUFQ4giXL1qx88AqUxM - sH3ZLHdh6yGEc5Az5Bwfj8P6dMIDYr5Lhs31NwzkcRRGSCNZIM+xq6pl6QX/b38Rzx9L2ukP1UKS - 5D1JgJtj9afXgIn83Bco+8vmUKo4lJOXQ+SdLyf94Vpo52/8qj+uun2OngZ3veYfIxMO5AtvIRq5 - 4oLfkfkcFml+PGC+cqd/+mxs5HKD+/UTo6exurn9VqAHag5Eeh3OgFHkwEMp/FyI7nqniLpOIKC/ - +xP/8a8x9k/o6JZFXj/UuYs/xiEMN/Kc+ZkQdwmmiwOUqAyIDiqZMtL3DuGhH02CJcNz6b3aCtj/ - 5sHnu++FLkdticH++STk5BWszxk4KCbySJ7zrRyYWvqKULtrLtGHTATzz80L2HLLlyTCrxi2Jwxq - eKwrlbgjKbOty58BYHv08YUWrNkyF6IIrNhTcLzv9+UrawkgtHrMW1WXgJ6vJoQn+Qb/6t1d2c2a - /+kbn4tP2fLU0QH+5OTio+FYAsL7EQOxmFjzwrk7n5FLA3WqzD53L5SBGsekh9Nyboj2GguVTrO/ - QORPJ6KFDlNtel44cPCeJvFtqFb0cVl7eA5DgdiaxFYUPWZP5E/UxFbsfQb6We0NvF2jIme+BMNy - U50n3LSvSfL7J1E3PJkNXBKJEAlcQ0AvhWOBpDu/9hlFx2ppXy2Er4f1IjEbeRnNX1MNs+QQzIxe - viMiGmkgfu3CJ9I93TJ65BUGHUv3OlsHJs/mrAs5sGDZJWemP0btJ1gstK/HzJ4LRiXrq/Phdp6c - XT+/aJu4dY4CRn35/K6vlq0yD6JfHhfsFHaazX96S7GkHEd3xx44q3v7wNXJ3T91R0K3SHZCKLl1 - g1/v07Xa2tO1Bsvb2Yje83d1Ys6OdppZPyDWWjXVZBztBb41/4dlbtifoR0yCX5zRyXyWxmzMb1+ - FnRaf86MGuyodHVtAdQGHXxmvWzDNp73Djm4nIhpedRdmUQpgLOaNTFNKQOL/BUe0Hyi4J8eZRq5 - XODsTjci7/hMCs+1YAkhwUbYeNHIRxYHf2qdkltSmhlfim0PG0Frdn79ZPN271vYnRcLWwfmEI2x - 60t/9w9LmXHJmLN5baEOnZXIe4ORE+Owhq9n4ZJ7l/nqYp7LBnEEuiTg3GvFZbcLhCrKt5kebRXw - v5QeIBXljOiJ1WUL6e+LuPuJmbm2Y7V4wzsV6QJSYsvWXV2ekM0h/FoeufE3LWMCSzgA+2bLWGex - mS3xyxBhNPoxkXDzHpbrfkJq7sac3K4HfaCn9OIgOCrWfMrfB/ef3gTZZ8T5Q78B1n29DOgZmv+H - j9UynPMR3p10JcHrMNF15Lbkzy9hu6ACpbcS9f/0c15kYzQ/9buBtp/2xEac6BF9yb9UHNt2JW+d - 08C//ZaFSYa9/tqCLbtdDnA3GTi1g8swO31sQIYVlXkRzyQjPZs2f3oCn426zxb4Yz2oWl9CFMXV - 1AWzwALPp0qwe5xP6vpRf434aL4Zlj5PHWx11m6wHj4m8WrZj7bey1J4tR4Hny4rS8fGGTxg4vMN - ywqrDUxhXsI/vsbqy1MzNpvjEez6FEtId8EYTHcHGPrjSbySDyh7+hxyKPMC77P8p1WpL/oNeBv5 - TMzGPNHlRVkJnDj/iFWxaqPhrdQB0r8h6x9cQwLc+R5osOOvnH8sQOdSVM39Hz8QLPUTGP/4ZfdL - xHMZI5uvQuvDjyI0//h38k+nGWyFXxCDZl1G//jLcKQLTpW/RPI4NqjnuRBr1gFVFL/PIXQ8ScMv - p6nd1gKfFuz1j/361bjE/S49Mrm4JN7XdYc1F5Yn0pflh+8h1P/8rYiEYBsINh7GQO350UNDODM+ - cONuWIgvKtDkkpKc20oDvB1uIjrohwFr3MsemP79buBDQDb2k+5ebUFtOlBMksZfP7CsxvTaLYCr - 88df/Vbbrr9hcbMbHIhnHG3zB2/g6NrrvIpmMDAcr9To7/oD4R1EDHP5lmg75Q5WUsNVR5arHWgf - rBr7nJCp2/me7ieCQ4x9tK3RJhIxBrcix0RRr3K26Z7FAE3xMHaiZ+mO6dvq4SPTu5nd843t+rKe - wDvSklhR86WzSLYEii+/xGYzZMOSM9kTnJEYYMUPD9XoH2gDsf+1fPChWzbCnNlgyRkUY2v+RMMV - 8yJqrr8Ldl4XQLdfnB9gdGcaLMdWEjFemR/g/ZJed/1bVNuuv8BK+J5Yn9c94s0jq6EjAef5dA2K - PU+69TD3jqw/m9rPXfd8B0SVccGS9LMoMyaohm0njdhXG6JuF14TEeqvIbF0/wYYl3lzwGF/23zc - NpjN9GEbsNaqGp97Vq+Yc8k+wOXds7NYfZNonDuQgPP5k/lIKZehsH1ZQiMpJ+z+1YMipx5cSHjH - 58kuMnKCawxvpoH8ueKdiB24TIBujtQZXLRyWMxz38Bl7S3/7+8NnC4+tIt09JnH1oFNy+0R1mH0 - wmouKtk6HOME4QOX+DyrVxXJSfOEFjOMGNPk4E6fde7hQOmMrfDZDlSgYY6+mnjHuge3aFZi7SG2 - 3PbFsg/f7qrd6xEVbsdg414oFRvp0wiLUw+I7msspd8+SVERgzdxBQ7SNTFtBfzhnZo9nYj1vYsG - 5WtW+vQ+D9k62ZcR7n7pzGSpnvGWHSuIvRDeJ2wv0K37xfMf//nbxWPopOBfCsPiNs/Mrmfn4/bd - E1GPIfIC7kNnHOVF0BJOw/Ken63VdtZgPzc/ctYfZ3ed5yCG8yGOsHHNLUpD3w7gjlfYqb5cRnf9 - AHEVf4ld0BRsg3fiYHTLBYw5JnGZPf+Ci1BoOG47lC14FGfIBxmH7d0Pb7zEpaBlyhw7+NC7w+2O - fJj2buVDRaFgvrdMij7wK2J7ev3AYgLX/7se4r/ZZdh2PSju60Nkffq4f/X2933+qwIkI5J+9qHM - 9ou/MvfLsOulGu75Kt75PGO+gsuAlxp8iM2fi2r5BIsD9zwNK/njO+z+xhePWZRibIeVSr7wHcBz - 3TfkTx9Nk32f4UsSKAmuiTCQLEw1eDxZAo7i2neXy3HJ//IEIv2WIqKLUz3/5UshnXh3uB2uD3gr - xwT/y2sS05bgJ5LOODzSOiP87RmI0Z1rsKbIRUbCmz1C0N09ErC/CHRfqDwAi66YqHenq7buGnHI - VrLvX72q65MHNSy6T4zVs/aM+BaJDRwfgkCiJJzc2f1ErZglMMC6Fr/c7S8fSundx1Ll1GDElRhC - 9f0LiTvxX7D9Xu8U2qzywdpFWd0/vfmnZ7G+gXFYv1Q+wI331B3PdECF2zZDe9i4+QC1MFsC7lJD - eZUAkRrlk827HkZEzBIsB6OgDukBcJDA4UWc82hntA+EB/AMwyfavW8i0jLZ/Lcf/vZfRX/4qol/ - ekflPv7AvHrYwJrZtjlzY7taErd+wj894j5/IFrmYhPBX/14VtpG48uIH2iGhjej3S93jpyL8Hos - LPygg1rNumo9/vibRC15qputv/K/PJqcf/dftHl49WH6zHosnyofLK/0FUDmKOnkAjM3m4bjMz79 - 5UvXh1O5m/BlJdjkJN7rr4r4S6c04LR+HaJ2/Hv441Mxb38+PqvjBDarSLa//IS4vmeo/I2ND/B7 - C0yciwlVxyr7+TAe1y85W7G6nwgMYrivv8/v/nMIdYuBQeKif3i+Dhc6Qs87OMR62/mwyNFF47cE - stiR2ytdwOmgwSzQYl+0ezyQvV8AzQoyvngqUET91f+XH2ETt6u6KfKkgZwxJaJPLgXjkLwd8elf - OKwI17Eaz0GigS2re6IyeKKj7AQ9wM+bjP/6G6tRldKf/yIaDgW1P5x/PhRj401MERd0MjNLAU10 - c4gPtS36ux/g4DTF/Pf71lwQctjZVkTeB47Q5Y8vTuJ0Jnr6rN1p/fkleF1bjHe9rnILcy5h2X9l - f93z63W2FwvV5V3DZkXf6op/C4cWrLr+yU9syqA26+EZn2zsmtxl4JrmxoHj+S4QM/A9sCSnqoSc - llCsPcuSjqJ7VOCI0vPML+/W3Wz4hHA8tjEO1q+oDgnDFXC5PETiqd6qdg+OG+Ehje/4vqlVtDCX - bwH365871EB3jBozAUv7eM2ooS5d0tUuYQkPhOz8oi7pW+ph5sY8zqaodonzDT34lw/u+A/Wr/6J - kQ/Pj7/9qpJP3ufwjISAPPurRWlxGjZgmJtDzt1UutsfP5cV0bF1jb/qfPTPLfw8nYCcXedL//Gp - OMU2fmuWTpeiXCXosN9tFm3jTFcwgAWowB9mLtuqbDmXbIomdMz9/lS8ouVvf6719USejvGL+j2f - Bbu+w+cHEaLW1NwZvJP6OvO73u0EeFz++MIX/+pTju4G3PNUn9WEA/jL8+FdXyCxDJhQItDHE7bG - 5+bDiCvUDf6CGIrpGOPHelfo4DqBiC6arRH/dgYRMay3A50feyK2m58zRnwdBfBz8nj2ZqBlTM1P - DzjotYuvv+NzWKqM+MC0rhl2nMBVO4/AB2wz28MqjD7Zv/6PpvjY35JkU6mVxQIQVGWb93zapbwe - pfAcF0dyj43yT48/wa7XfH52zxF78fEsRt84xVbg/OhiF0WM9rzdPy3XOtsUoa5Fmw9aclHYetjO - ZVAAJHgbkf74JydNDs+vQcFn6FzcZUxQI56zFGD1amFKm/RViDfW0LCiuLU6le3si02Vrz4NGdZd - 65u7AZgHGO96MFv2+gdZGGfzaft91cXu2gXuefQM7iSn0/ozyr+8cwaLKw1MPkQSVGP9g+2fSaNd - f0IoKXlFVBWXw1+eBA6JEeIzCplh/UInhX/5qhEqTrVA8VnCvd+Bo79+SMGmsbjWtxPWxXs9/OsP - kepOsZXkSsY/6vQAP7dW8YXNtLLtKhQeeull64NCjyJqXN41fEki/eefhn5MLXgupHXmRVyA8TuP - EP75D7MZQLXu/Rz45//didcB/5cXoPF7J9oyLXTTcnlEi7i5s7u4RbWtQ1XA62Mbyb9+Ah3lA7Rv - rrzr22/1L38XvqWJPS2Zq5Hopwbcbt4+Q7tvotFl3gxUuZrDf/1ZJm1lDdHr5Ui0tLDdTfo2DHSv - vERU8ksz+nf9+jdgMX69Lru+HGd4RaGMreVuR9u9hSnc+5NYJy9m6LIMpf/8vc8JQN3z9ACdG3Ei - dv7O3ZXrrOCvP0N2vwA277NpwDAXx6deIVbzuQxKVCylgL3m1O9+/24BWAo6MdefWzH8Uw7R93QU - iPxJfup2yb4WDPnbZedrI6NnzyygPqcC/utf/OtHv5PmSrxnlUSkOFULUi6BjR+1u7nz0F5qMUFs - iPd+tjtv5WDAXd/ONa1otv+twbL/yTPd8yPy1/9KuGMyV+SXRru+aGBniB7R9PIYEZxoDGy+s+Cj - c1788WsAPLmWZpa+5z3vcri/9fP5Hf8X8cULcP/9+E//clzGzxBV74SoYUCzLfUOHpztd4BVBp8p - O1hPBraltRDXcbxozb7PEErKsyKXa0grgi7TBs32rcxkz2P//AJgp3NLJOVq0sk8Fj4a/NEn711f - roxYjuD/OFHA/+8TBSVxXZ99ZCdKrdQIoDA+WH9Jup7Sx9N34CSAkZgfkwwkDT8GqvnsNq+JqlS0 - j8sSIe/k/fv3VbjXBix9LyHPu9BEm81tB2iu4uZzJ9OuGK0uDjAAbjTDfPbVLetiCd1uyTyDDASA - Gz7LA77EfUoZs4aAYj7UoMCaPJYEf3I3hqYzzFDnE+8uNNkaR/0CVdF8En/wz+rGU9OBquDesZuY - v2G4DYsGnTcySHZqR7rcxthBV1lqfMb9dO6qCGGI8hv7ItLFsyoeseMMp7C/YrXFa7YU47UHArr1 - xJpMUC10fhsi56UvovMnK1tf3EeELQo74qIjBcuirwHavw+rv7ud8T3bzdA8wpm8J1epmHexORCe - yon4RvCttm/3KsDQvHr8WOUmo8bR2uC0DCdiM5cjmKVX/0Q60BWSvKYbWESViZHjNb+5CCaTMvsx - RMRJi0suoqtkbHRIG3iRXhxxfFRl7PN9SZDzjTr/YFgD7R04zlAYgI/dWO3p6m6lhGQCzthSMx1w - s8gycPp0+yH5eB42PjYeSIxmD3tQU11mzdQUmc1iELs9SQMnHboecNLmzkJ/5uj6Y+oDvAe1RR7A - SwaODS8FavmDSVTp9nXZOesU9NRODJYOCpetP01PERkTSDDP0mrZBH2E4ico97dYRBHfJcUBmZRh - 8VX4ccM6MYIE9IdzJp7MP9xxOyJRPBpOMzOT/3VZtQE5FK5WMB8nVxm42nku8J4mMcn920mdtJKr - 4UVCL3L+KE41AnvW4PRMaoIxO1XU6iZDeGqAwfJrYLP1+7kHUE89h1yuuqxu9rt/ABYKGokM18+Y - PEp9BPmmx16aaSoD96nM3mimxLj1H3V5258aldkyYp2Wcja2y1OB/tOx8dUHEhD6ej7AcIMXEjNz - 7nL2oXLQ5G8+uVUlzRb9BAxYxHB/1P2sUTaaBR823FMkuZoUdJO4NUc/TQ2Iai59RBkHpeJfPdlY - DAdqeuUGhbjviC5YV7qF981Cx7ua+3OffqPNidgYHbagwBeIpoiyp7yEUx78SKThIeKqX9vCwnz8 - sLZlFCyJYHsw2qWwe6ttyimWsaH1GHxJELByxUvwGMAX6RUiV4djtir2yYGePZpYf2R3QKkHGHhs - P7x/ivq3y01TJgBZTQziE4NG26TVBVSvwQc/KOgBZQbYwAVjButHRYzmeDAfyHL1B1Yq26ZMK28i - InWzYB3Bo7txJGJQ6cQBfoAKDUvbDhy8f4V+5vLhnrGqDgMgyIHj/+EX21xHH9b8/YZVGX7U5XcN - HFic/WXmG5DStb2/C5j1W0J8vXNdynScA7vkFWKrvy4VNY7SBr0fGWYmsjOweDepRN7xxRPppDFg - JbfaglmdN9gqDTUbOl9YoKVfLj5D7+w+xU6R0PvEXIjvQlYd17H3IVAH6m81otni3awS2AyT4ddX - 2CJiFJKC1omziarNnsskaDvAwkx//mn6+RWPntcZTKakzLx6YiL6QOcEHt0DwZHMmBG1fnMP5Wcx - Y52qRTWAR8tBf7t/iC5qKeAvYa6AbO6fxBG6kzreAFMiJpge2CbaPuUyED0wDbcE6+nttZ9BpyLk - vMcL4+vnlTFtKRqwlHqZqC3ngvX0eqe7sJB8jXQWXSNDYqBzXQPyhydbKFUOcqR8xmqpSWA5cWGC - wqX4YflQdhEjumMhevlHIepUn2jzeC0luhoMIZcsdVU2r7wevkBwJcl7ZYZl22fS+Pf5jaWHILjz - izkWkEuMCZ9/Lz9al69hiJG5elhjmXu2KTfiwDo52ERWbzmYkdeFEFIfYQ99vhlzLZYevZjDl2CG - stG4yjCF+sM649vrpqpMZ9btP7x/+IlFl7T4GVAXhnSfkZMAap30J1gFyOLkADZKge0okByCI7mG - wxT1ttT1IBitD8mH6Qw2J5sK2D1uqV8IBs2GT+kcxKusNP70vV+q7TEFAmym4IL/8d/7jRfIPK8j - uZ6mFWy2deGQngQmTotOVldhgS0kTUmJzsVjtJwkWUI9TLx5OLUj2Kpv78My1F44iL++y4XvQYA7 - PszG53twV/WgSahnGom4If5kPDh9GuRzlx+xhmhTW73sS3HnY/ys9KtLN1sq0FUTRpzF/Tfjoak2 - qD2Jjv/qFmFYv0LHQMczJWyH42vYqkRmUHl9Qnx++7LKPX/XGgnreSX+jk+/D/1siPmhI7H0eXHX - t4QlCNftg6/XVxpxFUmZ/alNET+mtgBLXzcQltPZIkladC7dyPpEHviuOHWeB3f5uEkuXLwvIVcE - 3+7yFpQRxWBWsctEWsa6URfAKdZWktzUpvrHh4W7xCRI4dVllzNbwOD4kYhXPxBYflA20P0R3Mi9 - 9zt3WTP3AdVLmpF3SLZsq53nBj31cfO35nGt1u9lEZB4WWx83/l94yl24EqtEb8M814t56YVEMd9 - ALFpxlNK2cpDmyHX5NxGXNQ7DFPCcsLWTM3Fydbj72Kgoo/e2AWjXS3n8dHCN6NYJDR/h6wWVSZB - 18+bIVLGnapJuNcaihyfI87USpQbHpIHB1ss/34PHdJu7ZFQeseZDYKuWt2tlxDnxwWO/ShWF2P2 - JdFchW3+lfUKmuPv66D7V+yxI36f7nJmHA7+rde5kTx30Rg7gYPLfIntGF20RcQLoFxF03xqVwMw - 292DcO2eTyzFxjmjhS616CZpNr6bw3d/S1EK4RCZ7tyRwc34T0ctaJ98y4cHqXFnefBS6IXiQryy - YSJ6KM0nDA91hb1Kv6qreh6fsO7jdhZqwY+Wn/spIdlcgyhyHGd/fI/WibFJ9IU/l7/RNoD/7o9d - fFz6eYQLelGpJBfYGBnH0HQEnrlo5E3ROaMdX1jwVnxuWH487IGaw1CA4fYU8PPwbgCRvNsMbYbL - sCR8GXc5mScPOtb4wZc08QBB8bdE5B2c8Zvm3sCeXVJCfSpH7L6sI1jEcw9hz5Uqca/F2WWT662H - 27VCc3D48Grn3Z4N3PzoNlPp9lWXkxAsyHp86b/67Ha8AwVuH9grVA6Mv2tqAf9dtkRH8K3SSwU5 - sH8eOb/9j7tel0kDolCZxFd4yWU67rwBNasv5LHKRrTJ4rhB9VXERN+ejbvcorMF6o6Xd/w80M3x - zhb0evtK8i50XD49PSS489f85v27u/EhhkAtsjOxik52+Qt9edAXpgvxf7k0bHzVbPAnfxuiWZZK - KVhPKaTwoc/sIivRxlq9CDfr7c/87/TIvm70CVF5ExufTbQN0Muab/DrDxAbr4kH//TWse5WnNz3 - E7/ReVVgOU6f+feOGvUfH+rLycNZOJcq3cgpB089y4hpeIdh2QrkwGe6iv7CUtudMycLYHCaeWxp - y1wt2lNY4HpYDuS6PY3df2ALqnfnR3znEFXbSMIY/NWPal7sgb+TIYUke5gzOC3NsNWxm4oXja9m - ll/9YcnLpYGrKAh+k9NIZU/zwYO+FarEWWUjW27quAByf2rzMXnndBul1YfDtWBJvInMsD381IHD - VfWJwUeFu/LXZUGW+5WxVWkanRZDT05wDUXsoiJylz/9GzxbC7vibKl89sAzyBU1JlKQFGDRT9RA - t/kXEaXOw4rxAZD+/JYvyDfb5Ubp5AEk7dPkoOxntDsGMVqP4ddnHK2h69n9lSBcyh+RD6pVLWdG - 4UBQiTMx4lYBrPp2Q7h2+RM7wOOqje16A17OekLutvUDmyWsKfICOJErRyeXpkHfw2xTILENv3Kp - 8V0XdHtrIg6N7gn4YloUNPTsbV4i0qhbmUoBOhzSO7njbKVbJsAUNl8p93e/oG5h9yjh1zgtJDk8 - N3W83q0cbc79Qs7DCIapufU93PUIeRlzrPaPbzHDrBEDv+vST0ZBuLRAD1MZJ7Ag7lz9ih7qFffy - hZ1vxm5+NTBrHh2R4EvMtmz1vFMzhRfiAh27hDYKA9tG0bB++1zVVbl8Ysj95BJ7CpsNW3RlQ6An - oUkkYTrT9fm+xFDNtB5btTBHI044CN+84GPnnJoZzwxMfWo+TorPmssN1PgtHlyXScF+t/Z0/DGB - IDoFgEQSvrFKUX0WYfCYdexeW4OOev8YT6Tfn9k9fvcZBk82BLAMLHzv+NKdfj23+09d8tcU/TJq - 7gnXju/Yy/GUbXVVbdDxy34GWcxlpONbC5S/x5FY3xtWRyhgH/7thyBIJLDZUteC3c8SIz12gPa6 - Y4GgfIY4eG1PMLX20UHilGbYNyyXMkU95eBO6hO2B6qrFBaPRjxsYYE9pGgVKwg1h3Y/SM61GABO - 4k5PWN6EBr/9ve/0p19MqLVEX4rKXRJ852AXq62/vOcjWE+YzQGXSsucNi8nY8WR36BOY26/H6VL - 7wZUYKkVJr4psRBtB+A8ACPP7Xy0asX9h38B6EWi/FJe3fHuIJbG08Fh2dvqIp5LKJLIiX0o86K7 - xu5W/10vNmCBVbaxlBDteh7LhXHPZiu0noBTZn8+/PZntkUmEsFgKE9sc1dYbZYTBNAUra+/lapf - UWPqIIjOv6vPbBmlqyC9DBjhT+rru3+ejlaQwCvWShJ113EgY27WInc/UGzcetllcreVwO4H/ORY - TtH87a7lP31o25ZJaecvC+zIIPqs/5TUjaHBjAj9ldiSb7ZK//IO8daEMzmfnIq9Ll8D3t6GiB1a - V3S5AViITXP4EPfUepSrDquHOlWj2H3kc7WAduaAzNt0BuJsuQydbxokgL9i2/S0iofJAOE9LFwc - cGtfzUhbDST2cCVmzUN3bQyV++NP4h1h566vfaYKaXMOK/lW0jXRjwGo2XdMzkVlA2Ik9we85npM - PGk90JlLPOYv/8Jm5Y7ZAgXsQc/tnfnUho062zfRg+Zchti3Mk5d50hg4F0kX3842Z67NoesgQwO - EDFl/+UuXfN9QP8bb/7Bi57Zdnja7d/+9m+FzES9dRd62OkKt/vrCPTSoWv/+eXHhuyM3mgRwnZt - b9hSxWbYDh/6QJFnnWZhcNNs+/Pni6oDbBzVcRgGVR3R4SBK89zSLlp6BsfwzvFvgm1VoRzKLQ0N - foCJPX8DdTk3hYiu8V2fe5/tqj1v0OBTVuf5VhRXd8lF2xItcwbYyB7ngfWWqkGdLnE7/vgRN75P - B+BYnohjhuPpNgt8Cm8mcyUS+IUR6WtFgLu+wkofAjDxrwKiDA0+VpVMBuwECw9xH3zf8wsnm7hD - awHkIJs4YOCj7d/+HcnH566mWrXG2WDgPX76RFWFWp2nFyhhHRkqPheDOjB5JqV/+mHHiwEsCb5w - qGWLFw6lZAPT8baMoqD6Z6xZv3ogmH8YcCi/NVZl5hcR69e0SGB/ObZ9uLrTD14d8JePIuU2uUuv - kg3cPF8hcqk8M3Zhmhwi51ViF56Eod3rFxZ5583UcOdsK4NUg/XRrrDGju9h1aLEA47jICLt+m0R - 3bEEXnPBxLZ/1rC8cZTAe95q2L2nNNrCGxjhru93v1y58/GkHuBhSV4zfHAmoGXhFfDoQoLv82SD - Xf/m8GFchf/mi6FUWcjQooEorX90u6sNHVAH7R2/LBXSZbPHGgpJM2LF6CCdOCNNgbnkCfYNYmTs - PMgp4qziRmJLctTunJkiuHPsm7isIEXM3+/d6x1fMllTt8drKdCtzl6+0J8Tys6D/YD6dynIfdf/ - nbL0Gtjx2heF7u6SdP1w6AXCq48k0QFrdO18SE4gJG7SWNlYXM8a7Ax4whJ8PbLRM4s9v5Jz/9Dz - hsv85TvZy5N2fnMAKUktghoR00cqQ7LVFR8e3POY+TW1B9D9ommD8rOcsb37iY2phASaB2kglyc7 - DVs06RzY650o70WLNml/JnYKnRkr70tV0XH6QTg90g95Hg05Y4UNGHDPr4mlYxyt/FVYILofgb+W - Cow2ORsVsHnXmDhBF6lrg8Uc5n7PzACWazXteluEKKU4kl9Sxpze9vZPj3uPt0TZ5z5TZ89ziFn1 - kzr66hDC8mNi7LvGFE08sxZwMhWFWH94MP5KBziv6kmcyZZcZuFSBpJeKLAv0Sri//J9x7HQDG51 - B6ZZeSiQMWUH7/n0wM5akMM9TyN/n7+c5t6BkHoI5xQCdVxeNgdv18fgx47WANrldwuqt9HF+mUa - wDe53lr44h94PtifNfrnv/Y8nTgJRO6YoA2eore8Yryll4hKr0MBm0rLsL9JgruxqRtCVd+sOdz9 - MrvzPzjq7RFLKMvo9pUaCxpS9iW+j9/ZNqzpAl4M/BJPYUE1miOuwV89W5+fMvTcgfGB8/o8sW19 - ztE638sacD5jkutlGuhmOWkgYhmIxEVyGG3M0Banh4MPxERvhbJL9AuAilBJPJUil1KPctC5AIeY - DRDorp8EWBq5M2+t/3bno8R4ECU6OwdBUtB1FrsNyqktY8d7fMH6p+eRaaq+4NQ3Omkq4mDIJQvW - iGOp7PG2zKhITtI/POSRfnbEAluUnKUoyJb3zS3hccyQv4hO4FIjl/d85VHNJ+fruIvfPz1ohfwP - W+0SV8tySzWQ364csTqO0Ml7awv8y3v/8gWy+1+g9j91/opeWI2ng1NCYWIvPi8FWbUNa7Ahgf3m - REbP2Z20KPdgdIu++LzrYQpbZ/nLZ/29n+Mun/7twavBEZ871ANdk+aQw52vSH6+89VcQ3GBex7j - V3t/ZTzd7g0Myjz8h59jvgUH8OfP5YwfKH0MTflXDxhj9Ism5ysZMCh2MGM8EQwpSJ/w+AQ1keNG - yphOnz0ofq2W+Pv3/ePjeynV5D3WrbodHq4HvGThsM7wvUr+1vOpvlIsvzxm2A5hJKGgDTOsGu4c - UdwJDtz1ls8GxMmW5fx5omEmL4Ijn7qjZ7YW7GK5Jf/0mG1ED8hpVo+De3al9E6qB3JuU+SDuByq - 6YmXAyItfBFtz38pDDYP3tpLNe/8NnDPG/LhreHNf/5//EX3EcSoNeZ21l8qtT5QhHoca/j2O4kZ - NfyPjwhj2vMSf2d1WZkw/dPDxEB5MKz55cvAPb8hEeYRGNsCtGDP7/3jroeZQq9nqM4vG0tc2NFl - 5090tLSOWGo0usuWH0bAFJgSZym/w+TNXwvqH/FB5KPcuyuZ4QzqunhjZ9cr25jai3jTxdBn1lcY - rd4tbqAaxfl/+VPvwxGuKCmxmz5WsL64TgRy6so+LNQEjLvfgKRPT3s+VVDaJS2E5OJd5q2ybfCn - n6EcxsL8e3EV+Je/i5X3ncdUrOny50/3fJ8EYreAJd10Ecj+Id3x8pzRuz96sGngh6imjemS9q8Z - hEJA8XVF32iN4cOBhZ30+GyY92F6HR4GCIXt4XNpirP1dD4qUD192bnqRlqV38AvIEpM1gcc96Hb - EAYSOp6FjSQ3V8q+yv1SwOvZehM827VLg6l6okhGKrlrThOtf/m1+BIU8vDZbqBj4Utg13/E19ea - zgpHhH/44Ir4F42a+tnA737b5rF+vMDyAdz+hJnjYlPiE3XRIsf550+U52yoy1qCBmwvuvzbX9P1 - MsaQAjHHEhtbEXdR9iewzOpEnLX4uXu/14I/HUXY3vM3ysS1BNeFKNg7/KSBMCA+gD9/6e78RQuU - ptCTnzG+oKevbk6EYnjzHZ1oVJmzzr2UDLpg9U7+8sH1qwQFKuy4x3isLfcfnufevGLVKdlojZnu - ABshRVhtb4O73BgtBmbNqP6f/+EtaxLh044+xBWbOVpa0Wn/8jWCb19RJXgtYgh7JcYSz+uUbsEy - I+ZxCvYZ4++qPc8XDV2dkcXJrd/zvQ44cOivC5bu2RWsvxFucM+r53qavoCMPvHgjZ44bOukzFay - UAfmkn7B7p7fjH/5JGOWKzHlhAP1cu6eMH9/u3nNUtddhc7L96keKvHnXzgs51yY4e3dfLD3jPpo - eo0ggPcK/uZ61kbwp/fRUV5O5FIqMNsq/95CUrYTNtFBrZi/7/P0+EFUYrOg1TdFRF8DLERbX1u0 - ZQLzAGV3U/wl+Vzc9SgVFhRnhifWaIvubDlBiPZ6mKl6r6LVdU/a/zOjQPjfJwq6e1YR63IyKP1W - 1wY+xnPng+Ur0En0Hj6M1EYhkkNCt42HD4fWwpiwCoGUrbLWcChfiL6/xWB/7+VvtCB9/UZidLeZ - rp52hdBZn0f/xMFbxTHPxRDTb+/PdRvr0ZBw6z7H0dKI3Nga4MLXusDrR73MHAJnugWv6xMqRlRg - Lbi83S0WpgZu9WiSwA2f7oxzi4FbZ978hVUqd3q9DQccSXnEesCIw/b9Nj4QmKtGMGpGutzTm4Le - 97XAVj2CoeU7ZgP4ksbEfn9ElU6jH8KHXozE7fkMbGj6iRDEIUeMrPfVlc/XHjFa/cX4WRQqkcPX - Ac5Z//XFL1OBNe7uHqjzs4PfJCldPqkLEZoVbYhsvYpqc0/hhjhJUXyCky5axk9kwccisNg/bE60 - SOU0Q0kzr//WYxsc3UNTELxIIn70jL3uCfNXIYXf3ekr4mLh28BjE81ESVoESD7dG3hkPNcXF+WV - MRx99OjVUTQnMoDZAs/Hp1gsY4ufIPMilvM8CJN842ewJapLRXQYQaiWM5Z57pvx29Hy0WSnHQ7b - az5sncSlKJLNNzYfz3dG6xHkUEk3dV6LrFUXu7I8ML/YM8nX3XEdr3cIP9lxID633F0Wea6Dssgv - faa4ygPnKecYpua0krOaHsBw4UYJeuuz9NEPhZQ7hJMCO12KcAwFLWPT9xjAJFXs+RRPdkSpuS3w - +rBfJJJSDXDOizZIxW8JyzCTALPXK+iDc0PyCmnZ0kDGAtA5UiKBqKOLqC8xOiL3Q7z+wtJ9PSE0 - E1vDryMQs3X2jAXCc54Q43xLXFbtJR+mDz8m5gWWYHsIZo4eEmzwTdjfY8NblgSf6v7Mlyp81XVo - ixR1g2CQ+FATQJsD3CA8PxN83+7TwKv1LYRsGGTknTiPjKH65iCfthN5JIkAVlubJPFFnRh7+lpU - 9HivfGh9+pBEKHeijTx7BqBj9ZxP2shE2/c7e1C5kAdWj86Vbsy3bNCtD3VirHdJfT6ZR7m/CRLO - /CHvsmlafgUqvuGMz0XlVLxUNwniifAmzuPwqbhNDgRENMbw0UU/7u8hlTWU8TNPzM+VqNS1wwY9 - zCkmEXPCKi/zkYROwiGfhbfsubxXrwv4QGPxS/RpMgpHp4WpvzyweYq4YWteqQKd9z5zJIz8iP21 - mfW3vjgBvQEYqHsQ0uPpjuO3Mw8zmamP3GgbsUEGVWWk8jsj5tVJRCpyzaUur1joKgYlNi9QAdz8 - NEpkvKw79r9qOnCew3OQZRrL51qmppukyg3S1sGbGWpxKikfogPBB6R+zT77ihaXKkbOMUyIN36d - jK8vS4Oe+1QooTwcqs1cMgkEclxhWw5dwGn5fYbPRUzJWasugMZT/wTbNLz8Y+4N1YpXbp/50jhE - 36ewrSQHT5h8+2FeMW/R8YcLEd4W9oDtF+sPTIrrEoGpNHF40IKM1Ox0gEPMSsTM82Xgu8eSoHHo - FKwucUTZ+Gz0sFW2G8aPrXJJxFsJNI65gcMfdrJ1dfn5rz6xPBt8tpZiHoiQcWPseIM9MO+7VKO+ - HG1y9S7LMHvOkYO2/Hr63Bc12cY7aQuF9z6FbD7qKl0G3oevyNOxGq0B4D5OYkA2O6/+wp/kbHkb - +wkY5jQQzVC/A71eGA/ueObP3HJyt47cE/Q+iV+s2S/fnWfhbsDAiU5EDVscsczbmqG2dh6RNler - pkAbfNgyJ58EJDZUnq8c4d9+dt2XWE3Ndc5FWCcOVhjo/sMjGKiVO9MbLVUCGdZCs+SP2Lbm79An - J1lE4nRBRJdCj3LBqVDEHY+wYzODy18uzQFq1nsgimME6sZ/owJOL3rCTmxWET0yjYY82jlY5v1n - tSI16CFvSyORnZFzV+WWlXCc2B4nbndSqWHrCbpLICTm43nMqPJ1WuCIY0D8CtXRT+eLUDSFfJ2r - w8+lm/KLAuDI5ULMU5QMG3o6AvzysYg1MK3Zkn6gAKWVgeQZPTFYy6QQ0VkIa2y8DsrAHW1sQXqy - hhklFEYb5PUFYTjcZmohyeUegvkEzLkC/qFf2YxkU9HDnH9Roj9pnvHT6Acw/RjWTOU8Bfzv0pXw - ZW4uUdrrYVh+uBX+6gMH7PescpWzpUhObhesm/bgrm3OhshpHxXR6XAZ1qzFI1hN6YIvzpiow/0Y - jyiFhfxX7xXXO0KNHvnPnOmjl6pxS50SLouT74P7HMBNzqdA1PafODtcG8pdm5cH2bts47h7NWAs - 0quHvPRhEH28dBmtawmiuD/7+Kmv0sB+31oM+wA3JBGWzB0bxm7RQ7QM/NKqFWzB6/UE+/8n50Iq - Kpb/1Q64Oa5EtO/hPfBn6a7A01tUiGeIpbu80jpE31s6kNwVD+r48fkE/u2f4NJ+KP3bnyd0nbHK - fcVhyT5fBqQPL8bvcLkA7kMy58RsdoIvvnEYVpnaC0o/mkWSo0aiyQFYg546g5l5T0L1c8IlB9Mp - EbDzK3C05dGth/GYcbMojV8w4ZV7ooPmtyQxDaLW3WAZaCxin9zev1ClAWeOyOw5TPzD1kfruIYC - 0tNiP6O8JxYsFArQKz8NKztebJRYT1SG6zxvf/z/bKIUWI8t90GYOBkJOHNGPF4fPusar2ErXDuH - /S3A2P3TE0emMaBZrQ1x7IusMp2PCsjGbxWfdQOAlVf2KWmmdCHm8T+kXcm2sjASfiAXMkmSJTPI - FARE3AEiCipzgDx9H+7fy9712glDqr6hQpVMo20kdgCtVxvi56RMdL4JZQW/ysZgC8gaYGoctRB4 - ueJz2JLy9e9+xnVZEV82poge2HsBeW6JiJQeC7qOSaDAp54FxJZGnbKS787gD6+0g/yhHV3vBvq7 - vn/4Cz2+gI4rCLPwuFb1H/4jq/+1RH8dLg4/Zl0AIvj4/f1ePkavXy9Kk7Ng7wiyvNP9C4TBxZmw - s3xSMMhzVaH2F4xYU5pD3p+VOIV+1lzwI26+dFxhHaLYPL2wnNmyw4DbI4Gy0B/841X75vTAXkrg - 6qAmrn/6gEU6LCFKZDsh+A9P6k3SxIU7udjNhK6mf/GqGReVuPHvDXY8tKH9uorzyazDYRXLvhFr - AB7EmN+vepn71wGW5f2G7V7kwfYikQ1xduvnU2pewBK9SAv4I+kI5rmyXkdRz+BL1wWsaywHZlK8 - OXjIjXwGUtdRWlrFG5DtspGn4WvOng9bsPMXoqCXEbHL9dFARlKeMznJl4Ed1CGGvXm25zWczXx8 - DbIA9v05L8LxOmzxT2oQfXzGeUh/l2j1NDGEQijf/MPzCoZpFrsZvjrBmqfH+e1QIRDf8HP/RNiy - VnkYY6ZIANdUNxwmegQ41LAp0LKDPx+1x52ST/347s/oXfHzBrR6Sx0ngAnPR0QJhyH/mRwjAtjE - NlHsLnPWRRUaOIR9il1X+dVEn2YNDrw97a+L6r/PLxxwiZYvhkrBIVdETR7Rn35wOFfRY4Cec0j0 - /UnCzYtF6Q//iea3FVgj8GqgmMw6keJnFbHXJ4hhcQbP+TT5IiW5VTdQx5dpHpD7ydf0OYZQ8ZIz - sV5h5GzRw8/A8SKUJIifUs4dpKL945f4BjSJbmwU+mA2jhk2JNbKOf3nuuAxBhXWbelcc7u+4pGj - mkSvzzVdu+fli45p5xKFMHq944kt5myFidPHK1gNjTHEPz2gt3wF5kYuKhgUW4Gdw/ULlsu9rcCn - m1NiL8ojWu3bZQbeyPTkedWMnL1qS4n449Rh/X6/0nVb4AaZOCdEqVLXITNnlUCd3B8JfxuT/9T5 - XsLmVxbELDZd3cSJgzD6fBgc+Kua80nTinDlDtVcbU5Tr3/7S/mmH3LDehNNWfIeoStXEU4+6BvR - P7738Z07cS60ipZfP2xox/s5A68mosL9o8BFcjHJzapVl/VVZWDWlm2mQnQbutNpKkDnrLK/CvA+ - rNq2jRAlT3mu+y8HtugUHCDFR3vm9451Y0Y5H5ypsPd8T25gvWpCCbPrjcPnLP+qtGksCPTLciFm - 3ak5zx5WC+z4MFdpEVI6ZO7hX3xyj8M+B/IifCHLLQtWpuqSL3PfHYDYxD9syOmWL9aQpNDGiTm/ - j95Kt4a4BljP7glr1fVVky442NBq75LfmO7PoW0WKyJrMK95n2YIpq84vMGBPAesyqVA57ZoWjRU - oeifaumV/+lBWOi3u79GlzWn73psAaN9P8Q5r9gZoa4dRKfvn8QVmtmZG6IZf3hLLjvfJcL79gaC - 4nqkaCSsblVEIZxipsZYqn55B67ujB7LsGK7v3mUfYtJAM2M2NhDo/bnD5Rw/hlPf1vfSs3S9WKg - s/XWif/qgl1vqhZ0WXbDz11vr0Z3suGnepr+apB6WAZ0TsHPtyA2ytc4jPxLCU5TM0zE/jAqYDYc - KJB9mx+fTd63nFJTXP7pb+6cqTW7tkoI93w8A9mNwHx1whhWn2AmZQ6oupwPqvbnZ2D8+jLOAIKh - BAU1Jbz7I4B+OSVAZBJeWCl7oq47f4VWgQziZaFac6tgK4DPcUzU3LMHZs+PsIDxBQevJlW3jS9b - oDzfK3a3yFSpmMkxAlNlEte/PFQivgEHeVTLRO7qKVoM0x2hFy2YXH/jBIbzR+LQ7/TSsX+8Mvly - Y7wA7PHnc7u+mjg1KyHiGgOHJr4M7ZeRWyhi5rLzz0tEI17an/AJc+xLdZ1Plh5k8MIK7rz+QiPi - +7rnwO4/+MLlclBpFp4LCMhIiPkARs0UKYawzbnNP2z0W9PLtL6hnJ1uxNYMP1rUwA/gcnY+2Ime - DmWk9zRCc5J4HBrjr15KxilhQJ8ZMd11cZYWBQXqefNO3NeY1Qt5aRqcYq7GqgRm+k+/9Lx+J7YC - QDRXjlzC6Hbcp4KcJqdlsQSRbgsPrOFVyTnz5FVwzfMXdp+Hx0BLK36LtjgH/tz7Q7Qx0lTBq754 - +LbrTT63hi+4j2VAXCW854OIuBn6xXLC/pd5g9E4ZBZU14+AVSnVKMfy+AsC9eVg83X92/8AQvdy - e2CvkqSBxlwBYSltHLZXatb0c6xsFJaHn1/vfHyJjHGBubm1M7pMbdTv/hn6hYxFtKN5p6utn2OY - F45AJMXmKFWbW4AetYqJ7BtlTZJjvSF3Ph7mU9786vW7rhIyxe5ObF98OmvxPFXin34O6quSLwXy - FKhPro2ds687W/Zwv2DHH/w0Vl/d/aACoE2SiPcy4noph+AA8167/tMPlLckCYrHpcK5WVkOc/KN - CoVs99n9icqZPsmFgUxepLhIZSei8eUpwKWZG2zu+EXz4yqh6bGedv5q5+Q3jhkcTLckem5XDo+n - qy9Kmn79d7/WQp0PkOW2BUtLlkWDe4St+DmY7bxePh+6veMgRIGlX3A8jEVEYZ1aiL2rZ7z7Q+Bf - Pn1Xo0P2+HSozwEN7Os/o5l7D9yXVBmol2eDDe/GOfQYCDP0+lbBale96fp4+hZE8srNx5KwA62P - DiN2Df/AdqPea1LWzwzgkfMwnj48XcQKuCCl4YItj2frbbGzAkpJhIgp4Xc+NerHhu9feSLa6f5w - lgdeFySlS4WjV7kO646n8PCtruQW09eOb/sTJDK9z/TbNdFyQVcRUg6q+Po0w5pfhqMLxSlC2Pmc - j+q0XVcRqnLX+cdHJw8L9Zv2j6+SqP8mYOH86xfufsh83Ba7pujdbGjKPxec34oy2mAUpGjnJ9he - FBQtWQoSaBVHg2jVVa5n7AjF6Xk+JFjRAMr73Q9Gqb9lWE1PSUTulhn+5UviWR/V4T9WNsL9fhLj - nNX1EqXI+ssvPtAJAkvBhG9EKt324Zef8jZHSwZ2fbv7e2fASGbPQDvbZL+xxMahzOiWcDPWHmvL - 5QaWtQ9F+As5i1i6qDrrslY2GpylIeboXKIey1wAmSF6YwP0Bl3kO+YAPdkDMc+33zC5+1Q2mBsC - waH3A739nQ3AD8kd61/pHdE/vXhf+JcvOhVXb95jfEPTkI/zIU/P6nqIUQswK3T4opgZWPtW08SL - ZX1I+VGFesmHVgKuC92ZL2wYTeCqzbDeDibWB4OLJtVD7Ynb7BORq8OmjuWQHmDbPWOiPcra2eR4 - bmA1qsV8bJ815eC5dAGSKUfU3Q8ZoxTZYE34HP/5UexHO5eg1BNIDF4p//npkJ7dAj/bpwpWZ1tE - yLxjl+DrL8iX5F0FUDR+EtbnqgRURNwoelZ8xQZKVbq4iJHE0v96/mfHm0nTnhucH7yHz/F0zr/i - dDjwm8dF2NNnbVhKIxeAuB7PxKAtW2/cGcZASzILe+skq9tk71MbZCshUfmjf/o7gEV4BLPoi0dn - ml1jgwJXj9h5uWNNCy634IE8BuwmXBq9vJvdApgKAUlcZnRmLX5WkDDbdb4wR9OZuB9mxKbKKXFt - Pq7ZtC0XsGL0m9EPbWCpkerD+v5biDo9rtGeX+Df7xG9CvWB3nJHgnzLcuTvevkjMxsQhIa/83Pq - kCWAMZwRDHH2q0g054o8o3N6w1ifEEN3vdXDHT/84+ZJA5dGaIMbN538JA50sN0eeQsq/pn47CM3 - nVE18w224edFpPd0qucg7iG88cIPJ3IaRtsxOsfwc97ORIvmmO566gujmdd9evgNdLkMgiAOksP6 - W83KlD7zsw9PTJrO4Ozr6jZ9mgyZz+xKPOG1Od3iDpr45/cY9+QOuvczT2E3GzPe8WRY3umpgjTQ - gnnoeUCn4wkn8AlNjzjN96quun8/iG7NSOR+8sph2/3lk4i5Cz6zlHPm66MfAfy+956yUKFcHY0i - 5EKZwe7VHunsxZt0Ul/bjHd/3ZkyT3Bh3CpfYmrkAGbAnyy4dEGPNftL6lUo/RDWfOWRxy9rKdXD - 2oWufqp3v3FWp9DbpH/1m8/TDIdtJEqA7Iikc2cZBd2On/sMZS9k59eYDWDTY8DA68y1RNn92JHS - bgTNW0iwR46aSk/jZfyrp2AjDj50ix5Ghq7sWBBViPh6ml1/v5/kNPMPYAzMkLoxbO+9jc8ecxrW - e0sNeJ9bAV/jSAaNqAsJ2N/v19wnq9fcc7k/PMCuN1OH2FJloDlvd/yEvToamPehaHwkX6i/Zs6x - 81WDWH3yROm7DSw5ElIoXw4ydqNi77FRWz7kBPCbF3+to2UxZBd1QenNtLaRswiwK+ABty+S3n71 - sI08s4HPHJZEV8l7WGBvS8BIm4jsJ42G1gvaDWrCXfQRa56H5TxsI+SOMMCW69jOPz4yDXOy+83d - sP2+9huGcmIQx229eqT+2AKTC88zfB4e9e5Xj7Dho++88n6x45tQQDwyHla0lEa04Ha/ImqgLx6A - C4bJCgR4OiuY6MmbzylzKBiABsvFmVprDtdJhxSa2WQTPPAZpXXmb9B4XmWc5P2sblKplbAIaPSH - X/l8kPaA+lYbti6Xg7PaABsAZ9ce//mLK/czGRhezsEMzitRx/mGgn9686HVF7p2YlzA7FMCv856 - aSDOee/JflNm4sCmqJeGfhK0dGFP/vzzv/wB3rrjzoeQTnQ7LypEf36+x5rnmjN+1Rv2OXPF5u/L - 0mlyRQvu/+9v/9Np10twMSAi5reS6bjrWdABEmBtGGE+K26Qwr1+gaVntKqLM5gx2vPxjq/qzm+L - Cko9smaR9RZn+4vHphs0X7AfnsPC3ykFOz/AWHS1fElQbUGhPdn47FqzMz+coEISIzfEIp9B/eNz - yEj0hcR7/ZZqvAP/1Uc9NS3B2KK0gEg8Jti1Y7teirdiiQDYHTE7sc/pJe8sMCrf37zP9VW5VAk2 - dHT2qcyy4UVLhfsRrPj42+MVApJYSQx75aNhVcWq+o+vyINUkGIP4KlNlAVWHcPg+4OdhyY0Uxv8 - xaeXUJiTXQ8BfMniP3yvW/e9WmivZ/vL+RvU6/FkxjAbcbfzjwdYUy8SoSkOdyIf+iQaDy+rgPwQ - 3+fTnaJ8va2wB0S51f4puTOAGrOdwep67nzh2STq+lrr5U+P4Wz3J1e2vCaITuNKQkC7fL23QINq - kjBYLqdBXRa6LPBxzaY//jXML7s0IKf4PXFAaeWEmuIGv1Lj+u8GJA7/vXgu/Ntf8jxXzl4vEMHn - 57HEHlsGTJ3bCP/PiYLT/z5R8GwthWR4DtR5a48pFA4V5x9UPIPlbZM31O56h73Z+EXr42gm8JL3 - CsaPz6+mcxJzyA6pMwN3lQEPhmEDVfk0icR6W01/Z1RCIROuxPgBU+XTh6jAz+kUYP/mqpSO4STB - /pKeiLcFX7BMhdECcW0nfHlNOh3jLonhszi5OMjZYVik9mWj4uoLxLOrIlp/QIYIVK6OH738G9YC - kgJUY/rCV7o9AOXnQwaN3j4RS9q7ztj4sz/jehCwd7SJSmyQiuK1v2REpjeOLsFNK+EYWrZ/ULrP - sPh72xrzQTOi+Yusbic22dDjo7jz0X8AtW+1vId+crgQpdknxnTBg/m3Xg/5yzjrOTrMIL1/1fko - oa7eYlz1KFyYp88F6qYuhuX5wOG7du/qL0aUe0MfBuKsE/NgShH3sQ0LffhqIHjuSL4J0aKhY8ol - Pniw55qb/cgWEz6zZ84kGxhtYa9gLMZGzE/zdjihi79o7o8m0eD3W6+AMBDKsXnCzieWVO6xMQVi - Lq0x/3x6HEhSNxXyMqfCXsLkOZelqY9uT8ruCP2qR83jRzS33/ecLCweuGqSD9Dnv5iYITqq622Y - KvgUSpk8OcEfOEd6pTD+SoA8aivLuS97eqOENxysCYXprHuXCxDrGSLeGdtOa11vMbQ/dCZ2/dUj - /m//JKMTY+uWmTn7A2cIHTZSiQy+nLpdP54F1XfxIZHoKXQ0DDZEsTLesflemGEz+HUB1aZ3JJmS - k0Oy/Ux5WnYuuR5EO1r1U5ZCc76nJLS7NyC65QmQE7IH9lWRB6shvmOUIrchxfJzHe7R2i4sOcEg - 0qpSZzkKrI9Y62Jj8607Nd95UwBzPiqJQ55ZvSk6N8Ik2buui0GjrvXZFyFYKg0nyrF3OKItHCwE - /k78arwOTPQobLjMKSThUFUOH7ZYg3/rZS+apm7yEtrIMN4pCRoSO6v4UWY4qanhC80d14t/FmPQ - VTbCPiGKs5SqKaKB+12JTcQmXy2TecOq0N4Ez6qhzg29tAjIhxHLIvBUBr2lDTH80SH26XmlPP0l - C6xfRoQd7mEOi6Ptz85fnZhg0N6ibY0yEdxA3xHzaw8RvRhVitZnL2AH0PvA7/F1ej/9FCv47gwb - bDYJBZlmYmtNbwP708YEXpxYJerb8VWO1HwLNr074gC/3IHNfwpE35Px9dm5GMD8sQ0bRepL3Ssa - H9Dv+x9d1uHsM7dPN6zMnQawvMIzsaxbBig3Jm8U9JmBdWLGgHlZZg80NXsTpXW6iB5I/oV2NX6w - DvKIbuLAlFDUHyJRH5XusBfvUiCh+j2I/Jp0wDnHSwpXJF58TgqKmtfWewoNg7kRZZX2OX3JfYbS - m0Xz7/yY6tVYLQUe+uDg0z6bokVbrAVmoa7M7DN+5lSDTgsPP+FObCs+1bNuH0ooZUtAnMPv56x0 - PIpQY9oSx8FaRNONNTloQPZBzHtQO4wtSiE6j6Xuo2CWat53MxEeuzLG7g3rziqMng1pkNn4erOf - oHNTroTpvVHx8y+fwGZT4GIvOTbcJh84X39ZSDtNP1JWxhjNfvM7QCKWBXbj6jbMqpU0cDK0Hv/l - p1HqTgbsY/0xsyCPAE2L3oAq1eoZ5HKhLhKNMiSjwCKSv0/NuPqShAQvELGN58Dh2apI0OvQZP4v - Ka7DCn99A3lrLogqCg7lhnOUoWR+nfxh9tuIqlpiwC+XKiTe8zH7YCcFVBI7kST1LsMiNGqBzHS+ - YPPu1NHKM7cK9n56JfGTdM6oi1RCFhImrJmuDba37mfQt2bBD+35Xe/xKQDlIRoEb9YHMKsvL7B/ - Szw5f5U+X2WqzKB/zQL2Jymu+etkMKj+PnN8foRyzTcgT2D++t58sa08QBdfKWHEP2pcMk0PCGpe - CWLTz5m4wt5T5laBENDW4Ymi6mO9CI1TwOWxHXzx9Nz98YRu0G1PDZGMUXOYmgsFdFHNdT6FOAbc - EioQdbg6kNz6vfPlPVQ9+mash+/BSQFMy7YW5Ny6w0ojn+nG1pqArCx0iaT8tJybb6gE9/WpYZXu - kHkNhAbWiVMQU1SqgSuAz0CUmvqMsugCOFNlFDS3zZu4ez5kj2MfwxNZNhzECRstz28loHNhG/hy - liyH+8PHgi4BiWz/5KxMM1XQiW8G3uOTLi5sLdR6g4YVXDoRa14SBqW9L/toc37OHHa/GUihd8TS - mPbOxi1PCYLK13H+sKualX5Shd5PN8Uxcvcz+L7mIg6Y8gzdS5rTG5lnYBVwwRYypnyqD8WXm/R9 - gu3Z7vN59nMLWb1g+wLD+w4XjfgLHjdjI572fEUs300BTMujg53QjACb/+wD9MWQ+uxhZ7zl9/VF - fXMvSNIOi7rowfMLWXsgxGpKHG0+VkvkMnY2c7F1ARtzs0f4YGPH56JD6KzsT8/ESV8G/HC7io5M - dK5QO4iPmZGiB6XM000BPyaIKM6RocMeX2KwPSnW0ms4rKOXi8C5qb2/nMIwp0mmuMg3kojc9iYg - 9JaHNhK5iSPxjt/bLW5T5KrugySpINbk9KMQ7XiI3Sby1A1MbgqD7UGxx39TQN2jNaKIf9Yz2OOv - UVWvgGrM2kSXE5KTZyeXaPy9wr98OFBLHWKQxfQ7H3DtUdpe+R5YBEUkDM5MvQXF4wue/nHD5vNy - cJaCZUe0Dzsm5tWo6z+8RnKsn/DDO4Z0TUdUwPV9e/jgGAbO+jZ+irjzmRmQpzjQH1sx6Jvx3p6f - P5SS902CrnX5YiM6bCp9DV0MtRP5ES/UwpoLfpgD0sHYiDroSb4Er8OM4IkdyU0/3Jx//G3nH9gO - yru6wt+7Qca9AiTvyQXw4vPVwEtAXGzDVHXYTDS/oGHhgs8z3Gry3ace1ap9wvI7ws6yZc4+BxBt - PvpAky7lJ4VAi+YXNne+NVZrtONZre58C+SLdPB66P/CAMvc6g0z/8iyv/zv5zu/ZvkSKDAtB5e4 - xvqtty3uGVEJmgGbYtvRVfzYI+jLMfaXSKrVnsu2N4SvTSJq8k7VrRNPAYQq8yWSvaqU/7teeext - /Lcea5yDvSJ/CedFkCXnHx+/Y2ARZdm7Vsoy50On6XRi3rkxn+nwDAV8wNHMDu0h2krGTcHGAUDU - Q/ge6B8+pndBIbc/fsjF1gK35IKwXnZJvt1vUgCzZ/rASigoKjGOtASBz1/mlS+SmgqfQoMrEi5E - esZvdbtFQQkH7nPFPn94RbMjdRl0tu+T+A3HOnP6DFuwHGbgt/nz54yNhzPwt74SXFuwDF7TwG9a - tETJJ3ug5bf7wj+9EPzKV73V2545OOZA7FTBEe3S2xsMlegTz+0qsLH39xdqSa7jv/zY5M9zKL7V - Y00cvhPVRT5eG7jzQXKVhm9EPusqwWhLM2I0r2D4xw/y+gDntdvnlL4okP6dWHMjXR8WdapEeMzf - IsEluNe8WF56OIPImBeer/Lty8sFvKIIzQLMd0X/cg7id9gdiNvmOVvkSRsMK/dFSjWeBzo/j7vj - oLfYpOcoH3vBUiBn2i/sGUkBuOX7rEDN0YxIzPtcM/gK38AC7pmUkdJElD5gCbnJ+fmVKiS7fmlb - 2GgzMy/PWHG4Y3daYPrqFqzecz1f+FQOYEoiG7t53Pzjz/DDWgbx22Cg9MukIuTz8Uj011sdOCdm - D/APz0ITjyr5Wp83Oh74gsgZEQA9rWUAc6nNyMVjl5r+2JaDRchFRBavNSDa9opRh90jLip/yinf - uDbEJ9smvire6NqhjoFXtgpICantrJM/MJCGC8H31+0VLdz1laGj4wJSOF+iLjs/RFHCfrBqIQOs - p9vyheeZ64n3fqzRP76QGJZPpOZsU3q5ZD3c9ZIvqtmqjjToWii4B+AfrupxoFl1F6G0PFMf1A6o - h9hprT9+MK9nqXVm1hcSePGVH/at8z43eTpagJS/1hcXrVFHbbE2mBbhbxadLohoECgzhJdC3q8X - q1MbfN9Ab78HrNizMvCtPBiwUaRg7rpXBZaf1XDArbkcO5fCpuz5+DYAwKFJ9K9wrRfwoyEUfckh - Oa8GdOcfJTAP041ouVY5NNCDEmbaucXmKrzUTejiBt3rV0+sxdT3ZzLTUTQ7KcDe5d7VvQVeX3S9 - hTxxx7ebL1HYiVCtDInY42eq+/nGlojScSTRsWbo5hzvKSyub36Gka7Xs3xiCniGi4avFzI7b1pN - CuLPUo4d7f2uedBHDPz8/BHj7vDNxw3fZ7Dna19MFRKt0k96o8Urj8SPlCZf01t6ANj+bthy1jWi - sSsY0IddSuQJ6g6b3lIIw8p/+cdLYuV01QUD/otn7a0MTNyVCRxFlsH4mrfOulhrDE+T4c+/Hg/q - UjZnBeaG/CauZqZ0fcokgLmaHHb9rahrUS5fuOnDEdswUvPxMNuHP/zHz8fnN2wFMBiEq88Juwf3 - kc8NpAe4+W6Az4AT6ZIMB1c8+Rz7t5/B1p66RNz5MVanU01nfBkScCo27POUwGFJXipE9feR++z2 - Guqlc7QZQtZ4/9PTG1/YJaA0nchdXpN8KYVHAzRrr7hEyzys+aNtuY/aONjFe09V+GxFKE0b9bcE - yXRbo1AEV+0bYSn6jvmsrG8DTXzyxefXTY6YTgpLVFrx7CdrJdTLnn/hIIXBH97V21ogH8walOcp - OW/RqrLvBjXnFRF1fk7qni8VxLxDjZgsqujwk3IL7PwCl6ik6hKXjYbK79fEZ4vU0ZLmlxL1sfkg - PmVef/HaIONmJeSSkZRS+D6X4u53+BBLOmVlOElQWEBBpOjrRv3pKilwamJ1/vBJrM6dXjd/en9+ - 7f5Cm+aXAmEvSvZnnqp8Ld9VCh6/bPXfrhaDaZDvI/T5BmOvPIhgI4a1wT9+L1XaoM4f5tUA4eDz - /nocWDDKzBCDkS1Gn+z5vRjv3w2sqAlxnPddRJJM8YFmmAb+27/0a00VaD7xhvVzNdMtrLwM7nwV - 379m72zvZV3gGHMzkb/pDMjH8FroaLI5HzlPr1kvT2LofcYrwVyoR/ziKwUqwRETzHmfepwucfbH - v/AfP1iv2w/C0/a4EfmCf396Z4T8Pcn8HnVsTn03FFF6DjS884+BuiVuYFoiB2e/RaN/+w+eJs33 - L4J7rPf433uijJ/dz6ryXV98IV0lC9tE1HLubEQCWoJnTfzrHnWm7JTiVQTp7i+aw3o+vjX0I/cB - u+yN2btLqCOarCcmf+s9XRKwwdtEMHGf92ZgELefyESBhZN6/Q2b6SUJnPLnhj3pKoNHJuIvmMFP - J87MrPX6PW3Kn5+G/Wjy8vVRSRVyGSvDQXuKhlFhaQhvIOln/h6oDmto2l5Bgh65K8UzZ8WPPYOL - qq+7Pmscek23EHbh6+13vBGqo7g+mj89vutjChb+VX/BWfqExKSkqJf8KYdAnPsz9l+3Qz1dvHsB - eDG8EYV5WtHaRX4KV7e97n5Xoi7tGW7gcX/eiLt6bL4OrgOhhL0c59LjDZbpUmRQlLKV+EGUgHlW - WwFBZqln+Lxr9a5nN1gzBofNpLjW3E+4p7CbihSnQqINu580/uE9luXXpabP36n603ckDAXF+efn - /sWzvzwHlST1+Ia/Pn7j5/eJAXGsWkM/dNX3E0Oj+sf/IbM1Krkeq2hYy9GewY4H/tV2eEBabtnQ - 7q/6h5wf6f59FezkU0N88+7ni62+WyR6s+v/Pk8lYnR9imFwYVlimH3kjFLb2VA6aBuWZ1kDu1+c - wG+7/Yhkhl6++08C5BD9+PTTa/X2Xk7bf+OV/6aUtoI1Q4X7rUQxWXZ/5v/5hlfxlP67XjrZYQu0 - Rqnmk1I8o3VzOxtWEj8RF4LBoZdL2MOnG/m7//lUx50/wKvgMvjaIzZaWib1wcNhIfFPcVRvSSi9 - EeXMC3FFBVFSQt8Aux+HdU56O1NN+0Rchv0EJj1qKrvrHXhxEhV7u7/dNh5OwR/f//MviFuaDURg - +hLT2pp6OeUnA/BicCPl3Xs6257PoPpcpL98EnHzjS0Am0cT8Zmur1ffuo8Ace0D//kj9LjuPV4P - Pj8fS3AfljBQFPhzzTOWP9tn6AbXOYCGPSw+uwIl37hMfEMuO2v+ZjS1s5yVbAY3EPd452902io0 - //EPYk3Rjf75dwCbgo9jh6dg2v01eDwtEdF3vNpGWZZAVT5MEu35iO7+IaiIrvuccNfB5uudBaP4 - LJMwqh2HRnbg/sNfPOB0mJSuyv78X/9AyFvdNPYuAnMYGR+U+QZmSS2Zv/1AXOeFIxJdlUK8YYef - G3+Qo39+2VA3G7kObRlxMrFdeGXfAVaz8TasRz7+AvCJfCKNkR1tHTy7sO6cI/F4CdfTUeIg3PM7 - Vktjjqhbml/oj7f7Pz7AHqrWEsv2MGL7hnC0KM6Tg6kD2xkEnFyzKU9m8E3L1j9NQ5Uz8vH6hf7x - CokWshKY29MrhvRDQ+wXvyvtdz2Eokv5wFbB3vOZvfcNrNfxgpP2G0QrW0SW2PvZ9V++2d6k44D+ - EbMdj650MVAmQIYNf/5B024D9eSqBx/WNohWMy2YfzLd0LmsBqLXZUnX++ylcIgCim3UXfOllj0X - PIVCxi7khpzevloKH3Hm7/7zW10BgQf4Cm4K8W2qO1Ri9xOj37El1z/9d4kdH17Fzx3b9Ng4dMiO - GexJHBIXSx86wdUV//xxbPInqE6wEBJQ0OKCdz1On4fPGsKHw0MivyOijsWgFuj5/Cx7vcqM+Kxj - /H+v64acRvv/Z8Duv2LDJCEds8caw90fwQrzbKMGPisBSXZ5mcWl9yL2yGk9HFbf87n81zpbUmwb - BMJv8V/GJctpd0pbeHqfUyIJvy4fhstVg4oyXHa8edHF9mMRuUx597f4gNTWDd0ZmtV6INau37jH - OlZg5097fmqGdfenoPpjJ3x9xs9oseyPAZ13UGFD/UQR3fHxr/6BlacrO2ulmTb6dL/Lv3gm81UT - 4RqqpU89xRgY83y1wK7HiGFqZ7qMgVuAf/WUxfxEC5ecEuCfFZ6cf2kR0elsjxANZjsjI4G0Yp/O - CA6Cm5IknoGzMEXNwDZvSqy5PwiW7yrEcPf7Z7FJ/Kj7+kYPJfzK/NN1dqIxeecCMG52QqShfkXr - OeJGcZNEdl7SKgajrfY9fE7Y8U/9RtVRPj4aQNBZmrf1C9Q5Gs0G3Ox0IvYKjjVhqyIGScpt2N31 - z0LK7xvufNFfnNvk0MHoGRigtCOKiV1nv/8uTDwAsKPcD85iycqCyiS0iBUPd0AeMzjAnpUzXET6 - p17D1Bmhf7xB/1SWjLNeH2oB1Y9zxkpuyjn/5usKOpfDy193f4b34ikENt5+/pT5m7PYghBD03vm - xIoCE4yL0wlAGgzsx9rjkW9dcGWQmWfsfrZgiFZxnhTomeXf/hTykY3vBTSMKiXKL5ci+lePG0LI - YF1cero0s1QBCdfZfOKNzRlhn1tQZOTQP+z4snhHSUF7PQLj8CcOa3w5h+An9i8sVT0TzbfSHmGh - VDHe/VuVwVemQvv/nQ/84ZWvKts3sMq3euevjkNVkY5g9/exxipBznm3B3eKEv7j3183Od/1gID2 - +gb2PDFytp/7lRCyn73/qC0xn9+6n8LDHR5JLs9XdaLjUQDMPaf+FNAq2ix954u7f6zv9YnR2Koe - SlPJEP+Z1Pn03sIMnl8vvNcrK5UVRt2G8OdYRMHlEG1/+6NbSrhP6VXV7S0WBsi/XYXP5A0o+cu/ - 1vN2JX/3v5cmMRBF/SliR1ZdZ/7JYIOeWUD/0F6HoZ9ezw1IC735y1McorU5NhXa9TI2h89DnVp4 - EeDNXcO5OoVbPlc844u7H0h0PSd7fbhcRCnbAmwe03Cgz22frLH2k7/6+Qmsf/yifEwc/vMv3md4 - qkCdnAucmrJVj80svVH0WgpStldn2C52JcDnjVFxsuDvX/09Bn/1TW3Hq2Xnp8jqRZvo5ZyoG5OG - PboW3ZHIZ/0HmJ0Pgj+/3+vHZViLNhPEyPB+RKkTadjCSk//nxMF4v8+UUBkdyB4mbp6PWxLha4I - 37HTGPWwgX4Qwav9UCIHwlFdmCHYpwTUnj81z7WepQPvo4qmJ3K5H77DkE6fBrz0xiLFi71Qrm3f - C3TWYMT+I/Ip56vyiIShe2OXjfcuIqXLQJONwLzE6O1Muv0Y4fl6l/ytZb16MwKUAVp5Jr56D8bZ - Pty2wWM7n+YVwtfQWmEfw3YUMdZSQ81pnZUbPGKEsN76P0DP33MGl2xTidUnTbQpwd1Gj+Cs4SDI - /JyXglMJuUfT+qdVatQJHrIDLDxmwWohEbDwknqAc5D68/Gk/5ztMKEZXhIkYMs2HbAM9sTBTuR0 - 4munKmeAa4+wrva5xkfJASzDH0OYjJVMkkt6iSalkXyEOelGovPvVG9Q22Y0lK2Py3QB6nL5bXtX - CoGSOwuuzmrdbQndb38V+f3oZOgC/yTP24V49HuJuCyvS+Rf3iyxVADBbNKTASZ+CH3wnD+A/3aO - gbqj/yY693sMy/mQifArSw3WnmCk63s6BzCAk+n3vdgO9GmlI3ygoMCXV5s5LAKfDFVHZZ8b6pF8 - beGFQaq2dtjjrhGlfHET4Yd6GzE1qVIJXzwFcAaXiDy/YwC2SawEdEvMO1GdvAcc1MQZtU56x9Ym - 8WBDSx2gs11yxDiIaUSNlhPgIt/I/MM9jTY/Ht6wGlkX38RH6nDn2PShcU4DouelW1Pu6ZVgv/++ - 6PgqYF1LK5GaQGGGFemH1YfdYTfULXJz2G7YJvXKwMtUN8RTryZl2UfVoPPvi0lufL18FKxFQPol - mbHDwg/YrAQuUJECi0THkcnpvVnGv+/b94vmLKMsHJBsyAkOxksXsb1yCVDW3XziTYjLZz+uKzQm - UkrwY33WRJtDBbEluuPw3ZUDXyTVDGGV+8RPyHvg4ZHnYI7xi9jfGwP235tRp2w1sXmTgJGBmwFv - j7gkt2yNcnLZxgxO+EOI+Va7erz8tgBq5nqd36zC0Gl+rhwauiYl2ePIR6t7/4ZgTd79PJHVHIjr - JgLS1RfET7f7RWu5NQma9UIjgdg/VV44Rg2KiPUkEktmtd0FHzrV8kg8/CbqiDXuiw51fSC64SBK - A9wuwHOvp/lU/jzAI94+QG48YRzvs/To875VyG+1F8Ef9Qq4q7SU6NjEBQnFAVPO5m0BaqDMcDwO - rbPE9z6Apm7xOFtLhpIgvfZo3x/+NpdtvdzftETkZxz8w3YQAfU2yUKb/3X9v3yySTn9oiJdRKyE - P29gKlIWQJQcnUi381Kv/nPqoUVPNnaub16lx/XHiSs+IGzISRVRoEwFXJ52RaQYpw5DdHsD20Ok - fmcrnUrXTfgCM5dt4omCOTBXuirIqnwD48+3G9bK1r9Q/4nZLOqflm6No/hodb4VwVJROavC9hKs - oENncUmnYX2W8QFe1V7B8srKw/ZOmh5l4frG4d25g8U3RxsOv/w8H7Nnt//eSYGHUDpjZVrKenvB - K4ceEvfAMuBOdATET0Ccf584zfgvoC8/MFBz+QrYcc6ysxLR+gKm257EiHtzYKW954t0fHbkbMEX - GPRM6VE6hDH2z8yaL2cMF/FSughrd9cetuSgcDDl3BInTDJGy/mVfEUobxLx2jiPFvO7jgAvh9fM - zfYjJ19xFKB2bUzsL9uYb+7Qlohl2AlbWhmA9rVXePqrxpGSvVYqf/7KGfIPveeja23Sv/wr/ovn - bKXRGg5jBnFgaaR8mpVDr68vA79nWmJMND8fNWP4Qv1QGES7klJdqgfTosMr3p/5vy2AknH1kc1W - OlHm0qo5K2EWkV0eAU6aMR34xZQUuMcLOY+PIKJbZIxA4kaCL8/jgS5t/2zhJfzk+LFmCqX4YHBQ - QNw6l/gx5uulWCw42NGCfa8DateUa4hGvvJJ0p51h+svEyN6TF6Qv/1JAlxtyBPoCeuSrde8g94N - vB2YeEZumwxrpFMX4sHwiJeGff4Prwf5zRFN0zZnspfaR079EPHZXZ2Bc/3GQjUOm/nA5WbE4Uda - IEcqMA4qTXFYxVTFv3yAffYqOdsLPhjg2YxG/O2QATZFfQX39SDWJygAM3t8C95Bl2D1eJYAUz1g - C+Nv1eFY0zZ1M+EEofn68lhpWW9gyhsbovq6n0H/nDR16b08PfnXU4if+m1Vt7B6B4i4jEdw/xLr - 1QvWFP3lw7/427J8KOExdDwffT4CGLkPa0P0+Z7x9b28KSuonIYCsRaw2sttNA3vXwwrmp2Iiwsw - jAIqY7j23ozTTboBVv9lCuzoTyIP5vzJSSNZGkqDxMFe0mGHY0Zkw9VpKhI/gUuZb5lC+Jf/ogcj - O+wveIXQ8kdMHtw1Atyaym8kRI1Myu0g0rlTdiGkrR1xjwKIpu7UhMgR5S9WVXXKF7+pSri/H2fa - Ux544eNy8G2KOQ7qhAdLy4oW+vv+KDhhuk76oMGj86n8E2gClaLM6KF20yFWm3TKly8RN2jzsuhz - e/xuQ5Yt8B0yH/Kw6AjatyRkaIzOC3kSbc7HKfi4SH2dFHIt5Kpe2pRl0J7P5nWRl2haDTMB4D4/ - sHNLrGj52ecGVY0REl8ojmDUr08G3MO+9Bn3coroVnY+DI8sj13eqoa1/xQiFLjPSCS5bOre1Y8+ - FN5CS7SKO6j09TwJ8Lr++PnVPRqnX1h9gYp3f878R4iiKYgdF8pyf8LyIi/5vHZDDD8pkrFVVIrD - rwIvwK/bG3s+QTmRgnVXA73nC9ss08l75y5YPqOHHw8PRJRgKEB4fWgEf77nPb7h9sfPdiyanKXT - viVqHm5GnOgEwPpthBb+5cczubV03D6pgOrMnUm03XXAvxS2gbwttfORHo/59pRPkniEd4RxYTVg - tZfahU8oEeydE6km4e8MobB5GJuBZ+YLs94a6E7jgKMm9XK64xkoPG7BpvoYHYrPXSZazbf20TIK - gB79xoe6vcpEhdjKmWtbvuHrfPj88T26Ig+HsGoLQrTj71JPKXazk+ApMdH562+YS/sjihl4P4ht - DIFKd/4B/EPrkUs4BhHLhoYBI6/vdn7/dDb0lEuRMfRsPqjBx1ktj7zFmFxq4qgxr27GtM6oMdoZ - 269CpfPxI3Fw55vEKqq3Ss/ZVwTJLHPk2mdJvh0ttwLGdmyJ9/DyaJtW+ndC0JgZoCGwgEdTwUYJ - LjO7v3/9clkh+peKJfr3M9YUHo8M5DfNmclVbug8VZkNOaV/+kd1ZsGMnucShHaLiBk9kTPqOH1D - q3INnASh7bDR7arAiy8k+JZ+NLC9aXVAnB/KRHcYAYxH4Bnw6PwqLGFejDafJzZkX3ZHtPM7Aevl - SBcompnt/7jWzzcxuFriwJHFXx90ibb0OmoAlIZIvF0PLUr946B2PzTEsfObShNqjWD8JEfsZjUY - 1sOV8eHvPZTzg89z5+//ggASk7jzojo899QLoKTXjvjHk6uymYDTvV0+Mx+iMFHn8vd2IS3eyrwW - 01mdyMMN4N2c4z+8ppvDXGNwiPGNqKV7yNc9P4JP3DTYT4hSj98yOMBn9j5h5TFPNfU2y4bK186x - Lgcu3fyvF8P8Sn1iNVMXbWxjhXBSipSkf/tNFwAHJ4Nj8d/6LbeTkMHqblsE/zbBWXBw1+Da49mv - Z3jPt0t3s4Ao+L95A+vNmZuiUUBAD56/xxdYNc8JoVz8FB9JB1Xdug/y4RZeLiR+yEw+R+JJEfKH - EhG99LC68Z6TQP1QGvOh9yV1eK3RCKF/uuHwmgT/vd+C7Yw+G5M+mj0xHhEQbgPB9Kc4E+0cRWTT - fMIyiku6DZYAQRAWN1I2H139Ww80GQyLtYorHWo9ivIvXxHXtT90j3cFWE1T+9wFfNTRAGcN3F9H - fV6F+wQW4CojdN/6mdjmyufT3/W0DFqJm8wrncn54YKU80v/adbHYZY5O4aPuH7NW8tO9Vr9ziLQ - x4DH2s5/t/4hJdB0xprkrhZGWzK+JPGwDDdirL8zJUVSjTD1beCLr6IG601KbVBG9jJT8ys7zMaJ - I5we2etPD9I1E8wMWsDC2OroUq/YKUNoOfzPX/W7DCbFdESYws0mGpxOzvSS0xHu64/tBbyiRiF2 - DLOjKGL18PWc9dEdU5jwhYPPm+Hk6814luL+OjHS5yUaV8e2//I50e35P6RdyZqqPLe+IAbSSZIh - 0omARAERZ4CIgoo0SSBXfx5qf8N/duZVVklYb7eSlXPDgurpINjygXo/cVcsCnMgXPUIvR6rFlAt - hSKcVaPG+3YZTaILmxBxG6bUWhLTlG1j54LrmUC8W4DL2X0MetDgU4tPqflbZ7SdBLTN7FcoREEI - pAXlGVz5DudKv575X/k6o/0cNrQ3Cyl4uwxuDPmDzcP3NjChFlJgxCggoiH0A7+y2EPTzbDCP3xi - 4pCdwJgaGT5cDgdTerZJCmWN7LAVE3sYw7Yu4WxdCho5uRMvieqX8JrfZWydtSQmb1lj2tVZE7Q8 - exdzGJoiguV4oDiJNc5e0l2G4Mk3VH96v5h0Xc/AOfoWVKfNxl+kvQnh8L0dcERbzJdnLxrwPvca - 4aY5xRMJTzr6zNIOB1T24ml0Tz1CiRNT92ZeBkb2LEEfVDXUY2AX8+FyFeDb4Qs+Brbpi1qyaSGW - jStZrt4zXuoXduCH/mZsrnw5tj+e/61PKP7gu+HzRYyQDb5VuGzfXbOIRZFqdDFdIr5vZz6vegwc - I/AJ4VOa+VJyq4MsroV/+D7fpZuKVO8wYgcHRsNODzuFm1sW0fstOw+8gDcVCIparv4v4UqZdiNc - 8wLsNOY9ng/W0kN9SSJadTkBi8FLBmsHbsmaB/CfYOU5+Mub9mUeNmsec4IHWZOpa0hSM3W9qgNj - qzyI1nRR3O3MG/vjb2qfNH1Y86ESKFQF+DBoMP5CUhlaeAERWV7nXSwdeMbg75ZgXNXGuZCVavJg - eW4kutfuqjmWeuloxmy98f6Pf35vKYClFjG86vX/9Jzwpke85jPNLFxgAF8vP8A7qfeLpUrdDCp3 - OuJwVuOBe+f1RI4zL/igt+0/PwbW50/4tVv8QX/FJ2Tn+476pTjFjKbjB/y6Tqbnx6biy1RHLvrD - xw04S80C0+SFQHTPwr71nVi5VtsEalbzotg6H0C/v70S2HKHYG9nXHzOC94j29D3+JCYO6DIafbR - fmFu4zz+7OJO6vpRO6rzFpvPX89n+xvpaJ6slO5cty3m+fyT4aoHsK4zbeCKsQvQ9Z5W9ChMczx1 - Rz6uJzIsjO/zZiCROUF4BkmKr4lxNpmcFAkIouVF3QIRc/nTl4CjkF4209tnbXZrtUrsPvi2OEPB - b7cqhCqpPWxdrjXn12qbwrh5IWo1TG7m3HwKyGEsx6FaPjjL5++IHqlb4ojfbgP/858Jci7Y2RE0 - 8PCuLnCbCx75uPe6+MtrwL+fn4++SV3ttKDHSFxs1ZXO53t2b6H+zVzqH9VmoIMpuECydids7S60 - YU5lMVix6EBtIxVN+jSkD8xbYcZ2pH85a55hCb3vFBMu5kLx7/PteriEf/kO8RRDRfvDM8Fn0viF - pNNXj+52oFErvXd+T5sGIlRKR4x/BY/Z7nNfT8Jjgu1HnMay83oEsDY+JQ4Ia0y+HYIAPuKzSF0B - /Mzxrx72mQTo4/35NUu0WA48lL1NROtrc+kunTXkJ36MjebqNpO/PbmobCaLfKHDYx5oyADudL1T - /XU6NbzJ0wUYRXDGx62VxtS5XhwkLk2Oj+jrmeO5vDLwtD8uNV908Zm7xyJc804CDhfKOT48M9RU - Xz9EZNALlq9zt1f8xPilfE0i7X0BzPl2v+LnoZC6x72Gq/8kEvvYBbs3DwJWv4ltgjy/G1v4gdzc - k9V/TwMTw0KA99VXrd/f52+Ul/AcainZ2g+pWP1lCoQ0/9Ddmj+Pq38A55b1NFv9x8ge5xqeUlnE - dtaK5ixRL4d/78+xaeuYm4kZQbmrF2yhwvS7DThasMupjsPw+vaZ5QwtOF+q9U3KLrG0DGoL9JNc - Un26npp/+U/jqXvsPJHss3hTlPAxji7Fe9+IWU3TEiob/CJACgvAHLCz0FYKAGG19TKVMWgs+DzV - EX0kcQ5G2ZhfW/AzLewcm++wBPVRgGY/QBqM8AzG2wuUAAvzGccqivz1XpoMpBd4oZ7hlsVM5vXM - PKYcH+C+9RdMtBO82L4Sfmy/N/ts6XLw558j13wORP1GDryVzowdqYyH0f/eITxvRv7nNwvSbusU - Yi0XCSu/UjO7x28NMS17Us6P99BJ/ieDtSNs/+XJS+4dOs3YzSi8LtwauDrNCwydz/CXV8UMRZ6l - KQlcsCWZ9sClJ9CBMryqcOPrgclZ9hPh+E42RFKFFydeCT3AZcZD5PKAK5dsCwH6wQ8NgyYG8p1d - Hbj6S1o6o875+Wm00IDjniZhV5kLzTe65p0PXxrEGxwrL79/QVEcf/S45le8bUwChwlKGOePQ7Pm - by1Y8wbsSncrFuNNXIH1edDdWs/iK8rDPz6mLruWnA3lvgc7x0xDvjnUgF72Jw+teWaobPQBLKPj - Z3D189gA8788U4RLW9Z0J/VDTB9DmQBJGS84ReLsj+4eyyBVKj8cTSwWc3NcZ6Yw4UkNod42fDN0 - L2Rd9/BfXkr6u5tA7XEf1rz0ahLbOLgQ7JsQO7USgknS2xPs7wojyNsUMbs3VwI1Lnr0fj8WxfzZ - 4ASaonOmf/2aIT/9UnhKhjd5a5bnM6OhInhdTE7xuVVjukFeCq+pfftXP8sYshTEJTph2/HvfDmN - wQiLRfvScESvgVWIlLC+ue4ffjfsx4MPbDxtT/d8O/C5oHkN0t/vRjaCnpn0cLAd2F42F2zuhapY - nNc1QDSQjzScLg/OtuKv/Me3q5/ziZWealgYlkfx6v/ZsPUF7WpkF+qP1dNnu4R/YLXdmVinzcPk - L03vEdvezthY9drK7yEsjWP4T1+zSty28G3cLmT++BOY6T2IYHQOehy5hcAnI5sIPIW2Sp12zJrZ - xEyGa56P4+evB+xcPhYIpuJJfSkEnM9WVMFReYU4wGUxzEPZGeBQ+Rrd3QRnmMBOb9HxwkJ819Rv - wz/X5+nv/acuZh/OJM2q0V63d9iHdeT/+W/wl3/kre8Uq16owft+qahjvgiYbe9C4O0AXkSpkVGw - BL7VLb7HBZFVX/Z/qdK4YGOIHyIF1wDw7e2Vg0deb+n+kez/+kUaiKUx+KfnmDg/PmAoq82f3jWX - 517NNQn3y5pvzAOhzQDhEsVnbK76ff7eKk97a6USoj98XfkLgEuqExSe54GbxrOEZEivGO+bx8A1 - O9bR180mgu7gHc/DZuiB3jY13pns08y7iCRgyJxX2PXbK1j7DxGEJTmsfunUjMihH2iDdxWiO7AL - 6fAVIpg5W5l8pkU3pb/86K9+r9CJ43myGwfsOXPIJs5+w1jqifWv37TfRxKfjFFy4Ds0FLo3rhZf - 83sRbt9q8sfPxZi9fzqUb6GP9eBtNRL1+wpq0nUTbpTSB8vf81j9Z/jxtTH+wz90gyAkY/Mz/Z/v - LQa8qfWMg5r2zWJ9teQ//A0k1PDL/uQiowjPK98dTCbCxUJHZmyOKtorgJOd3v2tN8ZvUwKLf76N - 8GrkF2qs/oZU20CHYLo9cbnmnXw7WAGKe2bQs8yWZvzzi9vGHImw5vn/+mtTI4T4L69YhxJ+YC9/ - RqzL0iVmQOtEEK3b0Yz56PuMMZ5CLUoTwkNvipWOGtVffkT1mxqbkn4pVHg/bkQCXOw281OSXbiL - RReXl65v+gjrFRyYZ9OjeHjHnaKvO67XPPpPj/Pu3vVQdAUjlC3bAMxEwgdaG1mhppLInAieZv3L - N49sVPkTYlEEa76GzV9cFeQv71bl70iPP8OOpV9ad/DoyRbWd5U1iKqrqkCbontYlOJUzNR/VfC0 - r4+h9Euwyb7TMQCVKR9CiX3e8SiMJxn1cjvS9U5Fk1C9TuD3pzVrP4MUE5A+Oqx09AylwV13fjCe - o5XP1v6zHnPzPTnw2p26tX9vDtL+dLeg9HR/NLQ33+H1hYsL/vJYx73rBY2qu/7/2VEA/veOAjem - PuG11fkkuH1EdBSaLd7x5l4skDQC8H7SgB056WJ2iw4elA7fiHzlZ2ou9u/8Qg4UFZo/hzIebO1L - YDoOKnWPO9Gc0WvbwTd/SCH6zj8+1xfTRflmK4bqbnMA8/zyVI2/XQvbgyf43dn/nUBu8gAft8ne - lBtfdGF9u76xtdlCnwfULiF7iiJ1qIB8XnxvLrzYeyfktbzzZVpwBz3m6REu9svyubEvTgBu/YYe - drnQjP6w+cBhT9qQHTLBZ5/CHuFUCz+MLbHmrP9WBLpJ0Ye3YbMrFrepc1RMs4l3W6ID0RwjBx1S - C+Ji/zsCfgQNgdNdsUIWzl2hNG0wgkaMIMaH+TmwbalW0OpmMVzIto0X5XSSkav1C3VKTzPnGDxk - eBmnAOPYOnMOhtCBvApKmpU9bebykmXIvpxsesHTpljW60VhMXGTsN9X4owSU0bax/3ivX9KzNc+ - yUIYJdsc46RrfZHt3RwFwvdId9T4+N0yBD2kzdkJ++GNONfi2kG0+utYh7eC9d90hMWY2yHf2Hdf - 8U5vB3FV2OM9iKnPK3eooRl3e5ylh3IYFeXeg7H0F+ofsz3gqtbU6Gw8f/TmcJfPDn0myOnSC8XV - 6z1I4WdroHxJtZDT8xawqMEnuJXVnKYXrePzs40TqDXTC+NGkvhsLPUL0qfq4ty9PX1Zc64R9HTP - JWJ9ljhh3S2FIdp/ySwMu0E65/YLkbt9ptgy9kB2r4YHt++DSL3j89AwbdQ7+LFVjaa5cmjE6vpg - sH/eS1puo6e/qF9BBL/7OK5TVN1CriuzRsb5lNKrXwDAzuejC7XGNIlS7tSY5XkqoOW1xNimn30j - IwRdaL53NjUqcVPQMOlO0IGygr3uevVp1p9S+N5fApz2cjJIxsc4QU8Xv7RwlARIMok1uAsDm57e - 508x126rob/PC4+aWShNVYvwmAJOfWV0+dhMF2ud2tiHpRvZsXgM10SreTk02A8xn1scGagl6Z4e - 5m1jztt1h891OH6w1fvXYr63XYukh5zjh/FDMVOPXYSkQL/SUtnfG6WpOhER0diGTX4JTQLKp4hk - /9RS++wc+BwbUYTWeqVB4riNvBtPBML3taYGl21fBPP4gqI0Y3x14jjmRV2xv/cPhy56DWI8rgps - aHqKm8e6B+tOQjC9Ll98vvUnTiRxnRGR5Sl+tEvKOegSDynvqCRqKV1j9gyMBf09r0DAO6C00zoV - sWoaHCwfpxBbOEXwYalXeo/94yAHqagBeStH1Ep3bTO+L08ZTsVtg33j+Y7ZZr6eoFqhDa6ESmqm - 3zNU4eg5F+oOqeeLB+8dwWg3y9Ts2WtYmktXwse806mhv81C9vctQb4ZZkRBxs9nzvXEtEVUGNku - eGlYtg0+UGoTRF158x6WxZkZkr3WpnuoPIulsvcG3HyFM9k0fegvsxZXKBTkYzg3bVSs9RLBY3pM - yFIbL1+5Fq4Hos3PwsHPEOPllH57tOIHjkThCOYXH14wQeUGJ49EBCxsyhcUVZVjvWLrjhTbkCF7 - ehccbp8imD+sTVDwywJ68XJqcpXYEbI6+0LDq2gBKZY43L6dfsLm5vkZlj5gHixSpcSH4GXwedjQ - E/w53KbG49TxZVMmLTjttIqIUtXE868YdEgl4mOv+CyAfScsw4aY/A9/AXueSQ+/+09AL3P9i2VP - 6l+Qt3sUdvezzsVhNg2or+fR9s/caGT9rr/QyPmWGtLhMkwg+DpwF9/2uIqzouAqulfQOh8IdaBp - xLOxdDV6k4iTjbvpmsGPHwZseXMgYh4EsUz0oAPxbzzhKzydfFE8TA68mMTF7jBuB9I9txXUHtsK - x1T1zVmMphJKh3eEqz198OmQdwZCQbwnci+Lw1xmRgrZoyA4bN8/czTuOw0JyoCoTm4hUBwrceDX - jQbqve6XYtmkjIDMkCZ8vCKnUT7YzMGpBy9qavTYzOueYdjVDaIugJ+Cz0c9QG8bhjS+ZFMxueFu - QU4YH/DReJ8Lmd52LprczsT7sRz5rO9/KtoGSoit/qsD8XC8hrBxbhPGk/YoyCZVCTSiIQnRfawH - xRZUF2b25kzQWj8KOtUatJI4wgf1kBTSxrJ08LaFED9+t86cs3A4Qfi1HOx8LDDMxseL4CEeFMIO - WWXOl0ofQU20ED+sI216eed28G5CNexVfWn45BQWfN/bZOWTL6fEFwQ43yOETU2TiknZnypUXJ8A - 37OqMiWnMS2UzGcTu8XL4d09OOlI/uiY5qq+DJOMRgtU0+mE45XPpGHzjdDvTkZ6n+S44Ed1y5AY - LB416uMBiIV8zCGtHIueN0HGJx9oCVCD0KS2Xh8H5fu063WK4H/8In2R8UHx5s3oFcTU5D+nTlE2 - BjeynG6fZiZb2YPs6V5oMenrmZubVEFR4hibPfBWB+YvgD/eOS6jV1r8FvGoo0fOFXqQcy1mu9PQ - wSBWmpA/9l9z/LSLgb7PmOGdOOu+EnkfAv/wzt0dGZjLMxa0GL1imu2yrPmrf1ROE6U+mpeCd9PA - oOA/E3otu0Mj/rA6oir3RvJ4qZK5zOzrarO4tXAotqLJVj5B39Ih2J3s1l+uyTzCmqghDm/R3eSv - K6lgxkaI3Z348pfdu0pA3wQGvSNJiKeIewZklcFosJdBw4XHbCEPfM7Yyl+A831t1HDVBwTuYG7+ - 1S+olzHCj+1xKJbb+BjB7ugL2Ei0OyChigNt/1FNmt8vI/hpJOy2lZP8Qrby5XIel3BrnKMUH9e/ - z9bvByVVeYRsqxiNHPt5D9WTvqdnKwLDW8TghR68tKmviudhxZfVcSIPO8DZxZQPXYsEzTZo3u2+ - A3/hrIMHfEjo/rQhPj2rYw1HORCwI/dXwPZjIAI9qDmh1TTFPyw8dHjOnIhwU2ImSYHk/ulhfLym - l2K58ciB6/uKE23mDc2Wjwdrdj4SabYeYG70gwznNniH8pg7QD73egSNTispFrzAVED1leFx89HJ - xizSgreyI8J34eNVP134csqZAxR5yKnvKCLgoKIifFjalSb2SW+kwPc+kPuOSi276Ap2gjcdBvqu - JuvOZ9CTgyqA774NCFhaPRb/+NYEcMRhB7Jm1dcR2ASvPXXP3bugVvf+ABdv9/TSb+RiOpdKBSTV - 16l5Ob4HUuD1FoPHNyfxqv+4PozsDx8JTviwOtazgeBR16jdi2RgeGlHRNyWhgpUnjF1l6CH2OjP - GPPf1p/nFopAut8udF8LW59ldq/Bmm1GHAqu40tZ2JwAKfMF68LG99kz+xl/fEIP50fTjNro9lCW - CcHu1zdiMQPyC87P/Y7u3nEQk/uHfMDmC89hr4S3mBnp/gXW542tSx7Hg5ZGOngWukJXvRGzi9s7 - YKBJTw1t+jb0ABiEr72ywY7+igfJWYoInnufhovt5MOye6ephhMT07C564X0NUgNSksPsP20Ey5F - 7GRBF4N9KD1SDUzVKGSQKvYBB9GVNKRIxhKehJ1D7Y9xGUZ2WBLogxeiONr2/iJ2gaVFg7LDx2nw - h2VWfi9o/xwXe99cNpfKxjqAyvLG62jChoeuoaO2fD/DfkqunAXSoMEv11OafizQTO/BrWDwHT4h - fCEP8G9VtNuEtS0OttHOF6nWW1D2PjYN7uHs862+L+FLTE/U8B4tWM5LZYGxahXsf89J0eF1R9S6 - XiH6q9ev6IXQ1u5OeJXHO1ikmeXg/Huc6NHtc07QfNfga8o6+sfHFOeBC1CzDfG5Tv1BudvbD2Si - kIXftNH9uQxTHelxWfz7/fFoie6fX8M7KVLi+dftIni6GAZNtKI1p/v9EyL9CxG2T+Dl80c+9XCP - 13mIgLfD3GWzAy7m6GJdyG58uhW7Gp5Q+sXGo2DD/CsaAy6VgHFomjVYtsIhg87nTenRDIxmutVT - DnxQI7LZNhoYufLSYBBLDXVy5ddw78hdaCbpB+9Pm9CXD4v6gZ2U72mQnU/xopI5gJJSPald6H7R - DRyuQzn7N/aP5FosNHIYvI8IYj/DfdGH0uUEF18eiOK4ftP320cFYDvssB6Tg6kM36WH91ncYw9I - XrPyM0GC3yQU39g4TH9+7OWqDr4WeOMzIBgMVpNAw5f9av25kl8jEsJeDUVdvPrTY1v2Wl8viAju - c+tPDv2lcP9W1jOa/juewQF58Dy2Ir1eIAHktbmLcN+ddzTq7zlfPrDqYC9tBOy5rct/UscMYZBP - ET0qADaczWcC2auJsRmLhbl0+caB4jma8OF6s03lIMofMD9Gg7plTwfecdyBl5ic8Kl9TDH7yqIH - P2LV4YPT7Xw5uH3kv7yBvGdrA5Yns3swyHAOl7q5FTMWHsY//+mrleEz+9iWgHqnHb7U2tFcxuH0 - QkE/e9iR1IrP0e8ywt2nHv6+Hyd1cWuh+S09vNNw5k/uHmeg29cqfkiGOUj60WboV8tniiWjaTjr - Hylc64nm04GZU7ypIySr+5HajzQH/IP9DKz8h9PxHQ7c8Ozwjz9CsUenYoCilgHvdwjw0To0DeMi - E5Dm55DIkirw8YfZiHydxyEzKxiPGtE+kFcqwIag0oJrBVIBqQOZVr/ry5xbnBvwOvVDKHpEHZZJ - 60b45USi3is6NstTcQ20+mWy+VGlWYwZttom8UIcTL93M28sy4Du9xli+z1+zEnF5ASXR0/C14qP - pMBui06/V4tDoboMVEWXCpZZTehdeU8+e/tSDV/5pglRGI58Wf04pHLeYysPxnjxDFcGqx+i0dvz - huWPX0Q1SKiXHdt4+dOzz6UXMM4E3rBHr2Zgcac9PbWPY8FQOQQwv75xKOWS2bBPq+nwkY05XvOi - Ybn6dqbWhePjHfNC/oefYK1nopw2oSlWz8DRNtsrxnq8vwLlqbsVlB/Ol1rUVc1xd5wJigbvhfeg - Svm86juoeo/7+v8H8WI9phBakZbgoHGjhinavoUnMy7xATkXf270nay9CP/gcE83gF3lvAPny++I - j8Z6a9xfPR/AGRFFHu+cS2bYwevNPdDsiTZ8xJ+wggn7tBRXDjQXz9BFdDcFlTBhM5g8vloCxGmZ - UHsXOY30V+/P7Lv88XXDOldO4Llb5lA4VFuwXN24QoeftglBZx6H+Wt8XvBmejt8S7+j/5sfJ/iX - z+Cwudcxpa9DDWvRPlFT+tq+GCZWCl9k/uC7dTAHWbnAERJFhtRTzLlZbqx20Z++/NNfTF/8ADqf - L8X2yn9dtyUWfOT7jLqBFcekbmiuHXE80gBxNV5WftDySbzikyA2xRx9BgZu7Nfho3h1Yt6xO4Gm - /mqoqbU2X/z9SGB5FTHd7555seip46KC3F//3sfxj//k0/0Tznl5AIwZigB9M8iwkyuHQVrmwgHJ - HJv4qE4S/9623Qvu9R5ghzE5XtqWdZAd6pDu5/ZSMEXDLTgnAiHorrjFFIOrrPXONFP8C+tVgf1q - sAvuD7zbBCpno16c4LHrb9Q8FUHDnb1jwDfZRCETK7Xobm4pQj95p/hBUhdIsR2E8HS1HzTY7jbF - KL/j+l8+s/oVLn03sAZRpgvYtOmZK7VcWn96GFf83DTz+1m6f/kf3T1CA5BHyBN4M2yNnla8WHKj - T8Ff3uIE+jeeNqdXhLq8L3Gwv1jxmjfpCLwz8Y+fGx6Mcf3PzyVr3rKseA+O+Dxip/gZw+y8JQPN - 7lJgP5UfnPt3PwW3a99Q87GtfXqWlhYZoXIiMryducTNywmu/Im9jtfDvD4/KLw/dSi9lYmPeyIw - YHX7C7ZWPhK/ohHAZKNa9DA0Vz6t/AYzq42JXH6aZhz1VY8ZzY+a+SX0xetPzKEBdR3jajoWMo8z - Hbpwx0izUVKTb3W8nvEdVGq+hd/A7meuwZ/YJbRy0av5kuwewJe9vPAxNG1ztuuzhyzsnLDjm594 - Pl47GQpndsf+fdfE816Ya3hiZYCLffXx2UPTW5RlWYr3Fxhy2b16LjzvvIF6zwHGv0p+EVjcTk96 - KJ9HoOxr7wU3x/Cz8o8ABtAlLlj1zJo3RQMZ28qFrNIZDcRLHUu9ci6hLI+EXoLkBObWvfaguEVP - 0hdzPoxShk7q1dHff/U49NbjHfzDm/Qh9nFnCUkI0/5ThFO7vzWT9EQ93D5OMa5UCsCyG7MR2noB - yBxyEhP1K8sAnmSBGvFy8dnqX6F2lHch3Nejv9x4boGSuRLerfqNTeWBaGveQI9CSZu5TZAKhbBT - iRQkDFDekgAW2cdY87je/8uLNDUITKxfdrdhfBU5BANXjtiT1bXf4KciqIul/69+vea3QLy5Zzhs - us5kweYUoD9/Jj1P5fBRyTaEf3pmuAeDyeTXr/3Tc9Q9CwlQovPTgQ1dbtRoPmq8rPkkAEcrpJfH - 0sZzl20dsH4+2X4NvRGtWRIgikNK5FX/D0r3y//wLhSMrxJzzz8E//LDnTjXJn+0Nwjs+PkgfM0H - ZPFVh+hZGMo//bT6OQuWVxmHyem+NP/yPPcHY7rbdEYhVo2ga+NdzajNmq75y/fhmh9SHJJXPMtc - WcARrjNHu9ECUhlW+hbhbAg1w7wA1vSDC5LR2tHzTcqaWepUA/lXo6Bhs5N5/cx+OmwXuce6bZCG - TJwkYM0TsEW1sz9/2JiAiF3bUAmMKaZ//SB48h5EsVED2KNnGco3QKQmPd/ALAid8y+fd2rI/WVH - jR4Qf4xpddSamPUPXYWFad5CvhnDmN3xAf75eSIXv1fzI1vB0+4c29Tbl7ovjuh3gsWY2fgR7s/m - 8reejwkUhDWTaM6mFJUwSE8d9r44jNmnOBL4lw89DpfMJ6m93qrpW2t97zq+8ksGrM94XfVxPyw3 - OdDBNnAp2RqBMqz6SAfZqKrUn3RSsGCThfAr3hKKmW1w0ZVmD/USErDFnsbASAV6iHsoh23vK8X8 - MHc6kqMwCAV+boZFfeUCXPMGXHTS5y8Pc+BXLBKq37qeT+f8+AJ+rCo46dOHP08VJpAq+wM1Dipv - lj5QPXAz3R09qtOFU+VJdbA9NhN19AkUi/qVRfig3Q4/jvAQK8gyOpheS4UG14TGbDTtAOGrx+kf - HhNwMj/wjM4xTVe85E+gCBCc25lis5ALNt+MGn7uTx3bej01/M/v6q10o64zvzh/G28Pft3TQI8L - T3zOH0aqrXlUyJjb8cnfujnsqCeEou8ZptJf2At+pMOe6tvTHLPOzMv1zHxPA3R3AV/wOuVfLRgO - Fyn3OXip0R8+hODrBI1y2Zx7cDW/NVnWvGgZrooGz+NHxOt6gn/6bsV7rB8ywWR4cmVoRL8ERw/7 - afI0sRl83PItEaVNPjCnFHu00RMf+9l6LrmoqwU+RLfFHkRxIX77i/bXD8CheAticV1fcLmuzBV2 - TsNPYxiBfVIK2Hvt37z5BOcSnVgVUH3Nq3jNew98uZFSb6/LDb8YfgfF5yYgQnyMm2n1/+hm4woH - 07E0FVzKDvx7n4IVPwkOb+J/+sBue3NJvjsHRZvBIuK7r/1p+kIDHmBqYSu/iuZyXlIL3q7dekvz - UMcz6u413DbWlZaTOMXEECIRRb8bxM5F6wDnDy+B0a+A4cYSdSBDMkCITnP/14+Kp82RJShKOx3f - 1v7GEvt5B+0wvVPzzZ98if2oQ+LrN4SarB7A8pt3HeStjag9Wxu+fBzfgILGn3/90uZff2APsjc1 - vWcPSG68Eii+hoHw1e9JbcEiFHX0TtDKP4oTuhn0f7ZKtk63M2epY/o//ezvtMQfCx6XW/2II2ok - GuJDH6wzbNe85x/eZNehh/vL4U5kPwz9metNCkm9vaz46Q6rfh9hxf05lCi8+gs++wwmaZOFq58C - kzT8ICwnSqmx6buYHcOuBBYAWcjivQJYdb0uYH/x7+GsYdXn/kOKoPTeleutTxHnq1+DRnzh4fZr - 1M3vnz4ZgxvNkQvM59qfg/JWjHC5l4tmZpG25pkHHR9f2aYhpjd7aO0vUr1N7IH3WV/BHTCP4aZy - oD+TreCCTStOdJeXB/7XX4DbwKPUCKWk+Kev/x87CuD/3lEQf08CNrJwajh15Bfcn0qNYhv8Yv6p - gQO/yqjTKLjTht0fnx7KjfjA+zqUOWvZoUK0KTlNumI/yB39Ehi+SkbzxVFj7u+eCeyu5wYf28OL - c1jOH+i61g47Yrpdx783DH1+nxPZzNwplBiyXBN+bMCHqnPMJVrvDcRL2OP98hr8xb7VC+qCT0V3 - AzwCHmwrEX4/72eYao/jIHnOrMFPe76Er+COB4Z3QQQGnH5o8Hi+zOnQthpyb8THh4ubAj7DdwKe - aRZQ6+BOzQJ834EwdYqQf7nDebU7pXCkVk0PuA6asbBHD17yOAjf+HgdJm3hGgzUpiTK8vJ9cVk2 - NbyNc4gfveEWsp7/PLj1uBkCO5w5u6UXDbYRxtRJfijmHztcwNsNA2q+Njsu2sPyQan5qui6j2aY - L/6NIf2qx7Q0tttirr+BAamf6jiwjSlmuGQfpNSJTS8vyofx0j5qtTgX31D8fl+FbJwyAz29tqO3 - njsNT8S3AIt2AKEAJdjwiSctIofng+5mT2rGvBRqiNi6ZzhSL4WyvCMBla0Y4WS5Jz5N13t2Yuz6 - 2HGrEnB/vLdgtkSF+kNlDWQs7Ar+8jGkEWvDQTqxiUHbllqaVCDz5Z/Wrx3oWMF65bwBl8EI4aXY - plTnj4nPfWbocEzAnqiUM5Mz2SKojEMXm0XnFJJ79nVQLvOAbdQNJjv6lwxeWORR+z0G6z3ZjYHK - vFep1Y+yv9weLINemDb0EnlsoLCcW8QqaUvLAufxz1HcEqrs3dOi2MGCL+8Igs007bAdb3dAnHev - Dr3vVk9jOm6GGZ1POeyucUP9UC7A6JKeoPV9x87WE/ishfUJoaIH1H5HvTlN9qdEWuMcKRayX8HK - W2jA680S8EM+dkDc28iDSaXaNPlE8SBKk56iITcHGvibj88sOKbwraohmY3vPh6aa59o9G0hen5q - 6xmSYY5gYTsZaWDjNX/rBTMjPdFwyzowB9+LgfZ9F9MT4q+Y/u5GC+8LNKhTi3e+PNWlRkZ6YTij - /GQqd/lCUBjakO4l+9mIQn3U4fIJAPbSoRlo35siIrP7pceG6qayFe4OXDCJqD7CayPl6GShv8+3 - v6jw5Vg1PZQunzR8C8ZxkCJjp6NrE2U42PtPX/TcKYJJXZ+wt+IF25W7AFLUBzivp1Ox4NixYPA+ - u/i2/akFL21XRisekNMZvOMlOEgpCmF/CNGhPwLFrssRRv2cYfN5Og1ihGKC3l9Ow7Y8fX0RMnmB - 9WLe6GFX6eY8B+yFmkOe4/1EPia/Zz0By/03YLM9/ppJ8ZmL7s19onrl2ECqFLRo/GldscNfSSPX - y03VcDHusP+jvGDdRpPhch8GelTtXSGjqoWwh19EtDdQOGfn2UHzuPnRo/oVhiW96yc0D9dHKJSf - F+dKm3/gT/19iZz87sWMpNZAaQ0DfIMBATxS0wrS40MKN+fxW4jtr5bRt9DKUNnJB1M+G0mKLkux - CbV1UjY/yB8Co80g4zgzfv7Chy6CHutZqIb4O3Arjiu0/n/hMxOTQZLKp4riKK+p7/o9GOHmKSM7 - +xyJfF/PvKa7AkJHn3TsKz/bX6zwE2rgnd1w7s5nMJ9vcQarwhGpBwLbH0/7VgPjj78JN6N3QYaf - WsP4oJzwMf/F8XTQbxH644cDPf58tjXzHE4KuFBve4+5eJUWAk/CiOktVTqTg+zRr4mCT40h/XBO - f2aFJKMs6CWJ22GKPkkHRk21sKctxrCwXhZh5wkJPf6uXix+xwxC9/trccDfoJjtLfagUqc2DXJJ - 4eM1dzKNUZjhs17FgwKmYcV/p6Y7Yu/4sp3dWkuDd4ajh/+JF6m5iEh86xO+HWcQL5dJMyB8HC5/ - eABGK8sITH5fD9uq+DGnPZEN5ENTpofPHhZM9EAO/+op8W+lv/hPPMIBJx981aZh6A97O4S7t2fS - g3B5Dfyk1xB9HOWL8Ttsirm9eRmc7PeBZhreFMv0cQ147h4B1s/ALpSSIgven0pDpOaQmotbZio6 - xx+Cwwv+FqzqnyFU8faLA+2VxLR4ARmkD2WkwVjvwT8+Y4dNQY3f9zIopf+sUKk6n1BBJ8OX1vqA - 51kvcaQ8vzFDRLXQyo/YtOrJ57bxJEi5vwtqF0vekJcNZKB4lz2+PlHns3E4tcjRHpAMqhJwyc/X - cwXXxqK+pMWcO9NFgGOy3WM83xrAKNFHpNphg6/n+sHFNrm7UA/ELc5icxy4JexHxEgS0nQ+O/6y - 1NMIm7InWJ+7J5A/iubBqOcZLdLvDSx1+m7R33pH19wtlLZtWniA443mr/LZyP07/Wj498up649n - X/HHSwt3b9f8x8fcnJ0KrfhEI0F9cRYIiYN+Bd4Soe9wvEDOeqQO1Ce/yDR9aWd76w5J9YMjR7IL - WXm8E+0JVRGfwMnn9CB/RrS/bnuyrUKzUZgcjPBefUMiDo7aLMs3TCG8jm+MA9UopFQOdeCS9ofN - T6X6bAkbFUH4NWn6q11z2X37HOl+QOn5lTRghvHVQgXCHj0y8uZMkLIRjvU40EdBYj41wc6DZ81O - MRayQ8Grw6aDPJiacAOkiE+1wXLgfHFHhPYBGhpDNUfHmZGwxedn8cfnwN3GhOJta8VL2CgyJIfm - Qc3MOJhK9R4gPAAL4xMCd5P0+6ZFs/TaUqcIeMOkSU+QuP9s8KExumHppp/+Vz/U2Z8u/mxmrQ5N - hYpkUZ77YskSSYTc7H/YX/XVctjbgXY7VXrIWeaZ8joTVnud55gaynMfK767gxC95QvdB5FajOOQ - fdCfvqsueF/ILeg7CK3qTEo9dOPF6qMaFWYV0rD8GEA+vLY1vDvmhhBrefj87/NuVl9i/N0mxXzX - 9ROsP0eJ/OHzmHCjha1TDNTY6PdmUh+5DplRDzjZoCbu3M5wUBL4JdZ/ignEx7yT0eeRy9j2uOSP - GnF6qMwQU7t3qL9k7OXBbZzG1I/dpmFYaz6QP6oA78PdYWCBwivA7YjTg3kJ/Dm8m6qmJPWTfA58 - GOYsPGja1RZ7mtq3g6mseAp2idmG0nsch3EwBkP7Vy9y6YDlHqMKnB79lTqvBpuiMlQveCT1LQT1 - 0+esrjMHLJOrE2iXlM/pecnhZXrW9IK/mj9rYXcC7W3YkM24ecZLNPc1rJIDDaUiU/3psFVbODMs - hBKMy4J9vhsDrPURysle9yf9AlTYjllHQ/H1LGhp6zJIL26H7ReNh3GD4wgealXG/iLpvrw/pylU - ktcTO2/nPRDWyzL848/4GppArk8BBLv3j1Cj2fjxEryfPdoytsOlerY5e2XHDlSymtFLMn39nz7X - wZ8+JA8h+8WvYyp/wJ9/2G2qH19uT8WCdDQMiqtzH49+v4T/rVet7hsuRUoOLeA9cIAeUzHvbM/T - /vSgEQY1WKCkJJA/netfPQIueScH2k0ckUW9BI3ckGeGcrdd8MF3PHMZklEEkrh88e4gGHzRClEG - EvfuNFj17MR9h0CZNM0f3g6znxcManb3wIHsnvlMIjoCnCwQe+6VFsuO+Dokl4tJ1On1bBYbwWy9 - VaNa9XzbMOh4L6hdox8NvJPIGS/eHrS+qr/es20PSthNDpwy5R6q02s3SK89DYBDvCnUbmkCVv+m - QXPI3nTFX84+X8WA553QUvOQRD47gEGA2Zy5hJGhA//4sJBYTqv2AYZV/+hwYPqPVlRO+SxmWIBu - kVwI58K3WLozHGEG7QCXK58zyIQF3pzTJ4TcV/lgw52OhvZo0+h3jP2ZRN8R2re9Ggr+ZT0TAbAG - La+808u3UZsREdVBs7DuuPCcumHjdI3g4REN1Fz19Rzzuwb2lUyxmw0p4JGwcbTVT4S3GwSACUak - a5YrxkTEQwNWv8o0q7vJdHdo65gam/kFL+cgohbN9GLZ5LAC0jXdhqyeryZ9q3YJpwd7YXe4TcOi - vS4V/B7WGVZHP4kX4QjCPz4j849r5p8+1i4FSEPg+h5g++evgr/iuMUmN4HP+hvKwMNf5FBK4raZ - x8WqoXQhlGj9RYuZMlS1dpXrkeqbnhT8GjxlaN3JHI6P58unaZ/IcJcLv7UjPDbkFSQlwrtXRwqv - vBWzyGGkbtp+j6299gacyQGBurgZ6fp+xSOxYw9K3cakNngo5vA91AT10uFIz+pz9sd//q0AKd1p - vcUX30wIeMmug8/k0RYs9u4GWvGU4hhduJhc0xMMhVOMj4lz94mRsg5Il5HiE85CzlTKKlS/R486 - 433nK6eqgFB+lz9cDcaZn9F1a0BNJFeq3/JiYFw5VyDfeUb4JN+Nz11h9kB68bp/+lVOapVBQd5r - dN9pT5+Xv6SEYrjeWhekhqnswOMD0950wk/ArIEN0EjALychPRbCy5wfQpqD5Pf28L6kdcNKUUsh - akMfm9WU+7N7NnXUNft9CPgVxfP29BEQKIJNqDB+43y45Q6cGl0h2+u5H+a9tWNQD+QtdqVCK+g2 - P1SgQEcPG5QdCs5VUUQufs3/9Ca9pJoAt894pMbf+3+cUAc3epxQf5Fqk9vwoIPdLX1g78aUgt0f - pAfesJzDxTgA/+0LNAePh+lhu8hUc475RQVW6Xzx+vyaJfdagr5sAeRpHC2+/OHv6mex/w0gZ98x - E6CTazfs4F1sLgawTuvMuhv1RXM9g/12VPRiih+qTvVr2PyWo3/+9OLxi7kct34N//KpxHRqzijb - ZzD04R6fEx03HLGigsa3xKte2w2iP+ciFHUX0+tmT/xRMCIDhsOzx4/ytf2XJ6H76XijOt+ymA+K - bcEkTWQyXKE7sA0nKlRjf72X96yCpZKNDK7rg+0vAj5B72ML2lDQwm17YvGy1O8Rivt2Q2DWHgpZ - Abce7pH2pX94P6WyY8BjEdnUjX6ezy7t4wUevUyw/Y48k7+PtxC6LBDxbvXz3NhmKrwxs8GO2u2G - hU9E0ETdwxh7NCxYdNMd1Ar6gnXzSIp/fLHWMw5W/mX1K2XIjJSU2vrsDrPQaidQqa8XPaz+ZD4p - ToYi9NqFaq6/m394esqvJba2+dGUfudnDvo6okRLYFTQUxVDLZSohfG42RViNX41qMwCxrsBToBG - eVMB/ZIfcPzsucnsw7uDr/13G77lM274d4Lpdod9e92LLRR8uEUOTB/SiH1VCYBctt8A7RzLp0f/ - eeM8pMcRJnxpcUCuMeifqlbDWkmScNvfWpOdfltx2zq3Aevv+zPme/X0giV9plQ3uA+k5TYvkNBX - iXWbtWAesNJq9DrgcJvZmDfHYpDBn/7fH75ff2pvXg7zenr/6UdAyElMEJXpHusIIH8GG+RBOQov - 4UiuHJAmQtb2ZVcWDYxHCv78AVz9J36Y2QK4dYOOZn2iXcivoclnbVvW8Ezz86rHRp+ZtHHgu6jq - UG7Hxpxx09bwd7Ms/OcvJuBcRBhtfvKq71/xX72jXzwfqHEVPbDWtwxP5+hFd5KgNdS1zyL6Hg4c - n1+JCZTGqHpoo2qgeLdvY7LqE6Q11pEg3TC5cmVSBR3KFFxBqWz+5XMjKCj+l2/+urqEn7O5C6Ee - dsWq/0pI5WlPz8bRAiy6/R9pV7KtIA5EP4iFgEiSJbMISBAQcQeIKIrIkAD5+j74etm7Xr/zVJIa - 7r1VVNnWbsVvhGsvFVv0epbR15c6HNzRia165gQ3y6ciO2fY10IumB0cct6j0XPzYGO0455AzCOM - Dwgo7iTFhoMEeLxgvRB9dzG30QLNBOq08K42EBlmEHEOYdSe1QtbDJ94MKGJSmCSn3NWlw4HYyEl - +AAWT6ffvSgD/7o2rcvLs2eufYCwkrgSGxtU5xOs0RPY0qLj/TfW66EIxwyexmVPTfzJ3Im6YAEU - tR69f+4zmA+vQQLuAle8NM9srsahgwEyTLrau7vU5JHBn7/te5fWy2T1Pnj2cMC665b6eJVEZ92S - mhJ51bd++QDuwM2kto8/9cqP+F3/wiY+Bp8GMLNBMdipw4FGrq5H2wyfOPh95xE1jNiup3KgEtgt - qYu92zKBP32T9XNOjes41SPlYffjw36z77Y9O0y+8dMr/a0W9PXW1L5kd8wDk14qPwH0iKYFijOT - sE4dLReucVeB1+XpUFvIs3za4DyUvSDtcDzioSbidLfkRU1uZKPujVy87GEDmgtnYZzIPlgwWVJ4 - 85BBQLZ71GzNv6Buy5Cqr83ZbX/1g19+v7mPK/j5M0i1OMCKobKa1pdnDG9QgdQAtcLEYZ0x9OOb - OwELjAmkH2CxsJ5axqbpp6N7S2FRnDR8AOm3Hu+Zs8h2nAfYGjbcn//s8mR4Ys8JYjBvxVcKJxh9 - qBHcv+4S4tsLWtEm9t/r/bNZt1Z8Cl9UNyyn5i2J8ZCndCa77mq4ormNJlhuNiE1iuDz0wsHeKaH - zg+c1xfQpIYeBKFtYs996/X2hS8yDMb3RK0kJfVAP5UBSYOOf/a04nkRFk1ZYOVZ2ZEQeJnz9/9W - FSq9APLHU67bIqSOftj3bLjLA1jrM9jgG1ufqme5wOfe8LECjZPLOlPyYMvTE1alx/zTzwf42cUO - xbftB7C9lFbgd99WPyf1svNZAz+5VGDliIE7nURmwVi3nmR7O6xbLK4XDb2uTkytaavXbMfdDDjc - igRnP3z/4+fr+fubNf4Nqz4D8+fT8oXCeNZLv9xFONbalmqaWuVj7lxT8NbAifpQgD1xIa8h+VHq - 2L9UZzCJSheClX//8Jb+h+dW/X3V8541XYJ9APuAm7FdaWE0PNa9N3RQNHqdVD9f8bEHlyk740Oo - 67rw3H988BdPPooUrXihgNNXjVZ991AvykNdIHuSB3aehVpT2U1StOZrAsks5uO96jMQPoaSapz0 - BNOAXyHYfrMNdUB8B+zUnz2w6n9kQ8RjTsKz6O1+ejZOqiFialAnaMXrPk9lVH9J+CFwSOqTvwmt - A9g+CRzgbKxvHHZnOWeXyCmhnEoM5z556GSp3gSufNNf6nXGrUiCDH2VSsDxjz+UopahLJw8ajwM - Tx/uuehAcGgEQtyzkM/DUZJkKdurdC9HX3e+vOMAnvFrj2N8UqOtxbgGdGzdIrzqcwthaoC8uuPo - PnitM6dvMwd7Li3/6nnjZCcvcCTPKxHTx7OfL4cPhE/FPfjcLmmi1lpH1E6K/PCTnVOyoTL6STZo - Avy3Xuz6ufZUG16y0cZGK3TuZL6vHERho2KckwiMw1GS4a7UL2TbXJxa5BdFgtnMG6u+lersNCMe - /PCt673HiJxKuwXfIUnxUXh27McHpV89CZ9d1LNIvxrwx9dWe/irByG+abfYlvev+pu1XgbBR6nX - 86yiWU8HDfbb2xX/9HuBH/NWxmrV4sPxW/XzIL0doBinDqvVe/nhqxBkt3vgv6h8q+fRJIWMPTxQ - e4QvnTFfeclcaz/ofj4WeVcLmoLAnusJbxNXp8enUaKJ+SORHnPd//gAVPhCJfJ957qrfpAin5u5 - Xz2j3poNSkB9Hr/YGm4Pfeq1WgMuVMW1vqox4Z5pCxyccaTu6RrmVNul8l98MVb7W87hcYBuy574 - +FQIm/ftOUWv4GNS/6G8c4p8v4IopuKPj+TkrusD9AbviPX6us7Eut41+cevp7zG+XQ/36qfXoBN - Dx70qXEMBXVuGlBv76ruik8N9Mt3py/LdGbhDsLupmU+H5hNPQ/x6QlvlrrBLupPgBABQ/mPH79U - 0/3pVfDpVxxhaz1GeKuTht5xnZOPn3v6snysGK71S/8lbsWa+PVGBE+zMPB9zU8r/msgKIQDPZ8m - 313izylFx/is4HvFK2x2s2gBI/ID/0Nsux7GeeftfvHHeT+EaKjfvgT5KKt/9YSaFd+iAKXlJbhI - X4dofquTAjW366kxfrE+qeeqAa/wiLFGVGnteBs1GccTxMZaP+XVEsuwNVSMLUJoPWqhm8JXvb1i - 5RpWYL7mugMbAdypxpVVvvKhNd7B+Ze/2OyKtgEHBjfYJgbHiC27MpSPJqaHIJ4ZWfEHROPJxHbJ - Oz1/ENz4Vy+mHrkwNvz4Bwgdk9r99dhP6Qe3/6ejAP13R0E/tBndW9OznvceN0CHnXQC3eM3Gq7n - swXZkQ1Un7RT/W06VEK/5HJ/U/eNPhXOrkP1zQqoMyWeu+z2V2mdP/FT7EjNzqliQ6mLTj6LW5UJ - Er1mcON5BVYP19ElNL+m0BNs7rgtDq7L6z1sgfrNNFLWJ8UdDD6roAFqhhUY0XyOgPJEiowcah/G - fS/03+iFWjFrqfn+PF1aVfoTko0g+7wwa9GcjbcnLA5cjs33R9P5g2Yt6AKVL1a1WOx/vx8eGp74 - W8lcotkIHhx0qr1IuGX/7ZeWwgYIgunTYFIMxqr2mwFymBSCyOWULy/ru9YzhZ7sPnsdiNq95eEX - Vzy+fcIMbG8h05B+3oT06Dskb1v79IJ5XAnUHntUD7F+hfBE04O/XIaXPu9vSwnlo6XQW7aZoq4e - 9xX6bHYhDVNZyhf+qA3w3KAH+Z79kPFu3mZIC+qBWo/7VI+klBwZZI2BDxf6BNv9LJXIkxKXqsm9 - Y8PDVET0XUSErUJRmPg85y+Yj72KsaM+3QV4XgXB7hvg/HI59IKWmxkc9rK5nj/Oly4dYvjQjAO2 - Hj4PZsOLNHQbzpTqYhzX8zbzCfyqbUQjUj96Xry9C6ikw0zvy9Ln/FuULdQaNsahEev5dsNpAYyj - qqRndoXRvMRrxH+0LtVSOY3EbWKEyBRDE8dS/Mj59kI7mBkgIi8q39nCn9sXXJJOJ7LPly5/VSUL - Zs+goGXqHQA58lcFWn7ypIU3XHNmwlyCy/kV03TsUT862DaQ/Y07Gt8a36X7WSrgl/YU++/w07Nd - 7qZwioYrzS/WCNj2iyYoLGiiyvf2ZuSWexkKDy8Tl4Z6rsUvfKToXUKXhvfbRZ+Pn/sAlf1XI3yu - Y3faok0IjPJl4mv1erv8QfMXWNwYpLo9SS4rmSdCYWP71DCOJpiXWMrAc6hlIkbNPVrM2Q7ALh0O - NNQD3p1JOTkIrNRElr5iT77KlKGbcQqxTkITTItnacjhk4WaxqcHROTSABzbu4U9VgCdmTGWYK8V - d1wWRI34ijc1FIclpUeWV9E2fRwGCCe7wTEeIRi/sJAgytOAyEH2Yv1kcTJ8LvKZmhvFieab7kI4 - ON8ttRrVdnk23EXoqFqHfe357me5JzZsD+odKy64AH7ueQdRRxepzfuwpvtv+IKXwxLgIGJqv+W/ - oQGkYJ9gt76m+fxIlwRFu+RJJr9MGJuLQwMVs35h9W1I/Zwe9QHBo+TRQ8aV+fxlWw09xVH0twKj - rqDqpwI0KY58IX0Y0dxQL4NbIvf+CVVtvWj3SkRufBtxqZ0ObE7nde/z9SrQo587ruByFMqaffex - Fl6ukWi2XQYV8/HCqogOveDujzIs3r5Fz4OIetZNwwS8DGnUIY0SbbdfYUHx0HY+hy/7evm4EQ/J - iS/pkTpGzX+2twU6mJOx1pxmNoxauyAcBi/8+330nNoOzN2spV51TlxxP940mPd1Te1d6Nbb6hWW - aFIbgN13tmFzNr9KGB7zBp+m3uonQ3qUyO4LG+fDXcxZr1YNcndLSvEmOfWipDsQckSI6GnIOsDg - 8BSRFAU1trk5zxmwNQOu9oiN51WN5kG0M2hjh2B8tff5JF9gC0FNTtSok2tPz9HsQYMbFept1r3K - j3SJEWeOe+qA/BkN8+Ra8GA0Z4zv2dqTbbPlz/9j3z/qPMkKAr8h0ejv+yn2kP/nT8Jl49U8N88c - 2nzKPS3fag9otvYs7l8cw+4bXiJmFeMEKq99+gEUGrZUbSFBKyhUenSl3p1+8WQ5NzF1chmweWt9 - CQigoeJCsSNX6AxZhPMG78h8sOdourRJBupCeeBMvEQ/+1LQcXPnsfHdSfXSfpJhZ3BUoX5ZDoD1 - 3meA79ZIsYr7QB++bZ0hM5Uh9TwkuJPL4gTczmeVXjoi9UO79gwzLtbwVRe6aEo2TQvDelGpUlhe - PrfR6MHDe9n4c+JjfTZ0ZMMNVwg05f2in8lydtAlmDYE3hmXL7zNJgj22Rb7jlawxbg0LRoPxw67 - 22gCTNt+Q5hdHYzdk9nUnavrJdwcVEz1c8z9/C2GcfQsybzatzjdqwSZJqXYWOMBi8q4hSHgS5xp - j6heLJsP0BOvW0fo8ZSzRDpxqEbYxaZ5qPOeu34r2OuVj+8b6aBTv41TFM6s/DtfplE9ReXHUGnx - sA85vYVAg2auZX5E1M5dxGOTwtfSLfismHG0fX5NA7XgJGHdokHPvK0/wfkbyhTrx33OK9bkoV3x - 6PDFmp79trAsDzIMHHr1uqGfXe4D0c+ffek6gAW2+wzeNJen7k1ua9byqQY3KLcILN9OLtx0HULx - sb4j6wVWLwpj/ETJWIrUpaenS69q3kDYWra/g5UXLRM7JpCF2heb/WWsW2wwHqU0nvEleCJ3OVtb - GR5eNMA4Mzf9NHz3BhLv0YHIX2XHlkEtDDjxQCdCGtj1eO9BB/Oki7B1fK899RfWwRu5H7ED5TCf - KimCsM+bniZHkTFCL06JqOWfqfG0zZpnj2BAVH551C+PJ32569D+4SNq7BTEhqxJRYhO5wDrglXV - 8+MReHD/3J7Xl8ScuvODCMKHHD2w/6R2zQpxshDl8hFr99vFZbprJaBrg5ogwfVcAcY3Gdqn4EiE - 8unWIh5KHubqucUGd277xZHf1S+f0IS8STTlnDfBqqcE++nNrOe3L79gzC02xu489ou+LSZonM4S - 9bxhFxGl8wL47Xn/dx76dEVfQ47dQsHmel5b7jaVEC/5ncDLvE6ZvTkh2I+cQXHVlv28P8cN2nh+ - QZW7EORCnhUeHL4WxWquapE4qLGBXmx40OBcH3OR5qcURY/ApMY2WFwm68yGo+ZDXyiVWJ+Fpy2B - Rk907ORyzgZurBWoetruOKPKrvsrMl7geCpS/MOTfJFhAp745eEzf+v7eUoQB79MGvBRNaaeDbe+ - BGdz2hJ0rpReFGU1AfuKbuk+ehv1ZKYgASv+oR5fOdGyTYwA1MAcaX77DmCwG5eHbvN2qZuKu34e - Qz3+fZ4P8taMBHXjlDD8UoXqalCB5Q6StSKuOPgYr3uFj1RooLcNC3qIjm60rYYpQW2ZONg9Jc+I - Rb1aQMHlLao0ssV4kTw86KRqSlc8kQserhd40nQVH4NirkfW3lIIxf2b6mC/B3PpPnh0kKCHPesg - R+MHzD78LNpMuMR95my+yC2kjipif8Un85dtNPi6Vm+su88aMOCdFLjPpq0vxsDJ550mliD4bE1s - 7+pPPluobaDEVUd8O2Nj7eBcNPDluZxq19GtWayhApBQXpdHeCc2GXxYQfooFHoTxrpfdm4lQvuo - BlidoJav+CqF7ABdHwzTojMNSN7uhwf3SECsp1Rbt3Y1gEBvuEbjWzOXtUKwwfbmRXqmWPkAWWSl - 2JIliZGdW/HrVpWGZuRs9Ly9MvbW2fsE+bmjbzfaKQDKdamwGkEXTM/vtwHreVIFLXd9rvbiC/qF - iOjenh13usS7DPQjOdA/fxnfkIftaY+ws48bNqoyq4DLfVsczp+XO6WC7kHd52qfkfpRT/3R8IC/ - VXY0vHH7SBiPMANfJg/Uf4f7Wlzzgywsm4nM+6+ai0nhNFCvXB/74ld1hcdEArgjXxvjxn+7zKhO - GoxE9+wLnZC4k3gbC+CJ/ujLorXtFy0/ycjy4yf1K1/qKUvLBKqJL9Dy1l/7STDnCj7j2406tJbq - aTxxIjyJqbTm922+0ItTwMthCvAJ3FVXeJFqAL5ktNTLYtK331dcIK6CCz1vniqbrd21hSv+9rnU - +zJWWL7/+396Pz520dK/Tw5SBM3FWOYzva+FWUZt7iBqXkjAFq9nDlAqhrF7S2d3+eDn8uNrWMUZ - nzO8S20oc2HnC8bHBeJd5x35evq4VC0fu5448vsJ/Zs8UOXjPuv55KsSWs/3x9fY/ESRBR3NuGIr - 6wUwv0hFoO1bG6oGxz1j89oNQr4yoL94x841DuX5rHP+S+0asGSHFwdHsWFYRVXbz3Eepj9+Qdry - lUYs6d82KEPB/Iv3C1E3C+AfnUv3WB/d6VNPC3yYoPN3O3SMFhg/U/Ayoy826e6tz9frVCFFJfoa - byWXbYlH5AF4R2y5wpDPl/YpwSjfXOnxwy/5ivcd+O2WO8XHx+oPTt2hrI5dGmX7U79Yp9AGVCoI - tVqN1q9g7CuQj18V40Q03CmxvQYlYyH6tO4tfbv9okU2Xg8Tr/m5n0butAAUphucJsyMBF+ZM9Q/ - 3xle9Yd+gsprnRFxVXCSHbho2FpnH5qpBPGBZX7OmymIAS/WOVal8ZyzBeapLDl24svRZ86Xwbdl - 2D8/GTUO6JT3e7h9/eEPu3pv2LK/ThraCiDDGB5Md/LhTQIgexk0QMtGnyMn6QBWDha22P7NlvHx - luFhK91wcqfGj9+lSJ3LivSSZUTbRh6ef/FTPaMoZ5Kzb+FtGRyqCHe+nyb3GUPylYCPhGIP2jWf - g8FjZ+xvt4JLenQ0YLrNMfbGgdb9s/r4sOPw04eharhMfZYvuNMulB7i/F7PbaFbyLzCHl/U/AKE - +OIW8N2DHZFWfWKZDdVBKTlp2KF1Wi8aESXovzcO3nOXczTdq1aDT9KnvhxkBlt2d5OH0Uvfkk3V - lvW6u3CBjyc21vh/qumKxyG9Jw+yg3iq6W7ZxNDRHRvvAZ9Es/R8NbBF14SqtT67I92oUE6uWMb7 - lhv1uXguBiTz5oq1ZBcwpvrzC74nRyRg5YdTrJ8g+uH7MLzs8kWY6xJ+vjDCJW7raHlxeoDISSzp - Xmye0cCNvSbLZ7vERv5u+sl6tzbs7naC9/Pp0k9PZL2gfnXuazyQ3UnjBA4aZWNSK7Yv+k8vA6Pw - MPD+sCldoVN6GYZBw2Nt4Cc2N5eghCeSZD6Y+YfLfvztx09MQ9r3Y3n3RYjeL+/Hb6OFDRIP0CFY - Vvzz7tka///88Y0HTSdfZd0yc54o1ltFY2xEQrjb29+rv/3+3s45tTZa+cOqv6j9vLldCtiLfEKD - Rm7YLx6gexr0+HD2Q0De500Ir8ss+GV9qvQp3yEeWHH09MFWE9w13ypysONq7KbitZ++1bGCuZu2 - +NhKj5p5m6GV91vrhK/36syWi9JnIHqpW6zetAMTImBX4JS7R4z1Unfn+OKWoPv4PD7uP3TN70uL - 4u7hUXMLIraE3SmAz+9iY1XiZp0K5lmBL3p/+ZvYkKLJgFIKpmV+k+2+2Ohj87w0UAseA13xc00d - WVbA7VLe8f41nvJffIOzt6mwb4RzNM+bdwdpcwmI2Ki2Tj+f3ocrHsar/tkPnnLw0KH+PqgVNfd8 - 0nvY/fAb/ukz0/OddTA19nuydOyQ8xV/1GAcv444FmYt53W8W4C494e//D7eP8MAI12C9HCdunz4 - 4TUZeeCHl/VJ8oEFTAo6f/tyr6A/JOvzL/IZK0e4ib5Or0G0iAuH1c7+1POTF3wIqtogQLoouiA8 - FQkFzZxgJ0N6/8eHo8pL6K1NHHc+PRoJBeZrwGpaLdEs9U4JpHeq4sieUl2oH0CCzhjrOF7563zg - vADWh50+Qn5u3CmY5eIv/+a6d87X5yHAcC4HglzJ1bdmvJeROrg8Xld61PNz59nwujCBVKTfsaXY - HEpoimsFmz5cRubo4kPJ9U1/stwhJxcYZ6hYO5j3UDJr8oXfDP74ihVfFzChivPgJ+D3ND2Vcj0T - YnkQ8xWiOD7z7po/ZdRKlYVtPTdyNnZpAPLz60WPIXqsMwyUCjVi5/obTzvU0/dVFIAWh9jn6Mvp - F5pfMzDfDY6e6thjy1fKSrCXdwvVkt0EhjB7etBmz4aqE3xGy2NaFqikZKYOcok7bZ3BAa5VBPS+ - PHC9zjFpIG3OATYOg9C3Inn48LQtP4TT74gtYHPvYCO2Lj4C4rAfnoM/PG17QVP3Ock8UMj7hPrO - K46EJlKf6IOnyx/fWFSgaD99BR/Vs5dvx+aQgATrHGnD0xHQGRcLFA+xs+pvrfvTw+CoBz01S/aJ - xIYjUC4D+qHaTiZ1H9wkDuZeecFKriF38ozUBl3gWTQdvCNgUsKX0BouG2wJ168+8LwwgBCIJdXM - E+gXom4nsB+hQdXO3tfDPXVsSG9Y9xFpj7oYU13aHT/5ha6fr//0JODrw4yvYR+teqowgRUPYa98 - O9G8Y1UCXec0E5alYzRVUs4BGMvA5057FtGlCiqY9Jd1RknQ9EvcNAp8XtoOOz5f6j99FhznT4T1 - FgGd5ST0oV8Lgz8VbQ0W3zsqMOwWSg+X8uOyrt5CaF65nuKPi3L63QsGFBJFowf++GBiOdg21FNj - wlrzPPZb+/AqoBHdEnp8np/15FyuBfj0ikYLxoU9o9SRAFvcF1XUL8/Y83u0YJFrDuG251s9n8KU - h3oMaqyLusSYonkLNJ/6AVsx6KLlIpkF2DRpSi33NfVLQmkDP/7QrvlWiAhnShrcWw+A1ddeyQXu - sJRIal1G+Ns5zJdNo/Lo6ucIuwcaR6L86Qew6jFrvKjc2TftBFblpODyYmf1jB4OgV4qvH75o58U - S/IhVn2Bav25YvMZvHw0CXChed3xeqdeHAhLpCtY3eGBTVAZUshiZ49x3TcueVlfD6I8C6j1wYVO - ztvvAokyURpZx50+lO45huLn8iGooIVLL+5G+9UX/M0bffNh8XwN0t3zRo2TtmdM2z5CJIGL4n/X - +6J3w26hcbpIKx/q2funTyTk+abKpLzA1A1yLP/0dTt5Huotd84ayCWLSE63yKy32yVqIV+WiMwr - n6LbJerghXP2WL291HxRrb2H2HJ4UdWXCjYJjlL8zocqzz3rq/byaWGvnFXqyY9Tz7jbVOxuaeX7 - D2N77gdroiHYb40TzlStBuTF6SH60i8lxzNe8ZFbiag6L3TVY9494yvoQYu733y+yyd32bmtCFd/ - wb/4Nopzye3U2LyQeXHEiCW8rkGy2cr4kIUqEG1ZFZHcbjY+x2W8PhXP8fXTN7CKZiMXYDqIQI33 - F6o9Sq7vOFNSfngQu92R6dMoa6LEMWOt30l1vXTrDr5VfyE7D7T5MpKQwBV/0/T2qfT55B8kWNjS - gPGusfQh16IJznvlseLftzsbXq5BeUoPWLGJG/3Z26pHrfoIrw/n4dDKgdkM/jpOOP+LB8YhyvxN - DVU2X1+bDhw3N55qwh5EM4zPa35KdOpfbLl+T595QAsZKnwYuyeb5Uj24JbNEDvT58OYUV0VsI4H - pP5rCvSZ351sZAp+4ossVfvZCL4QUqkk2O4KTeebPJSROhcVPm+ULmJpsSy/7/Pnle/PgPcU0FTR - jJ2vcgVT9jzI0DpfTn4DsilntzyV5RVfrPpWX8/r75MdIXtQ3Pimvpy3jwny+wKv9Y2iJ262SX96 - PLWy/symXMsXqGwZovZ7v80JUTcTKD5IItwppStLMgfo+MDFDnJ9Xbiesg5yFbdgm4ITWFb9EW7i - UCaRGPP1zJ+ODhwlciKz5KL1fBYfvQ/fCpvOjrDlvhltOGx0gg8Zx0VTc9EhmuLFpva6U4NK4Vj9 - 6X/reQJ2yFpv98MPPz1q+vGnX72JJ+jTj1QGCuzVdMJnbavoW29rTWjDlQK1dypm7Iy7AO6KuiPb - JzL7efGyCrJub/nz+8xHpBbeKXQwlHHuPPf1fGk7GZQvWGP7Yqgu3/jEgGu95w9vi+rF4eB2FCFV - 7BuuedqnBcwe3kh2VfSNmB1qCTTlfYOtDfyAB2tvGZRcz6RX2f+67H4ZWyiEvIDzRAjd2XxZEIDH - i1GteY71kifXBV4P1Uh//GIqI+ahTR+1pMW3yJ3wQZvAmo9xZi04GvWP7MGr0xTU9VkdTaW2LaB6 - tFry8Zc5Z8P52Mgr/sZHsLF6Pt1lNvCNpcLKOZz7gd3UCSEb69hcCmOtBxQJ/MX/6Mh/3EntA4j2 - NTCwvtbPRR30AxRvh56u+B9sV3tFJVIV+uOjr2CWS7jyV6z4ZQLEYnMo4Orf/rDqg0QSEws215NG - tRv3yafzRx7+T0eBwP93SwEgl8xvDkJWD7tWLQFVb0d/Mic/Ern93Yfb9nOi/vCeGDuZKQfs7avF - 9nNwa97uJQe10HKodZKNfkxeXAvcT3XAGj/yjCmvcwql6aljHEGkL2JkFXKWEgtr6W5ymXw8Veiu - Xmvq1MIjn2NOMmBNrhj79/kEKP3wExSS6YTT8CG5jMqtAxX3uqdF7t7A5BEowcvNYfQYP0Qwy21g - Aap/Y+wH8+DSMuB9xI8qR+a6vugDe1IC62uXY61jS876915G7TaPyeRAEC3yUZORrqQmtTbmFyzD - duhAw7IjjRZ9rKcocDJoeeoZH2/Yc9tNXYVoJw87wl/vhrsYO1GCLgwQLrO3AcTGEBP0SR8fus92 - pJ72D+TLmSi/qec+h3revmsPYUuj2FnAxGZTlieAeOFEw8uogUl5QQU10kGlQQH2gB9ULYPOLQ+w - UoA9Y7vPU0S3/iXT20d/gYGvFw+YU/4iV7HPez4AsIHRJe1oWhobQI/SyYdOjw9Yfbm6zufL4sHR - ZmvTcPfUJzlpX/DVDRhfd5q4Ns0xDT3q2sVmXrb63PYVj8D11eA93q2SFTdZ6JhMBXa+3Q7U/g40 - aA9OLXX4fenyv/uBznmhR8sIe7HeHSx0G1cpgLotWD6WLQJ3f3xQO/qAnpWCUqAqvF/IbojUWjwI - Z4LEMs1wCd5JL4qK68OS4wV62zuJvq139AVzrbpgq7/4PS+SowK+rfGkQSc4upg2tIX8wK2Ls9En - J7uyn+DVLF1qHyUP8GWmByg+I0qDg3gBy83KFuAyvCPso+97fmx2CvTf7YEeW7zo4ze7iPL21CbY - aSaUT74LHPSzb1P2vhH/eK/ndzdu9DJuSn32IjrARr7Y/nb5fNlYXEYNchw84Dif4551YiCja6pI - 9NwKNhBGqX1CKlZfej++dH3ZaZIBYc1u/mDtHtH0eLcNRK6q0DB3VH3RIilD9LFlRNzJMOqeTqfB - dCdeqXLZE0YY/xYRlmSD8Md46on3vnuy2loj1nLnoTOVpDH8yj3G1p23mKCfPRt4m0qixSc5RfxW - uotQv1wU7GvbQ79IbltB6/LdYzWTezDfUNTCKogCsoP3uJ9VhUthiG8SPTyzshfwPGWoLAuMS237 - 7ed3ta6RmMwbtlK560W+9jiYHlyXKkJIoumTNjw8tc4FX8Ue9EsB7xO8Z8IR77fB2eV5u8zgG0y6 - P43Uqvlqeyhht5yu+HBBcs6qMHmhe/u18DE74150ciNDU1irWCVKngvB987Dz2Z2qPKkVU1Xe4Om - zTKsAPWmT0QbFojWEn4UYhssSviWoHtWMwIUIcr53a5LAEraBbuPU83+nu/PPsNKZkRy2ye806dO - I85XXT5o5wS1RqkSeOBRxPg6apAPP4b//cIGTJ/HPZBV86lgY7NXa3GqbB8UbbzBxi6y2fC97hL0 - Gb0bDg9MqZc42FYQcJ3mw/NmArxyUBIEtsz0wXSJom0GDA31WqNileNlnWR3lcAT3Yf4dPrGbKo/ - GgfzTz9je40H7OgWT5hwMKanl6u720GpJ+Tm0oVe7/dnz0JcL+jy2lOML1eQj9BsPNSJEOOLumny - MbRKA1z3bbg+fwaWl2ekcKDnF8U2vOTs2EjxX/5Qx9u1X97JxUMbPvVo/nKVaDb0PoR5RUQiXQ46 - 4D+QWeiVHit62lxytv2wQYPpsimIuXzVXqjGs4N+/rX3Nl7088/dSR4Nek5Vx51lwxXlR8CVWHmo - czQH37sIOxybNEr1dXHThQsg7NoMq9NFdKfNJuLgNQoN8pkfViTOl08HRRf02IxAlYt0flhQrA+Y - 3sWOi16phBaQOfIRm1KZuYMzhhUER8jj1X/Zdum+7fbRpTaNsvOSs3u9KYCTlGeK98c2IuoBlfC5 - ZBJVD7WbT6/5vC6PAild42nNEAoh+sybEB/d4F7PknuSUB18LlStyAuwIJl5ZFsg88WYf7jzS45F - eDULl0aX/Ay2N4Y4GN81Rl4Ixu7W3foDPANyJerSfvQpldAEz/bWIJv4dXAnhOYGsUN+85nupGza - o5MiZ/evSr2Znev2GPeNbC9gofvFsF3xfWwWJC9nHZtH9eVO3cuzgdmgnT/omxf7WpdZQZt7Qn0g - kyPY0ruXQPNqafjo5ceI9WNbQk2EGQ4R14NREesKmdvwQfjhHdVb1NEXZKTY0dA252genEMJbeIg - epyrr7u4YQ7hjgkQX5JAj3j0vE3wJmhvbD6EJ1hGdfsEaYIMmjtWF3WCzVr0ZUOM09327QrCy+bh - 8Xs50MgZVJdXxleB8moQcUDLcy7YT12E90gKadYc83pbn90SeP6287l0K/TT0iuhzJ8S7I9zdXBF - 1gsZlF7SiSbFpWU09/HaQiDYdP/56Gw5fZsS/vInJmrkLgfhPCD/fHlgzSOwZy+9a+BVmc84kDwH - LFxfF/DWNzLey85cr/HiBUKQhtRUIsLYJjv5v/yFvS44AlFVjxrQq6XH+DqJ7ueldy/4pKJDL/Dh - ReIe1gsikv6kv/w+vw06QNXvNaqQ0I7mpLA8sM92GrX54VI/PclpdtU1jnFSfnfRHHbPGFbBKfAr - YR3bv1jWBDucmFjBr4/eD9FHg12uCjg1lzqfapfa4MhD4Mubr+UK4tazYH99QqppJyligliKMiDn - jMzI7PM5MMAAT2w60CuOqcsgU2zkyyny2x49e/ZO3jw8ZIcz9Q++ka945gVzGH/w/v68MuqRMoDI - FndY+yS8PibbpwLD5exjU4l8NmL9lKCD7mVYi8ytvmzWElbJiQJVztd7PxWPa4JIwDbUgEcz58NH - H4A1f2IjjcV6dpVXAZWqeNFzXtouA8bDQPzmOZLh6bxytnSPFm3HYE9mnS4R0ehgQOGYNP6shHFO - C0hS8MMPtwsXg0U+OhJ437df7L0NhfFO9nGgWCEbO7EIXCqXcgbpzeD8UDul6xhNVMKcVIRqRsvc - Sbu9OeCX6Zte2oBGc2XvFLh9HXV6mKAHiCO2PojcSaLW+7uJ5hzsApAq2oFskKW782FIOjibaYIP - 33VMeFNVC3rozhs7UTeCeaSSBQuJvv1PyN7uYnhdAs1jEdCrmnls6xUog/dse8TWoz6z+Xh7tnCu - XwK1TDrrS9hNEJX10aB38351f/YHnyrt8GE/79eXtEQFmtP1RTVaoJ7FwwOi8MS1hF8gcZfkcG3g - +nupY2gwZ7PBNGhxckd+9vxMd7ki//AQwtIqwN4PBBab15Ow++OeM/MOPdAHd8k/r/Fp1pq3Bu+n - wcXhZXyCWb/BBvBSP1HrI0/5cMNTCZtqXWNjGUI0bt+9BznlrlMfHp89Q5Zb/PItdkj4rns9TiS4 - SaKeyM10iyaEdi9oRK1C0/c61nbhLx4sH9q61gjZ9XZmmQXCV33GqmMd3cl3mQ0hb5jUrZWwZ9dp - 9v/iXTRsq345Z0uJzDw8UG1JMp1V45LJd1rp2EleTj7h5AjB3qkK+ruvUaKiBqO3V9M0+uR1t1XH - Fwi+fUC1cfQB6zJkwE0HHzgpLjajv+ehia3jU11fXOGoWTzs7qQnG/KK2fSzf8NHB7rm94iVz7MF - iI9PvlykeiTMCxQhUBzoS1oA3Nn6XmXYf8ETO/beyrfOSy+QI4oAawFr6uHhGAssTqmBfe7OXLri - CcCuxCTCXPLu0lShDfhNNdIV//TTh9e6H95Y7WfnzmNcBDAwPjyRBHyNFu7JNGQvuwUrJGxzQueH - gc5hQHFsNCCfrrIdwkfrq9Ruq1e/LF2koD/+E+MV9tyPCsT34urPsUJ7kumjDBPP2KwTLxY2/fCa - 1nwXrO3OVT2b95KDE+Yi6lvxh83R9VDCd+WEZPZuH7DalwJ8pRn95TnaYC73TQWf6tgRTs/cXPCi - D4FnTFSyvQWHaHk6Tw0STrrTeIG+Pt0FDkIjawD5XpAcEfkMEjjuihtWtGhyZ4lyGrieDoCaG5Dq - LDlUPvzc0xctcVNGs++pC9hsxrPPv+6dy05mwP2dR1Qd+nx+twzCaBLPJPVzUk87b2xhUdAjNR/h - Q5+jwSNAeXY9WaI2Ze1Ltvxd7466P1fEYPMHqQS+EXTwba4OOv8G6QAjcn5jN791YJJcN4RScMyJ - QOlb/24E2oHgYtX06GLFFfvXI0M/+1Tfl8CdCv/NgXlOCY2wRFwWGFYB0gUVfpE8l34OjoMDvAG6 - PmfoIhgLHzYIZ6ym+AsONe8e/ACs+Aeb9WvuF5ocgx+/w0VpyhHJv/ETpfkoYX8XWe52zZ/QuX8u - 2OMeDpge5KShR+up2FAPyF2kyWthEb1cfL8d+WhM4yqEu9b2MP6oR3d+kO0TnvltQfHqHyzE/QQr - LH2xYmh3feazowy9xvSJHBwxWNLm08KmAiU1ne6bj79469W7PT6q+T7/i2/v/p5j89ThfP38Cm2y - fkeKld/NbWBqaEtLH+/Vwujn13kiYJA3iS8o4lTTzamd4Cu7fnzkO4W74u0MfrAJsWVbLpjuggih - HNsvHKz4l9w3RgePfR3QY1fV69JGXMjFpnn+4ls973YSB1Fl3PAF7+xeJJ/GAZIQbqnZlL7O5ETl - wA+vqcU3Y+ycHyz5cNn42KVkz6ba/TiwLEtMV3xeC2VQcuBYeXt6hXe+nrgAyhDx25M/HaPEbVd8 - D7XXrSfP0Rn1v3y/8lls61wXrfbZwXf8rHy+7Gf9x49lf/9o8XkbDmy6nzIeXuuuw255+URTvsg+ - /DIS+xv7eu63t96s0KpnkN3Kr5hw0EL5M6PwL74vyqZ7QXm56HTvniDrztlSQPF8SbBqfX3WFdj1 - 4MJ3Xx+9z+eeyrPQ/vIrdoWnAoT3PKS7j8Rjqianql58L0jXxPTxuUtv51sqVw4a46uKjWMc1L/v - h9nRiKm9xkuqa6IGGQwXbAXeOSKKKDt//MRb9axB36kLyD/fmSpF2rhtN/CN/JW/2Be2oQeYLDcW - /Egi9mEXjIxsBC4AadiIBNJCBmRUtxWKuO5I94wlbDK/bgB/+E/PpFhfHlFYoIFXcmyu/jr40z2E - KOmW9X5ltpjgkMGV3xD0aayeh6kDwQ+P6t9My/nduTTg2t6JNZWI9fQgVwV0zfeDb9fDs57XeAde - YqJiV1MqxthVmZC0603f0DNfp295McDP3vS56gFLXe2FEtMxyFcfUN7QxAxg97pX2IMs7+nZPg+w - EzmM8VboQV9rtg/vlnX1N2X6YMtRO5fwbRwlagQzYUt/OL7k3phs6nTCPp8TJXvCm+vH2H+8HbY9 - PbwOWpzUUS8y+ehR+HyDljjQ8YFoU0Rngynoc89eWFv59tQfFvHH/7B64+2cn0DSQXu3UKqv7UeL - V5Dlp7dgu1nOOlnjHSTBoNLjJWcuPddzhVqjUOnlvYv7Nq6PrVx2luqz+2MT0ZBNCpS4644I9jWN - GAuC+McHsSVulOjr78oYnh5Rtg5dINGC0sqHi45ysrv5c02gyfOIwCHFobUz3G0SBh16dQTTY7js - wfzlXgY6eOeCSLtYj7aichKR1+z99X4UtuqTMdyMTosPzb2tJ1kXPJi8n92f/yzyTBX4TNKKZptv - 49KuHitZ/PAmvRrxIWIJMRK06o3YFrOGje+jHcBvFn7pgc2bX37j4JIUDo3Ew0XvD1ep+8ULfz8/ - rFzgT7cSbk7PLd4buyegJ1/NoLKTfYpB6LjCePMGKO2+JrU/Z5FlJ9OJISutiPAX+5CzJ40XpJ7f - HD7c71rPdp9OBNrOeRBptzXdhXsCBf7+rnluBibzqwfgdO5brL/PacQM2XzC8ARbmqZSyOaBvBvZ - cPwzdV1hpxNzCeCfPnLk1rH0AEwN8k5JRvX7Y7MuMk67nUyXMzV6aOvMBKkGIlhYOO78lC2PLdfI - 9B6ZJIbHd7Scxcb5y8cbmbYRk26ptr6kGGL1LZ8Au1mPFPQwO1Fras2VH1AH2tYuW/HjqPdFJRPg - oFnEaq0Ia/7YVD895y+erfqeD3/6iRa1EpivJbCk9f58btKozvdhHYL+7BC65gs2v40PAZwcRVh7 - G3U/jfRbgujt19RSasOdx5tH4GpP+PjLN3k1GKC62EdaLLudy25M4OTz0p/J/GkfLqtvTIJv1xCo - mvBaJLwNSmQ/Uy70PJexvujunQfbjKXYnECYjw8nT+Gr0a94f2ov9RI9lQqs/u9/L5lUz9fPurZT - 9QH5bsWD3vm33VqiembU7+E7/+nd8MdfVz1Cn/SdOsn1/jBgf9XjRpHkHfzlI3/SqLskysOGZrPZ - Ue+zi9ylzyW4Lt9V/9WX+rxLZCiGHuEMPWHCT79d8YcPTXdx5x9eXvUQsvte3/rC9X0BX2bLaJgm - JGdPyfTBMPMxthHye0Ll6xNuT11CttvgrI/wKxdAvkUNthZZjCaYOtyffulL0yua/Vj25UfRYAIi - uXZ/9Qg5kcwLmZTXI58vZPcCg+M5OMk94K76kIxK9u6oPR4wmNiTDuAEgYuVTHUjMXkfQ+Co7E42 - 527oJ/3TyuC8q0IcrHx+SYqCB++78CXyqxzAdJWVAP7w9y/ekkR5OMiTevDTS/ue6mkL1+/zRXFT - /fS7AHJXaVzxn6nPJ+h68FCKri/xhzNg/UvS4EefGM0r8lxbYOcKjqEn07X+4E5v4+D/9FycbJU7 - m396wW2XMZ8jUaXPv/iwjcSbL672SK6fxfnhZxyv+GA+n0AKH2YyUO/90Xr+baj+Tnep78uCMEaT - qtAFQLPhCH/3Q7YYO06G2rS/0Z/+PJR7RQOrnuU3iUJ0cvXKGN6bYuPvVr7L+7pDoLC1t0T+gI4t - qz4Lt5b2otpxXSvXiVoIz3EhYs9op3yO0PgCZzBc8W3XhPXIcYqPfnoA4vANtLVLnV1oPxHZ+gS4 - 5Bef1niA92XigWECZQc5jjv8+SMrBbuQ6lx8Ylern/VE7x0Hm8NX/sOzW36DQ7jqEdhM1U7/vuSY - hyFdKiIuspj/+dOqP1H7rVsRQyjjQGbhCz6CWGULQkYCD5l79qfguNS/+0c/PCWv+XMxzuGCglIt - 6d2IBndumD9BVe4zggbpFi0aHayfHoa10kTuJITXBHD7WMGFbZKarnoegG0ZERG0fU9WPQw4t2tA - 9X9Iu5JtVWEs+kEMpJOEIb10EgREnAEqAiLSJEC+vhb31bBmNXS9t7xCkt2d5OTP73KX1gBcnelI - f4uSh9f9iNfuF4ldMTBer44LQX/TMAnssW4ovLUpWHPHRUj7wKaPWVz95RvI4O9TvBXn/QjACHly - eqYTWL3SDo/xmTkE0p6vbM40h/Au3p/odJ3VhmW52JJ/kEvRg83NhvuaWyA34eeG3HBZR1IEp/Qo - 2fX2b3ypED8seHoLTCC+NuKtX9nBf34A90wVxvRd3muwYHcjTp5cdWrd9AViTihw7dBq3IKrzcK9 - Xkj87DjHG9iONTwzJ3nX49rIvvFFke1voP03L/jdjwkUhZJBlwdrx/xf3qF+xA6pkheAf/xx47tn - wG2/d7P94c1VFZ29/sZ4zZ4vyDe3tZDX+ge61SSw4WO5EmSHmxPz1q+q5L1ehjfmPTc9OC+2fNAn - BtlfURxJoLUG9ANuQPpRj8dViW4RTPrnEzl9IIxTP0a+nOh3DcVdZdJPaNBJdpqPQlT18aZbMhUJ - mIsrRP5trvRl9h4B6Kvyjs7GVafbZgWLdC3uKzrDCnlLe60taB6fPXJR2xbLrpfggc39P70VL8Q/ - dFDnmhfxYN3RP/35L/9Od73EdbfYgt5nP5KHEuSt5GwFMGloT4LansbV0JtQVrTQRGEWQ/1X2asG - f0R/BOzh9G4W9GRy+FP4A+afltAs4tOq5ND4sAG38wtl2LqChutfUXKMe0qtTSgh1iQbf4Jlo9sr - r6qjaRQ+OtPtOM761bDhd9RS5Lr3FPzlxcDRgxwZTnDytjPJbTgLYYrK2R2KhW2kAG4/RSCPHm3e - khaHFuZjSIkty7hZ0bpk8jcnGEPRDQtqj5daFr2yIyhaQm/FGs2AjFY22G9iKIS+1m2ZaZKMeKXF - xyt4CfXf8/7jZxozLg/+ny0F3P/eUqDeDyYx78eqoceHhsF95V2iEMPUWdH4RVD34ojYdZbpVAg9 - BnaCngTbwOqxcLxbnXyJF0yMiRy9Xhs7G2gnMQ7yxlepsM7eAgokDQid0U3nSjVLIKhKG2nwiYtJ - hN4C84v8wLBsZm9KPu8K/rLcwsyGQEzsc9nCe/my9lOe87h8i36D2R6pXnJpGTfuJS3wXfE6UV/+ - FaweDiSQeHOHnDIj46Kc7wNMbplLXFy0lE7R24Icqgh6rfpMZ2a1O/kDDDfAodrp27tkN3nUoifS - lYWOa/ChG2T8j0PiYfbpUlz7JzzEiAtgXb68VVSxBE9bEiMvBIdxy5YjA97z/EMvTUk8FpfcU3Zw - opJSuDQxtb+nDXadqCLluEYxRXJcQr/PLkh7XQndplq2jsLHZ8iDayqPPrbRlzVzgaScDK6gr8Mb - gkepT8i6h2y8cOG+kT6QMLEh//Q64/T1QSw+pIBVjudRgHaqyfM5dol3gG2xelL/hEx6+SH/YWqU - +51kXiqHxQhk+cMCPFyZBLzVI0XIPGsF/4wlF/JXfS/RNka83VxFkd9eecD0zMdguewS1pwGg+g+ - +urLucqwrObMidjhswR8cYT7FgUxIqdEyEY+YcdNrpVDGkD8sAuqPB49/LyiGHOnByrY53M0YNWZ - EDN96sTC0tdP2f6QCPny5BXcJ3MCCLRKIvnTTuNtfBYLdGzIBKt1LQGb4taFyXLaL+chT7oKTZ7A - 48u8kvs+H7AjKCJUbxwm9uGljvxUywZk58gkad2Z+lrd7hPMtuWL1PBlA05ZJgWGvqecj9diBThw - Ah/cLmVOVP2kewL3uzOyB0oTXdlb1wjthYTw5SgPUriLrbO2HFbyPp6BoMkPb02IjaHfhRLKtrta - 8PovH6D/mAhJOt4CLH1MDFAObkiCJ451jHLHgqyr3NEpwhxdZ9DV8HniGpJda7tYXbTlcoA0iDlf - 3Sm5mTp4eIoZXianjNcD95bkg9iK5Dq8DqA9r10Jw8JhkFbow0iej0siJ6sxoJfipJSVIY0g0GqJ - nFUmbIQ29zEEnQiQmlrX8TcJpg+v31ZDz9Ttm+9qCdrf7yPhcd3iBTjfBTZ13GAJ7SViXMpPSMr6 - gwxhSht6qIsKug2fYaz9qoLjWFeUvPS0y/0Exxuv6SVAZ/OBsvVbeCvrJCzMTzFAxvWpFoJnqk+Z - O98zpNWKHQuPbQzgtH1+SH3otFiO3SrKg3pq8Xx+GB5P2IcLx0tcBvK+noSlH57SPh+CyznKxy52 - ZAw/pSchyxNxs8zV2smn8oCQ6tSjTu6Jn8H+LWG8vq/ZKJxsGkE76WRk6UbccMYkBcDQgIJXM/yA - LYR3DIvzGpMLg08F27zyDnKX4YQ3RRj07eklWNZF9MQ/Vm6KlTvzNsjnXiG2yP7iDXpZDsYRysFW - fKpikcYikL3Mv6O8utw9qoVvH2rvjgZCUC6j0FybXEavgEU2eWYxa+RyBwl7wsTy+qe+yZuWwmLv - u39B43kc8tvIQJWOH3Q+YKFYd/yD7/KbEO/64Aq6WgflH74m2QS8xci5Tn5duj44fOVzMYsqFiFD - rRoZvr00661eS1D5RYm0Xu68VbeUENrNF+BFiUOwF1orePg+G3zcIhfwq7NmMhUlg9wuJ0cn4at1 - ZXFiR6LHh7RYrePCyB5Z36QU+xfl06NpSBV8qpgz+XpcP9xSy9NpY0kg6Hy8lmqYii/raJHS35J4 - zQN/g/v4o8ACZsOrZSxJhzQJiMs/7mOdF70F7M8cBRPyvsVymDQsi6rCkWuV2A3XaLMGPp1QIt21 - 2kLIMqWW20GKyOsdcTq5l28e0uuQIVXxpWKGrcrK8nME6PwJ12b7bIwN0wLqJD9m9bh8glqDTn6K - g3VO3//4RzbESCfBT049OrMrBme7aYkZwZqu+fcA4VXWaZDcTKyvP+y2UD8GFdnf97gak+RD9v2p - yenjnry1ECUWfM42JPeNVUbhNke5XESahtnXLS7YFV8rSBCZsOBzOuUFa1rgznfEfHofsB5m/wnD - wmMwDd9TMWd7X/59fPFwtDePvvGawet4fAZfvvZHLh9ZS76r6weZi6kWi/mFCYzeAiJGdIm9Hjhk - gbnC2QG4Pq4FG6LKlSErl3jriyVemfgewYFRCbrgIqMTYj6+XLdnDdkV4pr19/nYMi6uI7lRIdHp - dtv7akrDQnzrqHlcdFhDeT68WXSNpigWxK1s4ekML+heZmhcuO7bwuruX0kk+j9v1zOTDO/OB5U7 - XwvrrO9dD28fsuP1+IdXcl8dJ3R/rvW4NtpHAe7d5slzQ0XM49Qe4AU/Ef6b/xyUOQUYfukTO/i4 - I+cwhycELW2JO0VajNX2mMLww1WYL+4pnR4UMn/rH90q8Q3IAQYTVG12QaZPq4K+8TGH33Bm0f2m - MeNaM3ovYxeleO1ri7Jov/mtdus6YPBrpJv+edbQmfwBdwmDPIFPbAu275uFHP2dFosdox4Gba6Q - mPeVmKe9Kck7n2Apzyww9NTeI5AGEdQ4W0y9J+yPJ0l8kF2fedvPPnTQJuET3eX3mS6XRC3lz6Ho - guZUeGD9MtSGrFoiFI5CCkbTuDNQv0IWxSOqR3o7nQco/64PtOtHj5VfHgO/eaxgaFRE3+D7VEK+ - 8wpiz4I3Lu/Fs6FpxQdiG64G+OZzyOClplNwBNYHbD1VSvlFhQiv2mcuthevLfBmLSJSFK5rphML - DLhwUY/c4kBHPIoBBFYgYuTH51Jf+987kv/4xyTNGK92VUNwqdeJeNUkFrPC9q7M3MKRJGvDejQ0 - Rea4ORQG1PNAvEVmmcHPVinkfp8Fb7Xi1pe3z5diykECthdT+bJeDSlyU0tttv33gxuLLeTxXTxO - tayKsOGrCzkx7Ao27/ooQYIPEfLMCTbUpu9UdsfojNQ+4gvKar0G+eP9RLQd/2fRbLR/63NBm+Et - sii4kL2rN5IR3NPlqdAFDkRbia1bgjeXTQWP6YlcyUkcSTwN1TeEO37h0v1dxqUObhg+sKOj50FY - 42WYFV7+wzPvJT689RWJOWzoXSQWM97A2j9OGP7E95085E9CN3QmNTxmQ42cdmDpVMuOeDTrE09c - eTjRbTFDQ/56kUais+wWwhMTA5hOniGnaJOY7PwlC179JLaKjmCT0TrJ8/niIs0ZTU9QbW8Bfbjd - yR/+rieOZf/0Du7Mcxqv/kHdQGKGFHn5W6ELe+A6OEoyCJarXIyU/zx4iJ7njWi10heL07o1LBr7 - hpJTawKOcSkPZ50w5MQrKd3qH6ih3XwAur/4e0MFPpzg5otXcsfKZ9yK+MvC4+1XBcLM1B69ocaQ - BVWOAumi8TodXo9KesSvmnifpaH732dBQwsRw3Pi6ux57Z5AlGUFqZawjfv4KrA8Uo0ob58ZsaWH - PnDGc08K/5cX23CXnnD4vD5738+02Q5hKoGnmi/B+fxo9VWNWAyH7vkldvvO6Q+8qvrPf5BoRWO8 - QPbKA35jEmK56lrMSm+1kFkOHlJAdtBfYvbLIBmbBgVMaIzc9XwNIdrKN+bdfQueenRKcH+UNimQ - Nsdb95giwNVbSU5V6ut/ehe6tvbGTGu03qLtp9DPfLmh82c7Fdw8hIvsvYYAOfAg6tOw31RZP5YA - 2ZqqeNvd/QTQM5iZBI7RF9vpkChwatoxYCYrAzSTLq5cy+BNSlYMi3XIxAk2P5IRzzAJIH/8to/3 - 3/iD7bm+S3kFm4Kub3AthD6NJFjBUt1Pdc/emlwumTx05ZdcjgOgn1ckZrAHnzNC3JXq6ytachlU - T5tcUotrloPJMfLf+rA/sarzTLk8YX4vIqJ0oevh5eVFIGWCGTc7X1L5miwwbRofBURVR/44pxO0 - SfTEh3uoFOxPyzeQF/UvkJWbTtfBf7mQ2sKLqAKKAZFOIgu5dc3/6evJlWUMe9gh5M1bNi72Mcng - FD1Tsv97s47ASWFAc4YEu/7ewtRnoPBNr0i5jHyxQPbBQ+LlITozJ3ekx3vQwmt8TQhC/aBv6fFs - SIPQQmIvShBv4pqz0udw78jJFDudnIiiQJ/wFjEqL/j3/aDgMx09SmaK145/TLAH3zNy7/zqbUkU - u8A+MgoWT9LmfexqgPDuoJyctaorNvaobPK5XCJy08/nBh8OqiWvv/5H0jFXPO7DiRWMlEnCh2a0 - va33KYYrm3rEEpXXSF04MrLvdzk5abKsLw/KQjjXfYASP1O9/XlZQNtfikr3tza/7Btt8q9iLlj+ - m4+XCzLg/rx/fmWc1qROIdtMx4BJ4rFYpjILpSXSIArk5zNeOdaVoBMPFRY3JwS4nBX3Lw8gyqDc - G4wjvwYfQV6R+vj8dFpfNOtvvgbLIt+KNX6a7F++QW7AqIuNO84MODapgddX2RXLW6w6SFTB2PGQ - LZbkjiDMSCUFpEuVhmeSWPvjf3S+EKfYIjPJ//5/8BFPvD4b1lwCsQ3fSGk+l/GHFSRKFo0W/N63 - iJPVOmgi//iGO95EI7m05yc0dFEjj4l89DX4gAXkl8OD6J5XxAvzfefyrj8RSj8nwC76t4RE4y0S - eOeBLnV+jOCuv5F6HAD4XQ2B//N3SI/2PtN/87HInhyWjzFp9jyiAsxQ34jmRSulLmwY0FNVR5pv - zXovi4INu05Sg7Zu1Ya1b/oiO4VxRc+fzOuLjx48dGyGCYj8zeLt8+5zqKhnHV1epRVz1eqL8PXz - FoSg4jXs8oO+2B8fPN5qxS54g79k8iN+1AGffgowuVYcQJ5MX3S/jHW84civYMQZgJzzOAaTp90M - aA3TJ9jHm65M+1Xgjp8YDl7j7ZtDE3ijs4GUnV8WdNImKEuPjQStYej8CbxECOIfwqvn3AC31QMP - 9SvDEvunhw2uT7UEhYP0wnz50MbuoQkR8KqtRZ5yreJlKsPo7+8FxGKR3g8/Y4LI6gfiWtcejAow - IDjnA0CqVGr7PULzAI25faPgiDElv6eYwGfUmPiAetejvtn1ciYFJRbn65WuLytl4RbaGik2vtWp - Wy+L/M28X5CKNRdvxokE8PGyTWJ6hG02HBn7vSxIDkaknQs2TRYGzD9TRXlwk0cq3zMRyqx2QMGl - j8Bm+xErvX7OgkomUPUlfhgG5FaaIwcpP0r3/A9GtksC5ugf9Xm6P0TAutodBe/7ONLH1vjyFStc - 0L5ucbx5D0mEAVdfkQ/UiG5uyNp/vy+I2Wujr7yqYkgf1nnnr/bPb7nSb7O6HT96fZDRio+frVaI - XjwdsNT5Gsl//hct70znnr0bwQuvZkTvvJtH49tFk/f5HUBWXOL1cTtl8rUUK6Td/bnYe4cwMG3e - PjotJwNwm0FrGGx3uOOl5bHZ9enut03zyHqzDJgh9+pAQn0V7fwWL6jiRFm6TSa5mrw2LmlnTfBt - aj4e2uYZL61rY2lYXQd/7icpptWDryAb3DikmqFJCatVinxYFIycybGLf/kOeAQFXo9DAdZXwIZ/ - eIrSob8D9gGjXN66jiM+l3fe/FTlf3lqINwdmS7bIcvh69L26LaFp5h9mQ8D7vkvUl9lFy/yy4Pg - V8ELQs7rO64/b4UQ60tDHkRmxqH+0QpEwbcmyjRu+vp967ysTkaJki+QKdZ/eQ9v1ibizWNPDZtu - VST/rvFMNN8664v9+vlAzL5ysOMLWMpLm0I4FRdknh4kXtX9Xg1dFx67frMLVm4UQzaty+Ff/rx5 - oPb/+BYzt5Ur6M738s5f6FSJKh3mMapBqoY1sdRHB5aj47bQT5wmcO7zzdtGMWDAzq/B5xVCgB+a - EML0dzgQ/RXci62cFRumDj8R0zTKeCtn24Zi9pGJk1luvB7Q1f3DQ6IGhgJ4uwsUwF3lhvgX4ziS - cckyKA4kQRqAYkzka7JBBapCQGb+0Kzk3gdQZftvAJbHRaeFXvBg1xdIv+q1N4TPIQerLyz/1uPa - /34RHNvGJt4hD5rlMsNe6F80RR7S5oJOrtdD329z8oolVKzkXgUyT/CXKJMDC+I7wwIcrfaCYxwR - nTdmAMGNnSxywTJu5p2vjg/j2SL9fj0VHLloC7BqtyDmb79XrU5lFz602xmp8MoW05mxNenP7yLu - o49czt5r6VVPMtE89jsuRlMo8MmkAAuG2tMNE8ADyi8zKQbtp+M3TyDYBOIiR5wjQOebm8GzZqzo - zspNPJs9bwBR1bhgOEGuWVyrCKBrHl3iO1pL5+8p62Ea5QJx+Xnw1tm2bXiyqpKonnOjm/fYRGg/ - XefvfeqbwKDoj3+R/ftYxRKuywKld/4hxnzBgAbRnIH8fo+IF1TCuE7C2QePQ5zhdZufOsfBPoGX - /PwOZr4XvG3X67Bjgfxf/8wInwy2ob+SG9GP3sqSdwv39RDwt5um0wO0MPw69oiMmxl4218evm4B - i7xlVhs+C34pTGigIq0xD/Fat+ET6mXxxV8os+MWOFYAhJnaAdjzeyoNTgmOoxigS+GqHms0hQYV - YSpI1r5zMLGdm8F0OKjo1PZrvO35F3y0XyG4nNmlwPN5DOA7td/oNpdTvI+vDefB0olGrH78wyPQ - zSlLguyzNAt/vfCy1usdOTe/tvk+wqiFu55F7ik/gBmqRx9K+uOG3Dyz6IeeQyjP+szg+kg58OdH - YPy9fsj9xR8b2p/l8viHh2bbnQE9PlwMNTq5qLg+rjH2QB3A6+UsE/Uc5c3yfDYWxL3dIq2Lzg1t - lXsNLcBLCJVPSd/zNEO2mbjc6w8nT/gbz/6G/IAxNl3ntZOrgXxovsQZr7O+kVHAsLG/OlF4tabE - ZYMa7H4o6ASce9sCt1b2JzIHLBnUPX/ZNJhH8BXAKfmAboCeBd4rkxFb7yewwLweQA9bhM7Lix1x - g0sWVN0JIgOLoPlh+5PKt/P+1jdybpbtEGZHguaJnFzXK6b9s+x3kYT+vQ/U9NHfeCD9fSu9P38h - 7fk6ZjJdosv5BiIYMf0JRS/BHHn4Rk8YtJmCkoj2lIYqZIVR8U74+PGH3W9WChw/lUvidRiacc+b - gMCAB3IPF7ahZu1EcH9ehG7Dky4PmGdQVaIO8/1a7nnjFsDsZ53IKyk/RZcFvwRenJNPtI3P9G39 - 9hNghDsTcLK3dxUu4wC2BGHk+MIp7kvhaABUXV2kMHHv0bXtUlCGVkP+8oZlzkoXvJRnHECxf4FV - DJSnnMJTiuUkVynbHM0NMMf3lbjXdqRbvLil9D5wCnIX7QKmff4D/HwayDnsXTcO3E+CqcNOeGOE - dzGF3qTA3bwGa7YGHqcXhwTmrcEiXWjgfqp/i+T8dAHoJWBL5/Y8CN7qlqA/v03s66bBj4UdZC91 - 66335jnAHR+Ra1L6hz8uLGrvGrwtIWo2X9E7qMZVRC7D+ItH1PQhHG1ywdhmBUBsMvuQves3DPb1 - L/zYb/73mThYMUd22xj2b30Fx/od6VP88A34cI839ALPa8MKd+BCkct4FIgnzVua43kDXhbccX+t - +xi/D2YOJV99B8d54XT80A4RZEwnQS54f3Q6BxOEQehE+3jY+l6fLGUzr2dyotdnvPzljZ4BZ/yN - MAfW7CknYK8vIqfsFW9BzBzA5f5ckaFVebzrW1HuSOmhRDmem+nXNpk8YiMh2a5/t7+88S+/2uu5 - BbZ1OQeM/3UCqfHfYB74XgM5s1xRejtdmkWHPwVoy2e/1wRdx01tjwn8lI5ETJ/+dXk+uNB/YEK8 - y2zS/f1lkGisRZ4XS9a3ReRLQL7+CeVjkDZTKxND2v0q8eK28Win8JNsNoaIbnw9NdNen4WH+MwF - 7NCl8VbrePurrxCj+DZ0gZHpy+WwGcFRXy26/LR8AaFkBOjWrZQuoTdpR/3wi//yaX3PH0TYMS8H - GfcgBH/4D8BRiZBzyDxP4CpYgfIdiMEiWHdAc4lJ4NNhJGQ8lm7cnuvvCX3MGXt+WxVbMgXJX70C - 83/1qXt3UeROH67kvInfcam+M4a7fyXOvt7Xv3wrCj418llx+cd3snVvQ7xyWdrQn6pqENjyTPTH - 129+e71c+n+2FPD/e0tBRQOJqGfJojw1b7b0hYqBvNtHazh8szG8hkFDAj1VG1KusgtLfJWIxW2H - mF6gGsDz8/vBByFK6CY4bgZ5oum4tkyi0xcDQvjs1xxp4oPXaVpMPXgdp4AY1uCPq8g3rWyd+pic - EKq9pQZZBR+98SPWhTe8Sdv2q1eELEPlfqyN/QpTJF1VPiPa2zIKwTKvNoynEJHU7R6U9owUwYU/ - Dsh1mrz4FVKUQkcOPOI78q9Zk9Ollq3VPQTrFCGwFb/3U56OT4qMl1jFwzUOGfkLTjby1GZvZPkR - A1DccoVEnKXF28mnNsiWoxEMjecV83rgGTBf6xCLS1uM9Fm7EHLc5Yoyv32NAjcWKWR+x5XcLD9v - lnbA9hF8Dh2WioWni/N+hvBxiDCywE8t6KEFGmx0fyDFZVML3tD7RZ6OJSVF4ZkFh06RAun0GjCt - X3W8mCCuZc0VryTWn7M3OaqUw9KZOnI7HYr9ajmwweg3d8jICzBOxelWQ5XiENn3TNQ3U3Yy2Hfo - FxzOiRP3HeO1gHCVgozmqXtCyMANKqlq4ZGTvXG9PupKTlrhgLTidygovLESnK5VhuygUJv1McdY - flN/I3nvRgV7lB4sfHhJjFzN70Ze1EZLjq+WG/x934bSswJfIt3b68CwoDFxW/gghy8KFuvacJyr - dnIu3b/oYr81wCepUUOjaBlSsK4bL847DWF8nJ/77208NlBXCTJiDPHBAx9vZsNKlJmzU5BbSJOR - ALUR94gB4uPm2w21uVqUp/W6kXt+y+jCSWkCMRVjlPQP1xNUR83kWu1k/H2xXrMBYlpAPOcW0WYe - elv765/y8xB26MIcf41QEqeFaeUXJLxKPuWcVS3l+yJCZPR9Fq+brOcQ3VUTpRe+9bgPP3cwvbAh - udgnc2Q/yiEAnrkCEgYvsSBn8crAY/nSkC2pSsylUs5DjBON3JiiGTHRJgtWadkiBx1mOhVf2sGU - aT+4bgxKx+srzGVHBgamX7GLKerHBXL4hPAe3jXEL+Yeptwyorg2TV3woYplqb0eycubUp3Tc5GB - muq9MHwnRbEaq8NIh6O/IMe+e8W+J2eTue7okpjVI7ou3ZbBUqveJN38cqTDCgYoSZyJihi89Ll9 - vBVZ1mYW6fqvKFi59VPw/E0pyUhuxfyBGyUQVmcdpc3hALY7R0Twu7RnlC73olgIo3XwytoMQqHk - 63yIPlhmiqYLDth4eZtSXVqZ64CLnKNz8ChQG0l++oyCD7n9BlyuHCeoXJMzQZ14b5ZTsGqyo78e - 6FwsGt1IY7vwYIkuuujxRJfi9Kpg4Ojn4NagymMnVvRBr/zuyPlki04vxWxDfON5PMsYj1vCV518 - vWU9yfz2MK4/fragUZUpsg7I0IWA6BbczMuMNLpfV0zwKRNPbf4O+m2VdDoS24J0YwTkp2vtbel0 - rWWDYSsU678iXhX3ZP17X2VuXwE/HEQGPkvVwCS5Vo3AmaEri0nnE5RZa7N+rVsKnYtLUE5Todni - 1yuH0RJQdKIfaVzOxqeEJBx+xLlkm7c/vw1vVRAT46Ndx8Vi2UCet6hDKD4N48JIjwQmt3xB6jOp - 9fVyFyK4njMeGSsfeDwgpgGOgSUQwwpRPANZy6TBn2ZykroLmJ6rCWE+MRlxpRsGb65bJXn4csG+ - Q/E0spEdYlnrFJ7cP+c3FXToTsJ4gCfivtL7uD6VYwCHS2uSUmFqysVnkYfT456StGHXkX5W1gXz - dnghZV9/bMfoHciKhCI0H0OwvaHlQ1bpHVTCigH0kh07mNum+o//hEc/RNAfWwul9qPy2EuwaHJo - eB0xze/DW6ubG8DqeauRftfkZpb09yLLfXVCOfWceNj6bgM/Am/kUkYXwNtWzMJj87PRVQt/8SbW - AQMJUSi57/NzjVe7hI+e1sR3bQGsNwoqeJouL2Ldcj7egnJKYI5ii/hMTfR1PTAQarDSiN2pdfy7 - 63MI7Y6ciG0zECxdThl5XEYVnbDaF2tfJQa8X7eCWAJLmqUwRgij4GsG4Nfsu25vcg6/UDOCNX+F - BesK3xCSrPkipTPvnoBsNEGa+m8SfLA78kr54WWd1zBe2IgDraNKGRgLY89aOQssSrHYcvJsOaTL - ZQq4l3ThZSF3W2Rwl3qch/AtAaipOiqeq62vjSJOcpU+W3xPmIRyoOwSecffnb8AnbRgreW79Uiw - 3F79kaM324f3oLuikBgHumDjDeWlGt7IiXOtEJAHSujgr0zc0yKCjS2rRF5jSUe3XB0KwSF6B4Pn - 90FK5laBNdS7UP7ExxilN2R77M6nEkVKQSJnvFCupFT5h4+2mUneZjT+AL8pWslJUJDHT6mmwfmZ - usStmAnQIPhqIOxTg2g0VsAsWY8U2LdeR2H1tujGZWwr184DILN9tB7NAqyIyfa+7Fdz6eNCWzOR - jVw0if9abMr9jXe0HCfiKAxPVzmOn3Ct+jsylL4s+MO2pPIhsBCyTM0b17NQhX/riSQDx9PthDos - R2++J57+MZrN22QWisVyIXaktn94YkDHgT/80AH1tnc5pEC79SNKhsFu+G/GGPBNgw2dFVcrhtRf - e2iegxG5yt2MV1UnGwy924h8hanBJh1DV74ZAgkOkiiMqy8VPAzsJEHnq/we5/Tm+ZDgk4A5D4Xe - ln54H6b96Y6PB0X1NhCVCywUiUVKgL/Fv/F9lTMXbFooF5QzQxuqKREwXR6LN3XSi4XG20GBpHU6 - mLnf/ARb0rJIv1/8Zm6qsoOH5Hb/m98xPTHcBqNhqMkp6a0Yz1Ohyfv7J8rhWXh88XuXIL8uMQkE - 8NVX5Jqt/MfHScplYOezHk714UtQUgVgC9E8QUN/yFg6LRkYhoMIoUPqI9IY09E3K86fkD6yDtfi - 9PH6ZjVL+Cx1Y28DtdE1vXkBHPrFRYWcVd666sMGHa99EsvifDCcrTgFLFh+CO38th5/LQNVJ+xJ - pm5CvDqr+pTqrkzI33rAupUkcpDiF9Esk3jbudF7eGj6CvkKoWCVF335x0elkDoNG70fESRwMkk+ - N2lBFFRhKPvPgZjrGQAajykP/eHnkqR/DPryMWpGlpTiGYgk7+J5n59H24FrIHjseSRk3becPM0b - SZc7KDZ/0UI4is0Bv9oRePjTODb0V/tG7nl3AoI7vli4r5dAPORtsYD5FUCreczEboO3R+8qyeB4 - YE74YFy1ZtnxAEJN15E9Z6mHD1ESwc+QvwJZlZtxiXOOgZWUH5BSRQJYqPF7wgmpHgqmKgIC6woR - +Hs/gU1MuqLh3cNttBR0WaWaUpP4BjDLmBDnmAXeepHiFN4f4x0D8H6A5feVDBB8jAGdHhvYz5Ej - CN0KjcSX4BRP4EwT+ZctEbFOCtCX+Qx5cFXZjFif0vjjm72RdpTh6jrKgIqrZB+BXd9IYM1csbHM - YYMS2FRi9A9X57R3GMLsqJh7S6a1mW7vcgNZXR3JlX3U3pbBUwBDWUzI5VI5zd96BPLF3K/2viYj - fZp7xG/YPMrumehN4nfpoPBDPTq9zwgsVuaJ//SGdr4kzfY+HCH4w9+8W7G+qvp3g4GdJsS9b6f4 - D5+BWKtFMKS+MfKFdWfhIaD23iZ0GreGoBY6WcoGXK9b9FHcmRCshWGTHe/0OeWJJYX8hEhGlZ+3 - HaIyApc3vwQgh2m8/fmvi3g6kvRaWnTYpryCWV0fiSWfKaCWo0jyjzC3YJPCWzGvTdD/83shG10B - l950H1hXsyZ//EffUbjIT4M9kF3PgfEY1BXkwzuPAvV1aBZtU11Zw+xCYveoNgt3s7D8fkUplhpv - jMljvPIQzN5I/I9z9lYn/OTA1V9XpImT6QmtWJRgasQGpfv4LptnbxIrCTNCDu7G9Vk9LIDV24DX - 8yiAqT3LPDCqZ0rMKz94xCFeC3e9gPQ6pPE4mRcX6N7HIrp7VMclPAs8aPVjQQK7Sun6VNYAvhqk - EQd3H7qF8f0p2a+3iszD71uskrtvQVYGJ+Cc8wEsOz4CQfhQ4uz8OpXvJITsJ34EvX9f4+2jzRac - r1WIIXNTwJj1wyJVR2wR88f3Os2Ia4DCwRghcbx7P/vmT7BqWYIl6C7FMg+zDRPl2JLgl8zFqqxu - CT/n3iH+uxmKtamS7p9/DhDwvFWki/bnH4n1/ekF//KXHhyu4ZUYkz6BbclkS9r5PTgMTxhjwZMZ - ue23LWC2ONFZ8St2UDp9GmQWOSyI+lnxH76gPQ+IOcg3lnyFKgxkvnY8IQs6BfYv+ELxZzwBomm1 - 9c+/nnZ/POHWZGHysTTkbTcbUJ+RQykMjxDpH573JrH1ecimxyg4Wp0DCARGBcSl6JAVqFv8j++W - yzVHp71QvahiX4KF91fyvOCpIdZn9WHV8gQZeTgXxLieUsCpqYRsTzl7fI8aX84W3wu24neIKc8s - m2zfBh2vo3EHC5dvT8hfkg3Zcpb8dz3ufiUY3XXQ//AGZkfNJKcGVfq2lD0LrenyxSS3VbqyPudC - a2xxAGaH6tvOD//ylTvXlMVQap0lb0nHovMr/Yx0JIohX34EE017TTEFb7SBnx5oAS0nVSeq42Tw - 8AM/pIK4A//mz2rGHNIel63BlynVwN16JRhkjEV56KgSPKwmQZ5/LRv8yA4G3J+XuNANY/5sFQk8 - obeD/vzC+qyuFsR2QwJZcetiKdUlg08fKij9na+UP0J9gn/+s7h96madOkkCQClSosxWWPCXKVXk - 5V4WJDgmXrEJPY6gg1kFPcTr0JDY2xiw51FYdpyfN62XygLg9i0w83kV4wb7eQE7HuClendg5ZvA - hv8+O1ZSbAduFOGudzGrcRJdffmUQfalxf/8LJ8v9gb85mESRZUCisWPhOHvK6SYU/QBrMc5xNA0 - TwPSCjGIN2GKNHgRzSNS7hUZR/BGC4CuawQHsXLBeMnWDp4/1obOd7yNiz9W/F+e8S9/IYlZ9NKu - 7//pLayhry//wvGCF7kam+26OCEAoOGJZ2advjzXM4SMGT6IbX5/OqVXLZUR/l6J1r3seHtkggUa - HTTE4njF4+KwzeDPOynIXLXzyO/zBd7HZETp3/z/8zth3m/oDz+5l3RnoR98Z8ws17ahThSH8CE4 - M1GfJvUwSk3lnx6M1pIBC1g1KHNE8UjKbYdi+gpTKL2BueC77nHxdta+LbTGDgfsgw91fG68Hu5+ - njjc5hX0J+YMpM24BA0xRrpR8+UCfxhdpPzxa0zcDu58jJ4fPDSUZ8QNjsX6Q2o2EY8wX9xB52IT - hPb1shDGbeUcpA2e63r05uB8TKHjMD9M9R8o6JkbcuidfZ1oTqWPnHAHEeTkPEWm3ycxEdkZg12v - EH1Eubcm+rz8rV+iy5d+3KIPj//GlxgCivQlX4MSKPuW3tP7TOhC3lEIzeUZID3UU0qvryyD7QEK - mKv6LaYaw0SSwZMX0bcBj9ORUVv5/bzlyAasOgqjJz7hJe8HcsfdB8xNqyRyeNdk4gtvgdKOKC0U - Ir1BjvDxGzY8H1go++WAtFesUZY8ugqGF1bc9bo6CtXtIMKpnB4k09Qunr+ubkC10xhylo+QUun7 - tWT9frj8zf94060ygf7YWcSdNzPmTDfo4EJIS9TzKNBxbdkafLc4wEO4n9o8TS8N7s+D9M94ois7 - XwLYxn5Nouh4GgXOeEE48Oc7HnxmP/+9ehC0gsDj8drsF+tY11Te8+QAZm2zX3wpJvC1fs7Eydrb - uOdTizwW9IcznwbNGs8JBosmI2RNvRtTs58WqYbz4y9Pa6bzV7YAz5inAJStM272rymB8fYQll7p - sZm+rDjB0fi2mKsHbeT++FiOFIDne2PEdLSNCUqpOKDAdBp9e78eEtznc1AtE9Vp0h7qPz+H1DJa - KREvTwvsehhFxVx5a3K610DQx4wg55hQXkPfAIrnzCJGL5yK0c6kDuqueEbnPW+ib+IY//RU4vCb - N0lJPkCZTD5Jg1AtlpsqSuAvL3SdbNK5PW8AZr3APX9C+nTBsQSflViie+lKxab/Rgg1tlCJ+tu3 - UFwVKYDf9gv3PODoLYmAIyhNpUTMqt+KpWpPKfSP+jU4HjPs0WUsWGidhpicH85J5+tUV4B+8W5E - CydH//M7oCZhgIqdH4YxkzvJ+zH3AK44Hde+Ki3QXDoOz3z905fxQTS4DZy845nXVC4oFCBrhCU+ - tmNAq6uRQCPGCgnU16vBQZUZMEtsjKL2kem9Uog22N8fCqPE9Yi8rgOcT7ZJsu/hQqcNZxnkO6Dh - w+v9AbSvVQj/6hNnGQeNcGLkBTqy7+FPotuANXPhCUovLYjzzat4OV3aFsYP0SCprJnj+p5jH7Ap - iIJIMFZQeeuJgfD7iZHKHJ1xU8qZhf2Ne6Lg6qj6mrl+B78vdUS6aSmxUEaXCPzprzNJ9VH482O6 - K52JvdcXNvGzYXA/ZSG6dZwG1ih+MfAouQkJGPEx/upTpsDzthnIlPYujvml7qARTwqxR1Zv6KsY - BzE6iz6KC+NMV3DgIJxO9hn94f0PS2EKZca47f64i7HKDx3kwkH904PePFdFC2FWIfQIr7j5V6+Z - LHQJpoSpAMFXjZWHwhCJbguXYo3onladnAfJiryPN/EjTfBH1AIpz2M8ruOcB1I3KT567XnsRg7i - Ez7y4obFw2drVve88n/+D1lvvtZnce/qsudlyLs7V/1fvpOSy5N4lesXbMn4LZTa2zGoNrx3ZWGW - DWL245O//Jznt2MCerAeifddAoD/8t6dT4L1PXKAalptyBWKnsHgNFK8+6cB2o7KEeUo2XTa6yNQ - c6Ur0b8/oaDDVU/hrUgA+cNTvPP/Xz6PCk4eRzoDS5ND7b0Srfi94n/59XRyz4E8AuKR/pn6cBqN - HsNhfhVr/fs+/+ptSI2fR4/iq8bDtX/fiB682pjseTvsHncGWZizAX+NMwbGW3NH50rKdNqoOAer - wD+RoWrHcZRs3YdjHfLk+TOZYtrXE3gK3gfpyyPUBc7WMYylPkfZ7cM3tKm1UmYiMmHW2rta7P4D - 0ukxkNeuL2Z5OySAbbuWeMTTi0ll4SQVuDMDfuqHYqGnhwb8evFROV23Bu/1GvC2jQsyr7zrCdor - z6BpmgPeiOjH2Eot7Q/vg3X3r9u6rbycwOj0j6+W4Dn4AL8UQLzdf2/4Qydw7R4T8dx18Ih9tVgg - c3KK1/h51P/yrWO88hVRdv22FB9Fkfa8H50D6BaCIN5LiD+VHfz5u0XD11ze8yN0/5xVyu7+WpqQ - 7gV/9UlKWewfDf0lI6dZSrDc2S2QnzFykfEe32D1ZZRBnruc8XyV1YZX+bqFzdcxyauvfLqA+eYD - 8xjZWJJuAaAKqib5S486Ceyr3QhVtlgyI3x1EmSkAZsr2+K/eiE6J7+YDpdXC/XIiNHf9wnmlNUw - 5GiMgmfM7+iiGPAQrHYgmfKt2XxfGv78HWZ74Rv/zYc/fYTUo2XHW/y6ZbBkuRMydj3FX5wgg24+ - 5sQ6KJw3d3M+/emtPT9gxy39/SBs5OGCkFa/PVp76/NfPdblV1/fflNRwV1vo+uON7vfNf7lPcdh - TfR1ny+wQuETb5ylFYvxThcwRBGD/vK23R8F8DT7BQrZt0HpXg8Bt+itIpRcDmCvV2RQrJkb0cRH - qvPa4kUwSKcXuex6YiP1CcK1WFVyh23cULX/hHD310hLzVnfLv7mHpEqKEQ5zIO351msfHqyIbqd - ywosl7FP4f2Uh0GdRB5d/+oR2znD+LDXU+ov12WyzFg3ZJX3R7yMj68CU++m/40/HchBLPctliY5 - pzahy5JLEIpi9Q3Wb9zTUb5cW7iJDQokJ/M9Lhv6XvppsbUfuXqBHT8SmP0wE4DKnQrMpaomd6MZ - kkw/cIA+xgcLB8G9YrmqJLpwuVTCrQ4tci/dvFijJHRlXh8rot9+xwI35NQBAN48sm2mBNtNwy3M - fKbH48QYYA3CVoIJuHnk3/Oc7Utw/H+2FAj/e0vBORUkooki21AY2bmUxb2Ak3Zz4g3ZzwBi4XEi - DrzPMV1SM5KZhXIBcI5cs963Fw99LdOJ9XYfYNPboYe2GO4QerBi/k35EHgH1kUhrW4N9673XXYv - Nyb6oQ7BuqWLIV8Kf0KOMHnextCyhCOug+D4bRtvI0ZWwun7SVE5DKJHQTqnMJv7EymOP83jNsIq - 8qOwVOK9XQRw1do8XO5ZiHJ3OHj4frQ36H7SHOdXeomp8W00eXhPPDLOb6KPi6xGsDsOEENgdvEG - wJuRi0zq8XQUcLHlZAvhd+04ElW62+DDxdVgk04U6fmvBvPqVx0UzHeNoX7hwKK2Jxae8SXa7waJ - R+FxumD5kK8myTBXUexZSQDTwn8iD1eI0v3SC1ispEJudfuN8+s8POGNZl9y7c0dYlbOlsX645Gi - VwBYKvGsABxdb8iq3ge6lLyuyQuuFJKXsBmJkIwpEKfUw9UQFCMrnNtAlkev3e/iYb1Vqd4R5GDg - IstnLpSth3sLf+3xgSynGcGcdEEChq5NkfsQrgVv2QcXNgs2kP0f0q5ka1WeWV8QA+kkxZBORJoE - ARVngIhig3QBcvVn8e5v+M/OeK/XrUlVPU0llcOvr2e9nSYV39KYnC0lQHwUh091ymY6pheljGnD - x6MqJzKjxTVJPbF6abzqMmPBG1+6e8I0IkO1N2I6Krvul7PBhQnsQAvpPvPtnB8ftQPrfpLgooSx - sEmvLjiFrJPbabY73q1HGa6BfKGRLCf1cqqbCd56yVM9Ek6I972Og2c5KURL+Es3WqPiwCGKDFo8 - UvBGb0ixAkm2o3gOB3MhztlXscvnNHp8lXjy7wcAr8wfZI3fXHRJOyKifxE9TF/Vo9kpcKDQPkdq - 2Z3pic1OydTsQijRXnCvhfhIE7ih5Egv6sOq+SYJG7UM5APm2/PVXLR+cmHnnS7kSpuvJyqW/ATh - 3ul0L9y0TjhjL4P9lGxpvO0UNOuXbILTiS+Jtom+bFJSGOEqqnd6yXw7XuTPgYNSfx/J3hRvazzt - DfhpnE3c+rC+5fJ9RKrQ3Lejo0FbT9V6C6O7/26jsDOuOfsV4aSeHMcmWfwxY/H2fS3q3QxdGkmf - NBZKCgp43G8m9vra4ZDbogyjizjMkVFD7OkmI5zwdUfzmCf1ND17B8Y++VJbKgxPqIcrKJ8neRGn - Nqd6thD1AUWDP77r9NHxwii0MFYmpab20dj06eMX3A+PA0m/Pe549RRO4GV9RkLi191yLAQMFukv - xL3ov3jun78nXMpQpIfpuIsnGOJeVaxnMr4+mp4LSS6KqoFuH/w6M88TTperrLy3bkH3kj7FM2V3 - Du6/+Uq8XI7r5d4My3okKiJeoG7XwY5cBXa1aejeCZxcOkJrg13mlLhuso+FwrgC7EP7R3bObZMv - 7GQrYMSMo+5geZ24PdxK0A6cTUzBALZA8oa/fKJu3u5jWl72DlR4exhpnktmf2aaoRbHzUT8wJ+8 - BXN2qwaV4JEMq7t8Vt7mC13OQkl3mf3upJd3G6HTVZv+5bM07VMRlu3zuNZP0xQGyanAc9wniRaj - qV/XIDAANhNPzlj4ouWWTgnQXtpTnOa1J31Y1Ktyn3g0rc2pm8VdYqvmOvjR2++Djh1PHwum+4+Q - LCtoPMnddVR2LXaIqUHaCcnHPqNHGWbEf93cfFxIA/B2zZzacflGy0jnVJVeWUx9Yn68KaWXUrXF - fYpBu48eS/K0hTyVGxrtcRWLyfUaQS+W+3/5xvrnZtzeQ3jS8Hg91hKfklC6lbNDL75o53M4ZDyY - i6GRQGmTWvgaigFZsSNYCo99PLXj7QUa0zEW4s+cT8TRDDVaBxcr9eEYC99zaIA/LAvx+t8VCfeH - U/ztD03WeBotI8V/8U0yEt/MORW1VA3QpiWubnjxtDkfFzgf7yUlV2mfi/TTKkgmzCBmEBuMyeUi - qrt30tBTQmj3l5+Q3yaHXiDua3qPWv8f/m3g29VMUX8JnOzNQM3nYKNZo7celHvL8HOjPuvfOCga - 9JL0ofsvr3jsHj2xGmDTwMrndcklrg/WQZGtPkoQ+zX/dQ8OBGdBoTZ/4T328c89eu5PT+pu17e3 - 9frXwPYVWcTzrz/EbHA1qD6vhWrjQ0eSTqenitW2Jtqaj/PPRBr4oZWToyZe2GwIWqgGLDfJbpub - SHBkL4JIjk4Ef/qETROxHai2TkvK+jiy5YC8Rj05rj1yR4SZqGgYgFtvTUU2yrzFswsMeyM7Ui+X - WTfLUvVSC5ZdSZh1QS06F9mHt17wpPjZTfwPf1d8pXdf2nhLe6I82IERktSVXp1UqK4DFq45ejU/ - HzSZapqqVaIpJOGVOe4OmfxCf/X36si1KXL2UoEUEwVvyS5E4soPQDikBtU0c+4mXrZcGB/Yof5h - br22aXwRbv29opb5Sdha7zAEB+9JTMOdulk1FQdCM+KxLG4txH/J14Il3TUktbHdSYZwLtRpuHyp - k236erHyxFGPJkuo/zCsuA0yhMGbyTr4V9URX0q+AZpGbLJ3giafd9dkUs/VmdBYg7SexPfXVW87 - 7rjeqqjjpbmGqTogcT9KW8zFi5DNhbq5nVXcrXxutPLEVURJcEloh5t4LG63EBbLPY6NBm034/7K - I+yK+b/621s/JYNQtIAYe1zli6JhDiy13eBJuASIpxbXgvY+iyPzdy0b7+sgt7PJbCyrdEIvZSP3 - YH2CL/U/euax82PzguRDb8SgzyT+lDMfqne5dUlARD/n2/H0gu0rtIhld7XJtustEk+j7iiPgob+ - 6gNyUuOBv+rD6gaaFQYy99Od4Kulm/yDVTaEOI+pu+sO8ZwSP1Ob9ge4nIyTx0t85cPwyiiWv/1Y - szSxHDWzfhI9f/UYMYIeloop541z0vvect1qk7p/Ng8S9NcnG2vndlYUujXJgT8d4u4UGe52jU+s - pPG7W8yj1YBiVcm/+J9Cbi7VkU0aCaGqvGn9fur0tZs13iY03tLp/BfPo+rkn26pwlaEhy0YNN1p - Yz2xRO7BGY8VNZOlZ31KLwVsqCLQ4GWkNWtjN0KMsHCcVj44FYefBbHanEhJRo3x8/XUgogXg+6c - 6V3/Il/PVE8bXGoxM/cm2i0tbP1XTrPB6moWKJWt/uWznz1DbzKaOUVBasSYlZbD2HxsEhjdLUev - h4fu8Y91tKPk5gbmlnLn0UtPLFAi3NP9Wq/FcPvo1b6WCdVRMXlzT8ynIhZlNv7xxbnFRgWpbm/w - +Zme0HBWhjOgd2wR93fe5IP/+YZQcZo7vgzj7U3jdPmgduti4mVJjWb1ErpgYrMkTiEaiH+2xxc8 - +Hk9MmFt6/6zu39QNv72pNDuoznzk6rB/YW29A/Px+aaZlB1RYRFeVfljLi31x+fJKZX+PUgXZEF - 7zbu6Ip3Mc+/RgfsIaqo9iY7JrbZMYPSHyZqd+2MxiHyZGXN77H/0zNZ0zlgBBVHC/iJ+SzB7gnd - NSupTlXblIxPq8FdtKPxfqxUs/f0okRJrZ1ptqBHx4wie4KA9JnavqmZE+EfAGJRZCMvOodc2Nw2 - FhzUZiZJXhzWtzbfBgjB7kCKwA+95ZbKCaDWeRHPMjY1O8emg958CDR/vQU28a+PC92TnEdZ/HD1 - LCDrCdM1C4nxCeV8bj5Bga5XQyLeLpS6yby3MpRInP/9+2jlhQNr/mCp4HC8hNF7hEu3wWvLb/YY - XbYLWB/yXfMNd79nH3LqpYxEerSOKhq96zrY9lvp9Mazsp5XfFbbrYNHXjrr8TyGfgW3jZ6SSOzs - TkifbYa6YPemJM8lr9c9T4Y9uqX0WCYbNA7cwAMUXE+Crf1iy6nc4D/+TOPsDPWE/Ren3k+iQQji - hni26z4CJ6cN1aye1EsJ3oQe99923J4QoCm7JGt8WhtyfQyDOe44+lJW/kWMjWp0UvHrXTg6DY+n - F9y7Lj1AC1Owu9DDYxi8WdsO/p8+xt+do5h0bJ4RtJtrQLUZ9kjK7bRXVv5GLV45xtPxopagpt+e - 4o4LGSPoZ8Nf/K58tZs/cluCdmlK4lwULp+f6cIp2yxiVD8eP+aUOY2Nns3iUb9/jDEb5mkBs319 - qSWdH/Ec7S8iOikc/osnb6p+4Qe24YMRQyZi1zEeTeC45wPmHI1HbJDOPSg6V2CV2yndLF2ZBQVL - r1T7vW/dMjpCBk+xrOnB/HzYa2jnVl3xn0buz85nqfk+YRpOXxq8unPHIntulNU/IP7dG0268m2V - 58No5W9+LJ6HKQRuJIDVu/nsJkc0FaRr9EPs+hMwPhZrTu14hke+CUgu+JM4gdlolNxN/m2Ou+2h - hWPwTMguSrf5MmtfGVa+RExLtxnN70kDxfaX0p3vdd2yLVj5T595QZJ3U6ujRtkHz4loKz4uw/un - wKSDTM3J3HvTPpILdNhtDtQz+289PsYwQRFXJ/gVjwWaBeQ/t7Crk/X7DmiZbkmq0s/HwUIqDzWz - T9gA96o/8LuCuabCs1xf+QinUb36fUdD7/wCrO9yYpQ+nw+G8vFRgNR2jdcgX2p+E0KR1A3Zr/nW - /boAw0Y6Y4ovy4tNs3Yd0dtOEnp0lBzNlzRS1EWEKwnVfEZTZnIVHChcqa3+QnP6urr7h5fE6sUh - bkCbJwA34zFLDvgf3oJ13ElkF9i3fM69qkBVKmf0Untgsjc8MOhu8Rkl4VbVSz9Oqep6pwMlXb0x - 2d7bVNDXCiE4vpf1crYhgqISH+Oy8r9/fkTh9RMJ43Bfi4homvqnh5Nh3pgrHtuwrXcdJdmy9ZaB - e/PqdO/IKC7sZU5u/VFAQWZNTOFkmsuoaDJa9eSfn5UPqz6EhL8K1HisR17/+OvGqmy6E4ZLN31S - 9QWr/sec8lyPQLU7AJQf2V89ZyOWq1618IMjO37ZIak65CPU4sakwaBG9ZIrhwU1asAT7Xid634S - XRedG1kkZOX369vHBtLvnzPBIg/sN9TPCjiansi+Lo183mkhr5ajeyWetHjs1xPviQznVxIzHBs0 - o1yw4MC2Mz2seDslGqvU5Rfq1JPz1qOek79g1ZN/v6+efSvh//l39Rrvi/zROXVki/ZfffnT42X+ - eVDjeI9ywZwvPZDEY+sR8g2arJ+Sol11d8iq59hShU8RTFruyX3dz6l0nxYM5/5CDOE21lOObQ0m - h0jjYkTg9WDfe8QJvxOxz2GApFitLXVeVJn+6emJnKH4x+d3+/IQT6JZ9PCnJw538czmm/8r/vCf - ugEd4uFXcBzwiWHgb5uM8VyaEQd+jhWCvd3zzy8zgAmHI7nXBzNmh0z+wC5apvH23uKa5YvSgmvf - fyQwD268HnHW1PtruyWHle+/DUGL/uH9/jxruXgKjQk0ZmJqv4jvSSVnuqDt7A8JDuuUvWefcuhx - 77Z4s+L1S30FPmTGbkP1Fc8msU17OOF8N8ppXdTN0boU8JNuJ4zebGDs/nF8oFtHI1ZyQSatuo8D - 4KY8tb1MZyJb+BSMeOaot98P3XzUZ1n9/Rb1zy/LxZUvqmLoPSm+bhbUNNrSqG5VKNTeaos59bzj - QrJeaQlLeqx5V/JlaH7hjVy6px3z/l0HEA6Zgfk4fXvTlQsrNd1fOHo4Y9ObndPEA/OtAy0YJCbT - O5tTD/K8HonmtHjZHm4F1Eis6b/9koajra5+KS3R9PDWfJTRTvNlaq98agk/3vhPz1iufTCpXywf - aNoO6J402OO3wsNXV/9g5BPdjOfT5Sij3GnTkXftgydwSv1RyVexxmezH+tebNO1vp0TaliHJZ+b - bV2oz43pYma4YTfstFSEwV2PxJZZVE+TaDhwEq2RXlA7xrTa+O4//0Ra/bWhm0+AjODJjYN5aGOW - ge4qVv2jdPVv0TrVrIXYFQOq6cdf3UZYW/70HbGx8GXsurawR9+6jLCuj9ClmQGr/z0KK/5U7O7g - f/zULC0HrfkugrOfjrS4e9jkBSMe/+UX0W51vPygE6Fy9R8xR39C1Jy2FUzjU6OGERVmH5xQCe+u - sOgtOlfdPOwEDYBvT2MpbDuTj1KxAGmxO2qk663UntdWfhecyR3vJG9OPnYCZ1SO43b63kzqtqMB - nCEEBC/l2xsO60NodtY3I1OvX2/6ea4L6nXZEeOe+blo2qoDaVpd6Mo/4mnf8RlKh3ZP9xP/rNlt - f+yRoENLTqfbtxtrfhOhNx8BVuu+qtlruY4ouwSU2udwYPP94ZQQNumL4OsmYv3q/6Lfwz//0xdM - XkIeUob2FB8kl614LKM/f848o3O9MDsrUIP4EzlUd8EbjWHrIip0Gxoch2e3/PlTf39vOEuYs6/a - +n+/n9ptcWUicssCWKU/iONK6xHaDR1ReBL7cfNd9JjpHeaU2w6O9Lz651N8qzR4/WZvXFZ/Zrkh - d0LSe17oYbu9ehOXcf2fX0P8lKvixbsuWL3I4f7v82teomIDxXdfjcp0P3aLhl6fPz8KC91yi9nm - sCjob/D/JT1NOUsT34V0x93pvnyWf/5ZA78XupHD8b0zpfvHwcjWaErN+SsyehZuH9gL+EoIX3/r - 6c9f1XdfGzOnfbG1v5IolI8q+qdn+/dBc9XTSSyplj5rNOMU8UAfY0MMbPXxQowpVOmeXrA6p3JN - 36fBBzdanqOa7bl8LHAjgtZ9BUqEchsvaz8AIqzx47R+3vK3nh9b5AkRymv8x0fgU0Y+9b2mMifs - 9xz82ILHP/9l3o6ZjfygepLwJ9dsri5bgNVvpGY7u0jgL7OFrFtKiQaVZvJvobX//p6SstrF4iGd - fZAFzxy3RooRxfHL3q7+IvHsknTLVqlA1eNjSYLZ0Jh4Wk4YfHRzx227OZgsRZoDL+lWU2t9WGx8 - bSsRMrjc8TYex9XfmBMkBPsD8dehM3/xrwa/fBnVFV8m9RXgP/+baqN07eZAqBIovruKkLEZclau - 8+3++TvEmzsalvwHXmPTUasXg/h9D54l/PFdPzkZuXjAj1GVPpy39g+qeu7SyABD8L8kiI9RPnl6 - USD7/nGozutuPj/FqvjTh+Q0Hb5surwJh3qgNtGIoNf80boXYDvuhLsZCWhW5McHYj/oaXrzlW7u - iVcB1/M3alvKwEaBCSnUloOoS2LVYzrXcygxFpus+rrr2/vDha/iFXjaRF80P1MFQJxfHt56rYtm - pnhP0Df8Z1wqs+1eQqVjUAIb0WA2Ksa4+JChKxI31KFT1NF28/K3Da2Lf/E6nXWotuv3x8XM2ni6 - xfIHUJW/Rkm3RG/sXpUMUSWqa3+x86YV39R1f/72n0lcrGeqXV4pOTm3TcxYIC2wrffdv/5G2903 - Z+iLUiR49Yemi+8bcM5xSYLorHV8cGLFP/9fu6uHrsLqVEA5OleaKZt3vShzViDhYmVUPwSGNwdP - I1Gf/S0aV71bi9QKSzUX3+uUt4OcD0d9KwNvSD9cejuDsRG0UHUvjUGKo4BN/nlmH7XqyuiPX3Wz - I3shvMa2o74+fMylZbczLO2vwqIu3Ou+ODxslXRfj+xLwYpZETY+WvU28Qdqx5LLWZo6IH5P79UQ - x4v41kD91vKNmi+FR7N/UXhY/Vmyv9ZOLj72RaLU+Scmrv84xUNn8RrI37IjATxcNERynajx4ceP - 6p1L8uUHNQ87pUipFoffbsRMctDqjxDN3apxm+6FELK6asiqRxiN28BC2Y99ieEsU86EuE3gaM4J - tZ7R6V89+8NTeltH4vz5LWhdH6qPdDT/8e1Px72IDjscs29rYbi8R0Id9HyiNsiYrx6brUXS4zDV - /T3ZfmCy16nZRzQy9s/fpms+ffnMXOTpWKirnzZyJkz1lD16DboOziTyg3O8eOA36M+f36/8Sazp - MQHYPRLiuu3dm10qTEoatxJx03jXSUv7CpXVHyZecgvQfA/aAlzOO5Ig25cxqw7xqKb9baS5+GJo - /ONTFoXvv/1ldtNrgG5SN65+Qt3+4cc2rBld1zMfvOKygHbb3uhhrW8CfKwX7I30SHX1V3rTn99n - NGikfty/zLn57Mr/18MH8v8+UnCg94kepk9nst2rAlW+TCGx2D2OlwuJOQDQtuNDiTQmmAf2VNOB - bMg+uXuMdcUnUx3c7unu9Hnkg0BeoNaqOBDrfTBiPkgPFXzyY00OHBSmsGWsgGM6lVRXdk4uNQwB - qhTrSHxpabw5LzgZHcbzMi5R9vJGO1AzdCkTkYQupt2kn24tnI8ppm4Uf9EsD3d/HRS9p2RzG+Il - PU1Y3VxvlJhj8+jmvNoZ6q4QPbJHblqLTeK06tf0MT1OFUYjao5ntThzHxL8Ail+mj3PqWKkqBjO - UY34TpwsEBMd0fj8FuL30jot/HLuQWw0cWy5LycXdJwbOOxQnzN9aEJgD6Umevp+efx94myYDrNG - i7dhe0uuywt8prnB6IFR3B7E74QEeJ/Jvuf39SQHnQL2eDvTUw1LznavBtRtE91oKblKN8P1MqFh - 1gYaSL7OxDF7n1X91f/oCS22J8Z1nEFYPdOxc7b3TrSQidUvYhN1NBrl/evzMNS96W2JlvbPeInC - Xwj3K6pIIJXHXKguuxGCqQEShDLq2LF5fqCR3jk12/zgjTkqCpBtGAk+pR80HXqNU5n3AorvhhSz - GlAE+eEh0ZN8xLn02rNCVeXGJhe00zu+/W0+cGqPO2JLRxFNJ2T0wBe7Az0Ggo6W8/4BKqtXCpe+ - P6Y0CvwCv7GvSTjHQSdleAtI94snvTe4jifVP79Atj0fQ26ifJklXYS4XOioDnzFXlGUJuCQeUej - lj+jubvOL6BkK1BtjoN62UZXSy0ui0Mz7nxiw7dtFaRqqUaO1vOC+P3Z6UHenVos2o6UV+Xzy8OH - k/ajws+QL2+q2GonvwWi346vWkqONw1+nrOht+HbxMw6Zz2UAuYIBpOxqbcLB5nWNSE36ZgiCbtT - AsJlH9Hd7+GbC2LHQh3P1UzTQ+PFbHl7JeJK16XG9v70huuuUYAIFaHZ+v+zzWZ3BkUgNjHftOl6 - a15c9Je/8b37IFZvBxce0Y8fhRqitdX9S9Bm96Hjy9/e6rEJl0pFi3ok6+fF7H5wFlW47CKajI86 - Fj/GK4K0O96JdqDfbrjwfon23+dmlEhiesJLn56qKJYPemjpA7GGIQ6dDP5BNVeXPNbXbqPsHtVI - 8vtcm+zbMF7NcD2Or3Yf5eL1XWDotvmF7jezYS7veS+iAq23uk8fPRdqcUqgNjc10W63LRt9XJWw - 1TlpXC62VYuhERsqWg6UWNVTRkOVxbx6OwLFHEneXv88Wa2aTPadOrf67Im4j0bUhI5EffV3zGmD - 3pz6o9WOlPpJqSelK13AZsqR2ynya8Yk9QW0vmd0H0ZxLkyns4vKEl3W+LRN3poXB14f5Uww3Cwk - /u7aAqw2H3T3Wt++ntVkQd23kKietshkCcYKuJYqkN2Svb0lyh/ZX7xS63zk6nExDEPle6UjbrQQ - tGyjo60eba0giTG92Fif6x6qb9fRQ5c/c/6zjV21522L/tU3HmB5qi4od7zlAMxJ+SghvB/Kndzj - 7T7nkyb9wF8+xnmJc0adkYPLk0jU2M7HTugf3Qt+RaxS92Jtcha+k1LtvqVEsD3k3V/8Km3380n2 - pm23TPL9AzVSAqLj/ZyzoYUWrm/Op4GHXcSCbS5D73No5MT13snr0FZgOFFA9Wn45vPx6z0hvqOB - 4Fcmd8vH6COwNLyhBhdea0nwG/ff9yfx9pvPG40v4bnw62Do7FzzafXVEO/4B5rzKe7GUKk4wJZf - 4Uopz6aE90+sHuFsEA3njjnD9T5BFmTTuJ0+nbd8OO2sZs9djCVyzUy+N20DZjsNyOV6y5HYzYu8 - tffaQrPIJvkU3FGFmE8VYsnv9e24xWvg/I4x2e0d3L1+t8cI+59rjuBjI//DD/Xj1A/idCfHnJro - 94GviTHd756zOZrN0QYxklV61lHJ/v2+m2YQzAzJNAXxfPAhUuyAmkHWI3YZ5gqeo2vQHfOg670D - CtFNKhjVdg7nTR17cCp9XxUMGWflYn3d8pBMOcKKeQ5MURiNSnWtjYDlZ0G8Zer1Eaby/sQ1rz3R - 0onlovT3XsWD5OtIUD9hqK54Rb1zN3cLbOgZzPN6sCJ7sfyX4MpXK934Eau6PVgfFEMKZSXJY/MR - K4/f6SWG2NcGkqx8YorfboFSTjDJEe/neBLmfaLazmHCm9DWTNF8uwDJ3hDXfCi7+WqLLfR4tx2Z - eYi6pTg8l796SE7eaW/yuaW+AA13n+gHRUZDFj4M8HnpSPHLOXh8xx6gflGZkJwGbyScX1X5h9/0 - bJtVLrTh3lfnNBnIdXNIumnw18Hv3KajvvfUa0HYL6DeoulIbP1HctYe+AjuXPTBaubtOrGbFRkk - 19iN26g/1d0hiFP0InNAg+HrxGyjPEr1/LEn4q/xIGFnA+A/lZnsoLTR/D4mz+0tWo7kZpyOiF/z - S90DeVBLTvt64Y7mpJa031IS2pr3cx/wgcWoE+Iz+9st16ZNEMcaQi6Drnmz3TJZDcvdTI+3o9XN - xSK5akJDoHZ99s0Jtn0Kj+BA8VKpAZqnU+mAGt9K/Pw453jeQxoheePz5HbcJWbzDKtJTSZZH8Uh - C1B/5lIeSjpuiUErKZ7719wjkwvLtV4/8tk9Qwlw6Rhx26bultdry8Hj/jlRc1+b9YADwVXEl3Bb - 7zvqOdOejYuSfEip+1dPPMf34aqxF9EPzSEeg2v1UsWXdBtRYUZIiHXagxdjm9poKhmrTmUDec7d - iOuMY84uw/YJVrTRV35is4k+pxb9PHdDrT3p2R++AVivEz0eml9Of/bHVY1hOuJJ6XD3D+939BUQ - PfWYOSsce6nv8JjTu8sENLwOzwrMTpJHad5MHuP62IffbXenluN8zCXIuAR5+tcgu9PV+cNfB71e - bkJcvn/nc+yYoMxcG69vuUr1vPJpJPF+T2LGWo/JbZbBjg8n4nTPap0opD3VsuAkjI6D3knqW+T+ - 1b+8/UA8a+8elOwpC/Qc+ldzPhC3AHyGJ83oFXnzrtYVuNtGRd3UPXqiKzcOWLrxIBhdmLm4QmYA - P38xdRq9QdNO00oVfpG0ri+H6O6RiaA8bxYNlthhE/+oz3/4TfaDXnkNCE4F21OV03siXeqx/SyT - yp7BhkZmqyOBnL4u7JNJxduDsTPngc68mqaPGz3r7j4XpoMWArfwA3Ujm+ZTnWYLWvk6Ddbxgqzc - KQ1cv0q/6gcwu/CJz/BjuU3wDixv2qYvDfxHPIxgIHk9Qv+ogHfqNzGinnVsLr8Y5s6mRFN8uxOV - t4dRFjqMrnw//+6l2IKXzIvkWqiETU28SaBAnUM13Gid8McHg/03xuOKX73m3io4nbPdyCzDY8vK - X9CcngfqBbpuzvI0JHDTNDJO6f3AJJs+rK1pX3jcFeaCxo+i+FD63mlc2m+ZL4N/txCNkoIeL8ET - Tc6z/MBsDz9KSGCzdX0iZA/nlGg782uOQstn8H5YKj3X5958ffQdhlHnCT3BJMZLXO0iNC3ij2qa - iDtJH6pQvca+S8ID/dZ0WD4tHBxxJMGJG8zeDw4pGIerR/DJG+NJ220bhIoEr/sp1YvZXO1tz+cV - 9c6ya/JnAxaoUEBIWRdOLkSquaBDkUXEt0XdEwRPt9TfONaEbNo3+vf5jVjcSPG3P7U4naGLdzO1 - jLrPmT8/FEj7nU6d2zTWDFuJrf7xh7SvJtTcYo+HR+BRunvlWc3a4xhBdaLe2PubLRuOHU3hwwl7 - cmmcvSd8n5MMXnKyqLO5ebn048ACexPKNPwICqNaGznq+IsY0buvUP/LNxVPiJ6vd9Pk3/PDVTvN - iPF8CQxGuT7HsOLTPz0xX/qsAEvJ31jQp6BbLrHEIwGVKQlWPs8uyy1Fa/zgX6fP+XyIwo8qX/uJ - 2qdd5A3cHGb/9JzmVnePDaMxqatew7N2usfLeD6s/LrajIx95m65RK2NiPwdqLv2ROfSyj8wTfKB - 7sXrw1zEZcyUZFJ04q/ru/KzdTCzNpPDrZDQchjVCe28YE+NYm0BSpbBQ0MuySi8mthkupBFSDl2 - T2rQzSbuV/6gWPpFpc6zICaL7UIG5Xm3iE750WTXcN/D9ytPZK+JUzdJytyrpeBzo2IKgrcob9NX - //Jrjy6z96cHYCfYEd29znU3ukJkqMd0KakePYxcsnkflLonv5GS+zlfDkNjgP84DiTw8jpuf3Xf - qlwlB6NCP6wet9HVRm++eWCFn4v8Hx+9X7cVKZjH1Syspo/KAqzhmr+7iM+2QgoG7WdycYf1CJG6 - MaDYnZ7k+CF8x86vvQNXbX4RRwvbfLGPXgXremJhYKijphd9/vgv3d+kni2ENjxoyUNe8SE2hWaY - DZWGNMV8dtW8Ia8CDfJNpdMie7F4im9hgf7quXUXZa8bRndB4zeJifEoBDT8zDlR0X7j4DbvGsb8 - RWrhQt2UHnb7wmOfbHiBkWuEBFk71ONhqAxoyCnB6qpPfsfumypO+GlGFvRFPHWbDQ96eKrJfuWz - bFjGFtVp8sN9dX53nWJxLwWfLiW1v0LiLfdhjtQ1nkhyPnLdHGtXgNFCA8WLvx5B530MacuZxDxu - ecY+jwMPR+7LEZK8HZM1NLXhng0GVpwRx81OP2PYCVZEb7+MorFJX0+oz9lh9Xccs/0enArUt/3E - 290ezMUOhFR98xuVuHTv1f2yw/z29pboqHDWJ5+1htmovjz25PQSvJo/7lMfkM27pBziuWbSs8mU - fC6e1OUOt3xpTudU/avH/rIl5iTvtgqcZTMcFcZ6c/ZZCjA5jUE1rIReEz/4RKZ4kUZ1Xd93GxIf - rfFN94r885Y//kyEJyG7cj4gpi++gy5Mv1LngyRzbhQsw43gnphBkOT8cR9ileJJok7Squbw9uX2 - n97TbpKLRu70bbdyXy7EeJBbPDdLoSjcIg5/fCena34plnzbUf1pFN4y3lABWYmjUfqug2gH/jSi - sxSMZHeSJzTwsEyAofyM07P28ulIXF/lN81A//FZ51m+tlbk3SnOrG88a/3BB6FtRGLbZhXP50d2 - hj8/xUnSoW4uydGF7ae7ri1Z1/vHx++bfOVj+YQWyXLF7dtPM5Jubl3eZIuZQaSLe3L8FIPJ1huf - wO5gkP1cNebUNj8eYl8k+GVMFlqMWwrQqu+eeO0H8jms1RSO3bOiHusDNkAxyEjdzhaxXnSOp9dX - nCDJkEjMN7+pWbCZXJg75UgDb1gYxY7Ewb45P7DyMN3/9IN2doCkt+OnW5TbEasEX21SkuRtLv45 - KtXPrjDJiu+1oH5HA85xMpI///DPH1LbtsLUlLmFzadMtKGw8AsvdKBo3kMYoWdOC+r7my2a/cng - /+l/52phr6P7KwaObTqixXunY4YWFSo/leEozYvULZrzKeGqNCN1LGjZ9OeP5uN4X/XwPhYOxCgA - zpVA3KDn4vHDaYkq2wefaF1hxRI5TQV4sW8TxwL3z3901D89pd3aKBe40YjUzfVOqXspp3w+jkKl - HtuRwz+c2ab4pouNmrrPyUXswloa4aipf/rs8DH1WOA1Z52y5STUHgIhZ9Y56tWHz8c0W78Pddwg - UrSzCyPIasimhP+UanGZHHK6hzOapRvz/9WvVb/VTAgEBSxyLei+Nk7xfDWyBdQPqfC8MeV8fh2e - TxAuMr/6zSwe//hoSEcBy43uIP7Mhbz6KyaTXuZBqxc8iS/F3hsLVk/3t/e3nupDsLLxkba5ufi4 - KeDIhU/qq+4vn151JKtfNE9YHIJTTO/Bq0VaI3PjSD583TTR44VC/prS/H2w4jvH79b9awh+muHE - +vvEWZDfdjm1l/jDWACthsydL1KPcWrcWpJqo0UfFqoL1z1i8mKl6HnrAHc02LFZID0HK5/Gi5Vf - a+YWUoo+u9IkmrDB5pQWnqMQOToSb3zs/vPbS97WKOmHLp6IwBZ41PczVhjzzV+LtyU4hO0wMglG - DPu2BcspPtPVj0fjYRQWWF9tpm6rMHPapr0Gaerr9MpJb1Ma4aqBa4oSPVyWvTkMdBahSPcvsvNO - e080HsCDy/Eb6q94MfnBIUOH6hgTYxsd6kWCdEEbTmVjUEq2Nx2mnlf+4uePz827O5rg9HP2o7jy - KcnuIw7I0TtQfeVT7Op1vPKHx0l109GyuWcGOpmtSbxcVMy+fFIRSu/EqC1uvvHin7MSfk6m4uVR - nNA0tc8GxvNzXvkJ9Wh+c3zQvos2ilmo1P20FA1YR95cb/UuqNejfQX4N74IuakHr7+2xwz++BQu - hZItyfxrgGMtoYdbcUFzjRIfScWypwZTnFhggjap5+jhY271v6St3LTILzFe9XhlDrtal9Flltcr - aeSWT5042SCV4xczua/jcZqGDzQi247qmN7RNMuTDGFVpeR2ur/Ntb5YwB57HSNne6/Z8Akn+KsX - 09Vr86kdghGYn5YjOnfHetUXZ4UenwrZi77T8ah1sj+/iR64tq9bs7lawIS5xuze2Ux0tQgjT1Ia - zP+aNu8YTwsUFsDW/k2H+h0soeIlF2tU31qJ5ilUon/5f0YljVlfG60a17donJ8GeKNkuTw881Qj - hfd81PPudWnUkyE+sLzy9/lzmSZY/WW6bwLOnDdbI0Nm2ys0/fz2tcT1uQ8of/YEf38VYtutmG5J - EDkYbS1qrvmRQelpF3q0oGGL5owl1OfhTbHkKjVd/WuYWOOR0h5QzbSvpcHB4cfxZdR+/q9f4MX1 - E0tu3pqzYt4r5Tkk1bi5TWE9x9qRA5FcUmp5I4/YRagrRUxMRFY89yZ5N8uqR9rHqNaNWi/yPuT+ - 8IfaQzawZcEXWbG+vxqPDX/oeM9+u9uVb4wwZnvv52g8hvfdKchtTDdoNCfTVvU7ftHDx3zEzMRV - jy7+sKz8hHqN+VG0rSMqGKurXzoxvMXwGcYDsZ/Sy6PHAZeo+iaEGo7Q1mzVk3+/jzhJGnR/fpa6 - 4drLH/+J2XoaDDgvdUhmngNvedPFgiRbHw7TXro5NbGUKJ9N8yPJmLhsan+bF7rFWzI+1/wW48+j - UrFelOTPX173t4V8UNR//Tra36H6ly/r+rG+vFYWKEJgU//3wOsVg/0Ca70mK78yWReGzz+9N9LV - P1l8IvrAO/iApz5L6t4P9Axu7yoeV/+lnv781zNuPKprJmV/fA3p4aWmxE0GNG5qVUZlVRXEjOwg - pufnNlVM+8Tj06oPJ+OuGfCnp+1VH0/TME2q9R5MjCL/1zG4PizVOOQefloH15RuUn/+03fkDgds - Su/LvVTOhB3whmg4Zv16xW3VvwQ3p0fXn7lQVL0ofZHiJQzd8nBOBao7uyMG3dzz3/cpK+Be0pwe - zbkyF+COL1j5PnUwi1EfnXlfLb0Lo/raT5UiVIwwrVc06eCzeG6GrQa/YjExOy8DanCtt1CooU8K - FmumyNdGpkZaYJJUvGzRYjZHS30vo079d3KqB+qWBqR7irAIF6de+NSNUH6oJeL/xk89Kxx6QRct - J7K/ST6T1N/OUjWlMmi69kcms7vJENjlaX3YXkTz25cbOFA3IQfr/OpYAE8NgtyRiMHLaTeu+QCC - WY/EwQ8rlsatIas5lW5rvmb1bH9S7a9/jFWiePk/v0xTngbZh7uMDV15KlCwf8fk/JQsb2kSrVEv - hzYZ+So85FJyPGnq3T7B+qyMFwtwvS9wlvmF/vVr5mLZOKjB+EyNxw/HIgsM9x+ektJ91POWoQIV - auT/9WNMqpgVr9L6lpH4uOXRkKWxAVs43P7jw7WMbQiG/eWf//xeWq1Rl21bjCIqST5X0YP/5xf9 - 9S+GjTqG6K9epWv9m6Q9aSC9JhssrfV59lnIAYl3v1Gh+66bn0MAcLKYTnz1oqPldrWnP75Hd/XN - jZd7W7tqsufTtd98yn9//lgy3jPcRgtly467JpDdTyH1mb3vhuLziNQ1v0dxrRfLcuANkLsuHJfo - jrxJP50aCAvvOE4pd0TzBtKn8rffx6kaEc0/BP5fDx9s//eRgke5RNT6ce+YLfkpVX/zekt26Do2 - XSptAbqkQLCJlroHOayAlsF9/IhnzRT2mH3U1HJ31NWrIR5z7oi317srjYg8IlPc4M0Loq98Ikd5 - c2RC6u9ALWTVIpbrPToJnWsN9skF8AJ335u/0WDDho97PG32j5rlWlMC9wu35P72XE+wrnWDHG6z - HXtJ+nrsKx4X1MPk0bxiXT7TX/oEZIw6lvh60039PGfgL5VJjAa5MX/gzEWVI7hT5/nkOvb9FRW4 - v7dE9P257qbSrVr1rQ8GdRRFyJe8d1zot0+J4ou782YlphwcS/9OSsX81JMHVaE+B+OKhe9jbenz - tQbUvirEZuEzl6ZLr0C5muNt4Bb5otyaF3o9d9JYVpLCZpL+Jmgf2Card8hq3XEK5HDqluY0OaFF - vpuymksWT1P3N3TMmMUUme9NOT617aueLf+TqZ5fnql9+ER1924lES53riFm5T87obzcS2BT9qZe - xbycNafKVWdy3hFHfNvm3EgEQ/MBlQZQ7RC/H0oDruFdIB7xn2j5kqpc2127kaq1xoQ5WHqICiEn - +inK84UsNxGw9K7wZRQPbNLU9ow6w8E0c2XWsUv4SkCcnD2x/YvuSbfDa1Hf96switzb8Pg7NSbw - I1mmSVekbNmXmqa2gfEj5sY7mqKJ1Q/sSFSSXXwgOc+PbQJtoP3olXxRzPrbwYXLq1IIuR0vudhd - 9BIKwCn1bLViQw6GBtExH/C8P9f1iNHzpWIxqunOG41YtNilV8UxoHRvSS7i45A7AyPSkQQ6GTpW - j9OkLmJPyX6Gb7dssPT62y+6A9zHs/sSXPV58nmS/8RnLAVdNcLH8Wq6iw807q/1HMH17kjEyffH - bnL24QvW+CKnk+0g4XQWDQgV3aRHoiRo5hrsb9ffS2/qrzWX6q19QAziL+YcN0GLl3aTXLs0oDht - UjTrcwpwgFgmmikeYnHItpyyCYoTMbSsZL1saq26wXM0cr+3US+Hx/RE1w93I3tLalnfsaIHXdFq - Uk6dFgv91zyrf/Xg4kQXJtWjPP2LZ3JnZsfiH3DKqB4vRBd2G2+sI2rDeaNV9OgWerwEF6eEfHnW - 1O141NGyQTaQ7W0iN3TRY2mMIQXpuA7q3v+uHh9trxnsL99w/Jfvj86JYHiGb1IYtZML9vPLoapQ - DHJf6ilm+OY4qFWShu6DHMxRjaanChtVpoefI3aL9nnKaqjHZ2IG884TftzUgnCUNXoUtoknhMZ9 - Av5a70cx2d/ipZWQjVLXjAm+X79m1wTiCJL7/pBL6Lf1wr8qR3Xv7oXayf6WC6r4WUCMl3Bdz2f9 - Cs/RS71pU0t25l3L+WK7iHBsfpv/9vMNXQmvwm+Ieda+pvSxlAzsJDXJXvEO9dxl2AKSL0C9+cPV - w9P/pspD+P7wNCE7F9ItL6q/yzPEwrTtu5G/PGU1v9x+dC9luSep33BR6S+60l3giyYThX0JOl6P - 5NT6K154993C920NZM0vJJiNjwHlfE0yvQpi3tqZmZqW3xfeQp/m7MLlPkx4WqibhJnXCNVhUeVs - sTBXj+d8WfcbfXs5IgUOLvlCy2ep/jznSi6BoiPpKJ8qdbjrIY1CbOXT9nQd0TK8/LF/Fwc2P699 - A1UhG8QP3Ym1Xtot8HV1Rq4k8j3x+92d4eFincb1UNQSyjl+Oxi/jNpfZNRi98sqqEp/Q7S4SmPJ - PPoLONd7RfWhjbzFYusTHZ1zIH43RjE/1qmoupNVUX1zVPIZf41Eve0SRA6hrefSWG0btE1tk5on - PzLn4Sa+gCa9Q27htuh46Wfb6uzbM9kvR5ENgVFhNRnlA7nZ6cz6Uq0T4NW+HpUYud1Sa6UB9Sj/ - sCAaE5rs0+yotdgTUnrCO297p1FgaC2X5jgNkAQN2AhjYaHa8XZE/+I7VMPLirdRLVxOWQ+Hh3il - 1tNa1kHyYg8qWyq6n1gdD/aTAmgX36PHKvKQ8GHlCH7b38jdfbidpI2BDJffziPuxsSmUF4uhZp0 - rUAMJ5m7icxyiuQh58bXj9vl4gV8DTZPoFhVf64n7OTt/5F0JkurwkAYfSAXMggJSwRkEEiYxR0g - oqAoIIHk6W/x32dI1/lOV6W7d3Ka/hpyZL1bCrN3LUAR6jY2MhKxyZLjAGYiAvh4nKV2KfsvBcM1 - b0gJwa5kgbk7Q77+jLgMhqwVuNNVkCxU/XB2oT6gvbVXIevUGQckrnRK6qGCt/yNiX2ZunYO9qUJ - HRkCbG15TvclJ0Cn//U44e6Lvpg2k2FMgY0N7h64v4dVdtBl8Y+YbVUBLvRPnAJvE8NVGvOu8Gor - Ac4W3ZHLPvEBbw5hrtDnuZ75e2To5KL3prL5A7nJrVcy9+ep8CO8bYwByEZeMMEZNm/1RZz1ko9s - fvsVPDVeT+qDrMViFAWGYh9HgPbOj28XMfwi6D/sPUYwxeUqHesD8JbXNEvI6cEqmMxW8lvQY/08 - 9iXluo+toDQricldTSaEgplsU/Bn7B+7CizH1IqUEXoHrMc4H8XOTGeIpfuCz20wlEuXUlvJ9lpD - 7mFvl+slLWbldzrMxBGTFay5KdtQcOGAHSkc47fNdwdlNzU+1r2PynjHzwOgVxzA9arilk9E8oFf - PA9bHq/ueuEeGtS/HsXHl9kwJg/3AmjPJcSJdWoB+/bbYZJr0WCtpy+wflZQAONWoP++NWu5liif - KJ8Iet87RifQvuHPwiNa7jtY0uPOWiBnQOG/Hy7YODbKlx0sojY0HOnGvz9+kCo4B4yukshBk89c - 7EaROorDPjPhiGSJ/PebaG4T2B1dMg/pwdDHMlqfyuazJOmyMmZEtTXF5ZGBfS5sAd/7YaAY9c8l - ZvJudeZui8w+3Lj+589CLKDCz9gigkMojktzjA/wpUw61usuL1fHDyKloUX1976MvpfIlBexaYhm - J2FL12exAxuvscWhIKZnznmDcynp+OZ1fsxPUlXAGpevuTVm5DLmQQE6D+6KlEl7AHZ4xKa88ZfE - rpq1/LuUBPARpRO2Y7/e6gMH8LQ+OqLdjdqlrzbhIG1vJSofdjHysmNnwLt/222x7o8t9vU7QCQE - LTGFTHV5UpUBOO6lleiR7JTLxn/4VId2pig8M6ERw0EpJuOIL6LUMPaodRWmkgyJ3jxC8HsmOQc2 - fpC6EQtGc8fJYHacnijbfHh1DXe77Sv6xLSpMjJeUnOlPegeavbWY2REVTVF1u/jzPW+AOgja1QF - I9PGmqnZgP5oLcD+O+ywdX8M7hJNlf3nHwh8Ba1cu9vtDEw+cXFm09u4oI6dFXYZRLQW8qlkomZQ - 4GW2R1LV2etzYkIbhADE2PONWF/3VtJBtVwqEn+WGNAc3c7yNSYORvNsgvXSt1T+mBqPDjvuo7Od - 9BXAUevZ/MSkLv/8FbJc4TCSc35bLAoa0IKgweiRqaN4trcpKuBficPdhHK14LOGohN9iadP3igI - ZZxLmz9g30jdmJcdNYHn4J6itXX6mNn0E0D/ADtyffyccRnelwqO2hnNq6OU7dKYZIL7q+DNQgJo - TBQ/CyArDi7OjNscz7shLeR8hwh27TJpxfz26JSKcA9caQexZaeEjwDo9iY2KjDH9BCZHwA+XkHi - IFf0NW1ZpJzGT4qPn4cP1m9268DOAxo+RqNeCukhbpTg6ddIVmQHTG/r2sFVcKuZo89spKGAEkAy - /TQrgQRHEn+5/35HTHkk5TStUgFX+fcjV3hx9GmrP+AlmCeegG86swZBUNJfe8I4WqaWkVPJgZ0n - aTjD7QjYVz4HkA9lFWP+i1zOrvlKEaPSIya4d+UED3kD3/XgEvRW9/rKc4MG4zhUyMk0D/Eyt4Hw - l7dosQsZTP1qPcFhOh3nNY1ASUkrBP/7Iw2FZyD0CRdsX7xibH3Rnf3i5kyhd7k72CwO47jcrkcP - PgUbzrLxdvXlXkkzfCmzTtxaWAGLotyEkR2fCZJw2P52wSODMSIjMZ1QL0WaOW8IPqgghiJm8Z8v - /gMAAP//XJ1Lz4LOsu7n61Ps/KdmRUCku/eMm4DcGgQVk5MTUES5iNwa6OR895P2XdmDPVaiQnfV - 8/yqrAZMjxGrr/lyha+bAZmfxEcpxSWNoCHvl0i84iivxIyUsRCg4B5j8hQepUY9tMzQc9oaB3lh - 0R0b/wp99WD680ckGj2bhSwRI5MI1rHqLP4+S4AXLxZ2QiqBtnVUHVTInv2ND0pn2fLaHR0fJxNb - KpHA+k2GmZ0Fa/tCfROypWg9H46bNiNHKSUlPV7tHJo7NyO5uvrZjIg2Q/5QHEl+tWttDdkY6lrK - ib95XYqfPjYQWz/kKC9KuUBXFKA3VOPv/pbT7/0/fxJLS1LytbKLpYdXnrHB1sP64N07ZP9Bw27R - xoAWG9iCTqkADk99mVFu0GyIiRqwfHUA1N2eDdh2foi1zfWuDRCjHD7RaUeO61Yt+5AqA+z8a4OZ - vynH46kykCRJ2Z/+mORb3QL1HrVE5+yC0i6v7uCxf1/xUUNDNCdryEn8c9tiVxuGnoKyCNDbdqSJ - 6012FFVavRHKT8ZUbO8zmDrb9UHYNRefS+0tXTzPFKAsk9JHFdSdBYxdDtz1rflDVqNyttwqBfJo - 3iZRCT/R6ITWCgzFIkRNHka06pMmQmMsauyWtuJQS9+n6Ld/TuFwBfOhCgc0zcVArpLzLWmlKBKC - p+jw8yv9cs+CBL29m48Pu63trLctfIO2f/nkyPLdwHvzBPXmvUxixs5GVblHI43l5z316ev9n3zJ - hfHow4hXoqX2uQqlvFvhZJhSjfz8i90XPgk6ewfmiJ3dSjW9wXeK4mi9Se0A2e/ziXLUo92o9Bfp - F89zw8uiv++fCq8XYc/P6Vzb8eEpMGasygdSrmGJArCcvZjYmWJF8yM/q6A4GA8fPdQwottkdtEv - /2FUyoAT1pSDZ/7S+/t96GQLeREdKnphE8c49pSqyyaRWP7BvuFlGc/8HtAN0JDjMyvo4kqbCXKW - a/uCWnB0eceJICa17uGgHapoZPEULtNVwLb6Dcu1TIMChSlyiOdWY0YEHuf7Ekc5VuLj1eEsd0ig - pVUnrIxnFXCiZnWQ8TSf30Ot3O2gKKKzWyHC8l85dnNgICPZxESeQROxsU0uwMXVx64nWtoa5q8c - CBMmxP3pqdvY5+CnFx99mYH13OcBrJA14zP03Wg1Q3v903vJ2kcZqYvAR106PvBNQ27EHYDQACJs - PX9bXc/OsnjSBJ+Pfpj2X+j0TD/KQFieOrb0a+3MvMemLCV2SX7xhUB+H8MXdxp8ytOOrj8/sk77 - I1bqbNbmoeJsoHUvMq3FYGWMf2zg1I7GlGqPptw9n1MMfa/gceCrFSWfypp+PAr7l/4ZLb368tF2 - 95KnprxDOj/60wnKZaNiFVzMvgPmpULZuAmnRX+2zlg9zjbay0GO9WC99RxbjyBObi+i3/i5XxRh - WGFIhz1WUqmOxi3v5HB3bguWfyatqxY+gT8+pKffuv/bv53SACyHllpSr9wG4Km5HokrXtE4MBMd - BnrR4UeYqNEi3FwXcFWl+Pw5E7Wl3BgrhH32mRjP6onweFfoHKclNvPkAHZTsXSIxTdyTbKhp89n - E6OgnQxihueJrtfvCkFr1wbWDrtT9MfTbLsxsEI/fbSy/QJU7Wj4Gy/aO4zHBEDKooD4UnIGNDvA - E/jUxugHQTyW89otAhrg6mBFuXVZl8cpB3YTVYnuPrpo0cxTBRgfJZrD9X1rB7EEpW0+YMXsT3TN - X4GBqkplBz0kyGnn/SlF1dvcTfuiOmQ7Yn9aWL97e1qTRxPRwRYN4HFJhN2JCxyheDxtSO+eRVwr - yJ0RaYMO3eN6xt7p1fTUf8gW8qLcwd76vZWL+p4T5F/6ZGo3nKXRN/8RJcHZdEQfb2u2IGGaQaVn - GsZ4u9HG8iAGUAv0gChlfinpoBkt3MccIbcQH/r1BescwgPwifpSrv1KZvoGqIcS4z2mswIsq0if - YjaMNjC03S//mPEZTjJZFUDrKN1I2rH+YCU15mwlM3hDwQs//qr4Ef17/88/u03tO4OwmzooqdaE - XVXc9fSmaiv8rU/Tx4s2uLGXQpafidbObGjYqzEkU5lUYmpTE+0WTSzgbTZlcljGVz8kegeBqjmG - T9Lt1NPh/BxgXGDzjxfPun31JbYffOHO19q63nz/p2993jCSbFqV7+XPj9vqd+nXnx7iP2xKkHT/ - RstFO3aA6UtisXzUOtxWld675x6rxpWdxc5VKpQrceuLkcdK/LeDC9+uEfrLnBXlfC2sGeKyeU+8 - GN9Keq/VCmpW0GHFMbZgWcPe3edp/sRGf8F9+1ppgPZ72cHZ5YPpL9/Cz+H5xpq4b/vlBIrmzx+x - +ElnTgZ3WL8uHjEDt+vnFakSSJ+TjeWvQstlE7xi9N6nwbSZ3bQXEv/M/L9aT6LpyyUPxu4OoihC - RLd8K1s7XUzALXiwqTe82xN1EVKwChPB5vVkOfxF0C9QkdTSF2xyodzPTzIePNG5a8rZMpPqjzcw - f56tdzK38PNtN+RIDoT2/YzegPFcfw/8qp9P+zCF730SkHt0YcfVcFoDwtx/EgUIY7S6yJOgcXoM - xHWJRqfLlU1V8tcVq+HV6pdgNlp4uBr6RAVItNdj/N7hj/fkPUoyOldvG0nGsMXq9bs4xNe8Fvz4 - /wk+XY0Sqg7ocivMiem9aPHUwgUd6GtiIXfjfF2+kwDrHCUqNet+TIzV+uNvHk922QhdkYOn+KtM - FdO3VB26Bg4VbEjM4sd8u0AZML9JFPXtl0texQPUAiP4XR/9+V3m1/3ut/7k29jBn97Cm6HWqLWD - OoyjXTBl73BD/+5Xqb4p8fNAZXq1WmFYmRM+kr0Olq48cejLY31aA7+KZs7AJ1iWOZugCbFGIb/E - 8IysgJiS8+0p79wK+NiwqYIhrnu6cdaNlN1SeeK36VUjsf+0IbA+mHhxLms/PQQYT/bhbmdq69Hc - yBBDohPNlMS/eAC18Obhw0gnuoruKkDrPnEEi6QH46qPEBTPEmL7kMqOwHgCTFaqTJukTSg1FFmU - iHUJscrix199KROzhXjpbJXTFjZ3UG8VGT/dXNeE16VVJabffTpWLV0HjxvQ17FvROXqfdTmmMsR - CXOOyPJ2pMuPp7eekBIlzZ4lqbutsGf7dWJ+jy6svgevX9PB6rPU6DLt9ga8Dx/P57St4ez6mS8A - i5cTzSsxoi9nv4GfoLhjjErWss19VSgnpcXqbbW24kKfgYVlmRy7MAVr+rQlCB8TxT8+s3Rlyklf - 8Z6Q9L5R6E4d3g386bnd5ajR9XBqdPg8sqlexdBma6wU8e95Yf373JY0bsMO7YSqxRc7NUtBOSwn - mKf3py+eyiIa2i5IUaJbB8a3X3R+X885+vGzZxY/APu+MuQ/i48PTfJi9a/3BYZtvyUaUe/RlA2y - DRkf8BEsajpcXpWOHocLIIZ7fTnLwFkNtGulId4adxHlnbBAacuNxDPdBlCxmUS4JHmLWX7TdlLt - NJD7Wiccqfc6I6xeCFv7YxD1KVJt/eVDtn6IbqZUm4Bqr388zeGdt7aYpHZhicOc1Yc2lNb1IAMM - EpNk3bbpaULWFm0ENGJzsU79bGitDn88UHPbAhCdbyQYbOoYy5xSOdSbYQHZ9Tg4xEhbaF7cEToJ - CZFlJ6G/eIA2oqhjJeLMntXDAphJF2vas3hGZeDYcK/UGU7e77zsr8EQ//jGVOc0z+YzjmSEy+pN - Ak6ptF89GrH8Qlzf20UrOolvCW5aQFK+N+kufaUGnD7pER/h9atR2EId9rvuQ+xJ2mdT3pQier+q - HqcR6PqlCIoLfLZDw/wC1ObF6d9wK80xeY4ky8Zz+HaRfI44f5YityfZAQZwv1cd7N0+VTaZoT3/ - eM4UCVaqLeQeBTDsqguxHmLhTLHSXsDzaGZ+3XZ2zzuhPP/0Cna2642u2ebmQvSsNeLZp4rVS4cL - 3E7pgxi4dOiSojqGp+iiY8b/yz/eBczgRCzUa5QGEUhhmV6SaW6IDfjQPvrg6z4uWL2BG6D37pJC - +/vZ+S3Lr/SZpgX86FZNLsOTcwZPDmX4n5aCf/3Xf/0f1iDwT9M+8po1Boz5Mv77f1oF/r3799Ck - df1rLPhnGtIi/+e//9OC8M+3b5vv+H/Htso/A+s1QJLI/7Ub/DO2Y1r/r5f+xT7w//3r/wMAAP// - AwA++uuXugUCAA== + H4sIAAAAAAAAA5x6Se+CTLfn/n6KJ+/Wm8gkderdIfNcCKjYK1BUQEUZCqib/u4d/feQTnrVGxOl + TIo6w2849V//8c8//2qLujwP//r3P/96VP3wr//8/nbJh/xf//7nv/3HP//8889//T7/r5Xlsygv + l+p1+y3/Paxel3L+17//4f73L/9n0b//+RfX1krIUvOBWFDvTDQehDtRV46dCPwhqKBd9zuaG0aQ + sM3ay+EYDhsSuHakzRJ2KoyTtKTHXboUS1JUMYCIt1TfG3ttMRe5gVaYVyQ4vjyNS7Q5g/K9LYiu + c0/tE/R+D1ZTHMfVNdl2IruCDs7K2o9MOtSMRvY2Ro9dyREt1lNvuU8rGTqld3/7KWaBdBMg4S2F + 09N9e73F+yXo78+ZEH917KbIG0PI7wqiZv3YaDOaiQnVGwjZey3r5kScZNyjZT82Cha0aXgtMvYG + ohOzuVTeomLwUTKcY5q9y84bntekAiVcPUIkcWO3bLdbE1sn0RqfpqoWfGNEC/KtOSXHvbX2pmbi + FlyT90jNaLdmEx9+BFA01aEKIF/jjKGTIdownVgmt0pmnr+t8H69dWlMBaseypOt4E1eTVRxjmlH + pUVVgcfmlXh3QUrmhlcrvF3pKT2lx8AbOcd35VvmucSOKrMTwlaUsdcXIjV17lBMp1iu0Pc7MatW + q0UiEwVA3e5JoCczmyf29iFYqw7xj1npce2DuXhXTynZK2uCpq003CBTuIh4IY091p1uDchJz8Yu + qY816/n1AU5Za9Dr8VUUIp8XETSGUtAs8+tCRJvPE2c8UOI/uhViqqoq+Dq3Jd2V1dPrdtzTB3bd + 4HHxTkIyXcTqg0suk0ghCzePv11fC4yjnRN95Uj13KSjja7PZEv1jjw6zjbiEfOef6C5gIVkkPXK + Bumyc2m+P0CxlH1t41MnF9QXAr2Y1/t1BL/zvuKN5w2wdiJwUYqIipKdt2yKWMdi0BT02O1IN26j + QynfUuNFHYWEWi/fpAVzfVOT63a8J+Lj4ymwOr4nqmtw0eZuZ+i4F/uF6s1p7JbsUqn4bSkeia53 + wxM7J86xN10Laj0vrsdttHuIsa82IxhxhOYZ75fNTOyYKhp1kqExsgmZL1jRy9DY3V++vi+VSLVs + kLT5ZMommi6RQ3PtUmlLGywxXi3ngGZkVFB/tAMbfc+bmK5gocmSdhGO1cwiu43Js8m38hKqh3Gl + mjrltajGmY/YFWFinTy1WM7xLcPL9RMSf92eNZbt7k+8y3KRmssmrgW5u0VY+BgStT0xQpxZOCPe + U+EYTnypdhxudyle+P1I3LNWd0K56SvQwiaiyltREu6dZADG882Ta5Wq3TTR4gx6Ga3J4RMrhbjf + yAveaL44igwMTRzqiwuYxDIJ1VvgLUk3nfG3/kehuagex0WCgN2g2pMtOLdCsCI3RPMwGcQLUF8v + HSfkMPVnIEoQ6jV3VSMTP8nuRNLb885YLj168Imcj/Ppcyl4Uh1sRF+HC9EVfNC44diP4PUnkSip + tC0YH+xkuFwyQhODPbzJVgMZ7Kp0qW/brTb5h5eAi4l+aBCgM2rutshBvWlX48viRW3O3p8zgiGb + iVtuZ7T0qvTBqW8aJE405s1nzxDg4bryKEmPuRBf3JRj2CddKFwXP+HKdInxcTj2xM5XR61Plf6J + jqQ2SbTRwZty8hghl1KOnKfM9ASsqDFGEZyoK66IJ3TcKkOd3z7pERe3ZEis8ACRtBbDFfGqbrma + A8D6opxJQorIY+tQf8LUNBrJJ0+t54Z3b+jbP6mvlF7RL6f+LN/Gt0DNJHW9xX1NgH1v+6FWtyP1 + PBRL+cMPkv7qQ5eSHMOts6n1KlXGk6U/oJzb7ajOhhda1DL64G//pdtOsZNpWt8/WAdpoQfIArbw + pzhFaeItRPviRz/usxEssRvC595pa4a1ow+Vee1DfI5vaGICp2JVrgbqPrqxZnapV2BGnUG22nBF + vDccF/jMO5em3D2oJ3kybUDBlf/mr9YtJ3nTwFLyW7KXDqkmaC7/QRAuq3G6H+puHuxrCZGiqMTV + Lqomnp9ahSNLRtQUJrWjrFYkeVcvKdVWXqX1j+EFEHlQkuOC/GK2MswhHuvXsdHg4k015zTQBgoi + 6tPdFJR85o8cJO1A40jvvWk01Ao3r0szytM3Xm8UKfjSjA4N77aiCXVBJOiexTuEKxk9FpCVCT2a + 9tQqsKAtryiMkLvOS+rwq5fHBm3TwEzcmAYgVZ54Fk4j1M+8JRYulEIcIxnA3ixaiG33zibBOyg4 + necHCfyVVfCfdCfjPDw24SxcZkS/eIPUrG3I6X3T0STxTwDtVuaUnONZYw5KdcypSkqPTSHV8xxN + AuZOaRBy5PJGC33DBOaVF8kR8lfN3U+mgn94qOr1tViidDvCY9JfdCend9bPkHL4fDZMcumqA+K4 + 5iTAvUNnmlFT8Kbdqc2wXZ1dUup7rxPVOApRTx8dTXexnfB6Wpl/9Wq/3n4nHhPcoCDKj/RX7/yn + fsV//f3y5UMLK5mLb1G0oyfEHsn0ucUH7BoFIX47vpPWjs86PO8wkStIS8Gex1b48SVyNuIJTUFT + KdiwY0Ls5B7U8/1STHIwzhB+LspJY+m5DrEyNBnxLuTpMcO8LEiQU4OGaJt7i/HY+DBwq4yma3dO + pg6/ZTwt6zd1LmpVs/d1m2HJVTjqnzXGpkHa6jhK4oz64uqazMnxXMFRZZdx1oYrm66Lw8G3H41T + Vsqs2+3dD8ToCCG33+T15/HgY1xeJI8Uk3PypsfYLnDcVAdiS0tTd++rk200cUqo70NQ82OLOPDM + PiM2aqRiWsdVir/9m7qTV9XsipcIn5ARhndwlGTYV1sJNhu7pu7mmRfMEMgNRv6cEtU7CcUiJpsb + HIy7SNSBE7S+1q4KmgLRGR8G45PZOqsfuMnCbZxe3pbxs/JpQdEUh9h3bix+/BA99rcjPeIj9hg3 + uRFo4TMioWetk16/VTeMglGlwZKFHpcZs41JOEpUfStTN220uw/WemHEKQLdG5zDmwPCfR7Ebj5G + N8f5PUVbnFjU1vWmYJ/enaBRQCIlFudkrvJwBeNHF0cIsFmIN2uUQb/fDyR8gNEJxY4+0apzk5Hb + rkbEpqI9wGspexp+pk5jnJJV6Nufx/UlcRjN2+Ntw9+pRk25psUgxFMDwseSaGjbWTHfozwHJfaB + erKgaOK2kXPYiepn5OLk7k2PUM/hYiROuLnxtBgiwlabN9gfulvbr2SO3cKFeVbPRP/Gf7qWT0G+ + ncOBBmVENMaunA6Zh6+0nLJDwcX82pV+fA7G2qqZNY09TM1eoF++W3zEZL7hQfLHkbvUYkFHpZkg + PvUK/dXDR26LMxzJ3RxXVrrUbPeIBLA3k0Yd5bwt2PnpVdDIYIW88zGKWZxsF371plNBRP2pVkYQ + rveWHJL048396sP99A2110WbLCXMB6yrm5pkAja1/ssf0QX5PN2tUOoxpzMkkFxhO/I5DN7nlO99 + KA7wIm44SMk8toyD8hEa1DeTd9fh5JFDegz2VG/8IplJTFaodySf7B/nrcfvl0wHXF6HUJQfjjY8 + qlsK4qo7UuM6xd38aW4m8Bw+UVffWUx08nUPO9pPIceGF1vkro0RVR4N8eJqxUZVphkyjaSlXnuF + 4se/0S/e23Z1QNO2Pabw3p9m4k6e2s3F9hSBydKCHM8zQl8+0MOPP3B7g9fmfkxbGDSd0GvKv2rm + bWwTpq08UH2QnJrXarGENlDRyAt3vpud56TicjBX4WIuuif84vXFZ0JS/tVNpvXs0bnYbUK8eDJq + JYP3N/0t33zPBxVTbAY5PFAghJvz9o1abi5CwHz4oumzUDwhHv0zOkhBMEpJKid0o0Yx5lQ1DeVj + NqCJhEyRhzAoyVXSfcR/9SiU+9kY36Mlem1l1hz+4OBJ/Zdcd7N43QBUc+wQ37OoNt+0kwo//lDq + +66eN2I74rXY9NR8nd8ay+bAhbSIJaqKtyZZPE4+gMbGKeTO1aqjX/yUb/SiEQc94x8+9mBr3JES + gstu6oLJlSNNzKgd9KRg5qFeIX5CAjVGjSXsLOx64ERQSDK/z/WwPkw6LKtoS/JwkIrpfjJVqAsh + o2YbhWyZNPEJMtUJPaLnnQ2adesBnSWe2H4n/PhyiUSfhUSprVU3uro1wZg03v/sr8U7S+GYWweq + hucb++bHAaqd6PzOt5j5R77AVy8QfzxwSUNCpiKxdbsQ7lKsLV9+CKetsSZqL966Od0rFWLJ+j5S + 2120PifDiI5VeKH24igd+8XrROlMfSutimE3aNWPr1Lz/vogZk3PHjSjw1RznjvU3zdVBhcU8sR3 + nBtil+hc4eeAfLoloV/zCp0lmA+lT7bq9ClGZHSm/O2f5BjdfDYHdpLjbzzCSa+pxzZqFoHyvvGk + VIdbMh/WpxI2Dzmglq663eQs01mWVzuV6HuD9xjWIxX/4meT8YaW2ltuoDXJ9Lf/dpUKKXz1GXG0 + cK/NfBWsoKu9JGRUuhdzuykjZOh+T3Nd52rqoLOOnFGuiLrZq4ihkxnKydS/SZRK92KRMyPCR6sN + RvETCYwl1MhxpKgq9QP8TNjA6gMs+VzS0HXfaJIOXgZfPUrOdyn25nGjqnBX3ZxY8uPtLavhpuDp + FD6JNVpPNt+D4Al1oXnUQs87mimPfZC2aKRmgSCZ31ZU4burJcSeUNqJa7w6IHazParoNdFmRwsF + 6JLVjXhZodTiF29gjvM30Ud+rU3L4fqBK99viTJwD7aUm/4GnXz1qfO8yMk09eEHMXnMiS5cC/bV + yxNUZbPQLZZRspBnLeGlMjJi5+5cL5swGiF84TXVjpslYY2PzujnN6S//tSkTxuRIe1IQqV7suz5 + hwq8ZkR0uwYfcQX2ztA7sk9/elV8PoUQVXF7ILsXxuxPH0pIxtQ5b99ssmexhaeV3YhfGUbBfvr9 + xye3L4zRbJSHFmZL84m2fPiff3JDtd2oY+8YuJ7A206Aj/l27GrJQV8/RYXNMJtU01bPri/vqJW1 + deeHK89aF5/O0D9/fphB9V5jxklakFFx1zCb7RcbX9OnhZ8/Es4n6s1ElRt0Z8GBWCLdselajgJ0 + qxsl5lfvzNGUpeijnZuvf7NjE401CePkUI6vBfXJ1D6QDSE6V7T0rGvCtOuuwXm4b4gDr06jH4hW + WO2sgYRY3CVfvtGgb36E8njQvcXbsgVk5Xwh3me8e199V6HrUQ/J1mooGuXMiOHRCxGJe1HpZhiR + DsKxpSOtLJos0mXUob6aIyHcTvF6UWITgEsLYqhK282ifwA8lkM+ipsmSpbhpvggreFGilrXi+n+ + Tn0oqlSnRhJHybKbdxH6nncoG7FSC5siNmUkXg3qzO6244pg16NPySljT1DaLfz7VoFtmQPRRtGu + hePkhyAfl0P42KWVtjQZk3/9aVgJAVfPa/Mt4UtWX4k6d6ZHX2mqwmgVd+LL3KFbjkpewqd8sVF8 + lRUSnvU9hmCtOGRHX3LHyls1Qn/LNiHit3c26dPUY+DG7tt/1XopUshQV/CncArCpl4egnb+6T2q + Z2BoS1QfTVQ95J7YSZoX7X4V3fBXjxHvm1/TMSsOcD5bJjXeal4v0sBF2J7E6e85VznTB+vv9kzV + /eZTDGd53UCKVyExd7FUz+PGVQHPsCPnLx/jP02rwz4t0dhcpk89b45++quHUfzyA0pkS4FpwW+a + Yl/zpu9+IJs3PnWv6qeefv5gd5WAHC3+qA2BFNhwMrxqnO5OlAj2abXAsQSTXuuv/zGfNzGK18U1 + lF256x6P6nbAaqNsSSEvwKiquioYx6tKzfDWdPP9kkz4u56q5qJr7HBUM/zyq/WIaunNqKg3MU6k + VxXKr/cZ9bdzLiCpeek0dJydN38YPkNd2zHR3us1mo9+LP30359+Xq7CcQT8Fl3qDGZZzKQqbWTH + BP/8O29B+00EX/8rhJdc17NWr0vY4NCkdp9WxbKLQPrV99fPATaKUd/DFy+J3qnxn38J+6wqw9WS + v9gvvzaJSU8hZy5p0oOMKvSUrmeinZvWWx7mrofbQnOqfrZOIp5WYQWP2/v159/2xyxJQRtCjQRq + yYo5ln0J8CAP1Jh6MelNaxxBJ6ZPt2Vlevy2H3T00luTeFbc1uI1VCq4B8n7q2f7enwI3ll2imL9 + 6++dqO6OOfz8oNPxwGm9fvtUcBztDYnZm0vGq3DtAR+eHDV3cdbx3T2JUeNvUmp/4qhb9NbwobDu + L6pGeq9N4/wqkWFHhF7X4ikZt5MsoMlhTxJek3v31b8crHe6QnZFH6IF1DLaiH0Yhp/XoGhcs9UU + UDgppvrSU205sJ0CH/4w0K1zCgsmcgcFTmt3HlE016z76iP5l++OZRga/4LORN96DrmQYDT/9JC7 + zkr61XfF0N2LCL76Zfzyu2J6a+6CVAqX8cd3fnofRj/aEYfuNY8Ljm3752eXD3jUX/xrQXRuErUF + bHrs4z0zOG9QT8Mlt9j0wIL7+z+1miKrJ2wBwJe/h3OkLskUpIUA7zLVyWmfPdhSd6UpD4fDYxyt + u4FEub+H8M0PqkjWsxtw94whU4QohAA/C3ZM8BOc5G4Sk8ne19/ubPjhQem6b7asAOfS17WnXjTX + iFZxGoPNbRKSf/XFX39MDu4p5NS11S1ffxSwrzREewUdG1eB9sGCkgr0qnYC6tqd5YNRVA9imNzo + 9Vbr6fL9xW+++LDV+qLHETzUeEvCjdYh5mbdCItV29/3l7r3VBfqL/7Ucj77rvr6NdjRDwmxvv2m + V4XdDY65VFPlM6Ok37bXA4it3ZHgHN/Y9Mo2CyphN5MfPxs0q+3hPfkhPXzrY45lXYL9udkScr42 + ybSp9QUaZSXRYGjsPz/pbx6kFB9eG37+3uHyweQX/yXS2A3329mkap09ktFx3xn6nsc49o93N+98 + 6qIfPzM7wqPfPAG+fD4clbLoFvdYTagNOJsc+VmrF0Xbm/g7ryJbba69Hl3qFfz8EK0JdcTvd6zH + Un/BRKXCq5v0SRohMYfTH5+b+O37jJJY0ojpiUrNWxkWQBCiihyife39zbcelyL6zkOympHLFKNT + 9jFouFO2Hgees6CNFeXUODpKwd4h8lGXKRopa3NMfvxFPvIlG1eSmmgzSZQJf/nGH/+dFUWx4fs+ + 9AJdyCbwnAmum/uRKolWocl/Cgpq2ywL559eDuqTLmvikhDXlb16/PI5BO5QjPLXv/n4q6cE1sW4 + jO+v/8fn0fhBF1BUaihrisZwE+qo3zIzlLVoZPNhvTujy/mlfvOjYLOcTin8zsuXVJXN3s5R0Lx7 + nIl2O3KsPxStjX7zEuNoYG8SkDXBT5+srzvJm7N3dcabwzUY0df/Z0kphqBIQ0sO+PSsJ/9ABejr + NyHmslk6utrtcvjqV+JsIxP1WvJ24d6P75FbOVI3q5uxBLlTemoOOpdMvVun8MMD7zG0SfebZ5Yn + oQ2hHZ1i+eljQYir7/o06b/+CewWR6b+m6oe9wj9DNpzMBKNuyaICp/3Gb54RHxx6zBxMeYDlHtm + hE/UtBqN1baEr98bSvGNY/MyKjnersyUOqN19NrPLT9AqVaUOL/+Uo2VhJfnyibWVVFq7qvH8Utp + 6hFto6O2nD51hkNUVsR0WsRaAy86XPlxS358gjX9VUVsVU9hYZtjMjhm0cLkzE+SgDPV7KjRDPbM + HKldtQlbrFuUYfnakW98CWq//hnEaA/h56tHh2/+QxEbIiF8yNdMPieKnHXZlSgYGvT1X2RwrteK + 6hYbNGE8jU9YXRdhXBv3UZuL2VOASKNNXfXsJKw3gwZ956Fkt0ne3jAU8hk92mWgdnxL0ewc7hy2 + dhCS48mrEmoxVsHamUxi7a219jbmzQfUbdpRNSRDN9RWM2EJRpdoXqsVk71vJbjmm4YYl0VPZpNs + YwC2KanutF3dK13jwv/av474Y7c6o3BdGUStM6MQXre0hFZgq/Aasz1rC6yd8Vefk0ROF2+575ID + RuvGo9fGuXszSewJdk6o/83b5s1RT2F733QhkhdAc/BareDrVxFTmKpu3G4dU86S3Yn46dMtRHVm + EzZvukHt905kw+6MD+iS3a/UYbAvllzsJ/jX71bAf//P/48bBfz/+0bBx+5VolSSxnhG/Rj2wrok + 9mWja+Ii0xJd/deFutIH0HRdLRNES74am3BTsRlp7xGLY5bSvLWVQjQuyhPfu0tK3QsKavEFCwdk + 82JjVURbjaPiSUDdQw2pxgy9mF9pCnjYooEax+WIhFM/RmAIYxwmjs4SusivM3jcOyJFPI/dYpU7 + dSMc7z3VjaJDi7yXI2BBylNtWmZvPnBIQK1dAiXv4uyNO7tpoZX0DY0tM0TMKW45HmfvRSxZ3iKW + fFoBpFLZ0VzZdFovvdwcAiVzyD4VXwV15SlGuyR3R97ptW5kgbdAy8I3VSbFKthuu47hOjRvWgYX + 3ePa/ZAhZ7m0ZM/tY4+fjs8KVmpIaXhNVSbeCjOH8dakNObXUSIW+NDCSF4WsVC11pYxtWXge7+n + p1h5d/NKek04Gr4Tr3XfdXQbb2QY0sgm5+ehZCyWDRNXb5dSVfk8Ed09exM+cnSnxPP2BefeZhkn + i5hS5SpwbIKN5kMk7kLiW1hLRIduMwhpq4Zyp02oCzeRjvNQpMTjqh7NU7scsN9Za6JmOGDLnMcc + VtuwDJcMD4g93zsOusAnoXDZMfaM06TCsaZa1C/UZyFes9nH7/c7o/F3f5xV5SbeteIQvgbEitn3 + 8RmeVRaFm919q3HKIz/DurzJxLrEWc12WzHG/vkSkvh+4LtJP9sumM+UhGwWbwnbbp86nMLPleqp + UHVcm0QhnrbLRK3ro0O//IJnlUc0C6J3wYKtGkEhRiJ15dKqB2Eb2LBLMpfm3+9TlB458MLwRtQj + fXezX24jPB9jh4bv/FiMc3zrN0mn7WmQSK9i4ayngPnImon19o9M6PZ3HQd3aGkh+RttJGrc4zL1 + fbpt19jrS7NfwWE3eOS4y06F+MvHclWvqftkF8RfjHMFb3iY9JLtaLGkofAEORBL4kaw1pZwnFsQ + WNvSozMOHj0eQYB7Lm3p/jmaGlf14QJbdTC+9dUkbd2kH+wqd5Pu++7Blu7t6vAiZkmV0mmLN3/n + fVxU+Ys4sfKu2XAWFzhf7IQeRSlmvOfeIgiM+ETUkes7ltyJDYJ8zYmRilYievflgF/ufKfGJSIa + F+uogfFRNtTcprdO3K4zAfeyMdKAOB4S7dWjhWI6GyR6bbNOsDa9jV6XgRCyNbaaqHwVXReEhJxU + 81N8612B8NynZBevnYK7PUDAb9M+klR4KTVvBO0HHPw4Ej3gkk5EVryAu1gPoq0i2xPMp+biYLmj + cXm9WyRIH3QG6/4m1KneTTJ1g+fC+SlxxLX1kbFoXakY1alEzEEe66kbNBuSt86I2t9PhZiJfi9v + 9Os2hESsas786CGWYqkaQQowWo5BmcMv3mXwlBCLKnqQDzvqUa+XbvV091cyDNCdxkILNG2e74oP + Bws+I6FZUS/pTc03sfLuqSm4246J2THEqpLdyPHk1GxebDf+rSdKchk8IfHfOTgq3xFtFpWEWzeq + isvVfT1KaRF4jJ3EHIptUZAoQ3oiOP3FBH7t5iQ0i703GfTu4otxf4TNZYyR6OeKj4PcfVNrW8oa + nRS/hHV98qiZaYQNYjraIDnudgRB0NFQ7rQc3fiXREI/S1kbeFIPechT6kUlSl4flH9g3NafcSoG + xeNezuoGjyvXEOu4l9iiHMURx5Z0DF+ounrTUdBj/BgklV74ZMc4FSQfdlfLpwHsFbTc7mzBHXFn + up3JpLHxxlX4t7/rfSZsvOfbFlKLNiQIP1oxnw9tCu5A0lDkcJUss0MUeHXLMAq3pEKzmD5dqEZ1 + Tb16s0Mzn3smMp1WIbGeJh4XmskC9aq1acIMPeHecu7DOrpciHFWPW0JanXC72a2ybG7ehr/MDMJ + TOejjOtjc/HmYntdgMY2I7578upFFa0nRt5tQ4+Yjzt+02sSKOdoTy2vOHXDUN0yLNvrkNiHUSl4 + 4bEBmIp7RIPdI/WoQ51M/uGTmXxeaFIzLcPRJpjoNSnaYonPwQcN17VLzGOaeovB0wwwTku6l+O5 + G67nJcLBpJgkfflvNH1OlY2mKxeQHTdZ3fR+hxkyvaaixuOmeryuh/CHN0q36zp+PfEfLJnsSV0h + 5OohwCcXtUX+Ic7D6Gs2LnaKW91ZE/MVJgVvKbsnliMWhM+c97rF2W1XsF7fzN95eULRShKI5vMw + Ip8jmmiTzQ1rdV1S3RMZm93VfIBPQUSiRxFC82HY9vhZOA3Jz+FdE9/lFYCN6ZYkz0dZTGKRVOgb + f2qv9aJYdBb72EqU8pf/hSAe8xJMFF7pqaUZ64crp+PsYiokMVvP+17/W1Cxsr6Oi6DVomJ5Kujy + +kS9Q/z0Zu7aKmCWt4ie3pztzVbRjHhcBzrdP+110l2NKMRmThLq3A47b9JqOQY+MuYR4oUlj5sG + KRw0PSdxVTRo2iybGE7GJSb79Tbw/vB3JqVLvSdS2KIq7xSahykRf2c8GVM3TP7Fd5TyrO+W9vOJ + UZxdPyPq4xNa1iG2wbDMPS2tm54IqvI+YHuJMpr88LI+PX0szqlGT6vnsZ4V7QQQtCyn4bHOCpa/ + biXW0PEcjkle19P0NBW83u8HYu1bP2F+Qyq0wveRKLvpVveSun/ismFXorpT4f3ii3hO6aih49ab + vucJTq4fqElfhSbulaMOlA0x0b7TgkmLdhEWzeZAs0/csVncxIBN3+GJr5tSwVpxL4PliBEN1Knx + 5n2w4aBbTWP4kB4Pb8pPGYBzl/ZE7z93janlbQJ7/3TCk619tNl7sBwu4bgQnUuDhMVeBvDYMWtc + r2MZLRxnLDjwDY9eQh06xjovRITyMVEI7Dt6jNQeT1choIQSE4mroO/B37dn6lVdgJbHuj6jRzPy + IfMfLprE5J3B1f2gcD9vHLZMLJqAfbY61ZuNUPf9a/ThG1+i7NwTmpeijv/4gt3dCOLz/DLCfPI7 + EvLs6tHnrAEYM6dS4/Ss0PxplCfexNU1lMScakOmiitAXrUJZ+TTbqyoyIFYx49xY2wLbQldnYPM + iFSamG3nUZvMFQym/wnHW2Vp4uc1f+A6OhDe2lVWTHv0DoE/xauxZ/ugYCJ/kmQLnShNDtUnYbtE + M7GzXNuRv9BjvWyET4qKoTqEz9MEyQ+v5Di7fGh0tDbFgt5FBPsu/s7+3l3xfj1uE8iqex5nQzS1 + 96192/Djy1q2Wjr6Lo8A8aYURrCwViyqSBr05ecjLFGpTXz7eSKeUztKaIbqdnONYlzkz5YY8+aN + ejPcmAAMtuQwHQ6IGhf7CfzazsluZBYS16fiCXIhAXXUx8IYYciF3FYwuc6+WS+HmB0gaOecxlKR + daxEqzMkorujxqKuuvfuqNsQb84CCUY71ISnF2eYCbbyl78TN537zQqgINb14bEhGe8ShPl+Q378 + fWkM+wyGTuURHddL3eRkHSEzDxKqNHz9zT8thA1ppj9+Kh7edguOZbfEW8im6D+nj42W+OUQP4s+ + 9YiVjQlRsgTU2wcH1L+ES7l5b8WcqqUcFIyd1hlo9ycQs8MhWqq076Es1BXxW9dB3OTKktzHu4lu + R2axLx+wscEdReq37pux+xPHwKXLTI0fv2zOnwq5mzT68msP8YdhO6JWMjd0qzVLN8FLzABeokG2 + Hmd0E3pUISSZ8frrL33/eoYwSeT6i183JR1+/vA05LLbiFiU8yFI5vyk6fo6IXZ52hFoivqdUHdJ + tyCAGGI67umXr3bsCO8WnmBP5PjQNE98p9EH38VnFHJodUr6VGzO+MxBTPeu12vz1njZ6Fmta+JL + rKmXBF0qMM61RK2ANN3CjNMHZ+KJ+6ufrz4pYVvIMVX0edEGrVmr8ByNmGyTckbLl18i0FOd7NZn + teP395iD+3Xa0a3yrrxJXt1s0A0Lj5Vljqy1RxugjYNLKO3WDZvldSPBW2NAlF/9qexQyV898ff8 + vb/HAsjrEx7X3UiS5fkcKvA33oWalUKT4ahUE5STXBBlnV67uRCjHE4vbQ6XXbLt+He39L/+G66+ + fG98P4wUffGfHqZA1YTDGJZg4cUlSn8liPWxVAJ+VDdirtUdm+QTO4DWjx3RRb6ph7hiCg4rTwo3 + zyTq2OH6XEFzC1uq7pJ7N70DFKPTJvPp9nxRuhnJ1grexUumxn3t1vOpu1c4yO03TdqTU8yLsMrg + SNcSdc9CWXz78wqxGy8Sa/mMiCG2GbGGk9X42URazbe6NEIPZ4dc8WMs2Lc/o0QLjuQqCTEaO30f + Y7zeKeGylBJa+J1yw/KjuxDnIttofDTRAR93R5uSz7ZCs9asFfQ23WMov05Nx8rATdHwph11V69z + sbx3zUH+6uFweEiFN9OtdJDBcwXirLsnYw9JMKE93PKRu01bxPAWc6gC/UJzyeOKaemvK4QFixEv + L3I2beftASReiP741KTHzzPeP3PvD0/FbCUI2F/SLkRPdGNs2BufHz8kW8twvSnwph4+p2RPtAe+ + a+NjPH5gmQOZ2C53/94YXkfw1evh2lJv3YRvQQxr7HRUW5e+RqPeUUAYpyPN2FSxH97B5u5FRMnb + CX31iYR+/HJ7zWbtM9i5+tMb4dRNqTalVE6RzEZE1Jd7S6Z3wGJsBMginuSftKnsTgsKj5xO3VoK + NG7pjysYPF0mftkv9XiVNz0Iwez96rmetpdbiodgew5fb1/8HwAAAP//pF3L1rIwEnwgF3KTJEtu + cpcgIOIOEBEQkVuAPP0cvn+Ws5ulR0UI3dVV1R2ky9c6VEC8sAW51CALl8aJR1jE9ozPA+zVNS/S + HAY9d8ZuQqhK6WH04Ht4RUQvNydjP+xZAmzv28StxXhYj4pcgbDxalyYuFS3d2p1YJTnp7eqzVav + O78W6+hFPEb/Yboa2TjC74lx8I085YFfJDeHmne18eW1tcM/PRp144Klu3EKt02OBMjqN5/gMDMz + bmSEA6Qlz+O/+BmK02/nf8Y6o7Sphs0OXzagH5PBV+u9ZfNnVAp06DSHqE/vXK8PGnbwwRoYW1kh + DQtKQhvai6P+8b89vlgODckp8MSWPumEHi8RHN/FD5+vMabrcOIWxPaBjb3PtaoXfmZKyIjdhdyE + z0fdRl8zkdtcL94M43O9WJdE/Hf/cXDRQmZdGRGoAXRmenhAMMl9djghFBdYZpbvsDA5nSHye98r + 4luUrbPV5yBo3ybOzDOt93iHkNxVdWakcQn3et2AKQpMj0tUDCh7MgKw+0349XxDsHTtyUWTfJqI + 5htf58emqgY/k6hg6cy9w6kRfxBMlXj6qzeU5OkjASSwKbZf1loTi8gpfCSZND8U3c74pVkDaKLE + 2K+nyRakbTZkHMXHZnlzQ+Yd+y1MbDPwDlLBDt3pPRXw+StexGxXJpxiMxJQHCsmds62AtjXkgV/ + /suOJwnY6u4yw+2Rgfn4XjHgx2ApULS9rljJv6KziuEZwvu5O2MzZyL6xUknwbvRfr2xutjOn58E + n8kzJPa5a+vFG6QGGRqSsNZzsUPlYBWAdE/PO151dD0llYBolobeKPeLs4LF7KHjuSUJJ7Oh5CY0 + AhKFj4OT01QNG+0KEVI/aObDL+XD2c4XBjFYLIk3WwGlDLfpENwvEJvQsimXw6sAOaEUsMdGXD2j + yZfgzu+8ar+eyS8OPvSWS0yiURMzsgqpD1/u5+kd0Wfe9bSh/OEtTn4XWG8/S3QhM9fXWRxUnzJN + XlVI4LKayJ4/0bH8MAx4fOV1RskVh9vpiipYmnGMNeli0HlrrRkmT00i9zXvAZ1ul+7f+nd7/afq + uWLQFos68Z5l4iw2k4oQ6uwJK21zGsgfX42TN/KOHQyHtZ1SAXjW0mKNftaBttpHgVqf6H/nO8yf + 41BApNUR0Xw/A5Scfwn80HtL/uoxtZU+F63i0GL18IB0XToxhuXTa4nmhdDZvluUAulttgQfBblm + L2WRg3sVR398lC4Nz/bw+M5/ROO+ZU0rsQgg5WxpVvG9HaZ7xorQaZUXlkq9c9aDQBaAG9MnoRfw + 4dJEQgo5TCai+8Lo9Pei8mD6UyzvtBwHsAYVkODuV5C/9R9V//pfvOmPozMw8Llo//BMta2qZh/D + rwSmUQ5EK2BMV+w8A9DazRVHq3B2+O3ee2KqmhOJqucczoVdKP/8r8QX2XpsIiGBDmKeJP07fteu + LuTu9ejdJT92yKPQF7jXs7mVn7dwnR7eCJUavIlFV2P49vHEgXY2Aiznz3Kg30SX4DdQLliLOKXe + nqbEQalVuJnZ9dKWWm8FCI5ee+TeIHVdmbcLweWZEcM/LWDiXSjBd9NVez4SOmbmxQbX1IUYszew + 79CLPbjnD3YtUXUWfoYlkFGxEvUa6WGnvNC+r+SGZ+6oXAGd5Kb/O18PWqKqMqZcSTCTHxne/QhA + C8DlgFmfEinGvA1pZ/4WuPPJf3pyyH5sB9ggd7EHlkP9p8+hbCgKds+OUdMBfRmo3+4q1tesVUfx + UNoon6YWK/H7XPP6bkFYN/rw7uOEM+b0u7dw0QeJnI/y5MyNcetgzyZX/MTWAKa7sLSIX2MV2yHe + sskUYQOikClx0J9XdSFHB4Ly6bZE0+J8WC2qFNC93l7YXz0npGLMK7D5aIIHXnYcdpPWHeDuf3hw + PH2yqWAFD/75l/Lz/KTU+TU5oHcjxu43m52BPJQU/PkxZ8lzB/rnx8zP/oON2GAAHQy5RfAtheSR + Cg+w7nwWNGr5IM97RYfRhmcFxamQ4HzXe1T/GgIwtKNEzGeIQjpD3MNqgTOWBOFeb28TcSCWyNFb + r+s5o7l1buACy3z355pss5sewt8iaGSvnzWLrp8NroUGyMN7BSrxotr/p9/x2WPppNcFJ45ZgfC5 + dI5gkI8+g97PjPO4MlT2/spFA+/DQ5npyksZmyg8hOgyvonxsGow7vj2zw/l5Eiq1w4UEDyujYdf + XNrXc9t+KrQeNQMHTKDS7TfyBRTpCGaBNTLAzd+fAI3PwcV//bVVqd4c7GuV+/NzMzazTwXc/VhP + /LEu3RTyLOCMPwbOznYFtvPQ6fAnB8Y/P34TlWsA7wc5nhkmmjIqzxcJvPi7TQzw6LOFuVkNVNH1 + gP/wimef0IYFTy67f8vQ5fRKfLj3Z2ZeFN9ge/0mkU/AuJKC/1pggSfHBZJkpfsEkQOW8sNw4lZ2 + X2y128OZgIgPYPgJBba36elQ38g9kEHH8OgglsNo3VRJ/MNLZe/n0PIIPBhce8H7Ct+5nm/DGiBQ + 5F9vnxMLd/0AYVcGwNueoxUSW6kKGHtrvh9PGraotFOgTPrs7f5CuDqy3sBk+SrEGA50WHc+CLd5 + 1LB8etXO4s4IwrI9GvOSgCZbBOXWiLfFHHHk+4DSU2dz4OY1LnYzRc/4P335YM8YGwyqstU+nGKY + nj75LFhkBXv+SFA0lPGvn5BVgq53cPl2LinWvg/3fp0A8OlDZ2YA52z0T24HgyX8zScRDuHkF1wA + iYk+xPMG0+H/+lmBR6wZBKtXj3wWlqi3+2bP7yDkDqoXgCMXnzwhGUpn7s6ogCyuntiRsm9If6rG + wassk1kR5wHMa9DtO8AYG4cR5tW1fhIf7L/vUU5i1XXqg/LPP57vUdqFi6gHEeoGhGZmr/cr7zIS + nMs28oB4YMCWOgcPsEHhzld/jFUy5cfl3/FfZe2A5em9NFi9Uo/sepISdCsYSKDwIjfXdMBkvt6F + +KenjdBt1B92boHwe4k8vnxIG1JBNjmo9ouFnUyWh2WNfxuUMyEg1o/pVH46bQU8X06GJ3bLs16F + tWNgeT4CoothvOsR4ENXWlycJtNvmIKDZ//zH2+vusoWPa5dVJiGj732QNROkj796dqx03yK8pX2 + Gk09WA9zSpRR8cFnz3cUx5KJ78LXq+e9f3KieqVie4q1kNn7R8BS+IGY48yoQ+b11Z8/iS+7n7ge + 5q4ALipSrN++xsAv2b2Fj9I9Yu8VVXS5iCPzrx/yuCPL4f1RloQ01jNyuVfhsG1yLsDFz97Y8oEY + br4ntzCdhMfM737HVn2WCn5VSEikHOthRY+7CFqcv7Hyjm8DX5zePko6qnqTOdVgpFYww92vm6Hz + xfVyeT3G/2eigPvfEwWH2fruM2HfcKU3zYV11xLvdBOFejVrt4BL4kxEafOvM5Zec4DxJ/KImVY3 + dSMT7qHURcZ8HJ8b2AZMCngTw4bgpvJqtgPJBkB+ywhWgK/yV8bVYUjLIzEv30ldjGJrEOLWBlv6 + 0QRcav04eAhs0QOPbB1G61n3oHq4F/y6ckew/Y5VD6To6JMLt4nD+DyUNpTNYZkFEnLZ9GQcDrJ+ + ynkolXtnii0thZn3TskVJ28wMv7Bhif2QzFGIQFrs9wVdBlARJx7ZlGmGq0YhqQkHnfnLTDJOvBA + i9UP8RZJqrnCUA9i/gTQ+2kaD5aP9W7Rq9ZU4lXYHpjhrnUw5N0KB/AyZhus3Rk+4aATLbxW6iKH + SIFh7ghEnydEF0IDDZTVesW5I7iUMvnNhY0KzyTlSJMtqpwmSDhgQqyu/WY/qV19xGVFjrEB6P75 + pwfdnC2I5YsRWIuAKsjt6pLITnUHrHe8zWh+G4/5RN/feu17SYBpwOTYJqeZLm5mQRiYq0GMWeKy + v/fRxCYp0RpFHdh+CHv0UJcWBzTQ1Al4q4A6K1/JRbnxw7Zajxgo2cRi6XGG9RLwmQfH+Ai9jd6x + w0xaL0HWTO4kPjzeDmPOoEL8oXzjhyO+Bxpsa4RYN233CYMh/MQnJ4FgGFVswbtGOfheD+h4unhY + Kd4K4Nfp58PROz6JCnqxHt9TrgFpiVoSn+VPxoVFFaPryaCe8mqvw+S8fAlltvsi15NohrO7+Row + 1INMLmjKnC04dAkE5iAQp76qKl+ZjAkbM5SwuvQkoypccuRYpkziU00zcjLrHobUC+eDVUcZA0+J + jlRl8XHweus1j+PvCJvv8UrkNLzWmxOWEAU8IxE5eAoZTcoihtqPaXC8dRtg6edsI00xNxLf+R/g + 1pMfI2XQn+TKH52Bfr5Ehz0IJBx/thtlLakTga1rJ5KNRpnNinPR4bwsE4nPuh8uCj2I4KYEFvbW + Mw6X8cxsUPL7G/GsmgmX6caOyNxGkzhRKdD18goZVL6MCVuKtqjrB20FitrGIEmTxCon1qYA3/Fz + /RcPG33EGrxb99Rb9e9R3dBS2kjOpS95Yv9Yb73nC8ixbJngNXEGjthlgA4f5umBe8kA+rc+54/H + YzkOq4y5/vgFmHdJn6dAP1NWCOYI2muO8QPeGzroTl8BlG4c9tKozWZTt2bUA1/CyeV7URldcgpY + RMoFe0ByAF8LBwj3+MXPp8wOy3BeDsiap40oj9Z2mFuzNPD9Yzp8ARMNl8tvsVFPv45HX6cL3ZwG + 9jBVX8zMFTwbzlnnQ1Sdq957Uy0Aa+3fbLjcy5uHmC1UGes59KIRhT1xzP41rGDxKsjfnYxIV0nJ + VhquOai7QMX6sKFsjFonAqvYpMQ7SHw27vkPI/UN54Ned4C6canDh1FYM2v9ZMC6OBAhTocMe7Pt + gSk+qSlaD+A2s9stHph3LiVAS1/QQ9skhVy3wAI8zUM7w/vcOgQ1q4721/jaeixd8te6413Tzajl + v86k6kcJvH9c5yHJPzscpJcObEpzIllUJnTZ8RelmyfPCE1AXUt5MMXALLI5EoVOXUbmp0DQ3EWs + XFgAlqWODnBCpCGGiyuHeLeHDYvkZhI7uuR7hyZiYKksESmkWs7W0zuqECMQ1TsaXEd/3mwrkDSv + i8e/zm3Nr9Pbh8/lFxNrx689f3Xkll5MCiA5lKOPQocO5N4E/9UHHwsxHOowx8ZhNbPtdXcFaN+2 + Czkr1A1/eL4woHZbGVs7/qzkWyvo/lBm4ul1Rwc+0wM4y5k518HhA/ht+ugoP4OCXMatBuuYnCRY + Qz/AmaBoNTMaRom4LM9xIo8dXW8/JYfO7ZXNJ0+cnOlZCbbIZdTEZ86RhjHHi46++uNH7pHdZqvv + 4QW0nC6RSwn7mqrumiProKfE/IaGs2rn0YfzJRGw5xTyMOePthGDxnx6vPc4DhTHZIR4/vXkIR8/ + zlKNcox4bEOsMIGp0sp4J+j11QLyysZruDVh5CM0Fw+va8M621430YZWkVo4Gw0p4xTnrKG681Vy + 6eAJ0GjtE6hLwslrYV0A9u9+HU/Y88pYavf6LTawrIoPxlXVUlrfqwiZOApx8gtnwINWUtA435UZ + Oc45448RgHDHX/xgcumvvnQo9RgXGw/bVpkSPVyUHJeYZPZnpOTlPDm4ee2P4OsagW075SYExznA + 0arENf9ybgzaqi+HtdF4Atp+5AaZ2U0m6XqKh3W+99pfvuJw7o2BvYJfAFF2rkj6OwThHi8Rah01 + /sODjBZDKKB37JyJdyl+IVMUvQbzKWiI07vqwGsHQ4LOwq3EeWUPh801S0ELKSnx13UDdJRTEd7e + MCU3dxYyGlbQBROaGo97bm29ad0+c7yNJs5pg8Dy7fwZfRVtxuHSk5A+iFb+vSaO2rshd3z5PsoK + d8Yq+zGdhZYggCVXMDveHId1EjYR6VGTY3tlhmHkkTnC+nwRyKt51vVy6EwP5WyoEu9r1+Eg4dBE + 81XLSeiaR7o68rEAhw/39A6c1Dkkh/WGPBHZxFWRWRMJZ+bf/cBRv0/QVM1owp2veUL9RA75nY0Y + gUi6Yv9xzgfa6GkBvSw4EWe6ig4Rv8EGnZtJiHPuI5W2rFIivucORE/4C2AnvjQRHB5Xcv68TjU9 + Gb7wV5/+1iNbbz/733qRx0X8ZRvTaQEcjG86L+NKnOV6v8agPwaYOHYp73zhBKH/TgxiMJwDNv0b + lFBNt9ljKvdKt7IpI5Av0CS3+rWC7XoENuou60he6bcauKt8PsDL0Xd2fgCcGURFCf1T8iH3lSuz + LZr8Ev6t59lvqmzjYpgAGE4vj4/wmi2XwRbB97ooOGIEaaCfNorBKyTZjApYgc1WOwk27hf8xbuz + GZw5I7zdPCzn4Smjq4cO8OWkvgefvwoQ90sXiLzNnE/Vwg57fLew4OfJY1JXGehzbHsY31BLrOld + qot09hiohucTcS8CU29PQ7L/rYf1bdVwjY21h/MlFYiR22y9pSkqRXYxDCxrz/dAh/UhglLfauKa + CADKZnYOP7xsEH/gYnW5uPcW1l1DiLzXw23pexMAQX7+xWNNh3cCYfyLniQ/3lxnBeWlgSBSrjMb + zC86vnMzEfXR94jUc1tG87FikH1bLnNxOhfDhC7VARxW1iGqdTmGA4oWE7G+Zs+LMNJwer1/Huzp + xyGWrb3C3jCiAqktzb2TdxScFb/uveivZMEYc4lD/vhWQccC51dqDWwPSQwqhB/eehQJpe9O9ODT + hO0/frV42XkBQuFt5JLpCZ2T9DSeqNX7RC68tia98mPg9aZ/8blPt5AuBdDgdypUcoHdmE2nUl5Q + 72Jj3h6trf7xa4Dnoff4n7QNC046/9/90Xf+twpy0IFnd/xb7wxs8k9I4ZKxPlE+uRqyGRsssLq+ + E+KEnyPoF3HQ4B8emPro1tOur6CcSAnJBtfIeO4n9HDn63t9fWekq8UOXi+aiRVwP4TTphcSDBbL + wVp2vWZMFtwa2FnFSowBqDVvikEDn0LkkGvpeSHlra1FpwW65FEtt5pBj0CCzeuwzcyMVMC8DvUB + Gv41I2f8+2Ub255KcZ7O1ryd2bFeiXkcRS8ME2KkOKFbmrIVPOimS3zw1TIu65IDKItVxjrpjL2j + zonQxHFILP/4Ahu1niasBKEgz0A/g6Xw3jba+e182OyDs6Y3X0C+fRvx7UzvgKuZSYfKV/OIfKmO + 9Vo03gglF64kerqzukSxkkJNeRZYfiQC3cbi2UOd8ScSGuZYzxfloaMikXJsOt9zuCzNdxR9XVpJ + oLIaoIdYn+Fen3e92oHFzeQDbDlNwmliXoc5wIwNwTCrM8v7JCPnoWvh/Xx3sFPEfbY19c2FJn8j + RNn11F/8gF3f/eV/uITJVxS/xTnDStTq2Xa3hQ1ah4dO3PLnhfQmDwm8C/PRE0uVpWS7DC7gXusd + e0egDcwSyAHUJobiPX4yxs2jEdyf9x82RcsBf3wMzFc9J8pl8SkjPr0Cnq2S9U5c3qnrky1akBXe + TIzmfKI00M4awHN8wObOb4aGb1x0CUXOO0JPdtjBXDRot2fOW+3nz1lRcejheb18iPwIJzD95Rv9 + xAG5PGQ9I0Vqev/i88G9Q3Xi10cP6LN/7Zuyfxn9qsICw3t5xXHJP521B3mLnI4L/vhzuHxSFECV + MzV8La06G87gXYIPju74fGtaZ9JrqUf14lfEWt7O8E+/XW/aFwf2cv7TtyI6FHZPzDLRdz+h7+Gm + nxgPXulvoE8nVWDiphWxUa8BLjcDEaUxN2D3Dz+mFLdQLz82dtr4Ua/ty7DhSW6/3ikfanUULtYI + zoKYEsN7vOr1ua06nB+Pdq9nOFyuv+MGfmdrmRkr8weO/1QNuspagv/0G7fnB/p8FXuv5049Bfue + F4EVPlhTPpm65FjQoSjEeM/fNdzCoo8AR21MJNWWs1U8CALY8RWrl0PlzHFu9vD+k4d59zPo6g9d + BG7FtyKXQP/Qiam39O96sad12bC2+5PT+ILz8VkSjuqYqHUL7fRseqiFm0Omd7TBZNQpdjXhXf8C + yHOorOgV7/WCLvWzOPzD0/OQxuquxw7Q1coIu8KtpNub+QXg+KkHcqnkR8iG4KOhkK+9mZlQqf7h + N0xFnvfqL/k61Dv7HtjrIb7IvkmZLHg2sHaFCcubRtT1tTEiSphzQLAG7oC/nl8csGayzUJeQTA/ + 75b+50fhs/c715ylnysAjzozn35DrE4MBTHg71bmrbMlOmX+WiWEvX7CZlj9Blqkpgt/pZdimyXl + QHa/Agp6LXlTCe2aL4ZMgIwwqTOK5GqgvCW2UOpiwzs9lmpYSnT1/vDaW+7SD6zm+zRCzN2f2Llm + Srbu/hTqBC72Tt+2DqdMb0v4otn4h9cZeY5zD/1YnbGGaDdsLLcV6DpuD2w1wxbOZGBEseH3Do5R + vJxlz3dk2w8GW49FqZmnfBmhKPSAnMsXS5cHbRMEQ/IiWnGFlGZudwB//NEpYjtkZ+NtQlYilbdO + 2pBRo792UC4l3rvs/J1ZwkhBD9dYvM/9J9T//AU1LRQPRpRVR2vmI9j9XvO8MkdST0f0WeDYR5S4 + upJl3evIzbwrVWeMNcCDNQSTBh+v4ks8r7g4y9XwE5hfmhAb0sOkVCIPF+pRm2NvtLn/1s/o0HwI + jtdk2PriwcErswnY7g+xw+7+FzRApOG0VVFGUyTOsE8wi/WYb52FO7YuqASxwGdt/jk/7TZ5cArU + 2uN0nXEmfmsSRNkfwM5mfME/P+tPr0qOvQwbUr1ONI7HgUioejv8Nh852FPAexe6EWf6O17NBKt3 + iB/XbJlZvoFcvX7x5cOrGXMBDgNIY77Jv3zY/RO41xdse5fPQIUfLESFZAk2inNFZ5N/+fChbrsh + ey4G0oWnGTYvuJHs8hEy4sb7MwZOUMB+BTxnoa+ygq5lAaJsQRmu7YXm//ylx00Uhu4n3AoovIUY + //k1//TspvgXfOOdJhtDI3dFy57bv3wF5H60Oojjn0uuby9w+poGMVAPT4/I1+RXL9CuObTrfazx + ykFduiRr4BpeIqz4Sx5yZmz3f+dHUisYwextoSAGgMHYfpk5WHBSBv/4r6E+GjBVZRrA/BQG+4Tf + B2x2ixOYfcQ3xv66OvQl2to//YRNbgQrQu8DzJ6CQuyrqTvrQ6/mP/93PjVDkG387d1B5Z6IRD6w + b2eessVGohXGePcv6+4CHA5qyqsgNr5YGV2eXQwOV84jRmS34TwcshmizKj+8q+md/+WiCFhMyJ9 + OG9g7GlsYf8S+/kZ6la97vEDdz2BJSkC4YIfVAFHRgjJefW/lHBAi9FBt92ZI903HN62J8KfVFq4 + mM8qnddTEsNk1ChJvDGjq0kvKUykZCP6/nl6DN8e5DOnx9bceoDG78mHia/ppPjZjjMzneufrIOW + kluV1s5f/Ybv3on2+KtDNhSDGPzpOyf8vMDKK1MqDuLRw0raTmA7rtwMj+86J06c6Sr3PrPKn7// + 51dSYmbf4J/ekEtLzbbgUCYQcbTxNjYYwPB4Cgzc/aj5MJ1LlQ5VPcLTLbCJvvsH2yVIJf4nMSzW + d75NI+Ww6/kx8Cj44GH83U0OLiqzeUsLUEjZsbDhpn9MbER4Ddf3e5LA7s8S6filw2yYxBOD5clj + 9Y+/8RznA273btXXaaIzdy5nYGZ3GV+m7Vvv8QJhpNZwrxc8/f3V79crfZEz0t/qbKudAmyW2sT8 + Jpu6lgHHAedqlzPgjWGgTZtUcHGYkMTHgtA112QJAUb2yHnPn10v7hP3JcYSGSWVTbmpggSaR094 + JQrY9ZiJkHrWsHMmL3WzmoVD96t62euDRfmTOfT/+IXxsq8Dt9lfEfzp+Yvuu8PyV493fYLt96FW + d/9OgS8n8eeVO37B9j4jCUaFEOF7GAnhkCOu/OunkIvhL+HveGkXyDbaAydtWIfrab3lkDnf8Fw6 + GAyzG/EVmMftOR+F0FWXc2lVcKgOyz+9teiHpYfsqPE4XuvGGctL4MKXkcozG/8YsF7B20fEXVPs + BOWqEjazC8gXjE+ee/1e9/4MQH1hk8tFr5xtGk46ZKPsvPPXph4BQA3c+cc/frLxn76Fz7yzcIzh + ud79SwnK5m+Z2ay51MvIggWcofibhd3PWk16TtDI3d/e3ETPcE3bsYX0h07k1t++YbfzXSCZhwqf + 3VkIf6LkzEBby/vME0lUuy18MdBuDW7n1ze6/fGH1fBaD6L0AFbxsAiQWhDu/ZI4HM+LncPqzMbe + uhzL8F/9agwY/fHNcDgZvohceFGJp3WgntoXtv+djxIOl4wPGSyARXLwbHNEy7hOQgV81KaD4wfM + h6X7kQCozjnF+qFw1eEu5QXkQ8vFqmS+MxptyP7jgx58/zZ1PUwNA/b6M+/+tLOdzTqB3/dyJNHT + qJ1xNHAJxu0eeGuQXEIGA9yLjyxP8B8+0WWf8Pzrn1Hm02QLXRhX3P1ikhy1Ztjk35KA/LY/Y2rv + Z0wnOS6gNA7Kjs9XZ3nKl1mcmQXiizjheju80SIaINbwefEbdRKCORajVqQef8Ossz2TjAOiEGFs + vO1HRtMLmMHBNrP5qHMfdROYZIG7Hz1z8/SkY1bFFXzdp34+LJI0MEQNNeh27xK7YkrDnX/Cf/xd + fngVWOzcFwAp7QDbOGCyTRP6BK5imxL1zdj19rBhC4VJ0PHtj8/oB6ET1dA4YeO0NsOqnLscKpLM + YOXeKhk/vJMD3P0jbxG+ZrYRu/TR+e113mnXM8vMHhvo5tVG1IWIYXf5CSaExrjOgFfKYVqMEUIl + TAciORjUi3c66fBCQE1kNzkD1vZ/DNjzh7iusNDVfK8j+vNPMBuW9drBuoTKUR/JXz9hHi/yASZR + JmMJnz81laTmAMdeMbDTXud63KRTCqSoa3Ac8606BfDIwF9ecthuDl7NTcOqocm7HYluy5ZD5bJl + YKkaEjHCKMnWie9M2ICOwefr7+psg5fPkLc5GcvXxKr//C9YipRgle2pM9z9ZwKvTO4S4y+fdr6F + NvYwEZ3timw77hMraM4fxPRGAFb3eBWAJWqOdxLeIp3VpKzQG3E81mqjH9bZ+JkgOzXaXz+p5vzX + GqC//unej1YXVfmY0G3qK/HSSM82N+JLmGJTwPc/v+GvH13OxY2o79OtHqFdM+im+BaOy21zxt3P + EBf+HeBL6ETDXH6ADlPisPO0+8GjRMHuH/Pyn5/jTAyrazBwaTxPvpPUf/1fGFu9SwyjOKrzs4uW + v/6Wd2TDclhUZTLB7vfNdcvM2eriVIRBZ4/e0QavcAveBgPXVLCw5YkXh1ma7wz3/g7Z4zlbb2Jh + wiXjfSwl0oWyT81lIBHMhWhy6e5+fh5AU41qEsIPrclBv2z/zrfKhnygJ6HqgS58OmKMwKjJUS0D + VJDRI37F1ep2ioIR/B8TBfz/nihQHl/LO65nUV1Xt83hydhWj2HTnm6Q8XT4TdSBSG2/OCMJ3zoy + h1c4sxyr0AV4W4VsiHyi1D8CaJ82OmzKLib5pWvV5eDWCtyiePUgaq2a7zZpg51D8AyksxdunKxJ + iI3jaaaj6QNG0/wAJkY7Y+M2BYCKa6BBRQs5bFbHEdCwS3qont4+sf1fm9HbI2Wg3B5zcrHcC6Un + x7BhUtEUm/e+zbo2lkzozG+dPN/5FK6PK2Mj5gtzjz9aP4fenlWAxvGTETlDZsgr0ijC6axH2Jw/ + q7N+LucWaC3fE889Q3XVFxKI+/eJdhrMYWGxosO1EX9EtksK6LyuLvLI08FOwlsZ83MeG1TyZSZR + rCs1E6LAhu18mIiRhZ+QTtHFBBw5/XB0gm22noA5w6OCRaKP0gHMiyXmaNsmhTwNPgHLY4l8JKO4 + nceVGDV7nBUOgam0SbDelYw9v7seXkeLISYM64G7ae8Y3SXy8VbMdvVgauMGIxl4WKawV5eHHGjo + N5ILPgfuGfAmPDNwUy4qlpR6HhZx1VNkRwcbu9tVdfi5pDnKnoxOjOUsDWz0TUQApsqe+Snj6Aqy + sw3TKTJIUHHxwH3da4nCn2gQaTg2gM97S0Fmcp2x+QQs2Nr5kyAh9gCxM4eGm19+GJg4jO0dWSEM + 2evHPyDNHVmc7M8AXj/QWMDa6R6R3yh1Zi1Hlfj49fXMnKePw4IvKOB469wZPHtl4Lyvu0A/5vYO + pieqo7jqCdyw/CTGQXDC8faeJVhkbUuklM7q2t7G4mR3hMGySFhnff4sH7bUtcnV7RR1KxQ7AJLf + nMn1WHkZ+1w7G3mq98O2L2oqXwLcQGfMEmI/w3dN88/aIKImIzal7zH7lTeowNdxs/A9YyUg8P1R + gdqaX0mRwSfg30/VRvkl8MgtmamzvCBQYBpDhPODeVaZMjADeOLdE3mY41ulB/5doLkYfCKp516l + d/lgimX0GbDKH4OBumGowKaovsT7mRFdvXQz0du6614Zks/eYbhFSPglJU5iflK3w3poobH4HXkA + flA5Me8aaJbbFztHkQ50ICcfwpUy2JG+FuXkIJ4R0wofkiy5XDNNcUygeNAVgiX1OGyF/bMh7zQG + NtnfA9Cbv3cU20nw1rPzcjgowRzU8qYTc45ouAyClkNeEN44GMMh21LiVv9+TxEbsZ6k8ZsibpMT + bBmdRbkUbBxqnsWC9ftydGgWUQZFjwhj/62hgSYBEOFUJfPMv5VHxk3ANQEsJMtbmESpGV5y9z1v + bILtKXuHG5MvNnyBappPvZXQVRpJAitsJ+Tynhxnwc/Whhd0umFV8Jd60SSJg2R87U9qYfNse/tL + haT6KhBjGplhAYrmwsTsP1g9fc5Zn9jCCDnG0j1qeCyYe1uREJdKV7LnAyU8SW3Iv+6rdzjLNPvD + O2DvE0BJ4dJ6Vs++ggJTtIg3uw7gJrXWoe5Hb4+3Da9mijpOgacn3syfGCakjXeJYZFWBEfPUafL + 9+Nt8HPIZ2yNtKp/f3izzPKL6GaWAJYNEAesKn4S5y4JdOw4rUKsLKdYzaXVmcqqj8DhdrxjSy4z + SouYbpDyxRNLKHo6fPLqPaipukSkTHMAddZXDpo8PV22MrfCDWuLAOVODolXm6pDdRza6O/8zgUn + O3T4BilSJuaDlSj61Yxa5aMY0ae245lad6EtVcgkI9nj01FZWYY9PKUwJve/9e44rYQ3wXthLWuE + YSzSYwn3+oK96+DVyzDEttjBi4c1NXo4a6e8PPiHT061zwEw0SOAYVih/X59MuYXLj2CKdcQfCkZ + ddY+eQJPuXTBt35SVTbHTYe04azjh2Ba6nJ7GDYkh++dqK/LfaCNxQrg8S1ZfD1KG12jQlTgVZEl + 8qxwW3c2+G3gTJg3Ce7bBWxyihq4+sPF+xU1M/T9WWzFRz+n3sy+g5AewCLAl+eGWE+Hdlit+bVA + 63QdydVe12GFzHtDBywZODwYEqWeOXYwYtuNGHYyhtvXLyG6RFwyf+TrCDbuIsbwdTFz/Ag9z2Hw + PAjQCKA3nS53BFbh3Wjo05yORH3z74w7i+8W1fHnS85SQetBz61CfAurh8OhvTmr8ylL9M7LAT+i + 4JMx+kgrpEkw8KL9fqzP5sRA/1rL2CXnJ1gq4yqgi9RArK5HWWXt461EjS4TYvVpXH/xc+UQJLpE + cKCQYX3AWYC6H79xxDOJyn8Wk0HuyRLxjofOFuc6A+3L2yRBmf8yqqZyiaqPvOK75h+yJWRoIAjL + bSHxKBVgCU/KiIbW07CtbVrGGOjkwxun7R2osaXcibs1cDprEbm/mwhwcso20EBnhZzvj4OzFfbb + RnVp3slDMH/Opgwght93k5H44m0OPSsjB/f19oTzEIdr9PUFpG2lia/SKjm8TIgOvyQfsW/Fj5pW + sykgRbtyRI51QV1ijrpoOzw/xNC2Ex1ublPB0cP2zLCpDTaUXnX067+v/Slctro8kN3AdIoNcrUx + 57T9SfPQjp/EbssTnVMaQvQSC44YXyTVjKH7LnTroCLeXh/7Qr/OKP8+1Pkgfn4hrT69hBY2f+Ps + 20d//McXnf7az281H5yvp9081O975NRiyJ3ForYIZ+uGiP06uMPmSb8Ctrj8EIPKv3DdnqML3+z3 + N5/Gq+GwtjpJMOD9FHuV5jo07v0GlaVv4Ydpf4Zlu/0kaKZZPrfyyRl41FMTOuzB9E77++Msugnc + 8f8Pb+stvPE5/Ktndire6vXwzkuYidpvPjypFy5seK1gegM6cegWgvXwvOh/v0eia/N12PvU+bCd + RI6cC+7t0CQLFkSivCbPw0t32GZNGtBUi0Z8ql4GukFfgpHE3rFBZStbPnDIgZKNPPZf7TcjJTBa + WM52irVcZzIat5YJo7v7xjd2dcAY1GyF9nzD12/tDozYkQpyOjdi6+RKDit7PYSmVmlEb6WLw+Lt + 3sM6/n7nIi9Odf9c3QKWMXnMpyj4hFugLwyaxRMlytpJzmg92gC4TfTA0sHgMrJIvADqWemIKX1f + 4XZtUABm647+e72KNAqALEQnEvOTMs7OpwN4DMt1Xx9DpahwOThqzY1gUHzAyt4vPhhxKBP57BzV + LWp3/wSdbiT/xLbDOWIqQd1gu7lg5odDUx6PYMc3sue7wwqPiwvn4ucT50qlYTmHsQj/4h2Tr0oX + DZwieM9TZT6Vg0KXjyQeIDzX13kz3R/4lIPsoevZ+3j8bdrAFuceB79ngLA8x/wwWv2owF/3XPFN + ruyBeVjLAaaJxMy9/2tDmh7nFkr7Hr9gvVfhzm8C8Kcn9utxaGQ+deiLn4N3Ki0jI8olc2FxOvDY + MvQ53P7quX3UDuQV6nq93B7YhBLkvkSOu7Be237twAdLLfHmpzUw7gISeDgUeD4JjxYsgyYyotHx + 7YxOGXaW9rrM8EjXxatfZJ9YfMw+jAdRJc7P18H2x5d+rKvP3H15qctFXj1Y9pAlfmsyw/qmnQ75 + +usRLb6X2WIo0oJOnKVg6cWf1XHnOyd58AQs22UIlj/+e64lA9t5aYbc5XpsQaGH4Y4P5bCSRrVR + HNwjYhVMEDK5CDSon7LCQzfOcliIzA5UF6WffaX2hg1bUoQqVP28/froZlz4GfjR3BJcILNey6qK + geXvz2wjvgKYmAMefF3sHCvxzNHtrdn7hPTpTsLJ/YJFuF1zpF2WkWTNcxro+522UH/aYOcPu2P+ + Whe0BgvA/s4/WPO7KOikvm8z3PXnNieLj3grf5Coe62U0jzPIXtPGu8wHz/qkh/tCur8dSHXaqHh + 3ARCgQi2MMHNCIcxBnb/D7/yermHna1JM4TS5eCNafDOljqSXNAyvoz9g0gGglt/hjdjLr1l559T + 5Vx6eMy2365XRGfzhtw9PYbtSpzGxWDslE2AJquoWLoIN3WFwupCcpHfe0cwyxb8ZluQPTmdaP56 + oUt4XjX4k/IByzSda3LEhgSb93jBivk0Bu59FEdhu1cxxrLBDX/nB5PzU8KaJg6USGWZi07iQGKc + mCikx/skQr2udCwnnh6SKzq4pwzYJbm0q6IyesZu4I9PXN17k43NN/bRByX8ng/fbDmYYQM1j6kx + LrLJWVYp5OA7r4aZXSYGjLaZmGAqQ4mowuaqs+ZjD1ae9ia3/iCBrbEfDTglXEfctfgBqt5EDaBL + fsWZ+CnAeHtgG/2U5rGfv0O53zLFYHgx+78u+hpdn3l6EHPQ708p17WaM2pNROKJa4mkBD7gD/wv + h0XWtDjlkRdOv3Ft0b98JH4F1iP3m6Fu8J13enj7joXlEwNeEN8XGg32wB1+9xl+i4Ql+N5VznZf + cwVeYqjjjPpCuNZNH/zh6YyOsjxs6f4fXGuwAaLyT17d8W4WX9i3ccYaJl1s0zfFb9UHHnMcRGeR + 1qBEyclusGs2WGV8EHjIwEuHleD5cEZDT1yQjoE/n3a+Pj6YegZXbsvwHp/1v/t7npf+H///t34Z + Q2NvA3dKV0OedOgx22sSrpRziAClAjrbUpNAsKeMOOs9Fz3F3rCBJ9nh/+rD7aOIF3QaR0quynmG + yE1SbHedqVJwWiDMr+rJW6VVUrebuWwoVcgbY/5iqot//PVQvojFXJu1TTn5dVbg78CBXR836kaP + riQec64k8rd2a1bOrj764YTu/Hyu//QJ2PnffLBj0+H/4nuTjBu2hF6r2fYBBCgiycHhSf1RIuVX + 5Z8esFMDZkuw1Bz8kmIkuhf8nA1e+g1YL5vHuoKqeiM1ycHuXxG9vdqAWIWVQol/R0QPY0ndfgxc + YBi1DJYUZszo/fRy4XE+eDPa7m1IsndvwtdhDrBq7BPa8sFkIAiPmTdIsets13VooUMatPtFuUNp + yLbwPI3UO+yvN0X4ddBtC8PLo3Gmv+Nxf4bOLeD+6fUexdb+fm7gYq8XO34Ff34axvqhBYu/0Rjt + x5+ZrEkGugpmA9/0CbCTtMPw2960Q/5te85En37q9ngcI1h9nRex9vrJHtVEQ5ebgMnFBL5K9dIX + kTm+7XmQvj9KrWumQaHP7/OA02igg5CYYk9iEetydwEsW9MW2YvJYflYeSHv3vsC1IMg4sL/8vX+ + NywJ9Fgm3vV8GI7VYYPQYaGJzbMlArLHD/pm2Mc7vjhsSkoXqcLrQS6zbg5EKrscfOzV/pc/6zSf + SrjHl3cQ1QvthYkboSxJF+IeHhUlcwkKWLw4BavvVh0415ASuOsTbHf6OCw2eG/o/nCfODRedCCT + M/snealcbJXpx5m/pq1DEJyaPz1VTxbHdegC+QJrWrJks/fVNrDzbY/d9RKdRV+Hrbope7zlGffr + 9AIm76nG0vbenN9Lmjn46m7mTMvrvH8+0WDbfWosS2vprI/zmQGHnw2J9CC8uuhN3gO+/njErN9m + tjWo9mC9+Wf8p6+o2AzLv/t3Dp71MEck0v/q5SwyiwE2DsISxm2z4Fcx2mBpCj7981eIZHw/9ZKL + VEOPqzMQnIRHp9/xC1TYTHBylSClS5qXEInbgJUrQDUJu6QDsne4Yb2lesbkxjtHezyQK9Rstf+9 + vi04sqeCXLxNCpn32xMhp40H/GxLLVzIfSnRmyd3b/nwMWWj2ipgDrrXnz5Sf/fyBAHMxMwTlUeS + zTfpKiKpKGLvBHjH2RR40uGIhoC4D8/OyO6PwoyHYPd/0oHMoq+hAcgfT/R/esbariPCxyWRsIzD + izND2BzA45MZHtMtZNj9Oh9aTeHM6cFDoPfLiYNTlc7YaWYn21zDTCGnMyPJktsEtrT99CDjD4CY + i6PS9b7vQbalecaWmdXhpp4TCf7ksiJ39SNnnEmA93c8YqtPHG5M0o2QmyjwOOEBQ4qqPAB9bt2I + O6YBpfjRpzA7Kdv+r65LOO94I5KNYfAdXqSMJWOvgJ2/EsscZZX7RkuK/vSGGqUjHVdtCCBHDYwv + UzOp07KsOWTsXtn1YuLQYXhzQDWOKfnTD8zh2S1w0WD17/y5tIpdGEdPZT6N0i8bX+fHAYqfj419 + JlEGbvevIGVjQhTBnkIqhaINkdAhHGEHqBNkfhs8pYfYe4V6Oywk/Gl/fi/W8MQNn0EyRtiF9nVm + mO9a/4e0a+l6DtbCP8ig7omhoqpuUVSZlZaiSpEgv/4s73eGZ3aGXe3qItl7P5edyzKKbgFlwMRE + /9WMM3Ohwop2P7PIRvE1ovD6quDOz5D9GASwemEewqf2Ifgp9jfK7vgP9nqHHPubRxu3mC7Ukrwl + hj+U41qRtAepZLXk9N1AM+/6FIQfe0Kae9CdMQ2pDO7HtUCute/xzlUtBtEgnklWfsdmU159JZsn + IhOb5iGlxlx2Ah3pYa8vGmWXTrDAzseIkWuKs1VCxEO2Hi/E0GNJXwT6FOHuj+97zl85/kmGCwFu + j1gtsorSsJQ2iIPlgOxi7Ry61x9YX4STf/BQEuG/eDxOIfmHnxxU1J9izZ8jMbfMHoUl8Uz58Jg2 + Yn5e13EVP6CGyhtBHyAYOMt2vXbKt6pbTCtq51QzYPynD9H5Vtx0eun6AMyZxO18k1Ciqa0I0Sd4 + 7bdCiw12Pi4PwkZjMPkdrxH5NI8aJuEt3uO32M8kDHZ8n9/EwjwGU/t9BX/jj7zgHUdLJNkTHEUg + +MwAfOcfXu79G3/JjZFuQ++/INUXieTfjI9mO/4tcH6eHv4PxWs+bdesgykIQ3RqYyGff+tRA0x/ + Pu18cdLXC8///vwMdIS3L8XMUGKw+/W+5ElS/nsHYgUvF6El5tlXc2H3v6GYxgM53xwhWkQjxxA+ + 2JYUR9Q3i2iNFvjrJ6DX9KMkjykPCfO5I3XXT9tyalTlT4+csgA3O/7Z0G2TzOc1+5Jvvvou/vCB + nC8f6pAE9yqMmLknBg1hs9255vXHx1CY4ITStaYPBURK7rNDOOr4F1aycjWDgpzcGzfueiiGv8fx + i0UY6eOuh33IRY6FLPemOjs/nf74MO4c6akvYe8ycOxcA6U7nv7pPwUk5wvmuArra5DWvXxW+Yr4 + 10cAqCae4D++/ed/zVHoTIAnYPBl1ncj/tjELwiS0wXpE/jpazxWsaK6cf83/g71BcyCyHM2orVM + CzBhPy4ULq+MnB/rAGjuFgxoy/aFHO5sgV1/GnIoJlefW5iwWcVn/IOOHue+fMazsxBzW6BxSOp/ + eLk+akkGvccrPrv7saT1TwmUv5NIfPKumiW7iBBu9yrB/8b/ylEVrtfZwM0laR36WVQeoi6+4Trl + P/reL1Ghfq1s8jqFq7PcPtwL7POH/D0+t05wAxh2bkOc1Ah0etU8DJifS//8ymiZLnYI80v3Q3/1 + dKrPmQyY+ZH6cjn7YN2vv4NakrW4Bv21af7qFwgo76+9+G7WUkQijE8GJdfkfgNNPazFP/wzZK91 + 6F//bO+vkWubdPpSb+4PvkpWI/HJGca1NhkXaG/VIcf9ezLAA/zrnyIUmV1DwrxOgCs5Mv4x/hOs + hXNz5dThbXSWmqShf/2DxbLOyGo2U//zI4Enk+VffZ1uuIjheU1KZJHB0rlhWlslgl+ZmH7Tga3q + Xga85Er4jx9t9zVW4ccRjui849OkFqcECBKTIsRfVp2WS5pCMBURiqbMb9bk/IzhodJM4lotcfpA + 0BaF+OeUnJy6cOh+IK+y4y2yd/6yrCRRYQ1fG9LLFxcthf7QoPm0dr1w/oGV5G0Aftx0+je+wp9e + JZ7+JpcymSnNn48JOnqSE3V9Ah2zxWJBa5NvyGNKU9/2kw8V+j5FxL9f3/rgvK+GYiguiwq+rsAa + JbkN8/dnRQZ7SpxFrYoNaoSJ8Di823FmXBTD3Y9FqFnegL5y3YecdroiZwg6MCVnSYW7ftr9Hjp2 + oTaksEueHOb9o5NvVIYdaOvNIKeWD8Fy1qwNPh52jbSqGCKS3p0YFnBKcLdZE1hguYQKqg2JJGIG + 8396ofbUHzqFT73h/CZT4akSM+LozTb25qoxSoydhZwWZms2Sf5oINYOJ59zhauzWt9FhZfSEsgf + /56qUA2VixRNWGGWhq6/9aL+P2cUiP97RYHaCDUxBcdsaBB9OtiYXOcvrCTpWHVsHy4JcyTW2kX5 + TxSvvAL0x4ROl/QAprPG80q5IJOYjak6bHV3A/jxnIn43IzpYnInFtrlSfU5Rbk3XPCtHrLY+Fc8 + JcGBtiFeA+VODYOom2IA1mzWBdp1E2D5c/OjdR24AvbSvUKX4FI6q/5WOni21DOJO/jIcXgWWXh9 + g5vPH0DrzF7MJ+AeHFSkwVkeF7qaCSiWvSO1lrNOjeSuKZfk9ELWOkvjgLXYB5FXxET91bK+fkUc + Qga2A/FAnwMaWwIP6bnjiD7lfkOPz/3e7oPVIBMYVTSfwCxDeWI6fz3GDVivXBaD7rAztIbUDh+e + Fx66MPoQVbOrZjVFbVMMBtv+186GaK25xoAx67LIqq92tPbGjCEUnBtxmvc5ot/nx1WQPBUkulin + nBsfsggtEz399zA9I6EVuBd8tWi/NYIw41xTqYZnpnD9dZieuXD+yT/lwU8Yf5YnHOn8Ylg5vBc9 + esa+2/A6+1QhDEIBH5RMd5aqwwsoD9uE3MD7jMLEWL7yO4o/FJDsCbbuYMZKWY0l8vmtdFZ7HF9Q + Ij8N0zTp9Y3hrRjsC1JIpoIi55v4AuF60EdilnXmcNYV2MrxxHQ+AOkxZz11jmGrzytB16c2zpdy + MmCi9p1/COuQCrz2NCErqxFKZcvI+ejjBpCfZBsDk16aLau3Bb6C9UVyNzIAR/yoU6AXqejUUhVw + mf/ewEDWD7ndJiOnP66BoHo0lHhHdaDrgVSB8rzfa6IqA99g8TJDKDWKgXLKyvlazSYL1a2+k4vK + Jg4Xe4EN42dyI+iT12Bx+PtLOZ5gh6KpZinND70K6aqtxKD3j74G3ypVTqJlkojXCFi9yN2gx6YJ + ugN3HrmveQ9hTJecPB/6I2e/1WYrXTpNpBBfIlgPKkxlx/jFyBZeVUM7TU/g+E5Ckoia3WykAiqg + TvnEQJhZfT3eGBeWNsqQPeo3SvltqxXs/QxyYS5O3m6lHMq3lyLj9Zb98mnJzq0i/HyMXHu2I3bP + F0UT2Sc5aa93wxlFJSqCHge+mPGHZsnjo6F8b51ALJUSfR2OWqdM3DsmpbevYhi+VFXOq1xgIfu6 + jpB93wE49V3pD3TsnIWTfi0sYJuj89bwOeWaVIOnobwSe893gXxzA4IPc0GBdjX3RQ0FhECZM/TQ + VeKQSmtCxTolIzoevrrOv50PVsrLqhKkm/q4vr+bpTwj9Y3QJ9cA27pJrTCD9UCqpaSjME/fDf7l + H2ivH30Dr2OnfEpywdLhzEWTp9g2zBTi+NNr/DXUfUWx8uy0O/EWaOcCvi+dQlA04MN6YhpqnGwI + OK+okRvEDmClMcMwaPcVCPV0HRfmJacgO5PSp09vpPQwJA/YO7ZNTpWu55sijQW888z0L54nIgYM + FFblgC6R4Y8sfzNqZXuGZxSnd+QQIfA1yLOeRlyTXUYhzZZE8fGsI3/yIsrhK48hisM7OonHZpwP + pA/hobRNdL1ldr4133MHz7lM0OlzEPJVDhhW3usnUq/lZdzfr1U0H1okf4iLg+UP4mFZDaUPT3w3 + rt9P38NnVyxIJ08joo/4HsIshCd0+ohXh+OeiQ2TNOP9Q8kec+o+RB8SdB2IA9EnX1U5Dv7ld8tF + Ur6kOEuUuNo+yNBrG2BqSD6E8Vck5lajSCiphaEUKP6eTyedqGXuQzR+fBJfNFPns1peQEdLSvzT + QabkMLwechS8HHRSiKPTc55aUNlX78uf85sSS75ZSivue85A1uc/RVhlpVdvDLHPi9sIuuTU0hdK + GBl5NTqs/jyb/+qro8mIbvGq9/Bg3GV0scomWjSUWAruMwddJqGgm2sFG/yK7UxORco7W3MDNey7 + 2w+V/iDpi6d+EqUuDleiCd4hp07w2w/vrq7EMvuCfmNW7eR6Yxg86LxD1/GxieA2/wgxrTgZ17/6 + P35cGWnZY80XBhci7CYLkGwZgny772ui3/WvReYr0UZWfyIDNj384ZXVYbR539uimN29wIfEUx0+ + 9wQX5AKQfW5/XlxN1Q/ORbYR/di+cv6h+gFclIeJofhKAV/IUg3fte8Q3+aZcbufUxGKxrtADzp5 + Osu8tlS55ecQaet1zFfVOoUKYR8tsTs3dJZzQBYgNu4V3R+fRO9nwk6K/0s1ZBiZTzlNE1vFKL4m + ljyk0gklcg1F1c8xu8cHn4BroRx7pkApl3aUPR+9AKo0u6Bsry/EkzhXCWXtRMwtH5wluKlQeXk3 + H0W/Th1ZFsQWNKN7948/zPMm9X/1GSXDtgJKizkGB0nyiF1WVcTz2NCAPD8OBHW4HNlbPGh/eEfU + Hd+pNxmhItFqJOleH/HXFRL4yVOLvN7vWl+ubzVR4vC0oJ1fOLS7fljwLt0YFW4eOoJTubJEuGuC + EoVhxuXwkxZFNg2LpBMhzfQ3fyDhARYGHURtXVY1+N0SCV2WIYiodREwPM13CYOb3DnEefOFwjVy + T6K93nyPuWgqG508UrJCqC9v9j4pZSr7xN3r23JfNFGZnP5AnI0P8u029xUI/K/xLx+XorIKZcdn + DKvvCyxF07RAE/mnL2uSBaY3e8dKd/m8/L0PPNKhu7xgeoA+Um+pnq+51Nnww3964l2Go87xw7OC + t/OoIw/0AKzFubTg71hciSlkVN8q/HChRI0Q3XCPm/lC/BaO/sbujrYBWGDSHjrM4eizoqDm6+dp + pFDsfhW5XJ5ztBZsVsDAm0JyWp5Fs9VipcHl9wiIzhknyqWhKwN8y27E5eu26YGQmYoZ3bp/+Msr + ttBCvZwApmFfRVvMdotSPseeqLl3dbhPNgTgr57ZnxvO58wVffkcoBWpJLyPv8tyhRDfBIys+JCD + oeiqSmF0CyNNvatg/nveW7Jc0f1Uf5qZsnqoqA23K2zz6PDSbU4gYXnFX4O6G+ntuHYgYfKanOj1 + A+imVKHyj3+wy0g3Y1lFOYpXF51Ya6D0YeIY/vFdc4trsMnhvnvw8z5gkFjhuB7NfJKxlpfERcm7 + 2fb6B+3ynaGLfBfAqoWRCWsv/+EDK4TOSk9lCpxN+BGHHV/RJt0+CSzfJ/EffmNq1hu8XLcnZkY0 + NIvuTR2QX9eVlLmhg+VzCgJg7E64Jq9mJATR3MJPzr9xRZ1rzqqdE0C9uTgYNO9zjhHZVPBE3RUv + 3pw4iw+CVnEuGf77fbROnRzCulCuvjza0JnUNsNwtEUXf+OhdjY4yjV86lKEji/tOE6P++QDOavu + 6C5EEWCnhovBtPoRPqjhI5qfp7mDO/9HRd0a0faGjgXpq4yILoFh/IhcLAPOUy/k7LyycanLvoJf + H6dID0nXYHT0LcjbyUwuz0HWl7/36VHpEF/VTbrsfEJ2+1QhJ23yHX5ZbhXQHT4ieoreYLssGYQ7 + HpGd340Lnq4t5M3XiVjvqIq4FwIpZMf7CysPXY5IXUQtzJhLi4k4fEbaIRjCNKsvxCzzEKxpxLxA + pqcvkr4jNee52u3/+CW6I01tqJTWIeBi+tjxz8q5+DW5oAGwQs7OP/ive0jEX0otYnyWhu7P0yn8 + 23P/mz8X4nfyzgeJQT7ruGZBlMjXF3gh32veADPnooB7fUB+evw6m437FNClS4nFt89oWcwjA3Y8 + IvFbNXOW15eXkrLzgC7plkQLJcUGUyeayelcOOO82OILpEvak/yTcPlHC4Ya7vySGHlm0O23fVWo + +EeKsuKpj8Ky9jK0+uSNpz2/aaWNAVzj4EOyzmjpHq8LnFY3QtE+fyvn2iZUnt8H0f/yvVqcTTEo + YHCs522zKeCmQRu7PkmZQ68vh0H1AXmnGIOHGDi9Uj8rAJvZ9FkuyvJVFesJBqKu4skEPKCJtzDQ + DIGHJT9enTmN+BdYv0GOu0FKHXrhrBdUPYFD5/XV6bTwMhUQu0JEl1g955fyWIBWmp94Dm4hXY0Z + MhAenQEL8VDrU132Nbx71YL0U3IFGyKyBs5Y/CA92+9ldPMk/dML+Bf6K/2LF/C7xdKeH+9mziVs + w3djKP73e/46a/cNfTnNYI2hM7L59LHAA/j1d0KIZcSI4MHoFQRszlfe33f+pweh6uWFL3Xhmq+J + WFTALLWWqM7Bz3GlsFgWkq3cP+N8IoA1FSGJTZIZ3aUhLvk+wPRYPJKmK4qWBlII33Xf7qfq9s5w + 3r2P9fRdkCN0HmU9Pwkg+EU20lb7pG+O93nB9RvmvjL6WiNYw9FU6vFnEsNXA4fPYWNAyt02VNyM + Idr8+mLCnV/4UvFsxuU5SymIjrGCUJhPI1GROEl7/SZeKuiAe8uHDXz4b++vw+fu0GiQF2g89dIX + eF9v+HEOEyhdfgmmahfn89RtARysApNHzlGdyl3kwnC8B+jcntZ8HI/jA6DUPqDdHwG0ZLdAgXzQ + IG2ziL4wi/+C1mk1yHn/f+7nXRgA7lFM9LG1R0FgVhGanHpFOdum+lZnrx5wgbwhm35MuvzzUy69 + RcxQe+lEeuQ83PUwUZNkjracKXrINQUiSQuwM46byiuDJZ2Ru883vZYTBHF4Xnx5YE7NLHzkBxyM + 1kRltTljH1vvHqqFcUW7vmk2hlcTZfSTHDnDsR6nPZ/hwbUCLJ8HM+LKXN6AvrIqUkmm0J0fFPCc + i4ToITEbbpIOIjTDF+vL56GL/vQYdHsuIdbX8vVNLV4BPMj3Dvn+26E8IM8ehj9RQPHv+20or441 + DK37g5iut+S0SZdCAQrJiOk5j4gGV1aFs/Gr0bnnMF3mV9/D0vYyom0JaIihXx/QlO6hLxzg6IyJ + t0AFluwTaW+o5f/4yi9Db3TqzOe4wSLVZOaGHX+uP2O06Pmzgnv8okI9aIB9N84PqIV5JX5U3kBf + dd0GIT9BpHtiDUjMyRYk4SwhQ8+Nhm++qANXVnKQWip+swrfEcKpbl7o8vaOzqqwEMI939DRdM7N + mrmLrzy71+J/b1w6UrafJnicHiNmF3/Qh8x/LwpuDZvoQM3oOmaX+L96qgp5uuu1QLm3OSLecH3q + U8REmwJyB2Ix0r/NivK3qux8gPz5O5Sxs1RWsiBDj8eiga25zyaMgsL5x8e2tpleQMf8BT2fnEfX + /Of0wHe/B0zjNm42+FMZeGmXCFNkZPnOx1T4hzfFN7ccfmXMQtn9RoKwU+UkLI4sDForReF6daJl + piUL3S/TIvVhqZTW7moom/YE5Gxnl3x2pOIBsW88ie3UlcNztfGTu+kToz3+nU26v2QoZ8yCLpc2 + avrScUV55zMYHOGH0vARhMojvux6ZCqibd+Tp4zieEFeyvycbZIyDPb3JfbuP9CH7rjAez0GLGtb + PXJhghi5Op/bHb/4nP7Tq/utDvZjqemaS9j640v48F64cU1DV5SLBTyRykqZPqlCmQD0DT3kvahA + 6XgcU6BuzIJMPHDNYt8fBdznh+gfvnGm5fIx4TN6yQRFVQGW8vxelL/xTG7sOu5+0wM++OBGcpC+ + oxU4taVI3uGOYd3utzzeOQa+ClVHYXMMG7Y/HCzYq3cGqU/toM+lf+Qhs0ijT1N0BNvQGBX806dJ + FSbgnz98qLsEc3/6Wn0bmxIB74qiY/uK6DMLUiV1rjMyeFvRtwk4IXyr5zNBJXuMiFicUun3lROE + ogqCMT9UmpIX+IGQhG90/vPDlOp7Jdby1h0uLuQe7vNJHHNqovU2PS2I5ED3t1uvgPXy3GqlmJ+e + z1X2MP7q/wAAAP//pF1Ll7I8s/1BDOSiJBlyB7kFBRFngIiAyj1Afv1Z9PMOv9kZ9rK7JaFStfeu + StWxVEA/4jtx0vUMuE+WsnDuLsj//lANlvsKi7/1YSmL7hk9upUIKbItYtpX1aHfvQt9D6IPkXnG + oe3O7+FkHWrsnRczXECCZ7CfN4Jf4DdMJ1UXod4pRyJvZusMz7FQwN96/NOrClecdco/vZa3Ir6m + z34soM/LYF4ur3NNs+s0glCIOnzv1CzblPbWigJyGxJY6FivkZdYYOn3O+g7fydYZ3s4sLGFdTbm + w5kLlkZcmOuR4Py0UhJ7RwaqgXMjf/5msdu5hMpfxTGb1ZTvGkYD1AE80SynCqfb+LTBkpEM/9vv + C/eIwRwxcOf3xTCzNe/D5pPk//DVWkiBCBcVOsTc8sChyWOJoBKHEjY78eWsScjnYpdIN6yEHzVc + P9mVFZVrmvgjbmaHWOfDDNfW8bCrkzL7JmESCJfpG2I/X7WBthlogfcJLWKNPEf/4Qks8RbW4kpW + qa2ccrBKbEziV7aBbbLYAPq8CmaG3w7OKNrxBm9OPWDpOIz1ZiaZC4dYH7GLbnmdZzexBd4TBiQ4 + DuNA7jMp4c5P5lznjWHiB6yJd1nYiKQZEeWG0YegPd3KeZ8ODzYzCX3onZyFeL/6Fi5XmYHQOg8j + kXlBH5aaOBKs0wtHdv+tcsuTMeDFtH1yvoMtG7/xGP35Q3zFlFBSSuuMxpfpY7fu2Hq14aGCZz/2 + fAEr0sBNmrdB73Ox/Jt507MtWp0WJLYQ7fzQGOZTCPapmpeSaF8ohqRoxSOcBu2HC7+9qvTx64J/ + /ECP16imu74E/Zmo/knl94K0xmJFBf0EX0S6om6P99mH4JtUsxhLergMsZb+45vuzSFDi2OxFFfw + ybHcPsqh1T9DBCtSzdjd9YENFOcGgg88zx/tDdV55xPQz4hH7FMaUXrPOlHc4wOxGq8Y6PT0guOO + T//5z+n8FEtw1Yptt1+Fssyci5D/6Cw2nHjcK36T5PQ7fiesnq1PNopda/3lX4hiXhgwR+/OguXJ + bbE9Q1LvergP8S/wyOtTdeoS2aEL1fDTYN1TJ3XqPRlC/fbt/Io/XMGyvbYA7fmwmYRlTpc/PZcv + Nzr/5G4A9CE4y9/vE/9N/GHnnyMQuuWGDXxQ6yW15BG2XHHEdsd86h1/p2jwo4zoan9UyfvFzH/x + eD70V2Pg9BOM4NwYNrYzeMp2vOjDhQmO+MmNP/De9QXAKRj5ZPTTvSu/u8H3L2Ow/XU3Z7wZi/HP + X0mXV1fPmSf48FI8df9gIjMTqkK3ID68eOKL+1Q6Xj3m0LMrGZ+1idB1//9/etgMR1CH2+Mtu0iA + mzOLOUXZcj53JSy2Y0WuQ10PK4s/PnDl6kU01qzAYu2dvMAVhkRWHpEz6DjZoH6ZZV/Y4/NirNUI + 4297/ctvZbT4naO/+IHdSemG9fwUK+iVjElk+PHC+YvyBSwq48z0IDzrJebuzT++s3hsnv3pUfBe + aj52U4WG//ZrjUbG5+a3lfVXc2EhGq+YSFkkZEu75C3Y82G4sKiWsXT1IyimjzOR4yKt1/nCzDCV + JgUX53UOdz0phcNnCLFltBDMGRP18IGCDZvHC+PQ45NhAJTPHZbx1oJVLH4L3OPPLOz4kngn5ELf + ZD8kvfoXSpHHln/+0S9rojjjLb42qLOKmTh3I69X19RTdAz7nshdEQB6dPsj2M/LzPbzRP/4EBrN + 7f6nz9esBZYK5rEV411fVqf3T7Sgf0/cXa9lwll8jzOsNsjs+qSiEus4fMGeT8X+r4HZjGcph1q5 + t4RLDqu6SMI9QuIiYPKn1+3xKYe8vRozUEQClk7sc7BkoeIf15fncDueBLGGfti2HpqzcWWoweHY + nbF+PEwDaZOgRKLNVcSFwRiOTn1hkXc6L+QZ1K+MjjiPwK73YKyfC2cml6SEj57csCLfbLqeDtUo + /p0vyw97Z/uU5whsrP2dUWR+93yANCMGfjuiMpsX0hj3JaiXsJoHiyBADl2cQONzUvEez9Ut8PQK + Fnmek2SdHsP0x8/X38ji+6P8gN+e3wTmesyJmY4wm65ysP3TZ85L1avtO3xbSJhr4h/u1yBcqX5P + ILOPh1/2fOjq6iH/F1+JBbWknuKflf+9n5mGADnbjYFfsGzO2xdPKQv2fFAKD+Lt6wu7/r2Vi7r8 + 8TEcwMYI12/PxUitxm3nx92wtPOgwW4WKXbcdFAX5imxcM9/zeLMnbNxuRcKFNStI2oSW87orvYG + bXzY/LwLYkf4PScXhkLc7fn50lkae2RARz2OKBvmsvHlaMf/T0XB6X9XFITCUSHpV7qoE0A4gtwF + 8j4fnYhD2fhVQQt/OuwYz1+4jOE9hm7XK1j/rb9wuxksj46FYM/ccZIBP/KAB8K7toh5qbZ6FcZn + Civa3ogWXM2Qv9e9Aj2KLtgLBE1dRdWT4CWRTgTf+t9+x4EvQVBrEw5+gUYnVY0TyPqei5M6HIa1 + Ly82qjT+SAxPyutNGVaI6suo48Irf8PKbK8SRFB74ycSn4B6Lz+Fyfd6In6pg5CcDK5CYRsfsfs9 + kHAcTxYj1vwtJbIZ8HTRpKaAqjJ6PvucPsNaoW4ROy3MdoVHVpeafjeEZ9Gbt7QGtHvcQQ+D3A+I + b07XgeNuEws/yafDyWFgnXV7FjwIBVGZBRR19fqWyh5pDcx97tqtdFWMpw/cwGuxPshiuLy0/Aq9 + mNGJIxEpZIc4tpBhugM5vyBxtvC6aChii8QXUHSu+TTZfBGZ6Xmmxm0Dc8WUMeJZZiPyVFaO0MPm + i5YwtIhaHr908coIQvpTT9hpWEll+TXKUWjReY6+w2GYnE4rUS0Nb4xpk2WcWSQ+gknIYWXt3/W4 + IaFFzbOa5lwR8cC65qbA61hh4un6QV2tBZUwtnyZhCvwB/5lXBKod3vGKz6nmSCx3T5XbXOwVb8M + sGq1nYCT6CNy1ouz047hPYLLm87EG956yCrWs4Bdd4h2+zMztpdECVL+pxKtVnl1y9anBZdN+5Br + +NLUMXf1K4Jd9MBe6rED3T6XBuzvgzwZ4+TMcv+t4EiQS4JrZNfLr7cTqJIpIc/uVzvksD5ZeN7E + J3YwFcAmmkqCDHhsSNAyrsOaQHThNDUG8ep2A4uo61c0K+iMff3g1DzpvH1OsvAkdtem9aa9+BGC + JvWI8wwbdZtwwUO2KFX8qk69w3bqwsOvMTyINH5vg5Bkow0xJyFyzaTSYaPvS4MRrhwsl7pKl4lX + bMSc+oTcNTPKtvpY7TWYmuEfZgXXi73aCbirV4Tlc6ZkVJQEEbnB4Ubs27kZ6M+M9q5J0l5BIRoh + cQa5RS1jD1j+TZ7KK/OyIfdxd4j7TG6UP1z4EaKXcsWqa5lguf2qEh3jfW7lernXS5D1G2AnpSOa + tQ7hdhDKCJVadcJnm30MbCOclJNhMgm2U8EZ6OVWScjgJQtbDXcf2Fh1Y0ikRiWaqPsqx2z3Eljw + fMCJXbuDwN0riIDHfH0+PozD9LViG1H+o/75o6yNjb2nQyKY/la03bDVdzWCLyY5E9zgFGz7+0ZB + 9DWx9L5EQMi7+xVch60irvvuwuX3c77QtdkPtimO1IVfowK65CkS85HpDvt+yzl63rInUQxNB6za + yjkcr37k87v/4VnmnEC7bWKiON91WLLbeYb1ZdbnrrtP9bY4RwOmjCf7fBVN4abMxwW68qTMAILX + QA1xaCFzahNyttlTTaqYKeDZgwFRJfpzqCgdRNifywLH8pBREhk/BirulBNnU2uHHw7LFQm5rfuL + epdCNrvaInx+5mjvsaE7y+xPNjzXvY3z2sjB4L2MFF6ERsW3hSXZap5WBh6+MMPa5maDgNBFQ93J + +5EHvw2U3A1LgRfZfmLZDGJAgihu4IXXOmwZBUO7uO0M2NTdcz4oeQi2IUsN2IXsZ6a9kqtLs9IU + LYNrEcn9qsPKZJKEolsLsM0sgSNkAYxRf3Dv/szJt4GSab9jTeaMmAffobzg0xTdgknw+2lqQ5qP + sQGrJlFI4I+yyqHj0wZDyE0kYM3LsLJZnSPxkl6wp1d1uDXjL4f8rN1I+N06Z3qcQgl1Qz5jT+xt + sDJcEcO69Ac/HB8V3TJ3H0tu9Mb+vj+A65l1hANNBCLxjz7bhOW6geZmC1g5ilEtwJPBImGhGXYO + hRxyzujEcPOKu3/Srx5Yfr2SwmKRaxxco34Yt/odo5aTLWK0ppLx93LwAdJ/R6IMwljTN5PlsFx5 + 6MNnwtHVuoUbFI6PhujiT3M4T9kgGmVnmUWmiQC7nDeIUul4IBFbVxkd8qBHKzp5e82oAnioJC5k + dbPD5gOfKc1IdEQPr3CJWjFaJgT3ZwrqM9Wwblo3un3oce/yjnOiIaYcBMX0j/CRYX3mrt0FcAiE + DNrjK1HyynXY65ZG8JHBDcf0zqnUugdHxDm8gQsoWg6nl84XwssYkOtxPmUbE6ESfoTMwJ77zdTl + NrUWcg+qhs2QdUJue8YsGhVG9lFh/Jw5ft03wJQeg61x7p3Ntl8a7A+MhmOuKmsBFUuJFs9K8GtW + SE2mMHLR4vTMvNhZ4mzai5nB+NAWrB7iEUyns9IKhukPJLG6Phtjw7FQNUqOD92b7wiCQ2agv6uN + 6OfwHQrvBwpgygkOxrt988+xZ6D1sqkPwrHPlum+Tz26TTm5h+2irqr0+kIRDWS/84DD3R4LtIhF + Nh/RegFLkosjPJ5zyz9g4epQreSuovfJB/xIyrc6hZdTicJLkc/idXtSavt5DmpSICKr+aa278Lu + xZF5bVje+Ouw/eEtz6t7/9Q5e5fPy+aiF6+E5KVlmkqlULGRHF948vhx73oZ0zZB5+34JK8Gi3QM + khoi+yy72PZyL1yq05jAkXluWO7ww1kDxhqRzf2q+TiKn/A37V3Nztl0Jjt+yka1lQv09NbQPx2t + fNj8VxaA7oR/M1Xevrpm030Dt8M7JHGjsPWWpNMXFPKBYnx5MM7avfQR7d9H7OlU11tO3guiP/mE + X5l7pZvbeDnkylfuc7kWZOtNEQoRKo4x0zARh+WtlEdkHolH/BR8KD3Mdwk2w+WLz52zhet06yKY + ueRH9v2qWY5iHpB43vbZdfHwZx/o/niMJJaFu8Mv5sTCHQ/9rV+lV1ZpkCskgNx2+xeiPeOr9NTF + hpDv5+vxm8Evswh2WX+rR0f9LZDH1yP2HA07W8pmEJ57j/js62fSBUtnCVgvscR+fTqAGaXURiAS + 1B1vgWwR5mcPvzETYPdA/Gy8bmkM730e+LcdX7NQyoy/7yfK5fGtNytOI7Fn8h77OO3oVh/7EUyQ + ffh8eK/Vbr5WFdzjKdF1JQmpLnURvHVJQ7TBUilncL8R9vbVwdKdj7PVf2cV3AYvmOndPWSTcfyW + wBlVi5y72qJ0aQx7r2jTia6WYzb6DKqEc3gPZ64umfCfvRIjA8QxumrY/uJjFlsKuarTQV1urrVA + L18R9twtzjYqS8G/+GaTg6ySX0t5wLXCdWbyS1yv/gFqcKnYK7HvuFKXLJEqyMfnGz7v9kzS4yOG + jMq8iNpGnPN3voErpMAvP/Yvm5uRFGDHi9g+t+2wliXbQGzlP6I+7jag0fj4wj++EOnnN90+yzpD + J0oO/51fgMwYWEHvE9VOyz0+KV94dQ869qv8Db751n7FaawrIo2pGK4S+TSwaR42SYH1rYnjvjUo + /6KU4Mc1GFZPP22QHa/w7zxlo40HCV6z1/CHd7M1pIEIsTmLxOXgo+aoJM///K9Y9uWw+epaQnXG + zEx3/70cIocXn/TlzfQQu2C5udIGZbl9k7Qx9juSw8GCxDy32NzxIvG1owEN/H1jycY54JIjboDx + vKfkzB7PNddWbgX+8NNL4JpwG295Act0aP1Ra2O6vqW23e9MsPPxNSgOd+C7BfrtecF/z78UwxpA + 08lsfF61BtC7pCTwJWsmkT11oNshthgIBfZATGXd7+TYvAIFYRDmx3UaVZJ7XIXO6SEnbv87grVD + cwBfUpSS53te6uWttCL8addw//t6mNHhEqHvpB3w3XhMDuWj8R/eIZKdJepS2I8j5NQ8IHnGn8G+ + Xyx0lZzg8Ebe4dJXlxT98ZMQBSRcnobZI6c6fbB8xqaz5Vv5hda96olW4zVcrEuRQq9ofGJqL5su + uz+GaFQLn+PntZ5k/Gj/+KYPIDgMawDOIiza7OGzX0GkrcQdNViXTDIzO1+dPeMYw162W+wP333O + ZYAtsPsr/xgHNSXp47jBi7V9Z57UQbiezkoP6duVyUWuMJ0YLo6B0IkM9qdVGbjHKVPg7wTdudzW + EmyqFjHAV6sM6y6wqXC5VQq4XSuL+Jx8q9f1G17hHv/I4/oOKJUCJwYndb0T6ZeXzgq1oIDHz/TD + /t18q4vJsQ3yvHf/h4/VbeasfC+kCbB9Ujq1g/KlR36aCgSX1B229ffg4b3tDvvPY927jV6ga52M + JGwjTl1P7jmHzFJxM9BqXSWyp5WwP0ANX9ikGEr95SnoaI0ZVhKxqvmRpyz84ytns/kO+373gCNk + 9oU2ISFFxVIhKPAHggWuyRZOTETAqHuXYBms4fJdLAUylykh+kfQHV5vLAiZ9Vr58HOxMjqgowJv + 8qshSiIqA6eqRQo390Gxp8ets4BmDf785fyW50Fddn7zh++IdFsSSq2VuHDwZkR85a6oC8HLF97b + 4YCN8K46488aFHjkFwenVfIb6B9+/It3CqwKZ2rVmoEbtS5YAkSkG2C8o6j5FUfMckic7SE+vuIL + 9Tn2WFjTKZyyK3iIG/YZkcCB0lcIkaA+E/9wqod6+czsFwqhUhGzWXRKMSOm4IWbkVzJa6/YYlAJ + 9veJjSMzg2VDh5Z/zpqNd71BJdY9EeH7XnE+U+UyXaao2sDlXIX4z//PfnU10Iu7frFcOXIojMKW + oqdxtv04eR/rLWAPKZw4P8ASqA/1Wh6eNuC/uTuXr/sWbixQGvQ2PYaYxmNSJ1itCirCTSPY0J5h + d6A9BFzLXXHsJVSl75zV/vG5P3y/MKlcoFEGT2K6buVQ9lk26KFrMQn+3sdFOKeiszlHf/FLnQr2 + iKQ/PLFPWfLr/uRJCtzcjM63oI5CwvFqiSaojfPXcwXa5aGcI6ky79jqjHJY35UkAQ3wR3+8qjdn + vpzOLRTCBWPrchABFa77lJIdH2ktP6jTYq8lOLsF76NF4J2xWUECyqrp/K+KoqHSXvwMHNBc8cU5 + d+HIC1cD3FNgYF+6NMOmVqgErZVvGFfTTLeteKZwTBsbxye7d5ZruC7weGdm4mb9PEzie2oghp0x + L9tHr7k//Uxyx+ifnsJH7pajq/bbp2Q4H3Xm4iZF+vmz4t2+1KVefhCay+1OpD1+LkFWLfDeF4Hf + AMo5lEk2EeVqrmP/G3wH6ue4gWhcnX963XacQgjj0ex89e4eQqpaaST+6TO+s5UZvTf7FJiKNbFM + Ui3jVo0eUbGoNbEu9FCPS5tVoo0OCXYf0ByWhLlqyIKnEWtjwQ6/4xCO/57fZhHIRq/ONojZMCBO + 2zaAdc5T+oev8U0ddz2Qi2MI+sO26w9DXfzehx6Up5f+x9frNV8rBT10I8ZGFXnZji9KtMcb/Ey9 + aCBgv8Gx6xsz6n6qw6EH24BdHyTh3X1lXGv0G/iV723nZ42zXe7VFe7xw/88mWs9SWRq/vj4DO4R + BYs80h5o+uNKVO6e03W6vWPwx8+N7cDUUx6ecyCJyp04l81SV1Utkn/66Y7PwiUc8xmsXH0n+GFw + 2RIkA4SQmbKd71X7PMUxhVgy1l0fi51RPbdHtGhLNR/ui1bvfHaGr7vPY09+3v7TL/74U9zL2kDP + 29ZCVA8t9vPnhdLn1JXw6o0bSfZ4vyDx+d95/rPv2cjcCqa2VOELc/cH0txUDV1dpBMtMkZ1+72F + /p++EydTCDZfEmegC93bz3Z9bWq4ZUM7/vDZOhvryencEt7kZ0POwc8f1jxQWrT7W/99zpSQL75T + BKdh5f7prURxHjYse3fDZ/jQh/n0i2OIreJHFMH1Mm4ZkyO8MfTr872s1SvPPXhIuBJjt/8ldGs7 + a4b6+beSc3zj6onZXhV89M+EJEscDgt/20aw3Yz3zH6HV03/vm8IhYnI8jw4+/P1kEw/n6h39xWO + lr9PBfuxLH5+Ki5c3DHxwefHQYK/77Beb3uPxfecXchZDVE9HW1GAXi2SuzOxzeYPpf0K+bKnBAp + A5oqHOa7AlXHULHpSl/QpsEhB9a97LFRpo5D/Nxs/vjOX7wLKUIPA+BveSdPXX85m3RVG8itpYT1 + tGpCNnf1AOS/+0SccOxDqnanEdBWe+Lk/eiyNa6GAp5P22le2eYBdn2dgTQANna0+uMMt2/GgEqs + Vh98ZyVb52tfwdVC8h/fcHb95gvq0h2wdFuOdMaPZw9u7y0jhufe6fwWYwNsOuvjJPuy2TzANYc/ + LQj3GyFD/cfnwAGvJgl2/LYJ0WmvY/qYPnOQ9GGzHg8LHj5PmTyGp+NsUAlcOI3vinjbmmRkbYMU + HZkk8o+voVLpEZ8YkD8a1gejRp2xpvMCg0X4EuU84nD2pW0UO8cR5qbz5Xrd9STIs3AjO/6o2YYV + XaguSoD35wfb0WG/oJYzf5+bbavLbzq7f/GdKDc5UGfzZhzhfY0mbMnWHK6qdP/CrRJSoketorLb + t7VE2H5H7Bc1Drf+jnkYGUk7L4wh19xIDj0A4Nr5J88pM058f76QjW6Q6JUqZfOfnj7bvyuWoX6j + bf0ICvSnV+/4A8ylmjZQJmOAX6d7EC6eRl2Rn40bMctXTpef0/HgrH9T/9BksbosZxHCX1h9/eOu + x/7lJ/7pX76kd9mMTuGM3q/jQBR1eqlrSp8JVC8uxd6numW7vmiBhh1lrFy8IVvFpklg7hg+1ti6 + CunycxnoykQhdlno2aqcIwlmTduSYOeby4EbfPg1ugfWTLVxVsnBKQwfO98ri084M3wuwsABDyxf + HzCcK6aNwR8+eqyaRgvHf8cwBndIJN4j6vSn/z2jbvnLF4Rsqzc+tHwB/uO/W066BXT9JGM7+Vzp + FOTvCMLkwmGvMH7q1/sE+9RnP5gPo+WFbD41PRTCDfsUVK1Dt+q6wT0f4k/yJc22tU9a2MYoITLx + O2ewR06CefC6YHO5vOnWMQ2POMd4+GunItqun3yG13RiiDtu2n7j0i1B8lO+/vH9aQbaw/EL899t + wnt8CTcscgr85x9eRRjS/jCksHQdBe/5KGetA9NGQudcdj7S05nhIxGa9vD0Ofg2Bvbj3VywSj+H + +Dg903Wt8xyEBP/pwx9110diQOVe+C+fNpzEFhLTaefVuWn15+NnC/jTpx/vAjhLlaksXH9LgVXu + DgF9Lm0ET64ozuD0uoTDxzX6v/fpC/TkqON0GSBQ7TgmWue/6zVd4kb8w/tC60bOfFfsHp5cx/NP + bEnVseKnBpxEF83Mnq+bd/0WyHwzkT/8OJcFjMAjYzasogCHG8y/Fdx8X/OFnf+tLz1l4ZaPPTFf + Z9dhX1oUQGUBEJvgzDhra1QLOtxni6iamjqjec8VOESfFEfP6VMvcTOMf/biH//yd3FV5/Aqhha2 + HVHOhImlDczt+O2z9uANwhQ8U1Dp34//razN2Q5CG8HXjeREMRnLmf/sbWjEi39dvWdGPenDopbb + OGLS06AuVeIp8KrvORA7Ozp/8f8vHu96g1SvbaWV6LQ1LMaz39Ol8IIR7PnI+UDhCkgWAgumwfnq + H91LSFf+sRjISoI7Vnd9bFut0xV4E//e8xusOoW+OMI1sG5YiwxX5etIK9F+fmbREd8ZvbJ2A8+e + X5M/fXxT9yq6UT49sbzAIOMl7G6nPV/s17v9LdlVOSIjzhl8jrIwW5QvL6FArWu/OGcnMFqXIoGz + Ex1I8L5Ee/6CQNB4mPerTCrVf3jxD9/u/sUZgRHMUKiuHFE0ux7IzifgVftgfF6DUuXKw82GqVVb + RJ6soaZVKLSAFDEgdtUodB2O0ABSN5VY52Ogzn/4YxbAjZz9lsnan9OxYnd8iVirM3eYVTPbYCtp + 0AfcMA5dNr02IKivxD+ZyRBSitgSNVgxsfcL8nBuv/IRXl0vmQkWtn98TSxV6hKstETd9cRR5NQi + wPqTuQ7LIVJZ+Mts4otFeAKL5b++sPE8Htvre3LqaHw0YM/n4KiHVj1/6FKh8JLn5GEmTvanp8OH + zqr4yfNfla5vMwLfotl7jhpyvfBseEW05W2CpTgOl8Nd6RG3VhLxuuwHuM8IY1AOs7vrT8uwKm7K + ipk77T00eWlYU3pL/j8VBeL/rih4IKkj2rHp6s1YlhK1r8MD+1e3HrZDOfDAfeosMdzuoK5UKK8o + Ib+zPznCGk42uPsIS/BEEsH+Dt25vpXgh6BJMje6UPb5UhYoG9KEpSDwKS9heUT4gipsP754WGwd + sjADLzBvp8sbEMb3RniYyoMvPgwvpI9s8oGr6ia+9jbrLPC+zVBpCn5GmlCDTvn0CdwEBWPH0RSw + FHd/g8n2gViB79+w5MM5hs1oqERi/CakQv6wkazKGg4flp9x0+1UQOxD4i/75yNJMgV2Q7JgmYdk + X//eRY+H7gzH8pet4PacIV+cBOwcrg6gj3raYI5EjXiGWWaCrqQjNNUlxW78cAArfPEVskkuk1e5 + XsPZZUofoUW7kyf+nUKqK9cZ3eQR40t1A+qiBsoVXSWWJbfUiQDtG1FCMGsBiV7PMqP6nFUnJS8u + xF2WSy0MCS2QczBYch4tmJHnmohAoPfQ50bl67D2BAw0uHxFsGU/wXpTRAYe7mWDtdKb1PXtP1y4 + 769fL4d2WK1D0kLePuY4qcLUETbjU6A671PsVQVxtk2Wj8gT3gOWBRipq63eeXjXzpRIsfSik62+ + WMDHp5Akuntx6P1QHv/siSiNPTj8IehnpNnHFGNgCWCjnBqg+trzRJfZJKReYECYSmo+f98BrReo + gi/8uLqL42+QOJx6/l3h+AkCYmidSxct91IA5d73WdNQAU91rUBeU55mdPz0w75/Cvyzx5DibqBS + /mHh4VM3xAwYS+VOXtCg3X5I+jC8bHr3wRGF7N6FShI/YIuWfIEmXkySiDabLfhQLvBglZrPG506 + rJFxZFABbzF+mX2nCrp/CVCqqz5RwprPiFuqJcpu+f3f/pC+2RRkXtYUJ2JaDCzI9i63be0RrUbV + wP3t5yiEFfE+Mwu2bZVm9L1XNXG3csmILl4NaLpLQTK4XQF5vfMYzvNEiNSanUqauxJBYb3Z8yhf + OZXo8YVHwZwkJF8kIdz8/tODYoinuewEE5BN/LLo1k0Q57fHL6RXxMZoXx+5pdlLZWtIG3Ryl5IY + 5zNRW3BYIDI/60jMYF7UicPfL7K3gSH+qiK6bas1ArvsuBmVvu8I17PIQO/9DnB+O5NwsT9biXj1 + +CbYSm+ABcKSouTW5CQxIKbcL7GPULPFFL/0tHVWlvYBFHlXwIkJ2XC83249Ms730ae3Y1vTP/v3 + pgr5lD2IYJmXwEL5Ubz6p8PrDbYDrCuUTTnAmD96A/97zjngHaATN3ss4Rblzx4G68PB3tcX1FX2 + 2llcoy/C+mUoQzpEKIdoM0piRkXisNzXnoE+xKPfCn37t94ZzPHkEDnRTcBWx1VBJ2PTsX4fumwT + De4Lk/x7n9c1b+n2wpuPhDJ+E5zsXRBZ3EvQLgduPj7raVhvDCtCn2UUrD0neVhxp/X//GX65B9g + O12hDeFr8GZ4O3UDfzROCrRG18Tn27uol0W6iYgtihw7gXaixLP8FLw7/4Vfqv0F9KkHBrpd5yM2 + cSE7i3q0KgBvfUkU+DYH3jVaFt4VpyeWlDdD509Kj4JbGmGjXNZsPWc5FIVvBLFyuNhgM4ONh86m + FThd0aiuVX8rRLH3JSLdpCykKJZHwN6L9ywsn3yYqedJ8HspLWzx6Zhtn64tEOPoE1bpKwT9ODy+ + ULYknsS8Waq8ka8pWtMv9oVWt1TKbB4jqvzRIq9apuF2aMcU1rhVSayeSod+78YR6sy9wDrZPDDW + EHwhGS2D+Ar3pGvuNi0aTHYhyi9dhjXqVx9B3GpEYVar5k2XZUXsIYzz7Jxk3EkPFBizdk9wfgnU + RSiMEayPhuCYERi6KSoeYXlZM5xVjkJpKPMMfDpAm5O/9V2XwIXDR1gwRkcQtqBe9wqQyCd5dNId + Pjo+IxH4OCOWAfcuyEa5oeEnnLDkB3otDOPWwEbQLjPwojhb7Ilq8P3xPXL25N5Zzt1Sou9QccQQ + zS0jyav20VxOJ4w12xlYPtUs5ACjmtkzb4bsHCU5imfLxxcKZcBVfKSAcLj2GCer5CzF4B3Bv/0I + 6sxh43Nawo+uX4i+KjkQNuWXgzJZYywdCgkIH8Ft4J4ywFe/XukKTk8I0cHg8RmvXiZI0eeKunyf + gyvoar3GBipP5Wu94CBYVnWx5S1Atdx6RFcisV7OtzVBSfvziff0y5Ci2UlhIGbYX6Ly5JBh4WyI + PsYZh3FbUS72eQ3NJTlhrKetSh7gl8ORv56I9/PBsNt/Avn8NOMXsO5AEKxUgU8FSKQY6maYSiaR + kBDGNnaXAGccl002TIqmJDlZXMr5NwvCooxK8tos2WGrfI1hkCeYRJ8pBJz/lCt0RItE7hEjhkTf + LhW4K+d+3z+gTlUaxegUrh9sy4cpWyNmiaHYuxJ+vgo5E45LzsPiF2c4iAMBbF+5dxGZLUyCa4np + JquOBW/19Pb50y9QVyDHX5i+ZPDv/y3xlG7QO71ZH9SOmS2ETUcodNGHvDR7GIaLfkzRpFwWUhA6 + A/I56BbCClJIOOGyXs/mjUXJ9UtnvioXlYRnoQLkZD+xe++scGOkrkG13V+I39eSs6DXgQWaKr58 + hLhTSJe+syHz1Hlsk2c50KsOGajlp/HPf9Rdx2IbWsD9Ec/9MeoWWg8I77ED50bjK9DFPbdAnKDn + DJPHTZ3Y12DB+TqfsPziyDDaF5DAa8bJ+Hx4yYC9qj8InY9hzrRI9va/g5xD8eP7PhcCORz52QnA + ++N6+FWtIKQrM7JQc04qcSfpXLP3Lt+gtEkZuTb9lG2sbBTIKt2UOMMAAHWOVguppRyxPm9dSJra + OqIYWTMpOqoD4epxJQy65DtTcz1kq3h7WOJFeyBsCGYz0ORVu/B7LVdsvCRJnf/Wy76fGBvCzwAb + ezH3ngvsgIPO9IalGHQRWMhfsL2i0Vmn9WSLe7z31yM8gqXjGxvyykkmfuhaDgfk4gsfrPIhapEg + dc0D4kOCrL3rs3Gh5OU9/ZOXVxFRZ/LLplbSN9HZjIL4sxqoa2ZVBjikpUfyrQxCYfO/CuR1sSd6 + mr2cBZjrV9SFWz1vUP5kS8K9RPEseTXRDo2g0l5aN5Q8mhnLj5sWzq5R8vAZgytRKvtNN7/4GeBw + evMkTI5xtmiLW4I2PfyINJpZSBlehX/xcUa/Ge01+VED/QPEM5XXOKPoa7Mibx4pMTt9rFftQlio + qcfXPA91U8/bx7bhoahePlwX3iGOdL4CdsohkZ0ZZWN+sAp4w6OOL8nHdvjU0A2Yr8c7LoZaG1Z5 + LRkU9leZSOR3BLN88Az4vIASG99FDFfuTmyYdUVHZMOPB+pqKgv1Ob75jRP7ztIbn0icZ0J87uYs + 4YrfrgZkWQFEv2druFzVHwNLfWuI9/Xv6vbx2gUcpuqA3ccJgOX+jnyotC9rvph+5mzjPc2Bvt4t + cv62qsNquZ6AZ3jqiJ3yrip8XziHkRPSGf2YG51feHOhWPv6zF0yK5zl0A3gbM8RkSl8U7rbJxC5 + /Y5e6zAZfT3jCPworLG793cizzUQoXndRCx15lRvW2fZUPjFOdanyqXLs/YiKIh3nxhPqQsprKwr + DH9BQm4PAOmyaJkId76BcXU5ORuztCn8XiqLeE1xzLaHf9bgrSPQH5XrY1g71rSA6W+/eZnudzCf + ZsqDQ17G/mXN273LH7jCdfrJ/rq5qvrH96AFvYA8Lhc2m92qrY47/iAOo+Bw4WfnCrs0NWcQNFD9 + ZGW9wKT/3PFLtwOHLwVOgcrymnz+FfThPAnRiDyhHogatwqYxHP6FeVInbBVh0W9psf2CKDa3smz + 8DW6zEtiox1/4B0vgC1l3AIyT5Mn/nX80FVcEx489WPn07v1UedXfYrA+v0Z8+G1TsM2gusIYdyd + iebFQjZCgWVgOa/rfj5XOnHZZAFhiGf/9VsPYHoXaQSBicv5yPZTvftHBiRZI2Cz1VuH8ktwhd97 + WZOgN68q5Y8BK8qmGhM1Tmw6b6s0Qq+pTj57imrwZ3+gfvTrLHw/ssOPIB3hTZ/ff3xQpeV0L+As + jwG2ebTUlIn9K0wztfOFhlOyeef7kE0Lm+BTcnLIPWtbGP/sEFvy+FZ/zd2OoHYWRaymR89Z9AQn + 8IpZG1sydLJNoX4l7p8TAwgXdeQK24bBlB6Jw1SXeolvFwNdc6EnnnaXh91faJA7HH3yUvpmGC/C + uPzhbSz1wrjrCy8fmfZyI3Kmqyr3k2QXnK4bxJInndVV1ccZwKJtcD5JXU2dXGL+4q1/1EYf8Iex + T+AcTQq+DZVaC5fbWqGiiTefZG814/fzCW/F/MHubq9/+wGC48OY0bvoh/Vthz7az5u/hXWc7fae + gDX/JthK6rMq7HwJktpWsHKmejZyhpTDZ3LKSLpNRrjz9RLKscxj71eE9Ri8Bk1Mrg3F9vL8ZKvy + qFmUpfmZaK4h0oXfPB4a3p0h2vvZ1SP3tUdwqOts988HZ1m08Aiz9nnGd8Lt+ICoDLye+eN8wusU + Tic9kNDfep16ONdTGpU9Ej5xSGwB3Ry6MGWADveqIcYzkEN6mE0GPm9gwzZBCuDf4NDAq80nM9Lu + 73rLFGz82S/WnHh2xudPjWG82W//+KCfepND7Yo6Lit88M7aehvVLBZlV7X2OrtLvdrg7oKPYrY+ + cKOVLjBkR2hmC0MMURjr7SGej8ieuwFrQFPqrcy4GEK7vZJnxVyy1ZfPLNj5Id7TspQF2XGE5WPj + seZ+n+rK3qsvLOXlShJenIflz370Q8TMh1zWaf9Q7AqMwqXCCqZ+yK7sK4DNweCIhiJeJRqTaCAZ + f+Us8lNSd9PpNEL70S5EnbA08I/tHIHmqIlYtvwD/dKbtw8BVsOZuYxyyFbRcYE7XsMvM704HPCe + Ngy2jCXe4XNU54M22mIMrA82fV8b6LXjXDiY/ILl/LapayXGX1jG1MO7PkOXjh8taJPBwXLKOc6a + 7oq9loMRe8wnHBb7eWLg7TdRbG19k20+My6gTQ7FLHLeCjrlUgdo32+iNP0U0usb9qB8LDyJf0tB + F4g3C/35x0P95urNS5sKBfCR+I3zNVQ2H84R7PaeSP6kOkPLKUoOd3+FtR+KwHJ/hD3qedbEapTI + gN/5m8heCgM/Almg3/GVSWJboBPWrG9PaUMVCXHrMSHnw6Fx9vfJw/35sIEEMVv384xMdyvIzi/D + if3VI2RsU8NqcTxkY5OjI9zjBb5wbkCXOgERwCpTEa16zur6hy9F6vkkvcWfjBZyqonrvfniF58M + 2RY1hQ/DMbD/8Gm9vepTDMPDFRKJmPzuby8M6orkgc3mVqprB83xT4/AqUEeYPvjn3bY37A0/tCw + PXprg9uoyPPnMpSZoDGJAcTSzfHz+LHrER/KDe3xEMvxR6LLkj8b2Hw0i8hL3mTTeSg08IbeBavS + hdRbWmkLzHnxTJTeZtVxyW9f+Eb+irHQ/ujGyn4OQ3rB89FyGTBfj8GGRhhG/rcu2ZoU0/WIRniJ + cLL7X+5WbD2qs1Ykplt8QGs/KESFePOwlVMabtHxGQM4DxNWwjoOuTwgLnzaYobP37ZWl/s7dyG+ + IZZodtzV0886L/D5OwESRnsPLLfVDEhG25gPkqhTNqeyiE4vesXGUzqHY8uUFpJt6TC3QKTqemOg + CLyxfhJ5f39rNxpfYMrLBavyGodzFN0M5JrmA+s3YNfTvv9Ar2OLyLq/Of/wn7Qo1/kUXAhdAvOd + oG7NXJ/u53PtIJ5hEUZn7Jm/n0qGEirAEj2T6PN2zrhz/SzhSd7Cmc5Yd7bMxj0oxsjDepy5YFjT + 8QtPHzoTy8inYQmcgYEnffkQs791zvZQ7BIqtyKeWZfnnJk9mwpY798v8V7FOyPhiY/ByV868kBY + oqTP1xwGTcpidw0o3bazXcBa7WPsDlIZUt0OrxA+2g276pVxfsfoacF4dWSs6fHH2Q5wKPcr4iqR + TeYWcrseC27unO96VRCuZ5IbMEgTA2tfj3doog7ln55CDP6nhNt74HOopaCeISdlYMH1W0PiwQXz + uuND3mSpBpGgXUm+f/6H30+yqmr/6eUXc2L+8BvBen/NJuuXleDwfl9xuB0uA/n8nBz4RxgRc9dz + 6ADBCHZ/h9Xo2Dh0FfsAFpdI8rkb6Ot+x4cAbVpJipa+s5ErFPuffStYjZz5XaMjJLzFYk2MrIz0 + 7hJD2VL4+RS+uXD7Tb8GhnMQzvfr/AWDEcfJH94hdvIdnIU0j0a88Lzh7/gNLMS6iHANvgPW52oN + V3boRlHG0orlbdSzZY+/wL71hS+qxFW3Q9Ox8BSt+nxQ7Gq/Iz3aYJBYzkcn3aVsF3dH0HXJj7jp + OQQc+Qg2lATJI0Fzl//iT/NPX05PqAjXYMKu2KboR5SPjWvW/ogVzLq8I1hoTbqyv3qGh6zksVf7 + 55Aiw2rATR/fWF5yLeT/8DE75JRgPnEy/oVFH6LFuP/td73u+jdITfXur/GnBERjAgOlqqr7G3qP + zubZQwJ3Po/1dRPUpfiZR3goyhcxjMdQT1WaR+B3hDd8vzKrM15VwoAsLHz/nXNsthQvHIOk+O5T + r+ZTuBnLsULJ9oPEO/+WkPTuMYJ/8dqPx0SdjeNJg6eY+ljqfhhMLGkCmJ1e23yo1ixcySTMkOOP + NglGM8v+4UVT3i7EXpA5tFV+iqH5oeP8lgvbWYQZs+CuOZTY/HSsd3wcwz0+Yee4lfvUtCAGOr1d + /vA5XXpmHKEXVD/iGb9q2Px4LuGuD+Is0B6UvvS8hz/EmER7o4EuXdHnoO67dOadc6LOf3zBTOgN + W7sev8aF4KJdTyBqcXyFtDg9cpidnhv2o/zujHMU5DD+WDZRLvVhWPir8xWDWxIR6VCUYHk6ag/J + elawdjFeIdWMYEZafLrgXd+j225fMHs//X/4evucugb+e55KmgBlUvcKY9bq9xu0TE2O+XOGk3Y5 + EfWZJPX28crtj4/hnAT9sD4TskF8OVRk55d0gXRLYZJ+fezu53tzmdYHdTeIxLzOBiDIkBr0ECQf + h/f2F9I9XwGLQ3QgWLW/lDKMViL2+5Sx++guwxpweAEhGxASji8j20yNDcB3fBcEG+IMFk3SZ3hK + aTmvCac4u15wPCb1L58ZWvOg5Wc1AOw9f8+8KLgDdQIlBeZ1EYni1haddv/9T6/BTPKsN4s99KCO + +gPRWu8QUv6Y8OJJ2uie71qH3b9L0G6H/yPtS7Zc1ZlmH4iB6YzEENP3orONZ4BxA8aYRgL09HdR + +wz/O/qGtfZ2lYHMyIhIkRnt/UltpI9jrUp7fyBkH/dnuvvjNvAfhowB817HTRlP+Z//jpTZeoAF + gg3Kez8Sr9v0SbcAjwM4TM0DoX3mKU2PTAaSkB/C565XqTAVCfzzB92SjxoS5OgNfcd4h1srGaXw + p59y1CkYD42iceFq9xBZkCVFdUk1uqpvCbioV7EsnX8l+RBdkdNPgogap1yKw/fHhLwiicTUjzpd + tfOHheRrZ8i1DpcSp9Vtf4OK95CtVHrDd5+h/tMHe7773nYiHoQXyTPCX/CaUhof103u+sbH3T06 + lT8WvVVYt9mGglc9NP/6KSekrkg5P+VmY/ynLWuiFJMwrpyUGlKi//X7AvFFBbDs/R7w4241Qs2L + G//wFH5F5vzXL2jmUp90uE6fF3rs/vYW8K0vY3NSSeZfNjqX05DBaClHfPiuD0p2/So/7S1Ans2+ + KI1/ywD3fgpCUn9utqm5KUCF94KogeZ5C4FpAjlRSvHKV3PKVkCt5R3vyYmbUo2nssdCdD6wWH4y + drrIFm//y/9cmwatvwTR+19/Vtv1eh95DZSNzyVGRjLqgN6DfPjjcyHd/YG1svEAhfkikL9+0Fza + gw5F7ywgtPuJlffjdDCe+DMKvvgO5j+/e+fTxF3uRsp9RWU/YWvqyC4bveQTMV/A6xtewuLP/7Wv + SfGHHyFcIpSuVTb7YMencFXqTzNLa8TL1nXf8gi3jc6zsWTwS5kGGRdAvPnXmgq8x8dnyOqX57hK + XFrIv29REyMelXQrzMCEzbXvkTUaWsmH71mHxjvriW1ViffkatUGvQ+/xGQEBvT3Q/A/bT0A//eJ + gphvNLwV3hfMMs8vcqYIECkVcx835pQOoMqNHzKruqfLIB1dWIdUxB8enpv1pJ86+Sj4Asm3pU37 + rLM6aHqlRPRVZ5tt1G89DLgvFzJRN6Q0KzVbbj7BGsp0cMZFYuReciKoI+9msKA/PW4ZaLWHg7w4 + sDRu5VoFnpD1RUZfwHJRf0YLI8RSYjoXCCg/3WzIZ80pFGF0Klkp01x5hPc65LazPq7xLPXgfX28 + iYt+coPZ/IHh85RUodBMjLdd+88Tvh7qgNQMvbQ1WEIeSl+Qhkldn7y165+1HLE/FYW8oIz8eXib + 8sepIIozJRipPjUYfpjUDeE960uBfcMnyA0JIvXovUbqyn0Br5f7Yf8+bbON2bLJZd9txFwbSaML + R3jIVj8fhc81TpeJDROYobYiN5qSZv98Li9sa5DKBIeRmp+fD4dEUDEkJa8tS0R5ObhGDQolpwRt + 87RDqBpGibweth6LE7GQ2Wr0ic2Asfx9wgnDo/ksQ3yqmXTjcsWU2ZhpiUqjm7cGi8nCgQv9cBPv + FeCXzjDlAL0t5Px0Mq5on9Le6YuFEk8rwawMwQZuQsoS/2rYHlU+2r5z6/Uj0fnmaOv4eOUyMzEp + US7lZ+QukqPKQGKO4ZKuR7CSCeWwvlQFeTBj39DX2mRwvsZPZAY/XqOXTBngbbAtVMLx5QmSKLjw + mHYh5jJGbAgDbgmc4nTGcORPI9cU57ccK6+IGE/OAtzl95LgTYhZ4s+b3dBPGInwMuoSucai0wh9 + RyYYf841OZPry6P4XUMADvqIkoNll+xjo0+ZPSgXUv9GMK7ufNcheV4kzDKxqG2mwTPyJ9xS5Im5 + RdmD5+uwut8UYuJELgkHxQg+FlNAutpfvamMFRNSOvuobkg2CpX0ziH/mTqSGNbZ40Y3ZWCT6zqJ + hGvnreSUSfIr4Ayid6FWsmaptJDbPIEos21qZHh8dodijMLbDRgauxVRBdf5bRC9uGYaFcpNlb/m + YBOr+zUa7eakhcblMyHFbS/lYpZ2K0+jVKKoYuRm+WhiIpfH5UpS5nynPKlyVr61/BJOFKMUm0vM + yqwktkRBrk0X7q6GcnFufOL4pZ0KzfDkoVQIT+I/P4bHw8Cv4V0NEKoehyRdnR4v0D+ePBTcovfI + WUNzgb1DexJMU5duPz4cgBIEHXp0vySdoJ1k8hfUF3R1kqu2xL3uyvO8VVjQtAvdAFaxrPa9S0xX + P43s0z4p8kf3dgdHMj0+fQU1/ILqQq7cFox8urYdAN9LRNwp7hriiJsJgfeCyEmnli63F8/+5SuK + NUQpDrODDgP2ciFW/3E94XjjaviFM0esi/cGqybmExTzWCOermgjfz3qgzxLPMKQiXpAh4IXj95L + oFgyCU2Xfq3esH/oB6J9s8+4hsVr+ff9Na14javTd9vf38PcsIbjJly0t+y12Aw3oUlK6m0ohHXs + aHhRDy/A3uZcBTH/0pBVbJTS5/Xbyc/Br1DBB0G5nlvQwWJrD+jsrSzYwsF/Q85cNuRaKwLThU3e + 8HTDF6QPHFvSYdEzWYyngNwVn1BKvkYie4VxJeil6ICzya0XrYUfkaeQDqzedVEhr10rdNIFTVvA + /ZDDzE0NonXJT1scuxVByIdXLPzF35G4IowY00N+F27jP/xbh3FD4dQ/x/V02yu6uPnknsu/VPjF + 7gAXw7PDnmwKZcNsX1e2KgbRnhc1ZaVf1MmiAY4E3aoQ4DATTGi/XhbKLnoBKJDnGh4zbiZKele1 + dVjsp3zzJIIF0szpuP0OKuTqJsA8lfyUl35VDog/RegmvxHgbGc24R/+ac9B8vClPiZwry8oorpP + t/QVVPCBjzGqp/7ZkE8tqvJev7AkOmy5oUPMwOaDVoRMZdSwu29ZWErCEHW4hGCvbyo83y8jsZMy + A1vwjBIwxfGMTnlqUpb3GxO0I2pJeG2Dhtr7qToYlPKe/523HR9PW55jEZHK+IzlVC2nTT5UDxeF + fhp77CCttmyLioZMKk0pxf5RlGvdivZ6d/oPT7P5iJFbWbU3G5W9QVsu9zP+2XMUVi73oTKkNyz6 + j9DjglGRYDqjBIVpnJW8aLQ5mGMJocrne20JMxDBchadfc8UABS1bviPL8jVe3/nXn7mwLyGIaqu + Rq/9BLNfoDmvetg9nI1ulVHqUFmWC1FT+G0wUxIVdm3CIHf4CeX8V48l5wdQUVm1xpoGteWp++gI + lUaVDpSNFFk6V4gkyXcFc2hUGZglFqEHPN09AR2/iQxzdSKP0xyDpVqcRUZa4pJg5yPCSQ8KuJSD + TpJOOzc4TgYRNKtqEOuTBSUrlkYPHU2Kibc51sj5XdLJcLgvJHlamP49P/metTdM5+ZDN+5uqvCb + PC/kscfnxsfnEArvNEJGYLpgyz5gA2z/KlAUcKn3k9hAkSsIBBKkZ0nbuK2s4ONOplDwfr8UX8PE + lR1sLSjsbkrJZ1F3ga/z94X0wF1GytovF6y/IiWlcblSOrblW768fitBebGV6xuUC7TGV0qy+O5Q + 9rCIvZxwjIJz22cphb2dS+nrbCDrdWK1ZeGfuew9Cozs/tWWy+EZPyF/hy7yD7uj38d1DX/H4wkF + avPeHaXaBtbdP5GsiZmUCKWkwm0wCbHzK6Ab3FZFxs0WIbV8QW2Fs/qEOix8LKfnQpsqzsLgYu17 + tA+X0VvrENnAeOcKyvd4nCoOTRK8ZxpJbiIeh+9JeB4tX6lCVo+6cl0WDh8PmM+Qvv/9rf31PbTq + xzMUTrPasHnu7lNboUUyWprgF9/Lt5yjzCD2bYpHlu2pIufS7CI1VBSK34bYy8LlppJk58fb/jM8 + dqeEeN8v9qb2ByuIhfyILPZ+Bevv4i9gXoIXnpqIaKPaIB0mKx/u7/CvFMvwE0HKlCyyheu5pDlV + L/AvPi97/M+twxfwBj8eBtv9UW6K4WzwqOa/UKC8ObIvGLnwpbl3opwGX+MyV+DhS05UDJjTuVzO + xWWBqZ4mKHDtS7OF2cGUyiYtiQUwW27i47DA0zZcyTkbFCp0c9HBVyGJRG2L3lve41GBFTwKeKs3 + EQw1k7+BwUQBXuW30vCO9t5kklUTsiczp4u4lCYI+tomRm+247xlnw28+59FztPMjdgNrirQVkv9 + V++mnb/IauKF+PG+HL0FUJ+FkmYZWPGOk7dml1iVL6q9T/UN8Lh+wnaSwcUeQ/n7eDdEr/wOks8Q + IxSIItiWLtCBEXIRsSdTBGv5HHiYFN6EFOFqepyCthwUHV4RqmZvXJ62o0LgNZDs8arNvZ+//+IT + BfampkLGXd4wYkeV+Kck0SZHYzqgpFMTNs+h0OhX7U3wvoQasswsbUbZUm0g0IojityZ6eqqQwek + LBpI2J+/KabNIsKH0iooat/pKHwrUMO00uZQME9FuUUB20k7HhND95VRiGamAve199FJEjPK3ZKH + +KeH9v8vlZMO6wq28OYg324wnS9ZVUGixRbRpjDyJrJuOgwXoBC9nH5grQ7TU6rupYIM5umNq/Y9 + dpB1Qxtp5Z1Pl3NRL+D+rL/Iwq+FLuOQKPIt/Xkhlou8WRTXk+Bp2zvuOx7hqujf8GuBb8huN7dc + jtwplz5F/0LoSk8e9xAHBS5sZxAvFVdvyedvD//4lnMDH2/Hiwrotc0iRTo747g+3Q2WJupDLhoP + 6VaepRBmM8Ch1Uy1R7Ml6oDuHxBRs+jRzOb5LsGHF/XEO7Oihz8a1AE6zyF6XGqvFM6PYw3lR6iH + H+57AJgez/Afn/W6JE9nR2Z9KE2agcLTKjTrO3olEF8llTzctE3JKl1c2VUqgJyxfIFF/QUdtFp4 + J74jtuPCza8LEB6sh+xjWqXzrm/gM3B/yGqTBawT05jQmfgY+ab08rbHfMyhg42FWJOopVPDzclf + vGC2ewNv7tJUhct0bEjQ+L902fEHDp7ZoRMLQ4//rTaG1L5YxAo+Ubq8x1WBBwm/SaAKR/DZ6wWk + R7VBAXhfyyVO+Ame1VlGlvf7lYPecT5skm3G1P4aaX9xnirsRU1Bjsw5mjDnbwwvcqUj40s9bfsG + EZaJaJ2JpeQTmM6KlkO/ay2Uv9pDSY3ntp/YTILwI7YtWD74vchMueGQ2fnAVDPT5S/esFx0PMCv + +FfDNDxIxPjTv3jfYicUT5Y8mhEDkryDHqqHQCFZ9y41etfrCTa5xyB7fFhNf5sjlbk6WfKn9yl9 + 8/Hwj3+cOqtMN9NgGHiNTYw0NTc0QaVdCMwyU4j5LshIORmJ4PX0I1S8yLwPhNMkGBv8F/mBcyr/ + +A9guW+APx/nMP7VDzAf+yE8vp63ccHWI4SCuPjIFzPVWxOfzcFx6U/oCk8BpaGhvOXuGnhIkaVa + o8cbV8HXQxlIfaczJY/k18O9viD/41+8Sbg8MvAqRBHV2VEbuWXhJvlZX0Ki81PTLMLlcYGnc9uS + 6NMuGkb6vlXgUY5E3/nssrEjC15ypKLs0AVgPT+NBAZsdgm38lV5wwKK57980LuwSTdTWVX5cXX5 + nX/JdArMaJK/mxaEzG8Ezex3RQevEwTI9Gbi0ctvnkACnzyJbtM73VzhKEFwMMfwsOP1Nov98qdn + iX7oArqdHNGU9+vFLKuK2tIF01M6wneIHLb/NOsJs+Y//acw/ZtOCsvsb4C473Cat77Bz7fdygXd + WnR6etmIb/65g+tqE3J1vxPYAo7LYKFfv6Hgfie6DJ9mguNH6pFyTGdt3f0EkBEjJfFI3HKRflEr + HwwxI2jP5+0vf7YPI6NgO9N//AY4zc0mcY2CcbF/ow2vIueE7HnRNCpbrg1V9pkjW+kZsKqNF4mc + bzrIeL7DZvES5w2o8+kwy10Dyv0u/ibVsxYhG7m5J9g3sYC7PiLe9BKbKXudBvlTDC9k4fDaLBm4 + K3A4jXek/OkHdp5d2Cl7xzrT03RB9fcJuaEskbU+snLZ+ZD053+dOk7xuLteiCCPVxeh3Dp6y88j + DHiqL4BB/Krp9sG4haUOHZLH5kHb73cBu+r9JnbPQW11micrX3UVYMBZo/bnL8BO6c/EOjtmyqZV + msH2a23EYYRPQ/3ukv9dT7ho6XFcvU0r5OUdgpDm+2iHaOZrmNaSgu7xNI39vY3gP72EgvalTQF3 + fMIo/IVEMWSj5GRfT6AfHj8oPp+1UkAhXCDzHSBRG2PTNqBFvizta3rVo3dqtk70fCh1BCMt8o/g + d7uGPjzk15yY4Zg0+NocQmn/dxJ2s6ht8Pvgpd8lytFVsJpyqQqYgdIMehS+TUtbxDIY4FaHL+Lg + m5HSw3nCcNd7ROPsotzkybTlzjx1COVFUk5sXkrQqu/PcH093XJFj9yEd/l5Q7pycEZuYkYTQEIt + ZHCprXVvQxygE3ZHpG0uT1csPFu48ydiTPN5XG320QJ7wxNmCs4tidsnjGRPASEh6RrwE3inBZ84 + yJFBR5Fu42GMoFDi2z++t9z2Obrlcg3DBTCCN8bbfgIr+1zQbb7agCf8FEL7GL+JzauHcboj7Skf + uNIj3ihZqTClMAcVfz4hb/jEDWcVvg/zPjJRPKkN3eYE+nDnN+RPH86LqfnQcF5HkowHmFKvGlzg + JqxBvLL6avPXeofykdQlsq2P1ux6F8qqm2/EidVjSs0oXaDvPDNSRVZLF7+UF/B63Qmyup/mbVg9 + m7KxTyywefXRrIYJLoCVpJboTVyX+Ogmk/yHz2ID4oatseHDwukZFJ7B01t2/wPagXQPGRxjbRJd + /ATN/XFGwZO7elwexPDv+ogW+TdKyvKJ4VklMh6PRZvivgQJ5IJrTwyDCz12OOsdtJEHwzXYT8Rz + siX+48Pk8z3TrZEeOThaVCLWqfiV64w1Buaen5LbcvbTZ9HNNgyWsEUmUxmUqvXJlZ9CgtCu17WV + e4sYMiL7Qqf9fv/TU398L5K7rqSJ/2xlbhFzhJoxpOx6HvYT1t1I3EUUmh+c1Td8TfqdnPAcAE6/ + FjXUx/CLvJPGjMO9zRbwNmMZL1aXgGmI6ggSOZ/IadafKffNTxlccx+Ta5tEf/6UBMrjdsXtt72O + c7CErEgjvSGe81u935Z9FsBynwBdph+hw5yw4Z9+CL/NVGvz9LsPkJlgispd7+/XN0HJGQHebiL+ + 54eAwDQZ4s3N2dvs7CRBz9uM8Ci1U7neM0kBYpVzf/zD299ZYST9AyIS7P7TNoWBCJ83RcCielg9 + nExMBC/ZWydh1A3ltkSHQcJXUUWnSrqCuUtLBez5gfT4/qPLxJoRkG/SHLLx3QFrZhwluPtZCH2Z + Xls+2hLJN149YxHfR6/9629oBFRhH7yGht7xsYV7PSMhG5w9zrMiCVYJzkk4QTFdCrC1wFxsRM6W + 29BNu9vMX/3Fm7UqDXseOOmvv4DFs6GMvdEdC5gtyTFkb2ehoWrt2LBrI4achPSZ0sG4scASbi/M + uFfX4518CeUEvnliqrSla6svFTwngxaeKbNp1DrADh4wmxHlNqkl+zrVthTFyo0Yh3evbZSNVDiJ + TEiCXT9tSXV1wazzFULFqo/cFUe+BBq/DmGGz2DR357+n36f6ZWuh85WZX7bbsRDH4E+O3rT//Fd + F1ZzM7cOk4PzIp8R2v2ULVG9BcR5Ooar9Z41LD6EDWb9+46ZHd8o7JVc7iSBJZqGb+XyyHsXFkeH + I5p+2sCm+y8ebGqW/bufy189QfZYhmDmw3RpD44I71/tjo8RfjV9cp1VyWAFnVhMrngCvP6if3w2 + 9klE1+pzc2FISIEFgNl0Y9Wth9N3+SHbf4TaioMAQ/DNInQ+SjdvkuGrkpe3D4jS9D/tz/8FLp4S + dBrJUNKzOylgxze8XkZh3Dbym8Da6nD38zCgWpJfIHO4XYn71VXKVZ/YlWfTAEgrLNVb05PXweH+ + GsJh97M2CZ0UmbFdIwQhasYt5QsJ/vWbsvDRpRQkEgNfDkmJwTzHZpIYeQAT7QVU7v7AClUywEt3 + sMlp96s3AYgmmBl4IiiUzulfPgPQfwmxhBJ4697fg3/5kikHpxEELxFhkrY80T4HQnd/ype/Q7IS + 4+M8GhxKzQBn75aQQl6bdL0lVwky5YJJoB358l8/gT1OB3Rq6/kP72xIu99t1ztNuj4SroYX0d63 + xuZZuVqHZZP6jiv/+VkkNOw3vE4MCGW1UTWu1ZcaQpOziKG2a7oqSMrhkzcHgpjRHpc/PPzzU5UW + FeV6v/UXuH2gHMrx5DfsrVoksOcv3rTt4S0f3ZJgHGPur38JqLEW//UTNeYs0/XP7wTHNUP5p3nS + nf9PUFHfDJYEvgBUXtlBVtHkID9etnTmvswAayf/Iq3Gqce/yzOGLpFXpDUnP+XYYEzAj2YeKV+j + 9a+fB/Z+ELLT+1q2Do4rWXjw3u4XdOX6aaR9UmJ4Js4R8c3Sn8AEdz6BpTJIG/LrIl02ClIj74gr + jT+2nQn//E+tOU0lZkwHwihWb8Q6akNKt3Y15VdHTSzq32c5HR+AgZtZm8hTczbdIseMoMzDJ9IF + /NS2WL7nkL3oF/KQcpKS0y1h5f0Q9a4Pfx51REmHTqwxux+sjELJQR1Gl9tAvBBpDTnhZyQ/jk8F + RVa30U1hh/afP7X3M5pNy5P+z68NIXuywQbfsQib3GGI/WoP6fryJAaSUnsjzfm9/vN/f2+7I1ql + /bzp2L4jyD/Qb9fLpSZwcElkt7VazEffW8M95TyDU+YqmJl6pdkO7hL949e27Wdgfqp1Jh4DKybe + h1Ga+ai3vhy44YLMh7MBqtoAw9i/3fF68EKP+r6mwlSPE2K7jeXNx9vaw71/E66X8Tr+89/BkWah + uPMrMv0cFs6Nh//D210fgcsmXEJ23k9kaLZ1Ab+eVKGoA9FbiG+8YUjm4i9+tMW4FBF86TcYgg/z + bHqFLDUccvtGSjH/0uaS2T1clSpFVTHsWzK6ooX/4kn/Kinlp9iV9dpliVoGermK+4mTRC3jEBwx + 9NYrrW2QJ5AQN0mdlP715xRzWEjoqFm5863sfzlRAP8/JwoqnUHmU5+bbbh1b5gZkUSQUv7Slf0A + E06fSiEJtkizxdVlgCUPH8hDH75ZUu5Wy+aqU1IffWvkGue6QRqzCyneVzGlhhhH8NmfG2TQz7vZ + Zj/u4OWun5B2fx3Bokt0kocXH2GJXc2SYz9RIf3SZUT6zTG15fzbp0wI5oCMbzp6i3ZdNtkokpqc + tjIAS8LXLDQzewrLyxaMwll/SZCYcRA27xaN65HAEBC8dUQ7O29tgi9WkpeJ95AV7Hupb+anB3Kr + +8SWy7lZCuqpsH66ZXjoW0tbv/6SwE3rn8QGsZ/iCUwmLEHph70FriMR9UaCd+dbYepAzxPe5PGE + 58kI0YVh7ZKPXceF+Kzp4XLX130IkCHBR9wgYhoXOd2moGaAwjE+QYlwosL2SzpZTJiaZNcTGqnk + OIvsillKcuQey0WUKhXyhaQg7RLN6danz06m8WSQ+pDTciJOtYixj34hZD7vkv+EvSq/AduTczKa + zcaWHAO3qpFCiZNgurwWtpXl6PQkxjvi0lmAuIJNDgpkXuZzyQeNysjYggm6l00KyLiPuJpHxUMq + f6/GZXvMFVA6XSDO0dDHaXt8aqj7ekgyXwhHPmDlBQrGqSXJi8s9wV3dRM5/RNifb+dtTQkhNLP4 + SqxbhzVqh28F1s/UxBv1F43CScdydCnsfc+gWfLFUECg/+IRnT7qqG0f9MmhFDAOCevKHwX2rqny + TOr9nRiZ97bT9MxhLm8NqdfDMpLnL27lnDkdSWTdrmnfe/YTXgn3I4++hyO9yQkLXrf7CSlgOwE2 + PySt/GCygZR6fgDrt1YK+OyvDXHpUnpkkwYsK469IP9rM80eL5EsjSogCnkO6RSpXSW3jhSQ053+ + yjWkoQqtrmdQeup7IKz5PpWeqQySblY6suxJKWT9l47EVbKuXOcjvED2GkV4/aie9mtvw1Ma+Egm + FVu+/vIrgczM3HBjC27DU3Fj4EyHiJxy3IOlaT+qnM1LSopX+E7xaqgtnI6LSlT4vdPNI8lT9s6v + BcUMiTS2oB8sP84yJLrIvBr2et8dkBcEyJDYtiT6t2FleFG+JCw9RePk6+4QzkVC1Gq5NtyNjXS5 + 0TOVOC5fegKLU1f2zkkR/tZ9RoAQvhT5NL6vyH3oL0/Iy3sCv5ESIStrxHQxvJcPgzn0Uewmkbep + kanDF3+z0TVrxHKt3J6XUTV8cHSmn3TxxE8i3++DHa47HvBEmSZ4I84VBY4RjcIwaVj+VCMXYtH6 + enwydxt0hvK2n8FVtKX3lLcci1KBrE7uNJoXUvcvvjwL/Rp8y5+2vCa/maCuMADLtViV4ii6IH3a + 35mxot8imZlyQkFR05IqWOKhC8FIvPR18vil0SE86g8ZQ9MX6DJEJ1Pe85NYS8GMW/B+RrKgkHfI + Hux3s3ii28HVPfV4A++7tzxGVpV3fEI37YPHTdf4N/y7HvHVfkv+xyu8PI74HkrB7GiseWATeeO8 + Qwj9LCzp42by0KgFHl3Zy8/bgnefwFtzIeF6ab8j5SNay/l2heFc9dnI2q9VlMmJfxI3gwMgO57K + ipSEmH3mXzCJP0+E3345oACWRrmgp+lKoLJvKB3EGCw8l1aQhwlLDInVS+wEGQPkfmzx6kafEquy + +ISHdIyQdVKydE4EJ5SLbG6Q8rv8ytU9ShfoN98zcW5JSoXbpOK/+CA1E/fadjmjAQ433yOhNXR0 + /3u1XD/tkhTzux3xRctYsOMh0g+2Ou7Xz0LsJxnx59BNeX3tIaQ0aNHJu4FyfemPEM6hqRNdsoQG + /wTTl3Ar3lCcL+nIVUdwgcmZf5HThFRtq+79JBHA5agW1C6lwc1g5WphZ3SXW5DS991V4bGSL0hT + Vwbg6t5jWIvA/RdfszryquxtD4GgHW/W/uQVkOClI7dAqUoqIzT9/YzuvTR5/SobLlR0rBH1tb7H + ZWAWUXbb9IvMj9WU2/VT5JDhZ4fUsXUot8PdVv/qEwoX0Si562nWIWXACws2umiUf/WibOY1RvYe + P2vNxCF02/iLjLuXUTzePB60YzkRI+Ms8K+eHT/fkjjP13kUHvmplm+q2YWs0ameEHBPGzLvqEJV + w33T5fARdfl8pT5yX9HsbZa1Yvn4+ZTk5GYFncYXkEAsny1UO2zvUfWttPJffrRG71NWuNJFZrCl + k9BXMm0JQ16FJza20Emom3HjJ2WSjbfUoGpOHpR1v3cbWrVyRJF1ncZVvgqL/Fd/LqpmestXkieo + XQaMgll+AeHydV3461FOEuwU5XJ7n1u5PVQ5yr/YLoVfQVt4OrA3kpvbq+GV+bNJE3MuCBpfsccH + zaeH2uWpkTNHj+V6x2Yt1+zHJvfFava9oa3593wxP6ZIW9GmDDJogYNbtGge37iuDacKdihmZqMU + Duq5kqRQZ1HF3n1tGmk3yUN36/Eq1FojkBZOUFy0CDPPfp8ifGQu8JA+P8iZVrXk+hPWARyyH1LE + nbHGaSrK7eGrkdphbW1rp6GQu6ElJE/NBmxz/dXlnT0Tl06fhqo0n2Cj2COJaylr8Ji/XPhLjxek + Ca5TLqRELbRCpw3X+BVTUj6iGmQO+WKOsUCDS2AXcqBPNHya0atclmISQV1Z+C//U/o3c2cwvAex + tKNN+brx4D+8v13de4p/fPOUWc08EhPVtKFs9czkb78dkNLGPdiE8KfAc/pwSXhxz95i3DMFGm7D + YvHVWuUWsNwCD5P7Q6rBrHTpfp9Wupk/JqQicjV+sMAk+Y84Ia4ErJQj5QqhJfFn4r6vYknUt93J + arU8yS05WSWfW9IEv1bh4exzt9Ntr5cyqzIhsW2oAu75PD6h/yhl3I5jDda/3xeCokJm1GTlSjMl + gpt25DEvDt8SM37Swr967j+Ze0NIWyiwO8ERXR+4TX/ONTHlnT8igyMaEGw55mVB6QRkSW8WkNri + MSz6BRFzTIm3OHoSQuakpkT3uYYuvNkMMDqoPrJ0xhlXDTY1CHRMifG7++WWMpkvOY7ywa1Wj+PG + ALeQLrY4kNstcjQOmmQA965pQhHEUzkpaSFJPjQxcjneBDSf5gKEyZYTPYZIE/Q+fEPDgFV4HH4e + XWjdm2CvN7g/J4Ru109SwHRan6RKnpJHb1C0AREihfg7X1l3/gJb9rSG24sTPcId7BZuT0He+WhV + LqlFVPB7VH0I5+QA+r960wV9T06j+yqn3/zcwM5nkcnw6f75JoHLBHm013NPiGqzgOfv8EInZv6U + xHA7HgpK5aM8NTUgyOGsAO8UYOKFtZeuVvMa5L/6HRWiQbfbIPcgTJZ81zPfse/6pw/97/GK9/rS + NIJhdmC4hR461eKP/uUTXLxOJZotDM18IVv4j//+xdtq59cavt3ugXR3nstFfhWhVGR1QJA/P8H6 + On8ziKPuSvy8+4CF1k8TJvgbYany/IZ/0DWXaWdvCLkfN12atBLBUQ+/yPcCla6N0EqgfA93grq6 + TIl4uWA4k29D9FQrylV/eAvMP/YDaYMY01W+HhagR2+I/sVTQb2db8cm5u/iq6HWNOWweTUP4idV + 2ywtV9TwmL9/ZI9HSq+u4cKd/xO7OBsjv7J3E9JLeg/5u3ga2fn7sMF0lPYTE0YGVts8MX94R3b8 + pavZflX4iIuWqAYTA2qIgIGS01uY8kYPVs4ui3/4mywpGJeJ6gokjf4jGadeNdo2iIGnREyxJIFv + SW3kT7AENx/Ff/VcfIQb3J7tN1zp+6j1uhQrsr6uBnlsSwKWy12Y4AE9xJDax3O6rSZiYH8T76Qs + jyKd/dk2//gk8sLq2SzZYCXQzNxp5/NuugWsvAG+GRbklvZl/NNv0jjKNCwWDoBtpVsusax/xUL9 + a8DKfqJcegRngdhK/2zmuT+94eosCbF8TxnpC/gFCOaLEIqn9dLMPjYqqMZ6g4LFmcHiO1z9D++O + 9TVLl1IvQ8g/LjOWQSFptOa7pzR9yCU8ANUt6bH71dDj133rGA+89cbdKyAlhRAe9b5tVuzpT0iD + 94zZVJNSKl7qSTpW7EgMbsXj9vq+eHhVNzFsje7tTRdfl/7hq3eeZ22yYr2SM8NFOPOPt3JTXMU9 + Ss5g/dNz9HypMKwtOhFHH0hKwrxxYW5fNeJ0I9/8OGvB8q7PyUU1FoD/9BsRmgs5Hft9RoSod+Dy + mUx03vUGXay7KienlSPWzl/YaL1E0Oqe6T/9Of+U5wSeJiTobN6QRtl5qWWNVi4x+svJ48V1hHBj + xR9KMf/16sG6qXDXHySQ27JcrEPcgRuWTuGvvh08qn9PLngMak8CjzE8turyBU42kPbf9/L+3b8F + iTqKwHaif/gJe4OYISZUH9fWTnKg+2ZInGl9p6v+6GrQ47OLzBI/02UZiwu8x4yHHM4pPPo9U0Vm + 3qUVSqIuN9sUXBg5t89ayAzbrVmda2HC4ZbxWDjsM/de0muCVq0eEaoyqZyOnvMGb3d2EWJFp6QN + Zlm5mc0Voa740DlgJAnGUTORP7ykijJPcOO0bNdvT40K21EBtbg9UDCchHLVF6YDws2MQnYcGfAF + EynAplEPmU9TTNfyZ4jg8OW/SF3Sstnex2yQXcIf8XR9GdqiDWYCn6VtIlc6QLr93W9WfN+Qtqqp + tkgVm0FnuN2IRsC3WY/LRZS589cLpWT7NcvvwCfwTz+e39E53XgZPP/p5XN/eWnURt99S6FtodgI + ULNqcKxhZtiI5ACdRkHBEgsjmiFS+RkuiR2+VThI84Aq/3L85yfJO38nLsVLSl2Vs//d31eObbAe + l1qEj/MBhsftIIKNAWoODdOykJ8NoCQ3ed8S8RqkkF/vS7ooH2OCa+0f8HqnTslJyg9DA+zvTBJ9 + 9rAamSY0p8Eglqm53vruDjWIAgkjbecnVNSdEF4kmyLFjF7pei9FCOXs+kZapJ92/RLy0p5vCBV2 + WC7dNTJljUQbOmkaLtcbG5mwyTeC7L3+ruLDXOT3kl5IUFT2SCGUbLBdmTfZv3+6/PkRT/WthtLO + //7h39Mrq52vBxp/VOMamNO2YIZJEzDHXbpIayfoyNeYk8deicVDl+AQ6b6Ax5m/NW/Q0X1m2KpS + bVVEo/2nT1/789mIMuHjp2pc/JYnplzep7cJXXgckfrEPhAs5urLKXy6RP3pN7oUdJ7+6gPyBJyV + w2q4LfyKfRYeHl6rLUoi+se1Pg8ovJ9f6cYVSwenz3wh7sP0AC+1K4Z7PUTa+92CZf5ebenz8VD4 + h5/NKJc8mCQtJ/oj/XqzfJEKeL0GH+TX2zpOzzDLZPsKLHRKetlb2yII//hiOPI/CrB3CvLj0+R1 + ggL+Atjxfenga4Xl3/V72+4PSuhYn0KOIxqlOJ1aeGekmOh6M5XbV6UuJKb7Dg+3U6Ntr15/wopT + dHTyq7jEBTQWyACHR7YnvLW/fJdV++MQf0tdQKGc8bDf3m+CXjeJzth9sfJef9D5lGiA2/MXQjyM + JBxwqxFrtnS5dcQAbyPQGu7gGW/olk8BxXGzb210ZxYyNSLIFi+BtvP7CsZReQrpqvTlcouDChqm + YZEowzpYa+YWHtdOJvjgz0+62K9Vknf9gC7ilGjrI8ILfLbaC2/eyWq4m/kZoOW0Pikq50WxrjFv + AE9ChPwtVjyaxJkrP7Y1R9atC71tvGn8P32VBJ4NODFIoXy/7++oSr8rXX8J48PDcjlh4fA9l2sX + FAw8vmyMUMz6Gjl+Ox6kE31iegnf4z6xW4T2ZNYoUEgzbt1TfoMo2DTklZyW4kMdFFAjrkVQlRXl + cnfKDQSz75OdHIBVNn0IrCSDKGSdlW7nzR+gOfUGyT4P6q0P9CpgNY1nol9PpKHqe0xA6uUTQni7 + N9Puj8DX3Of4OEtiugj5pYa9MZsEzb9vs6BA7I/6Sg1k9WoHtg+ac9BR3SHFN9dS7o8/3cwmJU7u + 2c12FYgIrmHmInOvn8upVTJIY7kkft4vDX4fqwFqBVzCXswFQFW21uHXOzThVrRjw37MYTj+ff80 + Dq7jHGkRDz/RQUQ+81FLltGkJ0jh2yXqnz5GYXmR/KYa0Pl3n9K5EVEnYfl9x6vY6CUHkuoNfktn + IT++hf/h5dpxOhZ3/bzteg/8+YPWzgd/9eHSwbQRTXT7q3+2fGOBcNMj5K0tTclVTCLYJr1MtPCg + UMFViwrKa/rD60fnKBVouePtdSAnv+jG9TPeM7jXS7T7qyl2a7eQDOEaoVO+MekK4pU9blf4Rqda + ysZl5y+wmK9f4gbzz6OdEbTwgK7BPjSyKJeT1akwl5eGnBrZTYWa32eUmWjDMh/rHl/HlIXoZaVE + uatfjfqtNP3he5hjefCwKfj+P36g/uUb87MkuPurxNlkrJHDKdKhGgfhP726OdDfoGEwFTLdq53+ + 8yf+Pv/HD/nSjzrpzojxXi+tcd02tweKlB9RyMT2X75tUO7zEFndIQJ0fzMAfo6PGLnKZdUW4mQL + dC3dJaaTfMFa9vYTPIKrgHQqX9JF+zX7Vq+lQoasAo/+42u/+oWZtm28P74uf8UhI+4ej5sMZh2O + 4XJB1/150mH8KTCObqdwvY4bwOgSTXBWCytc7OLdUPn54OHOP8nOf8p5uhz3EwhlTEw9hmA2Tq0p + w43XkFluZ0D3/gDQoyImZkVf2nLiolq+FdOA/MPwpgSU1wgGSrGiUF+TdB6NVwIWr1XJXVnDcu0J + 8P/8PqQED00TjiLPAGewNVIdsJguP+xV8Ga+UmRUutMsYH5tsATJCzlkOjV4sC+5fHcuJma1J1/O + ux4B4zjdie8Fb7AmNmuC3Z8gCJgPsDE+FwH/u0z4z38m79rKj23oI2Ql1yldUJhe5N1/CuGTkZv+ + chfw3/MJD0fZAcKfftEESUAnA0klXXO3htHlSdG9F1/ptPvxUG5NPxS0Y093PVHIf37R+RsrJXXV + pJaXifXIX/2efrhz4e4f4M874so/f0caQ3AiIWJ+Hk3fbfSPPyWP7ykVjGM9AOsQqygQHwXdxt8a + yVY3MOT0UZ4pJoqqwuT0fJD74onNLAZ8D3L/XeAFCu+RMusXwo+N7HDZ/fhxx9+/ehde6flO50fk + 61JcmUz4/ulHsImP1YZ9cbKR8XIGbwWNw0BNDU/otPut5J7aErwR74r5y+g2rPZTxH/10ZmlPKWn + WGbBrL435Ex01ua/eK5LPkf+lg50lZTfJFLnfCHO1ZXLRZduCvzTa3s8eHv/Jpf/6p9J4jYdMwoL + iPKsQVffezZUPEMV0uCXI58tTyX3S8qn5D/s758eHNclMkzwxz+MTNjGrSmLBJjokIVkx/tFyOtK + GpE2kYCPW23lbwor5b/qRfzHsQIjHN+K3CjuiKmcuc30erS1nHrFhKGfNOOfHoBdzCpY8IN96j36 + 5vLuZ6FAfkcN752CAsR+8EO6Vj3p+q0bE/zxBSt7qJTtrtsGBT6eiQqeSTkNjChB+7pV6HSd5Waj + x3sPLUd4o4BPMd0OtZHLe/0hBji2gNQ8fsK9Pxeu11nezzGnE9z5AzLMa1uujxcjSbueD49HC5Vr + B+cK3gNQI2f3k+gYtoq84zlxhu/JW26RostlfTfIjvfappQShCtQy3B5yF26mPhUwyl+HVAQZUlJ + /DZSwMDbCTG8Sgf05R0lKNx8gPno9Wt4X1FUee8P4CYy/XTlx0sGl9l4hV0u8A3Z8Qb8xcvj4ene + Qkqrgx4+OeTycUJv+/NTGOOuoIjrFbrqD20D1juMw7Z723R+aTf2GFtDTJD55bTpr79ss7j5d3/p + rFYVeP2yC4p+FyfdfEVRIHXCkRi7/tx+7YKBb/5CdJpz0VsY/R5Kxezv3pmfeRzzQxLcphtChlWT + ZseXHPKPR4608PAE//C3o9cH0QLpWVLk8xF0mHbZ/cCMrh3odThI7QEhFjJ0rhkgQXE5RSS0prWZ + /vyBj3Y0keXZ7siqlpfBo70eSFA2dJflhxocuYtBnL0fR50N9f/LiQL5/z5RkH+ngngn8G4WIwgn + yCjLAUuJ/Gsm86AzsAmEiWjfLW768xjUUJS6KhTSqdPWXv51csdsEXFfggeoGf0gULFNiPEsMN3m + JdKhWY1JuPThiQqU3ApofvoKWd1jAnPRH3N4dI/b7Eyt53HKNvVgds8OPluJ4hFuHp7QqNNdQR2J + t7TnpZP7JvaIFjbWyA1v2spOvfXE7ZrXOB3PTQeTOQAhU41qs4520EFwZEqEukrVBEc1Nxnb0w+p + 6MCPyxr/BtiThYScDbZ0ra8xA5eKcljqxd+46F+IwYNzQlIOi96sT+tXgPtLV7GA87hc0+3owi16 + TVjmEw0I3KNnYXBoWXRr0gIIqZ+q8swdkr/7AYaPHbcQXSOWqOIsp7h8OyI854sT8hFs0xVrSQ2x + VyskQRahv3m+PuWEyAkpFkMslyN+TzD2Vow7rCeUE8u+kLc/x8BBC528RHhL7zujI6Vc3oDlNruW + 74bqEeVtDBSnhsLLOuog0r6d0vDPELQQxZqKHFN4exu6TU+o2EaEUiF3Rv4QcAWcnc5ASqShcXVz + mMFXpTtIHw/suLjim5G94LQQ9apk6cIXNYbWaUpJsT8P9jwaFVwmZSXl2I8lGy2FKRu6j9CDHDWP + y1Y1gmrY3knu6LChj2zJ5eM2ucQiUa7xDGoT2bIYA5V99ioF9koGCE16we88f2rrubFbeCkGHfM8 + 9/9Iu5JlVXkt/EAMRLqEIb10EqQTZ4CIYIOACZCnv4X7DP/ZHe7aVSpk5euSrNQe/wG2BqUorEjR + C85IorejwNLTWpI33cWjgu5BGKZ9Qi7rUfa+XioY8ugkA4lRGZRkZwoNXLnzjPRH/R4p3oMc6kp1 + IWcCv2CG0ZGFK5fOJDD9l07Od1jIcRmaKAXHNGYfcMlllSgeOT/pWV95fzfB6HU08XJhkbeMGYrA + DT9MVDS7p7d/vzGGetFB4t0AD1aTVhx0xvBIbJKbI7UvQgusCwB4ttZbvAyW4AO4Gg6p3iHrzbs8 + dGX7Oi7ButXzlG07Eg5sGiEz7E1Ae9/S5OyLF2L7wjhO1U1IwOfpWQj1MtAph3cCXB72DdVfR433 + rbTX5OFQE3LkuSZmi+wzw6FrXih8Ywi+4h4KEO1YhGdgd3Rsk1qCpRqlxL5mbjx/whFC7p4KxA4q + 2+Oa046D010bkDl0z3HWamzDO7zckFmczoBHI+vKsDlwxLQR7Mhn1h6wGOsQFX6vAq7nVgMQesuQ + Lj3zcgmiKJM9IeuwkH4yStP084I47R7I2hVCSeejPsl+0ftE19y6nCf2oMlaLdJgubDEY6Pm3oCS + giSQzLehr80eFjDtszI421uPDCMKORk8rl8UH1qHUsDkM5yrZU/MtXI9dm7JQ5rsW4CO0vkS77Fe + 1DBnTi06RLYzskvylSC/DyxSHXy5pCrjzyB/yPr2PpWYL/l0lTU7GQP6qA/donodC6nH1sTb8IUb + huMKl/MgIaSHq45vWr/Kbtg/UHJd+pjkteDCtLU+xL17mccu368GlwR0JMhar+Muy1rLmToApJXL + rqPeI6nhUaFvlImLVc757lTLj7KyUcW5XLkU6vySh8+ak21nxbjnwwFC1DwTcr2iAcx32nLy6sAO + BeKhLJcj0BT4pQggL7qo8bJCoYD8WhPkUvHgrdidevjjA9Q1F0BuYPEhCYwdcSXpAeg7XxO5iK4H + guC51YlQedavfpCpvdySza76KofL5JHidDnqrBRDDMfKUskhSIqRXN+/rsjVDi/c7Hfsezwx8t7k + DiQF4uhNmWrn0NIzihxpPceLWMkzEErFDS7B/OoWu58EaLW2uimo0VvS9Tb81a/Tz1BfQu2zgps9 + qyg+JxHgOUPioG+PIpbocYlnVrdqMBynO0qEazxu9aXIu9uNRa6ChG4dFXsSp4AoRHWlCSySdpih + 0ds5Qp9PSDHTd4X8VV6Q6IKz9+b93sDAeF5UErtEGKekXnsY1LmG8kM5xMv7/Zr+nl/PKt9bp+Lq + w1Zad4H8tFG8ytzXgA+m2ZPURtU4X9anK8e9qWDRY5mSjjieoMBYPFLeuKLzyX318sd/DgjFeAY0 + Zi4R/DAuQloavuigXmkNy9pEBMkJUy4ObRN4fbyuWP5+nZFjX2Emvzp93j4PgiUK2MevflFiv2M6 + Px0jlD2NOQbAsU8lVZaFkVVn5yFbtdpxvMdOA7HpByhrI4d+Sf/I5ffoXTFzlJd4frZ6Lgu8oZIo + QI6H253LQInJoiBdq8GjQ5eF2127K7r1ZhJzMvc05A1vkELLsJzHipmhl2kSOdb0UHJlovh/z1tb + czvyZvzyYXXbuSTyx2mkw3KGssnxAfJKdxrn7sgXMGgRS5SP1XdzYfcWfAaHAxYOpVuy3UIhdLmq + J4pyssZ9/n208mHmeGJpWuuRswRamDW1E9Cs2roqHuUCHnjrg5xVnfShNygrQ5IsKO472VvOzpuB + R3oIESq2HkTz52DIDa87WLxwIp3PbKXA/LHTMWQLm2K0jgPkGSZG6vOVe5O2JQKHujsi+zhH5eqN + OoRBOYw/ftAn/lzUsqoxKfFd2+y45z2c5PwLfWJeLid9fciV8dNHBNmq3BEjyjkYtleEFGFquvW+ + zjb0Ll1KtO/b1fvf8/fKrkX6F9jdYvKKJQvPA0ZHcj171IxfATB8447n09v3WOVwleA2nzG72l7H + LYdAgEygvtHxEfbj7H6fDVS+drjxL47nz9a12BBuGFlKbXbzrSoecMarjezb+h2pMPgzLMtUIAo6 + ix3BFQyhMLPo9z70ubJEXzLdSkUHe7Q7PhCaGn535IY5fSXdajJFBDZ9RByPrcutfl+yeWQq4sb7 + sOSlovJhVdUEeSWnxeyZTRR5fOZ3EqrOseTFQM3lZIUm0QxrLem37mzIwwAGHH+P6ZJJOQtee01H + RgTLbtq/dQXykXANfPvh6EMiJBWY1CpHNXkaHXt5Ewy28UCnJR5HqsOrBPVGGZFyaeZxVa+gBlI6 + 85jXMmXcq9k9At9ryZEgHQw680wZAYUWOjHzuxvTnjFCcOD3X1LvpWnE7ctj4U8vu84kbp9HK7DG + Jz1Ydx8zZpVxWzEWiUL049iAeR05Fx6+s4OU0jh6M5HTF5zeUUWQlXsxW93mTOZo5qGAe7XxxicV + 5K6NRTQ9tSgbOqcQcrmak9QnasmxWrzCDQ+Rq5+X7hvt5RyOL+9JfP1wAAtY1Fl+LOERqWwjxRjj + ewAvX2vG25XE5ZzUUg8TbuGQmhtqtwYBsaBQN0+k7+QOLLN/V2A0VXwAWs8t6WHgalCLnYncC/Mu + 55q3XxDMfoBOc2mAfYPbAMinofzjy5UNrxXY8Apd68Npq7foAa0d2RHTxN24VBeFg0yTnjZ9rHnf + 41dJ4PZ7A0F+rTq9JUIuvrpN//q83A2SpLFw09eYN/hLN521dN26oisIFQSPS26NExSSNUdaLQo/ + Pc5CtW3eP38x8t7lpkm3vRdgGKmuzrbPuw0acW3Q8TV5YLY65wUipVTJcVlv+hKk2QOykJOJon0d + sM6m2II0Xx3iSe13XJKXz8Jy8WR0uDjveNqxcQNA8OlRNvAPb75Oug1bPnoEshzfu7/6CdJcJDFz + OcRsEPgFWPeviSgOPnRceooHacN/zJwDteQ/s/uC8Z0PkK8h1dv7TBBC3KoOUobh6a33y6LB0XrH + gbikWUkvzbEB5rfFgehCfpxpv0hy6Skt2fhznBCtM6gYrz05G/xlpPdYbSAn7yuiu0ToVtnAHGzO + FY/0xebLpX8MFQxyO9z8gVqyvBPO4IfPxvwgXk+vbPXDWxKfbZUuleJMEFahEdDr9UOpGePgD3+u + 0lmMV6deXFm3sIcO7PcSfx6cKskBCGTiBEZIF+roEaivtwAFIl28WdPaFSZXV0E292RLGim2D3uH + GYOlzL1xv2/iVtLuo0cMRRNHXKXpC+5saSKBNbfdLB7uWyFFE9KrZ6fP+TEO4D7NL0jNpj1YR0XB + MEXrjjjJ8UBnkiUrbBMGkKCZc32J9J0rsQcqB5i5vcCiOSwDY5ytyDhwfbkOgZZDpfRkPMxmHq9T + kfrgLogGMe6cTOfjgFZg4MIllvT5erN6DVeYSd0UwPB67DY/WoGbMH6QTm5PndqXuZGDutDQgYSC + Ry+iP0jM7uEj5O2ncu2vK4S7cXchrjCsP73vwvOTuxF7UAqdeHL8kq+m4pGMaU/jsrqrDWK7weTA + cLP+mvyyAaZsKkjxIsNbJdt/yT9//iUnS+fX9TpI4H00/vhjnZjTCh5RtUPRhmc8My2ZvBvlC0IK + i8Hi5mwCRfGroChLmG6K430AT8MDIp/sg3Lfe2MCUj0ukT9903K+6WUlPVI/C3icLyXt9Jz5e57D + VYrGkT2/e7j5KWTfyx2l5DJr8nyJC3RwkenNlwtWQFb0Brku605ffT5bQS3eTXTYtU86K4dUgvor + vKLrjhjghx9/fmaa70bMz6zf/uFnsK5xOT+fhx5aluES73pjx9VkohA+k0QKwMe3vY/zbHrQNV6G + 3OXDAvzTg1tTenR4gDn+8PE7+PmjgO5kHdBGDh7w5FFMlM1PUqHSLbnAcERRWp0Bd4BjDh8kFvG6 + 4dncGydXfr8/GjqaRt4te5gJkN/vXITUKe3oz28HmOSB4CvG7/kEmHCUwyIYan36Lu4K7wIwkPuZ + w/hro+8MtUfRYtb15pioFCXQ/bo2QtIui+mQJi9oF05GFEFYxu9WH5JsAgkd/MdXn6vvqvy+D3kC + c9LX2+f+gGe95TBPwtyjEN4FuWkq9Tefy/ny6Gp465MYVSeniykyaCKzcVsT+6y2McZwkCQ2bmrk + x8/XuL5PvQ2Jwp6Rv3ufy5UQ7vGrX2QPiuT9/DTc8ghy2Pz9op2ZHjjRyUD6qtTefpQ8DlZrxCKn + 283d7OpNDf2kKILVk+4e/fk3IY8oQgd4ANPtVnPwuCb+5l/zeD2+8u1EQ7Ii9BCe49qjJYRMoL+D + 9nTW4ils8wJyxUyQBVKNrnX9cEVvl16CndkY3e/3y301aeTnn+lL4yvoZkJG8lp60YVttVzuHTgi + JHSx993yCNjEsArSQ9Toaz19WZAzcRvQzZ9s+GJLWcc80GHD4zkdjxVMW+ODjEq8dzRdJig9z9YJ + lSc1pdR5eRmIDhce+TLvUM6c8wf4Nl6AtJno5eIuoAb7XGKRRXpSrquh9XJ2Px6JsvAxnX/6YdPP + SEseiz75VxbCW8Q/g3k/C/FvvoAs+faYg9EuJujAvyA5OV/iwxsT46tY2OAZcjdkfLpTSauKrLCW + 9QbZRrzEy819DjDHJMS7AzzQrw5AAF859JG26Y1p049y9Pk2RCuX27hYp2qAF1WTkH2zeLCYkzvA + 6IVMvLQXp2R5/6rBxXgcUc29tJINLg4HNnxHG953uMLVBC0GAoL6ZfAI3oMCbH8jZYrPMdVmzwI/ + vBXDSw7Gy1UN4Tt5pciuNUWfXKGF8nNwGeRg+92tL/AMIOmAgZnR3NHlVDaC3DVOhmyr00eevy6M + 7DGPlGz5BZjjOyfIl0M4bf5gjWlZFgWYullF9cYfPHMHAtyVvY6upiF088WbEmhVnwgbAf/y/vgV + GfcryX0/BeRQwRUkHXHwHoieziXJWZJp5bFIWbtPNytiZcMtj8JTPYr0p0fg3QpNcmr2Pv3+8Ki2 + JCsQLW8qJxE+Cnmb72jLuzpsni813I1BSo7vxzpu/OzDfm0O5BwkUke5hvMhlzQycYSM9WatvEty + bQkWQrfSKJfayUNA3MeDHN/5fVxP33nbscz4ASccHbrsD1UONPOZBBTuXbAUvVgAD7AMKcbEp6vQ + Si9gXz8L8QRm8fC5aH3IcdyL2BNs4+Vx1VaYm8VCDpmKvc0/WaDPqpBkly/q6PXStfB9v4To+FI4 + b+jREsHCcd+Y3fh2ywMxLL+Jh/zvxdvw6/OCG/+igx6840+DBx/YhZcRFLlJvJcuSyuLsDqTLQ/y + 5sJurL98zLE8v9z/8ujkait4gccjIIwNV7jlHcR03r33y8N+fmLzw++Yd7Rglp7v8k1M94Zpv9vl + DPx+3DPyeU326FXuDTAugkVOr+gI6Ek36p8eRobofGJsFukEfCmoSeCcwDgz/HkG3b43iNuVdkzi + Z2FD8EZGwEmfo84Gb70RxUN5Js56lPU54zQJ5Ga+oHDhY7CI1X4G8j34Iu08ufpyCMICnu5PiuEr + /8b0bvsWGNRADuCVUv1bqPMDFqt+2fz3a1wAaynwVCoDsrh9ra/793cCE46jv3xzPYE1gJsfCpaB + 6cblffkqMLy4hBxZ/C5XO+MhLDAzEkc7yyU+flIDbucmyMGj9467r4INg6WakZbZx3H/cdgKEnrN + /vTbyj0+FdjyGvLLi1ZJclnQauhBFD5h6ZLJVws2RuFiJveu//LELa9DfhoI9Le+ALf5hFDGDTpd + 17QHscSeiaI/t56DW97dXY1+49t9h8XHgYFp9ZSQ2rdKyfLnqJabR7xi0DdRub5ud1be9B7yj2kS + 76M3mMDZio54IeAG5uomZHCrF5Q4t6Jbm7eEYYzuj2BtTsY400IIIF2CPXHOaUMpCx6BvPERSSKD + pQOGg/Dn5wLLmOg60SqB74I7/PQNwNLk2FD5uiGxvvlVJ91wWSG/VoQUYivGk9A9w18eiVcaVh6B + L6JBfI/MYLHrzzhdLliDSHxdiRXnh47GzCmSDwlVgmdhvgBWTn0PuftZQG5X9vGDFrMPo0p6EttX + HmDOkGtI/N63fnlsxx3S4U9v49tDMLt9/Yx7uNUTZvaSP35zq8N/v/8ox+q49g3vyzi9P8gvL1s7 + V6ng72/tvr973U//1fFXJa5+Po2rtSO9EIIqD57gmJZElncRuOjzCZ2V9eFNPBNHcopfR6wWjUH/ + 8uXN/2x5zHNcj1oVQm1B14CV1Nmjv/xlmy9I0VTW+yoKLkSzWM54J+24eHmxsQYlqwNIiWIV7Gd6 + 5+RtfgZiW7L6tlf4Abb1EIT2mVGy57KSwNc4nIm+Kow3MH6vwI3fkaUFVP/lu0Kl29vliXrXzfLV + C+H+SQjm21dfri+rxTAdWY6ULd/osy1dWOhV4YQO8WTpU3bVZ1i7+R2pyvPp0dgvNQiK3EF+WXv6 + 3DLbCbZDNAVQ9lh98lXxIV3rbNjywaVc/FaTwD17l4FYrZr+q3ewu11ZEogHEFMk7lnY7QeDHM4L + 6B7N/jTJt8i4IzczWzqTe+HDurlDpLH9m85i81GAe7r05PAAYUxH8WTLROHOgfzO1fG3Pgm3948s + TdN0tkpWSYa3+YbyazbEFHbtCjd/EwgT1Mol2XkQnMPzgqxUvYBZKz8SfJEuCRpazuVseGIm8fp4 + xzwnj916C9tKukXWnWx+QKfdcJrhtt619QCvvKk77nKoyLcXsX0/pfSJxhVu/m3Tk7xH+gJNYF6f + Et5v64V4/35OkNbAQ8bJD3Q2qaUBEiNbkVarkTdr4aOGsd1iXLcJ21Gsyy7UDC78xzfnog1+egap + hGC6gOPRh5+2JEjXXGZbr+mg/KSuTUy9XnSy+fM//nKS4xss87O3xd9462w4j4txNwNIuN0SCEz0 + BoSRgPJbP0Vlyys65/PZLPtnaU/MD48o1Rw3hBice8wptTlSyS+an34KRLthYzKXZg5nBCV0NYRD + N1eJJIEn13fIfA3brX1qbcCAxy1RK+esc/1VYmAYSTJx5ivquOuYV3DTN5jd+GnuujX6vV/0W39q + 7v23gGIlmFue/PGWm/vtIV38PUpbLvJom2QC4OYHS/zw+u3ox3FW6LCPL0ExDim933VfHsHug/vz + Md5O4EUzsBB7RkUTo/i78TVsYqYiKGW6+E9vE/f1wPeALuXyvV05SdVguvkLa9xPk2sDeFtvyInv + C/h63TLLrrjTkTXwhreAl5/91gtIgtHbm3e7EMpd+DaQ6/cq5Z9onH/rzcTwSw1w6RCt8h8ewVrt + +kUYaggBmyEvqzOwd/xPA4OTUAf9oXTjiflkFjyKqUZ05vIuN/yf/p8dBXv2v7cUAHwugpezL7pJ + 7NUaEPV6DGZzDmKO+bX9698nEkzPmdKTmTPA5h89stvJ61h7FFy5h5ZLrJNkjN/swfTAezcO0tgv + S6nySHMozK2OUAxlfeViq5KKHFtIy8XZo9Lx1Mg39dIRt9vft4uGBQN2+IJQcFtOgJA3O8N9Np9Q + Ht0FjxKpd6HiXQ6kKr0rmH0MBXi+upQckzsHFqkPLUD0T4KC38JUHbKBzH5VBi9dd9Yn2hIMu8tQ + Im2ga0nH50GSe75M8OxCEK/SUZNkXclNYu3MD1gnfhrAixZHEq/6t5vj0C2g5aspOl6R7/W7rolk + UZpEzF5uhrcaIidAD4YyqounAbiXwWXyO7+/yaEQcTcf7nIgFZz0JL7XTt3CPztfRpZGkLuCmS6m + JM1AZvcnsjX0AbPygIr8EhyVhBU4AHZStQK61zJESgUOlIrvlpOv40Mi17f+ABPbrT4w5/KBL9xY + jmwI4AvG53wgeW3sADkK26HUETlIfXi6zpbr6sOvTRFy5KHVZynrH/AxTAhdRI0r6eZ65HvXecgs + 615f+rFhZXB5vNABif24XQxtycdsrpD7GUTQBSJ4yQdw6onLHmqP/Y0PdNOVHC0jGrlOdCz5+qVq + sBCvB+vbsjngHY53YsdvMNJ6r1RyE93OWJxiteOcfYplrs4LVINnNnKc4gWwZtg9uR7cTOc7kTxg + qTVnZI3nYGQ5fFTApzdaEg57V+fyF+khOzEKubLyu8RiPc7wYtYesY+CD9i60EM5SWVCQoc7g/Vq + FSvwKBIxfeuHkf2+RAUGz94hxx6t+vdTnDmJP/UZcl+zXM6BB1z5V9+m5H9i9v7c3t/NuJLzd1fr + ix+TCb6ksx3w6/tDv9X5q0GGgQ5KyiUZ6cCFknzJFYGk/d4G+6/Qt5BwzYfcjg9dX0VNMCDs6DWY + LPEez/dn/4KypyokKl1VX7VYKGSytdXnRAnGQ+sOGsxF7kKU8wFTTNknJyNBMjB7TOYR+8+bL6m9 + 9UVa6d51quI8gR9pRMi6sRbd66lvA3/XCKR6Z6eY5YUbB/XzWUGBxjvjKnh9A63z54DUQhrBcpXj + HjZhHGIR3pJxURVmu1j1KhCnLepxj5a5kOu6QqjW+M+4PBu9kbXZvCIrl4aRYzufgbnjeUTZRzie + 3/mLhafePaMLN4JxreBthrdif0QHPkw9lrXrAj7BrAfzl1gd2/BODYf1dEHOWZZK2kTZQ771Hwsd + ixSNnFsahTxHnYpUrJTlPvzcWPjeLS5RWtJ0ZKs3aNq0QApQr/qMtWmFchQ+UBwhG6xK9BSgl6oF + Bso+LllRHDIgZ/2KvPupo3/P91efUSNRLHh9C2+k1UnMBKrHhv2Syb1Rqxg6rBxTtotfcgDfRvD5 + wBeY3/dbKKlmqyBjd1A7bm7sAFR9slm42KbT5yJm8vvrX1HkUKVbk5BvIGAGLYDpbgas4iiZDHhq + BmA+xzFfAEOTR+2lIpVhJR0XNxXDEzlE6HT6JHTu3hoDy/e4IHvDA3r0qhZmDEzI6eHpHj8p3Sx7 + pXAml9utHWmEulU+Pw4EofMFlF9ovnx54CBCZ3X3Kr+RVRvgcuij7fm3HnC+kcOJpA+CbHgu6fEl + JH/8oX6vl3F9Zmdf3rG5T8qHp8SLoY8RLBvMYeHs6IB9Q2rJj/zYkNPuXFL+TScN5uuuwub6Ucd9 + 801d+Te/Dv7Oj3/zUzxJX4Okuep6i2R4nHQPmRopd3WJl/Bz4+CwtTWPc/1O6XJmQgiHvkDqfOY2 + yo4ZeIkjA7+XuxVzy/k9QM4DIzJj0JQcWe4W5DoHkRs3MPEjF+QVFK50RKZQF97kfqMGgiNk0TZ/ + Kb8On56/D7lN4iJdS3rrdhVwszol6HDsY6w6cg3btRCI6nReOT+WdAZSD3Ky4WlHZTmC8nvZRejo + hbduEbyTsEmKM1Eb/AA0zBZWti1QBFzC3r3lISUcvJiVR+JzmQL+SmUGbtsp8UOGicd7fDDBFOAL + Vtf+rc+5IM8wtXkD75KH482yvLxk6pTXgOpuTueDfFKk4vZRib/QtOuPyfiS7BWs5LAatsc9j69V + ltZUR+ZRfXjz8PBtYL5kMZj03YN+rPOybbHISAAkfAQ8ufkZNC+Who5+eYzp+O1rqHGwQJHMjOCr + bIfUTT66Y3Z6xh0vD+QBKa5EEtnmEi+T69TQxq5Mjkvz8VYvKiEU6R6icxbqMSu31xle99oTmfd9 + C9avyrcgz2SDlK41xMPepr38oVOCcpF/evv9w2bh8XN2SOxOqscq30cll83EoZDUabm3W52Dt1iI + SPE6lh3fpV4N/IAfAibn9+O8jkoksacMBd+lcTyOjvsCCg/hRLLq3FNSBiiDNNrbZLvXk66nz6uG + P/5EWI291dmnkxyk5zvSfAxH+tCHF7woS4pCwXfByoxdBa/jS0IHyV26DS8eIAJ5REwlxpTuilPw + 4y/kD+ERcKp61IDerCNCl5nz3g99eMCWcC45w7sfcwfYrTIW9Jb8+H15GmSCajBqRMGRHS9ZZfng + UIgasdnp3LW+4L7E5pIkKKs/YrxEQ5vAJjyFQbPfzzpeLWuGA8pMpKDHWx+n+K3BoVT3KDfXrpw7 + j9jgyEIQSLuP5e053rfgeGkh0bSTENM9V3MSwGmBF9kcyyU0wARPdHbIBSXEo5AqthxIuRz0o9yO + 9Jk9WegUTkoCJzDKTc88YAmTNzrc2gslPq5DKNuciLR3xurfjG8VGK1pgEwl3i5b1U+Z7Oh+gbTY + 5PV1d4psUDPcnijp5TbO1f2SyTikO2LAo1my0X0MwcafyMgTrls85VFBpakeJC1r26PAuBsyu2u/ + eGrdR0nX4d7L/Dc84EUna4w1Mhlwf8xewaJESUkqiHPw0w/XM5OAVTq6Anje+A/yn4ZCWbd4u5Br + ZBu5CQc8ItVSAcnVYIJIO+Xx0udyDUvcYKIZPfVm7fpktgjrSc59SOKlsUUF8o+jTpwZ+gC7XB+A + 2JsFYj0/u3gpgRiCXNEcvJMt3VucKRvgYuYZcj4XU+dfTbPKd919IjcevmD5EsGClUCewTuiT281 + /CGD5rEKyUUtfMr7lVzAW8EfkXXvUrocr20Pl+6xJ5ZJFn2NhhnKdXc0yM28Xbxf/cFWJQNyDssh + Xm4Mp0BzvjyIRip5pMl0h3J0YnrMrhB7a+ZcXnD7vcQ1NFjSxaAatBhpwL96bnOxVKSfHpKRMJa4 + uDkYVrtHi+ntfiupeYM+GMObEKQbPi3a67kdip88FJ2/2zVFV/gCrDDOxHpLczld0VzDVyPWKLaM + rUnXc/Qho9x0EsBjO1LZ8qof3yIXR89u1JNMgLssHrH0mq/xLMviAxpxr5D8qb/iZWXPPqzvmkxs + TrY7fqGFBaJHlyLVtY7eHHjUhpA1TOJ1SjTSy7wEf3gXT3wzrmmx1rJZRg7R1qzYLr5fC+lGGh25 + 2cMtZ5QdITi4zbYFZviCr0A4DcZPvyN5/C67gVe/DxB+xpBo32+wtbWVDbgb4B1l1dmm5Pc8JLN1 + dOq6s7c/ats1Zzc84h1+JHT+1b8RyA7Z+D2mdZtaAAfoFEjVdmhuWSEHgeLCQNBC4C3W5yLB8QNa + 5NoHq+Tdh17JLscBpIX01U1311hhdcoNFDA36pFNTwB6wSbeLzXrra8msgG7a75k0z/j/Ga14ac3 + tvoRveWbVCEMjTeLhT26xCvTUk22V3FFCo76EpPlbshpFBKUGC9QzhfJjuC9D1Ri981jXNchVuQ/ + /5OgTfbcjgpEt+oSLIlCRlzoXwlmvrEj8TitdP7pNe31WZEmpk23mLeagTNiYhJYyZsu8cWp4bNx + I7z41zfY6ksBgfL6Bmv7tcFSH14NbNXvgBm98Mq9H7+3LQFYxfw1dOK1dVsNYka4kWSFgT7f9gyE + RvEC+HOWpRhLKcjgV6yuSNHi2VsEwmjgcnIAMXcg12nmNAF83/IHqdGrjpfAV1ew233TgH3cBo+e + zJD5ex9x44zl8uwphPHMpTgPStzNov/tYVWRIzHv0V1f4snHQGmHEa9xn9P+sS32jN5XD5YGG3R5 + yyqGTxm66Lo0js4+QT7BGKdP5JXXAcyC50VQCI8l3hPy1D+7PRlAeLY6st0E4HHj417Iv/pUn+fQ + m6vgyYBlyTGJkYA9GhpWBfJVroIqa9dxCY+TC/wJegFj6Bz4VgF8yaigHUEf4HSs5wQh2PQPMrvH + Mq4kO4Y/f4eq2pRiXH6SVs7Lr4ACMbY8fuNP6N7eZ+QzdxfMd3zS5Hvvq8hQHdlbhdnvYRU/PHS7 + Htn4mydNBMXe9hF6q0dvuWO+hSnLVwRt84NGW6TTIOGDFEO76QtbHCXov8wAS+ERgTV/vXv4akBN + THf4lN8f3vqdeEBHtTyUf/j2HG8lMk8DKrfPb+RdMYq42vzd0oemJvOkDtBBrbamB+mMwSTtsmCv + cHNHdqd+ho/i8g7kwK28TW8X8I1MiCzb8sB823MQSon9QOGmf/FtZwzwOHYhOQ5Np0+RhSqp2r3a + H751iygKDJQb44rOSLRHDr9fLhD2EU/MVx3oVMpUBvz0mlp9CkrT0rEk57wLkEfwgc6d93ZhXdeI + bPq829dhzYBj4x/IBd7YbmZCKEGZ5U/BfIwzr9/0PdQe1xG3X/er//H95meRrTNDvNXnAJ9J2wRs + PS76zx9LweHeo5SPJjrfTgULL90wIK8+v+O5XKUAfihOgp19SUf+OpqNvOUZWNz8Fd07WiS9Fzn6 + w/dV2Q0PKK1nnRy8E6RDWqwV5NJzhlTrE9ChQp4PV3b4BPIzTUciLfv+x6/I27cK2D+XKRffAouI + mp2abg38MN+I6R0w59EueSI1rvxNLioyjknY/b4fFkcjIfaGl0TXOA1SGK3ICv00xgonuX/+xN/y + rEkX1RWU789ClCp/ef0wsS/pI31QsOcjH1BJelnwLXAogEP4pXi3Z0KQRy8OQ1JJAH9VvpFjZjiS + A6UZnc2PF8Kf/tMLIdHXexxV8sQqJTK3+ToF8y2Ccjas2/hKdDWBU8DN32D5/bJGFuYuBD89qn8K + rWTFtDYgQt6CNBVz3XzHFwUMr88bXS9O2y0b3oEHl6nI05SGUnpRZlkQRzMw9CLQyVNaDfCrN31p + RkBzT3vImeka+KNPcvkimRnC4XFrkA9pOZLUTic4cAxCiN+PYOw0O4A3y7oEuzq/0/WopTV8GkeB + GOGC6To6x4c0GrNN3GF/KJdMKVp49YIEBfenS/nTfTtkzggD8WOTje/VtqV0TUIdOVibY7IYVJHf + t+KBtM1vz6Ozcj//h9Qra5fsDLIB2uJKiE5XWK5+hddf3oLs15rqeMM7iMNJJcdzST2Sdksj90al + kvNTTMY+6Y69VA+WGtDbfReTiM4KFJiLiPf2JY8pDcPk5weRxe2U+BOIdQJP97hAijnjeJXzJoCr + LpdYvAZLh6HJsjKGU44iSzQ8PovCQX4MGJFjtB7A8mEehuz4aYUFMdFjnlNOnOy/DsE2Pgrd8skE + 7r5uj5zXre9mSd/7MHu2w9/8WaWFKLDN8oYUu8/LI0P3bSTuzZrkYiROTDNsZPKWNyKbK170+zza + IfwU0Yc4dNn9+I2Ba1a5JOacsz46F2H44UVwWO5bU9rTtYa7U8ujgyG2gJwCtYCKKAUEgcj19t+r + P0FB/JjEfqccLU6mm0BaWzFmz7ZT0pYkq6ymTwY5t5s2UvE9cEAT3TsWRN70VqYFCvz9X/O9Aszm + Rw/BKR17pD/TPKaGZLYwOsGe5LkQ0WXCz5dkuEFKPG8v6thcQ/iXjxyZpdEpAPNL9k9ZQfTbfVeu + 3ZwPokTWlBgjtHVqglwDMawslAxBTtc7z7wkcotNnMDjM15T7uX+8fFOIn1MhWuuwUfHR0h9SidA + r9Y9ByPcDmnPvbn5A+JC2xKLTT9+9bFqJAxcedti2yn7jT92zS/P+cOzLd8L4C8/0eJeAMulBpaw + jV/AzBrR2THqIjCmLiYbX9DlabwxYKQ4RtrT6Mb5Sz41iJ9BRyylM7zle/Ux3OoJHX98UzaTAZqz + fSTVKooevdI9I6XrmOLl3d892l2pAJ+esSdqxmrx/mkQLAWFcibpUif6qns3FvAFzZE5g6j83t0y + h4+XfkGHU3/u1rhVGrDN/+BzLoRuubzHFiZqAPB2I4g+BFcxhGLVFiQY4bP85d3w51+3PEKfdVGd + pe7gTCjY8rgvh8sB/vgomDXirZlyt6H52onEf4uxt46lAMGWD/7Ll8ZyyCTIRT5mDD2j+19+u+mP + AJre6i0/vbzlIVj8XJ76yoxjBR9mT0mUZ7ikrWAGYFrYBNmyHIyYSJcW8qchwzwfpvoXfqQKSNf4 + haxV4uIZ5i7zl18GwvyIlyCRAulevRAGsdR5v/UIKRPMM56Vx71czlh8gMn1XZSVPvC2fEiSa/oc + iP11EJhpSyZwgsBDSqF6MZc9jxFwVXrDu3SYxll/9xJIxSZC4ebn16yqWPC87T9YetQTmC+SEsKf + /v7hLc6Uuyv7wgh+eek4Ej3v4fZ9Acftml9+F0LmInw3/Wfqywl6PnRqzgsE1kkBHR+CBt/6TEnZ + 4FanGx7Cb+RLZFt/2NrSO8Evz0UZr9zo8ssLrmJBAwbHjb788IGPuWvAbfWIL+/V/elnlGz6YElP + IId3M5uI/3xrI/s01EDUPRIE0n7/jWdVISuA5ovB7C2I6GqIjAS1+XAlv/x5qg+KBrY8K3hlCtbx + xa8TeHtVu0Dc/C4b6C6Ge97msfQGA123fBbylvYg2lEcvHXgtAimScUh3+jnconl7wOkYLqgq/iK + ui/DKIH8ywNkBl1B33nEFSO7lTEfYODhHz5teIAOdeaDaQb1ABmGcf7mI633diV0JdciT+vabia3 + gYEv5yP96Vme3aEIbnkEMnN10D8PKWFhRNYGc6vElX/zacufiP3UrZjKcsGAwkJndASJSldZNjLo + FF4azOFx7X7jL//0lLTx52qk0SqHtVqTmxFP3vKiwQxVaSywPAnXeNXIZP3yMKTVpuzN++iSAeaQ + KKiyTdyRLc8DsK9jzIF+HPGWhwH3egmJ/vO7+9PDAPs215F+FyQPL9sWms0vErthYLykjgtBf9Yw + Ceyx7Sg8PzKwFM52BuoJuz5mcfPLN5DBXaZ4LY8NB+0RcuRQZxNYvMoOxfjI7AJpy1dWZ/qG8CJc + anRIv2rHsvvYkj9wn6ErW5jd/m2ugdyFzzNyw3kZSRkcMlGy2/VvfCkfXy14uPPbNQAr8Za37OCf + H8A904QxvVeXFszYXYlTJKlOrbM+Q7znS9w6tBnXILVZuK0XEj8Xv/EKVrGFR+Ygb3pcG9k7Pimy + /Q60f3nB5yImUOArBp2urB1zv7xDfQovpEpeAP7448y9tmveP/du/eFNqgrOtv7GeN2WL8hn92Eh + 7+Hv6NqSwIbXOSXIDlcn5qxP08jbehlemfu368FxtuWdPjHIfgvCSALtYUA/2A9IF/V4XJToHMGk + r2vk9AE/Tv0Y+XKiXzQUvxqTPkODTrLTPRWiqtc7XZOpTMC3TCHyz99Gn7/eNQB9U13Q0Ui3HVRW + MEtpeVnQETZoOzLeWtAU6x656PEo500vwR1b+D+9Fc/E372gvu9uxIPti/7051/+nW16af86xxb0 + nomGLihB3kKOVgCTjvYkaO1pXAy9C2VFC00U5jHUP429aPBD9GvA7g73bkY1U8CPwu0wV1t8Nwu1 + 1cih8WSD/cYvlGHbBhqun6JEjHtKrZWvINYkGz+DeaXrrWga0TRKHx3pKo5fPTVs+B61DLnuJQO/ + vBg4elAgwwkO3nokhQ2/fJih6usO5cx2UgDXj8KTa49Wb87K3XbENqTElmXcLWiZc/ldEIyh4IYl + tcdTKwte9SIomkNvwRrNgYwWNiCEaCXft7otM12SE6+yuHgBN779Pe8fP9OYcTnw/2wp2P/3lgL1 + sjOJeRGbjopXDYPLwrlEIYaps4LxiaDuxRGx2zzXKR96DHzxehKsA6vHvHixXvIpnjExJiJ6vTa+ + bKAdhDgoOl+l/PL1ZlAiaUDoiM76vlLzBIKmspEGa1xOAvRmWJzkK4ZV9/Wm5Hlv4CcvLMysCMTE + PlYPeKluFlLR+B3nd9mvMN8i1VMhzeO6v0kzvDecTtSbn4LFw4EEEu/7Qk6Vk3FWjpcBJufcJS4u + H5RO0d2Ce9QQdFv0L/0yi/2Sn8BwAxyqL329V+wqj1pUI12Z6bgET7pCxn86JB6+Pp3LtK/hLkb7 + ALbVzVsEFUvwsCYx8kKwG9d8Fhlw/34/6KYpicfial/LDk5UUvGnLqb2+7DC10tQkSIuUUyRHFfQ + 7/MT0m7pdnNUK1si//QZct13jUev6+jLmjlDUk3GvqS33R2Ca6VPyLqEbDzvw7mVrUDCxIZc7b2M + w9sHsXCVAlYRjyMP7UyTv8fYJd4OPsrFk/oaMtnpg/yrqdH95yBzUjXMRiDLTxbgIWUScFdFipB5 + 1EqujiUXcqm+LdF2RryeXUWR7161w/TIxWA+bRLWnAaD6D566/OxybGsFsyB2GFdAa4U4bZFQYjI + IeHzkUvYcZVbZZcFEF/tkirXaw+ftyjG+8MVlWxdjwZsXibETJ85MT/3bS3bTxIhX568cv/MnQAC + rZFIUdtZvI51OUPHhkywWGkF2Aw/XJjMh564DKnpwndFAsWbmZLLVg/Y4RUBquc9Jvbupo7c1MoG + ZL+RSbL2ZepLc75MMF/nN1LDmw32yjwpMPQ95Sim5QJw4AQ+OJ+qgqj6Qff4/efCyB6oTJSy51fH + P04khDdHuZLSnW2dteWwkbfxDHhNvnpLQmwM/VcooXy9qCWnf4oB+teJkOTFWYCl14kBys4NSbDd + tIJR4ViQdZULOkR4T5cveLWwPuw7kqetXS4uWgs5QBrEe1/dKLmbXnBXCzmeJ6eKl93+Lsk74SGQ + dLjtwOO4vCoYlg6DtFIfRlJfT4mcLMaAboqTbSdoaQT/BwAA//+kXcm2okAS/SAWMkkGSyYBAUkE + RNwBKgIqMmQyfH0fXvWyd718p+ogZEz33ggCpFUSPalMUAtN5hFAHxFhNTEv/W8QDh5cvo2GH4nT + 1t/ZFLS/+6PBfl6iCR2/E9RVVBMJby1iUsgPoEX1xoYwJPW6q/ISnJpPCdF+Zc5xrCNKbmJtcD8m + 0cJreoHw6XDH6fzN3Zk9xixkVoSwcXmoueAe1IfMnW4p1irFjoT70vswLO8fVu/6mk/7zyzKnWo1 + ZDzdDZen7N2B/hwVvrzFkzC13UPa/ME/n8Ks/0RHmcC7cCVsuiKpp7GcP7JV7DBWj1Wv01vspdC+ + JELm1yXtBcteQ7Djj4xN3YhqzhgkHxkaUsh8CN5oCeBGID/NET0zxMrZ+pl9gDt3FlkUodOXhxsT + WRfxg/xYuc5n7sTbKBtbhdoi+4sWcNNtzxbI/pK/y3yS+tyX3dS74aw839xVC14eaK/P6gt+MfVC + fakzGT99Ftv0kUaskckfoKxFqOm2D32RFy2B/Pd18Bn3p77Lrj0D6tq/8WlHhHze8h+8im9M3cud + y9fZ3Cn/8mucDsidjIz7yM/zp/V3X/mUj6JKRGBWs8KGZ0/1fK3mApVeXmCtlT/urJtKAHb9RWRS + ogBtjdYSdt9HTfZL6CB+Pm57nEXJoNezddRp8GwcWRzYnurRLslncz8xskvnFy3E9rnyyf5gSCU8 + VMId+Kqf39xUyYO1sNQXdD6aCzVIxKe5N2nhLXE0Z763wGZ/7JvoUPNqEUnSLol96vD3W19leWsi + +z2G/oDdbz7tBo3Ioqpw9FLGds3V2qih90cosO6YTS6kqVLJTSeF9PkKOZ3eihcP66VLsap4Uj5C + o7Ky/OgRPr2DuV7eC2NDkoNOs31a9dN727t6zKzIn8fk9a/+yIYY6tT/yYm7juxM0MmuG3oIoVrn + 7LsDuMj66sfXA9HnH3Ea0Pd+Sbfz7mdjkDxgX++KWm/HcudclFj0PtlAbwur9MJ1DDM5DzWNsM9r + lLMzuZRAMR2I4HH6ygvmMMFW7+jh4b7RvBu9BwS5y5A1eA35mB4c+8++pNvbi7u+yJzCpd8//C9f + eT2X9awp39T5jQ/TQc2nwxdiCF8CpkZ4jtwWHekEmcLZPrrcLzkb4NKRgZULsrT5FM1MdAuhY1SK + zyRP1wEzb0+umpOG7RJz9fx7v22Z5JeeXlch1tflOkvyT+om6pl7zeXC3RzI4+7F4ks4hJEgLkUD + 1gnO+FakuJ+4z7eB8uZdaCh6P3fDM4MMt+MbF1u9FuZRnyD6Xt90y9f9X76S23I/4Ntjrvq51t4K + cm42Tx8LziOeJHYHZ/LA5M//OZA5BRle4VHbfzs9d2R2D0DN2lBnCLWIqM0+geDNlYTPb8k63Fdg + /uIfX0vxhegO/AFUm53wwVvLfH2RfQbfYGTx7aox/VwxeisTBydkbitzZXEjKVA5VeUz5Nmvi/5+ + VHAcvI58Yga7Ah/bJjSvq4mP+ivJJzvCLfhNptCI95SIX9uDJG/1hEhZaqKuXe1NAqkxxfVxiVb3 + Ae3eksQ73fCZu/zs3QdsGjzwTX6d1ukcq4X83uUfv7ZyF81fZrWBVQuMg15IUH8wbgzoF2Bx1OOq + X6/WqQP5d7njDT+6rPx0GfhmkULAKKm+wMsqgP+4ObVHwe2n1+TacDCjHbUNR0N8/d6lcK7Wwd8j + 842WdlUK+bkKIZm195gvT16b4GpOIlYU7lMPFosMmLiwxU6+W3vSiz4g0xcJ9qJToc/t7xXKf/Xn + QOs+mu2yAnSu5oG65SDmo8K2jsxcg57Gc826a3AQmf1yXMFfXRdFS3goUngvpUJvt1FwZzNqPHl5 + f1eyckDR8mRKT9bLLsFOYqr1st0/urLExC7/ifqhklURar48U4thZ7S4l3uBYrILsXsYoF7t9ZXI + Th+esNqGfL6yWqsBv79ZVNvy/ygeau1ffE54MdxJFgUH2Jt6pSkl7To9lHWCjmoztXVTcMeiLmGf + WPRCLbGn0dCV3wC2/EUK53fup8q/EriTo44fO2GOpm5UePkvn7lP8e7Oz1DMoF5vIjWZ/orm9m4R + +ImvG73L73hd8IlWsE+7Ch+bjl2HSj6K+0Nl8dSRO2t7Ky0w5K8bajQ8yU4uPAg10OGYpfiYN3FE + t/olC+72lqiK92iR8TzI4+nsYO3YH1xBtd0JtcFyo3/5d7Y4lv3DO+RzOCXR7O3UBcWHYMVu9lLW + id1xH+glGfnTRc77lX/fecCP00K1atvbe2ycCvLavuLYag6IY5yVh1GnDLV4JVmX6ocqsOs3wrcn + f6tXgQ8GWDzxQm9EefdLHn1Z2F9/pS+MTOWuV1wbsqDKoS+dNV5fu+e9lO7Rs6Lue6rX7fdZVK+5 + SOAUOzp7mj8PJMqyglVTWPrNvgoU+1WjystjemLqgYeO/amluffL8qW7SQ/o3s83tVopqZddkEjo + oWaTfzrdG31WQ5ZA93l8qd28svWHnmX1xz9oOOM+moC98IhfmJiajjrno9KaDTDTzsUKSnf6U0x/ + KdC+rrHPBEbPXU6XAPBSvAjvbCN46v5YoNu9sGmOtTFaPvchRFy1FNQqE0//w7vg2Nq2F9Vo3Enr + iQMnvljw6b1YOTd2wSS7z87HR9iJ+tCNNg/VffKxramKu9yctw+uwYzUPxptvli7WIGhbnqfGcwU + ral0duRKRi9asGKQz10qDlD/aEpd40AR/atvm73/7I+Wx/wq5BktCr680CUX2iSUoIRCpQr3HN05 + Pp9TufsUX3red2h9P0MxhRa9Txhzl1Wfn+GUyah82PScmFw97Q4cI//Fh/2OVJ1niukB2S0PqfIJ + HJdMTzdECeOPpN7q5Spf4gmSuvawT1W15/djMoBNwwfZ3QIlZ39atqAsr36+rFz1de68pwOrLTyp + KuAIUckSWeDmOfuHrwdHlgm08MHYHZe0n+x9nMIQPhK6/Xs99+iYgL9mzPYdmLZegsRjQPgmF6yc + ez6fgL3zQN0swCfGcvp1f/MbuESXmGLcdvqS7E+G1AkNUHtS/GgR54yV3rvbh1oH8aNTiyoKeJQ3 + qVG6/r/ro5xPdXwvmCGaP/x9gBZ9T9i58bO7xGHkIHvPKES0pMV922UHcDvijJ608pMv7F5Z5FMx + hfSqn0412e1UU55/7Y8mfaa43JsTSwiVQSK7urfdpfVWAjObuNQUlWe/OtAzsud9MmppsqxP95UF + GKvWx7GXqu72vCxam1+CC+c317/0Gy7yr2TORP7zx/MZG7A97x9f6Yc5rhJg62HvM3HU59NQpIE0 + hRpgX348opljHQmOUVcScTkGiBSj4vzpAVTplFtNSOhV6C3IM1bv75++VmfN/PNXf5rkaz5HjwP7 + p2/QKzKqfOH2I4P2dWKQ+Vl88ukllh+gqmBs+ZDNp/iGAVJaSj79JErNM3Gk/dV/fDrTY76Ehzj7 + +//+W7R4fTTMsUBiE7ywUr/P/Y8oWJTMNZzIaxsRp7O500T+/g22fBP29NycHmDookbvA33rs/9G + E8rOuzvVXTePJub7yuQNf2KcvC3ETvq3AKrxJvXdU7dOVbYPYcPfWN13CP0uhsD/8Tush+mvHv/8 + MU8fHJH3Ea03PaJETFddqeaG87o6UDOoXVUda5456q0sCjZ8PpLqN1Wj1qx91Sf5mBsX/PjJvD55 + +M7D0WYYn8rfNFrerzYDRT3p+PwszIgrZ0+E58+dMAbFrdnpB57Y7u88WSrFznmDP6fyPbpXPp+8 + czQ4ZuQDT4cvvp37KlpI6JUQcgaipyyK0OBqVwPMbnj7m73XmWm+Cmz5k0Dn1u42HBrDdR0NrGz1 + ZcKWNoAs3RfqN4ah8xZ6ioCiHyaze7wibqk6HvQLw1L7pwc1qaxKAmEnPQlf3LX+c9eEELnl0mBX + uZTRNBRB+Pd7PjVZrLfdzxgAm21HHfPSol5BBqBT1iGsSoXmzpI/dmCMzQv7e0JW+nuIMTzC+kB2 + uHXc1Tt8WjmV/IKI4+Wyzk8zYWEJbI3mC9/oq1NNk/xN3Z+fiBUXLYZFfbg/7QM9uJStFxIaFVzO + WPZ7rJ1yNoknBo2/g4oz/yr3q3xLRZBZbYf9cxuixfZCVnr+jhMuGF/Vp+huGMDNa4aPWPmt66b/ + QWg71Gf23l4fh9tdRKyj3bD/uvX9el9qT74QhfOb5zWKFvcuieBz1QV7SA3XxQlY++/+/Ii91PrM + qyqB9W6etvrV/PEtR/ot5mfLH63eyXgm+/dSKVTPH0c0Vdkcyn/8F0+vVOcerRPCmVdTqn/cq7tG + 17Mmb/7tAytO0Xy/Wql8KcQSazdvzEkvmgwk9cvD1mQZiFuMtQJ/ucGWL02XTS8PBwX6h8fmi2XQ + CNzzg+LVU/FW36IJl5woS9fhQC8HXuun5GMO8DpoHuma+hFNjWMTqZudI3nfLClayztfAutfOawe + gsNKWa1U5N2kEHwcjnb+T99Bdz8n877L0fz02eAvn+Kka2+IvUOYycvnw1GPyz7u+FDlf3qqL9yO + 8jotuzSD57lp8XUJrIh9Hu4GbPovVp/FJ5rkpwvoV8IZ4+Pz288/dwYg+lTTO5WZvqt+a4lC/1tR + ZegXff6+dF5WB6PA8RfJK9F/WQtXcxHJ4rJWzSZLGcq/SzRSzTNP+mQ/fx4S06/sb/kFTcW5SQCG + /IwP1p1Gszp8JdB14b7hNztn5Vox5IN53v3TnxcXVd5fvSXMdebydav38la/sFWK6tqNfVihRA0q + aqr3D5r2R6cBLz7W/vE2Xt2lF30GbfXVfz8DQOSuCQEkv92O6k//li/FqNiQHPmBHg5GES3FaNsg + pm+ZHlPTieYdvjh/+ZCqvqEg3v74CuIuck29s7HvaT+lKYgdjbGGQIyofIkXUEAVfDryu3qmt9YH + lW2/PpruZ33N9ZxHG77A+kWv3C54dBmaPWH6F49z+/uF0De1Td1d5tfTeYRWaJ9rgl2sjfk6OG4L + ntdk9BlJOJ/prfRlnpIvVYYj5NQ7dhM6apXr76OQ6rwxIkBXdjDpmcikHrd6tb8bjwbrt4uVc/Ss + TcisnJwefnZdT1UiO3DXrieswoXNhxNja9If38XcW++5jL1V0rMaZKq57LefjDpX4MEkiAiG2q4L + oYhHKz+NNO+0n05ePAW0CNTBR3EM0TpenRROmjHjGyvX0XhoeQOJqsb5nQVcPTlm7oNz2DvUO2rN + On6ttIVk26Pv8GPnzqNt22CZZUFV93hdF/e+iGA/nOPfeeqLwODwr/5i+/c28ymYpwmkV/amxngm + aPXDMUXZ7RZS1y+Ffh6Ek4fuuygl8zI+dI6DNoZzdnr5I98K7rLhdfiwSP4vf2aEdwpN4M30SvW9 + O7P01cAWDz5/vWr6ugOTwPdo99i4Hnx3+dPD58VnsTuNas2n/i+BePVVrNWHXTRXTfAAvci/5Asy + 2y/+0fSRMK62jzb9fpW6Y4H2vejjc+6oLmvUuQaKMOQ0bV4ZGtiPk0LS7VRsNe0cLZv+BffmK/jn + EzvlZDz1PrwS+4WvYzFEm31tGDtTpxo12/4vH6HPmLDUT99TPfGXMy9rrf6hp/rX1N97EDaw4Vns + WNkOjaDuPZD0+xU7WWqu7/UUgDzqI0Oq/cqhPz4C0ffyprcnv6/X9iQX+798eGg+J7Tu7w4BbR0c + nF/ul4i4qPLhcj7JVD2FWT09HrUJpLUbrH3CU702yq0CE/ESxsVD0jc9zZBtJiq2/oPlCn/2bK/Y + 8xlj0XVesxwNZV39pcf+MuoL7QUCtf3VqcKr1Uod1q/Qxof8j0Ayd5lgaWRvoKPP0k7d9JdFgyyE + pw9D/EafDlwTvWYmpbbeDmiCrOpQCw3Gp+nJ9qQmBYvKjwXYICKqf8R+J/L1tJ36Qk/1tOyCdE/x + OFDLcdx82P6WvU8o4X/nges2/LMH1l/Xwv3jF9KmrxMm1aV1Ol1RCCHTbt8tEA49Dy/8AL9JFRyH + a7uugQqs0CuuRfZvr9v4ZqlA/y4dGs1dV/eb3oQEBt2xszuz9XqojiFsz4vxtXus0x2yFFQl/BC+ + nYtNb1x8SH+mRZ9x8c4/qf+L4Xy0PKotfKov87cdECPcGJ+TXbUX2CLyoaGY4KMnWFFbCHsD4fLi + YIWJWnedm0+CisCs6Z/eMI1p4aCn8oh8ENsnmkVfecgJWAmR40xd2Xp/WBCzf12oc2n6dYkmp5Be + O07BzqSd0bD5PyKPh4GPOzur5x33kyA5sgNZGOGVD4E7KLCRV39OZ9/l9HwXQ9YYLNaFGuqZPS+h + nFlnhJ8CMXVu04PgWjUU//Ftal8WDd4mOWJ7qhp3vtWPDrb8iJ3Duv7lHwfyyr34L1MI68VT9A+o + URnSc9f/oh7XbQC9Tc+E2KyAqE1HD9ibfiVoi3/hx36zv7/pkSiHnl0Whv2LL39fvUJ9iO6eAXdn + f8VP9LjUrHBDDohcymNftDR3qvenBbmpfyPtpWoj8todMpA89eXvx4nTyV3bhcAcjjF20Outr6M/ + APjBMdzsYetbf7KQD1k1Umu9PKLpT290DRjJNyQcmtOHHKOtv4iPRau4E2ZGH6bbY8aGVmbRhm9F + +UMLF8fK/lQPv6ZO5Z4YMU03/Lv86Y1/+tXWz82JrcsZYrzv0Zdq74XGjm81lDHTBSfXbUukDj8F + adN73vTgS7+ozT6Gd3GU6MFblUgQfjsHvDuh1D2Ph3U7vxSoxpr0cTZlfZlEvkD061k46/2kHhqZ + GtLGV6kbNbW7fhR+kA+1IeIrXw31sPVnYRedOJ/tPkm0VDpZ/vor1Mi/9TpBePDkolsMf6/P5jr9 + tGxCgWT4+PqZ13UK3EHb67tf9KdP65v+IMKHeR6xcfMD9Jf/EdorIT7uUtcVuBJKVLx80Z8E84bW + TGJieBwZCRv36dMvj/n3AI9wxqbflvkSD378168g/F9/6vY5K/JH7y70tIjffiq/I4GNv9LjFu/z + n74V+u8Ke6w4/at3snlrAjJzaVKvP1XVANnySPX716t/W79c+n9GCvj/PVLwiDOJWufIXNnqYxXS + 5RkY2IyQVrNJ0RKQ8aei3vapmbEqTw7o4htR3XzuojkOziEo+vVDQDDjdWpNKYX55puksV9UX33X + jSHIxwyrL4/XZwZ5DYJL4VPlEnpoyoa6kduijegxsip3yWy7AR15P+oOi+HSH/OyAcWQ4rsWbiF3 + g0Tyx+3To5Ns5Hw3HAwY7w2mVxrd1+k8SiEEyqvDR9xl+Y//aQncg8yj9oP+6nWM5ko+SBLjzw+C + +/X1PT/kIWFWbF+Vsv4l54CRJw/bWMEDm8/4I4boejEVemtLLVrKm26ju743fKrPrkvfiykhsjoB + 4VGQu1OaZgBSe7rgR3B59kL8yhMw9oeZZlcuq2fD8JW92qIPkQZV0Nf6zgRAioVg9/tS81mOeg3y + pujo5XdSc45T20m+tuxKz7V+yLlBfgFEbt8Rlr9W0eQr+kc2Pe9CizoaXaJeugxe226WDM85Erg3 + WsBo/hYNJ6gfESs84MZpAXb8RtTXRNqn8LTz1l+j07HukJU3aNA9BZ/CTHf5RS94ePzuBnm3otsv + Ta6VclujHda5865fj0UswX6XXrH64tV6rWudyOelWej5uwtdjhNOLMjZFGFV/Xx6/qi4pvwbnaP/ + d71pl40K5LUbkT3eBe50TLrm737wcZUukcAkr488u7cvzlleQ7yUNRVke2VbVHZw9CV4JwEcudMD + a0JSuyzjvngohBzIfOzeOZ0vkyj/uldO0yS5uIO301nAXokI87LsetmvmijPwX2hV5ym9SrxfAzS + sw1xPMyOywmXOZU/3AKkh7e7zuf7xUSmlZn0cGnBXXRqP2TRbz843fyLdfRbC/muzehFOnkrK/Hn + QkarCBgLz1Sf9sWage+pB3w+k8blj5L8gZQWmF4t5pDzWKQ++ouvxDqJOXmEvAaDu2pYHSUlYtVd + xoNAB41e9KHuyS3xTCDW0GDTqohOlXv9gXqaKlLLHav/liHIZN/TDwRZ50+0cm80gaPkmHzxSCJa + HccWXEvp8eWsHnReUc+L3Kz3Pb0+y0Rn9VRk4MjhB5kpyd3lmt14iWubCR8n7ObL2VB5WUhVhz7w + LawX9VJtU6Pti55lvehn5ou6f897f9XPiKrVrMg1c1w3f8z/xTNij3ZCg5A1I8FYkITG10XHmTDt + 0NocniISjemEky2+5hZVH6Bfm8Gn7OjpwupdiLzlH39u0dNd+ofayEKqO1ht0c5dRDOS5C1+iZw9 + Xoi90H0LmDFO1PX7Wz1/Y1WTs7C/Yys2dX3e3UQHhjRw8FkxRn0iIS3B+zwPfrCzS5e7yHaAntH7 + hu3XadLn4ijb8FEeAhkdlfTrflQ+cpy2LX0El10/X9fRBFuIE6z2lqELlb9unx4+j/hYWiPqozC1 + RZGRXv54VSV9td6iCRA7Ajasd+Wu7vSuZPbhlTjV8zyaLEHQkFOICQ347IJYm9oMeJ/7gXxbv6w5 + SS8d2a5Cjx4tNEfL5/xNwCgrih9KJaxzk+8y6OZsxc6Vk/rJCi4FKJP5owp3Wtzt+W3Adz6kOOYu + /ZQrbCiXl+yDPSHv+pU73VNwPsv0d3/62lrXEPY3hcdK9fVdrioPNopPD4G6+wXX9CwuihSG7Eh1 + 8Xbuh/31DQBSlVJjxVP+ujQvSb63so8N2Fs91zBTJ2/Xo2HQvlZeENJWOEWeTc24uqFZO/18SBr2 + QJNfXK1CGdk8dM6c0Gfezv3srayJvOn6xO6BblPGiv5BiR6sWOnFoF/D3PTgUylHnF9ODJpDfPtA + 5Mkq1Q6zuXIddCEszGTiwEtKl7vHgfbnXxRH+O4un8LxYe77ClvKS16Jop4n2WkNC19Mx9F/tfVZ + UKDbKc0884wECfQJ9JizcfExf9F8HAkDI5QrPf/5p07tAsyfUNGjcxPQws1uCc3v/aSnbWZrfb68 + GNopt6hjclRfangAVHOj08PrWNXtRxkD2BmWRbWeg34NnhEjfy61ik8FtPlySwwD7KuZU/VBaD3d + VQTQPOnB3zPzlM+4uGcQ7YnhsysOcu6kCTEc9t8v9k/CzWV1bteC84IXVX9vpxf024WXi9tCCZJ2 + a95s9R45n2nCJ/w10RqFgS1zdsxh/HESJPC7My8TizTYfd6rfrgdNA2l60nH4dW09Skw00HuB/5B + EnGJV/7VmrEc1GlEz5QgfVS8VyW7hzEmu5Pp9UJzsT2Yfe3ylx/WydbOIB+LrMROHmo5ZxzzAvDF + YuipPohoYSslln39oePEuXQ5x3zXDmza32mMfyVaHGwGcl4fI3ytWtsVwjLqpCO0OY2hOa8snSMF + eJvdBFZXcqcphQ7I+zpv9sAuuz0P3DBxNjwzoPk4fhi0nSfFRFRdeppHH+0PgY6TnWTW03uIG3nL + 71gRL407t/zdFhn9fcZxLOn9JN/esfzn30p8OOrccSQA6bwfqJO1/Lqk6vqA3bu9YdPIipw9zUoi + 96KGMSa1my8tVway3XE+fX4cfl0ZzyTy9+W3VBfuRj0V7Z2Fx2U405OTNNH8Mr8G3OzziQTjcc3X + 46tL0N/zxs/Crrni7huAHvyMj2Wh9x2Ucwve8Omxoj4P+qrudgSuxbXH6m2p0PpgJkd+rzvqL/wg + 9PNT6Hn4LV6MFcF45WTOkQc063nCsFKQT7OSBODzbka4De8snwQmoKHJYqw133wh61mUb6bM+9xH + lvM//4JCswQiXxOKyDY0Bp/sEvg8/zNcsl7HB7LclP0X/8Mz8T7AqvTmS7ET1MucvBcIWr+ieJ+Z + EdF/SJO/dB9QdatvQtC8UvTnf/51+eprYHKNPMYconf2cXMXg3FbMBr9S+1I9Pt19e4D8OZJJgz8 + bnmHvJ8C1kSkraVz1NdPID2gmoKBfD2tybv9yBXw+D0N7Evuss7pyfVBTQoHB29autOyZASUXnnQ + 7f5Rnwl1gg7B1GHrxD/dNX8aDDCG2NKk6YRoHuQXIykHiGlmM7t1GPQmlm97/kmNl0TdNSyjFiye + LfEprlc0++w6QfEULzhl7ePKDokcAnkYB5p++yQfAjPYJHvS0WOxQ2j6tiYPovx26E2MOn3+SJUk + H5r67vMn+1OPk/0s9tIxmP3dQTsh8qGRDSS/X//i110YTgtAmVOFfND2lmbd3mzg2eBK89/OQuz8 + 3bHQnTLDF4NT00/8b+f/1Ud6nJptC0u+S6FEi0U4d9KiiSvVB+icpWPv8ktcattGCJryefr7PVf3 + 0/76ZuB5JDvsK5WAJnrcP4CpOQ/r0yVEW35LEPkyT+qb98M6/9pzC2O7KPivnszmfTAQWD2lh3Rb + KVCe1gxcpN+IHPsPd+osyUDmJ+6w9ihRNMfjE4A5PTvqV/EQjSisY1loypCaKED6fGOHBW38hfpf + yeiX/nFs4NySlFROKqPlOf/KfWU622LbgsvnnYN5uLuJSo1relw5/JmCf/Y58uNcj3/XIzO7p2lz + qdx/9XeQ45imD3qsp8zfLUhLGIVw0zfuV9XJWqgPMY+fD1N06ZpMn3/42otc3M/vExLhrCUCNutb + XK8KfwT0fpURDaov0dfTcF0g+XUxPd5/VsRrAl+ird76xH8ZvdCHexYMKbd9tvgN/fKQng0sJ5/1 + F0Edo4chMh6SnMamnuk2OmXXXSj1ooJpEt5+7iy9IURH1Z98+cZun3ZNJ0Zu1ueeXu/XQ93LP6kE + MvN7ehphRfPBLyV543/+FMtXl47HRwvw3Xc4Ew8XxI5TFCOdjC/6V/9mdJ0m+d7YO7rhOfd3rqoS + duKBw35w2dVLQGdHFnx7omeE1Xq+5ib5uz7Z6XOvj5xw4P/yG7VG55TPmc090F7rL/hwVg8u/zP6 + EjFvu8aPzb5zd7GJdJT0Ebtp9+nnjS+jT4w7wv5+ojs473FBW/2iB9Pp3HF8u80//qRvA0l9imYT + na2jSTc+1c9HRWDQeT7n9Bjek3qShbMDHY+1zX/f68bfMkmjLw0bffnNp9I+mvD2Hra/G/c7NMnx + U0SSyrH0cODiaHhdjQC+DS39Vp9mfT5MsgYzCQIi6jnKv1zYsVJ+qEzqEafV//n7H3481YcUdZfY + G+BGWkLW3pjchU9HG4TzvqGeOIz5fOCdAlqrOVL3JnT5el6bD1LmTKHOsXXzCS+K9scfqb576TmX + hkGLSChe6KFkBzSxxGMk0/MvPsQW1MOq3hkZ2GzxmcWKdWE/2h94tr8aK88nbLvmzgQY4bvD2mVv + RHw81FuL/yf7fHg7uoLw+ihgnoMSX4/YdofOWsz/8tdjmPdD0V5YcO1Ew856tNHMVrInmfUI2FSB + Q2Pz8ng4PO+hz+jdsR86rWkRM9I39kZuiZbDpDiy4HE3jIfD4R+eQ75QzPQhjEM0aqeXB/NVoliz + 8ZjTXXlN0F998Oro5HLpSffkLf/766anLJYR8HL75Q0yC8sNLSdNewCw6YJ1uYv1CVdXApylP/zS + U7to+GZ6DKNdHahZ6mW0hJPIwuDce7K1rta5Kg8OuBBPvnTLV32N2CaA9Bf/6MYn8l9i8qac7ysW + a1//3a8nUAx5X9SEHsNliOb1The04SdfqhNVH+r7LYU9rL8N733QcvvdNfg1OYetKloiUv9MDd1t + GhFh05M47J8lAOtHN3sV+jis2AAapS71n69ga9nkAZz62cGHzwFHf/watt/3GVGr8mXnlylQP1Zw + osJlFSiuJ/jjn/nzXtVz5jsSgtN6of6GJ/j6Zyryo5ty+sdP1x/rh5ApnorPsdfVg7oLeTQn75Sg + F/q5m6rjoBHhgojklPeLMMgTqgJlJvxO+vTz+GRs2O3KhezcMnbnWcrF7UMUlHDCQVqn6/6bAjMl + Mba389z0mgUJ4vlAvan1a5rWGYFIsBKypNcOrXo9EdjyAfZy7Eczo4QmIOu4x4b9om77Qc8JfbXQ + 8Nf2c0TdzJ4/sPk/tj+PpZ92YsDL8XDL8aa/5SPzRa10hC73RdMXeqJ7licD0QMy3ZO+XvbuL0Yb + XqI+hz/6tL+OAG++uVNlfPz06Z6Fifx3fvZntaNZfH4dtKq4pgfurLjCW4hj8IdIwbqXnXpu8xd4 + ZUOPr5u95z++w9xgwX/5k3PEIwvliY5kNfqmngJVD/7Vc4MtV5cOL075q1f/5V/CtpVteZQuDfNx + 51JtBk962reW3FaJi6b9ziohqSviy9cEr0NP8xZ0qBSKL46bTw/SMdDuLOq/Xq9+XQ/qzkF//N97 + FzJaEOt84CQGIT7/3l09jVy7gN/JP6yoDs3pq2A+YJQlxbqeqetfvZTRcfkSenH6nDCvfQJT+On+ + 5ce1lLoMpI7VKT5c9V7QH30I7NFJMC73cUR3okzQKfJtehqyLJ/DeRz+4pceL++2n393fvnHD7y0 + CKP1Mj1KJLHDnVo3ja7zM9ACkHbSCRsmSur10IgpXGpFJLOcLtHCXB8Pyb+gJ7V/Z4IGRz+38nmO + cqwirPZs49gPsF2xo6l9fKPByqZY7pOHTLExivq604MWjvGuxgc392ohTXcs3J1tcTwzaitbh3wJ + SiOK2JxTtRc2/QXACe70uc8+0YDuqwG36MHQE9fDOkXN1ZR3N/f8p+fU682BGKyBMakrWYeIt33/ + A0G5vqndwl7v76XRod+beqRKh7KfLGGnQfP7PrF5MKx1tuvZB8koKho4k9VzR2UHkIunO2l/Zx8R + TXYBJbnAkZecLvkk6JdE3vRff18Wdb+w1TYCtIwnqrnSNV/f8JrkwXn25NwtfrQsesyjMj5g7CoP + J/rTo6X7fb7T52Oqayo3o4nCYjT9Zc8e+6UmUYFe+x4TVBr7ddz0WGiO14ZwUqX1wo95OTCAIpNq + qz9r6zUDTGHTYWt81vqaLXcJyPsy+w1brvpaTrgCengP2IBmXgdfYkxUls0V5+u7dP/wKjKNNaXq + L4hX4Z4JPtyn1qKnvD/0HX+XPvCnh502vWlxbj/7H5660GRGI9s6HfDU82ggGGo+O40oIW8UNar9 + hkHnBK0t0IebAOur7a/Dta8lKJW4wOFOltwZPgjg/M1VepjAiWZLcBwwawp4s5+7JIiEIEQeoup3 + t7gruwohCKMV+5LcE3cyW7TpvUtET2/F+tO7DKQ86mTLN0f9j++gXbBNsD3u1trtR/kh7d7dzWdN + lPQTm4GGqkCbSY/inz5fMqzBmh+ACNt51u3bNVBw+bLUfmQRWty2ieFPn1db9NRHdkwNGASP4Ou1 + uEZt/mgNZA1g/tNzqSaoHaj8cKD34hvW4zKkKVzvvUZECb3RFJEZQEaKT7VL49e8rJ9YcGT7TDrj + aiM+Ogkf9KenaHpURrPYsA10p9T4w6v9Iiy692c//xbe+b5GjysDtvOOsL/hh5mWMgtlun9gfHuq + +qpMUMFYqgNW45cSsfX9nKGtf0KdyNf/6WGAGfNE7a0+rSd+6dDBFANc+FhDK3o8GVD7KqaW8rqj + bgQLAJTMwPrH1iN+sqrPH/+i+DFtxSf8VuLmHzhrQl9fUnjDP3/CjCrnTWQFGdT9cKXuphcPeJA+ + QP1EoWoTt+6QDX0DCu9hXOSYREs8iyXsKxT4pBtLRLmwYuWr3YhUe3Bnd5JmT4OJv9zpnb+00ZrW + 2QCtIedYc8ao/+vXSGVeejjI/Fv9p6dDaq1Xsmaw1NPyVBeozomNjYKpouGYTwoUcl1hC+SL/k/f + qQ1108sqz2U7bWgBWe7eJ9lbj/gNT8HvPXrUe1yViE2nfYziRJX+7NuPf3rvxv98dHpwaOqsxZAt + ni99clilaLroTgeyJ7PU3/oF44ry5k9/ota1EPI1fkXJXz+BHlvXq4lK7OVPn8f5ae375bdLNHmL + f+oHl2c9Zbew+8vv/rQCzemfHnm+l18iv+pnvh6v1gOYt1NjH377fNY5bQH99rtSfaung8idFwiD + 0+4fXuV/R5EB7hvdsBEEqT7fCj9D3TV8YKuZRfR71JEH3tzyNE4Ik48vk5qozfQ31iAMdOG+jfBS + 28twbCK+XoevVsgdi3rCLtrQLy7/5SFyfx2NGEFAZGFwjDROaqg9d3o+wKEYJLp2ps9N0OVLFJ00 + ZFfBNhqqLDUhxHggW1PO2DkPjivkTZb+8TUiDYm3khTeDGz86S/f1uufXuidOutPD90mELIAieKE + /vn3JOTrgLLrfaCu8uhyerqZLFIer4Tsc7LXZ5+SeD/XZkm9kvug6eMqtvTn32ZNnJyV+FsBqLS3 + lrbaR0vbHzL56b98fOVqdRWuR+ik7Xx8J5O9fjbTR7vnTSxjv7zf3fm2X3zZM7GDtaB9oXnTP/70 + BfLa+l9ci6oG/vBftj3fhqdsdF6lI9lrnY/m7qIMcpbOOtWnzq7Z/FGa8iHrdeo03xqtspYC/PWj + VO73i9ahoA1sfBz/XY+PZ7EC2/lG2KMa786SXtp//RVfPk/X+p+/Tvz1TphNv5rjA5NB3+EJW6Jq + R5t/FbAzDhb2TTvQ+S/ziOF9FDJqJwnn0r/41DOGkOl9YPv5+70BOLJzxk6dvNw1keYMIj9I//Vf + /unVayvmONryzSr6dwPCAO/+8LI+uSecQu0WBdmdci3f8OKENvzwDy+Tojj7sOmtONr0yUXuvikK + VE7F/s7a9Yvc0RScQkqoOZFEZ4uxD0FP7Cf962dM+qFV4IsOKs2lXRStjfOO4c49Emwy6agvvPPq + 9iUNd//8ZVF4npWLyT7jxzku0XSa7QSWR+X6L9t210kbVEkO5GAg84t/1aW351N5v8uu2LmZ92gh + raBAlq769pW7KuqTb1ug/V040JMq03XZHTMAe7DfvnSb2vUn+5cGeGHFvsD5nsuXj7SRpDo3sWMz + T7T6rh4DUT+Mz1rBkBPkvTQZ87+AJhPh3dWmIwsbHybSlZPqafeUCjBm1qSxYmf9poc6MoRCSXGi + 7XPSfYQO0ezHY9ubCrTYvt/Ablct5JemBpruF0OCMzxdihn1Hk2/9ZXt/5+RAuF/jxScEkGimiiy + 9QqhnUlp1AokbpZjtGD74QMR7hY9wm2M1ik5hDIzrZyPjnuunm/LkwdPS3Vqvpw7WvSma8EWg5lq + +c6M+NfKB8jdsQ4O1vJac69qm7J7OhHVd1WA5iWZDPmcewM+CoPrLsxaFNCTyvf336Z2F2qkBQzf + d4KLrhPdFSVjAunYWjTf/zSXWyiryPfcVKn7cjAiZWPzMN3SAGdOt3PJbW8v4LyTjGSX9RytxrfW + 5O418Ng4veim4ashfPYdEECHT7Qg9GLkPJVaMuwFki8ZXQL4zh+OhqXu1GR3djSok2HFevar0Dh7 + 5QeEw6sioJ85NKmNxcKJnEOcO1XUC3frTORdNh9oSrhyJa4Z+5Dk3gO7pMTraidYgXymJXbK668f + n6fuAdc1/dJLe6jR4sycLYvV26V5qyA0leJJQSS8XLFZvnbrVPC6Jk+kVGhWQN1TIe4TJA6JS8rO + z3tWOG1fSe3dhsyLw7qzUr5C4MB3sOkx55WtulsDv2Z/x+ax7tEYf/wYdZ8mwc5duOS8ae8cqCdi + YPv4G+pZ7aZJ9u9phBNDOiE2jIJKnrKZkvQqPSLashGRxVhcaXGLU5cvG4WVnVVb/J0nPF1uIkiT + zR2fEunQ//J1dGAC86QE1Mo8M2fJq7Zhsyc+XaUg4nbpzQG7EFV8v8xmzzo1EeF2Eq80FMW4Xi51 + O8FbfbBUDbkLYj23Z6B6TBJWYvbaE4NINhzDUKPFKwWXuGPqSxBnB+rPwagv2E482XfYnIavrxRN + 3vMI4D7yF978N+cd3BGE1S+ix+kruzS7nGwolM+ZGmavu3x7kDI5u2KKlQaeNRedaQx3FJ/pVX4Z + NdvGQSs/TuLRZ7vkpi/KMDlwcC9XfKPt1+UlQ6yAe/Yqtbi70nOJ72ZgTfGeRvteQrN6zSa4XNgH + Vnbhd52kFAjcePlJr5lnRov4OTLwUN9nbOn8ffMnS4OfwpjYqY9zvg7fVyhz7XNPbAW6eiq3tzD6 + 5+9OuIN2y9dfEUzyxbZNnEUfPeLv32aRn3rg0FD4pBH3oCCBy/xmbNKDgMbc5EUgDmJ8BhMFrZUT + E7j4twPNIxZvswyDDWSIv9QUCs3l6vEG0qfCDbZrfapnA1EPUDh65F2nr57lCNcBKXVKdeWjrNNn + iBp4Hl9HnH4Hv2flSzCBmw0ZDrBX98u54Hww8HDFzlX9RfNQ/Sq4PgKeHqfzIZpgjAZZMqqYNB9F + zbk453lZQ/eP3ySr63KX602U3nunoJagTtFM1ycDz998w24uRvXybMcFeKqF2D3J+22xI1OCWe5a + atknOxfO0JlgPnKKHSe2Iq7QbgBWYP7wwb7v8mW9mBJo0cpQZzTcnt8f7w9QjoyJdU6DdYH4DX/x + RJ28syL6uFo2lP7+SGieC/qQrIomF+fdhL2TN7mLz5idfCo5F2e+fMhn6a036JpwD3rIzHcvNO6d + QK/KJv2LZ2GyUh6WfXXe8qeuc6Ngl+DaToXDRWvr5nY6aQC7icWJz33Rck+nGOggWNRP89oVPms4 + yOIQb+BCn/qZP8SmrG+LH13LOvXr+fIxYHr+MM6ygkaT2N+IdOh8G+sKpD0Xf8wEvR5Bhr3m7uRk + wS3A29FzakaPN1oInVNZaLKIelj/uFNKrw/Z5K3UB+VJ3DXO0w7yVGxpaPllxMe3WwgD/7D+xds6 + VDuyfwZQ0eB8O9cCm+JAuD9mm1493sznYMxY0BdNwSepi2vuq0kaZMUB+0JwHqKpI/cGlFX1fS76 + zPmEbUWTw21xsVQfzxH3TQINvHFZsDv8boh7vuzizz403vyJGFrq//k3znB01+eUV1L5hHYddlTN + jaZdcl4gOT8fFN8EK+fpp5OQiFcN66dIW1fxsfDy4R239BJj2v/FJ+T3yaZXiIaaPsPO+1f/dvDt + 61WSfzFczN1I9Wo00azQ+wDSs1v9aidX9Y+MkgKDIHyo9WUld32GlS+ffF3zpU9zzQVmOG2LIjuV + CBB5Nft1jjacEk6iJntl3fXjJQOqrEtFnf089ota/1rYN6GBXe/2Q6sJjgLlp1moQl4qElQ6VbIv + dzVWtnicfzpSwAuMHJ8V/rrOGqcE8mnNdXzY5zribNENIRTDC/Y/Q7xOEzZtKPd2hx/1mazLEbmt + fLEdkzBn5K+8pPgAzPbWVGiizF1cs/DB0rIzdXNx7WdRKBu5WLMbDrL+VPP2VfTgrRYsLn5mG/2r + v1t9pU9P2LlLd6EsmCctwKkjNL1QyI4Nhl8z9KZ/PmjS5TSVy1iRcMxKc9QfM7FBf/n3Zou1zjPm + UoIQYcnf40OA+A0fAHdMNaoo+txPrGg4QF6+Tb3j3Lld23o83IdnSQ39E69bvvPhdHSr7dtlUz/L + umRDoIesL/J7A7Ff/DVgSQ8tTk3f7AWNSwp5+g9pV7KtLIyEH4iFzEmWzCIgQUDEHSAioCJTgDx9 + H+7fy9718p6rHkiq6huSVKbbl9jZYWw2I49tdNFpTLyXZkT9OQM+dFe8N/5FKmBLwdOgomALH+1z + l6/mPV5QUiWYRApMm4V/fx30MJnLfqqiibbuHqRoAvxxFiSfiTYuWwt0eCTIH3Y+Nxt57Mi8wDk4 + sIJDNBePRwA3w7nMnQL7YfXHOwt8h8//1d/R+MkZDHgDYu3oV/kmKz4DDdQf/IW7nQFLDKaHyjvh + Z+qZPZ2feyO3RKeWLyKygFY+iCM0Pucv8T5q5tLkdWhh/CEPrJE6jj7lygboKfYOPmPey9l+vrZQ + agMDG9bQ6FTaT5G4CnFmceYU8FcfgJ1qL/+LXsYwkazQgH5cnti/G6rOvmhlwcDPI+KYwylaU+xl + qOt/0C8X7eqyAlt5cGoz4ovfcW5oGhs2yoyfQJKvGgGKwctAPmHceY1Hz93ukrKgY9298Hm813Ru + 7Eciy0TS8Ym9nqLhGmqOtMenL6fRe9j0i9FB2ajif/G/BMxaopkuCg5gVbnL/nxo+VrdHm8LmB/p + kvzF84zs/DNsVdDz8GVxGklNZW4WGosjtOdLRfR4G+mYklsBD0TmyLnV0ob2kRMCimkwLzsfXIrT + z4AR6q64xLNC2fV+7SHvbxox7eXd/EJPzZCrTA4xqJ67Cxm2Hkpem5NsMoaGnuXKQn/57GV14C5a + t6bgnGqRT0vDpnS9dDGcHYkh99NLddnX3tpRcHLNZ7bSdMlt91Ll0B/Jca/XfCC9RjQ2IiYqKBZ3 + HbFey3xRZvMfX1x7X6tgqloHP6nTK5gSeUogeEf73dzJIZ+8zzeAFaM4c6tpb3eZl9sH9JLjYzeL + G7CiW+BA3ddLbBe8Bti6v7Twxa49MVdDasaP+fyAbP4dcaE8Z31lF6TAZwsk8ofnc3dPM1gNRejz + olnlFDuP9o9PYt0tvGYS7sCA7z4ayI53Ecu2sw2tKayI8sYm5fvsksHSmxZiDf0K5il0RXnP73n8 + 0zNZN9hQO1cMKeCPz1cBmjUc7llJVIIsXdA+vQKfvBXOz0uF9NFVixLEjZKQbAOvgWpFVkMOqCux + PF3RF8y+IOSLIptZ3j7l3OFxMOAJdSuO8+KkL0X91iB3Nk+4OHuBuz1SMYagt1vsGtqhoUmk2+DN + BpDk7ZujC9t+HDjUOJlF/sM0KweMGi73LMDaJxDztfucC3C/awJ2zUAYFv3Zi7AE/Prv/7ORFzbc + 88cXCsaPtiB8z/A2HHziS/HqUrJJGzQ++Lvnmz/86jFg0K0MeXIxLgjM7n1vbPutVPJgadmsOz6j + XrL9mRUSNVrnwKvg46CmOOQHa+DSus/AcDbfBOe54I6q64rwCB4puZTxAcwTM7EQFsyIz5LV0u1a + Hvw//kyiLIHN4nstg55XXsMYMFO0Ws0YQjsnHVGMETdbCd0FvJ4/aZauAIIlu8V7fBoHfH9Nkz6b + DGnlnX9h7YC0QSh+owMvdsf6Swufw5CeYA+Xs3kjp9c0uasiTd6fPva/pi3rZO7qEPaH+363ODwC + IbfSUd75GzFY+RItlxsqIUq/I/EHJqAUg58F/+J356vD+tnvUlRuXYntm8zka51ujCxlISXq5fLR + l8zuLFB3m0u88TVHdFqXDep9+yWGkLyiNTzeeHCVGf8vntyl+gUfKAUvijUR88NAWbBA20lOPmMr + LKCTkIxQVpnCR4wpD6twpwYsaHonyu/9GLbZ5jJY82VDTvrnQ9upX3u04z8JnZ+Vr0L3reEyXb/k + 3A7JQENr7eTdP8De0511svNtxLJBuPM3L+KTaQkgM2Poo6deD4vN6zJQFfLBVvM5UzbiGwYNLPVn + tjvjnPMWfoF6pxD81Nm3PpvSqYeXcx1jM0ylfFuVrwh3voR1Q7UoyZ9xBwvplxLTc4dhkwpa/tNn + 7jnOh6VXQScfz/WClR0ft+n9k+GiQpHoi350l2MoFuBkHk7E1cdvM7/mIAYh08R+G80FWDng1RI0 + m3h/3glsyyNOEfl8bJ9Lxamh1tXXoHNXX/67gmtDuLrcb/kIlhndvXEggZu00FfNHGulx+aTJn88 + cAao3+P1nG8NewhgETcdPu75NvyGsw8PQuLvW+RauqzKfQZvK47JxZZzsN7SUEYbD+84QPkKlkxn + Kngi8E4s9Av05euozh9eYmPkp6iDyrpA6GSsT+OT/w9voXExBWyerUe+5m5VgCoVM3JrXKjvS3o+ + VJ3iMwvco2q2cV5S5LjXE8FDc9Dp0T1UcGxkjP3oWTZbYsEQFhX/mred//3zIwp3XHAQBceGB1hR + 0J8ejqf1oO94bEGpMQeCs01yt4l5s2h5DnjmN9rqi9N8ZCgDvcE6d9X1bZYVEex68s/PyqddH8KY + vXNEe13qYfrjrwejsojJTbdh+aSohbv+9xm5/rnboTchBPmF/tVzOvtiNSLDfzHYZDcTCNUpn2HD + H3RynlDYbLl82kCHzixWLve1GRfecUDSiTzGO79finrSgPr8JNjnWUh/U1NXkCHpFR+bUstXUwlY + VM7OHbvC5tLfiN0aaPavxHowd2AFOWfAE5VWctrxdokVWqHtF6jEFfPeJa6dt3DXk3/v16yeEbP/ + /Ltmj/dN/KgMmumm/Le+/OnxMv+8iHZ5hjmnr7cR4tilWN3r52L85BSY1dPGu56jWxXUPNRJecTP + fT6X0qkNOCXjDWvcY26W3LcUuNhYmDcthO4IrecIGO53xVYSnIEQocZA64ZE8qenF5zA4h+fN4/l + KVp4vRjhn544PfmErg/vV/zhP3HOZIqmX8EwkI01zf/28RytpR4y0Mt9GfuuWf/5ZRqk3OmCn81J + j+gpEz/QDLdlfrwlv6H5JvfQsZ4/fNZPTrQ2iqigZytJ+LTz/bfGKeE/vD8mq5Lz10BboEJ1n1gt + 9lyhZHQHKqb1wefT3mWvHlMGvJ6D5B92vG5Re/ZgppkHou54tvB9OsKrn5uzmDZF012MWwF/wuPq + gzedKH1+bA8SyVawEd+ATqrhY0PopCyx3EylPN3YFGrRyhD3eJyG9aKuIvr9NvTnl+X8zhcRH7g1 + 8e+HDXSdsnXIqQqZWJKy6cvI2g6M76qJg5JcGtYRPBF2v+CBb0NtRaz3VCHkTpnms1H6dpc7E1Qo + Pd4Yckp83V3t68JC6hknUlAY61QdLAadxPWCi5RRok06PQrYAL4h/+ZLmC4W2v1SUoLl5e75KAJT + 8URi7XxqCz7u/E/PGI510olXbB/Y9QMkR9z5LitxLw/t/sHMxqoerdfbRQS53acz61gnl2Pk5oPw + VzbmujvOzcj36V7fkphoxmnL105qClQfdMenmhMMk6mkPJycvPTFMgubZeE1G155YyY30M8RqQ6e + 888/EXZ/bRrWKwTauWbmST/1Ec2g6shG8yNk92/B3tWsh5HDn4miXn5NH/rK9qfvsOVzX0rv69rD + 2TNuM9zHhxvSTIO7/z1zO/5U9Gn7//ipXho22POdh/ZxuZDi6fo6y2nR/C+/sPJoou0HBx5WjvrD + +uwtgOiLVMFlrhWiaWGhj+crKOF7KAzyCJNqWCeTUyBk++tcctKgs2HKF1DYrIFo6X4qdWSVnd+d + E/z0TcFd448VwwSU8ywt34dOnH7WIKNxZ+xv5dudTvtFaFY2djNF96+7/FzHgei+mVh7Zl7O6xay + YZpWN7Lzj2g5DmwG0qk/kuPC1g19HC8j4FTY4+v18R3mhj2E4M2G0EfNWDW03e4zyG5nQqwkmOj6 + fNklDLq0xf79ENJx93/B7+Ul//QFFbeAhSkFR+KfBIfueCyCP39OT0DSbNTKCtAB9opP1ZNzZ22S + HEC44UDOl6ketj9/6u/7mr0FOf2i3vt7f2L1xZ3ywCkLSCv1hW1HMAY+P5AZBFd+nA/fTY2oOviM + /DDhhSS7f75Ej0qB7W915233Z7YHcBYgvNeNnCTp7i5Mxox/fg32UqaKNve++egmBse/329YgfAd + LL7HapaX52XYFNB+/vwonxu2R0QPp00Gf43/b+l1yWkaew5MTeZJjmVd/vlnHfy14IFPl7epC8+P + 7QNLISnR1y9PScI9PvDI+XeM2ebbLH/+qmp+LZ/afUv39ZVYJmxYkT89O75PioOuV74kSlo3YPVT + wELymjus+cYYbVhbAkSO5OajNRUb8r5OHnTCrZ5RdmTyufA7HirDlyOYK6Vo29cDYOgr7Lzsv7f9 + jefH4lmMufIe/fER+ClDj3huV+mL740M/NHNn//8l1WaMwt456rGwU9s6FrdJAh3v5Ho/eoAjr2t + BjAeKcEKrBSdfXO99fd9gsvKjPhTunpQ5Fx9lrTUB8SPWkva/UXsWiUeNkmuIFKjS4nPq6ZQ/rpd + feiBhzNL/eGk0xQoNmyFR0OM/WKxuZUqHmbw9vSlaJ53f2ONAXc+nrC3N535i390/uXbjHZ8WVB7 + 9v/8b6LMwn1Yz1wVw+JrVhjP3ZTTcu9v98/fwe46kKBkP7Cdu4EYI3+O3s9zXcI/vuvFVy3nT/5r + RsKHcff1g6pZhzTUoMZ5X3yOLmG+uGpRAOv5sYnKqk6+1nxV/OlDfF1OX7rc3pgBIyQWVjCnNuzF + eBbQsp3FH1bAgVUWX/uRq/NI0ocnD+uI3QoyI/sgliFPdOYol8LGsAFxcIRcqjIjA2Jts/Cur4ex + f74c+JXdwl8O4ResdSpDyK+t60tu74CVym4N1QP7mbdK74eWq1QfymcLkPOqVZQy0SkDd8AfiE2W + cCD9ofWkjjTFv3hdEhVW0v78frHSPloekfiBoMrbWVAN3p2HthJhWPFoX18c3GXHN7TPz9/8U4GJ + 1AxZ5Z3gq/04RJSehQ1KzXH4t77RD89DAsei5LG/+0PLzfM0mOR+ic9hogzs+UqLf/6/8kSnofLR + UsBytu8kkw/vZpPXrADczciIejpr7nqutRjV4yOcd73b8MQISpTz773L20nMp4sqiZDVhJ9fuqZG + 6QyVADm3TsPFhfN1tk7oB1VDGf7xq2G1RTeA7dwPxFOnj7719JHArf9VPq9yz2YsTi8L4eHr4mPJ + GREtgs4Du97G3kSsSHAYQ0ETYI/kWU1RtPFvBaJvIz6I3sosWL2bzMLdn8XHe2Pn/OtYxHKTfyLs + eK9rNA0Gq0DxWw74DF8OmEKxiVF0+rEzejJxvv1gw0JTLlKiRMF3mH0q2GD3R7DiSCjq0yMXwKyp + OrzrEUqi/myA7Ee/WLO3Jadc1Mfwoq8xMerw+q+e/eEpeewtcf78FrCPD1FnMuv/+PZnYFqsQtOP + 6Lc3fHh7z5jYoK5Bf86ohy6dZOD0Mi3N+IylD1ysvWv2BcyU/vO3yZ5PXzbTN3G5FGj302ZGh0uz + ZK9RgcMAExx65yTaXOh14M+fP+78iW/IJYbQfMXYcfqnuzqEW+Q06gXspJE5CFvfBvLuD2M3fpzB + +jz3BXSYfUtmdiwjWp2iGaXjYyY531Iw//Epg8Dvv/mlVjcqEDyEYd79hKb/ww8paCjZxzOf3OK2 + QeUhPchpr28c/BgtPGrphajoV7rLn9+ndWAmXjS2+tp9zPL/uvhA/N9bCg4dXoh1Enu6PLACEcjh + BWvOKYpoYkcMbEnQzXUdKZTXKr1GT9ZWcCIELl3Ngc+Qx8xHopyqlztf1BgiloQjPkWbpnO8dq+g + 8J0afHycCp13tyiFxbzkxJ4l2xUyPIwAc3aIPfXVuXTRiQK6b01m9kyaYRrFRwKWo8HjohzJsI3i + 4wPjOfCJcxa+YAtMEkPhSo/EAs8pWgRNCZFbqTM+HotXvvDOW0Pipzxjo/HSRuCY9IOGHJ7JpVr8 + nPy6V4IErv9ibWiKqP37/PrjRX9lYQO4cVQ8KLkPQPJjoUWdtFNITnEabHKIoUtscz5Ublbvx/Q0 + DmtzF2NYfbUa49RuXY4cGAuSz1khsfmyXPrwxRn+8vvXpxwHmt/r8y2APJ1u+Fikx2Zxt0GGl15K + yK0St4Hy2klBWeY/SOh3cr7+fb77VoRg/axSNou4BFkh/JFLN+93mc5NCGet7ObJfj8By2o0RA/2 + uxAn+cT5dDNUC314IOFzhetouxmnGA5P/YmP6/Uy8PL13cN7HyNs/p4A0ONXq2GNfgU5B5oNiPkd + K1hnY4+dMv6APV4Y1I82Igb9Cc0GLnkI8wWJ/8aXfZVRgSrTsPCdBepu6T4/UOqvJnb8lAcUxZsI + s+J8IteuVMFS4AtEgaxWGHP6R+evdjtDWC4NLg6f88Bdld8IoqKqSWpWjb7Wn6SA9JB7/mokIF+1 + QpWheXGmWa6jmr5j2AXQ118WuSKQgMVqLikkxytPbHI6N7QMfwbS89omoeXcohFdXQegpVDwHYEb + 4BIlHaHkPN6+xBUL+JyE4wJjnBuzFFCYL4vQW6hV7xz2Sq9thE0/K9BxgwMpDkmnr7Eij/BghgzW + EaXNIjiFAjZ3jfFzfd9dfhyVAqo9CAkOHE/fCqwWyEVwJXnguPpaRPkH+JfSISZy6r0RsihD+eRh + Eg4NzP/FH52fFrYA/oJRsNQeXFflsvcV+IDFGiYHpvefMNMgD5vV6X8p4FXmObfD8GwmJa0rtKF3 + gPffi+g42jNSeykkYWY2EUt1I4RqhmpslEXnTpPoJeBlM8y8fHLdFZigqpGWzTUxu/IFlgCNGnga + QUWMEgnumnouK89NOuPiihp9k85URMvJ3eaW3kOX6ybPh1M4pOSvXqxf7sYApr3bOCsNNeesZxBA + 8NQbbFih3EzHRukh5n1xRrFqUP6QNhpitwvBVsaLgMwCZdG1NgRf0B/vHaLjGcVlUhINLFcg+BzV + wPpjRaIXv8AdOYfXkNwbJs7fN7mh8F6GcI4KBj9Wz4soU6AOZl50J0r4jFz2or5LcKbfBFtlbO6N + 5DUbpp/6is0FGoC/KgEDS6OpyJFrqbtd1JgB01aJ5PxQZbpx/izDv3hR9eTtUvuz1jvkEeKuHGrG + fnwxaFL6EWtCFeQ04C4aYsK0wElmttF0mukClf44EvdY1DlrD7qDBG0zyV9943xu+zcf/kHxob49 + k96D+3zjpxQeBz6GXQ1VcbFwXnS+uzU9tuBpzDmi+MFlYE8zqOCbOyKCvfHg0sfNKFENPzxWGTfP + t0M6KHJzfnv40pI+X5X20EP+ImNsxvUKVr31elgws0sUc3WGVSkGESrdUZlFs9JdvsqyFp6f/ZlY + n+abr+/3UEK30mfseoU4bPJlDKH35BFR4PFOhZl0Fgy+Wom9T/8dFtE3MkiMoCUOfSWRwDr8Apze + PpE0xHiYPq+LBbtrpftf45zobGprPrJeso59qtjRxvoHER6u/jxvQtADauRVhsT0ffdFIGa6cKg+ + GtzxAV9/z/yvXrUiE6UbiT8AuwtnDR2Q3CfANjiazSqdQQft7nv+9/yFVqg9NCvrOMvnr5azV1gp + 6PmNamwItt2smPvVED62MzF1ftX/6jEM8xGSK4dKunWTUUKh7S8+u4m6zlfJ3YPvwMLETe/jQN+v + Sws1+aMRLbdQPgmOG4Dp1W7Egphx12fyYtCe7/5hYY2BLfAdQrhR6EtxeI74EGkVuudP6stJ4gP6 + ylQeMtzN90dg1cP6yM+J/FAn329Pleb+4R9ijFdHPPBdh21WcAbNwLn53A/zeR+Ji41u8fbDyh1V + Onn/phgust7N0zGuXLb+lD482cWEI52JIhpIWQrm9m7g4gNWfZuVY/qH1/7GqoeG3mwHwmttCeR8 + 1UqwFXnygfMl02Y4OOGwzgJNwOciuzhMrGPEJt7UwvQ4uNgaIgGM5vOlwcvpEBAtu9qA34AK0eUm + xzib1zdgqbyU0E4+L5KURpULWBU8dJeDCWc7Pq5un2Ywx8eBqKmqUjbHNUT3Lr5gtxXwsORRm0Ar + ZH7+JihmztelA2Etf5z5UIhx01vfKADCZzqTUzfb0TaMlxJxm0aws8cD58gHERrPZMFqrJlg059y + LV1X7YLz9Be6gt5AG7FK3pCjC8eIapW+IC0fxb2+qmCQL2MNX6dDjNUFfcG25xPYrVickI0BBF51 + EY0XbiPpmRgDVdqvg47XBZCTlHt0c7YxhT94nXyKGt/d2h9jQCm/D35LskTfUl1MwMzGLA6yEuv9 + M6xYpOYHcZ79o5/PExFZqOWziG2SCfqSua8W8Cp84uT8feVLqBYlLDbKYi0zm5ymR4mB8cGPiSYo + ZkQE33Tku/N4EPcmqfkWiaIDBt+8E/sz9MPGWaMNvQC0+NzOp2gKuKBC6+mQzqwfhAOntIcOYj20 + iGLVT32TrkwHt6wvsbme53wtQ+kD065Rsas/rGhtH9UM4EIUohavka5UFmeYfqorSczfLydqmzhI + u4+eD7jYH/7hfbKxZ2wdyEYXzmo69NbOObmvDxaM7lxXsMFfcZYPMwHUmZsActr5SQzz9dHXQZxj + sIgHDatVZYOl/aEWUHdfwsL07dLTzAaycc5irFmOEK3rIbYAoxUjvnJen1OtcDL4CeGKvdqtBnr6 + VDXKJ4bz2fmnDmyRfy34fhlv8tzr+0oAHGVegxy5P9Q7XZlYTmH1VWpyfwUg32LlxUAhnl9E97yL + K7wfqQevL+uFNRJudIX7FtmHSnyix87PXbNjVaKq08R/9X9sXzIPxdtbJ8pnsJuliKIErc5hxmoR + NPnvGXYtxHFQkIthXel4/IYLShL1QEozVQGXBF8ffnRV9eWDb9BVsFQR2envQa7dfjGQ2wc2TEI4 + kdN0JjltX/0HXCvLJUbiO8P6iJz2j89hl2Ol5lfkZQLzUjd3fm24m1K0NvSvzTbTeBBdioK1gpWs + t9gQOjqs70nwoZP7BCunxRqESAE+kOSAI1YTA/A1msaGqdVxuBDSQP+nJ1xmP/Z45RQgVFnGg/1v + /5OZRj4+S1RA45EYM5NdXUrFM3TAjtfEjDZV3yLzHMN3YOB5DfQT5UTf6CRTjyT/Q0IKSPOQPagC + IZ3loSnzpRcPBvgbv6i91QOt6vnzpw+IBrBFhRhWG2gPfoqNWfrq4x/+maqHSFCiRH9/p6sP+YuI + SeQVfEObN8uAssl6oseZP3AxrAJEx9TBl6rq6IRVfobt4hPsCMFICQqkCvIRcrEDnnO041MF9LHw + SRJ+hWi9BYkv/fEZA9wcXeCdYoMncMX4OXL2wINLFIJz9Ymxxwuqy0ZwVZClac2Oj+9hnJZTDM94 + fOB7vIn5As9KBo+WtBJj10tb81iZf/Fl2sZMV/Pbamhaao/cftbiDrMAWPinT88PNaOb3vkh/GX5 + Zf4yuqyT++1QwD++GAJsgX28FrjjC7HK1s252IAGtHRFIhcjAdGY2pqH9EfNYsW5cM1Sl04JC18E + JJJ0XRfax8tHxsEPfNSWOp0n1vWh0pvjzImgott5c1IYerT2+Q/1AA1PNwisWr5jX1hSsAbqNAJY + 0cD/CNWa01RfPkgwlpWYkx/mJBSXDK1HuSDH3/fpbj63LegPT8Vv8dSpnksZ2PLJmNlyWoeNMnIC + PqY+EeMgXPVNq9wabvfOJnphv/7qXy8/nh9134Il5n/xCOlULFjLeAFsn+lRgE+EjsQH+yV+j0hj + 4aUHyXxIf5G+9WNfgnGlNVGV2yEiC4h82Q2ODHE9F+ub6HsiPHywgc9BOEerfBcWuPMN7MbZMizo + oi4oiZA+rz/M5bQudQ8ljUgJDrJ1oO17YKB0zCJil14zjK8stFBSy499iUEb2Ojke/IKBXme7DjJ + 10PQaTC4n3qsrnMR9dZQ9IipY28GlUibsc5OFtCLqvTFjCncrUyAJ+vkVeHIKJlma+7LB0XLY/B/ + ReUA3vhywb/nffxKiY5FTizovx81fhYi+1cfPHhlzQZrddvnNDaGFt7R9eBzu/6dqyz8oE8jC0Tn + 4rHZrkoKoXy+CDs+hJT709OINqEvIE1x5/dvMmDfGyq5eDGNdn6Zgstvv+hIsXjQ16XDgHPVxvjE + jXw+BtwrQPU4WP57RB1dfe04QylN7mR//3zDCFVQvYkBttR+isZNUCxocVLuS298i7ozc1Nkyc5+ + s+CND307CXiB8ev6wr7mZNGqtnMPnq0X+J86eoFfEhBPBv7xQVyujd3VfL5CxCvwhPNXygyUiX8i + rCcyEleK+mZ73DwfXr68gf2vzkYbON9FiI85g830YkdUu4kadBl09OWavdChLHkfzmoRkuiISE58 + ic2g1IUnfAq0Ix0WmhZw+Wofn29iQBetvabIUJ8Iqy1xItJ3QSxfoLDN26f55Nt20BNwDU9HHJur + 2wh2LdrQmAMH34NojVbmdazlL9c1xKdrsR/p+KTo8frMRA0iHK2/TuKhIAzRDFA96huVRQg1udX+ + 6gnoqLwU0s43Z7Drv/c+PkC02oloVP3lC7qcln/6xisLx6VUg8o/vuJpmqAv6FGK0H1oA1alMc75 + SFwcZCyBQPQ9HudVsD9wY3481pLEA2QFji8ljUyx8i0eOu3ZqZTDoR/xUYpOA7nfhEL+8yv0d1oM + qz24Kdz54cwMIQdWMbQ0sDpoxsf0t+74vLGQu1i/mTmUbr7mOPOQR5aJRFMSDyu4z4uEv1FJzph+ + 9bXAJw/u+hjr47vSFyXtQ4jfXk20QV+jH8u8LNgcninRj9MJsKLjKvBmCW/s+XgZlnEJE6nuuwxf + A70H3ZnXQ5i85CN+onrS6aafNdjkhfLnF+j7+LOwrLPY7xPTzP/lj3G5T1gRJOiuo/iIoXpkKmKr + W9BMiTexYK8n2Nv1AX1PnxFuzMDjI9IUnT99qhB+Nv5CnK9OI6KPRxnONCn9w2o4+r/nXToF4hyF + n2Ej9OWjevxZODl1711/hBkStMXExsFSGq5nEQMPV2/G3uEzNWsZri36w9M//kdjm2Pg+2W9fVr8 + Fnd7+EsJFtstyJHRZZeGSFsgo5YJPv38KO++75MPSz4fsdVvNljqUivQ75jhefl6wrBGJ6uEAIkT + UaW8p9T+SNUffyUnyT1Gu36voANtDp/fT0Sn5r7E6JlcPOzzByNi4VlJ4U8MzH/5QgXftJG3rAb2 + HTvMBXcOQ5S8D2Qfz2WgxperUItz228PiaWz8BJu4NKxGY6JEzR87l4MJOf2gM/LqEbC/dhBeGzH + K1FIxrnU27QOZcCIyG0f/5VzplA+X3p55tpDQJcJJiUKPoq965fNXTPceDD3tDuxrOxBqVK9N5g/ + 1Zx4Qndt6G/sZ7jcj7UPdr1MBUvL4Ome0n/+2PR+9RYcJkby0e438vCsiOi8VAZJL7PSbJz/EWUm + yjZf6D5vd8/3DCmZC+d0yHN9w2uXwmGEDTmll1++mU0tohybg89q2lUnm25qwA+Lav7qDBt13nyp + QBFwKblNn1x/cM47hPI5EvygnJZm+kyzB1+ZlBEz1j50lU5yANCr5Ym269Xuok4l8K+vjVgAHwE9 + FG0Hwl+n+KD9WPribFCG01aLPoq3e7QSXajArZl1fEK9H215lLPyKm4h/tNHy3qIeIiWUiFK+Rj2 + LSDR/IfXPmN2x6grQymBMjoefQn1fk4d/qPAj7E3zpZyD8y8f5Xhu7YA8YWKRusf/zGftkLSOn/r + rPn8KX/PQ1wUWs1YJa8ZroPQYu/CHF3u5hUsvNwlZddr73zZ4/mfX6lR9RStfdfxYPfDZmWTLHdj + LWTLwc2YsZE99m6qlbtA3HreTHc+xbUvasE9/shJv+r6ohRDJ9/tYsXRwqrDIp1kDez6HmvOXaRE + H7EMtcfK7vnw/fMLMthW4cEXNS1xNyLULbzb5UrU9kDA/EpsD0Yw02YWHmU6XdRihNZL1HGiyhuY + PeZWwcuRaTEu0tMw73ocHkUykdPj8oyo8fwtcOs//t5tNnVXeI1TsNczgkfObv74JHr1nOPDkOQD + bz7TGvh1FhBV9p7RqKaXABhlnJGC9I9h+YfPmtb4Ah5qOpvD1MPs4IJ5uaPK3QIuWGCQGCl+dNM7 + 2q7efkRHPGj+uv/eoudL9+ePzULs9C7lnGmD8Mw+5tU2L3TbdG+TIdkkrEuRPQiS2WVQuiU6OR6n + nv5uxsmAs/Fqff4sWJT7vMMSxCRs/U3tx3zYhQ4QvxXFVngc8/n7Vkc5hIM2L1b9dBdO60MYH7yY + 5K1AmtVs6h6F7urN6zrDfLwaPfuvvgel92p2vjKi4jC/fMY/ztFy+iwLfKX7RcxUYvTF20IZ1M4i + k/i0HBuW1UAAT3Y5YcdMK0AT7xpLo8frPm9KM6Wu/M1gD/Ylw0Dr6IYefgbj7fIlmt/J0fx+3WP4 + p2eKkICGUo1VoCKp1vxriZdzNjE2uPtt/jLLvb55zLOS//JdBN+gWRMjtGBluynxAWEB/b5VKHOx + C7CZbkJOmfglIjWVPzONAWr+1jfgUOl/6wXTv/eVXycU+98dr9k9PyXy9vuZ/eSG2z9uhg+/7fjA + z+KouOse/2gff+Jd5lezSObSgeV02ohXD8Mw7Hpcsq8f1wdS5Az02JwceGP7Ez5KeuvO+/uDP7/f + 5Lw+2v1gBaLmW+988JwLr0Qp0R9f1PL9FPUGTgx83VgbB0J6dtf3qzbgTwpzchzfqr5IptjJGTR+ + +NbxTrOY5FABDf3iud7zm4/gWqEGpQVWzqQeqBDeamiLNdrX245gLjPYwhzKmCjZzDaj9QwU+DSv + FsGT6bvLpNzkP/6L1bQO6LYKygcq99Nn7jOOA4t85W24mJbjSy/lSienf2Uw95T7vKib36yefJXh + zveJyRWEbrvfBPb5JB45zQMxh0kEPynIMW55r5mqJN3L9cT7l5hm0XKFlfY3/sSMwzH6yzf0qN+G + zxXVDyyrcDEQR3XTb47TifLroUjga5AWnDqKrwtMddDkbRwcnx80P1qPjd3DVsmf2Nr58zyRhUd/ + 61HX9DWBTfQN8U//Y8+sWrc/NrYMPyrMScoLlb6682WBXGBEBHPt1R0Tu/XQzm8Jxr1Che/kzXAB + OuO//vSCmp4UWJmW5ctEHfKBZV4fyGHbw3GfKTrHxFuGQvjTcCisEqATWQ0ksB+VeNkUNTO8l9qf + f/+Hn5QKlpOBZxeJ+Dhyn4ZuB7eFE+6v2OwYj/Lv39tAmz1qJAy/Sb6p7UP8W8/wtyHiwV+8wM78 + RFhHYTss500VofAeBaymW5KP8PEV4Q/eJqwfH0bEelsooqn5lsSUYEYXcEoVuPurvpj47rC8340H + //x4VYJ3OneryQJB+EU4LT19oMp+BLc+zfGM2vmU8+huKqifzxI5cZ4b8bf4ycPIazdSao4cLUVO + DKB2fEL+8JQ7VEwt9Zlzwb6ZvuiCJdCB9cZ75FiJWzPeDIVFmXe54/ggcO78/ekWTDjpic/oVEXU + 4WcNplJzI54TsMP72CgdOrydcubpBYOFZVYWqjbk8d/6MxFDvwJgFG/kup7naPU1PEL9/DZ8sBon + d62SgIH68vjOBy4ahm2CZwh//U3FCi9q7lo+rfHPfyIYAyda/tZzXkcxJTHp86Hr2mXXp8fGr2uW + 0PUQ/1JYxo+A+GfBBtOfftvzexY3sXW3Vxkxf37+vDgv4G6xzY3QlppoPvys0N3U1N7klyVq5G4b + BMznaVH+ry0F0v/eUvAqt5AYP+Yd0S2/pui37qdkp2Ggy61SNki2FGJfB1szQjGoICnPz/nDJ4rO + HX36QanhmMRRqymac+biS/enI8wAv0KdP/iHFoZf8Yov4uFCudQzISpEZGDDcV+DAJJGgcf4Bv0N + Pj13/YaTBQ9sNPrL4fhqaK50JWR+gYSfb9dxOePedMBmDtI8CsLXpV/+soERLi7JKzrkK/mlNQTa + rPoC2xyGZVzXDHpbpWOtA07Enhh9Q2IIn8Sua2ag319RQef3FrB6TJphKZ2qR2910ogty1y+5aPt + wFGqBeLfHNNd5Ygw8FJ6T1zK+qdZXFgVqJ60u899X5bLR2yjQGLdZWzRoM6F5TbKsOxO0dyfnSLf + 5EfXgrY2hbmsBJmuOP0tsH/5Fj4pIaCNatsFsBkkkZzEV7CJT11EuWCwJHV+00C1lU+B/j6Uc61I + bbMa3idDrlcmxDp9wmZ49wIPb0+mw3rl1QNX3p4lpEv2Jm5F3Zx218pBK05MbPNvS187Afuw+0BE + zrAyAXucSg3egyeHXezVYPviqkQkUc2ZoEah3HreRhgWXI7Va5jnG94ePPSFd+XfZv5EFwX1CRg0 + 2yeZI9KB3oI2hvxiH7Hl3VRXeJzaDb2fd27mmbfmsk+iLdALRZHEQ5HS7VgqCurP2g/rB/ei87qP + PtDEYYnN6IRzlp37GPZn5Ufu+AsiOj52CG4rGePH5Zbzw00tYQH9lLgWquiUQ02B4SWf/PWYNM3s + g7rdm2I2xHRnLeINehsRP58JORqCA9goYBJIsXDBZxVPA23mZUEbPxJ8XOF32A6+0P7NFzH3foCr + 03IOqq8ei/MfX0fCeahm+LHdhpjRiUTjvVlDeH/aArbz42VY7GPQwj2+8PVq2YC7JrwGA1nVyQXL + MViZzvek/X3JA/16faveygfy5+jrM7YTg81Nh0VsHHImftqlYFXXFMITjES86+2InzKJkQ/n4oo1 + JSvpKOpKjw7+Gs7M76012+m11OD+YR74aAg9HQdajFCVlQaXy6BE3PjVE/RXD252eKNCM4vLv3jG + T6oPNPpBRp7R5YZVzjy4cxMSCyYHpSIXp1Cj7XyzS5hvdUOcgQUDKTtgQSw9FvwANzUS5gimULhY + GFvH391lQ+mewePtG8z/8v012CGc6uCNC62xc86qvwyoClnDz61ZIuo/bBv0ctyR4zmH+ozCpUbw + gERy+tn8sCmfWkSBGiVYP6+my/32xmHcRVTIhZNilwu05wLZe3Oc+fj4iLZeABZIHT3C/vP+1Yfu + zM9QcN4ffAu8vtnYtrKR83RuxIqPj5xD/GeDfLQF+3jWTRskYYseytJjU38qOVtIGw8v3e/w3/l8 + w6GEbeF1WE+Ury58DDmDVpzq+Ci7p2YdMt+AON8gcdcP00y1903lF/f9+csCrJxLJZZHv1sd+Nwi + jcPM3naJfHv8yFHIcldA32BD5BfeiXn2eJ3y3LGEqr/vqm7UNtpY593D79uY8J5fgNM7z4cgZxuc + qdU5Yg1Tz1BafltfgmOa0xuTe3Dxl404cZC5HVedNiRmm+EzzZzk2z7f4DuKIS788y3fSFmX6Ofa + d3w7yyoQLuK1QtNTDUgY+Ea+SNf7DLap9ebxXZzoWt/HDlaFqGEvcBbau+mwwa+jUnzHoefy36+Z + wJfjqyRqpqIRQM6w0qT9MmJ9gdbwwy+rYFV6B6xEVRoJ+sXboH1/VkSd+tDdDPqc4WuwT9gb5jBi + 5yblkbMYFVEPFzlf/a8Wo4cZA3wKLDUX5krqgJRaOtGvXqiv04NvIYlHGz8CqRhY4WdZaPWsFR+3 + C0+ns1b5KJ7FE35Y6UrHEjUxZNHYzHIEnGFrlFKDzSz+fI7XFrBY19VGDT9iXLrcO+9Hu5Ph1BsO + yf30DATYQQv4PrcR5fK4gH/xHaDgtuNt2HC3azbC04u/E6M2tmH1ZH6EiG4VOS60iSarJhAqN88l + lyp0Afeh5Qy9fpc0zssZBGU+i/D2M13sHHRf58rbrUDx0HNYs+N1WPAqpkCccmZuf/vFKzfoKfBQ + Q+Ij9HNczhQlRr5ep4qo9Ovm/OzdM5BddBsbCQnpeJSjACaCD7CqzlKz5N/fBvp7WpEcAiangcU4 + kCu7AedBnzQ8a9556egXE05u2xls3+NBgbRVZhyQqNA3UvYFfKQfTOzb2DZzcMgteJIhwMcdz7dD + zvLw9J2+OGafi75YNpVhtAEbG+wzcKfXMW+hS6OJWE1RAPZyNlkEHyPFxTXiXP7dFDycjxtDbof4 + DDirv6Roq51y5p6hoZOb/rXQzh/IQ268nLqTp8CO/9gYA5AMHG8BB1Yf5U1O6y0d6Pw5F9CsvC8p + RVmLhDAMDGSrA/APp4lrFuHy8+H5ZR+wD684XyW1FIG3vMdZ8k9fsPIWtVH6CL5Yd4ZvvrFtZyP/ + muTEYu8W5S+8Fe+n4B18VtvdMr8eQzRAT8R6hNNBaK3rDLH0XLDTBH2+tNfNRslBq8jz8rXz9XbN + ZjSZ4kxOQryCNbVkG/Iu7PFJugzRx+ZaETFjdca61ymUO53TAOgFC3C5KrjhYoF08Ifnfsfj1V1v + 7EuD+s/bsPq2Kkrl/pkBrV4uOD6aDaC/r+TD/p5VWPtub7B2K8iA8cj8f3xr1lItRl2YjsT/PFu6 + jaD5wOmIB395MjDfVOa4QNaA/D9+uGBDrdCPikeiVNtl2Pb691c/SBE4u2SVBBZaXOJiNwyVQegP + iQUHX5bIP34Tzk0MW9Ulc38VDX3Iw7VGO58lcZvkESWKrSGX8w18Zi8N4L7nS4CMcnKJFX8anbqZ + DGHHDuu/+rOQI1BgNzQ+wRcoDEulRiJ8o1HHetmm+Xo6ByGqtqz4m1+6fZbQkhehqohmx5dmW+uM + AXu9xkfWD6LNYU8f4OSSjh9ee464USoyWOL8PTfG7LuUepCHpxd799GovQAVX5El7/WXRK6SNNwn + l3jQCZKJ7ehc7vGBA2iur5ZoT6N0t3cTs3BrHrmfv+xs4OSTnQDv+WuwHugTXez7r4c+HzTE4hPF + 5UiRB0A9SCvRQ/mUL3v9h7XSN/PmXxzKV8KlR9loqPgmSBWlr1JX4FWSIdGr1wVMdZyyYK8fpKyE + jG7p6ZTARB1rP9n58Ooa7n63r3Amlr2hgXKSkqJG1D2/OhxfAyWKoiFZfw4z+z3zYHsllYL2Jn1Y + szQbbNNW8vD76xl8fL56dwnHwv7jHz748Vq+to+HAywudnFib49h8VvqIHrrBX/NZDOngmZswEts + j1yV00GfYwva4AJAhL2zEenr4Ri3UMmXgkTdEoEt9R+OfI/ICfvzbIH19m02ubM0zhcZttMpI/14 + oGpfOteYlPkff4U0RSz25ZSjKziACjQgqLD/SpRBcOz9FBU438mJffD5eoR1CYVT+COePnoDz+dR + Ku38AZ+Nqxtx8kmJoRM8r/7anL4RtbcugGcRtuT+mk7D0n9uBRw0x5/XE8qbpbLICA933pv5GGwR + QeckgDQTXZwYjzmamf6aySnjE+zaedwI6ePVooKwL1xootBQM+ZCANqDhY0CzNEmhlYHQOdlJApS + pK/XhobIHLorVrvXGay/5NECxgMaVsNBz/mrGFUoqM+lLyP5BMbP8d7ClXeLmd3qZNguvB8Dkujm + jAIJDmRfxPrjd8SSB5KP4yplcJWnidzh7aSPe/wBL8Yc8Xj80Omx53l0nRoT43AZG0rMnAWMJ2k4 + wc0A6E92AshdZAVj7ue7rF1yBRLC3Nu3nLf5CMW0gp+yd4n/UQ76yrG9BqPogohpWWK0zE3A/+Gt + v9iZDMbveqyBOJrqvF5DkG+k4YN/+kjzLw7gvzEbwE1rInz8/YerL+lZkNnWne9fcfJNzY6AShVn + RicgTRUIKiY3N6CI0oh0BVRy//tN8e6cwRkLAaFqPc1arIVedAhze4Hu7XXCRrLvuul5V1z4ESw4 + inrtaNPrcRhhJY0acTJhBvR8jg14tkKboAMOimHjv68wRKQjxinQ0t1yPdUQNCghurS7hitfBIyP + Eaur+GKB77sBmZ7EJzHBBQ2hIR/mcH/DYVbuU1JEgi/5jwiTl/AsNOpJ8wQ9p6mwn+UW3TnfCUGk + Hk00ffdEoxczl0VipCLBOladGR3SGHjRbGEnoCJoGkfVQSnZE9ogUDjzltce0ul5NrGlEhEsv7if + 2CxYGwnVXUjnvPEQHDZNSk5iQgp6utkZNHduSjJ1QekkEW2C/DE/kexmV9oSTOIHVmJG0OZ9zVd+ + bEhs/ZCTPCvFDN29AL2+HNbnW4zr8as+icQ5LvhK2UXi0ysu2GDrYXny7gOyb9CwmzcRoPkGNqBV + SoCDc1eklOs1G2Ki+gyvjoC624sBmxYFWNvcHloPsZTBl3TekdOyVYsuoEoPW3SrMdM3xXA6l4Yk + imL6xz9G+V41QH2EDdE5O6e0zcoHeB4+N3zSpD6c4iXgRP61bbCr9X1HQZH70sd2xJHrzF8xpUn5 + kaTsbIz59jGBsbVdBIK2viIusbd09jxTgLJMCiSVUHdmMLQZcJePhvq0korJcssEyIN5H/dK8A0H + J7AWYCgWIWr8NMJFH7U9NIa8wm5hKw619EMirfvnHPQ3MB3LoJfGKe/JTXR+BS0VRZTgOTyueqWb + H6kfSx/vjvBxt7Wd5b6FH9B0b0RODO963ptGqNefedynbDaqyj1rcSi+n7FL3p//4CUXRAOCIa+E + c4W4Ukp4t8RxPyYaWfWL3eWI+K29A1PIZrdSTa/xg0pRuNzFpofs/yGinPRwNyjdVVzjeWZ4afh3 + /4nwfhP2/pzWtR0Ez74xYVU+kmIJCskH88WLiJ0qVjg9s4sK8qPxRNJTDUK6jSdXWvEPS4UMOGFJ + OHjhrx06HAInncmb6FDRc5s4xqmjVJ03scjwByPDS1Oe6T2gG6Amp1ea09kVNyPkLNdGgppzdP5E + sbCPK93DftOX4cDiKZzHm4Bt9RcUS5H4uRQkkkM8txxSIvA4OxQ4zLASnW4OZ7l9DC2tPGNluKiA + 22tWC5mfhvgD1IrdDu730sUtJcLwrxjayTckI95ERJ5AHbK2TS7A+Q1h19tb2hJk7wwIIybEXfnU + fegysPLFZ1ekYLl0mQ9LyZrwBSI3XMzAXv74Xrx0YUqq3EdSmwxPfNckN+SOQKgBEbYe2pa3izPP + njjC17Prx8MPOh3jjzIQ5peOLf1WORPvsS5LsV2QNb4QyB8i+ObOPaI8bemy6pFlPJywUqWTNvUl + ZwOtfZNxyXsrZf7HBo7NYIyJ9qyL3es1RhB5OY99pJaUfEtrXP0ojK7dK5w79Y2k7e4tj3XxgHR6 + duczlItaxSq4ml0LzGvJSjiDcdZfjTOUz4stHWQ/w7q/3DuOrUcQxfc30e/81M2K0C8woP0BK4lY + hcOWdzK4uzTsk5jfqLXlzMdw9Yf05Fd1f/u3VWqA5cBSC+oVWx+8NNcjUckrGgcmokNfz1v8DGI1 + nIW76wKuLBXEX9K9NhcbY4GwS78j87M6Ijw/pXSJkgKbWXwEuzGfW4nFN3KL076jr1cdSX4zGsQM + LiNdbr8FgsauDKwdd+fwz0+z7drACv124cL2C1C1k4E2XnhwmB/jAzENfYLE+AJYC/oz+FbGgHw/ + GoppaWdB6uHiYEW5t2mbRQkHdiNVie4+23DWzHMJmD9KNIfrusb2IxGK26zHitmd6ZK9fUMqSxVh + zY8lp5lYyUf5MXfjIS+P6Y7Y3wZWn84el/hZh7S39wbwuDjE7sj5jpA/XzakD88iruVnziBpvQ7d + 03LB3vlddxQ9ZUvywszB3vK7F7P6mWIJXbt4bDacpdEP/92LgrNpiT7cl3SWhHECpZ5qGOPtRhuK + 496Hmq/7RCmya0F7zWjgIeIIuQf42C1vWGUQHgEi6lu5dQuZ6AdIHRSZ32M6C8CyKuljxJrR+oa2 + W/HHjC5wlMmiAFqFyUbUTtUXK4kxpQuZwAcKXvBFi4JC+nf8qp/dukJOL+zGFoqqNWJX3e86ele1 + Ba7r00R41no38hLI8JlozcSahr1rQzSVUSWmNtbhbtb2ObxPpkyO8/Du+lhvIVA1x0Ak2Y4d7S+v + HkY5Nv/84km3b0hk+wEJD77SluWO0MpvEW8YcTouyu/6p8dt9Td3y8qH+C/rEiQ+fuF81U4tYPyS + WAyPGofbquJn9zpg1bixWexcqbJBG1u0D72MLtH96MKPawRontK8mG65NUFc1J+R30f3gj4qtYSa + 5bdYcYwtmJegcw9Zkr2w0V1x17wX6kuHg+zg9PrFdMVb+D2+PljbH5puPoO8/tNHLH7SiZPBA1bv + q0dM3227aZFUESSv0cbyT6HFvPHfkfQ5JP64mdykE2J0Yfpfrca9ieSCB0P7AGEYSkS3kJUurb6P + wd1/sq43vNsRdRYSsAgjwebtbDn8VdCvUBHVAgk2uVJu1ZPMDx7p1NbFZJlx+ec3MH2eLg8yNfD7 + azbkRI6Edt0kfQDzc9EBoLKbzocggZ9D7JNHeAUFMTitBkGGXkQBwhAuruSJ0Dg/ezYLQ6Pj9ca6 + KqFlwWpws7rZn4wGHm+GPlIBEu39HH4PuPo9WSfFKZ3Kjy2JRr/F6u03OwRpXgNW//8MX65GCVV7 + 6XrPzZHxvXD21NwFLegqYknuxvm5fCuCdGdwRKVm1Q2xsVh//pvHk106QHfPwXP0U8aS8Vuq9m0N + +xLWJGLxY7pfoQyY3iSK+kHFnJVRDzXf8Nfzwz+9y/Q6atf1J9+HFq58C2/6SqPWDuowCnf+mH6C + Df17XoX6oQRlvsr4arnAoDRHfCIHHcxtceakH4/1cfFRGU6cgc+wKDLWQZMNC4H8HEE2/ZaYovPr + KO/cc/jcsK6CAa46unGWjZjeE3nkt8lNIxF62RBYX0y8KJO1lQ8B5icjuNuZ2nIyNzLEkOhEM8X9 + XzyAWnD38HGgI1327iJA6zFyBO9JB4ZFHyDIXwXE9jGRHYH5CTBeqDJu4iam1FDkvUisa4BVFj/+ + 8kvpPp2Jl0xWMW5h/QDVVpHxy810TXhfG1Vk/B3RoWzo0ntcL/0c+05UrjqETYa5TCJBxhFZ3g50 + Xv30xhMSoiTpqyBVuxUObL+OTO/RmeX34O1nOlhlc1/mcXcw4KP/eojTtoaz6yY+ByxejjQr9yF9 + O4cN/Pr5A2OpyOl8434qlOPCYvm2Sltwrk/AwrJMTm2QgCV52SKEz5Hi1Z+Z2yLhxN/+EZPksVHo + Tu0/NVz53O560uhyPNc6fJ1YV6+8b9IlUvJofV9Y/722BY2aoJV2Qtngq52YhaAc5zPMkscL7c9F + HvZN6ydSrFtH5m+/6fS5XTJp9c9eafQE7H5lyH9nhI81S2HL0ucKg6bbEo2oj3BMe9mGzB9AEswr + 2l/fpS49j1dADPf2duaes2poV0pNvCVqQ8o7QS4lDTcQz3RrQPf1uIdznDWY4Zu2EyunhtzPOuNQ + fVQpYflC2Nhfg6ivPdWWFQ/Z+iG6mVBtBKq9/PlpDu98tNkklQsLHGQsP7ShtKp6GWAQmyRtt3VH + Y7I00kaQBmzO1rmbDK3R4eoHam6TA6LztQj9TRVhmVNKh3oTzCE7H/vHSNJmmuUPSToLMZFlJ6Zr + PJA2+72OlZAzO5YP82EqXq3xwOIZlYFjw4NSpTj+fLKiu/l9tPobY5XRLJ0uOJQlXJQf4nNKqa35 + aInhC3GRtwsX6bz/iHDTAJLwnUl3yTsx4PhNTvgEbz+NwgbqsNu1X2KP4iEds7rYS5932eEkBG03 + 535+ha+mr5legNo0O90HbsUpIq+BpOlwCT6uJF9CDk1i6HYkPUIfHg6qg737t0xHM7Cn1c8ZQ8FK + tJk8Qh8GbXkl1nOfO2OkNFfwOpkpqprW7ngnkKeVr2Bnu9zpkm7uLpRelUY8+1yyfGl/hdsxeRID + Fw6dE6mK4Dm86pj5/8Wf3wVM/0wsqdMo9UOQwCK5xuNUExvwgX1C4Oc+r1i9gzugj/aaQPv33aGG + 4St9JUkOv7pVkWv/4pzekwMZ/qek4F//9V//hxUI/FM3z6xihQFDNg///p9SgX/v/t3XSVWthQX/ + jH2SZ//8939KEP75dU39G/7v0JTZt2e1BpK45//KDf4ZmiGp/tdP/2IX/H//+v8AAAD//wMAqBEG + EroFAgA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac010fa80cf2e-SJC + - 9953e3d5ce9f6d29-SJC Connection: - keep-alive Content-Encoding: @@ -3056,19 +3056,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:04 GMT + - Mon, 27 Oct 2025 17:24:58 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=WiFbVmYTQuBZSeXDFOkK.DAYdIVOUGjQJXyg81CQZVw-1760986744-1.0.1.1-5kzvh2o5K55H6bJoWZX0oLJtrYxD36n0TqkN3GS9gH6h5HhnshBUIvofH18kM7uxCUUK7a0EfMUOQE7hWeK5JBx3vEzpeJLn7MC9SDbOJtw; - path=/; expires=Mon, 20-Oct-25 19:29:04 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=DaoXo7ZNWkdKYQNGLhYOY9lmDgNKxKGWy00zIWa.ZLo-1761585898-1.0.1.1-4qXKAIUO3tHZYUj_yv_y6lY5m5nQFUTceffrJ1bGB9bOj8REYyoDxw5vv8rVG5pSF5uauhX7Wg4R1QxvN1GFE0I28lCOFDtXF8xt1l_5KTY; + path=/; expires=Mon, 27-Oct-25 17:54:58 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=B6O_EUrvuEmCw74WUgv7n27mFL5p__uwltnDi0EgQCA-1760986744798-0.0.1.1-604800000; + - _cfuvid=4CpaVrXMdWfbPWz8ibtEii_WB21U4I43OBhGGxhABRY-1761585898343-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-84b9b6f796-nnvbx + - envoy-router-58d48cd8fc-5fmlc X-Content-Type-Options: - nosniff alt-svc: @@ -3080,7 +3080,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "209" + - "328" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3088,7 +3088,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "252" + - "361" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3104,7 +3104,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_45a8352095af40dab168b5e945e65e1e + - req_279f601e83174b82a0bbf8582916c94e status: code: 200 message: OK @@ -3154,122 +3154,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SROzOrLlvn7Fjbt1V5jJSNSO2cxissEdHR1gY8xgYyYBevH++wv8Vb/u3niB - FYJIZZ5z8qT+4x9//fV3l9fFffr7X3/93Vbj9Pf/2J89sin7+19//c9//PXXX3/9x+/3/1tZvPPi - 8ag+5W/578/q8yjWv//1F/XfT/7von/99XcaXB/YjtGLrFXHlMI4XFqPKkYxIvibU7x8yBSkR+xH - WRozvsKjcbvhaBLONZuZxkHo1OSERVqr829qPFLYXgcLaR/PrBnlMFFQjt4Eq2ISKNQc1aMghZaK - r697A9ZgwhYfA92aD3ke2xR/qAoBUNsLP7Mit7HTJXeoWscBmY7t50yEnw0k3w15UOCMgWp7e4Tx - 0n+w23wFggv1GsJyjGdcuGfdZvKnpAvv8PVA4jOzIjpjklmYnfuIs1JVc8YvWwbe2vSNcsd814vg - xiE80OSIlf4lA9ZpewPKdgaxeCfBQO6ibAhLb+dIOlwF5buanSg46SfBSnaUAR2NaQeFr5cg+0C/ - BvY+Tj1sso3FrkVwTe7XiBNWRpmRLYtuPSX5iYLGceo9eAzwsAB66GBQvW1sXcCQM0VWpKDxk9iD - SdjV+OkRHgx6c8axyUTRttlpIdj3ScXBB5IBlxqtwlvSRTh4185A9/O6Ca8OScgmBQOmRCtVqH3Q - gAzXMCNWDqODIJj1EZ+liz90k+npsM3LYE777K5suvvs4abo4wy/MhhW+LJi2FxOC8qQx9oLpnIV - 5JsceRPqQLR9m2kBwrURcOq9/Jx9uA+dvxjUAwXBdBwI5Rq84HqvEjvHAA0btGVHSD0sY2vJfYV9 - gmcK8i9zx84rf9XrJr48CKbgiJ5uTdmrxBs6RKlj46jTjlH/bKAMvV61UUHrk71Q/pOBms4eZmJX - dzKeS58SsF8xHtXZFSDK/fTmo7F5ID01WLJIWt8JBT3Y2LukTP397W+wjoPStvXz8XxKeJBeudO8 - Dq6i4LerU8KrTviZvW3sMKr9bMEH5dzR7zzYdnxmEL0HgowxbOq9fhg4XlYTa8zyHbaAfulwjvsa - ZRqmwBa7txneytcTZ/mhI8QBgIPfPj7j/DU39khnQgEkzF+xGE/XCLObmkKiMPpMvlFgM3MxNsBD - Po+e9uWlDBduiYW9PtFVPFX1ekTqDKW2IPjsaXJEt7a6cN9HZHqMMiz1dpz8FCrqQCNPcIycjCAo - BBIGM37etFihDlJnQbmQr8ihNzfH3Nd9Q8Pruz1/p4EMqn8V0ClwcRg5ls3Ia8gL2HV07LFcrixj - +42hetIGdJ/5mmw8Cd6gF8PAOzyKFWzfpl3gXk9YJ1IVrRHWDpCYaYWy5uTbzPfFFTwbJQE681ZT - b+49GIXJh2es37c52n7voykLYftdY7AGySUVAqeTkK7DUiF7vQiErSosR0xZE0BbMqyPxzdy4gGT - VcRVIVTXi4TtIQUDaSP/Cg1Td5BRmfa/693bQnkm99SyaW+7MRDKJYUe8kRF8yVrOqi7NoU048Tn - BEeWDg1TdXBQnz9kidOq4dmhPs9UAL2aAnTdAVqyDax/K1Fh8Ff2oGQeXJx8D7Oy9prSCBLmruj6 - DvyBOd7IQZBPJcTuwXzly5t6xWDy4vFPvGneDDahpMoWOXt8KX10DjBZ4ILcj3+tqVwcFkg97gO2 - l9EAdPKZDtB3PhDZUWsrlGZ0PjQnuve4QKDt+fbofWiCVsDOowT1elGlUGDLDGHveLjmTbqeDkCX - RegdfUqpmZlirvAu8C02LWMbJhowdwFeDA/f9NElBF7WO/wc1DPKodeR0WwaCHmmf80nVaOVhdyu - /Q+vUJKLZs6YuGVgT+CEi4JNCR3EnQo7b73PTMSeldVI6k4At6PvLdkSEapAl4rfzwfb2n3LSXkL - SngzedFbbslI6Gj0eyGFrIy9XqDsjUbNm+9sKvvDZ1tYOR0s30s4d1xNK+uR2zjh7JdflElakbNa - kWaCWgJ6pq7vVsGdzV1hsagYhbF0tUlONwXvfuN1XtsLD3Ao+im0mA143wk2+USpdAy5J6qRo8aq - veOhCrvX0uCQFp45mYuDA5U7PWAVf87RelT8N4huRwVpbu0T5lYmDWS5RsPZO2Tt1S/vDkAH+otj - PZsHbFyXVFiXR4i9gk3Bdk7oUDC8rkNpdIX2at3kOww5XkLhdtXycZFmFWYicJDSFFpOa0cgn9DB - irGYLRFgxPuzg5RFB6iw1S5nQXI+wOkw3nD4ptqcKES5gu16y+fDJAZk4QdPhl0sB0gqHuv+/WnD - s6cow/rzdrZpC8ceHJcmQ+HMi8MvH4QGsCdkXG43sNJtM8IU0jLK28vBJop5MUClyCHWtXmOpiNy - ZjhU+uT94Z/b11lgVBk8Srr2o2xdklHQveIEiePRsNlHPVOw8S+x99JFK2fo9hADjrqnKHtm7sAe - pkoWbA+uON1KNifjI0kFkli0J47HThnrMLIEOMUqTo61XVOE9UdQSnXhHVtaA9T9lVs//sMmz9o5 - e7Oed7gKJcKRXUGyOW1aQjFIe4/P2heh6jC3IO7GEWlz7+XUcMYhT5qTgWWBa3PWQX4qWG4lI7fW - pJxGkekL8iFV0NM6o4g6qJeCP59u1Ly+Tld7GbtrL4wnjUO+aTP5upqdDNVU/M7c4b0NY5wnHNQ+ - 7oBv0ScGjK2+LMFQkYaV9ebk4zCXFhgmt0VStx7rtekvsXCWtytCHgQKZoDiCHftIqOAMvqImEoE - hbAcbSS1ljZs49I7fGrSAJ0tKiRUElgNTPNN3POpzVfCJz3c6uKG1J1ve0rzDvDxMQvsmCYGq275 - Iwz4RULJu/rmOHLrK0jzRUQ7XoBNxFCHpycUUDCkXISPyzOGC5YrpIyYBmTIKlUAjiPgdAzVgV3I - 6Q6VVqrm03B6DzPosw3wA+tjsTmNYBW35wIbYDVYZNkg6uvPqYdzlTG/eERD/uWuwuO0cNjVzZvN - Hpck/qNX5fYd1X/4iypJjnXAzPYwHbwFLqx3Q8rAm4BZmIsFTfmizXTst8rypr4xjLPxMZdM0ecb - EJuGf9xuNvKu7y4iFDp4kCsqb24f+ByROlhLuE4si5C3tmTLX0wGVeGwedXwDWy2s5erwJLx4FX6 - nYu+uAgPoLQFCT94LiDsozxVsDZjA4f7elJIJYTxxZBwxrLUsIYvIELtXV2RHhalPRH+2cOjLZJ5 - u2QPhWSHIYRoqHgsWfRV2aw3FqGN4wI/rhc8LJpRhoDWZYTFqy5Ea2s7G6zmksU61RaA5M9s5O5D - YGNp8ktC6nhm4Lk2FBzf0igiOpvs9VGhf9c7c1saYcw6Hz9aFg+E3ZwUvjdgead7Be25OlshpEhG - Y/NUNPmijyoUPgiesYpOC5kNbuzhiV88dDsVTTRr342DGhV+sfid03op0KOCSv85eNv2yupRl4sN - mtW4eRxruYANb0nxwyvsHclL2b7eXYQn2RnQ0y6vEcVFj4Kn3gmLXdTl0Sbenz1YrZfhLZIGbHKz - kuJ0xZU4nxYryceM8XSQx6E4b0rf23jIql2feja2n4MesWu/9TCpnQcyb3qSbw6ofCG53C10P3mb - vYbe9Q0PuHKxRxSUE+74vPLh0d68zSW1QgSH76AnpDxSszXLh74ueTgvpolDNS7JAmy6gAx/17Dl - 0r4y+pcRAj3ur0iKD8hesSE5MA8T4DHn8yWf3ftthoJyrJH0ZNKIubaWD9H7S5CzCFJN3lZQCj/9 - 6ppZV6/vARqwf10iXKy0UK+6lY5QCg0Va4kc2RtVmzI0buSF1G9jgj/8HN7Q16uPVassQrmMJ6su - HK+T1sMwakbpCwMf1sgrRqUel8MyC4fFrbFRV+GAOy5nIHZBjqXXiVG2L2d5oOleFjZDbwIb/6Qt - 4Qg1ev4OJ71mcjpkwPQua1ToWUAWTEWqcM0iB3u2auQ04Z8dHOV7hp32zRDioDQFP70UxhKjLHks - ejDSuxj5yCNkNZKhgzervfz4nMy3s19CLlYHhLZlBJOFY0f4JvOE5J3P2KgWVBhynITcrlHI+rgs - vbD3k97QvaeBvMshBPeTUsyMk1f1VsGxAe1mL1h3cnlgb1Zyh1tjz8g9PS2w8YzHwx+/28qNqrG9 - XkPY0I2BizyPlfXDBAvEC1djuWMVhW2PhIF7fGehH0E0+iZHwXtpRPN6dUTwzeMbAx8Rg+cK9mRY - m08pg+l4m5EUgiDfSq0uhFmWTK/iPzQhdJZT8HzVNGykdFHjOjhVQPw25bxRTRot+vGbwV1v7/j3 - BevKKCW/+cwRO2d9s5dz7Rkw36YOmYlyGtYpMGRQSBAjo8+gsmmiM4K1i3Ls8lwAFmAaFtzPE9+H - LxXNGwsOf/jrhzckiwVdAJ+p9uAivOqlcEoP7vXpLd+Zq+cg+cgnd4A2yrpLTKj8SpdQCMQXihXz - aW8PZu2EXLBt9MOT8XR+XeHTL+5IrqwZbCeYZuB8PWvzzcDDgL/yqYIkaG4oxtu9plZ65QVzYnvk - 5A8BbCN5lvDHVzmD3zmeDt4GcW346DF/XvnyuaQL1G6PFJuLxUZTlEIPMNuxQVq9NWSt3pIH6cLT - kJjE2F7a68cX1uUZIvUE6Jq0UXo9ZcN4RzpZNjD+9PmxW3UkmvY13/x4nQVJ0/SZp7V3Pe38Bghb - Vhjlo0MoG15KmNRgQxp3uA9LUa0QvmIuRHLkWArNRliFtXk1sEQKUo+38JsJ8XqBKEmaZtiu3lIK - xpV5evTH+w6jPzAztBNaQK4C3gqhXJETckc1kRGLISCg4Hy4dkGOLGA0Ng5vyR1aoJO9I8909rrr - S+iuVYddxgPRemYoB6ZYxfOC3yUg41nrYCEdMNJ4Z47IRqc+VHj/ilV2kgf20uYc7yX3FaWITyKm - LXgKfq0Bz2Bw39Ei1LP408fINdsHWN5s0cHQqOJ5O9PHaLqRKoOeORbo5w+tkh9wv3r3usvtRkhj - 8CP47f+4XtCwvXxJFcas9/F57tRhoxXuDjfjayAVmJ+cmLd2hGZWgXmr07Le9ZcICycNkXKIo5ze - xK8Hdn8K7/EhdFwHFDz0X91beftDiLvROnza7geFclArC4O5Gez+EtrxP1pkOCxA5dIrkkAzk9k9 - JG/IM90L5Xqv2rQNsQExlHKPfPwo6jLnyfMSt1Yz/TS86LvXo7D361i0bobCRGMVwtEQGYx4plMW - TrB7PuLjBUUWcaI1Y54zvFugwLJXkWG14ceAB2SU+HJgGrCo/WyAgRrPKAv7nCxSTqVQyAsVPY5V - l8+f2jtAM4ZPFLZvUu96poLP4RP/6a+3+ER7fLrlT2RTxjT89AGgXyWNMu5lR0s4Pcof3nv8UcAE - x3M4g7BQF2RpohpR3HvlBKftLjNdbyphI7eOf37azEK3yrf31y8Efi76+ZTFX+WP/r0mVwv98HVL - tHWGpAHGTMUzJIvovQrh8S5MfGYfS7QdnK8MHSbpkSvFbv61TyslzDRuZ5a3mmH9lIYsDBcF47Mf - 0Tk5lfoCJeLqSKaFY74FCZbhjRNF5HeXoMY/PAfSmmGrkPRhCZg4htqJ1dCuRwl5eoCHODvcvLlt - JgU7APAnhQ+v6Lz3/9vp8qz4Xc8htTJaZeGlhIJPQmxkbBdZYfSSUmHcFQtWjYcTrVQaLELKhm+P - kR8F+PEx0DNvw4jNlJzVqN7gfvkrPy6Kwvbam4K7H4FUojjKSsmiCPZ8wIh31nrZ/bI/+GeB6JSv - v/z1Nl/Gyu5/rKcD1GGOU84D4kevx88l3SDMxn7/fs8mtwfhoRZxcMfvRzRPnzqF0zGfsS18MNg0 - UR2h+72uHrmds6HfbL+A8rB951dZIuXf+3+Z+0xPwTlnjkrvwXs6rFhZ7Kze/RIHXDvl6dF0Ug3k - BRlPiC+WhM+en/zbTzwgq0TK2Ij1kJ4rAwKPSpDJ+Vu9clRxh74e28ip65MyiRrlQzsMXlj7CLw9 - v4+VA/b+C2sDV9obk1kesLevh3O3cofJ9u0O9u8TnkGaJfZ6HkQV8jLU8AVkov3zf/jK31rv+PEc - sv70NkpPJRade0vW0vN7YffzkBMc8uGn90DONtijvPILtqNSeUJZvHMve4eJwpw6Av/gr6pJn2G5 - oHoDRWa1yMgD2aZxkR3gYqo3HJlZu+u7YIZOwsk4VHrLxp/B4GFqsgC7DjNF7BqXPOxOMMNO4yKw - KaF8BSZKZa/e/fw5fb9U+DwlH6wW7lFZg36lwOXaLMgBtAVoGmWHn78xb3t/9ONPuPMVVrlqHtZr - EDvw5Yw5vnDkE61zJMT8KUtfWMFXryYfKZxBQKISiRWD7O/uX8GBms9IMu/Inn568+c3c9H1riy0 - OswgpGQeK4xSkTnkihS60XZB+vlM5wsTMD2A9YdBu59c//qdE5OpKTqH/KyMav82YNC+XCTX9QUs - eWw4f/hCYvg0wlW2xELaDA5WLDLmJBTTFI5ykf36EWXh/M6AKeu/sRhxfb6eGejBn/6/fZCvLMZU - LxACNcFh/uBrohA7hhtDjPmjQDPCYhM0cMv9CotxJdmzzmoU3P3PmeXCe7Q9ufQO88SVke7LsCbM - Z17g/BFCrIg6l+MfP4k55eLwK3P59MycDa7qYUSic9cAA23LAb9+xcHaScFHBVDwOrUA6fFI7PfD - tQvgPSQXuz+/8ufnZ9oSIa+75vnKP4cS7v2bRwtdpGB4WQt46gwKW+tXAqv6tHtwzg4OVk/gUq/3 - 17jwLfxESMuiqp6JfOvAGzkTMsxRHWbeHDIQfaYrjp+5D7YBbRR8SOiCtaOUKSu6MI2w68uZZ1mq - /jI3bmcZFCJHDvSI/jC3DbaBPuPzk6aVZX2W1uljn0WPM4qNTD4zQfhcGHPX6xEh1TniIDh66j4/ - ouxfvGDDBA8k0a81/4b2K+QqGFhYGmWskAvHxbDdzAUrUmzZWxYPBdj1MRJ7aOXkkPi+kMF89YCl - d2SWH0wBwfnCIPl95OvxkH2cn377wze7XqogkxQHr+WdOd/s8/UO1dIrkcm4FNjeFyjDfT7msZ5W - 5VOMhBQYt/WFFAjGHHsfEQr7fAQXd80CrHI/NYDWpwZrzuWo4HZM0tM1CxyMJiDZS/akYmhOxgXF - K53lJGJvFRS8XPe43c9aN+VagaCtXeQeqy4iIj9cAffJs5m3lRcoE57bwPw5hsjNjm9leX10XZA4 - 3Z25clFrRhjWRmAPNDMvc4rtRdo8C3bYNr1xewlkudtmCu3vIuO7wHXDFEwf6zd/wdnudxEiDz7c - +3WUykc/XyVeVPl9voOMo28q808/67V2mAU/3BRS3nUGvCbywL/+anRJMf8fv6cRaypMlEWY467G - O17b46UVKvB82SvyziQFy873IIuq968fVRbfXBgYz5KDleoNAf4kzR0urHPDdgjigW7EjwUjaXWR - /Ka0qBvU9SCsbXzb/YkTGJjPe/n5eXPJsmtE+DjshQsDH+gu38EwW28sQ+B4gneoXyhapmdCgeOj - c7Hdvad6tup1hppufb30eLzV5XSvKngr6+cMonZQSEDzI6DhMHkCF5wU8vOb9n5pJpxe1jv+O8Ku - p3A+ylu0z1t3/UBrPz1fM9OnzoT+kPqomG8pIEWyjTA8fa7YWqlEWabnk/n5Qd5r05x6vQIrg43m - 5TN1aB17eQlPBgQcC71+7x/IBbQ9MCfrgs8K/ObdL96D/j57/e5/06xw8Tn9c9S8Pp5uwz7PeP/0 - +kwPnGjTN9JnIMnlt7fI0Qgm0xspSPB1mEvnrhGycW7z60+RBL12mL7N3QKvJeWQ+GyPNeFgL0O8 - thxKpfc3Gtfqcf/tj8/B62NviJJ94RQzmsc4b5ZsymFi4J6fWE2OjkLVd2775T82P2hRsH9YS7D7 - Pbi4vo2IPFu3B3e0tEj8nefPfz5q9wTFu1/B1vGbAqdp8rElaYdo8YxMhgcrus2UYh7teWEeBjxd - 6syDb6qr5+SuFDCRmQVJ9fkMKPVgvaEijQSZBrbrFUWSL7jDwUbWHr/FymcDJm4YeY2tajZRo237 - +ekozMM2+jOPZVMvRYa0FvUs8cEsHK/2iJBP1fUffNm/D0nfYxBNZ+nGAWfwVmztenlDlBVCXNPt - H/6kZF/04T06X3Z8B/s85FbxX6FnMPKPHFgestX8W48daGnY49PBv3+3Av7zH3/99b9+Nwze3aNo - 94sBU7FO//zvqwL/ZP85vrO2/XMNYR6zsvj7X/++gfD3d+je3+l/T11TfMa///UX4P7cNfh76qas - /X+f/2N/1X/+478AAAD//wMAcmzw7OAgAAA= + H4sIAAAAAAAAA1R6WQ+zurbk+/kVW/uVPgpTsNlvBAhhdhjC0Gq1gBACCUkYbMBX97+3ku/qdvcL + EmAx2GtV1arl//jXX3/9/S67upr//uevv5/tNP/9P77XrsVc/P3PX//zX3/99ddf//E7/n8j676s + r9f21fyG/262r2u9/v3PX+x/X/m/g/756+9zbtREsYJW2ya7f8iv8pr6Ow0p3fp0KlaitqEhV+16 + uvL8o4CpxuXkoginTmh3mSTTLZUIWkA/jkUkZ5BPiY0UtFkRL+28BfYdZol/MQKNY7buLY/PRCcX + 0XqMS2feJEkIMMKw82OHz/KtlSVRasgFwsaZHPJqYCA6IzLY67lkLw1pYNPVgb9PXHNk5dhZ4KDw + b3I69nKHby3vw9stwyR6xYbDn4zAkH3mc0OGsdoRb24pltejOZOEJ3rJJ/TJQ8hOPar5S98trcDa + 8OClDDEYXgWCmdk6zBMVEFOtg3G7dKopy/uoRCazydHnhkxFHk4kJYZy1hzeV94TLKQ2Rdr7dAcC + vM4Ygq4QiW+NpKOvKBLlzrsR5Bi1H803IWfhAx4+Pgj2BGxRPL5hnQ4OcYNwLAX7ihsQgDT3t6z5 + RJN903gQFqxB6uYedot0EGtZNAKd3IaWAvxpnjrU6kdEborsjrymrrwcyacDUm1FdLDMLC507t2E + EIusjmfriJFDcFZIKcoIjO6ttuFSXxKcXlGl0W689VAotwnLJgUjpaGUwYjKKyoVUSjpySldcJz7 + kz/5Hui2dy1XAKiQIUkDziWfcddaykt4RcHzuhsXBE1e3tfXOzmeMh9sRdmacoh3B2Jl81njunWn + AGQzNTkZ8j1ahWo1INTXHbraIevQhYo2vFqNQ6oklrT3a6lsmGyii4poN4H1UN54+I1HDD98oU35 + rLDynuUZXwizFqwg+tSSep1uSC+wQNf7VDzk5XByiBl4vPaOdm8DBlLmovi0i8opT1MJ4Mu0w/LD + M+iEqLHI2v7FYAakXIlFubbhfIUlSt4oirg1JwVcspJF+nB4dEu3HzfIWU+bKGj7lNs3HmEG2g7F + PWQBRWGOYdLlN3Lp2DelbQFEqN+qEykuz4dD1mnGgOvsCzlxj7Sbe0+vIHQZFctFEziC9J4gSPYL + QNHRbqLPxC+xfOHmHJWEbaNNclgMSdJT4j0VNeJUVu7FcndyfWocl269eucMcg1g0cmqTbAp7qGW + 6eWIyXVNYo31T6YN1/d2QWYtOeMc1tcepi7zQVoYzeN2kZZQDqHnkWTm7JIPbq0krwBq5BSwRbfe + 91YF82o/oBKgjtLYXjH45rsvYLiOtNWOC1RXoST+q2+15frqVdj3YovyCZ0dngd9K/UzDZBJwUPb + pCWY5Plu2sRiE9yt4lFlZKfbPOLxFhnpueUyWY3eKjoy+5tG24JKslgNDXEE0FCaHgYDaujUI0UV + SUSNJKzlz9XdEdOMoLPyryWBptB6SM8V19lusWrKfKxaGGwXC3BGtZfg8pgoqnWR1bDyemTwXgMO + 2VYvlRvL2waMzMYlIWu96IKF8C2d5pOPRX/yO4E7UROkJ+1EtGxSIg6arQ/t4+CRm1DNlB6t7iHX + rJii0LmdR55BESNj3twT47a/lxurrgoQymUi6U62Hb66Bpv8my/XXzvK5gBKMFbOC1LDU9JxrjxO + MFIfA7G+eMl9BE/64Rvy7drR+Isknv/gDxsVLJiWvX2GnvSUyWG/AY0O+B7KIuF9goaoGV+fu1QA + sHx0f41CLRJuu76G3I3pifFGtCT03lfyXoY+CZnV67YuvWcQTI2Jcs4atPmwY1l4x0WLBcdlu23V + jB565BGiwM6sUtCX4wbZXTORfPhklHNmU4EKf7jghbRGtPmV9pY36ZX4jC7GmuDeElvi+kQjyHlu + 5cqXhwqGIFR84D8nyq+uMsjKHmkEaTUFW/9hsfQY9QrpOX111OaqN7zocYjvpsFF2wm3onxh2A+6 + vj51ye6krJAzeFswJeWjw7YlJj9+QZdrmZQ0OSe2pFv6iEVQS+XcHpcMMo2x+fd6foBpiZ9nWHPC + A1nFTnf4QzWb8KaaHQntR1Nu2K1dKM7PmRx311NEuelsA+1y09CByueOZemrgmkUG+TKDoKzJU6l + gO96kcIRcTl/81dmP9aZmLtnBhbOO4Zy6sIPCuwXHNeKbg9o+OoBlfqijlPb+ApMWeIh1xiOJReq + 0iCC/RYTBY4REHLp9oBDZgWolKp3yX7xD6qMmZM0n55g9XdRAobTnOItkUJteWVYhWnTh8i/GKu2 + oD4VJTt5FcSeypPDVrvYhobY5KgUgPLF33slm3opIuQbOaCKHk/QsT0VhW+bcdaoObrAI31I3LeJ + I8xFFYY6v60+iF5gXJ0FsvBNmj3KV+6lUajaC2RNkiAf+6bDHlWfhUrLvfy+iOySXS2sALsVc3Te + NA8IS6WqshzAjRRGKJRr/35lct5Fp/mpCK+OjAm15YlWOsm2yulY93huwH3ral9UliMQAlja8MrK + C3E02ym5/k0yuAAdkWq1ZW1J+KyC33jw15Nwp2xUOgY8TOyI3Lj3S+FwJ6F0Efcn4mXbs+RezDmW + 92esoRM+HEqBOX/O8pC6OgoCBUV8BLla4po9i7lFTsp1f+kHGX0sAWViwDu0Wk8M3IvKhOlypeNc + JG8F3rr7QC73Ngbc8bXa8sxFR/LNd2faSecCML18R35h7iiVb5dYbjQ1/eFXhMU7dWXtctVQ9joM + 2jbMEZQXL7OQdzwfy/XdD6501Y8Q2dgKKbfbFQ3Ud9IBeVP8LFfmkG5QcvwCHS9i4wzMwEgwGPY3 + Yg8cASvbKxN04/cBJcY6lAR7XQuC2VRQHWy+s9oAGpCdYgbFmitQfAQkhl89iGzuygF631pFVl+L + /NWP+siZ9aeBWSDnWOzml4NHyeYBDruAoPg2jetwuy3Q9cMH8bWwoqOQ5APM+Zoj3pWNtU97FAsZ + ro1IjE3IHfbAvBrIg2QjR9mJIvrkrfMffkKdNIP3L748ZGfIPQoWYL/5BotG9jAzSE9tE/afGFJD + vOBXvB/KpWZjUZLh1ULuvXlHm4KYEN4uSYDv4e1El6a4P+AvH06z/6Q09vsW3iqk+J+HGYz8bVxC + GZsV9bvzYd99ZLmVgNdfVRJ374ByXmq1P3wlV4MJnEUJGxEavnIgiTCw46qkowLfnJQg93KvR9wf + bxgSQZkx852P7TiBED44WyJag5JundudAmOtqslZFUm5WuM3XvjaJ9aTl6OVZeEGG2mRiGV7NVje + m7bswdmziVvvGrrkD3+D0IUq+emhtRJeGaRpgpD6lvORHrHykO/rIyDnDyTlWlVuBeOBnnx4J2Cc + 55vtw8YzWGJW+aOkJn0q8k8PHapyoSTuqwHCwvVRUM8PilVeFX96hHhTl3Vrmsg99NrlgFx1K7TZ + zX0M30jf+Tuh8oAgeGkPC5cPiOMKd20LQqhAF8ABxVuaRKxRTr0UHkuBWEVZ0uXSkBYkhhX5W8MD + h5pKxOyLs6pgtsApmK4vrALtvqmY8towYpZXDfhgQpsomWJ0nJqHA/zDNzWXlMuotLE86qKNbrfT + Vi4DSgr40y/KB6JyOWlMLbk3tPps3XfagoXiDYuHCZAyXRMwhpeFgbpmWeT8kJpu++ID/OIFUaUB + adjXrw2ghnRBehUjZwH8av70sC8GXuJgackxxCht0W++uA7bLlR9b0N2GBy09b4/VPJPD9qAf0eL + 9oAuTB9BRJKilbv19Hkv8IeP9ukYgq185ypkL7sWHa6SVa57SXvLxyCyfvxHv/+X7WcFn31ScUyJ + qbec5XQuOmT1xbGbmVTBcsdcOqLtxBiQV1RK0JhQQY7Xko+2W2zb4LkcXeIxZ+xshXA05G/9h3FL + jY6duE4Fd5y1KJP1oKOSEplyeyQucXrJLHnpdXtD/3rOiHLMebp+8RFoZfZEafLitbVIGhUyiRKj + W6pQummj84ZNaoWYZ0Kp++JlBn1bH9DBm6ZyqnaxKU/uMCOkIWXkL8ysw8OxUZH9OenaFu2VQf6u + t9+m8zzSz8VpAdPv7lha/bZbnnhqwLf+I86Xj4W5Sh+Q7RBG7oN1yo3dMxIs99ZAjsmJRliUExsq + T90kVefHf/QvbGHTkmPuahpXvjQMg5wJ8Z7XpWhWV3OBr9eS4E29HsCHNHse3qZBwo/TjpYUWbdB + +vIXcqwtKJeB0kI+uNnqD9yVo3RygAi54aATf7uW0RyiTwtu7eOKWXxO6ZqaVgv3MuMjdwIfsByk + bZKErGfIQdm2chPl2oR8sL6Rdj7sx62KUwzCzVzQ8aHBaC2KigVb4VTkQPjQWX71RZ/mHDkHL0qx + W1QqhKk8EyTWkG6MOhvySboUPk/Le0Qb++zD1AO8vwBR1Ijjb/W+mM8OShozphz34RrILdkd3Squ + LmnHBm/5uZxcpCe3x0jI6xDCZsFXZO4XPK6gyRKg8NoFXzE3jXOlfFpoGu8c3cS6opxzCST50nYj + OtJaHheWkuoPf10B6UfS8jUPe0k/o+Srz6nCvR+QKF5KrG0Rosm7QB/ErPBEfpo9ta2+HQp4/TBH + dHi0pKQN+3LlL18h5O+56Mef+2aZrsh5kw3gY5DF8J4djD/4QXMtwPL3HO/r6KXNj1OjQLY934kd + 7VzKz+mlgvpw25B2olW51NkK4ePKnpHFWbbG5cpOh1JdmAQNLaX4fbYK+fHmAAqt9QGoXDaNbGTG + zWet5zDODTAGeGsuEKkXt48WBBVWZszFRL67C8dNycQYHrq5RAYaH+XUBK8G5rvH0Yec+i7XTzkw + cKyZF0GzBiI62PoZsjd9w7KhNWB711wFm7nFX32EI3oiogvfnJgQqzPUke0mKEqnSFlRtthpx0vd + wEKTiya8/b4nI74Ca1E/IvVt185aqniCFz0J8d72GEoen7CAxaBfkSaFMqV2vk6/+fEDnObdyvnF + A3z1IMqz+exsgRAo8n3tA3JwHB0sOynLoLHLTWQku1dJr/ZzgVMu7TGrLY22XmpTgUlYhciI56gU + BvwJwbj1Z+Ltr2HHL7tggtRbdX/zji+6eNYxgcJu//rq8bajn/27BefOhshmUkQ3vnEe4Ok0Cfr5 + RTjsUvxbX1R8TrojsAlxYd4cc5/rL+do/OXzs7p2WBB4pxtjqjXy1IQJUaL9iQqFGBawZiBL0Jt9 + a6tiQ1sKHsqCKstx6VcfbfBR0ytxAoMt12Mt6HD2mjs5N6ensyrUg8BK4QmFFam6hdweDXxJjI4u + IHkDvN9qCbp4qtEZjpSuZn1voRdFMfrW493arYIqnV16Q8fuMJdLXeENVOHEoctttqNNj64NnIPx + 6u8ntGjzT98kU0OQwRM9+uafKPvyFOK1nnUq7ESqw6E2KAaEbculeZ1r+UTrEYNeekez46bszz9D + 5qNRwWaCYIN+7Jh4tV+w+9aHtbx4hUXU22HpqHfNGDid6QeZZW+On7O3ivK+vt0xLfePcb0hU5WF + 220mh9ubc5b8YSzQKj8m0o/zrtxUfafC5PlWUMJez9FsXl4VlPdBSXz+YozL5ag/IFsCHZnDZdY2 + BpUMdMt28Z98N0cktGxj35IwQX6wYe33POmL98hnqqe2Drd0gesN2cg/62rE5c9Yh9p7WL/61u22 + +2Vd5Gk2Xr6UXWrw+x/Azf5GDlGolYL5WKD41WfIGGOVsorVszCqxhPy59LttvxKYukdnjE5rstK + F1FRWOisSo5UeNuP6z5YWUhtXSPeeLfGX/zAisiKTyXe0OYkMjeYlfoHqYrjgYV22gbnt7L/+imV + Nvu7KIazf8PE+fqbSyk/GnipC+Lvn/y1HOnQtPC18izG1oi6P89vYdtiUUAnh3v3gw+/eogYqV90 + LBxX8ccfPtCXdtzQPvHlU2UfiKb3mbPON9X9+T1IhzsYvSpJVaAVLznynmDrloBlsp9/+K0/9xS/ + x0cMzfehIephvx/nUN3eIBZ0gyhi1YxLldoJCPDRI+GIvBF/8xNCMX9h2qBkXF73Rof9xOokXwMG + zOO16KXv9/vSF4+3Kr5hqAb5nfz0/TZFzSD/1ts+3EpA5+rWA89yeV+UusFZa671ZSvecr+KlFQT + wjUS4eV2gch0nVdJkdS14HTcnr94KDnxaDM/viKxKj9GLC0B/ukRkn+wOU5K+JYg/ggSOWXeHHFP + 2GAI8rggtrYisGRRZ4A4ebt+w8gnilVv1aFUOS9yZPY7bdvjVge5uRCknEYb8Cc8SNCeGB7zuzXS + 1okXExhycU3M3sfjEvqxC7e+Kkkqfl7RxgazLgUvtybubvC1hX3QAlSSViPPpOX4YeyAh4GLDWSd + +2Ccpjc04SOVMKYnWkWLHDsbaDNJIj8/dXJhnUFpHGL0y8dN5ngb/Pw3fyGoW9t7Ge8vm5Ihq2Fx + R9xbYkITeD6yussF0BFk5o+fkEaGlM5ZvGTy1UMuUWkyOd//ieGxKHJ/P8uA/hm/t+OenA7pUFKi + TiE8GDeEs/Vz1hb7prEwq88pSVJf6tZIADGUbukFN6Vn0+kZHR7wq0+JslxUZ5bzowi//IKZr776 + +vcV/NZzSMMCjJbu4i+QNJ+AmG9t78xqXrwBw1c+CVooOvOgQR5uUTij46IaDuvNQww8FwjEtfdi + RwBXsjAFT4icrz//slWnBz9/9vT128iXL+DwqM4I5feypDF1GjiIT8dn3F3Y4RgfCpi9Y47okXMY + aT6OLTh9Co8cqH3RNsuRG0lvygv61mcRQWE+ga/f8T3Xy7m5jRjsD15Cotk6j9TyVBZO3S4lFq8X + 0Xa9Gw95WeEO78eKjcYjNh/g/oxC9KdeYvOchz1rY6L3kKVr+XKwaMGT6oPDuNEZk1mEVNgsFHJC + 1C0K1ljIs7WGd4xOAfn5QWKzVsg4hisYv/6I+PI9h+jmRrQ1i8UMZvC6EH//scYNL8AHRSIRpL6A + PVJVOLvyuKTEZ/afTzezV2OA9fbh0aHg9t3crYICze3IYPbpf7SN15sB7uNS93GwYYfmJ6OBR4u5 + odN2ZsdVXqAK623k//Qf8Hf+wBdvkKkFs4OJHShyQqYrCc+5Dfij/qlAlT8f5Ks3O/yJeHcP8cUi + Xv5UAGUm3f35C6iw+qJcBufTw+zinHyxegvjGgQ9Bh4l/p/6bbUMUIDPK7ri3a5zy0f9fPOgpWWI + 0DXvO7oMvCGDqTUxK3d6xx5O97fsuXsBr6JOShqkjA07NjL87quftvfZyuBOiFXy8wenlyPYsKGi + Q86//iH9lC40LfaEUkE7Oxs32uz+u37ILyZTmw4MaWCV5DxmBXulVJn6FtB3VBFFsqdyent4g2W6 + deiAGCXiEtxNctQpD6IAUXTmXSG3IKK7FZ1ykP/6QSYgVvIi5r2MtDWJlA0m/dMjtsDIDp4fegzz + KUvJqcbxyCEkGL/7SMtMUXvoTMDIxyLL0emKoDPyWcLC7KC4eGjxGq2hug1yKrNXlLmFNM7d+uX7 + PD34i1yjaP3yPThPZ5cgRZ46PBrrBr9+qh9KA9FqawlbGNi3J5a7YtRWyZAeQMXj5Iu7p0jp4f46 + Q/3q9XgRq6Zbodm6spHpNxLE8RZRFuguXIL78afnI7ZRaf3zT9DF8/JykZvtDYmCUuIoYhr96X99 + 9bPfyanXfft1BWx9vsLsoXadlT3fNvD1Z3z5PPZ0ETVuADNTXIg1q+P4OR21Rf7Wk35zkmqHfT9j + Ufz2L/32sM/H7/sGKHF4wzSblJL7+jVAK4unDxc0gfnbL4bVU+rwa/aPdPkU1zfMDqqLfn4nMZgp + BF+/DSnRZdfRSrJVmHp7HpU1/VAcQflPPUBOwfNVLmndxvKQ+rq/XVtRW+Xck+A3Polqhm7EYmTy + cCWjTqyjs2jkeA8mIHHTRm6X0NS2hM48YFS2R+anXbvNlg+ZfO2XFJXffo6gdYkIHod7SHxuZSJ6 + 3wYVnmeUY3q0lXIZK+8MX+Ut9Xdf/Tw9QVTAWAkXpHrHE2DlRhrgUOsUmU7mdItmBWf56/8g/Z5c + AS1NxoS7hx37A9sex8UZNwx32lSg+C71GlkiBAEaiwxZDLlrmBNWLCtqOSOfHrruW4+1sJ/X4Fev + R6QfbQV855+Y9nPRfvrkv+pt30UOx7+WGFpvECOXC8BIy0D0pTDA/Lc/IAJqJEUFv/0MovfzYVwM + X57g379dAf/5r7/++l+/HQb9+1o/vxsD5nqd//3fWwX+Lfx76ovn8882BDwVTf33P/+1A+Hvz/ju + P/P/nt+P+jX9/c9fQPyz1+Dv+T0Xz//3+r++r/rPf/0fAAAA//8DADS3AQXgIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac0138c3dcf2e-SJC + - 9953e3d98ad36d29-SJC Connection: - keep-alive Content-Encoding: @@ -3277,13 +3277,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:05 GMT + - Mon, 27 Oct 2025 17:24:58 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-6c65c69d9f-kj7zt + - envoy-router-75677b5679-mq8xr X-Content-Type-Options: - nosniff alt-svc: @@ -3295,7 +3295,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "290" + - "269" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3303,7 +3303,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "372" + - "288" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3311,7 +3311,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199998" + - "199999" x-ratelimit-remaining-tokens: - "199999930" x-ratelimit-reset-requests: @@ -3319,7 +3319,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_1e9aa6f6439f4cb6942933a789f22983 + - req_1fe06d0d05b346d8ac012ed231f9f0bf status: code: 200 message: OK @@ -3480,7 +3480,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac0171c889434-SJC + - 9953e3dc8c42a63b-SJC Connection: - keep-alive Content-Encoding: @@ -3488,19 +3488,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:05 GMT + - Mon, 27 Oct 2025 17:24:59 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=9cE6C8LctPL3VMTSfKqkWkHk2IkmcoeK_r85Q1CJ9II-1760986745-1.0.1.1-9kPKgOnwBpNqNHFj9cfkRTgGm9fuJE9Db1vvnzMBUgtRkdQYzLgv1P5VoNmFLz4rLse.XnBE0OG4noNeX54hl5hBsJvBq5A9AYhFvqO8hLQ; - path=/; expires=Mon, 20-Oct-25 19:29:05 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=2nRPuf4KmYw5CuFmT5ByJ.4h7p7sg84xddLPg8EPhJo-1761585899-1.0.1.1-ykhb5OODLu2S8myywXmzaPBmZhi7Rzg0a.Euz09y916_iD5mg8QXfI4ITWbsU6eDbQyV7Als1jtoJcTtjLZ4LNHlj9Sntp_5OE_QB_p_6dI; + path=/; expires=Mon, 27-Oct-25 17:54:59 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=Rmk7Nb3EpJOCsvkpSo8_XFTeve8xCDyLouxwqTL6ykw-1760986745974-0.0.1.1-604800000; + - _cfuvid=7fFoHaDhffiUT899egxG2GGk5W5gcZAeQ60_Di1zgdE-1761585899245-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-canary-6c65c69d9f-kj7zt + - envoy-router-canary-789955d6b7-jsvgq X-Content-Type-Options: - nosniff alt-svc: @@ -3512,7 +3512,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "213" + - "106" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3520,7 +3520,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "451" + - "187" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3528,7 +3528,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199999" + - "199998" x-ratelimit-remaining-tokens: - "199999996" x-ratelimit-reset-requests: @@ -3536,30 +3536,236 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b06ec83e49f047e3bd2db78e1cc20bad + - req_6550f9a1d3be493db3d0de43a95ccf09 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n A Perspective on Explanations + of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 + \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. + White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of + Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, + University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health + Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: + andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + \ Chemists can be skeptical in using deep learning (DL) in decision making, + due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. + \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which + addresses this drawback by providing tools to interpret\\n\\n DL models and + their predictions. We review the principles of XAI in the domain of\\n\\n chemistry + and emerging methods for creating and evaluating explanations. Then we\\n\\n + \ focus on methods developed by our group and their applications in predicting + solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. + We show that XAI\\n\\n methods like chemical counterfactuals and descriptor + explanations can explain DL pre-\\n\\n dictions while giving insight into + structure-property relationships. Finally, we discuss\\n\\n how a two-step + process of developing a black-box model and explaining predictions can\\n\\n + \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep + learning (DL) is advancing the boundaries of computational chemistry because + it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 + Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum + computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According + to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D + - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable + through experiments 2) as a \u2018resource of inspiration\u2019 to motivate + scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover + new observations. However, the rationale of\\n\\na DL prediction is not always + apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 + DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason + about the input and output of an DL model, not the underlying cause that leads + to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL + to exceed human level performance \u2014 humans are\\n\\nnot good at predicting + solubility from structure for example161 \u2014 and so understanding how\\n\\na + model makes predictions can guide hypotheses. This is in contrast to a topic + like finding\\n\\na stop sign in an image, where there is little new to be learned + about visual perception\\n\\nby explaining a DL model. However, the black box + nature of DL has its own limitations.\\n\\nUsers are more likely to trust and + use predictions from a model if they can understand why\\n\\nthe prediction + was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe + model is not learning spurious correlations.18,19 Two infamous examples are, + 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s + watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses + by looking at the font choice\\n\\non medical images.21 As a result, there is + an emerging regulatory framework for when any\\n\\ncomputer algorithms impact + humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none + can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence + will require rationale for the predictions due to regulatory consequences.\\n\\n + \ 1there does happen to be one human solubility savant, participant 11, who + matched machine performance\\n\\n\\n 2 + \ EXplainable Artificial Intelligence (XAI) is a field of growing importance + that aims to\\n\\nprovide model interpretations of DL predictions Three terms + highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. + Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree + of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 + clarify that interpretability can be perceived as \u201Cknowledge\u201D which + provide insight\\n\\nto a particular problem. Justifications are quantitative + metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like + test error.27 Justifications are evidence which defend why a\\n\\nprediction + is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain + prediction was\\n\\nmade.9,28 Interpretability and explanation are often used + interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6386" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RUzW4bNxC+6ykGPCWAJEhyHdnKKSha1ECbAj0UDaJAGJGj3bG55HaGK1swDPQ1 + +np9koJc2btBnIuw4sz3zTe/jxMAw85swNgak21aP/vxz19/vnWf4sUvxPX6tvr99hPtVx8//maX + F5WZZkTc35JNz6i5jU3rKXEMvdkKYaLMuly/W15eXV5dXxdDEx35DKvaNLucrRary9niarZYn3F1 + ZEtqNvB5AgDwWH6zwuDowWxgMX1+aUgVKzKbFycAI9HnF4OqrAlDMtPBaGNIFIrox20A2Brtmgbl + tDUb2JqfHlqPHHDvCVASH9gyeuCQyHuuKFiCN399uHkLrICwFwy2hniADzeQakyAzgmpkkKqCfYe + 7d1sHx8gYOqEsqcjasETSuBQwf4ErcQju/wnxegVUizxpBVKUGqlgMFlQhZohRzbXGWdw00C5KZA + Womus9QDBgIsnr22mnwLnZIodMGR5OI4uK9PY1K4JyFo0NEUOOQeapEmnaYiQ+hI6PObtp1w7BRs + FCGPZ1F/5E9ykEga3Yyk7NlzOuXK5do4qoRKRequwTCS9OIYknBQtjk/7DN7D7edlr6cM0Mh+LvD + kDjneiRoKAlbhTc0r+ZTSKQJSCTKW+DgCi5UJeszJWgdO+9gT32W5N4DBqA8CqFEAUdqhfekZ5y2 + ZLOGUeHgHrWUbQ43r2SM0OZ5PFJuVEuSTlO4r9lTHyeP3OAbAG06+1pSBetR+HAqjajPPf7vn3+1 + L25AD44sK8cwa/COQzXfmmk/3kKejhgs7dRGoTzmy8U2PI2XQujQKeaVDJ33IwOGEM8jlNfxy9ny + 9LKABw6s9S5PSQx5qTTF1hTr0wTgS1no7qsdNa3Epk27FO+o0C5X1+ue0AwnZDD/sD7vu0kxoR/h + 1u+ecV9R7hwlZK+jq2As2prcgB1OCHaO48gwGSX4rZ7XuPvkOVQDy8Xq+wEGg7XUJnK7YYhecxPK + V/Z7bi+lLpKNkhzZ0i4xSW6HowN2vr+ARk+aqNkdOFR5PrmcwdzxydPkfwAAAP//AwA0rSgrAwYA + AA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e3df8bc3cebd-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:06 GMT + Server: + - cloudflare + Set-Cookie: + - __cf_bm=85dsvWzMP1nT9B4BCbEUVXQpDxM_3OGSt1lU3iGNQd4-1761585906-1.0.1.1-vztgFOFYPaPNPL0whP08X0uH0Mn1AEVxUgaqux6Z1H2Jvi40Bf98lnxgIK9eTDmWXlBwrUKykY8mOQDWaV0qUXt29O8fpDfguV24PqvbrX4; + path=/; expires=Mon, 27-Oct-25 17:55:06 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=guKBymV4.pdOZXlLkpRnoW7N8yjz9r0cEoSd0V6jJnI-1761585906620-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7054" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "7101" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998470" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_e2bc1c5c57cf470a9ac39fd90bb4bb17 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n a passive characteristic + of a model, whereas explainability\\n\\nis an active characteristic which is + used to clarify the internal decision-making process.\\n\\nNamely, an explanation + is extra information that gives the context and a cause for one or\\n\\nmore + predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy + and interpretability are two attractive characteristics of DL models. However,\\n\\nDL + models are often highly accurate and less interpretable.28,30 XAI provides a + way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be + viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable + DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL + model has correctly learned the input-output relations, then\\n\\nthe explanations + should give insight into the underlying mechanism.\\n\\n In the remainder + of this article, we review recent approaches for XAI of chemical property\\n\\nprediction while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin various systems these methods yield explanations that are consistent with known and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn @@ -3612,53 +3818,67 @@ interactions: \ We present an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 Shapley values were proposed as a local explanation method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6414" + - "6361" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW/jRgz9K8RcNgFk13Y3QFe3YLcLpJtDT0GLupCpGcqa7oijcjj+QOD/vhhp - 3SQtehLERz6+R4p6NkN0FExtbMDsaJEiM+ni/eJusVlt7lYfNh9MZbwztRnSvlmt7/DLl/wR14+P - 8fPT8Zfz6Sd5+v3JVEbPI5UsSgn3ZCojMZQApuSTIqupjI2sxGrqP56v+UqngkyP2ux2u79S5C0/ - bxlga1IeBpTz1tSwNb/dP0Bhcgm6KPDzaQzoGdtAcP8AN2/eRX3nrccAD6wUgt8TW7pdwoPCKPHg - HSVAOOIZNAIeonegPYEKOlrEroOW9EjEgNZmQXsGZAeelWQUUmx98HoGz+CIRgiEwp73MM1zFmh7 - GrzFUBqOJHqGUch5qz7yEoobiwwtwcHTkRxgUaTHuEhKYymylFINnZekFTg6UIhj6YFXVUrQZoXM - r3QFgk+Ps4xq0pzIRnYVoHOlmMqYGIuIVLy/aEpLuOfXOPgEdFJB8NxFGeag9qiw9wdKMO3zpFMb - iznR5PsNY7E5kPbRpatdG8o30fnZ8j7EFgNEgRDLsF6sTAyzB0xAXnuSAovn5C3ctNkHLYE4re67 - 5XfH3ist2nh6d1tYi4Gp4IcxJl300cINjmOY2ndKUnbup92VL4HPM9HtEn695l/1d9HmBGUuV42v - Nq69xLzvX9gcKk7iO0LNQoCq4ttcbFWQskjclw3O9bNPG3Oh7tBqnodSRiyY1B/ozeqWW1PNNyIU - 6IBsqUk2CpVbWa+2fNnybrczlz8rkzSOjRCmyKY2xK7RLGy+A4n+zuU4TM05hMrk6X7rZ+N5zNpo - /EqcTL1+v1lVxqLtqbFCk4rmbco/uBC6/8OutaUDjT0NJBiau+G/+S/ouv83eqlMzPo6tFn9WJlE - cvCWGvUkpjbT3wLFmcvlGwAAAP//AwB14Ohy6gQAAA== + H4sIAAAAAAAAA3RUTY8bNwy9+1cQOmUBj2tv46zXt0Xaoi6S3pIGqAODljgeJhpRK3EcG4sF+jf6 + 9/pLCs2s106bXOagR3Lee/x4GAEYdmYJxjaoto2+ev3+zS+ffnxzvHlr3//27qdfV7ehDce6nr/9 + vb0345Ih209k9ZQ1sdJGT8oSBtgmQqVSdXbzajZfzBe3tz3QiiNf0nZRq3l1Pb2eV9NFNb15ymuE + LWWzhD9HAAAP/bcwDI4OZgnT8emlpZxxR2b5HARgkvjyYjBnzopBzfgMWglKoSf9sA4Aa5O7tsV0 + XJslrM3Ph+iRA249wd0KXny4W10BZ9CGAK3yniAmsZQzSA3oHIcdUEkKWJRnUIFeH8REju3zo/WY + uD4CDvA/f/2dgYNSCujBkeXMEqoWP3PYTeCPhj0NeEykuGXPeixMEGIRNhCJlPTYMxmqjgcuRcCQ + EJPs2VEGOmhC4FBLanumoA0q7HhPGXpTDgoYHFjsMnpIhLkwryWBBAJJ0EqiS1UTWAWIqdhiaQwf + 7lYgtVKALlPhqV+kykoRMMYkaJslaEIOgAHQ2i6hEmw7BYl43xE4oniSoQ0FQFW0DUTJWjVi/+Nz + oc+O0PsjJKo9WQVNHUFLtsHAuc2TnlRL2ojLYDHAlmDnZYu+CPJi0cOLL32lfLKO3FVvBAdNHDLb + EsFK1VYOY8jk6+pERNLxqhQq5vahP5y4TuC1tK2EM3kl2wS+76i03frOEdSE2iUqOhNvu6JrDLlL + SXbFmt6KPB66Il2ZhRqtdgP50rOEuR/JS2MmazMeBjuRpz0GS5tsJVEZ8Nl0HR4v1yFRXdptlhA6 + 7y8ADEF0qFgW8eMT8vi8ejUHzs1mmJOyTlklmh59HAF87Fe5+2o7TUzSRt2ofKa+7Ox68bTL5nw8 + zvCr2ewJVVH0F3mL2xPyVcmNI0X2+eIeGIu2IXfOPR8P7BzLBTC6EPh/Pt+qPYjnsDtXefly8d0f + nAFrKSq5zXmbvhWWqNzX74U9W91TNpnSni1tlCmVdjiqsfPD7TP5mJXaTc1hVw4K9wewdHz0OPoX + AAD//wMAvhxLqv0FAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac01b19779e52-SJC + - 9953e3df9f389e59-SJC Connection: - keep-alive Content-Encoding: @@ -3666,405 +3886,86 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:10 GMT + - Mon, 27 Oct 2025 17:25:08 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=l5MDhjZQAi1nL85zmqTzGtldFKO4M87n7bmuFRod4bs-1761585908-1.0.1.1-jEhqnhoEDwdinMXiSKTJ2SvNiyw35NqmBU40fh7XElGentc82fXcaTpZNLU8XamP4HWjfU8jTiFzHrl8NwwFqaLxSPUtHmSMpQ3XZPveJvk; + path=/; expires=Mon, 27-Oct-25 17:55:08 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=wCE705O5uIgXGYPffUQCkFdtKF6AHtqV2QXdJ8n9GZg-1761585908483-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:07Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:10Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:07Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsPdbWWd6jte1qt5cw - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8882" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4649" + - "8949" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998476" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_40078b42266144308cb7a4d21a9f3372 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6455" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJdaxw5EPwrTT8cDoyXte8Wbudt8kEwCUcweTDchlmd1LujRNOSu1s+ - G7P//dDETkiOg3sSqErVVaV+xDkHStijT64GOtfMTHb+2/nm/HJ9uVlvL7fYYQzY46zHcX3x/t3L - yeWb97++ivLH9eF3uXXDy4/YoT0UaixSdUfCDiWnduFUo5pjww59ZiM27P98fOYb3TdkOXrc7/ef - NfOOH3cMsEOt8+zkYYc97PBmuIKmFBQOWeDNfUkusvsrEQxi8RB9dAmu2CileCT2tILB+ywh8hEs - g00EQgeShin4aBQgMtgUFejekxTroI0h9nkuTrXRMnsqph2Yu8+c50jaQS4li1WOFknBcQA/uZSI - j6Rg+W8nAa5JS2aNi8MrOBtEIpkDMnBp1cHl+mL7YgWvh+sPA0yuyfyfVHB2M1y9gA+Sj+JmOHtb - mVvCX2CY3DfVjxPBIVJqCX2qgRTunMRcFQIdYjOeWTuYyaYctFsyuFJS9G6BWjORjaQI2eJndn6K - TJDISZu4Wroy8hPH29pqiHPruUi+i4GAWhZ+Umvyn6suiZ6u2i/+rAlFKET//U0gH/Wr1YlSaZSq - JAqVA8myDwvPpKq1mvVBjWZd7bD7ukRCie4cexrVZ6G2TNsdn3a83+/x9KlDtVxGIaeZsUfiMFoV - xidA6ba22rHnmlKHddnv/hEjl2qj5S/Eiv3Fdrvp0Ds/0eiFlojjj5T1My7kwn9hz2/bBCoTzSQu - jZv53/zv6MX0M3rqMFf7wd9m3aGS3EVPo0US7HFpz0nA0+kfAAAA//8DAF+XjuUKBAAA - headers: - CF-RAY: - - 991ac01b192967b5-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 18:59:10 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:08Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:10Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:08Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxsPcrFRshwqH7JahZU - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "4691" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n - A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi - P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n - \ D. White\u2217,\u2021\\n\\n\\n \u2020Department - of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department - of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n - \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n - \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n - \ Chemists can be skeptical in using deep learning (DL) in decision making, - due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. - \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which - addresses this drawback by providing tools to interpret\\n\\n DL models and - their predictions. We review the principles of XAI in the domain of\\n\\n chemistry - and emerging methods for creating and evaluating explanations. Then we\\n\\n - \ focus on methods developed by our group and their applications in predicting - solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. - We show that XAI\\n\\n methods like chemical counterfactuals and descriptor - explanations can explain DL pre-\\n\\n dictions while giving insight into - structure-property relationships. Finally, we discuss\\n\\n how a two-step - process of developing a black-box model and explaining predictions can\\n\\n - \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep - learning (DL) is advancing the boundaries of computational chemistry because - it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 - Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum - computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According - to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D - - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable - through experiments 2) as a \u2018resource of inspiration\u2019 to motivate - scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover - new observations. However, the rationale of\\n\\na DL prediction is not always - apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 - DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason - about the input and output of an DL model, not the underlying cause that leads - to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL - to exceed human level performance \u2014 humans are\\n\\nnot good at predicting - solubility from structure for example161 \u2014 and so understanding how\\n\\na - model makes predictions can guide hypotheses. This is in contrast to a topic - like finding\\n\\na stop sign in an image, where there is little new to be learned - about visual perception\\n\\nby explaining a DL model. However, the black box - nature of DL has its own limitations.\\n\\nUsers are more likely to trust and - use predictions from a model if they can understand why\\n\\nthe prediction - was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe - model is not learning spurious correlations.18,19 Two infamous examples are, - 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s - watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses - by looking at the font choice\\n\\non medical images.21 As a result, there is - an emerging regulatory framework for when any\\n\\ncomputer algorithms impact - humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none - can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence - will require rationale for the predictions due to regulatory consequences.\\n\\n - \ 1there does happen to be one human solubility savant, participant 11, who - matched machine performance\\n\\n\\n 2 - \ EXplainable Artificial Intelligence (XAI) is a field of growing importance - that aims to\\n\\nprovide model interpretations of DL predictions Three terms - highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. - Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree - of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 - clarify that interpretability can be perceived as \u201Cknowledge\u201D which - provide insight\\n\\nto a particular problem. Justifications are quantitative - metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like - test error.27 Justifications are evidence which defend why a\\n\\nprediction - is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain - prediction was\\n\\nmade.9,28 Interpretability and explanation are often used - interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6439" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RU0W7bRhD8lcW9uAZoQ1LtImaeAqRoE+QlQIsGqArpeDcUrzruMXtLyYKhfy+O - kmKnSZ4I7M7uzszu8cn0ySOa2rhoR4+bnJihN3c39zeL2eJ+9rB4MJUJ3tSmz5vVbP5x+B2v2uG3 - h49/Nv6TDvP5+/kcpjJ6GFBQyNluSkBSLAGbc8hqWU1lXGIFq6n/frrgFY8lM31qs16v/82Jl/y0 - ZKKlyWPfWzksTU1L8+nNOyqdfKY2Cf36OEQb2DYR9EY0tMEFG+kdK2IMG7BDRZbagOhJO6tkQ59J - Ew2SdsGDJu0UWCGDQK2GxJlSSx4YKMIKB97QT28/XNMg8MFNiFv6owPh0UEGJY82MDJpJwBtcSCF - 9Lmm+fXE5dS6CTHogQQtZOKgHchjU2pSS93YW6aRPWRSeMEHVgmcg6N90C4w2TNpy56cZWpAA8Qh - 7ODJZrractpH+A2uzjKLgtJi02mZa0u4iehf0+Ka3o95Mu4s3Qro82hZQzFjB+qhElw+2Vd8pTEX - Afvu8IVK7tIYfWGiMmaFryiGLUiRlSCS5DX9fH1aF58HeWQnocG5kYOoDfzCZNrbTL31uKW/uhDx - Yktna4oDeO45cU+tggtFf8K7zvIGtomH6tsGIRczynnuQK6zYp1CQtbgykrO8iradxDYfBpW7u25 - nMk6/U75xEATuWgltIdp2dN8tpE8XMgh8U1vt2U5gySHnG+p3Lf1XpDzdE+gqyZat6UmPV4RWx0n - ifT2w4lapubwYsmaUpxO64vSC6xYpR2CfHXFS1OdHpkgYmfZYZVdEpTHNp8t+bjk9Xptjv9UJmsa - VsWExKY2YL/SUdicExmfx/LaTM1jjJUZpx9A/WQCD6OuNG3B2dTzu7tXlXHWdVg5wbS11deQ2SUv - sP5HuUttmYChQw+xcXXff4t/zs67/2ePlUmjvgwtZr9UJkN2wWGlAWJqc3qM4s3x+B8AAAD//wMA - r13VZSsFAAA= - headers: - CF-RAY: - - 991ac01b0c84cee1-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 18:59:11 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:08Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:11Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:08Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxsPacu92V8kryDapB4 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "5432" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnal - molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate - that would result in the model predicting the molecule\\nto not contain the - \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual - and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n - \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, - is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has - a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence - of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. - To generalize to other molecules, Seshadri et al. 31 applied the descriptor - attribution\\n\\nmethod to obtain global explanations for the scents. The global - explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering - chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting - natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D - can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups - separated by four\\n\\n\\n 20bonds, and - a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nnal molecule. The counterfactual + indicates\\nstructural changes to ethyl benzoate that would result in the model + predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 + similarity between the counterfactual and\\n2,4 decadienal is also provided. + Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, + which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure + 5.142,143 The resulting counterfactual, which has a shorter carbon chain and + no carbonyl\\n\\ngroups, highlights the influence of these structural features + on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other + molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod + to obtain global explanations for the scents. The global explanation for the + \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around + many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language + explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe + explained by the presence of a heptanyl fragment, two CH2 groups separated by + four\\n\\n\\n 20bonds, and a C=O double + bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe importance of a heptanyl fragment aligns with that reported in the literature, as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, the importance of a C=O dou-\\n\\nble bond is supported by the findings reported @@ -4113,51 +4014,67 @@ interactions: the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6433" + - "6380" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTwY7TMBD9ldGcQEpXbaESmxsIIS2CExxWIih17Wlj1rHTmfHSUvXfkdOW7YI4 - Jc57nnnvzeSAfXIUsEYbTHY0kRQj6eT1ZDGZT+eL6e38Fiv0DmvsZdNOZ3M72370v96/Ww38ZRi2 - sv2g9z1WqPuBCotEzIawQk6hfDAiXtRExQptikpRsf52uPCVdgUZHzUul8sfkmITD00EaFBy3xve - N1hDg/dv74BpTSygCWg3BOOjWQWCt3fQk3bJCWQhV2AflXhgUuiN7XwkCGQ4+riB0bLcwF0E7QhG - UTuFtIY+BbI5GIaByXmrPsUzvYL7qy4+2pAdXV2wKZeOa2M1m3BSF00pIGCiA0di2Q+a+DmmnVGw - Jl78wCoY+zBZpd25MawTwyppBzaULNfejlfHqkwbJpFyVCMPcgNfOwLaWeJBwXmxWYQEbJeSFO/X - JlamZJVOKZjsPEVL8MKlvuig3UCsUsHnT0/viSGmODmfX1bws8jXseeVKelSDg6MtakfgpeuGtWO - ZGMtiYAXMI/Gh3F+msYaOTrisP8zo5tRbkdhGOda5s5Z9Go4p2xN8Sjg15fIDF+N2yZmshr2Nw1W - p7ViCvRooqVWbGIq63XbxGMTl8slHr9XKJqGlslIilgjRddq5ohnQGibS1ZYxxxChXnc+PqAPg5Z - W00PFAXr2WI+r9Aa21FrmcZs2ueU6QVnMu5/2OVu6UBDRz2xCe2i/5f/hM66v9FjhSnrM32v3lQo - xI/eUqueGGssf6oz7PB4/A0AAP//AwDB5g1CHAQAAA== + H4sIAAAAAAAAA3RUTW/bSAy9+1cQc2oB2XDcuol9SwsUDdDdy+4Wxa4Lgx5R0jSjmVmSygeCAP4P + 7WX/nn/JYiTXdtD0ooMe+fj4OOTDCMC40izB2AbVtsmP3336+P7rB39bL962qXz7+lLdvJz+9fnf + v99/+N0UOSNuvpLVH1kTG9vkSV0MA2yZUCmznp2/OZtfzC8Wix5oY0k+p9VJx/PxbDqbj6cX4+n5 + Pq+JzpKYJfwzAgB46L9ZYSjpzixhWvz405II1mSWhyAAw9HnPwZFnCgGNcURtDEohV70wyoArIx0 + bYt8vzJLWJnPl1fwgu6SRxdw4wkur14CU0UsoBFa0iaWAtqgwj4MElPpbO5bIFaw8Wivx5t4B32f + MoGrAG30ZDuPDIljItb7k7QCUhQdN9FCru+C9V1JAjZ2QYkrtNqhH+oF7Avttt9bF1yLHkS5s9ox + erANhpr28tArMeCgYrf9TyB2mjrdbb9jKKEkseySRn5CXMBt42wDlVNAEPLVeN+nCzVIxxxrVMpm + oCq7Taf0xAGN4LLqxKS9g7ah1ln0UBFqxySQy9cUiDNRwF772GOoO6wJuBeCnmQCfzYkBJgSR7QN + CdxGvoYqMlifx1s520f3lEw1k0hvKLo2K9kQSEIWKgB7fVlR0UdX2DrvkHNYGds8SLrLk5EBtxig + CzbeEB8spt3222F+TH6wrHFJJvAHebKaTcLQj3F4K1BSolAKxADaEGBXOgqWBhMi+qFabsFakuGV + 5YkNLgb0Ai9oUk8KqBlzrsrL3hioHPkSNuzKPPPfPhbQdC2G3fZbi7ZxgQYK3L+xXCY1zkeJqbmf + rEwxvH8mTzcYLK3FRqa8B4tVeDxdGqaqE8wrGzrvTwAMIergQl7XL3vk8bCglQtOmjUTSgx56URj + Mj36OAL40i9892SHTeLYJl1rvKae9uzVfDEQmuOJOcJvzud7VKOiPwKz6avXxTOU65IUnZeTq2Fs + fl7lSc3ZxfHK5JnFIzYdnfT4s6Tn6If+XaiPLPOz2S8LHAFrKSmV6+OGPRfGlA/xr8IObveSjRDf + OEtrdcR5IiVV2PnhSBq5F6V2XblQ5xV2/aXMQx89jv4HAAD//wMAj3tx8CYGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac01b0d6c67c1-SJC + - 9953e3df8c8c1690-SJC Connection: - keep-alive Content-Encoding: @@ -4165,87 +4082,102 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:15 GMT + - Mon, 27 Oct 2025 17:25:09 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=GGdfJKPTUz0SvevenQqfUUSt.S_q7jTnnEDAYtn8my0-1761585909-1.0.1.1-EzkEIV7hTYilz9ffjodWajCaHSd.c6gYKiu0NG4AJBTdlnWDCqPZii9uFXOAj.glPS2m42UmwdTLRGgVP5V8PrsS_21AOoZuWnGQh3NU.k0; + path=/; expires=Mon, 27-Oct-25 17:55:09 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=QFTT01SLGkf8LtN__avUFoFj02ucOafcfdwDxwkP5R8-1761585909689-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:15Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsPb7MyTLYkhDKsozs - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "10068" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "9198" + - "10149" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998468" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_1b1b9dae4e9c40569c663e1162c0aac2 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 22-25: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nut - to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nthe correct underlying chemical principles. We - also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to - structure-property relationships without needing to trade\\n\\nbetween accuracy - and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, - that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n - \ 22highlighted below:\\n\\n\\n \u2022 - Explanation representation: How is an explanation presented \u2013 text, a molecule, - attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: - \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n - \ tance\u201D between two molecules is minimized. Molecular distance is subjective. - Possibil-\\n\\n ities are distance based on molecular properties, synthesis - routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: - As black-box models move from research to industry, healthcare, and\\n\\n environmental - settings, we expect XAI to become more important to explain decisions\\n\\n - \ to chemists or non-experts and possibly be legally required. Explanations - may need\\n\\n to be tuned for be for doctors instead of chemists or to - satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space - is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D - can be defined from purchasable to synthesizable to satisfied valences. What - is\\n\\n most useful? Can an explanation consider nearby impossible molecules? - How can we\\n\\n generate local chemical spaces centered around a specific - molecule for finding counter-\\n\\n factuals or other instance explanations? - \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations - and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is - a lack of a systematic framework (quantitative or qualitative)\\n\\n to - evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n - \ framework, or should explanations be chosen and evaluated based on the - audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts - to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s - logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 22-25: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nut to models informs the + XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain + molecular property prediction models because users are more\\n\\nlikely to trust + explained predictions, and explanations can help assess if the model is learning\\n\\nthe + correct underlying chemical principles. We also showed that black-box modeling + first,\\n\\nfollowed by XAI, is a path to structure-property relationships without + needing to trade\\n\\nbetween accuracy and interpretability. However, XAI in + chemistry has some major open\\n\\nquestions, that are also related to the black-box + nature of the deep learning. Some are\\n\\n\\n\\n 22highlighted + below:\\n\\n\\n \u2022 Explanation representation: How is an explanation presented + \u2013 text, a molecule, attri-\\n\\n butions, a concept, etc?\\n\\n\\n + \ \u2022 Molecular distance: in XAI approaches such as counterfactual generation, + the \u201Cdis-\\n\\n tance\u201D between two molecules is minimized. Molecular + distance is subjective. Possibil-\\n\\n ities are distance based on molecular + properties, synthesis routes, and direct structure\\n\\n comparisons.\\n\\n\\n + \ \u2022 Regulations: As black-box models move from research to industry, healthcare, + and\\n\\n environmental settings, we expect XAI to become more important + to explain decisions\\n\\n to chemists or non-experts and possibly be legally + required. Explanations may need\\n\\n to be tuned for be for doctors instead + of chemists or to satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: + Chemical space is the set of molecules that are realizable; \u201Crealiz-\\n\\n + \ able\u201D can be defined from purchasable to synthesizable to satisfied + valences. What is\\n\\n most useful? Can an explanation consider nearby + impossible molecules? How can we\\n\\n generate local chemical spaces centered + around a specific molecule for finding counter-\\n\\n factuals or other + instance explanations? Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n + \ to explanations and the local chemical space.149\\n\\n\\n \u2022 Evaluating + XAI : there is a lack of a systematic framework (quantitative or qualitative)\\n\\n + \ to evaluate correctness and applicability of an explanation. Can there + be a universal\\n\\n framework, or should explanations be chosen and evaluated + based on the audience and\\n\\n domain? For example, work by Rasmussen et + al. 58 attempts to focus on comparing\\n\\n feature attribution XAI methods + via Crippen\u2019s logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch reported in this work was supported by the National Institute of General Medical\\n\\nSciences of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated @@ -4279,52 +4211,259 @@ interactions: (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6389" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RU24ojNxB991cUetqF9mA74x2v35ZAYGCTwJKEXLwYWV1tKaOWRFXJlwwD+Yf8 + Yb4kSO2ZdtjZl37oozp16tTlcQKgXKvWoIzVYvrkp9/+8vE7+vBX+pE/3a++P9z98M3tp99+X/Lq + 50X4qJoSEXd/opHnqBsT++RRXAwDbAi1YGGd372bL1fL97O7CvSxRV/C9kmmy+litlhOZ6vp7O4S + Z6MzyGoNf0wAAB7rtygMLZ7UGmbN858emfUe1frlEYCi6MsfpZkdiw6imhE0MQiGKvpxEwA2inPf + azpv1Bo26ieLgCeDlARaxyYzI8OvH+7hDZ6S1y7onUfQJK5zxmkPLgh67/YYDL4FF0AsQs1yEogd + 9NGjyV4TJIoJSc6QCFtnilE3cC/Qke4vSTRDj2JjyyARev2AsPPaPEx38QTVtqtghhxapFJiO6gK + LQhllmMksecGLPrkwh50qYLhaFEs0kDE4FFTABOJ0AgYi70zuiRwwbjkkW+g2KGz2Ehc5UdG6Byx + gJB2oXIbk0nLF0K5KU4E0Cn5c3lY6pMIeBLSRoCFspFM+O/f/7w4Q+h1Lc26xHB0YmOuudrCELvu + ks6cq7YzWLe33u2tQEwYag7HnJHXYOOx5CNMhIxBoDYwDPzwpvSnee4OcgNahNwuV7gpHTSYhN82 + 0GI3lDq2sq2DZRC6SGBiDoLUaSNZl7oJ99lriXSuLdG5dWU6ppzQlLGBgNhyA1aH1hfiF+85aTP0 + URtxBydnMN51XZFXmmsRistlrvjMgr0WZxpIkdnt/HlMJdr5SNg2gAftcy16GLRjpAeuuq/9uNmo + ZlgHQo+HUtuWTSQsa7HahKfrHSLsMuuywSF7fwXoEKIMhGV7P1+Qp5d9LUay3RJqjqHsIEtMqqJP + E4DPdf/z/1ZaJYp9kq3EB6y08+X8/UCoxoszwu9miwsqUbQfgcV8MW9eody2WNziqyOijDYW2zF2 + vDjF4XgFTK4K/FLPa9xD8S7sR5bb29VXE4yAKQOJ7Xa8AK89IyxH+WvPXqyukhUjHZzBrTik0o4W + O539cDDVMGHbzoU9UrkKcun45GnyHwAAAP//AwDQ071fMgYAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e40daf0ccebd-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:16 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "9370" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "9395" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998474" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_bd453a84de4c48c281b0f5f10673128b + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual approach, + contrastive approach employ a dual\\n\\noptimization method, which works by + generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive + explanations can interpret the model by identifying contribution of\\n\\npresence + and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6442" + - "6346" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RT328kNQz+Vyy/3J00W+1WV7ibt4KQKBJIqDwgsWjXm3h2wmWSYDu9Xar931Fm - 2isF8TTKfLa/H04eccqeI/boIlXPK80psa3er25W1+vrm/XH64/YYfDY46TH3Xrz8w8/3n97727/ - Oo3f3NevDj992HwfPHZo58KtilXpyNih5Nh+kGpQo2TYocvJOBn2vz0+1xufGjJ/etzv939oTtv0 - uE0AW9Q6TSTnLfawxV9v70B4YFGwDN+dSqSQ6BAZbu/g7auzWBiCCxThLhnHGI6cHL+7grsENjLM - Qk4GeYApR3Y1kkCRXFjsDEXYB2chJ5jj0Q4ad1Coyr6R80IGh0ju0+qQT+CZC0QmSSEdn9qu4JeR - oVBhAR/UVVVWsJFsnjexjdkrOEowcixtevMmVe0fGhQoeaDWqxCGp9lAwi98LouwM3AjT8FRhCIh - uVAi69XMRaVIJjeyQkhLmZqcISQXq2+B1GQsAzmrFOHIiYUaewcDk1VhIDMJh7rEskjvZmkPJCFX - XUJJcxcIF2HlZLRYeNvi7p7D5tb5Mk67thDHxfTdkhlVG7MokH/IjoxhyAIEb17ynlNo1ocgah0M - Ocb8mT0czs3wmy+OgRQICtnYFqcm1TU7qy/bFo6LyDEUhc/BxlwNTMi38eRcFXLnWUFoGRVho0OI - wc5XW+yWiyoc+YGS4526LNwu7Ga9TZdt2u/3ePm9Q7VcdsKkOWGPnPzOqiR8ApT/rO2KYp9qjB3W - +RH1jxhSqbaz/ImTYr/5evO+Q9cWuXPCs+7d65L1My5M/v+w597GwGXkiYXi7mb6b/0Luhn/jV46 - zNVe6bv50KGyPATHOwss2GN7/J7E4+XyNwAAAP//AwAFS+VpbwQAAA== + H4sIAAAAAAAAA2xUwW4bRwy9+yuIPUnASpEMKHbtk+vKhoHYTWujbVAFBjXD3aU9O7MZchQrhoH+ + Rn+vX1LMrhPZbS4L7Lzh4+Mbko97AAXb4ggK06CatnOT09/enaWzc4M//v7pbjm/+nDya/3pgn85 + +BBmD0WZI8L6jox+jZqa0HaOlIMfYBMJlTLr/ODtfHG4+GE+64E2WHI5rO50spjsz/YXk9nhZHbw + HNcENiTFEfy5BwDw2H+zQm/poTiCnqU/aUkEayqOvl0CKGJw+aRAERZFr0W5A03wSr4X/bjyAKtC + Utti3K6KI1gVNw0BPRiKnYJlMUmEBExIXilWaDShA3roHHrMlQqgAMI9bUFDcMAe/ji5gFF/hT2u + HcHJxRiqEME01LJo3E7h9BWhAEaClj236NwWTIO+Jgvss3xDAtqgQuW4gxAB7V0SBYTex3/++lug + i2TZZEFlTtUml53vtXkInXLLX3q90MWwdtTCqE/HXyiX2WeBzw07GpKzryEk7ZKOp3DT0DbHbdgS + uGDQlYB9sr489sJ1owIjmtbTMqviapsZquSHaw7qGFInoAHQKUWQ4NKaHet2DOgtGPQQaUPoQLoU + OaTseozkBpuncEnaBCvA3rhkCU7PJudXV8vBZ4ow6ihqimuBOmLXANma5Bha3MKWyWU3K0LhLLkN + jkxyJOMSLpfnMIrEvgrRUEteJ44w+lxATZ4iaojHoCj3E+nIcMVmXPaiLy9PTpcw6p9hgrUPomzK + nN9y5qkiUQkpd9D18t3ZxfL6zfXNz1fLn7IPz9wEG3Rsd5KOAbvOsem91QCR6kgiHPwb43JLV2xw + eOl10r4+rn2INPSXyQ4qDt4eg0XFNQqBEEbTwIYR3qf1aUNtftIuCNnxFC4U8mBEFP1vtwuMuiA6 + aYJ51fhj+MzaANoNRcHI6EAjcu/bKAlZsCnmn6+n4xK0CaluYB20AVFqoYqhBeGWHcbXfcqWUKar + ohyGNJKjTe7SWzEhUh7Wxco/vZzsSFUSzHvFJ+deAOh90EF03ikfn5Gnb1ukYs/S3EZCCT5vBtHQ + FT36tAfwsd9K6dWiKboY2k5vNdxTTzvfP1wMhMVuD+7gg8P5M6pB0e2A/dnbt+V3KG8tKbKTF6ut + MGgasrvY3R7EZDm8APZeFPh/Pd/jHopnX+9Y/pWpuRlOCxASycmpBSWpKfGIIgibsqJUUFWBSxk8 + qMFOVipOLSrLTE6NL8lMLQJFR0pqWmJpDqQYVyquBKWc+LTMvPTUooKiTHBZDopxrlouAAAAAP// + AwB+p5wlyAYAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac039eec69e52-SJC + - 9953e420dd561690-SJC Connection: - keep-alive Content-Encoding: @@ -4332,54 +4471,64 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:15 GMT + - Mon, 27 Oct 2025 17:25:21 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:15Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxskft5oncH7ouQ394s - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "11643" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4729" + - "11667" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998479" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_a0e45cf0b1ad48389f4e0b01069ced3f status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame + This article has 52 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, @@ -4444,52 +4593,67 @@ interactions: is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is XAI?\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "51146" + - "51105" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFPBbhs5DP0Vgpe0wDhwss0GmVvQ9tCD97BboAXWxZgjMTOqNZRKSU2M - wP9eaGy3dbt7GkCPj3zvkfOMU7DssUXjqVhepCDCefFqcbO4Xl7fLO+u77BBZ7HFKQ3d8uru8aN8 - Hlbhb/vHG/5AX7ZXf/51+wYbzLvItYpTooGxQQ2+PlBKLmWSjA2aIJklY/vv86k+81NF5k+Lm83m - cwqylue1AKwxlWki3a2xhTV+vH8Hyg+sCXKAt0/RkxPqPcO9ZvfgjCMP7ySz925gMQwPQcEyR/BM - Kk4GmO0mcAJm5MmlrLtLeD8y8JNhjRmsS6akxAnquInzGGyCnk2YKt+JUabkZPA7cFMMWq3Ng5xk - 1qica13vyWwXfXg6TSSxYGq4Zsa5qhfKLsjsJmUtJhflRdQQWfMOlP0BH11Ml/BPZFNNHhouaJCQ - sjNnMieWymBbdfpiGS5WwbMpnhRWlQf3J97rUKrgBzK5kD/EeRR0AS9Wq/vXb1/Oqi+OSR/iO3U7 - ynSc4NHlEYRyUfLgSYZCA19e1FgTz/ooRg1kRk5AylAS22r6e2L/vaR+BwMLK82JmXO9ZwFWmZaT - URdz0F/CHSnDyD5CEctaT9HC47g7TZloy2BYMzmBqGydmYkNRNLsZrd111JdeGeObb3bMvQ+BLvo - tVJ7UnWsEFknnotmWSn40jvv8u6n5pdrbA4Hruz5K4nhLpmgXA/9bi37tWw2G9x/ajDlELt6ckGw - RRbb5aKCRyDxl1IvHVsp3jdY5n+vfUYnseQuhy1Lwvbq9mbZoKkb6Or9Vg3decl3XJns/2Enbp3A - ceSJlXx3M/1e/wO9Gn9F9w2Gks/1LRtMrF+d4S47VmxxXhSpxf3+GwAAAP//AwD2UnVKpgQAAA== + H4sIAAAAAAAAA3RU227bRhB911cM+BQDlCLbkZ3ozXaT1oUNpEAbtKgCYbQckVMvd7c7Q9myYSC/ + UOQP8yXFLm1dWueFAPfM5Zy5PQwACq6KKRSmQTVtsMOLT1cfFCeducGff7w8/uXNHx9/i/f2w/37 + 1RtblMnDL/4io89eI+PbYEnZux42kVApRT08PTmcvJ28G7/LQOsrssmtDjqcDI/GR5Ph+O1wfPrk + 13g2JMUU/hwAADzkb2LoKrorpjAun19aEsGaiunGCKCI3qaXAkVYFJ0W5RY03im5TPph5gBmhXRt + i3E9K6YwK34/u4RXdBcsssOFJTi7PAB2oA0LZN87hUhLigLqoSVtfCWw9BHYKcUQSdnVsLBoboYL + fwfXV69/uIIsWUA8aEMcIUSq2KRaCWAk6FxFMZGtUtYSSAIZRmvXKbtpqGXRuB7Brw0BRmVjCagN + DQrfk/Txh1g7L8oGkgxtUBNlR0YFsiaHfUb1IBo7o12kb1++hugDRV1DJNtbNBykhE6SFPU+Me9M + A5hq0CWdSzTaod0P++r6+uzi/QGgq6AiMZGD+jhcoFC1Z1nCLWsDPqQ/tOBQu4h2aNHVHdYEfU+Y + ZAQXewn7arWoDbWobHKF8CZ1yANWK4qCkTMxTNMomUzWRblhqKahClpvyXQWIwTkKCM4C8GyeRIi + jb91wM7YriI4Pz+HQLGljO60roTbhiL9pyapVnVNooDZKo/RNl/rK15uMu2XClA18qJ7KieN6lEJ + GH2Wyrou4advX/5Z+OTknY/yGo2h5CkHEKJfcUXwd4dOWVF5ReXz6Aw305npsBOuGx3NirJfgkiW + VugMzcX4SGkZTmfucXdzIi07wbS3rrN2B0DnvPZ60s5+fkIeN1u6ZMfSzCOheJc2T9SHIqOPA4DP + eeu7vUUuQvRt0Ln6G8phD09OT/qAxfbObOGT08kTql7RboGj48lh+ULIeUWKbGXndBQG02zs5Jwc + n2xEYFex32LjwY7G/1N6KXyvn129jTI5PPpugi2Qe0zVfDt5L5lFStf4e2abamfKhVBcsaG5MsXU + kYqW2Nn+UhayFqV2vmRXp5nhfC5T0wePg38BAAD//wMAHLvvgysGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac039e96067b5-SJC + - 9953e41908129e59-SJC Connection: - keep-alive Content-Encoding: @@ -4497,219 +4661,72 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:16 GMT + - Mon, 27 Oct 2025 17:25:24 GMT Server: - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:14Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:16Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:14Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxskj73LkQJ36EQG1vx - strict-transport-security: + Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "5416" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6399" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RSTWvbQBD9K8NccpGDndi00S2EHALtoTSUlqrIk9U42mY1q+zMihjj/14k19Ru - 6Umw743eB2+HXWw4YIkuUG54plGEbbacrWZX86vV/ObqBgv0DZbY6XM9X3z69uH+8fHz9WI1LFcv - /ssyf1zeLbBA2/Y8sliVnhkLTDGMD6Tq1UgMC3RRjMWw/L478o3fRmT6lLher39qlEp2lQBUqLnr - KG0rLKHCr7cPkHjDScEi3L/1gbzQU2C4fbiEx5aB3xyn3qDx6rIqK4w3HVsbGwUv4FruvFraFqA9 - O7/xjkLYQsdiPoqXZ7CWDC7uYhbjtCFnmYICj2pCI0mhpYHhiV3sGAiy8iYHsBgDbGKaJM+lSMFa - 3kKf4uAbBi+WvfmBIUvDaWynGaXjBvrEjXcHGZIGKDFMES1CFhcHTqB9Tj5mhcTh4Kj1/RTPEvkp - RENGlxdTJ2Oz0LC65J9YYaDD7Wkxo+suBnY5UDqxANM4tAAvLuTJojvr5bQWMHat+NfMB+d9VJu1 - 0Z2p+PG4T2zjvzpyrReGwJQm15PcWQXHHh0FoL4P3h0CX1ZYHBaSOPBA4rhWFxOPS3lfyb6S9XqN - +x8FqsW+TkwaBUtkaWrLSfA3oPyaWRxjKTmEAvM03nKHXvpstcUXFsVysXx3U6Aj13LtEk8m6nPK - /IgnpuZ/2PF2VOC+5Y4ThXrV/cv/gy7av9F9gTHbmb/rRYHKafCOa/OcsMRpVpQa3O9/AQAA//8D - ANrKmXfnAwAA - headers: - CF-RAY: - - 991ac03e8ff0cee1-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 18:59:16 GMT - Server: - - cloudflare Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:14Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:16Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:14Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsot7NbMo2oRegwVNW - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "15982" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4748" + - "16047" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249999" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39997716" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_a88f481afc234b09a63ae43f62f18a6d status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented - with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) - \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented with equation + \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) + \ (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) \ where \u02C6f(x) is the black-box model and are used as our attributions. The left- \u2206xi\\n\\nhand @@ -4774,52 +4791,260 @@ interactions: subgraph importance for small molecule activity prediction. On the\\n\\nother hand, similarity maps compare model predictions for two or more molecules based on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6401" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RV32/bNhB+919x0FMCyIHjzKmTPGXdmgVIg6IpsqxzYZypk8SZIgne0Y4b5H8f + KMuWu6UvgsS7++7Hd/z0MgDIdJFdQqZqFNV4M3z/eHczuv0w+Thdf/n6+HTxl8c/z9b0efF1M1pm + eYpwi39IyS7qRLnGGxLt7NasAqFQQj19d346mU4uTs9bQ+MKMims8jKcDMej8WQ4mg5H77q42mlF + nF3C3wMAgJf2mSq0BT1nlzDKdycNMWNF2eXeCSALzqSTDJk1C1rJ8t6onBWybdEvMwswyzg2DYbN + LLuEWfZ0fQtH9OwNaosLQ3B9ewyBSgoM4qAhqV3BIDUKNLgkWBhUy+HCPUPbFfhAhVZpCAzRFhRS + BUWCysGVQhZWGqEklBgIUCToRUzugLaAleaIRn/HdHICtxYaZ0hFg+EAuXWtAvoaLMWABizJ2oUl + 56Bc0zgLqQ/0PjhUNTFoq0wsKAUVmqwMF8hU7Ns50laoComtvQvn7ev76485tI+HxjmpbwIWx9v+ + d8UT6Ma7IGgVpSFp66PwFSxQLX1wHqu2nf/m/I3I391++JLDHW4orDUTfCZDqxbnUx/YpdtBEYS9 + l9TBxaoGkxD4asvBECvrWLTa5zJ6SfDwx/WnrvA0mGfdJKyHGr2hDazQROKWHE9BYli0ufmqH/aQ + PSldagXdgqSlOLq5v/9995nDQ1y0vk9d0bogK7rc7EckwJ0Ln8DjId0gzpmuVkajyapNm5x1ow0G + LRto0HNqP1XeUV9qW1HwQVvh/fR3C8Yn8CtZVTcYlgwcq4pYEp0t8Fusd0vqKZQuNLAmY6B0AW7u + 7zkHqdtx994KLXAsSwpgY0NBKzSgmdMsj7hGEQqH8Mcnsyzf3rs9i3NWLlC6f9OZfT28rIHKyJik + wkZjDgxorZMtQUkmvnWW170wlNpqrueBkJ1Nl53F+ay1vg4AvrVCE3/QjswH13iZi1tSC3t6dnGx + Bcx6aevN07NOhzJxgqY3jMfjXdwPkPOCBLXhA7XKVLqfxUHO8bRXN4yFdr1tNDjo8f8lvQW/7V/b + qkc5/+XnCXqDUuSFinkvOm+5BUo/gJ+57afdlpwxhZVWNBdNITFSUInRbMU54w0LNfODZe5IH7wO + /gUAAP//AwCUfTI7ngYAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e449d9afcebd-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:28 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "11457" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "11526" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998462" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_a43cb9cb4e9c434fa3692ea7c2f84585 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity + relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) + Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n + \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, + R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials + science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding + with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, + 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6454" + - "6402" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3STQW8bNxCF/8qAlyTAyrAFq6j3ZjRBYCDJoSgKF1WxorizIiNySM/MKhYM/feA - tIXWCXra5b4h3zePs08m5RGj6Y2Ldh5xIZkIdXG9WC2Wl8vV5c3yxnQmjKY3SXbD5dWfD/J5+6n8 - dX39dfV+ecDfPz083B9NZ/RYsFahiN2h6QznWD9YkSBqSU1nXCZFUtP//XSuV3ysSnv0ZrPZfJVM - a3paE8DayJyS5ePa9LA297d3wDghC2iGD48l2kB2GxFu7+At3v9nzRqm4IKNcEeKMYYdksN3F3BH - oB6hgTwq5AnUBwF8dMhFO6geQWAWHKtJIEUujAqWRsBnSyiMY3AaMglMnBMk63wghIiWKdAOWqrS - QbGswc3RcjxCIHAeUxDlI9hSYnC2HXIBf3iEBpSQns9943IqjB5JwgE7yAVpIXlmhw1yi+R8srxv - YZzJPn75Ig01q0eGHdviYWtrNy9Ib+CbR0Y4WA55FkioPo8CMewRfrv93NVNY3uRlLP6j2zHrgWx - Y6s4Nj0gqXTNyao+M0NC5y0FSQKWa8apWMYRpsxnwJpNntXlhFLDd7GOx/QSRDuPcccoUpdqZS8X - rd0zpsdYYKYRuc7UCD5/e+kMkt3jq6vZHisch+2s1TekklktOayJjWGakJEUApVZYUKrM1cqbuSZ - aosXa9M9TyJjxEPdPIjLjHUib9Z0WtNmszGnfzojmsvAaCWT6Q3SOOjMZF4EwYe5jqDpaY6xM3P7 - Sfon09wHzXskMf3VL8tfO+Os8zg4xpbK8Lrk8qwz2vH/tPPe6oDFY0K2cViln+v/Va/8j+qpM3nW - V3yrVWcE+RAcDhqQTW/aRVgezen0HQAA//8DAAIMaDVPBAAA + H4sIAAAAAAAAA3RU227bRhB911cM+FDEgCxIThTfnpTGDVS4FxhNYbQKhNFySI613KV3ZmWphgF/ + RB+a3/OXFEvKloo6L1xwz1zOzNmZ+x5Axnl2BpmpUE3d2MPvf7/84eb2j8nJ8nodRifh89VkFOvi + 9q+7H6ufs37y8IsbMvrsNTC+biwpe9fBJhAqpaij4/ej8cn45PS0BWqfk01uZaOH48Oj4dH4cHhy + ODze+lWeDUl2Bn/2AADu229i6HJaZ2cw7D/f1CSCJWVnL0YAWfA23WQowqLoNOvvQOOdkmtJ388c + wCyTWNcYNrPsDGbZ9WQKyScXKHyAi3VjkR0uLMEkKBdsGC1MnZK1XJIz9PT4dyAhDKaCwpsolIN3 + UOOSXQk1moodgSUMrr1ItcvT41fIybCwdwLR5RTarG0idDloiKJ3Pmi1GcBvFQGtDYVGwbBS4hZd + jqnVaEFiWNFGWr8m+DJgLfCGBuWgD5MQmBSBFNAO4Gg4Oj2Hj5OrXydPj18FrifTc0CXTqjQ5Qvv + lwdtoNorr9oMAhJNBSgdKWAHGNXXLdjatsIzOkNwx1rB0+M/gctKQT1Q6qBrbVPRjbdsmATeXHyG + QGW0XY4+TKbwga0FX8BVcpaDAUwVKi4r2/5DYFkKWF4SLBi7eqXyQU3UXYO3hX+I3mJ9x47hO/hE + ixDP4RKbKKZasjuHj/Qp4IoOQCvU52ppn64M4IqapK1TVF4RKJnK8W0kAXbGxpzAeoPWbqBA1qqI + rRjBlylUp/Qzn8vpTxcHfWBX2JieDRTRmW3p2x4u2KH6kB5YTVr5XAbwy4oCWttvFWqCX3FOAsY7 + Q41KHxTX3vmaaRtGvbfy0nfu9LmJolxsoAmUc5cU1N9hyCGQNN4Jtw98Ophl/W4oAllaJUXnYnyg + NByj4cw97I9SoCIKpkF20do9AJ3z2vUwDfGXLfLwMrYFO5ZqHgjFuzSKor7JWvShB/ClXQPxP5Od + NcHXjc7VL6kNOzoeH3UBs93i2YPfj0dbWL2i3SFv3w3f9l+JOc9Jka3sLZPMoKko3/nuNg/GnP0e + 0Nur8P+EXovdVc+u3CP97vjomxl2gEniUz7f6fmaWaC0nb9l9tLslnMmFFZsaK5MIQmSU4HRdpsz + k40o1fOCXUmhCdyuz6R576H3LwAAAP//AwAGoRAmOwYAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac055a87167c1-SJC + - 9953e3df8c7e6af7-SJC Connection: - keep-alive Content-Encoding: @@ -4827,58 +5052,74 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:20 GMT + - Mon, 27 Oct 2025 17:25:33 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=QaO8HuICLNjG0WpGJn1sA7AmgBdsQCAYubLgQtDni.M-1761585933-1.0.1.1-fAyYSuckmcGEvSjwzgAMKhNEgbtsECWXKBb0eZEbu9Hq.Ad8sGWRo.LDRPAttnEtOK_ZxnOs_4ZTP_08ftEU4bOAovyrBfyAM1.kUThdiAI; + path=/; expires=Mon, 27-Oct-25 17:55:33 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=sQga5JsctVC1_6_yzf754hOcOUOnp.PSV15_QqbtfSY-1761585933312-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:17Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:20Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:17Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxt5gNhDLa8CEHf2sfr - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "33756" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4548" + - "33796" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998473" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_908ab4cbd03a454ab2f4d7b77adf07fe status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 28-30: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n - M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining - the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD - international\\n\\n\\n 27 conference - on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 28-30: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, + C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions + of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n + \ 27 conference on knowledge discovery + and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, P.\\n\\n Explanations based on the missing: Towards contrastive explanations with pertinent\\n\\n negatives. Advances in neural information processing @@ -4942,51 +5183,67 @@ interactions: M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships in real-world drug design data sets using explainable artificial\\n\\n intelligence. Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6431" + - "6378" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTS2/TQBD+K6O5FCSnSquGtr5VpaAWKg4gBCLI2awn9pL1rJlZp4mi/He0dkIJ - iJO18/oeM95iE0rymKP1pitppIGZ4uhiNBmdj88n4+vza8zQlZhjo1UxPruql4s37vbhsXv99eHz - vJ1fvnt7t8IM46alVEWqpiLMUIJPAaPqNBqOmKENHIkj5t+2h/pI65TpPznOZrMfGnjK2ykDTFG7 - pjGymWIOU/xycw9pUqmwCAJ369Ybx2buCW7u4cXRW6JbOOuMh3uO5L2riC29PIVPNQGtLUkbQWhB - kuIKTeejaz3BU5ClQmBIaLQyvjPRBQbDJZi29c72b83AsfVd6bj6XcYVzL2xy9E8rKE3FiiR4kNL - mukYGiqdNR5cY6rUFI0uNeshGori7CCQjgSewgemZ8qgLdmk0Xi/gYa4h4CTJFdaodi3pZF/+vJo - bO2Y4D0Z4QSdcB5NJHHGK3y0rp+d2m5rapxG2WQn4LjsdXO1l7AKfpVcM8sUa/ZT/WFqr12hCULg - /iHUcUnSLzKFhpX0l7GOoF1VkUYdcDTFLQlTCU8u1gdLEkYrycVBdVikC9ij9jYOxGJNzcAiimFt - jRBHiAE6JdHTKWbDmQl5Whm2VKgNQuncrqa8m/JsNsPd9ww1hrYQMhoYcyQui9gJ4z6h9LNLvmHO - nfcZdv0fkG/RcdvFIoYlsWJ+dn05ydAaW1NhhfqjKI5Lxoe8kCn/lzv0JgRqa2pIjC8mzb/1z9mz - +u/sLsPQxSN+F68yVJKVs1RER4I5DmuSEne7XwAAAP//AwCrUqf1LAQAAA== + H4sIAAAAAAAAA3RU0W5aRxB95ytG98EyElDAsbHhobKsqHGL1SiOnKYlQsPuXO6Evbu3u7PE1LLk + 36jU/py/pNoL5hI1eUHMnplzz8zumYcWQMY6G0OmChRVVqZ7dTf96exqoE/k5s4Vl+X0BN+/e2U+ + fvhydXebdVKFW3wmJS9VPeXKypCws1tYeUKhxDoYnQ1Oz08vhsMaKJ0mk8qWlXRPu8P+8LTbP+/2 + R7u6wrGikI3hjxYAwEP9mxRaTffZGPqdl5OSQsAlZeN9EkDmnUknGYbAQdBK1mlA5ayQrUU/zCzA + LAuxLNFvZtkYZtlvl9eQanSA3Hl4fV8ZZIsLQ3B53QGEnMloyJ2KgTQ4CyWu2C6hRFWwJTCE3tYH + qcnw/PQ3aFIc2NkA0WryNX1i7MH7goDuFflKQLFQgBVtIGn44vwqjKFyQbqFU0BJiMU0XChJCqcD + GF4RTK9vXsPxO14QewckgKbXgeenfz4UGwiFi0bDNYiPQWDj4o/PT/+2Aa2G2zeXb+F4Gq1ekF/C + EUyJJnArPpYLMp/hCH5x1lmyKwdrRrgtsDK0gTWaSKHdAUr/topcXov+M6Jh2dT0JYlnFeD4Z7Y7 + WRP4vUC73Ecf0agD8I3L8xKb+MYVgSzv4nanpmVbkCcrZgNshXzlSerbcR48LaNBz3+R3k0fjqcu + whFcoY9ocbK/ChBPFCbbNKB78ahSJxN4a2K52Gtgm5tIVhEoZ4N4ZCuh3YNrgYKXheFlIQGwqgyr + ehShVinOmQBsQRVUchC/+aFEIc+YNP26ZtKu6TuW5JsIvaeXIbR7s6yzfaWeDK3RKpoH5Tyl13ox + s4+HT9tTHgMmY9lozAGA1jrZykum+rRDHvc2ytlyKOaeMDibrBHEVVmNPrYAPtW2jF85Lau8KyuZ + i1tRTTsYDc63hFmzCA7g/uBiB4sTNA0yHJ2MOt/gnGsSZBMOzJ0pVAXpA9azs1f7LjBqdg3Wbx00 + +X9N36LfDoDtsmE5Pxl+9wMNoBRVQnpeedKsvu68SfOU9uX30vbjriVngfyaFc2Fyacr0ZRjNNtd + loVNECrnOdtl8gDXCy3deuux9R8AAAD//wMAgTWMjM0FAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac058fd579e52-SJC + - 9953e46b2d3d1690-SJC Connection: - keep-alive Content-Encoding: @@ -4994,54 +5251,64 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:20 GMT + - Mon, 27 Oct 2025 17:25:36 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:17Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:20Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:17Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxt7x3uaPbpPATLB78G - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "14999" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4626" + - "15040" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998476" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b2bee0b097ef47d9b582afc4d583639a status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion + This article has 52 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) @@ -5107,52 +5374,67 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "188687" + - "188633" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFPRbttGEPyVxT7ZABXYjuXAfDNcB02KBgGShwJVQZ2OK/Hq4955d0+x - YOjfi6PsWm6RB4Lgzu7M3NzyCcfUU8QWfXSlp5kmZrLZ5Ww+uzi7mJ9dX1xjg6HHFkfddGfnv119 - mfN8+DjoL/brl+vHu+8f5PIzNmi7TLWLVN2GsEFJsRacalBzbNigT2zEhu2fTy/9Ro8VmV4tLpfL - vzXxgp8WDLBALePoZLfAFhb4x80nEFqTKFiCu8ccXWC3igQ3n2AkG1KvUJT6Cgc2kixkMKZIvkQn - kIX64C0khunY+g6+DwT06EmyQU/qJaxIQWlL4iJURSM/cHgopOByjuFA7wcag5rsWvCpVK2181Zc - BKq+2FUVhZOVq34SAz2UqQZXp2CDM9Ah/YD6vPobUx/WwT/PuvWavB2Z1ubZYrYkb3UmxtATW1jv - 4McQ/HDEuyZnReoBuActKzUp/lAJvI6F2NOxDpwUDbyBu9uPX6eZ329ub78dietpM9VfQrcEG2IS - ZwRctVyE6HhT3IbeGJ0CV5qCdTlLcn4ghYFihsI9Sd2UHv41OMuSMontQCgeKIaQq20wp/cKMdwT - aIplFWKw3fEVT0Se+DhCWFWmLblYz/fTnE4m2nXhachF2EgqWRsYyEiSszRqA1I5XrM8hbreElbF - CHLSYGFLcQdJgGnjnr8sHXbvOO93C2wO+y4UaevYU6c+CdW9v17wfsHL5RL3fzWolnIn5DQxtkjc - d1aE8RlQepguE1suMTZYpl+xfcLAuVhn6Z5Ysb14P//QoK/Zd15oyrV723L2ggu5/mfYy2xVoDzQ - WH+abj7+v/8VPR/+i+4bTMWOS+dXlw0qyTZ46iyQYIvTYjjpcb//BwAA//8DAOJljVe1BAAA + H4sIAAAAAAAAA3RU227bOBB991cM+JQCctax4zr2m+Nt2mA3abHdLgqsC2NEjizuUqRKDp0EQYD8 + QrF/mC9ZUHIiBUlfBIhnLmfOXG4HAEIrsQAhS2RZ1Wa4+uv39/PvXo3nn9TZb7rC08npZDv9Yo4n + H76ILHm4/B+S/Oh1KF1VG2LtbAtLT8iUoh7N3h5NT6bz8bQBKqfIJLdtzcPpcDwaT4ejk+Fotvcr + nZYUxAL+HgAA3DbfxNAquhYLGGWPLxWFgFsSiycjAOGdSS8CQ9CB0bLIOlA6y2Qb0rdrC7AWIVYV + +pu1WMBa/FkS0LUkXzMoCtLrnALEoO0W6Lo2qC3mhmB5Dgdfl+dvgB1oy+RrTwyVMySjQQ+1J6Vl + 0gKaasMhnDkPwZmYa6P5JgO08MflJbBHbUmBs7D8/tmZX09Bh8dcpOBKcwnSxZSkQMkRTYCDi4vl + 6t0bQKv2NGt2fphjIAUVcelUgIN3q7NPGVwsV6vPDVFPO0IDV6WWJYSYB/ZRcvQUAIuCJPdoh0Ui + rgstsflN/hSYPGy9i3VoUpfE5B2yq0IGqFRSCaVWWv6SY9Cyb/vh4f5H7qwClJIS2wDaphEJ9EyW + q1IbAp9C9fgp2ptq3ispyfb5ZoDw/vKylQv33ElBIxRsyZJHpvBCSS6RAU0qzFlzA87SPrbBnEwG + lBreFMbsdR6bnrqiI/dw/1/r4Mm0WpW6DofwcUcejcng6/Icau92WlGAMlZoH+5/PA1NM05Nu+1e + aVe0MwMuch05wE7jC97POw+6qp1ntJIO1yJrB9uToV162gTpPKUBn67tXX8bPBUxYNpFG43pAWit + 45ZP2sNve+TuafMKbXUoN6kpzqZtCuxq0aB3A4BvzSbHZ8spau+qmjfs/qUm7Hj0dtIGFN3t6OCT + 2fEeZcdoen7zySx7JeRGEaM2oXcOhERZkup8j+bj7nxgVNp12GjQq/ElpdfCt/Vru+2izEbHP03Q + Ac0SkNp0E/yamad0YX9m9qR2Q1kE8jstacOafOqIogKjaa+fCDeBqdoU2m7T3OnmBKamD+4G/wMA + AP//AwB7KlR//wUAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac05dcf0967b5-SJC + - 9953e47e8a109e59-SJC Connection: - keep-alive Content-Encoding: @@ -5160,43 +5442,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:21 GMT + - Mon, 27 Oct 2025 17:25:48 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:18Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:21Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:18Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxtBKxA2Gk4kaKi2EJR - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "23089" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4983" + - "23127" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249998" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39996942" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 4ms + x-request-id: + - req_4efe3365eb6c493386892217b6df78b2 status: code: 200 message: OK @@ -5205,81 +5495,80 @@ interactions: '{"model": "deepseek-reasoner", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-61467535: - XAI stands for Explainable Artificial Intelligence, a field that aims to provide - model interpretations of deep learning (DL) predictions. The excerpt defines - three key terms: 1) Interpretability refers to the degree of human understandability - intrinsic within a model and can be perceived as ''knowledge'' providing insight - to a problem; 2) Justifications are quantitative metrics that tell users why - a model should be trusted, like test error; 3) Explanations describe why a certain - prediction was made. While interpretability and explanation are often used interchangeably, - interpretability is a passive characteristic of a model, whereas explainability - is an active characteristic used to clarify the internal decision-making process. - XAI addresses the ''black box'' nature of DL models by providing tools to interpret - models and their predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi - Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction - models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. - URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-a497e08d: - XAI refers to Explainable AI (Explainable Artificial Intelligence). In the context - of molecular property prediction models, XAI is used to explain black-box deep - learning models. The paper discusses that XAI methods can help users trust predictions - and assess if models are learning correct chemical principles. XAI approaches - in chemistry include counterfactual generation, feature attribution methods, - and various explanation representations (text, molecules, attributions, concepts). - The authors advocate for a ''black-box modeling first, followed by XAI'' approach - as a path to structure-property relationships without trading accuracy for interpretability.\nFrom - Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A - perspective on explanations of molecular prediction models. Journal of Chemical - Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain - leading peer-reviewed journal.\n\npqac-31f0bf23: XAI stands for Explainable - AI (Explainable Artificial Intelligence). It provides a way to avoid the trade-off - between accuracy and interpretability in deep learning models for chemical property - prediction. XAI can be viewed as a two-step process: first, developing an accurate - but uninterpretable DL model, and second, adding explanations to predictions. - An explanation is extra information that gives context and cause for predictions. - XAI methods can be classified as global or local interpretations, and as either - intrinsic (built into the model, ''white-box'') or extrinsic/post-hoc (applied - after training to any model). Post-hoc methods focus on interpreting models - through training data and feature attribution, surrogate models, and counterfactual - or contrastive explanations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi - Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction - models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. - URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-e544992f: - XAI refers to Explainable Artificial Intelligence for deep learning models in - chemistry. The excerpt discusses XAI methods becoming increasingly important - for interpreting black-box models and connecting explanations to structure-property - relationships. Specific model-agnostic XAI methods mentioned include ''Molecular - Model Agnostic Counterfactual Explanations'' (MMACE) and ''Explaining molecular - properties with natural language.'' These XAI approaches are used to interpret - deep learning models by generating counterfactual explanations and descriptor - explanations that help understand why models make certain predictions, particularly - in applications like blood-brain barrier permeation and solubility prediction.\nFrom + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-a53bb654: + Explainable artificial intelligence (XAI) is a branch of AI that addresses the + black-box nature of deep learning by providing tools to interpret models and + their predictions. It aims to produce model interpretations that help users + understand why predictions were made, increasing trust and revealing spurious + correlations. Related terms: interpretability is the degree of human understandability + intrinsic to a model; justifications are quantitative metrics (e.g., test error) + indicating why a model should be trusted; an explanation describes why a specific + prediction was made. Interpretability is a passive property, while explainability + is an active process clarifying the model\u2019s internal decision-making.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain - leading peer-reviewed journal.\n\npqac-9f403e51: XAI refers to Explainable AI - methods used to interpret molecular prediction models. The excerpt describes - several XAI techniques applied to chemistry: counterfactual explanations (based - on equation 6) that show how molecular modifications affect predictions, descriptor - explanations that identify which molecular features and substructures influence - predictions (using ECFP and MACCS descriptors), and methods to generate natural - language explanations. These XAI approaches help understand structure-property - relationships in tasks like solubility prediction and scent prediction by revealing - which molecular features (like functional groups, heteroatoms, ring structures) - contribute positively or negatively to model predictions.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. Journal of Chemical Theory and Computation, - 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\nValid - Keys: pqac-61467535, pqac-a497e08d, pqac-31f0bf23, pqac-e544992f, pqac-9f403e51\n\n------------\n\nQuestion: - What is XAI?\n\nWrite an answer based on the context. If the context provides - insufficient information reply \"I cannot answer.\" For each part of your answer, - indicate which sources most support it via citation keys at the end of sentences, - like (pqac-0f650d59). Only cite from the context above and only use the citation + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\npqac-c9bc1a47: XAI stands for Explainable + Artificial Intelligence\u2014research focused on making machine learning models\u2019 + decisions understandable and trustworthy. The excerpt cites foundational surveys + and programs and motivations such as trust in automation and compliance with + \u2018right to explanation\u2019 policies (EU regulations, AI Bill of Rights). + It highlights risks like bias and shortcut learning (e.g., Buolamwini & Gebru; + Lapuschkin; DeGrave) that motivate explanations. Representative techniques include + locally faithful surrogate models (e.g., LIME), influence functions, and combinatorial + methods. Overall, XAI provides concepts, taxonomies, and tools to explain and + justify predictions toward responsible AI.\nFrom Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 52 citations and is from a domain leading peer-reviewed journal.\n\npqac-4d8428ca: + Explainable AI (XAI) is the active process of adding explanations to model predictions + to clarify a model\u2019s internal decision-making. While interpretability is + a passive property of a model, explainability provides extra information that + gives context and causal reasons for one or more predictions. In practice, XAI + often uses a two-step approach: train an accurate but opaque deep model, then + attach post-hoc explanations that ideally reflect true mechanisms. XAI methods + can be global or local (what is explained) and intrinsic (white-box, self-explanatory) + or extrinsic/post-hoc. Common post-hoc techniques include feature attribution, + surrogate models, and counterfactual or contrastive explanations.\nFrom Geemi + P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. Journal of Chemical Theory and + Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\npqac-8442093c: XAI (explainable AI) refers + to methods that explain predictions of black-box models. In molecular property + prediction, post-hoc XAI includes counterfactual explanations\u2014minimal structural + changes that alter a model\u2019s output\u2014and descriptor explanations, which + fit a self-explaining surrogate to attribute predictions to interpretable chemical + features and generate natural-language rationales. These approaches work for + classification and regression, aim to be sparse, actionable, and familiar to + domain experts, and can uncover structure\u2013property relationships. Selecting + an XAI method depends on the audience and goal, and on access to model internals + (e.g., gradients). The field bridges ML, human\u2013machine interaction, and + philosophy.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\npqac-0c0d6ce7: XAI stands for Explainable + AI, a field focused on making machine learning models\u2019 decisions understandable. + The excerpt cites key XAI works: post-hoc explanation methods like LIME (Ribeiro + et al., \u201cWhy should I trust you?\u201d) and SHAP (Lundberg & Lee; Strumbelj + & Kononenko via Shapley values), evaluation of XAI quality and metrics (Jin + et al.; Zhang et al.; Yalcin et al.; Hoffman et al.; Mohseni et al.), and inherently + interpretable or regularized models (Lou & Caruana; decision trees; model extraction; + Plumb et al.; influence constraints). It highlights applications and tools in + chemistry/materials (Oviedo et al.; Humer et al.; Harren et al.).\nFrom Geemi + P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. Journal of Chemical Theory and + Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\nValid Keys: pqac-a53bb654, pqac-c9bc1a47, + pqac-4d8428ca, pqac-8442093c, pqac-0c0d6ce7\n\n------------\n\nQuestion: What + is XAI?\n\nWrite an answer based on the context. If the context provides insufficient + information reply \"I cannot answer.\" For each part of your answer, indicate + which sources most support it via citation keys at the end of sentences, like + (pqac-0f650d59). Only cite from the context above and only use the citation keys from the context. ## Valid citation examples, only use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) @@ -5297,7 +5586,7 @@ interactions: connection: - keep-alive content-length: - - "7134" + - "6973" content-type: - application/json host: @@ -5309,52 +5598,51 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//tFjbbuS4Ef2Vgl48A6g1dvve+xB4Z2eB3sQLBDPJDBAHRjVVanGbIrVk - qdvKwP8eFCm5L/ZcNsg+qlski1Wnzjmlz5kus1mGZ+X5yfQaJyfX6npypvB8cnV9cj25nl5cnk2r - EnGBWZ65xW+kOJtlqkYulGtaQ6ydzfJMeUKmMpudXF4cX19dXF5M86xxJZlslpVEbSBaTTxhcJa8 - LKidVhSy2b8+Z9qW9JDNjvOsoRBwSdnsc+adIQktBB0YLcsaZ5msBPDpZp6D8/DuoTWoLS4MwY1n - XWml0cDcMhmjl2QV5aADIFSaTAkllVpJoMAOWu/WutR2Cdoy+dYTo1wnQOU8SNBgCL2VN+JVoPWy - Pr3DDrAsPYUAXJP2oG1NnizD0cKgWsHCPRyBRe48wav2d1STi5Ozi8vz0/PXBcwZKIYdoAvk43bs - u8B7Z6AtYU1eVz3oKsUQUkygnPek5HVtlW4NhRxa9KxVZ9CbHrSFxhmKj3LVljz3O7sPMeHZ9SUd - X5WvC/h0M4dSB9Z22elQU4AF8YbI7uRnoY3mPgeEViqzpiEzqkaPisnLegWeKkNKdoK6a9BOOluS - lzqWsVYr6zaGyiXl8Y4kZbQp+Tlsaq1qQMV6TaYHZTBmYFP3EFpSUuS9LDmlOv88xbfEtSsDaKtM - VxIsjVugEdQYp9A8K7oEoi17bYNW8lrrAk9qpwDb1jtUteQ4dBJbgIpSZZHZ60UnW8if3rsl8pCV - kG6nXCdHVai4Q7N32SHq05PqeFFNTwUYFlRNjQ7s+zyWhEnVVv/eUQCjV3S43ZIseUznlxSU1y07 - v39KFxKGRzgMwQ/xRYyiAYN22eGS9tfWZFrwtCY0ENh3SlZOngDlyaQXa91KroExrMJTmoIzXcLM - c+jR+dnZ9fW0yiE+Xldnx6d0fvK6gB97ybnpJWquKRCwc5JOyQeunS5j0wFK5VH1k0OAAnssaeKq - SorSts5HLHoyOuIvgbak1ri+kZ49rEOWZ4mstF3eb3nnZ+0D5/FsaVuQu87gLvtYIwvPfLqZ/+Uu - gzlYShyDNmzIwwIDleBsXJl4hwQYlumBC5hX8Y/hWTbSNnSVsBlZzmEOoXadKcFTa3q4y+ag0FrH - w/7FXQY/dgyVd83uTjFST0cBWkOWe3AVaFs538SaAS5cxxDJNDiIm0p0iqgs7uyd/bAfVNy+6QwL - 30BwnVcRQ8aA0jwUCwI2BJGJDMGih49kDG6QmYAY0BQ5TI+np/k22l9c5620ZgVvBfvSnR9qcr6P - +HzrmrZLXVrAO1T1cDTUKMzexeaQCNKlVtTPYI8MBoCNVDc8jsUeHr+AxgLm0Agvd4LCiMUV9ZGv - lWaKnBsk8qZ/Koa9s3+lHlqnLYdnRZnJ/5MI5UiISW6+Q8meCd68gFe3B+UAgbOOSNMhByqWRf6N - bBCr4nUKas6AuglbdRxb5ZAsXXUgkDuEnI/COCLiuSAWh3Q9Hn8U9bD8tnoNYqh36LI4kLRnhd25 - 6E9UaatjuLEeAJOY610SmcFPtPREctmoYrCrYolntoIhAl4P6XrxenLEux1mncHHugcERZ5R293L - bTBAgyV9cZ9fuhAhMu709w4txwYQRSb2WiVYRU+RJ+FgCgzkvfNfSL9AUiggMuyWQp9swEi3o1Tu - Zas45NC056EKf0W9XpTUpNpvXpTsfJv+N/QwFqJJJxbw6p/otevC2BpDRO9HD7EV1hnc3t68fZd/ - XQq/qK/FNwRNzv3VbfIdXdh4IQ/JdRIInaQhcG8i3hBC5P4Y6ECmM2EQpQPloNzgNVv0uPTY1tJ1 - kc2nx8ewcb4MOSw6jvVcEBhnl+QL+EfYZ8oAyPFksqWcG0ikLtK6ck2Db0KLiqAkoxstvrlFObcm - FpYOA7JefY1gXkdCfD9ahyTc8dax804KeM/oGTaaa0AonzpT4vl0M4/Lp8VIfaA5QNv51gVKQGxE - 3jFafYoGEU3yv1tmkC1OxRLa8eLA5Jtk+kbAyEtnBbyNlRHL13qNTCYt/+j8YOVmcKOb2F3oXWfL - bcoL+BsxNASuY6MtDVQ/t+xd2aXeZieXkuYXy8C7GhBvwwGWDoVCYiCHcjuAWPRF0EAth9kz5soP - cPvbHl2MW79EATdta4b39jI4g9sdOj5g4XFDT4bWaDkCa7//Z/ChbykMJd1x1OPa9dCrT0vf2SBo - oaj3AyqBJWlJ9nds3WAHSPI4oGjEeCzdTeQzYQi0JIfseKAfQAaWlVhbrdj0I4+P3iyWPjartoJO - LVNXPnYisLM01E5yTp4Bu1JLsHHpz1qMzdDkg4lbkAT4rINF3nnj4rKfPFbJKPyvk27lVDd4zv/z - nPud4+3oI8jWGEsXp1uB+FZF5cSFuNKKfIov6GXNUiDhyN2BrySlQ5rTPA3iOLd7tllM2Nc8Qxof - dABqxPcnIqaBVeKlJgv3MDoLiRRDkHtvahIfLYf1B+O3Gv3qdg5/PlhLs6bBesjpKIbP5+o0++o0 - 3mzNxYtDNEpyOKlFDPoPDNPxZIHmmNdJg6vk45wiufbzokr2Bq4cZUUZ+QpQaZJcfdeEjeHlIfvP - n6xf0P3vcSV/xkz9x+ff3U8QUgeZygN0Vrm1EMu35nJhRTEHAZWP1GGXWzd3mCmhnbc1qVUUtVHz - PtQ6QCm8FGkmeo2T8yfhS86RHlq5fTDSxiZ+tRLHQ2UyI1r8vTIuJHIcKH7k6tTaQ2fNYH60pjQM - SC8krxJGQhgG1F8daLtGo8utq0nUnuT8FlcE8ZB4tEyqT6P4QBs/wBxqXJM9YiE6QbLtuZYM0UNq - ki2T6/9QkT3mmXHL1rtFyGa2MybPxLKE+j59MshmWWDXZo//zrNu/JzZete0fM9uRTZks5OL6Zl8 - 0Bw/oW7/ODmb5hk7RvP02/Ty4iLf3+G+JEZtgmytBBfl09vHjy9svPv+9sPGuOR6On18OiBud1/r - bbDHB/81OoS9mzzmWegDU3NfafGZQobyuaRq76tKXU6vTsqzq/vWu/L4anp8X7VX96t13Ct7/C8A - AAD//wMA0HVPWYMWAAA= + H4sIAAAAAAAAAwAAAP//rFjbbttIEv2VAl8SAzTHFzmx9bLwJpld7UwWwSSDBFgDi1KzKNa42c3p + i2UhP7+oblKUFNvxzM6LAZns7qpTVeec5teC62Je0OuT16d4Rsf1WXN+PJvR5fHV2ez0mC7xvDmp + m4srnBVlYZe/kQrFvFAthkrZrtcU2JqiLJQjDFQX89PXr04vLi+uZpdl0dmadDEvaqLeE90eO0Jv + DTlZ0FpW5Iv5f74WbGq6L+YnZdGR97iiYv61cFZTMS/Qe/YBTZA11gQyEsC7+14jG1xqgmsXuGHF + qGFhAmnNKzKK4OWX68URsAcER57QqRYaJl1DY1X0VIM10OEtmxV0qFo2BJrQmfQPCd2/gJoUe7bG + QzQ1OYmkTqeiqSG46MPautBuYLkBrGtH3svy0BIsNarb46W9B4MhOgLbgCAxHfKy/x3VMV6cL5ev + LmYlpJ/qaqlOcfb6qIJFgN7ZO67JQ7BWy19gE8j1jsIQY46kJXbQO6pZSUV8CchdisTKHnVUBCSg + GUzPIbQYoCXdQ/TkPEg1HbVkali3G/A9KUF1d09YkyPosKZSDnS03AAbqXzOWdBI0Ti6I9TyP99H + xzbK9s6RHs7ez/uoghtzY75cL1KxDKAKfEcStiLvBTasa9ltPwELSqPjZgOYoXjhMzgG9bZux7nA + JawlYPQTfLhkzWGTG6SXNrujUh47Nj4lbntyYZPOzwc8XLBZfTk7u1R4VMF7G/huiK+xDlJORulY + EzTWB3ITUGwAY7Bder1M+OuNPF5zaMHRKmoM1m2gcdjR2rpbD5pvKfXWu19feHC8aoPgsINLmQrQ + ceAVBtnNsb/14KNqAT0sGXPD+Na6oGI4bMad7pOifCLVGv49kgCX0iEjkaL30FsfjluroKPQ2toL + xqxaUGhgSbDSdokarANtFWpZ75Xt8+RMMFsHdD/+YDPOystDaH+hXqbYBEzNgX3vLKo2BZYBTsfo + DTTIoW2iBh+dsysMNE5Kgu/nxft3UudGx0QTTTTjyCjbLdkI6kIm27QayjFhCI6XcYJZ2Sjd1KAK + EfV+e+7DedAqw8/L2ezs5OpcDT9P1En9SpFg/6klT2MEgC4lrJkEOahth2ymonZWk4oa3dSz09RK + f6zIkBMcfI/OU5kmzGb2FOBXbcj9SveyfAx+DO+oKsoiUzeb1X8nFv6RnQ+JC0BaJB3Hfg43xWdh + F/bSMX+7KWABhqiWUND4NTlY4sC/snbgOMHTBLoPFSya9GD4DbUlb14EaPGOgIyNq1YKaN04PAvp + 56iFeXq9gZtiIV1obBjOq24K+HsM0Djb7e488FgCuIs6cK8JvI1OkQfUGmr2KmZK/3K9KMFbSFtv + 95UZ2YmUfT7D0x251BKKXB+EjrWejvfYyaGBlSaB6xp6ckK5qbet2W8l2+yVeFvZ3NU3hWjPP4g6 + hg8VfCatcY0hEFAA1FUJfVxq9m1uHjn+XzYmkrQNvGmpYxnPTy0J2Uhbv7FdHwPmcho4Ozk7r+Ad + qnZMB1phEVA8vHRLmzxbB/RIQSWEpvKvHQeCLX5jQD5sNGWi9YrJJEEfAZK5NIo9DTMnFTPSJNAJ + jyrZMW0y1C1uFXjbWLe0SQTWoyyV2fKAIb0jgmcbEGYROvB5sq3RGxFGoYQOf/A9KoKaNHccqN7u + EwQ6X8GPaXZQ/FD5HVWXFrlDzXUJyxhAejQR/k2Bpr4phA+9lMRqa3xC7yfaQG/ZBP9N/wIubQzS + mnN58zgxdPIoeZ6fYZOqh5lqy0V530UY3Y1YkWeZm+VmwD+7kKfcy47HqA7NwXQ+d37XzWRFnuR8 + 6wp2TM3k2ZKpecTL/BkP80icf8LE5Dz2rNu65cTMTziVLdVX3zElOa5fJG4ZQXKdn3+zdQm/RZ/a + A4cQdqN8JNddszNq8OPWhlHEdtfbpIWJNr7jZnZ8dXYzadHjVuawpYd497zMcy3DS6pWVZlMw9Ff + 4BoO9y+f8hDV/2UipoZ82JCVj5iwH0ZfVx2asLzjtRgRta370+6jzBUfjUwq3FOuSepZk1eO+5D9 + yDdobF1JDucNB/JJgXYscvZ4H/95/SF3EN2hjlmrOgqO1Xa3Pbj+bdfljlfxwUWVaiiMNyg+fGSp + P4cXfmDfmho2W4ewtSI+oBu4fS1u6ICakwsOiVQI+uh66/O1Kol/1qCUFiZfkKXgs3WD65wPh5+d + nEji0nAiJ0OptTUriXUbDHKXTh2VtEeHK4d9m/f9+ECmSVFOKxGLxLiC3hzeSrKUkhkzGIJPG51V + 8JabJik0S5snxTqkm/Tq+f51KXGuTHd6OKt2xzVdaXILpacX1X4XimbK1SI9/FVUm0c9SPeE3kks + ejO4mFHrZd3K2djvGYARsnQTlupNm6U7s499b12YZNiEdO474wXAxeQd9r3tjlnyyeBnG5C9CTqa + w1O+4Q/Nfu6VZLWEiqFmRyoM9ik3QLBG7gFZzDHWnADJ0pVvAWmTtw4bWQg2Bs2GBpvxYWwfOJ2P + mvcMr1E+8OXl/c9/+FtLtW9HJivC3kd6jDYP1GtK4Ww+xT4J7aGCP6XKgyZXCYrtF5s9YpPhe+ib + yvPkewr2fP647pa7Xw0m0X3kk8BWRB+Ry+nM2fwh7Ty8/n/LvM9UwO/cpP8KFZxyuZh/I2DjdTrF + /9BF60DEArK2jurdG/OD4vST+GEO2ytLyrTRdp09sziPais7+WY00W8J/wMAAP//bJjbDoIwDIZf + xfR6MXNBGbyLaRA2JQy30GHCxd7dFAKo8Xbt/u6Q9PAZTij8Xx/ZbDBLF1pHNx2Cq2rTHCEJcP4e + Bn8jKJ+jcwK4ItEDl6EdSqDoA6SrgHHFq2HwfYgYfWeeBOXpkisGrCvS3Q1KSwHRx8pta6o4K/Gt + gI3hdyGWrpnLNJu3TH+EP/13tLBuKfIsbQFmOXy0+2Hlj61vib5ukgTQRNH0aFuuhGFoZ2BhA1pb + 50qfmkwjTxJSK4k2aOxesxakNwAAAP//AwDkFrYlExcAAA== headers: Access-Control-Allow-Credentials: - "true" CF-RAY: - - 991ac07f187f9e6a-SJC + - 9953e5113d6fcf2f-SJC Connection: - keep-alive Content-Encoding: @@ -5362,12 +5650,12 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:22 GMT + - Mon, 27 Oct 2025 17:25:48 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=6CIdqZ57TPm8rsGuQWkOVJ1VWqKL04CWin1UzDdiHec-1760986762-1.0.1.1-f4Rhi3ZOi2iEBEEknsGuZd7CNu.__WyQ4xOB2sSxMcSfG9ZkQU5pYulfEPLnZQflLUE53pMPGEhTeznZepv7l3k_25uaEXFVGEjFYmaJjWU; - path=/; expires=Mon, 20-Oct-25 19:29:22 GMT; domain=.deepseek.com; HttpOnly; + - __cf_bm=JoT7L_tkxygaLd7iTPqOxzbCGqdi6KyiBCI9323Hrr8-1761585948-1.0.1.1-pLEDQu4K.llvWy344YY2qixBuN0HlK_.vVPqCv6FN1QZiZe3rlQ2t_XWCOhd3F5kj2Holx9SUIbSPWrqe4ZB3vK8S.ESMPFf7niSmhPZcS0; + path=/; expires=Mon, 27-Oct-25 17:55:48 GMT; domain=.deepseek.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -5380,7 +5668,7 @@ interactions: cf-cache-status: - DYNAMIC x-ds-trace-id: - - 2984e0d8347e457802cdaa61b715f558 + - cb713324624a5f83966ca7f3dccde7e2 status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml index 0671f7b0d..61b578289 100644 --- a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml +++ b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml @@ -46,27 +46,27 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:54 GMT Via: - - 1.1 edc643c7c426bec36e205453aa531064.cloudfront.net (CloudFront) + - 1.1 dad2c265b31314a82611ea10bc334572.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - rQ2qjFvWTS63itzkloTjDyfQqS4rwnynbV71-LrRMLBht_yRkN8alg== + - 2GdZHwP6Key7G3Xjjvdwl6pFzjIS9BJYvHynyt0w9BC7KHkiB9CysA== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - SwnybHLgvHcERiw= + - THekGGPePHcEBpg= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1398" x-amzn-Remapped-Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:54 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 549183af-fa2b-44ad-bc0b-a84f67503bab + - f53b3511-4466-49bc-8274-39080b7f99ba status: code: 200 message: OK @@ -90,103 +90,103 @@ interactions: string: !!binary | H4sIAAAAAAAA/81ca3PbOLL9Kyx9mqkSabz4cj45tuM4r8nGnmSy49QURUESYorU8mHHk8p/v90A ZYmQ7Ri+u/fu7s6OrEcTaHSfPt1o4PuoabO2a0b7o+pyNB4tZdNkc+m3NysJ711X9fa7V7JuVFXC - BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn58mVsPmvVEsXjJz4lPiPnlOxzsi+i - f4JQ/BSGtVyN9mkckTSMmIgIDcejzQB4IEggRj/Go1rOZC3LXPp51ZUt/EYk49GqmxSqWcgavnuw - lLXKs9I7XMglvCi8sypXsr3xfjk4PPsVnqiapsMBJfC6ULksG/jrz++onLq9c0Z8zMcsvmNC3Cfc - Z/E5Ifv6f/aEojhN4pAR/A+MPq/KVpbtlmqvqhp+MpVFduOr0p9mN/BMMh79/uENfLpo21Wzf7F3 - sZfXMmvVlcyr5bIqm6Cq5xd7/eCbi73JzcWeCMjF3ugHDHLWwerUek5Hv53iApKAcsLTiz2qh0Kj - EJ5aZnoaR+pK4Wi8amZ01rT1DQ6qUn7WNLJu5dSf3MA3N2oej7LrrIbl/3MEiyYEDUfwXDXVz8R/ - 3fNINV0bGw4MpNwj/8eXH+N7By+iBwYPCz72nqtKlnNVSjCFcj72jssrVVflEnSPH2fl1Duvs7JZ - VXXrnd00rVw2LjMOqYjpT2esx/nvmDEJ482M34EdVCWY9WnZtKrtWolzP5GlrOHNt3JqbB5MHrzE - YVYfeHjylvI4jaKfzcyMx2FmXzamP62WmSq1l/Wv/sRP66pplll96dfgO+C/rXaPWVY0EvymWcBC - +SgCfiFrcMC2QJ8dvQr0qgfe+UJW9Y13WC1XXRvgBNYDmPorMIL7/FqMWfgFVL+lecLoxV6WN8HX - vM0DlhPKONpuP9mvVVeD+n0Qo3IYBQ4efPMeLPwpctB0X9D9kN+BHKmIKOhdI8dK4+6IUZH6jEaI - xg0MJMc3D1F5AIwa2vxbhMSFWKNkSFF6r7QD7z3gz0rmCCge+M7xt1WRldquGjSmt1Uh867Iau99 - jfaEH8CbgFKN1iw8Qn3baAuee1UVnZ4ZTdESuhYWTNvPbx8OT48GSFbVuZoa/EJT8uEf5vM4Zn6U - srj/NVgKmDEak/76aL+tOzkezWHAiJonEjzdex/At2fZUhVocJ9kUYAxty0uSSP/1aEO4P2ZqpsW - xc5mqlCZMSwY2RpAJC4XIsMA/8be76XSMA2BAz74UOULWBtZj7dfvpPX3meImh74Oov1b2DM3hlE - WXA949KP1AAsdujzRJDHaeClbDPvYKCAE4C1hRpOPptOlYELJw0gghxvA+i/Sxnr4R/gsLYHfyab - RTat/8uH/8i1jCIR+zzVEe8Ra3lQTmt4+NHQnBfKtuT/Km18QTq4nGjKxSlGug3gVmUBT3sQD7ep - nB7/pcRZw3sAvrlq6U8D1xZg8+RirwEOwoRPGIM1iLnwoxGu2K1YpsUyF7HrOABKWdbyKqA5BHUS - D+VyLZe7yCUwlq85hBYB1GkoTWhpwlVaNl1mASM0JSwGqxuIDLXI8CkT1wEwnmC8t2YdaaHR44Uy - GsPcKE9oRBmJ44TAQNPQmn6sxcZO04ffNJSAlcLaU8gvSJj4lthEi03cxYJpkV4sTMDnQ7GpFps6 - WSr85oieHZKQhenRUBwlxvKJg1YjwdFk0EC/qStIrcD8r8JVtPSvrMHS3q+e5FhxorUAtpYwWwvU - eBZ1cq0dwVwkPrMEG9eiTr5lBDMWrqEgpMnOiI2XUSc3o2DyXwNVzmZdo10toCwAamiJNt5GHdxN - JGEIK5/VfyiAmJRAsi3C1JZrHI46eBylSYQ2zDkqGKwX0m/i31hyjcdRF5cDjV7sLWayCUQU0CAk - f2FuYA/Y+BxNbsnhmrRD7L/KMDXxVAlhpqt1KjOr6qUOZkA5K/iwgUi1lZnd8ku2zS9Hz+Hty0nW - KO8cg+eNzGrNrqkF/tS4qianmg/6PZ+O493x6QEA7S3nmgxD+PZo00JqUfbxCinzi0zVJQxz7B3k - mmNnEwjHEFE3uWWGX77ZHnxCB4PvqiJbXqtSea+Go0+s0GWAgTkAw62HiQgWnqY+SdIktnGRGUxg - T8AE8LBo7bo88a3wwPpo64IJEYFFytQymwdXPFE8YLGgWqy1Pr+V3gHkXjOVK206LRB/NceF2fcO - vOOurlYyg++sVnWV5QuvrSDByeFLeu3M+nQ6JbjVOBsszK0IyCYhG9CVmvHW5AwuMQtVmEEVhqjS - QWped3nb1ZgWjiA59TSf815WXSMDz3tedFKnpR4YvoejPfWeq6LQhEzNF23zzEMwf+ZtqOb19XVw - jVIWWsi8ugL62bQr1JoP1lf41cyv9Y8v9gJrcAaXmBMNMJCHeW7ZIuQlAYkDYhMgZqCJuUATELSL - vVWZNQh4JAoFtT2WGWBiLsC0bUGCKBawJCSWWANLLNldpOcKvHbs/RY8g3Vv2wpeHwbbqbE2na9g - OWh65h1AsCWYGJBdrwBbKgEz0Aabrr6SNwHYpuedvjo8OPVp7GF1tVlUK0QPiVJVmU0KiSv/yx8H - p7/igtP4mbdaeclFB6855fYqGhhjd1OOfFMGsKb2PiuyXFVj7wwm96bLFSQCAFzwx9uuVMD238LL - g8VSTs1XXkoJwPYKXh3Jci4L/K73R6a8BahgUlWX+955hXWjxss8kDBTkBrMashAcJLapLdnmCmj - ijuA9fT4+Phi7/DjC+3HdbmubQ3B1lR1ZO191LU+7RpUa4rHUWSUxeM4DIbxD83h9PDw4yewLwZk - CX4E5iuYZRPcwCu/G17v1+rrbgE2chR4H0BRr7P8UqdQgfcOlSxBwZ/hxZlaVo3+1nGA85iATtqq - VrpUB3gDKkR1HQ8MwqgLxku0gh7UzVk1a2EppHcOmZtO7z7C6t5aKNrsx6xQU/Pnp94IG++X08Oz - 80/a6hjRuqRR3NtdTO7UJHw/JCwVqEkCmiTczoVMPOEO8eRuBtsk3IqB3EQU7hBRBsSKAczARHhM - Lbl9/uZEMg0wyvkNWDYOGPMFGqWWZBMPuLA5B02ScJsVxGQ7+LyuFt77wPs0ZAQIg+vC4wM8hYt2 - 8aC1vO3R6k2PVtaQTZTgT2avEQFOLNKdxTMhgjuEiKHcBOXGkR1yuQkS3D1IZLByVzxSlEJmKkKL - vHITJfjdGeMWIgzXle86DfLb6t15yNFKNAClImYJjbeX/J8Aq3NAix1GYq84vu2dnj64wj2jfidb - HXA0AOhRtDJflFVRzRVQ71/6gf1qTdwEGO6U05pqgSbBzbLWVRIm7LqGwVjhQGGH7ktJGJA0FhZ2 - C4M4wgFxLMvCLE5ExLJYYeBGuBBYsKOLPSDDMY0sMiMMyAi+G0TedBBRZT3HwKvD8Bsp8XUfA5xz - JY8DmJ90N0hfToMxRPtvkw7F/x54H+Hv57gvppnA2PuUFcALFmPvJfzxAgbRNRjAxhhmF9fIehbI - iPCrJwAXsm3Nx8fTBmJZV9fIW5umAh7eImE4LXP49JbFiDgKTUARcSwsKiP6SpdbqcvUeigNIafh - Poni1P92V4pw4F1lwLB1aH3nr2TdgLLmwE+ajY/RNOTbXni2yFaFvPHeBDDjbb4vDCoKq64mDKgJ - J96LM0jjxMfdH+JHYYpF/7+YbX0G18TduHYv/oRk1x4Z5zBPiLP47zDanvCbqrNAR9dwHhFmaAJh - 5uDwrXd2evL66AiMcxuP8gEevS6r60JO59KbqiavrmRtcmQgJJm3VLtBSBjwFQ7luqFLxwgVwPxt - CDLYJpywLQGxNBY85CkSSBoHVNCQJ9aChQbeQpcMXZdncB/ZR3DzU18Qi5uEBtxCurPSJNTp1i2F - 4ANLfg/vTryTYTwhdyyteyVmOD4DkuFTORmsFA+ARFKLRoYGLkMXTrYd1kMM6zSmwl4lgzmhC+ZQ - AoN5v7hpPsirtwBzyNybAGIGMFRi0YawL7W7JNkmaDAe8SQKOBMAllaICw3OhE44s6ngqyVGZMoi - izuFBmNCp2L7QGwyISRhBhVty8KNpw/A5wcmyLaN9EPWLDt4JnDSAALQNuCGBgFCe/mMA4cODmyb - WwTmth7yZi/DOG/kVF7bFDASRqIw3ilgRMZ5I5faGrgCJBZGlcGqKmUAYY5Q2yIi43cRs3GBc13h - vCezOAOqkdXw368ZKv3/Ib+IjGNHDo49XMFQszVqV3Ui49jRE8gEOoYpkFLGduqYkfHo6MkJkaaX - hNl7clG/f/Z0nyY58iorxEXGp6Of8gaLhJ5BFFjIv/03utqjiwjPgYp+wiLGqzUnxXc+SDUD/oef - ZfgtSFSxyPEPhTzxE2atz7y3+WFRNTCmsfda19KKa1kUwETxV6pom3xxWemK0jGStAyLFt5B29Zq - 0umwg6TtpM5WCzuXubeK9FOzfFRwA3Irp97Lqroce+8+A2M+Oxjr6sigGMJ4ips8QGZaVRS6CmIh - a2TgK0ps90yZzn82UXsAiJ9xKB+Gbpn+JGiXZl5qa16rzbyau4J2ZFA0cqJBpuCxwuaa+rbiEdm0 - NTZAqlFnyFcYE8MuIT7YxvncASK9/Hn+e9fSJ/8rRIoNSsc7FItDYH4AShe1uuyWWW1acP6vcTQ2 - ASB22nIdph4sSUPhR39RC0pjA9HxkyE6BfZNeZRY4TA2EB0/Yc/163K+7LcfIH4TC0pjA9Hx0xoc - lnKKpccgnUBWafPv2KB0/ORNV709Fgpm77rGfZ+DE/fqN6Cb/LbmCCmOBT2xgZ7YIXfiQDAothLr - 3uIm4AFwZ5FaxczYoEbshBr3p+ubzgwDGQnZDUrHta4+HEHYWBctPut40tVXgLzSbGB8VOAxZatD - 0UfVdFmh/kbsW6g5jMcvshtZezOZoVTtfpk3lXIFyKljyjOrGeptVba1xB5hRkgK4qsi8CDQ0rG3 - 8qhVw0gMeCRO26e9UhLGevsQ8P+WsyTGvxOn6pNOJ+Mw8VkqIj/0bdtIjGcnLlnV0JqxnSIixP/b - EmxcO3Fy7Vv+zIA+Ryyk1LK4xPh14pRMDToeQhxuajd/JMapk6fWosEuKAARs/l+Ynw6cfBpW24I - dF8wi4ImffPSk8shESTDJBY75mA8OnlqNoXrFmBpz8Lj1Hh0+sRSCEsSsF2bWaTG01IXT6MIa1RE - CZpBojf+ortqhbpzXGH9cqk7nM3xALnZ990uGabJNg14UQMcLzCBfTFIYFPjv3ZPTGo8MHXaa0LV - REmchJZ/pMbrUgevYxzBB4/h8D7s22XT0pOF1Kck6hsPCCWExqzVDaSt6a8HiMwLeNRwg3F12yU+ - KK8OdHWelWpZtZV3Hphmnc1MjKentiEZR02dc6Rc4SmFkLSWPOOgqVPQRe+DDJH5jGJVKstDEUpL - rnHQ1MFBGcWNFkjGyoCTSMSRRTzSvrPQwTeHIjnQO7u5cN1d+IQuor7ZB7ubGY/sLiKI8L1ouhvF - X3RjWO5n3klWjXV6+IfCV4fw6nPWVKW6NCkmpImYMR6aHPKsK/Ft70jNNCluld4ZP8uz2awqkEp7 - 57U09f3+sIL0flu1aqn+1mbZ9148wLDXzBqSPjDfBm1en3/QKR8L7Cn2TY7EiXLvWA9Jp3ZnGum7 - HMlTGTejuDkKMc/uwCN9myNxgAgrJGHoCAHkbcl9lyNxIt22NiZZKmJbct/nSJy8/rarFsyTntgi - +xZH4uT4iNVlVl/szS+zLLW7BmAyvVC3LWKhK0l29ZekcZpw8Ns0IcPE+LwqqqVUVi3/sVkm4/X0 - sds0l67bNHp7W6vgCTkB1eefkKVBlCC+jVXrTuh7WqHv0y42oe5ugEWMc9wAg39HdLBPclJnkyq/ - zOz2S/FI9ZL/4C4Yve3XdssuAKd4yOKI8FjwIF9Q23LX7dpu/dom+cybyVdEhUj3PpOdDvMeytw6 - tjFkf10C/RUhm9oSewhzatXeTVrCdCcNoOtObZdWbasGy3LQgc3X6bpV26lXWy8c2MEM1asPj+74 - RA9jTq3aw/HiSQ6WJrbgHsqo0/kIWxGY0dmCe4Cg7gCBQM7SFGxiJ/b0zdDUrRt6eJSnaatvWEEn - 3M6KaN8STR17omGqhzEEIBZF4sAWuT4gsbNfw+IBRX6pyfHrLTCChCP8ORghzD8EPtMq7/SJMEho - iptGmaagWubVvNQHyuwB937MnP04VxxMl4ncltj7MdtphmMJG9RZ6aAm/l5OazmvmswkWBuIvqs6 - /Mr8rcs4VvkUSF4DL/OFPa4eBJz6oodVBjzAEiY75yr6rmiq9+ktTny4qIpCtmOYlOe9lnXWbLd5 - X+Ibgap0P3BoE9G+L5o6NUabtSk1sMTfbIm9/zNn/89LLIYQsqPV3vHv6VN+DKJEE+wutWNX36lL - 72nVfcRRLhL5KRHUD23Jvdu7tK5uZZuMpJktsfd6l45VI1FJ3TMlLm2J6/NQTzgQZc6BQAYHaXkq - 7Aoe7XtVKXeKs0hRvq4WK2ADPLbzmr6XlLo0k26MoFrVU20E4AK24N6zXLpJNwfO0v44DA2pv2Ne - vW859ZP2RgB+AEtd2xJ73+J3nDe4vcfhUCJ261z2udq0ad5sb1cCULzvJthVcVFiN3zVAYKfdcsl - Fmrwl4enRx4NRQqABJlz1iyxe2ALVWDweqOjzCcqKAt4oRbmCEnei7vY63/m/ZLluIUopzoVBo7u - s+hXG4j6VlHq1iuqD6uWSup+bPDMxE5a+0ZR6tIpyjkWHdXXZYMtbHzn/BTtu0Sp2NnmG7RLsEF2 - 8KG6luZM9rD6txOMZT3rloH3osiuqtpWU99ISp06SW9JEJ7aA8giYRjuRJi+qZQK57PHaZyA7yYp - S3kigBLZrivW5yNd0GDYu4JWhlvEqd01SftuSrO9+ugFxmr1bIWdV1icSfB+IJt39/2Y1Kkhk+Go - J5NJEKUwBbu/nPaNmPSeTswHrHHZV6UaGpEopHYzIu27HKlLm+MmV8JWpslofa2KfSfKhgfdnv/v - r0dB3mcO05jKNgioajVXW/aMt7EUWTnvjINILOkWqrzUh/TtW4lgmE2g8RovQIBpwFvTGV4Tc/81 - KuuLYPrrVLLVquhryfrHo/tvSUKOW05BRVu/gQ8BV1cy14eQtJL/A4PcfoTz+Bq1VEVWq/bGBwjO - L3WujxfCyFXV4K0KD15Nc9fFMcJn4TlJ9kOyT3YvjkmYANpJ+otjmryq4ZcU71tY3xjzfbSqFYYO - fPkIdd2vqR/4hG6yZTvmqp6tN/RtWw9fjrN9GUQzuNhrDbb9lV3fB3d3bS6ceMQNP/CMrOhzpCvp - K3OT070T+7J7BReowujkIcOpZdGv+/fRImtgZLIfnL5MaW1QIGs0vr1c6c5DUP+aXelq8xAYqslX - mbf6OpLR6dnZOz0LiPt+GukEvn/NzB1OTVP2T4Sn9482w4Gwhx3y+PzbX6Pz9F+SgF5tXZUq3/0m - bqN90cuuh6IX+XYpHl7nHz/+B7dE6KiDTgAA + BzQgAdl8Mtr/PlLlVH6TU3w5zVrpr7K6Bbl//skIC8eUjBn98mVsPmvVEsXjJz4lPqPnNNwP6T6h + /wSh+CkMa7ka7dM4oiSiSUTTNBqPNgPggSCBGP0Yj2o5k7Usc+nnVVe28BuRjEerblKoZiFr+O7B + UtYqz0rvcCGX8KLwzqpcyfbG++Xg8OxXeKJqmg4HlMDrQuWybOCvP7+jcur2zhnxMR+z+I4JcZ9w + n8XnhOzr/9kTiuI0iUNG8D8w+rwqW1m2W6q9qmr4yVQW2Y2vSn+a3cAzyXj0+4c38OmibVfN/sXe + xV5ey6xVVzKvlsuqbIKqnl/s9YNvLvYmNxd7IiAXe6MfMMhZB6tT6zkd/XaKC0gCyglPL/aoHgqN + QnhqmelpHKkrhaPxqpnRWdPWNzioSvlZ08i6lVN/cgPf3Kh5PMqusxqW/88RLJoQNBzBc9VUPxP/ + dc8j1XRtbDgwkHKP/B9ffozvHbyIHhg8LPjYe64qWc5VKcEUyvnYOy6vVF2VS9A9fpyVU++8zspm + VdWtd3bTtHLZuMw4pCKmP52xHue/Y8YkjDczfgd2UJVg1qdl06q2ayXO/USWsoY338qpsXkwefAS + h1l94OHJW8rjNIp+NjMzHoeZfdmY/rRaZqrUXta/+hM/raumWWb1pV+D74D/tto9ZlnRSPCbZgEL + 5aMI+IWswQHbAn129CrQqx545wtZ1TfeYbVcdW2AE1gPYOqvwAju82sxZuEXUP2W5gmjF3tZ3gRf + 8zYPWE4o42i7/WS/Vl0N6vdBjMphFDh48M17sPCnyEHTfUH3Q34HcqQioqB3jRwrjbsjRkUKABoh + GjcwkBzfPETlATBqaPNvERIXYo2SIUPpvdIOvPeAPyuZI6B44DvH31ZFVmq7atCY3laFzLsiq733 + NdoTfgBvAko1WrPwCPVtoy147lVVdHpmNEVL6FpYMG0/v304PD0aIFlV52pq8AtNyYd/mM/jmPlR + yuL+12ApYMZoTPrro/227uR4NIcBI2qeSPB0730A355lS1WgwX2SRQHG3La4JI38V4c6gPdnqm5a + FDubqUJlxrBgZGsAkbhciAwD/Bt7v5dKwzQEDvjgQ5UvYG1kPd5++U5ee58hanrg6yzWv4Exe2cQ + ZcH1jEs/UgOw2KHPE0Eep4GXss28g4ECTgDWFmo4+Ww6VQYunDSACHK8DaD/LmWsh3+Aw9oe/Jls + Ftm0/i8f/iPXMopE7PNUR7xHrOVBOa3h4UdDc14o25L/q7TxBengcqIpF6cY6TaAW5UFPO1BPNym + cnr8lxJnDe8B+OaqpT8NXFuAzZOLvQY4CBM+YQzWIObCj0a4YrdimRbLXMSu4wAoZVnLq4DmENRJ + PJTLtVzuIpfAWL7mEFoEUKehNKGlCVdp2XSZBYzQlLAYrG4gMtQiw6dMXAfAeILx3pp1pIVGjxfK + aAxzozyhEWUkjhMCA01Da/qxFhs7TR9+01ACVgprTyG/IGHiW2ITLTZxFwumRXqxMAGfD8WmWmzq + ZKnwmyN6dkhCFqZHQ3GUGMsnDlqNBEeTQQP9pq58huZ/Fa6ipX9lDZb2fvUkx4oTrQWwtYTZWqDG + s6iTa+0I5iLxmSXYuBZ18i0jmLFwDQUhTXZGbLyMOrkZBZP/GqhyNusa7WoBZQFQQ0u08Tbq4G4i + CUNY+az+QwHEpASSbRGmtlzjcNTB4yjk0WjDnKOCwXoh/Sb+jSXXeBx1cTnQ6MXeYiabQEQBDULy + F+YG9oCNz9HklhyuSTvE/qsMUxNPlRBmulqnMrOqXupgBpSzgg8biFRbmdktv2Tb/HL0HN6+nGSN + 8s4xeN7IrNbsmlrgT42ranKq+aDf8+k43h2fHgDQ3nKuyTCEb482LaQWZR+vkDK/yFRdwjDH3kGu + OXY2gXAMEXWTW2b45ZvtwSd0MPiuKrLltSqV92o4+sQKXQYYmAMw3HqYiGDhaeqTJE1iGxeZwQT2 + BEwAD4vWrssT3woPrI+2LpgQEVikTC2zeXDFE8UDFguqxVrr81vpHUDuNVO50qbTAvFXc1yYfe/A + O+7qaiUz+M5qVVdZvvDaChKcHL6k186sT6dTgluNs8HC3IqAbBKyAV2pGW9NzuASs1CFGVRhiCod + pOZ1l7ddjWnhCJJTT/M572XVNTLwvOdFJ3Va6oHhezjaU++5KgpNyNR80TbPPATzZ96Gal5fXwfX + KGWhhcyrK6CfTbtCrflgfYVfzfxa//hiL7AGZ3CJOdEAA3mY55YtQl4SkDggNgFiBpqYCzQBQbvY + W5VZg4BHolBQ22OZASbmAkzbFiSIYgFLQmKJNbDEkt1Feq7Aa8feb8EzWPe2reD1YbCdGmvT+QqW + g6Zn3gEEW4KJAdn1CrClEjADbbDp6it5E4Btet7pq8ODU5/GHlZXm0W1QvSQKFWV2aSQuPK//HFw + +isuOI2feauVl1x08JpTbq+igTF2N+XIN2UAa2rvsyLLVTX2zmByb7pcQSIAwAV/vO1KBWz/Lbw8 + WCzl1HzlpZQAbK/g1ZEs57LA73p/ZMpbgAomVXW5751XWDdqvMwDCTMFqcGshgwEJ6lNenuGmTKq + uANYT4+Pjy/2Dj++0H5cl+va1hBsTVVH1t5HXevTrkG1pngcRUZZPI7DYBj/0BxODw8/fgL7YkCW + 4EdgvoJZNsENvPK74fV+rb7uFmAjR4H3ART1OssvdQoVeO9QyRIU/BlenKll1ehvHQc4jwnopK1q + pUt1gDegQlTX8cAgjLpgvEQr6EHdnFWzFpZCeueQuen07iOs7q2Fos1+zAo1NX9+6o2w8X45PTw7 + /6StjhGtSxrFvd3F5E5NwvdDwlKBmiSgScLtXMjEE+4QT+5msE3CrRjITUThDhFlQKwYwAxMhMfU + ktvnb04k0wCjnN+AZeOAMV+gUWpJNvGAC5tz0CQJt1lBTLaDz+tq4b0PvE9DRoAwuC48PsBTuGgX + D1rL2x6t3vRoZQ3ZRAn+ZPYaEeDEIt1ZPBMiuEOIGMpNUG4c2SGXmyDB3YNEBit3xSNFKWSmIrTI + KzdRgt+dMW4hwnBd+a7TIL+t3p2HHK1EA1AqYpbQeHvJ/wmwOge02GEk9orj297p6YMr3DPqd7LV + AUcDgB5FK/NFWRXVXAH1/qUf2K/WxE2A4U45rakWaBLcLGtdJWHCrmsYjBUOFHbovpSEAUljYWG3 + MIgjHBDHsizM4kRELIsVBm6EC4EFO7rYAzIc08giM8KAjOC7QeRNBxFV1nMMvDoMv5ESX/cxwDlX + 8jiA+Ul3g/TlNBhDtP826VD874H3Ef5+jvtimgmMvU9ZAbxgMfZewh8vYBBdgwFsjGF2cY2sZ4GM + CL96AnAh29Z8fDxtIJZ1dY28tWkq4OEtEobTModPb1mMiKPQBBQRx8KiMqKvdLmVukyth9IQchru + kyhO/W93pQgH3lUGDFuH1nf+StYNKGsO/KTZ+BhNQ77thWeLbFXIG+9NADPe5vvCoKKw6mrCgJpw + 4r04gzROfNz9IX4Uplj0/4vZ1mdwTdyNa/fiT0h27ZFxDvOEOIv/DqPtCb+pOgt0dA3nEWGGJhBm + Dg7femenJ6+PjsA4t/EoH+DR67K6LuR0Lr2pavLqStYmRwZCknlLtRuEhAFf4VCuG7p0jFABzN+G + IINtwgnbEhBLY8FDniKBpHFABQ15Yi1YaOAtdMnQdXkG95F9BDc/9QWxuElowC2kOytNQp1u3VII + PrDk9/DuxDsZxhNyx9K6V2KG4zMgGT6Vk8FK8QBIJLVoZGjgMnThZNthPcSwTmMq7FUymBO6YA4l + MJj3i5vmg7x6CzCHzL0JIGYAQyUWbQj7UrtLkm2CBuMRT6KAMwFgaYW40OBM6IQzmwq+WmJEpiyy + uFNoMCZ0KrYPxCYTQhJmUNG2LNx4+gB8fmCCbNtIP2TNsoNnAicNIABtA25oECC0l884cOjgwLa5 + RWBu6yFv9jKM80ZO5bVNASNhJArjnQJGZJw3cqmtgStAYmFUGayqUgYQ5gi1LSIyfhcxGxc41xXO + ezKLM6AaWQ3//Zqh0v8f8ovIOHbk4NjDFQw1W6N2VScyjh09gUygY5gCKWVsp44ZGY+OnpwQaXpJ + mL0nF/X7Z0/3aZIjr7JCXGR8Ovopb7BI6BlEgYX823+jqz26iPAcqOgnLGK8WnNSfOeDVDPgf/hZ + ht+CRBWLHP9QyBM/Ydb6zHubHxZVA2Mae691La24lkUBTBR/pYq2yReXla4oHSNJy7Bo4R20ba0m + nQ47SNpO6my1sHOZe6tIPzXLRwU3ILdy6r2sqsux9+4zMOazg7GujgyKIYynuMkDZKZVRaGrIBay + Rga+osR2z5Tp/GcTtQeA+BmH8mHolulPgnZp5qW25rXazKu5K2hHBkUjJxpkCh4rbK6pbysekU1b + YwOkGnWGfIUxMewS4oNtnM8dINLLn+e/dy198r9CpNigdLxDsTgE5gegdFGry26Z1aYF5/8aR2MT + AGKnLddh6sGSNBR+9Be1oDQ2EB0/GaJTYN+UR4kVDmMD0fET9ly/LufLfvsB4jexoDQ2EB0/rcFh + KadYegzSCWSVNv+ODUrHT9501dtjoWD2rmvc9zk4ca9+A7rJb2uOkOJY0BMb6IkdcicOBINiK7Hu + LW4CHgB3FqlVzIwNasROqHF/ur7pzDCQkZDdoHRc6+rDEYSNddHis44nXX0FyCvNBsZHBR5TtjoU + fVRNlxXqb8S+hZrDePwiu5G1N5MZStXul3lTKVeAnDqmPLOaod5WZVtL7BFmhKQgvioCDwItHXsr + j1o1jMSAR+K0fdorJWGstw8B/285S2L8O3GqPul0Mg4Tn6Ui8kPfto3EeHbiklUNrRnbKSJC/L8t + wca1EyfXvuXPDOhzxEJKLYtLjF8nTsnUoOMhxOGmdvNHYpw6eWotGuyCAhAxm+8nxqcTB5+25YZA + 9wWzKGjSNy89uRwSQTJMYrFjDsajk6dmU7huAZb2LDxOjUenTyyFsCQB27WZRWo8LXXxNIqwRkWU + oBkkeuMvuqtWqDvHFdYvl7rD2RwPkJt93+2SYZps04AXNcDxAhPYF4MENjX+a/fEpMYDU6e9JlRN + lMRJaPlHarwudfA6xhF88BgO78O+XTYtPVlIfUqivvGAUEJozFrdQNqa/nqAyLyARw03GFe3XeKD + 8upAV+dZqZZVW3nngWnW2czEeHpqG5Jx1NQ5R8oVnlIISWvJMw6aOgVd9D7IEJnPKFalsjwUobTk + GgdNHRyUUdxogWSsDDiJRBxZxCPtOwsdfHMokgO9s5sL192FT+gi6pt9sLuZ8cjuIoII34umu1H8 + RTeG5X7mnWTVWKeHfyh8dQivPmdNVapLk2JCmogZ46HJIc+6Et/2jtRMk+JW6Z3xszybzaoCqbR3 + XktT3+8PK0jvt1WrlupvbZZ978UDDHvNrCHpA/Nt0Ob1+Qed8rHAnmLf5EicKPeO9ZB0anemkb7L + kTyVcTOKm6MQ8+wOPNK3ORIHiLBCEoaOEEDeltx3ORIn0m1rY5KlIrYl932OxMnrb7tqwTzpiS2y + b3EkTo6PWF1m9cXe/DLLUrtrACbTC3XbIha6kmRXf0kapwkHv00TMkyMz6uiWkpl1fIfm2UyXk8f + u01z6bpNo7e3tQqekBNQff4JWRpECeLbWLXuhL6nFfo+7WIT6u4GWMQ4xw0w+HdEB/skJ3U2qfLL + zG6/FI9UL/kP7oLR235tt+wCcIqHLI4IjwUP8gW1LXfdru3Wr22Sz7yZfEVUiHTvM9npMO+hzK1j + G0P21yXQXxGyqS2xhzCnVu3dpCVMd9IAuu7UdmnVtmqwLAcd2Hydrlu1nXq19cKBHcxQvfrw6I5P + 9DDm1Ko9HC+e5GBpYgvuoYw6nY+wFYEZnS24BwjqDhAI5CxNwSZ2Yk/fDE3duqGHR3matvqGFXTC + 7ayI9i3R1LEnGqZ6GEMAYlEkDmyR6wMSO/s1LB5Q5JeaHL/eAiNIOMKfgxHC/EPgM63yTp8Ig4Sm + uGmUaQqqZV7NS32gzB5w78fM2Y9zxcF0mchtib0fs51mOJawQZ2VDmri7+W0lvOqyUyCtYHou6rD + r8zfuoxjlU+B5DXwMl/Y4+pBwKkvelhlwAMsYbJzrqLviqZ6n97ixIeLqihkO4ZJed5rWWfNdpv3 + Jb4RqEr3A4c2Ee37oqlTY7RZm1IDS/zNltj7P3P2/7zEYgghO1rtHf+ePuXHIEo0we5SO3b1nbr0 + nlbdRxzlIpGfEkH90Jbcu71L6+pWtslImtkSe6936Vg1EpXUPVPi0pa4Pg/1hANR5hwIZHCQlqfC + ruDRvleVcqc4ixTl62qxAjbAYzuv6XtJqUsz6cYIqlU91UYALmAL7j3LpZt0c+As7Y/D0JD6O+bV + +5ZTP2lvBOAHsNS1LbH3LX7HeYPbexwOJWK3zmWfq02b5s32diUAxftugl0VFyV2w1cdIPhZt1xi + oQZ/eXh65NFQpABIkDlnzRK7B7ZQBQavNzrKfKKCsoAXamGOkOS9uIu9/mfeL1mOW4hyqlNh4Og+ + i361gahvFaVuvaL6sGqppO7HBs9M7KS1bxSlLp2inGPRUX1dNtjCxnfOT9G+S5SKnW2+QbsEG2QH + H6prac5kD6t/O8FY1rNuGXgviuyqqm019Y2k1KmT9JYE4ak9gCwShuFOhOmbSqlwPnucxgn4bpKy + lCcCKJHtumJ9PtIFDYa9K2hluEWc2l2TtO+mNNurj15grFbPVth5hcWZJAL/tXl3349JnRoyGY56 + MpkEUQpTsPvLad+ISe/pxHzAGpd9VaqhEYlCajcj0r7Lkbq0OW5yJWxlmozW16rYd6JseNDt+f/+ + ehTkfeYwjalsg4CqVnO1Zc94G0uRlfPOOIjEkm6hykt9SN++lQiG2QQar/ECBJgGvDWd4TUx91+j + sr4Ipr9OJVutir6WrH88uv+WJOS45RRUtPUb+BBwdSVzfQhJK/k/MMjtRziPr1FLVWS1am98gOD8 + Uuf6eCGMXFUN3qrw4NU0d10cI3wWnpNkPyT7ZPfimIQJoJ2kvzimyasafknxvoX1jTHfR6taYejA + l49Q1/2a+oFP6CZbtmOu6tl6Q9+29fDlONuXQTSDi73WYNtf2fV9cHfX5sKJR9zwA8/Iij5HupK+ + Mjc53TuxL7tXcIEqjE4eMpxaFv26fx8tsgZGJvvB6cuU1gYFskbj28uV7jwE9a/Zla42D4GhmnyV + eauvIxmdnp2907OAuO+nkU7g+9fM3OHUNGX/RHh6/2gzHAh72CGPz7/9NTpP/yUJ6NXWVany3W/i + NtoXvex6KHqRb5fi4XX+8eN/ACMH0/uDTgAA headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -204,7 +204,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:01 GMT + - Mon, 27 Oct 2025 17:24:55 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -255,7 +255,7 @@ interactions: Connection: - keep-alive Date: - - Mon, 20 Oct 2025 18:59:02 GMT + - Mon, 27 Oct 2025 17:24:55 GMT Server: - Jetty(9.4.40.v20210413) Transfer-Encoding: @@ -1360,1694 +1360,1694 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//pHtJs4JMl+a+fsUb39aOkEnyZO2YZ0kEVOwVKCo4IFMCWdH/vUNvdXd0 - RK26NzdC5WqSZ3iGk/zHv/3zz7+aoi7Pw7/+/Z9/Pat++Nd/+753yYf8X//+z3//t3/++eef//j9 - /b+uLF9FeblU79vv8t+H1ftSzv/693+4//3O/7no3//5F9fUSshS64nYtt5ZaDwId6KtXCcR+MO2 - gmbd72humtuEbdZ+Dsdw2JCt50T6LGG3wjhJS3rcpUuxJEUVA4hYpcbe3OuLtcgPaIR5RbbHt69z - iT5nUH7UghgG99LbbR/0YD+K47i6JmonsisY4K7s/cikQ81o5Kgxeu5KjuixkfrLfVrJ0Cm991tP - MQukmwAJHymcXt7H720+KMH4tGdCgtWxmyJ/DCG/K4ha9XOjz2gmFlQfIGTvN6ybE3GScY+W/fhQ - sKBPw3uRsT8Qg1iPS+UvGoYAJcM5ptmn7PzhdU0qUMLVM0QSN3aLqqoWtk+iPb4sTSv4hxktKLDn - lBz39tqfHhO34Jp8RmpFuzWb+LAVQNE1lyqAAp0zh06GaMMMYlvcKpl5/rbC+7Xq0ZgKdj2UJ0fB - m7yaqOIe045Ki6YBj60r8e+ClMwPXquwujJSekqPW3/k3MCTb5nvESeqrE4IG1HGfl+I1DK4QzGd - YrlC39fEqhq9FolMFABN3ZOtkcxsntgngO1ac0lwzEqfa57Mw7t6SsleWRM0qdJwg0zhIuKHNPZZ - d7o9QE56NnZJfaxZz68PcMoak16P76IQ+byI4GEqBc2yoC5EtGlfOOOBkuDZrRDTNE3B17kp6a6s - Xn63414BsOsGj4t/EpLpIlYtLrlMIoUs3Hz+dn0vMI5OToyVK9XzIx0ddH0lKjU68uw4x4xHzPvB - geYCFpJBNioHpMvOo/n+AMVS9rWDT51c0EDYGsW83q8j+O33FW98f4C1G4GHUkQ0lOz8ZVPEBha3 - j4Ieux3pRjU6lPItNd/UVUio9/JNWjDXP2pyVcd7Ij5bX4HV8TNRQ4eLPnc708C92C/UeJzGbsku - lYY/tuKT6Ho3fbFz4xz707Wg9uvi+dxGv4cYB9pjBDOO0Dzj/bKZiRNTRaduMjzMbELWG1b0Mjyc - 7i9fP5dKpHo2SPp8smQLTZfIpbl+qfSl2S4xXi3nLc3IqKD+6Gwd9N1vYnmCjSZb2kU41jKb7DYW - z6bAzkuonuaV6tqU16IWZwFiV4SJffK1YjnHtwwv1zYkwbo56yzb3V94l+UitZZNXAtyd4uw0JoS - dXwxQpxVuCPeU+EYTnypdRxudile+P1IvLNed0K56SvQw0dElY+iJNwnyQDM14cn1yrVummixRmM - MlqTQxsrhbjfyAve6IE4igxMXRzqiweYxDIJtdvWX5JuOuNv/Y/C46L5HBcJAva21Z6o4N4KwY68 - EM3DZBJ/i/p66Tghh6k/A1G2oVFzVy2y8IvsTiS9ve6M5dKzh4DI+Tif2kvBk+rgIPo+XIih4IPO - Dcd+BL8/iURJJbVg/HYnw+WSEZqY7OlPjraVwalKjwaO0+hTcHgLuJhoS7dbdEaPuyNyUG+a1fi2 - eVGfs097RjBkM/FKdUZLr0ktTgPLJHGiM38++6YAT8+TR0l6zoX45qYcwz7pQuG6BAlXpkuMj8Ox - J06+Oup9qvQvdCS1RaKNAf6Uk+cIuZRy5Dxlli9gRYsxiuBEPXFFfKHjVhnqguZFj7i4JUNihweI - pLUYrohfdcvVGgDWF+VMElJEPluHxgumx0Mn+eRr9fzgvRv69k8aKKVf9MupP8u38SNQK0k9f/He - E+DAV1tqdztSz0OxlD/8IOmvPgwpyTHcOofa71JjPFn6A8q53Y4abHijRSujFn/7L1U7xUmmaX1v - sQHSQg+QbdnCn+IUpYm/EP2LH/24z0awxW4IX3u3qRnWjwFU1rUP8Tm+oYkJnIY1uRqo9+zGmjml - UYEVdSZR9eGKeH84LtDOO4+m3H1bT/JkOYC2V/6bv3q3nOTNA5aSV8leOqS6oHt8iyBcVuN0P9Td - PDjXEiJF0YinXzRdPL/0Cke2jKglTFpHWa1I8q5eUqqv/Ervn8MbIPKhJMcFBcVsZ5hDPDau40OH - iz/VnPuAZqsgor28TUFJO7fyNmkGGkdG70+jqVX48b48Rnn6xuuDIgVfHqNLw7uj6EJdEAm6V/EJ - 4UpGn23JyoIeTXtqF1jQl3cURshb5yV1+dXbZ4O+ecBMvJhuQap88SycRqhfeUNsXCiFOEYygLNZ - 9BA73p1Ngn9QcDrPT7INVnbBt+lOxnl4fISzcJkR/eIN0rLmQU6fm4EmiX8B6Lcyp+QczzpzUWpg - TlNSenwUUj3P0SRg7pRuQ45cPmihH5jAuvIiOUL+rrn7yVLwDw81o74WS5SqIzwn4013cnpn/Qwp - h89n0yKXrjogjnucBLh36Ewzagn+tDs1GXaqs0dKY+93ohZHIerps6PpLnYS3kgr669enfcn6MRj - gh9oG+VH+qt3vq3f8V9/v3z50MJK5uFbFO3oCbFnMrW3+IA9syAkaMZP0jjx2YDXHSZyBWkp2OvY - CD++RM5mPKFp+6gUbDoxIU5y39bz/VJM8nacIWwvykln6bkOsTI8MuJfyMtnpnVZkCCnJg2RmvuL - +dwEMHCrjKZrb06mDn9kPC3rD3UvWlWzz1XNsOQpHA3OOmPTIKkGjpI4o4G4uiZzcjxXcNTYZZz1 - 4cqm6+Jy8O1H45SVMut2e6+FGB0h5PabvG6fTz7G5UXySTG5J396js0Cx011II60POruc3WzjS5O - CQ0C2Nb82CAOfKvPiIMeUjGt4yrF3/5NvcmvanbFS4RPyAzDO7hKMuwrVYLNxqmpt3nlBTMFcoOR - P6dE809CsYjJ5gYH8y4SbeAEva/1q4KmreiOT5PxyWyftRZusnAbp7evMn5W2gYUXXGJc+fG4scP - 0XN/O9IjPmKfcZMXgR6+IhL69jrpjVt1w2g7anS7ZKHPZebsYBKOEtU+ytRNG/0egL1eGHGLreEP - 7uHDAeHaJ3EerdnNcX5PkYoTmzqG8ShY23sTPBSQSInFOZmrPFzB2BriCFtsFeLNHmUw7vcDCZ9g - dkKxoy+06rxk5NTViNhUNAd4L2VPw3bqdMYpWYW+/XlcXxKX0bw53jb8nerUkmtaDEI8PUBobYmG - jpMV8z3Kc1DiAKgvC4ouqg85h52otSMXJ3d/eoZGDhczccPNjafFEBG22nzAaelu7byTOfYKD+ZZ - OxPjG//pWr4E+XYOB7otI6IzduUMyHx8peWUHQou5tee9ONzMNZ2zexp7GF67AX65btFKybzDQ9S - MI7cpRYLOiqPCeJTr9BfPbRyU5zhSO7WuLLTpWa7ZySAs5l06ipntWDnl1/BQwY75N3WLGZxcjz4 - 1ZtBBRH1p1oZQbjeG3JI0taf+1XL/fQNddZFkywlzAdsaJuaZAK29P7LH9EFBTzdrVDqM7czJZA8 - QR35HAa/PeX7AIoDvIkXDlIyjw3joHyGJg2s5NN1OHnmkB63e2o8giKZSUxWqHelgOyfZ9Xn90tm - AC6vQyjKT1cfntUtBXHVHal5neJubh83C3gOn6hn7Gwmuvm6hx3tp5Bjw5stctfEiCrPB/HjasVG - TaYZssykoX5zheLHv9Ev3mqzOqBJbY4pfPanmXiTr3VzoZ4isFhakON5RujLB3r48Qdub/L63I9p - A4NuEHpN+XfN/I1jwaTKAzUGya15vRZLaLYaGnnhznez+5o0XA7WKlysxfCFX7y++ExIyr+7ybJf - PToXu02IF19GjWTywaa/5Zvv/qBiiq1tDk+0FcLNWf2ghpuLEDAfvmn6KhRfiMfgjA7SdjtKSSon - dKNFMeY0LQ3lYzagiYRMkYdwW5KrZASI/+pRKPezOX5GW/Sbyqo53OLtiwZvue5m8boBqObYJYFv - U32+6ScNfvyhNPZdPW/EZsRr8dFT633+6Cybtx6kRSxRTbw9ksXn5APobJxC7lytOvrFT/lGLzpx - 0Sv+4WMPjs4dKSG47KZuO3lypIsZdbY9KZh1qFeIn5BAzVFnCTsLux44ERSSzJ9zPawPkwHLKlJJ - Hg5SMd1PlgZ1IWTUaqKQLZMuvkCmBqFH9LqzQbdvPaCzxBMn6IQfXy6RGLCQKLW96kbPsCcYk4f/ - n/21+GQpHHP7QLXwfGPf/DhAtRPd3/4WM//MF/jqBRKMBy55kJBpSGy8LoS7FOvLlx/CSTXXROvF - Wzene6VCLFnfR+p4i97nZBjRsQov1FlcpWO/eJ0onWlgp1Ux7Aa9+vFVat3fLWL29OpBNztMdfe1 - Q/19U2VwQSFPAte9IXaJzhV+DSigKgmDmlfoLMF8KAOialNbjMjsLPnbP8kxugVs3jpJjr/xCCej - pj7baFkEyufGk1Ibbsl8WJ9K2DzlLbUNzesmd5nOsrzaacTYm7zPsBFp+Bc/h4w3tNT+cgP9kUx/ - 629WqZDCV58RVw/3+sxX2xV0tZ+EjEr3Ym42ZYRMI+hpbhhcTV10NpA7yhXRNnsNMXSyQjmZ+g+J - UuleLHJmRvhoN9tRbCOBsYSaOY4UTaPBFr8SNrD6AEs+lzT0vA+apIOfwVePkvNdiv153Gga3DUv - J7b8/PjLargpeDqFL2KP9ovN9+32BXWh+9RGrzuaKY8DkFQ0UqtAkMwfO6rw3dMT4kwo7cQ1Xh0Q - uzk+VYya6LOrhwJ0yepG/KxQavGLNzDH+YcYI7/Wp+VwbeHK9ypRBu7JlnLT36CTrwF1Xxc5maY+ - bBGTx5wYwrVgX708QVU+FqpiGSULedUSXiozI07uzfWyCaMRwjdeU/24WRL2CNAZ/fyG9NefHunL - QWRIO5JQ6Z4se/6pAa+bEVXXECCuwP4ZelcO6E+viq+XEKIqbg5k98aY/elDCcmYumf1wyZnFht4 - 2dmNBJVpFuyn3398Un1jjGazPDQw23pA9KXlf/7JDdXOQxt718T1BL46AT7m6tjVkou+fooGm2G2 - qK6vXl1f3lEj6+suCFe+vS7azjTaPz/MpEavM/MkLcisuGuYzc6bje+pbeDnj4Tzifoz0eQHurPt - gdgi3bHpWo4CdKsbJdZX78zRlKWo1c+Pr3+zYxONdQnj5FCO7wX1ydQ8kQMhOle09O1rwvTr7oHz - cP8gLrw7nbYQrbDW2QMJsbhLvnzjgb75EcrjwfAXX2ULyMr5Qvx2vPtffVeh69EIiWo/KBrlzIzh - 2QsRiXtR6WYYkQHCsaEjrWyaLNJlNKC+WiMh3E7xe1FiE4BHC2JqStPNYnAAPJZDPoqbR5Qsw00J - QFrDjRS1YRTT/ZMGUFSpQc0kjpJlN+8i9N3vUDZjpRY2RWzJSLya1J09teOK7a5HbckpY09Q2i38 - 51aBY1sD0UfRqYXjFIQgH5dD+Nyllb48Mib/+tOwErZcPa+tj4QvWX0l2txZPn2nqQajXdxJIHOH - bjkqeQlt+Waj+C4rJLzqewzbteKSHX3LHStv1Qj9LduEiFfvbDKmqcfAjd23/2r1UqSQoa7gT+G0 - DR/18hT080/vUSMDU1+i+mih6in3xEnSvGj2q+iGv3qM+N/8mo5ZcYDz2bao+dHyepEGLsLOJE5/ - n3OVO7XY+DRnqu03bTGc5fUDUrwKibWLpXoeN54GeIYdOX/5GN8+GgP2aYnGx2Vq63lzDNJfPYzi - lx9QItsKTAv+0BQHuj991wPZvAmod9Xaevr5g91VAnK0+aM+bKWtAyfTr8bp7kaJ4JxWCxxLsOi1 - /vof83kTo3hdXEPZk7vu+axuB6w9FJUU8gKMapqngXm8atQKb49uvl+SCX+vp5q1GDo7HLUMv4Nq - PaJa+jAqGo8YJ9K7CuX354z62zkXkPR4GzR03Z0/twyfoa6dmOif9RrNxyCWfvrvTz8vV+E4Av6I - HnUHqyxmUpUOcmKCf/6dv6D9JoKv/xXCW67rWa/XJWxwaFGnT6ti2UUg/er76+cAG8Wo7+GLl8To - tPjPv4R9VpXhasnf7Jdfm8Sip5CzljTpQUYVeknXM9HPj8Zfntauh9tCc6q1qpuIp1VYwfP2ef/5 - t/0xS1LQh1AnW61kxRzLgQR4kAdqTr2Y9JY9jmAQK6BqWVk+r/aDgd5GYxHfjptavIZKBfdt8vnq - 2b4en4J/lt2iWP/6eydqu2MOPz/odDxwem/c2gqOo7MhMftwyXgVrj3gw4uj1i7OOr67JzF6BJuU - Om0cdYvRmAEU9v1Ntcjo9Wmc3yUynYjQ61o8JaM6yQKaXPYi4TW5d1/9y8F6ZyhkV/QhWkAro43Y - h2HYvgdF5x6qroDCSTE1lp7qy4HtFGj5w0BV9xQWTOQOCpzW3jyiaK5Z99VH8i/fXds0df4NnYW+ - 9RxyIcFo/ukhb52V9KvviqG7FxF89cv45XfF9NG9BWkULuOP7/z0PoxBtCMu3es+tz02zZ+fXT7h - WX/xrwHRvUnUEbDls9Z/ZXDeoJ6GS26z6YkF7/f/1H4UWT1hGwC+/D2cI21Jpm1aCPApU4Oc9tmT - LXVXWvJwODzH0b6bSJT7ewjf/KCKZL+6AXevGDJFiELY4lfBjgl+gZvcLWIx2f/6250DPzwoPe/D - lhXgXPq69tSP5hrRKk5jcLhNQvKvvvjrj8nBO4Wctra75euPAg6UB9Hf246Nq63eYkFJBXrVOgF1 - zc4OwCyqJzEtbvR7u/EN+f7mN198UPW+6HEETy1WSbjRO8S8rBthsWvne/9S95nqQvvFn9puu++q - r1+DXeOQEPvbb3pN2N3gmEs1VdoZJb3aXA8gNk5Htuf4xqZ3tllQCbuZ/PjZoNtND58pCOnhWx9z - LBsS7M8PlZDz9ZFMm9pY4KGsJLodHs6fn/Q3D1KKlteHn793uLSY/OK/RDq74V6dLarV2TMZXe+T - oe9+jGP//HTzLqAe+vEzqyM8+s0T4Mvnw1Epi27xjtWEmi3nkCM/6/Wi6HsLf+dVRNXn2u/RpV7B - zw/RH6GB+P2O9VjqL5hoVHh3kzFJIyTWcPrjcxOvfs4oiSWdWL6o1LydYQEEIarIIdrX/t9863kp - ou88JKsZuUwxOmWtScOdovoc+O6CNnaUU/PoKgX7hChAXabopKytMfnxF/nIl2xcSVqizyRRJvzl - G3/8d1YUxYHv/dALdCGbwHcnuG7uR6okeoWm4CUoqGmyLJx/enlbnwxZF5eEeJ7s1+OXzyHwhmKU - v/5NG6xeEtgX8zJ+vv4fn0djiy6gaNRU1hSN4SY0UK8yK5T1aGTzYb07o8v5rX3zo2CznE4p/PYr - kDSNzf7OVdC8e56JfjtyrD8UjYN+8xLzaGJ/EpA9wU+frK87yZ+zT3XGm8N1O6Kv/8+SUgxBkYaG - HPDpVU/BgQrQ1x9CrGWzdHS12+Xw1a/EVSML9Xry8eDej5+RW7lSN2ubsQS5U3pqDQaXTL1Xp/DD - A/85NEn3m2eWJ6EJoRndYvnpY0GIq+/1adJ//RPYLa5Mgw/VfO4ZBhk05+1IdO6aICq0nzN88YgE - ouoycTHnA5R7ZoYv9Gh0GmtNCV+/N5TiG8fmZVRyrK6slLqjffSb9pYfoNQqStxff6nGSsLLa+UQ - +6ooNffV4/itPOoRqdFRX05tneEQlRWx3AaxxsSLAVd+VMmPT7BHf9UQW9VTWDjWmAyuVTQwufOL - JOBONTvqNIM9s0bqVE3CFvsWZVi+duQbX4Kar38GMdpD2H716PDNfyhiUySED/mayedEkbMuuxIF - wwN9/RcZ3Ou1oobNBl0YT+MLVtdFGNfmfdTnYvYVINLoUE87uwnrre0DfeehZLdJPv4wFPIZPZtl - oE58S9HsHu4ctncQkuPJrxJqM1bB2p0sYu/ttf4x500Lmpp2VAvJ0A21/ZiwBKNHdL/Ri8nZNxJc - 882DmJfFSGaLqDEA25TUcJuu7pXu4cH/Wr+B+GO3OqNwXZlEqzOzEN63tIRGYKvwGrM9awqsn/FX - n5NEThd/ue+SA0brh0+vD/fuzyRxJti5ofE3b5s3RyMF9b7pQiQvgObte7WCr19FLGGqulFVXUvO - kt2JBOnLK0RtZhO2boZJnc9OZMPujA/okt2v1GWwL5Zc7Cf41+9UwP/4b/8PJwr4//pEQev0GlEq - SWc8o0EMe2FdEueyMXRxkWmJrsH7Qj2pBTRdV8sE0ZKvxke4qdiM9M+IxTFLad44SiGaF+WF790l - pd4FbWvxDQsHZPNmY1VEqs5R8SSg7qmFVGemUczvNAU8qGig5nE5IuHUjxGYwhiHiWuwhC7y+ww+ - 94lIEc9jt9jlTtsIx3tPDbPo0CLv5QjYNuWpPi2zPx84JKDGKYGST3H2x53zaKCRjA2NbStEzC1u - OR5n/01sWVYRS9pGAKlUdjRXNp3eS28vh62SuWSfiu+CevIUo12SeyPv9no3sq2/QMPCD1UmxS7Y - Tl3HcB0eH1puL4bPNfshQ+5yacie28c+Px1fFay0kNLwmmpMvBVWDuPtkdKYX0eJWOBDAyN528RG - 1VpfxtSRge+Dnp5i5dPNK+k94Wj4TrzWfddRNd7IMKSRQ86vQ8lYLJsWrj4epZrSvhDdvXoLWjm6 - U+L7+4LzbrOMk0VMqXIVODbBRg8gEnchCWysJ6JL1QxC2mih3OkT6sJNZOA8FCnxuapH89QsBxx0 - 9ppoGd6yZc5jDmtNWIZLhgfEXp8dB902IKFw2TH2itOkwrGu2TQotFchXrM5wJ/PJ6Pxd32cXeUW - 3jXiEL4HxIo5CPAZXlUWhZvdXdU55ZmfYV3eZGJf4qxmO1WMcXC+hCS+H/huMs6OB9YrJSGbxVvC - VPVlwClsr9RIharjmiQK8aQuE7Wvzw798gteVR7RbBt9CrZVtQgKMRKpJ5d2PQjq1oFdknk0/76e - ovTIgR+GN6Id6aebg1KN8HyMXRp+8mMxzvGt3ySdvqfbRHoXC2e/BMxH9kzsT3BkQre/G3h7h4YW - UrDRR6LFPS7TIKBqs8Z+X1r9Cg67wSfHXXYqxF8+lqt6Tb0XuyD+Yp4r+MDTopdsR4slDYUXyFux - JF4Ea30Jx7kBgTUNPbrj4NPjEQS455JK96/R0rmqDxdQtcH81tcjaepH2mJPuVt033dPtnQfz4A3 - sUqqlG5TfPg7H+Ciyt/EjZVPzYazuMD54iT0KEox433vFsHWjE9EG7m+Y8mdOCDI15yYqWgnon9f - DvjtzXdqXiKic7GBHjA+ywe11PTWieo6E3AvmyPdEtdHorN6NlBMZ5NEbzXrBHvTO+h9GQghqqnq - ovJVdN02JOSkWW3xrXcFwnOfkl28dgvu9gQBfyznSFLhrdS8uW1acPHzSIwtl3QisuMFvMV+En0V - Ob5gvXQPb5c7Gpf3p0GC1KIz2PcPoW71eSRTN/genF8SRzzHGBmL1pWGUZ1KxBrksZ66QXcg+RiM - aP39VIiZGPTyxriqISRiVXNWa4RYiqVqBGmL0XLcljn84l1uXxJiUUUP8mFHfer30q2e7sFKhgG6 - 01joW12f57sSwMGGdiQ0K+olvWn5JlY+PbUET+2YmB1DrCnZjRxPbs3mxfHi3/VESS6DLyTBJwdX - 4zuiz6KScOuHpuFydV+PUlpsfcZOYg6FWhQkypCRCG5/sYBfezkJrWLvTya9e/hi3p/h4zLGSAxy - JcDb3PtQWy1lnU5KUMK6PvnUynTCBjEdHZBcTx1BEAw0lDs9Rzf+LZEwyFLWbH2phzzkKfWjEiXv - FuUtjGrdjlMxKD73dlc3eF65B7GPe4ktylEccWxLx/CNqqs/HQUjxs9B0uiFT3aM00AKYHe1A7qF - vYKW250tuCPeTNWZTDobb1yFf+u73mfCxnuuNpDa9EG2YasX8/nQpOANJA1FDlfJMrtEgXe3DKNw - Syo0i+nLg2rU1tSvNzs087lvIcttFBIbaeJzoZUsUK8ahybMNBLuI+cBrKPLhZhnzdeXba1N+POY - HXLsrr7OP61MAsttlXF9fFz8uVCvC9DYYSTwTn69aKL9wsi/begR83HHb3pdAuUc7antF6duGKpb - hmVnHRLnMCoFLzw3AFNxj+h290x96lI3k3/4ZCXtG01apmc42mwnek2Kplji87ZFw3XtEeuYpv5i - 8jQDjNOS7uV47obreYnwdlIskr6DD5raU+Wg6cptyY6b7G76fMIMWf6joubzpvm8YYTwhzdKt+s6 - fj3xLZYs9qKeEHL1sMUnDzVF3hL3afY1GxcnxY3hron1DpOCt5XdC8sR24avnPe7xd2pK1ivb9Zv - v3yhaCQJROt1GFHAEV10yOaG9bouqeGLjM3eaj5AWxCRGFGE0HwY1B6/CvdB8nN418VPeQVgY6qS - 5PUsi0kskgp940+dtVEUi8HiANuJUv7yvxDEY16ChcIrPTU0Y/1w5QycXSyFJFbj+9/jfwsqVvbX - cRH0WlRsXwNDXp+of4hf/sxdGwWs8hbR04dz/NkuHiMe11uD7l/OOumuZhRiKycJdW+HnT/ptRwD - H5nzCPHCkudNhxQOupGTuCoeaNosmxhO5iUm+7W69f/wdyalR/0XUtiiKZ8UHk9LIsHOfDGmbZj8 - i+8o5VnfLU3bxijOru2I+viElnWIHTBta09L+2YkgqZ8DthZoowmP7ysT68Ai3Oq09PqdaxnRT8B - bBuW0/BYZwXL37cS6+h4Dsckr+tpelkKXu/3A7H3TZCw4EEqtML3kSi76Vb3krZ/4fLBrkTzpsL/ - xRfxnNJR08CNP333E9zcOFCLvgtd3CtHAygbYqJ/pwWTHu0iLFqPA83auGOzuIkBW4HLk8CwpII1 - 4l4G2xUjutWmhz/vtxsOutU0hk/p+fSn/JQBuHdpT4y+vetMK28TOPuXG54cvdVn/8lyuITjQgwu - 3SYs9jOA547Z43ody2jhOHPB28D06SU0oGOs80NEKB8ThcC+o8dI6/F0FbaUUGIhcbXtewj2zZn6 - VbdFy3Ndn9HzMfIhC54emsTkk8HVa1G4nzcuWyYWTcBa1aDGYyPUff8eA/jGlyg774TmpajjP77g - dDeC+Dy/jDCfgo6EPLv69DXrAObMadQ8vSo0tw/lhTdxdQ0lMaf6kGniCpBfbcIZBbQbKypyINbx - c9yYaqEvoWdwkJmRRhOr6XzqkLmCwQracLxVti6277mF6+hCeGtWWTHt0ScE/hSvxp7ttwUT+ZMk - 2+hEaXKo2oTtEt3C7nJtRv5Cj/WyEdoUFUN1CF+nCZIfXslxdmlpdLQ3xYI+RQT7Lv7O/j5d8Xk/ - bxPImnceZ1O09M+t+Tjw48t6tlo6+imPAPGmFEawsV4smkge6MvPR1iiUp/4pn0hntM6SmiG6mZz - jWJc5K+GmPPmg3or3FgADFRymA4HRM2L8wJ+7eRkNzIbietT8QK5kIC62nNhjDDkQe4omFznwKqX - Q8wOsG3mnMZSkXWsRKszJKK3o+airbrP7mg4EG/OAtmOTqgLLz/OMBMc5S9/J24695sVQEHs69Nn - QzLeJQjz/Yb8+PvyMJ0zmAaVR3RcL/UjJ+sIWfk2ocqDr7/5p4ewIY/pj5+Kh4/TgGs7DfEXsin6 - 9tQ6aInfLgmyqK1HrGwsiJJlS/399oD6t3ApNx9VzKlWytuCsdM6A/3+AmJ1OERLlfY9lIW2IkHj - uYibPFmS+3g3UXVkNvvyAQeb3FGkQeN9GLu/cAxcuszU/PHLx7mtkLdJoy+/9hF/GNQRNZK1oar+ - WLoJ3mIG8BZNovqc2U3oWYWQZOb7r7/0/fsVwiSR6y9+3ZR0+PXD05DLbiNiUc6HIFnzi6br64TY - 5eVEoCvad0LdJd2CAGKI6binX77asSN8GniBM5HjU9d98ZNGLb6Lryjk0OqU9Kn4OOMzBzHde36v - z6r5dtCrWtckkNijXhJ0qcA81xK1t+TRLcw8tTgTT9xf/Xz1SQlqIcdUMeZFH/THWoPXaMZETcoZ - LV9+icBIDbJbn7WO399jDu7XaUdV5VP5k7y6OWCYNh4r2xpZ44wOQBNvL6G0Wz/YLK8fEnx0BkT5 - 1Z/GDpX81RN/n3/291gAeX3C47obSbK8XkMFwca/UKtSaDIclWqCcpILoqzTazcXYpTD6a3P4bJL - 1I7/dEv/67/h6sv3xs/TTNEX/+lh2mq6cBjDEmy8eETprwSxPpZKwM/qRqy1tmOTfGIH0PuxI4bI - P+ohrpiCw8qXws0riTp2uL5W8LiFDdV2yb2bPlsUo9MmC6h6vijdjGR7BZ/iLVPzvvbq+dTdK7zN - nQ9NmpNbzIuwyuBI1xL1zkJZfPvzCrEbLxJ7aUfEENuMWMfJamw3kV7zjSGN0MPZJVf8HAv27c8o - 0bdHcpWEGI2dsY8xXu+UcFlKCS38Trlh+dldiHuRHTQ+H9EBH3dHh5JWrdCsP9YK+ljeMZTfp0fH - yq2XouFDO+qt3udi+eweB/mrh8PhKRX+TFXpIIPvCcRddy/GnpJgQXO45SN3m1TEsIo5VIFxobnk - c8W09NcVwoLNiJ8XOZvUWT2AxAvRH5+ajPh1xvtX7v/hqZitBAEHS9qF6IVujA17s/3xQ6LapudP - W3/qoT0le6I/8V0fn+OxhWXeysTxuPv3xPA6gq9eD9e2dusmfNvGsMZuR/V1Geg06l0FhHE60oxN - FfvhHWzufkSUvJnQV59I6Mcv1Ws26+3g5NpPb4RTN6X6lFI5RTIbEdHe3i2ZPlsWY3OLbOJLwUmf - yu60oPDIGdSrpa3OLf1xBYNvyCQo+6Uer/KmB2E7+796rif1ckvxsFXP4fsTiGx6u6sKyVu+pNsa - Fcn08A89lAdvJGYHrT6fy/wMcSuYJMgo0xlb9SHcu2tKrdviF/yTNxXEt5FHg1o+dPNaUyuUPMKa - lA656cs9dxvUq+MlnPXHUs9ffi3X6ZWGnPUhbLaLvof3hvPJnl7UTpyU4AxGuPPI9rq8uj89mjb9 - RJSjvUmWRU0l4K19RElSOIXQc9IK2E0UyS9/unLz+fI/ex5x/qi6xUuuHmJPhyM7974U47PXSrxq - DJ/ql9Cs5xNLGjjxNiFuUSrdhLPEA2/y9R//++YXL+Au28Sh/GIXNuDTVUbre/kh5u5A2NxthAnz - beyR8Lmr6kkcuRtwcrOle+n51Jc+MhwcPHbbcISDWU/uNpP/4k/irZFw88zJSI/BH9nqBGhQ22K1 - wfhQEpWb3t3EndkIOGqjsDzs02Ie3faM4tfdIYVjsvqb7wD0qOsjp/RT8sXrBxrS2AmFTCeI8Rs7 - Rl+/iVwvd0BT89oEeFA3AzUi++1/+Fw34DnIGlFM4Z4MD/kDaKjkzQ9vGD3npwzR2GPEu7pzTV2q - 5nDKCmU8aZZXiNNjjsHBmf29n0cxYWPxgPO1iDi3fZBw90P0gsxz4nCllHzXbO5DCZdPeaXOa+aS - 4eCkEj4cNIf4pqch/joV8c9/+faTDC11sx1hORVoXN9ngsQ+nkqcLtcd0c5v2Z/lxAQ4mo1JnDOX - sjfJGgWO9usd9tXW839+ElyyS0I9s3nVU9gpD2wbWCFGKxx8psazhJRjbn77VcPmTVZJmBV5EvZq - O/kzmpwW/DC40WRwHozupYeEZenpk2wzVN3CmlIGFsWPcfXJxWT0zhOHOSLfaDi6MWOcsFiAjlsg - DrgeE86wk0CQbhIJ+VSoRzxECnz5XVh972eIylUE4bQ90LQ35ILOUh7BNXhewjV+jl89bWu/fkuy - zxbq5ePKAXBjvRvlTo8Y9zhXFZaEoqZqGA2svz05Dp3e6jzibEeSZbPDFdycw4EYytZm4/JyR8gu - hkKP87lFbNhvm7/9b774z3Sz4vBykC0aXm6ZP3lcLgNY/IZor8emoz++esjuOFw3kHTza8glFLrT - ixjsOXfsZTw1MNrM+q23G5/rrgRs1Ck1oqhAjJqfDJ7s+KI/PGae1p5lt1y9iL46AZunRj7A7RK+ - qBEm4C/vJc2RcndelKwltea3t/KMjtUh/fFRNj1EvoX1/fyhhvC+1aySyxiY4CmjTo6vbjgWvAz+ - S7sS5WY1/ryS6ITIw4loEsZiMj1SKQeB0IFakdT77bGsQsg/mhtupnWH5rhCCnz9Cvrb/16Pdv/Z - b9p173ccXCbjr5/pnlvV/Kn73JBj3zpqlHBgM/EvMXp5jx1JZ8n0xeXYhnKuOwNNq8uYjKVXan/+ - VxbJfN0/UikDH3MXmv++v3nNAQjHug+PSnTw6am0Jvji2fhSL/tkHk5hD1qN7tRls92928MgoNdo - x0Q9X24de2eWAu9Y2xIjFbR6uTiKAMpLE0buq5eW3L1rSPKtOqTHB9bnmbsHgLaXgtrRZkKDGIAC - 90dTfeuRsr5wth7a5QEQwu/R9wm9Qwjf+iGBK+v+JI5wQyouZ6rvUitptCv+PleyJ6Ow1naIDeqj - /a03BFfWdc5RKwUK9VSQrx+BWImEM+Lmi0LL/vxKWON8JvjyyT892RUfvkF8fA5IiKZV/dPnoNqa - RgLTt2vW4TcH1v6oE2suXnovr24ePg/Di2iHu1mL1teCcPfsFB77gRTc5nN8wWR1CjXX6uCPD3vf - QMtnO3IhboeGozS9sDgfdOIlZCkGR4YHShPuRuLWnPWJrn1At0vwooZxOHezy7QSgt3+SqI59BMm - H0QNHk9DCtHVOyTNYDQr+PofIfSbZzGUvBTCz79UL+aFMf/zOCN2tA8keBej39GTlqOfH2MqYdCx - nx8zXtonsQ82h1hnqy8MdyWhp1w6ofnLZ9FDv53o5VixrvfA1PAhlzJy/uo9Zr1tCdnGWqHOJcEJ - G4G0UE0wEkWSjvVyd7CADgpdh/NuNgt2ds0HTHA7f/25R7F4jxbgM0kG/eJnzePdc4G5NBA9hddY - p2FaR3/6nZghzwarLgW5L0pMzJu/Rp26jjh8vxRCKNwS7Ttf2RrovjppI5tFpeAzTQTA2/5O7ZNb - o/7b3/78UEFNlXpuUAnotHuE5CrkbT2+Xs8Kz2vDJjEX62z59GIJMuvRKPF2gYTx/ZHAfq4C8puv - zVp1F6CtdeHn5xZ84W1K+PqxofzhA7Zo9FLCSJ42KUyvQovZNRZ81Nj+8+MXWdvFcFyph5Hj0qFg - 6rhV0FU8etRGp7aYuL37AB3vVuTXr0T+Ah6UIt1+/VuOTZtrFsF3PjOKsnxHy/UzyGKG+pmW4ttF - E2z8ACmKm39PEPlouj05QV5uzZu4r+XkD0gmK9R9pJJ4y3DxWWSfQ1SAb4esk29d7+51Rf71S+07 - z2G3NQoh3rVS+JbeYz3uuznGqDy/w+85seSrHwCaW4zC5dK7CfW0qoRDOJ+/36d0S3rzcqQN1hh+ - /YVk9lXrAdn01qjdrVg3f/kgLGNvEHVzrf0pGDHA7bW2xylDj2KStP1D3k9OT9IoQoxtGk9A+/AR - kKDQrEL86csTbxJic7gqZm+1OUC+eZ5HyaUz+taPArKt9b95QlFJltXA9G4CWs5tm3zndRIimycb - uQ6ZRR9tggbiKfmMGxm6ZIhKIQbq4CcNw87xxd88Kw6pO6J4DuteLJIbbr328a3vOBFWehijtXDY - hFLW3fyxMXEJPKkuxFeKd8I+uiHATlXpqMljh8Y5br5PgHEeSVIi6nN9oRH6/n7IBIXX56GNbz// - eDymeZNMshWnuOkwHrkv3s9iwCkw3l5piOQVh5bcX4WIj8tg3EX9QafDeT39ff/1VvtouoRXA6pr - HtKvnmQU70sOKEhXug8cHw3O9V7KPz1tJ8FD/xB/H0ufqyyS7ZO+EiapjgB6O7nEL1S1m+bDZwG1 - kGLqfrhGF4fNUoK53dih3EyXepbmhoObuUbUkpPDV4+gCAJlCkieDZ9uiFeh9+c/7q91VUzWoQ5w - 6dgRCV8rqjeK8mw3u4Yfxk16nllrsDyEuhtzqvVahJ7feseHg+KQo/QO6/E7P9kwq9KJNxyMhPvO - j5CriR11+pHTuyJsq58/SbZfP3FejU2JAlzmxNq/7U6ciuMLTrdgTcJrWrFpK/fc3zzkdMSuL0a9 - qkj5wSro9lgl3bKoZwmmqLgTN0JyskSh+oJ8kE6j+PU7luo5VfDWgdJUW9fdjE9HGb3I+U60+2Hf - ieXmHuGsYXo4OEONeubGI3z9uhH8N6mn7fXU//+cKBD+6xMFh+PzTd3GftdT+EkjONYtDTf3tfRV - fOcSyPz+PoOUvQsaeqkMjE0hdVp/r7P8RluIceSMS79a0GKW6xJO7ftB/YKGidA9GwEt/aegRpZE - idDEvQXDsVlRx+wGfTpkywOf2ueDBCvfQQKDzwL7otqE/HWei35XsxG1m2xLrgJbowlpcYvO9+OO - KitJ7nrvGVlQiB0d4fAWfHobfQFI6gnhgsPW79VLWsKu5HN6iNd3RPdG6EG7OTESDoyiRZrfGq4a - mlKLXV0mPskpB351XsJZ972O8riI0fmVvKjKGiURmJqG8qOlXHhfx2K3uN7uhVkUaJRsRK8TuZ3R - QJxLFTnOTl8s5RKMUI+dRZWNXiVsXQ0atJUtUWePMJsLJQ7QdH1G5KKSrT4/N/sANvbDpJfd9VGw - NfJSzBU2pU7FvYsGjfcIp8V4JtrbZYxth60Hq2ooaSBwabe877WG6yC5UaV4H5F4sfcLdvE6G5E8 - vOtpvigSXA7GhTjpierLa/oApPunTT0BhGKJ20nCk+bkVGGhXgh+n7R4evYvEh1Vg4394S5hpcoW - 6gu52C2HwylHOHQ54q4LSBY1RzHclQLCqROJz9mrD8D1IB1pLit3nyspqvC9hoocPsd7N/HOPcPJ - YD3Dd9I3yVu30RmEQtKJva6NmjeqeYVZ9QyJLj80JOa3TwRHi5R0i+5Ip2UEDlqvpifNsfEsBD+r - DriTiygMt69d0fPcpGCcZ1caqZWTDOJ9CtDz1qrUvBmFP0PbZFC4ukSN51VPuNEzHLjJiUIC/kmL - 6eXfbvhwfKg0WhArepPXX2DnSzxKuyYtxK0ieRilTUSuWWF98+c4gcPsHQ3hvmOLmEaAz69Iob7a - SsXiJ6sDqE36IJf5tCB+xZne336epUPriwJTDjjcahe6l2QfsXNBLNheQoWcp/WecY+da6HolW7o - 7nC9djRNthZE2jTQ/XpF2CLNVEPB+HKJUTlEn8nGGME7lCl1dg2XzMfI7PHJB5uadJTqib4TDsc4 - GYlt7iZ9uqyWEpP5YdPI2Rx0br44EuD9ZfrLhyluXga8Xu9TKFf9WmdzG3m4PSrv73rWf/mF272g - 0u397HdiZ0QxFhPlHKLE5dBiqO8JLvooEgvLVcHHgS0hQ8iC8X+SdiXbisJo+IFcyJxkicyTBAER - d4KKgKgMCZCn78OtXvaulx6rriH5800ZqBXPZNzPClM48QbGZdc27OeEtweYl52Ij9WxKyZTdQl6 - +aWKc3M46tz7DB6wS8MjPtqGD7hVeUDonL83fK55fljOVrVDeftbaXj4eb6wv1QtlKz2iy1xZcm/ - 9tOWuuG8jKHO3MNIYHBJODLHhGPU/akQDb+wD6fLIfHXC+EteBLTLFzcJNF5p/ZXpb4PP4pt6Vks - 72PYwTOnF39nEgp2TF8l8LxQx67coYEkdIhA9TNu/+YPzZzVgRfhAAgXZD+fdaDS4ElfPTJ7zgEI - xboqsEk+JfaCDx7G+KA/kAL9lEjuLhsEV6gCYF73u5B/y2oiDLugBo4cdkR8Zp1PzMdioe0zvhkH - QWdT/NIQe+VfslCtA+N1T1XwcPtfKBSSAURaHmcQHByZXnZpzhb50vSIk4lK+MoA+vw+g1KRK+tD - cvHy1Rdc/TR49i4y1v0fAEt64Hb/8P+QFC8w3gfXg3xzdajleuXAPqbBwWWFKc2P2qFgvzqtkeBR - PeRfSce+O6hokC/tIORStWPirXpFcHZOZ+ott08z7ezZQ8fYy+hFO/qMi7/EgvdwfVETDHvAYveb - Qfy+lDiUQqeY57yU4O7TH6mZcJ7+HdVpBlt9Yh1eX2B2aKOhDhJCHRgNSd+EXQx/me4RaktvIHYf - 3kLdM7lTNRcawKb4p0I2ljF+PFYjEXrnUqG0GEuc2PqXsXSoc/irk4LIv2wEYypID+VySFwcXAcV - TLZbWeianH40btbOX78DnsHWv9Tgy75ZUPEq0ax5N2qfX3axCPcggAx9JXwEr8MwVUauKqb2vYfg - 9NkPyzPHIywfqKfx+/P2l2d+yJCd9gibxcNma5adcpQ1XEyvsXZKFv/YRsjDXh6+17Up5mS6WbAq - BRcnl0T1+dU8G2jDX4pfBxnMgtznUEm+LKTS9wE4qWhrBN1CC4fTp9OZ/exbuD7DFlt917HVz+sU - Tfc5wU8ICBCMadaQQoFORI+ZhVA2AMLTejvgktPVgYMs+aI/ftdQ6OncxXQjRCjM6KNVRjYmJhKg - V9x+1C6ls7+0ThlAf7+Lce7uskY0gjeHsLYXcPhY72AtnocWWeh8oOllyoZ1ed4MaNjzGRfKZA/C - HV5jaJ/5hqbDIdZXPfqmKPMvGQ6k3+ZA3o2EuBM26XGyfgmXTDcDWse6pa436ANPHx2Emq/M1Jnw - tRACQ9bQJUgZvXzrFczy21OgPpc3+hCB5K/4Ah2w/V64S5yuWeLAreD95Thb/SCwHmuVIJczCC75 - N00Wb04rNJwkSk3DCxoRXdUI7VWHYpsYjj+vLxBDSldGTWfeDwyq9Q7d+rzAdvkehvFgSDPsa1Oi - J/hqmvn7lUJ01WydWp+6bn7NJXHQE2937jyzfTO3J/wAEh8+w/24+wyjh9iKrMfkUXM8OGxMH4WD - Nv7Gz+fTYwvSAwfWHHqH0nOGA+WkT4x4E55wts3vrV5usG07maoYKT757lYCdT6n9GA/Un05fOMK - PTY179zCI+D0feSgE7qfqLfn5WR+OpH0x084mwktZr/3SlhbqUMvLf4Vmz6N4WNXFETp9tRf4f3g - geYQRhveHJiQFDKEoxLY1EeLD1h1iytIWmUMFRWd2BLEUQT++C8y+QWwiww8JBJzpNFjqAdR8XgF - NnnlU/34UMCkNqSC2JbeNJZANawHFrXwrz9N7lNv7SkjIAVTE0oOXYolkBUFPF9Qw2f8UoelddIQ - bHxA5H1Rg1k5XSB0xj3ABxG4YH0KEkF2JYfYUHZysarafQe9acUhU9oaEGA0HAxzyyHcteYHhsal - g9ejN4VcBLVhxsTqYTLIb6qFaqUvsCcznO6LvOlBrlnrJfLg96za1Et2esNU59VD/uKJ9Ohf+IQ5 - UhgpucJs7D2/r2Jp9J8AKu/RbPwFAOvUWwnVy/m/emBJt4SrdDhKVVVN/A0/DOBmv/vGf/tkzusc - Ql6u7jRe2qBYb7d7C0HaR2RVvGdCj6rkKBEsQ+rL/lqs3LQlxFHhE1dcHsN4BrUAQL/49LDpieF5 - rhzkuLlLxG5ijK7FNYR/9amysGQDddIH2tX0EYJNX83eO7eUgHy2O7DOuU/+9Nblkj/wyVTdgQsY - DYHSiteQTTlla7zrQ8h7Uodvj+u5YbxmjsAd15Uajn7Vx0q+SvLWfup4p64hDP5muDvHn+2M2Jqs - n9egwvre69R3D+NAwuQwo2j9eGTvQU9nAP8kEPBgCPkrXIcliPPo3/gY+3YFLDTrCkgBbaiFlAKw - oPneoHGXo396VPju1hFi+LtQJxZVf9TcwYFUNCgO93GQ0K8rCVDl5pzmNWcX/E/69rAUy46eK+M1 - TMeL993udHOxGb93yfS1iQo9JvvYjbVTwd8Fs4Vp1K/UTG86E+1n3UIAoE+jTQ/NhqF1aIylgD7v - 6NwISbFAaNrdSsRB1YGIlmYHrR4V1FX4X8EESx6Vje/JcpLHhhVonypq88mpFyhXfWVns4Z5+w1o - 2vRGwX+KfAe03D3gQ9TbBft9LAU+DJJS+5k9BybByYD61XnQWz2aw+xnJw/VVuYQYY12/j+8eHq/ - EadH6QIE43a0YFGlIfVPn33DYpeMsPmNC72f14mts6bd/vwS9ue3xNgpn/p/+jlXijGhmu5aCDpB - iQ3uaCbs64qB4lvRQjf/A9bzOyMQvUiBHe3zBevBPuzgnFYqvqnoBEa3ai34HTONzINIfXJgeQfx - 1faxXd/6gi3ZO4BcYVLqyp2hz5INAvBXr1qby8myXh1NOfBLgQM+NsFSx98VGvBlU9d1w2RG0ZDD - 6dLvQuHr8IysUeEAtXnn+CCMxsBdzEMMB69l2H3resFdFe4LNn2Kw+gS+DRcZA+IiVZS+8pFTABj - +IDuuRTDlVRffXUF0oH6UhNqvmWZse7DGyDk6z22quWrf2WJC9BjCvlQ+txUwHnvyICf7iqEyun4 - 81dShT3c/DwNgucEyJYHAGrHMbXVnTWMCvqGMI+jjt7OVdyMk3ldwWG/7QgHp1+xREga4fFXnnAJ - 4d1nNSw7pPFdjPWZomb1ahRDHVQGjk9GW/Ry/RqBeYU53kAaEGmpenTkx5oeLsQv5lSYSyRXxgeX - 1sUsFn2ZFTQ/bj3VzJs1LM9B6eHmX0MUk9+wfIObBo88qWmo3gzAi26sII51Az7GxB0EXsQdpO3k - 4mNYXJutPkI4v0m34XH99zwzcM797a9+G5ZeFguW3anDF+WAk7lmewI2P0K4A4gGwQNxi9JGzfGz - JFEibPMDnaWdhw119BNqZUYIvXp8b3q1SNbfJbf++AHjm7wkM3z2KZh4C1M3Ox+K+U3yGVwFDm93 - ktTFdGmkHm56kwhbvrG+UqcE2Q7UVD0GnT6eom0+jF2NDZoWw9of/QqMfhdhLH13jLQfvYOXw8kN - ueGw+mOcciuMPx7D1u/yan5xYCto87tYlXXAFvogO/iXFxyfSqZvfmwHwTFNsYlfVTP/rnIMuLoY - qKHsrglv87yBpAsLyfrHX1Is9lAPAAvfFvj4KxhVC8zVesI+JzlM+OMTf2pHrA4i1RljnIKIYMY0 - dNULEJcdFkDeDithSgsLYj5kC37Z0GJ1aM2Gc7nzDVjXlSfr85np4/XjZ0AtT2UoZBkdmil+qWjj - V+xcvN+wvI9OAIdyd8Xe+14VNFFeKZTfGgy/w+Qlos0KCSpU1sn+fKmHlfeUDvJc5/zVw7Dy4mFb - kSnHEFD9B2ankEe46P4dH61FK5YLTDP0zJRLKEhm0xAwWiW0RDziANg7fwriRw/dGhBsdOQ7rGBe - H6iOuyu25M+akFBpb8p2nhF79fj01+CejqjtJw4bEdQa/hIdRzj3PaD63uPZzHNCjir186Rh9YFs - UWZnB/7wTusEL+GZdzCg0fuvkHf3QzE7xTLCxGiN0Iksc+Cf+2aHFO3JwmHDz/WxGgQKhaKHe/PG - MfK4fvK/9hJ+KKg+SvTMQUpnRt3cu4JfyMWpNHw1AzuqK4LF5pEBi+Pus+WBR3/9KGoK//yDOt8d - tkixHMENr7APsTDMCvoGUODyN7V3aQ6YeboKMOM16a/efN5MmAaHr2rgc3pDxWItHoHC/sn/w4dl - vVo5GMz+gf1tPH4HjEK4zYeQ8zg2jOPI5WhfvwAOj8kHrLu9H/7zqyru54ENxuOrkISOFPPty/+r - NyjyuRb+6VUSOSiEZ8WbQ1B9T8N8Me0v3BnmB+Ofohcc/RQcaO5lRf/mA3ueKw8C5Czb+L2H+YzL - UDFzlmPfII1OOYlG0Ei1jvqX8lGQz1EmMDxARq+vvTRM10duwOIWSLgQ7NBnlziq4dZ+akvPqlm4 - kJXoG0rL5oeEYQgw/4DH2MlwsfHjDH1ZhV0aHHE0XduBNtcxVbYixmp/rorxr15d7xrQhwmT4TeK - 6wMI5ITpwVR/zXyPGwF5p+b9V6/6bPJ+C+/slWJ75MtE8MCtg/YAJZqbw+RPZ6K3yl9eppvc3V8L - f9sR+nSP+FCmb3/6UC+G4vxMqKZ4b8D2n2cOU+P2wu54W3z2vfcONI+jjbUiGIdlywfh0o06Pe7e - JliNc0yg6lsCmbk5LpaHsrQQPCplw8dXQaKy8tCp8zNsHCWR/Q7QF+Cfv3cV3i2W/ODcAGNrSD0R - dwlN9wWBnb2vsUff32ae81RSiH0v6LE/hwP3rGAHzYcykXtM3GbeHdoS/ukRHV5BwvphVQDsuIS6 - sP8mRPKMG3rttYDMQvxpvp1PFLgPoYOL+0ln0/b78M9PXqOq1JdeOz7g2BorDT/DJ1m09BXC8rHv - sX+4hIBdCxRBLVYtmsPIL8bdYSzlQOFutIwPjb/S31uFW1601V+zjUfcgXbmvU0fPYdl+R4zpb02 - ITY+aAIL7Lv1Lz/Z9Lelc7813UH1W9n4EntMHwP2CeGwP7/psUh1f7HGKIXAKd6hkMRD0dvQmeFt - oYgs6lTp86lhIzwoxKM6UR7D3FSqKkxCxGPr65zZwoSHAaO3k4T8UGB/ci+S8IcX4VK7KFkKQDwY - WrLzd4dustLfpALjMKjUut/YX36lKfn9LGDT8MZm+tqdCi4K7Dd/OTHiXKMaWOhywHjcfZp5+Goq - lBMRUo0cJX344290uz2p/bArNjaVo4FNv1NzTtdklUNhBZiGFZHe0jAwE30f8OylCX2KFt3ObC8q - ymR0pHh3b/1py//+8W9YEFXnPiKqISe91JDXRQ3MJJwdNGS8sfHRU1+HdyWgWQBByPeBywR/LHoY - 3K8uPorhaeA82V4BG+8S1atnAOYHZTV8zSHDx2WsGUkdrEE9kI4EVOevz25yAOHnaaS4vA5K0tdL - VkFLeyj0Ty8MArNG2InzFT+3elja0qyg8T4GpNnyO1ogMQP3zLqT1fr5bBH5Xw0rolH6197Z7uce - yjAVcTLT1ifqbw1g2cUq2fAfLEf9lKL30bzhcNjNbPR77wHzexrRh/1w2AqMQQCbvqHHu1v76x8/ - Bxw1sX8pWzaG6NjCRPIi6uqHN/vHp1XJubgY9mazzuSkQtFaFgKD55GtPwpm8DKzgWz8Oayf7pz/ - rX+Ew/10T1j0GTsIO16mDyn8Jj+1ITXY9B12mCHp/XwGBMzX8kw4ZScnv8Hac3DLk0K2985s3vJ2 - uDUi5FG1A395PuQxB6j/EjM23RqvhNrdzEJ2SSqdtY8ohV5WpjjpDpr+fTqRgjZ9QFXPAclUx9T7 - 1x57SI6FmOtPCLb1HBI+VqMQFHC8Qd80fJw/53KY//zqmTsU2F1UrxnubLxBvjQDfHS6VzF7p8mD - lVmH4a5zV309dYYENj9HtnzaX49uk8O6mfe0/F5rMDkKLcH8/EQhuLfHRDy890T5vqIcO0b5Yev5 - HaVow89QDL5tsb5z46tseTktgd0O896KSpDz3Er1qyMNY6lYD/gtfG0b7wjMazf1irNzANanHLO5 - OqGv8sf3ln1udTq+SKas67qEUu/z/swfixV404xxuFrXYoas6MGKuIIworz1Pz0LtzyaSJH11Em9 - ZDV8X88DgVt+KHxejQoTdnxhn2UsmcNoByFN6ob6jVUPrG5mCeyiLMbqz+KG1Vz7HP7lq4Hdec1S - msF2SWpk42LTM0t/lnIFdqK8+alth7GU51DR7gxrWqYVXF7nO+hEoxkK3tUp1i1/R8/G+4ZScU90 - thbP9m9+Up/MMuvrJXfgKYUzEVKuAuNvLSEsI2+gYVeCZr2wnwWjCrcb35lA/CkyB3R6utJDimb2 - p78QqJQX+cfn05dV8FkII9380DD98V9vDIc//dD86WE4KqGND9WHNNM2f8E5a1t8r45dQpcd5uBY - zsL2fdgI5mMxUCcuexraDwfMWm1xcNYvKrXxNS/Y0ucOPNccj03FPfnzgEcCtV92wM5Uu8kC3jCH - ersdt1kQN/Tn05RD9RQENLgIIPlpqhChbxZO1Fqjx+YPnQheyHjd1kMBmHdwVYFozf7mJ5VklKuo - RrtXLeGD7vfDCu+uA7g6N6nzlvxmWw+I0d96nY6+H3396W8H8gY7UWPNrWL2s0v1Vy/beOaMaTp+ - wPn6OFOsv89syzdndIlLF5+ws4Cp/71G5TkdYmwY+xSQsAMWPJ8GnvS9zortswEzqzgQoDruMAqx - 5cALJ57JB1/zZJ3Y0kFDuAUbPu51Kl85Dm7tD+XDWg1//AwMjVPJfEnJdmKnF6Dt3MZQGItnMp8/ - ogRP+uxh3bOPvrjzbAJlbciot/3+xn8O/JxxhA+OcWScsCvnf/mbvThBwmBaxlA/cA1NPY414+58 - X2HD7zVSZ3L5zy+AyJG/1D1Sm9G/9TgUOiHNXK/R16zXRvB/7CgQ//eOAu36ccP9Yir6sgRdCWV7 - XUKOv/VshVxowU+uD1Tt+tkfafKykDM8E8ILvMZmEK418iCKqNb8KGD9rbVgW30zWh6/nT7vgkaD - a5otIUSd24jfVV3h16eYANUMk1U4GCris2wibHQiwBlGFMPc7gi2z1MMmLLEBtSMRMBOvR8BS755 - D3X5FVEv+nUFO19vHDx0+5Ie3eDImOzbHsxrdsPOpe+Kb5epDvTJy6L3Vzkly/XEeYj7wDIU9+7P - Z+d7HaNxfBf0UCAnETV1VOBkWil2yHvxl/fR7IDRiT0NAxPqizXTWNn+PzXkwRlmHmsWXFrlRw9e - xQAjyxKgkN597OeiW3A//7pCrZwJTTNLa7gExR7syG6idpG8EzalRwcIVP7hVIZdscjAIXCvYYVa - o7oDZHaVEq3rpNG7LeZgvs5phA4o68i4ULvh90QTEJgqj8bLRSt48/Xt4Wl0OerApBmEs/HK0EWl - 73DB/LcZHGNcYXoAIT4w2Ovz9RAb6DfSIzbjwASiA00OrtpRx6rWkGFWFuuGvHTn4WA96b5IKlai - 4s5Z1J5NdeDTT64AMNUeEadCYAsoTA/eptSmcS1kg/AJThVKfopN1WHfArHsXQ05+Ylg5w54sHbk - nSMpCwH1Cp8la1S9OZj7nBfueSlJ+NM72iEjGPltBVkolje0Z7B8rZAeXujmE6NEtXL99Q3hzOnt - 8+ADHnA8fwMC7r02COEnmGGUCSl9qKGij8pi5XDFhzu1d5KfjOcXUeGj6Dqq3hjRl+48PmTvSzl8 - UCjvL/efG8GOBR49BV9NXx+aFwM1ak162tdhwd+Xr4dCPfxhL1IMXawAbqE/Fjn17smrYeV7aRHV - 8xE76mdf/Koz1OBzv7r4UvAqkMR+r0FjKU/0UcA7EF933UPlMQ7pOSfMn58QaPCWQYTLnWPqXBU7 - MZTFQKZXZ3zpbCe+Hog8hoiqutnr7HLYOUqVvgesi/t4YEGSaLB91B8a/pyULeFtddDLvVhhldB3 - smT2OUXSL69wnomTvu6WXQftOfrSKxAHXVDKbwudav1gf6+wgQ1UjiBcGId99eMy4RBnBHGd9Kb5 - XB4arn3sc6jsLI1iVd8P68P7eVD0Wxs7/O8K2DkCENrdJIWL6T99AaqwBM1htahDUpbMg2SUUJSk - F47HZCjWGw3qf7+nKa3STOr4uSFhPeTYtb8uE25gFVB7f8zYusx7nxUp41B6TTGOXgYaWB4DBU51 - Toj40q6FMIHAAfChuuHM5VrDiWqwnXnjc+xNxStZuXL24BPUE5F7N2eLOtIc1tjL6fE1+f6M750H - j0g+Y12K5mY2VFWAdHxuN7XwZbG+orlGanOSqD2N3DADzQhg7vRvrMtvs+hzTxqhwLlWyOyQB6T3 - NBUJN/VEt/nAqEhvHhSflyXcmQdW/OEd8GKuxPkjYA3RzUhDsaO4NCSBD4RJbyxoRekrFD07bLhH - k91AaOUhEWWOS1gbHjP4uNUUp/fRYvPnHa7wvSsJdkdWN78/vJnJ4Uktp8gBz8dIAG6d3al/USU2 - fgWjRvzhcMN6qS7+VNV9Cnbn/QW7h6pg7JGxFTLxcccqSu++mD/7EBq6pVK1MHzA/OVZgra8yce1 - Kt1kxcYswcP3kNCwcXSfWTjx0F/7zIdw8NnwiW9Im7g31tL013B6XY5Kyu7Ghmd68008tUYOHelW - n77OHw6wh/INZvTy199fwajgWQqf2ChaaRgft30FN37B4WkIm3kYMk/5wmOIDT29+stXe4bwD5/8 - +vwsCJdeY5gkNdrG611wv2TuEbwJLcXHitOJ8S5zKJfqEZ/7Sdf5ErdfZAymha+S4+rz+Wp7kO4+ - F6o/j5eBtS4vgeun4vFpr65sSR+KBk/aQaX3GnfN1wO/FZiUe9H4sh7BerihFi7RcAx/j4Yb+t5U - OuXak1tI+FecsB2YJfgMgwRbt6EbFpc8Z+jKp5GevGUZFsi9VrTDqo2Tna0yFjrjF6Z8t1Lby8dk - /UQVRMdUyMn7cBrBKhyVDD6PTomvSRj6HCaDBO0YhpN8vCCwSK/WQO9W3lP9Jb4KwVReHWqy94ea - 6oM1g1W6D+UlLSFOhu7sL/67qtCrrAZ8TeN3wVkjq5GhwjhMt/FY7q3MwejUHHBAzTuYa/skoaPa - Qqwv+4POe/tzhVrrQKnb37Lmg++LgCC1VIpjjQ7LFRIJWlH2wqnI5br4nh0OBbKr4A0P/TUrLQ56 - x5dD46r8FUy/HSpUvw8LvhjRrpgTjsWSNJ9nmo3qA8yJrI1o6EIDe8ZqFJyN5AieBWOh6X3smCAL - 5xZOppHSy6tNgXC48S20kalR83Ld+evDe3moqZwLvUrOz1+1AWTw82oLmh3D1WemNgpw6+9QMocs - WdJPJCFjrRx8UhfVFw+UWvBDyxFHbnZtWE0cCWnGSaCHzJL0ORNYgNbd/U1tY5XZcA7aGo4h9gjH - 3zywotvJQr/+89xu4fL0+Yq8Ft6mzKYnDwt+18tGiDb8pF5XyYzcWALRU3kI1P4gteFsKwpg0MTb - Ckqo6P3DOhFUfq462SnvX8Lqd6+imS9fuPj06Z/+iRS/P/XkpZeD/wmNc4j67Yyc/hhKf3aZp0Di - nhH1nrtgWEP194Adrt7UZodfsqz3MYAv/vMj8niyfd7TJxXGYnTDYW0EPsv6qEVVFbn46njvYV7P - PxU6t6Ik3UH2BxH1zIE+v3NCeft+JEqQww3///C2WZOzWMI/PvNuyrlZdq+ygoVi/MjuzsJk5pNT - DW9nYFGfrQlYdvej9fd7ND21H5+/TN8IdpMiUPMhvHyWF/GMaFo29L57Wj7fLnkL2no2aMT048BW - GKkwVfkLttnBLeY3HEqgFaOIo2f3KWgF7A5WxLtho7S4gmWd68D0ErzwmV98MMYNX6NtvuHTpwkG - TvnSGgqWMGJXDlSfP4Q9hI5RG9Tq1KPP4/XSwyb7fMijfMhNf1+CB6wyeiVyGr+TNbZmDhFFZlRb - vqo/utcuBkGbXrG6s4WCzqoogYZoX+qon2eynloUA+Je0H+fV1NHCdCZWlTlfmoheOW0A9dhPm39 - Y+sMPQIBjkZ7phg83mDhL8cIjDg50IPp7/U17VDwx4+0fGeeL/jKTYWWzX/JgyNXn91EPIIN3+g2 - 331euh4DSB6/iPonpg6zmWQK/Kt3TD86mw0gp/BS3jQiV4PG5req7CA0mxNZneAH3tVwCNHJDN+h - eJ5WsGZlKMCPCRA+kEwcRrcfNfj73hd8PtTewF3deQdvucqRPvp1CbvtSQfV7YxfvFzqZNM3Mfjz - E9vz+Cx17haMlPculCvXLqh2LAL4kHcidm2LJOsfn3t7Y0efiWU18/mKHahC4UMP2Tdplq5fvuCN - 1Y6G5L7taJhBDne7ByaydO3APBgKp9hfsSNILrA/d6eZwD1b5rB50kTn3CuJYDYoOvV/kQXWP730 - 4wOLCJf5qc/HwxLCqoc8jTqHG5YX+1pQbD4hNbJLVcy2ps5IFlwNq0/R1MdN78iHIZTwwasSMP/p - X7NRbeyVlZMIx9O+Aw8rSTZ8qIaFtrqHsviSUvfBxQlXKsCAllw8QnQWXJ+HyPmC+qj1JNKacFix - q6aoRvUv3J6PrfZRJCBKSUfxAznNUtV1Btxou7ONRhrgMgGE8Hn0SqxlRGDry/BCGJTyhSZT8AGz - dD6VyDjOIy3a+zSw1+vWQevugU0/ND6Ln8uMlngGONr0B+98Zg3J+utM4OY/V5LPERLd8krT73Nh - jJVlCflL3oY7sn/rc7n3amiJp5me6pklpI2lB6LYxRS3IxzGDHj9P/wqm/mSfD1DJRCqx1043uJX - MTepGoCOiw442il0oLiLCDzbpArnTX9OtX/s4b5Yf5tfUfw1HMpAvg7rifptgMH41VYJOrymY/Uo - nfUFSksA6fHwwu51LooZv/gOFHfBoka0HNmcmIsBf2o54AO7kYbusa3C9jUesebc7UF47ZVRWi91 - hvHBFoa/9sHcvKvYMJSBUbWqSsXPfUhtmUsTtr9MCrSa2sKHPLQSekK7QC6AV9Fjt2g6ZxX8Cv70 - xCm4tMXYfrIIvVEubvPhU8w7J2mhEXINxo9i8udFTQT4KuuB8PPEgdFzcgdMVaJSXVoDnRgRDmEd - Gi967ncqWFvv2gI5F740WB4/wPSzYgB0LE+4UN4PMJ6v2EM/rb1u7feZ8JunDAxPbnvrYmSw5V7e - dkoJ+u2WcstoBLsxFKTIQkdVLY6AuBN/JXwUbYdvIgqT6TcuHfo3H2lUg2Uv/Ai0bPEbytdwD9bf - /M6AKCmvI0sHbxB2vwuBn0fOU3z51v56WUoNHjNo4YJFUrI0bR//4SlB+8NhWG/bO7iWeAVUF++i - vuEdUZ448nDB2w6bPSdylE/dxyG3HxR/Vpe4QrnstThwWqxzEYhDZOP5i7X4fvVH28oDcBvjiMib - Xh+vXEPASVgLvNVn8298TTL3//T/v/4rOJaFK7gwttiHyYIhtz4n6cQEn0pQfUB/nRsaS95UUH+5 - lEqoeSu28XTwxT9+OL815YjkcWT0pJkEoiC/Ye/7dXQG5BnC8qTL4aIuqr6enXlFN42+MBaPjj5H - +18PD0flQRqn8ZhweJoa/O0EsPnjVl/ZPlCVfSlU9PBpgoY/FKcI/XDONn1Omj9/Ajb9R3Ze5vji - X32vqn3GrtQbDd9dgQQVpPo4kfUfo2p50v75Ae9mw2KO50aAH/oYqRXGP3+Fx34F7tMTsaWhullp - Q0uw5VfU6k4eoO7DvUFVfKXUSjJVX38cnGGSdhxWNW4s2EV+BnBPdiFB66VLaPHqHfjckRjrdsiz - +bBzOAiSfREOahb462kZOujTFm15UekzlvAdNKeRhbvt86pJvy8MuocdlulI2G+/3+7QOcfCP7/e - o8zdvi9t/Nj4YsOv+C9Pw9jadWCOVpah7e8TrmjzgS2S08IXuwPs590w/NYX+6LovN4Jtaafvl6v - +xTWH/9J3Y0/+b2eG+h4ljA9OiDSmVVFCnLGl0cG9fNjzD0VBpT68kIGfEsHNki5o/Q0U7B1+B4B - zzesQ97sCPiwr8NEDC79AzSDpOBH9BGb7TUsOQx5Ltv8fJKM9W6F0Oehgx3TVQDd6gd9ChzhDV98 - /karAOnS80qPxHIGqlbfEry9xfs3f5aJyBXc6ivcKfqR9dIkjPCgqkca7K41o6QCD/h4ChrWX50+ - CIGt5nDzJ9j7WuMwe+C1oss1uOPEfrKBTj6J5MNcB9itbm+ffBzPgiCW2z8/1UyuIHzREYoPbBj5 - XJDwY6xg09shv/klRpTIgp2+alu9lYXw+1oPmL+mBqvra/V/T5UI8Pk9O4RVJ7L9+9yA3ffd4IO6 - VP5yNU0O7H4epOqVivpstWUPxOYdUqd5OcXaoiaEzRqZ+M9fMaUd5n/jZ8b3ZiApTa0/viQKN9tg - FSCsYNa1M34+Rg/M7UO8/eUrVLU/72YuFWag68kfKM6Tvd9v+AVq7OQ4P6nb0bBbWUGkrAPWTgA1 - NPnmX3AId2dsdcwquNJ+lWirB3qChqf3v+enA3teftBjuKoJ93qFChSMcYfvXWUkM73MFXqJ9BLO - bzFjfNq4D1iC7/PPH+m/SyVDAAulCBXtmhfkrJ4UpD4eWSgD0fdXDcoWHNEQ0+AaegXd8lFYiBBs - +c9toESJDDSAwztUop9V8F7gK/B6zFV8wMnRJxC2O3B9F3bIfWc6bHldBN324ZPbLkSgj6pJgFN9 - I9hviV+sge3coGBxIy3y8wTWW/fuQSHuAHVmX2fLZTuD7KmEYNcpmmTVzVyFv0NV04v+PhSCQ0H4 - 9/eop99xsnL5d4TCxEAoSFeYMFSXMehL90yD8RYzhq/9DRaytm5vdZ0TsuGNQleOwxd4VAuejr0G - Nv1KXWc86MInnW/oz2/o6W1k42IMMRSYjfFxaid9muelhJzXa5tfzH02DC8B6Pb+Rv/8A7e7f2c4 - G7D+137hVmcBzNK7RuRR/RXj07zuoPJ+ezjicm0QtvwKMj6jVJO8KWFqongQSV+EU+wDfYLcb4Xy - bZeFz8TqhpkmP+Mv78UGnoThPaj2CL+JdyIc91maeZCCEipgl1K9r3f+xMeIk7zvxGEPp6eEwdOj - gps+w97tJ4LlGBcxvGtvSu7S98y4jf/BhnfY9z5FsvKzFUAtK1pqhL/nsFQ0/4JcdlpqflbQTJs/ - BfHbG7EW7HV/yGOmgMthKXHgbGe8C1VLQfKTbHp9foZmRY9vpVgmVajHipgxY3p2IhvYfsMXjXFz - Jzpg02PUKDTkr5WYCJCrB5caeirrs8juEtzy8e3M+aMgvWwEEJD2QNTyWjEWP+UVkmjeY69cOp9t - +ANrVzTD/RFnCfmrx8MY03/8yUOk9siZ3gdqrVdvEOfsaCn727hS6/04DYv0BjVELwxDgGHkz+vp - 1KFPVbeEVcwrmGbA9M8fYvtcnnXmdt8ITFeZ3/QmZVRTWwnid/TY3gotNcR/BwKIG21HaH84JfTd - 3GqYxed0q99yu5Mw2vh9elGHCASM7ecR/fU/PkavNJkT2RvhIAEx3P3AtqNp48tt/SacC2Ng6+8b - PiDTZ5kWn6uQTF7abzvezVvY43QpxvV07WAO4hibbSoWU78cNLD72uamF0d9cQWh/8sz8AGeP4zs - fk8Ctrw+lI+yXPSvSKqg64ottexQLcQt/4ZSnv6offbFZJaMgkB441paHvC3mSVncMDfegJ+jD2j - RcoESHfvC1Y3/7TOZqOiPz9iXiPSbPznwaDNrqGgeW6xhuqr/OMHartv5tOMfFWY7KYvNVgMm/XC - N48/PYbjjGSMLTW7IZCgIuR+8aCTPq4UdLKikprBmR82P5TC/nb4EAkm+rD54RDyie9gJzir/qZP - xz89TDpfvutz/A12cOgCA+cbn/75PwQy2yU8XxF9ifL6q9iqUNHwdIsA0yQT/tPbf/nXlMT+CAQK - fqHChUEiHJr0AUFmulgfQa8v6VClSA3S71//+ywUCQeSo79Srd21gFDuHUDRfVypfVt+gBVBuQPt - s31gn7cdsPlPQ4ml7BTy8y5uFume9tDX0yJUbDL5M7XWGRr7rP7Hl8utlhXwPQoo5LY8lrahmUHl - M0o0pNsO1KsrQbheqoz86/8Tz1S4nCaDNG7W+uw9qwLEXXomdS689W29RIX6qfLow4wXfz6/+QfY - xg+HW32unRhEMO6Chvq5EenspB0J2PUB+8srk3l0vRgWbtfjPzwda/uqgN10y0PlOYVg2V5/B7Xs - 2pIafE9N84dfIGJCuHylV7M8JSzB1DQYPWWXM2jq31L+4z9DObY++1s/29bX6KnNOn2u16CHjyen - 0dT0f8NSW7sAaC/Vp4fte/qDe/i3fopxYnUNjYs6A4HsK6TfhXewlP45UHJf8LAtN1nD/tYPZsex - sdOslv6XR4KjQud/+DqeSZlCe8me2KE/R+d/49KiBH4UaoVNB9aqexjQLVD8Tx+tlyVV4dsXD9je - +GlUSzMDorzLMRbcRWfPOc8hGMsEJ+M1bJbMvqdwX2kWDZyW+t9I1GZEQzunpl+XPtsu5EUb32Jv - 0y/zQjMV1vCxYv354JO51G8atO7O5hfsHiy0aCPQ86P5r3/FP79Kj/qLus9sYqy430bo61lB1eUO - dMKVswOdVTnj4+5p6et28yFiLzOh4eX00n/+62QgAwUcLoW6AkuSFR4sXu8FG5yZ+bNalSvU6C4h - w+/VDtMuwCnc8liMm/kF2KPQQ8hr5gn7v6gDY2bLKtz805b3sKGLtV8Ou+zOEyE8+MXKFNiBtl4N - arZCDGZbc1Z4u3k11qryl9D84qewhGNGutUZwQyfc4xwbcg0k66w+OcX6qPaYzO+6w0fNlcVmpV0 - pb7erMPXWrQdSok/U3Perc0qK28NpNreDPlAPPmL85lV6D4dkf7p77GK1Ri5cjIStJsbtvSLq/4/ - dxRI/3tHgdqINbVE32pYlLw72Fh8F86cLOtE9b0QztnuQJ2lS4pekk4CAvptxKab78Foa4KAnjO2 - qNVYqs9VlyCC76M/0pCfCJst3uSg9zTVkEfo0vDRp7opUhOeyJhFe9bGZInQhRkGVVdkAM5qlhl6 - dRMR5X0Ok2X58SX8ypcKu5H79Bf9hTpoO6pN0w7eChLbEgdPL3AOhT1o/emYChm4RHsVa3BShpkt - VgbKeVuRWp6TzozsoiE3Mx/YWSZ5+BEtDUFyLFOq9rWiLx+JxHAH2x89gm8BWOqIAmR2x1N9LMKG - He7be7v3ToMtYFTJZIJJgcq468LlkDZgOfHXFHT7TaE1tPaF2J4FGMDkTVXNq5rFkrQVGTvihR/v - +kuWmm8MmHIBh5365CXL15gIhKJ/pn7zshP2ub8DhJWxpInrmAU/3BQJOha+h6/feE/EVuQf8NHi - 7a0RdDdMNZNraO/KIFx+470Q7V7p0U0YCXnPdziw6bHjlPhSfvE9DYNG0Lm7CmEUi2SPrro/Vx2Z - wXO/jjiIju9BHHdOiPqD1OOIXu9g7fZWip7V8MShsD79xRuGB5RprxGWZ1993QlOCrYNKfSqgrIQ - mtSFcNnrA7We9dXnnRPw0MHcdSEA+aHgjuqUwlafFopPd22Y3OdowEz9duE+rmMmCtrdgpyiJjhX - HKMQkncQQWFUPAIs5jbrtV5n+IiWBy2CxAA8DZMOwWOiYrNlKuCv4WsFP7q86fk8GgXr+QaC6tYw - ejyoP7bsaRWh++VSUxX9hIZI7gSh3CADF4xTiqWaLA6qa32hrsplPp8eIw+m9+xM8Xs7c+gLlwc6 - mLDDyVhzjBX7rwrZoi3UYJe3vkSfKkem5Fg0ETQKlmMSrPDI5Rm+gGAa+I91iWHK5oLeb/qt4D7V - 6qEuH0daSg8JLHsV5opv9Cn2xEfVsE7TMzi8sphmkuY1K62ACpj/vBMgTpy+HM67AD49fMXeoJ8Z - E9a1RuTYG9TduX7Rrk8lVs4PpJDlfO2Lcb7aLRL7kODAm7yE2+YL0iTuTk3t8Wp4o6wkJOppFEpX - Yd/MRXow0OfcidRRGdWX32E7w8a/Uvo8brsYfh+mIntRSiJeP4EvXj+vCJjf7hn+2ND5My/3LSxh - W2B7bYSC8U2uQfP3PFFvm+8i/RQGBO+diyPtZG2bGkoIAZqu+Kar1KeV1sTIMbMBH/YfXRde/pug - p7uoFOuWPiyvz+qge6K+MH4XGuDaIKvR7ufcsOqgfBCn8bPCv/kH2tNbX8Hj0KH3k7pE3tt8Mh6R - 58Eron44Poa+YcEjSdG90y70OEOvEMll7hDFyY/sF3PXMMP0IOCPZY2DKPUBJw9XAqN224FQj6dh - 3j2UHFxt+gzZ/Tgwtv9lN/j1PY+ala4XK5KHEl6E3fivnkcqRTsoLmiP3cQIB044GzVa77GN0/yC - fSpGoQYF7qjRwOLmQcyvc4ZCMuk4HI8J48lJIBCn8QWb0qEZpj39xnD/9Cx8Ol+9Ym0+dgftQqHY - fO/FYlGiHads+InV09MdtudrkRZChxY3afaJ8sYCfFa/ZwhNoRuWz/v7hfeunLFO70bCbukl3o59 - m9h8Syef5++ZB7P8KoT7J3coWHCTQkjx6Ud9iN/Foipp9G9+t3wiF3NOrhlKq/WNDb32AGGGHEKY - fiRqrTVOxCdzCJQjFG7zydSp+ixCiId3SFNXs3ThWisz6NiT0dDcK4zuf4+bkkQPH5uI+jqzi9yB - yPO3J7FfjDrK2UGtJAw4ANdv0SNxUdBXPe+oZ89BI+qyX8sfKBNsFNXgc/rdtv7hq68pmK3pon/h - 3rgo2HWeTTJrOHMQ+V597I5iydbAiVb4kdqJmmUu+GtzBjX8duceP8OfrM9H9Z2hutyfqCYe9wXz - o367vLs6Ucf6luyTcmqn1OtuR3664LNluK0SOE89pZaTZsPyh//DO1Cwdr0txbwjpQS70QH0Ov+i - Yr3YkYJedd9i65FpA6ffsQGbL+zJwukwWY+f84ys7lKSfXZUfaE4igEoRKCE/NZeUo1VD6fyulL9 - 0D4K4aaGEZzRzSJQeuRAKBW5hq869GnoCbthvdi5BCXjVeIbG486t3usOToXdoy15TQUi+qYMaLc - raVeF8T+bEd0BlITnPDl9s7070S5EYV9rmHDuIaM1zSpRUb5sYh8xCobcabUUFLDgnBbfQgZOJXo - 8N2VOOfzjnH24RhBlV1dfN3whR5lPkCxopnUWoufP0dnFaLH8RzipO/UgeNA6kAruXT/9MM0rfL3 - D59x9lsXwFg5pWAvy0fqPasqEQRiaECZbnuKO/IcuHP60/74jqobv7PjaMRIZtVA8w0fyScQM/gu - coc+Xq9an08vNUNpbM540xc+605vDryeQYrLoIh90a8CRab8KcMZ2u2Ged/LM1Isw6H5SGkz/o0f - yARAxJ8OkrZ+VjXoz5mM3fkXJcxxRQLN6SITcFY6n/ovoUR8o3xpsuHN51BIFlrZeKRPToz1+cVd - RvTMlZAGG77Nl1mT0Oh/t/P+QlSs5+lbgSj8GP/m41xWTok2fib/Ie1Ktpblme0FMZBOEoZ0In0Q - EHEGiAg29IHk6v/F837DMztD17IjqWbvXUkVrH8VWMu2fQNN5B+BpB0tML3Y2yJ/7U8V7HXgkfZf - u4LZAQZIuWZ6sRXHrwM//KfDvt2rOsf3jxpez6OOfNABsJXnpwUHtbxgU7hTndRL7sEjNSJ0Xbql - nW0cvOEYEHZXtA3AApN20GUOasCKglJsn4eRQfE71Ni2H3O8ley9hKE/Rfi0PsqWNGKtwXXIQ6xz - xolyWeRJYLner9jjm3fbAeFuymZ8/f7Lv7zsCG+oPyew0KirY5Kw31V+PsYOK4V/cbnPvQ/BXzxz - PtelmO+eGEjnEG1IwdFtHOz1AuFyFRZkJYcC9OW3rmVGtxakKTcFzH//95quF3Q7NZ92pqweyUrL - 7QzbVF3+eJ1TiFleDraw+Y70qm5fkDJFg0/08gGUyHUk/8Mf7DpSYqybKMXJ5qETa/WU5uaSwD+8 - a5KkAUSKtAAmn9dhAakVjZtqFpO0aMUTeyh9tWSPf9B5vu7Ilm4C2LQoNmHjF8NyYIXI3ejpmQGX - CAN22bGKyfH6SeHzdRL/5e+Fmg2B9oU8FmZEfbvq/vQFUnXZ8LMwdLB+TmEIjF0J16TNjIUwnt/w - U/CvpabupWCVrxtCvbXdBbSvc7EgTBTwQN/Lsvpz6q4BCN+ya9+Xv/fH2/SVItiU8iWQRge6k/K+ - L3B0RG/5JX3jEjhKDXzoxxiplaaOU36bAiDd6xu6CXEM2KnlEjBtQbwclCiP58dp/sId/6OyeRsx - eUHXgrR6xlg/gn78iFwiAc5XbHx2q/u4Ns+uhr9gyZAe4W+7IDWwIO+kM7YfvaSvf8/ToaeLA0U3 - 6brjCcnrMhmftClw+XW91kB3+RjrGXoBYq93CPd8hHd8N67LdHlD3qxO2HrFdcxVCGSQHW/VIue6 - FOOmjN/wztjvBYv9Z6RfBCOY3Rsbm88iAlsWMxW461mFs1esFDzXeN0fvkQ3pCktPWZNBLiE5nv+ - swouqSYPtADWyN3xB//zDqk4ZNTCxmdt6f5/vjL/8r3//MfGwVfa8SA28Gcbt3sYp9KlAhUK/PYF - FuZclnCPDyjI1J9LnKXLAF2/Gbb49yNeV1NlwJ6PcPJSzILl9bWSM3bukZ2RNF4pLgnM3HjGp3Pp - jvPqiBXI1qzDxSflio8W9g3c8SU2irtByUB+CpQDlaJ7+dBHYd06CVpd+lqm3b9prY0h3JLwg+9f - 4013e13htHkxivf92zjPMaH8+OVY//P3enWJbFDALIlevFsig6sGncULcMYcOn099EoA8CtbFpCL - odvJzaMGsJ3NgOXie7EpYjPBUNSVZTIBD2jqrww0I+AvxyDZ3DmL+Qpsv7BYvv0xc6nNWRVUfIFD - 56366rT07wrATo2wfmT1gl+fagnex/mxzOE1opsxQwZC1e0XIekbfWqeXQNvfr0i/ZReAEFY0sB5 - ET9Iv+9zGb0izf74wjJEwUb/7AUM1+S4+8ernYvj4sBXa8jB73f+udv3FwVSdofNAt2RLaaPBXIQ - NL8JIZYRY7z0Ricj4HCB/Pq9ij8+CBW/KIPjN9qKLRXLGphP7Y0V9xAUSy2ziySk5Lm/XooJA9aU - hTQx8d342i328C8HU776OMs2FK8tpBC+mu69d9Xt3P68ax/b6bciV/j6lPWDNIRgiB2kbc5JJ67/ - qeD2i4pAHgOtFaxeNeVmHExsBEro8gVsDUi5K0Hl1ehjEjS2CXd8ERzLRzuuj/mYgVhNZISiYhqx - gsTpuMdv7GeCDriXdCDgw/+6YOs/N5fGvbRC46E/A4EP9JYf5yiFR3tIF6p8k2KeviSEvVUuOC84 - qlPpG3swGm8hOr9PWzGO6pgDlDkHtOsjgD5ZEsqQD1ukEQvrK7MGFbROm4HP+/dzg28zANziBOvj - 2xkFgdlEaHLKBRXsO9NJc686wIUSQQ79mHT9p6fYnYXNSKt0fMwLHu58GCtpOsekYMoOcm2JcPoG - izuOROHl3jqekbfvN708JwiS6LwGUs+c2ln4SDnsjbeJnjVxxy6xXh1USuOCdn7TEoZXUnkM0gK5 - vdqM0+7P8OBZ4SKdezPmnoVEgL6xClLwXaY7PijhuRAx1iNsttx0PIjQjCo2kM79N/7jY9DruBRb - PyvQiVJWITxIty8KgpdLeYAfHYwGUUDJ8Pu1lFfGBkbWLcem568FbbO1lIGM79j03Tym4YVV4GwM - DTp33ELXueo6+HT8O9ZIClps6JccmsdbFAgHOLpj6q9Qhk/2gbQX1Ip/eGW4oxc6fc3HSGCZaRJz - Xdxgbj5jvOrFo4a7/aJSOWiAfbXuAJTSvOAgfl5BV3+/BEJ+gkj3xQbghJMsiKP5iAy9MFq+/aEv - uLBHFylPOWg34TdCODVtheyXr7qbzEIId39Dqume2+3urYH8+FZr8Lty2UjZbpqgOuXjwq5Br/f3 - 4LXKy9twsA6UO93Gu538x6fqiKc7Xwvl27tA2O8vD32KmZjIoHDhIsb6r91Q8VLkHQ/gP32HMs49 - k+R7eEd5vmqAtLfZhHFYuv/wGHm3UwX0hbfR48H5dCsGtwOB9zssNHknLYGDwkD7vcYLRca92PGY - Av/yTfkrLJffGLOUd70Ro8WtCxyVKgvDt5WhaLu48TrTJwu9H/NGSm4plDbeZshEewB8du52MbvH - ModLYDyw4za1y3ONMUjf6ZOg3f5dcrxVEpTuzIps+x233dP1RGnHMwtQ4YfSKA8jOU/snY9MZUxm - obPkURxt5GfM4JLpeF/A/rzY2fUHmuuuB/wq7xdJI83IRSlipPp8fu/5iy/oP766T3Vw8rWhW3Fc - rD+8tBxeKzduWeSJUrmCB1LY412fFOGZAvSLfORXVKB0VMcMKIRZkbn0XLs6t7yE+/5g/cO37rTa - HxM+4v3OcVzvt03Pr1X+W8/0ym7jrjflMOfDKy5A9oo34DaWfPQPtwU2733K441jYFUqOopaNWrZ - 7nCwYKfcGKQ8tIM+PwOVh8x6HAOaIRWQvjVq+MdP0zpKwT99+NB804X749fKyyByDPwLitV3FdPH - PczkzL3MyOAdWScTcPeepeczRk9WjbFYnrLj8JNShOIagrE41JpclEuO0HG50vlPD5Pr3wVb60t3 - uaSUOrjvJ3bNqY236/SwIJJCPSDXTgab/SCNXM4PP+Bqpx+HHe+DYUI37OabDbhPkbNw6S9y8P3J - LVhvG6z+ng8pRXIrqOg1EqSyY+GzE+ku/e5d6AeQfLDKMy7tdn4PZ+vQIt9ez/EKMrSA3d8weoLf - OB/1kwRPvSZilZw7d3xMlQb+nic4Ppt4Q0Wv/dNreSvhW/oYpgoGe0/K9fK0W1pE8wRiIenRrdeL - gmjdtZME2Xvj0JLFdkv8zALrkIX/+DtGJ3aAI5ta6MSmfLxw4fqWViYSMSqPG8WpLzJQD90r/os3 - q9MtNdT+ThyzRUv5/s0YgLqAx4blNvF8nR4OWAtcoH/rfeHuKVgSBu78vhoXtuUD+P5k5T98tVVK - KMFVhy4+kzJ0aXZfE6ilsYLOvfR0tyzmS6nPlCvS4o8eb58iYiUtyrNgQu/FxZZ9WODWuT7yTrgu - vlmchcJl/sYoKDdjpF0BOuB/YgtbE8/Rf3gCKbyFjLRRdepoxxJsCpvi9FkQQGaLDWHA62BheHJw - J8lJCby67YgUcZxacs4KD47paUKefC3bsrhKHfAfMMShOE4jvi24hjs/WcoTb44zPyJDuqkCwYph - JpQbpwCC7nitl306PCDnLA6gf3RX7P/aa7xGKgPhfnkVq7xwGtcWuwps8wuH9/itc+uDMeHl7ATY - vgFSTN90Sv7iIYoQxRTXyrbI0/McIK/t2XZz4KGBdpD6gYA0ZeRmwyfQ/1ys4Hq+ngqSbG4HMkdI - dn5ojssxBvtUzUuNjS+UYlx1kgjn0fihKugind5/ffiPH5zSLWnpri/BYMF6cNT5/UDa22IlTf4J - gSSfNJ3cX3YAwTdrFilVTvE6pkb+j296VxePHUqlWtrAp0Rqd6/H7vQZE9jgZkHerg8QUNlvCD7Q - Xj7GC+rLzidgUGAfO8c8ofRW9JK05wdsvf1qpPPDD8Udn/6Ln7P9kGoQGRXZ7VejLLOUEuQ/JxaZ - bjrtJ36z7PgTvzPSbetTTFLfWX/1F6ydLwxYkldvwfrodchZIG53PTyA6Bf6+Plpen1NnNiDevx5 - o5Ovz/o8+CqEp+u3Dxr+EIGVPEko7/WwBcd1Sdc/PZevCV1+aj8Cehfc9e/9OHjhYNz55wSEfr0i - Ex30ds0tdYIdV4nI6ZlPu+PvXB6DpMAnfRB1/Hoyy18+Xg5DZI7c6QgTuLxNBzkFPBY7XgzgyoQi - enDTD7x2fQFwGpIDPAX53pXfI/D1KxjkfD3iTldzNf/FK+Xy7Nul8IUAXqrHKTic5XMhNNXJgujw - 5HEg7VPpeF0soe80KrKNGdNt//4/PWyBE2hjcn+pnixA4i5SSeVite2+hhURGxyNbTtuLPoEwFOb - JzbYcwNWSx4MACIYY1W7J+54QhmBp8uiBsKen1dzayaYfrvor75V0OpnJ3/5A3mz1o+b/ZAa6NfM - Gavw48fLVy5XsOqMu9CD8GjXlLu9//Gd1WfL4k+PgrfaCJCXazT+t15bMjEBt7ysYojOKwvlKUJY - KRKhWLu17MBeD0OVRY2CpVuQQCm/21hNq7zdlguzwFyZNVTZ2xLvelIOx88YI8vsIFgKJhngXQ4J - OosXxqXig2EAVO0eqYh0YJOq3wr3/LMIO77E/lH2YHBmPziPggulss/Wf/ExqFusudM1jd5yb1UL - dm9m2W7e+ZTLYjwMWO2rEFDRG0Sw+8vCDstM//iQPJ3J7U+fb1kLrA0sUytFu76sz6+fZMHglnm7 - XsvEi/SaFtgQyOz6pKZjSxy/YK+nouC39+xCi1JCo35iFGSHTV8V4ZbI0iog/KfX7fmphLyzmQvQ - JAzWXhpKsBaxFojb03e5HU+C1JB/yLHuhku4OjbgKPY2OomHecRdFtay5HAN9mA4xZPbXljZP9or - foTts6ATKhOw6z0InezKXfAlq+F9wFekqVeHbsdDM0l//mUF8eCST20ngLDOd5GT83evByiLzMBv - j3WG+DFN0VCDdo2bZbSwDPChTzNofo462vO5TkL/1MCqLEucbfN9nP/4+fabWHS71x/w2+ub4LyJ - JT7nEyzmSA3JP33GXptB717xy5KFpcXB4RaF8UZPtwwy+3j4da+Hbt4p5v/yK7agkbVz+rPKv/1Z - aAxkl1wZ+AUrcV+BdMxZsNeDcniQrt9A2PVvUq/6+sfHUAjfZrx9By6V9WYiOz/ux7VbRgP2i0SR - 6+WjvjIPhYV7/WuRFs4upvVWaVDQSY/1LLXcydscAh10IEHZh6kr/B6zB2Mh7ff6fO2ub2diQE99 - DmsEccX0dA3x/3Oi4Ph/nyiIBVHD+Ve56DOQUQK5C+QDPjlil7Lps4EW+vTINR+/eJ3iWwq9ftDQ - 6bf9YnI1WV4WK8FZOHFWAT/xgAfCq7Xw+dKQdhOmRw4b2l2xEUbnmL+1gwZ9Kl+QHwqGvkm6r8BL - phwxug6//Y4DX4OwNWYU/kKDzrqeZpANfA9lbTyO21DvXS8NXsSmr5Qt0cYNyu1lOqHKr3/jxpBn - DRJovNBDlh6A+s8gh9k3OuKgPoEYH02ukeMuFZH3PeB4mo4WI7X8NcfqOeTpaijvCura5AfsY/6M - WyP3q9QbcbErPKq+tvRLZLRI/kLyFtD+fgMDDMsgxMF5jkaOu84s/GSfHmWHkXU38qh4EAuStghy - 0rfbS6kH2XjDMuCifqObZj4C4IV+h06jKsXr0ygj6KfMCbsKVmJ2TFNLNs/eiO0nxC6Jo9WQE7bK - AkFO7JbPMxJI8jm3F2peCVgapk5lnmUIVue6cYUBvr/yGscW1mvxS1e/TiCkP/2I3Der6Cy/JaUc - W3RZku94GGe3N2q5VcYXQvRdFNy5ygIZZjGHtG14tRORhU5+P5p5KTUJjax3JhqMpgZh/3Q66Ju1 - yjVMrUDF8QaCkX+alwye+r3ildp5IShsv89VIy6y2qcJNqN1MnCUAhnbp8p2uym+JXB90QX74+sU - s5r1qGDfH5Ld/s4FOyiSAin/07HR6rxOiu1hwZUYHxzFT0OfSu8UybBP7sjPfXak5HN5g30/8IMx - j+6iDt8GTlj2cBglTrv+BieDOp4z/Oh/rYsP24OFNpEeyEVUAEQ6a5lsQvGNw47xXPYMJA/O89vE - ftsRsEqnUyQvmmyj4HRwWx73/j4nWXhgp+/ylhhPfoLgnfvYfcRvncyo4iFb1Tp6NsfBZXt95eHX - HO9Ymb7XUciKyYGIU2QcFUrtssn3acAENS5S65NO15nXHJk5Dhm+GeekIK3Y7GcwDTM4LBpqV2dz - MnDTIxmpdqEVVFIESfbCwxU7V/s90t85qaAQK/sJCsmMsTuqndwxzojU3+zrvLasRPbuNxd7j+xK - +cOFn6D81CKke9YZrNdfU8tius+t3C63dg2LgQB21npsWNsYk4NQJ3JtNEdkO+x9ZN/CUTuaZyZD - Ti64I71cG0U2ecVC1pu7jWyqeynEylvHhnQKdI4htxpY0D6gzGm9UeBuDZSBz3wDPj1M4/y1Ukem - /Ef/i0dFl5p7T4dMOAek6vqRtDc9gU8mszF6oxyQfb/lMPmekfK6JEAo+1sEopE02PNefbz+fu4X - eg77QQ5Fib7yW1JBDz8kfL4XJ5d9vdRSflyLB9ZM4wRYvVNLOEVBEvB7/OFZxs6g071TrLnfbVyL - q73A9rKclr6/zS1ZXdGEOeOrAd8kc0y0Rdy7OM3aAiB4jtSUxg4yxy7DtsMeW9ykTAVtH4ZYV+jP - pZJykOBg1xVK1bGgODF/DNS8ucQu0VuXHw9rJAulcwr2VkUxW0SOBB+fJdl7bJzcdQlmB9rt4KCy - NUsw+k8zhxfhraPryuJiOx83Bh6+sEAG8YpRkOWLIfdH/4fvPBkpvpmWBi+q80DqOUwBDpP0DS+8 - 0SPLrBjap11vwnfbP5aDVsaAjEVuwj5mPwsdtFJf3xvN5XX0LKx4X33cmEJR5OTaAeQwa+gKRQhT - eTh4t2Dh1OtI8bzfscZLgc+HwKW8ENBcvoazEAzz3MW0nFITNu9Mw2EwqToniw8HjDE345A9X8aN - LdpSli75Bfmnpo3Je/qVkF+MK46/pHfn+zFW5H4sF+RLgwM2hqtS2NbBGMTTvaGk8Pax5OZg7vv9 - AdzAbBMcaSZghb8PBRHWiID31RGQJkpJK8CjycrCSgvkHio15tzJTSHxq1twPEU+WH+DlsNqVVsU - RskwTqR9pXLHqRY2u7NW8Ld6DIB8+olYG4WppS+mKGG98TCAj4yjm3WNCRTE+xufpJ/hcr5GoDyp - 7rpIzDsB7GoTKOeKeMAJ2zYFHctwkDf56O9nRjXAQy3zIHs69+h8RzalBU5E+e5XHtYbxiiE8PbI - QWtTA53O1pWSDxVrGB5RiQ2ZqUdBOwcivBfotHBRfwGcDGJG3vMr1srGc9mI5Am8F5CglN44nVq3 - UJQ5lzdRBSXL5U61+4XwMoU4EpdjQZhEruFHKEzke99CX69zZ8neQTfQOWbdmCOPlJUnjVEDuTJ/ - 7pI+bwQwtc8ga1oGlzjO04DDgTFQyjV1K8jVWsurb2XouWi4xXOcePLqDsyyOkXmEuPJLGC6GyvS - D+kE5qOtdYJ5DkacWf1QTKnpWnIzKW4AvWvgCoKLF3B6NQSf7PgVC6+7HMKcE1yEdvvmH9PAQOvp - 0ADE01Cs8+31lZ/XucS3uFv1TVeeXyjJI97vPKB4t8dKXqWqWER5u4A1K6UJinZpBQckRC41ai6S - /E85ontWv/Q5vhxrOb5U5SJF5EGpE5QlaHElY1Uvid69KmeQJuZJkEr4aCR/eMv32yE49m5UEOFC - PPnJazF+GoWhUyXWHFlNLzy+/7hXu055l8k2ER/4+UYSncKshbJjqx5y/NKP1+Y4ZXBiHgSpPbq7 - W8hYk+xwv2YRJ+kT/+bwkUG7mG2846di0ju1kh/+FgdH0SpHEjyLEPRH9Fuo9gr0rZhvBFwPrxin - b41tSZbPX1CpB4rQ5c64W/88TfL+e9iZj21LSvxaZfpTj+hZeBEl3tsvIVc/y4ArjbDYrppQSVBz - zYXGmTSuL60W5bOIfRzk4EPpYbkp8D1evsjuXRJv87VPYOHhH97Xq2U5iniA04Xss+vS8c8+5Nv9 - PuFUFW4uv55nFu546O/5dRqx2lv2hAzg627/QrJXfLWBesgUyt2/7r8F/AoLI48NSDu5+m+FPIpE - 5LsGcknOFhDag48D9vk70xUptgKsp1SjoD0ewCLndJ+aJOg73gLFKiyPAX5TJkTeAQfFFJE8hbeh - DIPrjq9ZqBTm3+9j7XL/tsRK80QamHJAAcp7SlpxmMAM2XvAx7dW75eoaeCeT/HppGUxPSl9Aq99 - 9sbGaOmUM7nfBAcncpFy49NiC15FA8nohwu9eYdiNsVvDdxJt7Ddtxal69t09hNtJ3zS66mYAkZu - BDu+xQvX1kz8z16xWQDsmn0zkr/8WKSWhiN9Pujr1bNW6JebjHyPpAWhqhL+y28OPqg6/nWUB1wn - RAtTXtJ2Cw7QgGvDRti5oUZfi0xpIJ/aV2Tv9oxz8Z5CRmeeWO8Szv3zb+AJOQjqj/MrlveEK7Dj - ReTYXTdudc2+IbLKH9bvNwfQZLp/4R9fSE72i5LPui3QTbLDf/4L5HMKrHAIsO7k9Z6ftC+MvMMJ - BU35At+SdF9pntoGK1MuxZuCP2/4ft8dnAPr22LXexlQ/SU5RvcoHDf/dCSQnSL450/F5KBRgVHx - HP/wbrHFNJQgOi8S9jh4bzmqqMu/+CvVQz2SQN9qqC+IWegev9dD4vLSgz79hR5SD6xXTyFQVbsX - zt/mfkdyPFgQn+0OnXe8iANDNKGJvi+kOKgEXCaiNzAftxzbrGi3XNd4DfjDT0+Be8dkupYVrPOx - CyajS+n2UrpuvzPBLuJz1FzuwPcrDDp7RX//f63GLYRnt3CQvRlvQG+KlsGnapyx6usjJYfUYiAU - 2AM+a9t+J8fhNSgIo7Dco3nScelzjWznhxJ7w08EWy8vIXwqSY4fr2Vt15fWSfBnRPH++XZc5MMl - kb+zcUA38z67lE+mf3gHK06R6Wvl3EXI6WWIy4K3wb5eLPS0EqP4il/xOjSXXP7jJ7Ec4nh9mOdB - dpvjB6k2OrukJPUXWrdmwEaLtni1LlUO/eod4LPxdOi6x2MoT3oVcPyytbOK7t0f3wwABIdxC4Et - waor7gH7FSTaKZxowLZmsoXZ+erim2IKB9XpUDB+9zmXIbLAHq8CMQ1bivO7SODFIt+Fx20Yb0db - GyB9eSq+qA2iM8Ol6d4rk0HBvGkjdz8WGvwdobfUZKsB0Y2EAYHeFOjkAYcKl2ujgWvUWDjg1Gu7 - bd84gnv+w/foFVKqhG4Kjvp2w8qvrN0NGmEFxc/8Q8Ht/NLXM8e+Zd9/DX/4WCcLZ5X7QZoQOUet - 13uoXgY5yHMBo5p6I9l+dx7euv6wv57awXufKjlqswnHXcLp29GzS8isDbfPdznpWPWNGg4HaKAL - m1VjfXr6mixaU4G0TGpafuIpC//4in1+f8d9vQfAYbwEQpfhmMrV2shQ4A8YCdy7WDkpkwCjBwQ5 - Ktji9btaGmQuc4ZPH+Hk8qe3BSGzRU0APxeroKMsavCqPt9YyyRt5HS9yiHx7hT5p7RzV/Dewr94 - ubzUZdTXnd/Aav0fAAAA//+kXcuWsrwSfSAHcpOEIXeRWxBQcQaICIjIJQHy9Gdhf8N/dsbdqxtI - Zdfeu5IqpSbyZU4otRbiwsHDEvHVm6rNBM0tvHXDHpnRTXPGjzWoUOBmB6VV8hnojz/+8p0Kq8KZ - Oq3ewZVaZyQDItIV7DxB1P2KJcdySJz1Lt5b8Sn1OfIYWNMpmrIQ3MUV+TuRwIHSZwQlXnsk/v5Q - D/X8xky7dY2vyLGZDUrRTkzBEzUjCclzO7G1k0qwrScyhR0G8yrtO+6BdRttfoNGrFsiwtetYv1d - lSt0nuJqBedTFaEf/mO/Ck3pyYYtUipHifiRX1PpYZ5s/5q8hHoNmH0KJ9YPkAzqfb2U+4cNuDZ3 - cfm8rdHKALWRXkdvR47mfdImWC2qVESrTpCpP6LvnvYQsB0boquXUI2+ckb/03M/fj/vUqWQRgU8 - yNF1K4cyj7KR7oZ+JcFvPc78KRWd1RH82S8NytujJP/4BDHeT7/uD56swtXNKL4EdRwRltNKaYL6 - iFvP5ek3j5RckqvjDVlfsxyWVyXLQAec4I+hdnHw+XDqIB/NCFnnvQgoHwrrHz/SO27QptleSnBy - C86XZp5zxmYBCSir5uu3mhQPlf7kMHBAE6Kzc/pGI8eHJrilwES+fG6GVaukEnRWviJUTZiua/FI - 4Zg2Nroe7N6Zw2iZoXDbYeJmPR4m8TU125QcE8/r26jZn38mu2P856dwsbvmUqh/EJE1561h9tqk - knF6L2iLL22u5w+Ex/lyI/KWP+cgq2Z464vAbwBlHbpLVlHKtdxAfhu0A/Vz1EBpXJw/v24VpgjC - 63j8+trN3UdUs9JY/PkzvrOWGb01XQtvFXNECkn1jF10KkjFrNXEOtN9Pc5dVom2tE+Qe4fHYU52 - oS5Z8DAifSyY4SMM0fj3/DYjgWz06myFiIkC4nRdAxjnNKU/fo0u2rj5gez1CkG/Xzf/YaiLz2vf - g/LwNH56vV7ypVKlu2FekVnFXrbxi1La8g16pF48ELDd4Nj8DSx9P5rDSnemAZs/SKKb+8zYzuxX - 8Clf66bPGmc936oQbvnDfz92YT3JZGp+ehyDW0zBrIy0B7pxD4nG3nK6TJfXFfz0ubnud/WUR6cc - yKJ6I855tbRF04rkzz/d+Fk0R2OOwcLWN4LuJpvNQTJACHdTtum9CixiM6YQyeay+WNXZ9ROnSDN - +lzh/W3W603PYvi8+RzylMfln3/x00/XXtEHelrXDkr10CE/f5wpfUzfEobeuJJky/ezJD7+7edf - fGMzcyuY2nKFzrubP5DmoulS6EoG0WNz1NbPi+///J1rMkVg9WURA4P/vvxs89emhp1XaeMfPlNn - Yz05X7eEF+XRkFPw8YclD9RO2vDWf50yNeKKdorhNCzsn99KVOduw7J3V3SCd2PAh8/1CpFVfIjK - u17GzmMiwMuOtj7XK3q9cOydg4QtEXL7T0LX7mthaJw+yzYVga2n3fqs4L1/JCSZr9Ewc5d1BOvF - fGGmHZ41/f2/IeInoih4cLbn6yGZPj7Rbu4zGi3/1sL6wzDo8a7YaHbHxAfvDwsJal9RvVy2Hosv - nJ3JSYukehLsnQoQtkrkYuEFpvc5bcVcxQmRM6Br/B7fVKg5poaOrtyCLg32ObBuZY/MMnUc4ufH - 5qd3fvkuopJ0NwFqyxt5GMbTWeVQayC7lDIy0qqJmNw1ApB/bhNxorGPqPY9jIB2+gMlr/s3W67V - UMDTYT3ghWnuYPPXd5AGwEaOXr+d4dJmO1CJ1eKDFqvZgsO+goslKT+94Wz+TQvq0h2QfJkFitH9 - 0YPLa82I6bk3il/i1QSrwfgoyVomwwNccvjRg2i7ETLUPz0H9mg5kmDjbysfH7ZzTO+jv9vLxrBa - 97sF9++HQu7Dw3FWqAYunMZXRbx1STKydEEqCbsk9oXnUGlUQIcdyO8N44NRp85YUzzDYOZbop5G - FGFfXkfx6zg8br6+Ui+bnwQ5Bq5k4x810zCiC7VZDdD2/GAVHKYFtZL529xsW5s/08n95XeiXpRA - w8eLKcDbEk/IUiwcLZp8a+Fa8Skx4k7VmLXtLBF27Yj8okbR2t8QB2Mz6fC8M5WaHcm+BwCEX//g - OWXGiq93C5n4AolRaXKGf346tj8hUqBxoV19Dwrp51dv/APgUksbqJAxQM/DLYhmT6euyGHzQo7l - M6fzx/ly4GS0qb9vsqs2zycRwk9Utb6w+bG/+sSf/+XLxjfD0iHC0uspDETVpqe2pPSRQO3sUuS9 - q0u2+YsWaJhRQerZG7JFbJoE5o7pI52pq4jOH3cHXYWoxC4LI1vUUyzDrOk6Emx6c96zgw9b83tH - +lFrnEV2UAqj+6b3yuId4R2XizBwwB0p4R1GuNp1V/DjR/dF12nh+K8rvIIbJDLnEW36+X+P+Dv/ - 6gUR0xmNDy2fh3/6d83JdwbfflKQnbxDOgX5K4YwObPIK8yP1nrvQJA2fMP70fIiJp+aHvLRNoUQ - VJ1D1ypc4VYP8SflnGbr0icd7K5SQhTif53BHlkZ5sHzjI7z+UXX767hJNYx7/7y1STaLe8cwzCd - dsQdtykHdeyWIPmorS+83s1Aezi2MP9cJrTll2hFIqvCP3x4FlFE+/2QwtJ1VLTVo5ylDo62xH+d - 86ZHeop3XCzCoz08fBa+zIF5excXLPLHIT5KT3RZ6jwHEUE/f/itbf7IFVCl5//V04aD2EFydDq8 - OBe9fr/9bAY/f/r+KoAzV5nGwOUzF0hjbxDQx9zF8OCKIgaH5zka3q7Z/9bT5+nB0cbpPECg2dcr - 0b/+q17S+dqIP77Pd27s4Jtq9/DgOp5/YEqqjRU3NeAguhLebfU6vPm3QOGaifz4Iy4LGIN7tluR - JgUoWmHeVnD1fd3nN/23PI2UgWs+9uT4PLkO89TjAKozgOgITjtn6cxqlvY3bBFN11JnPN5yFQ7x - O0XxY3rX87UZxl+8+MKvfnet6hyGYmQh2xGVjJ8Y2sDcvr58xh68gZ+CRwoqo337bWWtzrrnuxg+ - LyQn6nFnOfgXb0Mjnv1w8R4Z9eQ3I3XsypIjPQzaXCWeCkNjq4HYmeD88v8vH29+g1wvXaWX0mFt - GISw39O58IIRbPVIvKdwASSLgAXT4BT6gnuO6MLdZ1OykuCGtM0fWxfrEAJv4l5bfYPRpsgXR7gE - 1gXpselqXB3rpbTtHyw64iujIWM38OT5Nfn546u2naIblcMDKTMMMk5G7nrY6sV+vcXfnIWqIJnX - fIdOcRZls9pyshRode0Xp+wARutcJBA78Z4Er3O81S8IBI2HOL/K5FL744s/frvhizMCM8CQr0KW - qLpdD2TTEzDU3widlqDU2HJ/sWFq1RZRJmuoaRXxHSDFFRC7alS6DAI0gfydSmRwV6DhH//APLiQ - k9/tsu7jfBnxKzxFpNeZO2DtmK2wk3XoA3YYh282PVfAa8/EPxyTIaJUYkqpQeoReZ8gj3DXKgIM - XS/BBPHrn14TS426BKkd0TY/cRRZrQiQ8diFw7yPNQZ+Mpv4YhEdwGz5zxY2nsche3lNTh2P9wZs - 9RwU99Cq8ZvOlRSd85zcj4mT/fx0eDcYDT04rtXo8jrGoC2areeoqdQzx0ShRDvOJki+XqN5f1N7 - iV0qmXjf7APY9wivoBywu/lP87CobsqImTttPTQ5eVhSekn+nxMF4n+fKNjfy56YS/Gt6S4rS+kr - kjvym6we1tgZOMBPJ4Yoj2av0ftuDiXlfXT9/uwvNWHBx5dKRT6QxBO/WdfXbAPqQj6Ss3w9U/4O - qhGes2RE+nz2KRNZ51FaQ6VCMtZRtrTVyMDL/njAQLVfA9blxwhP17fic0bjRcvZk3xQR6fjdi2M - cZaqDTE0F1XAcBZqMJAgTeDyMRGSqak5VD35K9TvLEQu736yNZW/KSxyWyOW/GhqyudfW7ppho5u - 35Of8Qf/UEAlbIg/u0pTk0lzVMiozYJ8KySA3l7aDgaCgPAu6j7OcsglDF/VW0CoTR2wBPLEwcur - Moj2GMuMX9R+hGZRpuiY8g7g+wSFcLJKhRTsEGqE40tf2kXjjVy+2aFe8GnF0lXsfJRpCGhreQtD - 6SULDMkdIwaz/k5lKbBcQEJSlNnCTeLu0HzsM1Hz9Vxz3zIqpPuKWSIzDgSTUCccEGkW+lystQ57 - fAJToodrRexP9BhWjxFFaDpug6zAnzQarycXxrOS+NMl74ZVMLsRij3MUXjJU4ddBDaV9NXM0CnA - JKNH5SxI8LL0SAm7WKNieeSgwpwp8cvhWRMnRBCc03dELvNydmi4n4VfPBGDhj3gh0DE0scdU2St - Zx5QwkaBFM07jpifT6Itc9DC7UxzhqfTmdarrDst3MGTi647nDj8Fm/Ql+WA2MfFrWnnewUoLM7z - aSnrDhMYTSGRO9zmRZT9MCNLVOEvHou3+B3o8cIysLqjhsiwtjS298pG2uKHZJ7pDqSoA0FSwpYg - dGbeYFaqcYYqYY7k+dSZbA7rYIbvPlZ9OAsaWNDR2kkQ3q/o7IxfjdfyJZAiDvjEdhouG1FZl9KN - zgnxtrmaWBlDVTrORoriNC8GbicEPbx3g0cc8KoG5nY/rnBmPxXRp5kB62cJsBSoYU0cqZsdklmr - DV3IFOR+U0Mw0tm9wrtzJkSp6FfD5S0M4LdzIZ6GF1NPGXpxUiwKCbnIKh8t+sPgwLVsP7gyhCPA - 3ukqSAZ3huhy5z/ROvP6VRJZWSdn8/HU2K+kNZL6nksitwBrPXtUZGn1p4G4hCN09AOzlUSV7Ijt - uhJdX/tuBPTIsng93jzA2NAWYbe8A5RUJYlWplhLqcz0kvilcAHMR5BTqQj1nMQgRZSL2l6AHxen - KGH2nbMi1Y7hwJQ8emzvM0Y520t0cAYffvyunsd7VEgySiUfiqsI1jNfWpIm7M7+PEgvsMq61krn - pgNIq6k3MIO1KwExB4NY03euV3v1enjSzg7yDpTX6GwIoagKoYScLyqj5X155LCOdiVBwjNx+Dvo - MeCclvX7pPlq6xoLGGjKyyXOdT4OTNsvqrTaqYF8SfkOc1+zLQze7R2Dg9zRxRRXW3qE/ot4+Vo6 - s32zZagFhGLJWaeMyntdhD3qFWRHUBlmEOv9H16GY50661WCJtzwF++2eGZW/67C19JYyND7ol5Z - +S1Kd7jmSCuWA8Ua9UPw+YZPlHy5FqxitDGOR8Ej024VZyl6qwVGsc2xDarjwOmmwEB4oT3x91Wd - fcUp7KWZ92OkB5clo/zi6aKxWBLydqwN1qitRHhWrQIVD2PU5rv/7sWoq2TiaCjTFls8M6B1uSem - k5Zn+Cu48O953TAbszX6CoXUz68JnbZ47mDzbSFVR47EolVqzPmqpNJLwZ6/4OVIZ2/wenHfChYp - /JZG85XPU5jvR43Ejlg6awRMBp4OxwIpeYgysn6GFrZX4UgspSq0Vcj0TgLBPP/Wf1huv67ZuWsQ - 43Swaj6MY0HsCwWhfP9JMv6czip8xX5P9JMbaOuzaBnwPAoEnZlhry3mB3WwuHkZCqNKpQunXneQ - 62wRx6YwZrOaBS6M7vWMLPsG6kHLl/CH9yT3qOFw5AuhmFw2hxMSBHDmzauU8PsDUozEqJl4ChvI - dTDCu9NyAYuCNR3KUeUR5wx6hx6+cyldHilLtOtpHXDw0Xzplr0OSLVcZ+CcNLYkizEbzN75Y8Tk - cZdLl8L1UTBICuAfId0BuVV7pDui7MwX5EFwSBqduPWQAoa/iSU07FdAZEPKAScnnxLcL5cbOiIg - A1YxYAe7NfmixGwWugDky3AKdjzynNXLGOZihJL54s7IwL1WL8PRyw8ivYfoAeNFm7+qGkgZgh7x - b75Yr/5DSaRgp/lEY2gZzTs8pDAzjp4vtNHBmW77tw0PrH1CKedWlH8hU5cej0hAFrPvNPw433II - vOJAjooKwFRaOIHl94FR0OIbYC7idweXcC+TJGuajBh8IkuLXdnoNLDI4QdvsmGx60qSDBeX8mae - QGgU3ZMUU6A4DPaXK0R5jkj0CCPA3h/nSsKbiH/SXoymJ1IqIK1ev3X9Atq4j5qrlKinFvnn45TN - G97B5cHIKJsTZeDr78jB6pNm2/PxgJ5ob0kYu4hcIEF03bGODj/4Xvh0NQJtTmlbQU9/gH9/72Db - HOzmhffBxB+HJWf6ESpv4U0urrfNZDStVIpZaSZRxGJAYvPtSm+yOTLLWNaL7bOM1K49xYsbz/VU - P/kWxI76QN4lt2pqoFMj/fiGZwyyQzt7L4AT3T19njEOEV36gw3b42HrAl+UAzVnKEJisCNx2ekV - dSFDbBhmwYdYyXenzR90gNB2PgB/NKlyhl6+zBDD9wOzvBHX+IMdC8KveEDaaswOcW2QwIp7q8jK - 76rD39iPAOdpZ2AJhJJD8HDOoXjGvr9oukKnCQ4BKCzGQ+lFAdFSzpCBG98jR+t9qnkwj+uPn5Er - v07O4tNrKrlykBIzZACgem910IhbAZ3661cjRZ0IkkpkTJ5nxgBsJBslTDy5xbty2A+LePlaIiAn - CfmkaYY1s2v3jz96OtrTvrkeIAx2io+Qwh2dpX7yDbx51oAut6uXzeuRFQFL1Bn5D2N01jD/mqKm - Xt8+qB1hoJy7zdGmikKOpLccJlZ2Laxi80388C5ps/J8+vCHZy63P2tTX7nVwR/beMPzz0BeyDTF - ORILopdRoK0JPe+AQqBL7usuiLaeMv/wTWGGp7N85bMvsunhhWmgvrP5/Hmu4vdzr4mBA16bVapg - 6ajHGGnWQdcIyGUOJgINiaLpL7rOlFvBcPhyJLxZ12xp5rwEHjh+iD1aWUQdqYZSP/omPrCGBJZi - 15RQPI8+Fp3mmq14sktRyxpKNKUeayqWiIHbemJMmqYml5ttwy1fbYqeczB/uIfg+GggcY9Eysgu - 6ypIlNJEuXyyHcYXLip8KvCGLizVwSoK804aRlMhp6ETAPnt951Rlwht+3dO2qcN34fqS6zBug7z - g4tmOCSr43fZzXeoulxcMQiGxRdf7hytTppbYOZSQFT+sET0rPHbCfq0Id6B3rS5EboRXGxzj47J - CYClI4wP7890h9PRyrLFL8Qc5PreIortaQ5/qC8JMMdDR4xP7Gpc8iQ5FFuNwXzaX2q8C1QXGq6t - YvGcHSl5Gm4Af+t9euMXnW/5JQb3y+1GTOjtsvXUcAFwIKy3HjqaRpKlFGEG8AG55mOq1zPf2VCq - uRydLrVL17h+xJBag0+st/KN6BBbIeSNMiGBIUG6SPogwk1vIEtKD87az0IKVcIdiXG4C9kWvzrs - H4jz32F8HygLPi6YjrjD8HG7ZdN27RUwGbf3teu1A5T9OCF8SkT1FyHTNGrVng81bAR/fHs6XZKd - EC5ivE2hQNEilE4ITzvVxBvfow0jRSO85o8bik9u4DBxb6hwrqLRPxRJH+HL3IwSF2sD8U1HzaYu - sbH4jY8T0rVLUS9Z3wlgiw9yOb51+vseko9cDlnJt3AWzhgr+IlvPDk+kjddLoIggswQWh88329t - i78AHO3IxCBGE9j06QjjdjkRJ1b5Adfmr8fBYSGKfF0o8WPJBbpTYP+xPvbDKL/FGKbFs8QMRFM9 - Z+N9B1p1/stnzhLEwRXiY1OTa2+F2sLUiyU+j8crMe27TfFnCUYYKSbwKX+swbrHnx1YTnjBbJIo - Gf+c0hHCevf66UFtTZ6fAk7nOUCyvZ/r9dTsQmidbp0vGKHqjCbJOLjlQ6LdOmGYjrXVQcFII6Sn - eVE3v+dlHSwik189ZwU2SqC/F2zkzM7mgIg7LF4OO5HIX3SmUxLYNiwV9UBO6HCu15t/NqVDDnry - 47eL1x5luPGR7fs3gLA7OP/4NvJPu1EjLCC+ZCzwSqzdV9M2fi2DQe8hUhvrpK1alq/gncMGPQPr - W1MzD3YSuZ8qH3qtD/h6FP/lj8ut1uq/fL19H//jmFrGoT6Z4WO3vpGxxet6sYoQHB6Thvme7Ye5 - 0Gpf4p5Y9//wiYuTBLBfM0F20pw05pUyKTydCxWpL8bIcPSdcyh1UkbS192s5xMGJewfHof09hPV - OLMHVxxucEX2dHtnq3+njCQk44l48CjSRX94HORP/I54RvGlZFs/oOxuKVHMx95Z+JAKkAqvE8ra - V6Ct+1RX4SOxDxiQ61RPqVHKv/y+daE+0cmL514Sd2FI1Nq8OMvVlGPJDqqGeB+gaL94gebpsyI1 - qlTA1s99A290TTCYk1c9g2Bv/uIXqct7AsS1aQqFon/5Mz6/6yV341A6H6OHD3eX35xxYIs3Mlh4 - yR7nemWTWwJ+8bVkj6VeX7E+wgczbj3BlrFeZ/EuSBtfQHrhqvXqL+8rfFgwJCF/OGe0Hw4zgMck - R3nlxpSbamuEPvI55If3h7aembCF+6gJycVJ8EDBPM7QfT5kPOOzUQ8mYxfgp5/MD+NHfMGQADLE - Zol79TkN4znRgZqCJ4ZMcYsGqJxmeDetmdgWlQfuud5jkKyMiI63eKc16PHYiSGvRRiykxL9xc/G - 11DO7c8Oi83JhofTh9n8DEHDJXFW8Zm5b2QCSx9W3mMDKHzEGR0VtGr0Tdse8o+9h2zXfdDV6EYL - 1nviILWOnIyqvBDD0d2PSEdlNKwJve9+fguy1qHJfu8LUM8/8Hr5ztlXKLVA+uVb02imaH3F7jYn - muFIKMoFpZebaknb3/O5MWfpMkdMJW183m/Ax9R+7wt9cV8R3RTc7DveqgRueIUcfhcDWoZRL33R - bP7p0209sEiUykRXuTrU75sqzmLCSweEdLunqzKGsvTD1xMjNxktrDsH7RV1v3yb0fZ4dqWNTxJn - 6ZcISx86wks76Mjb8BEXh0mASt5d0bXaB3RBGkgAt/oVsbIb1uYfv7xEF5+EAnhn86R8oXj/5i1K - b2TI1vaBfTi+XQfJAJT1+lzvV/hWRYnI3MjVa3NddhI6WXdkdNdSm2v4GaXs7uYoKpY72PRIKjk1 - viDn8pKGFfXJCrf3xfXP7zunggo2/wKdv9CO8EkoV2nfihaSS0amc19LDTS68Uhs6dI4BB12Ovhc - TgFCHSb1rFTNDNM6PREl7BgNT/m7hUFWLUjBy4culoJzOKPFx6u4TUH9/X1OqX1/dAyGYo9ZBcki - Uowi7+Vk7E+vc50lEr9u3+CbphqUEtfzkLmcaUT3Fy8FH36YkHqzrhFzPCMXyuOaIetT1dpS7VwX - iq3CEDSgbzQdrPsMbecNyFULvvV85xgT0itnYP6RGJSh9CxKlz0IkfVWThH+579YAiY3QLVZMvMd - mAKnIMcmDihVT+YKPoF8Rja7XiMiVaz55zebwsemk8zeOlBetp4ByXV1ZjlEDNz0I95ZIaFr7C+J - tPll/mEZ5e0O3xPDA2udEEqkjzZZOlS3Q0pHcuToKeOdy6OExTsNMR1OhjOLGsEgHxMPeUZxAt8w - c1tYfp+YbHxooJU+7CBg9JbYyuPrLKfJzqF9DC8Y8DsGjCHzsUFmiC1xnecrm1rxegXV3PUkr1pl - Ozd9LuGzKRikUp3SJQ76An7v6gU5oVVGs2LTEL6vLt3y6W54Y3Oy4PBCCtIvt7ezsOXQAFULNSKT - +hLx2WI1ILv7OZEPXlD/+T9OmptIZw6csxYQ5PAxBhZBqFS1WSrMHLa4rjGvqBlY3X7RJboPRLz5 - YZTXW6rD4p2EJHkU2YBLoq2H337TDtlnWIvDJEL9zm9mhHwGOHGcEjx844w2Px9M2SeLwcy7MVEH - nGeLXIIRbPx00wONs16oGED8RHt/+uCedtdKKEBTJiXJ2emVTUmg2hAhc/nDszGTJQil+8ygY1xb - 2UizMv3hM57jnK0XseXLH55i5dO1w7e02uTHX4n3wT1YweMgiNVSaH6RPHSwBKPCwWK49uiHJ3Qs - bF1ESF+Qkj+NYWmSQQZTphb+7rRztSUYTwxEzMHArNhVEYEStIFYCqy/vI4uZXbXgwAuuvUhmu1E - gOnBx4Q7XvbIMytkuuWf5s9fvkKviJYj85RFdHt9COowqjkx6Cv4i4+TZVraKn0ohgyxWGQuxale - j2ZSgs0PRaf8oEc8c6cikMORITbmnIwBt9SHD7a6/b53RAvmE4J0oTd/Lre57G9jtqWvDsztfUaH - hnCIoS6oFP30Gs0/NwG2LvMkp/drqMlx5wbge5cvP//FIWdtvwPPd+j5nUKYjJoTuYKdnL6IueH5 - wi1WJf3i4aTPcz0FcRLDzf9FWt3eolGT79ZPLyAdpAhMQccEMGb3Mz5IYrb1nPpguLbQJll6zZyV - TZ7Jbz8T/XQ3s/7dnK5QPX6+uIptO5tvdzQD+cZT4u4/QjRJo3iFBD4SpMa3sl49QS7+8PPEGg86 - hzwc4UW3P0Rno2qYy3dRwkIYLRSX5p0uigF7aHT4SFCbDnTRQJoD+XzIMKNwST2JvWFCgz9ekL7U - xTArz5srbX4C8U/Ns16G9ZvDk/pYkZkXNwffszKHjJbY28/3w2p1DidOuzgmaH2X2wlorYWqdVeR - D9ZntApmiaXf/nEJh+hyMFz/L19Zm5+10sOhgSt7SbAoWROg9ygPoarmPYq1y66edv6EYRrfD8Sb - 2CRaN38QXm9xgm4/fnq7oxXS3fNFzC8AdCkZNYVXsfeR+QUZWB1D8MH5S0WCEunoTPM+KP/qTXlu - fGq61SvgtS335LjvWrokLtNIR/GkoJN4PA8//AU//yMfNTOju1nPQf85F0RXNQwovLzxn37ZMXc1 - oxgSRjhoQ44Xs2ez4Qo1GQRqUONF8F1A63FNQQbGA/GPvRWN2/OD5zvwkDN2j3pxk30Prm21J3KM - 9tHc9gdV7J7mSn7+84bvMjTbfYCMW70dUW8KVXxNueCvpCij+dmNOtj8GHz4yMuwWsM5gaKf3pA7 - WU+wXVGWpZBnRixOt3e0PO5DD8oAlUguopYu4+jHgC/W1v+C9jas6bsPIaOlNjrpc1BPYruvIN09 - Xr443YyMQ1ccwmxmD3jEjayxypJ0cMe5DLlZSRStyzPkwDxBA3Pp7TuMPGnkv3oTkmK2HrWYNeHm - xxOfNHr9V586X/IYyc/3dRjjy1eH3VN0EGIOes36hVhAJtjvfV6bt6nC0gDh1CPDbx77MaKNqKzS - j39PMqcO3UV87SCZggXJp7Kv//B50z8/PlPPz1i2pNrGZ6Kw4kmjL7HSpX1Czt4ssfxW35IhcF9S - gY7Hmh1W+/EdodVzF6Iy5pGOg+vqMB6nF7q3FET0zTGu9DFnlaS0WGusFX0Mt3oNlvK11KZxPzPS - Vq9DyhK+6LLpE3jO0hEdl+VSrw/5pIP3+57+9C1YPja9QlqaMZZEeYpYDYSF5HKiSeT7OdJ4ZpuC - 9ssPe2tvRYv8aC1YXiwLXbd6dr/hBWRoaBBN1tt6qPQaSoaRnpFRjDpYvFjo4eYH+eumf2Z1xO3f - epjGjdeIoPQ6bIYHj7zSeUQvsTd0QNI1/sXrQHbHnfzj58TRCyPiA6/s4KYXkSU/9IEHucUAlBfI - vxrNlP3tz+4pOP7C35FG1eXhghxxlr8Yybue1qXkfvH59/2mTa/BNRerrX6OARnXVoYFXUp/jW/l - MO9wnUr+KSy2+rMcraY3mXAYgg4dN33LS5WkQxQmHUHtR3VeDa10QE/5h2x6xul84fF/TT0A/32i - IEmQhpni9QFjNnOzdI40iNRD+RiodIxa8OZeX2Q2SUfn7/Hkw3EYDrjVowtdZKBUEuZlnqQ3paZf - rry1sPvuRaJ1HVMvo/rt4FLWrA/mVx9RNtUsKRAPiw8z6zTQbJlmkZMDHdnpSsFXPx5iUFzQCZmn - +qix15aRoeQ9P8iCKszmZX43kI0shvjJDoI5qu8WdNFR9mH9VRz2Fmm2JETfwgfmVx+o+k47ML35 - ithZKNXTNdxjmLR+7kPnsnOWz4v9dTHtkTZ0JV2OQsHBPQZn/6LwikPFYi6kVn+pSAa2PLD1VzUl - 4ugQXdy7NyzxtcYwEIDtr4+hyxhl69JUHiuIzEV8DauqJgVMIm/n85e5qVctLFepEa4rsStN1Oh3 - Rhy02JeLFFyfo3WccAjHdXyQW3Ym9WIyViIFxmyQR/veD7OWf114k/cqZo4PTqNhoHGSkHQ1Qrt9 - OrzLpvOhR+8ZOsJb47Bj0aWS7z9d4hyqYRh4P8dw53YX/5Mqu2ht89KUpKVtiBp87xlFWcvAkuld - X+yMHDBNezElXcYWOi2ADDMVQA5JYx1RWAwZINkyrSD6Zgw5+nvLmdWm7iRGNL4k4L4nbR0fr0Ti - 3SIieh+9B/7MH1QpwunB30e3A1hbhiTw3MopeZrvrqaGQWPYvr8lUief02bjLvewPZVHdEteL4fn - rzcbGlD1MXsWhXrSj4cr5IXPiAXrpAD+lL4r6TucEJGn7gj4Z3gWof5mGeJcRquepbQUYGcLIinY - 9VSz13A/wif7KEg4eC9n/vQ7CGzMDCg4KlbGKwetlE5+cyWZFIFhKZlJh9vzYymNBG2he06ULlof - oxNijzVjn6EO8fEgk2PPSNnY0ySAwV7kkJLLt2zq/cD8W++LyscDn1/WHEZs0pLneZv8hAO6g+Dr - 6iTWxtZZGiUWJcocTKJzhpZxTDs38Ds5HNG0sxlN7fntwuxJ7n6+jobGJa2cQ3OwDeIsSqyt9zRU - JbFVLaI9uVpbZho2sGOVETlvdM0WIekaKfLCDD2tVqrnGHWhxJ2C7cTL7kFZ75Uw0gjw7Nd9gupx - +LwYSUubhii8btFFyypfekXEJdbbtyJ+6AIOPhytJE7y2O74G7CAjeohlOyrMJqzeTdDLX87yG36 - amAPM73Cg0M7cpzfbUT3ZNcDBXktipg0jLBhrrH0GtcrunrxbbsTxdgSN11zLO66K6V4XLEU3Bmb - mIuoDOzeWGTppH7eSA6p6XCPyCugaMMrCVniDewhZlpwvXIBcUDY1tPBXW3onS8SOg5NQ2enNxm4 - Jt89un4PlBLH3+tQe/dXogql7fD316WAxbB1NfPeFVi/kjXCmbtrxL3xWsY8DnovHaMwwDvT7sBS - jDf3kI10xUJPaDR/KljB2pT3RI2+72GWS2WWOkG2iV3R10Cf1XWFTKVe8WyH/rCc8rqSyrI9+qz/ - DbOlGJ8+FM+KhmnKvgBjLMcdOMVfDekRonTZ8Ff6fOccnZ+ll9FbDlo4lt0enYeVAX//H4dwRSjk - A4dU61rB8OtfkRremWy58Xos5Sv0/vBnnstLKHHJ5UbMy0UH/JvcoeCX1YC886sFs7GgHViiZ470 - /KxpS99uikFEBjF37lejV5lhAKj8BO8xrLWZY1MBZhl20HF/XIc//Nu+D0KlWA5Ue+Ee3lLVJaEr - fCPOvNk9dJ77k18PnUyZc6aFcPUbnZwEV43YEMut9OiOB+Ikkg8mbfiYkFDviIpdkwJKDK+ClDtM - xHQiVaP61JVSZIYE8x6atCG7EBWiN/HxMkZuzd2rPAfvNAlQspQIcONpMuEP/zT5LDpkvXxDKMF3 - gZ4kd+nCd1MO9/hwRpeuKOsxyRNV4mh2wuLcMtm611cVrpQs6Liyg4Yj6SxKXHrbEXP4+oATns1W - ceAGoqt5DGhRyFewPS9CnWNS9sxpKsiPfEPs28ur5+KdbRWurQbzfbQODZuNEVILkfwgDdkI8XmV - ntvcEyUmZ4dz9osl7XtBQ0eeG6O11k+CVMp1gLxSVxwW06MNPXjHyOzvj2F6dNYK1ekZ+yJty4HL - V8GFdXRMMEW1B/jsVYoQTChEphbGGff96gmA5ytCGYw6baERCGA8lCdkQwEA+qp6H4YtEvDOch50 - yW9zDj4M56OoMDut18Juhvn3oPqTiVZKT+GgQ6aSr0Tbfj7eGrRViK47ZMcKP+CklQuJDixAD2d+ - UCbTqSXF15eO0OOe18O6lLLkxBCRmGFXZzqnm4LOdYTuQ58DzqZ8KAXHdSRR0Z7BDPF9lu5MYRMz - ep8GdnGmFNaOqpMccZcaq3YqgHuZGkQ2zl7Gv7NLB3t6PZMj2x4HhnmrrRTD90yyRMJ0CR5zKKlV - nmJoGW86Cw9O/Xufyzn1wVo9WR/+vr/WWTag1RWsoBS+KUroHA9DyHiyxBCNJ6rGidpfvr3s6egD - /fCtx1us2lI9OwvSQyRnTGNfr1Af+RKdXtY8UGVRTNBZYkTut/ZW0089VFI9nxZy2kvb3Do6zJAf - XhF5LLcTZSW26yS7YkWc0Jmp5zlIErGjioGcRWE06t+CRGKRiZG5h9scOGsp4fOR2Mga0EObdbhL - 4blTFGQ6UeWscuu74IhjhWS2uIsIiGwVbvuNHNEe1AvZK/IPH5GBTlCbrUdVwkPIuZhb7FSblujD - gQMnnNF5CAeH8tenBdAyyuimTuVADtx+Fn1caiR+r9jpkfzRD8OQZ74kWG22vvO4P3xL+4Kc7f8v - 2/tB26Avf740as0L176Fu894JHHxOoLe6EElXfBoEJMdzgNHMZUlIf3ayFRDmU6fs9BJXnvZenjp - H7CE2Gogp59DoiILO+Qyjzn0L/kBefrzBpaTPM7gVhkl7rLtHu7x8dQhJ6Q+FmGyaqRxjPjHh5Gq - tJdsPizrFSpijFDAn1Y6xlqbwuhz97DIHZ/Zamn3Fb7ec+/vO8cE7DxsU5fi6kG899vV2O17wbD0 - NQxE9ZJt+WOGflWHyNlr160H024nejTLfnx8WJX0OcNEtW8kSaBM2ZmmLbRgJRA0uZ0z0/kgQ4Yo - PF5EVgBDn1gVqDLBw/TMyDVvqeEq3atkRPZdTX771QTVkbOI1vDNgJ/1ZQU7brtjJDnsgJ/Hmwo2 - vkqOsvQe8MZfJK+9qfhxKg8ONUWXgd/C5LC/Z0ZnBbGiStULikQDDh4o78ejdCnHyV8IrerpEMMW - hhf7jPwTEMBiB5IOBvV+JvZdFcAytj3344PIEywz+/ErsMb9glTFdIZlbxxUuHsQSLyvUUUYn4QK - VieOoO10U7TN46xgq9cq0X7845b6LbCe+dOv5XOqrVBO7O2Oj4aMqI/qYXBDHZz2I0OMOzAjuh76 - Agxy0hPDsD7R+OObv/gNrCoamMfFKSDlwOSzI0mz9UCYq3isbgFxZkUeeIbd5eC86C6Sz3VMmQu/ - F0C9c07b74sZ2X4O693phDz6wTXeuzD/5TsiRxEC+MmHOuSrWibIab9g5r9jLtKSV5Cx7J1hDadT - C7f1QnbDcPXyMXYz6BTxg04cnCm9dJUsfeQp9N9nManp7jaIcF8LN5JuegVbz6SCT/P28WkY29nC - jedcXJL8hczEVDLmzNsy7OqdQcwnvzi04I4d3PY7UcXg7azCB+dgOecsco34lPXVTVxhb6HO30bL - Rus7Tn1YpK7vW2leODQ9By3Y8JIcDf8ZkZc/ifBsw47oVciDcePbQK5OPsoPkpMxYnEqfvzX79jz - HoyVaEDpMeg3Ymt+EpG7FLvwIlEDKSzD13S9vELoHUOVxO+wiUbMmLY01QxAXnR+gTX6PloYx+WD - HC9zM8yJfA7/1kcpglzDm76BGu6/yPXaGSySVJvwtjPPyFrnl7Oa9JTAH/5qT07Txrl8hKB6CAxm - nxA4E1/WKiSeUZNjLH/r+fLZ5oSOVbt1xfYddsIChrsPPhI/zIOI8tVZhrHQVuS4vA+gvb4lGQpJ - XyMXD7dspSk3wt1jgshbbl/whezFhdmpn/BSKob2VfbPHbh8iYw8g5w0bi0qDO9lYiCnxo5G2VDG - EumcC7G8rdvJYabxn967Gf4+W/LnKkDh2SN/zIUG0KJVZ8mbrthfw3ucTY/YLUTJecp4R14cGH/r - wU+1SBTfa+rZVycTilBnSCjOGEzH+NFBFxkyeexOmTaDXdHBz5XukHxjjtGWz9Udy7rhT+/TVW3P - PayRFiJXwlm00P1OhAd5xUgVA0Pj5Nb0wcXuZKL1CRnWR4YEIDw7hM7GOGkLx0QiLD7h1rVzr2QM - bXgb3OWbj1ud7of1tH9j8P7kX3+O6H1Ye+Xpw/bRuAh9gQIoipoEOKWsoBvkPbri01xJLu85SBb6 - QptBesnhfhR6cmm9iZLmeepgUwUmOvnva4Y58IyBBUsB3SVPGzjSG6M0PVafKE+5ruddsb9C5gob - ckmzWZtapbxKtgQGcszXFCz2CBgw+ImKoo2PLSN+h3A4JldfSuqH00MrbQB/fPhI54w6WvbGokoK - vHJ4ORgSHTM4d5Je854/4w5EI/O2W3gxOoBQ3RNnoZk0AgXGHDnf91VEWe4kQkX3R59XpINDt/ni - P7wmGqo9OmPZMqUN7zCUdUGbz3s3F7f3QRve14tZ6iaE5R2hTS/RSXb8HH4vZu0Pl7Grx+tTaH7+ - A3JtNs7wIWJbqKsjIaF5HAGN9EvyhzcsL4+Uro96hOox7ZAXr5O25SsVmOQUkWjDo/WXX5yvHBPV - 75po+e2f3OAkJFfbWOOrKMQgii4WybHjDfPSDRYMhIPtr8ZH23pmiBZcj02CjLuzAzQzekuon+YJ - OdrJj6hV3CvgKkaHFzb2KMfRXBRznw/QMZwTh7HfQgofjTkQbz4KNWmeSi/JuflCmqvd6DKDhwyn - M30gg5ddugSTZMOzsrsgL9GiaDU/xxIOYp0h/avFGVXZWyX+/C8j7GWHNaHNAOcpnRAq7YOzevFz - B5ruDDB7dwpKo65ottM2J5Jx1V4jFi5SWEO7Iif4gNpKUpmRLkYPMKPAQVvtgeFgOjYxcV6FGbG1 - p8VQYj8r8SvyrudYa//wzRdW+TDMxyVKpRS3wOceHzejDMsVsPF9GeVve8z69xxAOFSFhdTBe2mT - DE4lvPhfnygH1siYi8OE0JAPLUqlTss4w4cz3Pwy4l4/q7bY8uxKmJUDtBkwNQW840LCIoz8EIrO - V7/tXHgXngnxTBTSaRunKW4/J9qLF7Tl5e5F0X4zCcpvfJ2ttevG4OAsHTqJ+VFbtWrqIXr2L2L0 - 2Ijozw9zoRsQY8vH1AWmJf2eT3nMYTaVwSDC6c1W/v6V2tmi14IJN36PHP1wGphMBzbQn/T4Fx/N - oHU9BLItIsV0Obp6MGigHOk+sdnPZaA7jTRg0x9YnE17wC6jYjHZnQkx3lPj9MLt2wCwnBNkDFig - dJizALqeeSf+nnG1VV/ZHbRd6vmMW/BDn67jDDVmuqL0crYA9yCuD51JqYi54dno+VEpvS+ZQ354 - yh0IjEGmfhVkt8255rX76EL1m5vogg51Pb/D0YXJydbIxn/BNHHUguPwPZBsLGG9onm7ubjp72O9 - frTx6IW+VMlcjgx00OpN78qSdC3XzU88RGtr1TOk9hyThOyb+uf3goG+CDp97pqzzOCiSl5zzdCJ - HZ/1UnvOFTDXXUPUbioGkpzUURqNj4cFJJ5rVv4YLty/hR3yGL50fvgDu0UtfOa9Ym2c9aIErVdf - kOnFN4edwgVC+mZMYq3yvcbRPcCQpA7EzS/fnzMn/POf9PfqO3zmNS30zjfJP0iTl/H37034vT/+ - su6F/vwN8PO3DWn5ZnP/jHYQ9WNELv43jGrMSP8j7UqWFcSh6Ae5kEkSlkwiY4KCiDtQREBUpgTy - 9V34etm7XlrPeiUZznTDjQ2Th1BjLUJ7NvM3zVUWYcJ49esGw+/PBB1heK7jVdfMLo4l/OmJ8xW0 - OYVu2Cig8lO85gOMu8SuDQX91BPTL8S6U2W9gnVq3olzsQIg3s5yAcdOeGPXfWz6bo84Cta8edqd - kxMgkj6FcNXPRH0mZSSoiRbDywFOJGZc2DNQWzJYDm06jat/WZvXw112LGtycAvaf5X9qwHD/hXg - yJip8X2WHPrlRaj51oUxPL9KB0X/FuFinAFYn2+Aa/1g2lB9qsk9kHSwfckb4sv3s7fUpiZD37Qs - RBNzyBmIXBXEcyPgfep5+bw8vpOcvEBIPNsljD3RKEEvgcK0TJvZm4ZxCuHekE2Cn1mXL9V728mv - 103HzqW99GMFZQiqbhvgw5f7MoraNgSrPkCyWjiA7hVHgO94vuAD2n6MWbDDUGHuEk9cTvu89bY7 - FzozuaHquOtqSrlrA3/87JXo7HFvgQqwNvWU+FdJithp0Bsw3ikiMS7qtcdZugHz9AwmmbVqzW/P - vAzpN+kmYdXH/affZZAWJ+m3f+uZvzk2pFW8IRp4ldEvjwDz+/mc1tf0PVG/h+jH38SQ+4bR0ilv - sHWqA7oPwhLRcQtb+C3tMzk8Kz3nuQGp8kOPr0Q73D7GEkpU/+XlJNjsqpoltngCa/0De2t9hI+7 - UpX9o/1AEAvnftZIbgKpGzQSV6cLm+PuoysPPbkSDAnPam12TMj1+hdjkx9rkvIoBuTjnLGx5imz - iQEFQI56xAmv0Zi07LJAdyffJ/mi1WD5DDRVfvUCLUTXfknOkgvxe+SJN6gLYBl/XMDZ+MR/9aT5 - W6kQtsd3jmZ3RNESKVcJHi5RMc2qVxmfwrnrcpzUJtGes+qJy/kbQnfgTFw0YciWubu68FIY2bQF - ExfRpjh9INerX+yOZ2SwczxOMEm4EEdH8+qNoTaXiqWbgAR78jUmrBITDFlzwgcj6HJWuL4KHo90 - nvh2FHvaul8KjgaEBDvCBKhpSwkclPFCLAHojIvqo6us/Iztp6J7y5o3wMV7tagSsJivfldVwv2y - R8pk1f2STq4Mf/Wmq8u10exf3Q0MHRYRIz/39XS17hN4sJuIszUfYNPaYDaKLjax1rz6N56AqKZO - 9svjHE2GNUnAkQkhwcYBHl3rezA4hDo++nen5i2ocxBGsUD86krYvNYTlI+sz8QVDo+I3HZrk6gx - OJFM+dTRcs8P8h9+WCIQcorkqoHum9tiZGYjo7tgtqGSPq8kiE91ND9NvoA7lU4EPR9xTueynOQ1 - 70KcknzrP/8N3xlAS5bpBue+aPbnZ712O0fLjLIUPl9LR+ytbvf0h4e/PNW5f7KcFYWdwEAPFbQ9 - f/xanPfhBqR8dJuAUD28+emLMkzZicfqjf+AmRH533qik4kKW7altED25WN8Ol5Ltqx6HK54NQm3 - S+7N25nrlF+eeXhFS0R++fTYcW+8l4+Rt+r3CU6LtuBge/Uj4brJETgv1COF0hyi2eU2J9CMRxX7 - kzf27/Sl3ZTucVrvJy3anO2fsgWkejoTdUiFepY1b4CBnB8mkAdRTaqOmkqSicWf3xRK1lrwt56C - 7XXICS84EhTL6ko0ad9FtO40S/Ejz5rk61Lmk596G6iohfXL96MlcYQQXiK1xLqklhEzlDGFxuuT - kHTNqwaanjjFejoAr/m9R5VNZ/78GKJr/ZMr+cGET47vyMEnRjT5gxoq44dTcUZeC5tdW/7AYZnu - BEXDs16si/755bUIEmD37HE6SlDIzpvVz28jFsNMho2Hq9VfPRkjiqdCc+Zagm/XrzcE3SmEnHz4 - TjMxcoP/+SESHOqJ1w7Xml/1/K9eM83gpUY/PP/T1whEcU+W12RLaz2XHPRRrcnXNH1lv96CZTY6 - 82hq5xOsRec+cSv/s+s10v/yvbX+7K36/QN3NWCIb8dLv8Ahp9C28jNaLvI2H/r3l/vp0z+8/fkj - IGdGguSRF8GSyW8E9tS4oy1VJG8J/HMFCQyyP71PWSyHUCd3gER9LOuPMIYFnPbSlZwj98uea/4I - qy084QhFt5qdBrf5+WWsPhM1WuZu7dl/lzniH0wzX4Q+K+DqR5AyJtCjE4ds8PNTztQ5EfvV54Qk - oeTnL1a9Ff+fEwXwv08U7MiwwYH4HiPKe0kFZ3aTycHefSO2HT0LGudSJdm5IzU1t20L5zp+YKss - BTZv+GuhtE+TkbMSHHoucd4LPD0lSqIRSBE9d1oI8aDV2B/0itFgf2whnSQN++Z7B5ZkPVepTAhP - c7NYuZDWZSdrod9jNx4sY9l/NQl2ddHhAEe9N1/DclGe2akggY2RtwCh4GDD2QOKozDoOUl5ClCc - XiHqNw3uqUl9BMKwe5PDgCuD6FkjK1ZueVjdnZOeqd9XA/zN4BFNu431cmGeDmk2ZYin9sGgjy09 - QVQPJcHuxY+GLzdY0JjfGD238NKPG5PJ0HT62wS6q7fev0FKKLpHhIvt0c7FQd+50LyLBtodzZkt - 5psXoEoYIqpyUaLF7aYNSGLXJ5Z31hjffatWiWu9IPd3gfv561yp8rLjiDycZJczTb7pMHA3Knbm - ZIyoG9FW8TS6JykQWE6CcKBSnLEOcX1Z5VyQ2LqiAulDbsC26rmszxvYMxEg/glgtFDKNcpL3ZcE - bUI+GnK4uUHX3mYYL+M555z6tFFsWz3hpG8iMFr8bCvw1XjY1+pbP2+4IAWFGYok8I5mThb+XMDM - DRG5H2PUcx0fUFgJu4bc7nzq8b7UnRTzy0TsOU7rzWE3QFhNfELwq52MOb6fVIjeb2uChy815u3L - nBTi6jY+RIqVizCXIXjz3x67POwNqmA+hadJd8i+Vf2en++RrqBHJRFzeQoeGxlNITxmDTnPFu3H - 4PtsFO85yiS86Je6q66fEmp49yVZ+oU9fZYVB9y7o2Fru2hAMCW9Udb1SJL0ugVLaYcZ3J5ATYxO - zL1xkOVJqWRI8YE4m3oR92WopN8TIEa6dNH0BkmqsLgIiJuN35zFzaRDIocbfL17HyBYqeLC53Tb - k9vmEPWCtaOJwkHQE61Z2pxa2i2D2aYJJ2Z//fqbbuVQxh9bISd6e0aUSM8T3GdVPPX32K1/8wVN - TQ7JgTt+wCI2L135ZHZEItGoouG20UuoSqpOAul9ZxQLS6nw/JPirCChIQjsNSm+pUHiqs9nLXT3 - uwpPa+K0t0jjjSkxOCVAXEvMg68aXN8GFoy3pxPxY3qpRR2UpsLooP+ND8+m2lWyU3JDT34X9FyX - aKpSbd0LVi/7p8fbe+UETU0KsRY3UjTLp9mH7Yh8nEd+6NHp0prQ/hxtXABf8pjmfgRFBfJnSpzk - FS2V9DopvYRstJPzAPCe7Q9wlz8veD9bYc+TIZoU4+gx9KL22+PKR7LAr8CuROVT1VjOp7BSvqKV - YX8xWoN+91n7t770R/itiZCWtvIUziOxknwPxL0fyPKghglG6hQzThiugzzeTQ2buxfLZxBlMvyb - v+1W87hvzEG4AKZMgh6IbDmGmqXIA/4SLXpuctZXZajYzeGJwMGu6sWU3Ba+j+fvRJXLPV/ePacr - kR77+Hhpp55ivi1g12MBbe/NO+eQEAqKZrt3RMejYwh7qTkp7UfcIi49o3w5XBMBzkgU8ENiX4/1 - 1ecEJZYQJCXNu5+lo1EolkU2qKXfuOel5ywp3lEuCSJ21497c5aVSOjQtJDrO5+2X0+CvvzZYrO5 - 7fOZK5JMTgb/im+VdARL0bIbzJDLkT3mzH76+KYMHq9DMy3b6uURurcb+NRAiNFgxdEkiw5S9Gau - sT2zb84Czc3g1hXPRH9FEeMfrJqgSs2QXIj/MehkbTto5aZHzG3fskXio0KRVTsnx6BuesLamIIV - D7F3sPV+nlyBgxhvYmIG2I3Ee5dCeIuODQ7iCPQ0MAmCh+3GJEYjiGwAhWDKTgOvOCtp1Itfzcvg - Z+0psU8kjS0rXsiRu0/xuTfaaO6vZ04BITfiROpBNE+9rMNbHiQYs34DyJKkE9SlrYuNnfliJG5a - XRGrh0jcH97cizyDv/0U7bRbzqrhMfw+4xM+9KAfTzyC7r3QiVOhql/whkqKIBzeGBVanVO1yFJY - re9EXu/2Nqcr3kPjHvl4H+/2uSjZigk3m3c5bbfLmc23pyQpr7SYMPoe3jk7bI4IyofdG7tedTZG - 7w0EgPrHQLwmPYA/PitffU7M7+3cc5ujVigJd3oj2Wl1T1z3B7w39g2fbfqul/wlmcruzXysDdzo - Mf4wT0qma/kPD4xhvuYC4O/nAz4f+Y9H6ypslNO3h9Mg7H0mrP1clGfhmX/zv4xI0GH/3h3w4aLV - PfVf6qA8jlaNUy16MKF83234KdQdvn6OA6A0PVDlfjMRyZXW8pghKwP8Pa++ez4BTxXXhViKUhJG - myxfWHVuFKh8Uly4nJ1zg8BKeMfclRT68qyF73CeZEt0MmJfqqPHfWr+A7O2NMhDYbuc6lNSKPvk - bpPzS68Nyq/3RK/7c1qONo6WpqOdIpy3/vTtI8PjHMO1oaOoLb4s4T7nP/Z+kDNkcziXaj8ig25R - pVTGzyRtgVHz25c//PTCtLtaUj2rWpHB9qq+MOZmPeftFpkg69IvdjkgeUsaRZJyIL2x7hfbWNdH - pugpR8gjr2tAN+HFVK7n3iPaY+3y1rLPAH/8dnSKOCI7V3OhrzsJdrPRyWksPRrIj/cKSbf3kY3A - oBUwlPw90coGNZGBnSl5rU7otQmfOdOzQQL24E3Eqy5mtFxOBwEeX/hBgsfNZrw6AwiV9Z2+U3u8 - R8M63n98HSwNq+dHo8bKliVb7Kz8SMPDV/3tH2Ltj2dvyZpGhZfwIkz0pB9yGrYvCi9p+8Xu/jmz - 2f+cS3lIHQVBe3ANHrJ+kGdyPBFNhodILPMZwioTzsSsUikf6PfTKgWkJXncm0POPXA2wIejn6ds - p9rRHz9a2ywgKIY6EFtyLWEUbDdTB5UCsN//m7F+w+pZi//wHJrfWZzAI3p7oxEtDZyu0VoR2t7r - Mb5nKjQrtcdxfmnq/vxaLGXVj9i7ngzA9cJRUC5lJ2L8/XBgeiTtBKkAMUFIIN5c84sLU82KiNvw - NVvGbdT+8aUqJE5PB4FVgFoVI55U+/myl5pQ3iLpOXVbre+XnM8KeYPijoQrX4jyl7QgHb0nouw0 - 5OP+5U5yD60Jq0pmgflS3DPwPS0p8b8QG/z3U1RwVPwbWvDBYwsqPhbYUVWd6BwRRrNhySAY5pKk - OJc9Kii2DX7+QV/1ChM+bglxs5/XN28kb3Qlu4GPEChIdPlbPifBtAHldXgj7uCr3h/f/PSr982f - /fSG6gKUTv1gGwhRPuLOOMHDpRGwcSKqx7WLkMDl0D1Xfnrl04//MC19fBe+BhCPLFABfwwmYtmR - Vy9c/eyUe7xWCF1pz2h+Gz/ge6IpOXHFx+tWPQe/7tWZUq+o67qjQgsM5+Rh28q/7Lef4CHvdOLd - 464mLlkQrLcDIkYtHCJWOGIBQbo8sI/GMafjodNleuoCsue9EtBvc4mhfyouZOUHsOiX0ILd+xJO - S+r7NedyWqpgLl2w3pzdaEbXGweiqnhjA/c6++k7wKnCnVhSn0d/6yXBfU0C3cly5j48Cns8FNiv - pCOjiUMoeJUVxNiIiLc0cq7Cwj+bE7xLz3p+cn4KzXFbEH25N/WCJreAWZd9iQ7uHFuicu9Cwwk9 - ggJp3/N7brTgpOECwbuk9VxgEh+AUBjRclBjwKL4uYFW77fErPInY3Pz1v/0+GFwj2AOdt5m1Zr2 - mgB9APvxbV3fMnJf+XnhmKnCoLa/JM9Rwpasfmwgyj+nPz0yv5JhgKp393FOriCn5aNYIK3oB0nj - tDO+vXxUlfc870m6zCfAquEywOPRkBBsdudo9sXt+k4evJN0/f70GW1L4cfOxpoglzXjD4cEfvab - gVhd60bz0VUEcN1XFB9iJQEzvaGN/K1eCzqnAgDL5bT48mOML5Oi+zWgB728yRfuu95jXpfRtL0+ - K+g53Il4l6OaL8/0VgBgthLiByNhZAtfN1hVUo3NKBz7pXH4AtKu5qZlSuNoycwcwfMjG6cdd5Yj - FlZJI59eLEG84Lj5nD6+Bdx01x3er5dos9cU3IC5XwS0bT5NTc9XroQFJ0zTpjfWhlXhhspFWA4E - yWg9wXPVBBjJFYf6pay8n36Dd4i+Pz43pvho3pTx5eLpobBrPp9uNNl5rXVY/XrrzZ7tT1Br8EC0 - W0+iYXEjF4pJbRDVlIS699RyUqL2HJD8dqRg+Pm3s/hOyOHrmYxdL9wCZrG08N07NvlyRIquuNc9 - T1QaJoawzEkIVz+Mg/Z+68fGKj9ga0GCc/6Bjfk8qYVyi24u8W6J5v3xTcjBL87X9fUQJGkDb311 - Ifb9lec/fQJW/Ydqrdx6q/9AQOn0D9G31d7j2cOmME23Mgn24dNj9mTe4GG9lSHZLhrjfnrUOzML - NfnF7Ol2PoWgHGVEMDdX0bLMyQmcFs3D6LUva6bu5AQu1PWw6biZNzeJoSr5JFqIw54SzUnQbhTN - 1wwkHnfXennasgWbiyRO2/rVrXnAkcLp2cnYXvF1XPMX4E9XF1vxzclnjpic4pTLgg/g/GIksdwN - BGo9ECPso3zm8X2A5yiKiV6cSmPZ2zsT/PDpUOhiTs3t1IKj44ZIbM2N13bDNgOYYu/Pn7Hddy+B - +0V+Y6QEeU2XXdMpG3mSp8rb743f88LNRC28Jypk7Dfeod1ecfB6RMZy2nIhpO71SlwG3jWFW0tS - au/gIartvjXzt8IJynGsk8cyniO623gl/CafDc7IrmRLWFxSmI7xAV+kCNdLP3kFHF82XvWa1nPT - W+ZgF8WYxOl5ysf4ftJhnM0dTsLLzph//uY6rj72Qmg0P4y9Dd1vKkxv7mgDCrdIgvsqh4hZtQSo - WpxS+DKjA3atB8iH5aqUYB1/tHmqNFr05DX8/PwkKomTi/nu2sG6r97EdL3RG2xNsGDuCnvi1osD - mAkeGSCBPGGHnB02y6cdgurjw/Dh7T4jFtY2hINtVOtnLf/lQ/K637B7KFH+4welDG4LdkVlypf8 - RS2opwLB2osSRstHQhX9Rs5kn8l2v7he5wOby6qVH0C0cHp7U1a+QrQPX/XcWo8NVEXxho3zFBj8 - hj8WAIcWnYBhnPKhORmcHLfAxD8/K8zlW4D1dkI4OMZTT4ZTVAG92Tj4xuvM+OVpUEQehz4DxTVV - R7js1vmdJm3Y5Istn3TIwV2Pnc/RBzy3eftKa0suQc/NlS0CG4cfP2CtnyPv891nDdTtIUbc6dQY - 9Dqkw+550npsXpNnRJNcbSGOlIQgn/cA931pE5Sb4o6d074B9B0dfDmURIx++Fluyl4ASQ5SYjWv - tzes+hha2e71049gGlAcK/0bHLD7nBSPyVmwKskkRl8+5bzpnQfNjjvrJnGWOAHcLw9d/SfOfZt5 - LDxBJJcvQUOK7htspv7QQG60jgSd5SGnPldbMFWKCvE/v0A+cQlnwzfxz1+MxWnPwebwEjDCYmXM - N12jyiNWHLLfIhcsucnJcF+1FbHjUmbEhBpVEqgxfAuIsf6eqYU5mnpikW9jjMt4MZWw4dCfnxB/ - +VwHShFn6fdWcyK8U/jZRATj6Oaz4XlUb5AWbxXJO/WTL/MxuMFPsj+Q9P4xwfK+XbtdchjnifOP - JVv3k/zLx/Dx/D4ZPz6B1eldTbttcajFTNq38CZS/89PDR8TVeDn/1UVqN58OzauAsfzBeNXizw6 - XyMBPl3bINe7ZwNxG0RQUYKFEUvoLoxRs/Bh/e60afH3557VQbaBBcdN2DMtP5qeb0EAP7+7+/nl - /deRYI+nAptOUPd0+wwq0OQbA9vreIyrvoX51j0QG+eZN5Mhn0A7+j65VdIM6C0YIPgs8e+mrJnR - 13LrYHH77MkDXZnHXPzMoE0vCfGZRmrGiR4CM0gHrK/+hjhT68I1T5i4KpUilqdJAdH7ZZFDdXjX - 89Cn8W4653sckFfbM9jfY6A30CEhuBqRsLO0Ddy0dUTUxrdr9lIIBxZqexh1ewpW/o1h+frmxEZ3 - Wg/LbujgC1KKKnoVwbz6Q+jYeY1kt+lrLhvkbPf7/Sd6vYCfnv7pIWzorZ4LvCGXYLhVLkG9keUs - +/RI7upbh0N2GqLh9MaFrAin+yTFtZlzkAwVALeNhXVYIkDfnJ7CuN39qydpW+cQHMfiRPxmd84/ - v/3SR5KFT2WYebQgDgcuAw2xEfYsGn2pCuF6kx2xT5XKeOTIN5hlh88Exw3P5tXPwTXfJraZtT11 - FiWGYvI0fvlRNHAgy+TZ3YbYT5dNtOpFKJ37T4VdQY77ZdUv0NriN9Ge09db1P29gTXJA/Tlzlm+ - HHb7DdR5syGOlLk1v+ad8Fu9l4ndedPjNmXNQW4+RD/8MObTkA0wnC0DPbKy8waT+j785U8OTQ3G - +6IowzVfJZr7nIwRyaEK2zlA2JvymdEM3hZY8psbDpKLHXGwdN0/fRHQj9qLih+2sriRjsTZFoee - rv4UFJ9mh53Qsn/6bYGR8EFYjdQQ0C8v2dDd1UesAZkypjoxhT98DYLTGyznU1qCX/6OHkoSzXIV - tbDk4Q2rVwN4s58yFwJlveWDvmrvp9eVjSDERF3X43wCign3Gy7Bj+8nBnPBHBWy8qoh0REXQLb3 - coB2fDogIcyqermcsABXP0vciitzQl/XFMg0PxKVO0FAcpuzlHX88KrvPOrF2QkUanYk7sr3c8WH - hcKlUodN+qqN6ZO/Q/hFLcX7XDoZk9MfE3DIPzo5bjbIW9erD3V7irF1fRiGUO+sDfjhSbIlUrRI - fH6Dm/YZ4eDzdOolfGgL5K/FE9vloBsDk61Y4Z3EmjYPRcjHQu8LoNn2neg5qgD7hKYFjD1auwgd - HoBO4tkHm+ozTrzkBmBMC9Hc/fIN7F6G9baEKFFWP40kiVOMHsriBI9374jE88YB/M+/NBdZxIHu - yPms6V0BqVUy/Mv3p9trP8E6z3y0NZOvweJXmCm/vOjmTer6/apQnEHyiCpdAoMkvOBClW1WgR/y - +XwNP1Q+eBeNmKz6erM0xyHMt/YBp/lbizjpNnWAM0cDW6TNampXc6h8k27zm69osOZ5A6dj+SAX - 6kv1IN3aD5BVN5/EXVz1C5tFCM+kthEz3y/W/fz2W6swykSpMMgn9E25PNcqGnbmDlDr+LQh9nY2 - 9hWn86g17zbwHuu//DzKRz1KZejEfTopcu/Wgi6WEhzn1MTGCNKf/+KAX7ULVg/ywIYktxuw64UU - 77eoY+z2NSXpV08ysafkS3G5mvDMJooPATS8RU5oqvz4z1LYK/o+OT+DQxrX63iW0cwhqMNfvvuX - 31tPr5Q7bL+xitSyp4+Ct0C2uXYYheLSs40vn4CvewkaovFeszwtbvIvPzVXvbKobUhlPaQVwdbp - 5n2nflEVb9/1EzzObj1Nj6ZQ+ssyTCymdT/P90iF4Wwa04YLvHwWsZgqW6ZtsPWqw5pL5CAB8hB8 - 8d/+uCCmg59eCMqHzgS5PS3wV6/wxPKUjzxNZdgclht2O6bU88cOBkiuYoUtN57YfCnOqdKQrUl+ - emkyhE0JGwAktNN2Sj+SIRqgMTYB9qpLk1OPPXRZqMwWrflmTn0zKKF28wqMJeYYM4c4VTk6dkjU - y17z5o9NTQX43z2JlXdmsLV+B9VayJFkZm29ePBZwHIfbDHex6d+QkVpgp8/9h87E8wn35Hh+XID - E+TMby2+VVVX8hbE0/fh+wa99m0MTwpfo3L1l9NcEgFwZ9XECfmaHrP8dwtJoTnkvtaL6S9PKc9P - FSffj8qY+zAW0IndEbX4Ytck3n/D3fqZ2NWHN8jZ3EjwxU2/+rXOfvkIgE6c4IuSOBF7q6oK0aXo - ieu/sLHm0xPoDA1h75tK3rw7jq4sgRTi4ODHHrd8HzJ0zwHG3qYhNRHsPIWrHsWOtS0BvQJm/eWl - tnMv88XL2xDeLjHF+kGN2fJZu3RERbjFTmxsGPFpLsPufQ6JdQjnevrlA7ahWDiQe7cX9IMXQ+ud - qMREAWM//gaetuyJudbLl7O6Hf7PiQLlv08UxD28EjzuqnpR280Aq/U9ax56XzbuZ3MDP/d+IGaY - 4/oD70EB316VI2g+2ohmxq5TsjI5ErXKfI8e4FUCUaMSYnX6xGbOLW2YvfIYwXrWai4MrwXUHCnH - +0s75uP2c01hI5T1dBgqzxOlO/wA8HKu092Vtn1fju56hjNn2D5aJKfuTW2VpHBcYmyeh178CEaj - SN7pQyyoP/sxRVELczLKSEFbPaJFFbQwt1GOkcvrhlhqyaJ80uaL1c1J6Gf36HSwbocJyTdjiWbC - P2VYfIEwCdLatdyltwUopoLI8deV5DY5CJhQ1abZPx5zGmdXBC+vuZu42jKAmJgfDjLf5HBuhBng - 8D7SFXsvnohmRVP/0U5zCS+WyRO96ZRoJPxXghyADhJct4kYypYMTqOukuOGo8b3NrxLpYjniGT5 - Rcpn81ZR+Ll/h+nZiicmhrmdKUNg9CSwTrQm+knS5f0T7TGK7drjnlJaKM+r7BHN6DpjsE6qoAB9 - UrBPryoTD21eQkEVdey5auWxYoAl5NsgxNcMOD0P33wG76Kwx+aS4Hw2jkMM1W28ntnyOcAe4rJR - nPE+k/0tiGtGNpsO7q0mIqFePXt+7M43uFjSTG5C0udCJ2SWYqsU40v2MTwueC0x3E+3O8mvAqxZ - mKup4rnQJSjV04g/YfOkGLtqj49p9MzFItl2UPu+w2nA+oPNyzltYDQgc1pmpfD4kyzp8GVwN5JW - me1NX99RoQrbilze/NWb26SHMD+XMUmvGuwndk5Nxe2kjhT7O+rJ17dLqDk1xepuvYcvyEC6HrJI - SfSQR0ArQaHwq/OUBOq5NcbmecsUY1fucU7cc8RdiJYqj5Pvk5OXX4x52mw/UBC0/QT7AYHFCh8u - 0GbOwvdYeXmC2m4maAc9JHo8SR7zXjcBVthExLsf9z29Xj8V2O56MHHm9VEvzUWyQVipDolyxHks - fqmu4oyPGW12JyEfiVpmypnyJ2ynt31PX16rK/BULUSTvB4MiSnF4JX3FtZUAIylKrcS1LZmge9K - pUUikve60ssdISbmy0j0wXWArB1afGo6JR/u+gBhW3+OE73addQv0SRD7YJictjHbkSVjyfBZXYk - Yq/jz4fGVoBtKHf4sHm++uUiFTac/eCBnRO6AOEqNa5yat8CMS4BNIgbLh+I7nqIr5qmAb72Fx9E - Vp/g/blOvXl/XBLlm1uvSTCti0Gr6ttC+XxpcHDzpX6p/HpQdmHpE004FDnl2UVXvpLGEAxm4okP - fb4BLiIxkjTBYMt5GjJolZsMZf31E9Hf/uBCZcSne+4wiqhEYXU98sTTtq4njvGjkWurR1jtztdI - FJ2sgIl3rTGWS6fnDWuUoTYLFom/X6VfWm9UQZbxOgkGrNb8ydwLP/xB4vV4qNngMg5+P2lBbOyY - tTh/7wsMb5WMrTpdIvLS7UVx1LLBl7b5RFNzkVxoou5DMG8nHme1dx269qEma9P/WiRdVSif2gV4 - LcfU87nmCpjQ9xs/nNjKqbSZC2X4qDYu1vWydFrYKmo8pUQXz8eeK3QZwtt9H5FzX3f9ct5VglIj - rsaWS/KcXlFlQjzkMg4eby2ilJcyuHt1ZBUEh5yt+A3bujsSiz9l+TSUsw8vI9ySw4wasLyGU6xc - wu+BuJ99FZHdB1hwbooztt5XNxeNW7QoFxS6JPMPgSFob3+CndJpBE/FtR8cECB4Fo7qBF6SX/Pv - tWulu18O5DJUvTcS9ZNCqXYZxtbrYrDwOg5g5Qt0/OC2nuNpkODAxxoxmNh7FDWPDirv5UzccIQG - M2/fBZxEVcNxP5yAGJuZAA/pYzcx5s0R4zf7DTB7+MSPI476dX2pyuYRcdjNL1JE68vO3j13b5Ug - exkAw9fLAMNDesH+3B3rMchYplDRguRwOHKAwoVLgGQ/NZIUg9QTudA/UPM/Og4PXBfRh58M0IS6 - RqzS9HN6vCo+fH02W7SMF2zQtxCYEISqsOLZrV/odu8qhRtok7LLNz1zgTHAvOtEbD3Pd2PBTfJR - CLx2GHtHCtgZX0/rmcUQGyNq2ceaowIax2NIEH/c5PSHz/XNvU1w1zs9/8OXo48JVuseguWtcs0f - fuRxEzHWnZtQySshQFxgHXNmz8eNcpqYh41oW/Yfe/7e4IXdEL7l1Kmn89SkStlc7iufzhF7PaNU - +c1P5hR2P2xPvQ45tnAorrLOmx1qhZA+0Ixv4BMb/MU428qKN9h8TmG+UA4N0LwimRyAf8iFcxb6 - f897WkjV8+/esmFSeC45W9HQM6aIUHHsC8K/+Zrl9zuD2f7CkcCNPvVi2LYF921kT6xt3Fzc3A0I - OzX8EvNrWr1YDFyl7PNJIP5eeAIisr6CUp/YiKoPP2L9VkmgELVfbFnOEH1uacQp9OHPOHmeFY/q - 4C1DvsUhDla9w/jPxVTwDJxps3x2bMbyTYW6ifVJyCynJs9L3sHeRhHe2+ElJx/BaOEPj9ybccqZ - NRsQWqDqyfkWcPW0vWeF8lvfWgH3NR9n4aDMM0VEm/yjsXwE34QvQ7gR7+0oEUEvSYBRpGCMkFtG - zLdCHyaCcSbGd2fX/XmqJfgdH09sdZNds9ygrkKf7wnrXn7xfnwDyiN8Tsq98T2eRYoM+acdTGDF - J047FhwE7vONTY/75MvmcG4guqvher/AFC2VACmMwXta+WJfL88qa2Ax6jbWEjD2f3/3DrxEAmGR - jfGE/RAS2UT4pxdWPmhkiw0aPthfuxZ2G1pA5VE/JiaUpKaN7p7A2FUmCXZ50bMLMlvl9/xunYa5 - cLxCH678hy2S6ZEgskZVhnP4JOf5GeSCGB9T5ciVe3J4oMWbn1VkwmVaAALr+p/b4cOBS94aWEMo - ZyN9MBX2p1wOAK0co1vXO8gMNcXFNJk1VwpkAZiUPr5e2j6fm+S+gZBwHXa1O+0X6QNaoA2xOLFZ - VnvhbD4TsOpT4kUbs15iM0/ANpYNYpoPN6KFyN1A2ikjOfb10E/mseegld894gzcrl9iM4rB00wV - xOfvfSSIm66A0eatEsyjEszv3nIhkmMHO+ExyNnjsu/gJRVuBIueF3G4VRMF2MjDAdpW0conN7jR - 0wOxQvtgcPx6gvjSBymJ77aW85XGFjhCoGJjxU9y0+83KLy2L+IU4QHQl3ikyro+8H53k+shzo7r - Cap2nuiXVjlzQ/kDT+1LwMY20KL5pa7t/F9mi9GhrMHy9TUV7vNBQHJpuvnSuW0CDCffY08U397c - C58WetRG+DIjEwjaYbEA4uScIHD26uUujjew4hU+c+6RsSs6NRBuH1viPN51ToVHKEDt+wpXfax7 - 5LKjMTxbjYe47LoY6/6VdtfQmf/2T8/HugSnbQanmRVXNh0Rv0DaTCoO3tXUU9fyBrjyLbbrXmLD - ZqNSqCzxm5xRbPYcvzr2J9qiiasy1xApX0ogsZISo2vmARZnzgR+/KIb2cNgiFgNPGrThqCSuN5M - u10B9LfuEDOnY8/AMnAwVrcK9s7wHY2P0SiBmDsfnFl84y3LNrLhqqeQog3PmnKxmYLKknakyOZD - JNyCWwaOB3cgh1Wv8HIUIdmUAJmUx1vL+a+QtbDZXAKsyUjzhM6dYpjzgYMdIXh5s3aadWgmjwhx - GyXJWWAqJfBCa0IsbERAt5+jrLQbvyL7SpDAIC9TAh3P4knSb68527G5hPFTu5NV39XLU5gW+MhU - AdvOXswXHLo3eEvVcPUHWi6KcSiB4QA/xF/13ueVNDclCaWFPKxeY0vt7wYY8LaFgMJ/Gf2UBYKf - PA5Xf7AzWN8/3b/1/dMPnwM8ysrTzBTiu7eQscqvEfjh7d6Gs8dqbVmgXCYa3m9sLl/OWerDpUEd - knLq9bx5qxb5xzc6iXf9iMm5hYbvDkRfSFUvk3qUlHV8f37NYF0fubBq4RWrdMsD5h3VDs7DaUsc - 6B0YyypugdnHBcSPjAtjOwWffniHZJ+1YPGzRoblUC1Y/Zqffhk9PYYXz5Om/hKkBnPpPgRTtTeJ - OmwU9g8AAAD//6RdydaqPLO+IAbSJwzpRKQLAiLOQBEBEWkSIFd/Fu/+hv/sDFnb1y1JpZ6mkgpV - i8MGMo5xyBl7s7swjLpBUb1NAZMe/YYK5+gB6Eh/CAnCx9i2Sq0UdBp05N580V3uM8Sy/2V9dLaY - qdj1IITg497Jzl+LRXgyDvS3/EXO8imP//BK2dcPiXa+uZzgRQSfMptJsIwk/nxdUIGY+ajI+Iam - uxxOU6dIi68F5Issg615ZZMn+W4iZ7z3BR34Swf8KDmgUtSOjYDVS66E3jNHp5OCx51fJX98Ed2E - lYmn6nZ1YLKaCtLaIBgFbylC0BunAqGRu7qrY7me/H4vaSD4YC028dwz8HVw73u+j9xhPn97mIby - hqxzdqBUjxZdETiaI/VKj+527AIVnHrRJFd4PBgLPvMD+BpXCzlG9aFb8z7K8JTaTxSn/dFdhKTP - FCse3riyKzPmrO5R/8ufvhfGxVZ6pwl+zqFDjnrE/jefQ87KwcFVnHHwrHACFr2l6I9PzjfjacNT - OCJ0xB4x+pt4c2AdkCYQvsAAlIFlC0WuISSw8CumdtFYSsSwI7rveoyzoJtBolEJs7+f0qz7xWXK - rl92fZU1dIs7EbZn10Gn7XVt1j+9vc93sF5+Jl1i6crCThEELAhrGeNWcDYofwoTqW8jbOa3Ni8Q - npgKC3WzxPj8QQm00txGDvymzXIq2g4ahnIjO14U867/5NfrJCHV32Zjs7tahbcRZcgep5Du899C - EOo85v70IeHeopLgSSXhcJWKrUubEl7OYoxScW7iP/xTxsoqifsFbzp5y7DJl/dSInW6d2Ab+d6E - R7Ck6OSj27iVb76FByF9odNqy+7Cno8M5JjySHb+Fa/ojidQ49VA+p//YFpAhjwoKTJOytIsC7fk - EA/RPeAy5u2u0yg6MPzxFAXW2S4m7VLycLxWHjLvcxZvZdazIHpXFLnA+xTbR9dCGGuoD0jVaZTs - fg+UPj1Bx8tPp1ToP5bUG8ciYJe7Sf/8AaVwoE7S+qSNNNdPDxjzS0qel72rcfeuMyXhqxG5Hy8C - OKtJBJncW4NsKCpj28qZBf/i5U+f5D7K5NkpW+TNv/u4eEh5QD5uf8h4Ru9mPa4elLeOuaBwOVzp - 5n3GFASCL6BjGZ4p6zzsFvzhw1mqjWI7WiAHquCwSIs7suP71iv9PHvE4X8xXY57F+aw1s/IJNpq - kKfQQmhlpA2EvBbjVXhlCQCHecDgKB3i6fkWOmga87TzOaaZh3GwgXawSuRM46VYX9prg9cUVUjb - 9cVGztx//tFmcbYx698igL+Z9dBpDGuXtJ7kKe/7uyKqi1/jsp+QhVYoywjdRAGs9W0Y4M4v8MLf - zoWQZooOi3q/ZStw9EIo/Z/8h5doz/cN+VWPf34qOTVocKenP+bAm22AvONyM9Z3XViADQ9zcHi7 - GRj95R3+08Mm4tR4Pq0RVIQ4ZZAv8t9m+1XXALbpy8BS4B/o8n0voiIflCvSy5Mx8rdWY5QrflxJ - 8ZLPYKnflqiIy2NC6hNvMX1mefpP30YJzgz+8y5E2JSigZ5/+Do6MIE6BcLMW1znbqc1f/zD3xx+ - 03GKkLcBX0ZnvFDdNTjNusn/9C+Sq1+zrIeHDdPrgcNvWkp0sddfCf/4cnQsvYbc5lsAf8A5Bkud - Ty72EVsqFr2myNzjl2TtuYSHV5kQu71tgIoR4/3jlxlzkZulr1IPpuICiX9vWHcJCk1WVMe2kOU4 - ZrH5oPfA8WJ/yLmG75HWc1gpl1vgBRx0z5QWmZeAIDomAUCRA5YbOefglyUMCf3NN1a7G2rgP7iF - mL61FsT4Rh70P1ZH/F6u45X9bdsfPyXnZ4vdrbo9HMCnSUgucYfi9TUbNRSeEkIeG/Pur8zeKZxO - TI953Ct09wMHGJeiiwLv5Bp//jk8G5GL3KHt4nG6yiF4nQ8pQWWdxKwWrbWie9mN+A9xK9ZIXnTY - F2m460mv4J/NPQJylWh4x+txdoCH/+EF0vZbk9ZD3P/pCWLKt2/MijYKZXJCX2JuKYnHt2gzUPfy - GzrXjuJSz8o8sPMjkt9zH6xPvS1hKwoHpGaPX0Net2MPfn1eEs++g3FDwXcB10Y0iTPe7ZhErWzD - r3GzAhp8fUM4FVdTQqf4RvbvN9bPFPFg94NRzv9isKD204Ofv01o99cMepOWFF7WO8XwYs3xqsK/ - e7F5ECy+RWOSB1ULG9xkROtRN65835mw/XkDsum3NJZYerJAdmiETG0BxpqgKIJqcp0DwLybkaaZ - osKXkBKi355fd4ubG4QRw4/E720FkEA+qpDfL7q1VO9NWXPrbfjb4IJMbvRHftdvcF9v5BwldbPu - 9QvwDUKdlLYVuxRzuQhwZLTEMS3OoEI/W1A9pGe89uyzWazIZiFjkgbptSbS7c/f0nhwRk5lDjFd - f9cFPLfsRtDHW8A2n8kARTfskcX/OIrj5sbA1+soIdur1II/PKNSkQayYV6Jo2LjXhqrVGasIF2J - k5iTSnffp1v6+ICEF6A3SUxhtakayphL3qwuyDFkzLkJIGLNP/4awLu/sQTd4oquf/57NVUbucuU - NcYuHeCfXkSnnz/RBW4wgfUjPyG9PXYFBuXd/vNviba/L9n9NHiqJkKev5cUk0vAhXCPP7y+3o9x - Mjukw/c3MAMmfvzc6eNiHR5x+SSGPp7o+hEukfLndzVz0AECyqz/4xcoWG8/4/vnT6DH9iHa362D - EpVVOVOXEzLul3PDv+u8g2xXAnyBwrHhf2Pcw2S1lD2+/GJyLAP/+/3q46mN6+n49RQrm9s9Xp/G - Xz0Clq9rS447fjdlKvTwLX3Uf37pKtKtkmYkRsE0qld3yn2UA7VWL6h8Fw0gUGki5dTLJv7T6zQ1 - K14Bc4p3P+YzrvkMPTh9x2cglvfF3f0DHu7rBalswrrkdfMHKbZ+KWYZhY9XgakZ6CrGjh+8BjiG - aryytJOKjCJgjb3e1YL9/0PnXjYLwbQmGQjq90ZszTwUox6JKvwwpxo5v5Qa1F/ekajfp5BY+dbE - C/3tPUbBF+O1lftio2yN4YXs/uLOD9bgI7HQpOyE7B+x4kn/xhOMUvhGBtt83O3rAh3qX/WMTtHX - NdZTZKfw8MBzsLIOpXgcf73MfOshkKdxLejR2mTQxuQRCGOoG3Sv7wAn+nFEPR5BTGN8Ff/ig1iJ - DuOvBy6TkpR9tfOfmm5x7njwIP0AUl/rt1m1SFJBrPk9OdVNGC+FpNlKeMpvAa96GvirT8I30fGf - njf4IN9kxTHUCj1baYi3VtA3+DsyerB3aij+/DdwD911x/P7uATFWYaHpMmCufKXcfHAL5Dnh1Dh - wzUcGwriyJPFrHuTM+8fdz/5vcC93kVMpcvB7OSvDDpK3BF/OV/pWmtgg9Ptq5DAIUIxBe2rB2Iu - KVjuZjziyrtO0CpeLkLKOTAEJ5QHiG/1hhyJidx/+XnXg/iqR2yz+8EWFEsdYTpTZR8fPfjjM8iy - T8Sglff0YMUAjEweMvHCnWOoTP3ew/oSrg1RIr/6h1/7eI5bJZ4fkuHZE/L3993EJ+fAv3rTZnG9 - O9ndqEJB2Xd0j6FqcOsvXRRX3zhyZh1EN/MxhBBdhB8W/+pR2T2voKgQM+AYm41nL/9kkC9tGYXS - dGoolzgyyKjXIDfvNVfoVGz+q9+dTXAzuCDcd0jrWPlXj97rmw+48xu8JtEv/qsP/at3+Jf64b7h - V8khguyRlHt+WRF5ttDVFw4l+T1yaZJ9VfBQbEr2enS8Jei+QU4zZ/KnL7ahajxFKNwe14saj9T/ - 1CzoA/WGUvuEjKnVnfCff+rJtybeBlbI4M6X8XfXj4sJFFm+dfYV+aSxRk76OSZYzKFC51ReR8L9 - 1kWB88lA5tE13Z2fpLBLk4y80u/XXS7Ht6rY1ctEluppVHCAO8HJ10aih6wOhEejb8oMJZV4e319 - OK15CS8HM0Wq/kgBf7/fKygZXhy8jcExplPYOZC9n3US5Ou32Ixv/v/aUcCx/3tLwf1tXIJJH/Nm - OlcrBmf1HgSwnIOYO1YvB6pefCGOhZeG4rnnwTkTv8hnzy5lBZw5yr2OXGIcumOBfa2cwL0OXRTI - NUtXzr9mcLEHA2nWQzEWpuVY2RRKC2ntY3G3dtYqpVWPLTEy8B7X8Sba8JLNCHlyEY+kIuYCgVFd - 0E0HorvCMHPgqPgncrsPT7AVykOEu+FKjEPEg3UriCwf2usVadYyjrN7MQPFyDWAV8lPmzly0H4F - 3lYg5D22YsHSV1bCCSRYURHYN23XskIZ0SLHlv2B5fP2BuA1jE+K93luKD0POfz7fnM2Q9B/OjVS - UKAesNwQA9A3TFkYVyaDindsAoE3ulQpXOVLNHrHzeIPcy2/jPJDPPybmiWA1FOEsCPIPV5Wg5aR - wwK7f19IVv8Ml15bqCpF+9TI81KeAJc/thR2YxEic/NPzZYvOq+4xSSTx49ti3m8RgngK57HGT4V - I48/XgfrzzKQG6+qLh2ZiwPhSs/IvFQ6Zb+GHsLRfwXo9D7W8QabvofCOUEoda98QZ9boyvj9eYi - vXN6Y5NNVVSis/lBZyj3gLLFYinO1JYIpa09dvwGOmUpfz1RYVm6bHT2RFjbM0dUpEYjx+o/R4lt - pAXwxPTjmqgiDx7uXBGHc8G43hb1oYRXI8PCaGgx67nHTUF6W6Dn10xHFnmjA40i5EjID6khFAHq - ob6YGdL3w7Vc30wsSA/mm2S4cP7793TcVHI30i+YlNu4QHBIXXL0gQcExTRCRf0+CYm55AZWi3MG - gE+xjLfxfBr5m3FXIdk3eWrP1xpj3xYdeQWPFNm1qxTLqoyWknOMjvTC/8UsS7IWvqhXksdwLY21 - 3g4L/BbuOWAC42fgvTwCAQ0d9FieybjqYiUriSuK5A5lG/DOWewgzKsfSby3ES/fY2/CJypuwai4 - 73j9ZmIHdeOnkkvEa8YSP8VcGdoDh5WNV5peLhwdMm85I/oKiTE9KMcrdVk7WLbwMmKzOSyy0NYz - svrqbazZQUygWccBcmz+ZAjJ1bNBxYciKdRobzOnHXjoEPmAbJqfR7o8xAqK4H1E3vIdwcZvtIVU - GT3MwCpxt/cvSODhtUrkFE/lKKxTlStDABGK0uAH1q1qKmWejg90nphhZNnhwcBaOrnE0t64WQe1 - Y2Fm4Ru6Nm8wLs/wwMKrvProGCxXl80+QQ7ZYdICcLlZDc99fjV8gOcdBWcij6uSda3ypZqFgpJF - Ix/Eba60KtHQsa2KYn8fFn5PvksCE71j7JyXFp5aId/n8xkvcQY3GARig/LD8+wuzviBMMyUFEsT - GxesMMopwFW2In+7NpR/RGqpOOyjQNFLlOMpDuwaNkFkkOT90Fxua7RUOb5SHYu1q8T7eHVKXwpq - 0Cy/Dqy3nqhy0zkqCoxQa7g76iPQ18sB6W/XbrBZ/FJF+sInuq2a2izo9K0gO2At2Dp1AcIGw0jR - YnAKABBjg/Mq1lJema4imzEkSr7kjeE1OEQoTaOrsQ3ZxkD6O63IK+8HsJgHWMNHv1xJ/psNl2+H - ZlJisb2R2GdqsOlSgxWT+xJkzZoMJtuzPOXwaRFKmPMHTPBYmiBpswglbyUHSx8mCYxPn5b49fHm - rj8xS6DHjxfiu17ubvl48hRwSFzy8haVLssMAhj+Ovovf7LIaxyl548VKQAuqCBcoQ6JHc744gva - yAkT5yiT0j6J21teLAhXVpVe+WyS2yA57tY5bi33pHwi/a2t8R4/PEwRPJL7ar/p6pVlCC05vKNT - zHOACldWh9fowuJOnayYT6fTABeHDMg5fKtCcJ6aBX3ng8ht0jVj+AjKBoRn5CPjVj5cEtpbBd+l - zaLkG9qUm9jNlODJs0lUGJu7DfEhAY9+uxJbynqKUzyX0CWDSI53wXWpdT+KYM93RM1PfbMaR6oq - O94iUz294q1WVlbxHCElAZHakQrZhVUYscmDNeLf7mptLQ8vluqS7JZdgSBtCgNft7zBv4FPXNZU - ygla5aPE5f3wjRcXPFl4XtwTBurDBlQS1k5J3H1/0irdjSViwlb+w5vj0oW0P5eFLI+esBL1Zdku - ByRrU4LubCB3vDSAmtNDBU/mTYPu+37HP71fVeUgykuwSjcfsH34SGF0xzpyys43lr/1scZtju6F - ObtzSJpKWVymxQftFTf/8vUqsxJ5uukar+/hl0KkMQzRsuHnbpRCFW6XJ0QXDRgxh577+0z8B50q - qwabvLdQm65Hk1yHrae/Kot75dSZCYoU4+NyiSqyf/n43/rkCcs+lINvcuiWcNdxj38M93gmcfIs - KK/9AA/S62EMhITjxqWufUsaXP0SkMvn7PJH/lj+8RPyujW9MX/WQwqPtXYidjaaxvJlrA4S+nLR - 6bPExXJgP5PiUPRGdnuG4xIXeQfDSUpQUiTOuF4OcQbXTgbIloK12cQozsBn2g8pIBvT5dVrDizV - 3EXaPr7cN4YMqD/bgPSOk9y2jeUWdtPgkOJvfUhcvCkOiWviM5faWMgdTdA6A4P85Zftde5asM8n - MYvyDUr0kS0p1JMEZQdditedT8AmVOzgC39LPAPJWuDXLo/I4Pou/t36r/6H7/t8NMVy+aIQbNHE - BxKKLJcdCLQg80whUT9EjKlyQJ2MDeWOFckeCyof3Ql2S3smMVcSd7kqoa2kw9sK8IGrwfYRuAV6 - 5ZoQ78eaxc5nWlhLU4/sg36PiZEHyd96Qqbns3T61bUKR/8ZIEutkUHuvBYpzBPekXN7CcZWMlsI - kmaXPOH2Grdrck4V+SocSDDIR5drb4UH1rjLEcI236zntc1gOtoNid6uPdLi+jaV+swQPM9pW2za - dOmVMZhsvKXm1sx4v/aolnAf8FmYFPPhxITg2ptnknh+ArZ7lUNwfBcD0oub2vD5eApg9LhbyOp1 - UEymnufwV7ZSkNt11tAinEs4yPZM9MuRuitGaQR8GX5IOIjE2HogQmidJYN45RwUGOdZCgwjk4gd - oYNB86PkgdxxTlj845PqwA9wXsMr0qT30eCEddmU5tJ9EMLRDJZj0lvQMV59MH+zj7vabZ5C72GG - 5OoDj7KB/MxhR2Mf2dnt2qw/bqvgU1U5YvbHNaZMGkKltxST3ODr7rIONjbYtPEPueh+iqnYWCa8 - XeeWuOOmjNvWvaEC8/qH5azH7roavw6OAbbJsayhu4SPWIcTPKg4v10PtLxEI5SZ9vsI2Es6jkTs - zxjqZvjErHp6Fat78Tyw/W5icA2OrbuwQ8JA+7e4qPyLp8L3eOA/wUKc07y4s/RWS3jylCe6yB5v - YGkFNnzhUSeaK9XFejkU2b/8dTKDLu75m8VC/0NnvJmHZ7M1z3sPX5mqklSduniDj5MHZ5NXSIB0 - u+GmjxOAQ3u7IpVn/WKTVmpDVQlNgtxnNK4XbY0gb0OJPIxzVSz8Qy+V0kzPxGjvubEFqR7I++eR - K+rOuPzh7cODOVF5di6ItLdBbj5VQ66He2b8tMSvADmNIfnjw1s+zyrsT+0bXclqxwS04wOy6WKg - myndCv5QWAv0hAhjao8JXV5c4YG8Wh1ywW0XU7ZrU/AEKArYnY9y0sPj//JTIPE9cNdnIcmwOoIa - 2e5iuWx5pQ9FP5Qysq21azDDmBv0hd5EdhtTgC9Rw4A9f+ANnShYRFB7oETLTLQd39e+0wdF/b4I - eURfEWyoeYRwxx8MHOseUzwaugKP1xVZW9ID3E+aqWA2ISgMeFBsj7eYQsViNBIsYlvs8aMqY6QO - JHeFb0FLNKuQu7PPYP0VZCSyPsvwNoQHcl/pRtdw01Jl9LgVGaVUNbSaMANdNkiI6+RfujA/qYQ8 - l1+wcim/YGlWFoL6zU8BN2w2WB2Gf8Dj8zlioYFuIZyPwgbPc6njJTyfG5rc3gzsi+pFwoUP4v37 - IZTiQscf8pTozKpuCv/0VHDnFndrslIHJ3iUiHsxMmPPj7v+ZVtyi6eyWab3uwPv5/sWMOZxcP/p - CSFsCcq+5Vhs1GggvCmfCkc8wA0dfnMPrzL1//FfGnRQBmAbZiwsc2SMh/KbSw1c9WDh9y1Ltf/e - YF1WDooe3tkQiJJNUHkoHVKP3gDWv9/7c7QSH2jRNj25IwyCQG7IcYCqK2TdJVfY3Gx3OwuBNfA/ - DLi/e0xujo5dyiZpD9RrbgcZDbdiW5NHBC6zeAqUr8mP085PFd0wGuIy6rnht7X0wLwYBTpx0zqu - /NMPYfQcVFSothxP5oGtFXD9iChooeUKWUNb6FkgQw59O4Aq1ttSzmumoQDcFHe1I6+Hf37Ffe/q - O/2Nr+pXLjI00S9WPv+W0NDpg1i3S9KslT0uUE2WEe36ptna3pch/c0BZu5c6G7pdOqhrDcl8dVm - cPGiWx1UjvMJ+enzVKyVe+7gzreQe/FRsfXsrfrjw7jHn3e8qCqnK8Z+C5hTL2ax0FeF//JHsORw - oZPK79es1Z9vwOhbAbbFbHPIFz8FGT7rjhsDOgi1pGpRytoLnZK+HSC90pAcr3pNZ+39auUvHRqi - mre6WRCyGehU1RM93coeWWvqcuDSTiDqHp/LXVplwDhqgU5Lk1N658+RTIpvgLS6t41tojcLDgGD - iOpctYbLxFIGoq9aJDRMNl442ePhxaSX4CAdr0VfHQ0HrsH9jfGCZ+Mf3luXVUX27zE0Sxk/B3jk - uzpY7soaUwSqXHaMZ49uyWGi1L8PLLzM0YDO6vXbrMpzCCAjbUkgZrfrKMCVq5Rdb2DB2EtOd18v - 5e72jFDeFFxMkeS08KYXBkGKrDSDx9cZfL9fKdIvyIn7AAIPqj3+BaBTrgU29iYEf3wXeYsKeBEp - reSFKiKnVauajTHUB1Qehy5Ynz97ZAUcOsquz5HrhGFDL30UQcRkV/KH7yTVeB1u8n7IDvyuzSS5 - ufNPn5ie8RwnMKwy8J/SQixt/IAfI7eOLAhcECyAemABXOfA7RtdgpXNcDyTV2CD0y/nMLPr32kV - vw/FPGGfqMt0M/b1mcC+dmsSwCoxdnx5KHE1Fchr+I9BMHeI4Lu2KDp+XjLdEvNewicsPSw5sTUK - Tz2H4OR3MjLTl16w54IxYR1+N6RJPt/QKTibgF3mLwr/4oncTxgcm0hDp0l/G9tQhIvCTrQPnKwP - jKmjUQKKj1ki59eMYGnjrVXArUSY9I4wfuLpGMI1ulXITLXHOL8/nwluIEDoD+9Gte6DP/8uoDf4 - pquWHGsouHf+n3+wEFfp5bp+nPee4aeCbpJcQuPGJAhpP4cKm/AYYHeAIwmu6onW+GN2yvGV6HvT - haWZ//RX+g0+aM9fxlYcNgxzW/KRo0l2wY1hiuHu1xEz1eC44RpvUEb8HRn6fG3mLb6U8FslOjl9 - FloQq9Qq5diEGol2PB5H6VnJosjvh3rxoZnPfKX+/X4s6CAzaNOEJng/mxs6nWShaX9PnMFd7yHL - qrCx2jc1goy9vvGSMCvd8XVRMn25o8RpTJdlSdgpz6QLSRBqdkF5y7SVtbuUeDs+jZiF8ntTchv4 - KDgHKuUY0UpgitJ+9+/6huL+4/09Y1Z0O7BwAlFhcbErkrlLt7chnis5L80juf7oOaaaYqZK0Qjt - nt++8TzYdgj9xvoRv5MP8aI/Geaff3ZXtbvRsyTroBimfWBKjlXw0msuoXFKBbTno5HseAEPnw6R - 86o4LqtXjwXm4s8izqkRwXu85gl8QBxjYRHOBa2IuSmr9DkgK2t1sE1ijsH0G16YVT9Hlx6aUYWJ - 82OQIzuFS90htkFv3b5I/ZAsXsr4OkAxTHoS37uo+eM7Mn/uUmIsVzGe2/uqwiR8JOSsmJWx/I2v - Pjn7ETzmUNDTLOVS4tVXctz51e7XWYBUywld2iijy6fEvCx9byrOs+0TL7ZnBZDh+BSLzK2Pt+Xc - 65BqQoQ8nbuAxVUvFThc9iMZ2nikrMq8nH/+lpXlY/M7mXIHwsXnd/7NjdT5vKo/fkTOwwQphg8U - /MUHMVdJcmnKjiK384lA2vWjwMTUASXaZmLYnGdQzAkREDwjRvZzaEZ6S381aD51QzxMDbA9HhBD - PFvon9+xPu8PExykyt/5/X5dhHxlZGNrrvjgrm93UW574xnf5MieL2KWE4gu7/4sidAppvR8PCzg - D4//+C++vosMfm7kjvyndWuW+qtOABuHe9DyotisWzXWf/kJ97+H0/xq+e7B9hfkxLKGT0EufRRC - 5fkxyDE4tsamQ62SWVOaUHBaQTyjFxig+kusPz/UXbW7ZsMwu0m7nopdyqQZBKb1ijGyNm0U/PvA - y0PHexg81JSyfo8muPOPQD7EK1iSzmL/8h/m3V9Ld7+pgp/FoyT/0y990/Lg19hXdA5PwTgp+bmD - 85ym+IDttJmH4/AAzq3okLbrjTVhcgaG2jFHlte3zfY7u5a84yk+MFlTrMsa8/InXgu8oOTtrkH0 - a8EgLw4q7QW4W3i8yMqkvn/Euy1o3LrksACTRx7yuM6NBdzPAWgBKLHcfKZxG4psA2EaRiis5MXY - /c4FvPLjF3M+mMD2eC8JvBwOmNj1awRz42iO8rYPkFi307MY/Yfdw0b0v8HhQqp41bvCg/WbnfC6 - 68l/zzt+BAs/pO46fXsdvmuTkqQo3/RvfiDzDgE5hoZRLGV2j+Bi9wYqP88XXU4MtOC7dNiAG2Bl - /NO/VlmWgZiNpjvnUx385SMUt80ab2JUZPD6LfctZZE+sq/l1ok7PwkWnp3jPd424FCewfzXj+i6 - 8xO460eiOu5QELWugj/9ETSHBzZIEuEESiBkAu5P70bugGH4ayk+aL+B0nqnCMd6aMlpkAZ3EcYt - /Yt39KcnKVyVCqC0uqOkPkXGPNhqpPzluz+/7oeeT16KK4vBsuwAF//Orgl/zX5NY2f7Li4lZoAm - 6c7IdOtmpKaETYHFeo3++NsqkJyBez0LefLHAYJnHlJ4OeYY6egyGj0nmyxkc6vFGyT8uMTPJQP5 - Q3CJ/8wt4+/vwe4nIp+56MY61m0OT5CkgcRvW7wYnBoqp8hJA166nMZVDLZNiZv7i1y0dXIpNfEC - K24s8Go9nsYKwNTJIXaCv/qeu32glINV+h5Q0G6Y4p59VeDTMzFm0+vo4udgbYBe15CcxWM1bolG - e/CnR09cLRc4ndDwp0+JQ30Yb/C918N+Dt7nt26Wr9qWAM6cs+sztcGvM27BtbfO6PzWp3hN1IWH - p89DICqgE9jjK5Re21cL1ttNBssK/BA+Xr8SHZuDFrM7H1VOcE7Rha2PjRCJuqO8388U+dZtBcTJ - jqV0aJkNGfi9FGtn+hbcLi8YLINI3K32fxuEVjviKVpDg9rKLwLPmKFkr1cY2+6nw4iQL+7mVzUu - GxJZKN9MiWhyOsfbX/1iPhQK8bhFH9l1uahKEwX6v3hYw+2cQP3WMqg4FnbMnisJw/Trffbx3ZvC - HHsLFhenCuABv5t//omtTGdi4PE0fmr5Eiim8LCQOtUHuu58EcLZn9FpEc6xEIxL9VfPw7CZZvqD - YWgrPT8pyPHfokt2/gBf6fmHrDqIi1WQTwHk7vzzz09z5+mje4oU33WUzi+1aR983P/xeeKww3u/ - VbDIwDNYZaReoyqmzldJwc8NM4Sku0GXu4k9uQ4/Gzo7Z1SsjrE5cLwyPbJvU1tsZvdsoXAJPGI9 - j7DZLOPVwcdrLMnZibt//PNPv5HXhagxL2uNBX3Q6vslNMhdMpaP4M4/ScDN00j/6n2EnY7ostej - hx4sDGSqsQwW5/puaKwz5Z/fjBcyC/FiPfhKuZsfKWCdpjXoW4sqmOX9FaVb0tMtc7+Pv3oi7r7+ - Rml8kk3xL/+aHZSLKRMSEz5a/oaOOpsCTjWvwz9/0fWyk7v0kWxD+TalKM7WoVjz6U/P2AKJy8/m - rrteg/f7sv6rH+96KFNUUMx4bZ5hQa1SqxW4ZR3x0zh06Z02D/CXnzFk9VHY+Y4i70133erAx/vv - LeEj/j6Jjgo93sAlZ8D/Z0sB97+3FETc6Ugcl6/ibUb6AA5i7hAPxUeDfW33AJbmKyLW+MiMLcGu - DLPudQ2YoTNiwS6sTnk5NiboUEnjaEhHEVDNyAKUHzTKbWdXBKa6jQj9spvBur0dQos1z8gJGFzg - QBgXyHuXAvPyYwIkfK8V/BblGQsJA2Ii2lMLwYdYyK3LeVysLNvgi4QfkrnHZVwT31ngKpQGcbU0 - LbZDiHQQausXneyWjOtVljooPqFDfMZv6ZKqbwuGrbmg6w3NMX7OYqfcg0IOnvqpM5b21W7KPdtK - ZPcyHVe/pxssf58zeWqjb9DEEUuYXBsu2Ibjy11Fh5FhIHoR2tudjvQHJAYMj+sPXRw3cYVh5kpF - fbYaKYeuiTcin3j4XVoNoaqO4vUxxA/ItI8I+U1F6HK+KaXEVhlDipv+AhvmgKc4C4QksieuWM/s - GwJfRTM6XXI2Xq99VSrfJifED44Z+AS5EAL3dlYC5Xn0R+F3T3XllRUOOc+fdqQ3y67hZq0/ZJ1T - nXLEUjo5K/ZTLjrHuZMU4gRo3H1DaLvrhXCxBweybmwho07NmPKHF4SvYFYxj+N4XJzwEMDYxybR - OOFrrPW1x8pn5k/Ea08PwD/cRw95WY2II5rZyAfCuCkXWUgDKHJ2sXB47mEgBhGWTi4qhC4CJhxU - CWKF/M4G3+y7MNPciJDf3dxCUPxzAENlkchFldJ49fv9pK8BQcDOzANwzakN4P0u9MR6xSVd1FzO - 4BrfU3LJCAGzU4csPGQSIWe0aKOQIN+EMayPpDzLR2MDP2mCqjV1COWNDdiH/jBh27T3eQTaNs7r - jG3wFGBOzPJhuKz9kRgFMMkRXW9jF3NBfghhtvdRLYWHbbCyrFZKclaVYPWc57gYTxvD9WrLKGcG - rRAQ6wywsiEhBf5aQHCeDxl8bBwSFa9xM9/Q3YJcZ+bIHHKOrp9vWsOn4zck3962ux3cLVeONXPA - bMHLLn64j+Hv81h0t4exfhpNVg7AE8lT2PSiL2srgyPzVpCGpAHg4/uSKLLY/9DzdksbDn+NAPZA - lojtHsOGKwU4QAm1EtL2eB7z48eDd6fSUb69e6M7hCcdXsvpTm7DfYvXLytMkObkjSWrNAD3C58l - /N7xBxmpnDZLmYIKtk13x50FqkKwEZjkPqU6CWIJx1s30B4IkvREsZkW7mbFCQulDwVIlX2t4L3b - Wiry+LwhZJztWPBfYwCl1f8hr7RpsbTJRVSeDmrw27uaLgd8P4CCBJ4BXeTK5XAiW3LDLlmQWkAt - uuTrD9CWiYzUPMDNkkxap8TKFyF/M8cGY9vLoHK0Jkw1kI1sgJsAPuqIQcFyjqlQyHkEFg3pmJm1 - D1j24gg8OL+YhI5yKthxHTro6ZaFl/txMGh1TbDi8U2Dq0/QFOu8pSaYH+5hj/efsUZzloO/eFlO - 96pYAjwGytFV76jA4r1Yc+dtw0fWsQHjfJeRT/UmVzyKOWQJ5yzmwqffQZwWmPhd/6T0vWw53Nc/ - erkH3/1xZsHAp2S0SDdyoaBP2HdQfBkJ0ff8sqgvpMLvffqQy5kAd1uun07J6PANZOMSuLPoMCJM - pK5Ghvxc4u16fvegE4oH0pWhc5dvWnlQON9EzKRJCKZcOj3gKMp7POgO4L/WJVO2LjJJxGZ2PGt1 - 6yhUUQeiqVJaLPHxoisGfr7JywtflDsfWFaW3rKBmdOrHmm+d1VIsMMSCxZ8vAkSW/FxI1nkdpwT - Y6s1uMFP82qROv6ODTtncSA349714wz65sXIog6IpcRB5SjfYr1cNqw8TxlH7sbXjtmoVvR/73N+ - im0h3Cy1Vl6uHJEouXMN0aoLD8EmZ8juS3ncn1nlriCATJFZm3XPD1B3PYNcRFyPKxp1CwoVSgIu - rd90u5WapehuYBCd0CtYx3utA05wW6LvpxRX9n2AUG8RDV4MxcYyrkMLR8eqiKqhZaS3g+NBcDy/ - idGuFqD4uW/sercKCW+WOvJVrefKXUoNvDRmXAj4d6yg2R0mzEPHoHytweUfHuqr8gEL/3jU0GPp - AfPxdXIJnQcbnh46xp8w29zFkS8ZdA7+LRjI4I3cgTctpYsuH2QebK3Y/tYH7VxE0DYkYOgNskCZ - l46BHNTXgm2K0FFoPr8xxctiUFX6BRBNP4KK05o1BA4fT7klFw2p941r6J5flFFSRvIMYRIvx+Et - K7Y0LOT8dXSXb10tUShzZNFlEKKYk7tHC9O6j9DlrKORvqpvC3/6ciWvvOnBdqnqScHg/UHRjteC - jegEy6/wIXu+LpbhfVsUQzyPKDKLGqzihbPBp+p5UtylIuYPkTjABykRBunqF7x/ZiFYo8Qjmuo5 - gC9SUv/FG/EfmW6Q/nrO4Z1RXngJqxudEf9goLfIJ/RC0Xuc1iNe4Ll/rMhXzKrYvJtUQiPWWJQn - bwb85b8/fMS0XS3KDo6sQk5lmkDcX48eX0wNf7zd435cA8C9sWj940daFqeANsWhh8gYVJK7vBpz - evGRFRxuEV7pwxx/175/wCZ6IYImtDXrPn5StW+Bc/vnzaWvinTwgpMS3X6hT+l5vGTK/AR7XzHL - c2kXURMaW4XQq7Xuxa8v7wxkrYlFL8aqx3XT/QEyn/cDqSE6FkImugx8XqwDZvmGGGtyuWXwSW45 - OQLgjnQ6Fx5UiHAgulnogL9WKIMKiOeA58UP2FIhfCgB+UZYsM6zu6RSvcBXw4rIxd+OTra4S3Le - 6ZFVd7SY9vwFvk1GkOfNj3hp5neknFanQ+64jPEmQ50FicuNRDsl4ji3g+0oMA1H8jwi1l3NVi6l - QQUwoK8FxBsqHxlERq+S57YK7mo+WU/RuGLDtDEIWM+g8pTIKFNkeIFGt6x4PcCe79HpfUrGuS8v - EFolvBA/eK+ADrPyACWNY6Q+U9jQ/qrlip7IPvIOCu9u3PJlIGzfJ2JrdVXMehjrEK7GASs3y3Tp - WRMCOHzXG3m+YE8XLzcWuP2sjTihIgAsc14rquLtSo6+Qpp554Ow7LYCp8LnUizf7oTh5fQ0UCkV - a7P98oVXzEeQIVMan+4WqmIOLXwRSPD5ZLtkPg2wzZU7uU1sQul9QCWcvrhGjs5xBhl+PStdzRtP - 1HQ4NcvhvJiK9sh1kuF+7zrjvkzA2mWGbDO4xlhhLrZyPlolsY83CSySd5kURN8uMo/Po8t6ubsA - VojuRPuStlj3/A8ncZ3w17bTZn1/Vx6M84Miu/1pBr1y3AAF8SwFh5Itiq3MFB7qrU/J2fj2xfbN - hhrKrHlDiXixXBYfjA0+7iNDzvU5pVS/Fx38RUeAEvVxp/QtLD08D96VlO/kM9LJ/7KwzvwqEKam - LraPaZjK8fa+BDL34w3KXJ6sbD7jmhy1pqH09Z1Z8Id/fPZ1DJ4Tut2yEg/oCF7buM8vhH98R9cZ - ppiPauiB3/zuSV5kubsYqVNCJiw+5Bw90mbdknQDSnyzAyP9tcZyCEwMJVf/kuD+KOm44xP8fuyY - 3N+PMV6/gGNAeOUT4ojVOk7nwWohMomD3Nc3Mt62L2VQuXxbdGRvJhBKlQuh5KpfLG7eGq/L714B - Jl9scrvwc7x2OowAwzgFsU69S/nffGagXDIvDLytdenmBgGU42pD+rE9FXz3qhbFnZgAmddCoPN0 - ymToMLaPThynuhQOnwBeN2smOpv1xfLQExMmyWMMlF2/UMXXAgUc3Te5HbKwWI1RnGCxkjs56iEp - yM5nFDn5QKQ/cxVsGK4PhRS6ipJYvRZ8EUUyDN+hTnxtnN3tj2+oXPUlr+ENmnaxswwOwdFH+oWh - xnIpq1zh1tomUWVxlH7KI6O8i7OBvF+rGQJlq/w//dsmToHvCsiBHjs/PCThVGzqg52gyLoe+qcn - Fr6b4MbWFVYUUy2EiOQYuCAYAoaPjYZaFnHg+1e8iCYeru7882wWHt9+gU4U3dw5D5QNwkxH6E8v - LSE0M5hPOCVmOV+b9Sv8Uvhxa+Yfn1n/8GWd9Ou//EFVReHhsXIuyJavzrich6D9x0f15j4Ya/+b - WHm0E0gc4xIYiwmBKu96mfi7/p2VZ6jCY1qeiB5yQbOFR18H72Yx0KNsp3iVxHmCOjgFyHy3q7u4 - NHaASC0dy3u8fV+PHELu+cqJ77NdsfRKuCkvV4zIi6GBQbJptZSoY3/kwseqyxZh1kLm2fKYER62 - u/06A8NzWHskgM1rXMXDyCh8IhfEZjrFWOZLAqFhTAEKcaW5ywM8F7DrO1QAbWt6rok25eRvEV52 - /s0fhYMJ49yD6JbMPZiKc5TCJ+/xwVp0o0sZWVTl0U4h8hm9jJfn4siwVaIaM8433PFBdZTwUD+J - s215gwUJ1qAi5wVplfgzVpxslrLrnb1kfivo6/thIbdWNrnzQl0s3ewzoI46E4PY74qVMdUB3qu9 - K2t6ZYuNWwiEO38Neh+pjWDOVFfqoEnRaTqdi4V82PwPP4NuwbxB9j6jYBTFN3LE6jKOxD6IMuIi - gmuWfcfT9b6Ukq8dLsj8HuJinty5hiI1dZIcnx9j2/0W8O3Qk5yqsWi28+OdK396wPxGJ8Bnxe0B - AZMeyQkVu4Ve/iJo87yOzKiFxQ+PNx4+iqJGXnIejOl0OKeQeXY8pqcfiTdTriYwkuBGDMdc6Soe - GgYsi2YgS35M9Hdqbza8TbIaEBRpDTdFzaLs+RYl/Ik3VkiVDbpkg0EL9y11F9Tn0Ma+jl6JbTWs - Oz1ESFhj2fHcjfmKLSrxIh03vCirXQh/fOUG/S448EEBpj0+4fshflExl3W8893qzy8gCDWJOx+0 - mwq7QWwDsX5d9pLUV4VWyVwwWz4alxIpS+CKOQO5n64Yl9DQJ7iFT0pcbzMNbu2ICJ3PO8Bint4A - n90cHraGzhK9CEM65ezGw0ei15gKXQK6oyBYoNSGFlkWqGL605cIlk/rEtSdcjHGJmwXWMvVj5wH - /HPHSU8gqIkFkPtedXf706utEtZIVa4knnEhJlC6xwaGtHEKOqhWrzwFJsciuV4pFWaLhT3JNHK7 - ta2xnbhlUfyFRkF5WjiDnrVDAOnVPJLzWLDNxjJt+acHgnHnu8LxHG7gj59fL0dlpHMrin/xiHT9 - EoElwI0n/62HsnU1Yz3wpgk/Z5r/i49tehcLXLyBBIfWkmJcPOcFHF39js7zeRw3zFFPmaaQDXD7 - iBsKHFmE5yG4Io1vo2atvMSG3qCOQXo1GmPNeG2AhcYHCP1ObUOroCzl90P+Yq4f2uaXX1ldOt0D - lTg+dwab3mmRYo2vMzLfdmawWeBEcEw/GfG39eaucaLpyv754MC9dz1bnTKFNskbnS78XGCY8Ays - eM37h5dsmdIaAuOuEPdUWS5/rhgdcGzKI2fn79OTfdVgubMaUpW1j2ldc6JSdPBIcr3VRxpcugni - k2Xjj+iV8Tantiz/PVcpkI2lzboKmprAoeCdHBvy57eVRTIj7a9rWz7DDnKdlWPwF48nJwn/+Teh - G9yB8IeP/0falbQpyzPdH+RC5hRLBERkSFAccAc0IjggQwLk138X3s/y3X3r7rYxVJ0651SSGjJH - ZDvz9fapL/7lUB/SLdbfjc7H800pYIqeDTlun7tYFC6DDZqEtmS7+FeTaGeAtqV7IMGBfrr5O2wA - tqe+ZhdmrP02V60cncp1zTbx38Sn6GlJumKWf+RorlbxEF7aBp6TJFIhe+1qsSvLo77weeZoecCn - v2WLK1/LCQ49vUWcXoQUzh05kB9fnX74QprdH3PU2M3EBx1tHabNmpnvR2JxqZkDeDzlkCoxErMR - brOm//xe52xZVrc1jxXKT0bFdt/+jfheb0uQZZthsuDz4m+YSHekCPdcADT4908Af+59zbZr69bx - 964MQEzbnhnhd9EPWeL+e99mffOsUVudPRhv0oY5xdlAsseogbbBtmZ+7as+nV9KArt6fSLuNCpx - Xz5PFFxfVXG9ua9rvvtTMMz3pMGQDRGfx7yT0CqTj4uefmSNkWopKpk/st1jJ9RjPXyP8DoTl9nZ - HtezFFugLPqQbK9kyOZ3ixoYUJOyq/skv+fH+r6YP8z1FyA9t+2INm8nwAoqmCVGT19ATyNwWF6u - Ke/p2hrVHx79+JugFJWAVuSSMluU6pqr7M8DtVqHZPN4CV1/1eVUC1/XJzNGZHXiq95rGsoNWG6V - /SBeXTsDzCtFVCWnpuZnQBrSuTKw69Zo6mHxN9CPjwYOPaJ57WsJbEgwkmMt1lY/FpKLMrsFTO+e - WM+d1nmwZpPHQlo+a4quzROk2pNZ8JFaf9xOjQu7a54zMxWunN9eswBL/4JYd/TgM/my46/+EnJy - nW7cx6UA71Z7MruV6H96bJWJR2bvqdyNujoECG67G53kQ2GJZHZPYK6/Jf58KgmNbj8G0K1qnW3Z - PMdze9/m8D0YEzsUVPWnszY94ZaMBeby2Yx//B1eF+iXfgfO5kWfQby+cLLb5pta/PG5z/jeEGuJ - jwm54xvWCWJ0yL9Cx6/5+4gG0u2wuvj34269Py0HVf/jP3J17UxwmiZjueqkaNh82wTkrtsQo1mO - ZMx7S4OberLwV12P2RCYPoZYGx/kmO76eFIOuguLX8T25NR0s601FNlpIfz8pnp83DaSLp/4m/n+ - +V4/G+lYggfpl5AgWqNhyeefP0T8OHTiV5SMoMfvQaC0lUU06+ZLguIjvliyvap83pcrQ/3FX7j0 - JyYuaRSY0HvktPDb4fKoMLTrAZjxbtJ4dBXLAWc+vYiVNGE9k3hfwe1qasQO9prF5cvD1ndYzpk1 - Fjtfetd6gpKc+3g+uZa1+CcmUuasYVaAhnhurM8MG4tbzFzibXB0WqH3MX7hZyal/hju5kb/i9Gw - +HUbLi78Dko7+cMgrnr0dBXfQb7UJgue9WiSZnNGPXcjQrJIyIbuCQrymisQZ6eu4qbytxc9ONx6 - rH7ksObQDoEyfF4Dc03iIxqDkei/72M15xDNHUuOv/dBfN3I/Xl93Uba0covdCUPWj1HgX+Ec+ru - SNR9t52UZPcC7teTQW73TcPH01gE8vOd7ego3NtunsW7gpb1ZZc1bevvEm8o2VwLQt66UE+b6+0I - 4doaiFkkxeIXawk0bvWmEAx5xjPtuPw/b8fOkdD576e/P/30DvP6axKPL9Md0f16MbBurzbdv/4B - 1mVKDPmy5d/4tDfQatQ9YlC78fnHlt4IUFqxjfH3l/GC9g66HooYy0567/iit5Y5qFcqH/YbLven - t4PG5+u86M+OT4rTRtrSfyI+2hy7vuzSFfLj45bYcpTW887dr4A4OaX8jh6Ips/eAC/dlXhSM+xL - x+f6BGhyBWJ8LVg+rzrqP/1/2FmOJb93DYaff2QiUtfDXnisoJjxnuyP/tOfvR1t4X3AGXGOKvcn - c+t6sPQL8PBCx3gyEK9+fiS7lunX+gaSEsFeYiFt0ouMhrz+C2Dpj9JlvWrxGnwKqPTrlbmvedsJ - MmABrMOqxTp+HPjwdwhsqPTzlRxL58ylZp05oNNRJPvsb4O4pYb/+kW0H9zGou19W0Brfks8PV5C - zQKdYCDFLSaul7ysKUCBAuL8OhJvfriWsL+KuV5kl4F5rlDUU3drDWjk04eWr7uIpvc5TNDiBxNf - Gg1/wUcMy3Q4YmdSatHFT9MfuPHJnTshp8qnTvSf/5oHRsTni5zk//yrJX67vvLDC8JntMfim1T+ - z39DP/4fCdah5kcpgX/6ylv842l7/J5+/g6z4GPEksuJB64nMRZI6ZaLPz8xhnLLci4AH9XofUK/ - /Pj1s3qT01xLvSxkQXmssx//0j84kklUl33c769iAWI3SBhtLpd4ils6Q2xUnBHHqPmU1+dAF2LN - wVPrOXxUilZA6BZgcjNOgjUt/Rb1kz9iRt69aQmpMAsgXdmeGBFEaD6sHIp+/vQme/u+LIZ5iYqX - KWPJG29oRhSfQF2lGtk/4zeaBrovIGUPmyWL//f7OerbR0Slxx/l86maDH3hxyz4yz6IJ1NIYdEH - zKVNm/Gxixd9dquIP77HjLt2Kegn0Yio7reXmAvZwYTQCAdmO+993UpFIWn/ny0F0v/eUiAYksb8 - 8OxwwSvcRDM/pUMMbpq1TLSGwtHDFfPPvlGzSx5iuJUhsACNa2vcrw8ebKXdh4rrwynmY58mMK4l - k7arlFnT4KMTOOGUEutFJGv6IngiaPOQ+W8l9CdWxE9dkJUTs/in8vl4TZ4wJmPD/P5rISo5jwAK - RUjIeSNvOznkuab9WceEYSmxM9llLxeEOIrYpT8W1liK2hHW9jLqZDjdu3YdVUe4G1XAXPj71hOq - D5W+vsgG1vdX0o3+YSr06PHmxNs4ef1ljbHSQVi7xH8GQsezU1OhZ6MZ7JZUZjwGbx6hl3EO8It9 - PUQt5WOi/aaIqNCkWTeRMgX4PoczKZb/L6RxdoFQfE3sVEdpzK9kFamHJntR+TVKfPYHGkGsOIz4 - xXnT8a3rO6Daz5alnrfJhO++GfVT3i9DuIttJyqzaUB0vX8pGErFZ6GNKz3qT2d21JOho5e/NoVI - jd7swMQMiecrmuHR/jXE+rtB1t+rawXzQAmx6VmJp8K75aBgv8EwqUHcvnWUow36rLESPixfksde - gtUcAH0JPPAn2lalntzjNdnbt3U3V4Mw/3s/wVxullGnnOqhk8/s3OvHTLyu/wTYahATe2jenZAY - yNG39MbxUD/8jFdSAFBQhqmomFE2wdV7/p6HOHZ2rqU9md56fps+5BAsLYfP9Kzg0SsrlmDRi2f7 - uhyLez/+CI7F2peOykMCcIhGBX/7yphqGIoulYecnR/KaRkIHgtwmk4K1fzCraedZ4J+iIaZpeM3 - qUdFdCIw78KRZA33fDH6mxL9NF0U2r7B5+PYbTHqrdlhofAH2fiW3ULXx+ZD7ub0raUr3J5w6u2U - pcch4OKrfOS68RGAWHKdWPy8s1Kgzd+WHIfx6UsMDW+4v9yIpeFtGU1rrj1kBQ/EjmSvoGEwtyvg - p9ok26NsxPKh8iTIN73FUlGuu953AwfcMH8SR1dpzK63ugV2DWL6jkset19lvOjbgGypep/e8ZRT - f4S7bzm0RC9q9XtvaOArux35665bSzY306z78aCyW1dfLOF8S1ZwPLE/ul5FWTdPTw9rdtqMZGcJ - vj/p4jTrwrCcakvCYz0/PTMHoQwerGDL3eZT07UwFpstuR7Fu0W37WTozPtyYi/5ItcnwKjt3As7 - RcSpZeSiGb3ga5GkFw1fSAs2IpWcAnK3iiwbR2F+w+SddGJ8D4ElqvmW6vflLhowVnd/jt6bp57b - tUc2X23tj4USS3p81jYU5vKBpFejNvA8BCGz0+XUW1IfTP31F+fE/9zNehaPigeby9Mj2f4+WFNn - sxKa/bHA8aovfblMkgjV1jYhrvJhfNy+BhtGPe1pc7RpN/8V41unddCwOCvW2Rgg3YENVi7E8ve2 - JclZbYJSTQPBSUJRc1FcV5GwM+DhvdesKbNdD0jUyuQfHg7TudKX9SS58MisUb5cHbS+RRd2PNhn - JJtls/qXn2VJy1oSj6OnPw84ZJs+n+o5eFwv8C5bRqJBkOs5C9cpgJVyYjBV67jqn08gfosvs5N5 - 9qcqTVxIeBWzzeV47ubCFY76J1+9iX0t2m5Kx+EEbTaz3/NZ04ldPfDFUiKGwbEvVKuXi76skJm3 - azDvHXbMNSEpB4btPUEDoi8A2XRuzGwq1X84l4Om23c1JFb12WXicC6pLu9OEjuU7YPLwf4WKZFg - 7NmuFm9o1nMVA3oEW3b4ChWXn3oyQ7o7XNjxg6eOt529DKaRC7K/oqAWHxOv0Ovez2R/9yI0I0ly - Yfk8clfOKzRH7/0bGr43/qt/n8C7wHTKd+RPuZa++NDJClaMv9jOePz5E1l7HqxHVpHgHK4sZm6m - Uf/9/kVrPet7446G/qwoYX/37tAJL1wrQPTXjhy1/TfmG1qsoB0TgR2W+OTbg5LD5n2tWKDlMprS - rCvhGZxLth0DqeYbJTgBV32HGXudWZMYEONf/u9FVMWtp+oBPIzPjjl7Bogzyld65scbEr7yJhtL - T3BhrWspC98jq3mTdADfK7cxZGzMuNXpKQzqxcFodYky0VjvTnDd797EpdLNF73PuoHHp3mw/fbj - deL+KEq6kFQDHZPDlD1FpT2hunVnsqwfmsXj6Op/bimSEHcXJPe7g6ZT/K6J+XzXPrWDjYRk8jXJ - pbm41vReJ41ufZ2MJhifuFSOl5M+5WPMckdFnBnsUOhfY3ugetMFnbjiSQBo5Z3JZSesOdf4pOhF - UJVkLyIzk7s9yiEckM52gq36c1WVJ31+pRb5S69tJkxN3cJ5Lf+x4/FYol/90EtFjcm1dl1fss1T - oWXzKWdJtD9wUX1xG1avqCOhO2o+P8pBC6H4mdh2VogvfdBBg6t29Jh3HJbBCUSa0SusbLb/fAx/ - SIrQQfu9a5HzM3X4DMLpqf/5ZyCbeVUjfujGQF2+H7mtt1Y2Gg/xpP/ie+O+9pYQRisASQ/75dST - xOe3zgt4re0bMd+f3Jdhii762HiEhEs9nbMgOuk7tMHsKH8kPk/s0upbZ9Uww3va9fSrx61THhlO - 1s942pqyC/i0Tug2oTzj34uXot/3PW09txYedx0AgzkT82CL6OWnmwZWr2NHwqVeTG9jvWyHX3dk - 8xUqxK115OnO+sowshW5G6+VL0FxCk7E87xHRv/OfgAPOVOpHIRRN06FFEHk1QnVn+7G5zQKRtCV - FV/w4JPN5Wuj6LV7FrEyb/Vs/rwjG3bKR6H6/so6ljdMgNx+eFjgtZVRdB5StOAHsdIprCndwRus - +nPBY19G8TioIoWXOVfMvYtbi64mZOp9Fx6YdSJZJufu4YkWvsJMnH8sLuxeT/0bfjWWHc2kW+pZ - A8mqe7NQW+OOb1d/DcjeXqerSrr639Xpa8DCp4lz2u2t6XBoC1jyg3b9t0aNGovlL/8INvHMJy/v - MFy1yCM3D5f+/MlbCofXs2D+ko/feBtXiDSnljiJdfd5dhdWsHWgYbdxkOPpAOVb27/tE/tTroY1 - lbF90rtnemekr5nP347Vw0WK7iSQQ96N5j0eQXOf54Wv7GvJU3UM59J22J/1TtCw4C98pnfHAkdF - aKTDe4a9r3ssSvUvH9W/StO7Fbph/eq+rd71S1fTQmHGs56EHRvDOgDJ/15ZfCJo2eJbRXCI2EwT - J0E+Q8evC9fqeWUHK9shybytBdjvPQtrNnl2M7QMw6sNBxY+3Yc/GWtygnScd3RdSGY8pqtDAYpI - LLLtzHNGX3f7CPsiLfFY8LrjUrqVACG6Jv4Sfwu/LeAtqgEJn+IRiaN7PaLhu7ozE2wnHvHz0MPC - 78lFvFSc56veRX+xNbK91YfdHCErhSbmNyqs6F83FnVqoBKdvmSf1iieh/sdwH75HdvoeR/3sW5F - ehPBkYUHDVnTeAxatNR/tr04djdK19sTnqJ0oF2R6YgXqSqo1+p9ZZ70FDOOgcyw8BXmWMqeiyse - Bf/eD1nJk9U/GbRoGysqu75XDzStBPkIftacWPFK9jU3CJtR+f7TqRZtThm/vLQnlHUjkUPzlhG9 - uOUbZv3+IW6GSTcWSibAR9Vksrvmp3q+YVVBCS9jdg7O1JqE4TqDn7Un5kbjLpYqU2rQ7KtHXHpP - u5OX54dx7jys/O37br54pIGrLAlYvXxeWfFxaIK0KNqzbXuua6rvi0IbG5eww2v19efChSNKV5cR - ixd+icfzLVrpfsxUdr0vcwhcNS0hNU2VWeNJ8KeYGJqe/dErnuXPBTERFU/YeJuW5I17RnIs1DY6 - UfXBLLxsWRjv46hj4bRmByIMfueqxxLuQyiQcK7W8ZTLy8Xuq9PIjopoWvM6k6jeiO8LlbV3F/fo - fZ6BH3c925bP0B9X19cRdWl8Jhtwt76sSlmO2jivyZnf7W5cBYmkQYiGf3pnVq3QQ+07bukPD4fc - ClsU9Zcz252sNhskoXv+00+b3YrH3fwdJfQwXju2KdsNGht/J6FEOqfMoatLPZrfjffTAyxQ2dua - cln1NKbeNoSE0qeb4+vNgb5JPayJ+hpNwnAf0cK32S5/n/mSLxFofpbj14dP1txdBucXP1R8+GbX - JUoqaAsfYKFrNfGsaGmAfvxxp+PUb3ie97DkO/3xh2kodRdS8qrY7ugOGV8nWv7jzyyAVZuNF+vU - ou4qrtlGOPrZfKxLU++u8prtl3onPUXjiX74tb+ivhu1uafa6EtXLJx8qIfBDFf6TpwnvDa9kyV6 - 7+QN28NfvdQ/8Gm/3rTLFpw1sTfIjoX3EDv6Sdiv8fRa7X0Zf7YAWx6VpLjau2xYu0dH//1+4KgZ - Gkx4jZC83yYxDtxFfBbDSBstFchG7sSuT86gwd06xxiRdI/6i3VqUBPsXsSwzTmeRmfE+r5RMxKM - r60/HaB5ouKWT+zww4OBPiJY7zVGAmQNWf98747oX30QWJiJphMH+qTaPtaXeJwP9ijpxt9lQyfD - vaHJepkp7LvTRLwhPcXT25BneFOS4EEe25h2mzqCc7nsVNkYZcy7uBFg1WxnWmX5ho/V6uUBviYU - a57M/9UHkO/Gl2XBLkPtdfd2dHt9FIgX3l7dTKG09bVqUWamYh/Pc00oGk7UxOsvMuJhv/smoBfy - l2yu7TIoYIkfyUAiCYJ2rpk+niVUKiim6Menle8kwU1WGXFJlVus42sbxGcQMH/3jKzFHzmBv3n4 - ZLezSMxXZOv86gVePe0qm/4uZQKH8rQhV3V95iLe1CMs+UrOq2dVz3Gfashw72fml3qUCboiGTrV - lIyZh87P+AuKI6DgaZBbbbR1751iE202Q0HX5vTtWNWOFWKtlf7zb+ZW1gUUW3lHNQ7vbhZK6sI1 - Dka6ek4nf3Z4p8Du4A5UOgkan/6SXQ7p14mJdz5ni8XvSmi1VW3miRG2htPTo3Dp/eUUL2q7CUxj - hnj+tGT7pdiaiq7C8JBvKtmgB8u61fbeIyFdWZhbsZe1pvqoIHSK+be+3T/8m+6v9IdfGZUAjZrH - LjkW6FnJKLSfQG/F7kBVPHX1PJlqjgaVycysurc1NlIIgDZCwZyp/FqTZlcXfSDymdkL3+Mdlx2U - iX7N8Hk0fPmqCQnYn89mid8wk/f1BYORKh3J+GGOuTM7FGEwZnLYHTa15Fc3AawTYVTk92c9q9SK - oLw9eraVdjxjlWQDSEN+IpkXrNB0kSrQS8kO2Km9rzp21SDRhtDENJWeYjx19mcZ7etQvE5OkcUK - hhqA2duwgFx8f/4ybwU3GTHcvqHj088/mRviEX+pr7M1pO8f3yW37aetR1lyZ4iuf18SHF8sGzZ/ - qzes9wojm+X5Z89qG72Ni5pWh67LWFPdLqBpXkvFT4C6f3zuUSU285LC6iSV+kfYYO1CPOl5jn94 - hcpD4TKcozQbB1Xvf/nL9nTbdCOkjvRPHxi2eYzHyMQ5kt/9H7O9gvGpT8wIYozDn37is/xKEtjt - c5WK8XO2ZvtaHDWnyu7MzTDrWCtMT51v/ez3/N3i36Zw+FNadrf7dze48XjS2WnW2Y5qMh+DsWzA - 6lBFbPcWcKHxiQDPS96SoDiYXCjoO4fubChkK6abTpBkJsCTun8sea7fcf8eYhuWOzeZP7fAf36E - /jV2h5+fU083gAjaAm/Z/vLZxvKtKirwKv/JtoWp1U3v2BRtbtnh51d04/e7NqFA3Z34srLjs+Q8 - MKijUrHUPO066T6vFSCbQ0Q/ukg6Wge9gTpWz7RV7nPGZ3F71OkfeHjcpHXHYUpOEOvngG3v+jUb - W/0w6kv808tuhy1OI3tGkqwTEqZXL573ThBoJ+/wx+5Po677+Bh6SF39+Xj1SvbdFDArR2QTR1Sc - D2o9gOmOcLbqNxVXz+VUtLk5gq4Ap8P6bVtz2Nn9z78l4c2qLW5ogwZqvxFx3XnLKcb1uvrn/+w9 - NPEB0WGF+qi/krS4ldmPryL1zRNmvuJFDx8+HuyUYMewKbpZ+4tnUtshCbU17eZgs7e1TDMIS+/O - 7LM/8N4Q6mXAbnGy8X/xjtLcNZnxPfSWcC+VHOlBg4h50kjdXytLgrHMc3I73LRsPpc+/PKd7abc - i7k4eh5YQY1IaL0VxPsjvYD6KBHb9vqc8fe4u8D3yc4YHb/LLWMjEsDepjFz4LWzpPOKu2h78y9s - h9W99dM76PI9YZIi3+ONtqNvTRvwDfODcfWn1wUcpIXSTN8LPv2Lj1f10OjsPtq4+jIP0JZmnJn5 - Pkb/6lnFL8bSj7hblEJjQ/AQKPmrtDP/jo4SIPvPdhb972XDzXlQiLVy+0/fD53l5uAPsknlSHj7 - U9g/FBhCA7Od0OFaZpYuALuXd8rGm4vEzv5UiGpaxrziVsbTSbVLeIWlze7SadtNi1+AmpK1ONIO - DirXnWvCz1+wu2HfTdE3FKAd9D+CN4+NNW6M/g356tYRElRGLBmfzRFdz63DDCWwkEy0ksLle8Fs - n9ZZ9tNf6JH2EcmLg4mmOGIr2L+dEwvn6p41O3oF+Pkdezu2YhGu5huINhq/fgof0z+DKlXXBOQc - nLE1CckZ4MRHTLbnO/PfVVVewBTyKyPr4l33su+1P33EfFn5IIqM7glLvJGr0NF6JnNSwuyjI26X - +B3k+CjoC34seuXgz5MamD9/niU3rYm5dvZ6UM5iTnZdF3cLv8TaEq8ky4JbPamsKWBXsAvVn+LM - eUQPM4jkvSPuY6ysfiNG9j/8wlF1triYGSfdCx93timtIJNAyJ8/voDVR2/FgiwZ80//MVssjFjS - czVA68cZ/dN39Of3Ln4MhsYVEb9dTVtf9CGmOdLicRS0N+z3D4GR8eZydr11DXwM88I87MgZ36X1 - BdDVRiw85WHdL/wfxrVgkmRKum6Opoupywdx+r2fmHdN1cLiz+Kff9Fj9nbh3iYDncv+nk2k+6Sg - 52ZFCK7VbJLjowSeKl7ZPvx7xuxqPyRY+C3x66+LJEFwNVjJ9xuxI0jicd+tUrTqVwUxt2sZdY0c - u1CsbJHdkmbVUb5ZrRBo5EX2/Ea40B7jFlbuKSX5VZXq6faZc33hJ3Tl2H03mzdZgrOyb9mVajLq - n28SIbu6PFko5ZbPlv6Nxj1zh/XFX5vmZ6+hpZ6TvLXmeoDeTlFtRAfi//oph0Ob//Qa1ckxiAeb - OA5cW6XGs7bfx/PSv9H3w7xj4VWUOb9dPRst/jYLybrwf/4F+vkDlrZtu16+XG10GLc3qrpEjceL - ygJ18QMXP/eNZoaGp2qVIyGhPHqZKIT7Eoxtg/FP300jP6d6QQdMDmW74WJG8re2+F/4vPMDxF02 - uGr5vutLSzhHP76m7y6ZR5wjf3TzV7snEBz/drT8Kptafh6PDViX75Ylf/ug5lp5dVGRaTuqtgSj - Jf96PaxvFsM5dmvxNIyODtHVXvKzRjPyEvjXL9xh9WvNuz/2hOHRxOS01GuJzEkF4Xg9EdtsJH/K - bMOFZzfssHjXr/F8uGktiPfrner58RNPoby6gJfeRxIcDq41HkQ5By9XHbLdRJElnjBOwHZJynZW - KHaUzlr/41sUqpXQTdltD6AT50CwEj+y6VU+CnDY80oMovh8ekyohGQXZCRWJite9K4Li7771w9e - +g0J+BY8qBAaZjZbysdAk3fRialJmU/1fMKQBmNGzhfHruevdk1QXxwMYl+iZRBszhIwheLKLF86 - 83/9VDNx7+xAQrnmr9w1wPnbb1jUvuJ44QMRLPqdONllsKatXLVq9NXWzHQfbTZfGknQf/F4NbIS - zVXVXH79UDyA5tcL/mu6aeQ9FfLNJa4k7iQ/v4GQ8/xXz4fXzgaSrH/4Wsff+ZbkaCyshe8YjE87 - zwNY/CEsb1ljfY12W8J+/BA8EsX/9WtAcz9X519/ehp8fgIsXNZYcG896p/bydTB/UbsD2LJn+vH - IPy+Px2ZqtWjw9L8nx9UaKc0m3/9Hv7ld/bDi/4gygWKyCSS7VHPuzk08BNedzrTLkltxEN+0gA9 - rYCFJf6LJ93jrfr/2VIg/+8tBSs/Uxme3kI8dqnbalB/3zQ+FvuYTyHG8NoMLsPYHKz5GohHPba4 - iFfIEev5+bhLcP/aJrOlpPBnL0wbCFEysZApTiw627eLvCnyyemiXWvJprcE+Z82Zrh6HrKxOZe2 - ruzcfpmF5GfjSulzKF8XgvXUrf2xtZoS0GdzITcmKz4fsuECJbF37Dg8TV8A0Tb0O71s2H6TkYxd - Q1cCP28icn/iFer7sZkhoGlBY0U41LwqalPHuSER/H5PdXd7PTA8fUen3Cre9Thrm5UeqFVF686h - yy4qMwJl1kSWNNyL+1nbrwA7ESdmf6oQO4tGAe/1+U5X6iwirtkfAV7K+UiKoYw7YVymWmu2umV/ - xC1jerwJGGTDKMje4aSey+3dADD5nYRwan2697UCqiN8WOKv626+SqKra6+vz04sR4j3dmijSLxd - Cfm263qUzdrR7zQw2F+pPX2Km+yCyhT79NnaWSd/dNvTIakrKjiF4PPbYXMBbzr6ZB/cDlzaMvUJ - h8smJ3iHOzS4Mz6hh/+8ECzScyYvx53g/sUWceWpr8d+LEddKsaYJKtXiITuZlR6jA+cpvHtbvVo - rqmuzA1nt8FPfKF3SkVXqmrGwqq8+4I8+Kb+6J2U6urzm/H2Gowg7d0Ds6zcyeTaqwMQJs0k+M+N - asna3Dy409OG/A3Y6aTSLhR4ZP2VnbbeKebX0BUAO6nA9p/XGcnvt78C3Jcawap0yXqOWhe8yDPZ - aQ6go8ZRabW74GyZVUaDNe2yd6BL6zFjp0+kxTy/7AEg9iuyxG8mSG1L0dfdIeb5e92n18efC37e - Rsx1XpYvCLp30fV7Rol3mu61VM33CPx8PLAk2Nq1fJGMp16+AoyFu3OzptUz8uBdnK8kSbJPJp9L - twLiWhu2U5DRCWrapYAvisLux1RDs4/TER4T3Ek4JR/O28tyU6o53dlfJznWOJP9CpBzOxBbNP74 - 5MvOCu4raUv2ZDNl/Lbs0g/C+TbwS9Mu8XY14PC4VVSVvjd/7DNj1MXr6JDE161YbvvnrItDuWe3 - uU5i6XLPNWgu4kSIYyv+4EmOAMt6YP2gbPz57J4oaOS7ZUXWk3o5oRZANfQfFp56M5O8IC01aLqa - 7PevsZ4ClQTwGv4iWjXBA4l2v31D48uUhcQxrFFz6ido7bQncefiTuhY2UDglin5K4J/+eD93j8J - Ne0bz1t2q/6tV/jpbT6iue516Zle6EffbDLpfrtIeiOLKm7Yy/el3Z9maDLRcvbveaI1WcGbDimx - LRrHc3r4k2DBJ0JcTa0nt8AlgOp/mFvWbib/9a0DjfNhxM3/drWcd1+AqsZf4h2362zyHo4G33i3 - Ytgu/U6mu7CAu4AdQrIV1Hx6OAZ459lmbk3ceAjqnQuq2yiUriOJs3gqTf2o1COx+JEhLqB3q7+O - W58kkb/N+KuuGwTupmDuoX51UqrpLWjn/Y5ZqDzUQr9tZvCP5gHPY2LFQsfcJ1Q7WpG/+v203pc7 - rKBmJ4Ekd/+DxvZanoDUtcvCZK59uczNXi/TwGexQEc0Qmk7eoTVkLhLvk8LnsNrOBMSM8zieWvf - Kq3cSy7Zc5R08hQ6GAWhkhJsF37WD3kDcPDjjIVf7+3PNj0kuoTb45Lv72yuimuhR2KdYP5MqD8b - H+UNMhgNO1Z9GUv2VT3CXX07y/NZ/jjk5UqrAniwH55LT/86Klq02bM/pjkdf+xaAe5xYRB7H5xq - YY48B7Ru42NeSH082ZfhCa+N7uFVrU0Zj3PD1MPySPGqeh5ioTEMB+obnclevN2QfPaaErRy77H0 - sl+j74okGOQpakhq//1Z0/odJfrxWHcEbwU/Hidls+RnV7BwOu0yQbq0GlJVZC73WJj1KBmVpMtS - 07CbvWPdSIsHBg81LosfVV+zP7MNQMJphHlid/VsW7cEms2OMvc2OGiyh7CH+u7M+KnlRd399Z4B - R9P6MEJazZ/d+xHr5IgsrLbZNZNpHibgZaZFeR4EPzx1oZlfGsMjFnzOX+8n+njniuGjM3SzM94a - EIPZItYh+KJxfrU2hOM4M7MJNkg+i2Wly11aE3Ma644/eAvwe993o79yfuJlpD8fO4u4+7OFJHxE - F3g4eKkn/dmanPRtQ9X0LYm/AuVzZGS9Lv55Dl1d35jL4pEq4JWNw27alPr88+m9Xzwz3Hu8Gztm - PPXH5X0jRZyHtXzibgD1FwQSe5cmnsh3p8BDDgp2f73X/kRWRPitJ0nw9OyEXz2ItXjFYlv6+NMa - KYleiyeNFGnCeNPdmifCj0ZlyZbUlnxnZgLf8KrhVVVGSNr9zSbcG9gwvMTPqEtPDF4575h1rL6o - 64blot93XTJ7H50tLp/ZEQ7vbpk1R0c0u/vUhfqOOdbfFxtJPzwGrjbkF79SsbmU+j+8kbK+no+3 - k6u/ODkxN8l2cRseEAYdo5a41rRB0iHJTdBItyXW3miy+VycRl3kFWGnu51wLq0/ni5Z84GF97KO - pzWKTvp9tXLouvRW8WxbU66r33SFqVJIVr9+2VR75YNHzhas+WDGQwDSLY0pNZK2m11Xs1FQmBlx - y0/DWWF7KajxCCQkbrngH9Z+9QzzVx8iqTCLFlQ3lajSZV/ObugbAWnqLeaSPaLPRXb73/dndh3c - EFdM9gSk+/k/PP40zTPSxeboESsPgk60N68GBGhMEt6L2uLnu5uAVvoe1UPB6CaiE4okzbvhSnna - qAevd1BQj3eyg/XGElckwoByK2bus9vH4yoMUr1KnBe+5fzsi2syRlDjN8Wrk0LrUS+frt58XjK7 - Jd8Y8eT5sPUydTyq8M5H/CqXoy5n7uPHBzlNXzrVNHKzCN5Qr+5u6HFU630+YiUKX918noUGHls4 - keISUc5TfVPontcY5N5c7mhaqZGjy1Lb4NXDG9Gw1sYjyOfxQZXT+d2N0sWTQBUeJos7h8b8t34f - W3wwq4LBYsrmk0P9lCS24HHN/wbPQy/9c6Da5pshnqhfA3w9OpMr+hpcZu6rhXstWcus1po3rNyk - +iv4cxk5OJnPS8ds4cePkjnu6n/PJ93NM7H4KfJ5etzkqBSlGOtqtbfG9tqc4PsnrtjxtQz+2d9x - i54RM7Byip2MSV9mQ7XCHQu/gZMJk7Lpf/yI7R159Efdf2Lt8XH+6PqtFWj2gmMJymbucaErl44m - yt8FNJvbxF6Va59W8zWC41AP9KjCy+fK5lOg8oUxCQtco/HblR68hc+duMt5azlrHk/QsdouFy9q - Fq3v9zfS7uqOFHEx8Pni6QasjE5l3vVv3bHz3U3Br8ozXqbIZ5y64fPHJ4lVSEHcy4lvw0fadcw6 - R14sTzJ1Qc7MkpnQb7lkJ1MKR36YFr0zZfRIwdX0Jxrplz4Ufw4hc4GYyZqdIltaPn/7hoeMC+ae - YicW5pdnQMlWmKb2n27ROIUL8ufmwv7O8OhmT04r0NvbxHaoNiyeXzYAkubeqK5p+0x6ZHcb6gIm - 8qc+9zHv6csEom72JGYR6fipaE4gd+Xzn57gj+UQ5nP7BFYIqVjzqXI8QHl8plp8XtXLlr33Pzwl - jqNknO7CHOHckwkxDbmbA5IqEErmROy/Xul63Q9ciE8bGStrHVtzGokzaGOHGX4Ekz87mToDrLI3 - VvevqGvNdlzpODclli58mxWJGYAA5Yad0FjEk15Hpl7avUdlfbOJx3Xdl/C+bROSZBunEzi0R3QM - Hi+2bzM5o1GfCXDw1ISlp2ndDVsaClDxd0/C6vSspwATDNHpe2CpfYN62hyeK/1eU5O4SB5i3jT9 - ET7drmH4ciTWiFx/RCvjq1KBPwHNp+mUwzN6rkkRzQNnC35p/jU9LHhgIvlXv/ClFLEWn4uuPc/Q - AnpM15+e9qeNPtjISxUTf5W9VrPCqi4QkQ1mlnfcoYXPjVplXipmCfMhnm+1XoBuZz2z5CSq558+ - Iorqkr00qB2/b70Kgq97J6SSVhn/u5qOpigmZ5YxvuPxazQe8qTWZzguqcWvVSn9+AwzW+ERT9F6 - t0Jl+14sddnw+dk33tBct5zYuBGzBhW+AN5k7vFqXgkdFw7vER49zrCqiVo3Byg2QGJJwshf+tfN - iXK+QCAcaxaqZcPf23Rq9fDstixe9N5cC9cKjrtHwzBUl272wmOjLf4BcfUDtfoZeY5ejs8T5rkX - xMK3LyP4Jp81numq6ubowiX0iZYtkGsUcukwxCs9uvuEqsaWZNLduowQiiMjyVF91f243CLmf+YT - IR5Ws/kVXBUgf7VJwgE7NWs3dg+RNl2ZO+pdx59BXQBJfJPt9VeW8Zfa9ZrymSdC2tU6nnc7dQU4 - d2Vm7aqdPy58G2lp5zL3T/zwvruVTwQ79IdZbv5l88K/1Yh1McFxMaA5zk6JLh7nPVaWeJucFJvw - eYlf/HXjyRqW+FSX/KU8d5dbpJ7vHJD8SMk+Z0I37BwnQJ/u3BIc0DCbgieJADhqyN7YYP41VwMG - UZkxC1/my5qd7EbRwz+d2P2Gc3+ULpWmS8/xRorXcUJzsSnKn95iOKOEz1Y/YXi7nxOxngm1mqne - jLDEE1Y3V4y4ShmFptpKxLP//vyxs8sGPS59ylJrA9ZIhccRwtId6PymZc3PdyPRF/7NFvy2phCR - HPzDMughPhf1qAfBEard+0FV9S/N6F9bRKjGwkiS+35Xy7FTGvrC70gaDWtrtozJgeN1apn9N6r+ - nMFZ0F8DwVRxN09rvtPLDB8i1yQsPCueN83Yo8ey5d9Vw6FjIrxniIuHyExuVKj/msZJF81oy+zz - 89r90wvxl2uYk/nr81Hawi8f2D7ezzHdrKJej7XDirgR2SJBm/0WyF9nMdzSYz1Oyp4iXftyYsn5 - ZC1+hIdUN5HIEl/1ZBwCDUnP6krIDYPV3VmVg3RrziTMEjMb+6wU9MDyUuI+2Z53L6V7IzAff2TZ - MtVNG31rgM6+IzOXesufoVXq97o3mcsebUfJCT2h2VxHFia0qicjegr6orfxwDSnHufnY6WfyLRm - luQcLM72Wwo/vNkf+DETSbMbQWdoJqQz14jf07ZErw1zSdgJLz5KF1MC8di65LS8z3GOTBsel9OV - uKsvjf9bL32nUIG64DPNZgKKtO+FWB8zRII81LYe3x4Ks2xpZ42rOsgBO4lAQv29r+ezm/fw0xP7 - brjw2bbUHJ5obTOM7SEefBmvYMFrTK8VjefgOWuAP94yeKeufn6ZAy8lPJDjmFr1bIBSQaWseho3 - KY5nX0lb0G2//cfXuDZ+QF/wnbif6z57/fjXrx6ExDUyya+PPWiShZmVu4EvhRB7UP2938SO7Es2 - DruvieJbrWBhHwj1+yrpi944rBgpHR3942sLX6frG86XO3g+OUTa44wVlQycn1w3AG+bbIjd9Chm - U/B2QVEMzlwz23D5e3rmEK8fOrNe7dDNu91B0TFoOtl7apQJX9O46B/yeTBcVZPfevL81NXCVdk+ - ymaLn7iLgTSPLYk171DLnRUAyF7zRxY8joVZ2wAI07zB+st+ZbNxjJ76909eMdepTcSvYanAzx86 - 7YSTxcXmvdJf+utAropqxHOi6AlUO6lmxGiu8Wx1k6PXp5yzq755ZIs/BUgNFXnhK6U/ormj8Ck/ - LQnh4sXsnplvWGUdYu5ax75k9VOgv58kpz8/Y+SHKkKPbHWjyvO79yXSxm9dgNak9BLQ+Of3osd2 - dWLWCs//5UNkWwHmkhl1fe+4Ehwe1h2v2vHIZ1c4ulDvA/qPT9PjDTBIezPC3H/vajbeXwJSv9Wa - Nt29jWd7OBy1JtiObPFvu59fDgvfZKGYNlZ3kcoWlHkWSCjYjTUu/i9I3/FC58fFiOW/S2uCX6Un - yq3U8V+rp4LhkHUFceuD2439tpyhFJ8Hlqw+2JJfqtX+y68wF+p4RHtfg+Pf5kv2nj4ilurfErxt - umF202dxr45+Cnf1ZLPjm5Yd762X8fOnaLGZO0v6u1xyqHjRMS94Fda0UkcP0OF7IaeTJ/t8xu8E - wlc10HVB/+LhV4+01xQQEx1fPius9vLz96hyYx+f//wwr2wdgv1jkElXX3fB18srW/hHvPCjApXE - 2THXeVQ1z1aPBi31nyTL3w/BkxzRkq9YP0gl/1ef9PuNMuvVD5yfPbeAYG3UBFMhjpn4oQJa9Ms/ - fTGbbaTAE4jDsJH71jhre0A//2z/3Vz4KKy8HD2M/kz290zoWEK+Hlr4AwtTu+pms00UIHW2Y7go - om7khzaCUJwZI/h446Lr4hzgqJYLX7Q7eal3KEyrlsq6taknv1p6Y4t/ncznDk16OBrwqoaIKju5 - qkfp0ipIZ+rM9vL65s/3pOjhk8pvEoZzGfMiMbG++D/EVBW7lorr5fnrB9BVrRz8cU2eFLDjzVjb - i3/xKHXmjB7Q30nx54zZfKS5A0E935f1LrKxY00DC98g7uG+tYTvxfXQO1n2+EMl1YPdh294ZFJC - LAd/4p//C09pvcNKsHvy+Sr92dpDLkoWpk7FhxUePT2I24KF9+Ui/vfLF6CqnWZ5333MT24Z6ejj - X7GQXJT6n18gZ8eKrl/V6r98a6qdxBa+Fc+b7yiA6pYynYW8RnPt3Vv0y5e9sLnV/OFWKxB1LWBh - kJfxtIF+BWVahFTF64PPi6HFSI6amiRLfR/n5xdAEo2MWYnh+9ImjnpU456RMBwNS/67th6IPMXM - PcrbWE60hwvq2jKoop9xNyx8X138RYLTC+nGYTZAh/BWkDAqDS4t/S7QyoNP+cHdx+O3NwKAZnoy - K6Vdxn78GY6oxKuTRnnPyk2CXjuyJ/t0c7IWfpfqsctnqnR3L57Mb4iBcNVne2m4ddP6NZ7+xddS - z7J50yj0Xz3ah9/JZ1/DfoOyMzq2p39yXQpNVfwXPz9/3dlOVBeH2Wfmj1/9XSoT5IfxJvibHLtx - VfUJKgl2mft/pH1Lr7M8l+W8fkXpm0afwi3Yrhm3AOFic0kIkVotSAgJJCHcDFjq/94i51UPWjWr - 8XOecxLbe+211t7e7m6OO7WjcoUr/yGx+/5UTN7TDZCz3CT+eZ0a5b9ICiv5vcO1n/BgMfNwhFGj - 9vQiHeSO1c+u/OULiiN7YIO+fR1/9RZKrhrKWZf2G/CrPxhluQP9WKjOH95K10fjTuJ5Lblmnoul - 0XfAJJvdGz5T4zVKI+nc94qvEMMWUEtCJfv5y6A+bbYUv99hNyblSdkBscrwAnBdTdudV+4quZBw - 2h7aeFGi9P2r34wc7nkwaqcAwlpJEMHq0rmLdQshkk/5YWRfDv/pc9Sop4msfqG+1O55+el5LOsq - dN9P+579/Cuy+nku+7x7DYrOUhBLDpX1YWV2hX4WNURnSZCXv/X1/OlC04C82MRvnRoIcpBRP1E0 - dzmU0REF9BGNu5Wfi6d7WSBiTdtxt/oBo2VdpB9fwume6Do7HtaWmVOpkRSFWBfIkb2R28vRyu9H - wCrBDX7+CPU74a0vqY8y+DHQE6O13kjT+rH6951L/Kox4nlTpzaIPPYhumaasfiBhoKcrrTo5bSL - 9dVfh+jxMW4U8y0H2GNpuT98tx87O+fAwZXkEuCYGC486T286xBKltYR/ZK47ogRO6Im5Llxd52P - gL3lioOP0LtQ3Qw+3c+fAiu+ELL6j90w7T34rIzVT79cq0H9DApY/WxysP0pn7jIOUKghvE6VfKk - c1/Vxn/1v9SzDCZcm40Bfv4ADrhRX8zrRQDebqnJyh/0P392rSf/4Vcj6ZWHSHoxyOVQTXE/Cd8n - 9Hw5G7/aMDJ2KpUnKu9vlx7kOdOX/Thf0epvjIwbJzbBe6/AX3308g4Tfdru+hqs/hO1k60Zixeo - HiG4Ho7E2HIFmC3LPMo73RGJtlH2nbh+XznsQEn014jdiYudKwyOXUiM1d+Y5EVvUePyI73kJwYG - /TRc4a9e4LflW58g369+03kYd5tdrjcs1DBa+flf/A0ErVNIg/lG9S+HAbddW97K0gioQ8LCnX/1 - NnTsRuqXsI5nLX7h/9HDB9J/31JwoPeJHqZ3p7N9XUIknaeAGOwex8uZxBsIobIbH3KkMF4/sCdK - B7Il1vHuMtZd3xmycWvR/en9yAee1BBVSBiI8TpoMeenhxK+87BaS59Xnd8xdoVhOhVUlfd2LjYM - QFDKRkg8cWncOb9uJHAYk2Vcoqx2R9NHGTgXR4EEDqbdpJ5uLUzCFFMnij9gloa7B09ItyjZ3oZ4 - SU8TRtvLjRJ9bB7dnJd7De2vgkss4KSV0BztFn10D9NwKjEYQRMm6Jps3sT/+mL81Htug4RIRhgm - UQW4TpgMKBxVQOPkxcevpbVb+M03D2KCacOW+3JyoIpzDQcd6HOmDk0A2UOuiJq+ape7TxsTTodZ - odeXZrpLrkoLfE9zg8EDg7g9CJ8J8PC1DjrkrGqS/E6G5nhL6KmCS872dQPRronWQfqO3M3wcp7A - MCsD9UVPZcKYvRKk1v2XnsBiukJcxRkMymc6dvbu3gkG0DH6ADZRW6HRekvioSFLd3dESftnvETB - N4D3CyiJLxZhzpfn/Qj9qYHEDyTQsbB5vmEjvnKqt/nBHXNwvULJhCPBp/QNpkOvbBBza0jxXRNj - VkEQwfzwEOlJCnEu1ha7IiQ1JjmDvdpx7Xf7hqc23BNTDAUwnYDWQ+66P9DQ51WwJNYDIlapD2Kn - r7cujjy3wO/YVySYY78TM7yDQPWuT3pvcBVPyEtqKJmuh2Gug3yZRVWAcbHQEQ1cyeooSo/QJvOe - Ri2XrIPG5xpSsuOpMsd+teyii4Gu58Wm2SY5seHTtjJASqqQ0HieAWcldg+l/anFgmmLeVk8Pxx8 - b0RrlLkZ5suLyibqpBdP1FtYV+IxvCnw69pbehs+TcyMJOthweMNwVBnbOrNqw1043IkNzFMgYid - 6Qj5sxXR/ffh6Qtg4RWNSTnT9NC4MVtebgE2heNQbXd/usNl38iQ8CWh2fr32Xa7T6DME5PoL9p0 - vTEvDvjFb3zv3oBVu8GBj+jLjXwFo5ht6PcItvs3HWtvd6vGJlhKBBYUkvX3xex+sBfEn/cRPY6P - KhbeWh3BtAvvRDnQTzecOa8A1ue5HUVy1F2+VqcnEoTiQQ8tfQDWMLABJ417UMVRRZf1ldPI+0c5 - kvw+Vzr7NIxDGa7GsW6tKBcuryuG3S4/U2s7a/rymi0BXMHXJqfTW835SpiOsNK3FVFutx0bPVwW - cKduxHE5m0YlBFqsIbAcKDHKpwSGMos5dAshxRtyfLn982S06DiZd2rfqsQVcB+NoAlskXroG+a0 - Aa8N+tJyTwr1JFeT3BUOxHq6IbdT5FWMiaiGtLpn1AqiOOenU+KAogDn9XyaOmfMiw3rt5wQDG8G - EL53ZYGs0h90XzfMnWZ0XED3uYrrW/BAZ0eMZegYiCf7JXu5S5Q/st95pUYSbqpx0TQNcb3cESda - CFh2UWii0FSu5KhNNRurpOph+em6dVDlM+feu9hBPWca9IdvHITLEzlQvuPdBkJ9kt9yAF8P+U7u - 8c7KuWOTvuEvHuO8wDmj9riB5ycRqbabw47vH10Nv9cYUedsbHMWvI4F6j6FSLA55N3v/Mpt9/VI - 9qJtt0zS/Q0rIPtExdacs6GFLby8Nh71XewA5u9yCfbeBowb4bKel0NbQs2OfKpOw/rwwMd9wvgO - BoLrTOqWt9ZH0FDwlmqb4FKJvNc4f5+fxLtPPm8VroDPhXtRq8mSikvLjwI42zvQnEtxNwZyuYHY - 8EpcykWii9h6YhTCRCMKzm19hpf7BDM/m8bd9O7c5b1REpQ99zEWySXTuV43NTibqU/Ol1sOhG5e - pJ1pKQvNIpPkk38HJWAelYkhvfb6HC5uA5NXjMnesnFXf2+PEVpfRx+hh7X8lz/Q264exO5Otj41 - 0fcNPzrG1No/Z33Um9CEQiQhmqigYH/f76ZoBDNN1HVeSA4ejGTTp7qf9YCdh7mEz9HR6J65sOvd - AwjATbwyquztjTt17LFB9HWRMcw2Ri5Ulx0Hj1MOsKwnvi7wo1Yix9jyWHpeibtMvTrCqbg/ccUp - T7B0QrHI/b1HeBA9FfDoHQRozVfUTbq5W+CWJlBPtBTDrGb594hLD5Wq9iVGeXuw3r8OKSxKURqb - t1C63F4tMIw9ZSDHlU9M8cu5gnTD6yTE1hxP/GwdkWkfJrwNTEUX9JcD4dHShDUeim6+mEILe7zf - jUw/RN1yPTyXHx6Sk3uydC43UA3BcPeIepAlMGTBQ4MeJ4YU1/bB5Tr2gOgDiiPJqf8CfFKXxS9/ - 08TUy5xvA8tDc3ocyGV7OHbT4EkZrDbbjnruU6143logukVTSEz1S3LWHrgI3jfRG6PM3XdCN8sS - FB1tP+6i/lR1Bz9OQU1mn/rDx47ZVn4UKHmbE/HW8yBiewuh95RnsoeFCeZXeHzubtESkpt2CgG3 - xheyIHlQQ0r7atmE+oQK2u8oCUzF/ToP+IaLVh2Jx8xPt1ya9gg2rCHkPKiKO5stk1BQ7Gca3kKj - m6+L6KAjDSA1q8TTJ7jrU/jwDxQvJfLBPJ0KG6L4VuDn207i2YJpBKStx5FbuD/qzTMoJ3ScJHUU - hswHfbJJOVjQcUc0Worx3NdzD/RNUKx4/chnJ4EFhOeOEadtqm6p690GPu7vE9WtSq8G7POOLNT8 - jaqHg5oz5dk44JgPKXV+eOLangcvCquJemgO8ehfyhoJtXgbwVWPAB+rtIdujE1qgqlgrDwVDczz - zY049jjm7DzsntCIturKT0w20efUgq/rbKlhkZ798huERn2i4aH55vRrvh2kDVOIJ7nD3V++39Pa - J2rqMn2WN6xGryDM6d1hPBjqw7OEeidKozhvJ5dt+tiD39v+Tg3bfuuLn22OwFU/GtmfLvYv/9qg - rp0jcbj+lc+xrUN53rQx0V8nsZpXPg1EzutJzFjrMqnNMrjngonY3bPsJsgrT1RcNyIG4aB2InoJ - mz/8y9s3jGfl1UM5e0o8TQLvos8H4lwhTuCTZvQC3HlfqTK8m1pJndQJXcGRGhsaqvZY3xJn+uLw - mQa5+YOp3agNmPaKUiD4jcR1fTeA7h+ZAOXnzaD+Etts4h5V8svfxBrU0m0gb5dwdypzej+K52ps - 38uE2NPf0khvVcCT03rL6jghvDtoe30e6MyhNH3caKI6Vs5PByWAm4UbqBOZNJ+qNFvAytepbz6d - nBV7uYGXj9yv+gHqXfDECfyy3CR4Dw132qW1Ar1HPIxQA5I7F/BRQs6uXkSLetaxufhgOHcmJYrs - mZ0gv1wMssBmdOX7+ccSYwPWEieQyxURNjXx9givoLOpghul43980Lc+MR7X/NUrzq2EpyTbj8zQ - XLas/AXMaTJQ11dVfZbWKT43RSHjlN4PTDTpw9jp5pnD3VVfwHoly4OF557Gpf0U+TJ4dwPQ6Hil - 4dl/gsl+Fm84m8OXEuKbbF2fCJhDkhJlr3/0kW+5DL4eBqJJlfR6/Vb3GI4qR+gJTkK8xOU+AtMi - fKmiCLgT1aEM0CX2HBIc6Keiw/Ju4cEWRuKfNoPee/4hhdrh4hJ8csd4Uva7BoDrEa/7KVaL3lzM - Xc/lJXUTydG5RIMLLIFPSFFd7ZyPkL6AwzWLiGcKqsvzrmqg7zhWhGzbF/j7/Y1wvZHrb38qYUpg - F+9namhVnzNvfsgw7fcqtW/TWDFsHE304w9pX06gucUuBx++S+m+zrOKteEYwfJE3bH3tjs2hB1N - 4XvDW+Tc2JbLf56TBN3jyaD29ubm4ncDDWhuA4kGb15mVGkjG43fiBG1+/DVX7whPAGaXO66zr3m - h4M6RYvxfPY1Rjd9juGan/70xHzusys05PyFeXXyu+UcixzgQZESf+Xz7LzcUrCeH/zt1DmfD1Hw - RtKln6h52kfusJmD7E/PKU55d9kwahNa9RqeldM9XsbksPLrdSgxe8/dco5aExDpM1BH50/6XBj5 - G06TdKCWcHnoi7CMmXycZJV46/qu/MyBJVRmcrhdRbAcRrQOGvctql2LF1tEQ+Pg+jD9yNdNrDOV - zyIgh92TanS7jfuVP8iGekbUfl6JzmLzKkH5eTeISrlRZ5fA6uHnI03EUoSpm0R57lHBe5tR1nne - XeSX7qFffFngPLs/PQD3vBnRfZ1U3ejwkYbCdCmoGj20XDQ5D8pVT74jJfckXw5Do0HvEQ7Ed/Mq - br9V36JNKfmjTN+sGnfRxQQvrnlgmZuv+R8fvV92Jbkyd1OxoJzeiPlYwRV3dwCX7fgUarSfydkZ - dlX/RlsNXvenJwnfhOtYUls2vChzTWwlaPPFDN0SruuJ+YGBjupu9P7xX2rdxJ4thDYcVI4Pac0P - sc43w6whGtAUc9lFcYe89BWYb0uVXrOaxVN8C67gh+fGXZDcbhidBYyfY0y0x5UHw1efjwhYWxu3 - edcw5i1iC8/USelhb11d9s6GGmq5st6qbYdqPAylBhtyOmK06pNv2H1S2Q7ezcj8/hpP3XbLQTU4 - VcRa+SwblrEFVXr84r5MXl0nG5taxqdzQc0Pf3SX+zBHaD1P5JiEm26OlQuEowEGihevraaS8zBM - 283aYrrjGHs/DhwMN58NIceXrbOGpia8Z4OGZXvEcbNXEwz3vBHR2zejYGzS+gmrJDus/o6tt5+D - XUL0Mp94t7egvpg+n6IXt0XEoZZb9csec7vbS6SjvDHe+aw0zATV+WGRU827FRda65Qqk3NIMcRz - xcRnk8n5fH1SZ3O45UtzSlL0w2Nv2RF9kvY7GSaSHowyY70+eyyF69vNGlWwHLhN/OCOEsWLOKJ1 - fV9tQDywnm9qydLXXX78mfBPQvbFfABMXTwbnJl6ofYbiPrcyFiCN4J7ovv+MedCK8CI4kmk9rFF - +vDypPZP7yk30QHj5vRpd1JfLER7kFs8N8tVljeLMPz4Tk7X+JIN6ban6lO7ust4A1eYFTgaxc/I - g3ngTiNIRH8k+5M0gYGDywQxLN7j9KzcfAqJ4yFu2wz0j8/az6LeGZF7pzgzPvGs9AcP8m0jENPU - y3hOHlkCf36KfUyHqjkfQwfu3t2FasbBcf/4+H2br3wsn8AiGo6we3lpRtLtrcubbNEzGKmCRcL3 - ddAZLLwNZHeoEWsuG31qmy8HY08guNYmAyzaLYWwRa+euO0b5nNQoRSG3XqrkPU+G+B1kADazQYx - ajrHU/0RJnjMgED0F7etmL+dHDh3ckh9d1gYxba4gVaTPLD80J1/9IOS2JCkt/DdLfItxIjgi0kK - cnzpi5dEBXrvrzpZ83vFo8+owSQ+juTnH/78IdS2Jaa6tFnYfMoEE14NXOOFDhTMFgwi8MzplXre - dgdmb9K4P/1vXwzsdtS6YLhh244osWV3TFOiK+KmIhjFeRG7RbHfBbzIzUhtA7Zs+vmj+TjeVz1s - xfyBaFcIk5Injt9v4vG9UY5IMg8eUbqrEYvkNF2hG3smsQ3o/PxHG/30lHJro5zfjFqEtpc7pc65 - mPI5HPkShe24wV+cmbrwoosJmqrPyVnogkocYaignz47vHU15jnFhvBA7SM1B5/PmZFEPXp4XEyz - 9fNQ2/EjWUkcOEIJBWw6cu8CXc+TTU73YAazeGPeH36t+q1ivM/L0CCXK7Uq7RTPFy1bIHqTEs9b - Xcrn+vB8Qv4scavfzOLxx0cDOvJYalQbcMkm4ND3Oun0PA9KteBJqGXT0haMTveX+1tP9OCNbHyk - ba4vHm6uMNwET+oh55tPdRVJ6APmCQuDf4rp3a9boDTSZhzJm6uaJnrUIOAuKc1fByO+b7j9un8N - wU89mFh/nzYGzG/7nJpL/GbMh60C9L0nUJdtUNwaIjLBog4LVfmLBZi0GCl43jq4Ns3u2cyTfgNX - Po0XI79UzLmKKXjvC50o/BbrU3p1bZlIUUjc8bH/x28vOFOhpB+6eCI8W+CjuidYZszTvy3eFdAm - bI+BTjBg2DMNuJzihK5+PBgPI79A55IA6rQy06dd2iswTT2VXjbiSxdHeFGgowsiPZwXSx8GOgvw - mlo12bsnyxW0B+Sgs+G21FvzxeT5hwwcyjAm2i46VIsI0wVsN4iNfiGa7nSYek7+nZ8fn5v3dzDB - 09e2RmHlU6LZRxtIQvdA1ZVPsYvbcfIvHx/LmwqW7T3TwElvdeLmgqz3xZMKsHBPjJrC9hMvXpIV - 8GtnCC+P6wlMU/ts4Jg855WfUJfmN9uDymdRRiEL5KqflmsDjZDTyb0pF9CrkVVC/B1rQm7o4PaX - Nszgj0/hgi/Ycpy/DdywltDD7XoGcwWOHhCvi0U1Jtsxz3hlQkn08PBm9b/EndS0wCswXvV4qQ/7 - SpXAeZZyGj3ILZ86YTKhWIwfzKS+isdpGt6wEdhuRGN6B9MsTRIMyjIlt9P9pa/4YkD2sFQM7N29 - YsM7mOAPL6aL2+ZTO/gjZF5ajCDpwmrVF4lMw6dMLMGzOw60dvbzm+hh0/ZVqzcXAzJ+rjC7dyYT - HCXCwBXlBnPfps07xtErCK6QrfWbDvR7uASyezwbI3opBZinQI7+4j8BBY1ZX2ktiqtbNM5PDbqj - aDgcfOapQq7u81HN+/rcoJMmPLC08vf5fZ4muPrL1Gr8jT5vd1oG9LaXafr+WpW46XMPgvzZE/z5 - loDtdkK6I35kY7AzqL7GRwYLVznT0IANWxR7LGCVDC+KRUeu6Opfw4k1LinMAVRM+RgKPNjcONZa - 5eV/9QI3rp5YdPJWn2X9XsrP4ViO29sUVHOshBsokHNKDXfkADvzVSkLRx2QNZ+7k7SfJeSS9jGi - qkHVIlnB5pd/qDlkA1sWfJZk4/Ot8Nhwh45zzZezW/nGCMfMcr+2wmH4uttXchvTLRj1STeResc1 - Pbz1R8x0XPbg7A3Lyk+o2+hvWdnZgowxWv3SieEdhu9hPBDzKdYuDQdcgPJzJFSz+bZiq578fT9i - H1O/+/lZaLtpzz/+EzP+kGlw46Y2yfTEd5cXXQx4zN4ZtZRa1acmFo/ye9t8yXE8Omxqv9sa3OId - GZ9rfAvx+1EirF4L8vOX1/1tYT7I6K9eR/s7LP/iZV0/1heX0oAy75vU+z6wO2mNtcAVr8nKr3TW - BcHzp/dGuvoni0cED3I2PuCpz45V7/lqBm+vMh5X/6Wafv5rghuXqopO2Y+vATU4V5Q4xwGM2wpJ - oCjLK9Ej049p8tylsm6eOHxa9eGk3RUN/vS0uerjaRqmCRmvQccg8r4dg5eHgbRD7uKncXB08Sb2 - yU/fkTs8rC1c53shJ4Qd8JYoOGZ9nrZw1b8EN6dH1yebQEBulNbkWvNDtzzs0xVUndkRjW7v+ffz - lGTonNOchvpc6gvchDVc+T61MYtBHyWchwr3zKi61lPFCFxHODlgg+ngsXhuhp0Cv9dFxyxZBtDg - Sm3hFQUeubJY0QWu0jIUKb5OUuG8A4vehAZ6LaNKvdfxVA3UKTSYWhRgAZ7tauFSJwL5oRKJ9x3f - 1SxvQA27aDkR6yZ6TETfvYEUudRoutZHJr27SetUrBNeWk4A88uTGnigzpEcjKTumA+fCvRzWyQa - J6XduMYD5PVqJDZ+GLE47jQJ5VS8rfGaVbP5TpVf/RgjIrv5n1+myE+NWME+Y0NXnK7At14xSZ6i - 4S7NUWnQ+dAeR64MDrl4DE8KupsnSPWd68Y8vNwXmEjcQn/1mvm6bG3QYJxQ7fHFscB8zfnLp6Rw - HtW8Y+AKrijyfvUYncp6ySFa3TIShzsODFkaa3AHD7d/+HAlYRP6g3X+859fS6s0aNm111EABcnn - Mnpwf37Rr34xbNEYgB9epSv+TaJFGphejlssrvg8eyzYQBLvv6NMra6bn4MP4clgKvHQWQXL7WJO - P75H99XNiZd7WznoaHHpWm8+5d+fP3Yc7xluo4WyZb+5HGF2PwXUY6bVDdf3I0JrfI/CihfLcuA0 - KHVdMC7RHbiTejo1MLi64TilmxDMW5g+5d9+h1M5Apq/CfwfPXyw++9bCh7FElHju3nFbMlPKfrO - 24l4Q9ex6VwqC6RLCgnW1xvAUApKSAv/Pr6FRNF5C7M3Sg1nTx21HOIx34R4d7k74gjII9KFLd7W - MPpIJxJK25DxqbeH6CohgxiO++hEkFQKtI5niBd499z5Ew0m3HJxj6et9ahYrjQF3HyDHbm/XMfl - jUvVAHuz3Y29KH5c9hHCBfRwcmlesi6f6Td9QqCNKha5attN/Txn0FtKnWgNcGLusNEXJEXwTu3n - c9Oxz/daQuf7EolqJVU3FU7Zopc6aNSWZT5f8t52YL97ihSfnb07yzHdwLDw7qSQ9Xc1ubC8oueg - XTD/eawlfa5SIDUvMjFZ8MzF6dzLsFjN8dZ3rvki35oa1M+9OBalKLOZpN8Jtg9sktU7ZJVq21dg - b9CO5vR4Aot01yWUiwZHU+c7dEybhRTor20xPpVdXc2G986Q6xUJNQ/vqOperSjA833TEL30nh1f - nO8FZFP2om7J3Jw1p9JBM0n2xBZepj43IsHrc+qI+rDcA84aCg1egjtPXOI9wfIhZbGWu/YjRZXC - +Nlfehhd+ZyopyjPF7LcBIjFV4nPo3Bgk4LaBHSajWnmSKxj56A+QmGyLWJ6Z9UVb4d6Qa/7hR+F - zUtzuTvVJuhFkkSP3TVli1UoCmp97Uv0rRvqgo7RG+5JVJB9fCA5x43tEba+8qUX8gEx628HB57r - UibkFp5zoTurBbxCnFLXRCUbcqgpMArzAc9WUlUjBs8aYSGq6N4dtVgw2LlHwuhTahmiA7g42CSQ - ETEkvkqGjlXjNKFF6CmxZvjpli0W699+0T3EfTw7Ne+g58njSP4VnrHod+UI37Zb0X18oHF/qeYI - Xu62SOzcCrvJtoL1lvSgkdPJtAF/SgQNBrKq05DIRzBvGuzt1u9Lb+jb6kv5Ut5Q8OMP3tjOESxu - 2k1S5VCf4rRJwazOKYQHGEtE0YVDLAzZbiNv/euJaEpWsF7SlRZt8RyNm+9Lq5bDY3qCy3tzI5Yh - tqzv2LWHqqxUpJg6Jeb7j56gHx6c7ejMxGqUpr/zTO5M71j8hRt5ROGZqPx+645VRE2YbJWShs5V - jRf/bBcwX54VdToOdLRogAnJ7jaRGzirsTjGMIViaBJiWt+Ly0W7Swat8ycY/+L90dkRHJ7Bi1y1 - ys558/nZgPIqa+S+VFPM8M22QSsfG2r5OdRHFE1PBLdIooevLXSL8n5KKFDjhOj+vHf572ZqIR9K - Cg353dHlA+0+Qe5SWaNwtG7x0orABKmjxwTfLx+9a3xhhKLzepNz4LXVwtWljZy7c6bm0brlPBLe - CxTiJVjX81nVQRLV6KZMLdnrdyXnrrtFgGHz3f6zny/YFbC+eg3RE+Wji29DzqB5THViye6hmrsM - G5DkC6Tu/N5Uw9P7pPKD/3zxNAEz59MdJ6Dv+Rlgftr13cidnxLKz7cvtcQsd0X0CRZEv9GF7n1P - 0JnAWwVU8dqSU6l1vHDOq4WflzGQNb4ArzcehiDnKpKppR9zxl7PUFp8aryDfZqz8yb34ISnhTrH - IHMbvjwsSMoWA2+qMcmXdb/Bp5cicsX+OV9o8SzQ17Uv5OzLKhBD6VSi4a4GNAqwkU+702UEy1B7 - Y/+6Htj8vPQNLK+SRrzAmVjrpt0CP47KyIVEnit8PvsEPhys0rgarpUI8g23G7RvRs0P0Cqh+2Yl - LAtvS5S4TGNRD70F2pd7SdWhjdzFYPcRPjr7QLxujGJurFIBOZNRUnUbyvmMP9oR3fZHQA6Bqebi - WO4asEtNneonL9Ln4SbUkB57m9yC3bXjxK9potkzZ2ItocAGXysxOo7SgdzMdGZ9gaoj5FBfjXIM - nG6plEKD1Sh9MS9oE5jM02yjSugJKVz+lbe93chwaA2H5jj1gQgbaAKM+YUq4S0Ef+c7QMF5zbdR - xZ9PWQ8PD+FCjaexdLMnCz1EbCmpNbEqHswnhVA5ey4Ny8gF/JsVI/Ta/kbuzsPpRGX0JXj+7l3i - bHWs88X5fEXHruWJZh/nbiKzlAJpyDdj/d3sc+EMPQVun5BihL6Oy++l3UY+nYaSqusUIWH0LhnI - Qt0mRkIj1ltyHMBExICo6rirpvzzXUB7SUuaQ7DJWWBuHMgXTUfyoE0qgdtfhJ2FrwNJzosPlo+1 - VSCrlZEENL7qCy3aK7ylb0Ltc19XY7C+HXaQISDWms+Xbc4J8PAZPuTI3Sd9Mm0mw3gBNjG4e+AO - DyuvocvWtzur6xVwob/nELz1jFxPMe8Kr+oqwNFaNvS8PfqAN9swRcvTKUb+Hhk6PesfE638gd7k - ysuZO3gKbIS3TQgASccLJnBg+VZe9DCf046Nb/8K96X3oYUka7EYRYGBbLUDeHsY+GoSwy+G/sPe - EgxPJJ93aiEBb3r14w4fPmAWTGaj9BZ8iO50n3zh6sZG+JTk1OQuJhNCwTwi69k4xFfrK5jUkxWh - DnoS0WOSdmJtnkZIdveJOFXQ5lN9WmyUbLWS3sOPnc/nUzaiYS+N9CAeZzCnpmxDwYUtOezCLn7b - fC2hTV/6RPcahfEHPw2AfuUAKWaFVPxRpA38krFd8/HszmfuoUH96y1EfZklY3J7z4D2nEJytPYV - YN/PDsP2kpVE+ywvMDczyIBxW28JrHxr1FLtiJoo7Sl+32u29KB6w8EiHZ7uG5gv6saaIGdA4Y8f - TsRQS/RlkkWVcgm7ZcW/H37Qa+AEbJl3IgdNPnGJG0VKJ7bbxIQdlnf0j99EY3WEterSsT1Jht7l - 0fxEK5+lxzrJY0YVW0Mujw3ic2EF+I8fBsgoBpeax3elMzeTIWy4bv7Dn4laQFmH7mBKQih2U6nG - EnyhXid6Uaf5fPCDCJVLdv3tL1veU2TKk1iWVLOPYbXMz2wDVrwmFoeDeHG4wxs4+U4nN6/2Y77f - XTNYkPw1VsaIXcY8KMDDg7tg1GsPwKRHbMor/tLYVZKKf+c7ATTibk/s2C/W80ECuJ8fNdXuRuEu - r+rIwaW65Th/2FnHywc7Ad79WxE90Ac22ZdvC7EQVNQUEsXl6TUPgLrdzVSP5EM+rfgPn0pbjQsO - HSaUYtiirDdUchZ3JWOPQlfgaSdDqpePEAzPY8qBFT9oUYoZW9LDIYGJ2j9xsvLh2TXcEn5T0aem - vaCO8TslRZWke7jcWo+OUUXRkKzfu5H7+AJYHkmpIIJNm2imZoNlWAoBfr7thlj3R+tOUX+1f/wD - g6+g5XN9uznA5I8uSezl1k24Zg5i51bEcybvcyZqxgK8xPboSTls9fFoQhuEAMTE841Yn7fWsYZK - Pl1p3EwxWFJ8c+RLTA8Ej6MJ5vOnWuTG1HgsbbhGZ5vdVwCq9mHjk9Ai//FXyFLEESynPJvBFpSg - AkFJ8CNROtGxvxIwgX+hB+4m5LMFnwUUD9GXenrvdYKQx+lu5Q/EN05uzMsH5Qid4H7Cc3X4xMxe - mgD6Eqzp5TEcuql9n6+w0xw8zgeUV1Np0h5uL4I3CkewxBT5SQBZJrkkMW5jPG7aUyanG0yJa+fH - SkxvjxpdKfcgV00SK7Y/8hEA9dYkxhWM8SJFZgNA42U0DlKkz6eKRWjfNSeiNg8fzN/kVoONBzSi - Rp2eCycpLlHw9AssI/kA+rd1qeEsuNeRW9Zb6KGAj4Am+n5EwQ52NP5yf/yOmnJH876fdxmc5WGg - F3g+6P16/oB3JDz1BHLTmdUKAjoN1Z6QaOorRvc5BzbeTiMJqTrAvrITQD5cJ7PyX+xydsFfkRjl - HjXBvc57KKUlfBfrLf23stVnnms1GMchonvTlOJprALhl2/xZGcy6D+z9QRSv1fH+RSBfKGVEPzp - Iw2HDhA+Ry5YW7xiYn3xnQ1x6SzQO98PxMykrptuF9WDT8GGo2y8XX26X3cjfKFRp24hzIBFUWrC - yI4dinckrIZN8EhgvI60Ng+hnotLcnhD0OCMGkhM4h9fBCsfo3b34qsFPi4mXPUkOcgZqVgMTWU3 - x9KZxEUt5bQ6CgEKrkdC78Kt0pmP5gn6bvMiQVHaTHQ/E4ZY21t4+kh0fZitVGRq5jIlBtHcGe/y - FPjH2SZuyGTQNK5mgBo5E95gULnzltev6HCLLGJrVAbLN+0nOLSmg4XXRcjnsvExHDZNTg9yRit2 - ODsFtEQvp4W24HxCdL15sS8PtDg7L30JJ/kJX3JB8eaRlD9+bKL1/NCDMqvVDD1JgH5fD7/1rcbf - z//0yVGe04p/qeJRvvnViZjreVhuvHeFhbWq2bI5AlZuYANatQYkjLoqZ1yvO5BQLVjz1R4wb3sy - YdPikOib81XvIUEFvKNIpIdlq1VdyNQetvj8Jqu+qYZDVJtIluX8j3+MyuXVAO0aN9TgnJKxtqiv - 4LZ7nslBR308pUvIyfx92xBP7/uOgaoM0NNx5ZHrrG815Vn9RKiIzLHcXicwto6HQdi+E8xlzpbN - vm8JUFFohVENDXcGQ1sAb3nquM9fqJpsr86AMliXUVLDTzy4ob0AU7Up1dKbGS/GqEvQHMoX8SpH - dZlt7DL0i58o7M9g2tdhj8ap7OlZdr8Vq1VVRjCK9z+90s3XPEjR079gshe3jrtctvAJmu6B6WHN - dz3vTyM03s95lHIrrCaNu73lofo8xy57PP/Jl1x4HDCMeTWeX5irUcZ7NUn7MdPpT784XYlp0Doi - mOJ1ygLTjTe5MnSMl4vc9HD9fpiqByMWB7VL5B+eF6afx3+fPxMeD7run9t6jothFJgT0ZQ9rZaw - QgGYT/6ROrlqx9OtOGmg3Js3jG5aGLNtOnnol/8IqhTACUvGwROfdHi3C918pg9qQNUoHeqah44x - bd6k8pp/CDb9POdXvQcME7zp4Z6XbPbkzQg523OwoJUcm5/HVJDSl+GToOnreFjxFM7jWSCO9g2r - pcqCEoUZcqnv1UNOBZ4Uu4rEBVGPh7PL2V6fQluvI6IOJw1wkm63cPXTML+DeiWKUJLQyasRXfNf - NbRTYCIz3RzXt8/fcTfQzAOkPGPi+ZKtL2HxKIAwEkq9H5+6DF0Bfnzx1lU5WE5dEcAa2RM5QezF - ixU6yx/fS5cuzumrDDBqs+FGLjryYm4PhDegwtbH2/p8cufZl0d4v3X9uPtCt1v5owKE+W4Q2zi/ - 3In3pR7aqVPRH75QyO+O8MFFPWY8a9ny0yPLuDsQ9ZVP+tTXnAP09kHXQdF2vvofGzg2gzlm+u1d - iff7eITYL3kSYK1m9FPb48+PIjjp7vHcaQ+MtuJDGd/VFbLp1kURVKq3RjSQWF0LrKRG+bAJx9m4 - N+5Q304O2ilBQYxguXTceh7BMb08qHHhp25WhX6BIet3RM3kVzxsebeA4qkp1/wz6m098yn8+UNG - 9n11f/Hbqm9AlNDWKuZX2wDcdc+nx5pXdQ5M1ICBUbbkFqZaPAsXzwNcXauYP+WSPlcbc4Gwyz/j - 6md1VLg9a3Q6ZhWxinQPxLGcW7TiGz2ned+x+/19REEzmtQKTyNbzt8FgsZ5mUTfi1H856c5ztsk - Kvt08bLGC9D0g4k3frxzVz8mAHIeBxTL6QmwfA8j8HmZAw6C41BNSzsLqIeLS1T10uZtccw4II5M - o4Z3a+NZt6IarP4o1V2u6xonOMpQ3hY9Ua0uYkvxCExU1xomepAit5l2UYbqpyWOu7Le5yJ1Pg18 - PTtnXNLbO2a9I5nA59KYeCMXuEJ5uzuQXX2benZQuAPSewN6h+VE/Ojx7hi+KTby48Il/vK9VLP2 - nFKEky4dmw1n6+zJfyRZcDctNYbLks9IGCdQG7lOCNlu9KHaSwHUAyOgalUkFet1s4G7I0fpJST7 - bnnAVwHhHmCqPdRzt9CJPQHqoLz6PZa7AKJoyBiPCVFgYOriL/9YxxMcFbqogL3ibCPrh9eHqNl6 - 65xO4AkFP/zgRcUx+/v5n3723i/s9oI4tlDW7JF4miR27KLpC/ydTwuTWe+9o5/BNT9TvZkYm8PH - 25QtddSopY/vWJx1qYSXyVLofh4eXZ8aLQSa7pqYZtuxY/3p3sNjSaw/v3gynDOW13jAwpV/6cty - wfjHbzFvmmk+Luo3+dPjjvadu+XHh/gPwyMnX7/xnOiHFqz8ktprPmpcbqvJT/G+I5p5TvVl5moN - KrW0xVLsryX+y3pr1TNDPE95WU3n0p4gqd7PkZeOl4pdX1oNdTtoieqaWzAvYeftiqy4E7NLSNc8 - Fhag3U5xSZ58CPvlW/jZ359El3ZNN0egfP/poxU/2cQp4Apfj8SnVuC13bQgTQbZfXSI8lVZNW+C - xxE9d1kwbiYv64QUn1b9r71GycJKxYOhvYI4jhE1bGznS2tIKbgEN55qD97rqDYLGViEkRLrHNku - nwhGAlVZq7Dg0IRxPz25+sEjm9p3NdlWWv/5Das+z5crnRr4+TYbeqB7yrpuQk+w+rl4B3DdTdEu - zOBzlwb0Giegoianv0FY4DtVgTDEi4d8GZrRraeeR3U2JuevDCe8rA8Znu1uDiazgfuzaYxMgFR/ - 3IbvFf78nqJDac6m+ukg2ey3RDuvt+ax7jfg5/9H8O7pjDKtR8mltMaV78Wzr5UeaEH3ojbyNu7X - 41sZrJ2jVGPWqxtSc7H//Defp2I+QE/iYHT8qmO98lum9e0b9jV80+OKH9MlgQpY9SZVtSeu5qI+ - 9lAPzOD3/+M/vbvqddz+zp9yGVr441tk0790ZovQgMdYDMb8GW7Y33pV2pNRXATaylfrBYa1NZID - 3RlgbquIQ1+eGOMS4DqeOJNEsKoKgJkAic4gPx/hCdkBtWT32zHevZTwtjEbvAvJq2Mbd9nI+SVT - Rn6bnXV6xHcHAvtDqH8sFP3Hh8DqJ2Moipa+HKyNAgmkBtUtWfrDA6iHF5/sBzayRfIWAdrXkaNE - oh0YFmOAoLxXkDj7THGF1U+A6cLUcZM2KWOmqkgytZOQaCt+/NWXcimfqZ9NdjVu4fsKXltVIXev - MHThkTSavPJ3zIa6YUvvcz36us6FatxrFzcF4QpEw4KjirId2Pzz0xtfyKia5feKvtqtsFvjdVz1 - HpvX+h48fy2XaPdKZ/Mo7kx47T8+5vSt6YrdxJdgxcuRFbUUs4e728BPUF4JQdXass19Naiklb3W - 2176QkpjAjZRFHpowwws2d2RIbyNjPz8mbmtMk7+SteUZteNykStf77hj8+JyUFnyz56G/B+2OdE - K/smX45qefztFzG+923Fjk3YIlGoG5I4mVUJ6n6OYJFd71iKqjLumzbIUGrY+9XffrDpeT4V6Oef - 3fPjDayfV4H8Z8Zk/04fa/3rmcCw6bZUp9o1HvNeceDqD2AEyxfrk0dtoNs+AdT0zg937jn7DZ2X - +qb+cmxjxrthibKGG6hveW/ApPcowTktGrLmN12UX+4bcl87IrF2feV0rRfCxvmYVLtLTF9++XA9 - P9SwMqaPQHOWPz/N5d2nPlv05cGKhMVaH9ow9nr1CiAgtWjebt8dS+nSoI2ABmLNdtRNpt4Y8OcH - 6l5TAmrwbxkGm9eRKJxau8yfYAnX/0+C/RHpMyvKK0KRkFJFcVP2wwO0kSSDqDFndWs9LIC5nNjj - bsUzpgDXgTv1lZP0+Syq7hz0x5+/Mb4KVuTTicQKIlX9pAG3TiVZ69FozS/Uw74YLyiSnjLcNIBm - fGcxMXtkJhw/2YEc4PmrM9hAA3Zi+6HOKO/ysXhXEno+6o5k8foQWRmUCbw3/XvVC1CfZrd7wq08 - Hel9oHk+nMKnh5RTzOFJjr2O5nsYwN1Oc4l/+dT5aIXO9PNzxliwM32m1ziAYVsn1L5JpTse1SYB - 94OV41fTOh3vhsr04yvE3S4XtuSbiwfR/aVT34nqtV7aJ3A7Zjdqksplc4ZeRxjFiUFW/7/687uA - FUTURp3OWBCDDFZZko7TmzqAD50DBl/vlhDtAi6AXdskg873I+Jmza/snmUl/Bj2iyb9nXN7XwkV - +E9LwX/853/+r7VB4F/v5la81saAoZiHf/+/VoF/i//u39nr9Wss+NfYZ2Xxr//6pwXhX9+ueX+H - /z00dfHp114DJEv8X7vBv4ZmyF7/3z/9x/oH/89//F8AAAD//wMAq1OQk7oFAgA= + H4sIAAAAAAAAA6R7SbOCTJfmvn7FG9/WjpBJ8mTtmGdJBFTsFSgqoKIMCWRF//cOvdXd0RG16t7c + CIWrSZ7hGU76H//2zz//aou6PA//+vd//vWo+uFf/+373iUf8n/9+z///d/++eeff/7j9/f/urN8 + FuXlUr1uv9t/F6vXpZz/9e//cP/7nf9z07//8y+urZWQpdYDsW29s9B4EO5EW7lOIvCHbQXtut/R + 3DS3Cdus/RyO4bAhW8+J9FnCboVxkpb0uEuXYkmKKgYQsUqNvbnXF2uRG2iFeUW2x5evc4k+Z1C+ + 1YIYBvfUP9s+6MFuiuO4uiZqJ7IrGOCu7P3IpEPNaOSoMXrsSo7osZH6y31aydApvfdbTzELpJsA + CW8pnJ7e2+9tPijBeH/OhASrYzdF/hhCflcQterHRp/RTCyo3kDI3m9ZNyfiJOMeLfuxUbCgT8Nr + kbE/EINYzaXyFw1DgJLhHNPsXXb+8LwmFSjh6hEiiRu7RVVVC9sn0R6flqYVfGNGCwrsOSXHvb32 + p2biFlyT90itaLdmEx9+BFB0zaUKoEDnzKGTIdowg9gWt0pmnr+t8H6tejSmgl0P5clR8CavJqq4 + x7Sj0qJpwGPrSvy7ICVzw2sVVldGSk/pceuPnBt48i3zPeJEldUJYSvK2O8LkVoGdyimUyxX6Pua + WFWr1yKRiQKgqXuyNZKZzRN7B7Bday4Jjlnpc+2DeXhXTynZK2uCJlUabpApXET8kMY+6063BuSk + Z2OX1Mea9fz6AKesNen1+CoKkc+LCBpTKWiWBXUhos3niTMeKAke3QoxTdMUfJ3bku7K6ul3O+4Z + ALtu8Lj4JyGZLmL1wSWXSaSQhZvP366vBcbRyYmxcqV6btLRQddnolKjI4+Oc8x4xLwfHGguYCEZ + ZKNyQLrsPJrvD1AsZV87+NTJBQ2ErVHM6/06gt9+X/HG9wdYuxF4KEVEQ8nOXzZFbGBx2xT02O1I + N6rRoZRvqfmirkJCvZdv0oK5vqnJVR3vifj4+Aqsju+JGjpc9LnbmQbuxX6hRnMauyW7VBp+24pP + ouvd9MXOjXPsT9eC2s+L53Mb/R5iHGjNCGYcoXnG+2UzEyemik7dZGjMbELWC1b0MjRO95ev70sl + Uj0bJH0+WbKFpkvk0ly/VPrSbpcYr5bzlmZkVFB/dLYO+u43sTzBRpMt7SIca5lNdhuLZ1Ng5yVU + D/NKdW3Ka1GLswCxK8LEPvlasZzjW4aX6yckwbo96yzb3Z94l+UitZZNXAtyd4uw8DEl6vhihDir + cEe8p8IxnPhS6zjc7lK88PuReGe97oRy01egh01ElbeiJNw7yQDM55sn1yrVummixRmMMlqTwydW + CnG/kRe80QNxFBmYujjUFw8wiWUSaretvyTddMbf+h+F5qL5HBcJAva21Z6o4N4KwY68EM3DZBJ/ + i/p66Tghh6k/A1G2oVFzVy2y8JPsTiS9Pe+M5dKjh4DI+TifPpeCJ9XBQfR1uBBDwQedG479CH5/ + EomSSmrB+O1OhsslIzQx2cOfHG0rg1OVHg0cp9Wn4PAScDHRD91u0Rk1d0fkoN60q/Fl86I+Z+/P + GcGQzcQr1RktvSZ9cBpYJokTnfnz2TcFeHiePErSYy7EFzflGPZJFwrXJUi4Ml1ifByOPXHy1VHv + U6V/oiOpLRJtDPCnnDxGyKWUI+cps3wBK1qMUQQn6okr4gsdt8pQF7RPesTFLRkSOzxAJK3FcEX8 + qluu1gCwvihnkpAi8tk6NJ4wNY1O8snX6rnhvRv69k8aKKVf9MupP8u38S1QK0k9f/FeE+DAVz/U + 7naknodiKX/4QdJffRhSkmO4dQ61X6XGeLL0B5Rzux012PBCi1ZGH/ztv1TtFCeZpvX9gw2QFnqA + bMsW/hSnKE38hehf/OjHfTaCLXZD+Ny7bc2wfgygsq59iM/xDU1M4DSsydVAvUc31swpjQqsqDOJ + qg9XxPvDcYHPvPNoyt239SRPlgNoe+W/+at3y0neNLCUvEr20iHVBd3jPwjCZTVO90PdzYNzLSFS + FI14+kXTxfNTr3Bky4hawqR1lNWKJO/qJaX6yq/0/jG8ACIfSnJcUFDMdoY5xGPjOjY6XPyp5twG + 2q2CiPb0NgUln/kjb5N2oHFk9P40mlqFm9elGeXpG683ihR8aUaXhndH0YW6IBJ0z+IdwpWMPtuS + lQU9mvbULrCgL68ojJC3zkvq8quXzwZ908BMvJhuQap88SycRqifeUtsXCiFOEYygLNZ9BA73p1N + gn9QcDrPD7INVnbBf9KdjPPw2ISzcJkR/eIN0rK2Iaf3zUCTxD8B9FuZU3KOZ525KDUwpykpPTaF + VM9zNAmYO6XbkCOXN1roGyawrrxIjpC/au5+shT8w0PNqK/FEqXqCI/JeNGdnN5ZP0PK4fPZtMil + qw6I45qTAPcOnWlGLcGfdqc2w0519khp7P1O1OIoRD19dDTdxU7CG2ll/dWr83oHnXhMcIO2UX6k + v3rnP/Ur/uvvly8fWljJPHyLoh09IfZIps8tPmDPLAgJ2vGdtE58NuB5h4lcQVoK9jy2wo8vkbMZ + T2jaNpWCTScmxEnu23q+X4pJ3o4zhJ+LctJZeq5DrAxNRvwLefrMtC4LEuTUpCFSc38xH5sABm6V + 0XTtzcnU4beMp2X9pu5Fq2r2vqoZljyFo8FZZ2waJNXAURJnNBBX12ROjucKjhq7jLM+XNl0XVwO + vv1onLJSZt1u730gRkcIuf0mrz+PBx/j8iL5pJjckz89xnaB46Y6EEdamrp7X91so4tTQoMAtjU/ + togD3+oz4qBGKqZ1XKX427+pN/lVza54ifAJmWF4B1dJhn2lSrDZODX1Ns+8YKZAbjDy55Ro/kko + FjHZ3OBg3kWiDZyg97V+VdC0Fd3xYTI+me2z9oGbLNzG6eWrjJ+VTwuKrrjEuXNj8eOH6LG/HekR + H7HPuMmLQA+fEQl9e530xq26YbQdNbpdstDnMnN2MAlHiWpvZeqmjX4PwF4vjLjF1vAH9/DmgHCf + B3Gaj9nNcX5PkYoTmzqG0RTs03sTNApIpMTinMxVHq5g/BjiCFtsFeLNHmUw7vcDCR9gdkKxo0+0 + 6rxk5NTViNhUtAd4LWVPw8/U6YxTsgp9+/O4viQuo3l7vG34O9WpJde0GIR4akD42BINHScr5nuU + 56DEAVBfFhRdVBs5h52ofUYuTu7+9AiNHC5m4oabG0+LISJstXmD86G7tfNK5tgrPJhn7UyMb/yn + a/kU5Ns5HOi2jIjO2JUzIPPxlZZTdii4mF970o/PwVjbNbOnsYep2Qv0y3eLj5jMNzxIwThyl1os + 6Kg0E8SnXqG/evjIbXGGI7lb48pOl5rtHpEAzmbSqauc1YKdn34FjQx2yLsfs5jFyfHgV28GFUTU + n2plBOF6b8khST/+3K8+3E/fUGddtMlSwnzAhrapSSZgS++//BFdUMDT3QqlPnM7UwLJE9SRz2Hw + P6d8H0BxgBfxwkFK5rFlHJSP0KSBlby7DiePHNLjdk+NJiiSmcRkhXpXCsj+cVZ9fr9kBuDyOoSi + /HD14VHdUhBX3ZGa1ynu5k9zs4Dn8Il6xs5mopuve9jRfgo5NrzYIndtjKjyaIgfVys2ajLNkGUm + LfXbKxQ//o1+8Vbb1QFNantM4b0/zcSbfK2bC/UUgcXSghzPM0JfPtDDjz9we5PX535MWxh0g9Br + yr9q5m8cCyZVHqgxSG7N67VYQrvV0MgLd76b3eek4XKwVuFiLYYv/OL1xWdCUv7VTZb97NG52G1C + vPgyaiWTDzb9Ld989wcVU2xtc3igrRBuzuobtdxchID58EXTZ6H4QjwGZ3SQtttRSlI5oRstijGn + aWkoH7MBTSRkijyE25JcJSNA/FePQrmfzfE92qLfVlbN4Q/ePmnwkutuFq8bgGqOXRL4NtXnm37S + 4McfSmPf1fNGbEe8FpueWq/zW2fZvPUgLWKJauKtSRafkw+gs3EKuXO16ugXP+UbvejERc/4h489 + ODp3pITgspu67eTJkS5m1Nn2pGDWoV4hfkICNUedJews7HrgRFBIMr/P9bA+TAYsq0gleThIxXQ/ + WRrUhZBRq41Ctky6+ASZGoQe0fPOBt2+9YDOEk+coBN+fLlEYsBCotT2qhs9w55gTBr/P/tr8c5S + OOb2gWrh+ca++XGAaie6v/0tZv6RL/DVCyQYD1zSkJBpSGy9LoS7FOvLlx/CSTXXROvFWzene6VC + LFnfR+p4i97nZBjRsQov1FlcpWO/eJ0onWlgp1Ux7Aa9+vFVat1fH8Ts6dmDbnaY6u5zh/r7psrg + gkKeBK57Q+wSnSv8HFBAVRIGNa/QWYL5UAZE1aZPMSKzs+Rv/yTH6BaweeskOf7GI5yMmvpso2UR + KO8bT0ptuCXzYX0qYfOQt9Q2NK+b3GU6y/JqpxFjb/I+w0ak4V/8HDLe0FL7yw30Jpn+1t+uUiGF + rz4jrh7u9Zmvtivoaj8JGZXuxdxuygiZRtDT3DC4mrrobCB3lCuibfYaYuhkhXIy9W8SpdK9WOTM + jPDRbrej+IkExhJq5jhSNI0GW/xM2MDqAyz5XNLQ895okg5+Bl89Ss53KfbncaNpcNe8nNjy4+0v + q+Gm4OkUPok92k8237fbJ9SF7lMbPe9opjwOQFLRSK0CQTK/7ajCd09PiDOhtBPXeHVA7Ob4VDFq + os+uHgrQJasb8bNCqcUv3sAc529ijPxan5bD9QNXvleJMnAPtpSb/gadfA2o+7zIyTT14QcxecyJ + IVwL9tXLE1Rls1AVyyhZyLOW8FKZGXFyb66XTRiNEL7wmurHzZKwJkBn9PMb0l9/atKng8iQdiSh + 0j1Z9vxDA143I6quIUBcgf0z9K4c0J9eFZ9PIURV3B7I7oUx+9OHEpIxdc/qm03OLLbwtLMbCSrT + LNhPv//4pPrCGM1meWhhtvWA6MuH//knN1Q7jTb2ronrCXx1AnzM1bGrJRd9/RQNNsNsUV1fPbu+ + vKNW1tddEK58e118OtP4/PlhJjV6nZknaUFmxV3DbHZebHxNnxZ+/kg4n6g/E01u0J1tD8QW6Y5N + 13IUoFvdKLG+emeOpixFH/3cfP2bHZtorEsYJ4dyfC2oT6b2gRwI0bmipW9fE6Zfdw3Ow31DXHh1 + Ov1AtMJaZw8kxOIu+fKNBn3zI5THg+EvvsoWkJXzhfif8e5/9V2FrkcjJKrdUDTKmRnDoxciEvei + 0s0wIgOEY0tHWtk0WaTLaEB9tUZCuJ3i96LEJgCPFsTUlLabxeAAeCyHfBQ3TZQsw00JQFrDjRS1 + YRTT/Z0GUFSpQc0kjpJlN+8i9N3vUDZjpRY2RWzJSLya1J09teOK7a5Hn5JTxp6gtFv4960Cx7YG + oo+iUwvHKQhBPi6H8LFLK31pMib/+tOwErZcPa+tt4QvWX0l2txZPn2lqQajXdxJIHOHbjkqeQmf + 8sVG8VVWSHjW9xi2a8UlO/qSO1beqhH6W7YJEa/e2WRMU4+BG7tv/9XqpUghQ13Bn8JpGzb18hD0 + 80/vUSMDU1+i+mih6iH3xEnSvGj3q+iGv3qM+N/8mo5ZcYDz2bao+dbyepEGLsLOJE5/17nKnT7Y + eLdnqu03n2I4y+sGUrwKibWLpXoeN54GeIYdOX/5GP9pWgP2aYnG5jJ96nlzDNJfPYzilx9QItsK + TAt+0xQHuj991wPZvAmod9U+9fTzB7urBORo80d92EpbB06mX43T3Y0SwTmtFjiWYNFr/fU/5vMm + RvG6uIayJ3fd41HdDlhrFJUU8gKMapqngXm8atQKb0033y/JhL/3U81aDJ0djlqGX0G1HlEtvRkV + jSbGifSqQvn1PqP+ds4FJDUvg4auu/PnD8NnqGsnJvp7vUbzMYiln/7708/LVTiOgN+iR93BKouZ + VKWDnJjgn3/nL2i/ieDrf4Xwkut61ut1CRscWtTp06pYdhFIv/r++jnARjHqe/jiJTE6Lf7zL2Gf + VWW4WvIX++XXJrHoKeSsJU16kFGFntL1TPRz0/rLw9r1cFtoTrWP6ibiaRVW8Li9X3/+bX/MkhT0 + IdTJVitZMcdyIAEe5IGaUy8mvWWPIxjECqhaVpbPq/1goJfRWsS347YWr6FSwX2bvL96tq/Hh+Cf + Zbco1r/+3ona7pjDzw86HQ+c3hu3TwXH0dmQmL25ZLwK1x7w4clRaxdnHd/dkxg1wSalzieOusVo + zQAK+/6iWmT0+jTOrxKZTkTodS2eklGdZAFNLnuS8Jrcu6/+5WC9MxSyK/oQLaCV0UbswzD8vAZF + 5xpVV0DhpJgaS0/15cB2Cnz4w0BV9xQWTOQOCpzW3jyiaK5Z99VH8i/fXds0df4FnYW+9RxyIcFo + /ukhb52V9KvviqG7FxF89cv45XfF9Na9BWkULuOP7/z0PoxBtCMu3es+tz227Z+fXT7gUX/xrwXR + vUnUEbDls4//zOC8QT0Nl9xm0wML3u//qd0UWT1hGwC+/D2cI21Jpm1aCPAuU4Oc9tmDLXVXWvJw + ODzG0b6bSJT7ewjf/KCKZD+7AXfPGDJFiELY4mfBjgl+gpvcLWIx2f/6250DPzwoPe/NlhXgXPq6 + 9tSP5hrRKk5jcLhNQvKvvvjrj8nBO4Wctra75euPAg6UhuivbcfG1Vb/YEFJBXrVOgF17c4OwCyq + BzEtbvR7u/UN+f7iN198UPW+6HEEDy1WSbjRO8S8rBthsWvn+/xS957qQvvFn9ruZ99VX78Gu8Yh + Ifa33/SasLvBMZdqqnxmlPRqez2A2Dod2Z7jG5te2WZBJexm8uNng263PbynIKSHb33MsWxIsD83 + KiHna5NMm9pYoFFWEt0OjfPnJ/3Ng5Tiw+vDz987XD6Y/OK/RDq74V6dLarV2SMZXe+doe9+jGP/ + eHfzLqAe+vEzqyM8+s0T4Mvnw1Epi27xjtWE2i3nkCM/6/Wi6HsLf+dVRNXn2u/RpV7Bzw/Rm9BA + /H7Heiz1F0w0Kry6yZikERJrOP3xuYlX32eUxJJOLF9Uat7OsACCEFXkEO1r/2++9bgU0XcektWM + XKYYnbKPScOdovoc+O6CNnaUU/PoKgV7hyhAXabopKytMfnxF/nIl2xcSVqizyRRJvzlG3/8d1YU + xYHv89ALdCGbwHcnuG7uR6okeoWm4CkoqG2zLJx/enlbnwxZF5eEeJ7s1+OXzyHwhmKUv/7NJ1g9 + JbAv5mV8f/0/Po/GD7qAolFTWVM0hpvQQL3KrFDWo5HNh/XujC7nl/bNj4LNcjql8NuvQNI0Nvs7 + V0Hz7nEm+u3Isf5QtA76zUvMo4n9SUD2BD99sr7uJH/O3tUZbw7X7Yi+/j9LSjEERRpacsCnZz0F + BypAX78JsZbN0tHVbpfDV78SV40s1OvJ24N7P75HbuVK3axtxhLkTumpNRhcMvVencIPD/zH0Cbd + b55ZnoQ2hHZ0i+WnjwUhrr73p0n/9U9gt7gyDd5U87lHGGTQnrcj0blrgqjweZ/hi0ckEFWXiYs5 + H6DcMzN8oqbVaay1JXz93lCKbxybl1HJsbqyUuqO9tFvP7f8AKVWUeL++ks1VhJeniuH2FdFqbmv + HscvpalHpEZHfTl96gyHqKyI5baItSZeDLjyo0p+fII1/VVDbFVPYeFYYzK4VtHC5M5PkoA71eyo + 0wz2zBqpU7UJW+xblGH52pFvfAlqv/4ZxGgP4eerR4dv/kMRmyIhfMjXTD4nipx12ZUoGBr09V9k + cK/Xiho2G3RhPI1PWF0XYVyb91Gfi9lXgEijQz3t7Cast7YN+s5DyW6TvP1hKOQzerTLQJ34lqLZ + Pdw5bO8gJMeTXyXUZqyCtTtZxN7ba/1tzpsPaGraUS0kQzfUdjNhCUaP6H6rF5OzbyW45puGmJfF + SGaLqDEA25TUcNuu7pWu8eB/rd9A/LFbnVG4rkyi1ZlZCK9bWkIrsFV4jdmetQXWz/irz0kip4u/ + 3HfJAaN149Nr4979mSTOBDs3NP7mbfPmaKSg3jddiOQF0Lx9rVbw9auIJUxVN6qqa8lZsjuRIH16 + hajNbMLWzTCp896JbNid8QFdsvuVugz2xZKL/QT/+p0K+B//7f/hRAH/X58o+Di9RpRK0hnPaBDD + XliXxLlsDF1cZFqia/C6UE/6AJquq2WCaMlXYxNuKjYj/T1iccxSmreOUojmRXnie3dJqXdB21p8 + wcIB2bzYWBWRqnNUPAmoe2gh1ZlpFPMrTQEPKhqoeVyOSDj1YwSmMMZh4hosoYv8OoPPvSNSxPPY + LXa50zbC8d5Twyw6tMh7OQK2TXmqT8vszwcOCah1SqDkXZz9cec0LbSSsaGxbYWIucUtx+Psv4gt + yypiyacVQCqVHc2VTaf30svLYatkLtmn4qugnjzFaJfk3si7vd6NbOsv0LLwTZVJsQu2U9cxXIfm + TcvtxfC5dj9kyF0uLdlz+9jnp+OzgpUWUhpeU42Jt8LKYbw1KY35dZSIBT60MJKXTWxUrfVlTB0Z + +D7o6SlW3t28kl4TjobvxGvddx1V440MQxo55Pw8lIzFsmnh6u1RqimfJ6K7Z2/BR47ulPj+vuC8 + 2yzjZBFTqlwFjk2w0QOIxF1IAhvriehSNYOQtlood/qEunATGTgPRUp8rurRPLXLAQedvSZahrds + mfOYw1obluGS4QGx53vHQbcNSChcdow94zSpcKxrNg0K7VmI12wO8Pv9zmj8XR9nV7mFd604hK8B + sWIOAnyGZ5VF4WZ3V3VOeeRnWJc3mdiXOKvZThVjHJwvIYnvB76bjLPjgfVMSchm8ZYwVX0acAo/ + V2qkQtVxbRKFeFKXidrXR4d++QXPKo9oto3eBduqWgSFGInUk0u7HgR168AuyTyaf19PUXrkwA/D + G9GO9N3NQalGeD7GLg3f+bEY5/jWb5JO39NtIr2KhbOfAuYjeyb2OzgyodvfDby9Q0sLKdjoI9Hi + HpdpEFC1XWO/L61+BYfd4JPjLjsV4i8fy1W9pt6TXRB/Mc8VvOFh0Uu2o8WShsIT5K1YEi+Ctb6E + 49yCwNqWHt1x8OnxCALcc0ml++do6VzVhwuo2mB+66tJ2rpJP9hT7hbd992DLd3bM+BFrJIqpdsW + b/7OB7io8hdxY+Vds+EsLnC+OAk9ilLMeN+7RbA14xPRRq7vWHInDgjyNSdmKtqJ6N+XA355852a + l4joXGygBsZH2VBLTW+dqK4zAfeyOdItcX0kOqtHC8V0Nkn0UrNOsDe9g16XgRCimqouKl9F121D + Qk6a9Sm+9a5AeO5TsovXbsHdHiDgt+UcSSq8lJo3t+0HXPw4EmPLJZ2I7HgBb7EfRF9Fji9YT93D + 2+WOxuX1bpEgfdAZ7PubULd6N8nUDb4H56fEEc8xRsaidaVhVKcSsQZ5rKdu0B1I3gYjWn8/FWIm + Br28Ma5qCIlY1Zz1MUIsxVI1grTFaDluyxx+8S63TwmxqKIH+bCjPvV76VZP92AlwwDdaSz0ra7P + 810J4GDDZyQ0K+olvWn5JlbePbUET+2YmB1DrCnZjRxPbs3mxfHi3/1ESS6DLyTBOwdX4zuiz6KS + cOtG03C5uq9HKS22PmMnMYdCLQoSZchIBLe/WMCvvZyEVrH3J5PePXwx74+wuYwxEoNcCfA2997U + VktZp5MSlLCuTz61Mp2wQUxHByTXU0cQBAMN5U7P0Y1/SSQMspS1W1/qIQ95Sv2oRMnrg/IPjGr9 + GadiUHzu5a5u8LhyDbGPe4ktylEccWxLx/CFqqs/HQUjxo9B0uiFT3aM00AKYHe1A7qFvYKW250t + uCPeTNWZTDobb1yFf+u73mfCxnuutpDatCHb8KMX8/nQpuANJA1FDlfJMrtEgVe3DKNwSyo0i+nT + g2rU1tSvNzs087lvIcttFRIbaeJzoZUsUK9ahybMNBLuLecBrKPLhZhnzdeXba1N+N3MDjl2V1/n + H1YmgeV+lHF9bC7+XKjXBWjsMBJ4J79eNNF+YuTfNvSI+bjjN70ugXKO9tT2i1M3DNUtw7KzDolz + GJWCFx4bgKm4R3S7e6Q+dambyT98spLPC01apmc42mwnek2Ktlji8/aDhuvaI9YxTf3F5GkGGKcl + 3cvx3A3X8xLh7aRYJH0FbzR9TpWDpiu3JTtusrvp/Q4zZPlNRc3HTfN5wwjhD2+Ubtd1/HriP1iy + 2JN6QsjVwxafPNQW+Ye4D7Ov2bg4KW4Nd02sV5gUvK3snliO2DZ85rzfLe5OXcF6fbN+++ULRStJ + IFrPw4gCjuiiQzY3rNd1SQ1fZGz2VvMBPgURiRFFCM2HQe3xs3Abkp/Duy6+yysAG1OVJM9HWUxi + kVToG3/qrI2iWAwWB9hOlPKX/4UgHvMSLBRe6amlGeuHK2fg7GIpJLFa3/8e/1tQsbK/joug16Ji + +xoY8vpE/UP89Gfu2ipglbeInt6c48920Yx4XG8Nun8666S7mlGIrZwk1L0ddv6k13IMfGTOI8QL + Sx43HVI46EZO4qpo0LRZNjGczEtM9mt16//h70xKj/pPpLBFU94pNA9LIsHOfDKmbZj8i+8o5Vnf + Le3nE6M4u35G1McntKxD7IBpW3ta2jcjETTlfcDOEmU0+eFlfXoGWJxTnZ5Wz2M9K/oJYNuynIbH + OitY/rqVWEfHczgmeV1P09NS8Hq/H4i9b4OEBQ2p0ArfR6LsplvdS9r+icuGXYnmTYX/iy/iOaWj + poFbf/ruJ7i5caAWfRW6uFeOBlA2xET/TgsmPdpFWLSaA80+ccdmcRMDtgKXJ4FhSQVrxb0MtitG + dKtNjT/vtxsOutU0hg/p8fCn/JQBuHdpT4z+c9eZVt4mcPZPNzw5+kef/QfL4RKOCzG4dJuw2M8A + Hjtmj+t1LKOF48wFbwPTp5fQgI6xzg8RoXxMFAL7jh4jrcfTVdhSQomFxNW27yHYt2fqV90WLY91 + fUaPZuRDFjw8NInJO4Or90Hhft64bJlYNAH7qAY1mo1Q9/1rDOAbX6LsvBOal6KO//iC090I4vP8 + MsJ8CjoS8uzq0+esA5gzp1Hz9KzQ/GmUJ97E1TWUxJzqQ6aJK0B+tQlnFNBurKjIgVjHj3FjqoW+ + hJ7BQWZGGk2stvOpQ+YKBiv4hOOtsnXx85o/cB1dCG/tKiumPXqHwJ/i1diz/bZgIn+SZBudKE0O + 1Sdhu0S3sLtc25G/0GO9bIRPioqhOoTP0wTJD6/kOLt8aHS0N8WC3kUE+y7+zv7eXfF+PW4TyJp3 + HmdTtPT3rX078OPLerZaOvoujwDxphRGsLFeLJpIGvTl5yMsUalPfPt5Ip7TOkpohup2c41iXOTP + lpjz5o16K9xYAAxUcpgOB0TNi/MEfu3kZDcyG4nrU/EEuZCAutpjYYww5EHuKJhc58Cql0PMDrBt + 55zGUpF1rESrMySit6Pmoq269+5oOBBvzgLZjk6oC08/zjATHOUvfyduOvebFUBB7OvDZ0My3iUI + 8/2G/Pj70pjOGUyDyiM6rpe6yck6Qla+TajS8PU3//QQNqSZ/vipeHg7Lbi20xJ/IZui/5w+Dlri + l0uCLPrUI1Y2FkTJsqX+fntA/Uu4lJu3KuZUK+VtwdhpnYF+fwKxOhyipUr7HspCW5Gg9VzETZ4s + yX28m6g6Mpt9+YCDTe4o0qD13ozdnzgGLl1mav74ZXP+VMjbpNGXX/uIPwzqiFrJ2lBVb5ZugpeY + AbxEk6g+Z3YTelQhJJn5+usvff96hjBJ5PqLXzclHX7+8DTkstuIWJTzIUjW/KTp+johdnk6EeiK + 9p1Qd0m3IIAYYjru6ZevduwI7xae4Ezk+NB1X3yn0QffxWcUcmh1SvpUbM74zEFM957f67Nqvhz0 + rNY1CSTW1EuCLhWY51qi9pY03cLM0wdn4on7q5+vPilBLeSYKsa86IPerDV4jmZM1KSc0fLllwiM + 1CC79Vnr+P095uB+nXZUVd6VP8mrmwOGaeOxsq2Rtc7oALTx9hJKu3XDZnndSPDWGRDlV38aO1Ty + V0/8XX/v77EA8vqEx3U3kmR5PocKgo1/oVal0GQ4KtUE5SQXRFmn124uxCiH00ufw2WXqB3/7pb+ + 13/D1Zfvje+HmaIv/tPDtNV04TCGJdh48YjSXwlifSyVgB/VjVhrbccm+cQOoPdjRwyRb+ohrpiC + w8qXws0ziTp2uD5X0NzClmq75N5N7y2K0WmTBVQ9X5RuRrK9gnfxkql5X3v1fOruFd7mzpsm7ckt + 5kVYZXCka4l6Z6Esvv15hdiNF4m9fEbEENuMWMfJavxsIr3mW0MaoYezS674MRbs259Rom+P5CoJ + MRo7Yx9jvN4p4bKUElr4nXLD8qO7EPciO2h8NNEBH3dHh5KPWqFZb9YKelveMZRfp6Zj5dZL0fCm + HfVWr3OxvHfNQf7q4XB4SIU/U1U6yOB7AnHX3ZOxhyRY0B5u+cjdJhUxrGIOVWBcaC75XDEt/XWF + sGAz4udFziZ1Vg8g8UL0x6cmI36e8f6Z+394KmYrQcDBknYheqIbY8Pe/Pz4IVFt0/OnrT/18Dkl + e6I/8F0fH+PxA8u8lYnjcffvieF1BF+9Hq5t7dZN+LaNYY3djurrMtBp1LsKCON0pBmbKvbDO9jc + /YgoeTuhrz6R0I9fqtds1j+Dk2s/vRFO3ZTqU0rlFMlsRER7ebdkem9ZjM0tsokvBSd9KrvTgsIj + Z1CvlrY6t/THFQy+IZOg7Jd6vMqbHoTt7P/quZ7Uyy3Fw1Y9h693ILLp5a4qJG/5km5rVCRT4x96 + KA/eSMwOPvp8LvMzxB/BJEFGmc7Yqg/h3l1Tat0Wv+AfvKkg/hN5NKjlQzevNbVCSRPWpHTITV/u + uduiXh0v4aw3Sz1/+bVcp1cactabsNku+h5eG84ne3pRO3FSgjMY4c4j2+vy7P70aNr2E1GO9iZZ + FjWVgLf2ESVJ4RRCz0krYDdRJL/86crN+8v/7HnEeVN1i5dcPcQeDkd27n0pxkevlXjVGj7VL6FZ + zyeWtHDibULcolS6CWeJB97k6z/+980vXsBdtolD+ckubMCnq4zW9/JNzN2BsLnbCBPmP7FHwseu + qidx5G7Aye2W7qXHQ1/6yHBw0Oy24QgHs57cbSb/xZ/EWyPh5pmTkR6DP7LVCdCgforVBuNDSVRu + enUTd2Yj4OgTheVhnxbz6H7OKH7eHVI4Jqu/+Q5Aj7o+cko/JV+8btCQxk4oZDpBjN/YMfr6TeR6 + uQOa2ucmwIO6GagR2S//zee6AY9B1ohiCvdkaOQ3oKGSNz+8YfScnzJEY48R7+rONXWpmsMpK5Tx + pFleIU7NHIODM/v7PE0xYWPxgPO1iDi3fZBw90P0hMxz4nCllHzXbu5DCZd3eaXOc+aS4eCkEj4c + NIf4pqch/joV8c9/+faTDC11ux1hORVoXN9ngsQ+nkqcLtcd0c4v2Z/lxAQ4mq1JnDOXshfJWgWO + 9vMV9tXW839+ElyyS0I9s33WU9gpDbYNrBDjIxx8psazhJRjbn77VcvmTVZJmBV5EvbqZ/JnNDkf + 8MPgRpPBaRjdS42EZenhk2wzVN3C2lIGFsXNuHrnYjJ654nDHJFvNBzdmDFOWCxAxy0QB1yPCWfY + SSBIN4mEfCrUIx4iBb78Lqy+zzNE5SqCcNoeaNobckFnKY/gGjwu4Ro/xq+etrVfvyXZewv18nbl + ALix3o1yp0eMa85VhSWhqKkaRgPrbw+OQ6eXOo8425Fk2exwBTfncCCGsrXZuDzdEbKLodDjfP4g + Nuy37d/+t1/8Z7pZcXg5yBYNL7fMnzwulwEsfkO0Z7Pp6I+vHrI7DtctJN38HHIJhe70JAZ7zB17 + Gg8NjE9m/dbbjY91VwI26pQaUVQgRs13Bg92fNIfHjNP+5xlt1w9ib46AZunVj7A7RI+qREm4C+v + Jc2RcneelKwltea3t/KMjtUh/fFRNjUi/4H1/fymhvC61aySyxiY4CmjTo7PbjgWvAz+U7sS5Wa1 + /ryS6IRI40Q0CWMxmZpUykEgdKBWJPX+51hWIeRvzQ0307pDc1whBb5+Bf3tf69Hu//sN59173cc + XCbjr5/pnlvV/Kl735Bj3zpqlHBgM/EvMXp6zY6ks2T64nL8hHKuOwNNq8uYjKVXan/+VxbJfN03 + qZSBj7kLzX+f3z7nAIRj3YdHJTr49FRaE3zxbHyql30yD6ewB61Gd+qy2e5en8MgoOdox0Q9X24d + e2WWAq9Y2xIjFbR6uTiKAMpTE0buq5eW3L1rSPKtOqTHBuvzzN0DQNtLQe1oM6FBDECBe9NW33qk + rC+crYd2eQCE8Hv0/YXeIYRv/ZDAlXV/Eke4IRWXM9V3qZW02hV/f1eyJ6Ow1naIDWrz+a03BFfW + dc5RKwUK9VSQrx+BWImEM+Lmi0LL/vxMWOu8J/jyyT892RVvvkV8fA5IiKZV/dPnoNqaRgLTt2vW + 4RcH1v6oE2sunnovr24ePg/Dk2iHu1mL1teCcPfsFB77gRTc5n18wmR1CjXX6uCPjb1v4cNnO3Ih + boeGozQ9sTgfdOIlZCkGR4YGpQl3I/HHnPWJrn1At0vwpIZxOHezy7QSgt3+SqI59BMmH0QNmoch + hejqHZJ2MNoVfP2PEPrNoxhKXgrh51+qF/PCmP9uzogd7QMJXsXod/Sk5ejnx5hKGHTs58eMl8+D + 2AebQ6yz1SeGu5LQUy6d0Pzls6jRbyd6OVas6z0wNXzIpYycv3qPWS9bQraxVqhzSXDCRiAfqCYY + iSJJx3q5O1hAB4Wuw3k3mwU7u2YDE9zOX3+uKRav+QC8J8mgX/ysebx7LDCXBqKn8BrrNEzr6E+/ + EzPk2WDVpSD3RYmJefPXqFPXEYfvl0IIhVuifecrWwPdVydtZLOoFHymiQB429+pfXJr1H/7258f + KqipUs8tKgGddk1IrkL+qcfn81HheW3YJOZinS3vXixBZj0aJd4ukDC+3hLYj1VAfvO1WavuAnxq + Xfj5uQVfeJsSvn5sKL/5gC0avZQwkodNCtOr0GJ2rQVvNbb//PhF1nYxHFfqYeS4dCiYOm4VdBWP + HrXR6VNM3N5tQMe7Ffn1K5G/gAelSLdf/5Zj0+aaRfCdz4yiLN/Rcn0Pspihfqal+HLRBBs/QIri + 5t8TRD6abg9OkJdb+yLuczn5A5LJCnVvqSTeMlx8FtnnEBXg2yHr5FvXu3tdkX/9UvvOc9htjUKI + dx8pfEmvsR733RxjVJ5f4fecWPLVDwDtLUbhcundhHpaVcIhnM/fz1O6Jb15OdIGawy//kIy+6rV + QDa9NGp3K9bNXz4Iy9gbRN1ca38KRgxwe67tccpQU0yStm/k/eT0JI0ixNim9QS0D5uABIVmFeJP + X554kxCbw1Uxe6vNAfLN4zxKLp3Rt34UkG2t/80TikqyrBamVxvQcv58ku+8TkJk82Aj1yGz6KNN + 0EI8Je9xI0OXDFEpxEAd/KBh2Dm++JtnxSF1RxTPYd2LRXLDH+/TfOs7ToSVHsZoLRw2oZR1N39s + TVwCT6oL8ZXilbC3bgiwU1U6avLYoXGO2+8vwDiPJCkR9bm+0Ah9vz9kgsLr8/CJbz//eDymeZtM + shWnuO0wHrkv3s9iwCkw3p5piOQVh5bcX4WIj8tg3EX9QafDeT39ff71VvtouoRXA6prHtKvnmQU + 70sOKEhXug8cHw3O9V7KPz1tJ0Gjv4m/j6X3VRbJ9kGfCZNURwD9M7nEL1S1m+bDewG1kGLqvrlW + F4fNUoK53dih3E6XepbmloObuUbUkpPDV4+gCAJlCkieDe9uiFeh9+c/7q91VUzWoQ5w6dgRCZ8r + qreK8vhsdi0/jJv0PLOPwfIQ6m7MqdZrEXp86x0fDopDjtIrrMfv/GTDrEon3nAwEu47P0KuJnbU + 6UdO74rwU/38SbL9+onzamxLFOAyJ9b+ZXfiVByfcLoFaxJe04pNW7nn/uYhpyN2fTHqVUXKD1ZB + t8cq6ZZFPUswRcWduBGSkyUK1Sfkg3Qaxa/fsVSPqYKXDpSm2rruZnw6yuhJznei3Q/7Tiw39whn + LdPDwRlq1DM3HuHr143gv0g9ba+n/v/nRIHwX58oWI3u63sm7JXMbG8EULdPGm72slTPTh2UMGX+ + QLXn+eX3t7BZweGRhtTJq72+0IF8QGlTe1z3lwUtHaEl7OWkoaSpwppvUbYgdN4XlGgo0sUdF1iQ + sNuaOtvXoE92uTQYC3NDXGvtICF33wKsYk8O0amYu9691B9UnYItue6ENVre6+qDlHQd0a2wyF1/ + Wd08UJ1uGiWaCMVw4XwB+CgXQpyrH384uEYORXjP6Y5kd9Rz0cqDDf9ghOCEormZjhrediil/rFw + GVf17gESeqOhcBRdNKgWCtGT6A8aTopSC6Wtr+TzBUH4NgwRTQ/3/sTX2tBpWBGv47qj0UIiBhWJ + YdsXC9TBCBfoLGoku0qf1ARrkJx9iVrjgNlEWWygWzXvyNmXAsa48z6ARgeT5gJtiklX8wxLK0Kp + 2z5fxVt5zhEWivJMiI3Y9/5LCMGZL6kbySmay5hpOGjrG1X96oj4cL0f8Xi3T+OG3V/1/PkoEuQx + dyYe3YxsCgoXIHZmm9qjIhS/63jgs5wajaZ3/KdLPvikT08Ss9jQBxTOEm7d80y32l7sltk9HZBW + DDxRTibUUywWIfSHNYQLOxKfG4yPAryTHelhdbr7nDOiCour252cfPnesXiZU8wH+fN7wqBLHoeN + nwHqep24cDSYAPd5hdebbUi08q4hcR7eEfTh+kJ19JHr/j6cDaRM6ZMeTPVRCElZHfBuY7NQuz53 + 3eBfIwUXXnClu43sJGOwRAay9ZVKt3go/CVetRkgp5OoX+90XawczoHGSRSiTx9aMB2mM/ZdR6WH + Tc0KunHqDyQsTMaVW6cFB5vMwro2RSS+3q1aJIdXD81rvaNqnuzqxU9ugGORU6gaX6SCZbfyAMab + a8hhaRfEs4fpYUNzFno4im8kzJvogLXOutCduPY79nhRCz4oVsjhsewZ7yqtjDzL2NCit2/FqPlb + C8ZpGujBtKJk0thKRnstdkk4mySZepNbQIk+exq6NZdMw57vsbP0DvXTm8Tm7TXh8O1qD8TVjEmf + H3gpcfpsbJo12UEX5NqR4H64zH/5sLDTwYCje8zD2Xqt9QVPNw+rZ+VFLyRa18snjCTsu55KyZz5 + nUC9W4xXD+4SouONQ+y3P+YjFIl6SKqC273FCf1P0q5kS1lYCT8QC5kkyZJJQKYgIOIOEFEQkSlA + nv4e+r/Lu7tLT3fbEKrqGyoprJtszFNonCgnhnMM7bXA+A5vDR0Mp38DlG089rO4zWfLOM+oB4GM + U+/raawhOyUsY9XDPpAdINQiA+Eev/jxULhhGU4Lg87ztBH13toOe22WBr5+bIc9MNFo8X6LjXr6 + dXz6PHp0cxrYw0x7sjNfClw0510A0fv07v0X1UOw1sHVhsutuvqI3SKNPT+GXjLjqCeO1T+HFSz+ + Gwo3JyfyRVbzlUZrAeou1LAxbCgf49aJwSo1GfEZWcjHPf9hrL3gzBh1B6ibVAa8m+V55s4/BXAu + DiWIsyHH/mz7YEqOWoZWBlxnbrsmA/sq5BTo2RP6aJvkiO8WWIKHxbQzvM2tQ1CzGmj/jC+tz9Gl + eK57vWu6GbXC15k04yCD14/vfCQHJ4eH1OvApjZHksdVSpe9/qJs85UZoQloa6UMlhRaZT7Hkthp + y8j+VAiam4RVjwNgWeqYgRMiDTFd/HaIf73bsEyvFrFjr9g7NDELK3WJSSnXSr4eX/EbsSLR/IPJ + d/Tnz7YKSfP0fOF5amthnV4BfCy/hJz3+rXnr4Hcyk9ICWSH8vReGtCB/IvgP3wIsJjAoY4KbDKr + lW/PmytC+7p55KRSN/rh2WNB7bYKPu/1ZyXfWkW3uzoT36g7Ogi5EcJZya25DpkPELbpY6DiBEri + jVsN1jE9yrCGQYhzUdVrdjTNCvF5UeBUGTu6Xn9qAZ3rM5+PvjQ50+Mt2hKfUwufeEcexgIvBvoa + 9x+5xXabr4GPF9Dyhky8CvY11dy1QGfGyIj1jUxn1U9jAGcvFbHvlMowF/e2kcLGeviCfz8MFCdk + hHj+9eSuHD7O8h6VBAnYhlhlQ0ujb/OVoudXD8kzHy/R1kRxgNBc3v2ujep8e14lG57L7Izz0ZRz + XnVOOqq7QCNeB4+AxmufQkMWj34L6xJwf8/rcMS+XyVyu+O31MDqXX4wfr9bSuvbO0YWjiOc/qIZ + CKCVVTTON3VGjnPKhUMMINzrL76zhfyHLx3KfNbF5t22NbZCdxelhyUhuf0ZKXk6Dx5ufvsj+LLG + YNuOhQXBYQ5xvKpJLTydK4u295fH+mg+AG0/SoOs/KqQbD0mwzrfev0vX3E09+bAXcAvhCg/vUn2 + Y8Joj5cYtY6W/NWDnJZDJKJX4pyI75W/iC3LXofFFDbE6V1tEHTGlKGz8Ctxnvnd4Qr9rKKFVJQE + 67oBOiqZBK8vmJGrO4s5jd7QBROaGp9/bG296d2+53gbLVzQBoHl2wUz+qr6jKOlJxG9E736+0wc + rXcj/vAMApSX7ow17mM5C61ACCu+ZPd6cxjWSdwkZMRNge2VHYZRQNYI65MnkmfzqOuF6SwfFVyk + Ef9r19Eg48hC80UvSORaB7o6yqEEzId/+Awvdw4pYL0hX0I2cTVk1UTGufX3PHDc7zto3s1owZ2v + +WL9QA75ncwEgVi+4OB+KgbaGFkJ/Tw8Eme6SA6RvuEGnatFiHPqY422nFohoecZYqSCB7hJqCwE + h/uFnD7PY02PZiD+4dPfeuTr9Wf/Wy9y96RfvrGdHsLB/GbzMq7EWS63SwL6Q4iJY1fKzheOEAav + 1CQmyztgM75hBbVsm3327V7oVjVVDIoFWuRaP1ewXQ7ARp23juSZfd8Df1FODPQOgbPzA+DMIC4r + GBzTD7mtfJVv8RRU8G89T0Hzzjc+gSmA0fT0hRiv+eINtgS+l0XFMSvKA/20cQKeEclnVMI32Gyt + k2HjfsFfvDubyVszwtvVx0oRHXO6+oiBTycLfPj4vQFxv3SByN+s+fheuGGP7xaWwjz5bOaqA32M + bQ+TK2rJeXpV2iKffBZq0elIXE9k6+1hyva/9Th/Wy1aE3Pt4exlIjELm6u3LEOVxC2miRX98Rro + sN4lUBlbTVwLAUC53C7gR1BMEgx8oi2ee2th3TWEKDsebkvfWwCIyuMvHms6vFIIk1/8IMXh6jor + qLwGgli9zFw4P+n4KqxUMsbAJ3LPbzktxjeL7OvizeXxVA4T8t4MYFbOIdrZO0QDihcLcYFuz4s4 + 0mh6vn4+7OnHIWdbf0a9acYl0lpa+Ef/IDorft56KVjJgjHmU4f88a2SjiUuLvQ8cD0kCXgjfPfX + g0QofXWSDx8WbP/xq8XPTwsQS38jXm6kdE6z43ik5z4gSum3NenVHwsvV+OLT322RXQpgQ6/U6kR + D3ZjPh0rZUG9i815u7e29sevAZ6H3hd+8jYsOO2Cf8/H2PnfKiphBx7d4W+9c7ApPzGDS84FRP0U + WsTlXLjA9+WVEif6HEC/SIMO/+qBZYxuPe36CiqpnJJ8cM1c4H9iD3e+vuPrKyddLXXw4ukWVsGN + iabNKGUYLmcH6/nlkrN5eG1gdy5XYg5AqwVLChv4EGOHXCrfj6hw3lp0XKBL7u/lWrPoHsqweTLb + zM5IA+yTqRloBpecnPDvl29ce6ykeTqd5+3EjfVKrMMo+VGUEjPDKd2yjHtDxrBcEoCvnvN5lzKg + KlcFG6Qz9446L0ELJxE5B4cn2Oj5YcG3KJbkERonsJT+y0Y7v52ZzWacNbsGIgrs64ivJ3oDfM1O + BlS/uk8U732o17LxRyi7cCXxw521JU7UDOrqo8TKPRXpNpaPHhpsMJHItMZ69tS7gcpULrDlfE/R + sjTfUQoMeSWhxumAMokxwx2fd73agcXNFQa2vC7jLLUuwxxi1oZgmLWZEwKSk9PQtfB2ujnYKZM+ + 35r66kJLuBKi7nrqL37Aru/+8j9aovQrSd/ylGM1bo18u9niBs/M3SBu9fMjelWGFN7E+eBLlcZR + snmDC/jnesP+AegDu4RKCPWJpXiPn5x1i3gEt8fthy3p7IA/Pgbmi1EQ1VsCykoPv4Snc8X5R77o + tPXBlS3IS38mZnM6UhrqJx3gOWGwtfOboREaF3mRxPsH6CsON1iLDu32xPur/fg5KyqZHp5W70OU + ezSB6S/f6CcJiXdXjJyUmeX/i887/4q0SVjvPaCP/rkfyv7l9KuJC4xu1QUnlfBw1h4ULXI6Pvzj + z9HyyVAINd7S8aU61/lwAq8KfHB8w6dr0zqTUcs9qpfgTc7Lyxn+6bfLVf/i0F5Of/pWQkxp98Sq + UmP3E/oebsaR9eGF/gb6cDIVpm72JjbqdcAXViihLOEH7P7VjynDLTSqj42dNrnXa/s0bXhU2q9/ + LIZaG0XvPIKTKGXE9O/Pen1sqwHn+73d8QxHy+V32MDvdF5m9pwHAy983g26KHqK//Qbv+cH+nxV + e8dzp57C/cyLyIkfrKufXFsKLBpQEhO85+8abVHZx4CnNiayZiv5KjGiCPb6ijWPeTtzUlg9vP2U + Yd79DLoGQxeDa/l9Ey80PnRi6y37u1/s610+rO0+OU0o+QCfZPGgjalWt9DOTpaPWrg5ZHrFG0xH + g2JXF1/1L4QCj6o3veAdL+hSP0rmXz09DVmi7XqMga5exdgVrxXdXuwvBIdPPRDvrdwjLgIfHUVC + 7c/shCrtr37DTBIEv/6Sr0P9U+CDHQ+xpwQWZfPw0cDaFSesbDrR1ufGSihlTyHBOrgB4XJ68uA8 + k20WizcE8+N2Nv78KHzyf6eaPxunN4AHg52PvyHRJpaCBAi3c+6v81lyquK5ygj7/YSt6P0baJlZ + LvxVfoZtjlQD2f0KKBq17E8VtGuhHHIRsuKkzShW3gMVzlIL5S4x/eN9eQ9LhS7+X732l5v8A6v1 + Oo4Q87cHdi65mq+7P4U6kU/847etoyk32go+aT7+1eucPMa5h0GizVhHtBs2jt9KdBm3Oz43wxbN + ZGAlqRH2Do5ZPp1lz3dk23cWn++LWrMPxRuhJPaAnKonR5c7bVMEI/IkenmBlOZux4A//uiUiR1x + s/myICeTt79O+pBTs790UKlkwfd2/s4uUayiu2su/uf2E+t//oKWlaoPY8pp43kWYtj9nvO8sgdS + Twf0WeDYx5S4hprn3fPAz4Irv08Y60AAawQmHd6f5Zf4fuk5y8UMUlh4TYRN+W5RKpO7C424LbA/ + 2vx/8TNmmg/ByZoOW1/eeXhhNxHbPZM43O5/QRPEOs5aDeU0Q9IM+xRz2EiE1ln4Q+uCtyiV+KTP + P+enXycfTqFW+7xhsM4kbE2KKPcD2NnML/jnZ/3pVdmxl2FDmt9J5uEwEBm9X46wzQce9hQIvkc3 + 4kx/31ez4eozyf2SLzMnNJCv1y/2PoKWsx5wWEAa60X+5cPun8AdX7Dte5+Bij9YSirJU2yWpzed + LeEZwLu27YbsqRxIFx1n2DzhRnLvI+bETfYZA0co4uANfGehz+oN3fMZEHULq2htPVr885fuV0kc + up94LaH4EhP859f807ObGnj4KjhNPkZm4Upne27/8hWQ2+HcQZz8XHJ5+aHT1zRMgMY8fKJc0l+9 + QLvm0a73sS6ojLZ0ad7ANfJirAZLEfFWYvd/10eycziC2d8iUQoBi7H9tAqw4LQK//FfU7s3YHpX + WQiLYxTuO/w+YLNbnML8I70wDtbVoU/J1v/pJ2zxI1gRejEwf4gqsS+W4ax34z3/+b/zsRnCfBOu + rw6qt1QiCsO9nHnKFxtJ5yjBu39Zdx5weKirz5LY2DvndHl0CWAuvE/M2G6jeWDyGaLcfP/lX01v + wTWVIsLlRP7w/sDa09jC/in18yMyzvW6xw/c9QSW5RhEC75TFRxYMSKnNfhSwgM9QYxhuzNPum80 + vGxfgj+5OuNyPml0Xo9pAtNRpyT1x5yuFvUymMrpRoz99+khevlQyJ0en+fWBzR5TQFMA90g5c92 + nJnt3OB4ZvSMXN9Z7fzhN3z1TrzHXx1xkRQm4E/fOdHnCVZBnTJpkA4+VrN2Atth5Wd4eNUFcZLc + 0PjXiVP//P0/v5ISK/+G//SGUp21fAuZKoWIp42/ceEAhvtDZOHuR83MdKo0OrzrER6voU2M3T/Y + vDCThZ/MctjY+TaNVWbX82PoU/DBw/i7WTxcNHbzlxagiHJjacPN+FjYjPEara/XJIPdnyXy4UuH + 2bSIL4XLQ8DaH38TeD4A/O7das/jRGf+VM3Aym8K9qbtW+/xAmGs1XDHC4H+/vD7+cye5ISMlzbb + WqcCm6M2sb7ppq1VyPPAudjVDARzGGjTpm+4OGxEkkNJ6FroiowAq/jktOfPrhf3HfcVxjIZZY3L + +OkNCbQOvvhMVbDrMQsh7aRj50Se2nZuFh7dLpq348OZCkdr6P/xC/NpXwZ+s78S+NPznhG4w/KH + x7s+wfaLqbXdv1Ph00mDeeUPX7C9TkiGcSnG+BbFYjQUiK/++inEM4Ml+h28doFco99x2kZ1tB7X + awHZ0xXPlYPBMLux8AbzuD3mgxi52nKqzm84vJnln95aDGbpITfqAk7WunHGygtd+DQzZeaSHwvW + C3gFiLhrhp2wWjXC5XYJhZINyGPH73XvzwDUlzbxPOPtbNNwNCAX56edvzb1CABq4M4//vGTTfj0 + LXwU3RknGJ7q3b+UoWL9lpnLG69eRg4s4ASl3yzuftZq0VOKRv728ucmfkRr1o4tpD90JNf++o26 + ne8C2WLe+OTOYvSTZGcG+lrdZoHIktZt0ZOFdmvyO7++0u2PP6ym3/oQZQxYJWYRIT1DuPdLkmg8 + LXYB3ycu8dflUEX/8KsxYfzHN6PhaAYScqGnEV/vQD21T2z/ux41GrxciFgsgkV28GzzRM/5TkYl + vNeWg5M7LIal+5EQaM4pwwZTutpwk4sSCtHZxZpsvXIab8j+44M+fP02bWWmhgU7/sy7P+1sJ6tO + 4fe1HEj8MGtnHE1cgXG7hf4apl7EYoB76Z4XKf6rT3TZd3j+9c8o+2nyhS6sK+1+MUkPejNsym9J + QXHdZ0zt/YzpqCQllMdB3evzxVkeijdLM7tA7EkTrjfmhRbJBImOT0vQaJMYzokUtxL1hSvmnO2R + 5jyQxBhj82Xfc5p5YAaMbeXzweA/2iay6QJ3P3rm5+lBx/ydvOHzNvUzs8jywBIt0qHbvSrsShmN + dv4J//F35e6/wWIXgQhIZYfYxiGbb7rYp3CV2oxoL9aut7sNWyhOooGvf3zGYMRO0iLziM3j2gyr + euoKqMoKi9Vbq+bC8EoZuPtH/iJ+rXwjdhWg08vv/OOuZ5aZOzTQLd4b0RYiRZ33Ey0IzXGdgaBW + w7SYI4RqlA1EdjCoF/94NKBHQE0UNz0Bzg5+LNjzh7iuuNDVeq0j+vNPMBdV9drBuoLqwRjJXz9h + Hj2FgWmcK1jGp09NZblh4NirJnbay1yPm3zMgBx3DU4SodWmEB5Y+CsqHtsN49f8NKw6mvzrgRi2 + cnaoUrUsrDRTJmYUp/k6CZ0FG9Cx+HT5XZxt8IsZCjavYOWSnus//wtWEiVY43rqDLfgkcILW7jE + /MunnW+hjWMmYnBdmW+HfccKmos7sfwRgNU9XERwlnTHP4ovic5aWr3RC/EC1muzH9bZ/FkgPzb6 + Xz+p5oPnGqK//unej9YWTf1Y0G3qC/Gz2Mg3NxYqmGFLxLc/v+GvH13N5ZVor+O1HqFds+iqBmec + VNvmjLufIS3CK8Re5MTDXH2AATPicPO0+8GjTMHuHwvKn5/jTCxn6DB0aTJPgZPWf/1fmJx7l5hm + edDmRxcvf/0t/8BF1bBo6mSB3e+b65ad89XFmQTDzh79gw2e0Ra+TBaumXjGZ1/yHHZpvjPc+ztk + j+d8vUqlBZdcCLCcyh7lHrrLQiJaC9GVyt39/CKElhbXJIIfWhPG8LZ/1/vOh2KgR/HdA0P8dMQc + gVmTg1aFqCSjT4I3X2vbMQ5H8H/sKBD+944CbtPOvlBIkkZfgE9hJzKrz/2mnm7WWhrQ8vFAnCVZ + HCJdXgbqMhrNB3pWKa3d9xtNHRcQGz8JoM+nbkBLdhMSXV6ttniXSIXHIFl98Viea676VRtkZBzM + x5H60bIwFKLNfE+zCJhgEHpQ+fBL2xl7JzMEi4dCHbLRk8fqEI6Abm3XQz2aAiKP7zanVmmz8MRH + BVFuq1dT3jJtaGpChp279wE9iQMLCs+PQW5MO0Ubj2Mbyab88DlH+TnU+IUhejevgpy7wKr52oES + PCZJjI3DvDrUIZ8ZFInZEx+rgNLlcgil6rMUxDQv1kDz19uAqZ79yMleKdiyRXFRH7xcrJycc86r + t/MGpUmcydPO1Jqv8eZDZs4mIj/dT7Q46WQBfPB+OD+xbb6SoZthyWhHov7eDJhaUyrQVHMquY/1 + 3VmTfcpZzkrdTJSvWQuvYeORiiybPGRWzYW/9fEZjiWW69YDX4M1RG4CPr7kHjra/1R3g9128LEz + 0F7bfoaqo9Ma+fi0VScgGMcrC43XT8PeM5gHas1GhvjEt7GhtprDVZ+6QN0RGkT+HuRc8MdUAk+Q + 2fPxE/B0ZS4fG/plZ5LCxsnA+9qrQoqwmcRd5o/Dk+6uonuGZmyELgdoW55SpEYMIBgUNNqm4cPC + 1mdtn3vbUcRudcUgFVoczl8Vny9O/GVBcM98YhZS5oyrOZXSaQvrmbl+Pvv1DSX0+MKbWc5SB4Ed + iuXveZL45h7pTKokhet8fRBDcJyI3ANGhp5jtMTjf7O2Hs0iO0L9yWLtKXDOcuPOAfQU3SbRt1fo + FntSCDLZOpFrj/xceBHRRuzW/7DJUl3j49Ohg/oC7sTU11e9JuvaIPctjthVx4PTw9OoQk8xbFwO + swyOR+1pQDGAF5Jb39JhzVyz0ZF5+ySKG+pQlw4qlPkU4fL6OWns45aGkGb6kZTDXNFFhWuJJEwC + ooK01xbhwrh7S2PAis+Ew5almgpbi/+SU2rGdE3bt4UO8vfkt+fjJ6K6/omR1IkVDoxo2p0+v4Ub + Gb8k+JJBY9VObCCs+y+WC5cC+rnfA0imL8W7RUmF+WHMSI/HD7nWkhIJF++Qwvwxq8SA82GgPf7Z + cChEE6vb9b7Py3EgHN8P0RdF5ulwgTCm4HhJDOInHxpRD8YFRA77wqHVDvn2Gcc35FaNxadq30FS + CLcMDfSUYjX8nakgHd88Svx++be+qxDWLCJ9g/FDF9CwfoNBggOrT/PhcLg7vH8YLfAEqe3T4KLW + 3AGNPvxunztWM/cVrfFPtv/yc+YUJqWL9iMphHOfEq+UHWeTXN6Gk/xL8Jk1lnoR7gsP9/owH9Kq + GNbQCt5o444iUcM7OyyZ0bhw+vEfrDzjk9OvZ2uESvQxfEHQODCLliojXRAvRJ+uHCUMsG2I3trm + UxTRfFvP1gyyMC5wua/P2GmLih5peSZaojtA+CiRAR9SV/n0zPi1sOcr+OquP4tHn43oI3wkcPkx + BN/PjUHX4e1vsNF0gr1P/a4HuKUzXOS1IooYpIB7qw8eHOn7QYyWE+n8GZs3MjUuwxovrw55CnYA + OEG7YRO0eb2eBG2Dsqk+sPw5PBzu3PQ+pO3eISeJA9ZvRQogw6zyxICco60IFhGe7qeI/NUTej1E + BoqGmWD94CjO9v2EGZLkscUnuvwiLvbcTjrrH5240qrVwxPLb4RkdiE3IXI0FhyKFjKum5D7C7HD + kn7YCua3+Ym1hykC4txIBa/ncNqntPr1gizDkMqD4mOlEu75mh2eNvyrT9jKnjn53O8hfLA9wt71 + 8ckF2ZF7FI9GQ5zMY7WxLNwUCnnj4YdvaxoXe3qHPOlh4KAoztqCk12hFvhGdHy8DXSvp+DeQg7f + tctGaV/3Kgyjs0yS5vPVulN4n0H7kt/k9vU8sIyXRwO18ub6YxBy+dCpUiYpcLv6VYvDiH4lWYTn + aYmwXh7agcoDXuDLQSPJZmcdVuX42tBef3G4fmS67usHFX7biO3jMVru1wUimfi3ubscRrDpjpTA + qegK/OB/vsMeZADhTVfZqVOPCFBxZHXkMY8D0Q7aK+fI4dUi53z9/qvXPy27l1KYnn18AfLVWS79 + UiHZlQecL+0nFx599EZFqsd+cLuLwyIXZxb64aBgSz0+wLIJLxbpvAix/RGV/a1InwaNpwshp/Ml + 1xq5UHhkBKVCLOVIhpU5ziI0MV/hiK3SiPtxKYvW7irhIGhfDsV3g4Xhcj2Tx6H4OavXKhUqA27F + l1Rncrpfj3jAH0KK7FQOyx1tI2p0Q8cGO+g5D8+/GJ6EYCXB9dxS/pecOkhVMSbpi4sB/7SvDZTs + SSXK3/ddlNVGLw8m5B4IP2dLhTyBQNFzUqbd5izesdggn/upD15VEq3KpxLRWsUWjk+G7Aj6SAz4 + qboJ3+/2vV4zmopIlu48kedN1DYeRC5K0foh+o5fvVuyb3hrsTPD48UGm5G+DFT/wBP77mZr2yBJ + DRwKySTxFfJ54+xTQff6SU6iJmlzLVCIDk7LEzzwcs0beuXC83t7E5k/SdGvQq8e7fg/s/7xF61C + 38to34SFr7SKtU2UcSrdKq+bpxsa829tfXy08x+sxGvh0F7oJYgLBRE359xhuTDHDMqx2xIne/yi + 1X27LkS68JsRezYd/nGdZHhQmgw7/s11Np9UDWK14IyL+/UzLO/XT4bumRTze706A1t11IKM6Vv+ + Mfp+csK7bgEx8Je/eluvfigU0MRshTFDrvWSfmAFNVj18wJTP1rY9PKGvUiM3aGLwOZHk/H3/0h6 + Lr4OhzcxgM77LRDXJvuU36+6oI7CmhQKNBw257sGKGqqk9JXvWFjkkCHhv9IsHuIz/k2+KAC6TkV + cOSU33yOT0IPL4DJ8IlWrLMUw92CUTu+cL7fL3l9uTfStsrH0TdzB6H5PN+QE9UR63t88L/MhnCP + TyIbkecIT2L2cDxFZC6cp6T9FG4sobzk2cx+1E+0hSeZRWT67IetkOzMucWH4Lmkd4yHhHfm134G + pMu3jshT+IzWyptCoHIO+ne/y+3kigDIpkHs+C3nwlbOKnCc+EICJJratnmQh9yVvRLZoR+wHvNH + APSSKMQSmYO2WY+HC6vfeiXP9Wc7fCBmMhTKzzqnzpiClVMOCzi/qEf2fHf4v9+X8BQQ3zjIw0KD + RILPi9cSLN90bTHpOYavl63NlJNVuminnoF1Ay4zPOMub7zfxUcUhR+fO9YboPju83C/H2xevwIg + 88tVYS9MK04+nD0IX0mWoPVNwfyrUBstB8i08HH8Obj8DO9og+dfAv70hBmbB+cvPuDZ+iD/L17J + 03FcyAq9gP08naMFBdYI8eIeyANnRr3g5O/wX/slhn2M6k3q1r3vvLREmaTzwL80p4Ckb/HMLJcW + rALTi9Igmu0s3kPsUDtZZqhxr83/NXIUCV5TBlCaJY2YzWSA9XcqCjBKxWmG6vjUFv6o2PAppdw/ + /KPLKhp//J5gzazyzToGIwq4j4qdpT1FozaN8zErEhF7BzcCizPOMgRNYGItZq2IJf6hBTkFETGE + vBqWPz56ORwics76MOLO4qBDe3RKn7b22WEdtutAZtuvOZ45f6CsGcTInNSfv98fXd/9rQWG0Ld/ + eqleufOWAXnNCMH0rAK2Zwcf2jZTYPU+8nS5nW0fqg90IwkHvmDjo0uBng93JLkeT8N6fGYt3Nw3 + IOb3UTubelMWpEYQ4KdiPhzhu+9ga/pLPEMFttryuAUBwnf5Tp7pstJNjdwCUhR8/INUfDQa2X0L + nfa1kHQQaTSB1CqRAFdMcFrBYewOUg93PkIuhnOru0YNdn2mHP3fb3nlWxAEAXBrUcER1AggdVPN + 8Pb1K5/5zWiYA+vRQ+Xe/shZWSVn5VZoHWdPvRBddPAwTdvG/sU39tfLVdsoWl04194bu6jJc6rW + XA+IlxlEfzw9uk72qsNJ6QasnZm5Hq/uTYY9O3rYKxZzEKTX2ImCuCVYWRA/bM8wcCEXczL2h3Ko + 58daVdJiU0js8hRHVIyRBHf+jY0cG9r0m0r3+JD6ipwFQ9X4+MHx4I9PlDpucuI1SYBsHR59KCrf + fMGG1sBykRusDPbk0AuiG0xafpjFF8cCsqyiDoiSy0TmTq42u9nBh9WjeZGHIchgPSi/BpwyoyPY + kn5go5d9koAnX/BFH0ow4gTbqNXYO1ZWz6F8zqIEyIosYXyZdLrFL2BLOpSe2O8YvebhvZHQX7zp + mxUAjuOOBdzzD993v2FK1rVFTy79Eqv+vAHV2d8Ml+nQ+cyqHMCmfk8JWGRaebQw7YHt0+8Mx0vA + E3V4v50VdK4K321l4LQ+idEKZDsEe7zPa6krw7q/Sw8+Qx8QTc0FbfXDQyntehannWXR7WNVunQp + t4sPnafkbBLcqj9+iXHHY02Yj6qPnKnqsHPJ7s408aIFdEG6zGjn62RR6AyaNszxHp/1v+e745sP + pLtf0/zV6yAI88SH2ZXS3Y0wYBRV3ARfHe8QQwne8A/PYlac8nk7C5WUvtoNe6RVHLZ531hwnrbI + Y175pM33+DTDuXczfD78TEpvogyhQ8nR3yosa9vLlDeEQ+2F7Sa1ovXo3Ge4qe/nPASZTblCPKmQ + qTOIsXxrtPWdFbK064E/flBza3UJULA07L943nTCbECEZzIzvW85AmQSCFfFuf57vgJ7y0WYS6KD + g2n70fH9eqn/9IA9AZgv2r3moVoyI1GV6OfQZZI2oJStgE2Gf9ebPD8L4Ix1REy/scE09OcM7vWC + yFoga5u8FQuUTjOLNXUYc3rTcQCLJcQzg99tNKVtb8GFMCFWrYTXFmxbIsQSzv2KO7nOmpG8hVE1 + MgTTYw62p31t4TdPqX/YP68V+nXQrFXPv4oRifovSlu4NTOPZZ8PQf/Kzx0sednEWXk9D9uvlEO4 + fuIEu1HYgi0VogRRRTzMzPZKh2XnI9BuzwCfgDYMPdNGHXoN9nMes89P24yGxHDnh8TRG5XyH6vT + kduJmHhXL9B2Piqhw7R689RoP0oZ7Ogw9sV8HochHpbHLQ2ku79J2FATDwheF7Voz4cd//yIT+us + BCGIJfyAhVBvomymUBCXhKhpEUXTF74hzLjKwv6RlQDZ4wfdfC3AVohVR7hMi4ukEdyJ4ZwtMFaj + WIAv+thE/4aCtrb0WEH4HSp//Zh+3VUiP0Lg6i7x/fBNpz+/hyGZitXXUxsEJpJTqHPHL/Z2fvpP + D9XW+MD52tJhfh18/XgKDBdrMPo4I+fZBmw3r8HK9dLWs90aHQoO3xLLJVwccrmwM5gVzfERHEdA + l3Ux4OfVq3u8FTl3okYJzZdS737lBvo9fmFScdZ8kM0ZrM1g6f9+7sR95Wx2eFqAYyfwX32g0mvs + ATHu/p//OKyaGoWwipoTdtaW1kuUD8t/n99Vqgfy568aWfmYj5lkDstGxwqev8uCb3s87+ufweP5 + KhIren7qXV/rqIOHnuj+nQHDzocAnLsUXwcE/8uPj+J7wLLfonryQqsDH7+8YrcfjJzt3VeBbrZ8 + I8UhPkcd8YUWMCev3PmFHHGfgZEgv6UMDjdOj+h+1h5drSj1t/uYUK7oziX8Ms2T3MxLV3dAu++z + eu3cBx1Nh5lhLvz+Tr/El5Di5JvIng24zSQkcnK383H3R+Efvqtane14sujoOL4afxnfRs79+Tuy + J8vYkmbPmfn6qgKNr02fFR0y7PU5gNdv6czljsc/EHg8dE7JjLXp4eTr6qYZ5ER5JKHYTWD9ip8e + DEcDEOVz0/752/BV2TM+W3EdLZ0myvBPrxe0VPJ//GX/OXEdgqM1eYgjvHka8I9nHUa0ZscQ/PHh + 3Y+rF3bMMsg9+XWGiF1qomK4SNJpZPGlMeWcKwtJBWfri4gctIrG25mcodvk7jtWx5HOPMh9aOl4 + t9/mSSO/eS3++W3yvKXOtq8nWLpDRv70gxC9uwWObPH+d/2scOFdGFkvbT5y7S+f4suZgWKMbJw9 + OTXnhkR+w0YzCNFcZYqW1rFtaJ5ZhJPZAtrYDccNSvl880PJagcqXX76n9+L1UEVhq8IhQ7m4XyZ + l/i41qvCjQXsGCYmfnhlHKLrUyxC/cFiQ2sv0Sr4cwWvY3HH9vMqgLUInBBG5mueI728UnbHf+A9 + AoRlM8qj9TclLqR3syHOED2HvR/QAT/tGqKvIqjJcjkEIOSTERvMrIKu+EY8OPGXAntwdOkaLmEA + LMc1SbnzoY0/pJX057ebZRbSxXuVrWAO2oHsf0/5T/d1wdu9vohq88hZ9u+Dn344Ez+3jtrSL5MI + d398Brt/Sza+cWHbqsu0unNFt6I5bvB4jQ/YEv3W2XKLCeBFOpx8LtQTbZ6GiYc8ygiWsWFpfAr2 + GVsuUgjOAnvg18mzpSEXN2I2j8tA9WJ4w0fwhP6m0cDZUnxpUbmozbwfEswpVIsYOufbF5uf6apR + dRADkF8njqi5S+ppXWIWQqMosbXzl2ldCh7wfzOnS3KJZuuVvaGSfmKf15JCo9G72tD183gRk61n + QNrND2C74Qab8S2OFnmxR3gXHcGnj5vvbAz/dOFsqrOPSDLQ9UT9Eu58kdzhj49mJswWeLmtd//b + PNZhdKxfC02bD7HNz0I+IXdVwfzDJ4IDb9TWNU36Pz8Dy+3zW499SmbwOybtP/70C620+hcPplDL + Ob/Xd6jcmx85XwQhoosCZvgXHxGqu3oxc8cCrcdy2PSbno5/fAHajxv+82spq0Uymoq++MdH6O7v + w/EW3n2QPc75cmHW9A8fyH4gw5noZMlwmVBHdNOA9RYq2hvaGPa4jLiE7ieWMhT1U+bzYTFoY3db + JKQJVUHOJOJyijl1f17X77zAThsEmDx8eHzXFlYrLDs7Px2B1aXB/Lb5h0af1GVgf6t0nC+GtL/D + e/XRL3esmT5us0bHNGykL9M+ieZdArD53w+E2jN+kT//a06SYQTngf78gwjdiM8rtoTPm3fe/aNe + Ww7LEqMuXzpi6b9xn6njiyAhwkZk/tOA+TWc3L/1IOe39wMrgK4EPkNXYqVoLLAFQRpIm/cOfOaE + w5pKr6b/448+dZUpp7dKXeBh3t5Yed82Z0vmnwTurM34f/48eYTXBPZ0FHd/qqoX2bIgzKQqmbde + PefLYaQy3H6TPv/ufeOswbfi//qN8zsvGko/Sq7D3yE+k/zUrM7eX8rA+dTesT0C31kJGAMI5qAm + erMF2uJ5jxns/OzPr4wW07RDmN2SHv/V05lh7jxoNf7uM+bBB+tfv+ZBf3/+lxu9g6KsoNQC3hd/ + 3aumkUogzNiKkstt9Yb6rz6/ButJVNtonPWvf7b7a+Qy9q22jKjoIUNSlaTH8jdsKvBdcP0WDnF3 + /br7/TI6CeH65/fWRNS3BGwcEOe2VB9g77dZEvz1NtaubFLTz5TZ8HMuTGxCw4j+/EiQevmCLakU + wGQOMP7j51ihyNIEu18bJAAqEa0UWrCSetbhmF9C/NevW0yiy5BxsIKNcJTzOWe5BCzmlmK3z1dt + PcMuheOhiPBl52dr4EwxTHB/Ioo3E+eH2G1BzJSnxNCSwqGGElRox1vsVp0J6Fa2MhxyacMyI3LR + Jlq2CvPLCLFaH/phcfQmAAnuTj4TX1+18KdX3+7tReTbb6LUj7MRgn2vulyO++yPPLAgUbPrv/v/ + 81MQfigh0ZOiol30fOnIGDsW52+5AiuIHRv++cNY/V4BzR/jBm9vP5y/j6wZpviMYyi1Rx676ent + rEOo+VCOvAuWr+cWTM3Bgn94TrBy2/J2Mn/pX/91pn/8YspgDxQ10//wBWxSLG77DoQ3NuPvr57a + HMQw/urJ3E7WCP74PtLWfYZx48H8n17Y9R3+63/s/VMZ7vyNnHa/a8i5N4PKQFjJKWC3evOjjwFO + sXnyj9V0caifBjL0uEIkzl4vJkGtQjS9hWkG0q+mCyB3+f+ZUSD+7x0FcxLV5MSLRk3TKzfDT3j5 + +ohRxXp2C9uG7nVWiBo4pvOrPi8eabk9Yv/9PIA5F40N3QagEfnryw63RYULh/YwklPazHRz3599 + D/dD9Sl43mr2OgW8VPu8N/8Q1KJfelACVM2BRk6ZpwPOti8jVDrBn5ck9zWqlFwB74hU2L8pT2f1 + dodmiKFJyqrIwPi7WCzUz3nq85eqzufr2ShBzh9kjOdBGrZUbnsgPS86UaLHSFehM1U0KY8nNnIC + QT9lsQ+arImII1ZStFhPJoTHnzuRM8/kYL2VqQrH1eCJSyY/2sZ07ZFjxw3GVfHSiPWbJHjNjNYX + Bq8Gq1ofLdAFVwdnEvN2BPKpJEiR+SH69V7V9Gi9efQOGMfvL+6vXtle0+E3Cyg2OGTXS/TwZsjk + 35jI0DPoQu+ci14gKEhklqec5YdehKM7ZP6bUx8R+/mcWqhfvhMx1wIN8+1+b6H1agx/49RHLtRT + 1qPxvjhzG1xgTt0HKaTmvXT4FnZuJNBDIcISJ9yMmp/mUOZdsiCM+Hl/L9MnF0TTCtHlKf9w0Khl + vnUjn6LtcquwZ23PfHvBvIRizyjzUQo6bfEMMQYd43kkCS5FzvmPH4ScJQzEZIS7wxdebqNT/X77 + gqYrOUfgFMATum5EphUD+sO70OF4gZVPD05IufQ0GZAWcYST96TnAqpgAMf75sxHA51rWk9hB0tr + fZAnrvVBWFXaos+Byvh8pTIQrrd1A5fg15LYxvqwlqRxgRA+WeJyVr9f7xKjrYtexHr6vDYOsQdh + uCEdx3UnOduc8wt0Wf5Gzr9H4vCdXPnwt2YJ8Zpf7azaIJRoQuMHlyFg6dqrlgzbMVvIqYYfbX14 + QYq0rjNI6jAELCdz5OHHKhL8mMtp4Hn1lsDw3eQkmy9Zzia+aqPQFUeSfxoRbAfNSyVaJBG2K7Wi + q/CqQ3i9SCFJ9nihvyKXQepo9/nobmy0kG/pQr26Zdh6+om2ps+tRdplPhEHutfh9TwfN6mP7mDe + GO0HpoP/bdDf83YZwY64tE0S9LgHJdH79lWz6rkS9yntjo+s7RCtsqXoSN42gZjSOtPta79bxIZr + TJLxjTUhEWsZRUFZzsfBcB1BZZUFcLO9+JOttPlSsn0HWy/IsNaH/LCFn1SFIktDcgo5PxLUGOhQ + T95nHO71huu9EcJHdszw856SfIyFyEfsPRmxjt6axj98bkZecVaIzyTasGh9aKFRFF/YMQoVcPmD + fyPtLt6xS2k68KphbvCMS8tnMdNQ2upKi+7l156lzuciUrx7H4YNvvmd7Pb15ry0GCGq3v6mtuZC + Ei4tahltnEUrPWirawAdnKSixqr7dPZ4O25QU5mUnKfzJV9IJRWgU76lL9F2qKlIkxKe28wmFp20 + fI0uQwWTWepnECGrnj50kaD3WBGWU9sfuFpl36gtVBNfGxUPU5t7DNSiq0LOr2EZeC1eEiRZVw0b + HR9Rfq93sE+TG/Y38Q1GzxATyBx6A6eyaw/0LQotPLTMis30IThbKs+d5Hl5jM3tcP67vwalinsm + ZZEsAwldwkPMHiufbaU2X/nKGmEoLQRjXOv1GqVmCLnHYmL39L04PM4MA4LHa/E3tVec1dwsH75M + ryeaWX7y7SToFvScJfXJjRydDfzuCYKk/GCfZzyHbI+zAdHX2c9wXnDEr19rhlBB7h/+aGSMgA+N + 1+qT9Pw1NKFtJBaUX0CJatpSRDrTnyXgvB3sx42jbbFiWbC+5c6+x/Bdz3F3tdDn245Ya90x7x/W + hUHMdjwQN1LdWhhSmB1l47Xg8/04OKx0Shi4PMFALIfBdAUsrSDlIgn77LeO6LNqLVTeXjbGKl9Q + ergsM/Q0OBH3BDiw+enwhkV56fFl8Y8abe1PgiobX8j5fToM68+1UwAZNySO5dTRd5zlWQqljcxd + IbjRRlZNB5zpE6JYp2SgkWKLcGPYIz5v4jqsaC1EiPwGkIf6w2BzQcCjOzQabBiqOvDVF1uQOerz + zKkqjOh0vS6o/QjpfLSvssNFqRmA5EIln0l7Lp9YPehh4J1Ygu9bmbOFNgeQe2zmDD5NCliWnN/w + wJYOceiJGRb13InQX04FvpWGpwkb2mKkJuSC/Swa8k2rriGqJ6YmaiZfBuqPgQwnrrrgQARZ3R02 + dkTz21Kw0VK/5ipdbJAvAHMGR6JEY4HsfaqXms0UBzbgzHCtkG5uBb7ZfEtZekcu/B7vZ/zQw9aZ + E/0UIK3rjX2GwC9f9E8AkdJxPn6WkzxwlRPH8BIMLUl0mg/j+3vukPcqTByL3gq2O5hSMAlnj5wD + vaoFmdFtkHyNA1HP3nMQHo+fCnvZ1sh5JO98M0I2RNVtHMhlfcjaMgXfBHLNeCbxeH1r67LKCUoj + b8b2fJHyLby0Afj1RYxLGl4Azx4y+/jCyhXnf+spqncW7flEnk+T1COCBx0qQgtmsUJ83YC7PIMS + +SLWnAbXW7Td3jDf5w2J52/rEJEmBTJx+CX30PzU7bcRDYRjyycxgqG2XX/CiMqRx8Ta69u6bm8R + mWYBicxyQb4V364D4XbQscLVdr7Ub6tAjDT1swClcj9Tp43gtpWFL7w2K5+v/yHtytWc5ZnlBRGY + xUYiZDe7MGCMM8A2BsZmlQBd/f/g9wtPdsIJZmCk7uqqaqHuBSy5J64J+K//GFdTsHPYBVOw54dW + bPz7o8IzXj/E6VdF417ho4K6gnSkPk0A6BkTHSYiDAlyAroPmM5DeL0cI3T1TayRP4QraPg8RbbZ + 64BvKe3gaS3UAHS1XGy2k5TQMeqKuE49a/Si9xVUvl5ELNYv6Xp7hirs/oaQaL5vUHavv4Ap/hLi + vY8N7XK5d6QfP4jOTl4I3uNbwjaRAea+3T5V6fCZpChoOqLV1cXl9OKegKq/fomF9bnA49FKxYe4 + txZOpHDHDF0gPHTfGXn15zaOPV9Vv3qOfvxssHCbQCUML+jhKJ8Yv3SaSji9NEjd8ZJluTmCx+kj + Bcc4/RSr41wwoAjVxNr3l0aHKpLSFKfEoN4YL8O0HMUnfrjINqW+oRxgQjimfxrR5rYG9NyoDvzV + e+48RgV18iERjT/3Sayb+m62Z6uqMHOVO/K3VgB0imkAi6roMDM3l5HSP5QBqxx74knJs/nhF+z/ + 3kdkE48vcPqMNshdmRILLO4pJZM3APTyV3KpY92lDC+3oF3rK/EdxYzZSHl0sLI+Vzyh9FKwHQ9C + OOkPE7Mf0SzIvn6g1YYIs712BctJCltpeZ1GPF2MC10OvhPBnW8E2x4/BL7uGDbXBeG3dnqDVavy + Gv45RoTOO7/ERVSm4OToN3TBbgx4rbqGwNmcEJ8qNW9miqQPbNfqim4T1GM6xcCDHv+Kid1rX/f7 + aPUNxFZoE9T4d7Ac310FmTuTIYM/fpoZ8k99/wZoJsYsiNoix2MIXY16//j7Fn/Ejyj9VRLRVSFw + 2Xr+2/E+iIiW3d5ge7aODKsbHkkQPiuwvN1LC/28NghKmCpmh2jMYJc1r/19xQb/4l/T/xJc/V3+ + dvyBERw33iFGbMcu9SDjgOBbPckrYeSC9xTYQW1hC5RKV0VbdFONwMiROzrv+fvTa+BRedUeP3Yj + oO6UH6eiOBMkG6223e6XjzSHvkfMU29QPt5etehsVkgUtK7j+mD/chHNhydSA+sNyMROJQzkzwN5 + yvsD1h3PwYXFGZF9s6T/4llqw4GE/NMsuNVbntJwMnpkf/G1WcF14qFIxpmoUeC587O3nmDXK6S8 + WTz4tt39CXf8IZpCDI3m0U2HQvRgUbbzKb4SjyJ0j8EX97LYNmsjgRCal+yPpG3Z0hkDdYJHI4xR + nIyfZkkDx/nxZaIZRRVv0Qg26QVeLU4c1Db0LVxVeC9hQLJJ6eLlkssf8Bd2I6ZVkxaj6PgZWNBb + Dbj6fi/on60usMoYBrdiyIPlZssMTP5Gd8+ndSSXka+BXGcBnrf2BrY5Pj4hPMU80iL40bYw6C2g + 2AkiGqdqI/si7xIU6vsPv0smottfMjGQEcmw67VGIz3f1TBWphV5ez5RY+wZcF3lDql/z+2fXoNj + wpwxptFKt5GZTHB1kxNCRHw3cx9hB0aGoQRNZX+LjTa1KV416w+vgsi6mOpFDmynmZD5Ko4afivJ + JJn3zyk4vS/vcXkCM4ONNT4D2qJ13PZ4AwL5tEQVb8E4s/u11N/IfBG/I3MxL0JrSu/SMknxdmxK + +PL7AUaR+KQELtIWb20gFKyuQTKR/8Y+SicsgUezIBWffModZj6Egnp2kTKvOt3u4C+HWZW+AhiO + KmXn9mJKpRcZxJRI6LJR0Vhw2uYNFa+ijxezPDlQfpytQNTGZty+Rp+B68mDSLHxNE5KUOunh+fO + e33QgMChyoRnTD+BKN9v4+JPwwJh7lYBuIhawyndlsKLyV/xoSiSYk68OoFRzGISJk+64wn1oJTS + EJ3/jts4VNWYg4qIB6RMFgb0yUShhKakRrZDiEaP9PmEemYbxN3/Pr+eRRWQXkiIAiJnFDS0Hv/x + p0zqsni1xKAC9otfkQG/Z22T60siLWCxifv9Pui0PgoeMsNNIZpwn+NloGX3w0uSnWrsdv1F5qWv + +zaRdj6yxXp/PyxwV85rAB6ZHs/XLs/hLU5MdEHrZRxF7d1B965fEALbJV5qM8ylxTQL5MC5Huc9 + n+GDgR4+dIHZsM1ZZMD7VTDB0qpMvLzIfkfTCgk5G2ezYREhR6h/xC0Q1+bT7Pj3gbFrZ8QtSKD9 + 07Pel3yQd25dKmRXaYKorQSUWsaXblzlPmGtCTkJ0u/ibvdFLqXfz9r1nsfbULMyTK5RjfzDiJvV + e1st/MD1TqyOQA1/jXcOjw8hDMD7icfuZstQKrfkgbwAqoWginMFd38AqbufsuklP4ihql6CDg2j + RuGfVEIQlT7KWqQCLrXdfSJtdCG2ksTjmDQp/vEJpNG4cef2KOpQ+ton5CRHnXLaeHiCHV+RHuoo + Xl7XAkLjiUpkh7o8rj/9e09zHinueI6XV7AE0kESt6BmHhlYxROcoGqmHWZvyxAPebgukvjorL0e + 5Rp9L6cQqqF7IroY8pTan3Mo0ccBEccXHzEWkcZLZ4OVic6ev80aj6ss6dU1J5aVvdyV+7OPYlR0 + d5TDWR03QCQT1o5sI08wdPCv3j/2LyTy8+rTRXPdEhDvJuKjHiWUWk+ZgUdqpfhkm3d3O3QHFiRB + UqHHZ7JcDiufSsKs/SGm8KlGIgFlgcwdZihpJbdZ6vh1hLt+QHInyc1iKIouXTpOJNquB7DtlE/4 + jfTXfuK8coVDljxFtp+vyEb206UDg3l4E4cFBRFI6BB7sy6+z2jA/Kn/o/SvCSMpVe4XtPtVMRXG + zJK+p8JGTgp6sMRpz4A6hC5xO0gKeksKCyiH/IOlp1iP7JouJjjLoEVnN+TA8uUyDItzqaBzLtd0 + Vd3Ag9C9U0yvBjeuij124iQ2D6SA6d5gXn2l4HkVgx//oksiFB7wV35BfuhwdFX1oYQ3NEKiT9fa + JTzPmVCpBpGYBSnB0qrrIvH5UqGsFte9Q748IW3CKylO5B1vXqla0oLHDEvgr42X23Ld75gtNfRk + lqjhfe3lwWGNGaRIhKGzr6witJ33FIikUoolpWwLBZxcSGq9UrBSxH1girYES/LHoUs2JpskzfMF + 3aD4jLcsCTNp/EgTMvxK0mjughSu+u2876/cEDDw3Wn3z5BBxYM77vgqaQtfoF3fNrj6nh3YUvdC + 7KOvubt/2cGb6V+Jo41Ns3Web0HrWJ0DuPIS2EQc1RL3uRo/f2UcxygcgCg3GXFSYAPhZA0s7ISe + C4hstC7VL+UTiso6ogDot2Jh0cbDUnQsEmxHFdD2XAWSQNqW/PBm3PU9zJOxRtaTPWt7/PLAk9SR + WE/26+LKvIrQVesTOb+3ruhBjlVADs4dIZDV8TJavQrnrqgC3nrxdEkyr4ZqaJ8w/AKLrkHrT+DY + Zj1KiJmD9Zvqi9jNbEte1uXYbN/2qAPRnM74uOMVOVvs8M/P8fw73+CxfbanGe9z4l/J2mD/ZjHw + Vy/U17UG9DIyFXzkIMecLTeU2+MR5KXAk52v0emZPxzwjUmBfuvNZQc7AsfrAIm567lZdc0A7v4z + ev78tR+fWdXJJZY/h8U2lGEIf367nX6fgHKAD0XpaiXIOF+0eGmbRhZ3vRn8ubd5xKqJNtgxyP/5 + JaC99WIg/PxNI3nq47Kd3CNAgWAR+4u5Ziuxl4Hdf0AuKyvadoB9C/o1S0nZKbT4+blwiAuAxZZn + ALnlvAgjWIzI+nymhh6E0YIfRpmQY+CO1tKfOIGf3oy81wgmYqEK9tvQ47iyz8UMbygTO5tuxFel + pBFuOXMEYb02GCQadZfdf4S73iOqcb7Gq98Hx3/+kPMxDLBcDkCG+PkQiLnzbS6JAxPeSyYg1nLe + xulSTQnML0uMQmoSOj+wMkjue0TIICxLV7N5DVDA6SUA20UeuaaZN3j/s5qgPLJGsSZz0YLq4sYB + f8hMdx6tcYPb5VoR43QV6bxuw/7FRfhFhfUXxZtc3xNYO6pNnM8r2a9RCQfIfW5GsHmvkVJ6PFmi + Usd8cMxWVdv+AjuAmRBWGLS8oa3vr57/05s/vjJMp+Eo1sNaoPO5zcdO4osEMicTI6Mtn+OWSn0J + 74H3xt+egRSH4iGFm6AFxNenq7Z9+lMktn0ik3Qbn8XGA1Adc4e/IEcq+GLnGxnY+QA557JKuWvg + idBNbG73B2cNy4/QOp36YEaaQv5csuM1pP7nQ354Qtxrb8GdnyMPiqTZTvcggF9h8UkYZr22cgb1 + IEX+7lXf53gSn8oRXv6YMRh0IwJbLUShFKjojn/9lc243DFEjw+Hp3M7gl0fLLA94Z6omh668wPb + HbiY7BWpU61rC9IuE4T2JiDrfPxrlu3J59LhuZTEnzihmd0VY+gRIOLNKc3djyoT+Kuf3uFyKta3 + GTswdMsjyoXIBG8jzZx//twc+TndhHLi4c6nkHnrt5H88NPskg9R2aRvJu3yDeBFDqVgdcdzwcfe + n/7TF8SNkm2kstBlENeOgvRXTejWyV0Ah9O5x0c6N/HanxVPinnHw/CTSe6a8//tJ8m4sgHr2F9V + sFDmSUxTrcftYd0hMCsrImd6z4rhqWUb/MsfIBAvnj3+68/s9QOhy8cGNPDt5Nc/Qb7U9SPluLz+ + p3fN4urT6YamCXxt0cGHIHk0y3b4dj/+jaXeLotdL5U//op+ftG+nwHMNwsGJ4cgt9v7FXA714io + 37dQbPXDW8DOR1GY6HrBGSrOoNwqzp4vOV1/+6ENFxW9dBfHdOcPcM8vpPYtHGfxxGKYXdoNud+v + BNZWf5ngp1eNcOsLekzOC6z7t4UPvogbcnH9EO76iex8uVkUNqngxyRqUO390emRba2k1SYmfm+X + 8XbQjFyS2mggWraGYGUHVwdziDx8UMuZ/vSQdHLMG1IGw26Enq9qmKZTioJe4OMpDRwL2lLi7v4M + 0+C3UmL4pxwZYu35jD9o3EAu3kJksT4EeI6XEq4+xSj4squ23CchkVojDv71T+hPv0/11caAzReX + ollsQQmoHmxN4bvCzid//hdS+YtebHbfWL/1RGcSY5fAPKykPb+I01qjhkl4YaWHqCwkn/apfI8Y + WgAAxfmHFwTmWQU/T5AiVVFcbbOs9ShS8OyJpm2DS/d8BnnPfLE4sh+Nq2GIJXWOenJuOD9eR21o + f3oFz+xXcgli0wTuehyZl0qLF2E2njA6VSVJl+5ekJ8+X2OdRannbu53728Cbjo+iKOWcMRPLdzA + Xo9+z9eG47pav35PcBj+wvjHn+Ht7zb+8zupsFIRckxzJ+p2yDRselkFNRVmWPRFqdjWeXoC4ejW + gfh5sWDJ33kOffqYAqayUm0drWaBu95HkT6b8VpmXCo9nGolu14tKFMAHTo+ZpHMb6O2/OJ7Xx/M + aX+WO929wISXl9oTrx/sglz+8u3H94OrpKSu0GLJg3irB3KGZlVsx2Mpgrn644jcQAqm/Kwf/z8n + Ck7/94mCWDiqJP/IF20GEkogd4F8wCcn4lI2fdXQQn89cs3HN16m+JZCrx9UZHzXb7xdTZaXjk/B + wdxxVgA/8YAHwruxyPlSb80qTI8c1rS7Ej2MzjF/27/R9Kl0QX4o6Noqar4ML5l8Iug6fN1llfkK + hI0+o/Ab6nTWtDSDbOB7KGvicVyH6uJItc4fienLZbOp4wql5jIZ6OlX33FltlcFEqi/0UMSH4D6 + ryCH2Sc6kaAyQExOJldLcZcekfc5kHiaThYjNvw1J8o55Omiy+0TaurkB+xj/hvXWuoXsdfjgmgn + VtGWhn42CWHRx1veANrfb2CAYRmEJDjP0chx15mFf9lfj7LDyLrr9njyIBZEFQtS0jfrW64GSW9h + GXBRv9JVNR8B8EK/Q8aoiPHy0ssI+iljEFcmcsyOaWpJ5tkbif2CxN3iaNGlhH1mgSAldsPn2RaI + 0jm3MTWvG8A1U6USzzIbUeaqdoUBth9piWOLaNXxQxe/SiCkX+2E3JaVNZZfk1KKLYpx8hkP4+z2 + eiU18vhGiLZFwZ2fWSDBLOaQug7vZtokoZPaRz3jUhXRyHrnTYXRVCPiG8ZBW61FqmBqBQqJVxCM + /Mu8ZNDoLUDuqZ0Xgsz2+1y1zUVW8zLBqjdOBk5iIBHbeNpuN8W3BC5viok/vo2YVa3HE/b9Idnj + 71yww/6FA+W/GtEbjde2Yn1YcNn0PxLFL12bSs+IJNgnd+TnPjvS7e/Sgn0/yIMxTy5Whk8NJyJ5 + JIwSp1m+g5NBjcwZefTfxiWH9cFCexMfyEVUAJt4VjPJhMeWhB3juewZiB6c59YkftNtYBENI5Kw + KtkoMA5uw5Pe3+ckCw/i9F3ebPprP1Pf5j5xH3GrbTN68pB9Vhp61afBZXtt4eHHHO9Enj7XUciK + yYGIkyUSFXLlssnnpcME1S5SKkOjy8yrjsSchozc9HNSbM2xxhDmuhkcsIqaxVmdDNy0SEKKXagF + FWVBlLzwcCXO1W5H+j0n+61Jck1kSTRj4o5KJ3WMMyLlO/sar+Jlk7z7zSXeI7tS/nDhJyi91Ahp + nnUGy/VbV9Ix3edWrpdbs4TFsAF2VnuiW+sYbwehSqRKr0/Idtj7yLbCST2ZZyZDTi64I71ca1ky + edlCVsvdRjbVvBQSudWILhqBxjHbrQIWtA8ocxpvFLhbDSXgM5+ATw/TOH+s1JEo/6f98KjoUlNz + pDITzsH27Ppxa25aAl9MZhPUohxs+35LYfI5I/l9SYBQ9rcIRONWE8979/Hy/bof6DnsH3IoSrSF + X5Mn9MhDJOd7Ybjs+62U0uNaPIhq6gZgtU4p4RQFScDv+MOzjJ1Bp2tTorqfdVyKq41hc8EG7vvb + 3GyLezRhzvhKwNfJHG8qPi7QU2YVAwheIzXFsYPMqcuI7bCnhtQp84S2D0OiyfTrUlE+iHCwqydK + lbGgJDG/DFS9uSTupjUuPx6WSBJKxwgW7SbHbBE5Inz84QQpIjHcBQezA+1mcFDZmCUY/ZeZw4vQ + aui6sKRYz6eVgYcPLJC+ecUoSNJFl/qT/yV3fhspuZmWCi+K80DKOUwBCZO0hRde75FlPhnap11v + wrbpHzsDisE2FrkJ+5j9w3RQS21pV5pLy+hZRPY+2rgyhSxLybUDyGGW0BWKEKbScPBuAeaU60jJ + 7LQwJ7gg50PgUl4IaC5dw1kIhnnuYlpOqQnrNlNJGEyKxknHhwPGmJtJyJ4v48oWTSmJl/yCfKNu + 4q2dviXksX4l8Wfr3fl+imWpH0uMfHFwwMpwzxQ2VTAG8XSv6VZ4+1hyczD3/f4D3MCsExxpJhCZ + vw/FJizRBtqrIyD1KCaNAE8mKwkLLZB7eCox505uCjf/eQtORuSD5TuoOXwuSoPCKBnGaWveqdRx + ikXM7qwW/K0aAyAZ3yNRR2Fq6JspSlitPAzgI+Poal3jDQrHe0sM8au7nK9uUJoUd8Ei0yaAXewN + Srl8PJCEbeqCjmU4SKt08lE83VXAQzXzIGuce3S+I5vSgiRH6e4/PaLVjF4I4e2Rg8amOjLO1pVu + f/S43/KOSqJLTDUK6jk4wnuBDMxF/QVwEogZaa+vRC1rz2WjLU/gvYAbSumN06h1C48S5/ImekLR + cjmjcj8QXqaQREd8KjYmkSr4JxQm8r1PoS3XubMk76Dp6Byzbsxtj5SVJpVRAulpfl2cvm4bYCqf + QdaEB3dznJcOhwOjo5Srq0aQnkslLb6VoRdWSUPmOPGkxR0YvDhF5m76i8FguusL0g7pBOaTrXaC + eQ5Gkln9UEyp6VpSPcluAL1r4AqCSzAw3vVGDDt+x8L7LoUw5wQXoT2++cc0MNB6OTQA8TQUy3zb + px5d55Lc4m7RVk1+faAojYQ4tEDxHo9PaRGfBT5K6wUsWSlO8GiXVnBAQuRSveIi0f8rR3TPqrc2 + x5dTJcWXZ4nFaHtQ6gRlCRrylIiilZvWvZ/OIE7Ma0PKxkfj9uNbvt8Mwal391s+L5snvXg1Ji+9 + 0DUqx6ojKemFJ/cv926WKe8yyd6OD/JqkUinMGug5NiKhxy/9OOlPk0ZnJjHhpQe3d01ZKxJcrhv + jY+T+Bd/5/1WM7uYbbLzp2LSOuUpPfw1Dk5Hqxy34FWEoD+hL6bqO9DWYr5t4Hp4xyRtVbbZsnz+ + gKdyoAhd7oy79i9jkvbnEWc+Nc1Wkvci0a9yQq/Ci+jmtX4JuepVBlyph8V6VYWnCFXXxDTOxHF5 + q9VROh+JT4Ic/FF6wDcZtuPlg+ze3eJ1vvYJLDzyJft6NSxHEQ9Iird9dl06/uJDut3vE0kV4eby + y3lm4c6Hfv+/RiNWbSVPyAC57vEvJNOlhepAPWQK5Z5f9+9+xt0iyGODrZlc7btAHkVH5Ls6crec + LSC0B58E7Ot7pguSbRlYL7FCQXM6ACzl1JFAImg73wLFIuDHAD8pEyLvQIJiirY8hbehDIPrzq9Z + KBfm7/lEvdw/zWaleSIOTDmgAOU93ZrjMIEZsveAj2+N1uOoruFeT4lhqFlMDblP4LXPWqKPlkY5 + k/tOcHAiF8k3Pi3W4F3UcBv9ENObdyhm8/ipgDtpFtm1I6VLazqQZ32DGFo1FVPASLVgx7cYc03F + xP/ilZgFIK7Z1+P2q49Faqkk0uaDtlw9a4F+uUrI97a02Kgih//qm0MOika+HeUB1wkRZspL2qzB + AepwqdmIODdUa0uRyTXkU/uK7D2eSX68p5DRmBfRuoRzf/kNPCEHQfXnfAvcTuQJdr6IHLvrxrWq + 2BYiq/wS7X5zAE2m+wf+9EJi2G+6/S0rhm6SHf7LXyCdU2CFQ0A0J6/2+qR+YOQdDBTU5Rt8yq37 + iPPU1ESecjFeZfLXwra9OyQH1qchrvfWofJNcoLuUTiuvnHaIDtF8JdPxeSgUYZR8Rp/fLdYYxqK + EJ2xSDwO3huOygr+h79iNVTjFmhrBTWMGEx3/F4OicuLD/ryMT2kHliunrxBReneJG9NDCgeDxYk + Z7tD550vkkA/mtBEnzeSHVQCLjuiFpiPW05s9mg3XFd7Nfjxp5fAtfE2XcsnrPKxCya9S+n6lrsO + bknK4uNrVF3uwPcLDDp7Qb/3X57jGsKzWzjIXvUW0JusZvCl6Gei+NpIt0NqMRAK7IGc1VUbuaPD + q1AQRgHfo3nSSOlztWTnh5J4w/cI1l7CIXzJSU4eb7w0y1vtRPjVo3j//WbE0uGSSJ9ZP6CbeZ9d + yifTP75DZKfItOXp3I+Q08qQlAVvg329WOipJUHxlbzjZagvufTTJ7EUknh5mOdBcuvTH1JsdHa3 + cqs+0LrVA9EbtMaLdXnm0H+2ATnrL4cuOx5DadKeAcfjtZkVdO9+ejMAEBzGNQS2CJ9dcQ/YjyDS + TuaOOmwqJsPMrlfx78TnoDgdCsbPPucyRBbY8So4pmFDSX4/bvBibR/MkyaM15OtDpC+PYVclBrR + meHSFAi9yKBgXtWRu58KFX5P0MPVtlZg0/SEAYFWF8jwgEOFy7VWwTWqLRJwyrVZ108cwb3+kXv0 + DimVQzcFJ229EflbVu4K9fAJj3/zFwW381tbzhzbSr7/Hn78WNswZ5X7QZoQOSe113qoXAYpyHOB + oIp647Z+7zy8df1h/3lqBq81nlLUZBOJu4TT1pNnl5BZag4DvTE0ovh6BYcD1NGFzZ5jZbx8VTpa + U4HUTKwbfuIpC396xT63n3Ff7wFwhOBA6DISU+m51BIU+ANBAtcWCydmImC0/ZZgBazx8lksFTKX + OSPGn2C4vNFaEDJrVAfw72IVdJSOKrwqr5aomaiOnKY9c7h5d4p8I+3cBbRr+MNL/FbwqC27vvnx + OyJfl4xSayUeHH0skUC9qdpC0PKBt248IDO+ae70tUYVHvnFRXmdfUf644+/eqfC+unOndYwcKPW + BcmAiHQDjH8U9aDmyLkaM3e7i/eP+JKGEvksbOgcz0UE7uKGAkYkcKT0FUNJ0B5ZcDg1Y7P8YfYD + hVitybldDEoRI+bghdqJROSVukvASBXY9xOZRwaDZZMOHf/AuoN2v0Ej1i0T4ftWcwFTlwpd5qTe + wMWuY/TDfxzUkSm9uOiDlNpVYmEStlx6mLYTpNn72Gwhe8jhzAUhkkFzaNbq8HAA/yk9XL1uW7yx + QG2l99lnyNm8z9oM61WVnvGmE2Tqj7g/0AECruMilPoZ1ei7ZPV/eu7H7xcmV57SpIAHOXte7VL2 + UbXS3dBTEv724yLYuehu7jFYgsqggjNJ8o9P7FOWgmY4+bIKN6+g+Bo2SUw4XqukGeoT/vieQPsy + VkpJrs83ZPVmNa7vWpaBDvhjMEXa1cWXk91BIV4Qsi4HEVAh2qeU7PxI7/hRmxdnrYDtPflAWgTe + ndoVZKCq2z74aFIy1vqLx8AFbYQurt3HE7/3EW45MFEgX9px02qpAp1VbgjVM6bb9nzkcMpbB6Un + Z3CXKF4XeLwxmHjFgMdZfM8tRLA38bL9GQ33889kb0r++Sl84m2lFOnffUqG+6dhLm1zybD/VrTH + l7Y0yxfC83K9EXmvn0tY1Au8Dc8waAHlXMpkmyiVWmmg4BN+RhqUqIXStLr//LrtOMcQptO5D7Sb + d4ipZuWJ+PNnAnerCnpr9ykwNXtGCsn1glt1epSei9YQ60IPzbR0RS060iFD3h2exyVjIl2y4GlC + +vRkx+9xjKd/7++wEigmvyk2iNg4JG7XtYB17Tn/8Wt01abdD+TSFILhsO3+w9g8v+/DAKrTy/jp + 9WYt11qV7oaZIrNO/GLnF5W01xv0yP1kJEDVUrj7G1jqv5rLSXe2Bbs/SOKb9yq4zhw28K3e267P + Wne73OoI7vUj+HswUTPLZG5/ehyDW0LBokx0ALpxj4jG3Uq6ztd3Cn763NwOTDOXsV0CWVRvxL1s + lrZq2jP755/u/Cxe4qnEYOWaG0F3kyuWMBshhMxc7Hqv3ucpTjlEsrnu/ljqTprdHaVFX2p8uC16 + s+tZDF+3gEe+8rj+51/89FM6KPpI7W3roNSMHQrKx4XSx9xXMPKnjWR7vd9Pq/yXz7/4xmbh1TB3 + 5BpdmFswkvaq6VLkSQbRE3PStu9bGP75O2k273eCySIGhtC/g2L31+aWWzZp5x8B2xRTM7u9V8Gr + 8miJHX6DcS1DtZN2vA3edqHG/PMzJ3AeV+6f30pU9+7AavA2ZMO7MeLTN00hsp5fogqeX3DLlB3h + laGfgB8UvVl57s5DwlUIecM3o1vXWxga9ncldnrlmpnZXjW8D4+MZEsajwt/3SawXc03Zj/jq6G/ + 542xMBNFwaO7v9+w39kZEO3mveLJCvapYF+WRY+/mosXb8oC8PflIEGfd9ysV0eupTcuLsTWYqmZ + jw6jAoStCnn4+Abz3yX/iKW6n8AsgK4JB3xToeaaGjp78gd0eXgogXWrBmRWueuSoDy3P73zq3cx + laS7CdCnupGHYbzcTY60FnJrJSMjr9uYLT0jBOX3NhM3noaYav1pArTTHyh73/tiTevxCe3TdsIr + 297B7q8zkIbAQa7e/Lnj9VMwoBbrNQAfrBYrjoYarpak/PSGu/s3H9BU3ojk63KkGN0fA7i+t4KY + vnej+C2mJtgMNkBZ8WELPMK1hF89jElgHMbmp+fAAa1nEu78bROSkwq25u8cMAfZGDfrfrfg4e+h + kPv4cN29e+LBeXrXxN/WrCBrF+bSkcmS4Pgaa40e0YkB5b1lAzDp1J0aihcYLsKHqPaEYhzI2yT2 + rivgtg+UZt39JMizcCM7/2jYlhU9qC1qiPb3B9vRZT+gUYpgn5vtaMt3tr1ffSfqVQk1fL6aR3hb + kxlZioXjVZNvH7jVQk6MpFM1dvt0lgi7z4SCZ4PibbghHiZm1uGFMZWGm8hhAABEfXDy3argxPff + B7LJFRKj1uQC//x07HwjpEDjSrvmHj6ln1+98w+AKy1voUKmEL1OtzBefJ16Io/NKzlXr5IuX7fn + 92+28+DQFqm2LLYI4TeuP8Fx92N//Yl//lcgG32BpVOMpffrOBJVm1/amtNHBrWLR5H/V1+L3V+0 + QMtOClIv/lisYttmsHTNAOlsU8d0+XoM9BSiEqd6GsWq2okMi7brSLjrzeXAjQH8mP0d6WetdVfZ + RTmM77veq55/MWb4UoShC+5Iie4wxjXTpeDHj+6rrtOnG7xTmIIbJDLvE23++X+PpF9+/YKY7Yw2 + gFYgwH/6dytJv4B+mBXkZH8RncPynUCYXTjkP82v9vH/wn3qcxDiw2T5MVvO7QCFeEMBBXXn0q2O + Nrj3Q4JZueTFtg5ZB7tUyohCgt4dnYmTYRm+Lui8XN5065mWlzjXvAdrr0m0W/9KDKN8Zog3bXrB + N4lXgeyrfoLj+68d6QCnDyy/1xnt9SXekMip8B8+vJ5xTIfDmMPKc1W096PctQnPjiT07mXXIwPF + DJ+I8OyMj4CDb3Nk//yrB1b565IA5TZd16YsQUzQzx/+03Z/JAVUGYT/+mnjSewgObsdXt2r3vz9 + BcUCfv70/f0E7lIXGgvX7/JEGneDgD6WLoEnTxQxOL0u8fjnmcNvPwOBnlxtmi8jBJqTpkTvg3ez + 5kvaij++L3Re4uKb6gzw5Ll+cGIrqk01P7fgJHoSZvZ+Hd79W6Dw7Ux+/BFXT5iAe8FsSJNCFG+w + /NRwCwI9EHb9t76MnIVbOQ3k/LI9l33pSQjVBUB0Bjbjrp1ZL9Lhhi2i6VruTudbqcIx+ctR8pj/ + miVtx+kXL8Hx179L66aEkRhbyHFFpRBmlrawdNJ3wDqjPwpz+MhBbXz+gk9tbe52ELoEvq6kJOqZ + sVz8i7exFS9BtPqPgvryHyt13MaRMz2N2lJnvgojY++BOMXR/dX/Xz3e/Qa5Wbtar6TT1rII4WCg + y9MPJ7D3I/GBwhWQIgYWzEM7Co7eJaYrf19MycrCG9J2f2xbrVME/Jl/7/0NVpvjQJzgGlpXpCem + p/H/AwAA//+kXcm6sjAWfCAWMkmSJQIyS1AQcQeoCKiMCZCn74/797J3vfbKlQx1quok59SxUaJt + /xDFU945u/BuA51TUNM/f3zVrWgG42H/wIcZhrmoYn/db/nioN7W35xfNBmZScFhJ86jfNa+oopC + va6Dp5PvwWifnykkXryj4fscb/kLCkFzwmJQ5Wqp/+OLf/x2wxdvBGZIoFRdBKoZbj3QTU/Ai/HB + 2FnCUhfK3dWFmV3b9DDZQ82qSGoBfSaAulWjsWWQoQnUbirxUUyATv74B5HAlTpBy+Xtz+t4pZNf + Cjbq3B+IbuUrbFUDBkAYxqHLp9cKJP2VBnsrHSLGEF+iBmsWPv3CIiLt9yDDi39KCcXS+k+vKeV2 + gwRrLdU3P3FUBP0Z4uODuwzzLtZ5+MtdGijPaA9mO3h9YXM6idhd3pNXx+O9AVs+B8c9tGvyYXOF + onNR0LuVevmfnw7vR17HD1H86mx5WzH4Pps7Vrd4MYt8dEGsFV2K1SSJ5t1N65GwVCo9dfkPCJ8R + JqAciL/5T/OwaH7GK7k//eghEdVhydg1/X9OFCj/+0TB9WR0VD88u5pZ3VwiXtUz7PanemBWCUTw + jM8C9e1+p8+jNF8QsGs3mLp+qckD/AKEz+qeFtzlC4ZJFkogQd+ihROcGe+/LjPk1mLCNuWDWkjx + eURceaqwliE8rAMHZ8hLm7e6099gpME0QnU5qcEaD6do9naTC9bD1cLx6vHe+ntpBL72okj2pVyD + tv8oKTxeE4yDMdO95Xd7rnCuOojVsfoNbBycBC5I0empD5qIaUXnomN0NHD0cIJcMK39E+pxugRo + +5xUr0GDP6+Yt99HhyX0ahHmVPaIkr5/+UyDaTtjdpCwhyMPzH5zWmH/Iga1E7vM+dlRRgjZnGF9 + 4Twget/XBb7T8kDvSnPRqSWVAYqCdLvF2e2jWQRVj8xlxjgxE6Avn9vlgmat5enr28aAuR9XRc87 + BPTFHmW+JiRP9leFnGmgLuda+JXREzkXItBTxcOcpIHNgUP0ioJV1r+eaHyBiepRqajR+g+w2LrL + QYGMDTb8YNLX2br7UAHoGLwf+3aYnV3bwjGDBS5InHn8wzo+0d0nGT5xr61vsXLm0dNzBux/f7G+ + zsJthf1tYdQakldNniXmwU5EET3Hy9lb00CFf+uJHkpv8MQpVAi6+2OG9fUsgXmAdYiqiojUDkga + zVn4hTDmojspz4TVMzK8LxwLx8eZeU498eZIF/hI5ZAex95nsxCcMjC9SRDIamF4kn2Mn6hdVIXA + 8dsPzGCZBsXXbNHMGrthka4CD/FxaOgprWydl09lg5qfiekZJ6ecNEspo7BJKPZ98AHrMo/zv+/n + W81jFu/KGQYmbwRKf9KHObdsDnXjPcGPfOh0PrwuIarPdUAN/iEO1C+jEoXH8kbte/OqqfvRNMSr + hww/Sf4cJJTPBFr2cKI2e1eD+DeeueNVFCPKAyb1KkHqUaypce7mYaSfiwm5Yn7S5Pu5DBOfjQk8 + WhOlwVvt9OkUXmKoosUgv9XnGSmTt4iOpEhpmDuSvnK90IPcyybyFiQrHyUnkdHULRBnh+wXsQ9n + JGhKG4PmWfHS+S/SGxTdypL6mUL0VlcPKroLwkhtlc46UbD4RbVGOarvOcTYq7ZnkA93gaASB56g + nTMOJodPiAvBpdEiPdcShc+2pK6+uw6SJM0ZohFf0LtpYCbdXpkM94qS4ViQW48VYx9C5RtKOKMG + H1E3uPYogbsx2HdFW7P+rj/RdFG4QNrvFcCaObTReBCj4A9PmApZhdAwAmz9ktMgdQ+uAArYbRkR + aY4W6zr18HZ+eNhGTNLXbrG/Cot7hLf9HM2366OAMeNK6vKv1OObb0bAnXBTQGSr09kipwQI5uJR + 7B8tII3yoiH7aB6xTscuX17F5wu9MkjJfHi0bD46WoBomb2pNialtxV5VmEhSQKRr82mlHeGAvNk + 1bDFuYdh6bq4R4/1UOHnR7oDZkW+C79ZfiKKoHQDr6uOBtO+sDA+Vs96+agfBQ1BVWD1ke/r0Uq4 + DNydywsXP+8L1vOxNBHfVDLW2OvgsYNsVyC6VeXWRcYapHjXzrCtcE/NRm3y9g+f6lsQY6tdlpzh + fFKVNPXhViXMBYt81kSorfYTZw436mwXHCvll11UeoztfKtpcZ4B0bk3gWZaDPR6eqh/+wnbl3zM + l6qTnyjijxPGUE68Xhu6L3wnoUgvml3qwu1xyNCPckHAmbPF1nfz1BSWyDY95zqLlvPsZ3A+FwYN + ZVbm8/ARZcj7vyc+xmPgjV/kfeHOTU2qV9KDLYLPt6j9yTP1zeM8rK/1EKD+NRr0YK52LXR5A5W7 + +8A41L00F7ryxYHwt/ZU9aNQX363ZAbk3lJciDLH2EfALRzfQo7TQ6Sx+cObCrwO4EBCUx7zxZ1L + H6LuNWPV/kK9dZvDBTlKG9Dz4Xb0BHWZYqX165w6poEBHcxyRdptt8fHB3+shddtbeDtZp8J51yT + fHXT2oAX4XKilqD13r943WxNXm0Br/l0TVmAjqGwx6baeoNgZLGNjtK3IosgWZE0xGmB7KcfbFXs + D4B3xJoD5GH22D0NW5W1AEHwNx4m3+Qerzp9Cb3+faYu0gsgFOktBYMtJJvCUYG0RrCFkjV2OPo2 + C1vZfoIQakTCjr6ecqE/CReUhdp54xN6vai7h7rvXsIZ353Toi+Do4WI1cWJOtlVqVl2XVK06zfF + PuEyWna/PIPgaOGA6f7eI1F/dOF0dR38erYVEzE2DXQMpT0++rtWH0f3VsIpSfb00GkAjJHyjKHz + OBAc5e4NCBFWNFhqO5VerabJx5hrVWQKgYtP/hnn4us0uZCW6ZsW+eIz/nrd+sKHaUnzxDl40jgc + EqgVBabJ5RcBvsWHCh1xq9LidlL0sXqcK/A7Lj21W0thE581CbJ+jw92HWvK17M0J9AcDRWHAB5y + MZKgCONfluNoi4drwHobvYmPaboizBZZz23oWNcy2D2NUGdHllRwxUeAnVWd8tma+hVW+w+/VQG1 + hjUH/QgXJ/3QHEcD6D3TzpBa3Wd6wykBxDY/PmLnk0ZfaVLWC7I+PAKiuxIRZLM+XvXbF3y74IH1 + a2FH6wk7DRJb5Uy1K1a9dRZeM8g+5BWsIbeP5v3quDDeGLJpPcuBrabPwWv4nqjjLDXrAf9yofEb + f1SbO05fZruDcP+IFFL6UgVavznOEFmnB5GdKGbT+AI2JNW6x5ou0oEc714Kxex42LoGHIAg6BKE + +7S3iEzuyKN6sBRwPF6CYC6FQz0OcAjBRQhPOP4oIJrDnc9DO0c69ZyDU4vLPK5QXNWcZmUw5Uw4 + JE/EhX5Gt/3prb6ctpDZpowNk3UR6etURtHkExr15yPgj+qxhKdL/CV7b93lc2J1odIZD4S9vGmG + 5ZoyHzZas2BVZmo09ckewsdrCbChvi1vxudfA7+cPOD7tj9m2Fw5YD4uM3YdbvSW47VzldftWweI + L2Wwioh34f6CDtSPTrYnKpj7wig2P9Qmd6Sv3QsHcEQ+pd5qnRn5LlO2L59JTA9W98tpdb1+FW11 + nxRv62fuWGX+jQ99fN9hxD+HrwYvRtBTLyte3tI37145daeG7OTDJ2eaS1dF5h4VtfFH0pl+OKzo + 6rQE+7Jq1FMilys8tuxCg8R9MwZvPw1cu07caogl+Rz6sAEy0H//4sHsiDVEzrs6ElZJCMyhzzeQ + s4yQCN8hyZmQurwS7WdGcdyN9dqcdzwEkfwi/ZQ0jMSfzIUi930FOyiL3ljs7wHgFwNRUxFRPiVm + WkGdzkccql/XE6X4Y8LzG95w9LONYXaWmUPvtDpQo25lQD67hwmH867Ebt0rEfMd6kIBXLotm5YM + 7C7qM9yV5jXY6hZ5rLWOjXK0KA1Ex58jFomjAd4XEdCA7JZoEXSJg/Lv21D7O9509onlGagLVvHh + DABYZ98IoJZhg1wpzr1V17ISeOfcpse10z2Rkz8xIDXqqLNKvs5zL1rA/sYYWR7XKyP2YfXh3/gB + 2bSjEWdjCLVOi+npB99si78lOAq3Gz3EJy6fIyWJgcaNFXYjpEUbv1Vgu2gKtq/NVLNmTl04SVmB + j9faZ8wpTjH8w19DOHTRKlTpBXbXMqXZZ9M1sjEo0N25PNaXbO8xSZIzyLPEpupyl/OlDu4G7EuA + gvKR34cV8DcbmIb7IygLbwM9XWoRYMrbQXh4tGCWSu8C2RlrAXeNdJ3tchTAyJ5Cmj8ufE5gKq2y + cXzG1BdcHM0LyS/wFmgWmZHJRZ+C6jOs++6GX4IXepK+VVm/3IYp2Ph/TW2pGdHr9xs2fq0Nk/RU + KiXirQmf4OnJ5qlIZbCtDxr5B4P9jQdSW0PEG18A83QcK3gpmUS951ZAare0Iki6sgvk5/jR6Vrs + Y8AmZhLpl0zDenXWGWrfxaHW4ybl01M2OLh80Er98row8jpNNtC9yy+4SmwHJuvZx9CtWUnkdphq + xg53DqR5K+ET7X5gFarwArkurunFtC86u+/UQvEkK6HqgjydSr06Qs8j+2DvLDVYFOGngKcqroS5 + WxX7VFNmGKzB+08P6rM8SVuXFDXEHuHmeoYJufzxvWBdWy2nm96HTV+51KeeDEiayy3shSzCWKAV + +/z9Xn2qFKw/1ZO3FOkrhSorPGw5yMvnk00yxfxmCjX967keb8/MhSF6ytvMn+ulDs4m+nS3nqql + cBhYE/4MuOlfmm/4ORIJzn/7+48fRuQBaIDkg5zQY17pOr+rFxsolQgxjgKbLbfYJyCeyw+ONv9i + xluXPEfff4LZcQMg/kYlhQu/aDiLTL3mt/iMft5zDgZW6bm07U9IR+6DVTO+D/PMggu4ylvNFAf2 + w5K7dfCHVwHPP5KBwa5NgeUqKTbHxtGlTS/BggUaNn/OMaeLqRawa1FOb2lp1swkQwlv5lHEaitE + 9Wi9gKHwP8iwNT4/+eLeGY8GeXT+8YVlWB8iLB2J2+JVV5MpVEbgsSHf8HnnzbJRy/Atvx2cqjTU + 56CNOHi5KzLZr+oUjcOxVNHZ/GjYFRSnHvN47v/0ED3duKu3dtwcIsXQGqodzodoeUBpW5+7FZuA + 04Akua8Wfos+JTOA74g1ITUhT4QF6w+H5KQo9QSOv+odCA/+U6+XKL6g5BY9/+mxORKGRGneuUPQ + Nt+r972FYN1HbQC39b/cYmOEnh1yNMDxWC+icpf/+QmHKdLqxb9u7qo7XuiT7M75OirODIJPW+AX + ojGTUC6P8J1cROxIpGBL9tW+cNWbC72bgAz/9PqbpjuiJNhg7eWpPAH4XSus5XwQCTttF8M/vmwt + V1Gn4rG1QXu3SrLUv1TvTMUZoZPYM8UHrA4CbZwYfGRb2fCCY7998aiUl80isvTuIRLakzz/208h + Ls7eP/74WV88PdQ/WacLLTQlzP0PNsaHMbB9f/Rh+1NmrPHJqq+VLfbwJ0onvPkzbGZH34fnF/Ww + HV08bz1LcgzTez5ii+rRwN6jw8GBPzF8fA5Nvn5OPg+28SdKu65ei84sRMLqtdQtgylaBB/2YMMz + Wojyk82PULPRXZDGQMlNoV6bjN8cTCEL3vnP1P/eF8rcq6JbPADtU7sUkM8zgjF+x2DO7nWPFMGw + sCkLByAe4zRTqqUycbJe5Pq7//ZQ2b0Oe6yrv54t1nhR0V/8+NOTc3e4i1B6/n5/8TZfZ+vso5en + Pamp1Es07e71CHVxMLBT7Xc5TZqTDDe/DF+EU8jmjwti0GpBRY3vk+js8MUu1OprQF8O++Tb+EDF + 7YovfnL3IV+CgQv+4dPGT+uFNk4CxUf1d1pGrJfZfnPoFRR3fJTYizEb3kb0t96ewXwHy5/+5PT+ + io/LGw1L0acrfEHzQMr3WObCbk5NEGpGgR/W5EZ/fAiJr9XCp5KpbHkVUwPjo23TIC2afFRXzgA9 + PJ+xXl5ovUpVPEP/y20ndH+8Pv35BWpeLX/4zxjFpIDgeMQEfUwO/Ht+ZNMweGc+X9PzVMno1n9i + fNvwV9BeWo+afNzwV/sMbZzpEP1E4YTdmGfROtaPDOAnm/ARN0kk0nDnQ7Z3c3z6HWt9/r1HH37W + B//PD6b6wdn8WQToffx0jEViY8LnGJgE+uDIBFE5K6gm1gUffduJ6JMrbaT3xo4Mlsb0Pz0AMvh7 + UN2PQ7ZufhEAgR9is1WTiGz8DN0k744NB7o13cYf/PEJ7YFXb+11ysPLIl7I0lLKlkewpIgedT/g + elsdmA1fBJKlcbDL2p8+6gbUQJCdLWqYzMkFsZ5K6M9mRObIOXpMcl89wDA9YSfbn/LWzf0v9K+A + UNU9TMNcokH5p5+OXNL942dwT5IrEVtJ8EbN+WnAPypf6livdz5aiZgB/sl39DreVEYGaynhrPU8 + Nj+EsTV3sie8RSTB1u5QRkx16wvMLbhi7V5xXlPEyIbZAR+w4ysfb3F+QwmuV02nOt1dIx4vaQu8 + cS3oMePCaCnehfnnZ2ArC0RvySEo4J8f4v4MLWLdQywgf/dqspxBDlhWvw20N1NI0MYPhfVc2/B8 + TS/0vH1O7eDs7o+RZWC75H7DctpPCpw6Bjc/4ZLT/u4VwH53F3wVgvNAZxcUQOvUmPrztxiWychn + sBUnwNZ0bbzlzpQQOjFUg338G/RWy9sMCJVd0kjm3954HisXcjttwYa+3az9298nWeU3/W57YxmH + CVRbUyQAbCcydGI18JzyJxKv9AsGwMwUnvjv/p+fPIe20ygbXwnuO9sAq43fCjwRpcfYNJeIXZP7 + qHA7dcFB/jnm84F4Btj0ULDPZ19fs2bPQ8QLR8IcWkUE0NEFbVMIgbD5y6L22Mug3hc/GiznCEjm + TXLhaqknWrye6l/8aeAtUC0afnbPaN32k6LcHj/qxQTXEv9RKiiAsKMnunUNmpFO4M5rROwB7EQz + t0tLcLrObxykhRFJB6qLgHklo398StRDN4BRkCV/412v59S6gPLN0oCPQAkolEITvYedEazXatxu + XIAUJmvPsLqGkr6qv5sMbyP/osdLNtSbXxyDfK9ecYj6xZsUgSpAK544GDa+vbRgl4Dw2Zf0UM37 + iFmdXKG5GiA9oXaOSMfJISzINODDFi9pvOwNeDBBgNVfhgExKR9CpuUr4QOWRyx6SQR+TejSa2zn + +T++uH+vZxo8iTkMa7FP4Obnkp+gud6akhcPNr1DT3wpM2p8+gRm5eGO8QGX9bx25QXQ8+eM//l5 + Rw6O8LsmW4bMrwZ2Trjybz/gV3y8MyYfxx5KMLCovnADm/3JLcDm1xGAvzc2mctRg+tNv+Jg8+PX + 7mX5yGdVQJ1q/4rWZd8Vf/wdu0uSgKnq5gL+6tTd/PzdsOzuA1HeyhxT/7XVmPsi/Qtj/Djgv+/P + zq7sUVDfz9jORfwX34N/8epPPy1wv2/gYjkZ4S6PCazp0b/AdU17/Lxtd87H60SgdkN7GnxJWi9V + oa7wtzdSnPtuD1aY7lZYXH8VVRUesPU3rhnsWzHAB+jkYHHnNgCb30KNvDUBAWbYIO9mBPhsdb9o + jYJ3+MeXqP/zvmy+ck2JJPF9wKeuPw/b82cQNjGlKQ/NfM45wwe8/3lSvGoEzIJ6JdBXcUmE9K55 + bElpK9cSLsgajCJoFxKF4HAJayIuO3/4+33AoeH+n99KN/wGm/+3xddHvfmpPTArbkfdNthFLN61 + qyKVIvvT1zmV3v52oxSEf37isP6SQFOej1QMdpufxU4GtEFf7hERLHUZlstwTuHJ72/YDJQXWImu + q0h52BPh1vETrWcCejBy+Qufrvcvmw+fIAVJV3VBc0xvYMs/XOCvzlzsdl3Ixm9KK5g7ThXsSuWY + 83/6KVmeOunERtX/8PoPz2j+dCL9zx8Hfp8aBJR2N9CFxira8pXU0E3hX/yD18sqU41XDPYvP2Uc + ixhbyzXxaHm9GzCnivfHH2t+47N/+iBQ3kffW32aQ/isrWPQbnppJuywouNrsEkzaCoYcuXMwaJJ + V+xfX339D5//8HfjM/XC/Nn+5+8ZwsGJ5vqw2qivHfsEEC+BVbUOKpDf+yfWcC0MDDfdCPO9dv3L + d7CpNaABVX964zhgIFqfIu+jPJk1euVv69/+jWHjg54IG78iUC55NPff08Yf32y99GoPDyAbsYaW + a83WvlNBmKKMOvHP87b84OVPf5Ll+5gi3gSXJ1K/ikn1bop0EaCch9X+xxNQ7uxokWzT/uNb+PzW + OtaFcVlB78QZFJfKJ2ozj0F0u7lnrLmjAeY8lnsIDU4Lds9WA2urkC+Upkyif/hJZKwYMPAe0j/+ + /1wqwQDPRblifc89APnzu69hPVFrfB4jsdmFDRyga/z5Y4MUnGQeHPxvHNz//Nr5VmV/+BEIuYD1 + VYuRDzY/I+DU56ced0spolpUR/po2crGr6nG8HC51Pi4QuqRX2Kq8Au78m+9DwySKEPl7/mkf37j + 5q9rkPvILdZ3pp6LS4UMqGppS73EeXtV/LnYoHqoP+rXCwe6zY//f04UgP99oqD9/HQCPuoPTD0w + ZxQvO4jdA34MLBSjL0j8qcMq7Fu2mEYXQJvgPRlu3rWeF3P5orsYSjQ7143e/lXVXlugUK8Q+Xol + ltPCaFfzAfT2vb7Gz8hGn8u0BPAnOsPKp6dR4V6jvt35YkNP3/sY1Inn4BNKLZ2X94YKP7PV4iNb + obeC27WB5ZNn1JYJBMtKHRv+/JcaLHZ2yIUi1F3kfq/PACUvY1hpnrWgNEBFD7qGajIUOwJDthbB + /Dty3szdjiW0A63HTpy+9fnyDUTY7CIviCTj4LFXUT5RFU0aDvSHOojm92IivY8h3kog5uvxqBMY + dpIb8PuyzcXpVZRA+BKITWd5DyyS5QyiQuCCvfBt6iV4livijutK1Tev6KwYdiL8yScfY7g7R6yb + uQt0NONBM2zQeqGqXaD9Fx7p63baDXOWOT6cnrcDkbKrqM/ZSReRCZoa2yr/AL8ptwNoGuccn9RT + 40nm1c5QgX4+1Y3DMAz9xSdwzso0GI4zFzGWhSaqNdJQT96qdma3Lw+VLvMDWSYF4INKMJEymzY+ + 7iDNF7Yx2FBILfw4v3MwdV+0Akm+8fQEJttb9u+oRcrx3dHX+nB0ZnfnFMW9GVG/+nwG4aTvTZSa + z30g7Ow9YGmFU3ipm4zeOamtF5JGMbTFd4ldeyfq68EOe3hUZgtHhvD2+Ae1XNiLWkC4cJFrUnPO + BYofMBERqgcgVlio0JidMfU+qgX48HNWoCRfeepPb7ueASh5OOayQnPh59TiUOxGuK0XGknG25v9 + LwdBgOUB5+Bi56JMWInUrU92PulgWMzlZMCTJ+6JQN6yvuauyaFbrcXYNiyL8adgNODd3qvUQz3K + R7TYIfRWImHXim8eAb5qwjvf+fi6q+JB+BhrAWlSfGmu7q8eH50YBw/paNDX7/315vZoKCic3yY1 + n+lW1RWrDbxgKlLfbE19ZMHRhzXA96DgqqMuvYqygGRMjtRxnVhn51ulISo8bap5Ya3PLNcayP0+ + Iz4+lCSfYZI2KOeyHCdFgur1atoXpJvyjb6074NJ7lPmkTtf5mBEBNfjPB54lNpGQ7W37eiLla4B + uvODTw/pz44k9zmLEAGppL4dHT1JDscnDCMH4ygNLvW8jtwM6X7v4QPPVYO4ulEGQ1dqqXPjvvp8 + eHA9OPfdF6dWdNFH27vEaHWTBF9n/6avydq4SBKqgsiVmLBZXS4ELc/Gpf49PgzC6L5VRN+/D8a/ + t+kJzwd6wrtvJzTem6dB3OvGF0jOGlKvH7414fjKhBzsILaHrGH/1v/v9tnh5+/BGLm6OwM25prQ + wI7d7XnCE3pIEKgpXiuwaIo8QmNcNgVI9JxPIN8j13Qx4U67Fixn9h33V3pbiXDhWMQ+01jBt9vs + qMPAZ5hvzXtG8O671On797D0wFxhogcJASYXDKy+RxVKf6YZ7IflkjOuxQG83Y8akQh+A5G2qQba + z0fHhnRgbF0K64tGRS7+4dPcesMXijuew+fwIXj//v/HalasLdfQG7/Spfp7P6wqHp+vP4WPEari + E412b1rP5XC8IH8UbvTQtQYQfq/elilee+ynyhcsnxBz4KayAh/uB13/t59z4B2pqR06fZXbmAey + H9wI1ye1vohrJsP8nnjYGpJ1WHybKtDK2Yr1ci2Hv/n/wx+anZ0u4qM466H10u3gI71UJlxDdoHi + UzWoWepaJPBN+UXjTd9TTzgFYDz+fiac1Y+Fz99rBligPJ7Q6N4T9dlX0+d5bUt07RVKACdP9TC+ + dhqUYoCJXPd+xHsMxuB4SkOcHyIMeOX0MOF7UTb8s/dgZO/uAtNu/8Txl/cZUxpUwBcVzjiJijKa + pMzWkHvbOYS1Ap8zpGkaZEm0YPczDzr9KG8FUSfiqCapAeDVnteg6icDdYM+BvOxmi9A/OwnrLVP + k/HNgbkgyl4Nxa/lVC9r5c2ws3JEA+Hy9Wa/Um0E1hLTgn8Mw4TXZUXS8HNxkL7PHh+IZxs5Wapj + u+7HaIZ4L6PkqocY/4AKpE/5c2HKIYKdz+Xp0f7TrnA9vq4Bpz/KQTrMrQ8t3roTCbMTEKxXqMAb + 512wkRtxLhLF8AFYK4wTa/wxttxACMvLdsdtbAFYdj83gHxKZSKr/IOxSJ5TsOE3Pqe/NmqTMJ3h + K1sOwcA9V7bo9mBAslU1PPDNjxH+TDXoCy6HD1Ii5ROo5yeSlQXgxLg/dUm1mY2u+7OBT+d3zoaf + WKrINW1Mz8f36o2DMoZg5xUYJ3L08ATMWRd0TsWRPprfxVvwup8RufYu9Tc+Il33UwLb7GnQS8xd + Gd0vCg+Md3+k5v59yqXoKbRwxG5IrbNsDTzLtS9yvM9M0zgm7G/+EO7bO5EO5w+b68zU4FaIhV4/ + fQAYvh4D+H4NGONQcAFLMrCCfP/OcLyNZ0u6SUVuoEvUqr+K/i/eZoSNwZLALiKRq7noc6ELdjRT + zSUx/iawQUOJtWs6D+tZWEzwF2/Dzr2xufiB6o9vUa/x13zt53yGrdJF9L73HcZ3LG2RlS8rKfCR + r5m/b0ulhoKBPZ7x+iwtc4oub45iT18bj03xu4S7i+3hw3P30JedzGVb96oD9tm38tZ7HvhAxc2B + XtuCq+n51mvQ+iWUmpiCep3hW0WasZ3hZSvUl8t7LeGxMX3CvdMsIl5irSC5y2d8k8zBW6fLywZ4 + hSqOo0M50HrAozIXtk7jo79VKaZSuFe4ogiYkX9z9vwJ3P6A1hhrXs1F8/Z+0Nu9ymDhOa0Wb5Hy + /eMvtOAlM2//xgdS+UiP2u08SNHAVBR2gou15Kuy8YHbFs23s0ZTMfmBORzkBsbC6UJVGBKP+l+/ + gKlZ7LEpTzewMLGYwW7onqTJn1QfTndsQGHuAyJWwsIor17jPz6MT7fvNV8XUUtg6owYX+CZ6dN3 + SRKoig+foJW+8vVn7VfoTHwb7LzGHMS2U1046+KDYnT3dWHENxGah6dOZu18zed1FGc4sfyCTyeQ + 1My87wLF3GpsHdqMH5jevGYYHKobzUOmMrGW+i+8niqZ6let9eZY6FQI3btEuJ++91rDtr/gh4wT + kQ6DWvPyriKov6kjttkjrZdwzE1wsy421b96M0xOeRTB54gsGl/vwjAZgskBcAYa1VbnM9D0ETaI + yySNxOJv7y0xHXn4C8yBqLQbvdk+LxrSDr5CDSknwxJ4xrjdiRwDdJQrNl3d4gvfcXXGeuLIYA4q + ZICgvp6pqTIZsP2iiJD7/Ubs3DjTE5+RVgCJKQtW7zdvmHmYcpCDA6RqWFYRsay2gqQzKdaXuxbx + 9sOsYBVRjdp1eK7HsiFfcL3yr6ArDpm+3KLUBPFV07F5OEV1F6SaAXZPmafqdTEjpnFZBcSl6Olx + yX7RZL1CGbaLreJLGUcDr5f5Fo/qKVi1S5av/LPJlA0PqDNf1UF4rUEBpLLw8RYPmGgkOxlcLz9n + +3tlO0EfFHA3nR2sGQthU+GMBeQMx6LGMmMwVlNlwARzO2rkcgfWNxgLZdNHWFdCb1ir+v6F23xh + Z9LEenUP3Azu5+CHT/1lZut30lTU7M5eMFRWWq+3U65AQQ9vNNYmRSe7q1xBR979AgU/3XyOsiVW + oq/6xodNf0lPkKnwH1769ZIzt/61MLS1kPpc9fHmX80VIH3YPLbnwfH6rnBXqFlRG4gz2kWLlSoB + bB7FOYgt7unND1z2ICosTHXfeEUkuJwUCHq/pQa8yN648W2w6IcAX8XBy8W26p7Q6r/HYErWHRgT + 8QpRb7c3qtVKWpMtXkEN7o5Y6z5SzTRjucDCJBq9HD9NNMWd6SLlVSjY2H3egLHP9IUfx3/8W9/b + +yb/nR/BKeqpmd8pbJHSYTVFM1htpTZh83iesb7piaWZuxQCC83Uzpiuj2OAEvAtR4GIwwi8UWqY + BsPzu6GelXbRLDVMhSjTvth4OIHHO2NLoCS5FrWMRxix4ndQobon1fY+8vBz50mFr/1ab/Hxlq+d + /R2hP58R1vJH73Wyegzh9OJGAjd9MFxHygHVpSr2z42j82O+EjjU6REffrWnM2SXBN2t6Er1+TMC + 8v3WMexYY+HsLO7ytSpWGaogOQW/vdeABS3VjG4ZmQJQiPFAiOIHyt0GKlmjSATTHN+fMCgtsOm2 + pl6f5smESx7zNMn3BJA8nFoohIcDjVyW68uiPFu48aN/+r/zaKlxQbp1sZEJZKvSL/0//uHanzxa + czfgYFb3BOuBedSlc5cEYFAMlarPlg5MYC8Z8Cof4lSAkz5bva5AoU1+2JXFQ/6nJwFxrRNpz/lW + U+J1JQDvxi7gs/4+rIFHA/gefB972D6AhY5NDKwlPODk0ZwYG9SwQghtXWc+l6fOtORTQDtQexoR + ZWLjRXVauMUXHBRWktONHwPijTIOkaEPoj19RjRxXEAtTqzrdZfRBC5m2NDLcp318WKWCarK10iD + Y54BRqqcB+ah0HEYHE5gNWrhAjd9GsjF8sgHjctK4B7OAVYDoY5YqJ81ZHerSMB7Qmx6H8oRDQfv + FPD0DKJp6LIvbDIfYHc4UG+1p2kEFJQijZZ7Fa3TeFf+8DkAprv3Vg7YM0Q7U6QWZic2v462iZhc + doQbiayzuwNLxURBgPEZf+oFDYYJpa3JhvpdKzbtZC6Fym99B53ftjVNH2nz5z9gR07jnBD2qeC+ + HimNv/wI5pN9TOG0sF+giLeRLfesHuH07Vt8vOqTvh4vjgmk4BTRhHzcfA6HuUEZgDHFidJE89/+ + mT4awofEZmwNTDkF4uVh02dXnYZ5/gw2JOHiBKsX6joTNcWG07lJsWUrHJjHXBnlS1A52I1pUC/n + U7fVcDl9ibjNP+9whaKolIXYwVnqSVydZnDTR1tNKTkiWvHuEZ3cNzbd561evhJS4eMyPPCBd086 + 05eHC/GSXLFR0iha7/GvhJWX5/h0P8c5k1opUf78L4Nwqic8eoUHfNW52DDSvfdPf218mEi28mRL + unINbPXZoVf/tdMnsycZ/IFnRa35BPWZ3GYeoTQDZF7iQWez2IhQZMb1X/ySLmc9/tNj1Iy0Tz0H + RZJCvCNdMO+X/bDuiJ4hr9BAAC6xny+v1XzCPepVHG7xuyu/M4R/fpGVo7dO9/K9hNrrE1CXs465 + CB78Bf7o/oOLDui58LuMM9z8Mmp8s1Wf0+Pso1xrQ+z0/aFeDyD3IZQYwZtf5g3GkfhQ/NUpNdzH + pR4fFLvK9jn1OEPWl8jarUqVwBRHlNQ522EYg9AVWnx4Xix9lm6ohwnh3tQgzTFaAs8n8Ok1IfXU + V5azeTZtpP+OX2y68iUfWTwocMDvd7AbVzdfw3drQnFM79iOiTNI8s1zAQ6pjb2zcq6/BzvtIX/6 + 7rFdiSL7W49QmNuAqnx5HZb9adeATX8QNN7cYapxpCnn05lS7V3VoN3wAhyqU/o3v/ry5ocQimN2 + p6eA+vqciFcObngVIDuUQIvROMM+WhIcwt4G4oa/8OqeK2rM1W4gg6eXSGlqj5p1Z0UCDIsUFGfh + gIOVnWuee4w+/Patia++X7O1SgofVulXpxv/BaTUdB8q/WdPb3EI63nrSwuMd3ukziX6RSN2qwBp + c1Bg70X1ehbCSkWz5q+bn7iP1qdfz9CX05iG4N7US/dFM/jTm0Gf6N6s7Y4act9Kjr01ftWz+xoS + sHPEhjrO9TlMqXkZkWXfTmSNpnPNW/XHhwel5LD1aEtv1beaMq3mPgNZ04j+x4+A8Myv2Dkfb564 + Dw8Qpj/DpNauvtf0/FQJNLkckPZqN9HYffMLHA+7jtqaFnjiKW2+MNclFIh/ek9gNxmK9lskhDeu + 7M/fAH/+tvV9dflq9BEH496I6NWZcFR59cmG5JTU2Lj8jmx93N8uWiwF48MPfRg7P20Cld/8xsdt + vOdPfSjhH58Ir8s3nw1bbdAf/vhDETDJSzMbJofvQI8xlup205uQ+fODOtzjBMRn5D6hPnA/7E6M + 29ZDM4POuiMCbHwB08EMtvgPR+qNcxmJ9L3EUOxnQsMUhWCpgaiAOMpS0g232zBOhx2UhZ1a/eNv + gwqEEVj29YSvO0ijvkriAO6hdg0ai3vqNHqiHlZTG+FwzQFYpk86wl7CgOyrkkSTR1sNMFHhqKaN + V2+GeFHglbjHDT/GfBbCXgXS5At//MNbktXpla1LED1RROs1uJxkaHezSGBhLjlZKhJCP0oM6jxw + ny+ZhXtFMGQNG65+A+R3yI2/eI71ruvYTGozBp/nZQrEOHLA0ip3Ec6f7obdjG/19WqqIdrwlyze + dxg+f/kNdgNF8D6d+3rm+q6BWzyjJ1bHQLpppQK38aIO6uRoraWqARMHA/pQT43OqGtzIDWEgEhM + UWuh+n0UuFeynkDhfPC6Zu4y+Od/7+xBqtfHfavSz2KOamtdRmzY72cQyPc3kQfV9aQpVwNEQSXS + QEENW6iqFtD3ezu4xt0arRksvhAv8ZVu+iUXfn5gKP55vFPDO7c6+4mlBs+SGFBbnKt6FsVfALqF + K/Bpy48InxDDveHEz0Cw2uuw2spggPtpPtCH8rqxdfMXkX8md+qrzsKqs7A3/vFdY29O9UjqIAaq + c7xif03PgLmSNwL5Sodt/0wR1ZvbCn1Pe5DdKtVgzfoyRUew4+kple4Di6PWhUg5CdSQxxUs4HFe + wa1WYxpFS82Wv3gSW1Ie7Ksy+OMjMhy2nsFy8az0zS/RFCK9DHoIjqonKZET/vmDOGnLkG35IRfK + 6pATziv5aKX5pYWZEm/5rDDQ5/R8IjC01RCfr+TuEcE8l+h9DsE//5KOr50KehpfsIuffc54E6pg + csKF7BRFGta8cUYQNBBSnJgErOTUJvAzHG5U/a4a4/fl4qKi7gDWfKB5f34M3OJR0HxVKd/0rorK + dj0G/APVw3zZ9wr8yzdFSv+NVi1xOXiQQURtJx3Y2PCIAG8dpY2Pv/6tf/iII5v++b9/4/lv/ozr + /VpPHv/kge5QSnWXAe+fP1CYo4bTmDi1eN1rPHz/oEiDyqds3vIJKPbMhZ5W+oqmk8h6OMPrhV72 + rzpajURS/uGH6TviMO+4tYHj0d9hDQ7TH97ZkAjCnR5bp45Wx74+oXOzJ6oqXpyzpZl7pT8ds2A9 + el091oFcwSYLQLC/TJouVEWY/dOzp+C6RPP7oqTQEMyeOpxkD+wPD//81H/x+pvLCTTrEAX7896v + pfobKmDbv2RH3Ze3+PZPgXxzEbA7mS1YND77bz4Ra1/EluDZrvBtoxinX6dkG/8f//xGIrdW7i2K + 0PToEpQO3vyziDr42UN9gD/scHrkCZtegI/zYSticfIj6cN7AfhG0KNp+R8AAAD//6RdubqyvBa+ + IAoRkCQl8wxBQcROEBEUkSlArv48uE/5dX+5C2ETVt4pYUUzo1UXghP45WPqgZvBW/suOQqnyd30 + VpOtRnMzwJ0Vz+Tnx+kXgRa2BTCn+XOI6mFoZw3t+r7AwbLL1T1LOAN2vA+2+w3ZJMsHCN8PMSU6 + TLpouX6eBrID3pj2d7/MRi93GejUlbHpSTZaDnESQj+2SmxhvlTpKPs5RBpMyOmhkmh45xWLtnbu + eKt/d7kBUYN68EEBG8lSz+0PuQaly70jEtLUekCLFKLNb+ErZle68L7Twove3Yn6MJ/1b76hav+E + gTgaFqBpsgiQ2EeGOEduF22nyTHw7EQVNif8pLMrZhJ8noSGYCn4ugR+TiFMPPKd6OYP2Z8fKs7m + a0Ipf605cUljeI3l3QSrnRTNix+Gf/o6QCTuh8M6xsKD8Meth4FUk0BiPeQfghkr8EjdVdfdCZbZ + +z6BCgQuNS1VgSO9nog0qKZLmvOx/enh4LDx419+iiTzHIA13vXDPNgsnFg8kR+fUM5OWdBFNAnE + a8ODZcubwVu75IFwdwV33dYnoQLON+zMpyia25MTwr/xYZ6l+sWHsIC3c3glx534jqpD0rbwhz9H + DuY1xZXzgh/vLmF3mKWInj+Lg9K7wxK9KbSMJs9bAT/P+hgwyw66dJ4DC/z8lMbv7Wi5KSEHd/tm + Jj+/td4UEP+XHQXw3zsKjrnGYKPUxnrtrk0FYz0UCZayb7Swb2DA4Z1L5DSZpF6PedLBjIMP7OI3 + t+1JvxbIWDRKioNn9vvavqyQHtmZ3KqLEFFdOIawbM811um7qtfROzYwuWsyVu/PA5g1kQ6oe3Lh + JLKLke3Zd3gTv9HcY+1qG+p8/m5dJnijw/on6t1Zvcwr0m+ngshr5oP5xBUsNGJrCLJk9Xv+rD1F + SIyjH9TVC/fLgcAAkGltiHq2K3WAT1ZE88C52PTjpF+uxrsF6KV5xELZWM836iqwKJ0s2LUvU10+ + 3nyCq9qWxAJHL5oGMBgwA5kXtCa49ETQahHe7U8+URu6Ll+RRwnPgx7ghGGtjDs6tgOns6oF811b + tiZAuggfxxoTQ09QtA5+wQBpz3gEn3iZ8uv31CDhxBQkvsi4p6Jtz8gR4oik2DlksyDmCuRuooTV + JByjtY3KBtHjoJNil9JsIHY+C0cPfwPIvKuMewetgirAtuR86o16ZbM9A9e8FgNxL8Jofs7sC6FQ + Lolehfto5OGUwzoFN2wk4znj/Fph0GTCE75ndQRIv7W4GnvJxQp3z/t5fYw5kBqNJ/ZB1/phfbwL + qHlaQGKPD3rOZ9EMeV1+kdNzn7q8szgnlH4Jv73fxl3rDEJoxMcLMa/NpFIrqCRYlJExrdSbVQoH + bUJhcrOw9EBGxt26GwTa99hj+a306vrG7xSKPmOToMi9nmfvqoJGUgjEZRDnrvJQpjBFa02KZTf3 + pPweXyhl5AMJzeslalvXKuGF7L/k0bawp1d0YsHzepexBFYZsOnu9EIPJu5IpqU7sHwK6QbL9lIT + h86ZS1axm5BkWzP2PhZTb/USIrFXAJFI2UVDqDQ5etmiT+Q7/WZLQAMFmk3L4EhuW8Av6daVnsl1 + Eq1m1LOsLN2Q9o164khxky3jASaQvYThtLwVV/2+rl0pdlyISM5mz9/8OkFmZK5TbfFOzVFhZeBI + u5DI6dSCuX69FRSPc0Ruz6CKpkVXXnA4zApR4OdOV5ecSuSenzM+MiRU2Rt9T+hxRpBoAvOs2cv9 + LsHuCQHWRfaVEe1Tswgm0ocEmSupe3S5G9uerhNR8vlS769sqKFaixViO1zm8uwUOcg9n27BdxH8 + nuODp4Tkvrpg56E9XT7N7if4CaUQm3EtRLPuPj3oj4GHj84pdFclNDT45K4WvsS1kC2503II5917 + Cs/0Hc2u8D6h+72zgmXDA45IwwCvxL5g39bDnu8GdULvvN9vPQU+LncamxXaXXYlfjNJ6ty6UoWO + gnjDZoMalaY3sfmrL9fE33q6pqWFltN3JLi56YDdvyZFPIZhgrVhiilrht9ZNGJJxv6toBmVJpGD + DgQ9caOn7HJzvR1jpT3QBA2Pp3MXygba5icx5xvTr35VhoiXSBWwO6uqZ1dwGrg4cjutoLq786Nn + FbThE76q76lfNZWr4O95hOfrk3FfTuJQ30/3QPRHW2WNHXtC697dBdCLg4w+rgYH9YLn8IXd9tz7 + VXuC1zohwZK8Pj3lQlqgdL3AYMzbuGet5yIgInMlcWLYAbLhKZLEUzCxZfoBg/B1Bfhp5x32YaZn + My4NRwS5dcVRJxzBzO2jHHLwxBJdZLVssv2YAajtX9PihO9sUpBQwl3Uh9iUpTgaT7wdoFs81lj6 + Jt9scQ5iAr36cyb29RRR/joo068+SMEcW3VNzriD3dVzSWB2Dd3uV6CitDJyG6tXPyVqzIIND7G2 + s5R+e34WTt4pJt4YOBGnLS2ElPovLLtXkC1P7RHAMTA0ookmX09f3vDE6SVc8TGdo36fH0ACT2fu + SeQBK+qa39tBJGCf4oJXmoj6V51F+cyO+I5eIKLV3VHgIUcJVpWFAVN+bydYCMD5q69R6TkFueuD + J3jDm6WV3Rsk09yQqy/lGUUYD7+/8b0VB7ddkO5ASZtUojyXqp87ZhaQ84o+2HibdbZe3rcUMtxo + k+Jo7rJ1d7eUHz/hYBb0bH+RRw1SBjwn3sKJSrlnKyAjLSZsbfWzFMwxgM7r+MH63Y3p1F9dDrz6 + bCB6vDfBH58d3p+M2OXz3POPVC7QVTGagNUbxeX9fWlBpgpznNf7TzTv3oKGzhfqYecZju5qmsuE + Du93RmQnvtGhfwIRHNHZxIXNti5VKumFfvPjpbceZfkLnREzmRoJPClW5yDgFCizRxPLfFH3KzdI + A9Irscb5eHpQ1vncLWgW0gGH5mXoF3ThZ/Tjn0RRDXf+iGiAatJN2B/RE/DJx3Hgt8UpOU32LZuv + 1fmFXrs8xelnsjL+e6MvKO/YK0mN9Vlz0vhexYE53wjun0eX8+t3C9WkVMl5Tw/Zcp+MAhXs2yL3 + 2azVdQAv4/d+J66PsLrgVeoQeAF7euFZdbnacSw45LDBR2bUM36nnHNRDDQW5+zdU4eeNgPqmms7 + LXyh1jx5wQEKsxpOTNluXYQPTAJ3UfnG9rAo2b6VJw3AbnPIAhDc+RhFAnrtPiopbNZS19fQ3VDT + vQhJI6MG61h8NDQtO5c4dHjXVKHpAGvJ6smxEON66tOnA7/RIcEq79jZTDL8gmZgv4Ll+DxSkj3C + AsQ2+Ux7xgT1lAHrhnxtoEFphM9snm+DAIrcnH7zP6KOeuFgp7sPYqoHi3JF7cI/vL9enHs0fbm6 + RKxqHIiBC1pTNi9j9GnXHZZexxasfPCV4Dl6ONs38Gd31u+xBHWnZifh+TKz1Wf3M9wNzhcrOrPQ + ufm+X+LV+DIBFbCjcp0JBtF7HE/EEYEZ7Um2QGiK3Jk41UXIiFJZDVLyuSTXk2xmXGqKA/yYN3eK + 33crWje+RKyynYNpQQXsy/JQQu+RoenV9wVYftcLwC3HRljH2UJjKYSreuAmTug+2cR4pxf88blX + MveakNdNgo0Me3x5TK/oa19OBtr0I9b3RAW8hY4c4qWGx6ZYsYAUJjfBWztjYvQRcWdbOwWQkZWI + aN6+pjNn1B0Md4qHTY2x+0WFdQF8baJE/969bI2Y2BNtW3pPL7Xo+5UBzk1MLKEj12toq3tokA7c + m7oOBHAcskGKbqLoQWPCzp4zAE2H8QaC05oS7Qi3VdI2qKCuwzw4dF+XzrRoDbDxzdSeT4Sul/fp + BqNhKUl+KkWXXqFgAcKHEvE2vbJs+gW+WHkJ1udecMl+Z73gWvJo06N5NkcmUcD3kbcBHE870P74 + pvHblsi988yG71iuYNOz2GC4aPt9fYLzADm88bnLh4Vxg+dP98QyM74zojsNB3kp93AaGSrgUTBK + wJX9ibhB4UaLWT879OPv8CbodL12qAXBaU43P/Pp26Ytt3O8D5dp45e65nWjAd012HbUCF/6m09w + dhuFqBbf1WNC1uBP//7qbbHSSwErp3lgzRnHbEbPWyDe4sIn2BtLsDzPnxhOYXMhXtq8wUyL0oCn + 6RNOYu56NfegS4poY60YO28nmusoF8BBCz7Yc32FLjX/EkFWdXeCmyKLiJAkExzJpyZapN6yRXu4 + M0zf1gOrnXCkC7rsZqCFFcR/9XSj7qa3j8bE3YVnTc1hSGH9rB/EO+Wven7tbwU8pNWXbPVI6cXZ + esT0kkus21nvuYW9G1vCcw+4uyD37Ph5WGA4iGPAG3oMFsuQmR/ekQ1/6WK8Pgp8HG8voujMEVBd + AAwU7dacKKe3YNlb2e0Pf09zBPp5oJoESa19SbxXLip91ZiB8kmIJlEEn4xa2BtgBq4ePv74XHgE + K1zL1ydYaHVQW008SkhbFp081vkE5uTOD3CHH0JArcM5WhcDM7C9CneSZQeBjt5oGT89id0gL+s5 + 7swTNGJn2PS8E60+i1bA1d2MncxK+p9/E/se0eA27wFYF7qmIst6l4kvvjVY2HeYig//zBNLast6 + HFu5gos9n4jpuVJPn8C7AX9M+ECQl6QevUnPoXLUauzP9ghmz94Xf3h3KC5xNGdaFkDukYwTAjdR + pQXXlOLwJkmwA4qT0UPzLaDLLdupYxxwl+v+ngPxdOODg9a+6mVytRJSvxonNlLFiApJMYiHnO2J + vl+mfn1+nhy8KKsQvPSmcofE08Q/fHXP46gO5lHLUaw7eIq9wzVbJUdyDqLdmX9+jp6TfIKFSQdi + ax2JSJDWDkyti0rspufq796cJ7T5c5Io+gymn38jfJ0Q+dBqdJ4ErQHJezDwefMbdDbvCjrJy56Y + m35hwyUJodmU0Z//HL9SOYDSgASfjStWKTvOBVJp7hC9TWSXE5YewpUVvjiauI9bdOZVgZv/ID56 + Zdls7o4NuE6iHHyL686l2kd2wKNTWuK7jO6yeZPOcLCAuF3v6f6N34wFDYdglekPP2GrEyOYCNX6 + 5WWdUqB5RkDsYamiRXs0BWins4ONbCqjee5vCbwfGRfbe/vm0s+ZSoipMjMQBQ3V6+AnDEqtsxow + 3XqtF/tyM2B3jbmJ3727nj7F5wDNQjlgnMdiNhxcuwKVMzoYs4Kd0XpiWVSPxoJxc3vT0WdEER7D + eiA/vKSSNA5w3avx5t9KlfLrQQKFsD6w38l8tmgz0wD+aoQB2/cM+ICB3MCqUhcbpSFES/bVBbD7 + cB+szFFWr9Uh7pBDuMM0XJ66OqudcYJlZhnYEXeQrr/xZoXqitVFidRZzNkY2t31SlQCPvVymBMB + 7c8fNxBP67eevzvuBH/+8VyF52jlECj//PK5TZ4qtfBnO6XQMvFR93G9qLAvtm+SMEkBlntemkQW + hjTGJPfiKSNWUCmwE8cO515y+MuT0KbfiUOnOaKOsrf+xveZThZYDnMhwMd5B4PDuhPAygAlhbph + mtiLO5CRK9pOiXh2YsAt9zmapbc+wKXwdtNy376JFqXvBHVQfYhPtNGdlNAwoDF0OjEN1XGXqtkV + IPTFCaubPqGCZgcwES2KJSN8Rss9EyBE8aXCaqjJm38JOHGbbxjfrCCbm0toIJWEK5ZVdcqWKxsa + sE5Xgq2NfxfhYcyomqOE+Lfc6imEogXWC1OR7f+P5l8eUSqVEoib/vvDv9LN8k2v+yp3UI4FMIZ1 + nhgmOoHx2ESzuDS8hj2VkV32QkwOOmQKsObxUz9y17oCDTVsHC0KVRdJ0F9//vS5vZ+VSMN0eOe1 + M1VoYLK5kisDOvDQY6WcPMCbzMVDESwdony1K51vdBx+/IBdfoqzbtG3BFVo42D3cF/qLJ0E77AU + 5w4H9/MzWve3uYHDe0yI8zBcwImvZYIbH2K1ql5gHj8XS3y/XRz88LPuUcaBQVRToj2ijzuiRLzB + y8V/Y69Yl34ogzhG1gWYWD61yF1eNz/46cWg574UTK7sp4fS4DSCfS4BbF8lDXwuMPs9v7tu+aCI + D4Uc7PdEpXSKhhe8M9s3gFo9ZOtHoQ4khlMFu6tcq+uz1UqY7yUNy15+zKYb1GfIAJvDlstX6m++ + I8V628RbIwdQiGIOtmtVEfy8inScnCeLNv7BZ/mkgv02fyGcup4E3fRSiTmaGnrZgj+tPVDr/c7V + K+hkJY+Px3o7tdEZWcgUmGBLSHx10/c5PIaZHNBFarP5evRzqBu6ScJ40sBSMNfgsDSITDtvLOls + PRcRbf4BJ8JwUpdHOM2wfKnPaXVls95fjXcHTfvlkVtuP+mkqUwFoMyH2FuPkktPx9hBj3VJsXlt + Anftryr3569OvmuBveBHEN3vKyWe+L3Q5XtiPLibE3nid59ztjT+jYGHpzVhfGQ9lRw+DQeigZYT + TYKq3zp2C9AajAL7Eqn7tSlRBUJ/VbGb7dVo2hX+DarEMQnO41s23+1sBf7oeWQTB2BBhgeBeYoh + Dlh7oet59TpoDK1O4veDussDP28wH/oz0S4yqalS9ScQuemA8bTe62HLR+BzbNPpMIpCNPNpUsBW + Hw2Cx++nnrEvtAdtoTo2W6UB6xuPKWioZpPbJ1Wj/U8/XY06InbqWvV64YkALkHsYGPjz1l+STGk + R5QRL23neqoOeQfVG5yDVkh5QBW20ODH3dXBenv1Nfs2uu7w+/+jo3/px1ANOfgOdwL2mLeSsYwq + liCClUOUnz/GQZaIXp13+Py9D9FYC7gRJ1Tdp0WotWwPTnkFvnNjYu94Df6Pl0uz1yZh88/r5vfA + Lx80Nz34LXZJA6NaMPD1x38WurKAv2ohdpcXjchFOIXwdWoRUYOdRHlHueUQLdF3Wt7anlKeZhve + Xjoie7emX979PYYbX+ItX40mp3Buos5fQiynKxMt4Liwh/UCKywXYtzPm36Bt/HyIY4/fl3a6P4L + 7vDFD8jv/ctmo8AUzTWRa+REfMGpLNQNvE6IO2ouVxwpC/HTjIh0Vz4q9V7i8MP3IJ1Q504G73l/ + +kD5zTfma4pwy1eJvaJJJTs51KBy9IM/v7ra0FuhrjM5NpyLFf3lE7/f//Qhl3lhI94Z4bjxpdkv + 6+q0QBLTAw6Yo/WbbytEbRpgs9mFgEpTasH34XHEjpQs6kzseIaOqTnEsE8fsGStVYKHf+GxRlES + zeq33k71mnOsIwW49E+vfYvnxLxetfvT6+gjdDFxtnpcERg12Adzgi/b+6Rd/5XgMbzKwXLpVzDh + JBzgqNzMYLZuVU1R+eDgpj/Jpn+ycUgOKTjP2ZEY2hGCUZdfBoIrp2IjW8+AbusDQAtvR2Lk9KnO + 8j4s0PU2dNjbdRUlILuE0JduCw605RSNvf48gdl9KeQuLUG2tAR4v7wPS/5DVfmDwDHA7iyV5LtJ + iObv5ObwajwjrOeaXc9gfK4wA6cntskg11NnJSm624kxsWrJZePmR0DfD3fiuX4FlpPFGmDLJwgG + xgOsjLcPgfeZh+mXP5OqMNPDK/AwNk+XIZpxECVoy58CWDKobpM7P/3eT7A7IBvwP/+i8iKPZR2L + GV1Sp4BhUlJ8b4VnNGx5PEQvwwt49dDSzU/c0C8vOn+OUkYd5VSgeWBd8uPv4Ts1Dtzyg+ldhfvs + l++IfQBkEmDm69KoeoV/+un0+MgRrx+KDpi7o4J94XGja/9dQmQ2HUPkt1RGE5EUBZ7k8kHusyvU + o+BzLUi96jbNkK96yiwfCN8WtoJ5y+P7DX9/fBdc6PlOx0foaeIxN5ig+moHsAqPxYLtTbaw/rQ7 + dwG1zUBVCWQsb3kruUeWCK/EvUxc0js1q34l4Y8f7VFMIyofEQtGpVqxPdBRHX/1XGRcir016ugi + St9BoPY5IfbFQdmsiVcJ/vzaVg/utn6Toh//GeT4ivqYwhvEaVzji+eWNRXOUIHU/6bYYzM5239P + WSl6D+vz84P9Moe6AX76Q4/5tV/r7HYCBt7FAdnwfubTIhd7rA7E544vdeGuEium3/xJvMchBz3s + KwnVktNPFMVOPTwfrwJF7m2YoHeq+58fgM2RlSbe87eu9/iToi3Pwj6qwppzZf8Gjp7/xZqal3T5 + FLUBfnrBjB8KZZvLukKeO45EAeUpGzpGEKF1WXMsX0ZUr/Rwb6Fp8xX2uWii667QU7TxD9HB4QVI + wU0l3NbnguUyop5oSTTATT9g3bi8suXxZERx8/PB4WDibGngmMO7Dwpsb3kS7YOXhDY8J3b3kd35 + Gkoayoq7Tja8V1cpEyFcgJIF8wM10WxMcgGH43OH/TA+ZcR7hRLoOOtEdDfXAH26BxHyVw9MXPj8 + 1pwnSQra1gemOjS8aOH6JIbzqD+DJuW5mmx4A3718ni4mjuTzGygO8k2Sd524K6/PIXR7xIO961E + F+2hrsCsgmPwaiqLjk/1yh6OZnck2Pjs1eG3vmyxU/03vnRU8hw8v3GCw29iR6snSRKkdtATffOf + 6/c1T8AzvgGWx1RwZ0a7B+Jt9LbszIvdPfPFIlyHK8a6WZB6w5cUco9HitVgV4I//G3o5UFUXywz + ij0uhDbzmrc8MKZLA1oNduJrhzELGToWDBChMMshCcxhqYdfPvBWDwY2XcvpWcV0Y3iwlh3xs5pu + tnxXgMN+++J4W4+j9orb/7KjAP17R4EE2xtRmXNVL6o3DXBVU2ba8cm3HkL9rECbzUaiR/Wp/grd + WMASV3nA7vpGXWR0bZC5MYD+5FwwjxcbAmhLhGArneiqVbMGkVKfAm63yjV/IvYNksrLcdCPAxjs + 7JpCr2DUkXkh1+Vp4bVgZn1nClVtB9prI5bwLj8odjKeuOs+lxp0DnyHSEFl9qxR1S9UlMmXaKnw + 7AdfjrYueCMMlixTIgpj1MC30WTY8xtFZXWZW1G4j7/YlVYOzM7x2sGOaecAaYc1otB+MrBK1P3E + zfy3X6R8WAHS5YDc3ZdWL1ZjJwBOgzTNxuWYzYf160A5vA8TFwwq4JtHysKjz7I4jM3M5b96pCD7 + DE4EV9HUd/P5+IIDZVkS9A6Kxv55EOBTHeyAuZ5f0XqGpxuc+5tEzn1C6i4c+BIdajsiJ/YgZHSe + lAFqZN9N00050T2XpTckh4+BYNea62E+XSpxWgId436qAG8LaYGkpHOJy6gdnfYniUP7akVY3b2l + mnub4AXXECgYB1nlLtxpKGFuohA/+MTu9+fb/gZHu9KxWlxwNgtHGEN9HGzsZojtlyOzMugCDzPR + 5yCu19cnmGBThxGJGPTs99b9nEOctgtJ+E+f8TciGuh2yjEueEF1uYU/hZCb8jvJbAXWtIjLFPFV + 6xDMqmm0N3B8QqYp6jgbomfGxpdHB9uUxtPABA+6+JXwghAG2nRQaOFyIBAMeK6FnESJafcTag4S + pF5TkeQiX93VUQCEdSTE5HpPkDtG51ZD12vYkeRAgmysdlYO3cNnxlJ7//RruO9T+FilK0lxOYI1 + Po4s3DX+TCw2adQxew43FGWejh+xdK5ZBT5TxEyCS6Iov6gz/8EDDLS7Pon7Fbvr5UxO4JCzOk5Z + 5u1yv/FybhkkUi/ygIIVcvC+sAGR3qPez8siFGBfm2ACX/0RzaafegAokk2iD2bdRU8lB8X3egkW + 484B8qZhgmrNP2HDz3UwA5dTkF8yK1Gecg9GLktT8KozA6sxBOocTESA71h74GKx5Ig/imcFQVsh + JLjsy4hjrMMMP8bc4N94kXGfCxBpQzgxfPhS21sciHAkVUxka0tcf+O7W3yB6EpmuXxfEA7u8emL + fQe++yUsAgsq5PvAToMvgF9XzUEneuEI1kcYDZCrXvCc3UKc7Fa5Z4FTWcCOsgTrhynN1i6tEjTc + ude0GPeELlZuN9C36Au7IBWy1fHogIjneUR3rCJbHvSjIH9aaCDuV+Jy6LSUgB3MOBAuvabO9X64 + Qbts8uDua209392SQzZ7HfH5Ydh0hbMwQ3H47ollbHuGrWA3i7VBAqwUyTViJ9Up4FDYFfa4p91z + ZuyLkH87Bil6B2UbfswAaHuVyGsjRSzL6yuil1cXzO3drGniqiz0/bwg6sfRai4+jhxk7EDEpopX + dYqUdEVgLl/4WPetOgSD5UCtUr7Ef8WJyx/FuwK1F18T+/Z06/1lqQqUPEQRG/C1o0ussAUsyv6D + C8UxMrpnlgJVILXwabW5bInlskHP75QSawLHnsP21gQo2EfkdP92gMZU4dCl2XqgVHOW0WdQafD7 + oCIOtnpZCGxvsF5vBMtlZGZ0w2/44wOXsW7ZFE1HDz6OZ4nYweEFtvcXIwtdDYLbpFJHNugNqHPB + GUvbN0bcmNcrUoLYIce29tVtg8IETecmE0Wlt2wi5RjAiZV2035ne/X+/joyiNVXk1yOVZ9Nk5mm + kAmCFStZc4kWmR0HQL1XFSQTaeoVtp4Ak1GTiD+afbboL9LB5xDExOYPgK5mfljB0xpkHGfjCexF + /rbCEvCHiZreEs1u1xQgH9snTpc+6rf6khDjqSwOoC/U83oX4OE77CTy47c1lT8zfH6HFDtsdVTH + so1uKJIqSMz6xII5EbQCsNZbJmdZEHriF6cWYiZW8D1iu2g+7ZIWjp4iExmHnrvsorsH+ctOCuZ7 + haO55+4a9Kd8T85mmmcrtzs7aBvvCeCVyVbxpg6wZBQee4V7V+cSci8kDPcOB5fTDOaC/56gs1sx + VsfTp26/MLrBIzxjotgRk9HsvcYwL51iohuecmwjJejz+BCsZgME1CGvF/y4c4Gz+B3RdbReIYqa + wA/o0zxmlOsWBj2+vIvNu171/VTaJQwNNsCPa2ZTQlstRShT7xP3hEtErWedIpGXZHKNrxaYDoLD + wNNJeQapIXXurJ25EG54hkPrEUdsz501RNGBx5KyC7N5j4MZNkojEqdZzYx7RLP397z3ilQ9e4oS + DwLMO+RxKIZ+npkLREhXA6yU1wHMmWTeoNw/KJGOYlvPtZUaUJ9Uc6L05mQcu0QQDlncEumrGz1/ + GbUKOQ+DI7a1VO64F/sKVuBmBUxw89T57Y83yHHMF9uAHaKW0WoWfUi44CR9InchtslAzohCLIni + rp+fLa8hKdnZ0zx1Bzoz4iDByK3VCVLbqonwAh1cAjH6w8+BJ7SB80ICLOnklC1IjyUI3aonofVg + I8IlYoEO67aC7ph6zV2f0oDMk+AT87oe1XlBngaXq5gRc+xQTZpHysHD+4uxyYZlvbKzpMG3nZ0J + 3t5XB0IVQjLWT4x5xqoXj5sNJB77CatRfnHXM2pOQDbbagL223P3iYFEGBxbd9qJhltz1hCwUBG/ + H6wOXdsv3aiX8JylIXnAYKpna+tafGovE1a7Sq/XLui2c90MCyufZezXkvdmmJoHgchNeahHLh9C + +NMT6kBSdTmPX0mc6CBv17dqdlnmAnbp7jHtNz21hLl4AhUSNRKEn6KnxyBu0ChWObHra5hx2s3z + 4FQoBDtgr0RcQ1kJFef4SW5n08/4q7+k6KwIOnEkbc2o2dcW1PUKBmj3iOg60ZQFH5ZRsT+/MjpE + rCrBg/IQfW58WHVria8S1Mc0xTeDaDV/yPEKzr7g4fxw7Ps5hb4IEfV6bNvF3NMldAtwopKw9aSS + eg7lywnwfsQRo99p9fo+guR3PxK4naPOpvaKQWKOI4lSPPQD/wYsNCPfJcGzO/TL1a5zwMtwCfja + 1yNu14kFxFMvEfXZlWCV+sSBh1tsYy26+y6dLucOgneVEz/y3IjNH2WCgmPn4iB5VxHVlmcOWyU3 + Cb5EBmXfyTGEt/6YknM4yRmbsXT6XR97n2aJJqP1U4ga9U0sYJhgwfMyI/AoPYw5KqobXwSQl5ll + Yjm3yqhf3FpYcF8OBxdfjtZQ2hlQgewb2/hZg9W7PiVYMhIfzBt/rPdTUgHp+tBxoFefbE44oYH8 + bAX42rIa4LlyDcBOEzMixYpbL9b9ngPzJPr4HLpHutCqekFPziUSQqHuF6aRONjU7yP2Pk8ZjEiU + YrjNn4Ayt1VdXP+SHmh1mIk27FHdM89KgF9SwAmU+2tNovy8wjUyJGwb07SdCuIO0I6MFGuOIlAy + MtIMlyr9kLA5az3PpDtFTGgWTIIhOSprv48WiO2pxIppuGD9ct8G7OdIJnZpPNR1VxkvePNWRFym + t8E89HYBDrfEJrgCY7/e0pyF1VNFGz9/IpKc1Rdwp3e7rbC93DXc1RZ8rsErQIfTs56DOg4BrtsD + ubyRGe25fDgB4xMMxJhMs+Ycj04ircA8MRdfzljIdQ10ZjPAnhPILm84TAxzD1nY3dO3O7/Ko/LT + 6wEciiRbhG7MQWLeSLDUM9/PavsU0bUIK2KJtZCNl5VJ4Dcu9iQr99d+fnvHEvr+khNdFoR6/hwn + DlqflMfeGfDZiu9dDm1LC/EJH2SX7W1pBrE2tMR4sFPW7e9x/sNbEpmmTGe6O7Tw9X5pwe6afel8 + iooAgrsUklORHKLZfh8ddIsZd7v+JWrZ/SIiCgxETH4M6XqY1ACA+yXA5nVd3PWgKCtMRkPCeKrZ + jF52ggUTW+wD+EjcnlMndRKfx9olVikdeuKa7wYOLTcQU3WqenbMo4DEiBuw5zG1OpO36kAtl67Y + rLo9mA9GOcEoUHbECD2TzhjHK4yFABB7vaYqre87R8zWaBeQJWgAHfexCF9YXLHp3tpsdukp/vmL + iWx+il6xHgIMbY0YBxZRagW7FeRe5xBz8kd3fnXhCve+2QewMvyaGnaVA+jyX6wJ0Tuau0gqEWYS + BWNWFbJ1f88L8Xn0fGxwuyGb2/AEtw4QV6IM37WfHyHjQPe8Psi2gq4SzEUNusXQJY+gPPZrra4W + cME8kR8+vOE1K4FMvzIO+FBzl+/Za9CpK4egf4SGyqpftIr3j61hiezbbJUYeQVWle7wUW31iC+H + Z4Lqh3/F+oeZ+ll+szG8f78SzvDKRGNg6AHsLxbEGAZBz6K0j4FgPDJs+M9zRq1nn4qLl16CTY9k + 27YnEV4ycCWYuFHWxpdLC+V7t2AbXXd0PZahgswDvuGAa3V3Bi4jAQg9jeQl2KmL6jUT8PJFxzr/ + fNMlMfYiFBLrjvNo0gAt4jZFpVO9ppcAtIgrZa+BwQelxMZNtOnTTwt/flg5F2y/2IwSQk8LxWBl + WQt857Vs//zRT08S0CINRi8VYzfSCe3ekRn8/FHwyyfmEjIvWIB+Ihp9P6IZVbWBrEDo8eV9uwDu + 53d/epff9MAcarKDnM9bwbospPXiPBMBQr52sBJz55oqY/vr+HHdVhA0OjeHNwtxtOMnKtuFSqq5 + WyGGrob1bgo3PLzPUNklz+lQX+doEt+P+I/fdY5JolnO2AY+OzkhhiYvPWnrUyhu/IldD43qEjar + BG99lOLffFyE7/EFU8fgpsN6TV3qwaOAqjKVf/M5W1VBLWAqhBHOzlYdLaxWxyjYOwVxz3MVTXYn + MqLyZAtsk1fTL0izLNjM8wXraXbp//B1q98fP7lLfzUUuOURxPeXi7rKl6IFevjUsCEzhbtvqcvB + gXIsVvB2qoilhgWkcpMF0Amem1+3HFilAcU//ht+eOasoYctsU6jORkEFriHcMX+i3/3S64cQ8jx + 0Sd47hMl2vz7DTqaRrDhxgqd9/4qHsB7fwvETU+s4zG10HdoFXKTPjJYhw+fwrbNE/K4RA2d9881 + RdAte2zmVeROWx4B3/xrDXKHK1W6H3wWCMdHHYiluXfpuXx4oqWKLyw35bVfvzzKYVHGX+z/+EIx + kSY+PsoRF7lzpjSQshvAEeLxTy9yWiC8wMZnWDl9VXeu7n0BdKdiscds2zEHdW0Re9R9It/CiFIN + PL2fft780qJOpHvBv/pd2YMQzTuSpuATv9stD9lFZDEvDUSLPBLjcWTo+D44Ftgptwc2dvzR/eEb + pB4osS8/l2hlHL2DTf05Tus+NynpQBZA23l5f/5kUIyvh27csSSSKD76zc92kKLmgP1e4wFl+q6D + rGHqEx+sdsanV1/56QEcc66S8c/0y/34EusP9xANyeQNP7whbjl37li22Q0MDAuwFHwu6vJYMwf4 + ER2CtUiuWefjZ/jnh21DltTpICgQpWeDwb4/fOr5ctMDKC+uPs2qtqOLlIUCsqNrgv3KVPs/P9xJ + VkKyTQ/85usPP7HxjtdorQ9iAn76ONr0Mnd89gKU3FbFR6QK9Vq6XgzPqRBP7iNs3HXXiTl8a9f7 + 1vMscQeM8xW0UmRPCxZclRsjXvzzv/YyfOvVFaD1l5+Wm39Zff1bwafh6SSXqEfJubwE8Cs6RsCH + 4pBNEGo3dJi/l63e9Zq44bX4PT+x4nQFGz97f/oyc05iPf/8276aEZGlM+vOIH6KSBVKA5v1Xsvm + BQgeEC32RfzH5dmv7liWyFlPXrAKnk2pcoMpYAc9Dtb71wGz2H5vYO4HhqSW5aub32gATPYL+fH7 + FHwqD/pp0RArBFW0yomywq/BLEQ+SZO7PJ3cAZv+IJGU43qOS7WC990XY1doub5nreUE3w+jmeCu + QJQm3mOC6Ri6OHAVV/3pOfjT05YqfNRux4oeOCckIUZgx9E+uT4rtPER2fIgd66t0IDgroRY5Rwv + 2y/x9wYeR0mZ1s/i97/388cX1t1t3V8eBhcidEQ20k/E53YAxa7efYjV0ol2kZAy8G0bF6zUHHIX + 7p1aoH+yxpZ3+uAvP5K8aIdl2/pGo8y+B3ATioIErxvof/wENj1FTPdmRQPbixbk3w8tWE6tr+5v + +1o46Kx6IbiWkLreTUUEqh4v+HLYR2B+vPYtKEZuwD//shiBdIPHwF4ndIZjtD7OngHuuQMDBE2q + TvtcesF1AVeimfsmW/MmkeCWp2FboYVKN34B5oRP2LguQF3CfD3BLc8LRPNS92vrIglWt4kQVxo/ + 2fpILhBagdj/9Hs/ReStwcMjlomx274oaNbWglMhEaygwe/ZPGFzuHjjmfgVqeo1fl1z8MPbX160 + vt4iC1qG1kQr7iylGkQG1MfJnrjD1qNxZKz5l9f96f+F+eQTvJ0jG2t92Kmz+t3PAD2GC9G7ae7p + y9510LgOLbZu5b4muP4w8Hi1Rax4Tynj8L0qkCby60TLxylbDo8jiwygIqzacRzx/ScbwPMY+BNV + Dw9Ah5OV/PIvnDmnW73uSnGCsn5/BYsUaj0Nn1YA77KzJ6pJSrogEAdoEYWVFLmzp90vH9zyLYz1 + dqDLU8pT2NxWE7t7t3EH+321fvVJlJq7q8Oj/q4/viKPa3mIBvG7D3955LTf8qqBNI8/Pg3m7eTv + KW8KBYY5dydqdDHrueCfJ7T5m2CYrw0ghdO2kCLAY6dZP9FLuJUebJniveWnr36VWEcS7w1rYDUx + 7Xqvnm/Nz89PsXbXa+7Y1y3ETwdNUKIeILJAO+jlhYm1VJD79R2ZHmJX/UXUbMjpLIRlDn1reZHN + P2Xln/6jX5ngTb8um/46mH2aBu9zf+7Hq7NLQFQPR/wgRg1IjugJ8bMTTHgqNLr+1l8WdJu2PObd + z2fFC6EkPvKAPb9nd92fLA6ezMsFm/KOdUd6ZaZDw7zTaV1tLlo0OTKg3DwAloyTDLjv8OSQhz+7 + gH4wq85DdX+BbT0Em4dZy3jVgCL4zT93ywO/z8iS4FC4FZZqhaob3if8RdVC4kOl3nZQuyHklYhM + qNu12bor1wm+/JQjpy4vVXo7HFhYjOyATVga0TTm9Qx/eag+2293Xa+Z8rc+5AwnN1pit03gxocB + KzusOu62U0ouS9MHc35aMhrEJxFoV377gjdR1PW9wx1ITuOeKHcDRHQ/6Cx8vRttqyekvu/TcUBG + MJRY0ruKUq4UPdhIV4g9unxqqupfCewyvyXqnYQRPR1kCwWdkwTocZH79RxeIdzGf1vvUlR+uz8i + ZHjg2D930eJ0ygqPiaIE4Dwr2cI1gwReEl6w9jlfexpltvi3nvmtr3NGP+41EesOP6fD7dnXtBKr + UtzySqInga6ufCfP0PvkmOi7IHeHTNp6ct8vDZHv0pkuEGcrFPkeESn48O703uEWHJS7OO2sdAKk + vO4HeJx4Fwe+E6jc/eh0cPcWV6wyt5O7aqFWQBgr/HROIrZecnV04Lzcwg1vEKVGVAXIjd5P7OJx + orTxRu/3frHuWEw0V3YNUUpWkzjFZ1EH5zSWv/z3N579jw8OP/2A3+rcr6R8B1DgH2sgAOMDpl7s + pT98zB1OUnmT42Yk986eBOMe09W0xBDWe/ydWO2u93OpdyXc8pkAmV9Wnbj9dqzsswT47g9mTYP4 + JgLUejXGWJVddgwKDcpmVxHTMi8qP78c5jd/ibrx7f57F3I4heUwLRs/zdd5Pf2tdyh2EIDn+YZu + 8FGUOjl+1O2LSoheUD2xe3wv2JO7Jt9mBkksUIIhN9Zzo1xXeDeskWirEFK63FQPfeJPO70HLupn + XaqEHz7jkL9jdbyAzvvLx4IrqiOa780U5sB5T6VxWbJlyz/FkZTx5i+Mnt34ERAyPbAeultnsU6e + 0Wjz6p/fneU3TCBopZRkRftx534nQXSseQ070mfbwY6zGV4/+kDU100B3FqfVrSfjzLxhU6pO4sR + C5ju5wuWjXsC2Ld3LX/rD0Ffzo46MZxhQDg8FWK+0Sdb0k83/JcdBXv231sKMhmcgo8/Zuq4K5cJ + 6BfdD/jrGkQ8Kh8O/MDoSNSEzPV8dgURjB/pg3Wtden+gFIHwalyiB90ekbAoxgAnEoHm7zM0tk8 + 6yn0E07FTp0ilcbZuxSrfWNg653O7pyOxxJFzLEm9gyePX2EqQWRscdYa66xO1o6y8Kkfh3xcYKC + S4OL4MDEvZqkANUdzAIaBMjxEyXy+8CBpTnjVWy16xmbeOh78jhqAQLcEUxMgs81IVc8wcjnMmwO + YM0oOXxEdPBAPB2yFUS0NyoRaetgEvc6f8G6e3od6FfDJ7HtjPX6orcEsswSYyM94axzGumEgBju + pjkONHehbiNAvtQYfHrGGuBeKpcgTr23xOmvU03j/n4Tmah4ExlqA10NLQpRzqwTVs/zos6e2c1g + Tp9HEp68bVPV25OQFD9lcj7IJmCznXKCgfsIsXfyN8qdTxyawCCS605+uSNO1xRcJZGbYsXKevbN + 5g00I9iRk2dL7jLwsgNrmbexcygVyh/ulQdP9zrA2PpU0czlaQtP1xTjU3fjsoXtIwXdnr2LncBp + 1bnRQgGJevzG8gBasHzi0kCLxRZYzmYVvFXqNujtoJZ4Q1G4vCQPArzq8p44YnXq+Vr5OqjZETlY + tt/PTWytwLUPJdl2B2crM0s52hsgneDuKUccdfUVDdUrw5ednvRc4vUOfINwT/LAS9Q9f3+0cG5f + F+yt96D/3Q+MCluRcModlbsGjxZ2qJNIkZ9ad7pO7gyTx80lXnf1APcb/8m8E5In4QVQa+90IJzB + YTqYH7PnWecgQTuFDvFgvUTkEaaOiCp4wcYxRNl6QL2ByIVTsBP53/+RdiXbyvLM+oIYSCcJQ3qR + LgiIOANEBEQUSIBc/Vns9xv+szN07bURQlU9TcVUzD9I1kGL1A+S3qJKX40OLRA2oxNQoHz1SZzl + /RjsxEHPG0nGjYi1JIOfIpLwe7eBsJ3FHpa/7ktKRdfj7WwOBgziTxK0CX7F9HXJethcXwq59byq + r993lsuvV8xheh5l+mMLR4POvcpIABuik77jeLk9by4Wh/syzh+OQCnr+hl5Yv3St3lvwbapHiCd + AItytxLa4CDaIrm23CXmRPnAQ4KkA1JIcR7X7GHX8HPiTGSo1gjWZGw7uBg3D/PzI3GXWawSKJTm + kehorkbuu2+qNImC0KNmv2AJ73EtI3QskSa+fqOgrpCBZqG7RFV63C6VwrOQs/ANPQYAAK3CAwuh + tPooiIOry7/ZIIfkxmoBnSSrZbP53kDn+70jt2SlccEZ38kGz1no1HBoZLuYzWWjGVWkinpRCH/X + MwvVJar/e8XzqatruLBCjgzHe8QbyeAG50psUcI0Z3djxzeEmn+/Y1pycSFYXZ6CE+utyOjTlrJa + FFbyU/QKdL8uUjtnD7uBMIh0kq+l6gpdq6ZyrgY6lvb6t69XLwMpOgRf9d2DbeBRKAHeUZDxvKgt + N3B2BHyNPaCgSWxKuOKbyrdBeaDy+FTa7fT+1FAJcy0AvLIAzjL2Fq8OTgH3Oca68KxZS/67nptv + x3Z+kBVDuTpEKBmKq774g8bADIIV2X1+ABsWywYe7eVKonuouyz90Une84lkW9mARVHjTd6uH4JO + wSSNmPMsT04/NUKlc34DHP0YAyxJFqHnLOdgK59JAl1N7YgXBjd3Yw5iAmUNXIh7p7m7cuXNkyM1 + 9EhyRwrdBq4I4OtlsXjd6wefeq0jx/25JreYFJQ/p54Gv0cb49tXUEf2NpuOrF2yihjGyYuF8JvU + R0NaDfL8HR13qdcikizSPJB7VNd4g889fgk0SRT6L0qPVRXC21O8I7UVOLCKj06D1FEBnsPJijnh + cfvBJGh/SHWHuuB9YdUg+3sjkpNc0b++6G/AjJgA6eqndHEyaiW0vYRFZRHalOXAkh3za2aTHLw2 + d9ValICjvV1J0CQDnb78o4JCIYnEKS6uu5L7VQTHq54R2zoNLc2ZCMqTU1yQux72QWzmS5SfHboR + Y8g6sJLsxcqd88wDoedfLm22joeEtV0Sfe5XwLfUZyBzy1vcNkLi8r3BLJBt6ghnqvGJNwoeLKRM + bOF1AjZYsaj2ckB3Sv8+3nW6H4sr2cuqktNXutCvOBeStMcLOemd7bLkmG7yeD7qe71vwZpOkwIO + mbkFXwpfdFRfF0V+f6wlOL44HwjrEUZwPGMNnRLi66sU2A2M1SVHWXaZXeIKei3XXdNhkavj9l89 + v9+VIyn3ersPskvhj8MMsc/21/37PtioL4huK9BjQXg8WDjnzBu5staA7Zt+GnB5nw3yqLaBjo8n + HeS2NxJ0l/W3y1dIZKE/ovO//OROnFHKr3mfGtll15ETPIrhHs+kmh4FZZV15MHmP8dg6zJuXCQs + V8e07S9Brxlnl/3y1+qPn5BErIeYMMohh/n9dSKu1hr6di2tH0zj1kXqdY0LKszmJHMteiHDcOC4 + JUXeQ/XrJ6j6Zc5Iy0OcwQcNANKTdW0ps8QZmKwwIkbkY7oFg+pAVotc5LxvPhDYomSAbvI/dPbm + Y/HJ5LyGCsQOSfb84G2u3WSmaBui3YJGp+S+H4KR6foeb3b7Vy9BD1adnL9H1FaKemeOS10mKAb6 + MV7rlxZCf/TPwcgflngix3SBME9NFOThR/+ygGdgOKwcyrhHW2yWiRJg2xkfbP3NcnmZQAv+vj9I + vOtFjGmJDrlk3d4FFkN/LFbBAxOETXkm5VoRd715oSd/StUJ3h++AbTvOPZvfYj+4oyC5SfYQTdV + BmSZ9p3Oa14l8HdpjkgpInaP+kaBz9MxQJrjoHg6ymskP6F9R4ZQC/oaiJENNu7HETOjz5H+1Vca + uQdijHfTFYoKeCCgvxw51plvN0bpSsgBuyX389ce1/N1NeT3qGHcvriuoAm4DLIZLDZmTHtrp8iZ + DJho0RCI7CtxMecFHiCicSZ/eL9eHAcC/tl+kT3elJZdpVsAx0g9IctxgYs1Lc9hLNldEHNq1q5M + KFfwgJaZeKpJ3WWyrQisX+NNihkSfUmhDeGejyQ4voIRz6csB72eHYkRhQd9Ga5nD1DJOeFD8NXd + lY7WD5rUuyL7+DJ1oVmXTbYOW4fsKp53PjdY8OTpn6DfHm+X7ngHP9AIyWMGHhV2/grPb+Qjrcuu + 7cbvhzAcaoUj6PRZ9TWvFCj7N9Ug0VLvB5489Q2estMXqaN4ije24I1/+HAqqDwuY79C+W3xX7yZ + J+zSxD330Aw2myhSC91N9GMNXonF4NtXWunjwwJRqu2iDMRbMI7zgxwxXL2lxGA9PAv6vHgeONSI + D0rL7NxtOSYM/NxEF6Vj1oD1zpQbAD5YiOZ5S0HWe13BieEeKMEPjs7q5toQaoVOrOHWjJsUFCXs + Qa+h4Oq/6TjeLBZu93bG4Ase7fJLzwMUBkUhj3DqY1qQmw0vhiQT86DbrWCxTgBaPr4if4F+sbat + bsPrwTaINeQRoNx42Y8pFo/ksuPNxpdaJcOmOhPvcc31XR81Uu6HBjL1t1PQj1kZgAvYnJwrdi5w + JL0ZaNGpJdU7u7fjO/FrkH5ISFwMgnFJoaxAFIsvlICX3c5vCkrop6yOLoN0KzhapAsM7XTGhxtJ + 2s0yihDA5uuQFNR9vN4DA4OU0ig4igc9Zq9lyf/Vp4CzvsDd6O8oQUsQGoSKxXL575WWcqOmALn2 + t6fznUk2WBWZgbzTiQJSLS0DlKExMdw/011/AL6tMbHnuzrSX6/9ZHx6EnKzBhGsN98L4YndB7My + 73u8mS3V5J95X5HyvQ9g+nSrIbt8SFDR8KCg6zdL4Z1zVGJNRVdsaRkrstsYPxJ26WdcIZKVP34e + HL9HMuJGkyWo2OWBxA92o1Tb1FTO4HFFzlbU7SY+GAY+b0xCNFx86Fav9wq2DybELPf8ANo2LATv + ipmCPzylXyut4eY/RsxMuTvyP+GEYTNXGuZV89zu8c5A5zg9yW3X1ysLGAhp7+oYd3dJJ4ziprBW + kieyqmRxt0iaGfDHp03ZyPT1KIcOdH2xIzGaq3YBwesHpuqdBoI7fAFVVkWSs3og6ALUsdjGlP7T + X/jBHXC7vZrHAMVp9InVJi99q8JJAts5nTD7TC70t9/vsT/MasDT0mjXP/6owMlBeeidde4uDxOs + l/WDLMv+gT++BbnCfOC1pO/4e52eP8ABpyXuBhWXK59qLqNJ6ch5kMI/Ps0AaR0weTIadjfBtwaw + x3sQ53Qr1sGcIjBeWCs4PClf4MMCm3/4pUvqueXqFXvgFp4KpPrzOi63xyOExN0UFMumFOPHgW3k + 3/UrInORLZf70ye7nkT6wXDAtvM5+c7Z6p8f4dLNmQbIaqGLwmtI6fy3vvlcu8guIr9Ywq9QwVUB + JVErNmkpsccFviNxRKcHV7ULJLIE0/Eb4OP+fOt1ug2wiz4VQb/jz51fWtrDj348IYOvTsW/+sY9 + 9eKff7C+2U8t+9T2cO3Yr3h7KpwmtxcJoT+8W/pE2cBgFNeAzS9LO9umvUDp8h6CY04LsH45NoUV + esjIH0R3XCNHUGDd1R16yMZCSXjvfjDnhJA4x3ofGzM9Bwk9mYacebmJ1zEdGDgxQ/lXH0aen/oc + CIjniTtKgb76t5UBnZUUSFnrnC5H/xtI6TgGux9g65vZfSx4lh1ErP6qtqwv4v0QKsMi94PBxvQi + eTwUWXoJJNW6FqPD6xasjUeF+4s/65vDLfaff4KU9fFrqR4/frDr+yaQuOca06dSR9Lun6DHDCa6 + Xu4SC/ki/yGlSz8tPT5+AYzmPgnWmr+O/Gsza3n/Pgw9tweLYzWpFNxeEUpIycXLQZEGaGCiEeed + M/r4NZsSWnqRovONuPrvBoEH59b6Bof7eh0n+81NkPZnHZnlqgDuoTymozjUAUFKW7eLFoUlnEe3 + D447P+ALHDryrs+R9bqG7bremwgOSpgSJ4uBi1tqMvDdOhvSR+kaY9bNHQjzxCRI1B/jlOMLA4B/ + XIh/Gd/glwfdPlnv6wdidvFdepMtB5qjdQkYqcY6jvcxU8m28ZhCSwIEi59Sfp6wT1xvuum0RG4C + XfOwjz04JDo9JU0pHyeYo7Osv3U88CiCpyWiCM2yRJeT8a3gp2V8vDSJNbJV/YPgN/cScqSnVvBs + wRh/9RidDibfUhacDfBXD27k2MSU3E8YVHqkIqR3NV2uRb3I54tuB7r9DXTMjVsCZOpVSOHrEWzv + eOvk9NMg/FMtruisjgth3Ls1Ol3XEpCdL//FF3La6wSGthEDeCuYIjjuemN7bWYD8Wfm//kH2yX3 + F+mPT5qScirWl/prYNtbCTr5P4fyeJh+8BQqEzGVTx6/Tu+kl6/U0JFDH0tMziZVZE4I3uhUs0q8 + eKdmg/v6I3WW7II9qD2GoZETosoWHDcjZjYYq1uOtNftqk8SVnOohJlG/NNAi0mqLrVc6aFKSvaJ + xu8j9DvJdzY14DJ6aPHI1wo0nIeAVwwzfcsZRQHO43P7t74fKcAZHLJPjnyewfq2+43wtlwbzPfZ + +oevi8xpyx2Vlmm4vMcvvSyyffhPr22OldhyF70r/IfffKOpvAwl6iNj199seeATyKN0QH/6cwsG + zoNZWX3/5Q+dBKJArlVq8iyW3iUClDvpL17L/HKO15PB5rL2pt3O7z4xCWw7/MsfcmqFQ7ylE8P8 + 88/++OzP27d4skwfB57vWAX3x29x2wvIpkVTzPPtlcOnviGirozj8iSDC6TMxSKnJ0vcdrjmCfyw + QYKZ1/VcrJAkm3yX74dd/2lgweIPg9naagyMt+lunwQo0PjNDLIvqHDpdIs9kFjFB7kXksWLzb17 + mGjhQDJaRe3uX6RScZVSomIo6ngZVgWyTBeTQG5qfftb3yd07sRdD4dikap7c1ym5kr8YrX//DoL + 7P4xejzZrN1SiHmpOhUKfl7xO6YD1zvQeeQpPjTcEC/KJdPg7r+j88JcwMoolxrkK76Q4OqblD8y + TwfKB/+O0CaP9Kc3Ug8Otc/v/Jsbt9Ob1H9+DlHgW9bneHwGcL2aL6J8y6NLH2SsuePbqILNPWPK + qZvugAPaZhKQwqXLlgsVeJanGCH/147rfDo2wKK4JXrD6mARHh7+l3/ekJfF5lilDfJv5+/8/rjz + kzcj7fiE+TZ5uRt46gvc9fSOL1rMm0YgSc/ayEjGvhKdegOawCLSDBnVNSqmNXczaBXtHZ2N763d + vI8ygePrlAevWRbb/f4b+D4EFA/IOdNRU48hlIGVE/0nvkccO00Ic/VuEM8yO53q0auTXoY8IeeZ + gJg8nuAHU9eziKKYxKWRo9rwIN6O5CypsbvjHwS7P4bNhqqj8EvzTTJTycPs8kyp8KeXO562wZ5v + gELUs/B1d1fMxG5HV10DNdQbm5LEc7G7GC3Lg91PQ4bnBi5+vb49tFCUYia7pO00f6QM7HiB/Avm + 9U30C+3f+w08p2tXDrqptGRpiMVdT+9+QC7tf/+3vsuJPdbAdFgHZRcE3N0fkv757Xo4I7A0FC2g + vR88ZGimG3PF4REAi5AKsyd7Gin9Zdufn4Dug7Tou9+5gB1fMbM+JrB08b5letp/nb7XZxI5qiNf + zjok1i2q3OGvP8CQ+RNw96WOqdMXHuRv5YT57WHq/z77h8APDtmWuv/i+299cqF6UcpDtYb9s5TI + WTzoxTp97hG0xUlHJds86TYJpQUfEcMGx1Gs9X/6d7X5KqA7H8IcaIK/eoT+/KHlL36kdz8R4xFr + owAPvCQuShEEx4qd491/38DuH+ElDiK67PwEDt1YEjtwf8VsxUsAHpa4BRMpsT7XLyaBRt8dAmZ9 + eJTvDQf/3T8W/N+PrjcvC2C3/Tqi4PLnbty4pTDZFh4Zt3Bxt9fm12Dq6zuK8iiiWEZ1JM8f7ROs + /u9VjKnHWEd6YRi8sC9QzNF+zLtJgyvyZ+CBOZSCH6wO/RkFjt2OG3i6i3CDQfPnb1EKSc7A37wC + ZGq9A7guQSnk2wYj63T6xT9yNkRYpnmH5ZDwI0VimADVAy4x5sLa/V9nH+ZEUmS+WE2n68/I4f45 + oDnd4vUG61De61kgX8lppCDYNvnIXZ77Fu/J3fFugdbtU2CIy4e+7XgqfWoNIQ+XsrvOt28O7KVT + UHV84RZ/U1KDHX8xbK6jO19+6QYC9xH+8adx1anegT/8Pbmj5M7C4/mDlw7qxEIBjJdqyVmATxHe + 32/TLnGR5KD1j84fH6MEkKD70w8IccwU08sx3ODvWgrk/KQT2Fg3t4/X0VUC2N4kQDVtTqB2eT+R + wz7Ulj/KrSUv05yiDDZmywVi5Mjyx0yRK2ormCeBC46vq7Yhn9GXYtfTGtzzITj2InH3Q3AwzMJs + wG2MQ325eccUHGKGEpQuV33Z/XRYNuMHj5xcj5t/y9h/et+b8zne87mBFXrKRL+v2sg/l4siQy3Y + x7icfZdq2zmB/adjULSWdsyH9zuGu/+DTiUNwDbygwa1R/UMtj9/+09ffAr2TFyWUd1PLF0CufqU + FnLm6kCX4lnZcLu/ZhS8rueY5Sellnc9iWkwYjo+w9CWr7EiI22rRBcXDGtAxF6/SIlQXKzxeAug + I/8eyGI6wSW3qfHk5vXW0ANqqt7/+HiQr+NZIao3vuiCvm4GjOgNkLnXi3Ue/BRYbpKh0wJ1Si0D + e9Lrfl6R7k+o2DvkDkSdM/zVw3H59XMHIzXyyO6Xtquukx7u9Yygau3bNQ/uxp9+I9f7osTsco4t + OJ4nDd2eLHKpxfIRfDuHgViBN40r59JQNvjBRKHUQn34sDUDV+/wCISv8GrXzcEVbO4VgwGahXhL + Rr6Wd/0dHA9qp6/hWavhMtVX9HzzA10TVyj//FhM0LjR7dP9RPEznDxkKh+pwDv/gnLD3JD6PqZA + eCdmA/74okEf1r/4hLfTkqKyjH8FHd5OAF9HTyDP83dz6eH17OBPDbd//eP1xIaZnKT7fEH6CHf+ + cWlkNBg9sd9Z6C6vC63/+qnBu+a0ccd7Wx6y7E4sseHjP7yHVjs+yM7n43/14P+zpYD731sKgqtu + kkDg6nh5elEPPnzjEPUimToXbecAvu1TRE52msXUg6ME/YHGwZb2eswbOd/L+WHA5CR1x/G7OKkC + NhHBQB0yTRe+o8sCu8Yj8l63m87H/BBCotlnpB8wdifrDhYYgfmBwS2dwAyMfbJUkZ8x0yVAx/Vx + qmGKYxOdvs08bm04bLBH3psU8WEZ17cnLbA0e50EtpAWlM5PDZBZ7pHyVcm4Hc73H1zQ4hDTtTu6 + esrFgmNkL+i2z0kjj3noZTcacXCZcK8v9jPZ5MjUKuSsLB2p5dANZt/XmTyTi68vmSNWsHoiGsA+ + rcCK75UEJ5eNkAE+h2KbmVwDd+/yRU/tnLj8YX5XMth3PZaF3sZbsE920YCiIMXho3h7iLT89/8B + bxFKX3bZH52qlsndhU+wcdzoyfeug+Ta+VyxjO8XBE3sTsg839l4uw9hJWtrQ4j3+KXgzVs3G7Tx + VQ6EfVIgv94tTV74p0Ns+O3G7T5kFTx/7j9kKblG2cfo59JYDGpwGH5cMeVSEAIfzhs6c0ArWLTl + Frz5JwspEjXiNVqeEI7GdMCbMMYjFZ8ogBBsBnEu2Udf1VLEckV+J3IqrRKw2jx1MPGniOixnRX8 + SSg2+ZTvk0aEo+0uXeYPsLSdCEuvFRUccgsDavMZ4EMxnHUBjFslyxaKkPE4uoVwSe4BFJ/1kZRW + m+rraRgXuOoiCMBLLQF/TY0AKofbQIzBf+rb8SVl8KA+UhIumABiT4oIYfkiRK1HFQjbYzYgVzsW + uezxvunreYJVsvTI9z82YEPNMyBgbC2wInMbp4xhPCAWXU7soNBddnx/GdmvEhPdDr8+5oCIQvg6 + ig8SCqWtc/C41LKuiYfgsKaP4m99oN2GEopvb7UQdMfBsLVFQhLnbAHWv3gM2MRfSDzWjunsKXcL + ZoaXI5fhOUo1nDaQd+V9jsPJdmnmNrncgIrBjO9LBW5Y2EPFMnJ8CLhSX76/iyTfvolIrsFTdYdq + 6TOo/1YZBXrzK6b0vibyjV++KCnYtOWvLo3gUPBH4gd92LJvH/53v2cnSYpv6nEeLPpFQ3F9+bbv + DQkafDLDnZSmtMX0/P5MUL59Ggx/Dx3wlT1XkPHTN9rjk27MA9Sw934p/vFSXbBGNU5SxxONBCcR + x9RA7QR+R+6BwgbmYDtDdoGRpgPkXrBa8NLtVcl2ds+Qc+jtmE1wEcBsfgzI+Z1osdnNKsrqdPjh + bkgMl+fMRwA1UX8E4nCsXdY275LUWfUa3BfvAvo3N//giwcSCtAbt1vVXXp5MkCIgp8+tjg/wQze + N23Gx/SWjSwfxxF0qkZGNvXjVkiuTgTKYFTw+lbfgDbfL4ac9I5JVMH9V9JfqYe+7Fh45Yzf/qtl + FsviCX3wLyRtsUUk3XdBHg57vH/1TYzsCgDBV4KFf9QFTZ5FIKMfvKP7XN2LbSEXG/odzwZCbCwj + ezzTXH6vG4dOoZ61nGbNPSz6GyYnRnq0i3Rocni3bw6KDzhwv35eMBDXtzfyllUY18rNfrDv2is5 + f22u2LaKKPAK6jdJfy5wl6bkevnj8Z9gPeaBO80OFmF5bxqkutwSL8y4dmAznyXSqda72wWEHqyP + sYjlNA4BVr9CCUEbvTAbPR0g3Cw1k40+MsjVXe12SsTOkZVb+SPamabF9pNrRn4ofkMepvOk3OfG + LhIsGR1DHTYjLbawkecpYIkXhHxMx9JhhEp4WeSqTom+9WOJIXNFHdI/g9nysGkr6Xz0AnJG+cut + RpppwL5y52Coqk+xtpcGy9Up4Uj+F0+E9xiQ324l8jihK3jJDxs58XFE7l+bi0lfqzy0NilDRvKQ + xv0zK2uzC5A+yWtLUxbb0DiVOrmKczNuQdJYkNGFJKD94UWXOX1ZclfxOrHVIXVXO1El0N9OHfHc + b0OXy4tAuF8veDIb1mkt/jpIc60myPeXkbKM5EEori9iaKU1UjWQBuDsbeKc+Sgjd/9G+d/1Mft7 + x4WgDlwNf4/PiNnuo1Ohl7wJDtfEJeef8AbLwYQNpJzAYIltJpdcqp8NL2dmxG+JWQG9q5cSUt2s + ghF9vZHbONaS081//8vH7S8/xv6EiHE8xODnRmiBnKgaAf3214In38WRc/78wIxMF3394xNeeFnQ + 1SdZPAsr58nd7agitNy4ll6JacubrY7/3ue/+tV+8EJO9KO5wtVZE5moM4fCHT/Z163sYLt1EQq/ + +5wgk5w6aPbllVyCdgCLftcm+ek+3ijcDk+X7fV2gYFA3yRUX/24udFpkfPzcUS5eW3AuiqmAYKo + 5Em+0SJmKzj08EdyhLlP4Bc8zhII7ij0SOCiv3OlSAPTuOiIKc5aS27WOYdTeqmxOJxvMcEfj4GW + hk/oVvsvMA8fPEHADivSVqMu6F29VxA3RxZl74IBW/trB/lWPVPM24tFOc/5KbDTmSZg5mWkm/bE + DTyjesRTNiJXmOXMgkx9spB2qdNxOxVkgE3bKyTnJSXm/J8p/cUvlplWG78SM5SQhi0igRdsLUVy + CY+amlQkaJkUUJOgHuZVWKEnyfx2zdo1k3sOvINmm1ywLK/WgNF+KkAxmPfi66A7A7l+YFHMWM24 + tdKjh9rdL5GeBGbB+1+XgfG7UDBbNURfD/iTwVdzKEjw091xiahrQyMrDmTnI4A9PA8ZHF00B8c9 + PuldUEp5vtxiLL9uc7FZ67ZAFBoiUs5BT0k4AAPebsyAjN+bFoTOTwVIg4eRe/mUMWXZVyTzmtQj + u2HHeHEtDYKt5ybix2+xmNGaOfIgGn/xxrpr0f2qY8O2MNjYH2hXUHkZdPa5X3m/CO7CPTpP9iHZ + sMh3BPzVO9nkohTpz0htF8V7lsBsJWvnZ0kx7XwN6qN3ISqvr2DVrLkDO39G7j2B7Sr4r1w+pj8f + OS7k3TVabgx8ptcTUfb6P0/HjflbHwyxY7iroH4CKLy5G3nGYKCLdacLhHG1ERu0wvhXn0ULHK5k + 578tkfJbCHGb2jie5Mu44zOGZnDW0GPO13YzG4WXb1afIXfAD3dJ0ZDDMF0FctbDG1gtT/jBTDre + yf2OE7qp30MFPZNvkFnWnD6t/tk7krrlidJpJ7p559qQY5hq5M58nIJjXWQA5DkZOj1PCSULo9qy + ZPEVsbXLEVDVeE3y8Tk76OSXpit8CFjAaZ/caQDcFesYJCIs2vWJa+Sl8XJWXgy4PkOKfHtQ9cXE + 1x9srjMIpI0WBZ14n4fMaaXEOfRDsclZ3sAq8m7oNoXWfn26Qf34YYhV2Sld1MHtYaSpAGXa5U43 + dawneP3ZV3J5JO9x9ZjPAlllroN1MZtiIzo1ZONyvASiOvD6OseyKL3vz4Z4v0dLt/HzYEGdPwUs + LL2jc4XNp394jpSo3cbl8vpAmLS6RrwUMsW8pKEHlvE9kNI55u4GHk4F0w29yZ7PLZ1Bz4P6bH4C + axs6fTN3cyY9Oh/iccsz/u34BNmrEZPkcRzjZQFvBniblRBE8TrO5ikd/uH/3/3Vt+s5g/jSduik + acbIp8Xbg08tG7DQu2u8lvm9Br0o2uTxus3xmh+9FCwHpiAKa3r6H9+FzjF/YmZaO3flYeBAGJcb + Mu7tqRDaZ7jIWrAFyGCuAp1PwSDB72sJkPa9Ke7K8W/nj08RQ7wNxXZ5dgbM2GwMuMc5A9vFfAXy + xJ1eJLbKsKCvzp6g8jhkJOgnUkw7n5GjmoPIV4ACFsBdSlkDmoJu+HUt2IFteKgPg0ZOuT279I9v + WFz5ISFzP7Rv3rYzmNN3gJSXTPX1VoX5P73yZA2OLih9M/KjMHWknjtVFzKw5P/0rysHTkGOEkiB + SqUZf9VhKqh5NSa4sifvL/9H7izzE8xl64m31VAK7u1JG1hi/Av4NtgnTQvEggDsc2B69urizhVZ + eL/PObICnBbTEMwbdDINITdhsnGV70kJGWdLicpP13ZLhXsKI2FjyMnK9hYQnhgoj8z1X/34F/+6 + l4fI8i0HLKaIO2gy15joIPvp2xrIhvQVQ0hM6Rro27v4LdKul4m5fnsdjzRUYJrmJ2KdSdBuSzxr + gNUnHd10dYqX03eeYHx2A3SqqtXdbic9BW5raVja+fdnLB0Ij69TQcxj2hdrJyub/Kf/nswW6Biz + qvWnN0j6ixRXKLashvjL8pgVb3ax838MxbvmEoW5P8cVHwpGVjqpIOj7lfU1eLIQHrkyQMXOP9Yx + m1nw0a8pusnRpv/eRbPJhqNFWKyqUyFwAzHg/rzoaQcDmIXblsId3wOxOI3uFuoClNS+gshO1Sre + nCGX/vgtFqrq4uI//rLK/YMohp3r086XgJyfV+Rfkq9OURtZcvkqXgH8Grf9ft4stF61TS5ga4rV + //kSME6VjgF89+PG6MsPmtNBR+jMs8U/PU1neAhqyVFaFvexJpPykyI1Dc8uLdIuh5AVtGDY682k + CnIN2rf9Qo7eR+6w80VpmzeMX+fupc93/ZGKU0wue3zHLq51uYG0EzVSRLe3vp2EYgE57z6Is/Ob + Hd9z+Y8vW+RyAvwfX/er1CR2nP/oxr6PESz6TUOBgEHx9ZjPBh9Eb9BpOH7pJDDHFPaHnMfixyHx + op3DBez8mJgSs9IVH2IGPLyLhhTWnPRB2AQbxugLg3bHS66P4kWWR3hFkWXx+nqm8wbd0jkEn13P + bHwq5nBGsrbrayvmvG4S4fQZF2R1vtuyL/k+iNXTp3g7LnbBHiU1k0/+9R1IUl2Mc6zSADIS/KCY + vzfx8iy9Gg7SIBHvwMVg3pCgwPRofwJQTCFdKLwpMMbSBcM4bd2FO2bJH59Fzn49qjvaBB/LnRJj + SAydD/UDhHpyQZhlrjfAf1KJh1z/Ywky6zAmw7vhYSHhF94muSh6/npywFvtO+StrzpeNm2J4Dhr + l2D4OCgee8mYYHbtfsRN56/7vdlmCI4PB6AzDrT9V2nzD04Pr0FaC4g+JUmWQMulBl7h6hTb+8B3 + cjj0BRaO4ErXqbJY+Oc/5bTt9KXD4SJbx8IKdj8pXgWVBPCheyY53XK2XZ6l8U8PBK8m9gvWBooE + EsNXUSwf5HH5dKIIC1U7IOu6RWDpj9EiQXBd0O1sqfoSyYkBX4abI52OX7r2UbFAPUyX4DhXx3j+ + Ph4LOHyCO3Le9jhuHNd68s2pheC3snG7fvVchPMQXXe8jFpK48SGDQvDIPe1Vl+Vj/qDd2z5yJO7 + rt2eQVBJOx7ihZAPHbKOpsftEylEp+MZbOx7jeSQnM7IV9xMZ1lfimBtvTISjOPNpaN30eTixKjB + wayXeDk8hUwGbfhC5ieYC7y0KQO1E+ehs5EagH+ItIK7v0Z84Wm5QsQEGuC7iEd/eD4Z2qEHbmto + SDsuQ7zNzVuUZ0s0SaQ/tZF+zvz0pwdwd7GqeNN7cZP+/IEacZK+qiFfw4O5G2Gv1WxxdEAQNm44 + I6S87HHS5mn3d6wc//Gd7XZJQvkgdl8UaeQO+ONry2XrHHDkvHW9Sw7wUcKHHpiBaH1k+ucv/OE9 + qnLlFLOX02xAK/+YyIXvvl0nw4UgVowLshv3M66e0yjQ64Z21+MHMHJGHAKzBi3xIbvp21DGvKw2 + 9QNlqcrE8yvNB/iOGBbzn+7UcvFnieSdzxP3lnqUovvZBn/+aRDBH/hX37zRvfz5te1//qioP4jH + +HbB+p/QkBP/whDdLTKdsszmQe0keJgjElfQX71J8u3A9eg0Sir9yVnUgPJeN8Sylx6sjCF1MM3T + PrCH861YKHxqYNdDwae0IJj+6tGf/jDZ8D5SItY2/KbSRP7phyAe7D+/bMdPR19TjwvgHi/EtRIF + CLQNDCDz95ao43B0ifAeMhicPsmO32KL+zHBMOTeYjDJj0O7rW87gCiY/qs322dvw+/8AtlLXxff + XX8ACG4L0aMn2y5J9Y2gQGP7Hx6vlRsO4q4PEfqMc7FobTHA+lHmJPs4qKBhsATyU8sHggIOuqQj + zgRCXvMC8fkgOj9FAIJHo1gkuy2YkqjT7aOvV91//G2vb0As+pxoVdy2C/uRHaj1o49Uo2KLWS1O + lbTzRxI8bvooTBdJk/78B2d4fsAWVECBL5mHmHPXoV1GrpCASsWZ3JXD0JJLRCDY/WikJUIE1mPs + ZDDe2BVF+/cR4d57f/Uu+IoNRyk9uwG821eH+Oalo3MZ2h0M1kggJnf4uRv5ijZU9akkuo5vdDk7 + mwgP7M9B7sA1+nqEhwDsfhPyD55VrGYcsvBxczoS3CIMloLICeCKNSIGPwjjetcfCRgIzTBEqNLZ + v/pfJHIVDHUpuEvQ1DaM8VMmisNv8cpUXAl3C5o8ftPRXZ6aOkDpPTyDIwe0eDt7/Qa/qTghW/kG + xdawsIPyxWKRey/UVuDJMYXS0qjI2+ODglJp4N6PwC/PZcetuPUpEJLnKdjkUzdu2fbNQO6JAXoG + UHX5oAIaFH9ZQfLbIS/wn99tkJuKUJ2s8eKEsQT1H5WDi8stBflbTyqyL3RXhymmMZUNuPtrRFcf + w7ip44DBY2hYcvbHpV2tbOXlT0J64uz1t2N4rYahl36RqSeHEV/MrwdRp+6nXERu3H1rBcpB8aJ4 + ZHgOUOdi8rDnjm/yhPmRLold2Uc570yi/hR/pB1xMPzwtYMydUh1wjJb8K++BomUt+vFah14LacO + uc3ixwvg7hVUBl5CimFL+u6nGbKESUks73Fyd7+5BOpXdwPePum6gNrcAmKqD0QvpTleHf22wRkd + NKLY71afdLlqQDcKdTBFfV4s9akZZFCBOTj2L5Xyf/7d8eyVAcy0segv18L5x2/U6DiBbfQjBvxI + hpC6v695DErxr/+F0AtC+ssjM5XXr/8L6JT49M/vEIvTa/7TU+4s6mEp/z2Pus4+WOOPGP29D3Sy + D6VLq9u1lKzEuGGm/Eh04eMign1unFD8GcyRUwtUwfxrK2j3u+h6nM1QQOvTxptS/cZt5ydgX99d + j//in1jec+CqcYX8FLLtP363Py9Sxqii//olFld9MLh8ymLjxmj/PutE7r42gTcX3ZO/+vuvH7go + gT2BiMFKAO6FOgr0rAewNF2C3Nww4+/0OytAGe9n5PH14C6Ha18Bo8gbgvZ+CL3g0gIQNVHA6clz + XEU9rOR9ugVe61Gl7J+e7bvXlWjbviMmc3+ZBFNV/cc/Zj90NbDjG1IKlLfLWfkyUL0aE6a396sg + pIQK7Hz9GQgiDFxW7kgC/Y5lkftSId0SK4rkP/3/EJ6WLoSBGPz1Y1DwNlpKpsumwZOSnpE9o85d + zVP1g/YzzZHT5NTdfEN04NUooqBz1yjeFCfuIVimiNzD+1f/xh8xhEVUINzqWACzsMoeFN7CDQtZ + rbbs4Snk8HT83MiO9yM/TQwLh3v0C1Z5iXSyZp4BCbjf0JM1rlSIOtf50y/o3L9U8MeXAb1VF/xb + vEHHe78RcsH1Faw3kd39n2f0p/8QiqO3vswSFOG0vaL9fdi6sMeX3LjRTLzqW7XLXEvKXz3De/0F + GxD8BOz6AhlkVNzldnwEsLOaFTnGO9fnrx6JclbvcyWVbxBj6RNnsh+KV/LY+0eb5Gc1bBuX+Ytf + QCRnTsHxSZxAoJ/GJV6WWeA9s1e0+1Pt9pOH/ZCTdUXnhbuOG/86J/DFHyWirYYSc3981XU2QtDv + blKBCYUMvsvSJMWAZX1lvlYGmMw7oWj3T3Br4E7KE+oTJYzaYjtd0kk+vQcRXfTnFOPKfv/zXwPJ + halOnaLaINwiSrRe2eeKtqYnm6ZlBqxztijtf/kCNlcJUCZJlK6LU2nHeTknZOfnOne+NyJcbuMZ + 7f2zcXWP1gYMR4mQl2luwTODV4Jnu4kBo9I7WEquSuAg/SSknbh+pFJ/r2CKHgYp11ddbIzAZAB+ + 7hfMX0pM1+mnKvL151z/w9vPImO44yUxdPNX0O+o89Csjy1ylffyp78Xee8vYz7AabyMxUWDDuVm + 4tf43A5yXuXS/2dLAf+/txRUSS6R02U/uLTpT6V0fYYGsmKgtWxaDhjKqG+It4+amZvad6AuvgHR + rechXpPwEkFFv/UYClZCl8GSMrjeAwt39ovoNHDdBIbFnCP15fH6ygCvA/BaBkS5Rh5Y8qnt5KEc + YnKOT4275bbdQR14X+JOm+GSL/OyIUhghh5aZI7sdoepFMz76NFFNgr+N5kGnB8dIjcSP+hymaUI + hsrrh87olxdf/qul8BHmHrEr8m3pHK+NbEoSE6wVRiN9fS6VPKUMRfZNqdtvegkZefGQjRQ0scWK + ejECt6ulkPtQa/FW33UbPPSjERB9dV3y3iwJYOqEmAdh4S5ZlkMoDf4VVeH1OQrJq0ihcTRXkt+4 + vF0NI1CO6gB6LE2qsB9cyYQQlxtG7uelFqscjxosuvJHrl9fLThOHRb5NrCUXFrdLLhJfkEYu+MP + s/ytiZdA0XvZ8rwrKdt4drF6/eXwJcGe5GgtgMC9wQaNTv0gv0vBOANWqOCd00LkBJ2o01Q6ZvBp + F0NAY//c/sCp6MCkewryo1x3+U0veVh9HwZ+77+C2LpCq+WhBQekc5fDSM9lIsHjIbsh9cWrLW1b + HcuXrdvI5XOIXI4TfBbK+RIjVe37kT8rriV/Z+cc/F1vOeSzAovWjfERHUJ3Oae/7u9+0JlK11hg + 0lcvr+79gwqW1wAv5V0D86PCkHw0HX0L32kIz5xfIU1IW5dl3BcPS6GAeD3/3gVZr4sof3+vgmRp + enUn76CzEHk1wMzrZLfbkWqivIaPjdxQlrVU4vkESs8hQsm0Oi4nXP9aKhvEI3y7dL08rhawTrlF + zOsA3U0ndiWLwdCjbI8v1tHvAywOQ06uku9RVuIvpQyoCBESnpm+HEuaw8BTTXS54M7lz5Lcw4yU + iNxOjFnwSCQB+Muv9OSLBa4iXoOTS7V9l7wSs+oh56FAJo1c9akd8T31LIhPU4esU4N1ojzaHrbL + 0uBW/rH6d5vCXA483cTgdOljyr3BAh2lQPiDZhyT5jwP0D0pI7peVFPnFfWyyR19HMntWac6q2ci + A88cqvBKcOFut/zOS9zQLei8ILfYLobKy0KmOqRC96jd1GuTwZc5vMhF1stxZT7g9+95H6/2GRO1 + WRW5Zc50j8fiXz4D9mynJIxYKxaMDUhgfl11lAvLAdDOfIpANBYfpXt+rQNoekg+NoP8/OzpAvWu + WN7rT7AO4OluY6V2spDpDlIHcHA30Yolec9fLOfVC7BXctwPljd84gbjvV0/iarJeTQ+0CmxdH09 + 3EUHTlnooItizPqCI1JDr3+aQXiwa5e7ynYInvH7juyXv+hreZZt2CuVgGdHxSM9zkovJ9kwkCq8 + Hsb1RmcL2kKSInU8GbrQBHQfPXyZ0bk+zWCMo8wWRUZ6BfNNlXR6eosWhIkjIOP0blzqLu9GZiuv + RpleFPFyEgQNOKWYkpDPr4C1ic1Ar3+Y+DMEdctJeu3IdhN55HwCa7z1l08KjbohqFIaga5dccjh + b80pcm6cNC6n8FpCZbG+ROH8zd2f34bowUcEJdx1XAqFjeT6mvfIE4rfSDn/kUGn35a/+9PpcLpF + 8HhXeKQ0n8Dlmtq0QeJXAnGPG2rJRdwUKYrYmeji/TJOx9sbQig1GTEoWorXtXtJ8mOQA2TA42nk + Omb5yfv1SBQOL8oLQjYIfuzZxEqaO1g1/xvAtGNNkn6Thgp1bPPw56wpeRbDOq4eZS3gLbcnck3i + UXavjyDVQ4qUUQxHGhWWB/tGOaPi6jNgjdC9h7Enq0QzV4tyP/iL4MYsFgq9tHa5RxJqf/FFUIwe + 7taXTgDXcWzQae9JYEW9LLIzGCd0tRxH/7anfgOhbmck96wLECSoL1BPOBuVvfWN1/OMGTjDmpLL + X3zqxC6h9RUacnbuAti41a1h930/iU99PqbPl5fAYSlOxLE4om8trCBs1k4n5uvctEOvzCE8GKcT + 0UYOjjR8xozcX1sV+SUciu2eGga0b1ZB1AqTdnmoAMLuSczgyKxLsaLykcP4iI2ApSgsOF8TEmge + Px8U+MLdZXXuMEDnBV9E/b6dUdDvV14u7xvBQDrQotvxHjj9siAffSxA4yi0Zc5OOIR6JwUCf7jw + 8m6gIff5aMbpbmoayKivo+hm2foSWtkkjxNf4VTcEsq/BiuRwzaLyYVgoM+K92pk15wTfPAtbxS6 + q+3BNdCuf/WBLrZ2gfK5zGvkFJFWcMa5KCG6nhjit6YINrZREjnQKx2lzvVXcMyH/qBNxgdJ0LcG + m4OsUC7ac4xuzWC7QlTHP+kMh/8j7Vq2lOWZ9QU5kJOkGHISkVMQEHEGiCioCJgAufq96Pcb/rM9 + 7NW9aEhV6jkUVAqaQHtiHJ1jFQSbG7Duu7I7TRn0QF6XeY0Hdrn1eeCKibPymRHNx997g9b1pJhI + mkv9+Reg3T40cLqVrWZ6jUmrrPUdq9K5dedOuNnSxnidcJLIxjAp11ei/OW3muyPBn/8EYBs3o3U + yTuBLZnGKti+uiu2zLwsOH9WU2WQdLwO3naLpePrULF7PqD3tyMwtvEsonweQUcN8WY2U9ndOKjO + 44n6TtrG88P6mHC1Tz4Jf0dWsOOjT9Hf8yb30m748haYgCphxse6NIYe6rkDb3wPWNXue4Np2y2B + S3kZsHZdnohVm8lRXmxLg0UYxWG+i4MA38VLsCqaj4LMBfKA5oNANpwcFtOspiEEgpsTfuU7yzuF + CWhkcRjr7adYCDtJytVShIB/K0rxl19Q6geRKJeUIuIKlIN3fg4DQfiaLmGXX4UObsb92//jPfXe + wGn0GsiJEzbLnL4WCLvgSfEut2JifJGufOgupNqKb2LYPjL0l3/BZfkYLLT4VvklPKI3rrq6i7lx + OzBb40PtWAoGxrzbCILlK2QD32vRI++rwmEiMtYs8WiwdyhX8JzCkXw8vS363Y8vofreTRzI7sLm + zHcD0NLSweGL1u60LDkBdVArut4/GnKxSdE+nHp88IW7y4q7uYGNKXU0bXsxnkflsZHVPSQ0tzdb + No5GmyjXnXCn5kNev8qp4w4OAldjP2kYmgOOTVDepTPOOPvIuDFVIiCVuafZZ0iLMbRCAuxGenos + twhNn84SQFJeDr1KcW/Mb/kpK/u2uQWCb7+b32Tfy518DOdgu9d9RN40toEUt8vf/nWXDa+HoM6Z + St4oRC5tuqsNAhdeaPHdHhA3f7Yc9H5uBlLot8MkfLfBHz7S49Q+3BWv1kHcy4Hw7qTHE19rFRj8 + wcDe+Zu61LbNCHT1fQ92O74Zpt3ltYH7kWxxoD5FNNHjroJNw3vYmM4RWutbishnc6eBdduz+dud + Ovh1i4r/8GS2bqOJ4DBQus+mwGW1z3JwkXElShJU7tQfZBNZ76THelWjeE5+d4CNf+/XKTRj/ENR + kyhiW0fUQiEy5is3LmjVLzT4yOawDNWxhVNHMvJ0MgUt9/lb756Wc6HYKPli3jpYgJubatS8ZEfG + 4/cU/ovPUfjNze/vemTmdjRrz0/3H/6OSpLQrKLHZsrXQfZ6ulEJP32SgWlO3kGzTwR8ryzJpSyd + 3v/4tRe7eJhfPpLgpKcitppr0jBVOAJ6PeqYhs8PMZg/XhZIv31Cj7fvIRZ0UajRircBCR7mIA7R + jgNTLuyAK7/jsFTyvYXFD7hgEbVfXJnSxkOy09rUs9zWoBzbRvIgqZim0fXrzvILInTUViP8yq1H + u2bTRmnZfUcvt8u+GZSvXAOZ11dcf8DQvA9qWVn1XzAlysWlv2PVAXx2Pc6l/Rlxvyle30T/Pegf + /s3oMk3KrbW3dOVz7vf0fNawlfY8DsLztllCOjuKGNgTPSGsNfOlsMjf9cnWmAfjx4t74a++0cPP + 8Ys5t/kK7fThjPcnbe8KX3Oo0eZlN7ha4zv3Z5vIR9n4YTfr38O86mX0TnBPuO9Xckfn9VvQil90 + bzm9+/u93PaffjK0ZmmGDM0WOh2OFl311DAfVXGDTvOpoMfoljaTIp4c6AWsr/n7Yqt+y2WdPnRs + DvWnmGr7aMHLq+xg+9tt0aQkdwnJGs/R/Z5P4vFxMUP4tLQOOmOajXk/KTrMJAyJZBSo+PBRz8nF + /mlRj6xT6f7y/Y8/+s0+Q/058Ua4ko4QNpiTuwjZzwbxtGupJ42/Yt4LTgndoT1S9yr2BTux9o3U + OVepc+zcYsKLqv/pR2psH0bBZ1HYIRJJZ7qvuRFNHPE2suUF5wCSAzQj024bBbh8CTbLITHE3c9+ + w737Nli938Gltn8isBE/W6yfd2YsJGNjKU/lqwRCdD26ovh4q2Cdwhpfjth2x/6wWP/p12NUDGPZ + nTlw7VTHDjvaaOaeiidbzQ+wpQGPfu3DE2B/v0XBxuiPw9jrbYc2P/rC3o9f4mU/qY4ievwV43G/ + /8fnUCCWM63E3xj/dP/hwXyRKdZt/Cvotr6k6A8fvCb2XT7zDU9Z63/AVj9lOZihoHQfwSSzuFzR + 4ut6BcBlCzaUPjEm/LwQ4A9GFdSe1sfjJzcS+NnPPbVqo46XaJI4GJ3bQLoANDY/670DLiRTIF8L + ZrCYa0PIvsmXrnqi+KaWYCnF7slh/RO8BuaDaiq7siH0GC1jPLMbXdDKnwK5STVjbG7XDHbAvivf + e6Pl+r3p8G0LHh+e8RKT5mvp6GbTmIirn8Tj4CQDHL50jVdp/EaGTaBx5tLg/ggNnodinYI0O3j/ + 3uP4T1/D+v+DjaQ/i2Ub1BnQIFFxqsGZiRQ3E/zpz+J+e65fKTkyAp+dabDyCaH5WqpS9VNB//Qp + +3JBBLnqafiUeH0zattIQHP6ygh6oK+7ujoO+iFcEon4xbCIozKhZ6jORNjK72H+3Tc2bNfxv1u3 + Ttx5lgsJLMukhBf3Mpsuu08GmylNsL2u5+rXLEiUTnvqTV3Q0KzJCcTiISVLdukRM5qJwFoPsFfg + IJ43amQBOhx32LQf1O3e6D6hjx6ZAeveR9TP3OkNa/5j+10tw7SVQkFJxmuBV/+t+G0+qJOP0BeB + ZAXiQAzv4ClAjJBMt3Rolp37TdDKl2jA47cx7S4/gJfQ3qj6q77GdMujVPlbP/vN7HiW7h8HMQ03 + dM+fVFd8iUkCwRir2PByf+DXfIFHPg74ssZ7/tM7myss+K9+8o505KD26Y8wc2ibKdSM8B+em1zN + XDo+ePUPr/7TX6ISgbJUtUuj4rd1qT6DJ9/ta0euTObjabc91JA2TxIolxSzcaBFt75crlJ8dtxi + qki/gW57oMHj8RgY22tbB/3pf+9VKmhBnPMGXwojfPq++mb68d0CQa98sao5tKCPcvMGs64pNoxc + Y394qaDj8iH07AwF2Tx2KUzRu/9XH1kt9znIPWdQvF9bqkY1RMAdnRTjepfEdCspBPlxYFN/zPNi + jubf+Ld/6fH86ob5exOWf/rAy8ooZuepqpHMjTd6uOqUzfdQD0Heyj42LZQ2bN9KGZwbVSKzki3x + srlUlRyc0Z3a3xNBo2OcOuU0xwXWENYGrnXsCmxX6mlmH19oPORTogxppVBs/iSDbY2wg2OybfDe + LbxGzLItBzdH7bG1+emMayKhBrWVJGzNmTaIq/8C4IQ3et/l73hEN2bCNa421OcHYFPcXixle3VP + f35Ow64OrF85byzqyod9LNhB8IawZi9qd7Azhltt9uj7oh55ZmM9TAdxq0P7/dyxtTcPbLabOQDZ + LJ80dKbDwB/VLUAh+TfSfU8BIrriAkoLkScPJVuKSTTOqbL6v8GuLpth4Z52Apfl51PdlS8Fe8Fj + UkbnPpBTvwTxshiJgOpkj7GrVk7850fLt9t8o/dqahqqtD8LReXPCpYddxyWhsQleuwGTFBt7thv + 9WOhPV5awstPfRC/m4cDI6gKea74wzqvHWGK2h4ffvfGYPlyk4G8znPQcjUzWD3hJ9D9a8QmtDMb + A3ljobpuL7hgr9r946vIMllGtW+YMPGWiwHcpu5A/WLYD71wk9/w54f5q9+0ONev/Y9PnWk6ox/X + OT0I1PNoKJpaMTutJCPvJ+lU/46jwYt6V6I3PwE2mB2w8TI08joVqcTRVpHdGd4I4PQpNLqfwInn + g+g4YDUU8Bo/d0kRiUCM15Hxn+3iMo6JEYi/QxLIykDcyerQ6vcuMfVf6uHP7zKRWjXpWm+Oxp/e + QduwxTitbgfW735KJW9f/TXgLJQOE5eDjp6hPpMBJV9jPudYB1bsgYjrejbdyzVReP5w1K7yGC1u + 1ybw589rHbobP+6XmTCKHsGXS3mJu6LqTHQYwfrn51Jd1HrQhHFPb+Unan7LmGVwuQ06kWT0Wl/+ + nAEUpAZUP7fBOmvd58BR7BPpzYuNhNgX3+jPT9GNuI5nqeVa6P3M/OOrwyIuhvcXv+Aa3YShQdVl + A7bzinGw8oeZ1goHdbarML7eNYOpEzzhV2sj1pKHGnPN7ZSjtX9CnTgw/vlhgDeWT+0Vn5gvLD3a + W1KIywDriKHqvgFteCb0oD5uqP/BAQDU3MTG2zZiYTo833/6i+JqWsEn+jylNT9w3kaBsWTwgn/5 + hDeaUrTxIcyhGcYLdVe/eMSj/AYapCrV2qRzx3wcWlAFD+OywCReklmqYfdEYUD6X40oHz055WK3 + EtUr/uRO8uzpMAnnG70J5y5mWZOP0JlKgXXnFw9//Rq5LmoPh3lwbf78dMgO7EJYDkszLXdtgecp + tbFZbp7xeCwmFUqleeIDKGfjn7/TmNrqlz09l+v1sQN0cHcByV9GLKx8Cr6vn0e96qLGXDbtEpSk + mvwX3+H35/eu+i9AfsWjqT8spnIQhDogeybH09lwelA8haPB2i/4MVS0f/4TPVxKsWDJI07/+gn0 + 2LleQzRiL3/+PC58NgzLd5vqyrr/aRCe782UX6P+r74HEwNa0D8/8nSrP0R5NPeCHS+HCjYvp8EB + fHfFbPD6Asb1e6HGiqejxJ8WiEJ/+4+vCt+jtAH+E1+xGYaZMV/LIEf9JarwoZ0l9K2a2ANv7gSa + pGRT/B4WtVCXGy+sQxQa4m2dykltL8eJtc44HT96qfQcGgi36OOwuMJHgNj99jTeiCIiywYnSOfl + ltpzv559ui9HmbLeCvgJ+mKJY19H9jP08E1Ql4YQYlbI1tUTdk6j44pFm2d/eo3IY+oxksFrA6t+ + +qu3DfvzCz2/P/z5oWxu33mIJGlC//J7Egs2ovxyG6mrVn1B/avFIbV6pGRXkJ0xB5Qku7mxaurV + /BtNb1e15b/8thriFJwsXEtAtX0M5EYb4qUb9rlyDx4BvvCNxsTLEXp5XZ/AyRVvmK2s6naChRUc + 1LebO193S6B4FnawHnYPNK/+x5+/QB5r/4vv0LOFP/6Xr8+38ikbnZh8JDu9D9Dcn9VRybPZoMa0 + HsxZVLWl7PPBoE77aRBT9Azgrx+l8d9vzMaStrDqcfx3PSGZpSfYzifGHtUFd5aN2v7rrwTKabo0 + //J1Ei43sln9qznZb3IYejzhg6TZ8ZpfJWzN/QEHlh0awmdTJfA6ijm105R36d/+NPINIdNrzw3z + 53MFcBTnhJ0mfbgslecc4iDM/vVf/vnVrJMKHK/1hknBzYQoxNs/vmxMro8zaNyyJFu/0IuVL05o + 5Q//+DIpy1MAq9+K49WfXJT+k6FQ4zUcbA/bYVF6moFTyim1JpIaXPkbIjBS+07/+hmTse9U+KC9 + Rgt5G8esdV4J3PgqxdYm+xmL4Dz6XU2j7b98WVRB4JRysk+4OiU1mvzZTmGpnm7wsG2XTfqoyUqo + hCOZH8Kjqb2dkCm7bX7BztW6xQvpRBXyjBl4707PeEg/XYl2N3FPfU2hbNkecwB7tF+BfJ069lWC + cwuCyHAg8oHnCnWVtbK8Hjzu2Js7YoFrJEC09ybgDuFYEOQ9dAUL35CmExFcZtMfB6seJvKFl5tp + e5dLMGfOoolq58PqhzoKRGJNcarvCtK/xR7R/Ctg25tKtNhB0MJ2+1zIN8tMNN3OpgwnuLsUb7Rb + PH3ZI9/9f14pEP/3KwWv4b6j3tnhYpYgKZcbx6fkulTHeNH8KgAaP2y6v1x/xnTz95HS9ls+gL7n + G0Y3WADuaOo0+JlVMbtW3sEXZeshwaUVc31i2UjApYNvjnxpxNbYlUjaCzG1TvhUMByEphJfvBHj + z8ct5s8WShD3KQ6WzbFxF/Vq17C8Tim+RRvJnblCSYG/mweaaa3uCgJvqsqxfGt0Lw64GKkoLfD0 + uhBfn2iDRvrMFvgc5Rc5Gfopnk8V05XBUwVs5Z+56fjwFMC4RBvClte7WS6ytlHgKbxJr0ykWAp4 + hnCONjxNftRp6GjnOmzbkmHbS56IqESt4B7xd7LoIY9mQ/hMcLCvEU75RzyIn/1MlKup7Onll9XN + uJqn8LKlG1a/NWaLH29V4B7GHZvtuXd/tilXAAt86I1tm2Eqxb2tTMeTSyu3RGgqhJ+Jbif+gs1L + tW2Wj95YCtt4Kr3xl9YlYz7k6FFGPiGWWQz8U0kcpfa3TwJRxbmLf3+k4HaVizUzPzEONtcWjnet + xPinjS7NliBBkuCl+HCi50LAydYBjrwNvMfnsWH5N5wU/1vGOHTePhLUq/pULP8UkOvjczfIvDRE + SZaR0ejlZa5YbENOSZ7vZR3Ud3dFeCFd2T3SnOxm+1vMw6Wc4HnJTn/5UvBJHXuwxhOr8ztsBMf+ + OsAFiYav5mINHG8SCXbueKEX9ZTEy96yOThn61fLZDwjgbu7G0h3JsL6SU8Rub4dG6ra0Wn8IlAQ + c7KJzHHWnjpd+DOmIXl7iqy1Jb2xUI6XtP0C1AZ+YoPtrEJo1F5AYeciasyCUlAr9m14HqKQ+v3L + cIVScVKlwXeCzWS5NxwsNIRnOZ3oDfZmw41C2Cruj3ODReivxoxS1QG7ul5w1RafQkxP0hMMd9Do + +tXVwGnxkIMq1xLN3oWMmNTIE4Tn9o6DH/9hyxaP5C/f6FWdrL/73cCcayds7OQbW7xO2AC3EfbY + 7e25YI/fKVIO2SMmOOP7ZvFjUQX+vWvIej/uYhbqpDgXzsI3qhgxl3LmovDb5Eijvs1iLruPMjT9 + bcYHeS+5xPkIHKCkQYHinDV37geuh+v9t6fhXz5L7ugBKOOH+gXTXZHz8lrmx7hZ4zk17L3DHljK + 90Q+4D0Q18ivN/gDItSDnRrP1yZuwYTvEReGHQzcT5g6aLs6x7dfvO4H7xVA0I7r4DT0jdnrunvC + 8JYkatPQZJM1NKPit0FCPrtKKzj++hYUOXjwQSseXVfs5x0nYz69Ucu5Tw2bt3gD9mbOsRfkcTMj + TllAUqsY+y9u17CiCmp4XPGHmvbBLnhjlC3whYFiA7RDI47LDkCJgy82I2tbLJ4iyHCK3Q3FreIO + oqP6FfBmYGF7u4Vm3jxSFbhmY9JA9G2Dts3BhrPCCWSUbIGN7TzpitQ1E95vKUXT8nv3yj46uriy + 3X0xGVujRHf/VlFbVl8DvzveCJin74G6tD41HPWkBbydFQZM5Y1YvHykFt7rVIHYFJumvdbeBs63 + lsOJRT+IxWGYwHW7PVA7TBuX98poVB6e6tKQiyY0uVfTUgr37GNH1H00b8XUBOt2xfgsDjRecP2t + ZEdazzqnkA2CHqQp+ouXs08cRMv1qCQ2DSUNzp+3yxpyyhQRWREN8u27WJJRrBSbNFnA1zxxp7GW + 3vDZdh299GMdC979GMEd5Rb1H76OWPGdBPkdTA9ajNypEazSliRz3h1pLCJrYFIgc8CaSsXaYiWN + kMm9DvvP1wv4ozLGzE9/LdDNwwnQUM3FvDurupLoAQ1Qb59ibl1/2FJrwbqSX5F4hqyEPPQdWsJO + Lcb3TQogOiUdvu4vN4Ml7zBTxKgZMK6RGy+x/1iAC1FFDeV8KHh8k2WUfbc61sVCb+bgsAiKYpcd + DWubDuyhnyKoi86md34/Nj/zl9vgkRQHHHKHmDXGNQPJb37U4E8WmmXuNkLvPpeAauGdDeNNVuER + 3N/ULgbZZfQeBYqRNkagWNKl4PnylsHd1Q3Cu7EXc5x8NeH19mXqracgsJKzWlTH54aq++A3TPC9 + dn/5ibFHv2jJkGNCr04LPYCnITGF6amciqrBdpY3w/Iae4DdXBb4wv0ubOrYFCpERwb257OB+HR9 + pa6J+hRrgnM25u1DMCGCpMdnciJsLnZFp9Tu80B49gnYv/p+rzuL3qY2L+bnBxx4RvqJekeTDezy + mVpl935fcc5Uv+FhtD3Ycms++7cuZtP3IIEsehVNPLJ1Z/NBOXh6fYhvm7kdhCvqbQAn3tCqvn7c + eWvYpaKdMxmv8WiGrMs6pGFJohGwxhAXIcrgNW1RMMmbEInjbdHhWLYa1dRsHpadZ0bAJ+mBHhn3 + LQb97QnAu6imB/tyNpbTeRuBk6AHVtf9tFzD3oZ+WLhgozMTic/nQQVBfHT46lbWwE3au1Y8teio + 85TGZvKura0c4jhZ949lDJtPEcAz2PbYv8wa4lzi6UCkwcLHh9oVTHu1k+I1b0yjX5Qx1jYHR/lb + P8N4NDGLUZgo634im5+5iZfA1UpFP8ub4Hl484yqobnIea84uJRE1WCHzYp3ih6T3oC+YD9bNhHO + qwKbqdix38HM8//w9nKsi0mgRIbfc9CC6Rj6SCy54A2DpwtkGx16YxTRLgRTa6wAva3ZfZv7boJH + rHTUH7wrWs76toXjdSjxkRp31uLJDBU3Sx3s1J43rHjRAleVOvb7V2NM33uWQd5vHSL+MnVYLsaW + oEZ5XoIm3JoD4R1PR/IMd+zbW83g3rcpgPJxT6h5fR3jBfleruD+XQblIzy73KcKQ/i6Ogn4bkea + +RkltiInmkhL34rRxK2D1h+e7hLefHnuRMVpUtZ6hHX58GTUH/23bAw7A+Pl4hnDJ5/7XRIlU8Ca + +VWseNlBc5iSf/k/ycqpUljHqfiuhXfEwl1oKYovdIEQPCY0dscwBbSUDdlk5/cwB7dcgN8y6zQM + VdIs5mSPcJdu69l9xs8YN+yzWtDWOvcHsobRoxwgSxlOZGNOBZrYbqdCcwvPOCobzRCDy76H+743 + qBF/27gPai1XzPFhU3+jFu7sFksPf/zo3sdDM8tq7SjSJKRYHYOwmHbRqUSSG8TBVv0eDRaHWQKn + 225D1+u7f/FHl917GzAqWi5tJWxCfBJGelQnqxBiSRsVgfcC6hbJ5K74/5blMi3JRuQqNB/zpQb5 + RG7BpfHTYrxLvxSM92Di4+OzdUdYPuFffSTZDC93gtsnRV4mBNhwcINY2IYOHLdxhXVp1pFwErUW + HpzfUzuNd4yOH9wjGhwPOOcyYkxX11fhFdL14AhrW/y2mZ3DU1HjYAlvdTGL9q3945PYqQQvphAi + EzzBHehRCZ2YG77EhnCwahqEeM/EJptzCNLdTF3izAMR+dGUJRbP5BcmUjHHfGGDHnZbWk6mUEzP + 1/4NMrwrGiSxFYs/lqsQ9FZG4rFSjN8rKXMkTVxKL0r9GGZnyp+wC7SZ6vFBNZa0fcAfXyK7pToW + 3K6gJmwrmPGfnmNmtNeBfrUjPm+uGE1dJSXw3k3tyl+3DVs/UUQXgwN6AolvFvWZOlDOnzPh3HTT + zF+V60HshRAfNgepmPnDrURD6YjYd2RxmLGdS5BE1YxtlUkDEevRhlf42wV8KwbxLHNnAnvF9anl + +7PLvsVu+cOvYJrf4TDc+mmjrPWCViUoxW+fRR5U/aTRik5VPLVlqCtuljhElBytWZRmrMG+HrN/ + 9VOcHTlFtaS8qH6ZRPd3exUcMGeX0et42aIfuiscKJtgwL5StM2EShrAnHxPNFNiaJhxajcKZxAd + qwfpF89tBxF4rttR16yxMR3SYUKvsyKRTdECmqKDWcOFcBucT+mPjdsjrWXx9T6t+lBHnE89B86Z + xwVip9dDlzCvB9v4Xv72qztPV8VEjLVa8JtaOf5ZJIqgKG4BPebRAXE/V+pk9Eyf1O2WUzzVrV+B + KBkjtXw3ZBOHdw5c+bP9x1cHxgS5gtfXvuNjLm4KRthiyWfbYut+e8ezrHYOqoXepWrQEWOtX8t/ + fD24PP7wU0ZeFQT08EpUd9Gp+oZd/GD4gA3e7exx4MD1KzsQrS03TJzxnkD2giJgjiAPy/tnqLB7 + t1d69IvbMN2lVwrvNmrW5/mwz1oPFaVJenq1LKuYVe7z/MM/eqibdGDcY6nl1T/A+5onBiVMtpTn + EsaBXDpeLEavMATYG9tAeT6ew2RfDAG5tfvGDpcFBn9/xxvFuhWYIPuJC/FeWxN8zxPF8fP2akj0 + /BJoDkuC/cbeFUueixIYJ9fAxi4+GGPCzO5Pn1EnNIdhGfdNBT/J1and34tiLndolJOPMONgK62D + vfFxA0M6idRA24M7DY5UI1rFNjUt+mFjf59KdDTdImiYc3NndFeE3YKHGKsYfmgKizZTXF04BtOa + byzOAx3E32kI6q06G5TEWNglUTmT7XIZ3XHlB8CGY469q8cN43i2QuQN1x7v871fsHe7TsmLtx1W + SwvH32WvRCA674AG+/vLWGLpSJBUJAmNy7R0Z3xbZCXguCtOq++MpkkjNeyEMadq54XG9OePlIAT + vN9cKRu+xTzB9iuwgCenAM16TQng6Cjg4/5ycxfdrLs//k/jRgeDPS5zBF3fDUQkpG6m7z3MlPz8 + cmgg11uDfREu4THmAT6WuGJTsPcieJv6gzBHyIfx15MQJTdzwhU9Hhox8CdVCfdlhVd+Z7BKnS1Y + n5/6t2nnTm94ccq0NQLCbNQaiwPCAnV1aLBPPkY8ETEc0Q7MnO6z+TeQv9+v+pDq23vj0kieQoXb + lXuq3+zL8E8vhNEgB9vD+evOinAGCMQjo64ES0Ovm3BU3vNti9d6j7j94PZgPGKTutsuapY139CO + nBi2TniOyTXsHXSWSgHjVhmaebyAgILkfcGBx0E8sEdUQnORzti/83qx7Iua+/NLME6PTtzT0n2j + P7/GDN0OzZTwKjT0N1H9ttPcOfPjWqn4WqcmNfqCEGtowZ+Lidp29GyYFrac8qR4DL42Z7FZG+aN + Avd5S1UpORkMX14E/tUbOYwK/s/ParbbBZu5s0WMuXKJaNzYOEhOb4NJwSKAsxAbJzjfGuxnLyY0 + z+mC1agnMYvpHkDm4h3ZODa4lHR4Qkv/TfG+OvqIjzhmKms9pX/7b4HGK6F/2Dw+8s6xmXutHOGn + NDrWY5KyaRddSyBZYdJ9Qn8x8brNBtZ6HdTr/5sxi2TQzrn8x8fQPJk3CyzpdPrnb7AUpHWqWLUj + uTIF8ezOeQ9ePfTYXP29tUkNSugfJez4mVu8FF1N/66PfeOlFqIoLSPslyagTmZ7rqicYgc+9/WV + +8lMi+VQdhsU+q4UwLvj47YUfRvW/KDBS1UQu3bS+Md/Ccs3RdPHmljCcp+TlS//GDvhzIPVz8M+ + jCim5/3bhv6hctRPC43x74QrAW0fCnWY+htYfzhJyuWaKti9p2HBrXxRcV7Gc43n7H7daWmV8WDL + 1OWkxWCnVgqAdI89LohzariM96R/fuR19Wt5bZgBqleuBey2fxXsEoWtcrqhDdXRTUfT7E8S/PlD + p44k8Z/fpKx+Di63jWr88QFAotCs+HsxliPTLGX1S+nN1x7FJO4/Kvqrl3p8qN1lXgYCDw73GOPi + yCjvLW94uxRRNd4ELiegk6dwllES5Xsy4nlvRCFqb8uVcOfm6HJm37z/9h/poSQNMQt7Qf7unVBX + CBZ3MpKmVqZgcIOJ70L0zx9e/dZgvgQRY/S4eLD5eoSeh4bEvyaC4D//ZPV3aGjsObTqI0Iv9z5e + HPvhyH/7zfVlPEw/V+rBi6uABtOjM3ojrwmcdYHDprnvDNYVJwK7gssIbLAai+NN1mG9PyK+e9X9 + /MXjj5+aEW8P7BpPyz8/NAy6wOD2g9ED31Y29r+nJp7scRBA9LUvtrA4Ifoydy1Uoa5RI4mKhoz7 + oYKj2Jo0Ktx6mKnBq9D1/UASng0GR9N3Cd05GqgB78qY3svkwE37pTiKiYAmor4z6CbnR3YOvcX0 + D49ynvdwYLuv4mcZcgqfdvqQXeB9XLbi8z+/ce/GXsEVnm9Do9QXGtBpE8+vDZci/m4dqC7snw37 + TKcORQL0uHrRj0tO6jZFmtPvguXu12xSNrseSbFGqbPyqVWfV3AKuRZbuyZmtBYCDq36hd7sreYu + h4MKYHqxRXG5cw022rmK/vyz1f9lS9X1JfK55Iw1VnLDyMlXC638gfp//GFuMgnM03Cg1oGFxbzP + 5BC+YU5XfXBlHE1JCdx8rLH9lcxByK7bBSnZ+0vEzfoJ3VMMNvJfvM4GHhALmlCFafcNiNKIz2YO + mQxo5U/UtnfXYmIZGcGV0RvrZ1bH8z6LAqW2Qhsb6dlsxNWPgXsk3omQvk7FssUtgS/K54DNwi1m + or8QhLzxjsMxmIpF5EcL5Hlzp6a2qYrFoF0Hlbi94WB/3696N3OQfTQuVMej0PzpU9gVQoaD4fCJ + J/oMJzDL4hBIY9uyqfJ/iRy+SE1tv3+y8XWYHCXcVxW1C6sZ5j8+HZ3Sbo33GE8fewqV2+eSBcpF + leLfkisenPabJ9ldm81A8yQTAEeuQO0A7+Jpek4cqLwtEaksGzRrDu1R/845rEv6tWFyu8jgKhuP + 6uGtjmdCyg14NvEJelsnd97/5AC9K+mJY/fVMDbcrgA4Lwvq2KrrCua+ntCqt/Hh3auGkCHHgsdn + NfgccR9zvDzbkOGDSqZzGgzjC/bLbvVDsOu1eFgOiwrKcXuq8GE0VSbam1fw50cTLsPHmEVy6IG7 + P7UUv09DQfZFLQCH2D1AZk0NggWtRKYYH7HW64kxv5IkV3Y2W4isv514uj39APLXz6X6hlyHeXOp + E7g/lXrlb79ixQcC4oX12H2aEyJK0L5B2XgDXf049qy6Z/Uvf/zbUS/+9ZeEPHDpYeVXs54uOsCt + fGEtrKNhfiVlhla+Ts1Bc9xFJWoJ7U/KcbK/fthS7Lcb9Ocf6UOsNdyG0QzSbiMHY6fyaImeDwKi + pI1//ZFiIcVQgzyWt3/7c7wH+wxGr5bp0TSU4i9e6K8erPoaEfeoBX9+aLCZHp07h7YM4CrgBfLq + Dy/EGt7wOUovsqXDgN7eXYtgLHtE9exRsyV8HJ/od1i21J3W48sXu+F2bHDzgF2Gtpm7M7S78eDI + wT099jG7RNn7r39DFhMEl5bbSYJLvFGwybPBZcPtBEq+vx/Jyl8ZJ53mXPHn64Svj8/WWLKruMDz + SofgL39bxaY5qHkk/PmX7uRkow6hI1TY10/qIPwKo4RotDpsGlHlPv/WF+P2SjOUvhrGP/MWYSfJ + qb32K+cDWRJl7Q8SZNhBw/XOOmX8rW7J0ggiIufgK0E73cXg9sKG8efP//E5HPpRYPBXn72V5yhH + 2DVsMsxnoQhBYe+RGlR8G9M98HNY+wOB+E3reOTa2frDP2x/PDP+4xdo7Wfgo2VZMV9Doiq1Wx9o + eRhjYzmUNSiYQkm1aeHQHCwyB3dBt/DxmdoFd/y5krz6PVjjuLMxOpkBf3iCTenuFr9UYImy1jsy + T0uCpuOlkaA11Cs1tctnINEgJmj1R9b12hjdTXx5oBhmhyu3LBg1Pz8VCU/jgy1jntzZuuYJlKdz + TL3n+2yIp53kQHCFC83G1mTieU9sVNW2Tlc9xabNdreg0/BusYPMwPjnzz5EB1N/7R99Y4d5ivH+ + mjj8tVM8ImX3hGaRM/L68+OGOnwqwv3tUkNfcmNZ97OivnSRrH4cW+OvgoTaFEdWlBpTYnsd+vPn + g3xrxYLPawmU4CerP3V3Z6jPkjxouYhtWd0P3LkyR/neXWq8b+4+mu08L2FOhhM2zb5qlmkxeqXB + N0JPn5Qh6p5/JUTp2K1+0DueHwAm+CoaCYvkwujzkx4oKz+nQR4qLv0pB/LXz6XqNQsQ36lJC09N + CukxcauC+enrDU+OEmp4ShvPy56P/l8HH0j/+5WCbYcnah2lnk03rIKCCjhh3TnGMUvteAMtDTvy + fMYqE/TaeCp3zlZxKoYuW2d15Iq3IQeqHuuHS05aAgpHoxEf40U3eEG/1iB+fg0+3I6lIbhLnEFJ + poLaZGe7Yo6HEWHejrCnPTqXTQZVUfd5UsL5tBl+o3RL0XQwBVxWIx2WUbq9ISFhQB1f/KAl3NME + xDM7UAvdf/Ek6mqkuLVG8OFQPopJcF66Ir0rH5uNlzUiv8neylCAT0/1FBT02z1SReT7D9aHpozb + v7+fv4IUzBw0iB9H1YOde0O0OJR63O32Ug+86jR4zyubdZAPH4B6sfogYcdxmJurlED90Z8YZ3br + 8nS7sYC+fZUm+4flslsgEfgW10/AeB4138f7UyL5d7zgQ5kdmsldBhlO/S6ll1paBiboR1XJ8+BG + o6CTi/nv77tPTSk2fI1xecynihXBd6X4ViE6pImA6FVHfvbrjjhOZ5Fy4z4TddJ3UvwupmYpbwHt + sF/jZ7xczGMCw92448N8Pg2CfH71cO0TBe+/d4TY4aM/4al8S+qHuo3o/jPW8MzHHjtV8kZrvmyU + frQVarKv2CzoVERQTIr0b325RxWXSr03LXzlkIa4Z39/w64/77ETZAJiSrJIkJf+kZ67SkNTiU+g + hLJWY8wbb0M42y0BqKYGl9u3P/Bn9TuiuKyfNNvXjTE/32kJbFt4wWymqJj1UpNhf3J+RH7GT/ZK + oAshMNbB6ApK0WQ1pwzo4SxQmx79hlXR11SM4mnTyHIu8aicXQcpU6niq4IuiE/VbISdc3sFO76c + 0PsoHiZIcGGSXcigmCaxt5RWu/LYq7y2ERfDV8Fxwy0tt2lnzIkqj7DdRxtsKIw1k+iUKlrcOcH3 + +XV1hXFUS9B6FFEcOp6xlFgrFVeBmRah4xpzGRdvFJwqh+4V51n8pL0kg3z0MI2GBop/+cfI3cIW + wh80ipbWo/Osnta5Am80WcPPgez6FQkLi6iZnf6bIUHb3Ek7DPfmp2bPWlmUV4jX68VsHG2iaP0u + olG+b2KOGWYEWq48sVmVnfv7SV6KHvZ6FtS7MFxxE9ZPRc/Jk+676oGmUBl1dDfDmpqVIrpz5rmc + TJqM4PKsNMay85mkTEd3IS27Ri7f/bwAftGQ0b96MX/4ywZt2quN88rUCt66hyGgu9Fg04rk5ndo + 1B6wEEhESTSTCdus0RVuOVFs5YKEKBEZp5yfphiIxu1V/E5aQpSkSiuqo+mMxIBnOpq/nESN8hu6 + I+8IuiL35h4Xr4vcMLhWEZC43ODb7Hkx25RKB7kXX6ka3WOXO2mvCvnsk65n3e6ZIFq6Ddn7ecb7 + CUwknNVwA5XZ1PTAt8xdTlqyQb+llqh/02S28AGR4S9fNCN9ucx+z0+4vAil7swrzdiPj43yU/sR + 62IdFizkT7qyibISp/m+jX9HwiZQ+8NI3UP5LDh7MBxF1Jc9/atvfMAv/+IRbNUAjOWe9h6s8cb3 + XXQYhAS6J2jSZOGi7AJ3aXpswXEseKoG4WngjgTV8OIPCsXeuHXZ7WJWyhPeAtY2blEs22xQ5cZ/ + efjU0r6Y1Xbbg7Ce/bpPnjOajdbrodwQl6r72RlmtRwkULuDSqR9bbhCnect+Pfep9a7+RTz6zVU + 4NYGwa5XSsMin8YIvLugUBUOVyYS2lkQfvQKe+/+M0xSYOZAzbClDnukscg5woSc3j7SLMJ4+L0f + Jwu6c20EH9NPDS6z9UCxHrKBA6ba8cIFWwm254CQRQx7xMyizhUpe10DCUm5IW7rtw4rPuDz9178 + 1atW2sTZQpM3wu7EW0OHdu4dYRsd9s2881EHdvfx/91/qZdaD/vaOhDZ/+gFd4ZaVe6f+IlN0bab + GfPfJ8Bt8eneEGbjrx5DVIxAz7xSsaX7mRWIbX8KuEUyDKFOrx68QgtTN7uOA3s9Ti3o8lunemEp + xU903BD9Hu1CLcAbd76nj42y7vdgO3HmwJX4CgALg2CXRH4sRIpeK9fizgI5TQPEHrkmwIa/BMGI + rOcw3wo/lW/aLwjaY627f/inbMxHRz30mYeFqDiHfehcAv6LhaKPpclWLsnyxepVqQ36+v4SmGSj + I79DUrvc810FcLTLH46NTRyzcJdniLRXE5dvNBsLUQ/ZH14HC6dtG3axHYDz0xKpf9YrtJRF+gZy + ynUCgxMNMxFZit4n2cVRah1iLvV+LWSHwcXWEIto3N8f61ln25Dq+dlGwoI0UE4XOcE5mV+IY/JU + gZ2+HzStzLoQsSZ6ylUOfzhf8XF2+yyHAh8GqmWaxrgCP0G5dskJu62Ih6mI2xSsaPMNFlHdF8Kz + cgCe8tsh21JKmt76xCES3z+fHjtix8swniqFX3SKnTUfeEfeSmDe0wlrib5Hi3GXn7vzrJ9wkX0j + VzQasBVOLRp6cGGMmV4bk6IXo7TWVw0N8ml8wuO4TbA2KR+0rPsJHeIJ45QuG0ThbEjKeOIXmvnU + HJjafhzlcJ4QPe4Kjy3OMmbwhfMvYEoTuEv73ZiwK65D0NI8NZbMkFJEuITDYV5ho79HNadoxVYi + JDgEBflRiQO9IBK2aS4aU+4+WiRocMep/3kUU6SVFZQL47Ce75uCZYfdBpJtkFBdVPcxFYO9I1+d + 2426l51WLLEkOWgI9ldqv4d+WHhrtMELUYv9lhzjX8iHtTIftxnhgjAaeLXddoCNyKKq9VwPNjpv + OljyvsL72SfFXEW7N2Rdo2HXuFnx3N5qgmCiKtXKx8hmJksEsnd9pun++y2o1qaOol9HL0B8Egz/ + 8D5dOB9bW7qwibeaTnnpfkGv841Do0ueNTT4IxF5SyhiDmlC4HX/Ts39423Mg0QSNElbHWt1baOp + /SotYu4zwXvMXi47Ei6UTT9PsG45YjzP28RCG70c8Zn3+oLppZPDO4IZe0+3HtjxXT+V4rfhA458 + tYEri48Fr4f5ove1vs8UwSgLOvD0etOubN4kcgb1R33S6yNExZKojw2ICXlQw/NOrvi6ZR6cH9YD + 6zRa2AwnR4ebRgNqJM7XnfNDXSl1p0v/6v/YPmQBpMvLoOp7sJupjONUmZ0twVoZNsX3HnUt4CQs + 6cm0zmw8fKJJSVNtS6t9piE+DT8BvA1NC+RtYLJZtDRJsbPvjZ47cig4tw9tSCP40ePPpwVrH/0b + nWvLpWYaOMN8i532j89hl+d2zbcsqhSKytiv/Np0F7VsbQjOzUJYMkguU8K5hlo2WmyKHRvm108M + wCnWo6+PkzWIsYoCtJNDfj1LHqGP2TQ2ZFbH41LMQuOfnnA362ePZ15FYp3nAlp/Dt753izGe6WU + YN5Sk2zys8uY5IODVrym+3jRjCXe+wm8QhOTOTSOjJcCs9vtjXgXvGnEEG1usgcaEjMiD01VTL20 + NdHf+sXt5Tmw+knef/qA6ghbTEygXlC7DTJskt3HGP/wb695Cg0rJTVen985AOEkYRp7pdCw5sVt + UNXkPTWSPBj4ZD0bk42Zg0913bEf1gQC7RRQ7IjhyKgS7moQYsXFDrqvLRn+WyNjLAOaRh8xni9h + Guz++IyJLo4hCk65wBGdMb6PvD0I6BRHyK/fCfYEUXO5GGZVsXS9WfHxNYzrTEDw8XjD12SRigl8 + NYeDtZupueqlpbnNm3/5tbdNwub9p9WV3/T06OVrTe5ARMTBnz71b1rOFqMLIvjmxYl8NoZs0Otl + W8IfX4wQttC6XhOs+EKtqnULPjHBBMtQd/RkpigeM1v3FOP25LDqnPjm/0j7ll4HeS3L+f0VpW8a + XYW37ZrxCuEVTIAkRGq1QkIIEEJ42WCp/3uLnFINSj3r4dE5OcH2fqy19mablrmbw3sgARLLhmGI + 9eMVIHMbhAGqc4NNazMwVLvdMPESKNhyWNwURj4rA6FhPmCRc4HAKpUrDkSagjnUxgHAgoVBIxZz + xlKDNkg06Ux2YxBlJJLoDc175U7238/TWwJ+oeiXT6XP/WkwI5NvYMlGc+Lyce4XtlHOoNkZIzG3 + 4slY9MIr4XJtbWLc7dcv/nXK49loWCellP3sEbLxTrF+E0SwNOPjDpoY7UkAgjdbHrHOwWMHztM2 + /cbG0g1dDoaZlURTL9uYUBAHihfuN8TzPWwsUuBLcNtgEx/CaIpn5SpSuOIN7CU32lN01Cg6x8iY + 5i/mM1bmho/OlcQIDm9zz+p3v4Hy/hYTO/erfnjdIgudS+VB9pTTey52Al+ZoahMo52cs3kbtjoM + r06HtXm6x53V3zu0KRN/AoXEqqG8ORYw7kUeSLfN3VvyM/AVg7wKHJv5plqqK21QTB998L0XLhDM + Dx/+Pe/jm8tsuGfEgsH7UeLnXeJ+8cGHJ25XYb2su4wlZl/DKzptA37lv1NxixrUVIpIDD4ZquWk + phAqh6O45oeI8T8+jVgVBSLSVW96f0cTdp2pkaOfsHjFlyk4fjmKd6olgK7M3Q04FHWCHX4QsiHk + XyEqh94K3gNq2Rzo+wnK6flK1vVnC0aogNpFCrGldWM8LKJqQYuXs0B+40vcHjYXVZHt23cS/eFh + LI6IKUxepxcOdPcWz1o9deBZ+2HQlPELfM8h8RUQ7B/E4+vEm3fP9WIgFTo4e6Wbnm2SrwTLkQzE + k+OuWh4XP4DHj2Di4GNwawveVYJ4n23wLj3aMdMvkg69DdoHSskdWZ/nQgAn7R6ReI9IRgKZu0G5 + jRzshPqe9ZSld0g/ehMIVQIY1etTikztibBWEzcmXRsmyhGKy7Q0VZMty9Y4g1Pk7HGym71KtEvJ + huYUuvgaxnM8b177UvnwbUUCNt8B1eomRY9XMxEtjHE8f1tZgKLYxxNA5WAsTJEg1JVa/8UT0DKF + 3uUVb05g5X/vdX+AZNUj0Zn2zSg6OvSP3/j53fUY06H6h1d8XRcNih65BL2H3mNNHpK1RY66yKSh + SIzVHqdZtBu4bL4C1s9nH5AZuIF8rhSG1c/9YbCOG3Ml6rsB7+XY6cn1It6Vn15hvNN7P9u9l8IV + H06bPuLBLEWWDmYXTXiffuc1Py8c5I/Wd9pscy+bM3zzkU/oSOLxnPQzuE5Uxp84JwfMPsZ8x44P + V36MjeFdGFRNuwjit18SvTfm+MttXhasts+UGPvRAZzkeiq8WOIb+wGmPR1odJbLrr3hU2h0oD0I + RgTPL2WPn6gcDbYYBx1W2V396QXGuv8czMtbEnTn3S778x/zeB2xKsrQmwfpkUBtvymIrS1hNZ79 + kQNrPMH+yg/Ye2wGuGx6Ae+RrhqC0xQRbBbhSNyPwWJiDHsFTuycB9vZdI2/56WtCnGGoqZfCHsF + qBy+Fj477XvlH9ENiTrdYXNrqRXfcWgDtyd/wv62Gas5j+Ya/fLpD/+xxOY38P2y3gG7f6m3PAKa + A2p7d7LfGIrHIqRTuNHyM3a+QZy1n7cTwFzIBmx1iw1omet39N3f8EQ/vtjPsWPlECBpJJqcdYzZ + jVz88CtxZG8fr/y9gC60eXx4PxEbqytN0PN89HEgbM2Ygwc1XS9y2f35CxODnY18Opvr3dtRJnpT + FKHze0vW/aQ9Mz98gWqc2UG9PVsGB4/RAo4td8MJccNKyLyjiZTM7vGBDlosXvcthPt6OBGV3HiP + +YveohswY3JZ93/m3TFSDsdOmfh6GzI6wnOOwka1V/6yePMNVz7MfP1KLOv2YEwt3gvMnlpGfLE9 + Vew7dBOk130ZgJUvM9HSb9C5puxPHxvfr86C/biRA7TqjQI8qBI60MIk6XFSq4UPGknZxLclENvm + 7a3+fkPqzYNT2meZseC5TWE/wIo46fGbLbuqlFCGd33A6frJIIux09eL7YrpY2y4uPWnYwHuIZ+S + y9hkxoN33xFUDrEYhPlIq7EZJx++bvKN7BK9YbPsKCFAr/WqzpWvtkdtzEFwei3EAngP2PZetyD6 + tmoA6sYyqLtABY5LKQUoWa7xTAyxAJdqMrCDuiBesjjjlFlaIvzjR3TexgJENFeJmj96gw5cPP3y + dbDZtfu4zaN1UD7a7wMZdUHGXKFRYWMalx+/A5MQnBT4Li1AArFg8fzDP7unrZK0zN4Gt3t+1d/z + EA9FVjUU59cE516ssX/c7D3+4t85eLzK6srX3hld7flPr9SZ5sRz17YCWPWwSV1ky1s4C9lKeDEn + bN4e6zTVwqMQ174/sRVP8fWLWXC1P+IYJ8Og6r1vlat9n3FMOa2nsqPoYOX3WHevEiPGgBWoP2Zu + 9YfPTy+4wbqItoGk62dvIWJZw6udz0SrtwRMr7Ptwxje9ImDe4WNx7UFyXpJBj5rygImf3Mp4HG/ + qTG+p04/rXwc7iUyEudxfMbMfH4pXLomWKfNpt4MT0kK1nhG8MDb1Q9PolfHuwGMSNYLu2dagqC8 + hURT/Gc8aOkxBGae3MiddI+e/uVnXa8CEfclm3b92MHb1gMTvaLCW0I+pDA8myl+tOM7Xk5+Y8KV + Lwbz+v+okdH2p49NYuJ2HuPdcYHwwD2m2d4d2bIY/qJAsshrC6Tdi/KuvUH5cjbIfj927HsxHRNO + 5qsOhINoMb55RzlISFQHi9YNWb8SHSB9CoataD9k0+etDUoEe32iVvn0KK93EUy2fkKyWiTVvKvK + DkXe7E/zPMFsOJkd9xffw9x/VSteGdB9O72CTbCfYuo0lMJXqkzEZvLGoP4SKaB0qUISh+4rjtNB + CB07H7G7SwvAzv4pkQdfMAJhJ09rx9rnBjtgXsgj1Fu2oEdwg8ly/BA9aJV4er+uCfzxmXtEQMWY + zqlQlTVr+tbEz3ibmAtc9baATkpnLP7mWSg/f5fAJ6zmsxlZsLC9lASAcIB93hpU+MQDeJcuYsY2 + yUtCWqo0E0sAqn71DdgXxq9eMP6tV3k5KAk+a77mVv+UyTvoJq7JTK97XMwAfurhgZ/3verNq/2j + df+Jf5xeFZV3tAXUcRbil33f9ysfl+1T4wVAjt2e7SvHhReuc/BeNmpvWtcPfnr/jve7eNWDVYiq + T7niwUMmvs5qjn54Uc/Wt6gX4Gzg68LZOBTTgze/X6UJv3KUkf3w1gwq76RWuUHziy+t4FZ0R7YF + 0NE3mcrVv4UYzgWqUHrH6oGUPROjSwltqURrvW0PpvwGa5hBBRP1NnHVYD1DFT53J4vgcRd4dFQv + yg//Yi0tQ7bMotpA9eo0U3fjeUCVk2BDurPcQH6pJza63esGM1+9TlRbgmr2lZMCV7xPdvydsGXV + m8B6nsQnztSTXT9K4CuHGca14FdjcU7XcD0KwTFht5ieYKH/9p/skmiIf/6GHuXbDPh78QV0Fo8m + 4pmxC6r96DBh3t7P8NXLFKeuGhjiptjqyjL0biD0ehDP+8ruYK1mT2yt+HkaCRXQrx51Sl8jWKTA + lH78H/u7ova6fWUrsNFgRlJBLIzZm44U8qEZE8zXJ28427WPVnxLMO5UJn5Gf4IUGJvg9eMLWuqo + sNhZVqAQrc96bvNqII9tHyfdTTX4TbLcUAS/Oo7EWQZsJLOJRK7RiH8b42qC11z/6fe//MmYaLk3 + 8GxjCe8HvqnYsvVqOOLuhHftxmfC+/s20WIPOomizzlbtPoh/eoZwdLHAvjZC2x3TYwNFNU9PSya + BMX3IGItXc7ZAB8fCX7hZcTG/mHGnL9EEhqrT052MrwxCpxUhau+GkjnwOvp+1358KfHazK8sqmd + dxwQxW+M09w3eqYmYYtKZ0omVE9OJqDrTkXddJCJw/teLFySpwBjv15IrrtKTO8ZMYHWCmfyy6f8 + ttiUcndzjzjYpS9GsQxaMF8En+wLaamGi6ly6OYfrzjZirw3fb6GBc+8/MQH5BQxc4VJh6lcXYjv + hlz/3ldqi7ZvN58EdsSAcpuZg5oNBfyrPxMpCgoABulCTvNhiudAxwM0Dm8zALPpeHNxDjfQoI/P + tOXjvl9GeIDw2100rAqS7s350xp++hPBGLgx/dVzXnspJQnpsr5ta7ry030VlCVH2LxNvinMk0dI + goNog/HH31b/nqRFqr3llcebn54/UfcFvCWx+QHachVP268VeYuW2ovysiSdXG2TgOkwUvX/q6VA + /n+3FLx6PSLaY/OOlzY7pagMMMG23Pds3iK6wGeZQuxvtks1mnlxh5fb+JgKMVINzg5Yg67FbUf2 + oz7G4ys1znK3W8SJj7eRwXfBtoY7UTrhR7s5Ms73dxD5NjIx7tpXL7J9tYZIjIKtn/seLaLRgnTP + pmBjWK+KTll6g9M3lPHt9HU9PjiwAWyKCk7DAj4ek/ijAgpIPXKhrM/m7CWVsBRyLdg6+bZfelvL + YYJrAwdQcWPRRmxBIvFzYrjlpl9sCgvYPo4i3sl9BdjpSDvUbGadOE7BZ7QWJQtWn04ktpeZgE3l + cwORqhb4TB5Nxe4wvKO7lKcB2xqWx1VGZcLtyCtYx1OZCd/LoEC/deJpWs53jyLOrgFwrnS68CeF + zYHzpTCtLAtbhSxV1XVv14BNskwe5/3Zmx9NJaGI9zmSRN+xn+ur5YMgJtep/3J1Rb+oOaM6Vi4E + fxoc94IvCtDeblqs1n7ZCy8er1MUojfxDNHzFrsuXPT7Pr0Rdmx2WhxAkYYb4g7FDgjKGOgwT7cc + trFfglnCRY7M8bWbpnmnMj60ogGa6HvH7u2W9fOjQwJ0ysMmePrYNShLlAj0m/RAHlzJ+llJzWQd + rGlhjfKaJ1ycekFN+VUmznrrnhj05QANTZXItWhTRj+jqiKyv30xZu7R4MctKuHxs+RYww7OuNPH + TeApkL4k8T4gXor668IskGTsJ+ySiU9Zu0EaCSmxI1SwcaKRCcUKj8HGOFXVoBh6i153pSRq7esV + X9aXAZ00RInqMBeITyc4w8nfH/FO8MZ+YROlyJl8gp2w/PTLYysWv/MiAXKGmLXDzv2dD76d0jIW + +5M6QRawkhygSSrSVK8IniZTwgcpPvaL9yhq+HogDZ9M1wZ85FkWtFLHIMeySMBibh+mLJIgJxfr + 3RkLuIYdnO64DSAIkn7htk9TukjigTgMpRm7q44KtbSSsP/knVikrmIpw9Am2GpBHg8VKBr0GdFx + UixDr+iH0hJIQ/nAav3o4uniDBQqqVnh28lRY278GGeU+UpEojS6MN7zJQ6u9ogdmxhgRkd/Ucr+ + esH+1dx6k2kQC0J9eJHjq9DiJbLtHKpCVBHT+4BsHEVgwengUJwZFy0WcxOm8NJMGOPCumZCbzs5 + FBIRTz9/X1TFjuAzCt/4FD/tjGtsUQEnX9HxdavRmEWp5INsVL9EWywYj/wtLNHniSRiIlvoaTfp + EkIvfMaqNu88bnegE6RUVcnjJCUeX9bPATqaYU+zuX/Ei/fudWC5Rozxx3pXneY2HaRnvsGneOri + OWGFjX72ZF68hydKu7MAO2MJJ3R12riBj7JGXOt3eFdWaiYMdqlA0L63JFMvJ29WeS+HgLVfrOrq + xxDBdDtDYCYGNs+eU9H8FpgwalxIrGuzqcZpsG3ld96AT62MlzNOQJssDwJ0+gzZmD91Cany6Ut0 + dss88fAJF3R66Feyey48o87lkkOlO7ywwZ51vIDvqYRPwx/x9RhfPf7j+gFs0FDh5LE5xLyYxTck + kU8V8PaQZgsTgA8tIWTkAOtr1jef64KyXtcD3n+cs0XiiA5evRrh++pvM5+XOcqAfcVRl2pA2Eun + AmVPLSQxe5oZNU7XCaz+P4316Bpz6A4tdA5Qw57XTaxLdW+B0U1j+HaSfE+I0t0Znt1AI/lluFfi + a7cNZS5zrsT4rBfxVFulgDCeVRx0VRrzTuEvUN+RguhhGHlM0fECSzF1sB1PUSyiyhbQ/ZsWZGcC + JaOnj54gpfUV7PSu5vEf3aGAawKDYM2LDGq8zzXsIs7GqSrfe7FrBQsBrpmxU18FNhR6ESD8UB0c + ttNikCeKEzhmXDUh13B7WuJch9cyHQKOtyhYivplo9zkMH7oWg26k2Yr8KWYLrnbmwMQqvfagnM+ + MuJelSOYE9bawM3SC/Yuj6jihIMyQCe3UqLNzdLPFrEoNKbgSdRdWRlDGRMIR1n1yIMePSDazrTA + rds+cHi13Z5X0UGC8enkYbt7BwbnXC53JG7PPMYVP2erv96BU+LNRIRslwlyC02Y76Qp2PrY9fhE + VCwFa6gggdF4mZAqzjqo2rCxc29iY5jvcQitTwDwHu/latGU7wSqfVGQq7jdeNR8TRZkndTjc92d + K9HvnUiWgnTEUbYcAC3OWxVePnTCkZbdDfZQuzs82g0mO2+oq+nVAguqznofu0O22bzrOAHy4veD + T58dYWxnVwrUS2DjnZmF/QC3oIDeoR+I2RR3ID53Jw495zuHL3PMe/yzugvwsd5F/Xh5gSfK8ytF + 1FiKSTl+zHgMo4+FyDJp5ISRn9GX55uwiwQbexice062gAvfNH0T287Sfr7A8Q7N+70hGVT0WHhH + oYnmOobBNo35ikr6N4Adp25w4F2xtyTpREHeasMka4cPoLsTs1GYpR9sfo+fbLHr1kbjTclI8F4s + xn1Rk6BJSFz8Ww977cQIYQwl7LMh7cWDeOogcDKK7XLpMhY9dBvh0S1IPp/tnt5PtwnNRTgRAywz + mBNRMeEvXgWrf701vpbQci8OWE1blQlcb4egUQuIr7scV+JGfLbwdRC6NR/PHrurmg6D47Csf18w + etS2ZyDowxEfjV0F5nZzDeD9u15E8fAabza77AZMuQuIcz1twFiFZYJiMxyIEfJvY9E3rINjDr6B + pMqwZ9ZxT+Hmcef/8OHMXnOB1ltgiHm7H7NlsEsJnnxJJ8dGD9kSdCIHR1n38C4O1J5vg7MLNeum + ELtJrHjeP6sEyjlbpm493z4z5hINUwvIszhl8YKxrSNlr5vYpccKcLdkDtGy+XrEhHZlzLevAuFL + BTNRE1Fna75Q17daMcFJKfbLce3CVvaqidXISjOqJzRCDc7v01LtPmzuge4qP3/Yf4tjvAx2pwBy + Kq/YbrjQmE+c04AFjQa+JvUhFjnbz6H7zN5TL38Db/7Za/IcboFC9RegvmmUyhp/yV18nCuOOzoL + 6Mvjbs3HT2+Wq20It4exIo64zdfPJxxs9FcVJHxz63kJtznwXa3CmvEeK7p3vx389GpJTOusesIa + /8Hevs4k2F/WKZOFs0DuE5UTVCaX8cfN3KGz62s4dOKXQQ9qrEJpbCDZ37xjPxG55YComYREG3Jj + DDXr4OASkiBa8fBSv0AB8/P2QA7vEfXMktUU3e8XHJTy+OqZoao6iq77foK1LXozfy5UZOSWjf3N + 0wZLWOUCvFy7zYrnu2z+uL4P+yLMAz5f9Iy1w8EF+7n2cMy9HoAd68pFKx8JmFbsskUa6gbIIvTJ + 9XrasHH9PNj2Yoy1M4yNxaZcAZk33MnTJzFYJPqwlGza21g9nCwwR4bRKZtHzgdLTFtjmTRHAdLx + yU1NC/Js+e4LFR7vI4c9WeHZory9+hcP8SGV1F5I7K8EDufrjez8h5At71tUwvYbfYkjBn7PP0qW + yo9Tp2K/v3qGWDc0gZKanYLt0n1i1t7tEG4lqSbH/d7p51m+pHAnbA7TVusztpxPzwGyq+BP7Gov + 1Wj15xByF9vDeWdM1QjS96IYobWWOOWk4snwqpGtDSVODE6sWC3wAZiNvYUNtp0MGtiCBD6KeSO5 + eUEGne9xhLbX4YQPtDgA1r8PNYiTzMD+xzYyDm5ZgehJzgPxpDiAXIJvDR+S+Jig+Dj3NFLyEOSN + sZt+/k4edv2H74iZH0g27rPrDdY2P5Iwle1q+uUTMfF4ol3udzYLnSAgz+t32MbDULGm7wdQhF8D + n7pPD5aL1iXwt39utA88Mb3s7mjZ9B5x9ajuh4OUFvCWdx5xXHVrzOno6pA2CBGLBlJM52QdlMpN + aSDfRQVMN/fTgUZ7mBM8HkHG7J0QQjN88jgoQxdw5z4J4bXOYmz352c1+kd3gbZBHKx3Ut/PwW5e + 86MPJkm1PYOK1nWCt3EyyN4VZrB4V8mCxfHjEQu8ImN0w9cZboO+J9qDGBn3lq4lfGWbG1FP4jme + 2yC3QRGUJlHpi2fLJrpaUDjzAj4MBLMlSRsq17F0wWlGJW9U7ucQmX6CyWUrVsbsJkcOSutbTOGh + tpk4HMMAJvrXDWAlEoMuYZEo1yZTiKYLGpgfJUiBXso23oVP6HV+rquA8B0NoPCoVnxr3BEtNjbW + N0QBy49PvBTLDTZTImRzcxwDGJfpneyE2ypRl8oNMlnNyE1fgmyZdjEHCWsdcl+Gt0GrrVJCZwpI + oDhcUc2RF1goF7w78TtZi1nVtQJ8v5IR72TYV4OzvzXw2lwVHOpzWolr/lAuX3bCelb1gG7gcIdb + BXg/e+/ptb4PoCCDgs/Jqcpm7BoBDL0oxD/+S63bzoJlez6u670bg28/cnjubyKxhK1etaJ1HKDO + th98+OagIvErsdCVlnesDs/QI8fhXQOQPluyi4OiYsOjroGb3S7YEp9DPPtHnSpJTL7YhO0AlttS + hCj97sHEnb1vRV2vLn94e/oWl9lb41MAukW/BBvF2TLabfYLLF6kDDidM70FX9wcmN5tH1TcC7FZ + KLkbsKT4Nm1uj4+xxmMBrPH3Lx/+5avorL6xlVpatpxM+fbTO/Dj1V/AwvevARVqMZB8f/nGS2K/ + FLT6K96/sdPTKQtTZBwdjHW8dT1aBLABRBgxwaHaGoO8Dmrmz/k8Uck4MiYjtCgGveTTGz/KnsZL + zMHSs7+BSGOtoso+qVEcJzWOPsI1nl78Poem3AYkUxwRLHSdstAf/QbnJU2q5dG3Ayz77BL0smPG + 3DPIXMXiQp8cPSkz/p4/U+XXyg/v2Re7XgBXe8V+UpJqGcIxATt/TIiuZnbFhtfJAgczugfCMT4a + i1SEPhoxP5ODU6mASzqFg59+0wWbCHgea+nThCv+J7vu07OZmw6ScvbCAjv6Ict4MctugJ7FhuwM + uWD0zPIJhrfEDsQ55g32ZuYk7QR4+OElNl03cQBxtBexH87HasERLVBxfHvE/7SjR26XSZHPY5Zj + 52RePKGLYQqd0Q6xBq86ELxH28Dr8lpLMqpRCYOZQmTCGq35LWdj2lILHYxzQg53pYm7NT4CF34O + 2J4l21jkYu4AcZ+E2KYbsvk29jk4Ou1ETuHz7s1Wn4fwhGyKLxbnGwtFygJIXR9x9OTifpKKMEAh + fD/wipdj7m2fc7DqE+t6Tx7V78oEw+k5TrKjev28vxQSaLSniVf859HdQRpgg6aKaE2p9CPwrym8 + kakLePXasaV6D+sUNtnBbnCmBhuvnAXW85m2am9ns1mmG3juU3GK79eG8eInSP7wY+Shei35tQvI + FzvAOGXPmEr6K0DjXdanjo+RsfAkCiDZ3XRs3K8W6J7SuUCkbo7TNlRbb7g/Ti5Kd1KOVZhcex4m + KAJTfyyIQwbaMyDclz990grrdzyu+weFl1Ss+XFk/Zp/oARbDh+29bufc7Jf4E1rAP7pT2zltyBi + /oHE6UUzuPuLmHByzQ6H4ks3lgz4NvgmtRYw+pSMlf8t8HQ02kk8SrVHzme9RrfNUmJ1m+yAsJ4n + WuMbSZ/akC3HZ5P89D6ifdnE1njnA7qb9ziYhShe9YgEbrrSwoHR9PHsJSAC3PfoBLC4yN6qx4SA + v1QhObzuJ8C2HxgAxdH74PIYx4qeq6OAfvjbtIQv6OtJoYABQyc/fWkxxagFP30CZ6zv26PMCTCy + NuMfv52XV2ihfHGDdaogzHpR1m9ozfcT99V3Gd9cP+sg88yZ0Gq/yztKLTB+YYytbRR6/OHxdKFt + jA7B4JH3kzP6KvQt/YR102/6BZ4KG2lx7mFb+F4rVsxFij7j9jiNbW4bTM9ETtHqsiN2PC0ZHYSJ + Aiv1DHzYGxuD/PCW290x8Ve8TdnLamFncoRchnnX08p7l7ASWUB2Qn/JKNyyEmhWqmCnEvfegrGq + owdPL/gwYMsQNOs+AJFGmwlnsQZoyHeKQq6vD1YfLs2oHYAGrj8H6H2IGae//Bb8+DNO9QMg3mbT + wZXP4V1/FnvmM2OCntPm2CkuszEFJbrB76WkxJ4+jC3ZhusUvip1YpCpiQUcSQXEm2BLnIx/ZaPZ + dBIg9tMOvuwx9XRizwGGw9Mie8q8bJndfaB8rfwYCJVcM0rbYI1XOzFgRz7tx432PUNMDx+sV++5 + n+uEC3/8aJrP92/M5r3TgIBwL2LPUmt03yc5K4fPU8auEaUGfXmmBTd5igLYXnO24k8f2kQ4BiiV + imreIolCrWrKScm9a0WRFBXw08MOB4qzBWw4dbbs+ucn1hflmPXVUoVo1UNwlGihwWD34qA8gBIb + PWozuuqhcNEeNQnGRGc0lLMUXo/nA1Gvdtcvr5ZZYD83Hjb3Z1bNtaMlCBbCcYLb8JZxwol3YfFs + qmlRXZVxx1lJwVq/IHiNR6yY2xTkKeKI+zp4YPCwkIOH3RCstoGd8fcuuf34VDDn5MyE7blXISed + tGkx/aZa3me7ho9zY2MnPfUZfVrhAOuTtCFmIJGqM4xDB0rlgQPpRuue/fTux74IyeOHR9b6Bvjp + Q+4wj9V840cFboNvT8zIMdhYXL4KlOUNW/fDzthbPLfw5QnGtGleS1Xx8HqH+m4sSLye76onuMh9 + pBus3cbZIz+8v1NQhp9+7hsLx/Thx88n3n8IMd3Q0ASdYLyJyi2o/0qXTgHb28L96kvZoGwjE/30 + nMOoiv34O98o1fypWPEtI0HXwDyBDYnFV2fMJ+irYOWbxPZAUC0Xp6ZQVPUQ65+PGNOTiH34Np1d + UHv7uWcfgjpooOiCPc99Gyx+3U24+ypwurfXDaNxd7xBS4gY8fJQB+yFuAW66mXC6tEywWxnC4eu + O2xOQHbqeBmTbfSL18HGu2JjIeiY/PIvwc/62y+H27WA/Lv8BsIOv3t2ujJLWetPExrVSzWpwdOF + pw3GZJdGWzbsHqgBv3oR1dW9MVMJQejbW5MEniwBpnvKBm7Q28e/eL1QtCzwt3+7ZzR446rn/ewN + 70831ROCm7L5+fMkHOuULUQuOEXQpyM+rPGD3tLvOjU7m4n641OH7pyC01NT8YOqpiGu9SJFxNY+ + oIe6/cWLFpXX6Ep2n7dc9er6SlnEr1Og7c3IFoOpE0ye0zrlKXqyQXhsGxlUZTRxluAwutb3/vC2 + b+emMZ/p1YLvJfMDSraWx2WvXQvCRxZMm66S4ln/yhtoNfYdH5yqYPPt/dVh211s4lTt21i+l1oC + Z7FQiRGYt/4XL3/nhx1hKtlsZwqnVOc6JSf5rjGu2i4lZN50DxR6NNiiW4INl/B1X/2vzRauV8O/ + +hh21infz/bYoVK6t/joSvuKU+/HCCZhWwWoPhQxsWT1hixL3a369oux9LLL0S8/n7kw96gPHRUi + egzwTr6/GNuj6AxB+9mSoNLuMaFW4UIr2y/BHHzf1SS3nIkOuzMgGuVfHjsdpQ6G6PUmrpt0MdO8 + Y4G2X24gDvEbsPhTIMH77dxiiwtzQyiGvoE//f2axO9+CMf2DoUK7InLMRazN8AunOfTgezfhMWT + qrsL7JgpYNN6lwZdircPH94rx/7qD+xyHlRgeumeXDevpl9ysrRo5d/Yav2oX7auZMJfPrMUWvRD + YAsKlNTrCbsFrL2/+ika/T2+rXhqXuvDv3roTx+taKEXProW6Q7jULW9KVW0cDUQe+JX/XYxgOdC + 9uBv+H41n8a3eA4JrE3uOVVXMc9++hLSqrokz6ysGPs86YJ++XafH8T4Vy9Sfnpe4n72TChfNwt+ + T6WDrfvlayw/PTvMbh/iCakMRmMyJHSo7j0+96DraZqqZ3gRuIboWgYNtnhZCdW9mZCo2GX9ILq6 + j4aoYgHffTxAPAH68Icn1CKr+2HV54F8n70pfHQ3g14qFsLLpb0Qe/wU2dho7RmYqL8Hpdq5vXAV + QgqJ/bCxMUw3Y9EF2YdyxhvE/sVzuAwRXOtzxJb7tYM55lN4eOUmVl1zqRaeDTbEB3gkaz2OLccY + 3H71gZ8+B7hVbwa0RmeMd/croFtVyKFwFoWgcY85W7aRUvzqayTyn5w3hHMI4X+1FPzrP/7jf60N + Av807SN/r40BYz6P//7vVoF/i/8emtv7/Wss+GcabkX+z3/+VwvCP9++bb7j/x7bOv8Ma68BUiT+ + r93gn7Edb+//8at/rV/4f/71fwEAAP//AwCfeqSJugUCAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac010ebd1175f-SJC + - 9953e3d5ca418e9b-SJC Connection: - keep-alive Content-Encoding: @@ -3055,19 +3055,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:04 GMT + - Mon, 27 Oct 2025 17:24:58 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=DxlJYENH9jleKzCiRvzr4BKfhyYi7wF96YrE6jJTmjc-1760986744-1.0.1.1-iEehlirON9NSm2crr4xg0bo60Ctdowm0oNqKLtM.M8h0Q.lwHhwAuvG.Y5ic8vF5TroqveABIq94vWEZYXnTgeizGxt4QtQGhot1q4Bg8DA; - path=/; expires=Mon, 20-Oct-25 19:29:04 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=MuAuzBPd4rYs6RaW5.3dmllpCpnVunIJupWPXv1rfcU-1761585898-1.0.1.1-GVK9kntRUP3l_hmh6pU5CMaItXVnwfOChwsf6.LThtSGucy6seKl1O6qm6e88B3b2HJlcM_I.Cai.6eccPCd.oGrqhYPAF3ANN41BxI5QKU; + path=/; expires=Mon, 27-Oct-25 17:54:58 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=ucULKTQ3c_Eau.pFu8q2IaFEn18jRLr3gqgsVrnJgFE-1760986744811-0.0.1.1-604800000; + - _cfuvid=ljM8xgwR53Z6oqIZgjaFJfojfKLxrxXiU2QpKej6_og-1761585898294-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-8c6b547d7-pqfjt + - envoy-router-78f9c65978-clfr5 X-Content-Type-Options: - nosniff alt-svc: @@ -3079,7 +3079,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "239" + - "295" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3087,7 +3087,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "267" + - "362" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3103,7 +3103,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_406b1385d5a5452089c516ffef99e574 + - req_51a7c2c5ce3b44dab24fe1e86f39a792 status: code: 200 message: OK @@ -3153,122 +3153,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+qTLumz79fsfKe2jsyKFV8Z8wylwKidjodQURQZKyCqp393zu4Oj2cmIgE - 4alnuO+L+s9//fnzT5vVRT798+8//3yqcfrnv63HHvfp/s+///z3f/358+fPf/4+/78ziyYrHo/q - W/5O//1YfR/F8s+//3D/58j/Penff/5xlehBXJl7scWNrbf8ntRHCOVeqeec5rlEa6ojbSs0bM5p - UsDhs9xIZMyHWlBkW5J3R1EiTjpWoAfHIIf65uIgdAicWDiBiYPNLmREj4cj40eFjfKiUYOkZ/cN - GIbPQipFGuJNHCae+MS0kvWavsizcB4D6XaXEqKKDci4ZsdM7HbPEpaqi8L51toDPypghPuw+RKU - mXI9TYMVQvzwMUnO1PJ4GquWXHOvAgXPrxuLl/GC5WXIR5JuGiMTXOuzgcCBDYoF2MSztOFcSHpx - SxzUaoALkWvAa55CohnnE5itV2XL3yPIkXZ1ARvyuFVkHGQX4sSuBoTs27Yw6rUL8mLlNQhVOmH4 - MkKRGBtG2HLT2U72nmxCNtsH8VgZ3Q6euf035DaMgGXaZy388K5HfCcYMv5jhglgNkjC7dh1+ii+ - kxCM5vVAjtE3YpRu7bvsAd4gBa4YIG/2UeC1UGJy207+wPVUpfLp/FSRLdviQDxF8f/GE11vTszH - WybJ4stWSLJhCHSMhC78yk6GT5d7HrP359lAgsMJ0ykFA2PvewIty1nQ7auJHv1sMwP077sdVqAA - MS1gMILL5S2T5CkfPQFcpkKyyfGB8tLZDtQ82pL8oLeKmMOCstnsNFtG3lYjxjwcde4gEx84nPYg - a/zqpS9UF87xeYuKR8p57BjbLvy0O4/ERJNYZ4a5Bd/V0Ue38jZ5zGVPAfLaF+Ll3eQxtqnCyUVR - 7ML9ba7AMqSdK1mX9okcpRdrdqX3t6zSrUeCUOHY8Lv+21J8FO8/x4GcDNsFUfNQsBC+DTYut4aT - 985lj0EHeTDtWWhBdzfn6Nm5cSzu4+cdatnAkDXd3/VSoEyAxnVySAi/3bAIjarB7T6s0SNpODAv - XwfD1955kmf36fTllGYQDnv7QC7v8u3hzpt6cFb7lDhRconHIuNyiAfXxEx7njzO6OAI7h8OoOja - Zqzf6cpVXusT3aBd1bPDJz38Rg0jbnLVYt69cZqoqQcvZAOYayrcyitUcMYhBW3sYfFuaiG7nopJ - Ud4TXVyfHyafe4qc2znw8FRMDeTntEd2haaBymGZyhv7FpBHR9xM2E+RJM9caxDD4u71EmpdDo9I - 7dFFcGu2XG+vFNySPg5pCJaBZndzhl+iZ+v9VTH1xY8ENW2uUNKbR0+Mbxcq7TbsiKwZvuuZPl+j - 3E2zTQ5phmMKUyrJ1ZUGa/7MHlOyz1XmL62K/Eh+1svViyVZd+4v4gtNWc/+p7fgmQNfZKItqdln - iAo5LuCWaGEJAIWPMoWVXwXI+8beMDtQM2T6knS8sT+ux718R4KfT8Khxyhw9VgJyRVuXgcBGSOW - sr/Xr/ezT07t5svW6+eShpCLRTsOa74r2AisCtkkmEZFF6VbFMGK1wJy2TGsL/s9K+UYzymK6fY4 - 8Kc03si5xUnE46+vbPnqLx8s+/dIHn3gZn/re3P13+gwvGsm9uK4gd2TW5B7MdL1/8AI6SYZiLL2 - S+HwnjaQC0SI/MvZ00U9ao9wXe8QVDsekH0pHSF7fWSimzaIl/KgRvLan4kZWzfwvvDOBkTtWQl3 - HdZjvqqtFEqkaQiSUuZN597K5fJxDcn1pAdszaccdmBno+MQtTFhqbGDxv1eYvlw59iCGquCt2qO - 0fMQOJmAIlOCyyMZSTpaN108F60Bsfe6YHZprXrBfdzK0gRQuBmUmIkXZroSE3qNqPqBZostqjnk - hDMM9/1rZEJGlF4O9gedhLbLZctox1jyrF2ONJR+49krYAvdvs3x+Cj5mO6naCcLDexQgU5FJgi3 - 9i4rmsdjAVTvGMupncLpPRKUXaPUW+JDvJH2d+6LOTeVBsy/lCuMNaKETR6+AQmTzxHeD+CNDg/J - 8MTbO7ChcrjW5LGLSm9ZTOzDIHNGoqH0EFNpLFMQ5KKO9Ld4ZOI8XdZ6t01y69+it9hzroATPHXk - 8jZxhvegTGRx2J+I1Wk3j4XJJ5LFU9KhkxPBgbUJzSHvVCq6HlJ9mECODaiYxEfmvTIzccOkcH8J - tISE1IiBWHPPNxQl9fRbr0w0yEWC4XK9k7OTfgZ6CVgEJmu5YnoQTzVV21CDmSpFSNtmi76QxTGk - TtEzog32wePWeQVRNt9QXqUKWPzTK5el/rJDBqN3bzY6boTh66Ojp7mXAeV9swS3rRYRS+pwPQYI - 9nBO8RTSagYD2999DuYvX0Kxfm0YM/n7DIk0pEjVK9vjGMAzdJIbCafn18148A4NcHKUK1rzEXCn - RdPktT7I7bkRPSZWl6usnKs6VFShZbg+M1eem9IgWcN7tXAXyhbUd68IucUygdCIwII26gjxzcHL - 1n5/hUVpH8kx7GWdknebwzX+ocTGFxO6KLMgKQ2MDtE+zLizQCzJ1oMDMd/9Z82v8ipzmqQhj5PU - jC8PzvHXP9GZ36OY9w2rkdzvCWMQuqm36IXVy4CYIrrDjZDRbX7ZwPbmU7wIwwJIcL5wEKWvgTxO - RgL4lnu5sicTg3jXyQMkaRQLXJv9B3nysmXMxJ9EjqPqgoxDJNW40Jgvo7upoQd37uMFjQzKnX51 - kGlF5sDumfSW1vpCyqo/xPU75GtJRear+WRs1VcQBf0NOcO9Gtq6xBtYiM5rnfckowktR8ifZxUV - 6zzE53ccASE8KugavAKw6G9owdQYN+gWUjEm28szgRqIXsibFB7MQVoZcgoSmaRzYQy8LTo5rIN9 - gdknaga8Xe4C2JXDiTj8YQTsKD5nKMfFh3igOdetFDg9rOpUIEEzuHG/0+27XAqGSKxPefNETrnk - f/Uqasc4XjLQHeEvn11CRq+lLubgEfdXFKaTA8S4NEN4uE8HzO+Fj76cxS6BmT5HeBLF3mP7u8FJ - +ubsIOU7t/HSXcMIkhc1cWVHh3qWv683BJG4Q8b0/rDl4lsFPB0ualh9vVMmbA5KKj+CfB/W7xzo - /Z6jEjgqk0ZOoxnpvJl3FexIa5OIu5wyqjXl7hffdf05QEmaKTC5RCnyh+CZkevjieH6vHg+4YdO - kwFEMLcEiXhKmcZzJhEFHvqyIGfMk4yZUAnB8y0hoiiVHM+aklNYjO8dCdf+yAxPOe7VN+8Rv+BK - NvMjppC1pUaebI51huElhwWOEDLz+Qboayjf8gPZR3J+IzLMzyTPoR5v3ZCKEGSj8uhD+HE3HDnc - r2+PdVsDyoN4PBBdeM316BWwh2XXhugS07dOlI5yUGiFjhxK+1pTLgsq+Msn/bu5sxHMGMMHZ+zD - nQUCIGJ4KWBeSSfibcuXvrivXIHclPfoTpI0Fk08pZI8XgSia0YWsyZ9NgAkLxSy3SiB5ala972g - uCqWeCnN8DpPAX/pVSyv6z0iRbPg19Zcoo+pVYvJM+qh77UZcqb24jHuHCXyN7VddLrw1FtQ0VQ/ - vUHM9IMGdg+fWFKkgQv3plbr7LKX3jDr3xJyvOMl6y1VkaD5PNskl+yypnz8qeAy2TqxDibSydmZ - fJB4WoqsSgzBMiLVhmJ+kEKpPabDSK8Ohvkpq9Ehb661KN3uR2h8HPrrP/FiBa9S/unXX77OkpX7 - kMddRJ6+LDMaS/YIf/pOMZ6xt3Cw02Cx118o5GtnWPDCWjkWhzb8UPrRmWFE3P493/1wEtXNQNZ8 - kZW4r5EpX00dp7mC5dx0ahIORQym/AME2O3qO3HhRohnY+5doLoPj9j6bQIsCz6uzFNNxXXmWrUw - jUwD6zxF0Wl7qmkjMkPedplPFMzZmfjSny084vZKXC0VGPN3rQ3k1/uDsjrlGXMPZQgvfJmgYigY - W6gBWkiPtzNm1JIYnliZQ3YdB+Ra8TiM+4Dz5fnaTMgXGmUQs2Cyf/mO7NrWY5qXSi8f8msRtk9v - GpatDArwGsET7396PFRgCw4sm4lDFW0Qf/XhlANBHqi9bG7ccANPZtcT9GlZPM2BFcL+atukiOZE - n4n8GqHKtRVxTE3X+YxjAqyfdx+z+Ah0HMjtDM+74xlLm0gFbas6AkxqvMXkKLGBjfdnJbn8DSPt - +jkN9EDZXX6ejV04cAbPlkeRcdAVTZMoXvPQJ33oKuCdlRyLQLrqi73pir/1HMZdB5iD6Cwl52ZL - VGei2SJcsQ2TSm2RCY39wFx2EcAQGDNSKYY6A/rIgdU/E827nQYWT60Ft8GZJwUaOX1CI9jAEDoD - QcJNjtnLDSx59aMhWIRXTLc7JYKychBDse53MbGPn3Tf6EcPPa52wgTpaebQCO0SPazX05t5SW1l - 1X166LD6qekWqSn0zlqODibCA12stgBbXuRxdvMGMLmtU/zVK8dukzOu6FVJPp1Aj5DGy4D9+ANP - FfXHC7JxiULhN/9Rtgiv7G994O9yIbZV7la/nofgNtVvZCn5R1/S9pVCrFALWYpKslnvv0d5l2Qn - 5AGbr+mO/xR7xysf6BdPvN22R2g/HxbyDu/UmzlHxbLBTAczK28Y0TbPHTBPSkmcGvhM4DKzhPox - Y0j103yYr40KYQGvCIXaw9W5R04U2KeRTcJfvJOtk8o85gH68Rjan8pSNvKoDDfao/dGaWdhyAMT - IAP5jU4P+5L7+S+kLI9ooJuDncCuv92RSenHIz+92plHJ1z0qvWoqEsbuL8L37WfgnjuKJfAaYYE - w4IrAZ2KzxtOaUPQz88x7dUeYcLKlDjDXRtEovtQ6iR/QTelv9Siepc46N48jJlQNDFVS6zAibbW - uj4PMG+8cIQP5B4x9PbbmnQmLaBzmR8IHVWZzd3+NcPgeM3CzwJvNUOxNIJuNBZ0Nm8ILDyvKvKj - q47Ees7GQLm2vUKrCmykpfdvRl+FOcJsLCQsK7is2W1pld+8R+jTxhmfj10Enm6FiFKzqOZWvwoj - 7qOES3X9MnZ2PiE8319fdLvNFaOx2lJwk1OAzEeH6qWBYASJp6TIJDGJyUu/9FA/ty90SQXD4wKV - +HBg+1vIydJd72XpuZFWPYfBzfNYB/rVP5b9hagn39bFHaERrDvIEzXoW30ZEMBSv4EzulemH7P4 - 9qTwXYAHCaHPwHxzvgbU6/lF0lP7BotwCu0fb0LRIc/YnPJcCWffNdBxV7TZ2D9CCVpUeaJncGX1 - og+vCrKPlyAz/ZCazrbZSCWXlciW6ymb4QtjUAs+j/L3y9Mp7YPy5/9Dfp+RGEsfKoFRH2dkbRoj - 5p7VayfnaXvCgqcZTCgZs2EthDyWjkKVUfJQCpnGmxFvN3HLiPe+cLAB1EUOhtowT/6LQvN5sfHi - p7Be/Uchd/rdIcaJn+MF9vYGxqreIVdgvte+fHUnZ6JeY+E6vgF7+LYmu6zGxH+UfDYz3eLgoZEP - yMenbTaXG7yBorFTUAy7Y02a9PKGrXPLiP6JrGF+9FwOvdPTRE6/Hdly7jIJilPThq1cTzHx9ne8 - /+nvAx6wzrLts5f+6u1VT7KjeJmhmhIPuVWp6byicTYcsnAmrhX79fp8sywBoQllySyGRbw4Gvjx - HvvZ6JlgPwK4M4ePjX7zghMezQwPd3JA7uvrxyt/zaU13kSLHktN3azkYGxcL8jklf0w1/yLg7xT - qiSMOwfM2xN04aq/Q6qGhxr7pi1AUfc7ZP/0+/PABPi0uR1RX1Ue40iLE+hYMSErbxlmd+JaOHTp - HDK+vYN+1MoKUlMY8WefoXjeurkLvdjNMX0oh4zTd64LzQ4sxDjCe82dDU0B70l/hOs8HZZRskKZ - P1OV2Ey5DGwzRr6sn/sXCvJSiVtv0gx4Wsrrr5/Gy7kPc9iA2UUmeu/ZOJlcAl+D+iSGPksDyX36 - BrjYmSRASZkxwbqnAPKvkFyTQwCmxc9amMT7Fu/BnALm70obku3OIPmaD6QQ7pWk+m4V7s8s0NlP - bz/j24sYWPsw+riWvZzc3BRp8z0bZsUmKfjN31+/Zds3DeWKuUF4+2oXnQ+5GEIu4CHSHso3o8nA - IiAT/EZuJmmewL2kDUStciPpoXyDcZ+8esgRWyXHu2UP2LRbCe6Mr0Qc25liwbiUEjzC+UqM7nv0 - WFBRDEp0DMMSc3Y84d3LgMkm/pIg+Gz13/wEv/7rv1+eJ/z6+cNr9nhbveOY8i/7Dp3P7kEOiMfZ - LFmJD/1GyUh0ht+YzZy/kyynfJLD4xnGlL9HG/Dae0/kPbkzaLGpUjjG1QGplhdlk6JBGxKYTnih - ONdXPSKAPLYkYl+Nup6yBl9hupES5L8tPlvmpAnB9vbl136DVp53z/dH43hDh5uM46l9Nke4qZYA - eXV6BizoWhuu64ssq7/FWBrL5K9edDN1zCh8tAlceWtIdQkwFla2DVe+s/rFPps5LY/g+NwQnEzO - UV9WngejYL6QxOKkmgYCSODqPzEByGYjMF8t1Cb7RbyoUgcccSYH74EbYapLGaPzuc1hSCYNqfcC - xrPwwDPcbZYjOUx0l5GLem/BqzyG5Kptdh6RuZHCZd+MyMCaCcSVxwPoXURijdZen8odmH/8Dvmv - x+B9tmZWAVnvQhJ8KFeTH8+/bZUI6Y9r5i2gByVUzMkPZWmTxNPKf2Hz4BhxxVAFi0SzClSNFBD/ - tjnHdJymt8SWLFn1bh2PM+5GQGM4rvxRB9PHAxQQqUtJXJyO4Kf/4WyzlBjz8R4vnte85WPBq5iC - /aL3g2uXQHBBhHShsGLue3QESHQBE3/H8Tpd/cH+fE834fw90xqHr2AHW9F11nkT18u5i3eQHO4m - 3o4hy9Z+OsImd3JkJPs560Kg3vc//2B9AGZUTu0EHi7OTJDiOAPNb1kIcJZi5NPOBczUy6Osw4GG - 88orJ7trGijvPgIyOl+KR0S/NuTkSMXbldfTUiobGLUXJfw+VJwtkdKU0JSjJ1rjPSzuDWpwv4j7 - cL83qoEodXAFOVgq5Dr8OExypkDZlq8P8vAu7sAbb6cEWd7VJJDMTT3lT+v69/79y6yAmV65Izz3 - 9hklKz9bdOZU0PCfTrj3jmK2KNDqgYz1ACk0bWN6tbIINKGeY67OTdAEckuBqNYRMry+0ZedZrly - rUbByjeNmIPC6y0LW17Cgvsl3sIE7MJzaG1CovEyW0LgXCETWo08p0PnjYH6DeHnq3jkvolejN4J - 8H/vL1BSq8e/vHK/vt9BKBGdmPTds4SK1HE/XsXmJbIE8NMfrraMw/jjB9txU6PAOCo1//HYLG/3 - fr3ymb2Hd/xUgIMLZmQV0s1jp/YyA0nGDVHULNbp8VlSCLtTSJSwl72/fH6dZyTI+mTgrtevBbfi - y//pefa+TK+NjAT7hqzsuvdafmxm+H0fXVzlh6VmFzXqZYdTHiiGoQTGfCAaTA28CXm0RfXKu0ZQ - MTtYncjExuWrYjgW8TXMV/15+eZR8eO/GMZs0H/9Cax6IhREd8cY5C8JPHa3HsvRtYxn7aD5sikf - n+QUIBrPQ54kcH2/h9T1fZzw82urHkLpRbj9+vcIMadfiHO+XuKVd1F4HpVz2N3Ogc6m8n6HflBl - WJLO/hqvJwULd9mE9SdqatrDTwPSpDoTb/U/3S/eqz4K8fdVeLxDunx39woQNlV+81jc0B6+Meaw - XGpKJv6dj3vrE0rZc8zIj8/yidXjjxWZNe28qYUfv/dWv//xxn0AQ7DqA+Q/zG09h8i1ILx8RFSQ - rKsxuEw5nCqBrPz46zE+oInc08oOd6ufokd3kiBkvEjcj+PHQuTYFDqHrUXWeo8nVVPfoP0mlJye - yYHRCgUYAJo3SDPOC1sCV83laGdfUPFYHLDy1TdYeffKszbx3/tZ+QMG8rIFJPpOPsS34RIuVtPq - 2HDiAo7YIkj9SAcgxo3Uw++Go8j3ifd7X3KUP1/NQ8jcP/7q57/zpFFy02OHJqIwPNt3dGbHj06y - TFHgqb5fUdC3pT6uelUOvtmI7ENa1/RLygry5StG2rSc4rHbdzNo+YISo37OOhM2UgSv4e2DrNBB - nvDjFRQOCdLGHRiW17YLpVKwRHII4W5gtSqV0JZ0QrzhqGb0s5ta+M9vV8B//evPn//x22HQtI/i - s24MmIpl+o//s1XgP8T/GJv75/N3GwIe72Xxz7//9w6Ef7qhbbrpf07tu/iO//z7D9j93Wvwz9RO - 98//e/xf61/917/+FwAAAP//AwBe8oQ14CAAAA== + H4sIAAAAAAAAA1R6WQ+ySrfm/fcrdvatfSJzVe07JpGxCgEROp2OoCIoogwF1Mn57x19v5zuvjEB + K0y11nqGtf7zX3/99XdXNNdy/Pufv/5+1sP49//4nrucx/Pf//z1P//1119//fWfv9//b+W1La6X + S/2qfst/f9avy3X5+5+/uP8+838X/fPX33YiXKiamnc2x7v0gfxPXmFQbdRmlhl8KK2uGGR32rds + Pe6TK/TMY05DE+0bzrCzDZJfvUxVq76Dt6SjEnrRyyUqhk4sBCjgoFN+GFUNLmQcA6xDV00x6alU + HoBhj36UXTfhifOjpBBun6hGXbXeacpvL8Vg1WIFRxz3xGq60BMFlT4gAGeCxU6ye+4VFQOkoH1R + Xb4hNm10IYIskCZa3u+WJ4jp3UJVIl/JfhLdWCDGa0U73x9oEUhmwcv1U4GyxLUkP73aeFaRieFO + 9rbUAqIOhBZ8VLiRXUjd9Hnol/Wi24i/NAXR0gQaPQxtFZ0C8UT3n4sOhLrMOij604lor+nei4s2 + TnCoNyJ16Yc26/ZoSOisgYkQhwTxEEgyB5/N5Ynlq0rBsk+LDt4f2KOqlveFEB2vCZhm8YhXeX0b + lIuTCOhptqehwyI2H9zuioD9NGlKWwZGw3ya8LSRYpqczn7PLfxhRbHXa2TfumI/dWNlw8ViPdHK + 1omFxmk2SNV9lSYdwH2/3q8utHrkTrfUKGPWXmkLZf0zTUIIQT97lZtALVwWUpxs0VvuumcDqxUw + bqsraNZFHmcgSDaix0UPC/E1I6wYV/9Cku20LebazxSkUe1O/W1JiqUGuo0cXOjUbiTCxJFuTfCL + Rz1N7s3qvTUX7vl8S9LS5LxVIp0Lq9b0aDqroHmX4WDBvPF9cuCs0VtuFyrAC/TgxNdp0QzrFHII + A6xgKTdqsEpCXivcJ7wR+xGJzSLy5wfSniePkmHk2Afatguzp+mTSDVDMH3vB457WZv4wN4ZI6wt + Dol9IU+MBYJHN+7GheGRK0mZcXHM42J7hmNKGLE31qNhRdULMDpeHIrR4d2vgGgWTNqoIbeLx4El + UOUVpqf3jcaZ8DbWIushVM/2nl7g9PDo6AQT0G03pcFeSNnIG0kF/fhjTZv6dfA4vYQD2EsJIJcj + K5tO3lYJcq0gJ+eOr5uZB0kLg6PLqM+99Jh7rg2W9p+9i5e7OrOZ36sZbLItR6zPbPesXJcrOnqH + iR6RmhgCd7JduA2mlBjHyAfDo7q0sNA3H+LLl7FfgrOaoqmTA5pdLm4hZnddQXFa7WigRmfGpE2e + QU5zenLDWcNmP9fO4MI+MZZf26Vnjv+c4TefaGA6dbxcTrsNvN27mpwiHHqc2L0UhTDjQJygezTL + pV4GxIUPh1rufopZFekKcu4YU+ebP2t45DM0q7ZOjGt9a5gRNAp6dNGdumtWNWt0dy2Ybl8tcUub + Mma06xU9vHlLTc0FYMmNKoXf6xG/gV6/WmJtouCwWhPwY9fjHDVX4C6xORJRi4unIE1KeKI3nqjj + QSlWS/xY8PgZfHp5dy/GSBiVCi63zsR1ADeCdY0rcL1u95ToZ9XgGqZHkDw3Ac3exWQsCscqhLTy + RGLdD3vhVBkbROREoWb6uBfLa7j7YG+XA80C4Bac3B5W5HykB8EboWH8Swt0eC7nhZB1SBuu6MAA + XZ0b6N7h7J5/q+Pmlx9Eiw3P4KFqh9DDGsUyQ3wxfB5uCIutDKl98EG8nNx7hL71mWpZfPXaDf7o + oFuzLWbyzYiFNBBSyDjrRQPvzLxx3wglMoYS0yyXscG43VJCKTdtkipR10x1+JBgPej3CZWAN+ZC + SGt4XeaYhBg6hXC57QRoEDjQ8rNkTPQ/tglzd3eahMdisXn7jDt02MYhFmgbM+GjPRSld2qdmkd+ + LVimHEp4594QrwIemHDuww/SvcagJk05b640EytBUZZE2+9e8Ty6ZQepN2RTf3D4mIWzLqFKHN7k + mivXgns+7TP67u8Eb/XDGA9Rl8LZqCg5NuAI5ts9npRiMT/T9tYqxfC+VBlkp9cOv4LsAehr5n04 + Pm4PEoy+6XHxdbRh0oYNDbf4BtgZX33Y7d8D1dLXPp4vnHoGhtMbRDtcQ8ZdebGEUZbtaNF+RI/t + LU8CW+X9piebTMWAJDVBLswP1JO83GMnzEfouUk6cuFE2LPbGmWQubVGrrfVAMNHmlQIqsYneh3t + CjHR5FrG2udI92c/BmIK6QN6yv1AsuLaFTwBLwE2kX+mh7B79ou2MVwQuiibZPF+aOaPNOnwjdwD + CR63JWZF7KjKpuzP1Ngf954IzSSCL3fISX7wVcCGZCnRdigkotH87LFVeQzQVg8Gic4FAuwo7AZw + 2yoRtfL3FA+jW36grgkj5iMO9MwKfA4eJ1Mmx/bdsjmUzjNs9qeUuMpqe4JvYg7667HDr9vRLbhz + OplgJGVGznIQfPG81lF+7RZ6ftRiseBCzFBQExHvcqtjY34wXFQeO5NeotprBEGYH6C5xRe8DU87 + wD+V3oK7/DB/8dkreOuzzaC0qCHNjzEyGKJSCb/xgLcncGe8fPQs+OUbZKc8cSHulK2rPOJxTw0t + fRbcgqsMLTjSyC4ZtII/ue8QXYzZJJdrRWLhfnoKinwbl4kP89Rjt7b9oN09kEi07IRiVm1Jh20a + zhP3jf/xdnlxcDXlnt6CdwKE/Xx3kajud9R9DR6YoK264Do/W6KhdMvWzOIzhLTriQRqpLBBDgwf + ee5bJzndf4z1VBkQTT3nEI0Nu2LZtueH8s0vQj5TxPjvMRRMRSNGdX4W6+35mmDrtznRxPDed4OE + N3D3ut+p7wu0X+oknCFvzRq5bJ13P+SOEQElyFSSSQh7iz8NFqR8uCHZDovNiLRtApuPeyfW8uTB + mua1iRiaEc0hNnvx0cglfFzyyyTtUNvTKnIV8K0P1HhwA1jols7Q5KIn/dXDz+4kf6A0XHmqpkpg + dEiyUzTeTZF6+T73uI0sZhDHEfvWs9hYzNkJIQyLguoCHsDnF1+zI2TEx4UDRDHiMTzeeHviYvVp + zN3jncDYDpPpTfcf74dHypdPESdvu3jd6JsIXozVnCqx2cdrlxwecD/eRILvy5Mtp51whTM7b/CQ + 8oeC/+IREg5oh6cAKk2vYn0DDiTX6CkJIkNUX3kNf3h4NZqDN0/8zEHBlLTv/nNgPXSeCr/84YeH + /XTi6ATnvhQmSSAXg21QEcF0wDI1QieN551BTIjy7EpLqtBiVaUKgw2/Errn9ihmqzJMsKg5mfrS + dO1XxxwlyaSjS+3YrNiajdMK30Go04uixsb8q18KiggxUZyDVaHhAy0bO6TFuNJ+PWBYwi8+YnG1 + QTGmhw+G6qXmqE/Nh7e8tJ2KzKjbU7PJ5ng4U/iBu27ApAikR0yzuy7Bm9y+qVrMWbzYJarhL55+ + /GOSlmmC3acUsQx2AeBwLNZwnvUDtdr0bixcM6gwUc2eHJoijbkuQ60St1uB7le7+MN/we2pEYzU + SAGs4ztdBl6tTuu9SYtvPdXBt75OymX8eNO3vsDuZbnUOb2smC/f6wfGoV+SL38Dc6HrCepepktS + q1m9mTlpDf2+Dai79Um/bt70oxSnLY95mTbGQs1zBwNkKsQnh6PXKbdQgOkF2fRcC1WzlOLxCr/1 + ggaTTmIap5cQ/PiadtMwWG/G3Yb9AgCeZz7tx3uRT1BoXg1RbZw13Gbz8aEYX1ay27lazELnUKHX + 4caRvXTuGgbNMoTbGcU0Bi/ULKuQDfCcZybFuRl7jLzfOjTfxZ3ga+D0s8jFHfp89g/8qOunsdiC + acrf98PvW7QBI0fUEJ2qT0N228lk4+Y2T2jtdw11HT3uaUx7AYIoLr7xKMTL9Pi4QH0FHnXs2+TN + BXm66Ft/plcrW41wOTQ6+OIpOafPQ7O8mWEivmc+dVzTLkTs0Q5OwSOjeLcR2NqNnQ0MwX5+8Zv/ + HlcujIUsISmwGVtSqXjA3j4eJ3jHCqOyGJaQOGVP9HYYwJCcHj7SjGkkbi2oPVeQ0YY/vqn3vBGv + P77xxUvcg+PYr/UbXEFZFtcJeHIdz2goH2B/bGbq5rHec6kpVjBSASUkWr1i8SFWINrkb+rJM4tp + dEnxjz/RhKaJsQTqMsPyFdbU6o6GId5yQ4CHGgeTbKzAGF0t46DjqccJaIrad/worzBxmDZ9HJ31 + y2mggpLt3hPx9/GhWDd8fEYXakq4XZ48Y7fc4+AUIoua5/7STIMvtyBPYDGxs50ZLHTy+k8+ezf+ + DeYZRoPy4qItNTl5LZgSXW3ocUFH9tteLpYXfgngmdkzUcUQGkxg/gCEoi+oY4IDYP7HtuCJXvif + fmVT/Oo3cLGWnlpngOLFMEcLnUPnhrm9fo+Xo6em0HtuRbwpblIzuFxryU1VeuQ2jAnjS/FYwq6a + 7yTdbm7ewvNLh9DAPPKrJ6Mq3iNITlNJzEs+9fP70p1/+zHlVjV4tOrz6x++UhybkonLqCmIR8WH + GFmDANsstIKSZmsk45q2n8wYC1BcpZDEYnUv/uTHUXtm1JB9yRhNNFig78iD7Ab/acwc1lKIb8qO + 4MCixbpbxRBhDhyIvfB8s6Bip8i7c3khmnJf+/E52iHsysAihvpKi2U0lwll58CeuGT7MkYCKAfm + +1xRfd/5jJMUvoLLla4En0BZMDzfIeSFLiQu9lyDOz6JCqXcsql54zhjyPT3Gb3kHJD0uj4AG4O5 + +vkvWLwdPwX1fWuCzSxD4sVia8y1H0rox+eNF4mK5ejZCVQSpyDalx8ObSuWcEl9B8vSpyuYit0N + nOXpRfexCeIVwSSBvGtPk6x9KjBz+vEBx9yl5KfnFo7YIdzj+Ugd76333OkU2MpPz2SP6NRwanrm + YEyMaVL0oI3nacEq9I6VRVSZXD3m+3iA3VY/TGt53jLqndYrtBPu8ts/NvPjMkN9SjB+la+8mQdD + mcHv+vlYE8DI+64iTqpDug8yE8wXzs7gqdzZROP7V8EO6DnAAFnKBOaqatgD2Sps1zkivhPFBX8D + bwy+/hTVPBA1/GguAwy1g47R2Xqx2YBPFxI4vkjm3Gu2WqE0AY21kPi+QBrWHHoOqJ6UEg9PtKHW + +fWB7aO6kwu2TU9AztaHQvEu8NrXmdG9LLpR+i54TCA7BOy9GeMKbUibUk9S7H/rS6HyBerlQmfM + t3sxKY+zOpPMzPx4JQZdYX3wrl/+zwDjK9GEzza70xQJDzC3KjZ/fhOJa6tgy+JyFcyLyPyjD8Zk + xAqUQ+lG8nPJmhVOSw05/pWQn9/1wyeFPFhFsLcfi3VWpxXAB+RJVI2eMUsKquBYNiWGZUYb+tXz + 4Pd87iY1Y1G+ahLaMolMwpSYjD9Uhg25ZiNM6NTX3uzk1RWZ2BqmpWzf8R/++5hal9jOXQeLYx9W + 6IfUndCRwYZ15eGKWHR16O6wmWP2gt0GqpL4Jno1el6P0ruE5klsJnG7efQ/fo1yg03UOzh8sSa8 + NcPrFe3J7rpui/mxJzrc7CSVZOxMGN0srwrKqVbQfStb/YK4pISyfzJ/+MFW8eEpEPBWi8fsPjZj + qJ4n+btfxM7lyWAToa3yyy9zNZ/G8nuf7dvwSPAKdIOTEtOGTaHM1BSufrPsyDIjFaxPDJT22jND + dSxADmdGdXsx+q9/Y0tx/HSI5RwMQyhba4ZVQfbEFja+sYgznZX6Ms/U3RtLs7hayMGf/2ChRu7n + y3nhINVVnfoX5ICZKwYXtoK9xRtz2LPRsiUB3nnuTTybBmA2jmyFoVgq1Bdo2VDFZMkP3+jXbwHz + tUs62KbRjPltkff9s5xrSHdnOo1f/jJDf3DhKZuKad0F+4K/6h8MQbFdKL5cz41QG7oJzqF3w0rH + 1z2zmICRaOgatZLqBBa3033UPuo7UZ+txj5XtzYhM/2MGKa3NgtJNiX88S8TjzKjwTVJYHw53Ggw + SUpP97eoBMFhtqiv6lU/fx5uBLqHg2lu37A3GhfQwWC+dBM6ZSlYf35qdrFNGm2v237URRcr5Suq + 8dyWgbHennSC1vN9pzgiT7a2yfxBPz6+q9OiX8bbNgW3PpGwvHl/vAVXNUZfPY6Lk30yhJduwJ8f + Q/Rd8CqYe2VnYM31kwSnXvcEePxs4NuC+Z98nbTb4QNXP9PotyJ5wzWWFLi0vUJJF48xV/uhAmeH + y35+K5jtfSSAuk48/H7bdjz1o2ZCAumL7jfW1piP74UDZa4uxDAWF4im9dnAvG3lCXxwHM9jap+h + lT0uPz+umL/8CJ5js6CH1nnFTE8GTlmodKP7YsHGOrJ6A5KiuBFtRWnx3pFlhUZS74nFO5E3QH+w + IQz0cZrFsDR++QKiZlKonsVNM75emwyGgZJ8+TDvsfQoYPDz3zyUkGbJlnMn94afk59/MAkHIYTz + 0wnIjl2OYH3wtg2P0bz78pM8HndvNUHCG/jUEqahWJx7l0DTPKeYGTpg69DaNlxE7kXtAHyKWUU+ + hv1DEKdfvs+xyAYo4MeJXi9XpWFnFWTQhcVhun/99emgHbqfn0mJmevedJx2HHwIdTQtfFYas5N3 + Jfzp7YATYbNW12mGvvQ+UC2XpGLyiPIALk0CGtlXqaCRMKzQctPhqxd3gPv68eCrH2kgFRKjFHgz + PIk5Ij+/ucWkqMG7PmCqBQrX0OtIW3iHdkRcTSm8ZTMWFUTD4uGVWklMq/5w/fmbf553dVNQg58/ + 6Rq3Y7z4x0uliNttTIxz0cTjaMoDMLE5EPzzl/a4WEGzP6b0dggO3uxv1z/+DNVu4tmYjSZ9oOte + U6f1uV+b/n3MKqChOCJO41gx9/Rk4ddvoEGQ88b87V/Io6xv8OywlY38J5DgnFkOOTt63KygbCRY + nGpzAvLMimGG5wH24eFC9vd59j5fPJJ/+lTb7Ca2BGc7gfvjfaZ/9MpSehisZJ2IsZ5csPz0CY1u + 7Ntf6hrKNOsDD59RIJp/VGK6U0QbDvuPPrEuextMq8IWli5TcZu/p2IGSlpCNrg38v3e/aoGvg6/ + fheWFVL302O+JEAZdvUfPUHFawXRtz9Ck/nmAmHw5QdYBtRQr6g3Dc3izpT15uJR26hVwB5LEkLX + sY8kHA/ngv30f3rZ2lhuz2LBXqf2Az5VgYmt1F08B7c+AuwQl5NAQhM8XS0TgMVA9G8+Z0HLQvgl + BJNCZjMWvvH6R19trzP1WCtuXAjsl4nrc4HYrNJ3Bnun0unReXSABr3owtsLejR8tnc23xXPh9sC + 7kkaWmHBKgmGsus3OgnKnfPFR1pB74nESbLYwhbp3QrgcSku1NjNA5g6Mq3w0CsN8VVdbTjjyGb0 + 80sdAGRv7Cp0BcbFmInnPHPvh49AhG1LsVPHxhKt4Qof/RtTi9+iYrpISQYllztRlaxJL/KVaEFu + fPtkvztrRh+9tQ0atCQnOjIU76OeW+6nb6c+GZdmoWb0QT/+ePniw3B8Eh32cN1gxW8JW0/cawCH + 2g9o0BljM17qZYJF8rJxrL7SuPj2F6Ay7Otp1vI+Zrf1nIFv/w8jh5fY0k5iAlWJf09w7ap4ueq1 + j9hg32jCyWvM8j2XQGiNJsHCtoyFn14b+e5A8i7Pi8VM1wFe9NeJOql0ipcXpgK8baUI33dVYHzv + d4Y4b8tJ5AS/+PphK3CWfou7461t5i7jW/Dzf3H46ftuj+MZTb3gYJrp14J77PeqZCkY4I93yb3l + cV4/v37utIk51eMa5kbg669h0QqHgn7rPfzq44k28q6Zwx3qYDm2HrG++mIo7QGDpuEkYpafbbO2 + 4KP/4oFc6OvdjEN+KeFs1JQaPHh5c3zQEySfsI05MRHZeuBHAZLpItD9M/Fjvk6yFX6ym0XtMJ2N + SRIOFTim9kqLXLCN2SwvHwCZ3xLntV2aXz8CgZ1/IuWXz/A3QcjAftUiGijCJl6v7seC6Nqcp+2i + qh7r3xcfJsYtw0BSOmNSIDvDz3WlJDhbe8A/zsoHepnEyNcP/vVLQlS1lkc0cLqAP3r462fjZ/nZ + eXN5X9efn07C5fFsKHdTVcjpaUbI/VoZ45evoveODUQ7e03DfvxI3ToRwfXrYAz3OOdAmkQr3evD + bMzf7w/vCnoSgjjicU5elXBG+4RYv35tCZxU+eIVxR6S+pWZSgWxXVBqJKXWz2qDOvj3byrgv/71 + 11//6zdh0HaX6/M7GDBel/E//ntU4D/E/xja8/P5ZwxhGs7V9e9//j2B8Pe779r3+L/H7nF9DX// + 8xeQ/swa/D124/n5/57/1/dW//Wv/wMAAP//AwBoSegl4CAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac0139eff175f-SJC + - 9953e3d8bccb8e9b-SJC Connection: - keep-alive Content-Encoding: @@ -3276,13 +3276,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:05 GMT + - Mon, 27 Oct 2025 17:24:58 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-pxkpb + - envoy-router-75677b5679-djb6b X-Content-Type-Options: - nosniff alt-svc: @@ -3294,7 +3294,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "101" + - "110" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3302,7 +3302,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "120" + - "129" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3310,15 +3310,15 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199999" + - "199998" x-ratelimit-remaining-tokens: - - "199999933" + - "199999930" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_c43db7385ee6471ab79390994fc24ef5 + - req_9cabe6691f9641e4a82e0cd077f39125 status: code: 200 message: OK @@ -3364,122 +3364,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+6Srvl799PsbNv6TciIFW175hE5mIWO50OIA4oMhdQJ+e7d/R/crr7xkTE - iDWsZ63fU//xr7/++rst6qqc/v7nr7/fz3H6+398r13zKf/7n7/+57/++uuvv/7j9/r/3Vk1RXW9 - Pj/33+2/D5+fa7X+/c9f7H9f+b83/fPX3140lPP+NPpFz8vmHVYP0/CeprWA1jSLEOZSbc/7+2mv - jozXxxBMdCXHhpR0HeazgvJoL5NYVJJiDXTVQtz7csSWpqb20npVCnZdTshplB7FZHrIg1MqAHyd - bQ/sr5y4QMGYNXxU+BDs2XxioA6BNTceeUSblqMctt7Tw4rgkmHz05cGQ0WysFJvPVg/wNeAa04H - 7zDG07A9YeCjTIsv5OYlUrTnJHWBb/ZTz/XwrOhq7y4MJMQ7eBPYd4BeI/8JU/0uEoPRnYjbTX6O - YO0X2D8lPRip6pdIKQyLxEEy0U0OlhJ2ySjjDFSvaHOV1gClQmuiaxer4F7qUYRb+eDxVbHUYip2 - XQ7Oq1LPjO979Uq0oEXrEmNy5eKlWIWbPqIL1AISSWmgLp16juHjE5QkPg3hsD8vcosOsiSSo6y1 - wzpVgIOfMSlw+kyMggtqWiGrzACuuA8D6P5QKvCi8gLW70YI+MU6pFB6rG9SyiSP2GvPKbCexIDY - 3fxQN5N/3f98HzMro85v2rcQcq8AR9O1BlTgJQ+F5b3Dt7qUKBtciwVmJ90kRlnu1FmXIg/obRXM - 8/DSBr7QZQtF3iqQcAvUgd/Ah4Xh8+WTILpZNlu+5Ar1oqUSD53liH9tvoJsU/fI8TQuEQ8+3ALx - tWGIVrNNQfutSRFr9C5W7HNTLKxwyZFwCC2i7+ybymWuqADinxHWTsM2LBa9ekB8l5DE3RJGlFGu - L3jg+4ZER74ftnmdDKiH2YAT6Ld0eYajAw4X1ifZBviB1rnco7bYKmLn9RhtQQ0q8HL2PT7Jm6Su - 1BAzsNzPOrFRbNicuoAM7OgBE8nqPDpd5QMLM8/fiPwOdcAu/uBD973XiUE+UU254Fkh9U58/Pv/ - q8RKOmo7aSaxc/ejrT01PdrzDSHmVBR0yYvUB9uOn2ZkRS/AduswA86R2xncsg5sN+atQ73hX/Pu - w0cq7wcnBQrx+UNOpEnA8hCTDakGcydauUXFxGe5Ia4p3HA8VXLNG0MoIHwX9rgYHkO032sfCDaL - nbE0uDFdQld4AeFesfg3HlSR4wzhun0TrzsTdTrwiQ6dc9njpGBosWkP30GnNPx4I2Adm6vXMES6 - HlS4OHWPgjeRXqKFy0asHnlroKo3bOByARW2vbEYRvRqUwBPpofLj3EFW3LUOdCxQ46P5kFX9/gj - WUionRc+624YzZ9w6qF1YhRiyvlS8PEmvWAAYI39RQkHPmV9BtV+r8wgmWewulydwvMq1XPrnYOh - Mz3kwBMjp94yPwTQFEc7h+7cljgRnpeBP+SfTEw7dsF4xx+LjQ/3GmQxx2GzbaqC0IgJod+5PS73 - jlZQ/3nn0IGTDyS0gp1NjwU1UNPebsQzqGlvHt/p0A8qQBy3sW3uoAYiYObUxKYbyOrEzZkBtyFn - sWQ+pWGffyIJlL5KiTo8GbpidVuQx7rPmf0YfbFigY7A8vn93IPNH8jyGUTkVF2EPcB9hhUBxEHR - PBOMh7cS7T9LoIM4IwWx8LGzv+vfg35FLGLD1rHZoybeYfdIXsSZ1CelR2GaIf/UM4+PeDca0eUR - w8jPGywpd7dYbn7E/vQdF9x4V/kdWlOoLfOFaKze1UsZkhZWi3L0mCKU6+XaMxKMFjji+PHx6f49 - G7Own3Q80yxViy2QGh0hI8hJwR5v0WIxpQcvkxtjv5NuxSQ95xDkj2NAbB29i/m7/pHNHF1SElQU - v3qAiA1UbAPqFXucNCn8/l8s41Wky9w8fKSysk5MhjZ2B2tSQXiyPWwwm1F89WeDHeefsP1yTwN/ - 3/UcfNHbmbhWpFH+KjMjeD6cHcaQiQD/wlYLRy7e4zh61hFljCWHk1IqHh3PcJhORPTg/ix1JN67 - PNiEE6fD48q+yRXsTcDxV6iJ9yk5kPhS4YLmn7OAgiK/YumB3vY2hr0Hl0jnvKFTjupyGQUNPtW8 - w9Lr7drUmgYfsol4JUnbPwAbSA8HDSDEWEVEp2SHDjGsmMsZBztRostOePnIeA0qdhoZ112vJfrB - eewsbHjntd4+F6OCvLc8sDQDzeYRaCHUL+94Rg8XAx7qdwVejdCZX8XwAvtSTxV4dGGLY5ReImp6 - 9xjBuKiwAvSHOotCzopLIThE1TSpWOobbZBahik+aVIJWCvtW9jwaUm8y3FU+/AkCehcLxFRQtam - e0tlHHgMwhvWBPCxpyxXW5hK19gr5HKg61DWJUqO2Uzk+ZnWW3Mde5gUZUyy5KIBVoCiAYN5jHB5 - G7KCs1s5RkhlHyTGbKz+GS/mdnO8VTndwEKEkoOXpHp7I+w6So8+tMDtLWvkxBM+osed9IThHdXE - OXzSgapDmqKWPjxyfqaNulzM54y2qD3inAt4ldrPMQQwvlTe4atPVIlOEI5Vc8RX4aGry7y2IfoA - J/OEuzVH9HVnHKAwpYQvG0yi9VwRDmRB0xGpwntKo4voAdP2CTkPtjpQMbUduPligs0kV2r2eXp7 - qD5zAznGPakpjTgfXpN7SfLVaum2OipEv/VsvXexvSbTGqLOfLEkBPrDXjANNpSnzUq88rKoyzm8 - xAgztkZkcKyjbRX9FGBVu+Gy8HV7vWCth10p9liSptqmrzvnoNJuDsTN3x86qkpvwRETgxg26Yat - L3wOdfEpxtoLsLRzuTpGdeoy5JS7r4GSZIkRqQeKlXek1Vt4kkTRPRgQ//SqvTGtA/NbdiKSmJnD - vjKaDFlh+cQXft0obYJIgjtwFLB0Siy6ncPUAWe/un7rpwa47oYkqCmCOu9lzRh4bOUVTJ/tiVRe - /ByWbI19qN4kfV6szgPzg5gC9O1LTBxMpYHL+rEBdppWWM6IaM+kmQ3QpFvqwZ2x2LMohCzEaZZg - c/Mv0bh/RjngS2Ulhvlk7bUoYwUKCYxxVTXvYYtiP0TXuwSxV8tnQNt3BSF/RDZObXmzt3sKnvAU - 3XmifzgZrPeDbcH7XnKx/dXHP9+Xq4qfx4+BwPxSXREKp+OZHNPrgdKnDEKxrxSOqLIy2e+v3gE9 - sYp5QVIwzMKJ0aCg9BXGSkXq2T5AAdY2qbD+TIxog+LgwPO50/GRhGbNkuT0x28Su5FWSs/yPUP8 - JZC9QxwXEbtrhBGmbOLPxO20gt6tToQJlHKPZUppoENtG1B5yYi4M99TIjtFBun2+uCTnLF0NG5B - CK8tF3q0bfWCgPnSiDH3WMlxeOUR3Vx5REjBLDEv+xhsL/M+wwdKFHIUnodhZu6mAl12VLE7aVK9 - BASnQN29HOxXnaz+/BeEpsCQ0jiuw+JCKUPobJ3nXbhs9Sq8uycsrGoiSp3thtXg5gX8xuNbTyIu - SdsePsoNzm5/vdUzek0eMOhdIpeeRoA/TvMohh/ZJNhHbdRfCjOD7OfTeOLL6b7rSRbQdJsD4vge - ValfeoqoY40lzipIEYV6q4Dhw1yIqYMOrFzJpbByDANHgmgWXJjBEj5awcQBw17qhZerDI4wK4i1 - chrgR3C5gw5VCzkd9ZdNf+N7RZHt3S/GqR4/4X1BfCmtOLmKt4IUumwgFGgrsRyB1gv/GhYISr0l - 2PoE6iKHxxje3DAm5oPhik1VPgpojaqdF6M8FPRbH8E3T2B5d9/XowA3AyVvhsV69bmoy2GlFhLi - 5OMlBRNFK7MwLLwv3UI0a5cOHdn4DeJ4bYnbpUG0DC3S4YtIVxJ7sglWFbkSPFw4H9uipKlLtfoc - slv1QwyaKIA7JG4lepdJwedmFQqirauFHuI7JC5K1YGld1VCKuTKefF3jbo+9PwF7evj5IFulm0W - yiGDmNavMT70hJKtQiE0gzQlVjAF9mzmBwaeuuZK5NVi6mmndTrYMp3B1sq9wDYccw52vSGS47Qu - No1V1kGG71leC7SLvSzPlIWlF3fk9qpxMQ2HSoL7JdNJUoTn6E89rfNXMe+DdBh+/h8409PHFpML - 9Tjf9Qrmj1OArQsX1msRJAqM9sXbIw88RJO9u0DwzUvYlKKnOreeXMKphA98Hux6+KOHndmw3tbk - G/3pOYzkR0fUM+Tpcj6FKZpvePFmU+SLTfB8EX79JFZQfKWrH1iWQECsEyuRE3XDY6//qSfXyFAi - 8pSBD8adZWNVMYtiHfV3hbb32ZtZEgxg6Z/SE+2ZNcPhVOr2aiCzgfPLisnpFoeAE6eChXQfn+dt - UkSwWdSIIZZigs35UatEPGQNksVGI9a9yuvpUR8NGL+4FlukI+pi0cSBC152OKPJky6/+WzU8j7/ - 9GOdcdbCt766RDXtedicfTZDb89h4kIoREP9llrkFmmDraSQCu6dChp0577ENrN/1JyvLXfkyBfN - 298fUsGfwfGOquL0wKcLPURr6PAzCKjtkq8eF3T/aUukvFSE5VJl1OnkvDjYoXLBXz9CWd0mOqxv - akz05GwWnPqGGVTIR8XK1arVgTGWDNTAeHgfGL6iFe7NEL4cvp95yNwLutcKDb7NOyK2yTP2Gkbh - E16Kpz3vTpGrLr/6+PWf+GwrhM4XBSiidRlsb2/Qii49A3RgnHOKlcdOqtlbEbIwVTQZ58ZVLtjo - Nlowd2k+83G4A9ueWXWoLeMFx5GRqXuF8yvEXo86ts+4jZbxymiQ63iG4FBLa57h0yf81Xf70Ajg - XbDPHJ1M5ewxdNLttR6EFGYic8RanQOVjJljwLeSxt98fbdndNpa+ByXI74kEh9Raacy4KuXHlPL - PCD0nWmwHoMXTr68iLKj00Kwr44zOrRsQS3h6UN4iGVSqpAA2rD3HMgqzHCUpXW0mfHNgCK4P0mY - yHJNDwZlwaCqnMd8+cVemt4+/M7vLH79BlVe3QKSYz7PgmNBe6magEN0QaLHVruWTh+QacBizeE7 - /7toLNqpB2BfHnHVqLbKd2hKofiuoMdcxa7+k8eyT4+xlT/nYZ2x3//hT3JIPZU+9FsFCjjBmS0G - Dez1Z89BesGWt9QLKab7QTXE5lkciHapcPT1ExLUqscbm7BZvvUgzeDNOPBEeqCjyrOj1v/qKf76 - PZWMuv9Cs9p4OFb9e0F/+dgfUI5vSZbXNBqmDSbk4H79zr1e2ESTfjzGE3TPV7evPwAMaC7zbz6G - CuUltMi8YvkugPqbBzlYdzXrzWTH0fWCnR5885UnvIcT2JgVNsLXL+Cw3ixA5zy+//IIwZtrRUvP - UA0e31OGvSKUhw2GhxZ285vO0wur6sq7kXE4q56LNam71Qus3Cc8Kpcn/vpjQLv7tiAA2xlrTHkf - RmPVWPRdzz++SGmSfDYouqPj8Q8oglfO1D3Cqn4jdpZyYPnl2yPbJHPVnYlNHWcO/+zfs/q2InLD - ug736kyx3J+0gitELYUsZjmcVp+DvQ1nPYMXw0mwhEZ32DpVqZB/fj7mtbx2Ef3lRc247vAR71c6 - x2YQgjmTT1gdz7CersuZET8BBz1W6nYDPSC4HFoYv3AMsW2ztj208H78WEQRDvawfF5xjJLJvmIn - f1n2L38ifp972AxGWmxvpmsRnAHCx4ZA0DsnJwUCCyas6nVTLx8SxX94hvPlLVQ/IgNO7BR47I9H - LWcLwll4u0Qtj4dha66vHm4WN3uicX1E+4LtM9jm5kpMHbuUrsEkgC9v8ZhvnqMszjXwzQ/eUDFV - vcL6U8F1kjKSMVsbLcJp9ZC9D3iPpqY70IzrUjiZ7YCNwXkUNHwdHMic5qu3Wx9ztGBfy9A3PxEF - xYjOuflpDofJ0H88NJpZc7HQK4M89v1dY9P8cxMA39QBPn2ubLF98yjMTppJcK+1gMqk3eBv/n88 - bvPiaERwPiDyzVPDmnzSEgLYz1jiejGi3mXf/1mv3zxUbJ1g57C5PHWik10d0TSwXwC9sg92vfms - rvb5nkMDXrYvrzhGjWRfe5C3gUjkww7aXz8owm8enWkVEntdg06CYRJLODJtr+ZfWOnRyt8FYqXs - rViDJ5pBnMcGuXz509d/saAM+vuMCHNRqZXEIvzWS3zKXW3g2p5VQD1GL3JKso/Kh2Tx4JDP5p/5 - XxOrFqG7JA2WguFpU/cFW1iB4UO06o3qoQSKDkm+SMSc9h91ES25AbmZPojjTZdi4xzjDtOOW4h7 - rD7RqkS2/seP6oy2AGIY7h2Wce4TIxiSevv5KQvuZG8N6WwP9nEdkaRwDj7uvf1A2iWBv/GeuSJK - 1PnUXw043cYAO4XfqFQ+5zmsJyHAV2t3B1uRMhCCp4WxqX6O9MtHdKjrUTUv/PIYxoP3XsDBeUnk - 6gMHcGJx96ESxiwpv/57OnXnDBr92OH4qxfLWeKfML2lPsG49GoOPwYNfv0skVy00dUbxhQ8OOvi - LV/+tYK5KSG3PkOPzc6yTYwhF8DO4Drvks36QPDmKOAle8a3P+HW+wnMOQz1mzrD4dmpS70SAz6M - VPW2RH7Ui1OLEhwCgWJ1UrOBXqPsDjt9rxG915h6eDpbeIgP0YN8eai9GFDlYLFqOQ6moi1Wexcw - UM2H7ltfvPqPnxG3yfnq92KvO0Z3INs5EU4+pqH+9PNAQKp7aNKkgZ/cowWr4vggdrY87XWKIAe/ - 9Q1rBJ3o9ipKHzrVEM0HrteG6bW9BBCICUeU1CBgsncBBO2DO2J5gw+wVbenhY7Z1ZhpuSYDRW75 - Aoxjp9/+wc2mzPvJwGYNOazT6FSs3OxbKO+Ezwym6/nLPz4cRMxBx8qizer2m7/6rQOMy9wFs9tf - ZniZcEyUqWxUCvW7BOI8NYiXrK26TafBAb98/NMPWnOsB/ct2bxl537UMbscBfg6djJRtqAeNvCM - OaA7iYYdgopo22QNwrh2wXxsexnQc5VDmGVr+M2z93rjZfMJ7kW7EBlNdrF++SR0HGjh0yjJxbj4 - dYjMo2vi8NSd1Y+54QoGS3H9r35A0F2z3/7HsTe9wVph2UP4MNvYMLjM3n5+CB9GG4epgekmThGH - fv7+q1+0/+Wxb78Mm/y6gVG4jAvn2MmVXMdMG1jA2ndY+jLFsvIY7MlxHhmSP75HbPftRmzrpSlw - DxYk3inE0ejUm4TmRtDI7YHtiI894Ikpf5Jm4fu8PLA1D94MwONTPNrf5xN78PP3DlOy6hgQHIvo - Ipy8NY4/gLiE9sBUrpf5HdUPdfCfdxa+g2Ai9rd/Mdx3Tw6g5NFjuaH3aGL4oEc36/4ixu7A1fRd - 5or4rddffuGqi3RgRHDl9OcsyJetpmkXMNDPw2BeyEdS2foGGvjj7S4vOQWnLjSDPF0f2P7yaYLV - XQ+a9nrDp29e3Dz+oSGT7R2PrgKnkpqDHvy+J/pgHcE+0FUDlSyTYtlO22F7tEQHXSn0JNsjC2xK - 9lYQPT3lmTne3uq40KX98bVZyCaDEmuqw1//iBjtzqZzc6x8wLzvlGSsJdVffZYO3/xEFD4LAMs7 - SQYNy6qJmSnWQNMnbwi7iW+xtSzXYX0nWwz95MASy2+eYP35653cSx5cq726HLxpgx5ZWqxFRmbP - et024iPaNfMFNn69pW3s/eF1hmNBdeq3rvrlWw9UTDWs3n2K/+jPkVEjdf3ub/jVe+8Uhzf6hzfA - q8fO4jcv7c+L2UIziFNcuR4otu26u0Ozlm8zFGX5D49Dv/6Cvn2G6Oe/wDzrE9FLdqZbzIQOmHpn - xW7bJ8XW9lACnM84v/1XjPLVScG3/+gd7nyrsrVqSoDlyhrbggjpz1/86W/8/Dedut0MP8DLPOG7 - fzgK7zO6tFtB1G8eZA8NNH78+rs+xmiKBSEUwXps531dCGBJU3QH/mtb8Snip2hZxcmBk9kP2P5Q - aC+f8L6hw2TpWBPntZh/fOy3f7Xqfa03NTY4CDHzmtHeVewfn4PETxDWIB7s7fmyRPjrJ3oNOamb - 4GUC/PL/Lw+NAZ9xjxgdGB4Tt7/uhsV/8MxPfzz4nOyaM+OzBb95Dqu7Z2CvAXB0UdkEEfuOZQzL - KKtPtPJPAWt0ZGw6WHCB3oUoM6gYpt5Su+th6pJ6Zo7HA1jhXvbR379TAf/5r7/++l+/EwZNe63e - 34MBU7VO//7vowL/5v89Nvn7/ecYwjzm9+rvf/7rBMLf3dA23fS/p/ZVfca///nr8Oeowd9TO+Xv - /+fyv74/9J//+j8AAAD//wMAofreDN4gAAA= + H4sIAAAAAAAAA1SaWQ+zurKm7/evWFq39FGYgu11xxTCaBMghLRaLUjIACGEyYCPzn9vJd/W6e6b + SBBLIFyuet636j//9ddff7dFVV7Gv//56+/Xcxj//h/fe9d8zP/+56//+a+//vrrr//8/f5/K8um + KK/X5/v+W/778/m+lsvf//zF//ed/7von7/+PmbVZVL8NOq75Xm+QFX92PguSYv30VUvgoxu3Ela + CM8oFpUQnp1qoc58vhrztpd0dBIcjea8eSzYzjRcpAQvk/haewSz/cEpEC8NpYao3MH0KAIM33wN + yOXQYMDPMJ/hvmlM4nJTBCSUBRx0rp4/NYg+4oVmYw5rzsVEN3e0nxPLNKHNqQ5xorkD86HeyErU + byUsddrYL1tdS5BcyWd61JgaC/cPm2FgS8001oebsZrow8GjygE8ZV7nzadIfUJDMQE19IsfS+o1 + zNFplQty0c+9NwJtvqArzlwaJ/HI5pmFGUz2vkZSI6vjlfdbFWAFPKnmCa4nLetOhK/bQyJ5Xhge + DcVPDm7XtJpm38EVa/VHi1TWEnrVP3OxcJdmQFlwP9BIsA/GHJNTAj1xvNBbeImA5EyHFknlsKXY + Stp+XfpChNfgVZAi7e1C8h6sRLfNHZAMnDjAKDfo8HWrJOKDTdSLpXNOYXxwXvTk5Xks4LOoQ0vs + Impi62HMe6G+o8CTAcHM5eIJb90WQls9kNBXKrDaSMWIXOUPyfmDZkhzDGZYpZNDvV7dGPS73+Cu + N4ep35dmL/bmw0VzuZNp5HpGz8/bPQ+91Q9pyU6uJ6WfR4mysTSoHgpaLB7lUEebVMTUVLW5Em52 + OsPLfdrQHU6bYp7mNEVIsQJiBLumZwLa5qhmpft9/s2QpvuZA9qNQrJT2rWfJfmKAW5bSE+XMYrZ + sr/WcLPVG3pQgq5fUn/04YYNPTnuh7ZaPQxtoPRhSDPekcDC3ZYO+Ru9pH4SDtUsmKAEifzqCEGD + aqz8sctAF98s6suz7Um7CWQAG2dC/UOD2SSqDg9ZMK/U/bQWEAPch7CLrxbdr3VcLeFrLVFnS4R4 + 5KoZa9GHFiJZPdGLfwiNFe2sDuV7l1K85S/GDPrGBp52o9PWDWogJAaYgM8e/cR2VuctdBQsKMvF + a5JUP46FTN3rcL3v39RVT6nHdpKwIuG23inp2whQvXFkRVn5lVw0QauE5+cpo3rOBHJkeR+LyqZV + QV+qE3F3Q8JYJGZ3cF5Enhj6ZYiXcpMk6K6YNdXBOlXDztu5MFTajpQXyvoZTXcfiQelx5/27RcS + FtcIPSqhJFGrPXqxG6wLmp16IDao3X7lmr4DaBuXhKTHwhvqIEvBUb5icj7JV7CKUBRBdQQ5Ud3Q + MiTrdXfRqsKaHO0wiik3Xju4fHKd2kc6F4LuhzU8gntFjtUlKqRaUTnkCrk2CX0xgXUDWAq75l5M + n+wTFx8YIx9eo+0JgwCIfXPm+xSKC38lIZrPPT/sRKhI22QmGPa7nm1OgglNkovEIlPZD0+3jKBu + oo7cdNUs1uE8i+gonLc0OvgbbxZzw0ZFUd2o4RY2mI/vjwU96irUGaHn8XttUUDx6FziXncqo9ar + tWExNTxxd1u1F4pHbAOHFiu1wYlj807XZ/SJX89JJKArZp5WAwjmkzLVqhb29PLqFXR/jAnBivYG + S3EMRDi3lBICdD0WLXSwgNTEBdUc9+OxS3jB8A5PLrVkzvd4383vcLjuKqp+iieb3XhcIY2sM+at + HhvjRtASOO7yhqhBGRQr11QtGJSVkqR73w2JuksO5Uo5UzPefGIWlLcWntTJwNKw19iCz5wKE9Me + yHXRQibw27aTvRWHk2iORrEkvmgh0XnkNOWsm8GexiWC2fBJSC63JZj8EWPwjJeQYhy/vOko7Cw0 + HxxMQ3Mq+tnTQhtd+sIgqu/gXmCemMKGFgXxm0FhK7o+QgS6447qwrYp+s19U8L54GHi6NguJOGV + rvDkZXuC9599IWpIEeE2O51oIO1NxjOMB+AgkyOafY6BtC2UFrqnQSCHdVPFi4DnHH74xMBilMFi + WBsFw86qP7SwGwks28SyINzca3rZTw6Qwu5iKsD/bGk2haSYD7Uko3ifXon6XF4ee2cuhvDWrPh5 + 13cGa7ayCWGHP8RzToG3rkcQQuf1vNLLWXsAcZEeNnJ3JSF2e9obUw3PCTxehRPJKl5lzKBmiA6D + pBP/m286Lk/TLbapS3yULBXrT20JRXh/ED86mR7vaB8VTnR3mICwI0CKIOGAhqPddPdeNRBl+OIg + CC4tOfn0HDNuNyfoUUklMV/RI572syIrO+r7dKcxtZifadUgPuhSohfipZfipGshJyoXikN/rD5v + LuTRQfBjagZHj0ki4XzY8uWNeJn6LiaZVTX0fe2ECzz0bH3l1QWdgnak5PZJ46Xs/A56g5zQ5Bqb + QNJCxYfxASYkUy9ZL5zHJUF7dnnQg7IkhnTiFhv1CvDwxtFuYO7fgwjVeLrifnh+2DxGfgRmsJjU + mA2pWkeqPmE3HysaeH5aLLHUpOhNjgEtrsfGWHk1mtDmcdmR8IMlY72+YQSySCuxgKK5WC7sJEMJ + 5jtyNmXLYGeujRAftCkWb/ZkrP6IfTBRWSUFCY/xEgY3EQSL+6G701Vg8zeewKDMlF4t0yjW4Ql8 + aLzFI3F8Sa/4ZXfEqNjinlrzhlbrwqc+tO35Qs9z07IVHWKImpqeqPXuE2+e2CNC4j7kaUGuD2+x + usOKKB8tVN36s7FsdSdB7/PGpNZtW8Wr0oUpaPnLjZy8t+UtiEsa+M33BLdO5S1a2fioOEdb6jH/ + HY8zyV0oF5VNHXr4gD/58cOqhOyylWfdBrAElcuWo1Ze1/1CizlBF8NgxLT2ZsUkdH8qj0sIiS9a + XdGNZhZCGLU2DT7M6YVYar7r+Se59e3K1iRlKrx2V5kEm85l/66felR+66cJeE4d1R+/TZKK7J7v + y66ErR7uadQMz561YhJCpvL2xDUGBtO13MpwQNqRGrdJ7SXbhx0wrrgkZBIVj84XzgZdL6ZYidXZ + G9AzkmFaXI4kEJWzMRinKgW/72nGmPeWW1JbsNnVCUl149UzOZojtFY2JLrDnQDTnxyE5/3BI+Et + Xb0ZSKCESzGIdLeKGli1tndhb10C4oz0Fs9lHkaoijt+eo4j501NNYqw3HxOlJy6LVuKR+EqwQFL + lKTPBtQ34Zb/3n/iqvPBG+huMmFSWyVxnAut6MhBGZ45VpKA2nY8X2Xg//iF6OnkVNLmLpXoy+/U + PMoLmzs1zBCujhqWW7eIpZpkAzxRYTeNJjV79lDOItR38xkv+4Parw0FNvTxAVHzI3Zs5Mciga8w + eROVynxFq3qJfnyKpSeziimsOkvBOZqp+iB5NW/Nw4De2punznRP+uX4CifIbR2detvPthiT0NHh + bssbxJlGNV7b4ZYCoqkBSZtKM2brFJWwfs0cvaBk6Zejcs9++WiCYLNWi79+nvCzRBPdsWDTr64+ + 8X/4xKswjoXJajt4WF1usp/ijVGVXl0wGrZKD9UrBtJTwrJyXQWHalBq45662+zHY3hNp09P9UaT + Ube4EbU+KjNmspSWogqy8MuP8RJeZAt4p+ZMd/rpA9gnaXLYF7NNYpk5hbAr/Qsc5LtDyld0rtbS + whlEuV1Qa5lNwNsnpwZXtVvo7qDWHqsNL4N5bfi4/daDIXTmGZUoW8j59Lh7U28+7N81xRfKqrWX + ixkuoGupj+HBYJz+yqDuWQm1HEEsfnoPWL71mcD3e6/f+ggwmA7E+XgCGw9At9GPF3X7czbmdMcw + Et5HHZcXGldLP5U8NC5nSvVKOHttHe9XGOrHlu63+BCvCrxa0Lj6JQ3nj+ux+DqqcHHKkOiwMo35 + QmcRZfviTV2D6ICHadAo3/0n5+Yhe9MiPVyUWOeIejYzeun2ilX0rS+TOBeNwQZBuUO5eNiYx5bm + SdEmUv7w5A4rlE1vHERwvSsp3T/1g0fts8NB6q9X+tNHv/gCah9xxCu7Giyp0YmQflqF7hpr9lbR + MX00HSMX13x0Lr78ysNsM3xoHHEY0FrkVHiNB4vGs3GqpE2h6tB43vMJzkvfs3aTdiC9rweipQe5 + oiFLS1jN1YFgIYyq1SE7HV7k+I6f7as3vu8HQaM/N8Q/aw82dfSQ/anfqbSr+mUilQqlWheweOBX + xszwk8BC3X6o/nBlYz7vnin68iEepl4qWLlXOXi7VDwhnHFli9uMlrzU5p5anns0ZnXbWVA4mhca + RkSvpi9/AOXe+MQrWFEsxDyWCNwongAeerDu3/MTfaYgI1E5Wt7MDucO0lOe0CD2IiCFm37+1euJ + +bICVqXLEli1kBIdyU82VLLdoFDOTaoNdm7QRnzZ0E/ylrj0QY0l9V8+fNNwQ47p8cmYbD05dHaT + +zQ/Llaxbo92C6/jI6Cq70z9emfyBON3RCgR7hJrzWpu0VcfEn1M1YLvj60Jx7t+Jeo0PyrJN8I7 + EiJtj0HPqZ7YyMIdlUfjQb75Jl6M92kCE18E9JuPi+Uythf006P7/M0ZU+omItQ8fybpMptMNJWb + Dp/4llBXcZ2CzyuYQS+pTKJ9+bEPsrsPOK2l+NX6dfzdrxT6rOqnOdnei4WAQoXoMSCqf/P9+nhH + TxgkkT9txENgLE9B9qEf2TrJY3U2plF2FeX1fAcYCtuyWvdFj0FvT4zsl4ta8SKNeOgKmUZu8kkr + BItdXLgPb/kkfPPfDKbFgjQyz6RQuMwQNX4uUT8He7JXUVsx8zmZ0DwTjnoBSCv+IVhP+KvvZpfz + Rf3qnzkasuaEBZxaxSJgOf/DP6YRAoOCerChq7oJMQR4A0M2RzWUYLYjxzGR4uX8qHVQHsUQI5nI + 3ijUtgnV8VGTeHuKwCw/YQujo7ubNujGF4xxeggbhddoJF4pYP3pXoJCGzJymeTKWMP7zYZabz/p + dWNp8aw8qxk8U0PEMtPMXhy1XQL12/s+CaL5+fLQeQb3WzlO3JaH3rLUDxE55gLx4rgfYwwvsgnW + fOmpf8421RS74wSio70j5xF6hsj4IIWLlQMsw+2nYl6HRCg9VkLU93HqWXkJO/jzd4LLDccz59Ac + NCJC0+y9TCD5fq7At9k7eHZ52g/0wDJlLvcyNS9PUv3xwxK0fRGtr+eY0X1zgRs5kKgniDtD4vfm + BMOsjIg+Okk1XHdqjYYKY3Ix3HuxsDrk0KY/5iT81tdF+VxX6Fwdn+KV3asZx6b6q3eYHT6hwbY1 + UsFXD06rw0mgK/j8AkuUL8RcWvCtH/EKH/g943d8FhkbE78DCwIYw69fMp8KV5G7dtG+/prnrbDh + 7yh23ga1Hd+Nv/6hDXdsPJPdqdP6hbttWwi5UZge6tswVnsrhNssEv/NPwvgxhLeteVJ9skkAKY2 + 0Ywe0J/ILtvc+/Ew8Twq7lLx8xfZigVpgtLbdDFrKPTqCVb/9nuCbS2CLw+HENVrNF3alXrLmHER + jDl+JrksuNV0K1ILEiNihHz1vvgJ+ByaJBNJwkfbn1+VQNxkKdHRPuiXWdFzZG6528Rk9onXKchb + +JmvG2KdnKWi12XBoPacPbGiDMaTPb455XGJIGZGvSlY0A1w23lyTYo+cIGAQ9BCcDRc6u5sr1ir + nE8QUUn55WO3WMj+nv/8NOJkH/aFaadF5QK4r96CfZtXMAdCEo9Ei/mmWvgxTv74GWbHXcESnkcb + 6ptHhOH7GhpMtjoI3e02oH4obPs/vH+8KyNeQ+ERi0ctv0D2DBbqT/uArRa5ykCfUx2LMjcY8+bp + qmBe9ip+PPmyWsSP9ISx32b09Msf0NIwCuaj8vVvg37ZCE4KqynsiBP5j2J+Bh//p2/x6uRTvJpW + naGv/qSG3KBqfHOZuPV93iIxZ9vGsNh3F91NXiJfPeatb20DgXOSDsQ5JfyPV3hYpYND99KxBTM0 + bRHeou5GncjX4vUWxQP68WnwfOnFWm+tDD4gnsjey5V4DU6vDjkSM6jNp1XPOtHL4fbsWtT0LlU8 + G3rRgh/P7rvXyVjzVM1hbe9W6sivXfx6Xq8NYKeXQlXJAl8/TlPg7ZpU03IcqbdsT2cVbsRZJcnW + wJVoW3qH0FuVqWHUt2LdmGgFjy206WX/KL1ZpDkP9qx8TNuHf47nJa8VmOfY/OmnXkSHmAN1a9Q0 + OB7ehvj1c+EgPx3iN9umYnDLRLgYx4YYy+vpffVzC8EC3nS3v0H2mUnkwldpqtTMP29jsTaPEuRv + 60Gdh38u5lNk3+GPN1UTvOPZvQELWoNaUEe8Ld54lK4XqId5SL3ucqzYj6e6lml4KfQRfG7eY0Df + +kXM107op9V5wR9/T5s7d4zHXzxiMBzI3ns3BssvSg6/fjlJvdMdzMOOg3AiHCbOV0+vRZ9ZcFXo + dUIb61HQ8rwbfnqa3vZbv+fLPAzheeF5eu1OzKBJ886g5ZsfEt+me7+49F3Cr59NMZZwJb2ywoTD + q+Sp3RxWxsjRz8FlKjMsRUJQzEqaXuCX5/E8zVo/oGcug85qPjgpuB0YNy3UAYw6G4MNDWL+SHAJ + n4zqk4wfH2OZfeLDD58aWDh1j2o+54oKs6PJiLrZZf/+vvJdML98sYk7rqm6rQFPD/r1Q71FO1Yi + VNQ2//YD2mL9mKsOHcX4EOeBcPWHZ57nnYclrpq9VXqnISz2akwu8mwby+c1ptvg0+yxkG3Unu+j + owvLo/agbjE/wJq6FxF+/Wbi1rFtfP2QEIbS+ziJeW32lC08BOR5Fum+OlEwCd1qgs2j3JHdKj7A + Cq6ri6gz2pOssGMx74XhDiTwTr9+ZglWXK0cpBwnEI/5+2I+8KGLvudnEsbkFLOmO4kQ7XcWcWdx + Mr79CP/Xv/leY298cZ8JWo6R0GBZG2M9yqEKsta1KTkErfHTryC7rdL0yx+zduIx/PqpGH3Pw594 + 22kPjTrkWfUsf/Hrz+8hqjkVFdtLtfzzY6f9sNfAYhxzCLMFhZjdpnu1SsfzE1zVdqH2XvKKZX+Y + ItiEvkf0VtP6KcBVhL56kITP+hy/XEpLqGzYhfq3Mq6+/a0Mfv0ocs2bF/iTD4/n1COBTDKPxcmz + hcdz4pGynkJj9WpDRIdj+CB6ZrRVez69LfDz777xCaZbVAzibjpf6e3sm73ob4s7vBgaIypNeo9S + d8mQ3Q6YmkoWxKI/Wt9+SQepfTKJMWyeuor2TW3SfGd7sXRIwFP5+IY6cRKIK1F0TAw3MpGI961H + LE66Dtwv54xY7543xut1kyjESmws3IM3oN/8Ag7+Npxe3/jupTbkob1HI9W+/ZjuEekieF+Cjuw0 + do/pJDy6P/0FSw5ExpKPkirwmvjU5pXAWPwcK0Dr3eckk91asel+4H76cOLUQo2F8eU1UODJje7S + rV9Iu4llcBuMd4LV4h4P/p40QOCDGzFOT7mYj++HiUy99PHGvIrxdOIh/vE0JdTYAT6MmI0yG6dE + Z6Tt5/OJWuBbn2gRai5Yp/SoI8fu1AkI4ssYPr3aIi24pRM/3O2Kfvtz4NsfoOZm9A369TPB93zT + 2HyqlRQcj+H2q5+oV5ADEJObkEH/M1XUIsAtfvwjDyfWEkL6a7ESHGXQb7c8/eojMP/4mqfaBm+c + VTBmmqP1jx+7f4VZQX0jeyo7fOunQ1+H8bKONYb7VuzI/noAbPIKp4Tv01Ti5cmX/VyeggQ+RJkR + 76jExp/4/9YbHAvwxv74DfWcC189ohbCzfsMEKxDSiJtAwqmybc7rNHxNsn7WGM//YmQxjyKV72P + F/p4r+AUdCN1kDMx9njp9u/8EHLnjsUiCwCC734Qu3WLYvj5rwto2y8/toaQG44J5sSvyF6dIZtv + gWL+6W/8+pGL8b5N0FHEDM/+mHlSp4crYnJaUPWrB6X0erHhCp7+Nz6GmK43GSv49XpPm9nbeuz1 + uF5+/glR626sll9/yNk1PbHjD/SWIgtX1OrRnviNvRTje1+EkHvUDxJE+bVaragVIdw860kub7r3 + 8/egdhsh0dtX/4d/4S/ePZXfG+vqyzK8V0j59duAWMNDgiC8EapZ8aZfvzwIM26rYOQhr+Ib9Hah + 4FOPYOV1KJbXfnAVV88UcqW2XayWFT8Reusy8fcPzlt2Npwht/X0aXnyXLVeeaeBXx6YlLje9j/e + RX//pgL+619//fW/fhMGTXstX9/BgLFcxv/471GB/5D+Y2jy1+vPGMI05Pfy73/+PYHw96dvm8/4 + v8e2Lt/D3//8tf0zavD32I756/+5/a/vg/7rX/8HAAD//wMAcKb2hd4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac0163b8c1567-SJC + - 9953e3dace9bfa7a-SJC Connection: - keep-alive Content-Encoding: @@ -3487,19 +3487,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:05 GMT + - Mon, 27 Oct 2025 17:24:59 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=CI2am4l8NPzPB29HVOxxL6YCiSHP3ZmqyfmwhYjohis-1760986745-1.0.1.1-1WrAbY_.g5heKVT068PtqGrRRbOMj3sgQNmntMfc3ibZSv2AygmH_1NLlkH4O6eg6eor1MGPNkxTHBp440Z8h96spGuN22ZnJOoEnCMOiXg; - path=/; expires=Mon, 20-Oct-25 19:29:05 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=RgV3OLofIaZDfThR7We5l3EZ0LTJ6t8p41jbaBi5UMc-1761585899-1.0.1.1-d.H4RiPPh9ujAJ4mdyb3s3AxwNzYi261cijGD0eormINhCD90_FZZbR1AS1G3uPT3MrZzSE.cigpV4AlUU3MBg9h7Yf7YqrcQYeUEVIkvWA; + path=/; expires=Mon, 27-Oct-25 17:54:59 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=WWi15pnysLae4IESBqU1Wly5y2dqS.kq8OjXVct8Lcw-1760986745428-0.0.1.1-604800000; + - _cfuvid=CZdDTTQlb6tvozYty6fAVwmu0D9gF2n1itwP_cRrcGk-1761585899361-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-w6px4 + - envoy-router-5cf9f869cb-m45sp X-Content-Type-Options: - nosniff alt-svc: @@ -3511,7 +3511,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "36" + - "567" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3519,7 +3519,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "54" + - "594" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3535,34 +3535,239 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_2b54f88600694472a93373696bde7b46 + - req_d1e9785d6ca8481194d373448b3688b9 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnal - molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate - that would result in the model predicting the molecule\\nto not contain the - \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual - and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n - \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, - is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has - a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence - of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. - To generalize to other molecules, Seshadri et al. 31 applied the descriptor - attribution\\n\\nmethod to obtain global explanations for the scents. The global - explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering - chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting - natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D - can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups - separated by four\\n\\n\\n 20bonds, and - a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n a passive characteristic + of a model, whereas explainability\\n\\nis an active characteristic which is + used to clarify the internal decision-making process.\\n\\nNamely, an explanation + is extra information that gives the context and a cause for one or\\n\\nmore + predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy + and interpretability are two attractive characteristics of DL models. However,\\n\\nDL + models are often highly accurate and less interpretable.28,30 XAI provides a + way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be + viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable + DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL + model has correctly learned the input-output relations, then\\n\\nthe explanations + should give insight into the underlying mechanism.\\n\\n In the remainder + of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6361" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RUzW7jNhC++ykGOiWA7drpeuP4lt2mhdH2UKAoAtQLY0SOpMlSpJYzcuIGAfoa + fb0+SUHKjh109yKI883PNx858zwCKNgWKyhMg2razk0+/vHLjw/rL7/f3Jndz7MPH379rby+/zL7 + 6eEHi7tinCJC+UBGj1FTE9rOkXLwA2wioVLKOr9+P18sF8ubmwy0wZJLYXWnk8Xkana1mMyWk9n1 + Ia4JbEiKFfw5AgB4zt/E0Ft6KlYwGx8tLYlgTcXq1QmgiMElS4EiLIpei/EJNMEr+Uz6eeMBNoX0 + bYtxvylWsCnunjqH7LF0BLdruLi/XV8CGuUduT0Yh5ErJgGE3MS/f/8jwF4penRgybBw8JMWP7Ov + odxDF8OObTrQk0YE9lWILSaRQBtUqHlHAtoQZGZPCugtGOyFoAoRukiWTfKXKaw9dDGxMTSG+9s1 + hErJQxWcC4+JlD6GiSh1qa4hkRVUHEVBI7IH9IDG9BGVoOwVep+pd5E0N2yJOnCE0SfCucFxouYB + rQVK0vhMXUADsMo5u2SqU5WWTIOeRdkAe+G60Wkm25I2wQoY9FASGFSqQ+S/yCalHpMa2tB+KMQe + LmoXSnSwE3DBoLvM0pT75MURIrmDjiHrl/nCBXuNqaz57rFhpUkZnlKGJP9g7oLopAnmcgofQ9sG + D0cLYNfFgKahdKnG9ZagItQ+EqBq5LLPBXtJ+mRN049FxTFIH2Ook7SZiIyHiwx9krhCoz06CDFf + c0RJL+qNpFO4Oxf4IBLt0PVpilLfRw4kIL1pACU/zeCxZMe6H8NhBMmTSDrFSEaHgw1tfgNd59i8 + BlRsafiLoezl4JuYS4dRWPfTTTEeBiWSox16Q1sxIVIamPls41/OxytS1Qum4fa9c2cAeh906C0N + 9qcD8vI6yhV7lmYbCSX4NJ6ioSsy+jIC+JRXQ/9m2osuhrbTrYbPlNPOr5aH3VCcltEJXryfH1AN + iu4sbvnuiLxJubWkyE7O9kth0vuwp9jTMsLecjgDRmcN/p/P13IPzbOvT1m+X777ZoETYAx1SnZ7 + msevuUVK+/pbbq9SZ8qFUNyxoa0yxXQdlirs3bBLC9mLUrut2Ndpf3BeqOnGRy+j/wAAAP//AwCH + 0mHeTQYAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e3df888d67be-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:07 GMT + Server: + - cloudflare + Set-Cookie: + - __cf_bm=XP4e4u6el8LDlZiVPP3mZlVZdQr1KD_RCzRILhWv3iQ-1761585907-1.0.1.1-Mi8twdSeYD6hFD4qbDIlsQ03y9LoGj8H75gfmn1ROJU5yL7Jqs_aYKZz1lTW0COaSRD1vO5.szUnigJgxSec2LYXe8ye9vAit3OJ0M6mR0M; + path=/; expires=Mon, 27-Oct-25 17:55:07 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=kb.Ho_B4otFQRn0rvqAZJThoE91Vlr7FTVj54DvPYdY-1761585907655-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8062" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "8138" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998477" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_ea7e3546ce3e411b8408806782733957 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nnal molecule. The counterfactual + indicates\\nstructural changes to ethyl benzoate that would result in the model + predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 + similarity between the counterfactual and\\n2,4 decadienal is also provided. + Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, + which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure + 5.142,143 The resulting counterfactual, which has a shorter carbon chain and + no carbonyl\\n\\ngroups, highlights the influence of these structural features + on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other + molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod + to obtain global explanations for the scents. The global explanation for the + \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around + many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language + explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe + explained by the presence of a heptanyl fragment, two CH2 groups separated by + four\\n\\n\\n 20bonds, and a C=O double + bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe importance of a heptanyl fragment aligns with that reported in the literature, as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, the importance of a C=O dou-\\n\\nble bond is supported by the findings reported @@ -3611,51 +3816,68 @@ interactions: the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6433" + - "6380" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFPBbtswDP0VgqcNcIo2W4HFt562Autl2IACy+AoEhNrkSmXpLoURf59 - kNus6YadbPk9ke890o845EAJW/TJlUAzzcxks/ezy9n8fH55vpgvsMEYsMVBt935xcfdoh/ueE93 - X8abb/lLFlvcfsIG7WGkyiJVtyVsUHKqH5xqVHNs2KDPbMSG7ffHI99oX5Hp0eJqtfqpmZf8uGSA - JWoZBicPS2xhibdX1yC0IVGwDLQfk4vs1ong6hoGsj4HhaIUKhzZSEYhg8H5PjJBIicceQuTZT2D - awbrCSZRe4O8gSEn8iU5gVEoRG8x8zO9gduTLpF9KoFOLvhcaseN81ZcelLHrhZQcBwgkHqJo2V5 - jVnvDLzjox9YJ+d3s3XePzeGTRZYZ+vBp5rlJvrp6lRVaCukWo/mdKdn8LUnoL0nGQ1CVF9UScH3 - OWv1fmpi7WpW+SkFV0Ik9gRvQh6qDtqPJKYN3Hx+ec8CnHn2fH7bwK8q36aeJ6a0zyUFcN7nYUxR - +2ZSO5Gd96QKUcHdu5im+VmeahQOJOnhz4zOJrk9pXGaa527FLWT4Txl66pHhbg5RubkZNw+i5C3 - 9HC2xOZprYQS3Tv21KnPQnW9Fks+LHm1WuHhR4NqeeyEnGbGFolDZ0UYnwGlu1KzwpZLSg2WaePb - R4w8Fuss74gV24vL+bxB73xPnReasuleU86PuJAL/8OOd2sHGnsaSFzqLod/+S/oRf83emgwF3ul - 792HBpXkPnrqLJJgi/VPDU4CHg6/AQAA//8DADWYGp8cBAAA + H4sIAAAAAAAAA3RU224bNxB911cM+GQBkuKbbEl9CoIYDdoATeEWBapAGJGzu4y55JYztK0aBvoR + /cJ+SUGuZG0Q52WB5ZlzeGY4M08jAGWNWoHSDYpuOzd99/vPN19uP17xqfFm+duPf4X40/ubxd/4 + 6dfroCaZEbZfSMuBNdOh7RyJDb6HdSQUyqpn11dn88V8sVwWoA2GXKbVnUzn0/PT8/n0dDE9vd7z + mmA1sVrBnyMAgKfyzQ69oUe1gtPJ4aQlZqxJrV6CAFQMLp8oZLYs6EVNjqAOXsgX009rD7BWnNoW + 426tVrBWf7z9ACf02Dm0HreO4O2HMVgP0liGwn0UiFRRZJAAXWCZNkFDS9IEwyANCrR4R7B1qO+m + 2/AIbXCkk8MIXSRjda4QlBowJG8oZpMm3zaD24cA3IQHjUwGsOtiQN0QA0ZawcnZeKCmQ/JCsUIt + CR0U1x6zOv/3z7+V9cb6GlrrbYvO7UA36GsyBwXau62c7QCH3k5oVs8mkDjzb9HbNkgAtq11GK3s + IHh4/+7ml0uorK8pdtF64XEuSKR7QgfWVy6RF4sOWGLSkiI6qAglReIfAL2Bk/MxGGIdbSchvuEU + Y6hR6NtMRLITBCZXTfevk0+OlFLObABFot0moUFC5al0Q63V6AZXcrFRk6eYNTwWl1OHvk5Yf+1j + BrcNMb08NHad2xVdl/ussrrEFcVIdSRmG/wENHrYEmAxUjoqR6DWOSD/Hqyx8KRgDbkOEpcOi4ll + mMgEkJmY4aH0Wd9DjjD6nlsnawgMCr7pK2JIW+79fyzOoZ+u3GTJmdzSbA1FkIYAk7Hk9d7iPVrX + Gy5ms9Fe0+au8+j40Ch1xEwUHs/WatJPVSRH9+g1bViHSHm6Fmv/PBzFSFVizIvAJ+cGAHofpC97 + XgKf98jzy9hX1ltuNpGQg8+jzBI6VdDnEcDnskbSV5tBdTG0nWwk3FGRPbuYL3tBdVxcR3h+dblH + JQi6AW95fjF5RXJjSNA6HuwipfPsmiP3uLhyqcMAGA0S/NbPa9p98tbXR5WLxeV3LzgCWlMnZDbH + tnotLFLe7d8Leyl1sayY4r3VtBFLMT+HoQqT6/eu4h0LtZvBqti/+Oh59D8AAAD//wMAjohvwHkG + AAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac0176f16ebed-SJC + - 9953e3df8936cf82-SJC Connection: - keep-alive Content-Encoding: @@ -3663,61 +3885,77 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:09 GMT + - Mon, 27 Oct 2025 17:25:08 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=HCyy9P3eqmQMrz.x1Cy4sKOrC_Ng4K2IZpWJ1qYtSDc-1761585907-1.0.1.1-xbNtAecVbqmu2i7PZHBb.cEbPqjZD_OH8KeNHPReF5.Q3D7XUVLEuwABy26YQRhsOComG93uIUeEwS9kDEfLbKAk1Hv35B_ooxD31Q6xYLE; + path=/; expires=Mon, 27-Oct-25 17:55:07 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=4EK9PvuDnPVXX5GXysiN2TsfPn.dMN8LJ4XZRscLlPA-1761585908000-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:07Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:09Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:07Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsM4ZGeM7m7ZLp4Bp9 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8465" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4208" + - "8495" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998468" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b16e118077fc4452b246db8e49fa06ca status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n - A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi - P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n - \ D. White\u2217,\u2021\\n\\n\\n \u2020Department - of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department - of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n - \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n - \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n A Perspective on Explanations + of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 + \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. + White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of + Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, + University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health + Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: + andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n \ Chemists can be skeptical in using deep learning (DL) in decision making, due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which @@ -3777,54 +4015,67 @@ interactions: a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6439" + - "6386" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTRbhtHDPwVYl9cA2dDVuyiuTwFdR5SuEUDFGiBqpCo3ZFuqz3uhcuT - LRj+92JPcuw07dMByyE5MyTv0fU5ILnW+cRjwEXJIrCL64ubi/lsfjN7O3/rGheDa11ftsvZ1a93 - P376Zf7wSfnDWnD7ZvhZytC5xtlhQEWhFN7CNU5zqg9cSizGYq5xPotBzLV/Pj7jDQ81Mn1at1qt - /i5ZFvK4EKKFK2Pfsx4WrqWF++P9R6qVQqFNVvrwMCSOwusEeq8WN9FHTvRRDCnFLcSjIaZNRApk - HRtx7AtZpkHzPgbQpJ2iGHRQGFvMUihvKAADJbBKlC19d3t3ToMiRD8hLum3DoQHDx2MAjZRUMg6 - BWiHAxm0Ly1dnU9cjqXXMUU7kGIDnThYBwrY1py8oW7sWWiUAJ0UPuOjmEYp0dN9tC4K8Yk0SyDP - QmvQAPWIewTiQmc7yfcJYYuzk8yqoJbYdlb7cn1eJ/TvaH5OP41lMu4knRX0eWSxWM3Yg3qYRl+O - 9lVfaSxVwH13+EKldHlMoTIxHYshNJTiDmQoRlDN+o7enB/HJadGAcVrXONUyEONo7wyme65UM8B - l/R7FxNeTelkTXUALzUn7nljkEoxHPG+Y9mC1+nQfFsglmpGXc89yHes7A0ai0VfR3KS19B9BwWX - Y7O6by/pQuztP9InBpbJJ9a4OUzDnvoLJwrwscQsFz3v6nAGzR6lXFLdbw5BUcq0T6CzdWK/o3V+ - OCNhGyeJdHt3pFZofXg1ZMs5Tav1RekzrFplHaJ+tcUL1xyPTJGwZ/FYFp8V9diuZgt5WshqtXJP - fzWuWB6W1YQsrnWQsLRRxZ0CBZ/Hem2ulTGlxo3TD6B9dFGG0ZaWd5Di2qvr6x8a59l3WHrFNLXl - 15DZc1zB4f9iz7m1A4YOPZTT8qb/Fv8Sver+HX1qXB7t9dN89n3jCnQfPZYWoa51x2PU4J6e/gEA - AP//AwCHrZaJKwUAAA== + H4sIAAAAAAAAA3RU22ojORB991cUeppA29iedZx4nrI7u2AI7JUhMB5MWapuK1FLmpLkxIRAPiJf + mC9ZpHbSzm7mpbF1qk6dut4PAIRWYgFCbjHK1pvhL18uf7tueHnx9+mfzT8/L7/j1e8Xy+sr/qNu + z0WVPdzmmmR88RpJ13pDUTvbwZIJI2XWyfx0MjubnZ2fF6B1ikx2a3wczobT8XQ2HJ8Nx/OD39Zp + SUEs4OsAAOC+fLNCq+hOLGBcvby0FAI2JBavRgCCnckvAkPQIaKNoupB6WwkW0TfryzASoTUtsj7 + lVjASvx65w1qixtDgBx1raVGA9pGMkY3ZCXBh6uL5QnoAAi1JqOgdjIFUuAstHijbQOKyIMhZJv/ + ffh8eQIlafBMSstcowDJKuIsUOVwFaBSTCFkj7gl2BiUN8ONuwOLMTGBq2Grm+3QI2NLkbjjDCNY + RvDsdlpRgOicyd+imT1ThM+XB0tAqzK3ZnAp+hRDBdrmPpWoKRBD5BRiBUw7QpNfg0+sXQogHTMZ + LOKrQhWS945jtmJqksHoeA+WSIUR/JVtSYF0VpKPYdErwo02Ou6fH59yoooapi691KJ9U5dilx1Z + 26Blzgu7ZD7BdQqlQZ2i58en7wlt1BGj3hFQLkdpF42aUQWRQgRidnwC2qriZhu43e5fGMHxUX8g + bF0yCjbUlYTUJ6A8HbbEe358QqV0/lnmo3bcFgAUBcl605P7PEgyGXxDf4sBWlQ0guV/ytKNls/j + u6PcWE8c97k+B6EV3G4pN60TlMe1d7SAMh4cJYUA0iDrep/1lAZkvYqkDtrZYTevo5WoumVgMrRD + K2kdpGPKSzEZr+zD8Qox1SlgXmCbjDkC0FoXu27k5f12QB5e17XWVoftOkt3Nq9giM6Lgj4MAL6V + 9U9vNlp4dq2P6+huqNBOpufzjlD0B6eH5x9/OqDRRTQ9MB1/nFTvUK4VRdQmHN0QIVFuSR3FnMym + r0lgUtr12HhwlOP/Jb1H3+WvbdOzzOanPwzQAzIvEql1P0bvmTHls/wjs9dqF8kiEO+0pHXUxLkj + impMpjuZIuxDpHZda9vkCdXlbuamDx4G/wIAAP//AwAuFFJPNAYAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac01769152393-SJC + - 9953e3df8b8cf98b-SJC Connection: - keep-alive Content-Encoding: @@ -3832,231 +4083,80 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:10 GMT + - Mon, 27 Oct 2025 17:25:08 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=9yKxd72AQ4K.7KrC21.RpdFkt0hFfkwVP3U4trDto0Q-1761585908-1.0.1.1-kzcyBM_S3jMC8JeIHiV5_NNMQvgbjJInMCwu5eDEhD5Ti9lDGQvE7gAe9LkEOWRi.QE3WqC2J.jOGPj2t0iOE9ZkB.Pf7Xf6Jr7u7GQUTC8; + path=/; expires=Mon, 27-Oct-25 17:55:08 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=6iWs3t.FZ47h_.IchkcWQhvNugfaIOLzL0UXX.X47nc-1761585908834-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:07Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:09Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:07Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsM82mftfHrHDgxeDH - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "9260" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4418" + - "9315" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998470" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_2527ca40a08748ec878ea328a868d5b4 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6414" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RUXW/sRAz9K9a83FbKLtu9rVDzVgEPlRDiBYHEXmWdGSdxmcwEj2c/qPa/o0nu - 0hbEUxQf+/gcO86rGaMjb2pjPWZHqxRDIF3drx5W2832YfO4fTSVYWdqM6a+2dzdv3w+5F+34y/8 - 7em7n+Tx5a9+ytZURs8TlSxKCXsylZHoSwBT4qQY1FTGxqAU1NS/v17zlU4FmR+12e/3LymGXXjd - BYCdSXkcUc47U8PO/Pb0DIXJJeiiwA+nySMHbD3B0zPcfHgX5Y4to4fnoOQ99xQs3a7hWWGSeGBH - CRCOeAaNgIfIDnQgUEFHq9h10JIeiQKgtVnQngGDAw5KMgkptuxZz8ABHNEEnlAChx7meS4C7UAj - W/Sl4USiZ5iEHFvlGNZQ3FgM0BIcmI7kAIsiPcZVUppKkaWUauhYklbg6EA+TqUHXlUpQZsVcnin - yxN8/+Mio5o1J7IxuArQuVJMZUwBi4hUvL9pSmt4Cu9x4AR0UkHg0EUZl6AOqNDzgRLM+zzp3MZi - TjT7/sBYbI6kQ3Tpatf68k10vFjufWzRQxTwsQzrzcrMsHjABMQ6kBRYOCS2cNNm9loCcV7dV8uf - jgMrrdp4+nRbWIuBueCbKSZdDdHCDU6Tn9t3SlJ2zvPuypcQzgvR7Rp+vuZf9XfR5gRlLleN7zau - g8TcD29sDhVn8R2hZiFAVeE2F1sVpCwS+7LBpX7xaWMu1B1azctQyogFk/KBPqxuvTPVciNCng4Y - LDXJRqFyK3ebXbjswn6/N5cvlUkap0YIUwymNhRco1mC+Qok+jOX4zB1yN5XJs/3W78aDlPWRuMf - FJKp7+63m8pYtAM1VmhW0XxM+QcXQvd/2LW2dKBpoJEEffMw/jf/Db0b/o1eKhOzvg9tN58rk0gO - bKlRJjG1mf8WKM5cLn8DAAD//wMAoDDqdeoEAAA= - headers: - CF-RAY: - - 991ac01768291746-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 18:59:10 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:07Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:10Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:07Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxsM6nsXMzpWd29i5NF - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "4836" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity + relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) + Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n + \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, + R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials + science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding + with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, + 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities @@ -4112,53 +4212,68 @@ interactions: Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6455" + - "6402" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA4xT72sjRwz9V8R8SQtrk5imxfvN6aU9QwtH6NGDutjjGXlX51nNRtL4EoL/9zJb - h95dKfTTgJ5+vPekeXFDjphc60LyJeJMMzPa7LvZ7Wxxvbi9Xi6WrnEUXesG7bbXN4v3/uH7HH++ - W+L9j+Wnfffrm7fHX1zj7HnEmoWqvkPXOMmpBrwqqXk217iQ2ZDNtX+8vOYbPlVkelq32+0+auYN - v2wYYOO0DIOX541rYeM+rNZQO0WFQxa4fxqTJ/b7hLASowMF8gnWbJgSdcgB57AKIUsk7sAyWI8g - eECpmEIgwwjEYD0p4FNAGa2BOgY55GH0qjUtc8DRtAHzT5nzQKgN5HHMYoXJCBU8Rwi9Twm5QwXL - n7xEeEAdMytNDNdzWBsQn3I6oULEA9XizNrAgNbnqM3Ux49jouAnqLIjNpRR0Calgw89MUJCL0zc - zeHN6uHdCnpfWfwfU+CbD6v1t/BOcid+mE96DUPP9FiqFBqqV6PkE0UErA35wqbS+1h0ansJ1U18 - zQlGwUjhIq7HNNZgURSFwhFl2iLskw/H2T4/wXSEn1fN4bce4UCYIvgYBadNmBStFoIvloeJQAN7 - 8gqkWvDin2BXkrcszyD4WEhwQDaFREecTuC+SB7RM7xnynylrxWTnszgU5eFrB8oQMRASplngz9W - EXXAlVDXWzXpM3OaK/AKnzCl+tYxv/dkCG9zUbxSuEsFRyG2yTHPsFrDHaUE+QAPtZ/ON675++oF - E548B9xqyIL1+pcbPm94t9u585+NU8vjVtBrZtc65Li1IuwugOJjqYt2LZeUGlemD9m+OOKx2Nby - EVlde7Nc3jYu+NDjNghOKrZfply/4oI+/hf2Wlsn4NjjgOLT9nb4d/4/6E3/NXpuXC72Bb8fFo1T - lBMF3BqhuNZNh+MluvP5LwAAAP//AwAT2c4duwQAAA== + H4sIAAAAAAAAA3RUXWsrRwx9968Q+9SC7Tohdj7ektuUGhIo96P0Ul/MeFa7q3h2ZitpnJgQyH/o + U6H9c/klZWad2KX3vhi8Rzo60hnpcQBQUFlcQGEbo7bt3Ojdrzc/3bXV6b3Ob6/m7rO9+uDu7uau + +nwcm2KYMsLqDq2+Zo1taDuHSsH3sGU0ion16HR2ND2bnp2fZ6ANJbqUVnc6mo6OJ8fT0eRsNDnd + 5TWBLEpxAb8PAAAe829S6Et8KC5gMnz90qKIqbG4eAsCKDi49KUwIiRqvBbDPWiDV/RZ9OPCAywK + iW1reLsoLmBR/HY5h5RTClSB4fqhc4a8WTmES1aqyJJxMPeKzlGN3uIY5groU/NGBAVs8BY7lSGo + eQg+tIQyBONLsI1xDn2NAhruDZfAKF3wQpl/PoR70gY6DjWbVsDRGuHHy/e/XL48/yWQtCWaxvhy + FcJaUmQXhHwN0VNFWELFpsX7wGsZ5/gSN+hCJ9CiNqFMhaE161Tth9sbyE5Ax1iSTcYJRF8i5wnk + plO9uyip8/R/CFUQRU4lTZfKMxlFUI6iOZjRkclj+Yi28fRHRAHy1sUSwQVrnNtCZUibKjqQyBzq + xJCVCHyH43o8hJv57fX3mY985WKaM1TR7zRqAOyNgZUzdj1ahQewLvldEbKM4TYobUwf/Vq8REWr + SfmKjGRyaQKrjQoODfsE7eq/c7hBhp+NF8CqQpvsrAyxRxEoSTrDpITSi8wvf5vyewODI7vdjaOO + LgsBibYBI6ANwvUneHn+m6lu9K0bn8Nenv/JiSnq0/jDGC7ncEXOQajgfYrfGfvqp2FMTrhkvrEc + krzQGvIy3HWeZKFHrntFXbhHBtmKYpveaADyitwxKohytBoZX57/NFZpQ7pNjvaTbKjrxxa0QT58 + NeNFMeyXidHhJvm/FBsY01KdL/zT4QYyVlFM2n8fnTsAjPdB+1Jp97/skKe3ba/IkzRLRiPBpw0W + DV2R0acBwJd8PeJ/DkLRcWg7XWpYY6Y9Op0e94TF/l7t4bOjkx2qQY3bA8fT2Wz4FcpliWrIycEJ + KqyxDZYHNWezk7cmTCwp7LHJ4KDH/0v6Gn3fP/l6zzI7mXyzwB6w6S5hudw797UwxnTVvxX2Nu0s + uRDkDVlcKiEnR0qsTHT9xS36R7asyNfpgVE+u8n0wdPgXwAAAP//AwBiEcETcwYAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac0176d5ece38-SJC + - 9953e3df886015e3-SJC Connection: - keep-alive Content-Encoding: @@ -4166,252 +4281,102 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:10 GMT + - Mon, 27 Oct 2025 17:25:12 GMT Server: - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:07Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:10Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:07Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJxsM82spWc17GUtXaWM - strict-transport-security: + Set-Cookie: + - __cf_bm=rguef7KhO4K_l1fvSB.H.BBINqzzKXPgpDBBSXcarHk-1761585912-1.0.1.1-kamoJys6ttuUxs935jEFZplOCpHJmxO4KfmtZ6UOhqei2m8Fk59y4DNSPI0_YZCKkeX7BVDvuFBTuBZyFFW2EcZ_Q3zuyDMyaJYmz8mCuaQ; + path=/; expires=Mon, 27-Oct-25 17:55:12 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=j5zHpDVi_tnw4Auay7CWaM3nQpH66_yjKYubbPPxSug-1761585912162-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "4857" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame - optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named - Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness - via exposure to adversarial examples. While there are\\n\\nconceptual disparities, - we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras - to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "51146" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA3RTXW8bOQz8KwRf0gLrwHEvKLJvQZCHosgB1x5w7Z2LtVZidtVoKR1FtTEC//dC - a7ut+/G0gIZDzgy5TzhFRwFbtMEUR4scmUkXfywuF6vl6nJ5tbrCBr3DFqc8dMuLP1/c/PVmpeX9 - azf+e/v2it/zP36FDeo2Ua2inM1A2KDEUB9Mzj6rYcUGbWQlVmz/ezrWKz1WZP60uNlsPubIa35a - M8Aac5kmI9s1trDGd9evQOieJINGuH1MwXg2fSC4FvX33noT4BUrheAHYktwHwUcUYJARtjzALPd - DJ7BjjT5rLI9h79HAnq0JEnB+WxLzpShjptIx+gy9GTjVPmerZDJnoewBT+lKNXaPMizkiQhrXV9 - MPZh0cfH40TDDmwN1844VfVs1Eee3WSVYrUILZLERKJbEAp7fPQpn8PbRLaa3DdcmIFjVm9PZE7E - lUGu6gzFEZzdxUC2BCNwV3lwfeTdxFIF3xurxYR9nAdBZ/Ds7u765vb5rPrskPQ+vmO3g0xPGT57 - HYGNFjEBguGhmIHOz2qsmWZ9JiWJxo6UwQhByeSq6a+J/XpJ/RYGYhIzJ2ZP9Z4EWGU6ylZ80ig/ - hDsahZFCgsKOpJ6ig8/j9jhlMg8ElkSNZ0hCztuZ2EAyon52W3fN1UXw9tA2+AeCPsToFr1Uam9E - PAkkkonmollWjqH0Pnjdftf8fI3N/sCFAn0ybKnLNgrVQ79a827Nm80Gdx8azBpTV08uMrZI7Dot - wngAMv1f6qVjyyWEBsv877VP6DkV7TQ+EGdsL15eLhu0dQNdvd+qoTst+YoLGfc77MitEyiNNJGY - 0F1OP9d/Qy/GH9Fdg7Hoqb5lg5nkk7fUqSfBFudFGXG4230BAAD//wMACXGGq6YEAAA= - headers: - CF-RAY: - - 991ac0344c1a2393-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 18:59:14 GMT - Server: - - cloudflare Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:14Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsh8oRDA2L9vsNCGJ2 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "12559" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4527" + - "12619" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998473" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_baea498390b04e90a9eee7e426a25895 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 22-25: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nut - to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nthe correct underlying chemical principles. We - also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to - structure-property relationships without needing to trade\\n\\nbetween accuracy - and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, - that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n - \ 22highlighted below:\\n\\n\\n \u2022 - Explanation representation: How is an explanation presented \u2013 text, a molecule, - attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: - \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n - \ tance\u201D between two molecules is minimized. Molecular distance is subjective. - Possibil-\\n\\n ities are distance based on molecular properties, synthesis - routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: - As black-box models move from research to industry, healthcare, and\\n\\n environmental - settings, we expect XAI to become more important to explain decisions\\n\\n - \ to chemists or non-experts and possibly be legally required. Explanations - may need\\n\\n to be tuned for be for doctors instead of chemists or to - satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space - is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D - can be defined from purchasable to synthesizable to satisfied valences. What - is\\n\\n most useful? Can an explanation consider nearby impossible molecules? - How can we\\n\\n generate local chemical spaces centered around a specific - molecule for finding counter-\\n\\n factuals or other instance explanations? - \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations - and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is - a lack of a systematic framework (quantitative or qualitative)\\n\\n to - evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n - \ framework, or should explanations be chosen and evaluated based on the - audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts - to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s - logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 22-25: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nut to models informs the + XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain + molecular property prediction models because users are more\\n\\nlikely to trust + explained predictions, and explanations can help assess if the model is learning\\n\\nthe + correct underlying chemical principles. We also showed that black-box modeling + first,\\n\\nfollowed by XAI, is a path to structure-property relationships without + needing to trade\\n\\nbetween accuracy and interpretability. However, XAI in + chemistry has some major open\\n\\nquestions, that are also related to the black-box + nature of the deep learning. Some are\\n\\n\\n\\n 22highlighted + below:\\n\\n\\n \u2022 Explanation representation: How is an explanation presented + \u2013 text, a molecule, attri-\\n\\n butions, a concept, etc?\\n\\n\\n + \ \u2022 Molecular distance: in XAI approaches such as counterfactual generation, + the \u201Cdis-\\n\\n tance\u201D between two molecules is minimized. Molecular + distance is subjective. Possibil-\\n\\n ities are distance based on molecular + properties, synthesis routes, and direct structure\\n\\n comparisons.\\n\\n\\n + \ \u2022 Regulations: As black-box models move from research to industry, healthcare, + and\\n\\n environmental settings, we expect XAI to become more important + to explain decisions\\n\\n to chemists or non-experts and possibly be legally + required. Explanations may need\\n\\n to be tuned for be for doctors instead + of chemists or to satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: + Chemical space is the set of molecules that are realizable; \u201Crealiz-\\n\\n + \ able\u201D can be defined from purchasable to synthesizable to satisfied + valences. What is\\n\\n most useful? Can an explanation consider nearby + impossible molecules? How can we\\n\\n generate local chemical spaces centered + around a specific molecule for finding counter-\\n\\n factuals or other + instance explanations? Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n + \ to explanations and the local chemical space.149\\n\\n\\n \u2022 Evaluating + XAI : there is a lack of a systematic framework (quantitative or qualitative)\\n\\n + \ to evaluate correctness and applicability of an explanation. Can there + be a universal\\n\\n framework, or should explanations be chosen and evaluated + based on the audience and\\n\\n domain? For example, work by Rasmussen et + al. 58 attempts to focus on comparing\\n\\n feature attribution XAI methods + via Crippen\u2019s logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch reported in this work was supported by the National Institute of General Medical\\n\\nSciences of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated @@ -4445,52 +4410,67 @@ interactions: (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6442" + - "6389" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTTW/cOAz9K4QuTQBPMBNkkNa3dtFD0NMCu0CxncLDkeixtrKkJal0vMH890J2 - 0jQtejLkR/J9UHowY3IUTGtswOJoJSlG0tXNaru6Xl9v12+u35jGeGdaM8qxW2/++PinxNsbPb37 - x324nf7W/7e309Y0RqdMtYpE8EimMZxC/YEiXhSjmsbYFJWimvbTw1O90qki86c1+/3+X0lxFx92 - EWBnpIwj8rQzLezMx7d3wNQTC2iC96cc0Ec8BIK3d3Dx4szqe289BriLSiH4I0VLl1dwF0EHglnI - SSH1MKZAtgRkyJwysU6QmZy36lOEOR5poHJ7gSLkKjktZHAIaL+sDukEjihDIOTo4/Gx7Qr+Gggy - ZmJwXmwRIQEdUOd5I+mQnIDFCAOFXKdXb1xEf9AggNEB1l4B3z/OBmR65rOJmayCHWj0FgNk9tH6 - HEiuZi7MmRPagQR8XMpEeQIfbSiuBlKiEvdotWCAI0VirOwN9IRamABV2R/KEssivZml3SP7VGQJ - Jc5dwJSZhKLiYuGixt08hU2183mcNHUhlrLK5ZIZFh0SC6C7TxaVoE8MCK+e855TqNZ7z6IN9CmE - 9JUcHKZq+NV3x4ACCBl1qIsT5WKrndX3bTOFReTgs8BXr0MqCsro6ni0tjDaaVbga0aZSfHgg9fp - amea5aIyBbrHaKkTm5jqhd2sd/G8i/v93pw/N0Y05Y4JJUXTGoqu08LRPAJC/5V6RU0bSwiNKfMj - ah+Mj7lop+kLRTHt5nZz0xhbF9lZpll397Jk/YQzofsd9tRbGSgPNBJj6Lbjr/XP6Gb4GT03JhV9 - oW/7ujFCfO8tdeqJTWvq43fIzpzP3wAAAP//AwA7rP/VbwQAAA== + H4sIAAAAAAAAA3RUzW4bRwy+6ymIPSXAypBUK7Z1C4K0MJBDWxRB0SoQqFmudqrZmSnJkb01DPQd + +oZ9kmJmZUlBnYuw4s/Hj/yGfJoAVLapVlCZDtX00U0/fP70Pf84/+tu8eGz//lj3//w0S78/jf/ + 0/WnP6s6Z4TtH2T0JevKhD46Uhv86DZMqJRR5zfv5svb5d3spjj60JDLabuo0+V0MVssp7Pb6ezm + mNcFa0iqFfw+AQB4Kr+ZoW/osVrBrH6x9CSCO6pWpyCAioPLlgpFrCh6reqz0wSv5Avpp7UHWFeS + +h55WFcrWFf3HrSzAqaj3oryMG2DSUINRGKJZNQeqIZf39/DG3qMDq3HrSN4f/8WmFpiAQ3Qk3ah + EdAOFY5hEJkaa/J4BEILW4dmP92GR+iDI5McMkQOkVgHKBMqULaPHA4ESYhBOYkC+gYOxLYdxgLH + YEfIHkxgJqNjAwYdRLbe2OhIruCXjgCTdoEFsDkEg0qgjNZbvwM0JnG2XFIr0K1l0Rq0Iw8Yoxty + eJ6BBmiI7YFAlJPRxPTv3/+c2mByWBrubBR4sNqFpCBo2LbWnGuaoXAboLO7ztldp7CnoVSwIolk + BV14GCfpR0RAJmCKTEJeqYE3So9aXwzzxEhqaAnzF6Aq220qCDWY4A1Flbc1NNSOQzjnN+XxGII2 + MJiQvBK3aDShkxqYdsmhBh7AEzVFqxelGzJWCsnRSKxSVPPBT4//a3DW73PFr7rSAC5k2U76SURD + JRvz47M6gHG2baUuRu0Islz5SSEkbw/Egg5axp4eAu8LhwO6lJW9qPXyUjzJSC4Law1urbM6XK2r + elwPJkeHPIeNmMCU1+Ru7Z8vd4qpTYJ5o31y7sKB3gcdO8vb/OXoeT7tbx66dBsmlODzToqGWBXv + 8wTgS7kH6asVryKHPupGw54K7Hw5vxsBq/MFOruv54ujV4Oiu8i7+25evwK5aUjROrk4KpVB01Fz + kXs9uz01gamx4eybTS56/D+l1+DH/q3fnVEWy3ffLHB2mPx+qdmcb8trYUz5Tn8r7DTtQrkS4oM1 + tFFLnBVpqMXkxhtaySBK/aa1fkecL4seRZ88T/4DAAD//wMA89tWWUUGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac0330f5eebed-SJC + - 9953e413ac8567be-SJC Connection: - keep-alive Content-Encoding: @@ -4498,58 +4478,68 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:15 GMT + - Mon, 27 Oct 2025 17:25:15 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:14Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsfxcDDCqCsEUwQwSA - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7187" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "5027" + - "7210" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998475" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b71e8cecdd8042bd81c05034e3f8f15b status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. - Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of - molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nnterfactual approach, + contrastive approach employ a dual\\n\\noptimization method, which works by + generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive + explanations can interpret the model by identifying contribution of\\n\\npresence + and absence of subsets of features towards a certain prediction.36,99\\n\\n \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual generation can be thought of as a\\n\\nconstrained optimization problem which @@ -4609,51 +4599,67 @@ interactions: al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6399" + - "6346" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFJNa9tAEP0rw1xykYOd2vnQLZSQ5tCcCg3URZ7sjqNtV7PKzqyJMf7v - RXJN45aeBPve6H3wdtglzxFrdJGK54kmEbbJfLKYXEwvFtObixusMHissdOXZjq7//p0eRf8/Or+ - 0+vj9aObX352C48V2rbngcWq9MJYYU5xeCDVoEZiWKFLYiyG9bfdkW/8NiDjp8bVavVDkyxltxSA - JWrpOsrbJdawxKfbB8i85qxgCe7e+khB6Dky3D6cw5eWgd8c597AB3VFlRWGm46tTV4hCLiWu6CW - txVozy6sg6MYt9CxWEgS5AWsJYOzj6mIcV6Ts0JRgQc1oYGk0NKG4Zld6hgIivK6RLCUIqxTHiVP - pUjBWt5Cn9MmeIYgVoKFDUMRz3loxw/SaQ19Zh/cQYbEA2WGMaIlKOLShjNoX3JIRSFzPDhqQz/G - s0xhDOHJ6Pxs7GRoFjyry+GZFTZ0uH1fzOC6S5FdiZTfWYBxHFpBEBfLaNGd9PK+FjB2rYTXwgfn - fVKbtMmdqIThuM9sw786cm0QhsiUR9ej3EkFxx4dRaC+j8EdAp8vsTosJHPkDYnjRl3KPCzlein7 - paxWK9x/r1At9U1m0iRYI4tvrGTB34Dya2FxjLWUGCss43jrHQbpizWWfrIo1rP51U2FjlzLjcs8 - mmhOKdMjnpn8/7Dj7aDAfcsdZ4rNovuX/wedtX+j+wpTsRN/H2YVKudNcNxY4Iw1jrOi7HG//wUA - AP//AwBhGnUL5wMAAA== + H4sIAAAAAAAAAwAAAP//dFTBbhs3EL3rKwY8JcBKkFTIcnQTDMdIURsomrYBqkAYcWeXE3NJghwq + VgwD/Y3+Xr+k4K5iKY1z2QPfvLcz82bmcQSguFYrUNqg6C7Y8dUfv7yVxTr+/Gl2czdb7z3+quMd + 5Tz77c/fVVUYfveJtHxlTbTvgiVh7wZYR0KhojpbXswWl4s30zc90PmabKG1QcaL8Xw6X4ynl+Pp + 8sgznjUltYK/RgAAj/23ZOhqelArmFZfXzpKCVtSq+cgABW9LS8KU+Ik6ERVJ1B7J+T6pB83DmCj + Uu46jIeNWsFGvTcE9KApBoGcKMGH9TtgB2IIeuqDgG9AG+o4STxU8NlQLJxgkR3u2LIcgBOgNkx7 + qmHPCNpnJxQb1JLRArq6V4uYhPdHtsPSujSBq2+Dz0EI0e+5JmAnmQu3Aus1WnjFrtSqaWxpT/Z1 + BagLBXe2RCdujaRC89C3H0KkmvWgujsA1+SEmwO7Fjp23KGFhlByJNAGXUsJxKAAWqEIPov2HSV4 + RZN2UkGkYFEXMoI51NEH43esoY0+B/jMYk4AW9bgHYF4YFemJBEkb/PQvNcTeG/oABgJWnIUyxBB + 8EnGxmsQE31uTelfkojsqAYfhDv+0vdoyLKxHBIgaFumoGE9YD5CMtxIgSK1kVLqn7OELBO4JTG+ + TmD5nuDq7fjm7u56MJZiBbfXN1Vv3e3t+ur6OTfovCWdLcb/2ZwqQO5KT/pChWKIJMf216Q59c0v + itlpv6cIKeTIPieIZAfHTamjDGAptWjVKFgBW5tL+VKePqzf/fv3PwlCjsEnKgPa4X3v5HdWZ1dT + LJNSl8mYbFQ1bEEkS/syP9ukfaSyDRcb93S+OpGanLAsrsvWngHonJch3bK0H4/I0/OaNuw4mW1x + 2ruyekl8UD36NAL42K99/maTVYi+C7IVf0+97Gx+uRgE1enQnODlT8sjKl7QnoD5dD6vXpDc1iTI + Np3dDqVRG6pP3NOhwVyzPwNGZwV+n89L2kPx7NqTymJ58cMfnACtKQjV25OLL4VFKrf4R2HPre5T + VoninjVthSkWO2pqMNvhTqp0SELdtmHXlonl/lgWx0dPo/8AAAD//wMAIIDCKikGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac0375d971746-SJC + - 9953e41b1fb2f98b-SJC Connection: - keep-alive Content-Encoding: @@ -4661,56 +4667,66 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:15 GMT + - Mon, 27 Oct 2025 17:25:19 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:14Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsizAvfR5XEotnBYNv - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "10225" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4382" + - "10250" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998478" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_dd59449532ab497cb7af5c29425d8ae0 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, - Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular - prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, - Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented - with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) - \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 8-9: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\nrepresented with equation + \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) + \ (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) \ where \u02C6f(x) is the black-box model and are used as our attributions. The left- \u2206xi\\n\\nhand @@ -4775,52 +4791,68 @@ interactions: subgraph importance for small molecule activity prediction. On the\\n\\nother hand, similarity maps compare model predictions for two or more molecules based on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6454" + - "6401" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJNBbyQ1EIX/SsmXBaknSiJmRfoWlmXJgRUHhBYxqMdjV4/N2GVTVZ2d - UTT/fWUnIwiIU7f7lf2+eq5+Mrl4TGY0LtnF40oKEerqm9V6dXt9u76+u70zg4nejCbLfrq++e7n - X9/+Rj/q/Xu/HNc/vOO78n09msHoqWKrQhG7RzMYLql9sCJR1JKawbhCiqRm/P3pUq94bEp/jGa7 - 3f4phTb0tCGAjZElZ8unjRlhYz7dPwDjjCygBd4fa7KR7C4h3D/AV/jpH2vWOEcXbYIHUkwp7pEc - fn0FDwQaEDrIUaHMoCEK4NEhVx2geUSBRdA3k0iKXBkVLHnAZ0uojD46jYUEZi4ZsnUhEkJCyxRp - Dz1VGaBa1uiWZDmdIBK4gDmK8glsrSk62w+5gl8CQgfKSM/nvnElV8aAJPERBygVaSVlYYcdcofk - QrZ86GFcyD58/CgdtWhAhj3bGmBnWzcvSG/gc0BGeLQcyyKQUUPxAikeEN7d/zS0Tb6/SC5Fwwe2 - fuhB7Nkq+q5HJJWhO1nVZ2bI6IKlKFnAcss4V8voYS58AWzZlEVdySgtfJfaeMwvQfTzGPeMIm2p - Vg5y1du9YAZMFRbyyG2mPITy+aUzyPaAr65md2pwHHeLNt+Ya2G15LAl5uM8IyMpRKqLwoxWF25U - 3MkLtRavNmZ4nkTGhI9t8ySuMLaJvNvQeUPb7dac/xiMaKkTo5VCZjRIftKFybwIgn8tbQTNSEtK - g1n6TzI+me4+aTkgiRlv3t5+OxhnXcDJMfZUptcl1xed0fr/0y57mwPWgBnZpmmd/1v/t3oT/q2e - B1MWfcW3Xg9GkB+jw0kjshlNvwjL3pzPXwAAAP//AwDgWJZBTwQAAA== + H4sIAAAAAAAAA3RUXU8rNxB9z68Y7RNX2qTh6wLhCdFCUSm6ahBCaq6iWe9kPcVru/YYSBH/vfLu + kqQq92W18pmPMzNn5m0EUHBdzKBQGkW13owvH26vXujq/uHS0W+H06uTqX7EMzdN6mC+Lsrs4aq/ + SMmH10S51hsSdraHVSAUylH3T77uH58en+0fdEDrajLZrfEyPh4fTA+Ox9PT8fRk8NOOFcViBn+O + AADeum9maGt6LWYwLT9eWooRGypmGyOAIjiTXwqMkaOglaLcgspZIduRfltYgEURU9tiWC+KGSyK + GwuiOUJn9iolPF7cwB69eoNssTIEFzdfINCKQgRx0JJoV0cQjQItPhFUBtXTuHKv0DpDKhkM4APV + rHJnoKs9Aluh4ANJF7NaA4oErpKwbXobcEl8ki4L2/w3gQvvg0OlKQdQJtU0gyZgzWRlXGGkehvH + 2Qh7NGkmZZesCXkWG+tYdr+XF7+XMG+dE30dsC6he0DJLWJnv/R1URRuUQi0ewGl0TYdASBUGlaE + kgIBrlakBETTwPy8r2OMjXVRWEFMVRPQaxjamVu4cgGu7+4i7F3f3f3y8V7CfLB9HChwnRmt1sCt + dyEPNYeLEpLK2eM5VKiefHB+6MPHYPZ+JvK3N1f3Jdz+8W2Ilu2wyRUFMvSMVhGIDi41GgyuKcRz + QFvD/NeLbyW8aFYaUqQIc43e0Bqe0STqRpNFn4QA65qFn2nTj6ygzSQm8MAxoeF/sFOBOGc2M4SI + hsmqNbToIxi2T1kFllJAAyu2TZYK210tdPQit2wwsAyePrhnrrMvimtZwQtxo7Nw7jVF6rQspLTl + vzN76gVtnELzU2NchaYfjcVePjlHRVbpFkNHKU9LaWo5SlgPUp4sirJfpE0vl1G5QHmhThb2fXf7 + Aq1SxLz7NhmzA6C1Tvq0ee+/D8j7ZtNXbDnqZSCMzubtjeJ80aHvI4Dv3eVI/zkGhQ+u9bIU90Rd + 2P3Ds7M+YLG9VVv46+HxgIoTNFvgYHp4VH4SclmTIJu4c34Kldez3vpubxWmmt0OMNop8P98Povd + F8+22UY5Ojr9YYItoBR5oXq5vUOfmQXK5/xHZptWd5SLSOGZFS2FKeRx1LTCZPpTW8R1FGqXO9Id + Jj56H/0LAAD//wMALbRli2wGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac0375a2cce38-SJC + - 9953e42fbf1715e3-SJC Connection: - keep-alive Content-Encoding: @@ -4828,166 +4860,382 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:15 GMT + - Mon, 27 Oct 2025 17:25:20 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:12Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:15Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:12Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxsizvW1U3vfbAXH69B - strict-transport-security: + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8257" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "8277" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998462" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_5a4a920bc02e42bf8689efb843bab60c + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatte2023aperspectiveon + pages 28-30: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, + C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions + of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n + \ 27 conference on knowledge discovery + and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, + P.\\n\\n Explanations based on the missing: Towards contrastive explanations + with pertinent\\n\\n negatives. Advances in neural information processing + systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable + AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms + Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference + on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; + Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n + \ ating Black-Box Model Explanations for Prediction. 2021 II International + Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; + pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, + K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials + Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) + Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n + \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) + Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable + AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, + N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design + and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n + \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; + Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; + Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n + \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n + \ 28(44) Lundberg, S. M.; Lee, S.-I. In + Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, + U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, + R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, + E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n + \ with feature contributions. Knowledge and information systems 2014, 41, + 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: + Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; + Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art + and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge + Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, + R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n + \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge + dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, + O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n + \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, + T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; + Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n + \ sion tree models to classify nanomaterials according to the DF4nanoGrouping + scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; + Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n + \ models from mining chemical structural fingerprints and high\u2013throughput + screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) + Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, + A. Regu-\\n\\n\\n\\n\\n 29 larizing + black-box models for improved interpretability. Advances in Neural Informa-\\n\\n + \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, + X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n + \ ter reasons: Training differentiable models by constraining their influence + functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. + 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; + Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method + for identifying the best low-dimensional descriptor in an\\n\\n immensity + of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) + Lipton, Z. C. The mythos of model interpretability: In machine learning, the + concept\\n\\n of interpretability is both important and slippery. Queue + 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, + M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships + in real-world drug design data sets using explainable artificial\\n\\n intelligence. + Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6378" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RUTW/bRhC961cM9mQDlCsZUez4phppqyIBGqQoDESBMFoOyYmWu+zOUJZi+L8H + u5QlBUkuEsA3H++92ZmnEYDh0tyBsQ2qbTs3vv/v3R9fd7+HDx+qVzvezB/4cf/3Y/Mn3XO4MUXK + COsvZPUl68qGtnOkHPwA20iolKpOb15PZ7ezN9NZBtpQkktpdafj2fh6cj0bT27Hk0NZ2wS2JOYO + Po0AAJ7yb2LoS9qZO5gUL19aEsGazN0xCMDE4NIXgyIsil5NcQJt8Eo+k35aeoClkb5tMe6X5g6W + 5t+GgHaWYqcQqaJI3pLAY4gbCB7e7jqH7HHtCOYLuHiYLy4LYF+yRWVfgzao8DBfDMkCGqAlbUIp + UIUILW5SVIu2YU/gCKPPH5IjAuhL0IY4QhepZJu8FOh9STEJKVPfK1goNFw3jutGBWiLrscUCaEC + SgQ9Domp49qh3YzXYXfoUSQ+ke3QrIrYUhI3BCfishelVoqMl6FF9oBd57LCVPWiRaXI6ATEcvKn + ANtQy6Jxn8qXbNnTZSZqWUng41/zf3772GDnaD9eo1AJFaH2kQBVI6/7XDo5qeQc15wMPhJO/0A7 + jZgdKaAky5IUayQ6UFWyjef/e8qmR6p7h5G/vpTJ+rjtYthSmfvELpLimh3rPnNFJ2lafpCpITiB + i/vF+7eXOTlZG2KaVlZr0R2ZnXmeqEgft7QXKFlsLzKkoHPkaxoiuhikI6sC7JPrV3AfnCOrvCW3 + L9IjEILDYNKM8mhQ0iRiQNsMKo8yCvjSi3K1H7w4vAmC9+8OHF8ck6ulKYZ3H8nRFr2lldgQKb3/ + N0v/fL4skapeMK2q7507A9D7oIPitKafD8jzcTEr9izNKhJK8GnZRENnMvo8AvicF73/bndNF0Pb + 6UrDhnLZ6c30dihoTqflBN9ODnfAaFB0J+B6dsz7ruSqJEV2cnYtjE1elqfc02nBvuRwBozOBP7I + 52e1B/Hs61OV169+3eAEWEudUrk6HYGfhUVK1/dXYUerM2UjFLdsaaVMMY2jpAp7N1xGM6z8qmJf + p+fE+TymiY+eR98AAAD//wMANURvhhsGAAA= + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e4422eeb67be-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:26 GMT + Server: + - cloudflare + Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "11486" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4466" + - "11511" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998476" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_8b2a753828be4c0aab9b2e7b906a81b9 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatte2023aperspectiveon pages 28-30: Geemi P. Wellawatte, Heta A. + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + from wellawatte2023aperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\n - M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining - the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD - international\\n\\n\\n 27 conference - on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) - Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, - P.\\n\\n Explanations based on the missing: Towards contrastive explanations - with pertinent\\n\\n negatives. Advances in neural information processing - systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable - AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms - Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference - on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; - Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n - \ ating Black-Box Model Explanations for Prediction. 2021 II International - Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; - pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, - K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials - Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) - Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n - \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) - Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable - AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, - N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design - and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n - \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; - Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; - Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n - \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n - \ 28(44) Lundberg, S. M.; Lee, S.-I. In - Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, - U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, - R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, - E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n - \ with feature contributions. Knowledge and information systems 2014, 41, - 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: - Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; - Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art - and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge - Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, - R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n - \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge - dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, - O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n - \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, - T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; - Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n - \ sion tree models to classify nanomaterials according to the DF4nanoGrouping - scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; - Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n - \ models from mining chemical structural fingerprints and high\u2013throughput - screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) - Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, - A. Regu-\\n\\n\\n\\n\\n 29 larizing - black-box models for improved interpretability. Advances in Neural Informa-\\n\\n - \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, - X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n - \ ter reasons: Training differentiable models by constraining their influence - functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. - 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; - Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method - for identifying the best low-dimensional descriptor in an\\n\\n immensity - of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) - Lipton, Z. C. The mythos of model interpretability: In machine learning, the - concept\\n\\n of interpretability is both important and slippery. Queue - 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, - M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships - in real-world drug design data sets using explainable artificial\\n\\n intelligence. - Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + This article has 52 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nsame + optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named + Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness + via exposure to adversarial examples. While there are\\n\\nconceptual disparities, + we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras + to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6431" + - "51105" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFNLb9NAEP4ro7kAklOlVQPEt4KQKKJwoAckgpztemIvWc+6M7tpqij/ - Ha2dUELFydp5fY8Z77ALNXks0XqTappoYKY4uZzMJhfTi9l0fjHHAl2NJXbaVNPzj5zm9+nLurmv - w7xP837jbt99wgLjY0+5ilRNQ1igBJ8DRtVpNByxQBs4Ekcsf+yO9ZG2OTN8Slwul7808IJ3CwZY - oKauM/K4wBIW+P3qGvKkWmEVBD5se28cmztPcHUNL0/eEt3KWWc8XHMk711DbOnVGdy2BLS1JH0E - oRVJjit0yUfXe4KHIGuFwJDRaGN8MtEFBsM1mL73zg5vLcCx9al23Pwp4wbuvLHryV3YwmAsUCbF - x5Y80zF0VDtrPLjONLkpGl1rMUB0FMXZUSCdCDyDr0xPlEF7slmj8f4ROuIBAl5kudILxaEtj/zb - lxtjW8cEn8kIZ+iMc2MiiTNe4Zt1w+zc9r6lzmmUx+IFOK4H3dwcJGyC32TXzDrHusNUf5w6aFfo - ghC4Z4QS1yTDInNoXMlwGdsImpqGNOqIozluSZhqeHCxPVqSMXrJLo6qwypfwAF1sHEkFlvqRhZR - DGtvhDhCDJCURM8WWIxnJuRpY9hSpTYI5XN7u+D9gpfLJe5/Fqgx9JWQ0cBYInFdxSSMh4TSfcq+ - YcnJ+wLT8AeUO3Tcp1jFsCZWLM/nb2YFWmNbqqzQcBTVacn0mBcy9f9yx96MQH1LHYnx1ax7Xv+U - PW//ze4LDCme8Lt8XaCSbJylKjoSLHFck9S43/8GAAD//wMA1sM6nCwEAAA= + H4sIAAAAAAAAA3RUwW7bRhC96ysGPDUApUiuZcu6FSkKpHCAGjWCAlUgDJdDcurlLj07VEwYBvIP + +cN8SbBLyZIb58ID38zb997uzOMEIOMyW0NmGlTTdnb67uP1H7q6+rwrbrrrD3/e3N7cfvz7/MrZ + 5bC4yPLY4Yv/yOiha2Z821lS9m6EjRAqRdbF5cViuVpeza8S0PqSbGyrO50up2fzs+V0vprOL/d9 + jWdDIVvDvxMAgMf0jQpdSQ/ZGub54U9LIWBN2fq5CCATb+OfDEPgoOg0y4+g8U7JJdGPGwewyULf + tijDJlvDJvvnt/cgVJEEUA/00Flkh4UlQFGu2DBaYKdkLdfkDOXAM5rl0JI2vgygDWoqkE5IobBo + 7qaFf4AP129/v4ZkPczgvQPTUMtBZcjHv1OsnQ/KBqIIDtAHKqMK450jo9AJlWxivklcUOmN9kLf + vnztxHckOoCQxVTRcBdmcEumcXzfUwB2xvYlgfF9VFeh0R7taNGNPfBLy45btM/caME06GraG6ss + d4AnSt7kUFIwwp16AVQVLvpElgO6EhwmlqlFV/dYE4xpM4UZvHuhJAAKQYvaUIvKBq0dgO573qEl + p9ExljuSgMJJN8bXFtIpyTXFkhbVNFRC6y2Z3qJAhyz7LKso0SjvWAcwlqsKSlJKRmbwl0TMnHIf + Mius9+W3L18LQXZQoAiTQEfSUkouh88Nyf+zDRD6uqag6VA/PqPWl/EZHQKnWT3LAa2SsKsBwaAU + /mGwbAANl2/GGE8yfnFh9z065WqAeKSXAJbv4lP1KcJoM3Y3Qym+JjctfOTyzkt4i8ZQJAyzTZaP + kyBkaYfO0DYYLxQnYrVxT6fjI1T1AePwut7aEwCd8zqqioP7aY88PY9qxY5DsxXC4F0cv6C+yxL6 + NAH4lEa/fzHNWSe+7XSr/o4S7eLi8mIkzI7L5ghf/rrao+oV7RE4O1+c569QbktSZBtO9kdmMD6g + Y+9x2WBfsj8BJicGf9TzGvdonl19ZFkeHL1ywBFId0Xl9jh4r5UJxX38s7LnqJPkLJDs2NBWmSRe + R0kV9nbclVkYglK7rdjVcZFxWpjxxidPk+8AAAD//wMA1lQ3US0GAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac05268e52393-SJC + - 9953e415cf93cf82-SJC Connection: - keep-alive Content-Encoding: @@ -4995,54 +5243,70 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:19 GMT + - Mon, 27 Oct 2025 17:25:26 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:16Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:19Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:16Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxt3TRYyz56aBYctRDH - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "18564" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4871" + - "18616" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249999" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39997716" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_d2d53a37724c4df5be76871650c662e0 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatte2023aperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion + This article has 52 citations and is from a domain leading peer-reviewed journal.\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) @@ -5108,52 +5372,66 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + is also\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "188687" + - "188633" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTYW/bRgz9KwQ/JYBcJF7cNfoWZB3aAQUGbNiKzoN9PlHWNSfeheS5MQL/9+Hk - ZHE29IMgiI9879076hHH1FHEFn10paOZJmay2dVsMZtfzBcX1/NrbDB02OKo29XF5eKDW/z50x9X - QedZNu++yOKXT3efsUHbZ6pdpOq2hA1KirXgVIOaY8MGfWIjNmz/enzuN3qoyPRqcb1ef9XES35c - MsAStYyjk/0SW1ji55uPINSTKFiC9w85usBuEwluPsJINqROoSh1FQ5sJFnIYEyRfIlOIAt1wVtI - DNOx9Q38PhDQgyfJBh2pl7AhBaUdiYtQFY38wOG+kILLOYYjvR9oDGqyb8GnUrV65624CFR9sasq - CmcbV/0kBrovUw3enoMNzkCH9A3q8+JvTF3og3+adX1P3k5Ma/NkMVuS1zoTY+iILfR7+DYEP5zw - 9uSsSD0Ad6BloybFHyuB+1iIPZ3qwFnRwFt4f/vzr9PMp5vb299OxPW8merPoVuCLTGJMwKuWi5C - dLwtbkuvjE6BK03BupwlOT+QwkAxQ+GOpG5KB/8anGVJmcT2IBSPFEPI1TaY0zuFGO4INMWyCTHY - /vSKJyJPfBohbCrTjlys5/tuTmcTbV94GnIRtpJK1gYGMpLkLI3agFSOlyzPoa63hE0xgpw0WNhR - 3EMSYNq6py9Lx907zfvNEpvjvgtF2jn2tFKfhOreXy/5sOT1eo2HvxtUS3kl5DQxtkjcrawI4xOg - dD9dJrZcYmywTL9i+4iBc7GVpTtixXb+w+LHBn3NfuWFplxXr1sunnEh130Pe56tCpQHGutPs1qM - /+9/QS+H/6KHBlOx09Ll26sGlWQXPK0skGCL02I46fBw+AcAAP//AwCEvRQItQQAAA== + H4sIAAAAAAAAA3RUTW8bRwy961cQc2qBlaI4lWXr5gp20g8nAZIURatAoGa4WjazM4shV7Zq+L8X + s6t4t61z2cOSfPMe+ciHCYBhZ1ZgbIVq68ZP17/9+vqHH998uK0v55+ONxfy/o/6y+56/fMvLiZT + 5Iq4+4usfq2a2Vg3npRj6MM2ESpl1JfL85eLi8Xl2bwL1NGRz2X7RqeL6dn8bDGdX0zny1NdFdmS + mBX8OQEAeOi+mWFwdG9W0KF0f2oSwT2Z1VMSgEnR5z8GRVgUg5piCNoYlEJH+mETADZG2rrGdNyY + FWzMx4qA7i2lRqEVEvj96ifQCBjQH/8mqKMn23pM0CRybLNa6PTIrMv9ju4bjxxw5wkwKZdsGT1w + UPKe9xQsfQ81aRWdgLS2AhSwsQ1KqUSrLXoBDA4ciU3caEzTHQo56JAD5icFMBFg03gml/klOhB6 + uKvYViDtTjS1VttEPVbZho4qetin2DYCLvGBeuYjKTKDm5hAom937FmPxbPUrtc371/cXq3XH0Ys + BaSKd6AVKqBzHPZQkVKKqLGWAtCyY/tih8L2xKLo0N5MdzE4QGupx+GQrZO7PyZyV3FuqXN8UpI4 + 7AUc9cnAeiJvKehIUwEIr9++hca3Apglc5m7dnt7tb7+j7zTYIAlelQSsBWGfW5iWZLVrCkGf4QY + 6PSOxx35Gbw7UELvi84DTYoHdiTd0FOTSLMbCnCoOO0aHyBhr4LAxhBO2IO7nuaXh3vSQi4jN5SU + SWYbU/T+TeTpgMHSVmxMlH283ITHsekTla1gXrnQej8KYAhRe0fldft8ijw+LVjJgaXa5g7HkJdG + NDamiz5OAD53C9v+awdNk2Ld6FbjF+pgz+bnr3pAM5yIIbx89TWqUdGP6paX58UzkFtHiuxltPXG + oq3IDbXDicDWcRwFJiOB/+fzHHYvnsN+QFksz7/5wBDoDE1uO3jxubRE+Yp+K+2p1R1lI5QObGmr + TCmPw1GJre8vnJGjKNXbksM+2467M5cnPnmc/AMAAP//AwBJKo0D4wUAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac053df79ebed-SJC + - 9953e45c6c2df98b-SJC Connection: - keep-alive Content-Encoding: @@ -5161,43 +5439,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:21 GMT + - Mon, 27 Oct 2025 17:25:35 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:18Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:21Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:18Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxt4o3ZjEmsF3JdjfYm - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "15620" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "5951" + - "15658" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249998" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39996942" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 4ms + x-request-id: + - req_d5936db89eed4f5695fb92962029b422 status: code: 200 message: OK @@ -5206,81 +5492,84 @@ interactions: '{"model": "deepseek/deepseek-r1", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-61467535: - XAI stands for Explainable Artificial Intelligence, a field that aims to provide - model interpretations of deep learning (DL) predictions. The excerpt defines - three key terms: 1) Interpretability refers to the degree of human understandability - intrinsic within a model and can be perceived as ''knowledge'' providing insight - to a problem; 2) Justifications are quantitative metrics that tell users why - a model should be trusted, like test error; 3) Explanations describe why a certain - prediction was made. While interpretability and explanation are often used interchangeably, - interpretability is a passive characteristic of a model, whereas explainability - is an active characteristic used to clarify the internal decision-making process. - XAI addresses the ''black box'' nature of DL models by providing tools to interpret - models and their predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi - Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction - models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. - URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-a497e08d: - XAI refers to Explainable AI (Explainable Artificial Intelligence). In the context - of molecular property prediction models, XAI is used to explain black-box deep - learning models. The paper discusses that XAI methods can help users trust predictions - and assess if models are learning correct chemical principles. XAI approaches - in chemistry include counterfactual generation, feature attribution methods, - and various explanation representations (text, molecules, attributions, concepts). - The authors advocate for a ''black-box modeling first, followed by XAI'' approach - as a path to structure-property relationships without trading accuracy for interpretability.\nFrom - Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A - perspective on explanations of molecular prediction models. Journal of Chemical - Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain - leading peer-reviewed journal.\n\npqac-31f0bf23: XAI stands for Explainable - AI (Explainable Artificial Intelligence). It provides a way to avoid the trade-off - between accuracy and interpretability in deep learning models for chemical property - prediction. XAI can be viewed as a two-step process: first, developing an accurate - but uninterpretable DL model, and second, adding explanations to predictions. - An explanation is extra information that gives context and cause for predictions. - XAI methods can be classified as global or local interpretations, and as either - intrinsic (built into the model, ''white-box'') or extrinsic/post-hoc (applied - after training to any model). Post-hoc methods focus on interpreting models - through training data and feature attribution, surrogate models, and counterfactual - or contrastive explanations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi - Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction - models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. - URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\npqac-e544992f: - XAI refers to Explainable Artificial Intelligence for deep learning models in - chemistry. The excerpt discusses XAI methods becoming increasingly important - for interpreting black-box models and connecting explanations to structure-property - relationships. Specific model-agnostic XAI methods mentioned include ''Molecular - Model Agnostic Counterfactual Explanations'' (MMACE) and ''Explaining molecular - properties with natural language.'' These XAI approaches are used to interpret - deep learning models by generating counterfactual explanations and descriptor - explanations that help understand why models make certain predictions, particularly - in applications like blood-brain barrier permeation and solubility prediction.\nFrom + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-d26e4f16: + Explainable artificial intelligence (XAI) is a field focused on making deep + learning (DL) model predictions understandable, addressing the black-box nature + of high-parameter models. It provides tools to interpret DL models and their + outputs, increasing user trust, revealing spurious correlations, and supporting + regulatory needs. Related concepts: interpretability\u2014the degree of human + understandability intrinsic to a model; justifications\u2014quantitative evidence + (e.g., test error) indicating why a model or prediction should be trusted; explanation\u2014additional + information describing why a particular prediction was made. Interpretability + is a passive property of a model, whereas explainability is an active process + clarifying internal decision-making.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 52 citations and is from a domain leading peer-reviewed journal.\n\npqac-eebf0610: + Explainable AI (XAI) actively clarifies a model\u2019s internal decision-making + by providing extra information that gives the context and cause for predictions. + In practice, XAI often follows a two-step process: first train an accurate but + uninterpretable deep learning model, then add explanations to its predictions + to gain mechanistic insight. XAI methods can be categorized by what they explain + (global vs local) and by their relation to the model (intrinsic/white-box vs + extrinsic/post-hoc). Common post-hoc approaches include feature attribution + using training data, surrogate models, and counterfactual or contrastive explanations. + Explanations can be evaluated by attributes such as actionability, completeness, + correctness, domain applicability, fidelity, robustness, and sparsity.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, - doi:10.1021/acs.jctc.2c01235. This article has 51 citations and is from a domain - leading peer-reviewed journal.\n\npqac-9f403e51: XAI refers to Explainable AI - methods used to interpret molecular prediction models. The excerpt describes - several XAI techniques applied to chemistry: counterfactual explanations (based - on equation 6) that show how molecular modifications affect predictions, descriptor - explanations that identify which molecular features and substructures influence - predictions (using ECFP and MACCS descriptors), and methods to generate natural - language explanations. These XAI approaches help understand structure-property - relationships in tasks like solubility prediction and scent prediction by revealing - which molecular features (like functional groups, heteroatoms, ring structures) - contribute positively or negatively to model predictions.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. Journal of Chemical Theory and Computation, - 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. - This article has 51 citations and is from a domain leading peer-reviewed journal.\n\nValid - Keys: pqac-61467535, pqac-a497e08d, pqac-31f0bf23, pqac-e544992f, pqac-9f403e51\n\n------------\n\nQuestion: - What is XAI?\n\nWrite an answer based on the context. If the context provides - insufficient information reply \"I cannot answer.\" For each part of your answer, - indicate which sources most support it via citation keys at the end of sentences, - like (pqac-0f650d59). Only cite from the context above and only use the citation + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\npqac-e53bf6d0: In this chemistry-focused perspective, + XAI (explainable AI) refers to methods that explain predictions of black-box + molecular property models to improve user trust and verify that models learn + correct chemical principles. The authors advocate training accurate black-box + models first, then applying XAI to derive structure\u2013property relationships + without sacrificing accuracy. They highlight key XAI issues: how explanations + are represented (text, molecular structures, feature attributions, concepts), + defining molecular distance for counterfactuals, regulatory needs to explain + decisions to experts and non-experts, linking explanations to local chemical + space and activity cliffs, and the lack of a universal framework to evaluate + explanation correctness and applicability.\nFrom Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 52 citations and is from a domain leading peer-reviewed journal.\n\npqac-8738a9aa: + XAI stands for Explainable Artificial Intelligence. It encompasses concepts, + taxonomies, and challenges toward responsible AI, with programs like DARPA\u2019s + XAI and handbooks proposing unified frameworks. XAI develops methods to make + AI/ML model predictions understandable and justifiable, fostering appropriate + trust and reliance. Techniques include locally faithful surrogate models (e.g., + LIME) and influence functions to explain black-box classifiers. Motivations + include detecting bias and shortcut learning (e.g., Clever Hans effects, fairness + disparities) and complying with policy and regulation such as the EU \u201cright + to explanation\u201d and the U.S. AI Bill of Rights. XAI methods are applied + across domains, including energy and power systems, to interpret structure\u2013activity + relationships and other predictions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. Journal of Chemical Theory and Computation, 19:2149-2160, + Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, doi:10.1021/acs.jctc.2c01235. + This article has 52 citations and is from a domain leading peer-reviewed journal.\n\npqac-ccb00369: + The excerpt references work on Explainable AI (XAI), indicating that XAI refers + to methods for making machine learning models and their predictions understandable. + It highlights evaluation of explanations for black-box models, metrics and frameworks + for XAI systems, and domain applications (materials science, chemistry, medicine). + It cites SHAP/Shapley-based feature attributions, intelligible models, model + extraction, decision trees, and techniques to regularize models for improved + interpretability. It also mentions tools (CIME) for exploring chemical model + explanations and surveys discussing challenges and prospects in XAI. Collectively, + these works frame XAI as approaches to interpret, justify, and evaluate ML model + decisions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. Journal + of Chemical Theory and Computation, 19:2149-2160, Mar 2023. URL: https://doi.org/10.1021/acs.jctc.2c01235, + doi:10.1021/acs.jctc.2c01235. This article has 52 citations and is from a domain + leading peer-reviewed journal.\n\nValid Keys: pqac-d26e4f16, pqac-eebf0610, + pqac-e53bf6d0, pqac-8738a9aa, pqac-ccb00369\n\n------------\n\nQuestion: What + is XAI?\n\nWrite an answer based on the context. If the context provides insufficient + information reply \"I cannot answer.\" For each part of your answer, indicate + which sources most support it via citation keys at the end of sentences, like + (pqac-0f650d59). Only cite from the context above and only use the citation keys from the context. ## Valid citation examples, only use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) @@ -5289,7 +5578,7 @@ interactions: keys, just use them as is. Write in the style of a scientific article, with concise sentences and coherent paragraphs. This answer will be used directly, so do not add any extraneous information.\n\nAnswer (about 200 words, but can - be longer):"}], "temperature": 0.0, "n": 1, "stream": false, "max_retries": + be longer):"}], "temperature": 1.0, "n": 1, "stream": false, "max_retries": 0}' headers: accept: @@ -5299,7 +5588,7 @@ interactions: connection: - keep-alive content-length: - - "7157" + - "7335" content-type: - application/json host: @@ -5318,45 +5607,55 @@ interactions: H4sIAAAAAAAAAwAAAP//4lKAAS4AAAAA///iQjABAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA //9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD/ /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP// - QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//4xX227cRhL9lUK/rEbgjCVb - F2teFoovC2Ftx4sE2ACrhdHTLJKVaXbTXU2NJoaBfMS+5PfyJUF1kxRH9sZ5k4Z9qTp16pzqT4pK - tVY1uuXp5cXJ1fOLy4vTZfnT+9d7/48b892P77cvf3j+7Ppfe1WoLvg7KjGotXqJ2N24KmhVqNaX - aNValYgdI26fjH8sw6kqlN/8jCaqtTKNjivj285iJO9UoUxAHbFU64e7C2UaTwZZrf/zSVlfd8Fv - WK1db22hKnLEzYeAmr1Ta8XRd6pQTke6ww//5yu5Eu/V+qRQLTLrGtX6kwreolorzUwctYsSjXcR - nUT60/UNHL2676wmpzcW4TpEqsiQtnDjIlpLNTqDCwhYYWCIHlqMjS8ZtCuhCrrFnQ9bhhKZaoel - LCEXMXQBI3QBSzKCAkMVfAsCGVjUwZGr4ejlmwUkWLmATodIprc62D3osgzILItig3CrNlab7XLj - 728VOB37gOAr+cYIvOeILcNmD8bqQNV+2EcBSjTE5N2y1Vv5tQveIDMyHHUftVlenJ5dXJ4/Oy8g - /avPri7x5Hm5WMGNg9ZbTBHJtg5D3M8yKkDgwwQcQ88DPloO55wVxNBz3PkQG3Lyq4B2hxIh7BqM - DYYMBpZgGmzJaAtdIGeok0O1pdrBjmIDpW81Odg6v7NY1jiEP483QkkcydU9cYMMG4w7RAfHUz30 - hizF/fHvv/5P5wh///U3BnINBnQRmr7Vbtm7EoOQpUyc4Bh6I4DLLlfCMY6EyYcVsGvINKCNkNPu - oUaHQUdk6DzHZeMNBC2Iacmp8gG4QyM8O+DHYT0WK4Bbd+sEY911wWsjOek7T2WiRAy6pHwqaGP6 - oM1++TjTtAqXvqqEHBUFjlDiHVrfCRkaqpvluBlevhm4mMrE/YbxY48uCh27ziZSpdxdygYimsbR - x37i0rPT6mRTPX22WMGPiZhTrwQEoyPWPtAvWIJmOK6t32h7DEfpzuWOSgRyTHUTeQE+wLH1Ji3o - MCwfgJphuchN2IdEpJJEtErpPp9qHuQ4cwxHm55sXJKDx/AUgKt6lQoYUZprACAffIz3wxlPxkIe - w5FAQZJDFTEIviStvPgSgn/ifg4ROWP7EsH4XqKotIm9tnNAGY5yOG/fXr94tRh5RSW6KB3TkqNW - 21lXtr4UGg27tY0Yco9PrCoyRJgVQ8cYaNMnGMfaDHe+evH6/ZO31y9e/CBSZgJ10QdeQGx0TDyx - UpnEirEfJKfK9uiMXOr7aHw7cQHPz86urp5Wg65cVWcnz/D8dLGCdxKLtmC1q3td4yEEEq7xzmAX - lxvNuZ5D0YYVkohlD9h21u+z5Fpy24Nuin6uKEm8CBksbRHY237oDx9gY70vlxspJGx0CIQBOgwt - ZpZ/K53v9rAJVNaCQRY938eujzzXreXU8SPFs3pW2kgcSSwmXJeT2Aa0OemGOhE34+8wiHSSRZBz - Y2bflPkdSuiVD6125rFGDrE/UFQVKmDVs7aj72ZLJVertfp+q/cF3IDDDLF2vBPGNwhC6ATOrfq3 - 8INYsvn7rYJ+sqxhiEjVjHgfV/AGI7SipzpEkaPa57XB93UDqE0zWNq4BVCaGFMxa52aPKDFO+2i - UE+ylChWopOvRduGDEcNhRIr8Z0EtWb4C05fgKY2hTW38UPXntHsT1znCyk+GiznbzPDmVtNWpWV - 51AUsrEM1j50uyA1i2OxgmtpiVakQjb93HOcSwNnK5auD2RYBJoY2PfBoJRvi/vkTIL+RjOZjF0y - mBRSSVWVYqbp/oih5QT+O7yPjwYICEhxsMGvwX9TTC6ord0DfWPaSEhP6Y3ildr5kaIO9jsG/hXt - S/YEuo+NDwzc1zVyBA1x55ccsZsMdz1YphhICRqmISxXshC4XDZHSXJAVZclTxT2+ftYNnJZljiG - fQpPAB+vEwkQl9wnUA+aVSihXclyXnL/MdRhnivyZCD0/AvDQALTWBmKKxoKNEKa7DOb85PkwCnM - yU4nKxySbdB2M+3K+WSl2OxhGJUkrIlA6ba475BHAChA14fOM/JD5qPiJt3r08Q6iehhvA+IFpkQ - yT/T4e7PvCaj4J1DEzMG0X9LhbmQSbfqbeoWvNdtGlR9Na/yLIvRKKDEqMnyfCL4GnkPOj+LKX7s - M3cuipk1H65MVvNg4cVXkx+nsilqbvwOuiD6InXuOVn63B7TIGikaLNOTB3vdwXw3skDhH7JOk68 - TijS41ZPWE1slMXTqFkApqqOGjCVMhVn8BA+THZkYJEjvtOBfP+gCUeHkHLxNQngRcYo05fcTIkf - jHx8O2V8fR+BtUkaPO+zFbwbHHKQp5l0cvGFcKZn4JeD6BT9vPWKWd9Nw+jiQTkPRvDE+uJgess5 - zpl5KEBR85ZX8IIiZv+VN2iWoy6QjmhFitTnz/8tVD++qLvg2y5+iH6LjtX69OLpubypx+f+9OHy - 8rxQ0Udtp5+enp2cFIcHfBgaI08gnz//AQAA//8DALvYZ/CxEQAA + QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9C + YgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0Ji + AgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC + AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIA + AAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAA + AP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA + //9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD/ + /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//4xY224cuRH9 + lUK/WAP0zEpWpJXnJRCyXqwAOTG8XsRJFBhsdnV3rdhku8ie0dgwoH/IvgRIfk5fEhTZlxlJu9k3 + jaabLJ46dc7hfMmozNZZjXZ58u35ydnF2avTs+X194H68+/fYfu30x/C36v3V5+2WZ517DZUImfr + 7DvE7spWrLI8a12JJltnJWLnEW+/Gf9Y8kmWZ674GXXI1pluVFhp13YGAzmb5ZlmVAHLbD3vnWe6 + caTRZ+t/fMmMqzt2hc/Wtjcmzyqy5JuPjMo7m60zH1yX5ZlVgTb48Ve+JVviXbY+zrMWvVc1Zusv + GTuD2TpT3pMPygapxtmAVip9fdcZRVYVBuGSA1WkSRm4sgGNoRqtRjj6cHm1AMYK2UNw0GJoXOlB + 2RIqVi1uHd96KNFTbbGMj6hbhNAgdIwlaQEhPV+iJk/OLlt1S7aGjp1G79GDq6BVuiGLYFCxlW+P + 3lwvIILuH+5/6RQH0r1RbHaQ0L3LoTBK3y4Ldzc8CIZuEaQxYLFnZcBiiBU+3P/S2xJZUCjjiYOD + pm+V9XDUfVJ6Wb48xz9UJ+c5xI8X355eqFdKLVbw4fIKVFlyqlVO5jqlKeyk7obqZtkpgSIgj3UU + O6jRIqsgR0EBWronSIRGBdBGMVW7uFhsyF3IQaveo88jVi3qRlnyrYcCG7LlPpq5vMdY7ABto6yW + PXqPDIF7H3KgEm2gaif/913P5HoP2jGjUcMCaQ+M5THWvVHB8Q4YP/XE2KINv4ILYlEdn58cL1bw + k41wkw3IHWNQBRkKuxy2DekGSLoOZKVUG6TbHXICzZM0cELrCFf1KgdDFhVLOQI1ObvIE3TC0bj0 + sKbSMggjfxKivu86MxS+T7wthUa6R/JRGSBbOW4jDDn4XjegPFSoQs8IKgSmoh8w0q6Xo1VKh14Z + wDslVfscHIPvmV2tAk5n+D9gwY29scKkaYIYQauAtWP6jKVQxmvXIRzVxhVxvz3WuArcBlkZkzYU + VqgNOYaNX4Fx+pkXyJa0oVJq30NkEXsfGyBoxcfhiGxgsp70N9uGAsaZUl3HTukGfexxzaJiUPYs + pElVBFYUp1WqwLtxjc75sGychoC6sfSpRy+rGcISVBWQt4rLxYDZHkh/cm3rLEyv+yB71hQr0KYv + EX784fLtslAey6lr1HaOg7Ia8zhMrHzkxz4eifHBuVEkrq/evB4KGEd9aJrWxfHx6fmrxQpeb5Tp + Z0APAO6YHFOgzwgVlRjpeaQM1VZgTbyLWsFUkzAvIrbIgV3R+2DRS1GxJ9PgRJV0rSK79B1qUWRg + NLhRUYsP4BopdnZaVOeloHdlQTfYkg+8y6NqNWg6DxuMWrNtUGQDWmcwKuk8kjM9JiEVGYaNMlRK + F3otSD/c/yuOnhx10pKGOjlI0kehgm6UMWhrnOS4ShyZN/bUkihg2EHl+NGgJbMwZG+faqeDqQBt + qKrGudtD4d2sZiXTBtnPcy79eP3Tw/2/PTzc/4epboKsubdH/nD/X6h6HpAKtJEZ/3B5FV8qcYPG + dbHB8p71wr/AyvpOMVq9S8aoiKW/QBZUH1ybBueR/R098pkszxir3isz5oBk8WTrbJ395VbtcrgC + i8lllfVbUfwGQcYr9u4m+6tIIXkp+I83GfSxIcmLY6gpR7dZwTUGaBF8UByiX7n0LLu+bgCVbsZn + AW3gnWxaq4jLQMmwL6Yr0bf3jQwD+zCb2iNZjGRAnzzVw++IIDlUTvcy78LOBF10+CkpJCnaF/1D + q1/BlRzVDklkZqoAM0cIm9REskiagaiTVtKbP3TYuKAy3kFJVRXtjVQYZHLfCuFIQSfhK7lVHLYF + VOzax8Z29MTWFiv40UnHfeN6U4J1AZPVCXZihIXrw4jIUPLhwXMoyYvF9+QbearAsEW0T+uUox5W + FPv557mFo+wIYQL6uZJUtaSymGlEq1Uq54V/wvliNzAxjXZgdcAhwbVEr5mKuEzYuqUP2I2YrGfD + iXjpnicLTsSL0chGw38kHnHx2XD9ZMSFSKMK8uJuBGEy4Y1P5ppcMzRIPEmfTIRQKG0/W6i8NHnh + YgVvRzsbd4yy+EzmiHs8SRYSFAb2YrnvSdOre/Y4WZEsNTvNCt43FLkvPQmKjJdxGpQhpqiUCFOB + rpLWRgocyOswivHdyWqSs+vRZ7HtGuXp84T/Y/EfjhXcaEwxmeqQVtQxrZDVJFnrcHQnI1pOznVg + Q/EMv8N+yngZ0vic+QxI+cZt/RMv3j8pFDJ90UIKubZ4D1qEUpmRF+kGYIYKJpE8kP1RmIXtBTtV + IsOGcJuPp5bKv7t89/byRRLNjl3Nqk10nNPVnGmSalWmj/e3qrd6oP+b5Gax9pEuJQbU8RJQkEr4 + 7d0G4j2LBKkBFbnsGDlystKu584JHR4VU+DO2RJ+7n0YhmPWJbL1jMIYtdIFUwr2+xlNst7BzREC + owRwuXlK0YOL7AXV4GZxi69KEUKyN9fTKn7W74laOE9Vi4FJP77ixqLf9iEk4yDZqo6BKp8EGSpC + U4KiVnLupM0S+iPnX/yGSU3Ou1HpvjbM4m9p+CA3z6r5lKGfaKBH3qCfmxehHm6OzzZ/yKUHVME4 + KDjGkMGjpmuC0MMjdI5skJsUDRfNITd417P0WuYvJg253q9ubPb16z/zrB9/vejYtV34GNwtWp+t + T84vjuX3i/GnlemLi5eneRZcUGb618uz49P8cIGPg/CldPX16/8AAAD//wMAkUH+KU4VAAA= headers: Access-Control-Allow-Origin: - "*" CF-RAY: - - 991ac07b2f80405d-SJC + - 9953e4c06b17405d-SJC Connection: - keep-alive Content-Encoding: @@ -5364,7 +5663,7 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:21 GMT + - Mon, 27 Oct 2025 17:25:35 GMT Permissions-Policy: - payment=(self "https://checkout.stripe.com" "https://connect-js.stripe.com" "https://js.stripe.com" "https://*.js.stripe.com" "https://hooks.stripe.com") diff --git a/tests/cassettes/test_partitioning_fn_docs[False].yaml b/tests/cassettes/test_partitioning_fn_docs[False].yaml index 6e971f3af..a4668cc3a 100644 --- a/tests/cassettes/test_partitioning_fn_docs[False].yaml +++ b/tests/cassettes/test_partitioning_fn_docs[False].yaml @@ -156,7 +156,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d43cf1c5c1b-SJC + - 9953edaf3ec0cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:42 GMT + - Mon, 27 Oct 2025 17:31:41 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=VDJ634yLCMCD26ANVluzq5XN7_DytDTBXs_7GL5cizk-1760990562-1.0.1.1-Q2NAmmjTAPoygDud_2I0blHNmID22iwZZhq8WrhXkZ38tC0Go8o_aFHmRURqxLgjBuLF3lvMg3KJwbIUlDgt.pGaoES0Y5WwvPBww8_FRsU; - path=/; expires=Mon, 20-Oct-25 20:32:42 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=UfXCqstINXua6TVfzwdoejwp8bBCjM4.jLYkUDWnN2c-1761586301-1.0.1.1-4p4NkWhYbNJ7QffNpyko1XoG.0Sz0kCODlK26WhwdAFjNShFV0SIj.lJ3ywMLUCE6yrBnI0.TQHKVsHUhxAkVIdULdX_SYKIS41rhPcNuBA; + path=/; expires=Mon, 27-Oct-25 18:01:41 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=vZwfp5IsAeusLiVphFIxj.lzWVMf4Nig_sr.n4ADo6o-1760990562024-0.0.1.1-604800000; + - _cfuvid=9qJrrs1TPy0.6WreUwHzCze3oAKOYCKrtlyS2TOmG9w-1761586301875-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-ncw8t + - envoy-router-canary-789955d6b7-jsvgq X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "53" + - "364" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "74" + - "486" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -212,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b45a59b8d71a9ce587c78c22dca275b6 + - req_9debb65e84f4469f9dbd30d42a961476 status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//VJpdD7o6u+bPn0+xsk6dHRGQ3qwz3kFAiqCIk8kEEBEUkbcC3dnffYL/ - J3tmTkygBCm0131dv/Y///XXX383aZVnw9///PX3u+yHv//Heu6eDMnf//z1P//1119//fWfv9// - 78q8TvP7vfwUv8t/jeXnns9///MX899n/u9F//z1N1R96bGn5YyY/V1lRZWLP/h8lt9Vv7vuCxA2 - J4tIafMOF0jPieiH7XGc1J1E+2nfjjD3wmUU9qkRMvsk5sEwXYLzFG4ps0FJDZ8i571vb0G4vA3B - h2tFz6OAb4hOZebkkLfClZj9vaomqX8mcI+PJj7v9luV9mibI+twsPH1xBsOO/EGK9Z3jSfxc7Gd - ndjUNipNuxl3F3uDRjsCX/g9/5HvbnTO+amE9uqy+KxGczpDcMuRzVo+UT9KlHJZeG2hedI7VqZH - Q6kSH0vEu2lNTFh6Op76LyNet5/aCydMwplwbwOY9mWPzFiXdKmpn8NwmE2szZVZ7XYViWF3s2oP - Uk9PJ7eKe/R8JQ8sneJTypwuBx8cwmByjt1TSnmn8+GFzzbJ3HtCOcJPGwTbgiHW9uw6LDHsCfAX - jvhOGaeaLofXgrYHfYfTwpZDmttsLjpFsSVJ+yBodvu0hTurMdhyjm43M7lcApkqAx80aawWVq9Z - EaW5QTD0YjjkbnIGxrhH5HjQJ7RIG+Lvb11gEgsdpJSp85IRN+G7Io9vgkOOt/gzmswMRuaORsps - h3wEz8lbb7c8d86kfkdD3JjUJwrZBA4Voo5Bu4WpyePTzR1N8uaFRsfssXbwE8S1SemJwSlGODBZ - LWRfm9cLqqT8EOONZbTjzT5H8st8EvW7TR22/SBAhhNn3k5BrrNUhRKITWJz2Hufc4e7RckG7vLp - 5HXPuAmnUjUVePAqHierx+prOroFyHHoEU0T1JBRa2qJWGgB686SODvrC4HwdG4e1uf8hqbkbdWi - wi4zsXtVpowdxzZolJ08vv3yzqhnGwNOC/vA5vald7tQkQNRJkeNOPgxqLNXLbl40gIV4wG96XLg - bzzAqbOwmnpqt2PmyhePFk3G9sYgNI2Xd4/EuNSxVBlSR73P7IM08A+SkVFIZ2O55HBDG3bcHo1z - Om2viiLG31ONdSbdVJTLAgOw6WnYGScXcYKqGKjdGRVx46yv5up8rcW8uFdYsdxM3QUd14t0ZCds - Rp7Yfe3jfBaXjSeMIt/tKdW7sBdZ/syTW61+HJowO1/E6NphqXjQat4ceB+2VmpgwzgcEXc5WQ0Y - rul4fCXNzvQREg9YmmX4/r51aHTINEIdniWcCQchXTghaWBqsY61sS7R1B6LTLybRey9Q38Xjnyf - L3CeyjO+KVnWza7u2yIdLRkfHnRBsx5SW2Rpno1NykvVzH5tDV77fo/Vxws539Lbj2DOxZtcUFU6 - 06J1Z8ChdMVhJsrp7lmmGRS4Y7D8QlnaRoI8QRYJJfb2TJ1+GwGBsESvC1HbyxtNAe1qyEN4jvu4 - U6qdoj54MF0iY1lguHDY3AMF7cwZYfeKdmhJO+G8N5XNgVxGKa/a9/VrwCvyZYzX70dnao9IdFWW - OPYm6qYDZyhi7cYHYp3uEmXzrVUi9nlTvHr51ClljBigZheeyHqbddNWbXyRHfCZrOOvmsnLiaD3 - 1MHbvYxLyt73b/bXjt31fbesPrKg2dZEcOM2KdU3Yo7Cu33Gd1F+VXPVPjUQc90n+a3owj5ilQ06 - bsLe4zeGru4M0pbolFQiPlSGErL79LOBWGdGHNHdEI6BdfLBb2t1LN6S7ew6T3Fh2Z9zfKtVU6Vt - 0roo6vEHq45mOCyb8hEQdjli6/P8VA239yZY0mwm5zJ7p5MhHM7g4faKrfMkOrRjby+BVasLkWmU - qQu5vQpxnX/e7tZdUub13QD4Nxx7vHPsq4mkUgLRPn4T/eBIKfMMRRZl1/cJH7PhUE3eeAtEEYFI - Tr3n0MnU5Q20Rmli6bMoaDIEOQKwhxNJxV5N6dUJEsimV4nj/tiqVCrGHpSH5ZDTkC10Kq3nCF0+ - lfj2HLJwedxbXsjPX5/cEJQOZU+nAh5lppFcHmpEsVr04ukjufgs4AOaenNxQWOeD6LbNzNkVj2F - uOpTEh1PeUiz8NFC+VYuOJ3LNxrruwfg4eb6qw/dNNTnQvTfckcM8bg4s+fHPcTyV8bRrJ6r6RWW - PpzJocH3bbMJ6cl7BuLdLGPsatttN9Z3A0B9OgXRys/J6Y70GCMjt9/YOziKM33nvYQqMZg8NL6f - 6ixlRADr4NjYup/CapnFZykqs3AhMiYvRD9mpgh604QkOHkHlQncwoDIWgjGGx87E0sLXtS3rwP2 - ZY+iJRIOC7RGYZLr/TmotJjHGIbnbSCqWrfoT//9sDli2/Em9SX131i88JpEwvgTdctZ6RRoDplF - 0oqJwiksYUKMycrYZIy2o/7BqMGuEpMkEXdV1+97Fs3udCfKYRro8my6HLgInQne6GrKZaLCg3m8 - TcSgrdztBsk4wyl5it606h/9jI8SNKy6xHYXxWF5pYhg4hKVuE1tq3O8fzQg608dn+Vl281Zc/c5 - 9vIi5KF0TPr1RySBfK0fWHlWSzj7uesBuS9AZMcbw0kj0iR+zu2bONypSmnDDhaIyPeIpTzbdDK3 - Hxfq2Mu87XK6p9xM7R5E52qSw6pPk2zFDJpuZUT00L+k1Hq/M/HQXLOjL7JfOrJ5FYDz6nucjC3q - xufl0EPijVuPl0M17Fk2ZYX1+46ld3qFNGe+PXAaJ4zoGVvpnJiSJBYXAUbBOjndYmVlAQzaNljR - MZfO7lZMwB64EcuZ5qVMnFgSup4GYWRj5aAyx+DJi5d2r5DbKabqnO5dDegkOB6nAO6Wio1AVFB3 - JAo9PSu22Cc+sJeaYD04CupgH/dnkIT0OQIqi3Tk6kkQV30Y51Ufv1lg1cB/X69Vr8qwX7qRASOU - FRI6Wq32PmiLuOA2J+fjfErnbeECcIHEr37kFVLVjHrwpIuJ9e1+X9G7pZag3OcCn/THRNvxUyQg - MUyEpT5/p92ceD4Y3+Aw8io5pexRunpgvzR23LDcs+vnBq31/2vh0B5RSuVaTsTHRdx5jMl9aG8x - qQafYz8S+YUg7fd3hwHQmd2YfkwdzVX71eBoWzq5j/6NTrvrXIC0Hxdss1ZEmbsILeRHpcXGfa6r - 5dQ/WSH15TdRwZMdug8nXuzcwSKPPeG71Q+8hOCwXH7Xd2P7QRuYLKfzaCW80XxQ+AVxg52OhVfz - Kenf5QIywRo5RKChCdvWCB00GF9cS1eXdTyJV608YImD1T8eQUHFtkY//9EtmflcxEThh5G7Rc90 - vm2WCGmZa2OHaaO0DGv0gso36Siu/SOP0NXQz39edozWsQpNbfTh9TvJaq5Px0dxYSHdk9cfv8vx - TuVDXvctSTdCm87PR1OChCOVKL5UOgwtglHkdwk3bloe0+lYqw3sOCkk/jqflxPJJjhi5YmVV3FV - qQ52CeH1DfgkfLtq9nPNA2y6GgnW8T2BMU7C6n+IVN8A0aK3ShTxsjBuSnfoJn4QGqFanCPx9owR - Mo/sISFp8/Y8yB3bqXa7UkP8q7dGURaLdG515gXBYbqQ815W0A73kgGjo/ejaCmX9X5LK0jlAsSN - ysqZmXE6i3E1pkTPGsGZuU6U4LnTPa/R/EZdwiNnw6s0zuQw9KPTHTTMwO3mDeOGnztn3u4PMfr5 - r4OsftGsnSRXvFbzmbiHSxsypfXt0cEfOWLWRxJ+tzi3QB7LC3bQR0DzchwDuNRS/Wf8989QZNA6 - /smvXtCP9tTgeIF4vKOgpsPv+dyHnniLYtZoueiXjVj5OiV6WBcOW2CiQPBpFXJZ+0OYIcuh8sbz - OGkOX837KmRg9WM4/uWTfNAZELpyO35IYqn19TK7YMdBNb7cyk4XzIkAu3fXeINf9ep6vIEkeQbE - BzpWQ6vKDax5xNvNoacyWrwN4Fg+ktXfhtXkg7sAt+Vf5IDzb7cgP2XgTiwRK909rWjQ+o3oBckT - 6/WgpDOp2UCcn9Pi0Qa2aH4ZcYl2hXEnphzfER1pFEDfoYRYARtW07j1AY7WnGCvHjSHgmc3sGzQ - FztdMHfTxx9BeJS5NooFvwvHg0NHUXLsiMjqRB26oDj6U/9lx/NS7nKSWmEcDgbGEq5DapiOBSXa - OEQnN63bvbK3C0XPLti7FU46CY/NAtFzkkZ2+RghRTvPgsfGj0hMO91ZjlExwvcTEnx8epLDylPj - Aqq0npi36Bl+fn60fBNtZDrrU/3yC1T9SyaWbc/pvBzrADzpamJlIzTdrL2+wD3lNiK6+RnTBX39 - QIzqNiMuP326OZNPC9BKybH7tEY0+fsTi7iSfIj0lmx1yZuthA72gxDzMz+dhWW2qx/WDtioG6Zb - orqQxIe1aN4zsTU6evosQPTo39io7xZdSlNnxBN/azG2kNWxJX1JkPrqGzus16g9OrctXCvjPXJZ - WKvTZnMs0MHvOWJdr7ZDK+XQw3coWWJ5F1Ht9RmN0Hdeh62hBtpvh6gX73J4GjeuZdDJ399YEN+q - ic36iENWeNotirS3QrSxVtBwtb3y9/7x7UBcZ4fYVkHDwYgx5iMdTddNXEMQhVei3JWUMthFLezm - B/KW1U9x9qEsYasWLbEYOUPcoB1tMEAJxlOvFurApZ7HOzF/w6HELOqn3IMCM2VcHErfOpzDO9/C - URU2RGJjr6Ls6VYI22XeYY+8AnUu30YM5+/rTlSJWZwvBS4RYVsy4xRpYTW7xKvB8nUZX8xMqVgV - NROc74vt7fWXlNJbT5qfPhCM+aMzpOzNBlEJNsQEMe6433x4p0voze1ZCZnrSYhBXUqHmFrxrGbT - OW2Qeuw/HlKLNF3GaH5BJL4C7CuL3nHJokQivgrU25y4Vzov3K0EXVDnNR9BRbYvZ4K1fhFp4GJ1 - mU/qGanqiWJPQQOdWFMZoVeO6Z/6M2eB9AJr02VY5voazdN26YGg5jsK7lKqE988Nv/2s1x2DHfB - pVLAFCNu3OwZI+1cWY4EXedtfNNfRbjyoQyw/O3xg5z57rvmd7GO986439mHkMRhIcHDu+KR4z9P - ddWTFl57xV79+KOjJ+/rgyycG4KfwDhLEog8rPMFa0bIqj2oiIGVZ437mB3D+VxFhUhiviC/fDLj - UG1Fq6CTtyT6VaUbK4vR/DRUohzepbq074MEh82rwnY3sHTNMyMoLeT4cL5cEeedPgskN6byRNX5 - hH/87uqP8UqwOoJ2hg1vvXKJOwd9uHj6XhCmY6/i0z59dYPjvwK0+hNytL9KtaBvHMC7ivfedvUf - 0y+v9RwZiGRad3VZMoeH7SMCfBz9PRqtyQ1grXded7lFf3gDitFFIpJX8+Fk+LkhrHrpUZeqiJZf - 3YXnzvSwpZJ59Z+7BAhqvx6TG0k1HC1VgzKfjwTnjNr1N29rCJ/ulf7yezpsC20DJ65HJFMUAZFr - dnBFkOC2+rEs5LzP3oerrZ893us+aCJ3FMFDq6+/etHNzrfp4S6IPj4/1W062M/UAJrRaM3fSUp8 - I23gsKkrYrcPjGa8/bJoZ1KEnb0kOzTrMw2pl8sRX27dLqWv+2yITHGIRmaZvWpn+VsWHBkqEr/I - iCaFe4I4P5TmT15cfn6o6b3TuLsV367HdGvB4I8bbH36MJ33EAd/8lTQ3VE1WXNho+i5SH/a/+RR - zjFl8jtmjpczCzfo3uRQnA/dT5+gOBHsxTfjgxb1/QjA3iLL+yizimjnjmfBOov3lZ/t6cRvvpmg - n/r7OK96RMxyKcSSvdHxN9934nV7Rrvb7oJ/9xtX3iE8EqckNtc3HcM3VwDOTgKP3q3BIatfFuTr - 60FOK6+ZITjlqNgILl7zrkomdV+DlHL6OAWgOov/ylzAu6XAaq+pFSOTLPrDq8z+rlasQkML1HOT - 47ASdLpMT8H6U+/kcx067I4kxm88YO9ay3RpEiuDKGEPxDps391yeE2WuEdvHh+UDLpp1S/UeNEL - Y+jvIXmEmgGI7zh8vKOpIpcQ1b985rFe+wpnx+99YPfyB2fNfKHTT9+1RrqTxxtX1ZIq2IDLUjXe - 3up9ykhi7KH4G9bjbrbKlO5K6YxOHmm9/fnCocV9Aoue96zBVvuN1SWwbgH45mHzRy+Y/aHUYPXb - 5No3JJ2f1PaReUwnYszquZvtvLGAccf7yNiM281mTkfYzXdEfNsv6Bx1L0tILi1Ljl9BSal6Lzzx - 51+MAWnq7jfemcKJxkbPiTMdqlcgrrxorGn7rP7k2eWkih4TFh7qz50Sg/0yWOKOF7PaPcswB1OB - g1fgb9hNkui76Nd/9rQwaDmeDOXnn8aXgL+ofQ/ihLTLVvU2D9ygmdQbHzkOSb2q5Oxq5c01mo9f - kRgJIyNKyk+OVj6FPemwU5sD50lo1T/yqAod1Z00ZWjV75GdVaaaNh4k8Jy8ZZzP6ScddOkWQy8G - +vg58bUzUZcHtOHGK5Yv3zH8JqakgPMaeyyvPGhob9EZVl46tq9pSac6bxn48OYdmwF6hvOHoAQe - aXEk+ZoXZr01GaTxg0vkx74MaTGiDKhNwEOr336bz7oF3yq/RAu7pJvWPA33eM9i1w2ISjX2w6Dl - kF6xXr3zqmlh/4I5YRBx5lJHO2VQLWAPU0YyfjK7uctnSbzB902saSy6qT4yEqi3UiAeJXe6HJDG - wGa++x6f8lI3KLdvAmR8dN5tqy3dInLqglZ+gi0oaUqXMuTBfDxsj2XFO5qTaZPDPYw6bOp7JuwP - 1csXw61wx1593ae03DMSnJR97IUfJQoX6TwxYiw0p3Ewnxs6VMNZAeHYBR4kvFB1hXIJRDrxDnHK - GTnzlc4TpHtph+1QWNLp5nEGzHzfrDzymC63Yl7En7+xKidD00lLckRHZsL68rw4I/M6lb96vOrv - U5399OSLv/mrBcEHTdcGa2hP6BsrZ2egTZ+mgFY+8tPblFMuSY206Ltgky3jij0gjRV+/XPdu0Dn - mzxEUBMrwJeVZ5PzwxzFLX8+4gf093Q2VDeC81Scx6WjRrqr1YsLXbDxPcat7HB5zFr78yMet/Ld - 6bd+hDyRW/2zF04D50TwSMsjVm5Cl/bc3piQvq0P3n4jc+maBxX48U0c7E7oN//gI/MZOQvJpZqk - 8AV74fZ4E+3xKLqZXpCAlpMsjvyqb3Nc2RsYLu8EJ8+Ac+b67CpoXc/Dx69QhrsgmDS4KT6HFSVY - uj6ezj1olS1j5z0+KJvZWQ9BabbesrbT75uN9tYjORH7TYeOHJJbBD8e5nfi2M1e/U5gAy9K8uzu - OwPhBg1GZu5XXsc5pNu7BbTfwB/nH29FjZuAy2vdmi+sjqbPtAC5ihdsXPRXWOj25IlylSx//n+K - E0kR1/zqwY6WlJo4Xv6sB1yKjUa5QdNtUbG8i7fglnPGmsb5T8+8r1CBM42XoYcJ/Ic3K9cinc6b - 3obKnHKSFDilU3nzS3FWveiXF9Sp5XL+x0tHpuHe4dz7oo0+MROQxz29V5SLuARMzpz+zbetM9vC - rO51ogblM1yeTZVBtsWsh9bxTuy75gPP6jVxjihNl9/7/a3nZCtPWCJ7asSVD49MsmmdZZ+SDdwK - 64XDN4NTdqcgXiBBd8PYVffqNzEtBW6clmBj5cuMc2cl2N3sGqsrT2VbdOnhnucedr/MSd258Z7/ - o1/ukZXQ7kNoDMZby3CqXkg38IzSiMee9368PPytp/3hM/psKSkrVq0CLnXxuH6Par4En/7P+ony - +DZ04gI1gEp9zRjbB9KRq5PESEgYnzhSFaGVF53hwcuYXDG9V9TafHm4uzFDomufO1MqTYooHL8B - lkNh6ihBFY9m8aONOzNTOirZiQSqGlKiDoHdMWEJC0wz1xFT64ZwSA4LCPuZkzDOtySc2IPYoPyh - adhZ+Vt/F6GBWti8x+XHf5As8aIg1jesR5VGF6ESa154TiYOmUlHzOp/0NG2da8UuSFchGPBI6+i - 23F363bhfD7KjHix7D1eeUs6NXrAAP+tX9gozY2z2Gc5EufnshDt4At0PIovT3SOmkHW9eiUfuji - irp0WYhRmrkzbvabEcr2U2BHeG2rsTsHLnSudMNJGh8r9pIHsRiTYiCadOvR8jktjPj3b1fAf/3r - r7/+12+HQd3c8/e6MWDI5+E//nurwH9w/9HXyfv9ZxvC2CdF/vc//96B8Pe3a+rv8L+H5pV/+r// - +Yv7s9Xg76EZkvf/c/pf6x/917/+DwAAAP//AwBf9jC/3iAAAA== + H4sIAAAAAAAAA1R6WQ+yTLfl/fcrnry39olMUpvvjklEQAoFFTudDiAiICJDFVAn57939On0cGMC + VYYadq291tr1n//68+efNq3ybPzn33/+eZXD+M9/+767J2Pyz7///Pd//fnz589//n7/v555k+b3 + e/kuft1/jeX7ns///PsP93/e/N9O//7zT3DhSl95TRESr1klKC9+eONwHF7GEF8/BeS7jU31z+tV + LZ5tJgqZkgPZKJUaktFzFtholyvZaIkVcjSxJajPBcVpNt56TkVOA9E9F/yxtiCc6UMO4FQ9zmSl + AhjzAbs5xHV5pYZtVNVcnrQc8Gbc4Wt9WhvLMVw3aM9vHHx+ipYrcmIjKI9VLdGInx2XjzjBQacx + acl0mVc98Wwvln/j1wm+sSlziwb4CgQcfYa5nx6vfY4EzTxSx1UvKWeHuw60I71j27Laahnqe4nc + sn9Th9oDG/pmzymSwSb/9rzRkL3FrQW2ENhEsqvKYMSacljntx12YrqrOKI8Imho3Pho325T5hnx + gK7R5YG1qD6mvGLvA4i1KKARtzv28ytPAwjvg0ODKUuYMDaFjNpHxlHzGnouR9fdAONBPeDbNnbZ + FFJzQQPP8zg6L5qxTIqQKE/eXtPA7SiaidR3kGgBhy3F8dCcms8SmBJusXFdk5ChrSUow0ewqNN4 + SjV8PCeCYNpeqJ8dJ8TMJg82t2Np0z2z1ZR71iWnMOFT0WPi4ZBXznGERsOUifwqCOPsIicwWknv + 89rIu3P+8S1FMauA4mQ6uTNOkYQkM2polB7nnoWB1KJiJw5YnbIEiVJR+oqzSAhH4JsV16+iGrax + /Ka+lGpI2D+zBEm73ZOqezd1OV3uAfWX6O4z+e6l03QrT4oulSLWXmHu8icsr+DNf1y/nlZtyCpe + WMF3PATJ8bmqN7esALW/+tSoN0bIs01oK5dIV/B+PSUux15gyXm6xb/4QdOtlhrl6S/TbzyMv21t + B7irRX2+3Uv9+J0v7Mrlga1rte25lTaflMjZb6lzOo3GdK7KXNl6Fx37mvxiy2N1kwCrho2tvjF6 + vhSrQGkH40bIbUGIodNZQo/zZYu3OFd7xu+0CC5J+6DHdJTTZXK3JZw6SyRC2UXpfLrruuKWnzdW + 2XsVzh4uLSgeuol14eIhwT0vFvJZXtFdmw7VcgzFRuETrcS+CpkhIlEcfvPDhhUoacsdnpESzxYQ + ZIibamprNijTjZPo44bf7nzgXoGi27seq4vFQuYIrQcLe1vYbuQDEr/7C4O12/ubzptdxm9kH1ak + TfGt9PueWLQgINx3a6x1tpwu3K0bgGvWW2wnqxKxvlAzJTDa1K+Uhq9GRSIL4CKP8N0NsnRKVpOl + XBPQ8L6omcukMHSU5zYJSa0YKpv2ZWeCf2s3WDuc5L5bpXsCTqi+6Hldlu5UzWkAGy264geUWira + HMpgXFcc1vP1ve+Hx5OD1SxUWOfUV/9pRbDlO2kjupXHF5o2Td9A/lIrMu/veiU2+CHBMLw1rDqq + GFL1vTho/f4gbBQTj37xvrlw+Z5ezHUcfi7HvQV2aGrY507Rb/4E7dFaoHviXHpWGZal7HRpT+1N + pjK+fMQleruK6w8sbtKpfkkARXuSqMm3WT/bRhwo4d2NqLN9btkUK+4FlAMafRjMcyquNlvh146N + 3XbT92jrCxBVQKmNltZd2KzkaCz8M46ld12xQ6DZkK60gCap3Bv0wJcrpNZ08Nk4bA1xmyYNQles + 4G1w1CsxS3crsF4TwefsMFaj/DwG8I13MsDKcTl0WDyQOi7HD5/bGYwMSYC6bPfG2tWwXG6F7Qv4 + YXPA7tVv2Xd8HOAPN9Orzr1SRjafCHa4uWKXI4o7dbdbLC9TeKbbDc2MRfbqQnmvm9yH0D+n/FOn + KrivdeyvzevApolTE+gs+0U1+aKmHEYHgjbKfMROuNuHTBo3J6XZ1gq952+3mpL6uIIk9XdYDWcd + sbk4XiBxPkcasshwp2pVXuAYFCUONnFnLLthNcB8z1x6FA4Lm+A9k1984HO2yULm+EiVFfMZ/I0/ + djtqBcwMTBq7pOkndz8NinqOPRwQxXFnRV5suJNtTnUS70Ix44kFU5ClNGDvPFwc69HBwUjO+LiK + Xog2GQF4D/H1e77cfpYedaGY/L6ju+G2uMv+Eg9wr0cNX7ZcVLE51AN4r7UWx/fVqlrAP54Uvmti + 7MfKuqcVLwDItVtQ9d2Habu+jTHafy4vbEWx7k5XZ2OiabrMPndengarWirD3sMO3vFeyJZQOZZK + xq3O1J02L3f6zIMjF+kQ0sfW2xtCd1B1MG1C8UFusTt3m0JSto9ij6+8x9AyqXsBZEnd0dzvR2Oa + 5zyGJzr01F/XHZq2w6ODURgO2BLGJXy/h32sdFWg0ltFL/3s6qkOkgM2vRHnUi3nMpvQW/A1rJ52 + Xbo8wCrBDS87GjjqNZxGVYuV/Drn1BvJyJjNoRy4qo+okeRGKh74EuC838x0Z3y0XjSbSwDy+FR8 + KbuzaroQXIKp7w7UiWbdFcxyOv3in+7Vl2Ms6gl/8U3Z4twv1/0SligWv/yI5o+MS1uL9Cpcku7x + dz5TWXs+8KKjUGPiScgUUkxKEjWv73iqdM6Fuw2wqg9UNYYunfWX6EGuCZmPDP2eCj88/eYXui0H + PVyCSmqRXJML9Z6fc7qI8StTjBVLR8W9fdj4ysMTILMe8OO+QSnR0acF3FSqv/kUekiHrUvkdZ7u + SPvDByHcTFBH6w2RxqudTr1aqIpV5grhucDtlz1aCnivjRbbh4OYLqvmkABKKoJdSfdToTvYKlKf + N0REL9kbXB0/JSU5KDo93q7MYLM0mMDk0vG5YoPRN3+DUvbV4bv+z4ofNk4A5pJQ7DiubAzc4RPB + pXiXhL9tip58+ZMSTLsLkTQldftbHjc//MfaVSpDKuY5B3250WkgH5qQHFG9/PCD3nR0TBl6DADP + I0j4aPB1uPjypYU5OOx++FnNllaVIE3zE99ndTY6qhY5JFfpgk18bvr+y5+AH+U94b78TrTXogNG + 6YlEBv2JiItSCfL5Zf9d76V9zYni3TTe55vuzQZZ7e0ff6aHcw/peAtcDiy6d8mt7S13DrubCXnf + bmny1m5siq/PAsZbs2DN312YUCpZB8qz67FXKE01Y+Gky8fmXlO7aDR3JkUgKf7lbNPznUj9Esnv + Qh6a8oxVujTpsEo8Hcoa9f4GWS80O4FNkLcnZ9I8eckdavckwIvuTGpbyPzbDvZjwjht8q0xf+NJ + Ea7NHm/rSO2F9SHT0We4IGq0+tAzIZwXxfGKgYid/EwZv1l8pC+Zi43afLtPFPY1HCuXkeV4SwyK + BlDRj39GMzN7TrwhB6mtdqdXQRhSog4vAY7No8b4tHi9+D5WAazPakeD73lnRS+VcFIFk1pRXLrc + 0pyIoq0EkUgnEbNpuRktTAKENP6d55B6Ezx1q8R2Z1yNZY/kEu7vO+DblfXVUl8jH45X2/zih5jO + CY9V+Zn3FvV2e0BTs5ZypKVbmWyyZuyZPCatXL3wgZpCY4V89KYmql6Hg88Pp8Z9erg00QuiPVEU + KNJ57KMavP1wpvHrpiP+3k8W5NF9JJynnfv5hJeV/OVn1GBR5c4yKSLlwfsp1Y832Z1ZrqhwEQ+m + /4pxa8x7dnXAF5aIfvl/2nPdYwLHKwcic1Pvzp/HJ0a1S7f4cOM+iB1N1VOEqxZS+xZ1IX/4fGpk + lL5IDf86hf259W1AJDlj++PLiNkH/wRffo/dfftKyU4+TOjiLHt64CI9nS9HzYTOm3bkqoQNG6l0 + UGF3fib+ZD4bNAvSWVaO1Z5R374WqVjxqxWc341OE8eV3XE9ejnk7SUiX75dTZfK4ABi84zPAlVT + QR1eHMwNWZMqz2xW7+lsQ/7SK9K+qeOyUbwDYLZ7+UOLBuP7vALJuZ3o4+CQanDhWf/lS5Jj+oag + uPQE9gPfsN1JYTgFdiZAvylqqjHz07PUSDngwmmFraeaMoY7tVUq6hR4uy51l9kH66RImsr7vCSv + 0ULVNkdpvdyps7/cv/rqcoLGXydUdfiwWpqbCtBInwRv3w/TZUrktNC4/QfbzXbuF3Z9RLL+OBmE + a0X+i8cGUfZDd6GaD8xl8JQuENfFFeNO9VNOp8VJLuOzhbdbrQlnoXBtOMoXl5pVbPbimT97oLjO + gi29d1O26lcLfPk0kYS1Fc7XlNjwwdOFhoGwTWcnUAls3i7F+vOtutyhkjwAEXpqRP09fH8sG354 + QDbrzbuaLvZrgLfgaXSrl3PKcNL4ELB0hz1Pbvt5l+1byWkul7/xyIyPelLusZNRvVLe6WRSrYNN + VObYnyKCmJPpFvKya0PVTewYbOx8CX3HQzGUz5TduAeAdfP2eItuXM9eQ6Eq9+fK8mkpbg3yWB1l + 2IjDCxuDaLNpa/GcUpFXh9V9ZPe8UkQqBMBqrO9274qsDnIHbkZqMj/zxpj6+VCgahuJv++7s+p/ + BjjvHIG6XagYQ71yCYC46rGxBmCDXVwGJRNpQEQiWWx+bz8y4A3d4f3zhkO+ezgLSuezTndsNFzS + 7EkJX/6C43znucKpSnT02ujxVy9u0RyZcQcDPK7Uvy0p4+dH2oHhPzY+05q9wfkXvYRAVj/UfB+y + nn/eDw7c+0tFzt3jwcbvsxQm8Q3f7wsN32gAHX5882i3TTgf720H23ZR6G6r+NVi2oktf/MRxi/3 + ZEzEaTJI6+n+jVfWdy+4JookE45IJz2spgvKG1hpTw3HIqdXAtJaDsI7cXwZr1R32T1oC/HTa+hP + jxK32jtQn/wV3d5J3AtKLFzgcdIjf25CPeQeVzmGU6271Dj2z4p9pFlA7Wlq/PV9k6bsZDxr0Mog + xHk+bXuxkvSL0ukC52/O9zqdztOmBG40ZupJPFTf/RkA71cp9bU5DuehZx764g02Y4sYi6ieCLzO + xxTr2eeSzulxquG5qjLs0mODlmZVTrDzgoYsh7o0lqYJdPTLF+fscKi4/TnUIXf9DYEDNdFn9wmI + XC+tgy+aU4RLf5syKObngHNtltKWf51zZRfzLkE22xvDi6kqQCIGBLL101j2l4CA+RIcbJ2nR8/W + 6OZBeDVbaq0Lzp2VrSIBoFOGDVfmGf3hkXFuT0QcfRIuZSl8+f9Q0BtWP2zhvLD7619Jv3z29cdQ + pMg6daxLaSxZvVHhoJo1tqVc/OkZAnaW5XiXPq+9uMrfBJa3+vQXEr/DJX4+yh8/xtswjHt6bi0H + TMQ86mndEE6afSOy/ggMfPY/dTo0Duejg5AvVEW6Xs06L50AuFb+65/Mr08OoIjvkRqVdTfYEbsS + vPEJsC51G0SSyjv9nv1np1yqxZ1iD33jjR7YRQpZkeWW/NLWnb/swEBzil8ePG3Xx946mtPpu95A + q7zzJS9OjWH1Dk14zrxPD2QwXfrFP1mpIcNqI4juyHJeB2fvoa8fJyNinj+ecj5MMd1+9ZyweX8C + GPQ59ufu+EZzHqAL3HL/gu3sHvbz7hMPAAkf4Atp1umo+a4F9FNdsJaOSTrOj7SFMZMr6t16jCbq + bQRUmBXC9snV3GmMMxsZ9u2AoyTj0ymsNUs5q8+IrFbUr/j+QwXwWVbRE9qTnsWiBsqilh/qvJ1d + OOnFVoDXWTiSjfrqXOo21AZzbSlYPQdhP+m0Pf34BM3bA2JzKBYOSmai/h3/Xz06XkLtr/7jvGct + AL3gF7XscN/zWEj0H575Z377RpM00xO83bXrl6ergRZWk1jW01v22z+2rNL9IGvulBBB0R4h8cqy + UGbryMjvvAvDfh2j2duc8cUo3v0wcXYinwVU0p3Yt714464AQeKEvlyMozs0yzORrY/5oPflmbk/ + /oy+fjT2FXkJB7+6NdBmrkHWgmy4rLoPHkTvU4EN2zAqISBwgVPDLLwzM6MSycPw4LYbcnx/mZYx + K7Jsg1yI9OsvhS5vt7IFX7/zp3+Npb9JGXz5LfU/7qufrrFqK+bMb7DJt9Czdy5HSH4mL+w+pLsx + CifOgjeiIvYPwsSoXLgN5PPb9jeuXodzmkEA/XZ+48xk52pabm4HX3+TnpS2quar/7Dgm//8Je4D + JpwUyUEDfjSEH3dlumigBsjk3c5fB6GIfnwFffECW1MQG9NK25wgUccV1jcPweC8/cmE2gaHnllK + XTaHToAuYzhR6+snTtEc2+Bg4U5E/PL6mUhVB1+9RrMNX7DlUbFJ/uW/r75MF/+q+sp7OSdY2zxN + Q1Cj1AJTeqSk8Y7UZbdPdFJARQrpQH+yeV2qk5KodOUv2zt2xzzXYzhPgkAdP9pVgncOc9jvM+y/ + eS9Ek3UJ/vpFPj+sODS/hEYHqxcT0ndZ17dbS+FQt8G6j65+i5i2JgEadBb776p1ql/+RF+9Tv3H + S0PLp9ol6MunsE5NwegrwzfRYTNVNHk7u7RJYrVGbzrYRNhyXMVcP0vgi1+Euf7bHaZmE/3yE3k9 + xcZlwyBJ6Fv/wBYqSdV/wkCH5L0Mf/X8aDArgGKuBtJrzyWdajfh4HF85BhXwzOcjrRP4J5mB3o+ + LmM/JSvJ/Ooqj/706uy0aQZfv83nsw2ktV1cCMwX4UNt9En6qb1JKuz1o4itfCBsFu7ihEbBvWJ9 + TO5V68KnBvvMAbX29haJUhjaACjI6KlSdil7HGdVoZfDi27rqOgXaGoVvOYk0/1Q5MYU2BEHT3vv + +/PXPyPta5PALkeinyTB0k/1yiBoTY73nx+cTh5hErT06viLvr+jqa9WOXifpse4qhgjSWUGyje+ + sNvbm3TebGoV9JO69m/wulSzFBWcYgy2Q97f+s+42dQ63IL1yV9psxT2J/91Ur56ke7EErns59de + a4//rXc6X/2rBczxWnzLmkM/88VzUcxtsvrqswxN2ewk6OlPEzaT7JyO8X0uFfv0dLFdNE9jQqkW + KN1aqLH2F9/TtYp8TF9YW/AYfrbvHtDTzdfUn1e7lDOfcoNOGb/gL5+pxEznfVnO/TtWV6JcMVc7 + XEBP4YQjT+Mr+s2nitIGBxxW1t2dr4J3gpWbRWSii5V+/+/B9doF/nTaOeHyuNTkx0f8hVO3X7/u + FkCzaBI1msQP57RzLzAe9AM+jHrfE8OyJqQvuetL+iKmbO7vOtQnb0W/fM5dkFZwPz+ept96yPJx + uHaD9+mLHsygQFNw7mX0cHhEls/r1U/hvluB/TjccDAfRXeSWaaj5eCLeP8pylB8PFTz529gp+6X + fnhf6xbs0NLwYR4eTHhchgEq8u58+ds+bTcN2dSDc6T7rz4eRO52AtMeKE1ERPppfXslkDrAaOhf + g5R2d8X88Sd6jEsBDfwyFLBdyJFslGRhzH4PCXifusfuZNpoMqO+gJXJLVj7ZG5V/vAp5TrmL/d8 + +Z6XSVfITY587qOWbFZTaflbDwji2mT8y+AdBWLr7E/f+Y6fQcphv7xv/quPwF3O58MA1yh6fM9D + kS7tynNgb9k5zb/8fC4fQal0zLlQM0ZOyAqMVVRsrZmwQHiFLNMVH4U770ST6X2vlmEvJiA6uwkb + 81Nxl+PT6oApxy01MutZMZtjGXg3g/fFb7yPV8EMAO9vL7pLhjRdSiVrITKeFY76i+OyMJha5avP + yUSUzmVZileg5FmFz8kLpwI0gyp/XvSGvYLbGF13sHVgh+KG91uch/wTCyaISdfgXz2C86LzBPKx + xHjfeV9LLN9IULjuHZtLqyIhLFkMP/4U1AVFw4YtrdJR8Gl6742QTzM4/dVX+0+hpz99A2lr+kRO + gqVa1NNuAMhdDePru2WsMI0LzJ06YfWypWioVl2Evv7S3/rI13+P4BHNmCb7y52x3PwAxKPE0WMi + 5e7Xj9SVr77HetxPiHGPyESWuzYJTAcdsShI1J+/RDEfOD0XUm8BQ2P933rdwB/0QV5zSMUHE2g1 + 3S+HFhUP1cQei62U/Na7PS0Nkb7+JmNywCkanyfYnTZbY9LHTJbcMNrhJIRtL9TrfYy+9VT/w2fj + Xz8XyWOlEHh++HCi3swpIywb/NfPrY4lB6i3arwvtyv3V39Qfvx5b5lyNTyUyFcyv7bojXHUXXhW + esoXf+iv/jlsN4TApnsUeNs91oxskpP3d3/Pu+uh4h7XJVbeek2o666G/vc95Z/frYD/+tefP//j + d8Ogae/563sxYMzn8T/+z1WB/xD/Y2iS1+vvNQQyJEX+z7//9w2Efz5923zG/zm2df4e/vn3H/Hv + VYN/xnZMXv/P6399P/Rf//pfAAAA//8DAExEQ67eIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d4539125c1b-SJC + - 9953edb32b8acfcc-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:42 GMT + - Mon, 27 Oct 2025 17:31:42 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-779bd7b4d6-4cqzj + - envoy-router-75677b5679-lwhhs X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "57" + - "703" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "135" + - "725" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -417,13 +417,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "200000000" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_8661640395c7443ab43263464e7f2fe7 + - req_f309066f89754926b6247bacb9e77dbc status: code: 200 message: OK @@ -469,122 +469,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWxN7zLbu7+eneOu9tWcFQbd550ycWhCRXbt2kYggCKLRq9Z33yX/WWuvdZOq - 0EXrwxjP8xv9H//466+/+7wu7t+///XX3+9q+v79v/Zrj+yb/f2vv/73P/7666+//uP3+z9aFm1e - PB5VV/6a/25W3aNY//7XX/R/Xfn/jfZne/QNXVJpGheknkJw6GUdKZfQJpPuhxLMA8tEgfepnA1v - HwoGr46d6cvojTQhEitC1y596kEvZKGE0oJCMBpY1l/LuMy8NojjtX7OK5EUwpp5Eoit2pgoL5KL - SlqXon7v84/CVarp8IslqOgBj7wsl6NjX3AW/NDW16eiWAP0Om+GGKa0j4znDZAF0N+7YLqKM5O3 - aEfzoeZcoCNBxd4ohYR5vzQNss+xnBdWwuM31c4CYD6T7m9SexppeB1oaHQ15xONrciiPxMbJsK9 - RCF72/KNt4ZezJk7g7OEZcBquKEB7uCIsHNe1XplSD2Lnlwgn1PZa0T0sNnE/pX1+BS8js7qWrwG - ZfX0QqeKMnOaVKCFXQJ5/Nza0mFuvW+AEuUP7KqZrB5fMttD+hkk6DKvUb7eGK6EV/50Rtk7MqJl - K9MNXPyDjozqmYykjtsJRIkQ4lgR2noxNt+H8We4zhzJcL6RU8n+xh/7bCcTJnblQeSJJOMQvjuw - VrYeivv7sP/WWEJos+TEYWMKnIpCnrO5Uc7w+dCuOHfbOjquZ3IHzdvUZpqZtZqW4gcLw9cazoBW - x5owoErExvnK2H8BqWYvPJ3BntU++H6Wuj/jJ45lyMzVs3dykrRcIq6fi4eKPr6T5vqWMvhtcIRt - SUcOWzU3A3Bm2SKZQRFZ5+beQ7prv9hwGi0/qhhn0DmDEhlyihyWCcIUtBM8oScA47iMeAnEpQhW - lLklE00huBUwU6L1Sx02RaXP/LsC8PVAyCwHO2eoPqOAAT1+BiFDq9guEQfV9SYj5TAq0TEYbokg - WaWGDQzOgGSvMYN3+IRIw6kKNk0tWxikio4cwpdOP2eFJlzVvEGyUen13t8U4qlJUdS7eUSYLIDi - orxoZKnsMRrp3KTFGhixz9mKS+jgsibA8kUKWyfuNdKve1YAcFiYmXprCVll0oWQiodoHp7mQhgl - llnx9/2W9H1FRM7uJZyGqMEG7ylqX+j5AEvomkjZUKcucudx4qfUb8iIT4lDmxq7v+9AYfXjLfm8 - j6dI3eEHx6fAzFfuc7NEPvGuyO78ctziT2fB8+HuoCs1Xh0WzsoCKjOosc5yqroUjeKLp/eaoicu - 9YgtRBcCXB5zrHwo11nJeljgO3O1me/CByDcyy7ha355yMj1d84cj9sdluj2QGEjXp2uf3aKWNJV - gR0hhNHGYAtCi7MifKeqS80WB7zBA55mdFmPs/N6K48K0gSmOFrjcv9eXQC+q48zlc2sSn7xha8R - Rmh4Bvl6GJi9P76GHSPzwJG21QmIgBOx5x5adX4iUQPS/HxiV362YFbDEwcjxT2jUHnVYE0vhQIX - b9DQI74d84XK+QYe6HTB6nOlyW++oaTrD5xBn6tXW6sSURIYGxtltu7jcdzgawidubFQGB0zKZRE - 85UIyFnEBZASG+UvfuEHNqvxqAyvRdQSU8FqdcR1Wx9lCyTWYuLUNcNxAvS7gOsl4rHHXvt6U8rR - hc9WzZGWTUq9LF/fhs6ZL1HQZB/1c0w+mjhGvI2L882uP+dGLOFN7DD2GuBFR8CdEpi0uYtQztH1 - jM9BC2OJV7C8aFG94NONgr24hFiWr+/8+/m8WnE+PlJUGApNJpMINnR7zZ1JcK3BkUKSC9nmUmEj - 1/WIXr6GJU7CVOO8ny7ga7iZBj55fkVKr65g8c9DC+/+jcMPqq9r8h26WPzlp5y6Tc60yZUPj7Nd - I+cCfEKzn7cNPS8VsBffrjnN8lsq6tSJ8elS9qN9vjeRSFY3cx8/UxclbVqACk9FhX1qRqIpzxJ2 - xktAp8oU680+qzNELbyhR7kqKhvGcQADMSY4ZC4yWdaiocUqQJ1Psd2LfHOBtcHVLLh9PX0ByRvf - B+cxPfow0r8R/vU/86XZB2UukOVQ3DN47asG+TJ3qmknZ2xRzjnWX/iAqZdOsFnYTtQJSbR+iYh0 - XSdxakfkCwe7A9hkBg3KeXhCsZ+bNa3aaiAy1nBDzqm0xg1X8QwZKjOQWny16PgcJAG+T0THyA59 - h7WjtgKhZntYmkZNXY9HoeCvqf5GIWjCcbvR+A5H2D+x/GWUmu4EhRW/1xnMve9y6vd4UwXR5uoH - 8gp8BfREixx0LomJQ7rg1M/CLYMo5k/KF22hzDdw8Dl4rG6tD9PgCzZzHCtQKrSOi9uwx0vxRkP4 - dV0c+3lXD25btADom4H17HDNF81tNREH/oyNkLqMv3gDy64ysE3TZrSwuUqL3OR2OOLmNVpPjbnw - lBX0WDUPKWGi1LKgcjj3OLzdWXV5bGMJ0SHA+DJNX7Dxt3aBKyX7+M49AmcRT3IJPvY2YJm/HVTS - GHoKz5nI4VReVzCdMwrCe2QKM22hLf8mkmODmIpTFCLjEm0ZWVoxtHKE5V0PMWtmG+C7ahTWBF4j - TFLwMzQG6okM2vVUWs2CEhaLJv3p35z6wV3M0/sDnz8c5Sxfs5XEo2ccsW5dyvw40I4EXbh4+FwV - LsG+eVfgykycT97q25nC0XVhpSKEHIbSyVGbuYrXY0LmY3pD0YoWWoEacJVfvhqPURjH4k18Y+wk - eqYSOYurn16YxZY16zU8vhswj+YXOxjmI9njFVzdhEGapnfOdmhzCdyT6rXrtRyw4tmywVPAd2w2 - 9KX+gnNsiQBfWawgg4kWP/ZSuLoxg5AkKjXJ16UXQ7eofYppJ7I9bukC34m9IHvXQ/T9HFqwK/oK - m6OwqPNrEzKobFOAlZY759sE6RJmJzHzuY82g80zeAtyztpjedX7uu/t1AJagjHW8ZiOvf4sLLjv - tz1exWSRKimAhgdNfE8cS52TMdIgIyUqUt0gVmelkDIIbNlC5hYEYJ6p8i4C37gjPyoWZ+lSvoDC - aujYlDqSD+X5JUFhytRdX4b5YEdzBSLjEaETSyiALSvzwR0+IDY9Xo3oLl0LoJyHBqu1nAEyhOsA - OhwhbGJpAEMf6QMoIUsj/WmYKnukjRbwRJGxAUKzXhmt4+CbEAbLgQzH7WLLE8g/pu0Ll+2dE22N - EuA+xRpl/e3lDIzkWYBP0HXm1ssJbFrDU2B1Jgurxy9UV/Z6pcRc3e6/fJCvNntggTbmi598WXfP - xxIlbsnSIB16M1imet3EtG16pI6WXa8FMTKoDUTFSFUsdTECSENJONrYDx/AIU+gKzC4A3puWdPM - Z61ZoWgpWYslt/866zhjV6DHXsa36VFEW6QGFnC5iUeB85jG7ahFHLx0c46RIK35KlCTAic5ec2g - fTRkCwKvgoIJlvkt+iqgRXBVwKt1j/j2IKazdUHFQhu3N+Q0lV2vjLpKojffW3RLatlhlbJ24eSd - XZ9FM6q3D6tA+Mu35+7zdbbHdJjB/dh4KGfMu/rT74BtrhUy3hjWv/6D90CvSG8TT12Unmchl54i - fPJymG/x8dyImZfJ/pG+sPW6nGgaNmo6Yv/jtPUa8bdScHvDxdGxXsCavO4lzEbV8EFuYHWhdQ5C - dvl66BHabb58zVkBdSVOWNJT02E+wnuCtyc1YG3tYrDgoY7Be+Z0pFeuDI6dK2micoj6mX+IYbTc - 8mmG8/CUsOo7c7Rc31YKo7GJ/OYOonq9iGUohjcZYsdubuoqrW4BPR2fkSHkIpj2+CV2nPLGUuGT - enHsVRKxyGzI9yMMyJ1lA9F8vyFGHRryVbuhO+QpOOHr83kiGB+cBGxPTcBZvC4RSW66AB2Nt1CG - Py1ocRVPYDop9swu+iPfBEEORNRSN6Sjt6EeF5T2onLhW3/VRwCwirsUYL5dkPWie0BqdWjh83NX - /IfcBxHbjPYAQLUUyGTcMv/C1ysTl+RtYcWTMVi/MUohKo7LfFhGHex6KBa1My3hQPIMwvzam/eB - Q6pCc+PSj58KOJfYRKe4N8jix3oG9c+TngGM23pxRL+Cj7h9zwfDqgg5eU8a1sfxi375lxTcT89Y - NfrlM6LiLoNbUXgzx7caoGl9ocTnoGEUzWkwMpP8jGHbCwxyY6OqN47ZKkEIpBs++0Qa6fS4FIC6 - RJJ/yGjNYTy4VWIe56e5fMVztEoIaPBMvj5+LqNOmKvypgQ/dmNUBCkzbveTU4JD/sl80FRDvSTk - NQv8wKf40cuWs66ZveuP4ISzz+M80hzSEwi/NwH53+dD3ZTgset/Jken5mSCiY7DUJx1K0Sn6VHk - 66s9SxCjVsL6lX2pn0JaBMjx7gFLxv1ar081mqBxEgja/VC9Jq+4gl917PxSPl9zbHbWBp5bbmCP - 6tWaNg5LDw94nrGN7k29z18G1WWJsTZcZ7IdEn2Bu79H+Xmtx21eKAkOFjv7gpXY6p/5visPDwWH - S+4sazHRQLmAFvvZnDjbJa0VKKQJ9g85F4+rPh5LcfeL2MVyXC/zFYTw8kw1HFxErv7FRyhefYhO - EmuD5XY7cVBvGh3dHNfJWUGQQ9F3CmoWxuroTPZQ3AWL1g74poAgoq9cF8P76FdIfYtD/j3c+AFc - kfXCyLAq8DnVgSDOST75fTHP6jcGdCxWaxQh68AwIxE62hBjVlJQvvv1heH8Ajxfyw37T+w47KJn - GnQs6o6MunRGEq22APd4g9TZf+eLqVEJ7Oy3j9xjiOuN2m4V+PEE9cFm9bJ6/QTcZnzPvAKWaNa7 - +wIv9Ezw6SGG+dF4xzQwqesZGx5hcvJ4bxa8LOMT6e97B8bSY2w44t5E6G03ZN/PIWAeSTZDxrMd - 0hheCmfv3qPklbcquX4iW6yLaJi59vBxCN0LIZBX7+0TyN3rZR8/MNqUgU9JLatbcegWaBz6EoX4 - NEXrW7mU8DYdFKRqbAUWqakN+HgfD/t+6/LOQc72068+0aVZJZ9XSP38OvbKtVKXpI7vUL1rITJY - 04zYFL9YeD4uFbpm8WlkP29mgolQlNjZeddy8IIAEEaIsf1QnGj6tvcGyKrzQv6DDgDxW6WFwNfu - ONr7Pzg12KDTdi8s84k6Mrf3GMBIoSkUu0nlbNZsxDB8WW9/05aYrCntNpBbhM++vzqy+5cKEsod - kOxt47jWlDHDJFNfWI6oEsxkEHzYYQB9SpQode0TvoIPqT4jO16DnJWnzwy7HAFsNUI94t0viKDa - CiQdLsBZSRGwYualMo5U5lsvTKfE8AC/BlKOmZlvmQYX+OF8GRuH+wZW55plcAGARag8ITDtvFD8 - 6fXfet79cAzvMl36/L4/jsVpzkBdnIcZMCZ0JhexA8Txc0GO3fAqQddPCJbOY/zliayadduiga0j - PHZ+oOdLdB8EaJw4giJuPkfr+7ANYvtwjn/y6zaNSwbBaNB7PrDAchBtCtrIyXY/NKtbK26TeCml - DRmIE8D8LJVYjIWzhiQCTuB4yu3wj54Iy480ko56NNB8p75PZ1NVb8M1zn560T8f7Vkdd/4DGgav - vvBQxmjZ9TgwpchH9lS70fJQOBY8rTRB1/SGclJivwK7nsYSbwz59nkzs8jrzYAf1DYT8kIfTdzX - K/aul7ZeqfdiQ45xRr/5Pk71tpq0IARiQnZeI9Xr5Zsr8JCPGbZ2Xrl+8oMFPh1R0Omles73l3+d - QbHm9RZN46I/Cxsg28F496Mj+9ODrfVkfaZNPGeLmk8Fu1HxsAIxcfp9/8Pdz+z8eCDbK1Zp8cdf - dn6ZLxr4cLAj4nnGKX8Cq8ONG9CDcvVZJhDHb280AVBOsYcNq784dIxDCqxSx/lU+MhVwin5Hj9d - OH9O57MzObloQcJwMVKUl0q2m3KmxC/KGmzRbwyIq+oB/Bg4mVd9zMH0eUi+KA3uA6m9C/JlzwhQ - uHcrkpyHWx85JYIcq2oWunHMx/nDz7J20VDKtxqhXS+noc885pk634Zxi5pXBdLE+fj8AagjKbjB - B4l+KbF0P83OVHm8/ef5v/i4/vzdleYQRitmI3ziFxbybZ+g2/Sg8hlSqQRTiqOQQeRpXE/0Rfnx - EORJs+NMwYVP/vAkXzrSNXaWhwV+36NVRgRWsH1LwPJqPR+xnaisdI/vUHr4ug+0J6kZCQED2nSQ - 49BXGvLzS+BgpxKWhcAC07jlGqwzpceqf+HrKRLpELZB+8S/9Tu9GWj89OMsBN1bne1XQEEtsxJ0 - XnyKbHoXb+LDDX2f76NIZW90V4iYbxZ8q8zHuPPSFP7yjdJya/SLF+L0mBycyadDjZX7IYGQqWqf - utQMmFM/LeDhmqb+l+S8gy2hm6HPCRfkBchVN+6qUtDOa30mtwnl7Ez1BXTmyEZeJ6TqeusNAz4+ - QYtTDgN1IKeSFlvNpf3iyScRicl7FqXWOc2wYZ75d5sES5jOB3/erKM2LpNSpmK7MvxM8xwmS/jt - lJ+/9smBHgnun50E6+owIWt//lp/7RZeDdaZmfLcjVsyRgYcLu4Nu/1Wg0kETwlUTv1GJz9s1Sma - FvvHp/Elldzxx0sE+PVdrO587LP7cZCehe6XX8eFZuoelo3+xLu+JjiPFE38/XcXl1G3uHMTwfx8 - AmwfbBPQ3bFX4OlVJUgu623cbps7/PYv9pSPHv3R+/eKc3EWTvbIbnxUQl2tbtjvTvd8Oz2/EshO - hwzrD/lVk7Ovt7/7CJ2nQz4DOBlAeJ0J1u6AjF+yHhfYaj6NZPmqR0tWmBUIrRtCd6l/OGTUghi2 - 1oPd54dzlnUWNMiD+IpkrRujpb3qpaglurLHM+OnVzSwyMCc+eB1VUn2tFp46/kZOWaugMWsGwFQ - cR9hfT36zubfPj7MLyqLdv7szJEuULAJbirW168C6EkpM5hV07LXnxinc1+AhRERBozQw4/o03VO - YRhvwq6vGzCBC8uBXV/v+VIiU1O7CtzIBn34yGdn4aVGgQc7k9CPXzR+1U7Qad8vZI/VUSW/9RxM - k4HCNH2Py7l/ZeIz3uSZWEZPto3PS8BGM4OtkhBAfvEAHTvDX46yNhL46SXgOlG180SZHClK4KAj - DAxWIQfHATzECkoSnfvg8x3IzvMF6HioQMbpYzvs2tYF7E7w5XPI8xxcwgXCS3+1/N4RO7UigIoF - j1j9LJRW62xwtrcfP0DuiYg5mR2ZE9HQzCg/POA4p/jDAnl61T7PMSeVWd3n8Ge/zsL63fVASsPj - 7V7929+/GVqDO6/3D9/3qPa/+pRVLAFOpKvg/MZH+MPHP94SFfbZmUF1BcEsci0/7v5zArTdXrBb - vnpAmDvYwPBqNJwaWwsWd377YBWzly9M9ZR/23DYoBnMHpY2ISZM34kD7DAPff5kvsH28+++a47z - Ty8Q/FgpMd7e+e6PO/Xr5S9b/NWTPL7za1b2gA3fR+a080dz3JYkcYUnZak4DM4XMv34xqCt//ZD - qw61DWKOUpE/oKOKWcqz4a4q/MNweTtf2Lg+7LU02ONRru58a/jj104sKQC5MOde7LWOmuEEkbr7 - yRTkwUZj93ZWyOR6EStAS3eRuhZO/ofn0z5zxXt9Kj+qRR2IWy9TWPdKaaT5Z9iKP/9lJyxDtrAS - G6hO0wEjJynq9TCI2x9eYTHPi7q6N9GF7+JhzNiJamdxRKOEI0LWjA+yEdH5cmwA3TVflF5uSt0z - nH8H6AZllB+iNd80tW9EfgDpzNW8H9HDc5RAclmeKH+F2sgwYZiISxGuWN157JyAMhZ3vuWve71g - sS5qC11TKtF5z9dE5h2D32oLId8LBfAnPxbXZJiX3EoJM+RSIFpXo8MmyFe139a78ONhPlUwOpit - h+KKe/13rxfd848HhUo4QO3mA7dVczqJiS3OcxkjLy07ddffzR89r03tgez1HAmmHhP+8ass1WAD - 3A9cjU9dKJLNciGE14m082A6p3Er5rGHGDUSuvlh62xRcjBg+w7KX/ytv3JpJfCjFLH/qxewWV0n - 4Of/dB3pI73zRvHgj4oP93opudN5AQM3MvFJhXpOu4gaIEwrB6M+s8FyiUwXWmDrf/U9Z92cfhH2 - +iC6c4/F+Z7qVAAna5WQZt3Ees24KIamODVIX78VmadxScW/f6cC/vMff/31f34nDNr+Ubz3gwHf - Yv3+87+OCvzz+M+pzd7vP8cQ5ikri7//9e8TCH9/xr79fP/vt2+Kbvr7X3/xf44a/P3tv9n7v13+ - x/6i//zH/wMAAP//AwCEwXU53iAAAA== + H4sIAAAAAAAAA1R6WROyPrPn/fspnvrfOqcEBJK8dyyyyJIgIOLU1BQooiAqW4CcOt99Cp+pWW68 + ABSTdPdv6f7Pf/35888nr4rr8M+///zzevbDP/9tvXbLhuyff//57//68+fPn//8ff5/TxZNXtxu + z3f5e/x38/m+FfM///7D/Z8r//ehf//5p+m9C7mwps+XsZQwuNwNg+CP7VRDxlQI+dKzyO2Ln+6c + scMGxu+cHxd+8Dvu0pcCevdhifk5n9hylScbUmNrUvVRTd3sS3WL3Ny9j9vlpbHdNxcClM3QItfj + 46Qvx7zYgBCfdIzGVKmEZCQKZKooEX28qZFA09SGB20/YmGb7AG/EzQTqdGEiRpEUJ++/a2Ubclx + RhhcHUZt++OB232jUzN5h4xvH/UeCiIox3kn0ny8648RlBvFwmh6H7pd6Tgc3HWWiCd4fbIFD40D + NacuSfzMl3xKAueDaMXxNG9VHkwhWTB4d1tClRjqFTsN+ojQrAV4y9FzNR+9eEGMLm+qzPnOZSCR + 9vBcHR/EJ7mV83h2G4j4WKKn8FO6nLsvHMDR6kY1clV1PtKaD7zc04QEx0vUTTNNS3jI1SOJ/ZMZ + TfFFXMBmYiYxapZ0C9MbDvDJJqRncm6qJVSKEB7q5jyK1ZXmU+8oAlLe9E49x1fZbvaOLeJrTqXZ + jr67iR5fIWLok1ASXgTGMlUREUcfN3pDRp5zVV228J5fz/SSelXEzaN+BfCc6yM60X3FBzES4C6Z + ybgEj65aZqglyPVfKlW/plJxSrIvYGZ6X3ormzeY78ZiIji14tgegJtP4J0myIDIJ+epiKtXZ00F + LJN3RA+pRdxd1Xw14ElpQyxsR2xxa/iBn/c4UMN19jl/nu4Z7I17SbSpIi6/q55X4JelQ+4c14HF + n5QAvXE6k1DJ+WpAg1TAcyTrw9YmWsQvyGjBkTcI0bneyfn4I2+AepB2I7dcOX2wIiJCGasKUehR + i4TlcWhlbe73VFHTI1jOcZ7BYLIQ8ehFByyLyifEkmAQj5zLvMXDaMtysq2JIttGxXVPmsJT36dk + 3d9och4TRDY9MqIBKERtlu841JRCjLfPu8f4sFQLcBX9DTX84tFxopgV4OH3wggfz4QxoO4SCPsE + j3X1mhh/9B8CSiPokD2MHhG7ZLCE6/sp8S8K+xADtPCXf/qLf+vT94JEROGcEp17J+5OL4UE2Im+ + pZjrpm6wdC1FTp5+6dE5WPmkfCUb6dkpIZbJld1MmbWH8Rx45CoMZ3dXOhoHsNY/qdNqus6iOsTo + dTil5J6bRsRdzR6Cd0hzqjiK5zIl2U5Q+cTqOIXFDUx1JpdQ0AxMTK175TvJW0q4xiOJXJS6r648 + a8ip24LuwxOMJp5+IAwkGNFAeJ0qfsREgBzlRnI0u64r0QE9YVbvU5rLXqlPyzbRQAf9bpTCk6Av + V1m0IabbkTg1C/LleXtNsLpqe3pYrj4Q/GtUg6c/IWo4yov1IR5s8ND0kjr+5e3S7f4rwvp8PZKg + tSowLdtC+32fhMF1ly8DvtTwjj6U+tWZY4stBiI8qPONFvpFjCbd0BL0nl4OVT7i7E7n5b1A9ZPZ + 46s/hhF3tRYFfSNHJnYRTmBpC/MDsMQZNAaHZycE4jyh7g00auzowJryU0IwfTiLRsEr7IbgfSqg + H+oSNY/PT8XEN/DgYro58aZKqxYJFA58aGpJitT6sG6tV2ipVYcWt6MVtVvml1D2KaX4xfmRsDMv + GWwPW4/42OOqkUvLBpbcTaMGtaKKpYfvBoJIiegBpa98GCu1Qdv3KyXHwuDYCDjHga5W+iNXcxUQ + fnjhc48n9UZiRAIeGhtlGVet9fYE6O2aKUDqqjPRRWMG8yeVG6gVL5GelraqZtSdY/TDp6w/9u4Y + SxqGLxxWxPkizHaN8nLg5RPLVAuu55y/szBFbXHkMZwKHDG/Oy1IPNvvUbaeFzat9QpYmaSTo3er + u2ni71c4wJNEtNFB1fQW9BYGfHxZ8VDTOT7nAlh1PaOXW6Iy1r84DlnV7o3B8fmMBmXXhOCWayL1 + 7tEA2DffhABzoozlzhqi8StZMTo5HsWT9ZarKWJ9BoPerMmBlw8Vh64nB1m1LeJlrV9zxVoB+uXT + If70PEVzmR575PuUYHmt52OlyzbcSc2BFOPVqnj5GAXI8zcXYm8udjeLVjxC+dyYZK2fETdfJxni + rjOolUzY3Xlm8gSllPlUO9h7/ccHpEn0XyS/O2E37d/0CudcuVObF7RKwGooo6uZ7MansOwYvYeV + jFY8I5qwnAEfvwcRvvjMomlQivoXL0GLLPW8wVJRlvnc+COEVsW/MRoOA1i4c/4E0ewZNL9ejGoX + CRIHlfveo8V4fVcfVdq0YIs3BvVd8Zyv+awgljsDJfV4AvO3CzGMedmkxl6womnOKw4xOr1p6Eqz + Pgma/ZH29/hDD7Z60Xej/rHhN+S/9C5Jgj47RV5CuRMpPauvAcy3jznBORswTVIQuJNM5xTkmdxS + vIRbfd49TyncdYZIjwTP3fBbzwDP0sj0bHGp+AYYAJym5B5Vp2hyuaBBP/5AfnwIH1vnb31RH589 + 2/H3wwibc3MnGjl7jDe8qYSFB7bUfBSC3qt4uqL9p77R/CBvXJZXjYK8/LmjTp+UOTcMQIFHXPs0 + GlNfH6Q+38AVL7BYnF/uYEtXD1pqRwgucoNxZ+vbSGGhL6M0hCRiKtqb0KxT7YdX3a4KuRgR7jtR + 55cf+w/3RA/pGo9SPFrVrF5fNfC7aKB6t827xVQWBd4ljSfYNt/ubBTuHpzn4kFcoc4B32epCQ4q + u1E74076cN7vbSQk+Y7q+MhHsxsPKWz7K080HGrVjJfgg5xSq/HUJz1b+c8EczOcyH7lQ3ydPm14 + Me0nNVMw6X1pOwUs8jSg3vZ0zGc93pfwkXwzvKnbEcwb5WLDgl4+f+thlze2DWgWUeps9Qx8diG2 + IeigQIrBjxkTv0oAQR9Y9Ix9Wx+MQt9Dryx0QuIh1ofoXGYw4FWbmFpzdEdqTCUa5/ZGcFVO7hK4 + lwLaaNlTbROw7vtAAYQixjopbDUE7cstGnCKDhHx1Hzr/uojmIwBUhsnesQ9to8ErOunNvYysOzY + PIKF5oSa10sHuk7hG7AtWo54m8DSOdNrFtDOmUrVe2xV09U4i5DzdY6aWw/m7B0fOaBXbxdPNXrl + 08euElCXRk2O4fzovkcJ7UF82J1HEIMDWAYgycCqrwfquRTqjHesDdIr+Ur9fOPn09W4y7/zx8ev + 6v34zAbRua8JXvebyfO8IKnjPsRWaqdiFmsyaGVAp94b2Drb6lcODrBzqCGUwF2E0tBgSSth/Maj + 1fX0dYRopxUNVdXH4E7ydiPKbj6pNF1wES2HW+CB0Sklku3nHixsz0SIzktOrdd7ztlH9DS4O5vl + OD8+NZs/5+EJM9GaxkEiOuDS89sEVzPe0YteWe7s6qEA53t7IcZ5cCK226sKWvJ9Q+7PWnV5YVPZ + MI4MD4NHQdiSNkyBiVNbNLmTwV28ijaglFKfxOHpGjFLsEuQvrdP4qUyrGbO2HpAkLyZmHfi6ywS + JAGu508x18B8mnZzjdRB0/AGYaFaTk7MQaNWWmr0SVOxXvqWcvtxPHoUxgnM9AFLyGu6hedmoPrC + TBvC7cT7JJG9Jmd5NWrAS179ylcsV+CB0cMGJy21jW8MmPbUU3BBgUGM51cFuyQK9mh7oN8RHLZh + tFQnb4T12VWoactjtLTMTqFdlwH+vriomsl+Wvn7F9LDzbtEi7a9FvBi7I5EUSPUDVNWlsitx9fK + D1j1dz/DQl3IXpIpmE5fIUC/eD/grM3/4stw3/c0b01HH/cCyMABlTINtOcULQp/kqGQDDZJD14N + mrsWf0ARaO7IH4RbPtvyI0DCWbsQz6Smzj+I+EEvbn5hIRUA6Cf+fAW/+qHzwgdMyHUaGIWUw/6p + DSKhT+QWbGe7IP7FL/Ox/swZysWbTe3pTcGkxNsUzlW3jMvlYADBE78xqvlYoReITcbhp5ohpsoS + sWVB7KaIk4ofHyMWOZvVxOpTAr+HNzfy63nOMhqfUJnD1yhkzpPNunLn4I47D+SHv/PJX0L4wkFF + fng2n6dzBo+48UdZ1vdAYKayQU4yUZJsj0G3A+o2/lt/val6VqxRFywbs3ihQR4onaCLSgFwGSl4 + g7O9ywMhfKI1fsZmPV82avke5hWP6UUZDMYFZxPLcx3EP/3UzdMlv4JVL2BRqdtqGcsZy05upPTU + eRZY3Kjdw1seH2h42R87obidEoiTQSYkg1c2WfOoAHVWc6KuemLcmkuI9jMXEvduFDmrmocCjfuo + UHvN73ZkgQBFKd5SIyzOFfs6VQ83hw0jhNGfvuGekKnvD6bv+uyObflZQB1WJjWWVq84Yik9vMwN + pZibaraeXwabkoupJZkjm7yEn+Cq70lksKpb80WBVZmMeFraA2OxuU3hK3z55CSUuTuP5CqCq6k3 + VGvmxJ37i67Bb5+NeOlA3LGiP5co7k8K9bEXV1OQ5iG00bSnyWErVhNPyw0E5wQS+0QdwJTLRYR7 + MzVIQrCb7wr1mKAiN7fjtPoH48starnSrlt6yVAQ7WJzl8JKap7EP1htPtifQwvEfHqseFHl32tb + yiieuhZ/l+vAhheMY+RQGhIP7PhuSWhsIlCKGklFo6tmvt0UQDgrF+qeZ9fl74a8h/icXImTm243 + v81sA9d6QzRr88rn3igSCPEBEz2TaMXejVSAQLdVaiE1q5hni5/f/owMkSmiMd9P0OcERn1ZCHNh + kGsOxMX9SJVHxucMH582bCd2Jwew/7jdj6+b98ki9sGrGVv3A0R4zEcREcedShOl8Icn4Rg3+nSv + dAe5KuhGYSd+3SkkMgYzlBoMU/laMc8sShDgp0lN56DqzPi+OXierw8S3N0+Wt4aX0K12GnEV8cn + mLIgMiEKqy1RBfZyX2nSLXD6CBbees6os5Y+N6hIDhy11PapT13FXaFpltEvniMe5kcBVlL9JNdm + PnQ7rjn1UHOaknqr3zU/n0EAQtzG1BYNt6LCDX7AuYoexCWHACxR82zgxZmu9N5bt+j7e/+QuQ96 + GM56x78ZCGAYwg3J4Pnpzr2RxHDlt3iz8pVlucMaknD5ElPS3myxgu0TngruS9wP7LpFr8wRiv77 + Qb15eKx6ycEQ3nYI87230ec2uDwhDvMjsQAMXE66XRaYFTtAXS+tADWrUkavUC6IXZ2By4aiFNCE + ripNo3yoVj0bQ/lwMQmBodVN4cOb4EvWVKrl8gIm9moz6IidQBTtGeT9ok4eWvUIda5Bmy/GGMbQ + UmGJ+Vp0AD+lOAOO73/HOYigO2yDpIWGSiaiJm9JZ4V6ScCD80W8SS2b7Y4XXEMOjbc1Xo18BpUs + //QZCV3pqLO9pY1o1cN/8XX6HKYMYunJEUPv7W7p9rkG1VnP6f4rjTqzL8uEIB8sRM84kA9Z+YxR + 6lz2xAPwAHZd3Ibw1VXTeHozJZ/GrV//+DcWeeFZTRs1LqCT3Aocr7/3WfED5JDNmOv9LpqvCfSA + Abc+cdWrF00qTBcg8kpCImMkOdvF+AnWek5/+c645jSizuhbeku4kc1NcNij6HDfUuvn/9E0cGA/ + gQHXV+9QLc6WT+Tx7rDVr1GqJW2ABq80yn76KVruEfUACKlGVn2fj6O7vULzvlgjz0l9Nz/vGwf8 + 9P+qRzvuaskaWP1fLF+g787JIj2hmTs+dfsTc9uXL/Zwx302xAuuLZsMn3Ho579knGTmK58UITkb + 4fja+oduyeNOAKve+sWf2z83cQB++mXNF5d/m+EGeP55h4GH82h+QFeG4BzD8Yuio/vzY+CqR4h1 + 7HQ2a9q8QSue0h+/mDVqeFBMdskoGUMO+qIO8E8/EdfDIF+K2y2GzUQWovSJx4RmfoqiUIs2yWH+ + dZeM9iX0eXtPjj99Zj1zDq58akRF2HbLFzwKYIvVBwMv1cHyTloMVHgpqUK90R2/+ODA4+E8E20q + MsZ++q7SpoAeqlKIeoMoMvydd7rgTd6fNqICFxRsiLrx+m7yAa8hmbdr4j3erkvXeIcTsidqNh+u + GuMdskEcpTdC9GfUsXN1qwE5kGoEWy/RuYjVKeTyp4FR+WAVbxSuCd+TmNPgvNRsvBVtBhxrr1A3 + M+yc5jXYw4M5fuhhOUvVeI+5EAbleKcB9Ua974WrCeXy2Y7wsn/p/W0byPDreAnJp2DDps3ILci6 + Cxjz+znSuYk/F6g59BMNR+fWMe3pptCRgpQqsj5HbHqHMar7vUuP02lb0YAj4c+/wUszC26vYvGv + nsPfmyfltK/fC0yd8URwu3HZRFi0+fkXI1vzhbts7QJGRe4Qf8SpzkohMeHqH9OTUAL90zsKh5ik + XHGBcFJNd+40IsuMDuMO6/du2AnOXhY0C49C6+67JdSmFK1+08hJMmVLMloaXP8v5t9jrw9deVag + l7x7suoX/a8/dUCCu+rjd7dcpcqEqlNeqLL6g9TE1AYmdV/E/KqN3puc4iAV9jO9+7HXCTzwe9nV + nj5VtHfdfYQxkoF4dt7U+YpZt7T3qIfKe7hTXT8h1pfZc4/c/HCnzlJybIFnmMnRYQ6osfKxVa5o + UOS1hCjvccmnRwdboBhE+Ou3/eX797r3aCKMTscJCqthWTqX1V+95sxBPQQ7v8roX751rk7N7z7Z + e+o2H9pHbwL4Nhbq7FqWj6t/DaWw4YgVPIxo2r/fBVj7A+SmBzd3kdAUwNV/I7qLRHcqs3YPt/yU + Eqx8umj+nF8lMk1fo6b6MMEs9REEilFZo9jyCZsP908D02IYyOqfgOXz5hbw83/3Xwm7U5odMFzX + R9Rm0fOxmVsZqgWvUV8dNcAFlzKBQchNJP5yEmjsnStAo9Zaugd7HAnX1yaFUR9KI4fvNRh9uxFB + zSuUWuetwoYGQw0qxQIwON5Gd0FtrP34KrHK28IavTJ7+EyGBzHUaBfN4Y0mf/tnKXu+8umnD5I7 + VkdAg081ucwtgaM5PLXzDevmvRwI8FBHJl5ose8m7ZHuQdXlT8w/vyrbhdtMhEa28PSHR92muD2h + xO9vWDzRli0Kf5Nh6Z8Loh07x+WKoHrCq8iVGLwXD/TPUFVgeKAH/BbVunoyfeTkAtWfEQWvxp0s + I1sAXwsqMQ4Cyqc2fIhon/UjOb+eyB1gfhF+fgFePspB57BPWtg5SY0fqz5nWiByMMbTk6rT3dbZ + R9wrUOLNG563Sad/YL3BEJf1kV6ni+z++InM1+X00//6/et0I0DhLhjnbpHyVX/24M0/T9TQ+083 + r3wI/Pov6Zg2gHXRCYNDnjwxdxL7fChKeYHK3fTWfIgZlz+GFq76EoO5foGZ6FUAO0i6UTg+7Wra + nx8bdOz47Ofn6/SUzw5a/X3iG19ccYvSOdAyjwd6VV9WN+nzqZZF7Ok0c5VTNdSduqArPWZ487Hb + ajozToDW19QJedc7ffi2vvPTD1ha/fDRqnv80880rc65Pv36azHf8ET1twWYGT9/0MrHRmhviL4j + wiMFK37/9Vv720YXZN6/eETdJq67SLDz4P6ununan8o50OgBgjceUQc9lG63uT8bJNJZIjgTefbD + B1jk+y096JeiYn53W4CZ2z75+XHzyRu8H/6MQyJV7vJykxrec9ccy/BjRtz+/b6Cz7sfSDh99Kh9 + iON17eOp5Lz6LfMN2SXqjPwyTvCMf3izB6oh3klWi/tut788EyRIeKZ6K88RhWCK0Skq6r/7M1VV + 1PztvxZVngOWh3khPfEeEz+hcjco3mcPO2NsR+HupIzbxWWAbE1707U/wrpJ7GWw8jnMVa3h9uj2 + 9JAK83KNr9ztaCyPsq99crxMHz3fsZPuoJu2PxGrfL716YjCEjpIDMl+OW/ZMp02CuTEOSTOjlrd + TgNbDax4/Lf+zlZ8hXCGoPnLZ6a34H6gce8VcjVp47LhQE145NOSkH2/RGNTpsmvv4N//YIdkqvw + r/+C/cDo/q6n5O4aRmu/lFkcKKAjbi3647N8pI0tvHxal3rB1QHLPXp7UOqED9VNpLlzZNiTzFOR + JzflPrnDwbc3YMNfFOIHOaqWcxylML+X9V9/YNi+ghT985sK+K9//fnzP34TBs3nVrzWwYChmIf/ + +D+jAv+x+4++yV6vv2MIY5+VxT///t8TCP98u0/zHf7n8KmLd//Pv/9If0cN/hk+Q/b6fy7/a33R + f/3rfwEAAP//AwAbrduG3iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d46fb1e5c1b-SJC + - 9953edb8a9e2cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:42 GMT + - Mon, 27 Oct 2025 17:31:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-5f69ddd4fb-bvqqc + - envoy-router-78f9c65978-t6fjx X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "298" + - "182" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "402" + - "250" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -628,13 +628,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999993" + - "199999996" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_2746256de2714f949b635921f2d85d3c + - req_f94c07e3446045ddafbb0f3e2b4e860f status: code: 200 message: OK @@ -680,122 +680,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6ya6zPLfm/L+KV++UOgoQgu1vRh+6YDYQQkqlEhBCgNCDaY7OvZeS/etU1WQP - 2FbAXs3TLP/nv/78+dsmZZZOf//58/ddjNPf//F59oin+O8/f/7nv/78+fPnP79//7+VWZ1kj0fR - 5N/l338WzSNb//7zh/7vJ/930T9//p4R4zstPEvD8agYNUwhzeP7RpsDTdt7DrnnNSGSECsWU5uu - hu7TZmFj+WGTdXswPLq9eRbrgnXb2UPTQrhmhxdW2lIEbLgIMXrxVkBE7Isyi701R4vai9h6JJG/ - RvHLRGSSMVGl1irZq2pz8D2kT5xRiVmy3FEaIYuoBUuPxExoRRVjpMv2QtLYswEdxVoIbifTIkpv - nK3R8u2c99IfGUtiIyZTOD114CLhiT0xOw8sFWoL1JR7hqW75w6sGLg6sLyjhsX63SbjDzzEcD7H - 4bwPP899nEu9Qr3HsESl9XDYu81l+XfuXYmon7RhG5o8A+hIXfG5MVd/60urBpoj6k6PqX7Y1lTy - oOWOB+x6TDAwYtEskL/IT6Ixu5AwzyMnwPEBc4d3u9pnRVFgoUNttNPRom6x5WtMQebLCT5fFlne - 2/KiQKibJg56uhgI60EJ9u1yIsmLVcvV1AoJseX6dJjs7fjr+/Ay0Yy5DZttbciMXBoaSk+mT+Qg - rq3Rk/uFd+qpx8ayRxZ5HUYddufIIT/WaFhMVngu6l80IndmaeQjegcCcJhxJYpS3XfmHdIa8tEw - Ywu4PtjSqnBQCtyYqCId+mttRgrIw7YgP5Z4GY6xNhXwulMVtsrUBLSc39jffMpSFvnrdnw6x8bb - HKKCUEtoUzvb/JprC7ZZ3rKYiHW5k1LWMXbQgq3uu19uXCQcuk1iHWPtXcB3tKw4aMvXTrRJbgHU - JNnhSm6Ud6rjOLAWW0YuIyP7DD7gAF6cRHL4n0AEdFTMC1zUVpwZ3ugs4kkHCnaqe8aYPa6gD98/ - Bb92czyvZe5Z66PCMXw/DQ3fHLoe1u2BeDhftoGcTQDkxbNlBxm0buC4VRp/dW1lBHRODtiIj81e - l0fJRilXj1gXptOwhcZrQZ/zwueae+zrENobmJjpRdLbhR1G5fJiYYLHB4nk7gq6b/1cHrGBMXt1 - 5aMfjyZ0ZzHCxjU6WkTtkfObr+qxDsqtWjgHle6VcbYHsmX6OcMF0uvxgu19BNbShHwFCdvzxCTF - 2x9Y06/QmisL8eIwsNhHaiwoPUo2Pg9ptU+ZkirQKuMJKwbvAvZ8qyLYGcWV6GqvD8dj3zqwMPQE - p8e3VhKSygsU1qklUhzS1uqi2Ib3oVWwtySUtaWUnKNLPCcOc6akgajXWwZJ0+0408/9MOZYzJCW - pi2JClQkizq0EjD2qiC//cRYFQcqDdv+9qOVn/MNGci2SbpWtDzdVDmCbm7lWOkaNWFC5lih9H27 - YWPzWkBeY0pDiRMeM3NfT9Y2WNzIf/ufWVlgH2sXu/Du4Acx9SUGgx9dR6Q9BIxvjlcB0qmtA/OL - cMQ/h0cANu5ozoDX1x+SrtLmryPeNkQW1ib2Knn+wpdPDXqdLhMviW/Ddu73GZWDNhHT7bR/56fm - sZTDRX2a7Kw7VVCT/BuxFLiDdffbAJ2555HI7u5YYx1UJuRKM/rUt2bRzeuVoRpMkJg41ffVwGYG - dVzo2Hn9mAPtvXIK9YzmYe+BRnndtVJA3v19JdlrH5NJNJwU6g71ck7B4+KzjpO2gD2NBY4keSkX - IF5DKJ5VBSsvmfK3cnsH8G4cMBGLMQX7oiw85CKkYS/T1J2RukSDPZQcLKWndmCrR86j+vRmZrpT - y3KjhipH/goQOVuHbNioyxzCvsUeVqgwspZJAhAwUkSTRPN6sJUosFFKc+oMDgAnjHs3JbjHio3F - wgTy7lN0AK+csxF5+HmCo2YZPDizt2UOygNfLhY41Ygt9yeRl5NZfvsjaO6ziY34WsuzQwOP19zx - SDIRUfL01sUWiqIb4ucRXP3xWz9cAy8kdNWTv556i4POCR6wHwqDvyX1LYSidfPI2aG1gRHjc8Dz - Wmc6pdsH/h5Pio7WMlDx7VvvoyfaPNrnMxGRHPvMU3AL5EnqRuSf+Qjm62UKodSJIY6Uw8Uaf8pQ - gfM5CvFP6VDDdpa0Fs2Wgoji2FWyv5yshdpDwjjSrop1tO8X4Tf/TVKoPm3dXjE6uGzlcNJ7S7aV - KWsYU2JLzn0k+qP3sBUI7TjCUpQl/nqTaAjffnIlmFdf+84+Ch5xftNjYexdfz3Jbw+tvCvin4rt - kp2k1sZL009F3J0TZPaRRQ60iJ7hs77T1vR+FRB9+IKzY5YCOzIqD+happJvf1x/3K6CpAc6sTRj - tSbxp+b4aW/i+TSDgzX6dz1HWK568sF7f6PUCw8bb3GIHBqqvOJ3LUC3jBkHyHU6LEpWzIhFcCFX - oGy/540kJiAk9Mujv1be04HC4Z07HBXJyRF2zxoQSn+Qp8C8k62auwVeWWUgZtOd9u1iHDboTdEP - ic7FK9mOyy2C3vV2nvnednza1LANZ51isfQcB2vVD2wPE03Zya095+Wi5icTGgtPz8eLei4ZV93m - 3/5yxk9JZs+S08KLqdPE7Hq7HKfG1iHNdhJRWfcxLHa/jOjzvcS4/xQDM6WcApXHmRDZV5x9b1SN - g9fiGM5It55gzBWvQteCCbE5XkR548aE5RvJbvDj8gr39zgUOTSmIZu3u/CQp+2BOBgquUVip93L - qTKoBUqD9XDqJSDlJg6DALiumMgXz3dPOkAIRqbHvtsHycIAvgKHzGS+fOSX7wAChRCrZ0oqj4Ej - 6OjmdS8STtqhHG1KEH7jo58Qa23L7R0hA/bvmVGtXKZVmHPQIqOKM23dk+5kX0Y4G8VjZr2nD5ZG - XWeEuoKZ2X2bhr149BEgC207DOuiYV6kcwusx7Mjyjsbyjm0OBvetYknV+Fmgr1Tcxsps41wuOrV - vtTvtwCbB4wwPhaTTyjHMOEnn3GmnOJyuV/6kOf9wnQoyxYGGhjMgs6nt4rPjmFZx9c8eNBZbte5 - 73RzH73tRcO78t6x9+GnzGkbw9/4vwxkykuemwGkUUURh/uh/L1z9BZyM2dgFYqSdfzyv7tGeHKm - /Az85mMn6wJ25zvxt/N6mWEW5xRxjKDZN50pauCGJUPsJXcH+psvVhlNMxr917BEnJ1DPs40/IsP - bm/yoO+CnOhK/bZIEMQ6zM2r4fRO65fffIG5FwUk07faWqwHiOHYVBYOk7TY1xvePPTFPwVmh+R7 - PtDYJImIeXUF4z00NyiawR3r8FwM23blXNjyLwc7ddaA1Q3eOgzkasP21h6HkVYSBWpPPSQPXzgP - i4eiGRxkVBH/dmnL9eFrBb8WS4azMxMC9sAmEWRh5JL4g8+/+LGmTExUwOnWkVLzGZEtHmeqOJK9 - 12tOh++HcCCuG6jDRBNXQdm0+VgVkSvvMaVKMOtyFWfvWPHXyNNnKOuVQm51mMqLFwwt2CVRIgl8 - rMmS20A6JXKiYqduXsP45ZO7YhlOpbbI3x710v/WmxDOubzQV5+CKYpe8/bBw23jhRSJD+nsLPgW - JmS53MNfPVDfqKoc1P3awi//ydBCrGG5rgsyaNNwOM02k1WCffTLxySZk+RVjtseZn4jEeGzP3Jf - zyO8/PQRkQB4+cSPR50f36niVF3zTjZduOfQuqnB/FKNYKcV1YhhYdEG8ecn3sdIeAu/fEdwg3f5 - PlSHGb6Ntf/ka+bvwlPIQZZ2KhGrCQ+t59zbL9/Durg+5M1pEITK7CCsSpoBNp2SJbhWAUWeMY8t - tnjgGkqTXxFtdwewKJwtwVAprJn/6BdWiJIRiMbFwvHF0q0tVR4139LmiVgabQ9bCpACGSs9EjW5 - UcncWc9/9+NLo2T7coddDKUaYIIfBzUZtGpwwK5Dyjmsr3g/kjsTwrL2OIe542MyBGFeI9GpGiJS - 9zWZXNseoUVmlZwt4iZzOkktSsmBn7lnHZVL/VBqlKL45SzudBnoOZRdvhzVmihGhK0t1bcMurmR - Y/2zfme2JoSjLj9meL2ifYrergC/fFRbDoPcHyhAA4V1deJo6+5/9hPDe+i186oR3lp/Dp/4ZquN - z83oW0f0lATgxSacKXDhy5VX9xF6pIiIGjNw2NvhXYB7YL6c7enL1iqtoIAfPoWtaivkpUE/NkJx - ORNtpiK/YQ9jCw9l7uHrI/qx6GbrA3jw4ECumV3740wtAeL8d+8s+MTJm66fIDw8p+tMWzlrrUOo - bFCMHA/b1ysC42SlEc+28jSzM8Ula6b1BcwqsyNOFeZgdR+XCjT30cTi4UGDbb0DFnj+1hDhZ/2x - xjt8RYhL1AuxFwfJhD1ULdRerIqlNM+HlSaRAvOrJhGzv7bydliMCBihBRzePVfl7vHPFO5uWmAv - e14A20kUBF4GV3xffli/WClFAiyMXWLTW/WtnxbublZgJX+lwzpkkw1pdpCIYh8aefzwCQhFx3F6 - 7BNrE+NeR6uPlxnAepAXpYIz3IN5ceoQv8vNaRjqNEaNMm/XggJjJEwS+OrH9K7igW4akAF8sQPs - ffazWGCt4RkQm0hidi6PiE158C4oGTuf+E5So/Qgd943Z5lsz6InH7KQ0Pk+0/kLlnvg6CZAayVg - n4g/Q3ejpQzppjli475XPmE2EsI+ezfk4g+ytVWnqIeLMytYaCMIZg6lI8hcEJCLW1+s7aoqPLp2 - l2GGdGf6H/0RwheVFNiCl1JeP/ocJibfzuzdKqwt9EwboujeOGvjluCLRyf7kABi72NiMQYA2old - HY1oJI/lvdh1HRJGi4nKD+ZOQ3WzoXXfJedYh1DuDAAU+KlHfPng16dfZgiRk4lVWMqAqY/CDLNX - Boh+ksZkplSVg4WgRCR28FDu6uPAg0viScTEzLJ/4wEV72Fj9dVXw7ofuRxeDLHG1ktyk7WKDy34 - 4vVXD2+c6Sngw1+J229HfxUNLYUA0OtHz5/3Y1LzOmhE9f7xJ4g1DaG9gBf8SbB15lx5w0dxRuTo - vIhaXHN5YX7cCJL+pGNzgrm83s53FooGtpyNC7pyZPp1hOyxTmauDM3kqBFPQQf5UGFL0Klh6PjV - RQSkZC6iDPjbobQVqN03nlys7rGvYoxD2NmOPFMf/UxINTqAFzyGaDto/DHPpRCWLPv8+j8ysx2O - /ff9M5CEW3Jkj7YDJSrePv4BXZIg8ExkjArlsF//6hTMJgzO/p3YdxWXc1/K9Tf+DiOPxFpNnUth - +XrKRL5xirUH1mmG7y6MnIXU47AdmhyiuyfE5OeFV39P8laHSgcJFnOJtoi/HiTQznvqvF+6BPYF - RjH/0dMOTJ691TZA2mBGwh2r9/Ukd8MP4eCaHmMsNufe2tlls8EhlWYsvrTb0GWrMsL159zNwGpf - +5efgDVvb9h7VJU1MtqrABfhZZIfUyv3vXsaOWKX9kmkRMTlxx+t4P1KxHnVlxHs6GlK39/D8pSM - yfpIauqrH3B4Y/p94suVg2gOe4xp0oNGO27515+Y4fFdD7smddnvfp/pPZenceIgT472C19hWYJt - eAoSMk7wSORVUnzmcZrMr19CAl2KrPW9lTRaq5AiekG35boLPwLP0vzkMOz2TBYPSC766E38mE41 - 2MIg6r9+DEmg0iXdNrMLdOBZw1hexWE16muAdvOVkcsQegmd9U8eFNKikeirD7c1l9CVW+5Oxv1Q - yfpOIgreo5jMx48fNH/1bnnKL/hmw2nfjzf3U39aRKQHGi0Co2yExpolWMZstn/jD2dlbHFKd2ay - d2GnwUMbnEnsbrnFCj5Fw12SpXnLVtFfOZbw0KsChzylSvnylQLcSJ5jS/NMsNCVE0PpVe7zaiR6 - ss/KswJkZdQZ0ue2XL7+Ue40NyyarVquJyfVYWG5BX5+8H+7hpcFsuTl4uDjD7HloehP/XETsK4c - JnleVm2EXuGciXj+AWD3c1YHpLy/v3528osX3+/XgpsNdsQGHP/lx0/2uO6dK48ebB5U5Jzuur7P - X787uxoFjoB4L9cM7DW8HvSZ6GdgJKMauTNqAu766deKz1KXOoTuAH6IxbGnZNAEX4LXCj2cvb/A - ZBNWRoLjTaqcxXtr/kInEzzd7XM4n8J5lukGmBs87Qkzs5vsDAujdQXUbW+fX6/25JOEeBUyhvI2 - N824W+Sb39fpcSKR2usls83UdlzHSCfxGx/80TJHDUI1TbHvbcDfSnrf0AfviXP2GWsugLoh/uys - xAjt0V/drQy++vDf/a15JgIcE28jYm8LPntYjBjevOHlcLSKkm1ZnRl+/A+nY5aztX76DXDodznP - yo3bd7aWg6/f8+uP7C9vLwDNXYqv/vCXhuY26PbhSuQJOfImSIjiv34SvluuNfdRMEPez03yIJoi - 761RbjAG4DXPSPXLneoWDrh0LmMLbMxAukWKIKP2xgzyszZM2c9PhJwTdcBKLUz+xqFgBJ3qnbFw - eT6GaWguLX9a/dn5nL+1KHycgonCCOv887jPIt49lLmngNzedJxsH38VfvodOVcLC5ZGLj3+47/M - Jz+nPvhhfDrXZpDL5FjJVnq8ALM8kxzu1Qz+vOQqDQi3ivjTr4ct4M45HMdIcNBongH79efYN6iJ - 8cmH33h/vodISXwctvUniUEjdgKR/Xopl/pc0zA0QsFZv/nBzsMGS5Z+YmUIq2Rb8gvLK/lNnZOC - 76xN5NoAXvnwhM/G8VZ++TmU6hPG548/Xi8Sbr/9wjn3fGmxvWiwMIsLyqF1iZMrOX/ScBRe/Lzq - p7qcV52n4O2lithgnLc/4XPDog9/n/vKAmA1bFoCr6XsnT00VIv+8R4OJCcO4/ttW4dff94K0IUY - qzoMY3x2Q+iiWvvoo8JanvenBK+cveGz9YD7dgh+WtRv0CKOiDJrbz3bgUYl0lhNrX0nMb5AgOag - J6JlnhM61zrp6/98/B1L/r4fpHSQYf1uZzLzk7gZUubl4xd0o78fd6FH+9W7OeAVlPs2LAIP3bk6 - YIcfOPDJTwhCPF4d7uXI/nY+1SbkfyIZ3z7zhJ09xT1o3PZM9Ezwk/FHffLg/rArbHhpPLRW7bNA - 4vUKyx++95l3bZA+EJWIn3nFXiiGwhFihCRNWhmQ5BLRX7wkdlRewPLRq8BH3ew0lE+BNfKEGQbC - ScHe3VuGBd6N4jsfwQmfZuUxuUQs9KrQwRqtiAkzXqoANgF/daiPHqTz3AzBqxhW59Vs6kBIzbeA - a6KapEe52keeflKwHJSJXJ+uATau3CN4SdmCCB5DD5vu5zQCRwGS7KsvC7vLodYuIpEWdNi/8UdW - H3bzWh1kaz31MgfAogoO0IxVnsXANVEJ+mBmHq8erNXyiEHL0g3Ws4KRZ0489WD/kQwsASD6H784 - /PqJM7vqCpgiI/fQB5/mLx7Pgs/S6OPHEO3md9av3rtEVUBu+OKULOeOGvTXE3JAyWz7/JnvAKdH - nDPX2XnfKvNeQ83c948f0cpL9PPmv/vBSf0SLeY93mnAp1I97+Gg7XQkTAJslHCeD8nbHJb81nHg - M/+ZV6skyZopgYK4kD7g64efdfXcuojmb52zh3Q+LPdscGALNAbr50JM2HKbQtDS+gmrwuJ9/ToK - lpW+fvylQj62sI4ge6wSfA8eU7K+kTfCRjzfHdqUzZIxet4+1YBAjNmsA1ufI/23P7reu05I0gkV - knanJdrEB/uvHvniww/fPYfVDUENS46qiZo+zv6RedXpl29ig0WKv4bWI4aMLWRY1NWfpD82FAX8 - w85gfLz75VLPlxQqZRWTRG2Iv4Ctp+HX//Voi4Bduy4bpFFNfeapWjLxyT2Fo6u05OM3Dptzl/Ov - H0ckmejJ8TL321dvE2MziLzkTK7wa6fvWLHyUF6NB83BPNo6LBYjBHtgDC5sbMac0Szlw/bIXBvV - p4bB8rUp/dW4Bikk3cp/5w/WGqaZC756Fw0cbXWbklbgg89ER+yrXJ6SoiMtq4kDxVhIjp/5JETp - wMz5ZogWDcRHCFGXM598f4IR6kKP3Jc7f/3jYX0D24W9SwjR5TNtbRfxGcLR9odv/ZebTlnS6TZT - JywvN32nG3lw4Tf+UnqrwR4sIof+fm8F/Ne//vz5X98bBnX7yN6fiwFTtk7/8d9XBf7j+B9jHb/f - v9cQ5jHOs7///PsGwt9uaOtu+t9TW2XN+PefP6ffqwZ/p3aK3//P4399XvRf//o/AAAA//8DAMHo - R/DeIAAA + H4sIAAAAAAAAA1R6XROyOrfk/fsrdu1b5pTIV5J9p3yJBAmCIk5NTQGiAiIKJEBOnf8+hc9bZ2Zu + vEBKA+nVq7uz/vNff/31d5tVRT78/c9ff7/Kfvj7fyzXbumQ/v3PX//zX3/99ddf//n7/P/uLJqs + uN3K9+N3++/L8n0rpr//+Uv87yv/96Z//vrb3G+vfnt39Gw9ifsSkq+jkcA4u510efAHTI5Wzg4e + NrG40kYdPT0NE8xdCU9FctZQU/kSwU5z4WuhdiCMbbkkvnneAvk5jykaO3BiDii2hpifjw9E3sKW + bIJTEo2vYHLRnHSEuTHD1VrycgWaCbyT83V2K1mo9REiIR2JuwZuJt63xxRFVTuyq3b1wDo6xTHA + ax+z7f1gg/7x8hTt2b8MYry224x16coBdGXeSfz0d916H8QjHIh6I8Z+DDq5dUcHPJ5vm9im0gLq + Z6yAu1K6UOHDHga7XZMa+c+zxPBQxBnH5THWnLA4M89Hdje746MAs9KcyaGUpmgUYvwFrr3d+6+T + /QWjW4QhVJ6bFcnP9NRJdvse4ZbyO/Nfh00mrg6JCS835+VPPW8i+ZIHEtSyr+Y/N5WDxe7j5eBq + XVKiy5ZhjHlxMKGHBZfc2mcJ+vXg6fCV9irL25tVzcCfdaRH28JX486PJlXf+ihcJROxN/HekI/3 + q42KsxuxXeS+un6zTlstulsfgm3tAujukHvwYT98lkXZHktiHQZIDVrE8q36NkRpXUGA3u3ECM+u + lbQvTjZ664CSHRkiMOJm9lG2elwZ7uY4mjZGsgFGWJesEOihk+BhKOFF0mtiRbUL5PQqS3/wVFwJ + isYgC3XF5YXPvOBjd1JYvgNNCMqRWETHWDr7zFGy2k2JgwaSfRq91FE9PHRyD0iGxWNqlXBZH4ky + 9Kx6ITZaQAxq+Jq77o3ZtJ0RmFJRMGe/MSKJHFkC5Snb+sL2vgVSkdMR1nWgU8nWW9AP57sAFQvu + yE46zlnn7o6pZh/tlMoAhXgmEkvhelBtknu7BkxFctPg2Q87ZlZnYEz71PCRN3p7cgz372iC+1ML + 8PmyIttu10Q1VkMPfd2mJ+4jVju+xdOIjItXEqNGN86P5/4L4vr8ZLH+kjEVtEmCrDoVLLfCc9a+ + qqOL5FTYE1/XA0POxd6FZvxMiG0eZdwH9aHRZi6cmRfoJ86bd+IjtTisfe3QecZaveUj5FF3IMt6 + 8ZS83BqSr6sx3Y1exvecRPWfesvL+YTlTXEdkbT3PbK7my+D7ovchKfHPJDDmAdA7Ewzhw6mZ7ZZ + c6eTgqH14fjpM3KsmF314FKN8ORab7bztyKe10ctgJUamKRwuIDn2OI1sn0h9fmR6Zj62buA2vXA + SYDlb8ac47FAHc1bFpld2Y2rNtFB8g1K9odPRqX24daJ2z98xJN6nNFDGz2WZ6kY0VSLTvDivO/E + 61dWJrnsXSOW4gvZ0KwFw49/Rs/L6UrAKp4xbnNt0NSMmaEKeI/iewCHuLsxvPUT/Cnv5x7dh5aQ + S9XUoIcwcSFIRpkcn/kZzx1IvyBPX0cWvr3ZmKJCnxFWJcx2AIXGfDGZDWucGCzzw0s3h31E0Ucp + BrbtuR1JQc9OsLoJgq+mTZ7N4DLUkD3Ahe2OVw5GNUhOSFFXMtt7Nx/0fF+7cJr9hHn3qwXEAh8L + hNUXYhuaOXy0L2kBvdHfk421dTv5dBsFJFo0JCdF6425cqINSsH5zE6y32MGMiGHA4pLX7ynB0Os + j94IBqUvSVI8x2rqnXMM8etoESM+CNH0Dc8J3HWcMFO/5d3YPQINrsWPTS5ua3FZKjobuj31yUb8 + tJ3YHUYN+Yq1puhKqmr8cPOBvM0FMcNfF938ATSEuSGHZJP1FzCTAYggJCNnd2H+gtmeTx7yn7VJ + FWVLuvXr7OrwITkeIX4FjLG/mwlE53JmjmvfgQQvVwG8g2ygqS1p1cSEfYO26+rO3OnqVnL4VnUg + lTYmXvBpKiYC7GpHfyOxqEaI9+n9WMPdeIrJUn8R8z/9CLHrHdj5cFQjXnmdAg/KuCLnfdxF/E3l + P+v/0y/EZb+00rrpfn+zTxG/laaD1A20SKLSGx/FffDQSiG0GXl0aSS5xqZEweY1s009yh3bnoYY + Wu4Uk9PZO3SU6o0D5yaPyU0zhG46wLhGVd0LbMcedTaXDm3hffgScpEUE4vF6bCB28R4kN2ltyLx + 3hxTZFh25csLv42ryWhg1L9a5jvytvpT33mSJsS8fbKIu6hW4K+fG/HxyefmGmoouu8+5IAeQTQN + wtlHNdhsSfC6fDLeRh3VVk/0YtdLuDHk5qT48DqPd7JVAxHTugoh2rrV01eemgDGzjQLoGi+xfD8 + fnNuhWoN3Zw7TFdPU0aPu/dJowxfqZKWK9yLmfJAG5Z//uiLWVwNElzL5oHp5tuKpmwXb+ARfUWf + wykH07kpKUJCMrIcCTPnvn/0kFC2jAX1KFfjyrv7sJOvT3+eKyMT5eu9BGnW3tjlmrwyvhnVEX41 + 78tIa2gGz8lqhvsvPLIovz+7mRzfCXS1aEeFLvcjceXdPXj0dWnpXx3mCpMaGMYPziIxelTjK1Bd + 2KzjNZWe/q5aL+uDAwE3dtB2uiH99g86yZqRqPcq6hi5A73gaDBnld662XpuerTdHp/MueZlJwp3 + xYTgyUbmF4nP52xsFGi10Zmiz/ue0cELa5TWr5gYzbA1RjZ6obZ9iW9ShAWJXhe5rOHlfimoMHR5 + NRTJTYHPJMDsUtx4RH/9MXnLmd+qmFVz5WQb8EH2wKw4dQG/OCsI2+z6JRfnfMpGHWk1AMks+8v7 + yKTTtTXBD6/OSdP5T3+hTtg/WLSxVhE97TYmarvTyPAoSXheFa8EDXr8ouL28jCkTbpRoEJFi4Tm + hnefSru10AR2QScNRoAb24mio6qLVFD1AcycpifwnBzXF64EZewRyzVY8Mrci9pVrHknHpTbg8bO + J9sF/K0HHvJvG0Qur7DmfL97baAt1AnZv3dD1b+qqwu/hVqTU39N+Ty9tFR7Tq7rqzjZdKKnWD3C + xdMi1kHBWMp1sNQrj+lrK+Bq+Gy3yp9+lijtNhMHzYthe2om+tVurjEVpXuCSp8IzMhUwRgnV2mh + nMI9MYKXjtfT92ZCD1w0dpC6AvAtVkeozacNid4Bi2a5GyhU/QdieLq9+ZQ6ZQnqI1gzw2uCTk6H + oEdC8BgpX/A6Cav8AZXEtgk+7/YGB5GrgetufDJPeNXdUJmuA0X/4/qlfoqqUXt2EiyMzYkdR9zg + yYpw+sMHCVFU8nl9nEP04rVCnJO0ymZxn8aQHH2dYak8A7ZauRRmmnIlBn6WGa8LJYAzu/pkqXcw + Xg+WB9/jiRNrdZAzJqvdBs73PmZH77Zb8O5QcA5fNYt3tK2moxEXWhoEBQn4IwZrU8EJFGkdsHv2 + Tjsu7IQYJsIrZRu4dTI5dQKKvlXRUe41Y9WiS+LAw5Cs2BFUVsdaJTBRYegn4rzUIBpvqqVDRfMs + cjO5GY3spNCfXmHXPMyj+fIAD+DNV50lvjVl48rovqoUYosYl+wJ/tTLoq98+tO3s3yn6ravG2Iu + eJ7xVtRh4o0VHde87ca1NOZI5pLjT3oQZ/1zr8Z/+Ks8G3X1VZ+vFm4gbFkxfSlu4+Q4ouc3dX1N + ttxstE0th4t+IE7z0I3ZvjhfWG5knXl8bWG6M94j3F2KCzPe8tPopXUHNdcQA/+98Ns0w08OZ2nv + 00Z9nbjs7q4pfMLHnkUXITAGDk4QiWMfENvWW944BaMQXYZuwWthzEa3GYGErxbz76UPOjNXWyg8 + Di3Zu+7NGG1wgFDhrkCsLtkDLhWVDf1jK7Ai2xAsrqt7A89YrhmpnR7PrprrEFe2R8EFOVxuMB5B + QS1Mso44eDyuDqWmrTSFmV/X67gtDSYMOkVmzisUul6z7gmcrvGVGvhW8Ilb+wLORxCw3WO08PdO + gQsU47nxta2b8vVPzwRFqvjrBX8tj4IGxcPjzZzwPeEB0LyFVTZb7KB9g2yImd4i+XkHVGN2wnk4 + 1g0yRvvpiyf90K29pDK11WFo2H4HfDBPrzmFWzrdifUckmoO+ncMexUXVFmlqGLfzWhCUzQuxC0/ + ndG9zlgEcps7zBM1HlFyZCncGrSl2rHR8Gx/2i/k36tHdJJEeL3wC1D9ElFt0TdzVEYtnB72le0v + PuzGcG0VwBiEpz+rwMC8H3AJ35t+vfBLaYxleAwQPK8os6XD2Xj9nreY25Ak59sRr3/89BXELztO + 58bolXVwQmh9+Prr76QY0xvvIRzP+zOViquEJ005UbhPpJA4qxR11PDhSVv8Il2/r0o2WjAtYGx+ + P8zP9w8wNfhWAw9Dl2wrRwQzyTIJ9Dp9MydfB4DthSlBzv7osz2RIB+06NRDP5VM4lfPRzZHvWPC + ug51tt1UrTGJ8ycBkrMSfJk96oiX3uoBk2lTkmv5OoD1AgeAHspMzuZB5dWN1C64Z2XA9Aeq/82/ + yaSX5I+eTeaDB723obNtcnkb9HuYKXy034P/sSyGx0OuOQiYZKLrqP5yTu49hStbG/yncH1Vs3U5 + herzLJsUSZ0A2L7sBfDzj4mKSSclMSgAd/sTKZbn4aY8NZB/M49tD+9dtRbjXPj5WeJuXY33b2Q2 + 4Fqur76MPiEWy8yTYKPCNRXYBUbj4kdAsBE3pNhRAj6ppBfo59f0clcbPXjc4199MgdLBh5Hpnyh + f7It8sPLIL9zEdheFTHitgfMcVJr6I3Ujo6EuMbsu04MOwNXRFemyhi/VgBhrGhvyoNXiWcpTT14 + CtZvHx3ONR4T/0jV5wjg4o+zH55iVaGSxVzXT6MRfhQH2mea/vQEF71T6MHSuuu//h19H3vgwB7D + N3FE+9nxOxwLxGUVk90KGp046gGFJNEBI1etz3r3bYlwt+kTdu8eXcWvwkoCxC105pxvkzFaD1v/ + Uz+HzbHuePFUHnB1ujXEeRtBxovHqgX16srJFlqvavRY6ACT9QXLzl85mhvS5BDxzUTsbLPjkrxO + HWDep4QYtGV4UPRcBEO9z4lxdIJo6octRdfd/GSG8HwYo5wGCXTzySH+kjfNq7MqQQdVnr8ezA/v + Y2saYYbDjI5YdjNJ7UITfV9dTQx8E0D7lI8BCrHDab3kDbOLoQlr5GvMEfXCGH/7u+CFjsb527El + HwDvDV0zu0zeVb8/zzE06/hOFj9riDy8UFhcLh4dv/klk+w59yHy55kt9ciH8qO7aNEXvtBcNtk6 + yQoXXvPdlRk3nfD+5x86WrQ+ZzPD/GklOXy+VwbTy52JubFV6c+f+mJd9ICfbiNE9tFMWaiepn/v + /6JPyFauRcyovdKBHhmF315GvRuVUom1KVZDH+irD/h+LvMMQzJzgiNBjlqK7wo0uiolm9D64nl0 + 5xwIakrJpjIvXUfMeoSCzj5U0D9PPjptGoMd9WJyW/DZL34Z3PWzy27BUPExf6sPxNz8zoxKIZVs + D+oDyiza0t/6p5/fXH6PkHzsM05tWYdxZz3IXU47g6L5qMCVVHbkwMOxq01/fsBtWrwp/OVFv34k + XAJGIrB/RCwwr4626C9yu1RVN5/LjY4a9ySzw6I/xLQ9uH/0R+Y0Pz/MReQfvwLbzKitxntzTLQP + lwb/p/enAukBEs9Xl8TrbwN4LiQNtKCYsawjLf7eto0I1wOwicPqbcc36uuEenVfsAPWw0wyLkwD + hwnaLHw+5mw+iw8d5VNw8YttJmTT6tgKMGI6o5CvXwZ7KXIMH217IKeDOHAeR6MC82hOGGm/HaB3 + mfYwC/WMLPqVT4L0gDCOx5acHxs340dPtWEpP3bsehIeeL1LCxHK325LhcN1G43DeNfguoY+u1nI + zMbbeC0AbU8P4n63LpjCokihxlYzHRe9N0rC/QHKzVqn4LltK/7Lj8whupAtqKxq3rW5A395RmpL + aTVLwTDC/Hk+knA7WZnobWdf1bpmQ/ZreTCGX358qIvdLw8C8wc0ATitrRfZhG2SjdMtaWHZO7uf + X+v4vqyhhlURkwv6zEY7Kr0Pp4Nw9aV96lR/8qYNn0qSFt9rNZ9Q1ECBbijDF+QAaj03FC16m+jX + lxlJH9CEcLerjkv+qnbfugoF+Mt7F77PJv4467CXhJcPo7sdcfYUoLo8LxVmkRpS+01n6Cu7NRVe + o98teq+AwfyV6WvJL+gwhTVa/CctjybHVHumOjzolsbiZb2//F/2QO2w2+e9itg98WyYESUjpwyB + aA6kaEZLv2ee813jHuuWhND7OzGT9n3E2dVIYFvuv/5YHz7RcHjiDXwDOrO9P24i2b2qKfzlAZwP + CM93mVJ4/FjU7022w9PCN+D7+tT0lW8VPmdvfoLSqfaYNe9lMG1PVQm6q1qSw7K+cTAUCYbaPDHT + Cv0/+YD2y5Oc7hVgRu41hYs/ZD99Px8FTmEn4Ad9J1NU/fgJ1PFoEKz4a0Cn15zARZ/T6ZXZXX+P + pgQdhnRFzKQeIh5odQsOV3tHDLq9ZX0UHHIN5mzwl/eP50lJE4DVN1rydpmz+VKFKLu/InYC+xSP + cXIdoT5WN4YfqQS4ykpBy9o5pXzxg1xvVArkI90zN0c4W/hnA7VrsfVXYt1FvTNZyg/vxAt0Ecze + 6/2Ar5uz8ScMdp281Dc8vd8N2ycXGvU6mmv09DrEsB/K3ZxqWQwUZ79hC19Vc5E3I1zw72vFV616 + ALsZpr5TkB2N62zcxQdBq8JmRYO38cG8apUTfKVU/fFttei5Bu7mJyF2Vb67Zn9iLVzyPl+XrQrL + m1GdoW+Hgr8KCDAa68DEnx9f3m9TMU1xNShP1+2f/kutw1tCTmD49POJAZjdRtRB+JU7H86dhWXj + NfjQTWtCwj6YwJ98/qauD8wtdl1GffkRQiWnNjE8o8zmq0YFGLbtTPwmgny8xlOLsJDjn5/BPN95 + Pvz1f10/8T95CDi/nS/DoNtlcqSrOizU5EjcimNjTa83H/z8qHF7FYYoHccCXVhQk3uZ98Zswc0X + LXmaj45yxccl/4RKGqyIlZ4VsOBTBPNTjH1URoYx917jwzp0DHJa+jtf9V8KlONpx7zGjQA1ZyaB + ZJvUhKx3165VroYGhr1Zk0NWHLu128UULudbbCcdw2x+CamipLd1zMIHMjHVUTtCmmQpM6PHoeOi + IYwg/K47v13yOJ4H4xc+jweTJM/L+G++0E7iliSvsKjEPk4k+LBLn/gB2WaS8Tyd4M3RY58vflDE + auqD42dH/VIHVtb/8qC+FhuWr1hd9b12F+AHmQML4vce/OGHJCor9ge/evkQkfpOICt2u8KYJrJ/ + QO2ab9khr1acP3xTR11kf+isTAYeVbtSQFmira8s+q5Hl8BFPJciulry4ukj31KwTfM3sT/7ddVf + P9cv+OXhv7yTX8I6Redu/NI5eJqAvdTRR9P1dKXh616BYZfGIpIU0WX4vPvgsU3MBt3k9sSKRvMr + ycXQhnI6AF/+HGY+VKbuAJCi0X/urjs+/c5XXzbmDHekNca9Z2mQvOGWFEewxesP/YjggvWGToVh + 8zUHOfydr1CNDW43Bo62AewCCypELctmF4smqnbe6peHVa3aJQESrvfW5+vbo5ucvvPhMSvXxMfD + NpM36hADbRhVcjC+YbfkdcIf/XpY8Sdfh0WcQEvxMnId8ZDN30fYQ+Z1iT9aW7cSl3xBfX4xJJv4 + /QFj2h4coL48g8QCbTJ268YaLf6U2Ut+sJbfuQRT8ZGTUN7eO/6tuwZe7LRhdtvsonXQxjncYwMT + PVPNaDzbhxSaUl4Qxx6O3cfaFwJQC7ImXidF1RiuDznMaidlRViwaDq2rgg3J/PLokphHb+GwQyV + 13flS4OzwwO/fHIYl07LDuyid/PFjx4w03dnhivZyf70w+X8h/lXiRnzXmWt+g5FkWytNjYWv6PA + DSs+ZPGbYL7hLIBFvcZUuK0fHW9Oo4eWfkqc/aaKxt/5V1lctd/5A57ObhEAqJGeTrUogs+StwG9 + FGrmTMGzGrlsmujkldTn6mqTSZu+VWC56wClCx7ECzyEsKH1mjl4vndsqUckiCNl0bK/I9X7E4SE + UPbTyyME9xCiC+vI4eYeqym4fzVVC1ON4PzucOmmAA++elEhNoibbmqbrYL+/k0F/Ne//vrrf/0m + DJr2VryWwYChmIb/+O9Rgf+Q/6Nv0tfrzxgC7dNH8fc//55A+PvTtc1n+N9DWxfv/u9//lL/jBr8 + PbRD+vp/Lv9r+aP/+tf/AQAA//8DABdMZSfeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d4a9f395c1b-SJC + - 9953edbb0ccacfcc-SJC Connection: - keep-alive Content-Encoding: @@ -803,13 +803,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:43 GMT + - Mon, 27 Oct 2025 17:31:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-84b9b6f796-9zgkg + - envoy-router-bffbfc7f9-lgqmn X-Content-Type-Options: - nosniff alt-svc: @@ -821,7 +821,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "96" + - "173" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -829,7 +829,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "138" + - "193" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -845,7 +845,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_ecaa5dbe29ec46f4b3d5c7135932a6a5 + - req_c810982673a04c1f90c076730e393262 status: code: 200 message: OK @@ -891,122 +891,121 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 - VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k - 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U - FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE - pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi - dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi - sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM - itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW - suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO - NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd - RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa - bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J - OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we - Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d - sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh - efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g - qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu - 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI - aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx - tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 - U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH - CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz - qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN - VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 - 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf - ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT - k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L - 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx - 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC - 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz - E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 - RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z - vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 - 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR - h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G - LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 - ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts - hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T - iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu - Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP - 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te - AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj - AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 - 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 - ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU - E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t - 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD - SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX - aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E - 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s - F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc - 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G - tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e - lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i - czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ - Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 - ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c - smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ - 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 - CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 - Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY - Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx - ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV - w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka - pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR - dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj - LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD - UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb - F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs - 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi - tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz - oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d - grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 - KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ - Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD - N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY - F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd - l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD - WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 - 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q - QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 - K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw - beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B - lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib - MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u - l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 - OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M - Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS - yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 - ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF - IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz - jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn - +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX - /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H - qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp - ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r - /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN - ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp - yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy - suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h - Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T - n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC - UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f - h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc - XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o - Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp - NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ - 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z - X/8HAAD//wMAybDCut4gAAA= + H4sIAAAAAAAAA1SaSdOyTLel59+veOKZWiekk9y8M3pplERAxIqKCrBDhBtpMoE8cf57hd5fnKqa + OEAMws3Ota+1Mv/zX3/+/G2L6nYZ//7z52/9HMa//+Nz7ZqP+d9//vzPf/358+fPf34//787b01x + u16fP4/v7d8vnz/X2/z3nz/cf1/5vzf98+dvHu9feH829V4I08KGEhNMJlRJBgvTqIHT2upwoNsP + tkjZIVeOF/6MjUWi/bwyvRUItrrQEFQ5JqeD5ijWksl4x2m7ghf0XYbYDTvYcDMxniJONZWC7BPs + ZfzWEDcnkNAGDwaOlnfsT+LBleGw5yhOF29tkMO1ekH9zDp6FI9Tv9j0BPINPQTqFUWGWPRijfJC + 5ptqaEn6xdnvVGjepKNuV3QVG55kgiJ0rvh0f6+LKbw5DWz3WUfTk7xDQlf5IVIuc009z4zQ2C/q + omhXTqTOXUJs7Cp/Uije3bBptT2bn2dC4HCdMd1htWbzNplViCetDLahV/bzOg9vyjFsOqxZYlfM + WA1MwDgKaKgUasHxMpei8sq2FCt+hdigPgRIlYtOj0WXFctJW3mAx7gh6/etqNgNjp1SEX8iorcY + xfIsdwTB9rKnalSe0bw2ANA+V3h6z5x9/6l3Ds5g+jSjW8/nzdXmBkakHugpmP1issT4Bhv6Y1An + WmNE3ILpyrwX7kGr5GbMz+k+hak9bHHoWRQxk7Ib2m2fFuGL3SpeDgF5QRx6JXWILxhcsEUmoLUy + 4KCcNJ/t5kFXZhZK2LZ+FjSlh8xRHPsV07SMep/JJMtR1M4qVU+XI1r8J/9U1iMm1I+mOb6F180L + /Eo4Uju+eojjezEBPZMd7IsL7ZfSE3dwQ0+BmsGTMqb65gpO3FDhnTrEiF8bHIBpdSXd1bQzmHwi + MpS9uKY711HYqObZCr19QPTiPX0mvtqAQILsGe9LfempResbQPWjBHytC/2yXdkrqHZnB3u9Uxqd + wu9zVPuGS03uoReiRU83ZcM7F6xrvodE+V7k0HvVBXv1YTbm8Kbayn2f32hwz2+IvdpggFu9vmHz + cpr8eU73CUQCL1GMYlQR+V7IcJzuXbB+K2NF3tUhQlUJJbYs0Sn4lG0bcOwmxk45vQxWNC8Pznyw + o265Viuxq/QF5JcC1IyMK2NHGZmwGceC7oKSocktQIfzlfnUeYeywVrrNimydhqw2u09o1egymBm + kUR67qAxXjy4mUJSVaDHt3arZpkcMiVqUIa9mvqG6M+LrjzbSaKX8hD64j3a7ECrshBnMTLYHL+4 + Bo6u+8Y3sToY0+ZHyxSDJxpOo3WI5niITUU7vBycuc4dkUYQAnQl7yu1H8e7P42Ow0GzeXs4krRD + zIDPZfDSFdDtZXuuhCxkntJ75YW6YpJWU3HfevAcng62NEktRCnTZYgsZ6K3ohDQAnycoSwaEdbK + 0qt6wS1l5YRDDxunfo4ngg+Jkr7Jgg08asXiFkhFkUQf1JO0fTxswlqGXP4xqcm2gz/Q7SBA62Q+ + ToInRkK/CRdZIf2egG25aILmniHxKfnYyZU1mhnbJGilx7cAvGfPupeYB7BkXEitKJJjJmWeBFWQ + htQ5yT2af/ZRpEBvXumN+LEv9vNmgrw2BmxI4YgWo61uym27ssnE6tYguy5Q4cCSFquoynz+ZhqB + cjvJTTCUh9BYho23wHgR98GqnDRD7DdZBGV5kfCunHSDO6QXW76dpIaeMLZixuvnXHn7K0S9xbsa + jMx4gd2xUYIFVaKxeJX/gDpYzsG66OK4M9vjDZGTfMOatzTF4nVPFVzaIey6J4hf58xsUTbYBnUA + vHgR3UsO5D00OM5cvxp4/SErCnnvaSi+Jn8cHSeBKnTOn343fX7XBQ/A+7yhTvDcM65LcAj8Tnpj + q36E/XzShFbZLqJBWGnQfvnUV0lOl5KqmfDyF3MlreB4GzUCJ/mNWHjd2Mqr91y8X0+rnv4IPwOk + tv3E+dKefJHXzxm09qOi1lf/LqPigQN6j7Xr81kt7cWZlAMfhDR5E8GY9TK+QbISNOwpuVHwqUxM + iNk0U600pp6+E2tCjyzDNOJ0t6Df9Wmnmhcs7k+ClpjNJsx77o6jR7rx6Vff+oqzqF+WdTXzvSAo + k7zF2HscFZ+MEkyA+M7C2mN7qaal1jmwLnyJrxBIbGJs5uBijHuskYJUzLI1FRQuaIJ1rZ0r7nnm + A0Vb13eclpFvsMO1MkF5ZjcaRsYdzStuLW80lk5YZ/WPP2XutUWn61Gne8U3kWjvD09os6TH1+hw + i/lGWBHAB/NE49dLqYi16gCMSXvTkNO9eHJWGOChSFuqc/q7YHv1bULpWSeKMS7jJWXYRO6VxWSu + H1ElKNBLIBZFRz/667OcZC3M9+6HemYPbDm6Ugt+pO+pe+pJTDDWGzgtHApmjNt4Mh/iCoF4GMkk + vkJ/9hdNlTd7rqCXN4mM+WqeA1SHryfeY/wsZvmkSGAEyYPu3OaElpRtTfj8HuvFRkAT8F0G+Hqy + g7UgnCs+QZ4JueUN9CSRmvF9l4QQCaJEvvOWP4d1C4PVjNi4NGP/eR+C8lA3NJDwTWP8ya2cX30L + Sbcz+GryAihuIUekqOTRGG5vLwRiPAbleoaePc/jAI5wZsHS7Q4+X4smgfne/mC7pntffET9Doy8 + msg0Gc9YGNUyhcs5tbDTda3P3lU4wZe3rtrZi/loKG2E1usBa2fr0b/7pzKB12wugTje7j1xO0mH + Z9c9CHS7nSFm2k8Hyiuy8Vbxfxg56rmDPnyC3dB79EvMNjbczJ1AXbSEPedcdF1J0UMm5KNf/Ku9 + EnjvuYrQrvipJq18gyK3y4Btz9oh4Xludr/8ktr2i43raF79zlejfswV65+wgJTvfGpE0zFe7FWy + gmfGZZ/7TbYwNgkg2PoSNNF6QtNuRg+4P+VTIMXIQCw9OC004vykR8bpPdsmTx3SLXj0GMRLMSsg + Z+A5kkmPeFSLWTV+LnC/xreg1TzMZsUMV8p1VSukEplfcdXkEditBAsHRZEiyjM7UbRiQ7E2AlRE + i46rL39SQyJb9OFlgO6ovfB2vN0rNqVRCgXBSTCe+iHuU7k20Zd3rNIg/SK4XQaydhyoWsgUzUeZ + M6Hnuz2NrHZgZLpuEphpvcUp9yhjdnQnR4ngEeKvPoq2xXT4zAe6u0sbNL8LFirPBoU09bUHYl/e + 0XG1xk4ZdQbD26oB1Rwo9pg9+3MYKDZ02onDhsj6nsEIuaxwu+Y7jwxG18L05Sl8ksIeTctQpkrb + 7WKscQcb8QXxW7B/+IjqmVD5jA2GAD840vHOda5s4XshVe44tLHGOLP/zMcU9KOVBTzjntXCXiMH + xowO1Eo8vV9sQbjAfVpjskmpXMz+U9BBfCgG3ptyVvAfvUKpOHc0Z/bBF+dgFMARCkaxF+8Lfk6t + VJHMjhFAz9xg0ZCbEOjHNGApVQqyXdkA9XR94lAN7my+jrRDfLAc8LYstz0R3GemkPNiU6tcP/sR + nX7kjc8WHrtlafd8310i9PVHlkQaNsVD0aDkHb3/zWtdV4bQWd6L8IrvIF416A1Zt+VNA+k2xl00 + PJpvvQl86jMf9byDMVdqbF1Nu+IaYb2DDNSKhlj1kaC3mwv65ceu2PbiV9/Xj9WaYpoa/XRRXA++ + 72cnVosxjhsjQkGtNHi/nLNPf15XEr+cdOyyI+mnKS05mTuHZ2zBSNhXLyHXjkB1rHZsEg+apLSK + bJA1DDN72fu3rrj3ofjV3zkLWatw28uB7svyVdG9BE/5y0uaK0TFpOXGRbkG05WIpx7H806dbEWV + 4vuHr8biw7sh3Pfpip6Tn2e/aGW7QiX9wdQMTJ7Nh6tsg5wJO7z9+CFGtpvkWw98fwNfMaO9AKof + pU428dAUjEMqp3zWL7nXK6viXmK8gzZLe2qKNmcsUviSYUpv6+ABShPP724Kv/1JTmg5VPNcZ+lX + /6h72Ur9zLE+Ba3KQyLrts46e9+qyodHsF1sOMZw+mgUtMuAyNHjgthXL9eL8BNAjEo22PtSVRKD + HqjlnlYFvRskgGPYet/+qTrL1h7KQ/bEQAieBDHVIDe0e0cjNS5OXH361QbetTZYy9xdv7zaawAu + rQuM7cQqvvyJ+Gf+xPtLHfa/erDBxMD+2TQq8ZFrw3d+YUsQVtUoaqsclAursU/Tuhq6aheCsqQr + Mly4wB+f7YbAz1OKf3lYbC9OiA7+eostxj37yRTfN9jvZIXuHkzwl+XFOOW853q6V9FUsClAHPr4 + A5x2O+zTMM0beXLyLT1wVGXcoE6pct8nK5x33dbnnNUW0IyHLc6ZPRvDXGeCEvyIAXWvplnxjzwb + NudiU1FrPefVsvbzlYQn5YTtBzcbMzpRGWkFotS07RrN+f3SoWDTp4Qj78Wf84Z5MCX1Cdu+pjLW + 7A/h13/j6HI6GGwJ7gIS9+lCNZHtKuF8fzogyVs/EL3ELSaTcvDLY86bcMYUbk8mGpeTTXcATsGG + uZqUbnia2JMUrVgOqWVCqCIR25o3Mcr1vICExOoCdH9fizm/Jy3MVZIF/NVs+mXlP1ZKv1a4YPTm + NmaW6AMc1pVIlG7zrKZmdSSQviwZu5dt9uHbKEA3275hp9sRf3pOIVHW3IDx73z85CfKqm9s7NvJ + TzGaj/UFlXvuBztNrxr8MA+LpOrsh2LG6p7lzeJAv15zgSRpQcG+/gDO4ZG8aWr34trf3ZBGuzXe + M9ZUsxq9LuhyyhRcAJ7ZdPeTHSjhK8U6qOeYsOs2gb5cXakj3du4d3f0CVBfa5py+k/B4sE00UOR + t9iwzjgW8hPfQtO/IurWq7Za/OKuonjeuJ/6tjET3ViC6hZO+H7ZHnsWv8YGiWtDJvxbWap5a4EK + ebNJgrnWpb71qugB2+vJo1onP/rR3QlPYBWn/erVlJPWU+Z1+YNt7a0j8Q64Be5Yujg/XUK0yKef + DPpKsDC+Gm4/lbkfQMmSB95aAo2Xonm1KDmWZzJ7yS4Wo+OqQa3O4kCO1gGbR0dNwAo4F1/L8tV3 + Rz3ylMYMFuoCjhhn0QZQfCnCoA+iUzytY+eG9lMZEHKSHTZKdykHvAjrYH7UaTVhNXjB530H0tcP + eUX9hHCwt3T38Xf8oc5esIPVNWgDA7HO7xL918/uu41ecbW4D77zKFC6ou3nRzQEqCihptesab95 + Uwv25p3jy9IK/sBQlvzmZYaKjrFw9+MdHMm7xFa98npyci+d/MkHcJqdsMHT9J2AeU4OJCin0p9b + 6z6h1uwQDsRq9iezvd3QmdYxDrV3jaZAWqnQh84R7x+vrF/00lxBJP84Qa9exZhWFO2AjnsBf+ZD + zGjapkC5D13HQRjzgjwKKJSdNfVq2hssdZ8eiFsqYyfJbKNlbCOA8ngKhH/USc8++gU/pdrTnXS3 + 48UWVhe0xVFEoHdUn1vxdoasx2uhabPfGkslPnbKaYyfGHebsmfe4qjou7633abuP/mSBH0QDb9+ + ehbdp4SyNmU4WLzCX2pbCyG1zScuuEPJBrO9XX7zPbhLZ/Sbj6BS4rHB0nc1eN2sKl//lqtDwubX + ag6U/YW/0usIQvVewZCjpl7nwebL2+1OmYBsepvarK6NiRv2qVwEaYK3UbSJl0fUD/Dxp9hzmwyJ + WXb2oM6VNz1/1tfM63n+9ROf/CuqFueiqWCE3psa9ePQ887efMAzXU3UyQTVF6Y0F6DguyO1Prw8 + arm3Am2+Oh++Mwx+vs4cfOqJXYmYjDcm7wL3Ea+o5oePeGotEkpd115oUmyOjCP4nMCWW3xcnPp9 + zJeeSNCnPniLlkPPvZNr9PUzNJj0Kp5C7Ddg/4gRmexXyZYpzTm4/Yg2Cd74bgz9U4hg7V9t/MmH + +k9enSmbKklwvEi0mlWDXuT1U95iVWjBGO9w69AgxjxWLY+hL+/Bri6vXz/d8x8eUL7+yUYVb0w/ + FkTQpTAETApHxrLMd+TQbvCH14OK3fyWwNK12Xc99cMVmKcQ9CAYQyCyiV3TFA7e9k6IZ4ZsCQN4 + ffUNa9Y5LObtPn8gP/RqwlHnZYznH9cDtQt+Aiou+2qOjusXqtVWp16zr/2PvjeQ1soTu+X60bO7 + 0QRovXA/dM8dVLRsE+kJVthFhJGcr7gwUF6ocN5AfW/RCk6fMoBHet9SLZqEmF3NbCenqabTa6kv + FTukZgNc72lk4/Jp3JqP9WrzmV/YicojGqLr0MC2VBHW9w2wyba9J7QRZYHIOK0SaloT5LWziXHR + sXj57g+gy/GCVdct0Ht0nBSRk3QLZo4+0IcfBOVweKnYBlWM58bWFoUuAsX6he+Noa3aCG7nKcCH + xDN71qwuO/jwJ0ESMdAITSqB66/9YJXxlsFf+cSRllXi4EtRnNj7Hi0BIKcfCIyjbLx/kmmCrp04 + vGv2ps+uY9NBNW80aoqvwHg7FlHh7l8//OBnPnutpgBdl4zQmJ7K/sMTjmKL80JdNEvV8GrTHfoR + Xgb2TrLHlnCbmhLLr9InfzJ9/ua/BzT6mhWIMO6ZmCDXhHH1w1OP1pW/YOw10B0tM9hc6qVfWusU + IVWff/AWxhHNy9AKsoh3OT0XnVB0FHspcue7+eUZJJLtnCjGpcjwV6/n+JqaSORI/MkD9IL/zr/z + vWPBaF5WxQTEkBRnsH2MFd9AZMWtM4hDp6QhbVSfNZY8QVWuSmyf5IGR+MXZSHTrJ7YB/Hj++DtZ + P26z4GXbFuKnNE6/eU2weSthv+y6QId92AXYFVlbDdH19VIWy1IJGuHULyc3aZXP+sVBjFQmxq/6 + JfPTNf/yccye7XMAJ30yvC2Nfb+UZU7QZ/1Si2zsnt+utjc4jYcn3TYXo+fIfAqB680y4MZxZVD5 + 1Mjw4SF6wWqNeu3MVrDFYfSp1wMN3/xwc3jufv3VfDUPOzj7a4OayfnhT6fs0Sqltz0R/vpUq998 + gVWCRgOsvtgihrIEr+3t/JmHXTV9+hO1oBb4GA9OLK796Ibc8vn6937HO7Ej5ZMfkvLDCwtdr0O0 + xK6Ecfno+7m9aOGv33ZdPi2mqz/t5E9ejF37+IiHT34OxLZTuk9+1F68R3OA3iOtyMiYXc0x2zS/ + /2cvLkG/XPi4Q1e1swPmLXXMvvttF1gdyfPDu7NlZzqs0KOhnnTfFt/1Cjo8Mqrvmwti7o4+0Hc/ + 49Pf/cT36wTiWyRR7/LJBGSSZd88g6xhfKPmBqmDgnrdUDdrvGr55HfKGExHfNTypmDf/DPe3Sa6 + Lddazy7NzZM/PPfdn4rJt1+OA9vQ3YULDKFNuhBE9+dJrbcS9cuXPz7+lgxiFRmLmyRP5bP/FMxS + GLBpGd7Jt1+o++2/jz4qwUki9JtvzF1iT0AnZUv4aEqKabeJ9F+9ye5SgZiaaytlfdDv+Pt8yuuH + DFb9y6bx1dz2k1eZD/SZnwQ+vL/4xUmHB+h36npJG88KLDlUk3EONE16xoO/aXWUgV5hzJhVzQSH + nCL0L4/mF476rE3iBT56SgOttRGv8JYEmT4XNPG1kg1+16tIluiOrC7c3l8E3ZA2wXlKg0V8UaP5 + Pl/JkYJ17W0iYXMvJdguvEHVdIUYcZLnU/FLGH/3P4kebVdgjqqG7+XDr7hDfbC/8wir1LGN5WqG + g7I6SenvfBFTFrw2WfJTYbXrX8ZMcCaAxYVPfJbCDrHSE4hM0JPgbz5D5mufAArNkV56RzVEZSQZ + 3DZ9ECzN/u0zXj/kX36jvkQqttSiuVOS3jtQ3X492HKU0Qs+/ERWSq7FTVTrppJrJ8D+1egrlmm0 + ha5duADYyzPEj38ANQ+3GIvLWP2+3+NO+vRPyhn0w+Mgw+2C/a5491QMl0zRykdLFDSn1fCdV+fy + ccH7eDALvivGCO167xjI2WlvsPLMBiUBONN9vbJ7kb3qVIaf0x5jNPPVKLoXWTZusUrWwYSL8cvf + M79TcWFlLB6/+6lB4t5ooA4RWopm6CDPB5Nwk6HGImNSCpOTbalhie9COGmC88urN7OXEYuOwgsi + 7fyghhTu2W8/++VqpPhaVv3MXlyiaPwuo3s0C/1S3ANPdmTfoFYcBMUcXV82GsPmhu1Pvi+ef1QH + uqPx+ubHxtwIqwH+fk8F/Ne//vz5X98TBk17vdWfgwHjbR7/47+PCvyH+B9Dk9f17zEEMuSP299/ + /n0C4e+7b5v3+L/H9nX7Gf7+82fze9Tg79iOef3/XP7X50H/9a//AwAA//8DANq3PAneIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d4d6ab75c1b-SJC + - 9953edbe4893cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -1014,13 +1013,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:43 GMT + - Mon, 27 Oct 2025 17:31:43 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-ptcbx + - envoy-router-86c9dc6598-s5nzj X-Content-Type-Options: - nosniff alt-svc: @@ -1032,7 +1031,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "63" + - "137" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1040,7 +1039,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "122" + - "174" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1056,7 +1055,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_912533c738ea41bf918f98ed0763c746 + - req_329095a18ac14338b4d4d91395d0cc44 status: code: 200 message: OK @@ -1217,7 +1216,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d4e7be55c1b-SJC + - 9953edbfda67cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -1225,13 +1224,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:43 GMT + - Mon, 27 Oct 2025 17:31:44 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-vhksf + - envoy-router-848c8bc664-ws27v X-Content-Type-Options: - nosniff alt-svc: @@ -1243,7 +1242,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "55" + - "86" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1251,7 +1250,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "118" + - "103" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1267,7 +1266,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_54b8a645e9d34dfc85553eb515f88446 + - req_1bda1dfb31cf489f96ba90c9657eacfb status: code: 200 message: OK @@ -1313,122 +1312,121 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 - VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k - 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U - FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE - pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi - dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi - sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM - itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW - suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO - NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd - RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa - bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J - OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we - Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d - sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh - efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g - qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu - 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI - aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx - tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 - U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH - CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz - qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN - VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 - 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf - ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT - k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L - 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx - 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC - 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz - E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 - RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z - vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 - 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR - h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G - LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 - ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts - hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T - iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu - Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP - 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te - AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj - AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 - 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 - ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU - E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t - 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD - SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX - aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E - 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s - F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc - 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G - tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e - lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i - czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ - Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 - ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c - smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ - 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 - CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 - Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY - Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx - ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV - w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka - pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR - dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj - LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD - UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb - F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs - 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi - tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz - oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d - grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 - KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ - Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD - N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY - F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd - l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD - WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 - 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q - QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 - K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw - beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B - lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib - MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u - l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 - OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M - Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS - yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 - ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF - IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz - jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn - +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX - /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H - qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp - ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r - /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN - ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp - yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy - suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h - Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T - n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC - UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f - h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc - XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o - Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp - NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ - 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z - X/8HAAD//wMAybDCut4gAAA= + H4sIAAAAAAAAA1SaSdOyTLel59+veOKZWiekk9y8M3pplERAxIqKCrBDhBtpMoE8cf57hd5fnKqa + OEAMws3Ota+1Mv/zX3/+/G2L6nYZ//7z52/9HMa//+Nz7ZqP+d9//vzPf/358+fPf34//787b01x + u16fP4/v7d8vnz/X2/z3nz/cf1/5vzf98+dvHu9feH829V4I08KGEhNMJlRJBgvTqIHT2upwoNsP + tkjZIVeOF/6MjUWi/bwyvRUItrrQEFQ5JqeD5ijWksl4x2m7ghf0XYbYDTvYcDMxniJONZWC7BPs + ZfzWEDcnkNAGDwaOlnfsT+LBleGw5yhOF29tkMO1ekH9zDp6FI9Tv9j0BPINPQTqFUWGWPRijfJC + 5ptqaEn6xdnvVGjepKNuV3QVG55kgiJ0rvh0f6+LKbw5DWz3WUfTk7xDQlf5IVIuc009z4zQ2C/q + omhXTqTOXUJs7Cp/Uije3bBptT2bn2dC4HCdMd1htWbzNplViCetDLahV/bzOg9vyjFsOqxZYlfM + WA1MwDgKaKgUasHxMpei8sq2FCt+hdigPgRIlYtOj0WXFctJW3mAx7gh6/etqNgNjp1SEX8iorcY + xfIsdwTB9rKnalSe0bw2ANA+V3h6z5x9/6l3Ds5g+jSjW8/nzdXmBkakHugpmP1issT4Bhv6Y1An + WmNE3ILpyrwX7kGr5GbMz+k+hak9bHHoWRQxk7Ib2m2fFuGL3SpeDgF5QRx6JXWILxhcsEUmoLUy + 4KCcNJ/t5kFXZhZK2LZ+FjSlh8xRHPsV07SMep/JJMtR1M4qVU+XI1r8J/9U1iMm1I+mOb6F180L + /Eo4Uju+eojjezEBPZMd7IsL7ZfSE3dwQ0+BmsGTMqb65gpO3FDhnTrEiF8bHIBpdSXd1bQzmHwi + MpS9uKY711HYqObZCr19QPTiPX0mvtqAQILsGe9LfempResbQPWjBHytC/2yXdkrqHZnB3u9Uxqd + wu9zVPuGS03uoReiRU83ZcM7F6xrvodE+V7k0HvVBXv1YTbm8Kbayn2f32hwz2+IvdpggFu9vmHz + cpr8eU73CUQCL1GMYlQR+V7IcJzuXbB+K2NF3tUhQlUJJbYs0Sn4lG0bcOwmxk45vQxWNC8Pznyw + o265Viuxq/QF5JcC1IyMK2NHGZmwGceC7oKSocktQIfzlfnUeYeywVrrNimydhqw2u09o1egymBm + kUR67qAxXjy4mUJSVaDHt3arZpkcMiVqUIa9mvqG6M+LrjzbSaKX8hD64j3a7ECrshBnMTLYHL+4 + Bo6u+8Y3sToY0+ZHyxSDJxpOo3WI5niITUU7vBycuc4dkUYQAnQl7yu1H8e7P42Ow0GzeXs4krRD + zIDPZfDSFdDtZXuuhCxkntJ75YW6YpJWU3HfevAcng62NEktRCnTZYgsZ6K3ohDQAnycoSwaEdbK + 0qt6wS1l5YRDDxunfo4ngg+Jkr7Jgg08asXiFkhFkUQf1JO0fTxswlqGXP4xqcm2gz/Q7SBA62Q+ + ToInRkK/CRdZIf2egG25aILmniHxKfnYyZU1mhnbJGilx7cAvGfPupeYB7BkXEitKJJjJmWeBFWQ + htQ5yT2af/ZRpEBvXumN+LEv9vNmgrw2BmxI4YgWo61uym27ssnE6tYguy5Q4cCSFquoynz+ZhqB + cjvJTTCUh9BYho23wHgR98GqnDRD7DdZBGV5kfCunHSDO6QXW76dpIaeMLZixuvnXHn7K0S9xbsa + jMx4gd2xUYIFVaKxeJX/gDpYzsG66OK4M9vjDZGTfMOatzTF4nVPFVzaIey6J4hf58xsUTbYBnUA + vHgR3UsO5D00OM5cvxp4/SErCnnvaSi+Jn8cHSeBKnTOn343fX7XBQ/A+7yhTvDcM65LcAj8Tnpj + q36E/XzShFbZLqJBWGnQfvnUV0lOl5KqmfDyF3MlreB4GzUCJ/mNWHjd2Mqr91y8X0+rnv4IPwOk + tv3E+dKefJHXzxm09qOi1lf/LqPigQN6j7Xr81kt7cWZlAMfhDR5E8GY9TK+QbISNOwpuVHwqUxM + iNk0U600pp6+E2tCjyzDNOJ0t6Df9Wmnmhcs7k+ClpjNJsx77o6jR7rx6Vff+oqzqF+WdTXzvSAo + k7zF2HscFZ+MEkyA+M7C2mN7qaal1jmwLnyJrxBIbGJs5uBijHuskYJUzLI1FRQuaIJ1rZ0r7nnm + A0Vb13eclpFvsMO1MkF5ZjcaRsYdzStuLW80lk5YZ/WPP2XutUWn61Gne8U3kWjvD09os6TH1+hw + i/lGWBHAB/NE49dLqYi16gCMSXvTkNO9eHJWGOChSFuqc/q7YHv1bULpWSeKMS7jJWXYRO6VxWSu + H1ElKNBLIBZFRz/667OcZC3M9+6HemYPbDm6Ugt+pO+pe+pJTDDWGzgtHApmjNt4Mh/iCoF4GMkk + vkJ/9hdNlTd7rqCXN4mM+WqeA1SHryfeY/wsZvmkSGAEyYPu3OaElpRtTfj8HuvFRkAT8F0G+Hqy + g7UgnCs+QZ4JueUN9CSRmvF9l4QQCaJEvvOWP4d1C4PVjNi4NGP/eR+C8lA3NJDwTWP8ya2cX30L + Sbcz+GryAihuIUekqOTRGG5vLwRiPAbleoaePc/jAI5wZsHS7Q4+X4smgfne/mC7pntffET9Doy8 + msg0Gc9YGNUyhcs5tbDTda3P3lU4wZe3rtrZi/loKG2E1usBa2fr0b/7pzKB12wugTje7j1xO0mH + Z9c9CHS7nSFm2k8Hyiuy8Vbxfxg56rmDPnyC3dB79EvMNjbczJ1AXbSEPedcdF1J0UMm5KNf/Ku9 + EnjvuYrQrvipJq18gyK3y4Btz9oh4Xludr/8ktr2i43raF79zlejfswV65+wgJTvfGpE0zFe7FWy + gmfGZZ/7TbYwNgkg2PoSNNF6QtNuRg+4P+VTIMXIQCw9OC004vykR8bpPdsmTx3SLXj0GMRLMSsg + Z+A5kkmPeFSLWTV+LnC/xreg1TzMZsUMV8p1VSukEplfcdXkEditBAsHRZEiyjM7UbRiQ7E2AlRE + i46rL39SQyJb9OFlgO6ovfB2vN0rNqVRCgXBSTCe+iHuU7k20Zd3rNIg/SK4XQaydhyoWsgUzUeZ + M6Hnuz2NrHZgZLpuEphpvcUp9yhjdnQnR4ngEeKvPoq2xXT4zAe6u0sbNL8LFirPBoU09bUHYl/e + 0XG1xk4ZdQbD26oB1Rwo9pg9+3MYKDZ02onDhsj6nsEIuaxwu+Y7jwxG18L05Sl8ksIeTctQpkrb + 7WKscQcb8QXxW7B/+IjqmVD5jA2GAD840vHOda5s4XshVe44tLHGOLP/zMcU9KOVBTzjntXCXiMH + xowO1Eo8vV9sQbjAfVpjskmpXMz+U9BBfCgG3ptyVvAfvUKpOHc0Z/bBF+dgFMARCkaxF+8Lfk6t + VJHMjhFAz9xg0ZCbEOjHNGApVQqyXdkA9XR94lAN7my+jrRDfLAc8LYstz0R3GemkPNiU6tcP/sR + nX7kjc8WHrtlafd8310i9PVHlkQaNsVD0aDkHb3/zWtdV4bQWd6L8IrvIF416A1Zt+VNA+k2xl00 + PJpvvQl86jMf9byDMVdqbF1Nu+IaYb2DDNSKhlj1kaC3mwv65ceu2PbiV9/Xj9WaYpoa/XRRXA++ + 72cnVosxjhsjQkGtNHi/nLNPf15XEr+cdOyyI+mnKS05mTuHZ2zBSNhXLyHXjkB1rHZsEg+apLSK + bJA1DDN72fu3rrj3ofjV3zkLWatw28uB7svyVdG9BE/5y0uaK0TFpOXGRbkG05WIpx7H806dbEWV + 4vuHr8biw7sh3Pfpip6Tn2e/aGW7QiX9wdQMTJ7Nh6tsg5wJO7z9+CFGtpvkWw98fwNfMaO9AKof + pU428dAUjEMqp3zWL7nXK6viXmK8gzZLe2qKNmcsUviSYUpv6+ABShPP724Kv/1JTmg5VPNcZ+lX + /6h72Ur9zLE+Ba3KQyLrts46e9+qyodHsF1sOMZw+mgUtMuAyNHjgthXL9eL8BNAjEo22PtSVRKD + HqjlnlYFvRskgGPYet/+qTrL1h7KQ/bEQAieBDHVIDe0e0cjNS5OXH361QbetTZYy9xdv7zaawAu + rQuM7cQqvvyJ+Gf+xPtLHfa/erDBxMD+2TQq8ZFrw3d+YUsQVtUoaqsclAursU/Tuhq6aheCsqQr + Mly4wB+f7YbAz1OKf3lYbC9OiA7+eostxj37yRTfN9jvZIXuHkzwl+XFOOW853q6V9FUsClAHPr4 + A5x2O+zTMM0beXLyLT1wVGXcoE6pct8nK5x33dbnnNUW0IyHLc6ZPRvDXGeCEvyIAXWvplnxjzwb + NudiU1FrPefVsvbzlYQn5YTtBzcbMzpRGWkFotS07RrN+f3SoWDTp4Qj78Wf84Z5MCX1Cdu+pjLW + 7A/h13/j6HI6GGwJ7gIS9+lCNZHtKuF8fzogyVs/EL3ELSaTcvDLY86bcMYUbk8mGpeTTXcATsGG + uZqUbnia2JMUrVgOqWVCqCIR25o3Mcr1vICExOoCdH9fizm/Jy3MVZIF/NVs+mXlP1ZKv1a4YPTm + NmaW6AMc1pVIlG7zrKZmdSSQviwZu5dt9uHbKEA3275hp9sRf3pOIVHW3IDx73z85CfKqm9s7NvJ + TzGaj/UFlXvuBztNrxr8MA+LpOrsh2LG6p7lzeJAv15zgSRpQcG+/gDO4ZG8aWr34trf3ZBGuzXe + M9ZUsxq9LuhyyhRcAJ7ZdPeTHSjhK8U6qOeYsOs2gb5cXakj3du4d3f0CVBfa5py+k/B4sE00UOR + t9iwzjgW8hPfQtO/IurWq7Za/OKuonjeuJ/6tjET3ViC6hZO+H7ZHnsWv8YGiWtDJvxbWap5a4EK + ebNJgrnWpb71qugB2+vJo1onP/rR3QlPYBWn/erVlJPWU+Z1+YNt7a0j8Q64Be5Yujg/XUK0yKef + DPpKsDC+Gm4/lbkfQMmSB95aAo2Xonm1KDmWZzJ7yS4Wo+OqQa3O4kCO1gGbR0dNwAo4F1/L8tV3 + Rz3ylMYMFuoCjhhn0QZQfCnCoA+iUzytY+eG9lMZEHKSHTZKdykHvAjrYH7UaTVhNXjB530H0tcP + eUX9hHCwt3T38Xf8oc5esIPVNWgDA7HO7xL918/uu41ecbW4D77zKFC6ou3nRzQEqCihptesab95 + Uwv25p3jy9IK/sBQlvzmZYaKjrFw9+MdHMm7xFa98npyci+d/MkHcJqdsMHT9J2AeU4OJCin0p9b + 6z6h1uwQDsRq9iezvd3QmdYxDrV3jaZAWqnQh84R7x+vrF/00lxBJP84Qa9exZhWFO2AjnsBf+ZD + zGjapkC5D13HQRjzgjwKKJSdNfVq2hssdZ8eiFsqYyfJbKNlbCOA8ngKhH/USc8++gU/pdrTnXS3 + 48UWVhe0xVFEoHdUn1vxdoasx2uhabPfGkslPnbKaYyfGHebsmfe4qjou7633abuP/mSBH0QDb9+ + ehbdp4SyNmU4WLzCX2pbCyG1zScuuEPJBrO9XX7zPbhLZ/Sbj6BS4rHB0nc1eN2sKl//lqtDwubX + ag6U/YW/0usIQvVewZCjpl7nwebL2+1OmYBsepvarK6NiRv2qVwEaYK3UbSJl0fUD/Dxp9hzmwyJ + WXb2oM6VNz1/1tfM63n+9ROf/CuqFueiqWCE3psa9ePQ887efMAzXU3UyQTVF6Y0F6DguyO1Prw8 + arm3Am2+Oh++Mwx+vs4cfOqJXYmYjDcm7wL3Ea+o5oePeGotEkpd115oUmyOjCP4nMCWW3xcnPp9 + zJeeSNCnPniLlkPPvZNr9PUzNJj0Kp5C7Ddg/4gRmexXyZYpzTm4/Yg2Cd74bgz9U4hg7V9t/MmH + +k9enSmbKklwvEi0mlWDXuT1U95iVWjBGO9w69AgxjxWLY+hL+/Bri6vXz/d8x8eUL7+yUYVb0w/ + FkTQpTAETApHxrLMd+TQbvCH14OK3fyWwNK12Xc99cMVmKcQ9CAYQyCyiV3TFA7e9k6IZ4ZsCQN4 + ffUNa9Y5LObtPn8gP/RqwlHnZYznH9cDtQt+Aiou+2qOjusXqtVWp16zr/2PvjeQ1soTu+X60bO7 + 0QRovXA/dM8dVLRsE+kJVthFhJGcr7gwUF6ocN5AfW/RCk6fMoBHet9SLZqEmF3NbCenqabTa6kv + FTukZgNc72lk4/Jp3JqP9WrzmV/YicojGqLr0MC2VBHW9w2wyba9J7QRZYHIOK0SaloT5LWziXHR + sXj57g+gy/GCVdct0Ht0nBSRk3QLZo4+0IcfBOVweKnYBlWM58bWFoUuAsX6he+Noa3aCG7nKcCH + xDN71qwuO/jwJ0ESMdAITSqB66/9YJXxlsFf+cSRllXi4EtRnNj7Hi0BIKcfCIyjbLx/kmmCrp04 + vGv2ps+uY9NBNW80aoqvwHg7FlHh7l8//OBnPnutpgBdl4zQmJ7K/sMTjmKL80JdNEvV8GrTHfoR + Xgb2TrLHlnCbmhLLr9InfzJ9/ua/BzT6mhWIMO6ZmCDXhHH1w1OP1pW/YOw10B0tM9hc6qVfWusU + IVWff/AWxhHNy9AKsoh3OT0XnVB0FHspcue7+eUZJJLtnCjGpcjwV6/n+JqaSORI/MkD9IL/zr/z + vWPBaF5WxQTEkBRnsH2MFd9AZMWtM4hDp6QhbVSfNZY8QVWuSmyf5IGR+MXZSHTrJ7YB/Hj++DtZ + P26z4GXbFuKnNE6/eU2weSthv+y6QId92AXYFVlbDdH19VIWy1IJGuHULyc3aZXP+sVBjFQmxq/6 + JfPTNf/yccye7XMAJ30yvC2Nfb+UZU7QZ/1Si2zsnt+utjc4jYcn3TYXo+fIfAqB680y4MZxZVD5 + 1Mjw4SF6wWqNeu3MVrDFYfSp1wMN3/xwc3jufv3VfDUPOzj7a4OayfnhT6fs0Sqltz0R/vpUq998 + gVWCRgOsvtgihrIEr+3t/JmHXTV9+hO1oBb4GA9OLK796Ibc8vn6937HO7Ej5ZMfkvLDCwtdr0O0 + xK6Ecfno+7m9aOGv33ZdPi2mqz/t5E9ejF37+IiHT34OxLZTuk9+1F68R3OA3iOtyMiYXc0x2zS/ + /2cvLkG/XPi4Q1e1swPmLXXMvvttF1gdyfPDu7NlZzqs0KOhnnTfFt/1Cjo8Mqrvmwti7o4+0Hc/ + 49Pf/cT36wTiWyRR7/LJBGSSZd88g6xhfKPmBqmDgnrdUDdrvGr55HfKGExHfNTypmDf/DPe3Sa6 + Lddazy7NzZM/PPfdn4rJt1+OA9vQ3YULDKFNuhBE9+dJrbcS9cuXPz7+lgxiFRmLmyRP5bP/FMxS + GLBpGd7Jt1+o++2/jz4qwUki9JtvzF1iT0AnZUv4aEqKabeJ9F+9ye5SgZiaaytlfdDv+Pt8yuuH + DFb9y6bx1dz2k1eZD/SZnwQ+vL/4xUmHB+h36npJG88KLDlUk3EONE16xoO/aXWUgV5hzJhVzQSH + nCL0L4/mF476rE3iBT56SgOttRGv8JYEmT4XNPG1kg1+16tIluiOrC7c3l8E3ZA2wXlKg0V8UaP5 + Pl/JkYJ17W0iYXMvJdguvEHVdIUYcZLnU/FLGH/3P4kebVdgjqqG7+XDr7hDfbC/8wir1LGN5WqG + g7I6SenvfBFTFrw2WfJTYbXrX8ZMcCaAxYVPfJbCDrHSE4hM0JPgbz5D5mufAArNkV56RzVEZSQZ + 3DZ9ECzN/u0zXj/kX36jvkQqttSiuVOS3jtQ3X492HKU0Qs+/ERWSq7FTVTrppJrJ8D+1egrlmm0 + ha5duADYyzPEj38ANQ+3GIvLWP2+3+NO+vRPyhn0w+Mgw+2C/a5491QMl0zRykdLFDSn1fCdV+fy + ccH7eDALvivGCO167xjI2WlvsPLMBiUBONN9vbJ7kb3qVIaf0x5jNPPVKLoXWTZusUrWwYSL8cvf + M79TcWFlLB6/+6lB4t5ooA4RWopm6CDPB5Nwk6HGImNSCpOTbalhie9COGmC88urN7OXEYuOwgsi + 7fyghhTu2W8/++VqpPhaVv3MXlyiaPwuo3s0C/1S3ANPdmTfoFYcBMUcXV82GsPmhu1Pvi+ef1QH + uqPx+ubHxtwIqwH+fk8F/Ne//vz5X98TBk17vdWfgwHjbR7/47+PCvyH+B9Dk9f17zEEMuSP299/ + /n0C4e+7b5v3+L/H9nX7Gf7+82fze9Tg79iOef3/XP7X50H/9a//AwAA//8DANq3PAneIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d500d975c1b-SJC + - 9953edc13bd5cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -1436,13 +1434,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:44 GMT + - Mon, 27 Oct 2025 17:31:44 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-84b9b6f796-6k84x + - envoy-router-canary-789955d6b7-jsvgq X-Content-Type-Options: - nosniff alt-svc: @@ -1454,7 +1452,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "164" + - "160" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1462,7 +1460,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "290" + - "277" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1478,7 +1476,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_fac256968a904cd78e145a47b8733086 + - req_c31230bd611741939a49924dd0f3e565 status: code: 200 message: OK @@ -1639,7 +1637,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d53293a5c1b-SJC + - 9953edc3fed9cfcc-SJC Connection: - keep-alive Content-Encoding: @@ -1647,13 +1645,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:44 GMT + - Mon, 27 Oct 2025 17:31:44 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-68d9d8b7d-zhh29 + - envoy-router-848c8bc664-gbwwr X-Content-Type-Options: - nosniff alt-svc: @@ -1665,7 +1663,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "91" + - "83" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1673,7 +1671,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "129" + - "104" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1683,61 +1681,84 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "199999993" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_94e54bb128bd488c86e42d870512f392 + - req_fff07327055d4cd1ac2283bd058f9178 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI - like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + '{"messages":[{"role":"system","content":"Answer in a direct and concise + tone. Your audience is an expert, so be highly specific. If there are ambiguous + terms or acronyms, first define them."},{"role":"user","content":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_0: positive\n\n------------\n\nI + like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not directly answer the question, instead summarize to give evidence to help answer the question. Stay detailed; report specific numbers, equations, or direct quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. At the end of your response,provide an integer score from 1-10 on a newline indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer - in a direct and concise tone. Your audience is an expert, so be highly specific. - If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' + Summary (25 to 50 words):"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "950" + - "900" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFda9wwEEX/ipjHRVvsbZZ29diX0pcSmhACdTFCuo2HyCNHGm8Slv3v - xYalH6FPA/ecYbjMicYckchRSH6O2NYsAt1ebffbXbPbN4fdgSxxJEdjfeib9vbI99P99dXd5/bn - 9Yevh0/gmzshS/o6YbFQq38AWSo5LYGvlat6UbIUsihEyX0/XXzFy0LW4eh2gKnqFSNEDV6mxIE1 - vRqWyMErqvFmypWVjzAVoryamp99iSZ4rdY8sw5GB5jIBUHN05wVznT0xSR+xGq966iTTjabb0g4 - egkwNyEXuM2mk7ah8w9LVfPUF/iahRxBYq9zWaquoOJphgSQkzklS/Na252IZZq11/wIqeTaj62l - 4MOAPhR45Sz930Zz4QU+/o9ddpcDmAaMKD71+/Gt/5u2w7/0bCnP+mf0fmepohw5oFdGIUfLs6Iv - kc7nXwAAAP//AwCRI8MyHwIAAA== + H4sIAAAAAAAAA3RTy27cMAy871cQOiXAOvAm2QcW6CmXPlGgDfrcwFBk7pqNTAkinQeC/HshbxI7 + aHMxYI04nOFQ9xMAQ7VZg3GNVddGX5x9+/jp7bfTHyeX3Rcblqvvzfvb85OfZ83yV/vBTHNFuPyD + Tp+qjlxoo0elwHvYJbSKmXW2XMzmq8VJOe+BNtToc9kuajEvjsvjeVGuinL5WNcEcihmDb8nAAD3 + /Tcr5BpvzRrK6dNJiyJ2h2b9fAnApODzibEiJGpZzXQAXWBF7kV/VavYImtVAt7GhCIoYCEGIaVr + hJhwiwnZ4Rq0QZCI9goTSC6UKWzMO/B0haBdUo9ytDFw3pDAlpJoETFJYBDiXedtmmY+QdZCkQWh + Rudtsnleub0nR+rvgLgml/kzNfEODjgo1CT730PQcGNTLb2ifQKwMSMFn9nfQWCE3Iuyv+ISbcpU + zttOEGyMaJPAgQsd65vZ4RRuSJvB+LX12fXRhjc8K8fjS7jtxObwuPN+BFjmoL2ZPriLR+ThOaot + MUlTJbQSOI9fNETTow8TgIs++u5Fmiam0EatNFxhTztbLPZ8Zti1AZ2vHhfDaFDrB2B5+lT2grCq + US15GW2PcdY1WA+lw6rZrqYwAiYje//K+R/33jrxbiR5dvxqgwFwDqNiXcWENbmXpodrCfMuvHbt + edC9ZCOYrslhpYQph1Hj1nZ+/1KM3IliW22Jd5hiov655LwnD5O/AAAA//8DAOToiNUrBAAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991b1d54cf628ea2-SJC + - 9953edc53f262700-SJC Connection: - keep-alive Content-Encoding: @@ -1745,91 +1766,123 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:47 GMT + - Mon, 27 Oct 2025 17:31:51 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=8ALlKL82vTm9Lwc7SDClEzq7ndNPTSkjHVSvMUT3sQE-1761586311-1.0.1.1-dAqOnU7dL8NyRG_J96mO_T5zfhV5qZ9XznFrisWT.c3KHxd8hO3WZXpavP9mzyghB9mDysaAfkDrOQMIpGIk.Cm984XAMcnMi63q43P6u5c; + path=/; expires=Mon, 27-Oct-25 18:01:51 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=g7DglalITCwFIOGFRSaGcoXHPBkbhYe91Ox2vX4mJ1g-1761586311324-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T20:02:46Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T20:02:47Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T20:02:46Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUK3isPGw2bj5ry6xFCS5 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "6363" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3009" + - "6408" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999806" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_c62654b3aa174a329fdbfbfa743e1ece status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_0: positive\n\n------------\n\nI - like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + '{"messages":[{"role":"system","content":"Answer in a direct and concise + tone. Your audience is an expert, so be highly specific. If there are ambiguous + terms or acronyms, first define them."},{"role":"user","content":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI + like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not directly answer the question, instead summarize to give evidence to help answer the question. Stay detailed; report specific numbers, equations, or direct quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. At the end of your response,provide an integer score from 1-10 on a newline indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer - in a direct and concise tone. Your audience is an expert, so be highly specific. - If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' + Summary (25 to 50 words):"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "953" + - "897" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3SRX2sbMRDEv4rYRyOHs1NDT4+lFEootE3oS68cqjTOqdGtLto9N8H4u5czNf1H - nxbmNzMLu0caS0QmRyH7OWIthRm6frHerbfNdte025YspUiORrnvm01b6s3jm/bd/v0rtJ9udzev - p0P7gSzp84TFBRF/D7JUS14EL5JEPStZCoUVrOQ+Hy9+xdNCzsPR3QAj6hUjWA2eppxC0vxsIkL2 - FeJMR29NTg8wOlfNkKuOzN2QxCSOKXiFGG+mIknTAUbAms5lWr77Gi8p48Xosmz++g1BTdmbqWKP - Cg646rjj1eojMg6eA8xtKBVutep409DpiyXRMvUVXgqTI3Dsda5MP4HgcV56yPGcs6X5fBF3pMTT - rL2WB7CQ27y8thR8GNCHCq+pcP+no7nwCh//xy7ZZQGmASOqz/1u/Nf/i26Gv+nJUpn1d+m6tSSo - hxTQa0IlR8sfo6+RTqcfAAAA//8DALJn9Y46AgAA + H4sIAAAAAAAAA3RTTU8bMRC951eMfAIpQZughDTHVlWL1B4K/RDtotXEnk2meO3Fng2kiP9e2YFs + UMtltfab9+bjjR8GAIqNWoDSaxTdtHb07vunzx8visv5z7D9cPHlz9vix3tvZ9+Kq7OrOzVMDL/8 + TVqeWSfaN60lYe92sA6EQkl1fDYbT+ez02KagcYbsom2amU0HU2KyXRUzEfF2RNv7VlTVAv4NQAA + eMjfVKEzdK8WUAyfbxqKEVekFvsgABW8TTcKY+Qo6EQNe1B7J+Ry0RdkaYNO4NzVPjSYKofLrmkw + bOFoMgXxMC3gzgcTjxeluxQUashJNQaOYHFJlgyUqvWRhTdUKkBnIKVAdhFkTWA4kBa47bwQlOoc + LN8QaJR4Uir4uuYIdN9a1ix2m34DxUgREGrc+IBLSxDJCafEIP4Og8n0IbTBb9iwW4G2hAFow4ac + JvA1YMqToCPnBQzH3fEY2OWy8hjuJYWm421HMbePS98JtIFqCkkrnpSudOPicISB6i5iMtB11h4A + 6JyXPMZs3vUT8ri3q2bHcV0FwuhdsiCKb1VGHwcA19n+7oWjqg2+aaUSf0NZdjyb7fRUv289+qZ4 + Wg4lXtAe0Io974ViZUiQbTxYIaVRr8n03H7fsDPsD4DBQX//1vM/7V3v7Fa9yvx08mqCHtCaWiFT + tYEM65dd92GB0pN8LWw/6VyyihQ2rKkSppDcMFRjZ3fPRcVtFGqqmt2KQhs4v5lk+OBx8BcAAP// + AwCuZfO8MAQAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991b1d54ce0ffae3-SJC + - 9953edc53c72aaaf-SJC Connection: - keep-alive Content-Encoding: @@ -1837,43 +1890,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:48 GMT + - Mon, 27 Oct 2025 17:32:04 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=T5J_FcKG4IfjEQvbmYthVbJqhtQBWNacmVRpYudgO5Q-1761586324-1.0.1.1-gqlBz4ZP5AZb86tulQp8OPI7Ls5WyrkIQH2u46PDpTTOyM5vecstCMo_a4CziwRaG1VTWHzKnfsX_8WEq.HCaohzVFHdCM4TqfNVwMqZHis; + path=/; expires=Mon, 27-Oct-25 18:02:04 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=eLkfNAIj4KGS3U_D_ksD0jlU6.ywWUFXBmv9_n6.mJI-1761586324774-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T20:02:47Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T20:02:48Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T20:02:47Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUK3isPn5QkvJ4sairZc3 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "19821" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3516" + - "19873" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999808" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_40b9dedb32ac4e0592f13743e1c6555b status: code: 200 message: OK diff --git a/tests/cassettes/test_partitioning_fn_docs[True].yaml b/tests/cassettes/test_partitioning_fn_docs[True].yaml index c99b994f4..f78694550 100644 --- a/tests/cassettes/test_partitioning_fn_docs[True].yaml +++ b/tests/cassettes/test_partitioning_fn_docs[True].yaml @@ -41,122 +41,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWdOyPrfmz99P8dT/lN4lkyS8Z8wgUxAQtaurCxARUJEhAbJrf/cufbp6OLHq - hugNycpa1/Vb+c9//fnzT1+0VTn/8+8//zybaf7nv32v3fI5/+fff/77v/78+fPnP3+f/9/I6lVU - t1vzrn/Dfzeb961a//n3H/b/XPm/g/795x9R6jiUXycdsNe40mAxijukPVg1EQJHXyDGlxLdqhlS - ukuVSk665kPCQmzBlhuuBQRh8PC2tCydmHvuSL0rlUSbdLPgOzvJZJpqFGkns2/X4qp18lN3hbDo - XhplEXIyiU3lV7iEypSQY8JcJAXqr3DfqLy+HRUuBvx7XZFV1Y7Hbd6pkeP4cww5mQr6Jj/jUNpV - Ngy5tYPezCEjBtzAT0TVYEEFuU8rwFydNGTFfmrnyt8qeP74PrmVQVawVstEIINRGMomEZItYese - gkPuIaMAoNhy1nPkSawROQbenU7xsOehlFYr8UJHp8KyJpkMqxPFrDMNyerh6wt2KdKICt/buHxO - QQrFw+dAEFwMj93b8gazQzqSlOxVwK0gd4Hayx25snc9ofMJR9AQyYzQRU+8lbWVi/wyzAHl98lv - 6Qu7FrwM7g5ZZtOMy+5daRCImULSm1sXZNnnmzTWYxzKPmN6LLIdCai1rBIlI0999bM7hsUOsCTI - g7mYOF/T5BU7T3I854q+riB34AcugJQXzS6EzTxoULqUd5K27kH//Q2uqnFEaHvU+m/9YJf7b4IQ - e6ZjQsZKVjxbwjLvCcnGafYAnfBWkKuweyZTEu8Y0PtSQoKAiYulDM1Mdj6XAiWn6AmmHTmVkhPe - C6IEdTjylcBn0FrrM0k8NWnnvg9LeE1sRLzL2QYs2h1y6DL+DVV6HgDBFvEm1Z/HnpgN14+bfXss - UA/ZAR3lN9anw/kxQUe+RphNC7vlK8ROsFdEDZUMeXhceqwHOSCqiLxKCBMqLBy73wqrJSryMsrL - ZlrB7WFHoRf2j3H1+VMFPStQwz27Uz22fOkDvEnTCVXQ/HhzNS0+fAlqgA56aybCFDQX2R/sMzoc - Y29cSkaF8rzeX5h52TaY372myPIUZkh7s4Bu+eRN4CbiKpTKqS8E9WPmQK7C4O/6N03xzqC+biGe - rlpDhaelVLJ0qe4IeazlrVYoL7Ci40QsQ/skKz4/Qphbyoa81GHabeGjmjlZFxUpTOkXQl3NDgx1 - xiemda7pkmV4guOlx+RIL65O7bpTZNqrPVI+1WWk++4TgYdbVuj6UPORD0y1BvOjuiMrOnbJdBBa - SZb62wuVUQLoalRiCLvM3yNvOdXe1t6Pvcw8DzNxxuesT3tbXkBBpDlEefsG3OQJpSQP4R3d5UgF - mDdXRpa7UEJ2DHudRjqwoLuEJxKoyKbCi1cb6IDiitQs70Yyc5MGcXONSXRGDZ0v3LEDfSoKmGtO - LuXMcJ/BO3wCZLkNArTGnQKfgXcM13OueHz7PhpQhN1EDNgzBRbkrZK3p8EQZZ1pu61WIe3ruX0j - /RSZdI450IDvfXTPddfj0+6zQHMcIyy/SidZTLA48qV0eHJJ3rq+rEtUyVG+mLiGZTuup30Tw+1u - HUM+PzJ0GzBQQINTFun72wA2POAFYKngiJGDO2BHcWVlVoErCe6zmAwDpgpEH/5KfD8ZvI2/iTFs - n0mA1JP0oqszDCwMEq3GI3eaEwqXQoK6xYXodmCUkS5rksofleVILg5xMo2OuEhvsiuJr3Q+FY76 - roHW5R0iJDzu+iZdJw2EAXwhzeOPYH2IDQ8XJ74g3VYfYNnvmBjCRxShk3Wuwaqc7470HAwHWZ62 - K9apYFJ4E6cKaVs70gW0DSszJ+dF4suzHBcfxL3M3zaEDHMyAeu3aQZ/z5esIaJ89RZK2Uz6GRXL - SfGm7ZI7sOlTBylvJkj4ovR5OD/K++/9wXYWE1Yey75ErjhsBVH2RizvHOtA1FWMAH2FRippjz2L - To6wL7ai9FnoOaEYUjW+J+tKcwxpqFjfeC4ol6qfBd6HTiY5KUBLptsjkhXVrkPhCKeW5MRkQKVN - e5ItRAYTKQcW/PKvc8+Uguc0u5fzHp5CgTt0ydbrtvXLb0iRIW5XrTAleTtaB2JXo5nwq5VIUK+E - FRnuRHXcFO9UTpiHjhz3UiXTDds17LTQQFfhbres5iipfM9eDpb2w66lNTNI8Gk7T5TQUGxp4x5d - uIoHhfiWIYANypcaSt1dJF5nPb2Om/wQLFpE0fW4HQrOq/IJIkPcoYAdp2S5H6EFd5xm43HPlXS6 - xMeX/KjuCd7P0WnkU2NS4GJEA7meNqDjum0ymVyz9ls/FI8TN9mH3/qLjr/5Hx58DtLPzSVHzzN1 - 4V71E0Ta3iGugRdvEu01k33Tk3HxtOp27iN9kq+LYpGyaA6FYF1q9/d75HJ6y3Q57NpURkA4k0O0 - zXTBsO4gDu4C0b/ryQec28HIFDZi1idK6RuHNVzZQ0zOXgBHMhx3NZSbQCfJa3cbqd6JkbT4kUXs - ZhR0+llFFnZRkJLrTXUAt9OyHiqitpIDvzsADlTPHhjiPKNbUskJWQ6VC8fhMxEHP9d2Oy/lBUIS - XZA5d0NCf/e9C9p985fR8vbz48OrbjgkzYqoWER7TeVBJpg4H9Ma+Xp8LHLISDEJ+vJYcANdfHkX - 2yNxe9AW891nJBhlyxmzju+PW9p9xy+SiyxbC1pupTGGfQ5aLHriuaV+/82f3JVFHsuhUdgbYw2b - Jm1DFjhqInyO1JLPQlASv2oC8M2/BhSDQSAqL1YefVm+9ItvDO7nyaMuvDVQS6QOeerV81hAPxjk - rv4mqvwO9dVieFbWU+FMQv+TJULkSTXk33RFhtzvKbWcRyQ3MJWJqkCqb9V7V0Ic5Sk+12OYcBu9 - uyC7nWqiM7eLvjRc/4LKoPXkIO42Ol21GIM8U/fI/uRv76t/JiiUxCNKhuzkI7r0JS9uhMi58uwR - U9ft4SVynig38KJvlcCkYljseOLm/qPdwqc+QWm6pUjT7as3fg5ggDHtZKRteqgvGdOK0BYrEspR - tffWRN7lALaRTWxwmD168C8KjLZ1QRlGZ31+GrcGxuFQoOANH+N6fd5dcB5DnWhPlnpDCqdmn5hv - QILNM1t88okEVhUREm583S4nvtbgbz/pE64TQVmdXOLJGiDUbSOdY1mCEMlCSNSdbScrclEnqTmT - El2LJbAw99yFfmnZKD4/kbdkVpvDhj0/wi01Z+/vfAoWvuN9ut3bBbbvWFb7XYdFbCagf36iCnKS - QHH2qP12uj8kBvaKpCHzZLHF9h79GLa3+BMKCdRbqhy1Qaa+gkg2EF1f02tvQFKkObndgiNYx2Iv - ARprkLjVtOrY2C+LzGE2J5fj2/cEdrYtKS7H8bveood/+VDKyh4dfS8e12JVRIhCcCXoqxd4weRz - qEzKnfha19IpbrZcvvHTG7mkAOPa92EF2iRC5NKbnr5domyA1W7gkX33Wn0prUCEZxpglLx3e4++ - +QCCRGpP4c5hVcB5zKUCVIIG8djTCjY7GMSfXkSHKZL0edMzCwYHxURaZho6e4mvHYTc0UTGdpWK - vpfdBjCBoxF9xvNIo2QPIViyjtj7Q6bjwDzUEOO8JGZzcgFmc5MB6XhTSTYTe+QwGSEsdnuWaEF2 - 05enWkSwPUYXlB20bFzTa23Br78jhnqD4xKAu/F3/CHddiPVja2GN2bSUXRGGmDvR9aQ+3zfEvVx - sBJhmmsH3O70hAV77tt1pOwAaKUGCPFq6tHp9ODlD08zLGuI8yYf5ANcrPiBLI5pxkXr3Rp+/QDR - X7tbu07eroTmqe/w/rh9ip/fkuXe75E5GUePj8Q1lW/qZpGjIF7bRb94AzDQeiP3Ic7o2sHrC3QX - f0HV8z14m8aYIuxjoIRA4i7Jp2KhAftMxCi/TVxLH/xblIF6IQil+iPpk02epP2zhnh/V9eRJuce - w/Aol3gRZpgsAThbkMN8jpzI3ii57pRc/tVHQ3JM8NWLKbzj14jMwpK9hbDPTqaRbuINZaxOy2bN - 5fRa6Qgtj4+35nslg7grDljSsK1vR1He4DuBBvnqrXYh/sj85jcEkTP91acyzfU7UkOvKLazE2+A - XaUbCvzKTtbOuFrwNWqA+AxRPWF+zi483iaCzh/JANxvv0N6DNFxEvV2PctXDWT62SLaI9VHDoSv - BU5SbaHq8FE89sZY+U/PE/fhn+lqhdwCf3rl8q1PdHmUFXwpNkSme47HVY6vFgBiqqD0BLaWvit7 - +M0fqcIDGbeafnzY+2JCSqXzgdBKcQie0LaQfo3O4yzh2gJ4yDH+zNGpxe39OMj6bsvCHf84ggW2 - JJJiv++IkRVL8nHiqQHbaA7EjspHS2t+rH77OdzEWElmTjBFwIZwj0mQHgtqlHIM2mN8IXoWJfoy - RWwP3o9dSvx+XeloKR8ebEfjQI7+uCQbHl4LdINoRbmN2YK8GAfC95EJkFanvb6BPfbhLrOvSIc3 - VNCdceigSQaGuBYWwbR0GEMmcQnS/UdFJ2vkJvmb0YhjXE7t0pwGHg7tFBDPviaU/cVz3jMnpI6f - 6rcfrf0v31iELMX28zc3Fi/E0/Zd0Z2yJgYm6RlS4NctEaTp6YJfvg+V/NBu8/bYID+udxLCpwUW - 94xdePO2OmQfbuxN6K738rf+o7hOe2/L+qiRRf5po9OemslPHwKLq03y9WvFFp58Fo7xoCH/prHt - 3CivDU58fUEHcL8W9OZSS562ZsDClI/tsntnGgRFcQgXpFzbZUdulVQ8xCcyvv56HROphK4ZhaT4 - +fVx2XJoeJQQpJkrWK5DmgHFNk10L/TnLz9UYA/aPty8rEmmL7/4xWv4MrUOrGGuKTCDcYiulWok - OOC0l+zt3Y44UorBVB3EUPrml/B993Sd/62vDasbfpYnTX/dkBjB4Tl7qKy0RV8vQXqBT9PByOWG - mZKbxLp//Wk6X2f982SzF0Q7wcTc9/vCeTyH8t59QqLoq6QvbKekwF7uScgM9r6dSt5toN1UOkpc - 9VVsfLBe4PVmfpCxXiswkXTMJaVRzK+efxYkOfeTVJNHhZzJLMFX31RSrdcWqRiz9rYbEmNY1sKD - qLnEen/1ZnRZQnSPWVhMpBsi8N3v4ZY/k3b1siSSv/wBf/OTvryulQYfu3yHDHo9geWUNRE4VBkk - xs2tk021zAt4tcqFOMe3r2+3N9CgZwQuOhmCPbIfOWTA+RlWeG+2OPl86yUMEqVG2aOeRhxySIOD - Qlficm6ks8QfIdxuRo4uYipQzMyZAU5r5pBAzp8erbMnht/6jX5+Y+beSIFn67iQQ/7QPGE/9RN0 - zThExlfv8qcSbxCcii6k5wi30ykcePjjiQf+7uvsblem4Kvv8ZrnfEJt5zlBKMQQ2Y+xGL98o5Gn - oHNQwZ5WOpermcnGNKWYCQ6pTqNkZYBa79QQqHsHrE+2ev3ii7j3aRrnnz/lGOERctZZARSNSyQL - OUmR7yeux9Z7GcNhnBaiP+41IK176mRyTVss8e7YbitfMjCZGhNf9dYsaCdlPZTSciW2FZBkZfIS - /vWnJu5MOixV7ItfXoZim6+95epWL+BP5k+/vYsNa09Xrov6Q07NaaDro+4N+cujyI8vUSnFPEi6 - +oPly9wkC71kL1Bfmy2UeqAn64W7vuBkdy2Jv/mTrVcmBl9+hCxHAx7xReUCb+YGQrqGBCzQ6xqI - HMASRT0m41dvO8ATnDmUB3gG5McD4COOMHe0tBav4X2BR0JmLP/84fN67GS/NGxSsZk8zk009/BS - ujwxjfOHjtNcuzA8yS4K1vFNpz5QSzjv71ooCUMH+FmrMfjV70P58Lwvz9tADLorOdzUHmwaH5YQ - BzcB+V++9DfeJ765EPWSzyO1lA8Ly5p7oBB9HLrZt88G5T7skdIxHw+n5ZBCnaM6cqQ0pNxbUS7w - lx/VTNIK/lE0IqzPNUClbqgt51vlBc7RQ8JbZnbejw/DeNfZyPCmcKS6v2dg54dVyPR2ROdnWfDw - CrUzMug+aVdmKHh4T19HTC/Lns6+lebQce78L569+dC8WegG8Yp3RXvy5mOwSvLxOqvIwSalv3oD - vrwr5A9NWmzfePnxIqRptjxO6Oz7YD0EXgj6V9oK1jKI4vkRLr/9RjknnmrwcswLOd/HGkycoXXw - Pe+exGeVY7GY4xoBuUY+Mb98HWNpHqQe8A5J3Sn56p35BZfV7zFUO6f4pMd+gPyDmsgNb0Yi3AY5 - hkcb60hpGEVn/SKVZLtoRWKYfu8tXKmIckU/E+bF6pNQ5aHW8pe3E/V1SNrluhUb/NZzEvjVO5m1 - 0VhA80qPRGmY2luLq/uCwVX3UTCWp3FzuK4Be/lxxwKVdsV2dFgMxeM4h1zDOe1cPDQF9q5YkpTp - T8VyyY+KzNy8A35NZNJ/8SR7gjtjuoYI0NvARRBPlycG2vU1Yoa71QAU18P3+Wi7Itd+wRGPOd6k - 7QXoVVAY+HktCN1e0NJXbhdkcOdaSshbWl1Q2ckwRCMfETN6dWB2mvECV947IFNKdP1v/bSM7kpu - q+d6bHVYQug9HBWzsGeS9eA+DbjW7g1Lua+OQpZcNLCrTEh0KM/6vILYkcesF4i6e5s61/QthLZU - vogmb2NBd6w7gFjpE+RGt7lYV+/67df0Hjkij6ebcYAONDos/t5vXC9BeYHuKTmRgB85b2m5WZHS - a6mTZAnTZMLswwX1UhnhKojXcY2f7ACkuJS++YGO5AwyA8ZcxyL9upyK9RjsJfDluyh9uzlYyyv6 - rodUIvvrB5cfvyTvEw25L39ZkWT4cmamMtFpKI6kzp4T/GzLgxgpeH555LJAA84FclhWp5O4W3lw - qZyZWDvm5tX1Y5dLVtSNKF2vFcUq72pwd7Ej4vLDoeDiJxyA3PkSut7V4/g8PUbm1+8iLhj4dnMf - lxoe4mxEwQeWBfn6PcgTGuCxOkcteWOrgexOfJLgCYeRJrsm/cunLaN568spHNgff0D+vO68wXhI - FQzOWojMO2d4ApVNRoZhNiFlB81xG/itgrrGXkluh/y4Nsub5U/lZUbOgxcBZgeDBV89QSxX2/Qf - /4UskATikdeFbjd74eXD61Sjw36Hk7/+S5ReHPKb5j7+9fO//l1Yibk3DqscAYOdd8i7Cg99zfdO - Bti3pIUwTjawXubc/elJZN+8yVs46BmweIoJivQ193AyffyfnsYMn6Ut1/QjA8DxyhP35lv6ViE4 - QQNjD3MM3VrM3O7+j5+j8HBoii03NEs+jvOO6AR346IpigjF24chKrRZ8Hhc+gESlDpf/laO33gI - gbMvGqLNuvLzpxb48YNrErPFwpWOCL+/h1R/XIr5218AYzUk3/0R6Py79XmYSI8TstOSFpt07TR4 - Y7BOTJBEySYdnq789Qt46lZF59+eZsn3tDuixHkEOrv2Rw02dTqRKKjxSMM6bOBaOzeSuA+OvmF9 - ecG1cVL01VNFfV/3PPw+b8inx0xfU/Wzwe/zYvjtzwzmh8ng8Jn2335f+9NfOQRsFiNjvs4ejSh0 - 4PVjAnIA932yKaGTw+IqqgQ940876izo9rRTJaR+eQflRJEFOLqkGNJaHYXkPSkwd7TPt3+jAD5N - G+nv+5yI0bZbU5D01y8jSl/J+o9nQhTur8gaUQ0mHqIv//RiojK2BzjT2ovw5ZroF7+68NsPO6pE - 6AwP+ThIn0EE+2Nto2xECuCl/WeRLedlE8vUOro+2awDziPfoeBZ+n/ruSwuXfHN54r3N56/+TEE - yj4oKJ3dHhREnNGtCBywPPfFAsgp5YjWsoNHX/yhBkRNlW//Y0d/fA4KMV6/+tL05l8/hxxPNjKP - r7qg151ykb+85i8/mwE/QulMEQ4Pt4c1sge74WWjm0R00HX76z+EEvah5KJghEkinJOyhMnh/Qnp - 876NW6SILLCsV0TMtYP6Bs1IkdWOIbg5PV/FWhz0CQL98vrOjzTSzVQ1+ddPPyjtQ1/iRsohX2yX - cOvYcysEkRf++nu/+lkInVT1P36FrHutj5ta6ViGcvwgrhFuBU3u3Uv+1hfi0/oxbkMosnAb7QGz - 7WDR6ds/gYIx9aga7P042PLIgC/vRGqZ75J11a891DxJIep6Sbwvj3bgP79TAf/1rz9//sfvhMGr - v1XP78GAuVrn//g/RwX+Q/iP6ZU/n3+PIeApr6t//v2/TyD88xn712f+n3PfVe/pn3//Ef4eNfhn - 7uf8+f9c/tf3H/3Xv/4XAAAA//8DAMgaI0XeIAAA + H4sIAAAAAAAAA1SaXQ+6PLfmz59Pcec+ZXbkTdreZ7yDgBQBESeTCSAiKCJvBbqzv/tE/0/2zJyY + iEVC12rXdf1W//Nff/31d5c3ZTH9/c9ff7/qcfr7f3yv3bIp+/ufv/7nv/7666+//vP3+f+NLNu8 + vN3qd/Ub/vuxft/K9e9//mL/+8r/HfTPX3+nSOdwzp80IJi3iYG8dZDxQUqViHVhtMDmFhT4FBqQ + bkYSlIjepY4ch0MDFmT1KmCP0mGm6pNtxhu4stIprgtyWDojFwjUQnRoa4o1F3TRYubbE51LfvJj + f6c2PFe+JWkn7d8+X6ijNn+UuZAs//72Fwh4bSMfzgQVv27YtRjbFaj8qhEpjid/TSdBW8LtwUgH + 00U+7wHokv7BOoDdqSNRBzenvPJ8lqDCcuwzVBgb0uKwhE4neyTJm8Rlz6j0AD8+sc+onBCtIb90 + sG1LF1ucBAaKCbDRIMSY5Gfp3pBzeuChEpUrcYyrRrmGjRIU3c90XhO3jxZb2LdQMIlKXO2+5fQB + bjHsiuOBKIGku8LAH2d46OWB3EZFdYV93Zsg4s9PcuUqLVo2twygeh0mbE5eCGh7kFOUnJUel1Tw + GlrEvQnfiytj5THUw2oXjAqZiymTGGZVPicPqZceBj756zgaLnelqQRwdFOI6YsvbWG6+wyFQOCI + M92mYXzsHwyy3PhF7q9V1rYLkWx46WVAss6zcjb2PyrcGvZO0q04aFyxflTwWLsTlku/0rhEsxNo + O+Kb+NZ0jj7pMJQI9xaYwfkhROtFtFrI3E85yUT0omPSVypk90xEvOUSDts1PSdItL0cl/X0AnOR + vAqJ9lpOXAP7gwCnJIHPIL6Q05xEDalvcwHPQY6J1yEL8Ci5llBD+g1HE38EnKbOknRTHhIx16Eb + aHhdRzgC2ONzPU+UaOE6wnNwxfO2HKxGKF19gQK1VXzaiofLOtHSoz1GIsbv3G9o4afy3sy3hvgk + TShb0GcG67RT/FA9PwZqDa8Suuuk+Iw3KK4gZ7SHEMlnHOVsB2aRWzxYC9wRK/LBaLhnEKZo7+cX + fLx/3GFBVi2jxgPtLLm17U6eX8voGSQXrKca1JbEcEfw8rLKBzDrch7WXAv25XbESmgUoLlplwRy + SD3O3eTWlOvsoES80d6xp4RmTvfoOMJAsUZymMWPRgm3+jAj44oPRsA0y9ZXFePNtow15u3lguAh + G2px7RG3uVR0ixa/g/Ogz+Q2Zk5EnfNTRt/1ilXIpsMK0d4G1aCXOFrSbOAdfu1ANZglNqj51EYs + NRLK99cW37wa0C1/iz58kHGPTcu9gzXI1g6p189EdKca6Zi4twUMQXL3cXJ6A6E/p7KkONIdn1NP + yUmanBg0xoyEPZbvIvrZDSrs2fBMcHKyKCeujxpWK7li7TQ8hxEdoQkRPYakZJO6mUVHYYEcpMK8 + ZZVD+eF0SKCdvAA2kxCDpdqxMrzgJvTXrJddrhcfMlxvwUjs/YVxx3mrS1S4MSL6vafNNrwyaS++ + 8zfG+cGg0wryBLTLk8GZ2Tsuf+QOC/ThPZjRGtrRGumLh/Yey5NshVpEczmo0X7XSHNgv5phKaYw + gUvan3zmLjLNsvsAHYCdzGI1q3qwNHw5grgEHNGT6A5Y6XASkd3ClRwR2kd9VTQypK10JY7Z9+4i + X+0Qpur7iGWStnQ9g4yFguE8ZiJ6U7TIdJAgu7x8fPYiGazxFMXIZGOORHQXatM3vlJ8EAqCu8ij + 3Grtauh7wMdy1d//3A/2DfvGNjOfwCaNoQQTUUqxq04PsB24MoTexQ5w3lwqQB8KKSR+0W2sm9ku + p/d7GUOrZG9YQfxAl/wesuhcxy0JBb3IqcpvHTK0PsDexBmAe6RxAjX1yZHzjcdUQPhdIC3RJ5xD + RXbHpyDp0BZFG1vWdIw4lBY8fDPPEh8P7xasdRuxSEVVjg/Dac3HKxeH6JP2B2K3MADrWXlCKas5 + Ft83bp+vlVOwkFiO6DNkvWtrpTsbDJmn+c3nnLKCe1jgHemIxJ4Dmil+KwG6z0Pp8wMYo7nHLwZ4 + hrcnF/3OuLMcZCJgnheOHOEmDxxrWh0yqBf6+5R/RpTGgvnb37CnDHOz8JeXhEYpOxA/ZI2Iq9uI + hyGhK/btF23Gy/0do0vy0L7ruWzIcydUkJMZHWesYVHOhnKAyiY7zOAs7Rpq00yC2uf5wkn9FBta + Lg/zt38R7DoCWLa+q+AK7yLxbvo7fzpzEQKDXSi+G9UhZ9vOGaHGdAyWY2GMFmJCEzqg1ufuOBYN + keNHiyhqonn9lOeBn6xRhmUMe3JeD0Abv/mNBHZusObWsitg/ujBpGB9HOtLAJYraBPAmJNDLlZs + aIIxiyPk6McmDlsu7uxrSoLsQ2zOLy+q6PjytBFt5WKQ6D0dcr5dKhOGg+6TqCSIrg0bxYgbhwuR + dXOiS5otHTxKO4Gop/oecbIgPWHF041ojU+blTZMBT3nFJJMfcJh7ptdBb3HSSOnj3ADqw3tQPrG + nxyqjxAt6iEV4ZKvEbnpxAb8wpgd9NJ5Jao6HwDfRMYIQGJMuIh81BBuYUz4/U4wc16bxR/HFGZZ + l2JPYHpt9XLfgY5Bdtiigt4I0XvvQUZ72uSe9IG7yVAJ0DQPM9EP2By4ulIW9KunevA55Xz+XjxE + NW0g9uTWYKqCWYJjlF5n6TR4w7q8lQWZ5uzgY7YeG9bJ1Bl2j6iZURJe6GLsHyX0XI5i73bDA5cO + QwEVqXj4+58ejGNqIvb6upGDXvouzcRBhokjCUTWxTLfeLbgwYO/sDOk5uiulxXV8EjCBtvT03V5 + zt3PwD/tOmJ7qq+tmtqK6L65F2J7eRJxV6uvoG7TFWvPu6Qtn/C7nr7rC09Pqv32D3g+bPEc6oIf + sfHj7gPrhCqifS6pRgOha2GX9R1xErjR6WZsPeg7JGLj+Hy7i+7dR/jJqUvkcLZop+9ojchVx+T2 + uFpgGjypg2u1vHDGlou2FclUiGKQC0Q+3h7NqmTaCNX4FWPlwqWg03eghmbFIozz2tfWy62BkGT9 + 4lN72rsUYVKCX74cHXFyf3oCVtZxwZdGTBry3E8lVFGdY/WrJzYkYAe0e0YjViyw+UeDxbYvFQsS + Y/ZNbVJawgN2cwnR8rxqaH8OVLiz/QbrMKsi9pFdZil/no9YtpmBjtOzh9AZXJ/4R2hF6xHdPcnc + tpio+CqB7dBJDhwd3sLF8Ynd7/6fwNDClc8DdgS0ZLoW3g5JOTOgvzfb830J0fK8vGZut57d/vEM + Svg8a9L806dTuu8Z+JIyBbuCxubLd/+AalsPvoQ4ja7feCDqsJhcbE+L1vLY6fDSFRkJSX8aVvZ1 + lcCn3iDR7Hih0xPKC6qnMSOZsnku5+wsU5KSZvjGW3SnHRvx8HGxOxxZRTgs6iEQIbHJldjnqwL+ + 6EfeeN6JbL+aZlbKMEPIeL6xm/dgoPVtLsGzYTE51bpD12ts9nDv8Ty25a6JVqOcRBgsnxmn7/Pe + /eptGbSJdfb56qEAzhe7GpyrxSDa01zBZoqfaq/2aoPtnSVphFt4E+qXp/nVQ7rGN+bnCc3bWcc6 + eu3dzsylFuTsqBGvPE8Dfd+uEMbb9iQ+PJybkTl/KthX2424mum4EyO9JHCTbgo5327WwAf7AcLP + gWOJ2U03bXtf3QDaJzHF2Z4k+VoeKxOKt4AlZsHCYX0fsf1n/NHcdsPqynUFV+Jp+IYvKuCynNUR + 464NcbzMjLinI8dglcBl3pe7rllvnj6Dn579Zqi79ZrCo9PgJvOuGzmXqLzU//TFH3+yLWtfwQ1q + ErE/5a2hOiUpZEPYzIt0/eQr0ZcRjV7a4aNhn1w2UE8pQrFqkjszX+liM24P1OVTkmuwJJT6+acF + nWUvONfM3t16/IKwrxPGl45eQvtYgPpPr+LTp+QaehrfItKNjuDjqNTaQOWpksR9zMz0Fy83FGe4 + 2Kd83gQdRpuWWw6cQibHSvLcmhHRIEO/+ujXkwH4fXqIYYDqATvhDbm0E7gn4nTLnCmxWG1tx1OG + GtvXsOGNH5dygZxBKd45s8CIlra1pxsPZTPQyalt5GZTt4EB3/nzkZCPDRk+jyfiru4dy22W5zSC + 6ga4RL3hA1ksbe3FjwpLVAOiN4visnF+dGA4dgQXoaYD9rfeoW74OLBfWkMF+aoCkfs6Um6vDXwy + J8sf/fL1ey7/UdoSFSLqiM2aF7oq1XmB+jruyd3Yr82Gh7GEL/0Nv/MRDtsz/pjA6DsZ3x/D1tA3 + Y/XwEL8KUvpnMiy5ewggQEVE7l3kAb7lNwecNtfCStdehknZVSowBX6aP6/HOZoAWXuUHJLE3wPn + BJaWnVmpBdWTHNdhaYbdq8jArXv0xHuPj2iDxVDDUNdLf1+2cjTfTV4HD61b5iY9nvL1xN1CYJ+k + 9FsvIm3L2pgFTE1jomq7RetG9SqBbO0OJF6jJaJTmrDwcoQrTk8Rm5NsSyG8YtXDKlQ7jYrE9+DQ + 7q7YUjmcb+fdp4LO5uzIcdNFMDZ8OUO5kQjWpEdJyY0YI/rjX7PrOVqOacbD8y3wiNe0EeUm4s5g + TtTzT68N21evSFYjCdgq30u+QfvEoEGUFuJJ+7vb/ubvq7dIFPK3iN0thgNAWzbYPCmHhqJ5naHs + 3+5EGVgTrN3Hd6BR+A9/NYfQJbeOdmgT4gsOrfYNlqapalQIVwsXD2hEPGDlGBRsYBBzqJ/uGmoF + C8FTUrFH72w07atkg4koplh5z9ecfnaNiox0/sxbfx2i1S549Zffvkj9a7OZxnGWDqhqsNN5VrRo + t76A+BD75Lr7WAP/3X/hqcILsZl5BQuvxQlIE8PASba+mm99L8G+3X38rbTqZgyCVIKqWKj+cH0/ + wZqdaxkmBe/jiPF1bfKZrUU5Hz6JIVUzIOtJDKWhYS/+sxQ1jdtXyQLzzM/m59CwWuVXdgAvkeLi + k9ss2uZNcQzPJTthE5+maBofug9xC/c4Onoz7bTebKHDDOa8q/aqxh3RxUfSzoDE8rGkbUoqx0C4 + R5Evxcd9ND/6voZpyGi4nNs2X8bglMItun1++QFmkwGtFGJZJ+6reuXz45kW0mx87vjYxQXY/POu + lvZ1YJLyc65c2jhiCK8ZqYjCYNal9mSzv/nE92ME87GYshgw/MnzF06Kmu191QLEW64844+Boj98 + 6CxkO+xM/BlsShmm4PhMEDFEvorW3jA88I0vcfne0756ToVf/Y2j7mUNXOPvVBDqZjmvXj5Hw7de + QnwSK3w943EgNN6ZcJ7xQo6PLdA4OxkgLAHMcAlOwr/Xp/TgbaJn8stdP4LRQxu9ByxrbwHMt373 + Rw8RXTNVlxfe4gjDwfSx44Ig5/ZVucH4BVoffv0QWRyHh0c7pNhhfE/jM7aIf/vnDDaXj5bEPS/w + qx++/C4f1tuuqtHlLtr4dlLWhoTsOUFfHjgvh0usbUZfq0Dx7rIPIsEeFq33W3hlWp8oN28E5OdP + MyeqfRRgxV2GWQ6QGr9jrALnAIQ9Os6Qn+2FyJL8cOd7zD2Rg/TXDPp1aKi9H5mfvpoDazJy6nnm + CL10XIlxRCTa8G2Ef/ypnsmG1slXOeRUxSjwj+fRw5FpwYn5+ETend45zRjORF7hfUiUwJ5uh7rT + kW7h4JtPRrRRWG5AitLPzI9ZHS3f/AVfP+Lvv3yRDp9PC0FbNCS2GFkT7vcyAUiufSxnDwlMrhSk + 0FFb5G9jTcBWbs8Sfg4CS/D+Fg1CZmAP3E7i4m/nw8Wdv/kK1VMZzjsZa9ok6vcFjjtrnLcDGSMq + x48nGh3WImdrRjnhGfT86StyHLM+6nh+cWD0OLlYtdo3nVh6SmHS7hR/B+gTcJsm86DfxzM2XNYB + a3RVNtCt3ZV4dtQBuhvmAh4lJGCZjwD9k+9Z1qfEgodp2ETnwMJqPlbYeccHbTXCw/bzB9jqrW4Y + /TaL4SVpNGzy0KesdglSeDU+FvZcVc0Fm4YijO0A4Eg4Ko1gHooUrvAmzktcPt0fH4bGxbaxP+/8 + YYP2lYFfXuWjdQiaaZlyHm5CcsEHPozoGt1zHmJRCmYat/tm/oA4gfUL8Phwxt4wleybhUvmb7PE + vON8soOThDJ7UrBlM5TOv/ju3fDsb44dD1vLbzYER+mEfd1EYGZ1LwBGdnL85RzEDff1MyJ2JIK9 + Ky9QLsFjAazXLSXBN19JbtZPuHMvL6L96uehPKVATS2P+F8ePurmsZe8vrdJmO0jl/IMan+8d+bP + e2vo0kzsYfy8GNgzHT3ivvUX/vTP199rwhLEEuq7nUgOkdm5y/0SiD/eN8PU+0TrsXhU6Mvbf/nV + LC7MN1ge4Z7oD+XdTCiNWfDlI0S3mMpdvnoZBjvLw+pLOg+//ASt+rrNwujshi3p9PnHz32xbexm + Xne1DO+gKkjs7M/uUp8fMiKEHOb2229Y60rZUFEn88zdeAwW9n0O4G/9SmnUghE0qAI/fo/3N9ps + fSPUMLvRbN6q4O1u5BYw8Ns/wCdPNbXtfb8lMC2mnQ+issqXhk9mePGygFhW/HKJ9cpT6M7YxjJn + a9qmirwKF8O+kqSSHPfr330Yr542r/uFiVbuyOnwy3PnTT0rg7AvUhWo6gcRY5eOdP7GH3VaJ37/ + 39DYwW4gHDy2JVrNDfk6eFIPLgCGWJmMKafZljKgbQuXFNIXe+w8aEM+68Xf+w2boBYprJ+XM1Fu + L85dj8LRlhrb08htAHFEGLj6P3/6q/fDFn3YFizmKP146PD1Ozq8oIpiLL7Ow9ZrB/4P/wjxNQOb + XOxk2O7UAv/6J8uonkRkvm+Cz355KlVdPUDc5ckQs36Kw/iIjQ52s10Rbbq9mrG4yguU0CPHyvrU + tDFDygzEapnIUf7kef1+kUwCIRxwJtllM9dir/74K1E27pCzq+D1oKOehKNtdsHLTgYGVmO3I+a7 + 4Js//Et4+AM2PVC4ZNsmCM2D4M2t8ThFU3Lma1hwbEvsx9APG4s2+w+f1s/2W6OL47DwKUrdH741 + wn1fQvfS+tgcat1lscyrSKy26Q/PXKqhLn98hsTbkx9WdT4HovN5TvinL4mC9BHEq68RFTSbtiVz + ucDw6ghEs6ertuGTzKPQOlbYmN9zRAIk9fDsJhz2QX8ftiKIMhjzQYHt9/nqfk7cLQBkMWWsbMVD + W7/9G3CcZtUXXt32bx7w0yNWXI7uujeADae2iHDxFLKc6NXeA/HtEs90J8cNf5dHFeThlSeuzpvR + 6hveCJ1O9WYxdLdojB93D97jasQ6qGt3q8VaRafrcUcOT/IE9MLKLATzhyEqzJe8ciKxh2WTHkhS + sMWwSp3ug8eN1sTav2Ug7DvWAT9+UNA7my/wlYrQMaYd1tdoySfmKvrAieuYOLfnUeOztuDhZWfE + 2NwbNP/2L1S4El8jGisE0WLEhoO+/cp5gIqsCcdjbaJXk55w9r2f8/uHCmMSDKRQhnnY8MrUsN3J + Bfnx09aOuxaeD0uMlV2V5Y11OvBQsKPGZ6L2TJdOP2w/HjlzAlNrA5zKBEbpuCfply9Q5nDOfvUT + e2ExuavieR5UNAMQvHH7iB6AncBl1ylEo+2Hfr7x2H/7Wxg/hnCgF9ZmwZEP4pklH2UQuH6UoS2V + H+K0QAb8rQwl9DHsE06DR0OXy5384e1fXoC0b38ggEOLrtjwogoQa91VUFLuIVEQ7377C1cR+t7e + /8MvWCwzMlROYvDlx+nQBUkPQabqFi5yKoNfvwM9hcQiFhWezQJNswMa0zNYC3UPcMhd5l+/jzi5 + KufrvioXKJUJ9mFYHF1a6tIIfnq83L9tQKu3u4CzG3NEvpI+3yr7WoDTFe9m8IsXnMoYSndp+fHx + fC6cQwIH/2phcw2rfP3qGfQRhPMffv6tx6yky8/Ej7/8VFgclUc3PxWw+u0Hbs7lncIUlw4+eoeo + 4YE8VvDnR9BIt2G1ZnsBaDED8uvP0cIPZPR9/vy5MK1Lv34L+iX7wpfMlgYqyCcVOZu9w7LyfGhb + OWYZVI/M1d8e6qURGM1NAFHNO3YPs55zfO13cJPuV2y8j9rw5Y0z+vo5otHd5q5dzLbo4GUyUYz9 + Y9huqc3C5Kz1M3u2LW08piELM63rcBS3+2EoMuiA5R652CfrTltexr6DueEoxCzyOB/Dna/Dv3+n + Av7rX3/99b9+Jwza7la+vgcDpnKd/uO/jwr8h/AfY5u9Xn+OIcxjVpV///PvEwh/f4au/Uz/e+qe + 5Xv8+5+/hD9HDf6euil7/T+X//V90H/96/8AAAD//wMABH9F194gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d1b7f271613-SJC + - 9953ed4cae31d045-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:35 GMT + - Mon, 27 Oct 2025 17:31:25 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=UugOQvNmk.ztCrj7PCojUbjknWcMHS4z.uPY6IgdrUI-1760990555-1.0.1.1-PeTBUMRHk5QAqSErdSUsNlFZnEgq4dV1MTZcXl6Ombtz0LLXVcZp_9HyiiN20kuWxrdSzCpLCP3ZfIezJNiAIAoTww7L5QuHrq4ySsoRVcs; - path=/; expires=Mon, 20-Oct-25 20:32:35 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=miftvZOXX0mYEzRll.pZOmAd7JLge_8KN.Er.bjwYW8-1761586285-1.0.1.1-5zWV0TnG213xSDfsRk1uVSEJYJPZDJPOIuSo3JiFiv2inDiUiOZwzLeoKthB7cgwS2Xkwp5Jyh7i6G40.lG0THaGdqlQThocSmazO0czPNk; + path=/; expires=Mon, 27-Oct-25 18:01:25 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=C_vSzdOkwS0pk8H0YQYKoQSU1jpL1fedUgi_HveS23Q-1760990555702-0.0.1.1-604800000; + - _cfuvid=YkiRJ_3dSFxcswhi42vp2L9vuQ3h2nX4ktTdl66Qc_I-1761586285677-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-8c6b547d7-xj8tz + - envoy-router-5bf5d97866-w84t8 X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "123" + - "68" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "197" + - "103" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -206,13 +206,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "200000000" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_64a3f3f770c946209108deda8c672506 + - req_fa1dfae3328c465a8c16d1faf33455dd status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Sa2Q6zPLOlz/+rePWdprfCFFz8Z4QpBAgmQAhptVpAJsjAaAPe2vfeIm+rh5NI - AUcBu1z1rFX+z3/9+fNPnVe3Yvjn33/+eZf98M9/W65dsyH7599//vu//vz58+c/f5//38jbJ79d - r+X38Rv+u1l+r7fpn3//4f7Plf876N9//rnYauWPKYqRmOdMUIB/fPHRn98RmZLNA16lYlOvKd/V - 3B1embJqyIGs4asyAp1MYNTmM5lPqRUJU2RLwN4xxZdKvOR8KGcfmIvPxq9fPERj7mUBKMI3JpuH - BTr7ZugGA83O1DW9qpqU2/YGPDns8Llha318W/cPUvjGweeDZrnCpCeycio4iYb+03G55v0J0YVP - aiKh+6qj2hVe8qDDF6vW6sLG6Rh84HBKBZz1wtQxc9pkKAnHgOq+kuRCdPu2oK3OBXZEXFejlBw+ - 6MWzD91G955R0jWcMj/OpZ+4KdXHoDg5IHbgkMmvSjYb8+MGb2h22LpYu0p07XUKaVfX/iTWpjvu - 83REwsu5Y/0hH3PhHe8DOPcFpvfQPOYjProBfOXUoacizRj3DoMVmmjAUbdrPFcQTWeEu/U64LR9 - umxk3WuF+NObx+H3tNVnf0wyZUwea5qzA0Vs1bktaO2Lw5a79zrWCccSirwysVpVJBpXRiIo0epm - 0YO2UiKC3SyGSzGc6MHzRzTtfN/ejMTfUdMa1FyoWo1TfOta0VNZ4kiIPlKKvEZFZH0UCBPjkBBw - 5bn3xZfIuwzXvqU45yqgxvcRuvPhmUsoiL0PDSN/6litpC80nb89NvdKhsRnX/rKYe4RTqOLEXHb - V/yCTg6/1H6/t0hsI8gQr9Mn9U6b3OX4S6GiF3plPtKYl7PzXQuVjUBErCn45vJu6awge19dv7bL - OppLbK1geR4iDPyZfY+h9wCKdj7FIOgRX86RrezKUME79Z7lwrruQ5k8Lxjbr88FseFlf5TDNE/U - ltQt4/bn2gFurREfVg8pHzxuZcFn/tyxp/YmEuvtNlS8jWJSexIGfRz4+aaMqqxjfXN/M3YXLxJw - cWVjZ570TrQUPVBOtEtIawNCcxSdRiSliYk91VcRu3hTDHxW3OlVVuVu8ibzBodTJpDNxMX5uC9n - TTHD5oO3tFpFk/KcLQAzM/D2LXtIGNjsoH1yq6j/mvpqfFvnj0LYscLbdFPonCbueuVaJRPWtqtV - XqfRMVbklwZEQttNNc4vvf+732KD+7psZu9AYfK6w97RY9XINCkAJ/la2PHFAxKrpK5BIsj11zKa - 3Ln6ZD48/UeOj4bTIYrRg8Dl+FLxWb3L+ahenB68zdrEpgMlmpxILRTj3r/8Ieh5RlWRzCCrYYzP - 533RTZ7xcJRoa2vYUp/MHeuQOUplfBJS73i1miTkGMA+wQabRSqj+oj2LcTb4E3P503pzjsBBXA/ - P844DORtLtRxV4BAIw4b4nTNOxYeOeg/bYm98+7dNVrhBXLc9yeK2/aN2H7OPyDldkXmAmuV+PLv - EmzEbotteRb1flkPtBWvCBtFI7iTctsXGyjJnsZimbHGSTYW8Lt6i7eKFufTkh9RgKhAndsm6Vjs - C5ZSmNKeugNTmaCEdoku+eT6jUg/+VzeJAAThRLF3FR0v/lXrnsWU/tGzGqUIU/gcKCDL4bFyeW2 - HS/87mM8lrLbomAlQNkalHrDVLvsMikZ2t3KeNl/r2hS90cb9gc+oJlfd9EQrXQfBTLr/dnRTZ3D - h6xF6LNWsF/xWsSHH3EFyftFcNRNQ0Te8TaARndUUj7AcfnXQ/Ngs3vc8Lmdd/r4vsgeetr0i316 - sVzx+UwTWOoJ9mldV50qkhF615voNUzfOcPrSwx+EZ6xH7SKu+TvVM7H3YnuD12hj0H6eii1F958 - 4eyecuFa3wB4jZ19wd33FdvdHzc4DtKbmhdbzQW/H2Zk7MwQ2224j+bHcAkVQQCFHg3HZdP5elzB - 02t3+BDuNTSdL88ErPZ6pNEm0PPZVOYElKNU4uR6anWGu1UPr0Ps0tttP7PJzZ4EnIdd4cA9FNG8 - xJfsPg/B3/ibJPFYAJipQa9u+OmmAh61Mr89D2f13nEnFoc2FNvtnTqr0y4Sl3wKLCpyenmcbtWY - S+sPWIZwwtHXeCPye9/bgTvja+m63eTfuIdydg8t3dt0dqfzSeohez23OD0MMRuPqzkARbrW+CKM - q2h+x9tQydtbiv1vvM77nLcA0mj9oAfTDt0mf19TFIqfNzaSaYsmJ9kYaH0RRn+9TZ46u3+pDJCv - nSUfRNXYwlQqJyE7Uf/QvN3xUuaC3ElpRE+Ns9e51B0tCKWSYqf/YndsN6qk7EdwcF4nDDFps5+h - TOIdjb/aoM/7PSkAP82BuvtN587RjbZAJPuAnV3ZV59d16SKxPUqDT+7pJsslK2AOJz9+15ND7sY - kXBMtnj77tqcDXHygfA17+hRU8/66JtTqiji80adZziw6a6iEm7RPaYu0fScD+wZ4LlvJmqsv9tO - +M5WAOowIZ8rMlaN7YBLENzKozugmsvfiJrAer7p1LqeHH3eH3EP1/fBxCd2XHfswhNViDWP0iBF - HKphQCqcxOSO9VU7R9MxKHw4R4JCVX5Fonm7VTlFt7Q33d39Kh9dfrChqDyf7g2t7VgznT04rOXC - 5x3vmvPKu+3hVa5t6nqhFrElHyPtPCfUaj6nfDqe+UKBst+TrWS1UW/qVQJKyfU4Nw6ooyHX1ODM - 660/RqGuUwG7mfy1zjtSL/lhWZ8R7B3akHW7sXMWsDtAeLVWZCMd3G5OvuELgLAa26+zmP/yCzTK - neCtffFz/rMVJfTZnmSijOe9LjbGJCmnYdLolY+YPr27wgDXafc+9z3iblziUYnc84EeHO5ZcceV - HPyNH4sYcjScL00MU9KVBBrj0ZG+D2QFRfhEuOcud5vxXH9++R/7h6ysiND6HOzMjUbzXHiz4Rgb - gnLeaneajNdjN0phAfB9jhKOz+orYpdNUsM5nnZYpdymYiWn3+A0vp/4CGxibfQZM3jKUoL3z/jT - tX26CkDiW4es1u0x5/n57EDyeUiED7VnN+y5XPrLt3lWo3yy38dMCdAg+Jy3r6OhXyMDdAso3a3X - kA9p3XGwe6QNyc3ccn/7D3YbMOm5OWX6LCjPAjb7bMZ7QU+Y2O89AmPcdvhwHT4Vy4LnSm7g+aJu - nqpopPdRUpjD2zR2rlI394/zQ/7lk2V818uqp8HCZz5b8st4FdIWqU9SkGEzSS7tlXmGdUcN6qws - A82ZJpEfz+IkFU199q5VqCzrh1W0UXP+3RUWuog+UKdP+27UrGlWLjYMZFrdn/ko6uENNYbhYE/W - WP4MvO4Fai9OZO32mT48jN5GONhXNCKO0Ymvd+eg52660hNHetRb4VsAt9q9lnzgdbx/jgLQWdzS - ayK0+SS/7fLHQ1TdKU/EK++SKMK+lcgYXzEbRYf1UFhcRONlP7OUeCMMY1Li/eFw1ucHJ5dw+x7g - xy9sdijng/tVDRpcHDGfo2ytyps8sqi/eQBikKYlQh9FIeyUDN2kW04vxyf9QB3HsSIu531Ax6nx - fXG9LvKn3WgqCrapTfiL/cjHH//y+8eJnq5nDYlYXPKlce3JCiunfN4IZSa38w2o+h4qd75yQaxU - Tzmnu+Yku2NzO6iwY4ed3+zYlzHp/XWgOWkxNZuauA0v4BEeldWRdTp07uyFlxQp9tnE+JA2aFSC - wFMeAh/RfS+1keDvmh45sybS3cUgrNG+Nxtet/CEvRWV0Ui8Wwj0G3+w/zDebm+FA4e6721PddPU - cnZwtgYUnJ2Spd5V/Uu8qtCZx8wfb8IHTaNhrpRC2zC67+DhCumWanAUbxq933ay22cf7wYGck6E - KySpGi9lxP3mBx/9WM2FvclzcH2FiNQ3xdbfvLb1oH18avJ8d07OKt1XwQy7j9+tjF6fPsKwAk25 - hDQ42KQa7vzzBT++2Xy2vi6+HBpCf1tfsDHzUcT8Ry+A2aQvigW/6dhD6zio0niFtdjJ2XgVgloZ - I/LEzkbU8rlPhVBpp8fs84WwRiwc7AwNunaluvS4ot992Psso26dRIwVqwDALfcZNtaC4Y74kNUg - u3mD/YSbulFjd0MuytAgK47xEd0YEVGespxQk1jMZYVcJ7Dm4jNW+ZWfc0oQ+HLTDBbWOvbRp+/F - teF1SFzqfsDoBD0/eWAjbcbaSXDzcWXchB+Pk1W6sqLpt76Pp3eml8vazOeADwjY1ppia7tSXUEQ - bA9uuO/olla36PPj0dsKGWQSxW81vpBZg7EJtnR3iaZ8ntYfH3YM7zDW9Lqb1uAX0sLr1MiB5Kwj - Y6iQghTUuljfbgq2RwItba8Yyz3pxg03W+i+1r9/6+n41gigumKUOsXumU/hZw2w1DNsCxXXjdf5 - oSraSdb89/VjRkNhbFfwvBdvrOmezeYlXn58hPVAsjuuczkDGqheeN83X0YDS25hqbdEPGgffVRA - eaDuxgnU0SPHnU71voZCWAnUy2ylIt0ezaBaYYdNpik6xZ3Q//QvAU60GCNdI/x9/+1njyPO+bQt - EuOjRi2qazkFm5R/9VC+MjxX5Hetg2AXphgrpokWvfwBttmdqbalOeO3ad7+6q+vXGGvi3eklfAK - 7JZijIpOCPHgwKW6xeTk5Hc2ZP6mleq6vuCkscfoTSXQ4C9vFu9PNN+bugXTlxVqmE+/YoUpB/LP - XzC9JNRHK0kKIEVf0IN3ZXm3RedMqXYZR7gii6qpe/ofcGZli09s1ipR3aUcLHrHV+RR/fFaDWpZ - f6iqGAe3R2XjgM77K2oUUtpxr9WyHyY59ldCoEWc5rQp7K4fh25r41mxxphkdJKCxkdZnedTo29f - AFUd4fRGzI63xDJRdC7kfOnNvZb7+w/c1+vpVz+jZX1GCIU2p2axT6PR1KsYZZsDwyboRJ90SyOw - 480cu5mT5DO5ji8oj/crdjefrzuRKRx/8UPW07PUmRLgWf7Vi6ibDhHvltoKyk7bEFj0f/Osgla+ - lA8Hn6zhEY2uNxYwP489PplEyjv8Ot0UyBWHKO5zrw9JqBrQcueAMM996tP5NBL4ypmDLbO/d+N3 - 1wTQJFJNtejKuRPfKhKMo1Vggxk8G0rBHYHrvYBw5EwiJj6Fh1KZjwfNVq+GjXqot4qlRNQf6fus - T0IMMZqyj0Zd3i71KX5dVPhSqcL7qhbYFN5vBJoT3PBODc5IMNoz+ekdf/WKvtVIo/VfPsbLfObU - 2SbOX/51T34fMRZeBHkYHjrON+dXR/2C81HzFWa6faw0Ng1lGoJ+ljY+nFqpm3/6ZWirgVrm9apP - fu5KUN8twNu43XRELYsQes9B/rMVEjaJVPLQomeW+JEqFvsrS1540+dfveHOtmZ6MN/uB+yv2yln - y3xDTD6Nr8hqVlF2YQYEX8Wn293VcIez5RP550/gMRK7nhi8BsouRfS0V2Q0jPnFUy4740LVUS8i - /vndB5CP5slXku8XjWqBEljy8a9e5Cwu0x6atgnw3XPWOeGjzoLF3/nrL5H1C9XwpXJFPbPGaBTX - zYzKOELYJ2jrjp+3Z6D4tD3gpPnw+bhrJkvZVkNE0CryK76rqQCtHlQ0KjqC5iNMoNQHv6ZOJ++i - aS2dBNjKtyNhxaFBg3zBNsTjbYWNIou6ua/r8K+eCrcUMbbwBZI4omJjv466McWPXln8DOp9v1HO - e0MswAff31S1233H242jwde4Mf/4LL5oKkYagnjCnv/+zX909lO56vbF4p9t2Jye9rVc7MYrWX3j - e0Rfz/nxq/dE3ohaJFolTpG8f57waQy+qA9YnckLz1PrlddIPGU7AKjayJ+ie48GyAJBPonxnQbX - usjnKZlK9AjCA7arzayTsmw+QGXXIOLU6DnzC/CAU+cHxrGqV7wQQwIXybWwm3/1SCiOzPsb79HX - MNk8Z60NS31Z/KXIFWWSWUDoQ8aeW23ZvL+kxU+fUG+tvPNpdx1txemOEsZlAt20DeQUvb3yhb3M - vlYDlTgN/PQsYm/DRkZwiD4gbb87X/r5LTsNAti+3198IqdTNeqh28IyX/S+fVfVvD/cLVBz9PUn - uw4YpwSpj8ow/5K13ZX5FD8eKRJrvfVXvCaihV9nZMtGjQ/fJNVZvd2HcHlcV9g75YLOGaCpf/3m - m+rQfFz0FCqj80T3i584Wy/bBtcrr0ReeHpev1gL+naPaD6wB5uEmIvlvi4Fqs2tli+86CsLz+Ht - RTJ0bn7kFhznb0pIo1J3XtevUIGxU0gtqU/GTKKOyvmwW/nybsIuWV3DFG5qK1DndN9VPOH1DOpv - j/2uTiI0Wy/VRto6+iz9CQ79/DH4+FVOmkX/1u7mOiI9FXVf9i81Gu+pH6Nkc078V8mcam5E+4My - ea9Q77raopGTvzd0RSv958/pzTEnBjqv4orGaqK5b/mtPtBr01tk2k7c0u/oM5AjayZyJ3/zPuqb - GAzZd0nL1I87zZ4koaX/gXVmkap9eQ8N+u+nx1ZznhnpUyGAa97V5JH2c86+Z4eD9Rbf8IG1z2ie - SzeDK0gHej7QoWPxrTYQN/GHhQ/KaK4GVMDKOYPPM01x32fLInCSwoaaRZohVoWSCuONF/DOaghj - L/8soYUX/sZfc+ebF8gvFai+uZuIq3rdhltnFzS5WLtuil9HVdnj4UWNMXx0s+gtYze+TPWovbLp - GBsc/PQKdxXVjjppkwF+7gb/HB7mbur1akb3lXn9q9/mwzOSIHvfXZ99zCta/JvbXz5yDMxFRC3j - QFniC++FcJPPdRobcAufjp/vaBJNkAWcsvhp5HtO1/rA3V8avJXv0Uc9J7EOtmaonPjCpYbfI3fi - zYkDLI083iF9zkdPFS3Y2EWNo5V3yCe5f84KF31W1MqlAk1ozDJEpWDE/qKnBtJMpbL4q1hf6u/i - hwVKvA3f+PDL7z+9ZvXnN/ZHa2C1ucsB3btwTXdb2P3tb6HV/jJjw7mmlbg8n5ytrOvS35AZm9kQ - woFAiBN15CuyP+6I8vOvTky7LvujDyFT7IhMfWl1wq9+sbA8+kpzdCLW7w0CL04sfN51zWj6HDYB - 9MdJompV+RFDPEpgILcD1vS8y6ljWiOydNn1R4uK+fgSrxokjq0sfmDo/uYXjj3k9IaVU8QMHAeb - 5f2o4RaPbj4TJPzVr9K0f3ejl8urv/oklWfRHRd/AEmDJi56p4y46K0a4MyqiH2XzGh4U6OHD51V - bC78KX7Logd02jX++prN3ZhNSbIZ186RYus5dPTibZK/fseZ3knH6o+ZgHkARs+vS+CSs3A1fvxE - L1UtoGEveY+/9W21+K3z5wMZrODRLf07uxuLCD3gIgQz1j+mwi6QPHylvjmzLy7xyqpw1JRFT/pK - uC/Z6Gv2DKM2nnFkxgbjTrrpKItf5m8EXUD9dp3eYPHP/ad1A3e8x9ceXnfv7itH+ZHPsVI4YDf2 - jR5pnLNJfqvl7/d0K1lONB6/VEU3RRuJgvy3vvh3DvKlOqRXbXWNJvv0zcC4oBFb5lVxWRx+CPQH - 06R/80MdVwVMdSX4TDqifNhpXABWf3pTPcrzfGpP0MOvn3NtjoveTR61Eu6ThKzCXesu+mj1l++u - eYxz7jyCLftmdcE/fuqqUNLAmu0MO3v3FvFFY6mAnfKDnSlOOi54mCM4JPSxsR+POv85NhI8d+yK - ceupSBBtlgL9pAVOD5gismNarTgk8GlOND0SVwRCcC75C2O70/K//LD4l2RZj2r0jG8P35Jq2Lfm - mo1OG4VwmMYJH4wN7ejh2MZ/+7WOfUvQCK2Wgm+8MS12w7Wanu1GgrCwORrGl1s+flVVUxZ9j7d2 - PaJRVg0V7T1kEZ7NWjd7iaNCoSFGDd53OvEawwy80XX00Dx6RgOnCuSBueqi12g0C+XwQkUZGNis - kdXRfu/1cMpWLzIu/s80e6OkWLOTYX2Jn9EAR5M05u1wsegBfun/oPY67/2v8B6in9+NLo/7iqzK - lI9mzttyCvuEm7/+9DyI5Qg/ftBabuWOaXRMlIsQzvRwdGRGzL0RKlwXWPQovWg+PpjmKWrPT9Q1 - ips7HCRC4OxEj0U/rKvh1385K+kFRxo6VIJ61lJF6o2Bmot/xr5njVP++Z0K+K9//fnzP34nDD71 - 9fZeDgYMt2n4j/9zVOA/xP/oP9n7/fcYAumzx+2ff//vEwj/NF39aYb/OdSv27f/599/xL9HDf4Z - 6iF7/z+X/7X80X/9638BAAD//wMAog8I/t4gAAA= + H4sIAAAAAAAAA1SaXQ+6Orvmz59PsbJOnR0RkN6sM95BQIqgiJPJBBARFJG3At3Z332C/yd7Zk5M + oAQptNd9Xb/2P//1119/N2mVZ8Pf//z197vsh7//x3rungzJ3//89T//9ddff/31n7/f/+/KvE7z + +738FL/Lf43l557Pf//zF/PfZ/7vRf/89TdUfemxp+WMmP1dZUWViz/4fJbfVb+77gsQNieLSGnz + DhdIz4noh+1xnNSdRPtp344w98JlFPapETL7JObBMF2C8xRuKbNBSQ2fIue9b29BuLwNwYdrRc+j + gG+ITmXm5JC3wpWY/b2qJql/JnCPjyY+7/ZblfZomyPrcLDx9cQbDjvxBivWd40n8XOxnZ3Y1DYq + TbsZdxd7g0Y7Al/4Pf+R7250zvmphPbqsvisRnM6Q3DLkc1aPlE/SpRyWXhtoXnSO1amR0OpEh9L + xLtpTUxYejqe+i8jXref2gsnTMKZcG8DmPZlj8xYl3SpqZ/DcJhNrM2VWe12FYlhd7NqD1JPTye3 + inv0fCUPLJ3iU8qcLgcfHMJgco7dU0p5p/Phhc82ydx7QjnCTxsE24Ih1vbsOiwx7AnwF474Thmn + mi6H14K2B32H08KWQ5rbbC46RbElSfsgaHb7tIU7qzHYco5uNzO5XAKZKgMfNGmsFlavWRGluUEw + 9GI45G5yBsa4R+R40Ce0SBvi729dYBILHaSUqfOSETfhuyKPb4JDjrf4M5rMDEbmjkbKbId8BM/J + W2+3PHfOpH5HQ9yY1CcK2QQOFaKOQbuFqcnj080dTfLmhUbH7LF28BPEtUnpicEpRjgwWS1kX5vX + C6qk/BDjjWW0480+R/LLfBL1u00dtv0gQIYTZ95OQa6zVIUSiE1ic9h7n3OHu0XJBu7y6eR1z7gJ + p1I1FXjwKh4nq8fqazq6Bchx6BFNE9SQUWtqiVhoAevOkjg76wuB8HRuHtbn/Iam5G3VosIuM7F7 + VaaMHcc2aJSdPL798s6oZxsDTgv7wOb2pXe7UJEDUSZHjTj4MaizVy25eNICFeMBvely4G88wKmz + sJp6ardj5soXjxZNxvbGIDSNl3ePxLjUsVQZUke9z+yDNPAPkpFRSGdjueRwQxt23B6Nczptr4oi + xt9TjXUm3VSUywIDsOlp2BknF3GCqhio3RkVceOsr+bqfK3FvLhXWLHcTN0FHdeLdGQnbEae2H3t + 43wWl40njCLf7SnVu7AXWf7Mk1utfhyaMDtfxOjaYal40GreHHgftlZqYMM4HBF3OVkNGK7peHwl + zc70ERIPWJpl+P6+dWh0yDRCHZ4lnAkHIV04IWlgarGOtbEu0dQei0y8m0XsvUN/F458ny9wnsoz + vilZ1s2u7tsiHS0ZHx50QbMeUltkaZ6NTcpL1cx+bQ1e+36P1ccLOd/S249gzsWbXFBVOtOidWfA + oXTFYSbK6e5ZphkUuGOw/EJZ2kaCPEEWCSX29kydfhsBgbBErwtR28sbTQHtashDeI77uFOqnaI+ + eDBdImNZYLhw2NwDBe3MGWH3inZoSTvhvDeVzYFcRimv2vf1a8Ar8mWM1+9HZ2qPSHRVljj2Juqm + A2coYu3GB2Kd7hJl861VIvZ5U7x6+dQpZYwYoGYXnsh6m3XTVm18kR3wmazjr5rJy4mg99TB272M + S8re92/2147d9X23rD6yoNnWRHDjNinVN2KOwrt9xndRflVz1T41EHPdJ/mt6MI+YpUNOm7C3uM3 + hq7uDNKW6JRUIj5UhhKy+/SzgVhnRhzR3RCOgXXywW9rdSzeku3sOk9xYdmfc3yrVVOlbdK6KOrx + B6uOZjgsm/IREHY5Yuvz/FQNt/cmWNJsJucye6eTIRzO4OH2iq3zJDq0Y28vgVWrC5FplKkLub0K + cZ1/3u7WXVLm9d0A+Dcce7xz7KuJpFIC0T5+E/3gSCnzDEUWZdf3CR+z4VBN3ngLRBGBSE6959DJ + 1OUNtEZpYumzKGgyBDkCsIcTScVeTenVCRLIpleJ4/7YqlQqxh6Uh+WQ05AtdCqt5whdPpX49hyy + cHncW17Iz1+f3BCUDmVPpwIeZaaRXB5qRLFa9OLpI7n4LOADmnpzcUFjng+i2zczZFY9hbjqUxId + T3lIs/DRQvlWLjidyzca67sH4OHm+qsP3TTU50L033JHDPG4OLPnxz3E8lfG0ayeq+kVlj6cyaHB + 922zCenJewbi3Sxj7GrbbTfWdwNAfToF0crPyemO9BgjI7ff2Ds4ijN9572EKjGYPDS+n+osZUQA + 6+DY2LqfwmqZxWcpKrNwITImL0Q/ZqYIetOEJDh5B5UJ3MKAyFoIxhsfOxNLC17Ut68D9mWPoiUS + Dgu0RmGS6/05qLSYxxiG520gqlq36E///bA5YtvxJvUl9d9YvPCaRML4E3XLWekUaA6ZRdKKicIp + LGFCjMnK2GSMtqP+wajBrhKTJBF3VdfvexbN7nQnymEa6PJsuhy4CJ0J3uhqymWiwoN5vE3EoK3c + 7QbJOMMpeYretOof/YyPEjSsusR2F8VheaWIYOISlbhNbatzvH80IOtPHZ/lZdvNWXP3OfbyIuSh + dEz69UckgXytH1h5Vks4+7nrAbkvQGTHG8NJI9Ikfs7tmzjcqUppww4WiMj3iKU823Qytx8X6tjL + vO1yuqfcTO0eROdqksOqT5NsxQyabmVE9NC/pNR6vzPx0Fyzoy+yXzqyeRWA8+p7nIwt6sbn5dBD + 4o1bj5dDNexZNmWF9fuOpXd6hTRnvj1wGieM6Blb6ZyYkiQWFwFGwTo53WJlZQEM2jZY0TGXzu5W + TMAeuBHLmealTJxYErqeBmFkY+WgMsfgyYuXdq+Q2ymm6pzuXQ3oJDgepwDuloqNQFRQdyQKPT0r + ttgnPrCXmmA9OArqYB/3Z5CE9DkCKot05OpJEFd9GOdVH79ZYNXAf1+vVa/KsF+6kQEjlBUSOlqt + 9j5oi7jgNifn43xK523hAnCBxK9+5BVS1Yx68KSLifXtfl/Ru6WWoNznAp/0x0Tb8VMkIDFMhKU+ + f6fdnHg+GN/gMPIqOaXsUbp6YL80dtyw3LPr5wat9f9r4dAeUUrlWk7Ex0XceYzJfWhvMakGn2M/ + EvmFIO33d4cB0JndmH5MHc1V+9XgaFs6uY/+jU6761yAtB8XbLNWRJm7CC3kR6XFxn2uq+XUP1kh + 9eU3UcGTHboPJ17s3MEijz3hu9UPvITgsFx+13dj+0EbmCyn82glvNF8UPgFcYOdjoVX8ynp3+UC + MsEaOUSgoQnb1ggdNBhfXEtXl3U8iVetPGCJg9U/HkFBxbZGP//RLZn5XMRE4YeRu0XPdL5tlghp + mWtjh2mjtAxr9ILKN+korv0jj9DV0M9/XnaM1rEKTW304fU7yWquT8dHcWEh3ZPXH7/L8U7lQ173 + LUk3QpvOz0dTgoQjlSi+VDoMLYJR5HcJN25aHtPpWKsN7DgpJP46n5cTySY4YuWJlVdxVakOdgnh + 9Q34JHy7avZzzQNsuhoJ1vE9gTFOwup/iFTfANGit0oU8bIwbkp36CZ+EBqhWpwj8faMETKP7CEh + afP2PMgd26l2u1JD/Ku3RlEWi3RudeYFwWG6kPNeVtAO95IBo6P3o2gpl/V+SytI5QLEjcrKmZlx + OotxNaZEzxrBmblOlOC50z2v0fxGXcIjZ8OrNM7kMPSj0x00zMDt5g3jhp87Z97uDzH6+a+DrH7R + rJ0kV7xW85m4h0sbMqX17dHBHzli1kcSfrc4t0Aeywt20EdA83IcA7jUUv1n/PfPUGTQOv7Jr17Q + j/bU4HiBeLyjoKbD7/nch554i2LWaLnol41Y+TolelgXDltgokDwaRVyWftDmCHLofLG8zhpDl/N + +ypkYPVjOP7lk3zQGRC6cjt+SGKp9fUyu2DHQTW+3MpOF8yJALt313iDX/XqeryBJHkGxAc6VkOr + yg2secTbzaGnMlq8DeBYPpLV34bV5IO7ALflX+SA82+3ID9l4E4sESvdPa1o0PqN6AXJE+v1oKQz + qdlAnJ/T4tEGtmh+GXGJdoVxJ6Yc3xEdaRRA36GEWAEbVtO49QGO1pxgrx40h4JnN7Bs0Bc7XTB3 + 08cfQXiUuTaKBb8Lx4NDR1Fy7IjI6kQduqA4+lP/ZcfzUu5yklphHA4GxhKuQ2qYjgUl2jhEJzet + 272ytwtFzy7YuxVOOgmPzQLRc5JGdvkYIUU7z4LHxo9ITDvdWY5RMcL3ExJ8fHqSw8pT4wKqtJ6Y + t+gZfn5+tHwTbWQ661P98gtU/Usmlm3P6bwc6wA86WpiZSM03ay9vsA95TYiuvkZ0wV9/UCM6jYj + Lj99ujmTTwvQSsmx+7RGNPn7E4u4knyI9JZsdcmbrYQO9oMQ8zM/nYVltqsf1g7YqBumW6K6kMSH + tWjeM7E1Onr6LED06N/YqO8WXUpTZ8QTf2sxtpDVsSV9SZD66hs7rNeoPTq3LVwr4z1yWVir02Zz + LNDB7zliXa+2Qyvl0MN3KFlieRdR7fUZjdB3XoetoQbab4eoF+9yeBo3rmXQyd/fWBDfqonN+ohD + VnjaLYq0t0K0sVbQcLW98vf+8e1AXGeH2FZBw8GIMeYjHU3XTVxDEIVXotyVlDLYRS3s5gfyltVP + cfahLGGrFi2xGDlD3KAdbTBACcZTrxbqwKWexzsxf8OhxCzqp9yDAjNlXBxK3zqcwzvfwlEVNkRi + Y6+i7OlWCNtl3mGPvAJ1Lt9GDOfv605UiVmcLwUuEWFbMuMUaWE1u8SrwfJ1GV/MTKlYFTUTnO+L + 7e31l5TSW0+anz4QjPmjM6TszQZRCTbEBDHuuN98eKdL6M3tWQmZ60mIQV1Kh5ha8axm0zltkHrs + Px5SizRdxmh+QSS+Auwri95xyaJEIr4K1NucuFc6L9ytBF1Q5zUfQUW2L2eCtX4RaeBidZlP6hmp + 6oliT0EDnVhTGaFXjumf+jNngfQCa9NlWOb6Gs3TdumBoOY7Cu5SqhPfPDb/9rNcdgx3waVSwBQj + btzsGSPtXFmOBF3nbXzTX0W48qEMsPzt8YOc+e675nexjvfOuN/Zh5DEYSHBw7vikeM/T3XVkxZe + e8Ve/fijoyfv64MsnBuCn8A4SxKIPKzzBWtGyKo9qIiBlWeN+5gdw/lcRYVIYr4gv3wy41BtRaug + k7ck+lWlGyuL0fw0VKIc3qW6tO+DBIfNq8J2N7B0zTMjKC3k+HC+XBHnnT4LJDem8kTV+YR//O7q + j/FKsDqCdoYNb71yiTsHfbh4+l4QpmOv4tM+fXWD478CtPoTcrS/SrWgbxzAu4r33nb1H9Mvr/Uc + GYhkWnd1WTKHh+0jAnwc/T0arckNYK13Xne5RX94A4rRRSKSV/PhZPi5Iax66VGXqoiWX92F5870 + sKWSefWfuwQIar8ekxtJNRwtVYMyn48E54za9Tdvawif7pX+8ns6bAttAyeuRyRTFAGRa3ZwRZDg + tvqxLOS8z96Hq62fPd7rPmgidxTBQ6uvv3rRzc636eEuiD4+P9VtOtjP1ACa0WjN30lKfCNt4LCp + K2K3D4xmvP2yaGdShJ29JDs06zMNqZfLEV9u3S6lr/tsiExxiEZmmb1qZ/lbFhwZKhK/yIgmhXuC + OD+U5k9eXH5+qOm907i7Fd+ux3RrweCPG2x9+jCd9xAHf/JU0N1RNVlzYaPouUh/2v/kUc4xZfI7 + Zo6XMws36N7kUJwP3U+foDgR7MU344MW9f0IwN4iy/sos4po545nwTqL95Wf7enEb76ZoJ/6+ziv + ekTMcinEkr3R8Tffd+J1e0a72+6Cf/cbV94hPBKnJDbXNx3DN1cAzk4Cj96twSGrXxbk6+tBTiuv + mSE45ajYCC5e865KJnVfg5Ry+jgFoDqL/8pcwLulwGqvqRUjkyz6w6vM/q5WrEJDC9Rzk+OwEnS6 + TE/B+lPv5HMdOuyOJMZvPGDvWst0aRIrgyhhD8Q6bN/dcnhNlrhHbx4flAy6adUv1HjRC2Po7yF5 + hJoBiO84fLyjqSKXENW/fOaxXvsKZ8fvfWD38gdnzXyh00/ftUa6k8cbV9WSKtiAy1I13t7qfcpI + Yuyh+BvW4262ypTuSumMTh5pvf35wqHFfQKLnveswVb7jdUlsG4B+OZh80cvmP2h1GD12+TaNySd + n9T2kXlMJ2LM6rmb7byxgHHH+8jYjNvNZk5H2M13RHzbL+gcdS9LSC4tS45fQUmpei888edfjAFp + 6u433pnCicZGz4kzHapXIK68aKxp+6z+5NnlpIoeExYe6s+dEoP9Mljijhez2j3LMAdTgYNX4G/Y + TZLou+jXf/a0MGg5ngzl55/Gl4C/qH0P4oS0y1b1Ng/coJnUGx85Dkm9quTsauXNNZqPX5EYCSMj + SspPjlY+hT3psFObA+dJaNU/8qgKHdWdNGVo1e+RnVWmmjYeJPCcvGWcz+knHXTpFkMvBvr4OfG1 + M1GXB7ThxiuWL98x/CampIDzGnssrzxoaG/RGVZeOravaUmnOm8Z+PDmHZsBeobzh6AEHmlxJPma + F2a9NRmk8YNL5Me+DGkxogyoTcBDq99+m8+6Bd8qv0QLu6Sb1jwN93jPYtcNiEo19sOg5ZBesV69 + 86ppYf+COWEQceZSRztlUC1gD1NGMn4yu7nLZ0m8wfdNrGksuqk+MhKot1IgHiV3uhyQxsBmvvse + n/JSNyi3bwJkfHTebast3SJy6oJWfoItKGlKlzLkwXw8bI9lxTuak2mTwz2MOmzqeybsD9XLF8Ot + cMdefd2ntNwzEpyUfeyFHyUKF+k8MWIsNKdxMJ8bOlTDWQHh2AUeJLxQdYVyCUQ68Q5xyhk585XO + E6R7aYftUFjS6eZxBsx836w88pgut2JexJ+/sSonQ9NJS3JER2bC+vK8OCPzOpW/erzq71Od/fTk + i7/5qwXBB03XBmtoT+gbK2dnoE2fpoBWPvLT25RTLkmNtOi7YJMt44o9II0Vfv1z3btA55s8RFAT + K8CXlWeT88McxS1/PuIH9Pd0NlQ3gvNUnMelo0a6q9WLC12w8T3Grexwecxa+/MjHrfy3em3foQ8 + kVv9sxdOA+dE8EjLI1ZuQpf23N6YkL6tD95+I3PpmgcV+PFNHOxO6Df/4CPzGTkLyaWapPAFe+H2 + eBPt8Si6mV6QgJaTLI78qm9zXNkbGC7vBCfPgHPm+uwqaF3Pw8evUIa7IJg0uCk+hxUlWLo+ns49 + aJUtY+c9Piib2VkPQWm23rK20++bjfbWIzkR+02HjhySWwQ/HuZ34tjNXv1OYAMvSvLs7jsD4QYN + RmbuV17HOaTbuwW038Af5x9vRY2bgMtr3ZovrI6mz7QAuYoXbFz0V1jo9uSJcpUsf/5/ihNJEdf8 + 6sGOlpSaOF7+rAdcio1GuUHTbVGxvIu34JZzxprG+U/PvK9QgTONl6GHCfyHNyvXIp3Om96Gypxy + khQ4pVN580txVr3olxfUqeVy/sdLR6bh3uHc+6KNPjETkMc9vVeUi7gETM6c/s23rTPbwqzudaIG + 5TNcnk2VQbbFrIfW8U7su+YDz+o1cY4oTZff+/2t52QrT1gie2rElQ+PTLJpnWWfkg3cCuuFwzeD + U3anIF4gQXfD2FX36jcxLQVunJZgY+XLjHNnJdjd7BqrK09lW3Tp4Z7nHna/zEndufGe/6Nf7pGV + 0O5DaAzGW8twql5IN/CM0ojHnvd+vDz8raf94TP6bCkpK1atAi518bh+j2q+BJ/+z/qJ8vg2dOIC + NYBKfc0Y2wfSkauTxEhIGJ84UhWhlRed4cHLmFwxvVfU2nx5uLsxQ6JrnztTKk2KKBy/AZZDYeoo + QRWPZvGjjTszUzoq2YkEqhpSog6B3TFhCQtMM9cRU+uGcEgOCwj7mZMwzrcknNiD2KD8oWnYWflb + fxehgVrYvMflx3+QLPGiINY3rEeVRhehEmteeE4mDplJR8zqf9DRtnWvFLkhXIRjwSOvottxd+t2 + 4Xw+yox4sew9XnlLOjV6wAD/rV/YKM2Ns9hnORLn57IQ7eALdDyKL090jppB1vXolH7o4oq6dFmI + UZq5M272mxHK9lNgR3htq7E7By50rnTDSRofK/aSB7EYk2IgmnTr0fI5LYz4929XwH/966+//tdv + h0Hd3PP3ujFgyOfhP/57q8B/cP/R18n7/WcbwtgnRf73P//egfD3t2vq7/C/h+aVf/q///mL+7PV + 4O+hGZL3/3P6X+sf/de//g8AAAD//wMAX/Ywv94gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d1dcf361613-SJC + - 9953ed4def2cd045-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:36 GMT + - Mon, 27 Oct 2025 17:31:25 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-5f69ddd4fb-fjnmt + - envoy-router-bffbfc7f9-r9qzn X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "238" + - "86" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "277" + - "110" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -423,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_49567fa005884c428da98701bea87183 + - req_ab6d4760559f4e66a58d3742ca46dcb9 status: code: 200 message: OK @@ -469,122 +469,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaW9O6Orfl799PsWrd2rvkJEnWHXI+SRQUtaurCxQREJVDEsiu/d278P/W7u6b - 50J4KhSTOcdvjOQ///XXX39/8rq4jX//89ffr2oY//4fy2/3bMz+/uev//mvv/7666///P39/+4s - 2ry436t3+bv9d7F634vp73/+Ev77l/970z9//Z0O8IrTfT/08/OxScGY3G1sOaqfDB+0hZDOjYP3 - 81AF80HyVlCQzhJRro9dL5mSJiFoZmU0fTjjc5sxF47Jw6Y6e7CeSVLToZO6LohghDoXizLdo5Nw - dHCmGSeD9Rq1QX70tpF67bVa6DVqwvRpbvCuDbaJ1GaKC/XmQ6IZ2yaQTxvdRqMGI+xvXMAn4u8+ - Knv6PhG/zE+oAC4hQJFkUJxKMReE19GEVw08iTxaNB/pd0sAETQzWt8uXi+GeSZAY82VaLW9V5xV - qmTDBBxLnOvdnM/bMPuglzCINPFjEfAirWxgEYqpyXqj5pZcEyQhPYrWT+1cz+bZnBHW0w+1ElsC - 7HzdmFBMnyXezicnl79j30Jyhht6tdMyEGOX+GDW3gWN3O02ESTH/kBQmmd8e32Snh/XnxK+/MMB - pzvLThhR3Bl438DCdjanPbdY+gHbM4npsa7bmmNpFUH5kF4I63uaT4XFJGR9+INu1cuWC0/32SHX - YFt6fUVvML1PrxiNr/2ZBnMn8VkwmIJm7VXQRMd5Ls/xvoPWLTzTx3GuEzEzkwYUmWMQSXyYteAH - dwk+hRMmE9b6hMu2niFXfenUX+opDeyYwfStfWnSl+/+9/6QQmJOyq8f9NP0VVIUDbsdfuB9WDeb - VZnC/fWc0PBcREA4Xzc2OK+FF3bvVsLZ+hh+YGJLI3Xyk5kL+vuRwW/ilBgfTzgQQlDdQIMGD1/f - tO/neS73aPfYT/gs9GJNpJNXQJuaNTF4rRvSST11YHl+rH82fi4aSJVAc/RkIgPMOXF8rEAxvm4x - Jms9kdi06dSjyExqjO8D4GQPMpjdZYj1V2IGk9hoFZQuxML2yS1B52xGRQ2EvsHB2rfq5XkvUEO3 - C76bZZ5M3b2E6AURx6GaSnWvlG8BKZ1/jBRPCrm0np8ZsIbNinrPz7OXb2NXgM1NkMj6dE75LNrv - FNZHdUe694Vx8bR/SiitFB9v3c0zmSo/LOGyPo22d513TM87+Os/Xd2+jencIwXBdHPBoSmngaw+ - 0wJ8z3hNMX+znOCdfkFVdvvSInk7OROHr4tk75ViQ3XKnl/g24XbCYb4TJxzINeVLoBgJ1RUP3VG - MiXvKkLV5XvBaR1bifweIARTbOTURGkYTF/5wSCKBINAa3MHU3/2SxgexQjvdOmVS40el7C9e3cc - U+2Yv8NG1lHHu4K6XwYTpjcfCJGrJPQ+X0+17MZrCYb7geJE4UVeb3eognfDvNDUepQG54Nkg5N9 - 7wk0Zclgq6fiwsfTodgTN/t8Ak+RwWHoTGpweweEC6gbEFXuirqX+4vT8Hg3wf3RPyjeeO9gSJyN - AjczPOD0K9VgElfj6vf/+N6LcsDBxWtgGjJKfc0QDR6nJYRRerjTi3dVaqZgPUVffvDp1kYMsM33 - PUPt62NSmVacCMv8RYqpq9j8dgywJrQHcMtuFj3ZStWLd7JliMBEpy4dhvr9DiYTON/SoScTxvlg - pGIB87bfUOOUfOrJn/MQUr/Psd7LejJpOxLBb2KVeN993/V3HW/MP89zHyen/u7lewmN/EGpdw92 - iXTRrxksVnmIdaoJCdXNsoNQtnRqv9UkmTprs4Lb8xBTo8pfOYkf2xa52fWCL74i1GNTdT40vWNA - 2ODWQCS0dKFyu1fL/VYiTY3tIhU0NU2H9QmMNlZNEH6DMzbG9wT4XKktlOFBoYfdqq4nkzlH5DHF - wflNHYKhvs4RtKldY/vKIi5z8+XD7yZUqfYZz7m4M+MbOoRbMZqtJkrmjr5mdN+5bwKeVWawtmlS - sH8cDHyV0qbn04Bv8OxsVKz5d1RPdFN3cCVpV5wJSDek8tLsYTw0nBZ5t+XMr00ByUbfRnK6rwy6 - NtsYhKKuUOfAR8BoTGIwXi9ShAxlNMbf81dayCJ43qr1JFhhAaWb1OBg03u1pF5PPmp6RYnkZX7N - vaRK0KeFh3EOTgZb54cBbR/rfSSW/ScYLMd34axUHj7uUqeWvju+R+mwumJb0Nye3Qpzhq1d2Xin - bsxE5EBTYf3OLYq7Kgokz5cqAPJ5R8N3Y/B5zjbxJrmeXjhdOfG/30dzLx/U/b70WjTQLKFOnhH5 - 7iwlGb9poqKVaRR4m4VnIC7zBZ6E1KH7zygn3wPROrT55qtI3PIyn1ZmAaEue22EpvMIGD8GFSie - gkVvd82qxZB7AgyIFtJ49/7w3mJFBz531fpTz6kxWhOZUB/pLqxPYNbFOIKZYdvUPWycZDJaQ0BG - pLzp9TFMBhPNS7jR5PJDw3V+4X/4QvVeH3oy7pIxVU9QwqUe9L48Dz+4tgDB/ML0rt72wWw7hxso - AtJRo23XxoR88QJL66rQlBQTICSOIMQ13hAGr3NPAhD4IGTKFccXfkpYh1iLHMnBdKufdC6Uj04H - ncwQxXFkculzvBLItFWJnUbbGULRaje4jYI1jWpFMsja39/Q02nu9LJNV8H8ClMNCStbproGy1w4 - d7kGHbzf0VwJd/WIEVjBbC3I0WZfNmBkPtzDUeYYB9ejxcUp9tKNrvd84SOcsEg0dWi8NB3rBbV6 - Kbo3R8S9HaPWW7jyOT4LFao3YUrkwXBqZh+sD7iE+Uh34joHfEO3EAZSIeLffOShAVxgfP0n/l0X - ztPHBlGa3Km++p4MctQEFzXHQKbREYv1PFzGC0SgEfHv+5oORPsgVyrqCAz1wDm+XRgcecewvfCQ - vMsrF75Cs6JmtmXGUEhdBpNpf6BW7h3yqfLNEl57L4ukKyOArXzPhXeOvtRM8y/vzfETgr6pKXW2 - 4wV0elq4cOlPfK/Ykf/4AT72F5emgubWpE1qE74fqf6HRwaPsRReqqeLAy/agxFtyxLROLtjDRxZ - wIl2LaBS2hbVxWYG36e21eDCp3gPr3Hfve+kBQNBMbam1ar/zUcwmyOigWQZyR/9j6uqoW5UZIAt - /AYewxpTe+H1714+VSDaSQK2JMUxJC6mBLjGvKWayx0+O76jwGeBBRr1BcynRS+AoAROJJiHV85l - kqQgEL4NzpzimXfq9e4CljwuRE5iD8zV5KnA8JlL9UGHyWRtzyv0RiSngRLuepZyqv76NeqAGRpz - 1u9XaOErHG6OBCzrzWiGnw+OmpNfs+DWZrC71wYNiqtrzL1zE2CuPHzq+DMIplERddgrskLoOXEC - 6j0PEHmi3lLTSsZgiiSiqBa8bOlNvhQJTz+lCxaexnHoDmC+NoYCsSTl1N1IU84iMdR//UTEiTec - T/lY/fSMjF5mABnMbx3cnVCmt+zmBLNpVxL8zUvXnPx6PuwmDT17pcUHQreBmI+JC71oE0Sbdo9r - 9nC4Bn96mxnbMZiChhJAL8cdflD/ZrCwd0tQvt4V3jYprJl8eYRgmwsTdmx/Z8zC4Elwqf+PZ/Ip - 41OD+pW9jdjVlGqenUwBDnbZUcu6tvVEv96gXj9SSLP3hQHWFbCEMq7taOJnakwcuAosVtcQn3rc - 5vMrLPQf71Dv+nICeVBOA/yu/Y5ureIIJhMbN6CZgo0XfwAk19VMdOfrLxFqO06m1rwRKH+5RnWr - IcmM4ecC9wfzFLW6mdST6uxT1G4PiAaAXg3uG2EFfWgcsGfpCND7XSuRYBUviqsHr6fl+0cS9mZs - PUcK5ojYexRlV0ixH3T5H32pr9pAL9nKqwc49QUQ4UeliRCwZHY2LxWump2L44K++kaSmg/IWRQS - cMzu+bQ1D0fkf6sr3sUP2xCz4PNBi35FsnIAgE6DcwOJmDEcEP0D5tjJWhiTixntT8U+ES5J1oGb - IhTYqr9lMD7O2wwt61FPyyiYOFof4Qr2jAgbZgHxI3yPKKxKjRbGyq5l+T5lyB87BUeOo/SsiK7F - j8fwth3sZb69Mui9zwJRPnZbs4tQVHCf+w2Rn5uKs82XMijExoix/jKNeTb0GBYv2OBAaJ2E6e9z - Bhd9Jus4MoEQ6NoKNU5DcdGDfS+JNj3CSfFFbH1IVXNzpfvqPDdXmqorrZfsh1aApZ7RWn+Zgaxq - cYuo9g5JtdSXRSEwYZtYES2UrcWFzdWS1KEdjjibKrGf811QAlnxrtGqOXU1e+mTpC58RxOrc8Ak - 3TsTzkrp0eJEDr1Mnqf0Dz+FF/tuzLJzhyDYn3LsPis3oNV+jtHCi9hTn0XOtfypwTRqNWovvP55 - ZaUERzSsKV78NXO0eoBDJ3FsvNVnwrpCqGD6SN5R2+bnfKSaMoNf/uCTq1FLk1cOsC1WhGJmNpwn - 10cG1ak80mU+8Sk4Wgwu/h4vPNkz8xNpcL8uxggdNN/4U+/be7vDRw/kwewcbhAsfEfd1k+DyVYM - HW5km0VTfzz2/DE5Jbr3T41aVD4m01T18e/7oie3UurffIQnN4bYRpYPJqBtFNi99hY+YC3IhVh6 - xohZ9pqgxT/Q2oiYyixzTdMk3CeC/j5f4Cu0K/zrF3quPALyvVZRg9dV0PXtXkVmkwzR5+WShIg7 - 4YLsMYnxLqxFMDXctNG93uvLen0yXVFUAP9bXmnEV0EgUVc14bppb3g3xEE/dcRXIZftEFvo9urZ - /UxSeHEPEfZdm9Zzk3kV+OUJXupnNQ8qtwGPkL8Ij08sGW5FyGD5zjjdVjjORbBpGEjXjwPFORAD - Jh5nF46T/MChEr+D/sfrYx86WGew4by3tzGwszkjbKf4wYR8dIGhCj84O3xaYz5eah+VG9AT9N59 - AzbImf/Ts0itwK2elQspQejGNvW/x20yXyxHgBYrn/gqX4aET/mrhIt/wtH2XoGZTIYO7wlfY2c/ - tUG7C/MZglZ3os0gEIN9XvEKTeVVoNtjVS3zzizhZN0S/ONNySwOElz7xwqfMsfrJWN9GuAG6SW1 - 7+nJYJZUumBoyZFGkRsk43UYSsBk/sSRbe3B7H3nFtYFvNFs4+a8+62/XKfOVBm94H77PVz8KD4C - /AR89NojrPm+jVZme+STOw0NXJX2F+8C8K6nvbOuYBEMHTa6bd8v/pFACPCT4mQswZi8uwjOJkXR - bHwQn4TwWsG8wHtsi/o+FxzmEdiVBqTbpT+G5FGqqGBRgX96Pe+SUkI/PS7Ou7FmdKqO8HH52tgf - VKefjt6NwY2ibpc8bgazTbsMhmMiLXy0D4blfaAfr+ufTZczrZ6PMEw/jwjdvj6Q/YQU4HX5doTL - BIDxdZQ6mOtnhgNAN8Zs7LwYCNJJikR2dLlgb4oGbqLijhc/mc/VNVPh0Akcx9A9JPMbVh365X18 - PUnJfMm0DEqpKmCLHV0wXbi/gq/inVG9z4jBiFsx9NNr0wMgoPvTfESC9zKxxokH5GqvxrAY3oDc - 4UXr2RreG7gxL1EE2ltVT6hqMii9DrvoVuhj0tUBvYD4KM+RMI19Mm1RGII2cSLsX6MwmQVDUcEk - aCk+Bxjn7EuLApw3qkhD79jlM+xeBCke7OhDDQif/vj1Ja+JjFVbT4SWPjzZjz4aHk8v4YYk2uqS - t2FbXWk1O3e5Dtc3OaNh6Z3rafPELkjFXMfbLg7B8MuncBS5BDI89BPLiwj8/L+1fM/CB3krsLEc - MVKN7S5g8OlVkF7S3U/f+27yPgMMM7bCRnbp+AQOiYDkw/FCr3S2A6YqngKzzcYh5Dh4gA9vMIOR - f1iEdi/UE1szL8BLPzu609RTIOdmpYLFH0SCB3Jj3tv9Csb6USVk6Rey8CqMP7cjtr+SwZmqbFX0 - 0fUXDbcHCpirWiE8OCAl06rO+2FoWYQ20e2Od2YJck6e9yNURzBhPXRDLl2TL1T6RHDx+fv4Blx/ - DSVc8j58mrjJheSSC1Bh00BW+qNb9P1QAHvnfCK08CQ3V74Ptv62pJ6/IgFpDc+HpHtMWN+zjC/8 - RmBUQ0x/eR9tDqUKzyJLcbbarYLxol60P+8PT/bQ/3gYmeehwY5Lgp7ux28KnQkyqu98oaZPbwzB - 4gexrZtJP7/FewOOVVAR0binhihY5u3nh6NNM/FalCxgw2L7yWm8zFf6CvwCpFGj0VAkbj9YNDdh - Js4fqrdow0l5aWKo1dGDPrqKLH4N+lDxVt0fnqZxWq6gp8IUF0O94jNvhBl1mzaKAPMSQ54Gp0CW - 2jCausEdsKIAF9iu3QuNQDMlv35HXaAF9JBH65qINk3hUM5NpGhHKSdr/1LApR+iHtBNQDrNmaGe - xifslkZo8LfZ6DBgtUWm3RPnItp+KvjugY/tfXRJlnzAhrQd2mWeAt7bK8bQqSqlKHuc0mQ21ieC - vjzxidx7BRh939+r4VGOCE9ns2ebVXlE6rwDRHyOlPMlf/zlV9FUfAeDgvmtwf2bDr/5YLAnU1u4 - D+eAqIP67qfG5z5c/D/V/LgGw7K/8dNH7C/6Re5o7//mC31MdthL4Q0N6vlZ7Bb/V+cduR510J9X - b6rlryyfCycZ4OZ1eFAjOKKaFmlloiW/o/5rI3B2+g6Z2pfXPfWciwOkw+ujw1ZrU+w80JzzYR/O - QPvKEt3pkpUIJdZMtBMvIT1XwO9lHSUlXPh58SO3fMJtCMG1DzJql9Oz5mfD6n7X8ZJ/BPTkDTbQ - 9S+nen3mPXVjWYDmYRawY7lWMpHs3YJk88Q4X/icV9r+CG/ru4iN5KwEvEg7E/Z35YwjvuoNvt2J - JVpH9y11yswG07hvTNCis0Om4Xo2Fr5oYYPFEe8ebx2wjyio4Fo0MfUGIQq4UH8j+JmBhK30aeTk - ClQVHslW/+XfQL5W7E//4OvOUvK2fwQStE2po64RR4kAuuICB61VycxgA8ZIahWw8DXVNnutHtJ4 - 0OH6Q0C07ioSzEt9fryKrTLi/L3sx0AIdk+sLXkXO1aPFNZr18bX0nv1M26mDC16SER2/PA5pn35 - 8+80NGbeL/svKjzsZDtaM9ME/GG7LnAJfUYg41suXYGqQARa8Y9f7rxqrODiVyL+m7fnHql/eMoe - b34g5TujgkRx6wi9yC4Yf/mD/uG76IVur7pO+6JRrXT/JsJZfYEpzDMJHJ1oi6PDAeVzHz0VFH1M - guOriILB764qyFbbNlp5hmfIyFh3EHR+G71tfwzYK/sIP/6hVtm7xq9+MAnne8TZqzO+i55Adyfs - adyiDWBvQiX1N8+CJd8p0i8gwDif94SN86bn1gMOIPLIieKQfgB7JfkMlv0Cel3nLZi2r1ME5Ff3 - jGB8HfrxnmYzfA1xSLX6c+SCVKAOxhsPRKs0eIFpoxl7qDA+kB8vzNfkuUKLH6FbTWr5OJ4nHy35 - PtaQEtXS8dL7ULXuHs0C0+nn4ix+1N/68eeWGuMv31j8z7/90NZqVLhOI+NP/ckMkA8d5xlGqBle - OflKYQSb5LanmfPNjXkLWPcnL4uGugAzm6YPWvaTyHzaYUMm2uEGFv2m1ofoNSmchKjDZhdicxqD - nGVNH8IVOZzpkufn4vbI9+g5P1e//bdeip146Z6Nig0/Fvkkv8cGPtX9mgZ8KGpeZ2gGEx1CvOit - wRc9gYVwROSbm3UwyVhqIIkNjww+txPx9nh/QKHuR3xDk2F8eyW6gIX/cJzFUz4N9qdB6QlfCNC8 - qJZ/+d/CczgVH2Yvfm5zivLMnqgF11NC99b+gswzaf7kUbMXGy0cN02Jz8ohB9zzutVGZyXGblSo - gLKta0L1kHYELvmtUHv7PXocqzdd8jbj87jcVkAzdDFiBrFyAsoqRLvdo6SR0F7zbqmn6sZuFili - ZOTC8Kh9FHnD6ec/DNZFcQPX2j7B/omv+R8/2J1fCTb60ukl/4ZtcCuahmKbIT7LjxBCYgcfQtTK - 6+d3Az5w0VO8n3ZtwMFMdQjNS4ndLZ+TUXUuKTwDYkenu7XlstkmPtBvobX4K6uX+zvbI8Z7PZI+ - 5zfgiZIXMJIeDvVKz+oFyYk6aHppQA0Y+YC5/juE7Sb6UCfd68HcTEqp0pJJOIlPLCeVq6xAsr6t - sYNllCx53xF210uDt01Q8fFB2AX9/TsV8F//+uuv//U7YdB+7sVrORgwFtP4H/99VOA/5P8Y2uz1 - +nMMgQxZWfz9z79PIPz97T/td/zf46cp3sPf//y1+XPU4O/xM2av/+fnfy0L/de//g8AAAD//wMA - WwvW294gAAA= + H4sIAAAAAAAAA1R6SQ+6Srvn/v0UJ2dLv5FJqjg7ZpChCgUVO50OKCIgIlMBdXO/ewf/N7e7Ny6g + Eqzh+U1P/ce//vrr7zar8vv49z9//f0uh/Hv/7E9e6Rj+vc/f/3Pf/31119//cfv9/8bmTdZ/niU + n+I3/Pey/Dzy5e9//mL/+8n/HfTPX3/XmXHDKVmGbH4MBxeQa2BiFAluNIr6SYEtUSx8bLrSW0Q9 + 1aCjEX7ijmrQC5+p4OXTI32ipdRnuu7g7EDDohbBojD3qzSxnXwvQTHJn7dG2fuzCeU09m0cGfez + voId0UBHZRXRACmV0AVPA9rEFzF2D2rE0qh1oK4WI9rvngbgLbG0ZE2YETaOJqDL6fBopTNI3Wm3 + 11w6qo4YglzWdKLw7InyxRob0FJ35cTJOcnGL1IlsM0HzTY4ZKzadiw8OL2IhFEo6cJXFxd+fLHA + D+2zZnPkSa2clixHjgzmAEU3DYFxxiHRO6pXtP3qkywtTYggK1+reXnEq2wE2oc4cBG82bjdDHiN + Dy+sUNfOuEUCDXxaxp6c0Vx4bGIzLqCRkBPrWqs6K7/4FnpMeMEZqqNsESynhu/OPOIo0K1oduxk + BS8/M7E+7y9gIfaFBWeOP5ErMZtqxTxC0GNOl2lNF5LR1Vd42bzrT6IxF5XyFlo6WTRjlSRI/4B5 + sc2TjN7thRy6D08X0w1F+VPccnLbx1kmVJd5gmc3vpJze64iNrSrO1C+T2PiHg+j4ikcV1jXBzzt + G7mP1sQsU5nOqkYOw6pUbDeyOQQ8+yXP7PHp5+9Ds+RkScWp0m9eth6+yUU+DWqA87dyqT7Hw5xD + VhIiYiQR9rhDedCA3IYNPhy0iFI29VuYtulIdHQ3Mg4nJIXb+cK/8UKvl3egeuIBH1WhBxStSih3 + O2PBsb5w0QTLWw7ZU24Hr6bTdO5jnBtwU0aMcV+5Hhs+JAY42shPknFlo+FyxSIMuVHFOua0iE+y + vSTRoTAIVg4nb9VzL4UfyYPY4XsdrBDNJXTulonNpMhBFwVMItk2qPGhcsyKH1mcQO4RJnhb34jy + 1QxlwnEUBzrH69/0KbCyEzJnxNmlT1lmOpbAfC8MCdbHq+fK1S1B1s7CROf9ha7f+/UE+fziTSM4 + z5TbHVReXl+Ki7Gwe+krf/ULuH2fmHes0FbEfQc1ObawH9gfnYJHIMpaFyRYDW8Xj2uvfAkUW9+R + wy2a+0Fl1li2u/hLUvy2f/jgyNn6umDcFEU/r5PtwA8tfHxOjavHRt7agoCtK2JdPF2ncrMimefH + BD+E3owEH0AR6KGXEQRjP1vmdDfD0Wb1af+sH2D9SNIdUiQj7ErsO+PX5HSHGZQf+BijDLwfta3J + yvmUE6OsYbRCsYWQT+aI3NfLuWL7E+bhUBQEZ/P8AS+0jDkUjTYhZ7EpdLpjeQ04dPlOksXw+nLV + RR+aISA4+PJhtlxe5gxVITWIJfkB4AK3qsFLhQyxQ/tdjZ90NMARP58kqGkDhrnci1C14iM+79kK + rK9brsGg4w2cnIDgLWX+raEaGjM5tAqnL1+pEKFYvh/kWDzFarHs8iJfDc4lChssHoWGzcOYy52p + I81JFwp4hLIW5hL22ngGq9o1NSjT2CQ5OJY9F4LjLHuXnUbUHPV6TT+qAbx9YpNj5J28ES3vHA7a + bk/QMWyr5Sj2PuTMKPtznmnMMC484scTx5/Lh37H0834838utWhXfSg/Ctj2mBBdU4KIY9V9Cv3r + 1cfO0LPVlPFhA3fVQyNuMUUV7W97Bq79/UiMa/jOhpYeG/nePhL8ECuWjhqRXDjvan/aF68K8D++ + eLRcSdT0ZkYcX10c+Z3dqw1vz2CyxM4A0ZBdsRXUC1iSuGtgDE2RhCOsKqoRO5bZ093GYawOHjFA + ieCCpAprhxOibHXkXIh0USKq+bpm7JtoicwZ7xWxbIei1Zi4VRai+j3Ruk315VyxFyCMZx3ne7Hu + qWXtCrh+vhK2pZtcUUOkHVw58YbzcdV0/jbUIYSCT8kpLDR9zsqYlWv6bBAzrqU+rGmDAPQmkejy + eQTr12EuwLTZPdq/6zEiCxRi+bt3CNr3nFTNljykMD6caoxT41Bxp+fblQ1VFNB8M7iKOrLLQ393 + OWAv8M7R+ny9BjmUPiESNzwf8l1nwMx1D/ieN3bFk1gPZZ9FN2wvg9PPGq5XiIrVxn4nGJFwPyoS + 3PiEYA0gj0Wx1YH4wATE3LM6nTOQSnv1e3jjVDZPYGn75x1yn6Eg+G1rFTvzJ16+DdI6deZb1CfD + ppKcwd0Do9S5At6xRggVk7HJZYeF6Hsdi04235RBUtoW2Sp8GBHW9NEgodZGMJudl4PdExrkGtpm + xbH9l4Vv3/HJ7UU+VX/w0AT2C7L+7Oc8abwhI5YZifOiZ7CexxXB/pJaRB9Uu1rRO2LlLzN8yK1Z + F31p++t9z5VOSzwR33TBTRMHLgPXknTDA6q+vAJmeUxIet+PgFYPfv7hEYnBMfRocXoV4H7jO2Kr + /U6fraOZwIK8RHIB6dKPxjGH8MB8pEmcjLWf3AogoCrzDT/u/rlat3qR69rDxLBdjQpk6SxQfWOZ + BI1vUAGR2wT1tSmwueG/0N+LAi5Fq5CEnvhoKqGSyMfr/UFOJ5fxltVrFDkIGIF4Rl5kXJUBBT7l + JCBplAb6dJI95qenEGsuNRg5ePfh5XbF2FsPJuWrtyjtk3y3TqJ0xhF9A0ODqnrXsNUczV5wpDiU + 2z4g5JBf0o1PjFLOrSSZ9i9iVwu/f7fA3fUjsQOYgZlJNAWuh4n78Yu3BAUwAFOtL+y6NAPbersg + PFQPoqXNWSdMwDqyRncCsWDLVdR/jwm8gjuHLWfQKjqxYSvD9VIjbkkGuj6RM8NAL2esb3po04Ob + XhRfxDf6WSe93uUQv5wjOTTr0VvtQ1zA3brcEPiOE6B78DUgD94fgkry1bsdFB1wNK6EKP1yA1/7 + PDlw6CC/4VVM6VqGMZTzwiaPG3D0IeIqA9beqmHkZVE0Mt6cwujzcjB6eyGYIJoL+bmeHthLudlb + g/ibw92TMYjZnCnogm6G0JhWHWdiGmU9p6IG+MclxqonM2Bc5M4FH+kAifP29YiH5TEHZW3VxIkP + mUdv/jIBm6kw8Su2z743bObgG3QsdrrU1gUx4Sdw0juVePNs01UEVxbeYsAR+5nBbLXQ0oJnunMQ + 83i9s1XP9RSA+FbjbAal9+Wx7AO3uF4nnmVcbw2YmwROyHAIajkYraVyZWRPW+8/PsjmyxVLYONP + lMPYj+Z6mRkZrnGNnYGfwOo2r1Wun7DF7ui61VwIlxTqoWAQfzCdaMUinKFsVS5BgQC89WVyFswU + Kk3dPrMz0t8WKCvP6U3sSzV6sy3iUML3UCUPuckjWo2K/8NTfIvNAawy1Vl4j5mMaLdkyRao+RbM + Fb6Y5Mav6ey2cgkvlT1NwyPRgdAFVwtwH0Ug57GyvbX2Vx6ChUmxcWjcatWCoyIfsrnBN+aoenyR + UwdiNHpo0U1czSzSFfjj23Ddjd7KVmQC8QEG+MyHd50WO6cARy4rsRufYLXurk8fvKiy4MA/BtFa + 7W88LLzz6be+Gd2/j7XcUFdDy0vkqx+fwKfqdwTBZ1PRVjuwEm0Yn8SpNINF7mEBqVHZiE4PolO+ + EiGsmMDHz+bcZPN5DhjwCt8DMbf5CQfhPcA2OHUEv6azR52GxuDh1Rbe/AHghHtoyA6l30ky51NE + v1sx2PteIe6UTNFaQieByegf0ecjRNEaW/NFpo83JG5d3aLlBoYcvjv7iJVhJ4MxOs+FrNvWmxx4 + kf7Xevr9a8X++iJgkYAVygbhAPGuSpfN+we5//weOfrErYbdOcuBdy8kcnVPc7TcRE6Cr/Xs4GN6 + e2d14tYDGE8nb6LJ9ZHRlVtCuc6sGw6usaUL+6PYyjA9N2hHNZCRTS8Apu1m7O/rFlAl6Bo4Af2F + jCALIwFr0gSu0MkxUs9FNkiXVypD5e2QILkSQBe4i6H3/szTLuFNwJnsIZavZaKQtIdWxX3rYyrP + yUnE7tUQ+5mZbiXY8AMbK7Kqxb1xFzj3lJuY335aNC+hyeT1JHVTSSk0MAuzRRix+j0a+tIUGoK7 + 21BhVDh2tI6sncKHpaHtPBuAT5yQkQ37TvDJ24c9u9XHH/zFb7v8oy+lj3a/kWdTKD2f5EUOLsZT + QYxWGR5/3K2l3LNXb+oTNEWUmJ4BOf6MyFnMTCrEZ3OSdjEb4wtsuX7OIShARc07WnzSVZv+mKRN + 35FcX2ywXDvJgJv/Ikd1OPbcWTif4LlUAfbkx51u+lgBWH9n2Nxpdj+54ekkv77hCXsKybM5jY8K + lIZJIfqbf9B+yxdg4CQ7onXDtVrPvd5CKCCKbZG8KjprcQnf+6xFla1fwBh+RB6IVWSRwEN6tfnX + ARayNRF7yGu6MM0zhbOkxMT7jhOdj8mZhUpcc3jTk/3yCCcDbnoCCSV7oHPh7hJ4jm4BjvUm82aO + 80UwN6AhSlddPOrFVIOGnRM0c1kMlmi+FvJTeakEhziuZp+AE/zpmfhxEas16GYGsqCE2JwWF8w/ + /zBzjomjzQ/zLlxOMt6tzMRqiZBNppbPkhrDHUn1QxhxTHNN4P2ZlthX+C4br+qhA+41fBGVPZSg + q96zJJ9Hr0dEA5M+0V0cy1Zgn7DWmhxY1rq25IY62va9PppdmOdg07PEvkLPEzw1NeCG79jjGK9f + V81lYPA++VgZqnf/069Q/XII282XVOti7EsQA0UhjtWl0WyQtgbREn0mFhxnfSx6f4Zly1Cil/4p + 41uvFoGs7E4ECSLnrT/+LtX+iZ1Nv/Ymb1rwT72YS01X66264MKj+8R7justxA0SuEpzi6+vptHn + Q6K7MmPhfhKO529GDdAhkE9LjWak3qt576ICHBPXIljYqfqy+WvIVPPrl3dFix6bBby6mYbtUSgB + VYRIg2xU7bDZnqusITKYYLQrTbRrl0lfP3XJyHn1ZYnDGqVOVba+//wnNs6CHXHmY+Fh1/klPl3g + oef6uzlAn+kK4tfCWZ9RFRrgVrkxsTrLi4ZuhHdQ2Z8XVks93PxN2cDpYdzJvR5S2oJPtsLtPbGP + hd7zNd+HcPOjOGGN0vvhJ9zyESQku5jOYuXXsH4yLTaP/odu/qWE9xvbYbRyfU83fQCl/PkiqjcU + YDqPEoKXz05GMMkYfRFv3xLyMArxhofZHz1qEAEQZauP6Xe+2NeaY9UiwJtfqcLLGR5UEvfeWM1b + XgDF6mhh95cXLI/7DPWWV0ngW9Sj/MtN4fP74fGB6zAYr/rsyw+vsQiSxy5bdusa/vwF4pOPC4Rs + ynOAk0c3LTECYBxI00E27wlWF2avr9y6dwG63gQkf1Kn4tVuqiGarXw7r2a/ys9Ogk43UBy616O+ + nq/lJMfQFhFoD3y1jrcihUKSsxjzmQOWcZ8y8DFlKTkcgklf9/Y6y3xZrPinTwbQabHcZAcD66Lt + evw+d09wdACYLpap9Kt6DVp4SwYfra9dWa0PI86haF5UdC6LSe/v6u4OKv85o3lO+mjW3jAE4kgC + rH00X19++MV+4guOjA/O/tTnFeQcMV+nLlvTLzfJxgo7kujKROnZuxnyL68xVtRUW/7qwq0eUNM/ + DxHd6kma7inFSOwUulQZ0P7Mz9rha/RHj9wWqmHjNgQe2f7fn/xBMI2hn+/P6QR+/t+RikPPr9OX + AZueRMKlCrwZF98STg4KCH7a1Ou4gzPA4Z0wGO+1jlInrFh5OPoJ2fLLbHnOX/HHL1PrdwdAnbDn + wUedZyTPtgx+eAUmxw+IpUZnj+N22go2f4CYQMj0ZfIBA+39V5kqGx29SUpGB/746VC8dLo855ck + b3xKlDMmgIrZO4Sj1F8n8dVm/eg3IZIfrvjAFnyAbNl/xhie3GjBGHz9SsDaOohEHxx8j6YW0HcN + C6gKiYFjczGoIOQZCxkr6CfBenQ9fUjLBQhL1aF98dK3fNhF4F7uC4LO5pQN7eHrwmkHZqzzdlrN + QvudoLTUIfG0iK9GNlEk+NvvUMqZbIwGR4F4NzNYz69Dv6yiqcmSC+utfr1+eOn7CwRLuBDbK1h9 + SNiHA1omfmA8NBGg7DjWgMOknOgnvejCldQJfJaMhaRiohUXFMCCfORn5Kq1NZ1kTkqBNAwKUZHj + 9COcegN+7EtL/MO0rwZ4NE6Q6NqTxGw3RYO4v1s//Tjtj9+3PuYPhYGNX1zwOSkYSoWFXWV2kBCa + HSbS+evezmX37szkMdsPQIerl8DNDxO0dks0/+qp60SPPAxxRwdbxCeoqW6FBEHmwCDpTg65E3tE + 4yvdZ8Npd52g+W3O2B8jX5/ZV8VAltsZW76PMy46iyW0tN7Dmugl0ernFwtWndKQUCmh/k3NkJU/ + YpKhs/O+VEvBvCfZO2buJDnqE4zjW1KkQYqCaeFno6cfY07k5TWKEz1ZhM7T5apBWCkBgvpj0Cd/ + ERQoCs8Be0cF6HP+TRtofJE38bX46SkeKhfOqLhteUoFJn/ZKeCm6M2mTxt9ConiyvubuJBH2/o9 + t77kQnIuZUDcjK+9thkiHoi38kOslUn7uYyrAZp39Unw+cToRMKaIW/5HbHIgaWrfbiX0vN8C4na + PW3Ag7ejQW1FF4xBvmY/PQ8i3uOJK7FmJBTn0JA1lfVJqsduz+aQFvCj5TeiIPXeL7f3HQLLrlKC + 7tGrmqeb2fzeY/O722UEK74LvsfDSvRrTPvxx68/vNEMbEbz/vHJwXx9Y/wo24dH9biI4dwv3LY/ + YrZu+R7URSfBbkj7aB0Cs5AhNDWi4pfV0zmpFcAIO3sS4XLVt35IAy+VOWHVjTQwQ4mdQHg1IuIT + KQALsL/o15/CPt7r3rDlV7CUOY2gINMA/8P7DW/wyYdSVjdDxsOnijpiIBZFbCHkCTRtfr/tf92T + hmtEsOlrYqw3hZI5GTQolBJEXFlM3sqPsQatEKlY+UBW/4gJP/zp9yDnK0TLOyIX+PNX19B+9/T0 + OKZyMeXKJNh8Wy1T5d1BWvLcn/Vbfniw9c8QSz9GT4tzYoBHK5Ro/5JUymYgFeEfPshOEviuL7mE + zzV8oP057+jc9YEELznO8WHhXE+Q/KiE47Eu0cq+fDBt/guqXwGh18afr/bKFNLQGJ+JUd3GW6wl + XcFvPtYZydnyRaooHy7+tO2f7I1fdJCAbe9rJH7Vg84NOu4gLvIWdXI4eqtYiCy8P5OSuA/D0dce + swYUbu4DrY7R6+2aTgh+SRKSy+speevs7Rqp7pKZOIx71our4P3JNyZ4mPY9zZ/+ALZ6J64ytoBG + k7cCY5p1EuVlA1bDNC8g7JkSMZd8yEh77lboBZJP9PUUUzbJgw5u/hSJ3OkNFivTQ2iku2FijqGz + 5dULI3+PXEZsEzd02vTmr1+JrQeHKvaQeC7UzucDOcVnG8yB8h6krrgb5Klez3T65Rubn0FMJHTR + 4s4GD19xqv/Z/0kZH+7PP6Bl86tDUkAEh8scks1P6GuYzB3c9h8752sO1m6ntvLxgJlJOLtY58Lj + KwZx7lISbP1TMlz1VFoPqo/1EXvZul96H47S90q2PD/jtvnJ+/XI/PpvPbfpSblhAwmj7MXReboF + NUwAuyPa85tv+DdOoIznAP/Wfw4usg/1kDOm5uJV3np9NwXcjeAwkeZsRTxbfQagpM6IwxOjRd1Q + THfw7QoVny94+dOvlH98O9c2qtg88gwg8fcnPj8eRs+x59NF7nbWQtStX0x++PrO8urP+iz6qDcw + u92LP/2eH57uH5aCsF8PEhhuimjAYKd1k7hLEiokuAhlq04/JPjyc9SDw8CAzf8iWejNbGwKzZd3 + Mi6I5sM0a9W24yXmFt+Q+Pb1jP35h9hIztjKbg2lXq8VMF/ECCvqvPvjV3/5DMbZw+7ZdcIuiA9h + TaxylClV8zuEA7K/0/AIDv08rl4Li+mu4HyrJ9oFTwt+2bDAGntZK7KWyQXKsaWgy1tXKS8fovTX + z8Guz5g9az+KUL5/PRWBrX81swLIYf0lNvm9F54W6n78QrZ8ql9eQHAgV7otQeOqeQt4iINUTSKH + 02E3Z1PiJAxg5GKHNaWXq1U+RAmcrkWNN79IR7MoEvnv362A//zXX3/9r98Ng6Z95O/tYsCYL+O/ + //uqwL+Ffw9N+n7/uYYwDWmR//3Pf91A+Pvbt813/N9jW+ef4e9//tr/uWrw99iO6fv/efyv7UP/ + +a//AwAA//8DAGb6hJfeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d213b871613-SJC + - 9953ed4f7871d045-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:36 GMT + - Mon, 27 Oct 2025 17:31:26 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-94vkz + - envoy-router-58d48cd8fc-qg95l X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "311" + - "78" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "326" + - "99" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -634,7 +634,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_c6df6193d83549ed93021482bb651f13 + - req_2384ee19b035458a9e5006112c2e8f2d status: code: 200 message: OK @@ -680,122 +680,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6ya6zPLfm/L+KV++UOgoQgu1vRh+6YDYQQkqlEhBCgNCDaY7OvZeS/etU1WQP - 2FbAXs3TLP/nv/78+dsmZZZOf//58/ddjNPf//F59oin+O8/f/7nv/78+fPnP79//7+VWZ1kj0fR - 5N/l338WzSNb//7zh/7vJ/930T9//p4R4zstPEvD8agYNUwhzeP7RpsDTdt7DrnnNSGSECsWU5uu - hu7TZmFj+WGTdXswPLq9eRbrgnXb2UPTQrhmhxdW2lIEbLgIMXrxVkBE7Isyi701R4vai9h6JJG/ - RvHLRGSSMVGl1irZq2pz8D2kT5xRiVmy3FEaIYuoBUuPxExoRRVjpMv2QtLYswEdxVoIbifTIkpv - nK3R8u2c99IfGUtiIyZTOD114CLhiT0xOw8sFWoL1JR7hqW75w6sGLg6sLyjhsX63SbjDzzEcD7H - 4bwPP899nEu9Qr3HsESl9XDYu81l+XfuXYmon7RhG5o8A+hIXfG5MVd/60urBpoj6k6PqX7Y1lTy - oOWOB+x6TDAwYtEskL/IT6Ixu5AwzyMnwPEBc4d3u9pnRVFgoUNttNPRom6x5WtMQebLCT5fFlne - 2/KiQKibJg56uhgI60EJ9u1yIsmLVcvV1AoJseX6dJjs7fjr+/Ay0Yy5DZttbciMXBoaSk+mT+Qg - rq3Rk/uFd+qpx8ayRxZ5HUYddufIIT/WaFhMVngu6l80IndmaeQjegcCcJhxJYpS3XfmHdIa8tEw - Ywu4PtjSqnBQCtyYqCId+mttRgrIw7YgP5Z4GY6xNhXwulMVtsrUBLSc39jffMpSFvnrdnw6x8bb - HKKCUEtoUzvb/JprC7ZZ3rKYiHW5k1LWMXbQgq3uu19uXCQcuk1iHWPtXcB3tKw4aMvXTrRJbgHU - JNnhSm6Ud6rjOLAWW0YuIyP7DD7gAF6cRHL4n0AEdFTMC1zUVpwZ3ugs4kkHCnaqe8aYPa6gD98/ - Bb92czyvZe5Z66PCMXw/DQ3fHLoe1u2BeDhftoGcTQDkxbNlBxm0buC4VRp/dW1lBHRODtiIj81e - l0fJRilXj1gXptOwhcZrQZ/zwueae+zrENobmJjpRdLbhR1G5fJiYYLHB4nk7gq6b/1cHrGBMXt1 - 5aMfjyZ0ZzHCxjU6WkTtkfObr+qxDsqtWjgHle6VcbYHsmX6OcMF0uvxgu19BNbShHwFCdvzxCTF - 2x9Y06/QmisL8eIwsNhHaiwoPUo2Pg9ptU+ZkirQKuMJKwbvAvZ8qyLYGcWV6GqvD8dj3zqwMPQE - p8e3VhKSygsU1qklUhzS1uqi2Ib3oVWwtySUtaWUnKNLPCcOc6akgajXWwZJ0+0408/9MOZYzJCW - pi2JClQkizq0EjD2qiC//cRYFQcqDdv+9qOVn/MNGci2SbpWtDzdVDmCbm7lWOkaNWFC5lih9H27 - YWPzWkBeY0pDiRMeM3NfT9Y2WNzIf/ufWVlgH2sXu/Du4Acx9SUGgx9dR6Q9BIxvjlcB0qmtA/OL - cMQ/h0cANu5ozoDX1x+SrtLmryPeNkQW1ib2Knn+wpdPDXqdLhMviW/Ddu73GZWDNhHT7bR/56fm - sZTDRX2a7Kw7VVCT/BuxFLiDdffbAJ2555HI7u5YYx1UJuRKM/rUt2bRzeuVoRpMkJg41ffVwGYG - dVzo2Hn9mAPtvXIK9YzmYe+BRnndtVJA3v19JdlrH5NJNJwU6g71ck7B4+KzjpO2gD2NBY4keSkX - IF5DKJ5VBSsvmfK3cnsH8G4cMBGLMQX7oiw85CKkYS/T1J2RukSDPZQcLKWndmCrR86j+vRmZrpT - y3KjhipH/goQOVuHbNioyxzCvsUeVqgwspZJAhAwUkSTRPN6sJUosFFKc+oMDgAnjHs3JbjHio3F - wgTy7lN0AK+csxF5+HmCo2YZPDizt2UOygNfLhY41Ygt9yeRl5NZfvsjaO6ziY34WsuzQwOP19zx - SDIRUfL01sUWiqIb4ucRXP3xWz9cAy8kdNWTv556i4POCR6wHwqDvyX1LYSidfPI2aG1gRHjc8Dz - Wmc6pdsH/h5Pio7WMlDx7VvvoyfaPNrnMxGRHPvMU3AL5EnqRuSf+Qjm62UKodSJIY6Uw8Uaf8pQ - gfM5CvFP6VDDdpa0Fs2Wgoji2FWyv5yshdpDwjjSrop1tO8X4Tf/TVKoPm3dXjE6uGzlcNJ7S7aV - KWsYU2JLzn0k+qP3sBUI7TjCUpQl/nqTaAjffnIlmFdf+84+Ch5xftNjYexdfz3Jbw+tvCvin4rt - kp2k1sZL009F3J0TZPaRRQ60iJ7hs77T1vR+FRB9+IKzY5YCOzIqD+happJvf1x/3K6CpAc6sTRj - tSbxp+b4aW/i+TSDgzX6dz1HWK568sF7f6PUCw8bb3GIHBqqvOJ3LUC3jBkHyHU6LEpWzIhFcCFX - oGy/540kJiAk9Mujv1be04HC4Z07HBXJyRF2zxoQSn+Qp8C8k62auwVeWWUgZtOd9u1iHDboTdEP - ic7FK9mOyy2C3vV2nvnednza1LANZ51isfQcB2vVD2wPE03Zya095+Wi5icTGgtPz8eLei4ZV93m - 3/5yxk9JZs+S08KLqdPE7Hq7HKfG1iHNdhJRWfcxLHa/jOjzvcS4/xQDM6WcApXHmRDZV5x9b1SN - g9fiGM5It55gzBWvQteCCbE5XkR548aE5RvJbvDj8gr39zgUOTSmIZu3u/CQp+2BOBgquUVip93L - qTKoBUqD9XDqJSDlJg6DALiumMgXz3dPOkAIRqbHvtsHycIAvgKHzGS+fOSX7wAChRCrZ0oqj4Ej - 6OjmdS8STtqhHG1KEH7jo58Qa23L7R0hA/bvmVGtXKZVmHPQIqOKM23dk+5kX0Y4G8VjZr2nD5ZG - XWeEuoKZ2X2bhr149BEgC207DOuiYV6kcwusx7Mjyjsbyjm0OBvetYknV+Fmgr1Tcxsps41wuOrV - vtTvtwCbB4wwPhaTTyjHMOEnn3GmnOJyuV/6kOf9wnQoyxYGGhjMgs6nt4rPjmFZx9c8eNBZbte5 - 73RzH73tRcO78t6x9+GnzGkbw9/4vwxkykuemwGkUUURh/uh/L1z9BZyM2dgFYqSdfzyv7tGeHKm - /Az85mMn6wJ25zvxt/N6mWEW5xRxjKDZN50pauCGJUPsJXcH+psvVhlNMxr917BEnJ1DPs40/IsP - bm/yoO+CnOhK/bZIEMQ6zM2r4fRO65fffIG5FwUk07faWqwHiOHYVBYOk7TY1xvePPTFPwVmh+R7 - PtDYJImIeXUF4z00NyiawR3r8FwM23blXNjyLwc7ddaA1Q3eOgzkasP21h6HkVYSBWpPPSQPXzgP - i4eiGRxkVBH/dmnL9eFrBb8WS4azMxMC9sAmEWRh5JL4g8+/+LGmTExUwOnWkVLzGZEtHmeqOJK9 - 12tOh++HcCCuG6jDRBNXQdm0+VgVkSvvMaVKMOtyFWfvWPHXyNNnKOuVQm51mMqLFwwt2CVRIgl8 - rMmS20A6JXKiYqduXsP45ZO7YhlOpbbI3x710v/WmxDOubzQV5+CKYpe8/bBw23jhRSJD+nsLPgW - JmS53MNfPVDfqKoc1P3awi//ydBCrGG5rgsyaNNwOM02k1WCffTLxySZk+RVjtseZn4jEeGzP3Jf - zyO8/PQRkQB4+cSPR50f36niVF3zTjZduOfQuqnB/FKNYKcV1YhhYdEG8ecn3sdIeAu/fEdwg3f5 - PlSHGb6Ntf/ka+bvwlPIQZZ2KhGrCQ+t59zbL9/Durg+5M1pEITK7CCsSpoBNp2SJbhWAUWeMY8t - tnjgGkqTXxFtdwewKJwtwVAprJn/6BdWiJIRiMbFwvHF0q0tVR4139LmiVgabQ9bCpACGSs9EjW5 - UcncWc9/9+NLo2T7coddDKUaYIIfBzUZtGpwwK5Dyjmsr3g/kjsTwrL2OIe542MyBGFeI9GpGiJS - 9zWZXNseoUVmlZwt4iZzOkktSsmBn7lnHZVL/VBqlKL45SzudBnoOZRdvhzVmihGhK0t1bcMurmR - Y/2zfme2JoSjLj9meL2ifYrergC/fFRbDoPcHyhAA4V1deJo6+5/9hPDe+i186oR3lp/Dp/4ZquN - z83oW0f0lATgxSacKXDhy5VX9xF6pIiIGjNw2NvhXYB7YL6c7enL1iqtoIAfPoWtaivkpUE/NkJx - ORNtpiK/YQ9jCw9l7uHrI/qx6GbrA3jw4ECumV3740wtAeL8d+8s+MTJm66fIDw8p+tMWzlrrUOo - bFCMHA/b1ysC42SlEc+28jSzM8Ula6b1BcwqsyNOFeZgdR+XCjT30cTi4UGDbb0DFnj+1hDhZ/2x - xjt8RYhL1AuxFwfJhD1ULdRerIqlNM+HlSaRAvOrJhGzv7bydliMCBihBRzePVfl7vHPFO5uWmAv - e14A20kUBF4GV3xffli/WClFAiyMXWLTW/WtnxbublZgJX+lwzpkkw1pdpCIYh8aefzwCQhFx3F6 - 7BNrE+NeR6uPlxnAepAXpYIz3IN5ceoQv8vNaRjqNEaNMm/XggJjJEwS+OrH9K7igW4akAF8sQPs - ffazWGCt4RkQm0hidi6PiE158C4oGTuf+E5So/Qgd943Z5lsz6InH7KQ0Pk+0/kLlnvg6CZAayVg - n4g/Q3ejpQzppjli475XPmE2EsI+ezfk4g+ytVWnqIeLMytYaCMIZg6lI8hcEJCLW1+s7aoqPLp2 - l2GGdGf6H/0RwheVFNiCl1JeP/ocJibfzuzdKqwt9EwboujeOGvjluCLRyf7kABi72NiMQYA2old - HY1oJI/lvdh1HRJGi4nKD+ZOQ3WzoXXfJedYh1DuDAAU+KlHfPng16dfZgiRk4lVWMqAqY/CDLNX - Boh+ksZkplSVg4WgRCR28FDu6uPAg0viScTEzLJ/4wEV72Fj9dVXw7ofuRxeDLHG1ktyk7WKDy34 - 4vVXD2+c6Sngw1+J229HfxUNLYUA0OtHz5/3Y1LzOmhE9f7xJ4g1DaG9gBf8SbB15lx5w0dxRuTo - vIhaXHN5YX7cCJL+pGNzgrm83s53FooGtpyNC7pyZPp1hOyxTmauDM3kqBFPQQf5UGFL0Klh6PjV - RQSkZC6iDPjbobQVqN03nlys7rGvYoxD2NmOPFMf/UxINTqAFzyGaDto/DHPpRCWLPv8+j8ysx2O - /ff9M5CEW3Jkj7YDJSrePv4BXZIg8ExkjArlsF//6hTMJgzO/p3YdxWXc1/K9Tf+DiOPxFpNnUth - +XrKRL5xirUH1mmG7y6MnIXU47AdmhyiuyfE5OeFV39P8laHSgcJFnOJtoi/HiTQznvqvF+6BPYF - RjH/0dMOTJ691TZA2mBGwh2r9/Ukd8MP4eCaHmMsNufe2tlls8EhlWYsvrTb0GWrMsL159zNwGpf - +5efgDVvb9h7VJU1MtqrABfhZZIfUyv3vXsaOWKX9kmkRMTlxx+t4P1KxHnVlxHs6GlK39/D8pSM - yfpIauqrH3B4Y/p94suVg2gOe4xp0oNGO27515+Y4fFdD7smddnvfp/pPZenceIgT472C19hWYJt - eAoSMk7wSORVUnzmcZrMr19CAl2KrPW9lTRaq5AiekG35boLPwLP0vzkMOz2TBYPSC766E38mE41 - 2MIg6r9+DEmg0iXdNrMLdOBZw1hexWE16muAdvOVkcsQegmd9U8eFNKikeirD7c1l9CVW+5Oxv1Q - yfpOIgreo5jMx48fNH/1bnnKL/hmw2nfjzf3U39aRKQHGi0Co2yExpolWMZstn/jD2dlbHFKd2ay - d2GnwUMbnEnsbrnFCj5Fw12SpXnLVtFfOZbw0KsChzylSvnylQLcSJ5jS/NMsNCVE0PpVe7zaiR6 - ss/KswJkZdQZ0ue2XL7+Ue40NyyarVquJyfVYWG5BX5+8H+7hpcFsuTl4uDjD7HloehP/XETsK4c - JnleVm2EXuGciXj+AWD3c1YHpLy/v3528osX3+/XgpsNdsQGHP/lx0/2uO6dK48ebB5U5Jzuur7P - X787uxoFjoB4L9cM7DW8HvSZ6GdgJKMauTNqAu766deKz1KXOoTuAH6IxbGnZNAEX4LXCj2cvb/A - ZBNWRoLjTaqcxXtr/kInEzzd7XM4n8J5lukGmBs87Qkzs5vsDAujdQXUbW+fX6/25JOEeBUyhvI2 - N824W+Sb39fpcSKR2usls83UdlzHSCfxGx/80TJHDUI1TbHvbcDfSnrf0AfviXP2GWsugLoh/uys - xAjt0V/drQy++vDf/a15JgIcE28jYm8LPntYjBjevOHlcLSKkm1ZnRl+/A+nY5aztX76DXDodznP - yo3bd7aWg6/f8+uP7C9vLwDNXYqv/vCXhuY26PbhSuQJOfImSIjiv34SvluuNfdRMEPez03yIJoi - 761RbjAG4DXPSPXLneoWDrh0LmMLbMxAukWKIKP2xgzyszZM2c9PhJwTdcBKLUz+xqFgBJ3qnbFw - eT6GaWguLX9a/dn5nL+1KHycgonCCOv887jPIt49lLmngNzedJxsH38VfvodOVcLC5ZGLj3+47/M - Jz+nPvhhfDrXZpDL5FjJVnq8ALM8kxzu1Qz+vOQqDQi3ivjTr4ct4M45HMdIcNBongH79efYN6iJ - 8cmH33h/vodISXwctvUniUEjdgKR/Xopl/pc0zA0QsFZv/nBzsMGS5Z+YmUIq2Rb8gvLK/lNnZOC - 76xN5NoAXvnwhM/G8VZ++TmU6hPG548/Xi8Sbr/9wjn3fGmxvWiwMIsLyqF1iZMrOX/ScBRe/Lzq - p7qcV52n4O2lithgnLc/4XPDog9/n/vKAmA1bFoCr6XsnT00VIv+8R4OJCcO4/ttW4dff94K0IUY - qzoMY3x2Q+iiWvvoo8JanvenBK+cveGz9YD7dgh+WtRv0CKOiDJrbz3bgUYl0lhNrX0nMb5AgOag - J6JlnhM61zrp6/98/B1L/r4fpHSQYf1uZzLzk7gZUubl4xd0o78fd6FH+9W7OeAVlPs2LAIP3bk6 - YIcfOPDJTwhCPF4d7uXI/nY+1SbkfyIZ3z7zhJ09xT1o3PZM9Ezwk/FHffLg/rArbHhpPLRW7bNA - 4vUKyx++95l3bZA+EJWIn3nFXiiGwhFihCRNWhmQ5BLRX7wkdlRewPLRq8BH3ew0lE+BNfKEGQbC - ScHe3VuGBd6N4jsfwQmfZuUxuUQs9KrQwRqtiAkzXqoANgF/daiPHqTz3AzBqxhW59Vs6kBIzbeA - a6KapEe52keeflKwHJSJXJ+uATau3CN4SdmCCB5DD5vu5zQCRwGS7KsvC7vLodYuIpEWdNi/8UdW - H3bzWh1kaz31MgfAogoO0IxVnsXANVEJ+mBmHq8erNXyiEHL0g3Ws4KRZ0489WD/kQwsASD6H784 - /PqJM7vqCpgiI/fQB5/mLx7Pgs/S6OPHEO3md9av3rtEVUBu+OKULOeOGvTXE3JAyWz7/JnvAKdH - nDPX2XnfKvNeQ83c948f0cpL9PPmv/vBSf0SLeY93mnAp1I97+Gg7XQkTAJslHCeD8nbHJb81nHg - M/+ZV6skyZopgYK4kD7g64efdfXcuojmb52zh3Q+LPdscGALNAbr50JM2HKbQtDS+gmrwuJ9/ToK - lpW+fvylQj62sI4ge6wSfA8eU7K+kTfCRjzfHdqUzZIxet4+1YBAjNmsA1ufI/23P7reu05I0gkV - knanJdrEB/uvHvniww/fPYfVDUENS46qiZo+zv6RedXpl29ig0WKv4bWI4aMLWRY1NWfpD82FAX8 - w85gfLz75VLPlxQqZRWTRG2Iv4Ctp+HX//Voi4Bduy4bpFFNfeapWjLxyT2Fo6u05OM3Dptzl/Ov - H0ckmejJ8TL321dvE2MziLzkTK7wa6fvWLHyUF6NB83BPNo6LBYjBHtgDC5sbMac0Szlw/bIXBvV - p4bB8rUp/dW4Bikk3cp/5w/WGqaZC756Fw0cbXWbklbgg89ER+yrXJ6SoiMtq4kDxVhIjp/5JETp - wMz5ZogWDcRHCFGXM598f4IR6kKP3Jc7f/3jYX0D24W9SwjR5TNtbRfxGcLR9odv/ZebTlnS6TZT - JywvN32nG3lw4Tf+UnqrwR4sIof+fm8F/Ne//vz5X98bBnX7yN6fiwFTtk7/8d9XBf7j+B9jHb/f - v9cQ5jHOs7///PsGwt9uaOtu+t9TW2XN+PefP6ffqwZ/p3aK3//P4399XvRf//o/AAAA//8DAMHo - R/DeIAAA + H4sIAAAAAAAAA1SaSROySrel59+vOHGm1g0Bkcw8M1rpMxUQsaKiAhQREJEmk+bG/e8V+n5xq2ri + AImg27n2Ws/O//zXX3/93WZVfhv//uevv1/lMP79P77H7umY/v3PX//zX3/99ddf//n7/f/OzJss + v9/Ld/E7/fdn+b7n89///MX995H/e9I/f/3dB/4F162p9juhv5ZQaz2JpObL6bn+UBWQ7e2M+cVV + d3cumlR0g9glKjwJ2XzvDAl1wSIQRXYvK/caRQj7UiuJnFQK4MNJTtF9JBFTsaRovBbMBbKDRiH+ + 5pxoE06fDjqPGmGytrjVrrwPImyu4oNEOedUO+28TNBxpImYaHUyvnGVFC2aNbF4CTwgOEQIABNU + l3nENjOa18MgVVdb+3P9YbdnFoAQPsjduJs9J82HAR5b5U6UjXbsBb4rPLCU64HgNm4BrZ4sh7OU + x3RnHgptQDexRmKLBEZkM+7XfVWk0kZZzsyLxEM/a+zYgPhanompgTlcqAI6UAgfB9dg0/WrLC0B + dLRpSyJVi/rd0bxw0PxsH0ydVznjRd3S4boRn5i/fZpQwNK0QGNddrhLFsvdrZJ3A59DnxItkDRt + vbK7DjvRccgx5sp+dPpBhZvuuGdxMhjV0nilinw837AkmrhabeOJkXLjFkIAZ628f9sf0OPShMza + ti8w7C2nlcz93P2+H6CHwPPgYHCY3bTedoV9GxzRRosQi/bTWxPur0gGJJlm5onVdeXzSj+gR1dR + YmTHECx5HmCUX4eUYX+Nw3meWxk85FvJskz2ey6S7jkcXnlNDu7NAVwX7gRk+YtLbvc3Clf1xjVi + d8KYHQbz0HOLKkBp4ANGvObpuoLwmcT9ajkp8ZU9Bv3+EKioUxKNRM8kc3l6eJXwe38kBu1zHW7G + OoBOSTUsuo9Bm4nYcsARNznD+0YLd9FmG0FVuihYyHMF7AClE+RqXaHAvnxcthceEoygfCBGRxf3 + 49/mg/TycEYnBQXuBKZHCj1mH0iivZp+JoYvQdWhPSNUAtr8CjSMypNsk/Okv8OVKFwLFAFsiWK4 + hda8psVDZtIMxCVgn82W/ZyQd2hLYjw+93XJ64GC02t8svj8FABt29MC78uUs5s/nd1P28wOIhds + E1s4H7Wd10AHGvh1IR7X7NyBaGMgBVNwZvh6iqq5nET8q2e8lNTTOCP2JjjXwCff+3Xn7U2qId1T + iSnatar6Na5qNOUFY5l0jlwe3+wJCW3pEa+O65V2zk2Hj2MwEqzsj2DnuHoCe3NzZlaTWb0AkYUh + /lgZOZnxIaSnmzbBav60zJXOnLtukOPBe6fr5Pz4ILCOulajvdRlWDqKaj/a50sO3924kmDxuowq + ZyVH8y1p2UM7l9kaHJMDKK9DyTD3ScKValEArzpt/+jRYrbHBflu633vn9MY1NcE5r72IIaNjWx3 + 5d816gNyIWpdtD21TjcRnrP2Rjenae+udmkdpdv2nDHiKVAbA40doaSDO/NUcu27bf0aEHeDhNx3 + XA0Gq24xzN3bjsT19uwuaSN14CHOJ3YUT0u4audlQZnZuEwWT0E4t/H2AJPB09jR3136RdtpFNW5 + MzL5pB7+XZ+0XDZYeGa3bK1uqIabmxYzvYYrmOawjdA2e+zYbz2M+1F34JGjCcMuMQDXWnOOnBoh + Zpg3a51tS8pheVJtghPR6Xfu87hBVHQCcjPbfp2yQyUj7H3O7KqsQ0bVJ71B79CVeGP2vsbz/FD/ + 3jc5uWwKp85/xTDQkE7MzWsTzsbllcDtFRCGP9YNTHY1SfDRogO5U8NYd5+Pe4DsccDET8S257TT + UULKxeDo1JCqmtO+LhCn7BDD9y7vZ9enMawCLSDqsCbuPFZABOuR41h20TowKyjyUP/QD1TQAMn4 + 9JWq0L3IHnEcG2jztOEiuG2dhcl3+gCCMdnST0/p5e1L1XTiPw3SZfZg3/dR8RG7HsBwWxyC865Z + GdRBKrFju2MPYYfW4cQ/a3gtp5ichPKsjY/yNkGUyT57WPo+nNLOFaGwF7fkvt/24Tz67xjuX2bA + LO116AUeXQapW64eHoZPFK5ew1nIKY4GSfHhvs5KWHBSfOxM5nzUNNxZh2OJRvKcmE3nXTZ0/hjD + t4hikqG9B5jEYh1mlyQmkXrb9IvINzXa7iBishnX2WqktIV2lhMSNmfdFTavuwx3+0tBDlpphDvz + M6coui8VhtBc+oUqawcV8/RhBpGVis43qMPI3yTkgOUsnG2iQ8jJ4Zm5Hniuy+NeSoj62YeQ7HDU + JqK9AuQBTiGB8v5kU/7scylYry92Ag9Z47M8wRCr3oMcTjXnUuldQlRvqwLzTN+AaU0iDMrdxmCO + 1r7XZY4/NRz9rcV0yZ7dcdMdRMl67xK6ewxb9/vVCoS8qWO+Fija8jndJQiaxGekuBnhGsixDPEs + 8HjzrceF5gFF/C2Z2KPSlnUW3NlDSjUxlr6MXbUcjS2GZ4yeeBtPWsYv+qMBE6zvLBr0Vzap3H6C + v+tpl89+XXj0oFC+Jyd2LcJnP4HpkkCPuQfKCR4OhbzbenAcVIGYqdS70+N96OA1KlaW85+imjNl + 78DCVDm6nAyz4pQkoLCLLjnz41HVBJGnNayKI8+UpvdWulGgBe2BVxl2yL2f12kaUL19Fsyhatlz + w03UYRiSiSnTBa8LGmLupxeU99wHYK6u1uhXP/L2Jq9TAOBBCgLvTZLT+xy+rx+1hpe0yqmItVtF + P6e7CPW6cFk6NKtGyzKffvWDCy5i1cwHQAbYPYzs18/nUN1C+PMTt+ETZWsBuhqgW8PjbVfjjDsF + ogwc1bsQxbbUVQixbKFff0s5uF2ZiyYZudtiYqqNBHd5VHyCrEP+ovO3X/76P2wU70BOZFjdzyu5 + DxCr+EE30AnBejWeFPk+5ig8RSNYM11KwNy1LhY4AWWM275b8K1XRux7X1GaWB7cCx+Jpfu9A5bW + KDykDC0igW/V61xfDRlGPkyIqwhjRUHxcWDj+zW5nbu0Wg9+GkvbpnHwliG53/n2a0I3MhrEVCbX + 3T0lEEDaPy70dbacdZzEJwdP5mcl932jZFy8DDE8pHSlzcl1tKm4ShG8+/WGKVWx0ZYaWy2UksEm + ZrSoLr+tfB0e7VVizvOZg9myPxPUo0Em6ZKwcH4ldwqHjYUYXoz3ujz3QQdm4cEzpdgfe/5XL7c7 + bCkXDc9+TvuhgJ8uPxA52tra2uuSBOgsP5lFtBqwGDsW7MqXgj+Xa1it2wcQ4O5xDFk4KY07aZc+ + hUyQXXJqgnKdE7sM0DMaROLL9202S40TQxA3KnO73Rkw7Swt8PbSU+IcxbKfp7N4hOL7isl3vYMl + HQ0L/vyq7O92PVV3QIb51F7Y5TaY/RQEFgVlhWoW7jZttZRlvEhfP0QuhI8BXwlZAo8+PLLT5pb+ + u38MbJ8yGYiWK4hGQVEapANF54itH7xPLOjf5S1LytwArOCPOto9gvCPn5qXjaHCfSYbJOJXPfxd + H5oXWWdHsbuFs7xxC5Auispi/z1nq+X16l4NM4MYtfME7OcnTwfTxcPX386GK6dSdxXf5DDCQpt4 + TttA6ZlUFH374Uwl+YbuoWPhjb/GGX351xhWRcDjWnvUWj8pfAtNVrQslGzm9jx5TkhKqI03GnWy + tf1ICfTifCQ//Vj6ou3grelVZpdPwx2xZw5QEOMLw0x6huO3n0qNo0e4J/YrW4hk32CT3U3aPa1o + 5RvXTuERcDaLL/ExHGNOh0hQ6iOx/VNX1Wq9pfDZGD1zJZprkzHKLVDDq8GcHOGs94pPC/389SbO + sL1rU/5GEOq8tCFymzru1PaVCicz2bBrKRGXe91JAxuf1Mw8u4O7VDuowrnrXMoXja0Jjt1P4P2x + XXJUauurDyiVwEndMyKpXv8nHwmaJTL92w/Zzz8NsnmkshPm68xNdgp/eVPxDaNvOQ4E4LtesHh9 + pusub4wYcnm5w9O3/rpjXDRIRvKbye4wu4Ow3lpIqGMwSwiOYDRHtUXyhwA6X5qk+uUXZI3pE0v1 + 4Pe7Yx4O0lr6b6ZpPAazbS051OXxQRyxSKpZWt7xT+8p//igdUheRxkmVnYhzn7frV1C+wlY0WAx + s5vXcKDuI4WX46Gle4FK7pw0Ygdp9vGIQobQFYKzAkGcHRBFZCNVEy7WFp6X5sq0RwP7JeZfDZjO + 3ROjztLcad/3JcyDhPvqS6lN007xkG0+KCMdSsL697zxdAvI43w5ubzUOBHczEnP0vbYhPS0HCPU + 1fYHr29T1BZjskVYs/FMl59+93a9QFVVA+LK6cZlqQs9aakvlEqqJ2ZzPEo5zNXmw5wiLsB63qEC + xPbgEPdy48Aq33sJvOXuzX75YuQmJUGWpfhMP0lwpcdt3UILdDqxVlpk08oS/Y/e6JzSat/vnQBt + eUAsGKe6mi/S4/bL2+RS7nywS4RcBEEpLyTESA5f3zwLKnM5Mita6t/6aeG6kZ7Eg8Wtn7MOeXC1 + mcosft+sjFvVDhoLJri6bZm73ovOQlrZz3ROtr32y29wSQ8DHpT7q/rmYXUftm+dbsPNpmfoPWzA + Lz9m7UD63UlycwDvVkRy7Vxk84udGngR3x5Tf/4AdJ4E+kbVCFYDaWX3huvAt59j6eoGLi8NNwGC + N+QphAWs1sYUHXDVLJnkon9yu8+7zNG97wbi5HUdjtLC4t/6ZNqga9mfenrkVCcW1mA/hMCbgDaB + iKmC7buLdYokpEZopDMQHW3R/SSGRp6VxPc2lbb8+nO6j1sK91XpLnmeepB0do13oK3Arz/sv9+D + GZchc3dHSVr2p2A5/PG7S1q0Fry9DimTy95ZheM+sKApEhVP5xlp/QR6Hf700zbtZzbzXlEif+Ad + cmgdDfz0Hd7rEjC9LYae8eKLg9WmuLBH8+6rtT89JNDeFpWR82XWvv5Qhcr56RG5KOp+al9JAQ+D + 0RCHPI7u+k5ZC6JizxF5B17hYjeLBXZMz1ki3nfhii3hBl89NxM93ZmroEWpBcSdfyV2KTGX7ukw + gW9+JK6xHsP13T0pWpzgycwvX/rypARqT8P+wwPmT2MLf/rFejY+FSsSZYCABRn96fvO+qg6Kqtt + TYyvX+5n7nlEV3BjtHgREK5I9/Q/+f3HD+bRZzFkJNCoyJldz94TxODbT5jLb98hi5YghvuQPoh1 + rhONx55JoVRuXco58iUTop2H4YVJCzvUW177xmsH7Y0bxKhx5Ywvi40DxR25MqLAo0Z/+UGPgxZv + 3Z6508ESb/BZVxpz8lrPpnH76aCiO1cMzNfQr+7zCNEcFinLrngOV24QLZgcOPYnH7BVfqjgy8vw + 07ZU8Mv7kpDxJ4yG8NO39zJYYB6kHDk4mlh1gUFEGHu7lBzouXPX5yVIQGhtKJG58dp3vV1/+UPf + 0nlQSm0eFScGX39B7sW1dmmnKw1wwpfDLkZUrcv9YRdoHw4PppoLqb58tIDpoqkUFGwAy/hwVBgp + 5oeoW3Fw11cWbyAIXk9y+q5/akyKCDt10xOL3Ch4G3NZwOggvOmy2zT91Fr7HH7zB4mPS6GxuPt4 + 0uIcnyRunQosm+TLW2Nux/Tko4c8NhD+8RJ2t5TEXVax4pB2CjbMF9S2mnr5JEtPXRoxkuZH9uWP + R/R9HpIrRQPmU5R08OV5GQtTru17QJvpl1eI6wEFrHljRKiLzjlT6CvIdr/1cgqmA4uf6pLN81yo + iKZ6jW+jusmmiyVuoOGrjIqt/9LGX9795mFyMcZxXabLUYREPiRMNerBHaQZD1A4pRnRxSlff98f + XvWhJcFZdbJ1RHsV0jYyWXa7Fi5fFZiDBQEqXQ2shMujIxKUuQizFFA9m/hxnwNFEgti0MABq1xt + UhgVgKMz9axs2fSsAC9/1n7+qlp+/Ch79gkxQ9mopgTfLCjCqSR3skmr1bfHCS7L60TSeWtku9cS + CPvZEWTid89RG634MEGlxCbD5xGAxSHCEXzzLXFUL8n++PW18Szmmi+vn79+STpcLZdcJDJX3W89 + USe4YmikVsgiceCgatglOfXKtVreLGygTCzKrGKw++FaFxQF0/FM9K//5F2/iaGQ7U7scM33fes/ + yw2snvwdQ8eD2R+/OmFa4+nLj5aE2xz3v/y3NpRqO7tNF3iRXI4Kdof79XO4lnA2gh3tCdiH9MCC + GkVbN6Z9I60u/dW3cL/uWah0VsVNaemIfMpZLPiQbTgeN54KAzW5kdOjAuG6SOuCUpsGP71wBw4Y + C6pNPDPc1EO4fFwtgS9y7vFMwo82tH0vw9gNFuY3rhzy4/2TwjPePjF4h8idpBlTuI95hl+xZLrT + eU8d8NVn+m2L61KKVfTjPUyR3R2Y79WagqT1S2IF8jZcW9MSoJQGM/MRxNqqZ/eNdLRIQAxNPLo0 + r2sKP1rhsDwddW1x7GqB4RzmtKJtWK3HRPHAjy+Tt8z3A6iWBB6BYNMZdYd+bFwlQW6bbgneb8dw + fpTRBLRYMIn1zO89jfmxltRoO2KEIHUXRewi8LQ09OWTu5WF5zVA2rSP2CN7pO4KSnuCPl5v7PDl + vctdWR2JUelK528e/PKHBfhlYzPrhN3sqz8yFP1YwT+/MeRvHoIzZyuEhC+uXzb9u4BqoctYHBwT + cOLyiuBkbRtmigrVWAHKGmFMEPvlrWW69yk4CieZqdxlWr/5aoJqcZDxdpPsw9HgwPKH33z9Q7aO + Tn6Q3kWAaJxKH3d9DVYEz366J4bQXqqJ6fcGtgJPiHJW2+x95VkNp2EJsBZIlcvfFFuAh67cYN7C + SGv0gnDwIZ33FEZiU41XS9rA7UlRvrz2FbKjeRFQEK6EjtUV9F9+5gBzv3Z4/803Qhv4GOa2SEjo + LnP/h8/z2PYZvth9xi6mHMMIqodvPird2fe2KvwY+kJIdYPrvESnFmVm7f7yjLumLsSwWxFHiJCv + KxWEuwh+/MfUSjPjN5K1gZt2OBFf613tp8/ghq07OZxQrvHFWc7RhIeaJPVnCOd8f+yQn+UXvCvz + ap1jV5Zg0XBbYgq9CL78SgR+drvgjRlo2mRFjQPPKtTI+TIAbc7qjoL42JqMCHkIqF4QAcRqUhOt + 11PQpp0mgctOrolfyaeet+LDAr/zrT96vnBzJ4vR1o7ZmRe0np79hPv1S3ZoKx/MVownIPgvil8/ + HhcEMoVf/SSZaE79rAX78jcfIfm9yysOKJYAZS7GxNz1isvZfh39+D/eWac85BvaBUC2swkX6Wxk + NIzSFvhR1LAfX6ESRzZwf6tHdlZGGyzTvUqg9Ewr9qvflV4LDvkrhOxUFbn21asCCsmgMPK+bqv1 + 49UqEtLgQ5ek0dzlFVYcmM+GirliO2tsTI8O2mtSRCfj2YE5hGMKUDW8iZmFvDYklt2BPzycSUr4 + 5cUxOjhiS+d1o/cD2ckYhUzsaBDvKkC/PA11ouUwA00f90/ek8QiYnHJ4UronNsBPi0F4emcrBqL + sWqBR/ekuA8PlrYitC/hu2MrO5iP9ssrz9LveciJnxR3x5PPBKp32tBN3h1WPuY8CG+mOlDpO49d + XPUDfzySAlKybD5udBn95ou34cOFbUXbI7p0lw/ed2rRL9s8wxC8N/zXLyuZ8M3LoDW9PdFPz+DH + 6zawDOqZHL7zMp6DTQLFg5yRcLiP2URQMMBFZwnmlM6pfv52b2YMEiIYny+v8S0gR4X2ne80GY0/ + co2+8xfmfPnB7hAOAkSheCOP9/XRr2vcN1A8Cw1zE94MBfXZ3OD747pf/61Xs3EZU/h4JznxoBn0 + /SvLNyAfep5g6ITrFEn3G/zjF0nJwmm+Shw8HtqOXcIr66fGLhbIn4Mtns34kFHr/blB9p5aZoCX + 2q+Ph1ZAp8rOzNtSK/vTD5XX5cIwfTJt/fIfySLRSlQbxdo374hQxNKH2FIPwby3+yP88nv6e79z + lh89ZNlvntgRX4WLa3E32Ay8RIzLANzFIZsj+OVdJOt89vnyNqCEm5oRW39W84uvdUQ/EsPLdx4s + CB9RhBiaAh0aS3F3R8WPYbgd+D/zi/EUHTt0iiLKwtos+kkF3hEK/pv+macte24bQNF2e2IN1Wmd + 5yzL9/GiSt/5trXufC07wjCZ9kT9+s/l60/R379dAf/1r7/++l+/HQZNe89f340BYz6P//HfWwX+ + Y/cfQ5O+Xn+2IdAhLfK///n3DoS/P33bfMb/PbZ1/h7+/uev/Z+tBn+P7Zi+/p/D//pe6L/+9X8A + AAD//wMA2ZSfht4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d255a441613-SJC + - 9953ed50d950d045-SJC Connection: - keep-alive Content-Encoding: @@ -803,13 +803,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:37 GMT + - Mon, 27 Oct 2025 17:31:26 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-68d9d8b7d-tp5j7 + - envoy-router-848c8bc664-ws27v X-Content-Type-Options: - nosniff alt-svc: @@ -821,7 +821,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "110" + - "239" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -829,7 +829,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "143" + - "258" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -845,7 +845,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_f68c12cac7cd458e8cb4c360aa32bba4 + - req_49dc6871b02e4573ba248f8dd8235c1b status: code: 200 message: OK @@ -1006,7 +1006,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d287e301613-SJC + - 9953ed546bc3d045-SJC Connection: - keep-alive Content-Encoding: @@ -1014,13 +1014,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:37 GMT + - Mon, 27 Oct 2025 17:31:27 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-848c7cfc5-lbhx6 + - envoy-router-bffbfc7f9-76dt9 X-Content-Type-Options: - nosniff alt-svc: @@ -1032,7 +1032,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "162" + - "140" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1040,7 +1040,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "179" + - "160" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1056,7 +1056,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b049f7e5defd40d59cfdde81f90e8229 + - req_5a0ca272565f4a5498a166e70731cb38 status: code: 200 message: OK @@ -1102,122 +1102,121 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 - VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k - 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U - FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE - pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi - dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi - sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM - itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW - suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO - NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd - RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa - bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J - OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we - Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d - sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh - efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g - qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu - 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI - aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx - tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 - U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH - CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz - qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN - VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 - 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf - ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT - k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L - 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx - 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC - 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz - E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 - RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z - vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 - 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR - h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G - LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 - ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts - hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T - iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu - Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP - 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te - AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj - AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 - 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 - ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU - E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t - 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD - SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX - aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E - 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s - F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc - 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G - tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e - lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i - czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ - Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 - ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c - smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ - 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 - CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 - Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY - Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx - ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV - w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka - pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR - dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj - LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD - UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb - F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs - 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi - tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz - oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d - grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 - KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ - Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD - N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY - F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd - l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD - WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 - 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q - QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 - K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw - beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B - lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib - MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u - l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 - OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M - Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS - yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 - ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF - IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz - jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn - +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX - /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H - qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp - ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r - /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN - ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp - yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy - suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h - Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T - n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC - UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f - h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc - XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o - Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp - NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ - 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z - X/8HAAD//wMAybDCut4gAAA= + H4sIAAAAAAAAA1SaSdOyTLel59+veOKZWiekk9y8M3pplERAxIqKCrBDhBtpMoE8cf57hd5fnKqa + OEAMws3Ota+1Mv/zX3/+/G2L6nYZ//7z52/9HMa//+Nz7ZqP+d9//vzPf/358+fPf34//787b01x + u16fP4/v7d8vnz/X2/z3nz/cf1/5vzf98+dvHu9feH829V4I08KGEhNMJlRJBgvTqIHT2upwoNsP + tkjZIVeOF/6MjUWi/bwyvRUItrrQEFQ5JqeD5ijWksl4x2m7ghf0XYbYDTvYcDMxniJONZWC7BPs + ZfzWEDcnkNAGDwaOlnfsT+LBleGw5yhOF29tkMO1ekH9zDp6FI9Tv9j0BPINPQTqFUWGWPRijfJC + 5ptqaEn6xdnvVGjepKNuV3QVG55kgiJ0rvh0f6+LKbw5DWz3WUfTk7xDQlf5IVIuc009z4zQ2C/q + omhXTqTOXUJs7Cp/Uije3bBptT2bn2dC4HCdMd1htWbzNplViCetDLahV/bzOg9vyjFsOqxZYlfM + WA1MwDgKaKgUasHxMpei8sq2FCt+hdigPgRIlYtOj0WXFctJW3mAx7gh6/etqNgNjp1SEX8iorcY + xfIsdwTB9rKnalSe0bw2ANA+V3h6z5x9/6l3Ds5g+jSjW8/nzdXmBkakHugpmP1issT4Bhv6Y1An + WmNE3ILpyrwX7kGr5GbMz+k+hak9bHHoWRQxk7Ib2m2fFuGL3SpeDgF5QRx6JXWILxhcsEUmoLUy + 4KCcNJ/t5kFXZhZK2LZ+FjSlh8xRHPsV07SMep/JJMtR1M4qVU+XI1r8J/9U1iMm1I+mOb6F180L + /Eo4Uju+eojjezEBPZMd7IsL7ZfSE3dwQ0+BmsGTMqb65gpO3FDhnTrEiF8bHIBpdSXd1bQzmHwi + MpS9uKY711HYqObZCr19QPTiPX0mvtqAQILsGe9LfempResbQPWjBHytC/2yXdkrqHZnB3u9Uxqd + wu9zVPuGS03uoReiRU83ZcM7F6xrvodE+V7k0HvVBXv1YTbm8Kbayn2f32hwz2+IvdpggFu9vmHz + cpr8eU73CUQCL1GMYlQR+V7IcJzuXbB+K2NF3tUhQlUJJbYs0Sn4lG0bcOwmxk45vQxWNC8Pznyw + o265Viuxq/QF5JcC1IyMK2NHGZmwGceC7oKSocktQIfzlfnUeYeywVrrNimydhqw2u09o1egymBm + kUR67qAxXjy4mUJSVaDHt3arZpkcMiVqUIa9mvqG6M+LrjzbSaKX8hD64j3a7ECrshBnMTLYHL+4 + Bo6u+8Y3sToY0+ZHyxSDJxpOo3WI5niITUU7vBycuc4dkUYQAnQl7yu1H8e7P42Ow0GzeXs4krRD + zIDPZfDSFdDtZXuuhCxkntJ75YW6YpJWU3HfevAcng62NEktRCnTZYgsZ6K3ohDQAnycoSwaEdbK + 0qt6wS1l5YRDDxunfo4ngg+Jkr7Jgg08asXiFkhFkUQf1JO0fTxswlqGXP4xqcm2gz/Q7SBA62Q+ + ToInRkK/CRdZIf2egG25aILmniHxKfnYyZU1mhnbJGilx7cAvGfPupeYB7BkXEitKJJjJmWeBFWQ + htQ5yT2af/ZRpEBvXumN+LEv9vNmgrw2BmxI4YgWo61uym27ssnE6tYguy5Q4cCSFquoynz+ZhqB + cjvJTTCUh9BYho23wHgR98GqnDRD7DdZBGV5kfCunHSDO6QXW76dpIaeMLZixuvnXHn7K0S9xbsa + jMx4gd2xUYIFVaKxeJX/gDpYzsG66OK4M9vjDZGTfMOatzTF4nVPFVzaIey6J4hf58xsUTbYBnUA + vHgR3UsO5D00OM5cvxp4/SErCnnvaSi+Jn8cHSeBKnTOn343fX7XBQ/A+7yhTvDcM65LcAj8Tnpj + q36E/XzShFbZLqJBWGnQfvnUV0lOl5KqmfDyF3MlreB4GzUCJ/mNWHjd2Mqr91y8X0+rnv4IPwOk + tv3E+dKefJHXzxm09qOi1lf/LqPigQN6j7Xr81kt7cWZlAMfhDR5E8GY9TK+QbISNOwpuVHwqUxM + iNk0U600pp6+E2tCjyzDNOJ0t6Df9Wmnmhcs7k+ClpjNJsx77o6jR7rx6Vff+oqzqF+WdTXzvSAo + k7zF2HscFZ+MEkyA+M7C2mN7qaal1jmwLnyJrxBIbGJs5uBijHuskYJUzLI1FRQuaIJ1rZ0r7nnm + A0Vb13eclpFvsMO1MkF5ZjcaRsYdzStuLW80lk5YZ/WPP2XutUWn61Gne8U3kWjvD09os6TH1+hw + i/lGWBHAB/NE49dLqYi16gCMSXvTkNO9eHJWGOChSFuqc/q7YHv1bULpWSeKMS7jJWXYRO6VxWSu + H1ElKNBLIBZFRz/667OcZC3M9+6HemYPbDm6Ugt+pO+pe+pJTDDWGzgtHApmjNt4Mh/iCoF4GMkk + vkJ/9hdNlTd7rqCXN4mM+WqeA1SHryfeY/wsZvmkSGAEyYPu3OaElpRtTfj8HuvFRkAT8F0G+Hqy + g7UgnCs+QZ4JueUN9CSRmvF9l4QQCaJEvvOWP4d1C4PVjNi4NGP/eR+C8lA3NJDwTWP8ya2cX30L + Sbcz+GryAihuIUekqOTRGG5vLwRiPAbleoaePc/jAI5wZsHS7Q4+X4smgfne/mC7pntffET9Doy8 + msg0Gc9YGNUyhcs5tbDTda3P3lU4wZe3rtrZi/loKG2E1usBa2fr0b/7pzKB12wugTje7j1xO0mH + Z9c9CHS7nSFm2k8Hyiuy8Vbxfxg56rmDPnyC3dB79EvMNjbczJ1AXbSEPedcdF1J0UMm5KNf/Ku9 + EnjvuYrQrvipJq18gyK3y4Btz9oh4Xludr/8ktr2i43raF79zlejfswV65+wgJTvfGpE0zFe7FWy + gmfGZZ/7TbYwNgkg2PoSNNF6QtNuRg+4P+VTIMXIQCw9OC004vykR8bpPdsmTx3SLXj0GMRLMSsg + Z+A5kkmPeFSLWTV+LnC/xreg1TzMZsUMV8p1VSukEplfcdXkEditBAsHRZEiyjM7UbRiQ7E2AlRE + i46rL39SQyJb9OFlgO6ovfB2vN0rNqVRCgXBSTCe+iHuU7k20Zd3rNIg/SK4XQaydhyoWsgUzUeZ + M6Hnuz2NrHZgZLpuEphpvcUp9yhjdnQnR4ngEeKvPoq2xXT4zAe6u0sbNL8LFirPBoU09bUHYl/e + 0XG1xk4ZdQbD26oB1Rwo9pg9+3MYKDZ02onDhsj6nsEIuaxwu+Y7jwxG18L05Sl8ksIeTctQpkrb + 7WKscQcb8QXxW7B/+IjqmVD5jA2GAD840vHOda5s4XshVe44tLHGOLP/zMcU9KOVBTzjntXCXiMH + xowO1Eo8vV9sQbjAfVpjskmpXMz+U9BBfCgG3ptyVvAfvUKpOHc0Z/bBF+dgFMARCkaxF+8Lfk6t + VJHMjhFAz9xg0ZCbEOjHNGApVQqyXdkA9XR94lAN7my+jrRDfLAc8LYstz0R3GemkPNiU6tcP/sR + nX7kjc8WHrtlafd8310i9PVHlkQaNsVD0aDkHb3/zWtdV4bQWd6L8IrvIF416A1Zt+VNA+k2xl00 + PJpvvQl86jMf9byDMVdqbF1Nu+IaYb2DDNSKhlj1kaC3mwv65ceu2PbiV9/Xj9WaYpoa/XRRXA++ + 72cnVosxjhsjQkGtNHi/nLNPf15XEr+cdOyyI+mnKS05mTuHZ2zBSNhXLyHXjkB1rHZsEg+apLSK + bJA1DDN72fu3rrj3ofjV3zkLWatw28uB7svyVdG9BE/5y0uaK0TFpOXGRbkG05WIpx7H806dbEWV + 4vuHr8biw7sh3Pfpip6Tn2e/aGW7QiX9wdQMTJ7Nh6tsg5wJO7z9+CFGtpvkWw98fwNfMaO9AKof + pU428dAUjEMqp3zWL7nXK6viXmK8gzZLe2qKNmcsUviSYUpv6+ABShPP724Kv/1JTmg5VPNcZ+lX + /6h72Ur9zLE+Ba3KQyLrts46e9+qyodHsF1sOMZw+mgUtMuAyNHjgthXL9eL8BNAjEo22PtSVRKD + HqjlnlYFvRskgGPYet/+qTrL1h7KQ/bEQAieBDHVIDe0e0cjNS5OXH361QbetTZYy9xdv7zaawAu + rQuM7cQqvvyJ+Gf+xPtLHfa/erDBxMD+2TQq8ZFrw3d+YUsQVtUoaqsclAursU/Tuhq6aheCsqQr + Mly4wB+f7YbAz1OKf3lYbC9OiA7+eostxj37yRTfN9jvZIXuHkzwl+XFOOW853q6V9FUsClAHPr4 + A5x2O+zTMM0beXLyLT1wVGXcoE6pct8nK5x33dbnnNUW0IyHLc6ZPRvDXGeCEvyIAXWvplnxjzwb + NudiU1FrPefVsvbzlYQn5YTtBzcbMzpRGWkFotS07RrN+f3SoWDTp4Qj78Wf84Z5MCX1Cdu+pjLW + 7A/h13/j6HI6GGwJ7gIS9+lCNZHtKuF8fzogyVs/EL3ELSaTcvDLY86bcMYUbk8mGpeTTXcATsGG + uZqUbnia2JMUrVgOqWVCqCIR25o3Mcr1vICExOoCdH9fizm/Jy3MVZIF/NVs+mXlP1ZKv1a4YPTm + NmaW6AMc1pVIlG7zrKZmdSSQviwZu5dt9uHbKEA3275hp9sRf3pOIVHW3IDx73z85CfKqm9s7NvJ + TzGaj/UFlXvuBztNrxr8MA+LpOrsh2LG6p7lzeJAv15zgSRpQcG+/gDO4ZG8aWr34trf3ZBGuzXe + M9ZUsxq9LuhyyhRcAJ7ZdPeTHSjhK8U6qOeYsOs2gb5cXakj3du4d3f0CVBfa5py+k/B4sE00UOR + t9iwzjgW8hPfQtO/IurWq7Za/OKuonjeuJ/6tjET3ViC6hZO+H7ZHnsWv8YGiWtDJvxbWap5a4EK + ebNJgrnWpb71qugB2+vJo1onP/rR3QlPYBWn/erVlJPWU+Z1+YNt7a0j8Q64Be5Yujg/XUK0yKef + DPpKsDC+Gm4/lbkfQMmSB95aAo2Xonm1KDmWZzJ7yS4Wo+OqQa3O4kCO1gGbR0dNwAo4F1/L8tV3 + Rz3ylMYMFuoCjhhn0QZQfCnCoA+iUzytY+eG9lMZEHKSHTZKdykHvAjrYH7UaTVhNXjB530H0tcP + eUX9hHCwt3T38Xf8oc5esIPVNWgDA7HO7xL918/uu41ecbW4D77zKFC6ou3nRzQEqCihptesab95 + Uwv25p3jy9IK/sBQlvzmZYaKjrFw9+MdHMm7xFa98npyci+d/MkHcJqdsMHT9J2AeU4OJCin0p9b + 6z6h1uwQDsRq9iezvd3QmdYxDrV3jaZAWqnQh84R7x+vrF/00lxBJP84Qa9exZhWFO2AjnsBf+ZD + zGjapkC5D13HQRjzgjwKKJSdNfVq2hssdZ8eiFsqYyfJbKNlbCOA8ngKhH/USc8++gU/pdrTnXS3 + 48UWVhe0xVFEoHdUn1vxdoasx2uhabPfGkslPnbKaYyfGHebsmfe4qjou7633abuP/mSBH0QDb9+ + ehbdp4SyNmU4WLzCX2pbCyG1zScuuEPJBrO9XX7zPbhLZ/Sbj6BS4rHB0nc1eN2sKl//lqtDwubX + ag6U/YW/0usIQvVewZCjpl7nwebL2+1OmYBsepvarK6NiRv2qVwEaYK3UbSJl0fUD/Dxp9hzmwyJ + WXb2oM6VNz1/1tfM63n+9ROf/CuqFueiqWCE3psa9ePQ887efMAzXU3UyQTVF6Y0F6DguyO1Prw8 + arm3Am2+Oh++Mwx+vs4cfOqJXYmYjDcm7wL3Ea+o5oePeGotEkpd115oUmyOjCP4nMCWW3xcnPp9 + zJeeSNCnPniLlkPPvZNr9PUzNJj0Kp5C7Ddg/4gRmexXyZYpzTm4/Yg2Cd74bgz9U4hg7V9t/MmH + +k9enSmbKklwvEi0mlWDXuT1U95iVWjBGO9w69AgxjxWLY+hL+/Bri6vXz/d8x8eUL7+yUYVb0w/ + FkTQpTAETApHxrLMd+TQbvCH14OK3fyWwNK12Xc99cMVmKcQ9CAYQyCyiV3TFA7e9k6IZ4ZsCQN4 + ffUNa9Y5LObtPn8gP/RqwlHnZYznH9cDtQt+Aiou+2qOjusXqtVWp16zr/2PvjeQ1soTu+X60bO7 + 0QRovXA/dM8dVLRsE+kJVthFhJGcr7gwUF6ocN5AfW/RCk6fMoBHet9SLZqEmF3NbCenqabTa6kv + FTukZgNc72lk4/Jp3JqP9WrzmV/YicojGqLr0MC2VBHW9w2wyba9J7QRZYHIOK0SaloT5LWziXHR + sXj57g+gy/GCVdct0Ht0nBSRk3QLZo4+0IcfBOVweKnYBlWM58bWFoUuAsX6he+Noa3aCG7nKcCH + xDN71qwuO/jwJ0ESMdAITSqB66/9YJXxlsFf+cSRllXi4EtRnNj7Hi0BIKcfCIyjbLx/kmmCrp04 + vGv2ps+uY9NBNW80aoqvwHg7FlHh7l8//OBnPnutpgBdl4zQmJ7K/sMTjmKL80JdNEvV8GrTHfoR + Xgb2TrLHlnCbmhLLr9InfzJ9/ua/BzT6mhWIMO6ZmCDXhHH1w1OP1pW/YOw10B0tM9hc6qVfWusU + IVWff/AWxhHNy9AKsoh3OT0XnVB0FHspcue7+eUZJJLtnCjGpcjwV6/n+JqaSORI/MkD9IL/zr/z + vWPBaF5WxQTEkBRnsH2MFd9AZMWtM4hDp6QhbVSfNZY8QVWuSmyf5IGR+MXZSHTrJ7YB/Hj++DtZ + P26z4GXbFuKnNE6/eU2weSthv+y6QId92AXYFVlbDdH19VIWy1IJGuHULyc3aZXP+sVBjFQmxq/6 + JfPTNf/yccye7XMAJ30yvC2Nfb+UZU7QZ/1Si2zsnt+utjc4jYcn3TYXo+fIfAqB680y4MZxZVD5 + 1Mjw4SF6wWqNeu3MVrDFYfSp1wMN3/xwc3jufv3VfDUPOzj7a4OayfnhT6fs0Sqltz0R/vpUq998 + gVWCRgOsvtgihrIEr+3t/JmHXTV9+hO1oBb4GA9OLK796Ibc8vn6937HO7Ej5ZMfkvLDCwtdr0O0 + xK6Ecfno+7m9aOGv33ZdPi2mqz/t5E9ejF37+IiHT34OxLZTuk9+1F68R3OA3iOtyMiYXc0x2zS/ + /2cvLkG/XPi4Q1e1swPmLXXMvvttF1gdyfPDu7NlZzqs0KOhnnTfFt/1Cjo8Mqrvmwti7o4+0Hc/ + 49Pf/cT36wTiWyRR7/LJBGSSZd88g6xhfKPmBqmDgnrdUDdrvGr55HfKGExHfNTypmDf/DPe3Sa6 + Lddazy7NzZM/PPfdn4rJt1+OA9vQ3YULDKFNuhBE9+dJrbcS9cuXPz7+lgxiFRmLmyRP5bP/FMxS + GLBpGd7Jt1+o++2/jz4qwUki9JtvzF1iT0AnZUv4aEqKabeJ9F+9ye5SgZiaaytlfdDv+Pt8yuuH + DFb9y6bx1dz2k1eZD/SZnwQ+vL/4xUmHB+h36npJG88KLDlUk3EONE16xoO/aXWUgV5hzJhVzQSH + nCL0L4/mF476rE3iBT56SgOttRGv8JYEmT4XNPG1kg1+16tIluiOrC7c3l8E3ZA2wXlKg0V8UaP5 + Pl/JkYJ17W0iYXMvJdguvEHVdIUYcZLnU/FLGH/3P4kebVdgjqqG7+XDr7hDfbC/8wir1LGN5WqG + g7I6SenvfBFTFrw2WfJTYbXrX8ZMcCaAxYVPfJbCDrHSE4hM0JPgbz5D5mufAArNkV56RzVEZSQZ + 3DZ9ECzN/u0zXj/kX36jvkQqttSiuVOS3jtQ3X492HKU0Qs+/ERWSq7FTVTrppJrJ8D+1egrlmm0 + ha5duADYyzPEj38ANQ+3GIvLWP2+3+NO+vRPyhn0w+Mgw+2C/a5491QMl0zRykdLFDSn1fCdV+fy + ccH7eDALvivGCO167xjI2WlvsPLMBiUBONN9vbJ7kb3qVIaf0x5jNPPVKLoXWTZusUrWwYSL8cvf + M79TcWFlLB6/+6lB4t5ooA4RWopm6CDPB5Nwk6HGImNSCpOTbalhie9COGmC88urN7OXEYuOwgsi + 7fyghhTu2W8/++VqpPhaVv3MXlyiaPwuo3s0C/1S3ANPdmTfoFYcBMUcXV82GsPmhu1Pvi+ef1QH + uqPx+ubHxtwIqwH+fk8F/Ne//vz5X98TBk17vdWfgwHjbR7/47+PCvyH+B9Dk9f17zEEMuSP299/ + /n0C4e+7b5v3+L/H9nX7Gf7+82fze9Tg79iOef3/XP7X50H/9a//AwAA//8DANq3PAneIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d2a0b8e1613-SJC + - 9953ed55fcf0d045-SJC Connection: - keep-alive Content-Encoding: @@ -1225,13 +1224,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:37 GMT + - Mon, 27 Oct 2025 17:31:27 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-x4vxb + - envoy-router-86c9dc6598-5hk7x X-Content-Type-Options: - nosniff alt-svc: @@ -1243,7 +1242,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "114" + - "279" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1251,7 +1250,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "154" + - "332" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1267,7 +1266,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_0e58d951e926475ba23eb403cf1edefb + - req_4c6d87f98744421dbf02640618cd7933 status: code: 200 message: OK @@ -1428,7 +1427,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d2bca291613-SJC + - 9953ed58ff3cd045-SJC Connection: - keep-alive Content-Encoding: @@ -1436,13 +1435,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:38 GMT + - Mon, 27 Oct 2025 17:31:27 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-84b9b6f796-qhfts + - envoy-router-848c8bc664-gbwwr X-Content-Type-Options: - nosniff alt-svc: @@ -1454,7 +1453,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "88" + - "103" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1462,7 +1461,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "124" + - "162" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1478,7 +1477,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_91c59070544d41ce81a5cf93d13d1ad8 + - req_3e24786a7ab54ff1b7e691237224e1e6 status: code: 200 message: OK @@ -1639,7 +1638,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d2d5fa01613-SJC + - 9953ed5b08e9d045-SJC Connection: - keep-alive Content-Encoding: @@ -1647,13 +1646,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:38 GMT + - Mon, 27 Oct 2025 17:31:27 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-85b94c5584-kqp7z + - envoy-router-5cf9f869cb-kcbgq X-Content-Type-Options: - nosniff alt-svc: @@ -1665,7 +1664,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "88" + - "59" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1673,7 +1672,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "108" + - "82" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1689,7 +1688,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_c535dca2371e4950ab09191f6a2c236f + - req_f452a279c1d74b67afb1dd1274b4ed94 status: code: 200 message: OK @@ -1735,122 +1734,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaW8+6Srfl799PsbJu6R05SVWtO84gp0JAxE6nA4oKiMipgNrZ372j/ze7u2+e - 5MEKxmIy5hi/Wf/5r7/++rsr6vI6/f3PX3+/qnH6+398r93yKf/7n7/+57/++uuvv/7z9/f/W1m2 - RXm7Ve/Hb/nvw+p9K9e///mL/e8r/3fRP3/9Td9ePsNVwAW33t4SEN3ADcQb8WquHtwUnh/SCR9w - pALu3rkQnDLKYxW+p2EbVqNF+/K+JyZI5nopyxJCGE5XbJb+1aX2q7PhHSUs9tZajnkv1jvkTqGK - c+Vgx1xoXnToTpGKfVXzwBKMsJGsNKHBmzc/2uZXUIfynYXkOPYCWE2YjXA6XnOCG6y5bHE69qi1 - 5JEYqYeGVblsV0TfQU6MjOu0pX+fdKSsLw9HCdO7a2m/TJQ2ekouLbEB+0rmCJ7Y95VYfC66y+Gk - qsg6hMeZTzt9mIzryqKI8Mr8SA4e3c43nUF3ueKJ7QuM9ko3noWlkLszL33ugPKnsYWT9NLncW8L - YHX0QpScI6pJiBYXLCPvpNBw5yuRq/M8rKmfyzCRrhlx710AJnKZUwBsSyCOVUSU7+xnjvhOQTPV - mhZsuu9LMDi4pwB2MC/4y9N8wEaPdHL5jGrBh6muoqeqVsTfufmwxrjModrW10BMS93tKrCW0FIc - mWDU6/X0ntUZEXQasb16Uc36/m2G+5c+4rtvei5/EvsIojBIiX6yxXo9NCxEYRX5wUm+NDE7nT4h - lKY5xKr6eIJVyD8pMuLGxY5qty6N7nsZLZdDRIq9Fg6syCYb2htnPIvZMtMZHvkU7dtzR2w5Gdzl - cgx1NEdBSJzDJRjYpZxbGJ2ZGMu7bXEX6kmL9ClvClZdXdCWrrtHwBhHjhj6FBc86+5ayG/Nmxwo - 41Hewa4JvOW5kvNLGur1nl0r6UB7g2RmZNacqSQVfDzlA76l9b4g2y0TJd/VcxyMeeWuGzI36AVh - ge+x/q7XV36Z92fesElePZ4uXWKSwyexNOy9P37BfSa7gm5ELgEXtzXdLuDZI6FbacDoJgHbboll - yK3sitNYhsXqHu4d3N7Tgxh7v3aX4OY74FcPmXgD2pzoYYA+SvYglr+lgMb7NwN5pifE0U2FCpNT - 6fASzGOwjr1A12bBJpRuDJ3bsP+4xJ+GCO4XKSIGqNNi1VEkwfuzxgQfuLpeW+KJKJzTE9b8rQPE - ArcK7karm3ZAyTUuRf0DtYCBRIlxqk2HUFmQJsgEewLnUK7f9Ag92Vgg/vXmFRzrQh0eieli5/xe - 4jq47ntp1ccTvogBjenjpoTo6H0oznh3iSehzxZU6HYYPFU9p2SJ3xnQdq4cCOVH09YXnmXIhmaF - byW9D9uTZ2d0EsIzUaaTWfNS1pWou00ucfnVAFvv9QyMqbUEaC/6gJMJ4aVk2AnEXFXdXcWdBqFk - GkZwjICl0exqRtCagycOoDTXi5pgGU4mWIK7c9gGKrJKBEddYojGFWMxRbtWgrNGCFG3i1uvMnnz - +3jsZByDyxusD6sXwSevnYBjHhhsbik9wFfPcOlqH61WdnYIlKNAAv7lnGr62gstfF+0kmjDcx8v - 5jnIIEPxk1jgcgJriqoKMRG2iZ4tD8AWzguChTEqHEr3utg4Y9/DGSTSTP2toyMztCFsH4czUavn - zeVCMKVQeD+EuZO7XFtYqJhovTYavjqBSwWsXBNI7nKA09t+0rYb5RLYXWhCrHRyKV+ZTYC8c2HO - y6cTtOWFqwp+qmw/r8aoaayT+wu8MZWGDXOY6XjtdR7WYlkGohLbdNKyJUSF7F3w7SCb8fK6Hxk4 - PP2e6HC9ahSZog2Bs2w4eyhC/ARbLCHlRVvit4QH3eHkyNCcyiHglihwhW2yE9jje040cLHo9/lf - 4U2ZDax+9Z1gJUnQoLs2wZFxoATDsEK/enfDAhf8xFkOdD7CcT7pEy0WwTBL9HseW3t4xcvz2Eo/ - fcSXe/koeBMmHoiTLZqFdBroeGWXCjWXUsCHIH5p3eWY6ciUc4ekYjzWSx2OM2xzpg7o8NwX9Dzu - RDjcjtuMvno8muvzAXwsH2dawycYn15tw8noWILpVa235FAwwMBdjLPH2P57v4/Z7YJNotux8ISd - g1pRMWZOvujFhtaTB5nW3hG9ZdSaxnvC7K9o83E247220vFmS+COXiSQuppuz1WEUKrdd8ANZ5Gu - KOVbVDZTiG/j50OpXnUbYAfRIsVO8VxOkGQPJmQ/4+LZOgOvxqIKnsXBI+oVb8PKQr2VHrwH8Yl5 - EMpuyI3A9MqOpJQ6DWyXQQrgdc+m5LJE0B0LZ4KghvmJ2HazFtuM+xQW/WtHDgvqKT11fAKdR6kT - wxiPGnt0jymQpjGclz42gNB17gJOQnQmzvH0oryjnzPYXdaEGJ1qURo+QAAno2eJ78SxxuP1mcJo - O0vETktdI+7+YkPYDDGxMlmkM2esPSDQXGYkSJu7XZP0Cgek4Xmv6IrLLdoCofTZLti9pE1B99qy - IP4w3//cT5gkqYHuXDEkGaJjzXqllUjQrTrsvpvWXRKKHiA78a/gBh2x3liT8uhCiDHXN6aNN85Y - O5idrSe2F7GuV9ZcUsl1hJ54gnN152//gOxqAqxVqNGIwiYN/NYjDqLkOPDiAQTQX+M3OXwUOmwW - iGRYqUsW7L79ihMDcAXMcNqC+X33AGeleISzNbQ46LY9XVkXmvBgW2og3idbG+D74sHp0g4BM+aq - S4/GSYLBbLwIbupIE5ALJBgoio69z/vg0qTeWnhLRRGfSloP6xh+ZHisVW0GSkCGBaXUhMNV5bF6 - xdHAgaop0cJYFbGyHV9v/OmjowFsMQ6a0gHsT/+UsKFEH1/lsLoXbELtw/gE70abLrtXl8IM4w3L - r8TWlp//uOqiSbSTthZtqGQ8tDbnEkiZhAoiNhcWHD5GgZ1H9arXKg0dEE0Hk5Q3v4rJUhY60DvF - Jvk6yYAdgalDb0gROazQrjc+b1j4vnchkT/dWVteSRtBTVAJUZwdpsJvf97FfMGBwr7c5RzlIWJ8 - NZnFu3qJP1e9foDj2bsRd91sbXtEuQ5fuTdhQ5u5uMFeUQF1O6tE57xmmHb9uwFM5NvzDu5OYDmr - FQ978VzNzB5xLl39TwmGWnqR8AAc2n/9hPTb/1uEnXii5w+EXLPhmdfufs2JOt6A/1AHokqfIxB6 - fpXRG0uUhJtQuLMhZCVwA/oMpOrx1Gh/zh3w1dtZNKN22KylTRGxnAdWplP786sqjJ88Szw9XGJS - lm4JujCz8PV8kMGGn3sJuuknxM4evV26VUkvGWzTYKfbBrBghfBg7zIK1tBZq9dge6hINdcdds7x - s6D2SZwBl/uvmcIxoRvr7hp4PV8YgnX+Bajt+ioQCnIMJEIMl3++jQiGeVYSrUL6Nw9cenignUGy - DnoFnXZMKmFsMcRVAjzwyBVz1PDPC/GeZxVQBPUMkuspxoenAYtR7rsGfvsHDvqrGXM217bAT7CB - rb2m1pt+3jegzEBP5NiZKeU5twRXwS1wsAPLsO64IoL8Dgzf31fX03lcROjlpoJ/eWQbVr+BQpTq - xMqG99A9r1EDNqN0Z4aQ2B2TeV3g3DrW/Cl4UVvRepxRK43yvL4MORbOQt1A5IUlOeqTUXDZCjsw - mLxGDCNTXV7orxFEzJNifUBywe8/uQkfT/UQPMbXMqybtT2Ah59n7Iv70J1//uSCdx12zOvJpbdD - FsGEr57B7tuP6GeyHqBnYEJO9qevSduoHirP/Uy+67VVYg4bAlH3JEptNfUGva1BF6Flg22wa/d9 - MTPp5yeJ6s01IN88AD83zyBXPVyKcXdaJDE6HTPi2POdjp/zq4Od3j5JRgIebI3z2uC6PhJimc8g - Fm77bgNz8b7NyDwD+rwd3hHMKmBhXB2tmDUip5fAjqhENda+WIr8lCGuPFyDV6uPGpXvnwyMNs/9 - 0Z/vflTQTop57h6j6a7x3edBW0o59t/5q6YWf9kkwJQmUdCzcbcXu6RIfmnLzLQs465aoDc/vzGv - SyRr22//r+Q4YtVXI7DtXiQFZ3HT/vjP0WwRCx83/Yj9vX/X6B31Kfy06TKjcyW4lH9dZViJuyag - Xz+59YoQwWfheiQQdpd46/yXAy1anHBQPbA7nrRJ/eWPgNFzBtCnMjAQY4PBssCL9FONxgOtN3aH - LSbFMd1umSQtlpR+8/ij2JQLYqDlPH18WqJAWx6dfEXf50/8YzgOc2ofN+SdLyZOpuZaCPwjDGGU - yNegcfdssQxpXf7JIwbfiAM5dUwCl4L1yXFLmmLk3KUB3zyNr/eL5a6bJT2gGr1fxDSvb42+RZSB - 9PIc8VnMYsBXadxBQHsJ68Va0aVZ3BY95rM/8yd0olwufxhweyh1IAbVSGn78RmQVXsLB7v3s17n - pG/BtkUOUfb7Any+3ycdie5iM2sfRXtN0hJ+zFeMf/5lfvV6D15mxGPtFgvDvJ9P7B++EO7ZpGYl - MU2gt9QrNuRLUyzVamzAWMGH4HVLte1UWg6gRc4S+6s3rKUcZfSRwjdWWInRPn7miTA/p0dsdYKh - beFRDoFUxGKQC7uhWBXHleF0aYYZZAM3bL+8P9zhNN+r4zvetupoowz7GzbmJIop/hY7H3EO/pPn - 6PuS7zNp4XDaWcSlO8yV6Ku3P/9MaXTykx8fwNoLz3TMuW2G0eSa+NCSjm7Jxc2A4nWAGPWmFOzX - z8IQC+yMPmNYjLKUqdDkknyuC8UDQs3xKjj4MYeVJZLd5Si/+j/1HK4iirdQyVhYarNAVDpmMY1I - d4Urw2UzYFIUk6iBG9yPMCe398zW41iQAJSKBoNn7uGa6/xnB8fcWL96TWr6hJ39u98s2HTvDlVr - NkAopiO+dJNeEyjIPQxdgObdLfrUK7+UI+Rs5oPt51DT+TzCDJZF8yKevLMoVXZyhE518sAmSIKa - PRhRi/zpTGZpj94aES+zDY+ix+OEvx+LNRw4ScqkjcOqY1yKXz+DSUp1bMY7SVtPQeJB6bNcsO3X - WGPTzuqgRyIWq3FyK0jP71WAmJrOyz3nXDItgQR763TAemqlsfAYxRl++Q7++pd4vSU5hPoXvh3C - 44Nu190QQBsHEnYePFvTFwtYWEyRFPCLZhZ8djybUKVvZqa3+FxzEqNs4FSUK1Z1C4EBw/ABeqDe - ZkZhDY0tnImBY9dGWM2hMQj9aKTw9tBqgqOLSKnZ9gkokHzG33wUz2C7Z9B3zXxmXO2gsex46aC2 - XNAMzzcCNq6NRiiZloGtQbQ09sf/RlgdZjr4TrE8r3kDTyOZsH2iXDFr3RDAtDFTfOV53x1+POAi - NGwg+kLpUnB+br+8REx/IjV9x2EDa1mIg/3l0dDuhfsKPhn+gXWmsGvO8J1cQrdnTmRQPn/8xP7T - f+0vX6DB+NEh6ew90dPNcJe8uDfgtbPRXA3XSKNpbDPw9z75hJHA8s3XkESMSfxe3sWrgoNFMj8P - Fl/LWYxJfz2J8OcHvjyz4HavmoVFdZtnyqRKvFSjo0p7FypYm1zTXeiRrySFqzVsFUoOtiuORiSt - vR0I904G7LX3eBh7Uo2Dz62r59/7fgxfA7563rumZ6FukbB8KnJ2WeBW79kMoGd9PjNvrFmx/PL3 - N0/Pz2spxeuQzgy4K+uGTbfQ6dfv2kgWShs7WRsU/JKRHrytpSK5bj7pxD1IBNp2OeCbdwzAer4d - rjAS4UgU7uUB4ZuXwM//XjsoFTQ7qxXMXo06C+h8HDZ1n/DoCd1XwLuE0k277R4wKkQH3xLf1IRx - cG349WvEldQ5pngdeagn1nFeksNIV+XzESH7hiFO0NWhQj/66R8ekajMrtjGcKwgHwnOvBck3R1j - djdKDPWf2CYBT7fXHuq/9eSg6E9tlLpWgtmrVb96fh4+7/osQysexED68rK1MrsZ9I8bS4J7fap5 - Nh0iWGSmFew8KygEPVpTaId3IViaU1/QFe0htIK7jtV452mcLMUVsKIcztfP+6AJPx53RYuPw7w4 - x2t/rAOo8tGeeCxr07EushzyALEB8+U/5ER79fc+zJzbj/Vkv4Q/ehN839+Bsum8ABD1z1nIBmvY - 9owfwXLknsH4AaI7vz/OFW6HTCVnrUkAZYZ8AerhKuEfP1yL082Bqaj6AfOmBSAtXXvw5RPBYN9F - jaOCzYJb5rIz1UQOjKhgeMAOkkUOuzuol6VsG6CHbk6+/S6md1SlcLsL68xzaax9/Yb8x78bqTDG - kxjQEvrr8Y2VI/zEawYfKTLXrA4O9ulQc0L+TIDL5xO2Ttou/vFOoEX6HWdk/6qXwWRV+BDu4sz6 - QuhueSG3SCgz79+fM8McwUd6u2OHEEPj93ulgoxzvvyZP3x4ZxURXK77GY2fA50JUbz9cnGjYAPJ - o178TMlhDbMTPkrifpivOlGBe8qSWTvNsvanvvBxkf7MJ8bgvfDITFIFGyXVBvqxqhF5TtrMSD+d - h1l2zAfs5K4n52L81KRKzzbK4kNP1P6WxOOPb9ln84N93O4oeVS+Cv3MgUQHjuxydRGL8MevtULx - KNsSJYcV6O7kJnlXsJRlyqBkQMLMZosM2DpsZthWfISV+x0WG2sCFu6Oo0qK8nN0t+zqbPBwxBOW - uYcxCOW0iUizag7/4ekNhxNw5J6AWF+92bos4yGNoxobPjwXdB8/PJQCqM99PFy0VmmeHdrUNSQO - f2LA/OUJKIfhE1sfN3FX9WCzoJCDCz7cy0e8BG+RhfvNDYLNn5SBTeb9BlWmcLBZij3ov3wFfvMC - VjDjD+s3DyEr/ojzjl6rYRmNlUXfesVO2J+1xfdPM+zsKiOYPNyYX7J3B7nPTv39/rgPhHcEC+l8 - JdYgvt2t6BcVff0w8c43DIS39rQhHZzjvHz7wbgwxhV+8zRRMDMNI4j21e//YP/le6RtHA/a4/GK - NfP5iJe1C3X4m2fppTYNy5fPoXQM3sR7jKzW5QOWwaSMiDgic4iFssYe0CP2hLV40YtFuH9aOO/C - FcfmU465S3pPAdfN5m/eMrCrvQboXLlHYrS6p80IyiI6sHsFBze/KmisxyMoSXXF+PrOAe2yJIW3 - aiy/fmQtPl/9gqTxVVJWnvzjUwycblU1r1Lj1MstIBX8tMmCT4P2ASujHALojJWHPQs+NbptugkS - pTnOjEor+uVRLJwjL8RqpHzza/9u4Hn2L0SuU68g7SV9SJd4/5hp53XFZod+CPiWKsR8cU1MRfYQ - gW+9EuVhqvVyOwwL+OXrQ3iUAW2TfEFeris4O97bYvpM8gMiLyrJd15EF7WURhgRViEX8zxRcnBU - HnFI2gdCJmeUPipD/vVrchzOPRizdbXBV6/n58Os6mWXsz0abH2Hzdve16ZfP9ET40iCli1d8uVT - 6CbsjwGUd29KH9GtgVufF3Pxbkx3++oJst4vgl3BYOn09XvoKUmfr595a8TBZgM19swSVaNB/e1f - LNSoLs4wW650vPuvFOp2PBCrhoSu1WhUIE6WiGR2WMW//AOltbOJGinhQLnwwSLa1HdinhAHlos5 - 5qCZPz3RfvsrXqoOutuVJ2UednRlTB3CLx8hLjmgesyLeyvt7poZbJ311DrqSRv04jvGnhklg1BI - PYTITt9/+P9MlcVEuAcNtl7SMIx5cW5BoTshtvzSopybaClEx1v0rX+5GNJMH9GP/2a7PCm4UkSN - VJkjxqeC77Vvf9oAqPc3HBamqdVlkMh7+c5DjFUfxGRyeh0yvc6T82oNMf3yNRiJzIgP5tkHbebF - 6Z95iq/oRFsrfvXQKVt5HOSNQCk91jK81D0KdsKy1pST1wyqq25+ebuhcb95aV6ENlH0yYh5qAYi - uE/vMwmqB9Hocek7aDm1P2c3/UYXdr3lEC7l/ut/5ngVdbzADpUdUb96RX9+I0ggIPpNJ4A8V7aE - 9aNdsEvYMf7O9zIYHc/PgBMDo2BLcdPhuBcCjB32Ga9u4qY/3kjMeHA1KmUDhML9Y3/nhdaw9MoS - gThw78SaucdAts0z4WvnoKDO5J4ucVL2gDeWDv/qlaOCzEJ4L+/z/r6Rgqp1D+GPH+CTWsfzGDYV - kp3+QBRjrH/zbB2VigIJrkPDHcvZzOFvfmwO9uqukZP34Pf+nb/zHPZ7M/Cdj/7xR12/yQv6+3cq - 4L/+9ddf/+t3wqDtbuXrezBgKtfpP/77qMB/CP8xtvnr9ecYwjzmj/Lvf/59AuHvz9C1n+l/T11T - vse///kL/Dlq8PfUTfnr/7n8r+8X/de//g8AAAD//wMAo4SyHN4gAAA= + H4sIAAAAAAAAA1R6Wc+yzpvm+f9TvHlPmY5sUsXvjB0EpGQRdTKZgCICIrJUAdXp795Re3pmTp5E + 5IlY1rXe9e//+vPnb5fXxXX6+8+fv89qnP7+j8+1WzZlf//58z//9efPnz///v37/91ZtHlxu1Wv + 8nv7983qdSuWv//8Yf/7yv+96Z8/f10+uWB4Y1DOXxaBB8m79wL+ePJrwWHzFApqcERKttUAl91H + BWTvE49sOk/5ulCzlS1ib4m+3+B6hmcGwsp+50g9hNd88XHnQNPzOWREthLzZ7Pp5NjrNHRjZyfm + ruhiQGXfakiz3j6gTgsbSWjYKahC9NYX63g1YL86Mjn6qwAWLHcjHIh4IfuE6h6bIrWX3+9kJFZ/ + lAea9NVVNus1I8i8dPqMH09DPuiyjzL/2XvUikxL9tYyJcc4cQAfpDiCggOuxJyeorfubE2T+cw/ + YDoXpjdGRcjK6aqZeOQTv57B3WDkO9I4go4G0J9OmrLw2VQulmzpPnyev4Xpa6vg5+d5qYahIj3W + W01uu5MHKNy4Kbx2wZUoSMIDXdJMgW84nomBnsibJL9IwXWsBeLMZaxzQAszubmEEEuO8/JWFu0l + eDyfTsGmsbOcy4y2hOq8GiRxWC0X1oOhyfcoq0hwKrJ8znZMBt/7PA8E7qoPvZcvFeTUTCFK2BoU + A1JhOTKfE7KqMKq50Z4wRM9yRNFl9D22iaUI9qJ0JEoQiDUlbQPl9dlnwXGWm5j128sB1lf3gCxs + PcBiJJdUTt6dh3QmaL35+bgocvl+RyR2xsPACTK7ytlsIzwjCdeT5KepfEtBR/bXbPAWVlcM+Xjo + D8SWy2AQngJuIRdoMUJvOuc0qwZFYl57FbnzTojnoScRmNySJ7t9HOdCFaAWYkN8EWTUe50P+lwD + Z7SbSbyrhpoe6NhLOmVMEp6hVXOG0rSQJ2cHHXJmO4zQfh8ks54ztPf0B5jDLl0hwE2OiqZ90fkh + bJntW1kcko/9w5u1FGXwGt6NDx72Oc+0XQUPR3oOxBTVdOX9EMvvRWWDrTgSsNx2ugFP0WFBCdnB + nPbZpoMpfyyJ84xqj/ac7AIozWdye3USnV5mGchVOJdkt9bpQBOz0+CRWITsRk+lnJlXBlyrCAdg + IgKlm+3GgvQSrbhb/bc3cSSP4BOlIXFMOx1mTYgkqMA4ILoJ6nrWF1+UDbgeEYp3b2+64X0FBdG/ + TDI/ZDqnW1Ij1zCDRG/eRzqt5TLLysRipCHoUv5N2UgOHrpA/OPDz7kvXrk48JHnUiau9d22lWQe + HlE0pjRezsXjICN5T1EmRXM8ytfzLEfiIQ3eLzmLyUBeDtDfghJsLVOP541WKPCzn9FJ5e5gbkQW + y5LQnIi93Vo1h9yukHfB3iMWjC1vtW49A8/ImwMuKvaA7dzZAlpHBGKbreGthadD+HmeIMoqW1+0 + Io2gWbQP9OOvLiAKHOd8Dc7xtA70aiwp3NCMIUp3GD3cdBYDOe1EiOW9vJgmKYe3ug8VFNn3F1h6 + q4dgi+67gOYEDXP87BuA05Gis6A1eg3M8xlg/4UDvsXHmlaB3UKVs+/EOjvbei3m4AxDSh9ES5TU + o7kQVTIMBJv4clwC9jTxBmDnR42StKnzFW/eLbwoBwkvSvuOx0i2DjA+7lKi4f7mCTu8T2GxZWX8 + tt1MXxM5tOQXFHV0vvAeZUP9msD4dg3Q1SomfakKLoECthPifN4XIicJZOeEbCyvgaAvp1CrICsc + ABafka6zvrmfv/yDPP2J46mmDQ+lKLsHjFbu4olEh4OcMt0ZHUlv6Ut4URmoxFNPdqpw1ZdSFA14 + OV5XFKNArZu8oZK871BL7NUQ8n5nuwqciTUGgi7tATu0YgLVwM6IJSg25YWLeIUzx5vI8PM+x2/K + HuRUIw5x/aer48A8tPLEeAFBVx3l/F04uVBy4gx/9mO+4IAvZEe5kwDe+2e8zs+WhwekblCq12Uu + PB5sAj74wZIXDXRa8aGSNY8XkBkIT9p1rmjIXoldcmcvY70kmY8hb/FNwPbjNqfhfSPCgt0ueKOp + ORg39aMEx0N3wDKzfeTkQWIDVsWZkuB91egSRYABju/EKPLXVqdErSroxfsLUk9vJ+ZeZhfIN+fm + YKksjJxqj+MB4q7cEHWotHqx5TmVmKu7R0dw3Opz2k6J5D3VJzETt9HpRB0Ipd5ug3lQRTofL1Yr + k+V4QLmSv2t6u3Q8sPvEJonn+B6b7w8+dJQbQXd5dAf+kDkW4BXTJ8bMffCxGJV05TuIUulFqHBc + QABOOhuSkIt0MIuFG0CRPackPIQwH9EjUMBJ4o/EfrpLPo9ln8KrfdyQnVz1dMaJlcCE4XWivLID + 5byHmoG3OSaY3nITCIT1RiAJ7Ynot/xJWS21z3DujglR29GuZ1nNIzhfJJa4Dxjr/MF/pFBqiUQM + /WHoWKE7B6p1HJOdfxPjiSnCHnz5Upo3a75KtnWFVxofMBh71WNVuRQhIzMXpKrXJp8r8zDL3J2/ + E0fQDJ394BuWk8aQQ3IKKefeXo1Ub9YOuXev9ZatuW+A8gjy4LRhxZgKCuVlNbzb+B1UbbxmXNhB + E9wf6MvH9KNf2+COemLp69UbNWPBsAWrhALBr+k480kDxX0WIj29hgMXekMA85q8iL7f0WEN49WA + H/0IoOC+aq58egnwZY4LulfrA353vo/Qqu4tskSwpWu0Hy04jSctAIzq6kMi7nx4kfo+oJ2qectZ + PmKYTHJL3IMf6cJmP0jwGt4M5Kz+zlvut7WF8s4XUZFe6mE5am8FOnxl4A3kyTBPL2pBO8h4pKhJ + NLCPK1vIj/Vef/SIr6lRvA1ZtbIYBZPuAqHvijNMIpES03oXw0zyuwWHwtoTLUQ7nd7xOYXqQihy + j6KjL+fifYDh5mqSncPPebMHzgobyb0E8saRvUma3izQ1fCKVOQ/4yUGhwC8bk+LZO+liqfQG3zw + wROJi1ABfJ5YDnxuWpkY/MOpKWgMFsoIHogdhid9Sbs2gGAICNHF6qCzc8fxv/3ha8LTm5tYOsiO + 78Z4fcwnvXsL+gE8H07x8aOOvph5b8CwGyekv6hUN42VV+BeChpxdL8Z8Hb76kCo7HZYTNwjoFIf + 8ZCd6xrL4MF5s829C7AY0ZPkgefWHRjrUfqu/4nEboy33QXCNeYDvNB2X/PhE63Agm1P9mkYAn4/ + PxSZuxaUXJYpH6bh0RWgWYRHQDfGQ18vZe+CD99iYbttB8qsbSrDY1si9QzbYd3ZrgarIqPEd8Gs + E7YBFWjn0UYFJgpY1/wtwXqrHpDt6i9vDi5cJNXO3CCrywawXASEwTkIVKTYvF4v51HR5I8fRWg8 + PgYaKA4Gm/H9xMv7ltRzREgJu/ubIY4Pn2BFzV4D0nSPgrXmTI/LIjOC+0P5w6PHMcWlhzPHmuTU + Kn6+TjvcSppeb4i3P6KBqxMxkz98Sqxc14ZVvSdn+K6eCQowA4cxGsQGum7uIOOuWjH3LqweFMlg + IiSZWj0Pl0sDHre4Jy4imM4OyQtQ2UOOrKGZB3pjhgjWh/v4w/MknxQRDn6kfvZrp1N5uDU/v+5t + m5f3vt/WBkRt4eJNeIs9wtsqC7fMauExqESdYinEMnOzIZ6WnRJzm7PeQSubC3KbYzPnkswfwQtK + OlHeUPM4tRkjOPMLi9SDpgycmfcWPD55J8AXdx7msawSUMfcGfkDPuQk6fsrCItXh4zz/Zivd9oF + ML0UZbD5fN9lXe0ruO3PCbluXn1Nxmfly9tOw2TnKMd40TbvVdbzc/ndvzUVgqiRh1PKBeJEWq9Z + ClGCzXXoiN7iGpBLt1V+eI2G7eyRTrsEonG7ncn+kJb6yF6eHXRD90HumsCDhU2OK9R3TUKMqgti + jnPPPJh0WmD+Xpr1M/eECCb32kJ+drJj7mBkhcRWtk7QddvnK1dzZznxd1nQSe9RX3W0u4LP8xG1 + cfl6rXdRBfU9ILhmAsuj13paAdvxObLu5bOe3fC9Sj6UrI9/bLw15pVUNlV7wcIAGG8xlKaR0XVj + Y7HkFH35rv+4u0xIqewIfPMBsGiqE9cedECcy42FhjmHaGcld31xhI/+NfyMpXkn5HPPXBXI16QJ + QPt4gTXeChE86BufOLvmUlNGMV3YlPoR7cQRgYnu9xrUboMeiM8HA9bC85gvXtCeHyS9CzmulPP+ + ukH+jUHxckUXSxLZLP3k8TJfQS4zcJDkPcppvqfL8CivcphKD6Lx9zEf3fCxyvvLYqFrSa45D9zy + AD99QUBEhR2WmakL2E0u+ebDgVQ5TuD5oATkEnNNjitUlqDYNSHKOmDna73LSljU9pN8+EFf3sN0 + Bosnjygd1Rj89vdX7/YJrfU1qfJW3vL3ADOcfaT8Lbww4JOnA553R7reDZkBUv62UHAfH/U6pG4L + vn7MG7dX0HlnqZS42PeRKj0foNUuVga5fhsjXb+sOfYdYwWTW/FoV5dCjllkivD8YDOSO/ek5rWL + dYartlmQWxZNvh6G4wrMNH4Th5VTnaLzywXCvWeJ25h+zj+kGcpgPnfIx3c57mh0FaFhriHSdM2g + H3+WgKt92gTh2RqG2TU8BZbzecAsF3EDrcNHJnsb542v2ekVU38IHXkvqSva6XWkz+7dqYBpcztk + nYY0XyfxzG+HU8KhwzgRbzW1ZyHLftMQ5yHxlErolnz1GO0wxPVodxr+4UV/iB1dugWcAS9dITHu + gpqzHz8LG+bOYoaTD2BidceCzg3e8c8/kCK1gC8LHLJVbgOmp8S1UNyfQxSjmxxTVetYGBiuQILr + cq5pNItXyIfbM57lQNZxd/dXGJNDRs7DnqUYBPfg23cE7Y1FtdBOjw6O82X98DWpf/0Rq0QC3njJ + Frz3ttWB57gPUc7Zho6LYsYwSzwG8wfpXa97lZmhTNs32rViXWP1fj1D0VWeP39IqVhGX75CxiYP + ah5ttEr+5DnMePQVT8PKOPDTJ6BL2ob5qoZcL5lewKFdtr/k83U0ethfNwZCjS3F8/bE+jCExgV5 + sod0/qPfsAlbDu267DaMh9POAt/1pGBkwTRKgQQ/+o40lqYxL3EihsrhyCDV2C/xNz9C+THfiBcL + 5X/52VjGEvKcO1vPhHgsVDa9FHCktzyW5CcLrgmVMf/ITzWLuZAHYs4vSN/EEAyZXJagnpgrlsLc + 1PkPXuBGd6MPv5kDf/G5DNrMUBHbY0T66acSkIDr6ZfXScSSM/TfVYbF1d/pQju9O8jcTIily332 + ZmEXjTC6nkyEzlc75psugHDTpS5eN6ubf/MvvHinCek2z+Xkkw+gt1YpKpZyD/omXQ7yJ/8Ei8sU + 3spc1BV+9jtBkCf1GpiHBv4fvX/qHzxX8HYPSvT1Z5y8610J7Z452RfWw1sLeXJ++ut++oVFbC8G + LDR2S5ACTe/rJ8BFODCYlGUUL29fZKBihi4yjBZ49LRyEAqgNYn/9Dfx6oQBlPSzwqIY7kR9gg+T + hcZBMBGqnkou1HzNQuw/MV5xrsZ0v74lqd2NGlLuqQlo36WZlOFYQw5r5x4dDusof/V4uwkUIIDG + 5yHYZTXSmqiLx3O9OHIXqwOKwPEVL42q9/J9Ez7IGT9Vr7lLrQvD4tnhpRDO+UevZnhTpxmTz35c + D7eNBi7rcf3xzTyfSkcm795BdjkF+cf/YxBnRkUyh6l0oucoAvLT2aEDkoLhq49Qn/yReM/BB5xj + 7hzw9b/3xpbyn15SztexaMrhMJ9Awsun6dQEUrCllGbqvYSX0XdRTliTCvun58AIeyHZRTscLxt3 + lL6vMWfgkS7P+iLCa3o+oItcuZSTOTmFyv0coNhyNzlVMr+CrA9cvKam4eHtlnTSZz2Qvl54Oqes + b3z7C7LbBCUdS5VnYLvDGtr7zhm8jedLgZ/+J5j3O5VS5nHugc5uWaIK+2PNXc55BK9D6wTwEAQ5 + x3KPCHaNIARrsem9T98Hf3g32caPuc/vAQqN3+LbY9rpnAJt5qt3KFW6U7yEXh3Ap9Nuic22Tj19 + /CYsRXMN1k+fPXFQ0mAe1Bgzr3msv30XtIMzHzCxesrX95mZwfnaPzDbLfawWLacfvNX0N8s0fv6 + Nbi1Z+3DnwmYmdSdwcoaEtK5pfZoUMguPB+0IJhpkYPx04+DQx3tvv+vC9u5Y4ErDSwW7AcHpmYq + eDDxhU12ywRq+hTaBlwKciHmp99dE7Km0OOFBW8+eCH59ab8/HtgyWNMxrNewNeotkhbtXf880fs + SUOBdZB29Sd/J6Bp1wnplruJF/dGGiBF5zuKP/l94flGgwUhIp6l28GjfFK2MjxDH6Uf/7UUXBFB + lTPvyI5TU+dy6VHBTSZckFLJExiYeBFlAykinqfa1cm21ozt+NhEAbtKZb18+nO4MN0R3S7iFhBx + QhowQxhgs5oVffajsYKxPEpfv1yT7VzysmC0KrI/ffl6P1ejTFSrwVsYnwC59XwJxUXpyXUR3vX0 + 2p0cmc2PPfHeUUJHTlOZn/7sD6mirwPYa3AntpD4+qR4/Ld/vJfcb95BuZeoZjC/KndyR8sVzPDM + M3LwUAUM5VgBrKgbGI6mFaFd0cN80bf5DFdN0cg9nUNv9YJshZH5mtDu9jQHPnutojywiEPOuB2+ + /fQZVKkJiP7Jt99+58c3amifcoqS2Zd9U9Rwc3pn+pMpwk7OZhMRzWgYML6NypDNonmg/bQk3ny0 + RRG8IT4jvyzL+uM/WGgywj5Ybqs6CNm8W+EjENzf53fDJWyh37oYOYd6D9YLVkS5IJOIl6GqhkXb + PGY5zKI9MmsupctoPzFEonQmLnC8+KencVdryIo4EA/31Y5g6NMr2Q/Ky/vlR6YWjkTzLAT4OQmd + bz+CJcg+hmkRj1co+KFDjGWYBuzl2wqq4c0OmBCWAxmfvQ+Z4H398HkZU8dRHFhWQPrdv+wYasgB + U72IYi5c/fbWuwG+8yhVaXcxm4fIAd9+2ygTY1jj7t3C6D4uKPnMuwTvtUmBKbgW8dTQGPirqway + UQ0hMfPFo5gzFSibk6oidImqfO3GugTyY719+oFsoI8Hm8JPf/DxxxQMn3wM2/apkSwKlW8/JX31 + EG8//Pnh3wqSSpzR+b57g5mVti5Mr7yP9E++p9KVtYDnlSEGw6mi6yaiM/z0kSj45MN1HYUGbjLu + QuxPfiY+bFnJZdQSc+2p85Ys2h+AOenqjx++8x7QNZxATOmgxfOrymdQhOGFqCOnALre+llm3ERF + V//V5mPLKyUsi7YgTl496Kqr/fjbz9HhgnWiwWiVDaSJgew7Zzq/Ek4B0VIyJMdMD3BnPwyQk8zD + 2HlX9eLvk/6Xb1yO28dkv75F6HWXkKjDUuRj/KxaeWkeYcCZzYt++7gvPvGnj/bW17pUsmA+ZqRn + W7YeRe4pyQuI3sgB95c+Hi9WA3UWsOTrF9c4gSzsPUfEdBNfKY4UM4W76zAQp9NnnZrysQKjaUTk + NvCVTvikbCB4QIfsnccBzO9IYeXXgu4k4GwO0P1pzMCXP+wT7TxaG1oHfQXyn/lkR7/ztl8/uvci + uZ7C/t5Ll8i2AlqEJe2/+A8EipD6viUDl8IMQlXXXsTfjzdvYnXFkg+vV4PsrT4MY0ReFdCi9oBM + s7GpsD3W6Xe9PnhWhr6MklH+9b9DleSf+UEisScFofMG9vripAUPVut4Qwdb6ep6s6/F7YFJIbLr + AuhE5Vzl659J1JEhpuY5NyB8ZeOPT5u3oEcwWiqG2Pue6MvYLf6X75BDeoHOba4rkJcKGHC2uNTU + lh7Jty/49GumLhw3FwiPT9Yh+zk2Y6GLsQjI1TuRPX4RnaKt1EHuYts42emFPt/oLYOesW6Rtvg4 + pqp1n+EOMB2xGaIOn348hTZ3BiTo9gSQGSS/PIvQp8//8idkuOERyJ++hZ/61fjOz5BxFx7xGlp5 + CvW5vRCzZz19lSoPfvkGnZur4613WgaAg+ROFP1SDmPK+hbsGAYEbdH39Xx7Mj04socOub1SeMIO + HUSo51mJt/ctyWl0lCDcby2d7Cyzjkc/air59NZ2BFmo/s6zDTm9LYC4YW565OM3v36HfPJETu3J + bUFjlepv3sPNtxMEAVO+kB9UZ69/DuUs//2eCviPf/3587++Jwza7lY8PwcDpmKZ/u2/jwr8m/Bv + Y5s9n79jCHjMyuLvP/91AuHve+ja9/S/p64pXuPff/6A31GDv1M3Zc//5/K/Ph/0H//6TwAAAP// + AwDdKMPn3iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991b1d2e7bbe1613-SJC + - 9953ed5c19add045-SJC Connection: - keep-alive Content-Encoding: @@ -1858,13 +1857,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:38 GMT + - Mon, 27 Oct 2025 17:31:28 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-canary-6c65c69d9f-kj7zt + - envoy-router-canary-546bf9cf6f-6975z X-Content-Type-Options: - nosniff alt-svc: @@ -1876,7 +1875,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "104" + - "485" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1884,7 +1883,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "157" + - "502" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1894,61 +1893,84 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "199999993" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_a0aacb8a883c4ad3837e7ff0cddd15b5 + - req_f17c334fb6a14c93aa51d3a512aa6408 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_2: negative\n\n------------\n\nI - don''t like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo - not directly answer the question, instead summarize to give evidence to help - answer the question. Stay detailed; report specific numbers, equations, or direct - quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt - is irrelevant. At the end of your response,provide an integer score from 1-10 - on a newline indicating relevance to question. Do not explain your score.\n\nRelevant - Information Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer - in a direct and concise tone. Your audience is an expert, so be highly specific. - If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Answer in a direct and concise + tone. Your audience is an expert, so be highly specific. If there are ambiguous + terms or acronyms, first define them."},{"role":"user","content":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI + like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not + directly answer the question, instead summarize to give evidence to help answer + the question. Stay detailed; report specific numbers, equations, or direct quotes + (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. + At the end of your response,provide an integer score from 1-10 on a newline + indicating relevance to question. Do not explain your score.\n\nRelevant Information + Summary (25 to 50 words):"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "959" + - "897" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFPbxMxEMW/ijUXpMhBu0lDqc8g4MCF9oBK0Mqyn7JuvePFMxtSonx3 - tBFR+SNOo3m/9/SkmSMNJSKTo5D9FLGUwgxdXi03y1Wz2jQ3qxuylCI5GmTXNe364/v7w7h+8/Du - x/Xb21er68/j+uGeLOnTiNkFEb8DWaolz4IXSaKelSyFwgpWcl+OF7/iMJPzcHTXw4h6xQBWg8OY - U0ian0zimIJXiPEmJsnpEc5s6YOJhV+omXejU9UMebklc9cnMTFVhDmMw1ghcg4zdl7THkbAms41 - Wr77Gp/jvOXF4hMy9p4DzG0oFW6x2HLb0OmrJdEydhVeCpMjcOx0qky/gODbBA4gx1POlqbzOdyR - Eo+TdloewUKufb2xFHzo0YUKr6lw96ejufAKH//HLtm5AGOPAdXnbjP863+mbf83PVkqk/4uXbWW - BHWfAjpNqORofmL0NdLp9BMAAP//AwANi/dpNwIAAA== + H4sIAAAAAAAAA3RTy24bMQy8+ysInVrADuzEL7jHnvpI0QBBD6kDg5G4XjZaSRBpI25goB/RL+yX + FFo7WQdtLgKkIYdDDvXYAzDszAKMrVFtk/zg/bfPl0O8+XQ3n+SLG7mqZx83Pyd0JZdfyZp+yYh3 + P8jqU9aZjU3ypBzDAbaZUKmwjmbT0WQ+PZ/PW6CJjnxJWycdTAbnw/PJYDgfDGfHvDqyJTEL+N4D + AHhsz6IwOHowCxj2n14aEsE1mcVzEIDJ0ZcXgyIsikFNvwNtDEqhFX1dE9CDpZwUUiahoAII1hNm + SFFYeUsFqShTsLSApfkAnu8JLKqcLQ1c1yzgOJNVEEWlhoICbdmVBCnBHNbwJkQFx3K4vgUMDiSR + 5Yoter+DgA0JaE1wmCnE6qTwn1+/24LwJULUmnIrQiDmIykJYCYoxTkGcu8gBr8DLeqEw9pT109p + k1uZmBJhlrNlWIbR8HRImaqNYLEobLw/ATCEqFiKtPbcHpH9syEVB5Z6lQklhjJk0ZhMi+57ALet + wZsXnpmUY5N0pfGeWtrRdHrgM91Gdeh4PD6iGhV9B0xHx714SbhypMheTnbEWLQ1uS61WyjcOI4n + QO+kvX/l/I/70DqHdcdyMR+/WqADrKWk5FYpk2P7sukuLFPZj9fCngfdSjZCecuWVsqUixmOKtz4 + w38wshOlZlVxWFNOmdtPUfzu7Xt/AQAA//8DANo5IXIRBAAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991b1d307ddc6807-SJC + - 9953ed5ffcd7a230-SJC Connection: - keep-alive Content-Encoding: @@ -1956,91 +1978,123 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:41 GMT + - Mon, 27 Oct 2025 17:31:35 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=RxxoYMdai9qlrUR44uVK.9fmzNrrilWS2U0fVECvdqw-1761586295-1.0.1.1-LC23ZLRL3MimyBQJ_snKX4q1qMZCaUGP4d34iCAScxNwDzGjNxiJmWg1btNrYDCQ.4D1x1xTY06C9w66kwOBrruKtAoq6XQvjPEK.Xi4pNU; + path=/; expires=Mon, 27-Oct-25 18:01:35 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=OIdbYkJcwhSq8pVNxdDLYN4BXqH.3PICV7G8j.urRhU-1761586295552-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T20:02:40Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T20:02:41Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T20:02:40Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUK3iSbX4FqfpP2FaGdtU - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "6812" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2724" + - "6856" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999808" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_7c077163852e4b439c50ec031c35304e status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Summarize - the excerpt below to help answer a question.\n\nExcerpt from statement_1: positive\n\n------------\n\nI - like cats\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo not - directly answer the question, instead summarize to give evidence to help answer - the question. Stay detailed; report specific numbers, equations, or direct quotes - (marked with quotation marks). Reply \"Not applicable\" if the excerpt is irrelevant. - At the end of your response,provide an integer score from 1-10 on a newline - indicating relevance to question. Do not explain your score.\n\nRelevant Information - Summary (25 to 50 words):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer - in a direct and concise tone. Your audience is an expert, so be highly specific. - If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Answer in a direct and concise + tone. Your audience is an expert, so be highly specific. If there are ambiguous + terms or acronyms, first define them."},{"role":"user","content":"Summarize + the excerpt below to help answer a question.\n\nExcerpt from statement_2: negative\n\n------------\n\nI + don''t like turtles\n\n------------\n\nQuestion: What do I like or dislike?\n\nDo + not directly answer the question, instead summarize to give evidence to help + answer the question. Stay detailed; report specific numbers, equations, or direct + quotes (marked with quotation marks). Reply \"Not applicable\" if the excerpt + is irrelevant. At the end of your response,provide an integer score from 1-10 + on a newline indicating relevance to question. Do not explain your score.\n\nRelevant + Information Summary (25 to 50 words):"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "950" + - "906" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFdaxsxEEX/iphHI5ddN4ZYb4FA6UNf0hII3bII6ZIV0Y42mlnHifF/ - L2tq+kWeBu45wzDcI40lIpOjkP0csZbCDF1frbfrTbPZNrvNjiylSI5Geeyb9vrt5upO3r6E2/v0 - cCi7Nu6x+0SW9HXCYkHEP4Is1ZKXwIskUc9KlkJhBSu578eLrzgs5DwcfRtgRL1iBKvBYcopJM2v - JnFMwSvEeDMVSZr2MALWdDa1vPgaTfAq1rwkHYwOMDFVBDXPc1E409Fnk9MTztaHjjrueLW6Q8be - c4D5GkqFW606bhs6/bAkWqa+wkthcgSOvc6V6RcQPM/gAHI852xpPr/tjpR4mrXX8gQWcu11ayn4 - MKAPFV5T4f5vo7nwCh/fY5fd5QCmASOqz/12/N//TdvhX3qyVGb9M/q4sSSo+xTQa0IlR0tZ0ddI - p9NPAAAA//8DALC9ex0fAgAA + H4sIAAAAAAAAA3RTwW7bMAy95ysIXboBSeAES5zlNgw7FFt32IahwFwEqkTbXGXJE+k0QdF/L2S3 + dYq1FwPW43t81KPuJgCKrNqCMrUW07Ru9vn3t4vs8mA/1v+y7/Ilz+1FQ18Xy9vLQ/ikpokRrv+i + kSfW3ISmdSgU/ACbiFowqS7y9WK1WS83mx5ogkWXaFUrs9VsmS1Xs2wzy/JHXh3IIKst/JkAANz1 + 3+TQWzyoLWTTp5MGmXWFavtcBKBicOlEaWZi0V7UdARN8IK+N/0DHe61Fzj3ZYiNTs7hZ9c0Oh7h + 3XIFEmCVwW2Ilt9vC18oFi3YoJfdslCAh9aRIXFH6AHeQqHOwQZ/JuDoBkG6KA55Xij4VSO0welI + cgTtfZChHzEUymOlhfY4LRQwVV478lXSj8iMFixx0pv3KsOtQyhBagRGL5QsDUovOhJDG8OeLDJY + iomF6c8bBH0dOhkUWtQ3GM9SMZYYE8wQsdLRJhvcoqGSDGhPjXY8L3zhF9nppUYsO9YpUt85dwKM + g/ZxXj0i988BluSJ611EzcGnUFhCq3r0fgJw1S9E9yJj1cbQtLKTcIO97GKdD3pq3MARzbPNIypB + tBuBTb6aviK4syiaHJ/slDLa1GhH6riAurMUToDJyXj/23lNexidfDWqrD+83WAEjMFW0O7aiJbM + y6HHsohpW94qe77o3rJijHsyuBPCmMKwWOrODe9H8ZEFm11JvsLYRuofUcp7cj95AAAA//8DAL7X + bMVBBAAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991b1d307997fa72-SJC + - 9953ed600cd815f3-SJC Connection: - keep-alive Content-Encoding: @@ -2048,43 +2102,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 20:02:41 GMT + - Mon, 27 Oct 2025 17:31:41 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=EAXV_cVJmdUi9F57lbXtZOzH_5hCkx1uWFOiQcgY5Bw-1761586301-1.0.1.1-xJgiVTMz_YmzfwginQkaZAwtPelSpFil.XCnalRkDelTGCLxxKZovISZCBEbW0LDxhWAR.n.hyXqiPXIlgkRbmlAdFq7EKY5cK0AAKKCGYw; + path=/; expires=Mon, 27-Oct-25 18:01:41 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=EUshPNSJzIg8BglKEmkh27Oql4XFSWhHXASFjBu80CQ-1761586301174-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T20:02:40Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T20:02:41Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T20:02:40Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUK3iScWjso2EXTkMacgF - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "12363" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2832" + - "12435" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999805" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_d4d77b52657345dab5fe51abd790b2c4 status: code: 200 message: OK diff --git a/tests/cassettes/test_partly_embedded_texts[False].yaml b/tests/cassettes/test_partly_embedded_texts[False].yaml index 8aed4625b..3986d4fa3 100644 --- a/tests/cassettes/test_partly_embedded_texts[False].yaml +++ b/tests/cassettes/test_partly_embedded_texts[False].yaml @@ -41,122 +41,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SROySrPm/vsVJ87W/kLmqjo7JgGZCgEVOzo6ZBBBEZkKqBv3v3fge+N298YF - EFJUZeYzZP7Hv/766+82rYts/Pufv/5+V8P49//YruX38f73P3/9z3/99ddff/3H7/f/e7Jo0iLP - q0/5e/x3s/rkxfL3P38x/33l/z70z19/Z43L4PN1WBxq28cCuiAe8NGIYb18r2IGoUJ77JzOg7Yi - Qb4g6Sm1xJj2HaBDM67SUPucn8biS5uQAVxJ44cP0dFnTRdlfqoo2gkKTnym1qgpqhbiUaMRD4Uh - nfe7twyu4MJgWShkhzbTmsARnU7YksC7XqwZyuIzvxvYwKLtsIKk7lAWJB5WerDTqBXELSjujDrR - Pnw4tKivJVDT8kRO7u1c87vByuASkdkv3ySjc17JE+p2nw+RxzVxmOIrlvDdU8Nn33ip6Ru9XSCK - OwPr1WsAtMZWjMLhPpLDa56iCeYX7vd/Exs7TL2cnLlBnX2m5M/+VKnlw3PVPwi+q1y6pFkso4xL - nkRe511P4XGyoYrdHXksRHYY16M+qA5xS4IhOda0viwWYizhgK/+M+rn03XOUCk/Rxy3paQRYPEX - GNohxVp6f4HVzLIKktmWyT3zTErc8KuD+rsep8o3op6RGcEAyjXMidl+R0qhpBdQjcwbcWur7Gnp - VRNKlSUip+QxaCTpBwuiqnyQAIEj4F/NfYXH4XEm5q4/RWz+oh3MdF3yhe08+SoHNmRjaSKHp3uJ - hkr9dqi9NBfiqeOrpufqPEGZtWqS5ycDzO7eusBvtl6J054vaY8kGqI3gBRn7PfTD1rvMeBOa0rw - d9AB81lfNgy+9Z7g3qARtctRh/iULkRjd6bDDNHBkPhHXONH/HZ79qwiCwCv5ibghQEYIt9w4fx4 - AKymJhuR7Tyhe3NXor2kTqNh6AUw1ocvjjT/Cji6kytU6MfuF4/aoviolEYbdcTw1kxjPWoV8Jn0 - wC+NL3TWJnRXOJNvSxSLRf28rQcuhc7iW10E2ui3JAFMfP5g63m2NTbRwxm5YvLAj7yZ0qmycAk/ - fmESuxx6ZxIgK6DD59NNMxENjfXt+w4s0ThP149bA/Yy3AqQxeEHH2tEU9JM0h0GCnUmmB7eESv2 - gY20b27iY6Ur/dL72IWL7abkxFeniJLWuYORHWys3nytZvJKHnZbfk+f8OUDbmZWHXLWjiUex6sR - 7QsIofqMRZKsgh1t8ZOhup8uGDfWAJYcPALJnE8yvgnHsuce/F4Wc71TsCqbTjTsjbOE2uKY4wK9 - 1YjVE20HHu5JwNYi1WBNzMMAL8bYEF+/V3TOZ1r+zt9naPsFPH/rG9E/TSnOFzdLx9/3pbsgxKcg - m+mSvXQOJnV0mZA66jWz5osNjcZ/YcVJfTCLb9+Ge/9pknAyHzU5R50E2sLJJ/Y1+xHLr3cbjuCs - 44PSeT3hyvcLwinopu/7jlI6m/4AUHu8Ee3AHNMV+S8V2XKdT91j0qN1qFcOivnDwMdbVWtjdYgb - OGpJjR8AHxzuG1UJLOLz1afK2dDmZkExPFffB7nvzk+6lM0pRM7JePn0IVoOveetDZVDHEyMqzXa - 6h/OOuxXPvPh49X2q8qoMxjSTCFnMalT1jzNM3o+gyc5HEcLLPXuXkIvLW9EDYa3Q1XiSjAf7ix2 - s4pE9CCkMRRQdJsKsTI13pn9CU55tsOBFskpzSNWQFyvE5JqkZUu+DkmAMQuJuG5c2q+l8sK8UtW - 4Jg9UEprLF/gXZdtHxynBKz7q9PBC7YLjA2zBLSJ9xNErXPD/vW69PNxUgw43jwba/DG95RZ5RZd - b77ka7pb1GutHEoEM2smF/55TFc7Xy10A+kLG09Z7Vny8Auw1X9yXs6WxsXT+YVkieYYe3lWEyH8 - vuDITjbGvHuk7PEe3FFpwTfGgj339EOeLrLL0cZqhd9RdzeZCs3O+0ms9fZxxleeM+CD0IzzZ6w6 - rHl7vlBHLQM7006ls5tnHDwFyQE/5OxOecEWZuCj85dcT7YcTc4YzSgZ2xT7mv8AnfgIQrD6GSbx - bI7RZHnfAWqU8cjNiGE/K91VRnB2BXJIOp7SW7Zc0Os09ViuborGfTtDRdqnkoh/B8ea5b5SBZPj - K8YPOGCNAouPkeKK1w2vXDAR5zxDrKsqDvvA1NgNPyEVpoQYJjdRalo996ufWImKTlt+3/t4CQXx - HKw53AwrAT6Sj0N855Rq9LE7qsBjcYot1z8B9nUeZVj2+gNrffjQ5h1x7tDicmWLv5YOgkcnxLye - 8cSEaeqw1zt+QQ2vB5IBY4mIlXgFZGFfYSs4eQ4fqn0LMyaLcXGSPmDpW0USm0IfSeAtgzarrpjA - 1dCuxN+VXk8arvbR7SkE5FjsB/Dp9kuL8L4PiPHhJbA+TssKLqxFiVk4qsYjqmZoWy8puiugtLqo - MRCf1ydx8rSqGdGvSmgO9zfBzqurt/2PkXPSX+Q8hi4dP+MUQHsW+D/xOB9ZUQBpZicTw754bQkc - ZYaNsqQk4a9ezzZ7wYLuaLrEaTI95XeDXICKnVQc865CF8t8TNDssmRivVnXeCvxMkhmS/alqafR - ehNCDgEuPuK0uh015ipaFhSBEJHCS/V+eThkhvFLuJB0xyFn7UTSwrdqHIgrDirgr5ldQkZIJ6LY - sK/p8px9hOJgT4z79UyH0+MZoJmLFVzQBNWUtNodaux8n+Z1LmqajscVDN2CsJLIFuBvr84GsTQh - f3eLdnTuGGVFG9+YWG5dQFctPQPZp68QT28u/fxZBwtEl1PmP9/6G/zhfxtfxN6G/+x1lEMYZHZA - DOu8Ru15bkvE76uAOJ8rrhmAbzF8SOSAnfguU/bxrjIke75CjjIf0rmJWgEWd0710d0NNaaz3wUU - rtHhx0fpxg8MaFu7M1FVGWlDKSkQavz02fCoT2m7txmo9+tEvOlcg3EwDz4KpdYjxUMMHMI/swQm - eTbhk79v6No66gxFERrksuH/uro0geGQjFir81Ibv5/UgJxcI3+3PBz6FaVlhoC7HH0K0hksqMom - kO7CkPhGxPTzfL6VP76AUyu2o9Gx0AUGhZFjvX/7PVXQfgIvftgTH72rdIw6ykgpy9/JVk/pzE5K - A4tsxiT63sb0K5W8AQ7mDeFfvnLcu85gVL0IPtTrpx5DsWnhxp/JxgfqqVADG8r6ciR6bCgpa/DY - l5zk2+N0q2/k9qpsGMkZi7VFLvs5+9oTXPWDTRxvibUFPN8SuoHbi5jhawKEs5Ud5ON9MVGZqyiJ - YXCH5Q6KeKs3YD24rgG9+uT7IVYKOoX7uUOm1B5IKMSvaMWkdSEnxpicH2SIOsnz72DSDiI5fp5O - RK5uKaAfP06miwM4DdAXMAyVJ8pbf9MuE+cChpeXgc9Pl0sXpxJkWHCPE7FqHwD6iF8THKNXQIwI - vqPhYlIVyc/wiN36owEeB6QVVcVxiWm1CqX6Pr8AyeNKbKbGGC3WM0zQ3tjJ+AxmIaX60xLgnsu/ - WLZiNWXazKp+/I6YWObAAkDZgL3N3fHxcDtFRBLPHQi7rMSWbIGIptqYwaL1Fp+BnkbbjZ+CWZfv - G79eNryTLJhjkSWuyRd0fp6yDPKKqRPP+i50PFZHH3TJO/rphZ4pxNSCN4+ziGFe+3r1WJBA1wUP - LGtr3S9P1E9SWGmtP2cTcKgoTMwfvmo85apfxY+iQ4MQAZv62+gZ+n5CtPH9aaeLhsZYkArw3Vgu - kaXrQleheBZ/4te40Bysuh6FqG1mDVtiJIFJ4qrppwewm0MEpjWdXNjq3ZGoZl9rq6tPAXy4kTB9 - N/xboKMGqBdjE3sfLwIcm2sMGjz/SfQy39HRKOsGMn65J0nKvugc+YYPWVZP8aY3nSnZZwz08qLx - eVsN0onNHQZqn1LCiRjd6ewOZotm0re+MKZl3cl9bwGVxZEv7h/QGbvyZkD5ZGST4I7str4mFOer - xGDrYhd0q+8rqt7lmcjHKQBscZEZKHlMieWk34NtPS4K55M10QPzjZbsHKpIo5yHDwWjOEy53mxp - n80ff/nWR235ot0EP7qpEitfQo0+uMCH1bs6+3PAlXQ4cbqA7qRPsGZEbk/veWkDi6kY7GiRFc33 - ZA3h6/MMCf56z351i3YHlfGg40dgHFN2t3DxH371aKyBDtdr3Er3G7cQA1ZOyj9efgwTp3ziZLeT - AZv7iYqO4U4hylPp6vVzY18wtANKsvW10kXepxxEndlgxwsDOgTIFyRUVY+Nv2uUAx7rQ9dGIcle - 766nhQsEuKb8jijv/clhTX6nSq2LA+wS+b7hr32RqHXZTeDMkHRKm/0K8+msYhuQIF3nO5+AfflV - ySFvdxG5qVwHn/ry3PgI0GZ8PXZQ0JLeBxs+UkYUM6AU/MsnSWuCte8YDj6Mbkd8kCZ0tWgDxffy - mYiiMaAmp1NRAN5zvyR9I0XjmtCdId+yAo50d9dP6fViwWW1kM/076mm1/g0IIPJdJyKAtfP3RBA - 9Po+HuTgNFLd1N2Xg2odGRirtQXmMni3iDarQ9QmLOvVYd0GNuIIJ6g8jpS7cKwPnZZN8IbP/Qzw - KYa14rywNoIe0KSmF5RVpUluRXmsl+soB1A8vgYSZodM4zf/BOLlU2C/3zd1eb3GHRDz3CBKDs90 - rKZZQhv++aw3v5zWfzMZqoGg4bthtWBZHiiEn+5wwY+y1zSe3IIGNOee9bUxs3q6CCkDo+7IYR1Z - WFsLNbHhpn/w5l/U/fPF2uhgpsifxzXRVta/qUCL2tIX3/c8mscICBLv+V8fUo3T1kqMW/iM9z5R - fEVOmdMnNOAIrjqxhDOTLp+r3QLRKUV8C55KxDdc78P78avjY1F+69/5g331xsRntRosznproaHa - OY78i0lXJZsv6Krdo199cTa97wPazI6/+IocsXQ+DHCrf5P4B/9sGcKRKAt+kONUL8d7kEAZWz52 - KsGNFgxKAyI/u+LbXWkiYnzLCr5b4zZxD2Zfrz+9cEUnhRh51tX0+OACkdlJNx860l2j6q6p4JAW - Cg4BW4LFSKQZ3FKPx8f3PU/Hp3tpJPakxsSk+s4ZH++ukKbbfMJHfN6l62RPEGx6jFyf6r1fNnyH - axzyxIoiI2Wj9dXCuGFqfD983/X00xe3FPM+G2IzouU5KlFwyAWfffZivTyczwqjsquwp7UY/Pi3 - VNrSSnDntNoK93YMVr/AROf7g0YPsutDhSgnfNr0M5+7ngG+3OM2fb3MrVcyHkN4eMJ5y4dLP496 - GP70FzkuSlCzU3Ft4TV6yTgW7LbuqQxKcNL19c/50M8uVn/8FP/ibZLrNUasOjMEy5kE5rZe4p9e - +VP/WL57XlBnX6nPxZLrTF2a+tAhsYYDlBk191KYGJ5aW5xoHnF0Tk9zAALMIYyFLwWLJy0hOoVx - iG/XRKzH9yXikMaud1/c4m3ZpeEEpiujY805Rc4WXx1Mo7EkuOxrZ9Sb3Qy7KZV8qgandBD4QP7p - DawOvgf4GlsXiG5AnFC21v0UN68ZbfyJqKXFR/PFBCqcD7vPxJOpSueN70J59+V/flG9Xls1QTBQ - nGlZD596PN6TRHT05YSDcRUcWrhUAtt+E/f69NL15NcV2vgDuWToEy3bfqMoW03iH5hTRM/6MQSj - ve/8N7cu9IucxYD2KGc+F+WqM0RlYkAgyRw5r4Sr6eNlXCAGsMauIjf9IJllCfuVzbBchpGzviSt - gIZk7MjvvDgD3VzQ6ZPoSyAYHbK/7Rqo9BZP7HCs6tU8zAKSCtXb8r2M1oUthT/1UnGFBFBCoAuF - d/Um+vur9Btec+Cm5dpUS9Crf/6OWIQ3G9vD+uzZLT/Axv99xlR1Z9n4DzxnDE+O9pUHy0nYM3Cx - /RQ7JmtQ/v0IVsTrdCEqYGXA+VznwrI3Hviw+QX0NTkNNMKLjS3dufTUVpMWVp+i2t6n1NwhYgT4 - 87fs7+gCllzPLfTN8xmnjDRr64JuAzTnSJ6APTzSxWyzBFY3TyWO0uf9MsmOD2un/G5+3CEd5fO+ - grG6ZtjdOY22Ml7nQyn6WtNafyNK4bGxIS9qb3yIviwYJncR4OZnks0P6RdmhhU8lHKNzbp16GTu - ZBk0VmBgH8eXdJ7qcwl/9cWMtNX5yu3sgok+Il/ivRNl6htjSDu9u2F3w3M2z1UGNjU4E/Xc9f0A - m3qGzABdkm56dTk8mBXOxz4mG57RgY73WZq5i0ISJ+idpcjFDm75MonhnToESm4BO14tsfYQLY0f - AtuGTiM6WHEFgS78GtroWvAMUdbDZ+MrJURdS+VJuNg7ujL9roW7ey4To1NeUV/UjwoW2YqJmez3 - 0XdXOyWASaYR7+w7/fyu0gkmGPvYUXrUT3Jfb66XmE9IawmgP/0Sby7BPn4PdSNx3QDq4ysj2fU5 - pvOlKFp4I1DF6oanVGtVCRXFkPn7n58pSuIMrWJwsVJWZjrDQLagJRcj8ZiZiZZ2OhuQmNdxEppo - 7tercZEAOPYZxgspNVIxxQq9R0J9lM+dQyvmssIXu67EunuSMz2FkYEG2idYPb7OGoEKe4G/9V3A - QUkZ9WA1UHyen1s/Y6+t1vleQrbhwMRt/hdf1NcKgOM3I1Z21erNf2R+/g/R7kCpufgqQsCG8Ek0 - cpZSMlzXHXDHg4u1Jhb6pQ3kTrp+sjtJY1HXmBV6L3hFkULs6g3BGrHXFyyv7oFc7ExOGb9wWhAX - GJFNL1FqykAGVus9yVG5XJzRbOM7+OlnM9qhqD+SqyStumljVZxWMFxlUZYU7a7htFyKdNn8cBhE - JMFWyr5AIzRhgHarx/rrVi8pe4ws5Lri449/udhLx/z487SHngMmsItKWK587K+WbfTEUp4MePeL - QfS2vGtTWBxs8C3bFScPoXS6LIhtuMz+TIzzDae83LxDWPglwecfv9ypLxtueEB0tzpGa36y4Z94 - djmro2Sv3eHPz5yeyQ5Hcx1qIQyTMiJuDnOw8OvdgqHUeVgxk6hesh61MEyqCLtb/s9TnVewGS4e - 1rjcTpnXYlRIdCoRa+FNc5ZTFftw83vI3XdezhKtrw6qj6Tf9MPTacvSDER/PMJtvzmNmg+c/fxg - okxPUi8DX1dIcxTpD94PHXNc4ZavWNv6GetI4+JXr3ye6jtt+L5aCzLyw8P2tf9qcz0/JlBe/QPe - 9GNP8whJ8EIujr/Q3S1dg/2RgY3tRvikikHaB5IDwV1Siwk+lbDmRBZIYPM7yHHMhXpw84yBv/7f - YcMX8tOb78Z2saveWWcGV9VGbEst4vDlM123eIWeeGCJIuxB2gmQlWDEPY7ED2+98+NXgBtVSOwd - c3DYy3AqwLvVbyRIT4uzKPNXhiT6yhifFKYfbcuoRMav9j//LeLakDY/vb3pVQTmpzTPouO5R6Kn - GaTkkkYTsoXHblrcG1svn6vaoahsK/zzuxnTaVbA2aJKzvflDSi64RXmgVkTjD5S9Fpy9QKiS5RN - 7rc+OcuitNyvvvvgEoX1Mvo79edH+/vNX/xIYt796YdF5CxFg2PYd9gfQhmr2vHV0/7qWvB2mmpi - xorwX3r30i3jr5/WTxPjBGCXVBSbuqH98SOAA8eV2Fxo9LwcHFv489OOdTE7M8YBh7Z+x8bnifbH - f5hu64lYJWdQbtNbUKDzAR+zW9rPpSIxUPZchVzU29a/0K0ZkvPbw/KPbymvp4U2vwIXmv+gI74x - L7jpKyz7A5+uz/stQU1ml8Q6HpG28c8ZxMlHww7Y6z1/dUsJDfwh+N13CDEeAqyXaueXjGQ59KZy - LWT1UcHpJQr7OeTAAB4vqfjDP9ZMnDNI1UEnZjPKNX9Tdy184TXf/J6ULopw42Aydil2+nsHVkVF - LbyuAJIDyzjRXGtJBrb+nD+BNAEbP5F+/ju2o9ajqzSJwo8PY3ucLY2Ze2TBX374QYic5RYxya// - RszD/qzxW38Iirf5RpwDPvfrcLZkuNVDfGIUBlB1N1VwVg1veg36qtHf+WdVZfqMtTtF3MQ4IaiP - TYb95eEArq4WGRVygbD3sJN+6xdd4F2SCxJvfvriHV822vp9xL9kTbow+08M15TdESPKK+d9coQX - DDxhxlEecWDsdmMlbf2/X7+N0oEzEzjsK4uYJ7tMB5N1dPj3byrgP//111//6zdh0LR58d4GA8Zi - Gf/936MC/+b/PTT39/vPGMI03Mvi73/+awLh72/fNt/xf4/tq/gMf//zl/Bn1ODvsR3v7//n8r+2 - F/3nv/4PAAAA//8DAMZWVEDeIAAA + H4sIAAAAAAAAA1R6SxOyvLbmfP+Kr74pvUtukmTPuMs9CKjQ1dUFiAioCEiAnDr//ZS+u093Txwg + pWSR9dyy/uMff/31d1+0Vfn5+19//f1ops/f/+N77Zp/8r//9df//Mdff/3113/8Pv+/O6tnUV2v + zav+3f77snldq/Xvf/3F/veV/3vTv/76OzUnFidiuBYUM3YO+Wc/YZ+eYLuE2buEb6INWMmTSVvk + ST6juMl7YjThALatCgIpQfM7OC92pxHZd0OpSK0XUd/LVqzBeFSRkVsKDvG51egibRbKX45GzEMX + UZqtiQjk3GHxgWl3YJqMqIR9aR+xulMf7YoCt9vX/WBi6/BwXKHjVAa95cXH+p4y8XK4sDUYENRm + 7na9udv7LpSgLMQjOe6zU8vytlVDnxmX4M5pJd0UZpnRgT/0JHiA1BXa876GD809BIJ+X9tlizgL + LLvKxN6umcDGhH2CwMR/iKPYczv70ZmHhv8iM2MRtl17cWmQ4J82Ygf7kS7ZSQyg3cY34lcvvlia + RyIjwarvxFd8ZtxwxjiwuE0MuTmh7HIsbc/gxeo9OTabHW/t7Wihi9AZuOwvMVj0LCwRUOwPPqK7 + pJF784ogPg0Um4XRgfVSTQ1M5UYmWfY80E+j2xawWseb5zuNR9ZAlgn6E3MlwU36tJtx1yvovw4Z + CapLPW7COZpRJr9jcumjqZ0sMFnwdOsqUq6uDXgnljYoBOREVN08tkLzaQfYZZMU8MGt1bgxcx14 + 4/KZyNF21uYLyp5IGPIz0QO2a7cccAOEwdSQSKQHd71V6RlO2Xb5U/9xgzRC7rBQHLv9qyBMcV3A + IcGUHDKqA+FQ6w583XYMMYqRxttS+jrkNm0lLgMOLu9fOFXSd2yLz5/OG9n58ZHB23e5GS7c0Z2O + 4dODD/sCsP5puXiqNCuBFzfdiIbEQaN244dweVhvHLbpBfD7Xd0gUbq/sSbyO/pxU5RIyvgeiHEy + S41/PMUK7uMdH5AThO4W93CDcnh6Ez2x0UhX4WTCqydy+ErakE7P8ZaCi/J4YVuNHY3PdtGE/D17 + w+U+ngsyIFzCdzYfiLsEY0Ee60NE6nM3zfCyMzW2bnMJeIZ5nEsatUDY1KwBN0194cPpQAsyvKUc + 3ljNnZdtfcSsMC0OMmrOwrYuKuMKNexBXOkFSTV8jFdmBQFw1cnBXnnVWk5u64mhY/GZ69gKAHtF + jQ67ZuCIv2C13cYZQiiE+p4c7dmJqQmTEt0Qf8bWnpvA9sG4k0Ks7/ApxfXIXbIg2a9WrmAf3tz2 + 0wCDR8t4uuL8HaqxUJatBLQw2+Ogn1tAi4sxwSC8P4kBhqbddu+4A0x72AIJkDdgAXalvbo5Bc4+ + fTmS12Nx0D7oI1y00dKuZ4nlYfGKz7PkI70VwvtqwnRtOqynHHb/9JtdfA6kkNtam371fElxOa97 + EsQ8uQ0O1HJfx+pL8ApyeXMdTND0nuugRMXSb8wEOOmaEaeT7HFTLp2KjrZWzY3Z6vHCSBEPe0Yz + sXaoGzoNpf6EXWS1OH4Cw+Wyw5bCiPdPwe990vF5TeD9xlXkdubvdLXyY4T0Hd8G0mhbLuWPqQOb + Z4Jn1no8tc2/cDJcxss1YOVDD2jHqRB88ZRUp31bcFscLig/LTXRGc4al2Ubavh56Blx6u3hUseA + DGT3FYfdx53EK0vHBL7NnTKX+/dBY/uNmX94hI/nRi4WzeJEtPdDQq6bZRXLR0Ep+D4PiSBwW+Gp + yg1iV7HCxftN6UYe8hmKXugGwBZTsNVRMcBP6VTY60AN1tjB8w9vsIGNdVyW5GhC56XYWPZaYVwr + qe4RFC0SaPKlatfNOdVIYdKFlNXZLtZbulnIILcOW4RVC27nzA1AaumT4iFYGvtauA5964Pd/b6k + k1lkHRRkxsEuf7UprzZ1jmxefuDgUi7Fch7uHsIf38HyDXb0/XT0BsW3952Y2vZyZyT7C/CZ94Lj + tFNd/tWvHYKhbmIbXVS68R+Ph4d6MXB1veZUUHNrAV+8IKcUyy25kHhB337D9sO5FeM9WXJAfQuT + 1IefmNgfu4e/54/nGxy38yTIKBI6kXjZINCluKxn9OGeIz4IJ0Xjnempoi6bJeKTvd2yyzY0UMpg + grMsxBpV3VeCRsY4Y32xPECY4rRA1J1VfJSMg8a18qRDkZtT4lyYmS78HWzwMeIFa5ozaCvs0ATE + abkSGZ81l1W9CELKEZfopCy0dVIzFTznXY718HIEvH9BMjQTvcbG7XrT6IsZc4ist0JML31rRDu3 + M7qvn2SW5kfh8l98gH2QGyRFaI3n4/1awVImLTZh5rusrIMeKrslxlWlvMDam6QS8dx9yDknk7Zd + gyyFYq5diJP7/vhhVhqgy2kKiefnM+hc6z6hYsFH4nUKcNdBWgcQyzUlh+aoalzFqSVyAngjxzgD + dDWIGgKHedVE4VDTCvXY1NB0nQfxz9zQfuufoHJKW3JWRl+bzogJIa8vwo+fi8UQ3iI4oiGbASsL + 2oLE4wSDLStIdrv5o5BKqQVFADyimq1esO0S5uDImyoujrZCl2jeDXDKlsu8cLKucXL+KeFNwruA + lHfa0plGPBoeso3zyLA1bm9ZHvwwckxuQaqP9CSTBcZH8UzSg4Lc7+/1kBJVJxjWKhDIxakhLG8z + Oaj92G5SGwbo5nQM8d3tROf0roToak4KjvIPahfjRHMI6y6dVwdU7bab9xu42DaDbb2xgPCqMwac + swYFnNczdCW9sqET4uC88O3qvh1pZGG9PhVyuFXnYjN1aIGx9O/BSyYP8Ef/AW7rsfNJTcCXXhhB + LVFDYi8+q717UawRmIOQqFuAW7a47BP4aoiB/fYtt2yZbSXKCl4hmHtE7WI1ogj3+0oNuKsUacK9 + NypYezuD2C800EVufRPmwnAi1kFBGuHdFcLLJ3phk9LRpbeDJELL4mdid3ELPp36CJA9lz65MRoG + 89ZOKdSvcMaxcH/SZbg3C2SHxCRZTkttOSlxCoUVzli/3ut2eiNgwovtMgFPqauNQX5cYGWbVoBI + uwAqj+UM9sEQES+O2XHTu3f90wv4q68oAUd0huwqVThw+GBc+eC2AegnO6K0VuPOXcHqUq5pOVFr + o6bL+3Yf4A9Pqo3Mbn8NhQAwio+w/CaFxva5VkK51Ql20uRFPwebn6AFTZM42lOJPw8SmjBHnE08 + sCguK0hElfYcN+JMfauU+HxjQkg8FuPMqMfFuuYz3J1PDlGlc6KtemdI6NNwjz/9R171kYHWZXed + WQgbOm3FksNe7ySMk4y4a3LyTFilnhAcs+WmzbMSzmjchwbJgNVpizOkHqxAick1fE7aAMQ5B0B6 + 7IkeVC6dLkEoop8+zu2XC1hH02rgmI1AvJ34aEfuU1ew7nsTJ8mNLxYFizKcDtqRHIIGgK1Jkg16 + hn4kvvR8tNMjbFV0js829mikAS5ndvreOtxcIh8fCv3yXQ6iRb1jL35/4tUpoxQlp0HGlbiI45/9 + 18efN3ZfjOr+9OBP35HDFvOAfvkRmB81xy5/OGpfPfEEm5rUWCcl0Nbb+knhKcmWYKdsKh1nz7TA + Y5dkxNLwWqz4k1vwGD544lbPm7Yl3lRCql10ohjp2n4uxj4C79c1JmGn2yNXfkYLml5jEcP2Rrpd + BJBC1W9vWH+J7bhcXp4j4UJ4BcubAHdbzrMIF/vaE3UZmx8f61ALiz227gdz5M/ZHaLD43WeGb8w + NcFfNRF6lewS66yvdKkNpYLhy35js86vYCVmHCHzVGrYKRZp/NhiM0OXzjPWnwwC81YFHvzW+8sv + rUbpvvJgrozC/P70cKSaGHnolMoHjOk5Bqx9i1n0XOc70S4eQ0mQ0Cfs5FUmeb09tIW8ng4cuLrA + ifTp3M9Zgiyk+vwKUDqH42TfChYmqij94eclmoUehS/3HVDM1NqbmEUIrm4bBfQ2QHeWC9uEh/5c + zvBpcdq2tV2+1w2VxdrFqygN8uOGnJo9Ef1RhIA3J5mFw9TV2N9Pu6//NT0k7O/GjK76O16yMFLR + 4yT5WOUlxeW0j+1I0Ut/BuwZ2try01tcA1QSdGoUL70SBnBjg1Owy4wvnoiJiFCIM2x+/Qzlj6ED + fs/jipPVfvkrgqvvRwTryn2kRW0x8FLsdZymb7tg96qZwle2Ojinx6n9LF03SdXd2YjD1W7x0+fw + cEvv+EYkGbAKFlVkG6pC1OI4tJvZGh0U3jIlJSo2urknIMHqdXli3O1CSkruZkl70bxhdS41yp0u + RgCv7j0iJ1wMxTK1owiJQRhirtPR5XxmNqUD04ZYbd2cbqaTn6Xncmbm/WSQcRbeZIN291Yxjpyw + oAdRSMHbRAoJmDcTfx41P8BtRXcSLBGIaZa+B4gUfQhASG1tjdh9CfgYPIN39jyAjf/oPKRlxBDb + KzNtu72NZf/1NwQfDqAlGZ5zMEnhm6Sbpmjcfe9N0OFtERfuyozk249wGD0UUDea2208KxN6abqO + T0+VH5fxJUO0PscbMZZsTx/K483DMjqY2PRS2117z+hR5zxdolW0bhfP8AbIhTachWWxKfflG3jy + uBR/+XlcS6ok0Ddwh3GgjmDpJnpG+uodyO1xstsF5nIIK0mfSBHiUuPVq+rBr//AwVSTtg63ZAbp + yzeJRcNT/LEZWUK70DkHaz50YDDueom++QiudNSDVSyuEbzA7Iwja9M0dhXlGWyZJAQGaq3xz/v7 + 4s8Xv7G2cbxlwnu/ZjgYWUTHuD45iB9vKGAeINWW8WUxYGH0NliC8hovV9EVJaSYQ8DFPq8tDMv2 + 8L0UATHPSC44V1ZNqOVYJ6ZyYotFW5wOaFDf48tX7wpYHAM4Xh86VtbXm06InCuw3a/4D18vOWv3 + MEmiK45acvjjP9D1FcQ/fHFnnPEOGOvEDdZzI8dsuT0m+M17Zia1VG12shDCM/msOP/mOfSeLCl8 + Hj2MtefDi9dDGjo/PYQjOXlQYo1yA13onOedYO3a9ecXHqXxf/oli17s/hpEaSDpII+XW3pu4Fev + 4HB412AZ7sMCmu0j/vwJmPaqmUuD5iR/8qBPxTmV9NWz2NrVTEGjnIGAliFDovCc//yBCn98Z984 + s+BKl+2hd+paHH3zsU+4LWegGgchEPzToV3dKq7Rdz8HwpvbtysfXDaodU3zxw+T194PJHU/b8QZ + 7V7bXGFIAfUdTNTeN+JNZCcHhrfHEZ8ubQCEyfFVcIHFeW5eghdv6d2OIKemC74N4vmH3wH68j85 + XB9hy37xFianXsY3Q3rFg78fa2B23UYUR2/dRQsSE2pbPGNdPliAHB5NgnRDZoleviSweNMxgR2r + ptjYeG/kxup+Rt88KADWyQXz1QIBjNZUx+n9YLb8h09CKITmft4NIt9uo7B4gJkkhM13QAHN4TFC + cldGuCDN/ufPNiQpah4sqFLizYm3DQB90bEeWLG7uNZ7hplk3IgRr607j+9qgUB67QOqssfio46y + jGSLHrF6730gBNCKYPzC+5m/Ju1IWtItSM4tlgTyUYg3XQUqrKtzP1OSNcUqdmkNJXIUSJDsULvl + rZqi0rbdWaidXpvbW2btU+N0xNUDiC61NMqDrz8mhzjwCwoucYNMa7+SQvZfMQ3jS48eM38gmsoe + 4+WwswPQ2PEYjFdt08abfzRhvXhVsACsjiT2LROioebJF89aKjyf5z/7Saun5zilm1zDm+0XGNtT + 7G5j2DZ/8PTLPyPfe+8QuEd+H4g+/BSzJjBPGCipQFyeNu0qyLWI/OzsE/UY1vH2XkIRZdLhRgyH + pGBzNs+DV2F+EOdcKGA+9OMGag8ZM8l7v/3WV92P+tvBun69j/wMpAo0nqQGrPTR3ZUv9wE0i14g + ZnUXwCoBwsLYYgpsCdCkbHSXN1QZt5XgL78Jmph7sJKHGqtfvFhvgvuENz13sPx4ncdlcsQeXvig + wVhXlJY7SywLLSW6YI3LPcBl9aOHT2F/wpX8WrTN39kTvHT8bt5//f328wvGflWJlfHXkX7wGECu + SIZvHmcU05iS5qcvsHfZPbVVVqQAwt3HnKUZxJSGnOnAEx8/MN5Bbpza4C7Cj+Z1X3yoxq1/lA0s + 7nqD3cLxtMlAsg7CI2ti9aadi419PGqoGoaAg4Ch7vDb/9ZeiII19SNNGLokkNYbk2JP/WyUm+C2 + wIjHJ2JBfRzJM6cLnEDvkejrV2mi6zxUSZEQrI1WS96ms0hXc1ZIOcPRpb1uD3C/L9VZ+OaP01kr + G2gmZo2NYbY09ooGEy4O5+KD7Ip0q1nVQUsDOKJE3uurV2SIRPUmz/voxNDFnOcepoutEG2367TR + e+IG8qKKibFFu/btVkUNHDnRiHK4uePadcUMzRZj/O2f8UPMOATfPG1mtZWAFX8iB4Zy1X714NI+ + 0s6ZQCHJJYki+imoHgc93OJJw788l4ZlJKEwS68BksIJfP3vAu+j7GP1m1d/9ZcFK8mciAsrNv6T + 77bJ6zPzjbCMC7ZNCeyeQokdg6s1MukzD08viw/2ajy42/g+b/Cnv0wtkNxPA3wWKq6bYpxHCZ0c + 9IighsqSnDRXKbjMT5/Qbo+3eVfHu3gLO6mGvf6U5m0Z1ZGzyasCL+lYEqXcay1F1cYir1gvRMWK + 0gq8u4fguU53YuGbVEz7d2yCTvI9bKGXONJZXFWpyrqcFEuna2xqXHv4KA8Kcfd7CJbFEHr4PX8g + 5y9fsxs79uDL98TgCl1bnyOQQWFkd3Kw3md3/p4ngGPi+cS7tagdv/mlNOqjgw2Lp+4MHlkiVZGq + 4ZyF1Vff7VJo1SDFAWg798X1aoh2TEYDuisEbcmj2ELf9f87v+ybQpcGZxrnHQfcgkwjrSGvFUnA + UMMEHya+L+Ch2Qei8Sijs5QnDKju1vaHf9/9h3XgXZ4X4tUYF/yef0TQxzLBZ4oZbTZ11oH82cmJ + lb7teFG9HML8tNVY69lRm46CJP78+fypENao7GsRtE91TPQncwV//Np9VP0v38R0ywHqoX1qYix/ + +39tK9RAbpp97AadU3A1fTbogrY9dkJPK1b7zAaQeU42uUnHzl39Ohlg08EJB6t3d9+uYC77j5RB + YvqA17b3fVfCb35NDtubtAvcaIPil78PaGft2/mb30AjdxRsVvcL+J6PNZC9vOSA/66XvB6iBTlF + 83FQbG/tT96gcZKBZWsdwdadrxKsb7P7/b1s3DR5L/7Wi8/RMQD9GkIZZE5VzdxCopafc5cBrjo7 + RBckMSZGOrHwYJYvYtYL307YDkS4PBsPu6+cc5cgUh002Bfr3/7lVWcQpvyJI749AtA/fYOBTfyy + iTqYo7t8/QyocARJ8LwZLnvYKQFQnmxGTjyzunQW9zK03icZ21bCjp+h7IN9J1OZWMqkx8JVjp/w + y5c//QrW3vN78RwnNnHiCMV/8spd2TLzxh64dksidUA/vL0qq9vyT2gO4IfvuTs/wK9ekPXjhnjq + RdKeoqSewWktk/m4Ho/umsB0gyfhbQXC4Ebxah8rFUZ9ZQdMnIz0Jc3+8ONbcoGDpM2i5JzhL18I + 4qEb6aH2LOidni354ee6qHwA6Zh9CA7SbpwjZ0zAbaoo1k+aVtDB7SG4ySsl6oMxRyFL3z385WkK + fi0uZe2FR+lMrzjIRqJttYdKWJvbkchTY1Lh67eg7MoGlmFXjOsEpQVmBauQ6ltv4Wj0C7wmVx8f + npnZ8r/zyUYvc5w9nFtM3nLXwa+/wqY7CcXClHaKmDmq/+Rv2wYvPXB2O+27Pn3kXidZQjg5hkR1 + ReTO8LwT4f2O1eD5KC130wS+gzJ9KDjjy2hcKQYTsOhQEXsqrOKbr9Q//UesNpBb4YfnJXeuiPv1 + R8sm2fwfPSDfuQHQA3Pt4Ecq4M//xmvn9iV4muIatMc4c7/6REJfPYHN8eTT9cRkIjgEEsbmo7Q0 + NgHIguM+MrANr8hdVytJgaucX0R5dieNf8Kgh2/Jy4ixM0/jejz3MvzmibhIHixYFKV6Qnhw3Hlo + Tpv2xYcBnlL1EDDIPMbc7zzupw8M23MBX22KjDaZQdjXknT8nhedYeaUFUk5u/jmq6yDfvk8rphn + QR9YSOGuvDPkh6fPIbE6mA1wwdlI+HFqtE8jAS8p8GEWWrpYyaX8kxdpmKldkvFAh3//pgL+8x9/ + /fW/fhMGz/5aPb6DAZ9q/fzzv0cF/in8c3rmj8efMYR5yuvq73/9ewLh7/fYP9+f//3pu+o1/f2v + v8Q/owZ/f/pP/vh/Lv/j+0f/+Y//AgAA//8DACS/30reIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac130e9ba67d9-SJC + - 9953e9850b9eeb35-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:50 GMT + - Mon, 27 Oct 2025 17:28:51 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=SML_ajbfA8vjfyl0ug0vR4fYyldINzDLIz6pUVW6zn4-1760986790-1.0.1.1-EghsX3PwP_ECFjL1TGXuA3_oHxMkqdaD.gWZxJCZE4JY5gLWJbhPvFXXuRBOTkxoSFxprnuV9k6rYNmk4_nSbhKDp7yH.fFmmHmNS5qb1xQ; - path=/; expires=Mon, 20-Oct-25 19:29:50 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=lDFK1JEKhCJetMGLGdaVx7LGfiqeE6.fvXcnlEIJjvU-1761586131-1.0.1.1-yeXX9S6u79hS8vF_T_d5hJhmtEiH1tt0KxAFxqPQN9vvbTQ4tIUz6yf.tkMEe5LMXHpn7LUCJUvCCyGUG.Tc3NMgIoEEUTKXKtsJdFN2.Wc; + path=/; expires=Mon, 27-Oct-25 17:58:51 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=V9CVd07f4RMIyu2a3A.y.cEW208MGzJeNn62JThCKDo-1760986790701-0.0.1.1-604800000; + - _cfuvid=upNVahrw_IO1oeZyN6Y6NAyRn0KfpvEJ7D7FQRB.Bps-1761586131060-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-6b6d784995-n7xd9 + - envoy-router-5bf5d97866-vkq5q X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "68" + - "267" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "88" + - "309" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -212,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_7d8e0160a12541459f82dc29c3a7d5ac + - req_8675f0342d6d484b9902ab712b968eee status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SRO6Orvn/v0Up86WfkvmhLNDQGYJAip2dXUxKIggCCRAbt3v3qX/W7e7Ny4w - xZA8+U1P/uNff/31d58392L++5+//m6f0/z3//heK7M5+/ufv/7nv/7666+//uP3+/+NvHf5vSyf - 7+o3/Pfn813e17//+Yv97yv/d9A/f/0NhEkJRhtbQNj1VafEcLVRJqVyMybGYihoZ0rk0DBhszDs - JiuTxh8D9jOZ8cZ3PYZz+o4CKbpaDf8+yi+oJ0qCYohOOd9SX5bHek0wu8ZaIwz6CGHI8R2xrrsn - XU+vJIIFI0VBpWCYD+ezYoPecK4o6U1Ml+565MHtdLqgmxfZI688aKbMdK+Tx3M+Ahbx3gtEXjuS - w8f6eFvk+SE41Q7A23Lucuz3cQ8T4eShcrocAa1PEgPNdxIQb8WPXBATKQOF4z/Q+brvmu3q4SeQ - G1YnEXsomk16CqmyWpGNzLIeYnqoug2M1rVBurnfx9u5Fgq5W8ISyzkwGqG7QRH6yiIiJJRNTj3A - 9FBnXQ0Z53vgsZgfQjjMrEUuFYVg2g2PBdpMcCeIdR4xVxiqCOV3d8PL0zmNrGnYFXwmqYXSc7QC - cvEHWU7fvI/iQ5zQNRRSU1m3tiTRSTqPS219Arim3oR3/In1FspMAQDM5YC0GmmUu3sbViKLO5Mj - /7D0OVuoCLMBHInHtm2+vc6aDTfGMInqz2rOL8HOgNkgHcnJtw2dK9aDBmRwIeQYDVjnhFW9K3l3 - yomxWHG+2jaIlP0n3ZGYN69gbbq1gD7NM4Juiw640zmTwUdMXHRnK23kNWUNFHnjClS0NtOsbnpc - 4G63fch+RCOg694NAB3ynBwzHwH2ccnuEoXJI6CDM1PcnhCGG7P7IENlnrnAhgmGOJ15pJ8tgwq1 - e4ugW0cW8VnV0Zf1vaqKwKZHcn03g04hEW3lthQGuvjxyRMGvWGgqysv5Nx5DNbQvD0VrlUHTMcH - aOglHyNow0scSODdA5rzT03xaMjjJQRSTqNnjZU2IXUwT5cjFfim/iiNHRCkTc+MLjXSRHhvyQmh - 2LFGAa0nqJynHYPpxho5d7iOFWxcQyaqxSBv9feQlwQ+TEl2rBVv2te1Br25TzCfJNy4vUfuojwv - YYTUwLIbNnU9BtQKngJ6qY8eh+TZB0ZricSSyjLe2FmMlNxEzrd+61ggUpooemw5AZyA6y37wZmg - qN864hJlbjbjXYWK4k4xOZf9EyxRcq0Ug4065JUTH1O+GXooBSJCudYGOWc/zhdJCy2Ki6m0co7x - w0xBR7tASXAjHn4e0wQUVpKg++PBjBvMCQ8qU8ZIdVJhHPw9ZCGJkjNy36o+UqJKJtR57YjuhvfM - aWQfA7gT4ityrz4dt8B9agqcbwvS2EMxTo8S2HBLahmLnmAAyj4uJvTPx5hkNlfna8iIC4wN1KCj - U8g5vSX5BNN0vCMNXj6gz8pUhPGgbsi67jSAt9jtZVbnfIJ0muXbc8xNeCurHfLe14luYV36sG+D - EGnmJaYz/GgakJPhjBB3xuNy4gsMHo1pkgJTTp9FiDL4+HRbsA3Y9ZZP4wV/9oe71ziAh8WWlfHy - POFFW/OY7nbaR67XUsdg9zG8L16GcAvpiwRwNwDKp2altPzIEBQ2obfEchVB+NIkzItuMHJp2THK - VKsJSq6dRukQzReYorD74dW4vUx7gz98yEL+QDdH0EX4fh0OpFQfYb751QYB9xndQFFMPeb5h6rB - ezufULjlRswd7I8Lo04vkK+LpT7Rm73IpVC7uIr1wOOD25gCrDQHZDwlmZJOj3jI4hCiewwhWJh7 - yMPrfHGQ6TzUmIRqnCoJ2Nfk8fuemu0S6KfGAeV8ueSrux8nwOzvaiA7qwn6VGtCxS6dlqhHT/dY - R334UJe2BjnlZ9dgq7hEUD8FDGaU0h+FLioCaB2eZ3RA9xfdfvNtSYlCkk/QNKvfbCroDe+KtFRD - 3naFswnmtI3IY0g+Ho0kfYOe7r9QsvuwdIVormA+qilJttmliw0XGeiPZEPx7VzS7VncMPh+L0k7 - 7R1/GP5cwKlvVOKekn5c+POjgCC/7dG+H9i8d9RrAAbB3xFHeiQ65yfLR1GMg0fug9TFW6DvL4rr - dhMqi2cJBhkVKdR59YjOw60clwfgROW7nsQsWh0IQJ4ZKdD6DBUnkxsn72MG8jF62SiyIile6Kky - Ffa5j9HvfaYjPi1Ap16OYSW3zfL5jCLw1nRELmA2j85XTYWm7VTIPM5SPDGt9IRffYBcv702q79n - eSUFryext90ppw7rsyDTj5QU7kOKV2k9veAQNu13vDCuWXZiFY2EFcq43si5NnUCOE7uRnTLe9CN - e5Y2jLf8Q1x3nvI1MNVMuUS8FUhlYY4Tka1KObZXgZh3sI7kpTsY3ofHG8NuW5pFrzcbDskJoIN0 - PI50gUwHuca9k9t1JZS+liML1ba+EzUEt3jx4smF7FDvMMF4y5eSNUzw4uuMOJNh5ex5FFXIfp5d - IH/10fKwTqayQgiIdnF1wA9C3UHXYDxitEtFtyZ9hPCYGSwqXKJ7wnzVNNjuvBM5iORD16/egQCU - MTKSp92wlHkFysBdWBI82Xe8SdelUGp6DcgXb3NaJhyE2t7IiN6oSb7a++gF7VBN0eF8TUahh54P - m4/jE63aSfo2LpkK5veikosfr95EjnqqfPc/cqVUHic5yu+/8ehxL3bN6JSfBaYts0duYkv56LTe - HcYuO6Ig9Du63ZBswK48p8Eudt4jHiixYWQJZ/xEjTUu9npe4J1fXHQXEuottfUMlBkFGfLVzgFs - J+kqnItrH2z+3m3Y73jlk9k6yVsk6us4LqmSCLEXjF99tqqofymHYXcjRn656ey6CVCWnlhEbhcJ - +of1gAGofE/IMbYWOte+zit12WfE67yy6cXlaMiyEsjIOgtYx6GeFdAX7SuJzAsFQ2HYsoJvuCTX - Y/cAE3NZbOXwSkT0YG+Dvi21LMKXWdrIWhhe36xU1CAfnhl08VdKl1N6YuDR8hYsXeOjt2RlKP74 - HnOGYAPuzqUdpPEiE8/xP2MHfVxA8XNQUcF36ijwzsFVkoLLgiXrCMWueUxgAvQarxdSeeTdMyHs - 3eURSHIujfO5TkMYdKVGrrLngKXUDxVkVYNHhoxRzB9B38He0hzkXZykWaLk8ZRkJ43IMVwbbxFv - owp/8+l5TzFffng5LlALxNasKfVKIMN8sI/IKara2+aoyqB2vOjk8GknsHQdCuTjsiBSChLJqXhM - MYyesYnQtlObNZ4CE6L09giki6WA5VtfUnpMcxKeBAZQoq6molhCHcxPoIItjHJeZlxWQM4mXulS - XJwErgxnBqL8jL2lsWjy43Ny608AUNIlFWSt9knOd7MdR20UN1gdtAbpyfD0+KCfFniCr4iki1CM - 66qxG3T7jRLtPNUeLymxrMTMEAf0gSu67aiawNgyzwTl7qSv8aJWyqXrSqQvwUR/eAOD2XTR7c5j - +qsHIFoe/KNnBeNV+zBBk08iO9h5lNinTdYflw0L/kfOl7p9QajvcoMcyl6jQoJ2KvjOB6bbpW6a - jXurP34jLj48R/oWhB5aSYOJUxbduFX7lwnKB/SIHwduTqN8r4Grmx/IYbgp4/Lxa1t59PhNbNlY - 8k0yYA8Pg3L7vR9dJTXWoGO1F6IjeaHkFFeJ0jz7CvOO0nh4pzkLaB/mDjniYQR/+Kx3t8e3fnvK - tYdDCiPvPf74VZ/6u9DDqybfkP/lE/pi1UjZnboX8twuAjNycA8LJ3gQlZcsfZL1zIBP/vJCWrFW - +hKnowG1OT0HS1wv4I9+LRk3ImjbVaMAxqmDW7k/4s3ff8aF3tRN2XJPC6CXM3SpxWqBnP/QkUPs - elwup7yCgVG1xFY301sro7EhZ7JPdAxX3WMf1s2AX7+DmWaZ6FYVaqecmKIkoaUNzbYZTih/5w/X - lXvUeTXR/vgnFLwCRLfGKWXop+YBr75teDz3PNtwbOtPICxa2Kx42leKxSh3pJsoyxdxOZgKAI8Y - Pw9ZkHPC3e+BhvyAWPLgj9vv/j89aTyljFIkyj3AVzZC1uUcghXesQiRk5ooPr4ab2P48g5ap7hj - yVJ2dN4ue6zwMsV4Ydctfz9c2wVGexCRnVz8nGcz9g5rCV6QKfaneD0HRQFhGDZEZQobsKY4J7Dn - LRbpR7PKp2ZYnoodL5j88GKVhkVUNP9aEMMIz2ApyqcG/TOKf3oX/OGzIhBU4ruPW4znelignIxn - zKm3Tl/aj9NDr2hzTOkygO2nF3kaa+hwZDc6yxfOgJIdW8QBbxuwl7fS/fiEaEP4zhdPsjowoI+K - 9mY555u6GQxE8hUSnUZvnR6H3ob8mgl//NHS5mqofP0ysn777ZN/Kvh0Ofn3fDrl/YMHz60LAvD1 - K3h7GqoSvF4C0seTNrJP/b1AehIJeoTNok+77J5Btw4tcqrNrVl7f+fDwEwXYg7PGdCjqoUKp+8W - cqjkS0yjj5ZB4fRwkFMwOtiqsC2U23I3AnGrg2ZJKm+DwbzDyLrWqs4xfprBmBljLB37y7iez5wL - q0SHyM3LPeAeIs/DLjIu6JBIJzqT3jLBoGdXYn7ucczKbPoBGnOSkJFltKFlKmYyYxk15tXIH/lw - Wi6KpjEtZr96Yvv6a7ijzR5pqHk3eEftC/RzNkf5gx31VUBeBM8PdiGHsY7ilbq4kz+FtCGtnttm - XTW4AFKfMdnj+hHTo+pGymzOFrLE+krnSZY2eDV7gu7GcNB5br1X8Ja4diB8rhKdauSKv3wjIN+8 - ZjmPogYHWTmTgBESIFi3RwC++yV4f643yr3TLAHpm/WJZep3nVpuyYKuPhCyj8XM2yKosT9+QIUu - Kt5Xr2uKzLcb0i/6J19c37tDsbt8iHG1VX1t8RhCcNIbYohp3VB+dC8g3btbIJQZoct0uHXw2J4F - tL8Q1aOPU8/Cn588fvU1mW27h0z9jAK+vzANdkjjg28eQ8pw1XX2+OQ/cE2dKZjKFtJPIGBbNttC - R2WavOia7l42vFg3gk7f+y87nb0oHwWO5FcPM3K6Hp7PZYS3W3GN8ZJFAXD7hX79bTyu16hSlfrs - WPjsZ+4omC85gajFGvLfYRxvmiL5sGPSEzLHLKU0f/e9ElKYkzwkU7y2SbDBlOfagN8UudkCobMh - 55c6Cfh0bqimRSLk1GOGqy8eUpVBEfz6n0D88qfwyzsqppzwOlxVyq6JEgBPpk+kWdEtXxm7ZKBw - Pj5IEH6GZhte8wb2NZjQFx/y+ZqpE+R00ycq7kU6f94vHjJNVgZiuUoeTZX1pQwFDchhwV1Mr1Kn - /tYPff0wnRpxlRW8y0NM4czqY9RZDIh6MQhEAT/jRRZ4EUaazyLnlD+9OTjvF6B8thahW7T3+JC9 - afCUqDPyigh7c3a5pvCbh2AWUSGfEsZ8ggql+0A+bWM+rQ3fAaW6WSQ2riTvkotYKWI4OeSQxZnO - Dzs3hDJISMDfSwzogzQdBJHmoqObPsAW3tgKnk8TRCc4lvEk1h6G7JStyCrU90iVc97/9BKxxLUe - 6eUz9eDHp0eS2fpgGm8MHqqjoYvEqiP3zdNgNo9NsFPYMxVmIwig0CscySBSR7Z/boZilfs9cZ3Y - 0LdQz+7wmBTxF8/Zcd2CQYWDvDsjE0zjuN07PoN6On/IaeCaZjUNMsl88X4HDYi9EVskMpS0hXui - y5wN+AM/fMB1rwXE1m0KqOaADjaz9MROW47edto9GMhsNx5vKwmahbudRGgX0R4Z+UXSt+v9eQFn - RhNwN2YpGBZKE+WiDzespJvVCEHbTlCQVYyuoI28tfDqDrTclhFTjpqcTU+vHn75CfPffO7z5UMI - pNYmscFt3nrSHgb46XEdolO8KMv7Au/zUSH2NDTjWsRuCFPlPqOAK2ydjQ53F740vP3qQ+fVRn/B - 3en1QrdTrnlfP1RAWFQ+irK0APw5Ykx4E5gFeS0SPcJK8gu6/l0g5nog4x//yLRhj4EKYP7VtwZg - dcHHHSb7cWlQoUG5nQIUy1dT365X5wNjf+LR4cuXqyu78L/y6b2UNhsWPR7WxUjJn3qoFDeDSi9n - wY47B41wtUkhM/6sEU1weLBw1faC6sbug0TaBrDUqvOE+TvSkEpeTEzK6mZCApdDgCNjpazYTylM - eaHFT2YSR8oXNgRfPUZOw1UFVD67T7kQsg5zzPsMaPLJnzIvr5hknFs3P30HeGGfftdHz+mrNu6K - Ld/tYDNUU2ftONdgcrMMvDJ08/7ow0PBeuSA1Ke+mE89VMCt4pF2EFd9rrr+An75hmGmn+aXT0L7 - 3EuYfv3txsK1h2t7R4FCxA9YK27AsE6lElMQj+NkZs/Xr5+A8e1NG9xqZgJN26uwWDaqToe6wz9/ - QCyE2XFTld6E2w6eUBS8NW9tE3OTgyeeiG7lzkjNIAyhwXyMQKSAp5QNCwxN/vwmx4ldxk8nhIXS - Cn2LpflOxq9eef34PWB2bZ0TtN4YaMcbRsangGPrj9EE7+lLJyjvMVjy/sH+8gykf/P7b77hwslN - JHLeNXnejHMGwVe/kiPD4Hi7oc1QnKGhgfAw9pSKB1EDh9dFJJr11H98ksCzmF6Qx9UfusWDpQKu - E1mUbjVu6I8vFFwBYhdcPAr5aIqwXNQ7Sdb1kC9FUPXKMvFXYl+zbtz8SoZgF74VolmG+qe/AadP - 7mGFZL3XgPHVwePI7IgfuqG3zfWwgYS7qQgp7BlQ8NLlX/6B9iYI9T46XFzY3GUHWU7a0U/Qvxbl - 64eQ3Zp7wDZq1MOa91WkCpzfLOIuKKCIBhRQn+dHQq65C12Tv6D9OAcjrU8ro3zzLBLU4h4IZXUy - 4Ctg8oD55snLKZQiWEjhii6ii0cqvJEMZ4OHxNJiC6xcSZ8QlCc/WNf0kM9fvQM5e5rRzz9NNlxE - BclniA6lW3nLlIMP+OXdyFGDmAbs24C32zYQdKtkb+HctILfvBOp8xTHnMzuWBBvtw9CkaTQdR8H - PGz0x4Z8lzTexNxTXvn6FZTv/H3+/d47lLoyCLIpX8bN4uUNpNRCwWqfxYZqKcvAb78Doed8pOta - CdWPD4hRK1y8VQ/MQ8sJR+TtPi9v1e2bCpIjuw/YQFjBsm47BpKbsCdBrAo5Gb3z8ievLB7z2sz7 - ew1B02X8Ny9RRmy8+wgKOfsm+35I8q8/+UA9PjjoZN02sP7ybYS091cvVTpH3e4lylLxQkdeccCH - 76oJrp56R4dFvVF2UkQWfvsnyC3PR4/zQz6Q4TBmxBpyNseem8qwvBYiuRyCzVtSoD3hFx9I0dr3 - kZhTrsKo2xckvboFwN+8B4ZSBzGrMs94lSyAIWfjOZD5lwO26K4ayi8vPt5CN6c3H2jwdM+8YFfH - h1FIDNH8008LyHqKpzIyZfhGMYe+/EZXfDtgBfPqDTn9KQfbWYcYuPrudYSptPe4YpiSX/6AjifU - gq/f/oAvn5G0bCp9vCjVXfnlifpuxfGH554GGBgy4qf1bHR6a84m2PaLRy7BwIDhXKcRDPOMQ84j - Wb98kWh/6uu7v/VVRdUL4vJO8UcLWo+aZxH++AFvlR6Pq26fVOWXH16+fEQU7cFCF+cJXhqqj2tw - djZoXIzHdz8EI/ddb3i8XO7I0Q4JXZA/Y3jojnrAfv0oq9QtI335DPnzzQdsvdoG5Ooo/uL1Sed5 - 7KSwBRn44hcLNulxs2FXWwRZhhfr83pibKgExUDumPModzcy7U+/xb4EQr6pB5uH+1qa8Oubj/70 - KqxF00N+a9+brXHOMiRze0X7JrDydSlPkXjSFJYE90byxhdrh1DRjip5jHLd0Kv9LuC+6wdybyLX - w+pniiAjacxvPcGiWf5Trvidivnl7dNpp8MENnfRIWVza8a18RMGAo7fCCKfK8DLjvvAd8pryEI4 - abZyO1WwmjsbOS2YAT4kUwHRJoQ/fgCET6pQ+fqx4NtfaNaGk1nw61+FvCePm0FsCGfvbpCAuW06 - VcwsAuFpfyVqdeoaevOpqnz57YsPusdyt5sI5aPbI3flRLBkdGNg86pGcmeZNl5OfIKVJ1vcSH6D - qidYoEjhZQoY4n/zxG0Qhg56TCOiY3V24j95J+PywpcfXCqQa2wrZ/ajkl+/jRIpTJS/f6cC/vNf - f/31v34nDLq+vLffgwHzfZ3//d9HBf4t/Hvqsrb9cwwBT1l1//uf/zqB8Pcw9t0w/++5f93f09// - /CX+OWrw99zPWfv/XP7X90H/+a//AwAA//8DAHf2HP7eIAAA + H4sIAAAAAAAAA1R6SxO6ypPl/v8pbtyt0yEvqeTuEBCQVyGg4sTEBCiKKCKPKqA6+rt34K+nZ2bj + AiqQojJPnnMy//1ff/31d5NXxXX4+5+//n4/++Hv/7Fcu2VD9vc/f/3Pf/31119//fvv9/9bWdR5 + cbs9P4/f8t/N5+dWTH//8xf331f+76J//vpbCH0jeKaGhbiPqNaK6vI2vtQnuWqv7KEqF9puqCZX + YTU6SiQrXZd5AUiTWU2XbTPDY/dJgk0kWZWIsPyCx+6d4IteH1xxWPum3Df+iUxDplV8aLoARhXU + FN/jJ2MXlYt+64O2dMFtdurNQPz0PeMECaQaUa4QhKbNCZ/OW7sT7JxlyhhsNJqZho/4etW90AHf + OuqccOuOpAEbRTwvkZH6dT6sddbDUdy4+ECQ3zFe/spAjVdA98Vwz/lWvJzQ3Q3vOE+Hmk2fPHii + 9WTo9L7fXOMJXc6pYr5qGwdC/o0njT8VKHRxhfd7so1nXvwY8ku+XskUXg3GT19PAssbJbxrzlXH + 5DlooD2ZGt4yL3AFtvqGUK45i17BUHJC+/sIStEW1LJP95jPdqMELNJSwibr0PHnjX0F78VZONSU + 2e3XZqbJcRp5+FLeEjbzkmQqm1650gKKYzc7JyeA6nkeyGr75dy5kfsAHW/BDusHqjEht55E+d63 + CfWpYTLi90yCWBUDahzNdz5N4WyDnqcm1aRMzcW5uBswvXyfXipdZ6J9OZpo/XEoddsL0UW+Dwul + UL85Vd177E6nQx4p3/6xprepOKNJvG6vMGTnjKpHSUfc+MlN1GWJg4uvqnWiuy4DxRaGK86b56qa + d5/bCJoftFTznN4dudZxUCCscxr4FUYCf3Dkzf4R3gP+/SE6tYY7AfoUO6z7xTMXEjMhIO5vAnYu + H4OJ4/sSgRpHFsUPz2ZsuE6qci17n4anx1efb6JkK+Wt13HY3A4ud18zGdSpfGE/WhPEVsHlqfRP + uyVrsUXV3Ct5BDU5xcFqdho0H+dIU0j6EMiqjzf5tC8ORFk5eR28tpHPxHVUtsorlym2zShjS/5I + MJvnA9Yd0+p4GLagHEpJpf6FGjl/uaAHELmRqZ+HOJ8CV3E2Lu+l9CJm0BHlVGrwWNsnMs8ynzOn + 5E8KX8MBqxG2K954dyu0O2V9INKr74pOqSRo3+ci3e+/t3gaeClSUrK2sbk7lrFgIjtR2kl0Al6/ + 79Ekv749dJ/yTX3pPrBpcwpDJbuOMQ3X6bObh0p8KL2q1dibv0LMtG7TgPOAECe7KsiF7PDSNnLU + SaQoz1YuNtYjUxT/dcWHfU9zEuVNguwMEnyTN6tuvN3WMkomh+C9UAqo0UQYQdgbR2zYsY7mSdhr + wHGCjzM1euaj6CgB3Eh1wqoys24avaemsGI/YlNdXxHl1NwGsXvLhD2ZgUZmmw6sGiWmx3Nc5nPl + 2xyIjV5hQ2nknD3CvIcB7gXeWWObtxClEiiqMWPVP2mInGU5lNVB8ahrZlnOODV3YG2VKt7jR8+Y + XCkenOZniB1pHVcDtQ8y+uGfHxCSMz4Cgoq6NekBPrzeb911ATjWWMCq3HHHuesCeKkoo/vvmkf9 + YdXIyvI8st6e85idWu0pt8FXJ9yqNtwFL0O4GN2L4oZ8EbM/9UOxzvcVVe8II4a18AThKdgQuPZB + J6qxsFLW22uCbzZobLRs5QSV1XwIF/IGYl2SzlCSeYfPt3HHGN3EEkBZ7uhR6EJ32pBKRbnkOgE7 + qXrMazpdodk8HnBcPI1YvCuyCWNVXfFezK5VD7QJ5bU8mKSp1cDl02OXIqGMTewnk1z1z1UkQDxe + FZx9B8Vl0kYVgIvIHjvfeatTwWapojfvkl6He+iyWBdSUBx1hw+nYMzn17fr0ceT1UBuOxM1tauH + yi9e7eauu8JNoDY8388K+wd7HZNycwrgmxcK4RPO68R3eQ1gsw2OWBuntz6tu0ZW+EFVaCIfq2rE + RmSjX3zp+RygMXr7DjK+h4gWdtu6rEwqAYzIfuHfec7r3fAA6K4pvfSFw6ZP+1ihKLdnfJvPt2ra + FxeC0C0EetopddWud+8H1K9cpb7PN924dddXuPXbLbbMF+vaHf8J0CM21tSSxEQX21BtFSUZXFqk + fB1Pu0N5UgSv7XG+xGMDB0jhjWwfX9Zw6ybZ3YHSSoFJt5asd9zkr0+b/A4XHL99HlHteg5kOQIb + 3zy8qZiiqqZyhUuE/f2rcanWTQ0q1C4na7N+V9O17iRUbcYOB09pzmc51QzodpcSb7nVhpGwvDzB + L8wNxofnuRo1kZuVa+I9qWetD+601EP0uX1nmm2kTcyyfnqBPOE3du+W2M0SLjnlfX09cJjtjZyT + +k0AsrWaqWEHd7bgnw2+ELfUNIU+n/ZJmCnlWrCCjbYz3WFUrIeSCpZIPTucENW6TQvbuGsITONY + Te8xskHldwg7nOkjdvSKFhq9LWh4R5QxPCscHC/Hgtqf8qIz5Xl1YB1qW9IU5pzPesIFaMiOGd2l + npWL/kZS4Wyan2Cz8CP2hIOm8C4gqmcHHQk3c9uCymcutc/5g037YB1CyUsczmRBd7m1GWnwhO5A + 8RS2/2d/8xBjfy3aMedYSaQcXyeOmlB+qnGOw6vyq8/mIAr573zh9U0z6uAgcafb9fn61QNsSDTp + hFhyPbhsdz71LrDRp9RtDaSlnkqjFTe5dKdVqfLAjw/GnS13tLBQAQu+/fC4+oq1MwKc5S3WTr7k + dqLvPgE8qcOeQ+uKiStZhUy8XYLpPX1ymt3uNmS785GQd2MhVjN+BJNvHBy6d+YyC2ZHKcsox/sK + 9h2/4AkYvfgNkP10Kt5W35xiyy+dpsVa0scVG1NlLHUrIJN3d9nBkV5KJt4vVHvSi853Q6rKCosk + bPtI0Bt32xkI9qeE7ofzWA14ywSlLMOcmoR/6N98HDwZeYGM1UAcWC/ObQo3UT3TS3njUCdtbEHp + 3PlGz6vvvSPfNLQVhYUSLlT7q09Sm0kwNBsLu3ASdHbJUg1O5X6F7+XA2FR9JhkypI9klBo/n4J3 + KCnZlA1k/fDshU/bNXCytKEOKpq8RtrqCu5+r+ITM9VOcOe3qQjxlAfiiVLWW7aSwHvnPglnB3c0 + vCISgtekRbC5cJuu975pCDV/02hyuDnurBf8AxrL47H5uOJK2OylFvL1wldFSOL58ibt5qAn8YKP + lTvvsKuClpwvVJX3Us7WOvag9JptoKhZyeaLn8vg3CUfG6Vaur98g80oGNR0rR7NvEhN2bg3AQ3z + luYswjaB9k53WCeDWs39kZig3i/3AKJYQfNR7Z6b4mvnNLOLFZpVOmlK9IzLoN8LKprSY5fJ3JcT + l3hL9VGe9gmsv18jGH98kp6qBO7pTaZH6YbQRK7JA967/ZNGrvruvn5pz3/wPnjRp8v9+MPjpkb0 + cD1cO8ZHHIH8VTPqE7f8w++UIOHPgbTk52wiNYFDkh2pVcu9zm5d+FCILt+wudn3jOnleAKxkx18 + i9aEsdW1BfQsO/jDZ4X6Mnnw45Npk61dtrGik1y+hJmsOF7OZ8S9AF5BblDHqDQm6EMA6DO/roRd + O449nPtHBU8fd9QSvGfHCnJuIEhzQvXtq+6YdzUcJPOGR21773TjYfWQ0dGgO2oNb6Wb/aS0lcpq + P9Tea2M+d9a1AXeYLtQ/Fvryvs8VLPqJWvfDyIbyGCaK/lAfhF/0Sa8omx7xK3ONnY/WdbNeKA/g + 6uhB+Ne6YfwhOaYg9XH3q696nx/PDRyDNsXbSOC7aeDHSAlj8sJ23cQ5PXpFA91VuNOF31bDq3dU + 4O3shZ0yfOjjkq9w4K/nYMruIxp78j4pj5sWUZOZj453ZKhBTG4eWa2UNp9Wn3BWKuWsBcJJX7Gp + rkMO2qDTsYmasmOi7z7AqLyaqi3s0FQOlQErdayw20i6y3P4YsAJ9jGBeNOz6XUba0X0kxu9nc7f + atakSyg3gvAiNIl8XZR0LYAsRT22jQmz0b0oAux7YpG5wYYrpOejB1J/6AKhWYXV9Mi3D8XE3wL/ + +OH8y+cFr8hr4cMiF/Qv9DUSTN1b7XUzRXPww1v60wMz/jg9WvITB6ddiOacBBKI+9HEh6mrXOa1 + txqZjX0n44WtGf0cSqLsgvVA4KKz/FOvbfOnd7E+3r2cS8ek+FMPdgf3EE+l2KfgaGlF3WGykeAj + PwHd0TlspMXDHdz08VRKrSd06yRJNY/TKCnlRbxSK2+O3U/fgD/TGHvxpkdzm99DSKLPluJnfamG + Z/UdwZrvCWH0+Gazudv3sOhRMq3NL5q6IdSAWbqG9+FlZv1OPRowNMiizpraSFz296snNCjPn3zU + kzNBL2Pe4n08DTmL+ZcM8XkNdB98PjpbG6kHTRqJ1BUQdv/oEw2Ey/L95Zw9nfYBEzoiMt61Vqd9 + jGfEH2UcoAW/h1vLqYpYgojVdap1XCNbPeTaleKj0I16z4ckAzUOLXrTuLn6g49HzRupYxoDWs7P + Uxa8p841OsVMdp8FjLO1x85hp6M5u/NXRZCIEQi5HMRsc+zmXz7jPQtUnbsEdvbzS8h6p546Nqx3 + 5m9/2L4rW8QlSBCgXqdHrB30A6NzcTbRJorOVLsJccwrld0ic9nQon+q6fM9r2QrC6s//JZ7k8dJ + Ob21N+HU1q7Y+D5EsLHiLcbn9lMNR046Qdv2Ob5VTqf/9DoUeTPS4ClF8RR32JSFz3HGu03+ribY + XUdUo5JQ/Lnf45kiOVD+1MO7da6Itb8I4EojxffxvNNF+0Me8N5r+1+9quj7nElw0uQyqOLQR0xR + bRNc93ukO6olSAgPaxMt/kDwco8XJrhZlqD7l/OoXUk3xmqmjChIL4QGHJ/lU2w8JUhvGxOfUKS4 + o3Z/agp2yhm78qvNJzXpCkju2pd6u7cas5veJT+9R93rrqzm173NkGpHU4CQRytW+5capr0vYk/8 + qO40mxIH7nScsPMdbi7Z7KUG6lt0CJh/WcWkSGIDLX4MjapBY+LRO7WwLr4keAc9xE3wLAw5NUId + n4/Bi00FNWyw0z3Fd05V8ymJuJPymJqe7sW7WpGprl+w6AuyRvGJkSXfkNdKDPv4FHfskoWq0nyT + DUkX/OezxEmgMJ7acv5xxdz11wNnViPsy2rKJqWyG8U01ZxeNoc+Hq1zMENTHKsASYPMWPEwPfiY + pUGDthyq6f7WOFj4PxkWPJwIRyOwk08aiKV+7fhffCz+GpmhU9mCHyd0RPcn9j18WfSGv4IF/+jW + Zt9qOa8ZbXnWY8u9XfJh0h49kOrp0f0hkqrB0xMZvPPpGkifcuNOw3p6KZySB9QomzqeLSqocDjJ + LXYdna8oL5eysvBlMi7x3hy3qYZW9wQH8/36jMfyUQMQ68ph9/V5dvSbbQHdV8UbW+/L1hVUutEg + oFyP9TgcEBFVK4WIFyWyyrHoDtxaqFHwHdVgM9IuH9ZXs0BjubXoaaXN3dtNm4fi8dKees8i0/ma + a0MYkpAEyuIPjd8za+Gpyg42i/cdMdxwD6i1EP7ov34n5ATy+DlhR5U/3bT4lfA5f0xqvA9lxxri + vVCRmhfsquq+ap/Wh6AgOmo4e5dqJxqrPIC7gaqAvf0j43IrCODYb3ianys1F7siMhQtnDS6lX1D + H7vIKeBbX+MFz7lu9sKLCq7bHbHeBx0ab7guwBcO7R+9O6kIN/Kil4L2o7kdWfSdAmdpSw1BsZEQ + vb8tejItoLgcGJr8Tf6En99pe1nnTqb10JRCOApkEm9BxcJkkiBB5hbbn3KzvI9WIBUVImlOt7P7 + rQQ9+fmFRIDSqoRbc+zhsFEJPl6GKJ8NdapRehYyui/mKhcbYrwA1ipd9FzYfYuNX8Cn+do0a7zZ + ncPD2kCrm6LgRW/qc5SdT3CX3yv681/Hg92G8HKEATs719aFJCEOHONo/uM3CGTHXiCpjxe++Ost + 6nGQX0EE8PB1P10R7+wDE9ohGP/oIbL6Oi/wfU2k+Puh3Rx5vvTjH2SztSBf9D8gX/1g8jC4LZqz + Q7/ohWuAIyU2dbaOvi3Efijg/WjV+kgrB2DR9/ieGWk1iiqSIYopR7Ejmnq332UFLN8j4L9SUPEP + vPZkCG86xSgW0CgJ8wMYZ1+DXIi/aKTJ5gnaN9KwirSV3pvPiwnyS3WC5shPTDgokEKc5G/Sfb5S + NzHXBpQN3JEWV3/rTru8beVF3xIevY5ovIl5K//wN837Mv7xO3QmhzP17q6es8+XK5QuOznBZrRM + nU9spEHAcoMw6zS7I9BHpExd41J9/XjqY9ZWoaI8PWHhJ1M8yFmToVzaO9TKrLYavW8awaKnyUqE + JJ8F99DD1zjhQFribRbcCwFNuN0IWGaX9/0pegERzYp8U8QY7QwhgRzRkrD2qurz9lWT331qYZPr + xtOucSBz+wOO1w/NZUt9lTfG3FP/dN537KOHIbQfxwg2Qimwn38H4XD8LP4aRd/zRr0q92tSks2L + p//F1+3UpQG67squzx7fFYzXbMBmHSD3VcpaD+7c6/SPn7wR19xP/2L/LC18K705sOA7vX1ltasy + QZaQuL6WVI1tEo/5azaUJR6C9WnaMrYRRQFdilqkwXDQXeY/khDO7/6E7dW1ZeOiJ5DZNhwumE6q + GR5tAleJQ3TxJztuU9YS6AXcaHI0dzlrQ7VRXD5IqRY/644FpwxQhyygu2BSY2a8xCtwbuyQNR47 + 9LTKVw2LXqD+vcSI6eN+RvXromL97R/R7PdMBq6aXbz1Fcy6AzqZcLGKPXbf+MOadfEaFZu5O+yr + 2RYJdaM1sPjfeOHHFXs05ArPrPQD8eEIqH+ZyIHzm5ywTQ5Bx77ZdqV8Do+MelG6RcIkbFXY34Nr + wOn9qmOw20SQ5umET7lM8mnd3mVwPhpQbelvzUe1eoJJfDdYj+edSzx1VQPcYMCaGo45fUiqpMRn + BfA22T3csYm7J7oKpxo7zjGIx7NxtqFKyZeqiSy7jO/TK7QT7+AfPxNLYS2hBV+xlpsKmxkNBPjc + uhlr1fBEPf+wBWV14N74GljbfK62qycIXtMH4csbu/nqygLSRTcImPeQqunSGCs4Ttwd7xMt0Mdg + /Dxg6T9Rr7X4mI3HlQDuqelw4E4vd2z1jYqOnq0HU7Wd0HjchppyyO5bap9uoktXHN//8SvTBQ+G + 6jNJ6LTLBKojR+lIAXYEiz/0x18abU5uYZx3e3zoqhkxU3pqiF6CD/75K/zKV1SRt9MX3keS1bWn + Juzhqad3vOsul0qUNjYHtA2/OKhD3xWF0nTk3VBlVE22XE5cz5bBMSTpD54zZ/+sYemn0LPOFS5p + OaT+9AT94TEpktyA215WyLjfPeNprSMCNq2HYCX3ezQ+a9VQ0mOyw15TO/n0w6MfPvGbfNct/p0G + aZ1a2LPDAyM5MWUwYyxgl0aMsQveEaW9NBe8J1LejfMGWrT4eUP5+Gxdgb9fEyDF+4mt2/hGf+5/ + p/2FJnpfVE09j4XCYLjRn3/Q3L6ah5Z8J10jVfoYvXcO4qrR/eOHND+889CKx6ZVTB1zz5wGCAlf + up06XR/Z+fGC4X0aCdWOb/eH1+DFd56I5ivuZuVUqsrS38AJWDQf5h3l/uixcfEn5rbdECAJ3Jd8 + CHKu3m4B8tksMG5xwiZJGwg8eF8PVq6RMdGo7WIjPZsGq9zZQ3zcpwZIoxPj/dQcdFGtLilsbzXC + +rXjEKPl3oZ10REcdFkc98wObEju6pdGK89l/Oi12o+/YFO4iPloXCQBEnmayBO6B5uHb9qAb65c + bAlWUc2Rt5PBTt4p3r4nK2fC+KilKB64P35Vs/QXYOYVlWZEL6uxnj5XqNL+S6Pp4uQk3PQRnPft + Cu/qB0MTffSt3L/aNdngh8eGO7uGcMLJnh54qLoRX1/yjw9Q75Cl7iBpb/KnX/vDZzYP0+NPf0KF + zYCoZnhXuGZx8AefBjtUQ0WNFDGQ6curpm7XcuiQpMdf/7xje9EGYGO9o+ZmmvWx2bcBWvwnaorr + Op53WFeVpb7h5bxdzkcbDg47ocHWFEiIMdBWsN6pHc1u0juezvcXUSLzcaFxe1XdP/W8yoMV9Zf6 + MX/rbw1dupZwsFKc+I/fuehlrPGtw/ijr9vKjRUq3Z2OYjeL2zBV/v5NBfzHv/7663/9Jgzq5la8 + l8GAoZiGf/vvUYF/E/+tr7P3+88YAumzR/H3P/81gfD3t2vq7/C/h+ZVfPq///lL+jNq8PfQDNn7 + /7n8r+WP/uNf/wkAAP//AwAkUor53iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac132bc0067d9-SJC + - 9953e9883de8eb35-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:51 GMT + - Mon, 27 Oct 2025 17:28:51 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-n8fx8 + - envoy-router-bffbfc7f9-vqvxm X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "149" + - "246" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "165" + - "267" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -423,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_330d7467499a40138a29f0bc24d88ae2 + - req_3f8c7aedc6ca45d29da43565f59ac2d0 status: code: 200 message: OK @@ -469,122 +469,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1Say7KyTLel+/9VvPF2qT8WIJKTr8cZOUgiIEpFRYWoICAipwRyx773Cl07dlV1 - VoOFppGHMcd8Rv7Hv/78+dtm1f06/v3nz99nOYx//8fn2e0yXv7+8+d//uvPnz9//uP79/97895k - 99utfBXf17//LF+3+/L3nz/sfz/5vy/98+cvcLcaY6FXew7lrgna44InpIuCNguntYHNz6PDXi8U - FTWL5SLJup1iO8pIv9w7h4FQr1dyKkNRm/T0sZO4vBCxe669jNVGiNGPbtlYVtRNNG84WZeCo3TE - pn6zNO5IBgGZhazjy8kI0ey0qQjCfUfwgX/8VJMOUQ2lee7I0WfmfsmssyxyuOCJduRSd/1pokYi - dv0mxoWJ+zkvEQBLyo7I66OrlsW6z3CVrzecustPRufg3EC9HzqSnG97lxvrPkAx+2yI56RhNvRi - sUri8yoQtXERJf0RzVJMvRzbj6CntMnuEzyl0SfK3X1SWh4XGUwl1UYUpo9sSTr5Lh3YpsM4VbqM - itSXv/NJ7ltFzjYQxAl6eyeLyEJSIVoe5xXK/aCSgzyc+8XhfBN2SvaatmmTVXPSHjtpXqNlEqHW - suXqwYRIIPjE35QpWu+xB6jGBkeusb/vN7Y2XICfdi4Jn5zjsnfZLsH124Cc3uBmdKVaCZfDRicO - NjAa+lukSucDf/Wrfa5Hm5/glsCG5yx8YFyCFk6hDRKMuz5Jns9UdNfca3CZriDuhfAaxypIBxXd - RmyGoeJSSj1VGhwQsOm3K5p/wvNO4kw2IuFO7t3FIu0FddVbJv6rPKKV77lSet3IREwmxNqDKNsa - bq/1SJyz6LrsftzE8O6YHVaKhKCl9jYe1OPEE6OmhC51pzOgP84VNlgaIf7EswLsn8yD+LdTp61J - OolgFrJMoifHaEN9S1V0dgpE0h/DpVzX+ROMZbhgq7bWbHotxzvktgu+FGp8v7L+SwX0vO2wr5we - Wpfy0gXN75dNHKFWM35aTnfJ3sRXvH+ODtrsC3QB5kqvWJW4RZvn02xK+uGSE/w45e5SeswANZ/d - sX8qCVrVfB+DVygCsdMGVWNIehGuyqb1BbyM0cjlioku6a7AWprvMg5zVgNx5EfYvIS1tl5j3Qfh - efeI52hyxU/9usJN4YA4aXCjqwaZDmn3yIhflRQtGwVMuCwbj7g7UdS+50O6HjYDVuLEo91jia6g - qqs41QJVKKu49lkK45onN8+/V/OuPZwlb3M6Y/9xcjWWiOXvepP7cgpcFhtvD04LG+BD4mp0tSBu - 4PFa3vgyiAdt1dPHWfIMRsGHIgnQonCaLr1ou8MXK8t7cmNMB9Fgeyf4x8vdeT0JLLDnvYOvZnqI - aMQ4IgCsQBR9SCtuF0aORNbDjRglk1TLlbwcSG1nhy0b5GwTMaoI6YGdyb0vebRArsUojfYIOyLx - tFZ1FVFafwoHWxIsEV2DQyyVzWXFVr8oGX0fkYyYgRbEuFKPkr32FGEqI4O453rIxq0CPBjnwcX3 - U4kRLzSHRFSyfD9JlmD38378iVHoCg5WV/cHrXr6PqMNru7+ZoQh6p5+F4IVyAHxylSM5tjoADqH - CYhzFQd3ffplKE1pfSORwkXuhg1SFr7rZb+DEc23kt4l597p0yrLrUa+enPZ7lqMe+/s8mms+dLz - qb786VRiOm9PIg+HMdr7jHJSNK5XhAT2fitg3zipGueGV0dURb0hGfhGNSuufZGsdkLEf4xXukBN - VuiiDnxKuo22zj0qYAjD1F8gOdN+PnIhUjvzji20NNnyrksZRO4OWE9ziF4c1QtkFqpOcKo40ey4 - 3gUqaWjwGS9eNCIIeOkwHvbkpIazO675LgYR5jP27ZPu8qs/FcDmZUMMpt1Tjlp5AGvrdVhuh6Bf - ojBpJSpgdYKrT3qaC50vDWvwIAbcapdmQsvA/v6WJ+kxvtFMT1tTktDFxmZMGUQW4TXAg7+UOLuT - k8v/aO8zsLgoyf6jfwsObw48ObXHumKX1fKs21lqoy4gFxB57bseIGUXBWNF0TI2cP0dMLq+EI3L - 52wkViIjzmQxOWuLnZGfsdfh8uB2PsfSGM0ip+hwfrAFTuC2dYeyZBlArG4QWR+e1WrlJi/tWoKx - 1YWSS3jqzdCHoYH3un+tVmhCFsLx8MApyYRq8chDgM98YhtnU0UzoQDYBWrtc3s7rfg8NnzJDZQC - 3z/n+XseQS7nOwmDJEe0OM6huJvVGTsdeblLEN5a9Kl3ZH8YdcTeZaUEUxh6fF3Te/Srp7pyPpHz - E6RoqGRXBpm13yRbUydayZIDHLvCIpZuvbNlVLY62LvxRLQqfkQ0LX52qHjR4yRITVhxqYcAOAF3 - RLW5h0v1QmjBbKcXMVYGqlVN2xYcpvOIU4uTNoq52kBY16KPurSN1pvfqmjbcP3EfPRpWZRVF61Z - vpIo70LtM76J8Bg8sPaKy2zG7l6At9YWxCflCX30ZAeKbo9YneWNO0dGd4WqyUyf65i0YjXX2cG7 - 6gZykJMn3ShNHIOiu+OUrambbeKCa0FizRHvxmbsKRofvPTYLKO/zQ2F8hpEOuii4eBc8zyNTUvR - h+JH56ZlTjg0aMFUo2eTTf6kCdCvj3g/AGJs6q8Sd3DZi1FP8HzKL+y/T3t3k2WZB4fnzzKJQl1G - LHtaEvD3oYHVn6516ZvKM7yqVsenNzjRpqOKin48OmDfFe59S2+3GW6pffUX/pH302f+gP6U90m8 - ip72W39+ysnE/sZrtfFddzLCTD9jnPBFtm6a1ARlnXmyz4Wg50orVKWPX5uqj36xz1KaoMj191Ts - hlc1p+UWJOeVDNh+Bh7iHh7vQePFLrnRsqbDwXgwEvLmK96r2lItvXVdf/3Nrl+O0cr1nAr2Kz6T - iy4a2sLmMg/grbNfXuXFXTgF1cBkl6MvHUYNLXJ4bmGTP0py248qonfhwcCy8xxyddI1owfGOcPu - Fevk9FrkbO7KzRWAy2v/6TC4oh4ji1IkHbbTiAW34vPlMsFoNwbekeWUjS5nxpInKzM2Awp0uBtP - 5us/idK4FvrV99vWrrFyHvLqsx8TuAf53i/MzRT1rvbcIdFbd1guhqlfZbjEcOkePTGL2+yu+7Te - AejmnqTPYKDDIL4DcGRlhyMjf0RUcuad1K/BAX/1kc+XkAHlYprEIcYW0e5IAwlxeUDS3CgQzRjj - AsnCyjjxbp22bmytgWPlEaxl3eIuoiKZcF02LDbOtEdL5sFdnAuhIScnjLRFqJsZWe2A8A0LfU+3 - 4yP5+j2syImJ2JPRD6CFS0jUPVe5q5dWIkSRr2G1c2903UOSSMZusLChUx0tEqTJVw/8mU1Kuur5 - ngUJaEDcJFWzz3gFRPXLn+ZuI2YLXzcqvAxFwy7U54x/8D8i4oR9R/LIO7isHIw8CLhaibXAPuOU - E5dIrZfQz+cv0SLkjg6L/Tz681GVsuFd8vCrnx/9owvmcINybB6w0bUmGnRXPUvlbTKJy/plP96t - 87r1nwyH9b1t9ny1XH1EykOKjR1tKN0GWYN8g3lj9cDV2syelhhe16SauIDuEJ/zPxf0k13exBTD - SesZZ+4AMS6dto/mVq0KXBpQs9vz+/3Vps1yDxKxqEj6CFzEl/67QP7pKBCv1Kx+E2cBgKlcfoiX - aFpPzWLrQBJ5CJvtbdUGy9Uu6LUfGywb6jkijjaIglpS9Vsf+pk7Lax4e80p3p+EqZoH8SED3G1E - 7B+jo4seHgTpU7+nuRim6lUet6r01VPv7E/V4oRRK3UOBMQV/Loi4xFC0d2cdGLVVpjRaxZdpZ0s - F5/6jKulU2ZT+vgh4orpmJGr8PDguZ8Ykgt92c/HUmDQdesGxLdHjs78STS/eo8tsmjZ/N3/r2tc - 4ZuvcRUtsiugVd6qE6Vxk62SVgjS3joV0/WiGRXf+lUApjD1BOceqy1+GIsQSKHkN2A10XpaAg/G - tLGnWy4cqnk5CQkMa/ggO7oI2SyPKIHmmuBJqDK56vOjIEsfP4L9V8nSeTnNjcTUujQxj/GKlq9e - lual8blL+6Bjbh1k6V7kB+IFNZNNZez7EOi1gzWtc7R3YR0KSRNN3ufVdkI0KZgL+tQPYiRMVK1i - czGBnbci1q3Yy+aqlHxgrssVWykYGfvpX1H+Yz6wx2hBvyKt2En83dHwbt9oFXfplAFeR83C2CoZ - Otgjk8DjRZ/YaNonHed6CCB7O8JUu/E+G87ldoLEKaJfP8yZpN19+1css0mJ6E1432G2G4loe453 - ZzhRVjKUc0+sqzVnC6n7GcEwCzioB9wPsdFNItvwFgnmRKabF5VDSXd0Boc3znK5qm5lxN93Fs4c - smgjm+94aS2Q/9lPesX5nnDdIt+uyP5HuFSUDS6mUCdpgs36tmhrmhIROWdCiE2MJ6JnxutQnWTJ - 9HPyVnf59AtgKekJK62saOvDfwTf/vvj3wM6WwHhUeyKK7GtzKs4j5Q7UFfq+D9Hxc7WZonh14+5 - CWE1mhabHTrcIuPjZ3YZpVSbpdR2dKy+OsVdLM7QwWnJBu+340ynMjYYhO/v1p/5zS1bE55twb23 - Z184Nk3/W18W9bD1Xw9oo7mRPRn800mYhFdWVkvTGdPv+itfXrDN1QQ9mssdf/TDXc9LMEn1U8bY - Gqxj9OEj9VevsKInLzQ1Mb6iY+S9sJMQWWMPrn8RWk57EUVOnmiJvdUDQ6W8T6POd+e32IYw2fVx - ajeZ2bNhe72gi7KRP/reUHpi9DOa7VrChzpZ6Hxo4x0srZdgs2lTOgVwisGduiuxZOsVtauMS5jV - w5Nku/qVLReP9dDpwO+wtuQ44oLw2EL9lCOyuzVttZinHx1dU3tHtDRvo0XjNBZu8nXBsWQf+9ka - pQaxMxI/fnGt6HAEGbzXMfYZUm5Q9/TLAp4jcYh+YYqePLPkDj/hoBLdjado1tuzI20T7oVtI1AR - dwrzFvBTsr/7Ac2xa51//bXOM3a/Fkvmw8uL88/vJdGyD+MWjaJ0nTYjeBFnnJgGHXsU+vyHZ6yj - LccgobONz4em7t8/EJrSD7osRGmTkPKs/5LRKcLYLxT1FNHHUSjRPbjtp0rrbI1ohXABjpSMPwtD - UlHF9mvgeD731wOnu3wRG3cwZ3VHnFYMNI7muxrOC1/7pZdI9L1RWFPSOnPFXqip1eaR3Xwk1ebb - F1DW9kvZeT66BtcnOX/mm1bZcQCjMy7408+4E9ucY2BJ0REsKceIrWUtADm2H9j+MRw0Vp03ifTs - 8Ti53rDGsqdtDA/zHE4fXuLSRSAD2pg8+vUTsxZMDXIKJca3TflEq9Az8odPxdgT/HO/3DyWgcKi - tj+w/qYipdB78H4qG6zhbtSWNd8lcFb4s89GcRBxZzKKaHvf/RD/ceq1WXNVB/gWi1ilnaH1aHzz - oKwrP0GYxhl90V0Ax8jrCd4rZrQYJ6ZGYSaGE5N7sru5M+YZKeW8kqQMLW2+yHIgJRkqsZw8Hj2d - grOOtrDq2Ltoz36+tHcBCmKO/vrqFG0uZXVGxuFCsVWGmbucO8UDVdRLfDaaRzVVsX8F07Gaab27 - KaIQxA2Ma8Bh16vf0dT2iyyp2e2BjxcmruhVePjS8n7eyI0IfPX++C9kn0nmb15Lkc1fv/7pR4i/ - Pz21NY/3vijCGuPdZtlGa7lkA6RvJ8COHZwRp4apA2p/e5Nro7UVVbXuAid3u2Kds8OKdlSRYVTD - N9EX+9BvPv06OJtkJsZwk132yw8muzmSfSWs/Zh4IgN75r0jhnDTNG6TKywY7RRhbyPo1aYQuitY - F4sh7uAX1ZouAWy7Dq4kHORE44UmjYHleRfHbryPuLGzJnSO8AsbIXPoN/NRCmESf2ai2XkVLVPd - l7DOKJy+9fTDM1hQOtOZZHGTR+OmbkKomtTEOonT7Jc3tVEb4+vVJ9XclT9XsTZUC2uyDNqYkalD - WpZz2FdGimjJ4A7y4Hb79tP9pz4F0rd/wpLCRWvvDyFojt750jKOlHoF2okfvouVa+JT6jK7Di72 - 7kwiFLcZiRjNkerbMOE9FTbVrAZNArfUvU6l6gZ01keo0bQebOypaZCt9+VyRb3D1JN0GCs6WG3q - QNSLnf92s31FvSav0TQLKnEa8nTpNogaiOtnib/6tpax6aPzwrZEnhMZrbnfllA/1WhakgdXsfR2 - K9CXD1o2KNkmE1qAc1dZRL5v+IjyYxuLVZKqJBiGtZqZE9t8eca0zbOoah+3QBUrYryxK4snl0Bw - beDL+/3HCJQWQneHi1hRX3hlSsV96hW62raOvdan1aKGh92X12H/p7yi7rScfXQ+sFefZWmBPv6B - lzbcVcYWa22i5WEdVulY+QT7VtnRobydQ1BE3cexbev9Wn2IeFx52bSSTnOHh9EAXN+u5y+CbGib - MrtdN6I373B05FKtS2LVB+mYD9OWZtvqnXTyALYss9jRRd398KMOABaZ2Djzq349MvLXL0w83M7u - l4d89GEi8Z159EtAqp3EBtuVOHYgUIKoGSBNOWtY3cmutgCkukAukvDhT7rLx7E9IHa3N32uoHv6 - OY+7b70lZhJW7rIqYgP4KBn+PAxrTxlqhajllBfeL+OI1sJvV5H+FBeSVx7vtgznJGh7dzVsJK2M - Nl9+mct5iuXL5hitRm7qiDP5aOJnS8341W/Kz3lm/VrrGHcO2kiQGi9x8Z6UGppy/ucM1+D6IJGS - yxltj+IM1+D+wFZsjdHYWrGKuHZfYizybkRX6hZie9Qy/3F3DcRSsQohZl+dD1//KfSMCj/r5GN9 - ZdpqknO9lj7zO0lUOPWz6+qtpJbUxLYgKhrby0YhxvrzQvRHzkRLbYUzWOeJYuWc7NF6ip0JacrF - IvrEmD27vZ1KaKSxJLs+03peUTYxVONQ+ognjDbdeF6EL2/L90qT9QmjiRBHXoQV3y3QKNYk+PJz - jDvejBabPHaw2xGN7KVT4S5yGLTSG06nSVAauVq1tBAB1aZC9h8+MZuuI3z0MMW7R9NV63c/NxBn - +Kr7u4r7+rMPbyPYOCUupUc+lH76yzi9AsuLKBGIh8boLWCdYfp+ft4OAUjPnP3whORTr2RZjOPX - /ft76eiQxxnkcE0+eir3nE0eDpouP/VUNA+zWhhIGzg9eA8bJuP3tBaq6VuvfEriZzRnxgAoK+7H - qcNGQFeynBhg86Ih+KBY2fe8/urXh/ciqtu4RqP4c8WmTgW02jmOYXAY4cPbsMYa7fkMn/xw+rkp - ffb88k09pA2xtcyplpD0gkRmIcGZXjfZPMjGjL71RE4eSv/JkxIRvHkm4ch52kisuwqRFG0/3+9r - /NPvAuBaXJK9qYU9zbLIAwAqT+Tkhdqy1HUp3W178IVo8aMPP4ihOaqUfPufRcq1RoqQMBFzCjuN - ckd+hjl9Gr9+YP7mF1/+ETZuhua0XBjpeVRz/B1/+OQdMAueSfKJtzL65dcfHjMhr95l8+Z2UiHp - yvzXn9IDo16AP+PV//Jhwo2tiTaMU336d6OicxCw0icPIPeonNBC6mr95qtkn44m2hwLTgCB5zJy - suERjZ98DX3ymon/5JXzsT2et0MYpL4UCWNVf8eviSVh5eLqiD0YD/jmkb/55VhZYSn5Rxh/88+h - Nl4M7KVAwedn41YsPS0mZMumwM5ONLUFe/Mgffw7Me/h02VjF5+31pJV/8Uv1pPAwyGuS3yY3O7T - n/KOWN+mCe9fpYIGeUQxXOfrSC6f/oK7kOkMJbb2Pt+Fb/fLh6Dm1BOx7aCi9CnUnjRumwPZv8qC - UlPrW/j4p+mHekh7CLmqSzdlA1g+D321fP05XFfWp59+mVVHVgdzlnffPIT+ru9SCCLZOxqtxo8f - h6t8v2Glc9+IOMV6ln6y83OaFTWJyOsolvDN77Q+1jN+8scQfXkh98l7PrxikJj+nBLvrpk9W5fc - XfyJrT3eE4GrBtf1OjF/UWUSP3nq+PXfu1Ms46uf0miS7H0CX//mK2OIln147b58ceJbS47YL1+o - Ddki1hPeGedwpv7tp6d7OoqIImoWMETvgtjvYE9/8+4xDEey2zdVTz+8WTKE4UTsV8b3tM5ujLhp - NhqRzY2fLTqnmwjfwttvXsfv+HkHyHcrn2bd4Tf/g7/fWwH/+a8/f/7X94ZB097uz8/FgPG+jP/+ - 76sC/978e2guz+fvNYRpuBT3v//81w2Ev+++bd7j/x7b+v4a/v7zZ/t71eDv2I6X5//z+F+fgf7z - X/8HAAD//wMAybDCut4gAAA= + H4sIAAAAAAAAA1R6Sw+ySrfm/PsVO3tKn4iAVLFn3EVuhYCInU4HFBEQkUsVUCfnv3fw/XK6e+IA + CCqs9dzW+s9//fXX311eF/fp73/++vtdjdPf/2M79sim7O9//vqf//rrr7/++s/f5/93ZdHmxeNR + fcrf5b+T1edRLH//8xf730f+70X//PV3+X03yL316sDNN8eE8MH4mDNvgrbMN7WFJ/4yIO+wlJQ2 + 0TmTdtL3hpyaIcNyMEUGLo2wkjsSxIjo0dmS6rQRkX0lrsNdyjEG9/Z6Qqe+5CPK4lKXXpMXI1/Q + jxpfSpAF37HRUM6kkbP21UmEi8gS9GCYXUSWm9bAgOo9edTMPCywuzbiIKYcsezbzZnZsm6l1Rx7 + ojyreFisYYDQIGJPTketr2fpyszwXM6P3/1y+rGtFrKM3JNcNjyH3QdOAIZ23xKfOiEYd2ywSstN + 5om88wAloBhm6caNBULSZaDz51FgeD6eETlK65vSt7rosM8Ojq/K82tY9UEupNXEPXJspc/XZsIy + 9BDnk3Cp5ZxPP2wC4iC3iBZJ9bCqoFxhdLdUci20NKcSKUzINccOz+c0p0sqvHtpavMFs19Ty+fm + 4WLAWrJHjOCYOYv+cCEw0/OenAHv5ezbHTNoF3eHPBjWdtjA+lawY4SAPADn5DRQogr2kGjEjxc0 + kMebqpI/tS+fqLIecefQS+D5axxRXGECFnulBZAMrOPZuTMRnW2mgcLDLInpc5zGvQGQIWd5Ezq2 + ieLMH+iqEivHAjLm+wrozhEs6WjEESk+dg/oGXUVUL76jngHkDhry+4riSkcTMyLf6prnB4aGKrt + hThW5Tisr/ExvPCt9afe6HW5WvCxEzliKQmhs3phGRi7boWO8z0CeyTGEEoAv4gX7HqNHgQsQnUO + ZFLQhdGIPlgMONxkQILBcSi7ihjDvCkW5FJnAZNHjQKujwj68zfghjkLPioUhouFVHEu6FBwUwKm + 1DkR9WuqOZ8ofCVVYfNAp1mwAb/OIIPLhO7oGNSLNo/pbEp3rBbEQX0B1pePR2i/tQJZxCFgPYde + DBP2JBCv0kA0rosjQmyhr888/KnGB04xgcMFL6RKjZWzKn9sIVcXEVI4ttFmw21sOKymS+T+Ldd7 + sahWyIODRNw+fFBqRoMFg9v7TtweU7C+prsKJxW5RFmeorbyJ3+W0GU3Ii1nnHoIlKiE7hgyuE4z + hXIv95RKX03nSLA/F/W8Ckoq8R+SIoe7Ohr/YkNV4vhOIBe3Dhzuan5dWMtBgCJp1SiVJbaF2PK+ + 6MqkZ23Dj1QS40RBSYsDsByIpkuGMVvofDuUzhiGSQLaXnkQ5/B8OqsKuhlq3ddG8XM+a5QVbBEq + RIXEjy+3eq8Ymi2pT+NOLMZO6q0+bNh+Mws59kPO+W+2itCI5ZkkwOUAXWeaAotOYOtnh/ZPfRGl + y6tzkFc9l2h1zq9Yiqx2RcYzVfLZXkUI2vhYEutw9KJxv1xEyFx4nciDMwAc3e4cPH4sZ+sXBHhk + nVXxVjs+BofLCcwN84zB77yMox1YZfYWANg/Cx/IxqQNw0H0IfdNA6KdTmK0LrMowNQzA+JZ1egs + i1WFkjk1D3Ldg8jh3fOXhb/35XT59Kc/JfbLGZg5njsN//Bmr8EO2SGXOvzd13zp1XMff3o/Am3x + ziIHtZB4Pt8mirZXQBfCTrIEpJzvqsbeuYETnT5tyZlyRrQU+iGTMogB8S3xThek7Ti4eDb0WfPG + a0s55SWkdpL5nHlLte+tMxJwisUCHcOizddiUmU44AogB/UMfZ+/bAcsi9GIeSW2RmvDzaAolC2K + tvobC30WJQE9PPJ4P2aHHG0rhtyxSdHpcdAdrmqLEt5dvyXWiXp0v4rEhb4zf5HLnYJhlTmukWIY + qZiJFzLQ7flKQE9fRB8+NVjsg8DAHk4anmn3BXQuT6aUJ/4Jac1750xI41lYmbhC9zy6OvyNO8XQ + VMaayD/8i7f/bl39AcmVVdULX6Sz9ObbgDwOgNPm3aUuoOT0CpLLr5ZzYufrcDSDhWh8NueTq71Z + UKYQkctwO+WTYjgW/NRvx19P1xisB07RYRxaJcrfysGZ9IfOwLzSdWLr87umaclx0vkYIXQSGSmf + pALOMDJ9A7nH/B6tOReyEEnTC93qSqjXp74IsOEuHlIcHddLyZ5l+HkntU/97laz1WXvS2zxfqIn + wzoapWWkw1MsFOSZdM9hTopAFReRI0jD14+zZjupAxw6qMTreB1w9mEpoHV1BxQ49yLi+JO/wgdi + E3JudSnCSMllmBGjI5evaGuzo8iy9LLnIznZyjefO/umw/VkXInxTF/RDLqnDtQZXLDwQmHNAxNA + qKekJ8c2eTmL8007uN77DzEfe0ippHcdLLHoEjdYcD1WbFVBd3Whz9tKF83y8cOALPIwlt6PwFmv + 5ssVe+aekxuThtrqfm828KfmhbQEVPky5Q8BXk/3knjH7xVQNz5aMGbfE9LShnfWLhNTqByjo78j + u1vNsZ9eh5LGjCS/Z2+68XsMn/bxgB++4uTsZbl0kBXMCanvcRroFS+cNLW3xYf5SaEc4CIdNvBs + o1Dduxr3XXsfph+XYlid94BsfAtO+XP2sSVCQB9Hb4S+aCw+z6RnZ/9pYgyjOe4QsirP2Vd34EJf + PC5YjJ0q4hK8JHDDB3QS2c6Z2as8Q3sOdHRVGjtiO/tsAhqACZ2muASDyUoz3H2mu79seIzXT2rC + OLRLvH89XO0P/4hWYSJjvXbaSG62/vt9SD955bBw+GDCNp/3xKuZYGBvRaVKki9j/Nnwi3s/PAxV + oenxxyk/9aw1JyjtQDgiOwlcwBbHxIVfe3bIo+Mbive7syi5qnVHTv5aasoH7gqHVXfJybAu0Roq + b/WHD+QirTpdU07moD1i6vfEmcFas0MJAbQTn08zDVAz6zrY+qeKJCZSAZ2+ZxGGYmyTZ/Vc8/lg + infofRqd5Bt/LEZyvEO9+bx9oraontldIErr98RjEpVOvW8aG0Mjxwbyq3MCxgdpY6n6nggyTAfW + o9W8GfgcgjuR/eAIVujbED7Wc4OOCn7W625SQ7gPUeATR5vqTmEMHaRYtNBWz8P6kPoYDrY0EMOt + Z2exItaCqtp65H7zx3qKPt8YvlXPQmngvCK6c2ZLOgTjGckV9ug+vUYq/Ca9SbyvIjqLcI0CydSP + ASk+bQlme9gXMKp0Gd30qtco5KIW2kKDkWvvF2elt4cJQbajmz4Yhh9eixbVWxJfo0hbkyXpgG0L + AD2lywCony6JdIJdhIz9xQTsw89H+KpPIUEWUztrZWgiZHerin76ZK0ZM5G8V3dE7k7VhzXBhwQa + 4Tn1peOzqtes81h4e6CA6PKsDsvzaZbwnj19vMOlmC+vNlF/eI5sOKQ5v++RCPR06snd3p8d/hx6 + HBTqgRIje3o5dw6NRLrsxBXzlzaL5q1+4U25JP4qYWkYs+Ajw+V8qdCV1M96gd2zBe5BPKPj/nIE + Y+2GqQR3q0kcVa7yKQ8+1aFuij3SH4M5sLCAIfAE74ZOV6mtF+4DWiBW7Xfjr0abpUkJoH/tG7yU + uQX4RNlVwHfWL/E3vdcDKWihfBhYDODjQWfZsHuYetMbHWFk1n/47tazNUnDwAFcyd5KsC8fAjEf + w3Fgd/cSwkdhMgQtsQZ++AY73gXoFNSrNkZlnQBXfLU/faBN0eLaghI5KjrVDB6Wy1WRReZR3pDX + 5ZjSuVR0ODJfQMww6On8jl6ClFemjpfPbq0/yLqpUuZ2OdF2PI7mY0Q7Sa9hQDQhampy2I2ZqHhI + JxqWwnxV7/QugSwusNRDFC2NOpvS8omem76acjJb5wBiJDIk9bxqoD+9vvUHkXuyp3Q89ybc5b6L + PFXW8tnUTjEUmXuNwmXa1+ujkGTQGTcN7z5pm8+FPgtSU+YBTlrLqNl+pS7k38lAVJ9jtTntdA6+ + D4zkV6nbRmu7Bi70pErBef4614ubCgn8DGFJnL4U8vVGnASGuECYFV6yNkSJIEsjo7bIscy9Nvfn + spXwhYWYscQ7mH942XTm2+cb/kUJss6ydNfrM/HSI+NMLx/7sGRZG6H34agNnqKUEn5h3meSAIP1 + IOAMGDdmIgaWomhlP70JX8tNRPJ7dIfl/fB8WMTGHbmH2sj5+0XGgCx+hVAPg/wPHthzqCPb87Sa + K++vEU74aKITKzMU14yfwG5Xv5G9vt815gM3gOXH53HPtN4wvocbhnohh3/0MHsxOxdQlxyRkWYV + WHb3bwGPXi8RJW44Z71+KCsZROiJLx3nfFWmfAY/fRnkM3JwcLM5cfcxj+SBoFxzujonkjsGDIrw + 9eiwPGfpIJIDC6Wdt0QkKC1O2vQ0sfRZr9no07EHT340RH3sMzov5a0VJPecIE03F20Bwk4E1dch + xLXRG6xWBHsQ3ekVr9dodRa3imy4o+8rsvOTTNdJUQLYeFBF16A+aytz3a2gFrOVKNHLrfdGVFmw + 0ne2LyXFKaf20EDIflmDnPaA1eb3xMvAHHiD+Mez5VCdrWeJOL7+53ktb3Yvw/Ol5pEy3mc6Xcs9 + B5TXrffX6PDIaSLEHaRBkPpCb7XDwpklI23v1/9s+oX6ogOhcKUCnje9SanyXqF2MUSkf4N0mL3z + moC+qwpkqnvsLKMir9KmL9EffjwQrfnhFTJM5ZOPtxeKgX8eP8hoE1njDaOwhTIaPkRzyvewRoJq + wT5CnL+/yL6zwlEI4UFnEzyVmQn2XQQzoAe5jAynbOt5UZoAXCxLQtF4X+hq57oFry83Qej4TSmO + wmsMq7B9EFRmHzpseAfr4PAmQUQ+W16gyyCSQwu50hFF/NF9d796IzLXdvVyrnYWuB4ni/iL2UX0 + 7UYCtJx4Rtl9vQyLyngtsCgBGE7jWq9J4MqwyR6hD+OLMPQfTW2g+dzZRHumZU4QNQvomK5CtFDF + 0eLNnS1RuHzQqeFVwB0N0sEpPZ1QAboArF+XT6HaZAbysXUaluoO/D/6XDHeJFpWpZnBGL9umGZP + N+KEkmmBwTihT90aaYsCygAWXnlCqT43w1eSKlMKzuFKlM8urDm7aSFwKnL2J8O6Rsu1SCvwPLx0 + jMnHohOeuwwyC95teURSL/sbbuCWJ/gLx+oO++PvZWyP5HSTA42bS6uBk8Y0/nvTH/1rilVpq+fN + r6j1fsMLUEjt1z+gshsoFl0fvOb5TdLX0NVrttt3kO0fGQrVG+dMV86KYXN3e6ILwyXab/oBluT1 + Qrq72MO01cMvj0PXm4w0zjl/Y7jpe6zdDi9npSIZQcf7AGkLWJzl+fQr4OtGjKL95Q3mLyxkWLHp + BVn7KR3+5Dk/f9rMPh/hWckD6GOPQxYKJ42GnzSB6JJc/V0Pg4ibq0kEoS3siAmNQVt3+mpD7XIU + kWIqRvQ9lzcOHliRw/CN4mE5vLsAfkV2IPZkmtH2e0rwXvoIH1YqO1zNmDHYkXQhGfmY9McHUus7 + FVLx+zWsH9vSwa+/f/2yfF1GgBs++0BnFG1to0oA7QtTpNdx7tAfnzWMXKEngq8auwNzh1u/YbYN + b2D5QL2CqszukVLBbzQ+JkWWfv7tMuzieukPiy/xzv5Bblt+Omz6C6hvLfMBG5bDzJ28GYLuYxLn + dXhrC7hOoaiU6wUpHHOIaGaCEV4ua4D8G5sCHs1f+5fHkGDrr7l2swyCTKJIdi9hvdbgJcPvvH6J + PY3ngUVifIeWk8xEHnXZYW2752B8EC/Ey1/rgPXGZuCeVSxizrqmseimsPBoJBEyIkmvOXPI7vBu + AoYgSMp6kacoOPiH+508XDPR2HN5i+HxYzvoQW9etA/otQC4cNpN758HVggeIdz8BbEcXGvzV8tb + KD/rM2ZnvdKopdks7CI5wTKOnpTAaxvCDj0MtOVDw/zJllRyaxij5DuSmr6eqBS9V39EVh8Cip3Y + 70HDfvbIgQcK5nQhPdzyJ6SnyX3gd6wc/PIV5HnvfbTygRv+/Iu/Y4WJruQ7pCKOCoSM68uv52iX + 9n/8SHzxu2GMhciWiFYShNg7T+fO5TKYkvqBeyUJ6DyHbgNA+D0he+6DfL5esxKITFFjqU8abTSz + gw0dvxr8jY/rWeVRA374hXDydhbuQ1uoal6F5P5dDqvaJiE4n+QPMUpeBnN8tSoYplWId5G+r1m+ + lBpwPn0hsRhZyTmlFiA8f49HcmxLLlozKY1FJTqpJE7Xtf6T3+1WRsVglZLoS0rZFOfd64vU2U/y + 8c3CCl4KXUQ+RyBdkJJV8MZfqQ+0p1Jzs3jB4LxTdKS6F1rPZrZY0su53ZFXaXk+HG0rAXswPvx9 + yZeAojPlpObO7/z5s/AaxYqySrt9QpBjVYM2DooVwkyM/Q1P9WEdVujCzc9jiey1nByEVvjhvU+t + naGxptF2QooFC+Wqfa374hL6cFqjEQv27aB9R0WeIeY7FlmzrjvzXTYxPB4nmTjvB9L6W1DIUAq9 + GB/eSuosV05OAE/SiSRAfQ2bnrCkOJ1WctryFnwIkgAY505DZhjYW17Gs8Iv3/3df89+vs1Pn/pU + SjzKKe7Jgg4HOOL0Se3Q3s5aGOqS6kONX/O1IJ8EPMZLixArTGAO0UEVNehmJJRFDnzfUZ8BgGvt + p2cA76dLLKUgT9EPr+cdx+kAH9sYcw5WHf49tRWESXjwMV0YZ14XTZDSlHGQ/LQ1MIrCLoW3eX6R + 8+0gO+tq9TPsw/aFzBMd6bjlzSB8KxVSkqcTUaNx7qJ4Oub+R1oNwPlnmsD3eO39ZbwHYBk1bMLW + qzx0QmVX433ZNBLF5Q4z9/U6bPXVSJm+M5E66orGLaHRiAs9ZeS4vphoIUo4Q16rKNKilzesd9/G + 4Kcfrd4yh1/+Drv9oyY2ULWB1dpPAIWHXvpcxjMawXkiwp0RIBJRrs0HYFLmj57d5llg1FoSwAff + uj//VtNtfgWzDGjE8/LSoWZWdlLwfl4xy6tyvdZRIMLvWinET8aGrm3UC/BxEm/IQ2VfL/Vg+WDz + Q+jKc1bEuqJa/PqZnLTvBayHIAmlek5m/GmhG9Fp2Lkgdvc8co7aMKwyew4go0YssoJLMqzvrEzF + POGLX3/X07dSUnhE2YXoJ08e/uQ3h09U43KnmTU9cKf2Nw9AFnfyh5+fB/zZNv29EL3rJSd3FpSe + GePPpndnR7FUeIuFlljN95jvMTXwH/wyH/s7oCN8liC4fe5oq+9hLQiJoR1wB6Jt+maP5y6FrPWt + MPMehqH5wkQGtoZaouSMXdP5OwjSEaUXlE1mmy/1ZT8C/lbMxASqMizjwPhiKlkzifnOoWPx9NVf + fkaMi+xr+8XqA6iLdUX0dA2H+XmpXXi4qQBjex9qy71gK4kGh8kXuJNfzz8+2eqFGEgPhj/zwfHu + YnJar/027zBnGLcXA9O2jPPlo6mmtM2HUNqHOaDy/cX85jXIkw1fIzdOiaEtxiYprPk4rFbEdqDa + Kz1et3nMelF4FcoH9Um04dZFyzyvGXw0KvRPfVJpv/wM3Hqu3vyVUS/2uWSlP3mTbJCfX1jhL69Q + OsEE7H65CJA/LzlJPO9V46wYZLDNazDY5pXUs5v4sOWrPgO6mbYDvKqQB0BChrTqgOsrRYDvwlDJ + KT5CjcRoraRVnqc/809sJkcGelKpoOzmO/V+OL9MqM/PEnmvg6mtN28epU3v/+GX/cvH7mGrL+Rt + fDRbdsrBcyxU6HbU+mE2jbYXx7uPkX/v1Jycb04M1aqbyG2lssbhvEjh5t98+ha/znyXXgl88vaV + OA1f059/kLZ8hZj+WNJ5J4EGph+f4vnMLrRiP5UujcwAkP8ehnr24mcHMd+z/uqEtsbxH1aHy9gc + f/MQuo4DN0K0ux+IeY1YbctPW/gcwjs68dw3x122ptLddVvM+VyijddrVsE/+eIn1XPegl4INn3j + L1LiUpqZdJS2POQP3rByewnFWK89hDY+nVp3FMUtP8Hcd0QD/unvJhJkVGg8jch2P2iYtwc5CYcQ + LOcv7GFkugZej1jWOFRaCcT74N95OKcypv7jY5zpogiWHiYl3PJ5suFf/eN7KZjskZjyXA9zRuJY + 2vwjOQ077t/9dPoetS0P94f5XrAqMKf2gVCwczQ+2skWLL+fxof2/vxn/gf//m0F/Ne//vrrf/02 + DNruUby3xYCpWKb/+O9Vgf/g/2Nss/f7zxoCHrOy+Puff28g/P0duvY7/e+pa4rP+Pc/fx3+rBr8 + PXVT9v5/Dv9r+6L/+tf/AQAA//8DAIdt1vTeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac133fd6367d9-SJC + - 9953e98a8daaeb35-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:51 GMT + - Mon, 27 Oct 2025 17:28:51 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6b6d784995-rs2ls + - envoy-router-75677b5679-crvdl X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "61" + - "156" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "84" + - "179" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -634,55 +634,77 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_d3b773d8242a4acfa2477335d824b013 + - req_ec4cdf0e2400459babbdce5783a48f4d status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt - from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: - What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What do I like?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "877" + - "821" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFBb9QwEIX/ijWXXrxos+q21DeOPVAh1BMEJcZ52rhxxsEzabta5b+j - LBQoiNNI7/tGT5o50Zg7JHIUkp87bCQzQzeXm/1mt93ttze7G7IUO3I0yqHZVlfz/ftr/TQc31U6 - fP24n67C3d0HsqTHCasFEX8AWSo5rYEXiaKelSyFzApWcp9PL77ieSXn4aht2wfJXPOpZmNqknkc - fTnW5ExN9z3M6hk8TymGqOloRL1CzMWtSXGA0blogtgL08WCsBqe5Qkl8sE89V6N9jAywQ8o5xV5 - U5P9UVaQ8Og5oJGQC9bSalvzUnPbtrR8sSSap6bAS2ZyBO4anQvTTyD4NoMDyPGckqX5fAh3osjT - rI3mASzkqrdbS8GHHk0o8BozN6+NX7zAd/9jL7trAaYeI4pPzX781/9Nq/5vuljKs/4ZXV5bEpTH - GNBoRCFH6/s6Xzpalu8AAAD//wMALqKnjjECAAA= + H4sIAAAAAAAAA3RTy27bMBC8+ysWPNuB7dZO4kuBPg5Oe0yTBlUgsOTKYk2R7O46iREYyG/09/ol + BaXEstHmIkA7O7OPWT4OAJSzagHK1FpMk/zow9WXi6/hPt1cnf+yn6rZ+/PlN7O9W368/nxxo4aZ + EX/8RCMvrBMTm+RRXAwdbAi1YFadnM4ns7P55M20BZpo0WfaKsloNpqOp7PR+Gw0Pn3m1dEZZLWA + 7wMAgMf2mzsMFh/UAsbDl0iDzHqFarFPAlAUfY4ozexYdBA17EETg2Bom34sAkCheNM0mraFWkCh + LmsEfDBIScB41OS3wKIFeQFFUagleLdGMFr4JP/DZe0YXLDO5CSQWgtIjcAJ9Rrpz9NvhkRYIWEw + CI6hitTx4bJGwioSDuG+xgCa12jbMtdZxkboyr3LoWErax2hEdCB75Ggoti0YcEHydo5cd9boYbd + hIQe73QwWLKJhHnSybgIu8O9EFYb1tmVsPH+ANAhRNHZ1daR22dkt/egcsFxXRJqjiHvlSUm1aK7 + AcBt6+nmyCaVKDZJSolrbGUn81mnp/oj6tHp/NlxJVG074G30xfakWBpUbTzfHAWymhTo+2p/Q3p + jXXxABgcjPdvO//T7kZ3YXUw0Pn01QI9YAwmQVsmQuvM8dB9GmF+Zq+l7RfdtqwY6c4ZLMUhZTMs + VnrjuyegeMuCTVm5sEJK5Np3kP0e7AZ/AQAA//8DAMsqoTsEBAAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac1357cb11588-SJC + - 9953e98c6e1cebf1-SJC Connection: - keep-alive Content-Encoding: @@ -690,91 +712,122 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:54 GMT + - Mon, 27 Oct 2025 17:28:56 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=nuEx47oEizvL2ktVAgGxJRJk9Celp5skBDrw9D2Cqbs-1761586136-1.0.1.1-8XQ0rNWKr..68JSMMubXblaMJ5Y4pu9kqZ4K8CevZ.bXd3XhYcEZ5G3QExVpL3atYMzlmjUuBXwprDGNhR0J37PyodA.uGZ2JihzdMcWeOM; + path=/; expires=Mon, 27-Oct-25 17:58:56 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=rlicuHdEqQwbQcIcFsljOOk0H64UMqmoKQKyvs57Sc0-1761586136570-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:53Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:53Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:53Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxvim7YTBgg7zzZKDim - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "4583" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2662" + - "4605" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999828" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_a9ba730029544291bfe5a3c026e25993 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt - from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: - What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What do I like?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "874" + - "824" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFNb9RADIb/yug9z6JkywKdIyck1FvFhwiaTCemmXbiCWOn6rLKf0cp - rPgSJ0vv89iW5ROmMlCGQ8xhGWgnhZl093x32O2b/aG53F/CIg1wmOTWN+2H9Pr65m580158fPvl - G/H7q8O7qwgLPc60WSQSbgkWteQtCCJJNLDCIhZWYoX7dDr7So8beSoOfd/fSeGOTx0b00GWaQr1 - 2MGZDtcjmZmqFDb0OOcUk+ajEQ1KYnQManSko8npnkwMKs862B9jKmV6CBzJSyyVtnFt0/Hacd/3 - WD9biJbZVwpSGA7Eg9elMn4Coa8LcSQ4XnK2WJ5OdCcknhf1Wu6JBa59+coihjiSj5WCpsL+T6M5 - 80ph+B87924LaB5pohqyP0z/+r9oO/5NV4uy6O/RxQsLofqQInlNVOGwPWYIdcC6fgcAAP//AwBD - +ZcJCwIAAA== + H4sIAAAAAAAAA3RT227bMAx9z1cQenaKXJC0yGufOrTABmTFgLkIWImOtcqSS9FtsiLAfmO/ty8Z + pDRxirYvhsUjHh6SRy8DAGWNWoDSNYpuWje8vL3+8l3fXNfXo6ev36Z88xgvl7+vfujl9BZVkTLC + /S/Scsg606FpHYkNfg9rJhRKrOPz+Xh2MR9PJxlogiGX0tatDGfDyWgyG44uhqPz17w6WE1RLeDn + AADgJX+TQm9ooxYwKg6RhmLENanF8RKA4uBSRGGMNgp6UUUP6uCFfBb9UnqAUsWuaZC3pVpAqZY1 + AW00cStAm9ZZbcVtIQoKxQLKslRX4OwDgXQsjuJZCsGythFsBARjmbSAIe2QMQ0DQgVSE8SW8IH4 + 35+/EVqmipi8pgK0I2S3BeuN1SjWr0FqlJwj9f54zM61c6lDfVjWxJQiPgAaY1NNdJAb3QgETr+V + szpTW18FbrKwAmLI3OjjMzHI/vTYUcy68T50As8HLe8URGG061qqwM/IZtGPRBX70TI5ekKvaRV1 + YEojHo9KvztdCFPVRUx28J1zJwB6HyQLzVa4e0V2x+VX1ttYr5gwBp8WGiW0KqO7AcBdNlP3xh+q + 5dC0spLwQJl2PJ/t+VTv3h6dTi9eUQmCrgdmo2nxAeHKkKB18cSPSqOuyfSpvXmxMzacAIOT9t7L + +Yh737r1655lMpt/WqAHtKZWyKxaJpOMcdp0f40pve/Prh0HnSWrSPxkNa3EEqdlGKqwc/u3p+I2 + CjWryvo1ccs2P8C078Fu8B8AAP//AwCzezDzfQQAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac1356ae4cf61-SJC + - 9953e98c6dabcf25-SJC Connection: - keep-alive Content-Encoding: @@ -782,43 +835,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:54 GMT + - Mon, 27 Oct 2025 17:28:57 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=K2XFCeq1YselP_LbNeASKemqdqcToeVwj_Zps9OuRyw-1761586137-1.0.1.1-kBqEExSJljx42imwME6tSu_NTsGFs.LNAjvS3UkrE4VsN3lq7qpmIvlZO9R5sBIAqWeELf3VIu3CBX0upY4yA3qLTgTODSDoTsQb3LNve3w; + path=/; expires=Mon, 27-Oct-25 17:58:57 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=0XemTJ1fq4cZit_A6hkZLNwmxbTZvWKQHxXaF4ztISo-1761586137472-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:53Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:54Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:53Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxviksUhK5Q3Yt55Tue - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "5471" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3331" + - "5500" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999828" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_5fe64d7abf564a3bbae35645895fbb66 status: code: 200 message: OK @@ -979,7 +1040,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac14c199167d9-SJC + - 9953e9afc9d7eb35-SJC Connection: - keep-alive Content-Encoding: @@ -987,13 +1048,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:55 GMT + - Mon, 27 Oct 2025 17:28:57 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-5f69ddd4fb-qw6cl + - envoy-router-78f9c65978-fvd8h X-Content-Type-Options: - nosniff alt-svc: @@ -1005,7 +1066,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "109" + - "70" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1013,7 +1074,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "168" + - "130" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1029,55 +1090,77 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_3a388e798d0a45b3ba6d411f98d7dc99 + - req_de4ce5ee2cfc47b3b1206f028558a0f0 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: - What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + What was it that I liked?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "887" + - "834" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3SRTYvcMAyG/4rR2VMy0wZmfC5LKb2Ubk9NSYzzsnHXkVNLXmY65L+XbDv0i54E - 7/NIQuhKcx6RyFFIvo7YSWaG7l7t2t2hObTN6XAiS3EkR7M89M3+/vTx7kP7/u3r+ubbUafzu1bP - 4Y4s6WXBZkHEP4AslZy2wItEUc9KlkJmBSu5T9ebrzhv5Lk4Gobhi2Tu+NqxMR1JnWdfLh0509H9 - BLOgSGaD85JiiJouRtQrxOjk1eiEi0nxEUZr0QR50ZH9Makg4clzQC8hF2wT903Ha8fDMND62ZJo - XvoCL5nJEXjstRamn0DwtYIDyHFNyVJ9vtJdKfJStdf8CBZy++PBUvBhQh8KvMbM/Z9Gc+MFfvwf - u/VuC7BMmFF86tv5X/8X3U9/09VSrvp79PJoSVCeYkCvEYUcbb8ZfRlpXb8DAAD//wMABYzEtg4C - AAA= + H4sIAAAAAAAAA3RTwW4TMRC95ytGPoGUVNnQpCHcgAsUBIgKpLJVNLUn2SFee2XPlkRVJH6D3+NL + kJ02uxXtZaX1m3l+8974dgCg2KgFKF2h6LqxozffPrzHj1P89br4enl+uY2nBU7Pv3z6/B3fbtQw + dfjrn6TlvutE+7qxJOzdAdaBUCixFmezYjqfFS/mGai9IZva1o2MpqPJeDIdjeej8dldX+VZU1QL + +DEAALjN36TQGdqqBYyH9yc1xYhrUotjEYAK3qYThTFyFHSihh2ovRNyWfRt6QBKFdu6xrAr1QJK + dVER0FZTaARo21jWLHYHUVAoDqEsS/UOLG8IpA1iKZ6kI7ioOILhQDpVszOsUwNIhQJSEcQ2ewXP + 8k9DuKHwPBPFIxNcVBQIOILzgMZwshItZMlbAR8A62tetyy7V5n1EAD4FfRo//7+ExMzu3Xi0pYw + JFGGnPCKyQB2d5ZqeHAhkKUbdJqWUftAyY1iXLp937tAqzZiSs611vYAdM4LJrk5tas7ZH/MacWO + Y7UMhNG75H0U36iM7gcAVzn39kGUqgm+bmQpfkOZtpidHfhUt2gdOpkVd6h4QdsBp5P58BHCpSFB + trG3Okqjrsh0rd2eYWvY94BBb7z/5TzGfRid3bo30MvJkxd0gNbUCJllE8iwfjh0VxYobcJTZUej + s2QVKdywpqUwhRSGoRW29vBMVNxFoXq5Yrem0ATObyXlPdgP/gEAAP//AwCzftKeKAQAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac14e3cb81588-SJC + - 9953e9b0db7ccf25-SJC Connection: - keep-alive Content-Encoding: @@ -1085,91 +1168,118 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:58 GMT + - Mon, 27 Oct 2025 17:29:02 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:57Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:57Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:57Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxw1h6Z1mBV7mPUkrS1 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "4418" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2746" + - "4466" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999826" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_674c07df9a9d414cbe19464d91e92f16 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: - What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + What was it that I liked?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "884" + - "831" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJHBahwxDIZfxeiSi7fMbrKk8S3NqSWXQCmBTPEottjxZkbeWvI26TLv - XmbbpGlLToL/+yQhdIAxRxrAQRiwRlpIZiZdnC3Wi1WzWjcXqwuwkCI4GGXjm+X1j328udl+Or++ - ujz/fvt4+uELXiFY0KcdzRaJ4IbAQsnDHKBIEkVWsBAyK7GCuzs8+0qPMzkWB13XbSVzy4eWjWlB - 6jhieWrBmRY+92Rmz4iikpiTj2ZID2QCqtgTkzimgJp4Y7RHNdqTkXq/paBHT47iuxbsr9mFBtoj - B/IScqF5x7JpeWq56zqYvloQzTtfCCUzOCCOXmth+A2EvlXiQOC4DoOFerzbHSDxrqrX/EAs4Jbv - GwsBQ08+FEJNmf3fxgsvhPEt9tw7L6BdTyMVHPx6/N//Q5f9v3SykKu+js5OLQiVfQrkNVEBB/O3 - IpYI0/QTAAD//wMA5PLB9yACAAA= + H4sIAAAAAAAAA3RUwW4bOQy9+ysInceBnTRx1tciC3Sx2PYQFNh2AoOROB7VGmlAcpwYQYD9iH5h + v6SQxsm42/ZiwHzk4yP5NE8zAOOdWYOxLart+jB/+/Hvvz6ttqubd4fD4d/25vzP1fvw5cP2j4+D + XZkqV6T7L2T1perMpq4PpD7FEbZMqJRZl6ur5eX11fJiVYAuOQq5bNvr/HJ+vji/nC+u54sjrW2T + tyRmDZ9nAABP5TcrjI4ezRoW1UukIxHcklm/JgEYTiFHDIp4UYxqqgm0KSrFIvqpjgC1kaHrkA+1 + WUNtblsCerTEvUJORR8FtCWwgZBBFJU6irqGuq7NOwh+R2BR5Sz/h9vWC/jovEWlXIhaqqUn3BFX + MIiP2xJqPIvOe2JJEXpOMQ1xJK0KFT32TCIkgNAzNcQULUGTGBJDn8Sr3xM0RKFQpgdkN0qB25aY + AJkgJkjaEsN4K4HUZM25Io/hUyRXAUaXM7G799vB6wF8HIdOUZQHm/O+/fc1h/bE90VmnrwIdZ7J + ajiA4o6kYFlFwVDA56al+VFXk5gqeGgpAsqOHDz8b0tlqa4qIaVHzasI3vrcw7usuvE0XgWjPBDn + Ni9txzv8kwCd81k3hnLIzJMYMChxxLw6KQvqOe29I/cy8vH4Z7WpRnswBdpjtLQRm5iyTZaLOj6f + moqpGQSzpeMQwgmAMSbFLKPY+e6IPL8auPHRS7thQkkxm1I09aagzzOAu/Ighh88bnpOXa8bTTsq + tMur1chnphc4oW/eLI+oJsUwAVeL6+oXhBtHij7IyZsyFm1LbiqdHiAOzqcTYHYy3s9yfsU9ju7j + dmK5OP99gwmwlnolt+mZnLc/Dj2lMWXr/S7tddFFshHivbe0UU+cj+GowSGM3w8jB1HqNo2PW+Ke + ffmI5HvPnmffAQAA//8DAOAIlO1BBQAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac14e3c0acf61-SJC + - 9953e9b0dab8ebf1-SJC Connection: - keep-alive Content-Encoding: @@ -1177,43 +1287,45 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:58 GMT + - Mon, 27 Oct 2025 17:29:03 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:57Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:58Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:57Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxw1qmn264tEK4JjBox - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "6165" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2749" + - "6196" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999826" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_6fef09bf7b804c9aba6f470455379557 status: code: 200 message: OK diff --git a/tests/cassettes/test_partly_embedded_texts[True].yaml b/tests/cassettes/test_partly_embedded_texts[True].yaml index 5264570b5..aca3f0d0b 100644 --- a/tests/cassettes/test_partly_embedded_texts[True].yaml +++ b/tests/cassettes/test_partly_embedded_texts[True].yaml @@ -41,122 +41,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SRO6Orvn/v0Up87WviWTJDk7JpkhKIjY1dUFiAiIyBQgt+5379L/W7e7Ny4w - xZA8+U1P/vNff/31d5fVRT79/c9ff7+qcfr7f3yv3dMp/fufv/7nv/7666+//vP3+/+NLNqsuN+r - d/kb/vuzet+L9e9//mL++8r/HfTPX38LXMfg+Kav2cZrhwIutTtiFV9gvRjOIYfSXu0xnvJRXdQi - iFHx2jpiHZke0GHviWJm7wS/6MdGnW6hk4u7RHsT7RBt2SJusoJmUZNx6lxqdd2Lm4n20FeJic0z - XbikYcDT1hns091+GDm/SqAKrRN2M/lVr3HrRgdWF3V8XCQ7Y27zeYfGxHWxfdx24eIdmBLkD0mb - YS48nEXEfAKIbZ5I2KBLzZmKWUKA+dkn3juv1/0qzejRqh3RDiBxmLT5lFCpHcOnJVzrNTocXTA9 - bQM79jCC5WwJEbrn3ERU8TWHox23Igx5usz744up13RfVuh4fVGiTcKoUk82fejow4NoypvLVreI - JFTtgpIonrcb1pPr27C9wx2Jnqzk8BwNY2A3Wkeia2eFdEpOJhpfzBE/2k84rPE5yJGoPSd8gZoY - zteIP8PkplCsadvLWafRraC8VBK5k72pzrD7aAASxZ1fLxoOvB0KOmi26k6kZp3o6ryZAr559UZM - 7loOW2lWMyrnw5kk9DWqswxyE3pr8CCPVrYAGxJ7g2efXAh++KeQkUDYw/DiHnygq7XK4Xaw4UfY - ZoLhIQ5Jzt1axMa7mJhi0tRbbV1muBzLmoRKr4NFLZIY+r54JWpsXpwPA+kZRbNJcXIS39ncctMC - WIlQIiGqAf6kaD4EGOyIXOq03vafSYOuoq7kaAPDYS+k2cTusdT4hkx34Atp0oBf77mZe4PTMNEg - duFKa4hxjdlwqoIugmM/UuJ1r15dNW8KYHg0PzjfyitgbGGpUJA+P9jeTvt6dFyUix/lNhD7cMxV - 7jp1BSzwg/H7wxE6SxTlG7wupw9Ruz0a1p1/0eHllrP4ITdBPYp4n4B3tr6x++Ftld10ZUGbtTxw - dExnMO4QzuEB6QbxddyDyV5fArq1YJzFMdVDznTtHYiy3p2D0moc7n27FUBRlTeWngkdiLH0KRzv - jj2L5+UV8vextNH5gAysxLY8LJfi4cLSjTJySZNTuBwfTgyyWLOxHtzVmn/Uwbj7IDLOnWP4gPHI - psFVElkir7pSL656l+A10A6k4Ew7XACMcmR1c4wNbTcCKlFSivNe2uPbeiwHrq+RcNianYyt4OOE - 08d8ich2LnccfQIl5FlIN/DgjgJ2i6wG3/oY4e4uv4iJtoqu40BLcNcc6qPu1TscmzjxIVzSDJ/K - +Z6NEy1t9Ji7Mz5rzULXW86IUJ+NeBbERKu5Eck6hM+iwYZ7ww7dbrMNRXQxyJkdH5Toos0B27ne - 5wM7+yFDGNuGT9vSsI9qdyB7/9LAgxZMMxlOKKO6t1tAYN9vBF9dK6PwGilI3NNibphBq+nlVXFQ - L1Qd2198I24RVb96x3dbPDrMD8+28RL7LNnr6mI8pgiK+7Ugj/v+Sekzlc8oqP3G38bMzFbX7mwo - 9kswo6ZpVVpILw0eLCfz+f3QDcs53BaQdolMEu9QZ+xyLBdkr+OT2AY0wTbqYgNrR7gR6+i9HHro - cxF+BpvFXnol4daOQwRV6Jzm2PoYKnfc5hn6p2SPU0KlbP2YLwHpWUNIvJlmthzwPQEWF2GSJaJT - 84m5VOh2EgpcDIDW6wqlMzTx6PjItROwkpvTQ9SnBZYOWwnW45XM8FriG1Yqfx2oE8k65NFqYbce - +GybaNmh05EfvM3zipre7WOJ2oO7kOAErGwrTpuJ2GHfYGPBysDdiV+Apso9cuvPpsoFy6tB3/XE - cjnfQwK8WwMrwFkYt7JFWfYTpOiTaS9sy9YyLNJ6cpFUHGzs1FNNh9xiKpSb65Oop8c7GxvJW0C9 - ey34XtaKw+WZ3KBOhEes7D4K3WIbclCr8iNOgzalXMUmC/jiBcnmpxROEQkXxBRShg30LJyBbmUM - Zp/BpMgfU0324qeDLit45OG94UDJ+JZQOzQ8Udaep2sdrDHqFHvAinGRVX4eYwVp1iwS+VFYNQe2 - tILlB0Y4dxmsLonzjlDMHK5YkWoXTK/sskCgKwrObM1QmcnINbi904QY7o2oW8M5GwTAWb582oer - od0ZYDnanWBnUR3WWDYBNu/MIf7TzMLt1twU0G3XDDtNfAJsbnsSTO/uA9t1/lCXhAcpdE6sTJR9 - 0NVkxfWMrOkTzdxtzhy2lB8NfEm6TrLbcw0JeHoFzBmjxkencgG714YOBqEZ4fOzfYP1w6y7wzqX - 0x8+oi/jlsCzqF6JUnjeMCor9dF6GDGx+sME2od5GtGjfp+IEsnA2YJ8nUHpLxuR25Oi8h9my9Fc - CA8SCBiqK4VVAMBglERnn1XN9MG5hJ9Mf5Hjju3rRS2eEZLypCZ3yXDpyFVFAONo4Ukar1a26Jeb - AHY0vs1bIPEqld3nArvtkpFT/fAGbnfpXPi5v13ibJWWMYwvpeC3HtdnqqhrM5MeSnx3mfevVFO5 - Ib3n8HQBwG/LJ62pLiocOr8kC999YKksEhMTjnYTkhN8amBpJbLA5yWIyf0hIWfR4KOD5j3WiCWU - CuBTKy3hGT5mcryvQ734eemjsxvsiH43LuGsvNcAffEDZ8sN0eVdhyns1+42/9l/0evGAYWddtiF - ugnYm5UqwGt15O/iaEe3mn1uyCotOC/YXMAQvwADi/osE1eX44HutdEE4+P19EklvcAf/ffVi9iH - UAfMWi5n2N70gDixQdXOFoQScUQMiF15uGbr4BDBY0WOWBZKiXLdrcrRl0+IrOfnmrKfRPjVtw/X - w1llHJct4Gu56sQwk0Gl+OLpcGTFCzFqHqmTsTwFKN79N8bhNjhra4gCnOp+JtKXT8lZufjo7o4e - Kd4iHqZDnyfwBN0Z342ypRt9nhfI6oJOit2Wq1s71hG0MnPCzvwsw9FfHB0OlrHzD3Xh1J/zvC6w - f7aWv3dvq7PIYOxBRreQqE7IDMsnsMqfXsDRerbDMXa8GN5OYoF1hfOHTd/2M9g+wp4ch13lTOAa - lqIZkZR88ZSuSJN7mHomJrm8n4dPfHj7oEpkhO1Hlqms/a5zWCQmwWZO3nRurHaEa67oRK0nmY4O - CXS4r58WcU1HzpjTinXxdGQHfDp6qjr77dmGaGRYjEe/HFYpTmeY6xebWNwlUre+ZkV0398aYrHz - nJHk/NzBvtsXs/Dlb9IYUgoNphG//EucFfmuDu223PvRpSjo5MvBjCS+OZJwMBuV7hfBhbqTY3Lp - 2lH9iP0uBVK4HojjHx11Zn1JQMVr6ci1VRzAI482oI8LnrgfrlU/n0Gq4D2NdJzCgsu2pDElyJfO - ibjcEwCqedEGOSIE5Hi+vEICrqqCdvXZ+uK/Cnj0JPnBFXmH4Ptepls3eTEQe67EdrpN4fKulQSd - jVjCmXEQsvWSCQLsjOMH291Nybj2ZhaAe59aYoYWB756vQDqp02/fBPU81f/gvM7L7H/NEG4fGqU - wC+/+CxHlXoIldYFRpSnX329Zsvu0Zswvk0s0ZrwEa6fHUzgSb1qxHtuaz0v/c0HGn8PyS1SreGr - v02ozL5J1PIy0C8eJ5Da6gP7GV8Pa5IPovjO6NuHCQ+ctTd3AjQ+9444LKwGCtXVhIl0PWCDCfSB - T85PiLgrjmf+lekqc5VDATpi4xBrFldKO+ZZQEmdPvjIBndAN109I/JKVKzfZuCM1f48//YXxpyO - wMwMswu/8018T6nD9XIoXHjj9nCu8QUOdDtuAUI8NLA8gxAwXBIyyNC5J3F9dVdPdylsobKsEom0 - 7aWuNIh9GBzLDKfNvnGmzswFeERi6x+ULBjGdgTMn/qLTveUrs387tB1CT/+MqMy/DwbxwXNjZ59 - Yf+Bzphllg61SMznw+XEqtszf7cH+KwYbGZOQZdT+NzQyAoXImEzAHz4khjow6bEJsPuwfd9XDSf - bsbMnbRPuPWBoqCmKjzs6QfZYVzy0UX2LbU+tY+WurykYoPhBhTi8M5Z3XaX0ocJ41/8/eiX9XwT - NAH99NJPj27ea7FBw+wYrG+mGdIqPZ+hJJ/ORA2E57C8b8nuj3694s1y2KRtI6jdVhs/hNNYT2kY - 5eJA0pWol9LJmKtTRJDY7hNH+4cEuA53CuIenPSH/7ZHfmxgcpMoiaxso+vbdETYBo8WG+Y+oCRS - 9q5YmPoDyxWvUqayLj4MkuOZ3Pm0zzbeBwJUWLIj1ik4OdxN3qUiyNQAm1c7pds57M/icYl3Mzjr - xBnND9lgp70UjOE5GNZ9ci1BuB0U8vP35Mm3LQzfU0nM5x6Ei9/eeshVUeczJrVU2jGfHHzzCb9s - bNNZecpwMDbsHTleXwldXlwUHLaCTsSnCNTkwPgxwGnwIYX8llU+FOAIf34kCNfdQLZba8LbJu18 - oJ7mepVieUSNtmg4tgVuoEa7QPTdXwRH2UFtteLDQVFRdYzNq+XQk8N2iBc4h6grLOtN0mAPQ/e5 - m9mnY1EmvLM+vJbeDePiPQxfvRfBS3GtsdEqA1h1MYzR9DQNEiaiVa+SGwQwAsv41S+5ypRm5ULl - 8i6wfxpWtaRDNIMifenEY7pYnWNeEhEz9JEPhWMD+j7VchQiqOKrhDrw9bvnnx/BubSqKueQoAWP - yz7xrYNhDn/Wj+Mv3M8/qYtDEh2G7OWGzVbahx+5vNjou76+sO8SlRqtsAPDI3r66CHdVdqZbiIS - Xux9AFxO3SpLG2GqGD6RZiRlTJ6ddWjd3xpxUcRk605LO1CP0gFfjUVWua0HPrTuL+2r3z90ykOu - AG0h++SHZ9tMDx0UGP+OL83L/HcedRXEkDi6Wjvf9bNBWEaOz/W6FLLq9TjCea3f8+5xkun4vgUQ - juSz4kCd5npt0ZJA7+li7HCNG64ZJ+mwCpoE519+Gb95AFxHPZ4Zau7rFV6bCqnwKBN7H/Q1HfZH - 4ZD2XOKDvZeq257GFVQAJ3/3VwnWTbcX8B5YHjuv5p6NzzPbi03ERT98G2bmKsbixkon/MuHljHd - QfDLh3JbSYdlMQ0d/vjuh8/M6a11f/xl/BBe9Y9vQSFSzueiwqhpZtUlCtLXwafd7lCv74zfYFht - FXYfH5yRs3L3RcGJN2L1506lH0bMgSK1ATGc9aguKzPaMPHYE747lQ/4NMx3QPD42/wCmRvS8/w5 - w7hKFnzXSDxsz73i//wXwd+8g6nDawd7VZDwGV8/au8vTgPeTLmRoy7WzuYdGgUqr2HGilSZYH6N - 5whZXskQ7XQXwU9/QztSEmyqozuw0esUo6g2Np9S23WIHGc+hHKk4RNr6DV/VJkI4j4+zKL74uj2 - 2JUuWHctwma3UbBu8HRGewme8YlUh3q+2DWHyJtLff5bb8vabzP43U+K69D51lcP1eBQ/nnf0fgU - C5SxIfrbqp6d8bAu0s9vYPv19gCvKEL84895uUT1MF1IsyDWWRii5Sc+3IYgUyBXxd2MaFJla7rv - SojJiSfexKKaxrmSoOZ9c2bwnt90su+idMiE6YQLcRWchUtCDvz8OM48L1vBNayQlp9WUnjqO1y+ - 840QvzP+5HNrIFj+HzwcA5aqn+G56vDr1/1v/YMxTQUdsrzGkVyXuXoTEi6GdElqrB+qdiDWPSih - Jck5dmIjdKhTqBXsTW5HNGE0B27pby745b1M9pmyWT4WPTx/BJ5owrGi20+v3d3ZI/JnKEPKfgIB - qQEof3gMtno/unA67l7EiF/yMH/9KOj2B3Xu080L56+LOZSyZ2MrkJ8Dy3/EFPCZrfjCUGvO9tU/ - 0CcST9yt5MFmlZiBjeFn2FSPOmWfqbShXz6IpYvssCchdWF69x9Y+/CmSgsOtJAqvY0tVYmzFapC - B0FrV9/nyTXznjQGHicuxu7x5gL+i+dQ5g8XfNuiRV2ee2uEKYr38+5lPbKlq8cECs5N+eZ/94H+ - 6vPLL/Muuh+HaZ88KriEdo6dwWxViuXeh9R4mTP6eCGlX7yCs45f2GM6ziHHw8pAzQhqIoVrMax3 - aWzhu8krrKK9W08ZJ2lgzSUdq+ohzlZ0ZUto+B6HrQPZsm6ipflH3+zI5US5/KUpYrzfJdj3Txvl - GVgtcOKcC9Ee6jD88grYTZFL8inQsuXYMRt8pjgi2pdfJzfqG1FvZ5lcfDg42+5x66FRSeoMA5Y6 - ZGDzAv70skosU+UmlOowKl8O9lxboAthFBvNccgS6XZ5f/VKANFv/rZE2atrPRcdxPkkkaNaNrR7 - tLiCqWdj4g7TPvyMAygBDQKV6MnDGWjVODPkGh5jmdZomGdUawAMx3IGZCFgKc3Kh8uxqv/k+S8p - Tkcg9VJO0nSbsqUK/Q5m9ahinU8yul7zs4ieRnf3OT0YwaqqNwYyh8DDkl0azurapQklUR+JIhRM - uO0/Lx1Wxn6aGTgvA/W6eAfWMMux90alOpnazP30k89/8t5ZjE+8wf1T34gsXkVn7KY7A9W5TrDr - ZRGdjx17hh1KcpL6RM7YdN9VsO9QMYt1vleXPkhLOHq6OHPsUxn4wn5XQO5POfnltwubKAziz8+E - uFdJrtkPc4DA0JknseVVzH5+B8ip52LLvgvDGr6kWCRvJiWXstFUvuTvDVShIRMnJhBQteQ7+O0/ - kAtJpIz1ItCAbeYROX7H02EYJEDZy5NYaIkzkuRNCn55lpk5Ozp8ekERTW2wsWZlG5hj3hREo1JU - nB63IlvBgBPoRGGCfcVvQat2SoB205H1xSzl1e1xVk1UUe9Bfv2N5TanULyCqJ+ZSXCd6ZsPQ3YA - kQ8OSB/G514egV7IXy2Z3OiI6FEB+6e24fBtlE4ftIwN53lHiBX1OGPfJzaG6RQQfNolO3Uuz5EN - v3xA9JNmhcvnJkLYfuwSS+rY16NwTCEcxl06v84Iq1sY0jPM6BISzOl3sBDGNuHqpx7W3sewXhSA - OqjyfoitSDkOK7qiCjKHs4dVrrEz7qsP0JevsKQ/VIcqcePDlhut73o037yg6f/033z5/XS6Vnov - h95bIdHFlVPp16/CW8znBFcdqb95eYWMw1P4w/fTeT5s8LtfsfvtZ6zTqFUQ2HvJp4BBlIyJacJX - RTysfPn5T94wvrgj/uHB+jEnEQ65aH/vdxtWlloMvApCiIPRDZweQAcCbz0/5m0vnEPWXB0RfPNW - gq1WqEl7GhnY68mbmFrE1dPPb0q3nYv9y8g63zzXRiQnJsHYfmZLd/vAP37XfY8gG4b9UYTvdm+R - 4xdvFhG3Cbg4HCSm/Tg6jFo8YwDM/EbO19vqbLZwkOD+yEoYH1/MQETPbA/60O+JPhtayPmL2sKo - Pm7YE/qds3jqLAlU6WyiFjZS5/M9nFG6hbv5UOpsvc7J1qP9SarwL+9mtWs8g8aaFBLW8wtQw8cb - ZJah/vO979aoUmDcsmRWz8bJ2So22SCv3E0f6tK5/j5Pgb5oW75Amk59VbPX/+mHFUYhhiPn9yns - VVHCBuibYZVK14SmYtfkD35SVrfhVqzTr582zFqXBeDX/7PMt5ptH3yQgIsuG3G++4G5nw4drGY/ - IB4jL9l2thYObT65Y9kLiLp8+1kwFYoT+eZxlIP6NYe/fNueg2ygDOwXGKNSJqGuHR1ecpMFeq3l - YUm86TX/60/S85jiiJqPep6NqIFff/Unz1/a6pAge52ff+b3qz8XEO2wil3hqAG2MQIRDZoXkGPW - QjA68V6AO7va+dW3/0GffNvAR/iU8cW0zmAtp6ED8isuiLxOZkZ/+mQPXZV43CbVnHwsul9+RpR1 - yOg3nxX/rQcMvQfLsrs3v/7fz/+Gq9EKORBFYfGfJyEBtEWLiKplFDBuFY+uL+MjAN0pMMafzFT5 - 54RMKPHtEf/e99s/zX/9N2LG9UXllXLu4K8e9QFeBirEiQRXP/Fw4szMsD5kv4VpupnztLw39YsP - Pbw0reHDCJ9CLgzBGSRtm2Pl9XYAd2tOEnqde4RVHCXDlshTCj/dWJD0kWXO+uA1Hf3yeXWr22xL - FSOBdXjZE7M0K+ctemYDsdstOHAIN0wcup/FX17y7bfRJRf4BM55YRLtyZYO2WmZCf/+nQr4r3/9 - 9df/+p0waLt78foeDJiKdfqP/z4q8B/8f4xt+nr9OYYwj2lZ/P3Pv08g/P0ZuvYz/e+pa4r3+Pc/ - fwl/jhr8PXVT+vp/Lv/r+6D/+tf/AQAA//8DAG1OomHeIAAA + H4sIAAAAAAAAA1R6SROySrPm/vsVJ87W/kLmqjo7JgGZCgEVOzo6ZBBBEZkKqBv3v3fge+N298YF + EFJUZeYzZP7Hv/766+82rYts/Pufv/5+V8P49//YruX38f73P3/9z3/99ddff/3H7/f/e7Jo0iLP + q0/5e/x3s/rkxfL3P38x/33l/z70z19/Z43L4PN1WBxq28cCuiAe8NGIYb18r2IGoUJ77JzOg7Yi + Qb4g6Sm1xJj2HaBDM67SUPucn8biS5uQAVxJ44cP0dFnTRdlfqoo2gkKTnym1qgpqhbiUaMRD4Uh + nfe7twyu4MJgWShkhzbTmsARnU7YksC7XqwZyuIzvxvYwKLtsIKk7lAWJB5WerDTqBXELSjujDrR + Pnw4tKivJVDT8kRO7u1c87vByuASkdkv3ySjc17JE+p2nw+RxzVxmOIrlvDdU8Nn33ip6Ru9XSCK + OwPr1WsAtMZWjMLhPpLDa56iCeYX7vd/Exs7TL2cnLlBnX2m5M/+VKnlw3PVPwi+q1y6pFkso4xL + nkRe511P4XGyoYrdHXksRHYY16M+qA5xS4IhOda0viwWYizhgK/+M+rn03XOUCk/Rxy3paQRYPEX + GNohxVp6f4HVzLIKktmWyT3zTErc8KuD+rsep8o3op6RGcEAyjXMidl+R0qhpBdQjcwbcWur7Gnp + VRNKlSUip+QxaCTpBwuiqnyQAIEj4F/NfYXH4XEm5q4/RWz+oh3MdF3yhe08+SoHNmRjaSKHp3uJ + hkr9dqi9NBfiqeOrpufqPEGZtWqS5ycDzO7eusBvtl6J054vaY8kGqI3gBRn7PfTD1rvMeBOa0rw + d9AB81lfNgy+9Z7g3qARtctRh/iULkRjd6bDDNHBkPhHXONH/HZ79qwiCwCv5ibghQEYIt9w4fx4 + AKymJhuR7Tyhe3NXor2kTqNh6AUw1ocvjjT/Cji6kytU6MfuF4/aoviolEYbdcTw1kxjPWoV8Jn0 + wC+NL3TWJnRXOJNvSxSLRf28rQcuhc7iW10E2ui3JAFMfP5g63m2NTbRwxm5YvLAj7yZ0qmycAk/ + fmESuxx6ZxIgK6DD59NNMxENjfXt+w4s0ThP149bA/Yy3AqQxeEHH2tEU9JM0h0GCnUmmB7eESv2 + gY20b27iY6Ur/dL72IWL7abkxFeniJLWuYORHWys3nytZvJKHnZbfk+f8OUDbmZWHXLWjiUex6sR + 7QsIofqMRZKsgh1t8ZOhup8uGDfWAJYcPALJnE8yvgnHsuce/F4Wc71TsCqbTjTsjbOE2uKY4wK9 + 1YjVE20HHu5JwNYi1WBNzMMAL8bYEF+/V3TOZ1r+zt9naPsFPH/rG9E/TSnOFzdLx9/3pbsgxKcg + m+mSvXQOJnV0mZA66jWz5osNjcZ/YcVJfTCLb9+Ge/9pknAyHzU5R50E2sLJJ/Y1+xHLr3cbjuCs + 44PSeT3hyvcLwinopu/7jlI6m/4AUHu8Ee3AHNMV+S8V2XKdT91j0qN1qFcOivnDwMdbVWtjdYgb + OGpJjR8AHxzuG1UJLOLz1afK2dDmZkExPFffB7nvzk+6lM0pRM7JePn0IVoOveetDZVDHEyMqzXa + 6h/OOuxXPvPh49X2q8qoMxjSTCFnMalT1jzNM3o+gyc5HEcLLPXuXkIvLW9EDYa3Q1XiSjAf7ix2 + s4pE9CCkMRRQdJsKsTI13pn9CU55tsOBFskpzSNWQFyvE5JqkZUu+DkmAMQuJuG5c2q+l8sK8UtW + 4Jg9UEprLF/gXZdtHxynBKz7q9PBC7YLjA2zBLSJ9xNErXPD/vW69PNxUgw43jwba/DG95RZ5RZd + b77ka7pb1GutHEoEM2smF/55TFc7Xy10A+kLG09Z7Vny8Auw1X9yXs6WxsXT+YVkieYYe3lWEyH8 + vuDITjbGvHuk7PEe3FFpwTfGgj339EOeLrLL0cZqhd9RdzeZCs3O+0ms9fZxxleeM+CD0IzzZ6w6 + rHl7vlBHLQM7006ls5tnHDwFyQE/5OxOecEWZuCj85dcT7YcTc4YzSgZ2xT7mv8AnfgIQrD6GSbx + bI7RZHnfAWqU8cjNiGE/K91VRnB2BXJIOp7SW7Zc0Os09ViuborGfTtDRdqnkoh/B8ea5b5SBZPj + K8YPOGCNAouPkeKK1w2vXDAR5zxDrKsqDvvA1NgNPyEVpoQYJjdRalo996ufWImKTlt+3/t4CQXx + HKw53AwrAT6Sj0N855Rq9LE7qsBjcYot1z8B9nUeZVj2+gNrffjQ5h1x7tDicmWLv5YOgkcnxLye + 8cSEaeqw1zt+QQ2vB5IBY4mIlXgFZGFfYSs4eQ4fqn0LMyaLcXGSPmDpW0USm0IfSeAtgzarrpjA + 1dCuxN+VXk8arvbR7SkE5FjsB/Dp9kuL8L4PiPHhJbA+TssKLqxFiVk4qsYjqmZoWy8puiugtLqo + MRCf1ydx8rSqGdGvSmgO9zfBzqurt/2PkXPSX+Q8hi4dP+MUQHsW+D/xOB9ZUQBpZicTw754bQkc + ZYaNsqQk4a9ezzZ7wYLuaLrEaTI95XeDXICKnVQc865CF8t8TNDssmRivVnXeCvxMkhmS/alqafR + ehNCDgEuPuK0uh015ipaFhSBEJHCS/V+eThkhvFLuJB0xyFn7UTSwrdqHIgrDirgr5ldQkZIJ6LY + sK/p8px9hOJgT4z79UyH0+MZoJmLFVzQBNWUtNodaux8n+Z1LmqajscVDN2CsJLIFuBvr84GsTQh + f3eLdnTuGGVFG9+YWG5dQFctPQPZp68QT28u/fxZBwtEl1PmP9/6G/zhfxtfxN6G/+x1lEMYZHZA + DOu8Ru15bkvE76uAOJ8rrhmAbzF8SOSAnfguU/bxrjIke75CjjIf0rmJWgEWd0710d0NNaaz3wUU + rtHhx0fpxg8MaFu7M1FVGWlDKSkQavz02fCoT2m7txmo9+tEvOlcg3EwDz4KpdYjxUMMHMI/swQm + eTbhk79v6No66gxFERrksuH/uro0geGQjFir81Ibv5/UgJxcI3+3PBz6FaVlhoC7HH0K0hksqMom + kO7CkPhGxPTzfL6VP76AUyu2o9Gx0AUGhZFjvX/7PVXQfgIvftgTH72rdIw6ykgpy9/JVk/pzE5K + A4tsxiT63sb0K5W8AQ7mDeFfvnLcu85gVL0IPtTrpx5DsWnhxp/JxgfqqVADG8r6ciR6bCgpa/DY + l5zk2+N0q2/k9qpsGMkZi7VFLvs5+9oTXPWDTRxvibUFPN8SuoHbi5jhawKEs5Ud5ON9MVGZqyiJ + YXCH5Q6KeKs3YD24rgG9+uT7IVYKOoX7uUOm1B5IKMSvaMWkdSEnxpicH2SIOsnz72DSDiI5fp5O + RK5uKaAfP06miwM4DdAXMAyVJ8pbf9MuE+cChpeXgc9Pl0sXpxJkWHCPE7FqHwD6iF8THKNXQIwI + vqPhYlIVyc/wiN36owEeB6QVVcVxiWm1CqX6Pr8AyeNKbKbGGC3WM0zQ3tjJ+AxmIaX60xLgnsu/ + WLZiNWXazKp+/I6YWObAAkDZgL3N3fHxcDtFRBLPHQi7rMSWbIGIptqYwaL1Fp+BnkbbjZ+CWZfv + G79eNryTLJhjkSWuyRd0fp6yDPKKqRPP+i50PFZHH3TJO/rphZ4pxNSCN4+ziGFe+3r1WJBA1wUP + LGtr3S9P1E9SWGmtP2cTcKgoTMwfvmo85apfxY+iQ4MQAZv62+gZ+n5CtPH9aaeLhsZYkArw3Vgu + kaXrQleheBZ/4te40Bysuh6FqG1mDVtiJIFJ4qrppwewm0MEpjWdXNjq3ZGoZl9rq6tPAXy4kTB9 + N/xboKMGqBdjE3sfLwIcm2sMGjz/SfQy39HRKOsGMn65J0nKvugc+YYPWVZP8aY3nSnZZwz08qLx + eVsN0onNHQZqn1LCiRjd6ewOZotm0re+MKZl3cl9bwGVxZEv7h/QGbvyZkD5ZGST4I7str4mFOer + xGDrYhd0q+8rqt7lmcjHKQBscZEZKHlMieWk34NtPS4K55M10QPzjZbsHKpIo5yHDwWjOEy53mxp + n80ff/nWR235ot0EP7qpEitfQo0+uMCH1bs6+3PAlXQ4cbqA7qRPsGZEbk/veWkDi6kY7GiRFc33 + ZA3h6/MMCf56z351i3YHlfGg40dgHFN2t3DxH371aKyBDtdr3Er3G7cQA1ZOyj9efgwTp3ziZLeT + AZv7iYqO4U4hylPp6vVzY18wtANKsvW10kXepxxEndlgxwsDOgTIFyRUVY+Nv2uUAx7rQ9dGIcle + 766nhQsEuKb8jijv/clhTX6nSq2LA+wS+b7hr32RqHXZTeDMkHRKm/0K8+msYhuQIF3nO5+AfflV + ySFvdxG5qVwHn/ry3PgI0GZ8PXZQ0JLeBxs+UkYUM6AU/MsnSWuCte8YDj6Mbkd8kCZ0tWgDxffy + mYiiMaAmp1NRAN5zvyR9I0XjmtCdId+yAo50d9dP6fViwWW1kM/076mm1/g0IIPJdJyKAtfP3RBA + 9Po+HuTgNFLd1N2Xg2odGRirtQXmMni3iDarQ9QmLOvVYd0GNuIIJ6g8jpS7cKwPnZZN8IbP/Qzw + KYa14rywNoIe0KSmF5RVpUluRXmsl+soB1A8vgYSZodM4zf/BOLlU2C/3zd1eb3GHRDz3CBKDs90 + rKZZQhv++aw3v5zWfzMZqoGg4bthtWBZHiiEn+5wwY+y1zSe3IIGNOee9bUxs3q6CCkDo+7IYR1Z + WFsLNbHhpn/w5l/U/fPF2uhgpsifxzXRVta/qUCL2tIX3/c8mscICBLv+V8fUo3T1kqMW/iM9z5R + fEVOmdMnNOAIrjqxhDOTLp+r3QLRKUV8C55KxDdc78P78avjY1F+69/5g331xsRntRosznproaHa + OY78i0lXJZsv6Krdo199cTa97wPazI6/+IocsXQ+DHCrf5P4B/9sGcKRKAt+kONUL8d7kEAZWz52 + KsGNFgxKAyI/u+LbXWkiYnzLCr5b4zZxD2Zfrz+9cEUnhRh51tX0+OACkdlJNx860l2j6q6p4JAW + Cg4BW4LFSKQZ3FKPx8f3PU/Hp3tpJPakxsSk+s4ZH++ukKbbfMJHfN6l62RPEGx6jFyf6r1fNnyH + axzyxIoiI2Wj9dXCuGFqfD983/X00xe3FPM+G2IzouU5KlFwyAWfffZivTyczwqjsquwp7UY/Pi3 + VNrSSnDntNoK93YMVr/AROf7g0YPsutDhSgnfNr0M5+7ngG+3OM2fb3MrVcyHkN4eMJ5y4dLP496 + GP70FzkuSlCzU3Ft4TV6yTgW7LbuqQxKcNL19c/50M8uVn/8FP/ibZLrNUasOjMEy5kE5rZe4p9e + +VP/WL57XlBnX6nPxZLrTF2a+tAhsYYDlBk191KYGJ5aW5xoHnF0Tk9zAALMIYyFLwWLJy0hOoVx + iG/XRKzH9yXikMaud1/c4m3ZpeEEpiujY805Rc4WXx1Mo7EkuOxrZ9Sb3Qy7KZV8qgandBD4QP7p + DawOvgf4GlsXiG5AnFC21v0UN68ZbfyJqKXFR/PFBCqcD7vPxJOpSueN70J59+V/flG9Xls1QTBQ + nGlZD596PN6TRHT05YSDcRUcWrhUAtt+E/f69NL15NcV2vgDuWToEy3bfqMoW03iH5hTRM/6MQSj + ve/8N7cu9IucxYD2KGc+F+WqM0RlYkAgyRw5r4Sr6eNlXCAGsMauIjf9IJllCfuVzbBchpGzviSt + gIZk7MjvvDgD3VzQ6ZPoSyAYHbK/7Rqo9BZP7HCs6tU8zAKSCtXb8r2M1oUthT/1UnGFBFBCoAuF + d/Um+vur9Btec+Cm5dpUS9Crf/6OWIQ3G9vD+uzZLT/Axv99xlR1Z9n4DzxnDE+O9pUHy0nYM3Cx + /RQ7JmtQ/v0IVsTrdCEqYGXA+VznwrI3Hviw+QX0NTkNNMKLjS3dufTUVpMWVp+i2t6n1NwhYgT4 + 87fs7+gCllzPLfTN8xmnjDRr64JuAzTnSJ6APTzSxWyzBFY3TyWO0uf9MsmOD2un/G5+3CEd5fO+ + grG6ZtjdOY22Ml7nQyn6WtNafyNK4bGxIS9qb3yIviwYJncR4OZnks0P6RdmhhU8lHKNzbp16GTu + ZBk0VmBgH8eXdJ7qcwl/9cWMtNX5yu3sgok+Il/ivRNl6htjSDu9u2F3w3M2z1UGNjU4E/Xc9f0A + m3qGzABdkm56dTk8mBXOxz4mG57RgY73WZq5i0ISJ+idpcjFDm75MonhnToESm4BO14tsfYQLY0f + AtuGTiM6WHEFgS78GtroWvAMUdbDZ+MrJURdS+VJuNg7ujL9roW7ey4To1NeUV/UjwoW2YqJmez3 + 0XdXOyWASaYR7+w7/fyu0gkmGPvYUXrUT3Jfb66XmE9IawmgP/0Sby7BPn4PdSNx3QDq4ysj2fU5 + pvOlKFp4I1DF6oanVGtVCRXFkPn7n58pSuIMrWJwsVJWZjrDQLagJRcj8ZiZiZZ2OhuQmNdxEppo + 7tercZEAOPYZxgspNVIxxQq9R0J9lM+dQyvmssIXu67EunuSMz2FkYEG2idYPb7OGoEKe4G/9V3A + QUkZ9WA1UHyen1s/Y6+t1vleQrbhwMRt/hdf1NcKgOM3I1Z21erNf2R+/g/R7kCpufgqQsCG8Ek0 + cpZSMlzXHXDHg4u1Jhb6pQ3kTrp+sjtJY1HXmBV6L3hFkULs6g3BGrHXFyyv7oFc7ExOGb9wWhAX + GJFNL1FqykAGVus9yVG5XJzRbOM7+OlnM9qhqD+SqyStumljVZxWMFxlUZYU7a7htFyKdNn8cBhE + JMFWyr5AIzRhgHarx/rrVi8pe4ws5Lri449/udhLx/z487SHngMmsItKWK587K+WbfTEUp4MePeL + QfS2vGtTWBxs8C3bFScPoXS6LIhtuMz+TIzzDae83LxDWPglwecfv9ypLxtueEB0tzpGa36y4Z94 + djmro2Sv3eHPz5yeyQ5Hcx1qIQyTMiJuDnOw8OvdgqHUeVgxk6hesh61MEyqCLtb/s9TnVewGS4e + 1rjcTpnXYlRIdCoRa+FNc5ZTFftw83vI3XdezhKtrw6qj6Tf9MPTacvSDER/PMJtvzmNmg+c/fxg + okxPUi8DX1dIcxTpD94PHXNc4ZavWNv6GetI4+JXr3ye6jtt+L5aCzLyw8P2tf9qcz0/JlBe/QPe + 9GNP8whJ8EIujr/Q3S1dg/2RgY3tRvikikHaB5IDwV1Siwk+lbDmRBZIYPM7yHHMhXpw84yBv/7f + YcMX8tOb78Z2saveWWcGV9VGbEst4vDlM123eIWeeGCJIuxB2gmQlWDEPY7ED2+98+NXgBtVSOwd + c3DYy3AqwLvVbyRIT4uzKPNXhiT6yhifFKYfbcuoRMav9j//LeLakDY/vb3pVQTmpzTPouO5R6Kn + GaTkkkYTsoXHblrcG1svn6vaoahsK/zzuxnTaVbA2aJKzvflDSi64RXmgVkTjD5S9Fpy9QKiS5RN + 7rc+OcuitNyvvvvgEoX1Mvo79edH+/vNX/xIYt796YdF5CxFg2PYd9gfQhmr2vHV0/7qWvB2mmpi + xorwX3r30i3jr5/WTxPjBGCXVBSbuqH98SOAA8eV2Fxo9LwcHFv489OOdTE7M8YBh7Z+x8bnifbH + f5hu64lYJWdQbtNbUKDzAR+zW9rPpSIxUPZchVzU29a/0K0ZkvPbw/KPbymvp4U2vwIXmv+gI74x + L7jpKyz7A5+uz/stQU1ml8Q6HpG28c8ZxMlHww7Y6z1/dUsJDfwh+N13CDEeAqyXaueXjGQ59KZy + LWT1UcHpJQr7OeTAAB4vqfjDP9ZMnDNI1UEnZjPKNX9Tdy184TXf/J6ULopw42Aydil2+nsHVkVF + LbyuAJIDyzjRXGtJBrb+nD+BNAEbP5F+/ju2o9ajqzSJwo8PY3ucLY2Ze2TBX374QYic5RYxya// + RszD/qzxW38Iirf5RpwDPvfrcLZkuNVDfGIUBlB1N1VwVg1veg36qtHf+WdVZfqMtTtF3MQ4IaiP + TYb95eEArq4WGRVygbD3sJN+6xdd4F2SCxJvfvriHV822vp9xL9kTbow+08M15TdESPKK+d9coQX + DDxhxlEecWDsdmMlbf2/X7+N0oEzEzjsK4uYJ7tMB5N1dPj3byrgP//111//6zdh0LR58d4GA8Zi + Gf/936MC/+b/PTT39/vPGMI03Mvi73/+awLh72/fNt/xf4/tq/gMf//zl/Bn1ODvsR3v7//n8r+2 + F/3nv/4PAAAA//8DAMZWVEDeIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac1064a7315b0-SJC + - 9953e9066c9d67af-SJC Connection: - keep-alive Content-Encoding: @@ -164,19 +164,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:43 GMT + - Mon, 27 Oct 2025 17:28:30 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=xQmk9JxjcbLDmz99hM4DKgKv0d0hevWSBZcyjYjfocg-1760986783-1.0.1.1-9KEVJkhwr6tVo16Cpi6k07r_WIkXqvpqDkUdiLWQjwLC1a3AAOYESMotbYhHHP0wXZIBdBC2nH99Yrx23_f6Pew8mmoPBwXzi7S1xdn.wz8; - path=/; expires=Mon, 20-Oct-25 19:29:43 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=gYa69_vjk2Zi1_sfTfv45Ucg8aRimvdWMg5Qf6YMEa0-1761586110-1.0.1.1-7CegpPN55_6Ad1KDSfqkAd6YDThBbRZlj3RVHgNeFdwhzIKdb9KlS61bJakckAhccRF487csxmynkT.TzHzQKKwnDmukw_Ow1MSErr0gxOg; + path=/; expires=Mon, 27-Oct-25 17:58:30 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=j0ZPG.rnlwQL6.caNx0o2uuzDWu7JDunI30hpAFSuEM-1760986783915-0.0.1.1-604800000; + - _cfuvid=JGV5M27ftyTjBWsQimnRysfbz1NOdNK6UpIyJ8CQmt4-1761586110883-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-canary-6b9f8cff56-gbrvg + - envoy-router-9cf87f6f8-fvzcx X-Content-Type-Options: - nosniff alt-svc: @@ -188,7 +188,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "96" + - "317" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -196,7 +196,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "121" + - "354" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -212,7 +212,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_39403d2ceb384aaa93a1420d17cfa0b1 + - req_afa46bebde724fab9648a8fa6269513c status: code: 200 message: OK @@ -258,122 +258,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6SxO6ypPl/v8pbtyt0yEvqeTuEBCQVyGg4sTEBCiKKCKPKqA6+rt34K+nZ2bj - AiqQojJPnnMy//1ff/31d5NXxXX4+5+//n4/++Hv/7Fcu2VD9vc/f/3Pf/31119//fvv9/9bWdR5 - cbs9P4/f8t/N5+dWTH//8xf331f+76J//vpbCH0jeKaGhbiPqNaK6vI2vtQnuWqv7KEqF9puqCZX - YTU6SiQrXZd5AUiTWU2XbTPDY/dJgk0kWZWIsPyCx+6d4IteH1xxWPum3Df+iUxDplV8aLoARhXU - FN/jJ2MXlYt+64O2dMFtdurNQPz0PeMECaQaUa4QhKbNCZ/OW7sT7JxlyhhsNJqZho/4etW90AHf - OuqccOuOpAEbRTwvkZH6dT6sddbDUdy4+ECQ3zFe/spAjVdA98Vwz/lWvJzQ3Q3vOE+Hmk2fPHii - 9WTo9L7fXOMJXc6pYr5qGwdC/o0njT8VKHRxhfd7so1nXvwY8ku+XskUXg3GT19PAssbJbxrzlXH - 5DlooD2ZGt4yL3AFtvqGUK45i17BUHJC+/sIStEW1LJP95jPdqMELNJSwibr0PHnjX0F78VZONSU - 2e3XZqbJcRp5+FLeEjbzkmQqm1650gKKYzc7JyeA6nkeyGr75dy5kfsAHW/BDusHqjEht55E+d63 - CfWpYTLi90yCWBUDahzNdz5N4WyDnqcm1aRMzcW5uBswvXyfXipdZ6J9OZpo/XEoddsL0UW+Dwul - UL85Vd177E6nQx4p3/6xprepOKNJvG6vMGTnjKpHSUfc+MlN1GWJg4uvqnWiuy4DxRaGK86b56qa - d5/bCJoftFTznN4dudZxUCCscxr4FUYCf3Dkzf4R3gP+/SE6tYY7AfoUO6z7xTMXEjMhIO5vAnYu - H4OJ4/sSgRpHFsUPz2ZsuE6qci17n4anx1efb6JkK+Wt13HY3A4ud18zGdSpfGE/WhPEVsHlqfRP - uyVrsUXV3Ct5BDU5xcFqdho0H+dIU0j6EMiqjzf5tC8ORFk5eR28tpHPxHVUtsorlym2zShjS/5I - MJvnA9Yd0+p4GLagHEpJpf6FGjl/uaAHELmRqZ+HOJ8CV3E2Lu+l9CJm0BHlVGrwWNsnMs8ynzOn - 5E8KX8MBqxG2K954dyu0O2V9INKr74pOqSRo3+ci3e+/t3gaeClSUrK2sbk7lrFgIjtR2kl0Al6/ - 79Ekv749dJ/yTX3pPrBpcwpDJbuOMQ3X6bObh0p8KL2q1dibv0LMtG7TgPOAECe7KsiF7PDSNnLU - SaQoz1YuNtYjUxT/dcWHfU9zEuVNguwMEnyTN6tuvN3WMkomh+C9UAqo0UQYQdgbR2zYsY7mSdhr - wHGCjzM1euaj6CgB3Eh1wqoys24avaemsGI/YlNdXxHl1NwGsXvLhD2ZgUZmmw6sGiWmx3Nc5nPl - 2xyIjV5hQ2nknD3CvIcB7gXeWWObtxClEiiqMWPVP2mInGU5lNVB8ahrZlnOODV3YG2VKt7jR8+Y - XCkenOZniB1pHVcDtQ8y+uGfHxCSMz4Cgoq6NekBPrzeb911ATjWWMCq3HHHuesCeKkoo/vvmkf9 - YdXIyvI8st6e85idWu0pt8FXJ9yqNtwFL0O4GN2L4oZ8EbM/9UOxzvcVVe8II4a18AThKdgQuPZB - J6qxsFLW22uCbzZobLRs5QSV1XwIF/IGYl2SzlCSeYfPt3HHGN3EEkBZ7uhR6EJ32pBKRbnkOgE7 - qXrMazpdodk8HnBcPI1YvCuyCWNVXfFezK5VD7QJ5bU8mKSp1cDl02OXIqGMTewnk1z1z1UkQDxe - FZx9B8Vl0kYVgIvIHjvfeatTwWapojfvkl6He+iyWBdSUBx1hw+nYMzn17fr0ceT1UBuOxM1tauH - yi9e7eauu8JNoDY8388K+wd7HZNycwrgmxcK4RPO68R3eQ1gsw2OWBuntz6tu0ZW+EFVaCIfq2rE - RmSjX3zp+RygMXr7DjK+h4gWdtu6rEwqAYzIfuHfec7r3fAA6K4pvfSFw6ZP+1ihKLdnfJvPt2ra - FxeC0C0EetopddWud+8H1K9cpb7PN924dddXuPXbLbbMF+vaHf8J0CM21tSSxEQX21BtFSUZXFqk - fB1Pu0N5UgSv7XG+xGMDB0jhjWwfX9Zw6ybZ3YHSSoFJt5asd9zkr0+b/A4XHL99HlHteg5kOQIb - 3zy8qZiiqqZyhUuE/f2rcanWTQ0q1C4na7N+V9O17iRUbcYOB09pzmc51QzodpcSb7nVhpGwvDzB - L8wNxofnuRo1kZuVa+I9qWetD+601EP0uX1nmm2kTcyyfnqBPOE3du+W2M0SLjnlfX09cJjtjZyT - +k0AsrWaqWEHd7bgnw2+ELfUNIU+n/ZJmCnlWrCCjbYz3WFUrIeSCpZIPTucENW6TQvbuGsITONY - Te8xskHldwg7nOkjdvSKFhq9LWh4R5QxPCscHC/Hgtqf8qIz5Xl1YB1qW9IU5pzPesIFaMiOGd2l - npWL/kZS4Wyan2Cz8CP2hIOm8C4gqmcHHQk3c9uCymcutc/5g037YB1CyUsczmRBd7m1GWnwhO5A - 8RS2/2d/8xBjfy3aMedYSaQcXyeOmlB+qnGOw6vyq8/mIAr573zh9U0z6uAgcafb9fn61QNsSDTp - hFhyPbhsdz71LrDRp9RtDaSlnkqjFTe5dKdVqfLAjw/GnS13tLBQAQu+/fC4+oq1MwKc5S3WTr7k - dqLvPgE8qcOeQ+uKiStZhUy8XYLpPX1ymt3uNmS785GQd2MhVjN+BJNvHBy6d+YyC2ZHKcsox/sK - 9h2/4AkYvfgNkP10Kt5W35xiyy+dpsVa0scVG1NlLHUrIJN3d9nBkV5KJt4vVHvSi853Q6rKCosk - bPtI0Bt32xkI9qeE7ofzWA14ywSlLMOcmoR/6N98HDwZeYGM1UAcWC/ObQo3UT3TS3njUCdtbEHp - 3PlGz6vvvSPfNLQVhYUSLlT7q09Sm0kwNBsLu3ASdHbJUg1O5X6F7+XA2FR9JhkypI9klBo/n4J3 - KCnZlA1k/fDshU/bNXCytKEOKpq8RtrqCu5+r+ITM9VOcOe3qQjxlAfiiVLWW7aSwHvnPglnB3c0 - vCISgtekRbC5cJuu975pCDV/02hyuDnurBf8AxrL47H5uOJK2OylFvL1wldFSOL58ibt5qAn8YKP - lTvvsKuClpwvVJX3Us7WOvag9JptoKhZyeaLn8vg3CUfG6Vaur98g80oGNR0rR7NvEhN2bg3AQ3z - luYswjaB9k53WCeDWs39kZig3i/3AKJYQfNR7Z6b4mvnNLOLFZpVOmlK9IzLoN8LKprSY5fJ3JcT - l3hL9VGe9gmsv18jGH98kp6qBO7pTaZH6YbQRK7JA967/ZNGrvruvn5pz3/wPnjRp8v9+MPjpkb0 - cD1cO8ZHHIH8VTPqE7f8w++UIOHPgbTk52wiNYFDkh2pVcu9zm5d+FCILt+wudn3jOnleAKxkx18 - i9aEsdW1BfQsO/jDZ4X6Mnnw45Npk61dtrGik1y+hJmsOF7OZ8S9AF5BblDHqDQm6EMA6DO/roRd - O449nPtHBU8fd9QSvGfHCnJuIEhzQvXtq+6YdzUcJPOGR21773TjYfWQ0dGgO2oNb6Wb/aS0lcpq - P9Tea2M+d9a1AXeYLtQ/Fvryvs8VLPqJWvfDyIbyGCaK/lAfhF/0Sa8omx7xK3ONnY/WdbNeKA/g - 6uhB+Ne6YfwhOaYg9XH3q696nx/PDRyDNsXbSOC7aeDHSAlj8sJ23cQ5PXpFA91VuNOF31bDq3dU - 4O3shZ0yfOjjkq9w4K/nYMruIxp78j4pj5sWUZOZj453ZKhBTG4eWa2UNp9Wn3BWKuWsBcJJX7Gp - rkMO2qDTsYmasmOi7z7AqLyaqi3s0FQOlQErdayw20i6y3P4YsAJ9jGBeNOz6XUba0X0kxu9nc7f - atakSyg3gvAiNIl8XZR0LYAsRT22jQmz0b0oAux7YpG5wYYrpOejB1J/6AKhWYXV9Mi3D8XE3wL/ - +OH8y+cFr8hr4cMiF/Qv9DUSTN1b7XUzRXPww1v60wMz/jg9WvITB6ddiOacBBKI+9HEh6mrXOa1 - txqZjX0n44WtGf0cSqLsgvVA4KKz/FOvbfOnd7E+3r2cS8ek+FMPdgf3EE+l2KfgaGlF3WGykeAj - PwHd0TlspMXDHdz08VRKrSd06yRJNY/TKCnlRbxSK2+O3U/fgD/TGHvxpkdzm99DSKLPluJnfamG - Z/UdwZrvCWH0+Gazudv3sOhRMq3NL5q6IdSAWbqG9+FlZv1OPRowNMiizpraSFz296snNCjPn3zU - kzNBL2Pe4n08DTmL+ZcM8XkNdB98PjpbG6kHTRqJ1BUQdv/oEw2Ey/L95Zw9nfYBEzoiMt61Vqd9 - jGfEH2UcoAW/h1vLqYpYgojVdap1XCNbPeTaleKj0I16z4ckAzUOLXrTuLn6g49HzRupYxoDWs7P - Uxa8p841OsVMdp8FjLO1x85hp6M5u/NXRZCIEQi5HMRsc+zmXz7jPQtUnbsEdvbzS8h6p546Nqx3 - 5m9/2L4rW8QlSBCgXqdHrB30A6NzcTbRJorOVLsJccwrld0ic9nQon+q6fM9r2QrC6s//JZ7k8dJ - Ob21N+HU1q7Y+D5EsLHiLcbn9lMNR046Qdv2Ob5VTqf/9DoUeTPS4ClF8RR32JSFz3HGu03+ribY - XUdUo5JQ/Lnf45kiOVD+1MO7da6Itb8I4EojxffxvNNF+0Me8N5r+1+9quj7nElw0uQyqOLQR0xR - bRNc93ukO6olSAgPaxMt/kDwco8XJrhZlqD7l/OoXUk3xmqmjChIL4QGHJ/lU2w8JUhvGxOfUKS4 - o3Z/agp2yhm78qvNJzXpCkju2pd6u7cas5veJT+9R93rrqzm173NkGpHU4CQRytW+5capr0vYk/8 - qO40mxIH7nScsPMdbi7Z7KUG6lt0CJh/WcWkSGIDLX4MjapBY+LRO7WwLr4keAc9xE3wLAw5NUId - n4/Bi00FNWyw0z3Fd05V8ymJuJPymJqe7sW7WpGprl+w6AuyRvGJkSXfkNdKDPv4FHfskoWq0nyT - DUkX/OezxEmgMJ7acv5xxdz11wNnViPsy2rKJqWyG8U01ZxeNoc+Hq1zMENTHKsASYPMWPEwPfiY - pUGDthyq6f7WOFj4PxkWPJwIRyOwk08aiKV+7fhffCz+GpmhU9mCHyd0RPcn9j18WfSGv4IF/+jW - Zt9qOa8ZbXnWY8u9XfJh0h49kOrp0f0hkqrB0xMZvPPpGkifcuNOw3p6KZySB9QomzqeLSqocDjJ - LXYdna8oL5eysvBlMi7x3hy3qYZW9wQH8/36jMfyUQMQ68ph9/V5dvSbbQHdV8UbW+/L1hVUutEg - oFyP9TgcEBFVK4WIFyWyyrHoDtxaqFHwHdVgM9IuH9ZXs0BjubXoaaXN3dtNm4fi8dKees8i0/ma - a0MYkpAEyuIPjd8za+Gpyg42i/cdMdxwD6i1EP7ov34n5ATy+DlhR5U/3bT4lfA5f0xqvA9lxxri - vVCRmhfsquq+ap/Wh6AgOmo4e5dqJxqrPIC7gaqAvf0j43IrCODYb3ianys1F7siMhQtnDS6lX1D - H7vIKeBbX+MFz7lu9sKLCq7bHbHeBx0ab7guwBcO7R+9O6kIN/Kil4L2o7kdWfSdAmdpSw1BsZEQ - vb8tejItoLgcGJr8Tf6En99pe1nnTqb10JRCOApkEm9BxcJkkiBB5hbbn3KzvI9WIBUVImlOt7P7 - rQQ9+fmFRIDSqoRbc+zhsFEJPl6GKJ8NdapRehYyui/mKhcbYrwA1ipd9FzYfYuNX8Cn+do0a7zZ - ncPD2kCrm6LgRW/qc5SdT3CX3yv681/Hg92G8HKEATs719aFJCEOHONo/uM3CGTHXiCpjxe++Ost - 6nGQX0EE8PB1P10R7+wDE9ohGP/oIbL6Oi/wfU2k+Puh3Rx5vvTjH2SztSBf9D8gX/1g8jC4LZqz - Q7/ohWuAIyU2dbaOvi3Efijg/WjV+kgrB2DR9/ieGWk1iiqSIYopR7Ejmnq332UFLN8j4L9SUPEP - vPZkCG86xSgW0CgJ8wMYZ1+DXIi/aKTJ5gnaN9KwirSV3pvPiwnyS3WC5shPTDgokEKc5G/Sfb5S - NzHXBpQN3JEWV3/rTru8beVF3xIevY5ovIl5K//wN837Mv7xO3QmhzP17q6es8+XK5QuOznBZrRM - nU9spEHAcoMw6zS7I9BHpExd41J9/XjqY9ZWoaI8PWHhJ1M8yFmToVzaO9TKrLYavW8awaKnyUqE - JJ8F99DD1zjhQFribRbcCwFNuN0IWGaX9/0pegERzYp8U8QY7QwhgRzRkrD2qurz9lWT331qYZPr - xtOucSBz+wOO1w/NZUt9lTfG3FP/dN537KOHIbQfxwg2Qimwn38H4XD8LP4aRd/zRr0q92tSks2L - p//F1+3UpQG67squzx7fFYzXbMBmHSD3VcpaD+7c6/SPn7wR19xP/2L/LC18K705sOA7vX1ltasy - QZaQuL6WVI1tEo/5azaUJR6C9WnaMrYRRQFdilqkwXDQXeY/khDO7/6E7dW1ZeOiJ5DZNhwumE6q - GR5tAleJQ3TxJztuU9YS6AXcaHI0dzlrQ7VRXD5IqRY/644FpwxQhyygu2BSY2a8xCtwbuyQNR47 - 9LTKVw2LXqD+vcSI6eN+RvXromL97R/R7PdMBq6aXbz1Fcy6AzqZcLGKPXbf+MOadfEaFZu5O+yr - 2RYJdaM1sPjfeOHHFXs05ArPrPQD8eEIqH+ZyIHzm5ywTQ5Bx77ZdqV8Do+MelG6RcIkbFXY34Nr - wOn9qmOw20SQ5umET7lM8mnd3mVwPhpQbelvzUe1eoJJfDdYj+edSzx1VQPcYMCaGo45fUiqpMRn - BfA22T3csYm7J7oKpxo7zjGIx7NxtqFKyZeqiSy7jO/TK7QT7+AfPxNLYS2hBV+xlpsKmxkNBPjc - uhlr1fBEPf+wBWV14N74GljbfK62qycIXtMH4csbu/nqygLSRTcImPeQqunSGCs4Ttwd7xMt0Mdg - /Dxg6T9Rr7X4mI3HlQDuqelw4E4vd2z1jYqOnq0HU7Wd0HjchppyyO5bap9uoktXHN//8SvTBQ+G - 6jNJ6LTLBKojR+lIAXYEiz/0x18abU5uYZx3e3zoqhkxU3pqiF6CD/75K/zKV1SRt9MX3keS1bWn - Juzhqad3vOsul0qUNjYHtA2/OKhD3xWF0nTk3VBlVE22XE5cz5bBMSTpD54zZ/+sYemn0LPOFS5p - OaT+9AT94TEpktyA215WyLjfPeNprSMCNq2HYCX3ezQ+a9VQ0mOyw15TO/n0w6MfPvGbfNct/p0G - aZ1a2LPDAyM5MWUwYyxgl0aMsQveEaW9NBe8J1LejfMGWrT4eUP5+Gxdgb9fEyDF+4mt2/hGf+5/ - p/2FJnpfVE09j4XCYLjRn3/Q3L6ah5Z8J10jVfoYvXcO4qrR/eOHND+889CKx6ZVTB1zz5wGCAlf - up06XR/Z+fGC4X0aCdWOb/eH1+DFd56I5ivuZuVUqsrS38AJWDQf5h3l/uixcfEn5rbdECAJ3Jd8 - CHKu3m4B8tksMG5xwiZJGwg8eF8PVq6RMdGo7WIjPZsGq9zZQ3zcpwZIoxPj/dQcdFGtLilsbzXC - +rXjEKPl3oZ10REcdFkc98wObEju6pdGK89l/Oi12o+/YFO4iPloXCQBEnmayBO6B5uHb9qAb65c - bAlWUc2Rt5PBTt4p3r4nK2fC+KilKB64P35Vs/QXYOYVlWZEL6uxnj5XqNL+S6Pp4uQk3PQRnPft - Cu/qB0MTffSt3L/aNdngh8eGO7uGcMLJnh54qLoRX1/yjw9Q75Cl7iBpb/KnX/vDZzYP0+NPf0KF - zYCoZnhXuGZx8AefBjtUQ0WNFDGQ6curpm7XcuiQpMdf/7xje9EGYGO9o+ZmmvWx2bcBWvwnaorr - Op53WFeVpb7h5bxdzkcbDg47ocHWFEiIMdBWsN6pHc1u0juezvcXUSLzcaFxe1XdP/W8yoMV9Zf6 - MX/rbw1dupZwsFKc+I/fuehlrPGtw/ijr9vKjRUq3Z2OYjeL2zBV/v5NBfzHv/7663/9Jgzq5la8 - l8GAoZiGf/vvUYF/E/+tr7P3+88YAumzR/H3P/81gfD3t2vq7/C/h+ZVfPq///lL+jNq8PfQDNn7 - /7n8r+WP/uNf/wkAAP//AwAkUor53iAAAA== + H4sIAAAAAAAAA1R6WQ+ySrfm/fcrdvYtfSKT1GLfMYnMheCAnU4HEBEUkamAOjn/vaPvl9PdN14g + SQG11jOt+s9//fXX321WF/n49z9//f2qhvHv//G9dkvH9O9//vqf//rrr7/++s/f7/93Z9Fkxe1W + vcvf7b8/q/etWP7+5y/2v6/835v++evv52mWgnbn7xELfNnIfvaxcJg6ot4fqKLIwqXZEmPPhvrS + 85Ek97rjB8LzbNZLo1oraJYQBxzD72tutp0n1LvrEYexfHCF604uJJQ8jtO6TbSab3cZwMM+N0S5 + RBWlj+sxAknn0qDr36jvdrNsoeD5ueATVqeazqw/oVfwOuHI2Vi9sMn0VN6YL53cssZHHFmyJ9pg + vycqx3buIraehfAiSxMdUdOPJqYDlO/Rxcco89EcN1cGDgcDE0cW7plwf24jFCLrjhOxb+jcp0WF + XFXRyeGj5PUyvfaJfD1rFjYZ5RPTaD03aJfpNfZbXa3XOBdEyb0/00nOFYPyhzYX4W7kW2wqp7pf + +aVoodB4DWvNJXDZ9WAfIWesPUnPueyS0SAsgGLeiUXLu84Xg8LCFrrrJHyMQ8+9EquEozHs8dGD + 1R2NUxdIjtl4uMi4Y00bMTFl/y7nJEuVU79SrQsgjNxxQsRlXQppHiDTZnZY9Y8a5YRx7WS2PZyI + uzVMOnEvKkKfXnziG4dXtuoQWeBmoUlML1EyQeiwARKr+iSvU52y+ealISQ5hGjNZdI5bQ0Lud5u + M2K1QZytTyeL5AsuN+QYvhKXJh81ga5zU2LXqo6Eh+VqqBZbB19ZT+vZbjgEstE8cpyqB6amR+rP + sGvPHXGC3eDSQO8cVG9RRsyPhBFbd263Nav5EfD5OumjOZAJxuHSYfWlV5lQ98cJss+Bx/brZVCO + Sa4R7KmzJxZerHrOq0WRe93yyYGEH33pOtGSDWU2cLF7HVz2GesS7DK1xs51mRAt/W0l43n4TPOQ + IkoFPovgsdOigL+PLVq3TKTJULT8hIZwm1FyOUzyeUTPoPexT1kneXQyaRuCMaUpXaywEkFo3APe + Mfy+59h1AVl2LszEm1sjYz8vVAK0okT26gdn823K1q2xM5J/10ufHzS4KsZ14q4B18905M4yzGGE + bZVav/5iUJ5XQ7C5X32XCyY5RI2LROKV9BbPtBUjeZkvNrZu8SPmP1J7lAumtgNmSR13juTrAEJ3 + exFvfxjrWa/KUGY+eUwO/rFCs1DvSzm5Sy9sHlg+XvqX3YITsiGOpSHIhAtlmS1eNtJ0yut9xvXx + nMrLmOf43j6IOxY0SZAusUec45bplxOPJRQZzoQ9dsuj9iN4MyjRcML7Y6ejdeQ+GnzxBt/TvnJp + I98c4A/3C955JkUz72ma7B8PCw484eZOnelaMHGn7TSXqYGWKeYd6HafmCS3+JHN6Vac4ciSGgeC + L7lLPGctvIe4wIHAdKjfiC0LBYEF4wfW3Yk/dq30q3/ftdNskTbIhG99491uO1DqwM2DiatCrFx3 + sT4efJVBK9nFWJeGKVtfxrCilGVMkvsFWxO8kBQ0dlqDhWMdl1aLG4A9vq9kX7+4fjgyliS/uegw + MXuS6XT5RI7kJr4+rU/fcKl3NDzglvhJ9kn8QXOfnstf/ZAdFTGiO1RGkBwDaaJKF/SCf28YmeA5 + xpn10OhK0C2Ce5e0k3R/G/1yLdsVtAdv4tMy7ejSFTWAr153JGXa0F03buwhP+utQJpXPebEbMOg + e6we8NncGjFXnjsHhviS/76/PoyjlUjaVjWn6ot3vG1nRzT5mx12s51UE6PQeOjLUMaFJ8junG7n + FaLXamN/7yk6CY40kWP38SDx64HRnIf8EbbicYdD+zpnS8v1A2LzVfn2n4X6U1iH8rSoL/LbLyH/ + YAt8Oarx7pJs6pEXmwDSd7eZ5GHxeq7fDwGwB/OEDc566aveW5LMXgeZJMFQ1/NJjBL0p76wGvRz + vhk1NHPbiGSL2rlLdtJXWFV44rxfWLrcxFsOCkBCojV16Dp4JY/cyVpxyFW3eh6Za4fimwXk2tov + +rmJpxxI1CvEVNO2X+InzoGtZRU7x4i6PRMIAWo+3obgT3PUBQaXnWwdXy65n7wmXh+MGsnf/sZh + sM+yrrvkCejno49jfXvrl7tzAvlXb8bxoCP+dWK0bXFIUpylCtcP3GFvSqomWvgmvbcx1aPSlL/9 + ga132brT0Xw8UTgKySRV7qtegtugoBvKO2y9ujVbRkEzQG0/Jdbi87YewuO1AkU1JYxv9SVeHf3J + y5s1r4hb3w/ZPGcgIuzfVvJbbznflyd88RH7y13o52ulsvLZy0t8lY9GJkivbQDu5KzETZw7Xb96 + AGRT74j69ods+eEJp0ZWsKB4h6aEvEuZQsZ/11sy4i2fDjTffU+whDOdK7JasL3ICHv7g99TNgk6 + yPSqIAWnz/qC3JsIJhlvZM9x13g1rcGBh8Gh6U3aNaOQHgOksPaV7H54NjetAmsevIPNoZTqhQSL + KTv1AP/mt/f6aOBmpS7Zb5SSzibdhOBfjixOmkx3heq+MIC3lwNRnnpHl8r1LdAsLsaeGFg1P8dG + JItDRInRPN7xutzDXM7KPiCKr/HZ/KhfABsfUqIzp2O2MJ+qhJQoZ6xFh2PPHYrMg9V5ecR+bbf6 + Up47CwmsqJDDbrO4ZJPpieyQ5I3tcJL64Vj2BTi3xcPFacPQjiTSDI+UUfGObZD7MRpUgGu3PdaE + bVOvw00y4Ps9gvlA3+6QhtiCRqCXqbebPVpo85rhIhgOTtqAZvMRR4FMvTTFRibZPS82tQGf7eYd + cMfSqYUj3c1yLOU6+enNeRyVRH5N1Aqal313F+diPeXrPr4S3PRXnftEl1lSS0388QXtH5arIGEb + HIm62yz6KEt0ldNtmBK9P95pG/AeKz38TsI/vTKcxDQBhg4XEquE9j1eE16OUvNGrt5SZoP0LC25 + MQYRhylq6dLzqQg199pjV4x5fVHKRAO23DL45JmULl+8h+HSzxM9cb676r0iysVpmiYmrC0kZB+x + gbcsbom+fX+ydxNMOfTSQ8Hnrld6VmVepvzTv+yWn/UhtPwjUHFfTbIclO4gHpgQyiN7D+gm3WZD + YyVH6LKXRk4DdtyVMbgS9AA4bLpvHLPT2ergJEsWti76sV6qkXTbbWJFZNdotTuzbKaAfCBnEkw7 + MVtv2t2DpRCNYIH1QSnr9RIIxuBjVfEeLk2VOYXBb3QSuMaAKNndNemnn8/um2TraiUTRBExsf+6 + K/X8sQoTykG9B0LyZlzqpx9pO+RWRr719eXzhyZ/+TZ4l6PS00XqU+lKLRFrZnChVK+3R1AxZwTz + dRe7i1vVR1CSg0TCIUVoVTk2h+wpVyRkxpf7+fHXTudrrJ/2lcu9bzDDh8kjcqqzPFveN3YFMFJK + lMB5uNxepJL89SPBIgUl/b5fAko0nYgSiYO+XISylM2kumELjgNdtmx4htkJHBxX8kQpaTtA65sA + 0QusI+GiqB5Es+KT9P5k0Dw01STVS0Qncc0kd+HfRwCWwQYJLEmj3BAHgFpWySfKMXpcRv1Fgcgt + d8RinKqnr7swgP1AE7HXselXhj4DFPKsS5Td7GSzeSsZ5KvZjihcJffL0V8sOdhXb2JHzzmjuTm0 + sKTXK8FvqtMl5CIGTs/tmez4fKaEU+fjD5+nmXvVGSGX64C+fIS92e3RfD+MJVxQWkxLKLeUvQxc + AhuMe2IMih4P6mPfgn1Or9j98slPb8iNkj6xp5wjRNgkaEF8M3eiupxJJ1t0FKja6IkdkSv1+R0j + AwLdiwOOz2dEo8fuLB/6c0Ts3ih7DkleAwXzsCfq2F22XMtylUdKtID54tOCzJCFwaAG9lb10dPt + PSshuYsvYvbzrl+kDTXgOJbVH/3GBtrVgK+fnFgsDHSRbmEj88x8I0l0+tQz7q+h9ETTZ3piwaPC + 01oDEIvNgPXXA9M5ZWQe3Cwy/+gv9vk8WfDStl0gv6OwXtT0Ucr4ahdYx5Bma7lwpnzevsOplOIg + Y3dtXiJfBEz8r/5YjFMVgPo8eWRfdiml7lUaEDcrMTYgPbiLPRYibK6t+eWL2v3uR4W0OSkm4UE2 + dLjflkl+cPr04zf0/vo/dKtuIsYJ52XcgTwLGEv2jH1cH/Q15yGBrebVxE8fFmLpKB/hYPYsNjS1 + dAnfzZVsas+JGHl7pCtdQlHOt33+1aOnfmmiSPv5e2yZ0YBo7W9CEL298ocvByPfzhD35DgJsGt0 + +q0n6Do7nTZ9/kHrY5g12HKxhi0brXQqF84Ay7nsiVfebZffa3IH1/3hSoLX9M7oFvYVelJTxSb7 + GHu6sqwE6fENBGfzW6eukFgwsIxAHNHAGY1yJZRHZF7x3rxI2eo6Tgkf5oB+69PxE91XZL27IECp + wtUT6QxF/uSsgHd7ovWcObwHoMpAfvoyHqu8SGFPrT25M8taUybYeJA380xcH49oFjjNk794T7Ts + eo5nsdAKcPTaxsqV19EsRa9ctitzF2w3RRCvbpatEGWX6Y++5fPUSuGR42iSuurcz5vXyQRHQoD3 + uFIRX51MHoq9dcb+nEb1tBRvDdVJcSEO/4pjFvi2Qe1uJ2HbfNB63fWiKR3j8D5JbeL13Bev5FVl + ntMqq1a9wkYNgK03Kg7szZuS9yM5Q+k8M3z2zT6mp7CP/ryf9eqieF0KokmbeqTYuF1fNa37fECS + ZU9kv8/v8fJGaSAPRN1jI3wl+nQinxXqt0JwMZ92Ou81TPnT8wEE9bYeEicVYRmLPOguvo/ogVoa + eOh2ImazOSJBaXGAvv4nGFo+1fnRlI7oWoYesSum0Gf5OYooyk4TMUQlzebEiUSg94OJf354vSSV + JheCveK98uyyNZzcFE6R1hHtICvx3AIKf36P6AP/qOlrkVKEzWgNpPJEKOViu4HRswVse4uSrYPX + spDL8oyNQ3dzB+DbJyhWcQgEXmLi8YsvqDTDPYmzXqMs3ZgNLMU4Bo10lOuuWHxRQu9Qx3FJn/SP + X8uMheDY3SjuzO6eZxndxZ545KbUJFrPT0iqJZq46nyJpzBfHRRucoqxG8f9jFNFkW8fDk/ZNXJ6 + 4eY7R9AujYY9gPi7v7YHJz2P8M53E0qVVmzluhoyEt3wEM/3ilnB4V9tsNxFqZ7n0bQg73cGsTVx + rGlaRyJo8imdHpfHp/7q1QjIAyeBMK55z8ZCH0DpcsPEzR+FcuL2liLPjSvsBfW1p8pZZmDejXfi + WfPnl9+siLzqAX/1mjtpmjLAN68i9r4R6yHgDR6G3MkCri+27mJtDk/5me4Dgr/+Zv5YZwPGl9Nh + taBcTRRJleQJSDihRl/j9oIvDIqdMAykKahi6t8bAO5osdiyrApN4unAornWGrw3GNVl82qrgbey + I96f2RGN7uZyhFt1FydhGIV+PD35Dj1SUINFO/futNPMAn3ri6SPlEVP7iCWcoY9m1hrlup/vj9P + jTWQC2dC612oG6DR2cFfvYmWhmVLYCoDcNE7t3jkz+4Ecn1esDmL7369C/0TupdgEntpH/38iPIB + KcAk2KKeQz/y9G7Qo7I1fHvdlZ7TZRTAuBfqgH6cE+UP28kBafhw5HBHSsahS2XIL+egEl8ghr6Y + TJfCL6/RogPbL97HVoBt4xPecZcezU+uSeF09Tty35V1vQSHOyvVNmmD2hvdbJDn1ZC3k6H+4Qt+ + mT8TgrMWEP+OKZqzXdYAyrl2fIhJ7y6+Mmuyfrb5aS6eAV1vx4P4xz/gpt/q60TWCh3sSZjeQXpx + W1nTEzkcuWTiZ3FfCzO7+/YYO+HT4xBl9OufUCBMKbGluc64cmu0cDnlZFqe0aHvGEOugLNuFsnc + eUH0m0+ip+AzWN1tDvrqNPszyM6JIXhX1v3qPJwQ7HQasX2rLJ2bYsaB7lGt2LdnVec8t34CE5dP + fFJdFZE6dXOQBtbDuVbmiP3p2VcYLF+8E93hqUotcFMqEO3gkf6rD1g4kLaZNkUL2cI5JaCkotFE + +FTtl00NGjw1McDnUDVjmkZ2B++65fH+y5ergjqAr7/HscYmNT00iIeyvLBESZFFP7/9/PqnYLvL + g5of3E0iRdZNI1gPeTSvVfT81XPgvfXPn7wSmiHSsF54jD7dT7YJm1p0AqK5CxV82UtA6O6v6bNv + xJ6eLxag0204kdP8URC9HNJCSm3zPW3W6YTWMXEb6Yf/Gdo8vnhVPNGevSbf/dGzdZM/C/mH9ywa + dpQ9BL0GxTM2J3qWVnd5EiWSXwvrEbcMq3hp6jqU6cvjsX2ylnhAfpuiDdo5xKnD7ps3thFswxlN + 8rY6ZvP9tgzA3AMcsOLSu0v4tCeQef82sQ+t7wc1157w7feJuDGth19epLZ9OUkip+hrNp8nOOzS + +k8//PJymKfhgE/3QnPnXx5i2OnwzdNstKh2GIKIHT0QmYKn3/6c4BE+3kTj9Rm10aDk8rkZnhN4 + V9LPPz385feAH/GjH/Xhw8Bj5Efs366M23hUG+Dnb/E3/1wWAbPgbegHB7/8Xr+MDugfb0sK3uLc + whS+qLP3KmJviilefv2N/fsaLM6s0vmHf5+cF4jbsLpL+eJ5hMc9PGFvfHeU1r4Qol/ecHeCqZ4V + 6hx/eERM0Yl7oS0bEb56kqR7cecu9zxs5ft8Tgim96b/6XNUBzoQ60yUmOLlnUASxM4Ed2V0H0gy + GmDgvCHWfAjd+VrZ/C+vwvhXL+0uZmCoTBdbFu/T1t+fHXiHq4PdrdHQ3uqOs6xiwcAqrCri9u+q + hb4+Ktjmz169vt9MDkxzDQP45sGDGyEHDlxz/pPHrWp8YGStsVJiuLaKhDA7GJCvRR7AN0/+8mEA + D9FYcKx00598GZx6AqIp2R4tb6+uIAkOTjAb/S4jIy0qsNNhxPhynjPyFEpR/upH7H/99/ydN6Cj + sDbY14UgXrf6xYJW5z/Ea3npWz9iCYL6cbCx0DgW2M9dRF98xbsglOlanQIezKe+Yv8sVojkkcjL + Qhy+8P2HDx81qEDaDGJw/fq3OXFSCR3nDAcS7cR4ZQOD+fl/bPV2oK/fvOvf+e8u4uJFtSYeVj7v + sS0fn9ks1CKgr/4IuK2yoD/4vLiCSvzYE1zyw9tfXpnJ60LJJ3uwKItMnnyfF5EdaiNo0vZN9ux8 + zBZhlDqQl62Ni2BcEe2MykTf/As7Ji11IXFrECWUPLG1wfu+fXBlC0OT3LF1tK5U+OXpykX5YOWU + +y4n385n6TcP2rMzmw1kY/HAXFiRFJa9uvPtplWQ2MCTS/Iu3Kl+ZArk209O7kWbZ4T3MwOes8ZM + y0uv4vlk9xOwpBuCtedtND/voSH/8mL1l69/502g3hw3EB7rrudq0zKhnhIT6+vnUI/2eJag1zY8 + 3qc3SqkfnCb59IYrNhcvQ8vXj6KjrWV+Z19UV+CL4fjLH7DLly+0lFuvQ18+I2F5uetdzcyF/MsT + sTyMdRfmq4X2Ihmmqfdrfdk7uwANleGSa8UwbvvDOz1guO/zLP0qO08Nvn6UKNxLj2n2mZ9w5iKY + ym/esXBOCyDSOzsBQNyvDl4UOc3kGKeaRrI/88Q028QT1KmOFk3/rCC+4Y5vuhBkPKaLCFhlCqxU + /pEugypPoE2LFmyJmlLOSN/RNtiXb4xV00NCIyYGpMc1xsHuddD5ttomELg8wkbesmg5+lsLuuk+ + /dGjpH8UBsxy+CEFU7mUa6JU+zNvcd+WkNFv/YP33DFTy2klpTOxWuCyysU63It6Qe5JgkZYLtgn + wz6jVpev7MH8sGQHHwF9nsQKgUQfheSr+qjpernk4LXPD4kd28lILEIEJ/PM/PYTreMn56X9S1C+ + /t+jU70OIfz03MmJ6/5PfxWEWb55WJJN+P2a/vCn5xfHelnKpQTzGNg48NsRDeUnzyFQ3DBYtwOP + xgWXofyMRiHgEPLqxQo7Ef3mV6dzLPVrMicAp7rbEeX8WHXaj12E+MPtQtT62cTzIagVmXutGFvf + fJi/Ha8ioF3XYmwlIloXlWrQPMWexLbxiul3vinLx/lKLmKuuH/4fNtrzDc/UfrVbOwGfJGKWN++ + 7Xg0mS6BneUI2P4EDmXdiFpyaJkK0flI6NePVB7lv3+nAv7rX3/99b9+Jwya9la8vgcDxmIZ/+O/ + jwr8h/AfQ5O+Xn+OIUxDWhZ///PvEwh/f/q2+Yz/e2yfxXv4+5+/xD9HDf4e2zF9/T+X//Vd6L/+ + 9X8AAAD//wMABorHAN4gAAA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac1086d1115b0-SJC + - 9953e909d81167af-SJC Connection: - keep-alive Content-Encoding: @@ -381,13 +381,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:44 GMT + - Mon, 27 Oct 2025 17:28:31 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6b6d784995-4zwfn + - envoy-router-5bf5d97866-vkq5q X-Content-Type-Options: - nosniff alt-svc: @@ -399,7 +399,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "143" + - "137" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -407,7 +407,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "170" + - "172" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -423,7 +423,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_4f2cda492ef8457a8c61603b07be9b55 + - req_69a9ad0aa4d645e7860fb82c9b105f58 status: code: 200 message: OK @@ -584,7 +584,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac10a1f7515b0-SJC + - 9953e90b397067af-SJC Connection: - keep-alive Content-Encoding: @@ -592,13 +592,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:44 GMT + - Mon, 27 Oct 2025 17:28:31 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-779bd7b4d6-xsh9n + - envoy-router-5cf9f869cb-wzzxc X-Content-Type-Options: - nosniff alt-svc: @@ -610,7 +610,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "64" + - "71" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -618,7 +618,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "89" + - "100" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -634,55 +634,77 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_94fe7d22d9f64fc3a17f67729f096394 + - req_5f89bdfd1d3040169dc019c2d1b05e8a status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt - from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: - What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt + from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: + What do I like?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "874" + - "824" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isCzMthJsza6DSi6W0+91YNMyEStRaJckW4bBP7vg9sF - +8JOBN7nIQmCZ8hloAQOQsJ5oI0UZtLN1Wa/2TbbfXPYHsBCHMBBlifftHctHnbTa/5ye4+3Nw/5 - 6/HuNe/Agp4mWi0SwScCC7WkNUCRKIqsYCEUVmIF93i++EpvK3kvDvq+/y6FOz53bEwHMueM9dSB - Mx08jGQmqlLY0NuUYoiaTkYUlcToiGp0pJNJ8UgmoMqnDuzHmEqJXpADeQml0jqubTpeOu77HpZv - FkTL5CuhFAYHxIPXuTL8BELPM3EgcDynZGF+P9GdIfI0q9dyJBZw7fWNhYBhJB8qocbC/k+jufBK - OPyPXXrXBTSNlKli8vv8r/+LtuPfdLFQZv092n22IFRfYiCvkSo4WB8zYB1gWX4AAAD//wMA8jZj - oAsCAAA= + H4sIAAAAAAAAA3RSy27bMBC8+ysWPMuB5daP+lb0lDa3ukEfCgSWXFuMKZLlrhLbgYH+Rn6vX1JQ + diwFdS86cHZGszvzNAAQRosFCFVJVnWwww+3Nx/fTW/3U9rdfLl+O/q0f/w6/fb5+/z9r30QWWL4 + n/eo+IV1pXwdLLLx7giriJIxqeazaT6ZT/M8b4Haa7SJtg48nAzHo/FkOJoPR7MTr/JGIYkF/BgA + ADy13+TQadyKBYyyl5caieQaxeI8BCCit+lFSCJDLB2LrAOVd4yuNf1UOIBCUFPXMu4KsYBCLCsE + 3CqMgQG3wRpl2O6AWDJSBkVRiGuwZoPATWSLdJWeYFkZAuO0UWkOuJIMXCFQQLnB+Of3M0GIuMKI + TiH4mDSMW4Mh0CaiYtTA/lFGfRaGZYURVz5i1mpxlQg91dYHJYmzF5Edd4po8UE6hSUpHzHtlo8K + d+hfIuKqIZlycI21PUA651mmHNsM7k7I4Xz1lXGGqjKiJO/SJYl9EC16GADctSk2r4IRIfo6cMl+ + g61sPp0c9URXmx46n51Q9ixtB7yZjLMLgqVGlsZSrwhCSVWh7qhda2Sjje8Bg956/9q5pH1c3bh1 + z/J4/t8fdIBSGBh1GSJqo14v3Y1FvG8rcXnsfOjWsiCMD0ZhyQZjCkPjSjb2WHpBO2Ksy5Vxa4wh + mrb5Ke/BYfAXAAD//wMAEfwELvYDAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac10bc89b1828-SJC + - 9953e90ccfcfce38-SJC Connection: - keep-alive Content-Encoding: @@ -690,91 +712,123 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:47 GMT + - Mon, 27 Oct 2025 17:28:35 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=XiKLHdE2AMn6B9TAcBdH0yADGR1CC7XWq3i9nakkd7k-1761586115-1.0.1.1-sutYMRllu9Gm38bG7Hcxq75sRtZumCnCTTWPLeEiU9tRF6FqC9CE9ncFOW4ZoHG3cAxFpyyEpJQOrMp2RidSRdXw9rZ0D1WTqj97IuAFBGk; + path=/; expires=Mon, 27-Oct-25 17:58:35 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=7_PE90vNmc340yKZL4QDIhXOo.fEGkOjAYzCz6_LqiE-1761586115622-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:46Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:47Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:46Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxvEHbyYRpFfpJGWoy6 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "4048" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2429" + - "4068" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999828" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_b1aea0456e7847d89ac020794e66cadf status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt - from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: - What do I like?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt + from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: + What do I like?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "877" + - "821" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3SRTYvbQAyG/8qgy14mxQkJ6c6xUJYeCj30C+piD+OXeDZjjTuSd5MG//filG23 - LT0J9DziRdKFhtwhkaOQ/NRhJZkZutqudqtNtdlVt5tbshQ7cjTIoanWn19/2MY9D3ff7+/254+f - +PTu7SsmS3oesVgQ8QeQpZLT0vAiUdSzkqWQWcFK7svlyVecFnItjtq2vZfMNV9qNqYmmYbBl3NN - ztT0vodZPIPTmGKIms5G1CvE3LwxKR5hdCqaIPbGdLEgLIZneUSJfDCPvVejPYyM8EeU64i8qMn+ - DCtIePAc0EjIBUvouqp5rrltW5q/WhLNY1PgJTM5AneNTmVZ/goE3yZwADmeUrI0XQ/hLhR5nLTR - fAQLufXLylLwoUcTCrzGzM2fxi9e4Lv/safZJQBjjwHFp2Y3/Ov/puv+bzpbypM+b233lgTlIQY0 - GlHI0fK+zpeO5vkHAAAA//8DAHKv9r0xAgAA + H4sIAAAAAAAAA3RTwW7bMAy95ysInZ0izpo2zWWHHYYNO2xD1w2YC0OV6ViLLboindYoAuw39nv7 + kkFyWrtYezFgPfLxkXx8mAEoW6gNKFNpMU1bz99dffp4cUuXpu+J3vPVt12//tp/tj/uVndfVBIy + 6OYXGnnMOjHUtDWKJTfAxqMWDKzp+Vm6Wp+laRqBhgqsQ9q2lflqvlwsV/PFer44P+ZVZA2y2sDP + GQDAQ/wGha7Ae7WBRfL40iCz3qLaPAUBKE91eFGa2bJoJyoZQUNO0EXRD5kDyBR3TaN9n6kNZOqy + QsB7g74VCKHaOgapEEyN2gOLFmzQyQayLFMfoLY7BKOFT8I/XFaWobAejdQ92AKd2NLiQDGMC6iM + f9yi3qH/+/sPBxbrtqB5oIKgovXkqHNDnUjusUTPIDTNT0C7Ij7s0d/E6KApJuB965EZGTS0xFbs + PvAGGnQGYx2PYBkcAUmFfoIC+UfFoWFLDosEeChOru7BY4177QSsK8k3OsRASR604zv0oaMQe9sh + Ryho+l5pgYJgmNzbKNOG8WiZdhXR4zQylQyLOtYzmLMhj2Fh6SJzh+l6PZYd62Au19X1BNDOkUSJ + 0VjXR+TwZKXSOstV7lEzuWAPFmpVRA8zgOtoze6Z21TrqWklF9phpE3PVgOfGm9hRE+Xp0dUSHQ9 + Aqv1RfICYV6gaFvzxN3KaFNhMaaOp6C7wtIEmE3a+1/OS9xD69ZtR5Y3y9cLjIAx2AoWeeuxsOZ5 + 02OYx2Cm18KeBh0lK0a/twZzsejDMgosdVcPl6y4Z8EmL63bom+9jecc9j07zP4BAAD//wMApJSC + S8sEAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac10bc9ca67f4-SJC + - 9953e90ccde7f987-SJC Connection: - keep-alive Content-Encoding: @@ -782,43 +836,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:47 GMT + - Mon, 27 Oct 2025 17:28:39 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=aaSXUodjIFDbPY8H_RADl_kw6DFnn2uvsS5p9Tkj2rk-1761586119-1.0.1.1-ClHN7ev6p1gJFUCEmu_AlYpT0NOyzR4rZBlTioSdLjAQNharakBkZoif4uW_v35v8PhMMZtNLDq5F9W5L1TJ768RATkt..XsAfJZ2yWn2io; + path=/; expires=Mon, 27-Oct-25 17:58:39 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=FgyZ3dE0jaZn1PkysODZ8YkiUJc135n7ZmTq0.fX9Js-1761586119197-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:46Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:47Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:46Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxvEG7jDXrg3fARLqEP - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7604" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2737" + - "7645" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999829" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_2a5f9792a3134d35a6504bfb14bf1438 status: code: 200 message: OK @@ -979,7 +1041,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac11dfb6b15b0-SJC + - 9953e93d985767af-SJC Connection: - keep-alive Content-Encoding: @@ -987,13 +1049,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:47 GMT + - Mon, 27 Oct 2025 17:28:39 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7fc5f9bb9c-gj57n + - envoy-router-5bf5d97866-d62z2 X-Content-Type-Options: - nosniff alt-svc: @@ -1005,7 +1067,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "124" + - "68" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -1013,7 +1075,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "141" + - "101" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -1023,61 +1085,84 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999996" + - "199999993" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_5f04629ed7ea42c98159ac60ba92f4bd + - req_8b2168afe3444657b75880544f13f82b status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt from sentence1: stub\n\n------------\n\nI like turtles.\n\n------------\n\nQuestion: - What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + What was it that I liked?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "887" + - "834" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isCzUjhujDa6b+2hlw0pUGweZEEmajUy5YpUkCDwfx+c - LdgXdiLwPg9JEDzDmHqMYMBHV3pccSJCWW1Wzaqu6qba1lvQEHowMPKrrdZ3n9Lx7kNqHl8+PoWH - Tf28ax4+fwENcppwsZDZvSJoyCkugWMOLI4ENPhEgiRgvp6vvuBxIZdioOu6N07U0rklpVrgMo4u - n1owqoXdgGrCzIkUHqcYfJB4UixOkJUMTpQMeFIx7FFJyRKRb1rQPyZljHhw5NGyTxmXieuqpbml - rutg/qaBJU02o+NEYACpt1IywU/A+F6QPIKhEqOGcrnSnCHQVMRK2iMxmPV9rcE7P6D1GZ2ERPZP - o7ryjK7/H7v2LgtwGnDE7KJtxn/9X3Q9/E1nDanI79HtvQbGfAgerQTMYGD5Te9yD/P8HQAA//8D - AP2tvAgOAgAA + H4sIAAAAAAAAA3RT247TMBB971eM/NyumkLbpTytELAgeFshEFlFXmfSDOvYwTPptqwq7W/we3wJ + sntJK9iXKJ7jOTNn5vhxAKCoVAtQptZimtaO3nz59PH6/c9fl9zpr9eTz+u3s2/X3dXDlZm8W6lh + zPB3P9DIIevC+Ka1KOTdDjYBtWBkzeazbHo5y7JXCWh8iTamLVsZTUeT8WQ6Gl+OxvN9Xu3JIKsF + fB8AADymb+zQlbhWCxgPD5EGmfUS1eJ4CUAFb2NEaWZi0U7UsAeNd4IuNf2YO4Bccdc0OmxytYBc + 3dQIuDYYWgFct5YMid0AixbkIeR5rj6ApXsE6YJY5IsYgpuaGCoKLKMWA3sHJRqrg47TAGNRB7sB + KtEJVYQMUiPsxge+SiduUd9j+PP0m2MBckvQfKwCNzUGBGJwHnRZUiTWFpKctYAPEMePEvPIVT40 + u9rkEnu89Dr9lRRS1bPiKwx3SVyUlhQRp/O+/jDFGp3aIoHO6eaOlp3vohQthz5BB4SHFOglpXnx + Ra6Gu4EHtLjSzmDBxgeMg8/Guduerilg1bGOJnGdtSeAds5LkpYMcrtHtkdLVOSI6yKgZu/imll8 + qxK6HQDcJot1Z65RbfBNK4X4e0y02Wy+41O9p3v0ZbY3oBIv2vbAdH5IOyMsShRNlk9cqow2NZZ9 + am9p3ZXkT4DBibx/2/kf9046uWXP8mLyfIEeMAZbwbJoA5ZkzkX31wJG5zx37Tjo1LJiDCsyWAhh + iMsosdKd3b1IxRsWbIqK3BJDGyg9y7jvwXbwFwAA//8DAJuX5nKTBAAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac11f18d667f4-SJC + - 9953e93e9ad2f987-SJC Connection: - keep-alive Content-Encoding: @@ -1085,91 +1170,118 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:50 GMT + - Mon, 27 Oct 2025 17:28:46 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:49Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:50Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:49Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxvTaopu5dgcmp2wTfu - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7145" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2403" + - "7184" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999826" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_3b9e39343a54433a9103a72a2de29cd1 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Excerpt + '{"messages":[{"role":"system","content":"Provide a summary of the relevant + information that could help answer the question based on the excerpt. Your summary, + combined with many others, will be given to the model to generate an answer. + Respond with the following JSON format:\n\n{\n \"summary\": \"...\",\n \"relevance_score\": + 0-10\n}\n\nwhere `summary` is relevant information from the text - about 100 + words words. `relevance_score` is an integer 0-10 for the relevance of `summary` + to the question.\n\nThe excerpt may or may not contain relevant information. + If not, leave `summary` empty, and make `relevance_score` be 0."},{"role":"user","content":"Excerpt from sentence2: stub\n\n------------\n\nI like cats.\n\n------------\n\nQuestion: - What was it that I liked?\n\n"}]}],"temperature":0.0,"system":[{"type":"text","text":"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\n\n{\n \"summary\": - \"...\",\n \"relevance_score\": 0-10\n}\n\nwhere `summary` is relevant information - from the text - about 100 words words. `relevance_score` is an integer 0-10 - for the relevance of `summary` to the question.\n\nThe excerpt may or may not - contain relevant information. If not, leave `summary` empty, and make `relevance_score` - be 0."}],"max_tokens":4096}' + What was it that I liked?\n\n"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "884" + - "831" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJFNb9swDIb/isBLL8pgp02R6L7DeihQbJeiLmROJmKlNpWJVLAg8H8v - nH5tHXYi8D4PSRA8wZg6GsBBGLB0tJDETLq4WqwWy2q5qjbLDViIHTgYZeurul7ff/9aX9/fHHbH - m8369pawX9+BBT3uabZIBLcEFnIa5gBFoiiygoWQWIkV3MPpzVf6PZNzcdC27U4SN3xq2JgGpIwj - 5mMDzjTwoycze0YUlcRcfDNDfCITUMVemMhdDKiRt0Z7VKM9GSk/dxT07MlZ/NKAfZmdaaADciAv - IWWad9RVw1PDbdvC9GhBNO19JpTE4IC481oywysQ+lWIA4HjMgwWyvlud4LI+6Je0xOxgKvXlYWA - oScfMqHGxP5v451nwu5/7K13XkD7nkbKOPjV+K//Qev+M50spKJ/RleXFoTyIQbyGimDg/lbHeYO - pukZAAD//wMADMBOkSACAAA= + H4sIAAAAAAAAA3RUwW7bSAy9+yuIOcuBnW6c1D30sEAXKbJAsVt0D+vCYGYom81oRiWp1EaQf1/M + yI1cbHsRID3y8ZGP1NMMwHFwa3B+j+a7Ps5//3T3/vbv9tDdffq2/PD6rz9evbv/cPP63fs/b7/c + uaZk5Psv5O171oXPXR/JOKcR9kJoVFiX16vl1c1qebmoQJcDxZK2621+Nb9cXF7NFzfzxfUpb5/Z + k7o1/DsDAHiqz6IwBTq4NVSW+qUjVdyRW78EATjJsXxxqMpqmMw1E+hzMkpV9NMmAWycDl2Hcty4 + NWzcxz0BHTxJb1BCkZMCgnLaRWrAR0KBQD6ioPEjgVLh87SGzWbjbiHyA4FH04vyDh/3rMCFomVR + m/ckmhOooVFHySC30Au1JIUEbI8GdOgje7Z4BA6UjFsmBdsTjAMvOZEfOO0AtZY9r0dCgEKQMmAI + XOzACIEMOWoDXweMhVC0gSyA0UjS2MrIrlB0cU4UgFMta3SwUZrPQwwwGgvY3fNuYDtelLIvk4CQ + SSFlA+3Jc3sETMcyzFGMNmDcEbSCHY0iehRjP0QUsGNPWhosLb0BrtMQUqUywx0lEoyn7i/Gbtss + 1BSpQtrnpASWq+yvA2mpWEf0T5H/DbVQ1lZGq8LbAjY1XijSIyYDTm2WDmtuK7mr6PetCCzkqzcp + sEer1qCNg9oXUypvMX20xTXjnp3oPW3VZ6Gyb8vFJj2fb6dQOyiW20hDjGcAppStKqp38fmEPL9c + QsuJdb8VQs2pbLda7l1Fn2cAn+tlDT8ci+sld71tLT9QpV2urkc+N53yhK5+W51Qy4ZxAm6Wr5qf + EG5PO3d2nM6j31OYUqdLxiFwPgNmZ+39X87PuMfWOe0mlqvl5S8LTID31BuFbS8U2P/Y9BQmVK7j + V2Evg66SnZI8sqetMUkxI1CLQxx/RE6PatRtW047kl64/o2K37Pn2X8AAAD//wMA5Pt3uIoFAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac11f1e441828-SJC + - 9953e93e99bcce38-SJC Connection: - keep-alive Content-Encoding: @@ -1177,43 +1289,45 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 18:59:50 GMT + - Mon, 27 Oct 2025 17:28:50 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T18:59:49Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T18:59:50Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T18:59:49Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJxvU7JvBzwmd9JJwEjP - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "10943" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2645" + - "11040" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999826" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_9e31dd1b03f7473a9c7cc19a7a5e49dc status: code: 200 message: OK diff --git a/tests/cassettes/test_pdf_reader_match_doc_details.yaml b/tests/cassettes/test_pdf_reader_match_doc_details.yaml index f4d369554..aafc90b50 100644 --- a/tests/cassettes/test_pdf_reader_match_doc_details.yaml +++ b/tests/cassettes/test_pdf_reader_match_doc_details.yaml @@ -1,43 +1,65 @@ interactions: - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Extract - the title, authors, and doi as a JSON from this MLA citation. If any field can - not be found, return it as null. Use title, authors, and doi as keys, author''s - value should be a list of authors. Wellawatte et al, A Perspective on Explanations - of Molecular Prediction Models, XAI Review, 2023\n\nCitation JSON:"}]}],"temperature":0.0,"max_tokens":4096}' + '{"messages":[{"role":"user","content":"Extract the title, authors, and + doi as a JSON from this MLA citation. If any field can not be found, return + it as null. Use title, authors, and doi as keys, author''s value should be a + list of authors. Wellawatte et al, A Perspective on Explanations of Molecular + Prediction Models, XAI Review, 2023\n\nCitation JSON:"}],"model":"gpt-5-2025-08-07","n":1,"temperature":1.0}' headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "456" + - "409" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3SR0WobMRBFf0XcZxnWJgu13lrap5KSQqDQKOwK7TRWIo820shxMfvvRW7SNi19 - Gphz5jIjnbBPE0UY+OjqRKuSmElWF6t+tek2fbfdbKERJhjsy93QrddvPt9/un7aHg/v331ch/T4 - ta/XR2jI95maRaW4O4JGTrE1XCmhiGOBhk8sxAJzc3rxhY6NnIvBOI73JbHlk2WlLCRIJAujLN6q - K8plJi/hQCqx+nCco2MnIXFR6Zu6TJF8jS6rq0xT8A2oy3ZesdA/81yVXcqlJd5YfKEY3ZMTIUWi - XLS4ffamFJrDNUbLi+VxHLHcahRJ85DJlcQwIJ4GqZnxDAo9VmJPMG1Qo55fwpwQeK4ySHogLjDb - TsM7v6PBZzrvP7wWfvFMbvofe5lt+TTvaE/ZxaHf/+v/puvd33TRSFX+bPWdRqF8CJ4GCZRh0L5v - cnnCsvwAAAD//wMAC8nr6TECAAA= + H4sIAAAAAAAAA3SSQW/bMAyF7/4VBM/J4KRNY+Q2FNtpAXrahtWBoUi0o1WWBInOOgT574PsNHax + 9OKDPvL5kY+nDAC1wg2gPAiWrTfzx+/fvv5cv3CjGseLeFxsW3UX1r/223z/iLPU4fa/SfJb1yfp + Wm+ItbMDloEEU1JdrB8Wq2JVFOsetE6RSW2N5/lqvsyXq3lezPP1pe/gtKSIG3jOAABO/Tc5tIpe + cQP57O2lpRhFQ7i5FgFgcCa9oIhRRxaWcTZC6SyT7U2fSgtQIms2VOIGSvwMTxSiJ8n6SOAsfHn1 + RliRZorgatg6Q7IzIsBTIKVlArBN48QSZ4Oe6PjgQkyKzyX+IGPEH8FMQAzClLi71CmnU43tjCnt + eeoxUN1FYS5wAoS1jgc3SX13IefrPmptdTxUgUR0Ns0Y2Xns6TkD2PX77d6tDH1wreeK3Qv1ssVy + kMMxzxEu7pb3F8yOhZmQ+/xhdkOxUsRCmzjJCKWQB1Jj7xio6JR2E5BN5vvf0C3tYXZtm4m1ZfHx + H0YgJXkmVflrtLfKAqWj/6jsuureM0YKRy2pYk0hxaGoFp0ZDhLj38jUVrW2DQUfdH+VKfHsnP0D + AAD//wMAVBKrtJIDAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac822b91dfae7-SJC + - 9953e393c8932516-SJC Connection: - keep-alive Content-Encoding: @@ -45,43 +67,51 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:37 GMT + - Mon, 27 Oct 2025 17:25:02 GMT Server: - cloudflare + Set-Cookie: + - __cf_bm=2F4OxnJy5sZd.CFPYA.xWPyWUhwc40.y5p.e1t4.Adk-1761585902-1.0.1.1-p5pAxbnFdikuLPl3ZG1TjHcaSpRVlHq6TxrwauPf9RRuWZIm.TUtR5S0cIjuDDvVjZoVE4wVbCpVxC2iI7_BZP2L2Lb4dY0D7sEZGt9m3sM; + path=/; expires=Mon, 27-Oct-25 17:55:02 GMT; domain=.api.openai.com; HttpOnly; + Secure; SameSite=None + - _cfuvid=SwE_8eCTIe9Ec8CZglxeTmMDgDbEpECukldgowAnF.o-1761585902881-0.0.1.1-604800000; + path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:37Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:37Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:37Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyHdoo1Nri2jEF8dKZh - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "15434" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "2398" + - "15467" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39999918" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 0s + x-request-id: + - req_b7285227e0ec491587a90e0021c43eac status: code: 200 message: OK @@ -103,14 +133,14 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/62TQW/bMAyF/4qhc+Q4bpahvgXL0PUwNOgw7ND0wEl0LFSWXIlOYgT+76PcAWl2 - 7QzoYD75eyT4fBaRgPooKuFfxEy0GCPsUdLQIdeOPrxIayK9kw4YovGO1UVe5MVFEdVZ1KCQmHYe - Z4I8gZUBY29TqVwsytuZMIQtvz2dxebhPkGKvFwtb5a7uWqwDSdzkGVRlvK1PhQlw6Gnxofpg705 - YPK9Q2xNts1ZraE1duDaL7QWjkCEXI342qNTaYLahKl7qGtjDdDUObMctEn+6cw0Dw2Zr7NHzz1E - wiDG53F2MfyGBNn6yu8OnG7MtRdobZIB2I8arhPovd0PjA3o8N8NHx6/3G/4VkPUxWo33819UEbn - Pux384IfyaeUq9Xys7y5XX36uxB0ZBQQajldF1UNNuLs0r/TAY/Z5npFjfl3Ox8c4JnjFDlhNYYE - 1PL3IJXvHYlqwfkzZBnwJNbZlgEdKmJS5l329dRZcJNTTNDv3qLqLYRsG1AblQQuarRRvLmk0MoO - g+ymoDOdZwhDijz/QIGkcRpPoirSeBBUI7nFlHPXWzuO4x/IQXe1aAMAAA== + H4sIAAAAAAAA/62TQW/bMAyF/4qhc+Q4bpaivgXL0PUwNOgw7ND0wEl0LFSWXIlOYgT+76O8AWl2 + 7QzoYD75eyT4fBaRgPooKuFfxUy0GCPsUdLQIdeOPrxKayK9kw4YovGO1UVe5MVFEdVZ1KCQmHYe + Z4I8gZUBY29TqVws7m5nwhC2/PZ8FpvHhwQp8nK1vFnu5qrBNpzMQZZFWcq3+lCUDIeeGh+mD/bm + gMn3HrE12TZntYbW2IFrP9FaOAIRcjXiW49OpQlqE6buoa6NNUBT58xy0Cb5hzPTPDRkvs6ePPcQ + CYMYX8bZxfArEmTrK797cLox116gtUkGYD9quE6g93bfMTagw383fHz6/LDhWw1RF6vdfDf3QRmd + +7DfzQt+JJ9SrlbLW3lzt/r0dyHoyCgg1HK6LqoabMTZpX+nAx6zzfWKGvPvdj44wAvHKXLCagwJ + qOWvQSrfOxLVgvNnyDLgWayzLQM6VMSkzLvsy6mz4CanmKDfvEXVWwjZNqA2Kglc1Gij+OOSQis7 + DLKbgs50niEMKfL8AwWSxmk8iapI40FQjeQWU85db+04jr8BrMsUEmgDAAA= headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -124,11 +154,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "442" + - "443" Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:37 GMT + - Mon, 27 Oct 2025 17:25:08 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1233,1695 +1263,1695 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6S8S4+zQNMluO9f8erbeiRzMxnZO+7GgEkMGONZGYwx4Bu3BLI1/31EPT0zGqlX - M5uSXKYsyIg4cc6JcP2P//af//zXN6uLfPiv//6f/3pV/fBf/9v6u/ttuP3Xf//P//7f/vOf//zn - f/z9/H9dWbyz4n6vPuXf5X9vVp97Mf/Xf/8P93//5v+56L//57+4b634LLZeiB3rk4XGRHgSbXOw - I4FPjhV8t/2J3kzzGLHd1r3BxR925OjYgT5L+FBhHMUFvZziJVuirAoBRKxS42ye9cVa5Aa+wrwh - x8vH1blIn1MofmpGDIN76+2x93rYN9ll3DwitRPZAww4bPbnkUlJzWhgqyF6nQqO6KERu8tz2sjQ - Kb3zdz/ZLJBuAiT8JH96Oz+33/NeAcavzQnxNpduCtzRh9tTQdSqXzt9RjOxoPoBIWf3y7o5EicZ - 92g5j42CBX0aPouM3YEYxGrulbtoGDwUDXlI01/RucP7EVWg+JuXjyRu7BZVVS28v4r78W1pWsY3 - ZrAgbz/H5HLeb92pmbgF1+Q3Uis4bdnE+60Aiq4dqALI0zlz6GQIdswge4vbRDPPlxt83qoODamw - r4fiait4d6smqhwucUelRdOAx9aDuE9BiuaG1yqsboyYXuPL0R25g+fIZeo6xA4qqxP8ryhjt89E - ahlckk3XUK7Q+ppY1VevRSITBUBTz+RoRDObJ/bz4LjVDsS7pIXLfV/Mwad6islZ2RI0qdJQQqpw - AXF9Grqsu5YNyFHPxi6qLzXr+W0C1/Rr0sflk2Uif8sCaEwlo2nq1ZmIdu0bpzxQ4r26DWKapin4 - MX8Leiqqt9uduLcH7LHD4+JehWi6i1WLCy6VSCYLpcuXj88C42jfiLE5SPXcxKONHu9IpUZHXh1n - m+GIeddL6E3AQjTIRmWDdD859HZOIFuKvrbxtZMz6glHI5u3520Af+f9wDvXHWB7CMBBMSIaik7u - sstCA4vHJqOX7kS6UQ2SQi5j80MPCvH1Xi6lBXN9U5OHOj4j8dW6Cmwuv4kaOtz1uTuZBu7FfqFG - cx27Jb1XGv7tFZcEj6fpit0hvGF3emR0/747LrfTnz7GntaMYIYBmmd8XnYzsUOq6PQQDY2ZTsj6 - wIbeh8bu/uXr716JVE8HSZ+vlmyh6R4c6E2/V/ryPS4h3iz5kaZkVFB/sY82Ws+bWI6wR9NeOgU4 - 1NI9Oe0snk3e/lZA9TIfVNemWy1qYeoh9kCY7K+uli15WKZ4ebQ+8bbfXGfp6fnGp/QmUmvZhbUg - d2WAhdaUqO2KAeKs7DDiMxUu/sQXWsfh7ynGC38eiZPrdScUu74C3W8CqvwUJeJ+UQpgvn88eVSx - 1k0TzXIwimBLkjZUMvG8kxe80z1xFBmYujjUdwcwCWXia+XRXaJuyvFa/6PQ3DWX4wJBwM6xOhMV - DmUm7APHR/MwmcQ9or5eOk64wdTnQJSjb9TcQwss/CanK4nL95Oxm/TqwSPybZyv7T3jSZXYiH6S - OzEUnOjccOlHcPurSJRYUjPGH08y3O8poZHJXu5ka0cZ7KpwqGfbX33yko+As4m29HhEOWqetshB - vftuxs+eF/U5/bU5giGdiVOoM1p6TWpx7FkmCSOduXPumgK8HEceJek1Z+KHm24YzlHnC4/Fi7gi - XkJ8GS49sW+bi97HSv9GF1JbJNgZ4E438hrhJsUcyafUcgWsaCFGAVypI26IK3TcJkWd933TC87K - aIj2fgKBtBX9DXGrbnlYA8D2ruQkIlngsq1vvGFqGp3cJler54Z3SrTiJ/WUws365drncjn+BGpF - seMuzmcC7LlqS/fdidTzkC3FX/8g8V99GFJ0w1B2Nt1/Co3xZOkTdONOJ2qw4YMWrQhavOIvVTvF - jqZp+2yxAdJCE0iPbOGvYYziyF2IvvaPfjynI+zFbvDf58O3Zli/eFBZj97HeViiiQmchjW5Gqjz - 6saa2YVRgRV0JlH14YF4d7gs0M4nh8bc81hP8mTZgI4Pfs1fvVuu8q6BpeBVcpaSWBd0h28R+Mtm - nJ5J3c2D/SggUBSNOPpd08X8rVc42MuIWsKkdZTViiSf6iWm+sat9P41fAACFwpyWZCXzfsUc4jH - xmNsdLi7U80dGvgeFUS0t7PLKGnnVj5G34GGgdG702hqFW4+92aUpzVePxQo+N6MB+o/bUUX6oxI - 0L2znw8PMrrsSDYW9Gg6032GBX35BH6AnO2toAd+83HZoO8amIkT0iNIlSvmwnWE+n37kj3OlEwc - AxnA3i26j23nySbBTRQcz/OLHL3NPuPb+CTjm39p/Fm4z4iu/QZp6bch119poEni3wB6WdwoycNZ - ZwcUG5jTlJhemkyq5zmYBMxd46PPkfsPLfQHE1gPXiQXuH1q7nm1FPzXDzWjfmRLEKsjvCbjQ09y - /GT9DDGH89y0yL2rEsRxzVWAZ4dymlJLcKfT9Ztiu8odUhhntxO1MPBRT18djU+hHfFGXFn/6tX+ - /LxOvES4QcfgdqF/9c639Sf8h+/3lQ8trGAOLoPgRK+IvaKpLcMEO2ZGiPcdf9HXDnMD3k+YyAOk - JWPvy1f440skN8MJTcemUrBph4TY0fNYz897NsnHcQa/vStXncV57WNlaFLi3snbZaZ1X5Agxyb1 - kXpzF/O182DgNimNt84cTR3+yXhatj96uGtVzX4PNcWSo3DUy3XGpkFSDRxEYUo9cfOI5uiSV3DR - 2H2c9eHBpsdy4GDFo3FKC5l1p7PTQogu4HPn3a1uXy8+xMVdckk2Ha7u9Bq/C1x2VUJsaWnq7vc4 - pDtdnCLqeXCs+fGLOHCtPiU2aqRs2oZVjFf8ps7kVjV74CXAV2T6/hMOSjScK1WC3c6uqbN73zJm - CqSEkc9jorlXIVvEaFdCYj5Fog2coPe1/lDQdBQP48tkfDTvc62FUhbKcfq4KuNnpf2CoisHYj+5 - Mfvjh+h1Li/0gi/YZdzkBKD774D47n4b9UZZlRgdR40el9R3udScbUz8UaLaT5m6aac/PdhvF0YO - 2dFwh0Py44Bw7YvYTWt2c3h7xkjF0Z7ahtFkrO2dCRoFJFJgcY7m6uZvYGwNcYQjtjKx3I8yGM9n - QvwXmJ2QnegbbTonGjl1MyI2Zd8EPkvRU7+dOp1xSlqhFZ/H7T06MHr7Xsod/6Q6teSaZoMQTg0I - 7V6ivm2n2fwMbjdQQg+oKwuKLqqNfIOTqLUjF0ZPd3r5xg3uZnTwdyVPsyEgbLP7gd3S09b+RHPo - ZA7Ms5YTY43/9Cjeglzm/kCPRUB0xh6cAamLH7SY0iTjQn7rSH98DsZ6X7P9NPYwNWeBrnw3a8Vo - LvEgeePI3Wsxo6PSTBBee4X+1UMrf7McLuRpjZt9vNTs9AoEsHeTTg9KrmYsf7sVNDLsff7Qmtks - TrYDf/VmUEFE/bVWRhAezy9Jorh1537Tcn/6htrb7BstBcwJNrRdTVIBW3q/8kd0Rx5PTxsUu+zQ - mRJIjqCO/A0Gt73ezh5kCXyI4w9SNI9fxkHx8k3qWdGv63D0ukF8OZ6p0XhZNJOQbFB/kDxyfuWq - y5+X1ABcPAZflF8HfXhVZQziprtQ8zGF3dw2pQU8h6/UMU57Jh5u2x5OtJ98jg0ftsjdN0RUeTXE - DasNGzWZpsgyoy91vw/I/vg3+ou3+t0kaFK/lxh+5+tMnMnVujlTrwFYLM7IJZ8RWvlAD3/8gTub - vD73Y/yFQTcIfcT8p2buzrZgUuWBGoN0qHm9Fgv4HjU08sKT7+bDe9JwMVgbf7EWwxX+4rX2Z0Ji - /tNN1v7dozw77Xy8uDL6Sibv7frytlvPB2VTaB1v8EJHwd/l6g99uTnzAfP+h8bvTHGFcPRylEjH - 4yhFsRzRnRaEmNO02Jcv6YAm4jNFHvxjQR6S4SF+1aNQnGdz/I170f1WVs3hFh/f1PvIdTeLjx1A - NYcH4rl7qs+lftXgjz8Uxrmr5534HfFWbHpqffKfztL56ECchRLVxLKJFpeTE9DZOPlcXm06uvZP - uaR3nRzQO/zrjz3YOnehhOCim7rj5MiBLqbUPvYkY1ZSbxA/IYGao84ilgunHjgRFBLNv7wetslk - wLIJVHLzBymbnldLgzoTUmp9A58tky6+QaYGoRf0frJB35c9oFziie11wh9fLpDoMZ8o9X7TjY6x - n2CMGvd/4mv2S2O43PYJ1fy8ZGt+JFCdxMPf+WYz/7otsOoF4o0JFzXEZxoSv07nw1MK9WXlh3BV - zS3RerHs5visVIhF2+dIbWfR+xsZRnSp/Du1l4PSsb94XSmdqbePq2w4DXr1x1ep9fy0iO2ndw+6 - 2WGqH94n1D93VQp35PPEOxxKxO5BXuH3gDyqEt+reYXOEsxJ4RFVm9psRGZnySt+kktQemw+2tEN - r/HwJ6OmLttpaQDKr+RJoQ1lNCfbawG7l3yke0NzuumwTLksb04aMc4m7zJsBBr+i59NxhIttbuU - oDfR9O/+v5tYiGHVZ+Sg+2d95qvjBrrajXxGpWc2f3dFgEzD6+nNMLiaHlBuoMMoV0TbnTXE0NXy - 5WjqfySIpWe2yKkZ4Mv+exzFNhAYi6h5w4GiadQ74nfEBlYnsNzmgvqO80OTlLgprHqU5E8pdOdx - p2nw1Jwb2cuvn7tshlLB09V/k/24f7P5eTy+oc50l+7R+4lmymMPJBWN1MoQRPNvH1T46egRsScU - d+IWbxLEStulilETfT7ovgBdtCmJm2ZKLa79Bubw9iPGyG/1aUkeLTz4XiXKwL3YUuz6Ejr54dHD - +y5H09T7LWLyeCOG8MjYqpcnqIpmoSqWUbSQdy3hpTJTYt+cuV52fjCC/8Fbql92S8QaD+Xoz2+I - //Cpid82IkPckYhKz2g58y8NeN0MqLoFD3EZdnPoD7JH//Sq+H4LPqrCb0JOH4zZP30oIRnTQ67+ - 2GTP4hfe+7QkXmWaGfvT7398Uv1gjGazSL4w73WP6EvL//knJartRhv7g4nrCVx1Any5qWNXSwe0 - +ika7IbZorq+eXd98URfWd92nr9x99us7Uyj/eeHmdTodWZepQWZFffw09n+sPEztV/480f8+Urd - mWhyg57smJC9SE9sehSjAN2mpMRa9c4cTGmMWj1vVv/mxCYa6hLGUVKMnwX10fR9IRt8lFe0cPeP - iOmPU4Nv/rkhB/h0Om0h2GCt2w/Ex+IpWvlGg9b88OUxMdzFVdkCspLfiduOT3fVdxV6XAyfqPuG - olFOzRBevRCQsBeVboYRGSBcvnSk1Z5Gi3QfDagf1kgId1LcXpTYBODQjJia8u1m0UsAj8VwG8Vd - E0TLUCoeSFsoSVYbRjY9f7EHWRUb1IzCIFpO8ylA63n7shkqtbDLQktG4sOkh9lROy47nnrUFpwy - 9gTF3cL/ygrsvTUQfRTtWrhMng/yZUn81ymu9KVJmfyHT8NGOHL1vLV+Er6n9YNoc2e59BPHGoz7 - 7Ek8mUu65aLcCmiLDxvFT1Eh4V0/QzhulQM50Y/csaKsRujLdOcjXn2yyZimHgM3div+avWSxZCi - LuOv/nT0m3p5CXr+p/eokYKpL0F9sVD1kntiR/Et+543QYlXPUbcNb+mS5olkOd7i5o/7VYv0sAF - 2J7E6d/7XHWYWmz8vjnVzrs2G3J520CMNz6xTqFUz+PO0QDPcCL5ysf4tvkacI4LNDb3qa3n3cWL - /+phFFd+QIm8V2Ba8I/G2NPdab0fSOedR52H1tbTnz/YPSQglz1/0YejdLTharrVOD0PQSTY180C - lwIs+qhX/2POdyEKt9nDlx25616vqkyw1igqyeQFGNU0RwPz8tCo5ZdNNz/v0YTX66lmLYbOkouW - 4o9XbUdUSz9GRaMJcSR9Kl/+/HLUl/lNQFLzMah/OJzcuWU4h7q2Q6L/tls0X7xQ+tN///Tz8hAu - I+Cf6NDDYBXZTKrCRnZI8J9/5y7ovAtg9b98+Mh1Pev1toAd9i1q93GVLacApL/6Xv0cYKMY9D2s - /ZIYnRb+8y/hnFaFv1luH/aXX7vIolefs5Y46kFGFXpLj5zoefN1l5d16qFc6I1qrXqIxOvGr+BV - /j7//Nv+kkYx6IOvk6NWsGwOZU8CPMgDNadejHprP45gEMujalFZLq/2g4E+xtci7j781uLDVyp4 - HqPfqmf7enwJbi4fsmz7h++dqJ0uN/jzg66XhNN7o2wruIz2joTsx0XjQ3j0gJM3R61TmHZ894xC - 1Hi7mNptGHSL8TU9yPbPD9UCo9encf4UyLQDQh9b8RqN6iQLaDqwN/Ef0bNb9S8H25OhkFPW+2gB - rQh2Yu/7fvsZFJ1rVF0BhZNCaiw91ZeEnRRo+WSg6uHqZ0zkEgWuW2ceUTDXrFv1kfyX74e9aer8 - BzoLrfXscz7BaP7TQ842Leiq77Khe2YBrPplXPldNv10Z0Eahfv4x3f+9D6MXnAiB3rWXe54+X7/ - +dnFC1712v++IB5KidoCtlzWuu8U8h3qqb/c9mx6YcH5+3u6b7K0nvAeAFb+7s+BtkTTMc4E+BWx - Qa7n9MWWuisseUiS1zjunyYS5f7pw5ofVJH2727A3TuEVBECH474nbFLhN9wiJ4WsZjsrv52Z8Nf - Pygc58eWDeCbtLr21A3mGtEqjEOwuV1Ebqu++IePUeJcfU7b7rtl9UcBe0pD9M+xY+PmqLdYUGKB - PrROQN33tPfAzKoXMS1udPv91zXk54ffrf1B1fusxwG8tFAl/k7vEHPSboRlX9vr80vdb6oz7S/+ - dH9oz121+jX4YCQR2a9402vCqYTLTaqp0s4o6tXvIwHxa3fkmIclmz7pbkEFnGbyx88Gff/t4Td5 - Pk3W+phD2ZDgnDcqIfmjiaZdbSzQKBuJHofG/ucn/ZsHKVnL68Ofv5fcW0z+4r8EOitxr84W1er0 - FY0H55ei9TzGsX/9uvnkUQf98TOrIzz6myfAyuf9USmybnEu1YS+R84mF37W60XRzxZe51VE1efa - 7dG93sCfH6I3voH484n1WOrvmGhU+HSTMUkjRNZw/cfnJl795SgKJZ1YrqjU/D7FAghCUJEkONfu - v/nW654F6zwkrRm5TyG6pq1J/ZOiuhy4hwXt9sGNmpeDkrGfjzzUpYpOitoaoz/+Il/4go0bSYv0 - mUTKhFe+8Y//zoqi2LA+D71D57MJ3MMEj93zQpVIr9DkvQUFfb9p6s9/evlYXw1ZF5eIOI7s1uPK - 5xA4QzbKq3/Tepu3BPu7eR9/q//H34KxRXdQNGoqW4pGf+cbqFeZ5ct6MLI52Z5ydM8/2pofGZvl - eIrh77w8SdPY7J4OCppPr5zo5YVjfZJ9bfQ3LzEvJnYnAe0n+NMn28dJcuf0V+V4lzyOI1r9fxYV - og+KNHxJgq/vevISKkBf/wixlt3S0c3pdINVv5KDGlio16OfA89+/I3c5iB1s7YbC5A7pafWYHDR - 1Dt1DH/9wH0N36j7m2cWV+Hrw3c8ZMufPhaEsFqvj6N+9U/gtBxk6v2o5nIv30vhmx9HonOPCFGh - /eWw9iPiieqBiYs5J1Ccmem/UfPVaah9C1j9Xl8KS47Ny6jcsLqxYnoY9xf325a3BAqtouTwhy/V - WEl4eW9ssn8oSs2tehx/lKYekRpc9OXa1in2UVER6/BF7GvixYAHP6rkj0+wpn9oiG3qyc9sa4yG - g5V9YTrMbxLBYarZRacpnJk1Urv6RmzZl0GK5UdH1vgS9F39MwjRGfx21aPDmv+QhaZICO/zNZPz - SJHTLn0QBUODVv9FhsPjUVFjzwZdGK/jGzaPRRi35nPU52x2FSDSaFNHyw8R661jg9Z5KDntop87 - DJmco9d3GagdljGaD8mTw/sT+ORydauI7hmrYHuYLLI/77f6z5x3LWhq3FHNJ0M31PtmwhKMDtHd - r55N9vkrweO2a4h5X4xotogaArBdQY3Dt6t7pWsc+L/u30D8pdvkyN9WJtHq1MyETxkX8BXYxn+E - 7My+GdZzvOpzEsnx4i7PU5RgtG1c+mgOT3cmkT3B6eAb/+Zt8+5ixKA+d52P5AXQfPxsNrD6VcQS - pqobVfVgyWl0uhIvfjuZqM1swlZpmNT+nUQ2nHKcoHv6fNADg3O23MR+gv/62wr4P/63/w8bBfz/ - eqPAOHsqsTejzvha6ROYavFB/I9m6KJzJAUSs+5Oj3cOOhZ8tAmCrtqOX3Wu9VlXDyNenDimRWQr - Lj8flTfG9S+m5lc61lyoahLsuj0/tt1G1XnY7DaIR4lP1SM2uuX1agA7Phvowa0vSHSFMYDyN979 - xKaspjz6lOtkNiAPIxoRe3TOTQqE18ouNh2aM7H1YHv2BEpUZXYZwZ2MUOMDtd9l5o5XJ+5BPxg7 - mvsHv5udsLxh7eN+iNpNasc0wRagCqSQ3rW808fb/XaDqjBskuTFB43NpSxQ9xi9ERe83vUWZCO8 - jsmXmvXTQrMwER/azP7RwJwMl8fCPUZ7Dn9JONmhy8nMusHZGil1dVdjwlmyCnjPfUzzVxJEYnwX - vuAqtU2MV73Vl/DxlSFHZU/DqPl1LOIuE64OyUD3+rfLxktxkGGMepsEXv/QZ9V4OfgWVxN1q/O7 - o4dzb0F4N57U84Jzx8kvVca+6Mb0KB95nXWnOoBJPfpE3WA9Enl3juE9dKJf+emCunKjGPiFRUqU - zOg7Vj20BBvvz5b4yftYs1cRcjhurMJnGzSghR5OEqRVQHz+veWiV3+KKnxXQpv6H/rORPd+8rD1 - Oqf0pn/fHf98tBa+9zrz3zZl3XQ/3HOgehn4rMSqzm83Tg6pEmOi7M9ptCAs+vg+zYTcR8xn7O7Y - PigXJfDnoC71xQsEG/ZG8aRaOVSdeHcUH3fiZqJacOpdNnxiCaheBTRWn7+M4U3owWBMInV3lR1R - EAYDsnfg0IBz9vV8SMUJ0ov8JMdN/+umV/UM8EZ2DtSiu4tLY+PZ7F5pdqbmQf10zOeFBT8sfSZ7 - zrow8Tc9FWyfgi/NlrsUjf4x7PFtF7j0yMXgjt9rL8M7fLkkp7eryy2f4IYTR99SM6nviIsTqKDO - ZoveYqDZxLnWG3xvWxBbvm31xRfmEsTj9KHnrzR0Pf/LBdjcYpUWy9bS+fQ0CsDnR5OSOqzqTtDj - Eaf6waK3X/pi03xwbLDHoqC692y77tCbHsb2+0MssftFbIw+I5yLIKIB7UImau0UgBW3V2L5376b - 8o7YwD7ijRx+9j4S7qcwwdzlV1Gn9IguqHbXALtuGqqlU9nxL2wLeNHvlLoH4iLutDv3cM1zg5zZ - L+1Efeg9xFVqQI6/VNW5pB9txPsJIckJtRnzTycbDuk3JsUBDpkQVbmAVcZdyNmXlZofr3YLF2lO - iWXTqBPca7jAufm8iHJvbVf4iczBpuYro6ycf66Qf1AO4ffgUyKvjNOaXQeUbcAIMaKRsURfLJzN - sUg0cxzrSdjXNvxK4Ih5PVwzoZoHRTZeSPF3dKxqzkaNj2/P/jNKF4y7ZboUNxDPsUfDkUhotq40 - lMW37v6dR82kppDhAx97DJ2jrs+veQpgEeNovO5wFs2Xm17sjAkP1MlHtVve1sfH+zkvSQZ2zRje - 3HywnKAjLu0HV1wuuxu437kj5s1RIr6JKg1/7vftKCb80WWo/tzgU5GMhEg2dD6vsQaG3GZEH5az - O0WPk4N/zx/zf80vRKJZTB5uM+dHSRLv6p4K3m2dHrrU3PNB3a/xgWMimOOSOKY7dqLeInHeS8SP - IsJ+3cvuQU8wpfYF4/r9ltoW5HPUjVLWKC7n5GMOjhu8iJthiS0bvB9xoOSRP1bjI5trpUlwaQQ6 - PfPViXESSQN4tMyjh3pWuiW4sAW/FGeh2ted9EW8NxUuL7NLM/FHdOrnzx6eLWnIXnjq2RLGaQz6 - WEc+unZVtFzEAoBI8jhulFeFVvxwYJtqW7qPyQlNh5drISdQVHKTrMjlXUdfYHj3B3qzkBHxrJI9 - KOVrThRddNg0lOGE2XK0yekSu7rQOpIE//JNle/ZpLtkAdpNjPjOz61noogtxr63o5F0DjtBtiIJ - /Hd+pk6Lb+7grBs7jfvxia9LSiaqXquAyT8Daou/CA3kdEjlk/O1yfHz+KD55uspBmpO9Hbjv9kc - RUcBvcOPSzQwY3dWZprCA/qCZj9rRoPuhQH+LZJFLlvphxbzNk9InRWfBF95j5aWFiW6v/qK7gND - c0X7uAHIo+BA9I3fdYLAmS3G1+hN1dDmonHaHELUBElL9LTo62UrSDFOHHX7rx55wX2+sbahrl8C - 56LpYS4aXJZ8Ty6+5Lq8zKUSqEy4jJudTnQut34l7hK9oBqYnD5/4JT89Sdi2wpC81Q/e7zgX0PO - elsywd5QCXpBUkkMetGx67Ue0UDFmpLqlHVT8ls83C3rxgq5GJlw+d0KOEL4WOszZUM8xwZ+jqFC - spq6rljxdYGs27alLtg644C2G/g+yJW6wL9dBvdUgZ/dB/QEF9td1Icx4lZ/mbTQJSWiAh84eBN0 - EdWv0sn9n/V6w+0olx7VX7XSx+BW+Y2k6aZB83l38OHZvEKy8oHsX/+VtMSlJDsr9RyahxgOkyyR - vea/2cQKtqAP+RxG3Oz6bt5unALlQLqRdd61m1VjsEFMnTO9qE+jFtb44PRspDQ7jmXE3mfBw7ag - 6PSe31Kd8ZeD9IcPVL0tabesfAfPUffxP92prtnFeivY8eeB7KWXF83by+ON1vomen8sGW03rwrD - 71EQ1SNZtvDzaUQhkVp62KdfdznWTICrZlyohy6ZzkO6N6BxXz7R1c3RXbTsGWB4QULPp65jU2NE - Ct51Jk+chyK5Uw0vAS72NqDG7dO402vYcdC1085/XZoGzdXBBujCMiHmmg/MbJUJ+HLz9O8s/zGG - Y3aDRnfYipdHfTICG0BudWsUiS6juducF6xtBpeeln7lt0uWoFJ8RUQ5S2dEo0zrsTprPvV2i4U4 - dMp7SHwjo76bHNGUclGAPE5mviTxDloG55CCe5N5P+rUA1umZerh+HkaVN9RUR+FbeGBYWsOUX7L - Fc38EIVY1/PPimeBy/2aYQRLDNq1WRZo5IpYgcXoNaqd7xWar8/pjdf89aePOtYUV6IMmZFIPpfY - tBvY/iKB44avUXqXmT4HdjPBTcg1elO1Lhue8akCobMTn1KwmCC9Ti2Ewav1a5um2RR0Vx/sRJZH - ykfHbql3N1uO2yult/fSRtMziCz8KvTPCDa+sKnZOSk6F2Hk1/kP1vy4vOU13+n5ethlk3JwY8gy - OR8nXWxRZxdKDxttuY8s2pvsGz2uNqDt6Uu8t750w6xKCmzPvvCPb0/ck/YowPlpZN93Ec0ea9+o - rpOOuscbqjutnUJ8pNaX7Kdvm9GTebX++BDJ5ilxR+EmvWH3hIxcw+8erfzkDY0JQG0TFjZLz8yH - 0CwxuRwLq2bBEiWQX183GuzPacZu5qaE7W9zouQybtxvc+NsMGpDJGaY+rpwu4cp/vwMhd63147N - auYHuyGPM6KOT4/18kuVABc7iXgddN10AzsFXCBpXDJN1N/u5xGg84jDdcOu7ua61R04qMZENfez - /+M3X3jJ8Yes/bjrr3fZRswkB3JsvDYan+POglWfUKuGs0tRTW+7f3hF+6O78OdtCvz1BuTgUR8t - 6sPr4RIlG+Lg8IC4obxN8gvzlHrGYutLIc823khIoFrU/OpFae8hXD/VTP0/ftlacoHCS07ocXt1 - kXASNA39bdj8xW+e7H0K6eSaRMmxiWbdC0PQPocPdR5K6g7z/PaBn7tyxWfUsS2P32C655vPru6I - Fo7jHehN/k1zX5gQuyV2AMaxzalRLBGazH2fQBdWCf3j5/NU/3roRJjInT/rrsDeU4vHpDr5SL1f - 67F6xzl2lm9Ig7np9VmY9h76hnpN9uqzqadFGSrwq2y36tGmW1xt12LufuLGrTRn+lxdjgU4SxtS - 3f/O0fAptxo4yTkkZBkWdwJabdArNAxypaPWCfx+kf70ydo/K3furpMNysJg7E7ewLp4lwI04/Hh - z9rQsLlyOQnChADR1/qbD1rSyk0kLv6uz156y+8XGVhkbkdJICSa9yKu4G2TO/WLmtZjbVQT7J6b - jOy9+6ObVj0B0+8x+5v5pXY8G7UJ3kZ/9gU5j7sRcrNEqupZNNweVcaTtijg+bQcYnI8+cvPG1wN - uSRGZZ5qFr2jEO7fqiN2umkY5YZawSvf8+FmBR27m3sNop38pf78enaz7aAQ+fXXo7ZqKGi58+IG - UIMQNeqNU7OezhX+08u58Di4zPTHHB68uKN7fC8y1jffDVrqk0j0v3zg5+uI1/4+7g4bvRYy9G1h - I9sHcpP7cd1iW0pEOfVC7i47dWN6foWY61dXLMMSmvPzVGL9ebkTv8xtNMg/JcGr3qaKMFVoqiKi - oDWf/C0lTcdk5xajnyp2VM9/ebYkSbzIZalTv0eXzF12vlTJSV0JxD53H52dircDxvGbj8y5q92S - lphDM7bv9GL2XMZwtZXRqneJid63epk2agj3yQqIAlyHFkUR8r9+TxRZL2t+sAUZX/f9z8fct2Tz - /D63gEM4k2MKTjdHu6kHELozWc+7HlY+CdF0lFf99HRXP8IDd8ywP8l62S2DhxPI4dhR+2K6dT8v - XwB+Y19oeL5XbJoeXQhyLxJi7vlp3YDdSIg9ywNxnOvMOtVrNSj78u1zURXrk3eUcwQnH5EDVcto - th0W4rze2iufT9lyCw8Corg3qaI0x0g8epcNTFIjE81PF9Z/n7sJbjl2qfr9RoxdKiXGP5Xv/Ebo - Rcb4l39DU80/qHH8ZfrMJqGHZ56MxDqhNppbS85hn2sm0Z8801mWgg+47mLqn3duJp7BkJCjcQ71 - djjpphnPFZLVpSaPmS91tmGHL3qJVeHv2Lqx4Oe//l98pQclbJn5/guSFq8bkq6KxBAghf5+dYh6 - ld/dNC8lgHYNZuKq9109I9HgYNWvdH/N7I4/3KUNLHUkkuM+vrsd7+4S2DtsGZfVn1j1s4PqxOZI - IKOlo1wVFvitSh49CpoZMb2KvvC7ZoS4WqF0kzXrDsCs63/8D81RZAp4OB5DH77cnQ3pl2zQQ6t+ - xJvegT6npzeHF65yiHkTq5p5MdfAK5aO9HxpGrZct4aB1+fxyxybjNH0K4M7XQKiXo9GxJWLsaBp - KI8jXv2+cWXuu9UvIDrffLI//QVJOQ7++b2NMyYmtxQN4tUmcauxernzWwDNR/o4bfwpWiQkT2hq - R8PHSULc+fwVC4SHWCOXTAE0D83Vwz2/fuOmGz/Z7/RmCryJpRFlZCXrxfkAqAydHXXHrcPorf+l - CD1vjFjKMtd9bj0riM7ucYyy2XEFtqj+P/9u1ffZgprKgbtuncjhEXo612+DCnooI58LiNB9zeL4 - P/WAhwMuoqtfhM1Ks4n3lDTE80MWwk37FL5slClibncf4WhnaNwKCkGcGkwFXvkpOX4vsjtj9QXA - S6VJ1Lw7sXfRpAp4YVj5zaZw3CnoTh4cfufozx+LGPqWDSabp0KMxyNxZ5KfABVtaBK7l75sueeV - hN/zGPv19ju5U1DaLaBuKukVdU09iLoBeNXnJE1PVTfhpZCBszb1iPObpPfireSwvFmelKTHkLEO - aRZQekLkD4/5MDhJ0F8midhXQWDDNSkVoLvu5w/r84zWdxPANZwTev97fT/dYmjfx8THYI3RH/7j - p4pVcjUw1POfPr4Bi0YhCwPGk09V4bXfUteEUactiwGtfHLkOZ7U86M+VhBxYUI84XFY9ftvhODG - KfRys1s09enwBUfa1v5P20XdvPYzHDatRX0mpu5yz1sZ5sNpR1RMZJcayg9k2dlhH5Qo6hb7deOQ - 9Jle5OiyuWPb9qXBHQcWSQod3H47ogLeZhbTw+OeoXnV13Aoti+6v7/XDdxHa8i6XnyIS0Vga39I - gFyt9z8/j50nLkGYb950/4jVWjhLfo42ZBORQ/H6saWw+RGuXP+l1vAp6ykwxgRqWSbj2j/ccUhN - GV5O9SCesXzduQgIh6wTF9BrpYvRtHzSG2QhGan6Er9dhzehDxezsH226nHGDZ3y77xy5wLRmFlz - CMa0Hca+A7cTWFYasOIhUTWlqkVa73J0CqWeeuOQsL/+gFb/m0ScaLpCKR9aeRumA71+yKjTizVq - wL8bRlLtx+v98klTOGT5nebr5/PnnepB4GWCfzePSTbot2SCZV+54yAfzzr7nf0evGr7pHpNLt0L - q8MGncdtSGwvLrtpfz8DHIX2SOz0pNWzd5pk+AgbYZT3TIhmmQtkdGnlyn+mHo7+/FgYBvVGlXqc - 0ECDXoGvGjfjpJ5ovfq5FroXNib2u0T68rQtH7KrFRHNOeru8ljyEh2f8kJNebTr1jOHBq18bpS6 - /oQW7te8Qblfnj4kX10Xfs9Q+eOnxMQPhtjNFEpkvHYKjfbiW2d1tJvgNLFqZOIBdd2ql1G8yV2i - bn6bmh0/cgg3odCI3sb7muFKlOA6uDox3s1bp39+9Rz9PkQvLmYtMhIvWDPqxL/FQDLu0V5a2B39 - LTU5e8jGJ/ANbH9wIte26hCtcfDGYljphKTHBVGrhx6pwrckiafN0cIVuYLW/r3Ob/JuanbaDVTx - /CDJlLqM2UdhA7pgSL64t1LWbjV7A20nfv3FkV8ZNQvJh8O7duihu93Z4iAjR3DoEmLdXmPXSlPl - o2d7XDcQRs/9h//6VLwJaRwOzX/+z+rv0TyWr2hKf9qIeNW+0qt/YNl4sM4WRi6k5Hr29WyxNx8J - OSVVqDnoOGLX/NGC1DYj0chyiSbfvAsoD3KFeJezmc3c7dyAY+c5TRu/6RYN3wBWPk7N1R/mfPMs - AGo8oImnnaIRIT2ApbVzam/fPKOXO3Hke+Fg4mzEjdvdngGH/+YhaJ3XTKfxaCOxPmojf3OUTLjz - IsCvi59Uc4612z9NrYKhlpURnq5Sz59yq/zz005V07KxmfgKc0W5J8US6mx6hZcKMiOWxomnGeLD - 4CqBX7ceUVf/YW7RU4Bc0wXiHkcl4/bkWvzxax/J4LHl0+ACXOVpk2SMK7RkU2rBZSn2xIxP+2hW - 1NmHu/W6jti/Du78uACgJSUOVXdGu25E/hqoyG9DjqGk1lxzAwfSauv/xYvNr1kK/uGHtMxPxK66 - 85agSGeaB9RxJ2Hf2Wi8qVd6aCsXTVQ9a/LqXxBn7Y+jQEoNXmJZEOP6vrvT+vno+/vsfeGyf7rj - ewgNefV/qfOr+W556yiE/rJI/mcXjjUt42eIc7dvfMY3n2j5O++1//vT7eJE9NFpN9ifD6Uvrfpi - 5aMF0llIfak6dxGj2CqBqLVGjVZj3XylvAEpzU3iJd/anY/dEWArivtRYkXjLvrvNcmXoe9IXoqI - /fUTtPr3xPElK+OS4veFungRojFcuTOw3w3E7Hcf57yb0fwpRQXMe9j/8VlUkMD6wnwrPRqpp5YN - JL8CSrgjP0qNb3SjEXlfUI/ub9z+kq4ekjBJYPUz6b95BXwSA4yUHkamdSQa54de4k+cvMiB7cJI - fJ83PtJyS/Y5ayjdcRsci7956Rr/TzTZFieA+st/4+rHdlTivu3ffIsUmiPqU6KTGB019vOlFc+X - fv3GTNa/sjExN99oCvklwH96U/zVcrbsEQMYflXoS8cdh5an7fuoNo7VGF3Ccz36bzrBwpUOOefI - 7dgCDwWKwfLp6jewIT2NHHRm/KB/fu9YyLMjf8YxpP4S1qx7CCFI0nATyT4d39EcmJIAn046rBs0 - ajZ9n7sFdtQ+Uevkf3Xh8guLv/mYvx39ez2Jty8HV1+XqZsFyapXswD+8Pdyzb7dOq9w4OFJCc2u - XZVNLKo9fPLdgOhNNtZt3zFrt86TR244z9EvE1sfzE97o/u9laL3ikf/6jc0R7+mp2J0dqUR6iu/ - NCJuhzoNrfMNuh/prH8PV7mCZx6P5GBg+Ken0fp5hJzzfSfy6FPBKS03xD6q1ar/QYLhYTfkXPqH - TFz9DimYwow6z3fUzUj0OEDkURI96OVoUj+nN5AkuI9rf3KXgxRUcLZ6Sgtc1d3cSPv2H/4rT/vc - cUfxFGBPrk2/PCk16lf8hevWOv/xV/anf/7/bBQI/+uNguP8+lISuZ9owlPjgZFr1MfVJNUT9r0C - jk03UOXUfNyx6xoZVGny6bFLz/rCnUgLG2Paj9spX9DMkUcBR5k01AXs18K++woojHFOHZQEOjcO - ngWXOt9SojqDPi1F1WBeGBri+RsbifHhKgASx52/Fbs56x/3qEX8zj6Skz9s0bKclxYt0/ZE9Ucs - Z+OuKh3AH0JH9KqFrC9kJIDhLIK/2J826+9NcwMtOGa0qLjKHSVtdOCe3xkxJZGiiZ/2GnY6MaYH - Vzgw7rzsErDthvk7VzigYcoyH/FL9qZGoyi14HuGJufLZ+N/Sl1E8+twemMhUnSqOsTp+B4ZDZSi - XZGz4fXZAhWM4BYXizplXUULokcNTG8vUT3sMZtrphlomfCJ5OrJY4vsvQKQdcmk5+zdZBNTnRQP - hUvpMXh9su7NnQJ89+WcGP3C6VOnDD5Y3vodhmGK0TRfaw1b9qOkpC4vSLzO5ojD4ZOOS2R+6mlf - KxKYbp4TC2Kqs8bbAaDzcU+Vly1kf+/jXWDf1h1+veO3nd7igM/f5JKdDL039rOEbU+aqVp7YjeZ - xSFBvPviyfGsQ82msAvBYA/wN2gmrmiEjgLX5HuheZU+XZHwWYV7pDzJvXo/u+m8zDEuW//j1872 - x16ThFIIs14nfpoYjDdu8wa38s4n+6LUkJg8fgG8C3Snh8ySWT8OnoG8KXjT21V5ZTx7hQmurobq - h+Lr1NFdqij459gPGhwDm9GDXRpoCR2V6jdyQ+y7SVO4k1qiyuOk60JBGhvqWleIsytpNqUw5X+f - R4OpY9m4JVEL+P2ORmnYxJlw3dkWPld9QJJLadUia/Y9VCI6UVUITzW7RAHgd9go9PBspGy+hEUC - wW5qSLJ8FsR3De9gTzMWenWFH+LsXZDgk6vd6XVfud3Cfx4WaFmokPNvPjNeTCQBEUHZ0bhRyq7v - TtgCKegHelvra+GlcYM0czwQeyMTnXliMwKuwjM9DhUXLbv9q8eF9rUpeSYSW8ZU5/CZ6gM5yPqk - z5pRVbi1yj29fC+Jzu1rWwLzfp7/5QOT3oIB70t987H/2urTdSodzH3zD70Ssq2Z6CsSFi6JSjUz - dTv+qpchvjtN4W87nUNLlFx6KPXb+j8ywioTWShySLAMe+zO/ydp19KlLIxEf5ALeUmSJQLyJkFA - xB0goigirwD59XPob5azm2Uf224IlVv33qoU+MT4a1jG0GYWIclt99a6EHUlmL1SIH5Cm5yeTocJ - TQVUSHZsfE0MjL6EC9v5xDNzFwi8NEGILnFGip/C99v679Ant1eqOEfH5axkfsO4iVvi04FFy+9X - Oeih7R3MIxdrbFiLDt6LB5vmPuQj+m0ViIIYj7hd/MhlQD050L/qCRaZHDKentxVRm+3oxpOH/0q - oukF16uZb/tdzZfkeoyBc040Ygct6mk19DG4pFxGtUYUc6opqwXfyxlNAjZbsNrvwIBP9nIm/qUf - Abd0qwzxg+WE7GwMxlli2R9eTVwTJz0v5XMKPCRCzJpRiTgI4QtYwPhM0tVt8tF4LwZqW7khQefz - bBXSp4rmCbYTOO+/7sjHDwUET6fFSxqcXP6HxwG4M3egUd2m9UKTqEPOpTtOfMoDbT1/c0W22PSa - wlBptUXgbiq8KKJMyI0BMPe1vvuH/1atPvtJMG8OZMbTombsFf0MbF2Cy2uIaVqZx3yBT/2FzDPT - 8IwvbfTT7M6AtS56GFz1phY3vIPr+5hQJXh869FWFAfdAyehifF2mZDesAHnGb+o6/N7wFJZCmEY - 7wvi4tnKWQ48Dt75yaeuYbmsPYyIAzgTjkSry2fPnlWkoirdTfTkH9roJ/lGCL/46kyv6+0DONB8 - DJRcxJKqxVqDpXn8FHhv55Bc8kaP+Dj+VugPTxNstmxZY7WAakDyiVfV0R3tScIyUIBNvPdLyccD - qQx0Fy4/msd2k8+Rv59BcnspVLFgV88nbynQMWsyaoS56S7+qQggQ7FEjpV07MeLaAbyk8wlZjjd - 92uUPAY49qeOhrf64254miCCMkhO4c5k7ILPKVq+SkgzzjzXDHl68Ld++HUX65xFl86BJU5scn6b - Ss71Z15HzQ1q1C3AAayvukuhpQc8rr1XCbgiil8oFB8Yd4nQaCwMujcc1uxD1DNp2BxdXzG60SAi - NxROgL81iorqLNcmIaGnXNjlPYQb/pL4rSg9R1etRUjkPKJboaNxiW4H6Bh5V3pX3wMbf+i+wvil - dlTv2hjM/lpY0KdTSMpPkdSi7Z445BOTJ8fAuIP58zm+kdufj3T7vF/ra6bDy2e+kGv4M3shAbcQ - Yvx80WDlw4i1pI3Rq9snf3iQs6nXJFQn5okavvqLBDY4OgwO65sqpaf14uVlKlAJXwslxfmW84lz - UJHnz4z+4fmyEEeGf/nzXvOSy0ax8MBlPn+xfFmaeuHprYAb/pIoHBBYxFaZ0BwqE4mlH41Wj+eq - v5+ppZy8mrs9ggAFD2kiViha7lrd+hBCveOo6f32/XLcv2T02c4sakbf9/TrtDO8nGyJlo9PHbFf - JWH0uBCNkkKq6y5INAuho1LQh2fs2Ro7JAP+SbhjeLZal04wWpF7Gh1KCLTqUbm7Frqciys5nxxX - W6f3tv6y/8aHy4jcidfFBB0+w5ncL1rRz6GRlfB7KA/ULws5p8etw2tIK0oNmsbaHPJqhaIp3FEf - jT7gD7vAQjK4nKldXg71YpqBhP6tzz6h7rxS+d960cI//PL5znMhdEpwmxY4U3fD1wT8ql1AlVd1 - ZMK7/UHYHGOTHk3FBfPLXt+Qu+IJz6J8ZmuaVDEwiGfSh9AsYA78HqP7OA70VrqvnkvZSYbPvedS - M8+BS8XnroKz+P7Q8JNV+Wo9ggqy6KH98bl89glMQXJ8Vljk8JKzcyHLYHceVJK9RaVnfh9nYJft - s0ksqxdgPy1V4LDfA+LYtuOyKy9NSNgtPjndtwq8VIw7+BQagoW7/wL08a1nWKqdNUkd5Xv2UZ4d - lIJpxIfSVftVGJIO8uutofrnVGks0ScOfuzDgbqjyNXsYMzOHz+nenHX6vViPjsY7V8iNVqbr9eD - OQ5yfWYmUerPM5/fy00GgzDVVEtPAMyv3Cn+8cOyeyYa4/hr8+95+vMSuazuMgvg/H7/i8eafVsL - wo8d3OlF97x8+T3QGx4rJ5yQXz1qKkVWIS/7FlNl5dd8XVjIodNTiadL4Jc9fS4vGfTa06Unb7dn - 3c+fLXRcUnea555FU/O8YRgpJ5eS8+Ned76plwjnjztG237b+MUkn879TPyaT93xj2+NWluS2L/a - vcDr+wRk1/0Nr+BA2VI/ZQzbVmrIrVUvbL7pFw4oGK/UfB7Serq+pPaw9ElAT4nf1DS2bxy0mvVL - 3K37YHlegQ7DfNKoY86DO3GPZUaP4mtMsm07GoslWwJjb3ZYnPdrv/zSNIC8ig5UnRPmLq9JrcDu - lNf0lPU5YOmvzeAEloD6ZahF4lNdOVg+7ym1Cdn3v3nodfiHB6628+rhalsCPF9hSuNwNnPe/Ekd - fLOhoY/X+ZkPYS23MMSzRbTzdxdNUrRT/taP6GJwzvnfg3/D+ZYt1HhoWs2rLHzDRQpcet7JWFtW - dW2QP0OPph291FzshgqMvXKdDiXUADftoh3Mol9OLdL+csY3v0reGyd74o7cUK9svx9k4Q1SaleP - lDFnx5fwLFjepm/0nBOf6Q6IAzoS7Xw380X4NDK80TDa7vfRr73tW3Djj/ScGCewNPjsoI3fTiC0 - d+5yLRQJnbrzQKLnegUiUH0HXkQFU9+v9jVLLrsBFq610AzSSVsjvGZwF15K8sd/50Nw7/7x54dK - hpomqm2gmz0UxLs2p2i5WFdPTi9woUnO6WAWamGCy7nMiUmyFrC3t+xgGMcKCbj9uR92R86Bcoq1 - iW34NbbvtoGmR1yi2XKXz+By8eClGyk9Zpmurcoxt8Cm74j9yA7aEpHvTpbP94Io18lwFzNtV1if - F5P6sMURm495Cs0u2+Ol/fA1nWtggZWOV6LlQO+5Jl1CuOUjcizeWi4Uh7gFn5l2xDRFFwzJ5eaA - M0lyqvI0YLzYTSWMNU7AUii2GhO2M0NeNk1/+Z9tfNcCG14TjH9t3fm/t4egkghY/q4K4A+k0uHd - snnM4eLn/n0fouX0oaq2H/sx/uwzsHzVkHqXwsgnO7IwlBbY0GyWQjbwh0MDRpI8qE+8Xz6LmjRD - 1ElncruMd3cZgNege7uGRIsWFC1yew+hceV0kmz42J+uxzfgH8GVkCRr3NH8zR2aZ+9FTR26/T/9 - NtfBlwQX6fSnb2VUDFlHzYAZgIX7rIOfhOfw3l5//Ry7mQrfMHlR/badIdsOiaN3s/aE2Kvdc9xt - 30DqH22i3ctbPfOl6ED4ElrM3V+1tumTAfyuRrbF36NmTbIY8HO4NORx0EnEot9jBXz6nCfukAW9 - +PqEb/R3/cnhFESCk31e6CDsHKIYqxtN0zt24LCmH2Lmea4tB9Ia8CCrZNu/SzTXQxaD+5IRqtSf - Y76afcuBUS4wwZvfMYgXq4OX+jJMe2t0tDnFVgowrl8UX8xGm171K/u7X+Km37xfySsvgD0JATl6 - 4l4bqBY1MMeLjZfFX10KeW6Fnr8y4lbKs24j+BVQudIzsVMI2JoQvPuHp04bJBGfdLsd3PCdeN97 - Vc/C+AuB3+576pbKLeJdcNHRw73609xwlbZwg9hB32EiHqLw6y63eHbA6dcFRNn0O2eH/hv+8SV1 - p1Ft3fwolHDHkPqVfAVCdCIC4GOyTmLswX4QAtv40yNEv+qnmu+WUwkUW+Ym4bNPonF23ATgx5Jj - +esKfWWcFwWlZTMSw0W/fj5klgcPgZMRqzlX+fAxnyl0abPHH6tyanG3BxJ0w99pWqvjq9/4cAMN - gk3M7vGrZ4azVfiCeMLM2f/AzLW/AZZxfSenaq/mK0reGfo9pmSb0VLX0zU2Kjg2bCDuWd/1kzCU - HTx99hOx/LXt2Ut4lci+hTdClucaTfnpo8qz2HyI7cWPfPYKfUAoO3ME36la/+k5eIUGoHpb8oyJ - zEgRNt0HPSYBZMt3lmRwNIJiwycnEgTzbMGdTZ+YO2l9vn6Kcwu7qFDx8eqecrE86SryC23Gdd1K - 9Tyc3ivc9C0G7cprI1d9Y3j/5dOEDjdaD1s+hemxZdTOjnne8ofDW3gp5Yn4lSyCxQV3HUpj9938 - QN9dWlNJ4ThWEfnjn6sg2B48GmFB1O8k5PPtkQbQAvrnL5+ARR9sAV65SSKk5xKXe+pMhaUb6OQa - qihfQkGeIO9++X/4sF6FJgB3pymJ6z5/fZfVPoZb/sXz9OTczS9MkbfagJDQ+IJ5Fl0M+a8U0yNX - zGC9qrtWvtTXgRqf59MV2EQFmNmWjbPNLxrA5Y5hkDczZjw65xtfekN+d/oS855r+V+8AMjpT2p9 - vIr9+SdQCauFaJfl06/jEWbyjkYpUUv4YuNFJAF8s6mhJLqU+fCODhMciLTS81OV+uGXtDrMD5JE - rvsFu3N7rl4whk9A1U9WRSww6uKfvxTVrdT3Mr6U8B5YCfnza1Yh/SnwNlc+ibPonY93C6Zy3HUN - 0RtQgT88g1/n6NF0W7leK8MEGOxDqO5ff/XmHwnog/o3OUbHncZoCd6wG1FEtKtSaHxoOd3f9dHr - cRwAxQ9dlxH1CNFi4e4uvzQIkcwQJna6vgFloxxCZ3Yj6l7wByzxZ5/CWGyeROcuizvXWLbgxt/J - UREGsMT0uYN//qsWD4a7qkY4Qe6046f98gzz5YSfLTTFWKZWZT7/+cWo/LCEbP5L1P75xX/63iKt - na9tnybgMxuYOpteGzd/B5bm90V08mzrOZNOhVymfE7N3YA3v9droL57PafERXbN7opeQP5pj8RP - QxCtT6ip4PyWIupH1bce7xaXoQtIvGm/+e2/BGIB7pTCJsVD1upJUqwMVp7C6CXrc8ayN8qgpM0r - daLvN1qS9ozhxieJs83JnbNsDOCkKAaNzNl1R/yFyuH0mDOalbfaZa7G63Dzi4h6F+uI1y5rBmrb - dqhJ3g+wdNEYyp0MMNF2nxEwYZ9MUD4/CkqSzND4/HlRYWIF5p9fyQbe/4bwvkOfP7/UXa25SuF9 - t/9gaCRD/hMTiYOFAODE/emR/SsaoM+HDtU2/2Dhbo4i6kTniPO7XBiTmp0OfTqEeJEbAsbN34Tv - U7ViFB5QxNIBOzCPThY5itdFW/LnXQHflijUHnPWD3y5d+TROwjEPqZDPaWm4IHhU3QU75WRjd8o - mIDbR0dinJNvPf/x182fpqcqlbTuMnwd+HOcB9U+bcXGjX8B90QdarHrqs1C2AgAWdlj2plG37M0 - TV/w2HMRvYI7ZUviLMpf/FIv49/udI3xCxxkhRDj2ysa7wj3F2SDvsfocVXB+qdn+njRiY8/D201 - +0pAueH6WHJqm/H73u3gQ0MOMUX73PPMucrg5J0kqh85r2eEj15wIPJKTiVfa8PFoCr8fIvzxIe7 - L1jz06jAz8TF5PZ8S1EnoqaC2urI1JAdyn6Jn8xwucw3kpZTHS3yia/gbvCj6ZsloB85ci3Bxw7v - k2iKLls/4+8FrTOe6Qlrj4iJc9VBABWRXNL+7Q5Ru3pwl6jKtBtnDrC/+oR8WTLi8N6i0fApl9Ce - uICecW2xeSK9DM5y6VD/+Xy5TOh/BhTj6+lv/7PJtu8tvI9GQM0EfdiqXrsGlji2yeP6ONXMGM8K - RF+fTkjJfLZMDHBAb3fdJJVTnc/yyqdo8q417uPoHjGYFs0/PVxE4VfrxefuBSrReZHTC0us37+2 - OVdpep3E+0eOWiY+ZvhRawEfNj24JveDAb05bPDBv+3A/PUqCF3Jg9T8hkm03V8BhZ+f4HXD21VS - lBTajReTLHf06GeagYzcBGlb/gPRX7xC37gfqK51fi6yI4XAX77tRLJJzzl5RRkcme6S6AKKnl32 - FIPpfMiJqu39uv2rx9U67xGtqp85c9fRgb6UECyu+qotcIw5MMR4mRamhWBR5DqG/XPY0+vmP9D4 - Tgqw8TXM1Ksf8dFKJnnTj8Q+ky9brHsVo81vxyi13vlffUBO+6ql91x798uf37ztT3qqIykfr0ej - hNo2Q+DEt2d3ubl+I2uIA4SAPamX2wG1cumGOjml/Vsbr0dcyhIpGRZ+mHcX7OTCv/1yutu3nJG3 - 24EzifOJZcJHW0VgzX/4PbFwuDMqPoUX/Ay3fuI2/1BYAqbDSUcV8dYbizb+CSHcry/qFssLLAJ3 - VsDmPxBneHP9ukpZCv/8Vc/pnK2DaWigTN4G2fJjzcRHOsu8uj8Q7za/+8Xy0uJfvdCrbfWfXoWq - o5iY8xorn22nClD7blq8Z9dIW+MvfcM//4CUpqy1t7m1/vySCb3nanMCCgi97USEmSWg/hf/BhFr - qsTs9Ff/5EB4O2fU48SZrfrzOaDd6VZP5J1X9Uy16A2rrYNh00M5/dOf+ft63Pjtp55zHG/Xp5rE - 2u+nejh5hxK8JeVN4su+0SY2UQ5aBArkrz4rCv1TR8XuvKfYf9vuhnfcX/2LupWT9vPf9c/KzBPC - zWd3KS7eBF8340h0/2rXy3gf0r/6K3FXdwW9E/gp/HCpR7V7eajbdJ94KL5lI/UDWub//I8/f/Sv - XsBq8FLAYW09DLJFrmmaBi8EoCoS30VdvzT4ZoGNz/3Vk2oxeTxD9Fc/NcL8q63gzlv/6m1qEhv5 - svnx8LHXJXLb/IZ/9ehTMV2o1ruXmu7OGoc61bNJyUcLGLj2OcibfiDKWMT9OA+9ATc/eWoHi/U0 - kHMdmo15nOatfjRJamPB5v24TM+nmtYLXx4beBYcj7pY3kejR/UZftEqYm6rz7E8HXUQwxpMdI+n - fD4fMxly+WvAe9/dZsJWIgcdRXeIopa+u9UPJ2i8rgk1V57lsyRjC+44Mfi3/4UBwhlKqT5TU129 - aB0jL4TtUtU0Gt6spr8TWiG97fWp3vBjq6834AJQS91ANuvxXz1uSckfP9CYCtYK/B8dBeL/7ijg - V83GYiHLGnsCIYWttFsw/xs7tlpLaUALk566czK7VD4/DdRmLJr2zFYZq73XC40tH1CHPChgj4du - QEvxEhqdn402++dIhYcgWbB0KO2ar37VCncKCabDwHA0zzsG0Wq+xkkCu6AXO1Bh+GXNRPyTGYLZ - R6EOueghELUPB8DWpu2gHo0BVYZXkzOrdDh4EqKCHq/LdiDOMh1oamJG3Jv/AR2NAwuKj49Br7tm - jFaBxA5STOWOeff4c5nxC0P0ej8LareBVQu1C2V4SJKYGPtpcZlLPxMoErOjmKiAsfm8D+XqMxfU - NM9Wz/Lny4Cpnv3oyVkYWLP56KEueHrkeHLtXFCv9grlUZrow8nUWqjJiuFuykaqPLxPNLvpaAGy - 938kP3FNvtC+nWC50w5U/b12YGxMuUBjzav0NtQ3d0m2KWc5J7cTPX7NWnz2q4BUZDn0rnBqLv6t - D97xHLU8r+6FGiwh8hLwwbK3b1n3U70VtuseE7dnnbb+DFVHpyXC5LRWJyAahwsHjedPI/4jmHpm - TUaGhAQ7xFAbzeWrT12g9gANqnz3Si7iIZXBA2TOdPgEAlt2548DcdmatHBI0gtYe1boKK4m9ebp - 4wq0vanolqGJGKHHA9aUpxSp0Q5QAgoWrWP/4WCDOQfzLyeKuLWudkiFFk/yZyXksxt/ORDcMkzN - Qs7cYTHHUj6tYT3tLp/Pdn19CX2h8CeOt9Re5Ppi/nueNL56BzbRKknhMl3u1BBdN6K3YKdA3916 - joXfpC0Hs8gOUH9wRHuIvDtfeTuA/lF3aPTtjmyNfTkEmWKd6KVDOBefVHIQt3Y/YnJM14T4tG+h - PoMbNfXlWS/JsryR95IG4qnD3u3gaVChfzQcUvaTAg4H7bF1BMAzza1v6XJmrjnosHthGsVv5jKP - 9SpUhBSR8vI5adz9moaQZfqBlv1UsVmFS4lkQgOqgrTTZvG882TwPffkiHdhv2appsLGEr70lJox - W9LmZaG98j3hxj58IqbrnxjJrVSRwIhGbW4obuBKhy8NvrTXOLWV3hDW3ZcohccA+9xuAaTjlxFi - yTYTp7sxIT0ePvRSy8dIPPv7FOb3SaUGnPY968jPgX0hmURdL7dtXo4L4fC6S1iSdg+XD8QhBYdz - YlCcfFjEfBgXELnck4RWszkaw/CC/KJx5FR1cj0U4jVDPTulRA1/NhPlw0tACe7mf+u7iGHNIdq9 - CbnrIuqXb9DLsOf0cdrv9zdXwPvBAg+QOpgFZ7Xm92jA8Lt+bkTNvGe0xD/F+dufE3/cpWzWfjSF - cOpS6peK666yJzhwVH4JsTljrmfxNgtww4dpn1ZFv4RW8EIrf5CoGt64fs6MtwfHn/Ahx0d8crvF - tgZ4jD4GFkWNB5NkqQrSRelM9fHCM7oDjgPRS1sxQxHL18W2JpCFcUHKbX2GVptVdE9Lm2qJ7gLx - c4wMeJfbCjN7h2tx26/gq3t4kg6Yi9g9vCdw/u0oudlvgy39C6/wremU+J/6VfdwTSc4K0tFj1KQ - Av6l3gVwYK87NRpeYtNneL+QqfEZ0QRlcelDdALAi9qVmKDJ6+UkaitUTPVOlM/+7vL2u8OQNYZC - fZq4Ww8nLYACs8qXAmpHaxHMEjzdThH9wxN22UcGivqJEn3vHt31+wkzJCtDQ05s/kV87HutbOsf - nXryotX9gygvhBRuplcxcjUO7IsG7jwvobcn4vo5/XAVzK/Tg2h3UwLUvdIKXuxw3Ka04npGlmHI - 5f6IybESb/mS7R8O/MMnYmWPnH5utxDeuQ4R/3L/5KLiKh2KB+NN3czntKEsvBSK+dsnd+xoGh/7 - eot8+W6QoChsbSaJ6cBHQa5UJ4fr1gB54cCtgTy5aeeVsa7uVBhGtkKT9+ertafwNoHmqbzo9ev7 - YB7O9zfUyquHhyDk875V5Uw+wvWCq4aEEfvKigTtcY6IXu6bnik9meHTRQPNJnfpl+PhuaINf0m4 - fBS2bOsHj8K6UgeTIZpvlxkiheLr1J73A1h1V07gWLQFuQs/7HJ7BUB41VVubNUDAkwaOB35u/ue - anvtmfN0/2yQa1++//D6p2W3Ug5TG5MzUC7ufO7mCime0pN8bj65eO+iFypSPcbB9Sb1s1LYHMRh - fySWeriDeRWfHNIFCRLnIx23tyJ93mg4nSk92edceyvFUUBGUB6pdTzQftkdJgmaRKhIxFVpxP/4 - lENLe5FJEDRPl5GbwcFwvtj0vi9+7uI3xwqVAb+Qc6rvcrZdj7QnH0qL7FT28w2tA3rrhk4Mrtdz - Adq/GJ7EYKHBxW6Y8EtOLWSqFNP0ycdAeDiXN5SdUaXHv793Pi4OevowobdA/LlrKuYJBEc9p2Xa - ru7sH4oVCjlOMXhWSbQcP5WEliq2SHwyFFfUB2rAT9WO5HZzbvWSsVRCinwTqDKtkrYKIPJQipYP - 1bf81Xkl94LXhrgTPJwdsBrp00D1DzwI9lZHW3tZfsO+kE0aX6CQv91tKuiGn/QkabI21SKDaO82 - AiW9oNSCoVcetF/riyrCSY5+FXp2aMv/E4cPv2gRu05B8xs+yYVVsbZKCknla+W303hFQ/6trQ9G - G/8hx3gpXNaJnQxJcUTUy3mvn8+7QwaV2Guom91/0eK9PA8iXfxNiLNNV7hfRgXuj++MuPjquSum - 1RtxWmCT4nb59PPr+VOgZ9Niei0Xt+eqlllwZ2ILH6LvJ6eC5xWQADz/4W294FAsoEm4ipAdvdRz - +oEV1GDVTTNMcTRz6fkFO4ka1KBtBFYcjcbf/6OpXXxdnqxSAN3XS6SeQ7cpv191Ri2DNS2O0HC5 - XGjf4KimOi2x6vfrLgl0aOB7Qrx9bOdrj0EFUjsVSeSW33yKT2IHz2CXkROrOHcu+psFo2Z4kny7 - X/r88i+krRUm0TfzevH9ebwgL6kD0bf4EH6ZA+EWn1QxIt8VH9Ts4HCK6FS4D1n7HfmhhMqcZxP3 - UT/RGp4UDtHxw+jphxR3yi0hBI85vRHSJ4I7Pb+mBNp8bakyho9oqfwxBCrvon/3O19PngSAYhrU - iV9KLq7lpALXjc80QJKprasPBchfuAtVXPYByyG/B0Av6ZFa0m6vrdb97sHqt1zoY/k5rhBImQLF - 8rNMqTukYOGP+xnYT+bTbb+7wt/vy2QMKDb2Sj+zIJHh4+w3lChXXZtNZsfw+XS0ifGKymbt1O1g - /QbnCdqkzd/+74wRQ+EH84d6BYzcsAC3+yHm5SsCOj09FXbiuJDkwzu9+JUVGVrfFEy/CjXRvIe7 - Bt4PP5eUn22GDbR/CfjTE2Zs7t2/+IC29UH4L17pw3U9yImdSHCeTtGMAmuAZPb29E4yo55JQixo - O82XGs4hqle5XVowe3NDj6Ns98JTcwtIu4ZMu/ncgEXcdZLcS2YzSbeQuMxJ5glq/HPFv7cSRaL/ - LgMoT7JGzfdogOV3KgowyMVpgurw0GbhcHTgQ075f/mPzYtk/PF7SjRz64A5BAMK+I9K3Lk5RYM2 - DtMhKxKJ+HsvArM7TAoE78AkWsxZEUfxvgE5AxE1xHw7Q7bx0fN+H1E768KIt6Veh87glpg1ju1y - Lte2IHOc5xRPPO4ZZwYxMkf1h7f7Y8uruzbAELvmTy/VC2+vGVCWjFLCbBVwHddj6Di7gqi3QWDz - 1XYwVO/oShMefMEqROcCPe7eQHM9Hvvl8MgauHovQM3vvXZX9XqckRptbfxH8+6K362D7d2d4wke - YaPN92sQIHJTbvSRzgtb1cgrIEPBB+/l4qOxyOka6DbPmaa9xKIRpFaJRLgQStIK9kO7lzu48RF6 - Ntxr3b7VYNNnxwP+/eZnvgZBEACvlo4kghoFtH5XE7x+cYV3vwn1U2DdO3i8NT9qHxfZXfgFWofJ - V89Ul1zSj+O6cn/xTfByvmgrQ4sHp9p/EQ+985ypNd8B6mcG1e8Pny2js+hwPLY90ezdVA8X76rA - jht84hez2Yvyc2glUVoTcpyR0K+PMPAgH/MKwX3Z19N9qSp5dhikTnmKIybFSIYb/yZGTgxt/I2l - d7jLXUVt0VA1Ib7zAvjjE6VO3jn130mAHB0eMJSO33wmhvaG5ay8ybF3Rped0XaGuRH6SXryHKDz - IumAHnOFKvzJ0yYv22NY3d9PejdEBSz74+8NTpnRUmLJP7Cys2yByVfO5Kz3JRhIQhzUaNyNHBff - ZULOoQQoR0Um5DzqbI2fwJF1KD8Ibnd6LcDbW0Z/8aavVgB4nj8UcNt/5Lb5DWOyLA168OmXWvXn - BZjO/SY4j/sW75bjHqzq95SAWWGVzwrT6bku/U5wOAcCVfvXy11A66nw1VQGSeuTFC1AcUKwxfu0 - lPqxX7Z36cFHiAHV1FzUFhzuS3nTsyRtLYutH6vS5XO5njF0H7K7ynCt/vglIa1ANHE6qBi5Y9US - 95zd3HEUJAvoonye0MbX6XxkE3g3YU62+Kz/Pd8tv2Eg33DN8mengyDMEwyzC2ObG2HAKKr4ET5b - waXGMXjBv3wWc9KYT6stVnL6bFbi0+bocu/XlQP2uEb+7pmP2nSLTxOcOi8j9v5nMnaVFAhdRg94 - rYiirU9TWREJtSdx3qkVLQf3NsFVfT2mPsgcxhfSSYW7OoOEKNe3tryyQpE3PfDHD2p+qc4BCuY3 - 9y+eV53uViBBm067DluuCHcJhMvRvfx7viJ3zSWYy5JLgnH9seH1fKr/9IAzApjP2q0WoFruBqoe - o5/L5lFewbFsRGLuhFe9KtOjAO5QR9TEbweMfWdncMMLqmiBoq3KWsxQPk0c0dR+yNlVJwEs5pBM - O/JqojFtOgvOdBcS1UoEbSaOJUEikxxX/Mlzl4zmDYyqYUcJO+RgfTiXBn7zlOH99vNSoV8LzVr1 - 8UWKaNR9UdrA9T0JRMFCCLpnbrewFBSTZOXF7tdfqYRw+cQJ8aKwAWsqRgliR2k/7dZn2s8bH4FO - YwNyAlrfd7smatGzdx7TkH1+2mq8aQw3fkhd/a0y4WO1OvJaiVD/4gfaxkdltB8Xfxrf2o+xHXF1 - GGMpn4a+j/v5fk0D+YZXmRhq4gPRb6MGbfthy384EtI6K0EIYpncYSHWq6SYKRSlOaFqWkTR+IUv - CDO+sgg+cDKgW/ygK9YCYoVEdcXzOHtIHsCNGq5tgaEapAJ80ceh+jcUtaVhhwrCb1/h5WPiuq0k - YYDA0z2Kcfhi45/fs6OZStTnQ+vFXaSkUOcPX+Jv/PSfHqqt4U7ypWH99Nxj/XAKDI9oMPq4A+87 - BmxW/02Ol3NTT05jtCjYf0uilHB26fnMTWA6ai5GcBgAm5fZgJ9np27xVuT8iRklNJ/HevMrV9Bt - 8QuTiremvWJOYHn3lv7vczfuKnd1wtMMXCeB//CByc+hA9S44T//sV80NQphFb1PxF0aVs9R3s// - fX4Xue7pn79qZOV9OmSy2c8rGypof+eZXLd43tY/gwf7IlErenzqTV/rqIX7jur4tgP9xocAnNqU - XHoE/8uPD9KrJwpuUD36odWCDy4vxOt6I+c671mgq6NcabGP7ailWGzA7uSXG79QIv7T72QorOmO - hCuvR+xBlApdrCjF621IGF+0dgm/u/eDXs1zW7dAu22zep0cg5al/bTbnYXtnX4JltHRzVeJsw24 - TjSkSnJz8mHzR+Fffle1Otvyyayjw/B843l4GTn/5+8ovqIQS558dxLqiwo0oTYxJ7m03/A5gJdv - 6U7llo9/IPAF6J6SiWjj3c2XxUszyEvKQEOpHcHylT4d6A8GoMfPVfvnb8Nn5UzEtuI6mltNUuCf - Xi9Yecz/8Zftc+q5lERLcpcGePU1gA+2DiNWc0MI/vjw5sfVMzdkGeQfwjJBxM01VQmcZfk0cP86 - +vmykFVgW19ElaA5aoKTKRm6jp5GfTgMbBJAjqGlk81+m0aN/qal+Oe3KdOauuu2nmBu9xn90w9i - 9GpnOHDF69/1c+JZ8GBkPbXpwDe/fIzP9g5KMXJI9uDVnO8T5QXfmkGp5h3HaG5cx4GmzSGSTBbQ - hrY/rFDOpysOZavpmXz+6X9+L1F7Vey/EhRbmIfTeZrjw1IvR34oYLvbxRSHl51LdX2MJajfOWJo - zTlaRDxV8DIUN+I8LiJYisANYWQ+pynSywvjtvwP/HuwzayN8mj5jYkH2c18U7ePHv1WD2gBTts3 - 1RcJ1HQ+7wMQCslAjN2kgrb4RgI4CeeC+HDw2BLOYQAs1zNpufGhVdinlfznt5tlFrLZf5aNaPba - nm7fZ8Kn/Xrg5V22M+kCcuft78FP19sU59ZBm7t5lODmj09g82/pKrw92DTqPC7eVLG1eG9nbC/x - nlgSbtw1t3YBPMv7E+ZDPdGmsR8FKKCMEoUYliakIOjQ00NHSrLA6YVl9B25z6WVmu/7uWd60b/g - PXhAvGoscNeUnBtUzup74gri5AyqRQxd+/ol5me8aEztpQDkl5Gnau7RelzmmIPQKEpibfxlXOZC - AMKa7aataTearGf2gsf0E2NBSwqNRa9qRZfP/UlNrp4AbVYcwGbdZoDG1zialdkZ4E1yRczuV+yu - O+HhwclUJ4xo0rPlxHAJN75Ib/AnRNMuzGZ4vi43/H3fl35wrV8DTUcIiSNMYj4ib1HB9CMnSgJ/ - 0JYlTbo/P4MozeNbD11KJ/A7JM0//vQLrbT6Fw+mWCu5sOE7PN7eP2qfRXHrwAUT/IuPCNVtPZu5 - a4HG53hi4nfHhj++AJ37lfz5tYzTIgWNRVf84yNs8/fhcA1vGGR3O5/PuyX9yw/Us/bMHdloKXAe - UUt104D1Gh61F3QI7EgZ8Qlb6LfOUNSNGRbCoteG9jrLSBOrgto04nNGeHV7XpfvNMNW60WY3DE8 - vGqLqBVR3I2fDsBq02B6OcJdYw/m7WB3rXSSz4a8vcN7weiXu9bE7tdJY0MavuXvrnlQzT8HYMXf - D4TaI37SP/9rSpJ+AHbPfngvQS8S8oor4ePq25t/1Gnzfp5j1OZzSy39N7iLV2IJJFRcqSJ83mB6 - 9ifvbz2o/fJ/YAHQk8Gnb8utg9kCaxCkgbz6rwDvTiSsmfx8d3/8ETPvOObsWqkz3E/rixxf19Vd - k+kngxvn7PCfP0/v4SWBHRukzZ+q6lmxLAgzuUqmtVPtfN4PTIHrb9Sn3617u0vwrYS/euP0yos3 - Y59jrsPfPrZpfnov7lZfyoB9am7EGQB2FwqGAIIpqKn+XgNt9v37BDZ+9udXRrNpOiHMrklH/vB0 - 2u1uAmg04YZ35h6D5a9ec2e/P//Li15BUVZQboCApV/7rFmkUggzrmL0fF38vv7D52dvPajqGG93 - +aufbf4aPQ9do80DKjq4o6lK00P561cVYA9cvoVLvU2/bn6/gk5iuPz5vTWV9DUBKw+kqSnVO9jq - bZYMf51DtAuX1OwzZg782IVJTGgY0Z8fCVI/n4kllyIYzR7Gf/ycHBmyNNHpljcSAZOpVooNWGg9 - 6XDIzyH5q9dtJ1EUuHPJkRjhoORTzvEJmM01JV6XL9piwzaFw76IyHnjZ0vgjjFMSHeiR3+i7g9x - 64x2Y55SQ0sKlxnHoEJbviVe1ZqArWWjwD6XV6LsJD5aJctRYX4eIFHrfdfPrv4OQELaE97Fl2ct - /unVl3d9UuX6GxnDcTZAcDRyqpSDzAaQBxakanb5d/9/fgoi92NI9aSotpmYTx0ZQ8uR/KVUYAGx - 68A/f5io3wtg+X1Y4fWFw+l7z979GNskhnJzEIiXnraZg6G2TT/yz0S52A0Y33sL/uVzSo7XNW9G - 85f+1V8n9scvxgx24Khm+l9+AascSytM7O5FzPj7q8cmBzGMv3oyNaM1gD++j7SlOtDr24f5P72w - 6TvyV//Y6qcK3PgbPW1+V5/zrx0qA3Ghp4Bb6xVHHwOcYvOED9V4dhlOAwX6fCFRd8OLUVSrEI0v - cZyA/KvZDOhN+X9mFEj/u6NAqcXXVmHdpn5GnwbWBt/gmTsctElxHQznZHek1tJEeSdJZwEBLRvI - yU73YDBVQUCPmRjUqA3F5aqrF8CP7w4U8+PEZoM/cdB5nBTMI3St+eBbZbJU4/M0JMGevcNpCdCV - 6TpVVqQDzqiXGTqvOpjkzwVHy/LjC9gerhWxA/vhLtoTNdC0FJPGDczyKTQlDp6f4IKFPXi7ox8L - CbgGe4WocJT7mS1GAor5rlNreYwa05OriuzkVBJrGQ/9b1JjDCK/iKnSvWRt+UpTCHfw/aM+aHPA - YksUIDMbnmpDjmt2vG/v7d5bNTGAXkXjCYwylIddg5djXIPlzN9i0Ow/Dglq+nKF0JwF6MHoQxXV - qerFkNQV6bvJwV/n9ouWF1/rMOY8jlivsxMtrT5OEIruhbr104zY9/7xEJGHgka2dcr5PpMlaBnk - jp+/4R6Jb5EvYfkmIz1d6a4fX+zwguau8PDyG+65aHZyhzJhmKbPfIc9G8sdJ4fXoiX3GHu1oHF3 - BcIgFKc9umnuXDXTDB77dSBe4H96cdhZGHVHqSMBvd3B2uyNGD2q/kGwsD7cxen7Eh5op04sTVpt - 3QlWDMx1wfSmgCIX6tiGcNlrPTUer5vLW2fgoONp12AA0mPO+coYw7c2LpSc72o/2o9Bh4nSNngf - vkImCurdgJysRCSVLT0Xoo8XQGGQnQkYzK7X22udYRksJc29SAc8xVGDoB8p5PRmCuBv+LmCH10+ - 9HIZ9Jx1fA1BldWM+kflx5Y9rQJ0v15fVEE/oZ4ke4TwUCOd5IyT86UaDQ4q6+tKbYVLXD72AwfG - 9+RCySd/gdkVriU6nmBDouHFMZbvWwWyRV2ozq4fbct4KTpJlkEjQaVg8SNvhT6XJuQKvLHnv8Y1 - hDGbc3rPtCznvtXqoCYdBlpIpQSWvQJT2dW7mDhiWdWsUbUE9s8kpImkOvVKK6AA5j7uExBHTluO - l50HHw65EafXLowJ6/pCk9/p1N7Zbv5eH3IoX0okT8vl1uXDfDPfSOzwRDxndCJu2y9Ilbg7Panl - s+b1opKQqMUBlm7Cvp7z+Kij76URqaUwqi2/o9qggX/G9OH3RBN/X6Ygc5GLSbx9PVe8fZ8BOLXN - A/9Y37gz/x8AAAD//6RdSbeqMBL+QSxkkiRLBETmICDiDlAREJkD5Nf34b5e9q6XnnvffUKq6hsq - qRz7GuawzvBlq/iMclWiwHP3vhJrz3eB/DINgi9jYl+56kAY1BxCgKYHTvd9c6RQqgAZ53jAp8NP - VfmP/Z3R21xlglVdHdbPbzPQM5Q/GH8zBbC1E5eI6YwUywZKBmEafxv8yz9QX7/qBl6nBn3fxJyP - hwsXji6yLPhAxPbG19BX1HmFEXo2yp24C7QyYb4vDSI47ObDemYqqp0tCDg3L7HjRzZgj8Njhn5t - JcQtx+uwMC8pAY8LeXv06Q6UHro4ha1tWeRcqGq2oeOQwzvPjP/ieSSiz0BhRQdshpo3sPxNK9H2 - DC44Su775D3fUyDPugpxdHYZhOSxxMibJxV7oxtSbr7yM8RRcMdn8VQN04G0ATy8LR1fbw8r26rf - pYGXTCL4/D0I2Sr5DCvt9RPL17c57M9XI8WDBslScbFn6Yt5+C66twfPfDOsv2/bwmeTL1glTy2k - aXQP4COAZ3z+ileb456xBePkwXuHN3vKqJOKHiT42hEb4m+2ylLk/8vvmguP2ZLMjxhFxfbFmlpa - YKba0YMw+olE30ocCm9qzPDoI2/Pp7NK5HfmQTx8PRKZiq7yj1JaQEPflHjng0TJoXulUui/bHxG - xFbpJUsMiCx7f5LLhxJDuhmoFvkBO+DRZj0SVgm18o3Zz5g6laAe7fL4g8cZa1kx2Kz6vOj/6qut - SJhu0aq28KDdJWwa7ypcFBwbaG4fNjZHIaebY/gb/In1RM55wttbdQMlbJtbj99ed1QXV/7GqMwP - V6II7iGjtt8noGqLKzH0Nqe/iJUbqdwYZu5Ufp/TmG4iuE09IboRxcP6V/+HryNh5ZGu2cLMuQib - 0QDksXR+tt33PdGfsq+x/oqVgVWfWINVC/t5ZVUYbu7vtiC9uefzIXZlm89cwQGZACSP27/vXIxF - D6f8sRH1VL8yPpU9Hy4o1WcovhLA59KxhJ/Ss4ln8cyw3S+JCEXtk+OUjq7KMq8tQbfsEmBlvQ7Z - KhvnABE2rYnVOIG9XHyyALFyrviefmO1nQg7Iq9PFKxpD49yiiLWSNvP+B5dLNMRx1IJRdnLZnaP - Dz4G1xydWibHCZc0lL2cXB/K9GHix15fiHvkHBRIypnoW9bZi3+TIXq5Nw+HfSMPLAsiA+rhvfnH - H6ZpO7Z/9RnH3bYCSvMpAofj0SXWuyhCnp81BUhTeiC4md8De4s65Q/viLzjO3VHLUBHWgwk2evj - /HOEGH6zxCCvz6dUl+tHjlEUnBe88wubNtcvCz5vJ8K5kwW2YBeOdCTcNcYxYphhOfTHBUm6ZpBk - JKQa/9YPxDyYhU4FYV2+ixL0t/iIzaXzQ2qYwgzP0/04g5vU2MT+8DniKqkl4V5vfqdM1NFGR5e8 - WSFQlw97H9E7kTzi7PVtuS+KiEa7PRB74/1su01tAXzvp/3LxyUvjBzt+DzD4vcCS15VNVBE/ulJ - ytEA44e9z6gxvy8PbsxzoF1jvmBygB6Wb4mardmxseCX/7bENbuTyvHds4C3y6BiF7QArPnlbcD+ - lF+JLjyouhVz6sAj1QJ8m9u5mkzi1XDwNhbrp1YDLNBpC23mcPJYUZCz9fvUEig2ewfMfE7hmrOP - HPruGJDz8syrrRQLBS596hOV086USwJHAvPtcSMOX9ZVC4SHjvTw1vzDXx5ZQg3V9whmGrRFuEVs - s6D3c2iJnLlXm/s+Oh/81TPre5uz6eGInnTx8YplEtyH3lyuEM43YcZGdMhAlzdFgRjVmLEi32Uw - /X3fW7xc8f1cfquJsmqA5IorsbzpJ5s/3qYYEpZH3uqXzUBvp7UBMZOV5EyvX0A3VAToH/9gl4Fu - 2rKKUhitDj6zRkdpqs8R/OO7+rZPRZQCxYPR93OYQWwEw3rSs1GalexNHBx/qm2vf9B6fx7YlO4C - WJUg1GHpZv18YIXAXun5nQB7E3pis8Mr3I63bwzfn7P4D79nqpcbNK/bc2YG3FWL6o4NkF7Xlbwz - TQXL9+z7QBvmiCjSqoeCH041/Gb8Zy6ofc1YubF9qFamPYPqc8lmTDYZPHFznRd3iu3FA36NbPMx - //1+uI6NFMAyR1dPGixoj3L9mOFgic78i7rS3uAglfCpHkN8eimnYUzv495rK+74LoQhYMeKi8C4 - euF8kIM0nJ7nqYE7/8d5WWv7mTLbgPT1Dol6BN3wFblIApwrm+Rivx7DUr7bAv68OcFqQJpqxifP - gLwVT8R8dpK6/D1Pi9828WRVp8vOJySnTRA5K6Nn88tyK4Bq8yFRE/wBm7k8INzxiOz8bljm8VpD - Xn+difEJi5B7YZBAdri/ZpSqUkjKPKzhgzHrmYjdd6ANhgFMHqVJ9HcWgDUJmRd4qMmLJJ9Qzniu - dNo/fonvWJErekzKAHARTXf8MzIueo0OqAAssL3zD/7nHGKxT6hBtO9S0f37NIj/uM5/88ckXiPt - fJBo5LsO68MPY+n6Ai/sudUHzMwlz+FeH7CXnH72Zs1tAujSJMTg62e4LPqJATsekegj6xnLq8sL - JezU7WeU4nChJN9gYocTOV9ye5gWS3yBZElakn1jLvsqflfCnV8SLXtodOu3nwyRd6L4kT/VQVjW - VoJGG3/mcc9vWiiDD9fI/5JHo9V0j9cFjqsT4nBfv5VzLB2i5y8l6l++F4u9IY0CZo7UrK42BG4K - tGbHIwlzaNXl0MkeIJ9knkEq+naLymcBYDXpHsuFj2yVxXKEvqjK86gDHtDYXRioB8Cdj1602lMS - 8i+w/vxsbrpjYlOTM15QdgUOX9ZXo9LcfciAWAUm6pFVM355n3JQH6fnPPm3gK7aBBkIT3Y3C1FX - qmP5bkt4d4sFq+f4CjZMJAVcZvGL1cd+L6OTxcmfXpj7wFvpX7yA/hYd9/z4VFN2nC34qTTk/X6X - n702v8CTkgcsZ2gPbDZ+DZACr/yNGLOMGJK501qEgcV56PP7ZH96EMpulnvHJlizNRbzAuhvpSay - ffCyuUDsLAnx9t4/z9lIAKsjIY508tAasyIO+aVgTBeXJMmKw6WCFMJP2dbY+WWt3V3CcUbr+bdg - W2hcyrpe7EPQhxZWVuusbrb7fcH1F2QeGjylEozupKNy6HWiebJv8xmsNEi524bzm9aFm1eaOtz5 - hXfMn9WwPKdjAsJThDAOsnEgMhbH416/iZsIKuA+0mEDX/7Xemv3vds07KQFak/17Qm8p1b8MAUx - PJp9PFO5ibJpbDYfdkY+kzTbp/JLTejAYLj7+FKf12wYTkMKcGId8O6PAPpmNx9B3q+wshlEXZjF - e0HjvGrksv99rndNBoB7GBF1qK1BEJhVhDonX3HG1om6lY9XCzhf2rBFvzpd/vkpZmsQPVBeKjmm - GQ93PUzkOJ7CLWPyFnJVjklcg9kehk3mUWccL9jZ15te3yMEUXBZPKljztUkfKUUdlqt43ex2UMb - GZ8Wyrl2xbu+qTaGl2M0eHGG7e5UDuOez/DgGP4sXTo95N6ZtAF1ZWUskweiOz/I4SUTCVEDolfc - eDyIUA9erCdduib802PQabmYGD/DUzc5f/nwIN0b7Hkfm/KAPFsY9KKAo/73qygvDyUMjHtKdMdd - MlolS44AIg+iu3YaUv/KynDSdgev5Wa6TK+2hW/LfRBli0FFNPWaQv14DzzhAAd7iN0FIvhmn1j5 - QCX7x1f6B/7gc6M/hw3miSIxt9n2pvI7hIuaPQu4xy/O5YMC2E9l90DO9SvxwvcNtEXTbBDyI8Sq - K+5nBDnJgCSYjlhTM63iqx9uwJU92lh+I69ahd+w77ivXtj8uCd7RfvUuT3f8Em3L9X6cBYPPZvX - 4v1uXDJQth1HeBrTYWYXr1O7h/dZ0FxrFlGB/KDr8DCj/+qpIuDprtd8dK8zTNzu+lTHkAk3BDIb - zmKo/qoVZx8Z7XyA/Pk7lLEeiYQe/gOn6aKArbpPOgz93P7Hx7a6Gl9AnXkTP5+cS9est1vgOb/D - TKM6qjbYyww06yWcKdYe2c7HZPiHN/kvM2x+ZfQc7X4jwbNdZCTITyz0ayPBwXq1w2WibxY6P6bG - cmrIlJbOqqFNeQJysR5mNtnHPIWzpz2JZZeFzXOl1kvN+I3wHv/2dry/JCg9mAWbZh1W7dt2RGnn - MzM4wS+lQeoHKI3MXY+MebhNQmugQRxM7CZMb2/j8TGD/XmJtfsPNFVtB7ivtJslZSsHLogxIxWX - S73jF5/Rf3qVtAq20qWka3acjT++NB8+CzesSeCIUr6AJ5bZ40MdZeEdA/wLXOy+qEDpcBoSIG/M - gvW546rFuqc53NeHqF++ssfF/OrwGb4kgsMiB8v78lnQ3/uMb+w67H5TClPev5EMJJ9wBXZpoKN7 - uM+wrOtwGe4cA1+5rOKgOgUV2x4OBmzlO4Plp3JQp7d34iGzHAePJvgEtq7SCvinT+MiiME/f/hQ - NvHM/elr+aNtKATuFYen+hXS58NPUGJfJ6zxFlK3EdgB/MiXC8Fv9hQSMT8nx/4nxRiHBQRDdigU - lOVzivFxvtHpzw9Dxe9KjOWj2lyUSy3c15PY+liF6218GhBLvupttxaB1XxuJcqnp+txhdUN/c73 - QT/iO7HT1QTcN0tZOHdX5DU/VIHlvsLX3/NhOYvuGRWdUoIUWQa5WIFq04YpLNSD6EtOPGPTdtf3 - cDIOFXbN5RIuIMEz2PON4Df4DdNRPUvw3CkiOW2X1h6e40sBf8/jHd9luOKsU/75tbwR8RV99uML - evwJzMv1bVY0C6YRhELU4XunZtmmtLdWEpBTE99AYrVGbmKApU/8f/qd4DPbw4GNDXxmYz6cOX+p - pYUJRILz40pJ7IoMVH37Rv7qzWK1cwGVmDzmI5tVlO9qRgPUBjzRDLsMp9v4tMCSkQz/e99X7hGD - OWLgru9fw8xWvAfrb5L/41frS/YluKjQJpct922aPJYIKnEo40snve01Cflc6hL5hpXwq4brNwtY - SQnSxBtxPdvEMA8zXFvbxc6ZFFmThIkvXKcmxF6+agNtM9AC9xsaxBh5jv7jE1jmDazF5UmllnLM - wSqzMYnf2Qa2yWB96PEqmBl+O9ijZMUbvNnVgGVxGKvtkmQOHOLziB10y6s8u0ktcJ/QJ744jAO5 - z6SAuz6Z8zOvDxM/YE26n/YOqqZHlBtGD4L2eCvm/XZ4sF2S0IPu0V6I+6tu4RKcGAgNcxjJiRfO - w1IRW4ZVeuXIXr9VbnkyOrxeLI+Yd7BlYxOP0V89xAGmhJJCXmc0vi8edqqOrVYLHkpoerHrCViR - B27S3A2636vh3S63c7ZFq92CxBKiXR/qw3wMwQZJcC2I1kApJK9WEuE0aD/88tpApY9f5//TB+d4 - jSq6+0vQm4nqHVV+oKtYG6ykoJ/gSeisqNvjY3oQNEk5S7F8Dpch1tJ/etO52WRocSwV0gq+OT61 - j2Joz98hgiUpZ+zs/sAGXmYNwRea81f7QHXe9QT0MuIS65hGlN6zTpJ2fCBG7b4GOj1dX9z56b/6 - OZlPqQCB9tr2+FUoy8y5BPnvmcW6HY/hXAdJcvyJzYRV0/hmo9S1xl//hSiXKwPm6NMZsDg6LbZm - SKrdD/cg/vkueX/LTl0iK3SgGn5rfHbVSZ169wTh+dZ0XskfArBs781Hez9sJmGR0+XPz+WLjc6/ - UzcA+hDs5e/3ifch3rDrzxEI3XLDOj6o1ZIapxG23EvEVsd8q51/p2jwooyc1V5UyefNzH94PB/6 - QB+48xFGcK51C1sZPGY7X/TgwvgifnLjD3x2fwFwCkYeGb2U0mPrbPDzyxhsNc5mjzd90f/VK/n6 - 7qo5cwUPXl/Ps3e4oEsmlK+zAfHhzRNPqrdh4VUxh65VnrCpTYSu+9//88NmOIIq3B6f0z7xdrNn - KacoW0yzK+BrE0sSDFU1rCz+esA5lW+isZcSLAbqNQACGJKT8ojs4YyTDZ6v88kTdnxe9LUcYdy0 - wV9/K6Ovnxn94Qd2JqUbVvMpldAtmAs5wa8bzg3KF7CojD3Tg/Cslnif8fOndxaXzbM/PwreC83D - TqrQ8N/7WqOR8bj5Y2R9cFlYiMYAEzmLhGxpl7wFez8MvwyqZSxdvQhK6cMkp/iVVut8ZWaYypOC - X+Y6h7uflMLhO4TY0FsI5oyJevhA/oYv4pWxqfhkGABPZodPeGvBKr1+C9zxZxZ2fkncI3Kgd2G/ - JA28K6XIZYu/+ugVFVHs8RYHNeqM10zsu55Xq3M5p0gM+56cupcPqOj0ItjzZWb7eaJ/egiNl+3+ - 58/vtywvJcxjI8a7v6xOn59kQO++zwQ41Uw4S59xhuUGmd2fVFRiiEMD9n4q9n41zGY8yznUijfB - XnJY1UUW7hGSFgGTP79ux6cc8taqz0CRCFg6qc/BkoWKJ65v1+Z2PgliDf2wZTw0e+OKUIOD2Jn4 - LB6mgbSJXyDJ4kriQH8MR7u6ssg9mgt5+tU7oyPOI7D7PRifzZc9k2tSwEdPblg53Sy6Hg/lKP3l - l+GFvb19CzMCG2s1M4ouzd4PkGfEwKYjKrO5IY1xX4BqCct5MAgC5NDFCdS/RxXveK5uvnsu4Svf - b0VZp8cw/enz9Tey+P4ovuC39zfBZRVzcklHmE3Byd/++TPmUvZq+wk/BhLminiHe+CHKz3fE8gs - YPCWvR+6OueQ/8NXYkAtqab4Z+R/6zPTECB7uzGwActmfzzpmLJg7wel8CDdGk/Y/e+tWNTlT4/t - o6j0cG16LkZqOW67Pu6GpZ0HDXazRLHtpIO6ME+ZhXv/a5ZmzszG5f5SoKBuHVGT2LBHZ7U2aOHD - 5uWdH9vC7zk5MBTibu/PF/ZSWyMDOupyRNkwl41vWxP/nx0Fx/+9oyAVRIU8PfmqTqyNE8iskPdg - cSL2WhmkhPLN7LBrPX/h+g7vMUwFScGXYf2F2zlieSSWB3PmOPME2HufbcBnLhfitv1WbRf6TGHU - ijeiR8El5I/7Gc1f8bxiy/NVupmWK0PxIx+JLt5/9vLz+AI8Km3Cz1A8V2P9aCLIMK6DHyoZhs0s - rhYaWF4kMr3m4aZvK0TrAWo4MM+/YXtJJAexy35wUttPQNXJS6H4UY7k1OognA7b+YVukr5PSdOI - Oo7dI5Uit3uQ88bydJnl+gWfhLW8bft+h40R0kUCW5URdfNP6nqjzYbw0nuzIDmg6qEJeihV1pXI - dA4GvrpNLKycc4ffKWXtjXszM7g+YnXmS6erVkYueqSoyccTpG6lq3iZLGDSqcXyOZBCmn1yD7rG - fCbm+SeHXBbHBnrScSD60ycZdexFQ4csTTzJjMxKeF6UVPp5qTlvv2Db9/wWMYrf20rUZ1Ha7Max - DfpbD28bm4p+OA3CVaqO2H76ssp91ihHVIGnuaizA5i4TisQQnaB9WbKMl6+Jx6SBsphO+M+1Tja - wojab9DMQaDigZ0vmwLbo4KJM6HDfk8pKuDT8E4kSu/eIOSHawRjIQEkf5lpJhRsVyKPxja2fm8d - UCBbCVClABHrpRlDn57vEbSZ+0Tw8DmHAhu7L6g2VbTH3yXjnP2Ew7kGKrlkKq9uzuFpwGOpfYm/ - XtRwMp1zgNLaeGCVi9lhe56uLdjjlyTR/WiTKW9KuJwml7wz3woXLFoJjJ8oIS/PKMFk9xML2W53 - RG0qgIXbggjhUazJ1Uwdmz81kgMtMdGJUxfU3jTm7KE1mkysuLVd8YfFdeCs3l9Ez5K0WmXAj5D9 - SS658L9aXcjxxUO6+Bq+blJvs8514aEc4gc5dcptEOpytOBH9RGJLnJhc5fmrcHeUWxspKNKV8wr - FvIuTEKSuo1sehHLGaq9oXtboOJq855pBISXArHLUMVeyOkioVODb8S5mvWwMn30gp3ol0T9HHR1 - Xo+nFlWnfsRnenVVHv2WDU3axSYnA92osFz5Ec5sEGKnTy4D/cCgQPt6kJNa3kPaNpIE0KR0RJm6 - IVybsEjQnm/Y8djHwAE7eR1F10qwMwv2sGV9KSP9txjYLrj7wMmqE8NfpKnk/Pp4KnuPLi34Gt0B - J/PBGVjR3yBKja3xtuQ4ZuQqxTpi4q+KTXlo7BboqoVqsTK8TdC6YfkoYQQ7bzSIfdvnrQpiU6LX - xl/w6TlFgH9JvxcQ660kKvA6lWq23cCeq79Yn7RIXVUxekFbQYCYt+xsc6/0lCP99c6Jpmtn8Pf5 - 7314x6ecVyxeHglUoRYTjTbrsMCbOcNSt5R5EsFUrafFUKBoRwdPlKIpXL9QXGB0faizwAzvYelG - 0MJDliTEa57HcHJN7wWlyrgSXOo/e5PygwRPsfbC6cfK1enQCxL8/MwncXu1soVaXALE5NbZW8ld - DtnqYUnwe5sjrKj22V5Tb7LgVe0tnOxTBnsD6Cm8PiIVJz5LspVZSwXKyZJh+xtlg/CxrwbiTfdH - 7ofvqE6P5cfA1u1zbFjPeBhPUVNDNMkdttMXQ/vg0+lwC1E+C1czBNTNUh0K16WZGSfI1dVeaYo+ - S27uU8LUbBMiWUbfSgTYFFrfFqwXjBGHi9gr4ecGlnBKa3hu5pw41mZT4eXRFD0OT8kbuakNF3ts - dFjqhkKuzHhSucB9ekCg3ETC/HIdNjGqckQj6Yrl9VKFa2X8Cihg9kaCS9/Z0+EYyuheLjNWr7Nt - L8frK4U7Hnj3DJXVFqYMBI9a0oniFV/A0nBd4DtpBXLyuD5bX7YigcTa730qXlHFdUPMItUXMmw4 - 26liHyc7hdMnuHvgE7hgtXolhbn6qXBykvthCqpP/FcviN5WSiboH2CB3zwIRHXCkS5fYcghOWzQ - Ww3E0TXIww0270dNdFXVbN4Hm4icYVjmQ2NEgE3vG0S1Lx5I3FZlRofK75HmuC6+Hq8KEBIlceAq - /jrsRneTrsqnFtEPzA45vxgt43rpmQJWVDV8ORg3utWSWMBKeOfE+JTFwJLji4UVwOf5OLtXwC73 - SEG1tN8jBxnHZrktjWAJ4IZvIuZC2tx9EUGb1/HbjQ2bf/mgh9pp8cnjxx9t6mWogMs9289EJmlF - OZAY6DWFGrazxA7/vc8dPzwhzxswu+KlAVfPZbB5tnp7Q9Zbg+uB0XD60IuKTd9ygUTXSPB92Tvw - cVg7aB6pPItnJclWGTAzMKt6xZeem+zx5KBGwHdvIEEZ9cP4cm0D1Yxmedv95QIh/xx6IPLzRnQU - fkIh/CEfyszPxqftGQJBGXsGXqpg8w6Z32ere/80aDhPObmax0VdRfndwMuTEGIZCQ73eHyh96an - 85ahK1jTmzTCy1ezPXizg4wWr1sqxd98wFF8K+hEr8cCWWz/nFcXPOmGRxiB5uoxxAhFlvZAsXrp - OL83bK96MCx1ASTwmKreYwwSZNv7vTno1ygheTuCptJzuuNFfOXJfZw+dG3CNkGBIj5JMPoSHcWk - gqj6fhysHiZXXbttTGC/Iopl5vKwl80xFsT072oG4DmozXd8JvAvfl2hIPb8cE4vxB5R5CHNyId1 - 4oEBpIfwnSG7eur2t34f/AnJvXix1VYUzx7064Fij78y9nJgzyMystO214cq3Ar+syAcfo84+AVB - Re9PN4dLODy9Qxz5Nm2OgiU1onCZt9GXwJqDgkWfG3aJnO4OsQDvMjz81gY7N3sL16DqIqhx9Ee0 - Fx9UbGa+ebC2r43Y3Dce/vgZqo6Pkdz18G4Lr8vEwndL9x0B94e6hFNQo9e5BeQudXv8vz41dHvq - YNVYVFtYH78ZcEdtwdqL36oJcL8Rrsp23PkltpfsPUDYa93iSQG50GWSTRkoavrBJyAdwNy21EJM - /FOxcviCbOnhs4ezzvjYYVfPJrJnpRC8CtV7FNcTEO51psD8EjpE7q9NtSi9NErfKxywZlUd/fsM - 9nrnCTvfGD4wKPcWnUzwO0hU+pW76B9f+uMT3En9LfCPj6mYj7P13mYlLIOPv+PTYZg/rd4CD1GD - 4Hww6DbIugdP0fVMPHd35PiRU8THJ4xmzkiYaqvrMQFTBwAx8acc6CqYCfzTFw+FO6h/8QTt5cpg - Yy7jbLGo78CjsLz++Io6Va89xo/4OrPVLa62bYUaFAM2II6NS3Xz1f0MlWve8Cn9fUIiiY8YVkh5 - /eUHIKoa1OCjBsj7PIafveuZFPDiXcU6D/ep0TZbw2ETWyJbgwWW5dU18E8vPPHjU9G6W2foxznz - 3/wl6BKDne+TEw6KYVmaoIHD433GLn19smb8JpJ0zKuSXN6lpG7ocWth8TtaJDxJTUh656PBpGJT - 4jCDny2nypxhFTZw5tH2zQj7zGT4Au+ByIfTedi80ZdgIswS2flTxVr1tf/7/2ZG84phm9W1gPYS - MjPTblq2RSLUJTgBdxZ6zrW3nb9B89N+iE/wPKz7YST4y6cfPj+/IZj++Mgz1z9YTXEOOFF+16Do - hJS4bG5Wghc5JZjz1iThkNYhjW/5C7p3tfKa+BhX6+fSthCwMTtL4aDYvIq65S++sY62c7ZRvPpQ - 9YCF7UmrAZU9JYEsqnVy6t4DXfhTwsDuxR6I8z2qw75zlYE1T8gcLeWojqZ3LlGagCexD28RbA80 - +3Ce6wdJ6GuploPSSvCvvqnJuQJk1xeolL8yvtHrZNM//kz7xiJWPiTqlnAPFkKa+yRfAsveNNdm - YV6MBKd19glXs7ymSIYtIKmRkPCvXiFTf3yxQYAOtuNWNBDkc08s/r6G//jCYEbeX/zQTfatHnYb - KTxhiFZ10uJHC4sbI3mgo4eBWo0pwblT797Bz0HVDe/dAX2+7jPsk98wO64YQ3qyWuyKLyHc7j42 - AG/in4duYa3O6CduMOjLZj6Glb+f6dtmeDoUMtn1V/WnZ8CpYxjsSJ0ysI2X6TBgfDy3p2cBFn9h - efBctwyfu7u18yTFAi6vGMSK11u15mwYwOjkOyQqrleVnm4gBfZ2vpMzUxf2Cmz/9S9+Tsz4UZcb - ZGtkraeBqDw5qwuJxVp6p7mP3bPSqf3zdO3Rzo+IrbdOtkrwwcML6Q7ESPFUDWx8fqHoZowkveQs - pRFjJvDmbNwMi9c5nFQxyqE8Fhq+noUyK9a3q6A4LDKs+VJZsbhTWfinV3Y9O8yS9GjAjrceEgqi - LulbLtGhaw47v6mz5WEkDNjxGl9svIZLLRjKfsbkQS6f/d7oqjYgfI9p4UFuMnZ9Lepwxzui+ZIy - 8DP3imHAH1msiO/WXkn+iaAe6HgmzXdQ12I5KjDmviVRb0tCqXwgDpwOL0ROHVTU1cFLA7/GcMAG - yRUwX6SdP3w1G+f7+i/kGLP/8M5sb89solbFQBqJVyxHP6BuJ3/WJHcuub94trf9eaXH1XpiPMKK - zt7XjkHENJ636Qsclj88LyXz4S2xPFTrZap7uMZlSbTGPFfLtFopaN/1SG6/d2xTPZ1qMN3RgF1Z - n8GWH4tG2P0PbB8gUUlzTyQ4XErOg0N0oluCFB7s+Yc1/zlmE7cEOvrclQbrKDyFwsZsKcrPEfSe - l04MqcYeUti0s4+1sDpU6x9fp5x9mGP+vYWUZ5UaoXBiiPl6TOqclquCvuGmEU1Ki6o/DpkM5PYY - 4OSYUHWxnpqGfD2+YKUdqnCF4emFhA94EktYPmC5PpcaPXg2JuG+HotOzJck/y5Hj9W1M+WBhGR4 - kqucuGGGw16IZAWayZ2b3ymN1FEiYYEcs+7mwjcEtYPhKUehf79jx+mLYZPvvgNIYlGveFS3jODN - bKFbRBjbt4MEqPgQN1i2rkl0yA/q7FtrAYRq5j3+UnNgHl92BC4iHLyqOVHwwt9mA+FQBzidHl04 - e88gBp1p63i/win74z9A5McNXz7pTJfUn1JI+9rCYfPqbSp+Pgu8l9tMlIbOw3jTphYi9XuZ2X29 - he4XR7Cv2ts/P4UXnC1HN/6OiRr335C891sXvuxpw3/8YH0sPwg54XonymT9MnrsggUqzBZ6tTxw - 2SoHioT663jGO/8Y6KXHNcTD2caZczira3ytIDwcCe8pUDtUi+ykhvTnn6gNKLLl+hQbaIjaBf/p - D/6hURH1i1qRCzMcKvLyQCqNCUmwfPtchjURAg35Hhqwer2yoC6GakRP7YfJ+e4Be+Sq/WbRoPLJ - KVzrgaNgiuHhkRs4zOvfjh9NAO+XasOKef5VqSviBux6hhivea3+9C8KkibGF31xs0VI5AK9Ny3F - IRdHwyRN+8wATeln+sf3UqtuwXWBLokH552x97LfAOt/tl2f1fbSgc2D5+rce51nBOpI0VTvt2bc - ZilxWJsekFoC1umu5HK+53Q76NcUJFfJwpZ+YKr54Zg58JPgTnS1NNSVqq8EbifxRmSNxuF6fOUz - 2PGEKO6Fy/7xS2NeM7zr14GenmMKryd+JX98bvyYrYhAmdQzvdy0atezG2wFj8eYe94q4a/+7v4D - jrenNqzpbRuhSUmLNdpcK1qwXQGd1aEk3fF++47PFAZMgLGxpIM6h6VTwrKXSxx1I87Gxgs1lI/o - vOvDUV0D/dLDeYtUcv/zBy7ivpcjeI7ew3QEMCvcsiES31NvYftJnZLFKeDn+qzJ7gUPG1CUFlnl - 7Hqfs6CEbHVFEZSGlSOXExvas1k8LBjhfMN/fg3pfnEM7+LrR86h42a8NyYiLD3aeGJz0qrVsDse - Ct8C/+P39NwZM1Tdy0rUouEqMtXvEn6tZ0Ie7RYO65AENZA4/fPn11RUCx4W1ItsIudzMNib7Cs9 - lKaft/ufb3VU8nsDpwvL4teH4UKKT0YAavsGyYXzwmrdLLlE45xdiVHbiM5QmXVwuUYlVrzTB5DG - SOO935AQ5Q40ld3mnwItW1fxXz4OGntIwFg4A3bpybYnUb7X0ItuzZ+/Vy056nTgJ/5959tvmz4U - 2kJO9eU93+qQA5DzQXe5T8Qejb5ahYs5AmhoT5wXqMtWVA6vPz9kFqvxMez+OgPPb2ziU/2pwMA0 - GQP2+PKOtFGy7Rr0JSzQV/UA/67sVfCkGbBe3mPvbojVrPyePYjDMvunP6bF0z2w3WsPBx+BzWb+ - fMrhr5FD4szCUG1sU7DAZ84XEupZoq720WCAXrq6h0LxPNCD9jCgyX1OJL0cbXt7+r4D++VUEffS - JRlZiJ8istaxB3e98Me/wPVgUI9JNGrP+DsvcJjuX+KQGFfzqdkcic9sYW53/2brxacFvbXYyM1I - XhXbAcmB2mnzsa6Y94GeA7YBTWV7ZFfW6qpPpgN3PCMXp8d0UlddhJ9TNGHraewzzLx7A51D9tj9 - eEXlvKY1JMHRRywzNQ7XG3hvkJ6Mdma//akS1geZgfeQWk862kUmZMGth5vAQSK/Rdkeuf4TwYtg - BztfvIfdM/Bf6I8PeHcjGWbzmtbwtOZXnDODHy73slwkZtZvxMt+ebV+tY4HphCn3pbnsbreTAlC - f791mPW+92Ex86IHlpjq5DxvnU2+x3BGcj8OxFS4t0qV7zOBveVsWN7xb7vJkwGehnPCerIOGX3H - dQK3e+PhP71Gmdlh4PNwOBGneJ0zWkwhhHXUtuRdTPGwKfPgwd54PLByB7W9HB84hR0fBUTZvt9q - rNtRgtkAHtgwPzAc406MwR8/SvybHT7F5xrA2r5DosYuUaeiq3J0eU4EY+V0CVnq1N6/n2sPKQk3 - hnQLeB7QCVufXxDOpXtN/uoJlgu+DRtv9EVkvmd/XvyvG7IdW/dwMGPP49WytXc83P74glecg3T3 - 25IWjsmUEPMhdfaQUE6Gv+J9xWZx/VB6Y2oepbX18AA2GbWP7/kM//iOw3laxgLBKYCdB3/1qR6W - G4QN7C63Cadx9A432eB0mHhGgf/qB725wws61FaxbBsne7v7Fwvtepmcu3tPp3daS//8EgF+9EH4 - 9jcDgOVn72exTLp+1jwHrwP+84e/6nJfuxjAtRf+9dP++VN7/Z/FPR/qYhhGcGuchPjRD9irlans - P71+Od8hoLnQRrCMg+PM7njRxk7cwyk+ZZ40MBadHxoQ95k8MbG0/QSDktw16Y/v884hyqbqbvVQ - dyrHO5CKqtPePwIDMZhZunIgJIdGSEAQsRPBEThU4/nqRKAEzIb1p49D+tfPSX6N6oErmuzVDFMW - JtzSk8vh69icoUU+fKEMYBubjL05ermgvCyNP309kGLKGEjiW4qjxvxWC6qHEXaPEHmowqy9fIUq - h/IpNHe9f8qEUlNraH76j8eXgztwLxXF4PVIa+8X15u9xJ0YweOGc3K5n4xseqoPESyMlHiPnd/T - k/dl0XbbOGL4tyFcvcRVYH6O4d9M0uwP/2GtjAnxNE+utrDUCsQ2GotPDO4pfY9LAfZ+5Hz0jM0m - VQoMSOAp9FhLD6ttDhYd3Zvivvur0kB94xiAWoo/2ONnNpw3WRqhPOcR1lvdUQUv0gp0ewlwlrT4 - M9AEWDUsHnNFrIGxAJVWdQHC5/jEWgT9jNcY1ztuggC9cPNP9lI9FBHtfgl2hUNor2PCy4iBGfX8 - cyBl4/H6Sv76H+Stqzd10sSDCHb/0ivDvFCpzVXiP//4shmFPa+r38O7q7NEvirVME6rkkIvOeO9 - X1movHO4WXDU9xMPJ2OoNrrdC3B8xYDs+oquDx1aACGzwHjX29Mf/9iOw404r5bJug2YonTmVGnX - L04295dsg1bmSN7m1sPQ+9N7A112iT2QJUO4AEErkGSXF4yJnlNiNSfx7/vM30re7NF6arq0BapD - LqcbUbetnwsJ0pePDZMJhvUXqSxkwTZ5qAyPYKPbu4SaMAm7f7sNn4PxaEElPHMcDkcjJO9xKVEU - OjmJToY9/Pnpf/0x/Ob3W4bB+nMAB9kHVgP7FK47P0WSyFvE1u1YXau70qN/ft+a/QCPRxiDYno5 - 5Fxny/DPL0wKt939fXnYLvSW/D87CqT/vaPg5modUU+vrqKXbikQK6sptnq3GuilADx4RVeOOEZ/ - UJdRWAIEjMrypq5fq/kJfh7CV/lIciZowDCJXAEE6FxIbnpXyjrvYIHMlk/YIKxXcQm+jogp3BIr - KcLDNjBwgaxwADM6qB8wkv3eN3l1ZW+LBjdc7MNkge10u+Bos1l7+72VGb6PPD8fC7ECbf+VEni+ - xRh7Y6ra6+/+2uBSdhDLY/kb6DiYMVyRpBK39+qQKnlnoXN41nD4NL2M0y/7faBRsnpo//lcvgcF - /ux82b8fGVbfrniYEdGepeTzyxbiTTN0yEnANg5tsDi1u8H+PWvEiI0iYxdTGiGkS4rVlbEBbzfv - AH6S4kQeUh2o5CIUHgq9JCZX3B3DhQdlj/R1wTjWY6Cu33sQoEVpWfJu2ghQ62vJ6PWAgLzps8i2 - eM7i402ar8ST12vF/Yrwhcxg5ohbsjCbE89gwCl8h94mqo3Naw3QUTVKJdFa5wlWQ7UYyM1jjTXH - m9RtuTwcKAF09j7PYzss5qFt4ZjCHOdzlNrs83J+oYczp9hl3sRertKVRS/bHLDT/CJ1W7j7Bvv7 - SslliN/V/CowCw48Csk1Wq/2lngy/IsncirsweYnX5rRwxlTrG5XASwDrHxUljNPDG9OwiX1Gwgj - JnzMxXWm1YI0u4Fjbjo41a+Jzd9NIYDPRPTJeewdunCem4LpM3ueKOeaLRjn6IXaVZZmODb9QDWa - KpB/LxeSXsZuWIUbx0J8HmriJqWhsqJb1Kj+6Zhccexmc70WIvLrmGDHAV+wrcu4/Pv32T7zmEaH - YoGezmqe1LvqsGQXg0Hd+IjxMxs6lfVvq4+qa+URjX3yA3GKsED+ubgT41G/K2J9FQWx8inFrzl7 - DQLKlhlejMElBv2UA//3PjPTLglGhAVU6OUZyWe+Itq1W4aRfAMdMvnyInHzDYaJTccYni8TId5H - 7tTJ9YMIymjV5t/msHQu4g+PznOeED8zBXVjeq4HmZ1O84cTLtkomLGIpm6FOD2lv5B+GS1GU1Jr - JEvzt8o2SK1ReC8K4qTSrLaqfJLRg+NGYshkUWcJ8w2qFMIQ9cggSt+VsYBseHAzKrBnc8o1ZWB8 - +vo45ywSrsJrK5D/agtiqYfbIAjCkiISsjl56Bqmwv2divAoSSmOOLG1aT72PpQaX8Ap0diQWN6t - RzE8jN6xy9uK9g/1haZAYjzheJQArRffQOOJD72/ekJlSEuEhhHgyy92B6F7MjmQwOFMzqqwhOvl - NvXwfn3a2EB03+u1Go1Eox7hPZ/D5X575jCiTEEs9p3YbN2kM3jMzOTN4qVT6SomM+D01SbYOV+A - MIqrgoyzfsYqGbtsfeffBtqFl8zL6dnS5WwqHiJF+iHKGBf2PuRZhrkgcLN4q6dh5Q6aBLN4U/CF - sU7D2nVRj57bqcSvr/AA9BI6FmzSzJ0lTuoGVpVNBSZ9fsH4XL6q9St/JTR4ZY7lZ3asxkvMpOBh - Bm+c/+wGbNdzoSO2LkWs0PfJpifRKEF4L4v9FpnLIESHdoFtiXui13KdtX/1qbp7Eb6065pRnE2y - lCQO3KeEWWAVrwoPlc144dRkRpUevHMp/dJAJufIyMJVNq4LmFXmM0M9yQdyc5/yXz5hI8jGbC07 - 8YVC9jxhDMXY7pWha+An9nkSKEahcvfnKUU/wngeoy8Xun3qlyLRWDTINVNpuF4XJ4XLNdeIL9Ii - W4YvL0LW+b3wORo9e2yQ3cCDlehELYUnXTmHbVH7Exfi6Odl2N7byUP9e9TISd+MiuuyGkqP3bD1 - VTvJuK54M8D/bT2RndBX1989XsD8aAnOeZGh9MvhFo4fLsPJKVTo8mV1Cd4GcJp9XRyz1VoKB6Lu - vWDZaKDaWvUpQKbUeuR6up9tTl6nSGqdKiOmrmFABr3YkHI/HPH5yZ4r7n3fani/G9eZMW9xtllJ - pcGAC1xy4ZTe/ofXNbY4YnB4y6ZbQj109rkj1uXWHjgtjQx0FppyXjnhEgpDlOTIeDnePsX+BFiT - rxgwP/UeW+6wT1nzEAR/70Nn68xmZbMvoN1/rsRCag64PLknYDC4GDvvlwyELYQtFC5jh8OmXulG - jxOEUJkFbKqbm3G9ywUo9ZXrzifUapUPT/nYvbkrfpjuqq6DqfiIVrlLzPQmVTS9rQk69JlHjAkX - 4Xr4ZSkE5wv2qOoc7TnszxacbpaJ36+2pDzGuobOvnDEZ+fQquNo3Qs4xfFx36EFwBhKrwiaz9OM - w8y6Ay7EkgIL5SCT26WuszFiWhnpnGdh17nijH+7kwVJkXxInq0OZW+3BMLYTwqSxebJFsbhFEMl - 38/4Bb8QsC0+leiMW5nkd1dSx/J5LcHvvPbEaC8Sndi0jtHl9/xiy7xM2XYVlhjqoyZjH8BTxocC - 5GH0SzMc7ni4ebQ30Gd2MEk2hOkqqpkBzcut8A4vzVfpmcYl3PAZYHOTp2y5TP0Gy+OX3aeAXoYt - A/0IVzP5kgyHA+ht3UiRXD4WcsfJDGZD/zqIXl2FvJO4qFZ0+bII8NY28yBd1PGm3hvQdN5/SLuS - bVVhLPpBDKSThCHSdxIERJwBIgIq0iRAvr4W99WwZjV8662rmJzsLiHngbRracfbGTmdzPfShahX - pHjbwj0XkL/xM9hC5hgvx81xYXI+88i0qnqkm+kz8Bq+ZuI4a0sHwD5dqH+nL1GXH6Oti/2D8PiI - JVz7QgN6vzMWKFvnBxadOKHz9AQ2xM12RKrGkxEbdy+DfG6c9q4BJ8BxmgDhMRssLOK77BEtWEs4 - GVEQLDV3aqcRjiGIuPCMkrcE4iU8+Cy0C1kjnnNyWn5dpg3ym1KQvA7mgnKntJKZ0M/Jvj69zRez - HlLbFJFu0l+MhzYT5Xj2MYmHiwFYQzFqeI6SDz5626FYUusXSj/9ISOv6LpxvWbUh53arUgRqRLP - Q3qE8PFcA6QrL8tb0OXbwQ8jjui+r48FdlcGmI9oQa7DTN5qXH+u9Lx92kBmaxFsvMy68BjJJ+LH - Z9vjJcR8YJyYb2Lju6xtvycK4CT7hHibdaH4s875sa7ShJys37cgzfX6kdTNrQja62f50cb8Gx/y - +LzCmK3GjwojPRiIl5dPbx261yCdf+cOH8TTu6CqSzZJZB4NsdFb0Kh2Om3y1ekx8kVFb+dUrDdo - 9DQiQeq+KIW3rwquvx9PqrpMiyX0YQdEoH3/8cHi8C2UnVdjYNoIMlhCn+0gY+kh5j5jWlAuc1kp - Pi6U7BF1u3WXAwtBLD7xMKcdxck7dyHPfJ7BAYq8N5XHewDYVZeJKfFyMadm1kCNLAYKlY/r8ULy - NuHlBW8o/tr6uDjrwsivrDkRve1FgN+HhwnHy6FGbjtIMfUd4kIORD+iETsd6Z3XFniozWvQoVvg - 0d4yOsmwCAl4x19iGvOTDl4RD0iAD2u8cprAQPH76Yj9mW4afSfiApQVKeh0AQBsi68HUM2Rjq8E - Fd6mqXkNvEthE2P7aR7PiO8E4Fb+EWcTfI1lnqSEw41SvD6uV4rt0+bDv/EDomnHE8qnEKo/NSHn - L3zRnX9rYHC3GzklZ6ZYYilNgMpMDXJjWY13fSvBflUlZF+7uaXdkrlwFvISGdfWp9Qpzwn8w1+d - O/3ijWuyCP6udUby9+5rRH2UoHtwWaSt+dGjgiDmkKWpTZT1LhZrG9x1ONRADupHcR83wN5sYOru - F8t5eBvJOWp5gAhrB+Hp0YNFqL0I0gtSA+Yaaxo9FHIAY3sOSfGI2ALDTNhE3agS4nMuipcVFxG8 - BaqFF9lk4ndJtAW2w++GnpwXeoK237Ie3cY52PV/S2yhm+Tn9zvu+lodZ6GSGilmrRmd4bmiy1xm - Itjrg8T+Sad/4yErvc6jXS+AZTamBkY1FYhXzW+6HNaeB+mv/gViNb01spXHBNCZmlj4pvO4XZ1t - gepndYj1uAnFXIk6A9e3vBG/vq4UP8+zDTQv+gZXgR7AbFVDAt2W1ljsx7ml9HRnQFb0AjqT3xds - XBNGkPklLYlMe3/n7KCUkidYKVFW2dOIMCgT9Dx8DI7O2oJV4r4SqBR+w9Tdb7HPVGmBwRa8/vyg - toizsHdJUULkYWZpF5ji6E/vBdvWqwXZ/T7shsYlPvFEgLNC7OHA5TFCHGno++95tbmRkFYpZ28t - s2cGFVp6yHJkr1jONs4l85NLxPSvl3a6VbkLQ7kS95m/tGsbXEz5/bsNRKm500i78KvD3f+SYsfP - CQtw+Vvff/owxg9AAlk8iSkxikbT2EO72kBqeIhQHNh0vSU+BslSv1G85xcL2rvkOdrxHSyOGwD+ - O0kZXNlVRXlsai2787P89aolGGmjFcK+PiGZmDdSzOQ+LgsNInAVHyZmHTiMa+G2wR9eBSz7SEcK - f30GLFfKkDl1jibsfgmWNFCR+XWMgqymUsJfLxfkltVmS0081vBmGjxSei5uJ+sJdIn9QoqsqXoX - q3unrDyKk/NPL6zj9uBh7QjMzle/Fs+hNAGPjsWOzwdvEfVWhC/x5aBMIaG2BH3MwOguifi4KXM8 - jUatyBfzrSKXk5x2KpJl+PND5Hxjrt72Y5ZQlnS1I+rpcorXBxT2+jxsyASMCgTBffbwUw4ZXgB8 - xbQLiQlZzK1Iezi4wGWtpXD6Nq+Ae7DvdoviJJLTW1z982NLzI2p1L0KB8v7fG/e5xaC7Rj3Adzr - f70l+gQ9O2RIgJKpXXnpLv7LE05zrLarf93TVXeKSIUPl2KbJGcBwbsv0VMmCRXkQpzgK4145Ai4 - pGv+UT9w07qI3E2Ax39+/UWyA5ZSpNM+qqQKgO+1QWrBBjF3UA8J/NPL1nrlNcIbvQ36u1Xjtf1m - 2s+UnAk6qb0QdELKyJHOScBbtKUdLxj6PZaPRnraNMbr4J5irj+Ly7/1FKLy4v3Tj+/tyZJT+xU1 - spJSlcLCfyN9eugjPQ6GD/uvtCCVTTdta2x+gF9eOKM9n6ELNXwfXp7EQ3Yced52EcQEZvdiQhbR - 4pG+JoeBI3umyKjGrtjeZ58F+/hjqd82r5cvNJS5zeuJWwdzvHI+HMCOZ6TkxYouj1C15TsnTIFU - mFy7dTnbyPGFy4NX8TW1v98LRebZkJ0PQF+pUQnZIscIoVcClvzeDrLE6RYyRe4EeCPJcqlZGxOl - WyS2n+NngNLheToiTfkOdLWmSJH/+OPPTy6/052HQvX9/vFtsS3WxZefnloRU2rXeD7c2wlq/Kgj - pzkeCpJ2ZxHueRmKuHNIl7cLEtCrwX5CpsIaPX2QC9X2GpCnQ9/FPj5Qcn/lB1XMfSzWYGSCf/i0 - 69N2JZ2Twr23+c7vfLsu9ouRn0F5R4ZAn5Ta8DbJf/VWBcsdrH/+k9GGKzLWlzyu5ZBt8AnNE65f - U11whyUzQajqJXpYsxv/6SGZf24WOtdUoeuznDuYGLZNgqzsiknZGB0M8HJBWh2RdhOaZIH+h3GI - //my2vyXFyhFs/7hP6UE4RICw0BYfpsM+Pf5sU3C4JX7bEsucyPKt+GdoNuOv5z6VAe5K6Ydf9X3 - 2Ce5BuUvz52Rm7A03qb2kQNU0RkZqEtjnoQHH9KjW6Dz12i15fuafPjeHuy/PJhoJ2fPZ2VA7tP7 - R2nMdyaspsDE0AcG5XjpIskttiJk+LYTk4qpbVkb9AMeLZVqf34A5PD7IJqfhHTb8yIAAj9EZq+k - Md71mXwTvDvSHei2ZB9/8Kcn1AfavG3QCAujlY/w2hNC10ew7vc9aX7ADLYyUhs+McRr5yCX9l9t - 0nSogiC/WEQ3qVNwfDvX0F/MGC+xY3hUcJ8DQDA7Iyc/noveLfwP9K8AE8U9zeNSy6P0zz8ZTPr7 - p8/gEadXzPcC502q81WBb0gf4ljPVzFZKZ8DtmJ/5DrdFIpHa63hog4sMt+Y0q1w8greYpwi63Cq - Y6q4bQQLC25IvTeM15WJbMP8hE7I8aW3tzrfsQbXq6oRjRyuMYvWrAfetJXEyJkwXstXaf7lGcjK - A95bCwhK+JeHuF9djenvwZeQvXstXi+gADRvX7p8NDOI5V0fctulteHlmkXksv8/sYOLezRiS0d2 - zXzH9XycJTj/KNzzhKggw90rgf36RejKBZeRLC4ogfpTEuIvn/0EuV4s4FsBiqz52nnrnUohdBKo - BMfkO2q9WvQ54Bq7JrHIvrzpMjUuZA7qinRNTrx/6/ssKuzu321vqpMwhUpv8hiAhosXDVsdvGTs - GScb+YARUDODZ/Zz/JcnL6HtdNKuV4L7wdbBZqOXBM9YGhAyzTWm1/Q+ScxBWVFQvI1iOWFPB7sf - Co7F4mtb3h1ZKLOcgalDmhgDMrmg70ou4PZ8mVcfRxG0x/JLgvUSA8G8CS7cLOVMymel/PFPB2+B - YpHwfajibV9PknR7fImXYNQK7FtqIAfCHzmTvWvQImsYHryORx5ATrwwh6wG5+vyQkFW6rFwIhoP - qFdT8qeneC10AxgHefo33u12yawI1C+aBWwMakCgEJryazzowXZtJm9zXZDBdBsoUrZQ0DblexPh - bWKfxIjysd3z4gQUR+WKQnlYvVniiATUskLBuOvttQeHFITVUJNTsxxjav3ERl6aEZKz3C8x/jFi - CEs8j+i08yVJ1qMOTyYIkPLNEcAmYUNI1WLDbECLmMZPAcOPCV1yTeyi+KcXj6/tQoIKm+O4lccU - 7nku/nKq620ZfrJg9zvkzNYiJfp7SGFen+4InVDdLtuvjgC5vC/oX55nMHCCny39klPqNyO9pEz9 - tx7QMzHulIrGNEABBhbRVmakiz+7JdjzOgzQ50ZnczVUuN20Kwr2PH77PS1f9mkTEKc5PuNtPf7K - P/2O3DVNwdz8lhJ+28zd8/zDuB7uI5Ze0pIQ/1nVYPnI2gcm6HFCf3+/OId6kIP2fkF2waM/fg/+ - 8dWff1rh8djB1XJyzESPGWyZ4Udw27IBVbeEafF0nTFUb/KRBB+ctWtTKhv8HvUMFb47gA1mhw2W - 129DFIkFdPtOWw6Hng/QCToFWN2lD8CetxC96E2Agbnf+XfTA3Sxft94i4NX+KeXiP/1PnS5Ml0t - C/zrhM6/4TLun7+AsEsIyVhoFkvB6D5g/XdF0KZisHDKFUNfQTXmsrvq0TUjvdgKqMRbMPGgX3Ec - glMUtphfD/7493zAIeHxX95KdvwGe/638+uj3fPUAZgNcyBuHxximhz6TRJqnv7564IIL1+BlAfh - X544bt80UKXqkfHBYc+z6FmHNhjqo4w5S1nHNRovGTz7ww2ZgfQEG9Y0RZYe9oyZbXrH2wWDAUxM - 8UTn6/1Dl9M7yED6a35BZ2Q3sO8/RPDb5i5yf7+QTp+MNLBwnCY41JJRsH/+KV0rDf/4TtH+8PoP - z0hRObH2l48Df8h0DGr7N5KVJIq871cSXTO5f/wHr9EmEpWVdPpvf0o3ygRZ6zX1SH2967Agkven - H1t217N//iCQXobvbT4pIKxaywj63S8tmJ422XiONu5GVQFjIV0YWHbZhvzrc2j/4fMf/u56pl2p - v9j/8j2dOznx0p42Wx5axz4DmRXAplgnBYivY4VU1HIjRd1vgsVRvf7td9C516EOFX9+oSSgIN4q - nvXlIl1UcmVv29/6TWDngwFzu77CUKxZeRk+510/vugWDcoATyCfkCqv15Zuw08BYSbnxEm+nrfv - D0Z//hOvn8ccsyaIKln5SCbRfnOs8UAuWNgcvywG9cGOV8E27T+9hS4v9Ud/YVI30DszOkG19I77 - 3KNQvt3cC1LdSQdLkYgDhDqjBoeqV8HWS/gDhTkXyB9+YhFJOgy8h/BP/1drw+mgWqUr0o7MA+C/ - vPsatjOxpsqI+e4QdnCErv6Xj41CcBZZcPI/SXD/y2uXW5P/4UfAFRzSNjWRfbDnGQGjVO92Oqw1 - L7e8MpFHTzc6fUwlgacoapGxQeLhb2oq+5mj+q/eRwpxnMv1t6rIX9645+sqZN5ij7SDqRX82sg6 - VNSsJ17qvLwmeUc2aB7Kl/jtyoDfnsf/PycKwP8+UXC8fjXMyMoXYADMRR4uB4i8JX2MixbRDwiM - 9w/p5dDTVeHvLuwUC+C2NK50UYPTR1a7WiBRBbp4RGfhA237IBEk8my7morTw/7QsnsfuUGjlyq2 - 5eM2r8ERxg7YsPropVub6Ogc+OzYB/4vAezHc5DVQUsTqpVV4HGxehSUIywW4/buIMEsJYGOIdg6 - 4tgwpuMpoDA/Ffw91Fy5D+UqYLX7fuZWdHtAE9AQhcMynU4PhGEVb2VwLBjGo8r7WkOZbAOyx2dN - aaJiCTLaNwniwDt563qtK7lbHBUpQqWMPPOJTFmCOkRP/XceadRTDKsFuIF4rfuCa6BfA+OzQeSc - 1te4nI52DnluZgJ+07qWNrdwk9nbZyPGg5U0Kj0ID+v85CPdUS4xTcQggiQMH6SKddLuf5/JPM0M - ktDgMK5+7vgwN1oVQ/XKa2uxv1eegK5FqG9y8OGbLIDuMhfIYYfO48Myy+UrKXyC8ssI+iUqMZRy - sQxaZmDipc5rU3YVpiPKkt+LtfuYLDR/lR8wOi4BlzacKZu1a6NzzZFxDXSvhuU1s1C46sWI2Y+8 - Ab8vWHK6Ydvbzjzt5dJxfuS5do62PptLJr9yMyYIv9+j0MCfKvdmdQwkYB/B2i0kg0/a5eSGkr7d - pixOYGm+ahQsB17b9McywMuwWOgqci+PW4nlwp9aBZiCk9jOm3FP4d1pZ7xY3Wlku+rayI4uI2LP - Dwtw1vsiQb+/s0QbCrulZaaIEBaiRJ73r9OypweaoN47FUmJ/vKWd4YhKA/iiJ5FZBeCgGkts2hK - SbjqYKTm4aFDZEdHzGi5qNHZNRm5i9UEeaVlUQ4Fkw6F6aGQ03mUi8kSsxCqXSMgQxVvHtbj0IRj - 8vNRSMxk5J/6VkL5U37Isz5ePfbXxgx886JOIqH5eCsxdEmWmNkgTpVpBWs96g5+n4QnHkdMbcqu - Vx+q1AqC0G0NjT2XSwlfgWuQ88dJtHUKG1UG78omAZhabXv/og7W4Dwh15DSYh3TrJN/QV6gYknl - lqqmHcmhKd5Ikn4fVACVyMpHJV2DYfNQS9xuZeWzI3bEq0qbrodsC+QoffpEZ792zH6dmoeafauJ - yp0Nj4UhrGCjOQjdpiBqNwCCBZ4c2UP6wjSjsLpxDltJ6Ik/Mh+NnqRqABSfP+jhNFE8n7wokRkp - TVFe+zdtgWPnyq8Sl/g4yyldwBph2XZCd+9Texr5h/tS5IuB3sixDNPjtPe5gm9opyR6t+eRfbh6 - A7hPEJLALz/tpGaNC5v6IiOUxG9tmW48C2XrfUDRBVFKvu5Bhw0NUmJcAtcTYvtawVrmOOLw1was - qyROMIo5jSilp41cCdlB9ooG4RUrPVj5li+PgY02fBwYGlOThQ1c8+5AtPj5Hrf1cVlkyehdom7B - a1ziMN3+vg9zaROMmxnFjbzlgxnIhzUq1kv/DODx+taw9EEvwLe5rQLrftaQE58oXazy9pHju12i - Ksr3HauX94HWU2TQsz5y3r/v/yTKhkzLRAD7r62Bf+OL3C9bbHTqErmpuzPJrBdp6bnlIlnl5hvR - 114HfH0HnZhidUDahf0AGui1CkX9VqLTcNO0ZWqeGZyAZxCnOf00+q7ZBYSmdMPrcGu1bdtyEXKl - 5CFfS7dxa20iwbKgG/Lraz2ulwcz/OEPeXDOLxaGIh8gvAl2MNnZSePjkEawP7A68SFUY/YwLh/5 - JFhHoqVWAMjXFUzYq3cLpcM1B2toyw30DHkman5RtfW59bXsQUywEPZz3B9qpML1057xgW39ltXV - qQSXOQtR9DkjILzNswn/8M/K0RFMc3yPYDTOFYq8i0+370Mu4Uq4C7o2bR3jfT7k4ntwsGhzbLGw - aqTC40ZWFFyWUZsP9CXJhnNjiAmU/T6zgVUhx5gj8RXl6q3VOYzA/rzIVCqTCobUmuDrPjui3bZz - u22Nt8Cc+cpENeKPtxwbxZZttUOkaM3RI7/xtcmON7rIZo2Lxyn8xZabGWrI1K2pXTd0FGWKRoTU - AiqA/8k3F86VjNE5YR9gyt/7O5E/6xos+y3cAl56HzIlyDDw6Blw4jOUoLCSGNlATwpBrLoM2OoH - oYfy7jUqOGMIkQQdFLA9AJvwdQPo9FTERwE8WspelQxUFh+goip7+jPDbIGf30UP6ui5UdrtfdAc - TkmJp7t9PP3Nz8NwGWTd38KIf+1SyUHOAXQT6gcVZJvashs5OnJbL49/AqkVmSQJItfra/NmUJUJ - 8IoaodKOHx7fMlYk1zY/kQvbR95mbMdFflmVSxRPcEa2OsoppFKlk6cNr+1clwML0DoYxF1f54JX - b1wPnzVzIXp1tUbWaaKP/ADvhURfEbcLbZZILof+julfH9Mk4lXYUD8lZZIEgD5NLoD/xl/kXbDd - 8xED67vmKIq7BAyzICvys9IEYjOzpC0pB0qIGToFLA9/MXFd1ZXHg7cgo2mVgtMTPoXieayRcuGW - kQL95II/vi36+UaX9j428nhwFoJEfys2SxgXCNxfTOJpcSiX0ayXy2LdcP5s2P35xVBiJ05HSsKy - 2haWYSa/XgxBp37qis04v2ooV52LXCQ+tJVvmQrG9HdCan5pPPopAh94qDuReNcXk32TVJh+U0K8 - GwEtbeBLkYOkCpF72KBGl7ypYVN/zlhk5lybo03YQHMUL+iyDaO3KBGxAX3ZCorosS7IK0WLBCZb - I4mdEm+Ar14/hopfBnBkPt72xfrnGMxbgqxny8QbnOz+b3wC5pWrrXCJpQ/k4s4iZd/b43Cox0Z+ - BbZB0Eu6jCyaNEV+HTkX+Tve4MXOevlkXVVSRukXLIdR7OCHO0fEwE/szdzTL+F9E4/I6+cbWB6k - XECezg3+nWcS98/7U4ehHgWYrtpKJ2O7hn96GJ3A91psphylsLtPCOWcSzXMrWkK+efFwzRYngUt - reMGFXEZA+ifTMCehdqF3Xt4EG3OfY13TxYPL5dKw+xwuRabNvELzF5jhGznmbZbygWMlLFxQfxC - Zosl78gCWYRTUulUofz7l39gemREclbevbcN+K5ALr4IeMkeRzCCY98AKYABPnKj0nL00GC5ttkJ - uSLN6JpUngmcn2kTNIXdiK+1wQP9/rZIGhBunAV8U0G3eCrxno93Me36RWaUg4fTMz56NJYhCy3z - I2G9/U3e9nBfqlzri0RsocDjlnj6JLtaNwdce27aGT/hB85dc0F24IhgC9azDur2eiH6LxQBvRxd - HtYATUgVGtNjcR9lwNKYFZnsyRvXN8wYmEwEEs2vm3iOArGB8s8kyJzvasyjMW3+9DVBhhxp89Lh - D2g49hng8pRrG3z1Jpj7j4bMRo3o7+xsOnioNUcsdzBjuuRDA159PxCje33jKfnUIvyr37go4oJ1 - I6+C37M1B4Ia5cV2UtlGyi/PcN9xVkaWue6quxQ95F3WhApFehD//FCwKLVUYLwFJQzlq4Pc4ojp - BENYQqSfLWJzCwI4ApsOD9g9EK9eB28ZZlhLFY4V5HmON67b8PvA5hvZ6OTNfLzEYbUAhVQfdOLj - hW5dtSkynt9+0Opb1q5sMkpQ1ZIbiV93Kcbuw2729kXfQBYqt1js86WU7Bv7Qtruv9grGBTYH3id - mGBYPdpfbz3801uK2769HS9KoICM3ftCOuBnXd0NWpT0weHHH+L1kEkBFPVrGRjAqLyt7eoPePsW - IujHP2P80mQJZme2J9apFz1SrVABxXoJ0P0zeoVQNr8KcvHHCj636QDmlr9CuXLLG3HdLmvJKuk+ - jOHB+OOTdrv4pwgGWaOS6/ndxSQXUld2n7WELPB+gUV+yx/ofcsH8eVPN9KUOUVAq2t/P8BZxvPu - b2D1xD+kd/IC6M7XcJGrC/KZ78uj4HfP4B/++mdVi8m5lSPALROHD/4bFOT2aFVoSfeWBN/sF6+0 - 2/uEjvwH2Xcn8Njj1GOo3YL91uh3GK9bfVLg9ys15NQx0vjmfrOy32LTIp8/3goq2Z8JJtMM0d/8 - 993R8GF72ma87P5ggCFiQDgQBaHdnwle0uA/PYWMuPU06qAFy8dBuJKzaE8AKzNN/vASPX/8foJq - jES469vgFZIObOLaLHKMcxwcRD4ZdzyspL3+MK1yHuAuuVd/eQE5U65r6Z+e2uefPMSNeLPrzD00 - FuNECjIVf/q/hzxHGHS63i1t53OVYVYlIqd3DyklwzrAQvruXZWeRUxnN2DgLx4wMlPT0LibwAcg - 36BCglgn4zJPBwiUUAxROcNZ205iLMFBcr/oPPGnQrB1ywXFGgd4novDuLYXA4PqOf2CYzrcR/ry - SAAvne4j94NOYGmdJAPRGp5Qyo5nuvFW3cjo8fJQcIwqbSXoXcIUKwN5SI+Zzofg3sNUq02EvkHq - zbvfBTKYRJSHX20U4vk9yVLABOQU5W27xPkhhQcz7Mht7BZtOph1KvP1cyLmrmcX0ows0B6iim6D - dAbLWnIRTA79dc8zKm/IjKEDKjUCpAVcGy8n7aXK2X3jMR+rcks4KezltjmcAzl0QYv/8J8dfIAC - st9JSVh5Ap9HwpPwwTcxbae79KdPgwPjHr01Yu0Ffh4pT07F7UxXz7BN2WuzER8OnEDpE5adZDhD - gOyJvtvtMOom3P048rtDQ0kgMhmUZ/cVTH3ft5P16Du5RW6LjNxLCnKk7wa+XpCQarhNYJMULoMU - o0/ADLeJbve8nSA0hx45+63FdM8TQOM/YpKn772rW1d38pZ2CVH3PGr3ZximNJKRsdmUUvZqZ8CK - XjYpr4fzuDgTsGHMX9yAcR6aRl3XtSFJYYb8WmLA0mtSKBpK6qKTlgfxej7cqz9/iqV7d6Z84EFe - ip40RG7zyjx2avv8L08ihlCKMRbK1yCn434nkave2m3Xd7BBVonU3T+sZHi4kCNNgpAdxTHFybeG - LCj2LhI4KZapueXSOLVfZFWM4vH3QWJB8ZUdhBAQwf7yuAQk4yrhHefpunS4g5QuDrlZH4bi64Bz - WMpRQ3zxDLXt9lFY+ZxVADO7H6GxzPKwfCVXov32rkQ3lSZ/fuwvr2nXR5lmcPd7wZaIx5HKWMvl - LDZBIG6rX+z+toIPICko/NBpHC6fBcInTi2kPF8vbZrFXw3B6YqIfh+Ngv3ZXQTB8/hG97884+JN - C5z6BhJ1EDZtNYzFl4OkDJF5s07txoDCh8+iwEjZ9UgfGYwPHeubEe9sRS1h40MuXW4CJsFfHmMH - BEt/85cS3Bbrn/5vJa5HqtVb2iZ9zgP06q3Z9YgRb4nnY6j92JBor3terDzzseXbzfgg83iIivmP - //iZawKaULf443+o7X3fPRE7oyDbwAXRw7OQvZRe/FnsbID6eTgiZ5Z5uvqo7qEPkjMxsvo6bumB - 1AD7+YSlvV5Jy2+VRGtuIR5ntPtZCacDiXrOkA2zo0ZvKkhgOQx3ojCLr60tf2X+5T2reBHAL5Wn - Bbbvd4qScrABd6V+AE/9qyGu3xxGMnhaLfv61yM72ca8pfoZ2PEWaSp7afnTY/KhZ4smykK/pfSd - lj7c9Q3Z9a83S07sQyT9jqSsQ9guaja4AK29QdSj8I1ny22Cf/mRHfoa3fMmRS7u2Ub0S3yMaeW3 - C7xnWUJuddTRFWbzAv78pnWUNG91DoYqH7ShQDoNnu1qP8cUnB2pI3/8P+FzM8luR8+Yb+dLy/7x - mW7CvUuDX3tLzIsqvBzTKuDwE2vkq1Q1uDZaioKTcfN473aBUDZCkwQCc4+n2V4w3PNtPAzHTpu/ - nyKCK1P0xGPUwBOirPtAH2hyIO1+j/PpV4S738T1XFzp9mAOGfjLt0+p9iuoMcQMfOV6TJ7uN4lr - b51tCM9pi06xblCK7i9X7u4YIY8jH205VRmGr1R57ePVUsoNpxr+6Yn4t36KhdpKJ0uXLkPK+Ago - 97nkNvTafCSn10HQRshEDVQm9kGsHf85mucVvADmixSDZcAwR90C+s1hMEdpNGJkBiHEfjYR+3Ku - Y6F5rQk0BhaTpJND8JdfgjTbMtx77G2cbwLji9pBb4jNGqs3fsJ3D7L+ekYl/pB4fKdJAB1OTYMm - 9yttTufHAMmjj9FVKgBYjlM/QeUWAyyefNxOVmyrQDcZhpif6eqtG1olGLsfIwCv/Y2SKRwUgJHC - /a2fYj13v03qr1pIvC4nlObRWYQw6njM73qSHBocwlub6gTR4+Atx/GJpSCrVWQz2g3gJyoU8BnB - GVnn348uvvlJwLls5oAvcme/w/jOwz3PQtb30mt73hLK5Su94iPTD+BbyncXFjIqgj53h5am7b2D - 8TkI/uUzfOcsErSvQUaM01mM17lQuz9/RNLb2tLt8hGZPz2KF6FSWo6/XyX46ocBs8lNAb9nc8+h - d0jFQNKR0FJ0/9l/9UyMPT9arun9v/5xazrXY/MiDOTz0+VJ0OgdXaa2zmB/dJ3g3v+2eOfbD9Ra - +0qUB68WwokwuuRVdkb+/T7PUEw4eXlAjN0/0Zf3DYBx/ZRIaep9x0uvFUnjlirgA3Idl56OOpA9 - eCLP8+dGadFnqqy0zZ14H7LQVuOOOhQe0g+562uOMbdWCdCvryuyrvACFlcoJuC/6RgcD9GsTXn3 - 3eD2Cx5448UWUGeoMzkfD+zfeiy2Ry66UOdnjhiUbuN67l4b6GIlIeU32dfHs4Zw96+BEMlBvBTS - UYT5o3jghaMvOu56Ujp8nzrRGGOPcPJ7CE+MrqO9vuli944LrS/N8Ta+2Hg9MlsH1az7oaCfAm1t - L2cMy14J0cW+ZYD8zEv9p/+JFlU/DRNIFBCeuwidhWooFt7yFWBpcMWSVAkjDTtnAsZngcR5Dxgs - B7NP4Y7fRPtsKhX+1r9yu4A9H1G9/b3h3T/dvwF5t0KxHC+rItvo76bjuh33fFSCVJtVFALrE29M - 6jIwsUFMvGM2/p0zwaCIJmHX489iFcTDB+Ik3k+k25Qux8Z2/+Uve74QT/4lEMHtRwixAwq8bd/f - g3/rJSs4J2YdqxHhoaj53T8SuoLA8GXoRCvxbfkZk5W0A1ThPSLPGbQxLVJBgtVPwcQqQr5YT0vT - wfamHJDJjjNdaPSyYZ4Yd2L3ThtvhWTkUL2ImCD3mxSrGYabtG6PItjs6Nf+89+7Hgm2PZ9lp7bO - IW/IFjlV6RqveSRlUPrww9/+zbjzjw0t/raif3wtJGIKUxrKgWwc/VYoM0UCpnUoMed5T28dpRsP - uQVzf/uXgD5m97/7iZZQy3Rlqn6DNJMTVOROTekhMybIaymD5d4qPKpw3SDzcHLQ2Wm2eP7Lpy8A - fpFt1rHHetDAcDudNqS2gR9zhTpGYIuhR56JbMWLuAYRmFbu9Ldeirf4W0tZqxufnPPzp9iq5+CC - oZOuxBUdvl1+jNdDK2ptLDNm3GL4qnU5GkmFNEYpNeFEeBP+1dOe547zgf5EuBEpI1pCh3jzvi9T - JqxlYnZK6gKfS4+BqdaYu75mY2olaQhVA9ZIn5I6XoTTo/yXt6atRuK5LhtW7pT9jaXm9PP+6eHd - jwWCdVJGPlamvWvscSCKHujaPK5KKPOSrqDHl93ocjXdHsox/yCK1b1aOhRRL5fVHQTM2bTBjv8i - NJwrs/v5Q7w0yGVgP8QN0vPpRVdbKhRIGvFD/HD8eX/7P9CMwYDFgBYa++eHXHrr8JaI95bXxT6B - sX9k8EaPSkxVUwn/6etgGxKw58eKuBLhQtyvpLRTeNJ9uTwGC9KEbAPUMDwMl+j3wIcKBN6i2bEK - D+09Ip7BWd6u33topi0NVle9jSv6FQscb/E1WKPrYZzw48hCTY8xOfNsr1EM7AW0728aHM4fAWya - cEvB0/TKQL54orfZN6OB1/GaI2+8xxqFdzeE4vUF9/Gt22HPt+H3Hd7JZTlM8ctHfQ9/3hKhmwnL - dnGavPvbX9znT4m3jpxcea9vYhxYvVjQa6jg8dJeguVuQW/lGWyDP773zKcTU1AtPAy4YSG2zSXF - P335f5wogP/7RAG7ZgeElOfcbtLdbCAvLhJxFuEXL8YETNgbmULukUHaTT+nA9Te+hPtXQRbqs6/ - Sv4qkJL83Vsj59jCBq+XZSHFTxTjFf9eIfxm5xbpyqmh6yF/feDlrJyQ6u87yodTu8hJmSIsyINZ - sEEbDpK7iiNSjm9T2/jXRYTA3gZ0xuzoUTdUNnkZ3Iq4Jn8Gy41jWDgkyhQk3/0WkoFbeXh5Xs7B - OJZopDdSBqBs0i9RsdpoWHslkvyrPh5yQi4d1+vP6MDWKT5Rfvn++0+eCdFJKgLx6Zt0vcdLBO+v - pSbq5PrtdGJ9E54+6BwMt+NtnCBueTjPVomhI3megPChht9CDlCEQrvgzurPhUZ30APhAVe6nr23 - BJdXgYjJBHK8YZ9hAMfxPjkH/Iny1k/9yJ0qVeThp2jvE3Vc9jOmMbl/7WOxPY5QhevAK8h5JXO8 - hXn9kadLb5CrfqEj5tnHIial9QukT9cUfH3tVdkGS0/Cz2C2dP1xDKwNTwqktwjj9SB0naxi50ms - R8LFONGqGuKe5shRg2vBtoPKyOVHj9CFNDHAb+5iy8+j7SHdupbjSj+PElQcFIhyPOrFrDjXCrKS - HZDSiYJR0MC8QDk5diR508zjhkWK5OT+FZBi2B+P9kUJYahebwR9TlhbtyBS4On7NPFR+C7a6ows - ll3RtZEHgFlw+DoqwDw6I3LfyqgtwXTN4DJLDjGHwh85UFJVdg+5SM7VifdWIC0ZtF5pRy69u4w4 - +506OX4cj+TZPVLaG65Yw5d2Hcgz+cBxVb4RCyTnekKoO6seL5lqL+s4HMhdSQ9gvb6VHL70b0uC - S1MUWJNyLL+OyoI8z2Ta1ffrUI7vLiCuAIZ4alWzlLM7fybeff0VazNWKuxzm0Hl3ekBu2QPF6pV - ZpAsMOKRTZUll82jNxKjiz8FtY5lCr+WH2LePvraT5nyTLJFRSblL3nFW3K4RHB6SHc8ZZzb/s0X - rOknJF4/9WD9dIYqG/MUk6vAN9pE+KiGnSWqe9+iB11aotayZ9wXdNfcUOMMamA5e3OQqHb9arnz - dVbg2agB8g/fztvrnZVbA37JGbmKJtzeDxNOTzciOotvLXcBoS7nTakSz8OFxwlYc2WOpnnwugvn - kdeCiyLzB/WGbKK9POHoPyL4eC0h8qurGNNbdPGh+nD9v+fxthf66FAwLzbKdUYsFnjpeTn0zA8u - 7+s7Xg3R2PtKf+zgGN3PgE2D/czq83RD2kUPR+5DNSyj08gFv/j3Afx9Njd4zeM7cTmqaIvhLo0M - TSZHp0H9aCvOhw84++uI1Ifwa7GWhba8ba+ZeOndAIK8nhnpFPopsuspofzr9FukUwxPSGtvtFg3 - PZfg2acjcW/yyROQz0IoWgcZM5ErUMqilynv65PoQsUU69aEocwC7xVQ1DXtlix7wnc89pi7J49i - 08ZElUnj+yi0un2HRUsbiFvKB/TVfgsO45qXb8XwCNjL5Ghcc0giWX6CQ8AZ56Cg8tfkobXdBHQR - rz9v3fZ3DqEWkAAyh++44rCt5LEmclD3bjLyO97KZfupiXKzhhFr+kWS1z4N8FHB3/0W7FGETMoe - kMsKRrE9aj6QfqV+R7cHvIDtNbclvGOVJZbz0keCfJYBplR0WGbGdzE/5L6GofYNkdK7STul/DGQ - X/q7RTvfFEuA8hx2NriS8xrGlBvGDf/VB8nTude2e4sGuOMPceLfh24zSyvZW/SC3JxXN5LjJWHB - 78nqSJHO6ki77MPCCgYJMZ2zG3P6YEMonC4dOj1voFhp9AzgJ1B14t6OQosfNe9LZcfe0VXE8Sjc - jkUKuc18ESUZVW0L876Tjs4xQ/nt9Ikpl71ZWa7ECVWXBsRb1rkqNOExRaeKMGDeHhmGnPR1/9XX - 3IypKgfGQSBoxxsqIy+HaTV9SP4Wy4LK+wmn/d8ot9zJG173dwAl/aMRxViakR6ZUJSR7n2Rtppt - sXwfUgbj9OeQ8mEcim3H+/2WbP/f/PAbmnWIv+0LA3tINWq+MlH+ZSlG2l4/S8ucAni9rV/kXJyE - khtbbODeaRMJ2qM1/uMz/d0WxIfP68iH4auS/WP0CdbjW/UEpC0+7MOsRLcn+42X8d3r8t/3n/pt - 9hZovbDsHp2CKE6W07nRCwl03t1CNzntva18LZ3sqYDBE6P5lH/f4kXOiKATXTkm2tJapgofwmoh - Jbm1YPPGZZLHkGlR/guflIXP2YbdWTyivJsmsDq2sMjgvAQkDqDprdVpXuDf7/V+8AU4/BxceHRA - RuLGyovVeXGdHD+z7L98XeVtBwmZ7iQ111fLCaGxSav0zolxqy8eL7VGD2Uz08jtvB6LlcyfSt7x - iRS62WpLABJTBoXG44PioXj5rssgh7rg4PobaR53vbg2jEvxgx5BYBSCqrwz6Y4VFl2T0tcmlpqT - 3KDTFzO01FrOGeEEJVNAeMm+YrvdtyCFwzV8Iytb1IK3T4EOrrHyQ5pyFL0VRFSUj+dR29eLre31 - kcu2VBNyFZoWbL/K0mXkeB4xhODdbhm1J7jrLfKorkk8b9nFhXSVU3QmtlOsZ4F08LGtbcD/nhc6 - 248lB9H18MXH+AjaGUhiLj83EQc4Cl57V5BJBBU4YKJWVI83rAo83DjtSU6eaFPhWBQQ3ioboUe9 - PrTpyce1nCT8kdiBQVvatXUinzJ8QH/8tYXXnwJ/8c0lJ8a5eqvQ6Qrc8RzTV2sV2282FviSoh8y - f8+VLmP3nqRL+mICuTy7Gqc8ikm6Fq+IGLxkxey3WSEUJLzfgnYVC1y+xI88lX1N4v3z2NEaJigA - JsBPTrTjBcpNLb8O0ZkYHVABm9e/Gr4fFsSEYyuw0OEEIfCiEvmzmBS7XgwhK9x5zGzs15uvvtrB - Pz7/41ucda4CA20aUaLNXTzKlWrKnTWWSJ2xBjhBPvHyNWyEfT2ygPRWimFgT4j4mCXelnCRC7dm - i8nJZlu6/Uxt+MeXp1/ujIvxpQ1YPjklrvD1vS3zdF/a6wMPqTGOG8NKlQTsZSDxCzka9zHRAC5F - 2wSHz3Uqpm8m8RIZGYzsp2+CJZgeOZAUPiOeIyFNiL+4gcXPLoIt6D26RDfbBEAJT5hZQ0KXPG1y - WMBfTSohk7zl9LJ9sA6sQjw9f8WLWw817LTjGrBvKnqkP2c9/OMf6Q//jmLFALW3+wAG7gEMf3zz - p1+ROr6K+fUN974aS49OrhIXMz3EEfSAziM/nxVP8JCZw8OteSH7Wb890mUfHk5h5qMk6jXA5aWs - AEN+zMSyL167OMNrkBlVP6HS5Q1Ka1Hugaz2Gbmv3nf8/c3n/bvecDRtP62debMBz6PrIZ8sP/q3 - nuD8SFVyPkdDO41+E0Hm2QXEHG9WvDydWwV9qXkiTxrnYgUfyZWQnp/JeZpqsKZXK4GPpbkR23+/ - wVJVoQnb4Bnibfcb3IO+MvkB6g2Zx8GN1yGCIniy7he5t59Kl9OgM0Cvtwfxp76IJzU1MaSHZ0sM - 65QX21aNC1Ti8Ins4H6hq2MfFlAyH4AQ25Nim49AgezimJiu+atdnlOZwelVPImNi66lHnQrWHyG - H/GGmqWLq75d+PEXj+hRYoysq84uFNT2EbAv4TSy38/BBg4fzIHEawmgrPFioH8MP2THX7oanaX+ - 0+PGUb2A5bkWDDwfoY2Zre4B7ZQx/4e/sXIB4xZunQL3+iVX0bxpVGsIA7dmiTE/3nb+Sv0J4vHi - o8sfnx8qvEFHKD/Bij9HbSxOJ10uXj+DJB8SASo/rAl+k6cY8L1wjbfQIAxM7uyDlAdBpJMwieaf - nkTOVtTt0opWBL9qMO163o03nn1sIGs/C1IykIIVEEaSfgVHg1ykAKxn2mRSp9s3zP3hraUqpRQY - skCsu1630/e7NjCNyogY1qwU63CDFWC3QQy4tEtjfIdGCXGztEijwTyu+Y2rIEwJi+Udnzc+KgJ4 - J9GMlyyW9jua0k4yIUgDyarcYuM+9wqa/H9Iu5JuZXlm+4MYSCdJhvQgXRAQcQaIKIpIFyC//i7O - 8w6/2R2ftTwkqWbvnarK74hPLQvczWNRCaJq5gPu/X03FJ/ZGjb6PM+cpUjxpvtVJ73lbCQeIvOw - nr9nHio3RgzI23+5k4F0Hn4884e187i/O3tlSySp5nlONHRzF/G1MMfhwlj/+Nx+HjP8hx/imWij - eKIO3CRNI4ZoCtrPs+oZKa3vk3KuF0C4+yeD2mClBKuaTum1T3qAjc7EUUXfxcJavoqw8uOIk/ip - xsmHNITQ9mIsH5/lMMlyOAK1FQku9vhE46muEL/WDtHli+Kyj7WAf/aDHy3qwJ23TiqkKLgSzJdF - sX2WcwuSileC73w9uJvbrg44pFFH7EdtuMLyERfYZlQixgc/3e0H9RLufBtXdFHoX/yEQUDMYLA2 - fVi+9y0DrOQExOziV0zXN58DWPkONlinbmh3zFMYK5KL/aDK3XW+NDK6vl0rkHQVNdvs8Qzy9bMa - HMz41tAllUxYvG1hXt13P2yTvS7wLkVHHOzxdfx+jy9wCBUXn+T8VCzD/GaRxfArDmq/1ciVySUY - h8VIvMc5duko+yMESpzs/K3Wtt/7JIOTOD+wLN2FYhGfTAv6mxoG0N3koXucHhU4hNqulzzFeNuM - DwSttX2x/nGLhq4i26NACY7zL0aGtnwXPoKRVZrYBQKka38QGdjY1Q1bYxNrK/DZBF7y843gMP3S - FRBeRDbXuAErBL99hlUawT/+mH/tS7wMaKjhy6wZHGOxpnQarQwKyLPwLTJwsz2nodpfkcAkBYEy - cDdOYqHehJjEdTwX0+2wMnDqPz2+L8lRo5isIoLFlBGlc5Zmj2c2tI8hP09+a4MtYSoRZh8BBiBH - Ilhv0pbB/HOwMOZLUBDE+zXQahMEEBVL/Ic34Nv7ybP0SU4F2xxPPRyL/Et2f3HnxE5NeChfBlED - 6LiLeD1UgDu0M/Z3fLIx2jGAvCRTvOe3eBFfIoSOAF4YC7ZS/Isv1sfE2KreQbFEV9lENUo2bGNl - LhZhXEzowpTgYM+/66FqFyRoNCV2JdrDJrmOB7LWfO35AcTLnx7xPc1qIJT2h/6Lf30Rl7t/+xqn - f5QcVEKwzAdWjsDonBtWsnmq4398tn4IPGQebYDx1ZyHUdRpC+6NesLZU6baSoTPG9qMxgatfcYN - RbI3H1ulcebn1DMFdRXVhH/82nmPHuAZJHhI61iHaKt6o6tB/fEvP2Bnzx8/W5fekKmSSwBd561t - 7iCOR8r4PQ6i4PlP/4KS8UmJRl8u4C6pMsM9H2LM12+wfFvBlrTxioODoF/p84JcHnCilRHvdv+6 - 446PYSkYH6w4yTpMu32iu0D3mX8DcrfnbQr+8GJQmx0FpEw8eEwTRicK4lLAik++hVgRi7/1u+sB - jo6kfzYl2KZZowvreW8Yh31EvOw5FkvEaia8JNErQPd7oy0FetcwTaCO3cE+FzPPXhaozBOPDev2 - 0rZEOo8o1LkTsR6eA9aznkjw33keGqkZK+fMoj3/7K/caYDrGaaFNdMOxE2nt0a08auj3R/mw/eo - NfxHu7xgV2QCfiRt2Qil47OQqSyCgxfy6Cw95BL2YawETMh0xeqHUwnzD9orcPeePrr37t6X8zoz - z1NNd31WQtaiD/i+viNtbcNggV0MnjMipdXsfKmH8FR6JCvtJ52lW/ACvrJX4HBUdhf2rDuo8f0r - DhQrcClyNP4fvypvJxsItUchQveeEmx+r3TtNcaDQI6U+cgPl4IunsTA8qnP2K5CT/vDe6CAQz0v - kv8aaMfcRCjhtsKOPDfD4qDpBU5o1rD9YLWYcPcph0zI2yQQstzdPBtsQL3bHsm/ywq2sBtF0O6c - w9A/K6WrCHt4KGuD3M536i7ifc3hNF8vxB1K0iy5N0SAB+GIfZ+/N5Mxmw5s7PI2gz89/HTlK8hc - PiZxc+PbrNs9G48vIzawCpUW0BL7Gbg38olcyVWLhT/8NGQ4Jnr9tZvVyLEITrB0sCtpC6BLvyRQ - /zwLoivPpSF/30dFjwaDnQqAWp9Kh32uNYGUGkPD7vj++Pf9V+Z1HcYULNsfHsJO+1YLnmGlEnhM - 5PyHHz0fpNLaJD0+H3YVMb6TXLofovt8CBm9YBXivUBWmCbWzlkAVnmMMpgRTp/5nT8vxgtA8Lun - ETFSMRl+PcO30KWsibNmnwEioBML+pscYoW503gSRDWEh6hGROafMuVa1SmhxQq/meVUjq4tdUdI - GdwTr8vaYeOP9wSO7U3Dzif5xdNNknIp/eIQy/bCxFttPpNj1uovbB62ZFir8F3CF9a+RD+PP3dJ - dfSG50fsB3UW58U/vcF6Jm/idpnTcBeksVBrrW0+rlR32T0ewmo5xMRhm6+2CtQZITZ6M3goVu+S - Kyk9SJrSwHj3N67qvhLc9VWih8sck1GRdRj4d3/H4yulMRg3yAp9ieU2tWPemh0H/ulXZveVB7a6 - hS/pDy/6pLSGRQykEeRdecT2Su0/f9vg3NYBxpYQgu032zbkjtczxmyyatuzei/wL77KOvsFSxTZ - NcgRFrBFQBpvodC0cH7LJTZvMnDXcxY7EBrzcwZi07h/eB1d0i0hf/6ypCdkw2sppvh23l8454ab - DJP4Iwe8+9vA1KbyCJ/LywrgAbxiap0fPCzejkCUU1kXoyEfM/CLrDPRrQsc5p+im4jfNg3v+M5d - BdGJAGWqkGh/+f7BLhXa+Sr2fnKjkTUXQjjX0YqtQxXFIzHOEeiLWiUR4fcZcqTw/vQ+HJwlTeOq - 7asCLdc1UgmjGG8TC0pYLSjGOFFPDR0nZYPGEDyxf4gVOn+OaYJ2e54lI+KH0UmHHFyL7k4sJnqB - nY+oABjqgfhUf4Bl+H1CIIfLNPP2xwfkKKbweHZqjOWUjvHm+TRFY+7MAeggarrrIMx/5xMcn/AE - 2D/+8rI2AWsvSyrWQ9hXcGkzioudL0+7Hv/H74PVFTv6d/+A/vSiuKJysbaqWv3dxxB/rj36L95s - 8MXNPzXgCrrjVwkVrkJsjH7uQl5JCAGWLfwQbCUWsMj04Jd8NBzU95yur9c5RBU7M0SPwzqeWktV - IVKyx7/92/WIEex6/nw4R6+Baq8vhJJt2cE25Z+mu3I8D/WXmgZVw1Xa1JdQlnY9J3j93fdt2dmG - km3YGO/+stD+xMA9X+KT+oqHeYpECf5CIZsP7c9pBPMZiv/lx5+YxbQ731lw1qPtT1/UJp3YNQj9 - NsP6OevpQuTbKP7dJzm6igba2XuP/ydfMFavmrva9yVDn9NbwMbOh7qBjjkUba/Bafetm/UclCo8 - 3J/Zf3in64tOIpP3xbb/rIc1LzkV/OGPU51twxIxTgDoekiD567vrD3DvKW2iEfitOFbW3d+ImG5 - exEXCCXoP0MkI2sxh3mFikMn4aFXaPn24yzt+Wmz3poMn+siz4vuuQWN798MueqRwbryDBv+t/kp - SErjh5WeqSk17dgEc7PyeNenKM9fow0ezdNEdv8oyIOI0r/4osAPovRo3UcYnMgL63w0U7rzL1Q8 - B4OoWHwDMvFBDZ+yIAbI59EwfgM6wksm+1jp03exVhtRpaUTP8GubxbbR7vXsL3TCivi5aSt5yCR - EWXKkFhMq7iLgRcdzePTILne59qeryEsfk4RAADamKrTs4Jv5XbAahlHxaSzsg4eghgRFV4Mdwvd - nwT3/Dsvev1rBO5AGHiutGTuLcfTNq/nExiff5/gF3J8Q47zgwe3dtFxefjq7lLk3xY+0PFEHq0S - uOufnnL93GT8OLcype6kbSDSmSTY8T8lrPOrj9q3PRP9WnPauOiVCNd32/zb32WgYwYCq0xx6QSn - mHIHAsH15gzEudyxRpfPsoE7/wywtqa7HrvXJm4ghNg6OInLVR2RoJw/MfYeR9KQxQIZPNyb7O88 - wT98SBr8IMrxWBeLWpghrARvwYEmJHTVWVuHFkwOOAglhhKLKSQYap+Q4M9tbeaf6wYQaKuJFfft - DLzngwQK3vlAZGBQOp3bRwVIUxlE2e/jtm0l3f+nogD974qC7MvmRP/Yr2YJfWaEI5XRzIPwF8+z - apjwW2kj8TBzpt356Ffw8Z7vAa2ZNqYH/dejQQ3OxLZvnrv2xxME4PomBF/OM92QG9pQzh5xADus - UOF1PlWQYL3ANgCTO2uXWwbN7qFNR8S7Lus/4Qia5GjPF9eXh+mW5zXMV0qx6y2kWCNct+gMTg5x - Xo41sOpC3+hSSR2xqvPTnSabtnA6X1CwboEar2PqtzDNqgK7fKVqQqryG7Ko+MPew+MHesp+PYzN - 9xIwC9riBTpPBibNwM9HaPwGitqRB+/4F5DbIuh0zY1fCrafKM/o+TkX1C9OAXyc7v3MDCcNCAEj - LhBVMovza5oDtvA1FZWmGxH89eahs9TzG67OyBKXz1FMbuQowo8BrQAds3e8LM6rggwKZPKw0pn+ - aC3UyG/uMXk8N7FYpzBaYArQfpNoRZQvL1mOVN0aSSB4SzORVkylvsx17BfrC/Dh0a4Q324usfqt - b6bWqHk0UhVhO1RlyjcsqGEzCQo28uPL3U4srGGdHENc8ofTIHQ/I4dcpxpYX11cLKcWJnDK6xM+ - iSUL1vCoMmiIuZU4vZ/Eq1oEM6TpEpMHc3gOnGZeathz9UrKFzcUPO4dE11eHcY3amqucO+3EJ4j - uSL5xYLN+v2FGYpH70ROiZ3FQp2yESqOs4GvXvoshIOLe9jE2mXuw9+D0iG137BaNn0WAq1yuQp3 - JnyyekkedmQPk++fZPgEzoucLfPmLo4zQLhe95ppL4J7r3Gno2qwe3Jzv8FAFDOr4ZFvFmzdLt+B - /gqQQWV538idMhOgnXFn4ZF/LkQ+HD506l5jjlQ3M/DFMy4Ne0XnDHFEd8nF568aNeTHCAv5Ys5g - bLFLD/MhAJ0vG/jmKx+Xo101w+N7QETrEwFsl6nk4QknAbH9izHs62uBbRVwltjHo9l0ufPAHHkn - kos2W2z2I3TQFOMlOKZXfiCREuaIY+8RVh6cMVDs8SoqI34jqtcPYBpsOwOseTCx9uOBtlKERage - kgrHXKvE/O7v6PmLCFGTuG64i3ZaYCt2LY5kAw1TpkEIlWMdzdB0mqb7veYdMe+I0+mceHudXQh1 - 5SOSU1XZrtBGhN8hVr9/z2dY4yNjQ9VAD6z1yRUIE9UdZMtXnuhDDLVJGl8dFKcgxI9JVwAf25sO - JCdOsZehrFi3aEvR7zC/560TUrqV/amFw4W8sUHuYrEMcjOiTtc9guFYDUv2/aroY0xswHAFcflF - W0tAOSsOQHLTtS0nMIdxVjXB5St28ZZFC4/o8zLhW5Cc6Fau3QLJ7ccR4/NzXEHwySgx50OA/Sq/ - xYJ9dipoFmuDT7NzGoSHhSSYb6pJqgNGxXYORhGAclX3/ZQbnheNDd2bcgjYtrDijUwxC0MnqYij - bvr+d3+DrsBLew/cpk1EszcUhcsbRwvTxWPd2g4kftAR6xykrvCefRUexaIhavVxG3Yctgql7gaw - bh4OzVp/9ArK/tDi29aZxcoflQqRm2jjdM34ghJ2eSE+kTIim5/zwMOzA+GGbjFJQrUHVJJePHoM - S4PNgCuKbT8PuIYWwNplUZr15XQVfNV7DzPZp3qnj7KDwud1Jm6h5sWcEcWDHv+RCWaeb7C4t1eC - cvtnEk+/vbTxOhcqJJl6wQrRnEKYUrqhobAdctunzvNtV85w6V8KUd+33J0vpymCGHXMTFfkNdx8 - XRn0MRiLlKE0DHPN2gmUPw7Fyse9xhvDTSOQZ30M0hNqm80nUITry1OI+TUHlwo+maETmAmxYwbQ - zSWnGbwtT8FXbY2A4HkOD39uI84o7td40y0zAI7nPXH0u8R/9iWj9aex2GYjsVmyrvOOh6KRCQbp - CKjgf0f4O4kZdvrhrM2U0ByBywz3d/xYQBPpnYL356mQy26/5G6pe48hq+Iz0fp4pV06wnQMFGJJ - leduleV7UH31h4D51lij5TLp0Npkfo9n5UBjajgIJnd1psaLGZZG0xZ4DiIBm15715abm3Yo+Tx/ - 2BLWBWxxeIugaUch9j6vtvnpR62CkuaHRK4bplhMaUvgIKfVfNztm7WnOkVPDAjGDICAjjh5w3Lq - Klxtc0xpnbIhyn6zH1ASngt63s4MwoC62B/A0/3xx1MJHUsOcPHMnHhUfkmGhP0iSMqWNV49vskQ - 4mqFxCFru7NqFipMQqcJomDvSTivbQhD/FpxLtpJzLHCRUeV8BGwF/hhsdhhtcBP60gkcDir4A7P - xUPCYgw457fXwDNn3oZV9XBIym/jsBy3K0QLv/uzXI5gjYJvDrOtYEkgXbtmmdTMhK87tud1t0/W - cRoI0/TdEU2xzUFYZ/2FYr/nCfaDl0sS1W2hLbengD1TL15j5Z7D5yv44dPhOzbD5xazKMT1ilOv - Re5ifSwGmu03/PPXYQl7S0f2DOx5e98kbSFglOF8fKgzK6eneE6zoYc03WLsXNnrQML9Tfa/eOSO - dlRs1RZDWA7bQK5CzGrT8ypV6GTmFxLkB6Ph6HMZ0RomAQmU4qxtgVDq8MmaJbGmI6JzFok8fCVn - jD2nq+M1oqENCb8rZsrLaYayoCJcG+GJDV216eYxsok+wTBht6iv7nIjZgCIab9m4Aee+y8eytLi - zdsen7hmqlj4uX6+WPXtblgkm3vD8SSGJE2mudlyz2NhCg4zNvTaaOivyd9/+4nd4DANFIveAkvR - F/d4IGmTFZYhXLIuwH94gW7eKZH+/NceJ7sRjI9cwU/YPGep2l/q+3R5AHZ89C8/bEKTtEjq55LY - 4B4WXOhDD85eS7AONDXer+FktF7qJ7k8Xb/gtcs5Qz99NIjqzpu7NVljQ3QxQQCmY0wXTswWYDqO - hm3KFs3k5bEMrZ8OA+8b21pn2HoGwjjMcPz19YbnjAcPvl7m4Wish2Gxr4iBOmR7bP9ey7DqR7cC - 3qE+zuITyYNg3J8RmPKYJ9ol0umasG4KHmKlETtrnJgiJymBlykTub+jcZip57Lwnq4uMUfpOGzq - q8nAp7WlQHyERizoW15BlwEyCe5jDf7iGxwj1sFqmfrFdvlwPZytvCTei3NjFt32ntl2c/f9ecUL - Pqwl9B6JSVy6mpSr3ucQ/jo/I+GyKgVv3psNUhvLWEWPlY43fsogdxw+xLdOFlgK8byg2zPzcfAQ - pJic4DmA/NnZZtGnr2Jbsr6DTxPxWPaA0qxAxSZk467FNn43YCkPC4Q/VhQDRrSdYm3OZgUCpBlY - Z9NvsWS62MPd3nF8iXQgyEJkAsdwCmJcHi5dXQ2V4PbMfRyan3NDP/qrgzkBB2KIdTMsXSlL8HH3 - Q+ymnVrMNSsnUFdYN9huv03bTmcdHqfYX4j82mDzu18iEdb7JF5uCnJtKgpjhjcaydg0t3mguuWO - sFfaDNthKVJy8GQWbnr4JWGV6QNHdeJIyImD+eBojiZQsojAc9sa798L1tfj1oPPhGXiJpdHvOlN - +obGb0ZELVnHXQ/8Lwe1EJyITvPpj7+wcDpfEVbw8I1HAJoaAIbrcNIe3+46jY0NNcZ8B4sHns32 - mpIEKI14JMmOTwTtMFYgOJkjkdFiNdx9bSJpx8ezpIVKwXmM08KVGXzsH3nF5VSGCeG8PE9YXcuP - u/q+osLvk8bBkffTYmXjqQbwEc2BdGWFgd7IKqHXxr4IVqA4jDYbpNA+zhxJR+k20Fv8rOHTmUry - l19pYFQ8NPuE3/O7UCyL05fwwb/DnR8ohSAEtQgWXeyIrvxmtyP7DTh/tjdSpolC10r+jbBcMyPg - jcePbnxSBVCcvJAkLjhq6/w4O6jXKhdr9pQ2/VtbGfS3v27wDOn6IVoA9vPB+l1Z3a2B0QzXV6Bg - n6pssXG+6MEYv34B983dQZBSGkkhfbjEmALJne/NpYV/++nw26uh9+ApIixvI9Y+ZaPR5EMd+HXq - G3aORw6sBg17yGLpQJwQW5TGKbvBpt0AMenpSumXf+QSiVg12J5RC6hWsBJURn7Dnnbvij+89Xf+ - 85ihLF6UJ+eBEN504oMGUbrjc1AJvEO8aJjc5XiVN/i7F0MgOo7frPejWoJpdH/Y6NJPvLyfco3s - 00vd461YLAfizVKrjz6WgTYWm6NtEMq4uRHXi7ZheY6zA7kkehDlPeXNnAtxi0qxdEn6cs7D4qKz - CJxNnknwPC/07cxFDVzmKOPAjXV3eYHxhR6ZjIKGP5oaf/mgXhICRf9vfUuk9IDHIYMjbTBiYZ7O - KfJeXI7VcZ/KemrZBN5ORxnfqMrEc2UZAUy8DGJv2Sve7dMQgpSnBTYIuLhbUbieFOdJGkgOtxZr - 6nQMpNC9ERWEcfF7fYTuH/6Qq+RAFzleVLSvF9sH03C3+2GCQHcWnWQ0Zeh2F80N+NzFxE59a7VV - fX0kaPDZHZcX3nC38pJlSD2k1fxOGD3mgeq18K4fM6Kd3LhY//7fudxvBD6IHbYvs4WwndhjwKRP - G3ShFY5gag8pNp8jC+ZWn2xIDnGAMS8uWl8m1+CPHwV/+gT9IuYNAQcI0VvuES8RbkzUHfQBh8/H - FbD5r8ggJY/jLJ4JahZXXx10cU8qxgrMGmpavAgfqetg90YuzbaPoIffTLgFfKfqdJulDwuHHAgz - KqZKG1Ux32AICx2rhznUpvi+dxh0/HPm5WaJZ9SSBAIU2Ng7qGm84l5voeScU6KRcC0mfn2F0mGj - Ej6d+Elbn+AlQw78KXBWSNe+XN9QShl+5nGcuevGP0XkhvuMpM44Dhs5axU8SHqMSwD2qe5GkyAh - 7isSTNkrngtG2qT7J6nwKdjaYU0j24ZR1F2xYlyuA/0i/g0VoX/gP/9dx+3CwM5XDaIaylVbnWzu - wJk1dGzt+oNQSwMP3WVjsSKqC92S61JB9NyKAB35p7vZj8yBnlhR7F0yuxjliOGhspUexs8t2/mn - yAL5Y1McSNyn2OLwHMKUBV3QrT9V2/l7Dnd9DWv7PIHlFnH8scmN4t/+U5J1Ntr5A0mrjzJs3M/K - oGXJKbm0VksXtVQzVA7LgOX0HLvEfOO9AoTtgzQ41hp9WEgEZkGbAO78ZNOLQyYNVv7GJ47chm2u - 7iV8vrwfPq2XZ0O1w1hKdyE442TEF0plz01B9D4LWN3IiXLpnNUgk68BxnDRio0SkIPVmVnsMBwp - /vItOtx+Pglqmmj/1jtHwekvvmozf3hDGBGrCQ7PTYwXe+oSQIZnN7Mtd4inobm2cOfrxEsUhhJZ - yHWA1f6BdWyeXUpCvEHvB2rsPz9r/A/PDHVznuGOx4jXFQEslsX7wzPFqFk3D3m/Y00szD6Gjepj - D6niSPifPrNkfQ/vD6LP+0T7Qug8pMI//JL5VC1YF90k8BXyEZu+fqRz25UjvOg6JKcg+YEx/xU5 - sJdln3M5XLXFiVwHlJI1BEeBuYLBuD9DCBv1gvVhn6IvbhFE+ktlsPNyvs0evwMoGZY20+/pQKny - qkVkT8oFG/1HG/jHR2FQEskp2fULsBZ7xQ7rjCN2K3+LF9F2crDzX1xCmmkc9xpEOBaLhnf+Ga8c - A0P4NA/8JEVV61J9y0toJtOdPGolBdN4HzdQ34XTzH9NV+MnS5AQglcWe/zh12zGEdqwXN1tHvP5 - SGm13SqI08wg6Vvw6PwXj9g6NQNBqkZ3emtshXZ/xydfMbR5/JwquDzmhFjf7zbQ73P2IMOGFrlu - V6mh32frwUka4W4vrLvgUpHQAUAT+8NdL9aIZjbgY/lDTk3+HNZ0DmvEfnMvOJb4RP/0S0D4yyUQ - HOiA5YpuObhnHUNSQ/G1jRXyFlTLcyXWFawu+XSRB9m4b4mbdq94K5htg0LGr//wBT3i0gSmHYYk - Zzgcb9+4ecFn+cH4tOtxg8KsEURE+s5oz7dbQnEP/Ur3sOVAh64tc2qhrvAuNnd9Ynie+hA84yH9 - p6cKt/j5QjtfIO5ob8WWgFqFUdGGWD9Tr+At9pSCayMqs9Am/t6+Vc6wEliHYEnr3D89DIq3st/5 - 8Dfm72KwSJ/r90tc5jnTod8yBupCf8X4YaC/+GSDfJNNkjwfPlj384FB+T1gra5/DRHlywg0Qa0I - vidgWNbs2/3Ld4F0tZsZ7j3Ev0Yzgm0++5pQJsl4fOjxley/r603/iWBs+Wt+AzeMVg299IBX8kn - bFxnR1u0YMmh85jYmXu6U7zzXxVcdBMG/MpTjQyp/IbBC98IhlE7rIWQ6n/xC8t1U8XLLUIsKIJH - 9E/fXOKrGsFP8JsCkeTNsOT5XYaWxBBiY/Pr/vF/2B3MvQLnjYbJsjkdQsQqRLO4ZyMMR9GGlgQJ - NpSLP/A5YTOYLJf0P/zWB78MSEypkj+9aHM0CYI9Xv3pO3RlhbsJjdPLmUH6vjf04Nn79Hja4KAy - RfqHnyDQhNO+/l6jnXFhwTmHV+KW5QLon96dXL0f1r0br5H0+mXgx1sl7GX7jMLndauQ97DoDHb+ - v1xvTxb94X3rmSWx4OlDBw5U9Wco3mp3q1k7hQzyZJz8XnmzbsSZ4UO9vQPW0vRiW4kdwD0+k8Bd - a7qkmh6horA38lBzLu7NjwP/+CLWAmukC2C9BF57xsJazbTFND9u9p9+S9QvuGtjId42+KohIfnl - c4yJlXIhdM7fbpYuVjmQb45VGFamHqD38isI9hgVikN6/4d3l048R+g7toeguytfdzpFdgd15Sti - C/3e2ru0Qg8Wk/rZ9dP3sHWvnyhtNbT+9NhG+DV7h5ay0bnqJKMR0Jl28JGpaD6eeN+dSp/O8B1E - Fta+g1JsZXL10HCZ3kSz1pJSR1tKGJLp/Y9PNQES3nDHp8T8w6+w3ZLj7s/BcCOXYU7SQwTOsXjG - Ucw1A+FELUI7f5vNv/x88GQepfd+3vWYz7B6xPOgfrlWAR9Vi0tPtc3D4fvd8QdlC9IZd/648+n5 - yPt8vHp5rMK0twA+nR8K4CRW4dGNhjK2dr1n2dx7B/7d/xwzvRD+7q92/Xzni4fi9/VtGSbM44V9 - v6DaEtO8F3b+RPDMNfEW3YcQOtkwz9vCdMX2LdQZHh8hT8q+qrVtqU8sDE76iP1rbGpk5ZoR/umh - pu193I3Gg/rvfsjkFFdb0K1L//jOro9QOlrq7S1Vg9MHwh5ft2ut8sBpHkXAdayqbeVCWtCYF45o - pgxienUuEN6Ppk509w7j95tbR+Rq4hNbgfWiu57jwca/Aey3h2+znuab/IcPiLF1YUzPx9X+07eD - Y5MrwwKdH/ynV6uRrmqCHrwk1K7vGl8M2scLa7x4+LJ4NQA739+i1NNBtTQr1nR8Ayt/uUmQOWlJ - 0IH7Umza5ZZLux42i5Iz7P6kjpKrSU+irqWh0b5fFwjeISYnoS7cKQpI9qfHE2vVL3RpNHeDUXFF - RDEuwjC9PocOZL+7NHOaSdy/eAv/9FNd+QUaZz/yfp95vWEjbKLin77vLw6dr8qLbf7Fm+NbCv/l - m9V/bgHKkF9j4wVnuvA+8mCD4xlrn4zZ72s0iPYWYKIhd42nnZ/D5HjGWFc/34Gej0f7mJfZiO19 - vf/wx57fA7r0X0CeqqvDJAgJfpBY1rih5xcE05Qj2vTAdImvTgjNSOhnRuKMgspxX//hp/3VcDae - YuWS7a94SzhRP1ZD9aCXQBLaDXa+puKy23eWIfhVr394m7tcJQbu95dEsWvc7PebJQztcpiXw/On - /d0P7TNNvlh7kS9oup+fQ7ZOTHItzJ+73Zv7G57WjMOXVxW59JtbMmj5hZJA6KeYzqffBg9tMpE/ - frEVheYhLzx851Y24uGP34L7HF5xUQ1YmxeYe9A2tpJoRtvEq3O2Srjj5bnZ+cuyfWdVutzGCzZE - 1QRsEzn2rvrX+NQf1oHs9oFil2r/8d1DBFOoimFGqn74uhtnnmVUXQsdm3avUN6BxQi5ehqJIt9V - wP3W14Y+ky/v+Upphj89T3yHV+yCNAWs+zzVkK3KKJjNq9OMv940oVWfNKK3xXf3b2f8/1QUcOz/ - LikA8zUP2hOXN+OxUypAlLsfLMYSxDxjPQIodN8zCcbPQunZyBhgC+8O26/RbVh7EB3UQdMh5lnS - hyl9Mx1wv/UJq+zEUiq/LxkUl5eGcQyRtvGxWUp5NptYzY6LSyX/XKOHcmuI03DPYk0YUYfNfMM4 - eKxnQMiXXSCXLmecRU/RpUTqHCi7N4uUhXsHizdDEV7vDiV+8uTBKnWhCYj2S3AQrqNLqpANEDsp - zLw2zVUb6YvMsLn1BVZ7uhV0+FgS6oQimRcHgniTfFVCmpwZxDwYP7CNwtiDluY+iTdtapY4dHJo - esoF+3fsud2hqSN0lMbjzN4eurvpR16ELgwRrvKPDvhW51P0zZ5fYuXHuVmsJwqknJc+xHNfY7MK - n8ZD2FQJdjaw0NWQpAUgljuT6DqpYJHfUEateFJIWAILsKOi5tC5FyGWS2BRevy+eHQf3hK5f7U3 - GNlm84CxFO/5xg/FwIYAtjC+Zj3JKv0AiC+eA+gM+ISVt6tpbLFtHpxsivEJ9S9tkdLuDd/9iPHt - qPIFvcZURc+mcbFRVJ22dkPNInB7t9jCx25YE2YxkZ8uJXZ+/RE0wRG0yALnjjisVbns3/lA57IR - 39SjgW+OJxPdJ6oEK3E7sH1Nmweu5T+JHX/BQCtOLlEdPa7zcYyVhj9xlxnxVZbjCnzSgedlN4AV - w3LkbjmpJjRH8oaFWl+xOVyDgeVnXwa/Tn+RsOccjc9a0kF2ZGRyZ9G3mI9709bNqFxi+6IH2CrX - QpRcECHhib+C7W7mG3ApPs70q1kDO7VHGQaf7kT8Dm/a9MuvvCScuxQ77YKKJXCBg/7s25C8X8w+ - P/v+PfQ7uU6HSlu9mIywla52IGzfH53K66RChtmrBoo1GWjPhxK6ZbJILh1nA24S9xGAfP0jD/+t - adtRFXUId+lxNI/PeHl+uhYiV5FJVDiKtqmxmCPyFOjMHyUY9y+nV2F25G97k/lMZ8p+eIRFSZ9Z - P1mG2fs8PEnpzAmrhfPUqDJnCfxJA8bmgzUpp108e7/CEEn5Tc8xK4gPHmrXq4wDVTgNm+h2NTSv - PwsruTSA9Y7iDtZhHM5H+EiGVZGZDEb4LpLTK68GDq9LjqqqxLhShd+wfmqtRupi3LGZSf3As43H - wGxvmpW5aI6X795Ufu6cK77xAxi2Ej4W+Mg5f6/Bvbgsa1c5/ICdekzEbNhaOFWw3843fLoiqaB1 - lL7Ro/uZ2M8veOCdQs/REjUKVma5KLjw92Dh97A6RH6RuiG7vUHDpjmWgXLXllkdN4ii8I3jCNtg - k6OPCN2Lks9A5uKCPR77FKC027D7PDf03/r+2WdUS3QW3e4FH+SlkZgJFJcNuzVFnV4pMzyxKKZs - E7cogF89+P1gC5bv8xFKivGSsX6wlIZfajsAZZccsH6MbTr+bscUfSfvjqMTlZstCYUaAqZXA3g5 - LICVT3KKgECNACzXOBZysNdmqq2CFYaVtDl/KDM8EyvC5/MvoUvzVRlYfIcV23s8oL5bvmDKwISc - 367mCqPcLMgtxCu5PR6vgUa42dD1bRGMrzdQTNBoPdTv79helUNbTJFZ6eBmddG+/hxsb0/P4Egu - b4JteC2o34rJv/yhTPfbsH3Sq4cObOaR4u3K8aprQwSLeuZn8XrSwP7ErInemV+T8+FaUOFLRxVm - 26Gcje2nDFw9XRz051+Wd/DiP/88nqVJJ5dMcdxV0l1eeoZMheWnssZr+HvwsMeJQeJMe1K6XpkQ - wr7LsbJceXc5HGIG3uJIn7/r04z59frtIe+CARsxqAuerE8T8s0JkwffM/E7E9EGckfysSFWuTs6 - U1RD4EMW7/5Lha3/dcKzz2wS55etoI/mUAInrS4EW34Xz8oJVfC15SJRTo1bLO/1sgCpAxnZ42lD - EYog+q6HCPtu+GhW0T2LqAm/V6LU8xvQMF1ZZJsgD/iEfbrrW0p4eDNKl8TX4gKEO0UMTB4qnd8I - Jq7gCsEIL2C+zcrWfbUlE9ECL7agz4fkfXIXhNYW0VNxD6jmZHSx0FmW8sdPId5KL03nJ0Mr2RvY - iLXptst//HZD0nbRsOErb3fp354NjBYdg1E7vOnPvK4yOjxSEgBp9oFAHl4KjZupYt8r/JgOU1dB - lYc5jhAzgEnmmxoZQvSc2fETNwLqyRvSuTySyDbWeB2dUwXt2UHEX+ufu7lRAeGRchBf01CLWfS6 - L/DOqR9sPLkX2CZFeIEsRTopHLOPe86mHfrRMcHZUfi4HPe2Wej/ricSO6PisvL0LlFRjzwOSXUp - OPul8fARixHJW79ohOayX+kGQh8wmcANyzbIkcSeUxxMa31yeTpwORTf4pmk5bWjpAhwCmnE2bsk - ptHt/Gsr+Jc/8azE7nbiLiMKLtcnVr0ZDvSt9S28yesFh6LngI0ZmhLeh1bCluSszR4v3iACWUQM - OZ4pPeTn4C9/Ya8PfcAriq8Crd4GjG8L737fWv+GL8I75AqfXsxbsNnQLGov8pff149ORqgEg0rk - ObLjNS1ND1j5USU2O16blyc67bG+JQlOq98xXqP+lcA6PIdBzXGLNm+mucAepwaW8furDWP8VWFf - KBzOjK0plsYlNvBZCALp8DNdjhc8Ew63faytehZjyvEVL4H5ks8rMoZiDXUwwvM+pveGE+JSSGUb - BVKGgm5Ar4F+0g8LT/npQoJToBc7nnnDAiZfbD1eN0q8uQohsvkjVr8pq02p8JJhtF0CbMhxQCes - nVN00rwcq7EhaNvhHNmgYniOyJfbY1jK5y1Fc0gPRIe+UbDRcwjBnj+xniV8s7ryu4RyXb7Jpahs - lwL9qSP28Jrm8eW8C7r1zw4JU2jNq0a2eFbJqEPOT9tglaOkICWcM/CHH+5XJgGb5Dsi+DyEH/Y+ - ukxZJ/86kK+RjZ2EBy6RKimH5K4zQaSes3jtMlTBYq5nouoddRf1/mFAUGUfcu1CEq+1fZSh8PY1 - clqgB2aH7wIQu4tIzM/vEK8FOIYgk9XTfEDmPmZ2THu4GlmKT7+boQltXW/oqTkf7MT9BNaJiCYs - RfIJvhH9uJvu9Sk0/DIkNyX3qOCVKIePXPCx+WwudPXvrw6uzZsjpkFWbYv6vaK28XXyMB4398/+ - 4EshPT5ZqxWvD4aXobHc3kQlJRpoMj4his5MN7MbnN0tPd1auH/v3mQAC7rqVIUmI/Xznz2/smMh - S394CGFxKOb8cZpheXi/Zvp4PgpqPKAHhvAhBpc9Pq1q+1Hh4zy6OLpOL7Bqd9gCVhwWYn6lpRjv - eKlgWx8rHJs6F0/CZ/AgIz80EsC9yQ2ZbvmXb7EzR59m0JJUhIc0HmapXe7xgtDxDfW4k0n20dp4 - 3dirB6uniojNI7sRVpqbIHo3F6w4pu8ugUttCFndIG4jRwO9LWvwL97Fo1AP2yXfKmQU0YmoW5pr - tJ62XHqQWsNO+naKBac+BJZTl+TvvCaR8CqMP15DsvhbNL2gTG8Q/oaQqNMUANrnSIeHHj5xWl5t - Sv7WQ1Jbw+emubqcr5os7B/zMB/md0KXP/vXA3Qie36PafW6mGAO8DmQykyLuXWDPASyAwNRDYG7 - mr+bBIcfeGHHtsxCcN5aiRyeB1gNaduMT0ffYHnOdBwwD+qSHU8AepuNfWAq625tHdmAPdQT2fHP - sHxZtf/DG7v9HN11SsoQhvqXnUUO3+KNeVEV2dtxw/IcdcVM1qeOLlFIcKK3oFhukh3BZxcoxO7q - 97BtfSyjf/wnwTvsefgyxI/yFqyJTIY51yYJpp5+IPEwbnT5w2tq+9uwerzUzWo8KgYumIlJYCZf - usa3UwU/tRPNq3f/gt2+ZBDI7RRsr8kGa2W1NXwpU78/i+YWnBd/Z3jBszIL9/AUby/npcKZER8k - 2WCgLQ+OgVDPWzD/rkiKZ+kCUjgdyzuW1XhxV5EwKridT4AYB5BpND3VAfw+sjepcFvFa+ApGzgc - pkvAvh+9S89GyPzbj7g+DcX66SiE8cJf5iwo5mY5elMHy5L4xHhGT22NR28G8qsf5i3uMtq9JTM4 - Du6kBWs963T9ImWGHwQdfF/rk8Z+QDbCeL58sFvce7CIrhtBMfSLmSPko/0OHOlBeDUb4rtYdvnh - /czRn30qn2voLmXwYcC6ZjOJsTi7NNTNEmQbKoMyfW3DGvqjA7wRugGjazyYygC2COe0IfgHTg3r - noIQ7PgHG817HTaS+uEfv8NlZUjxXPySF8qKScTBMTZdYc+f0Hl8r9hjng5YnvNZRc/OU7C+P762 - iYvXwTJ+u/hx3yWuLKkjeOxsD+Ov4rvrcxZe8MIKJcG7f9AIDwussfjDsq4+tJXNfQl6rRHMUuhj - sGXtt4NtDSpiOP2vmP7irdccLewrhVX8i2+f4VFg49zjYv/9Gh3y4TiXO79bu9BQkUCqAFtKqQ/r - +7LMYJQOacDJ/NKQw7lb4Du/fQMUOKW74+0cfrEBsWmbLlgeHA+hlNhvHO74d34c9B76QxMSv68b - bYxMXErloX39xbdmPR5FBqJav+MrPtoDP39bB4hcJBCjrQKNSqnCgD+8ppS/nNJLcTKl03UvYSSz - RZfG/TqwqipMdnzecFVYMcCvPYvc4INtFiaEEkSscA4WP07dbsf3UH3fh/k1OZP2L9/vfBbbGtPH - u3328JO86oCthlX748dSYD07fBGikS6Pc87CW9P32K2u33gpNimAPzonwcG+XQbhPhg12vWM+bjz - K8qd1Ej6rij6F983+dC/obRdNWK5Z0j7S76VkL9cU6yYv4D2JXY9uLH9L0Cfy2Ug0sp1f/kVu9xL - BtxnHbPjV2QxUdJz3WyBF2Z7YvoGzHWwC4FItYOm5KZg3U/C5u//w9zXE2Lv8ZJoKq9CCqMNm6F3 - iWeZl5x//MTb9axROyobKL6/lchl1rpdP7Kt9JN+OOCEyNtLvFsTfkUeB7APJzofOCYEWdTyMySl - BOZJEWoUM71PLEpTuhg/N4R/+E/LxUTbnnFUopGV9xIa8tHGYHlEEKX9tp+vRDcDnHK485sZfVtz - YGHmQPCHR7Vfrhbs8VLpEGN3xaoy883y3CX8vv198f12ejXrHu/Am08V7KpyTSm9yQsSj4MR6Foe - aOQjbTr4szdtrQdAM1d9o9Rw9PmnjahoSWqEsH8/auxBWgzkYl9G2PMMxljgBjA0qh3Ah2negkOV - Penmq5cKfnRfJHq4znQbTv5bGvTFJk7PWcWayvkL3t29afX5cahwfno9NBmxJ15ssPGzDPaHO5NQ - w6dZXWKy6lRG30f+xurOt5fhtPF//A8rd9Yu2AWkPbSPGyEa3WCxeeW8/ekt2G63izbv8Q7O4agQ - /1pQl1yatUadXirk+jkmQ5c0fidVvakE9PE8xCSiiwxF5nacOfuWxZSGYfLHB7HJH+T4FxyrBJ6f - cY5lY5njDWV1ADcNFfPx/n+kXcm2qrwSfiAG0knCkF46EwREnIENgiIKJECe/i7cZ/jP7nCvs457 - S6rqaypUobkh0OZ5lcAhx7GztQIpi6Ov+vwSTPfxsgPzh3taqhceL0TepmYiidpBVMN2h9bz0djq - T6ZwM/od9tp710yKKYQwe9Xfv/xZlJlqsM7yihabTxvQbzNWivjmbXq2Ui9hGbEydfUbsSsWLRtf - ezeCnyL+UI/Nmx++cXDJLj5NRO9k9t5Z/v7qBdrND6cU+MP1BjeHWsI7a1sDekB6AbWtgigGsR8I - 4zUcoLz92NR9H0VWHGw/hezmJIQ/uV7Japouqn58cdi7342ebd9fERhb/0HkrWQHC1cDDf7+3QiD - Akz2x4zA4dh32Hwd84RZil3D+AA7mudyzOaBvFrF8tGRBoGwNYm9RPDPH9lzc2UysO5KDw9ZQc37 - Y1MuzZR/twpdjtTqoWsyG+QGSODFwekX5Wx5SFyr0HtikxTuX8lyFFv/D483Cu0SJl9zAz4bKcb6 - SzkAdnUeOehhcaDO1NmrPqA+dJ1tsfLH0ewvlUKAr84i1htNWPFjU/38nL96tvp7CP78EyPp1iEr - N+DI6/khbjKoyfdxE4P+6BO64gWbX9abAE5JEmy8rKafRvq5geSFGupojRXM4zUkcI0nvP/hTVkN - FqhO7p5elu02YFcmcMpx6Y9kfnePgDVXJsNXYAlUz3gjEV4WJQoqtBM9zrfUXMzgzgOpYDm2JxCX - 48Mvc/hszTPeHbpTsyS1VoE1/9HnVMjNfH73NUx1BMhHEj3zi67bCG4vdUFRD1/lz++GP/26+hHm - ZG71SWl23oDR6seNIim/8IdHaDJosGTaw4V2u9nS8L1NgqUvZQhWf/Cfv9SX30yBYhwSzjIzJvz8 - 25V/IGgHSzD/+PLqh5Dt5/wyF67vL/Bpd4zGeUZKVss2AsPMp9hVVdQTqpxrKB2+GZGk6GiO8KNc - gHJNWuwsiphMMPe5P/8SydMzmVGqIOVxaTEBidIEv36Eksn2iUza81HOJ7J9gsEPfZyVIQhWf0hR - b+z1pe7oYTCxmg7gAEGAtUIPEjF77WPg6+xONsfv0E/mu1PAcVvFOFr1/JJdLjx43YUPUZ63AUxn - RYvgj3//6i3JtIevhnIPfn5p31Mz7+D6+5AobqqffxdB7iyPK/+zzfkAgxB6NzFAMu8dAeufsgHf - 5sRoWZHaZGs9hGMcKnTtPwTTy/LQz8/FmaTd2fzzC67bgiGOJJU5/+qDlIhXJK7xSM7vxf/xZ5yu - /GA+HkAOH3Y20PD1Nnr+ZeloawYUIUUQxmTSNboAaLcc4e8oZou15RRoTLsr/fnPw22nGWD1s1Cb - acQk5/CWwnt72aDtqnd5ZPoECpIrEeUNvmxZ/VkoOcaTGvvtN1i+ohHDY3oRcWh1Uzkn6vgERzCc - 8XXbxs3IcRpSf36AyuEr6JqA+tvYrVUiIQIC8qtPaz3Au1sWgmECty/kOM77y0d2E9yL3JRijQOj - qZuJ3r8cbL2P8sdnJX6DY7j6EdjO9a/5eSopD2O6VERcFLH8y6fVf6Luy3QSpqoFBwoHn/AepDpb - VNXKoFcERzRF+6X5nb/641PKip+LdYwXNbrpN3q3kiGYW7auLVb6gqiDfE0Wgw7Ozw/Dxs1Wg0mI - zxngdqmGL65NGrr6eQB2t4SIoOt7svphwL+eI2r+9K5weFpAqHMTmw9ZCch8ot+fXqRuxcFkPno+ - BN3JIBS5fd0weHpmYC48H2PjBZsu4Un18zewJZ6HZCn3lQjdHop0d8sGMAcXN9ome26DlNVfWbxh - jOBZPt/w7jjqDc8LiaN+oJDhK1/YjfC2F6Q20euE/Wiae1qiXbZV3Hr5O18mJVcH7h4Sh+T7QoP5 - rXrkpwdIx1VRwh6Xcw0m4i/UK9KjyZx1VTMRpJLUHqv6BR1dHq79Qhrm2zFZwLKt4Z7bqSsfN3r+ - QQ6a6r6R8c8v+Jy3KZSlC4cPV95NxJ/fob/kFutKgMAffpzE9oaE5fNoll+9Oeqyt/bfuKBZ/QX1 - 5D8dHDzDDVtqilx4nY4Uu9HiJaLzqSp17ZeRhXuMTQf2k6tuzIHD7luWe4qMpwVDJHyxuTWTftbi - UwzT7nbDXoekfuj6OFRT82zgpK1s9oosNqhe89Korl8fbEmHMgVjeYQ4PI2VOY3BFYGuupzx3jqa - bFkcNCnH8jzjPaxwMD2PtQPt7a3DPn4+y2nlS3DDF+GPbyUTDTctNIXmTgNYt+zHP//872zlS0J7 - ShwYvFIDn3GKg5nuHQTThnUU1e7Qz5bZRKpmRDaO8gSan8qdDfih5hXxm92jmfCNK+BHEzdEvDlS - M8k3p1Ij68UjYcUXxvF1BS0/POJ0m3SMOYt0gcRQXPJC08KWe1FVW9sqQ7xny7YfzaPlwndvZNj3 - zxn4+cXAM1GBLQ/tgmVPCxeOUpThy+h/y4lvFASXjybRa4eXYMrKzRMWfcSoq6qkmfE85eq7oIRA - 2Y9K5vaHWpWDS0txPEXBTAyWAxXPPKKUGqXU1aarck2a0+DiiMkM7uvmeWpe//CZJZwvgv/nSoHw - 31cKxGe5zr2Iq4QtVdyCMo19asXENvno8UHwdbrH1FOfecJuz0CBJ6VP0fRVzYSfvKxVyXoLTYPN - tu9E24agMzYIhTdZZ4La9zLoaqPHQUhPJr9r8wi2VHZxkFakpJnbT5B7CyVR1NMAxuv7UMH4I/oE - ildgEoEbKmiKGwfvdGnsmYLkBR6jZ0tPgTj1C+uKCV5yxaR2smTB5O2xAc4br8Wmymg/TfK2hWfT - CqjPNU/GSDUbcLhPFBdnazTpwvJWPT6pgNLQa805vvCLmrfFDZvqnvXLecsINC8fj97lZG2JnOQb - dHRTQIKr34PpkhEFSjYf4x2fbfrlbSoOUK7nD45aLQ1EbivcVFd1dRp91SaZVfutwESeNGx1dtxM - dtVcIAnyGOv+lrJpsYdim88dR2NRuIPpy/pQvaYapHewE4JldmsNBLI5YE0f180oRLuppOIoNcUu - Ldtre4qAAfYQqfZ53/Ne1hqqJwCfYmg9+7kVuhtkvPfBTjQbjDef169yeD91tJVeQjDeHygCl+6w - YBtNRsmrzteHCrw7GB0nK2H0dodwuOYbsmm4pJ8/lzuCn7Kw6P5M3uZSly5Rz2Oxo8YgXoBA+vAJ - 9wafUL0v81LEQrCop+iUo+m9uMGss30H37UfE+7W4JL3WKDBc3xVCDS5dS5vXd/UvXeKsd+ioJTi - +IOgede29FBImTkFMeBhdKgAUorhAiRvThEcC9DR/c2/MXa4KzkMqX6k16NKwfBKIxla/JVSTd7p - QDLCqwXFUbFpdGW2OV3pefjFF/ZV1QXCTr5oEBrVHvlBuvR0dFEI4veloPsiNQNJvnicKo6yjS9Q - axupFHAEv2V0pVmfuqYEZK1SA0vQkLrTryW7f2QCaydX8Hlp9JJ/f79fKPghpSfl7gBBrUMFDGkd - 0TDJkoS892cHmuZUYH3jC2yWLmINdXBsaGnVbjAfjbhQhZO4IcpSKiUZtrCFz0t6JpP2uCRL1R0U - FRWdTA9nwSi/fpvlMNqPKt6f3T6gBdFTFXbWB5/gLmPCvDMRZCDeUi+7Ro2gw+H79/fubps46CLw - ctdb5wa+aM9X8tqVkgFDFJ5ppgxLMh3n9wD3zqYmmzozgfhM1Rt0QuWFd+vnL1wIKlhZcU5qHFel - +HyDi6K+Nwb1hz1pFiyYE5gD/YpjTisDNj+tCQpyD7C97fRS9I/zTdWT8wnjzc1NpPHZI/isrh9s - PSpWzvX5IauOWb7IO9xbgTQeRgRzCK5IjY5VIEDuoyj8Rl7QzWqd4KWz/RfuxreCnXhD1kHSc6sG - xj3CYVT3zbDYQw7TnhuIisK8F8PBRFBLag7b70fSiJejkgFebQwif06vdZP2mcAiEBJatPyulJaq - aKE9fx3CWdrXXGBhEZXcmwept8+mZEnjuABI7w1ho/BJfvkJsuiyQcv6fJZwCJC6nie+Z+hcTmqk - u3CPnAVts+vU8ws2C/WWfwUcvOU8EchjbOHO7gkNa3JtWG8tN3g+v32cgRiVvewFHMR76Yn1RZP6 - aV1NBdGEj1R/XIRy3pUbDd5K7UVjTgPBNMVCq9JX26EtCVEwXDIiQ3UgNTYlNCVLnx06kD6lC9bV - ug2WwK0iCCGWicr6qCSbVrrAbfp9ELDwPhC2wiNVl6No0TOAbjLwhPfVep3DHapdVrIUTJxK7o8H - PUXmnYnl+Vkp6uNmkqUU654BWavVt+kI1FEcMWHr+Up8snfoWm/NWXCGBW416Yk18LAbIeTNQsFc - iij29W9yrczcB9nNRujZxO9yqV2DqG/TEmjCF24jdu+rAZ5uc8FujJ6lYARTrZKgiGm6WEIzDreD - COW4yDF6Z0pJPqPOq/alBHinH+ZmRhoXQv6tmfS86+uSbaTagdVrlyL5pT4Ye110R7X8xaTm55YF - y9tcHFAt9Ent4daYf/X1fig5dG12xJwmWjxhahkVDV7W1DPPKiLojOODOlHggNlPiw6wCKr09H1o - vTiKRqH+npdclEkpHoLjE8I0GYg0VSbjUxROUONhQI2H8AIMxmENhwRsyGqEBSM4Fi7UJtSTbhfP - YBk3j/xXb9DnZK57ZYzUV0X6eWL9Uuj9nNFLCq0PxlTv9LTvgmEzwXGr2kgoTsdSULrIVzXr+iBw - /E7mjKYzggw/KL7nLG+o9xZC1WUfHe+0XmhYMrxcFXn7nt42fcIm/aEr6rI1Jur1nBEI9+iRqqJ6 - 4HGmDHEiHlL4hO/ajfElgbhchuvpCU+8e6SFqnZg1nE9qE9lfuHLVroHwiZd53i9dy+amE1bLhHe - TWp7OvY4i+YaMDE7ukDVNJHGx7FMxP4ufyFOjZjMdbcveRE9IbiWbkjD087vBTm51/AkJ0/qjxuj - GY/BtoAAHu8ESubJJMi4GrCP4x3ONp9HT5hxm+DDcmesVVxVLv5xe4NuvefxcUo5wJwu6dQ+KzMy - hR+HCWy7hRAfvjVihdOv9Z+rofCsBvJ5vxEQrdF1oLrv7V99BfPL23TQejkajXGsJSJ4HxVVssWY - zIZjga5r5QvMbjtEffZeEoaL/XM78dWN7k58Bpbhem8hBvCGs3VT8Bzu9Iuq5uCF6MMPwPxomQXv - hobxUbqfwffUfDh4yFwep99r3bPPZt/C4Hu+YMPa2aU4Cz0HOzvjiOCfqcnc/p1DagUlxevnLXLR - uzAoTxuqrcxN9C+bHHY3PCIl6V9gboXqovYTTchGTsaSZbExwQjw0ipR2obchN6CGy/usL60rB80 - 924BvH0SvCOnS8KaZY5V1Sha7JbvPpliaYHARnNP7SqT+1Hpcl+9v589jac3H8zoWq4rsQFEqnwD - DetnmEPrZWk0VlopmFHCh+rnyxhRVz7BBl2LVNVaMuzzT50xt6c5WOs9Dt05LYmyP0C4maKYWug0 - g0k5jRXw5SDBO9+CzXwM5kJlubPHph6IJUvtfH1L47Cj3tatepp2C/eXn4LeWgEbubcP5W57ojnN - OjYLkTlB5ykuNHB8CYymd7/Io/Re57B+aDPk1i6F25NxIMdCPZTLOZEItPSDiSOVzs1EzpqotmOd - Y1u9XYN5u3EzuNmfJYo29gmw6n36QnOdU53Pa0sNCvQGnROqsWFTwSRt8Y22SdKIdA8uu4YFWmWp - ZL8Y9LIp/FJY8QRcmXPGuknShorw4KpaHt+otQ+2YH4a86DunmOAncfRDoSyDwYwOsuZhoH3LCfd - esowY5+edFWRNfNaf0EvXBj2N57GmHM8fmEnegpajmNZzg0bRfj5zoy6h64rFy4raqiw5wmnoecE - 0jw2C+RyxtH9PcvYTPi+hSf9AHAJ9DObuTkaINoOR3o/hK9+MrodD++Zd0OCZNbB7OjMUo1cj9Bc - SKK5/j5euXz7mtqvbcOmYKNOAD0CmcjazTdFKRUz0NSqhq3dsvSM3k5w3XxpUH8WuJLcYs0Fx3Du - 6NndFeXUJcoNrvyFOkeWNayaxC9I3zhExrJ5mkstWF/4CbM3xSy7su5ea/Ufvy5a1CfLMc18UG+W - hDo5N69z4LInnN/Ux9grUdLwiZfDFW+wGY0WEMOzHf74LlE/zpwwSD4VoN/UpcmIx2TKqyEDrYku - 1NaK0OSF3uN+eESA7T6DFe8QvC1wwc683ZW8dJ0mFXMZwms8stHlXBEaPb/HrrTTgqmvXgjC/TJQ - Kx+7ctKevAW1KeyRsnnl/cQHB6ROFX3QszJFP748wPGa5BTdGloOiCyFyt5XiM19ooG5HfSLCr6t - hpNgOpais11EmGu8QbXLewzW/MrVWZze9EpT1XxtN24K5/15j4P9kZnz8RgV6kd3XJp/N0IzxeWR - U0E2m9h5AN2UomUqoPp6x9StQ7+nh6wsgBdlhHQHYyhZZfIDHIRTiPdmoPciM7IJXrjbnUwVp5WC - cP4uIH45X6TKxjoHO777MPWbOw3bewqGdN1Mv6uPJf7VX8ICdYEvEGP800vL85ZeYAlRRndaf2zm - rfDJIJYQR4M66po5YgMH3zvxiHGIxXIywF6ExqE+4B8+Tfs7ecKtuU+pLUhfcxLRAJWfngzSCiUT - cXxe+RjCm9ritTXpmr+wPok7il4uapYVv0AohCbOnHJImHK/DnDV99hwjnMwn2rTB68kM4my6qMX - mwoIZfQuqH7GbTkfjElUj2oU02uzQybd6LqvpmL0oSkXaoFYbLoKJntNJHw+uuWf3t7dUECD8XDv - 50gNOFWSnZLa6k012fHIQ+gdLYRzF+u/78sDk183iXf20nxZFy8quCoJEdd4FMBrY8H084T48GJd - P953Rgb13JWQ4G/6YJnxe30eBsTmbnMzpxJ+FXhUlJrIix+B4UwnX/VicqP+UhYJ8beXAty21xlb - sfsxZyeIHTXTyxpNdHMK5oa9ePjRLZfeg31dTl5GDAC02CIif2v7abvTWqhPO+un38tpHO8QnlTd - Qp+tqzW8x0xDXXCfYRtevHIOv88CFgib6LHqP1JG+wocav6B0SlPgz61Iw0MijMQMlkPc6ym2Nm6 - c3LAvrbekrkv4w1uls5Y9e3LnNJTP4E46a90L9/Khh0+h0LdfHdPvE+8HRBM73SBCDo2tWn8ZdPu - so2h5CIDW1cKg+/OP4nQujQ19hP7w8ZfPKqaIRK51GmyQE2bwAeRE0U+P7PlFDUcuNCzgY2ZDWY/ - cm8XXrX9BjU+0RthxS9V7KsjTj430Vy+u70IOSPeILrywyV5ugX8/f8L1JxGVCYoQyNJJmykdtCI - iqlAefG3IlmQ45YCneZcvR0eLyQragnGNT6hHGkdPqKpTiblEVZQNlNAV/3Wj7tS0uDBrZ5I9qSD - yYztSYMr3ydqkTY/PEzhIZkt7N2jsl/cxujgEKgL1d3eMnlxwTLMN4c9EYzuBIQhVUR4yHye4vMm - asYhXUR4E7KaCCtfetauFIPl4DwxyrIqWflDDFOniNBbTRDrs401QCWTv3RnGx34LLztAqH2IdY5 - 1wiWuh+/8KjINTZOd5qMt8JN4Uk1LSLs1ytnb6vtfvlC5o1/ZOy2a2U43aBOo+c6BTPltUlF+02A - ksEUkqnfUwTljWXRPVr4ZuHMtP7xMdTf7X3Jr/wATK+rjqPyq/bMLDv5dz54X8IYzCBgrjKR44RT - 8NbYXz0/n3CBLdx82C/eoLPxCdqKm61J95M6/fAda/at7+fOSCI1bCYRVVacNJN++soQbckRa0iK - GybeeRcO8HJBx1UfTS2vf+F2zhDez9dnM70t8lWUGb3JPORv9qVHhrYrHlA/sT2wtE89Vnt097D2 - KnKT3yVFDNFrm1PrqZzKZY51Qy1qQ0fQO03J4l+kXP3l1671x5KceEeB8KyHGJez1YsaZ96g9tVV - ihfFCYTd62YA/tiK2F75OxFqXIP1eWMDOV0yXSpbViers+mtVYx+xfMOTtbXJhSbN3OpZllRSq51 - yCsJFZOdj1n18xdxeIttNn4hhvBBLiPGZeD2f/7OWSMlmeei7GcbW5H6PMPPHx/nf/jo+LVA/ZU/ - E26rXuAmz2wk25XKFu+e3/7yIfqedgnf2HsLjtuNjR3+1jZLdSxlsKjrHsq9++5ntp0htBytWf3I - DfgmuyYHIDYbavP9Ys7uoxHVoJGv+GZcuYZ+ym8HxXYRiMSUXSO+xipWVz5P3WUKGYvjTwiOm85A - 5cJ/wYRLvoBSeDpgXz/SZgHpSYGP9+m68je3FK1Rs1QgvTbU6WBuspEYIXx86J5scSyUk36qFVU/ - 6G+MRVtP+hzENVCHoaaW/WzBtOX9CrYXO0C/82bG9m6AIOAiRCQF9kO/f4dw9V+ov9XO/XziKhfa - bjzQn35YbuvUkt9575vRNxdqCAgapqLTnYM0IBkGZ4HCuzbUDfttQKNFzqGbbVKMcyY3NNtYBIZ3 - VUa0DTfNQpccQd+Cb8QdzoeffymCn79pH4+P/psc/AI8in6iZnzkm9nqPzFsxdKlYfFAzUw44yn7 - VynDwd0ey8mUyg56o1bQqxLhnon2hNQfP3SzLwzofl/wYC/dQiRvUmoKjdPL4HafbHpSE8LGq89X - 2189CoVyV/LEMXgw38SCOn7YNEzMrj6MHXOP9U7ne8omqVbc9P2k4Z6YvZSVn0X5+Q/6kL/BNFyA - BrmhBQSs/IStfhNgSTrScv15WPEO1JbpY30bxIDx3jf/08NHK2iScfm2LogONUBDowjNcpyAD8/n - l093I3g2o3SUn9CPW4ma7+gbLLLkunAvWJefXmHTS49lqJRfHyM7rM05izcZqBffwqbZOOXk04iH - B7d+Utx7BMzhY5+D5awm1G6B1E87UQ3BM5bOZLPmp/Cr/zD7XFAfUilYjvso/Pkz1Fr5xqL39gVu - 42imd+WxXoHdPbq/esU0z2iWKG+Xle4OWJMmVC7DFj5hExgM48OiN+Llfs5ggDINB+Nh00zZNWqh - z0pGRmbzJeO6LAbnBuyQOl+fPVv5O9CKDuEiE/VACp6BASXZKuklp0U/0neRQwlRHZvDZ04mHZnK - D/8RPW+mfpx3AYLTN3z88bkZyKoFE3Izqb7yo+kqywS4Jfnh19SwfTaLql/eW4rzU8XeOYgrGAbi - BxtrPSBHcxvCHfycsPEQbPY6rzf81UlYSOcMAmDvoyDCUdi/aBGNWzbb9hhtf/G306V9zxSgEPiV - oI/T/Xxkw1c1EIxvW0gtsi0SZtwTB57m6YX1utsns2mca+jJsYK9oVDM2UlnS2UXfKFexXYBb+/H - C6BOEyBhuJmmFIxfA6Cm6ej+M4zJHGunBSbPjUn1JGrMIXvearD6hajdVkU5hXbdqV4mjQiu/Svp - FdcOpPuuRNLaf2pvQu+A1f+j4bsfwJQ+jAUICGKMz2e+Hy6fQQYGwBBb4UtlXX6ys5+fhTg67puF - 3otQVkx7pPu4CQAZPe2i1k6hYD9ep4JYghvD1R/E2pO/BKzvjrmy8iMyg43SzJ1RxnAG1Q6n08UG - 4qbd3OCQyRq+iXLHlqeVV9IaL0QZ2LefeW0Dgem4Pr2t/vN33HwKgJf7Df/qy9I+vfjnt2DvhW9s - /sXPD08lcrqUS1vUMfQ9sqPXzzCWb83zUmibTUgNTHLzp8/AkCka2hwW/Z8/LkSU4t1ldpLve3+2 - wNo/w8Zy7oJf/wKs/jHdr/2QxdqFDrhkdYKkyLyDmSpRoe5gfyLK6qcIu1dmgFuyPdId1nvGtM03 - Ur7hXsM+e8flMFyAAdxYtDH+nAo2lY7HwS18joT55NHToBg0KHmbBwIyQ4F0mO7pn1+FJAU2cxcs - sfrT/0fxuk5B2+fo14/B+sA1jOxviwFFs/WwrbfPYLIK7gvX+oixE7FgXv1kuJWkPaokP07mFDft - n99zTL1P03unPILBwELS5KkExo5eQ3h+NCcCcklveEd5F3D9vtTbf+1efMjrHneGvkgRw0MzNGiw - YFXMJ5zl+ZEJIAA+fM6yiNf+Kpg9NIpg1XuEbK+dOZqX4w2ufiuSaMMn4/1E418/AlsxeZlM3gwy - PLI5Xs/DNQXzcryo31wZqXEfbskcRb4G24gfyHM/C+tSnH0K7teYYIO9tIA9QzWGrmjM2HWcMxvW - eqvubmGA4+dnzwb0SnJ1MqIjTWIQNb94hETYcUQqkQLG7KVmIK5OPgJxXJf09eoc8OP/xfp9mfzq - 4J++0lTv2LOCeClUen1Lna7SEmnkqA/3XUHpr96IK1+Da/+Nxm6jmqy/iTnwvWGHj2OVsWHybk9l - PR/qqk5TziVqB3U35zI+DXRoxtaxb/D4HAXEvWGWTLRCC3xd0EKDT9mw1a8I1VNb20jxHIdNm7aQ - Qd5NCOeyx5vT2j/dfugjoYHyMkzx09Q8LL/Mw3ucRz1TjiIBONVijM1LEEgwDivw8TgJAaCfATts - uRRqqqhgt17afrLZ5wY3RLBocS2rkvU3Lger30Q4TSBsjs4PTV31PsWP6Q0mmVwJRFoGqWmo33Ie - gkSEvDzXGJ24KVj1N6+Cq5yQ3/f79Vfgl54Haq79jq/Qk1r5f64UiP99paBiSKH6XnGYyOyTq7yh - ZuHg9DLWwdIugccINRSZmd7Qy6z68EKOCnWEZZOwA9QR3N/eL7KR4pQtkufnUKSGSWrHpia7cyCC - t24usCFfRZNl5dCB+3ZA1HK+YT/LYvNUnV2X0B3G9TroMK/gtbM+1DmIVjAYi+7Ck5Tn+LK+1sa/ - pSFWjrqYU+PhWKXk2EcXJkOEaea3V8Y6TonhJG6/2PeaovyUSpxBT0UBDT3108zp7lCrzuxv0DzE - GCzl53FTh+2NYesuV8n3mESc+gY7Fwd6w5cMv2QEylOh0VhwjGTZhcwF+bS10LcJgnKcNyIHxmMd - EXl6lj271T6EgnA44jx83ntJ6MsMcp/tTE9OWDTT80vcLXhtWqKUk8gm73GL4HUTE+yAj16yzRMY - sDHDLy0Pi16KltlN6rC9MFqWgV0KeBdrkA33L2H1vU4mGyS1avjykSbmbQwGT19Xw3lDS0+7TQmE - 5QwWGH/GFltFCfqh3J1qqDMSYfecy+Ziq14OuxZ/0GafeknXcsETUKHSsNXczECKOLhALdMd0gtq - 0M/Ha12p6VPaYKP8bEoGT7wCh2OVYxeVejNfx4SoDxYutOj8uOS3ypWH1yBNsG+EbS/KRu+oydHx - 0e/zFpztNXiXWUxgBqOSJdR/wivdvDGanGMjCL7eqoVyfuOD+zCAmGZWDa3yydF1CHUyeY8sgsl2 - vK1/bxPwSJ8VyMkJJJsAvIKRjypZ5fZeSU8RS3u6DnWFIh0g2S6h2zBXqGV1mI8LPRennE2CkqWQ - MDnBaXf1A0n39Fyt9VYl7zsfNAugtgPkfeFQYxRhsDw/3U29baIWH7jtp5Eu1HvCrApLGh2VkAne - rF/U8yRDbHVdnsyLahYQn3UbZwfxGQgvcWxhduAjenB3ds+/tA0CgT0DGqG7XNK9fOTg9nI3sKvo - WiJkSiFCQlKDnriy6Qk1BgdW2eWJPbwZ2VC+WQsz7vkidWMx1h/vUaF6KrAIe8ttwnDXT1AgO0y6 - kJGGhuXYwUyYepzUtm1KIdSJqjyPW3oPhswUzELmoKEHdwIfaVnO1uxxymYbTthzz0HJRm5eVKHd - +jThzZjNU7vk8GJUD5ot4aVn3xl8oaIINi4TcDfH5/Whqaox8tg0P2XJq88wA7fPkNGcFk4iboRe - AVG1N3HWbDZgOQtUBp/Dc4+z6VyWE+WMFh55l8M4UkJTjPCLqFzZtGhDrHuwaNXhqQot8LG39TYB - A3qjqLeQ08imcB9AKLTtALVjuqe4lc/NtEOzoXrm/Yr35WSwhTauDzeO7OODmQxsKnf3CiLP3KNT - g6uAH3g5BJ32OWPvlU8mO5SjC8lJFMmoEtIvqVi16vGUdzQPn5t+/oijA63qkmFngy1TQtR04GIf - RmywGw16Sna5vHsWD9Qts2KynroOZAsn4TCb62DJhmOtWhxf4cT8lMms+Tvn73ldCvcIxN+q0ttF - twhNj1UjCXbkq3LahhTnztzMb+eUQe/gU1ywTGqW5H4vYDwhhnfspfTT3npdII2+H+od8iVYv78L - TxVKqPUyjv3k8DxSxyVuMU52337ilGsK01MxYf2W1uZ8OEsxnPe5iK1ZRIEIqG2BLXIkajkRTkag - GrnyDYeR7pT2AIbbbENYDFxOfeVEwENoZ0X9vgW03lDc9XzsRkQ1Wk2k59f+wSQT+oPUb+CO+vfs - 3M83bYvg9/C06UXjaiYke1mEw/Wc0azh5569Zt4H47K5Y23NP77lzBbkZcowHrcRWB7QCSGvdR6+ - wIoD7JBvW1i4tv6Hf9K1+8Yw7J8OztxrFfAHNBlqZAUtte33NZhXMgSr26nG5tlQm1ExH5OqdtUO - Fyzwku/StQv4UHiih0t8AKLrJDzcNh8XH43okyxyjbj1/h2j5zU+52R2L/DasZqGviuB+cRABXfD - 4U6dUyEmC7oMKSxw4tCQq6k5zxsOQgNWBnVbvU4+Z3OMoNvSHXVdDv6WqHNqP/U63hG9K+euSi14 - Pi4ldSSeNlNp9RDG6G0j8GnWW7cntYBvaFhoLu5RyfvSO4I0b95Ya+1zIGEXD5Bl4YOiF/F7Ubu8 - RNUUDUImPhbA09OVHPSlNeGdIThg0srJVdPbU8CmesmAcFcOoioV/hNbwmH1Q6OHAqChm7i8za45 - N5o8qFV2e5JzyqVMAJc2Vdf6u+IXYIOB5lo9O9eUqM9j2Avs5IbwjNojjqi1YROxHlCdqu8De0lh - lBIOwAV65K1SfzfJYOEvVarOiWLiU6F/S8mjZgvR7X2lF+5UgTky20h9JdsEZyfsBvyKpwrDWklj - rz8w4cKY9lcfXTtXgsVqwi98Z3imO0nDgThkhgHHW+ZTv+IGwBB6GyDqMosaLNHAqDjXDLinzsRR - 9XDYIuT8U629K8D28/oMWI6IJqfL44Av+dPsJ/a0U9UqZJuG98llwu+842k7UE/jRDarSXKDc9Wd - saV1l1LcLFOmbpCDsWMbQT/vpSr65RNNv4LIlh1uiRo/xI4G5stqlmBReSiX04G6sf781RMLeh78 - kKsJWLA8Lt8MGKeux+n36zbiO+cs+GBowXvNN8pvFs4dtPeox752tpNZN+kCo+DU41DjarAo28hX - T9bakVZkqZ9DpRQhctMU74/qox+zUxBCSnYSEQIcBUv2EkOYdbsz2W40PVhAfJlgqSk81hB5l3/n - e7+MAlqMSC2ZYEcu1DMqETZdp2BolTsPrYeHkWK0JhiFz3gDS/rksXk+hM3YVJcWbtLT+RffCdtx - wgLj77emu7RzEjIOpaGuz59qm1sZiOXncQHFcUooksDbnLFvP9UfHqeZkIMVzzo41Js3xWmFwBLh - cYCWeVWJspty8P1uZAg9Wm+xwdmeuThJcYPsmreklodX0DWzfYG3i2mtY6AWNmenAMFvN/m4VPMq - mGfzu0AveN6o4wgh+O6dJAM8mD4Yr/g2bz9PDupe1NFcX6Rk9mb9ptTtJaW/fCCmk6YqysidGo5N - g2XfmB3cNF2FQ40yMKuTOf3h0UXKvIaPH9cYUjjYtBibrKQarghUw9uX2vMeAJb0mQjD78enaXf9 - mtPLqjlV0crbOki0TcY1PreuB2ckBfy+p3RmLuRv9olm0xmUSzgZEezlZkPuzx4E5NV4Lgxn90TP - RbsDkt/febjmC5I3xbOcwHhH0GmuI3Wf6BGws05z2G+4HdlYR6OZ1noAoWGa2B3zLCCbOI3h61vc - kaqrTT8lhcDBSik2WKtiCUzM+tzggPUAo6GKgcT7Ugx+zwe51GYz/j46uPSOhg+zUjNm09AC9iWh - 1NvmKJgPSpLB87U/EwAeVzB93ooF0Mv64t11Aet75BhCv8I9DRU4JAPYs1T95FNMnZ0GzGncQxEc - dT6nzuti/fDmCc1znJPq2KuAybPiboFbnyhyRqFceG6zQAUsOrW6q28KxiOKYL7V7HUk09wMp8dl - AXldbemRv9bBksMdgpEqp/RwqLzml49APdgbAvNj2rObXXTwZLkizs+5HAzye2qh9MEd3j32GExO - Hsh/fMPYH9JmeWy2EPzqb9HOxJx1871A5GYp9c/LLvnVZyDXeom+WWj1YumcebhBzEXyhQ390lD8 - hF6e8UjoTIddyzMXgbm0XLrWO3PMROookThgmjPtEyyb+BKDw0OcEChgliw//XWQd1uaHS8O+y5D - UcG8rrfUUfcMMMfTFPVDuRNalOhUjnODuj+9F/HxEQjZyQyBc7Rr+sM/9oijSb1Z/IaufA70W1RX - UIzOIkb6fdNMxqL7qkH4iSb+Vm8m4eQQ9XGPM6I0QZ/Qa38UIRiDnoYvbx/MXvQqgG/ej9iQBzuQ - nnJ5AUMjNzhbz3daAndReEUaMfZI28+36uoAop++ZN73Ehiee1UEVnXLqH0UvwH1aPCEK1/AZh2x - pB/sgw/M4OVQ09/q/RTtJRE8zW1JkVtl6+KGGcF7gw3qkXZdhZ6cb4p7f+jY3nze5az4ngN57esh - wdtvwLTWRyBJL0a9FV+HyyONIP9KrqgLz3OyvIzRgeOxigjkThro8+47KdWWONT+iJ3JcupboPQI - wVjuz8HHPYUDrJ48JQr0p3Iav6MLU237pOiTjuWszf4FvvadR8NH8y3npkrbP/2MMAiCWWaT8dOP - 1Hl/zFK8h1MHNsfoSK3BHNbB4qqjrPiONt8bTIgUqJz67JYFcUuSmrz8lluo7F4NtssCllR/zeRX - X/DqByQCFBtHPUIdIlWsvUDKUavB7g7vOHn1O0ANo3b+9Otu1ccDedo8TF+OgYPl5AIWcmqkRNEW - YvMlisEgP0MR8tk2Rlun9QCFwKqAPJUtdpC+JH94Nx2OBd7FggUmXe4uYBLDmd4OZGio85pDWD1F - iq0iGktqHXcZEPRMwW6g7QOxw02o5lMYoKX8bBImctOiuqevSebeOoNJKJYbFA/pgl01T//l46pX - UO/PX/NXb2C+NWy6a/A6mPbS8dAZDm9CC1dnMx8KPnT6J0Fg9Ji5rPjw56+cheZSfi9G66hL2vJ4 - f89ePeupZqmHDyXUMO5DwsADL+BjIgOxy6CbVPe8HG4+4IN1kLTgL35mOxGwcT0sDTkMmQHOzj0l - IOccJkJPV+BmtikOwuOlIdd8Y8H1+1If+lEi7p0yhTv88PBPL8y36uhA4jYUqZpfl9NFn3J4C6GG - s8/+yMQtNAf405/l6VU389AqCgBamVFtdKJSPAyZpk7nS0nRNg3KRepIDD3Ca/gqH78NTYKFA6sf - RVTP+wTDfKgcAE7vknCve9kvsBsnsNYDMlWPFsxig1z497PnpOWyEXoZrnyX8IagsDlUdznk70by - p2fFYnIXEDZXm2q6ghiRXwqBn7eUEUEzv2DejhGBtr37YqOUUbJIQ2zAg2xvsXauaN+DB54A9H0L - beTKB/0hn1u4fzkL3p/J0k9hX4k/P+PPf6GpXXbKyu//+BYx8DtUP1F/IJNa9WtLzosAAI1IAztv - zek27yHk7OhKXfv9MRk7GpmKyftIjfbuJss1lxzQmKChjiBqgZBEzxx+gp2G7dnY9+IaL/Dcpz3O - fvH/0ztR0S34Vz+Fu3LmYYjeI+Gm47NhXpxE8Cp5I9VvNgsIzmztjw/G84UDE5gNqApUC2gmLJty - eEtDpDyAPZGzGQjJsjfeT+j0LUH8VYxMsm+CDq56nnrCEpTsIxccZE0/oYZaPVuYffdB+O19rP3w - NaF+C1c8xrcX+TZM5OQF9uX8wXo+0IByb9JC7+BSjNd8mSjnP9UCZA0Z67oPRrTfZtDzuA9h5geU - bC98CxjsQ5MaXmX2gnQGMRTUIsN22KUJlfmRgJWvULPHRTCn5jj98pea6qHrl/glkt/5UkvCsTkV - M7oATZGvdPfYUzbRRxxBe7ohbEZmxtjxnufwuYESEapuSZjBcbFiifROzeVL+mHL6U/1cTsV2AW8 - 3kt9IN/goei+9EzaFxibp5aq0dlQaSg9JMZaqj2hFJsN9qRX2PDRfsNDNbx8sXFPDMbTa1vB6MDL - K1/Xe6k6bWQ4XIYrzQ29Tca3b1pQbw2O7tUtZEx5vx3VPG8Ov/hPFtO5pDDsW4f642Ingu2jFk6U - Pqm+7yXWz0++Bu8lQeQbrW9t7oa7Adfvg81Xv2MzPx4QfCZhTeN4u+slwbpD+BX3Z/INufX97zmA - 4ClJIumPzVLOinPM1NVPRjB/Nv2c7+UU3ufXnnr589Sv/tSk9iX7kDxkqJmTMSVgMlSMnaHzE2Z3 - w6TUcLz+/LRm2L9VB4icvUPg8vT6xf00F2A9AkyUe7ZthjcvD7C33k8i1F+jF354rMYaIOO5sRLW - u/+uBGFke425PO5XBa7xjKppYCZLn5v6p+ewfolnRuXDzQErH8ZxOVbBnO7ONZDMPqfY26ZMNPAb - QXmfO9TqpF3Zu7nSQtOX93i/+k3sQT3rj0+lnrgEg5IWX6jSIaQZivRyOumyAn5+oe/l6yWi2b0A - u57g6j9hcziQRIG3Sr7g88VXysX89BAafKlT/eP4yXzUFATfzzdc/YBtMKUSiaEyXBRqV91STtVz - l8Fwax7RdpuTgE19yUNn903o/urtTLHOTA2Yh+BEjWjwzJ/eATWNEC5XfPj2udoqwYc7IziTrJ+7 - 6uKA5tAKZBTrjzn1V2rA5Suoaz0LmsoHpQZUg/I0JG4CWHW0UmglRKNIv98bgqrcgnnqEhw/r7nZ - aaXsgvX54ShO/YCq8/yF4861af7eHNiwkDyHYgsMsrk/XoB1tQ7hrz+xVwlqpB2nTtBTw4C8UtMF - vF1IN3AJspJ676JKpt3h+YTJVbZophp2Pz/GJAT8+vpOLFkzqIJ5x0H4fiVY57Zev2iXkYfdSbhh - dPR0c879sIXvu95j03a0RLrEhxj8+NeeZmYv/fSY6St76q79hUV+LQScd3mET61ggDlO7hzcKn5K - ESdf+0+9yzW4XxYL28o6xbE41C20kkGjbs+bDbuX/VeO93KIk9LasxlsBAiHnbvHv3r/IUqUQZWz - Tqs+bhOii98WCtFX//HBYByr8glhXmF8jY6k+evXDA4+oCHlKkDJ0eDVb2nJ1HSlw7qIZHWrdt6V - 5mXRJYv8Ugb4oXqJtds26ed+LJDSDlqI76sfu9CNfIPXojwRefNamtnfz+JP/2HnIdbmKK9TXVa/ - DAdn72j++TsZPdxoUPlhyV+48AmV52mLqoWsU1m4aYGEf4X055+L4rJNQQfmLQ3eEwLk5/eueILm - Ry8AZhi1pVY4vqGv1yjJqp++0PV0gWpbxWXD2h+Bhq8cqfn+SCX7Hs0MnsoU0F89JSv+//x5XK6v - 07IROIYaGY+ZGuXnnvz518PO3yO1BzSg3S0L4dBbHYHf8V7O9ed9+/XbsJ7ctgEjR0OEc/c4URPd - nwld/XbYXs8cdojgAvGY5BxMluaM95WSm6zR/0fatXQryzPLH8RAbpJmyE1EwAQBEWeCiOAFuQXI - rz+L/bzDb3bGey/F0F1dVZ2kxxuaJbEglm5su05xTB+6KhBp8dtxWb/mEyok703M6R6YkuCYI0RK - cyPp5S3WrK6MXOVC2o+8vd5qseoPYP29pY+VXwzqsokR//q8qEc9M+t1HnolGz87LPZNm01sv25B - riaf5P15qce1X4OejnUiu7PoepLxuKWw2+3acaGyH412Yht/eI/nVb8u8zKLagzh/l+9mnDR+mh8 - aIh6q/5exjfr0flz76nnzq1HnbPNI1VQk3GOiq35529to1ksqbbytyl7a5qy+v3kiMHNJEm+5jC+ - Swf/6bvJWI9arP4Rub6POuNXfa30xPTwX3+SMX70t5b5UMmhnnI0XfkFq0VEXGI9uyeafZWkIAqn - 4zicVb0WdbF6Qf097OijKX02oeHio902dEZFuWDENFL26pdtTYqds1NLZTrZKid9TYpTWqPFVR35 - X7+QHONfxNrT4wVmaEXk7/OkXZ9WEAgsIriIxBVdNAs2eHawslMv9eL7Svun70a+kb7RXzz88SOi - b20nWqLHJYWcF/bEWvmUeDrgFNxbd6P2RhO84TPc+j++tfoHfLckvx9ArbYnQozq6bHKm4t//VhX - nH1z+fVZCSvfJucVb1a9a/3ze7btHJvzGi9QkqAYF8E2ssl6JhNqw5Ajf37bqo8w7Ac/IwH/XAd3 - jfsUXcKnTkh82qC1X5GCXHEXasj3xBSNyQsBJ/2DnlY+sdBqDzBns06v8IpqpjfvAFZ9TYxkN5jL - yV/cLdEljWqbofVWP4tX9wUfkMsxL9F06poErvtbgKs49Nj8149Yjuk4btZ+SvUVPqmqcvaF2Pn1 - Hk3d/atB4l3Mv/fPWrqRc7T66fSYOJRN000BkOXyi+dv1LBOPZ1fsMg1wcoh9T0hbZtG+RmRTTRq - PdCKHzGkv5HDqHT7bBQS3VA/3S6gqbkRELt3dx5ayT2PalkqbBJuSg5LFdj0mru3bA7jwFVFsyup - eflts7Gm+w9C6CkSx+FytFyM8QWpzzVj13MWmnHwUiBGF4/++z1H54S3/58tBdL/3lJwB2lLj3vC - R7PELh/lqhwOY5ibh3oBD2Mol2FPrUs3RHNmnkNV6U2Gtx9VqFkiPESY5MCiDm7v3WwIbgOSPM1U - Y60d8V5wBqQHgUfOGb7UYpv8XojvjYiS73DypuoUWOrh1Q/EzCQvW7wyz6EUwwCrHa69ya3kHF6f - e0Iij8oeu6vHBKzR2tNso+pICBLLUmujNajmAcl6wXBE2FI/INeO33T9++IsMIwcHlO/O7GpmtdT - AMKLJ/ZGXqKWVKcQFsVGo5jXn3q5qU9OzaTPbaRZMmaLQYwUjjUn0OjHufVwoYoBxxoEYohL7fXb - evqAwvT3qLx/AmKJcOEBo3NI7mIfddLJ0Ef1shd2tFC2Zd3fWexC8ZMLon85UjPx+9AgG8wHsW+s - 9cYraQsgZfylJ+tXI/bjz44qR0ePXiYfoenVqxYyyftCLANtakZk01DtEbR//9/jV4ZRxuxo7Itr - 1vFvh8dqGdPXKD5a3putjR6CHoQeMXXnxMSlP7wg+j4L4nxvXTZs1cJHJzLFZP97nzM+UakN5tO1 - yG7v9PW8eQeTepfziGQqHBF/PU6VWst3Nl6PyZ31gx8t6rDLGb0IkHo8XEperd3PjCfLe3iC8EOG - +qiSbJz088+bfTufIDEgpFoY25nwW2ofcFwYROOfQc2fuYMLz2Ogk3yX2x1f8ZwMVemkNHm0sTkN - fTPBvhZ5qoX1GfHPs8dBfNIUgstr0vX10XVAmkSDRrsNQsMpTLFSWuKOHjEdzOly/fiqnAUZjV9b - JWJ37wrQOWZFvMa2OyEs3RG9lwui5NerHr0e7g4EhniizqMzPUHZtokq8BdKTI08anFTbWLQ4ymk - 55JataBvg5cqoFzH8ud5NSebahh093ghtyz6enwopwW0271OnanVOnHivRu4H0emJ9lS0MKbygS2 - BgVxfu6XLcmvH+FSnR70wat2tBjqQYEr9wsI4VFhTon6tUGUbzuyP27mblnjWxXuRTHIsdfW634D - gNn85eP2ebxmLCy0Sf1teptcN4MZ8XptLWojBS4tOCmN+OnlK7CIz4W4u0zqeqMQeQg8ymHAlu4x - 149bsB76jmb3kdTz1PsOWKrWUNPaGpm0c7eyssYf8d1oqpmSkQBUck1G2hXPTrSr9wfW9aMeSbV1 - S1Kdwy5TDyRAV9wJkxL0sGTOjTxen7r7wx/AOqRk331+ERte1wq0LhCptt/tInaLokn1LDcbG/2o - Z6KEElHd0euM++nkZfzlq0zKcOHudG9MUz0H1w0HvH6/Eu2UxSbzX8cF7nIREW08bOslnscSnqeu - odq0OBnv+60NW7qnRHvW+0jiPUWDrPz8iKHXm2wyClGEbbrnqLk9ep2QPIcCvkpiE8fMoJ5MRZBh - kkOLksvXNofJkxzQ0tkfnyovmf1t1bvqT5rIfjlSNBX6anFvfi6JI9h5jPPMBqnmtqD2MX53QtWq - I9jx1aY4UU5MkIm8/MNPiTubpjRqaQOPj1iRO+f30ed2zznwxhdPCnb9IlZJWgy+Ve+pztu1J/Zj - 2Kv9onk0735TNzvay1bbaheQXXI5dsv58bFgo50CcnsYNFqG/BYqTio6xN6ztOPX50WPKs7I0Ujd - rD+5KcBuRjk1y8fHY7Y8p6oeLyHd3aVPtkTnb6E6G5ri5VeNHuO6tIUJTw29F1IZSc/sEIJWJ3/P - Z3rz5G3c7XQLnjS/Vqeavw1dLvWVeqBJXtvdoj9dHtRQ2BBzFOJa+NwUG8rvEWM1F/to6uL7C5T0 - 7eHFzudumYzAUMs0HLAYRadI+qaTC8FzWYh9Ma7dmp//4pFm2kHz/vADos76kuB1vUfzLtNS9Xbd - t8T+GJ45t/AUoTnTgurGemrz8lUWZIZ7g7jUNWoWXxdRNaSmoev6ZRP8niEIFBx6+o29SeVN60Ok - tRiz7bGr56g9xNBa+4GaYWqjRd0ee3gTbsaVXj+iduZcDc6n7EPd06Jks1kbWB2ZZGB2Fy+Z9AqH - FNzfqI8cyH4t1vRgwR2ELSWTxXtMMhMHBb/hSTWXH7opDg4NtLJrksO++XXz56ZY8HP7he7mUUcC - zGWlhpxbE2+7q9H85hSAO8CNPALuUs+yOgVqoWXm+ncTSVGHQoiV6kwO2RjX8+2bOBAMQUvuvyM1 - F6RmjbrvFGuUtZiYfHjgZHiR145G7fHmTW8HMGwpDujBeTDEPu30UjeReCWByx9r4RSmPuShxpPk - 2jURe5cX+a++0sDyNt7KT3ioUBuQ5JG9OqmJWx8+NOJo8XK/HlOkJlU31aSQ09ue62Zbyy8kqYFM - L+WmNgXchzlEhxphuVgCJFzoYsDdKHWqv+25m5vk5YLRjHtKjKZBvy7PRXhcWEldaYrZQqVNCN97 - 9CT70p7Qgu2bD+drIWKp2FtI8m57B56nX0PCqLc7cWd/StUd91/qhl1fM+PFO+oQZzE1Vj7W2Bhh - GHTUEt176ojfnnsD5o9nExutLbTtMZ7Uq7YQelu0tGbebe+qKP6cKP4pdTSpuzJV3QI7o/Q4ctHU - 5HOuwotTceMiIaJ1whLF83cuya7qxqTy4+5DPdjZ2AjPtmPH8iojOQszctytp04e3S0BcueBOFFc - ZlPFcwroOdWxKF6PSLhuiw9oXSiO4o215rj3twF0H3OHxedt6r6u00xwT7Zfar22t2xunMcLZrPL - ySF/F+zt83GgxgfbJYdo42dSmp1fkD5ik/hNVZtLwKUxeP7eHaWg0TI2X+iIxLOS4e7QWF1/dHIX - vVrtQTQ51E3pMkw2/K2nzg2HaO7c/KYe3DDC5/549kTklQEY4FI83cyxXt+vo6JGlWiwzLG31FS3 - VLkKjyNsSt+bhr6c1Pszr8h+jZeBBkdbIcZ5nfXdu+avT21lm52tCaNUenfMEPkXHHdaTMJLNrLF - 7PRCpSjWSHKG0pvaz2Sr57JoMLjR1I0BFyQwxvJznFj7yeat14ow/Y4Gfcj9WM+TkvYQv+4V3Vvl - YA7p/VJCFNsi9aIkraeual30HlE4zs4365bIOlhg7a2EJHtBY4LbnlsIH9igduDXrBWP802981uX - Yr/KvPkmVCPUg5XRaMWjxRI0W9Xy5EzwdQn+4Tnax0qEZfnqMJY9mxi26Y6j+coPxFc+ftCHu2hY - KKnV9YlKLYgbo/urf56I+VOvcmGK6YG+J4995dr+q8+j8jgVaJkDo4TE4EKcifnZo69wuMHR35h/ - /LcbqSQF4JEmGuvl8/aWL38Z0dk2MNljuUYzPEobxp30IN4gGkh4sNML9uWpo0c1UszxcniMCJ10 - h+TQjObSOncNpne3pbvZ2ni09ZsbjJ0cYsQJpTfVnFrC2zEMom8Ez+xbu7PA68yO6v3HjaRNyjlw - RlxJ9762Y3yQn27wtU8Ttfvf3FFx31uK+a7bsbmEsre8WuQAhYCj9+cgZizYCR9Y+Rq14GlHwt5S - NMDHIhiLTgNG8ejf0Pr+6DlOn2hOdKUC/fWb6X7MNxHlvUWDA55uI5zZIRM7i1iw5ZyZJN7rYLJD - cbbhws8HEn5aghYtSmN4FeVn5a+berIx85H44oEWSynUa31w4dZ945FzF65e4/cDH/F2Ivj+lLM5 - eQ45eliJTKy0kjrGqCLDyveJroCMhibpHTi7Vx5LET2y+XY+j1DM69bK6T17S/G4LsCUxxezdHPM - OvszceqKj/QScWpG5U3lg/vrdZofbkW0yJfJUDct746MT/R6qUooYcl3Kck/i90JZu1idM0PH+o9 - 7xIajlXGg8Wr6b/6vVz1uwy31O2Jd2he9UKeGwz7nXCiF41Czd7ai1P9h62TQ42HaPb5PIQw+v6o - +zBIxFoumxBfXpWR6zRASyvGJcxzsyFnaRhqarsPXmnQciKacDOQIOs9/qtPmDfQo2v6KW8hYvqF - OqY/eMuW3TWklmDip2wpbGhxlcDneyb04JZ7JGze6aQ8e1xRd1ueIgbRsQByZj11iiVg81fcuiCU - 2z3RG2H7XzxsHf9B7PLJZbN50hclvYSMWg/vY86869iohdalWNHGaLYGTYQ/PnIw18FqbiAb6K9+ - 6B3VvLXeftbBMwtxmpPQdUuEePCjzwHzvsejxVGSHvigyjAQV+mmJTctOEGfUuM93zv2Ct83qJ+f - etVLtfmmxalVlUPT0vNdsrPpqOwrYMr9S02qJtnyaypNWZxmIu5wGGt64FpbRfHrtPI3PxKeauCD - GkobzO/fVbZsZlNBp0/3Jvs1vvhZswyVsPXi+zwh2cpHe9DEiZJ7Qt5stIvtCN86ORNPJ9tuKlOJ - h0NITEJWPTV8m9cL+ky90P1r7LJl8zALuO06g+orfrLtMZ+Ux0Oc/ssXal05GJZUog462ejPr0B9 - tTlQQ39/a7ryFWQfsxiPnZaj2b6NydYwupj40IzedD29UjXTWwdvfvehXnb8aADaqA1uc3eORl4Y - 3W1znMZRXvX5uPIDkP3jlfjvLZ9Rc/k0aNC3LVlPWGXLw98E8Pazhhx0+Rj9okHF8OMxpnjXv012 - Mg4jkpMpXvVwhpbrs1LU9t1cSVgvcze1cpHDyt9XPA5M9oHZgFQkMcEg93X3M54TmD+bYRifGM3+ - h4zA6rtIrIuSI7aPpxJl0utGz/sLmBMf6+tFqVo38va9rOfjVKbqXj+71KbTxlxqjZbQbT+YmKwv - atYGeQgOC6txboQrGvWQC9BfPFzaYl/zbjBpav4qC3KerY25RJZuAy9dO+rsvK03285bVsXwEo7y - 8fUyl1X/wb5bZ1c7LzP6q99IPMsZdZ/K0I1/f3cvO5H6nl8h6olloPJM21EchpdsOcrHF8AZISw4 - 8s9bZl0AOD1+jJpVMbNh1adqbN83ZMV7JJTUa//qE3UeSljPERwWdN0dBOJfq7mm6a9dtzynEjl8 - 7K6e5G2vIBZ9LmQn8ihqf0qVw1DnCdkz2/BYddB4te+MK3Ey06m7r9t9kICvOcHPsEErnlvQzvpM - 8b3WuplHLFdxnBt0l+5br9+a3QuCkE4Uy3pVz7XN8+pDWwuJzdvsn981T6NO8U8/mYu63Y1/60+9 - dhdm4pe/9CA+I0ZIPGzQpJ1vAfoskkMOh3WLwtiEIqzxS062tDHZgass8P3XheysYKzZN00saCZP - Hje3O3iD/yE9Oqm/hNh//NDYm47aK1uZkkrcm9MU+jn8+XN/fHchsd//q/faxknY1OTbHN4CsqiX - fwY26O5mvdXpoOD3+n3TJ1xESJKbQv7e54qvBtx/1xMpfooZsU8rf2A6L7cx3r1wxJpP20JSXH7E - iT23nnbiF9T99bQl3vfIe5UWBQlsRWys/FbLRN5cJpBuDFP7gjwk5ufIhaPCfYgjlUk2a97VRmZR - y5jzK2S+TUP1odc+2uqPqt1ckrQHWjJ75MLwErVm+00BuXqCYeUf85+eye6ORg7VGZnDn16qDEeg - 3kbVmeiVcQ6Btx7W015DN6XmLKsaXVRia1bQ8e+dlqgbkVR0r+YT6lJUvVTUaFt6IJeZsXFMXbge - jztyoedTLRo5yJBupzs5b452JL3KGSC4igbm5/CdTT95KtU/P2Nv/gy01gse6r1zoPl7G0fT/BA5 - lc/VEznr3w0b9uKQAkeUmnoJTtiab7aaXgJGL8bz6S2dtbcQDuQt9XOvzKb7Mxth5UOr3jzUvVdU - FVysCKjDZuwJG+nkq6ueHrm//H1GhoZW/bf6hwdPEoX6o678daxfeIxodXBE9GQ4pm53XbypTetS - jcWNj9HGIh0NC2eBSxU9MDRzWE/oWPkACEb6yJIxoiEBDMWkBFj2+H1N//SxSzx7HIy0jeYDnlrl - L9/2yzroJts37R9+UaNA3/pXkmCERfjwxLx/v2zdWdbCiocjqE8tEsPmwMHqf4xb7q13L3udXa9x - tCDa+nsWEgQirPWORraMTckM2QizgB3iqHodLdT2FPjDe/zTZ48Or2sJ2d3VqP053erxzz/cd7JF - 06ktu5kGOwvEKRHG5GN0pkR+Yg6/BHfUX/nUfIDJ/eevXw4XyZu8KknBfbbzmq+5SdOhMMAoDj5x - 0fOdDS1uE8jK12/c7MqvN4/TzQZ5WHbE7Gw/k05MtUAq4gs1BI2rZyd8VWhQij3d1d+qnviP3iP8 - lVsSwumLxoe/CdEav3jLkrKeXujQIv+iUuo/woEtNE4L0Hbxa8XP09owKWTUjdaZPrZvDU36I5Ah - INGeuufaZWz149CfP/cv/ubALdE/PHWIkNEhvNooth8bSq6XqltEJMv//K9dNQbZ6mcF8ElvIzW6 - 55Xxt2ORgzoJFdHEyuqkqqctemdFO/KSodczv6GJEjr+iZ7Fd4eY4D0AjbkQjMgvK/bnj6DVH6dG - Gl49Ft3H/s+vIUabldHEZMNVByXfr3zUqgWZJD28L+g5CrN6ytivikdYnHbCUsTdI3Y51jZCx9eD - 3Hw0ZXOp+y5sHfygq//rLfXdaUDAWU7wrt+ZgqzKIWpO5EINgkSzZz/1A9FiX4ndLd+I3Vg5rbeW - 7bH4yF71stxVTdGPS0l3xqmqR98tXbX4KQXdLWLdLY9s9fTfYkP2ktr/+dm+OiU0xcqiyTWdDqoP - +c94j7MYc9m4V+QFWP0QV/drG00HfpKhMQJxFAO/RgvraIWmCfPENeprxNAu5ODJjT7V3WtpLu6S - K2CFHzJyP/3k/dOzMpkqEu7PNZuk6xb+9A7VHsxF/BoP6PHgJ6L9TM3kM6m1gQtvmLrouYsE6Tn7 - 8BCY+ec3ef30spTtKVls4vTbwJvZqIG6+uuEbN8aE6JBwCB9TvtRcOSDycYxcCC/qjX1AtJ5tDpo - Iizat8SICmM9fqo5RmbyPRDfquNo5Xc39XDzlhGehhvNf3yM2IJH//zF+WxrOTj8sST4mA3ZdNeb - 5Z+/4+bunI1VyVd//Ikezpwc1fk9vEFvbT7kz1/n++A5qjn+eNRa+RWDZ2jAJ5K/BFtsvUVIyFO0 - +rN0t7273pxnZf7PrwtXvFrjlUOFerEJ6Qq9lgp5k0LpLzwuw1pA84OdPvA5nPt//Qh2eXQlxBst - p7vkMtTDXnynYA4vhbqbh+rNX2UwEDnd7D//vBsV+nThKGV3vHXLL5rMzAVwUt7ByrJ10bQ1uw/E - dfkat9bUdd/r7hlC6i0K3e0OJZv9+Jegin01ivkg9OhlkK1tTDc3PAv4xZadoTTb1W/D4RHWwVm1 - /IH8uqlH+eaK2fAyNYDV3yJ+iDqPrfVNXd/PCEcPM/5gzzd1S3f0H3+ZToO0wOrnYnnV56/r/Eig - 3bciOWytGE1/ftsBjQX541tiU9QpTHhpiBZbFSpDOchhLNMbPdX7dz3biZL/48P41hnZvLyMWP1k - QjJO6IprIc/KQt1+D9oI5UH2hvp74P/0Jj4lk8H++alvRzPIZd5hU9Cv5kdd+3t/+qibRiULIK3W - W/904WOy83dIoA/uDzyv+UOH8GSrR/3hkZ15taLJpo6P7PryJe5vPcKZbWPtD39o8K0ic7o+JlAN - 279Ta9V30ydUeFBq1yZ66DgZv1vAUtb6SuxjfTb759kE2GyXjqz+R0aZzlL1TrbCOJ2y2Jt7OZJh - G616cMV7aiTfF1rxhdhn0MxR/e4C6GOtIfnQ5HXPLqqDJkI/BCNn8ubl5caQTEJM/75PEk0Z//FL - mjuxxSSrHH20rg893rnRXITHVkTaLnkR84VxxFwlduFPz+6L/Qs1q7+hKq+dRW7jaYrGSj98YB5x - MjZaTM35z9/eZYa3+um3iN23p1z98y+l0p7YUmOwwPZXbWlvzuyvf4m0Lx3obuVP4pr/f89LbDo9 - vPk9fVLlUogi0V7ZrhOgjkBZ8YLorXhErHduOex30onsH8cimktqtqozHEd6a568NxD/mP/rB1vw - /ERs9Y/+/KYRiHurf39+f3mkCz2iWu2ovd4iZ8Izo3pKMeLzXdyA8MoDqotxkU1oc/7AwEkDxRl7 - mYtrnW//r8EH8v/eUnCgj4kepk9nst2rBFW+TAGx2COKlguJOADQtuNTCTUmmAdWqelANmQfPzzG - uvxzUx3c7unu/Hlmg0BeoNaqOBDrfTAi/pgeSvhkp5ocOMhNYctYDqd0Kqiu7JxMahgCVCrWifjS - 0nhzlnMyOozJMi7h7eWN9lG9oUsRiyRwMe0m/XxvITmlmLph9EWzPDx8OKvmnpLNfYiW9DxhdXO9 - U2KOzbObs3JnqLtc9MgeuWktNrHTql/Tx/Q0lRiNqDklap5wH3L8HaWoMnueU8VQUTEkYY34Tpws - EGMd0Sh5C9F7aZ0Wfhn3JDaaOLY8lrMLOs4MHHSoz5g+NAGwp1ITPX2/PP4xcTZMh1mj+duwvSXT - 5QU+09xg9MQoag/id0ICvBOy7/l9PcnHTgF7vCf0XMOSsd2rAXXbhHdaSK7SzXC9TGiYtYEeJV9n - 4nh7J6r+6n/0jBbbE6M6ukFQVunYOdtHJ1rIxOoXsYk6Gg2z/vV5Gure9LZES/sqWsLgF8Djikpy - lIpTJpSX3QjHqQFyDGTUsVNTfaCR3hk12+zgjRnKc5BtGAk+px80HXqNU5n3AoofhhSxGlAI2eEp - 0bN8wpn02rNcVeXGJhe00zu+/W0+cG5PO2JLJxFNZ2T0wOe7Az0dBR0tyf4JKqv1J3HS98eURoFf - 4Df2NQnm6NhJN7wFpPt5RR8NXlskfvIC2fZ8DJmJsmWWdBGiYqGjOvAle4VhGoND5vUaRz5Bc3ed - X0DJVqDaHB3rZRteLTW/LA69ccmZDd+2VZCqpRo5WdUF8fvE6UHenVss2o6UlUX15eHDSftR4WfI - ljdVbLWT3wLR76dXLcWnuwY/z9nQ+/BtImYltx4KAXMEg8nY1Nu5g0zrGpO7dEqRhN0pBuGyD+nu - 9/TNBbFTro5JOdP00HgRW95egbjCdamxfVTecN01ChChJPS2fj/bbHYJKAKxifmmTddb8+Kiv/yN - Ht0HsXo7uPAMf/wo1BBGjKO/GG12Hzq+/O29HptgKVW0qCeyfl7EHgdnUYXLLqTx+Kwj8WO8Qki7 - 04NoB/rthgvvF2j/rTajRGLTE176VKmiWDzpoaVPxBqGOHQ2+LVFqUse62u3UXbPciTZY65N9m0Y - r95wPY6vdh9m4vWdY+i22YXuN7NhLu95L6Icrae6zx89E2pxiqE2NzXR7vctG31cFrDVOWlcLrZV - i4ERGSpaDpRYZSWjobxFvHo/AcUcid9eX52tVo0n+0Gde514Iu7DETWBI1Ff/Z0y2qA3p/5ouSOF - flbqSekKF7CZcuR+Dv2aMUl9Aa0fN7oPwigTpnPioqJAlzU+bZO35sWB10dJCIa7hcTfQ1sptPmk - u9c6+3pW4wV131yietoik8UYK+BaqkB2y+3tLWH2vP3FK7WSE1ePi2EYKt8rHXHDhaBlu1KCk63l - JDamFxvrpO6h/HYdPXRZlfGfbeSqPW9b9A/feIClUl1QHnjLAZiT8lECeD+VB3lEa4s7btIP/OVj - lBU4Y9QZObhURKLGdj51Qv/sXvDLI5W6F2uTseAdF2r3LSSC7SHr/uJXabufT25v2nbLJD8+UCPl - SHS8n7P1psYWrm/Op0cPu4gdt5kMvc+hkRPXcyevQ1uC4YRHqk/DN5tPX6+C6IEGgl83uVs+Rh+C - peENNbjgWkuC37j/np9E2282bzS+gGrh33Tf3JKaT8uvhnjHP9CMT3E3BkrJAbb8EpdKkZgS3ldY - PUFiEA1njjnDyplux9s0bqdP5y0fTkvUW7WLsESuN5PvTduA2U6P5HK9Z0js5kXe2nttobfQJtl0 - fKASMZ8qxJLf6+y4xWsgeUd43XKFu9dvveJ//3PNEXxsZH/1Q/049ZM43dkxpyb8feBrYkz3u2o2 - R7M52SCGskoTHRXs3++7awbBzJBMUxCTgw+hYh+pebz1iF2GuYRqdA26Yx50vXdAAbpLOaPazuG8 - qWNPTqXvq4LhxlmZWF+3PMRThrBiJkdTFEajVF1rI2C5yom3TL0+wlQ8KlzzWoWWTiwWpX/0Kh4k - X0eC+gkCda1X1Eu6uVtgQxMwEyPFcHux7Bfj0ldL3fgRq7w/WX/MhxSKUpLH5iOWHr/TCwyRrw0k - XvnEFL3dHKWcYJIT3s/RJMz7WLWdw4Q3ga2Zovl2AeK9Ia75UHTz1RZb6PFuOzLzEHZLfqiWPzwk - Z++8N/nMUl+AhodP9IMio+EWPA3weelE8cs5eHzHnqB+URGTjB7fSEheZfFXv2lim2UmtMHeV+c0 - Hsh1c4i7afDlG9TcpqO+V60X8+4XUO/hdCK2/iMZaw98CA8u/GD15u06sZsVGSTX2I3bsD/X3eEY - pehF5iM9Dl8nYhvlWajJx56Iv8aDhJ0NgF8pM9lBYaP5fYqr7T1cTuRunE+IX/NL3QN5UktO+3rh - TuakFrTfUhLYmvdzn/CBxahj4jP72y3Xpo0RxxpCLoOuebPdMlkNit1MT/eT1c35IrlqTAOgdp34 - 5gTbPoXn8UDxUqpHNE/nwgE1uhe4+jhJNO8hDZG88XlyP+1is6mCclLjSdZHcbgdUZ9wKQ8FHbfE - oKUUzf1r7pHJBcWK189sdhMoAC4dI27b1N3yem05eD4+Z2rua7Me8FFwFfEl3NfzjnrGtKpxUZwN - KXX/8MRzfB+uGnsR/dAcovF4LV+q+JLuI8rNEAmRTnvwImxTG00FY+W5aCDLuDtxnXHM2GXYVmCF - G33lJzabaDW16Oe5G2rtSc/+6huA9TrT06H5ZfRnf1zVGKYTnpQOd//q/Y6+jkRPPWbOCsde6js4 - ZfThMgENr0NVgtlJ8ijNm8ljXB/58LvvHtRynI+5HG9cjDz9a5Dd+er81V8HvV5uTFy+f2dz5Jig - zFwbrbNcpXpe+TSSeL8nEWOtx+T2doMdH0zE6apyvVFIq9QiXy9KOw16J6lvkfuHf1n7gWjW3j0o - t0oWaBL4V3M+EDcHnEBFb/SKvHlX6+vYKqOkbuqePNGVGwcs3XgSjC7MXFzhZgA/fzF1Gr1B007T - ChV+obSuL4fo7nkTQanuFj0ukcMm/lknf/Wb7Ae99BoQnBK25zKjj1i61GP7WSaVVccNDc1WRwI5 - f13Yx5OKtwdjZ84DnXk1TZ93mujuPhOmgxYAt/ADdUObZlOd3ha08nV6tCs3Y8VOaeD6VfpVP4DZ - BRVO4Mcym+AdWN60TV8a+M9oGMFA8rqF/lkC79RvYoQ969hcfDHMnU2Jpvh2JypvD6Nb4DC68v3s - u5ciC14yL5JrrhI2NdEmhhx1DtVwo3XCHx887r8RHtf61WvuvYRzctuNzDI8tqz8Bc1pMlDvqOvm - LE9DDHdNI+OUPg5MsunT2pr2hcddbi5o/CiKD4Xvncel/RbZMvgPC9EwzunpcqzQ5FTFB2Z7+FFC - jjZb1ydE9pCkRNuZX3MUWv4G76el0qROevP10XcYRp0n9AyTGC1RuQvRtIg/qmki7iR9KAP1Gvku - CQ70W9Nh+bRwcMSRHM/cYPb+8ZCCcbh6BJ+9MZq03bZBKI/x+j6lejGbq73t+aykXiK7Jp8YsECJ - joQUde5kQqiaCzrkt5D4tqh7guDplvobx5qQTftG/z6/EfM7yf/eTy1OCXTRbqaWUfcZ8+enAmm/ - 06lzn8aaYSu21T/+kPblhJp75PHwPHqU7l7ZrWbtaQyhPFNv7P3Nlg2njqbw4YQ9uTTO3hO+1SSD - F58t6mzuXib9uNUC2AQyDT6CwqjWho46/kJG9O4r1P/yTcUTosn1YZr8e366aqcZEZ4vR4NRrs8w - rPXpn56YL/0tB0vJ3ljQp2O3XCKJRwIqUnJc+Ty7LPcUrfGDf50+Z/MhDD6qfO0nap93oTdwc3D7 - p+c0t3x460XOk7rqNTxr50e0jMlh5dflZmTsM3fLJWxtROTvQF1TOJtzYWUfmCb5QPfi9Wku4jLe - lHhSdOKv67vyMxdK0GZyuOcSWg6jOqGdd9xTIy/ebJEsg4eGXOJReDWRyXThFiLl1FXUoJtN1K/8 - QbH0i0qdKicmi+xcBqV6WESn/Giya7Dv4fuVJ7LXxKmbJGXu1ULwuVExBcFblLfpq3/5tUeX2fvT - A7AT7JDuXkndja4QGuopXQqqh08jk2zeB6XuyW+k5JFky2FoDPCfp4EcvayO2l/dtypXysdRoR9W - j9u1JfDmmydW+DnP/vHRx3Vbkpx5XM2Ccvqo7Ig1XPMPF/G3rZCCQfuZXNxhW/cfdWNAvjtX5PQh - fMeS196Bqza/iKMFbbbYJ6+EdT2xMDDUUdMLP3/8l+7vUs8WQhsetPgpr/UhMoVmmA2VBjTF/O2q - eUNWHjXINqVO89uLRVN0D3L0h+fWQ5S9bhjdBY3fOCLGMxfQ8DPnWEX7jYPbrGsY8xephQt1U3rY - 7XOPfW7DC4xMI+R4a4d6PAylAQ05x1hd9cnv1H1TxQk+zciOfR5N3WbDgx6ca7Jf+SwblrFFdRr/ - cF8m765TLO6l4POloPZXiL3lMcyhusYTiZMT182RdgUYLTRQvPhtPZW8jyFtOZOYpy3P2Od54OHE - fTlC4rdjsoamNjxug4EVZ8RRs1ubozvBCun9d6NobNJXBXVyO6z+jmO234NTgvq2K7zd7cFc7KOQ - qm9+oxKX7r110Bzmt/e3REeFsz7ZrDXMRvXluSfnl+DV/Gmf+oBs3iXFEM01k6rmpmRzXlGXO9yz - pTknqfqHx/6yJeYk77YKJLIZjApjvTn7LAWYnMagGlYCr4mefCxTvEijuq7vuw2Ij9b4pntl3ULw - x5+JUBGyK+YDYvriO+jC9Ct1Pkgy50bBMtwJ7ol5PMYZf9oHWKV4kqgTt6o5vH25/af3tLvkopE7 - f9ut3BcLMZ7kHs3NkisKt4jDH9/J6JpfiiXfd1SvjNxbxjvK4VbgcJS+o4DmgT+PKJGOI9md5QkN - PCzT2gT9jFNVe9l0Iq6v8ptmoP/4rFMVr60Veg+Kb9Y3mrX+4IPQNiKxbbOM5uR5S+DPT3HidKib - S3xyYfvprtSwDq73j48/NtnKx7IJLZLlitu3n95Iurl3WXNbzBuEurgnp08+mGw98QnsAQbZz2Vj - Tm3z4yHyRYJfxmShxbinAK367onXfiCbg1pN4dRVJfVYf2QD5IOM1O1sEetF52h6fcUJ4hsSifnm - NzU7biYX5k450aM3LIxiR+Jg3yRPrDxN9z/9oCUOkPR++nSLcj9hleCrTQoSv83FT8JC/exyk6z1 - vRbU72hAEsUj+fMP//whtW1LTE2ZW9h8vok25BZ+4YUOFM17CEJUZTSnvr/ZotmfDP6f/neuFvY6 - ur9i4NimI1q0dzpmaGGu8lMRjNK8SN2iOZ8CrkozUseClk1//mg2jo9VD+8j4UCMHCApBeIeey4a - P5wWq7J98InW5VYkkfOUgxf5NnEscP/8R0f901PavQ0zgRuNUN1cH5S6l2LK5tMolOqpHTn8wzfb - FN90sVFT9xm5iF1QSyOcNPVPnx0+ph4JvOast2w5MbWHo5AxKwl79emvg5XW56GOewwVLXFhBFkN - 2BTzn0LNL5NDzo9gRrN0Z/4//Fr1W82Eo6CARa453dfGOZqvxm0B9UNKPG9MOZtfh6oC4SLzq9/M - ovGPjwZ0FLDc6A7iEy7g1V8+mfQyD1q94El8KfbeWLB6fry9v/VUn4J1G59pm5mLj5scTlxQUV91 - f9n0qkNZ/aJ5wuJwPEf0cXy1SGtkbhzJh6+bJny+UMBfU5q9D1b04Pjd+v4agiszmFj/mDgLsvsu - o/YSfRg7Qqshc+eL1GOcGrWWpNpo0YeF6sJ1j5i8WCmq7h3gjh53bBZIz8HKp/FiZdearRc1o8+u - MIkmbLA5pbnnKEQOT8Qbn7v//PaCtzVK+qGLJiKwBZ71I8EKY775a/E6KI+wHUYmwYhh37ZgOUcJ - Xf14NB5GYYF1ajN1W4WZ0zbtNUhTX6dXTnqb0ghXDdaBXPRwWfbmMNBZhDzdv8jOO+890XgCDy7H - b6i/1ovJPx5u6FCeImJsw0O9SJAuaMOp65Xgku1Nh6nnlb/4+eNz8+6BJjj/nP0ornxKsvuQA3Ly - DlRf+RS7eh2v/NXjuLzraNk8bgY6m61JvExUzL6oqAiFd2bUFjffaPGTWwE/56bi5Zmf0TS1VQNj - Us0rP6Eeze6OD9p30UbxFih1Py15A9aJN9dTvQvq9XBfAv6NL0Lu6sHrr+3pBn98ChdCwZZ4/jXA - sZbQwz2/oLlGsY+kfNlTgylOJDBBm9QkfPqYW/0vaSs3LfILjFc9XprDrtZldJnljIZPcs+mTpxs - kIrxi5nc19E4TcMHGpFtR3VMH2ia5UmGoCxTcj8/3uaKLxaw517HyNk+ajZ8ggn+8GK6em02tcNx - BOanxYiS7lSv+iJR6KlSyF70nY5HrXP785vWzZd93ZrN1QImzDVmj85moquFGHmS0mD+17RZx3ia - oyAHtvZvOtTvYAkUL75Yo/rWCjRPgRL+y/8EFTRifW20alTf18GPBnijZLk8VFmqkdyrnvW8e10a - 9WyITyyv/H3+XKYJVn+Z7psjZ86brXFDZtsrNP389rXE9ZkPKKt6gr+/ErHtVky35Bg6GG0taq75 - cYPC0y70ZEHDFs0ZC6iT4U2x5Co1Xf1rmFjjkcIeUM20r6XBweHH8WXUfvavX+BFdYUlN2vNWTEf - pVINcTlu7lNQz5F24kAkl5Ra3sgjdhHqUhFjE5G1nnuTvJtl1SPtc1TrRq0XeR9wf/WH2sNtYMuC - L7JifX81Hhv+0PGe/Xa3K98YYbztvZ+j8RjeDycn9zHdoNGcTFvVH/hFDx/zGTETlz26+MOy8hPq - NeZH0baOqGCsrn7pxPAWw2cYD8SupJdHTwMuUPmNCTUcoa3Zqif/fh9x4vTY/flZ6oZrL3/8J2LC - 4WYA56UOuZnJ0VvedLEgvn1udK+9dHNqIilWPpvmR+IxdtnU/jYvdI+2ZKzW/Bajz7NUsZ4X5M9f - Xt9vC9mgqP/6dbR/QPkvX9b1Y31xLS1QhKNN/d8Te+ugwAVWvCYrvzJZFwTVn94b6eqfLD4RfeAd - fMBTf4vr3j/qN7i/y2hc/Zd6+vNfE9x4VNdMyv74GtKDS02JGw9o3NSqjIqyzIkZ2seIJtU2VUz7 - zOPzqg8n46EZ8Ken7VUfT9MwTar1HkyMQv/XMbg+LdU4ZB6urINrSnepT/70HXnAAZvS+/IolISw - A94QDUesz9IWVv1LcHN+dn3CBaLqhemL5C9h6Janc85R3dkdMejmkf2+layAe0kzejLn0lyAO71g - 5fvUwSxCfZjwvlp4F0b1tZ8qhSgfYXIRh+ngs2huhq0Gv3wxMUuWATW41lvI1cAnOYs0U+Rr46aG - 2tEkqXjZosVsTpb6Xkad+u/4XA/ULQxI9xRhES5OvfCpG6LsUEvE/42felY49IIuXM5kf5d8Jqm/ - naVqSmnQdO2PTGZ3l+FoF2e8tLyI5rcvN3CgbkwOVvLq2BEqDY6ZIxGDl9NuXPMBBLMeiYOfViSN - W0NWMyrd13y91bP9SbW//jFWieJl//wyTakMsg92NzZ0xTlHx/07IkklWd7SxFqjXg5tPPJlcMik - +HTW1Id9BmpuPS8S4PpYIJH5hf71a+Z82TiowTihxvOHI5EdDfdfPSWF+6znLUM5ytXQ/+vHmFQx - S16l9f1GotOWR8MtjQzYwuH+Hx+uZWzDcdhf/vnP76XVGnXZtvkoooJkcxk++X9+0V//YtioY4D+ - 8Cpd8W+S9qSB9BpvsLTi8+yzgAMS7X6jQvddN1fDEeBsMZ346kVHy/1qT398j+7quxstj7Z21XjP - p2u/+Zz9/vyxeHzccBsulC077hrD7XEOqM/sfTfkn2eorvk9iiteLMuBX7fYdsG4hA/kTfr53ECQ - e6dxSrkTmjeQVsrf+z5N5Yho9iHw/xp8sP3fWwqexRJS68e9I7Zk51T9zZuJ+EPXselSagvQJQWC - TbTUPchBCbQ4PsaPmGimsMfso6aWu6OuXg7RmHEnvL0+XGlE5Bma4gZvXhB+5TM5yZsTE1J/B2ou - qxaxXO/ZSSipNdjHF8ALPHxv/oaDDRs+6vG02T9rlmlNAdwv2JLH23M9wbrWDXK4zXbsJenrsa94 - WlAPk0ezknXZTH9pBcgYdSzx9aab+nm+gb+UJjEa5Eb8gTMXVQ7hQZ2q4jr2/eUluL+3RPR9UndT - 4Zat+tYHgzqKImRL1jsu9NtKovji7rxZiSgHp8J/kEIxP/XkQZmr1WBcsfB9ri19vtaA2leF2Cyo - Mmm69AoUqzneHt08W5R780KvaieNRSkpbCbpb4L2iW2yeoes1h0nRw6nbmlG4zNa5Icpq5lk8TR1 - f0PHjFlMkfneFGOlbV/1bPmfm+r5RULtwyesu3criXB5cA0xS7/qhOLyKIBNtzf1SuZlrDmXrjqT - ZEcc8W2bcyMR/H9cfVmvgs6y7/v+FCf/V7Mjk3T3eWMSkKGbScXk5gYUUVCRqYFO7ne/wbVzHs7z - 0iylq+s3VFkFmzdE1IflHnDW2pV6Ce48ccna5f0hZbGWu/YjRZXC+Nlfehhd+ZyoxyjPF7LcBIjF - V4nPo3Bgk4LaE+g0G9PMkVjHzkGdQGGyLWJ6Z9UVb4d6Qa/7hR+FzUtzuTvVJuhFkkST7pqyxSoU - BbW+9iX61g11QcfoDfckKsg+PpCc48Y2ga2vfOmFfEDM+tvBgee6lAm5hedc6M5qAa8Qp9Q1UcmG - HGoKjMJ8wLN1qqoRr13bWIgqundHLRYMdu6RMPqUWoboAC4ONifIiBgSXyVDx6pxmtAi9JRYM/x0 - yxaL9e+86B7iPp6dmnfQ8+hxJP8Kz1j0u3KEb9ut6D4+0Li/VHMEL3dbJHZuhd1kW0EN1/gix6Np - A/54EjQYyKpOQyInYN402Nut35fe0LfVl/KlvKHgxx+8sZ0ELG7aTVLlUJ/itEnBrM4phAcYS0TR - hUMsDNluI2/965FoSlawXtKVFm3xHI2b70urlsNjeoLLe3MjliG2rO/YtYeqrFSkmDol5vuPfkK/ - fHC2ozMTq1Ga/uKZ3JnesfgLN/KIwjNR+f3WHauImvC0VUoaOlc1XvyzXcB8eVbU6TjQ0aIBJiS7 - 20Ru4KzG4hjDFIrhOqjb+l5cLtpdMmidP8H4d98fnR3B4Rm8yFWr7Jw3n58NKK+yRu5LNcUM32wb - tHLSUMvPoT6iaHoiuEUSPXxtoVuU91NCgRqfiO7Pe5f/bqYW8qGk0JDfJS4faPcJcpfKGoXEusVL - KwITpI4eE3y/fPSu8YURis7rTc6B11YLV5c2cu7OmZqJdct5JLwXKMRLsD7PZ1UHp6hGN2VqyV6/ - Kzl3XXf5hs13+5/zfMGugPXVa4h+Uj66+DbkDJpJqhNLdg/V3GXYWHfAQ+rO7001PL1PKj/4zxdP - EzBzPt1xAvqenwHmp13fjdz5KaH8fPtSS8xyV0SfYEH0G13o3vcEnQm8VUAVry05lVrHC+e8Wvh5 - GQNZ7xfg9cbDEORcRTK19GPO2OsZSotPjXewT3N23uTeOiVgoU4SZG7Dl4cFSdli4E01nvJlPW/w - 6aWIXLF/zhdaPAv0de0LOfuyCsRQOpZouKsBjQJs5NPueBnBMtTe2L+uBzY/L30Dy6ukES9wJta6 - abfAj6MyciGR5wqfz/4EHw5WaVwN10oE+YbbDdo3o+YHaJXQfbMSloW3JUpcprGoh94C7cu9pOrQ - Ru5isHVFR2cfiNeNUcyNVSogZzJKqm5DOZ/xR0vQbZ8AcghMNRfHcteAXWrqVD96kT4PN6GGNOlt - cgt2144Tv6aJZs+cibWEAht8rcQoGaUDuZnpzPoCVQnkUF+NcgycbqmUQoPVKH0xL2gTmMzjbKNK - 6AkpXP6Vt73dyHBoDYfmOPWBCBtoAoz5hSrhLQR/8R2g4LzibVTx52PWw8NDuFDjaSzrIHmhh4gt - JbUmVsWD+aQQKmfPpWEZuYB/s2KEXtvfyN15OJ2ojL4Ez9+9S5ytjnW+OJ+vKOlanmh2MncTmaUU - SEO+GevvZp8LZ+gpcPuEFCP0dVx+L+028vE4lFRlHzcXRu+SgSzUbWKcaMR6S44DeBIxIKo67qop - /3wX0F7SkuYQbHIWmBsH8kXTkTxoT5XA7S/CzsLXgZzOiw+Wj7VVIKuVkQQ0vuoLLdorvKVvQu1z - X1djsM1NeJAhINaK58s25wR4+AwfknD3SZ9Mm8kwXoBNDO4euMPDymvosnigZnW9Ai709xyCt56R - 6zHmXeFVXQU4WsuGnreJD3izDVO0PJ1i5O+RodOz/jHRyh/oTa68nLmDp8BGeNuEAHDqeMEEDizf - yose5nPasfHtX+G+9D60kGQtFqMoMJCtdgBvDwNfTWL4xdB/2FuC4ZHk804tJOBNr37c4cMHzILJ - bJTegg/Rne6TL1zd2AgfTzk1uYvJhFAwE2Q9G4f4an0Fk3q0ItRBTyJ6TNJOrM3jCMnuPhGnCtp8 - qo+LjU5braT38GPn8/mYjWjYSyM9iMkM5tSUbSi4sCWHXdjFb5uvJbTpS5/oXqMw/uCnAdCvHCDF - rJCKT0TawC8Z2xWP193Z3EOD+tdbiPoyS8bk9p4B7TmFJLH261Slz7qY5JKVRPssLzA3M8iAccvw - H98atVRLUBOlPcXve82WHlRvOFikw9N9A/NF3VgT5Awo/PHDiRhqib5MsqhSLmG3rPnvlz/oNXAC - tsw7kYMmf3KJG0VKJ7bbkwk7LO/oH7+JxiqBterSsT1Kht7l0fxEK5+lSX3KY0YVW0Mujw3ic2EF - +I8fBsgoBpeaybvSmbsOMmu4bv7LPxO1gAKbrsKUhFDsplKNJfhCvU70ok7z+eAHESqX7Po7X7a8 - p8iUJ7EsqWYnYbXMz2wD1nxNLA4H8eJwhzdw8p1Obl7tx3y/u2awIPlrrIwRu4x5UICHB3fBqNce - gEmP2JTX/EtjVzlV/DvfCaARd3tix36xxgcJ4H5+1FS7G4W7vKqEg0t1y3H+sLOOlw/2CXj3b7UO - 1h3YZF++LcRCUFFTOCkuT695ANTtbqZ6JB/yac3/8Km01bjg0GFCKYYtynpDJWdxVzL2KHQFHncy - pHr5CMHwTFIOrPmDFqWYsSU9HE7wpPZPfFr58Owabgm/qehT015Qx/idkqJK0j1cbq1Hx6iiaEjW - 793IfXwBLI9TqSCCTZtopmaDZVgKAX6+7YZY90frTlF/tX/8A4OvoOVzfbs5wOQTl5zs5dZNuGYO - YudWxHMm73MmasYCvJPt0aNy2OpjYkIbhADExPONWJ+3VlJDJZ+uNG6mGCwpvjnyJaYHgsfRBPP5 - Uy1yY2o8ljZco7PN7isAVfuw8Ulokf/4K2Qp4giWU34dLApKUIGgJPhxUjrRsb8SMIF/oQfuJuSz - BZ8FFA/Rl3p673WCkMfpbuUPxDeObszLByWBTnA/4rk6fGJmL00AfQnW9PIYDt3Uvs9X2GkOHucD - yqupNGkPtxfBG4UELDFF/imALJNccjJuYzxu2mMmpxtMiWvnSSWmt0eNrpR7kKsmiRXbJ3wEQL01 - iXEFY7xIkdkA0HgZjYMU6fOxYhHad82RqM3DB/P3dKvBxgMaUaNOz4WjFJcoePoFlpF8AP3butRw - FtzryC3PU7eEAk4APen7EQU72NH4y/3xO2rKHc37ft5lcJaHgV7g+aD3a/wBLyE89QRy05nVCgI6 - DtWekGjqK0b3OQc23k4jJ1J1gH1lJ4B8KCuE8F/scnbBX5EY5R41wb3OeyilJXwXrUvxW9nqM8+1 - GozjENG9aUrxNFaB8MNbPNmZDPrPbD2B1O/VcT5GIF9oJQR/+kjDoQOET8IFa4tXTKwvvrMhLp0F - euf7gZiZ1HXT7aJ68CnYcJSNt6tP9+tuhC806tQthBmwKEpNGNmxQ/GOhNWwCR4nGGPaUfMQ6rm4 - nA5vCBqcUQOJp/jHF8HKx6jdvfhqgY+LCVc9SQ5yRioWQ1PZzbF0JnFRSzmtEiFAwTUh9C7cKp35 - aJ6g7zYvEhSlzcR1/CvE2t7C00eiOjtapSJTM5cpMYjmzniXp8BPZpu4IZNB07iaAWrkTHiDQeXO - W16/osMtsoitURks37Sf4NCaDhZeFyGfy8bHcNg0OT3IGa3Y4ewU0BK9nBbagvMJUX2C/L480OLs - vPQlXMdQv+SC4s3jVP74sYnW+KEHZVarGXqSAP2+Hn7Ptxp/r//pk0Se04p/qWIi3/zqSMw1HpYb - 711hYa1qtmwSwMoNbECr1oCEUVfljOt1BxKqBSte7QHztkcTNi0Oib45X/UeElTAO4pEeli2WtWF - TO1hi89vsuqbajhEtYlkWc7/+MeoXF4N0K5xQw3OKRlri/oKbrvnmRx01MdTuoSczN+3zTrFpu8Y - qMoAPR1XHrnOWldRZfUToSIyx3J7ncDYOh4GYfs+YS5ztmz2fUuAikIrjGpouDMY2gJ4y1PHff5C - 1WR7dQaUwbqMkhp+4sEN7QWYqk2plt7MeDFGXYLmUL6IVzmqy2xjl6Hf/YnC/gymfR32aJzKnp5l - 91uxWlVlBKN4/9Mr3XzNgxQ9/Qsme3HruMtlC5+g6R6YHla863l/GqHxfs6jlFthNWnc7S0P1ec5 - dtnj+R+85MJkwDDm1Xh+Ya5GGe/VJO3HTKc//eJ0JaZB64hgijcDhkw33uTKUBIvF7np4fr9MFUP - RiwOaneSf/m8MP08/vv8mfB40PX83NZzXAyjwJyIpuxptYQVCsB89BPq5KodT7fiqIFyb94wumlh - zLbp5KEf/hFUKYATloyDR/7U4d0udPOZPqgBVaN0qGseOsa0eZPKK/4QbPp5zq96DxgmeNPDPV9/ - ZSdvRsjZnoMFreTY/ExSQUpfhk+Cpq/jYc2ncB7PAnG0b1gtVRaUKMyQS32vHnIq8KTYVSQuiJoc - zi5ne30Kbb2OiDocNcBJut3C1U/D/A7qlShCSUJHr0Z0xb9qaKfARGa6SagygXfcDTTzACnPmHi+ - ZOtLWDwKIIyEUu/Hpy5DV4AfX7x1VQ6WY1cEsEb2RI4Qe/Fihc7yx/fSpYtz+ioDjNpsuJGLjryY - 2wPhDaiw9fG2Ph/defblEd5vXT/uvtDtVv6oAGG+G8Q2zi934n2ph3bqVPSXXyjkdwl8cFGPGc9a - tvz0yDLuDkR95ZM+9TXnAL190HEpeztf/Y8NHJvBHDP99q7E+31MIPZLngRYqxn91Pb486MIPnX3 - eO60B0Zb8aGM7+oK2XTronUK3lsjGjhZXQusU43yYROOs3Fv3KG+HR20U4KCGMFy6bg1HkGSXh7U - uPBTN6tCv8CQ9TuiZvIrHra8W0Dx2JQr/ox6W898Cn/+kJF9X93f/W3VNyBKaGsV86ttAO6659Ok - 5lWdAxM1YGCULbmFqRbPwsXzAFfXKuaPuaTP1cZcIOzyz7j6WR0Vbs8aHZOsIlaR7oE4lnOL1vxG - z2ned+x+fycoaEaTWuFxZMv5u0DQOC+T6Hsxiv/8NMd5m0Rlny5e1vsCNP1g4o0f79zVjwmAnMcB - xXJ6BCzfwwh8XuaAgyAZqmlpZwH1cHGJql7avC2SjAPiyDRqeLc2nnUrqsHqj1Ld5bqucYJEhvK2 - 6IlqdRFbikdgorrW1kUPKXKbaRdlqH5a4rgr630uUufTwNezc8Ylvb1j1juSCXwujYk3coErlLe7 - A9nVt6lnB4U7IL03oHdYjsSPHu+O4ZtiIz8uXOIv30s1a88pRfjUpWOz4WydPfmPJAvupqXGcFny - GQnjBGoj1wkh240+VHspgHpgBFStilPFet1s4C7hKL2EZN8tD/gqINwDTLWHeu4WOrEnQB2UV7/H - chdAFA0ZY3IiCgxMXfzhj5Uc4ajQRQXsFWcbWT+8PkTNzClf6ASeUPDDD15UHLO/1//0s/d+YbcX - xLGFsmaPxNMksWMXTV/gLz4tTGa99xI/gys+U72ZGJvDx9uULXXUqKWP71icdamEl8lS6H4eHl2f - Gi0Emu6amGbbsWP98d7DpCTWn188Gc4Zy+t9wMKVf+nLcsH4x28xb5ppPi7q9/Snxx3tO3fLjw/x - H4ZHTr5+4/mkH1qw8ktqr3jUuNxWk5/ifUc085zqy8zVGlRqaYul2F9L/Je9B5+eGeJ5ystqOpf2 - BEn1fo68lFwqdn1pNdTtYJ3SZ27BvISdtyuy4k7M7kS65rGwAO12ikvy04ewH97Cz/7+JLq0a7o5 - AuX7Tx+t+ZNNnAKu8PU4+dQKvLabFqTJILuPDlG+KqvmTfBI0HOXBeNm8rJOSPFx1f/aa5QsrFQ8 - GNoriOMYUcPGdr60hpSCS3Dj113fXke1WcjAIoyUWOfIdvmTYJygKmsVFhx6YtxPT65+8Mim9l1N - tpXWf37Dqs/z5UqnBn6+zYYe6J6yrpvQE6x+Lt4BXHdTtAsz+NylAb3Gp3VdDae/QVjgO1WBMMSL - h3wZmtGtp55HdTaezl95/VX1QrTwbHdzMJkN3J9NY2QCpPrjNnyv8Of3FB1KczbVTwfJZr8l2vk7 - uxTrfgN+/n8E757OKNN6dLqU1rjyvXj2tdIDLehe1Ebexv16fCuDtXOUasx6dUNqLvaf/+bzVMwH - 6EkcjJKvOtYrv2Va375hX8M3Tdb8MV1OUAGr3qSq9sTVXNRJD/XADH7vj//07qrXcfuLP+UytPDH - t8hmncpki9CASSwGY/4MN+zveVXak1FcBNrKV+sFhrU1kgPdGWBuq4hDX54Y4xLgOp44k0SwqgqA - mQCJziA/J/CI7IBasvvtGO9eSnjbmA3eheTVsY27bOT8kikjv83OOk3w3YHA/hDqJ4Wi//gQWP1k - DEXR0peDtVEggdSguiVLf/kA6uHFJ/uBjWyRvEWA9nXkKJFoB4bFGCAo7xUkzj5TXGH1E2C6MHXc - pE3KmKkqkkztU0i0NX/81ZdyKZ+pn012NW7h+wpeW1Uhd68wdOFxajR55e+YDXXDlt7nevR1nQvV - uNcubgrCFYiGBUcVZTuw+eenN76QUTXL7xV9tVtht97XcdV7bF7re/D8tVyi3SudzaO4M+G1//iY - 07emK3YTX4I1X46sqKWYPdzdBn6C8koIqtaWbe6rQSWt7LXe9tIXUhoTsImi0EMbZmDJ7s46FnVk - 5OfPzG2VcfJXuqY0u25UJmr98w1/fE48HXS27KO3Ae+HfU60sm/yJVHL5HdexPjetxVLmrBFolA3 - 5ORkViWo+zmCRXa9Yymqyrhv2iBDqWHvV3/7wabn+Vign392z5MbWD+vAvnPjMn+nT7W+tfzBMOm - 21Kdatd4zHvFgas/gBEsX6w/PWoD3fYnQE3v/HDnnrPf0Hmpb+ovSRsz3g1LlDXcQH3LewMmvUcJ - zmnRkBXfdFF+uW/Ife2IxNr1ldO1Xggb52NS7S4xffnh4Ro/1LAypo9Ac5Y/P83l3ac+W/TlwYqE - xVof2jD2evUKICC1aN5u3x1L6dKgjYAGYs121E2m3hjw5wfqXlMCavBvGQabV0IUTq1d5k+whOv7 - SbBPkD6zorwiFAkpVRQ3Zb98gDaSZBA15qxurYcFMJdP9riOhmBMAa4Dd+orJ+nzWVTdOeiTn78x - vgpW5NORxAoiVf2kAafW+q8ejVZ8oR72xXhBkfSU4aYBNOM7i4nZIzPh+MkO5ADPX53BBhqwE9sP - dUZ5l4/Fu5LQ81F3JItB281lUJ7gvenfq16A+jS73RNu5Smh94Hm+XAMnx5SjjGHJzn2OprvYQB3 - O80l/uVT56MVOtPPzxljwc70mV7jAIZtfaL2TSrdMVGbE7gfrBy/mtbpeDdUph9fIe52ubAl31w8 - iO4vnfpOVK/10v4Et2N2oyapXDZn6JXAKD4ZZPX/qz+/C1hBRG3U6YwFMchglZ3ScXpTB/Chc8Dg - 691ORLuAC2DX9pRB5/sRcbPiK7tnWQk/hv2ip/7Oub2vhAr8T0vBv/7rv/7P2iDwz7u5Fa+1MWAo - 5uHf/9Mq8G/x3/07e71+jQX/jH1WFv/8939aEP75ds37O/zfoamLT7/2GiBZ4v/aDf4ZmiF7/a8/ - /Wv9h//vX/8fAAD//wMAFJW6Q7oFAgA= + H4sIAAAAAAAAAwAAAP//pHtJs4JMl+a+fsUb39aOkEnyZO2YZ0kEVOwVKCqgogwJZEX/9w691d3R + EbXq3twIhatJnuEZTvof//bPP/9qi7o8D//693/+9aj64V//7fveJR/yf/37P//93/75559//uP3 + 9/+6s3wW5eVSvW6/238Xq9elnP/17/9w//ud/3PTv//zL66tlZCl1gOxbb2z0HgQ7kRbuU4i8Idt + Be2639HcNLcJ26z9HI7hsCFbz4n0WcJuhXGSlvS4S5diSYoqBhCxSo29udcXa5EbaIV5RbbHl69z + iT5nUL7VghgG99Q/2z7owW6K47i6JmonsisY4K7s/cikQ81o5KgxeuxKjuixkfrLfVrJ0Cm991tP + MQukmwAJbymcnt7b720+KMF4f86EBKtjN0X+GEJ+VxC16sdGn9FMLKjeQMjeb1k3J+Ik4x4t+7FR + sKBPw2uRsT8Qg1jNpfIXDUOAkuEc0+xddv7wvCYVKOHqESKJG7tFVVUL2yfRHp+WphV8Y0YLCuw5 + Jce9vfanZuIWXJP3SK1ot2YTH34EUHTNpQqgQOfMoZMh2jCD2Ba3Smaev63wfq16NKaCXQ/lyVHw + Jq8mqrjHtKPSomnAY+tK/LsgJXPDaxVWV0ZKT+lx64+cG3jyLfM94kSV1QlhK8rY7wuRWgZ3KKZT + LFfo+5pYVavXIpGJAqCpe7I1kpnNE3sHsF1rLgmOWelz7YN5eFdPKdkra4ImVRpukClcRPyQxj7r + TrcG5KRnY5fUx5r1/PoAp6w16fX4KgqRz4sIGlMpaJYFdSGizeeJMx4oCR7dCjFN0xR8nduS7srq + 6Xc77hkAu27wuPgnIZkuYvXBJZdJpJCFm8/frq8FxtHJibFypXpu0tFB12eiUqMjj45zzHjEvB8c + aC5gIRlko3JAuuw8mu8PUCxlXzv41MkFDYStUczr/TqC335f8cb3B1i7EXgoRURDyc5fNkVsYHHb + FPTY7Ug3qtGhlG+p+aKuQkK9l2/Sgrm+qclVHe+J+Pj4CqyO74kaOlz0uduZBu7FfqFGcxq7JbtU + Gn7bik+i6930xc6Nc+xP14Laz4vncxv9HmIcaM0IZhyhecb7ZTMTJ6aKTt1kaMxsQtYLVvQyNE73 + l6/vSyVSPRskfT5ZsoWmS+TSXL9U+tJulxivlvOWZmRUUH90tg767jexPMFGky3tIhxrmU12G4tn + U2DnJVQP80p1bcprUYuzALErwsQ++VqxnONbhpfrJyTBuj3rLNvdn3iX5SK1lk1cC3J3i7DwMSXq + +GKEOKtwR7ynwjGc+FLrONzuUrzw+5F4Z73uhHLTV6CHTUSVt6Ik3DvJAMznmyfXKtW6aaLFGYwy + WpPDJ1YKcb+RF7zRA3EUGZi6ONQXDzCJZRJqt62/JN10xt/6H4XmovkcFwkC9rbVnqjg3grBjrwQ + zcNkEn+L+nrpOCGHqT8DUbahUXNXLbLwk+xOJL0974zl0qOHgMj5OJ8+l4In1cFB9HW4EEPBB50b + jv0Ifn8SiZJKasH47U6GyyUjNDHZw58cbSuDU5UeDRyn1afg8BJwMdEP3W7RGTV3R+Sg3rSr8WXz + oj5n788ZwZDNxCvVGS29Jn1wGlgmiROd+fPZNwV4eJ48StJjLsQXN+UY9kkXCtclSLgyXWJ8HI49 + cfLVUe9TpX+iI6ktEm0M8KecPEbIpZQj5ymzfAErWoxRBCfqiSviCx23ylAXtE96xMUtGRI7PEAk + rcVwRfyqW67WALC+KGeSkCLy2To0njA1jU7yydfqueG9G/r2TxoopV/0y6k/y7fxLVArST1/8V4T + 4MBXP9TudqSeh2Ipf/hB0l99GFKSY7h1DrVfpcZ4svQHlHO7HTXY8EKLVkYf/O2/VO0UJ5mm9f2D + DZAWeoBsyxb+FKcoTfyF6F/86Md9NoItdkP43LttzbB+DKCyrn2Iz/ENTUzgNKzJ1UC9RzfWzCmN + CqyoM4mqD1fE+8Nxgc+882jK3bf1JE+WA2h75b/5q3fLSd40sJS8SvbSIdUF3eM/CMJlNU73Q93N + g3MtIVIUjXj6RdPF81OvcGTLiFrCpHWU1Yok7+olpfrKr/T+MbwAIh9KclxQUMx2hjnEY+M6Njpc + /Knm3AbarYKI9vQ2BSWf+SNvk3agcWT0/jSaWoWb16UZ5ekbrzeKFHxpRpeGd0fRhbogEnTP4h3C + lYw+25KVBT2a9tQusKAvryiMkLfOS+ryq5fPBn3TwEy8mG5BqnzxLJxGqJ95S2xcKIU4RjKAs1n0 + EDvenU2Cf1BwOs8Psg1WdsF/0p2M8/DYhLNwmRH94g3SsrYhp/fNQJPEPwH0W5lTco5nnbkoNTCn + KSk9NoVUz3M0CZg7pduQI5c3WugbJrCuvEiOkL9q7n6yFPzDQ82or8USpeoIj8l40Z2c3lk/Q8rh + 89m0yKWrDojjmpMA9w6daUYtwZ92pzbDTnX2SGns/U7U4ihEPX10NN3FTsIbaWX91avzegedeExw + g7ZRfqS/euc/9Sv+6++XLx9aWMk8fIuiHT0h9kimzy0+YM8sCAna8Z20Tnw24HmHiVxBWgr2PLbC + jy+RsxlPaNo2lYJNJybESe7ber5fiknejjOEn4ty0ll6rkOsDE1G/At5+sy0LgsS5NSkIVJzfzEf + mwAGbpXRdO3NydTht4ynZf2m7kWrava+qhmWPIWjwVlnbBok1cBREmc0EFfXZE6O5wqOGruMsz5c + 2XRdXA6+/WicslJm3W7vfSBGRwi5/SavP48HH+PyIvmkmNyTPz3GdoHjpjoQR1qauntf3Wyji1NC + gwC2NT+2iAPf6jPioEYqpnVcpfjbv6k3+VXNrniJ8AmZYXgHV0mGfaVKsNk4NfU2z7xgpkBuMPLn + lGj+SSgWMdnc4GDeRaINnKD3tX5V0LQV3fFhMj6Z7bP2gZss3Mbp5auMn5VPC4quuMS5c2Px44fo + sb8d6REfsc+4yYtAD58RCX17nfTGrbphtB01ul2y0Ocyc3YwCUeJam9l6qaNfg/AXi+MuMXW8Af3 + 8OaAcJ8HcZqP2c1xfk+RihObOobRFOzTexM0CkikxOKczFUermD8GOIIW2wV4s0eZTDu9wMJH2B2 + QrGjT7TqvGTk1NWI2FS0B3gtZU/Dz9TpjFOyCn3787i+JC6jeXu8bfg71akl17QYhHhqQPjYEg0d + Jyvme5TnoMQBUF8WFF1UGzmHnah9Ri5O7v70CI0cLmbihpsbT4shImy1eYPzobu180rm2Cs8mGft + TIxv/Kdr+RTk2zkc6LaMiM7YlTMg8/GVllN2KLiYX3vSj8/BWNs1s6exh6nZC/TLd4uPmMw3PEjB + OHKXWizoqDQTxKdeob96+MhtcYYjuVvjyk6Xmu0ekQDOZtKpq5zVgp2ffgWNDHbIux+zmMXJ8eBX + bwYVRNSfamUE4XpvySFJP/7crz7cT99QZ120yVLCfMCGtqlJJmBL77/8EV1QwNPdCqU+cztTAskT + 1JHPYfA/p3wfQHGAF/HCQUrmsWUclI/QpIGVvLsOJ48c0uN2T40mKJKZxGSFelcKyP5xVn1+v2QG + 4PI6hKL8cPXhUd1SEFfdkZrXKe7mT3OzgOfwiXrGzmaim6972NF+Cjk2vNgid22MqPJoiB9XKzZq + Ms2QZSYt9dsrFD/+jX7xVtvVAU1qe0zhvT/NxJt8rZsL9RSBxdKCHM8zQl8+0MOPP3B7k9fnfkxb + GHSD0GvKv2rmbxwLJlUeqDFIbs3rtVhCu9XQyAt3vpvd56ThcrBW4WIthi/84vXFZ0JS/tVNlv3s + 0bnYbUK8+DJqJZMPNv0t33z3BxVTbG1zeKCtEG7O6hu13FyEgPnwRdNnofhCPAZndJC221FKUjmh + Gy2KMadpaSgfswFNJGSKPITbklwlI0D8V49CuZ/N8T3aot9WVs3hD94+afCS624WrxuAao5dEvg2 + 1eebftLgxx9KY9/V80ZsR7wWm55ar/NbZ9m89SAtYolq4q1JFp+TD6CzcQq5c7Xq6Bc/5Ru96MRF + z/iHjz04OnekhOCym7rt5MmRLmbU2fakYNahXiF+QgI1R50l7CzseuBEUEgyv8/1sD5MBiyrSCV5 + OEjFdD9ZGtSFkFGrjUK2TLr4BJkahB7R884G3b71gM4ST5ygE358uURiwEKi1PaqGz3DnmBMGv8/ + +2vxzlI45vaBauH5xr75cYBqJ7q//S1m/pEv8NULJBgPXNKQkGlIbL0uhLsU68uXH8JJNddE68Vb + N6d7pUIsWd9H6niL3udkGNGxCi/UWVylY794nSidaWCnVTHsBr368VVq3V8fxOzp2YNudpjq7nOH + +vumyuCCQp4ErntD7BKdK/wcUEBVEgY1r9BZgvlQBkTVpk8xIrOz5G//JMfoFrB56yQ5/sYjnIya + +myjZREo7xtPSm24JfNhfSph85C31DY0r5vcZTrL8mqnEWNv8j7DRqThX/wcMt7QUvvLDfQmmf7W + 365SIYWvPiOuHu71ma+2K+hqPwkZle7F3G7KCJlG0NPcMLiauuhsIHeUK6Jt9hpi6GSFcjL1bxKl + 0r1Y5MyM8NFut6P4iQTGEmrmOFI0jQZb/EzYwOoDLPlc0tDz3miSDn4GXz1Kzncp9udxo2lw17yc + 2PLj7S+r4abg6RQ+iT3aTzbft9sn1IXuUxs972imPA5AUtFIrQJBMr/tqMJ3T0+IM6G0E9d4dUDs + 5vhUMWqiz64eCtAlqxvxs0KpxS/ewBznb2KM/FqflsP1A1e+V4kycA+2lJv+Bp18Daj7vMjJNPXh + BzF5zIkhXAv21csTVGWzUBXLKFnIs5bwUpkZcXJvrpdNGI0QvvCa6sfNkrAmQGf08xvSX39q0qeD + yJB2JKHSPVn2/EMDXjcjqq4hQFyB/TP0rhzQn14Vn08hRFXcHsjuhTH704cSkjF1z+qbTc4stvC0 + sxsJKtMs2E+///ik+sIYzWZ5aGG29YDoy4f/+Sc3VDuNNvauiesJfHUCfMzVsaslF339FA02w2xR + XV89u768o1bW110Qrnx7XXw60/j8+WEmNXqdmSdpQWbFXcNsdl5sfE2fFn7+SDifqD8TTW7QnW0P + xBbpjk3XchSgW90osb56Z46mLEUf/dx8/Zsdm2isSxgnh3J8LahPpvaBHAjRuaKlb18Tpl93Dc7D + fUNceHU6/UC0wlpnDyTE4i758o0GffMjlMeD4S++yhaQlfOF+J/x7n/1XYWuRyMkqt1QNMqZGcOj + FyIS96LSzTAiA4RjS0da2TRZpMtoQH21RkK4neL3osQmAI8WxNSUtpvF4AB4LId8FDdNlCzDTQlA + WsONFLVhFNP9nQZQVKlBzSSOkmU37yL03e9QNmOlFjZFbMlIvJrUnT2144rtrkefklPGnqC0W/j3 + rQLHtgaij6JTC8cpCEE+LofwsUsrfWkyJv/607AStlw9r623hC9ZfSXa3Fk+faWpBqNd3Ekgc4du + OSp5CZ/yxUbxVVZIeNb3GLZrxSU7+pI7Vt6qEfpbtgkRr97ZZExTj4Ebu2//1eqlSCFDXcGfwmkb + NvXyEPTzT+9RIwNTX6L6aKHqIffESdK8aPer6Ia/eoz43/yajllxgPPZtqj51vJ6kQYuws4kTn/X + ucqdPth4t2eq7TefYjjL6wZSvAqJtYuleh43ngZ4hh05f/kY/2laA/ZpicbmMn3qeXMM0l89jOKX + H1Ai2wpMC37TFAe6P33XA9m8Cah31T719PMHu6sE5GjzR33YSlsHTqZfjdPdjRLBOa0WOJZg0Wv9 + 9T/m8yZG8bq4hrInd93jUd0OWGsUlRTyAoxqmqeBebxq1ApvTTffL8mEv/dTzVoMnR2OWoZfQbUe + US29GRWNJsaJ9KpC+fU+o/52zgUkNS+Dhq678+cPw2eoaycm+nu9RvMxiKWf/vvTz8tVOI6A36JH + 3cEqi5lUpYOcmOCff+cvaL+J4Ot/hfCS63rW63UJGxxa1OnTqlh2EUi/+v76OcBGMep7+OIlMTot + /vMvYZ9VZbha8hf75dcmsegp5KwlTXqQUYWe0vVM9HPT+svD2vVwW2hOtY/qJuJpFVbwuL1ff/5t + f8ySFPQh1MlWK1kxx3IgAR7kgZpTLya9ZY8jGMQKqFpWls+r/WCgl9FaxLfjthavoVLBfZu8v3q2 + r8eH4J9ltyjWv/7eidrumMPPDzodD5zeG7dPBcfR2ZCYvblkvArXHvDhyVFrF2cd392TGDXBJqXO + J466xWjNAAr7/qJaZPT6NM6vEplOROh1LZ6SUZ1kAU0ue5Lwmty7r/7lYL0zFLIr+hAtoJXRRuzD + MPy8BkXnGlVXQOGkmBpLT/XlwHYKfPjDQFX3FBZM5A4KnNbePKJorln31UfyL99d2zR1/gWdhb71 + HHIhwWj+6SFvnZX0q++KobsXEXz1y/jld8X01r0FaRQu44/v/PQ+jEG0Iy7d6z63Pbbtn59dPuBR + f/GvBdG9SdQRsOWzj//M4LxBPQ2X3GbTAwve7/+p3RRZPWEbAL78PZwjbUmmbVoI8C5Tg5z22YMt + dVda8nA4PMbRvptIlPt7CN/8oIpkP7sBd88YMkWIQtjiZ8GOCX6Cm9wtYjHZ//rbnQM/PCg9782W + FeBc+rr21I/mGtEqTmNwuE1C8q+++OuPycE7hZy2trvl648CDpSG6K9tx8bVVv9gQUkFetU6AXXt + zg7ALKoHMS1u9Hu79Q35/uI3X3xQ9b7ocQQPLVZJuNE7xLysG2Gxa+f7/FL3nupC+8Wf2u5n31Vf + vwa7xiEh9rff9Jqwu8Exl2qqfGaU9Gp7PYDYOh3ZnuMbm17ZZkEl7Gby42eDbrc9vKcgpIdvfcyx + bEiwPzcqIedrk0yb2ligUVYS3Q6N8+cn/c2DlOLD68PP3ztcPpj84r9EOrvhXp0tqtXZIxld752h + 736MY/94d/MuoB768TOrIzz6zRPgy+fDUSmLbvGO1YTaLeeQIz/r9aLoewt/51VE1efa79GlXsHP + D9Gb0ED8fsd6LPUXTDQqvLrJmKQREms4/fG5iVffZ5TEkk4sX1Rq3s6wAIIQVeQQ7Wv/b771uBTR + dx6S1Yxcphidso9Jw52i+hz47oI2dpRT8+gqBXuHKEBdpuikrK0x+fEX+ciXbFxJWqLPJFEm/OUb + f/x3VhTFge/z0At0IZvAdye4bu5HqiR6habgKSiobbMsnH96eVufDFkXl4R4nuzX45fPIfCGYpS/ + /s0nWD0lsC/mZXx//T8+j8YPuoCiUVNZUzSGm9BAvcqsUNajkc2H9e6MLueX9s2Pgs1yOqXw269A + 0jQ2+ztXQfPucSb67cix/lC0DvrNS8yjif1JQPYEP32yvu4kf87e1RlvDtftiL7+P0tKMQRFGlpy + wKdnPQUHKkBfvwmxls3S0dVul8NXvxJXjSzU68nbg3s/vkdu5UrdrG3GEuRO6ak1GFwy9V6dwg8P + /MfQJt1vnlmehDaEdnSL5aePBSGuvvenSf/1T2C3uDIN3lTzuUcYZNCetyPRuWuCqPB5n+GLRyQQ + VZeJizkfoNwzM3yiptVprLUlfP3eUIpvHJuXUcmxurJS6o720W8/t/wApVZR4v76SzVWEl6eK4fY + V0Wpua8exy+lqUekRkd9OX3qDIeorIjltoi1Jl4MuPKjSn58gjX9VUNsVU9h4VhjMrhW0cLkzk+S + gDvV7KjTDPbMGqlTtQlb7FuUYfnakW98CWq//hnEaA/h56tHh2/+QxGbIiF8yNdMPieKnHXZlSgY + GvT1X2Rwr9eKGjYbdGE8jU9YXRdhXJv3UZ+L2VeASKNDPe3sJqy3tg36zkPJbpO8/WEo5DN6tMtA + nfiWotk93Dls7yAkx5NfJdRmrIK1O1nE3ttr/W3Omw9oatpRLSRDN9R2M2EJRo/ofqsXk7NvJbjm + m4aYl8VIZouoMQDblNRw267ula7x4H+t30D8sVudUbiuTKLVmVkIr1taQiuwVXiN2Z61BdbP+KvP + SSKni7/cd8kBo3Xj02vj3v2ZJM4EOzc0/uZt8+ZopKDeN12I5AXQvH2tVvD1q4glTFU3qqpryVmy + O5EgfXqFqM1swtbNMKnz3ols2J3xAV2y+5W6DPbFkov9BP/6nQr4H//t/+FEAf9fnyj4OL1GlErS + Gc9oEMNeWJfEuWwMXVxkWqJr8LpQT/oAmq6rZYJoyVdjE24qNiP9PWJxzFKat45SiOZFeeJ7d0mp + d0HbWnzBwgHZvNhYFZGqc1Q8Cah7aCHVmWkU8ytNAQ8qGqh5XI5IOPVjBKYwxmHiGiyhi/w6g8+9 + I1LE89gtdrnTNsLx3lPDLDq0yHs5ArZNeapPy+zPBw4JqHVKoORdnP1x5zQttJKxobFthYi5xS3H + 4+y/iC3LKmLJpxVAKpUdzZVNp/fSy8thq2Qu2afiq6CePMVol+TeyLu93o1s6y/QsvBNlUmxC7ZT + 1zFch+ZNy+3F8Ll2P2TIXS4t2XP72Oen47OClRZSGl5TjYm3wsphvDUpjfl1lIgFPrQwkpdNbFSt + 9WVMHRn4PujpKVbe3bySXhOOhu/Ea913HVXjjQxDGjnk/DyUjMWyaeHq7VGqKZ8nortnb8FHju6U + +P6+4LzbLONkEVOqXAWOTbDRA4jEXUgCG+uJ6FI1g5C2Wih3+oS6cBMZOA9FSnyu6tE8tcsBB529 + JlqGt2yZ85jDWhuW4ZLhAbHne8dBtw1IKFx2jD3jNKlwrGs2DQrtWYjXbA7w+/3OaPxdH2dXuYV3 + rTiErwGxYg4CfIZnlUXhZndXdU555GdYlzeZ2Jc4q9lOFWMcnC8hie8HvpuMs+OB9UxJyGbxljBV + fRpwCj9XaqRC1XFtEoV4UpeJ2tdHh375Bc8qj2i2jd4F26paBIUYidSTS7seBHXrwC7JPJp/X09R + euTAD8Mb0Y703c1BqUZ4PsYuDd/5sRjn+NZvkk7f020ivYqFs58C5iN7JvY7ODKh298NvL1DSwsp + 2Ogj0eIel2kQULVdY78vrX4Fh93gk+MuOxXiLx/LVb2m3pNdEH8xzxW84WHRS7ajxZKGwhPkrVgS + L4K1voTj3ILA2pYe3XHw6fEIAtxzSaX752jpXNWHC6jaYH7rq0naukk/2FPuFt333YMt3dsz4EWs + kiql2xZv/s4HuKjyF3Fj5V2z4SwucL44CT2KUsx437tFsDXjE9FGru9YcicOCPI1J2Yq2ono35cD + fnnznZqXiOhcbKAGxkfZUEtNb52orjMB97I50i1xfSQ6q0cLxXQ2SfRSs06wN72DXpeBEKKaqi4q + X0XXbUNCTpr1Kb71rkB47lOyi9duwd0eIOC35RxJKryUmje37Qdc/DgSY8slnYjseAFvsR9EX0WO + L1hP3cPb5Y7G5fVukSB90Bns+5tQt3o3ydQNvgfnp8QRzzFGxqJ1pWFUpxKxBnmsp27QHUjeBiNa + fz8VYiYGvbwxrmoIiVjVnPUxQizFUjWCtMVoOW7LHH7xLrdPCbGoogf5sKM+9XvpVk/3YCXDAN1p + LPStrs/zXQngYMNnJDQr6iW9afkmVt49tQRP7ZiYHUOsKdmNHE9uzebF8eLf/URJLoMvJME7B1fj + O6LPopJw60bTcLm6r0cpLbY+Yycxh0ItChJlyEgEt79YwK+9nIRWsfcnk949fDHvj7C5jDESg1wJ + 8Db33tRWS1mnkxKUsK5PPrUynbBBTEcHJNdTRxAEAw3lTs/RjX9JJAyylLVbX+ohD3lK/ahEyeuD + 8g+Mav0Zp2JQfO7lrm7wuHINsY97iS3KURxxbEvH8IWqqz8dBSPGj0HS6IVPdozTQApgd7UDuoW9 + gpbbnS24I95M1ZlMOhtvXIV/67veZ8LGe662kNq0Idvwoxfz+dCm4A0kDUUOV8kyu0SBV7cMo3BL + KjSL6dODatTW1K83OzTzuW8hy20VEhtp4nOhlSxQr1qHJsw0Eu4t5wGso8uFmGfN15dtrU343cwO + OXZXX+cfViaB5X6UcX1sLv5cqNcFaOwwEngnv1400X5i5N829Ij5uOM3vS6Bco721PaLUzcM1S3D + srMOiXMYlYIXHhuAqbhHdLt7pD51qZvJP3yyks8LTVqmZzjabCd6TYq2WOLz9oOG69oj1jFN/cXk + aQYYpyXdy/HcDdfzEuHtpFgkfQVvNH1OlYOmK7clO26yu+n9DjNk+U1FzcdN83nDCOEPb5Ru13X8 + euI/WLLYk3pCyNXDFp881Bb5h7gPs6/ZuDgpbg13TaxXmBS8reyeWI7YNnzmvN8t7k5dwXp9s377 + 5QtFK0kgWs/DiAKO6KJDNjes13VJDV9kbPZW8wE+BRGJEUUIzYdB7fGzcBuSn8O7Lr7LKwAbU5Uk + z0dZTGKRVOgbf+qsjaJYDBYH2E6U8pf/hSAe8xIsFF7pqaUZ64crZ+DsYikksVrf/x7/W1Cxsr+O + i6DXomL7Ghjy+kT9Q/z0Z+7aKmCVt4ie3pzjz3bRjHhcbw26fzrrpLuaUYitnCTUvR12/qTXcgx8 + ZM4jxAtLHjcdUjjoRk7iqmjQtFk2MZzMS0z2a3Xr/+HvTEqP+k+ksEVT3ik0D0siwc58MqZtmPyL + 7yjlWd8t7ecTozi7fkbUxye0rEPsgGlbe1raNyMRNOV9wM4SZTT54WV9egZYnFOdnlbPYz0r+glg + 27Kchsc6K1j+upVYR8dzOCZ5XU/T01Lwer8fiL1vg4QFDanQCt9HouymW91L2v6Jy4ZdieZNhf+L + L+I5paOmgVt/+u4nuLlxoBZ9Fbq4V44GUDbERP9OCyY92kVYtJoDzT5xx2ZxEwO2ApcngWFJBWvF + vQy2K0Z0q02NP++3Gw661TSGD+nx8Kf8lAG4d2lPjP5z15lW3iZw9k83PDn6R5/9B8vhEo4LMbh0 + m7DYzwAeO2aP63Uso4XjzAVvA9Onl9CAjrHODxGhfEwUAvuOHiOtx9NV2FJCiYXE1bbvIdi3Z+pX + 3RYtj3V9Ro9m5EMWPDw0ick7g6v3QeF+3rhsmVg0AfuoBjWajVD3/WsM4Btfouy8E5qXoo7/+ILT + 3Qji8/wywnwKOhLy7OrT56wDmDOnUfP0rND8aZQn3sTVNZTEnOpDpokrQH61CWcU0G6sqMiBWMeP + cWOqhb6EnsFBZkYaTay286lD5goGK/iE462ydfHzmj9wHV0Ib+0qK6Y9eofAn+LV2LP9tmAif5Jk + G50oTQ7VJ2G7RLewu1zbkb/QY71shE+KiqE6hM/TBMkPr+Q4u3xodLQ3xYLeRQT7Lv7O/t5d8X49 + bhPImnceZ1O09PetfTvw48t6tlo6+i6PAPGmFEawsV4smkga9OXnIyxRqU98+3kintM6SmiG6nZz + jWJc5M+WmPPmjXor3FgADFRymA4HRM2L8wR+7eRkNzIbietT8QS5kIC62mNhjDDkQe4omFznwKqX + Q8wOsG3nnMZSkXWsRKszJKK3o+airbr37mg4EG/OAtmOTqgLTz/OMBMc5S9/J24695sVQEHs68Nn + QzLeJQjz/Yb8+PvSmM4ZTIPKIzqul7rJyTpCVr5NqNLw9Tf/9BA2pJn++Kl4eDstuLbTEn8hm6L/ + nD4OWuKXS4Is+tQjVjYWRMmypf5+e0D9S7iUm7cq5lQr5W3B2GmdgX5/ArE6HKKlSvseykJbkaD1 + XMRNnizJfbybqDoym335gINN7ijSoPXejN2fOAYuXWZq/vhlc/5UyNuk0Zdf+4g/DOqIWsnaUFVv + lm6Cl5gBvESTqD5ndhN6VCEkmfn66y99/3qGMEnk+otfNyUdfv7wNOSy24hYlPMhSNb8pOn6OiF2 + eToR6Ir2nVB3SbcggBhiOu7pl6927AjvFp7gTOT40HVffKfRB9/FZxRyaHVK+lRszvjMQUz3nt/r + s2q+HPSs1jUJJNbUS4IuFZjnWqL2ljTdwszTB2fiifurn68+KUEt5Jgqxrzog96sNXiOZkzUpJzR + 8uWXCIzUILv1Wev4/T3m4H6ddlRV3pU/yaubA4Zp47GyrZG1zugAtPH2Ekq7dcNmed1I8NYZEOVX + fxo7VPJXT/xdf+/vsQDy+oTHdTeSZHk+hwqCjX+hVqXQZDgq1QTlJBdEWafXbi7EKIfTS5/DZZeo + Hf/ulv7Xf8PVl++N74eZoi/+08O01XThMIYl2HjxiNJfCWJ9LJWAH9WNWGttxyb5xA6g92NHDJFv + 6iGumILDypfCzTOJOna4PlfQ3MKWarvk3k3vLYrRaZMFVD1flG5Gsr2Cd/GSqXlfe/V86u4V3ubO + mybtyS3mRVhlcKRriXpnoSy+/XmF2I0Xib18RsQQ24xYx8lq/GwiveZbQxqhh7NLrvgxFuzbn1Gi + b4/kKgkxGjtjH2O83inhspQSWvidcsPyo7sQ9yI7aHw00QEfd0eHko9aoVlv1gp6W94xlF+npmPl + 1kvR8KYd9Vavc7G8d81B/urhcHhIhT9TVTrI4HsCcdfdk7GHJFjQHm75yN0mFTGsYg5VYFxoLvlc + MS39dYWwYDPi50XOJnVWDyDxQvTHpyYjfp7x/pn7f3gqZitBwMGSdiF6ohtjw978/PghUW3T86et + P/XwOSV7oj/wXR8f4/EDy7yVieNx9++J4XUEX70erm3t1k34to1hjd2O6usy0GnUuwoI43SkGZsq + 9sM72Nz9iCh5O6GvPpHQj1+q12zWP4OTaz+9EU7dlOpTSuUUyWxERHt5t2R6b1mMzS2yiS8FJ30q + u9OCwiNnUK+Wtjq39McVDL4hk6Dsl3q8ypsehO3s/+q5ntTLLcXDVj2Hr3cgsunlriokb/mSbmtU + JFPjH3ooD95IzA4++nwu8zPEH8EkQUaZztiqD+HeXVNq3Ra/4B+8qSD+E3k0qOVDN681tUJJE9ak + dMhNX+6526JeHS/hrDdLPX/5tVynVxpy1puw2S76Hl4bzid7elE7cVKCMxjhziPb6/Ls/vRo2vYT + UY72JlkWNZWAt/YRJUnhFELPSStgN1Ekv/zpys37y//secR5U3WLl1w9xB4OR3bufSnGR6+VeNUa + PtUvoVnPJ5a0cOJtQtyiVLoJZ4kH3uTrP/73zS9ewF22iUP5yS5swKerjNb38k3M3YGwudsIE+Y/ + sUfCx66qJ3HkbsDJ7ZbupcdDX/rIcHDQ7LbhCAezntxtJv/Fn8RbI+HmmZORHoM/stUJ0KB+itUG + 40NJVG56dRN3ZiPg6BOF5WGfFvPofs4oft4dUjgmq7/5DkCPuj5ySj8lX7xu0JDGTihkOkGM39gx + +vpN5Hq5A5ra5ybAg7oZqBHZL//N57oBj0HWiGIK92Ro5DegoZI3P7xh9JyfMkRjjxHv6s41dama + wykrlPGkWV4hTs0cg4Mz+/s8TTFhY/GA87WIOLd9kHD3Q/SEzHPicKWUfNdu7kMJl3d5pc5z5pLh + 4KQSPhw0h/impyH+OhXxz3/59pMMLXW7HWE5FWhc32eCxD6eSpwu1x3Rzi/Zn+XEBDiarUmcM5ey + F8laBY728xX21dbzf34SXLJLQj2zfdZT2CkNtg2sEOMjHHymxrOElGNufvtVy+ZNVkmYFXkS9upn + 8mc0OR/ww+BGk8FpGN1LjYRl6eGTbDNU3cLaUgYWxc24eudiMnrnicMckW80HN2YMU5YLEDHLRAH + XI8JZ9hJIEg3iYR8KtQjHiIFvvwurL7PM0TlKoJw2h5o2htyQWcpj+AaPC7hGj/Gr562tV+/Jdl7 + C/XyduUAuLHejXKnR4xrzlWFJaGoqRpGA+tvD45Dp5c6jzjbkWTZ7HAFN+dwIIaytdm4PN0Rsouh + 0ON8/iA27Lft3/63X/xnullxeDnIFg0vt8yfPC6XASx+Q7Rns+noj68esjsO1y0k3fwccgmF7vQk + BnvMHXsaDw2MT2b91tuNj3VXAjbqlBpRVCBGzXcGD3Z80h8eM0/7nGW3XD2JvjoBm6dWPsDtEj6p + ESbgL68lzZFyd56UrCW15re38oyO1SH98VE2NSL/gfX9/KaG8LrVrJLLGJjgKaNOjs9uOBa8DP5T + uxLlZrX+vJLohEjjRDQJYzGZmlTKQSB0oFYk9f7nWFYh5G/NDTfTukNzXCEFvn4F/e1/r0e7/+w3 + n3XvdxxcJuOvn+meW9X8qXvfkGPfOmqUcGAz8S8xenrNjqSzZPricvyEcq47A02ry5iMpVdqf/5X + Fsl83TeplIGPuQvNf5/fPucAhGPdh0clOvj0VFoTfPFsfKqXfTIPp7AHrUZ36rLZ7l6fwyCg52jH + RD1fbh17ZZYCr1jbEiMVtHq5OIoAylMTRu6rl5bcvWtI8q06pMcG6/PM3QNA20tB7WgzoUEMQIF7 + 01bfeqSsL5yth3Z5AITwe/T9hd4hhG/9kMCVdX8SR7ghFZcz1XeplbTaFX9/V7Ino7DWdogNavP5 + rTcEV9Z1zlErBQr1VJCvH4FYiYQz4uaLQsv+/ExY67wn+PLJPz3ZFW++RXx8DkiIplX90+eg2ppG + AtO3a9bhFwfW/qgTay6eei+vbh4+D8OTaIe7WYvW14Jw9+wUHvuBFNzmfXzCZHUKNdfq4I+NvW/h + w2c7ciFuh4ajND2xOB904iVkKQZHhgalCXcj8cec9YmufUC3S/CkhnE4d7PLtBKC3f5Kojn0EyYf + RA2ahyGF6OodknYw2hV8/Y8Q+s2jGEpeCuHnX6oX88KY/27OiB3tAwlexeh39KTl6OfHmEoYdOzn + x4yXz4PYB5tDrLPVJ4a7ktBTLp3Q/OWzqNFvJ3o5VqzrPTA1fMiljJy/eo9ZL1tCtrFWqHNJcMJG + IB+oJhiJIknHerk7WEAHha7DeTebBTu7ZgMT3M5ff64pFq/5ALwnyaBf/Kx5vHssMJcGoqfwGus0 + TOvoT78TM+TZYNWlIPdFiYl589eoU9cRh++XQgiFW6J95ytbA91XJ21ks6gUfKaJAHjb36l9cmvU + f/vbnx8qqKlSzy0qAZ12TUiuQv6px+fzUeF5bdgk5mKdLe9eLEFmPRol3i6QML7eEtiPVUB+87VZ + q+4CfGpd+Pm5BV94mxK+fmwov/mALRq9lDCSh00K06vQYnatBW81tv/8+EXWdjEcV+ph5Lh0KJg6 + bhV0FY8etdHpU0zc3m1Ax7sV+fUrkb+AB6VIt1//lmPT5ppF8J3PjKIs39FyfQ+ymKF+pqX4ctEE + Gz9AiuLm3xNEPppuD06Ql1v7Iu5zOfkDkskKdW+pJN4yXHwW2ecQFeDbIevkW9e7e12Rf/1S+85z + 2G2NQoh3Hyl8Sa+xHvfdHGNUnl/h95xY8tUPAO0tRuFy6d2EelpVwiGcz9/PU7olvXk50gZrDL/+ + QjL7qtVANr00ancr1s1fPgjL2BtE3VxrfwpGDHB7ru1xylBTTJK2b+T95PQkjSLE2Kb1BLQPm4AE + hWYV4k9fnniTEJvDVTF7q80B8s3jPEoundG3fhSQba3/zROKSrKsFqZXG9By/nyS77xOQmTzYCPX + IbPoo03QQjwl73EjQ5cMUSnEQB38oGHYOb74m2fFIXVHFM9h3YtFcsMf79N86ztOhJUexmgtHDah + lHU3f2xNXAJPqgvxleKVsLduCLBTVTpq8tihcY7b7y/AOI8kKRH1ub7QCH2/P2SCwuvz8IlvP/94 + PKZ5m0yyFae47TAeuS/ez2LAKTDenmmI5BWHltxfhYiPy2DcRf1Bp8N5Pf19/vVW+2i6hFcDqmse + 0q+eZBTvSw4oSFe6DxwfDc71Xso/PW0nQaO/ib+PpfdVFsn2QZ8Jk1RHAP0zucQvVLWb5sN7AbWQ + Yuq+uVYXh81Sgrnd2KHcTpd6luaWg5u5RtSSk8NXj6AIAmUKSJ4N726IV6H35z/ur3VVTNahDnDp + 2BEJnyuqt4ry+Gx2LT+Mm/Q8s4/B8hDqbsyp1msRenzrHR8OikOO0iusx+/8ZMOsSifecDAS7js/ + Qq4mdtTpR07vivBT/fxJsv36ifNqbEsU4DIn1v5ld+JUHJ9wugVrEl7Tik1buef+5iGnI3Z9MepV + RcoPVkG3xyrplkU9SzBFxZ24EZKTJQrVJ+SDdBrFr9+xVI+pgpcOlKbauu5mfDrK6EnOd6LdD/tO + LDf3CGct08PBGWrUMzce4evXjeC/SD1tr6f+/+dEgfBfnyhYje7reybslcxsbwRQt08abvayVM9O + HZQwZf5Atef55fe3sFnB4ZGG1Mmrvb7QgXxAaVN7XPeXBS0doSXs5aShpKnCmm9RtiB03heUaCjS + xR0XWJCw25o629egT3a5NBgLc0Nca+0gIXffAqxiTw7RqZi73r3UH1Sdgi257oQ1Wt7r6oOUdB3R + rbDIXX9Z3TxQnW4aJZoIxXDhfAH4KBdCnKsffzi4Rg5FeM/pjmR31HPRyoMN/2CE4ISiuZmOGt52 + KKX+sXAZV/XuARJ6o6FwFF00qBYK0ZPoDxpOilILpa2v5PMFQfg2DBFND/f+xNfa0GlYEa/juqPR + QiIGFYlh2xcL1MEIF+gsaiS7Sp/UBGuQnH2JWuOA2URZbKBbNe/I2ZcCxrjzPoBGB5PmAm2KSVfz + DEsrQqnbPl/FW3nOERaK8kyIjdj3/ksIwZkvqRvJKZrLmGk4aOsbVf3qiPhwvR/xeLdP44bdX/X8 + +SgS5DF3Jh7djGwKChcgdmab2qMiFL/reOCznBqNpnf8p0s++KRPTxKz2NAHFM4Sbt3zTLfaXuyW + 2T0dkFYMPFFOJtRTLBYh9Ic1hAs7Ep8bjI8CvJMd6WF1uvucM6IKi6vbnZx8+d6xeJlTzAf583vC + oEseh42fAep6nbhwNJgA93mF15ttSLTyriFxHt4R9OH6QnX0kev+PpwNpEzpkx5M9VEISVkd8G5j + s1C7Pnfd4F8jBRdecKW7jewkY7BEBrL1lUq3eCj8JV61GSCnk6hf73RdrBzOgcZJFKJPH1owHaYz + 9l1HpYdNzQq6ceoPJCxMxpVbpwUHm8zCujZFJL7erVokh1cPzWu9o2qe7OrFT26AY5FTqBpfpIJl + t/IAxptryGFpF8Szh+lhQ3MWejiKbyTMm+iAtc660J249jv2eFELPihWyOGx7BnvKq2MPMvY0KK3 + b8Wo+VsLxmka6MG0omTS2EpGey12STibJJl6k1tAiT57Gro1l0zDnu+xs/QO9dObxObtNeHw7WoP + xNWMSZ8feClx+mxsmjXZQRfk2pHgfrjMf/mwsNPBgKN7zMPZeq31BU83D6tn5UUvJFrXyyeMJOy7 + nkrJnPmdQL1bjFcP7hKi441D7Lc/5iMUiXpIqoLbvcUJ/U/SrmRbWRgJPxALmSTJEpllCgIi7gQR + AVHGAHn6Pty/l73r5T13wlD1TRWCdZONeQoNnXJiOMfQXnOM7/DW0MFw+gqgx8Zj/xG32WwZ5xn1 + IJBx6n09lTVkp4BFrHjYB7IDhFpkINzrFz+fJ25YBn1h0HmeNqLcW9thr83SwHfH/rAHJhotXrfY + qKdfx6evo0c3p4E9fKgvduYLgYvm7BdAVOlV77+pFoK1Dq42XG7l1UfsFqns+Tn0khlHPXGs/jWs + YPErKNycjMgXWclWGq05qH+hio1hQ9kYt04MVql5EJ+RhWzc+x/G6hvOjFH/AHWT0oB3szjP3Lk7 + Ac7FoQTxY8iwP9s+mJKj+kArA64zt12TgX3ncgq0xwv6aJvkiP8tsABPi2lneJtbh6BmNdD+Nb60 + PkeX/LXueNf8ZtQKX2dSjYMM3h3/85Ec6A4PqfcDm9IcSRaXKV12/EWPzT/NCE1AXcvTYEmhVWRz + LIk/dRnZToGguUlY8TgAlqWOGTgh0hDTxZVD/OvdhkV6tYgde/k+oYlZWCpLTAq5PmXr8R1XiBWJ + 6h9M/kc7f7YVSJqX5wsvva2FdXoH8Ll0CTnv+LX3r4Hc0k9IAWSH8vReGNCB/JvgP34IsJjAoY5y + bDKrlW2vmytC+7p5RFeoG3V49lhQu+0Jn3f8Wcm3VtDtrszEN+ofHYTMCOF8yqy5DpkPELbpY6Bc + BwXxxq0G65geZVjDIMSZqGg1O5pmifgsz3F6Gn90vXZKDp3rK5uPvjQ507MSbYnPqIV13pGHMceL + gb7GvSO32G6zNfDxAlrekIlXwr6mqrvm6MwYD2J9I9NZNX0M4OylIvad4jTM+b1tpLCxnr7g3w8D + xQkZIZ67ntxPh4+zVOMpQQK2IVbY0FJpZb5T9PpqIXll4yXamigOEJqLu/9rozrbXlfJhuficcbZ + aMoZrzi6hupfoBLvB4+AxmufQkMWj34L6wJwf/frcMS+XyZyu/O31MCyKj4YV1VLaX2rYmThOMJp + F81AAK2soHG+KTNyHD0TDjGAcMdffGdz+Y9ffujhsy4277atsiW6uyg9LAnJ7M9Iyct58nDz247g + yxqDbTvmFgSHOcTxqiS18HKuLNqqL4+10XwC2n5ODbKy64k81mMyrPOt1/76FUdzbw7cBXQhRJle + kUfHhNFeLzFqHTX5w4OMFkMkonfi6MT3ii5ii6LXYD6FDXF6Vx0EjTFl6Cz8SpxXdne4XDsraCEl + JcG6boCOp4cEr2/4IFd3FjMaVdAFE5oan39ubb1pv33P8TZaOKcNAsv3F8zoq2gzjpaeRPROtPLv + a+KovRvxh1cQoKxwZ6xyH8tZaAlCWPIFu+PNYVgncZOQETc5tld2GEYBWSOsdU8kr+ZZ1wvzs3yU + c5FK/K9dR4OMIwvNFy0nkWsd6OqcDgVgPvzTZ3j555Ac1hvyJWQTV0VWTWScWX/3A8f9voOmakYL + 7nrNF+snckinmwkCsXzBwV3PB9oYjwL6WXgkznSRHCJ9ww06V4sQR+9jlbacUiKh5xlipIIHuEko + LQSH+4Xon9expkczEP/46W89svXa2f/Wi9w9qcs29qeFcDC/j3kZV+Isl9slAf0hxMSxy9OuF44Q + Bu/UJCbLO2AzvmEJ1cc2+2zlXuhWNmUM8gVa5Fq/VrBdDsBGP28dyevxrQb+ctIZ6B0CZ9cHwJlB + XJQwOKYfclv5MtviKSjh33rqQVNlG5/AFMBoevlCjNds8QZbAt/LouCYFeWBfto4Aa+IZDMqYAU2 + W/3JsHG/4K/enc3krRnh7erjUx4dM7r6iIEv5xH48NlVgLhfukDkb9Z8rBZu2Ou7hYUwTz77cJWB + Pse2h8kVteQ8vUt1kXWfhWqkH4nriWy9PU3Z/rce52+rRmtirj2cvYdIzNzm6u3xQKXELaaJT9rz + PdBhvUugNLaauBYCgHKZncOPcDJJMPCJunjurYX1ryHktPPhtvS9BYB4ev7VY02Hdwph0sVPkh+u + rrOC0msgiJXLzIXzi47v3EolYwx8Ivf8ltF8rFhkXxdvLo56MUzIqxjArJxD1LN3iAYULxbiAs2e + F3Gk0fR6dz7s6cchZ1t7Rb1pxgVSW5r7R/8gOit+3XopWMmCMeZTh/zprYKOBc4v9DxwPSQJqBC+ + ++tBIpS+f5IPnxZs/+mrxc/0BYiFvxEvM1I6p4/jeKTnPiCnwm9r0isdCy9X44v1/rFFdCmABr9T + oRIP/sZsOpanBfUuNuft3trqn74GeB56X+jkbVhw+gv+3R9j13+reAp/4Pk7/K13BrZTJz7gknEB + UT65GnEZFy6wurxT4kSfA+gXadDgHx5YxujW0+6v4CmVU5INrpkJfCf2cNfrO7++M/KrpR+8eJqF + FXBjomkzChmGy9nBWna5ZGwWXhv4OxcrMQeg1oIlhQ18irFDLqXvR1Q4by06LtAl92q51iy6hzJs + Xsw2szNSAftiagaawSUjOu66bOPaYynNk36eN50b65VYh1Hyoygl5gOndHs8uAoyhuWSAHy1jM9+ + KQPKYj1hg/zMfaLOS9DCSUTOweEFNnp+WrASxYI8Q0MHS+G/bbTr25nZbMZZH9dARIF9HfFVpzfA + 1+xkQOWr+eTkVYd6LRp/hLILVxI/3Vld4kR5QE15Fvh0T0W6jcWzhwYbTCQyrbGePeVuoCKVc2w5 + Xz1aluY7SoEhryRUOQ1QJjFmuPPz7ld/YHGzEwNbXpPxI7Uuwxxi1oZgmNWZEwKSEX34tfCm3xzs + FEmfbU19daElXAlRdj/1Vz9g93d//R8tUfqVpG+hZ1iJWyPbbra4wTNzN4hbdn5Er6chhTdxPvhS + qXKUbN7gAv613rB/ANrALuEphNrEUrzXT8a6eTyC2/PWYUs6O+BPj4H5YuRE8ZaAstLTL6B+Ljn/ + yOc/dX1yRQuywp+J2ehHSkNN1wCeEwZbu74ZGqFxkRdJvH+A/snhBmvRoN3qvL/az85ZUcH0UF+9 + DzndowlMf/1GP0lIvPvJyEjxsPx/9Xnn35E6Ceu9B/TZv/aHsruMflVxgdGtvOCkFJ7O2oO8Rc6P + D//0c7R8HiiEKm9p+FKe62zQwbsEHxzfsH5tWmcyarlH9RJU5Ly8neGff7tctS8O7UX/87cSYgq7 + J1aZGnue0PdwM46sDy+0G+jTeSgwdR8VsVGvAT63Qgk9En7A7h9+TA/cQqP82Nhpk3u9ti/ThsdT + +/WP+VCro+idR6CL0oOY/v1Vr89tNeB8v7c7n+FouXSHDXT6eZnZcxYMvPCpGnQ5aSn+82/83h/o + 81Xsnc+degr3Z15ETvxgTflk6pJj0YCSmOC9f9doi4o+Bjy1MZFV+5StEiOKYMdXrHpM5cxJbvXw + 1p2Gec8z6BoMvxhci29FvND40Imtt8ff58W+9suGtd1PThMKPsC6LB7UMVXrFtoP3fJRCzeHTO94 + g+loUOxq4rvuQijwqKzoBe98QZf6WTD/8FQfHom6+zEGuloZY1e8lnR7s10IDp96IF51ukdcBD4a + ioTan9kJleoffsOHJAh+/SVfh/p64IOdD7F3CizKZuGzgbUrTvi0aURdXxsroZTVQ4I1cAPCRX/x + 4DyTbRbzCoL5eTsbf3kU1v1Or/mzoVcAHgx2PnZDok4sBQkQbufMX+ez5JT5a5UR9vsJW1HVDbR4 + WC7sSv+BbY6UA9nzCigatexPJbRroRgyEbLipM4oPlUDFc5SC+VfYvrH+1INS4ku/h9e+8tN7sBq + vY8jxPztiZ1LpmTrnk+hn8gn/vHb1tGUGW0JXzQb//A6I89x7mGQqDPWEP0NG8dvBbqM2x2fm2GL + ZjKwktQI+wTHLF7Osvc7su07i8/3RanZ58kboST2gOjli6PLnbYpghF5Ea24QEoz98eAP/3oFIkd + cbP5tiAnk8pfJ23IqNlffvBUyoLv7fqdXaJYQXfXXPzPrRPrf/mC+igUH8aUU8fzLMTw173meWUP + pJ4O6LPAsY8pcQ0ly36vAz8LrlzpGGtAAGsEJg3eX8WX+H7hOcvFDFKYe02ETfluUSqTuwuNuM2x + P9r8f/kzZpoPwcmaDltf3Hl4YTcR2z2TONyef0ETxBp+tCrK6ANJM+xTzGEjEVpn4Q+tCypRKrCu + zZ3TadfJh1Oo1j5vGKwzCVuTIsp1ADub+QX/8qw/vyo79jJsSPV/knk4DERG1dsRtvnAw54Cwffo + Rpzp7+/VbLj6THK/ZMvMCQ3k6/WLvY+gZqwHHBaQxnqTf/2w5ydw5xds+95noGIHC0khWYrNQq/o + bAmvAN7VbQ9k9WIgv+g4w+YFN5J5HzEjbrKfMXCEIg4q4DsLfZUVdM9nQJQtLKO19Wj+L1+6XyVx + +HXitYDiW0zwX17zz89uSuDhq+A02RiZuSud7bn961dAbofzD+Kkc8nl7YdOX9MwASrz9Mnpknb1 + Au2aR7vfx5qgMOryS7MGrpEXYyVY8oi3Erv/uz7yOIcjmP0tEqUQsBjbLysHC07L8J/+NdV7A6aq + fIQwP0bhvsPvAza7xSnMPtIb42BdHfqSbO2ff8IWP4IVoTcDs6eoEPtiGc56N6r5L/+dj80QZptw + ff+gckslcmK4tzNP2WIj6RwleM8v658HHB5qyqsgNvbOGV2evwQwF94nZmy30Tww2QxRZlZ//VfT + W3BNpYhwGZE/vD+w9jS2sH9J/fyMjHO97vUDdz+BZTkG0YLvVAEHVoyIvgZfSnigJYgxbHfmye8b + DW/bl2Anl2dczLpK5/WYJjAdNUpSf8zoalHvAVM53Yix/zw9RG8fCpnT4/Pc+oAm7ymAaaAZpOhs + x5nZnxscz4z2INfqUTt//A3fvRPv9VdHXCSFCfjzd070eYFVUKaHNEgHHyuPdgLbYeVneHjXOXGS + zFD5t84pf/n+X15JiZV9w39+41Se1WwLmTKFiKeNv3HhAIb7U2ThnkfNzKSXKh2qeoTHa2gTY88P + Ni98yEInsxw2dr1NY4XZ/fwY+hR88DB2N4uHi8pu/tICFFFuLGy4GR8LmzFeo/X9nmSw57NEPnzp + MJsW8aVweQpY/dNvAs8HgN+zW/V1nOjM6+UMrOx2wt60feu9XiCM1RrufCHQ7o+/X6/Hi+jIeKuz + rf4UYHPUJtY33dS1DHkeOBe7nIFgDgNt2rSCi8NGJDkUhK65dpIRYE8+0ff+2f3ivuO+xFgmo6xy + D36qIIHWwRdfqQJ2P2YhpOoadnTyUrdzs/DodlG9nR/OVDhaQ/9PX5gv+zLwm/2VwJ+f94zAHZY/ + Pt79CbbfTK3u+Z0CX04azCt/+ILtrSMZxoUY41sUi9GQI778m6cQzwyWqDt47QK5RrvjtI3qaD2u + 1xyy+hXPpYPBMLuxUIF53J7zQYxcddHLcwWHiln++a3FYJYecqMm4GStG2csvdCFL/NxmrmkY8F6 + Ae8AEXd9YCcsV5VwmV1AoWAD8tz5e93nMwD1hU08z6icbRqOBuTiTN/1a1OPAKAG7vrjnz7ZhE/f + wmf+O+MEQ73e80sZnqxumbms8epl5MACdCh1s7jnWatF9RSN/O3tz038jNZHO7aQduhIrv31G/12 + vQtki6mw7s5i1EmyMwNtLW+zQGRJ/W3Ri4V2a/K7vr7S7U8/rKbf+hA9GLBKzCJCeoZwn5ck0agv + dg4rnUv8dTmU0T/+akwY/+nNaDiagYRc6KnE136gntoXtv9djxINXiZELBbBIjt4tnmiZfxPRgW8 + 15aDkzvMh+XXkRCojv7ABlO46nCT8wIK0dnFqmy9MxpvyP7Tgz58d5u6MlPDgp1/5j2fdjbdqlP4 + fS8HEj/N2hlHE5dg3G6hv4apF7EY4F66Z3mK//CJLvsOz7/5GWU/TbbQhXWlPS8m6UFrhu3ULSnI + r/sZU/s8YzqekgLK46Ds+HxxlufJm6WZXSD2pAnXG/NGi2SCRMP6EjTqJIZzIsWtRH3hijlne6YZ + DyQxxth82/eMPjwwA8a2svlg8B91E9l0gXsePfPz9KRjViUVfN2mfmYWWR5YokYadH/vErvSg0a7 + /oT/9Pvp7ldgsfNABKS0Q2zjkM02TexTuErtg6hv1q63uw1bKE6iga9/esZgxJ+kRuYRm8e1GVZF + /+VQkU8sVm6tkgnDO2Xgnh/5i/i1so3YZYD0t//zj7ufWWbu0EA3rzaiLkSKfl4nWhCa4zoDQSmH + aTFHCJXoMRDZwaBe/OPRgB4BNTm5qQ44O+hYsPcPcV1xoav1Xkf0l59gLirr9QfrEioHYyR/84R5 + 9E4MTOPshGWsf2oqyw0Dx14xsdNe5nrc5OMDyPGvwUkitOoUwgMLu7zksd0wfs1Pw6qhyb8eiGGf + zg49lS0LS9WUiRnFabZOws+CDfixWL90F2cb/HyGgs2f8OmSnuu//AuWEiVY5XrqDLfgmcILm7vE + /OunXW+hjWMmYnC/ItsO+44VNOd3YvkjAKt7uIjgLGmOfxTfEp3VtKzQG/EC1mqzH9bZ7CyQHRvt + b55U88FrDdHf/HSfR6uLqnws6Db1hfiP2Mg2NxZK+MCWiG9/ecPfPLqciytR38drPUK7ZtFVCc44 + KbfNGfc8Q1qEd4i9yImHufwAAz6Iw83TngePMgV7fiyc/vIcZ2I5Q4OhS5N5Cpy0/pv/wuTcu8Q0 + i4M6P3/x8jff8g9cVA6LqkwW2PO+uW7ZOVtd/JBg+LNH/2CDV7SFb5OF60M847MveQ67NN8Z7vMd + stdztl6lwoJLJgRYTmWPck/NZSERrYVop9Ld8/w8hJYa1ySCH1oTxvC2f9dbZUM+0KNY9cAQPz9i + jsCsyUEtQ1SQ0SdBxdfqdozDEfwfOwqE/72jQLl/z/5h1SV1Xd02h0dzW32We/R0g6xvwG+qDkRu + +8UZSfQ2kDW8opnjOYUuwN8qZEMUEKXuCKD9ozFgU/4Sknu/Vl0Yt1bgFierD1F7roXfJm/w5xA8 + A1n3o40/aTLikmSa6WgFgNW0IISp2c7YvE4hoNIaalDRIh5b1WEENPqlPVSP74DYQddm9Hp/sPDU + HnLinV2P0qNj2jCt6ANbt77Nfm0iW9CZ3wZ5vvMpWu8X1kbsF+a+cDh3Dr0+qxCN4ycjpwxZkaDI + owQn3YixNX9WZ/14egu0VuiJ7+pQXY2FhNL++0Q7DtawcFgx4NpIHTnZJQV0XlcX+eTpYCcVzhnb + OfcNKvkykzgxlJqNUGjDdmYmYmbRJ6JT7FmAJ8cOx0fYZusRWDM8KFgixigzYF7OUo62bVLI0xRS + sNyXOEAnlLTzuBKz5g6zwiMwlTYJ15uScfr718PLeGaJBaN64K/aO0E3mXz8FXO/erC0cYPxCfj4 + RGGvLvdTqKFuJB7WQ1cHggV1Fm6Kp2JZqedhkVbjgeyYsbG7XVRHmEuao+zJGsRcdHng4m8qATBV + 9ixMGU9XkOk2fEyxScKKTwb+615KFHWSSeTh0AAh788KstLLjK0n4MDWzp8UiYkPiJ05NNqC8sPC + 1GFt/8CJUcRdPgGDNHfkcLqfAbx+oLmA9Wf45PRGD2fWclRJ966vZ1afPg4HvqCA4/XnzuDZKwPv + f90FBgm/TzB9SR2l1Ujhhk9PYjKiE43X9yzDImtbIj/orK7tdSyO9o+w+CQRzlmf3TmALXVtcnF/ + iroVih0COWh0cjlUfsY915+NfNXvsB1ImiqUADfQGbOU2M/oXdP8szaIqOmILfl7yLryChX4Omxn + fMs4GYhCf1CgtuYXUmTwCYT3U7VR7oU+uaYzdZYXBAp8JBDhnLF0lS1DK4RHwT2SuzW+VcoI7wLN + xRAQWdV7ld5OjCWV8WfAqnAIB+pGkQKbovoSv7NiuvqPzULv883wy4h89gnDNUZil5Y4TYRJ3ZiV + aaG5BD9yB8Kg8lL+a6BVbl/sHCQ60IEcAwhXymJH/p4pfwqTGbGt+CHpkp9qtikOKZQYQyFYVg/D + VtidDQWnMbHFdXdAr8E+UWwn0V915+XwUIY5qE+bQaw5ptEyiFoOBVF843CMhmx7ELf69/8UqZHq + SR6/D8RvpxSfzd+Z8g+w8ah5Fgs2bsvBoVlMWRTfY4yDt4YGmoZAglOVzrPwVu4ZPwHXArCQz/7C + pkrNCrK7P/PGpdiesne0sfliwxeopvnYn1O6yiNJYYXtlHjvyXEW/Gxt6KHjFatisNSLJss8JONr + P6mFy7PtHSwVkuuLSMxpZIcFKJoLU6v/YPX40bM+tcUR8uzZ8Knpc2DubUVG/EO+kL0fKBHIw4bC + 67b6jH6i2R/eAXvfAZQWLq1nVQ8UFFrSmfiz6wB+UmsDGkH89gXb9Gu2qJMH8I3Un4Ujy0a08b0E + Fo+K4Pg5GnT5fvwNfph8xueRVnX3hzfLfHoRw8pSwHEh4sG5Sp7EuckiHX+8ViHudHpgNZdXZyqr + PgbM9XDD51OZUVokdINUKJ5YRvHTEdJX70NNNWQiZ5oDqLO+ctDkj6O3lfk52rC2iPD0O0XEry3V + oQaObPR3fXrBnxw6fMMHUib2g5U47mpWrfJRiulT2/FMrX+RLVfIIiPZ69NRudMJ9vD4gAm5/a33 + j9dKeBX9F9ayRhzG4nEo4c4v2L8Mfr0MQ2JLP+j5WFPju7P+lJcP//DJqfZ9AGx8D2EUVWi/X5+M + 7aKlR/DBNwR7JavO2idP4TGXPXztJ1Xlctz8kDboBr6L1lldrnfThoT53oj68m4Dbc6cCO7fksOX + g7zRNS4kBV6Uk0yeFW7rnw26DeiEfZPwtnlgOz1QA9dg8PyuqNmh73Wple79/PBn7h1GlAGLCF++ + G2HjMbTDep5fCzwfLyO52Os6rJB9b4jBsokjxpQp9a3xB2Ou3Yhpp2O0fYMSIi/m0/lzuoxg4z0p + gS/PyvE98n2HxfMgQjOE/nT0bgis4rvR0Kc5Hoj6Ft4Zr0vvFtXJ50t0uaD1YOTnQnqLq4+job06 + q/MpS/TOywHf4/CTscZIK6TJMPTj/X6sz+bIwuBSn7BL9CdYKvMiIk9uIFbXw0nl7MO1RI1xIuTc + P5L6i58rjyAxZIJDhQzrHc4iNILkjWOBTVXhs1gsco9nCe946GxJbrDQ9t4WCcu8y6j6OJWo+pxW + fNMCJlsiloaiuFwXkoxyAZboqIxoaH0N29qmZayJjgG88to+gRpbyh/5awMnXYvJ7d3EgD89uAaa + SFeIfrszzlbYbxvVpXUjd9HqnE0ZQAK/7yYjiedvDtWVkYf7evuiPiTRGn8DEWlbaeGLvMqOcCLE + gF+Sjzg4J/eaVrMlIkW78OSUGKK6JDx10cY8P8TUtiMdrm5TwdHH9sxyDxts6HExUNd/X/spXLa6 + 3JHdwMeUmORiY95p+6Pmox0/id2WRzo/aATRSyp4Yn6RXLOmEbjQrcOK+Ds/9oVxmVH+vaszI326 + iFafXkYLl79x9u3jP/0TSE5/6ee3mg/O19euPur3Z+TUYsid5UxtCc7nKyL2i3GHzZe7Ara4/BCT + nrpo3Z6jC9/ct5uP48V0OFudZBgKwQP7leY6NOmDBpVlcMZ3y/4My3btZGg9snxuT0dnEFBPLehw + jOUf9++Ps+SmcMf/P7ytt+gq5PCPz+yHdK1X5p2XMJO0bmae1I8WLrpU8HEFBnHoFoGVeXrG3/8j + 8aX5Otxt+gWwnSSe6AX/dmiahQsicV6TJ/MyHK5Z0wY01aKRgKreQDcYyDCWuRs26emcLR845EDJ + RgEHr/abkRKYLSxn+4G13GAzmrRnC8Y3942v3OqAMay5Cu39hi/f2h1Y6UcqyBv8iM9HV3a4k99D + aGmVRoxW9hwOb7ce1sn3Oxd5caz75+oWsEzIfT7G4SfaQmNh0SwdKVHWn+yM53sbAreJ71hmTD4j + iyyIoJ6VH7Hk7yvaLg0KwXy+of9+XkUeRUAWYhCZ7eSMt/OJAfdhuezrY6oUFS4PR625EgyKD1i5 + mxeAEUcnctKdg7rF7Z6foOOV5J/EdnhHesjQMLnfXLDz3aEPAY9gxzey97vDiXfPhXPRBcS5UHlY + 9CiR4F+9Y/JV6aKBYwxv+UOZj+Wg0OUjSwyEen2ZN8vtwKccTj666P7HF67TBrYk93n41QHCpzkR + hvHcjwrsfs8VX0+VPbD388LARyqzcx90bUQfh7mF8v6MX7jeqmjXNyH48xP753FobD0NGEgfxj+W + ZzMjipe5sDgyAj6bxhxtf3xuHzSGvCLDqJfrHVtQhvyXnJJfVK9tv/7AB8st8efneWDdBaSQYQo8 + H8V7C5ZBk1jJ/AntjI4Zdpb2sszwQNfFr19k37F4nwOYDJJKnC4wwPanlzrONWb+trzUxTutPix7 + yJGgtdhhfdOfAYX66xMtuZXZYirygo78WcHyS9DVcdc7x9Pgi/hklxFY/vSvXssmtvPSinjvcmhB + YUTRjg/lsJJGtVES3mJyLtgwYnMJaNA4ZoWPrvzZ4SCyfqDylH4OlNofNnyWY1ShqvP3z0c30xNm + EMRzS3CBrHotqyoB52A/s40ECmATHvjw5dk5VpKZp9tbs/cd0scbiSb3CxbxesmR5i0jyZrnNND3 + +9FC42mDXT/siflrXdAaLgAHu/7grO+ioKP6vs5w95/bnC4BEs75ncS/10opzfMccre08Zn58FGX + /GBX0BAuC7lUC43mJhQLRPAZE9yMcBgTYPf/8Cuvl1v0szV5hlD2GH98hO9sqWPZBS0bnHDASGQg + uA1meDXn0l92/TlVjtfDQ7Z1u1+RnM0fcvd4H7YLcRoXg/GnbCK0OEXFside1RWKqwuJd3rvE8Es + W/Cba0H25A2iBatHl0hfNdjJ+YBP9DHX5IBNGTbv0cOK9TQH/n2QRnG7VQnGJ5Mf/q4PpvpTxpom + DZTIZZlLTupAYh7ZOKKH2yRBo64MfEp9IyIXxLjHDNgl8dpVUVkj4zbwpycu7q3JxuabBOiDUmHv + h2+2MFbUQM1na4yLbHKWVY54+M6rYeaWiQWjbaUWmMpIJqq4ueqsBdiHla+9ybVnZLA19r0Bx5T/ + EXctOkDVq6QB5OUXnEmfAozXO7ZRpzT3/fodynfLlIDhxe5vXQw0uj7zByPloN9PKTe0mjdrTULS + kW+JrIQBEBihy2GRNS1+CMiPpm5cW/SvH0lQgfXAdzM0TOHnH+/+/sTC8kmAIEpvj8aDPfBMd5vh + t0g5gm+/ytlua65AL4EGzmggRmvd9OEfns7ocDoN22N/B9caboCowlNQd7ybpRcObJxxpkUX2wos + 6Vv1oc8eBslZ5DUsUXq0G+xaDVbZAIQ+MvHyw0r4vDujaaQueIxhMB93vT7e2XoGF37L8F6f9b/7 + q89L/0///1u/jKWJv4Ebpat5mgzos9trEi+Ud4gI5QI621KTULSnjDjrLZd8xd6wiaeTI/zxw/Wj + SB46jiMlF0WfIXLTB7Z/P0ul4LhAmF/Uo7/Kq6xuV2vZ0EMhb4wFz1KX4ND18ORJxVxbtU3500tX + YMfwYPfHjbrRgytLh5wvyelbuzV3yi4B6nBKd30+13/+BOz6b2bsxHKEv/reZPOKz2Kv1Vx7ByKU + kOzg6Kh2lMj5RfnnB+yHCbMlXGoefkkxEsMPO2eDXr+B88sWsKGgqt5ITXKw51fEaC82IOfi/ICy + 8I6JESWyunUsXGAUtyyWFXbM6O34cuFhZvwZbbc2Itm7t+CLmUOsmvsO7RNjsRBEh8wf5MR1tss6 + tNAhDdrzotyhNOJaqE8j9Zn9600Rux9028L083icaXc47GfoXEP+n1/vUXLev5+buNj5Ysev8C9P + w9hgWrAEG03Q/vdnNmvSga6i1cA3fQLspO0wdNub/lBw3Z4zMaZO3e73Qwyrr/Mi550/uYOaasi7 + iph4FghUapSBhKzxbc+D/O0oPV8yDYp9fpsH/IgHOoipJfUkkbBx+nmA42raInuxeHw6VH4kuLe+ + APUgSrgIvkK9v4YlhT7HJrufj6KxYjYIHQ5a2NLPEiB7/aBvhgO844vDPUjpIlV83Yk3G9ZA5PKX + g4+92v/6Z53mYwn3+vIZSfVoL078CE+y7BGXuVeUzCUoYPHiFay+W3XgXVNO4e5PsP0zxmGxwXtD + t7v7xJH5ogOZnDk4npbKxefy8XHmr2UbEITH5s9P1dOZ53/Ig0KBNS1dstn/ahvY9bbP7X6JzlJg + wFbdlL3e8ozvfkYB0/dUY3l7b073kmcevn5Xa6blZd5/PtVg+/vU+CSvpbPedZ0FTGdDIt+JoC5G + k/dAqD8+seq3lW0Nqn1Yb4GO//wVlZph+Xf/9PBZD3NMYuOPL2eJXUyw8RCWMGmbBb+K0QZLUwiP + v3yFyOb3Uy+5RDV0vzgDwWl0cPodv0CFrRSnFxlSujzyEiJpG7ByAagm0S/9gZPPXLHRUiNjc/Od + o70eyAVqttp3r28LDtyxIJ6/yRH7fvsS5LWRwc+21KKF3JYSvQVy85ePkFAurs8FzMHv9eeP1O5W + HiGAmZT5knJPs/kqXyQkF0XiH4HgOJsCjwYc0RAS9+7bGdnzUZgJEOz5z2MgsxRoaACnjy8FnZFx + tutI8O6lMj7hyHNmCBsG3D+Z6bO/hQx7XhfAc1M484PxEeiDcuLhVD1m7DSzk22uaT0gb7AjydLr + BLZH++lBJjCAWIuj0vW2P4Nsy/OMz1ZWR5uqpzLsTmVFburnlPEWAf7f3yO2+sTRxqa/EfITBT4v + 3mFEUZWHoM/PV+KOj5BSfO8fMDsq2/5W1yWad7yRyMay+AY9OePI2Ctg16/kbI0nlf/GywP9+Q01 + fox0XLUhhDw1MfamZlKnZVlzyNq9svvF1KHD8OaBah4e5M8/sMzzt8BFg9W/6+cfVeLCJH4q83GU + u2x86XcGSp+PjQM2VQZ+z68g5RJCFNGeIipHkg2R+EM4xg5QJ8h2Gzw+mMR/RUY7LCTqtL+8F2t4 + 4ofPIJsj/EX2ZWbZ71ovg+jmUAJMTNS+YpyJCxEr2r+JxTaOLxGFl6KEuz7D9qMTwOqFWQifyofM + T/F3pezO/2DHO+zY3yzauMVwoZJkDdH87jWsJUl/ID1aDdG/G6in3Z+C8GOPWHEPqjOkIZXA7bTm + 2LX2Z7wzWYlB1Ikmub++Q72h4ldKhk4kYtMspFSbXq1AB3rY8UWh7NIKFtj1GNEyBTlbKUQ8ZKvh + TDQ1PqqLQJ8i3PPx/ZnzIpv7o+ZCMDenWc7vJaXh67jBOVgO2M7X1qE7/sDqLOj+wcNJNP/V42kM + yT/+5CCSe2RNnxMxtrs9CEviGdLhMW7E+BSXYRU/oILojaEPMAycZbtcWvQtq2amJbUzqmgw/vOH + 2LzmV5We218ApvuR2/UmoUSRGxHiT1Dsb4UW69n5uDwIa4WZSX+6RORTPyqYhNd4r998P5Mw2Pl9 + ehNr5mcwNt8i+Ft/7AXvOFqioz3CQQSCz3TAd/7x5T6/8ZdMG+jW/fwCUnU5kux756PJjvsFTk/9 + 4fc4XrNxu9xbmIIwxHoTC9nUrycFMD9T3/XiqK5nnu//8gx8gtcvnZnuNYM9r/eP3vGY9e9ALOH5 + LDTEMH05E/b8G4pp3BHz6gjRImrZDOGDbUh+wr96Ea3BAn/zBFyMPSVZTHlImM8Ny7t/2ha9ltGf + H9HvwVzv/GdDt0nuPq/Y52zz5Xf+xw/EPH+oQ5L5J8OImX5EoyGstxtXF396DIfJnFC6VvSBQIQy + n+3CQZ37sJTQxQhyortXbtj9UAz7x+k7izBSh90P+5CLHAtb7lV2dn06/unhuXWOT3UJfy4Dh9bV + cLrz6Z//QyAxzzPHlbO6Bmn1k0yZL4l/eQSAKqIO/+ntv/xrikJnBDwBnS+xvhvxpzouIEj0M1ZH + 0KtrPJQxkt3497f+DvWFmQWR52xEaZgGzIT9uFA4F3diPtYO0MzNGdC8mgI7nGmB3X9qUigmF59b + mLBexWfcQ0eNM18y58lZiLEtUDsk1T++XB/VUQI/j0c+u+expPH1BErfUSQ+eZf1cj+LEG63Mpn/ + rf+FozJcL5M21+ekcehnkXmI2/g6Vyn/Ufd5iQzVS2mTQg9XZ7l+uALs9w/7e31ureAGMGzdmjip + Fqj0ongzYHqX/uWV0TKe7RBm57bHf3g6VuZdAsz0SH3pNflg3V9/B5Xk3swV+F3q+g+/QEB5f/2J + 73p9iViEsa5RckluV1BX3Zr/4z9N8hqH/s3P9vkauTRJqy7V5vaweLEKiXWnG9bKYFygvGWHnPbv + kw4e4N/8FOPIaGsSZlUC3KMjzT3jP8GaO1dXSh3exuaxTmr6Nz9YLMvEVr0Z6l8eCTyJLP/wdbzO + eQzNNXlhi3SWynXj2qAIfiVi+HULtrItNHjOUPhPH223NZbhxxFO2Nz5aZRzPQHCkUkx5s+rSl9L + mkIw5hGOxrtfr4n5jOGhVAziWg1xfoGgLIj4Zkp0p8oduh/Ii3a+xfauX5aVJDKsYLFh9VVw0ZKr + DwUaT2v3C2YPVpI1Aei5Uf+3vsKfXyWe+ibnVzJRmj0fI3TUJCPy+gTqzOaLBa1NumKPeRnqtp98 + iOhbj4h/u7zVznlfNKQhl8U5X5VgjZLMhtn7s2KN1RNnkct8gwphonno3s0wMS6O4Z7HYlwvb0CL + TPUhp+gX7HRBC8bEPMpw90973kOHNlS6FLbJk5t5/+RkG5VgC5pq04je8CFYTMXa4ONhV1gp8y4i + 6c2JYQ7HZG43awQLfC0hwpV2JIl4h9k/v1B5co/18KnWnF/fZaiX4p04ar0NP2NVGBTPzkL0hdnq + 7Sh9FBArB93nXOHirNZ3keH5ZQnkT3+PZSiH6HyMxhkxS03Xfj3L/88ZBeL/3lEg10JFDMExahpE + nxbWBtf6C3s8qrPs2D5cEuZErLWNsl4ULzwC6mPE+jk9gNFUeB69FmwQozZkhy1vbgA/njMSn5tm + uhiczkL7pcs+h9Ct5oJv+ZDE2r/MYxIcaBPOa4BuVNOIvCENsEa9LtCu6mCWPlc/WteOy+HveCvx + OTi/nFV9oxaalmySuIWPbA5NkYWXN7j6/AE0zuTFfAJuwUHGCpykYaGrkYB82SdS62tSqZbcFHRO + 9AJb63QculmJfRB5eUzkvpLU9SvOIWRg0xEP/DJAY0vgITVbjqhj5tf09Nzf232wamwArYwmHUwS + lEam9ddTXIP1wt1j0B52hVaTyuFDc+GhC6MPkRW7rFdDVDakMbPtf+17F60VV2swZl0WW9XFjtaf + Ns0QCs6VOPXbjOj3+XERlsacRGdLz7jhIYnQMvDTf3fjMxIagStg0eD9rRGEGaaKHitoMrnrr934 + zASzl3r04Md5/ixPONCpYFgpvOU//Ix9t+ZV9ilDGITCfEB31VnKdl7A67CN2A28zyCMjOWj/iT2 + OCD3J9jagxGjVzm8sM9vL2e1h6GAR9IrM02Tn7oxvBWDfUMKucsgz/g6PkO4HtSBGK/q7nDWBdjo + pDOtD0B6ylhPnmLYqNNK8OWpDNP5NWowkX+tfwirkAq88jQgK8kRTiVLy/jo4waQHyV7BgY919u9 + 2hZYBGtBMjfSAEf8qEXQi2SsN1QG3N1/b6Aj64dcr6OW0Z6rISgfNSXeSe7oeiBlgJ63W0Vk1PH1 + LJ4nCI810nBGWSlby8lgobxVN3KW2cThYi+wYfxMrgR/sgosDn8r0EmHLY7GiqU0O/xkSFdlJRq9 + fdQ1+JYp0kXLIBGvELB6kbtBj00TfAPuNHBf4xbCmC4ZeT7UR8Z+y81GbTqOJBcLEawHGaaSo/Ux + toWirGmrqAkc3klIElGx642UQAbUeT1nIEysup6ujAtfNr5je1CvlPLbVqHZ6zVyZs5O1mwvKZSu + BZLm9Xrvs3G5mw0Sen/Grj3ZEbv3C1JE9kl0pXjXnJaXIhLUOPDFO3+olyw+aeh7bQViyZSoa3dS + WjRy75i8vH0XQ/elMjJXKZ+F+9d1hPv3HQD91778jg6ts3DHvoE5bDJsbjWfUa5OFah3rwux934X + yDfTIPgwZxwoF2Pf1JBDCNB0xw9VJg4plTpElp4M+HT4qir/dj4zep1XmWDVUIf1/d0s9IzkN8af + TAFs4yYVYjrrgWULpYMwjd8N/vUfaC4fdQPFqUWfFznPx4PJRaOHbBveEXH8sRj6mrpFFKNnq9yI + t0A7E+bb0iKCo24+rDpTU023IeC8vMJuEDuAPQ73GQbNvgOhGi/DwhRSCu4mefn06Q2UHrrkAX+O + bRO9VNVsQ8chhzeeGf/V80jEgIHCig74HGn+wPJXrULbMzRxnN6wQ4TAVyDPegpxDXYZhPS+JMif + JxX7oxdRbr7wM8RxeMO6eKqH6UB+ITy8bANfrnc72+qv2UIzkwjWPwchW6WAYaUdP7F8eZ2H/fM1 + SPGhRbKHuDiz9ME8fJXdy4c63w7r9/P7wWebL1glTy2ij/gWwnsIdax/xIvDcc/Ehkl65/3Diz1l + 1H2IPiT40hEH4k+2ylIc/OvvhouO2ZLO9wTF5fbBmlrZYKba0Ycw/orE2CocCS9qzfAYIH/vJ10l + 8ivzIR4+PonPiqHy90paQEtflPj6QaLk0BUPKQoKB+uIOCo1s9SCaN+9L33MNyWWdLVQI+7PnIH7 + L+uRsEroJ18ZYpuLWwvq0amOX3icsZaVg8OqT9P4h6+OImG6xav6gwftJuGz9aqjRcGJhebf3cHn + Ucjp5lrBBr9iMxE9T3lnq6+ggr/22uOX3x3VxZM/Caryw4UognfIqBP0++Hd5YVYxi+n35iVW6na + GGbuVN6h6/DYRHCdekIMK06G9Q//h48rYeX+WLOFmXMRtqMFyH3pgmy77Xui31XfYKNIlIFVn1iD + 9Q/288qqMNq873VBRnvL50PiyQ6feYILMgFIPrdf71yOZQ+n/L4R9dQUGf+Q/QAu6GHMUCxSwOfS + sYLvyneIb/PMsN3MVISi9s7xg46eyjLFlqJrZoZYWS9DtsqWHiLCPhpit27oLGZAFiDW7gXfHp9E + /U2EHZHfpwrWtLtPOUURG6TlX2M+elimI06kCoqyn83sXh98Ai45Ov2YHKdc2lLWPHkBlOn9jO87 + vhDvyLkolBSdGFvWOUtwlSEqvKuPo76VB5YFsQWN6Nb+0w/TtB1/f/iMk25bAaX5FIPD8egR+1WW + Ec/PmgKk6XEguJ1fA3uNO+WP74i88zv1Ri1ER1oOJN3xcf66QgI/WWqR4v2u1OXylhMUh/qCd33h + 0PbyYcH75cY4d7PQEZzSlY6EuyQ4QQwzLIf+uCDJ0CySjoTU49/9AwkPZqFTQdRUr7IC/TU54vPS + BRG1zsIM9el2nMFVah3ivPkccbX0I9GON99TJhpoo6NHXqwQqsubvY3olUo+cXd8W26LIqLR+R2I + s/FBtl2nXwkC/6v968clL60c7fw8w/JbgCWv6wYoIv/0JeVogfHN3mbUnj+Fv8+BB9q15wKmB+hj + +Zqq2ZodWxt++M+PeOfupHJ89x/SrmVbVVjZfhANeUmSJm8QkCAgYg8QEVBBHgHy9Wew9mne2zrN + NVxDIZWqmnNWUvWo4NUaNHwGHQBrYT1t+FOKCzGFO9W2as48eKR6iK9zNzfTifgtHPyN3RVtHbDA + pB10mYPis6Ig5+v7oadQ/Pwqcjo9pmgt2HsBg/MYEmN5FM1Wi5UKl18WEI3TDcqloSeB+Xq/Eo+v + 26YDwt1EZnT9/Mu/PHKEFmrPEcw07Kpoi9nPgp6PoSNyfr643PveB+Avnjnv65xPd0/0JSvAK5ZJ + eBt+p+UC4XwVZmzHhxz0xaeqEKPZM1blmwymv+e9JssF34z63UyU1UIkN9zOsE3F5Y/XKYGE5ZG/ + BvVnoFdl/YCEyWti0Msb0A1VIfqHP9hloJu+rKIUxauHDdbuKc3MOYZ/eNfc4hpsUrjfHny/DjNI + 7HBYFTMfpVnNn8TDyavZ9vgHnefrjk/STQCrGkYmrM/5bz6wQuiu1HimwN2EH3HZoYy24/WdwOfL + EP/l75ma9QZPl+0xMwPum0U7jx8glZeVPHNdA8vbCAKg70q4Kq1mJATR1MJ3zr/mirqXnJU/bgC1 + 5uTOoHlZ+YzJJoMH/lzm5Twl7uKDoEXu6T7//X+0jh8phHWBLr40ONAd5fY+w8ERvfkb97W7wUGq + 4UM7RlgpVWUYs9voA+le3fBNiCLAjg0Xg3H1o/kgh1k0PYzpA3f8j4u61aPtBV0b0vIZEe0I+uEt + crEEuLN8IpZb3oelfnYV/PpzirWQfJoZK74NeSeZyOnRS9ry9z4dfrrElzWTLjuekLwuRcRQR9/l + l+VaAc3lI6Kl+AW203KHcM9HZMd3wzKPlxbyZmkQ+xVVEVdikEJ2uJUzyjQpInURtfDOnNqZiP17 + oB8MQ5je6xMxn3kI1jRiSnDX0pKkr0jOea72uj98iW9YlRt6TOsQcDHN9vxn51xcjh5oAKywu+MP + /usdEvGXUpvo76Wh+/N8EP86e//1nxPxP9KOB4lO3uuw3oMokS4lKLF/bl5gZqyigHt8wH6qfN3N + mbsU0OWTEptvH9GymAoD9nxE4pds5iyvLSVK2anHp3RLooWSYoOpG03EsAp3mBZHLEG6pB3J3wmX + v9Wgr+GOL4me33W6/bavDJGvUHwvHtogLGsnQbtLXvO4+zet1CGAaxy8yf2jt3TfrwscVy/C0W6/ + lfMcE6LHNyPan79Xi7shnQJmjrW8bTYErip0Zs8nKXPotOXQyz4gr3SeQSYGbofqRwVgM5k+y0X3 + fJXFeoSBqMnzaAIe0OS8MNAMwXk++vHqTmnEl2D9Bvn86Y+pS0+cXUL5LHDYWsuPRovzXQbEqTDR + jqyW88tTKUB7nB7zFFxDuuoTZCBU3H4W4r7WxvrZ1fB2rhasGckFbJhIKrBm8Y21+z6X0cuT9I8v + zL/QX+nffgG/a3zc/ePVTPlxduCr0ZH//Vpfd/18Q19K77CeoTuw+fi2QQb8+jtizDJiROZe7xAG + Duej1/eV//FBKJ/zwj9+wjVfE7GogPlUWyK7Bz+fK8TOkpBsz/3vOR8JYE0kJLFJ7vrn1BCPfDMw + ZsuZpOmKo6WBFMJX3bV7V93O7a1d+1iN74Jd4XOm7NlPAgh+kYPV1TG0zT2/S7h+w9xHg682gt0r + JqqHn0l0Xw5cPoeNDil33XBx1fto8+uTCXd84R+LRzMsj+mYgkiJEcZhPg5ExuJ43OM3OaeCBriX + dNjAm/92/tq/by6NemmB+kN7+gLvaw0/TGECj6dfMlP5E+fT+NkC2NvFTLKcoxqVPpEHw+EWYKs1 + 1nwYlCEDOHUOeNdHAH2yW4AgHzRY3WyiLczil9A2Vp1Y+/dzv/OJAeAWxUQbWmcQBGYVocnJF5yz + bapt9b3sABdIG3bo26TLPz3l1NnEDNVSI8cs5+HOh4mcJFO05UzRQa4pMElaMLvDsMk86u2jhb3d + 3vTyHCGIQ2vxpZ4xmkl4Sxns9dbEz2pzhy62Xx2UC/2Cd37TbAwvJ2jwkxy7vVIP4+7P8ODZwSxZ + vRlxz1zagLayMpbJHdEdHxTQykVCtJCYDTceDyI0w5L1Jav/RH98DHodlxD7a/vaJhdlAA/S7YN9 + /+VSHpBHB8OfKOD49/02lJeHGob2LSOmd15y2qRLgQAid2Ke3SyiwYWV4aT/amx13EyXqew6+HTO + d6JuCWiIrl0yaB5voS8c4OAOyXmBCD7ZB1ZfUM3/4ZXfHb+w8TEfwwaLVJWY6+z6U/0eokXLHxXc + 9y8u5IMK2Ffj/oBcmBfiR88r6KrPZ4OQHyHWzmINSMxJNiThdMS6lusN33zxB1zYo4vlJ/KbVfgO + EI51U+LT66y4K2IhhLu/YcV0rWa9e4uPHp9y8b9XLh0o240jVMZsmNnF77X+7r8WNLe6QzQg3+k6 + 3E/xf/lUFfJ052sBurU5Juf+8tDGiIk2BHIXzmKkfZsV5y8Z7XiA/Ok7lHHuqYTuwR1n2aKCrblN + JoyCwv2Hx7a2GUugzfwJPx7cma75z+2A730PM43buNngT2bgqV2imWL9nu94TIZ/+ab45rbLr4xZ + oF1vJHh2q5yEhcLCoLVTHK4XN1om+mSh92VaLGe2TGntrTra1AcglnM/5ZN7LDI4+/qDOG5duTxX + 6z/pM75jvO9/dzveSglKd2bBp1MbNd3T9URpxzMzUOCb0jALQpTFp52PjEW07Xfy0CAOJ3xOmZ+7 + jcf7DPb3Jc6uP9BMcz1wLrN+ltStHrgwwYxUWVa75y8+p//46j7VwcmWmq75cbb/8NJ8eC3csKah + J0rFAh5YZo93bZSFZwLwNzzjc0kFSgdlSIG8MQs2555rFueWFXC3D9HefOOOy+ltwkdUSgRHVQGW + p/Va0N96Jld2HXa9KYMZH1xJDtJXtAK3ttHxfLjNsG73KY83joFlIWs4bJSwYbvDwYadfGOw/FAP + 2vT0FR4yy3HwaYoVsPWNXsE/fppUYQL+6cOH+pPM3B+/ll/6hiJwvuBIacuIPu5BilL3MmGdd5C2 + jcAN4Uu2LIKfrBIRsTDS4+8rJRhHFQRDfqhUlBdzhvFxvtLpTw9D1fdC7OWluVxcSB3c7Ulcc2yi + 9To+bIilQPO3a4fAenpsNSqmx9nnKqcffjveB78R34ibrSfAvfOMhXN/Qf7nixqw3FZY/r0flvP4 + llPRqyVIkWMTywk1l372LvQ/EL+JwjMu7XZ+Dyf70ODzabGiBaR4Bru/EfwE32E6aoYEjV4VibJZ + nTs8xlIFf+/jH591tOK8V//ptbwd8w19/MYS+rwC5uXyPDU0D6cRRELc41uv5fmmdtdOEpDXksBG + YrPG59QGy2+/g77zd4IN9gcHNrGxwSZ8NHPB0koLE4oEF8eVkuQsMlAL3Cv5izeL080VVP9OHLN5 + Q/m+ZXRAXcAT3XbraLqODwcsOcnxv/W+cPcEzDEDd35fDjPb8D5s32nxD1+tpRxIcNGgS6ytCFya + 3pcYqkkkY6uXnu6aRnwh9al8xWr01qL1nYespIZZ6o+4nV1inw4zXDv3jD2DVPknjdJAuEyfCPvF + qg+0y0EHzu/IJvbIc/QfnsAyb2M9qRWNOuqxAKvMJiR55hvYJpsNoM9rYGb47eCOkpNs8Oo2A5bF + YWw2K809OCTGiD10LZoiv0odOD9gQAJxGAdym0kFd34yFwZvDhM/YF26KcJGZN2MKTeMPgTd8VrN + +3R4sFlp5MPz0V3I+dtcoyVUGAjt0zAShReMYWmIK8Mmu3Bkj98atzwYE14sxyenG9jy8ZOM8V88 + xCGmhJJKXmc0Pi0fe03PNqsDDzU8+cnZF7AqD9yknzd4fl9s/2pdjXyLV7cDqSPEOz80h/kYgX2q + 5qUi+gdKESk7SYTToH9x6XehRu/fPvjHD4xkjRu660vQn4nmHzV+P5DW2qykoq/gS8hQte3+OvkQ + fNJ6lhLZiJYh0bN/fNO7umTocCJV0greBVa6ezV0xnuIYU3qGXu7PrCB8tRC8Ian+a2/oDbvfAL6 + OTkT55jFlN7yXpL2/EDs9lwOdHqcA3HHp//i53R6SBUI9XLb969KWWYuJMi/DRabbjLuJ37T9PgV + PxPWTvY7H6W+s//qL0S1LgyY41dvw+roddiZIWl2PdyH+BucyfNd99oSO5EHtejdYuOsTdr0OysQ + GtdP79f8IQTL9twCtNfDZhJVBV3+9Fy+2uj8VfoB0LvgLn//T/wX8Yedf45A6JcrNvFBa5bMVkbY + caWInZ55Nzv+ztDgxzkxtJ+okdeTmf/y8Xz4hebAGUcYw7k1Hezk8JjveNGHCxOI+MGNX/Da9QXA + qRj5ZPSzvSu/t8HXN2ew8/E2d7yai/kvXsmXZ9/M+Vnw4aV8GP7BQlYu1KVhQ3x48sSX9ql0vCYW + 8OzUCj7pE6Hr/v1/etgMR9BE2/2leEiAmztLBUX5cjr1FSw3sSbh0DTDyuK3DzylfhKdtWqw2Hsn + LxDCiCjqPXYHA6cbNC6z4gt7fl7MtR5h8unCv/pWTsvvKf7LH9ib1H5YTw+phueKsYgC3+do/qBi + AYvGuDM9CI9mSbhb+4/vLGe2yP/0KHirdB97mUqjf+u1xiPjc/PLzn+htbAQjSEmch4L+dItRQf2 + ehgubarnLF39GErZ/USUpMyadb4wM8zkScXlaZ2jXU/K4PAeImybHQRzzsQ/eEfBhi3xwrhUfDAM + gMqpxwreOrBK5XeBe/6ZhR1fkvMRedC32DfJQv9CKTqz1V989KuGqO54TcIW9XY5E/dmFs3qWUaG + xOj3I0pfBoCK3k8Eu7/M7G+e6B8fQqO13f70+Ya1wVLDIrETvOvL2vT6Sjb0b6m367VMNEuvcYb1 + Bpldn1Q1YovDB+z1VOx/W5jPeJYLqFd7S7j0sGqLLNxiJC0CJn963Z6fCsg7qzkDVSJg6aVfAZY8 + Un1xfZ5dbseTINHRFzv2XXc3rop0OIj9CRviYRpIlwYVkhyuJh4Mxmh0mwuLzsfTQh5B88zpiIsY + 7HoPxsapdGdySSt4/5ErVpWrQ9fjoR6lP/+y/ejnbu/qFIONdT4ziq3PXg+QZ8TAT080ZjtHNMG/ + CjRLVM+DTRAghz5Jofk+anjP59oWnI0alkVRkHSd7sP0x8/X78ji2716g+9e3wTWKhbEykaYT6ES + bP/0mdNS/7TuFb1sJMwN8Q+3MIhWatxSyOzj4Ze9Hrp6RsT/5VdiQz1tpuRrF3/2mWkEkLtdGfgB + y+a+fOmYsWCvB2XwIF0/vrDr31u1aMsfH8MBbM1o/fy4BGn1uO38uB+Wbh502M8Sxa6XDdrCPGQW + 7vWvWZq5Uz4ut1KFgrb1REsT2x291dmggw+bX/RB4grfx+TBSEj6vT5fuUvrjAzo6Zkj6oa5fHy6 + uvi/nCg4/j9TD0xbJfn9dNGI8HrGsFVGwd9EibgUJaSGJul7bPzKb7Rs0TeBpP+p2A/O32bhrjqP + 5hk4MwMnBbDQcCXwpjeb6FyzNetjnDKoXYsr8ZfQiji1kVR4Vi8XbIqirq137SHDS9seCQ5uX3c5 + iHwFGKpPOOeJoc3z9xPDH3PxcIzjYVis6uWgKJZEYt6VolmmUYHIXBcDJwh9h83ea6xWlr5w+QIP + QLVnmcF044/Ej00QESQbNdLFTMQnahBtFvjelMbtmBFMA55u0Gr3uTWy50v8e+9CRhxb+m3fnDhS + oGhLRfkNQeScZ5rMIOpeqfuDTFYGxB3mcOBeV8TCRux7nICRdRdumHnQuZk6s+KxbygnVz80xt3D + 3z6/lW5CMzlgss4dthlHihYfjT7su9kg2rjIEftIPjYaOzgQteBIvjwiWUcZqm8+Na6nhhutMJNe + QnmaGX7dwLgyS4ImGm7EWavaFZ4c+0F/9sBL8aHU/8YQ8pZ1xOr1Imts/2sLdMmbYb4c2sMwvvq4 + QhPCFcbknedCVKY+IrnAYXf9vZqRYawOhegzzekG8MAL1qZCOeMxcS7MQVsi8VxBUfQVUnyoP3CS + +Iqh0NuAXCM1y7mGPdbofTVdrIJqv3O1Oil4oA0R3Xie3H40vjF8XW8zsYbaiPgpeZSwF6N4339W + LmzHI4SVmGvEnD1eW+E62bDY7Dcpsa1RcvCMEI1Cd8fny8YOy0t5dWC3B7nXh6M7HX98DQtlPZPH + Q3Qaev85KUTPKSWB+6gBGdeJhUBxHtgsRtFdRytM0QbFlhQp47lCxEoevLuiSazqRd2lMK4h2sjL + xqdZdhtWYh4eHJ/gQczfK2s2KTRHmJn+mRhG3GrbD888tDddx9km/VxB1hYeVia5k/NJvQ68W0MH + qlcdkVyTK5dNPkSHtme6+OS9NEpzXnXQt59TEhiv2F0zcZth7nmGzx9uuFniIkvBRfkg7FxzNacY + WxIyLtqVGHBuB8of2wz+lLgm7lkyo2kdLh1KZn/A52E6ayzXyRtS+9wlDne/Uu5QmSNsiRliw7lb + A3W+dYXElsZEdj63ZkmNHw/6POmJp+xzjHxhiZFjJkdsf7j7IDyguB1ngUmx+2rdYUXXTUaDKdvY + KvjbIPSal8DOTVWi+KavCWlxa0EuTgccm603sLamQnRX6q8Pl2gEU2p/HNSZvYZNs/m6Q2xqDtK8 + 3PLRp+sHmoEogC4cT0Q93LNh3e2NwMZb+1zJGPAquiXAE5OaaO+sjxa3yj9QzNg31oI2jhZvbUuI + yUsiyrUwXEF7KQV6UvIgnq8b4O9vyPd+7PN7/OGuzD2FytVOiBK560CV62mGQ6/qc+0EU7Omhm1C + f74o/va7TvtcSXuBifdSZgjhc9h8CXRwFmBKdDAdG3K/+SVksiIg54J+XYoxlmDctyUuSZ7T8Xm0 + JJhd14IYvt64XHKUQ7THC58XqBwJSehIEAll/Ne116VxMTlwbn4Ojo20AL0PkgxOfazhch1JTrfj + ysDeknNsX6/5wN/RS0ff/vIlgW6N2qSeUxWqz7LAnm7f3FE3+RYKAttj9/04RP0pOprwSafHfMTX + CKxp/jPhrfXaWbi7hUa7lWbo6gY2MZVSGxY7D2RkXkeATe0cuPx88RJ0nuPMH67lddjeU9ZCpJQF + UcDgUk7CWobs9iL4L/7TRVsofUxoxIVK7uZ+hp/UDx8cg/tESt26DOs1pgXqnnOA7bvVRNs0CgUs + Z/tKbl7d52NybGSUutWMrcZywDZ/5wRW29b4D/le09VtShHwsWTu9n4DgTXWBW6zxxPP2eeQqedt + A77JCFiGIG4EcExYdNxbOmsWUCL2POYJ3O+y+YInnPf4pmbQo+8GJ8P0y8lSvBJUXg2bKMOoutyz + dh3gq1gk/lcYm+3NDAWMFAn6Enfn6OpZzQZZ8dES/PnqLvuBewX4gpdZiJQYCMNpg+gswwN5Llad + r8av+qHFO59xbnMqYP2g8+D2dnssr+OJbiJpRWS6m0fOIaPnAjlNGbj1go4t53Kli8DaFXT7qCDn + iakGQbZKEYrB05zZ0r8AdlJbFcme/SK+V3uu8BqyGAZZsOFLHHDRWt0qEd1dycQ37ma77J9/rXOA + yRUIR3d7X88VzK2nieVhyehWTZ2NFGLpWAWcG3HL48Oix7OW/cNSfMB433n883hFWIPk51ITEhn6 + gWrg56uuGm77yBVKkZfiC1xIQ3Kv9ZCxzYf54OSpuxC+/IE4ExfsBf7kTovlsTxr+QOJit8vJ7Hp + 2mhTAs8Xq8R3WYbBP8Ap9UZ8I3pFvNOdA3i5Ahd70iMC3H2UGCgSh/r8bs8teb8+6M8fY7dftPUs + kw88/SJC5PcFR/t+LFGW1fl8FKV9TuNVGmHRV7YvwiXMt7R8ZxJreQPOs2tFCX85Vsid1XxmXuCx + 45GxAFgJGWKdvC3qM1GapYlpNvyHN5ZTnPNAJdrgS0sc5pvmqh6yTDMiRd5qdHO90EFacuVJ+OVf + zQazLkV0Ex8k+b2khkiXBiK5NzysP47naNl7GsOJeW1YPgZ3dxs8e0Hi0arndX219BsGUwqLdj3t + 70fy+d0pJboiLvIl/VQMK34OAQCUdPMhe/naqtMbD3zyjki4PNlmNTv0AcG1oRhzGeOu0fM6ov33 + iH6WmmbVybognfZHXPJrSNetfRSwV6PC32IjyDdEbolUX4k5b4e7NGyiWomIEXfFIqnelJrwK8NF + 4D7YhssWLefrMYbfPvoSnPBhw56UpwSe5rYRY1b3OcuVP6P3FY0klOKbyx18xMJQFOa/99e29xS2 + f/GKhJ/fBfC0fLXwmFEP+zdRBQJ7uvFA3OwFOwHeGlJevssf3tzxJXbXL7tXCC7nxT+4X4tuvXyS + AX1KFcaDdADTs9b2fDZo2JMfYFhe8/SDZ0sN8FkV/ZzoW5bApBcf/sM4KUA4yrkJbevmEWfiPs3S + x04hXYJgwKdn3tMFHaQRXGaY+msNG617hVsNGdIfiPwCabS+5WP8Dy/J5qRRLuKEEZYm72If8Em+ + RK+hhlZ7Dfb8dBj+4j1QPMsm+qu16dZtiQOH9mKQc5COw7R97FqgphDNPH4xEeWPYwq25AmInvzq + YaXCPYV//CIE80HbzpG9wIvHIaxpeuIujR0E//Kb1spKRMZc40EY4HA+3p2kWR6yZ8PbJoYEL1Yd + LboW1BBt0/UfHp3TtU/gXaifBMOFc+fdXmDOPtCvvsLXHUX7UIO/9VWSVzdQOLMtLJ/Fl5wV6oAt + efcfuMczHCzhiy6zqMyQadP9jtI+eWPnO+CzZT6xcVgN6w+EH+jnkYE9+1Dn718rfqSf962JHORS + RGf0bmHWPhwS5e9PM328VYfHhs2Id93nzrPGcYNfL4Hz1oF3Tkw8yHDH38QQGCPfViVgoCxsEvHO + 6N6wd/kyw2vfGDP1hmpYB14poMVEzHwwaz3f4sXlJdPSzvPhkHhg2fEbHJXuRaL0MAO6jtiGgE4d + 1sY+dieOsVUoIv6F5TIogDDHuAO4BxnRxeOp4Y5xUYM//HRbwrbZlOtYwkYcen/O12TnL10HjTxj + 53XPX+yXPy7w0U4L3vF6vqFhDSDKcwcr66sFq++HKXSeqUlc4znQLbJT5t/6yp9NG/gaGQzU6XCc + L/ln1IjmGzWaA/wgNq5EsJaICaAdpBnJXmRptvzUSdBvk4i4utGAaecX6I7sA44RM7mLbHkOfAqO + Q7CTpxpttbsI42sQkDw8nMAeL1moygvBxYW8IurUlwwdrBSQ4H0h0dKZtx+yN/TG54Ja7hIelw+c + +/BHFBKsEWUuZQYlyPpEj3WH0lvp/ODRs0qfmmRtyAffO3hpP/u5SHgYqAROEvS8KPUFRpZoP0FR + h6gt05lz7t9hzC07gW80f7HbakK07Hgf7PHKZ7Dd0Cl62RtE3faZ6dAG0UJO4Q8+npVMri7FDenv + nwT8eobBpuOrA5scBxX21/E09/VagW2dYwYITZ1jn7s5lEPXTQWKzNt/fKNZrlMTQnliXRKSLKCr + VeYJGK7vGzm5ReWuFl9lkL+uX3wy955ou/8gF71/xFxsQ6Nfx66kXyAH2MnffdS9lNcPLUgSyOkd + eMMqVD0Pz975QNyCHZt+a68lkptiJJflymkURacC3q88N/P7901FHlfwj89HyZznTfM8qyjLqhy7 + nVQ3XMZoLPzjK3v8G2a/vf8AR+js8xYi2oafco2ExDkQ95m1+XIau3/xHltnuEbbstgqzMQ1Jfgh + GC4LHimEsue8fOEa2vn65x+h0rTkXJTqIPzZm3oPirH7/QKatWsAj8/anedrOGi0WI4qZCylIfi1 + pHSxWuzBPz5rOamqLQIr1/D3xgfsVbHmksYeVFiarIuvu/3pH37kLeOI7cYp3T0fM5BMMMB6Ikp0 + Fc6TKLFzzRGzGFN3K7LjJv3xU9mcGjr+3nkCfoEa+AdzgQN9pA1EUfZKffBqh4bu/B/+lKQmFn4Y + zWqdnRKcn91ILrhKXMoxqAK7PbHhNTNYhlPl846X7lMdeqJN1a2T4EX4cP6xVBS6nft6Azu+wPLh + Nebjo69N5F2TD/YuRIn4UlQzZFyUq3+tarFZHxouYd7UAVYO7aFZrPPkg32/zNPhtkXrWQ07pAZX + higbGOmYNIqK7M3Uicy9H80vKiUIJvEY4ojbTxwuD11HbPyxsPlqmohWmVL+ixder9fu9k6WFv3x + sZzv9h5zZp9JO772ob+fiJrBWYZL0BTE3gBuevUcqBCJN27OpSiOZsBHFVr6tp+rzyBEA4qUAilB + fsN/eJg21aKDVpkFfz55V3fkj/cOJtcWY7e3JbAumb3Bs3g5EQOXgzbbRCmA5JW8Dz2Rd0djcFOw + 6zn+YDhWXjnQnAF12xCnrdI35CfWKvjDx9YStsMfXgY3sdqwZ84z3dJyymDaiQ4ODfe374d1gR9R + nYnyzmcwNS/Uwm/TW7PEv42GPWqfFH7hGP/TU7jWVAsUbAATlydvbf5gNkPC2VixyrWptpJagFBS + jRtxDeebUzuvFyh4fuCTYuDyTbyrEjo0hfHP/5bIJy0EueHi7BnodMGnVv6XL/TofIgo02axNMxd + S0yBVvm650vIxq2F//gHCw1NRHlgNcT4jIdmTqD7kXRGS7GJkDVQgwl1ZHtoxLhKFvBVhmZEp3bA + f3peTpIm36CcWAExir4Ff3zmD1/jHLbfnd99EghzbcNqvgzN83Q/zGDPpwTnn7VZ7HVTkXJ1kj/8 + m29jKldI3uwM36gZD0RgoxC+kNnPgtLtFe5Mb0G3jWdyY67PnK1MaQP7+hEXPFt3LYMthEN/fPvT + 4RZG/+zRIzXa+TEFmy/RH3AVFBLdSAu6qcc1BNwqOdhqZKYh2utUgD5Tb0RuLFtbjtqc/tNPZZIn + 0dKV4wyG6/dGzr3F5fSRDhAK85rvfK8Gq9/CDBpzthB3pEk+i2onIk+M6/nornrDXg7KDMtm47F7 + La8NKxr3Av7xp+xw1QfK3dQOOkHUYdtILnRt2GMFpWex7fxSzZdamjIYX8MAy7Yw7PG6qKGR6TXO + IscH8+sa6chEikHkXT+gc2z9YCh3Gom9OQJ/+RJkP+PnJ7u+Nqb7TTI7HzJfgmSko74UFQyVV0tc + HPv5EgZhhy7Zz/FH+6BG/POJYkhyjiP6tQzB9HR75x//lK+hMcx/9tbM7Uv8g3fO2dPYiX/432cN + R2+WJ9fzsN10jG1cpXTN6nSGRj+sez7kmtneSA11RklJUt2iYa0ltQOPq/Oauc/4bNa/3/s1YCLe + ax7c/fl+8Elyn1jM9RmNkf/9wNy0WXxHBy5aSyn1QW8dITlnddRQ5yLX6D4/L0Q96YiSgpwZIM12 + hbXD9QXGgyvV0o4PiB3c9Egw4Vfd51dqWGmVD+jqCy4AJ1Q/7MyO65JdL4N1fv2QPV40C34dTSCa + 1Y1kF+bpLt09amGqtPLub20kHDwjAIWVT0RnT79mx6MLeIj2A0fvrM8p6ocSsm59nFkw3YfVeSsM + fG3EwSd3bYeO1QAD4HPvYcwTNV9eoVRDVTUU/0Bujbue1ewHHFUesMt3IiWBPv3Acg1zol/oLRof + yccBqSH6OMm/bD5GrlLB69ZGxFTFoVnKNoCAfXIWef7htz2/AjTfzV2PN3b9v7chvb4UctNU192Y + T2XDPDAaop+0NJ+VrspQPS+Rf9j5wvotTwxASGf95ZdsYKwos0A/AB9iWghrM+bq6o9PzyTdlGa7 + /yYHfq7yRsLqXjas/3U82ChbgI3T+QaoCtkPyJSnT1TDdTSqTyfvL78TFzGYzsY1EWGMxBHr99Mc + rWf5+4HvdsiIX3Tq3lMzDaSf+Bux9SxwtB7eTx4qZtHNYP0pDScu+Af2eOOvnFflQmpwHyi0d0hk + pZPz0YhfKfxkQ4jN2Uu0H3sPSkQ36YH1Kr270wZ/FeyeY4BzhQ2iZde7pNtTuhJrqQq6vrrjBoqM + z3zpGifaYmsOhHv+9uk63waq4uUDvmJmEv+z9e5sHpsZ2co4EhXMT22V6ZRCqngUu1xzzRfsIxtY + 8aJgPK5DvsQbm8JTn/n4j69t61wwMPEahejF08iXSW1laMdjR8qdb9IDN/hwpuc7PlOtdVfLfWZw + z4cEK9s7mnN+lKDjHu5YyTIYzZ9aTMB9v5FSOqlOi/N1TWCW55D81XNGMacFktBE/uoFkSAarf/v + 831/RBS7PQse2brfuf6EdNfjYojEK/evntWexkpEu71nwJ7OERt+2N/f+/jMUHfung832D4P1B/7 + MNv1tq6DtaWke/2idwfzY8gwDpoL9uH0opvBsDzarp/Mp1XDaJ3zHmf4ti771Eeq5zxrFhUwLPPj + b5dPO1AVwg8srPuE4+j8jLZ+MlSoekWFHfyMom06gAx66KDivR7lrp/g5iDS4wtxHfyjJOlaCQIv + f/iLV5sDxy5XD+z1OWIskaOtx7ioQISaGP/l/10fSf7wDHH0U9Esne2Mf/F/5gTGiL57FR98+zEl + 9+sTuHTMNRY2pl5i3UghWH1BjOEPMtJ8NKpL1GXM5wMvv/Pd53DpauOkjjIYsiQhJ8Z8/auHSH94 + nznD2B3JKfvB3Z98uuO7v3wJLCozs9QxIBrri1UAIWYn4gf5gc6X1IvByVM3/KevbWzB1396u0+d + bHL3egQLdz2EKPnHc4VFjwMYoyfY8TXjLpW5LagRNnvX2+/DiE+jCt9tn+HyNb0bqgzDCJF6Q75I + AtalqG8KaGc3G+vgqeTcUdM6aGXZy2ca6zzw3G3KQLmVrV+b7839tx6vViuIC1h7mON7z/7pB350 + 8h/5dpQ5Fu3vT7SbNGiLkj5UqF8zuPNV0SV/fGjPx7v+KjfrzodQv3Us/rPv4ohVB3a9eQbBfXPn + e+za8OndQ3+7OxFd5Ew20SIGN6zu+hjN2mMI1ufnhZW7zEajg53xDw/iXb/VuGMc73ojgDO1wCvf + LDZrIYv8hvzTx81jM4Kvgh7Y72CQ89jzPsd9Pf1s33+UuqqIVtFjsCUXUU63Dy8jj34b//EujoBo + zzKFrzw9kOuhjhvSmgcI7DYS/EGTK211QAPh01w2vMcXd77GwQz5mWeJWznNMO98AgbbEe/1ykpj + rfPbh1j82uR8t4dmK3+3FrzmDBCNf6t0kY6eCWA/Vfiv3jvT2vrBr3C4kh1fDYPl3EVpFBsJn5eH + l0+9PGzwRGPkiys/ut0MyLafiL35LLkPEf0KeoVu7s439nrPFH4uIrznj+vcwWXLyQ/rplSqlvcv + /qy/ruykP3ykosOfPhuxsBVm4h+l+Ah2vPyBt2AVsJcyo1vTsm8B8qYCF7ejHY07X0RIKQoSk7ub + 0wRULNRaW8MJjj7arkfF4N2nd3x++0pDd3yK0k5yyLm6JdGO334oVT4ysa/FF/zVV0Bh1h4x+e8y + /OnP0l99x1F5eaAOvhb/y4kC6f8+UcAtxY94j7xv1tNSVeiHhTs+Yb0ZttABPDje3hxRLtVBWw5C + EKKGPE8+8au1Ga+S4KNmYY8kF5XP0GfxuwL3s2iRB3IvlI+DcIFA6CZsfK9+w979dUTehaux+VPw + sEkELjBAljQfrvgFZtOcRhg8ioO/tN45opCZHJDWyMJxabPuRm7hDKm8CTPfZa07yG8nhfLbx9gP + Us1dFLvcoGEqEHv68ztQ5dcnMC1UjbiS10ZbU5wchOujjtO36edsYt1LaLbe4oP98zF6uipsT9WC + TV8iw9rMjQQjX/ZmtIBvvh5iNMPfrRew2lxcsN5+jw0S/NGJk5hVzm7B3oXjLmfYPQEXCBIlIezT + VCG5loXalDGBjz6BfCN5VR6b5aiqM2ow6+NnfwfaoidbiE5qxZKyfsdg5du963C/AHIhRZWvr/H3 + OfrS50JknVwawbhEJXrVNUcMJMJ8OuQiA1CDI//QyZ99HEhuounH1MRN7QfYDmrGwDKXW6wG3aRt + 9vXkQc9RdL9Vsm5YYZyOMM/YAif8JXNZ2byW6DR+MqwICXFXXV5FZNzuA/b8NtYWi/1u0P6+KXEY + /klHWT2wILffEYnU6uIuJ7OCf/uJnEZ7cHn+5Mzob31wYwpgCVgaoONW80RjhjTaeiWBMLyQx1w9 + BtpsWMs/cB6Qh8vLmrqsf7JCyGdVQDz769Hl3KMM9OvH9xmANCA8Q7ZEMGClGRXWb6B0+Knwbz9G + +a8ftkNhsBC885bIOrI1Fp7lFj15BpO7z5/dMfnJIjpfGYKV9PEG//an+OwsEq4jm6+GGex9EWXd + X7NOG5aT2TGoHs8JLqHRR8LvqgSoboFPTn7HD2P1pBUyXuyNeJ77pBPf1ir6Ye6O419aDsLhLM/Q + 7p5nYn+f9cD+refJPtTEr98soGtfzehz9BtiW+ySE1dRHTh4XUnSYgmHOey8BDbzmxBbNHpteidb + DGv0NuZpvHHalCYKjwQmSMkDG4JGuZ8xgzJMpnm6slZOdDsRkXZ/Q3x9pd9osVGboK0rdBLw96cm + rFrUoUdvV0RfrZn2P/MlI3Q6jcQtxkWb7tj8IKF+MsR5S4iu34M9AoXj2HkTz77LwtOPgTx+Yxwg + m0SLVYYVyoLgRWwMrwOrCVWGELdH0LrEVIhvPxH+si3DN+7euetxdAJIBFHAl+LGNmMZcz+ETu7o + s0rWNauaNiViDg7y1wVJYNO6xUbjU7r4TKO8wBLBqEYzigE+/7LzwOOHX4AafY2/9YyWMkY/KEWK + i88/T9C2W57+JI2tEXamcxUtsvko4PP6qYgpFqnLk1s2A7P1F7/b15sOgjiDm3h3ifr9WoMQiRcV + OWJtYEM3+2E55twHPufwNkunrKNbb4c+yoLwRQw9rtwVJZkMga5xM1N007DyTCzBVjNVLH/eyrAp + WfxDvn954RSxd0CFsNi7GuXezJ7FfuB+Zq/CTNq7zv3SslnmA8ej+5wV2DVux2Zer0wGjLvzxKkU + fMC2GbKJTmwmYj1rFZeaQlcD5ptUxNOf1iCcDvYCca39iH5gWvcHpe2HpHcY4xOc13wl3ggl5xNA + rCbUAZQLQh4uF1ji9HsZtWWPFxJ2GZn4qZ5Hyx7vQSJkr3l7ywUgF2+S//wJYycd83Xo0xIJlJuw + tXBX0NvD6QNFU+dJ7JuVxv6KV4YazPv+Uui2tn6vpSqx/GKTC5FpRGnnZZBbY53kdlzlG5N8RKgz + uMTqvv8mFuYf+Bp1k5yCd6ktehR3SBeWhWBVXQbK/C4+IrjViZsRu+Elwi5SgjiMI2ZIc55MhAHb + 9/MjKq8G2rK0nw64fUXwZfwetAWpZISvV5/jW+KodI9fDLQtRpxLchlzOmSVB8s+WrCf6iDqq98r + RMav8knZx4bLvwUUS8V42ydiShhM34M8o9wiR+xkvtFwXRm2MPjudaXvrgAfTo0OZ146E5mTfy49 + 90GFiofPkdNmbPkoPiMfVWdFxOfu7Q6CEMY2IresntGVtSKBi8QCaYzu4yQqFcCyYayCwGN+2Lv3 + srupxQMCjFidyPord/mLLVXQmo4Xou7243NgFaC1+wSfQSED3kewhZnV9jgG2UrpekAQxljlsQ/I + ORfi2AgRy5gBPv1crfnzp+Pn0F9w3jurtvlKGKCZF89Ee9ylZpuulxQ9C80nKlyriGafIYN7w3qf + 0eyjO8vC24GzoZ729a4p5/mJjgrWPWKLu3favD8frL7MkbhlBIZZtOYUjt4642dj3gCr4EyFZ/0r + k/ARt8PIM7aMzLfpYCXFOOfP+dmBwC8qkhXuWWPVWIRQWYKKxNyguJzRvBKIvACTxGkjIEzFq0Zn + sld4WihFUyFfPgDXyo/IDJHoWIRsgqh1fmMLvaZ8y4wqg9iFMr4AScnZmCl4qH/DHKenVQALpY6N + ilLHJEZvTNcODDq8c9fKp5dToK2f7VNDez4CjCc05YvGOhvU6gvrs4FmDVuuOgu89cGbXIr34P4y + o8tQrZ4WEknHGRDIvG1U1pxKAs6vmvVkciyKHs42H6+nJZrj060GiVE/8LkO7Wi9+n2L/vCG3p9l + d7FYsgCnLEsfrvQYbYnYO3A93Xls0aIaKDUKBh6ry0R0WjVaJ1DiwI/ffYl9LBltqe0ThL/bIMy9 + +qmHPhDfC5yd92OGGrhq5PZ0bfieQhF7m0LA9HgOKVSPSMHmvl95eLEgzKTEmhc1Qe5s/NYCdobj + +yuQlGiOpiEA+37CD4eAaEsFj4UhWDWid4dTw6IObvCriDkJWm/Kt4f8KVFQxndiVzV0t5Mgdn/+ + i89R30dzVosiCvNgJkGNDSC0B6OAice+ZyR+D8M6+adAUtAJYuVrtsMiPiMPHrZ0xa4dy9H4974P + 8vaxrauWu46l0EJrXgZ8s6JzTg/NlQH1w1ywcoajS1fzGEovKrX+0XuIgBZu7MOvoijE0lzb5e7Y + 3++iSHvPqwRpS793EbeDbiFWqV/2/Ih+R44wMfGk6ZtPgfjeJBxtJVE1NtDojh/AlBVnEszPIBIe + v48K2Vj9EWX8Pt3d/zLJed/rGVHz7S7nz3OTPuWl3udiCdqiH18z4gxxxt6S6dFkmAEP1e4bEl+y + X3RTEkEF+34gcY4Sd6sjrwW1I3z/5QNqzA1E/iUz5iMZEVg+nt5CRhzxDBI3yZcSOKM03VtKzpw2 + NvQYHFj4pctz7l5xS0eplRyoLGHlI5Hj3QmsvQ+sRwrJuRlQPj0MsYYW6Qx81xvH5XnjbcIdf+HL + 19QHyq4ygxzzpxD/mBzdsRQmE+YvWmH99pWiVb9hB6a505NTT5JhSTTKwn09/ddP9N3FFI1UKqCw + +H/+shi8t3fGMiVik/sabfzzxkDFmFticMtNo61pLyB4lAe8uzeg13vrQ3t1jfkZhrm75PRXgMuK + bWL4X81lzz2XglQ+90TmOU/j+5IU0CgJnZHIJdo4KqEHL79Qn+Go280o3GEAU+e3d+0uX5SW52sF + mKt1I1Z7YvKNOSYxOEVig+3vU21GLAYSfGDziA2OmZpN60QHIm4/Mbjj6W3LHzF82U+f+C3TR9R5 + iSEsjDQl4ekIKQVw4GELMhb7JT66m7mkGeQb3ybe+yrm1IiPOgTuDfkDeN/zBb1vNuhv9XcWbs0N + ENahEtBiUfXvc9SBLXvmIVSPB8VnglTT1i0++3D7TAHJXIXNJ89PTHHHH0SuFRxt0TSEUPJMa+bc + H4w+30pboATPN5wXY+DySLiqUKDC5HNk+EXkyrMjMm75QLD5UcHUldlH2j/HGuuUdPMOqQjapr2R + 4LrqdJEX20HXoeDxiYwPsFo6rOFUNQKxk+FNt1m0efCoit7n1d9bm+7iMQDM52nOCEfTsNxO4QIt + /n0iepsL+ZQLMQPD7byRM3JXOlv9wwZ2n3z9gl1kl9YPKYYSbao//Ncs17ZnwOwWApaB+wWr2csh + tISiIdHPCLVtFmVWenNWsvMpVyNiHoywBPXRFxBpANVUgQFH+bfN7I7v2N2f4LFWX74A2jfd6lEo + ISAsxv4PLA2dr3MIz9z352/SR81n45vzsHUyh2DSimDM4rSDVcdHWM6sqvn+Pa+Q1xI+9ejs0ssJ + p7B6VS7GV8XNVzbxa+nO+xL5Dwl2t+QQDIBh+IIcCLVNHCKokIputx3OMB2K+hfk6ndMr+J5v480 + 7e0+G8/BR7bsapz17a3ayHVzdX/iAzfNyRy3DzvZ6Ni/PEZZDSf1RFdUWlbBLg803aeQsF99TbvH + 4QnG4FfePDgbZ8Q8zSFY9JQuMJfqmuXau68EfK+SLkm3KkRoCCHQpzRGOmgsFsklrr5ee9GwhtXF + xplSXOMVKeGnYf4QJaNIjNcT5oHiLqj/GUZhERHqtJaccOfl8/C7i2HaSTEzujfBwAxA+u116g5O + xpFT5Ojlbdnxh7jVmi5BgfZGURntxz88v6xUOzMQCeZ4eZPtNMFAD4aYcIvaZ7Fv2qwikLQSt69a + Xy0q8SdYlmPGDTWRg+2EhYZa7/EPAAD//6RdSbqyvBJeEAMRkCRDeukkCIg4A0QU7GgSIKu/D55v + +M/uAg4HSareppIq57ff9dl+NxxsJmFHNiMa4/FoKsoP37EuzE4z5EnYIfVsxdTXwclbIBeG6Jef + 9DZV44WObw7iy3nB1g1qYJs59AOFo3AhM5Dv8Tyq1IIJ+c7YKRLijdKrSWFMHvdA3p6eq0PcRuhr + xlXAuvjTzCH0ctkHwCaceDk2U+DsQ1DNm08g2HRm82AaA8w/BkfN4DI003e3k5Auox4rTNeapf8+ + U/jO24hm9HIs2NQ6EyjFsMTp4iRsu32sXcW/nYDVc18y9nxGL+gdh4imWkn++Ule5ihEgoXBuqMt + P4BjowfGxiFoRKZuEggIt6XmNxJ04uYfG6TDrSZchS96pyrfCT63cKKOMiv91my+CbgIvox9rKh6 + 324OlQwEFpOF2Gr8t39+8RS9L0ePP5vIhfoj5umhaCSdTvXgygJQnis/MPr5OT19+NxyEzbKeNEn + MU07+E37A179GcYa5NswuTUetvXB86Z2yhIISjpg5drH/XLsvxx0E5VhnXzbYrl9IA/emVgR5KIZ + dPejHqL1e1Ol9cd4UfOyA+ezJNDj8L7pzMCRjdbnBVKvb5sF5cYDrfkzGDetpYtq903gq4of1Jtr + H3yovZQwKiKCD8P55M3vjHWo0v093tdMBbwufnJ5TzsTH3EjNi15uVC+FMcd1h21Y2zYLQr64YfR + im3BGuUrwJoUb2wQIhcLtmYf+a5cUTU15phqb32AB+Fm4GDZbgpyba4S/Phlik/wGLLFByAEx8V6 + UEcoyNp1nLpQFcaAXovN05uLa2fIkxO+cErOfbGYDRfAm2l4GL+lupm4eZfC/TWHVNVNoZketsr9 + +B9e9bg+FY44/fwIfMnABUw//ZnclxP2v1fUz3nxWX7xTh73ri6ExbQtsLlLJU7y1G2os1EWdD5W + Ng7GTmHTrkAtFBrfpv6UtyueVQboeXTEmC40no28neAhFRzqiVdeH35+QdGnKyN4v9lyVUgJgbHD + hPEuB0ZfUhZ0l89R8DprPBudcXX0ByfBFZK9QnSrqEOZM8lUB/tn8cWXeB1MdD1gDZ5YvJyTaw74 + bjNijd7TmP+G2IfNVyvwQdcbfb5Eg//TE9TXkm9Duf13gp44AxrB5ssmUzAseB8si+zsncmEYbnL + qD6ACB/I5MR0xyk2YraxId00s3hGky8Dj26u1FzXb/b61wus/h02CpTqhMZbC40ZvWAzbN1m+Izn + Afz4hN6ZizetfiJc/RyCHJuyP33I7rEfTLqi9NMDUAKxHjr4cOLfMTVJz4F4/O7p+j6FeC7GGlpl + HhFB60xvPp43HXApf1j9B7/43PLyBemzJ/TQ5WPPosjjfvye2qr49Zaf/iVccCJbAHhAfvw2FB8v + 6nzSe0+4XZqClBu+tFzzw8jt1BI62oPHwRwwNlFbruCoLilWaVnHU+vqEUx27YJXPeS1x3Wqw1vV + VRx8k6e3OMe+BQUv61Tbw1MsrHoErH4OxVIYNotNoPXzM/BBewveRPSi/ttfLtW0eMFXq4RmvW+I + 7HMFmEB3NBDu27V7lHxnYqs1NnS2YUQL3S/6AZ/u1Q4/gPHnl0/+/sBB09IhdR0/Ksj1BWpgztcI + H1PjWIxa1pfgIhoJNYam7Bde7yew5ju8398bwKiaJ5DFihLAYOmabuWH4K4pNS27/d0jQr+4MA/k + GRuVnXh/8d2PNvvpzWJopzCF57MsEPl828bzc9y3cNVz5HI6v0DXLGkGH0m++/OTmaw4taxzVhBk + 7sEAE8KqDCfgdthx6zmebsp3kHfKZ/nD55mMhQGGnVUFU0F8nQX9hYd7YzTJcrs94l++Bk0A+YAh + w2dbb/nywP4mbxqk+xjw6Hl2f+9Dr+VJ1Vf8af/85XQGVTwFDg7lh7t9Uxz2uOH3Vf6A4iB9qU3f + e8a0t07gj1+acuLEszN9arD6odhoRSPmNdIIwOUgo8Eaz8LXzgO4D6L0972bqRzeASjk2zkQUFAD + cuYUC33p2Qh219vgsbfrZfBYE/bPz/zp5QdX3qjx4vuGXC4wASuf+vkvHj2+bjIQ8kcYND7jC/as + bilY+SL102H3e78HspYbpGo7TjHZ+p8EasG9xwehy3QizRcDrn431o9O6A3TxwhhQvqZQPop4ukz + ngl8CrxLq8woCuaebxmM4upIA1/bF71dXtIf/yTfVa+x5YZ5YL/fjDr+VWL0cZVTuFTrlFtlXns8 + f5UIOPnpiN2nfGXsJMABDlP+pmrgPvqVf9Zw9QfxhdcubDLisoOXwzrV1AE9WwYsl6AfjhciXE+Z + Tn56YXiJp59/2k+P6uwjR88DqijeLf7tL3g05wXvUZwCujZmh9bTcOnhWm/6NV5fsiTxCT2AsgZM + 2uov+ONfv7+frI3SIZ8djthb+dqK7+7aky/4058Lp1w+cGOhggDEjWASLzCCfKJ0+GTeuIbCAhFY + 7McddbU+a+b4O623QmCG49buwJRkeIHus3hQJ50AW3YsyqHZPQLsrvE/b80sAGt9jSrxywJkY04t + 2qcwwKVxezfzGKghXPM1tRvnxaYB8TX6+S2rn9Cvz58A1jJKr05qFSvfC4F9NitqpAoBy0E6dXC3 + 39dkew01b4aiYu/OZ33tgfoR/vgImHX+QdAV+v2SyY/qx6eo295tNnzGGwGBPRzwwWivzSSEGwKE + kNus338Tz6aVCfK6n9d619yT6VIq8Cg1f35izzbNlZMP11AM5vBUN5P3hgbYVTtERA3N/ZTuj+XP + f8feBd3A0oIIInYpCYFW94zny7bowLXCN6xC7cWW+cRlQPHcT0C59QQRauUIvuPIxfvPGDYkcW4P + uPrxAT+fzEL86SfYWDoZtIei8/4kfeDrzfO0vB5ife6fiwCyUtEJir/fYngRXkH3OMfUJa9tTB7T + yYLDTROpMkkGm2Bz4uG6n7AOhbSgPz192Swe1vjCaPjHM6/gVtC5Nd59j/l1AaGGCzOg99sQs+9y + XJCHbzZ5b2S177z1xmAWlQs2tteuYQJzQygja/7xmWYJ/dBGxE+PNHBEJ54DWTNQF6DNQVoNC/Y+ + 3BXQzWOFlaLe9kvQOgM8ZvKJKsDbs+HilQYk8Hr/89tmAyU+Uj+lRtMpWdj4TOUE2lPcE1ZItU5W + /YrGvDqs/PHOFs1SCLz3wbA+/9SwWLoowPBP+U/fepOj6ylsZhIT8ZGPsbDuH9TynEWNYxfrIoA9 + D/eex8h2FOx4IUFq/8V/Pm2+7HtOlMdffdZ8N0+9jyIdIvpZjlg5zQZYrge7g+qn0oLNfdTAxNlB + 97ceQZ2L+vjAuQFf3CxiBWt8c9O/pgIYe5x++QeMWwlBuKvjkfpQMmP+LU4txEgwsLdfT8zOs80D + 0c+T4Lb6tWyfLjn84sEJdu8F//wOH6z5Kfjtx2GeFQE1589Aq3Za2LAz6wR2kdVgV9tRb6yblwLh + Dd2CaRvUPYt5lv/xZ+3eKfEimKMF613ywV761gv++b0asI38DzVMP/IaT9XsPzzTHlsOfJiPjP/n + RAH47xMF/OltkAk2b0Az+TWh7yxCbIPiWiwnQX+BBT6/2JT8D5t94xLAFm9k0gnjqVmizfGBfMsX + abrkDfvK0vkF7UyUqWlv+WY2AucD+03BB7xy6uL5Wek28oXDHPCfyAHzoF0HOYlDAyto5Iu+8p0E + 8KLo4MPlvNfFWWoVqIf6B/vxBD32qswWWp7PqPZ8QcCu768Nm9tGCZhyUQt+xMxF9uFSBUiojJ5Z + 3/wDFEN8ULw7oGZQSkpg0JAyELDOedP+adZwM8od9pLzXZ83TyJAwT/HwYnpqscO81QhYXvRsOJd + lX7LvzQL+Z8S4jP/OfRz/GkIFCfmBmy+fQqRf/k1eL46iPe76d4zIn1yePRnLuAtrW2YcVYWtJzI + Qr11Ouo09lSAnXXy8b42j/H8nEgErUi50tNGp8369xlSBGjScIk3/bJ29IGh3muEgYOgs4vfCMh/ + 2Q1WHbvsX9+HHcCv4RT4MPitJz4SKUcjjn2K0dQX3fEICexyvgzqL+XiKctDC12jrqV79XgpptCx + eNhogR9sjKEEQvc4WUhVLBurDNCCnfW+hudTssfn9FIAuryuCwjtmKe+ONjezNP4g56O+qX5tnH0 + aXioGTrJWkz9R/vsBRleNJRHshygwtqBeZxwBiUzzGlGhE8zyZmewO/rUmMf5YLOgjTsoJ8Pe3wy + +LsnaOTtwtN5CQh7WFIzaqaTwuNWHInUb9SeZ/j5QMBDmLrDZg94/anKMLSPPN3Dt93MLgh5ePV4 + meaHl9PwSkkHOFiHip6Yfvcm0+EgGNR2wDk72sWWI02N3viT0uiigX7mRGRAriA7guSbpE+mI3Ao + W7gE731rz7b3U2nAU3lRqA0KVIzlJIWQ014iNi/o7NHam6y/9b6966QXCIoy+BGyF01q6eRt+6Th + oGN/DHor6pfHXKOVEZwuFt3nZ73YxqnSwu/tLVD7Qix9MErTh7dxcwyu7t3UhVNTl3ALI5M6xz7R + mXqONIT1zqb+pm/0hd6XtQJ4HzA29mk/x6ndomV4FLjMEtTMx4Mdoa3un+nxOFyZmFcfHhViOgWP + h4sbYrd3HtVe21JdnG02LdkjQJ119qkSvuyYj0ZFgFXPauqXkekJr7CsoBSrGOe3OIqXeqgmeLls + PezvLo9evGssh2NOP1Tj81c85XZFAJXvL5yGXhQTCT5CdPGtFBff+qwvtDdcNMbLlczBNmXsOi0E + 4XJyaeDEai8Wuqqg4Ng8MS5qyxOn67WCF99IaXG6H/ptcOM7sNuRkB7O5iumjfZwYTw8Idao0LJ5 + f055KIvXDS5SizEK3JsBUSKn1E9i1xP89lnBU+dsqa2tXaUllg1wHr46DTJH7wUOJh36HgJM4I77 + AJbrb3sHI8bIpoIsXsKxfEDc1RvqMPnZz8tVnZD69V3q5d97v9RDusA0dlOCHnXQTzjSH+j21qyA + x1NUzPf3JoD7GelklwZ3IFwvkgZOz7uO7aZkjEWH8wut8Y3P7uVQLG5UvKA/txt81Dc8+Pv/l3O9 + YDPkcT/YovaAnv1IsZG/+GKqhyRBH9440MsN0mYqmmeEXBedqaa+jXUubfeRXjfSYXNMX2AuZMqB + 3dSX2Iw7jU3b+yaD1BdNaryUrz4XH4MHb9ytXRJ3jT4fFleCxBc8bOfS0s/P3UaAdd8v2Bzmul+6 + nnSQ26U+zWb7GwtB4XZQ/lI3eIuVwvgmbCJ49n2DeiXQYv7d1y+kvTZrBdkMwMAy0YJFfd/j7BXn + YL7Jhwoet9uRBvip6bO9ZDWyjzIlu81pZN/kRjVY9iAg2/7rx7zAYAZqUIc4DzwMhBs3avCX/6xL + sgODcL9E8O49K3x8MJ8tfjuW0KLzEWe3oo7Juh5I0RqHoJLxxeI6mga55T3jfVN3jJ7lo4x0B3M0 + 4LgAiGZgWFAsg57qyzcBM5PCFKzvizX/ajFefcYuWPJzS52jdWDTcgcTvFQ3RIPv8eVN9D7ZaKOV + mF7IoS/Itz8uyB7PLnba+ujxiaDaSCoNHePMHJppwl8JOfiNsfoGCti69dmFz/5IsLE8r2C8VdkC + nVk8BUKh1L14nzIf9s3mQhhdDmB7uiky5Co9wntwSwqRqW0GNlqFcfZpP/rUhH0Iz6R0sJK8AZi7 + lxxAuNUlIp9314Y9kikD5MQFOITNm30+oT3Bq3jQgld6XdgMVM+A9JikNHCkNxvK402D0NQ47J4T + sSCnpq5QwR0BzuLqyoSj3dhIuxwMrB+aMv74Qq2gg7VW5MVxBvRzhQnQvBLjq3K8egJF7wjZ9jLQ + LHlF3mwu3wn5jeBSF2ydftvtrimc3NygRQ1PjEZzxwNffZlUsd+HQjg45geeavlIlSDZ9wK9Ly/U + eNeJJnVMGFO+dYSWOLsQVp+fbHldXhpMYzulx/EbgKVuzABO6jnEzhu4/ZLm/QKy8zfHJ6uJwUcX + RwXdD0D84wfLbVuUUAjW5osw/Dbjxllc9NtPpvZQiu2UpCk0r+8aH8Z06plVqxb44e2pxGfGHu/i + gWasTtQKvaWYLLGYIHafMc0cz2E8YvYH2ZuHSm7vmm+msLVruVJOJjanhdfnaK6zX7xgbHdtMQeH + Yw2vYeJhdyNc9aVqqgq6x1nFAX4+vOmccz64o0GlifvhYqqecw2ifUCpk/NgvSN0VJDB5+GPz+ks + /DzqX7wTjrW5Tt778wLmj3LEp5u53gGKsA2Wo6HgdN2Pw725feR1P9Po9CLFV6TncKfUdhnsPPTy + pm946nbaSBK87+9cPK2/74dHAbOR1mzFuHv9+AtNzu7e+1p18UCBXJsUc6djz3ttoyB7PLk42Iaq + Piw4+6B1f9KzfHqD6d1/Wpg0p4h6BSPecBr9EoLHtMPY789gNuphAmt+IHVxpfq3f2MD7upXQOaU + nxnxFDOBVyDy2Af2qZgY0lJYOB+ML2K6sCHbpCkMbgePLAK5FfNrdyFwB5VvIJWKBXhNXKcunV5X + ejhkvi5wgSjAsuV0wtzhVKz4McGkOUfYMuW0WXZw48pfwyuo2kO+mM4tnuCaj+k1WxQmvif3Ba2x + kqjp9W+w6MRRIFWvEtmZw877wODzACsekN2hUxo+2UQEyaY9YPcmZc1itcAC131g04OB254ur9MC + xPd3T3Oj2vbEH0UNaMpeo2a7PHtKr0qLquXtksv6/ImggYdRprXEwN7gzaJ7XPmhJNN9hEjPBLcd + UKxnQ8CdxAcbpKx8waatjthz9xJYusfVAFt2ONIDnCXAorkT4MfbD3/4z0dClIH42c34sDt5PSt0 + R4P32kMrHjz0Yf190HMFin94Ig476/Hj13TfnY9saPfkBVQtuwdtssv1Gca2BfTXomNnIyf6x3Ae + BlAe5Zbqr68VLy3nPgC5Zx01zcs7pvNLkeBv/5afKO5F/wYqeNsVY7CLwrxgN93o5DUfUHOYlZ4/ + KEENoJL5eMUDJlxtLIEVTwJIHbmg6UxKqIGrg/fIJ4y8wrKE39bcU+VKMRj5l2ZAg8obqr3F7w/v + a5nkbwWrKfb65do4L7iuF7b5VmimGXMT2D3kN/YLd2LLaVgUZGAUB9/5mzVsSjwZ/vjgaT7LMc1O + nwd8f8R3wJPWLSbhfgxlYT/csf7TXzPvKlAROJMexM/szZf5/YGRyIVUz82nt+aLEqBdyeN90jle + ZxTyAm9n7xMACWziacm6ACKnsQML65U3x6nyAsDbYKpW4U2nV/0qw8KDH2pJo+RRM/ANoLRzgOO8 + 8wrh/bhU8NhUVkBGcQNIsd1C9JXaMzX8U8bGx473f/wEe2ojNmxv3CPoSZVGo2/bxoMnWi7qcSZj + 693ewaI9ry+YnNordU/Ptl9eaI7+1gcP3zIeVn0D95vui70PmMCcy7EFD7fgiH3tdfeY/XUy+MMH + TE66TjzlkIJL/dmSWWlBMdJrrMH7uG2oczuvPbPaRoHXfnlhBdmBx5dDRiB3tvZUa8swZu/XrMAH + yB/UvUlS/3xPVwWyt9ys+Hgu5ih9DX98NsjIF3x56elDdyYjAf1s6J9muHHgVBYKdld9xjvFg8DL + 1jYxxndPn7dqSJDfsRN178oAxuUVJ3CK6z2+XfhNwapTJMEV74N2OrZgPs/RhOLyQYKtvU36UWV+ + JO+eWCHy5iiAkSZO9fML6P4B2mYCJrJgC0KeZrQgYPiG1w9sbkih6V0q9JX/D3DlR9gJ7/tmxXON + CzM7+ul9NmXNvfvjH8b1WsQsAJUMv/eFYD03TV3gzFcEtrmiUD960X6G6g0CYZpCXKBqnXr4bWRI + suiN/WmrFj/+A7bdPiDj6bLpp3g8ERDJ4TeQrvTSs9nDATyLrY+VUNW8+Sy3CTiqvopv9ffAlnof + PpBSfD3sTedKZ9P1VMLNKHX07PdEH2F5+cCSM0zslPfUo1x8y8Ct/0j4uNX1fuuB54DmSg6oLWyb + hr29TQr71G9p5kyTTpKNEiE/3gzUdPIcsOdU8OBNWw2Hwe4Afvz8xy8CgZRl8RXjrgWXBwqw6vJN + /JdPk7VCg/gFsXGrhgOiEj4EHLRBM8S5/IKJbANs9WtX96JCA3AOoUBPh+wRL7fBkWEVaH2wCM7O + m3vN5qFziASqBLsDmw1DstZDpR0RpFHSpxUP5aZIA4xPwbNh4cxb8Hg8Yuzy3IMNxOJKqGr5PSDc + 5dNQerXbn/+A3c5JilFQny9oHyVKz0s6gOW+f2bQu9N3IC7pwKYijwf4sl4frB20UV+C484C18CJ + afLLR+++bhHfGQl13mkbr/qMwGvCIeytem7prU8G7tHFpieTO/Tzs/JsqGhrr+djqeus0Tobyk8j + w34tcWAek3yQzqRysNWSoJmDw+UB9FD9EKY2Byb2XinICgIh3ncw8/i8yXK46iPq6LkUj7A8dsjw + 0jsOHuW5mVZ+B7OaXXEw2AedqV/kwi+tEqw2WawzluxrKIi0wPtDmBTT9i7m8nYo3nhvIWW9F+ry + QJxmF3vSWpHgMeVAi5FMYC1VjHlL1UJrhg69onSjk00X5H/5Qp1NqM/Cc+LRjV8A4e5rj43VX4Dh + PTxRvxWsWKhClvz0GLVi9dksm876y28B4D67frHHdS40kEGwuJNfsHR+VVA/dAq+bt6D91WgAv/0 + kha5d50KklPD7nYNqGdZZiFcbCOCFt4+cX5Q9YL3o3KC/qeC1NG2iz7JZu0jg89CrHYHtZkx8Hz4 + 7GOC8e2+678gJj7MxVtG7VyKmtGtb658flNCDVeX9OW9vy3y/SVlOOnHplgmPCTgdnY+2Di7e52Z + 52sHo0C+0+C1MePl54ftdkNItbDKi5lSwUZ3Ab2wFXpRQX/45+HrPUDD7BYLf88suC2TC7aG0em3 + uVxYYLjqe+yh6qC3C846+Lw+dvgwAoHN1W5q4T7xA+oa1aln0eHWgrvFDeT3vOHULLLcXx1Kg6po + ve7aOC14LmaG7eIqsaUKQQKD/HWhbrVWQDfkycFU1g8B9yjFvuORP0Ecjym+XEwbbB87GMDAvjzo + Yc1nI3NZjbw09qjJPvtYMJ5+An583SHLsRGCtvTh2LUWTg2vYXOa+j7ssodOf/pw8B3dhxUxd/T6 + CWDD6Ct3ga+2JlXb+h1T2dUCdCFpgS3D0xkj6qKgNrIXqrfZLmaaqU/w8EkSmkzHlrHldZ0AI1uC + Vzz0lhv31JA9CwVWlvjWTMHYp2Dlg/SH//R40AYUz/sDQV5/bHjYnfy1rymH9ZdRe5MvfDTIKVEV + cO6V6KMZVDXIyfmEVWScva11ViGUnr5FPe5zaUYnnQhc9AaQvp9bfWjCPoIgiD/UyNXA46UseUH0 + jlHAvvWh2BpsL0G+Oe3I83g5sZ9fCX7+th+p32LiOp2DJ1mJ6aWtj/r9Oh9s+LlGDVbG0WTL83J0 + UeF0GNsX8tIX5WkTeHXq+/q9Gjbns1rDH58IzelVTMV+apG5mc7YpkXA+OLo2pCPo54e+IPYdC2n + PeDkD1dqVeUB8NfcrSAshDfWHz0HPn6UTOAdqRyZLDkCY+5zIdyIykgDhdaxMN/vCRzygdDM10Iw + ocziACJaRp4lPoNx1SvSROCD2vJxAt9BW/uzSYcDPjJA4y5okwCaaXcKXlivdJINqIMNauPVDwZg + /X0DLLgYEMgfSTM+vY8GGkvg6B7N64mk6yz/+GEg5fFQMPWcK0Dvs+2Pf3hT0F4WmTNASJ2f/5Qc + kQRvUS0Qfu/PHnW+VQjBSTPoYZi7grEEP2RPKjXsV+oZkHIPFNCi9wGb6f3Lpp1lJUCrNfJXb2CS + 6sjwZD7PWN+HH33ZmlOIwnt0IiyyOu/5q2/Uy60MqIO7ZuXLLXSvbkD38SMB/DWcZCg/rYxq5keK + Z++rtWCupIAm+tQwBh2JA/p1DMjkXZVGmLKtDOcu7Qj7pAr4DA8nh7e+kwKx7sRmeV4uNjzpIUcD + wtUxu+/W24PZ8U6EZeN6fFAoAXp4lUDNqm7ZT4+vU+b2Qah8lnjWof+CX1om1DxkWsEPiDNk7/i5 + 0L/f90G1BuHlEVDXoo9mFuk5Amv9Ax/W+gi/+keyvvi3YJ7qE1g45hlABpJKo/F5Zuz0sTXkHbsL + XedKxo/L9mvAGglfvOc/Y0M+D5KA8/NywkHrRN7iCWAAybPvA9iPo05vp/cCJ59cyfQQG7AIXZih + Vf9SAwqXnolx5v75qeYnWMCyxaoAsgUm/75neAshDM1NEWyFWxCzs3yR4CH1rmTacPf4W/qjJq/1 + K6q/jHWKZ+6EkDtAAxcfELJZIjt3PR6SExHc+HhO/eUDV36H934f6JPtjARGIgxx5MkZIMxSaxSp + PvjzL6kBsQIGHEbYxteuWLTSV0BQSgv55d8lbnYD4FoeUnX8EjBNVpbCn19qa4nGturaU1vZOwDv + j0zzfn4MdNTdNxhNTiym+HhX0C8ewPPW9MvcyTIM9a+GL4L/ihcUdBxU93pM/cbp2Si+DgRwWiuu + fPxWLLNFO5iemU1//Gaid8kF9qZWqe4Op3h4hUQC18ubUlebgffnD7TCR8MlDJ1mS6SFh8l64tAN + PMrY4fD0ER2WmWoCucVkQE0Hz+UxovGuamJ2Ss/yX/7Axl7o/76nKsANxvV3ZJMTHW3YN+hCrcFu + 4kVRthU8dJ+RKmhMCtbswod83d2LYEPkb0zqffaAieyCYNZCTd9ypZL//FtqR8kcT/uoyyBsuY7a + RLD7RcxcG/oCnvEPrye9kFKIjxkKhJPkN/yXr2Vweosl4cE6Jf25EwX4boMtxp/PByynQf5XTzSW + J2Lzz++8iWaC85dds1l8mQOM8hSRTWsW3vTYJh3iat/F+v2+xAPAQQdPufHG+wXEnlhU23Uqxm7B + 5uofi73mRaCPJY+ezMs+nnZWkIJV3+BfPn3fpnuJ1voadQT/Vcz8y7VA1Qonqj1VoVkG1H9gXIl7 + IjVlzMbwUxvo7r0rbB65Uhd5mlrwt5/sNX8OgF0k2FIho/tr0MWMI0cLvYBnERCZdTHsC8BB6RlY + K7/m44UzXyGcTnyNjTCu1/VBJUSJlNJffqebUuNRWl5kvO5/b7ZBZ/z85tUPVvrtsPMNGLC5o+pW + 15uxnKYQrXoLx2+2sEU2uw+0Iu1KA/C4N0tQaJ+fXxtsJd8GzE/vEtSdA0fxhd/8298F2DywkwZ3 + xm47sE4NV1700B6+HlFIFEJHBeuUqbnQ+ckKU9SmrCU8FC6NeJ7tBI76bkM4winxL5/DzaO5YrzW + 18jqN0gWZUeKrweloe9dYqOvLE9Yf7MFzLYByK/+R0RZDryl3DMNgqcZ0WD/2ntD1tw/Pz4cSNHu + 3P/5p49JPwXTWo8d2n7HQ6f1CHVS9tGnvZPxQDjd0gBWqgiW1W8GEQeKYPq6kjet9Ul4OKg5NuAx + jqfjUQ6huVNhIK31g36tN8PLyb/QwkZD3ARp9oHmoY7w0bHLZqF3uYWwchS8n30lniUyu+hSd9tV + 7xjFsru7FVz1SLA9ctBj8YfYQHwmhOqYd2KWV7UA+e1jovpwTor5pfXJ/3OiAP73iYL4HXJYy4Kx + YdQSHnAfluugbfCN2asGFnyLg0Ij/0qb6Xp7dVBo+Bve14HApnZyKkSbktHkU+x74UPfBAaPcqL5 + Ykkx89R7Aj/nY4MPrfNgDJbzC9q2oWKLT3dgqo1mQq/vKySbmVmFGMMpl7nv1GOn+lj6EvWqBPES + dHi/PHpvMS/1gj7+q1od0gNg/q7i4fv1vAepfDv0W9eaZfhqj6fg4V9xP2HVj0CP0xf1b/eHPjpt + KyP7QjzsnOwUsBk+E3BPM58ajj02C/A8C8LUKgL2ZhZjlRqmcKBGTR1c+81QmIMLT3nsB098OPej + vDAZ+lJTEnF5eB6/LJsaXoY5wLdOswtByb8u3LlMD4AZzGy6pCcZthHG1Eq+KGYvM1jA0w58qj82 + KuPN1bRK9UdFT8IR9/PJu0xIOSsxLbXdrpjrt69B6qUK9k1tjCdcTi8k1olJTw/K+uHU3mqpOBbv + gH+/H4WghZmG7m77oZeOWescpScHi7YHAQe3sGEjS1pEnPuNqrO7bYa85GqIpibHh0g6FeLyjDhU + tnyEk+WaeDS1VB/F2PawZVclYN5wbcFs8CL1+sroyVCYFfzmQ0CjqQ36bTiNEzTNbUuTCmSe8JW7 + COV6LGKlsp6ACWCA8FTsUqqw28jmLtMUOCTrKFDKJp1NgkFQGQc21ouPVWzto6eAcpl7bKJPr08H + 75TB0xS51HwOfr993hoNlXknUaMbBG+53KYMukHa0FPkTj2F5dyiqdruaFngPP5aol1CaXp2tChU + WLDlGUGwGUcVm/FOBfysPj7oeTU6GtNh08/oGObwc44b6gVCAQabdASt+x1bO5djsxzUIUJFB6j5 + jDp9HM1XieTGOlDMZd9iKi+BBs8Xg8M34fAB/H6905BUkkmTVxT3/HZc51Lmek99b/PyJgMOKXxK + UkBm7b2P++bcJTJ9Goge7/I9Xup+jmBhWhlpYOM2v/WCmZaGNNhNHzD775OG9t0npiFij5h+r1oL + rwvUqFXzV7bcpaVGWnqacEZZqItX4URQEJiQ7rfmveG5+qDA5eUD7KZ909Ou03lEZvtNDw1VdHHH + XS24YBJRZYDnZpuj0EC/55tvVHhCLOkuSpdXGjw57dBvI01V0LmJMuzvvbvHu/YYwaSuQ+yu+WJS + S9WHFHU+zusxLBYcWwb0n0cbX3bftaWVaQtozQckPIJnvPjONkUB7JwAOd0BiGZdDjDq5gzr9zDs + +QjFBD3fjAZtGb49Hk7CAutFv1BHrRR9nv3pgRonz/F+JC+dXbOOgOX67bHeHr7NKHqTja7NdaRK + ZZlgW4lokdndOGOLPZJGqJeLJONiULH3payYPhtZgMu17+lBMtVCQFULYQffiMhPIDI2HWcLzcPm + Sw/Sm+uX9KqEaO7Pt4ArXw/GxDZ/wa/0fRMh+V6LGW1bDaU19PEF+gSwSEorSA+3bbA5Du+Cb7+1 + gN6FXAaiKji6cNSSFJ2WYhPInyoomCO8CIw2vYDjTPt6C+s/EXSnbgqkAL97ZsRxhdb3C+4Zn/Tb + bXmXUBzlNfVsrwMD3NwFZGavw3qm992TVC0gtJRRwZ74Nb3FCF6BDJ7ZBef2fATz8RJnsCosnrrA + N70h3LcyGL7sSZgePQvSf6Uaxo4Y4kP+jePRUS4R+uGDQw9fb9rpeQ5HEZyou7vGjD9vFwJDbsD0 + koofnYHs1kEP1B7V+vTFGP3qFdpqZUFPSdz2Y/RKPmCQJQO78qL1y9QJPPy4XEIP37Mb8+8hg9B+ + f1vssycoZnOHXSjWqUn9fCuy4ZxbmTxRmOGjUsW9CMZ+zf9WTVViquuQCLuWU/+Z4ejmveJl25x4 + xD+VEV8OM4iX0yhrEN6c0y8fgMHIMgKT79vFpsS/9HFPBA15UBeo89rDYuJdkMNfPCXepfQW744H + 2OPkhc/y2PedszcDqD5dnTrc6dGzUKkhelniG+Nn0BRze3EzOJpPh2Yy3hTL+LI1ePzcfKwcgVmI + JUUGvN7FhmwbJ9UXu8wkdIxfBAcn/C6mqrsHUMK7N/blRxLT4gEEkN7EgfpDvQd/eDY5m4Jq3/ep + F0vvXqFSsl6BiELN267xAY+zUuJIvL/jCRHJQCs+Yt2oR4+Z2p0g8fosqFkseUMeJhCA6J72+HxH + H28a+rBFlnyDpJfE9U5AHk8oOjcG9bZyzJg1njg4JLs9xvOlARMlyoAkM2jw+VjfGN8mVxsqPr/D + WawPPTO4/YAmkgQ0nY+Wtyz1OMCm7AhW5s8dCC9RdmHUsYwW6fsCljp9tui33tE5twuxbZsWOnC4 + 0PxR3huhe6YvGX+/ObW94eiJ3nBqofq09T88ZvpsVWjNTzTipAebfC6x0LfAO8J1HxwvkE0dknrq + kW+k695WNV0b1hfphSNraxaCeHsm8h1KPA5B6DHqCK8B7c+7juyqQG/ESfAHeK3eAeF7S2qW5R2k + EJ6HJ8a+pBXbVAgUYJP2i/VXJXnTEjTrqdm3TtNvbeuL+u5ypHg+pcdH0oAZxmcDFQi79DCRJ5u4 + bTbAoR56eitIzMbGV114lM0UYy5zClY5mw9k/tgEG7CN2FhrUw6sN/4Qrr2BhsZQytFhnkjQ4uO9 + +OE5sHcxoXi3zqUPGlGAxGluVM80RxerZw+hA4y1Zw246qTbNy2at48dtQqfNdN2VBLE718b7DTa + p18+41f5xQ+19uHJm/VsPWEqUp4s4n1fLFmy5SHT14reyq8WZ2/68iWslIBNmasLHoSK/Diut9/E + +z4WPVuFED2FE937kVQMQ5+90I/fVSe8L4QWdB8IjepISiWw48XoohoVehXQoHxpQHAeuxpeLX1D + iLHOGf4972J0JcbvXVLMV0UJYf06bMkvPw8J01rYWkVPtY1ybUbplitw0uoeJxvUxB/7o1ko8b0S + K19RB/xtVgX0uuUCNl229QaZWB0UZ4ip2VnUW7Lp4cJdvHZ9j+2mmbDcvCC7VT7eB6rTT77IKsDM + iFFHP/neHFx1SRaT+k5eDuv7OQscWT6bfEdT8+Lo4ppPgZrobbB9DkM/9FqvyX/xIpQWWK4xqkB4 + 687UejRY58W+esADqS8BqO8em+o6s9ZppgqBZknZnB6XHJ7Ge01P+C17sxx8QtBe+g3ZDJt7vERz + V8MqcWiwLTLJG52d1MJ5wlywhXFZTK/3RgNrfARCsle8UTkBCbZD9qEB/7gXtDQVAaQn+4PNB437 + YYPjCDq1JGBv2SqesD+mKRSTxx1bT+vZk6kTBPjDz/gc6ECoQx8C9fklVGs2Xrz4z3uHdtOk4lI6 + mmx6ZIcPqAQpo6dkfHtfZa79Hz8kNy77xo9DKrzATz+om+rLlstdNCAdNI3i6tjFg9ctwb/1qqV9 + w7aRmEMDuDfso9tYzKrpuvKPD2qBX4MFbsUEsrt1/sUjYFs3tKDZxBFZpJPfCA25Zyi32wU7nuXq + S58MPNjyyxurDqexRS54AWyZe6X+ymdH5llr18Cm+eXbfvbyYoKy+blhX7CPbCYRHQBOFohd+0yL + RSWeAsnppBNpXB0AE8EMZlVfrXy+bSZouQ8on6Mv9d2QZxMrni403pJH3UA2ezH4jBYcM/EaSOND + 7bePPfWBRdwxkC9pAlb9JkO9z550zb9ser1FDR5VrqW6k0Te5ICeg9mc2WQi/Qf84WGxnXJatTfQ + r/xHgf2kfGlFhZTNfIY5aBfJiTDGvYvlc4QDzKDp43LF8wlO3AIvVvgKIPMk1ptQVVDfHkwafQ+x + N5PoPUDzspcCzjud4gkALEPDLa/09G6kZkBEstDMWTZ2XatupmE8R9C5RT3VV349x+wqg30lUGxn + fQpYxG0sedUTweUCAZg4LVJkw+ZjwuO+AatenWTjcxGo6rR1TLXN/ICnox9Rg2ZKsWxyWIHtOd0F + Uz2fdfqUzBKOt+mB7f4y9ov8OFXw7XiMyAcviRfuAIIfnpH5y2T9x4/lUwHSANieC6b9/VvBb3HY + YZ3pwJu6C8rAzVuEYJvEbTMPi1HD7YlQIncnOZ7Evqrls1APVNl0pGBn/y5AYz2vO9zuD4+mXSJA + Nee+2HwOQ0MeflIirD4+pHDLSzHzDEbSpu322NjLT8AmwSdQ4TcDXfdXPBAzduH2s9GpCW6i3r+d + mqBu6xzoUbrP3vCn3wqQUlXuDLZ4ekLAQ7AtfCS3tphi96qhNZ9SHKMT45NzGsKAC2N8SKyrR7R0 + +oDtaaA4xFnAJolOFaqfg0ut4ap6YlgVEArP8ourXjuyIzrvNCjz5EyVS170ExOPFchVVwvu5L3x + mM3NLkhP7uePvwpJLU2QE/Yy3X/ku8fKb1JCPqgNnPqpposquL1g2ulW8PIno596qCXgm5OAHgru + oc83Ls1B8n26eF/SuplKXk4hagMP69WYe7N91BX0afb7ALAziudd+OIQKPxNIE7swlh/yS04NopI + dudj1897Q52g4gs7bG8LuaC73KlAgQ4u1ujkFIxJPI9s/Jj/+CY9pTIHd/d4oNpv/x9G9IEbJU7o + OgNVZyZ0FKBe0ht2L5NYTNcb6daTjsdg0RzgPT2O5uB2011sFpmkzzE7ScAorTdev1+z5G5L0Hta + ALlrB4Mtv/y76lnsvX3IpveQcdDK5Qu2sBrriwaMEArD7kI9Xn+zqXlaEnpMohdIVvVtpvkpRH/6 + 9OSyk74cdl4Nf/5Uols1m+i0z2DgwT0+JgpuGJqKCmrvEq98Te15b855yCs2pufNnngDp0UaDPp7 + h2/lY/fnJ6FreLhQhe2mmPWiacAkTQTSn6HdTxtGJCjFHgxk7iiBpRK0DK7rg803Ah5Bz0ML2oCT + g10bTvGy1M8B8vt2Q2DWOoUggksH90h+01++H1PB0uChiExqR1/Xm07t7QFunUCw+YxcnT0PlwDa + k89jddXzTNtlErxMeoMt6aP2CxsJJ/OKizF26doF/qJYqOWUBSv6gRR/eLHGM/ZX/J3qRzohPRJT + aiqz3c9cK4egkh4P6qz6ZA5FK0MReqiBlCvP5i+fhvm5xMYuP+jb7/Geg66OKJETGBU0rGIoB1tq + YDxs1IKvhrcMxZnDWO3hCGiUNxVQTrmD43vH1hsWz7UL9HsXPIUjbth7hOlOxZ5JPvcdV7D+Elkw + vW0H7EmiD4SyfftItQyPHrz7hbGAHgaYsKXFPjnHoLtLcg1rMUmCXXdp9Sn87vhda116rDyv95jt + pfABS3pPqaIxD2yXy7xAQh8lVsypBXOPxVam5x4Hu8zErDkUvQB+/H/vvN/e2F7cHOb1+PzxR0BI + yCeICnSPFQSQN4MNcqEQBadgIGcGSBMhY/cwK4P62i0FP30AV/2Jb3q2AGZcoCUbr0gN2DnQ2Szv + yhoeaX5c+djgTTptLPgsqjoQ2qHRZ9y0NfxeDAP/9MUIrBMPo81XWPn9I/7FO/rGs0O1M++CNb4F + GB6jB1W3nNxQ2zzy6O04DB8fiQ7ERqs6aKKqp1jdtzFZ+QmSG+NAkKLpTDxP2wpadBJxBbdl8+fP + DaCg+M/f/H7qEr6OuhpAJfgUK/8rIRXGPT1q6x3w6GJbu5W/Ee5zrtmiN7OMvoHU4fCGjmz1Mye4 + Wd412bnDvtkWW7ODQ8H7NH5s7myMd9wDCEWMsYOA4k1SYrhou/YY0ksh8BZTjBdoplCnpX+xgcAw + g4hzCaP2rJ7ZYgTEhylNVQLT4lSwpnI5mGwzgh2w+Dr97gUZBBdQE1leHj3z1h5htcRV2Nigpphg + gx7AlhYd77+J3gxlNObwOC57auJ37k3UAwug6OPT2/s2g9lpBwl4C1z50jyzuR6HDobIMOm6372l + Ifcc/uJt33u0WSarD8CjhwPWPa9aexgJLlz5JJFXf+uHB3AHria1A/xuVn3E7/oWm/gQvl+AmS+U + gJ06ODT2dD0Wc3zk/kfalWwriAPRD2IhkyQsmURkCgIi7kARAREZEiBf3wdfL3vXy3c8TyGp1B0q + ScHvO4+IYcRWPRcjEcF+TR3kPtYZ/PmbdFhyYtymuZ4IC/ufHvbbYy8M9DT7xs+v9AUtGGrhoH3x + 3suDA7mWfgKIJ88r5BcqIp3YWs7d4r4EzbWyicXlWT7vUB5KbpD2KJ7QWGN+fprSqiYPvFOPRs5f + j7AF7ZUxEUokH6wIryl8uLKBQbZ/1XTDX1B3RUjUZndxul/94IfvD+d1A7/1DFItDpBiqLQm9bWK + 4QMqkBigVig/ylkKf3pzzyGOUg4PI7yvdCCmsWuH2XMeKbzfzxo6gfRbT8/MXiUrzgNkjjvmb/3s + 82SskGsHMVgEvknhDKMPMYLn11lD9GigGe1i/73NP110c+OnsCG6Ydo1a4qUhSwhC973N8PhD0I0 + w2K3C4lxDz4/v3CEF3Lq/cBuvoAkNXQhCK0Dcp23XgsNukowmN4zMZMU1yP5lAbErez9xdPG53l4 + b4s7UqrSirjAzey//zfLUBk4kL8qqe7uIbH103Gg41MawVafQQbbWvpcVsUKq6PhIwUaZ4f2B9GF + HUvOSBVfy88/H+FnH9tbl6cPoEcxLcFvvs1h2Xac+7SFn1y8I8VDwJnPPDVhrJsVFh6n2plPt6sm + Nzc7JuYs6DXdMw8Djo97grIfv//p8238/d2W/8bNn4F5VZk+dzeqeh3WJw+nWhOIpqllPuX2LQVv + DZyJDzk4YAeymiy9Ch351/ICZl7pQ7Dp7x/f0v/43Oa/b35eVZM1OAZwCJgFWaUWRuNrOieAjIpG + brPq5xs/duE6Zxd0CnVd56rjxwd/+eSjiNHGF+5w/qrR5u+e6lV5qSukFX4hu7qrNZGcJJU3vMYQ + L3w+PcshA+FrLIjGiBWYR9SEQPhmO2KD+Anoebi4YPP/8A7zXo7DC+/uf342SsoxompQJ/LG132W + SHL9xeEHwzGpz/4uNE9AqDAc4WLwArL7i5TTa2QXUEpFinIfv3S8lm8MN73pr/W7oyuPg0z+KiWH + 4p9+KHgtk7NwdonxMlx9fOa8DcGp5TB2Lly+jJ4oSmJ2VMlRir7Ocn3HAbyg5ohidFYjwaRMC3r6 + 0tHPn1sxVQPZrXuGHIOm1InwWBg4MGnxV8+bZitpgIerG+bTVzUs19MHwkpxTj6zT9qoM5NWgrMi + vfxkbxd0LI1hlgySAP+t3/fDUruqBa/ZZCGj43pnPrxvDJTDVkUoxxGYRk+U4L7Qr1hor3bNs6si + wmxhjc3fSnV6XmQW/Pit476nCJ8LqwPfMUmRx1U9/elB8VdPQhdHHmik3wz402tbPPzVg2S27QRk + Scem/mbbHbfgo9TbeJbRoqejBgfhcUM//55jp7yTkFp26OR9y2EZxbcNFOPcI7V8rz9+FYLs8Qz8 + hkiPepkO+L7dZzUSa4KNTqmvNBLTWS9yXLx73tecpsjgyAyYtbCjE68yCnmm/oTF11IPPz0AFfau + Yum5d5zNP0hln1mYXz2jFg6tnID6Mn2ROT5e+jxotQYcqPJbfVWj3DPTVjja00Sc8y3MibZPpb/8 + Ymzxt15Cb4RORyvkVQqmy7G7pHITfA7EfynvnMi+X0I5JvxPj+T4qesjdEfXQ3p927rI3Z6a9NPX + c16jfH5eHuXPL0AHF570ubUNRe6dNCDu0VGdjZ8a8g/vzl+a6dREPYT9Q8t8Nji09TLG5wo+THWH + HHk4A4w5BKU/fdyoB+fnV8HKLxlMt3oM91ZnTX7HdY4/fu7q6/oxY7jVL/2GF/ga+/WOB9XhbqDn + hk8b/2shuHMncjnPvrPGn3Mqe/FFQc+SVejiZNEKJtkP/A+2rHqclr27/+Uf+/3iorF++yJko6z+ + 1RNqev/e76Aw3QTd0+YULW91VqDm9AMxpi/SZ/VStqAJPYQ0rIrO/DpPmoTiGSJjq5+yaoEk2Bkq + QibGpJ600ElhUws3pNzCEiy3XLdhy4En0ZiizDc9tOU7uPzwiy4ObxlwpHCHLGwwFFuSI0HJOyBy + CuKF4o1/QHk6H5BVsPbAnjgn/tWLiYuvlI4//QFC+0Cs4eYNc/pB3f/ZUSD/946CeIA3gqZ9Va9K + y4ywggbEHHS+dDosBgO7xzASI8hR3cGHV8CPU+U+NJ7bmWJ938tZmZyJUmWuMx/hTQRRoxBi9hqm + C2uXFszeeezDelFrNghuBVRPYo4O13bKp113S2HDlzU+jpXjCOIDdgC8Tzf8sMXdMJSTXcLzklNk + nU2Sz/ZdaeWkONlEZ17HQeh4vZFFJ+yICbXXMKV+1MKcTJIv+zstmovKa2Fu+TnybU7ThVJNVrlL + my9SmJAfFvt86mHdjtiX7voaLYR7SbD4Ah7zovodZnu+r0A2ZJ+cSWPU9I5PPjCgouLFPZ/zOc5u + Pry+lx6ztakDITE6FlLXYFGuBxlg0SHSZOsghEQ1Izx0ariU8GoaHNGaXo4mwn1FyAJ48nnbbiLq + Z2sG8aQp5Myws/69j59SLuIlIll+FfPFuFcz7B7fEb9aIaRCkFuZPHr6QDwznGuihaImHV7+Afmx + VTvsS0wL+XWTHKLqfa+PZqjwMtCwjNz5plDh2G63ZimChhxbqRxajLCEXOsF6JaB08DBD5fBh8Af + kLEmKF/08xhDZRef0PHtsoA+hZWRT9NjIYe7F9eUMEwPD2YTkUCrXgM39Zc7XE1xIXc+GXK+5zNT + tpQZoWvWbbe8vtcYHvD9QfIbD2sa5EoqOza0iZ9qacSFyAhlfV8d0DmNXrlQJLseqt9PgEekPemy + XtIGRqNv4HWRC4cLJVGDb529k7TKLAd/3dO2bb6tyPXD3ZylTQYI80sZk/SmwgHTS2rIdi/2pDg8 + /IF8XauE6qmekbIfP8PiZSCFzB2mJHpKE5grXp7hV+Nm4imXVp+a1z2T9X15QDmxLxF7JWoqP0PX + JaGTX/UFM7sO8rx6wHAYfbCawdMG6sKa6BHLb4dXWgZDyxsg0WIsOtR533lYIcMnzuN8GObbravA + bj8AzBq3Z702V9ECQaWcSJT7rEPjt2LLp+m5+Mw+5POJKGUmX2YuRFZ6Pwzz22k1GYbVSlTRGcCY + GGIM3vlgIlUBQF+rcidCdWcU6CFXaiT40kGTB6knxEBcGQkuuI2QtmOLwqaX8/GhjRC2dXfG882q + o2GNsATVqx+T4yG2o1nuHBGuy0kk1jb+XKDveNgGUo+OzOs9rFexsODiek90Cv0r4G9iY8th++GJ + fvWgTuxg7aD/0AJ0U1UVcLW7uiAyhwQdLnXqLIfzmsjf3Hxj3jCv+lxV3xZKl2uDvLsrDmvl1qO8 + D0qXqPyxyGeOXjX5K6rUh95CHOGpLXfARiT2RZXX6XrBYwbNksn8bLh10fxbH2wgTyh85Cc6+7M4 + w+p25oij7mxHmOJnI9Xm4COlv9wiQThlBUycW42QVJ4GTjcnCaoLb5L4+5WHtXUmBWQZpxFvRErN + hcaB/+UfX7idjzUdbcrCb5cWxEInoxaW72OFwb2SkFmna0TemrXKJ6Vs0LVtugg3V9GGht93BHFW + 4rBm+9CgbR1r4kilUwukrwq5q22AFAfv6uVSswVM5s8HPU+xmc8isxTy2CkWKrZ4WXs1aGUlxinR + hO2MbqFJEN4fh4hchrof1su+4uXaZ2tk2iTP55tfGRCNuYS850eN5pkTM7h/9wQd4vCY0y1/w7bu + z8TkwizHY7m48DrBHTkufgPW9xjG8jX4HondHaqI7DtgwqUpLsj83Oxc0O/RKl/9wCaZe/R0Xv24 + GPZyrxKEi9swnoDnwwt/VjB4i27NfZKFke3DeiTXsRqciShdCsXapgiZ76tOg9s0gg0v/HOH2nqJ + 8SjCkYtVom8HjGa/efZQ/qwXYgcT1Klx/64gFBQVxcMYAiE2Mh4e0+ceU+osEeWYAwOMAb7Q84yi + YYsvRWaeEYvs/CpGc33dW/vX/qMQ31pHQNHtOsLgmF6Ru/TnevIymsmzYEJyPJ5ZMMOVTYBovVSS + FKM4EKnQOqi6nYaCI9tH89NNRmhATSVmabj5fL7JLnx3zM5fpyvS5w/vGRAECr/ls/uwzruDLRe2 + p2J5nzMDtYE+wrzvBWS+Lg99RU3SyQTeeoSc8wzoBd1CyCdJgPTJb2lnLlEB9fM5INsmx3z+5ef6 + bt8x3A+ngfvll7OLCFLqAYL1o7DNX/7I4yaitL80gZxXvOeznnnOqbWcGTnE1EF6tCuHzlq+d3il + dx/d8/lU4wtuUrlsro8NT5eIvl9RKv/mJzsV1jDuwkGDLF1ZP66y3llOsxnA+ekv6A66WOeu+sWS + t3yDjBcO8nVm/REaN18iR+Aec/6SBe7f+4YrqQbuM5gWTArHJhczGgdKZQHKJ+vqo998LdLnk8Hs + cGWJZ0ddveqWZcJDG1mYto2dC8xDh7BXgi8xvoY5CMXIVvIhxzxxD/wLEIEOFRSHxPJn5elGdNjJ + CeSj9otM8zRG3T2NWHl+ugtKXhfZmTXwkSDXogB5G9+hXHc1ZLSAE2bWbk8XJN0VqBlIw3xmnmry + uuY9HCw/QgcruOak4/UW/vKRfdfDnJqLDqEJqoFc7h5b490jK+RffKsFPNRcnAWjvCyzT1TsnvW1 + 410DvnX+TpzPSY6I/xZ5GEUyQr5vlxF1zcCFCa9fiP7dW/VwwbUIv9PzhcweWzXN9dmW59cHI83J + r84Pb0B5hi8sPxrX4WgkS5B7WR4GW35i1XPBQmC/Pshw2C5fmeOlgf5DCUhRpzhaKx7OMAYfvOHF + oV5fVdbAYtIspCZgGv4+d46cSDx+lfQpRG4AiWT46McXNjxoJJOOKjpaX6vm98xcQPlZPzHlS1LP + jWaHYOorg3j7vBjo1Tda+ff+dp0GOX++QRdu+IdMkmkRL9BGkcdL8CKX5eXlvBCfU/nMlgdyfPqr + s7yqyIArXoEPtvhf2rFjwTXf+p76fk6n+UkVOIS55IG5Oun9Fu8g05UUFRgbNVvyZGtqXLrodm2H + fGmSBwMhYXtkq495WMUOtEAdYwHTRVIG/mK8ErDxU+JEjFGvsZEnYBdLOjGMpx3NhcDeQdrLEzkP + 9Thg4zyw0MwfDjmN7H5YYyOKwctIZZ/LP4eIF5i+gBHzUQji/BIsn8G0oS/FJ3QKzl5On9dDD68p + fydIcJyIRa2SyMDyHeT5uyra8OQOGS09EjOwjjrL9WoAr4OXkvhhqTlXqXSFEwQK0rf8Se7a4w75 + 9+5NTkVwBPNbOM/yFh/osL9L9RhnZx/aj3bB83eucmoHUgfD9s0jfeep0fJWiAm9t9Ei/1jWYP26 + qgIP+cj7UmnY+drbbQL0U35AjiB8nGXguxY6s+Wj6+IbgFePqwl8VsqJDy5OvT6E6Q62fIUurH2m + 9OaHDYS7546cnp86n/lnwEP1+w42fqw55LqfY3gxG8dns9uqb+tX3N+C0/K3fgYu1kSId9suMVrc + KD773ArnBivI+1R4mG3TGeGGt8iqB5GODKPMUF7jD7n4sTGwHH1q0svf+ZitMlsXZq4UQWImJfJv + mQNonJ0w+OGLpmdPnfrEbOBZxQzxS2I7y9zvC6B9tBMx8nkaKFhHFsbKTkbOBX6i6TnpJRC2SzEy + k2ucdd1FFtz4lC+r46ue2dhIQWWKe1JkyzHi7949A+ejPZLjxlc4KYp8yRABwfLzo+bcl89a2DBX + D6mSrzp8b+MY5px3QifeezuLGi4aNJJn5LOMnOTUM7a+7YGJfRo0Aph33VmSW8atyKHiRTBKK07g + yTE5kgy7W073dClh/FIfZON39fri8QqfmcIj63QQ8hUF9h3eUyXY9IGaC0IciGA8wo64G9/r3klz + l5NAXMnTHFS61u5+hB5nmT6QuS+du7LwYZfHwaYP9jodhpf9F98//tAd4VmSX0YmE9e+B5RWbu2D + X749WHBxaK2uK5TKREUHxmLz9ZKlLlwbv/fFfHYGzrhXq/TDG43E+2FC5NJC3bVHoq2kqlesnEV5 + G9+fXtNpP0Q2rFp4Q8q84wB1zkoPlzHckRN0jpRmFbvdemoD4kb6ldK9jMJfvvMll7ZgdbNGguVY + rUj5Gt2wTo4Ww6vjiHi4eqlO7fkQAFwdDKKMjEypku9WkHKMTU7YnZyZYZQVisp19Jnk4NVUOIV3 + QAf6RUgQ3vq6lkopo2OvIefqic58myCWvA/roZPJjPmmByEEb+dGNv6az8KDsaG3Zk9yko5Z9MMr + eVs/JNz45nyEZxG8i3Qi/jyQ6P1xQAki5q0g/RMYzrw7jq28nz3VJx9k6mzFy6s0SjcD2cOty2nP + n1vghfEOFaJ6qAWsnDM5cB8ZOh5lPGz8Kv7xRXQVFiYay+vFhvFiyEhtfH8Q3DkPQKcfc4QG7uIs + tum40us1J77ggSVfxVPHwOfOuW35PnT66fTpYBJIKzJP6Y5SLZw1WeBohpQLPTjrofUVcOxEg1zg + YafP+MT34KNfTGTr5Zuu9esgwWOy9a1OuoMzC3GXymbUv3BplUbEme29+sufnhtE+Vq4xxG+T4FN + DlrI/juffcZK/s6R7aF3zWAEJr0m6Mcnp6v+sOAxGBA6YJfo3VW82rDySe0LH6ADysCigSJXE+Kb + +BlRK69NOWTYAd02PcaZ0EkhUekes9+vXC+5vtjypl82fZXWdI1aETYnx0bH9Xmpl5/e3ubbX85f + g87R/sLCVhYELAhLEeFGsFcovXMDKS89qKeXOs0QHpkSC1U9R/j0RjE0k8xCNvwk9XzMmxbqunwl + G17k06b/pOfzuEeKt25dGttKgdcBpcgaxoBu899AEGg85n76kHAvUY7xqJCgv+zztU3qAp5PYoQS + caqjH/7JQ2kWxPmAFx3duV+l82sukDLeWrAOfGfAA5gTdPTQdViLF9/AnZA80XGxJGdmTwcGckxx + IBv/ihZ0wyOo8KIj7ec/GCaQIA8KivSjPNfzzM0ZxH1487mUeTnLOIg2DL48Rb55svJRPRc8HC6l + i4zblEZrkXYsCF8lRQ5w3/n61tQARirqfFK2KiWb3wP3746gw/mrUSp0b3Pf6YfcZ+ebQX/+gJzb + UCNJdVQHmmnHO4z4OSGPc9fSpX1VqRzz5YCctxsCnFYkhEzmLn7a56W+rsXEgr94+emTzEOpNNlF + g9zpextmF8l3yEfbDtZH+KqXw+JCaW2ZMwrm3YWu7ntIgC94AjoUwYmy9t1qwA8fTvtKz9eDCTKg + CDaL1KglG76vndxNk0ts/hvR+XBfAhhU2gkZRF108hAaCM2UNL6QVWK0CM80BmA39Rgc9rtofLyE + Fhr6NG58jqmnfugtoO7MAtnjcM6Xp/pc4SVBJVI3fbGSE/evf7SanKVP2if34XdiXXQcgsohjbt3 + 5dftVRLFwc9hVra+1mYgSQhdRQEs1bXv4cYv8MxfT7mQpLIG84r1UObbWi4U3lf64SXa8n1NvtsJ + h81PJcca9c748IYMuJMFkHuYr/ryqnITsMFu8ncvJwWDN7+CPz1sIE6JpuMSQlmIEgZ5Iv+p1295 + 8WGTPHW8970dnT+vWZSlnXxBWnHUB/7aqIx8wfcLyZ/SCczVyxRlcb5vXTPwGtFHmiV/+jaMcarz + 71cuwroQdfT44etgwxhqFAgTb3Ktsx6X7P6Hvxn8JMMYIncFnoROeKaao3OqeZX+9C+Sym1H0O5u + weSy4/CLFns6W8u3gD++HB4KtybX6erDL7AP/lxlo4M9xBaySS8JMrb4JWlzKuDuWcTEaq4roGLI + uH/8MmXOUj13ZeLCRJwh8W4168x+rkqyYlsmMm3byFcPdC44nK03OVXwNdBqCkr5fPVdn4POidJ8 + 68Pth4fYByi0wXwlpwx805ghgbd6+mK1fQW8OzcTwzOXnOif0IXe22yJ10lVtLDfdf3xU3J6NNhZ + y+vdBnwSB+QctShanpNeQeGxXVnGRrzzLdJXAscj02EedzLd/MAeRoXoIN89OvrPP4cnPXSQ0zdt + NIwXKQDP0y4hqKjiiFXDpZI1N70S7y6u+RJKswa7PAk2Penm/KO+hUAqYxVveD1MNnDxH14gddc5 + y7KLup+eIIZ0/USsaKFAIkf0IcaakGh4iRYDNTe7olNlyw51zdQFGz8i2S3zwPLQmgI2orBDSnr/ + 1uR5PXTg22UFca0bGFbkf2ZwqUWD2MPNikjYSBb86FfTp/7H04VjfjH26Bhdyfb9+vIeQx5sfjDK + +G8EZtS8O/D11hFt/ppOr/s5geflRjE8m1O0KJuaVb488GfPpBHJ/LKBNa5TonaoHRa+aw3YfN0e + WfRT6HO0f7BAsmmIDHUG+hKjMIRKfJl8wLzqgSaprMCnkBCiXR8fZ43qK4Qhww/E6ywZEF86KJCf + txNXivuirLF2FvyucEYGN3gDv+k3uK03cgrjql62+gX4+IFGCsuMtsu3MxHgUG+IbZicToVtx62y + S0546dhHPZuhxULGIDXSKlWk68/fUnlwQnZp9BFdvpcZPNb0StDbncE6nUgPRSfokMl/OYqj+srA + 5/OwR5ZbKjm/e4SFvO/Jink5CvOVe6qsXBqRjDQ5iiNuXzgdoN/CwzskPAG97sUElquiopQ5Z/Xi + gAxDxphqHyLW+PFXH968lSXoGpV0+fnv5Viu5CZRVh/apIc/vYiOX2+kM1xhDKt7dkRac2hzDIqb + 9fNvibq9L9n8NHgsR0Ie3+c+ImefC+AWf3h5vu7DaLRIg6+Pb/hMdP8649vBGjzg4kF0bTjS5S2c + Q/nnd9WT3wICirT78QvkL9ev/vn5E+i+volKmmZY91RSpFSZj0i/nU81/6qyFrJtAfAZCoea/w5R + B+PFlLf48vLRNnX89/zK/aEOy/HwcWUznZotXh/6rx4Bi+elIYcNv+siETr42r+VP790Eela7ick + hv44KBdnzDyUAaVSzqh45TUgUK5D+dhJBv7pdZoYJS+DKcGbH/MelmyCLhw/w8MXi9vsbP4BD7f1 + ghQ2Zh3yvHr9PjK/CWYZmY8WgakY6Mj6hh+8CjiGqrw8N6OC9Nxn9a3e1YDt99Cpk4xcMMxRAoLy + uRJLNXb5oIWiAt/MsUL2N6E69eZXKGq3MSBmttbRTL8g+PkveGmkLl8pW2F4Jpu/uPGDxX/vWWhQ + dkTWl5jRqH2iEYYJfCGdrd/O+nGABrWPckLH8OPoyzG0Eri748lfWJtSPAzfTmI+Ve9L47Dk9GCu + EmgicveFIdB0utV3gB1+OaIcDiCiEb6Iv/ggZqzB6OOC8yjHRVdu/Keia5TZLtztvwApz+VTL2q4 + V0Ckeh05VnUQzfleteTgmF19XnFV8KtPwhfR8E/P67yfrZJs60qJHs2+j9ZG0Fb4PTCaL3eSlv/8 + N3ALnGXD89sw+/lJgru4Tv2p9OZhdsHXl6a7UOLdJRhqCqLQlcS0fZET7x02P/k1w63eRQy5zcBk + Z88U2nLUEm8+XehSqWCF4/UjE98mQj76zbMDYraXsdROeMClexmhmT8dhOSTrwt2IPUQX6sV2Xsm + dP7y86YH8UUL2Xrzg00oFhrCdKLyNj6a/+MzyLSORKel+3BhyQCMDB4y0cydIiiPnWYR/RwsNZFD + r/zDr208h7UUT/e97loj8rb3XcUHZ8NfvWk1uc4ZrXZQoCBDgvIhUHRu+Saz7GgrR06sjehq3PsA + orPwxeKvHpXeshKKMjF8jrHYaHKzdwr5wpJQsB+3ExixLYGUujVysk51hFbBxl/97mSAq875gc3A + rX75V4/e6pvbieD7iJc4/Ea/+tBfvcM7V3fnBT9yBhFkD6TY8suCyKOBjjZzKM5uoUPj9KOAu2xR + stWjozVGtxVyqjGRn75Y+7J2ZSF3OlzNSjRQ712xoPOVK0qsI9LHRrODP//Ula51tPaskMKNL+PP + ph9nA8iSdG2tC/JIbQ7c/msbYDb6Ep0SaRkI911mGU5HHRkHx3A2fpLANolT8kw+H2c+H16KbJVP + A5mKq1LBBs4IR08diBawGhDutbbKE9wrxN3q6/1xyQp43hkJUrR7Avjb7VbCve5G/kvvbX08Bq0N + 2dtJI362fPJV/2Tj/9lRwLH/vaXgoF7PPm6nXB/Vx2sFxufi+aua+pHA6sSGbLddG7Gu89YYsONB + 2hkdcsrBoWxDLFt+aYVD7ME55FNkMh1Yemgj61OzlDLjJYWN2+rI/Dxkna46J0qn92qi412bnXl+ + qqUM0v0GPuVrWI+aZcHosfjIlMpomAyTZeHx0J1RWlWiM3Ofzoa29zqShzQ8wPIgowgvAkOJNlx5 + MEMya9vl1BekTuIwYMlufNneXyCe1TCpyeI8MQyIlKOj+1pzWkmCJBfBMcY0EkC0uMdKkvcP1yR6 + Db/Diiu3B1fD9ki+DFO9ZqGdQU5bLsg9OUHePdo5lA/OTcGysVkgepyIcICNjILz1QDsR25DOVv2 + HTngHa6X89HLJKfGb2KV75HOF5m6svQwMVIu7KIv8mKzgO2WM8klX3dmrhgVeUzeKkku1RGwRRIm + 8DyQADlP91iv/rfi5QRAiVyltnHwGq4BSM6MgAvbzQf2NcEWJrzSk2T/Vpw59s8+dG+fEzK9WqPc + 1dJc6Kg1QseprSLa3sUOGt8GodjJ+JxWo67JyQIc5GhDp9O9HLBytIMNOtZNN9BTo5gycwkKdGze + h+HzpKCVzfzcEW+bH/55HkVY9Qd2O34ZDvxev9ky8HTN5+5lB+Yzk2LwgGpJfNsFwxKIwV1OJuGK + +bpRI2HvHlZ5quYc5btTMrCuN9hQn1KOPIsg0bm4IB1cTPGKTPzyBw53rgj4WqnIxXzaOs8vpIFR + ZiokEesuHyvGmaGiFi7RM+AC9nCIAjnn9oQ8SXAFs/Sxe8AYYI+lZ38cBGW7yU/mYptYp3qJpuWb + FtJkzVekFGc5nydmMGXvJmnIo8E34k6z1UCtvhfkujwLfR7ezxla+fPkS6fvV5+E9KFBlZY2SpUq + HhZuH0hyKQUiiW53C/AQdBWknfglN8HW9XkUUgUS+Mn8ru1e0eqEVgtvlaqQWFZVfU6KLpPV/ZHD + 0vSW9UGtMw1apz4l/oGQaDKKNy8HX8bBM3+ZhzGEpJOe93BCB1i/9Lm9Wil8do6PDIcxqQDH0QJv + KxVJuNufI/44Ix4+ZkdBRl2chhklaQljhzsgt/QGsD7OtIMW9/Qw/DgRWHWrSOE7OElEddZiYA+t + ksni00LofBe/YG0yvZS/8HZHx7HpB+G0QgZqeeQQm/3imt5WfoaLKV1RrrdgoKcQsZD1Fw+pGXdx + 2HliMnhyZs1f37lZs/Nzk47m6Ya0EycNK3/jG1lI9ybS1j0ahEfdZDJbCSpyymOeC7/vC+niEHec + XxHBb6WEysHJtvl8RKsQ3lco7owaZafvyVmK4wXCGCw3zAZ5lPPb+geNkS5ItW9bXyInKOR3UuYo + Ol2lekRJWsHSL3QS7mXVEe73cyIfvF7DYv+SdfqktJVRTTS/C80WrNJ3p0h5myjIv0ZqzaEgDYG2 + ixmkJqlFyf1+S+Tcch/oVvdKtMCrUMLt+3yxNWYg5EaZyO2cH/3t+SJ+yWJT3uIduft+T/E7fGG4 + Ox8jlJTPi75chJWBhwdakKU9d4AeKlhBcHAv5CGHuiNch3qUt/VELrZagZWXaiznHCBI/cbAIfLd + dGVLGBHK/P4Npo+AFdAaTYju0M7A8vqwMWyrc0Pcyr46y37pYjiO9daIPdsOATw+rqyod5c83YtC + aRM7ITzveYqZ46oD1vVqW8bxqyQRL+aUay1Xg0UYJ/h8k9SB9eSDLfsy+yC20rkRx5aHZr+3ZYPE + pmw7dNeAVjJfbYEc97REa/dCPEwUyySPaHnVi4VxADPGvSHjAzgwc0WjwceaaXhkiRmxdPr0UPRp + j051X+bsPXmZkO85RILhvNM/32hagTn0HtJ5MQfk3YR3WAYBh4KQt6gAuTLY7z6pRfLkuzprc0Yp + 6Ed8IcZu99Un0D0KGBNJJMdAd5zlcj2wQDuilJyqrqu3+YFyV+RnpAznpz4PzMLKg/G8EiN/NsMi + 386sDM1d5s/8/uWss21I8M7GDrkMjwsQMt3XYJMWDW4fu9hhBw/P0H+IJ5yJzieaI85joZACE88h + b4FlEJdW9sEn92md3nRq6PNdauyLSvRWOtPhFg2MJCtgJdbuYzmCJSWrzDN7DfnHtQZzPI0KCJ4v + 3i/vYlV/me9LkXPRXvz1tfeAoEswhOdU05DnYU9fAjEtYPiCGbo1xxFg/auXcuqbDd7LZlRzLCId + BMDYk1jPl2jt130CrxeGIfbp+3WWw9VVYH7mIAr7ux5xRjGxEOT2e8OzCtCDdszA4X0zyOWjfOsv + LGkn380gRqlqvh3OSS32l4//1ie7x81d3vAExYp0GViJoT3stTEkN6XKKUv5YQXW59r7rCJxA306 + Y7//8H3gf83jyeHvt0sBHX0+k8eBdDo5aCiDWaseiatgQ18ik++h/x4cdIjkyJkBvmyNvaMX8jwb + DutdsluoTl6Mov5uD6u9RCkMJ15CKrwuNWXdOgC/5/EKjCnN2LMJvwW2kdHIHmDv3siAhNd6ZCYP + kDfBQWrgdOdtkhu2G7GUr1e5TI9b2ye+0lfyfY4QV4NO3K9v1fO+MEtQpWedHG87ED09Z9/uu6CL + UR4d99FSimEA2/l29DtdnyNiSckMq6w6IHPVP1EvfQUNqvsDh6KJqXPq2s8AyJMl+LvdxXQ4It5N + 6Mo9JNolESPaUpRIyuGUYSC7Qz7fPDDCQZlP5HqpiDMbWyNW4n5NvzblCqym8mbhPthfiDKJRr7x + mQa63tghfYvX0XRxDFOsiX98k5zzVfnjj6e0RfromWoi+xGbIftpCvr8LioXOPueI9qZfQ50jPeJ + LGLCEJ1hDg7b8rkL/IjPkKKGfL3manOHqpPW5NHN1jCPSDVk+LVnTPClyemHfXVygOARL/pljfCS + 3Q3YrEXnC49X7GA7wAHIuuBEIimLB3oDkghuSPgiNcqUmgv8jw8H/2Wibfxz4oI+gRu/8nPrk9bU + 0+QC1n06Eedxos4s8mYIQG69f+Ol0x8/6ZuXTo5I853Rw2kI3KjbEw1fdvrM7W4WuGfJEQuzqeez + OiY9PJIuRke1Oeg8HpRVRgv/RmpxnQDtL5b5y39+zTBvZy6SLIH5GATk8ti5VGDGRwZhrnvoYNwv + Nd152yUMOGWJi4ZFn+tihrJ6PRvk1jU3hz+c9RW+3OMXoXd8rOf3pTUgdb81MY6iPCzG5wVl4aN9 + MYxH7KxydGshfWgWOX1q6KzX28rAYg17fOF1RS+Dx9BIqzXcfbjxjykSTxh+ma7A4lN55nPruwFI + B8r7CTAah2ZDzMC4MxwUHvMKLPHuvgLcP2eC0DI7WHvNBTTk8wM9i4DX8VfKrb/1gR6Xali2huV/ + +etIDm30fX8SFr7a44RFX3nUVJhOHczbWCF3lrTRD98gvJgysWrTqjlxb9tg5OsLMlXFy6k9RBYE + KDCI/s1CsJ5tNYS7vbsnWe2WOeXvayEXfHb64aW+7nPNlo630UDWbNrDug99BdiXMSNGI0+AAPbA + wHMt1qTg/ZQOCfVKcPkKAVEbwQfzW5YVGF3gC+Xv0arH6xvcIfs2dJTEzDVngWnOcOODeBbYuJ55 + DFwAFtUm1+19FwcZGDhDHfr83OgRGz7uPJxwD3ymnYBDreErwS2/IB9Q02HFhN5l+9UC5KRjS3Hy + ilfofFgDqTNPwQhbKoG26w9YKo+sM0/taoBPV04EJZw6zNJH6398gzzWUQRzchkDOHb5iuXEuUV0 + bWpNLlR5QUbKdICA99mQv2xD0CUBIF9PvZVA/mqrRJthk8/6I1LkWkl78nzHn2H5PGUFbvzBF8Sa + DGPEeTxck3lH4hGudO3XJZEv3LQgLYRlvZArZmBpZDExwuJD17r/FnAtmDPmEuUD1k7lFBBw/Oiv + F8kCqyu2d/jOvC/mZsUZeF+8Yti7q4q3K6TrueZfzFbifJJw09ezjH0Ir7udil8tK+m4Wp0Qvqr0 + ifSLNDvUtrEGfnzaeVupPsd8acPUNxryNKaCzmlx7oGAucSHV+8L/vTEqrAEpVI75PSU6xBejl8J + X1cd1/RZP7rf+iXeGL6iub5A/vf8eGfOUdQf5yO/L11P9blcNep5Paor/BajjR4uOunC7Fkz3C3q + B7m3qQfr73nf+HzHLFO+9Y5OpAfszDREow/FYT94yeTf85ppGTizM3IMiFQRk9TfSjL3xbwDl+OR + H5m3bQuCOYbgnsVHX2Y8fsCGAlsZ7T4Vsb5bmzovZlww4GeGPN5fhiVFjwAih1HQ/XaSImwobCv7 + 00NEh4NiOmyZ6A20o2eKnMyxwfIQX5rM1Kn68yMciiK3+/EnFM4ppSSMAx+mvOsgBSRevj4soYJM + pN+JLmVxvSanYYZ7agzocJaKei2/DwmK972H6UUKnDmEnw4qxHkQ01Z7Bxtz0sKiOR2RTh7HnG74 + Cu3pmSPDh8iZJU4oZe5r2Hj4+q9oiydN3sYD+T01cvqMyxXsA3DxV+421+OZSUd4r+XW343k7syE + iRP4gqq8+R3OMMvYhHBsxgYltTJT8nSaHj74Y0CQwtY63vBfuqxaTbQaVtFiIJGBQzk+0LVurEGY + 6tYHBfZ5oqq8H9HVXTXw0zdI97Oa1s3Xl6458Dc/wNJn/i2YUHzaiKg3Sa25bb2An3+SHVs2ogFw + +a3t1dkHXnfJBxhTGzaJV+HJw9Mvni25t8sd0vt7X89KPPWwtavKF0x1iWjSBL20+Sfo8tiNdN1F + Ngs1lPUbnnzq+dLaPmSBFvmccb8Mwmd4l/LmV2GY+i1Y0X7VpEhYQnTzGy5awMnu4M5xNKIPV0bv + zEt1h+kTXJB/X2zaXWTgQtpJX58B6DJM45Ub4Xm36Mh3qQL47w0re3ejqUailDV9s3MKLe/a+uA9 + WgPbEMX++UFI4S9Bva7hGkIssRfilEeQkwG8GciLzIrMI3OJRpeTTNh23WHDw8ew8RcNbPmHGK/d + e/hWol5JCH19f7kKLlhKkthQE6qzL507rI+FV7hAnzIOs+5e2hq7C3fZFySPOEV31ZfFGmI4Vs+K + WA891uftfeW9bGVIBdJbn77CM4SF4VN02jcSpdzhVMBN3+C5upoDOyS9CDLJlJDZG1rOmSY2IMsO + K/IYj69pP+4NoO+8FoVbPNEgu2IgvUMVnfRTSVemLmc5VD+cf3AYXyfyW4vBaosFOj0+A6Akrhr5 + 93tDdNznjclyAVyroUSObd6HSQ4uI1SGAqFD85xAH6ypD62ov/usvnvRJRMuBUyHhSfW8sY1LcAj + ldq1OxFj3R3zlZWkAl5FO97ylU35x3fsIcfCgZzcT6+/tIJtZZG6OrLN4xyNjR8psv4p3khfd4q+ + tn2IIcxVDxnc08qFEpg9xBomxLFNOMzZxV9hUpoZUmX+UpO3+yrgY021zfKm+fjzN6V3oJIL3vnD + F3SPu7Tpc1+qjF00jkKgQIIfApbebapvfpoB/PMnRTre8/R9LpgUbnoPHZGG9Zm5ziGcy3eFl5pf + 6M8flWkIb+gqtYbD7oWyldmzFmyHmi1nee5YQ+7sS4G5RdMjHmsLL7M+9ZB7Igrl630SQwu1HbJq + s6tXUF1c+PGrL5bzuR3Wm7hToPg2ShJqWevg3fropOKeHsiDBqfol3/kqnGaLb99IqzsRRfuaPgl + 1lPZRcsu8Bm4/7g2edyHLOr2QtdCarC873CemfPjWS6gf8ACOvRVlU/fYMnglv+2/Gk7wtGG848f + k4MP+bzEvhTD0xlHmN3tTs7CzfEqlyd5t21x04a5arMVoCv/wpJhH5xZf+QKVIDKIG3kc2fxSW0A + 2g4fZD63Q6/P+tLDZr13JJOssF4Unk2kxDSTP72Cn9lLgSOeI2Lu36W+nGallTPGvxG7Mnb5KuSp + tMcSfyGIsFZEb/fOBIsCjyje5WlN1dWXpE2/4ifLvaN5xyQ2XEXmgpd130ULcxY1+NP7RnvfLnkM + 1BKgs3Qm3iU4UP48Exum+/0NnVRzjLrgILVgCV48MjY9uuTtroTe97kQRVohHcmD+PD8+r7I8V3u + neU1z3dh48c+fLqYbn5nCK6KhokW7F2dtvSYgHa8Rsh9oHqYy/ZbgcOtqglyYh3MfeFuDQy0rU1f + fXfWTd8A+zt7G7/fO/P1YCaS/NRjLI/hK190os/Q2XccMT6KFvHri9hSidMrefRTRGebfc4/vwPZ + khUOOP+CFD4s/Ya8g3Ot571QNuDnbzS7XKzX+DVUcPMT8Hvzc/uzfQqgDMLsLz/iKgsD+NP7FmM1 + OnXqJZau3jIgLbiAehq6vIc/PLIuBnHWzl4syInDnpyyQ+TM2iRCwGn0gjf/beBJ1vMS1EMX78VD + QoUge46wSVDls+19Aes14Nk/PgqcsaHb85WwL5qV3Df9QhWtkYAzzTHydsjPSWHc2p+ficHulNTT + t+tTEF9Ji/wC8/py2GUMDKbvDdnl0NRraTum5OjreVuvdb4cP5EvQVPO/sZ300fNX30lGlPgzJl5 + lmRunb5EX3M0/Pxm8G2fLrLl3on4/iv7gI1JgcHgjAOdPWsFN8kNUXSRZn2WknEEm1+P+ddrBKsU + lTHslIgQxeNGB3f2Ysv2/grJKdaKYfjVBzTv1PnMNy6j5fjJXUjYefqtN/2nH3744a+NkDgLvqUa + LAyXkov+elG6484l/NUrjpseXV/aN4RjyurobnyedFVmaMJurFh/Hm9ltP7ywwTXwqfeQweEZVcf + Kq+0RLfTYYmoG+Up3Pgr8W9UGzj9mq0iQoPvr0w2RZvfgUFdJgym3yyk67zHEuRNupUA/T4ft3wK + bqNB/NYp8b9+QnRkGZ8tHi4VREPC8LxnKWbuS09pGKc+nFe++eN3VH5rCdwRl0MKimdnfZ+mBgzm + eEPxCYTRRNQglA+0+vjy6VyCr5XI4X6ArYzF2wvkRAWOAndRckG/egQpgd9D/yGd0Cn71gO96HUp + Vm5WoVNwquhyESQGwpADyM6+NmA/l2cCkb7ijd/2tJ9tQ4TizqzxaiT8sBwtJQU/f33jw/rc+LkG + wLhLkKHvVLr5GwXc/vapeVsjuvmXMjj4F1+uguOwRGhdZXR5P0kY7Ednw7v5x18x/3k89JXJxl66 + Bf7WFfMlOz+/DtRVo6Cf3hglbleCLuhjzCjBkBOktRhcvlxAjve23C5XoR3Y/HxkRaqUTywiPZxb + qJPDI4fRWlQ2C2yux9v8Vn/5GZjfm4Nc47OjvTEXDdj08l9+XKBa8tA/jALR8tsIaHG3m/35QhWf + pZIE5mR6BPDJHApk3Eu1ZiemNmUwygm6Nu/Dptc1Ww70b4Icai/DyPisvd8d/PXHD/JNT2sQhgLw + WR8SZ9F2Xwy/StPhKkwDfS6Ybwg2PkW04nrRadfoI6TuUOP2ZmyXHJws9s/fPKjFFNEdd6vgC+ry + X/zyqFIV+dLaGjoalZdTp97/xSO67FUr4tjvCUPqi2/0p+9HIdUgrP3SZ67Rq/7TF8k/pF1Jt7Kw + sv1BDKRPGNIJSBcFRZwBIgIi0iRAfv1bnO++2Z3duescINXsvatSNTgn8scfurf+jpTjt7dQ6I2H + ZtOq0oGX52dGmvQ4xcJe/1DatGjxUnIz/QmnylHgzVSQ3w+iN4f21fnjs0h14zinM7iHMFT4J3JS + XcinW6f7SvzmdJR63ZF+XCHulTdzPhA38N50c9c8BSY5yQj1fBWvajhnwLeXFB3Pb4Mu+Mj4cvB7 + rkjdr2HTzNddmPZWj4Lx0uZr851buMdjgs4hbJaHeejg/S28iFrfu2ZR7J/5T/8uurMa86veWPCS + qjoqjwTla/q1ImjlcU/CeZ3G5a/eh1vxiB7fBhq9Pi8MNJX4Ga4P+d3QgxmWML9aDF68TYiXx2xV + ytOQ5FCQu9bYWHkr/vA8esVxT5cqsAu4178x+V42uvHyOImf/u4j/3GS891+HMjd9Ds6rkoC2Pfx + M4DozWToiCoLbFLuOjCQ2AS9IDvkizkPIdTAVSCvYt08eq9JCw9HfyMWfuN/fEN5PIQZs+LzPO71 + 81pJCrUj5q04e8uuv4Djevnserw+Crve9Fc/Je6142NaDkIJHzF4EuNb6rueMurgf2kp4P57S4F3 + AkeiHS5VTFkxKgHeEpfYPDoa7Hc5hfD6aSKiDWUaL8o+Z+FwyOOQYYAR88W96xRCVEy0y1cCv1Ni + qcB7kW/o1YJGuboBIhgra0TG53c3hAw6Z3hapxMKOYS9+eXkC8yk4xOzn2QCxMOXChZz6WIKBpmS + L9nnhsWehVw3nsdNTZwNZkz/ISVll3HNeneBmcjvt7TCJF+3KmRAR7QOhUVKxkW2HwOcNMcjTl23 + dHWYiw6hVi3o9rrvm36o0yk/we7Di+90xiYX1005dUmJ3MCjI1VQs8Fyep9ILBmBsb0csYTeArhQ + quSXt6pJKMMWXCPkONfDSKv3vhnFe/5Q8mGunhANn1KxFVMjJQOaeDvEggxjcVKRHkuRsXDfpoD+ + 7Efo+ICErvEESyl6TQqJZPoC1KSerxxiEZJX3HDeBoXIBP78mtBRGtl4E+elVO5nmRBNEcO8dZi7 + A/JQOoRb9QxG1rcTXfG/o0vs/t2OmziLJfx7PlNcdMpLx7mUM5E1wrX2OG/i+/AMNsBtyHUves5D + IbNgt9g20i+RGS94OkCIyorBUiXuJeT8sIeY0CQG732NzctErNyUxCbmlS0A+5CmFiqPIiJeB9Kc + vbNgU+SncQvZ09fJV9QoPRTUMMILUVHO99uoQnu6ACzkyslg0zoqFXi/R8hkAi/nvIcUwlBdZHJl + 34mxcdBb4H0zYSgGpAB8+2tD6OCmJ6HllJR2qZvCVf8k5D41BOBvfhZh0WuEnGCjAbbyAxNShT+S + yzYfje1XnSYI7/4HWR/oAPa7TCp8cisbqkK8jWQUGQccv2lGTt/J8Hg5lxiFKuwRvYR3F/Pc53CG + xtN8kugbO4YwCEulqC7LhEx5eOZ/3wc+r4WMHlat5dy6DgN8Dg4h17q0AN9EUAa0d88E9VlMZ4d5 + 6HA++RlyRYM36GfcN/3mQUMyqXC87XeKMiXtGQaLyJW96SFNHbxP5wde4auI6bF6y4rbTyK5az/d + G5gPn0LCKgwKJziA6dy9r4qa+D8UkT5phL6gIbx7oUQ0qzg3/AT9AXJbK6NQtK/ez77cfMiJjo6i + Fn+a76x0DDyU5oPEfLDFS7naE2TbQ43pLBpA4K/PEtJi+6BQnpJmGWpQweYup3gEuMoFMR0LufgC + nZy+GMdLLTUToHbwRDEYMrAlW7vAx9sD6LR/L14JtVJJjMsdaUB1YsGkXggr+OuRyUGa7+8rKs/r + 94t/R9v0uBEELqQ2eoaCv1WecIilTWaHagjP3ex7nb/NA3SfLxkhXcHN8q4vndJE9zOyqvfYTI4C + r5DJ+QkvjJeO/OsUR1BaawZ5dPdI/pBFgFFfOgas+AG0wxKGafCJSUaxnQtPLHdwaDILS97hR+nP + ZbEiJN4bN5Xb5IumdyZ4LvZht/efsd65tATKoz2EokWrfPmMIFT280TpSh75Soy3D98/i4YyIy2j + YIVNprBXnkMo59OYO0TPDp6PDSbat38229OsS8ieXi5KvMEH/eOcMzCm8QeZr0HIl0J3Bsga9EYs + KePyrR2QCr0BfsgjkoC3PB9cp0Sj1YdAvYberCahCLm7VaPjd1jidbpcJsCJeYGC3P+AdWzOPoxW + Q8SicTgDHN+/BdSi7Y35hLpAmOD7qtyFwST3CDnNHHKsq+znQbzNTPKNAxWjKOTxJvdCe1GhjdlU + 1jNsYFZcarCdDuda+WguR2zlxMfrO/imgmQqFil+1dVYDgzE0D7TFjmGcmx4EceRfOmnkHj06cT1 + J+kt0LNzGLa9/x1X396w8tEcjrza1GkEWAcWOBZegfyAtDlLvapWWpBE5DpQLp4C9sJDwOsp0l43 + OSfnz4VVxLQBSLe8tVn9FTtwj6fk9jHqce2M2oLfd3wN1yF7U2rkq6X85Svbdm5gOTAXGXxEryWm + /2yMf/H1ViMhzK4ajpdMkVu4HvSK2CdmGTfddM/Q+klvcgxXa1z60p3ATRUVcokYdRR0HGUK1DID + M9sjzjnN+LSQfcUT5uDLoFzbTxN8wLNHTt3lA7YzmEpYvWMGy407eTgNBgfaSTJh4p1XsKmHSwqh + +H6F0+Hlj4Kosa7SWMrnnz8uf/4RcDkiVmDfxjF5vhbonaRjuHDiLeezy+Iq7fB4YWawFoMehUcI + wetBUDbJqUF0zPnKOisq0lOfa2hAP46iuspIInW5xkv3uMgKta2FmFTXPUHQLlfFWyQOPfEQxXyZ + w31uIYzQ9QtQvsmF0EKWE2/kXGb73hd7mxS35z7o+eBeHrvHF+j2wofE/bMb1/wgTMoiBCPK1agG + i7QeTbA2PU+u85jHgpg6A1RdfMEy3wU5e/RaEXTl4hPbttyRd6JDDf/OL4gkvcGeecogTy4lVq5p + 0kzxCBn43UIbJV7/HidGxhOUztcVqalS5Wt++5XwUN4oir53ZqQLiXsFyUaCl7mxKLc6mQo7I6tD + pTRHupxuYQ3ndtrwpBrIE+pPasHfGlvI748J2EiKelhQVyWXw0WNBS09ygr70iPMW4GZ91nXF5AE + h5DYo7PF2++k+NK4r402LzABm1wcOtg/pxLl0zegS2mtheJb3yH8ZrUHqHZvTHhfIUIpeD7ADwYn + BgqJyqI4KepxS4VnBznxUSBUHI85R0xfh/goH7BQc8T481e4VfeceGDxxi36eQ6E99eB7HgEcO+A + pHDF9hxKf/YpzkuhZAyNsKCNc77wTLRA81UIyFqPHZ0Al5sw/9Q98puN5niPX0D8FRidulsRb/L2 + jpQLG3bIoc4YL6cxVsGffQUnJI4z3zuu4trVuMcP1tusNg+la0hhyGop2PMBTOFksSq5Z63grd+M + 9ZWKP1B8SB4E0I+6nJXNxAkyJE2jy0NGKTC0zkLHU3odSXl8Q6i604VoD3EFm3sPKvBOjRgdjzZs + qBOtmfK8JgEyzZDPFzwJDJxPN/sPj+cYBY0O//LDpnxMbz0Gdgg/iXInJdp6Sh8fusDjJm/EoHdh + nM1yEMV/8dxFpCEb+z3/4RucfB+XnL5rG0OALjoqL2htlmu68Mqej5H9LJ7eNgR9Bo35JhB3klOP + Tp0wQCZXHiRN1Cul5+5VwqfD1Mj+zJwxrXZWSSdEOGIcJLtZe3sxlUnBOrnTh5uzg09UoKMkRejI + XRtygZrzh6+JUYUSWIj+npRokTxkatejJzw+YAGXWH+Q08Fp862JWBHawq/Dn6FOYsrumzbfP5Mi + 5/zWDIrH4wCL+iaHYtfl+dbTgIeL+6PEZuo+X3Hi1pDE1R1dfMfyOHGONxhOOUPC8JHQtZhABx/v + E0Av/fCgW3tYJhjP1xvZ8c24noG9wLnlXiFL9drbTIeaSnLgwpDPON5Yx/bJymPW1CTobg1dTqPC + AmO+CxhC2TVYs7RCwL6cAzJO8jbu5wvhp77rRPV0xsPZZXHAjl/IY903Q6Z1VkJwsz/kH15SRx4D + Hb2OoYqZ1tgmaA7wVkRf4jjXV/NbsnMNjXqJSSkP434LsbPAA+GYBC1cwXw1rR62HHWRj5WiqY5v + KYV4+7YosBdz5I/V0YdvW+wwpx3XeD36pxbEvuOQuzbO8RZWfgKWd1QQpKa+wd+2EwM/Rf3CB+fX + ettJLUNYXtQNBfrNztnXs1qU+z4X+8RLQkMIFnmYNU6ItNNZ9WiXfkL4UfBEzNO3z6mosQ7ck3co + tloKltDTQgW19ze5bOSc09Ovn6CokwdxxyfJyV9+4743iBzIqmCJ9b0lPatVVH7Pt5wdpZqHXVvo + JOCq2Vt+3jtVLKf9ktdRONDP6eaksB6fAdLmKzU2q1ky5aPpDnnyCtdsfHxjFPvNmfsccc3galnN + 4GyMEfHaqzvi0wEkIExKgjsNTvnmRNcJvuLcRz5ytZFVR36C42er8JIqai5UbraBV9D9QhFZRrPE + BnJhO+Qv4p9/txE/gLNAMKwZsrP27mEGzhiGQo3+8Fy+CklbQPHJJH+/b5Zz90vgjveJHaG+Wdm2 + YGDx3W4oVEc+px9NkWGEujNyEXYBZc5hCw+HR0yc1zQYS7lMohwKPSR+14fGlkUZlLlt/hKHYzpj + GiVVhcJRtolR+WGzCLeJAQ09G+jBC1O8fe7zBMU0D9FpbzhZqG8k4PrqdAzOMju218WF0GWajISX + oMsXUa94Zee3JBq80JgU6W0pvaP+yJXxVE8YBLGC9QtymNnujrd9c4rhA0YeQZv7GukFjowypHpO + 7GehGItwayH88WyIbpevllMtDUSQss8E5YWx7XNM9e1fvqNH0c6FhEX7yt4CouQDezDzhyiCttoL + ofTKR2+Jro4q3zcLIiMeynipWFmGL9l9Y3GKzmC6kspV5KgridXzmTHJNizB/fhbEdqsn7E1UWQp + N+X7DuFK7/lyGjkWKi/HJs+DX+frLVMY4DSMiSVy6PYWF7WDFToYyFMCNv+H9zYwH8O51NWG77dG + V6zDN0F2rpy8Tc+vGXw9bC38DDUfz938rMB6UCtk8EGU/y7M2QHJoE8YX423gX+VhiXCCpc/fjLO + 6xaU//zhql0/BlVVsICGNk9i83HebO1Py5RgMFp0ujs2EM7dvYBt5h6JGl8GuiqNFMHQSnRk8zEY + h+Ak8DD28xqd2OhH55B7JBBvpYChbJJ4GerzBMylTskxpCtd28NVB8VX0pG65BPtd30C/m6DFk7I + 1RpBQc2imKf+htJfwRtrdHhuMF8NNfydr2mzWY2YwXh+6uhBDlbMHX6+CN3GW3Z+5jUsK/uLuONB + zOimkwtvYU2VSXt89vydjwQJ1IVKaH7RVSd1vHiPooLXTJWJzbTxiNvBVmFYOG0IWPliLC9bMOHt + O0T4QMLGo0hIr5D53sz9/fNxQZLeQx19NuLdsUFZeSUi9MzgjCW3uwM2ug48RG3IElTZ54ac1O0/ + 9rSI+Ox99vwNxIPboD+9bedLIXw30SWsPlFI++7BTvCTsAPRZ60HPfQ/Z7CoIUSqbOverpcMcCr6 + Gh3PIYkJfTvXP3vC8Px1842DXat4y5Dj5dDdKLXEhIUEixpJU7aN12I6Lwpl7FcYmy8uXo8BCuHN + Ko5El1e2WYhh1rCgjhr+w7uzsvDg9Thq6Llv+aXt4Iiw3MID0h/fCKx3jp5lsQwW9JLvmrEq7dWE + 093O0PFu/uhW3L0FcmJEwgOJpIbc3/MCnLR7IPdWjOOi6cZZ2dYUhO3pFzeLjWQRmqfhtufLqKFx + ajoQTmIWlo7cGKuQaAP0XmWAtPbQNpt2DzP5e3G/eBEu37hvmWstxSJWyfFunsCqNGuk3GrbReYn + TQ3+EMkRXKVnSo6ecve2y2XVlUxjtFBR6BJvZXFPFS1a3khlTnM+b5XFwMRRfGTB0AQc5eMSXsMV + Eh9LlsdqOrbA41bzyHY+zEiOb1IDZmt15AanPqZMx4nK3/e9fQx9XE+HpIfYK208/mgZL9zXGeQU + 1xbukSsby+lmVX/6IlIT+9jMEyAQThac0ZEAJ/9/fSd6YGG3x00J2/NfPP3DL4CruC1TYj/i/vG7 + CUlzAXc8GkpBqVBa3PsStgR+0SPI7JjXzdmEu/6LjP7ZNStwAASno3NBfqJ/x+WMNhU2kd+Qy56/ + yTM1zsDVDg3xxd9m0PBt8MrtDZ8o/1Emxrc862EpyCyW7dxu+Od8jpQdzxM9IT6l3EdywJ8eYyV0 + AFQdzAx2cn5B+uVKmk0/2vKfXkPC3Z95bVpMZTbWAwnfXGosdlf7cORAgMUX5vLVLGtZ+dN7//Tm + 37rWA7iGVU12fgA2G7gVBKdZDv/OmyYssoDcR3FYNRIc52Ng+9Ab0YGEDvMYN8ovDiSOOxFt18+2 + 7CI6sHpfGGIOq2tsx+oYQvGXaMRfiQr46sSY4E+PM7JK8rDViCksE2Fv2Z3FZtIXE8NbHQgh2dxD + s45NGsIymb7hKj4vxno1Rh7QAkTIydB7HH6nLANiiRZyPKVss8nbL4K0/jpEF6Sw2cAp7cVXQBJk + UnPerzTlPWzDJSOJi9De6aOGihJaX2I9Z+gRiWQLsIXMD//4l1BoOQT5azqSMhownR5S20qOLrfI + +MuXt2PNgjbcMhJGfdMseHq6f98bGV+TzbGRC6GctK+WuM/ZGNlUOm0yrCeF2Av7Bct881Q4v3SI + V3fu/+yJAebHmckFqH087fkO7Ho0MqcwAouruylcbuKK/vRxIj6sM/geNxiObcJRigTgwhFpLjmF + XNvMn1vfwhfe+P08Bm/le8eBy/tcEAsc7pSe1E2EnNe5e4tCbaxT9ErAW7dMhIS3lS+zsrDw4GQt + cZCDwdpclBRkzBr940+UFZUzsJPXA7OGUhrCX/xffakKm89P8Oi9qpw/vYR4O95YkPTZS0r+SuL9 + /KkiXlqIDm0ZKgdfjynX8Rs8n5cJefItzJc/PfyUMRSF71VruO11SuB2tjTkKejQUCtUO9g97ism + m8Pmy4VJIhC+D3bIPeR23DzzlIIKpiGKSax57HzzdDikak5e/pyNRMdZ+scvUJCHq7FZQSPDwmqd + 8Jd+lhGPoRfCl+y80Ut+TPEqHBQTDn5t/OHJcRnqFIPdf0kQVEvzx7cUWxg7Eqzlm37cKapg7+g/ + 5J3hAczE+Pl/fBTZ7dlvWlCqUGk5ScCDaPDegm8fHu560d5SJNEdn4rSrpcTP5WDcdUMd4PBY3FR + JhqJMdldHf6Lr3YtZPFavQzrLz+jcHwH8badHjWEHi8j9XOV9/fTTGXX6whSkO0JT/JMgRwRL5Tj + g05ZVvoxQL/FPQmOwRzveg+GmykYJOSCms5DgGvQ6693+Nv515r6da+oq4BD7nXTKO/OkQ6lccpD + gJ4j+Eim54KrGabEj/0JbJ+7LoO5FBEKmjebTzu+Btz3DlGgPxQ6ntExURD+jeG6uAHd9ZFWjPh9 + Lj16emDStKpQuK2TkY0eAdiecxrBXe9Eer8V3irlt7O881cspqJM6TP1Imj9ehulhnIchT8+/ldP + yjKh3/N9yXJ8TG3MVdswroL6guAjiC5Jd/z/+2aPDFyY8YlOesw2//DdHp+Rewn+v15SJviLlfxc + 5Fv+0/f/N9jkOW5T3iWOdIX4a/sk4Oo0XkPfmYDW8FrIvFdtFExqhDC43gkKpPVo/JLy5wCUcicU + bvfeo8zZ6gCokoZY6+mZ01cBLRDxZRwKhfYC6863lMSI75juegp3SiwdGPf3jWixOtLtEMln+YE4 + FXm/NfZmS/Z0UKryEZlfJWtoefwxcK9nYOa9vkc8R1CFp9yuQlbcQo//vdEVqueKRWojwWbTTT1S + /vj/ueEsg52vfQi7tiUIsfta8NWJdFi/eAfpyqf1tkvEDHCPj+hYI+pR4KYu3DrjHP4kEsWbmjQd + FFQ/Iufe+TW/V9mfITh9A/xtIwHgYxX4EF/yO2Y/V63hy+KeQXYY72TP96Ownx9MDHcIN8u7NPgd + +iZkh98d5W1yo+zdG12465PInqEGdv2BB5ceh/hrvnsD33KuhLJ9q8L1+mQbzH0OEXynWoy0bf4Y + a34oRDgbvwg5A+cY/C3nCiUW+ZmEW142a1AOKmz8asZNFHBgq6o5BWSf6hDyverRgzKHMLW3FXmh + +aBz70SiomHHQ8XOJ3Hd0lT51P6NZIx03qdoOtU/fXmhujzOOJmTv/gfynxbe2QeHB3segvKiuul + oY9PCkH3uK1IPX1u47q9TleoyJJE/FZTY8EjLxc+B5fs+OZI2Ydsp9DQWovcd364FnOSglJYbHRl + UNKQR1e2cnynAQnSb5NvVmhNyqSdRZSemyme0+BYwvnxZENBOSXxen/hDeYvfiPGLDa7P3x8ZedD + IWS/Fl1p4LJgryegUrRZY9fzaumPX+/6tCHgoWYhL48n5DLSedyv0GDwp0+fXrnncU7vV8DtsRiC + 0HyAxZLwFTYzlpEO3Q4swiiV8FmuJsluWZXTGuEUhMXlguUnwXQhj4uqBFfrRrwf+QLadE8MJXcA + xKaPIf/DY9AQ5xpZsbJ4O/9mlVcKr//06D+8C41Gm4nvSqdm/IxhLf8vLQX8f28pYFVeJl5wsyjr + lk4q69/KQirV9UZAco9h5IY18W6e2pCkCEL4qAJIfLAcjOV0uLjwyNtfzB0u15guU5bC5cDreGAy + YqyzB67QCtYMGR/EG+sPwBbAoQiI14mBt5IybhVWEK/EoN/ao8s9beGSLj3xpp8BMG+9fViKbIpu + mnAchYAWsvw0opSEfGrmgkM+DmTj85kkU1QaS8XJETyYjwGF8/U1DodzHcGXWvvEgc9fs4LmUiuH + RFBD5XRH4+Jd1lI5vzuKXM0qmh/pVUaB7MFBXuuzI82vfQ3aXlbJI631ePE7egYf9eaHH/JzATbE + rw5OWnnGbJ/l44qqDMJfO99Quf9/NovzBAbcZyXX5pzF9I6Ys3Tp8w8WPgtPN2/GZxiLFkFeedNG + enQ8C0pmO5DMdbWc/Z36RbkWEyXXtjyOnLjpKjzfXz8MVbGmGzvEtXKedglUSecRJ88hg2fp3JEL + 4XLA3e5gg+/h2SPj+YD59KrvNdxmjJCJb2K8lu6jgGLo9SFcJT8eOgUUQAPfQygGb8PjhWXiIbP5 + EH9Y6nsrHupKSV/xAZ3Mx2Hc6pnd/p2Pv1Ua3bKGYiWwio3cJiXKufvhycKjDGNkzn03sqkKLOWI + HzScm7eX05r3ISwxCTEn6ud8hXe3/XseZJn5reFPaO2U4rF+0cXPdcB/17aG70lkSBpybryZ+2pN + pXs/URhzjcdH4puH0EIyZr3jJyeSqooKX10KcnuL15yYv5iF1/UqYtkrnWa1XR0ql/O8kWz5pc0i + ctYZ6i82QnlPXY87P9dUua6JiIcOenRZxmMIJmOzSMA+Yb50glMqytJ/0Utffw1/h48WXiczI1k0 + +5T7VO9CUb8sRIbQpAa92UYGcf88omheWo8nYO7g6+OcSRY8jiN31A8uMPw3IBE6iWCe9SMD6bXR + 0TES1Fi41C4PC20ySMYJzTh5jm9BJyhaZCkSjsn90QyQ3P0Yd3FF4+EnLoly9NERS6+1i9cCewt8 + eYaFK/DBxnRy5x7+BGdEz/F+NARdWzfFi2eJPMYmMdjbI2VgdCVPfGDO+bitrRvKZtYvyDZYz1sV + bt0Udl5dckmDqNlaVy8gW/lvUpJ9tvnajwNcSu2I7hH3MvBxWFWFuD+KzN1fhOYKQzCMTkKuZ2Q1 + AnDABj7wZ6B04lSPzUqyAAldffQyyjxfFnbr4OpeFaT+Lr7BScURK699Fg1UmZe3nTutVQqzcZH2 + kw/eUooxr8Q3WcNwq96A//RSD9uLHxAzsx4xTZuLrnyecYG870tvNi4SXaglrYvy02s21tEkFexP + URnGzFR5QpWmZ9AYxxQ54pfQ5fiZTbgo2YT7yMTj9iyXTsGN35M4Lw/54gPFglooJsjwTqbBC3mj + Q7FeZxSmKQZ9IjqOyIfWHM7dSTbW3HRciM6DgP7Fw3m91cr+PVHBvnNjEZK7BQ6Pc0Kii3kDgl71 + zD//rCpcNTwX7SXcSxgQbSrWZvPf9wR21UDQeWaFZsuDQwahkVGkEkkeqeTdrpD7lT9iptvmrXWW + OjCldUy0JLqNW+mwkfItmA6Z93IY12yZr3DIN/L3fMZ6JXcXelzFI1WlocfWzMcBP1IKxLX7kE4W + iQqZTauZhOYJgRngD4SCbj2I3teS97aSi6yYLylARv21c26+VVgR7CtPLtXwpoJ/epzFM6ueiN1w + D7AphRRC8Pb31UxsTYVWSTeY2ZeERN9wHekwmvtiGqFEpzvwG+690hp8XtOGTi93b5bieQfufw+9 + xBsDtnN36mBPT+p/8t/XdxO4XgsbPcV75XFvBTGQIfRDbPX99FZ0cF14WEiN/FvAGETX1kX5+30i + D67xe1BLBk/jnJLna7yM7CdsRIiUj40i+fSLqYZLBg5LypLLbp/0eBELqHX3mvhyIYA1y8cKtv6t + IsfF5xuqif4VUsmziHpSiLFyPlL/+f+JA3U8uJLiw7f6tYl1IhBQgimj5F6soeBT9PlSuawDD4qc + kaBbSEP7dITwd6dmCHOy5NQYlQzOUmKFgEnOOace7Cu8n+wOOZh/eJz7PfTw/e3f5HT8uiN3ijhe + YdN6xkt6WfOWE4craAZnQ/v3AxsXLY7ydCoOBeGYAGGyL7KCw65Bets1HjZ9jQcC+uko6RPHWLtD + 2ivGz8pxGoZXyldLclXWYolJYUmAEpVcSuWnHi9Y6Ud/5Bia+hAw7g0lNnugVKarqJR+XaETB/Rc + GE+ggMEMFGKzpuRtdV1dle2TGeiZ3YecXftmgLeD8CRRFFXgL38olSjF6N44jseb+rWU8+1akPR8 + ulBO+lATMp/ziAJnkT0aCf4AA+67kuMmIo//gosM73LkEjea98UJiN/AJ6hNcvp+VW9Oy8ACp5Nj + oFubWXSD7LVVnt4NIm1jmn0V3+JL+/uhx+Fo5Iv65q7Kn31rzudksMGZgZBXgonYf3ihU2gJPwfz + gfTuW3gCXM+JsvTuH6X18i33z1fFBlpIIuHL020lyaAcLaYnqtuazfqXjwerikiYHtp4PeqCA8Pr + IcXHFNOc/hI3A3/vez26TsO+XwqEIdQ3pF9MDny8TOsh84lGFOz5Yu3UwwYJfxiR9mNrQI3D2VWs + w52EwBSFcbnXHg/Lq39Fruu+c/y8eT58C7mEBT84j8ta8md4dpsUK62jeRSf/QUqIkP3ePDNt+qj + iUrj3LhQ3I5Kvn27swlt8Sti5XQnIyl6wsLCfLshSxsjx+A2Z2CPH8jI1qDB2IYdNJpvEi5TdY6X + WeIw/OhbTZwXdzQwswJdmcbgQowrynOhcC4t2PEK0cPia1DW/rTKL/jJJI/0dNzzWQ9TZpdY5EM4 + 0iPz7KHgnhTM1Pzd+zHXnwp3PI2sq30y1stl2KcMOBsep18Deinmqj//Q6EebnR1izGEd/nsoocb + Vt72LQYML5+2JN7uj7/4GNcA9dcBWanx8mj+Yhl4tGBPHsssxOsFVp186swreYp31Vir2LwqY5u9 + CJoa4tHOMiaY8OcX8oWAjov+ihcoO+1txyunhnclJYS3yrTI0+hSMO/xF37XbiS+JQGw4Lnb4MlT + XLKvcKSL9KxlZWTAI1TuTmdMjlc5shywW7gpaTCSJWh8yHu/O4mvCOTb4Vyf4eVMNpxaKfAIiH4O + vNftnVyM3Aa8/jiw8HRyjVA2UTtucCAh/AzBTILWeXurekBXmC2bjQ8lr8dLxlxKKHLIQMdRv+X4 + 8zIjeCqzKlxK2oyUz448BAAfkLfb345vS9hxko+ClosAtzj3CMw/5kV0aFrxEraXCe74HiVcUlNa + MJMDnrGxkJMxBeN2BkYG+5g+MMvg57iUTaaCClx/6JQ1IN7m1wtC8+ONRFOKKZ5ixTgr/RlGJLjI + wFiXyB/Anv/JMbHMceHvjxa2HH/BY5krgJaZxEr3ursTl2+5nIYQbXDHK8QyxBPlGHr2/50PYoTV + mFoCB3CMRYncO+YNVoYVIujl/ZWUn/TUUBWRDVTdU8HyWbvmNPnILax2CeLSdwLAiVN1cFNeX+Tk + IRqXUsxZ+JVkAdn34tpsj1ASQUqrmNz8GzZWdr5v0MuHK3HOix3ztc73YPOkKKzc1hyF/fnhso1u + KD5P07glLurhXeDZUEq+n7z8WjgF8vl8Isfh1jRYOZWlvPQOIpcP8/O20oERyJhkCbmEJvFye5wZ + xYuJRO6vfQ+BI2UVzHRdIsZyZb01Rqqs5E98DzfhmwDCgbKFmqsNqOidGxBitjHBFUtvYoRpny/L + a1mUkL0eyAWxszc6UlTB1xywKNjqQ7wWwj7YnbkuJBI53dgOOY+VnusSLMjdGE+gu22QRvZEjlUb + eAtz/0RgzOIb0qBz9ASJzwswxEWDbvRljgvjp7wMAzD/4zubZAQuGLp4wH/xcC6MYADnKbkR+2oM + +cyzY/uPP2k2Q+Nx+y08eKsfm2jVoIGl92wepPwtIxZmkmbRf5r7xweIL5HOWAtBcmUiPTSEAv47 + bvH9YcGpz9xQ5pQDWNn5tQDy12JTdDe6+8sZyl5ehJ8vXY1tTGbrz34w9/b0cUzFjJV3PEACx+jj + TZQzH/zhR1sJM6+nRTHB3d/xH35Y50pxYIY+NbEjZ87pIZWLP/xMfMgM+ZIY1wGMd+5ANDby8i1q + Kl0Z78KBnPZ8x7ec2oK/+HW6g2lc5G3C8uLx95C9erCZZz1gFJvb1vCgu1eDc7u0g8fLs9nzH/Tw + dNAGyJzzAzI1YMZsN8eWcmVPh3D9MCdPCL9HCI/0XKHybtr5fHAiS/n7vW9JOZh1+Flg2nU6Ui/U + AXTjgrO8GBJEmjBy45TeoAxfxi0OAcpOYEqMaw963/4g1dS3eF2sJVROvZQjf/kcvfUC+xaUj2Il + l794MOP3GR5OMkH7ZfJ8ajs7Av/yA0uCnNOt2FdWyfRCZbfH7WIuvKI+Ew2vqvMAq/HRM3garyty + 5+war50qbLDDKA1nYRliPGrNGd4qyyKuplYxHeOehUx/3HCdFxpdaubjwvCe4lB2BfovP0Dhpf5I + 7ts5GO52ZynmIWKRGzw+44ZhZSoHycBEz7gp3rYGYTBfsR4efkCN55P9S6FS7lN27sO+KGC3H14F + HPL9YWuIstx4UIkgxuAPT4u/lYcPQSLIQXVhkJEeTMi1vk88uz0buz5yhZ729pBtGyimDDpaf/ki + ZFqzztdnUqXwUl01dJcON8qFWrPA3V/RjWnrZounTAaq89qnACjnnFVEXlWwLOZEv4xeTj+wjCDw + WxU9GnVoJvca60DT5hIf9PU3knpYakAGI/un32yDoLAgNooRyxR248ZW2IH32F8w065Xb7PoKEL7 + 4syYv7IyXZ+pXcDsZ8XIvd3ykU9zhwfMUTKJy51DY762LobJ5N3wwQPDuEJd3WC8fQd0/OHQWMux + DuFbeEhIA2+Sj8zxNQE2Y4yQGrGbD7r0rmFgldvf9x3/xb/19cn+4leOeQgW2SVJEbL4JuYYDl9f + GbjxgqVwHZtt1aUCzBIRiF6PnbH0fAAh0NiSWGv1M1bZrBNlRsKNmDveoyMVLJBzXkPC26J6wl1m + U2h+v9puv0EunJokhGomjiinly2m1mZhEEJ1Qxf7ojW8Vz9YaFwRwRx9tc0mYeMMq8d7Ikfepjmp + eRNCfi6uKHd9BqwJX0Ol4k2fXIcXM5K7DFN5DvQQZ/w+VWI0vxVsgYXDQ3o9G6QkoIdwczXio8Tz + th9xGfgQAAmHDo50/dNPth65yNvz62bMWfeHd9Hj+B2aReCdDZ7vzx/yow/JZ+3JdPBwEgnS9uff + XGPolSEuG1xfxjEnff1IoCy7A+a++xTNPzz3rlOTuGlpjLyEvQhqoZwgl29v8V+8AtWldEhYgCxf + ZkmZ/vyXnPCxHxeYWfw/fqCaehQvZz0sgNBNT2K6JaHrlOpnGIdh8Mef6CZ80hTap0LCXNxuxmbe + y0i26vxFnDwkIxnYtVXo0cv/nn/c9dsMXp7iQF7m1I2zEy9XhVw3hdhYFujiL1UPjRHUyHQePmV7 + D7GwTYoB+eVFp2yJuwKON1VERy7TRpYXCAtb7DxJ2h66eOrmeG9BCBnibQOkf3qE8lPty5+e06wP + CM9wKMMjOSXfYyw86rKGbu215FjqctNPlomB9sgvf3rFuPx+Bx2WYHwhTxBtuvHWO4TSItYk06/2 + yL+2gwiRdjnjr8KhETf+pIKRNBsexNeW0407Rgp+QjdctKwZKVzTK4yVm0+OL+WeL4NyWZTd/nFi + 26FB8dncAC8oCAXZ3Y23k+X78tW9PMmrVZtmiqPABRLz9ELmk57G1SdGAZAWnzG3XaRmhrqzwJvR + dJhjWn1kX7oWQUWEFM+HzjS2YDSnP/0WBQ+jMagqzzKUJo0Lm9HdKI0Ph/qf/nNywUpngGcGTOfp + jrLyUeV/eBVIHU2J/ol3Pnz5utAWfZuEOufkw589o8YMUCAf8Lj52smUc1lFJHtZm0ee0O1goFQ+ + ecSp5v3ZO8gKRyfq7zIZ7KsSC6D4PUD6VUbNdK8NHi5VUaDH5SHn263y4J+/E3st3Jhyi+tCw28A + CoxOBHSKcAKldwXIcVK2nHaLncBfS24hiH7YW9cFsNA8ZjGx4Mc2+BtDHXB8eAmxQ+lk/PEdkPyu + IcqA59JetnEny3P4COlFvXvrJ4EWkAN+w90en/7Zx6d+y3hz3kNc/4gLwRHnlOjFKQb/8llN91XR + YHkZGMPehP6bxehZyzf6WyzRB+bTtHb+7+bzw3pjGMvV8R+/n0fDKaA3CzoWzmznrcH0FuEcqCGx + 2TFsBGIoLCSv6oXJ8nAAN5rfGmBZzolbPqp4vUpmBT9BZZIXfz2O664XgL4iQ3iWLxaoDqOjwz99 + wRzn07iefwELh1l5olB7a8aiqVMHC+YxIuTXasyrXy0C99tgEVX0DSAgucIw+SUhOWVNnv/xL/DO + pjMqyosO1vhMGHjqrCsJtvqV9za+Q/ind5zM2Ig5eNc7iORF/aun0CV7qlisx95HN/8WGiub7lNY + 6RKi4+1FvK6uqwTqbHEn6FB2zSR47vDHj4gniF+AgTq2cLc3dGdH3GxoSyu4eSAKh91+ZyGOWGWP + HztfuXjbKvn6nz5P0ofcx1S+uRMUb1yB7HGMxx1fhvJuryjP/UezSqQvoV2SBCstt1F6xpcNcqiz + kfNeamPSuLP5L36F5/pmUC5Xr4obvF9Eqww/5yFbtH94IZTekxGzAq9uf/yPmFypxrxSSD44vG/g + H7/Df3rvrseEsHc4QB933VR2fhjiAsjxsrByB0+nN0vQ8nAouT/GHn5VPSFuaAk5tbMmgeBuAhJc + i6CZdvwPlwOro3RNx3E7r4muCBdu/TufmI59PcBdnw3/9IspJJ0DX0M6462aXvmKxm8GlUKvEQob + KV+FOOKhK3F3cgqebUzu5puHO75FXvNzAM+yjgwZ4fVA5hmm+5UJJgPMxJRIPx4EMPZC7MCSMTny + SHtmxFRjGABl9EEn+kCUHaJ4gIxzzVBxl/hmfXy3QtnxCWYscxo3/SHw8CaeBnLHsgCmtkNnYNZJ + SwK+MDyy129k6up2qOz62rq1kwz2fI6KwdiaGU5mBhr1fEHeXz3lchmKP76GFRT58Wwiy4L3QWzC + TT6d4m2v3yinebNJcOcESh931wS7vk0CdCi9P/0C/OkDhnwcxklI7ia4LMcHlhwkxUsiEV/a9cBd + z+3ARsDcSka1IBQIi5tzbHDapxL3YfjH79aF3jKlxHOILtWgUS5HRSfv+ld4sz0fUIfMjlR1LwVp + eVeAP7ym2EnuIiui73H7ya8U+tHTxtVP1BqhjaIeGsnvSNLnyW+oXN0dUOayjaUBhWD3v0kJmodB + wiJ0Gu46L5YCz3dz988GbMBN4b96oR1KP2Ozn6SF87uP0XXP1zza0hoGy/2KTL3nvTU3VQe242yH + 3Eu5x9vlIQ+Qe91fWCmib7wGApNAN3styL9cHGO5cEIB3UKy0FE7nw3uGoYpNB2UEdsIuBHjTZ7+ + 8BaGNcOOa/44Qagg64JCMX7n66d6l9Ai7R2pSPTo+l73Bifbz1Esrka8810H7vzuXz14rzek0DPg + G7OBquebIX5VsLqJgnSZzz2sFGsIM3/J0S2xzGb7yfcUTOVFRWZy3hfBFiSFOlveieHxN/qvnqqn + zotcUCA09FM4KrSeJ42ch08c73jgDHf+jqw8mY31KNSDdP7JB6I77yHfkp5nlT97vKt5Bba67pO/ + emg4Q9lr9vgvK7paTJgttCSueWqlf3oDQrft2WyXj21ClB7+4msT/7ZHWoClNHa8oxK62q4L4a4P + hcI+tfanDscKnpYvChcken/1Gig737v1rz69zh69wpBNDiHrPCYwtcdVV6DzO5MnjHlva94z+/f+ + eCGS3CwWyYp/elApX7N8+6v30B99kb94MV04oQRntHLoGCnFuAVq2MLPC294TDMT0IBeZQhawydB + FT7jVXHpIP0vLQXCf28pYLxcIuHasfEyZs4gw+bX4TgqTzFdgzCEH212SBjqs7HdfS5SYoNyIQMs + rtna94uHr5+pE5NPS29zg6yHAUhXEhDRijnr2DnAXc8euibyveFN/EiB9x1iEtbtJV/62/8BAAD/ + /6Rdy7aqPLN9IBpyT9LkJiJggoCKPUBEQEVuAfL0Z7D21/x7p7nHWNsBoWrWnLOSVGkh+eAM2ywk + L5s5echh+b4SjFKn9ubObEsIvvqV3Kkke2zMxissiXWg4dgYHg8FS0PP6arTo56RjN5Ojgi9vA3I + s8EcGIa5XaE/pcUUyfy5ZlVRGwjnmkjw57PU/f39wrDxbDQxs/jU86rqHPKVqprq3p4yVkxGAOVV + FWjSMjcaVvXIQWwHjBhDXAF6EbQCfnaX58QpqwCYan15+JYvISnGMur5eZtqrVrKnj6IU0ZTeOcx + lDStIEebkXot908NQoM9yQnGnTcdPbWAVQi/NPF2db/eRMFB6vvn0ZjmALDBOlkgEO43Qn7drp4l + o7bRc/I1+ijVxptwm11BmWJvajor66UvslwEk7qaeLvgPXY/61foLqFHjv79zMQ9VRp4vuo5wQfc + g9FZcQxeXnMlWJgumSTG1IXPHzaJIy1DPQ9zOSOxmCOScO8T4Pu7VqEIn9mURvenOYC1npC8toze + Ry/x+MEuZSRX1Yp5rnx6vDR6BnoNdjohpfllrLv5MxSPzpmaZm5nUu3WPuQX1SD44QS1aOp3Fz6n + WCePEdu9WFqFDF/ZcKPx3o0jdjs5PMR2ytPj930B0ufjcRAPpUqwIl6zgYHOgW7gGjRefdhPWih3 + 6pO399Qsg9FcDtnHR+Juzmj8DdSI5dcjhDDyKrLFb8aLXTeBn3MA1PWOyJtur4cDvbwLqGO/TY/n + kXtF6JlNxI2XZy1W6zOAXj6faeLvrVq6ilqDyrePMf+07+bCNYELP8XlRpIk+2bSpXQqSBxTpwcZ + aD2vpH0K8VWW6TNMVbB6OJ3ha4FPclqSL2PddZggNJYnffSibc4rOXIQ2PczsQTtwRZPsjn45MQ9 + ORJ9ydj9o4fIP633kV3bbou3mwbPr3s1KeLv7s1Dps1IuM02STxkRlI3NCsSxvJI72udROL1mauw + vQoLIbYle6Mr2jzc1gOjs6x768WJJ6iS354W2bCdOPEGH1bj8KWneDAy0fXTUoVtX5Pj8T3Xi68Q + H77HRzBVrf8CgjXsP7D1pImeiK2Zs2rXDVS75Uii3sE939Oyhb5TpuRR+P/ywf37/uSkqr9o3dN7 + 9W+9Tt/BYjNY6wGJTXqdvkjXM/F5v4qolQQFt/TteeLhoWqqRNSc/nueYEc4+JnGlFjmFG270h8i + 3PCJEEdV6sUpcAmh4n2pU9ZOJj2Gzoat/aXEyR+HWsr7H4RVjX/EDfe7bHFftgp/0YGj2Cq9XpoO + pwI+eWwTknGwZsvL1qB7WS3q1MSJRr8+OFBxWnmadoHIaLSUBgrleiYmCylgPPh06B3uPZIE3j5j + 77puAXT0gjrn+t2LqYo6qF6OB2qC8lzzw75doRcaZ7zOiRnxPXUaWB2mijzqT2N+rk/IwZrGPEme + 3hfM3a2MIalrh56StfakMjcGVKa+RyN+msEMS8tGAVZOxNnyfdnwHL7HCyERxTRa99a9Usuj6JAj + A0kvLScbA/8kpwRbhZcNY95CePaijJ5+7sdbremcIBF34Zbvn2ytiluBAqFOMGuSyVu1r/yBEtRa + GlZDGYnWTQnhU/nY2/OZ3jzmJadWPnzRPzwXG+82y2qgH+mDqnbPXoeOh8+o0Ih19OOaXwPXhmqv + e5gV4hAt1nVs4FtHLuZqdclYlGsGOpXhhLmqOUd8q2k2rO/TSo7C/Q6ki9uWUC2PLk2vxx34cSTB + UFqClqTW42Euu0+QoDCse4L3vBfNi6xv+dkX9LTEh4wXr50KFAUYxJg4o55FrRKRJLYtvVsH2s9T + 8cLQBa1Do1c11PRhdD4UcRpgllh9vVrmPYGtfpiocx9tsFjjaYD1015xo+ZF3T8GV4OhYX4pIZ3q + rc4zxIiEwMRKl90yacpPCXQzw5xY7vt/eOrAdn2rFM+Y9xh7fxrwdS8VxaE99qs931so+KtJzLP/ + A/P67ix4mueVGq2vA+kilBWS+rQmxjLXPXuxDsK/7/3UhhtjMSsD1LwOJnGOFxOIOARX+LLxVk+G + i7nY6ceCVTt0JPrxE1sDLRuQ8HDtibt9MJOEcJKhW7Y2vatL6rHvd3D/4pniwWX93FOtQa/r506K + KD/VUswcH9Y/yJPIvbbRQn4HGb4kv6DP92fnLYQj/N96kgQvTc//1YNIjTgaWeLXW3ZATlAtxCop + 0oSytr+3DcCvVqHJntSm9KRGAn+nm4q5qgyAeHisBny2UKd4i58ZiQ2GbrkeqBlWP9D3oy/C86cu + qXUMLiaTLjSE50+/zZqbZrA6x9SB9RMzjD5XC4h/eAyZ0pK/+BUL/Vqif3gjZkO9hvfYQW9GYuok + 2SHqTmeAIcKgI4656EA8J7kBVdLviXnU2my9FPGMBFYRGj+thDFx93WRaK5nenqWdbTsQBCjJ8fZ + 0650uWi1zCVHyi/l8CQXojns3takvvPRJRcT7thoRKMPxXsaTZOWdP3qOKoF/MLIiFN+W0YLy02h + Es2QnIhTbviH1b96htl7OAGxMIoOKk4qTnKf/Ri9g18ASVvvMROtGXyvkjP8vT+1av8OmGzQBgLk + 5f/w+Nu2TYCENnSJmft+L1j6u4U8bA1yeha1yS5PJ4Fq6bkTOvFavxBEJiCq7h1XcmOBAbqDDfx6 + fpID3OmmwG33p4HcjKjT9Mdo5k5+iqrEfuN7zi6esCNzAGv8mTAXy1M9o7JxUPt9S/Se/CLAkuZl + oTK13UlmvQfYTSpnJGXO648Psil9o0lVyd0kWJ/cur+DV6jUx3zGcnB69+tl5Vv42sOYFNdgG2SB + 9AK5bquRZ3t9goVTAhtJYtdi7uXOYNypcwily/ya5Pjy6Wfx6opQ4V8GjXp7itjf+n0t4UXNCo4m + lfVvDutGFOmGxzV7jK4L3uh7nlT9lwGWKD8Neii4kBv4aUyizruDz1o0t1mtNWtpqafo7T8cSs52 + 5rHSNjr4x4+SNerrf88nPo0LMVkceCwN9RyUghhhpFRHc+5ubQx/D4Gj4TvXPeH4xB1oAqphOY7s + jIo/asGKwz09/Xw74xdZH/74ET3a0uzNyGuw+vraj2n3UQuwun5YQllfB1wg+dpPify4QtViFrG4 + cudN1XoLYDjW4xQq8O0xWf8WoHxjTE4FrsH860sXfvjvkzj7kwGkrH01EGGlo0d5r5pT/Xx+gPpU + DqSIipGtVxdpkNN6hbq3x66nl6eTQq8qL3ibIp+xyTk1f3ySmIXoR4OUeBb8ioeempfAjaRFmhwo + ZUZJDTjsmWglSwpDdl42vbNkUzhBR0UNmKff9JK99QQzBxIj2dE4sMTt9/cf+JJwQZ04siN+fbsa + LCmHp9R6IHOKUngF3tpe6eMCX/3qSmkFUXdf6AHUmsnyqw6hqDr3CanqMRNf2dOCdQEX8lCaY8SG + 6W1AouhHEtGA9Cwu2hhKfdn80xPsxSoImn0DacGnQs2WynYhyKPLpEYXrt627H3+4SmxbTlj0+GU + A5y7EiGGJvWrT1IZnkRjIdZjkPsBeb4Do1iXsLxD26n4QFihOveY4pe/eKudKSuEXPbByvEd9J3R + zRzCuSHSdOPbtEgMH/Kw1GkM5iJaUB0YqLQGd5KQrkfzrh5K+LnvE5Jkut3zDHYhCP3Xmx67TMqm + YMh4eHaVhKbxsuvH/XTiYcU+AzlVcVMvPiYYBvHvTFPrDutFPzccetaTQRwgjRFr2yGE3/7QUnwN + iTkDx5sBp/2UiWcNBGu8xDlsgmZHimAdGd3wS/Vu6XnDAwNIf/ULX0sBq9Gl6LvLCjsIXsvtT097 + i45GC7ipbOCffFRrWpjVFQZEx9R0wwPY+NysVsa1oia/nqP1XqMCIisbqCklQb3+6SMiKw45iqPS + s+feraD/c56EVCKXscfNsFVZNhg1tfkTzT+tdYErdh7FUTmZ7FaV4h+foUbHv6Il2B04UHafzVKX + NI9dPO0D29ueEQu3QtaCwuOhuxhHzK0c3zP+/Jnha8AZVtRt8JgPIg2KNEkoeaSPfk3kyxX6fFjT + k1K27LNPlw6dLk5Ho03vrTV/q2B4eLUUw+rar+4pbNXNPyAOOk/msALXRuXcxJjl2yCf31AG8Jd8 + d3iduKpfgysTwTfYtkDuwImJ5zHiUPD0yKRoe5KJT/M6w5MwU5KEyrse5uo3Qe+7xoS4WMnWt3+T + IXnUBjmN2K5pp1sDDNTlRp0Z9T1r/LqAJPEMekTvLGNvpR9U+bsuhHTcLloPB4XbTtFJ1DxUB2/e + +DZQ096hzkP4sqG/bxc5H8AD09x4ZOvGv5WA9hHBUTGCNcriBAnhesTyFm+LnWIDft/CD/+caDHH + LT6VLX8nljuDR1nzySGQXik55pTvx4Nt++DbXzqC/emULX5DAggZaMlR0zH7GdyIoSCvmJ7exttc + 7ew+gZcXx/R5x7k3i9dKRWIz30nxDhewFnpR/uktirOJsNUcFgw/zjcmZpNMZrvU+gy3eMKKfsOA + KROdYFvtReJaj4c391bZgtd1SGlq6tCcJ/4VwlPpjNP6mcqaXZ5agjb+TTf8NpcTIDn0zishbnQp + 6hn5fgirw+c1KcojzaZHVwSgxvxMkufxUEuRXWpo43ckDcaduZraYsPwtnTUesyKt2bwwqP3SPAk + O3pjrs/pusIvkWpyKlwzWvV2HsBr2/LvKKexpwL8rDAqXgI1mFaB4WdoMRKMYE+tS3Pr/+mF6MdU + zMj689gs7uFfPtBjdFyjSeeCAUXqmSNOQPaAV1evg+TRmxR3U1jPi3ycAFJ/jJhSvpibH+ECxUlE + ssVXvWhnXwViU90IuWNo9k9a5VC8txdyyhIjm4es5JFvuilxGnpk/VvuPwAarwfZtkz1i472GkT0 + N1Njq7esOZkletaDQR366vqJxKCBrX6b6SmZtouDg4ZHm97GI1Xtel6bF4disuyoKdpnk9HjfoJ/ + eHM8szATSHuYIaJgJaQ3doA9064Eb5065NTzbzaLV0OEQtg5JN6+57wGhgVf1/hGHO43Rf+tFzrI + Ez850KOqRXkQqL8rMb/GCfDSWFsour9kalriwZy52s8hthOenNDnWK8XJx/gn5449uOVrZap5LAB + O4tibI3R6EmYgxte4+lWTdHqN6sK8ddViWNvg9AG62TDt3w6k3BOzXrVoFzBSuaGKWpTHK2enHYQ + WV73j68xdf5CtOE7cb63Y/b+419/9eBEHC0TvTocoCqamJq543viCUYurB6fD7EC65rN4+FngOhe + y5g/+nz9uYlo0xtnjpLSRuAfX9v4+rS749zs5eGbw0B9XbCskJGx2HF86O4TnVjtACK6+B8HyrLG + qGNkOpN+cZPDaPdC1Hx3Y78eDmcZYagicnSVION/hnZFX/J9UVxVi9e50togpXAUegyy1WQxczAk + 7WtPItU911Jv+hBKbvsgGx5H/KrqEPLLqmP0tt7ZqoVBg34PiaOOXRuA3U6lDP/8ofjAxyYT2g+H + 3uh9JjdZ0aI1kVECq4NYU6K1t2g1+8VGdZwzekP6K9v8KQiUkyxtfKX0ZrD2E/yW346c4NWN6DMz + PpDLekCdHcKeaA6Ljz4Nyac/P2Nm5yoAr4y7T3LzO3oi6aIP4mFnTNPVn6I/vxe89lxMTQ6v/+VD + YJk+ZqIR9MNgOyI8v8wn5ro5ZKvDhw6sj/70j09P4R1iKB6NADPvc6jp/HzzQPlVu6ntn120WuM5 + VFt/P9PNv+3//HK48U16EtLW7K9i2UF5XXly4q3WnDf/F4q/+Tqtr6sWSY9rZ0CvSuOJmantvblG + xvCc9QVx6vM2WG1frrAUmjNNuC82pbdidv/y65TzdTSDo6fC8KH/yNFFM6Ap+pXQ3ac6tdohiwZl + 9lL4VGKLhp+p7NlgvrU/f2oq9LU3xcf1msOKFT11/XdhLpwyuxCcf1cSx67ksRV/Enh6V+O0K6ZH + NP7VI/W9+MQA4dujhdld//y9Sb7Tr8f+/DC37LaLtUM/E28ecqCHyhvd+Ee08aMClMQ+UMd+VTXL + uFcLtvpPku3/j35DQrDlK0ZnsWT/6hN63idqvoeRsYvrFNDfaTXBEx9FVPhOPNj0yz99sRpdIMMG + EptiLffMeVWPEPz5Z8effmUzz7k5eGnDZTslyvc0IT8XbPyBnlKr6lejS2RI6uxAcVEE/czOXQBP + wkopweGdCY6DcwhDpdz4otVLW70Dp7TqJgmZer141dYb2/zrZL30YEGnWYPvagwm+SBV9Sxug2MQ + VVZ6lHZ3b30mxQC/qfQhp9NaRqxIDIw2/4cYimzVYnG7Nn/9gImr5bM370gzQWy7K1aPwiOaxd5Y + wQsOT1I87Dlbw2kbLFivz229i2zuadvCjW8Q5/zcm/zv6rjgk2x7/GEl1qM1nD7wlYkJMW38jf78 + X9iIuwOW/UPD1pv4sNSXVJT0lNoVGzk8u8iPuoKenlXds8/b42FV2+32vYeIxc52Uf7Xu2E+ucr1 + P79AysJq2r0r7r98a6uDSDe+Fa36b+ah4pTStPJ5DdbafXbgL1+OvH6v2cupOCgg1acnPy+jRYcD + B8u0OE0K3p09VowdBlLQ1iTZ6vu8Nj8IRUHLqJlonifqUTCAGg+UnE6zZkqPW+dCgaWYOqG0j6RE + fTlQ2ZnaJKML7seN7yubv0hweiX9PK4aRPB0L8gpKDUmbv0uqJZnb2Jn5xjNv0HzIWyXhprp1Gf0 + jz/DEJSYi9WJDbTUE/A+kG1wgR6bG79LUeSwdZL7pxstxu+EIWGKR4/ieO+X3XuO/8XXVs+yVW/l + 6V89Op5+i0d/mvWB8kHr6XF6SHXJt1XxX/z8+ev2fpmQMK4eNf741eNaGVB6aR+Cf0nYz1w1JKAk + 2KFO/3C9uZu0HG78h0Te51szdU85oKaZTU63UK+F05sksFY/Cm5OVwGsdnaeYNjqA73LR7VnTdWX + f/WC4tAZ2Wju3vFfv4WS3EAZ65OBA3/9B6ssFTBMhe7+w1s5f7XeLN22lmvqe1ieTi6YVbv/wCqx + 3pM8kd77bPgKMdxOXcuoZH/+Mmgu3I7iz+fcT9fyoilAqlO8AtzU807xS6VWCxkn3bGLVi1MPn/9 + m4nHgwAm4xJA2GhXRLC+9t56eJwhUi/ZcWI/Hv/T56jVLzPZ/EJzbbzb+qfnsWrq0PtUzjP986/I + 5ud57PsZDCi5a0EO6lnrt9lgOTylYUtMdg2y8m99/dN8p0lA3mwWdm4DRDVI6emqGd56LMMYBfQV + TsrGz6XLsywQOcy7Sdn8gOlwuMt/fAkne2KaLD5uW2YupUESdMamSGL2Qd6ghhu/nwCrRS/480fo + qRc/5pqcUAq/Fqow2vqNNGlem3/fe+RUt1a0cE3igNBnX2Iath1JX2hpyO3LA71flMjc/HWIXl/r + QbHQ8YC91o7/h+/OS3EyHhw9WS0BjojlwYs5wKcJoXwwemLer543YcRi1J4FflLyJQbso9Y8fJ39 + OzXt4Nv/+VNgwxdCNv+xH+e9D6va2vz0e16P+nfUwOZnk6NzmrOZD90YAv0c0WN1vJj8T3fwv/5f + 4h8sJuYtZ4E/fwAH/GSudn4Xga+sDdn4g/nPn936yf/wq5XN2kckuVvkfqznaJjFXwX9k5pOP2Oc + GLuUWoXK58ejR3VJzXU/LTna/I2J8dPMZvgcNPjXH71/zldz3ilDAzb/iTrXnR1Jd6jHEOTHmFg7 + vgDL4WDHqmK6EjE4bd9L2/uq5x6UxHxP2Jv5yM1hEPdnYm3+xqyuZodaT5joPbswMJqXMYd//YJT + V37MGQrD5jfdxknhlMxs2dnAaOPn//JvJOgwwXOwPKj54zHgd9uWt7K0AuqSc+Etf/02FPcTPZWw + iRYjeuP/1+AD+X9vKdi1ZKb2Ue7Y/CAaRCCDZ2K4xyhiVyfiYEODdqqqSGOiUZoVevKORq5S4LFl + 34sp8rnpQLVj+fKmsx5DxNNwIMdoNUxBNO4llL5jTQ6PY26K3holMJ/mjDqT4nhSSvoBEMEJia+/ + Wo/NJtVA+63oxJ9o3Y+D/LiC+WCJJC8G2q+D/PjAeAowdU/SF6zBnsZQurADtcFzjGbJ0ELklfpE + Dof8lc2i+zaQ/ClOxKr9pJYELvmgPoMnei5nnNFf+7oiSei+xOjrPGr+/n75iTJeeFgDYdhKiOI9 + AM0OuRG1yl7uoKC5NdkLiGNz7AgYaje7wzE7Dv1S3+UYlt9tl1niNJ5Ad5wN6eek0Xj/sj32wPIE + f9n9i5kggPr3+nxzoI7HGznkyaGevbVX4blTrvRWymvPROOooTTFDxriVs2Wv79vvyWlxDzp264d + 4YrsEP7ouZ3sTHKnOoSTUbTT6LyfgOcNFqIH/52pe/3E2XizdBt9RKCQU0mqaL1Zxxj2T/NJDsvl + 3Ivq5d3Bexcjsv89AWCHr1HBCv1yegoMB9D9dyhhlQ4dcYv4A7Z44VA3OIha7CfVKzhnIcxmJP9b + X/5VRDkq95ZN7jzQAV91zw9UusueuDgRAUPxKsM0Px3ppS10MOfkDFGg6iUhgvkxxYvTTBAWc03y + 3efUCxftN4AoLyua7MvaXKrPNYdsl/l4sa4gW4xcV+H+7I6TWkUVe8ewDSA2Xza9IHAFs12fE0gP + F5E69HiqWRH+LGRmlUND271FA7p4LkBzrpE7AjcgXLVkgIr7eGNFyGfwOUqHGcYksyYlYDCbZ6mz + UaPfBeIXflNLq3nSoOsFO5rvrq25xJo6wN0+5IiJGKtnyc01sHpLTJ7L++6Jw6DlUO9ASEng+uaa + Ez1HHoILzQLXM5c8yj4AnwuX7pFbZaO8l1WoHn1Cw76G2b/4Y9PTJjYgXzBItt6By6KdSTEtHzDb + /ejC5P6TJhZkYb243S8Bos49p6bvn/WoJVWJVvQOyPZ7ERsGZ0J6p4Q0TPd1xDPTCqGeoopYRd56 + 4yj7V/ByOG6aP5npSVxQVshIp4ru2+IF5gANBnhaQUmtAknekvger051MpH8gmpzVU5MRvPRW6eG + 3UNPaEcfwzHsE/qHF8tXuHGAa+4OSQtLzwT7GQQQPM2aWHao1uOh1jpIRCxPKNYtJu6S2kD8eqbE + TkUZ0EliPLpUloQl8/HOxrO+XflSXAtqgPkCJCwwAyw/XqZm/gu8QXBFA6mdtSfZ+6bWDN6LEE5R + zpHH4vsR43LUwtSP7lQLn5HHn/V3AU7seyV2Ee+ZKNmGA5NPdSH7GVpAvGgBBwurLulBaJi3nvWY + A+NayvT00FW2CnhS4V+86Ob17THns1Tw9t5mMy4CqodueHFo1LqBGFIZZCwQzgbiwiQn13TfRONx + YjPUusNAvUNeZbzTmy6SjHVP//BNwML673vgnYahuT6vW4ta557kqYSHXoxhW0Fdnm2S5S321roj + NjwOmUA1HJx7/jiBEr6FA6LEH3Yee9ysAlXwIxKd87Js3SW9ptant0/ODe2yRWt2HRTPKiH7uFrA + YjZ+B3Nu8qi2X9x+0fJehlp70CZ5X5qeWKZpA0/P7kTtT/3Nlve7L6BXmhPx/FzuV/U8hNB/iohq + 8HBn0kRbGwZfoyD+p/v2s4ytFFIraKjLXtdI4l1xBu42OyoJCenHz+tsw/ZSmvhrna4mnzgGRvZL + NQlmmhOtPN7JcHfB07RKQQeYlZUpkpP3HctATk1pV34MuNUHcvk9sz+8amQuSlYab/OhZ8HuW6B4 + T0AccNjXi3ICLXTa7+nf8+dGrndwX9qHST19jYy/wFJDz29UEUtynHohwq+C8LGe6N4UF/MPj2GY + DZBeBFSwtR2tAkpNd8b8KpumWF7vPnwHNqFech969n6dG2ioH4MamY2yUXK9AIyvZqU2JJy3PK8v + Dm35jnczb/V8Tu4QwpVBrMThKRJDZJTonj0ZVq9XDNgr1UXICTeMB2BX/fLITlf1oW+DIY6l4f3V + P8RZr5b64Lv066SRFO4D94aFHxGzLpJnB93i9Ue0OypN+v6NMZxVs53GQ1x6fPUpMDw6+Ugik4si + FihpAqbmbpH8AxZznbRD8lev8crru5rdHHcb/GBL9HQxCrDm2fUDp3NqTLB3w36ZJHYFn7PqkfBq + HyL+6o8NTA69R+w+ksCwf74MeD7uAmqkFweIK9AhOt/UmKTT8gY8U+cCOtfPi14Lq8wkoks+uqvB + SNKtPi5el6QwI4ee6omuMz4jFUT3Nj4Tr5FIP2dRc4V2yP3wKmn7TKwKF8JK/bjTLpfjurO/UQCk + z3iix3ZyorUfzgUSVoMSd4sHwVV3MrSe15nosbEHq/lUK+WyGGeSJb/Qk8waOojXspoePDhEzCjN + GRnZIG/4qoNePQ8VfB13MdFn9AXrlk/gEM2EXOnKAQovpoyGs7DS5EStnmnN10WHywzoUcl8trrr + kMAfvIyYoRp7a/PjLKhk9x43NL2aa2LKVzDxMU+CtCBm9wxLHunZTp4mfMDZNFKZh0Y2ycShqWTO + qfdqgKjDJ7mevq9sDvW8gPnKeGKk+zpjydZyiXc4poak7SMq4b2r3t3Hg3o3Rc/WSJZd0OP9nTqf + vutXwR4c6AegIadmOkZjIAQlWo67ZOJxEPaC1uxaSMzQpppdPc1VuXAtXNOuIPvlNGVLESofmLS1 + TjzzYUdL8ygnAGeqUT1/DWxhqjzB5FNe6HX/+2VUb64uMu6Dj4EQ4/5fvb+u/InYO7qyWbDrFr2N + U0bvy4MHgzdVJazJV57U3UQBc6c6gIJxelJr//qYSy9PMZjlnUH0snTA3PxQA5hXxWRP2Ntjx4kP + VOuUxsSwXSlall1sA87IB3IR/C5jRu6m8BPChfiVV/bs+CkrlI2cgPnpp/d8nn1t+H5Zb/rc8H2h + AA6qaECB3h/6nS1crCaw/GoVvb8CkK2x9uKgFE8vavr+2ZPej8SHl5f9IgYNV7bAs2vAh04xNWP3 + 5y3poSxQ2RryP/wfmpcqQvn2Nqn26Z16zqPoihZ3NxE9D+rs9wzbBpI4yOnZsi9sOHzDGV2v+o4W + +0QHwjX4YvgxdR2rO2yxRbJ1GTnJ70Ev7XTIeK8LHHgN4UiP44lmrHl1H3ApbY9aV+z2yyNymz8+ + RzyBV+pfnhVXmBXmfuPXlrdqeeNAfKnXicW97DEULCUsVbMhltSyfnmPEoZuhinRjrPdS5EGMFDU + QKB2HQPwteragYndCiSXksD8pyc8bneg+CJoQCrTVATbv/En3VvZ8CxQDq3H1Zq49OIxJp+gC7Z6 + TffRqptrtD/F8B1YZFoC88gEGVutsjcjBX9oyACtH6oPdSAlk9rXRTZ38s4Cf+sXNbeqZ2U1ff70 + ATUAsZkUw3IFzQ4nxJqUrzn81b+97iMabAOg3t/xgqF4lgmN/FysWf3mOVDUaUfNOMW9EMMyQGxI + XHIuy5aNRBcn2MyYElcKBkZRoJRQjJBHXPCcoq0+lcAcckyv4VeKlltwxcofn7HAzTUl0c1XeAQX + Qp6D4PQiOEchOJWfmPiipHt8BBcN2YZRb/Xx3Q/jfIzhiQwPco9XOZvhSUvhwVYWam16aa0fC/cv + vvaONbFl/20MNM6VT28/e/b6SQI8/NOnp4eestVscQh/aXaevpypmvR+2+Xwjy+GgNhgW68ZbvWF + 2kXjZUJsQQvapqbQs3UF0ZA4ho/MR8UTzT0L9VwVbgFzLINtsJ1pSs3jhZG1wwFGTWGyaeQ9DLVu + P0yCDEq2nlY3gaHPKix+mA9YeLxBYFfqnWBpTsAS6OMAYMkC/JHKJWOJOX+QZM0L3Y84zGgozyla + DmpOD7/v01uxsM7or57K3/xpMjNTUrBmozXxxbj0K+PUK/jszZFaO+lirkbpVXC9t87W0nr94V+n + Pp4fnRi0krO/eIRszGdipKIE1s/4yMEnQgeKAX6z9REZPDx34Drtkl9krt3QFWBYWEV17baL6Awi + rHrBgaOe7xFzlbEvw92HWOQUhFO0qHdphhvfIF6czv2MzvqMrhEyp+VHhIxVhemjay0zSoJ06Vnz + 7jmoHNKIOtuW4OGVhja6VupjuyjZ6PnoiH11gZI6jU58zZZd0BowuB87oi9THnV2n3eIq2J/AqXM + 6qFKjzYw87LAcsrl3lpcga+a9FWSyCq4eq3v8wdF86PHv7x0gWh9heDf8z5+hcKGPKM2xO9HRZ65 + zP/hgw8v/L4mRtV0GYutvoF3dNlhYdO/U5mGH/SpVYmaQjzU60VLIFRPZ2mrDyET/vQ0YnWIJWRo + 3vT+jRbsOkunZz9m0cYvE3D+8TPZa7YIuqpwOXAqm5gchUHMhkB4Bagaehu/B9SyBRuHCSrJ9U63 + 989WglAJ9ZscEFvvxmhYJc2GtqBkWHmTW9SeuJumKk76myR/eJjrUSIzjF+XF8GGm0aL3kwdeDZ+ + gD9V9AK/a0B9FeDDg3pCE3vL/vkKkajBI8leCdczLv7JsBrpQD0l6ur1cfMxPH9Fi+CvyUcrON1l + SA4ZR/bJ2YmYcZMN6HHogNWKP7O+KEQMJz0PaXRANKNY4VOotOGRHAPjwPqZJTmcv8YHi3UM2Gw0 + lwRZ+nYKrKFuRLs2iNUzlNZp/dSfbF135hVcwuOBxPvFqyWnkh1oTdutPkG0RAv3OlTqV2hritmS + g1lvPgl6vD4T1YOIRMuvVUQoSX00AVQN5spUGUJDbYw/PAEtU+dc2fjmBDb9997WB8h2M1KD6b9s + Rufj/E/f+EXueowZUPvHV3zDkMwZPQoZeg+jJ7oyxJkYybOLrDmQqLnF47RIzgeu3E8kxvXqA7oA + FyvXWmVE++YPk3X8WKhh3w3koETHnt5vUq7++RXmO8n7xem9BG78cOL6UACLHNoGWFw0kUPyW7b6 + vPJQONu/idsVXrZkJPWRT+eRRuM17hdwn2aFfKOCngj7mktOjj7c9DExh3dpzlrShZC8/YoavblE + P5572bDePRNqHsYj4GXX0+DNlt7Ex2Tu52EOr0rVtSm5BGYH2pNohvD6Ug/kiarRZKt5MmCd5dqf + X2Bu68/Dokpj3F33++xf/ljn+0g0SYHeMsiPGOoHrqSOvgb1ePVHHmx4QvxNH7D3+BngyvUiOSBD + M8XjpwzhZxXP1P2aLKLmcFDhxK4F3i2Wa/573rnVIMlQ+OlXyl4YVcPPJtdj+970R5giyZj3xNrZ + Wi10POLg7uJPxN99xnopwqVBf/X0j/+x2BE4+H7Zb8zy3+ytDzwXYHa8nB44c7u1DBkz5PTiSo4/ + HGXt933EsBCzgdjd6oC5Kowc/Q4pmeavL/VLdLQLCJA8Ul3JOsacj1L+8Vd6VLxDtOn3ErrQEcjp + /URsrO9zjJ7Xs0+wuLMiHp60BP7kYP8vX5iE9w7y58Ui2HXCTPKmMETX945u6zn3zPoKJWpI5uBm + d7VNHp7DFZxbPiUxdYNazLyzhdTM6clpHvRIuh+2jmQzXKhGU8Fj/mq0KAVWRG/b+i+CO4bq6dyp + k9DsAjaP8Fqg4KM5m35ZvSUltQ8z37hT204fjGnle7tIWM+oL7WXmv2GboLz/VBhsOllJtnbLSz3 + hP3zx8b3q7NhP3IKRpvfKMKTJqPTXFo0OU9avQr4I6tclK5Yaj9vb8v3FGmpB6ekzzJzJUubwH6A + NT0m51+27utKRhnZ95g3jItJV3NvABzm5fQ1OT5q/elcgjwQEnobP5n5ENx3CNVTJOGgGOd6/IyT + D1+pktJ9bHzYohzVAKBXI1Jj06vtWR8LgC+vldqAHADb5U0Lwl+rYdB8bHN2V6jCca1kjOL1Hi3U + lEpwqyeTHFGHozWLMl5d5DUkf/poXnaRCNFcaFQrHr05D3w0/dVrzO3bQ9QWoXKFKjocsII6nDFX + /GjwY5m3P30HJhFfVPiubECxVLJo+eM/+6ej0aTK3ia/f/60v+ehHgrteiivrwkuvdQQ/8wdPOHm + 5zw83xVt02vvbN7i+Z9faTD9GC1d24pg88MmbVVsb+Vt5KjBzZqIlT4GjxmlN0PS+P7ENj4lNC9m + wy3+6NG8mOas5X2r3p18IdHM6/2sHFUDbPqeGO5dZtQciAqNx8Jv+fD98wtS2JThDsuGcfVWKlUN + vDvFQvVmR8H0ujo+jGBqTDw8qGw86/kA7ZdskquurmDyuVsJzweuISRPjv206XF4kOlIj4/zM2LW + 8zfDddtC6RQo8RZ4iROw4Rklg+DUf3wSvTrBxTCkWS/un0kFcJUGVFf9ZzToyTkAVhGnNKfdo5// + 1WfDqLFE+opN+37sYLrzwDTfUemtgRDMMLhaCXm04ztaL/7HgptexMv2e7OZze2fPzZJsdt5THDH + FcIT/5gWZ39m62r6qwrpqhBTiZxeUvZtCpXbdRukOXbsd7OOFpysV4PFk2Qz4fMOCxDTsMGr3g1Z + vwkdIH9LRuzwMGTT960Pagh7Y5rt6unNgtGFMN75Mc0aidbLvq46FHqLPy3LBLPhYnX8P3wPCv9V + b3xlQPluemEOH6ZoPn7mGb4SdaIOUzhz9tdQBZW7DSo+zoea5w0QwKNTjMTdJyVgV/8SK4Mvmljc + KxNjnvpNYQesG30ERstW9MApjNfzlxq4VaPp/brH8E/P5CEFNWMGr0FN0e3p11A/ExxqrXDz2/A8 + qZ25+tyzVP/yXQbfoF6uVmjD0vESigHlAfu+dagKsQfIPlmljHHxS0Z6on4mFgNU//U3YF+af/2C + 8d/7qq8jivF3q9f8lp8KfeNu4j+Z5XWPm4Xhtxke5JkfNG/Z4h9t60/98/SqZ2U/t2A+HlfqV33f + 95seV5zLx8NAidyeHeqjC298dyQHxWy8aXt/8Of37wW/izY/WIOo/lYbHzxl0uuqFeiPLxqZ/YjW + FRw5+LrxDgmk5OQt71dlwZ8SZvQwvHVzVvZyq6bQ+pFbK7r1vKe7EhjoF0/Vlt9iBJcS1SjJiXai + Vc+k8FZBR67Q1m87gKlIYQMzqBKqpRNfD/Yz0OBzf7EpGffYm0ftpv7xX6InVcDWRdI+ULsfP1OX + CgKY1YvowHlvu1h5aRc2ut0rhZmv3adZX3G9+OpFhRvfp3shp2zd/CawfU/q0+PU030/yuCnBBkh + jejXY3lNNrgeRXyOWRrNF1gaf+tP93E4RH/5hh7V28JCXv7AvEhnCwnM3OP6MB6ZuOzyK3z1ykwS + V8OmxJU7Q12H3sVib+BoOdROBxstexJ748/TSGcR/fWjLslrBKuMLflP/xN/XzZed6gdFX50mNFE + lEpz8abzDIXAiigRmos3XJ3GRxu/3Y6AaUz6jv4EZ2By+PWnF/TkqMFyb9tYpXqf9Tz3+kCBOD6J + u1QzBS5eUxTCn0FCaVEAG+liIYn/6NRPx6ie4L0w/vz7v/rJmGS7KXi2kUwOg/Cp2brzGjiS7kL2 + Lecz8f17W2h1BoOG4fearXrzkP/6GXjtIxH8xQts95+ImChs+vm06jKU3oNE9GS9ZgN8fGX4g7eR + mIeHFfH+GsporL8F3SswZTM4Jhrc/FUsX7HXz+937cM/P15X4J1N7bLngST9IpIUvtkzLQ5aVB2n + eELNdMxEdN9rqJtOCj0KvheJt/i5DV5rVloYrhrNeUYtoLfilf7VU2FXcpXSpe6Z4H3yYjNRQAuW + m+jTQymv9XCzNB6l/vlO4p0keNP3Z9rwKihPckLHMmKuOBkwUeob9d2A79+HWmvR7u0Wk8jOBMw8 + t/BQd6BI/vrPVA5xCcAg3+hlOU3Rgg0yQPP0tjBYrKO3lNeAg+b8+E47Ier7dYQnCH/dTSeaKBve + Ujzt4c9/ooQAN5r/+jmvg5zQmHZZ37bNvOnTQ42riqds2cW/BBbxI6D4JDlg/NNvW35P8io33voq + Iu7Pz59m9wW8NXaEATpKHU27nx16q544q/qyt1GSjkXBdBpn7f+1pUD531sKXsUaUuvHvSO2ZpcE + /ZbdTPyx79l8K7UV0jWBBJvbCWAoByWkxek5fcSrZgoHzD4osdw9dfVyjKaMO2Pl/nSlCZBXaIo7 + vGtg+JUv5CzvzkxI/D1EuYwsYrneq5fAtdbgIb5BvMKn7y3fcLThjo8GPO8Or5plWltA7hco5Pn2 + XE+w7nULHG6nTIMkfT32Fc8rGODs0axkfbbQX1JBYEw6lvh618/DsqTQX8ttNg1wI/7ImSuSQ/ik + TlVxPfv+8hK6v7dE9MO17ufCLTv01keDOqoqZGs2OC4clEqi+ObuvUWNKAfPhf8khWp+6tmDZY6q + 0bhj4fuyPTHiaw1S+64SmwVVJs23QYVFe4ym7uTm2ao+2gY01V6ailJS2UKS3wy7F7bJUQsBq3XH + yYHDIYVmNL6AVX6aMsoki6eJ+xt7ZixiAsz3rpgqTWnqxfI/KfL84krt4yes+3cnifD25Fpiln7V + C8XtWUA2p2/qlczLWHspXbSQ65444ts2l1YiGLYfiOgJlnvAH8bCgPfgKRCP+BVYv6QsEL3q+4mi + WmPCcloHGOZCRvRLmGUrWR8ixNK7xLdJPLJZQ90V9IaDaerKrGe3oImhODsHYvs33ZMex2ZF7+dd + mETubXj8kxoz9ENZpnGfJ2w9FJqGupPxI+bOO5uiidEH7klYkH10JBnPT10Mu5P2o3fyBREbHlsJ + bkqVkMf5lon9TS9gDnFCPRuVbMygocHwnI14OVzresKgahAWw5ruvcmIRIvdBiROJ0oPluQCPgq4 + K2REOpOTTsae1dM8o1UcKDks8NuvOyw1f9+L7iEeosVtBBdVF58n2U+sIunUlxP8OF5N99GRRsO9 + XkJ4fzoScbLDuZ+dQ7Cdkh4NcrnYDhAuV9GAgaqb9EzUGCxci31le1/6QL/OXMu39oHiKfpiznFj + sHpJP8u1S08UJ20CFn1JIDzCSCab3o7EMVU4dXfKL8TQ0oINsql1aIeXcOJ+b6Nej6+5AvcP9yAH + S+rY0LN8gLqq1aSYey0Shq95RX94cHPCG5PqSZ7/xTN5MrNn0Q9y6oTON6IL+5031SG14XWnlfTs + 5nq0nm5OAbO1qqnb86CnRQtsSJTHTB7gpkfSFMEESmebEPvwu3t8qNxTeLh9g+lfvr96J4RjFbxJ + btROJtjVlwNlrhrkudZzxPDDcUCnxi09nDJoTiicKwR3SKbHnyP2q/apZBTo0ZWYp2XvCT9u7qBw + ljV6FpTYEwLjOUP+Xh8mMT48orWTgA0S14wIft6/Zt+exAlK7vtDboHf1SvflA5yn+6N2vHhkQlI + /KxQjNZgW8+qboJr2KCHNndkbz61jM+VVYTn9rf773u+YV/AJvdbYl61ryl9LDWFdpyY5KB6x3rp + U2xBkq2QesuHq8fK/ybqS/j+8DwDOxMShRfR71YFWJiVoZ/42yaRb48fPUhp5knoG6yI/sI73Z98 + 0WSicCigjvUXcWq9iVbefXfw+7ZGsuUXEMzWxxBkfE1SvTxFvLU3U5QU3wYrcEiy/+Pq23oV9LV9 + 39en2Pm/mhW5Sdv9xk1ALi0IIiYnJ6CIgorcCjQ53/0E58p+2M9To1NGf7cx2rLzJvfghKeFOnGQ + uQ1fHhYkZYuBN9WYrHdbUxN8eulIrtg/5wstngX6uvaFnH1ZBWIonUo03NWAHgNs5NPudBnBMtTe + 2L+uBzY/L30Dy6ukES9wJta6abfAj6MyciFHzxU+n30CHw5WaVQN10oE+YbbDdo3o+YHaJXQfbMS + loW3JUpUppGoh94C7cu9pOrQHt3FYPcRPjr7QLxuPEbcWKUCciajXO8ml/MZf7QY3fYxIIfAVHNx + LHcN2KWmTvWTd9Tn4SbUkMa9TW7B7tpx4tc00eyZM7GWUGCDr5UYxaN0IDcznVlfoCqGHOqrUY6A + 0y2VUmiwGqUv5gVtApN5mm1UCT0hhcu/8ra3GxkOreHQHKc+EGEDTYAxv1AlvIXgr74DFJxXvj1W + /PmU9fDwEC7UeBpLN3uy0EPElpJaE6uiwXxSCJWz59KwPLqAf7NihF67Whrn4XSiMvoSPH/3LnG2 + Otb54ny+orhreaLZ8dxNZJZSIA35Zqy/m30unKGnwO0TUozQ13H5vbTbyKfTUFJ1PUVIGL1LBrJQ + t4mR0CPrLTkKYCJiQFR13FVT/vkuoL2kJc0h2OQsMDcO5IumI3nQJpXA7S/CzsLXgSTnxQfLx9oq + kNXKSAIaXfWFFu0V3tI3ofa5r6sx2OYmPMgQEGvl82WbcwI8fIYPibn7pE+mzWQYLcAmBncP3OFh + 5TV0WTRQs7peARf6ew7BW8/I9RTxrvCqrgIcrWVDz9vYB7zZhilank4x8vejodOz/jHRqh/oTa68 + nLmDp8BGeNuEAJB0vGACB5Zv5UUP8znt2Pj2r3Bfeh9aSLIWicdjYCBb7QDeHga+msTwi6H/sLfr + lbUkn3dqIQFvevXjDh8+YBZMZqP0FnyI7nSffOHqxkb4lOTU5C4mE0LBjJH1bBziq/UamZ+sI+qg + JxE9Imkn1uZphGR3n4hTBW0+1afFRslWK+k9/Nj5fD5lIxr20kgPYjyDOTVlGwoubMlhF3bR2+Zr + CW360ie61yiMP/hpAPQrB0gxK6TiY5E28EvGduXj2Z3P3EOD+tdbiPoyS8bk9p4B7TmFJLb2FWDf + zw7D9pKVRPssLzA3M8iAcVt3Cax6a9RSLUbNMe0pft9rtvSgesPBIh2e7huYL+rGmiBnQOFPH07E + UEv0ZZJFlXIJu2XFvx9+0GvgrJZ1J3LQ5BOXuMej0ontNjFhh+Ud/dM3x7GKYa26dGxPkqF3+XF+ + olXP0rhO8ohRxdaQy2OD+FxYAf7jhwEyisGlZvyudOZmMoQN181/+DNRCyjroTuYkhCK3VSqkQRf + qNeJXtRpPh/84IjKJbv+ni9b3tPRlCexLKlmx2G1zM9sA1a8JhaHg2hxuMMbOPlOJzev9iO+310z + WJD8NVbGiF3GPCjAw4O7YNRrD8CkR2TKK/7SyFWSin/nOwE04m5P7Mgv1vogAdzPj5pqd6Nwl1cV + c3CpbjnOH3bW8fLBToB3/1ZED/SBTfbl20IsBBU1hURxeXrNA6BudzPVj/Ihn1b8h0+lrcYFhw4T + SjFsUdYbKjmLu5KxR6Er8LSTIdXLRwiGZ5xyYMUPWpRixpb0cEhgovZPnKx6eHYNt4TfVPSpaS+o + Y/xOSVEl6R4ut9ajY1RRNCTr927kPr4AlkdSKohg0yaaqdlgGZZCgJ9vuyHW/dG607G/2j/9gcFX + 0PK5vt0cYPKxSxJ7uXUTrpmD2LkV8ZzJ+5yJmrEAL7E9elIOW32MTWiDEICIeL4R6fPWimuo5NOV + Rs0UgSXFN0e+RPRA8DiaYD5/qkVuTI3H0oZrdLbZfQWgah82Pgkt8p9+hSxFHMFyyrMZbEEJKhCU + BD8SpRMd+ysBE/gXeuBuQj5b8FlA8XD8Uk/vvU4Q8ijdrfqB+MbJjXj5oMTQCe4nPFeHT8TspQmg + L8GaXh7DoZva9e7zTnPwOB9QXk2lSXu4vQjeKMRgiSjykwCyTHJJYtzGaNy0p0xON5gS187jSkxv + jxpdKfcgV00SK7aP+SMA9dYkxhWM0SIdzQaAxstoFKRIn08VO6J915yI2jx8MH+TWw02HtCIeuz0 + XDhJUYmCp19gGckH0L+tSw1nwb2O3LLuQg8FHAOa6PsRBTvY0bWJ9dN31JQ7mvf9vMvgLA8DvcDz + Qe/X+gNeTHjqCeSmM6sVBHQaqj0hx6mvGN3nHNh4O40kpOoA+8pOAPlwPZmV/2KXswv+isRj7q0j + 53XeQykt4btYd+m/la0+81yrwSgKEd2bphRNYxUIP77Fk53JoP/M1hNI/V4d59MR5AuthODPH2k4 + dIDwibkALloVEeuL72yISmeB3vl+IGYmdd10u6gefAo2HGXj7erT/bob4QuNOnULYQbseExNeLQj + h+IdCathEzwSGK1HWpuHUM/FJTm8IWhwRg0kJtFPL4JVj1G7e/HVAh8XE65+khzkjFQsgqaymyPp + TKKilnJaxUKAgmtM6F24VTrz0TxB321eJChKm4nuZ8IQa3sLTx+JrhezlYpMzVymxCCaO+NdngI/ + nm3ihkwGTeNqBqiRM+ENBpU7b3n9ig63o0Vsjcpg+ab9BIfWdLDwugj5XDY+hsOmyelBzmjFDmen + gJbo5bTQFpxPiK47L/blgRZn56Uv4SQ/4UsuKN48kvKnj0201g89KLNazdCTBOj39fD7favx9/qf + P4nlOa34lyrG8s2vTsRc62G58d4VFtbqZssmBqzcwAa0ag1IeOyqnHG97kBCtWDlqz1g3vZkwqbF + IdE356veQ4IKeEdHkR6WrVZ1IVN72OLzm6z+phoOx9pEsiznf/pjVC6vBmjXqKEG55SMtUV9Bbfd + 80wOOuqjKV1CTubv24Z4et93DFRlgJ6OK49cZ32rKc/qJ0LF0RzL7XUCY+t4GITtO8Fc5mzZ7PuW + ABWFVhjV0HBnMLQF8Janjvv8harJ9uoMKIN1GSU1/ESDG9oLMFWbUi29mdFijLoEzaF8Ea9yVJfZ + xi5Dv/VzDPszmPZ12KNxKnt6lt1vxWpVlRE8RvufX+nmax6k6OlfMNmLW8ddLlv4BE33wPSw8l3P + +9MIjfdzHqXcCqtJ425veag+z7HLHs//8CUXxgOGEa9G8wtzNcp4ryZpP2Y6/fkXpysxDVpHBFO0 + nrLAdONNrgzF0XKRmx6u/x+m6sGIxEHtEvmH54Xp59Hf98+Ex4Ouz89tPcfF8BiYE9GUPa2WsEIB + mE9+TJ1ctaPpVpw0UO7NG0Y3LYzYNp089OM/gioFcMKScfDEJx3e7UI3n+mDGlA1Soe65qFjTJs3 + qbzyD8Gmn+f86veAYYI3Pdzzks2evBkhZ3sOFrSSY/MzTgUpfRk+CZq+joYVT+E8ngXiaN+wWqos + KFGYIZf6Xj3kVOBJsatIVBA1Ppxdzvb6FNp6fSTqcNIAJ+l2C9c8DfM7qFeiCCUJnbwa0ZX/qqGd + AhOZ6SamygTeUTfQzAOkPGPi+ZKtL2HxKIAwEkq9n566DF0Bfnrx1lU5WE5dEcAa2RM5QexFixU6 + y5/eS5cuyumrDDBqs+FGLjryIm4PhDegwtbH2/p8cufZl0d4v3X9uPtCt1v1owKE+W4Q2zi/3In3 + pR7aqVPRH75QyO9i+OCOPWY8a9ny8yPLuDsQ9ZVP+tTXnAP09kHXg6LtfM0/NnBsBnPM9Nu7Eu/3 + MYbYL3kSYK1m9FPb4y+PIjjp7tHcaQ+MtuJDGd/VFbLp1h2PUKneGtFAYnUtsJJ6HeEMx9m4N+5Q + 304O2ilBQYxguXTcWo8gTi8Palz4qZtVoV9gyPodUTP5FQ1b3i2geGrWLTHfUW/rmU/hLx8ysu+r + +1u/rfoGRAltrWJ+tQ3AXfd8Gte8qnNgogYMjLIltzDVolm4eB7g6lrF/CmX9LnamAuEXf4Z1zyr + o8LtWaNTnFXEKtI9EMdybtGKb/Sc5n3H7vd3jIJmNKkVnka2nL8LBI3zMom+F4/RX57mOG+TqOzT + Rcu6XoCmH0y88aOdu+YxAZDzKKBYTk+A5Xt4BJ+XOeAgiIdqWtpZQD1cXKKqlzZvizjjgDgyjRre + rY1m3TrWYM1Hqe5yXdc4QSxDeVv0RLW6I1uKR2CiutYw0YMUuc20jnzUT0scd2W9z0XqfBr4enbO + uKS3d8R6RzKBz6UR8UYucIXydncgu/o29eygcAek9wb0DsuJ+MfHu2P4ptjIjwqX+Mv3Us3ac0oR + Trp0bDacrbMn/5Fkwd201BguSz4jYZxAbeQ6IWS70YdqLwVQD4yAqlWRVKzXzQbuYo7SS0j23fKA + rwLCPcBUe6jnbqETewLUQXnNeyx3AUTRkDHGCVFgYOrij3+s+ARHhS4qYK8o28j64fUharbuOqcT + eELBDz94UXHE/l7/88/e+4XdXhDHFsqaPRJPk8SOXTR9gb/6tDCZ9d6L/Qyu/Ez1ZmJsDh9vU7bU + UaOWPr4jcdalEl4mS6H7eXh0fWq0EGi6a2KabceO9ad7D+OSWH958WQ4Zyyv6wELV/6lL8sF45++ + xbxppvm4qN/kz4872nfulp8e4j8Mj5x8/UZzoh9asOpLaq981LjcVpOf4n1HNPOc6svM1RpUammL + pcgv2BJf1l2rnhniecrLajqX9gRJ9X6OvBRfKnZ9aTXU7aAlqmtuwbyEnbcrsuJOzC4hXfNYWIB2 + O8UlefIh7Me38LO/P4ku7ZpuPoLy/eePVvxkE6eAK3w9Ep9agdd204I0GWT30SHKV2XVvAkeMXru + smDcTF7WCSk+rf5fe42ShZWKB0N7BVEUIWrY2M6X1pBScAluPNUevNdRbRYysAgjJdb5aLt8IhgJ + VGWtwoJDE8b9/OSaB49sat/VZFtp/Zc3rP48X650auDn22zoge4p67oJPcGa5+IdwHU3HXdhBp+7 + NKDXKAEVNTn9DcIC36kKhCFaPOTL0Dzeeup5VGdjcv7KcMLLepHh2e7mYDIbuD+bxsgESPXHbfhe + 4S/vKTqU5myqnw6SzX5LtPO6ax7rfgN++f8R3j2dUab1KLmU1rjqvWj2tdIDLehe1Ebexv16fCuD + XDQ5qjHr1Q2pudh/+ZvPUzEfoCdx8Bh/1bFe9S3T+vYN+xq+abzix3RJoAJWv0lV7YmruajjHuqB + GfzeH/353dWv4/ZXf8plaOFPb5FN/9KZLUIDxpEYjPkz3LC/36vSnoziItBWvVovMKytkRzozgBz + Wx059OWJMS4BrqOJM8kRVlUBMBMg0Rnk5xiekB1QS3a/HePdSwlvG7PBu5C8OrZxl42cXzJl5LfZ + WacxvjsQ2B9C/bhQ9J8eAmuejKEoWvpysDYKJJAaVLdk6Q8PoB5efLIf2MgWyVsEaF9HjhKJdmBY + jAGC8l5B4uwzxRXWPAGmC1PHTdqkjJmqIsnUTkKirfjx11/KpXymfjbZ1biF7yt4bVWF3L3C0IVH + 0mjyqt8xG+qGLb3P9ejrOheqca9d1BSEKxANC44qynZg8y9Pb3who2qW3yv6arfCbl2v4+r32Lz2 + 9+D5a7lEu1c6m0dxZ8Jr//Exp29NV+wmvgQrXo6sqKWIPdzdBn6C8koIqko2n7mvBpW0std+20tf + SGlMwCaKQg9tmIEluzsyhLeRkV8+M7dVxslf6ZrS7LpRmaj1zzf86TkxOehs2R/fBrwf9jnRyr7J + l1gt49/zIsb3vq1Y3IQtEoW6IYmTWZWg7ucjLLLrHUvHqoz6pg0ylBr2fs23H2x6nk8F+uVn9zy+ + gfX7KpD/zJjs32sLW0HPBIZNt6U61a7RmPeKA9d8ACNYvlifPGoD3fYJoKZ3frhzz9lv6LzUN/WX + uI0Y74YlyhpuoL7lvQGT3qME57RoyMpvuii/3DfkvvaRRNr1ldO1Xwgb52NS7S4xffnx4Vo/1LAy + po9Ac5a/PM3l3ac+W/TlwYqExdof2jD2evUKICC1aN5u3x1L6dKgjYAGYs32sZtMvTHgLw/UvaYE + 1ODfMgw2r5gonFq7zJ9gCdf3k2AfI31mRXlF6CikVFHclP3wAG0kySBqxFnd2g8LYC4n9rhb8Ywp + wHXgTn3lJH0+i6o7B338yzfGV8GKfDqRSEGkqp804NZTSdZ+NFr5hXrYF6MFHaWnDDcNoBnfWUzM + HpkJx092IAd4/uoMNtCAndh+qDPKu3ws3pWEno+6I1m0XkRWBmUC703/Xv0C1KfZ7Z5wK08xvQ80 + z4dT+PSQcoo4PMmR19F8DwO422ku8S+fOh+t0Jl+ec4YCXamz/QaBTBs64TaN6l0x1htEnA/WDl+ + Na3T8W6oTD+9QtztcmFLvrl4EN1fOvWdY732S/sEbsfsRk1SuWzO0CuGxygxyJr/V395F7CCI7VR + pzMWRCCDVZak4/SmDuBD54DB17slRLuAC2DXNsmg8/2IuFn5ld2zrIQfw37RpL9zbu8roQL/M1Lw + r//6r/+zDgj8825uxWsdDBiKefj3/4wK/Fv8d//OXq/fYME/Y5+VxT///Z8RhH++XfP+Dv93aOri + 06+zBkiW+L9xg3+GZshe/+tP/1o/8P/96/8DAAD//wMA1w8O07oFAgA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac8426920f96b-SJC + - 9953e4260eb015fd-SJC Connection: - keep-alive Content-Encoding: @@ -2929,19 +2959,19 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:40 GMT + - Mon, 27 Oct 2025 17:25:11 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=mcwatbnjy7Gp9F94I1SeFUln6qrAGsaTGPVVbrOC1fo-1760987080-1.0.1.1-Qf2IiAOFA.S07Gs0BsaNtaIiQnNY3l0rAlqVaVqG0kN7PGuWiYU8yd1Qlo2rIN0XTsSfT7V1MEf5oVQWoisYuJ6w1Sq6JLz8zyyCxlj.B3o; - path=/; expires=Mon, 20-Oct-25 19:34:40 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=EYJiyghLxarrRYgLFJ6H_Qs7aWbNNf33EptOBbyqRcE-1761585911-1.0.1.1-LrCKaxRwef6VmO19zo176LYjWeDAh3V6uEoCvOOmhzXW2vQYewoUzhkuwaj5M2YgE9IMcvdJsYM4hyZ.nfu4w7MwaKW.807jttsmJ.Ykt48; + path=/; expires=Mon, 27-Oct-25 17:55:11 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=AhoVA0fjtuMaFQWt9o3ZVYjuc.SWPkDznQ614z3_.EE-1760987080511-0.0.1.1-604800000; + - _cfuvid=qVdBffIQwAgcTl6.K_6D3NgjqY1MXZve8l9KkeIiXGU-1761585911259-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-85b94c5584-sj2fx + - envoy-router-86c9dc6598-lpmw8 X-Content-Type-Options: - nosniff alt-svc: @@ -2953,7 +2983,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "342" + - "318" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -2961,7 +2991,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "366" + - "440" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -2971,13 +3001,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979820" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_4be5c4015b364654b93ee7999092f102 + - req_ee70dfe82ed44a86a430a17b00861df4 status: code: 200 message: OK @@ -3027,122 +3057,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+qTLumz79fsfKe2jsyKFV8Z8wylwKidjodQURQZKyCqp393zu4Oj2cmIgE - 4alnuO+L+s9//fnzT5vVRT798+8//3yqcfrnv63HHvfp/s+///z3f/358+fPf/4+/78ziyYrHo/q - W/5O//1YfR/F8s+//3D/58j/Penff/5xlehBXJl7scWNrbf8ntRHCOVeqeec5rlEa6ojbSs0bM5p - UsDhs9xIZMyHWlBkW5J3R1EiTjpWoAfHIIf65uIgdAicWDiBiYPNLmREj4cj40eFjfKiUYOkZ/cN - GIbPQipFGuJNHCae+MS0kvWavsizcB4D6XaXEqKKDci4ZsdM7HbPEpaqi8L51toDPypghPuw+RKU - mXI9TYMVQvzwMUnO1PJ4GquWXHOvAgXPrxuLl/GC5WXIR5JuGiMTXOuzgcCBDYoF2MSztOFcSHpx - SxzUaoALkWvAa55CohnnE5itV2XL3yPIkXZ1ARvyuFVkHGQX4sSuBoTs27Yw6rUL8mLlNQhVOmH4 - MkKRGBtG2HLT2U72nmxCNtsH8VgZ3Q6euf035DaMgGXaZy388K5HfCcYMv5jhglgNkjC7dh1+ii+ - kxCM5vVAjtE3YpRu7bvsAd4gBa4YIG/2UeC1UGJy207+wPVUpfLp/FSRLdviQDxF8f/GE11vTszH - WybJ4stWSLJhCHSMhC78yk6GT5d7HrP359lAgsMJ0ykFA2PvewIty1nQ7auJHv1sMwP077sdVqAA - MS1gMILL5S2T5CkfPQFcpkKyyfGB8tLZDtQ82pL8oLeKmMOCstnsNFtG3lYjxjwcde4gEx84nPYg - a/zqpS9UF87xeYuKR8p57BjbLvy0O4/ERJNYZ4a5Bd/V0Ue38jZ5zGVPAfLaF+Ll3eQxtqnCyUVR - 7ML9ba7AMqSdK1mX9okcpRdrdqX3t6zSrUeCUOHY8Lv+21J8FO8/x4GcDNsFUfNQsBC+DTYut4aT - 985lj0EHeTDtWWhBdzfn6Nm5cSzu4+cdatnAkDXd3/VSoEyAxnVySAi/3bAIjarB7T6s0SNpODAv - XwfD1955kmf36fTllGYQDnv7QC7v8u3hzpt6cFb7lDhRconHIuNyiAfXxEx7njzO6OAI7h8OoOja - Zqzf6cpVXusT3aBd1bPDJz38Rg0jbnLVYt69cZqoqQcvZAOYayrcyitUcMYhBW3sYfFuaiG7nopJ - Ud4TXVyfHyafe4qc2znw8FRMDeTntEd2haaBymGZyhv7FpBHR9xM2E+RJM9caxDD4u71EmpdDo9I - 7dFFcGu2XG+vFNySPg5pCJaBZndzhl+iZ+v9VTH1xY8ENW2uUNKbR0+Mbxcq7TbsiKwZvuuZPl+j - 3E2zTQ5phmMKUyrJ1ZUGa/7MHlOyz1XmL62K/Eh+1svViyVZd+4v4gtNWc/+p7fgmQNfZKItqdln - iAo5LuCWaGEJAIWPMoWVXwXI+8beMDtQM2T6knS8sT+ux718R4KfT8Khxyhw9VgJyRVuXgcBGSOW - sr/Xr/ezT07t5svW6+eShpCLRTsOa74r2AisCtkkmEZFF6VbFMGK1wJy2TGsL/s9K+UYzymK6fY4 - 8Kc03si5xUnE46+vbPnqLx8s+/dIHn3gZn/re3P13+gwvGsm9uK4gd2TW5B7MdL1/8AI6SYZiLL2 - S+HwnjaQC0SI/MvZ00U9ao9wXe8QVDsekH0pHSF7fWSimzaIl/KgRvLan4kZWzfwvvDOBkTtWQl3 - HdZjvqqtFEqkaQiSUuZN597K5fJxDcn1pAdszaccdmBno+MQtTFhqbGDxv1eYvlw59iCGquCt2qO - 0fMQOJmAIlOCyyMZSTpaN108F60Bsfe6YHZprXrBfdzK0gRQuBmUmIkXZroSE3qNqPqBZostqjnk - hDMM9/1rZEJGlF4O9gedhLbLZctox1jyrF2ONJR+49krYAvdvs3x+Cj5mO6naCcLDexQgU5FJgi3 - 9i4rmsdjAVTvGMupncLpPRKUXaPUW+JDvJH2d+6LOTeVBsy/lCuMNaKETR6+AQmTzxHeD+CNDg/J - 8MTbO7ChcrjW5LGLSm9ZTOzDIHNGoqH0EFNpLFMQ5KKO9Ld4ZOI8XdZ6t01y69+it9hzroATPHXk - 8jZxhvegTGRx2J+I1Wk3j4XJJ5LFU9KhkxPBgbUJzSHvVCq6HlJ9mECODaiYxEfmvTIzccOkcH8J - tISE1IiBWHPPNxQl9fRbr0w0yEWC4XK9k7OTfgZ6CVgEJmu5YnoQTzVV21CDmSpFSNtmi76QxTGk - TtEzog32wePWeQVRNt9QXqUKWPzTK5el/rJDBqN3bzY6boTh66Ojp7mXAeV9swS3rRYRS+pwPQYI - 9nBO8RTSagYD2999DuYvX0Kxfm0YM/n7DIk0pEjVK9vjGMAzdJIbCafn18148A4NcHKUK1rzEXCn - RdPktT7I7bkRPSZWl6usnKs6VFShZbg+M1eem9IgWcN7tXAXyhbUd68IucUygdCIwII26gjxzcHL - 1n5/hUVpH8kx7GWdknebwzX+ocTGFxO6KLMgKQ2MDtE+zLizQCzJ1oMDMd/9Z82v8ipzmqQhj5PU - jC8PzvHXP9GZ36OY9w2rkdzvCWMQuqm36IXVy4CYIrrDjZDRbX7ZwPbmU7wIwwJIcL5wEKWvgTxO - RgL4lnu5sicTg3jXyQMkaRQLXJv9B3nysmXMxJ9EjqPqgoxDJNW40Jgvo7upoQd37uMFjQzKnX51 - kGlF5sDumfSW1vpCyqo/xPU75GtJRear+WRs1VcQBf0NOcO9Gtq6xBtYiM5rnfckowktR8ifZxUV - 6zzE53ccASE8KugavAKw6G9owdQYN+gWUjEm28szgRqIXsibFB7MQVoZcgoSmaRzYQy8LTo5rIN9 - gdknaga8Xe4C2JXDiTj8YQTsKD5nKMfFh3igOdetFDg9rOpUIEEzuHG/0+27XAqGSKxPefNETrnk - f/Uqasc4XjLQHeEvn11CRq+lLubgEfdXFKaTA8S4NEN4uE8HzO+Fj76cxS6BmT5HeBLF3mP7u8FJ - +ubsIOU7t/HSXcMIkhc1cWVHh3qWv683BJG4Q8b0/rDl4lsFPB0ualh9vVMmbA5KKj+CfB/W7xzo - /Z6jEjgqk0ZOoxnpvJl3FexIa5OIu5wyqjXl7hffdf05QEmaKTC5RCnyh+CZkevjieH6vHg+4YdO - kwFEMLcEiXhKmcZzJhEFHvqyIGfMk4yZUAnB8y0hoiiVHM+aklNYjO8dCdf+yAxPOe7VN+8Rv+BK - NvMjppC1pUaebI51huElhwWOEDLz+Qboayjf8gPZR3J+IzLMzyTPoR5v3ZCKEGSj8uhD+HE3HDnc - r2+PdVsDyoN4PBBdeM316BWwh2XXhugS07dOlI5yUGiFjhxK+1pTLgsq+Msn/bu5sxHMGMMHZ+zD - nQUCIGJ4KWBeSSfibcuXvrivXIHclPfoTpI0Fk08pZI8XgSia0YWsyZ9NgAkLxSy3SiB5ala972g - uCqWeCnN8DpPAX/pVSyv6z0iRbPg19Zcoo+pVYvJM+qh77UZcqb24jHuHCXyN7VddLrw1FtQ0VQ/ - vUHM9IMGdg+fWFKkgQv3plbr7LKX3jDr3xJyvOMl6y1VkaD5PNskl+yypnz8qeAy2TqxDibSydmZ - fJB4WoqsSgzBMiLVhmJ+kEKpPabDSK8Ohvkpq9Ehb661KN3uR2h8HPrrP/FiBa9S/unXX77OkpX7 - kMddRJ6+LDMaS/YIf/pOMZ6xt3Cw02Cx118o5GtnWPDCWjkWhzb8UPrRmWFE3P493/1wEtXNQNZ8 - kZW4r5EpX00dp7mC5dx0ahIORQym/AME2O3qO3HhRohnY+5doLoPj9j6bQIsCz6uzFNNxXXmWrUw - jUwD6zxF0Wl7qmkjMkPedplPFMzZmfjSny084vZKXC0VGPN3rQ3k1/uDsjrlGXMPZQgvfJmgYigY - W6gBWkiPtzNm1JIYnliZQ3YdB+Ra8TiM+4Dz5fnaTMgXGmUQs2Cyf/mO7NrWY5qXSi8f8msRtk9v - GpatDArwGsET7396PFRgCw4sm4lDFW0Qf/XhlANBHqi9bG7ccANPZtcT9GlZPM2BFcL+atukiOZE - n4n8GqHKtRVxTE3X+YxjAqyfdx+z+Ah0HMjtDM+74xlLm0gFbas6AkxqvMXkKLGBjfdnJbn8DSPt - +jkN9EDZXX6ejV04cAbPlkeRcdAVTZMoXvPQJ33oKuCdlRyLQLrqi73pir/1HMZdB5iD6Cwl52ZL - VGei2SJcsQ2TSm2RCY39wFx2EcAQGDNSKYY6A/rIgdU/E827nQYWT60Ft8GZJwUaOX1CI9jAEDoD - QcJNjtnLDSx59aMhWIRXTLc7JYKychBDse53MbGPn3Tf6EcPPa52wgTpaebQCO0SPazX05t5SW1l - 1X166LD6qekWqSn0zlqODibCA12stgBbXuRxdvMGMLmtU/zVK8dukzOu6FVJPp1Aj5DGy4D9+ANP - FfXHC7JxiULhN/9Rtgiv7G994O9yIbZV7la/nofgNtVvZCn5R1/S9pVCrFALWYpKslnvv0d5l2Qn - 5AGbr+mO/xR7xysf6BdPvN22R2g/HxbyDu/UmzlHxbLBTAczK28Y0TbPHTBPSkmcGvhM4DKzhPox - Y0j103yYr40KYQGvCIXaw9W5R04U2KeRTcJfvJOtk8o85gH68Rjan8pSNvKoDDfao/dGaWdhyAMT - IAP5jU4P+5L7+S+kLI9ooJuDncCuv92RSenHIz+92plHJ1z0qvWoqEsbuL8L37WfgnjuKJfAaYYE - w4IrAZ2KzxtOaUPQz88x7dUeYcLKlDjDXRtEovtQ6iR/QTelv9Siepc46N48jJlQNDFVS6zAibbW - uj4PMG+8cIQP5B4x9PbbmnQmLaBzmR8IHVWZzd3+NcPgeM3CzwJvNUOxNIJuNBZ0Nm8ILDyvKvKj - q47Ees7GQLm2vUKrCmykpfdvRl+FOcJsLCQsK7is2W1pld+8R+jTxhmfj10Enm6FiFKzqOZWvwoj - 7qOES3X9MnZ2PiE8319fdLvNFaOx2lJwk1OAzEeH6qWBYASJp6TIJDGJyUu/9FA/ty90SQXD4wKV - +HBg+1vIydJd72XpuZFWPYfBzfNYB/rVP5b9hagn39bFHaERrDvIEzXoW30ZEMBSv4EzulemH7P4 - 9qTwXYAHCaHPwHxzvgbU6/lF0lP7BotwCu0fb0LRIc/YnPJcCWffNdBxV7TZ2D9CCVpUeaJncGX1 - og+vCrKPlyAz/ZCazrbZSCWXlciW6ymb4QtjUAs+j/L3y9Mp7YPy5/9Dfp+RGEsfKoFRH2dkbRoj - 5p7VayfnaXvCgqcZTCgZs2EthDyWjkKVUfJQCpnGmxFvN3HLiPe+cLAB1EUOhtowT/6LQvN5sfHi - p7Be/Uchd/rdIcaJn+MF9vYGxqreIVdgvte+fHUnZ6JeY+E6vgF7+LYmu6zGxH+UfDYz3eLgoZEP - yMenbTaXG7yBorFTUAy7Y02a9PKGrXPLiP6JrGF+9FwOvdPTRE6/Hdly7jIJilPThq1cTzHx9ne8 - /+nvAx6wzrLts5f+6u1VT7KjeJmhmhIPuVWp6byicTYcsnAmrhX79fp8sywBoQllySyGRbw4Gvjx - HvvZ6JlgPwK4M4ePjX7zghMezQwPd3JA7uvrxyt/zaU13kSLHktN3azkYGxcL8jklf0w1/yLg7xT - qiSMOwfM2xN04aq/Q6qGhxr7pi1AUfc7ZP/0+/PABPi0uR1RX1Ue40iLE+hYMSErbxlmd+JaOHTp - HDK+vYN+1MoKUlMY8WefoXjeurkLvdjNMX0oh4zTd64LzQ4sxDjCe82dDU0B70l/hOs8HZZRskKZ - P1OV2Ey5DGwzRr6sn/sXCvJSiVtv0gx4Wsrrr5/Gy7kPc9iA2UUmeu/ZOJlcAl+D+iSGPksDyX36 - BrjYmSRASZkxwbqnAPKvkFyTQwCmxc9amMT7Fu/BnALm70obku3OIPmaD6QQ7pWk+m4V7s8s0NlP - bz/j24sYWPsw+riWvZzc3BRp8z0bZsUmKfjN31+/Zds3DeWKuUF4+2oXnQ+5GEIu4CHSHso3o8nA - IiAT/EZuJmmewL2kDUStciPpoXyDcZ+8esgRWyXHu2UP2LRbCe6Mr0Qc25liwbiUEjzC+UqM7nv0 - WFBRDEp0DMMSc3Y84d3LgMkm/pIg+Gz13/wEv/7rv1+eJ/z6+cNr9nhbveOY8i/7Dp3P7kEOiMfZ - LFmJD/1GyUh0ht+YzZy/kyynfJLD4xnGlL9HG/Dae0/kPbkzaLGpUjjG1QGplhdlk6JBGxKYTnih - ONdXPSKAPLYkYl+Nup6yBl9hupES5L8tPlvmpAnB9vbl136DVp53z/dH43hDh5uM46l9Nke4qZYA - eXV6BizoWhuu64ssq7/FWBrL5K9edDN1zCh8tAlceWtIdQkwFla2DVe+s/rFPps5LY/g+NwQnEzO - UV9WngejYL6QxOKkmgYCSODqPzEByGYjMF8t1Cb7RbyoUgcccSYH74EbYapLGaPzuc1hSCYNqfcC - xrPwwDPcbZYjOUx0l5GLem/BqzyG5Kptdh6RuZHCZd+MyMCaCcSVxwPoXURijdZen8odmH/8Dvmv - x+B9tmZWAVnvQhJ8KFeTH8+/bZUI6Y9r5i2gByVUzMkPZWmTxNPKf2Hz4BhxxVAFi0SzClSNFBD/ - tjnHdJymt8SWLFn1bh2PM+5GQGM4rvxRB9PHAxQQqUtJXJyO4Kf/4WyzlBjz8R4vnte85WPBq5iC - /aL3g2uXQHBBhHShsGLue3QESHQBE3/H8Tpd/cH+fE834fw90xqHr2AHW9F11nkT18u5i3eQHO4m - 3o4hy9Z+OsImd3JkJPs560Kg3vc//2B9AGZUTu0EHi7OTJDiOAPNb1kIcJZi5NPOBczUy6Osw4GG - 88orJ7trGijvPgIyOl+KR0S/NuTkSMXbldfTUiobGLUXJfw+VJwtkdKU0JSjJ1rjPSzuDWpwv4j7 - cL83qoEodXAFOVgq5Dr8OExypkDZlq8P8vAu7sAbb6cEWd7VJJDMTT3lT+v69/79y6yAmV65Izz3 - 9hklKz9bdOZU0PCfTrj3jmK2KNDqgYz1ACk0bWN6tbIINKGeY67OTdAEckuBqNYRMry+0ZedZrly - rUbByjeNmIPC6y0LW17Cgvsl3sIE7MJzaG1CovEyW0LgXCETWo08p0PnjYH6DeHnq3jkvolejN4J - 8H/vL1BSq8e/vHK/vt9BKBGdmPTds4SK1HE/XsXmJbIE8NMfrraMw/jjB9txU6PAOCo1//HYLG/3 - fr3ymb2Hd/xUgIMLZmQV0s1jp/YyA0nGDVHULNbp8VlSCLtTSJSwl72/fH6dZyTI+mTgrtevBbfi - y//pefa+TK+NjAT7hqzsuvdafmxm+H0fXVzlh6VmFzXqZYdTHiiGoQTGfCAaTA28CXm0RfXKu0ZQ - MTtYncjExuWrYjgW8TXMV/15+eZR8eO/GMZs0H/9Cax6IhREd8cY5C8JPHa3HsvRtYxn7aD5sikf - n+QUIBrPQ54kcH2/h9T1fZzw82urHkLpRbj9+vcIMadfiHO+XuKVd1F4HpVz2N3Ogc6m8n6HflBl - WJLO/hqvJwULd9mE9SdqatrDTwPSpDoTb/U/3S/eqz4K8fdVeLxDunx39woQNlV+81jc0B6+Meaw - XGpKJv6dj3vrE0rZc8zIj8/yidXjjxWZNe28qYUfv/dWv//xxn0AQ7DqA+Q/zG09h8i1ILx8RFSQ - rKsxuEw5nCqBrPz46zE+oInc08oOd6ufokd3kiBkvEjcj+PHQuTYFDqHrUXWeo8nVVPfoP0mlJye - yYHRCgUYAJo3SDPOC1sCV83laGdfUPFYHLDy1TdYeffKszbx3/tZ+QMG8rIFJPpOPsS34RIuVtPq - 2HDiAo7YIkj9SAcgxo3Uw++Go8j3ifd7X3KUP1/NQ8jcP/7q57/zpFFy02OHJqIwPNt3dGbHj06y - TFHgqb5fUdC3pT6uelUOvtmI7ENa1/RLygry5StG2rSc4rHbdzNo+YISo37OOhM2UgSv4e2DrNBB - nvDjFRQOCdLGHRiW17YLpVKwRHII4W5gtSqV0JZ0QrzhqGb0s5ta+M9vV8B//evPn//x22HQtI/i - s24MmIpl+o//s1XgP8T/GJv75/N3GwIe72Xxz7//9w6Ef7qhbbrpf07tu/iO//z7D9j93Wvwz9RO - 98//e/xf61/917/+FwAAAP//AwBe8oQ14CAAAA== + H4sIAAAAAAAAA1R6WQ+ySrfm/fcrdvatfSJzVe07JpGxCgEROp2OoCIoogwF1Mn57x19v5zuvjEB + K0y11nqGtf7zX3/99XdXNNdy/Pufv/5+1sP49//4nrucx/Pf//z1P//1119//fWfv9//b+W1La6X + S/2qfst/f9avy3X5+5+/uP8+838X/fPX33YiXKiamnc2x7v0gfxPXmFQbdRmlhl8KK2uGGR32rds + Pe6TK/TMY05DE+0bzrCzDZJfvUxVq76Dt6SjEnrRyyUqhk4sBCjgoFN+GFUNLmQcA6xDV00x6alU + HoBhj36UXTfhifOjpBBun6hGXbXeacpvL8Vg1WIFRxz3xGq60BMFlT4gAGeCxU6ye+4VFQOkoH1R + Xb4hNm10IYIskCZa3u+WJ4jp3UJVIl/JfhLdWCDGa0U73x9oEUhmwcv1U4GyxLUkP73aeFaRieFO + 9rbUAqIOhBZ8VLiRXUjd9Hnol/Wi24i/NAXR0gQaPQxtFZ0C8UT3n4sOhLrMOij604lor+nei4s2 + TnCoNyJ16Yc26/ZoSOisgYkQhwTxEEgyB5/N5Ynlq0rBsk+LDt4f2KOqlveFEB2vCZhm8YhXeX0b + lIuTCOhptqehwyI2H9zuioD9NGlKWwZGw3ya8LSRYpqczn7PLfxhRbHXa2TfumI/dWNlw8ViPdHK + 1omFxmk2SNV9lSYdwH2/3q8utHrkTrfUKGPWXmkLZf0zTUIIQT97lZtALVwWUpxs0VvuumcDqxUw + bqsraNZFHmcgSDaix0UPC/E1I6wYV/9Cku20LebazxSkUe1O/W1JiqUGuo0cXOjUbiTCxJFuTfCL + Rz1N7s3qvTUX7vl8S9LS5LxVIp0Lq9b0aDqroHmX4WDBvPF9cuCs0VtuFyrAC/TgxNdp0QzrFHII + A6xgKTdqsEpCXivcJ7wR+xGJzSLy5wfSniePkmHk2Afatguzp+mTSDVDMH3vB457WZv4wN4ZI6wt + Dol9IU+MBYJHN+7GheGRK0mZcXHM42J7hmNKGLE31qNhRdULMDpeHIrR4d2vgGgWTNqoIbeLx4El + UOUVpqf3jcaZ8DbWIushVM/2nl7g9PDo6AQT0G03pcFeSNnIG0kF/fhjTZv6dfA4vYQD2EsJIJcj + K5tO3lYJcq0gJ+eOr5uZB0kLg6PLqM+99Jh7rg2W9p+9i5e7OrOZ36sZbLItR6zPbPesXJcrOnqH + iR6RmhgCd7JduA2mlBjHyAfDo7q0sNA3H+LLl7FfgrOaoqmTA5pdLm4hZnddQXFa7WigRmfGpE2e + QU5zenLDWcNmP9fO4MI+MZZf26Vnjv+c4TefaGA6dbxcTrsNvN27mpwiHHqc2L0UhTDjQJygezTL + pV4GxIUPh1rufopZFekKcu4YU+ebP2t45DM0q7ZOjGt9a5gRNAp6dNGdumtWNWt0dy2Ybl8tcUub + Mma06xU9vHlLTc0FYMmNKoXf6xG/gV6/WmJtouCwWhPwY9fjHDVX4C6xORJRi4unIE1KeKI3nqjj + QSlWS/xY8PgZfHp5dy/GSBiVCi63zsR1ADeCdY0rcL1u95ToZ9XgGqZHkDw3Ac3exWQsCscqhLTy + RGLdD3vhVBkbROREoWb6uBfLa7j7YG+XA80C4Bac3B5W5HykB8EboWH8Swt0eC7nhZB1SBuu6MAA + XZ0b6N7h7J5/q+Pmlx9Eiw3P4KFqh9DDGsUyQ3wxfB5uCIutDKl98EG8nNx7hL71mWpZfPXaDf7o + oFuzLWbyzYiFNBBSyDjrRQPvzLxx3wglMoYS0yyXscG43VJCKTdtkipR10x1+JBgPej3CZWAN+ZC + SGt4XeaYhBg6hXC57QRoEDjQ8rNkTPQ/tglzd3eahMdisXn7jDt02MYhFmgbM+GjPRSld2qdmkd+ + LVimHEp4594QrwIemHDuww/SvcagJk05b640EytBUZZE2+9e8Ty6ZQepN2RTf3D4mIWzLqFKHN7k + mivXgns+7TP67u8Eb/XDGA9Rl8LZqCg5NuAI5ts9npRiMT/T9tYqxfC+VBlkp9cOv4LsAehr5n04 + Pm4PEoy+6XHxdbRh0oYNDbf4BtgZX33Y7d8D1dLXPp4vnHoGhtMbRDtcQ8ZdebGEUZbtaNF+RI/t + LU8CW+X9piebTMWAJDVBLswP1JO83GMnzEfouUk6cuFE2LPbGmWQubVGrrfVAMNHmlQIqsYneh3t + CjHR5FrG2udI92c/BmIK6QN6yv1AsuLaFTwBLwE2kX+mh7B79ou2MVwQuiibZPF+aOaPNOnwjdwD + CR63JWZF7KjKpuzP1Ngf954IzSSCL3fISX7wVcCGZCnRdigkotH87LFVeQzQVg8Gic4FAuwo7AZw + 2yoRtfL3FA+jW36grgkj5iMO9MwKfA4eJ1Mmx/bdsjmUzjNs9qeUuMpqe4JvYg7667HDr9vRLbhz + OplgJGVGznIQfPG81lF+7RZ6ftRiseBCzFBQExHvcqtjY34wXFQeO5NeotprBEGYH6C5xRe8DU87 + wD+V3oK7/DB/8dkreOuzzaC0qCHNjzEyGKJSCb/xgLcncGe8fPQs+OUbZKc8cSHulK2rPOJxTw0t + fRbcgqsMLTjSyC4ZtII/ue8QXYzZJJdrRWLhfnoKinwbl4kP89Rjt7b9oN09kEi07IRiVm1Jh20a + zhP3jf/xdnlxcDXlnt6CdwKE/Xx3kajud9R9DR6YoK264Do/W6KhdMvWzOIzhLTriQRqpLBBDgwf + ee5bJzndf4z1VBkQTT3nEI0Nu2LZtueH8s0vQj5TxPjvMRRMRSNGdX4W6+35mmDrtznRxPDed4OE + N3D3ut+p7wu0X+oknCFvzRq5bJ13P+SOEQElyFSSSQh7iz8NFqR8uCHZDovNiLRtApuPeyfW8uTB + mua1iRiaEc0hNnvx0cglfFzyyyTtUNvTKnIV8K0P1HhwA1jols7Q5KIn/dXDz+4kf6A0XHmqpkpg + dEiyUzTeTZF6+T73uI0sZhDHEfvWs9hYzNkJIQyLguoCHsDnF1+zI2TEx4UDRDHiMTzeeHviYvVp + zN3jncDYDpPpTfcf74dHypdPESdvu3jd6JsIXozVnCqx2cdrlxwecD/eRILvy5Mtp51whTM7b/CQ + 8oeC/+IREg5oh6cAKk2vYn0DDiTX6CkJIkNUX3kNf3h4NZqDN0/8zEHBlLTv/nNgPXSeCr/84YeH + /XTi6ATnvhQmSSAXg21QEcF0wDI1QieN551BTIjy7EpLqtBiVaUKgw2/Errn9ihmqzJMsKg5mfrS + dO1XxxwlyaSjS+3YrNiajdMK30Go04uixsb8q18KiggxUZyDVaHhAy0bO6TFuNJ+PWBYwi8+YnG1 + QTGmhw+G6qXmqE/Nh7e8tJ2KzKjbU7PJ5ng4U/iBu27ApAikR0yzuy7Bm9y+qVrMWbzYJarhL55+ + /GOSlmmC3acUsQx2AeBwLNZwnvUDtdr0bixcM6gwUc2eHJoijbkuQ60St1uB7le7+MN/we2pEYzU + SAGs4ztdBl6tTuu9SYtvPdXBt75OymX8eNO3vsDuZbnUOb2smC/f6wfGoV+SL38Dc6HrCepepktS + q1m9mTlpDf2+Dai79Um/bt70oxSnLY95mTbGQs1zBwNkKsQnh6PXKbdQgOkF2fRcC1WzlOLxCr/1 + ggaTTmIap5cQ/PiadtMwWG/G3Yb9AgCeZz7tx3uRT1BoXg1RbZw13Gbz8aEYX1ay27lazELnUKHX + 4caRvXTuGgbNMoTbGcU0Bi/ULKuQDfCcZybFuRl7jLzfOjTfxZ3ga+D0s8jFHfp89g/8qOunsdiC + acrf98PvW7QBI0fUEJ2qT0N228lk4+Y2T2jtdw11HT3uaUx7AYIoLr7xKMTL9Pi4QH0FHnXs2+TN + BXm66Ft/plcrW41wOTQ6+OIpOafPQ7O8mWEivmc+dVzTLkTs0Q5OwSOjeLcR2NqNnQ0MwX5+8Zv/ + HlcujIUsISmwGVtSqXjA3j4eJ3jHCqOyGJaQOGVP9HYYwJCcHj7SjGkkbi2oPVeQ0YY/vqn3vBGv + P77xxUvcg+PYr/UbXEFZFtcJeHIdz2goH2B/bGbq5rHec6kpVjBSASUkWr1i8SFWINrkb+rJM4tp + dEnxjz/RhKaJsQTqMsPyFdbU6o6GId5yQ4CHGgeTbKzAGF0t46DjqccJaIrad/worzBxmDZ9HJ31 + y2mggpLt3hPx9/GhWDd8fEYXakq4XZ48Y7fc4+AUIoua5/7STIMvtyBPYDGxs50ZLHTy+k8+ezf+ + DeYZRoPy4qItNTl5LZgSXW3ocUFH9tteLpYXfgngmdkzUcUQGkxg/gCEoi+oY4IDYP7HtuCJXvif + fmVT/Oo3cLGWnlpngOLFMEcLnUPnhrm9fo+Xo6em0HtuRbwpblIzuFxryU1VeuQ2jAnjS/FYwq6a + 7yTdbm7ewvNLh9DAPPKrJ6Mq3iNITlNJzEs+9fP70p1/+zHlVjV4tOrz6x++UhybkonLqCmIR8WH + GFmDANsstIKSZmsk45q2n8wYC1BcpZDEYnUv/uTHUXtm1JB9yRhNNFig78iD7Ab/acwc1lKIb8qO + 4MCixbpbxRBhDhyIvfB8s6Bip8i7c3khmnJf+/E52iHsysAihvpKi2U0lwll58CeuGT7MkYCKAfm + +1xRfd/5jJMUvoLLla4En0BZMDzfIeSFLiQu9lyDOz6JCqXcsql54zhjyPT3Gb3kHJD0uj4AG4O5 + +vkvWLwdPwX1fWuCzSxD4sVia8y1H0rox+eNF4mK5ejZCVQSpyDalx8ObSuWcEl9B8vSpyuYit0N + nOXpRfexCeIVwSSBvGtPk6x9KjBz+vEBx9yl5KfnFo7YIdzj+Ugd76333OkU2MpPz2SP6NRwanrm + YEyMaVL0oI3nacEq9I6VRVSZXD3m+3iA3VY/TGt53jLqndYrtBPu8ts/NvPjMkN9SjB+la+8mQdD + mcHv+vlYE8DI+64iTqpDug8yE8wXzs7gqdzZROP7V8EO6DnAAFnKBOaqatgD2Sps1zkivhPFBX8D + bwy+/hTVPBA1/GguAwy1g47R2Xqx2YBPFxI4vkjm3Gu2WqE0AY21kPi+QBrWHHoOqJ6UEg9PtKHW + +fWB7aO6kwu2TU9AztaHQvEu8NrXmdG9LLpR+i54TCA7BOy9GeMKbUibUk9S7H/rS6HyBerlQmfM + t3sxKY+zOpPMzPx4JQZdYX3wrl/+zwDjK9GEzza70xQJDzC3KjZ/fhOJa6tgy+JyFcyLyPyjD8Zk + xAqUQ+lG8nPJmhVOSw05/pWQn9/1wyeFPFhFsLcfi3VWpxXAB+RJVI2eMUsKquBYNiWGZUYb+tXz + 4Pd87iY1Y1G+ahLaMolMwpSYjD9Uhg25ZiNM6NTX3uzk1RWZ2BqmpWzf8R/++5hal9jOXQeLYx9W + 6IfUndCRwYZ15eGKWHR16O6wmWP2gt0GqpL4Jno1el6P0ruE5klsJnG7efQ/fo1yg03UOzh8sSa8 + NcPrFe3J7rpui/mxJzrc7CSVZOxMGN0srwrKqVbQfStb/YK4pISyfzJ/+MFW8eEpEPBWi8fsPjZj + qJ4n+btfxM7lyWAToa3yyy9zNZ/G8nuf7dvwSPAKdIOTEtOGTaHM1BSufrPsyDIjFaxPDJT22jND + dSxADmdGdXsx+q9/Y0tx/HSI5RwMQyhba4ZVQfbEFja+sYgznZX6Ms/U3RtLs7hayMGf/2ChRu7n + y3nhINVVnfoX5ICZKwYXtoK9xRtz2LPRsiUB3nnuTTybBmA2jmyFoVgq1Bdo2VDFZMkP3+jXbwHz + tUs62KbRjPltkff9s5xrSHdnOo1f/jJDf3DhKZuKad0F+4K/6h8MQbFdKL5cz41QG7oJzqF3w0rH + 1z2zmICRaOgatZLqBBa3033UPuo7UZ+txj5XtzYhM/2MGKa3NgtJNiX88S8TjzKjwTVJYHw53Ggw + SUpP97eoBMFhtqiv6lU/fx5uBLqHg2lu37A3GhfQwWC+dBM6ZSlYf35qdrFNGm2v237URRcr5Suq + 8dyWgbHennSC1vN9pzgiT7a2yfxBPz6+q9OiX8bbNgW3PpGwvHl/vAVXNUZfPY6Lk30yhJduwJ8f + Q/Rd8CqYe2VnYM31kwSnXvcEePxs4NuC+Z98nbTb4QNXP9PotyJ5wzWWFLi0vUJJF48xV/uhAmeH + y35+K5jtfSSAuk48/H7bdjz1o2ZCAumL7jfW1piP74UDZa4uxDAWF4im9dnAvG3lCXxwHM9jap+h + lT0uPz+umL/8CJ5js6CH1nnFTE8GTlmodKP7YsHGOrJ6A5KiuBFtRWnx3pFlhUZS74nFO5E3QH+w + IQz0cZrFsDR++QKiZlKonsVNM75emwyGgZJ8+TDvsfQoYPDz3zyUkGbJlnMn94afk59/MAkHIYTz + 0wnIjl2OYH3wtg2P0bz78pM8HndvNUHCG/jUEqahWJx7l0DTPKeYGTpg69DaNlxE7kXtAHyKWUU+ + hv1DEKdfvs+xyAYo4MeJXi9XpWFnFWTQhcVhun/99emgHbqfn0mJmevedJx2HHwIdTQtfFYas5N3 + Jfzp7YATYbNW12mGvvQ+UC2XpGLyiPIALk0CGtlXqaCRMKzQctPhqxd3gPv68eCrH2kgFRKjFHgz + PIk5Ij+/ucWkqMG7PmCqBQrX0OtIW3iHdkRcTSm8ZTMWFUTD4uGVWklMq/5w/fmbf553dVNQg58/ + 6Rq3Y7z4x0uliNttTIxz0cTjaMoDMLE5EPzzl/a4WEGzP6b0dggO3uxv1z/+DNVu4tmYjSZ9oOte + U6f1uV+b/n3MKqChOCJO41gx9/Rk4ddvoEGQ88b87V/Io6xv8OywlY38J5DgnFkOOTt63KygbCRY + nGpzAvLMimGG5wH24eFC9vd59j5fPJJ/+lTb7Ca2BGc7gfvjfaZ/9MpSehisZJ2IsZ5csPz0CY1u + 7Ntf6hrKNOsDD59RIJp/VGK6U0QbDvuPPrEuextMq8IWli5TcZu/p2IGSlpCNrg38v3e/aoGvg6/ + fheWFVL302O+JEAZdvUfPUHFawXRtz9Ck/nmAmHw5QdYBtRQr6g3Dc3izpT15uJR26hVwB5LEkLX + sY8kHA/ngv30f3rZ2lhuz2LBXqf2Az5VgYmt1F08B7c+AuwQl5NAQhM8XS0TgMVA9G8+Z0HLQvgl + BJNCZjMWvvH6R19trzP1WCtuXAjsl4nrc4HYrNJ3Bnun0unReXSABr3owtsLejR8tnc23xXPh9sC + 7kkaWmHBKgmGsus3OgnKnfPFR1pB74nESbLYwhbp3QrgcSku1NjNA5g6Mq3w0CsN8VVdbTjjyGb0 + 80sdAGRv7Cp0BcbFmInnPHPvh49AhG1LsVPHxhKt4Qof/RtTi9+iYrpISQYllztRlaxJL/KVaEFu + fPtkvztrRh+9tQ0atCQnOjIU76OeW+6nb6c+GZdmoWb0QT/+ePniw3B8Eh32cN1gxW8JW0/cawCH + 2g9o0BljM17qZYJF8rJxrL7SuPj2F6Ay7Otp1vI+Zrf1nIFv/w8jh5fY0k5iAlWJf09w7ap4ueq1 + j9hg32jCyWvM8j2XQGiNJsHCtoyFn14b+e5A8i7Pi8VM1wFe9NeJOql0ipcXpgK8baUI33dVYHzv + d4Y4b8tJ5AS/+PphK3CWfou7461t5i7jW/Dzf3H46ftuj+MZTb3gYJrp14J77PeqZCkY4I93yb3l + cV4/v37utIk51eMa5kbg669h0QqHgn7rPfzq44k28q6Zwx3qYDm2HrG++mIo7QGDpuEkYpafbbO2 + 4KP/4oFc6OvdjEN+KeFs1JQaPHh5c3zQEySfsI05MRHZeuBHAZLpItD9M/Fjvk6yFX6ym0XtMJ2N + SRIOFTim9kqLXLCN2SwvHwCZ3xLntV2aXz8CgZ1/IuWXz/A3QcjAftUiGijCJl6v7seC6Nqcp+2i + qh7r3xcfJsYtw0BSOmNSIDvDz3WlJDhbe8A/zsoHepnEyNcP/vVLQlS1lkc0cLqAP3r462fjZ/nZ + eXN5X9efn07C5fFsKHdTVcjpaUbI/VoZ45evoveODUQ7e03DfvxI3ToRwfXrYAz3OOdAmkQr3evD + bMzf7w/vCnoSgjjicU5elXBG+4RYv35tCZxU+eIVxR6S+pWZSgWxXVBqJKXWz2qDOvj3byrgv/71 + 11//6zdh0HaX6/M7GDBel/E//ntU4D/E/xja8/P5ZwxhGs7V9e9//j2B8Pe779r3+L/H7nF9DX// + 8xeQ/swa/D124/n5/57/1/dW//Wv/wMAAP//AwBoSegl4CAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac845bd13f96b-SJC + - 9953e42a1af615fd-SJC Connection: - keep-alive Content-Encoding: @@ -3150,13 +3180,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:40 GMT + - Mon, 27 Oct 2025 17:25:11 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6544466cd5-69qfc + - envoy-router-canary-789955d6b7-jsvgq X-Content-Type-Options: - nosniff alt-svc: @@ -3168,7 +3198,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "73" + - "104" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3176,7 +3206,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "123" + - "170" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3192,7 +3222,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_f711a5ecf79248e7a1683fbcc5b0678b + - req_46475d02041a4d40887e75e0ba974dbe status: code: 200 message: OK @@ -3353,7 +3383,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 991ac8473ed2f96b-SJC + - 9953e42c1cd215fd-SJC Connection: - keep-alive Content-Encoding: @@ -3361,13 +3391,13 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:41 GMT + - Mon, 27 Oct 2025 17:25:12 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-5f69ddd4fb-6mqfh + - envoy-router-canary-789955d6b7-jsvgq X-Content-Type-Options: - nosniff alt-svc: @@ -3379,7 +3409,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "84" + - "252" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3387,7 +3417,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "188" + - "344" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3395,7 +3425,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199999" + - "199998" x-ratelimit-remaining-tokens: - "199999990" x-ratelimit-reset-requests: @@ -3403,26 +3433,223 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_2b584941d40e42119208d7b1831417a3 + - req_bd3f5917e7b34786b6bf3383f93907ac status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 20-22: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\nnal molecule. The counterfactual + indicates\\nstructural changes to ethyl benzoate that would result in the model + predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 + similarity between the counterfactual and\\n2,4 decadienal is also provided. + Republished with permission from authors.31\\n\\n\\n The molecule 2,4-decadienal, + which is known to have a \u2018fatty\u2019 scent, is analyzed in Fig-\\n\\nure + 5.142,143 The resulting counterfactual, which has a shorter carbon chain and + no carbonyl\\n\\ngroups, highlights the influence of these structural features + on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. To generalize to other + molecules, Seshadri et al. 31 applied the descriptor attribution\\n\\nmethod + to obtain global explanations for the scents. The global explanation for the + \u2018fatty\u2019\\n\\nscent was generated by gathering chemical spaces around + many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting natural language + explanation is: \u201CThe molecular property \u201Cfatty scent\u201D can\\n\\nbe + explained by the presence of a heptanyl fragment, two CH2 groups separated by + four\\n\\n\\n 20bonds, and a C=O double + bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe + importance of a heptanyl fragment aligns with that reported in the literature, + as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, + the importance of a C=O dou-\\n\\nble bond is supported by the findings reported + by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, + they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 + For the \u2018pineapple\u2019 scent, the following natural language explanation + was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D + can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether + O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 + Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple + volatile compounds.146,147 The combination of a C=O double bond with an ether + could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, + which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe + have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 + and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels + whose input is a molecule. These two methods can be applied for both classification\\n\\nand + regression tasks. Note that the \u201Ccorrectness\u201D of the explanations + strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular + counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith + contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 + of ECFP4 fingreprints97 as distance, although this should be explored in the + future.\\n\\nCounterfactual explanations are useful because they are represented + as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. + A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, + MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method + developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate + model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough + we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, + we show that natural language combined with chemical descriptor attributions + can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility + of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. + Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to + analyze the structure-property relationships\\n\\nof scent. They recovered known + structure-property relationships for molecular scent purely\\n\\nfrom explanations, + demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand + then explain it.\\n\\n Choosing among the plethora of XAI methods described + here is still an open question.\\n\\nIt remains to be seen if there will ever + be a consensus benchmark, since this field sits on\\n\\nthe intersection of + human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes + an explanation?). Our current advice is to consider first the audience \u2013 + domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations + should accomplish. Are\\n\\nthey meant to inform data selection or model building, + how a prediction is used, or how the\\n\\nfeatures can be changed to affect + the outcome. The second consideration is what access you\\n\\nhave to the underlying + model. The ability to have model derivatives or propagate gradients\\n\\nto + the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: Are counterfactuals + actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6327" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA4xUzW4bRwy+6ymIOTXASpBkO3Z0TZ2gQYEGrtFLFAjULHd3mvnDkGNLMQz4MdLX + 85MEs5K929QBellg+fEjP5JD3k0AlKnVCpTuULSLdvr2r9/f3b5f+j9p+/ESr7rzK/uru/4gV+/P + P1yrqjDC9m/S8sSa6eCiJTHBH2CdCIVK1MX568XZxdmbxbIHXKjJFlobZXo2Xc6XZ9P5xXR+fuR1 + wWhitYJPEwCAu/5bFPqadmoF8+rJ4ogZW1KrZycAlYItFoXMhgW9qGoAdfBCvhd9t/YAa8XZOUz7 + tVrBWl13BLTTlKJATY3xxIDggiWdLSbQIXuh1KCWjBZwhBLcGunAGW8cWqj73JqgScEBwhaZBtdt + loN70ZOQxfgWYgqRkhjiCjIXyzV644IEYOOMxWRkD6GBy7fvPp5CY3xLKSbjhYsS6WjI6kiS0TP4 + TYBc7JDNVyouKD/WQLto0WOZGwMmgszUZAtb0piZSth9b08UEzF5obqk0x05o9ECS8paciKGBp2x + BhNIOOAsXPVkjpiYKkBf9/+oS0LcWprB5Q7Ly2EwXttcE6BHu/9aGsCavIwaA7/QrJ1V8PjwrUGR + /ePDP33Ix4dv0XjCGC0VW8/jV3DbUaIfKmboTNtZ03byrB0t6A59W8bdNKSP86Da9Dp5Bn/cUEJr + q77NQjvpG2e0EbsHFpT/296h8go4xxhSn0w6Mqn0HpqQoM2mLtYnURKgITw0WcJRI/SLBCGLDo54 + tlbV4UknsnRTnsGGdUhUnvZivvb340VI1GTGsoY+WzsC0PsgB71lBT8fkfvnpWuMN9xtEiEHXxaJ + JUTVo/cTgM/9Eud/7aWKKbgoGwlfqA+7ODldHAKq4WwM8Mnp8ohKELQj3uuLk+qFkJuaBI3l0SVQ + GnVH9Yi7vBguB+bahAGbT0Y1/lfSS+EP9RvfjjK8Wf40wQBoTVGo3gzP6yW3ROW4/sztudu9ZMWU + boymjRhKZSI1NZjt4fAp3rOQ24zOxXHok/vJdwAAAP//AwCmlThr+gUAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e42f2bcfa473-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:19 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "7450" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "7488" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998483" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_b8fc56849a0941e79b969169c7ca4eca + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 12-14: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\nnterfactual approach, contrastive + approach employ a dual\\n\\noptimization method, which works by generating a + similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations + can interpret the model by identifying contribution of\\n\\npresence and absence + of subsets of features towards a certain prediction.36,99\\n\\n A counterfactual + x\u2032 of an instance x is one with a dissimilar prediction \u02C6f(x) in classi-\\n\\nfication + tasks. As shown in equation 5, counterfactual generation can be thought of as + a\\n\\nconstrained optimization problem which minimizes the vector distance + d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n minimize + \ d(x, x\u2032)\\n (5)\\n \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n @@ -3477,50 +3704,65 @@ interactions: al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness via exposure to adversarial examples. While there are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6346" + - "6293" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJLBjhMxDIZfxfIJpOmqLS3QObMIDhyQVuLAoKk3484EMvaQOGWrqu+O - 0u4uLGhPUfx/jn/bOeKoHQes0QXKHc+SirDNVrP1bDlfrueb5QYr9B3WOKa+nS+uv9DnpVtd79/b - 8Pb6zYdI77x+wgrtMHGhOCXqGSuMGkqAUvLJSAwrdCrGYlh/PT7wxndFOR81brfb70mlkWMjAA2m - PI4UDw3W0ODNwMB3juNkwHdT8M5bOEAyMk5gAxk4zWIcd+QsU0jgIpMxBHUU4IWXYsTxLPCew8sK - yJlXodvA5wdJqNzTFXw06HjnhdMj44O3A1CClPuek3np4dfg3QA7JsuREzgSuGWgYBy5A1NwA0nP - YAODZnM6cgVT1L3vSrqdG6JxCgy6u8AlTjAcuqjToLfewS7LxUKAPmqewAsQjBrY5cClyiPvg3f3 - kCl4Ke0nhqQhX/xfwc3gE3Q+siuzcyo7H8dnpkeR/xrRVYPVZSuRA+/LINvkNHLZzmLeyKmR7XaL - p28VJtOpLcVVsEaWrrUcBe+FxD8zi2OsJYdQYT7/mPqIXqZsrekPloT1YvV6U6EjN3B7XqRXaZ8i - 8wc9MnXPaQ+5pQJPA48cKbTr8X/+j7oY/lVPFWq2J/7mrypMHPfecWueI9ZYPlhHscPT6TcAAAD/ - /wMAC163UVwDAAA= + H4sIAAAAAAAAA3RUy44bNxC86ysaPMWAtJCUyLvWbREgl9inODkkMoQW2TNsm8OekE2thMUC+Yh8 + ob/E4IxW0vpxmQOrq6aru8jHCYBhZ9ZgrEe1XR9mv/719reHO/r057uD08h6v/r7+O7fpfzx8f73 + BzOtDNl9JKvPrBsrXR9IWeII20SoVFUXt68Xq7vVm8VyADpxFCqt7XW2mi3ny9Vsfjeb3554XthS + Nmv4ZwIA8Dh8a4fR0cGsYT59PukoZ2zJrM9FACZJqCcGc+asGNVML6CVqBSHph83EWBjcuk6TMeN + WcPGvPcEdLCUegVHDUfKYKVEpdSg1YIB6NAHjFh9ZsAMHPuiGTAoJXKgAn0SVywBguOmoURRYfAM + fSLHtlIBo4OsqJRBPSqop2Nl7tkRBLEY4CeOtX9Ls0B7Cq+mgAMXd4FetHED9yeAA+sROsJYZV9U + QS5tS1kzPHi2HhpCLan6wwg7AusxtqOBThw3x0FAilrp6PN//zeSgA5YdzyFRH1Ay7EFBH90SXov + O7bQlDh2EqBNUnp4YPWXGg5sQSLVn3CsAckEWUIZG7+B977k6VcTzxBFQWI4AtfjPtHzPHfkcc+S + YFcUMOSq6tiiElip+krPPscZnlyeZm6lBAdoPdN+WBdlrju8WlP23OjNxkzHsCQKtK8r2WYriWpo + FvNNfLqOWKKmZKwBjyWEKwBjFB03VsP94YQ8nePccOTst3UsEmtEs0pvBvRpAvBhuB7lReJNn6Tr + davyiQbZxfL17ShoLhfyAq/mp9tjVBTDFe/2zHshuXWkyCFf3TFj0XpyV9zFank2gcWxXLD55Mrj + ty19T370z7G9qPx898sPf3ABrKVeyW0v+/teWaL6bP2o7DztoWWTKe3Z0laZUt2IowZLGJ8Uk49Z + qds2HNsaSx7elbr0ydPkCwAAAP//AwBwHTQOVAUAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac848fc9cfae7-SJC + - 9953e42eebae2516-SJC Connection: - keep-alive Content-Encoding: @@ -3528,223 +3770,69 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:44 GMT + - Mon, 27 Oct 2025 17:25:20 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:43Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:44Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:43Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJ5xuRMLfs8R54pBu7 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8397" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "3500" + - "8506" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998492" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_d79c72a105e8452980f617e35c19beac status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnal - molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate - that would result in the model predicting the molecule\\nto not contain the - \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual - and\\n2,4 decadienal is also provided. Republished with permission from authors.31\\n\\n\\n - \ The molecule 2,4-decadienal, which is known to have a \u2018fatty\u2019 scent, - is analyzed in Fig-\\n\\nure 5.142,143 The resulting counterfactual, which has - a shorter carbon chain and no carbonyl\\n\\ngroups, highlights the influence - of these structural features on the \u2018fatty\u2019 scent of 2,4 deca-\\n\\ndienal. - To generalize to other molecules, Seshadri et al. 31 applied the descriptor - attribution\\n\\nmethod to obtain global explanations for the scents. The global - explanation for the \u2018fatty\u2019\\n\\nscent was generated by gathering - chemical spaces around many \u2018fatty\u2019 scented molecules.\\n\\nThe resulting - natural language explanation is: \u201CThe molecular property \u201Cfatty scent\u201D - can\\n\\nbe explained by the presence of a heptanyl fragment, two CH2 groups - separated by four\\n\\n\\n 20bonds, and - a C=O double bond, as well as the lack of more than one or two O atoms.\u201D31\\n\\nThe - importance of a heptanyl fragment aligns with that reported in the literature, - as \u2018fatty\u2019\\n\\nmolecules often have a long carbon chain.144 Furthermore, - the importance of a C=O dou-\\n\\nble bond is supported by the findings reported - by Licon et al. 145, where in addition to a\\n\\n\u201Clarger carbon-chain skeleton\u201D, - they found that \u2018fatty\u2019 molecules also had \u201Caldehyde or acid\\n\\nfunctions\u201D.145 - For the \u2018pineapple\u2019 scent, the following natural language explanation - was ob-\\n\\ntained: \u201CThe molecular property \u201Cpineapple scent\u201D - can be explained by the presence of ester,\\n\\nethyl/ether O group, alkene/ether - O group, and C=O double bond, as well as the absence of\\n\\nan Aromatic atom.\u201D31 - Esters, such as ethyl 2-methylbutyrate, are present in many pineap-\\n\\nple - volatile compounds.146,147 The combination of a C=O double bond with an ether - could\\n\\nalso correspond to an ester group. Additionally, aldehydes and ketones, - which contain C=O\\n\\ndouble bonds, are also common in pineapple volatile compounds.146,148\\n\\n\\nDiscussion\\n\\n\\nWe - have shown two post-hoc XAI applications based on molecular counterfactual expla-\\n\\nnations9 - and descriptor explanations.10 These methods can be used to explain black-box\\n\\nmodels - whose input is a molecule. These two methods can be applied for both classification\\n\\nand - regression tasks. Note that the \u201Ccorrectness\u201D of the explanations - strongly depends on\\n\\nthe accuracy of the black-box model.\\n\\n A molecular - counterfactual is one with a minimal distance from a base molecular, but\\n\\nwith - contrasting chemical properties. In the above examples, we used Tanimoto similar-\\n\\nity96 - of ECFP4 fingreprints97 as distance, although this should be explored in the - future.\\n\\nCounterfactual explanations are useful because they are represented - as chemical structures\\n\\n(familiar to domain experts), sparse, and are actionable. - A few other popular examples of\\n\\ncounterfactual on graph methods are GNNExplainer, - MEG and CF-GNNExplainer.69,104,105\\n\\n The descriptor explanation method - developed by Gandhi and White 10 fits a self-explaining\\n\\n\\n\\n 21surrogate - model to explain the black-box model. This is similar to the GraphLIME87 method,\\n\\nalthough - we have the flexibility to use explanation features other than subgraphs. Futher-\\n\\nmore, - we show that natural language combined with chemical descriptor attributions - can\\n\\ncreate explanations useful for chemists, thus enhancing the accessibility - of DL in chemistry.\\n\\nLastly, we examined if XAI can be used beyond interpretation. - Work by Seshadri et al. 31 use\\n\\nMMACE and surrogate model explanations to - analyze the structure-property relationships\\n\\nof scent. They recovered known - structure-property relationships for molecular scent purely\\n\\nfrom explanations, - demonstrating the usefulness of a two step process: fit an accurate model\\n\\nand - then explain it.\\n\\n Choosing among the plethora of XAI methods described - here is still an open question.\\n\\nIt remains to be seen if there will ever - be a consensus benchmark, since this field sits on\\n\\nthe intersection of - human-machine interaction, machine learning, and philosophy (i.e., what\\n\\nconstitutes - an explanation?). Our current advice is to consider first the audience \u2013 - domain\\n\\nexperts or ML experts or non-experts \u2013 and what the explanations - should accomplish. Are\\n\\nthey meant to inform data selection or model building, - how a prediction is used, or how the\\n\\nfeatures can be changed to affect - the outcome. The second consideration is what access you\\n\\nhave to the underlying - model. The ability to have model derivatives or propagate gradients\\n\\nto - the input to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nt\\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "6380" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA4RTwY4TMQz9FcuXgjRdtV0q2LkhDoA4wgISg6Zuxm0CGafEzpaq6r+jmbKstghx - SpT3/OxnO0fsU8cRa3SRSsdTTSJs02fT5XQxWyxnN4sbrDB0WGOv23Y2v+Zlfpf7Nze3h0URff76 - /Yvbj3Os0A47HlisSlvGCnOKwwOpBjUSwwpdEmMxrL8c7/nGPwdkPGpcrVbfNEkjx0YAGtTS95QP - DdbQ4AfPMPCAf+5icMHiAdTIWME8GbhUxDhvyFmhOLJIyEISBcoM5IY7rSNfwSfPAh2ry2EdZAt9 - iuxKpHyhohUEA0nGWsPk1X8yFOVNibBmR0UZzPNhfM+8y6wsxh2QgvPcB0cR1HJxVjIrPNlQH2Kg - DJagSz0FGfQ5mz6tQHeUlSsg6S6tTOBPXyhqgp7lXNDYk/3g0/mUdHD5+eVb6Nl86rSCJAwuiYaO - 8+gBgsJkP0SZ58fm1KcSOyDnUr+LQf0EgrhYukF14tN+DNkwnc04ElgzOE+y5W5wRJsNu7NwKuZS - z9UE9j44D5njeYZphB+sgYxykDaXQ7lqsDovSObIdySOW3Up87Ao81kjp0ZWqxWevlaolnZtZtIk - WCNL11rJgr8B5R+FxTHWUmKssIzLWx8xyK5Ya+k7i2I9X84XFTpynluXeexK+5gyu8czU/cv7D52 - yMA7zz1niu2y/5v/gM79JXqqMBV7VN/1skLlfBcctxY4Y43Dp+sod3g6/QIAAP//AwD5T3HD5wMA - AA== - headers: - CF-RAY: - - 991ac8491ce07396-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:04:45 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:43Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:45Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:43Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJyJ67bAYmAJRD2Ujwj9 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "3982" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nthat - gives subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicted probabil-\\n\\n\\n 9ity difference - between the molecules by removing one atom at a time. These weights can\\n\\nthen - be used to color the molecular graph and give a visual presentation. ChemInformatics\\n\\nModel + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 9-12: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\nthat gives subgraph importance + for small molecule activity prediction. On the\\n\\nother hand, similarity maps + compare model predictions for two or more molecules based on\\n\\ntheir chemical + fingerprints.83 Similarity maps provide atomic weights or predicted probabil-\\n\\n\\n + \ 9ity difference between the molecules + by removing one atom at a time. These weights can\\n\\nthen be used to color + the molecular graph and give a visual presentation. ChemInformatics\\n\\nModel Explorer (CIME) is an interactive web based toolkit which allows visualization and\\n\\ncomparison of different explanation methods for molecular property prediction models.84\\n\\n\\nSurrogate models\\n\\n\\nOne approach to explain @@ -3805,52 +3893,67 @@ interactions: works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations can interpret the model by identifying contribution of\\n\\npresence \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6357" + - "6304" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dJNPb9xGDMW/CsFLGkA2bMdOYV1yMJK0SFDkYPSSLbTcEbWaeoajDDn7 - B8Z+92C03hhOkJMAkXyP7yfqEWPqOWCLLlDp+UyTCNvZ9dnN2dXF1c3F7dUtNuh7bDHquru4/Ouf - h9X+dnP3+ebTh49l+/7T2+nLv2ts0PYT1y5WpTVjgzmF+oJUvRqJYYMuibEYtl8fT/3Gu1qZHy0u - l8v/NclCHhcCsEAtMVLeL7CFBd6PDLxznCeD3qsrqqzgUhHjPJCzQgF4NwUSMp9EwQvYyDDb7gzS - ADEFdiVQhilz713tg5mBnsPdCykFygw9D164B1LgHcUpsMLW2wjRi48lQs8bP9vBkFOc/bx48xTA - Sw3uGFbFjkM075JJzcsaUjGXIp/D/ch7INEt51ngW2GdJV9tR+9G0EghsBq4kWRdA5XQAwV76n8S - qgFJnm3TAL4GYrV3r+BvATdy9Gp5DzRNwbsjpqbSPE5EtuydwoqUe5jRnHipjz5Q9raHP4J/YLgn - 8TFZep5esW2ZBd7fffhyDYOXNecpezF9PbMsVdQSRCYtla0fBs4sjvXH7JMh60yl7pkTuRG8bFLY - sFbZvsKruX/mYiPZCzgkJzYNaFmv+QieYEiuaA1I8wnQKnA9Az+coJwvsDneYObAm5qvU5cy11v8 - cyGHhSyXSzz816BamrrMpEmwRZa+s5IFnwrK30qNiK2UEBos8+/RPqKXqVhn6YFFsb28fnvVoCM3 - cucyz0t0L1suTvXM1P+udpqtDjyNHDlT6G7ir/3P1cvx5+qhwVTs5X5vGlTOG++4M88ZW6yfvafc - 4+HwHQAA//8DAMYrxzdJBAAA + H4sIAAAAAAAAA3RU244bNwx991cQeh4v7O16s+uXIg2aIEAe+rAogtaBQUucGTa6TEWOve5igXxI + +3P5kkLj8aXN5kWAdETq8JBHTxMAw84swdgW1YbOT9/8+uHt7t0jp+vXrv7w27vFDW93/uHW159/ + +miqEpE2f5DVY9SVTaHzpJziAbaZUKlknb+6nS/uFvfz6wEIyZEvYU2n08X0ena9mM7uprNXY1yb + 2JKYJfw+AQB4GtbCMDp6NEuYVceTQCLYkFmeLgGYnHw5MSjCohjVVGfQpqgUB9JPqwiwMtKHgHm/ + MktYmYeWgB4t5U7BUc2RBGzqo1Ku0WqPHuix8xix1CmAAhzLI5YEdqwtBI4c0IOjLQ+XoM4pAEZI + mRuOQwYsSsGmV+hycr3l2ABC4ZZRtOxSrzYFuoKHlvaAUXaUQVuCP3uSkraCr1/+3rVsW5CA3pMo + 2BZjQ4Wwd4Bex5AxF6S60DjyLVsuhZHoj1+//APvI9iWAovmPXx8/b4CbVmABVJHeagFPf9FDnop + FEPyZHuPGYQDe8ysewikma1UIL1tizwPGDkkTeB4fHdDuiOK8PObt7/cQM2xodxljioVaAKK0mca + axHATIcCYU96LGU6FMexKfqwQJ0xFEqOM1n1e+DQeS7RdqC9Yc+6X/6vlQLSN00RTjqyXLOtTu0L + yZWDsc3aosJukHXUuOjaZXI8PDC0CZQeFdBLgph0GJyxn1v6Zmoy+WKOChqKg7ixgU3S9qglYHRF + suN2nBkpCg1d6zIpDE6CDbW45ZSvVqY6zHQmT9si9lpsylRmez5bxedLJ2Sqe8Hiw9h7fwFgjEkP + TIsHP43I88l1NUeWdp0JJcXiJNHUmQF9ngB8Glzc/8eYpsspdLrW9JmGtPMfZvNDQnP+N87w4n4x + opoU/UXc3f1t9ULKtSNF9nLxFRiLtiV3ETtfXJ+KwN5xOmOzyUWN31J6Kf2hfo7NOcvNzd13HzgD + 1lKn5Nbn+XnpWqbyu37v2kntgbIRylu2tFamXDriqMbeH34+I3tRCusLp41NnzxP/gUAAP//AwBN + itNh+wUAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac8491c85680c-SJC + - 9953e42f2a6315d8-SJC Connection: - keep-alive Content-Encoding: @@ -3858,49 +3961,59 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:45 GMT + - Mon, 27 Oct 2025 17:25:21 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:43Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:45Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:43Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJ64MsQ5idQ8BA1o74 - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "9165" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4184" + - "9219" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998489" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_2d1a9071fa0648d2bd6585684969df39 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAAIACAIAAABPahfdAAAACXBIWXMAABcSAAAXEgFnn9JSAAGSXElEQVR4nOzdB1RT6bo//vtf6/7OuWfuKXPGKU7vjr1gAwUREAtVsYIiiiJI770TSCX00EvovVcBQbqKDQERULAAioBSpQX/r+w5uQwwiBHYgTyf9S7WZmdn5000D9/d3v1fbwAAAAAAwHT+C+8OAAAAAABwKchJAAAAAADTg5wEAAAAADA9yEkAAAAAANODnAQAAAAAMD3ISQAAsHCuXbtWDDhSU1OD978e4EWQkwAAYOHQ6fTc3Fy8I8fik5aWFhERgfe/HuBFkJMAAGDhoJz06tUrvHux+Dx69AhyEsAF5CQAAFg4kJM4AzkJ4AVyEgAALBzISZyBnATwAjkJAAAWDuQkzkBOAniBnAQAAAsHchJnICcBvCy+nBQeHk4C7y8uLg7vfzoAAOQkDkFOAnhZfDkpMDDw2bNnePdikYESAwCXgJzEGShiAC+Qk3gClBgAuATkJM5AEQN4gZzEE6DEAMAlICdxBooYwAvkJJ4AJQYALgE5iTNQxABeICfxBCgxAHAJyEmcgSIG8AI5iSdAiQGAS0BO4gwUMYAXyEk8AUoMAFwCchJnoIgBvEBO4glQYgDgEpCTOANFDOAFchJPgBIDAJeAnMQZKGIAL5CTeAKUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDABcAnISZ6CIAbxATuIJUGIA4BLzlJMGBweLi4srKipYLNacr5wbQBEDeIGcxBOgxADAJeYjJ3V3d+/du5dKpVpbW8vIyIyMjMzt+rkBFDGAF8hJPAFKDABcYj5yEo1GCwoKwqbNzMwyMjLmdv3cAIoYwAvkJJ4AJQYALjEfOUlVVbWqqgqbRt90BoMxt+vnBlDEAF4gJ/EEKDEAcIn5yEnW1tZJSUnYNIVCiY2Nndv1cwMoYgAvkJN4ApQYALjEfOQk9AUXEhLKz89PSUnh5+cfGBiY2/VzAyhiAC+Qk3gClBgAuMQ8Xe/W0NDg5OREIBC6u7vnfOXcAIoYwAvkJJ4AJQYALjFPOQn7jhOJxDlfM5eAIgbwAjmJJ0CJAYBLQE7iDBQxgBfISb9rbm7Ozc1taWmZ8zVzAygxAHAJyEmcgSIG8AI56a3w8HA5OTlPT08ZGZnExMS5XTk3gBIDAJeAnMQZKGIAL5CT3tq+ffvw8DCaGBoa2rlz59yunBtAiQGAS7xXThobG5vl4NroO4629xwdHT+ga1wNihjAC+Skt5VIUFCQ/evatWvncOVcAkoMAFxi9jmpvLxcR0eHQCD4+/u/My1FRkaqq6srKysXFxfPvCTaGvTy8nJycnJwcOjq6pptv+daQUGBmZkZ6gnqz2yWhyIG8AI56a1t27ZhN49EPwUEBOZ25dwASgwAXGI2OQl9YY2NjaOiotBW3Jvxa/5NTU1RsMAeraio8PX1LSkpwX6tqqrS1dXFHkXLo2cZGhq2trZOu+asrCxzc3O0fjTd09NDJBKDgoIW+Na56NVR/kPBDvUWTaPepqenz+ZZUMQALiAnvUWlUjU1NTMzMy9cuBAQEDC3K+cGUGIA4BIz56Te3l4CgUAikaaOFYkijsc4NTU1NI1+osVQYGIymZOCDloJCkDu7u4Td9XU1dVhYQtVA0tLS5S9sPm1tbUmJiZlZWVz9xb/VF9fH2Ec6uGb8VSHunTv3r3c3Fw9Pb2ampoZngtFDOAFctLvULlBX8Lw8PA5XzM3gBIDAJf4s5yEsk5QUBCKC9jOnj+zadMm9s7vjRs3zrDkw4cPjYyMUKJ6+fIlik1oCxDFFPTq0x7qSkpKsrKy+rO9UB8ORaLIyEhtbe1J7w71xMXFxc7ODnUSBTsHBwc0Me0aoIgBvEBO+h3aokLFa6leLQIlBgAu8Wc5qbm5uby8/J1Pn3ihyWwuOsnOzlZTU+vq6oqOjra1tZ0hCQ0MDFhbW8/T2Cj29vbs44ZToV4ZGhqiIIVeXVNTs7q6euoyUMQAXiAn/Q5yEgBgAXzguACbN2/GDskNDQ3N5qITdlm7f//+zEs2NTWlp6dXVVVx3LcZoD709vbOfDY6iokPHjxAHZj2dCUoYgAvkJN+BzkJALAAPjAnpaSkHDx40MvLS0ZGJioq6p3Lz76socXmNSehEjTzIUUM5CTAbSAn/Q5yEgBgAXz4OJNPnz7Nzc19/PjxbBaGnATAB1riOam1tXWWo7ShnNTQ0DDLgoLW2d/fP8s+cAMoMQBwiXkaj/vPQE4C4AMt2Zz04sULBwcHb29vc3PzrKysmRe+efPmxYsX3dzcZj7PEYPWhhY2NTV1dXWd5Qhpcw69OysrKwKBEB0djY2wMjMoMQBwCchJM4OcBLjNEsxJ2GizVCoVG6IDuXz5spmZGTZeyIMHD1B+sra2vnHjxpvxHU5GRkYoTmG7nQYGBv7sutk346O96erqJiYmDg4Ool9rampQYHpnCJtbqGMTr55FCc/Y2Bj9nPlZUGIA4BKQk2YGOQlwm6WWk5KSkiwtLad+G1EM8vf3Lyoq2rp1a2lpKQpJQkJCaWlpKDBNHa4DG4dt4ncVG/wNBRRUdFxdXRkMBvshFJs0NDTq6+vn4s29A3otQ0ND9gBx165dMzc3R1EPu+J3ho8FSgwAXIJrc1JUVNS85qSUlJTZDDoAOQlwm6WTk27evGliYjLzACToa4ayDjadn5+PQsYMCxcWFpqamt69e5fJZDo4OLS3t//ZACSDg4MUCmXayDVX0Ltj35pgIhTgqFSqh4dHd3c3jUb7sz1hUGIA4BILn5NQ+cJGvn7n0ACpqam3b9+eeRlsM/LFixezPPUT886shg1E2dTUBDkJcJulk5Pq6+vfeaYOg8EICwvDplHyUFdXn3l5Foulra1dU1NTV1eHQtjMh7dQfpqnm3WjeOTq6jrDPZgaGhpQ5svOzkalBMW1qQtAiQGASyxwTkJ8fHzQ9iHapnJxcUE1qq+vb+oyqHii7UALCwtU6P5sQEhsqwxtjHV2dhIIBCsrKz09vYnbjYUdj8/czj5351JZ5//tN0KJyszMTENDw83N7c+i1bVr19TU1NDrolJmbGz89OnTqctAEQN4WTo5aTZKSkrQtxGb9vDwCA4OfudTsM0g7ISkGaDvMKod8zSsAKoOVeNmXgw79jdtH6DEAMAlFj4nIY8fP7a0tMzIyECxBqWWhISEiY9OOs1x4r1y4+Lienp63oyfjpmcnNze3o4qia6uLvYodiM57IqW+IfV35MNvsrzQ+1XT6vLz5rQTPQQejkUlbBXwcLQxJfGzhD19fXF6qe/v/+fZSkoYgAvvJWTEHV19TNnzqiqqh49enQ2V6vNMvpgx/XnNSeh7bzZLAw5CQBuhktOwqCMYmpq2tDQUF5e/uTJEzQH5R5bW9upl82yr4bZvn27np7em/Gd8U5OTlODzpvx/dlotevsdP+///nLJyQdlJP+un3dRgd9DQ2NSbe2xQ6uoWCEvfro6KijoyNKSEwmE03MfN4CFDGAF57LSW/GL2qbds/ztCAnAQDmEI456c34FS1+fn4UCgWlEywJzTAUXHd3t4SExIULFyorK1FO8vb2/rOj/y2ve3/0tf2bOP9fNvz2ZaYXykm/BTj0jEy/IYoqMIlEwvZCYdFtUpyaFhQxgBdezEnvBXISAGAO4ZuTMC9evEAhaTZX6aOc1NHRIS4u7u7uPkMNqe7p+C6K8pG08L8tL/xD+eDbnJTu/fR17wxrRq+O4trsx1WBIgbwAjnpHSAnAQDmEDfkpNlDOQn99PPz27Rp0ww15Nlg/2+xLignvT3oJrD+v3/+dlOWf//o8Bz2BIoYwAvkpHeAnAQAmEOLMSexWKzt27fPXEPEUv2xnPR5iMN//b//li589z163wsUMYAXyEnvgMWOGa7Jx9y7d6+trW2WOam7u/u9+oDlpFnWCMhJAHCzxZWTUFnDJlCf2Xc4mNaVtuafo50/87P+Ipq8Iox8s2uOqzQUMYAXyEnvgB3Fv379+rTDfE80NDRkZGQ089hrz58/Nzc3j4uLe/nyJXtY7Xfy8fEpKSmZeZmCggJ/f/83kJMA4G6LKye9F2L91U8ImigqMR+/+7zs9wVFDOAFctI7DAwMODs7UygUVNpQZkI1Ds2Zuhh2v5QrV66gGJSfnz/tqlDcoVKpKCH5+vpaWVkFBwe/87a7aGEHBwcajWZmZoZefdoQhg0ymZWVheqInp5eYmLi1GWgxADAJZZwTjpSmYblJO3qgjlfORQxgBfISbOC0oyJiUlcXByaQOEGTbAfmnq/FPYobTdu3DA2NsZmEolEVBzRQxPHFOnr6yOTydjNRlAJwEbr7+zsRNMsFovJZKLXwoZoezM+zpumpubEwUtQisJGZuvp6UFhjkAg/NmOcSgxAHCJpZqTsp43/ZAf8C8DxWXOhisLQqq6X8zt+qGIAbxATnoPKAwZGhpWVVVhx+yxzDR1iLY3/xmlDQWXn376CUs/EhISKDxNu7OnsbERrVZBQWHz5s0oFaFyoKSk9GdjiqA1mJmZYUcA79+/j6JSfHw8SmMzHxOEEgMAl1iqOenM7Zyv8vz+ce7QJwRNNKFVfXlu1w9FDOAFctL7wXbz2NvbU6lUV1fXaY/BsaGERKPRhIWFX79+jV02MgM1NbWYmBhFRUVUDtg3V5kWelFUatGrl5WVvfPWvxgoMQBwiaWakySvJU3MSaduzXZgpFmCIgbwAjmJE729vV1dXe9cDOUkBoORlpZmaWk5m5yECsH58+cjIyNnzkmY1tZWtP533voXAyUGAC7BIznp5K3MuV0/FDGAF8hJ8wjLSWji5MmTW7ZsmXlhLCd1dHRs2LBhNjnpvUCJAYBLLNWcpHgra2JOUr87/eUsHIMiBvACOWkeFRcXY2d8P3nyRFpaeuaFLS0tW1pa0ERISAiantueQIkBgEss1ZyU2Nbw0+XAj43OLHMxWl3IvPaybW7XD0UM4AVyEnexs7Obj9VCiQGASyzVnIRoVxesvsJcfyWUUF8x5yuHIgbwAjmJu8zy5iTvC0oMAFxiCeck5EH/q5YZb3/LMShiAC+Qk7gL5CQAlralnZPmDxQxgBfISdwFchIASxvkJM5AEQN4gZzEXSAnAbC0QU7iDBQxgBfISdxl2gG7PxyUGAC4BOQkzkARA3iBnMQToMQAwCUgJ3EGihjAC+QkngAlBgAuATmJM1DEAF4gJ/EEKDEAcAnISZyBIgbwAjmJJ0CJAYBLQE7iDBQxgBfISTwBSgwAXAJyEmegiAG8QE7iCVBiAOASkJM4A0UM4AVyEk+AEgMAl4CcxBkoYgAvkJN4ApQYALgE5CTOQBEDeIGcxBOgxADAJSAncQaKGMAL5CSeACUGAC4BOYkzUMQAXiAn8QQoMQBwCchJnIEiBvACOYknQIkBgEtATuIMFDGAF8hJPAFKDAA4KiwslJGR0dLSegM5iVNQxABeICfxBCgxACy8oaGhgICATeN8fX0HBwffQE7iFBQxgBfISTwBSgwAC+n58+dmZmbffPONjIxMXl7exIcgJ3EGihjAC+QkngAlBoCFUVJSoqCgsHz5ck1NzcbGxqkLQE7iDBQxgBfISTwBSgwA82pwcBB9xfj4+FatWuXv79/f3/9nS0JO4gwUMYAXyEk8AUoMAPPk+fPnBAJh+fLlEhISubm5Y2NjMy8POYkzUMQAXiAn8QQoMQDMuevXrx89evTLL7/U09O7f//+LJ8FOYkzUMQAXiAn8QQoMQDMldHR0aioKH5+/l9//dXV1bW3t/e9ng45iTNQxABeICfxBCgxAHy4ly9fkkikH374QUxMLCUlhcVicbASyEmcgSIG8AI5iSdAiQHgQ9y4cUNVVfWzzz5TVlauqqr6kFVBTuIMFDGAF8hJPAFKDAAcGBkZSU5OFhUV/eabb1xcXOYk30BO4gwUMYAXyEk8AUoMAO+lq6vL3d39p59+EhAQSElJGR0dnas1Q07iDBQxgBfISTwBSgwAs1RXV6evr//FF1+oqqreuXNnztcPOYkzUMQAXiAn8QQoMQDMbGxsLD09XUxM7LvvviMSiZ2dnfP0QpCTOANFDOAFchJPgBIDwJ95/fo1g8H49ddfBQQEQkNDh4aG5vXlICdxBooYwAvkJJ4AJQaAqe7fv6+jo7N8+XJ5efmioqKFedFJOamnpycqKopCofj5+ZWUlGBjDRAIhCtXrsxmbe3t7SdPnsSmVVRUmpubZ9kN9kt0d3d3dXW933uYnZs3b9JoNF9f3z/bOVdQUODi4uLm5nbjxg1sDgqply5dcnV19fDwuHv37sSFoYgBvEBO4glQYgBgGxsby83NlZaWRgnJzs7u+fPnC/nqE3PSy5cvxcTE1NXV0dfT09NTUVERG7UyISGhtrZ2NmtDKQflDGxaWFi4rq5ult1gvwTKMTY2Nu/7Lt4JhbBt27b5+/ubmZnt2bOnr69v0gLJycmCgoJhYWEoIG7duhXLqWgafQioyKP8xMfHl5iYyF4eihjAC+QkngAlBgCkv78/ICBg7dq1GzduRH+hBwcHF74PE3NSZmYmyhBTl6msrGxpaUETDx48qK6uRuknOjoazURz0PyYmJjy8nJsyYGBAZT5sGl2Tnr9+jWKKUwmMy8vj/0e68Y1NDSgUtDe3o69RFdXl76+/tmzZ1FP0DpramomJq179+7NMq5NdeLEiaioKGwaRR/U/0kLyMvLBwUFYdMkEsnIyOjN+O2E2QuEhITIycmxf4UiBvACOYknQIkBPO7x48c6Ojqffvop+ptdUlKCY08m5qTCwsKtW7dO3QmkoqKSmpr6Znxnj4yMDMoxZDJ527Zt6NeTJ0+i6d27d2PfaJR1+Pj4sGexcxLKgjY2NmjhixcvSktLY2dcUalUFDtOnz6NQgmKX9hLPHnyBK1QVlaWQqFERkaidCUlJcXuBpouKCiY2DG0qrvTQcls4mK9vb2//fYbKjvYr15eXlpaWpPeI4FAMDAwYLFY6LlKSkooFU1aAL0L9I/F/hWKGMAL5CSeACUG8KzS0lLsEJulpSVKS3h35w85aWxszM7ObvXq1SjioBiH7TF688echDqPnbSEpnfu3DkwMICmc3Nzjx079uZPctJEhw8fRp/Am/GcxF7VpJdgH3dDj4qKit66dQtNo59ohZPuzdLR0aE0HZS3Ji6GerVixQr2ne9Q8UEvN6lj6I3Iy8uj8If6j947+igmPtrW1iYoKDjxJC0oYgAvkJN4ApQYwGuGh4fDwsLQ3+C1a9f6+Pj09/fj3aPfTb3eraenB0UZFFbWrFmDndE8bYhBc9hpAyUqbMfPtDnp/v37KLvs27fv0KFD6FFsVSgnTTwPadqXeDN+hpCpqSmaQD+9vLw4e48o5aCcxD49nMlkTs1J6EXPnTuHAlZjY+Px48cDAgLYDz1//vzAgQPBwcETl4ciBvACOYknQIkBvAP9b7ewsPj6669RksjJyZm0owJ3M4wLcPHiRQcHhzcfnJPExcUzMzOxmSiLsHMSwn6tP8tJKNxs3boVxZdNmzZNrbQoAG2ZTkNDw8TFUEjdsGED+9wmCoViZmY2aVXbtm2rqKjAptE/08GDB7Hp9vZ2lPBQryYtD0UM4AVy0qwQiUSsHAgJCSkqKt68eXOBO/CBoMQAXlBaWnrq1KlPP/1UV1d30pEg7jExJ6FOvnz5EpseGhqSlpb29vZ+88E5afXq1djbf/r0KcorM+ekuLg4NTW1iT00NDREqUVDQ2Nq51ks1qvpTL2vi46OjpOT05vxvWUiIiL5+flvxjNQQkICtgAKc+xzktBncubMmTfjKQ29L/YVfBNBEQN4gZw0K6hUoe0hVA5aW1v9/PxQYcLOElgsoMSAJWxwcBD99xYUFPz55589PT25/Ls5MSeVlJRs2rTp6NGjSkpKKOXIy8tjx6o+MCdhJ3qjoCMnJycjIzNzTkLldM+ePWgx9i4ftB24YsWKDxxQCtUcFI9OnjyJfqLYiu3VQ91m9zY7Oxu997Nnz2JnKWG3iHF2dkYvzd5NNfGkcihiAC+Qk2bFZhw2jTaJ0DcZGzntypUraPt1586dqNKhrz22ACpVaCY/P7+EhATaVsNmpqeny8rKonpkbGw8T6O6zQBKDFiSOjo6HBwcPv/8c/RnPi8vj9sOsU1r0nG34eFhVDHu3r3LvjoM6evrwy5SQxGQHfvQHPYoRCMjI9hZ0iwWq7u7G5vZ09PD3q/T1NRUW1uLVs5e1etxU1/izX/2ErFPu75x4waqVJPO4OYAevWampqJ7wt1m91brMPojaNl2B1DExN3U6EF2AtDEQN4gZw0KygkoQ2j6HHnzp1jb3hVVVU9efIEVedbt26hTSJsXzdaMjY29s34IHLY5l1BQYGoqOiDBw9QYUKbelNPaZxvUGLAElNdXX369OlPPvlEW1ub4zF+cMHN9y1BBQoVCmlpaayCcRUoYgAvkJNmBeUkbIgRlHIUFBTQr+ztNrQ9FBMT4+fnJy4unp6ejuag8m1ra4sNE4c5e/ash4fH43H19fUrV66c73tITQIlBiwNw8PDkZGRO3bs+PXXX1HgmL+71c4fLs9JqJRhdYzbQBEDeIGcNCsTj7uhhCQiIoKVElTyDh8+jCpLdHS0lJQUdry/qanJyMhIUFBQVFQUO3tRUlJSXl5ee4IFPoUCSgxY7F68eOHk5PTtt9/u2bMnOzt7URximxY35yRuBkUM4AVy0qxMzEmIjIwMNtrHpk2b2DeelJWVxXISW2JiIkpLb8YvzWUymQvX3SmgxIDFq7q6+sKFC8uWLVNRUZn9/cu41sScNDQ0hB3Nj4mJuXz5cnt7O759m41bt25h9xtBW4yVlZVeXl7BwcFVVVXsBchk8nxcbAhFDOAFctKsoJCE3QIpIyODQCCsX7/+4cOHaP6+ffv8/Pyampp8fX3XrVuH5SQ0B1Xzx48fo5lHjhxBc8rLy7dt25aeno5moioTHh6+wP2HEgMWHRaLhb5QkpKSX3/9tb29/cJf/TBPJuaknp6eFStWoPLi4OCgpaW1detWExMTLr9eD9W0mpqaN+OjbKMtRhcXFxSMNm/ezL6bG6qTenp6c/66UMQAXiAnzQqq15b/4enp+eDBA2w+mkDVTVlZmclkhoaGYpe2og2sc+fOKSkpWVhYsLerrl+/rquri2Zqa2snJycvcP+hxIBFpLu7G/31/f7773fv3p2QkDB1bJ5FbWpOYp/LiObLycmZm5uzF0aJBMWOiXtrkObm5sxx2NhLqAqhOoO+42lpadgFYg0NDejRa9eusY9O9vf35+XlsW+mixkaGrpy5UpsbGxJSQn7ijP04eeNm3itGRt6Orbth3WevX70cqKiotj08PDwjh07WltbP+RTmgqKGMAL5CSeACUGLAqNjY2ampqffPLJ2bNnsTt4LD0z5KQ340ONrF+/fmycra2ttLQ0kUg8fPgw+xpbf3//7du3Ozg4oG02Eon0Znxvt4KCgry8PFoGBSa0nbZnzx4nJ6eTJ0+qqKhgUQZtzqHNNjRTQkICG/4RQZttaIvOzc3NwMAABaM342Oa7Nq1y8TEBK0cTdTX10/qPJlMdnZ2nvqmUlJSDhw4wP4VrXDOCw4UMYAXyEk8AUoM4Gbob3lycvK+ffu+//57e3v7trY2vHs0j2bOSSjooDnt7e2lpaXi4uLYbp6hoSFhYeHa2lq05KZNm54+fTpxhSgnHTt2DMtDDx8+3LZtG3aMEs1BAau8vHziwgMDA3x8fGiB/v7+NWvWTBxRCTl+/DhKPNh0SEiIjo7OpM6fOHEiLS1t0kz0LtC/XXx8PHsOg8FASeu9P5oZQREDeIGcxBOgxADu1NfX5+XltXLlyq1bt0ZHR3/42Ibcb+achL6q2B1kXVxcdu3axb5CdufOnSigpKensw97saGcxB5oOzY2VkBAgP0sMTExPz+/N+N3dFFQUEDBS1RUdNWqVdjp8CoqKpKSkui5165dw56OHjp//jz2XEVFxYnDYWPQnIKCgolzent75eXlJ17m8mZ8GHF9ff0P+pimgCIG8AI5iSdAiQHcprGx0dDQ8PPPPz969OjVq1fx7s7CmTknpaSkoKDzZvwOHhcvXrw7wcuXLzMzM+Xk5CatEGUU9l1jo6Ki0Oc58Vnt7e2dnZ1btmzBzp5EduzYgeUklEpv3rzJYDAEBQWDgoLGxsZQYEWJiv3cSXe3RVAkmnhV7+DgIIpTlpaWk4ZpQNnXysrqwz+riaCIAbwsypxUWVn5ALyP8vJyKDGAG6A/qAUFBRISEighOTo6zvnZvtxvhpxUVVUlJCSE3R22oqICxRf2QJqjo6MjIyNoE3HTpk0oYk5c4cSc1NzcjBZoamrCfkWf9vDwMIo7KBthp8Pfvn0bvSLKSUNDQ+y9d0wmU0tL6834cTcUm9hrnjoc7sTzk9CjysrKZmZmU8ey0tfXZ1/+NlcgJwG8LL6clJWVxQTvDxvxEgC8DA4OBgcHr1y5cuPGjeHh4ZPOjOEdU3OSlJTUoUOHREREdu3aFRYWxl4ShRIUlUxNTQ0MDMTExLD96CgrbN682dDQUFtb29bW9s0fc9Kb8fOKtm/fbmxsbGRkdODAAbSZhKLSiRMnFBUV0ZyTJ0+iR1FOQuEJvSJaD1o/ehXsNKb6+vrdu3efO3fO3Nz89OnTqAOTOn/z5k32gT+0yYo6j5YXHSctLY3Nx653m/O9/pCTAF4WX04CACwu6C+cnp7eV199dfTo0cuXL+PdHZxNzEksFgu7ndGTJ0+mHaS7tbW1tLT0+vXr7JvUvhm/FXdZWVlFRQWWNbu6uibeXPbN+NjlKPegBbCBA96M34AW/Xrjxg0UYlpaWrAdRW1tbWjlaFUTb/+CHrp9+zaajw0RNxV7/CT0oo8nYI+BAuMngSUGctK8U1dXR7UJ714AgIOioiL0ZxUlJENDw0lXafGsxX7fkjt37sTExMywAIPBgPG4wVICOWne/fTTT/AXAvAUtGEQHBy8bdu2tWvXor+aPHuIbVqLPSfhBXISwAvkpHknKChYWlqKdy8AWAgtLS0EAuG77747cuRIcXEx3t3hRpCTOAM5CeAFctK8O3nyZGRkJN69AGB+VVZWKioqfvzxxwYGBuzrrcBUkJM4AzkJ4AVy0rwzNzen0Wh49wKAeTE8PJyYmCggIPDjjz8yGAxIAO+EclJgYCDe178uPr6+vpCTAC4gJ807T09PTU1NvHsBwBzr7Oy0s7P76quvJCUlMzIyltjdaufPs2fPWgBHJl6XB8CCgZw079LS0tgjiwCwBFRXV585c2b58uXq6upTh2wGAIClBHLSvLt79+6WLVvw7gUAH2p4eDguLk5MTOynn35ycnLCbrYKAABLG+SkedfR0bFs2TK8ewEA5zo7OykUyjfffINCUkZGBi/crRYAADCQkxbCP/7xj/7+frx7AcB7u3fvno6Ozscff3zmzJnq6mq8uwMAAAsNctJCWLNmzaRbVwLAzVgsVkpKioiIyI8//kgmk58/f453jwAAAB+QkxbCnj17Ll26hHcvAHi3np4eFxeXX375RUhIKDY2Fq5iAwDwOMhJC+H8+fMhISF49wKAmdTV1WlpaX322WenTp2qrKzEuzsAAMAVICctBIdxePcCgGmMjY3l5ORISEgsX77c0dGxvb0d7x4BAAAXgZy0EAIDA8+ePYt3LwD4g76+Pj8/v1WrVvHx8UVGRg4NDeHdIwAA4DqQkxbC5cuX9+/fj3cvAPhdc3OzhobGZ599pqSkVFZWhnd3AACAe0FOWgj19fVoqx3vXgDwpqio6ODBg8uXLzczM2tpacG7OwAAwO0gJy2E/v7+v/3tb3j3AvCu3t5eX1/fjRs3btiwwc/P7/Xr13j3CAAAFgfISQvks88+g1upg4X35MkTCwsL9N/v0KFDV69exbs7AACwyEBOWiBoO/7OnTt49wLwkIqKCgUFhWXLlhkYGDQ3N+PdHQAAWJQgJy0QGRmZlJQUvHsBlr7h4eHQ0NB169Zt3LjRz8+vt7cX7x4BAMAiBjlpgWhpafn4+ODdC7CUvXjxws7O7quvvjp06FBOTs7Y2BjePQIAgEUPctICIZFIpqamePdiSRkeHR2FG9ePKy0tVVRU/PzzzzU0NOrq6vDuDgAALB2QkxZIVFTUiRMn8O7FEjE8Mpp+8x7jUjkjtzy/ujG/umGvhY+AputuA8+Q3Gt4927hDA8PR0RECAoK/vzzz56engMDA3j3CAAAlhrISQukrKxMVFQU714sEbl3G7wulaHmllWi4pOwWYu+WYW2RYW29YLzNlV6duU9vDs47zo6OqhU6nfffSciIpKdnQ2H2AAAYJ5ATlogzc3NMNTkXAm4fA3LSYbM9L0O/hvUaSgnjUclZxSVjjku5VsOV1dXnz59+pNPPtHW1q6pqcG7OwAAsMRBTlogLBbr73//O9694C4PO7oqHz9tfdXzvk8ML76J5SRVn8Q/5qS3u5QO2gYW3H2Qd6eh6XlnffPzq9VNo6OL/jQm9P8nPT1dUFDwhx9+oNPpnZ2dePcIAAB4AuSkhYP+wr148QLvXnCLzJr7rpdL9lIC+Czc+K097ZNyWWPDY2Ojs3lu7dPnjEvlKCdp+CeddI3kU6f/X05SoR2nhOkz0+xic/eb+u664CZ63l1C07vszoP5fkfzBEUiEon0yy+/CAsLx8TEjIyM4N0jAADgIZCTFs7WrVthqElMc+dLj8Ky3U6+601cUNtgSt9h7+SUaX+v07e5O3l49N17mJrau/LuNkQV36bFFxoGpG7Tdt2sSuPXoB+w9T/DiEVNxNJns6YL/0VXlJPeRiUd79bObhZrMZ3HU11dra6ujt2ttra2Fu/uAAAAL4KctHAOHjyYmpqKdy+4QlXLM5f8kg1mLmtN6ast6BtsyFvtHRUDdLMfyWY1SxQ8UXj8KmaWq2rr7CmtbiqraW5/2Xu18bFWUAqWk7YbuW/Udtl20UXkvJuAmuu2i66EmLzwopudvf3z+tY+HIvFys7OlpKS+vLLL+3t7bu6uvDuEQAA8C7ISQtHS0vLw8MD715whacvu1FOWmf2NiShtsmOuNWRIB+ikfZwf3LjvvSHMiVPzzV3Xevqf78L3a/UPrSIzsFy0g4TT5ST+NVcdqq+DUn8Gq701CKv7LLEimps4cFRrjuA1dvb6+Xl9cMPPwgKCsbGxg4PD+PdIwAA4HWQkxYOnU6HoSbZSh40b7XzGM9JzrvoVpK+hgoR6gFVe1zLZQ3TzimGmhgmMjwKyuJvVg8MzTYuNLV3eeaUGYVnnGXEHqGFbdF2ET7viu1MOmgX7JFZinISI7u8qbcj4H6Ze00h+tncyxUnRNfV1ampqX366afKysoVFRV4dwcAAMDvICctnOjoaHl5ebx7wUUirt7id2QIkAn7GGZHmQbKcarUq5KG2SflAozEPaz2uNGP+TPVIuJpl4qdsgrt0vMTb9bMcILR2NhYc2tnUvldFJXcskpCi26U3H1o4JJ0yCpY2iH4jEfsOa94m+hLgQXXvO4VoZCENca94t7hwYV815NkZWVJS0t//fXXVlZWHR0dOPYEAADAVJCTFk55efmOHTvw7gUX6ezr9y66apUVYprhrZVEMspWti06bJZ/TIJhyk+1W0cgrSeQNzkR1ztQ9nt4q8ZZXkzSIxQRH/U1TV3V66HhhILbfsmlqAWklN179AybPzLK8smqUGHEo5yE2lnP2KCKbKsbDMsbno63I9xqLqOoVPOybUHf9rienh4vL6/169fz8fExmUy4ig0AALgT5KSF09ra+sMPP+DdC+7y9GW3T3kM+Yqvb6Wv+zWCWd55gxwlUXf79QTiWgfyOgfyXk9j1djTZtlytpelLyYrqaecd75uXN/5uKt/oKvv/85eulrTjIUkrEVduoHNb+vqYWSVuaUXW0XmWERkOyWmepR4mVe6YM3hVqhFWTolt8AnpyL3TsProYUIK48ePTIyMvr4449Pnjx5/fr1BXhFAAAAHIOctHBGRkb++te/wi0mJukafHytPfRqe0jaQy+rAj2FCAcxT8p6AmmtPVmIbqmbLG+cccQ6V5ZaIk4olFBJUNbPunA2ylk/Lp2Sc8X7ytWqp88Gh0eyymsn5iTUhobfhp5Xfa9RTmI3x+TQmFs+5Co3LCdpFZOVEiI9Mku8sstQS6u8d/tpW9nDR896eufjnZaWlh46dGjZsmVWVlaPHz+ej5cAAAAwt7guJ9XV1V3L2zFtu32FH+/efajvv/8e/kBO1T3c9rCn9EFP8Z32y/Z5PupJrjvoDnwkJwWmmnH6UZOMwza5MrTSPc5lezRTFS4mK4t52KyxdV1n7yZA9lZmJqC0lFJePTEkRf5nfxJyuaqRnZNcsyKutvlfa/cPqfe0KXfSyjI/7RWt4pNASS50zyxRDUpyvVzqXljmcaX81pPWuXp3g4ODPj4+a9as2bJlS1BQUF9f31ytGQAAwHzjupxEIpF0dc6amShOagb6SiZGp/Hu3YfatWtXeXk53r3gXmNjYw97yivamfTrJvu9rU+Hq5lnyZllyTkV7kchyaVcTDfj2JmYc2sdSL9Z03+zpG8467hTxk7yOFnDJjQs+zpKSOTofFJMft3j52/e7sAb7ezs7R8YrHn8LPtmdWFNSdPL/JsvfG51BGQ20r3KrPRjyJLE4ANOQQcpTFX/RCXfONeCtzkJNa+iihHWh97tpLW11cTE5JtvvpGVlS0sLJyLTwgAAMCC4rqcRCSSUmN3D7T+MKldL9xibKSId+8+1IkTJ6Kjo/HuxULrGWp80pvR0ntpYOTZny3T0dXb9vzV8PDb+5aMsIYGR/vuvih3LXX0q9zlXLwXNc9rwpSSvYrRFzaT7FfZUlea0Tacc9wuYc1/wFpov62wlLWEhb1koJcKM14/NsMoMcM8OVHXK8zSO9Y9OCerovhhl2/zSzfUal4Qa7rCvK5R1FLsD/q7Cdi58Vt4idr7SVJCzgTEYSEJa72DnF8HV1RUpKCgsHz5cm1t7aamJo7XAwAAAF/cmJNSYoX7Wr+b1K4Vbl4COcnExIREIuHdi3nXNtBwvSO1/EX8ve7i5/3X6roY/2k+3YMP+kdejLKG2AuzWGOXCmuCIktQC4+vaO/4w01LajqYyQ17GNckLLJPiHtZC7sSxXxND4ZryTJ19hnrb5e04t9vzS9pLSBlteOw5Tqq00Znkoiz3w46fZet8wELd1F72n4fq2NhpobFhqmPHJq6XFFUut4erJHjcSKBLB1J2M+0FyS4Cdv5qgUlnQ7+PSdRLxV5FpZzcCbZ4OAgysF8fHy//fZbQEDAwMD7jZMJAACA23BjTkqM2fWy5ZtJraxgk7Hhos9Jvr6+2traePdifnUOthQ9D/+/1mrOzkk3ntuXtBrfeBF4q4PZ8boeW762vhULSYERxYywwsikq9j8gZHhxpedTa+6GnvKbnTGeNx0PBZCPxZhdThG81Ck1qEIreOeansvGvBLvM1JOyQsBQ5briaSNjg7iIeZ7o8w3O9vsNvJUoRsLhFsKB5geijUSCfNKPIK8e4j1/AHRL18xvEEslSkvUS4/QF/ioJnlGdOqUFspkt+iVZE6rnABGJKQcLVu32v3+a51q7uvLsNl2sePH/1p+d3d3R0oAT8xRdf7N+/Pzc3l/XBx+wAAABwA27MSQkxuzpavp7USgo2Gi3+nJSamiojI4N3L+bX/e7yiTkp58nFmk53FJLudtALnqpcadFFOQm1my+Ch0bfntFcWHofhSRXZr6aZ5yyR8w5j5jS+qa2vh6v2xXON/KJt9zcaui5beGpTdEyPp6nE/XlYjT3R+jtD9OT81OXs9bgP2AlcMBqp4TFZi1blJO2M6z2x+jv8TMSMbGSvGi6X8VC/LzVPk0zEXm7PUo2UtpWRwzsTjEtDyXYS0XZ7Q+zOxBhdyyKbhiR4XWprOjew+CiytPeMUresTohqfSMopw79fVtL8yiszWCk8/7xeuHpd9qapn0fm/evIkdYtPT07t37x4eHzkAAID5Mpc5qa2traVl8l8RZHR0tG+C169fz7ASlJNio4Xann45qV0p2GBkeGoOe4uLO3fubNy4Ee9ezK+GnqsTc1Jei3Vtp8fbnUnt9ignlbXZFz0O8M73Jqcy4kqvdPX0V95pDogoxkISaipesW6XS92vlzkWFxhdcjbKt7EscwhuYMQ9CLC5FHQ8zkIw3Jw/zJyfab4zxPSAs972I3b8x6y3GNiuoTquciILBZjti9LfbWkldtx2r5zN7kP2u/c7oCZ81E5YwU74kL3IUXsRZVvRYKM9TDNxprl4oKUUgXJaJ9COntrc1qkelIRCkoJH1GGXsBNukYahGac8o6WpIftJgXucAsSdAlBautr49orFwcHBiIgIISGhFStW0Gi0np6ed34yAAAAFp25yUljY2P+/v4ODg5EItHNzW3SQYeGhgbCf+jr66MlZ1gVykkx0UItT7+c1AoKNhgu/pzU3d39xRdf4N2L+dU9/KK4PZKdk2pfFbb0Xqrr8r7zglraZnO1zZ+UwrCJ8ULNIyWXeen6q94B/7gSLCShZpNwyaOg7Ex83BG/MPVMM+1MC9Qcypwyn4RSS30ko5x3hFsKhJsLhJvtCDPjc3MQJ/odCHBb60xaTSGtIpN2hxqJhxrsUrHbc9hW7KCdsCRBeB9B+JidsLGlsK3F23bBdp+i1Vn388Y5R5USzouQrcRPU2Rl6AekqDJnPVR84veT/YTsKQLWpC3mLrttfAQsvLaauK03ctlk7Cpg6SlHDyPHZjg4On311Vd79uzJzc2FAbEAAGAJm5ucVFtba2NjMzIygv5moG3rGS59t7e3v3PnzgyrQjkpMlqw6cnySS338volkJOQf/3rX0v+PvAvh57dfXn5Vld2U+9t1tjbS9hYY8Ms1sj9V+kZtX5YSHKKD/NJK3NJuHLt3qO7Ta3GkZnm0VnkzEL3gjLNhJQ9gQHCfr4KqaYXMk200s0N061i7vl53/YXCXfdGOCwJcxqS6j1el+nLQxP59xiu4z8I4FMfhcXPgptqxthb5TBrvO2YodtRWTtdx1wFJZyED5jK2yAcpLlLltLYXtzcXlr2QuGGv6njKOOHbHTEzzmuOO0k5C+jYC23XZtR2EH290OdsIOdrvs7UQJxK2GbusNXNYZuqCotPKM8Vdbdv31o/+VOHLi5p2q5696HzzrmP1tegEAACw6c5OT4uPjk5OTsem8vDwmkzntYs3NzUZGRqOjozOsCuWkiGjBB0+WT2qXLq83WBI5adWqVehzwLsX+ECZ6dajm9TEeJfkDPfEIh2vpNOkyNPESEOfVMPQdO2wVMfkfOOYjLMx8UpxMbv9fA+E0RTT9FWiDXXjzcn55PNMulSa0454202RthvC7bdGEi6kJHgUlJEuXTkVHMNH9FjjQF9lT19LIm7RIQjJOu6WdRCSdNwlZ7/rrO0uK8tdNm9z0i57i91nrMUPW++Ttzxpe1HV9+w2Xcd97kaSLgb7nA1FieZitmbiVNO9VLOj7jqaoSpbDVzX6zt/J6v80dc//vXjT38UO3yI6EdMvWwene2aUeyVU+aXd7WxDe5fCwAAS9Pc5CR/f/+CggJs+urVq+7u7tMuFh4enpCQMGnmhT/S0NAMjRKqe/zlpJaZv2Fp5CRhYWFeHnJweHSUeem6T1qZoW/qeefYg1bB56gxypRoJccIWXWGnK73aYvAC/bBqglRByMDZJjBUi5uKj7OJkxvu8j4k95usgkWW2NtV0fYr4mwXx9JkE3wcsspMozP3ET0WGnv8pstfYUNfYUlbaUFhe8sif8IUeCIk4CC405L650EK0F7SwGSJb+L5RYNx+3nHHefsNsjb3PEXk/Y2VyYaLHDwVbQ0VrGU0eSbCDnqq0cdd4oSV414NQ3IjJ//XjZP7779WeZM9t1nLdZua93cVvt4rKG7HLYO9Ql44pNYgo1K7t/eKaz7gAAACxSc5OTAgMD8/LysOmKigovL6+pywwNDenq6j57Nnmkwdo/srW1DYkSqnn81aSWnr/RYPFf74acOXMmKioK717gqat3IPPqPR2vZG3PJCVS1Hla7CGr4APqXpInXCQVXKSUnMV1nPb7O+7LdBJLcdrr5q7vmsSIKbIMTZRzcZOIMt0WZb2BabMhwoovzGqTv91uF5KwM03Qx2G7t91aEmmFDW2FNe03K9pvFtSVxrRVhtQVFtQNbg5bPW22ultvc7PebOnAd5HMd5G0XcVJ4oz5CaKmuJuJkKP1TgebHXa2QtY2Mnb659yUlf3FVkut/Ms//3cZ37bV6oYi9l6KFv679F1+Izr/SqetIDuvIDqvtqftdKALO7pKu3gE3YrvH5mXu8IBAADA0dzkpJycnPDwcGw6OTk5JiZm6jIoP1EolHeuikgkBUXtuv3om0ktOW+T/pLISWZmZrww1OQ7xRTe9k4tVaPHK1OiJcwCxM+57TvuLH3SVfIMWcTJZreb1d4sG9FcQ/FUY/lIqktsrnVIqriJ+x4f6y0BtpuDrfkiLPlCrNd72aMAtCfMeE+IuUiYmXCo6XqK49ucZE1baUNdaUnD2gor2jpr8jp7p3WGpA1qlI1qlE0XyUIGNnoeJ9UDlQ64Gx3wNBRysnwblRytNigd/eK37//n33/7VUmQP9TgcIKPPCN0L5lxypO238d6lavTz3TKL1TKr/a0VSiBWVI2W9G2WNNOBLvkPM3H+0MFAAAwx+YmJ7W1tenp6bW0tHR2dpqamjY0NKCZ9+/fLy4uZi9Do9HKysreuSqUkwKihG88+nZSS8zjWxo5ydfXV1VVFe9e4O9Ba4dferljeO45aoyUWcCBCx4HTtAPKbnvk7cXtTUXIZqIhuvuu6QlfElvR7rRrgSLs37B+81d91CdtgXZ8AVZbwqy3uhru5ZO2OVvKhZsvCfITCTEFOWkHQEWv2HxaDwnrbKirxrfw7RWm7b+InWdBnWDKmWDKnWDGlXBRUMr8JRGgKKUs+EBBspJRr/ISf3ts0///s3yTYYHREJ0dqUYCsUZC4RaCLpSd7sR9lOtz4RonEo+v97L7mca5TcL6mpz6npLyiZL6lY7igidZFzEeNTzEu/PFQAAwFyas/GTKisr7ezsbGxsSkpKsDk1NTX5+b9vYb9+/drPz29wFjfMQjnJL3J3RfMPk1pc3ha9JZGTcnJylvxQk7PU/rK3tLop53qdR0KxKjX2yHmvQ/IuB/bbiDmY7XYzOJChKZyuJ5BluCPbcAf6mWK+L95SNtFwf5L+jmiTjZ5vQ9JGMkHc22RfoLF4sLlYiNnuUFPBAPNVprT12pTNymTU+HSpq6ydV5o6r9OirdOgbFSlbDxH2aBCWatNPet7QSv0tHbYKWnHU9/v3vj//v7RZ5s2rLugvM9HXzpZc2+YnmCUyY5Qc/5gi20uNvwU270O5occjJSTz8r6aa/Vo642pK0xom6wIG9zIPM7kndRSRalIQmNd/H+UAEAAMwlbhyP2ydSpLT5x0ktJm/r0shJVVVV69evx7sX3GVklFV4p1EvIOWMQaDiWZcDBEuxYP39GZoCaW8TkkC2IUpLApnGgmnG+zMMpBP1JBN1RUON+Gk2AtYOImRLiQCTU5GEs/HE/UFmAnTbDXrUrWfIW09TdihShdTpArqu6/Rp69WpWxQpW05Stiq8bZs1nBV8TOWsxH/g+/rvyz5ad2ijkJ36LpLlXrqhlJ+OTJzmvlA9sSiDHUxz/iDL7S5WQk5WMrbGsrbG5+LOStEN1+pS16CcZEhba4iiEnWrPUXal+Z4/ZJRbobn5bKIilvNHbBjCQAAlgJuzElekWKFTb9OahG5/LqGp/Hu3Rzo6en517/+hXcvuFHf0FBG0R2iQ7ypXYAUzXh/iuaOlLc5iT/LaDwqGe1MNxZP15dK05dN1pWK0tsbZSLk4yBoRpJjOJlle1rkeCm6Ox8185fU8JJU9jiu4ntM3U/ZOnSvpucWfZdNKtRtJ982fnmq0BHialH5fy7/+qufvzxtJ2GecUKTeVrGT1vSS0/SXV/KQ086VHtfvLZMuoZEjM4uL3NRCwssJB2l6apEnd1NsERRjM+IstaA9rYZ0wUI7vqZqWfSYo0zM1FOQo1RUNHVBzfBBQCARY8bc5Jn5J78phWTWthSyUnIv//97/7+frx7wY3Gxsbykm8EuWZq2rhK+mqLpOntyH6bk8absWiWwd4sA8lM3UOZOrJRBifCbTXCmAaMOA3rKI+Iy37xxa4hBY6MLDXjcGXtYC2TCAOrGAf39IMGvoKWnjtUXXYoOm+Ws/p+nfj/fPTPtZt2+kUmNr3o6hvqKGm7YRbrL08hHfG1Ou6vc8hdR4qudzRfRe6S2uF0VRk3PTETaykrkyM0XeVoZaVwlS2GTpsNSVsNKdsNaKgJWtNPBEUqRcbopKcaRWUo+8Wd9Y0ziEwvb3yE98cJAADgQ3FjTnKPEL/0cOWkxry0Q2ep5KQ1a9bU1tbi3QsuxWKxHta1Xiupo1wJP1Vqvv+yoUCWyfZMywO5NnuzTPbl6B/M1T2Sqi8Xanaa7kb0iwgOK/YLLrx682Fre/fg4HBi9i23wHwds0hd82gPnzz0aETGtVMeUVtOGy37ds1f/vbP9dtlbEhREfEVva+fdL2+2T10f2yM1dv3Oiq2wjsw57SjrYS1uUKS2pmiMyfzzx1Ju3gkSutQiM5mC0chos0uZ0t+sq2AMUHAzGm7MXm7IYXfjLLfhaQbmmIelYWykZJPLLsFFV7H+7MEAADwobgxJ7lE7M14uGZSC7wkqGOohHfv5oaEhERGRgbeveA67a97bnc+qn3VMsx6O2J738jApbYKn8Z4x7thRtejiHeyTmb4yCbbKqRan4pxlCO5XqAz7H1DUBIKjypDCQlbCYs11vSko+RaQ3rWbdSuVTYymcwVq1Z//eMvIodV1cyYJI+s6MRr1Q+L6ru8sPa4O4E1NjI0NBJRlK0SQZaMsz6Rp3GmSEWxUPVCgbFhgc2FTCMxInW3FXmfn+l+PxuVFJ0jnnbbLIh8ZmQBAlGCYSfjzTAOTzvsHKbgGXXSK/qER6Syb6xP7turO1u6um82t9S3vUAdw/PDBQDwhhs3bqQCjmRlZU37kXJjTqJH7Et9sG5S878kpG2ghHfv5sbFixcDAgLw7gV3qe9+5l13mTHeoh5WDI7+4aZpY2Nj3UOv61qfW6VG6ycGoKYZ4mvm5UPxj0Uh6fGTzqkrfPTokYWFxddffy0lJZWTk4PWMDwy2j8w1NHVOzjcc+O5R0mb290XHlhUevn67T0Hi9quWlRSD+cTj+RZK5dqnCvTNL1hm/iEGXwnSiMp5iAzQDqaqpxKt7zsctjTXtzNepcTgd+KuJtIOcx014qLPOMVK0thSpCCZakMeXcX20TXhJsBlvFpNgm5bjklCdfujoyypvYTAADmUHx8PNoOrwTvj0gkTvuRcmNOooRLxDbyTWqMHBGtpZKTHB0d0Z9wvHvBRUbHWIH1RYz/5CTUKtofTLtka/eLqOrk0OrIzJbYoqe5bS86R0Ym3y7w6tWrioqKn376qa6u7pMnT6auJL+tlHTXCTVqtdPlpy4oJz3vv4Lmdw32ON720iwjo6h0vND6XKlJUGPIve7KSw/uqyYlKkRFH4zxOZjofjHG96AbZZ+HnSTdSdSJuJNA2h/lJMf0lqExd9v6KnqGHndzQU0jiKoWan8hhKzkF3s+MIGeWVT9ZPJg9AAAMLdQTrp//z7evViUFlNOIoZLRTRsm9Tcs/doGZzBu3dzIzw8/MKFC3j3govUvnrqcCfZuSabnZPyWmv+bOGxsbGXQy+6h7smzR8eHo6MjNywYcPatWsDAgIGBqa/3OxR3wvfhmzyXTI7KlV3ePQM1WOPNr5qc7sbZ1sZ6HQjtvrF44GhllHWgNeNcpfrJcTSQqeSArPiZIVg3xN0b1kXdym6q6Ajcbu9k2i4g6if5z7nAClK8FnvABU/F8Nw1/MBjspB9ucCbc/40lSDScbRjJL71XP1iQEAwLQgJ3FsMeUkxzDp0Prtk5rrEspJJSUl4uLiePcCByzW2IOGZzV3n3S/+v1yP9YYK6vllm99nsbV4AvlAfZ3krGcdLOzefar7ejocHBw+Pzzz2VkZLKyslCQmmHhax0N/g25nnUx5LskLCpVdaZPWmZwZORVf13ZfZuMW1oxlern0z2sSy7RrhZZX8l1KL7smJF3gRytQPTYTyHsJtkLke1EA+miDF9xd//TjBjTqHBCshtqqsH2x10JskRraUfHg0QntUBCeaM3iwW3ywUAzCPISRxbTDnJIUw28P7OSY2WtU9zqeSk+vr6tWvX4t2LhcBisbq6utDPN29vhDzi53/Z1j6RRE4NDihouN+GZjb0tPnV56FGq0lTqwhEUcm9Njf9ye0R1uSjadOqqKg4ffr0F198cfHixVleQni/uwXlJNR86zMZ9xN86lP7RiZnFxZroLTOMuGatmfhucByJYMsLdl4D/HQQDH/gG2ujEN+YRpknyMGNGkD0lF7BwUf+9NRLvKREScjI9WCEskpuY7JnignmUQ7nKDbyTjZSjs6oabCIDV30HsH77znRwgAAO8BchLHFlNOsg+T9b8vOKlRs/ZrGpzFu3dzo6+v75///CfevZh30dER33336d///pflyz/29/cOjizRMQzHmrF5dASzmMUau/qiAYUk0t0Uq1txjlXJ5OqUqq7H71zz6OgoqgXCwsI//PCDq6vrew1GxRpjpT69zqjJNk2NUwsOJyZl32uefNpQ/+t650yzi6FmyiHGGpH69PxzksE2q+n0FQT6bw4uqy3pfFbUUwTqcXvSISLhXJyNbJzlnliSdLxL4LWS+Ot3oyvKQ4rj1P39JAmuUgQnBbqDth+BFOdc/RTlpJvv9yECAMD7gJzEscWUk6xDD3nV7Z7UiJmSGkslJyGffPJJZ+c0V2ktGWlpaT/88PfrOd+wWn+pLfpuw/p/HTquxc5JqDnTMvr6Bht62owrI8+XBaB2rsxf+xrzad/kE48m6urqotFoP/74465du1JSUrA9Ve9rdIzln1tiH53pHJ/vm1KK2uNnf3jRyofVehE2qsy3OQk1tTBd+SDLVfb0lfYuK21dVlrS11pQN9hQj1FoB8kkMV/rvVFWshkkxRyCYo65c4k7JT/kQki0fmiqgivzMI12gkZ1jKFTE+iNz91GWD0cdBgAAGYJchLHFlNOsgqV87gnMqk5ZiypnLR58+a7d5fOPVP7RvpuvbxV1lHW2NvIGnubXUREt6Qwv0QhCWuVOd9++/1n6lohx054yB12RT8JjsljY2NP+zoNKiNQSFIq8ZHIo8nmeZhcT0poujnxuNvj3pexjbeJmXESCsdQvtTU1Kyu/qATovtfD2HxiN0u36gvf/g45U5t3r3GlwOvL1XXW8T5aIZZoJB0lml0LNhkN8N1JTsnWdBXmdNWW9JEzKn7HSh7/Oz2MSkX8s3PF1xULVa2vaqkm2QszbARoTsLOdPFXZwPOJPVfWmBl92KG8te9PahDrzo6Usov+uVXRZdcudp56sP/PABAIANchLHFlNOsmAeodeKT2r2GTLqBsp4927OSElJpadPPn14keof6c9ozUh+moy1651vx6H+beXXt/K+Zeekzns//u/f/3L4uLu0NO1tk6Fp6YW9fj1c393mff8ypTpd/oqvSJr77jR32eyAswWRBa2/f8+f9/ecJtv+snXTp99+La2rGnCt4MM73PDqiX1MKjE20zu5BMtJrmlFHgVlWAsovZ5VVWcVk6kYTjsSZS6dYHwg0fpwGpHfl/B7VDJzXmXqvMbcebMJdZMlZasXUSiIIJNmeCLvwqk8lfOpanLextKeJqIU6+0W5M3mlB2mpH00d9WQRHp+MaOoornjZfDlShSSsOaXe7VnYHBqJ4eGR3r7p5kPAAAzgJzEscWUk8yYR6m1eyc12wzZpZSTNDU1vby88O7F3KjtrmWHJKwNjg4qnj5Csf6MnZMYpE9//e3HI4puhxU8UFNWC9AxjCgtr+8c7PO5f9nzXu6BbK/d4znp6KUQ+bww+xs53d3dJDLl4y+Wf/zzL3yqF5XjImk3C1yril4NfdD9ZSu7aiIfZdhlR2kyQ0wion2SS9wTiiiZheycRM8ptg9JORrrKB1vJZ1pJJVuciTB7kQSUS6exOdCWWXnutqcvs6Ivt7UeaMZbaOlM5+XwxamlWCMqVCoqVik4dEwjYNBejL++sI21tvOkvhPkXadchRWdRJz8DvlG+lVmB5cUsYOST556QFXgq41FbLG/jCu5o26JwFp5SjAxRfc7uqBWwECAGYLchLHFlNOMgk55lRzYFKzTD90cQnlJBqNZmZmhncv5sadl3cm5aTekd4HDx589dW/TbSW5UR/RTD99KOP/vpf//Vf//3ff/n438t/WbFdWPQ0yklFJXXo6be7HqGotC/zbU6SyfJHIUkyhLLlmMynn366TXCvuJ6tuAdjvHmrpcRxlpP6RgaGWCPYRNSjTJSTIprTqcVxZknhzCslNY+fsUMSauZB6VpR3mez7KUTLPanGuxPNpRJMj8W73A0mnwq0luGFixu6H3cPFjAwmWzFX2jPXlboM3WcIvN/jaCQWYiISa7GWb7fI1kQ3R3a9rynxzPSScJwgpO4jq084Gm/sUa8TdNgwrDUEgKLGLE3FaMvXP88kOdxpfMl4Ovkptv+9WVeFQUUuPy2ccEo/Pg1G8AwGxBTuLYYspJRiHHCdWSk5pFmtxF/aWTk6KiohQUFPDuxdx4/vr5xJCU9ywPm9/S0mJgoCl7SFRTS6W2tnbZsmUf/e/Hv/wqxL/jNN8WOV2jsCdPO8oqHxSW3b9Z94h4M/fYpRARssnyLes++vSTUyZ6j5+06FMSlR3D93p4Y1HpUFBQdMOt9+rbq+He5CdXwpqyULveWds+2IVC0sR252XdKIvFrLjJzklGjBT1OFfpWAuxaNO9Sfr7kgwkk0z2h5nJx5uc9bbTdQw8fJ5xQj9QyNx1pxVth7ODUKrJJj/7TT72OwMsUE4SDzAUY5gd8DYUvWgrcJK4U4EofJKwW95J4qKddri++2XV7DrjyKs6JrGB1MLjxPyjbkWHc+oVrrZqRDeGetQUoGaSnqwSEOWWUMiOSi97P2gXGgCAd0BO4thiykkGwfI2d2UmNZO0o2r65/Du3ZwpKyvbsWMH3r14b3frW6KzboSnXSu+0TjxbmWNvY1pLWlJT5KC85NiYovTkipr706+YYilpd2G9Tu//Xbdl1+uOnmSzvDKDU+4GhhVgppX0CU1ffPPvv/2m41rZO2N3W4Udr7uHxwaNqEnX3SIViKGSbn6Sbj5qAbF9I8MzbKrra96smruO16No96JxXISavU9j2If50zMSS0D7Wjhzr7+mMoqFJICSysT82/J+ZLFQqxEosxEI43fRqU4w70hJrKexofVrTRtbU+r+5w+7ythz+B3J22PtN/5NifZbXQnbPGw2+ZlI+xtKcUwkfMxOKBpKSLvIKJAEJZ3FD5OlDa0sEw963pFgVl1wq1c8VS4of0lOae8I+T8Yx5XjmbcV/CtJdtezTAvS9VJjj/nH2ETmYmFJL+UsoHB4Xe+XwAAeAM56QMsppykF6xgWXVwUjNKPbaUclJra+uPP/6Idy/eT8Oj9oD4UtQ8IgrOECLkbYO0PANiKqKfD1SPjY2xxlg3KhtDAwvZrbb66cSnF+bf+dc/PyETwuQOKi9b9sVFNQojuIDkGiN+4Ng///Vv/p3iRWVl1Z3PajqfvR75PRZEZ1aqE2JQVEINTVRUzXaQ7o6+fu+iq/SCK5oFfqg53ojCclLpizuP+luxqBT1KPP2y7qJz3o9PPy466VvdrmwtYuIr41wgJVIsIVooPluuvUeirW0irWCnvk5CzNNKwaRnOoWlCce6CEQ6bAz2nozw3YNibSWTNxIddxCczwcZaaUpHWCbCJ1wV5c0VHoOEnsDNkuUZV6Wd6j4giz6rh13oXDIcYmGcfG23HzrON+FYdMiymKGWGoKSQzj3sH20b9npPKq5vm4l8PAMATICdxbDHlJN0gBfM7hyY1w5TjSyknDQ8P//Wvf535DhvcJrOoBoUk/7gSedtQSUPvfQZ0eYLrSSfXpDu+zd2lKBU5O6W60zLZOSkz9Q8n1tysbFI6paeuahMaeMXU0OWjj/7x9Tc//evjZZIHT9O9UwKjSvoHJu8rGhoeScm/Q/TPoQbnVdxpmn1XL9U2eBSUuRWUaBf4o5ykVeAX8iAD5aQbXW+D0TBr+NnrF/0jA+jzr3r6LKv6fsXDx+29fWG3bhknZJ5iRAtaM0StPQWdaLtIzjttXXfbEk+42p40MD9rboqanq0f07/QLTD3nGvMKV9/MQ+HtQTyanvySlv6BgJtO91xf6C1XCBpnxtFnko6bOMsY+EpSfDVjLNWS9BSS1KjFSuY5qju9rLb522kk6xglH7cOOO4Tvy5o0nBJ9NDsaikmBSWVFaVV3m/+mHb4vpPAgDAF+Qkji2mnKQVdMro9pFJTTdZXnUJ5STk+++/7+jowLsX7yGnpBblJHr4ZWkjvwMGHlhOQs022jOqyIkZcFn9fMBpBYbquQBncho7J42wRl+87ukbGex+1R/BLA7wvqSsZPTVl99/993Py7/8bvM2Yc/AHBSSUnJuz2FXM+7WYScb2RYkY7uUghrTYx7l9o784dqxzOr7aBlSzhXbjDy9xAzn4mKN0GQln5i9xIBdVoz/n733AGvzPPT2z/nOOV//X5O0TdIkTnt6ctKmiZN4mz1stgceGIzBmL333kMC7b0QAiQhCSEQiL333ntjzB4GbGywARvMcv8PkUsI8Yip7TSu7ut3+Xolva/e55VkdOuZpyBM1eCos7gY/yxMdDPEkxxsDwlwCfWlhcfHskrjshqAJxkg+YoulAMB5AP+5GMQ2iEo9TiSrk2PdeFnmODjrIkJTjThNRL3dAT1LD/iXDxEP8HTLMnDMt1NmQ49gkHJ48NOM/xUqcGyeIomh31eFHOVyzON5PvGZg1M33mFL4gECRL+RZB40p55OU+Ki4u79GxsbGxeZ0ExzhwTr44ruwJ+edt5Wr++8755Tpw40dzc/HOX4ntm7iy09Ix39t98uPL0PkCTM/MxqXXk+HLgSae9aBcDyWJPCoglcQuhWGS6jSXL6AodxMWJR8Tl9PdN9d+bcatPulLKNK6IoVamOzq6vP/+hyonT/O4KRsbm80dI6e0DT759E/h0amLD17lArE3bt/Z7peNKs8nN+W1zveL13FbXlsr7BvgN7bFNbWjCso903KNBEkgapFsq5RUj8Rs4EkmjMTzBJ4BXmARnlQ7NMaurWXUsSMrYbAIVwgmOCISW1geMT035RmdeRnGO+FMO+hPPhRAkYaGHw2lyaEjnRIzKaU1VrT4836MK04RZ32JJ33wmjSqJh+unQC5Igy4nOCpF+d+EIX5Fo7/BkE8jKIoUqLO8rgXsRx9CMceKXREJSakN66urb/C10SCBAn/Ckg8ac+8nCfh8XgGg1H7DE6fPv06C4pxjDF1bTPcFad0Y9u3y5MuX76cmZn5c5fiCQNjt2NS6tjJtSDx2c3PspbRqbncqh4bbKIBhCWWJGM0JbaSyM2g+XoleLjFAVUyNWJ4ugtYzLK1jXXbasGpfIo0ye1jxUP/9/3fXHG0nJqa2n62Bw8fLa+sJSen7tu3j8fjvdorah67GVXVSK+oz+q6/mD1e/MTtnSGV9SBoAsrDDmJV2KFYk/SiuZox/LCikus2SlAldx4mdF59UPTWxV+95ZXSq4P5fcRakbgN26RR+YoY/eosw/yGnrGgtm5F/xYqj50KUi4TChdOoyuGymgltUG5uaexTPUbEnnbUjagegzgdSzQdRLfOT5BLiuMNhc5O4Y76RChsniMYcwONVwnG+OF7nM0xwZcgVKc8bGsVLIqYWE7sHczcc/td+6BAkSJPxN4kn/AC/nSUVFRf39/U99CECn019NoZ4G8CQHtplzq9GuOKaZvGWe5OHhQaPRfu5SbPH48WNBVpNYksSpaBqcmb0/Nnn3x32GAEvLj5jZda50gQeLkdzK6rqZH8spFnsSiJdHfExMRXZ2e9Pk0BEv49989dk7n3263+WKagbOpT5B/AzAkBLzWn3xGXYQISqqsKGx7fDhw9bW1ktLS6/1Sm8tLEEyi72TcgPTCkml1ZdjEs6z+GJP0o9N0E9KCC4pIlRWQbKLizoH5n84Gn/8fiTQo+1MLcaDO+/efxCX3xQcleNFS7cPTxZVtTeNTUZU1utFx5yGReh40fV86GeDMdrBRHV/wgkaTIEbqsiFXMlxdC8xseV7aDMQCgRkcI65oFlf1HAWEmEWFmmaWHgtu8o+t9q9tR9690HKa31BJEiQ8JYh8aQ980vqn2TLNrdrMd4V2zRTW4+3ypOIRKKnp+fPXYotVtfWd0oSM6kGE1UQk1QDwkuuG596+nq9wK4ScprNAuOu+nAdoMIQaAqQJB+vBCq1kExJt7d3++D3v9+nePg41lkjjyyOc128+Ni0onbb4IRzDpGn7SLO2jEcoImDozNmZmb79+9/jqD/46TXd5sxReI4xKb7ZxXqcgVAkkwTRIFFhZi6yorRkc6ZmcVHT1kwZGZRtNOTmgayU8o7kkrbGnvHJmbmr4/emp1/InmrGxt2bJ4VNeaydwTI+UD8mTC4eghaiRmqJAg8neGuW2TvU6+Pq7uKTnHz4fhiCq6yas7mdErBo43CE/REpRpp5ZdzqpwHplDdE4iqrprukZmdszBIkCBBwrOQeNKeeTlPWl1dnXgGy8uvd8o74Ek2LAubZtPdSTW38XiN/aLePGlpaQYGBj93KZ6QUdK57UmY6EIkPU/sSVHxlUR2Sc/g9KPV3VP4pBd36rgyxbnkynRGJJWW9uJwfHX1C7/5zW/d3NyGh4ddapO2JelMQTh/sAYcuLa+gYwqOOcUpW4dDqJqTVN1Cg/i5bZPTAuFwn379sXHx7+Oa7xz/0FUdp0jN31blcKyS0W93ZjaCmJDNbmppmR06DmHr27cnbwfI5ak5iF+dEaVeNw+NCEfkpMf09fYdHtie2yaJ1doRInS8Q+/6EHT8SGfh6MusFFnS7zPFrlfKHLVKXRxqjYhtui4RfgY4Qh6WD99vKdVpB2j4Gx06kVRqXp6hU5zv0vt9eCsRg9eoSgqqy6lonNjU6JKEiRIeAEST9ozL+dJ4Df9l8+gvLz8qYfcv38/JycnOzv7zp2nj9Pp6+sDZvCcHf5eUIwly9K8yXxXLFIs3jJPam5ulpOT+7lL8YS5+w+FuS1iT6LHVbCE1UCSaLwyV1iSY2hiuKBCkNUE9tnef3Vt3Ruftu1JF52jFM7Zf3vw8Ndff81gMMCHoX96Nrv9enp7j2uFyKCUbV7Jo/eV3l5ZAMdubj6GMfI0bLckSc2apmBLUXCmXiby6WV1JX1D4HPy1/37NfQMqHmVosauu0uvbHWzidv3gCeFZ1Z7xeXYcdJceJnFHQN/22pQu9c9e2tqceGFz/D48fry2ujK2kRuXa9YkkIT8i2ihZYsIbG9ktxZVX9ra4ansu5er5SYSxykCgEu64FX9iRdI0foFYafKfA9le9xKt/9QqGHV60Vts5UB0aQDiGdREG0UT66KE9zukNpv3TLqELvtG7/tA+QpIx63+jsCuBJIDcmZ1/VSyFBgoS3FYkn7ZmX86SpqSlVVVUzM7PMzMyVlRcPRFpeXvbz8wMOVFRU5OvrC74md+1QUFAAg8Hq6uqAZj2/YQV4kgXTyrTRclfMk63eMk+anp7et2/fz12K79nY3Lx778H9xeXegWlxZZI/Ph1IkgtMxEyqAf6UX9W7vfPDlVU/YgYwpNNWuP2yF3793oeffn4wIponrlBpGpmkl9SJwyhr6J2dnnp4b31zY/vw3NreU44RwJNO2FDl7SiKPuGXqHwbbpo1NzWrtY+cXSalpvU/X+5HxKdzK1t+SpPT3PJy960XuM7K6jonvwmo0nam517sRk8lp7aXklSBjSuxiU7a6Umc602TD245lmFtSuF6GUGnY4O1IpDn0eyzJLo6mXw2HqKR5Hu6wN2qyo7eY1Z0w0WLQTpIwB4iIWRokNNYX12UF69Rs/2mYcekScd4cFqdPyc/UyxJIB2DUy8umQQJEv61kXjSnnnp/kmbm5u1tbVeXl4KCgrBwcFtbc9bjBPsyWAwxNtxcXE5OTk7HwXa5OHh8fDhT6oYAJ5kxrQ2atgdk2Rr67fLkwDvvvvu2to/3ZIUa2sbGUUdwJPckclOoYlYZpG4nkmY27JzNyxd8PnBE//1q19/flBF0wzpT34ydm9z83F0eeO2J4Hkd+3+Twt0KjAx97xHlIpTuJIfXQ0dfTki3pQlAvGOz/GMz3YUZMia2v76/Q/MIOjJud3avYvWqSlqfR2lrhYkf2Crimjz8fqd5fbJpeI7yx2bj79/hcdvz/MKm4EhsfMaO4f3rh1pZZ12qESQ80iWPpnrmZYJJAmE25eP7w21r3GyrXK7mON9PsP3TBxUExd+AkGXCyZeCCdfjQh2F7kzuoxi663tkyKUIvEHiOgDJMRBMkKKHHYBGYQvMWbUIOBFjNB8nHkUxiqa5B3Px6TkA0+avrsAXHb6zsK9RclybxIkSHg6Ek/aM3vvx724uJiYmKihoeHt7f2sffh8fmFhoXi7pqYmOjp656MdHR0YDEYkEmGx2Pj4+F0VVC0/BAKBmkbbGNbvjrHI5u3zpL/85S+jo6M/dymeAnCdkYk7sekNdEHFdr+lkrr+7x7azM7OVlNT++Mf/9vE1tMigGMZIsBzSx4sP+n7vLq+EVFav9OTMlp7dz753NxSbk47O7YimJnpm5p9LTbRiJUoliQbTmpwUsEZIsckRgRyOgD57kefOHt6b2xsPKWU37GwskL7uySJMzQ3N7KQ3jMXJQ7YFtdyLayuzD16sL6xOXt/6dHLTE10fXAmu6SroKLn5sw9cHN2bhG8Ggi+yC6CdI2K1mciodUZQJIonaVZw3Bkty/wJOtyB50cN+0sLy1hgAqOIgulygdTzKLjLJkCaybbKzc2LDPzXDJNhov9loj6hoQ8Qg07RoOa0RzdKo10i9zO53to8AM0yfCzKMxFHMmZxynt6ZqdXxIWtESn1lBF5Vk13eA9mlt5CLKH91eCBAlvKxJP2jN79KSlpaXU1FQjI6Nz585lZWU9azcWi1VRUSHebmxs3DXcHTxka2tbWVm5sLDA4XCYTObORwN/iJubm3GU3eVa+125mmRn5WH7k671l4OKikpTU9PPXYpnsrC0nJTXKpak5IK26Vt3gO/+z//8j5aWFvhUrK8/UzWy2vt2elL35K3th9bWNpIS62O5VU8iqK4fGHURZAFJsuOl4bIrwtKKTxM4FyJ5GgHhGg6Us3aEQ0flFZSVu8dHnrqCx8j8/E5JAqmbaN2WJHHmV0byJ3tpvRUgwuHW+6u762OWlh89a1LH9p6JmMQacTiJteNTc103bkal5ZPKcAEZOGMO/jIbfVVAQlWVtt+ubZjBwJs97Cqdrua4nE32Uhf5aPKDFcKoxwNJysFkbQLekIE2icaYioI1GbhDVMw3UcgDUYjjNIgCPVA7xs2jSs+2ytCp+srVPMszKS6y4VAVAlKXgQ7Mi2u825Rc3E4RlTswk6yiEiwj410yUkmtVeS2auGNjuX1f7paSQkSJPwsSDxpz7ycJ4Gf7+JGNyUlpbCwsO7u7uc/+876pOrq6l31SfX19X5+fuLtmZmZ5w+GR6Mx16LsdGsddsUgyf7t8yRLS0uRSPRzl+J5bGxuTs7MF5ZU2dnZ79u3z8bGpr29/YVHLa+upbX0iDsn1Q7+YPHasbE730vSdxkavNUxOkUtqKEV1nqnZV7jx2lGR6rDKerOJBU3ooY3SZcWpWhm/P6nnwTGM3+sOD+uT+q+3bLLk4omK8SSJE7aWOf3hz9YSa/p3mqJy22o7Rn9sYrFpTRse1KkoBLDKyYkldtSWJ4JuGsxeMMo9GUq3DIGD0vNuTnf138LB692vZrid4ofrBIbLBMdegSBlwkmyXuTVdB4dW6oemzYWQHiDCtYiQg/hsF8S0N+zUCqp3ga5Nt4VV05l+cAopNnp59tY5BtfTbeTRaJlENgtKmU9OulrLRaZ1YykCQQXUrMOSbTrzYXeBJI/uj3ff42Hz9efXb1mwQJEt5uJJ60Z/Yy3u3SpUt0Op35Q8bHx3+8f11dXXh4uHgbOFNubu7OR2dnZ4EbiZtORkZGtp3pGQXFXI20v1DttCv6Qgcr97fNk3x8fPB4/M9dimeyubkJ3kotLa0//OEPoJw/7p7/fFbXN348lH1i4u4uTxoZ2RrG1T42hSoqcsxICq7IOJ8ccTIQr+yBU/EiyIfhFMOJxvxYRxb5N7//wCzY58cqs6t/0vrmw7459rYk9c6xEofrdnpSeF/l9rEZ30nSdnrHbu16cp6obtuTfCgZnrR0ela1e1ScPgl/kYLRwUH1STATOsoayS6p7x69zaEX+lzlh5zhQk4yYQdxxINY8lECSQpGlIkMPcGGavJgZ1KgJwQQRVKYFAZ7DIM+jEPqxLt6lV+5lOpyOtP5VJazRoabZpqrQZbN1TSboyHoI8FYmTCMlxAXyBKJJQlEmxh9kcdyqEhBVpVCC5LCG3l3V/oXVycrp2qpXUXkzqrU4a6F1Ve5FIwECRJ+EUg8ac+89Hg312fQ09Pz4/1XVlZ2jndbXFz823fNbSwWS7xDdHQ0cKyGhgY4HF5cXPzcgmIMGQ7nqpx3RU/oaPnWeVJkZKS7u/vPXYotgAMNDg5u3wTvIJFI/NOf/qShoZGZmfmc7kEvC1CnlOTGbUlKFjWurj5p8EoYrY0aKAGxqWWegOGUPLFafiQlAgF40kUuk9JdBSkUfXboGx0dHfEHbCe7xrstrA73zcUASbo+z7n/aGi70U0czkD92trG3NzS4uLyTkkCKWjePRizunHwSWVSQoUhnmkWzXaIi/OMT7RjM7SxmKs0BJAkMwrRFsYTsItvLcyGJBGMWTBVBk6JEnEMQzuMox7EEI7QcIrcMBUORDUm9FRSqHIcRC0qTBqDP4YEqoQ5yQzTFzmeYAacS3bWTHdVTfVQSfXQz7S1STI/HIQ5EoxRwCAvxYfa8FBW0TFiT7pEZxvk8UxT4q0ZEbaRCGcmmlkOTRvxCGggBTRQ4C0JQJXiB54y9mJhaaW8YSCjpLOxc0yyfpwECW8fEk/aM699Pu6lpaXy8vLS0tLtWofZ2dmRkRHxNviibWpqys/Pf2ETHvCkKwzH05Wuu6KT4PT2eVJGRsbFixd/7lJsTSuqqqrKZrPB9vDwsLOz80cffWRtbd3S0vLCY/fA0tJKRUVfakoT+Hfx70O3NjZXE0czom4Iom7kQTpEmkkkzWC8DpSmiieqRFCNsvjAk0DYPfVOTk5ffPHFC5v/Hj/eWN1YBP+C7dmVpaj+mu3KpPLe/nhBLbA0HrcKFV2w05MqOnZPNbm+vlHTNMgT1aEz082ZW5Ikjq9QZEGgmZGJFoRwGzjXDxEfR81jlDeEZpacInGOk2hy5AhFUqQCKVIaTZPBkWRo6BPMUBV26NkElAI77HQUUglPUCbD9Hh+VnleKpwAqQioJsfnXLKTZoqbZrK7R86VyxFux0Kw0liEXATEoNDetNTGvsLZvwwXVJAZ2phnXCAwo8faRiLtIhEBPKw/N5DW5BDWHAI8CQTfXghU6d6jHzRTrjxaE2R+v0BNTvkL/jNKkCDhF4fEk/bML2ndEv0IR60Kt125GO9s6W73c5fuFdPR0XHs2LE3droHy6vXh2ciozmqasqqqieiolkPHj56/PixkZGRpaUlsFhtbe0//vGPEAhkZmbmjZUK8GhjsWsusfAmNepGcNSN0Kj+NMsqjn58tBGDZcuNu5LJ82nIBpIU3lM9srC1MK1IJAIm91JL5y6urdTeHqmcGZxcnBfG121XaKEJOQRBqViS2HmNcwvPHD6WPVUDL0vZ9iS3hISizGYKKhWOTCKjUgTYbAargF5WB+Kblq/N4p2MZl7gxp5mcFQp0RqwKGUiUTWSoMXB6osoVxMY1/iROmykQ7aTR7ldQIWrUbKLPCf4YDhBNSb0vMDbIsneXeiiSUQroREytFC9HDuzUkuTEmvzKlubMhefkghoSWFiXXswL8WbQ4DwqRD+lidhylzgLQFiT0K3ZlA6q5bWfrAAS+/QzM4FakBm53bXzEmQIOEXjcST9swvyZP0Ipw0yt135bzA5e3zpHv37n388cdv5lzj03Oc1DopBfnPP/9POOw9Z6d3fvOb//OHL7+4pG/6xRdf7N+///jx48A/ntXEtrn5eG3tdfUOHlmsaLkTA1I6HZ40guK306Pjy4NoaY6E+JDk7MLJ/ubZiYbbY/OPvpeYvr6+b7/91szM7CfOy7XN7dsLuzpIZRW0l7YNVHUNP0eSAMW3mmNH8jE1aQE5SSEFori+stVHa1UZLQJcDkhlenNKQ6fYk0BwhZVO6emMrrqI9jofUQ6UX2CFF16hx1yL4UAzslHZafSupKg+OqTK1bPW2q3axirD8Uqyy/Fw7FEKSZVEdeXSUPF4l5xQ62zLk4neJiUW5qXmVtVmJpU25mV27jkoamktLreCnFCKEETCBfSgWNI1RqhNcrBhCsqhmAw8idBeVDSx+29lZ//NXZ40dfv7PmfAmDuHpnIb+kpaB27NS/xJgoRfJBJP2jO/JE+6RHdWKfXcFe04V4u3zpMAv/71r1/2m34PAMsRZDW5BxL//Jf/Ghv5ZPrmPpDS4g9/9at/A/z2dx/IK55UPaVraGxzc/pW3+BMc9fY2M3vl7/t6Z+isEuDsBloen5n7+QrL17vvTSxJ4kTHhfJi60G4fAqubyqoaHdfavFgNfN3Nz8wIEDO3tWvZClpZVY3g88aeDGT6o8G126hepMC21Ppl7P5I8WtE4N1XeONnSNTt+6t/ZdF6uuyZltTwLJ7rguPnDh4UpRy40gZm4IKy8ytZqZUQsvFPKHM2OGGdTeIP9Ge5daK/cKF4c8V61wvDoCq09Eo1JJdny4lciR2HLpUomjRbWpbf01m1pT00orqzIb92wPSFYMtbSCU9BIF+UDVTKLoprx0d55KK/ccNNUKqU1tXnHYnPbzN1/GJNSty1JwtwfzHVe0z2y3f7Izm2Yvbf0019VCRIk/JMg8aQ984vypHDnkyVeu3KW7/ZWetLXX3/9Bj7TSw8fge9FtYsXoZB3xZIkzl+//tW7+z6W1nI9omp7XM3imIqJgRMjIq4iRlQLUt+21b1scnqeEFXkHCQUxwuWfH3wB2Ix/2C5d/r2yJ35p85v9FMYXazalqSacRYxOkbsSeJUV99Y29wYW7oLsra5ZSSbj9c3Hz+p3BIIBJ9++ulLTa9QW3Pj+8qkzNb19RfXky2uPmL1NKJaSnzq0kGSe1rZaXWs1FoQsDF5617n6HRcRRs8pSQkuYheWpfb2b/8w5WD5xYeZlV3x+Y2ZlR2lYw3CcdzYocTIwagxOt+no12fg0ePnWBlilRBhFhVyJRV1gEjUi4UbwLrv6iV4OZfoWN2JMsKyxcim0chcFBmXhkPqN1Yry5Y4zGKrIM4/qx0nElhbjyPFJFWcmNZy7oOzp5F+hRTHJdRknn/MJD8JaJp9zc2Nxk5zXu7KpV1v4S9ilBgoR/EiSetGf24kmrq6uJP6KgoODBgwevp5BbAE+6GO6iWOyzK6f47uZub6EnnTlzprS09HWfRVyfdOaaiY31r7claWryk48//c/f/+ULZX3iySskTVPaWcuIU+Z0M2++Pz4DEZHPSqxefLBS3zrsg0jZ9iSQhPTG7Wfum75NL68PL68DSWnr+Slrsf2Y1c2H3fMisSe13Y6P4Rft9KTKhv644fqI/nKQmIHM+lsRzbOE7jn29Ttlc4tbVXFdXV379+/38PD46YvAjIzMtraMXu+b2pak1bX1qZl7i0tbY+kfrM+PLLUMLzbfW31ihJVTI+T26u04ZaRFp9SIPQkkIq2akV8nTkRebVXvyPPPfn9lCVYhcEpjeBXhUK0hlA4UrIaIKEs3j40/TUWdpeNOUPGyZLQWMwhVq0No1wupMjNMc7DOcDAWeJlyoFYshDufhMwh3Rhvjo2rYfMqHeBCe3iCFz2dVlUHUjY4/HBtaGGleXlt9G9bWrn6+PFTXHB45i63uDkyt45X2tw0NkHMqNzpSYXNN24/XBq4d2f+kWSZFAkSfjFIPGnP7MWTVlZWrKysDh8+bGNjY29vLysre/nyZUNDQ0VFxeHh4ddTzi1PukBzVSjy3RWtWI+30pPAKywUCt/Aican55CMpHfe/Y/01A+AJE2MfeLm/u5vP/jPgyfMlC4TlC4TVa6SVa9RlA1JF+yiHEMTQXxx6bfvLrZ1j3vBkr/3pGDgSU/mEF9d34iqahRLkjhdN5/eRvZCNh+v318dv/dobGNztaNjfFuSklOaMofaxZIU1R8T0efI7rcqmrDnNHrBROHE9LSUqs7O673cxLiDh+U/+9/9WZk1G+sv7WqTU/MCUQNHUMONrylvaK+dTai5LRDn9srWRz1/rH9bknCtRRbJCfSUym1P8mPlbHsSCL+s9alnWXj0qOnmJAgxuUIPztPFMI2IMb689MyW3syOPkJRtUms6AIdrxmOVqRgFSg4hXC4SYlHUK2BOcfFhhPgyqK7MuE6MIwNheAYTvRkEsIS+MSETE9k4hl7uoY9Td+bRSqpZtQ0tt9MS+4i8dtI+Tfw/bOwoXn68Dzj7sPax4837y5Xj9/njN/njs9XMPMbgCRh08stY5Itucm2aakuyZmRWbViT4rraCV3VIOQ2qu4jc2JZe0ZtT0Tt+/t7f2VIEHCm+ENe9Lk5KSzs7OFhYWfn9/LzrH3z8ZePGlzc1NfX3976NPDhw+BJN25c4fH4z1/rsh/BOBJ56lusgX+u6LB9TR3s39NJ/0ZgcPhz3pvXjkLS8sBOML//dW/v/fev//u/f/z3m//4/MjJy5aRijrE7c8yYgCPEnRgKjvwhZ7kjNMdPPWvaUHj3CRhdueBCVkNbQ9qS+5u/RwpySBVNx4QVXKT+TmzfmGhqHOzolHj9b4Q3XfeVIh+0YwrceK3msh7LINr7LBZMFRKRxmfmRUpnNkskN4gt2Zixfffe8DFCLypc61urYuliRxsOy41Dbutic13U0D+xQPDPhm5/rnZ/rWMr1q6bYZNKxQyEx9UqWETix9oSfdXFhgNDZQ6mqdEjJk3KkK7nRlzwjVwCgtGMsyLpnWUJdc324Xyr3kSjxlD5cPRshRUDqJlFMFODURVotGO03hXAjnOkZSTFFEGyLRAIs7T0CdRRK1SShlT5SSCVHemCBnjDuLoEOTkq8xCPqRxKtsnF26D67OumUmGKgSyPj9uMF5yvA8rWOGEN/i45aANYtKOh/Ou8YUmrKTAgsLHLLSQ9OLeIXNRT03xJIE4pqfaSxKIGdu1TYxc+pnJEPkJEj4J+YNe5Kqqur161t9MXNzc69du/bGzvs62IsnDQ0NmZqa7rwnKCiooqJiYmICCNOrLN0OgCdpU92l8wN2RZ3r9ZZ50tLS0vz8PJPJtLOzGx0d3bUo3muitLT0P//rvz786BN7D7iLH9slIOGqI0vjKuWEAUnDhKZ2jappFm4bnAAkyQUmIsSUAE8CR91fXOYk1kCJ2YSoourGwc3NJ/2Q1jc2mdVNOz2pb/r2qy3w3UdL5N7CgLZUYq+IfSMovNea1W/FbtryJHxeECmTFlPkRhJa04W2IECVjEz9P/zgk4CA4M0dU4FvbG6ubT6zE9Kt2wvbkgSCYnHZRextT6qdje8cmorMrPPmZ+tHRBiwqQG19OyRGGpONCkpA0hSblVP+/DNnZ7UNDDx47Mk93QDSUKXVgAxUvTCa/jDT/kj5L3wyiERZuwkcm2NC0xwxZOq50E+4Y2TgiCOYdGyZLwmN9IoOcZY5OuQZ2uR6qKBIJ3yJ14KJegQcDpEijaWrOCNUPJCKDii5Iyxx81xhz0JRyH4AwGEQ76EQ0E4eTjsCtcredCycSa06w6pYNy8aNI+bdCK02qPLLHxTnfUJMWoEqNPU9jXmNygEiGhpThnuH986BYtJtuSwXHixyNrio1FwmuiBHh6sbieqbRt4NW+xRIkSHiFvElPWl5e1tDQ2L6poKDwZs77mtiLJ4FvcWlp6a6uLvHN6elpYI59fX3gHhcXl1dfxu8AnnSW4n4sL3BXVDneZm+XJwFlOXz4cF5e3rlz54CAwmCw131G8Mb96U9/+uCDD959992NjY25+QfFZb2kyCJ/bDqEku0GTw4iZHigUhgJVTR+eXRitSCz6YV9nAdv342oaBBLUlbn9W2FeiWMP7jLHCgn9RbY1fOs6tjknmBWv0fOuB2vdcuT0JlIZiGbU+xOFtqIPQkkCEnCYkVyykrK6ifGbk0+fvy4/OYQraua3FmVMtjZ2D2WWdJVVHN9du77wVxLDx7xEmq3PYnMSYmvjdn2pI47ZazshqisOkZmtV88wzuOEdvIqp+NBWm+WbTw4MnaIN1jM0k1nYnVHc2Dk0/tzx7T2gI8KTC9QBtJOR0YphUQquUPV/RGnwzGOvDTg0V5jkGxV7xJit44aTxUKgwuDUNII5EqaLRxrGdIjV5QlV5glZ5zmoWaP+VsIFMbRzmHJ6uikPK+cAVvuIIrQsoSd9gBd9iZ8G0A4Wt/wleBhP0w3P4w3Ddh2GtxtszuE8TOi/wbl7JGLZkdl6mt2siqy57p1iqEaHkcXYOMNubhg6sJ1llEL4HA05nlG8Q1ojJ18Qx9cpS+gA88iZhZIfakohZJ1wcJEv55eZOe9ODBAy0tre2b/4qeBADf4keOHDl9+rS2tvahQ4eioqLAnZ2dna9ppua/fedJZ8geR3ODdkUl5m3zJICOjo6bm9uBAwc+//zz19flS8zExAQ4S0xMzP79+7/88svt9WeA2ZTW9YsHuAmzmlt7JoQ5Lezk2rSijp84CeHSyqOh2bvT9199c0ziaEPkjTIQam8hvCOT0pvQeie6aRZXPOYfUQYPzyxiF6YLa32jix2wecYgpDSLUDQbmhrLGcjW8zT56L8/oWQKgCGJ45WU4R2dwRbVgnBS6ufufz8dQ1vn+LYnZeS2dd8tfyJJ83m37s0BSdpKZi0kkRksjGRXP/GkkcV6cOydBw8TOjopNbUxzS1Dd+cebazcXB6dfTS9y5YyrvdBK4o903OMqchLcOjZIPiZQISCB1YtCKNL5p1HxGgZEy85EeQQSFkiVAqCkA5FKKJC1fBBl+luIVV6kNpLITW60Bo946gglYAIFTheFQPTiglQCAuTD4DLeiMOueAOOuG/dSfs9yd8HYY9EhV6LAZ6LAZymAyXQsOd0q8Ru9RJ7WeZXWrUFnVM3Rlk9QWjVGdZOkwpAqrB99FPd1GNCpPF4s/CcGaOEXaW9LOexFNwsjwZfyQGr5pA98/Ijsyqjc6p3+6i9GB9YW719sbTeohLkCDh5+INt7spKSmJV31taGi4fPnyGzvv62Dv8wIsLS01NzeDl2B+fv5Vl+opAE86TfI4lB28KyfYPm+fJ83MzOzbt+9Xv/qVoqLi6z5XYWGhSCSiUqnOzs5GRkbiVUq2mb//cGZ2YeO70WrgC/6pK39NPZxvujvUOT/2cP3Rjx99HXAGq+h9xf5FSfbJPIcUHqoia2X93v3VkYfrtxeXHzVeH6/tGa0a5yTecGPUWxFKjQMzvUMyYhldaXGj+SC+fMR7H72vG+AOJInQWmEdLgQRexL777MefH91M/da2sduDN0SV4mtba6sbmyJ1MbmJr+wRaxKhNSsEGGkqCNmqzLprnBlY2F9c5Pd1AwkSRxSfV7mRFLhTDJI/d2S9c21v79092k9lTYFyYYZ8RZMmG1EgA0l1JwA0wpBnsYgZUNoMhCakiXhnClJCgaXwUGlQhByiDAlNEQVH6gX4eZXohdWfwHWoBdar+dW7HQCFSEPxyuxg84keekmOp+EQo65oQ+54g664Pf7AU/CH2GEHt2SpC1PkuKESFOg2hGe5G5VXLsmpPYCtv4UsvaMjsBZjhmixA3Uz7J3r9e/yHM9Fe6rTg2Sh2FkPLAnL8I0z4SpINHHmSiFBJJyEkUrPSKsoOD6+Fa76uKj8dSxUFq/HeW6A28Y0TpXun2lEiRI+Hl5w540ODioq6sLfvObm5vPzs6+sfO+DvbuSVNTUxkZGeAr9oUrar0SgCedInkezArZFWWWr5nr2+ZJgLi4uH/7t38LCgp6M6fT1tYG72ZaWho470sd2HNvgjVYyhwoAYkfqRar0vLK2uDY7NDY7GtaUbVwqjuwJNlOxBUnRJha3zacNdzL6W1O6Glr6B+bubMgGq+MGeQLhqN4Q4msgQJCX6JYksRxLaR8dvibI1qq8Mo8K5rQjp607UlVTT91fqCpO/d5Bc3Ak6Kz6vNbWkYWGyYftK9ubo2Wn15c3JYkEFgDPaafLfYkkIHFJ23W/MEm8epyqNYiYgs/rgZKL0LYZYaoM6EyGLScN1nBjSrrRznnFSUdgJENDzkORShgoIo4qBopwJhtD68/G1Z3HlKtB6m9bCYM0SBFn6ZRlYkQzSjf4PIrrvkmmgzfY0jUVyH4r4II3wRhj0VBxZ4kxYbIcINPcPwthFaMXmVCu7p3lZ5T2VWnkqtmyRaGsQ42qSYB9ee9qi8ZsJ0MmE6GTOezNJ/DnujjJvCTZwKPkEPkY4K1MmGa6TTjCh6yoxBcy+rGYtKoP7bXHNJ1JaTzCrTLkNDnKhjFlN5K7bvfsvn4B4MNgUdWjI8Ke7oyb1yfWZJ0AJcg4bXz5ucF8PPz6+3tBT/F3+RJXwd79KTk5OQDBw6Ympra29tLS0uDf9fXX+8a48CTtIhe32RAd0WR6Wf61nlSV1fXn7/80/97578+/u/39h/4M/iovdbTgffugw8+2EO94OPHj7lD5WJJEqd2tv/O/BI/vVHsHAlZzQtLK6+8wMsbqwGpTzzJNzEpml/ux0ont1UHlOSZxidYCIR2KJ5uNOZaEtallM4ayo8ZKiT0pbAGM3gjOWJP4g7l4xtKpM5dfP8PfzzrEgZh5W570uT0S7wOa+sbwJbuP9h9jXcePNiWJHJNZVgjkXuDs+1JrfM1f9sSi3WxJG2H15vkWgS/lhUkTUEewmMOYbEK7lQ5F4o2nnISjZJlQI9xQqQYEGVK4EWmm0uxAaZRC1t7KiT/shvX6ZQf9VIk1zCGrR4eqIIM0cd76sE9z3j6yXigvwrFfhmG+9YXKxUJOcaCHI8JAZKkGOevk+QUWHiJ3q0cVHXRs0LfpdQwsO6CZ9XloEIdYqUGvkqdUK92Dut9Bup3HuWtG+GqiIDKuYXqOTpLRwdKx4XIJIUeF6KUM8jahZSA1hhMZziy2yag42pAhwHwJJeGa2YV9kHNQekTsUUzov6F739NLSyvxLW3kxpqyI21IPTmhvllyVRMEiS8Xl6tJ82vrbxwAmHgSeC7LCcn51Wd9OdiL560sLAgLy+/vSjE8vKyoaFhUVHRqy/dDoAnaRK8vk6H7opC9NvmSUtLS3/47KOA6P9NHz4M4k767L8/27e6uvr6zlhXVyclJbWHA1c313dKEkjhVEd2Wfe2c4CU1Pa/8gIDktOaGILSSEEZN66axCr0YKXgmytM44UmgoRTNMa5AKoOjKDHRV0VYBxKI6xr2abV4fp5eKN4nFdadGRbdsvwEJFf4h2ZcdHO9533fnvOwJmZWCPIbOodmH5VJRR1dW+rEqY5Mudm4o/rk3iDDTs9ybso40IaUymOcpCGOYDHfIvDHPclyLqRzpNgChEwaQ5EVhAgJ/Q/leXiUHzVtdTAO1XfEO6qFxzogieoO5PV0OEqtHBlRJgqFHLGN/CsU5CMBUbaAnvYF6NC9z8BC1GmBihEByqwA5Rj/LX4HoFVF9zrLvvWXvKo1nctMfSt0AuqvWBfeM2twABfpgnLPHfJx/uECVzRBKlsiVD1gJyieZskW0OzdSzzTK5lWeqlOMpwofv5KJkUrH1tpH4ZzLDCHuiRU821qwW2p9PdtHM8DAohrtV0/nBs0XTm377r9FbQcYOUW20Sk2QVl4qqrBCrUs3E2Kt62SVIkPBUXpUnjT5cON+UIV0df6oxtWPheQ1q/9Ke1N/ff+XKlZ33cLnc6OjoV1muHwE8SQPv/WVq2K7IRQWYujq81lO/YcCnWVrjY7EkiXNM5ePc3NzXd0YkEhkYGLi3Y5PG6nZ6Uve9idi0xp2elFbY8WpLK6a7dxIYkjhkdhGssBBeUwIkCeQEjgw86Yon3YhEvMbHnkrGmFWHm2WFa8FI6qGEq1iqiS/TzJV72Y5p5hGLjSr0Rwv+8D9/lVHSLK7rHpm6+xML8HB9fnCx+vr94psPOzcfbwADuHvvwfLK991xVjc2qkZH03p6CwcGh+6PlNxK/3H/pLGlOcb1arEk8QebbHKFqqnh8vHkg3TMt3TUQRJKKhCvHIw4zQiQEUCOcENlhAGySf5yIv9TmS462Q4qMT5SGOjpoCDToMDz3uFqCJIqI0SVFqAR7q+ODlS2RshaYOUs0MphkBMIyAlUsDIEogCDnsAFaeD99WjuDiXGZvmW19JsHCuM3KuveFdcdiwyssg1t8s2toqyOeMXeMIYqWSEUjRCyl9DKdvAT9M9LmfbBVZd9Mu/5Jx51TXX0D7H+GgsTEqI1y+hni3Gns73sCo3t6801kz3UEv2lOWFnExBqKQSzCuJ0M6o5ruDHWPTEYV1xNwq4EkgdgnpYk+qHB995Z8QCRIk7OSneNLC+mrmzFBAf41tV7FVZ5FLTxlpuLVvaW7nProtWX8oYYqj1ZD6nGf7l/YkcX3S9jislZWVN1OfpI7z/msybFfkGG+bJwHjVNf/dKcnqep9mpiY+PrOqKamVlZWtrdjZ1cWBCPVYkkqmgbGsJlb0bPTk8rqX1eL+MDgrZKy3rKKvtHJO+yeJnzTk/okNSz1slc48CRHRLQTNfqykGZTHqGJJqoFbUXdjXDaiqxrE/1doi44RtkExevYM/YfVf/o089gtITW60+Z5WgXy+v3m+4IxKPbQOpGC4R5LayUWnZqXUPX06tGnjXebXFtpffezODC7MzygmtJikYqXSaReDAKc4COPE5D6EUG6sV66Ajd5JP8D/KhRwTBMsn+IMoZ3qcy3GSowdLkYAVq4Hl3Px0vlA4/QI3ud5IWoBnlc4HlrhoEOWEPV7RFqocGn4QHKwaHSbuiZFxQJ32h5xABeiw3o1R7y3yLy0Ln82mu5zNdLomczHMsLHIszOOtLyG9VFxD5Qyw8oYYEEVDlKIp8iQqQCfXPrBKJ7BUB1aujak8jao+rZfm8C0HoyDEyWUgZdJCNbO9jArtTop8D7NhhyJQUvE4qQT8mSwC6bqINVgsqG8GnoTLrjDnJotViVBXTW2qu/VAsrauBAmvl+d70tTykmtPuWxNwp/+7kDb+bqcd7oxLWGqH/ztqp2f+ryU/QHa9V2Tc+8H2YD9n3NGHA4XEBCQnp7+/IKBHfB4/PT0K6vLfyHr6+tcLjc/P/8n7r/3/klHjhwxMTExMzNTUlJ6M/2T1HA+X4jguyLLCDR1eas8aWho6PefvivoOCCWJF7Tt+9/9M7ExIu/vPcG0NwPP/zwH2nXW9/cuLOysLD2pIvJ/P2H8VnNYkkS5bU9WH6NLYbb3H+0kjXciygvcU9I96EkG3jSzYMY3kSWO4XpWZZomElThz3xJBVHnIYpWQ8YklOUfCDlWDBJGUnX8omwC4nX1HN+77fvO/qiXjg71MSDtu8l6TYPlRQZlVwBPEmc8em55x/+VIAnEbvKLqdzpeJJB+Iwh1hIjQiIkdBbP9FTN9FNUeQrnRj4FQt+WBByPDlAKc1bPt5fjh0gTwuUowTJu4eqeYWp8X3V6b6nmV6XYl0u8VzU4MFnvIK0PQM1g4LkPZAyrmgQWVeUogfiIt7rAsPjnMDzishFL97lXJz76VR3da6PQYqddbqpIcn5XKivrB1GxhAna4CVMwS2hJYzRclDQ8+lObuLDEITLmALTnHa5GNa5T3K9dSEXkqpiKOpYcdSEKdS8RopyGMcnFQ0VZZFlUkgyQpJ5zIi6dcLgCexGmrs49ONuUlGHOHFKL4lPyW2s21w7qfW4UmQIGHPPMeT0mYG/9fNbF9OOLCiT1KJv3Ey2Jak/6cmsy+LBjY+9DL7SkT+KCb0HT0N4Elb9xC9/mp0UTyVTE1NDZABKyur1tatVQfa2tr8/Pzq6+uBWgmFQmBLT9Wg7d2Wl5cpFAqZTF5+/V0VgR4FBgYODg6Wl5f7+/sPDLx4gtxXM97t7t27r/vygCepYn3+nIjYFWl60FvmSQAkJuzTz94zD/yDqd8fPvrjuwQi7vWdC3xWgOm+2udcXVsfn5qbnJ7f2/K3/wh35pf6R25ll7RGJ+VFJ+e19A3kjfYYiaLU8QQgSRpBpNP2RHVjqq5VpCo0XAZCPh5COoGJUMFFmMPjnEKF3siYT//7f23tHJ66dO7m483eha6SW7miiai0CZLYk4pHuFA+IzK5bNuTatufvkjL0vKjyq5hfkkLp6Cpfejmrhdn8/Fj3mCjaVG8dibzRGq4dCLuPD/AMMnbKsP7kshDK9FTQeT3BQfxBRvx1yjEVzHwr1mhhwVBR7jBB+mhh/yRcohQpVh/NbqPabKlUZLt5TinixRPU4SbOdpFAxos64pW8ELIeaBknTHSdjg5d4SCb5hGtJ8Gx09P5Hw+0U0t3F8eGiYViJD2QUl5oY+64o7a4Y+ZAU8SqxIQLIQsPlQtxNfEz94bbugNv4oSnOW0ymPKtRxyriqkBCplBWrmhGmnE7TTSWf5kSqsaM14tnIS42w60zif710vtK/k2eeL9GMEwJPEodfWvfANBX9nW+auE3vSApriiW2FDdOv6weDBAlvN8/ypILZscNVcVs+lEEB9vNxPBpsb3vSf/zho3d01cHGr8+ffM/q0m89jI+U8nSaMzUbUqw6i+6sPIiNjc3Kyjp79uz9+/dnZ2dVVFRyc3MTExN3VpwDPcDj8SQSafsHOdCm0NBQsFtZWZm3t7d4mYTx8XFgMC+sf9ozvb29QIzAV574Znh4eFdXF4vFAhr0/BXo9u5JO/H09Nw+92tiy5Mwvn8WIndFOvwt9CRAdXW1n793YJB/U1PTaz1RUFAQ+Lw+69H19Y3Wnon8it7GjtGdnW9+KSwuLCcJagPCk3Vw4doB5GsBLH1XlqYx9YJNhDyEIg+laFPZutG8kwSGLjrGOSwxIrEyLqvGyMhITk5OPEnaTvoWunKmU0FSJ2OjBiGZk1TgSZU3eQgBd1uSQNr7b/64JGvrG3ElrZDYAiuSCMQ1Ij25omOXKs0/eqiXxzmZFa6cQj3JpypzQ68leXsV+BqmemuLPDWEXn+hof9CQX9BQX0RG/YlH/YlD/YVC/Y1FX7EFn0EFSYVE6zC9LVItbDJNLHNNIWlXQlLN3KIsVNGoOQ9MIo+GFkHrIwpTtYQq6CHVjKAKzhA5bHQk/Qg3RSn8/HOZ+Jc5ZGhx7wxhz1xR1zxh50JRxxwx6yxxywxUv4waVSYAgSiahuoZeXnDTMMQF7xgxswSxSFjVIxRYqmibZXil1Myt0dy/1NMjCOyZEeGYnwmiLX0jSTAv4FTtSVqEjzWK5JRpJearx9Rrp3bi6sqjSio+GF72DTXC+iM96pLloceFNu++2n/DAdnr3bNTn9aqd9lyDhbeKpnrTxeFO1Pllcb/Q7X/P3Q2x/62q005N+JXvw1xdVfk/zB570ERMC7iEN716nEgaDbbdhCQQC4B9PLQD4ixocHCwSiSjf0d3dDQwpLS1t125VVVXu7u5tbW2v4qKfcOfOHTgcDpRu57pVYBvcg0Qix8bGEAjErkd38gvzpM8TkLsCPMnkbfSkN4a8vDxwsmc9ml3aJZ6SGyQ5r+3N1w/9g5QWdvPZFSBoXLZ7kNAPkRpMysJE5DtDhFqEKL0onj4vTo3BlCdHqMAZLpQUMr+8smnw5uw9l0DoB7//iMrlzD3suL/Stb651YGm/Hah2JNE/Uno1PDQBJSwgtl9N7+qrW9bkoR5LSuPniKUveO36Fk1NuRksSeBYBPLukZ+8JX/cG31akbsSWa4HJWkxKCeZFEuxUPds2CuBaE6qT7KcWEKAohCbKCKwPcQP/RLFvzrcPgBHPwgAn40CC4Fhx+lhh7Bw9XxAdeYDp6pBmE5V8m1l20SrZS8w+SMsHKXcTJXtqJwHq14CaWgj1K4jFS4Cj/ug5EnwNR4flp8b2Us9FgQ+ogv9qgP9ogn7qgfWg4SesQZdcQGJWWBkLOBnjCBnDCFWvla+8EM/EMNYnKVkhqOU4RaRtFOV4pcjMqdAptdAls804ftWG3ukHICti4lODH7KpJtiuLaohMuozn6KfF2hemk1hqQ+Osv7uOfOF7k3sDa9iSfhnjhjqP6xmes6PEyUMoxBEmFytBj8vqmXvFKghIkvB081ZPa7t/+c1mM2JPeD3P8EOfxuwCrXZ60L4Pyf4989euzSmJPutK6u192QEBARUWFeFvc2eg5xQBeMjAwkJmZSaPRntXfA/iKl5fXXi/0KYSFhS0tPb0T5L1794AGAXvr7e191mqqvyRPUkH5/a8AtStS1GCJJ+0Z8NH53e9+96y+ZbNzS9uSJM7AyF6+hNbXNyYm7k5P33vOPpubj0dGZ1vbR+/vWDbkZblzd7GpeRhk9s6TqQtThQ1iTxIH3OSI6sTX4h2feY2fcJodYyBKuJooDEsrtqKK8PxShrDKnpqCSC71okW8/8mHF8xPDdyljdxjrqzfrpgtApKUPJAEiYwOCo+GRfBiuVWVFVtrYg+Oz9a0Dbf2TTyr1q1zZJqUWrktSSBoYWl19w9a6Mq7B4yT+ScZVDk6Xo5G0GRFuIuSg4VxjEahV1WUfi5ELzv4WoGvcb6TSqavFA1xBIk4CIKFH0HBZQMQR0NRhxDog0i0JjHAKNLVK9/AMNXhqDf6mAtaygItp4uV08PJXcIqnkMrnkUrnEMraKOUziJkzVHHfXH7IzGHOJiDYfiDgTjFELgyFKkcClPHBhnw7OXMQhQvhpxQD1HShp68EKp8JVRZL9TezdbJ0yqYpR/AMPREmlhHebhU2VlVOmA7HJKuX8JUenjn+oUWoNB5RConzx6baIsRgpgj43QjeWJPorXX3VxaeNZbObO0mNrXw2tvQ3Uk7vIkUf+TWRVu3plXQ0QcDSQdCMIfCMQf8iMohFEMImP3/PmRIOEt5qmelD4z+H0/pB3tbp8WRYm7KwFPAv/+ztfi3997R+xJ2k2728VSU1OBKom37ezsnj8qiMFgPL+R62/fyZafn99LXt/zAKLz/F7bjx49+tuzfeiX5klxqF2ReNI/ApB6bW3tZz16c+beLk/q7p96/hMur92cX2kbudnS2jrc0zP56NHa/PwDUVID8AmQnOy2R9/VtTxYfzSwMN0zO1HTNljRltQ6hEvKDw4MI7t7C7z9E8vK+/ZwLbdu3+cLanj8ah6/KjYrpmY0snOOk1MdG8su3fak3Jy2iKLyIGE6LrGAnVTjy88y4Sd6ZeUSC6t8uDlWlCQIOy80Jt+KnORAT8Vkc/3jkF8e/0b+5P7GAfT0YmbfvV58R5SLgGiOwDviKDRm1tZ18aoePnyyYMvS2krt7I3SmZ7hxe+F8vbC0q37SwsPV6Jy6+0oKWJJsqUkBwnzOXXNzZM31zaedBsXFrZapMWeSsKoJcJBtOIImLRiblbD/Oo9/micX5u3e5OHXbWzfYX7mWwfJR7kOBZ5GIM4SIABYZLxQR8PwRxCow+jMcdR+MNI7P4o1FeRqOOO33mSDUreECV/BbPV4qaNkr+Alr6Ckb6CVtJEyOoiDwQgDxHCjkTCj5Ix3wbiZfxQGrAQqyhHZ6GFVoTfMQpOwTxM7SREXSVE/RRUXQt6Sht6yQiha4W96Bx62in0XDA0pMIS03pN0H214eZlXouJR46PfaaXS3aQSyL8WkikaQhf149tFsYHquTJyxD2dTRMT9x/9MwJSO+tLEc0NdjHJmv50NRRyDOxMIsymn1tpLjdrX9ua8oW8KK5xqbKhlAOBhJAmQ+74I844o874aWdCekVr2UqCgkSftE81ZO6F+78tYwD7OddozP7srf6a38iwr9jePo3dpffNTj1cSzinUtq4M5Pi6P/PxUpcBNsG7bunqTm8ePHLi4u58+fB98mL1y4/ad4EvCSV+5Jz3KdXbu91P1P96TBwUGpp/Htt9++CU9C+n0Wi96V4+QQE2eJJ+0R8OEmkUjPenRtbYOf1rgtSdyU+vuLz+utP7/SOjhPr+tHpZT6JOWhY7kVKcmN6WnNYkkSp6KmTzTW6NbM82zi22ezEcXw1BqPmCx7rzBvv7Agn2CgSvEBwckTky89ZCw3r+M7SarmpfF5pSFJtbCOu6zGKUZiHlMsScKEGkZrqX1KrE5U+HkG1SkyPr20k15UF1G8FTdmBvAkJK8Iyt7yJCuyCJkVCc+kwjIodt7an/7x/YwSSM71fnRtuhsvwgJOtYExUdQc8UUtLGy9LECSeMOVUQMl4tTNDiyvriU3ddFL6kASGjr6J2/TMqptyMku9HRbTqpnSg61phYkob1j47t28eSSdu/8yIsZWPVEOIi+CEnOzm7s2ZpoYHRpgDOMCWr09an2C6sIsy52UU6AHCMgZcjIwwS4tC9SzhsjB/QIjTmCwhxH4o+gcAdiMF9GoaQc0ECVpJyRCkZIBQOUoj5aTg993BR71BJzyAF9yAFz3BJ1lBR6PCLkGCvkeCREyj/shF0ohqlPTruIzdPF5utpxwUewBBPmKLUzoWdOB+mphuqHRSmiUHqUhhqcLpsIFEVHuqZYRzfp5kypFo+roOpdLHO8LDJ9HLODr4UA1P3JpkHx10L5On6skzgsaYp8QYlXKuKhPpbo896KxtvTnqmZJ10JZ5wJijYYxRCQ5XDIWeScRap3PbpLVN/sLrKb27XpnCOBZEPBBAOeG1JktiTZJwIRgGcX1wDsQQJr5unetLm48daDal/+NFcAOI6pI+iQ3bd+T8lLO5Ezz9SjLffk1ZWVrqfweLi612k6TtP8v8sFrMrx8kQiSftGSC4XV1dz9lh+vb9xOwWIEmCjKaRieeN317ffDA0zxi4G55a7gs8CSQ+OQ44BBadtS1JXE5FaGyqazPPtoFpWELTySISqhzp9aawBFNbfzenEC+XEH9bd66rl6C1bRQ85/jUXFpBOzh1VdPgox2dfu4/XCnvGc5q6esc+77rbkpq0xNPKsABTxJUQIEngXTd5d/onx4auNU8O+KZk2CbxLVJ4lrEs60SYjquj1ffGBV7UqAg352RzkyqIcWVAU9yi87AZvOBJ5ELKfXTKIrI/ONPPzhrY0OurgkW5um7MXWdoy39Y9ms8syMlonxuyXF3TBhmkd2XEi5KLy3AHhS9EBpYc8NsSSJk9u5NTU5kKfWsUl0aYVPYY55ZpJlljCgNK1xcHRgYKa0vjuwkAbikkW0EaE9c0iQ7DhGdi0zv4FV3EitYXpkB7tkBbrm+NvkuCpzENJYtEIARskNo+yLVcLgZUFQeBkUQQ5NkieSjiWQ9kdjDvujpezRsp5wRSv4SWPECTPEUTvMYUf0QVfMQTfMARfsUXfUMQjiWAjiKC7saHTIsWjIeYInlqVL4uhgM3TRxTqBhQbfBOEOemGlzVByFigFN4QiIVQehZBBomVROGU4SgMJucDwpbZczRkzSx4wckt1O0ELk6egFBnI4ySsLIqkERB+xoehHxRzEk2X5pDlhWSVHLJWfnj33FM6vAPqJyfOI6MUTVAn1UNPnoSeVIXKXYYdJBE0GFFuCWnL62tlg8O0qjo3UdaxYMrhQNJB921PIqg5UnXcoydvvYnFuSVI+AXxrPFutXNTx6oEu3zoQ7LPb5wMfyxPJu35L1yu5Pm8/Z70M7LlSQj/z7iYXTlOknjSHpmZmfnkk0+e1cN/J49WXzw51vL6VMMgLa2SRBMEJORveVJCGhO4EQGXs+1J4czCoMRkIEkgV4qop7IwHuXGkNqLwSJ9Sz8X60A3S38vXYfwax7RDe1Dt+4scJLrtmuz8iqe/Ih5sLLKKduarlCcwo4n//Nr6waeeFI+CXhSZisaSFLDNCOxgcBOruWlNXBraoEk7UxG6dbAjcm5+/WD413j09nlT1ZcoSVV0fNraQXlzApm8vUg0aBn4mAwqY73ufTh/bLyJjD2VQjvjDP9nHOEGzqpoKYDkSCyITIMiBTdcLJ1Ass1IzayvxioUmxdy05PYlU+Gbp4Y/aOV0H2tfR481y6fXmIdb6/XwacKcwAHhnAjkZWRqNrmFFdAkgFA1WYhE/PMg/nmdPi/eOzTLk447hgIyFcPRKjFI6To+KU8LhzKKJ+eIwem6OBpimjSTIIolQY8SSWrkqLPMwifkPHHoJiZKCwk9BQTQbkNB12GI4+FIL91g/7rSf2kCPumBdKKgB+FIrYCgV6LDrkHNXLlmlD4+ng03WQBZfgxZe+QSK/8cMctUNJWaNlQuCyVKgMHHk8DC2DwsiHIqS9UUfCUCeoUOOEIEShjbHATYPlJx8V8g0V8xUV+zUbfZBNPBhB+jYcfywSLctBScfgZAVk1TyKf/NWR4dHK2vNtYPFOR2N1TeWHz6aWR4rHS/VxkNVNSFbkvRdVE5Cvw1GHaQRTxLphLqKlI4e4Ekghsx4KQj1sAfhqD1e3p6k5RwOJMnAL+aFM2BJkPCvxnPmTyq5M65cl7QtQ/tywt8zv/BbD2NxQ5s4X5ZzLToKlzf+0YkS335Pqqys3J6G+8fweLwXlmPPbHkS3P8zDnZXjhOBJzm+vvO+xQgEgqtXr76qZxsYnSLEUvE8si8uzJ8Aic/zFSQJgRvV1w0I4mrEnsQSlFPai8T1Sbr5JHlO2MVk15CaC5ByHReKuUWAy2VX6CVHmiMpLmOkvaF9dFfvqMXvlpttGBjfliRxlla2ugetrq4XFXdveZIoLbUR0XIrCnhSQgMsJlcAPAkEJyiy4MRsS5JTEr+69vu/Gg8Xl8f7JocGp4GfgR9Mm5uPV9fXRxZnuINJIOzBQvZgMaw1RU7vyju/+72SU8BJJP0MnqlDZV0RkewTIgwi8LostDYbbcSm2ydzME1ZiaN1mW19Oz0pqbHz5tRsTd1AXfuwaZrQJDPGvjzYvizo/2fvPODaus7+n640zk7epG2apmmbeABe7L2XWTYYMAZs9p4CMbT31d4SQiCQACEh9t5ibzDeGLwH3jaeeIDt9H+JXEqI7dhO8r5t/vw+v498fXXu1ZHuBX055znPE1yZllqNYjYxZYUdDHGFuEdVNV1bcLQUpRYTKnNTCwW+LB5of740SFS6hZpvyRLZCUUO2Uw/FcNKwPAWSUIk5bG5VY6ZYg+UxAkldkFJ3DH5gTyFHp27MZtpwOfYc9iuZTj/OtLubrKxgriJSd1IoK1HUzYlUg1iycZpxIXxJBxJj47T5WPtKQi/3ARewTZygxepxSu1IeBrJnkNkaIfSdaPoBmQ8QZCnL6ACHKSAZZigCNtxgEbURQ9GKDHxiWodyAHPDJ6t0U37fKuiFmTT1xXSNApIGiJgTUiipaYYiIjgQZRyaaRAxkpPXXnKia7NJ1SiKAVR+OzYqUY8gE8eoAYLINuDUq3scNoIMnKHmuSijVVIRwUmO11vNyxEQ0nsXp6UJ21sObKALQUJCTQXik5ivafN5XGilb036gX5+O+/WgOPTVgO1SuWf621Hp9xT576luv/jRFGDWcpImbfp66urr+l+O4F5u90v5ncxKDwQBh6HlTby4uLt8/ZHBwkEgkEgiExXWDS0Vaoh9K9ES1JsD+mkdbZn3mCie9mu7OP5h/svA3QXBwcH5+/k9yThAsFDUjImUdo4BLljDT6TiqiAOCUX/fUfCp2dmHRybOHzt66f7cnPzkAH2iMahG7MhmmeEBUyzgkp2R2LY7oXOXT3a6F5ubXlXKP9xRcGJwZP+zOan3yKllnHTj7r+jpm7dvg/69tzZU3daj1yvz6sv00CSxlhFXXRpgQaShCr14tq643tPFRMrinBloIfq9yye7citaRCPvuPePueItN+9+96abX6OzBxrLt9SQg9VckFOAr0tH/DL4YOcxB9tmbp8uah7PD6/JlVez2ru5bSps5oEECoQT6BAUBJ/qdSnirmzLWVnc0p4OTSjGs1spueUVIMfWlVnz8C1wb7pMXptOa5cCC16ykk7+PwgkcqHL/eUFAYoFaHlpbT9TTtritLqGhitvZ68IqtUoV26yBFL82bivdlY/xyOBSNLj8PR43PMZRSvCiCyhk4Yzottl5rymEY8pi6TZphOt46hm8ABfTygSyDpMnHr0cB6ONlLkMou3Q60bIfX7zQtgG/Kxxhko4zhGINYmh6ZqJeFN8wmGOQSzQsRFqWZ5hSMWSZeH0qyQyPCRBHwfg/44Fb4gAesf6tReea6AvzafKJ2LmGDDLdehjcvRoOcZCwD3NqyyAeaQmryvBAs+zTAJhXjBMWGFsaFNsaFdMWHlkG8ojKctiOs7LBWDjgrH7QlHm6ugrkokds6MNDhPFxXTVSTLKCVHd2VLThSW3yyPa+9T1Tbu//k8qxXK1rRiv75cvXd5p48Hpi5QD8xlnCoM+agOnOyV3F+8sKDn7KsUGlpKQgDLS0tOBzuebVK7t69GxkZOTEx8eJTgc1AILl27dqLm928eRMCgTwvB8GjR49ycnLAr0LwPD9NXgCJRGL3fO3cuXNZ+wsXLqSmps7MzMzOziKRyO9fpKSkpNl/6cUTQN9yEvyvEvoy6zOwK5z0kroxN1t2Zij3mFp6omvfzOkvvvji1KlnZ45+Vc3NP8ov7QctUXVlK+vFytaa5n0gHj2zD6qp4bhcpTdP7ETg2CBZlliatYxkUYmzrwRSx4qFk12gG6cPXrtxV1YxtAhJbX2TmjNcmLktah1ahKTi3r3L5ssXZwkXelUxuJSThg+cPnLyQkP3vqGR43fuPF1v9fD+QwVQqYEkjc8emdY8de3h7UVCEh6tZ09WTlw5k5FfawEH3vv8i8/0Taz5bMs8VqBC4CdkeHMZO4QMgFuTp+i+MnMnt21E1DLIqe9FlbRQqjvKxrPRYlI8EdDYk8m1q4Lv7Inb2Rvn3xCbXAMDOUlSXE8RleQPKOvOV7VeasrqKAE5CVsm2MXn+fN4KQpBkEgZIi4LVCp3q0rgXQ38iW5gvDW7fxhW3bIjR7mVJHUnMLyYSNA+ArS/FL1dAtgVciwL2BYKWnQ5D1GXW3CiUThWQcxWBfIl3hzJDkKeS6bIAye2xrE2Eqhfc2lrqLQ1ZKoOiW4lIJqLMdoiknYuUSeHuDkP4yxLtVgIGGeaCEjGXKJFDtpalWEuRoCQZALDG8MIDmh4IDU+ucYPPgiikgdiyN28CrpaSlorI2xSoDfJMZvkWPuqdLsypFMlOb23xq1cYiNg20GxNmkImxSEfSYsqDB6d0PU7q6YoNYEH0zyliCYuTvW3BVnE4KyyM+wVaZtaU3x6Er17clIGWbHD3IjB5iQPVzR0erCUy2159U9V2vbL5eOXG+7M/+iJBQrWtH/h3oZTvrfUXV1NQqFAjvDZDJZLNbSYh4gBkil0pSUlOPHj3O5XDgcrsGgvLw8Tf6avr4+kCg0KSKJROKZM2cYDEZWVhaIQffu3VusMws2m5+f1zAQGo3et28f+Ip1dXXLetLc3Ay+1v79+0FCAs8GEtUzO/zzxic1NTWVlJRotuvr6xe3FwVy0q1bt14mBnxh3g0P/zKHvsz6dOzu+BVOeimVnRnUFKwFTWwr+OJvX/6EJ69t269BJY0PPSsntUbnLt3IqxigKFoDmPkOKK4tku3AZW6TsePb5BpIKjg+eGtu4Sfn0tXbDZ2Hypv2juw/PT//74iTienLmhClqpHDN2f//TN25uJMceOYpHJA2bTn/JWFO75//OQiJBXXjd699wx0u3L26lJIAr1XvRDbfuPWvdl7D/ffOJ1/Qk0+rMzYm5V9TFk1XZs10OImyHekZ/3VwuqDL/9qwUIH5Iu3UvhOOPY2Ij+3uGf64syB0xdBSFo0urAaIaRFZACRyKec5MAnWMjxPr3JAf3xuzoTQuuT2dU5yfnycFUW7UBRxdkKEJWqzxYXDWVnqUW53SJRt4inzlUN7qscO5Q1MEgYagUhSTTZd2BmYf1Xw6FJTkd/pLQyXoH14aN8BPAdkkw/KSyiIjOqK3dbDdOjghnfBSIFHXOQJzisyBLVRbDlGvuzc4KkMi9hrolQuD6HYVqMtQXppwCzhsNYK6Br55C0JUTQG/Lx7k3JTsUIy3SiUTjNKIZilk60JGIsqCjjNKIBFDBIJxmkkbbi0uJVgYhBdxCSYEMeJrVpICdpy3GbS1C6SpSxCuFQk7ajMzFqAL5FJdQvphmXoizTENZQuC0UZpMKC8iPCuoMD+yMDOyK9G+PsEenW4YiTaLR5oXpNk0p9m0Qp44kt47krZ3JvmqUc3uGaxvWsRG3tZka3MVOHiOVni0AOQl068XKq/fu/siA0xWt6Jek/xxO+ue3a8JAQuJwOGCX8Hi8ZpRkaGgoLi4OfFxsBkISiEpCofCdd97h8XjgnpiYGJlMBoPBDhw4IJFIKisr//ltUdS0tLT8/HywmSZtsqurK/gUyEBLB6V6e3vBAxf3gGAEchJIKeCxIJa9oLc/LyeBDNjR0aHZHh4eBt/tsgbg26BSqeAHwWazl1WIE39X6enpNjj4l2LGMuvTcCuc9DK6OTe7CEmgdxFTPIOXj/+9qu7MP5j7V1jfjVuzqvoxDSS19x15wcLsmVv3QE4CTS5uCWMXbSeIIZKSvj1TDx/NH7t9+djtK/NPfjgIVxM/tHQP2AEivTYzUwlHqljiVlnt8IO5hSVyEycudQ4fHdx36nlJDe7duS8nlC/lpANDR6ta9uWXDUjLBruGjl66d73oVHn52WoQkkArT1Zj21vCq8t3VZbYJCWs+vBDx6TkSFlhQpESUlwaq8gRHOELRgtYDa0aSMIVtkSQ5ckAIzSZtCMSiEQscJKtiGBfTHZT03y60X69iB0deNZQR3J3cdxADujMsfza6cra85WTNxs0q/bGr0lvPfx3fMC9R3NX7t+5/+jpGsB90xcF3YNsdR+gJsFboiMVkHBFSlhFPGo4KqZH4t/B9e8DwkcwYSPo4GFkzBhW2FLmT5N6EyVeYtbueo5/B9OhFm9Rhveph+xoTNjeGLe9OdahKnV1FmV9DkEnh7BBiteXo7a3R+1sjnAlZzijEGbxJJNkonkmwZyINkwBDFIBfShgFEeyDCX4YpJiZLth/Vvd22Pt25N0lUj9crhpdaZ1PdS+NdmhFeLakWRSCTOsQOmqMCZ1maZlmRZIEJLgtqjMLaWJgT1hu3tCA3rC3DviTGoyDSrgBlVw87o0EJIs6tINypCGZUjLugz71nSrpnTjSqRxJcqyDuHalu7dnRA3moQ7gCDsI2eOECgj9QWHxu8+a7D9wb2HD5412LmiFf2C9R/FSRpdvHgxIyOjpKTkzJkzmo1n/m1z6dIlFxcXJycncAPkJBAqDh06pKllu7TZ6Ojo7t27HRwc5ufnQU56ZuUTEMhAzAK55+bNm8vKvb1APy8ngbi32ImRkZHvT/49/jbDHvgoEAhqamqWPlX5XcFgcBss/EsRY5n1KSuc9FK69+ih5HjHIifpOlpQ8p89F/syujE3qzg1JDramX20s//K03rLjx8/uX5j9sU5ljQa2n9ag0qg1UNTmp0PH84fPjzdP3D07NnXKSBfUtwPSSrQGJqey6thq0/lTd5qnn30A7PXoPZ3H16EpHZ5T0PnoaVxUS3j4xpCWvTg+cMFI3v5PYPysX1Zqto/fv5XK3efIGHRdj53p5hEGsHTD+CTy3nsxjaQk+IYZanMSrowPxkDBMQCuxKBBDzdN5e/pYnuqmZoHNqXxz3Uixwr13ASaOlxVeOFusffPL5073zRcTV/Qp17tO/gjfP3H8w1dx2WlvYXVw9OHH06u//oyZOaAxMgKnGGOezRUKA7At8VhO4Mim1JyhiSpe8RxI3hdw+l7RyE+PSnBA8hguvpljlCW4nApgxnXoM0rwONsG9K29Eet6Mlwbs5zqsxbktjoo4Cs7EIrS9D6xWgzVUZgepQ7+roLZRMF3KmMw5ukAKYZRKMAfwmKskgDTBNJFgFEWwzUW4iiEtOinVuhmNbkmdXlFVTimVTqrM60b4t2aEteXdPcEr/du/2yC0NibqlKL0KhElDpkl9hmk+3IaCsCGg7LhwpxqIXVOyWSnMuAhhUIAyKEbpq+AgM+kq0bolC96owBpXwQ3LEYaVcJNquHVTumdnnH9PeGBfmG9PpH9X1K4u6K72HNJQe+XR7+R6eTT/qLd6VE6pAd1ZNjT3rAozK1rRL1L/gZyk0dDQkEgkWjZQskwg9+zbty8oKAjkpIMHDz4zSufs2bPgs+Xl5QAAaOryPu9sICSxWKwXFHRbpp+Xk6qqqhZr/7a3txcVFT2vZX9///NCqDRamHfDwL/MYizzCie9vAavHtVAkniq7d0P3z97+dnJtV/m1lGdHgYhadHHbl961c5cvHr7wNT56UsLeW7AvyGu3pouLG7NyCwJj84Lj8qjMRpGRk8uxllfmblz6sL1Z86aafT40WMhs/EpJ0GkuLx0WmVGxxnx6DXZ+HXF/JMfRrdr568fHpg69+104WJtk6eF7dpHl3HS9YcLaTAffjugdejUJaay5R+6ph/9ffUWQsZ2AR7aCedN4fkH6IKuMkXvXhSvVpLXVSDr5ovLCMxcmqDw4OTps7evhw1I3DqYrh3MXX3i9ulJkJOYBzoSB/M1nJR7rOTk3RPg+YtPjAiPdC26sGWQW12eVsbblcXZxRHlNPTfvvc00OrirTttZxpwjTRAnYZqi0mpTQ1XkAQjJeQJUcIerG8v3KUz3aML6t6ZuqkA2JBP3ZAHGJQiDCrhhjUwo3qYfXPq9vZY39Y4j/oEy1qoZU3qRgVKS47doMBsLkJtqUvwbYwKagveykx1pWa4AplGUKJBKlkPTtaiUTYxiNaZGGsMwlECdc1P2SZLci5I9e6O2NIRb9MGMW9Ks2pOcVQnBfaFIEfdE/t8fTvDfTvCnZsSwFe3aEwzLcs056Cs+HBbCsaCijfKRRmp4EYylEkeyliCMszBrOfjN6tQm5TYTUoMCEnri3C6hRgDJXKjCq1fBbdpSvFqj/LvDvPvDdveFeXXFe7WDDUv5+1sKcQMtD1acj/v7ZqQk2sWPdAwPv/48bEr149cunLnwcoI04p+yfqP5aSXEcg94GNCQoKuru7zcv5pOAnc2L59++bNm38w+8DL6+flpKmpKTQaPTc3B371UqnU4eGF8uBXr17VhA+D/Kj5StaMJ2kmGp/fUaoNGvE3AXOZDYAVTnpZgThy+Oa5jkuHpOrKjZs2fb/BiRMnTI3Mf/ubN9/87VuuLl63by+U35p9MIfLaQ7IkEAZqivXFxY+3J1/sBSSQHdcep1KIxo9/mbu+K0qVbswIZO6M5TsE8Bz92Rv3c5B4yuLFAOXLt9Sj0xJqgZA51UPHj939dknefRYLu6EpSlATkrHcAlFydw6OAhJGl++/wPrJpappG5sEZIEhV0FFUOtRwYXIWn8xneGcx89fsKp6Qvjl2lv3fHW++/ZZwRAuzOoBzAFJ5l7byysRO3rnVqakXxi4mnk1sPH83uunx6/fgbcuDP/UHC4D0Ql1oFOzJ4q/N6qC/cW0PPGw3tLIYlzUA2rLILXsP157J3fOjpHUtqzf3GwevLaZGZ5DuiUUtEuJT1QyRIPNilON3p2EZzqUKZsnCGeYETG6WQTviokrRaSDMrhIKksuAZmUp/h0x7jVg8xq8rQr4brVcLXyXE6hVitcsxqBc66MiVxYEfqqHdEZYgfO3EbJc04FTBMIW9IYqyDMzdhKGYwvB0HtiUf6ipLcSuAuMhSAvtCXTvi7NqS7NSJNu0p5i2pcYM7EKMe0AHP7Z2Rbh1x7h1xFk1Qi2aoRWmaSQ7SUIJan4vTFhM3s7D6eSj9YuQCKuWi9MlEXQpJpwi3Xo7fqMDryAhaAmADn2TIw23kkzaqUCAnubbF71BH7OwJ8+yM8myO0S0haMlpm4rYtiXipI7qyWtPy8g05Hct5SQFu0E+sk/QNQha1DM8ffMn+8W6ohX9p+kXwEkg+vzxj3/8QU4CAWPVqlX/x5x0584dd3d3hULxMvHXYDMUCoXBYCQSiea3eXd3N7gNbuzbtw8Gg7FYLDgczufzXzzs9pST+MxlXuGk1xCNRvt+NWbwan784adrfqVr98Z26ze2fv7rr778+4a9V067xnG/2LTlt2++/Q8jb5dYUV7toLimH6ou4x5uXeSkwasvCoJ7sc7P9h+ckUir+buiiTvDiNt8KW7bWKAj42Wyoj5Zcb8GkjSW1Q7fezh37t618/euL5vJ7m07LBO20whVJHoOVgXHqLnEvuz8g7lDV6RX7k++TE8ePJ4/dvvS0duXDpyYzirpRkqrojlFgfhsbG4Bo0hV3Nx98s6paw+fMYs3cuocsrQlWla2lZr44ecfGfobkcdRjRck0/cW+Gx+/nF31xF5UZ9SMbBv73NzkJy+MyM7OgqiUtGxPdOzT5ddzM4/XMpJvMMdsAZxXNFTSAIdnpslqO+9cvPpwt35x4+ZjfWQcvHWEu620qwd5UW+jYUe7XzzOoIpmWiA/peRxPX5mL/nAloKjH7lU1RaX4Y2LEVaVcDMqzP0qhDaKsxaJW69DLehArNOhfGoi4sf2hk/7Jc0siO2NTC6ONyWQtXFMjbBWBtTmRszqIYIogMV7ipJ21KU4iyDOIkg2wqi3XLjnDoSnDoTHDoSLVqhMQM7QU7KHN7m3xPq0Rnr3hkLcpJ1S4p1daoeC2uYRtSmk9ZygLUCkjaXpC0gbeQR9DCALoqyGU/dpAC0Cok6coJWFnmTADAR4o0FuM1sYFMuwaQK5tIe79sZ4dcVHtgZbFeVsrqQ/JWEtqmAY6fItSrMcS8pUB06eHdurl3Rv5STGLxqDSRpXDD0jICGFa3ol6H/ak66dOnplMXVq1dfsML/2rVr4+PjIDBdvHjxJefUXkavw0ngy6vVahDcDAwMEAjEiwtfgLp9+/bzyA5kI/Btz87OvkRHqbYoxN95zGU2JK1w0ivL0dGxpaVl6Z6p2xfCyBl//N1fHX7lo7H9G96//9W7X5mY/ubNtz7887q1NhGbtyJ0tyG8E1iAuCxenLNbxiG0ywnqYmqHav/kxMnXVcf+rKZxslCJ8QyEuPuk2G+B2jog7JxRfkF0GrMUgS8gi8oWjREqKE1yamchaFFf+eGjRxbPc3TqWJVKLeZWsPjKMAkhqgivMV3Nu3L94o0f0qlL09l7m1hjNQsercGrlVClzItJ8s7FBEvwECYjjcPqGx1/5rFnLl5kNrbT6lpgFaowRdpXpl/pGK1u21MxMzPzg6/7g6o4PEgfqtOYO9qU3a6MyCFtpyzYk0z0ZlACyHmcqvaDx09r2o8dOR5WXORZILbMZ+lKAZ0CvF4xwUhJ1EcD+iiSPooIWg9B0mYRV+cT1xTiteSY9XLUOinuH4XEryXAxhzShhyiVgF+nRyvXYzbUITfVImxUFG9mmJ3doTv6gnZ3RsS3BeCGA/eWUB1zULbM9BmKIJuJlWfQLKgoO2L0+wrUuwUKXYlECdhontSrHN2gnNngmPnwpCSR2cMctQjfdgzpH93aP8ur44om4ZUm6YUqwqoEYDVSyRvgJPX0inrOOQNWUQdCmUDnK6XQNdNZhjwSWb1WN1y3MZi4mYh1VJEccshmQkBfRZVn08zLqSalSGCOsIiOwMDOsI2l6G/LgBATtKT8oylWZaFYju5hNDdUXnk8MVTV4qptU85iVKT3zywlJNAL1scsKIV/WL0X81JL6+GhoYfZJJX1Y+ad7ty5Upubq6zs7Onp2dpaenL4M5r6ykncVnLbEjE745b4aRX0IMHDz744IOlF+vKg1uS4x1uiUFfvaGzyEmg3/r1+2+88cZv33p31Ud/fuejz9/+1h/+4cu/frUW9J+/+vorHa21G3U26+rqLdHq1av//ir64m9/+vzLT0B/+PFH77z30dvvfPT22x+/8+7/fPjRHz/99LNP//DnT/74b3/w6R8++cufPvniqf/85V++f8I/ffHFx3/+7MPP/vDhZ598+Nmn4PbfXqIbf/rrXz75y2caf/j5Hz74/NOPP//jO598tOqjj1Z98NHb73/8zgcff/zpH553+F+//Nsnf/7ze59+8t4nn7z/Px//7vdv/upXv3r7nbff/eCd9z545/0P3v3www8+XKIP/vVf8J933n//7ffeAx+/02KJ3vsAPMV7736gafDB2++9/ebbq0D/btWqN1e9/fu331n17ntvv/ve4uGr3nv3d+++Dfo376x66rff+s1b3/GvV70F7vz1v7x0+9erVn3rhe3fvrPqtwuHg4+//927by769++9+da7v38T3Lnq9799663fak67Cmz/+wW//ftf//Y3b/zn6c033wQ/xffeAT/u9xY23n8f/OgWDV6F51yBX5Q+//zzV/oJ/UVq48aNev/fKC0t7Z8rnPQj9KM46f79++BH7+vra2trGxUVZWRk1N/f/5N2799a4CQk4u8c1jIbElY46dXU1dVlaWm5dM/Y9RPZU21eeOj7v//U/g1vDSRZv7H1d79eZeAX88GfV7/13idfGe809qWZ+DF3QqWiit7cmgHQN19iadv3Nf/kUefl/QWn2kF3XTkw+2hm4kbhwRnJ0Hkht4qYQZFFphRkYsulhb11Dfvu3H1Q13NoMT6J3l2Xf6Jt0dXnBpee+eL9S0PXR7L2NpF727kDA4u+P//Dy5rKzgyLj3VojNpfFjeSzxqrccdRHTLIdmlklyjG1igWmlt0ePLCwwfz16/dmXu4MPBw7PaVwSsnj964fGL6GlBSAWHlp7KloKFCWbiY9P4fP7aI2RYjYafTmBg6p61l7+37p1vPd2RNNfMn28QL8e+XOWOtkP7s0B5GWJcAM1Bz5+HDGw+Pnp/tP3Gr9sTt+jN32m/PLSSYfvLkm7O3Z8avnZu8eXnm4Y2e8wP01vK4/GKkvFnQ1J/VMgh6/+mny99yDw17NxX6tckNKlmbyum6lQz9SpoBQNVDUgxQFAM4dTMKWF+EsShJ31SI0l4YT0JblUHdqhN0i4ANQtoGAX0jnwbaUMwIrFTq5nH+kUM1UCFcmxPcWuI922P9uiNjhiPSRoNCG6M8c1KdyAhnCsIGoFiIsOYKuKUg046V6shPchQkOaUnuyYkeDTHOjYmO7Ym27VBbGtTbUrSbEqh9tUpdjUpNjVQc0XGJiSwIYO6HkrXjSKbbSeYBiwklrSOwRhjibpIysY0+qZ0mh6VZMQnBfUKKEMNkQoFqqLRjCHQoTK1+fS1XIYOh71FIvWSFjpwxUZ03mYqW4dGX5/P3JTL3V4BI/ZB8vdjBGPiviv7Bq4dOH//aZTbg/lHitH9mpEksrq76fjU5dmfMvXwnTt3fvyA4n+7Tp069dqDzb8MHT9+fM//qc6eXfgdssJJr63X5KSpqSkcDmdgYBAREdHZ2amZCFSr1SEhIT9t/xa1wEkIxD9YrGU2xOODVjjpVYRAIMBrt3TPgRtnEF2l0ZX5n/zjq09+95fNb1hseMPk3d98rGWyxUvKNU2g6zjFffDH1X/T8zQPYMfgStBZDSAkNQ+9Zuz24LUj0pNtix65PjX/5N6V+/su3x+/N3fzwtVbIH7duDE7eeLS2YszmoKmpy5cP3Ds/PVbs7XTw0s5qePygcXTnrx7ShNnnXukPLZFSupp00BS/eRLBSd1XJpY5CTWRGP6eDGxtcqPzgIhyT6F4hbO9IplM3Nq5fL+4ryeotwuWW4HurEkZlAcrBB54XiB6FzfFE4gihlFRURTU8PImaGFtLAa/J+0//7ZunVbE+AJcEJ4FBnOpEbVAL61hO1NjJC+nN19wtAe6tYOpEs7zL0Dvr2DhB9jVB6nVh5PrTsTrD6fuP969sGZvLFD4xRV867ivGCFBN9Xrzy+Z/7J44s37mjwaNET05e/+eabzsMnyE2dtnKxXYnYpiYLhCTzOrZpHdOyirVFILIls40BuqEMZ1SOcq5OsitLsa2AbG+Iimzf5dsQZ65g6mZTTcUssxymcQ7dIo9lJRPriDhfZdH+IaIaKRD21amO9RCHppTQwajU0V0pg2GhDQme/DQXAOmejXRVpNvVpTmrkhw4EHt2iiMv2SMl1gWX4F6dsKUo2VKZ7tiYZKZKM6MhTZBoQzjOjI8wlsN02EQtDFUbSl8PpZrvIJj7EuzCEaCtAnCWGWiDDIpeBlU3g2pAJ1lwKDuq+bnH1NS9VVE1Mm0RbbWQ/rWAvoZD16azLThiI6bAlCnYTGFvILM2kpnrhUzfCjSiK1qyDy7am55zOEl+glt8phn0mdmn4Q5PvvnmxNXrWWNDjNEezp5+0EMXViqfrOgXqP9POAkEEpBPftpzvmYct7GxMZ1On56eXrr/9u3bSqXyp+zdEj3lJCZrmQ1xK5z0ajI1NdVkLF3U/UdzSTXymGpZRGnuZr/t//P5V599tn57UmrqnoKwLpEznWUbw7YOZznHCBKJZQh2HVbYOHbk7GuXZC8/17eUkyrO9S1rMDf/qK77kKRyALS8YfTitduLT126f0N+qlMDScrT3Tfn/j172HZJvbgkTXS4DNtXmTs62nHy5Nzjl+rn7fn7ytODGk4qOtk3fv0ko6MhViTzQrF8klh+iZzIzDy2oI2MqwIhCXQaTbYDy/TL5mzBkxyxeFcYySUY2IVICQfiIykJYUBcaH6UXw3cMy9j9Rbjtz/+0MUzysuf4BCOt5RiLPNQNhS0PYXoICPYNiPtWuAaO7XC4wfDCw+7SCetsvY7FB11U19I65wU0/Pzdkh5HgiKWzzZI5GcmCUdu3T2yZPHqpG6nF6JuLM0q6W/sGv8wdyjA2cvZrUNgoaU13nLi/xLFZG9JVvbcgK7ZHF9ZdyDvfCB+l0NEu9Khl0JzbYMBhJMWFtIar9vcq+fWwPUu4ltnM2yy2M6SQTGuQwjCWNjFllLQFrDJX/Fon6VRVmTDazNIVlXpQf0RUP3+GWOByQ0RsVUxYSUx+ysTHFRpjrVQFzaEpyVifYciAs+YQc3wqcj3KU80ZYDtyChjdhofTlcT4LYRCCtR1G0cdSv6LS/M+lfA/TVAH1jOmDhh7fyx7qkQZ0h6dZBaOsUlDGMZAAjG2GJ5kyMBYfgIScihmUx7QzTMuLX+cDqbPLXWZTVHNo6MsOIKjTA8TZj2ZuILC0yU4fG2shjpTYnZ+/JrDsOFExAuWNRtMGEdHWe8HBl7fmeu/P3Gi/05xyrSRqWuDYxnWqYW8vFcXVVpP6O23MrOQJW9EvT/yec9HPodThpbm5ufHx86Z6TJ0/euHHjp+zX9wRykh0c8RWdtcxG2BVOegXdvXv3ww8/fPS9YNW86n50ZVVmVSlQ0SAp62/vn7z36CF3so43Wc/ZV+dPzdmOFkUz5Jql8h2DP4rW684PL+Wk+vPDyxrsnZwGCUlc3ocRNkAZVSRxy8zNf/PQ/cdzE7fOTt6ennvynXfRcKFpaYqjzivPqLv8Ys0/eXxu9vrZ2WuaOsF3Zh/Iq4YR5Cqv8CzXcK57HC+OXCDit4CQJMluiwFEO9AMdxjFCUcAOckFQ/SIwu1ITgUJKZwcH0KMC6sJC2hIdBdkeogzjOO833r3XS2zrVaxOAMJyiwNbQ3F2KbhrDKw1llPOcm2GWbbnJ4wtJs14pZYFRxREhmljMRVh6PLmb75DHMWxT6N5JJEAL0TSRNVqk/dbtx7NadhilF+kNw4UaDJotSwbxKEJE5LL76uKam8IrGsuu3sUU0RmPOzt8aunhucPsPrHAgpK/VUCt0ULP/K5KTugIS+QJ/2RP8eYsQQJa4tJ7ikIFChcJYLTHKYenSSDoO4hg+s4QFfk6ladMoGJuAoTw/oiQobDE0fDkhqCEmuiYpSpflXJ7goUl1VEJ+WaK+WGK+6GJ/m6MDe0G31cdZshC0TYUNHGAJ4EwFSLxu7gUbaQAN0WIA2j6QjImgJSVocQJsKWATiHGJhrrBUZ3yqCx/iIk+2y8k0pWJMWBgLNtoYIBryKRZSslE+YKjE6pagdKT4r/mUr9m0NQyaLVNkhOJtRDDXUpir6cyvGUxtASehAV6yD1tyGIvpCkf1hOD74yAtOamtueKpaspEQfI4e1sPxroFblqPMqvGmpQA9oX8QGXJ4KnlyxIfPXkyefPS+PVzF+6t5A5Y0X+lVjjptfWa40nLSt5isdiXSf79Y7TASTDkVzT2MhthCCuc9PKqr693c3P7/v6xg2cWMwZJywePTV+ef/yo6GSH+FhT/ok29nB9Yq4cLanOLuourhm58a/0j6+nE3cvyk49hSRw48zslWUNWgaOgJyUxqyOJag0llUOzT4/yeTTtzDznazZR26/1HTbi3Xm3HUYqcI3NdsbmrWbmBtOzE8D5CAn5YnbEyg53ki6KxJwxj/lpB1YbCAMEgkkRFHi0spCYgd27W6GeEqQICr5CuE2cQnv/c+f/6Cz2RCbaZaKNk8FOQlvnYazgWFsmmDWLZk2LTCHlnTIwM6YsogIZWRgdtw2NNSGjLKhEm1oVEMGSZ+Kt8vEbElBeyJxZKH84Iyk4xSn5hC14Qh99JLo0r2JwWvtrIGi5EppuCo/qqwIdHyl4sr97/wB88033yjHDlDbuoNLSr0V+aE1hZSDRZgD2bADbMRBDmjiRHbv+cPo/hq/ZoF1LtWIBWykEddyARCV1gKUdXjaJixlS3bajvKE3f2xsb3hvuB2dmaoPMOvMsGtJGVLcYpPfYxfa6RXXaxPU7RvS5R1FsyKibShIq2pSCMa1piO0RNidRl4PTpRiwXo5mP0ZJgNeTgdMWG9BG8JwByhaQ6pma7cFNfCRNeWhC11SQ5yqBkdbUrDbGQR7YsytpYk+jTEGCgRphWZRqVwbTFhNYeylkMxZDAtSVnrcezVVObXNOZqGlOHx/WSCxh9KbxhaEZncFpXoG9N+o4GSmAFO6KdEzlICx7CbeuBuHclOrZCLGoRZlVY8yKmR0G+oLkf/KDm5x49TfD2zZPyU+OCiS6NQVr6/q0CQvbI6dMDx0/ee86i5RWt6P9WK5z02nplTgIh6fz5876+vrf+pRs3boSHhw8MDPxsnVzQAidlIr+msJfZGE0Iil3hpJdVRkYGh8N55lMTxy7Wdxys6twnGe/KPaaGjBXu6OFs66Lt6ufxpuoo5RV0oIoN1FYpBo8cPn/zxnPXNt5/MH/0zJUzF2deUIX0/L1rfVcPg75wf+b7zw7uP8VXdi9CUhK5PK9s4MDkcwvravToyaPBa8PV07XV5+vGb+x9sJDd9MeWQZ06eomQUxvPky86mVWYm92WxWsJhYt8yExnHt6ZQHDCEbyxNH8CHd4SxNkbSBv2pY74JgyGRNQDcVWc6GJGWC7ZBUWyzMB+ZmTw9qef6gbHWqZg7JJxjmkkSyLOvB5u0Zxh2Qy3aoQjO0OCimNDCqO3oqHuiHRdBs6ATjXBUo2YWJCTTAk4t3R0IA7HK5DWH6FLBzEaF45g68+KWi6VV58pDSnn+RSzdkkk3mRxOF/Ka218+N3qHBdu3CLWdKQo6uFlLerDx+vOdyjP1LOmZNhDAtC5J8rANjXnRsMHsqxzKKYcQI9B1GERtRik9XDyBgRND0VxEMK8FNCwrtT08ei42tRdEkRoPsxXkeRVmuiihDgVpljxEaZsjEU2wrQQZsjGGqEJFliMORxvxkCbMjD6ErQhC7cZAAwZOEMJ2igfZaaEGRXBTaVwOzLcOgJnm4SyR8CdmOnuzbFuLXFu0niniFS7oIxAdkR40+7YzoDUfh+PujhTBcy4EGEgRa1hUdZyydpMymYadz2Ts5bGXMNgrBMDWnmU9XmMsHoBrg8aVxe7VYEwlZLtigkuhTSLCoJxBcpdnejWlbS1J9FFneTcCjGtxmwGyEaxdLNolgOEmwqRkqCKGsXAvmvTi5AEOutIz+yj78DQzL3ZtLqqkBI56PiK0pOXf7hUzopW9L+sFU56bb0yJ7m7u+vr62tpaRksUUBAwPNSP/1UespJZPYyG6NWOOkVBF6sF6wFAMlGdXoAhCTYXuUWNdmpneTRSXNVk7er6BmUgkxKURIyb+cOdpAvH5Iiz85vn7o1fXb2ylIeunD1lqx2WBNaVNWxX1OJ9lV1997D3IoBDSTFEUvpee0gJ+2dmH7BIY8ePR49cLq5+3D38NT05Zn67kN5FQPyupGJ4xdfowOLOjs9Q8ypA/EoilEYjMsPxueT1HWj+0+Qc5uR4rpd+RKvQoYrDx9IZUElufR2eceFNsFEIn08gDgYgmzkZjZkZzSIcg5XdJ4aSylTugu5LnzGuu1ev1v1traDl1sK4JVBt84lmlUABmUE42qSbT1+R0uyoyTTMTvDBZ1pgcCsY5G1OTQ9HtMsF2vOwDnTcDEAGkqn89WF3C5Ybj9Kw0mSYbjkoADkJND4/ZzwauYOmiBKIEvMLYTmKRu7v1PjrLh/ryaGid3cF19Sk9imhI7mcI+oSs42gB65vnf20c0Hj+bIB1UucoY5DzBg4Y3Y+I0AUTeBsh5G20igGzBotlLilnJ80hAkdTAivDIpohAWU5Hor4xyEkIMcHhdOHETmbSZSdrMJuoL0QYoklEyYBxHtkahLXJghiWZJly0AZRsR0KaSRAm+UjQ5lK4izzZFoKxicRZJ2Dt0XAHLMw1H+JeHesmj7dHprgnJCVkBcRJA+O6/VMGfJO7dzgoU42LEEZFyHU8khaNosWmrKYx17KZ65gUrSziOhFRJ4dopURtq0fvrksOr4r1KcgwIDCtCGx9GUVfCVjVZnio47d0JLl1JXqAVkOs5AijGKpxHEM/iWYQRbUMp0PCcsL9+ZFoaUJzJXW8bRGVLn539i2rt0cDSRqjaut/zF23ohX9HFrhpNfW68y73bt3j0Qi/Tz9ea5ATrJPR64msZfZBLnCSS+rmZmZjz766AVZSm/MzYKQJJhs3tJBtmjBaOzQTnTiELYjaMEYvudOurs3xceLEZ6U6wfjZVYVEQ6V8Kfqrzx4+rWhatlDq2qhVjWLK3tBVBo59Nz00y/Wg4fzwuIeQNwikHeDkCStGLp5+0U5CBo7D+WX9muMYNaIVb2LdXbPXfpRkXNVLeOR5ALvlGxvSLYfIic+u6R1ZFLQPBAvrApnl4IOExSlKQubJgaP3DojP9mbc7RddKRF0TVYoBpQ1AwMTU2eu3P93O1bJ25cjS6X71JKQiukW5GY9//nj19vMgsgZLmWs2xKaeYlZNsaqlUD0bON4lqS6ZCLMCbjNyMp2mSaNoeqx2cZFdHcKijIai65XABvZAGdpQnFAkJLqrgfKR3EZasLs/flNFwoLTurZE+J4quZkdnZICSBRskqwA/w9t2nNeDuPniogSTQ0crqXYWliTW18BFl8nB29tGK8rOlnZeVXVeUo9cbZx5elR9v9ymk2LNxjlTSTi7VhUwzp9GN6TwLPt88j26ZBViy8G65GSHlsRE10UEVkIBCtDGA1kshbUqkbCCRN9FIm+gkPQ5en40zTCeZJpK2EDIdpamOpan2uRmW6XgXIsxLnuhenOwqWygJ5yKHGEWQjOJIxokEGyTSDoNwYGU41SRvKU+yyUt3lcaFq3aHKYLDOndDBnygvT5+NVGWJekmUpg2m6TFBLTzCGuEwBomdS2VvE5EAq2dRfQohWytTdlWkRJWFRtWGevMwdvgGZuLgc3FFIsK5HZ1rIc60b0z2b8/3b8zzQpL0E+lridR1uPJOjjy5nSKnz9rpzdrZxAvoFAeUqli7VeDkCSe7J17/J3YOFh97VJOilApfswtt6IV/Rxa4aTX1s9b3+0n1FNOIrKX2QSxwkkvK/DnxNPT8wUN7j16KJxqCR8S2bbhzFpQJs1I8NGmDW+TjfVG0L3T6e7bKSAnuW4jO8YANslEWxp+Vw8nflRMPlxx8ublCzM3kmqKAxXZ2/P4PrlCmKiqZeD1677N3nvY0ntEXjNS1bp/+uKLWOfK9TvCgi66qEUg6+RI1bszCpCc2kVO6hl7/Zoq/1woPviEIWuLIBWFUgt2AbIYYgmUVRXFKw9hlmg4aRdRHk9QMfJamWMNIGWKJtvo4/XcA0135xfQpPvsac7IAGj+6FD35Im8pgFhRbe8frRvbNLIyvEvq7Xss3E2KpplCdWungJykleb0KGV7FRDMxJR9XBUXRRFj0Y3EnGtlSJIt6j5Yjl1VEDqFQNt5UHFgl2FlJRqvKAjN7u+XzZRnjomSh7JShwWhJWzE3IWBpPS8kqyVT0gJ92ZfcpJ848fi9XD38Z694GQBDqtqYk93s/a06s82gUS0qLVlyqzJrsYh6rgoyzQjEO89mOS4CJesKzYVZHlwhdZkDh6aKoxnqyPoG2ikY1y8XaleD0JQQugaWFpOmTKeip5M4Wkz8Ab8TEWJLQNHuVCzXATp3ioEi3EMHMYwZUEc6VnbMuHeBYkOYuhenScfizZIIkE2iQZb52JsmLBfWsjgxtDQPu3R4R0BAdVhgb1BEcNBsT17jRVZm4SEkBC+ppJW0OjaucTtLJI2gB5E5K0QYjbnI2xyM50VyZ6Vid5V6ZEVMVGVsVuL840kOC1c4jrOZSNXPK2ytSd7Skpg7j68yXFhwuMoIAWkaxFImvjAZCT1uMobmF0kJOCw7LiFZW+qiL/uuKQNhV3T9/NB/+m9sdPniBa6r0UeTuVMg0nZVRV/5hbbkUr+jm0wkmvrVfjJIlEkpSUdPfuXbvvaWho6Ofs5wInOaQh1xDYy2wCX+Gkl1VMTIxQKHxxm6KT3cEDAtdOsnkLWsNJ1m04t2baDjzTB8bw8KG6epFt/YlWUKJlGsGch7GuxQT1c+M7c9IrFOjSiu05PA8xZ1suF7SPMKuw8ue9KzRqaTuYCFOCDkzKd4sW2YfxXWNE0biSnNI+kJOG9p9+3oGPHj85ff768bNXH869qFpFUe0IeJ4Mdk0sUQUayqhCSBq8CQULkESQ+0Ak8UhlmrA0TJUbXpXvpxQFV0iia2WS7t4TMzOs4T5ob01kpzKmS0UcbJ+dmwORZf7R430TZ/Or+rcGxK/64EN9ZLRTLcuugeLQTPbrEO7s4gf085ya6Q4lbAsBx02S51+mCquuPH3z+szDq9yuophGin8D1qcWtq0CHaKiCAaoTZP12ZM92L0q+J4C1F4FcbCeIm/mKTskpf0gJLX2fSekfezkNMhJvNb+3YWloYpy6nAPyEmgZZO1Szmp8KSQf6RVcKQTv0+CGGeD7r4koQ+VQNXV7iUiWyrPjMg2wNAMccBmGNWAgzOUog0VKP0S1EYeaQ2Brk2lalMpmxmAkRBjlo1yYmfaU5BWOIybDOJdGm8vTTfCAlZonAsAc6elb2WmmfGQG3DARixgkLzASYaJJJNEvKU4M0AeFVYRuqslzF8dsasjNLQ9OKQ3OGQwyK4xaaMQpy/CbObh19IoqylULSp5rRDQxRK3wtK25iXYylLtZKnulfHupQnh1fHRNfGRtXHuFVADAV6HSFtHoOvQKHp8ipsSW3qy4uCNse1Cli6BsA4A1gHkdSRAG3xfANk2g+AZSYrC5lPbu33KFV5lct9ypV+FKr6xbuLKwvqDI+MnccU1UUXFdgVCG7nQUyGJVCn2nnpGoPeKVvR/qxVOem29Giddvnz55MmTjx8/PvQ9vUxN3B+jp5yEZy/zCie9vNasWTP5Q0kXB65O4Q+U+fVyvHtYzmrAuhXr001A7+WGdfDjCiWRuKxURhhJ7olXeoVmRVmUoiyq0c7NxJBqYVJlAbRcsV3EdebSNZzkKxHKVYMvfrkfrxszs7K8HiiqNCZd7hQmdAjhO0cKPeLFnom5CG4diDiLU07LNHt/rqxlr2bMSV43cnXm6Q0892R+bGay8cJg/7WDdx8tDBu0DkyCbZKpFRpOwmY1SCoH0LlNiNyGKLQChCQIthSdWw2+ZScBw13GA727LJda3ULqatvelOfelOXfnh/UURDUUTh48RR4wvy6vlhGcQyjOI6pSMVn/emLLwwCvQNauds7KJ6dpIghbsoeKeGgMr1fhextIPZ1Ens7O8+cBA988vgqrYe2u5HkV4/wrYOBTuqm9V0pajqvXBpoDLrxyOH6zkPlTXuH95+en1+eQerc9Zs9k6eEA4P0kV4NJAn2DY5c7V/KScWnxYIjauFkl+BIB/1QJbC/mFGnCOQLzDgMIxHZjMQ0A1hGOLIBFtCFUww4eJCT9JUo/VKUnhKlRaetITK0GJRNfJIhi2gFJ23BkGwQJBsC3opOsM7D6klJZoUcWx7Hiop15GW6lSdt5uLXA4AOjaTDI2wkETcRiIYUrF0RNKgoIrwofFdzOMhJ/upw9/pE50qIU0OySX2aS3Wye0WSW0WSBRulA6NuSKHqwQF9LMGHkOQLT9kGS3PHQ3cURkeVBgVIYn2kSb6yJO/CRF0GSRtLX4diaKHpIDB55EkOXT7HGugyBEgbqITVAuJaFlGbQ9iQhbUSkFwRlAAyK7YhJ6mx2ktV7FUm21Yu8CjnupVxktuKGjq76MyyUJ4U9G5eXnilKrax8uSVlSDuFf0naoWTXlv/TfNuDlDkWix7mU0zCUExK5z0wzp79uxf/vKXH2w2eHWKdKgcc0AVOyKJHhZHDqHphzHS4xjeEUA8VZazH0Nt3ApUuQONbsRBF7+2KJCTtjSQYivzkGWlqNJyv1zBNiE7qFgcosxJLVOUV4393O/r5IkrhdJecXZHPFwBQpJjqGAnVBoEL/KDSlG8ulvPr6zSv/fk4twc6Cr1/n9+G8lef2Gg6HSLxmXnOh8+nrt9935F274M1sJ4UjqzOrt0IfSqdXDywpVbrJw2Cr+JI20LwkqduUzTLLKlhGHFY24TC9KqKkLr5PZ1XMsapmk1zaWR71UrJrY28Eo6AzCSSGphzLeoBAJTR/8+E3uLv5qsc6/N8OzB+fQScQfl//x2jmz/lYv902eOzTz96p2f219wmLy7hehQi7KuQbg1wqAjxP6r8p7LFcIj3Us56dCNC08/n6szNXsnKvYcGj9zftkKxMdPngxfOldx/HDDqanL9+7ef3Sn/2rFIicdurlXNNUNchJo3kRnRLbEhUB1xlPssYA1h2gKkKzpFBPKQnld3UyKYQ7GsABtWIjWXxhSQq8TUL6mMteRmAYwnjk8yx6W7UWQ+nKFvlm0cAktMJ8V3sq1rmBsVFK1ikk6coJZFWI9C9ChAjpksraApJVF3Egj6hMILpy08MJwkJOC60JBTtrZFuFSm2xXmm5dmrGlJd6tNtGtMslJmmZFQxviiRvSaZtTyZtRJE9sqh8hyR+TuBOT5E+J9+InbRcke2aleIig7qLUbWKIFghJKIY2mqGNYejRaHa1NPsK3noCYZ0Iv7EYpVcON6zMNK1Jt2/KiBrGpw1JID15CW2q7eUyawXZWgHYqrDWJSjHUvRuCTRaDGg4CXRycRl7T/+Fu7f/uaIV/edphZNeW6/GSW1tbajn6CfPFL5MC5yUilyLYS+zacYKJ72UpFLp7t27X9AA/BJtvDAuOd5OOlQRPyrBHlDlHSvqupi951q+xqNX8/OGg7h9XpROd6DXjdTnCun2c6wihbeL0yqKc4u7xYquyMI8bxE3tkKaWFEoUKgPTfzAYv7X1v37c5OTF45MnD975hrISaCzstU+CRKvuJxwtEKzVk6DPs+TZk3cUv9zoSTwDd5ILaxUma5QEJrKZceb9l052TI2JWsekdQPseQdi1nCNRE/ew6cEck7Y7lFHilZNiiOAUAxS6VaJNIto+lbkjnhfJltJdO4igraXEGz5dC3IgSeSVm2CTTndKYfVhRNl4eTC7PKuvCDRRuiHFb94X17UaRXMdw7GyYX1J2burCsz48fna09QQnuwe/oQG9Xp/t2pgf0ELsvF52/N6G+MLUIScqTY1fv352evTl55UpW55CwcxA0Va1mjDcXnOhpOL/35tzTDFjgRb9x9/7N2ac0+eDx3ZN39x+7MzZ958y1O7MXZm82TB9UnRomqes8KWyQkxxxZFssyQ5FsKMQbXmAFY2ih6FtZlF0CzCbCnB6UoyhDGVYjNTikLUQzA0Qpn4SxzCNZ5LJs8eId/BEPlxuXJ4gMJu7tZ5mVEbSVQHrFYCOnGRcStTLIWymkjYA5A046iY42RyCswwm2fnhQwRREYVh4XUhoU3B2+ri7UrSLUsyN8nQW9ti3Rrj3aqS7MWZVlS0GQm3Hk3WopFtUCgvfOo2fKoHNs0Tl7oNl2pORjsS4e6sNLdsqFsWdJs4WRtN13CSFoahDVA3FhH0iylaXIJuMdKyCurcnGjfmLxVHRPYExEwAEkaY0tO1OIHa+0r6CZyvEkx2lQJt1AiHFTIXXmJgfkQfz7fm5HrThP7ZckYw70vmf99RSv6X9YKJ722Xo2TDhw4oHqOLlxY/jv9pxXISY4pyHUo9jKbpa9w0kspICCgqKjoBQ2O3r4AQpLGucfaco637Z9p7b6UNXJVAkJS8zRHehTHGvSlDXtQh9yBAVdgwC25KyBlJL/q+HBRyYCsuB90XnFPUXu/tK23pmXvkakftSb/Bbp1616paqhQ1gtaXtTX1npwYVvaC8WXBabJNJCEFzW9eIlcz9hxkqAJTqsm8BqyVb1V7QtQdXD6bFJeUaLkqdHVKlpdK72qU1jbJ64fFNcN7j92/vi5q4v5Dp48+UZQ3e6Tke2WKDAkMc3i6WZxNItIulU0wy6aEUbMd2Ux7ZroVg0kSzrRJonkEkF3S6JY7wKsEkl2UPKWdKZHqhCTW+ctp9nXwI1YAW999N46D2t3ApSJkMlJlVenr/9zIb5+burW5aO3Lj+Yn2s9VBDcgdvdjQ/sRvt14ZKHs0ev7X16BW8tFOU9MHNefX5SA0zJnZX4tjYQktgdPRGthVHtheJjatDFp/rnnzy+PzdfNnCA39yfWFMT3VApODAwdGmhtNnw8bOi9qGstsHC3vF9F0+Vn2tJahVuFRKdyERnPMUWQ7RGERzJpG31lO1NdEcpZ72YvlZE0RKRtAWkDWySHh7QJ5N0oXSDJLZREkcvhaMPYVsis5xIIk8W11/ACytguTfDzCrRRuVow3I0SEvmpVQ7JdUyB++Qh7bnoa0oGPNgkpUX2dKLbOELuMAzPbIgtly4EZ6wCQ2+EFFbgndtjnevSHCrTXDIT7eioYxJOB0ieR2DYoeHg3jkjk9zw6VvxaR5oNP10CRjCGCSSrIBkC4iqJsoRRtH18bStXD0tcBCIu91QvJaAVUrFzAqgdnVQba2x/p2R/j1RAT2hnp2JbqqkRGDwnh1mXcL3boMYVKMNFPCLFSZ25oTQ5pjgxXxXiyqA1lkBwi2CLNiq2S9F3ou3bt24969F+QPWxTYRtbZR65uGD/2mitDV7Sil9QKJ722/pvm3UBO0kKyl9ksbYWTXkqfffbZuXMvCi8dvX58kZNAo/creZNSyVFk3jGU4Egmbl88dCw5siuCPOxKHXanjrhTRl0j1JkZe2UL6932VzQM7esdODp9/hl5I39y9XRPaiAJtDS/O7+w9+iJy8eOXrp27c6BYxfKWva2D039YP7u6po9afjyBFQJaBi58tLVhemSnj3HUvIUi5y0i5MTklcULlNGFpQQyltAVDp4ajn8sWrb/EUyX2G+CZ1lHs8wi6bZJjCcU9hO0UzfUJZrBM2RQ7bJw9lDSI7RgFMkaUsC3iqaaBVBsk0FbNMAT4wwNrvYgU+xLIfbKDItM0I++vLPf/j877G7iEWEip66kenZ65KjfcIjXfTepnBCfjhS5p3BDc3jIcbkjIOtIAydvnt9aX/A/y4OLMV3lAU3FnM7+jDqxrBW2Y6m3MiBovD+osyxitapSXH7ELOuG4SkgAol6OS2Ws7+vvYTxxYTBwjaBlJrFcoz9endOTsLKU40ghMRsMcS7AVwdxXSsx0V3MrcUSUwlLF1BAwtDmVhGIlD3kwg66fRDFE042SOYQJHD8IxzuDbk8Q2hGx7ksBfyMf147fWZBqXoA1VKOMKpHEFdkttNna0PqGX5tuSsa0iw6M43RGHNPOlme2gGoTQ9CNputE0vUyyPoKsjyLrZBO0CnEGOeit8iSPykS3ykQrFkoXDugAlLU0qgkHtQ2f6orNAO2GyPCgQvWSAEMoYJwKmKYT7Olwm9y0dUT6OoC2jkpdzaCtZlNXc6lrmLS1fKqBHLmlJWHHt5Dk1xuxqzfEozPBqhHp3Mh1buDbNODc1UnODRDXpkTvrujAgfAdnfE76+O8OaQgUn5AljChWhJWk+3bxPFrYQXXKRjqrnPXboJX5M78ndGZ8b5rQxO3px5/8+/Rptv37nswuVZYisbEipWsSyv6GbXCSa+tVx5PUqvVc3Nz/zfjSRCkFpy9zGbQFU76YU1MTKxevfrFbU7fvbIIScyJmvjRXPGxFsmxLPZhaOaeSNTepF39ZJcO8q72eGjPTkifv3d70s5eetxoNshJMSNZvMmGmw/vDl07mjXSymhoqO4fu/Xjypt8X3dnH44dODO871RZ+bAGkgSidgiuNAapwGY3sYo6OkaOjk2cvXrj7u35u4duHT9069jNuWcHi1y4cAM8XJbfwxW0svkt+Xndx49fBvf3jh0XqrpgsjIQkiCS4l3s/FBpYUQ5L6KKFVkq5NV2q8ePNfQfrus9NHl6of2xc1f9qIXWGKE9PduEw7OAMKygVIdMhjWE4hQPuAUBzu5E1whMAAVw20VxDKE4hpOc4rCOMTi7TJxbDnHH/2PvvaPayvJ8379mvXd7+nZPT787M73uzJs793aFLkeMTTCYnKPBJhswOWcQCOWcc84JSSiAyDnnaBuMExjjHHHGAWM871Cqpl2UK3mqut/06LO+1pKlo3OO0BHnw95n/7YcHwfn+rB4TgyaHRPjQwP5x2cFhGV9/rnD3/7iV9HHc7I4+ORxcs4EnzHflQAXhZfzokGiiHJ+eBkPYrEAJqRZmtz8ervF2L3lbU+CTbQktmoI3X2InraoNlFoOz9xSBHfL/M1c/Oa6jIldSeFxgidyupJKQ1GwJPww33bnkRrH8g2qWQXG6lzupxWlh8V5wTCu7LgPiJYiAR9zISLbEX41RE8LAw7Du0LBsGa/TiCPYjkBCcH4gX+MEEISuaKE7hIhE4sjgObVdnThBvixuirXLXQw1qokw7iWAf1MtN678yarjdS5gXlw/hUCyqEXeWeTnBOIDpkkg7mUQ4Ukw8SsYepKE82ys8Mc9LD7fhoByTSnQV25kP3krC7UbhdEMKnZOIndEKArCiEVRLKLAkVFh2uhh/Ixx/MxjsV4JyLMa5Q+L8KCP/GInxGJf6BSviESvw9g/h7NukTFun3LPJuMcq9qTQQUKXejITu1MjmbLcWkHsz1rWO4dZM3GNCHaiDeLSWRgxkRQ1nnBhJix7IjeqsCNHjjkuVETJ+mlkYWEf3rcNHdKBjWlknmhXsrpFbz1ep51XVZ7ios0LZsmF8dWr7k6o2mKyGdAROOFJFOAIiXrp696f9ytiwsY3Nkz6aH+dJTU1NDAbj5cuXhd9gYWHhgy/5qQA8ya8I8kUVfUdcSm2e9P1wudy8vLzvXWzo3nmrJ2HPmkgL9dKlbiDgWUn8MOrkKDd2mBnaTwzoxQX34Y8PksMGsEcH8QmjtPgRyrEhfO4Uv/KUAtVpKmCrreGou39CVVp9tKYyj0v0w2xVXypYcxKkKkWbcmDazOqa41WCcC7dA072h7MqxPXEmg7KgEl3rRVI7bX2e6++auK6c+fxtWsPXr7cKhy/snJ/u0XKmoWFrXrft+49kZnGpKZRIHhNR6mxNrcDn9GKtAbULOCZh8QNo/yGIW7DYH3/XDpV71zMOljAOFTEcCdyXVA0XzDVu5zkm48LLcOFolHJsayEeEQaFhddQAhMIfokEnyzEX7ZyCAkPFqEShYTQyq4nmyeM5PuRsUHMaoCUwqOHs2PO152xCXiv/3il0fyjh5vwYXLsAkiRmgJF/CkYyBhJlQdUyku5Op7bl20TqBxfe3B9OrSwuNr65sb5x/f2fYk1kJf1WijcGhcODQR3y07MSgHPCm0Wehn5Kc06woUjScFRm+Z2OpJ2a31gCexJkeskoRu7UmuM/jWcAuGVeJFSzaH55mCO3IC78mGeEkQgXL0cQ0h1IhL7OYcbZV7KUW7aWSrJx1CExxgBDccJUrMj2NJjxEV3lyJs5JzUE07UksPNjNjdMgobWWIrsxLB/bQVYcZ0FUd8o7bQ+YbTX9MY56FEgymHc4mHc4iOeVSnFF0JzYlsAaVMlSdOVgU3FzqLoe606FuCJgbDHYIjj5Qhf0CSv6MQPiUgf+MgT8ghzjUVO3hou3K8PZZhIPJJPuTpP3ZxN0VJECS/hePsDV7LoPwe8qWJ33OIe7i0T9jUT9nUw8IEE4KsKeowoMCdsSh93OxdiqyvZHs2kDZrcd8oUcB8WgtC24vOtGXE9kCDW9C+GhRDiTOQRzTgUE/oiMFtUKOdlVFdmCC29DHGrhJ/dzsCXJqP/5EOyq9Cys4q3m6/vTGkyfXHz+O5fFdIfjDYPzhPOLhbKJLDqmcUb+w+KcGy3fv3t2++uDm8r23b7+1NqwNGz8Qmyd9NP+Z+t22PKmSviNbnpRl86TvITQ01GL5QbXvVl8/u/L83plHK1ZJAgI/Uxs3zEobE6aMCsL6SX69mJhh+skxdtQQKWKQEDKAjhzCx49S8qYFKWPMBAZ325OqBaaB4Q9f3X/t9sPWoYXG/vlTF278wMs4JPqRAkRtHlSXAFKkI3RxpfJsmC6iUHSsku+FIrmUEp0LSK7VBO9KeiSOHUVmoQcVNSstgCpZrvZceXjB1NuiUHeLNS0EnVA9Yli4cUGnHd2WJI16eFvprtxYres8XdM0ZRk9TZ6rhZ2mFA3gcjrRhX1Y9DCT29RZ3WBJb1Ql1ks84DSXEpp7FdazGuUJxriBKeFSabpOfILJOIbBHcUjA9GwuOPEzHgKhoYhCNBx1eSwXHJIDiUEio4QIGJ4uBy0PJqm8uEKXOh0HwIuCAULp0EicqpCI8G+scUByPR//Oyf/s3pMx94dQAM55tKDy3mxFaKc+FaIHLTiHWH5x5d3f6wTNdGX26sm1dOAZJUPll/ol9VMdFoWp57+nJRcJabNUTMGGZFt8jiGtWpzXp8Qx/gSWFCZZxJe6JOjxnvYc+NXH3ysGbkFKV9IMGsB+QprU2f1i/LMIiiSuieSQSvZLIHC+rBhXrLkYkG6rEGclanvHyo7WidypHNtmfSjpDoPlhmKJ1FHjXCWvWVDdpomeRYrSqwkR7USA9tZ/roqYFcanRt9VFzaWRdabwenK5gM2ZMw/dOU+ZU1RNCyLgwr4eR0Eh0Q3APltJdC6leJHpwCze+WxQjpYeAUJFVlUmY4nRVbq6lMFFdHMkHhfHLwox5uyjEL/DEXXjCHiL+CBXiyIPaceH2lVjHJOLBJJJdJmlvEekTPOl/cwmfcnCfsgifM7F/oGO+oOH20gh7uaTPWbR9QvpuOmUX8F80YV8ZdS+UvAtN/IxG/IJK2s0k7xKRDhnwBwwol/rqwOayhF5UQjcupAnuyqfsQzB3Q+m70OR9YrR3U0Vwe2VgK9KvFR7TjozspgS3VgeYKv31Ff66iqPKyki5yE8p8eDz7XAkJzDucAnBOZMIBPAkmqJHYR5/9eV8fK9erLcoh2ooLUAsot7HD37ewis2/uqxedJH8/GeNDExweFwaDRac3Pzq1cfLlHzE7LlSQWQXRX0HXEtRifbPOk7efv27d/93d89fvz4h79kY/Nt/fUJ66mXd7EdO19XdUqXOS5JGROkjfPLZpXoeSN23hAzTAnsRyaMUHOmeMUz4twxfhSJmU1X5DCUgCdBBKb27rPz525oTRNK3Wh3/znrhKzX7zyS1o9ZB44BmZj//itYz168WUmsz4Pp06o04QWi2HJ5NqaWrOqKh0s9K0nOEKxTMd4xl+CUR3QFE4KxtOMkVkkDnzKpRfVKSrvh+Hok2ggndyLLDOAcWXWBEkrooDaO9pqMkwJZb5m0AdrSIZmZuvJoZ9VvzZVWxDzVGuZFPn1cgGo2pjUqE+pFPjqCQxkpGFbtBUV4Q5E+UJQ/GhnEZRyvYRxX0fwp8KMkRDgcHhNKqIbm6DuyDX0njWdz8/jMFKruJFUbh5FWUOoxoo5CVWMYSeZTQPeroISXwQILsKE4RgCf5KqBuNTAD7Kh/+xx6Bf/8Nt9RcV+pazgbFYWTANIUjHWsHxjq1jA67dv5Jd7tz0JyOlHV96+29Rcmk7o0Zzs0VeOtdDPtHFOk3Cz2JhedFwvIqmDEt2gArU2V8ibT1J1yUQtorZNdXamZeXCjedb88+8eL0un5ku7mqCDnUyTg3jprvyJOqYYp5PAuVIDPEwHOXOhnhK4Sn1jLgmekm7hT47QpwayNSZiiUWrKoLU9NGHvqqPQ8Ic6EupUMT08VLHhCHdjD9m6j+PJankuqmQroqEJ4yYmWfsuZqZ9OFs/jhJtCIILObFmJAR8ol3gyZJ13qyRYVtNWlNRs8xDxvOD28gnq0DBVaCslCZaXoio4pytNNBZiB7DhLtX0NdY+IuIeLd1KjIvqqjqiqjwghTgycXSVlXwllD4j0KYH0f1ikP9CI+wnkXSjAfnD7iSh7DMarGuvKxh4Qke3EzL0MKmBF+8AUuzLq/mryLgjxMyxpH56ym0jaTabYyahuZpq7gemtpZWNiKLaKB4qph2WbYdh70EydiGp9kKUkw7iUw/xbIKGtcOz+hFBjSwfM8hHW+6rKfPRlHkKQPsRmF0MzOdY3B+qiPuQOKd8nNWTwir4UuMokLsPtjqLxzvmrJJkTafuZy9FZuOvG5snfTQf6UlIJNLLywu4xePx8fHxISEhz58//xl270985Unl9B1xLbJ50vcAGO3Bgwd/7KuAc+3i09tzj1Zuv3z06u2buUfXJu4v3X355Mp7lzHxL3VAzqhBp+WwObVoqRl2Sh1GpRyHciIh7Egkq4RTI2sakNUMy2tGrOno2eqc7Z28tC1JQOQN42+/fco5K619ZzHsVsCT0sFbnnS0QFxCNZco1bFEnksVzgmCcSrHOeYRHPIJzlWEMBQzmsaqamMgO8Do/kJQR0VVDRikqCw0F6VpC1LElUDKjChKG/fFy3Xu+Gh+Z21amyq9TQ3ua3r48mtD5B6uryqvqIRLUtWKquVWnfqcHtRgSm1QhhronlrcEQQuGlsaggR7A6oEQQaioelMVLSIfVRB9aQh3QhQ/3JIKqaAa0iUtqfXzsTULxxTzBxLMaDja9gVem2lqSbVxCtskYcR6AHlJN8yQkgJKSyf6l2N91TDvHQwByl8Lx17iI/YlRL8N7/8230nYwpEQqy0kaXuW7j8Ve/Mw9fP35ckIGP3L9578Tyv3xLbUWNNTr8grhtLOoPJGABHdIEjOsGxdbJcaV063ZDDNLFVfXLdyPDE4vtvfPruDcCQtgM3NWeWywBP8ogmOp4kOVdhPFjYqg4dsaOTOzNurVTZfOXC1bsPgX+X7t3aliRrlBdHM0fkKUP80B50RB/SrxXjpaN5q1ieanpir6B8RnX52TXeyARrcBTa1xahkbkxhYEchS9LvuVJdGl8rT7KpHVkMZ3wVBcsNawcHVKEDMmEnGCXJMqK01UVvAl0XkddVqcls9/k1SgI7xBF9XJ9DZwgjbysucVfJN3DZH3KpnzCIX/OpewlMvYTGPvA1L3VBMcqXEQx8mgRIoVd4KlGfSGg7WHTDiIYh0rpjhV0lwragWrqPgTVAcdyxjH3ECn72NSgekF6o1E+Ot16+WJ2tyVQpXQi8PehWF/AGX+A0R3wBA8FJLiuOqIVnD4ASRtEO2lYDly4l6rCR13mLgU5liGdilEHeDA7HnwvCvtFBcE5HeORS4uulGEE7YAkKesmrNXhmxWD73uSgd35HV+Q549f3Fm5v/76Y6adtvFfBJsnfTQf40k3b950dXV9vwB3YWGhVvvzTv0IeJJ/HmR3CX1HXAtsnvQ94HC4ysrKn3CFi89ui5e6iAv1+pXhO88eyhY6FUvtqisd4C5lea02ASsIBtHDy1gnGKJUiayMU7vtSQrtyMbbza7xC+97krR+bOP7Lr/oHj4v0Q9DqQ25UN3xYml0maxKYSxUKE/wuR54wmEUxglIJd6hgHC4nBiRz0/noCg9CbTeOMZwJHcgskqfnyUoS5YXperyUiSgFEllvg4Ot1DOXr1d0GkAJGk75oszOzZ97cWVjjtNLbfr+u51LD26DmlvCtfx/HWUwAZ8WBPqJDMvFldyHFUWXgmOBZdHAQJRzHHFMffhSXYsnD2L4MhG+khB2f3JFeNJoIGUzIbMeGOln4rkZ0H4GZGRRkpKOzNYAXdjYJxp6MN0jGM11g5KPMjDOonR9jzUXsaWJ3mJwYdgWb/4x98eOOpquVr38PWfBrhtvtvUrQxZDYmz0E6cbR6/fblz+VJ6uymmTWP1pJBmRmw3FjENLRkttwY5VZdE14DZjXzVACBJQIS1vcvPrz1a/2o+47U368L5iW1P0p87RcE3RCQxA0/QfBOoviXcBKzaMHzm/tPnm+/e3X+59vj111qU++9NAXokX2oiz5oF820v1l+P3b1UMM3MnqTGDmEDu3AhXdT4bjn2dBvitK58RtB8qw41Js7q0iZ2qAN0ooMclgdXGCmsASTJnSGO0GsAT/ISCe1RFDsk2b2CGJCJicgmHGUS4sTEFJk432BhTIzKTs+YluZyB+viu2syBoxVEy01p08xBkZSGo12MtZnIsrnYvIXLOpuEvMwi2uPZO6HkO0gpOBSdFgBLEdZVNgO9eJJXOjCJKEhgiYPYfN8KVQHNNUey3TEs/wwQg8MP4Anp3QONM6eW3u9dVnY9N2bxMmBAK7cnko6KEAd4mHsSeRAOTy5sSqtuzp9CBHXIXVXC/fCsfsQmP1gjGM+yjkL7VyEBDzpAA/uzILsLiW4paADIbRYnKiQpgOR62fmvmpe7TRPYCo1VcVSNEilIjW1qoa++b3Y2Hx6+XFNy+k8WXsOX8LW0ZquXvi5KpbZ+M+OzZM+mo/0pB0VC6VSqVKp/Cn36xtYPWlPMX1Hjtg86fvw8vLq6ur6CVc4fO+89cRMmLaUNmu5dQNkc0fT2WmeqU9qGEnFqD3zGc5FZBcUyZtF8UcywNwGqyepdKObm+8Wr91/35N6J7//q3v73hO5cVRmGOFrBsjSTk3zJKHRguvQ404pQgQUdxLelYh1I+GPYAmhxczCMg1FUsGtS6dpT3JbEwQDEfTO+AxuRSyzPLWmAJCkbDU0Xw+HaYTXHj58X5KASM72fXPrgIu82Vx/8vKVaGSK2j+Y2qUO66RE9JEih/BFnRnZ+tQEZkESCpQEA7kXEl1BlL2YL8dP0UhfIEn7sLgDBHQYpTStI81PWx6qKQnRlrvWQh0tUDcL1KsG7dMEda2FOEihh+gIBwrSDobfDyfsY+IcRWg7DtqOhXEUIjxF1W58qCsD9HuP3Z87fG6eNX3th/PyUc2VAcxk08lGbVlbY1VDXaxYES3VeAvE4SYF4ElhLaLiERxsqtoqSVn9yHit9ihamo7S5uEMDGk3UmqAqlXGa81Apu8szJy5OjZ9+dzK7baVi7qLp4duXnn9dmNqbAmPqS+AaIqxejynWSXuf7H2gcoL7969OzVx2awaobDrcnkqSGczY3BENjFzZvUyblZZoGUWyNipNazjvYzUAUXOsDJjlIWelwKehJwVHO+iAp4U36pyFnCcuGw/hsyXJjupNhZ2NFUPdHqpJI54xiEU1QNED0ihlRC0+RpLktQAJF1lBjxJcHqCcWaYcmqgaqytfKxJutitXunQXe2WnR4KlUodJKx9UtouJn0Xke7OFbrSRPsRdECVgstRkeTqiu4S8EAdbXQYPzCgPjWLONWYPCw/1srzUFIcKHQXHAfwpKMMRdeFxR3v99S9W+DBOo8a1GE53FkOP6xCePDYx+TirBZ1UX9DgFm2X8naW00+lExwTMC7ZKE8C6COCMSWJ/HhHhyQYzrCAw9J0rGOopkeKSSvk9TAVLbcOLK+8Zag7fAPQXp6Qbx8YVHxpCuLOwcUb757s/SQ2baYqh05BkQ1EMeUcPW05lcf+lxs2LB50kfzkf1uhYWFHR0dm192lywvL8fGxj548PPOagR4UkAuZG8RfUfc8m2e9F28ePHiN7/5zcuX31Vx8Ufx/M0r2eUeQJLYZ1tzmuU5TXK8pVVcPyprHJcaRzMQOvcMplMG1TGd7JRHPoKieqMp8XiZUDUAeNLkzBXrSuYXb+naZjQtUwPTS+tvvmsO2m3uPnjaMHAaWdeI628RL/Zbrg8ZrrUol+uLJlkBcrI7hezHYsQLJERGM4HUrKgHGbvL2boMhj6d3x3N7o0uU1cnEYkFIlqeBpGvQ+QL6Z2jZwEBKh+o3Zak7E5N/51T37YDg0tXOANjQABVKujRxvZQIrtx+2VodyXYjQZ3xWLcywjOIPw+GPFzNOkTBvFzLPEPcNIfMIR9BIwvttIfX+UiqnbmQx1kMHstzN4EcQBsyQjYUpVjI9hBDrFnIA6SkHZwnD2YYEfBu0jxrhKUowB1mItxF8LcRTD/GnBsZ7Vzfsgvfv1L4debb5+/fk0ZHCT19UHaJMf5zGAWI5jHjJIoQ0SKzE4z89SweqkZPUssGq3OGcFHmaUn1LUJfG02Rp+D0ecStGUCOW/UBEiS8Lwho4mWI6sF8Rto4u7TC38quPXk8QudYkgt7rdmbPDDV+jPz6xo+H1AKmC6/CoVXNLEHhpjDAwXdImjMZgYCOYEAp+CpBylEWM6RdHdzPheImNhy5Po55UnhxlZ/dq8AUN6S02wUnhCrAWrWviWYcrYYEVPW7RJ56uWubK5UURZMklDaehntQ7nqLZUqdDY1Lp4kTM3AniSNdlDWvB0rXXymZwmlZdY4CERekkFXnzeASI7jKf24ygOUfiOVE6ClnO0hprcriaPDjLHR4EIzw7zLvYUj+miDOwgIdGfRU7Bq0qBQ3xx5YNvuXJAldctDDIQvGswnjWYYB29uq2LMzNW0N181KxxqREeULAOICguOST/YmggDhyirHSXgkL4+cnIVL+cqgQ+sbhO5plO8kzbim8yMyiFbek77VXKdkonucRgXKIxh3MpBMvX/tR5uv5q6Hafcia1kJaaBsnJxWaQjVGMhgo1wXJz2VZcwMYHsHnSR/PjPInL5R78Ejs7u08//XTXrl379+8H7uzZs2d4ePjn3M8vPSkHsreAviNuuejkTJsnfStdXV2enp4/4Qrvvny83ZgESBIQZEMDcBIBomgYDy0QemSynDIojhlkpyzq4TJqoIGeJlEb2mbOXfgPVdh69+5dzfKo4FKfNfyLvY03BwFVEl8wZ8olOWpNhb4Ow2str66VSftrm1h1vRWyhnxFe7GkuYBtgrMM9ZK6EalljK7pISs6LX1nrOPsZlYvISdNxX266lGD5GJL95lzrWPnZi/e2NjYOftEz8XLVk8CUt5fc7Qb5mSAHlAh9iuQe6m43UjSXgjxAAS/C0H+A5r0KYn0OYL0CYb0CY70GYFoj0a7QeEOPISDEHZQAd8rQh+ogTkCnlQPOWKucmqqcrRA7VWwA1LYATTOsZLkCaIkaCjpBmoaT3FUhA+SV4caSkPrSsMs1UeboYkC+P/4l3/JLU5feaS5+kR853njtUe3WUNjuJ7aQjP7GI8JJFbMjJFy4qV6WFO7eW6688bZ+muzqFMt5ROWTHNdssaIaOiCatsr+Y15HJ1o2gxIkmrZktFBjzXjw4icIIg4CqooI9Q9ef4nw360+nyo91xP29z8qavXnl3jTNeDu2uYY+1LD/7UD9igG7d6UhFYA3hSCUYHeFKGRRvBJUeAUGEViOAyGJDAXFQcX1XYrqgeZ8AnWY03zYplXdGUgH2+h32+N7VBnW7R8CxbJRiAmMfmUIM9cWZ9Yp0B3r5VXpzSPsjvGOd3jAGR9U7dffLszeZb5h8liTjbmzKgqJjSA5Iku9wWbZE4ClluEgEQD7EgmCXL0zVm1zama+vBHR2k0X7S1ABmoBdc11ZR20Lo6KtbmeFf6CnWybKkfCA5MkGHYeTbDsv1jY2SXllhrzijk3eskRrZSE1qEYxfu3758cPkZlNkXQ3gSS4aoY9OGlArLek3aOc5zZe5DctM+RCWKdRzuxsVyx3RDJZVkqye5JfMLMTVHs6nOmVTtnOCotje6PM3r2WXRquM5IzqrOSS/OTS/OSK/FRwLkhaoiLVP1ndOTLu3bvNzbf3320+3th880OGl9r4q8TmSR/Nj/OkV69ePfkW3rz58CWEm5uby8vLS0tLm99+re7Tp09v3vyebnWrJ+3Lp++Iu82TvpPKykosFvsTrnBj861yuQ/wJMqpRqsnUS1dVk9qHjybCFH55/Fcs+mAJDllU11KaQndEsRE26uNrcPj7ebms7VXP+o39a3rDxdOX7t76/HD12vbkmTN8L1LaxsvJi5etvbfMdR9Baja2FRBbrEagtFx9FXytiJdf7m+Dy8z99a2zD568uLR0xcXVu5eu/O1cW1Lz2+MPDgzdv+sqG2IXzcsahwF0jRydseeXFl9ZJUkcn9PbB8usKvKQYuwVyMOqOD7xOg9WMJuGHE/hLgLSd5FJn5OJn2KIn+CJgOe9AWGsBdKsEPgDjDQdlTcfgl2jwCzT4hxUqAdzTAvEzSkHuXeiHI0IhyUSEccwaOSHghlIg1qVmN/z+iFDKgioIoWKIIG6SuDaoFgkwwGUmedq+8XTkc+6V3A9l1njd5QcobGUN2K0oavPKmghlWuZqVSalI1siy9orixhnOue+7R9Sv3H5im5qrM7YlKwwmFIVlpxLZ3WXvcSHPqlFZKpAYTBBcAnhQMEWcj9c0DO38O/751eft91JCysE0KpKBVAuky3X761bm5uXbS6klgRC3gSaVYPbl3KEovOc6ihBXi/PJhPgUQ7zyoTzLBFyqIFqpz21iQCWbddWPzrTrj1T7ehX72ud6MhhqCpdMqSUC6py4+fflKMDDO6R21zlVXP7sACMrV+4+u3X/85o/zqdUvn7V6EuVUP+BJlAUL4EmkeUtyjzJcIfGWiDwkQn+JRNw0ePXhY8Dt1tbXrS98tf6GXjcAkjVVK1o55iHpxDBuqB7QI2tKxZIaUvP9WzvHQm6DH2wEPAlIfo8oq4uvPfuVVIkmpwramiPNNUeNmtg6fVpzneLszKs3b569ufl0/frml4W5r63dUyx3npTyrZLknUrx+9KTiPxW13zatiQ5Z1HSmJrtLU7cX4H1WPxTMScKC7c86csklheGFWOme+Z37N7m24evn0v6z500DbiZxw+rTvtrFsVrb36yBmYb/1mwedJH8/PWTwLciM1mUygUFotFIpE2Nj7Qw/L27Vs8Hv+9FxoDnhSYDdmfS98R92ybJ30XBw8eHB8f/2nXeePFqnq5X7LYXd6j3W5M6pq4uHj1HlLYGl4iDijku+UyXHLo/gROwbD+3IOtjoDLNx5oWqeAJWvapq/e/q7pTV6vbyws3p6Zv2YxTGoE/dYM9i4Iv+5Js6sr//5lFx4gSWLzSBHWmIvQZ0FqMkHq43mickKd1NIsb2zpGr1w9ebDS1fvTS1cBW43N/9kaW/fbS49Wxl7MDtz+7xY05+L1OWh9Ahei6hhVNgwcunynbt3n2yX+Lv/9DmjayRFbk7SK2N78eF91c5G6JeehNivQO0VYfeSqfYUwj4mfjeNuItG+BxP+hxB2Y0k7qkk7wUT9+NIrpVUh0qGPZ94iEd05hPdRRQvJTWqhpnSRE7qIPvq0AE8fCSBmknSF1HrKgVNPNMQWz+QBVaHIwVeWJ4jkXq4guRVwgpFS/JkXGgNKSg17Jf/z6+SBNmQMTxlrBXbUwvt5MRImF5UehCT4YVhRPEkmXo54ElAKtpqi+q1ctUgWdYaz1ACkgTkpNpEHB7ouzMlPqUHdXNPNpGDiHSfcj6QALComGjWt++8sP3ft87TI4Ah5bdKTjQwo+vJQISnujbfbf2gFs/dtHoSj94GeBJK1YbrGkjV66MU1KA8rE8WyisT4ZmB9Eok++DE4UxVsqKWfcoy/+TU7Zdbfyk9ffPyxtqjlrGFbUkCYj1aHjxfa52/aJqeH7x05fWH+mpfv91ovHKONTciODsuOdvHbNXSLBrMcG1anxo/2VfV3lra0Fjd2b74cOcVAnNLt97fnKBhmNLdaJWkAqmIRzcDnnTryv1vO1yvrj5E9pmLeyXFvVLmeNubP7ZE3nrylDcywRwcBXd2FrQ2Wy6es/61sIMLT68pLnX5l1G9U6m+yQxAkvJQuqvXHsQU8w9nbUmSSybFN5tmmfjTpM6DdxYzhDLvRIJnNComtzSxqBC49U5GJWNE31z/+pp28HRhbYObecC5fsSpftRJc8qdvcD6trdj468Vmyd9NB/jSWtraxHfYGbmA79Pz5w5g0ajrS1JgCoNDAx8c5m2tjaj0fiDPCkLsj+HviM2T/oOnjx58utf//o7WvI+mo3Nt6uvnz1/8+rs5dtDpy4vXrv/7kv6phar2U2xVYrICkkh39h5ZWFtfeuq0lv3HoNZTfl4YznNwtD2yxrHX75+82T9+bM3XyvYvbbx8tnLl8bWWZlxlCXuLslXkdEN26rUeuH0tiQpLw+/2Nha85NnL2WWcba2H5CkHLguoVIZDZKHF4tPQFQMdZ/UPKpunOyZvCipHwUiMo/UtE5fu/3QOvR64N6k4VoLEHSNKo8gzUFoAVUCghK0gjAmDq9LpRiqM089e/ZyfWNDMjDF7Rnj9IwRO3ti20nH++F+HVWHtFuetE+OtpeRwgVyRw7VSUg4yMfvZxH30YH7TFceyxnFOYTiuCB5weVin2KBF5x7XCc6aZAlyMTpaFUGRllYK07WEEMrCIGZlNA8bliu4CSsJhtbm4bQZiJ0ETmiiAKhVzXvUDH9UAHNLZ/hVcA5gaWha+lxApo3KOO//+OvXLPdykZojYt99efUcSp6IJvuS2ccQXP9xJwUnRSQJMCW4sT8FIOkzKxI0XMjlbRMixrZ200ZH2JMjZhaxkScOoRIGUMWeBSw3QvYbgVMr2JGlUBM0Jm75hbnr99ae/Pizdu3l2+vXrxxz7LcdrKBF1dPj6onHzOTA5SUFJNMMNV14e795+vri+duCaTdIJIJqW6l9A6NLl8V9ozHyWWhdKJPHsozHemdSvKu4vvipUdZ6ky1ZfXFzqLtgAb1zy5p2qZqu09Z54f5Ubx49rKe206HyTFgHg4qxHa2WysXAJGenV5/u7NHder8tfc9CcilxdscponFMCrIDYAkGVgd66++a8j9i9fry/ce3nz0ZEdb6cMXL8evXgcC3Pnufb77+ClS1FyArxWbh6wrmTi9nANXHs9lx1cJ9YNT7y985dlqnlIdkEpyOUY4fHQrLhEEt2Ry3/zOSRHevXv96ildqDtmaHHdkqQvY5lwxM4WnH9kO2X+18LmSR/Nx3jSxsbG6HvweLzY2NiHDz/QQgAIUGNjo/V+b2+vQqHYscCdO3fodPqDBw++6UlrXwePxwdmQuyy6DvikWnzpG+loaEhLCzsz7zR+4+eX7m5+uq9Ui5v326y1APZmNqTRPVRJj+Ey6vSW+RnuwkLhpJZCWJON3j3/P1Xj+pvDGhW2mnTRqzFDHgShdUGeFJpgVrB7bF60srS3YtPb3ffXph4cNkqSVZu3ntc2z5bhDECVpGB0kVVyLY8CaouJJvFphEsrw0nbGdo+gTGoWJKHeAfeHlnIae2SK7NEIqQDTWcMVMZTZxPEkaViaJKJfEV8swKVRFYJ5cNKOSDaGIDgtLIrhuC6zsBT2J1j9C7hso6tClDlMh+aHBPlV8rPKyJgRnqRrb15GhNgSKBm4geoubFN4j99LzQGrk3TexJEMUTa6JhqkiwPI9Wd+vBk/bhhWpSA4TcUI4zR2UKApLIIRnUsFxuQBonMJfnm8M9Bpb75fBC8oTheaKwYpFLGceliOlUwnQuZXkWco+W8E7S0UEUjD8FESHI/d2ef/l/nb4oN0M59d3RUkWsQpGg1PtTJO5MztEaXpROEKHhHZNxY+pZhfWSDAM/UkmNs7CLBo2goVZ4fweFZS6SS9MVwgAc0xvM9CvnBFXRYxGMSCi9Us+u6hCX9IqQo2pok4nZPFBV25qqlcVaSF5atLcW6y4ge/EZR1XcCCU/U1/PGRsfuHyFPTi2HfHo1PLd1UxJfRK/NoQsDUBLfDHSMJIyjW8iNQ10zS/eff586MrK4JWVW08/PBnfj2Wq84wGW7cdFauxefmCbGGmbeXS0/UPjAW7dvfR+5JU0zH9dnNz5fxNE6cTkCSLsPf+n2V252+yufnu6ctX77eAbjN6aym8lO6bTHCNwrtGEtxPkHSDo99cDFCu188ELEm0se1PnlQ/5oSaKZq5f+aby9v4K8bmSR/NT9PvBkhMe3v7Nx+XSCTbbUiTk5NsNvv9Zzc3N6lUKqBKgGN905Myv05eXv6WJ2XSd8TmSd9BTk4Oh8P5s23u+vXVjvY5Tc2IYXC0587c9OrS0rM7l57eunzrHlnSdZwkcpUTDmoxB2tRzvXw432klAF2aj87c4xbNitFzysVyy2y5Sb8mLakRUSva+PIegFPAiJmdqr4vRJWZ339tEI93NY5d/Xa6je3PnH6ShWjAdCgJKg6skyaidVn4WpLMaYypCEPpgOSjzEAzwKPR2B5fhVM71K6ezHZu4CeCEhMFTe2khNXIY4sEgOa4hNDj8sS5YNqyqC1maXK7Ao1QdudxjDkqs0pBi2QbLOhfel0262JlqtTS4/ubJ2NNjbebV0u++7l6/Xlh/f7by8M3Ds7eedKz+XL4u6JUl7DcYgypEISApIUcSxdM5cGJhalxlE0pzWlXBKRSvaJwwcm445mYX1SaB7pLPc0plsBxzmL6ZnBCS8Ue1bwPCv4HqWccITUFyRwL+aGFYqCKtgeGKwfCRWpgvvy0J8fdf/NP/0muRrrT5UmKGpPKA1Rohp3ssBbzvbTMYMMnAAtK6mOA3hSYZ0ktoYR2EQO7+TGdmoyu2qT5IJwKcdHwnJF0N3hjHQGo0LEzqAzk2nM8mZKVie6pFeYrONlaRQFOm2iRH+MofCQ0n3MCBcFxplLDlGywpSsCKUA2Ci6q7e6rZM5MPq+Kt15+mx66Tq9eYjVOlytaU9i1xYpGmktQ51zl5YerHJHx1kjo0A4o2NLqx/4ZH8svbWj73sSkDfr3zOmcvbCdUnjmFWS7j366lor4AP97makvyx3nzwhq5qrGQaRuffFq2+tBfB2/SxLWK6rd68b3pKkuhEn0YAPZY74bP3nrQxs4/9v2Dzpo/lpPInH4wFK9M3H5XJ5T0+P9f74+Diw2PvPAk/p9fr79+8vLS1VVFQAd95/9v7XwWKxQemQA+n0HfFMRydn2Dzpw3z22Wfnzp3782zr5s2HDFbHiWxJAIziQ8FHClhhZnqIhVI6UAPq14Wx2IdY2H1SpL0e6mCpcmytdGmrcG+u9LBAvJvBgc3QsFZwdDs8Y5BSOM4uaOGjGgwy4yie1AQqqYGSNJlQXmIZNxkkKijVlIJ0PHHf8oeuF2non4PxWzCSDoSoLY9kTENqkcQGgbAnH77lSTHF0gyULgYtCYSxvEuY7tk090KKeyE5pIyTgBIE5TGzoJrYEqlbKtMrnh4UzzyWwg+IY0SkcKNzRHlkYyKlJpwhTq5VnDTUZFv0uuVvHQO1A0Ceuicv5pBNmUQDWtkpbB4D0ja0AHhSOb4uuZQJeJJfAiHwJC44BeeTTgA8yS+b65rHdsmmeeWTY0EMDzDPEyr0hYp8IMIjZZwjxRzPAq5rEdexnHEISfIVYbz4mAQlLheb8Ovf/HZXaDxgSAnK2kiBxoMnOllTW9zSgB3vLrZYIk2MLU+ql6Q38eMHOOlDyurJFshEk6uS5i1hAZ7khme4wugRNAZGzyngs3KErIJWnNWT4pTcdLU8RSUNRYk9sNyDdKavnBpgRPurqH4KaqiSFatUA54E7+gGt3USuwe3JYkzOP70y3mNLt160D232Hbq4s2HTzbeblqvv7YsnLNKkjU1p07/xw/F+eEL70tSs6j7h7zqzcbb5y9e/1UOB3v4YAlDqeLrghRdnvT2YOwYcuHRh8s62PgrxuZJH83HeNL6+rr4PRAIxP79+8+fP//NJQETUqlU1vv19fUm09fq41ksFuyXIJHInJyc7x6WRSAQg9Kr7dNoO+KZhjpp86QPcfPmzd/97nc/3+/9iysLfZO9E2curb3Y+lu2s3M+MVcamMJ0J2CcEPiDBPRhMcxRjHThY9z4ODchzoGF2a+GH9BCt1SppdKprcKjo8SjpdytqcLNWO7dWhzQURrSCooZQCQO4HCWOsCTBA392R2sSBUmQooO5aKDykjhGYz4REFxubap7QMn1Ffrbwzdp6y9J5LGsebOMyr5IBAKs60QoY8sEoeWikPAQs8ShlcRwz2b7l1Edy+k+lUwg7HsgErOMZzYJ5/jkcX2TGP5xtD9Y+leCUS/NHIYnBlPlMQT+LFCYno9oaCNzJgzihd71jZ+aEG/cyt3rXq0nTOXbqotkyBifUYVLTKdHJNNCknFh6ThggpwwcWcSJAkEkkKgKNCYNgcEtIfSgzA8GNp9CAkxrmM7JrH8isTupVwXUqYPihiCB0dx6qG1oIlrRIyy/QP//PfPjl0OIosOUZWBdKlngyhG1sQoJBnNtfndujQg3rCmLF6Vps3oYBMN54cUp0YUNjrKC5imreI6YmkuZcxAsCsaikbZWLn6hiZjfjcLjLgSWlGQa5WlSgWe1Xz7LD0PWSqE5ftJaGFqnlBCt5xuQqQpCSViTo4zB4bV0zMbntS76Vl6w9h9fkL5dgsp3+MNzA+fuWrykza02fe9yTRxOR//MjceLPRrR22SpKJ0bL67UPV/uuwsbE5M7syNb384PmTv/S+2PjLYPOkj+ZjPOn169fk92AwGAsLO68ftLK6ulpcXLy0tHT9+nUQCATc/vuXF3e3tbW9v9gH+92+saPE4LTqgym0HfFKtXnSh1Gr1fHx8T/Hmt+92xw+qzANgYAYByH6tiZAlUx1U6GJHN9U2hEcJoxaXtIYU9kdmdOc6CGqdmKgXVkYJzbOXgk7JIDZS2B2ZrBDW8WRjtIjTWWu5goXTeURLcizpcSzqziwoypmBNl78/TUzaXUEYp/e5Vve6VPA8hLAPYjIIJyqbEJ/IQkgVr7gasxANbfbFxYuTu3dOvh0xfXrj6wehIQOrfjJFyTRTKcwKo9S5lHcug+pQyfYqZPCTMYxU/lamLx8kiyxA3M9Mhme2VzggqEnvkkj0KCVxXJF0H1R1HC0HhYP446jwVCO0sQL3a+2dzqzXmx8Wpy9VL/3fnLz26/efv45caNzXc7O2tWn66Jmse3JQm4/+j5y2drrxo6z0CpQjidXIYiZ1QSMyjIdC4uVcEM1dGc+Vh3Htabh/Ni4MMpqAxBZSKj/ASjPIFaHgXDhJZKAqB8LzDrKJ4bTWZksTC4dqxMNyzXjejrx6LiEn/7D/8zE8I9RlYconMO0NiHeQJvmbS4teXy07tjD843Xp8hzXUnDSoTBxVAvBu5HmZWEIUbDOWGw/kZOA2Eq4AM0gq7aPE6TlILvWpYKjxfV9GgjSJK96PpuzDUXUTqbjLNTcCt6mnNMNVl6SypNWZ0Vy9rdOzC/fvrb9/OXr/Vt7h8+cHDPx4z79QTpwBJ2s7l+1tdbINXVt73pPaLP9nv8dXbj+5ee7Dxw6qY2rDxV4/Nkz6an7cuAMC5c+e4XC6bzZ6dnbU+AnxUO4pSrq2t1dXVffd6tjwptfrgSdqOeKXYPOnDJCUlyWSyn2PND9dOmYcrrZ60pUoD0Mm5K/NnrwcnsP3jGMFUMMgYA2o6XtkVWdV9rLgpwZGGcqFg/aqZR0qRzuVIJxDSCYZwMoE824ucGypc9CBXbeVWJFVuunIvAySiH6te7qJfMId3wX1aQV4tIK+mCq9akA8VGpyz5Ukp6RK9YeJ79xM4Nw8PXrB6EobVglN1cRtHsOquLL4uCMULQ3ODQJwohDSRqcqV1WL622K5Ci8Y27uEE1QkDC0Ve6BxXjByMJYRgKL5YYlBUkTGGCxzDA6bRQGqNHhn6xhe23ilWxlgzrZg+yy8KfrQLeTyY87KE/GLNyvAs89fvD59/gYQwCNnF29aVUncMj5/5fb2Ti5fv9bQxVd2ENWzcO1lhOyS7ngj20FFsZfj7EQEZynOS4yL5oCjyKBINCQOX53BAEHF6eGlkkSqNEUkTOQICtVi/TkNb4xnbJrqG74AbOvS1Xux2dX/9y9/fTg615HE3Udh2jM5HgIxuXtw/tbW8LHNd++UixOAIcX1y+L75ZDp+pgmeQRCkICRZxBqiIK2fIYGWlfPv9jHOd9Lnmu1XB+efrjQfvZ0AFZsj2HaY5n78fQDFIYz8NU+PXLj+ZOX628urz5cuHv32wZ2PVx78b4kARlc3CrO/npjo+HceaskmefPvvqWMmw2bNj4D2LzpI/mx3nSxYsX276Fe/fu/Zz7+aUnpVQfSqLtiPdJmyd9mH/+53+2NuD95Fx72LotSdYMTG6NnSmFGQLjWJm44ipjTKUpuqr9GLjzeHVblC8X6l1F889kuCcTXfOQriVIzyqoL7vCtb7CyVzpotuSpMNsqDMS5YxBHCFjQsVU2oIFPCP3aQB7NlV4AGks9zRV+JLhkWmspBQRElV/dv6HvrVHj9Zu33o8PH9F0DK2HUbj4My1lSu3VtvnFgBDYs33cc71oyfaEo2qTIYesBDffL4vHR+Cp0eSOED8ZNij9VDsKVT5NKJ4CtF2lfjm7dYFUtOri4iOumypJk/KL5bBsE3gSw+ZgCpdfSK+dX9VaZmQmkaBKOsn7jx4+uzl65sPnqy9Wn9/9wDTMl0bFV6qR82zMAsc2LQqpUfiYWAd1uH2y8kH5KQwPSWWXeEPg/mB4f7VsERSEbkmNihfeJKoKjFIi42S6g55cYuUOFB/9eHjzXeb06vzmAHVSTUjoBzxt7/93T/sO3KwjOaGE/qTZBBLp372dP/K0sy967P3r+cM6453yeJ7lCn9quxhYYKWlqbjINRGvrw3l66GmOoAT7Jm6O6lV+sbwoaxo1SFC4nrgGUdwrKOkHkJWt2z169v3Xw0O3Pl8tLdD47MsvJi/Q23f/x9T9ruerM+u1310YYNGz8HNk/6aH6cJzU1NRV+C9/W9fZTAXhSSEq1QyJtR3ySUSfTbZ60k8XFxU8++eRnWvmjl1NNk5A/tScNgpdW7gCP37v3BE9rRXFwtNpUlDYRpk6AGeIxxgQ8R0fQtfjnM/3TGQH5VG8Qzg+O9cEjnPUQp1qwi7LKRV7ljEJteRIO4UcnhTFYjMGO9Haejwnm1QjybAJS4WkEpRHEAm6PSj5k0I+/fv3jGh4AO+E2jmBquul1g4Andc1+9ftiY3NTszQJSJI1gtkhgro7l2ICC5uLFPoIBfW4iBElZ4Q04KLq0PkTW5KEOYPqvqmzvrzn2nyOTAN4Ur6UAXgSkL4LVMCTgFh6R6ySZE3r4Ie/ID135iRL3UCI5xTQOXraAPtoO8PBgDugx+xR4b6QkJ0F5EgGLI5ZHEUsiSMUxRMLM5jZKVANWtDGaGgGtSmKm2XV7QZW3whvcKL71jh3Xg/q4Re2smPUWJdi7N//3u6X//S/DuWgA6lSVyQ7nCzxJwrCxdKCwfqIdnlCj/JEryqylxE/yIB0KYstoqJ6IViqj4II0jiqMq2JPNYOeNLFJ7cfPn0hbBpLY9V6MUUeDKE7XRAikFMGBqYmL293bra1nH678a3FuoaWVrYlSToy/fy1TYxs2PjzYfOkj+Zn73f7qdjypJPVDidoO+KTZPOkD8Dj8bKysn6mlW++W79wR9U4Xv2lJ1WNzf9pPNHDh88nZxaGz5LGL2JbxsHGntLmPu7C2Ruz926UycxZBA2QGCw/HMUIIBM9NagjaoirHOwiAjvDUU5IpHM11rmI5lxCC6WKY9SiICPG2wj1MoO9aiGReH7P4LmB/vOT45fXfvyM6ENzy0zzYKmwsYTfWNM9swm8hzcbz1+8vvvo2fjFFdn4WN3i6ZkH1+4/e1bdpEvS8I5JWaFUjlsF1R1FCKRSPWRYrxpceDsmrAd2tB8lXfpqUtKuhbMxTNFxmiCZQ80XQ/JEUM0gYfEh68pjnrZlVGTsZumUDK2YqzfWtk4Dy6+9XB+fX+mdurR0/avxevqVYasnCS61IuY5iUO4wBaKYy16vwq7R4ndKyO5Cvj+VGY4rSKWVRhLL4wilXjiMClMraJmRFk/VihtTGUbs/h1yLpudv8Ia17HOFUDeFJZF++EjhBMI7hksf6PW/Tf/OJXnx3NdKqkHYSRD0JJLjCKJ58d06nJHawrG7UkDXGyxoSCC03QHlVCLfUYmRWLk4ZS+IkseY5Aa1rYKiEL/MQETWNVkpajBLk3XQTYUrGx6c7DJyrF4LYnAVm8dPvbPgKAC3fud5xbHL18dc0mSTZs/HmxedJH8/GeNDMzw+FwqFRqU1PT+s/fZg54UmhytWM8dUd8EpE2T/omERERRqPx51v/u3ebz15fvP1ocu3VzlkgANbfPry31nX7eeOjV1PvvpzH6vSDW4TBnjyaLptUk4ZXhmCY/gJSIJPiSyG6kTGHaQhnCNoLincuIDoXEl0LaX5QvjebF8rmHVdTIvTYOBmtTG4CzGZt49n0vbGBm93zj2duv7y3sbmztvIHub36lFDbC8hECseYyTfj9D2905c4piGouDWbbMogGFLI6lSxANaor+yUe1NJLkTcYQLWGYs9VEFyzWJ6ZLGdhZjDeqSjHu6ohznXwUNayearY6N3z0JNlmN4UTiJF4RnxVOr87hwUW9V3RnwzafD3WOnqBoWVcOwpmGwFpAkTduU2DJqzejc1gU6rTdnrZ4ERLjYXnmGl9TOcmDh7en4g0KsqwjrzxP50lh2KMphHM4Zi9mPJDrS6fF0NeBJKHF7Ksv4VdhGfEsv+6xedN4IeFJuMzNCjvIlYA9nMD3zuHbRFf/Xr377O0dvOzD+AIToACU5YYihWkl2ex399FDumCRvXKJYbsed1eeM8ONZoiyeNp1bc5KtYmn7hqaWbj56wu4aPcHWB+PkseSaFKrBPDAH7Pzdu0+U8gEiuRkMN0KQZha749TMyk95nNmwYeMnwuZJH81HehKLxbK3t4dAIFtljYKCgLPyqy9LpPx8WD3JKY66I74nbJ60k83Nzb//+7//YIX0vxRrb9b5Z8cpkwOotvY4jTRYzz3GYHlAya4VFB8wKxzODYcxvcvIh4sJQFzBOHcU1YPCDKhFH9UjYnSEpDpCRR+H19YObaFUNhAr+pBlI2DqOZbhevfNl181zLx9t/n8zUvrLGNWlp9fG3swO/f4wtjFK2lcUxJbH8NQxzI10eSaRHxNFErpUco9ksv2hzJClKhAFSxEAwkxgo/QUQchhIOVhIMggn0F4WAe7WAZYx+HsFeK2aNBAtmvRB2UEgLqaNgRU45Gc4Iti8aIY7H4JBIEZSzXTGJE/U09C0s3Hw6JGr6SJJGFcf4Oa/r8hW1JAiKxjL18/ebeqyeq5X5AkrgXO/BzjYRZYwyF7VGFd6/Ce0Dw/mRiOFwM6a5zJNDs0dQDGMo+Onk/i1nCM6tqR1nmwWRObSRVHUfXAqpUresQTTShh6SV3fwkA+moDOldSfXK47rlsF1yWYfSsX/3b5//8l//9+5C8KFKokMRyRVEC4GLcuXmgi5NXoeouk9VOCLKGRamclSAJ1kj0A/1jl0SD07lyS0n+cZknuEEu7aqrgU90NFx89z1p48whIakbElMqiA+XZhVpJw9c/UvdIjZsGHju7B50kfzMZ60urp6+PDh7dPwu3fvsrKytucn+ZkAPCkssdo5mrojfvE2T9rJ7Ozs/v37/9J7sZP7L9car5yTLkweNwsyLdI4PccFRDlcRvaoZASAWCF4KiAHrnA0EBckyhWHdudiI/uhJ3qQcW3g2HpoVC002QiJpCCDhZAgXVVkEyh9GCReMimutLx+u35t7V7t1X7Fcidwe23t7pvNjcnVM9a524DQRixxTE0gie+N5noiuQ4ghmsZy72ScTCfdiCbsp+EOyhE2wvRDkKkJwvsjoUdzCXaFZPsy4gHCkgHsqi7INS9dPLnfPynYhyQXXzcbgLZjkBNNciz1WpAlYpU8EwGqIBfzu4tU02DxYO1qv7pntPazjl47xxx6Dxl/iZ15TF7ZO7M+54E5PHzrdFhz9+8Mk6PFak0VQpjtkLrByd7VxM9wAT3SrxHPiMGLVOfO1XR1+gp5TnL2M58XqBQVt9z2jxwOoahieNqI5iqIKrsJKe2iF9fIDFn6cXFzfxUNaNQrvYr4nsX8HwL+X5gQSRO6FRK+le/sL/55X//LCzjcDEpAMQ5AVXFgxXlTAvB0gRp0hU0KsoHDRWGOqskFQgNcuPY1MVr3L6xNKEJ8CQgxyTKY0ZpRruee76ff2EgnaCJTuVHneRFpfCSShTGrlN/6QPNhg0bH2CHJz19+lQsFhcVFYFAIIlEsvplKXylUvltTvBNQkJClpaWgDsQCGRHccTvYHsTwA6cPv0T1JX9JufOnUMgEFAodHuU/Q4GBwfBYHBJSYlGo9nuDROJRNvVjlpaWt5f/mM86eLFi9HR0e8/IpPJgG38iPfx49nypBPVzlHUHfGLs3nSTkgkUllZ2V96Lz7M3QdPSy3azAZJRDPZg0Q5AqW4VzD9IGwfEt61GusKRbnAAE9CuuCQnmr40R6wn7HKkwN3g+C80CiPCow/pzpAU+mvqwjUg8I7SlPHsWWnOILFBs5FCyBJQMRLLcXT3KJJzjEDIYrPzhJJQSY1rF3rTWY6AmJUSrUroewvohwoJjuWUOzzqLtB5L0UnB0fDeRQNda5DO1WhnRIJRxMJR3IJx/IohxModrlUe3A1M/ZhC1P4uK/wJC/QFD3oGmBHOFxriQMJYzHVMYgQbFIUBoFTGgupLZQkLJ2RXOTYbhM0Jqj7i0yj1W0TKKXrk7KG3u3JUnfOfv46cupuasGw1hJpSIPJAESVygIgwh8ymi+JTSPLIZnBus4VaEYmaLPjNCmhzNqzFE8zXGmJpGoK5BbQplyf7wknqdLFhrCqPIEVk0KvxZIKr82iVCTSNFGYZUB5cJAkCgGq8oUGxKkVH8S+XB63n/71d9/4hiQAdPkompjS+WFOJPEPApEbB6pamhgzfdW1VuKpSZV88TKjdV7T58DnlSkarJ6kp+KH2WSZXWry6alBePCUB4zE61Lq9ZkILXZ2FpGTf9f+hCzYcPGB9jhSbGxsRkZGb29vV1dXUgkcmpqa67l8+fPf3BK+w/S1NT0+PFj4E5paalWq/2Br9reBHALmNaPew8/AMBP9u/fr9PpGhoaHB0dz5zZOY/h+Pj4oUOHamtrgTceHh6Ow+Gsj7u7uzOZzNovAZZ5/yUf40lra2tOTk7bK7p3715wcDAgaB/5tn4YW56UAD58jLIjfrHIk2k2T/oafn5+HR0df+m9+DDPnr/CSJoTdOxQC9FXRHbFkt0qWV4ohicF68GGepDhbmikKxnuLqsKskB99RAPFdiNDz0MwjuX410LcJ7caj91BeBJ/oaKgPaS6BF42Sku9Xxt4TiPNFHPm28tnmHHDGKPa6meGIJrFdGtjO5ZwvKtZh8hEx3BVPtysn0Fya6EfKCQbFdG2oMjfEoh/oGOt+OjDlDQDsVYpzKMWynqUDLx0AmSfRr5UAHRsYjgUE5wLqTug1E/JZI/w1G+QFL/gKDtxtBcaAwHKMM1mx5aDvv/2Hvr6DbSNXHzn91z9uye2Xvm3pnbPb3TMxd+05BOjLIsycyMsR0zM7OMYqpSiVmyRWZmO+TEcWI7zOmkw5x0mDnp/Rz1T9etpNOY2Lmp57xHpyx9VfVWSZaeqvrq/eLItfFUYiK9tqK5okLNVfVt0fTPsPRKfm+xbDivbV2FsouzZhPvxAlG5+p+IEm9k3uPnLys751TtU+nFDb5pQrDcsUpZYqEQvkqoiawVumdL/HOE/tWylOkHZXyIe2W7ZyNGwNFOmeO0pEkw5GkLo2yUGlTAFcdJTGWdA9HGgwJktZkcVsQVeNZL3erlgaSmlJFnXFQazy7tVY/duzS1eM3To1tbxO0SEPyGB/99xef/o9NOlGzqkxbAfebPAmEbmDr9Uf3zt+/+WzBFczenQd4q6dzNf3Ak/xbFKljuoI5WfE2ecGcNNzISeUogSGZonfdWzlAREFB+Y0s9KTz589/9tlnd+9ajvFnlpgLFy6sX78eOAePx+vq6nry5Mm5c+fUanVTU5O5j82rngQWODQ0JBAI5HK5eV2mRR07dozP5+/Zs8e8CnA87+zsDKSkr68PLBxYizmNs2fPmkeG/aXQaDTz2B5SqTQ/31IPEAQxn0dYs2aNh4eHaRp4Etje1y7zV/ZPAlaExWLBCjw9PYG7ASN72+MiAU8KS6h1iuRahN8q1JN+APgQ//GPfwQuu9iJvJ7VE/uINV0ppapgJcdPyfFmCIAnuTDZ/mLIR0XyaSH6tFd791e6d1S7t9a4KhtdNXWusgZCFRtfxsHnc9wEDV5aol9blW9PVcDq6pWb66Gv2yibOyI0ojSdNstgCGllR4xSvRkcQjkHX87Gl8LAk5yLhX4wgmvgYIkcTCnkUALZFsHLWcyv5IzPBZzPROwVKjoGoTmWM/AVDOcC2DkTwSfAuAzIMQ9yzIUcCyBCFQdHRJYzka/IfCuqwIoucIRFjo18u3KEkMv3L4CDi2nxDQ3J9HqSgVSjagOSBKIY7s1lduYymxUdPBAtg7yHt/n3b8nu3Jv/olm7+XBz90wtb2hltsI/TeSbJgwrkCSXKuKrNQWCnniqIYaii2O1ZHG7QNCNa6ld6wJ5Oi9OkyNJiq2X2FYKnBoEvkxZGE/NntmQNNqVJGrzqpI7FYlweQLHXIFzmcSrRhkHt9YYx2VrZ2/cm7/G9/jZM92B7clIS3Cl/O8Ovv/PH/4UmcWQtm0ye9L0ruOg2e17D3d+c273sfP3X1Z7evLs2baTZ8f3HxnZ/XXLoe3EnQYgSaao2ijKbxYWsXtKoF5W09prN5foBw8F5QNnoSddv359+fLlOp3OQpVUKhWZTAYTGzduBBKTm5vb0tISFRUFxCIzMxNMp6enFxcXmxqbxcLsSVu2bOFwOIODgxKJBBjCiRMnzItKS0sDbQ4cOGBexUJPun37tq2t7eXLl01Lrq2t1Wq1FvmvW7fu1cKNQMIsmgUHB5t7AW3dutXd3d2iwfT0tL+//40bN54+fVpXV2dKxrQ5RCIR/Nnf3w9eWjjLr7/f7cGDB8AK5+bm3naFSRPznhRf6xzOtQj/GEoa6kkLMH0oFzuL1/PNkYtVFe1lJS0F+bqoKlGgBE7vUQUKhEEt9JhWbpAIduFQPcVkT02Dm67WRVnnLG10EpEIZJpzOQTCqYTtVMtwVTW6aUgehoaQtfU527iqI6NZRn2URpqm1UZy1W4ctqeE4lrPciqHcGVsx0LIo1TkUSKNoGmcyRzHcggLPKkUsquErEmsFUr6Cj3jSzl7mYJjK2BjS9huRQK/aklIjcwtDQgQjM+HcXkQPg/GF0PuDYhbgQhfKVxB5jsyRS5UCbZCiCnlY7N5bnE8jxhOQAojLItVL28V9WwyeVKlYCCD0lbBlUvaELIOQfq4X19AgCq9eD4/In3/mr2azi35tK5VBerwLPn8KaUCSWyxnNe7dsv+Ewzt6nxOdzRRG9dgyIA6eN1TOeo+V4bKmaYAnoSpEtq/HHcFeFK0sLm8s7/z8N50ead7pRRIEi5f6JQrwheI3CrlsVBLuqhLMDxtOpLp2LIzU9oRzzJEQ/JVMrCE3D/+25/IDKRtbEfLyPbNu44/ffb84rXbTWNbTUOsaCe2X7n1g2/Sx8+e8g71AEMq2a6AD+kGz/aoduu71uwenT544Qo6dhgKyhLF4robkAxvb+/PPvssKChIJpM9eVkKf6En2dvbg195ML1v3z7Q7OLF+ZIfV65c+fLLL019el71JBNgrlu3bjEYDD6fb1oUcCBgQqZXzauwuO4G3EgqlX73st8SBoMBHmORP1hgwyuA3Cyaubq6ms9FgfTs7Oxe3RUIgnz2koiICHNi4EnTKLQgq7y8vIWnfn5T/SSws0ZHR8fGxu7fv/9z2v8W5j0prtY5DLYI/2gy6kkLqa+vp1Aoi53F6+numgOSZIqsAu3KYnmqUp2sUofomIE6WqSR4y2i+0oYgVK2M4PiJqt35pMJdSxsJoLP43mWiQPL5R7VYmcmx4XHcELoTlxGTDcvfbXCnycO5SkSRC3RbK0/Q+QtZHixGYQyjlMZRMgX+JUpokn6RFZbUJ0aV8DH5vIwJVwMEXKgcdy1iNMI06Gbbt3MdlEgATxeaIM4i2cskLRFkTSeVQLnQoTwUpVw1WyPKm5ItjyuVu/KENnXCTBEIbZcgC3iO6YjLtGIy0quewwvJl9dQu06fen69O7jyp7NxeSO+JKmUoowik6PhKCyIQjeBm08IXzx8pLW7K4Tmq4tBfSu7Ma2mHxVdJ4yIl+e0WAc23zw1t0HQuOGeKI+rEQNIrWxVT60JVXY6UR5KUkNEusKvn2ZICJTSqL2yBVrelpmnz1/XqsbDSCrnUrEToViXLYQnycEnhTNMpQqBgde3sZ/+MTlSll/eJUqjCyI1JASOujlO8TIJtkKW6uUlBTzf3Hvpn0Lh+wd33bY4n28/PDi0Lm+ofO9Ixf6QBy4hV5rQ0FZ6rz2frdTp04BM8BisVwu97sfelJUVJSpzYULF5ycnMyzAL24c2f+SO9VTzp9+nR0dLSfnx/4PgESZl5UbGysefYf86QDBw6ABT579sxoNJaVlf3qzfTw8DBfwtu/fz/YNIsGINW4uDigR8+fP4dhODEx0aIBUDTgggv31S/zJOCJYEtMogckKTQ01NHREaQFtvbRo19c+u8XATwpPLbWJQS2iIAo1JN+AIFAsBg+b+nQ1fkPTyoqMoRmSHIV+oJmY5JcEdxEj+/jhPdQwgyM1DGuewPTrZHuUY64FvJd80VB5apqxUgypTWwTuNZK8VVIo6ViHO10I3O92eLfevlAfVqjyp5HKslgdkawZGGSCHXBrZrKd+lSOhXKyNqRuDujfSBoVhIHkqReFMFQSyZP18W1qUkjDHdJtjh65CsteLSTUr9keGp49+cv3OD0jwRCanc6hEXIoIjcggNHO8s4coSdRytxata5lgjdKwTYosFuAKBZ7rQM54fmCCKzVEx+CM1cL90YsY4s1vQvLaB2QsirkHtx2aGK2jxbVDuAMTf3Xvn8aOzp65Ort4vUa2vRQYT643RtdrImqYMehukW1cH95c2dlSTu+uRodSG1kxye0KNIb7RGF7XHAHrXelKTL3EvkroVSzNqm+hcgZbFBvBonafvcjt3JBMb3MqkDjmCjFZAky2wLlIHEcx1kiH12+d/58fmzqYSW4NLlOEi2nAkyKbSIWT/K4zQ8MnJ7Kzs5cvXw6+qkAz7cT2hZ7Us8nyiA1w8cH5zVc2TH277tjdIwtrMbwDLl65PbbpYM/q3Vv3nXry9GcV0EJBQXlDXYCmpiaTyiz0JLPcAE8Cv/vmxm/wpNzcXLVabWomkUh+0pOCgoIWpgHMbHJyMjAwcOvW1wzf6e7ujnmFiYkJi2YZGRmtra2m6fHx8YiICIsGOTk5LS0tpukzZ86AzXm1m4qDg8PCe+V+mSft3bsXiJhpemhoCOwmYE5AAJOSkkBCr53l98LkSa7BsEUErCSnpaOe9D137979l3/5F4trq0uHHTtOsJlD5aXznlRe2lrGMVa0t+U3GVYx1ekybbahqbGjL04hTukR+NBZvhX8wEK5V5YExMpyTVCB0jNb7FYiIZSIHIsEuGIhoVKELxN6VsiiWHq/KoV7icS7XJYhNKZCumiaJpKuzG/WF+j0gu39XQenN1zY0X5mrHGovUinj1XI09WGLH1r3GST6wQ7bBIu2iot2y4DsebCrCnVQycvJZGNvkSxG5HnXs2PbWyOJRlCq5p8ixTeBXLPUpkfSe5NlLoViANyZEHJkpxiQ0llG5Hdm1FnLEZ6EugKrxxuUIEkqlztWS/xQiQBYn5Chzqx00DavLpv/U6ZaLVUOKGRrqugdafArQGNKrAhwWR1NslYWN+WUanPKTeWENvJwpHk+pbQYnVcgyGd3pbF7IhlGUNo2vCG5thKbUqNIa+xXaedog2uz5D3xHHb3MvkzkUSxzyhfa7ALo+PKRUGNWjy4J7uqfmbPobW7Y0s0XjmigOEjcGKeuBJ5E3KnrPDw+fne/339/f/+c9/Bt8gE9sPL/Skqb3HF/ND80Ou3rir7Z9r6p0xxZoZy3NdKCgor2WhJ125cmV2dtZ0aenJkyf5+fnAdb77zZ6UkpJiqm9848YNDw+PN3sSmBeLxQJ/ML8EvoLAXL6+vr+lu7PpwpnZTMx34gOBMxUzamxsLCgoMP1Ktre3gxyeP39+4yXfvaxzZDAYrK2tF174+2WetGHDBtPeBNTV1Zl7late8qs37Ocw70kxNa4BkEUERJBQTzIzOjrq7++/2Fn8KA8fPhke3qVSTkola1tbt0yd3Gs4uVp7dDxfawRRqm9X988o+ja3T80Nbd6zsrzJ+6Uk+eZKcUk8EE7JAmw2YpfHdSgUOJYIHYsFDtk8XDbfI1fkkSX0yBV6ZiGZkCyNpwysQ1JFqvrVbfQ9HYLDvV1n1gBJAtF6ahTe1FMz0FIx0iY5uLZxd3/RbGvZNrlJkiq3q8/cuXrjzgMQ127cExs31AkG64VDitYpactUHqc7qkYXVtEUXKYOqdBEkfQhdc3OhRL/cmVaia64orWqrjO+pCkiX7Gylu1RwfQuonrn0HzzBE55AkKdwIcpS2hvjW4xxLUYgUtFlKqiyzQFDFEsjR2GsIP4Ij+SLKBeGVwsya9rya9tLahqLa5uI8NDiZX68DxlZn1bUp0xh9WZQGlJZrSFVjelsTpSaG2ZrE54ZGOysCNN0p3Ab/epVeOBSpZL8JUSbLkYXyv1Zqk5XRsUo7N3Hzyiadd4ZUs8s8R+ZGaooiHZyBDuMABP2nXj+1tnjx49Cr4gUtPTjWu+75/Uv3n/g8e/bCi9t8q2/afNkmSKe/ff7plsFJR/DhZ6ElAfIBM4HC4iIsLBwSE1NfXSpfkxOs3FjTZv3pyRkWFqDF5aeIEMg8GYen+/Wj9p+/btYJnAigIDA2tra19d1Hc/LNEE2ri4uISEhJj+fPjwIUimqanpt2zm48ePKyoqnJ2dXV1dCwsLzeWRQNqmbC9fvhwTEwMagN9K8GjqzPT111/b2NgAS3NycgIzTk9PL1zmLz6fBHYNEC7gX35+foODg6bnBQKBRqP5Ldv2kwBPioipcfOHLCIwHPWkf1BWVoYgyGJn8SbAh+fbb29funTz2bPnD54+6ju7CahSRWdbobaF27UWeBKIvd+cBy13Hz5XLxuhqcfBT7vJkwjJfFwmjMmHsIV8hzw+MCRsBoLP4Dun8N0zBC6psFcy7BMHR1aLU4X8eLEgrl2ePafOmlWVbjSId/a2nhw12RKIndcPHrl9Zsu3+6E9E8xdEzXb2yk7+zqP7B7aclA5PAtCMzCrbJtu7toCgqGcKGR3p5HbCuHeIqg3ocGYTmsPrW/2LJW75oq9C2QrqzS1nIHOge2plNaVVYLgCppLJsclje2RzvTI4Dgn813zhd61MneSFM8VRbF13nkS/3xpAUIsNeSH8GtCRMRgWYMbm+XdIA4skmTW6GtpPTLh6sq6zvRKQ2CmLCRXEVmkiSlrjqzQhFVpfEsUsSRDNtSVye5IIBvDSM0BdZoQsjYeaXctl2GLRQ6lIrtSIQgcSRYmMjJ61ivH5nZ8c65E1L+qXuebJ/PNl4RCrPR2TsfJgZmr2569+MchHTgOS05Otre337Z7/+Ubd972fay/lLm9Jy086fbdtzsSAArKPwevXne7c+fO2bNnzR2Zfxfu378PlvnrhjK7fv068KRXe3D/Cq5cuWK+e+61XL169fz588BkzM+AaTDLxYsXX/3S+2WeBBYUFhYGvkbT09OBNpo7fiYlJb2D+kkR0TXuvhyLCAoDnpT3Vlf9HmFlZfVq//+lzNPnz07cvbDt3FHd2JxJktbMHX76bP6ze/7KLfXAjKhjyiNT/A9PSkNwxWxPIo+QzcNn8dzyBD45ErcUgXuygLAKco/ieMTA3hn8iCphEBcO50vSJhX+AlEAXRbCEEcxpfV9rc2HhzrOjI9f2Nx2egwE40Bz4TZR1U49bV+HbvsmkySB4HdsbBAMmyQph9mZ3Gj0zpe550qCSpTJDS2rGo1+pUqvPFlwqSq0TA0eG+SjXeM7a6XDYeWQbx7TLZPlks52y2K6pLJdMvjBhcqwcnVwmSqqThtYrSZkCXwKOXX6pOyBrBAhEXhSuKLWT0xzh+BguqyY1d4sW9+i2qhVrM9t7EghGoNzFf6ZMo9UUViJukE5mkgyhhObMtidGcz2LGZHFFkHPAmEX63ap17tUirFlAjty4W2VUJnmiIAaob7N67d9c3krqOVsiFgVyn0trgGQwLJqBzcstCQFqLVaj/66KPh4eF3+3H4aS5fu93cN2uWpLHpg4udEQrK+8ESH7dEr9evXLnS1J18qfGL73e7e/euUqkUCARnzpwxPfPw4UOwbe9gfLeIqBp3H45FBIWinvQ933777Z///OeFgvwe8ez584tXb1+//YMbJ8e2HFL2bQkv02BzYEwB7JiDOCbzCHlwGFviVcn3rIfcGqCAapFbBmJfzLYtZWEyOY6rIMcExDEJcS/hhZSIwtK5AbEc73yuU7XAOYPnnMx1z+SnQGr+zg4gSZrjfdV7RSCUxwaMp1ZXrteJhjeaVYmpWQM8qRzpz6J3AMXxL1W654pdckQ+xbJEhiGuTg8MKaRU7Vcg98iWRJZqargDVMlYTIU4rITsn0N2S2a5pzKdEyDvImlsrc6rWBZQqfQskToVi+zKeBgaM1hdFtxZmtBdECatDpXW+MjJeB2UNdpd1TVcox8aH9u97+DZAlpTbDk3OAfyz0LckoVBBQqkdbKM35/D6qSpJ0p5fWCiSjoUwzQCT/KqVPjWAW9TeVbJPBsVnmRlEKSNRVrX7zr65Nmz3cfO87o25sBdQJVA5HF7Dp269IZ3ZPfu3Z999ll1dfVS6+52+sL1njW7W0e2T2795tFSuiaIgrKUWeKeNDExsX79+qX5+/Wb6gK8S4AnRUYSPTzZFhEU3JiWhnrSPO3t7Rbjyby/fH368tCWg32b9ipGN65SNzlW8mwLYdsC2DYf9ikTR1EVQTKGt7LRQ13vpqhfQWV8RWYsa2AtJ7JtcyCHBNghAcGv5LiEc7wiWW6rmIRVNNs89rJarn0G7BKLeBWzwhV0ygat4OvWwllu0hiroF/FmOyt2aCHRieAISmGZpCOjcbVOy5duSUb3FyvGwup1gRWqlyLxS6FIr9qWSxfF1ql9sqWemSInZIFzsmCoHRJSZkxp9JYxFCEldB9MhjB+aTQ4kavNLZ/riyoQonPEmBz+DaFiHUxsqwRsaZxg5sqvI2VAZ1lOavT04cynZsoLk3C2Nb24om+6smhzv27uidXJ9eSfNNYvmlsv3S2dzovrlZPlAwJOjYWQN3Ak4jiIaBK8r7N0t7pWs1oMqM1uc6QUKENL1AGlMhXkXVlwn6KbOzE2aubdx3vXbeHqVvHbl1frxlr0IzN7D/5k+/CrVu3goKC3N3dr1y58g7edBQUlLfHEvekpcx75kmeHiyLCA5qQD3JRGZmplKpXOwsfisvXrzom9pbwO/L4rcny9UhUqFnK4Rlwzb1LOsa9vJqaEURTEAaPXQ1rvoaNxAdFRhdnRVMW0ZlfVXPtqtm4HKZ2GTIKZjl5E93DqPjo+m4lTSHOPqyGvirahibwHVL5/jzSZEyelIrK6ilIbSNHC4QJEpVJR1G8egGUc+mEl5fLrsbMU6ObDqw+8QFVvdkRG2zd7ncrVTsS5QFNyqzm9pDapRBBUrXNBEuHnGK4wUnijLzmvJK9fl8UXA1z7eM61/C9i5gueZx8Ok8XB4fk8Wzz+fb5PNWlCDLqxA7lgCH0IM05b6tVWmj6VFdxXYIx1sqTm2vKhspqpokR3eKkmks/0KGSxrbLY3jk8kOLmBnMzurRIPqwRn14OzBExf3H7ugHdn68s+Z5uE5cftUg2A4obQ5MEMaki1fVdqcT+2kiscqOf3c5nXzw7f1zIjaN+07fuHWPcuzv8+ePd976NzqqYOzu07ce/CPvgXg8I5Op//3f//3hg0b3u0HAQUF5ffEwpN6enrUL9FqtXNzc0vzRM5Czp8/n5uba5oGR26bNm1qbm4+dOiQuUFbW9vPH473F/FeeVIE0dOdZRGoJ5n561//evTo0cXO4ldy8/Hts/cvXnt4s23jtni5NEYLh3eQApoaXaUkexHZto5tUwqBsC6eDxyZ7MRucGmr8hkrDhzPt9fWW3Fo1lUsbD0N20jDldIJxXTnYIqzN40QOi9JuEiaQwIDeBIITBrXKRb2a6CGSimRKjpYRZCEFcGVgCAaeo+c+VbYMUVSjIs7Nmn6ZkDM7D2568S5IlGfb6Xco1LiWycLp6vrRgfTxC35jM7AHLlrHN8jnh+eLIlJkUUWKitkyhKFIIjIcy7lOhZAuGLIoQCxqUBsixBMocC2kGdVhKwo4S6vRawoPAca4grB/nWQe7nQoU5Q1JlZOxwPgrI6vrI/yy2X7ZwB4VNhpzTIMxuOLOVmMzo5+nVta3e2b9rds3X/liOnT1++3rtx78iW+dKUys7pElp3Pqkjp74tPFcZXdTE1awT6TfkUzor2H3mkUm+PvGay22rNx0ydVoH0Tm84+GjH1zPmp2d/c///E8Wi7XUunWjoKD8TCw8KTg4uLS0FHiSQCCIjIz08PBY4mebamtrBwYGTNOpqakZGRkEAmFhHfAbN264urq+jS5A75MnrQyv9nJlWkRIQD3qSd+9LKv66aefLnYWvwzwo3v0wtWpAye69myR7u0Q7GrN6Ob58enuLJq7uMHLWOXbXu6sJFppyMvV1BVyqlUt2zqfa5MNO2ax8flMfAXdv7ksYl2Wo64Ww6Y4zEsSFUNk4AuYjtlspySqsw/NKZiOiwJBA461rI67jAg7l1FD1WXhraUx7eURYlpglSiyRhnHbvInysJqNVTtBKxdJ++aJklHCzk92axOlmHt9Tv3v754OdfY4wfLAiWKpDE9eeNwSVMPU7s6kqhxyeDhsnjuRcKQdHFAniwfaas1ICFMBFsN2xdxHYoRTDnPpoZnU4TYFfJt8hDrHO7yUi5IZjmdZ0fiu9fJfIvkLnni4PrG6r646v444kBcbV9sfXeyWwHLOQMG8VKVuEHFQrJ6XNo3zRualq2dBUHpXlfRPGK6gb93ep+8bVMBucMUq4qa0quNirZpoW7ek4rp3WZPOnDsosUbcePWfbMkmeLAkfMWbcABnI+PT2Bg4LVr197VBwQFBeV341VPWnijBjgK8vPzM3dG3Ldvn0aj6ejoWHg33PHjx/V6vVwuNw1ke/r06U2bNp04cQLIlukQHTxqtVrgLubRzG7evDkyMiISicDaTVWXvnt56/74+LhEItHpdCdPft8B4N69ez09PWClCws8mgFpODg4WNxGFxsbu9CTAEVFRf39/b9yB/0475cnVXm5MCwC9SQTzc3N6enpi53FL2PDvuPy8VloYH20XBqrFkc1M92odFc6FVfDxBKZjiSaA4tqpSMv11KWN1OXN1GWq6hWZWz7VNghDcLlsvBFDHdKY+RgXnRfjjOvHk8nO9FI+BK6UxF9/tUSBnYVGx/KxCaxbMphG4ZweT0wFXZIa0loV3FYT3FYf3FYb4lTDcerUuxZKsXnClwKxaFUTVRtc3KtMaHOEFKhBhFVpy0Q9uVIewq0/eVrh1MnW5LWG0hbxzi9I9EioReN7VzDcSzm4er4+PmKAMpMuDOG2UzgQnZU2K4acSDy7esF9jV8mwKeTT7PNhexyUGALa2oQWxJAlylKKxU5ZkjxmXyIxpq61rjajriKD0JpPa4hs4Ez2q2cyYCPImQBnvk8cuk/aqhmYbm8WxRD6l9Dat/Mk3eHS1vaeibEA9vBqqk65+t4w4WkjuLqF3F1K4CUqesZUrTtaWE0VPHHzZJUnP/3KsFh769dsfCk3YdOPPq+/Xs2bP6+vq///3vO3bseCcfEBQUlN+NN3sSkJgvv/xyz575MYiA1oAjIqPRyGAwgDyZ/AboDg6Hk8lkBoOhtrYWPANm9/LySkxMVCgUBw4cAFIF/gSehCCIs7OzaYTa1tZW8Cd4qaamBhxomU72UKlU8GvV2dkJlmYSncuXL3t6ejKZzJaWFrBq0P7V5NPS0iyefNWTQDOgSr/fPvue98qTQqu8CXSLCPGtS09FPem7uLi49vb2xc7iF3Dt9j3R+EZq70QcT+/HEnqzue4MujOFim+kOdbTsUSGQyXTlkddoaOsmPek78OawsAAT8rkOGRA2GyOawM5pjMvYTQzTFTmR6sNYBPdKilOxXSnUrpTFdU+GXFIRvApPEKBwLqQi0nnuhCpod3FYd3FocCT+opWjeeFaiudaliYTMQhC3HIRrCpPFwqzy9T6p0t9S9WBJWrfKvlESxNEFuVLGpPFbTTRtay103ytozXT8sjFAx3mOohpnhqmDiG0IOlyJJ1RzP0AWQ1hs3D8PjWDMS2bt6THBtETjVSh2KhbT7PLpdnX8jHl4vdq2We1bIUcqtbvsS7SOZeANXpExuMcY0tcfUtcbXtiV5EoVOZ1KVY4lYiDWls4nZMqgZnUtntYQ3Nq1gtfiSNI03kIpLFdrWk9nbwhqb6NuzVds2YREfdPk2XjDeBP7tnukZ39q7dYxze1rdu7/nLN199L549e945vMMsSdrumSvX705tP5ZW2xJb1sxSrF44PMjq1as//vhj8M34Dj8sKCgov5U3e9J3L+trj4+PX7161dra2nxCCPgNcJfnz58DSTKdRjIDZsdisabyQE+ePLG3tz99+rTpJRaLBcOwRQLAjTZu3AgmwsLCLAo5kkgkMItp+uTJkw4ODhaX+CEIotFoFgt81ZO2b98OxO6n9sQv5n3zJDzdIlBPMvHRRx+9uazWkuLJ8yfdx9ZndcsiJGJ/Lt+FhGBrIDyN4sQig0ccjYqnUu0rWLZc6nItZQUwJKBK88JEtmlkYNIgbBZnXpUyOU71lJUdhfFjmQkd2UFwpR+7xqOu0amM7lpPwmazMckINpnnlMR3SuA5JiKEWMS5nB7WXQJUKby3MH19WvamlPQN2XF9BS71VEwh7JAFY1MQEO7JApd0oXO6gFDCx9cgfiyJF0vkQkScsnme0ezgQGZMFimstjpQVe3VWuPTXufXTvJUK2OaW6uMI6mCtmiOzpkmwLP49g2IbRmCqeUHsjWpkq5YfhueJHEoEWBKhA6lQtcqaRTbUMjrDa5SB1WqXHJFoURShSqpThdb2ZwaTmF6V6tWUvVJUHs60lkpH1INzbBb1qWw2oMbmgMamlzIMrsGAZ4uWanVJ/a25fb0Dm4+MDF9yNA7C1xndHL/rTsPbt99ePP2g5/zjly7cW9gzR4wY8fQ9hNnrm7dd8ovXeKdKjZFHvkHh3dnzpxxdHSMj483leVFQUFZ+vykJwHpAR4zNTUFPCnlf2MazvbChQvgSQt3AbObC22DJX/55ZfmuQIDA01Dd+zbty8iIsLX19dU+Nu0xo6ODjs7OzCvVqs1ja0GkgkKCjLPbh4axQwQqVdLKL/qScDkFg6x8nvxPnlSVEiljyPVIkK9a1FP2r9//1dffbXYWfwoj5883Xnk7Pod3xw8een58/n/tH03D7edHI5RSoEnBfEFznQ2pprjhJCAJ+HIVEcSHUehOtTTrSlMKxVlRdPLk0k6ipWWZEtk2udA85IEVCmfjWeRVw7nrezJX6ktWqUvjFSWuFIaHEvYjpkILpnnnCogpApw8QguDsat4uCSIcc4yF9XEdZVHD+alb0xJWNDWtpUbgJYgqbEvgByyHjpSUkILgHBpfLt0hDbfMguG8aUwo5VsH0RhE3l4FcxnSKZoQlVwYkVgaQqbx3Rq43o19kYatQlaTs5Heuz5Z1uXNkKJrKMBi+vhmzyYEcSP1KpLzQOpMm6M9Q9WKoEUy3C1UjcGIokuC2L0e6RI3bNFLpkCx2z+Jgsvksp36VcFs4SpMvY4pH+qX1H95+4OLBpP/AkqnZ1tWI4Ge4IIWmdqTICTeLJVgSKNKs6jeFarap/i3pgxjC67fL1Oz/5pvzYO3Xrzn3DyNbAfLl7ktDsST5p4kvf3vpBy8eP8/PzP//887179/4OHxEUFJS3zJs9CfyIADs5d+7czMwMcKNbC3jw4MH169fBT4xF9yAwe1ZWlmn65MmTVlZWN27cMM9lOs8EDMlcgzo3N9e8RqBBGzZsSE9PB4db4M/IyMjBwcGFK7VwMqFQ2NDQYLFFr3rS3NyceRSU35H3ypOCKn0cqBYR6oV60vy4MYWFhYudxWsAn/WL1241j8wpBraAn3kQY7Pzt3FOXp7tOjOaaWiKlErCJSJnJgtTxiXAVCceybGRjm2g4+hUBxbFqgayqWXaCKnWcoqNphHLbrCvY9rXszBEJqaG6UChO+lrvTRVUdqCWH3RKm1xELPON1/qmSf1KZSFFKvDi9SuSQJCDExYCeHiIFwChI/iOKaxPIT1cQO5KWNZSWMFwJPSVufFt+Y6VtExORA2+aUkJfPsgSSlce0yYfsMyKGAgwFRCDnGA0liECIZXtENwJOCCiv8FdXe+moXGS1d3003rGGLxqIEWlsWfzkVWUbmfkmBlrE4y1kcnETg26yAJjfAQxsDmM3eHE2MrK22fSIb7vLMFhHS+dhUBJvGw6QhmFy+e7UiUUiv7c2q78sePcQ8cavn+Yv5u8/uPXx89OwV5fBsrrA3g9cdxtX5wuoEdVuKviNzoKu4pw9IkinGZw791Dvzei5fvR1Xr3fPl8z7YgLXKYFnVqVvTr7mbGV3d/e///u//8bxmFBQUN4BP+ZJz58/3717d0BAgElEgBXhcDjTBbLvXl5QM3XlDg8Hx2Ja05OmbkYLPQl81Xt5eZn7fphGlgUTK1asMK0UGBiYNq3RfOkDyJmTkxOYkMlkycnJZg97tWDb5s2bV65cafHkq56k0+lMfad+X966J4ENBl+mnZ2d589b3kEDdsr69evBrgfbBt6nNy8HeFJ0YIWvPdkiwjyI6am5v1e27ylBQUFDQ0OLnYUlDx896Z/axzKszYY6C3m9ou5NJlW6fP3O3LXdwJMaJ9rz2/TAloKlfLcaiTNEd5WTXBWNLspGV3UjnkO3r+DYVjLty5iYPAY+mUZoaMTBFGeI40ESepVKvYr4XtlwbLUqiaNaSREElIk8ciUexTLnQolntSKIqIkmaj2zJIRYiJAA4eZPBXHw0RynGMgtkR9NpeUZq4oGa4qnSvKn0tJGMrxYdS5VFMdkGJOEAEmyA5GO2OdABCLVuR4ExYXZiIumEyLo+HC6axglMKTGP6Pan1XnUUch5HKji9XxOcryho4Yqc6Bxl9BQb4CnsSGvhCwVzA5OKEgUKcqGO8Rj29OE3bFcFpWMgzp9BavLKFTMo+QxgOS5JjGw2fwnUolHjWSmp4c4Em04fy5c8JD1xXXH+4379XpfScadRPAk1J5nQnK9pTmzrq14/kDvaL+KbMnta/e+Yb35Q3A+nVAkkDgMwTAk0B4JM+fVVpZqDadCHyVo0ePLlu2DBwp/roRnVBQUN4Nr3qStbU1BoOxtbUF0+BXGCiR6aXt27e7u7sDCwHu4uHhYfp1PnLkCDCh6OjoxMREk7Is9CTAoUOHfHx8QIOUlBQw15o1a757eYMRMKGkpCSwtISEBJMn+fr6giWAZuClrq6u717KAJFIBCsFT0ZERJjrJJkBDQgEws2b33evLC8v/2wB5o5TYBUWPZ9+F96uJ925c6eqqmpubg7saLAXrl69uvDVe/furVu3Drxz4NW6ujrw3rwxUeBJ5b52JIsI86hOT/mgPenp06d//OMff5exA39f5g6cUg/O0LQTwJNAlIsHTJ507tubNx7f6j+3xnhsuG60rbDdkNViSJDqouQyDyXFQ0P2M5IjW6BAnmhVqzCijxHOFa6slgSXCGJheefM3PiOgwdPXz519urlS7fOXr6hGp3jdW+s14xlcTqDa5sS2G0JUFswqTmosTmJ2ZZIMbhVIvg8Fj6b5RTLwsdzCImQazI/sECSo6LktRKzuguzVqfF9Ob78WpcK6kOqRAmiWufxLVL5WJyIFwZ06WO7NZAcq6heHFrXMrJ2Fg2NpaJjyJ7BNd4J1E9Mhi4DMgxEXYL4biHQh6RsAtJiG3kWZERoEpfsDnLGzl25TC+UeChkOLVwkC9xoOt9KlXuRSKCVkCQhLXOQbGJSFOaXzndIFrtsi5VOJWw63uzAGSNPY1C0gSiEv3fvCff+3WveHZg00T2wzrd04cOHLy9vXxuUNmSQKxduuRX/eWFcO9Jk8CAbwNm8h1TeJHF2sOHLUsJbCQ+/fvg283e3t78y2+KCgoS41fVI/72bNn586dO3v27IMH/+jg+Pz583MvAa++dq4XL16cP38ezLWw5+K1a9fAkwuvo4HpCxcugGa3bv3gaj74FQNP/lhHW7lc/uZCyqdOnQoLC3sbNd7eridt2rRJrVabpjs7OwcHB3+s5dDQEGjwhkXNe5J/uZ91o0WEu33onjQ7OwuOCRY7i9cwPH0AeJKoaypnfkCxTvAIJEk3ts1Uw/Du0/uHbh07cOubc7evfHvvVteJGdqGgYxmQ35LC2mgv7DVWNJpbD4ytPvGkY2X9/aenV5zcce1R/Onf09euLb32PmrN7//Pzxy9lv9mh3KkVla69occW+GoNsUafwuzcRW7fg2rzohoYqJr2AQ0hmOiWxcAtcpmeefL/MrlHtXQJ41FKdyuguRSihl4LLZNgWQVSHXKp9rnwU5AE8qZzoTqe4kkhup0YdPdGtstMuA7JPZthm05fVMBw51/vogie6YxHYOYDkHs0FgUzi2NbBVI9eKglhVwtblEPAkQp0AqJINj0vgS+0RIaFe5JIjdErne0Vx3aJgQhzsmIw4pPEwuQLXarlnnSJeROJNNPbvo82eEwBPuvXoJ8qH3rr7oGPNLpMkda/bvbCg9i9C0LrB7EkgvAols3tO/Mx5wVfYJ598MjY29utWjYKC8lZ538ctAcdjGo3mDQ2mp6f379//hga/mrfrSQaDYe3ataZp8HP+WhncuXPnli1b6HQ6EMmFz0//kIaGxmj/Mj+rBosId636wD2JyWQSicTFzuI1TO06ZhpSg21Ym490Fwv62tfuOn/l1o+1v/vk4YMnj7cdPtO3ef/4jkPHr116/PwHVaHBgcLozCHTSSn10OyuI+dMzz9//uLxk6ezh04TtWNmTwLONLb98MWrt4oFvR5FPEIhyzGLhU2EsYnzg+m6586fznHM4jtkw9hcjgOwoixoRSW0vBqyKuauKOZalwFP4uCrGK6NJC92XYCswpdb7VpBsk+G7FNg2wzYhkm3VVJwDAqWTcHSKU6hTOdAlnMQsCUWPpGDKZu/080uE5kfk64Ctq9GQOAaBASRCMMT2tN5PqlCv2Sh/yqefwzPOWq+XxQmm48rExMqpV51qmC6OFlOoq8t5Gwobt2juXr33k/u7WfPn5+9fOP8tzd/7ALZz+HR4ycJDYbvJalIRlWO/6LZ9+zZ85e//KW2tnbpj4GAgvKh8b570iLydj0J2N/U1JRpetu2bWKx+NU2phKcDAbDVJbKDOOHlJWVRfuW+i2rs4hwp8r05A/akzw9PScnJxc7i9dw886DlvHtJlVSD8wePnXpN54RPXbuikmSTKEZnr3/8B8nTh4+fqpfu6NQPgAkKVPYIxrafOf+Q6BlYO3V3L6INKlLIs8xCcGlIPhMPh4YUhqCSZ/vioRJg0HYZUFf1kLLaqCvqqHlpVyrSsiumOPSQA5uLg0xFgepy73pNbhYtsMq2CEOtk+HMBVMexYNRyPjqSQsi+KYy5iXpJeq5BTDxqVyMRlg4Tz7VGQ+0rnYNMSTDLtIYTsExjCBJwnCUySRyZKoVKlfoiCkSu1Tr/asU3rUzodng8qTqkjXqzIMOsbqja073+k9ZX3r94jaNm7edexXzHvz5s2wsDB3d/dLl14zOgoKCspigXrSr+btelJ7e/vExIRpenp6+g33xWzYsEEmk71hUWw2J8anxP+LGosIJ5R/yJ706NGjP/3pT+BxsRN5PcBjDp28dOD4xZt3f1YVnzez7dDphZ4E4tL12wsbPH32/OszlzfuO37swtVnL09pgMeWiR1s/VqffKnphjJsJuKYheCzgSS9VBkgMSkguLYZ8BcN8Jf1EIgv6qFldRwMmeKrqwhWFYdri9yqGrHxbGw07BA7HyZPciAycEwSnkLC08iOhXTHGA4umoONhxzTIMck2NQZHJP4MpIRh1SuWxnXR8VxlLPcIHY8WxiXJc0u1FY3duXRO7idG+LhNn9Sk2edCoRHg9KX1ZSo6Upq6gaeJJqevfvoveklDWyYw+F8+umn5nPJKCgoiw7qSb+at+tJ27dv5/F4pmmNRmPqAP/kyZNXf9c3b94sEAjesKh5T/Iu8f+MaBHhOOBJOb9Ltu8jY2Njb6P86NLk5IVrCyWpaXjOYrjW13Lt1j26djUhV+iQzcfkIPZZCCYT8arkYUu4tqXc5UXcL+rgL+rh5cUvJ0jQl3Vs8Pg5GfqqjkVQ1xEUdfbVdNsstnUuBxvz0pPiYPsU2L6UZV/PxPDIeAYJTyXh4pjAkDBJsE02d0Uh1yaHCwzMJhPBJM17kkMygsuA3Yu4/ggrtolZ3MtQfdPXcXz98dOXT5+7Nrbta8XYLL9/KhZqC6PrIpmGcEgfJW0DkpRt7BdtmpVv2fbkRzpOLll27NjxX//1XyQSCR06FwVlKQA8icvlClF+OW/Xk4AS0Wg008B4DQ0NpqILU1NTpt5Yu3fvBi+Nj4+DV8vKyo4cedNNOvOe5Fnk/7+qLCLcsfRD9qTS0lLw0V/sLN4d63d+Y77odvj0T9QfP3Xnuu6bbcIDm1KkbT6Vcnw5D1MMY3IRuyIY0wDb1kDWpfCKYvirinlPApK0vAReVsX5sob1OZnzJZHzZTX0P1TO/zDgz8jwMiK8ogjGxr30pHjYLoVrm8W1ITGt1FR8A9UtnklYyXFI4ljnca3z5+OrcmRFKc8mA7HLge2KIPsiyLeCE1ELF7UxaJtpzJ1M4obO6g1d28/Nl/k/d+lG55pd6sHZzQdPHj73Ldgw/eSOvNbB4q4R7uRm0fTstjPn3sne/Z25du1aYGCgj4/Pq9VQUFBQ3jH37t27gfKrMNcjsOB3q5/0+PHjbdu2zc3NmW8vBGs11VICL+3Zs2d6enrr1q3Xr19/83K+96S/V1pEOLbkQ/Yka2vrnyw99U/G5et3Tl64duf+wzc3u/34oeTgNH3TGtK68VViHV7AwgmZOBHdVkL7CmatqOFYl0ErymGrci4QIGBIwJaWlcM2aSybVJZ1Bmt5KfQFkfVFDed/KPDntdwVBTAmEXZI4GISYEwSbJfJtSpCPmcgn7MQb4o8qkGDz+NZFwHrmu8DvqIEsSrjWdcIbRtguwoOpgQiVCC+JDhDCAkPUug7aGkDqszBlmSjjqgfEXZMydo2NfXMgGgb2WEepPb2w4czp85sPHby2NVrb3+nvi1evHhBIpE+/fRTi5GhUFBQUN53lmI97hiPQv+/VlhEuENJetIH6kngeP3f/u3f0HuLzDx5+mx673HDxPaeDXtGvj6Q26dPMsgTVRoPKeSopjjqyA5N1OVy+nIay6YABmFVBFvnI9Z5IOb9ZnkR1yoPss7iWOdyrLJZdvFUu2S2bTo8X3MylWuXgjikIDbZ3M/rucuYyBdc5HOE/yWb70VXhJBU+EKe9bwkIStK58Oqiu/MUPgp5b5yiQ8kCYGV6QZj66GR9pNtFesNQJLi1M0JLEMW1BlR3lRM75H+b1Wa23vqzdv4+PHTkyevHD92+f79Jdop7VVGRkY++eQTc4kQFBQUlH8ClqQnuRf4/3epRYTbF32wntTV1RUTE7PYWSwhVm87bLoqJx+azh6QRnWxVvVwAlvIzmqyg4zm0ES2MZKW8xkr6jk2hfOeZF0IW+cgNjkIsKUVJdz56UzEOgu2yYAwK5mYGKZdKmyXzrVLBZ6EYFIQTCrPNhNZVoV8wUa+hJDPebwVTL5brSSoQYkv4dkUwfNnkorAcoB+QS4VoobRAfq28YzB1tQ+Y/pAq3bP7KNnj3mb1hd298YzDWmc9gxWe3iZJp/SSRaNmjxpatubSiXdvfuwt2ebQTcNoq115uqVXzmO27vnzJkzdnZ2iYmJC8vWoaCgoLy/LElPcsv3/7TEIsLtCj9YT8rOzlapVIudxVLh4aMn5i7enLHBrH5hiIEWZKC6KxoIrbW27Y12HSS71savNJQVdRyrMsh0Sskmk2uXhdjmcW2yuMCBQABVsgHPzOvRy0ibP5NklzwvSfbpPLsMnlU+8gUDWQEh9lzEs0GaQm7JpLS51fDsS2GwWNssyCqPY58JhaQKQ7P5ITJZtF6T3GOIbdfWGUbW7z5K6lwbKtC7lko8qmXBVE1crR54Uh1vyORJOw+eOXHx2u17r7+qODt71CRJphge2vWOd/Jv4dGjRwUFBZ9//vmePXsWOxcUFBSU38qS9CTXPP//r8giwm3y05OyFzu7xeFvf/vbsWO/psjNPyUPHz9RD82aPIk23r2qi+NrJHno63HNdXZd9dYdjTZdJOsu0opm8opGjhWJZd3ItC6E7NMRXDqfkMDDpMzfxm/yJOscxDp3XpWwcRx8NIyd77j9csS3DJ5dJg9TzPOg8v0gQUKTJEXZkS/sjWrUu1SI7asRTDHkHMlwiWR6rOKExwl8/ViuGWx3EtetAYlmNKVRWuOZLWW64VCpwY0oA6oUTNZkIh1lrF62ag2QJEnnJrhzg2J4RjU6t+voa/puT4zvXehJIN79fv6N9Pb2/sd//Ider1/sRFBQUFB+E0vSk1zy/D8ptIgP1pNOnjz56aefLnYWi8ypi9e7J/cYJrav2Xb4/sPHkzuPAklqHByJH5J5DdR7ddV76BswLfW2XfVWWoq1kWzTQsa2Ue1FZIyUjBFRHIQUDJuBZbCwDRz7rPl+SPaZPJvc+ctw1jlcxzgIHw3hYyD8yvk73WwzENvseUnCc7jOGggv4YS08H1lvDCewr9W6VQixhTzHQt5bpEs1zCm1yrIL5Dt48P0ieT6JAic4xDXZL5fiSKwVhMG6xKbOuPkbSGNTavo+kxR59rZw2cvXm8ems3mdmXDXYWCPlH/tHJk9tptyzLc27YeXyhJY6Pv5YkZ8NG1srJKS0tbsnW/UFBQUH6SJelJzjn+H+VZRLhVbnrih+hJTU1Nqampi53FYnL5+h3N8Kz5Wtvg9P6nT58Zt23NG2tPGGny7qN5DtS5ddVhWhus9WQrHcVGR7UzUAndFOcOCl5FJSipuDYSwUB25UIENovAYmMzEIcsvm0pz7YWcWnkOudBhDQYlwg7xcG4ZNiaiNjXCh1JQpwGspexHQ0Upy4SHmLhSTC2FMEVCh3yBQ55fJdotnsYyzeW6+vL8g/geCQJnBJ5+HgEn4h4FMr8a9S+FHWcqj2puStW3pau7irpGDx+4erUrmMcwzogSaaokA0BTzr0SuGD+/cf9fftMElSR/vs1avvTf8kCx4+fJiVlWVtbX306E8MXYeCgoKyNFmSnuSU4//nXIsIX5HzYXpSXFyc0Whc7CwWk9kDpyzKc9++97D71E7Z4Y20vcOBvRKsloHV0u0kTCsFzUZLtdPR7Iw0nIHq1w47axkeRqZ7N829jerO4zhz2ASYSSBCLtUCFwghSCA3JsebCHuWcvHZXGw2hM2EbEiINYVnz+ATVIi9lE3oIhG6Ggkipksjy5tOda+nOZVxHQuEbmUSt1QkJFccESeMSJb4ZkrckgVOCYhLqiCoUu1fpnQtlQYwm8IQfRhbm6roaGwdB5lLu6cF7RvNnpTH6wGedOHaa8bCe/bs+blz18+cufr48dN3v89/X4Dr//nPf0aHzkVBQXkfWYqeFI3P8vuTZYR/lZWemLXY2b1rXrx48fHHH1uMiPeh8eowJncfPOo/vRt4kvjr9RmbtbgWyF7JxkOIvYKJ4XPsZCwHiEtgcr1bYHc9x7WFGTTM8etlESAWXsDENFMJCpZfCxzQxwxqEforBRGN4qAaIb4Idsji2OdxllGgryhcKyriLhR5NQs8eqlOXaQATbUvo8GX1uhDJfnTKX4NPP86VY6mh9q+lqQaSyrQROQpfTOAKgn9S5SehTLXTFFQsTKebPSrVObJeuDuSVPm1KYJTf9MjXzY5EnlksG1Oz+IEQa2b9/+t7/9rbGx8dn7VnAcBQXlA2dJehIu0+9fLSP8y8wP0JMOHTr0xRdfLHYWi8yNO/ebR7eaJWn11sPgyZN3rgJPAiE4uDZ+oyZqVJnUa/CrV4BwJkoIFRKHaiFOwiKomVgFza2L7qrn4OUwvpWFa2M6KWB3HSegj7Wql1cwrqkcMMRxpW7liF0hZ1kD9CUVXkaDrZlcd47EVy326mATRLTYlqJYbXGEuDpcQEzS1eQYOUXKgUiGIZ7RkgV1FXK7S6HeIk5POrMjhdHumiv2ypHGVGmzqO0rq5tSqK3m5JUDMy1j24EqcVsmWYZ1O4+cXey9++64efNmQECAu7v7xYsXFzsXFBQUlJ/LkvQkxwy//zfNIsI/T09P+OA8SSwW5+fnL3YWi8+3N+4APRrYtH/u4KmnT78/IXH8zpWBM3v6Tu/a9u2p1kN7BDu3JCk7koUdUZDBsUZiXykCqoSlIlgaN4SrchOKnOU8nJHtpRM4ybmOUjahie6lhvLbdJJdfdkb1PYSZBkdWkaBllHh5XQYw+CHSlWRWlWgSOhaDSW2lWT2l2d2VSbry7NbiXUjogRuW1BjUwanA3gSCKp2dd+m/cKe6XLJoG+eLLRYFV6ijijTxNbq4hsNZk9av+Obx0+efn3y8qETlx78jEHr/sl48eIF+Eh/8skn6NC5KCgo7wtL0pOw6X7/kmoR4Z+nfYCeFBoaOjAwsNhZLALXbt1bu/Vw/9S+LftO/JxBcMEP8JX794wbdzLb1+fxux1KhHYlAocqsWOF2K1a7kaUB1Ga/Ro1OCHXRYngZbCjFPJoQgJV/Fi5vKS9LV1vJIgFX3E5yygwiBVkrg9Xkgw31xDbaqpaMtMUFQpO3QSVtJrOWsuhrmFptowmQe1p7O8lKRPqzGC1j88cmtz5jbJ3c2pjK5AkU8QRdfTmNbzOjUCkWtfs/Dnb8k/P7OzsX/7yFzqdjpaYR0FBWfosSU9ySPP9v5MsIux/paQnZC52du8U8Cvyr//6r7duvaaT7z839x481o9tUw/OmALY0s+c8dCpS/m8niy4y7tKQSiVeNeqQqha9xqFZ60yDmr1qFW6kMSOEhgnhQhyrptIkMprz+R1lSgGM5DOYK7Knse1aoBsqrj4Sr4/Qx4Yj0QliuJSJGnpioQkEaNNzp1EkPXCmRNzYF28tg0mSQKxkqRLorSAVBX9mwuhHsQ4mVRnmPekUnUFr39630n50BbZ0BblyOwH0hvpJ7l27ZqPj4+fn99PDviIgoKCsrgsSU/CpPr+X4kWEfb35PT4D8uTtm/f7uDgsNhZLAJ7vjlvliRTXL52++fMOLP/pLxvM9y6vkjUF0HRBdZrErhtPvWqaKYxQ9gdStOG0XR+ZHUIpPahK/zqVaF1GtdiCQj3YolLodg1T+RcKCQUCtyrxPGwLipRGJ0oApGUIc/MUlGY/WNTB4+fuWpa18mzV4nioWyoK53dEVOvZzWvMaVaIRyga1Zr+mckHVOy7um5A6eBHi2MU5dQM5gHHAbQaLS//OUvc3Nzi50LCgoKyo+yFD0pyi7F5/+Ms4jQvyZ+aJ7EYrGIROJiZ7EI7Dp81sKTLlz9WSfVth48bWqv6N9MVI2kczv5/ZsGZvczOycZHesajavjodZVrJYouj6wocmzQu6UL8Lni8AjIU/omCvA5vCd80SxZH0W0pXMbA2K5gZGccNi+auSxBnZSkgxfvryjYWr+/bK7anZbwbW7IEN682pirunEOMk8KSmgdkte0+c+faGhSftOXb+7ey295Lx8fGPPvpIqVQudiIoKCgor2dJepJtss//scoiQv+S8KF5koeHx4fZ3fXm3QdNQ3Mm3WHoVsOt6y/+vPNJV2/dM81oirUv74wDnLlys29mf6V62L9eE1CvAZIURtUFEdU+ZXKvUrlboQSXK8Bk8rDZfOd8USK9JQfpCq7RBGZL/CNh/0goIBKOzZRB7ZPAcmYPnbZY6bPnzzvW7jKvVDM4e/na7XsPHj16Wffozv2H6tG5hZ70M7flw+HEiRP29vYxMTG3b6N7BgUFZcmxFD0pwTc14ssEi1jllJwen7HY2b07Hjx48Ic//OH+/fuLncjicP7bm53rdlWIB6qkQ5LeadXQzP7jP6uI1MWrt0e3HOyf2jd34NSTp/8o1XP41OUS6UAmrysJak/ktOWJemMohphGvV+F0rlA7JDFd8jk4fOEwJkCq1WxFEMwUR1DMwSUyHwyhAF5ErJutclygPQ8eGzZF/v67ftd63YDSdKNbgMrsnh1/8mLJlVSjc7NfW2pWSjfvRw6t7Cw8LPPPjt48OBi54KCgoLyA5acJ+n1ehqN/toQiUSLnd27Y3Jy0tXVdbGzWEx2f3NuYW3JppG5x09+TWXqew8eX7t1b932IwXiPuBJ5sjh92Qw2wMrVI7pPEwK1yEDcSkUe5fJfcsVfmWKFFprAsWYweookwxkc7uB5cgGtiiGZ8DEkZOXBlfvae3bOrHx4K3bD8wrAum9ePHitTncefDoxMVrN+8+eO2rKCYGBgY+/vhjdOhcFBSUJcWS8yQUE3V1dXQ6fbGzWEw27zthUYb7xp1ffHZtZu/JpoFZTf8Ms3lNCtTuQVS4Vsr869Rp3M6xrV9X8Qeck3i4BMRxFRcXy/UokMTSjP4VyjJhfw670xRV0sFSwUBKmS4mQ5mY30SVjum7Z5o7tpiie3jH8+evdyOUX8E333xjbW2dnZ398OHDxc4FBQUFZR7Uk5YoOBxuZmZmsbNYTA6fvrxQklrX7Hj2C8vtHD93FRiSKWjNq93KpW5VcucKKQi/ek21YiQgW+aWIHBPFLgk8AlxiFMyfxXVkMftVg3M0JpWFyG9Bdweee/m3HJjdLoiKl2xKlOZntvEFI7KW6bMqnTx2w+ucMNbBRhSSkqKjY3NqVOnFjsXFBQUFNSTliR37tz5wx/+8OTJB12T8MWLF1O7j5kkyTCx/ei5K2u2HdaPbxvafODy9Ts/Zwlb9p4we1IOr9u/Th1G1QWSmoAt2WfxcEmIYxTXMRomxPGAJ7km8D1Shcax7dqRreZO2fz2Dfr+uaKyFhD5Jcb8EkNksiwmT53D7KoVDje1bwaedPkq2vv490en03388ccfZpFVFBSUJQXqSUuRkZGRwMDAxc5iSXDzzoMLV289evK0a3K3+dxS8+jW2/d++rrM3m/Omz0pl9/jU6Pyr9f41qrt0xBMAoKNQ7CrYOBJ2GguPoWPzeC7FIgndhw+du6KbmSramCGKBmqkQwx1atXpSpyi/Ql5a1xmaqVqfK44mbgSSAYyonB1XvewU74MNm1a9df//rXsrKyp09/Tb80FBQUlN8F1JOWIiUlJQiCLHYWS4jzV25Z9FU6cOKnx1J9+PhJ97rdJk/iGNf7vvQk52IJJvF7T3KI42JjYEw87JDBx+YI4jmt8onZ3SfOP3z0ZP22I6L2jWBGZe/mtFLdqjRFUVlLVJoiLkcNGyeJ0uEy/oCofQodh+StcuvWraioKBcXl/Pn0aJTKCgoiwPqSUuR5cuX79mDnqj4Bxev3v4VngR49PjpgeMX18wdLuT1ehZKCXki5zyxg+lkEvCkeAQbz7XPQMLI2lR+Z61+HHhS5/ReMOOWPf+4ZifpnComd1JZg4WNHUjrBuXwrCm27D/5lrcbZR4+n//JJ59s3Ljx/2/vToCiuPP+j9fz39rN/jfZbC6PuMn6ZDfRNagxasSI4AFGvO9bRBQWEgURRUHxiKKoaBAVoigIinhFQUURw6FySBBFUcSoIEFBBJFVwJH7+cov6ZrMDMPQzvjrYT6voqxhbHoarfnWu2d6unlvCAAYInSS5Dx48OCDDz7gvRXSUltbd+TsVSGSgk/9VPbsuYY/W1dXZ+MZNtw1YMCcbWYOW/rM9ulv4/uikya/SCXjaZvM5m2btfmgre9h3+MJQiely71nR1+7j6VUVlXfyC3ccfwCi6Q90WlPKzTdBnhJFy5c+Mc//rF69erGzrwAAKAj6CTJCQ4OtrKy4r0VklMhqzx7+fb+Hy+dTskqeaL6BAGUUzmFJTfvF8mfCjLtZh5FEn1Zzt/e/5utJrY+gxy2WczeYjJ1U9/p3013D1my65Sl+84h7gHjV4V8u+/MlZwXJ7Ssqq45EntF6CTh7JEFj56kZuVduZ1P2/MKfmsQPHz4cNCgQcOGDXv06BHvbQEAA4JOkpzp06fjVHsiyCqrDyRc8Y9Kpq9dP6bef/Trx/UvXLvLOom+Bjt/b+awxXy2b7+x3gPGbhw88bu5bvscvA5OWblnlEfgKI+gmWvDnv12yFF1dc3Nu4UZt/IfavbxOtC12tpaDw+P9u3bG/gpMwDgVUInSU67du3y8vJ4b4X+Sfn5FxZJ7Cvs3K8HeNXU1k5dsYciaeiCHf3nbDVz8B0wbuPAhi/LiT4W4zaN/ma7/dqDwtfFG/jHl7Rz5859+OGH69evx3twAPAKoJOk5ebNmx9//DHvrdBLJ9Oy5DuJvip/+zz5nbyibzYeHr4wwNJl+8ylIQN/66TBE76jTvpquq98J91QukAbSE1+fv6XX345fvz4srIy3tsCAC0cOkla/Pz87OzseG+FXkrOypWPpL1nLysskJP/aMexpLW7Tst3kuVEn1F2/kIkrdp1msvGQ3NVVlY6Ozt36tTp2rVrvLcFAFoydJK0jB079uDBg7y3Qi9VPK8MO5fOIikgOuWXolKFBerq6iLOZ1AqjbffTpFkPn7TkIk+46z9rv2cH3A02Wv3mX1RaeXPcHS2Pjl06FDbtm337dvHe0MAoMVCJ0lIbW3te++9V1xczHtD9FVVTc3tgkdZ9x4+beSsAc+rqi9m/fLjTzdXbz4xb0nYqg3Hi4pxdTb9duvWrS5dutjZ2eHSuQCgC+gkCbl8+XLXrl15bwWAnikvL7e3t+/cuXNWVhbvbQGAlgadJCHe3t4uLi68twJAL+3bt69Vq1ZHjhzhvSEA0KKgkyTE0tIyKiqK91YA6KvLly9/8sknixcvxqVzAUBb0ElSQZP9rbfewuecAV7GkydPRo8e3bdv38JCnN8BALQAnSQVCQkJJiYmvLcCQO/V1dV99913H3zwQVxcHO9tAQC9h06SilWrVi1btoz3VgC0EOfPn2/fvv3KlStramp4bwsA6DF0klSYmZmdPXuW91YAtBylpaXDhw/v379/UVER720BAH2FTpKEsrKyN998s7ISJzkE0Kba2tp169a1b9/+/PnzvLcFAPQSOkkSoqKiBg0axHsrAFqmuLi4tm3b+vr68t4QANA/6CRJcHR03LRpE++tAGixcnNzjY2Np02bho+UAkCzoJMkwcjIKD09nfdWALRkVVVVc+fO7dixIy6dCwCaQyfxV1hY+O677/LeCgCDEBER0a5dux07dvDeEADQD+gk/g4cODB58mTeWwFgKLKzs3v06DFz5syKigre2wIAUodO4s/W1nbnzp28twLAgDx//tze3t7IyOj27du8twUAJA2dxN9HH32Uk5PDeysADA7tn7Rp0+bkyZO8NwQApAudxFlVVdWUKVN4bwWAgUpPT//444/nzp2Ls5cBgEroJAAwaI8fPx4/fnzv3r1/+eUX3tsCAJKjZ5107969EBCL/vV4/wcCSJS/v3/btm2jo6N1/UA//PAD70mgr2JjY3X9vwOgTM866eeffw4ODs6G5tu5cyf96/H+DwSQrosXL/7zn//08PDQ6aVzv/vuu4yMDN7zQP9cuHBh3759uvt/AWiM/nUS7Y3x3gq9RCMGnQSg3qNHj8zNzS0tLR8/fqyjh6BO+u9//6ujlbdgv/zyCzoJuEAnGQp0EoAmampqli5d+q9//SsxMVEX60cniYNOAl7QSYYCnQSguejo6Hbt2lHT1NXVaXfN6CRx0EnACzrJUKCTAJrlwYMH/fr1GzVqlHazBp0kDjoJeEEnGQp0EkBzVVdXu7q6dujQQYuXqUYniYNOAl7QSYYCnQQgzvHjx1u1ahUcHKyVtaGTxEEnAS/oJEOBTgIQ7ebNm59++qmtre3LXzoXnSQOOgl4QScZCnQSwMugQrK2tjYyMnrJ5xE6SRx0EvCCTjIU6CSAl7d379527dodOnRI9BrQSeKgk4AXdJKhQCcBaEVmZmaHDh2cnZ2rqqpE/Dg6SRx0EvCCTjIU6CQAbSkrK5s8ebKxsbGIayaik8RBJwEv6CRDgU4C0K6NGze+//77cXFxzfopdJI46CTgBZ1kKNBJAFqXnJzc3EvnopPEQScBL+gkQ4FOAtCFkpKSIUOGDBo0qKioSJPl0UnioJOAF3SSoUAnAehIXV3d2rVrP/zww6SkpCYXRieJg04CXtBJhgKdBKBTsbGxlEpNXjoXnSQOOgl4QScZCnQSgK7l5+f37t171KhRpaWljS2DThIHnQS8oJMMBToJ4BWoqqpauHChmkvnopPEQScBL+gkQ4FOAnhlTpw40bp166CgIOW/QieJg04CXtBJhgKdBPAq5eTk9OjRw9raWuHSuegkcdBJwAs6yVCgkwBeMZlMZmtr261bN2om4U50kjjoJOAFnWQo0EkAXISGhv79738XLp2LThIHnQS8oJMMBToJgJcbN2506NDBxcWlHp0kFjoJeEEnGQp0EgBHZWVl/v7+9egksdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJN+VVpaGhsbe/XqVV2sXArQSQBSgE4SB50EvKCTXkhNTR00aFBoaKi7u/vMmTO1vn4pQCcBSAE6SRx0EvCCTnph0qRJQkOMHj36+vXrWn8I7tBJAFKAThIHnQS8oJNeMDExEW4vXrw4MjJS6w/BHToJQArQSeKgk4AXdNILkyZNys7OZrcnTpyI15MAQEd00UlPnz4NCgry9vZOTU3V7pqlA50EvKCTXqDhYmFhERoa6uHhYWNjo/X1SwE6CUAKtN5JdXV15ubmJ06cyMrKGjduXEREhBZXLh3oJOAFnfSrpKQk2iHz9/enoaOL9XOHTgKQAq130vXr14W9u4KCgpEjR2px5dKBTgJe0Em/ioyMzMjI8PLy0sXKpQCdBCAFWu+khISERYsWsds1NTWmpqZaXLl0oJOAF3TSr9BJAPAKaL2TioqKBg4cyG4nJSXZ29trceXSgU4CXtBJv0InAcAroIvjuDdu3Dh69GhnZ+dBgwbdu3dPuyuXCHQS8IJO+hU6CQBeAR2dFyA0NJSGWG5urtbXLBHoJOClhXfS3bt3S0tLNVkyOjo6NjaWdss0XLOGq5UOdBKAFOiok2gfj+3saX3NEoFOAl5abCcVFxcvW7Zsy5Ytrq6u33//fXV1tZqFCwoKVq5cuXPnziVLlkRFRalfMz1dPTw8/Pz8aOHbt283Y+u16vLly87OzsuXLw8PD9dkeXQSgBSgk8RBJwEvLbCTKisrKY9Wr14tvORDSfH111+zAKJ+8vT0dHBwOHXqFH377NmzzQ3oBls4Pj7ezc0tKytLec1lZWXe3t5USHSDlqf2orSi8fSKX1uiqqNE2717d21tLX2bnJxMwUS/o/qfQicBSIGBd9KJwuyBFw73Ttw/I/10SaVM8x9EJwEvLa2Tjh49unDhQpUv89BfRUREmJmZJSYmFhYW2tnZhYSErFmzhrJDYUnqj8DAQPkAontoYWovyixaz5w5c+7fv8/+ipZZvnz5jh071L9kpRUUZxs2bKDNoFBj90RHR1O6PXnyhDbY1dVV+XcRoJMApMCQOyn/WdkXCfvaxQSwL6v0Jl68l4dOAl5aTiex96Hi4+PV/HhSUpKDgwO7/fjx4wEDBqhZmAKIRs/OnTtjYmLc3NwyGzg6Oqp8Y47+av78+U2+ZydaXV1dWFiYk5OTcgJSulE50d/Sb7RkyZJ169YJr43JQycBSIHmnUQjyNPTk/blhP2ixtB8oCHQ2AvhCmhY0c4Vl2MGNmWnUR613uf1ltus96P8O8TvflJdyf7q4fOKK0+Knv72rTJ0EvDScjqJ/oq9D6XGqVOnXF1d2W2aLPKXv21McnIy1VJNTc2yZcuafNFo69atTb7/JQ49tPoEpMddvHhxSkoKDUEXFxflBdBJAFKgSSfRnKGnPM0c2guiPqCpRTtCwt8+fPgwPz9f+PbChQv03KcJQDlFw8rPz6+xMcWO2qQ1y2QydsxAkwWmXYeyM962n/A3p6mtQzzfmGz59rffdDu/d3/+Td+cy58nhFJCfZm0/+TDHJU/i04CXlpOJ2miqKjI1NSUXZkkNjZ21qxZTf6I8ORU+SKNPJpWkZGRCQkJojdPDXbCgiZ3Fm/dukV/0tBU/it0EoAUNNlJtEe0YMEC2uFRuNPZ2ZnunDFjxrx58+g5bmlpmZ2d7eHhofBJjtu3byu/tl1ZWbl58+bVq1dTY9GNwsJCurOkpITuCQkJaXIP8+WxV8Tp4SbFH/wobtdbC63bhqx5d8P818dZtApc+f/79Xzz64nUSe9tcftfJyuVxy2hk4AXw+okQntRgwcPtra2Hjp0KGVTk8tr/uRkxwfotJM0PL0TOglAstR0EiWOmo/cUs1EREQIrxbv3r3b29ubAkjlwseOHaPYYm+usUMqqbGEG/JL0reLFi2i3Tzxv1JThFe82LeRD3N8b1/03OZruXDOP476vPnNpD917/Tnvp+33uf1ro/rX2ePWX8nVXkl6CTgxeA6qbnQSQCgRY11Eo0a2otT/86+n5+fMI6uXLkiHG2pkkwm27Bhw4wZMyi85D/zq1J4ePjmzZs1+w2agTJuxYoVjZ27pLS0dE/4D0ZnQ14z7tJq54o/m3RjnfR1Rozywugk4AWd1AR0EgBo0ct83u3QoUOUPuz2yZMnV65c2eSPsGlAY1NNgdXW1lLQ6OJqBJrMz4mXIqmT2sUEvD7W/I0pQ6iT5lyLFbcqAF1AJzUBnQQAWvQynfT06VNTU1OaMzExMf369aPp1OSPqJwGCtiU010nqV+zW1YC66S2x3z/8PfWf5s9du+9G42tSutbCNAkdFIT0EkAoEUvef6k4uLibdu2bd68OS8vT5Plpd9JRc8r2s+3pk5qc2D9O15O3X08qlQdV45OAl7QSU0QnpzPnz9Xv6Tmn3errKxs7sdx2aDR8PxM6CQAydLReSYbI/1OIqmlDz6ICXhjsqXR2ZD7sqdqVqX1LQRoEjqpCYWFhX5+fjKZzMnJKSwsjJ1ToDE7duzYv3+/+hWyj5zcvXs3JSVF5emzVT7E8uXLG/tgi/BT9NCBgYF0283NTXkBdBKAFKCTVOoYv5s6Sc0ZutFJwAs6qWlRUVHskrfx8fEODg4qP0BLz+FFixaFhob6+/s3dv2QO3fusI+c0KoWLlxI1UXjY9OmTcKZmfbcy2RXPrK5Ei2cl5Z9VJgaSPlEKQLapHnz5tGfmZmZFEnJycnKy6CTAKQAnaSsqra2fewu6iQagOpXpe0NBGgaOkkj7JK369ate/LkSVBQ0Pz584uLi9lfsXPgyudOaWkpxQq7fgjlS2zsi89upKSkBAcHs2uMbNmyRXhxiJ78S5cupQCKLc57e+TA1iGe7WIC3lk376t9vsKFU4QPqrDTkFy9elXYMNZnVFFFRUXqTxmHTgKQAgl2Es2lhIQEDTuppqZG80dncbN79241y9TV1Y1NO96u4X23D2IClt1MUrMqzR8aQFvQSc3w6NEj1iJUS5RHVCT0/F+yZInKV48yMzPt7e0HDhz41VdfyWSyyMhIZ2dndiEC5YUpgDp/Pf2PnT56rXdXmhd/c5r6nt1455XLhAvxCmim7N27l12Rl75NS0ujmevn5+ft7a3+mCd0EoAUvOJO8vDwoD/Xr1+v/sJHZMWKFeqPK7h9+7aTk9NPP/1Ek7DJ6xMw2dnZtGOpfpkd0cdbeTq+OC/ApMH0p3FiWGWtihRDJwEv6KRmY+9tBQYGUvc0eTW3oUOHnjx5klqKOkn97lr/5EOvGXd5Y/qwt9xnUye94znXN6fRlVMSURht27bt8OHDNAc1+XgwOglACl5xJ505c4YdNsDO5a3y8rfszf2dO3eyt++VF3j+/Pny5cs3bNhQVFTk1UCT4zXZEQtr166lHTmVh1fS4KLxtSI4oM0+rzemDXvPdzF1Us+Efc9qVJzqCZ0EvKCTRMrNzdVkMeok+nPSpEk0YtR3Ut+kA9RJ75/y+1OXT960G0ed5H0nTf3KaXBoftlddBKAFLziTqr/7aq6tGfFKmfp0qXCa88Kb+5T99CgcHd3LygoiI6Oph9hi1Hr0D0KL5+z4zVpBBUXF9vZ2bH342htFRUVbGdSeAXrzp07ixYtkv+4LtvTo356cY25tWs+WTD7/Sh/iiT6sr5yWuVvgU4CXtBJusU6iZ7hH374ofpOGnkxgp1s7d0N8//Q+p1Wa5ziH2l0fhQNoZMApODVdxLDDo4MCwujfTyZTMaOuaShpPzmPjvmcsGCBZ06dUpNfXGpNUtLS1dXV+W9MlrJ999/v2bNmvbt2/v4+NQ3TLzNmzerPFCSOsnR0ZG9oHXp0qWHDx8K4VUgK5t1NXpEasTCG+dlql5MqkcnAT/oJN1ycnJiN7Zu3ar+YMbvc6++bmnC9qj+MqJfd7+V1Vq9iDc6CUAKeHUSQ62zePHiwMBA9macmiX9/f0pdwYNGlRTU8P29xpDBePg4DBixIh79+7Rkmp+u8rKSqqo5cuXR0ZG0o+kpKRovuXoJOAFnSQVdXV109Oj2h7zffPriZ+eDbn2tPhpdeV/q5o4uaXm0EkAUsC3kxhNzuVNnUQ1s2vXLrqhSSdlZWVNmDBBfScxBQUFp0+fVn9sk8pHQScBF+gkCblRVtI2YvNfZ4/pem5Pn6QDXc7t6Xwu5MvE/cNSwx0yYn56/OBlVo5OApACKXSSJlgnUc0MGzbM3NxczZKsk+obzkHQpk0bHf126CTgBZ0kFSWVsiEnAtue2Pr2UjuqpTbHfdsc8mZvw9G3bSO3dozfPS7teHa5yBmETgKQAn3ppMOHD7OrMKWnp8+aNUvNkvn5+ezsAxUVFT179nz6VPWFR14SOgl4QSdJQnZ5ab/kQ//z17+85T6bwuivs8e85WHHDutm377jOZfdNk4MS36s4nRNTUInAUiBvnRSc0VHR2dmZupu/egk4AWdxF9NXa1Fyg/UQH80+tef+3zW9uh3ajqJvkyTD5ZUypr7KOgkACloqZ0UGRmZkZGhu/Wjk4AXdBJ/ofdvfNAQQH/q/HGr7R5/sTRhnfSH1u/8Zagpff2x4//KdxJ9LbpxvrmPgk4CkAJ0kjjoJOAFncTfN9di2/3WSS9OCjCq/2vGXdS8nkRfEy9FNvdR0EkAUoBOEgedBLygk/hT6KS2EZv/39tvKnTS28vt/+Zi9c7qOegkAL2GThIHnQS8oJP4E953e3ejC8ugVtuXtd7n9a6P66/fBn373vdL20ZufX2cBd53A9BrLbWTCgoKdPp7oZOAF3QSfzV1teYNx3Gr/2rzw6bXJ35FN/om4ThuAH3VUjtJ19BJwAs6SRKyy0tNkw+qiaRWQd++1r3TW4tn9Yjfg/MCAOgvdJI46CTgBZ0kFSWVsllXozuf26Oyk94/5ffx8W0j4vbfKVO8aKWG0EkAUoBOEgedBLygk6Tl57LH8zPPDksN75N0oPv5UPr6Mmm/5U9Hcd0SgJYBnSQOOgl4QSdJF66DC9DyoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl7QSYYCnQQgBegkcdBJwAs6yVCgkwCkAJ0kDjoJeEEnGQp0EoAUoJPEQScBL+gkQ4FOApACdJI46CTgBZ1kKNBJAFKAThIHnQS8oJMMBToJQArQSeKgk4AXdJKhQCcBSAE6SRx0EvCCTjIU6CQAKUAniYNOAl70u5Oqq6sDAgKmTp06YcIEJyenhIQEujM/P7979+4artC7Ad2Ij4+fPHmyhj9FD9GvXz92+8cff3z27Jnmv4KG7t+/7+7ubm1t7ePjo3L9N2/edHZ2HjNmjIuLy61bt9id0dHR9C3dOXfu3IyMDPnl0UkAUqDQSZcuXXJ0dKTn7MyZMzds2FBZWUl32tnZHT9+XJO1yY87Gko0FjTcDOEhsrOzr1+/3rzfQQN1dXV79uyxsbGh345+R+UFvLy8nOSEhITI/21MTAzdSb+dcA86CXjR707y9fUdO3Zsamrq3bt3T5w4cfToUbqTqoLaRcMV3mxQ38xOooeg5dltGlLyT2atoFk5ePBgGpqZmZlWVlZubm4KC5SVlRkbG1Mj0ozbvn073a6oqKD7abLQvwMVEv3L9OjR4969e8KPoJMApEC+k+gZ+vnnn1Mi5OTkUEzQU549kdPS0jScKvLjrlmdJDzEjh07VqxY0dzfoknBwcEWFhbp6ekHDx6k37GgoEBhAdqtPfUbExMT+QZ69OgRDcDOnTvL/zroJOBFvztp+PDhERERCss8efKEKoHdphs0gLy9vWkQ0D4T5cXWrVtdXV0vXLjAFjjXoP73nXTo0CF3d3dnZ+cDBw5UV1cLq8rNzaVVbdu2jR6ChgvdeeTIESMjI1o5Dbg7d+7QyouKitjyMpmMFn7+/LmIX5MG34ABA9htmi8dO3YsKSmRX+DWrVtdu3YVvqWBQo+usBLaQ5XfJUUnAUiBfCfRM3TIkCHKy9BguXHjBt1ISUk5c+YMTTkPD489e/bU1tZSXtB02rhxI5st8uNO6CT6c/369fPmzVu9ejVNLfa3bNbRI9J+F+1fsYegUJs2bdqoUaNogoWFhdEC8juZ9NDnz58X92tS6Jw+fZrdpi3x8/NrbEna2i5dutAvItxDy9N20i4oOgmkQL87acGCBRQ3FD3y70zJvxBNN2xsbOiZHxgY+MUXX8ydO5eefocPHxb2b1S+70b30DppQFhZWXl5eQmrmjp1Kg0X+ivhfTcaNJ999hmtMykp6fHjx4sXL96+fTtbPjw8fMaMGQrbTzMuQElUVJTCYjRTnJychG+NjY1TU1PlF6iqqqJGpB21vLw8mm4jRowQeo4pLy+nDaZdRuEedBKAFMh3UkZGBu3k7N+/X+HVI+FNMdof69OnDw2E2NhYKg9bW1tKn7Nnz9KwWrNmTX0j77tRoJw4cYKe/kFBQTT32MPRWDMzM1u3bh2tqrCwkD0E1QlVl729PU2wjAa0TE1NDS1Pf9JthbfvaVdTeYIRhR05GoYdOnR48OAB+5Z+CwcHh8b+QTw9PWmSC99SnP3nP/+pbxi56CSQAv3uJHpyLlq0iJ5ONGtmzZqVmZlZr9RJwktHNGUOHDjAbs+cOfPkyZP1jR+fRM9zeiwqGFNTU2FVwq6V/PFJ8u+7Xb582cLCoq6ujm7T2pQDSMNOWtFA+JYeS3ibTxAdHU21R4OMNiAmJkb+r2gDXFxc5EurHp0EIA0KxyfRQLO0tKSqoNFBWcPulO8kGlbsTnoK0xBj44XG2tixY+sbPz6psrKSdqKuXbs2ZswYCqP6hlknv+cm/xDy04ZWGxcXRzfoT/pZhY3XsJNoq+g3ooWFLaeHU/mvQdvZq1evn376iX1L/zL0O7LAQieBROh3JzE0OO7cuTN//nwaE7QPpNBJQsQMHz5ceDYKM0K5k+h5O3v2bHquOjo6Um3Ir+rRo0fsdmOdxB4lJSWFttPExKSqqkphUym/8pQIb9UJNm3a5OrqKnzbt2/fxMRE+QVo/PXs2ZO910ajhG6zV+kZ2tG0trZmB4QK0EkAUqDy825Pnjw5ceIEDRP6s76RiKF7hNpIS0ujUVPfSCfRrhcNDRsbGzc3N7pTmHXsJSimsU6iActezqE/Dx06pLCd1dXVyhOMKEybhw8fUicVFxezb6n/GuukU6dOffXVVyz+iLu7O00/tk7aDzx37pwQW+gk4KUldBJDtUHPzIKCAjWdJLwPpaaTIiIirKyshIeTX9XTp0/ZbflO+uKLLxQOl16wYMGqVatoGipvJI2kMUo8PT0VFjt69KiwJ0djomPHjvfv35dfgB5l4sSJwrfjx48XDkXy8vKi7VcYW/XoJABpUHNeAGdnZ5YsL9lJPXr0EHacaBoozDpGeIidO3d6eHgI98tkMmNj40uXLtFkKy8vV9hCGrPKE4wIR0ExtbW1vXv3vnjxIvv222+/FQ5gUEA7pexYT2bevHnCOv/9738PGTJEeLkdnQS86Hcn7d27lz0/6Wnp4+NDz8yqqqqX7CS6f9KkSbTbRPNC4fUklZ1Eq42OjqbBx149Yp9EoxHzMh+CKykpoYdLSEig32v9+vXCG4L0+545c4ZuXLlypVu3buz1pKysrM8++4wdRrB27VoLCwu6h+2QCbti9egkAGmQ76T09PS4uDi2V5OTk2NiYrJ///56bXQSe+08MTGRakN9J9GfU6dOLS0tFcYFjRHakpUrV77Mr0n7itRANBWzs7N79ux59epVupPGtfxuIe3WGhkZKb+gzuB9N5AI/e4kaiNzc3N6Evbq1WvkyJGXL1+ub9jjmTZtGluAbghPQtpTEfax6LnKPua2t0F9w9xxd3evbzhEmiZI3759BwwYEBAQIL8qYe+K1ikMLAqs8ePH096PEGGurq7sheuXQQOOpl6XLl0okoTDIWmz2dYS2rY+ffrQ704TLTg4WNhI+Z08+SOf0EkAUiDfSdevX7eysqLdKvZEpo5hx1ALA+rIkSPCyy10jxAZNMpooNX/ftzRUGL7jceOHaPh0L9/f3t7exprCrOOER7i2bNnTk5ONC7YACS0A9ahQ4eXHBe02rlz59IEo99O6BvabGFr2XaqqTFaUv5lKnQS8KLfnSRN48aNYwdOSgo6CUAKpH8+7sjIyOnTp/PeCkXoJOAFnaRNZ86csbW1HTt2LNsplBR0EoAUSLmTZDKZu7t7nz59hI8JSwc6CXhBJ2lTbm5ucnKy8sGPUoBOApACKXdSdXV1UlJSdnY27w1RAZ0EvKCTDAU6CUAKpNxJUoZOAl70u5POnTt3+PBhjtvTpLy8PHt7e3Y7KyuLnucrVqwQTuNU35AvwlHYOoVOApAC+U6SyWQeHh6lpaV8N0k9Jycn9hGZK1eueHl5zZo1a/78+eyi4/UN54SbMGGCLq4FrgCdBLzodyft2LHDxcWF4/Y0iQaKcLJsNzc3d3f3AQMGyD/by8vL+/XrJ39tIx1BJwFIgXwnPX36tEOHDlq/kLYWXbx4UfiEmqenJ43c8+fPh4SEdOnSRUglb2/vgIAAXW8JOgl4aSGdVFZWFhwcXFBQsHbt2vXr1xcWFgrLpKam0tN79erV0dHR9O3t27ejoqJox0h4XScuLm7lypVr1qwRzhqQl5dHT/vly5f7+PgI55CsqKigO2nnj8accAqA+/fv07e05LFjx4RTygqKi4t79eqlcEz35MmTFZ7tixcvDg0N1cY/jzroJAApaKyTaC7RM3T//v3Lli2TP6NHSUkJTR66k/5kk42eyxQNW7du3bZtG31Ld/r6+tIChw8fFi7NRhOJ5h5NtlOnTgmrOnfuHE3CVatW0bRk53ujP8PDw+lnN27cyC55qcDJyUnla/aurq7ffvstu33nzh0zMzPlAahd6CTgpYV0Eg0aIyMjOzs7mg40Bfr378+mAI0Dun38+HGKITZT6LaJiQk9+SMjI2/evEmzZsSIEUeOHAkKCjI1NWUHMNJKaIeJfoSmT58+fdiLPe7u7hQ0SUlJ9IPsOth3797t27cvrZaWnzJlinDVbsHRo0eFN90Eyp1EP67mIpHagk4CkILGOonG1+DBgymGaMTRYKE5U99weqR+/fpR8SQmJu7du5ed4ZruoalFz+iYmJgHDx7Q4KJ10mSzsbFhJ1gqLy+nG/S3NFssLS3ZwMnIyLCwsKDZdfbsWX9/f/ZO2YIFC2bPnk2L0T7hgAEDHj9+LL+plD49e/akfUvl38LKykr+PNrdu3dXuZgWoZOAl5bTSR07dmTjhp7bNGXoSUupRE9ydnFcAU2T3r17sxPgymSyrl27Cq8Y7dq1Szj1bW1t7f379/Py8mbMmMHOWjtmzBh26SWBm5sba6/6hl26zz77TOGlo7Vr1ypfk0S5k9LS0szNzUX9ezQDOglACtR00vr169n9tNtG46W+4VS68+fPV1gDddLBgwfZbZowNGfY7bKyMtpdrKioYN/So9AEo4EpXGlg/PjxNPSE9dCOIg1D4R5XV1eF0VRSUkIrrK6uVtgAGrzDhw+X/2AvrfnHH38U9e+hKXQS8NJyOkk4eX99w7VEaARQ6NAMouKRXwMNC+Gi2bRMp06dhLNX084cO8VtfHw87VpZW1s7OTnRSGJPTpoCX3zxxdChQzds2MDO8U3Th/pG+HFqMvnrhBCqLvkLBTAqO0m4CoruoJMApEBNJ4WHh7P76dnKJhtFkvKb8sL1SYitrS0NK2EK9erV68GDB8+ePXNwcKCBNmfOHCsrK3aFE5pOdLtbt26Ojo7soMljx459/vnnws/SeoQdP4Y2jBZQePSIiAgzMzPhIgEMjTX2ApjuoJOAl5bcSTSMOnbsqNAu8tdIunfvXufOndk7dPJoCghHINEYEp6cdXV1mZmZtJ83atQo+nbmzJk0aNRsLQ0d4VIAAuVOSkxMFK56qzvoJAApUNNJwtWshU5aunSpQrvU/76TKHqU62HXrl3Ozs7sdnJyMuskpqSk5OTJk1RL58+fp1oaOXKkmk2VyWQ0QuU/jkcTz9TUNCcnR2FJajJdn5oSnQS8tOROqm94E93T05O9pMReBJLvJDJhwgRvb2+2AM0sNrB69+596dKl+obPwX766afsyXnt2jV2oGJqaip7+WfPnj3Dhg1j7+jTGuQv2chcvHiRFRVTUVFB85EeMTAwULhubv3vL3WpO+gkACloVifFxcXRtGHHBlRWVrJpI99J4eHhAwcOfPjwYX3DjlxWVhbd8Pf3nzNnDn37/PlzGxsb1knUGexK3nT/2LFj6bFoH7JPnz7Czh6tpLi4WGFracQJAXTq1KlevXrRAPxvA+ENvmfPnhkZGen6pFDoJOBFvzspLCyMHQBUWFg4YsQI4f7Zs2ezI7KpjWhM9O3b19zcnO6ke2gXSv41HvpBW1tbExMTmjW0GLswJO1v9ejRY+jQodOnT3dzc2NzZMqUKWZmZuzV6bNnz9Y3jBs/Pz/au2I/y44nkFdTU0MTTfjwHW3qQDnC9KF10ujR/j/W76GTAKRAvpOoVGgUsBFBc0k4hwj7tBq7HRwczAYUDbGkpKT6htek5U+ZHRQURHOGTSFHR0e6p7S0lE0qCwuLrVu3stHHXgqiOUn3U4SxYzQzMzPHjRtH99OdtAbhM78CGnHC8U9OTk7yE0zYwqioKPYQOoVOAl70u5M0VF5eTvtVahagHSOFi43QEFF4w66+4aT+bIdM4U6aeo19JpZKjsaimoemOfVqLjmJTgKQAhHn466qqlJ/ijXaJaN1KhyLScNK+aACGmuskBTulD++Wx6tdvDgwcrDUJ6VlRU7EaVOoZOAF4PoJI5ofp08eVLNAunp6bm5ua9gS9BJAFKgd9ctSUtLUzOjKKHkz/akO+gk4AWdZCjQSQBSoHedJBHoJOAFnWQo0EkAUoBOEgedBLygkwwFOglACtBJ4qCTgBf966SVIBY6CYA76iTek0BfoZOACz3rJAAAAIBXBp0EAAAAoBo6CQAAAEA1dBIAAACAaugkAAAAANXQSQAAAACqoZMAAAAAVPs/Ey8koHN/pVEAAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -3970,53 +4083,67 @@ interactions: \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "188634" + - "188580" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3xUXW8bNxD8Kws+tcDJlZW4te+tKNA85ClGUPRDhbQiR3dMeOSFu5QtGPrvAXVS - LDtoX+6Am92Z2VnynsyQHIJpjQ1cHGaSYoTO3s5uZov54mZ+t7gzjfHOtGaQbjW/vv/w57vF3/LH - XXf/64e7v35+7271/o1pjO5H1CqIcAfTmJxC/cAiXpSjmsbYFBVRTfvP07le8ViR46s16/X6k6S4 - jE/LSLQ0UoaB835pWlqajz1o5BGZnBdbRCBkU4mKvGWrhQPhcQwcWX2KQj7SkAJsCZxpzHDeVoCO - I8sV/faiV0j69ECiuVgtmUOt81tvT2yazmwQ0p6VHlIJjmzPscNEeqEiV/R7yiQplI0PXvcXWPPK - tlDGDhzgJuLvhCGKTF1OZRTi6KiHIifWNAjxdgurl0ozYud87Iitd97+tGHx9kX73uXUIdImRUds - LUZNuSZmM7jm+szW0EPvA86UuT7OIUHI4dzi9TSyRdT/nfYBGVSkjpvoS+Gofruf+mbfqCkjTAn0 - fpTmuJ2qXZf0vNYpfTntgkPN6SQNN1HKFdWTg0cexnB0PKQomlkxxf3a3pjTzjuQjLB1Dw352jkg - Km8CLtRfLuqH4D9/y2lb4nF6Dufg08ntMcCyec7wx8vjxLb32IEcxGe4amZE1v150oakdB1EK432 - 2BNnEE9a1Z3tMXjL4cjQRcqwaRgQ3eTyamma6W5lBOw4WqzEpox6x26X8bCM6/XaHP5tjGgaV3W5 - KZrWILqVlhzNCRB8KYgWpo0lhMaU47Vvn4yPY9GVps+IYtrFm7e/NMay7bGqJ6WaWL0smZ/xDHb/ - hZ17qwLGHgMyh9XN8H39M3rdv0YPjUlFLz9d384bI8g7b7FSj2xaU39XjrMzh8NXAAAA//8DAGMe - uvohBQAA + H4sIAAAAAAAAA3RUzW4bNxC+6ykGPNnAWpVUy3bUU+I2zaF2gDQIUFSBMCJnd5lwyS1naFswDPgV + cmtez08ScFfyyrV7EVb85uebn29uRwDKGrUApWsU3bTu6PzTH29vtJMynk/f2YvzmmPz6X1dvVn/ + he9VkT3C+gtp2XmNdWhaR2KD72EdCYVy1OnpyXR+Nn81/bkDmmDIZbeqlaP50Wwymx9Nzo4mp1u/ + OlhNrBbw9wgA4Lb7zQy9oRu1gEmxe2mIGStSi0cjABWDyy8KmS0LelHFAOrghXxH+nbpAZaKU9Ng + 3CzVApbqY03QYksREhODDskLxRK1JHRAN61Dj7lEBgnAqaqIBXTwOpIQNMGRTg4jkLHCIDUK6Bp9 + lTFDDtpIxuouQgGGmuBZIor1FWD3jGvrrGzG8DZE4OBS/x8OPlxeQvDw+p8/g/v1zWEBEtr/EGSw + HqQmcEGjA11TY/MHt6gJrDdWo1DPqgnGlpucNzsQC0WoYkgtoDeAxmSoJqEYUEKTQ+eB5q5sayCz + x+8XMMQ62lZCBPToNn3/vE4RDlBbY/VPa2Sr+yzcpXn3cP9tHXI+rSm7DmmexI5df4yxfesNbW2s + HG4bpcnLXnPh4PfLy8MCLi5en/8GlgENtpmxBGiSE/tw/83hmhyEJG0SBg7PmmlsWVKE4N1m11gm + R33lOWEBNK7Gxf6wG/xKgLtFyJNg6jwf7v8tY7Kyebj/vqV7XVtHEEnQ+lxgkJoij+FjTUxAN5j1 + xMB1uH7GrY3hyhoCwVhRR0hi0pIibfeNAZ2tPBm4tlIPu2C9pK6NBSTGtSMoQ9xbXENsKz9eqqKX + RyRHV+g1rViHSFkm08nS3+2LKlKZGLOkfXJuD0Dvg/R6yXL+vEXuHgVcWm+5XuVpBp9FyRJa1aF3 + I4DP3UFITzSu2hiaVlYSvlIXdjY5nvcB1XCCBvhktkMlCLo9v5PT7SV5GnJl8kQc710VpVHXZAbf + 6avZcIUwGRsGbDLaq/E5pZfC9/VbXw1Rjo/P/jfBAHSyIbMaNv8ls0hfuq192eyx2x1lxRSvrKaV + WIp5IoZKTK4/ooo3LNSsSusrim203SXNQx/djX4AAAD//wMA3I6FIUYGAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac8491d041739-SJC + - 9953e42f2e2c3ad4-SJC Connection: - keep-alive Content-Encoding: @@ -4024,228 +4151,81 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:46 GMT + - Mon, 27 Oct 2025 17:25:27 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:43Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:46Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:43Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJ6B4HSZSakrrtB3vQ - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "15019" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "5633" + - "15129" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249998" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39996954" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 4ms + x-request-id: + - req_ffb22cce1c45474bb4b25bea53b9df50 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"image\",\"source\":{\"type\":\"base64\",\"media_type\":\"image/png\",\"data\":\"iVBORw0KGgoAAAANSUhEUgAAAw0AAADsCAIAAAC5c90NAAAACXBIWXMAABcSAAAXEgFnn9JSAACCkUlEQVR4nOydd1gUWbr/nbv33t195u7c3UnOzs7szuzsYiBnUYIgoqggipgwYwBUMIJ5DSAGDIgRE+acRhQDmDCgjmHMKGYUEyIGYERv/77b78/z1FQHOlQ13XA+f/B0F9WnTlW99b7f99QJtRQcDofD4XA4HHXU+r//+7+qrgOHw+FwOByOOcJ1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4HA6Hw+Goh+skDofD4XA4HPVwncThcDgcDoejHq6TOBwOh8PhcNTDdRLHsrl582Zubq7BPz937tyVK1fo8+vXr48dO/b8+XODS8vLy/vpp58M/jmnqqioqMCtLywsNOznsBn8HPZDX2FRFy5cMLgy5eXlKO3JkycGl8CpKszKHaEy3B1JAtdJHHOntLR09uzZbdu2dXNza9SoUXh4+KxZs5j7+Ne//uXk5GRw4a1aterTpw99vnbtmpWV1cGDBw0ubciQIT4+PvSZQu/9+/cNLs0Y8Fxv3bo1JCTE1dU1LCxs9+7d2vfPz88fMWJEYGCgp6dnx44d09PT3759K9wBFycyMtLDw8PPz2/69OkvX76Us/qycPbs2aioKF9fXxcXF5zp4MGDDx8+TP/C6eDWr1mzxrCSYTP4OS4RfYVF4RoaXM8HDx6gtB9//JG+3rlzx5jQaySPHj0aOXIknjsvL6+xY8c+fvxY057Pnj3rro6FCxfSDitWrFC7Q1U9I4YBdzR37lyLcEeoDHNHwFLcEQxGrZ3AwGgH2OSePXumTZsWEREBl2uC+nOdxDFr4JWCg4NtbGzi4uJWrVo1b9682NhYeCKWJ23cuBH/Mrj8pKSkRYsW0WfjHRMiAXwTfabQywo3MUuXLsXRca3Wr1/ft29ffMaF0rQzAjMuKVxYamoqtAJ+hf0RHdkOSEyxQ9OmTXELUlJS7Ozs4OwgBE1yKtKwa9cunBTiEILc8uXLJ0+ejFDHYhLMLCYmJicnx7DCL126hJ/jMtJXI3USgi5KYxYOVWpM6DWGp0+fQh5BDSxbtiwtLQ3KwN/f/9WrV2p3pmoLwRXGNccFpx1ggaIdYHK2trYWpLnJHVlbWw8bNsz83REqw9wRqHJ3hDsOdzRgwAB8Xrdunaad4UVFduLo6Ijcpry8nHaANkIJ2IIrLxSC8sF1EsesQRaCR2LHjh3CjW/evNHkrI3BeMckpAp1EiIWwg/8C33FM96jRw8HBwf2YkgEKomqHjlyhG2JioqqU6dOSUkJfY2MjMTPHz58SF83b96M/Tdt2iTnSUhM48aNmzVrhjgn3KildcQYjNRJIqpQJ02cOBFmcPnyZfp64cIF3PfZs2fr+HOICfycmY0IWCkEx9ChQ6Wpq0kgd4RgL9xoEe5IUXU6idxRdHQ0iQ1yR8i1dHylCPuBFQkFH9KSO3fuKJQPGtdJHI4iOTkZj7eW5mIkH4ji7Gv37t0zMjIOHDiAQOXt7T1o0KBHjx7ByLEbstsmTZrEx8cLn8/Ro0fPnDmTPosc082bN0eNGtW6dWtPT8+WLVtOmzaN6QaAo+BY2DJp0iRfX9+uXbsqlC3G1A787NmzLl26oDTk39RoDFWxf/9+fGCtDsTu3buxUdrOKDgWDn306FG25dChQ9iiqbkbVwD/ffHiBdsyf/58bKEIhxhQv359YZZcUVHh5uYmvOxmDgwApwNj0LQDQh3uQnZ2Nn3FBcRXXBB6cxEcHEytcbBDqM+AgADYUmZmJvv5+fPnhe+PRDpp5cqVCAxQaTCkiIgIUasV2QYsFiaEq3rixAl6gYUPCqVFwbrq1avH3j5A7OJERGLl/fv3SNNx14y9Ur+GGTYDl6J58+a6/BZ5AmIhzlfTDngkcVPoNC2F1NRU1Dk/P1/TDrq4I2xfs2YNuSNIyaKiIra/dneE/7Zp00Z3d4TKMHeE/1qKOxIxb9487Hzx4kXVf3GdxOH8m7Vr1+IhSUpKEnWXYYg6BGDn8PDwwMDA9PT0BQsWODs7w7PAu4WGhq5atWrGjBlIYfv168f219IhYMmSJXB5aWlpSB/hlRDDQkJCEJDov9QGA/eHPAn7YGeFoH8StAW5VMSJNCUnT56Et8LRU1JShPWHuwwLC1N7auXl5fe08ssvv6j94fjx43FoYesRFA+24CzU7p+bm4v/wqvS17KyMlw0REQ62TNnzuC/uHrCn8ARe3l5qS3NPGnUqFGDBg0QbNT+V9Q/afr06fjauXNnWNe6det69uyJr5A7iEC4htgN5lS3bl3II9pfe/8kPz+/hIQE/Io66GDPXbt2sf/ia/v27RH8YJwICVeuXBH2T4J0g+C2sbFJ+wBuOuqABF2oa48dO4afZGVlqT07hD0tVsS6fYhAOoEyJ0yYINyIC4KNkJVaL/a/oSd3z549mnbAo4fraVkBiE4KWkTTo1epO4JchsYVuqO+ffuy/Y13R1FRUfhM7oj1T4I7wg91dEdA7amZzB0JwQnCSIKCgtT+l+skDuffIIAhecJD5e7uDheAjFmUWKg6poYNG7IWo507d2ILoj6TWfALderUYTtocUzv3r0THgiJrzArIscEFyDcR9iPW+17N+wAecFKvnTpEvbZvHmz2nP/6aefrLTCArOIgQMHOjo6CrfgiNh/1KhRavcHO3bsoB7ckH1IfKEM2OCvffv24besrYWgPkyaSjNDtm7dWq9ePdQZYQB3bfv27cJuMWp1Ert3uHoIb8IMGIEHV5jdfe06SWhI8LeQmDBItgU/RFHCl1Oiftyq793u3r0LG2a6FsTExOD2aeoxhvposSJNPWHxoOG/iKnCjXRlRI0QasF1hjDVFDvpFR50YaXlmBXMHUGmkDtiWpkwwB1hCzUyKfRxR5TbaHdHon7cOrojTR0ZJXdHunTBPn78uJUghRPBdRKH8/8pKytD7oW0DA8bPZBIylmQU3VMwjfZd+7cEXkHxHtsYf0utQ8wgTs7c+bM7g/gv5SoKT44JlH7RKU6iXwNOwSqihRT1GmGgQzsolZwZdT+EGek2qNFi2OC20L8Q3KJ6N6/f/9GjRoFBAQg46T/ImBbqfSToK6UakszW65cuTJy5MimTZtCZKDyuPJMi6jVScIXIoMGDcL+Qm8ZGhrKWgIqHe+GQHjgwAGyosGDB0OxsX9ZKfu3CneuVCcBCFmYLn1GPXHvtHQbwlOgxYo0vdQmWxWNAdRRJ9GjlJSUpGkHWL6WrkvmDJQfrkmVuCM8p+fOnRO6I/amVa07qlQnqbojnJSmXowmc0dCsA9sW1NPJq6TOBwx79+/R8aD7ATP2IgRI2ijqmMSJqkUcrZt28a2UEjTxTEhU/T29sYWX1/fNkqEjoYck8g1VKqTQFBQEPVgePPmDbzSxIkTjbgk6hk6dKiNjY1wS3l5OSozbtw4tfvTK0Iku/QVkQCu387OjsIYdSbYu3ev8CeQU8Jgb1ng1mzYsMHNzQ2nQKFFrU4S/kR4ZwkoIWY5WnQSjBbiDJoA1zM4OJj6lwgLx2ccTliyLjqJGvnOnj2Lz4sXL65bt67kmiMvLw+HgG0IN9KVYe0fmkhISFAN2ww8NTijXr16SVbXqgB39vLly+SOWNc3Wd1R48aNRe6IWY5ad1SpTlKouKOxY8caej00oskdDR8+XPsPX7x4gR+KsgghXCdxOOqBe2rSpImHhwd9VXVMQl8gCjkKnR0TjuLv79+2bdunT5/Sf6mtWKSTRHXTRSetX78e4RmRhkaNIRppOtMLFy74aUVTHJo6dSpKZjUHt27dEmafIqhLqXDL4cOHsf/WrVsVymYY1RMJCwsLDAzUVHOLgLqXpqenK+TUSVu2bLFSDthkL8WojzwrxzCdhNK8vLygwODAmzVrJuzjogp202JF0DRqf4WgC0MVvasdNmwYNmp6m0bgv9CgWkb84WpY6dyN18whd9SgQQP6Krc7YgqV3JFIJ4nqpotOErkjLfOjmswdMVavXm3163G4IrhO4nA0An/h4uJCn2VyTAUFBVa/HvoukguV6iREC+zAJtljvH792tnZGT6iffv22keP379/f5pWNA1LycrKwqG3b9/OtpAmOHbsmNr9kVPCzQm3kE6i8c9v377F1e7evTv7b0lJibW1tTHzxJgDOTk5rOuDfDpp3Lhx3t7ewh+KunZVqpNSU1NxtVUdNbbb29vTi5sDBw5oOVNoNS1WlJGRoemHwcHBEGHs0Pjg6enZqVMnLcdSKMdMWWnudQe6dOkCIaVdbFkQVeiO9NVJ2t1RSEiIltOU3B1VOl1Z69at8eywvuqqcJ3E4fwbuHhkn0KXCi9ct25dNmZNJsdEg+Hj4+PpX6hA165d9dJJwN3dXW2j8cSJE11dXa1U5oWSCtTWy8sLXo+6GhQXFzdt2hRZL3vYcUFQMZb/0VsS0Xs34XsT7FCnTp3jx48L9z916pQclZeJCRMm3Lhxg32FMKKJGyiBlk8nUcevu3fv0tejR4/CrvTSSRRU2CRGjEePHtWrVw+GhIppiSXGsHz5ctasCDZs2CAyWliRahNFr169HB0dNY2Jw6VAIXK8bjYBVeuO2FxTqEBERIS+OqlSd7R27Vo9roXOkDvCqVEvLvyFO/L19WUtrPv37xe6IwIGjyrNmjVLS8lcJ3E4/2bu3LlWyi63yGIRvP39/fEVOe69e/doB5kck+LDEGiojQEDBuBpHDZsmL46iSrfoEEDPz+/xYsXs+35+fnYDt+kqeej8Zw4ccLBwQHZf2RkJPwj0nfhaBTSAewiIOLShWX9uEUeCq6tTZs2iPcIgcHBwZX6LzPE1tYW1W7RogWsCKeJiwORwfqOyKeTYKguLi4wYNwISG3YanR0tF46CWm6h4cHLj5CCwxJOKUhFcUmvJYcRLKBAwdCB6Dm7du3x7Hi4uKEIQNb2EVglYekHjNmjKYyZ8yYgV9dvXpVpjrLCj3RuInkjmgUZJW4IwgLfXWSdneEJ0KO2TIJoTtCBeCOhOMEqfKipehoNgG1gwzwnFqpIOwvLzlcJ3HMHTzGq1atQtID5zt58uSdO3cK87lLly4hHWFfkd4J85LS0lJsEQ7Pefz4MbawARQ5OTns+USwxL/YHM14NPAVj9+kSZMyMjLoKyscH1Q7WODhF40Lu3DhAg1OEcqU169f29vba+oXIhXw3ampqbhocEOijreojPAiKJSdUXbt2oUzxf6zZ8/GVRWVVl5evnnz5nHjxuEWnD59WtaaywGuOW4NTg0niLNYsGDBrVu32H/fvn2LC8Jafej6CH+uemfh+pnlkFGxQU/YLpw+EeY3c+ZMHBeBCp9FliOyDYU6o0XJ2dnZZEjCicRSUlKoc4khV0Q3YPZ79uzBU4AHMCsrSxQvUB9ReCsoKMBGLZ3KcWU0zfNkEcAdrV69mrkjUfOSydzR+/fvhZaj1h2hMrq7I+E6RXKgxR1R5UWD2o4cOXLo0CG1ReE53a2CqsuSEK6TOBxTs3HjRivNo4E4HF2oqKjw8fGJjo6u6opwLBtyR6ovdjkMrpM4HNOB7HP27NlOTk4WtOgHx9woLCxMS0vr169f3bp1r1y5UtXV4Vgq3B3pCNdJHI7pGDlyZJs2beLi4oRzGHI4egFtBCvq2LGjllVBOJxKIXc0fPhw7o60w3USh8PhcDgcjnq4TuJwOBwOh8NRT43TSYWFhcIljuUbCcmRnJcvX544cWL37t3Z2dnFxcVVXR29KSkpSU9PHzFiRExMjC4riZoMVAZVEg1cUqW0tBSPjCVeeRF5eXlZWVkwpAsXLsg085CsnD59OikpafDgwZrWB60qUB8ta7oplEvR5eTk4MqfPHlSOHDPEkHssGh3hPqvXLly5MiRFueOYDk///wzHuHMzEzTPMI1Tie1atVKOOlCvXr1unfvnp+fX9X14mgDj/SYMWOsra3Zjatbt27fvn01LeEpLbAQ4Uy4BhMWFubm5obwhnMxZiw3vDOq9OzZM+OrRNBMLcJpXUQMGjSoefPmuOaqk/1YFgjSNOcNw8PDY9WqVSY4dEZGhnBOc4M5cuQIzXSFCGekWY4ePVp1gmZjGDJkCFudV0RZWVnPnj3JhNiVt9AJAsgd2djYsHOpU6dO7969a7I7kvDctbsjCCNEbeEjDJNjM3rIRE3UScHBwbS+8fnz55Hf29nZeXl5yTfjH8dIXr9+HRISUr9+/Xnz5t27d+/du3fPnz9HJtG2bVvRYuYyIYk4oCnmNmzYYHx94EGsdFizXXcq1Ul+fn6xsbE0+6Ll6qSdO3ciTsNsjh49ilCHrBQnjtNhawXKitqZAA0AUc3d3V2SHBrOUJc123VHi056+fJl69at169fT02Subm5TZo0QeZz+/ZtCStgAjS5o3bt2lmcO5KkPZLckWgOMGPQ7o7u3LmzcuVK7IPLjnuxY8cOWBFiuqxKpibqJNGiWrNnz7b6sPI2UV5e/tNPP1HjMJs7jgH3Ss2thw8fLiwsFP33yZMn2H7gwAFNi91w9IVWydi1a5doO26EMI345Zdfzpw5s2fPnqtXrwqjSEVFBdwZreBB4L/YUlJSQl/htSkZQuzEjTt16hTbmfbE0ceNG0cvakVzM8IS9u3bJ2qPpPdTqA8M6dixY0ianz17Riumbdy4Ef9i2Rv2xOFgS6i52lfA2OH06dO0Ay0EQS/vaPpaqhKOolBO4yZq/IcrFNYW54Irg+uTk5OjOu2kdp3ECrRcnfT48WN7e/sWLVqoZkSiiawePnyIW3bkyBHRxHe4iSJtyixH8WujunLlysGDB4XzWKIoWg2UvfEXmij2xBFhKkIrVSg7CZAbwQ4wM0QI/BC5e0BAgPDWK5Rrb6GE7Oxs4UGFQI7gv9iHVRgfmjVrFhkZSUXRgVB/NrU0gSphC1tigs4aQnPv3r1INUXvzrTopP9TItxC6+vROsQWhCZ3BMEkbFPB44+Yoos7UigfXqE7olsAhwArMsAdXb9+XVi4Ae4IvkW7O8IO5I6wG7kjFFipOxI2gRvvjhhjx47F/qqxWEK4TlIsWLBAKIf3799va2uLdMHFxQXb7ezshAs6njt3ztPTE9sdHR3pNRBb/AgPAK3lhJ/jV/Xq1UtOTq5pl1dy8HjjUrdp00b7brgvjRo1qlu3rrOzM24KMlf22KiuFUCLVLD1BGg9dmSE+EsNuQ0aNCBfQ3uqnR0fTziOiLtMv+rRowfzWbQWwaZNm3x8fOhXiB/CQsgCkX1aKyFLQ80Re4QnhVTJ1dUVJ4Ud8BdhHh6TmiWE0It8VQWDo7Pa5uXlubm5YR8UBduuU6dOYmIiM86aoJOWLVuGymt/0YNHeMSIEVbKNRxsbGxwa4SLTqguXUKWQ5/JVGbNmtWrVy9Va6FFJ4RQAgabobVHyJ/ABoSrp9EqFuy31J6neutpzRmUQGuzREREIJ6xQhCAUQi2w35wXuwOMmsnaLkM1UYvUePlxIkTYTw4EA6H7b6+vjAt4SXSpJNUoZVchQtomD8GuyMmoVTdkeLXy5vQXYZ7EbojSFKFzO5o+/btQneE0xRN8A1pCB+Cu0/uCDYAba26hIgWd8QaL1Xd0fjx4/V1R4z4+HhURtN6gpJQE3USe+8GMjIycMPCw8PZdcjNzYU0pqnoi4qKhg0bBtNhbiIoKCgsLIxyL3jV8+fPs2lMoYqwJwrEduQWpLJN0xJbjaHVEKdNm6ZlH6Qj7u7ubdu2pdt05swZfMWNpiRYF50E/9K8efOff/5ZoZzsHybRpUsXtr/qM4+sC55i8uTJFO3gGnBENlcbOSZIHBgDDIkavUSrNSmUy2iz3qyPHz9GoEIkY94NKTsOMXDgQFq4AF4AforaQtS+d9Ouk27evAlBTzkigiiFQ0hD+m9N0Em4vLie2sdtQOXQM4vnF1dp5MiR+MrEqy46CQkS/ACOgjsFSYEtbAETVQkCn9O5c2fkXRRacIvHjBkDU2QuBTaMAiGkCgoKUCZZAk5EpEUWLlxIGTkMHkaFnwiXxEHIRLRGHMVJ4euNGzfYOu2q790q1UkIt6yBBLlEKyWsvUQvnUQN+XhaddzfHNDFHeER9vDwELmjwMBATe5IoU4n4TIK3VG7du2EO+vijkSLD5I7Ki8v1+SOjhw5cvz4ceaO+vfvr9YdkaXBVmFR1GKk9r2bdp0kcke03LJe7gghGOEb13b+/PmomOpizNJSE3WSSP+GhoZqabLDXYTgxY2kr/A4EyZMUN3txYsXkLSi5yc2NjYgIEDS6tc4qH1Y+3t0Cm/C1mY8hNhCCy3popOsfr0K48yZMxGu2DsF1WceGRjUtnALsjHsRk6EHJPoJ6qOSQRcEqV97BCIoOzFihADdJIq8LxwhcK6VW+dhPuFhFvLDlC0Dg4OwomJEdiaNGnCQpQuOqlTp07sv+Q6UlNT6auqBEFKZvXrNzjwxr6+vmylLTgrlC969a+qk0RMmjTJy8uLPiPy4RDr169Xu6cBOkkEvTtjMVJ3nQT5iKxS2t5RJkAXd7R06VKRbti5c6cWd6RQp5OE6wMa7I6o75dp3JFeOkkVfd0Ra1avU6fO2LFjhe+F5aAm6iQofXqTmpeXB9vFFjhQZGxsHzz8cFWwjDZKIFfZLR88eDB839ChQ3EXhT2QyF9AQq0XEBUVhbto6jOsXujSiQGxDdFFuAX5EH6FhFWhm07CLaZsm6DGZBafRM884h/279atm/Bek1aDG1V8cEzHjh0TVknVMeHR27dvX1xcXIcOHcjSWK2QoMPMNC26bphOunr1akJCAqpNx0IAZi+ga4JOCgkJ0d5f+8aNGzi7devWCTeOGzcOjzA14+mik0QXB/9lt0BVgkBCYcuSJUuEhtSyZcuwsDDaAa4J90tUT1WdBGtHUX379qU727BhQ3YgMktNo9YN0ElQkxs2bEAGiMCGY9HgQdZApaNOunjxoru7O0oQvh+0CHRxR3D7kBTCLSUlJVrckUKdTtLdHcGNQHEa744UyhZug92RvjrJSHeES3r37t0zZ86ghjh9hADej1tKVPsnXb9+HXeFGcG8efPwFY6A+S9bW1t2y1+9epWSksKGFuM204vnHTt24CsUWHcVTHt+1Q16ZoTvEVTBDRV5Z2HQ0rF/kvDn2h0TFQhlpnqvz58/r/jgmOAIVE9E6JigqqG3oLmXLVtGlsZqRY41OTlZ7fkaoJNwXBwLF2r+/Pl0LOGDUBN0EnUDEnXNFnL69GnsgNRfuJGCFlmCLjpJ1P6vXSdRxyNVKxo9ejTtQP2TRPUU6aTbt2+7urr6+/sjNMJucWcjIiLYgegQmk5ZX52E4A2bcXBwgOmuWLECx6LO6cyqddFJMDZUODQ01BLnHDLMHSkEj6eOOkn4X+3uiHyF8e5oypQpmtwR2bZ2d6SXTmLuCNHWYHfEoAa8o0eP6ri/AXCd9G+xbPWhGyN10xO+WauoqIBcVY0Njx49Wrt2rZ2dHbIHxYc8Q9TxjWM8uDtIziBMtRhq//79RQkcOaO5c+cqlIOGrH49IB8O2hidRO1Jal+/EuSYRI5D5JhQOAqhFJOABBfWClaH3E5t+Wp1kuprXw8PDxakw8PDEZmESWrnzp1rlE6iRdGFvaRF3Lp1CzuI5lIaOXIkMmnqrYgQ4u3tLfxvYmKiMTqJ2pOo15FadNFJM2fOFPYjUXwYkEWfKevTdAhVnZSWlob9hV1iN2/ezIzt7NmzVoJ+JApltxW9dNLNmzfd3d1bt26tOo7YItDFHcXExOAchTsUFRVpcUewLmN0ErUnGemO4HxQiDHuSFS+WnfEjE0Sd8SgDEfUEiwtXCf9+005rvLw4cMVH7T5ggUL2H/37NmjJTYgQlOKiR+6uLjgCZGx6jUV8vX4K9r+5MmTc+fOKT44d+HMDkh2WVMzlC5CHbIl9l+6p7rrJKS/ogyya9euCJma3hro4pgKCgpE7nLTpk3CWkVGRsKiXrx4oVo+dZK4cOGCcKO/v7+wbw0djgXpli1bCv/78OFDOL4apZPwhLq5uTVq1Eh1Sj3qOAKvTUM62HbIBezP3nwhigh7giNkUv8h+lqpTlq8eDF2ePr0Kfsv0n1676apzrroJDguYb+rt2/f0rAm+kr9jjX1cg0ODmadQgjqScM6kiuUPQ2YTkIeiM+XLl1i/x01apTuOunOnTsQGYGBgRa96qomdwSpSj2vEbCtft3fkfyJJnd04MABvXSSqjvq1auXGbqj3r17s6/Qx1bKcXb0VRJ3xJg/fz72z83N1XF/A6iJOgm3UPgeF87Rzs6OuQY8xn5+fmfOnCkuLoZfaNy4McyaYgNcJHLKI0eOIELD38G94rdMGyETxd1CAorbDHvKz89PT0/HLayyU60uwPXjkcO1jY+Ph6+5ePEiJNHChQtx8Wk4Ia52kyZNcFuRWOCuZWRk4IYivDHbhqxBzr1v3767d+/injZv3lwvnYRcB6Fo27Zt+C0FCdQBCRMe7OPHj+PoyBFxUGGrcqWOCVEWrg3GBv8CDwsPha/CWuFAdAhoQRzixo0bOGVK9OFWsGe/fv12K6G2BLhORPG1a9fiHOG5kLLj5yxII5rCE2VmZmJnJAYU4HV3TDt27IAYJQ/epUuXNCUWF+3gSWEGkBGIZAhpuIl4hPv27cvu/sqVK3GCM2bMePz4MYI6XDku6cmTJ+m/+An+C2GBRxt3B0+6kxL6b6U6CYHTSjnzDd016pYbGxsL94LE7P79+7jLOMTMmTPZVCO66CRyO7ANeKTr16+jzjRin+0AB4VbD5UGgfjs2TNEZXajR4wY4eDgANujGXEUyq5OMBvk+jAJlAb3SCPbSSfBtOrUqYMK0KQ7c+fOpTHkuugkOE8vLy/sPGnSpDQB7PJaCpW6IzykTZs2FbmjTp06MXeEn2t3R9p1Ejyb3O4IFqjJHSEykjuCRdF8SOSO8ByJ3BFMReSOWJVocQXD3BGsDmaZk5ODs4bx4DMe0pCQEFlXL6lxOgk3w0UAHl34EeG7W7gqMhEA08c9hlSiJlMI9rZt27JJ02EHAwYMEL5lh/Bq0KCB1Qfc3d1NsyRCtQe5PlwqzVzFri0cLnvdgKiGW8PuS3R0tLBhH/+FC6D/BgQEIF7i1rPOmLi5uMXCwyGXwg6s5SAvLy8sLAxHxEa2fBXiCtJxVh94AcQ8+heeYewJVyIsE1+xkfV4VSjDNsqknyN4o0BhrWgH1JYdAlqQpYxwnfDFZMPUqFZSUgIHSnvCCLOysuB9WG3h0RD86L/w2suWLUNtIyIihHUTvk8RgT1dVBCdoEWAW4koxVbPgKm0a9cO0oHtMG/ePJpkiC6jqLsSjBCyBv/C3/Hjx8+ePZtZDqxFdPsA/itc7ywlJcXX15euHllXeXn5lClTEDXZXUaSRt1vFUpnxYyKgS3CFvFffvmFmnyslIv5QBBDaaF8tgMOgaqyNX/wYenSpfQvWAVspmHDhtifHQghll2BgQMH0rPARgRDStIsTQDBCcFMaNWjR48WtdYzUIKqCQFyrZYFuSMWJnRxR8IwAWHRokUL5o6gPETuSHj7FCru6Pbt26ruCE6Ael4b445oBADAqVXqjmDJ7Hx1dEes453QHaGqerkjXA0cWnimKFbCRZzUUuN0ki4gY0DChAxP+AKVAceEf2laEBQ/wWMgnOSUIyHs2qrNHvC04L9quz5g//tKpE076Igo1rBFPcvKyujnmmqFxxMni310bLyhZZ6pP40IHKKgoAD/tbhBRpKDkEMjXkXTIhO4evgXrpXam0IzVqt9AWEwzKUY3ET3+PFj7UsUv3nzRndDpZ2FrwiF4Pni/o0w2B3huTZDd0SWr4s70lGXyOeOYJz0CMs9IwDBdRKHw+FwOByOerhO4nA4HA6Hw1EP10kcDofD4XA46uE6icPhcDgcDkc9Zq2TysrKHjx4IOwy9urVK7VLzIjASb148cI0Pbw45g91b2T28Msvv5SUlOjyw9LSUrVdfTk1EHge7o44xsPdkcVhpjrp5cuXNHmJlWByqvz8fFtb2ytXruhSQseOHbVMUWo8Dx8+RPlhYWG9evXatm1bpcMWUO3hw4e3bdu2f//+R44cEf0XP1+/fn3Xrl3bt28/efJk1ZEmd+/eHTNmTGhoaO/evfms37qDa8UGu7IJrGNiYvr166fLz0+ePOng4IB7LVP1Hj16lJWVNXPmTNxcmqROO/CtK1euDA8P79Chw/Tp01XHN+EZGTlyJMwMj092drbov3jYYas9evSA3SYmJmpZ/pkjBPEJ15MmBDFDd4RAe+HChTVr1vzrX//ScZj99evXR4wYQe5IdTFU7o5kQq07Gjp0aHV1R7dv3yY7weODkkX/FbojPB3m7I7MVCelpqZaW1vD0eNCswSuW7duAwcO1LGE3Nxc+LWbN2/KUT1kAzS3b1JS0qBBg2D0w4YN016Z+vXrBwYGTps2rXv37th/8eLFwh3wqEAUxsXFJSQkoGQvLy/hUgNwao6Ojj4+PlOnTu3bty9+DlOW47yqGW/evKEV4K9du8YSuHPnzlmprHakhS5dusTHx8tRPZpOjSbjsdJh/lk8qvCnsBMooUmTJjk5Ofn7+wt9E4IlIjc2wsz69OljpTLtIayUIj2CH/y1u7s7rU7I0U5aWhoue2Zm5q1bt5g7gl2ZiTuiew1wCF2WodXFHVkplyiAmNbujiCzrCx2inYTo9YdnT9/vk6dOhbtjljYqtQdicIWLT5oEe7ITHUSrX0t3HLp0iVc0zNnzuheCFyGpiWOjQS2bm9vf+fOHfqanJxspbIgMwPJGWzFz8+PJgoj84IKZPkEhDZ+ziZ/gzOFeSHbYyXg2YAZsUm9yLxE86tyVIH3sfr1clQK5b3D9dS9kIyMDIQfOXKdoqKi7du343YjH9DFMdFayxs3bqSvly9fRsXYdM+gdevW0O7MTkh85+fn09cjR47g57NmzaKvMD8oLdGyFRy1IBcKCgoSbqH1QPRyRyhBJncEB3LixImXL1+qXYFVhCTuyMPDg82fRO5Il+aHGk41c0e0iA1b6uTKlSt6uSOIdQtyR2ank/D4wZsgWYEyGKOE5MjEiRM9PT3Z6y0kdviXsCkPj/348eNXrlzJtqSkpEC/q53kyhhKS0thEKNGjWJbSkpK4GjYZKMiaL2CFStWsC20rhOrKrJSZ2dnYT0HDBjAak6LagnXA8IlwhYkc9KeVzVj06ZN8EG4UBERETAVmhj92bNnuHe0vACB+zJhwgQ2161CudoX9meN22VlZYgTCxculK+qtLBApY4JyUODBg2Eb3iRpbEteXl5Vr9edorWVGJbRo4cCSsV9m+gRV4tdEVS04D8WBd3hIe0Une0YMECJFey9i/RRSddvHhRrTtiwgjuCPUUuiNk/JW6I+EWjioid0QNeLq7o9u3b9PX8vJy6AnhCqSSo7s7QtgSTmgZFRXl6OhIDwUek+rkjixGJ3l7e0OQCvfE04vnmTVl4792dnZMrio+LCPMFgFQBfrmhWY09dCkFzewe+HGdu3ahYSEqN2flkUU5luwLRsbG7b8MnI70WT/tIwrPBo+7927F59FfU3go7t27arpvDgKDTqJmmSERoLPsCJmWjAnfBWKYIXyhS/ur6YDIX5osSJdemjq6JiQxLOp/QlakpMeEFrX/dSpU8Id4MjgvOgz0ruWLVsK/7t161b85MSJE5XWsMaiSSf5+vqK3BH+pd0dnTlzRrs7QoQwwB0J0UUnbdiwQeSOENggg9g7xICAgA4dOgh/wt2R8ajVSTq6o8GDBwuL6t27N55lTQfS7o50mUfeYHdE69HSA0KtTUePHhXu4OrqaqHuyOx0EoFEWSgdnjx5gisoWjsJortZs2ZBQUHwIFu2bFHVLtCq2KilYyOEuZVmNC2yvW3bNlV/hwojJqndH5kW9he1lMLzdurUiT7jv4MGDRL+FzaKjYcOHVJ8WJtTuIK3QinLAgMDNZ0Xh6CWPGE3VaT48Dui3eiGwoRgSDAnGBUtN8tITExEoqOpYZJWqdSEaIVdtejimCoqKrCPqM2SPAutYEqa6d69e8IdcC4scOLERX6NjitawoyjisgdPX/+3EplxfjS0tIWLVpocUfYrt0dwScY4I6E6KKTKnVHsBORO4KFVOqORCskclRRdUcJCQmVuqMmTZoIm5cUxrkjq1+vsKsWI90RpWrkjq5fvy7coZUS+gzHKHJHMDCzdUeWoZNope5du3aJdrty5YqNjU10dLSq6CZEb9ZF7N+/f7dmNHW6JEOk4CSssKaISO/vRc2JcEx0grj++K/wta7ig06iJwr+0UqlNxJ+ixI0nReHUHVMeDIhHVT3jIuLgwnBkKytrVVHMNEtYB04RNCi35qAjVVaT10cU0lJiSY7IVOkZcZFlRQ6JivBWC3dj8tRaHBHO3bsEO2GqGBnZ2ewO8LtMMAdCdFFJxngjshOuDsyElV3FBkZWak7unDhgui/aWlpBrsjXQYn6uIWYD/aw1al7sjR0VHkjuj6mKc7sgydRG/QVAcWguXLl1spl1IXiW4C2kV0M4xHjvYk0argqu1Jly5dEu4QGhrK25MqRdUxhYeHqw0kpaWltAa1qM2S0K6TjEf3BE70QpDaLYTtSfCSwh14e5IkiNwR2ZVadwT7MbE7EiJVe5LIHam2J6m6I96eVClq3ZFaN87c0bJly1T/S7fAbN0Rb08yHSLHREMWIVBEu717965r1674FzSK2iGFdevWHT9+vKajQM5310xGRobaX/H+SZaCqmOKiopSm/hiT5qsa9y4car/pWdeODRaCG6NFiuCjVVaT94/ycxR646E3W8JI90RJJQB7kgI759kzqi6I9xxXDq1e8rkjkCl9eT9k1SxDJ30+vVr2A0bQ8hITU2l93GQGm3atBG9skXOpKmFgIBSidGMpjcmNN5NOInFixcv6tevr328mzAzOHv2rJVgvBuOBXFdVlbGdoAxiQaYJCYmis6Lj3erFFXHNHv2bBiSyE6eP3/u5eUFpUvxQLVpeuTIkS4uLpqmEs3JydFiRUwNa0H3ASZubm7CaZ179+4tGu+GE2T/vXHjhpXKABNhv3LUzWwHmJgVIneERxVXctq0aaLdtLujoqIi7e7oX//6lwHuSIju491U3REb74Zj2dnZCd3R4MGDK3VHfLxbpejrjlavXq3WHSHQGOyOQKX11N0dIWwJK4+cUDTeTYs7GjVqlAW5I8vQSQplg41IvUJ4wshoijM8/LjoolyNJgLRfQov3YmNjYUrEc2fdPr0afr65MkT+FD2Yg5XuEWLFr6+vsIJS2xtbVlCQBPbLFmyhL7ShCXCTAInLpo/qU6dOsJREhy1qDom5DeiRhfcDqgN+B1qAEBWjYdf1BgQHBzM0iA50OSYtmzZIgzGoglLaP6khIQEtkP79u2FdjJ06FDswN7EnTx50kplwhK13Wg4IiR0R9QqIxNqdZIc7kh1/iQ53Gw1wwB3NGTIEFV3FBYWJrI9adHujti4S7Jn0fxJursjei1jKe7IYnRSWloaHlc2EOnp06eNGjXCPu/evaMtq1atEqlvKFa4Azmqd+/ePXgKGMGECRPgZUQ92qhZXjhHbW5uro2NTbNmzWBGqLNqo/3w4cPhZCG/xowZ4+rq2rRpU2Sf7L/Xr1/Hk+Pt7T1p0iSaPxdXQ47zqmaoOiZkP25ubsKGSeoUyfqaIL+BzbRt25blSZQuy9S7MCgoyM/Pj5YyaNCggZ8S9l+axJZ9xaMKuQY7gTeBncCtICgK068LFy4g70cJMDN6ASSaZ5lCWv/+/fEBh4NFmfNaAeaDqjtCrq+vO4JsgmlVusCRAaxdu5YsB04G+ow+s1uv1h2h8trdETYiZ4Cd4HnR4o569eoljHYcLRjgjl6/fo3bJHRHkKfwAFXojpjDYe6IhS1Vd+To6Ch0R6KwNXHiREtxR2aqkzIzM0XDSSBLcdG3bt1KX/Go46KznIaAv8ADT2dUVlYGE2SNyZKDQ8P19OjRY8CAARkZGcLLCJ+CuiF9F+4PbwVrgMoZNmyY6itY/Hzz5s2RkZE9e/bEY8M0OAMpBawNP4+JiVHbgZSjCp463AhR1+YpU6YgXFE8g/dZtmyZyOkgM8avWA/E+fPn4xkWvoaQkPT09DQV2H/xFIg8C6oNI+/bty/i09y5c1U7CyP7JzuBlsrJyVE9Ik42OjoadpucnPzkyRM5Tqr6oeqOXrx4YT7uCKm5qhUx/6PWHcFOoNtgJ8jyVe2EuyM5UOuOZs6cqd0d5efnm5U7Er5oq9Qd3bt3j7kjtTOHMXc0bdo0c3ZHZqqT1AKTatGihY4J2cqVK5HhqR11wqnJIPW3t7dXHdStFjgFHx8f+dQ2x3Lh7ohjPM+ePXN2dubuyMyxJJ30+vVrZD86rmsGGbtnzx65q8SxRLZu3Tpjxgxd9jx79uyIESMkX/qGUw3g7ogjCdu2bePuyMyxJJ3E4XA4HA6HY0q4TuJwOBwOh8NRD9dJHA6Hw+FwOOrhOonD4XA4HA5HPVwncTgcDofD4aiH6yQOh8PhcDgc9XCdxOFwOBwOh6MerpM4HA6Hw+Fw1MN1EofD4XA4HI56uE7icDgcDofDUQ/XSRwOh8PhcDjq4TqJw+FwOBwORz1cJ3E4hvDixYtOnTo5OjqGh4cnJydnZWUVFRVVdaU4FkB2dnarVq08PT0HDBiwdOnSM2fO8JVNOfoCK2rZsqWPj09sbGx6evr58+ffvn1b1ZWqtnCdxOHoDQKbv7//jh074JvgoeCn4K3gs2xtbYOCgsaOHbt58+b8/Hz+cHFEXLhwwcnJ6cmTJ8XFxQcPHpw1a1a3bt2cleADvnLBzakUZkUwFRgM8jRka8jZXF1de/bsOWfOnCNHjpSUlFR1NasPXCdxOHrTr1+/uXPnqv3XrVu3tm7dCqkEwWRtbc2bDTgMBDZEshs3bqj+C7YBC4GdwFpgM7AcEtywJViU6avKMVu0WFFZWdnp06fT0tKioqIaNmxoZ2cXGhqakJCQkZFRUFBg+qpWG7hO4nD0Y8qUKZGRkTruLEz4HBwc2rRpAzcna/U45klpaSkEUHZ2ti47wy3n5+dv2rRp1KhRLVq0qF+/PjST3DXkmD9v3ryBFR04cACfy8vLte/8/v37vLy8DRs2xMfHt2rV6uDBg6aoYnWE6yQORw927NgREhLy7t07fM7NzV25cqVeP09NTZ09e7Y8VeOYL3CzEMqrV6+mr0lJSffv39erhEaNGhUWFspQNY7FACvq2LEjWRHSLRcXF91f0V67dq1Tp05y1q46w3USh6Mrp0+fdnNzoxf/N27ccHBw0DfaPX782MPDQ57accyXUaNGjRgxgj7Pnz+/c+fO+jreOXPmpKSkyFA1joxAzfz000/szWlwcPDr168NLi0+Pn7cuHEKPdsmGQ0bNnzz5o3BR6/JcJ3EqYbAqo8fP75x48YjR468f/8eW77//nsjy4Qkcnd3J2H04sUL5PcXLlwwoJymTZvevHnTyMpwZAJ3NiMjY9OmTXSPkLvHxsYaWSYKCQ8PJ0+7d+9ef39/A3qqFRYWwuSMrAnHZOB29+/f/8svvwwNDa1Xr167du0qKio++eQTGJhhBa5cuZLkNcCHJUuW6PhDuCl6T5eUlLR+/XrDjl7D4TqJU90gEePs7BwXF+fh4dGyZUsYea1atYwpE3mYm5sbUkN8hr+jwW56lTBgwIBr167hw7JlyyZPnmxMZTgykZmZ+fnnn3fs2BHa6Ouvv0ZQmT9/vpFvK6DUkfqTMGLDlHT/OYwtMDCQPsPqbt++bUxlOCYjJSXFzs7u1atX+Pz27dtdu3bhg8E6KTs7G/kVWVG8Et1/e+PGjebNm+MDjCc4ONiAo3O4TuJUN2JiYlq3bk2G/f79+ytXruCDMTrp3bt3ISEhTBhFRkYifOpbSEZGBnXFLS4uhoYzuDIcmUAQ+vOf/7xhwwb6WlhY+Pz5cyN1EkJUgwYNSBg9fPjQwcFB7TAl7aACpLCXLFmSlJRkcGU4psTV1RUZkWijYToJNoPSyIpWr17drl07faN2w4YNnz59ig/e3t7wP/pWgMN1Eqe68d133+3evVu00RidFBsbO2PGDPqcnJw8YMAAAwpBGIazo89QXRcvXjS4Phw5OH78+KeffkpvaRnG6CRERAhikjg0TOnw4cMGlAOBzhS2i4uLYZXhmJhvvvnm6NGjoo3QSenp6fHx8ZDjeXl5ImNTC+QRpDbJ6+zsbFiRAX2MZs+evXDhQvqg+ws7DoPrJE5146OPPlJVIdBJqampHTt2nDp16r59+3R/94FIyWYBEA52M4CIiIiTJ0/iw/r160eNGmVYIRyZWLduna2trWgj6aS2bdtGRUWlpaWdPn26rKxMl9Igi5s1a0Y9bWEwwcHBbLCbvqAo1gAZFBR0+fJlw8rhmJLvv/9+7969oo3QSffv3z927Ni8efN69+7t4+Pj6+tLppWbm6sqgGg+W5LXkEqOjo6GzSpSWFjo5+enUDZqokCDTqhGw3USp7rx5ZdfqmZy1J5UUFCQkZGRkJAQGhrq5eUVGBioPbeDomrRogUJo3Pnznl4eBgzYARRMyYmRqFsXbCzszO4HI4cZGVl/fWvfxVtJJ1UUVEB5b1q1aohQ4YEBATAcioV3L169Vq+fDl9jouLGz9+vDF1Q2mksCHmxowZY0xRHNPQvn37wYMHizaqvncj04KGHj58OIS10LQeP37M5pKAmTk5ORk2cIRo2rTpgwcP8KFJkyZ8ggl94TqJU92Ao0FkEm1U+97t1atXwtyucePGffv2XbhwIeV28EqNGjUivyYc7GYw0Fv29vYkyBB9KfJxzISXL19+/PHHP//8s3Cjpvdu2gV3UlIS62lr2CwAIhA1adjd69evucK2CGBI//u//zt79uzr168fP3588eLFCt36JzHTgmyCPqaNZ8+epTFrBrNkyZJZs2bhw6JFi/gUbvrCdRKnugHHVLt27dGjR+/duzc9PZ26vurSPwk65sqVK2vXrqXcztPT8969e/QvRDtjkjlGTEwMvYuBKzR+wDlHWmbMmPG3v/1txYoVmZmZiYmJiEw69k8SCm4PD482bdqQXy0vLx8wYIDx69XAMh0dHZnCPnXqlJEFckzA5cuXIyIimjRp0qpVq6VLl2JLt27ddG+Qxk2XcCaI4uJiODR8ePr0KX3g6A7XSZxqyN27d8eOHdunT5+4uDh6BzdlyhR9C+nfvz8SQWkrhgIpR0TstLa21qUjJ8eU7N+/f+DAgZGRkZDXhYWFyON//PFHvUqgl6qS+1VYIynsHTt2qL7Q4VRLILIl1MSQ7zQrWGBgIJ/CTS+qm04qKChYtGjRwYMH+ehHjpEcO3YMIVPaMvG42dvb08JMvXv3NrItnWOedOnSJTc3V9oyIfe5wq5pIK2SUBNv2rSJZm5bsWJFYmKiVMXWBKqVTqIhlGlpabRau4+PD625vWXLlvz8/Op0phwTAINxc3MzeHSbJuLj47du3apQduvu06ePtIVzzIHMzEzqsC8hsEY7OztS2BBMhw4dkrZ8jhmCm46IJpUmLisra9OmDT6UlJTwCSb0ovropDdv3jRu3FiUxhUXFx88eHD27Nk9e/aEbPLz82Pje0tLS6uqqhxLIS4uLisrS9oyz507FxoaqlDOgWltbf327Vtpy+dUORUVFdA0kjf5DBs2jCnsvn37Sls4xzxBWoUQJnmxISEhknS4rCFUE52Es2jdujU5ES0gJrHxvWwQ5vLly6vHReBIDjQNG3IiIXPmzKEPMTExGRkZkpfPqXJYdyIJuXr16r59+xTKHr5cYdcQ4IIkb3WG/TRv3vzSpUvSFluNqSY6CaKbzeivl/ouKCgIDw+XvLsup9rQoEED48craeLw4cO8YaBakpOTExERIV/5KPzEiRPylc8xHxo2bCitJqZhChIWWO2pDjpJOGOy8LOOQCQZthIFpyYwYcIEfZe81RFkdUFBQWw2Qk51An7VwcFBJoV948aNevXqIceTo3COuQEXJGGrM0Ikz830xdQ6qaio6Keffrp16xZ97dSp0+PHj40pEDHM39+fOtsatqyETN11OdWD69evd+zYUY6SY2Nj9Vr3m2NZ4Obu3LlT8mJfvHhhZ2cn+Xg6jtkCF2TMYsxCKFzK10BeXTGdToIQiYqK+vTTT9u2bYtkqE2bNhUVFd9+++3du3cNLlM4Y/L58+chd169eqX7z8eOHUszuMOj7d+/3+BqcKo3Xl5er1+/lrZMZHXQ9NWgNZejCXgnqcIbAxHOz89vw4YN0hbLMXO8vb2NWTGJEIZLjl6YTictXbq0Tp06z58/VyjHg9CK7sbopPv37zs7O9NSEoYtK5GamkozuMvUXZdTPZgxY8batWslLHDfvn1GLhXHsQjglKS9y3BTvGdJDSQ5OXn9+vXGlIDg6ODgcPv2bYlqVLMwnU7y9/en9WWEGKyTIIrd3Nyo8Zk+Q+voW8jjx48RrugzPtDcJByOiHv37rVu3Vqq0pDVWVtbG7buN8eymDx5spHhTQgUUs+ePaUqjWNBwAWFhISwr9u3bz9z5ozur8/UTprD0R3T6aTvv/9+165doo3QSQsWLOjdu/e8efOOHTum41uzd+/eBQcHU+9afG7RooXBPW2bNm1KM7jL112XUw1o0qSJJDO8Qx7Z2dnxmUtqCPAtwvBmDNu2bfPz8+M9S2osQhe0fPnyqKgoLy8vd3f3zp07T506dd++fdSHRBUKl5VOmsPRgul0EsLDxo0bRRuhk65evQqdu3Dhwr59+zZo0MDe3j4sLAyZU2ZmpqYbHxkZOX36dPY5JSXF4FrB4BISEhTKISQdOnQwuBxO9Wb+/PlLlixhX4uKigwoBFmdh4eH5BNXcswZHx8fFt7ev39vmNqGh3RycuI9S2oycEGIkqKNsKi8vLwNGzbEx8c3a9YM0dPf33/48OEVFRVsH+GkORzDMJ1Oio6OVh2xr/reTbhmO265jY0Nbj/uNEwBBgGzwC1n5Qg/G0ZJSQkcEH2Wo7sup3rw9OlT2CH7OmzYMFtbW4TA2NjY9PT08+fPVzrBCR60jh07wtnJXFOOeZGamkprxSuU8trT0xMZY0hICDVg69Lr4P79+/gJEjmZa8oxa5KTk5s0aeLt7a3deAoLC4WZmAET5XBUMZ1OwnP+6aefzpw58/r16ydPniRprEv/pIKCgoyMjISEhNDQ0Pr167NZAF6+fNm3b1/jx/OzGdwl767LqU60aNFC1MCJsAeXBP8VHh7u6Ojo6uras2fPOXPmHDlyBPpb9HNo/bi4OBPWl2MWPH78uHnz5sItcLn5+fmbNm0aNWpUYGBgvXr1/Pz8hgwZsmrVqosXLwpbAhTKzpewK96zpIYjHM8vdDvI7QMCAjQZT3Z2NrI7Pm+78Zh0/qRr165FRERAFEOaUGKN4KHXKwzYgbW1tcgajAQOi6axkba7LqeakZKSAhkEa9G0pnJZWdnp06fT0tKioqIaNmx4+fJl9q/Vq1cHBwfzObpqJohkSUlJiG2afB30d2ZmJvYJCwtr164d2049S2A8pqopxxyBSnZzc9P01lXodnx9fX18fKi/77p16/gsAFJhefNx9+/ff+/evRIWCDuztbWl6wDNTjMXcDhCnjx54uTktHDhwgkTJkDl29nZeXp6DhgwYOnSpZUOPDl48CB25rMA1Ex27NiB0LV8+fLY2Fh8gKsJCgoaO3bs1q1b2XS7moiOjuY9S2o4NJ5f9ylvWI+lGTNm8BnbpcLydNLRo0e7d+8ubZldunShJd5E3XU5HIWy/zWEjmhZ0+LiYgigWbNmdevWzdnZGb4sPDw8OTlZ1Gxw48YN/OvBgwcmrzWn6lHbEgB5BJEEqQTBZGNjo0lwwxfBokxeZY4ZIZz+hlOFWJ5OQoWRk0k711FmZmb//v0VKt11ORzYW4cOHVasWKF9N0Q4xDlEO8Q8RD5ra2tEwZEjR9rb2/NZAGomOrYECLubYH8nJyco72HDhvH1JWo4uPuwAT5bjTlgeTpJoezVJO1sEBUVFWvWrKHPqt11OTWZeCX6/or11aXZuTg1DYNbAqi7yfbt21WHAnBqFJGRkaozM3OqBIvUSefOnRP2dpSWlJQUCafQ5Vg0ixYt6ty5syU+I5wq5N27d7wloCbTqVOn77//vrS0lL42atQoIyNDrxKMn/KGIyEWqZOAs7Pzy5cvJS+WuuteuXJF8pI5Fkd2draXlxd/98HRF0S45OTkqq4Fp8qATvrmm29GjRpFX/XVSXx4rLlhqTpp4sSJkg+XVdtdl1MzuXDhAhQzX4WNoy+8JYADnZSamlq7du1r164p9NRJubm5fJFsc8NSddKNGzdatGghYYE0XXJ6erqEZXJMTGFh4aJFi1hDI4wkMzPTgHIgjxwdHfkMyDWHnJyc7du3s68wG8Pu/pYtW4KCgnhLQA0HOmnNmjVz58718/NTKHUSDOPBgweVNk7T8FjdZwHgmAZL1UmgYcOGhi2zpRbDuutyzApEu1q1ag0YMIC+wlUZIKZ5s2INJDIy8qOPPjp27Bh9hdmwgR26o30+QE7NgXQS5DLSrU2bNkEnzZ49u2XLlu7u7pBB2NigQYNWrVr16NFj+PDhycnJyM8zMjKgzp2cnPjwWDPEgnXSzJkzFy1aJElRixcv5t11qwHQSXA0P/zww6lTpxQG6SQ+A3LNBDqpQ4cONjY2tMiDATqJtwRwGKSTFErp/Le//Q1OSfTerby8vKCg4Pz58/v27cOeKSkpY8aMCQoKwt8qqjJHGxaskx48eECtmkaSnZ3t6ekp7YRMnCoBOgmp29q1axGxaK4HfXVSfHz8+PHjZaoex2yBTpo/fz4yfpr/Wl+dRLMAIOzJVkGOJcF0EujTp0+tWrVIJxUWFj59+lRTzH348KG0nUk4UmHBOgk0adKEzXQMI9Nx/W0hvLtudYJ0kkK5olZycjLppFmzZk2ZMmXp0qXbt2/HDlevXsXtVmv2iJS8WbFmQjoJ3uOzzz67efMmzGbevHmjR4+G8axatWr37t2nTp26c+fOq1evVH/L5wPkiBg1ahTrGfns2TMPDw94HnyePHly06ZNHT/QsGHD4ODgnj17smYkFxeX9+/fV1m9ORqwbJ20aNEiNhMXvBisEw7O2trax8dn4MCBtBRAWVmZpp/z7rrVDKaTrl+/joA3c+ZM2MPFixfhsxDt8HXkyJHwSkFBQfBQcF6urq74gK/Y2K9fP19fXz4LQM2EdBI+QFIjdMFsli1bduzYMagfuJHExMRBgwaFh4c3a9asQYMGbm5usBxYS4cOHaKjo9u1a0e/5XCI4uLiPn36VLpbaWnpvXv3zp07d+jQIdoCR4SvMteOozeWrZOKioooLqpuz8rKmjFjRrdu3ZycnBwcHDp27Dh16lQYJduHd9etfjCdBMaNG/fNN99U2o4NYUQdBUaMGAEhJX8dOeYI00lv376tV6/en//850rfu7169So/P//EiRPu7u5Pnz41STU5lsHs2bOnTZtmwA/T09PnzJkjeX04RmLZOglap3Hjxt7e3lFRUWlpaSdPnlQ77QR8HwIhTPDOnTu0BWcdEhLCu+tWM4Q6qays7IcffmA6CYIYNnD//n02Sa6I69evyzfJO8fMYToJILmvVasW6SQooYyMjNzcXLiO169fq/3t+PHjt23bZrq6cswbBBc7OzvDpPPNmzdDQ0MlrxLHSCxYJ7179w5aZ8eOHUwGDRkypGnTpg0bNmzfvn1SUlJmZubDhw/V/jY+Pn706NEmrjBHbgoLC1NTU58/f05fz507R70EysvLJ02aFBMT06lTJ39/f3clbm5usJaOHTuylgN7e/sqqzqnSoHCzsrKYl83bdpEr+PPnDkzZsyYfv36wdV4enpStxIXF5fAwMCuXbvSPgcOHBg0aFCVVZ1jZuzbt69Hjx4G/9zBwUHCynAkwYJ1Uv/+/TUtE3j//n1kgQkJCe3atYNsCggIGD58+KpVqy5evFhRUcG761ZjGjVqpHuHs+Li4ry8PNb3PywsDF9lqxrHfMnPz4ej0HFn+BAocjgT6tb95s0bDw8POWvHsSSCg4PPnj1r8M+RuV29elXC+nCMx1J1ErSO7osDwJ0dP3584cKFffv29fLy6t27N++uWy2Be2rVqpXBP09NTV28eLGE9eFYCkOHDjVm9WuoczmWm+RYHEi61HaZ1R2EtrS0NKnqo1DO4RQQEPD999/b2tqOHz+exz4DsEidtGPHDtx4vjgARwQU8J49ewz++c8//9y1a1cJ68OxCEpLS62trY2JH3FxccYYHsfSefDgwYoVKxYtWrR7924jJ9S+ePFily5dpKrYpUuXPvvsM0RMhEtUsnnz5v369ZOq8JqD5ekkWCFfHICjSnFxsYODgzH2/P79e945oAaybNmyCRMmGFPCrl27RowYIVV9OJbFzp07a9euPWTIkISEBGdn59DQUGNyeHgwCb1Q9+7dhetxPXny5OOPPy4sLJSq/BqChemk+/fvw4Zu3bpV1RUxBKSt8+fP79Onz8CBA/fv31/V1aluzJo1y/ghtUFBQfpOVcqxdDw8PDQN+NARpG3e3t5S1YdjQeDW/8///M+JEyfo6y+//OLq6mrki7Pg4GA2NNtI6tatKxqMaW1tbdjq4DUZE+mkmzdvsvHYFRUVt2/fNqCQly9furm55ebmSlkzU/HmzZsGDRp06tQJqeeGDRtsbGz4gDsJoSTM+D4i06dPl2+2iLdv3z5//pz3DzAr4E/wVBpfjru7u5YpbTnVlYyMDCsrK+GWRYsWId0ypszk5OSVK1caV6//zw8//LBz507hFoQexCBJCq85mEgn1apVi71zRb7+ySef6FuCpS9QOm/evMaNG7OvyF9///vfG6YXOars379/wIABxpeDqKnLRLr68v79e8jir776ysnJ6S9/+QsfSWA+dO3alTUGGMPAgQPZrMoSUlRU1K5du9q1a3/77be2trai5VQ5Vc6CBQs8PT2FW9asWWNkV+5Tp07BRRhXLwW9dWnTps3UqVPZRridP/7xj/n5+UYWXtMwnU6yt7cnP2KYToqMjExMTJShaiZCZK8K5RiZ9PT0qqpP9eDcuXPIvaZPnw7TKikpMb7AiooKZ2dn48sRMWvWLBcXl+LiYoXy9WtgYOCwYcMkPwpHRxAtNm3aNGXKFAQ5qWbk37x586RJkyQpSkjDhg2HDBlC/V2g5z7//PMzZ85IfhSOwezYsaN+/frCLUuXLjVgOVuExbZt216+fFlhtBdCTIdtQ73BzjMzM6Gwb968qVBma4MHDxam6xwdMZ1OQsZfr169t2/fGqCTZs+ebekzHnl5ecEpC7fgWeLLQhnDuHHj6tSpM2PGDKgQqPCIiAhJim3atOnjx48lKYrxj3/8Q9gSkJeX94c//IEP2KwSXrx44ejoGBoaiudx5MiRtWvXFr2YMAzYDCzH+HKEnD179k9/+pPQTsaOHStHeyfHYIqKin7/+99fuXKFviJIQYikpqbqXgJiIlJod3f3I0eO0BYaqwT/ZkC3OSRjQUFBgwYNQrEKpTaCbvvmm2/gIf/6179Cij179kzfMjmm00kK5Qxa0Lmkky5evHjq1Cl81rSOBAOC3cfHx9LfU3Tv3h1OWbjFxsZm69atVVUfS+fatWvIrdniAG/evPnqq68kGZs9adKkzZs3G18OA48Y7F/UMfPjjz8WrjbIMRlDhw4VdkiCfv3yyy8lWaTd2dm5oqLC+HIYq1evFs1guWbNGtFbHk6Vs3jxYkiQefPmrV27NiQkpFGjRuXl5devX9flt4cOHYIkmjZtGlnOy5cvIXH8/PwgkXH3Efjat29/+PBhHWvy008/2dnZbdy4kb5CrtEsADDv58+fVxpqOZowqU4qKCj44osv9u3bB50Ek0Ji1Lp164YNGyK9c3BwgKBu1apVjx49aEXSVatWZWZmbtiwwdbW9smTJyaopKzAHX/33Xfs3dDRo0c//fRTms+XYwDwSvAgwi2xsbGSvMyC5xo4cKDx5Qj5j//4D2GfADx0v/vd7x48eCDtUTi6YG1tjdSLfcW9gE4ycs4bAg5N2lEm69atg1cUboFO4gPrzJDTp0+PGzcuLi4OtwyK5927dy1bttS+FO6jR4+6dOnSrl07li+tX78eoRCBTxiUz58/D63ToEGDBQsWaI8XixYtcnFxIX2GPeEeYZB8bIEkmFQngalTp+KWq33vxlZuhzyCrUAqQTA1a9Zs+/btclQpJiZGODxy1KhRmzZtkuNADCSy//jHP5Au9O7d++uvv+aDDowhPj4+KipKuCUpKUn3Kdq1AM8iCk4G8+zZsy1btuCDk5MTFD/bjrSvdu3akhyCoy/ffvstshThFhsbm5ycHONLXr169fTp040vR6HseHfjxo2LFy9+/PHHwlA3ePBgOC5JDsGRFUil/v37R0RE0PsvIe/fv0ea5+zszALQtWvXAgICBgwYQF0YVUGCjZ94eHhgH9VVTd68eRMeHt69e3daBh5mA70lU+dX1PDmzZs1LcM3tU6C0dSpU4fppEr73m7cuHHKlClyVKlFixZsAVTQqVMn+XoLlZaW0nC/vLw8nNGPP/6o6Xng6AhuFlIx4RYIUIhdw0p78OBB586d2cxJSNmNn8j01KlTtra2pPLXrl373XffwX8plHNkIDBrzzU58oGLL5xRhtqTqP+sAezfv79v3770GfZj5IBwYtGiRT4+PtTMEBgY2KtXL4p/u3fv/vTTT3V8ocMxByBuIIDYytwKZQho1KjRuHHj6C0Y7uyIESO8vLx0XBLu4MGDHTp0aNasGRIw6rgG2QTJxRZcgliHSCJXIy2vX78OCwv75ptvmjRpgkemT58+lt4ZRndMpJNCQ0PZm/tDhw5169aNPuOW4x67KmnatCliVWxsbGJi4tKlS6klvLCw0ICxA7pgSp20fPlymvD34cOHot7cHMO4cuXKZ599JuyfhAfYgAHeEO7Tp0+H+bFxT+Xl5W3bth06dCgr3ADmzp3bsGFDNiEqHMqyZcusra3/+Mc//vOf/5w1a5ZFD0qwaIYPHy7qn/TDDz8Y0D8JOgZKvX379uz9KRSwm5sbRJjBPfSRpoeHhws74WILAtJf//rXb7/9tnHjxpJMYcAxJXv37oVVsNfuRUVFbKFuJFFOTk6QOPqaH8JiQkJCgwYN8Bcy69y5cwql44KpwCYlGfmrCvIBxGvSRvC3/v7+NWcKQBPppJUrV86YMUP7PpCrd+7cOX36NL13Y/oaMUySXpYioJNw16d8wN7eXj6dxCb8HTNmjPD9C8cYcDGF493wGMOY9Ro1DW0E65o2bRpLjPbs2QPhjjKR07u7u3fp0kXfyITABrkfGRkJt6VQOq/+/fvLMWKcYxgvX74UjXdDjl5QUKD7Yg6wlqSkJNhJVlYWbSkrK0MiZGtri2weCtvBwQE76Nur8urVq3AUbGwHqoTE/dq1a3oVwjFDLl26BD8jfLcLSd2qVavevXsbk4xBjkNpBQYGIg9HSgbZlJKSIkV91QDXKhzWBw4fPowEQ6bDmRsm0kne3t4Gj7Xu0aPHzz//LG19FEqd1KtXr0UfgB3LpJNyc3OpxzHcKxy06utqjsGw+ZOOHz+uUGoUX19fXQblIgjhpkAos8aAu3fvInZCGAnjJe4dtkAwIeeDjq+0WIQ65I5sNlSU6enpOXPmTN56ZFYI50+CJWAL7AdSW5fe3Pv27cNTDBnEtPXu3buhkBITE9mW0tLSJUuWIG517dr15MmTulQJNtOoUSP2Tm3v3r3wSEgaDTk9jvkBPeTn54f8nyQ1BLFUXf7hl3x8fGBssrY1Is+vVetXauH58+esO021xxQ6CcHMmJUBli1bNnfuXAnrQ5jsvRt8JWUSa9euNXK5TU6lIFZ17969f//+mt59YIepU6ciCB04cIBtQciEGNI0/hY+btq0aQ4ODjExMVry+w0bNqAQ1ssSoQ4/4S9KLAVoFAggiB5NO9BMgK1bt2b92PChjRJNawJCfsGx0IyymkYelZeXR0ZGsqFJ79+/Hz9+PMrkXRirGbjRyM3gE5DISTt3GnIzOV65CCFVRG3kBPLJ//qv/5L1oOaDKXQSXIBogIlewH+JRoBLgml0EkIslD599vb2NnK5TY6OILlv1aqV6qCMrKwsFxeX5ORk1lsuOzsbW2bMmFHpzDfwRLt27UKx/v7+W7ZsEe7/9u3bAQMGdO7cmY6IPceNG9esWTO557O4cePG/v37T58+zaeslISioqLGjRur9iCEkp48ebKdnR0bo0qv3uzt7XWZsuvRo0cJCQnYOS4uTrRU0a1bt7y8vJYvX05fYTCBgYFQ7bK6ZSiwH3/8cePGjXl5efIdhaPKvn37YmNjJS8WQlzaibvU8s033wgzyfXr1zds2FDug5oJsuukFy9eGH81kedJUhkhptFJU6dOpbWjz54926FDB8nL52iC5p65f/8+23LixImOHTsyqYoPuOlhYWH6zmOE2IaAh7A3YcIEFIIo6OPjs2jRIvovlHHz5s0nTpwoa4aHxA7mVL9+/d69e/v6+uIDX7NJEnBhqSe1UHoOHjx4/PjxbJo+aGt4JOGLNl1AJIO8btKkSXBw8N69e+F4d+/eDRNlQ5NycnJcXV3ZpMwygVThiy++6Nq1KwL2d999Fx0dzV8KmwxEHDlW34IrMMFSoampqba2tpcuXXr+/Hlubu7f//53mvSkJiC7TsLFZSHEYNq1a0cr1EjI3bt32bgDhTI1N34ouAhESkRTGtPbo0cP6kPDMRnU6US1ZzciFi24tn//foMLR0BdtWqVl5dX27Ztly1bRhshxZycnKRaMkwLkydP9vf3Z7Ecp4Pjyn3QGgJcImRuUFCQao80yGLEpJCQEE0v2nTh8uXLUVFRuF9jxoyh3lE44syZMwMCAuRugITUo37r9BWuqV69enLPG8dh4DldsmSJ5MWOGDGC9SKQiaKiItjt8uXL3dzcvv/+e/g9Nut3TUB2neTn52f8nFQpKSmSz5oVGRn5+9//nsnwFi1aSL4W986dO5GJKpRtDKL1Bzim4datW87Ozj/++CPbgqwdSTx0hlSTf1D3u5MnTyIlgLVT5JMbRFnhPKUQbf/5n//JpiHgGA9SfzyzrK0R2hpSxsHBQTg5rTGUlJTMnTsXaqy4uLhNmzbQTCZ4ebpv3z47OzvhlqSkJDl6NXDUMnr0aOHcXVKRlpYmh/wSMmnSpDlz5iiUI2Bq4FAkWXQSki1ar3HUqFGqk4cawNmzZ3v27Gl8OUKgkxBsWrVqRV/l0EmBgYHUZDVt2rSlS5dKWzhHR54/f960aVMEucePH3fr1s3IxgC1IKbGKTFBLwHiT3/6k2gquW+//Zb3GZcWSGp7e3vo4CNHjri6uiYkJEg+sR6kGFzl3r17pS1WEwsXLhRNR8cXQjElvXv3PnbsmOTF7t+/3+ApdnUBbq1evXovX77E58aNGxszl4GFIr1Ounz5cu3atZGm4OalpKR8+eWXui/jpwlkWs7OzpJUjwGdBIHMFnuSXCdBIUEnKZRv3yDI+BqEVQgSoC5duiAmybRWDHzf0KFD5ShZEz/88IPoNe4nn3xy6dIlU9ahJpCfnw+zadmypeTamujUqdP58+flKFktmzdv9vLyEm6ZP3++JHOIc3QBSZoc06nfvHnTmBHllbJly5bo6GiFchm7Hj16yHcgs0V6nQRxkJyczL6uXLlSkl7YzZo1e/TokfHlMKCT4COys7P/+te/vnnzRnKd9OzZs40bN2ZlZW3fvt3EQZSjClJ2+SZlePDgATygTIWrpWfPniNGjGBfc3NzP/vss5qzjIAp6datm7Ajo7SMHDlSpvUr1fL48WPoaaEjbd26tUwLQ3FUadSokXANE6lAHujp6Sl5sQxfX19a2Kdr1656TeRbbZBYJ71///53v/udsJ9EcXFxrVq1jG+pS0hIkLa/IekkhTKlg7eCTtq2bZsky/uhkLS0NB8fnwEDBtjb20N+CUddcaqEVatWyTffukL5AkW+wlVBVlq7du2ZM2ciw1u/fv13333HX+zKRPPmzSUf4cFYsmSJfHMoq2X06NEuLi5IG06cODF48OB//vOf8p0dR4S1tbVMJUu1dLcqUEjQSQplL1sENZmOYuZIrJNevnwJVSR68LDF4FZrNrj68OHDAwcONLZ+AphOKiws/Oqrr2xtbefOnevk5BQTE2PwtCIXL16Miory8/OD+6PBMgsXLkxKSpKw2hzDgKTYvHmzfOWzWbJMwMOHDyG+79y5M2zYsHbt2vXt29f4V9scTcg6SUx2djYN9TANkNRPnjzZsGFDly5dwsLCEhMT+WyWpkQ+neTv7y+cBFJCENFoLR1YC7JNOQ5h/kj/3u3zzz8XNs1BIf3mN7+hsfF6gYqlp6dDwJJUKisrk0oyFxQUBAcH9+rVizUwpKamQswh9uBYe/bsCQoKQhK5Y8cOHUegwEBXr17dtGlTlHnq1Cnhv169egUFJvdkqZxKGTlyJBsOLQcwGDla1NUyduxYWiUQEt8E86bUcGRtKbx586bJ3tiWlpbWr1+fXs7m5OTwt7QmpqKiQjTYUF/GjBkjjK3IwHEfsXH69OlsI/J/CfvSlZSU1KtXr0KJi4tLjbUZ6XVS7969+/Tpw77iLiKE6FsItfUNHTqUvQijeZORQBs5kdKBAwcgXI4cObJmzZpDhw7RRughZHXC1Z2QrI8YMcLV1XXq1KlaXhreuHEDVfLy8kpJSdHUfA09LlP3YY7uRERECBdxlJzo6Gi2crOs0CqB5LDwgJiyd0vNRNb2JAo/8pUvZPny5bTAO4Kfvb09T95MDLKaJk2aGFNCo0aNhJ1oaapkbPztb3/Lxrp+++23uixTqCNz5sxJSEhQKLtyk/HUTKTXScXFxcjAmjVrFhcX17p1a4iS+/fv//zzzzq+BUfSEx8f37hxY7b2LcwrPDw8LCzs3r17W7duDQgIgPD68ccf9X3Ocaa45X5+frovDF5eXg5DxE+6d+8uXJMS3g01adWqVadOnZjY0sTFixdbtmypV1U5kgNTlHUSP6R0ppmvb8OGDWPHjlUonxQHBwce7WTlzZs3/v7+sh5CjsUG1AK3TB0lU1NThS0QHNMA+WLkkgyadFJsbKydnR1NSiKhTkLERLHkNqHwEH8lKdYSkWX+JPjuI0eObNy48eDBg3Tz9u/fj6e00vZAGIGTk1NaWhrVCuXMnTvX2dlZNL9IXl4eLAMp0eTJkx8/fqxLlYqKiiBWDJ7h5vz583369PH19V20aNG4ceNgmklJSToeGnh5eck0rpijI7hlskoKiCTTxB4YIU1+uHjxYt71TW5u374t64hr4OPjQzPTyMqZM2fatm2rUAY/+Nhnz57JfUSOiOzsbCO72MKJ9e/ff9EHbGxsSCchbgYHB0+dOlUhqU5CnMXhFMrXO2Q8NRZTrINL4Oa5urr+9NNPav+LRAd3olu3bizpx56wAIgSTetsI9VDqHB3d4cj077O7unTp5F5Gz8R6osXL6Kjo0eNGqVvxIU1jxw50sijc4xB7iUbz549GxUVJeshFMqHqF27dvQZll8DJ3wzMXAdMTExsh6iZ8+eEr4o0URERAQtbYHctXv37nIfjqPKhg0bJk6caEwJCIihoaFxH/j73//OdNKtW7c+++wzyHqpdNLbt283btzo5+fXunXrCRMmyNq50/wxnU5SKKeZ8fLyonkdGWyxLTZmp7i4GDI2ICBAxym5jh8/3qVLF4iwBQsWqA7sh+52c3OTanavR48eGdAO/8svv1hbW5uyE1xhYSGEJl/IgiH3uP3nz58b0A9PX/r27UsOKycnp2vXrnIfjrN79+5JkybJegiUL1xXRw7gUeFgydVDZ4vGmnBMw5w5cxYuXGhMCZreu9HGxMTEsLAw6KS0tLSlS5caPLPx/fv3x4wZY2dnN2LECAgv5AlSrdVjuZhUJymU47+Cg4NppRji2rVrwsW2cOMdHR1pOI9ePHnyZMqUKbi70Fg0KdabN2+gn5A8STsXdvv27Q2Y+Bjyf/369RJWQxPQnT169Pjzn/8Mh1inTh1fX1+5F9c0f5AbmWDmD/mmMCEQ7ZAM0Gc4RL5KiQlIT09H1JH1EKtWrRL6QzlA+ampqQrljBKmnMCCIwT5PAUmg9Guk8rLy+vWrfvb3/720KFD0EwIhUOGDNG9geD9+/d79+4NCQnx9vZeu3Ytm2UAdeYztptaJymUg8uio6NjY2NFo+4hmAICAgYOHFhSUmJw4bjZO3fubNasGeIi9Na4ceOMrq8YWKEBb1hu3rxJs3XJzbRp0zw9PellJW4usoEa/mpZoWxdk+oizJo1S2if8+fPhwzF35ycHPYWTKYJjhHt5s2bp+DRzoTMmDFjy5YtxpeDYCPs5p+fn7969Wr8nTp1akFBQVFRkUL56laOhiU4Achr6gI1fvz45cuXS34IjmnQrpMUyi5QtWrVovduCK/btm1DSEU01D7HzbNnz6ZPn25vbx8ZGan2nV3jxo1reP/aKtBJxMyZM9u0aUOTMZaWlo4ZMwb3W6qR1d27d4fqevToESxJ8h6LuGIuLi4GzNwdGBgox+I+IurXr79//372FRfho48+quFT7p4/fx4uQJKiPvnkE6HLoN4A+Pv1118z/QRXJcmxhAitbuzYscuWLZP8EBxVhg8fDgVsfDmIZ8IFaBHYKLzBVOLj42kj1LYcfcZZXldRUWFjY8MXmrRcHjx4IJyJEOkfHIJo4507d0QdPPLy8pAt29raqg57ys3N7dq1q5OTExIwLc0TsF4EaOnOw/KoMp0Etm7d6u3tjbwK92nhwoUSDkfCvafJcqKjo0+ePClVsYyUlBR9F8FANO3Vqxd7BQbntWTJEskrBn7zm9+ItP8f/vAHE3QUNWeysrJoLL3xaNJJbdu2ZR1+5dBJ0L409oT6uvFoZxp69uyJjMv4cjTpJC8vry+++OLq1asK2XRS+/bt6XXPpk2b+EKTNZbXr18vWrTI1dW1c+fOcCaLFy92c3Pr0KGDLlP5l5eXQ2G/ffvWBPU0T6pSJ4EdO3a0atVK9wH2OjJu3DhqikxOTl63bp20hSt+3VNER1Cfjz76KDw8nL7K5BPB//7v/wo9+7t37/77v//bBO1Y5sz69eulWkULOgm38qcP1K5dm3TSzz///OWXX547d04hj05CwKZot3btWh7tTEZQUJAkgwqhkxo3bnzzA8iRSCdBPCGV9/PzU8jjE54/f96sWTP6jKPIt6Avx1LIyclp06YNkna91pWHzzHN/HDmSRXrpIMHD0ZHR0te7IoVK6jf4tatWxMTEyUvX6GMW3otqgWfCP1ubW2dlZWlkFMnQXcK27pyc3M///zzGj4bIUSSASMD1AKdhAjX5AO//e1vSSfdvXsXwc/d3R2XWnKdhId09+7dLVu2zMzM9PDwyM/Pl7Z8jiakmk4COumzzz5jZmNvb890Em4uzAb2KYdPKC0tTUtL69Onz/nz500wHpNjESCRDg4O1usnyLRJzddMqlgnbd68WY6u1lAwsbGx+ID8PiIiQvLyFcqJVdq3b6/7/tTSvmfPnh9++KGsrEw+nXT8+PEvvvjixx9/RNp64sSJ+vXryz2axvwZO3YsyVPj0fTeDRvxKEHELF++HDrp1KlTkqiZoqKi5ORkJyenqKgoJIII2zW8Q6WJkVAnqX3vRhvhTP7yl79MmTKF5vfXcVlJ7Vy5ciUmJsbT0xOuZsKECUuXLi0oKDC+WE71wN/fX19PAn0vyTtoS6SKddLChQvliOL3799v1aqVQjkzpHwDwhEUHz58qOPO5BkVypb8MWPGyKSTTp48CXl07NgxpAsIrngYTDMZgZkDnWTkiFyGFp2kUHYY//rrr6GTEO0CAgIQBXfv3m1YYx5uZffu3d3d3YWzgsFmhOvncOQmNDRUknK06yTQr1+/r776qmPHjkOHDrW3t09MTNTrtQjjl19+wSMP24OpsB7oT58+NcG8GBwLYuPGjaNGjdLrJ5s2baLWhxpIFeukiRMnSvVCRAgiE1s1CU5H8vKJJUuW6DIHXXl5+bp162bPnk06CQH1iy++iI+Pl0Mnef2/9s48rolr7eP+cW3V3mtba+tSl0u1rQtCWAUEAQFRFBdEtC6gCCKoKFdEQKRataIVEUUrFEEWhSqIgAguLGFTKiBwWUREKKsiGJayGdH30bnNm9IISWYmCzzfT8xnksx58uCcnPM7c855Hi0tIoUT3nWgib51ErBz507OvFtpaen27duhKnp6er548YIf++3t7VCvQIKvWbPm71HmU1NTN2zYQMXfgYiUfnVSY2PjqFGjiDahs7MzMDAQTgDZxP9uu4qKCmdnZ1VVVZ7ZnKA6EYvnEOTNu5ByDAZDoNDHcDKxlWQQImadZG9vT9WESC/k5OSIA2VlZZoCYUOXNmvWrD4Sxj1+/Hj37t0g1Pbt2xccHEzopDfvQhxBd0u5ToL/SSsrqzfvFiVwUsoj1BIVFcW9Cxe6uubmZnjmvNna2gpjNe4ibW1tZ8+eVVFR2bRpUx991cOHD+HnAI2Xh4dHH6FBlZSU+JRciORQVlbGHdQYVHV0dDQ8c78JkigxMZG71G+//bZx40aQPjwzDRC8evUqNjZ28eLFixYtgoP33bwE40TjgCAErq6uAt2kgA5LRkaG09D1CuY0sBGzToL/+ry8PDosz58/n0gXumLFCvp2e23fvv3vaeNAqkdGRhoaGi5YsODq1auEkOLMu715F8gEBBblOklfX59YE+Pj43PixAlqjSPkSU5Ohtqora0dFhbG2WQLBxEREXp6etDVxcXF9TtJBxfX09OTfmcRSYGzRo2TaYCgvr7+0KFDoJudnJz4yVCkpqbGYrHo9BSRJkCmC7Q0GzqsCRMmwMifeIk6SXRA187/Eh+B2Lx5MzFt4ejoSF96Gmi2DAwMOC+h5u3du1deXn7Pnj3l5eXcZzY3N3MvgoM2rqCgwMbGhpI1mwD8sUTQge7ubgUFBSKAJyKB1NTUEJXExcWFOCDyKPFZHCoSg8EQ788WET0goBMSEpYsWQKS+uzZs6ampiC4Q0NDOfkl+gVKURUdAxkYGBsb879wE3QSDNK+/PLL/Pz8N6iTRAl900NHjx4NDg5+8651EDQmpEBAa1VcXEzc+oYmLDw8nP+/CByjKizCokWLiNCaAQEBMMqkxCZCH1BJTp06NX/+fP77OQ6bNm26efMmHV4hkk9lZaWRkZEQyzrb2toUFRVRYSMc4uLitm3bxufJoJMuXrwIfRYR/QR1kuiYMWMGTZahHSEiDty4cYPWuHyXLl2aOXOmg4ODcHsmt2/fTl7G5eTkEBtzoPoqKyvj3XVpQUtLS4iUMnC5ly5dSoc/iFTAZDKtra2FKGhjY8Od1AgZ5EB/wWAw+Jx8IHQSFFFRUTl//jzqJNEBCoMmy1VVVdAiZGRkJCQk0BqNurS01MLCQujir169WrZsGcmZQRMTEyI1XlhYmLOzMxlTiCjx9fX18fERoqC6ujpuaRzMqKqqCqGw8/PzobWhwx9ESjly5Mgvv/zSxwlPnz49fPgw1DczMzPQSW/eJWweP368oqIi6iRR0NraOnv2bJqMZ2VlTZw40djY2NLScurUqaCFqVoJ1Ivnz5/Dt5Cx0NLSAtpc6BRshYWFRLAoIrBvH1ulEEmjra1NTU1NiIIBAQF79+6l3B9EWgB5TaQcEJS5c+fCGJJyfxAp5dmzZzx7YehNkpOTQRtB3xQYGNjR0UHcTyI+3bFjx5AhQ1AniYLHjx8LGj2dT9hstoyMDGcKv729ncFg0JR3FuQXebVXXV0ttMRZs2ZNRkYGHMTGxnJSsSLSgq2tbWpqqqCloNmaNm0ahn4YtMDgStAUkwShoaGosBFuVq9efe/ePc5LFovl7e2trKxsZWVFTFMQuLq6cuY9WltbQXDHxcUJcVNTGhGnTsrKytq4cSNNlkeNGsW9xTo4OFhfX5+O73rz7h44eSNQU3V0dLhj8/ADaE3OhjtOkElEiigoKIB2StBSDx488PDw4NTwtLQ0jCI42Ni8eXNKSoqgpcLCwq5du8Z5GRgY+L7ITMgggclkmpubv3kXr8vS0hIUko+PDz8CKCIiYt68eYNhtCZOnXT9+nVOMAZqiY2NnTVrVq/vkpWVpeO73lCkk4DIyMjvvvuu7yvCZrOfPXtWUlKSnp4eExPz888/u7m5JSYmcoJMIlKHrq6uoLcSjxw5MmTIEM4d0y1btsA7NLiGSC55eXkCpZgkgGbwiy++4Gz16BVfHhmcKCoqqqurw4BN0Hvb0OwIvTy3trMt+unjsNqH91h1bMnO1C5OnQRDmePHj9NhGUTD5MmTud+JioqiSs38HRDgwuXw+jtQ7aDPCwoK8vLyAgFkZ2e3atUqAwMDJSUlBoOhoKCgoqJiaGgIcmrbtm3u7u7e3t7BwcGampo//vgjppGXUkJDQwVVOXD+4sWLJ06cSAz7UCcNTrS1tevr6wUqAjppyZIltra2xEvUScgbchshra2tBW18Xvb02BcmyTFDvko6P+GO30xmkEraxSwWLZEUKUGcOglEEkglOizDaGn48OHcG/U3btzo5OREx3cBoGOeP39OiSkYI4LoOXnyJKif69evZ2ZmlpaWgvG+ddiTJ0/4396JSBpdXV2CSm1omPbs2QMtFCikN6iTBishISGCBksDnZSenj5p0iQioTLqJATYv3//rVu3hCvb3d09b968Xsma+qDn9WuT7Jh/J/qPv+PH/ZiREpTeVCOcD3QjTp3U0dFB39Smp6fn9OnTY2Njs7Ky9u7dC+3C33NDUoWZmZlwwZN6AT0liCThErn4+vpSFbISET2Ojo5xcXH8n0/opMbGxi+++OLu3buokwYnoLAVFBQE2skLOqmgoCAqKkpJSQkKok5CgFOnToWFhQldvLm5WVVVlXsxeB9E1T/+Njmwl0giHqrplyQzDqqY4yfRSkxMjLm5uampqbu7O1X3e3gCAiUzM5O8nXPnzkF/KVxZuI6GhoZCjwkQ8VJWVsZ/dInU1NRDhw6BToLjCxcuQAtlY2ODOmlwsnv37ujoaH7OhHEpNFOETnrz7i746dOnUSchQHh4OEglMhaqqqqmT5/OT11a+FsUT5EEj+kpFx60SGJcm4Gsk0SGm5sb9xYS4Xj27Jm8vDyZubPq6mpoBDEYt5QCMrfvVgYGbdCWKSsrW1paQpUjdBL8fufOnTthwgTUSYOT8vLyhQsX9n1OaWnpzp07GQyGt7c3RyfBm2PGjBk2bBjqJOT27dtE+goy3Lt3733hT0GjQ/eUl5d3586dSd/bfbz9u39ZLPlo2bxhuiofO23g6CSZRP+r9WUk3aAD1EkUcOLEiYCAAJJG1q5dGxsbS9JIUFDQ+vXrSRpBxMLVq1ddXV15fnT//n1ivy7oJKIZIubdiE+Li4uHDh2KOmnQYmRkxHMPB5vNjoyMNDAwgBOgbSEWwHF0EgBVaMiQIaiTkNzc3K1bt5K3Ex0draenB6ZWr14NFU/hTzQ0NIyNjTds2LBr166Jdms+cbT49IDdZ167R/vv/1BpxmeeuwidNCUp4FZDJXk3KAd1EgVcuHCB5Ma9xMREIkEbeZYuXQqNIyWmEFECvZqioiL3ir329nZ/f/85c+ZAo8NkMrlPfvDgQVZWFudlfHw8dIR43QcnMTExvebr6+rqfvjhB3l5eScnpydPnnB/dOXKlaamJuK4ra3N19c3MDAQ464NcqACrFy5krydGzdumJmZZWRkPHz48Pnz5zzVhUtJ2gSuubYx4Uf/MWXi2JhTcDyLGcx6KXBecBGAOokCoIvav39/QEBAbW2tEMWJ7U41NdQs9X/69Om0adPgmRJriChxd3cnQiIVFRVt376dwWB4eHjwuf8ABJahoSEIbpp9RCSOnp4eGLJ3dnZCY56UlGRqaqqlpRUcHAwNCz/FCwoKQIsPksDKCE86Ojr09PRIGoEaqKqq2tjY2PdpT7vaQQ9xL0v6xGXTcEONqUkBu4sFzkwgGlAnkcXFxUVOTu7IkSPOzs4wOBPCAmgskmvoegFDRpoSwiC0AqM6FRUVXV1duHzx8fGCBuWCrg6Kl5aWkvHhdUcH++FD9uPHr9lsMnYQUXL48GFzc3MYbllbWwsRmT0mJgaqHMkMmLWdbfktDfBMxggiLjQ0NEha2Ldv3/nz5/k58+6LOkZqyJdcUulf2iq6J79/9VpCo02iTiLL559/zud+SJ48evQIBnOU5+iF+tr9jvLycu57S7W1tdypUerr6zFrgUQBAzIykyBlZWVqamrCJQp81dDQevhw87ZtLDs71tatcPCHr+9r/u5JIOIlOzvbyMiIzD0hT09PTvBJQbnT8LtGRvgsZvBMZpAsM1gtPezGsyf9F0MkCXV1dTLFoSODAR7/cqKpu9O5JA2qjUraxSX3oyMf5snLy9O6LZ0MqJPIMnv2bGNjY+Fm3ID58+fn5ORQ6xLByZMnx48fr6OjM336dPgNEMsUQJNxJ3mGtpWTAhqRBKCt6ezsJGMhLS1NU1OTzzkXDq9+/73Z3p61YcNfHpaWLS4urwXMOYiInrq6OmhJSBqxsrI6e/asoKW8nuRMS7nQa4P3t8kXjpRl9V8YkRhI3k9asGBBfn4+GQvQMZmYmJCxQB+ok8gCCsnMzGz48OHz5s2rrq6Gly9fvuSz7KVLl3bs2EGHV1FRUVOmTOHkNDh69OiMGTPgWqNOknBWrFhRVVVF0khoaOjatWv5/2m/fvmy2cGht0j6Uyq1eniQ9Aehm+7ubmVlZfJG9PX1uduHfsloqp2REvS+WDiJz3EnndTg5+eXnJwsaBocgvDwcAcHB/I+bNq0KSQkhLwdykGdRA0dHR22trZEyhE1NTU9PT13d/fExMQ+4iGxWCwlJSWapr1WrVrl5eXFeclms0ePHl1YWIg6ScLZsmVLdnY2eTt79+7lBA7oly4mk7V5M2+dtGFD8/btr3BbgMQjLy9P3khDQ4OioiIncEC/GGZFvi9mIDzmZvKbywIRI6CPDQwM4LqbmprCcFrQcVpLS4uKigolHVlra6uCgoIE7r5EnUQZ8fHxMjIyxPGLFy9iYmJ27dqloaEB0sTR0RFecrbjEoCuioqKoskZqG29xoXq6urwDjgzZcoUxT8ZOXIk6iSJws3N7ebNm+TtwO96zZo1oaGh/Jzcdvr0+0TS28fGjZ24jU7igZ8zJXZKSkqgs+RnlyW7p0f2rxuXej3g064eildeIpQD3RAx2yBccXt7+4iICKqcuXv3blFRUU9PD4zqc3JyOKtpQYdx3+uC94Ve6yIEqJNIwWazFy1adPLkybNnz8rKyvIMaQoXOCEhwcXFRUtLS0lJyc7OLiwsDCTL0qVL6XMM9FCvugvN6K1bt+D98PDwF38CwwjUSRIFkQKZElMdHR2amprckQKgKlZWVubm5oIUg0ro4+Pzww8/QDNnxmAYfPnlnLFj4aE5duwKGZleUqmTdLh5hG6UlZXZFG1RvH37NgyruDd8dHV11dTU5OfnJyUlQQNy5syZAwcO2Gy1+1hf/UPlGUO/njR06tvHsDmML0J+5OikWczgFjZdGTwRqkhJSYEBs3Crix48eAA9ILX+3L9/f/LkyXp6ekuWLBk7dqynpye8Cf2UkZER5xxizE/t9/YB6iSyFBQUwIX08PCIjY3t9z8Tui6olNDEyMjIGBsb839/W1D+85//cK98qqur++ijjxobG3HeTcIJDQ09ceIEVdYaGhpUVVWJe4fQj+ro6JiZmdna2u7bt8/b2xsuPSh4GLQ9/Omn2nXr3ns/ydq6m8SOTkQ0LFiwgMJU39CgQW2BOsNgMBQUFNTU1BYvXmxhYQENC3zk7+9/7dq1tLS0r4M9xkR4jrt1jhBGo31cPmB8y3kpywyW2J3eCIeenp6dO3eOGDECxDGfuQI5BbW1tXnGghca6CLHjx/PcaO+vh6kUlZWFuqkQUd5efn8+fPz8vJWrly5fPlykM+UfwXU3dGjRwcGBj5//rywsFBfX3/Xrl1vcL+bxHPz5k1nZ2eqrF25cmXDhg39nsYuLW3euvW965Ps7XHLm+Rjbm5eUlJClbW1a9feuHGj33glFg8Ses21/XPtopE2psSx7t0rVPmD0E1raysM0j799FNoNEAWr1q16ueffy4qKuqjiK+vL4z5qXUDFNL06dO533F1dbWxsUGdNOg4dOgQZ26luLh4/fr1UANSUykORQqN5rp16xQVFefOnevt7U00eW5ubtxhCI4cOQKDQmq/FyFDdna2paUlJaba2tpmzZrFZyyl1qNHWZs28dBJdnYdOOkmDezcuTM9PZ0SU4mJidB08HNmZUdLr9jK4xLODp3x1ef+++F4JjOoqZtUkAtExMC4ncgUWVlZGRQUtHHjRnV1dVNT09OnT//3v//lVgvQsMyePVvQ+CP9cubMmV4TeaDeiPH88OHDZf5kzJgxqJMGOMrKyr12Bzx58sTa2lpfX//WrVvi8gqRBCoqKqhauObg4MB/gPjXnZ2tBw6wtmzpJZLaAwMpcQahm8OHD1+jQtFCzwf9H/+Jj1Iba3qt5gaR9IHsVBBMcGyVjw2apHPv3j0/Pz8YocXExHzyySd/HzlXV1eDWLGysgLNBEIKRt15eXkWFhZ09Fb+/v46Ojrc74BvJiYmoJMMDAw4K2vDw8NRJw1kcnJy1qxZw/MjqI729vba2trR0dF4XQYn7e3tampq5O3k5+dramoKlPnkdU9PV3p66/79zQ4O8Gg9duzlw4fkPUFEA3QnAQEB5O0cOnQIxvQCFanpbNtZmKyeHjYt+X8BJ0duWfnP9YuJ48j6MvJeIfRRVlbm6Ohoamq6bt26frdg19XVhYWFwcmTJ08+duxYa2srtc4UFhaOHDmSew/BihUrvLy8cN5tcAGj/Pj4+D5OePbsmZOTE7ExTdAMX8gAQFZWlqQF+FHPnTtXiDxfiPQSGRl5/PhxkkbKy8tBXpNJo7S9MOnt7Nutcx8oTBt9xpUIOFnX+d4wcog0Arrq0qVLJ06cgMZq3759/ea+FQiQawYGBtnZ2SUlJe7u7lOnTgU1hjppEEFk9uZn+25TU9OBAwfU1NQuXLhA1XZfRCogn5Dy/PnzNMV5RySW9PT0gwcPkjSyePFikttKWC+7lNIugjz6IvTHodNkxt04A8ff5d7AjmbAAL2YnJxcd/fbiA/w7OfnBy9h/N8roBHUBNeH6cppF+WYwarplw48ustnkAiQ6adPn160aJG+vr6TkxMRNiktLY1YOEWQk5Pj5uZG6Z/VF6iTREpiYqJAHRjoaA8PD2NjY/pcQiSKwsJCGKtt3bqVyGQshAUY20Gz1dLSQrlviMQCVcXHx2fLli3Ozs5ZWUImVouIiBA6FS43zMZqYsbtE0eLj0z0iOOg6r52TiFSREpKirW1Nfc7oGwuXryopKRkY2NDJBJ90t4MCmninV84q9bgWCXtUkW7VLZLqJNEioWFBSVZKZABSWlp6Weffebt7X358mUXFxf+EwVyY2Vl9euvv1LuGyLJ7N69W1dXNzw8/MKFC8Jd/ba2NkVFRRaLRYk/e0rSiN5xmIb8Z567iOOZzCC1jLDj5dndGKRbmrG0tOS5Sxq0xLVr1zQ0NNasWcMI+YlniHaNjHC2FC4mQZ0kOjo7O2fPni1uLxDJ5ezZs/r6+mQsZGZmGhoaUuUPIi3IyspevXqVjAUHBwcKU5C2v3oJPSL0i2OuHB/6zeSxMac4PaVM0nm19LDaTlryWiJ009XVxWAw+pYNB6+EDFecPkyDQSxQ4358kxyY0FAhKmcpA3WS6Lhy5crhw4fF7QUiuaSnp48YMeLYsWP878rmhs1mgxB/9OgR5Y4hEo65ubmcnFx0dLRwc7V5eXl6enrU9gW/seqJrvHT77eMWKjZq7+ckxH+UgrvKyAgx11dXfs+x6bgztvg7KecP1SX+1BpxmgfF+5Lv6MwWSSeUgnqJNGxfPnyyspKcXuBSDQglYyNjUEt2dvbt7a2ZmZm8j/75uXlxTPDIDLggUpy4sQJBQWFUaNGXb9+vbCwkP+mhtgdWVxcTK1LYPab5ECiaxxuoDbq0DbuznJKUkBwNcXfiIgAExOTfsO+r3tw4/+Dafm5fyD/LfelBxUlGlcpBHWSiGhqaiI5pYIMHurr68eNGxceHr5z504tLS1DQ8ODBw+mpaX1Ef22pqZGUVGxsxPDHw9qzp07N2nSpLi4uFWrVqmpqa1fv97f37+srK8IRn5+fnv27KHck6LWRk6o7rHXTr6dfbt6gru/NMyKpPxLEVphsVj87MY9VfGAewX3P6ZMHHfzZ85q7p8rhUm4K15QJ4kIX19faI/E7QUiNaiqqkZG/q8jaWlpuX79uqOjo7a2Nqhtd3f3pKSkjo4O7vPNzMwSEhLE4SkiQeTk5IwaNYrz8tGjR6CT1q1bB5pp9erVf8/Y1dDQoKCg0E5D/r7bz3//9s/7SfD47JjDp99v4dZJimmhlH8pQitQl06ePNnvaU+72mcygzgX+gOFaWOuHOes5W/okr5kkaiTRISBgQFVe0mQgcrx48eNjIycnJyWLVv27bff8ox129bWdvPmTRcXF9137N2799atWzExMStXrhS9w4gkAG04qOq1a9fu2LFj4sSJP/30E8/TKioqOBm7TExMTp06lZ+fb2FhIVCKeP7JYtX3ymfS66GVibsypQzoxfhcOun3e8GMlP9JpWHayp8HHCAWcYfXSmWIf9RJoqCqqgq7MaRf4MeYmZl5+fLl69ev87Mgt729PTExcd++fVOmTDE1NaV8iQkiLYCkjo+Ph5oD0oef82tray9evLhq1apJkybRkX0C6Op5JZ8a8j6RNPHOL4cf3aP8SxH6qK6uXrhwIf/nRz99/O9Ef7jWHy3T/cxrNxy4Pcygzz1aQZ0kCqAZgkombi+QgUlRUZGxsTGTyYRWbMWKFbm5ueL2CJEOXF1dg4KCiOwT7u7uTU1N1Nr/4dHdqUkBPHWSXGpIY3dH/yYQiQH0NGhrgYoQSWz+ZW786QFbOPD9vYAm3+gGdRKCSDd79uy5fPkycZyTkwNSycjIiGcgOAThAC0/yCNilVtXV5evr6+cnNyuXbvq6uqo+opXr3tW58Z9zbVKiXjIMoOZjThulDLmzJnzxx+C5enb/+guXO6Pt333iaMFHHg8/o0m3+gGdRKCSDE9PT3Q2/Xa5lZcXGxhYaGnp4cru5H3kZqaCpWE+x02mx0aGqqoqGhra1tRUUHJt0D/4lmeLccMnsUMln33vCDraukfLygxjoiMoqKidevWCVrqdMWDtwG03DaP3GwKB3tKpHXwhjoJQaSYlJQUS0tLnh9VVlba2dlpampGRUX1YEw/5K9YW1snJib+/X2oKlBh1NTUzM3N+42Uwyc9r1+XtzcXtjayXr43sAUiyTQ1NQkhnS/VlhBbHT8ymw8H1vm3aXBNFKBOQhApxsrKKikpqY8Tnj596uTkBN1eSEgIm80WmWOIJNPV1SUrK9u3ek5ISNDR0cEVb4jQxDdUvA01eW7fiAVz4GBlznVxeyQkqJMQRFrhp7cjYLFYBw8eVFVV9fX17SNYJTJIuHr1qqOjIz9npqenL3wHHNDtFTLAyHqXu2ZM+LFhcxhwoH8vQtweCQnqJASRViIiInbv3s3/+X/88YeXlxeoJarmUxApZfny5Xl5efyfn5ubu2LFisWLF9PnEjLwSH5eBfJo3I0zH8h9DQcT7vj9WlsqbqeEAXUSgkgry5YtKygQeKttd3f3q1ev6PAHkQpYLJaSkpIQBSkPHIAMYMr+YM38M9Tk0G8mEwfTki8ce3xf3K4JDOokBJFKoNNSVlYWtxeI9OHr63v06FFxe4EMZHpev56TEc6JBDF0+lec4xkpQYWtjeJ2UDBQJyGIVAK93bFjx8TtBSJ96OjoVFVVidsLZCCTxarnTvE2dMZX3AG0LPKkLF4J6iQEkUq0tLRqamrE7QUiZVRWVurq6orbC2SAE1hV+CWXMBqmpTg29hTn5ZyMcHE7KBiokxBE+qioqJg3b564vUCkjx9//NHf31/cXiADnNCa4kmJvwyYFMiokxBE+jh06FBgYKC4vUCkDwUFhZaWFnF7gQxwStqaZJnB79NJu4qY4nZQMFAnIYj0gb0dIgS5ubmmpqbi9gIZFCy7H/MlL5EE+qmms03c3gkG6iQEkTKys7PNzMzE7QUifTg4OERHR4vbC2RQ8OJlp1p6WK/ZN1lmUNyzJ+J2TWBQJyGIlBEXF8czMxeC9I2zs3N3d7e4vUAGC23s7r0PM5TSLs5iBjNSQ5bdj5G6iAAEqJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDeokxAEQRAEQXiDOglBEARBEIQ3qJMQBEEQBEF4gzoJQRAEQRCEN6iTEARBEARBeIM6CUEQBEEQhDdD4N9rBEEQBEEQ5K+ARvo/4tmi0XNhvG0AAAAASUVORK5CYII=\"}},{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nsame - optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named - Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness - via exposure to adversarial examples. While there are\\n\\nconceptual disparities, - we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras - to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - anthropic-version: - - "2023-06-01" - connection: - - keep-alive - content-length: - - "51093" - content-type: - - application/json - host: - - api.anthropic.com - user-agent: - - litellm/1.74.15.post2 - method: POST - uri: https://api.anthropic.com/v1/messages - response: - body: - string: !!binary | - H4sIAAAAAAAAA4STT2/bMAzFvwrBS1vAKdKi7VAfgw3YbhtW9DIPDiMxtlpZ8kQqTVbkuw92/mxt - se0kWO+R/PmBesYuWvZYovGULU8khsA6uZpcTy6nl9fT28tbLNBZLLGTpp5ezGjxgW6/3Hx+f//x - 6ybeb26Wtz8fsEDd9Dy4WIQaxgJT9MMFiThRCooFmhiUg2L57fngV14PyniUOJ/PHySGKjxXAaBC - yV1HaVNhCRXetQy8Npx6BV733hmnfgOipCygLSmYmINyWpLRTH50USB1MQhIbhoWBTLDNy08Qxet - WzqzN2iELno22bOcw6cA2jIsfIx2skjkAiwoJccJTmez2Rn0nDoeS4HX1PWei1fzBaSNT2zfziEw - lBZxvfHOABlnoUkx97ufeIrZW+AdIkHghtSt+DDlCDk02kPwyDqbzc5hSGlIE6RnM071fgMhKksJ - J3etE+hTXI2JMZBdUVBqGOISsrjQ/CvDAmgs2/wvzAFtaP8nakePDE7BpChy5D0ZgV/nNhA6yxZM - DCaxMoimbDQn8mBaCg0LnFr2vOeSvBB1mg+YwQJZ63aBxyWQxk7OjkviLSwY3BBnx0HZDoC7vgdm - SgNFz0kdy3mFxW4jE3teUTBci4mJh828mFZhW4X5fI7b7wWKxr5OTBIDlsjB1ppTwL0g/CNzMIxl - yN4XmMfXUj6jC33WWuMjB8Hy4t3VtEBDpuXapN2a1S8tRz0x2b9ph9phAvctd5zI19fdW/9v9aJ9 - rW4LjFlf8F3fFCicVs5wrY4Tlji8ckvJ4nb7CwAA//8DAKNXM0NYBAAA - headers: - CF-RAY: - - 991ac85fda61fae7-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Mon, 20 Oct 2025 19:04:49 GMT - Server: - - cloudflare - Transfer-Encoding: - - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:46Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:49Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:46Z" - cf-cache-status: - - DYNAMIC - request-id: - - req_011CUJyJMdVTCSM3ZFKTpxHF - strict-transport-security: - - max-age=31536000; includeSubDomains; preload - x-envoy-upstream-service-time: - - "4796" - status: - code: 200 - message: OK - - request: - body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 3-5: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\n a passive characteristic + of a model, whereas explainability\\n\\nis an active characteristic which is + used to clarify the internal decision-making process.\\n\\nNamely, an explanation + is extra information that gives the context and a cause for one or\\n\\nmore + predictions.29 We adopt the same nomenclature in this perspective.\\n\\n Accuracy + and interpretability are two attractive characteristics of DL models. However,\\n\\nDL + models are often highly accurate and less interpretable.28,30 XAI provides a + way to avoid\\n\\nthat trade-off in chemical property prediction. XAI can be + viewed as a two-step process.\\n\\nFirst, we develop an accurate but uninterpretable + DL model. Next, we add explanations to\\n\\npredictions. Ideally, if the DL + model has correctly learned the input-output relations, then\\n\\nthe explanations + should give insight into the underlying mechanism.\\n\\n In the remainder + of this article, we review recent approaches for XAI of chemical property\\n\\nprediction while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin various systems these methods yield explanations that are consistent with known and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn @@ -4299,50 +4279,66 @@ interactions: above\\n\\nattributes.44 Shapley values were proposed as a local explanation method based on feature\\n\\nattribution, as they offer a complete explanation - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6361" + - "6308" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3ST3WobMRCFX2WYm7SwDrZJCtm7UAoNDYXSXhS6ZT2RZr1KtKONNHLiGr970bqJ - m/5cidX5Rmf2jLTDIVj2WKPxlC3PUhBhnZ3NzmfL+fJ8frG8wAqdxRqHtG7ni+vrD+Pd8rHr3e2m - /3hvtxefP/24xQp1O3KhOCVaM1YYgy8blJJLSqJYoQmiLIr1t90Tr/xYlGmpcbVa3aYgjewaAWgw - 5WGguG2whga/9AyFA+uSySlxAlKN7iYrJ+hCBN6Qz6RO1sCPoychdUESOIGvl1fw6l3ZdEI3nuHy - 6nUFTozPtvAPPWvP8WUdRYYTMuWj1JzADCx3TtgCpecSpycJjGeK0IcH0ACmJ1kzOBmzQsekOXIq - whCs67agPUPIOmY9hbchi3LsyGgmf/AcWIrnwYagRAWhAx8MeXAFHyPr1CSQWBhD0lkfzO/dw8Da - B3sK78MDbzhWk+shv8AJJOiEO+PUbyEpKT//kvlHU8cc4Bg1l1MHoDU5STpZPHHOO92CiU45uiCn - DVaHoUb2vCEx3CYTIpfhvmlk38hqtcL99wqThrGNTCkI1shiW81R8JeQ+D6zGMZasvcV5um+1Tuc - 4m413LEkrBdni3mFhkzPrYk8ZdK+RJ71yGT/pz3VFgceex44km/Ph7/5o7ro/1T3FR4GfuxvOa8w - cdw4w606jlhjeSeWosX9/icAAAD//wMAL+R9ZpoDAAA= + H4sIAAAAAAAAA3RUzW4bNxC+6ykGPLWAZEhC5R9ditRoWjcFeknaAlUgjMnZ3Wm4JMuZlSUYBvwQ + vQRIX85PUnBXltTGufAw38w33/zxfgRg2JklGNug2jb5yfWvP/+wmIY3rxfh+q/X7dUv1ebtm3ff + uO9+2v74vRmXiHj7J1l9jjqzsU2elGMYYJsJlQrr7OJ8trhcXM1nPdBGR76E1Ukni8l8Ol9MppeT + 6cU+rolsScwS/hgBANz3b1EYHG3NEqbjZ0tLIliTWR6cAEyOvlgMirAoBjXjI2hjUAq96PtVAFgZ + 6doW825llrAybxsCzMrWE1hfGComARu7oJQrtNqhF0ABHy164GJOmRRL3QIc4PdXN2NoCQOHGrSh + HdA2eeQAMfgdINS8oQAcijZLZ3CjgF4ieBYV+EA7QNXMt52SgEagDfoOlQaeMGQaAwfrO1eSvLLF + hLeelvD0+OlGgBWsJ8zQxDu4o6LfO7ANhpqKJuCQOoWKULs8ZGmj42rXg7HT1Om3T4//wPX/C8+0 + T0wOsI2hhhRFJ0208BVtNXMQtl9DS9pEJ4A+hlrY0XOuQ20cA2BwIF3OsS7l9WshZ/Bbw35QSVtL + OSm4SAIhat8Btqx+B6IlRhvUz6dT0hx6Mi5UnCF1OUUhQM91ELhjbfokz57sWXdgMytljuHp8e+U + 44b7DksiyxXbfQv7hvUtlEHBXd9f9EoZcCjk6fGjQMrkuOeHKmbAk7GvzHjYv0yeNsW0FhszlT28 + XIWH06XNVHWC5WRC5/0JgCHE/eqVc3m/Rx4OB1JxYGnWmVBiKEsvGpPp0YcRwPv+4Lr/3JBJObZJ + 1xo/UE87m5/PB0JzPPEjfDE736MaFf1J3NXF5fgFyrUjRfZycrXGom3IncTOFvNDEdg5jkdsOjqp + 8XNJL9EP9XOojyyLi/MvJjgC1lJScuvjIF9yy1Q+wi+5HbrdSzZCecOW1sqUy0QcVdj54ZMyshOl + dl1xqMu/wv1PVYY+ehj9CwAA//8DAG34PXamBQAA headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac8649b79680c-SJC + - 9953e46a4b7a15d8-SJC Connection: - keep-alive Content-Encoding: @@ -4350,64 +4346,73 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:49 GMT + - Mon, 27 Oct 2025 17:25:34 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "25000000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:47Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:49Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "30000000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:47Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJQqiYxrUdwv9RW7GN - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "12688" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4068" + - "12742" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998490" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_cd0e539c67584aa8be893b11d67a0f39 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 25-28: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-activity + relationships using locally\\n\\n faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) + Gormley, A. J.; Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n + \ Nature Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, + R. B. V.; Gregoire, J. M. Computational sustainability\\n\\n meets materials + science. Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding + with artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, + 4, 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities @@ -4464,50 +4469,60 @@ interactions: Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference on knowledge discovery and data \\n\\n------------\\n\\nQuestion: Are counterfactuals - actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6402" + - "6349" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3yT3W7bMAyFX4XgzTbACRJvARbfDtguihb76TBg8+AwMhOrkylXpNtkQd59sNt0 - aIfuSoC+Q/LoSDpgG2sOWKAL1Nc80SjCNnkzWUzyWb6YLfMlZuhrLLDVbTWbv7eri08fzvP9V/lO - 1xdnH/X31dlrzND2HQ8qVqUtY4YphmGDVL0aiWGGLoqxGBY/Die98W4g41LgarW60iilHEoBKFH7 - tqW0L7GAEi8bBt45Tp2BV9ik2AJB4g0nFscQvBrEDRB01HGCKMC7LpCQ+Sg6oDYGdn2gBF3i2rsB - wBiBTuHzQ6eXy1fQstyVvTgfONBWopp3sGXhNLYcOrrYi3HakLOewuOBm5hOE1lfwHoP3zgEuiUz - BjagMM2g69fBa8M1eIF3DbfeUYAvzo9O8lmeT+Gy8Qpeau/IWMEavj9i7dX1qqz/9eFlLBnT39lz - OWgG695G5UPKphw2UEdWkGjQpXjjawYvm5jauwxoHXuD24at4fTEhgIlBhrb0zrwtMTs7mITB74h - cVypi4mHC85LOZayWq3w+DNDtdhViUmjYIEsdWV9ErwHytf9kA8W0oeQYT++ueKAXrreKou/WBSL - +fLtIkNHruHKJR4NV48lsxNPTPVz7FQ7TOCu4ZYThWrR/qv/S+fNU3rMMPb2yN98maFyuvGOK/Oc - sMDhr9SUajwe/wAAAP//AwDpabqungMAAA== + H4sIAAAAAAAAA3SSP2/bMBDFd30K4mYpkGXLfzQmAbK0U9t0qAKBJs82E4pUyFPQ1PB3L0g5loIk + C4f73T2+d+QxYQyUhIqBOHASbaezm/tvd9db3Rc/7r4/Xv/ebuY/n59vza+bbZn/gzRM2O0jCnqb + uhK27TSSsmbAwiEnDKqz1XJWrstNsYqgtRJ1GNt3lJVZkRdllq+zfHWeO1gl0EPF/iSMMXaMZ3Bo + JP6FiuXpW6VF7/keobo0MQbO6lAB7r3yxA1BOkJhDaGJpo+1YawG37ctd681VKyGGtKh6lDjCzcC + Gy+sw0Dz2pymUg53vechiOm1ngBujCUeFhFDPJzJ6WJ7p4zyh8Yh99YEK55sB5GeEsYe4hr6d8mg + c7btqCH7hFF2tpovBkEYFz/iRb45U7LE9QiK2WKefiLZSCSutJ/sEgQXB5STO5fLxSUE76WyI8uT + ScaPlj6TH/Irsx9V5uuvLxiBENgRyqZzKJV4H3xscxi+51dtl21Hy+DRvSiBDSl04UUk7nivh68D + /tUTts1OmT26zqn4f8KjJ6fkPwAAAP//AwDaP2ptPAMAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac86daca41739-SJC + - 9953e48f6c553ad4-SJC Connection: - keep-alive Content-Encoding: @@ -4515,54 +4530,258 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:51 GMT + - Mon, 27 Oct 2025 17:25:36 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:49Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:51Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:49Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "8864" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "8911" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998486" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_5f1eb70d5a6742629d3a65c7e3e6962e + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nsame + optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named + Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness + via exposure to adversarial examples. While there are\\n\\nconceptual disparities, + we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras + to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "51052" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA3RUwW4jNwy9+ysInRLANhy3jrO+xUFaoFgDbbHopV4YHImeUaORVIqTjREE2H/Y + P9wvKaRxPN5u9jKHeeTj4xPJ5xGAskatQOkGRbfRTe7+ev/rz/Uf+LtLf94vPy25eb+Ud+t/P9wu + b39T45wRqn9Iy2vWVIc2OhIbfA9rJhTKrFfL66vFzeLdfFaANhhyOa2OMllM5rP5YjK7mcyWx7wm + WE1JreDvEQDAc/lmhd7Qk1pBYSl/WkoJa1KrUxCA4uDyH4Up2SToRY0HUAcv5Ivo560H2KrUtS3y + YatWsFUfGgJksdoRYIzOUoJNcKQ7hwybLBxuax+SWA13ofNCvEctHTq4f4oOPWYDElxsNrd395cg + ARAqF4L5+vlLxWg9VMhsieFivV5fQiRuqSRB8WUKvwQGhLavShCZjNVCBnyQzHfMoDHobwSkTGD3 + B5CGQCNX4engrAbU1kDNoYtj2Dsbo/V1iTky59In2srRFIoLnTSBEyRBIZDGJjDUBp+EUSgVAjSP + 6AVrgrD/nxigczcq0tilTEMHSF1dUxLAUjpX7IVbfYyWAC0+lOjBBs0h9VXX63WRmAh0g76mBOhs + 7eGTlQZayj9teaCsJfdwYX0exkQGmoPhEJtQWQ026+1VJEBvIHVZfp4AwsspbAITVBzQuMN3Zo8B + H6zvtYpuyLxKRYaIltMYGnIROq/DIzEk4U5Lx/T185fIIRLLAZhc33NjYy8hQyF3FrJkoVNettRY + SdOtGveDy+ToEb2mXdKBKQ/w1WzrX87HnWnfJczL5jvnzgD0PkhfOy/axyPyclqtvfU2NbtsW/B5 + XZKEqAr6MgL4WFa1+2b7VOTQRtlJeKBCe3W9uOkJ1XAcBng5f0UlCLoBmP90cz1+g3JnSNC6dLbv + SmM2f8gdjgN2xoYzYHTW4Pd63uLum7e+HlgWy+sfFhgArSkKmd2wYW+FMeX7+aOwk9VFskrEj1bT + Tixxfg5De+xcf9tUOiShdre3viaObMuByy8+ehn9BwAA//8DAPN3B1ndBQAA + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 9953e45f69c4a473-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Mon, 27 Oct 2025 17:25:37 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJX5Waq1KY8EyVfQce - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "17689" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4441" + - "17770" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-input-images: + - "250000" + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-input-images: + - "249999" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39997730" + x-ratelimit-reset-input-images: + - 0s + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_f9da2cf8a2ff49ac9ed7a314aa8245f0 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n - \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 33-35: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew + D. White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n 1\u201320.\\n\\n\\n(78) + Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n @@ -4628,53 +4847,67 @@ interactions: 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6394" + - "6341" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3xU0W4TQQz8FcsPBKRLlKakwL1VBdoKVCGoVBBBl+2ek1uyt3usvWlCld/iB/gx - tJsW2hR4utN5PB577LvG1tdksURtVaypz945kv7T/rg/Go7GwxejF1igqbHElufVcG98dLz+dLHf - 7S2WJx8X/nD59uKNOccCZd1RQhGzmhMWGLxNHxSzYVFOsEDtnZATLD9f3+KFVimSHyVOp9Ov7N3E - XU8cwAQ5tq0K6wmWMMHzhoBWmkInUBvWkZkYtI9OKMyUlqgs0Kqzyikx3jEYB9IQ5LIrAT+D1lvS - 0aoAXaDa6ISDPAMG5Wo4PB3AqUCgGQVymhiYlhSUhSsfFgze7RaUhnxY5+S7tUs4+fljZinA49Fw - OH6SMntHKrKyYNwNO1wqpvohKRc9uPC+vlKhhkdwYkQ32utF5trfch3C0X0hhzqTFL2s5T1FscbN - twL2DrZJaYQ7aedb/X4GH7QhJ2ZmNLz608mgB6dt50Oy0K4LMALaCDFcKN0IBSABZQe5yrObNv9j - yZWRxkcB35Ezbp79ubRKL+DSr3p/cUxF8a0SqqEmbTiTpAaPX757X+S3NqlOn49e94/PzrJ24yjA - zIcHYl7dFZMAx0F1DZxRTCafkWSfB700l98yOM7nxLK7bAwqEMRkYWLaXb1W6cY4Aksq5F6z2N8L - WBObuSvyRO4unHgwbkmB6b8MBL4T05rvuWABpu3sOmG6oLQYrSyorrNGbwUNJlhsbyqQpaVymirW - PlC6rYOJ20zcdDrFzZcCWXxXBVLsHZZIrq4kBoc3AaZvMQnF0kVrC4z53MtrNK6LUolfkGMsR8On - zwvUSjdU6UBZRHUfMryNB1L1v2K3uakCdQ216RircfsQ/ye61+xGNwX6KPf07e8XyBSWRlMlhgKW - mH5TtQo1bja/AAAA//8DALT1cCwZBQAA + H4sIAAAAAAAAA4RUXW4bNxB+1ykGfChsQFK0kiXZ8lPhNnZTIW0NI0ZRBcKYnN1lxCUX5NCSahjI + Qdpr9AK9SU5ScKVY6zhBX/gw38zHb34fOgBCKzEDIUtkWdWmd/Fufjn+cHH1bny7mv/253r05qaq + 5tc///L69zdedFOEu/tAkj9H9aWrakOsnd3B0hMyJdZsOsnGp+OzYdYAlVNkUlhRc2/cGw6G497g + tDeY7uNKpyUFMYM/OgAAD82bFFpFGzGDQfezpaIQsCAxe3ICEN6ZZBEYgg6MlkX3AEpnmWwj+mFh + ARYixKpCv12IGSzETUlAG0m+ZjA6cIAqGta1IfCUkycrKYCzIF20TD5HyRFNALQKuCTtIQYCbYE2 + tUGLqRyhDz8xSM0UIHfRqsaK5gsSkBhDA71qBcPa+VWAo6t//8kNeRgOBuNzuHVOrdEr+A6uNMtS + OrlK0Ogcrimy0bZofLPJOcxprQNkZ9OT4ySzC7qqnU+FMdsu3KIsmTwQA5o+HA0H2fQYPn386+K5 + uHY+sNZcusjgarLaFilzuDMoV3DnNjP4PrKrUu9BkdShCdkXCC5/+PW6++nj37AutSwh91hR+LIS + zz7TFhAMFWheoWwc8U4bzVtomrlhyJ0HfPlnU3Y0wYG20kRFAS5eX759+2Ni15Y8HM2j1HKf+3EX + ECri0qmG8X80FR7rEixFjwYscdOnPtyUFCg1e+9ZO20Z2L2cmAC1R8latsid3wI7ZwK4nMmCTtOq + SCWCImpFIEu0BYVkQFlquidQFLQnBS6ydBWF/kJ0d7PtydA9WknLIJ2nNOOnC/vYXghPeQyY1tFG + Y1oAWuv2SaRVfL9HHp+WL9dWh3LpCYOzaaECu1o06GMH4H2zzPHZforau6rmJbsVNbTZdDzaEYrD + +WjBo9OzPcyO0RyQUXYy7H6Fc6mIUZvQOglCoixJtVgnk5OnLDAq7Q7YoNNK8qWmr9HvCqBt0fph + mE2++cMBkJJqJrWsPSktn6d+cPOUzuy33J7q3WgWgfy9lrRkTT71RFGO0exOoAjbwFQt8+Y61F43 + dzC1vfPY+Q8AAP//AwDntXFLBAYAAA== headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac8637ee67396-SJC + - 9953e465f8ff2516-SJC Connection: - keep-alive Content-Encoding: @@ -4682,83 +4915,92 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:51 GMT + - Mon, 27 Oct 2025 17:25:39 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:47Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:51Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:47Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJQ3qgo5z1mtgkL5Pz - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "18365" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "6173" + - "18421" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998488" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_41635f386aeb449f98b0a9368389d06d status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature is assigned a fraction of\\n\\nthe prediction value.44,45 Completeness - is a clearly measurable and well-defined metric, but\\n\\nyields explanations - with many components. Yet Shapley values are not actionable nor sparse.\\n\\nThey - are non-sparse as every feature has a non-zero attribution and not-actionable - because\\n\\nthey do not provide a set of features which changes the outcome.46 - Ribeiro et al. 35 proposed\\n\\na surrogate model method that aims to provide - sparse/succinct explanations that have high\\n\\n\\n 5fidelity - to the original model. In Wellawatte et al. 9 we argue that counterfactuals - are \u201Cbet-\\n\\nter\u201D explanations because they are actionable and sparse. - We highlight that, evaluation of\\n\\nexplanations is a difficult task because - explanations are fundamentally for and by humans.\\n\\nTherefore, these evaluations - are subjective, as they depend on \u201Ccomplex human factors and\\n\\napplication - scenarios.\u201D37\\n\\n\\nSelf-explaining models\\n\\nA self-explanatory model - is one that is intrinsically interpretable to an expert.47 Two com-\\n\\nmon - examples found in the literature are linear regression models and decision trees - (DT).\\n\\nIntrinsic models can be found in other XAI applications acting as - surrogate models (proxy\\n\\nmodels) due to their transparent nature.48,49 A - linear model is described by the equation\\n\\n1 where, W\u2019s are the weight - parameters and x\u2019s are the input features associated with the\\n\\nprediction - \u02C6y. Therefore, we observe that the weights can be used to derive a complete - expla-\\n\\nnation of the model - trained weights quantify the importance of - each feature.47 DT models\\n\\nare another type of self-explaining models which - have been used in classification and high-\\n\\nthroughput screening tasks. - \ Gajewicz et al. 50 used DT models to classify nanomaterials\\n\\nthat identify - structural features responsible for surface activity. In another study by Han\\n\\net - al. 51, a DT model was developed to filter compounds by their bioactivity based - on the\\n\\nchemical fingerprints.\\n\\n\\n\\n \u02C6y + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 5-8: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n We present + an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 + Shapley values were proposed as a local explanation method based on feature\\n\\nattribution, + as they offer a complete explanation - each feature is assigned a fraction of\\n\\nthe + prediction value.44,45 Completeness is a clearly measurable and well-defined + metric, but\\n\\nyields explanations with many components. Yet Shapley values + are not actionable nor sparse.\\n\\nThey are non-sparse as every feature has + a non-zero attribution and not-actionable because\\n\\nthey do not provide a + set of features which changes the outcome.46 Ribeiro et al. 35 proposed\\n\\na + surrogate model method that aims to provide sparse/succinct explanations that + have high\\n\\n\\n 5fidelity to the original + model. In Wellawatte et al. 9 we argue that counterfactuals are \u201Cbet-\\n\\nter\u201D + explanations because they are actionable and sparse. We highlight that, evaluation + of\\n\\nexplanations is a difficult task because explanations are fundamentally + for and by humans.\\n\\nTherefore, these evaluations are subjective, as they + depend on \u201Ccomplex human factors and\\n\\napplication scenarios.\u201D37\\n\\n\\nSelf-explaining + models\\n\\nA self-explanatory model is one that is intrinsically interpretable + to an expert.47 Two com-\\n\\nmon examples found in the literature are linear + regression models and decision trees (DT).\\n\\nIntrinsic models can be found + in other XAI applications acting as surrogate models (proxy\\n\\nmodels) due + to their transparent nature.48,49 A linear model is described by the equation\\n\\n1 + where, W\u2019s are the weight parameters and x\u2019s are the input features + associated with the\\n\\nprediction \u02C6y. Therefore, we observe that the + weights can be used to derive a complete expla-\\n\\nnation of the model - trained + weights quantify the importance of each feature.47 DT models\\n\\nare another + type of self-explaining models which have been used in classification and high-\\n\\nthroughput + screening tasks. Gajewicz et al. 50 used DT models to classify nanomaterials\\n\\nthat + identify structural features responsible for surface activity. In another study + by Han\\n\\net al. 51, a DT model was developed to filter compounds by their + bioactivity based on the\\n\\nchemical fingerprints.\\n\\n\\n\\n \u02C6y = \u03A3iWixi (1)\\n\\n\\n Regularization techniques such as EXPO52 and RRR53 are designed to enhance the black-\\n\\nbox model interpretability.54 Although one can argue that \u201Csimplicity\u201D @@ -4794,51 +5036,66 @@ interactions: \ 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) \ (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6365" + - "6312" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3RTwW7bMAz9FYKXXJwgaZsV9bGHDS02YMA6DMM8OIzExFplyROppEGQfx/sNGva - YScBeo/ie4/UHtto2WOJxlO2PJYYAuv4ajwfX0wv5tObixss0FkssZV1PZ3du033Pb77+Pn+w1d7 - +bh+P/90a2+xQN113LNYhNaMBabo+wsScaIUFAs0MSgHxfLH/sRXfuqR4ShxsVj8khiqsK8CQIWS - 25bSrsISKnxoGHoe8FPnnXHqd2CdmCzCAibmoJxWZDSTF3ABtGEYWj4pxNVQRoHUxQAtaxOtwCom - aKNnkz0l6BJbZ46EPheZwJ2CKCkLaEMKXxrqPO9gQz6zACWGUYgKNFTR0jOEmEA6SsIjWLKhLAwj - bXgHNkLP7VLcOMtAIDwIWzFpTiywbZxpwDQU1kNDhpjVxJYnI7gLg5dEosUAUdYmpl7DOnNv9xt7 - T1tSZWAF8pOj5NHbZHrRS1bldB6J/BU7aO1JZ6Yo2GdTkxE8NE7AusSmH4EL1pmXhN5262I/nqOb - swe7FDtOuiugZQourI9tT9m4sIqpPc6KljErbIfHn6PZxuwtkO89nMdUYXFcnMSeNxQM12Ji4n6B - ZtMqHKqwWCzw8LNA0djViUliwBI52FpzCvgMCP/OHAxjGbL3BeZhqcs9utBlrTU+chAsZ1fz6wIN - mYZrk3jQW7+mTE94YrL/w061fQfuGm45ka/n7b/8F3TWvEUPBcasr/RdXhconDbOcK2OE5bYf0ZL - yeLh8AcAAP//AwA3arRM/wMAAA== + H4sIAAAAAAAAA3RUy25bNxDd6ysGXLWAJEhKZTvaFV3EAbIIkCJdVIEwIkciXV6S5QxlK4YBf0Q3 + Bdqf85cU5NXLaLK5uPeemcNz5sHHAYByRi1AaYuiu+RHv3z+8O79rdv6ufn85/ru7uPb28lv9M7q + D93dvRrWjLi+Iy3HrLGOXfIkLoYe1plQqLJOr6+m85v52zc/NaCLhnxN2yYZzUezyWw+mtyMJteH + PBudJlYL+H0AAPDYnlVhMPSgFjAZHv90xIxbUotTEIDK0dc/CpkdCwZRwzOoYxAKTfTjMgAsFZeu + w7xfqgUs1a+WgB405SRQQzOyMNBD8hiwWoOOxEbDQwhRXNiCWBT4ZDF52sMOfSGGHz7d/vzxR0g5 + 7pwhOBSGYF0EQgwjTpiZAINpn6grM649XZ7EsCaNhQloR3kPG0IpmcAiA7a8r5QjoEh269K0VUKx + tAcTqzxwwTiNQnBvnbZHBgaJoC2GLdU39EK5pkEsomNHY3gfTuaHDcEiNmYGzNtCvWUdSxDKG9RS + 0L8Wjpng5fmfNYlQfnn+9+SkiavoheUqui/Iy/NfbkzjYR/mDAVxmz10LrgO/akAvXTuZdzH4s3J + jSVow/Xy/DdDymRcO2cMta9CDwLoOQJ1ySK7r0cSqn3D1s5XPhxXZu8pbCvWlJY29G5HQzCUKJiK + xAC2dBiglqMVKhjAlHwtf+0MawqYXeTxUg37ucvkaYdB04p1zFTnbzpZhqfLac20KYx1V0Lx/gLA + EKL0KuuefDkgT6fN2Ljg2K4yIcdQp50lJtXQpwHAl7Zp5dXyqJRjl2Ql8Q9qtNPZ9WHV1Hm3z/Cb + m5sDKlHQX+RdzY/IK8qVIUHn+WJdlUZtyVzkTuezkwksxsUzNhlcePy/pG/R9/5d2J5ZZvOr7x5w + BrSmJGRW5yH6VlimOgzfCztVu0lWTHnnNK3EUa4dMbTB4vvbSfGehbrVxoUt5ZRdu6Jq0wdPg/8A + AAD//wMAlk/vfZ8FAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac87efb6efae7-SJC + - 9953e4bace5915d8-SJC Connection: - keep-alive Content-Encoding: @@ -4846,60 +5103,70 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:54 GMT + - Mon, 27 Oct 2025 17:25:40 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:51Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:53Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:51Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJitAq5HuvUNvqReSm - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "5573" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4222" + - "5616" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998488" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_d111a5a876774c3ba8e414ba55d54981 status: code: 200 message: OK - request: body: - "{\"model\":\"claude-sonnet-4-5-20250929\",\"messages\":[{\"role\":\"user\",\"content\":[{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n - A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi - P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n - \ D. White\u2217,\u2021\\n\\n\\n \u2020Department - of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department - of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n - \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n - \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere `summary` is relevant + information from the text - about 100 words words. `relevance_score` is an integer + 0-10 for the relevance of `summary` to the question.\\n\\nThe excerpt may or + may not contain relevant information. If not, leave `summary` empty, and make + `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from wellawatteUnknownyearaperspectiveon + pages 1-3: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. + White. A perspective on explanations of molecular prediction models. ChemRxiv, + Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\n------------\\n\\n A Perspective on Explanations + of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 + \ Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n D. + White\u2217,\u2021\\n\\n\\n \u2020Department of Chemistry, University of + Rochester, Rochester, NY, 14627\\n\\n\u2021Department of Chemical Engineering, + University of Rochester, Rochester, NY, 14627\\n\\n \xB6Vial Health + Technology, Inc., San Francisco, CA 94111\\n\\n\\n E-mail: + andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n \ Chemists can be skeptical in using deep learning (DL) in decision making, due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which @@ -4960,52 +5227,66 @@ interactions: characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one or\\n\\nmore \\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}]}],\"temperature\":0.0,\"system\":[{\"type\":\"text\",\"text\":\"Provide - a summary of the relevant information that could help answer the question based - on the excerpt. Your summary, combined with many others, will be given to the - model to generate an answer. Respond with the following JSON format:\\n\\n{\\n - \ \\\"summary\\\": \\\"...\\\",\\n \\\"relevance_score\\\": 0-10\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 0-10 for the relevance of `summary` to the question.\\n\\nThe - excerpt may or may not contain relevant information. If not, leave `summary` - empty, and make `relevance_score` be 0.\"}],\"max_tokens\":4096}" + [yes/no]\\n\\n\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "6386" + - "6333" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3xTXW8bNxD8Kwu+JAVOhu1YTXJvBoIiSfsSoGiCVsGJIle6TXhLdncp+2DovweU - onyifSLAGS5nhsMHN+WIyfUuJF8jLjQzoy1uFsvF9eX18vL59XPXOYqud5Puhsurt8ur32/LXy9/ - +/XN9m8OT+/fvH47vXads7lgY6Gq36HrnOTUNrwqqXk217mQ2ZDN9f88nPmG9w05Lr1br9cfNPOK - H1YMsHJap8nLvHI9rNyfIwLeB5RiEElDVUUFvC/JE/tNQvBitKVAPgGxYUq0Qw4Ij9/dvvoFJrQx - RwViCCNOpCZzB1owtEM+pRkmZKPMxLsTJfgEIVc2lK0PVn1S8AqZEfIWbER4d/vqPPgCmsLiCwqo - eUMFG73Bo284kOgj/s9sjhBRg1CxLCdv7JskheD5bBZe/AFFMFI4QXcjJYQd7ZtwYqXdaC2BDGpS - g1XBRZFcUGwGwXSaOFLRi0dH0b7amKVFEyl4w2ZthjtKCbY51Ob4i4OIe0y5YITN3HgksJNcCxCH - VOMxux9sbbN80cs70JzqhhLZ3MEm5RwXG2muNl6EUKCgTOjPjJbJlBOGmryABmS7gJf5DvcoHdhI - +rUVGRU42zEnCmRpPjcF7ka0EeXnyAXBH3M8VuioNO8pIkQ0T42xydU+O/2Gyb7lerFy3amrggn3 - ngMOGrJg6+zNig8rXq/X7vC+c2q5DIJeM7veIcfBqrD7DCj+W1tZXc81pc7V4zfqHxxxqTZY/ois - rr+6efKsc8GHEYcgeHzJ4XvK5RkX9PG/sPPZdgOWEScUn4bl9DP/K3o1/ogeOperfadv+bRzirKn - gIMRiutd+/7RS3SHwycAAAD//wMA6ofw3nEEAAA= + H4sIAAAAAAAAA4xUzWobSRC+6ymKPtkgGUmxbEe3YEJiEtjDBu+yURCtntJMxT3dTVW1ZGEMeYe8 + YZ5k6RlbUjYO7KUP/VV99dXvwwDAUGXmYFxj1bXJj65vP777sP26bez7W52cb9253Fxf//Ppwx9/ + vr01w+IRV1/R6bPXmYtt8qgUQw87RqtYWCeXF5PZ1ez1q4sOaGOFvrjVSUez0XQ8nY3GV6Px5ZNf + E8mhmDl8HgAAPHRvURgqvDdzGA+ff1oUsTWa+d4IwHD05cdYERK1Qc3wALoYFEMn+mERABZGctta + 3i3MHBbmU4OA9w45KTBuCLcCeJ+8pWBXHuHNDZz8/ebmFCiAa7AlUd6BDRU0VDee6kalB5z14GIO + iry2TrP1AlbAQovaxAq0sQrOhmd6qBATeLQcKNSQGCtypZjS0SeOG6oQKEgJAhQ0gihnp5nxx7fv + iWNC1h0wetv5NZTkDG4UHCkK2JQ8uR6CE4k+r8iT7oaw8jFWP759X3HRsbLMhAwJuUX7bCMOg552 + UizXGaVPoBMfnkgplJYLgnIW7auCPkGFik5BUmaKWcBF3ovsBFovsWSYohShoNs4EsVU/hyKwMkq + k69g5a27G63iPXQjNARtcF/AU9AIObi4Qf5flfmrIY+gDQlIrmuU0rr/dKw0qM6l8G306LK3XGLT + el/JkmWFjoRiGLX2jkLd6dqPURVRIMS+VuRI/Q5ErSJsG9QG+dcxYQTb9b7M3NnCDPtJZfS4scHh + UlxkLBN7vgiPx+PNuM5iy3KF7P0RYEOI2ksui/XlCXncr9KaAkmzLA2MoayHaEymQx8HAF+61cw/ + bZtJHNukS4132NFOppeve0JzOAYH+PLq1ROqUa0/ANPxxXT4AuWyQrXk5Wi/jbOuweoo5mQ23Sdh + c0XxgI0HRzn+Kukl+j5/CvWB5eJ8/NsAB8A5TIrV8rC4L5kxlpP5O7N9tTvJRpA35HCphFw6UuHa + Zt+fMyM7UWyXawo1cmLqblpp+uBx8C8AAAD//wMArWaQctAFAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac87ef8fc680c-SJC + - 9953e4c7fd4d3ad4-SJC Connection: - keep-alive Content-Encoding: @@ -5013,161 +5294,192 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:04:54 GMT + - Mon, 27 Oct 2025 17:25:48 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:51Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:04:54Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:51Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyJiwe4LDLXtZA8C3xK - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "11956" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "4416" + - "12022" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998482" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_32fd574d127d460b8c5c7e53080f4012 status: code: 200 message: OK - request: body: - '{"model":"claude-sonnet-4-5-20250929","messages":[{"role":"user","content":[{"type":"text","text":"Answer - the question below with the context.\n\nContext:\n\npqac-3f926c2c: The excerpt - explicitly states that counterfactuals create local (instance-level), actionable - explanations. It defines actionability as suggesting which features can be altered - to change the outcome, providing the example of changing a hydrophobic functional - group in a molecule to a hydrophilic group to increase solubility. This directly - confirms that counterfactuals are actionable.\nFrom Geemi P. Wellawatte, Heta + "{\"messages\":[{\"role\":\"system\",\"content\":\"Answer in a direct and + concise tone. Your audience is an expert, so be highly specific. If there are + ambiguous terms or acronyms, first define them.\"},{\"role\":\"user\",\"content\":\"Answer + the question below with the context.\\n\\nContext:\\n\\npqac-cddc4981: The excerpt + defines counterfactual explanations as inputs altered to produce a different + model prediction and states that they provide local (instance-level), actionable + explanations. Actionability means the explanation suggests which features can + be changed to modify the outcome\u2014for example, replacing a hydrophobic functional + group with a hydrophilic one to increase solubility. Thus, counterfactuals not + only interpret model behavior but also indicate concrete feature-level changes + that could achieve a desired prediction shift.\\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-c99801c3: - The excerpt explicitly states that counterfactual explanations suggest actionable - modifications to molecules. In the blood-brain barrier (BBB) permeation example, - counterfactuals showed modifications to a carboxylic acid group that would enable - a negative example molecule to permeate the BBB. The text specifically notes: - ''This proves the advantage of using counterfactual explanations, as they suggest - actionable modification to the molecule to make it cross the BBB.'' The counterfactuals - provided concrete structural changes (deletions, substitutions, and additions - of atoms) that could be implemented to change molecular properties.\nFrom Geemi - P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective - on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: - https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-9c1557c3: The text explicitly states that - counterfactual explanations are actionable. When describing molecular counterfactuals, - it notes: ''Counterfactual explanations are useful because they are represented - as chemical structures (familiar to domain experts), sparse, and are actionable.'' - The text also mentions that when choosing XAI methods, one consideration is - ''what the explanations should accomplish'' including ''how the features can - be changed to affect the outcome,'' which relates to the actionable nature of - counterfactuals.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, - and Andrew D. White. A perspective on explanations of molecular prediction models. - ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-7e590e41: The text explicitly discusses - counterfactuals in the context of explanation methods for molecular prediction - models. It states that Shapley values are ''not actionable nor sparse'' because - ''they do not provide a set of features which changes the outcome.'' In contrast, - the authors argue in Wellawatte et al. that ''counterfactuals are better explanations - because they are actionable and sparse.'' This directly indicates that counterfactuals - possess the actionable property, meaning they provide information about what - changes would alter the outcome.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\npqac-a555c6c5: + The article applies Molecular Model Agnostic Counterfactual Explanations (MMACE) + to a blood\u2013brain barrier (BBB) permeation model. For a molecule predicted + not to permeate, counterfactuals modify the carboxylic acid group, flipping + the prediction to permeable. The authors state this demonstrates the advantage + of counterfactual explanations because they suggest actionable modifications + to make the molecule cross the BBB. These changes align with mechanistic factors + (increased hydrophobic interactions and surface area). More broadly, counterfactuals, + akin to matched molecular pairs, help uncover structure\u2013property relationships + and propose concrete structural edits.\\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-ee9d0c5b: - The paper discusses counterfactual explanations in molecular prediction models. - Counterfactuals show structural modifications to molecules that would change - model predictions. For solubility prediction, counterfactuals revealed that - modifications to ester groups and heteroatoms affect solubility - adding acidic/basic - groups and hydrogen bond acceptors increases solubility, while adding ring structures - decreases it. For scent prediction, counterfactuals were used to quantify scent-structure - relationships, showing how molecular changes would alter predicted scents. The - examples demonstrate that counterfactuals provide specific, implementable molecular - modifications (like adding functional groups or changing substructures) that - would achieve desired property changes, suggesting they are actionable chemical - design recommendations.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, - and Andrew D. White. A perspective on explanations of molecular prediction models. - ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\nValid Keys: pqac-3f926c2c, pqac-c99801c3, pqac-9c1557c3, - pqac-7e590e41, pqac-ee9d0c5b\n\n------------\n\nQuestion: Are counterfactuals - actionable? [yes/no]\n\nWrite an answer based on the context. If the context - provides insufficient information reply \"I cannot answer.\" For each part of - your answer, indicate which sources most support it via citation keys at the - end of sentences, like (pqac-0f650d59). Only cite from the context above and - only use the citation keys from the context. ## Valid citation examples, only - use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) - \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa and pqac-0f650d59) - \n- (pqac-d79ef6fa;pqac-0f650d59) \n- (pqac-d79ef6fa-pqac-0f650d59) \n- pqac-d79ef6fa - and pqac-0f650d59 \n- Example''s work (pqac-d79ef6fa) \n- (pages pqac-d79ef6fa) - \nDo not concatenate citation keys, just use them as is. Write in the style - of a scientific article, with concise sentences and coherent paragraphs. This - answer will be used directly, so do not add any extraneous information.\n\nAnswer - (about 200 words, but can be longer):"}]}],"temperature":0.0,"system":[{"type":"text","text":"Answer - in a direct and concise tone. Your audience is an expert, so be highly specific. - If there are ambiguous terms or acronyms, first define them."}],"max_tokens":4096}' + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\npqac-31d26be7: + The paper uses counterfactual explanations to suggest concrete molecular edits + that change model predictions, demonstrating actionability. For solubility (RNN + on AqSolDB), top counterfactuals in the local chemical space indicate that modifying + the ester group and adding heteroatoms increases predicted solubility; descriptor + analyses concur (acidic/basic groups and H\u2011bond acceptors increase solubility; + ring additions decrease it). For scent prediction (GNN), MMACE is adapted to + multi\u2011label outputs so counterfactuals differ only in the selected scent, + e.g., edits that make a molecule lose the \u2018fruity\u2019 scent while retaining + others. These examples show counterfactuals provide targeted structure changes + aligned with chemical intuition, usable for molecular design.\\nFrom Geemi P. + Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective + on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: + https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\\n\\npqac-28027630: The excerpt defines a molecular + counterfactual as a molecule with minimal distance from a base molecule but + with contrasting properties, using Tanimoto similarity of ECFP4 fingerprints + as the distance metric. It emphasizes that counterfactual explanations are useful + because they are represented as chemical structures familiar to chemists, are + sparse, and are actionable. Examples include analyzing scent properties (e.g., + \u2018fatty\u2019 and \u2018pineapple\u2019 scents) where counterfactuals highlight + structural changes affecting predictions. Overall, the text explicitly states + that counterfactual explanations are actionable, supporting their use for guiding + changes to features to affect model outcomes.\\nFrom Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\npqac-9c607584: + The excerpt contrasts explanation methods, noting that Shapley values (SHAP) + provide complete but non-sparse and non-actionable explanations because every + feature has a non-zero attribution and they do not indicate which features to + change to alter the outcome. In contrast, the authors argue that counterfactual + explanations are \u201Cbetter\u201D because they are actionable and sparse\u2014i.e., + they identify minimal feature changes that would change the model\u2019s prediction. + The text also emphasizes that evaluating explanations is challenging and subjective, + depending on human factors and application scenarios.\\nFrom Geemi P. Wellawatte, + Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\nValid Keys: + pqac-cddc4981, pqac-a555c6c5, pqac-31d26be7, pqac-28027630, pqac-9c607584\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\nWrite an answer based on the context. + If the context provides insufficient information reply \\\"I cannot answer.\\\" + For each part of your answer, indicate which sources most support it via citation + keys at the end of sentences, like (pqac-0f650d59). Only cite from the context + above and only use the citation keys from the context. ## Valid citation examples, + only use comma/space delimited parentheticals: \\n- (pqac-d79ef6fa, pqac-0f650d59) + \\n- (pqac-d79ef6fa) \\n## Invalid citation examples: \\n- (pqac-d79ef6fa and + pqac-0f650d59) \\n- (pqac-d79ef6fa;pqac-0f650d59) \\n- (pqac-d79ef6fa-pqac-0f650d59) + \\n- pqac-d79ef6fa and pqac-0f650d59 \\n- Example's work (pqac-d79ef6fa) \\n- + (pages pqac-d79ef6fa) \\nDo not concatenate citation keys, just use them as + is. Write in the style of a scientific article, with concise sentences and coherent + paragraphs. This answer will be used directly, so do not add any extraneous + information.\\n\\nAnswer (about 200 words, but can be longer):\"}],\"model\":\"gpt-5-2025-08-07\",\"n\":1,\"temperature\":1.0}" headers: accept: - application/json accept-encoding: - gzip, deflate - anthropic-version: - - "2023-06-01" connection: - keep-alive content-length: - - "5940" + - "6257" content-type: - application/json host: - - api.anthropic.com + - api.openai.com user-agent: - - litellm/1.74.15.post2 + - AsyncOpenAI/Python 2.6.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 2.6.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.2 method: POST - uri: https://api.anthropic.com/v1/messages + uri: https://api.openai.com/v1/chat/completions response: body: string: !!binary | - H4sIAAAAAAAAA3xU3YobNxR+lYOusjDe2rvxbu1LhwZKSyF0KYSmmDPS5xmxGmmiI23WLAt5iDxh - nqRItmOv0/TGg3V+vx/pSQ3BwKml0o6zwUSC90iT15P55Gp6NZ8urhaqUdaopRqkW09n737bbPr2 - ZvHurzfDiF/e3v/e/XHXq0al7YiSBRHuoBoVgysHLGIlsU+qUTr4BJ/U8u+nQ37CY4nUz1K9hzSk - Q/YJccM6ZXZCHEGskw2eW4fLD/6Df/MihfA4OvZcUoR0BCeQC5pdQ9aX4RoThwecZaaeU+1eTq22 - yW1PBjU0gL31HaUeW5LcdZBEn3qre9qAU44Q0uypBbFLiDCUAumefYdSRCEnHQbQq/Ej68n1ZnF1 - o6/0xSW9DZGG4KCz40hjhLF1LlU5fsBBFmyyoxaas2C3VTmPGCMEPsEQC+keg9XsSFLMum7ZkIwc - BQ2xNycQ94st9Gw+v9XXF5d011v5lmCdTVsyVpL1XbbSF7xni21iGCikHvGUWxqQ+mCEnL0H/dnz - 6LClB3a5LLOjsKzuQzpd5wU0E2p4jOHBGhCTIFHYHKmv8u3Ylv+g+xbzxRSvZxfVMXf9qYnI1x6l - 3TkgK2QwBC8pcmE09THkricdvI5IxSw8jA5ySb96al0IZtJGtp5ajtEi0qvVanVBI+KAHRlHfb8X - dm8rGJIR2m6sLh4o34NJAzFpjm143DqribU11MWQx6+fv1ivXTbFowYOtaAhya0km/L+b5XcGLtr - FzbEKQzy9fOXyt+nkJ0h7FjhgylRxu4R7Ky8Wq32vOrF4ufprLql2FiCy3un/B/OiAewq3yWS2fq - 0gWL1T+1LFbvMEldt9+aGDp4akP1q8aYQhSyRQIWyMnUaqey+65lLD9H55PBocSmPQBgYaZ63la7 - Q46Kngq/d9cZioMZD1o1ZEvlAJ8qgcc7fSZiBa17iweQgdjyVowxjIhpe/BwQwPf79+b4dSs3250 - qew8RegwDPBm3/0clnr+p1GSwrgu0INXSwVv1ilHr/YBwccMr6GWPjvXqFwf7eWTsn7MaZ3CPbyo - 5exmdtsozbrHur6rNvj1y5TpIR7B5kexQ22ZgLHHgMhuPR++zz9GZ/159LlRIafTo+vZdaME8cFq - rJNFVEtV3nvD0ajn538BAAD//wMAFxrbqN8GAAA= + H4sIAAAAAAAAA3RV227jNhB9z1cM9BQDsuE4ceykT03QtEULtMUuil6wCEbkSOKWIhXOyImxCOB/ + 6D50gfbn/CUFKcXytrsvvnDIwzNnznDenQBkRmfXkKkaRTWtnd7+/P3Xv9z+pr97/VP59qnYrMme + 85l+ePjhZlVleTzhi7ek5OXUTPmmtSTGuz6sAqFQRD1bXZ4t18uri6sUaLwmG49VrUyX08V8sZzO + 19P5ajhXe6OIs2v4/QQA4F36jAydpqfsGub5y0pDzFhRdn3YBJAFb+NKhsyGBZ1k+RhU3gm5RPpX + 4hnc+s4JhRKVdGiBnlqLDmMSDKe3dzwBDASaSuNIAzI0xpkGrd0CWqFAGoxrO2GQGgVKa1pASBnu + dx8Y2kDaqIj3Bex3f2P6iYWl/e4faAhdPEhbME4bhULwWBtVQ0koXSAG8aBqdBXFX74QNA4QNLGJ + V/tOlG8oB5pVsxz4EdvWuAoQ6q0Ovq19YRRUwXctlD6M68YaBd4lVONipZiAve0KY41s4bR9QDVV + WquLq/XZZAavawLspPaBk0hGGYkahKojuL3jJNOYHaDTwC0Gphyi5gFZIjOpqYFHIzW8qrG1tIUN + 2o4YTl998+WPk3zIvw1+YzTB4CmCohNw3k17zAQf/x7fKBJM0fWlS8XQHpwXELIWOqbA8BiXR0n7 + LK/U5Xy1XF9MZvCtg8ZbUp3FAEwSKXN+yC9QG4jJSW8FVVNjFFpgCZ1K9crTvpfEI8v4/0gwTayC + KXqAkX0OJaooPSaVOiYotv0FLDwQXazni9Xl+Xwyg6+a1oR4t9329LirKmKJWqsQBSNthK8h2aWw + 3uv97s8iRPsUGIKhAKc3NzeT3qp5/DLltveOwlD4p220CCqjX/xjTcuASfaWQkNJ9dHfUdfDeg5o + TeUiXir2i8f0R8Y0sfV6Ebh3TBc7kaJouN+91yaQSjYby1x1RqNTlPwc+6Bygzy4XC7VpVpOZnDn + w5Gbe4UOHXaUqgNiodAXSuu4VpNQ8Ci+Sc0X0PAhS9IfocZTkUXTWTFTiwVZYEVOelEH4wiGiiQa + H6xnBl8CArekTGnUsP+079/97q8ydEa2+92HSewEGz0Xez4y81JT4P3ufY9IOj/WJdV7UOL8TC8u + C1qlvu0GHoVPdRAKbaCBIhRU48b4XoE2+NYzjR4aXqGppQ1ZiJoORkc7tFDSCFVtaEOHV+nIE1yb + 8kDr5TnJ4T8sjx/oQGXHGMeD66w9CqBzXvqXOY6GN0Pk+TAMSuMM1/fRZ97FB57Ft1mKPp8AvEnD + pftoXmRt8E0r9+L/oAR7drFe9YDZOM6OwvPzqyEsXtCOkcVycZl/AvNex/pZPhpRmUJVkx7PjvMM + O238UeDkKMP/E/oUdp+9cdWIsppffPaCMaAUtUL6fizep7YFiiP/c9sOWifKGVPYGEX3YijEemgq + sbP9OM54y0LNfWlcFR1p0kyOJT95PvkXAAD//wMAWvK6yJAIAAA= headers: + Access-Control-Expose-Headers: + - X-Request-ID CF-RAY: - - 991ac89b89601739-SJC + - 9953e5140feda473-SJC Connection: - keep-alive Content-Encoding: @@ -5175,43 +5487,45 @@ interactions: Content-Type: - application/json Date: - - Mon, 20 Oct 2025 19:05:01 GMT + - Mon, 27 Oct 2025 17:26:09 GMT Server: - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload Transfer-Encoding: - chunked - Via: - - 1.1 google - X-Robots-Tag: - - none - anthropic-organization-id: - - f2c99ed9-038a-406f-9cb5-1f840b758a20 - anthropic-ratelimit-input-tokens-limit: - - "25000000" - anthropic-ratelimit-input-tokens-remaining: - - "24999000" - anthropic-ratelimit-input-tokens-reset: - - "2025-10-20T19:04:56Z" - anthropic-ratelimit-output-tokens-limit: - - "5000000" - anthropic-ratelimit-output-tokens-remaining: - - "5000000" - anthropic-ratelimit-output-tokens-reset: - - "2025-10-20T19:05:01Z" - anthropic-ratelimit-tokens-limit: - - "30000000" - anthropic-ratelimit-tokens-remaining: - - "29999000" - anthropic-ratelimit-tokens-reset: - - "2025-10-20T19:04:56Z" + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 cf-cache-status: - DYNAMIC - request-id: - - req_011CUJyK4W8CckBKb6Aue8mN - strict-transport-security: - - max-age=31536000; includeSubDomains; preload + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "20924" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" x-envoy-upstream-service-time: - - "6673" + - "20970" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "15000" + x-ratelimit-limit-tokens: + - "40000000" + x-ratelimit-remaining-requests: + - "14999" + x-ratelimit-remaining-tokens: + - "39998473" + x-ratelimit-reset-requests: + - 4ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_5a085edfd3c84e8ea9886273db0201a3 status: code: 200 message: OK