diff --git a/Deep Learning/Dogs_vs_cats_CNN.py b/Deep Learning/Dogs_vs_cats_CNN.py index 73f0a7f..6a443a3 100644 --- a/Deep Learning/Dogs_vs_cats_CNN.py +++ b/Deep Learning/Dogs_vs_cats_CNN.py @@ -1,14 +1,17 @@ - -# coding: utf-8 - -# In[37]: - - import numpy as np +import random +import pickle import matplotlib.pyplot as plt +%matplotlib inline import cv2 import os from tqdm import tqdm +import tensorflow as tf +from tensorflow import keras +from keras.models import Sequential +from keras.layers import Activation, Dense, Dropout, Flatten, Conv2D, MaxPooling2D +from keras.callbacks import TensorBoard +import time DIR='C:/Users/Asus/Downloads/ML DATASETS/Dogs Vs Cats/' CATEGORIES = ['dog', 'cat'] @@ -18,28 +21,16 @@ for img in tqdm(os.listdir(train_path)): label = img.split('.')[0] img_array = cv2.imread(os.path.join(train_path, img), cv2.IMREAD_GRAYSCALE) - plt.imshow(img_array, cmap='gray') + plt.imshow(img_array, cmap='red') plt.show() break - -# In[38]: - - print(img_array) - -# In[39]: - - new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE), 1) -plt.imshow(new_array, cmap="gray") +plt.imshow(new_array, cmap="red") plt.show() - -# In[40]: - - training_data = [] def create_train_data(): @@ -54,24 +45,9 @@ def create_train_data(): pass create_train_data() - - -# In[41]: - - print(len(training_data)) - - -# In[42]: - - -import random random.shuffle(training_data) - -# In[43]: - - X=[] y=[] for features,labels in training_data: @@ -79,13 +55,6 @@ def create_train_data(): y.append(labels) X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1) - - -# In[44]: - - -import pickle - pickle_out = open("X.pickle", "wb") pickle.dump(X, pickle_out) pickle_out.close() @@ -94,23 +63,6 @@ def create_train_data(): pickle.dump(y, pickle_out) pickle_out.close() - -# In[45]: - - -################################################################# - - -# In[46]: - - -import tensorflow as tf -from tensorflow import keras -from keras.models import Sequential -from keras.layers import Activation, Dense, Dropout, Flatten, Conv2D, MaxPooling2D -from keras.callbacks import TensorBoard -import time - X = pickle.load(open("X.pickle", "rb")) y = pickle.load(open("y.pickle", "rb")) @@ -140,17 +92,11 @@ def create_train_data(): model.fit(X, y, batch_size=32, epochs=10, validation_split=0.1, callbacks=[tensorboard]) - -# In[47]: - - predict=['Dog', 'Cat'] def prepare(filepath): image_array=cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) new_img = cv2.resize(image_array, (IMG_SIZE, IMG_SIZE)) return new_img.reshape(-1, IMG_SIZE, IMG_SIZE, 1) - prediction=model.predict([prepare('D:\250px-Gatto_europeo4.jpg')]) print(predict[int(prediction[0][0])]) - - +