diff --git a/generate_data.py b/generate_data.py index ddd5020..7959374 100644 --- a/generate_data.py +++ b/generate_data.py @@ -1,4 +1,5 @@ import numpy as np +import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) @@ -6,4 +7,13 @@ mu, sigma = 100, 15 x_gaussian = mu + sigma * np.random.randn(10000) -np.savetxt('file_data.csv', x_gaussian, delimiter=',') +mu, sigma = 100, 5 +x_chisqrd = mu + sigma * (np.random.randm(10,10000)**2).sum(0) + + + + + + +np.savetxt('file_data_gaussian.csv', x_gaussian, delimiter=',') +np.savetxt('file_data_chisqrd.csv', x_chisqrd, delimiter=',') diff --git a/plot.py b/plot.py index 8f62462..f76b08b 100644 --- a/plot.py +++ b/plot.py @@ -2,16 +2,18 @@ import matplotlib.pyplot as plt # Data are loaded from a file -x = np.loadtxt('file_data.csv') - +gaussian = np.loadtxt('file_data_gaussian.csv') +chisqrd = np.loadtxt('file_data_chisqrd.csv') # the histogram of the data -n, bins, patches = plt.hist(x, 50, density=True, facecolor='r, alpha=0.74) +n, bins, patches = plt.hist(gaussian, 50, density=True, facecolor='r', alpha=0.74) +n, bins, patches = plt.hist(chisqrd, 50, density=True, facecolor='b', alpha=0.25) - plt.xlabel('Smarts') - plt.ylabel('Probability') - plt.title('Histogram of IQ') - plt.text(60, .025, r'$\mu=100,\ \sigma=15$') - plt.xlim(40, 160) - plt.ylim(0, 0.03) - plt.grid(True) - plt.show() +plt.xlabel('Smarts') +plt.ylabel('Probability') +plt.title('Histogram of IQ') +plt.text(60, .025, r'$\mu=100,\ \sigma=15$') +plt.text(80, .020, r'$\mu=100,\ \sigma=5$') +plt.xlim(40, 250) +plt.ylim(0, 0.03) +plt.grid(True) +plt.show()