@@ -43,7 +43,7 @@ uv run python multiclass_classification.py
4343- Advanced result interpretation
4444- Model serialization/deserialization
4545
46- ### 3. [ Mixed Features] ( mixed_features .py)
46+ ### 3. [ Using Additional Features] ( Using_additional_features .py)
4747Shows how to combine text and categorical features:
4848- Text + categorical data preparation
4949- Feature engineering for categorical variables
@@ -53,7 +53,7 @@ Shows how to combine text and categorical features:
5353** Run the example:**
5454``` bash
5555cd examples
56- uv run python mixed_features .py
56+ uv run python Using_additional_features .py
5757```
5858
5959** What you'll learn:**
@@ -81,26 +81,7 @@ uv run python advanced_training.py
8181- Training parameter tuning
8282- Model performance comparison
8383
84- ### 5. [ Categorical Comparison] ( categorical_comparison.py )
85- Compares model performance with and without categorical features:
86- - Loading real-world data (Sirene dataset)
87- - Feature engineering and preprocessing
88- - Model comparison with statistical analysis
89- - Performance evaluation and visualization
90-
91- ** Run the example:**
92- ``` bash
93- cd examples
94- uv run python categorical_comparison.py
95- ```
96-
97- ** What you'll learn:**
98- - Real-world data handling
99- - Feature impact analysis
100- - Statistical model comparison
101- - Data preprocessing techniques
102-
103- ### 6. [ Simple Explainability] ( simple_explainability_example.py )
84+ ### 5. [ Simple Explainability] ( simple_explainability_example.py )
10485Demonstrates model explainability with ASCII histogram visualizations:
10586- Training a FastText classifier with enhanced data
10687- Word-level contribution analysis
@@ -210,7 +191,7 @@ Class distribution: Negative=5, Neutral=5, Positive=5
2101913. ✅ Predicted: Positive, True: Positive
211192 Text: Fantastic! Love every aspect of it!
212193
213- Final Accuracy: 3/6 = 0.500
194+ Final Accuracy: 3/3 = 1.000
214195```
215196
216197### Simple Explainability
0 commit comments