|
1 | 1 | {
|
2 | 2 | "cells": [
|
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "137b71f2", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "## Brief temporal audio examples (Text, Radio, Checklist, Nested)\n", |
| 9 | + "\n", |
| 10 | + "- This section shows minimal, class-based examples that serialize to NDJSON:\n", |
| 11 | + " - Text: `value` with `frames`\n", |
| 12 | + " - Radio: `name` with `frames`\n", |
| 13 | + " - Checklist: `name` with `frames`\n", |
| 14 | + " - Nested (1 level): child nested under closest containing parent `frames`\n", |
| 15 | + "\n", |
| 16 | + "Run this cell and the next one to see the NDJSON output only (no API calls).\n" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "f58dd5db", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "import labelbox.types as lb_types\n", |
| 27 | + "from labelbox.data.serialization.ndjson.converter import NDJsonConverter\n", |
| 28 | + "\n", |
| 29 | + "# Minimal Text temporal example\n", |
| 30 | + "text_anns = [\n", |
| 31 | + " lb_types.AudioClassificationAnnotation(\n", |
| 32 | + " start_frame=1000, end_frame=1100, name=\"text_class\", value=lb_types.Text(answer=\"Hello\")\n", |
| 33 | + " ),\n", |
| 34 | + " lb_types.AudioClassificationAnnotation(\n", |
| 35 | + " start_frame=1200, end_frame=1300, name=\"text_class\", value=lb_types.Text(answer=\"World\")\n", |
| 36 | + " ),\n", |
| 37 | + "]\n", |
| 38 | + "\n", |
| 39 | + "# Minimal Radio temporal example\n", |
| 40 | + "radio_anns = [\n", |
| 41 | + " lb_types.AudioClassificationAnnotation(\n", |
| 42 | + " start_frame=200, end_frame=1500, name=\"radio_class\",\n", |
| 43 | + " value=lb_types.Radio(answer=lb_types.ClassificationAnswer(name=\"first_radio_answer\")),\n", |
| 44 | + " ),\n", |
| 45 | + "]\n", |
| 46 | + "\n", |
| 47 | + "# Minimal Checklist temporal example\n", |
| 48 | + "checklist_anns = [\n", |
| 49 | + " lb_types.AudioClassificationAnnotation(\n", |
| 50 | + " start_frame=1200, end_frame=1800, name=\"checklist_class\",\n", |
| 51 | + " value=lb_types.Checklist(answer=[lb_types.ClassificationAnswer(name=\"angry\")]),\n", |
| 52 | + " ),\n", |
| 53 | + "]\n", |
| 54 | + "\n", |
| 55 | + "# Minimal Nested (1 level) example: nested_text under parent text segment\n", |
| 56 | + "nested_anns = [\n", |
| 57 | + " lb_types.AudioClassificationAnnotation(\n", |
| 58 | + " start_frame=1500, end_frame=2400, name=\"text_class\", value=lb_types.Text(answer=\"parent\")\n", |
| 59 | + " ),\n", |
| 60 | + " lb_types.AudioClassificationAnnotation(\n", |
| 61 | + " start_frame=1600, end_frame=2000, name=\"nested_text\", value=lb_types.Text(answer=\"child\")\n", |
| 62 | + " ),\n", |
| 63 | + "]\n", |
| 64 | + "\n", |
| 65 | + "label = lb_types.Label(\n", |
| 66 | + " data={\"global_key\": \"audio_examples_demo\"},\n", |
| 67 | + " annotations=text_anns + radio_anns + checklist_anns + nested_anns,\n", |
| 68 | + ")\n", |
| 69 | + "ndjson = list(NDJsonConverter.serialize([label]))\n", |
| 70 | + "for i, obj in enumerate(ndjson, 1):\n", |
| 71 | + " print(f\"{i}. {obj}\")\n" |
| 72 | + ] |
| 73 | + }, |
3 | 74 | {
|
4 | 75 | "cell_type": "markdown",
|
5 | 76 | "metadata": {},
|
|
0 commit comments