-
Notifications
You must be signed in to change notification settings - Fork 5
Description
作者您好,我在尝试学习复现您的工作时遇到了一个问题,我仔细对比训练和测试scripts并未发现原因:
在Spatial集上训练时loss收敛效果优秀,且测试精度正常
训练指令如下:
torchrun
--standalone
--nnodes 1
--nproc-per-node 1
vla-scripts/finetune.py
--vla_path "/opt/data/private/VLA/openvla-7b-oft-finetuned-libero-spatial"
--data_root_dir /opt/data/private/EmbodiedAI/VLA/VLA-Adapter/data/libero
--dataset_name libero_spatial_no_noops
--use_l1_regression True
--use_diffusion False
--use_film False
--num_images_in_input 2
--use_proprio True
--batch_size 4
--learning_rate 5e-4
--num_steps_before_decay 30000
--max_steps 40005
--save_freq 20000
--save_latest_checkpoint_only False
--image_aug True
--lora_rank 32
训练loss曲线:
而在Object, Goal, 10(Long)集上训练loss收敛效果明显较差,且测试精度均为0
训练指令如下:
torchrun
--standalone
--nnodes 1
--nproc-per-node 1
vla-scripts/finetune.py
--vla_path "/opt/data/private/VLA/openvla-7b-oft-finetuned-libero-object"
--data_root_dir /opt/data/private/EmbodiedAI/VLA/VLA-Adapter/data/libero
--dataset_name libero_object_no_noops
--use_l1_regression True
--use_diffusion False
--use_film False
--num_images_in_input 2
--use_proprio True
--batch_size 4
--learning_rate 5e-4
--num_steps_before_decay 30000
--max_steps 40005
--save_freq 20000
--save_latest_checkpoint_only False
--image_aug True
--lora_rank 32
torchrun
--standalone
--nnodes 1
--nproc-per-node 1
vla-scripts/finetune.py
--vla_path "/opt/data/private/VLA/openvla-7b-oft-finetuned-libero-goal"
--data_root_dir /opt/data/private/EmbodiedAI/VLA/VLA-Adapter/data/libero
--dataset_name libero_goal_no_noops
--use_l1_regression True
--use_diffusion False
--use_film False
--num_images_in_input 2
--use_proprio True
--batch_size 4
--learning_rate 5e-4
--num_steps_before_decay 30000
--max_steps 40005
--save_freq 20000
--save_latest_checkpoint_only False
--image_aug True
--lora_rank 32
torchrun
--standalone
--nnodes 1
--nproc-per-node 1
vla-scripts/finetune.py
--vla_path "/opt/data/private/VLA/openvla-7b-oft-finetuned-libero-10"
--data_root_dir /opt/data/private/EmbodiedAI/VLA/VLA-Adapter/data/libero
--dataset_name libero_10_no_noops
--use_l1_regression True
--use_diffusion False
--use_film False
--num_images_in_input 2
--use_proprio True
--batch_size 4
--learning_rate 5e-4
--num_steps_before_decay 30000
--max_steps 40005
--save_freq 20000
--save_latest_checkpoint_only False
--image_aug True
--lora_rank 32
训练loss曲线:
