@@ -156,46 +156,7 @@ def add_norm_constraints(self, w=1.0):
156156
157157 pass
158158
159- def add_gradient_orthogonal_constraint (self , points , vector , w = 1.0 , B = 0 ):
160- """
161- constraints scalar field to be orthogonal to a given vector
162-
163- Parameters
164- ----------
165- position
166- normals
167- w
168- B
169-
170- Returns
171- -------
172-
173- """
174- pass
175- # if points.shape[0] > 0:
176- # vertices, element_gradients, tetras, inside = self.support.get_tetra_gradient_for_location(points[:,:3])
177- # #e, inside = self.support.elements_for_array(points[:, :3])
178- # #nodes = self.support.nodes[self.support.elements[e]]
179- # vector /= np.linalg.norm(vector,axis=1)[:,None]
180- # vecs = vertices[:, 1:, :] - vertices[:, 0, None, :]
181- # vol = np.abs(np.linalg.det(vecs)) # / 6
182- # # d_t = self.support.get_elements_gradients(e)
183- # norm = np.linalg.norm(element_gradients, axis=2)
184- # element_gradients /= norm[:, :, None]
185-
186- # A = np.einsum('ij,ijk->ik', vector, element_gradients)
187-
188- # A *= vol[:, None]
189-
190- # gi = np.zeros(self.support.n_nodes).astype(int)
191- # gi[:] = -1
192- # gi[self.region] = np.arange(0, self.nx).astype(int)
193- # w /= 3
194- # idc = gi[tetras]
195- # B = np.zeros(idc.shape[0])+B
196- # outside = ~np.any(idc == -1, axis=1)
197- # self.add_constraints_to_least_squares(A[outside, :] * w,
198- # B[outside], idc[outside, :])
159+
199160
200161 def add_value_constraints (self , w = 1.0 ):
201162 points = self .get_value_constraints ()
0 commit comments