diff --git a/Machine Learning/AI-Powered Expense Categorizer b/Machine Learning/AI-Powered Expense Categorizer new file mode 100644 index 0000000..3d9acf7 --- /dev/null +++ b/Machine Learning/AI-Powered Expense Categorizer @@ -0,0 +1,29 @@ +import pandas as pd +from sklearn.feature_extraction.text import CountVectorizer +from sklearn.naive_bayes import MultinomialNB + +# Sample training data +data = { + "description": [ + "McDonald's burger", + "Uber ride home", + "Amazon purchase", + "Netflix subscription", + "Grocery store" + ], + "category": ["Food", "Transport", "Shopping", "Entertainment", "Groceries"] +} + +df = pd.DataFrame(data) +X = CountVectorizer().fit_transform(df["description"]) +y = df["category"] + +model = MultinomialNB().fit(X, y) + +# Predict category +def predict_category(text): + vector = CountVectorizer(vocabulary=X.vocabulary_).fit_transform([text]) + return model.predict(vector)[0] + +print(predict_category("Pizza Hut order")) # → Food +print(predict_category("Bought a movie ticket")) # → Entertainment