From b31fbcd6c09cfbf4f943e4d543d75b03358f8efd Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Tue, 27 Nov 2018 00:02:16 -0800 Subject: [PATCH 1/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 728 +++++++++++++++++++++++++++++++++++++--- 1 file changed, 682 insertions(+), 46 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index 84ee7a0..c5ddc08 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -42,10 +42,10 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", - "outputId": "64833d45-6068-47bd-c909-ccad95de83d4", + "outputId": "86d04be5-456d-43e6-8dac-280148f65da9", "colab": { "base_uri": "https://localhost:8080/", - "height": 255 + "height": 3318 } }, "cell_type": "code", @@ -53,25 +53,204 @@ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 0, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ - "Requirement already satisfied: lightgbm in /usr/local/lib/python3.6/dist-packages (2.2.2)\n", - "Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (1.5.0)\n", - "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", + "Collecting lightgbm\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/4c/3b/4ae113193b4ee01387ed76d5eea32788aec0589df9ae7378a8b7443eaa8b/lightgbm-2.2.2-py2.py3-none-manylinux1_x86_64.whl (1.2MB)\n", + "\u001b[K 100% |████████████████████████████████| 1.2MB 7.7MB/s \n", + "\u001b[?25hCollecting wordcloud\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a66717ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (361kB)\n", + "\u001b[K 100% |████████████████████████████████| 368kB 10.0MB/s \n", + "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", - "Requirement already satisfied: pydot in /usr/local/lib/python3.6/dist-packages (1.2.4)\n", + "Installing collected packages: lightgbm, wordcloud\n", + "Successfully installed lightgbm-2.2.2 wordcloud-1.5.0\n", + "Collecting pydot\n", + " Downloading https://files.pythonhosted.org/packages/50/da/68cee64ad379462abb743ffb665fa34b214df85d263565ad2bd512c2d935/pydot-1.3.0-py2.py3-none-any.whl\n", "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Installing collected packages: pydot\n", + "Successfully installed pydot-1.3.0\n", "Reading package lists... Done\n", "Building dependency tree \n", "Reading state information... Done\n", - "graphviz is already the newest version (2.40.1-2).\n", - "0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded.\n" + "The following additional packages will be installed:\n", + " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "Suggested packages:\n", + " gsfonts graphviz-doc libgd-tools\n", + "The following NEW packages will be installed:\n", + " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "0 upgraded, 30 newly installed, 0 to remove and 5 not upgraded.\n", + "Need to get 4,154 kB of archives.\n", + "After this operation, 16.1 MB of additional disk space will be used.\n", + "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", + "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", + "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", + "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", + "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", + "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", + "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", + "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", + "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", + "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", + "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", + "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", + "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", + "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", + "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", + "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", + "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", + "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", + "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", + "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", + "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", + "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", + "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", + "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", + "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", + "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", + "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", + "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", + "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", + "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", + "Fetched 4,154 kB in 1s (3,260 kB/s)\n", + "Selecting previously unselected package fontconfig.\n", + "(Reading database ... 22298 files and directories currently installed.)\n", + "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", + "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", + "Selecting previously unselected package libann0.\n", + "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", + "Unpacking libann0 (1.1.2+doc-6) ...\n", + "Selecting previously unselected package libcdt5.\n", + "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", + "Unpacking libcdt5 (2.40.1-2) ...\n", + "Selecting previously unselected package libcgraph6.\n", + "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", + "Unpacking libcgraph6 (2.40.1-2) ...\n", + "Selecting previously unselected package libjbig0:amd64.\n", + "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", + "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", + "Selecting previously unselected package libtiff5:amd64.\n", + "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", + "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", + "Selecting previously unselected package libwebp6:amd64.\n", + "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", + "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", + "Selecting previously unselected package libxpm4:amd64.\n", + "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", + "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", + "Selecting previously unselected package libgd3:amd64.\n", + "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", + "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Selecting previously unselected package libgts-0.7-5:amd64.\n", + "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Selecting previously unselected package libpixman-1-0:amd64.\n", + "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", + "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Selecting previously unselected package libxcb-render0:amd64.\n", + "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libxcb-shm0:amd64.\n", + "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libcairo2:amd64.\n", + "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", + "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", + "Selecting previously unselected package libltdl7:amd64.\n", + "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", + "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", + "Selecting previously unselected package libthai-data.\n", + "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", + "Unpacking libthai-data (0.1.27-2) ...\n", + "Selecting previously unselected package libdatrie1:amd64.\n", + "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", + "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", + "Selecting previously unselected package libthai0:amd64.\n", + "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", + "Unpacking libthai0:amd64 (0.1.27-2) ...\n", + "Selecting previously unselected package libpango-1.0-0:amd64.\n", + "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", + "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", + "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpathplan4.\n", + "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", + "Unpacking libpathplan4 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvc6.\n", + "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvc6 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvpr2.\n", + "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvpr2 (2.40.1-2) ...\n", + "Selecting previously unselected package liblab-gamut1.\n", + "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", + "Unpacking liblab-gamut1 (2.40.1-2) ...\n", + "Selecting previously unselected package libxt6:amd64.\n", + "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", + "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", + "Selecting previously unselected package libxmu6:amd64.\n", + "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", + "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", + "Selecting previously unselected package libxaw7:amd64.\n", + "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", + "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", + "Selecting previously unselected package graphviz.\n", + "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", + "Unpacking graphviz (2.40.1-2) ...\n", + "Selecting previously unselected package libgts-bin.\n", + "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Setting up libpathplan4 (2.40.1-2) ...\n", + "Setting up liblab-gamut1 (2.40.1-2) ...\n", + "Setting up libxcb-render0:amd64 (1.13-1) ...\n", + "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", + "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", + "Setting up libtiff5:amd64 (4.0.9-5) ...\n", + "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", + "Setting up libltdl7:amd64 (2.4.6-2) ...\n", + "Setting up libann0 (1.1.2+doc-6) ...\n", + "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", + "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", + "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", + "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libthai-data (0.1.27-2) ...\n", + "Setting up libcdt5 (2.40.1-2) ...\n", + "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", + "Regenerating fonts cache... done.\n", + "Setting up libcgraph6 (2.40.1-2) ...\n", + "Setting up libwebp6:amd64 (0.6.1-2) ...\n", + "Setting up libcairo2:amd64 (1.15.10-2) ...\n", + "Setting up libgvpr2 (2.40.1-2) ...\n", + "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Setting up libthai0:amd64 (0.1.27-2) ...\n", + "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", + "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", + "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libgvc6 (2.40.1-2) ...\n", + "Setting up graphviz (2.40.1-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n" ], "name": "stdout" } @@ -85,7 +264,7 @@ "_kg_hide-input": true, "id": "9K7leB0DGZG9", "colab_type": "code", - "outputId": "816ebf24-84bb-4b41-b18e-a64f8b3cad51", + "outputId": "41e1395c-bd24-4b57-9404-c81056e458c5", "colab": { "base_uri": "https://localhost:8080/", "height": 51 @@ -120,13 +299,13 @@ "nltk.download('stopwords')\n", "from google.colab import files\n" ], - "execution_count": 0, + "execution_count": 2, "outputs": [ { "output_type": "stream", "text": [ "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", - "[nltk_data] Package stopwords is already up-to-date!\n" + "[nltk_data] Unzipping corpora/stopwords.zip.\n" ], "name": "stdout" } @@ -147,15 +326,31 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 122 + }, + "outputId": "41ae6204-f002-4445-bcf5-b4281f02ced6" }, "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')\n" ], - "execution_count": 0, - "outputs": [] + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n", + "\n", + "Enter your authorization code:\n", + "··········\n", + "Mounted at /content/drive\n" + ], + "name": "stdout" + } + ] }, { "metadata": { @@ -204,7 +399,7 @@ "_uuid": "f9b8d8423bb09068cb168b67f4756ee8b250fc8c", "id": "xBg-49HYGZHE", "colab_type": "code", - "outputId": "0dead139-94d3-4f93-b436-70ada08281ec", + "outputId": "ae41b3cc-4dd8-4551-9a0c-75dbf3e5ab8f", "colab": { "base_uri": "https://localhost:8080/", "height": 680 @@ -221,7 +416,7 @@ "print('Average word length of phrases in train is {0:.0f}.'.format(np.mean(train['Phrase'].apply(lambda x: len(x.split())))))\n", "print('Average word length of phrases in test is {0:.0f}.'.format(np.mean(test['Phrase'].apply(lambda x: len(x.split())))))" ], - "execution_count": 0, + "execution_count": 5, "outputs": [ { "output_type": "stream", @@ -284,7 +479,11 @@ "metadata": { "id": "7K_b0M-0Eye9", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "e0d12d5a-349e-4648-ab49-0126bbfe045d" }, "cell_type": "code", "source": [ @@ -304,8 +503,17 @@ " else:\n", " return int(new_s)" ], - "execution_count": 0, - "outputs": [] + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Number of overlapping phrases 10297\n", + "% of neutral sentiment phrases 0.7301155676410604\n" + ], + "name": "stdout" + } + ] }, { "metadata": { @@ -324,7 +532,11 @@ "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", "id": "AwnzDD_0GZIH", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "a520e46e-1794-4ea8-ba39-d9ce0ea3c23b" }, "cell_type": "code", "source": [ @@ -343,8 +555,16 @@ "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot" ], - "execution_count": 0, - "outputs": [] + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ], + "name": "stderr" + } + ] }, { "metadata": { @@ -356,6 +576,25 @@ "###Embedding & Word Vectorization" ] }, + { + "metadata": { + "trusted": true, + "_uuid": "a2881c29f82578b4a373b52d2c7b96a2e73bfd80", + "id": "TP2z0XJhGZIL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "tk = Tokenizer(lower = True, filters='')\n", + "full_text = list(train['Phrase'].values) + list(test['Phrase'].values)\n", + "tk.fit_on_texts(full_text)\n", + "train_tokenized = tk.texts_to_sequences(train['Phrase'])\n", + "test_tokenized = tk.texts_to_sequences(test['Phrase'])" + ], + "execution_count": 0, + "outputs": [] + }, { "metadata": { "trusted": true, @@ -386,25 +625,6 @@ "execution_count": 0, "outputs": [] }, - { - "metadata": { - "trusted": true, - "_uuid": "a2881c29f82578b4a373b52d2c7b96a2e73bfd80", - "id": "TP2z0XJhGZIL", - "colab_type": "code", - "colab": {} - }, - "cell_type": "code", - "source": [ - "tk = Tokenizer(lower = True, filters='')\n", - "full_text = list(train['Phrase'].values) + list(test['Phrase'].values)\n", - "tk.fit_on_texts(full_text)\n", - "train_tokenized = tk.texts_to_sequences(train['Phrase'])\n", - "test_tokenized = tk.texts_to_sequences(test['Phrase'])" - ], - "execution_count": 0, - "outputs": [] - }, { "metadata": { "trusted": true, @@ -428,7 +648,11 @@ "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", "id": "4AlRADppGZIa", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "7b7b8a7e-8822-418f-ed21-05f49b94a63a" }, "cell_type": "code", "source": [ @@ -437,8 +661,22 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 0, - "outputs": [] + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "OneHotEncoder(categorical_features='all', dtype=,\n", + " handle_unknown='error', n_values='auto', sparse=False)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 12 + } + ] }, { "metadata": { @@ -522,7 +760,8 @@ }, "cell_type": "code", "source": [ - "trained_model1.summary()\n", + "model1 = build_model1(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "model1.summary()\n", "SVG(model_to_dot(trained_model1, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" ], "execution_count": 0, @@ -1275,6 +1514,403 @@ "name": "stdout" } ] + }, + { + "metadata": { + "id": "5u0R1sLfthlo", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model4(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32, ktop=5):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19479, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " #x_conv1 = LeakyReLU(0.2)(x_conv1)\n", + " #avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " dyn_pool1_gru = DynamicKMaxPoolLayer(x_conv1,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " #x_conv2 = LeakyReLU(0.2)(x_conv2)\n", + " #avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " dyn_pool2_gru = DynamicKMaxPoolLayer(x_conv2,ktop,nroflayers=2,layernr=1)\n", + "\n", + " \n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " #x_conv3 = LeakyReLU(0.2)(x_conv3)\n", + " #avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " dyn_pool1_lstm = DynamicKMaxPoolLayer(x_conv3,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " #x_conv4 = LeakyReLU(0.2)(x_conv4)\n", + " #avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " dyn_pool2_lstm = DynamicKMaxPoolLayer(x_conv4,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x = concatenate([dyn_pool1_gru, max_pool1_gru, dyn_pool2_gru, max_pool2_gru,\n", + " dyn_pool1_lstm, max_pool1_lstm, dyn_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "L3kxtJabtkYT", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 711 + }, + "outputId": "70a9c292-e2d1-4551-eeb0-712a0e58911f" + }, + "cell_type": "code", + "source": [ + "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32, ktop=5)\n", + "\n", + "model4.summary()\n", + "SVG(model_to_dot(model4, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" + ], + "execution_count": 46, + "outputs": [ + { + "output_type": "error", + "ename": "AttributeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel4\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model4\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mktop\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmodel4\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mSVG\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_to_dot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_shapes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_layer_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrankdir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'HB'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'dot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'svg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mbuild_model4\u001b[0;34m(lr, lr_d, units, spatial_dr, kernel_size1, kernel_size2, dense_units, dr, conv_size, ktop)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m#avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mmax_pool1_gru\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGlobalMaxPooling1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_conv1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mdyn_pool1_gru\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDynamicKMaxPoolLayer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_conv1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnroflayers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlayernr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mx_conv2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mConv1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconv_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkernel_size2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpadding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'valid'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_initializer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'he_uniform'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_gru\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, ktop, nroflayers, layernr, **kwargs)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnroflayers\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlayernr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 37\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDynamicKMaxPoolLayer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 38\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mktop\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mktop\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayernr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlayernr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, k, **kwargs)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mKMaxPoolLayer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/lasagne/layers/base.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, name)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_layer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_shape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mincoming\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput_shape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_layer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mincoming\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'Tensor' object has no attribute 'output_shape'" + ] + } + ] + }, + { + "metadata": { + "id": "sjHlbhfUtkci", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1479 + }, + "outputId": "c881c435-0004-4ebc-dae9-a9acf4b0e6d8" + }, + "cell_type": "code", + "source": [ + "NUM_FOLDS = 5\n", + "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", + "test_preds = np.zeros((test.shape[0], 5))\n", + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "\n", + "print(\"Building the model...\")\n", + "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "\n", + "for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + " \n", + " print(\"Training the model...\")\n", + " model4.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 15, verbose = 1, callbacks = [early_stop]) \n", + " model4.save_weights(file_path) \n", + " test_preds += model4.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + " \n", + "print(\"Save model after cross-validation...\")\n", + "model4.save_weights(file_path) \n", + "test_preds /= NUM_FOLDS\n", + "\n", + "\n", + "print(\"Make the submission ready...\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model4.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 125230 samples, validate on 30830 samples\n", + "Epoch 1/15\n", + "125230/125230 [==============================] - 78s 623us/step - loss: 0.3714 - acc: 0.8350 - val_loss: 0.3084 - val_acc: 0.8581\n", + "Epoch 2/15\n", + "125230/125230 [==============================] - 69s 553us/step - loss: 0.3272 - acc: 0.8520 - val_loss: 0.3027 - val_acc: 0.8618\n", + "Epoch 3/15\n", + "125230/125230 [==============================] - 67s 535us/step - loss: 0.3171 - acc: 0.8554 - val_loss: 0.2973 - val_acc: 0.8642\n", + "Epoch 4/15\n", + "125230/125230 [==============================] - 70s 558us/step - loss: 0.3098 - acc: 0.8580 - val_loss: 0.2956 - val_acc: 0.8644\n", + "Epoch 5/15\n", + "125230/125230 [==============================] - 69s 550us/step - loss: 0.3038 - acc: 0.8605 - val_loss: 0.2954 - val_acc: 0.8664\n", + "Epoch 6/15\n", + "125230/125230 [==============================] - 67s 531us/step - loss: 0.2978 - acc: 0.8638 - val_loss: 0.2977 - val_acc: 0.8647\n", + "Epoch 7/15\n", + "125230/125230 [==============================] - 67s 538us/step - loss: 0.2934 - acc: 0.8658 - val_loss: 0.2883 - val_acc: 0.8680\n", + "Epoch 8/15\n", + "125230/125230 [==============================] - 67s 536us/step - loss: 0.2891 - acc: 0.8673 - val_loss: 0.2890 - val_acc: 0.8682\n", + "Epoch 9/15\n", + "125230/125230 [==============================] - 64s 510us/step - loss: 0.2859 - acc: 0.8693 - val_loss: 0.2863 - val_acc: 0.8704\n", + "Epoch 10/15\n", + "125230/125230 [==============================] - 65s 523us/step - loss: 0.2833 - acc: 0.8699 - val_loss: 0.2873 - val_acc: 0.8697\n", + "Epoch 11/15\n", + "125230/125230 [==============================] - 64s 513us/step - loss: 0.2808 - acc: 0.8718 - val_loss: 0.2868 - val_acc: 0.8693\n", + "66292/66292 [==============================] - 4s 56us/step\n", + "\n", + "FOLD 2\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124608 samples, validate on 31452 samples\n", + "Epoch 1/15\n", + "124608/124608 [==============================] - 67s 537us/step - loss: 0.2843 - acc: 0.8703 - val_loss: 0.2528 - val_acc: 0.8868\n", + "Epoch 2/15\n", + "124608/124608 [==============================] - 67s 537us/step - loss: 0.2811 - acc: 0.8722 - val_loss: 0.2557 - val_acc: 0.8850\n", + "Epoch 3/15\n", + "124608/124608 [==============================] - 66s 526us/step - loss: 0.2774 - acc: 0.8737 - val_loss: 0.2576 - val_acc: 0.8850\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 3\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 125022 samples, validate on 31038 samples\n", + "Epoch 1/15\n", + "125022/125022 [==============================] - 68s 547us/step - loss: 0.2798 - acc: 0.8726 - val_loss: 0.2434 - val_acc: 0.8891\n", + "Epoch 2/15\n", + "125022/125022 [==============================] - 66s 527us/step - loss: 0.2766 - acc: 0.8741 - val_loss: 0.2425 - val_acc: 0.8901\n", + "Epoch 3/15\n", + "125022/125022 [==============================] - 69s 549us/step - loss: 0.2747 - acc: 0.8749 - val_loss: 0.2456 - val_acc: 0.8881\n", + "Epoch 4/15\n", + "125022/125022 [==============================] - 70s 560us/step - loss: 0.2728 - acc: 0.8755 - val_loss: 0.2466 - val_acc: 0.8879\n", + "66292/66292 [==============================] - 3s 49us/step\n", + "\n", + "FOLD 4\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124609 samples, validate on 31451 samples\n", + "Epoch 1/15\n", + "124609/124609 [==============================] - 69s 552us/step - loss: 0.2731 - acc: 0.8762 - val_loss: 0.2400 - val_acc: 0.8934\n", + "Epoch 2/15\n", + "124609/124609 [==============================] - 68s 547us/step - loss: 0.2708 - acc: 0.8776 - val_loss: 0.2398 - val_acc: 0.8926\n", + "Epoch 3/15\n", + "124609/124609 [==============================] - 70s 560us/step - loss: 0.2692 - acc: 0.8783 - val_loss: 0.2411 - val_acc: 0.8916\n", + "Epoch 4/15\n", + "124609/124609 [==============================] - 70s 558us/step - loss: 0.2677 - acc: 0.8793 - val_loss: 0.2441 - val_acc: 0.8896\n", + "66292/66292 [==============================] - 3s 49us/step\n", + "\n", + "FOLD 5\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124771 samples, validate on 31289 samples\n", + "Epoch 1/15\n", + "124771/124771 [==============================] - 70s 561us/step - loss: 0.2690 - acc: 0.8782 - val_loss: 0.2317 - val_acc: 0.8962\n", + "Epoch 2/15\n", + "124771/124771 [==============================] - 70s 557us/step - loss: 0.2669 - acc: 0.8796 - val_loss: 0.2317 - val_acc: 0.8963\n", + "Epoch 3/15\n", + "124771/124771 [==============================] - 70s 558us/step - loss: 0.2657 - acc: 0.8805 - val_loss: 0.2344 - val_acc: 0.8943\n", + "Epoch 4/15\n", + "124771/124771 [==============================] - 70s 561us/step - loss: 0.2644 - acc: 0.8809 - val_loss: 0.2376 - val_acc: 0.8925\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "Save model after cross-validation...\n", + "Make the submission ready...\n", + "66292/66292 [==============================] - 3s 51us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tLziOKQltkg9", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "fe22bca9-dbb1-4534-d238-1ab8a9930219" + }, + "cell_type": "code", + "source": [ + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model4.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend20.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend20.csv\", index=False)" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "text": [ + "66292/66292 [==============================] - 3s 51us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "g2JGcOSPBIP7", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + }, + "outputId": "e7f10c4d-3970-430c-f1e6-184a48f47736" + }, + "cell_type": "code", + "source": [ + "!pip install theano\n", + "!pip install lasagne" + ], + "execution_count": 33, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: theano in /usr/local/lib/python3.6/dist-packages (1.0.3)\n", + "Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.6/dist-packages (from theano) (1.14.6)\n", + "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from theano) (1.1.0)\n", + "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from theano) (1.11.0)\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "BoTiBvritkn-", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from google.colab import files\n", + "files.download('/content/drive/My Drive/DeepLearning/avg_blend20.csv')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "onIcjzteA77o", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "import theano.tensor as T\n", + "from lasagne.layers.base import Layer\n", + "\n", + "\n", + "class KMaxPoolLayer(Layer):\n", + "\n", + " def __init__(self,incoming,k,**kwargs):\n", + " super(KMaxPoolLayer, self).__init__(incoming, **kwargs)\n", + " self.k = k\n", + "\n", + " def get_output_shape_for(self, input_shape):\n", + " return (input_shape[0], input_shape[1], input_shape[2], self.k)\n", + "\n", + " def get_output_for(self, input, **kwargs):\n", + " return self.kmaxpooling(input,self.k)\n", + "\n", + "\n", + " def kmaxpooling(self,input,k):\n", + "\n", + " sorted_values = T.argsort(input,axis=3)\n", + " topmax_indexes = sorted_values[:,:,:,-k:]\n", + " # sort indexes so that we keep the correct order within the sentence\n", + " topmax_indexes_sorted = T.sort(topmax_indexes)\n", + "\n", + " #given that topmax only gives the index of the third dimension, we need to generate the other 3 dimensions\n", + " dim0 = T.arange(0,self.input_shape[0]).repeat(self.input_shape[1]*self.input_shape[2]*k)\n", + " dim1 = T.arange(0,self.input_shape[1]).repeat(k*self.input_shape[2]).reshape((1,-1)).repeat(self.input_shape[0],axis=0).flatten()\n", + " dim2 = T.arange(0,self.input_shape[2]).repeat(k).reshape((1,-1)).repeat(self.input_shape[0]*self.input_shape[1],axis=0).flatten()\n", + " dim3 = topmax_indexes_sorted.flatten()\n", + " return input[dim0,dim1,dim2,dim3].reshape((self.input_shape[0], self.input_shape[1], self.input_shape[2], k))\n", + "\n", + "\n", + "\n", + "class DynamicKMaxPoolLayer(KMaxPoolLayer):\n", + "\n", + " def __init__(self,incoming,ktop,nroflayers,layernr,**kwargs):\n", + " super(DynamicKMaxPoolLayer, self).__init__(incoming,ktop, **kwargs)\n", + " self.ktop = ktop\n", + " self.layernr = layernr\n", + " self.nroflayers = nroflayers\n", + "\n", + " def get_k(self,input_shape):\n", + " return T.cast(T.max([self.ktop,T.ceil((self.nroflayers-self.layernr)/float(self.nroflayers)*input_shape[3])]),'int32')\n", + "\n", + " def get_output_shape_for(self, input_shape):\n", + " return (input_shape[0], input_shape[1], input_shape[2], None)\n", + "\n", + " def get_output_for(self, input, **kwargs):\n", + "\n", + " k = self.get_k(input.shape)\n", + "\n", + " return self.kmaxpooling(input,k)\n" + ], + "execution_count": 0, + "outputs": [] } ] } \ No newline at end of file From b3e7c0d878de85633f00304a32b0da74f3974153 Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Wed, 28 Nov 2018 21:59:27 -0800 Subject: [PATCH 2/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 274 +++++++++++++++++++++++++++------------- 1 file changed, 189 insertions(+), 85 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index c5ddc08..ae99ed7 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -6,6 +6,7 @@ "name": "SentimentAnalysis.ipynb", "version": "0.3.2", "provenance": [], + "collapsed_sections": [], "include_colab_link": true }, "kernelspec": { @@ -53,7 +54,7 @@ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 1, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -299,7 +300,7 @@ "nltk.download('stopwords')\n", "from google.colab import files\n" ], - "execution_count": 2, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -326,18 +327,18 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", + "outputId": "41ae6204-f002-4445-bcf5-b4281f02ced6", "colab": { "base_uri": "https://localhost:8080/", "height": 122 - }, - "outputId": "41ae6204-f002-4445-bcf5-b4281f02ced6" + } }, "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')\n" ], - "execution_count": 3, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -416,7 +417,7 @@ "print('Average word length of phrases in train is {0:.0f}.'.format(np.mean(train['Phrase'].apply(lambda x: len(x.split())))))\n", "print('Average word length of phrases in test is {0:.0f}.'.format(np.mean(test['Phrase'].apply(lambda x: len(x.split())))))" ], - "execution_count": 5, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -479,11 +480,11 @@ "metadata": { "id": "7K_b0M-0Eye9", "colab_type": "code", + "outputId": "e0d12d5a-349e-4648-ab49-0126bbfe045d", "colab": { "base_uri": "https://localhost:8080/", "height": 51 - }, - "outputId": "e0d12d5a-349e-4648-ab49-0126bbfe045d" + } }, "cell_type": "code", "source": [ @@ -503,7 +504,7 @@ " else:\n", " return int(new_s)" ], - "execution_count": 6, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -532,11 +533,11 @@ "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", "id": "AwnzDD_0GZIH", "colab_type": "code", + "outputId": "a520e46e-1794-4ea8-ba39-d9ce0ea3c23b", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "a520e46e-1794-4ea8-ba39-d9ce0ea3c23b" + } }, "cell_type": "code", "source": [ @@ -555,7 +556,7 @@ "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot" ], - "execution_count": 7, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -648,11 +649,11 @@ "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", "id": "4AlRADppGZIa", "colab_type": "code", + "outputId": "7b7b8a7e-8822-418f-ed21-05f49b94a63a", "colab": { "base_uri": "https://localhost:8080/", "height": 51 - }, - "outputId": "7b7b8a7e-8822-418f-ed21-05f49b94a63a" + } }, "cell_type": "code", "source": [ @@ -661,7 +662,7 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 12, + "execution_count": 0, "outputs": [ { "output_type": "execute_result", @@ -1532,32 +1533,32 @@ " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", " \n", " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", - " #x_conv1 = LeakyReLU(0.2)(x_conv1)\n", - " #avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " x_conv1 = LeakyReLU(0.2)(x_conv1)\n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", - " dyn_pool1_gru = DynamicKMaxPoolLayer(x_conv1,ktop,nroflayers=2,layernr=1)\n", + " #dyn_pool1_gru = DynamicKMaxPoolLayer(x_conv1,ktop,nroflayers=2,layernr=1)\n", " \n", " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", - " #x_conv2 = LeakyReLU(0.2)(x_conv2)\n", - " #avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " x_conv2 = LeakyReLU(0.2)(x_conv2)\n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", - " dyn_pool2_gru = DynamicKMaxPoolLayer(x_conv2,ktop,nroflayers=2,layernr=1)\n", + " #dyn_pool2_gru = DynamicKMaxPoolLayer(x_conv2,ktop,nroflayers=2,layernr=1)\n", "\n", " \n", " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", - " #x_conv3 = LeakyReLU(0.2)(x_conv3)\n", - " #avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " x_conv3 = LeakyReLU(0.2)(x_conv3)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", - " dyn_pool1_lstm = DynamicKMaxPoolLayer(x_conv3,ktop,nroflayers=2,layernr=1)\n", + " #dyn_pool1_lstm = DynamicKMaxPoolLayer(x_conv3,ktop,nroflayers=2,layernr=1)\n", " \n", " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", - " #x_conv4 = LeakyReLU(0.2)(x_conv4)\n", - " #avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " x_conv4 = LeakyReLU(0.2)(x_conv4)\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", - " dyn_pool2_lstm = DynamicKMaxPoolLayer(x_conv4,ktop,nroflayers=2,layernr=1)\n", + " #dyn_pool2_lstm = DynamicKMaxPoolLayer(x_conv4,ktop,nroflayers=2,layernr=1)\n", " \n", - " x = concatenate([dyn_pool1_gru, max_pool1_gru, dyn_pool2_gru, max_pool2_gru,\n", - " dyn_pool1_lstm, max_pool1_lstm, dyn_pool2_lstm, max_pool2_lstm])\n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", " x = BatchNormalization()(x)\n", " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", " x = BatchNormalization()(x)\n", @@ -1574,11 +1575,11 @@ "metadata": { "id": "L3kxtJabtkYT", "colab_type": "code", + "outputId": "70a9c292-e2d1-4551-eeb0-712a0e58911f", "colab": { "base_uri": "https://localhost:8080/", "height": 711 - }, - "outputId": "70a9c292-e2d1-4551-eeb0-712a0e58911f" + } }, "cell_type": "code", "source": [ @@ -1587,7 +1588,7 @@ "model4.summary()\n", "SVG(model_to_dot(model4, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" ], - "execution_count": 46, + "execution_count": 0, "outputs": [ { "output_type": "error", @@ -1610,15 +1611,15 @@ "metadata": { "id": "sjHlbhfUtkci", "colab_type": "code", + "outputId": "e04e3c21-4ae2-41a4-d908-220341c3b8a2", "colab": { "base_uri": "https://localhost:8080/", - "height": 1479 - }, - "outputId": "c881c435-0004-4ebc-dae9-a9acf4b0e6d8" + "height": 3313 + } }, "cell_type": "code", "source": [ - "NUM_FOLDS = 5\n", + "NUM_FOLDS = 20\n", "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", "test_preds = np.zeros((test.shape[0], 5))\n", "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", @@ -1667,7 +1668,7 @@ "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" ], - "execution_count": 21, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1676,88 +1677,191 @@ "FOLD 1\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 125230 samples, validate on 30830 samples\n", + "Train on 148193 samples, validate on 7867 samples\n", "Epoch 1/15\n", - "125230/125230 [==============================] - 78s 623us/step - loss: 0.3714 - acc: 0.8350 - val_loss: 0.3084 - val_acc: 0.8581\n", + "148193/148193 [==============================] - 82s 553us/step - loss: 0.3688 - acc: 0.8348 - val_loss: 0.3077 - val_acc: 0.8578\n", "Epoch 2/15\n", - "125230/125230 [==============================] - 69s 553us/step - loss: 0.3272 - acc: 0.8520 - val_loss: 0.3027 - val_acc: 0.8618\n", + "148193/148193 [==============================] - 72s 485us/step - loss: 0.3255 - acc: 0.8525 - val_loss: 0.3013 - val_acc: 0.8608\n", "Epoch 3/15\n", - "125230/125230 [==============================] - 67s 535us/step - loss: 0.3171 - acc: 0.8554 - val_loss: 0.2973 - val_acc: 0.8642\n", + "148193/148193 [==============================] - 72s 485us/step - loss: 0.3152 - acc: 0.8566 - val_loss: 0.3010 - val_acc: 0.8609\n", "Epoch 4/15\n", - "125230/125230 [==============================] - 70s 558us/step - loss: 0.3098 - acc: 0.8580 - val_loss: 0.2956 - val_acc: 0.8644\n", + "148193/148193 [==============================] - 72s 486us/step - loss: 0.3069 - acc: 0.8599 - val_loss: 0.3034 - val_acc: 0.8624\n", "Epoch 5/15\n", - "125230/125230 [==============================] - 69s 550us/step - loss: 0.3038 - acc: 0.8605 - val_loss: 0.2954 - val_acc: 0.8664\n", + "148193/148193 [==============================] - 72s 487us/step - loss: 0.3018 - acc: 0.8617 - val_loss: 0.2919 - val_acc: 0.8679\n", "Epoch 6/15\n", - "125230/125230 [==============================] - 67s 531us/step - loss: 0.2978 - acc: 0.8638 - val_loss: 0.2977 - val_acc: 0.8647\n", + "148193/148193 [==============================] - 71s 476us/step - loss: 0.2963 - acc: 0.8638 - val_loss: 0.2904 - val_acc: 0.8672\n", "Epoch 7/15\n", - "125230/125230 [==============================] - 67s 538us/step - loss: 0.2934 - acc: 0.8658 - val_loss: 0.2883 - val_acc: 0.8680\n", + "148193/148193 [==============================] - 71s 479us/step - loss: 0.2922 - acc: 0.8662 - val_loss: 0.2911 - val_acc: 0.8676\n", "Epoch 8/15\n", - "125230/125230 [==============================] - 67s 536us/step - loss: 0.2891 - acc: 0.8673 - val_loss: 0.2890 - val_acc: 0.8682\n", - "Epoch 9/15\n", - "125230/125230 [==============================] - 64s 510us/step - loss: 0.2859 - acc: 0.8693 - val_loss: 0.2863 - val_acc: 0.8704\n", - "Epoch 10/15\n", - "125230/125230 [==============================] - 65s 523us/step - loss: 0.2833 - acc: 0.8699 - val_loss: 0.2873 - val_acc: 0.8697\n", - "Epoch 11/15\n", - "125230/125230 [==============================] - 64s 513us/step - loss: 0.2808 - acc: 0.8718 - val_loss: 0.2868 - val_acc: 0.8693\n", - "66292/66292 [==============================] - 4s 56us/step\n", + "148193/148193 [==============================] - 73s 490us/step - loss: 0.2885 - acc: 0.8681 - val_loss: 0.2927 - val_acc: 0.8675\n", + "66292/66292 [==============================] - 4s 59us/step\n", "\n", "FOLD 2\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 124608 samples, validate on 31452 samples\n", + "Train on 148316 samples, validate on 7744 samples\n", "Epoch 1/15\n", - "124608/124608 [==============================] - 67s 537us/step - loss: 0.2843 - acc: 0.8703 - val_loss: 0.2528 - val_acc: 0.8868\n", + "148316/148316 [==============================] - 73s 494us/step - loss: 0.2862 - acc: 0.8692 - val_loss: 0.2620 - val_acc: 0.8816\n", "Epoch 2/15\n", - "124608/124608 [==============================] - 67s 537us/step - loss: 0.2811 - acc: 0.8722 - val_loss: 0.2557 - val_acc: 0.8850\n", + "148316/148316 [==============================] - 72s 486us/step - loss: 0.2835 - acc: 0.8705 - val_loss: 0.2649 - val_acc: 0.8789\n", "Epoch 3/15\n", - "124608/124608 [==============================] - 66s 526us/step - loss: 0.2774 - acc: 0.8737 - val_loss: 0.2576 - val_acc: 0.8850\n", + "148316/148316 [==============================] - 72s 483us/step - loss: 0.2817 - acc: 0.8716 - val_loss: 0.2667 - val_acc: 0.8789\n", "66292/66292 [==============================] - 3s 50us/step\n", "\n", "FOLD 3\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 125022 samples, validate on 31038 samples\n", + "Train on 148487 samples, validate on 7573 samples\n", "Epoch 1/15\n", - "125022/125022 [==============================] - 68s 547us/step - loss: 0.2798 - acc: 0.8726 - val_loss: 0.2434 - val_acc: 0.8891\n", + "148487/148487 [==============================] - 73s 494us/step - loss: 0.2793 - acc: 0.8726 - val_loss: 0.2469 - val_acc: 0.8883\n", "Epoch 2/15\n", - "125022/125022 [==============================] - 66s 527us/step - loss: 0.2766 - acc: 0.8741 - val_loss: 0.2425 - val_acc: 0.8901\n", + "148487/148487 [==============================] - 72s 487us/step - loss: 0.2774 - acc: 0.8739 - val_loss: 0.2498 - val_acc: 0.8864\n", "Epoch 3/15\n", - "125022/125022 [==============================] - 69s 549us/step - loss: 0.2747 - acc: 0.8749 - val_loss: 0.2456 - val_acc: 0.8881\n", - "Epoch 4/15\n", - "125022/125022 [==============================] - 70s 560us/step - loss: 0.2728 - acc: 0.8755 - val_loss: 0.2466 - val_acc: 0.8879\n", - "66292/66292 [==============================] - 3s 49us/step\n", + "148487/148487 [==============================] - 72s 488us/step - loss: 0.2761 - acc: 0.8748 - val_loss: 0.2508 - val_acc: 0.8862\n", + "66292/66292 [==============================] - 3s 50us/step\n", "\n", "FOLD 4\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 124609 samples, validate on 31451 samples\n", + "Train on 148073 samples, validate on 7987 samples\n", "Epoch 1/15\n", - "124609/124609 [==============================] - 69s 552us/step - loss: 0.2731 - acc: 0.8762 - val_loss: 0.2400 - val_acc: 0.8934\n", + "148073/148073 [==============================] - 73s 494us/step - loss: 0.2748 - acc: 0.8758 - val_loss: 0.2422 - val_acc: 0.8906\n", "Epoch 2/15\n", - "124609/124609 [==============================] - 68s 547us/step - loss: 0.2708 - acc: 0.8776 - val_loss: 0.2398 - val_acc: 0.8926\n", + "148073/148073 [==============================] - 72s 487us/step - loss: 0.2727 - acc: 0.8764 - val_loss: 0.2441 - val_acc: 0.8889\n", "Epoch 3/15\n", - "124609/124609 [==============================] - 70s 560us/step - loss: 0.2692 - acc: 0.8783 - val_loss: 0.2411 - val_acc: 0.8916\n", - "Epoch 4/15\n", - "124609/124609 [==============================] - 70s 558us/step - loss: 0.2677 - acc: 0.8793 - val_loss: 0.2441 - val_acc: 0.8896\n", - "66292/66292 [==============================] - 3s 49us/step\n", + "148073/148073 [==============================] - 72s 487us/step - loss: 0.2710 - acc: 0.8777 - val_loss: 0.2463 - val_acc: 0.8875\n", + "66292/66292 [==============================] - 3s 50us/step\n", "\n", "FOLD 5\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 124771 samples, validate on 31289 samples\n", + "Train on 148054 samples, validate on 8006 samples\n", "Epoch 1/15\n", - "124771/124771 [==============================] - 70s 561us/step - loss: 0.2690 - acc: 0.8782 - val_loss: 0.2317 - val_acc: 0.8962\n", + "148054/148054 [==============================] - 73s 496us/step - loss: 0.2698 - acc: 0.8782 - val_loss: 0.2416 - val_acc: 0.8935\n", "Epoch 2/15\n", - "124771/124771 [==============================] - 70s 557us/step - loss: 0.2669 - acc: 0.8796 - val_loss: 0.2317 - val_acc: 0.8963\n", + "148054/148054 [==============================] - 72s 486us/step - loss: 0.2683 - acc: 0.8788 - val_loss: 0.2398 - val_acc: 0.8924\n", "Epoch 3/15\n", - "124771/124771 [==============================] - 70s 558us/step - loss: 0.2657 - acc: 0.8805 - val_loss: 0.2344 - val_acc: 0.8943\n", + "148054/148054 [==============================] - 74s 502us/step - loss: 0.2668 - acc: 0.8794 - val_loss: 0.2445 - val_acc: 0.8901\n", "Epoch 4/15\n", - "124771/124771 [==============================] - 70s 561us/step - loss: 0.2644 - acc: 0.8809 - val_loss: 0.2376 - val_acc: 0.8925\n", + "148054/148054 [==============================] - 73s 492us/step - loss: 0.2663 - acc: 0.8800 - val_loss: 0.2467 - val_acc: 0.8892\n", "66292/66292 [==============================] - 3s 50us/step\n", "\n", - "Save model after cross-validation...\n", - "Make the submission ready...\n", - "66292/66292 [==============================] - 3s 51us/step\n" + "FOLD 6\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148575 samples, validate on 7485 samples\n", + "Epoch 1/15\n", + "148575/148575 [==============================] - 74s 496us/step - loss: 0.2655 - acc: 0.8804 - val_loss: 0.2380 - val_acc: 0.8942\n", + "Epoch 2/15\n", + "148575/148575 [==============================] - 74s 499us/step - loss: 0.2644 - acc: 0.8812 - val_loss: 0.2420 - val_acc: 0.8915\n", + "Epoch 3/15\n", + "148575/148575 [==============================] - 72s 487us/step - loss: 0.2630 - acc: 0.8818 - val_loss: 0.2433 - val_acc: 0.8915\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 7\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148126 samples, validate on 7934 samples\n", + "Epoch 1/15\n", + "148126/148126 [==============================] - 74s 497us/step - loss: 0.2630 - acc: 0.8820 - val_loss: 0.2343 - val_acc: 0.8967\n", + "Epoch 2/15\n", + "148126/148126 [==============================] - 74s 500us/step - loss: 0.2615 - acc: 0.8823 - val_loss: 0.2370 - val_acc: 0.8955\n", + "Epoch 3/15\n", + "148126/148126 [==============================] - 72s 488us/step - loss: 0.2610 - acc: 0.8834 - val_loss: 0.2386 - val_acc: 0.8938\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 8\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148199 samples, validate on 7861 samples\n", + "Epoch 1/15\n", + "148199/148199 [==============================] - 73s 495us/step - loss: 0.2612 - acc: 0.8826 - val_loss: 0.2253 - val_acc: 0.9020\n", + "Epoch 2/15\n", + "148199/148199 [==============================] - 74s 499us/step - loss: 0.2593 - acc: 0.8839 - val_loss: 0.2315 - val_acc: 0.8985\n", + "Epoch 3/15\n", + "148199/148199 [==============================] - 74s 502us/step - loss: 0.2590 - acc: 0.8841 - val_loss: 0.2306 - val_acc: 0.8986\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 9\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148078 samples, validate on 7982 samples\n", + "Epoch 1/15\n", + "148078/148078 [==============================] - 74s 499us/step - loss: 0.2591 - acc: 0.8842 - val_loss: 0.2253 - val_acc: 0.9005\n", + "Epoch 2/15\n", + "148078/148078 [==============================] - 72s 487us/step - loss: 0.2579 - acc: 0.8844 - val_loss: 0.2246 - val_acc: 0.9013\n", + "Epoch 3/15\n", + "148078/148078 [==============================] - 72s 488us/step - loss: 0.2569 - acc: 0.8852 - val_loss: 0.2300 - val_acc: 0.8980\n", + "Epoch 4/15\n", + "148078/148078 [==============================] - 73s 494us/step - loss: 0.2569 - acc: 0.8850 - val_loss: 0.2293 - val_acc: 0.8986\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 10\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148142 samples, validate on 7918 samples\n", + "Epoch 1/15\n", + "148142/148142 [==============================] - 73s 492us/step - loss: 0.2570 - acc: 0.8853 - val_loss: 0.2174 - val_acc: 0.9064\n", + "Epoch 2/15\n", + "148142/148142 [==============================] - 72s 487us/step - loss: 0.2560 - acc: 0.8857 - val_loss: 0.2184 - val_acc: 0.9055\n", + "Epoch 3/15\n", + "148142/148142 [==============================] - 73s 492us/step - loss: 0.2556 - acc: 0.8860 - val_loss: 0.2177 - val_acc: 0.9063\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 11\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148164 samples, validate on 7896 samples\n", + "Epoch 1/15\n", + "148164/148164 [==============================] - 74s 496us/step - loss: 0.2551 - acc: 0.8861 - val_loss: 0.2121 - val_acc: 0.9096\n", + "Epoch 2/15\n", + "148164/148164 [==============================] - 73s 490us/step - loss: 0.2543 - acc: 0.8863 - val_loss: 0.2162 - val_acc: 0.9085\n", + "Epoch 3/15\n", + "148164/148164 [==============================] - 72s 485us/step - loss: 0.2536 - acc: 0.8868 - val_loss: 0.2170 - val_acc: 0.9074\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 12\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148072 samples, validate on 7988 samples\n", + "Epoch 1/15\n", + "148072/148072 [==============================] - 73s 494us/step - loss: 0.2537 - acc: 0.8865 - val_loss: 0.2132 - val_acc: 0.9088\n", + "Epoch 2/15\n", + "148072/148072 [==============================] - 72s 486us/step - loss: 0.2534 - acc: 0.8875 - val_loss: 0.2157 - val_acc: 0.9084\n", + "Epoch 3/15\n", + "148072/148072 [==============================] - 73s 496us/step - loss: 0.2522 - acc: 0.8877 - val_loss: 0.2175 - val_acc: 0.9065\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 13\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148135 samples, validate on 7925 samples\n", + "Epoch 1/15\n", + "148135/148135 [==============================] - 71s 480us/step - loss: 0.2536 - acc: 0.8876 - val_loss: 0.2040 - val_acc: 0.9124\n", + "Epoch 2/15\n", + "148135/148135 [==============================] - 70s 473us/step - loss: 0.2534 - acc: 0.8872 - val_loss: 0.2070 - val_acc: 0.9097\n", + "Epoch 3/15\n", + "148135/148135 [==============================] - 71s 479us/step - loss: 0.2521 - acc: 0.8878 - val_loss: 0.2117 - val_acc: 0.9092\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 14\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148300 samples, validate on 7760 samples\n", + "Epoch 1/15\n", + "148300/148300 [==============================] - 71s 476us/step - loss: 0.2510 - acc: 0.8883 - val_loss: 0.2099 - val_acc: 0.9081\n", + "Epoch 2/15\n", + "148300/148300 [==============================] - 71s 480us/step - loss: 0.2511 - acc: 0.8882 - val_loss: 0.2124 - val_acc: 0.9064\n", + "Epoch 3/15\n", + "148300/148300 [==============================] - 71s 476us/step - loss: 0.2505 - acc: 0.8886 - val_loss: 0.2164 - val_acc: 0.9053\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 15\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148443 samples, validate on 7617 samples\n", + "Epoch 1/15\n", + " 79744/148443 [===============>..............] - ETA: 31s - loss: 0.2501 - acc: 0.8893Buffered data was truncated after reaching the output size limit." ], "name": "stdout" } @@ -1767,11 +1871,11 @@ "metadata": { "id": "tLziOKQltkg9", "colab_type": "code", + "outputId": "fe22bca9-dbb1-4534-d238-1ab8a9930219", "colab": { "base_uri": "https://localhost:8080/", "height": 34 - }, - "outputId": "fe22bca9-dbb1-4534-d238-1ab8a9930219" + } }, "cell_type": "code", "source": [ @@ -1794,7 +1898,7 @@ "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend20.csv\", index=False)" ], - "execution_count": 24, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -1809,18 +1913,18 @@ "metadata": { "id": "g2JGcOSPBIP7", "colab_type": "code", + "outputId": "e7f10c4d-3970-430c-f1e6-184a48f47736", "colab": { "base_uri": "https://localhost:8080/", "height": 85 - }, - "outputId": "e7f10c4d-3970-430c-f1e6-184a48f47736" + } }, "cell_type": "code", "source": [ "!pip install theano\n", "!pip install lasagne" ], - "execution_count": 33, + "execution_count": 0, "outputs": [ { "output_type": "stream", From 8dced307d3d8c224ffe4d59c1a236402bee53d19 Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Mon, 3 Dec 2018 09:35:00 -0800 Subject: [PATCH 3/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 158 +++++++--------------------------------- 1 file changed, 27 insertions(+), 131 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index ae99ed7..a4dd5cd 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -43,10 +43,10 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", - "outputId": "86d04be5-456d-43e6-8dac-280148f65da9", + "outputId": "ee44f161-e1cf-481d-8781-5b9e53a70282", "colab": { "base_uri": "https://localhost:8080/", - "height": 3318 + "height": 3400 } }, "cell_type": "code", @@ -54,29 +54,29 @@ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 0, + "execution_count": 2, "outputs": [ { "output_type": "stream", "text": [ "Collecting lightgbm\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/4c/3b/4ae113193b4ee01387ed76d5eea32788aec0589df9ae7378a8b7443eaa8b/lightgbm-2.2.2-py2.py3-none-manylinux1_x86_64.whl (1.2MB)\n", - "\u001b[K 100% |████████████████████████████████| 1.2MB 7.7MB/s \n", + "\u001b[K 100% |████████████████████████████████| 1.2MB 10.6MB/s \n", "\u001b[?25hCollecting wordcloud\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a66717ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (361kB)\n", - "\u001b[K 100% |████████████████████████████████| 368kB 10.0MB/s \n", + "\u001b[K 100% |████████████████████████████████| 368kB 27.9MB/s \n", "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", - "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", "Installing collected packages: lightgbm, wordcloud\n", "Successfully installed lightgbm-2.2.2 wordcloud-1.5.0\n", "Collecting pydot\n", - " Downloading https://files.pythonhosted.org/packages/50/da/68cee64ad379462abb743ffb665fa34b214df85d263565ad2bd512c2d935/pydot-1.3.0-py2.py3-none-any.whl\n", + " Downloading https://files.pythonhosted.org/packages/53/11/9db5c788f5ad05438b7c2a07fd7edd9820b7f3d95bb0690a16f7bf426204/pydot-1.4.0-py2.py3-none-any.whl\n", "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", "Installing collected packages: pydot\n", - "Successfully installed pydot-1.3.0\n", + "Successfully installed pydot-1.4.0\n", "Reading package lists... Done\n", "Building dependency tree \n", "Reading state information... Done\n", @@ -94,7 +94,7 @@ " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", " libxcb-shm0 libxmu6 libxpm4 libxt6\n", - "0 upgraded, 30 newly installed, 0 to remove and 5 not upgraded.\n", + "0 upgraded, 30 newly installed, 0 to remove and 7 not upgraded.\n", "Need to get 4,154 kB of archives.\n", "After this operation, 16.1 MB of additional disk space will be used.\n", "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", @@ -127,9 +127,9 @@ "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", - "Fetched 4,154 kB in 1s (3,260 kB/s)\n", + "Fetched 4,154 kB in 2s (2,274 kB/s)\n", "Selecting previously unselected package fontconfig.\n", - "(Reading database ... 22298 files and directories currently installed.)\n", + "(Reading database ... 26397 files and directories currently installed.)\n", "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", "Selecting previously unselected package libann0.\n", @@ -233,6 +233,7 @@ "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", + "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n", "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", "Setting up libthai-data (0.1.27-2) ...\n", "Setting up libcdt5 (2.40.1-2) ...\n", @@ -596,6 +597,16 @@ "execution_count": 0, "outputs": [] }, + { + "metadata": { + "id": "DbNFsH5cHoiw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Pre-trained word2vec: this model is trained on thecontext on each word so that similar words will havesimilar numerical representations. Sentences are firsttokenized to create a number of pairs of words, de-pending on the window size. Then the data it’s fedinto a neural network through an embedding layerinitialized with random weights. Once the model istrained to minimize the loss of predicting the targetwords using the context words, the weights in theembedding layer would represent the vocabulary ofword vectors" + ] + }, { "metadata": { "trusted": true, @@ -1375,11 +1386,7 @@ "metadata": { "id": "bHYz1kXFLhIB", "colab_type": "code", - "outputId": "6725ec18-4bb2-4a1d-9c86-2608b0d88d78", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1445 - } + "colab": {} }, "cell_type": "code", "source": [ @@ -1423,98 +1430,7 @@ "sub.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" ], "execution_count": 0, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Building the model...\n", - "FOLD 1\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 125230 samples, validate on 30830 samples\n", - "Epoch 1/15\n", - "125230/125230 [==============================] - 88s 703us/step - loss: 0.3736 - acc: 0.8326 - val_loss: 0.3258 - val_acc: 0.8490\n", - "Epoch 2/15\n", - "125230/125230 [==============================] - 79s 633us/step - loss: 0.3305 - acc: 0.8505 - val_loss: 0.3067 - val_acc: 0.8609\n", - "Epoch 3/15\n", - "125230/125230 [==============================] - 79s 634us/step - loss: 0.3202 - acc: 0.8535 - val_loss: 0.3108 - val_acc: 0.8611\n", - "Epoch 4/15\n", - "125230/125230 [==============================] - 80s 635us/step - loss: 0.3128 - acc: 0.8570 - val_loss: 0.3009 - val_acc: 0.8625\n", - "Epoch 5/15\n", - "125230/125230 [==============================] - 79s 633us/step - loss: 0.3062 - acc: 0.8598 - val_loss: 0.3019 - val_acc: 0.8654\n", - "Epoch 6/15\n", - "125230/125230 [==============================] - 79s 632us/step - loss: 0.3013 - acc: 0.8615 - val_loss: 0.2953 - val_acc: 0.8645\n", - "Epoch 7/15\n", - "125230/125230 [==============================] - 79s 633us/step - loss: 0.2969 - acc: 0.8637 - val_loss: 0.2943 - val_acc: 0.8666\n", - "Epoch 8/15\n", - "125230/125230 [==============================] - 80s 636us/step - loss: 0.2930 - acc: 0.8659 - val_loss: 0.3009 - val_acc: 0.8623\n", - "Epoch 9/15\n", - "125230/125230 [==============================] - 80s 636us/step - loss: 0.2900 - acc: 0.8671 - val_loss: 0.2898 - val_acc: 0.8688\n", - "Epoch 10/15\n", - "125230/125230 [==============================] - 79s 631us/step - loss: 0.2858 - acc: 0.8692 - val_loss: 0.2994 - val_acc: 0.8645\n", - "Epoch 11/15\n", - "125230/125230 [==============================] - 79s 633us/step - loss: 0.2842 - acc: 0.8693 - val_loss: 0.2909 - val_acc: 0.8699\n", - "66292/66292 [==============================] - 8s 117us/step\n", - "\n", - "FOLD 2\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124608 samples, validate on 31452 samples\n", - "Epoch 1/15\n", - "124608/124608 [==============================] - 81s 647us/step - loss: 0.2863 - acc: 0.8692 - val_loss: 0.2571 - val_acc: 0.8850\n", - "Epoch 2/15\n", - "124608/124608 [==============================] - 79s 634us/step - loss: 0.2841 - acc: 0.8703 - val_loss: 0.2593 - val_acc: 0.8839\n", - "Epoch 3/15\n", - "124608/124608 [==============================] - 79s 635us/step - loss: 0.2813 - acc: 0.8720 - val_loss: 0.2650 - val_acc: 0.8812\n", - "66292/66292 [==============================] - 5s 79us/step\n", - "\n", - "FOLD 3\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 125022 samples, validate on 31038 samples\n", - "Epoch 1/15\n", - "125022/125022 [==============================] - 81s 645us/step - loss: 0.2827 - acc: 0.8706 - val_loss: 0.2517 - val_acc: 0.8869\n", - "Epoch 2/15\n", - "125022/125022 [==============================] - 79s 635us/step - loss: 0.2795 - acc: 0.8726 - val_loss: 0.2508 - val_acc: 0.8862\n", - "Epoch 3/15\n", - "125022/125022 [==============================] - 79s 634us/step - loss: 0.2772 - acc: 0.8740 - val_loss: 0.2506 - val_acc: 0.8871\n", - "Epoch 4/15\n", - "125022/125022 [==============================] - 79s 635us/step - loss: 0.2762 - acc: 0.8746 - val_loss: 0.2506 - val_acc: 0.8860\n", - "Epoch 5/15\n", - "125022/125022 [==============================] - 79s 634us/step - loss: 0.2743 - acc: 0.8762 - val_loss: 0.2509 - val_acc: 0.8865\n", - "66292/66292 [==============================] - 5s 79us/step\n", - "\n", - "FOLD 4\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124609 samples, validate on 31451 samples\n", - "Epoch 1/15\n", - "124609/124609 [==============================] - 80s 641us/step - loss: 0.2747 - acc: 0.8753 - val_loss: 0.2438 - val_acc: 0.8920\n", - "Epoch 2/15\n", - "124609/124609 [==============================] - 79s 632us/step - loss: 0.2727 - acc: 0.8758 - val_loss: 0.2444 - val_acc: 0.8907\n", - "Epoch 3/15\n", - "124609/124609 [==============================] - 79s 636us/step - loss: 0.2714 - acc: 0.8769 - val_loss: 0.2487 - val_acc: 0.8891\n", - "66292/66292 [==============================] - 5s 79us/step\n", - "\n", - "FOLD 5\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124771 samples, validate on 31289 samples\n", - "Epoch 1/15\n", - "124771/124771 [==============================] - 80s 638us/step - loss: 0.2721 - acc: 0.8771 - val_loss: 0.2358 - val_acc: 0.8941\n", - "Epoch 2/15\n", - "124771/124771 [==============================] - 79s 637us/step - loss: 0.2694 - acc: 0.8787 - val_loss: 0.2402 - val_acc: 0.8928\n", - "Epoch 3/15\n", - "124771/124771 [==============================] - 79s 633us/step - loss: 0.2683 - acc: 0.8790 - val_loss: 0.2407 - val_acc: 0.8916\n", - "66292/66292 [==============================] - 5s 79us/step\n", - "\n", - "Save model after cross-validation...\n", - "Make the submission ready...\n", - "66292/66292 [==============================] - 5s 79us/step\n" - ], - "name": "stdout" - } - ] + "outputs": [] }, { "metadata": { @@ -1575,11 +1491,7 @@ "metadata": { "id": "L3kxtJabtkYT", "colab_type": "code", - "outputId": "70a9c292-e2d1-4551-eeb0-712a0e58911f", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 711 - } + "colab": {} }, "cell_type": "code", "source": [ @@ -1589,23 +1501,7 @@ "SVG(model_to_dot(model4, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" ], "execution_count": 0, - "outputs": [ - { - "output_type": "error", - "ename": "AttributeError", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel4\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model4\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mktop\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmodel4\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mSVG\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_to_dot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_shapes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_layer_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrankdir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'HB'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'dot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'svg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mbuild_model4\u001b[0;34m(lr, lr_d, units, spatial_dr, kernel_size1, kernel_size2, dense_units, dr, conv_size, ktop)\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;31m#avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mmax_pool1_gru\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mGlobalMaxPooling1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_conv1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mdyn_pool1_gru\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDynamicKMaxPoolLayer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_conv1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnroflayers\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlayernr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0mx_conv2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mConv1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconv_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkernel_size2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpadding\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'valid'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_initializer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'he_uniform'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx_gru\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, ktop, nroflayers, layernr, **kwargs)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnroflayers\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlayernr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 37\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mDynamicKMaxPoolLayer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mktop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 38\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mktop\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mktop\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayernr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlayernr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, k, **kwargs)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mKMaxPoolLayer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mincoming\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/lasagne/layers/base.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, incoming, name)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_layer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_shape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mincoming\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput_shape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput_layer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mincoming\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: 'Tensor' object has no attribute 'output_shape'" - ] - } - ] + "outputs": [] }, { "metadata": { @@ -1628,7 +1524,7 @@ "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", "\n", "print(\"Building the model...\")\n", - "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", "\n", "for i in range(NUM_FOLDS):\n", " print(\"FOLD\", i+1) \n", From 94022a638a7f5d45410db9eb2d22471b2e39c8de Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Mon, 3 Dec 2018 09:56:22 -0800 Subject: [PATCH 4/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 315 +++++++++++++--------------------------- 1 file changed, 101 insertions(+), 214 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index a4dd5cd..a0ad43a 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -43,220 +43,15 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", - "outputId": "ee44f161-e1cf-481d-8781-5b9e53a70282", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 3400 - } + "colab": {} }, "cell_type": "code", "source": [ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Collecting lightgbm\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/4c/3b/4ae113193b4ee01387ed76d5eea32788aec0589df9ae7378a8b7443eaa8b/lightgbm-2.2.2-py2.py3-none-manylinux1_x86_64.whl (1.2MB)\n", - "\u001b[K 100% |████████████████████████████████| 1.2MB 10.6MB/s \n", - "\u001b[?25hCollecting wordcloud\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a66717ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (361kB)\n", - "\u001b[K 100% |████████████████████████████████| 368kB 27.9MB/s \n", - "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", - "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", - "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", - "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", - "Installing collected packages: lightgbm, wordcloud\n", - "Successfully installed lightgbm-2.2.2 wordcloud-1.5.0\n", - "Collecting pydot\n", - " Downloading https://files.pythonhosted.org/packages/53/11/9db5c788f5ad05438b7c2a07fd7edd9820b7f3d95bb0690a16f7bf426204/pydot-1.4.0-py2.py3-none-any.whl\n", - "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", - "Installing collected packages: pydot\n", - "Successfully installed pydot-1.4.0\n", - "Reading package lists... Done\n", - "Building dependency tree \n", - "Reading state information... Done\n", - "The following additional packages will be installed:\n", - " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", - " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", - " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", - " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", - " libxcb-shm0 libxmu6 libxpm4 libxt6\n", - "Suggested packages:\n", - " gsfonts graphviz-doc libgd-tools\n", - "The following NEW packages will be installed:\n", - " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", - " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", - " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", - " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", - " libxcb-shm0 libxmu6 libxpm4 libxt6\n", - "0 upgraded, 30 newly installed, 0 to remove and 7 not upgraded.\n", - "Need to get 4,154 kB of archives.\n", - "After this operation, 16.1 MB of additional disk space will be used.\n", - "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", - "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", - "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", - "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", - "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", - "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", - "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", - "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", - "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", - "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", - "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", - "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", - "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", - "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", - "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", - "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", - "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", - "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", - "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", - "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", - "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", - "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", - "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", - "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", - "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", - "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", - "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", - "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", - "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", - "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", - "Fetched 4,154 kB in 2s (2,274 kB/s)\n", - "Selecting previously unselected package fontconfig.\n", - "(Reading database ... 26397 files and directories currently installed.)\n", - "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", - "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", - "Selecting previously unselected package libann0.\n", - "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", - "Unpacking libann0 (1.1.2+doc-6) ...\n", - "Selecting previously unselected package libcdt5.\n", - "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", - "Unpacking libcdt5 (2.40.1-2) ...\n", - "Selecting previously unselected package libcgraph6.\n", - "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", - "Unpacking libcgraph6 (2.40.1-2) ...\n", - "Selecting previously unselected package libjbig0:amd64.\n", - "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", - "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", - "Selecting previously unselected package libtiff5:amd64.\n", - "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", - "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", - "Selecting previously unselected package libwebp6:amd64.\n", - "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", - "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", - "Selecting previously unselected package libxpm4:amd64.\n", - "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", - "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", - "Selecting previously unselected package libgd3:amd64.\n", - "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", - "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", - "Selecting previously unselected package libgts-0.7-5:amd64.\n", - "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", - "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", - "Selecting previously unselected package libpixman-1-0:amd64.\n", - "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", - "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", - "Selecting previously unselected package libxcb-render0:amd64.\n", - "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", - "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", - "Selecting previously unselected package libxcb-shm0:amd64.\n", - "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", - "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", - "Selecting previously unselected package libcairo2:amd64.\n", - "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", - "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", - "Selecting previously unselected package libltdl7:amd64.\n", - "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", - "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", - "Selecting previously unselected package libthai-data.\n", - "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", - "Unpacking libthai-data (0.1.27-2) ...\n", - "Selecting previously unselected package libdatrie1:amd64.\n", - "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", - "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", - "Selecting previously unselected package libthai0:amd64.\n", - "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", - "Unpacking libthai0:amd64 (0.1.27-2) ...\n", - "Selecting previously unselected package libpango-1.0-0:amd64.\n", - "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", - "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", - "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpathplan4.\n", - "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", - "Unpacking libpathplan4 (2.40.1-2) ...\n", - "Selecting previously unselected package libgvc6.\n", - "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", - "Unpacking libgvc6 (2.40.1-2) ...\n", - "Selecting previously unselected package libgvpr2.\n", - "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", - "Unpacking libgvpr2 (2.40.1-2) ...\n", - "Selecting previously unselected package liblab-gamut1.\n", - "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", - "Unpacking liblab-gamut1 (2.40.1-2) ...\n", - "Selecting previously unselected package libxt6:amd64.\n", - "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", - "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", - "Selecting previously unselected package libxmu6:amd64.\n", - "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", - "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", - "Selecting previously unselected package libxaw7:amd64.\n", - "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", - "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", - "Selecting previously unselected package graphviz.\n", - "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", - "Unpacking graphviz (2.40.1-2) ...\n", - "Selecting previously unselected package libgts-bin.\n", - "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", - "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", - "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", - "Setting up libpathplan4 (2.40.1-2) ...\n", - "Setting up liblab-gamut1 (2.40.1-2) ...\n", - "Setting up libxcb-render0:amd64 (1.13-1) ...\n", - "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", - "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", - "Setting up libtiff5:amd64 (4.0.9-5) ...\n", - "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", - "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", - "Setting up libltdl7:amd64 (2.4.6-2) ...\n", - "Setting up libann0 (1.1.2+doc-6) ...\n", - "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", - "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", - "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", - "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n", - "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", - "Setting up libthai-data (0.1.27-2) ...\n", - "Setting up libcdt5 (2.40.1-2) ...\n", - "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", - "Regenerating fonts cache... done.\n", - "Setting up libcgraph6 (2.40.1-2) ...\n", - "Setting up libwebp6:amd64 (0.6.1-2) ...\n", - "Setting up libcairo2:amd64 (1.15.10-2) ...\n", - "Setting up libgvpr2 (2.40.1-2) ...\n", - "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", - "Setting up libthai0:amd64 (0.1.27-2) ...\n", - "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", - "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", - "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libgvc6 (2.40.1-2) ...\n", - "Setting up graphviz (2.40.1-2) ...\n", - "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n" - ], - "name": "stdout" - } - ] + "execution_count": 0, + "outputs": [] }, { "metadata": { @@ -266,10 +61,10 @@ "_kg_hide-input": true, "id": "9K7leB0DGZG9", "colab_type": "code", - "outputId": "41e1395c-bd24-4b57-9404-c81056e458c5", + "outputId": "cd14ad76-7b42-4e13-a775-b77a59a8025c", "colab": { "base_uri": "https://localhost:8080/", - "height": 51 + "height": 52 } }, "cell_type": "code", @@ -301,7 +96,7 @@ "nltk.download('stopwords')\n", "from google.colab import files\n" ], - "execution_count": 0, + "execution_count": 4, "outputs": [ { "output_type": "stream", @@ -328,10 +123,10 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", - "outputId": "41ae6204-f002-4445-bcf5-b4281f02ced6", + "outputId": "0fa96bd2-313a-45f8-b30f-cef0d962194d", "colab": { "base_uri": "https://localhost:8080/", - "height": 122 + "height": 124 } }, "cell_type": "code", @@ -339,7 +134,7 @@ "from google.colab import drive\n", "drive.mount('/content/drive')\n" ], - "execution_count": 0, + "execution_count": 5, "outputs": [ { "output_type": "stream", @@ -517,6 +312,88 @@ } ] }, + { + "metadata": { + "id": "4ggBRYFGKih5", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1283 + }, + "outputId": "8119a6e8-0dde-4020-b867-e6a2ac351b2f" + }, + "cell_type": "code", + "source": [ + "from wordcloud import WordCloud,STOPWORDS\n", + "\n", + "def wordcloud_draw(data, color = 'black'):\n", + " words = ' '.join(data)\n", + " cleaned_word = \" \".join([word for word in words.split()\n", + " if 'http' not in word\n", + " and not word.startswith('@')\n", + " and not word.startswith('#')\n", + " and word != 'RT'\n", + " ])\n", + " wordcloud = WordCloud(stopwords=STOPWORDS,\n", + " background_color=color,\n", + " width=2500,\n", + " height=2000\n", + " ).generate(cleaned_word)\n", + " plt.figure(1,figsize=(13, 13))\n", + " plt.imshow(wordcloud)\n", + " plt.axis('off')\n", + " plt.show()\n", + "train_pos = train[ train['Sentiment'] == 4]\n", + "train_pos = train_pos['Phrase']\n", + "train_neg = train[ train['Sentiment'] == 0]\n", + "train_neg = train_neg['Phrase'] \n", + "print(\"Positive words\")\n", + "wordcloud_draw(train_pos,'white')\n", + "print(\"Negative words\")\n", + "wordcloud_draw(train_neg)" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Positive words\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXVYFF8Xx780qGBgYYOKAQgoFnaD\nhWJ3YWKLLYhioIAoit3dCqJgdysKws/EQkRFRUFp2PePfTeGmdmd2V6cz/PwODP33HvPrrB7z70n\ndHg8Hjg4ODg4ODg4ODg4OKjQVbcCHBwcHBwcHBwcHByaC2cwcHBwcHBwcHBwcHDQwhkMHBwcHBwc\nHBwcHBy0cAYDBwcHBwcHBwcHBwctnMHAwcHBwcHBwcHBwUELZzBwcHBwcHBwcHBwcNDCGQwcHBwc\nHBwcHBwcHLRwBgMHBwcHBwcHBwcHBy2cwcDBwcHBwcHBwcHBQYu+uhWggSs/zcHBwcHBwcHBwSE/\nOvIOoKkGAwcHBwcHBwcHYh6+w+M7r/Hm+We8e/0Vf9OzoK+vhxJmJmjgVAP17KuhW7/G6lZT67h5\nIQ5x0R/w+O4bpP3KQHpaJooVM0Ip8xKwtqkE+8ZW6NK7IXR05F5rFiliHr7D9ahYvP7vM74kpeJP\nehZMTAxRrmJJWNWpiFadbNG8bV3o6Bat902Hx9PIzXyNVOpfI/pqPF4/eQ8AqFKrIlr0bKRehTg4\n/kFsZwcLr+MCZqhREw4O5ZP6/Q8Gd1oNXoF8y4ARkzti0Ng2CtJK+8nLy4e783LkZOfKNU6zNnXh\nGzJEQVppPo9uv8bSGQeRk50n1zjTF/eCi7ta11ByWy//pMGwNK4nfGzDVdZPW3ExGyW8bt7NEYsP\nTVWjNhwc/yacwcABACcTHEnP3Gs+oW0XtJ1+2xgWxdqgacVAgqygPa8gE+HvnIVtzSsGw6J4W+H9\nz6xnuJY0nHJORcDj8dCrmR+ys+RbyErC0MgA4Q98lDa+vLjYezOSi4rxYzXukR03sCvkoiwqMWb/\nhdkoW8FMqXOoGqb/H/LA9v9SAXAuSbKg7EX/+eRtqGRSG3al2ip1Hg4ODg6Of4eelregr1scAHAy\noaHw+fmPPWBqUAOdqp0CALxI3YbvWdEoa9wQPS3v4vRbkbvOrc/jYaBrKrwPf+dMMjzE768lDVe4\nkSDA1cEHqti0zMnOhYu9NwyN9BH+YLHS51M3P76lYUinAJXMNbQzfx41LIAVjioMhcJzadP7xmVJ\nUgL3f5xRtwocHBwcHEUMgbEAAFVLuAqv/+Z+EhoLAFC39Fg8+DIHAKCrQ9wX/Jb5AD0sbzCes6RR\nHVnVpWXpjINwsfdWibEgTk52HlzsvdGnxXKVzqtKXOy9VWYsFJ738d03Kp9XEXi4rVOpsSCOi703\nBrVfpZa52VJkThiWxvWEtWlj1C/ZEqc/iY7wxU8Tlsb1pHwuoICXj2XxvUnPC8uKjzOv/hEY6pqQ\nnp/6tAanPq2hnUvTeXL1P3WrwMHB8Q+y/VUr4bWH9U01aqJd8Hj5hHvX6ueF180qBiH57zWCqxFd\n395WjwhtZgY1Fabj2WMPsX6Z+r8P//7Jgou9N2wbVkfgLg91q6MQtgVF4cTe22rVYeGEPQCAE7cX\nongJY7XqwoQgn5O4GKac0zM2pP74Axd7b7RxscP8Vf3VrQ4tReqE4XX6I5xJWo9FNqew0OYEShtW\nJLT72IZLXLwvi+8N57Lu8LENR4tyfYV9xFka1xPT6myHj204dHR04f/fAMrxe1eZKXU+TWZBr0Dp\nQhwcHBwKxsP6JmcoyMCrX7uho6NH+BFQqXh73P0yA6nZ/6GFxUZSX7p+isTF3lsjjAVx4qI/YHCH\n1epWgzF0i9v4Jx/UbiyIow0nOC723hphLIhzPeqZ2k46mFCkDAYeeFhocxK6OnrQ0zHAFOutrMfo\nWHEkAKBDheGU7T62YShpUB4A4G1zWmZdNR0NDYbn4ODg4CiEe80niP+5AScTHIU/VFz9NAQVijUn\nPOtl9ZDQj66vrOTl5mv0Iujn93SN1k+cIJ+TpGddHRdj1sjtatBGMi723nj26L261SCR+v2Pxv9/\nu9h7Iz+/QN1qkCgyLkmqo2jl1aWiQAN/UTk0i5y8fDScH0LZ1rhmFeya0E9if0HmH0HWn9z8fDjO\nox7vtNdw1Kpgzkiv/TefwD/8GmUbkwxDAr36N2sAnz4dGMlKGzs7Lw+N5q+XOrcAc9NiuO4zXqKM\ns88mpGVmkZ7r6ADPVjPPpLT9VSt4WN/Eg5SNiE09BAAw0C2OEbWiKGUFlDeuj57VthDa83m52PW6\nvfC+aTlP2JUeKNNcTHWXpE9Ro3DgceMKyyW2S+svQFdHX2LfwvOwIfFdCsb2ov671jRc7L21KgAV\nAPq3WYmCAs39vp49ZofGvaeDOmhHvEC3hos17r3jDAYxZtXdR4hDWFD/uMp1SP2WhjGO85CRnkkr\nY2RiCN/D0+DYrr7C5+fxeOhZfpzCx5WH/LwCLB+xEXfOPKZsb9+/OeZsV6/Ot8IeYfnwjZQnM+YW\npbDnWQD0DYvGn1sz7434k5VN2/4w4RNsZwcjZtU06OlKP8QUX3hT0StwLwDJi/Kr8QmYsluyu0Nh\nI0UVLD5+ESfuxxGeGejpITc/n6YHoCNlU0LS+8Xj8duf+k+Dvh6zA+Ttr1qhV/UdaFJukvD+QEJP\nDKkZTpAZWesi9HX5fslH3vXDztdtMbr2NaHMrtftMaLWBRj8P6Zr+6tWyOflwKHMcFZzMdVZmj4c\n6iXhZTI8+5PdnzQZF3tvRD5dqhWFym5f/g9pvzLUrYZUNMUQu3ouFqvmH1O3GqxwsffGmYeLYaAh\nawfN0EJDCHoxDP2rLUBds2Zyj5XLo19QUeE3dANuh1MviAuTnZmD+W6iLAjt+jXD3B2SdyTp2DTn\nIMI2S8/TfPfsE0JdBiZEpe2SSScBz26/xGxXf6lyV47exZWjdxUypziFXy/V2BHbrmDDrH0Sx/mR\n/Avdy46VOI6APlUm4W8a2VhU1Oui+j/UN9RHxPdtjPr3Dd5PMBbOzx+NymVKCu8vxyVg2h7+4s9+\n7jqpi3Pxxe+FBWNQqbQon/f683ew5dJ94f3MfRFYM6w75TjixkLrupbYOKaX8L6Ax0ODOWsJc6rK\naBA3FqjmFLx+picDAnkTQwM8XD6Z0CZuyDnMk/7ei1PWyFp47WF9k7B7fyChJ2qadhQuzgFggOUx\ngsyu1+1R0cReaCyIjyNuMEibiwlM9OFQL79T/yrFWLBrVAM2jtVRwswYf/9k49P777h1KV7uIm/i\nuDr4aMQClw5eAQ86ujrwm3lIrnF0dXXRsmN9VKlRFsWKGyHlaxpSvvzGnSuKT3jiO+0AfNept9ib\noo0Fk2KGcGhaEzXrWqBYcSNkZebg/euveBb9Hqnf/yhsnh6Nl2jM7+M/ZTD8yE7C1+z3AIC4X9dR\ntXg9YTyCgKMfVwiva5s6YVB19sVeDHSNEZEUiue/7yK7IAOjreiDqo4Gn8POxfL9Il89dg9Xj93D\nSJ8+GOhFvaAqDNvFvypJ/ZaGQbWmydRX8LoUaThIm4sNNRtUk9h+4tNGlf/fMDUWAODF5xQAgIt9\nHQQO7Upq72BbE3EBM4QLW6aLcyqZKV2cMaWLs3CsC7GvKfuKGx1XFo1F+ZIlCO26OjqIC5iBZt6h\n+JOVA4B/ItHORnHZX6TpRfceBA7tCq/958DjAYk/fqGqeSmp49KNdc9vEmHOz6lpBAOMjqrFm0ts\nz8xPRUL6JSSkX6KVyeflonvVDXLPxQQm+iiKjNxcFDMwYNXHau0avJ0+U0kaaQcD2krf6JGEjq4O\njl6bD9OSJtKFKRjWJRApX37LPL+LvTeOXJuHkqWLSxdWMcNcAvH9axqrPnXtqmDtftk2FU/svY1t\nQbK5DQq4d+2FXP3lRd6YhboNqmLtPtm9GKYN2YKXcZ9k7q8ppzRFKuhZEkvjeiL09UQc/8j3Xzv5\nKQjrXnpgR4IXQU5f1xAWJrVQzqgqXqc/gl+cG+u55tc/ii4WY/Ex4z8Y6dJ/4C3sFSS3sSAOU2NB\nk9njd1JmY0EcZS+6ZR1//XXpRYOojsOpTh1UzaSdoiB/KmNBHCN95nsRitztL2wsiHPPz1N4Lc19\nSVW42Ity3M89GCn3eHsniVLyrTh9lVEfQ13690xAaUNLyh+2MJmLCYrSRxzvK5dhHbIWV969BQDU\n2xAC29D1sFrLT4/9X0oKrEPWIjr5MwBg2MnjqLchBLFfvwAAbn38gPobqP31XatOE/4UdeRdnEU+\nXYrIJ0tlNhYAYN95L0TF+KGEmexjyGv0KAs2xoJVnYqIivGT2VgAgD7DWyAqxg+W1hWlC0vg6E71\nZD6T5/cxcJcH//2Tw1gAgHUHxiMqxg/TfNivJwWMd2ceB6csiswJg7T0pdLaj3xcDheLcWhiTlx0\nS6vdQDduU/MeaGreg3a+rx+/4/GVONp2ANDT14VDm/owMNTHi0dv8SuF3a6CNnIoQHLROz19XTRs\nZ4uM9EzE36PecRbgYjZKKScN8hgjugz8ys/+3I6upccQnvWpMknu19Lfcopc/W88f8dYdvWQrkLX\npGP3nqFfMzu55qZjWOgR4fWJGUOVMoeqiP/0TapMc+vqEtsbWlYWXj96y2xH60f2K6kybtW2ElyA\nqMgtyCS4JMk6FxOY6MOWGc2d4ddeFOj+fPJUwglD/XLl8GrqdOEJwu2PH/F2+kzh/Yn//sN/k6cK\nDYx/kQl9pZ8y0VHfoRrW7BkrXZAFx28uACD7onHV/GOYu1JyAgdx7M8sBg/07lGxPZbKpIcsKHpH\netMxTxQUFKCro2yVsneuu4D+o1XrNujuvEymfrq6ujj3ZImCtQFc+zjBtY+TTL+PHxKkfz8omyJj\nMMhLRl4aPmW8IBgMT1Kl+/bLygjb2ZTP2SwK9604jQP+YQDYny5ImodqQdy8myMWH5rKag428Ap4\ncC01mrJt97PVqFi9nMT+83qsxtPrz0nPFWk0vItLxA4f4omQaeniOPZB8pdkfl4BupUZg5JlTRnN\nw8SokIW0H2S/SmW5bnWwFbn7bLhwh9ZgMDUxkmueJ+8/C6/rVJL8OwIAKwe6YP5h/vH62nO3ML1r\nS7nmVySuDtZSZbaNdWc8nsD9Shq/cj4Q7tNyiYaGQ5lh2P2mk8TaCA3KDMaeN50JMl8yY1jPxQQm\n+shCGRMTbH38CNbm5mhbg3xaIc3VaHKTpgrVRxt5//qrTP2U7W4RFeOHuR47EfOQ+aYHwA+UbeBk\nCdc+TlJll8WeAQ88lRoFVIyd5YI+w1soZWxdXV1ExfjJbICdPx2NLr0aKlgrang8HjL+soslBYAt\nJ6eges3y0gXlICrGD4M6rGId66Bu16R/xiVJGqOsViHu9w0sjesp/DmTtF6lhdfYLt6GLeiFqLRd\nOP1lM0b69FGSVqqBzlg48WmjVGMBAPzPzMHBV9TZY54/UEy5+h0+x/Do0jPh/bnUHVKNBYB/KhKV\ntgtH3jJPL2hgRLbl+1abTCHJjH0rFFszxHZ2sNQfAT/S6TN5tLCuoVC9pNHBtpbwOipWMbvddNhX\ntxBe0y3enX02Ca/9B7kqVR86dKCL7a9agYcCJGc8wdF3g9DOwlfY7lSWfxy//VUrJGc8wd+8FMT8\n3EcIMm5SdiIA4NBb/ufQi9/hiEicjJG1iXEG0ub6m5eCN2nn8eA7/325820tnv8+jZ/Zor9hJvrI\nyrhGTthwXxRov+3xIwnSRFz27aFt23PPF0Ymhjj5XHuKhLFF1kWkqhZAq7ZTf8dIY93SMEZypxOf\noFpxZumflYVZqWJKMxbEkfX/LHjxKQVrQo+rA/v404jHvko3FgQcujwXZStIjzErzJekVCVowwzu\nhEEMba3KbFxMvl1adZOfR51Hmq0BVaZiKUwKHIqNXvsJz2d0XK6QnXRxY0HZQdVnUraRTnr+/Por\n83iCkyhxDr1eSyGpWszkPGFgSzEjUQDrl1/pSp3rwOSBQsOpmXcoujSwRtCwbgCAzJxcNPfZiLz/\n1zzp3dhGqbpIok7J7mhZYTbOfpqGjLzvGFHrPAx0ixFkPKxvIiv/F6KSvJCWk4Saph1JO/we1jfx\nOi0Su193gqVpW8oTAGlzFdcvh1pmXQCIjBAqmOgjK8cHiGpHTGsmCtIWnC7Q/ft62gzCvTjlK5fG\n6VcBpOdFhTUyLgRVvVsaFeMHr1HbERf9QbqwGEtnHIRP8GCJMmNqtcKmV8zihpTBOC8XuA9TvrEg\nQJ6TBmUztDP7v7VDl+dCX185Vc7p2H9hNuv3cGTXNWo7ZeAMBg61063MGOlCDOk5rgPJYAD4u/PH\nP8ruXyvOtkcrpAspifluAVgZRu3OxpbSFUpKF6JAV0cHsaunK0QHVZOeKTqiZpJBSF7EM0adj32F\n87OpTzX8+ndWui505PNyAQDdqqyTKGesVwq9qkmuKFvbzBW1zehPSpjOxQQm+nCohguno1n3Udei\nJ3CXB+tF2p0rZHfXwkys006tBoMqjQVNh20Wqc69GqJ0WcUkZGCLLIbXznUXMHqa6r8zOJckDo1E\nnh18qr7y7M4Xpqq1hXQhBUD1Op5cZZ8ju3DchbwUUBSn0xa2X30ovJ7USf4Un0ywKl9GeG1RyhSG\n+npwqFEJmz16Iy5ghkoLyXFwKBpZ0pe6DVbN3x4dshgrTBd1Dc740P4oC3UZX5FP2cdrPLypXFfQ\nsIN3WcmblzfDzCW9laQNMxYGDGAlr66MU9wJgwbx9PpzOLSpp241VArVaYAmU8lKNf6NiuTY2nOk\nZ34nisYitatjHZx78hIAEPMhmRA3QMUOMYOhe8O6tHKJP2XP4S7Ou28/8fbbTwCqrTDNwZ5N3scR\nvpvdF3FkIvVJiaT0qXR96MYwr1gS+x8yW5iJzyttnssnHiJwOvXn79I949G4fX1Gcw7rEshITpyJ\ncyWnZVYFZcqa4ud3xbolqiPguV3XBiqfU4AsFbHXLz+DvVGzlKANn02ryN93kjhwUTEn9vLQqrMt\nMPuIdEE1w50waBDzeqzW6IJqyiB862XSM4e2zL6o2HJu1zW5x9j5dJX8irCgcSfylwEbF64fn6kD\npKjGlYbA/x4AvqUprpKlPKweLFp4DNlwWKIsm4ORu68k+zi3XLxJYruAHgH8QNiZ3TSzCrGH9U20\nqbhALXN5NFkEt0qTEDhxJ7Yu5H9Zntx4Eb0qe+LTa35tg+EN5mLxwBAETdoJAHAp7YH4+28w1Eb0\nJf8jORXdK0wQ3ruU9kBOVg56V2WeJMC16jTWxoKq+CFHATIqbp19Cteq02iNBQDwGbEFrlWn4Xvy\nL4ljpf2iT2hAhyYUoAKAg5fnsO5z9thD6UIqhk3aV2UwckpHVvLfpPxOyUPYoXtKG1vTmDdW+cVp\nC6NVBsOLt1/Rf9oO9J+2Ayk/iQsW5wFBpB9N5sAL+lzdLmaj4GI2inaxV9QZv2KgdCEZ2DzvkFLG\nVSZUJwF0QeJUDKlLDsDsOEg2X9cuDURpP9v7MasOHZcoW5pFNjStVVV43X31blo5uzmizE3RK2VP\nEfwt7Q9+ZWSx6rPmrGYuRtXJp9dfsPPxcnhtGo2TG/kprN0ndcLppFB4NFkEAPiW+ANLDk9FtTqV\nhP3qOVlhf3wAhtTnGw0rRm1BxNfNcCntIZTJysjBqURmMUviu/KGxgaITFxH+DEpLgrMr1qrAqGN\njsJjyIJlPdFrPrXtmlT50zuuC68rVqXP1rN8gmihUaqsKc59XCvUMzwhCHr6omXBsCaSc+73b7NS\nql6azIjJ7Ba765dpVmIU/63q32Ac6NFG3SoI2eR/lpV85BP1psAVZ+NRT+lCYjx98FZJmtCjNQbD\nJN8jGD1/Pz59+YVPX37BbeIWxL3i52CnMw402Wgwr1Qa1o41JMoMqTsTLmajcP3EA9UopSFY2laV\nLiSFuk5WpGc5mczy0msDJ9ZHydzXa4uHdCEaujqKKhPbzg5Gc5+NJJk7rz6g6aJQ2M4OxrxD8lcv\nlsaO8X2F1+9TUjF683FCO48HQppXADBkkA3DdnYwKR1qRPQLxsYSANSuKFq4SUpBu+niv7MzJo65\nRWnCvUtpDwRO3EmSs2shMlYFdUp+JPM3VL58/AGPJotQpbaoEq1ZGdkCGMNek91rTr4QpUJNfKN8\nA1jAxgtzhddbl0rPQrTF96Twetcdan/5rtVEyQpauNrj0JNlBLcSA0N9RLwLho6u6Nna2dq30cKU\nQWMVt9hd9ixCqXEKVDg0JX/PcTBH/Pdc3VjVka+StirQCoMh7tVnPH3OL/BTx7ICRvflB0yN8xZ9\nkHmN6Yg7R2YJfwRsPHBDtcqyIOT6YkbBvStHbRKeOqR+VezxdFGlpZv0QjvaAtXvyLaFsvk7FjeT\nXIlXGqsHdyVkSErPzCYtfsdtO4m/2ao1zsTjAx4kJBL0ET9ZqFnBXGIsQeG2Zt6hhLEEBlBcwAwM\naeEgVa/DUyWnYhQQeuEuyaj5F3FoXRdj/di5WPxITsW2e36wbV6b9XwrJor+toJO0scdrD0jOqkL\nmnmA9TzKhlcg3d8u9u4b8P7vl1e7QTUs2kpfl+DcB1HK5fOHqY3Zc8fZu+doijuSPNBVDz718TH0\ndVWblpNDdmb5MS+Cqakc3n5dupAC0QqDQWAY3Do8E7v8h8Kjn7PQKNh65DYAwL2zPaGPoH1/uOb5\nHBYmKm0Xyks4QhZnUO3pcDEbxcot5V+E6ftZlBntMJf07MQn8okAW3R1dBAXMAPVypaSKBc0rBsi\n5oyUez6mxAXMwKYx9NkuYlZNQ5jXcEbjdLKjX3wKjAppcQm2s4PRaMF6AICJoQFm92iNJX07CX8W\n9GqHlnVqkPr8K0Slbidd+4d5oWRZU+G94F/BiSFVn6jU7dDR1cH0dSNIMtJ4dFWULrN+Y/rd2joO\n1YXX9y/GMR5fXg5GixbYqRICdPvazBNeb4ikDuKc23+98DrkrPSg09JilekT4sgVuUP8NMs9R1aq\nsUxkQVc9eETNFsgryFeESozgTheITB28mZV8p56OStJEdpq0qiNdSIzd6y9JF1IgWpUlSbdQRL7f\n9O7wXhuBHSuGqEkjxbE3nn8UficiGksHr5ciLQp8HTCzG0b59pUi/e9hpOXF7ApT18kKLx4RfRan\ntlmCkOv0Psaf335jPH5L90DcOunFSA4A+nVviHNzqf1nmYwlWHS3dA9Eyd86mDa6vVRZKr79SIf7\n2C3C+1snvaRmIxJ/DXTzBg/vLnEMADAy0KedS3zhL0mfwf8/pRiy4TBiPiRTyrDNrsRlY2JOhSpl\n8P4l/33PysiBcTFDSrm/aZmiPlXLUMoog9LlRLVCBjsuoo2HyPgjiqmpaVtFIXMPnNYFm7z57n1B\nMw8QXKRkoa2r+rL5SGLrqSms8+AXFBRAV5e43zq1bkec/hiN7PxcGOkZ0PRUHJoQv6BJvIpPUrcK\ncjN/VT/0pjnB0gS0ymAojHNDvoVd14ra90tXVwcFDI5qNQnn7g0RlbYLT68/x7weq6XKH1lzFkkJ\nX7FoH7uAmaJOeqpmZPFRFGuveJMyaL168p5WPmyLcnYeBIbAup1XpMooCkkGiPvYLTi5bTzKm5tS\ntlNx66SX0GhQNiNaN2Ikt3xAF4kB2+rAPoK8iHIyr4EdzRVXaFHdzFwzGFO78WPdZrgFY9NF6kXx\n9J6iJBWTl/dXiW6y0Ll/U0ZyktK+UpH4Wv7YjXn+6s3mo0iWTj8E3xDyRuWv3Ew0PkfvdqWOtKsc\n2oN4ggVNRKsNBhMjvhUvQypgjcehTT2h7/r3pFQMrUfOdiPgVtgjuJiNkqvYWVHj6TXplTm1jdLl\nzZD6jVjBcsu8QxjvP4gku2k22c+6qP5+sDEWVM2QltLjHADg3JMXStZEdXj22YDQE8xTmspLXm4+\nfqf+hXl59pW7azeoJrx+/+Iz/D33YF7oCILM6qn78ClBdFpXx7E6VEl4QhB61uS7EHW3nIGId0S3\ntVHOokXojCBmMTNsyctTnauNNnDvOvXfa3Q3yVmlOJRDxNF/KzGMutBqg+FfoWzl0ohK24Ufn1Mp\n02RykLkd/kjdKiicQ2/WkU4ZTm28QGkwSGP7odvYfewudHV0YFW9LKGtt8dmpPz8AwN9PeTm5TM+\nMTgc/ggxzz/h5v03pD4t3QNRorgRdHR0kP4nCz7Tu6Fza36RwrKlS6CleyB0dPgZjQR9x8zeJ+wv\nuN4RMIy2TdDe0j2Q4G60bucVHIuIVvjJBxMWHjmPXROk76xuLEJZklRpLACAvoGeTMaCgMjEdcId\n9+vh0bgeHi1RVtUYGIq+pqli174k/mA95sLN8rmz3LoUL1d/TWPQuLY4tPWautVgjCb636uTjSvZ\npVPVVPc4TYczGLQI80p8w2FUgzlIfp9CanctNRqRv8gpCbWNC/tvofPQlnKNkUkRmFbLXrU7g+ri\n5xdyYZwZocSMKLuP3RUuoA+HP8KG3deEbSk//wjbPn/9zTi+YWBPJwzs6UTr7hO1bwoAvvEgMBYA\nYNO+G8Lxc3LzMGrWXuwKGi40Dlq6BwqvBUhq0yQeJpCDRQvTcH6I8LqXk40y1VE6h7dew+51FxEV\nvxwAELTgBC6GRcPAUB9nnixBz0a+MDTQw5/0LKFM/xbLYVrSBDvOzcTXpFTMG7MTyYk/ERW/HPeu\nvUDgvGNC+cL3ABAw/ziGTGyHStXMcXLPbbiP4NcZObH7FvqMbAkXm4UoYWqMsXO6oos7tYuYuNFA\nx/F4f0W9TaxxalsPj/5/ahp79w0aNK8FAMgWSxVtVqY44/FadmN28kXHgS3X5OqvaQwe20arDIb+\nozWzEKS6KChglwTGtU/RyaKoSrTKYNDGegvKYFfsanj3CcbDi7GE50xS62kaJcua4neh7B9rJu2Q\n22CgIiBqvsLHVDVRabtIpwzn991El2GiL5DB1uSgV/H2wgzs6UQwGACozMcfAHp0tBNeGxro4/U7\n5sHamsrKgS6Yf5hfK4Np5iNDfT0sG9BZmWopnYHj2mL3uovC+wFj2+BiWDS2hPEL5eVk5SL8sS+h\nz9HbC4XXIzqLfu9c7RZhzwVMUE3VAAAgAElEQVQvgnFgVaci4R4AZq/si88f+bvs7iNa4FvyLxgY\n6qPPyJbo35Iv9yc9C8HeJ2kNhtQUkavfuQ9rNSo/OwD47ZsgNGjm9l8vPOnoZS3KiHQkZoXK9Hn3\n6ovK5lIF4qc42kBVy3LqVkGrsW9sqW4VtBLt+ivhEOJ3YgZp4aiNbHu4Av0tp6hkLk0PKJKVYM+d\nEg0CtlhblsfOIOnpR9nQvaOd0AgZ3Ksxoc3YWLkZRVJ+qD4AvkejeuhgWwtNFjGrNnx+/mhULlNS\nyVqpHl099gtvcWNAcL/BLxyTvXuivEUpwj0VwzsGQEdXB5HPlqF6rQoI2C29UOHghvwA7z13F2uc\nsaAMPr//jko1ykoX5GCFtMJtXNCzZsA2KxYHH60wGMQLsXEoH6rg2qQE5VQ4NTOnrsi6ZtIOzNwo\nWzaWYE/td8uShEkJY2SKpVEUx7OVL+nZuquSPxzdxmwi3L969w1ZWbnChfzFm8/RqVU9qq6Mibj0\nTGUxBH27NsSxiGhhDMO1u69UMm9hihkZ/HMpTl1sFgr/LbzwFzB90GYYGuljNcVCPip+OQa18UcJ\nU2OEHJ2E6+disXFlBHoM5Gf/iTr+iHCfk52Hng35gaYrt4+GY/OamLWiD9J/8dOgBuz2wNWzMQj1\nC8eE+d3R0Y3s+z3QQXTCUb6K6lKmssVlcHNEHbwLgO+KZGQiSgErXmiNDnG3qzGt/FQaj9Gyo3a7\n2lGR9isDZqWKEZ7RGQQNzvjgRpd5lG0cHNqCVhgMHKrF1tkaN08Tg4Y/vvistPlGL+mHnYuPEZ5d\n2H9LZoPh/L6bpGeNOxedIKdTnzeRTpcW9g7C8lOzkBDzgSRfpxG5wI94atHIvZPhOly0E37p4DR0\nHCxaTLi7OgoNBnFXpWMR0cKxCrcJrgVtHVrUJbSzMR4sKpQkjSeJ6R7tcSIyWtjn+JZx6Dt+KwBg\n1tLjuP/0vVD/YxHRmDq6Hfp3Z5b+lEMyhY2EStXMSc/WHpogcYxD10ULK5e+TnDp60R7b2ikTxq/\nk1tDwn27bvZo141Y2FOcUuYl8Pv/p1AbFx3HpGWaWddm2qqBQoPBo81yDJjcSdjG9FTEwFAfuTl5\nAPipVZkYDZt8TmDi0j4yaCzCzqmGXP01kSf3EtDGxU66IIATbTzR+rw/d8LAodXoCErFaxgKUSo7\nJw/thq0rkicUf9My0afKJNJzRaTOzEjPhHtl5YxNB5V7VenyZjj0ht0uGJ2bliy6U42lKalJXUuO\nRuG/Xar4BnfPzhi3kn0WJUUyccFBbFpBTPfYrn8wrh79t3bftY1/oQ6DADZ1CZgsshPffEX8w7d4\n/yIZ8Q8T8OaZKPi9pm0V2DhZopq1BWwaW6K6tQXjBX+fenMJRdrY6CSA6rUaFzOEZb1K+PYpFT++\n/ia0Ne9sB58dxNMgti4dm455wtKaul6SpsD2NXVyc8Sspe6M5Ruc8aE1GNjOHRVDX+tBHahb/3/Z\nxYjFeym3r6VWnTAsDD6Dq/dE7gWeQ1pjSM/GlLLth4cgKztXVaqxwsVsFLoMa0XKXMMGKmNBV0+X\nQpI9xUxNKJ8rs9bDoNk9cCjgDOFZ6rc0DLfxElbBlsYoe+qiSxHft8mtn6YR8WO7sNq3gKAJ20ly\n6jYWACAzKxcFBTzo/n9RdCrqKUYPcFazVhwcIhZsGoUVE5l9tknbmZdmfCTEfUJCHDF71qh5PdDf\ns6PUuU88X0Uaf204u1TbkYnr0N1yBiFFa1ZGDp4/fs9qHDZUqFxaaWOri8R33xnLdrgYoERNODhU\ng9YYDFSZkEIP3EDogRuEE4Thc/bizQdRytGbBzVzF/P8vpsE15nm3Ryx+NBUiX3SU/+iX3X6HOfn\nUncoTL/KtSoi6Q05E4aL2SjsiF6JyrUk7xbdPP0IrXoxT102wtsdPB4PhwMjCM+/Jf6Ai9ko1GtS\nC8GXFlL2ne3qj2e3X1K2WdQoB30ty4DBBD19snF48eBtNWgind1rRmDbwVs4cuYxLKuaY9WC3ihT\ninkKSA4OZSG++C5rUQrrz3mhVFlyIcD3Lz5j8cit+JaUKuynjpoMVMhSSE5Q/O3ElivYviyM1K6j\no4NZwUPQoQ/1hhxbihXBhBNfPv0kPZMU9My5I3FoO1qxknqbKLLkT4WORYWy/CI9AiPi5+8MlClZ\njGBUlDc3xemN41SrqBzcPftErqxHJUoWky7Egh3RK2n1GdOQWXpStqcRI336kAwGAc8fvGH9/hgY\n6WNX7GpWfbQJfQM95OXSV2C1aV5bhdpIZuzglhg7WPGpcjk4ZCXprSh9r1PbevDbRx9bUaNuJey5\n58vIdUnZhoQix+8zvj36jG+vsPH+JTL+5pCecUYBR1FGMT4sSmao1x4A/GxJAmNBcA8A3cdtIhgL\n6737aZWxIC/GxYxwPDFU4eOKZ+FQFYpyeapQrSzOpBQ9VyRxIn6QXZDECTq/QEWacHBoHx5tRMHS\nkowFcVyHcK50HHzy8+g3azg4iiJaccIgiXnjOsF/K79Q0PIZPdCumbWaNZKOSXEjykrEsrDvvyCU\nU1IqwLCvW/DlQwpG2s1Ryvh0CIwGWU9cIr5vK5JuSGxQdS55qgDZmO7MgrGufX2BaQ8PyNxf3vnF\n6X0tBG//kKuoi2Ooq49rneehuL7i3SwKvw5Jr2FJ7Gmc/PhY6phe9V0xzEozFrpU/08AMKVuR3jU\naqNibdjz9r8kdavAoSGUMKOO9ePgKKpoxQmDJAQGwp0js7TCWACAU8mbEZW2C826knOCM+XI2xBE\npe1SmrEgoGL1cohK2wUDI9UvwKPSdmHquhGM5YfO74WotF3/lLFw+stmyudhX7aoWBPZmfP4COXz\nfW9VF5PhEOED+whvqcYCAOQU5ME5ahnsI7yRzyuQKq9oLibHwz7Cm5GxAACB/0XSLtRVCZ0Oyx36\naIWxAAAvn5DTFnNIp6BA9X8nyobKYKCLYUjLzZRa1I2DQ9PR+pWVaXFjdasgM76HJQc5axLqcu/p\nOqotuo5qq5a5NSWFqiSMi1HvchsquXpyYTzrdEDoy8sy9c0uyKN8HvhfFIZZtZBpzBn1ujCSax7l\nh4w8si8yUxqe5RcNk+U0gwlpuZkwMxAtTDRh4S8LdHrvcvZAwzLsg3YVQcNWdRB9k58sQVoQ86uY\nj5jWXeT2OnvdMKXrV5RIfPcd1WuWV7caCqV2/UqMZcX/hjnUj6alpdUWtN5g4OD4l/EbukG6kAoY\nV7utzAaDvNz//pb0bGRN6QHWA25ulMtYEMc+wlspRsPF5Hj0qeYknEMbodP7VNupsCpRTsXaiFh+\ncBIhiFlwrW+gB9OSxZD6PZ22b3t35hngOIC3L78UOYOhmhXz39203EwlasLBoRq0ymCgSq3KpK0o\nFm7jkI3kr81hUeGuutVQGLfDyW4pmnIycjvlNVqUk5ypKeTFRbnnmXh/D+s+0hbfdcwq4lCridDT\nEXlthiU+gU/MSYljKtpo2P/uLvpUc4LTOV9aGZuSldGpkg1MDUzw6Mc7RCbFkmQ863RQqF5MoXuf\nr3eej1KGis3sJguRievg0WY5IWNSXm4+rbFw7uNa6OioNj6oKHDv+gu069pA3WooFEGV5+tfX2LK\nA1EMFp3rkUtlZlWhOTg0Fa0yGDg45CUv7726VVAYN04+ULcKEln7/IJUg2HHmxuEe8sS5fBOLI5g\n2+vrGFtbsn872ziCdxLiFA62nACbUpUp29yqOsKtKj/uiG4hrGij4W36N+xMuIncAmJGFp8GbsKT\nB3H6VnOCv2M/4X2Tc0uQXZCHcbXbKkwnptC9R/ddfWCsp1qXOUlsv86v7/I2PglHQi/iweV45GTn\nwaKaOeo7WWH8kt4oTlPMkoMZT+4lqFsFhVO5mjkAoE2FOojtsRTtL6zG9+w/JDldHR1sbz4KTuY1\nVKwhB4di0QqDgTsh4FAUVSsnq1sFhbFi5CbSs4OvgtWgCTWv0siF/6Rxuu1UwkJzw8tLUg2Gwgyo\n0URie69rIZTP2Sz0Y7r74VdOBtpcWElqc4jwwdPuisvHvu75BeH1YMvmmGvTlXHfB10XK0wPNtAZ\nC8qK9QCA1lGBuOHiRdmWkJ6CnldCEe/mS9vfyqYy5m8cqRzlaLAJ84Whrj6e9FjEuu+quCjMtXVR\nglaKJ+1XhrpVUDpXOs9BgzM+XC0GLSDly2+Uq1hSqXN0NhyMCzkHFTYWAPSe4oKJQcMVMqYsaH2W\nJA4ODhFlKpZS29w60AxXjXk23WjbFLmQpXOp4YHHeiwmzLPtzspYUBfqMBakUdO0nERjQV3Eu/nK\nZCwAwN6EewrWhjnm5c2kC3FwaCjnjj9U+hyKMhYEYylyPFkp8gbD5bsv1a0CBwWfPlsiMckCiUkW\nSPpsLbxOTLIQyiQmWeBnKrGy6s/UaQQZAPjxcxKhf+F2wVh0bQIKCn5LHUdTGFpvJunZeP9BatBE\nxMz6zDIT0SGLm8rOhJukZ7o6qvtYo1sEH3qv+MXcoBpNFT4mW0ylZHuRxViwCfNFQnoKWkcF4uXv\nL/iUkYomZ4knNzzw4H5tM/peI6cLXv/8CmzDluBH9h/YhPnCJsyXND7VcwG3v71B66hArIo7T+r3\n5OdH3PmWgFZRAXC7spH2NVARm/oJ2QV5aBSxHMtiz1G+bpswX7SOCqQdY9TtPWh2zh+bX14XPktI\nT4HLpRDa11b4dbaOCqRsT0hPgeOZZdj8iugWmM8rQMvI1RhycwetXsM91RMToyxiHr5TyDjc6YJ2\ncGQH+XuDQzpaZzD4b7mAVoODMX35cYlyX1LS4DwgCN5rI5Sqz7ToAHS7MRVL4rai242p6HaDmCq1\n242puP8jDt1uTEXQy320MoL2/nfmktql0e3GVIx/uIzwzPOxP1Y93y28X/V8N7rdmArfuM1YELsB\n3W5MxdVvD0njjLy/GIuebUS3G1Mx/UkgqV3w7+gHvuhxczoe/3zOSlcBPF4WqlZORulS/ijgpaNq\n5WSZ3YUyMk8J+9ONI2383Nx4JCXXlTqOJjDb1R/fk1JJz3tP6qwGbUQMp0iBeik5nlZ+/7s7hPu9\nLcaynlPcXUcaytr5nmdLPtHwjzsr15iFUefuvDj2pavSt8nx/va8EoobLl5wv7YZ5kbFMa1ee+HC\n9lNGKmzDluBk2wk43nY8bMJ88TtHlHVmSr32iHNbDHOjEoh38yWdJFA9E2AT5ovrX1/jhosXYU4B\nQ2/uREPzarjpMhth7SfRGh1UDLqxHR///MTj7gtRt2RFUl9JJx4f//6ETZgvdrYYjntd56FNRVGN\noZqm5RDVcSrhtbE9PWl+bhVMDYzxpMci1DIVZftxjlwF+3A/3HKdgwOtxtC+3i69GrKaT9Px9tyr\nbhU45KBYcXZFNOWtCzKiznR0NhyMbqYj0NlwMDZ77RO2/Uz+Bd++a4RuRAI6Gw5G5M6r6Gw4GN69\nA+BabBhB5vHFWHQ2HAwXk6GkvnRkpmch0INYi6lrceWlfNYag+FPRjacBwQh/Moz5OcX4EHsBzgP\nCELUjf9Isj7rzsJ9smrqBrz5k4izrUOw2HYczrYOgblRSax8TsxSszR+K862DsGsOsNwptVaynEE\n7UedVwEAK6NhZp2h+JT5jfDs/d/PmFtvpPD+Rko0zrYOga/tBKxoMBn+9lMR+GIfoc/Z1iHY3XQJ\nltlNwtnWIXid/pE0V7cbU3G2dQh2NvHFmVZr0ahMPcZ6UlG82EC5+iuKL986qlsFRnz5kIJnt8mn\nZm36SPbbVxdrJSzoA+IjCfd1zKhPdN6kf1WoTopmUI1mlM9zaOpLaDM1S5BTY/LAU6gxZqJniCFW\notOULhfXERbE8W6+cI5cxXpcOhbYuQLgn3B1qlQf4YkxhHZ5ArRrm/Hfr77V2S2wXS+FIN7NV+jm\nV6+kYk87R9RshvLGpgCAjhaiz/DfOZmIcxPFvYQ0GQifp+EKnVsTyckuen+r/xIzlvRW6XzJ777h\nQs5BnE3fgws5BzEhULRIL2NRCr7HyR4AAHDI/zS2xQTg/tkniMwgrr/md/PHhZyDiMrcjy4j2zIy\nGkxMjXFhr+iEcLF7EMJ/7ZbtRTFAK4KeAaDzKFG++Rkj2+HpiyRcvfcKS0Mj4dK6PgDg9KVYrN4m\nStO4y38o6lhWUJpOkx6RAx73NvXjL/brjRI+G1LdVXhd2F1iavRqAOwMhMJ0qNAEa17uF96HJ12n\nlGMyx8EPkbj+7TG+5/yibB9eo7tsStKgo8NuZ4CKCuUvCt2HypRei+LFBsg0jr5eNbl1UQQuZqNg\nVqYELG2ronjJYkh8+RmJr+hPO0qWNcX8XRNVqCFzEjN+su6zuekITBBLldrvRiiedFPOUf+x1p5K\nGRcAGp9bopCTgR3NxyhAG8XQoNAJQwGPB8ez1Gkk2bz2MkbF5dJLUSyx74F254PQs6o9AKC0HKlf\nzY1KKEothTOhDn0iAapThaUOPeWec/ua8/CYKZ/boqbgE6xe908OIq062ah0vrPpe4QLejaxBU27\nOqJ6PeosfD0nijwEZm0dh/O7rzEe92HUUzR2ccDdiMfQN9Bj3I8tWmEw9J2yHQCwblFfNLbjVwXt\n58rfsXEeEISeE7bgeyoxnZkqMislZ31nJGdhUpa27cPfZFiVqIxaJeRbrPat2hHzYtfDv8EUbEk4\ngerFyDtSnSs2p+3/NPUlFj4LhX0payywGQML47LofYv8HpY3Li2XnvLC42WTnhka2KJq5WSk/BiC\nn6nT8TN1umzuRDrK+0NjS9rPP4i5wczd68hb6qw/6qBnFUeEf3oi1xjNy9Ui3BfwmAcRT6nL7qTI\n2qwiK3l1oEnpGAsHeivCWAA0J2D+7Z8UWJqKPq/liYf5QZFiUx2w1UNZweHH99zSSIPh5oU41n2c\n29dXgiYcquTc8Yfo2rexTH0NjAxwIecgsv5mo7PhYARd9oFdq7pS++nq0X+epH79LZMuYT93wq3M\naKy5qvyMeFrhkvT5G/+NFBgL4rh3diAYC3eOzFJZGtaJtfqSnv3Koa8OSj1GP7z9k4Rp1oNIP2wY\nZdkTz369Ft5vdJpPkpE0x8JnoTjbOgQrGkxG9WIWMNTVjDzpBQVphPuMzDBa2XLmB+SKO8jLU0zg\nmyrRlCJtAvwc3BnJzYk+qpT5PWpR75xe+Mx+UcAGfQ0yNlWFqrIhjarljJkPjwnvZz06hn41GpHk\nFLFAH3pzJ060nSD3OPLS0aIeOl2kdl9VNhPvHZAuBGDnmRlK1kQ1LJ99RN0qcCiAIePbsZIP8ZPd\n1S4zPQsAYFzcCFXrVMKWOful9JDOzZP3hdddjIfAyo7ZJrJJCWMAwMx2S5SeSUkrThgkMcytMU5e\neIpTG8ehgrmpSufuXLE51r06hHxegbAi7JB7C7HKfpqUniJcLJyx/vVhPP31Cg6lRIFtD3/+h8Zl\n2O9ivPmTSNs28M48HHb2F96/SHuHumaWwvvcgjwY6PJ/JXrenM56bmWQmRWlknkqlIvA1xTFulsp\nEx0dHUT+3qluNRhx5tNT9KjiQHh2/vMzwn1FE8k5seN/JZEKqrHJRHT5CznWSZE0K1cTt769Uuoc\nmoQqU6d62XT+fyYgUQC9pCBm8fYH399hVdx5vPjNrwniHLkK1mYVsLvFSADADufhBBccA13FGX4t\ny9cijF2npOg0a/L9Q3idxo87+5H9B10urkNts/LY0JS/ibOuyQBS9qPCr7lXNQfK9hL6RoTnw2s2\nY5yCNd6NnHWJ7r2uVK0MozHFCfY9jRm+vVj30yTchzmrWwUOCoZNao8DW66y6pOTnQtDI/abo27m\no4XXBkYGOJsucqEVjz1g47Y0duVgobyhsQE2Pxat1cTHPLU+ijTmxgcrMKnJArYvgzVabzBUKMvP\nB61qY0HA2dYhhNiAadaDYVuyJusx3G7OQB5PVM01tNE81rrsb7YMQ+8twtnWZBeVs61DsPbVQYKu\nnSo2ExoMhV9H4Xt1ULVyMim9aWWLl0hKrkOQI6c/Jf5ap3zvj6zsm5TyghMJQ8NGqGwRTxpLHZmS\notJ2IWrPDdw9G434u6/xNz0TNe2qof1AZ7h7qjcTkiwsenqCZDAU5mBL4q7uAtseWBF3Rng/+NZm\n0mKUTSaimFR6Q1oRNCxT/Z8xGOiMBQBoFumHe6707VQUDmiWds1kHAFNylpKPDFoVs6Kdmyq52zc\ndZ7//kIrLzAMJCFtruWOvbDckbz4vt+NfLosXuBN2rhsXqO1TWW8ik9iLH/+1GONMhg+vWfmVizO\nOC9X6UIcWkHPJksRFcN+k0OSAUDXJv5ccC3+7Pvnn4z6UvH44jNse7paoowi0HqDQROgWqBLaqN6\nFtZK/gq9RnqGEtunWw/GdGv6yPvCekm7lwfxhTjdNdU9UxlxypVl5v6iq1tGY1KpuoxoDZcRrRUy\nlm/8IvjaLJMuSEMeLw/6Osr9qCgcIDqgRhOCwcCEPtWcaNu+Z7NzFWQLXRG3oobrlSCJ7Zn5OZj9\n+AgCGsmWeIBDuwg5OAEu9uwMRE3Cw22dulXgUCDFSxjj758sdauhcnYsPIQBs3sofR6tMhicB9B/\nWUlqo4tpuHfvDRYuEPnGmpuXwNFjU4T3ycm/MHTIJgCAqakxTocRfTZ9F5/EzZsvSe0d2q+Ep2dH\nhIZeAgBcvjIfHdqvFF4ri3635yhtbA5mvP2bAENdI1QxqaJuVYSwNRY8Ho3EdqfdwntlGwuKYoEd\nvUtZMT1D/C7IpG2Xl+z8XKWNrUl8zqDOnibOheQ4BIAzGDioGdjOH4evsj9BVzTZWez/ZiMe+ype\nEQ6FceL2QtYGbG/nZTh1R7Zq6+pG4KrUaWgrlcynFUHPymLhgmO4fGW+8EfcWNi+7RqGDtkkbFvk\n3Uu46Be0/83IJrQP+b9xAQChoZeExkGH9iuVaigEvtiHgXf4H8CKPAXgYMfs2BmwKl4TVUyqYG4s\ntZHq8WgkAOBLFt+nOvb3U+Tx8hD4kp9XfuoTTxTwCvD1/+10/en+PZp4GB6PRiI69TGpj/j1mlcB\nhHG3v9vK5CVibuws5PHycPzTUeQW8L9wn/2ORXaBKHvVEnvJObE3vrpCuK/LMMe8uFtRNkWNA0mB\nx1WLmzOaQ1be/2Xv2iArP1P/olO/YLR2C0DormsAANdBIVgZwq9r0dotAKOn78Es32OEfh36rhFe\nj/faL5SXlSZlrfCoqy9lmyS3pX+FGy5e6lZBJbB16fj18y9ePPukJG2Y49aUfapmff1/L7mBtlG6\nLLt0xpl/s7Fs1mElacOciUHDWfe5kHMQF3IOYvZO1aRV14qtQ2VmPfLxPo6lfuRsR4cO3YWnpyhF\no5OTJald3AhwcrLEl2Tpu2/K4NHPeBjpGRICmjlUT0ZehvD6b/5fAPwF+nJbf1Qw5gc8Cnb7K/7/\nPjs/G9OfTkZWPv8YNSP/L3R1dIXy0lhqsxwAsOT/4/ao5IYLX6NgU1JyXmrPWiLj2DfeG5+zPsPD\ncpzU+X7k/IC+jj76VumP6U8nY63DBtiVbECQ6VW1IRbHnKIdY8srYmDaWidmVS0XPT2BM+34wfib\nX16RIk2kTYU6iPulvEXK05/KjZEQp9fIjbgRNhut3QLgOaotWrsF4EbYbILMzrUjcFWswJ/nvIO4\n/P9iQuLyi1eHY8kc9jn2NzUdAef/p7/V09FFPo9cOdU+wltjKlRzaBbTh26RyXdcUSR/SmXdp2Zd\nxRbP41AOhy7PZX3KcOtSPNJ+ZcCs1L/hWior//QJw+Ur8zFqVBt0aL+ScHogIDT0krCNql28japd\nVRx29sceGXZLNJW9rx+h5uEVpB9NZ05dkQG5uD7//2O7027C4v/gR2J1x6rFqmGDI7G0OxsOJ/KD\noY4kHgIA6Oqwy2c/4bEHfG384FaJfSBidwv5izkBgIVJKcrnzcoSkwd8/PtDeL0z4SahrXk5yYkG\nRtVU7pHtyzTVxb4c3OSBdu5BOL5DcvpPaytRVeYF06gDNdkaC5WKlUJMdz+hsQAA0d2W0J4ScScN\n/wYHLs6WLlSIvi2XK0ET6Xz/moZR3dZIFyxE6JFJStCGQ1Po30Z9azht4Z82GADA0qqc0B2p8KJ/\nxgwXgstSYbeiwm3KdDtSFTfCozHVdTVWTmCW3/9vGtEvfKvvSXx+n6IM1TSe6sVqwDfeG37/+aKc\nEX+xNjF6LHzjRYumCVaemPDYA5Ff+Bl+dr3fgWsp7HbLxZlUcwo8o8djYs3JlO2FXZYKs7nRdnhG\nj0dXC5H//8SafB0BYP6zOfB4NFLYf7vTbvjGL0L459PoWIF5xqbjHx4ylhWwqmF/xrJL7CXXf1Bk\nukx1M85rHy4cnY7yZfmZ4WqLGQZMqG1VHomf+TusL15Tu77RUYnGuDvSin4xJS1QmgOw85I/6YU6\nMS9vxrrPn/QsBC46oQRtJDO0c4B0oULsCGeeKp1D/ch6euVi7428vHzpgmrk49tvapv7nzYY4uJE\nLgq5ucRfkjMRsxAcHIX8fNFR+4L5RwntHdqvJLQv8T2pRG3Z49l5FWb2XIN5/URxDX3rzsGaGaIi\nI8kfvqOnJT9Y27OTP1ZO3IXXsYmYv3kUAGB6t0CC/L6As0J5AOhbbw5cK4vcW8b5ihZuk7usEl6L\nyxRlfG384F3fV3i/qeE2+NqIPrzMDMywudF2uFbsBgCYX3cR2pZrLwwyFg82pqKwnLGeMUIbboGJ\nngkAwEjXGNuddsNI11goJ/gR7ydoB4DQhlsIlXYblW6MzY341dVX2q0m9Oe/xmXoKeVEYqglMVf5\nirgIAOR6CL2rkQtwCWCTeaiCMfsFCwCMuLNNpn5McKvqqJRxdwSPgIG+Hv5m5AjvxRG4G1W2EFVl\nF7/eETwCVSvx7+vWVlylazr3o88Zv3ApOZ6yjUO9TNxO7zrIFlkWaZfOPFVZ4bT8/AKZMzpVrl5W\nuhCHRnH6nmz/190b+ciUCh0AACAASURBVGL1guMK1kY+AhaegIu9N1zsvfHp/Q/pHZSEVsQwKItp\nU4nuIeInBMWKGSLi7Cx07iRa9FqJ7eQVK2aIYcNbEtq9fTQnvzQAvI3/hMik9cJ718pTCPcAYFG9\nLMLf8Xe3Qi/OI8iIX68YvxMLtozGgKmdMWx2N8IYhccUsOH8XBwMjsTgGa5was++CB2H9uJl44L9\n7+4I7wU+7qvjzxHkfBuo92/m6c+PSht7qZRTD1kZMG4rWjWrjZv3XpNiF9RNTHc/SjekWY8P476r\nD4z1NKOCPAefWy/eK3S8alblWe+A3rwQhx7XXuDMw8UK1UWcq+disWr+MemCFKgz1oJDdoxNJKeZ\nl8SVszG4cjZG7f/3mpay+J82GKS5EJmYGEqUGTmyFUaOJPtGi/ehu9Y2FmzhVzZkWxVx/5pIXDz2\nALvuKO/LgEPzED+xEOdL5m9W47SpUBfXv74Q3l/7+gJtK9SVSadTbaag93WycXs2KQbdKtvLNCag\nej99TTMSCkNnNDSNXKpRQdCz9kbgyfvP8O7TAe1sqGNg5h6IxOVnb+BcpzpCRkmO91h05ALOPP4P\nI9s0woxussXMpP7NREe/bWhSqyo2eVBnG/uTlYP2S7eietlSODZzKO1YvQP34t23VHRvVA9L+3di\nHd8kC1tPTcFwl0B8S2b3d56bkwcXe2+4D2uBcV4u0jswJCc7Fz2byB7fp63pNjn4RMX4ybXoFvQd\nNK4tRnh2UJRalMQ+eodFk/YiJ5ucAVBT+Kddkv4Vjm3k14OoacuuNkBN2ypI+v9u0aunHwAAviO3\nEGRq2VVFQT45Q4qA8HfB+PJBdSknOYoWKx2JGczWvbgo81hWptS+/gueyH78/Csng/L56bbqrZKu\nbubadKV8rkzjys4rGO2WkNMDd/TbBqf560myF2JfIyXtL6buCqeMIbDzCsa5Jy+QnZeHq/EJtDKv\nkr/DzisYYQ/jUVDAw86rj2TS3/vIBbRevBk5efm49eI95XwuK3ai+aJQZObk4sXnFNh5BSOv0Ofv\ntssPYOcVjDdffiC/oABhD+NhP3stSW/B+IJrRcVR7I2SPZ3syX234WLvjZiH7+TWo2eTJXIZCwBg\nUtxIbj041IsiTgkObb0GF3tvuDr6IC9XMTEOV8/FYkinAKGr0ZwxOzXaWAD+8ROGf4V+k/jpYTec\nnytVVty9SFze2qE6AMB393iC/PoocrG4SjXKCa/19fVw/LnyS5ZzFE2K6xO/sN+mf8O3rDTCMzax\nAgENB2B2NNln+lXaF1ibsffnb3OBOrOGZYlylM//FQZbNsfxj4+QkE52T2l4djGiuy1R+Jy1Kprj\nzReyf+/X338QGyCKu2qyYAPqVCqH42K781SL5WeBxEKddl7BWHz0Ipb070R43idoH5b07wT3JrZy\n6X/6YTxhTjuvYBy/9wx9m9kBAL6n/0XSz9947D8Vhv+vB2DnFQzHuesI/UIib8PctBiuLSZ+VlO9\nNjuvYNLrVAQ7zkzHmB5rpQvSMNdjJwC+W4l38CA0al5LSg/+aYL/vGO4c+W5zPOKo253FA7FIe9J\ngwBeAQ/dnXwJzxo4WcLGsRqqWZVHqTLFweMBGX+z8P1rGhJeJOPtyy9IeKm6LHrKhDMYOJSGRys/\nJL39RhvjoGqs1q7BotZtMLohfaAtGxL//ELVEtRZYzSVhN8/ULMkuyJmNfb64/1w+Suzvi20eCyc\nNpUphU8Z2MQKdK5ki82vr5IWsv1uhKKcsSkudWReLZ1ut3yXswfjMYoyJ9tMoXyP8nkFSqnRcMpr\nOGnhv+c6v4ChuDdOZk4uwVgQ0CdoH07MGkY7foPqFjj5II5kMACQ21gAgLDZI0jPlhy/JDQYBKcn\nhmLFwx6unILG88mfrz/SqU++VEXlauYKWaRlZeZg4YQ9CtKKOZyxUPSIeORLWuwrgthH7xD7SP4T\nMW2Ac0kqwqh7ob79prfadSiMo0Ulie1Wa5nn5x5zRbMyKTChQ5jysgIVxqNWG8K9V6Gd/TVOg2Qa\n9+ynGJl1AvgLWSpSstJhH+ENHngS+4+9t4vWWCihb4yGZarLpV9RQpJR8CqNXUpXJujr6WLCNlG2\nusAzNyjlxN1wBEbGq2Sy6+SN5+8wbMMRtF+6FbEfqHcJa1VUTBVxqwplGMmJ601lLIifHjjNU+/n\n78S51K5pmgxnLBRN9A30EPm06NSrUgfcCQPHP4WjhfzVOv0fX8Pm+HsA+LvvAEg78APOH0TM9884\n230UYUdfsFs/+soxJKb/xkU35rvRgr4zb0Ug/P1/2NDaDS7V6hBk1sXexta4+/C0a45Jds2Fz0++\njUPgkxsEnan07n/+AJ6nfsPouk6Y4UAM3Dz/8RU8b5xGL0sbBLYgZsqiYkrdjtj+5rrwvvCufmF3\nIzr0dfSQxxP5jUpb0DOBLjAXABwifGQe97bLQpn7FlXo3ut+N0Ixybo9xlu3U9hcT1ZNExoAmTm5\nAMiuRXTPxFkfdQdbL93Hgt7tsG/yAADAgLUH8d+nryRZQ33Vfo0ycSESyHRZvgN2XsHQ0QHBLUtV\nuA1uDrfBzTUu2wsVxUsY48Rt7u+3KKOjo6Mw96R/Ee6EgUMrEZwEWIeshdXaNcIfWQl9cF/YX9p4\n8xq1xfvh82BdqizeD59HWnTX2OuPhuUq4XCXwegQtg219weQ2gfWtoeNeQXC4p0JdoeDUbOkOY52\nGYIJ107B+cRGwrhHX8fiYOdB2PsymjC2u5Ut7vThF9cS6Eyld35BAbwcWiMk9jZp3rUxt3C0yxCc\nfBtHmFfZLHWgzhYDAE7mljKPq0iXGB3oaFQGIE3jQkfqzE4bX8letFAS5568QLNFoTL333rpPjZ5\n9MagFg7CZ8mpaRJ6yM/zJMUXZDq/cAx8+nQAT34bWy60YdeeMxb+HbTh91ET4QwGDq3Fau0anB82\nAm+nz8Tb6TNRzMBAZqPBs0lTvJ0+EwCE4wnu2VBjrz8m2zljbsO2cChbCe+Hz0NuATGrwvvh89C5\nqjXWtuwBn8YdsfThZcbjL2nSCZ52zdGwXGW8Hz4Pn//yFzFb4u9jsp0zbveZCPuyFrjX1xMTbZth\n38toxnq/Hz4PJ1yHYUTdRnhXyJhY0qQTInuMRsNylfF22FzhvLIyqibztJOSUp7uaD5aLj1iuvth\nUI1mco2xp8VYPO3OHXVLooKxGa1BpejMSc7W1TH3QCQKCniUu+omhgaMMgLp6hLTkKb+zaSRVAz9\ngw+Qni3tL6qmfmPJBABAUAS1mxUdjpaVJbY/fpvEajxZiYrxg//WUSqZiw1RMX7cAvIfhPt/Zw/n\nksSh1ViWFlWwjfOcItFgkMUAkIWZDswXw6PqOaHB4WD4NGaW49ndijq4cuOzu3gyYBrhmZdjGzgd\nDcGwOg0Z68N2XmkUrqMgYHq9zhTS6mGebTfMsekKx7PsXJFMDYxxqwu3K8mGkgYm+J1LXngrMgh6\nyzh3oUFAVXrgwYrJlGlExV193BrbYPzWkyhTohhS/2aAxwMOTB2EISGHFKIjFV0d65B06t3ERnhd\nurgJGllVxu5rj7H72mNa3amMIWMD+q/6kRuPQkcH4PGYuTvJg0NTK5y6swi9nZcpdR4m6OvrIeKx\nr7rV4FAzUTF+mDxwE948/6xuVaSyJ3IWKlRSX6IVrTcYMvJyYHc8UKFjetRtivkO7It0HE54ioUP\nz0kXBDC4VkP4OSmuQI042fl5sDm2mpGnd0lDY0S7K2chvSH+FoKfSd8Nm2PfDuPrifztrUsyS0l5\naYTm7VYBwO3k92hViZmrTHRKEmzKVJB7zhYWNUjz3k5+jyYVqso9tjyENB6ikHGU7e6jq0N0KXr/\n5zv848/i3Z8UpOdmoXKx0hhQvQncqzWCro7yDmY1ya1JGbrc6LJA4WPScWbuSNo2aQvjZQM6Y9kA\nslFbuJ+iFtiCcVYNkRwkvHtSf8ZjsZlXlZgUN0JUjB/Sf2eiX+sVKp+/ZOniOHJN/qxvHEWHDYcn\nAgAuRzxFwMITataGyJjpndFvlGyFIBWNVhsMNQ+r/sOGDra6HHwTjYNvojGmTlMscFRcBcFW4Rvw\nOYO5u8jvnCzUPLwCejo6eDVAcZWo2bwfq2OuYnXMVSQM5C8mHMwlH6ELsBI7XVAHb36Tc74PsXbE\nsEtHJKYh/fTnN6qUKAkA6BO5D2+GMU/lScfGNr1I6U+HS9FDHPuyFhh+6Qj2dhwgty5FgRolymJz\nU3KaSw7toUY51X4+ZOXkwdiQ/Veq3axgPAuaQXvfyW87LnoXvVS9piVNEBXjh4thTxDkc1J6Bzkx\nMjZA2H3ZExpwFH06dHdAh+4OuBYZC/95x9Smh2Ozmli5ZaTa5qdDaw0GTTEWeABqyaHLjpf3EfPz\nM450oM//zRR53pN8Hg81D68QLtrVoYdgfmM97fi1LODxSFmSljfrgsgPLwgBx9vbE6sVtzq5iXD6\no6+gHesyRiaEeYsbGFLKUWVJCus6AjX2+kvMoMTBoQ0oqmIxWyQZC03mb8CDlZMp28SNA6p7eYwF\nnyMXsJTipEST6OTmiE5u/OKLro4+4BUoNkJ78Li2GO6puE05jqJPW9cGaOvaAACwfPYR3LwQp/Q5\np3q7oWtfJ6XPIw86PHWnT6BGolKSFqQXu42HlakojWX4h3jMuBvGaFK36rYYUrshGpWtwki+e9R2\nPP+luMwWsi7Wf2VnotEpxX1JymM0KMKQSxi4gHIccb2s1q6hjEmge84UeftLQ1FF0Dg4OIgIDIXa\nFmVxUkIBNqXrMSsYd5d7ovnCUOHiX9xgaDx/PR6unEI6SZA0nkBOcD1h60lsHueO+68/omntarj1\n4j1a1q2BP1k5OHInBmPaNyb11UauRcbi0Lbr+JAg/Xu2vEVJ9BrijN5Dm0OHKniFg0NB3Lv+AltW\nn0Pyp1TGfXR0ddC0dR30H9UK9R2qKVE7ehXkHUA7tnLFOPX+GeXz5/3nwlBXj/S8Z3Ub9KxugzXP\nriM0/japXZ7FMZ2x0KmKNTa37EvZdvxdLObej6Bsa3MmFNd7eLLWg85Y0NfVRXzfOdDXJe9g/83L\ngf3xQErLTNaTBknGwp62g9CyItmv/7/Ur+hxfgfjcTg4OOjZv+82du3kxw1dvirZxXD2rEOIjn4v\nVU6cKZP34r/4JEbjS6NDu5Vo2LAGAoIkF/Dr0G4lo7mU4Y/PdO7ClDA2hImhAWVbVk4e7GbJt8GT\nncfPvOaxme9vraMDxAbOQAljQ6GxUBQQ3+nl4NAUmrWpi2Zt6qpbDZWjdWlVve6dIT1LGLiA0lgQ\nZ6ZdG8pFsDzuM4UxNTBCwsAFtMYCAPS1bICEgQsQ2sKd1Pbp72+0PcMuvz2d/gkDF+Bl/3mUxgIA\nFNc3xJuBC2gNA7bvy8DL+yifVy9RGgkDF1AaCwBQv3QFJAxcgDNdxrCaT5kooq4DB4c6GDqshdwL\neUn8F5+Ey1fnK3WOwqhyLmUhKCIHAEYG+ngWNAM7JtJ/T9BhpK8PHg/YNakfAGDtyB54FjQDp2dT\nx9tYlmdWPVpVtAkgVppPzVBuqtqigMPkYIn3iqDD/C1w8d7Oqo8y9ODQbLTKYIhMJKdnZHvGoqeA\no0q6mIWnfWYxHsOlal2sb0EuSJX49xfjMV7/TqF8zvZ0QBFxCw9TEimfX+k+kVH/+qUrIMSZvkBX\nYejchuR1JxKvwaAM16Si7o505m0D4Y+09pTMeyrWjh46fTlEpKdnqVsFrUDgAiQesyDuFvTIfwoA\noEktZhnMxPtuneAOHR2+ixMAdLCrBQCwqkBtGITP1azA/QZVKhLu3TeRa0+w4cr156zkPTx3Iy+v\nQKJM0mfmbibSaOu6Wu4xnm6YIfFeEVxeOR5RfqJYmYzsXAnSspGdn4fs/DyFj8uhOrTKYJh8m5xJ\n4Q3LxS5VJqC4n18Y90/OSKN045Fl0d21aj141G1Ket49ipml7xK5jfRspl0b1noA1PrL6xrE9j3p\nVq2eXPNxqJ8eVrHoYRUrczuHdDq0Wwkf7xNISPiGDu1WomP7lYz6ZWTkoEO7lUhI+IbTpx7jw4fv\nrOY1NTWmfL5wwTFMnbwPKSnpGD92Jzq0E+kTeS4G/2PvrMOi2N44/l1SSiRslFZExMBGRUQUA9Rr\n18/u5iper17rXgsRO7G7Gwu7CwOTRlRMQCSl9vfHurM7OzO7sw06n+fhYebEe84sy+55z3nDx3sR\n3r5NxcuX70l1APD1ayaWh57D58/f4eO9CH90XUGRL9lHWObjvQgJCZ8xc8YhUhvBa7IY9+7F49Wr\nFPh4L8IPsQWQj/ci7N1zB+/fpcHHexGSk0XRznr1WI0+vdcS8ylpbLn0AA2CVuHS7BEaG7PW7OWk\n3wDQdNF6AEBqVg5OPHlJ2y9gzU5Kv9V9/UltPmZkEtd+3ZajdYdg9B2yEYAgqETfIRuJRffte3Ho\n3GMlcT97wXHMX3wKsxccF8j6lIG2/iHo3GMlIfPN21SMnLCDaB+X8Bnzl5wk+giVAzYL+xlzj1Da\ndu+/DsPHbUf/YWFEXfsuoWjTaSmpL5P8R/Hv0X2B4HUKO3cPPRcKTurvvHojcz5MzNsTQbrvMFtg\n8vvms+BZrz9PQH5hEUasOsxK3sazgo2dBhNWkH7LS82ty1FzK3cqUZopVQqDuljz8ibrti1OrqGU\nGevR26qygS7fAxtH6nuf6T9QxtX2VHgudGQX5sts0+7MRpWN15LBdImDgwOIi/uEunWrY/6/3eHo\nWAGXrswA27gV/p2Wob2fOxwdK6BrNw+kpmapZE4LFvbEqjUDUb68GTaGkTNvr11zEU7OFVGtmhVc\nXatSzIuSk1MxJdAPFSqURcSlv5CRwd5E5dKVGXBwqIAFi3rCzc0GKWI7wwEB9dGkiSNq1aqCiEt/\nYehgwYIuLu4TAKBf/2aoamOJjZuGYsigTUS/1NQs7D8wDhUqlC2RplBrh3fFo+CJMDMy1NiYfRvX\nRVp2Lnp61MH9xHcAgAXdBJGXrEyNMetEBG2/+V185RonL0+g1O3bNgqAIDfKvm2jiPuTZ57iv9nd\ncPWsIAz1/JldSb/7DN6Ii6em4vThSfij31oAQGzcJ2xaPYjSXngtD0GTOyA3Nx+DB4i+Y/v2bIzN\naweja+f6RNn5E4G4HD6NuN+17w4xZ0k2nrmLv3u1we1XbzDCrwliU76i3vjlGLNW8TCzc/qTX/cd\ngYJQ2bYVBGGGc/ML4P3XBjyIobcKkGR9+B3UG78cxT8/aA7PlD+gwNbnkbIbcZR4OIUBwIPP7P5x\nmHjWY5rsRnKSWfBDan2/y9SjXDsz5exVKxmbUcrqH5Ftxx//nZqPoI9jPYXmsL21dAdIDtUjaY4j\nfn/9fR9EvBEptal5D3ExuT3ufNBOXHjh3M4mNSfmcyaxMaVdQsZOhCd64Oo7ejO3Yn4+rrztgnsf\nmU3mtP2sdMyZfRTLlpOT4enpSfffEidoeifi2s7OWmXzio39iNEjt6GLP3kH8fSZPxEX+wkd/UJQ\nTBMus7qtKKKdjg57c1F9ffIzr1g1AH9NP0jcT5zcniT348cMAMC8OccAiE4oRo3cynrM35XZndtg\n4ZkrmBvgg+UXBZtrM49dACA4YZjr35a2H5u/poGU9+7CkHAAQGGRwMF78bzuqOdendVpwNG9guAh\ntWpWZjELdliUM8a0WYcwuL8nsnMEG2kOdoIko/a2zP9Ljg7MiUjvRSfDw9kGf4aJfDOfrJmiUrMj\nUwnl0tLUGLdC2AdXEc5HOKfkL+zNpoXMv3NZ7j4cJY9SFyVJHegyOAZrikblq1F8AOodWSa3Sc+l\nTqOVmsetgAkUM6QivnR7TyYWNJKesfRXZdfOW7h8+QWS31CVKFXh5mYD33Zu6OxfX3Zjljz9Mgd1\ny8+jLKAzfrxEe9trAASL9epm3dG2+nniXodniE72D1Q2Dza8TA2FHs8IpxLc4Wd3E61s9uNUgjth\n6nQ6oR4aV1qNTvaRxDwbV1qNisYCc72C4iycS2qOTvYPoMMzxLmfyoc4dM/qZXMQZQ20GxlDT1cH\ngqjT4ssxxUJjy6NoSMPHexEOHZmIDZuGEPfiCHfq6aIyWVtRNynYIHmqwuezW6AWFxfDwEAPZ8+r\nfpPnVyakp+DzfN+IPgCAuzMEnxNWpsbo3qA2bZ+61QSL9VfzmRe/T2dPZKxr7GGP6f8chlvtqhjY\npxladwhGxQplSW3+me6PMZN3Yf2KgTiyZyxadwhG1SoWGD+yDZo1cZT5XEJTIgAoLuZj1fqL+Pwl\nE64uVTCgT1NKe+H/TOceK3DlTBBCVp6HsbEBMrPycGAH/fdv8yZOaN0hmPaU4e9ebQAA//PxACBY\nnLeduQkmhgY4MXsw/Oduw9uv34g6yXs61py6hR0XI/FgJf1ru+b0bXRqJP1zbPSaIzAy0MfGCd1x\nLjIas3aew4xebdDdsw70dXXRd8keNKmpldCgBG1bLQAAXLw+U6vzkIe2rRagU0B9TJlKvz46fOAe\nNqy9SNzL82xRT5MROEEUfEYdrwunMABoWkG7b/yQpgHwOrVWq3NQlMJixRSK0g6fz8foUdsQF/tJ\n42M/f/4Oz5+/w/LQc6RyY2ND9O3XDL16N4GeHnsl2MVyIl6nrULd8vPwOecWzA1dEJ+xHY7mgwEA\nBroWyCsSONjXLT+H6OfvEKUVZ2FXq0A4mPdHRLIv9HXKQl+HvIjo7PCE0ufJl3/Q3lYQbvRcUnM0\nr7IVOjzBzpuf3W3Sc0h7Vm37XywJ7o1JE3Zj1RqRWYAsJ05xQpedReCfHQCIzHNUgaWlicw2S5f1\nVZlfQOHPsKJCJk3chX8XyI46NHtON4wds12psUuib4Oq0YY5luSCuq23K9p6uzLWA4BP61rwaS3w\nfbOyNKW0qVqFnO1bsl7yfvI46WZUK5YIFKYrZwT99m4byUo+k0lSr1Z1AQBjOjUjyi4uEMk8NXcI\nqb3kPR3j/T0x3l9kNmVsSDaZFpoo9WpZl1HGzj/7ENd+HjXh51GTuPd0tYOnq53MeQhJyfrOum1p\nZvigTdi8Y6TUNrIW8RvWXkQzT2f8u6iX3OO7162Oi9dnEoqUOihVCoOxngFyJGzqr6bEo3UV2TsJ\nQugiLa1kGZ1nT9wj1uPIg42JuVrkaoINr26rXGZ1UwskZ6kuUoUq2LXzJrZvu6HtaUglJ+cHtmy+\nii2br1Lqpv/VGe3a16Ht51xuOF6nrSLuW1bZh9OJ9QmFAQBuvheYwZSUaEJl9Coy1vH5RTid2ADi\nO+/5ReRjdKsyzBk11fGsJ45HYtXKCzLb6erqYPvOkagisdARUqlyOURHfyAtWseOE5mELA0OR2Ki\nQOHp3XMNXGtXxZy5gs+3S1dmwMd7EcJPCxSqcRN8sXY1vf25vDAtoiXL5QlStzQ4HM+fCWzmhwze\nBDu78sSz/D0zgCSbx+OhenUrWjni1HSpjP8NakHq6+Zmg5WrBQrYylUDfwuFgINDUzTfpzofx5JM\nUiJ91Eq2CE9Nu3UvuXlUSpXCcLnzGDQ9vpJUNuz6AblMd+giLbH9DrvwLpr1OL8Ltz8lqVxmHcvK\nJUJhePUqBePH7tD2NFTCksWnsWSxIGGgjg4PIcv6oS4l26TgE4vHEzdVEfx38PmCHV1t77Cz4XRi\nfdSwGI2aFmMByL/wV+Wzrl0dgaNHH7JuX1RUjIH9NwAAjp+cDDMzI0qb8xH0u5UAMC2oE2MdQN05\n/uMPZsWJTX+mMkXrxMukPYtP29rwaUtvCiNL7qDBLTFocEvavm51bEqks/Pvwv0P7zDg7EHkFxVR\n6ro718ay1pozdS3i8+G4OYS2rknlajjQuQ9tnTycTYzBmIsnaOuOBvRHg4pVlB5DnKUPbmDtE+Zw\n1q1s7LGzg/z5QZjIK1R/GFXxHXUeD4i4JtrF5/MBXy/yjrv4Lv+PH4Xo5LuEVG9pZYqDxyaR5Iv3\nefQwEUGBe4ky8fHFr8X7dOkQguxsgV9qcGg/NGhIDu4i3i8ocC9FBp35lTZMskqVwlC+DP2x9+bX\n92jDk0qibJjQ1yyiF/1uxGbIF5qRDTXMrRGucqnseP06BePG/BpKAhPFxXwEThE5zQsXSHc/jCGZ\n4RTzC+FZZRsAoEXVPbiY3E6zE1UCobLARHreU1iUoT+SV8Wz/jvvOK5elS9GvCRdAwThC7kFLMev\njl3YUpltjsS+wJHYFzLbJY2Q7Z8iPt6Yek0wvVEr4t774GYkZkjfsLr34S0hg8140sZn4o+Tos9o\nRcYAgKz8fLjtWCm74U+uv0sk5jajiRdGuVMDSjBRf9capOfJjnLG5tmFsHluyUV094DlOHJS4N/h\n67WAsqAWVwAMDfVo6+VBfFHPtHg/cXaqVNniMugUipJCqYuSRHeasOjJJdQ6uISmtQhpGZHZkvYj\nh3Xb34V0NbwmZfXp472rk+JiPny8F/3yygIT1cy64EvubVQ36w4AKGvgjMefZ8CyTAMAgJGeIOFS\neGJDCE8iUvMicSqB2Q5Wm/AhsOuPz6D+Pf3sbuBmykAU8wU7PhHJZLtlpmeN+vovq7GzsvKUVhbE\n4UxkOH5l5FlAqoPweJHlwJQr4TKVBXEGusoXeGLPqycKPa9d2FJ8z5ceOZGujzzKgiSL7l1Dkz3r\nWbdnoyyomybNnJDxjVunqYtSdcIg5H/ODbEzlnzMn19cJPcJgrxRiGxMypUIU5mSRAUjU3zKVU08\ndwLlk3GzJicnH/6dlmluwBJGu3YCv4Z65f/F20zR0Xgrm0M4nVAPHhB9ufk7RCGv6AuuveuJ3MJP\nsC3bHf4OT4l6pvCszuVGwMVyAqXN3Q8iBzFVmjp1so/E5eSO0OGVQSubA7AsUx833w8g6vV1zNHJ\n/gGuvusBE30b+FaPoMyd7lndrf+ROfbHjxno33edyp5FiI/3Iu6kgeOXg27x7FPdEVva/0Eq4wOw\nZ1hom+gbYECt+33jeQAAIABJREFUeghq3Aq68jjJ/CQ5U+DfZB+2VO54Y/960oeUpW179wq2PKM3\nT6xjXRFdnVxRxOdjz6snePOdGrrUfccqJAyfCh2Wz5g0YhqjcmJZxgj+jrVQ09IaCd/SsJlhXp9y\nspCamwMrI2NWY2obj0b2uHcnjlS2USzqEAD07C2yRnkcmYRpU/agaXNn9B/oiVq1q8ocgy489O9C\nqVQY5ni0Qy2LiphxX3HDFUVyJ7haVOQUBgkqG5dVucKQkp2hUnlMdOoQQiQL+l2ZPqMzcS2+aOdB\nh3YRX0a3PLxs6DOEsln0K6sYiPdnutbh6cOnuiiClIUhNbqRDs8Qbaqdou0vRNqzMqEOZUEIn88H\nT4EFEQdHSaTbCWouISYTFN7Puk1RD7Dw3lVS3YvBk2j7yIv4MnCga32pysDfNy5g7+unjPWSpOfl\n0ioLr4dMQRk98jJspLvA6fXa20QMOkf+/HHYHCKXeZIOj0ckXOvnUhcLW9KbWs5q6g0A8DoQRlFW\nPHavZTUmUxtJpUVR8yo23L8bTykbNY757zhtyh65fQAeP0qSd1q/DKXOJElIL4e6uNOFOYYzEzo8\nHuL7/K1QduYO1bQbg70k4llR9bZ2L9LVH6rUx3vRb68scJQu2rZZrO0pAACS3lVGckpNqfVJ7+gT\nZuX9uEXUi/9kZKpP0eIomTz+nCJ3H+FiWtWIL2qTRkyTeXKwsGU7uRa+9XetoZQljZhGURbE8apm\nTzuG35HtrMdNGD4ViSOmIWnENEZlQZxrvUewll0SeXg/AZZWpqQyeaIXnTsjWwk8sPeO3PNSlkYs\ncopoglJ5wiCk2YlVlDJfmxqI/PIOGfm5sC5jgo7VXTG0ZmNUMS5LI0E+Old3xaTbx5WWI0ncd9U7\nDmuKUa7NsPblLZXKVEfkJSGZmXnoGrBcdsPfAHf3atqewi9Fu7bS/ahUQWk+ZUh6VwWiSFwG0Ner\ngfyC5wCA9Ix/YW4m3VGd49eG7QJ8qJsHtj6PJO6dtixD3LA/NToHeUjNpdrUyzOOpGnR6zT5wnfK\n+2lBZ8q048UjDKrdQE5J6qeZpzM5SpIOjxThiCkvgfBUYeny/qT6YSO9KW2dnCtRoh/RyZzxTxfG\nKEl0UZCMjQ1w8hy798GipX3QttUCkhybapZ49zaNuPdrs4iUk6dtqwWUqFHKUmoVhobHVpDuDXR0\n8arXdC3NRjmC7p3W9hQUxkTPQNtTYM3Tp8kInEw9Bv9dWb5ygOxGHKwpKlJ/EsOhg8OwTUZyoJKL\nQFmws/lAqSku1owZIkfpZ3azNiSFQVXJQ9VlKuOxm5yUtW31krFbLA/H416VOIWBrSmRtHb1Pewo\n9X0HNCfdb9gyjJVMH183+Pi6yT0Htu1kyTh3Wf0+bqXSJMnz5GpSdB5n8/JaVRaK+Mo5wTxNpR7N\n3ggYL7VPGV2qrtdIQomSF2X7i7P82XWVyVIF9+/Fc8oCh9qQzDysLpKTUzUyjrrg8ehNQXV0Sm/y\nSg4Oedgs4dCtCO0Pb1PBTJipZEI263n+Vf1mwhwln1KpMHzMySTdn+ugObu7cobUREq1DqretliW\nCdWT7tQjWGXDvtL1v+ov20zAiiY/xpoXNxWaw6EE9o5kbHn/Lg0z/jqocrkcHEJKehbwkgKfX4BP\nX3prexocHCTUZeQnfhKiDJ5VbUn30enqNWOuZGJGui8o1syGCEfJplQqDNokstsUSlkRn4+oNOox\nOxtqHKAqG+Nrt5DZT19Hl7a8xgHFYrY/T/tIW17NpJzMvve7qiZKBQD8pUTkKyb+N/D3SE0vDw08\n7LQ9hV+KfVpwhCttCE2Rcn9cJ5ydU9NLpxkph/a4nJygcpmrffxVLhMA5t+5TLq3LKNYeNIWEgoD\nx+/J2eRuxPWheA/c+jgFh+I9NDZ+qfVhEMf9cAiiekzV2HieFe1x61MiqazbhW1y53U4nfwSRXyq\n/eWUOq1oWlOJ7/M3JfeEouZRXS5spZTRnWLIg9P+hYiT4zX5UaT6NPJc0it6lob01fYUCGIzvqL9\nmU1I6Cvf/w9H6cPO5gOycg7ia5pgkyEzeycys3eiWuUo6OqW1/LsOLTJ/Y/v0LiSjcx2Q88fId17\nVVM+Up93NQelZbAhLS9H64nq8ouKMOPmBZxLjEF2Qb5W58IhH40rzAcgSExawagxPCst5xQGecku\nzGeVtM1EzwC2ZhYYXKMRutu7y2zPxE7vvnA+sIiIbyzEcf9CvOwZBEMa/wJJnPYvpE0SM7JWU7nm\ncsR3MLpHbKfM4381GmJOA9lh1BY9uYTNr+/R1pnpG7KexxrPPzD+1lFSGf/nXNgoUoF3TuLEm+es\nx2MDpyyUDpzNrRVWFhz2LeQUjRJEUZFsW2dT414wNe4FAPieuRFpGXPx9oM7rTM0x6+LLo9H2uDq\ndWqfTMdjOtOYHX49lJ6LiX7pCd4hLz+KClFzKxcZ8FegoFhgjn84vhF6OqrG3E0eSqXCsKhxJ4WS\ntmUX5uNl+icE3TtNRCbqYe+OJU06y+hJJbb3DFolxfVQMJpXtMMu7360/U4nv2QMzarD42F63TZy\nzaOeVRXa8p0xD7Er5iGe9ZwGI12qo+GPokK4HV5KUXqEyHtaIi1HheP+hdjeui9aVqLuBOUVFcLt\nULDcGTZlsXXLNRVL/HWoWtVC21PgKOUUF3+nLc/IXEtbzkRZs1EoKk5HRuZKfPjcAZUrnFXF9DhK\nAfHDp1J22+3CluJW31Goakr14Zt35xK2PX+kqen9Eoy/dBKnE6K1PQ2lCXqyHbe+vAIA3PKlhq/O\nKMhBx6vziHu6Nun5Weh87V/G+gepsZj8aDPjHIx0DXCxzb+M9Sfe3UPwK8Gm6ZnWc2Cuz878zDNC\nZJZJNy9xbnyYgHKGzDlw1E2pVBh6OdTFy/SP2BWrvIZ1ODEKhxOj5F4gA8A+nwHoe2k3pfz2pyRW\nJx6SxPZWLCwWnWkSINjhdzsk//GnqucBAIOv7lOJHLbs2X1bqf6/Mpu3DtfYWA77FsJQV48wN6th\nXh7nOoqCFPif20Ik6qM7KXA5sAT5YruKwjYO+0TvD/Fr8XpJeeJlDvsWYraHL+ZHRlD6AoDz/kWk\n3U/uFIMd37PC5O5jYf4XMjJXoqAgVg0zUj2XrtB/PubnF+JZ1FvcuhmDqGdvkZggX7z835FD/n3R\n8xT5u8FzH3ufM3VmDS7tOG8JleqsXMuqAqY2bIGWVe1goEv2iayzYxUy83+oe4qsme7aHQHX/mOs\nn/pYdtSo0NcnaMsPJt/EyuhTMvvnFuXDM2I646K+i00TQmHoeHWezMU/AHz5IQonHVxvsMz2Dcv/\ngyepy7RyugCUUoUhv7gI++Ifq1QmW9MZcRqXr66SxW1ZgzJ4/EegUjJUMQ+hHG3OQ9nxAWB56Dml\nZfzKGBho9t/+Va8g4tph30I8/voe9a2rAgBO+Q0jyiWpcWAxCouLaRfr0hQDtsyPjKDtW/vgUpQ1\nKIPIPwQBDmbcP8OZPtHwI/8xDA3qE/dM2Z2FdSbGf6C8JfUEQtivWpVnqp+kBjEw0INHQ3t4NJTf\npv7Ll0w8f/YWz569w80b0UhNzVLDDEsejSrZ4NWQyai1Tb6Q3nZlLXC1t+Y2PlTFoNoNMK+5j9rH\n2fo8klZZKK0KlpWBmdT6lxnJMmVc/hRFW96reguSwjDKqT3+Zy+y9HianoixDzcQ99KUBnnpel30\nvedZvpbM9vZlu8K+bFdSmSaVh1KnMNQ/Gorv+Xlqka2I0gAIFrk1DiymdWCWRZMKttjbpr/c/Zjm\nERp1TeHMy6pYrAvlyKs0SCbesy5jgq952QqNf/qUapVJZfFq7YLhI1qjShXFTYEePUrC0yfJuHLl\nFd6/S5PdgYEyZejj4GuSqXdP4VLn0TLbFRYXY5e3+pyzmUIp5hYV4KDv/4j7oLreOBD/RKosCwsT\npKcr9n4tbRiVaYPcvMv48Lkjpc7O5gOj4pCdcxTZOUdp6wCAx6OGrP5dKF/eDN5tXOHdxhUTJ0n3\nPSsu5uPWrRjMnc38WpYmjPT0abML06HL4yF+uOYCnKiaiDdxGlEYJKMzAfIpC3yVGwmrjqzCPJjq\nlZHaZnP8BQx3pP8/6mLThFI2tVY3dLOh9x+ta2GPW75LSKZDuUX5MNKl+r3MrN0TC14cAgB0vvYv\nTnv9I3WepY1SpTDQLUI3t+oF7ypOcsua9+gCdsY8pJTHf0+FY1krueXF9P4LAHD+XTTG3jwita0u\nT4dor2oC3b0Q6O6FguIiuByUrQVH9ZiqlmzNQuWj3+U9uPf5DWO7DtVcsMaTmshml3c/dDgrv3mD\nX7tgufuokmWh/VCvvupD4DVoYIcGDewwZChzBK3jxyKxOewqcnOZI1+En9X+l21mAfujblszS7XN\ngy5/iJCU7AxkFog2Jvb6SFfq/5zaAbNmHlbZ3EoyFa0FCRDTvy9GVvYB8HhlYG2xFGUMBeGg6ZyX\nhWVp3+YgJ+8CCgvfQl/PFmamg1DWtLRmrtYOOjo8tGypPTtmVdNg11qk5YlyAK307owuTrJ3W0sD\nLW3scONdEnGfkkXv+6NKrr9LpJTJe7KQlV9yoydNe7wN6xuNoa1bWn8Ipj3ehm0JlxgVhqBa1PUG\nk7IgTrvK9XHhg2AzcnLkZmxsTM1R1bFKQ0JhSM+XfkrY/soc4npfc3bfy+IRkYQnC4fiPTR2ylBq\nFAY6ZUGZHfE5DdrhwedkvPr2mVTud3aTwjb8ANDepqbKduqVQV9Ht0TMQ9HTkxrm5RWaf0GB5hPM\nWFqa4NCRiRofV5Ku3TzQtZvoA6W4mI8xo7YhLq5kZekcVKMh67YTbx3D0XaDlR6TKRIYE9c/JODf\nRn6s2zdr7izvlEo9FmX/gkVZ+TY+LMvNgyXmyW7I8dsgriyc7DoQ7uUraXE2qmVD2y6ovX2lRscM\njVTMwqC0EPUtiXSfUSA62W1uzRx8RVmGOfgSCkN05nvGdr2rt8CBZNmJa7MKRRtS1U3YhZSubtoB\nTSr+p9FQquKUisRtroeou8aqWAyf9qPaQDJFDdIGG6O9sDHaC0/S9mh7KqWCzMxcjY7XpasHLl2Z\nUSKUBTp0dHjYGDYUl67MIH60gcO+hbj8Po4IEDCutiepPqewgLZfQt+/8SQ1Ba1OrsW26AcYeIXe\ncd5h30Lc+ZSE9S9Fju41y1UgxvU5vQE7aE4TmUjo+zf2xD1Cj4gd2Bp9H+6Hl2Hw1f2s+6uTU+HK\n5Ub5VUjKfollr8di7vO+OP9hl0IytifOx8yoP4gfDs0jaYb0KykLAH241oa716l1zGdf6JOwlhQU\nPb0Y5dSetjzg2gIAwB/VmjH2/ZiXrtCY4lQ2EpkUFxQz54yaWFOUBFDcjImJwQ7sTdSczHuzbqsO\nSoXCoI6EXhy/Hl0D5HOcU4YlS/vItDXmEJDQ92/MjTyPtB85JMfhA/FP4LBvIRHJy2HfQorzc0Lf\nv1HVxBwLH1+k9TlI6Ps3/lejIUbeOIx32aKIE2c7DEcvx7oYdeMwZnu0w42AcXLP2VjPAIseX8Zw\nlybY3rqPzD7t/RTP7cIWY+NfN148W6K+3URY/Cyk5X9EQfEPXP9yTCE5bubNYWXI7KjNwaEKxtQl\n28x/zVWvr1P1suWU6m+v5sRyB2MUC24g7ogsTiFfYFUwuWYAqXxNjCj0PlOEJDr2vrkOz4jplJ9W\nF1W34bY94RJxPYLBdIqOy+8Hq2wOilBqTJLE+cO+jlbH3xjtBQAYVZOL9f87oq2d+tLMdZoFe2/H\neujtWE9m330+A6TWz/Voh7ke1A/dxY07YXHjTsS9uLLCJuLRTjkdroOmd8L5c/SROFTBxcvc+w4A\nDiSHoqlVR/hXVS5KTkPLtmho2RYAuBOGEoJd2FIkDJ8KHR5TSILSx/TGrbD+Kdkk0i5sqcIRi9Lz\ncmFRhjlAwJKWfuh1mn0Yc3FepH5Wu7vz/DuXMdRNOZOaR2nxaGDpSCrT5Qn2vwNduiL09XHse3Md\n42sIPv+FORyqGVvTypv3fD9hbqQKDrYIQq+bAsuYgOv/4WSrWaT6sPgLCsnt6RhJmCMJf3NRkmRg\nbya/UzLHr836dZdkN1IB51kcMXJwqINfaA2lNG7msp0UOUo+nRxqIlwisZjD5hBWfZtWrob9nWWf\n/JUE/vP0xaxbEaQyu7ClWNWmMwIc2Tl4r396D0vuXwcg3Ym5cWUbShkbBWXJ/esUxUYVrG/bBWMu\nknf4Ox3dgfA/Biksc1P8eWywHItzH6iJ/LpXa4bQ1/TJcf9xo5r0+Fz+B3lFZDOp/9wHwLsieWP6\nQ246etxczGp+VY1Ea9TUH5mkOuGJCAB4SCg9bNBWDgaglCoMdz+9wVjX5krLSf+RQynTlfGtnFlA\njQDCoX0OH7qv9jEmTm4PPb1SYcXHoSUuXZkBH+9FapGrCDOj/sAC96OY/awnin5+Uf1TezfK6FKz\nkL7IuIO9b0TmCKOcFqG6sSAaz+KXQ5FZ+A0L3EWhPGdG/QEDnTKY47YXAHAgeTmivt2gtBFiaVAR\nf7qsp51jP9sg1DZvSmpf1cgRY50F84nJfISXGffwIE2w6NqcMJskQ3JM8XvxeUiWc2iXtT4BCE9Q\nzATm7oe3sAtbCj0dHcQNK9m+PQNc62FT1AMkZ34jlU+8fBoTL59GNTNzLGnlh5oW1sgvLkJceir2\nvn6Ks4kxKpsDk9LwITsTzfZuIJWFteuGERcUM/WTpIN9DUrZi9TPsAtbipdDJsNYjxzqu4jPx55X\nT3Ay7hUOB/Qj1VUxskRKbhqefRNEXlzyUhCRUvK0gYna5tUpZeLKws5mU+Boqho/msZWNXA/lfr3\na39lLnG9yqN0RYgrlQrDrU/UsGGK0PAY1eb9dS/6qB/5xdm483kdXmecJsqEpklCpJko3fuyEU/S\n9lLKhzqfhb4OuxTikoiPzzT2/sR+yMgXefQb6JhgiPMZuceKyXyKzQn/IbjuISx9PRHTXFbJP+FS\nTpcuDbQ9hVLH75jsTNVKg7ImcDOj/sD0WptRVt8Sidkv8O+LAehqMwaNLH1JbQDRgjolNwFrY6ei\nuXVndKoyFKOdg7H0FfXLLb9YFOkj6tsN8H56mvDBx6yo7mhdoTt8K/UnxqBbzAPA9S/HsPdNMOa4\n7YWBThnEZT2Fk2ldor68oQ28KtjAq0J3hLwejd7VA1HNmLoQ4Sh9+FR3xKXkeIX7FxYXK2Xioymu\n9xmBXqf34f6Hd5S6t5kZ6Bd+QGVjMeW1YJPrQh2vI9N8XOVM2Let6UTSgjv/p/PxaikLb2lJ3VZE\nnyTdS1MWYqRERqJjeYNhhNPzmAfriVCwQgVFEbM7uhCqmgyrWmq3S71OUTOGygNTYjG6P+LGaC9s\ni+1IUhbkQRDpiKosAMDW2A4o4tNHiZElUwiTsrAx2oukLAACxUfQVz5LxRpmoi/vH8XqSZxXkjly\nbJK2p8BRilCFnwuPpxo5/lVHoKy+IJ+FvUltAMDxd6Kd/nupgszof7qIordUMXLAlJqrcfur4DOv\nnL7A9leY0Onip30YYEfdXPGvOgIAMCuqOwAQygIgUkYKiqlRUt7lxGKB+1EY6AgSMokrCwBgYVCB\n+AEAM71ylDKO0sXQ80dgF7ZUKWVBHDaLYW1zsHNfPB44XikZejrslm3PBskfvU9yR1+VNK5ENZWS\nF1M9+ZI7puVnYU/Sdcb6MymihXZfW+YcRwCwOkax9R9ADQULAJfa/Ce3nHrW2j1JKxUnDDG9Z6DG\nAfKO3bvsDDjuX4irnceimim7qABHE59h2r1TjPVMoVrFF+RsFuqSVDZyRwebYOjrkN/su+N7ILvw\nCzbHtJXLgXpjdOufVzyMqnmVUl9QnIOtsR0AAEOcw2GgY0rUFfMLEBbTFhujW8t1uhEaLXijBj3t\nieC6h1jPVRPcuqm6Y1s6DA31UK6cYqdAHL8vwsW+vKcNenq6OB8RpLJ5NLXqQLp3MK2DhCxRpJKT\n7zcBACwNyLtr1oZVAQDhKVvRqcpQAMDB5OXoXT0QVz4doj0paGIlyl3hbEbv0L4ubhom1dBsbHqO\nkoXk4t5E3wAvBsu3KRPy8AbWPL5LKvvv7hXMauqt9PzUiUUZI2IXf8SFY4h4EyezzwDXevjP01dm\nO3HMDAyRNGIatj1/hHl3pPv40ZkGGejqIr9IdXmNDvoLgkgMOHMQN98zJ3MV0ra6dDOjtzlfGesa\nWTnjQWospj3ehtffBSc6wfUGU9pZGpgi+2c+hJTcNKnjfciVPzRrcL3BCHqy/Wf/NOxOukrUGejI\nv/zOzJf9uqmTUqEw6PJ4sDezRGIm9Q/a+rRoV8xEzwANrKtCT0cXqXnZiM74wjokaxdbN5XNV5KA\n6qtpywc4HqaYNdHBEzsICotpC4APHnQwsuYV2vZCZWGg41GSsgAAOjx9dKm+BieSx2NrbAfWikpg\nzWWs2mmD4CXhshspwZlzih3R5uTlw7iMfGEwY5O/wLk6fRKXzcfuIOzoHdzbFajQfDi0g1Bx2L3r\nFrZtZd7tGjbcC/36K++bJQtHU3eSwiCLZxm3CIUh6ttN9K5Ofv/xwSdMkcSJzXxCG33oc95bOWfM\n8StRdyf5+7CrkytWeHdiaM3M1IYtkZqbg32vRZHJNj97yEphKCnmS2Htuql9jCFuDTDETX5z2pih\n6vme2d2xl0rkSNvxn1enHzpenUcoCwDgWZ7qXD7SqT3+iRLkubr2+TmjvD63FDu9Eh9z2L01pCRz\nihD//TDqWU+DDk+wdOejWCl58lIqFAYAuNhpNBodW4E0GkdlIdmF+bjxUX7/hpKQEVkaFYxcAQDb\nYjuimF8AHZ4uRtS4LLOfsR59NKlKRsqFpS1ppwxZWZo3kZoaehx6urpI+ZqBnf8Kwn4OmLkLVSuY\nY8mkACzcEoETVwWLMuECf+jcvUjNyMGJ5aJwkH7jNuDc2tEAgCYDQ3E1bAJRt2LPNUTci0b4KoF9\n5vBuzRB29I5Gno9D9QwY6IkBAz1lN1Qz+XKaFBrrmgEAelabhENvVyKzQLTTNsxhPsLiZ6Fr1dGU\nfm0q9oJPxdIRxYZDc2T8IL//FFEWhCxq2Z6kMHD8PghDpfajMSUy12dnEdCmojv+gSgxrmfEdMxw\n7YHOVRshKfszBtwOJcww/3HrjX+fy+9nMtKpPTbFnScpC7d8lxDX0zadxtKRnYn7G88SkPQpHQPb\nUkPPiodVFS/TFKXKh+FBt8k42X6oyuR1ru5a4pUFALAwsMPBpMHIL86GDk+flbKgKoKe9qT8qIp+\ndycT18titgAAVsfuAAB0vz0WADDlicDO79j7C+h+eyxeZ8YTdZogdEV/2vIbjxNw5WEsoSwAwO4F\nAzGxr+DE6O9hguNjobLQZGAots7thxPLh+OvlQKzuH/WnSGUBfG2Qib390L4qpFoM3KN6h6I47cn\nMk2+EMTeFQT/8/UsBO/tw29FAQ8cTN3wJvsVLn8+iPaVB5L63fqquM0vBwcHBx3tKtcn3Y+robjC\nCQCdqzYi3S96eRieEdPR//YyQlkAAL/KigU9GcSQcE7IpcexaDBmOf4XLMidMWndCXzP+cHYvqdj\nJOlHk5SaEwYhtS0qEYt8//Nb8DL9k1z9p9dtg5G1NBvDO7vwK3bHd1e4/4fcKKT/EJycmOrRm6vQ\nwcbcSRZ0JwlLXinntAUIFIK9TUQREv6sMQwAcPXLPUxwHoTpLoKF9PJ6goQnu98cR4fKrTHz2TL4\nVZLunKRK6talhmGjY97Gcwgc6A1z0zIy2y6eJEgd//dQ6TapQ+fuw9a5fZGdS3US5eBgy7zn/YjQ\npwCQVUgO7fif+xHMiuqOLQlzMMxhHlG+NWEuAKBOOfKpSFzWUwy2J4c1ffbtFvpUFznkGemaIrco\nS1WPIDffC9IIR28ODo5fhzlufVglWWtZ3hU3vryU2W6Gaw/McO2B0NcncOTtbVKdZ/laJN+HoQ5t\nsTXhotxzFmdHs8mkex0eDw/XTcbcnaJkbuMC1G+aqgilTmEQ51T7YdqegkxiMs7hykeR0+PwGheh\nyxM5F7FZ1F94Pwv6OsYoKM7B94IUxHy/gBplZacT72G3RbFJy2B6LeV3vI80X4fut8fiSPN1tPVr\n43ahceOl+FbwHeX0y6KsvimG2/fClc93MMJBZOZw9uxTpeeiCuLefoGZsSG8hq3CtS2C6BQu9hWJ\nehf7ikjLyIGluTGi33xGTVvZkV1aN3TC7aeqCSHM8fuSX5yHWVHd0c1mLI6+E0SX+8/9CFHPAw/V\njV2QkPUMq2KmoGX5rjj8VuCUPKv2TlqZTA7NQmbV3kmEUa1QphoqlbHF84w7KOYXaSQXwpJXw+Ff\ndTgy8lNx/csxGOoY4UdxLqnNnqQlSMp5hZzC7wAEYV/L6VujuokLxU+Do2Qiy5mX49dE3KSHicX1\n5EsMF+jSBYEuXaS2Geboi2GO8jmfS+JkWpl0P7N/W+y48BAn77zAyTsvoK+nixdvPqG2bUVK35NJ\nPvhR9I1SrqmThlKtMJQGhMqCV6XpcDHvqJCMysb1EFBtJQr5P7Alph2ufFjASmGwMnRSaDxZ/Pdy\nJGa5blJazpHm67Ahfg9GO1LNfrY1WoJed8ZjjOMAeFdoiik1BKZoE5z+R2p3Jlw7CoOk+dCu/wTm\nGEJlAQB2zO9Pey1UFozKkKNSSJb9r3MjylglweHZ9+oUAMDy+hPgZu6gcP+I1ssVGn/w8aO4/iaJ\nuE+YJP01uZSQgBGnjstsp0ocVoaS7jU5tiQL3I9izrPehLIwq/ZOipPyKKeFeJP9Gpvi/yaUhUH2\ns2CkSw6aUMXIASm5CazHnRXVHZ/z3hKOzi3KByj7ODKZX+cgZj/rhVPvNwMA2lTsjQqGNtifTA7c\n8PI7Navtt4Kv+Ebj2M1RMtn2nJzpd4+KHGo5ODRFN09BwJ1B7RoSZUNDDmDrVGpW6h9F39DD8QEp\nEI4m4RR4AUMUAAAgAElEQVQGDaGosgAA1U0aAwD0eIaoad4B0RlnsTHaS65QrMog6bcw0E51sYAl\nlQXhiYMOTwcHm4lOMtzNXQAATa3I9osvX8iXTEUeLCxM1CabA3iRkYja5vZy99veVRR5R3JhToeP\ngwOM9anKmSQXE+JhamCApjbVZLYbeeqEVCVAWMdmfppgXh3Zznq2Ji4yd//HOYdQyqT1ET/JYELe\nEwdh+zF+S7GeJoKZLk+PVqakaRWX9blkUGNrqNwReY7FvcSUK9ToeJ5VbVU1rV8Cp+Dl8KvpjDVd\nOstuzAGnYMEmVlzQFJXJ3J4gOgWb5Uav0PaYvxMJH1KJ+0fr6cfvZBuuNWUB4BQGubEwtCf8CZTl\nQ6780R1aV/oLsd8vophfIFNpuPpxMVpXos9cLQ8lKSKSJvnfoBbansIvzemU2wopDIrwfOwEmW1G\nnjqBvd1lO/WPPHVCFVPiUBI6ZYGj5ONsYYXYdNHiKL+oCHZhS9HHxR2LW7Zn7FfM52PqtbM4GvuC\ntr6khEpVN3MvXsbcttIdacXpU1e5qIgcyhEWL/JN6FCZGvmo74LdODz7f5RyOl6lb4VHee0F6ilV\nUZJKAj1sw4hreRb8+xMHkO53xPnjZLLsRQwdI2qInG7ofCCESoTwJCIhk6xUvPh2HBujvXDnC73/\nAIeAgC6KRUVQFtstwcTPr8zdVNkOacow4OhhOKwMJX6YiPr0ER6bBJmP+x05xNgn6tNH9D96mLhn\nI5sNWx9HqkxWaaGDfSDt7x7uf0utF/5mup45cAMAwekDADy6EY3Xj7Wb7IiDTESPoWhdjbpRsP91\nFOzCljL+OGwOYVQWEn8TZQEAdj9ib4YbFzQFLey4Uxdt4Rkxnbi+4rOAtk09p6qs5aXmPcGheA+c\nf9sD11LGED+agjthkBMdnj50eLoo5hdRFvx0u/297HfgYOIgZOS/pSzuG1gNhLlBdVz5QP9Gksao\nmtcIeV/zYmBdpgZjfUTKbEp/eZE0S/pdTx1kYbslGG+GKZelV9j/V1cYcovUmz+jg5MzcgoK8OTj\nB6ntuu7fK7Ve3nby0HDTeqTl5qK9kzNa29phxqUIOKwM1arPg7YQVwAUZdbGIQCApOgPhDyeDg9n\n4pVLPOkYIlLk4qf+fn8bVbPdrwea79uIlKzvSsv6XU4WACDw9FltT4FDCuIKgjj2phUZMzufufcK\nB64+IZUxmSRl5McDAL7nJ+I7NB8QhVMYFECYB+Hc+xl4n/MIZfUro5Y5vTOfhYEdRtW8hqi0A3ia\nfgA86KCeZT+4WYjssJkcmGX5KLCtf50Rjrtf1qOYXwhbk+aobzUAlobyOatyCgKHqmlgUUN2IyXo\n714X/d3rApDuSyDub7C3e09GHwZJvwRVLOrTcnMRO3EKdHkCJ+TebnXgsDIU9Tesw+PRyucbKal2\n+mV/+gedTRS8ls51bLDqpGoX4kLZHCWT231HAQBuvE/CwDPsv1/crCvioH9fGOtJ90tyCl6OuKAp\nhF26kJBOfuhaW5SBt+fu/XicQt1UiJ42mfi/lJQBAKsCOmHiSZEfhbjdO117yTbS5ihLnuQ9nVwh\na7p0hl9NZ9r5FPP5qLF0BW2donb8bGVm5OXBY9V6Shvx1x0QPEtZQ0N8/yHITSDtdf+UlQXPdSIr\nECGvp06Cng7ZoIbpbyTZZkLzppjUohltnZG+Hp5NkW4pYmdSEbubMX+2XQtl/zmv6bwLknAKgxL4\nVV0ku9FP3C17w92S6vWuCVzMO8HFXLnkJtwJA3XHX/wk4UT8Syx6cI3STtim4/EdeJH6ifb0QdFT\nCfFxDnTsg6aV2eWM0CbCCEkAMMzh93bEOxUTDQCkL0cA6F/HHXue/drZay3Km2HOsM14eO01wuNC\nsOLYZPg7T0OjNq6Y/fOUQJwVxyYhoGYQ6jYXLHzETZToFIOziaHo32QujEwMseLYZJiaG6n3gTgU\npmVVO7WdEnTbuRfO1lY4O5TZRvxxyge4lLfG6SGixINOwctRc+kKyqJZeO8UvBwTT4YjLmgKmq7d\niK/ZOaR2nWvVxAp/UaCTrPx81FuxFvufPqP4FDgFL8e6bv5o5yyIaugTtg1v0smhM8XHFb9nQrI9\nE8KFPeU5U1PpmrOCSWZWPjmfkMeq9axf9+CO7dHW2VHm6y5UFiSVLZeQlaSy9lt2UNo1Wr0B6bnk\n0MsAsPr2XVqFAQBFWQio2hgP0+KQlp8Frwq1MdtN/kz3DcYsZzxhAICo1BWIzdiP7g535ZatLJzC\nwMGK31FBEEdyUV9QXESq7+Loii6OroyL/zNdB8F2SzBWPr6NSfVFSVm2vpB/xyDs+QP8d+8KaRzb\nLcE4120walnKzu8gD+ILfEmmPF6tlGxHU/a2m78iC68LFMzfxW9BnNYBDdBnXFtMDBA8u46uDk7F\nLiXqhUqA8HfNerY4GR1MqZe8NzI2JMr23JurlrlzlB5efvqM6GmTGeuFC2rxRSsAYtf/a3YOrE2M\nafsOaSjwcfurdStMDT9HqhNXFgDA1MAAADDv4hWKwqCno0MoCwBwacQQVrvfyvIxU5BYkU75cLKy\nUkimNIVG+BqIt2P7urd1diSumV73z1nZtGPTneDEp6Zh0x/knAsPJoymtLs9diSar9uEczGx8Ksh\nOqVh+vtMd5UvQa/v9I1I/Z4ju+FPDsV7wNdmL6K/7SKVcXkYfgO8Oom+AEcN8UK/Hk1UKvdaOHnh\nev7SC4TtvI4vXzMpdbKY/XwQ8opyEFz3EHYkLcUgO/odIfFnkhzDq1MwDm4fjYrly5LK5y85hZt3\nY/Ejv1DueWkLfR1dufsY6Ooi9NFNksIw7+4l3Ow1Si45/927gi6OtUhlhzr1g9+x7Ur7T2iKHU1m\nansKWifjh8CHY2UH5U7/SiN9xrUFAJWbIXFwiDO9dUuZbZpUt2Gsm3DyNPb1pQ+FWbuiYHOmjB77\nZVRBURGlbEpL7WT1nXL6jFbGZYMir/uf4fL5d7Rxkm2WXcFUYDo5/vhpiiJya+wIucajI2LJKMqJ\nQoMxzMpii8orUM6wptLjKgqnMGiJ0VMEGqI6FshMMtv71EZ7n9qkRT1b5rvtIMySXn+n12ZlPRNT\n+ezp/gCg0Lw0ie2WYDwdMBHlDMso1D9m8J+wo3FkrmZmLresla39SfeNKzF/6SnDBa9QBEWtx5P0\nWJXJrGJkjSpG1iqTV1pp7+SME69fwb+G9r4AODh+ZaqULSuzTd3KlRjrHr1nDpggTVHY9vARFlxm\nlyfJtlw5Vu1UjbRn0zaKvO5PUj4CYOebIA893d1wKOo5cb/6tsAUqKKpKVMXuZA0P5r7P+akvAY6\n2nmvCOEUBi3xKuYD7G1Lz6JJqCysipmOBXXoo8WUtmeShzfDgrD5+UPU3b0KANCiii32dJDPJ0Vo\nqX4xOQ5tqzvBcRs1CRZb2h3dSimrYaH6157H42FpXbJTlrKZnksybzMyZCZuUxXL23fAidevEJuW\nCmdLxUwAODg4lCPyXQpjXYOqleWWJ1ywXhs9DFXFFBZNmBnJg2uF8nj28ZO2p0GLIq97DWsrPP3w\nUaVJ1wBgkZ8vDkU9x8mXrxHg6oKVN++oVL4kAc1qM9Zdfj8YbpZjxO6p/l7qhFMYNIz4Lnrim68U\n86H3KenoN4Ls5S+s8+oUjLatXXHx6ku4ulTBy9eCD7oju8bC2lKg7QbOPIDIJ29gb2uN7euGsp5X\nhx4rcPrAROjqiiIJeHUKJsaW5sMg65nOXnyOwyceIi7hs9wnKuKyy1ub4cvXTOjr6eLiCdVlm2bL\ncLeGGO7WEFOuheNoHH08cFnc6T0azQ5swJthQSgsLsb2dj0UknMiYKDMKCG/Ol9yBDar2fn5MBGz\nj1W0HQBMv3gBPWu7sRr/c3Y2KpiwywbOh0hhlKT9rh24M3wkKpoI/ofDHj2Eq3UFeFaX34n95KvX\nmBIu3dRgZONGmN5KtqmGz5ZtSEpPp63b16cXGtswn2oJw5Ae7tcX9atUhvOy5Sjm84n6tQH+hE2w\neMhSAIj9cwp0eEyvloAiPh81ljEvwOQNfRqwazdefPpMKT83eBCcra1QzqgMvuXShwHeH/UMMy9E\nAAAsjIzwcBy7uOhcqFbto8PjIfI9s8IQ2rmDwrKrsjjd0CYL2rdFwI49Whlbh8cjfR5IosjrHtLJ\nD76bt7Nuf+tNMjxt2X3GtrCzReDpswhwdQEAqU708rIx/C5i339BpyauRJl3XUfatj0dI3EoXpD8\nTfhbk5GTuMRtGuZaeBCxaLa3tSbdA0DVKhZE2bXwIFiUM0FAX5Fz6dhhrXEtPAgvX6cQbQaPEe02\nhy5QLBLT2cOT0SZAtON9NuIZRgxqRdwHPe1JnDL8FdUbq2JE8YZlPVOHtm7YsnqwQvMSygeAVUv6\n4lp4EAoKqXagmmS5l+I251VMyV8i3tUU26GvtUN7u1Vm+vROgJpCmOCsSdhGAECd9Wtok56xbSdE\nPGyqrHaOFpZounkjbbvGYRso5Y4MMhMmBeJEn/5otnkTUb/oxnW5lYU3377BMSRUprIAAJvuP5Ba\nvzUyEo4hoYzKAgD03X+QstCno9e+/Qi5cZOyOBh38hQAqrIAAM5SFAEAqL1ilVRlQSi33dbtMuf3\nKCUFjiGhtMoCAPht3wHPjWHoUIM5BHAfd5ETK12UFTqOvRAlLbQ21u7/0+9MzE+HaGHUHCHC04DK\nZmYqGaf1xi0qkTOicUOVyAEA15++AHQnH3mFhQrJlBad6UJsHHGtjtfd3tKCcWzJsLk25uYYdOAI\nqazD1p2Msrf3EoTB3/NYkDTP2Vp1J8Lh914hZKQ/vOs6Ej/S6OkYSfrRJNwJQwkkNS0LK9ZfRHTc\nR6R/yybVWVlS7eYys1SfAGvxirOkRb/4CUNNs3oYYj9D5WPKokol7dnvue5cgacDJkBfRxe9w/dJ\nbcsmTKr/iZ3oU9OdUv4i9ROi07/i4af3AICQyBtwLmeFllXtYVlGEBryzbAg2G4JRsuDm7CvY29k\n5ucjJPIG6pWvjAn16MO/qZKxTt2w5JV2dqYA9vkPFMmTwLZPxP8GM9bdHzFarjHrVKyodE6HNpvJ\nJmp1KlXEGn9/2JgLFNR7b9+h34GDAIApnsxOljeS3mDBFZHtdTtnJ6zvIsoxk52fD/dVa4h7x5BQ\nqbvjxXw+1t+7T7QRVxD2PBF8+b6cPBGGenqkuqlnziGkox9FnvuqNaTFjORpybXERAw9cgwAEJ+W\nhjEnTpLmL0nPvftJ948njENZQ0GkpUPPnuOv8xfwMTMT+55KD3M7sH497Hr8RGobcaaeFUV3uTdW\nvvcLh2rpVtsVx168pCw0oyaPV0jeqcED4L99N0XewAb1sOsR+/cIHdNbt0TY/YdS8zBI1o0/cZq4\n7uLqgmViu/eRE8fAY9V6mXkg5IGtzOipk1AzZKXKXncAePXnRNRatkrm2FdHDYVT8HK5zcTmRFzG\n3LZtFJ6fJFeexmNaTy80mbAKi4eLNiJlKQ3agseXciykRUrkpFSJV6dgWrMhr07BWBvSH261BCEn\nB43ZgqTkVFwLDyKZCDFdS5MtXk9nGrQ27DIOHn+IiGOB8O0WSmojPF0w0TODqV451LdogTYV/iD1\nV3RcafXCMqbn9fFmnwtDXi5dESlFjz+nYNSl40jNy0FggxYYV7cpY781T+8iNPIGallWQHjXQbRt\nVJER+kT8Syx+eB064GFi/WboXYOqgKgL36tTfkkfhtKI+EK7m6sr7UJbEVnSFIGzMTEYf1KwEGla\nvRr29CLnaRGX87/69TDHR/Alm/njB+qtXkvU1alUEccH9Gc1Ph+A08/65tWrY1cvZnM+cTkXhg6G\no6Ulpc3gw0dwI+kN43h0sti2k2VipApzJE199nFwcAAzzkXgUNRzlftIyMO1FJG544+iNGTkx6GB\n9V9wNO8ppReBdDtPFnAnDCUQobIAAEnJiidQkZdxI9rg4PGH6NhrJbp0rEeq+93zMNSvUAX3+7LL\nyDi+blOMl6JQTL95jrFOHoS5H7RBROuS4cDX8+YSHGoxnbHeM2I6bvkuUdl4Fz8+RdtKdYn7guIi\nZBfmoZwBO18GVXMxPp50r4yycPi5yC9new/p8cTFTXTuJr+V2laoLACAmaEhqe5o/36s5+cktsiW\npiwAgkW4cFHebut22kW5uLIQJ2XRvq6LP8aeOMV6nrIQN8+KGKpZp8WSxLuczxj2YCHOe9FnBZZF\nh+uBKOYXAwBqm9sjtN4k1n3bX5us8LgcvyfikZJUyZn7r9CxsShM+sk7Lxgdn72qUDNjH4r3YKsw\nKA3nw1ACWbLyLAoLi7FszQXUqiF/tABl4PGAgoIiBI5jDu3FoRz7o6PQq0Yd2Q05pOIZMR0puWnE\n/eC7KzHo7gq8yEgGAIx+sI5oBwB5RQVof2UOFrwQKb/vc1PR+pIoJ4Rkff/byzDsnsCHKPT1ccx5\ntpeQBwCtL/2NrEKRSeCp9/fR7soc4n5V9Cl4Rkwn9VElo46dIK6ntmyhlKzp584T1y3tbGW219cV\n5SKJiIuT0pIZWc7NmkLaLNo7O0upFTGsoQdxPffSZcZ2DdeKvvQdftpd/6qMfLiYsc7GuAIqGCr+\n/MX8Ypz3WoHzXivkUhYAwFSP8xvhYE9RsUAxPfY/9hscbFl2iBx+d/mR6yofQ1VwJwxagk2ugj/H\nt2OsY7qWJptN/aUTUzFg5Gap/RWRq2i9sEza85YGbMXyL9S0sMbSlopH3+AQcMt3CWkhHpuZQpTd\n8l2CDY3Gkk4YLn16ivPe80gyqhpZ4arPAgDk04iAa/+hZtmqmFqrG+pbCMyuAl264sjbO6QTi1u+\nS/AuR3QK6F+1MfyrNibuA2yaYGJNf/hcnqXip6cypklj2Y1UyNMJ4+C6QhBmePTxk2qN9HMnOZm4\nblClitLyNj8UOQtKnnooyt+tvbDlp9xdj59grg+9rXNGnup9zkoru5rOkd2IAVsT5vwJsjjiuVDh\nvhy/D+I+Drt690CdShVVPka7huQ8PO08Sm5eHk5h4CDRtssyXDlNn8WZQ3FKSwbmX5kKZdgnyDvp\nJVrgK2PWNOHhRhjpGuJSm/8U6l+SMZQjw62ybH/0mLgWRjZShnPRMcR1QC0XpWSJ42lbHbfeJDPW\nb3/0iLhe4tdeZeOqi+63/kZWYQ5xL27G43dtCvhi7obide2vTaZcM9XTmQZJG1eabDpTI/EyaeMK\n28lqIwln2vTrogl/hem9vUnZnSUTuYkjDKVKRnOntJzCoGYajBa8EW6uHA9jw5IbN1+Y76CEWAhw\ncMhkQ5zAF2Rd7BmMde7I2K7/7VDsaR6IsLgLCM4/irT8TNoF/MlWs9Dz5hKk5Wdifp3+CHqyHRXL\nkCNzza3TFyPur0VY43Eo5hfj3xcHkV2Yhz9dulLaAkB6fjbSkIWbX16iRXnt+Jv8CtyWsghXhBef\nRWFUXStUUJncnT17EMpM67AtuDpiGKn+38tXiesebswJmkoCXW4Gwd6kClbUpy6SAeCcl2iR8zwj\ngbQwF/4e+XAxNjX8i9KXbgEvTjXjCozjSpPtUtYWHa4H4mwrwd8g4EYQKau8rHElFQ5JZYOpjoND\nGaQpCeJoOoyqJJzCoCFKsrIAlE4zH47fm9FOfhjtJHLyFZ4CSJoMCdnUeJxUeVaGZiQHarpTBd9K\n9eBbSRAQQIengzlufRjl9bi5BDd9BTbcqna+/t3gie1k9KvrjuYsEy4xoaejg/wiQT4XaQmklOFt\nRgZjXTMFkvJpmukuAzHvxRZkFebItPlXdbS0V9+TcOzdNXSz8ZKr38r6U0jKwI/ifGxrzN4ccHfT\nuXKNx8GhLOKnC4BgrXhzheKhZdUJpzComUcbtBeCi4NDXfhenYJyBqY41PxfxjY9bs1CRkE2pXx1\ng8lwKSvbqba0c7jFdPS9HQId8DhlQUl8nRxx/OUrAIIM29ISqbGhkY0NriUmAgDuvX2LfnVVF5J4\nU7euGHnsOABg5oUILGjnC4CcuGq3jChPJYHm1nVw3msFVscewumUWzDXN8XB5oKTOT748Ls2BTNd\nB6FV+foqH/u81wrEZL6lNWeShZkSDs3lDZlz/Sx2H4v21ybDp2JDXPr0EIvd2UXN4+CQhuTpQsDs\nbYxt6U2SyKjzFIJTGDg4OORi2hNBHP1v+Vn4XpCNsvrUkKJZhTm0ygIATHi0osSEZVU3+5pP1fYU\n1Ma9t9LDqaqSic2bEQrDxbh4Ga1l07NObUJhOP06Gis7K569XRIfR9Fu+/6oZ4TCMObESZWNoUkm\nOPfEBOeepJ373rdn4ViLxTDWLQMAjP/rylDDrBrOe61Ap+t/ytXvsOdC9LnzD1zMbHGy5VKVzcfV\n3A4dKzfHpBq9EOQyQGVyNcnnz98xcfxOfPmSybrPpMntEdClgRpnpTw5OT8w9c99iH79QXbjn+jp\n6WDESG/06KnZYBGyMDKQviyXVAgOxXtozFSJUxg4Sg1fvmTi1s0YnDgeiWQN5qfgIPPkm2inlE5Z\nAIBuN2eS7he4j8SSV3vw/efCwvfqlN9GadAUXXbtwYmB/WU3ZMDM0BCZP36wbt/vgCj87MNxY6S0\nVB7bcqrN8q7sCYUsAlt4IvTmLdo6VZ5mqJP21ybDw8IFwx388TD9NakusGY/dLv5F060CMaL7wmY\n/SyMVsab7I+4/uUJrA3N4VrWnvXYf0dtQD/bdnj5PRGF/CK5556en4k7qc9hqKM6U+ANccdx5sNt\nnPlwGzzwMNdtOJpalWw/FADYvu0Gdu28qXD/lSvOY+UKUcjllasGwq2OjSqmphSbNl7Bgf13Fe5f\nWFiM9esuYf26S0TZipUDUMe9miqmpzAHZg1krOtkG67BmVAp0QqD0GH40YYp6Pj3ZnxME2jFEcEj\nYVXWhKgHAL9GNbFwGL3jo3g7ITo8Hh6upzo+CduumdANzWvbMc7tWlQ8pqw7ScxP1niyTJPEn3Xv\npUcIkYjNK48MaZRkE6m42E84cSISt27GICMjV9vTUWsmVU2hzoytFcrQx1Afel/0uunwdHDeaxkA\n4Ijnf/C9qp7336/wt5IF3d8yctxYeKwV5Jt4/umTUvKfTBhHOOy23bINF4exTypmYWSk1NhscLa2\nQuxXwUbBvbdv0aSa6r7YrycloZWdHW3d/MtX5JY3rmkTQmF4//07Nt5/QNT969tWoTlqmvNeK7Dg\n5XaMjQyBS1lbkllQU6va6FzFE11vTodneXeEt1pG60i8vP4k/PMsDEa6BoR/wKvvSZj8mBr1SFy+\niV4ZzHy2AfYmVRDeapncc7c0KIu0/O+UclnRm6Rx5sNtTKrRC8a6ZfCjuABznodhmIM/elXzAaC6\nzyBVfWb/+FGIjn6qO2ERMmniLgDAuQtB0NfXldFa9aSkpGNg/w1qkT150m4AwMZNQ+HkrPoQqky8\nfvsZQ0MOYNPknnCzZw4XfOX9UHSyPaOxeUlSohUGIcV8PqEsAIBv0CYE9fYmtTn3IJpWYWBaRBfz\n+WgwejllAb1xSg+MWn4Y41cfk7q4FioLq8d3Y/0cbKFTFgDQzle8TshffdsgKuEDztx7RWpT0cJU\ndZNUgPPnonDrZgzu3IlDcbF6HA05NMc0F/okNm9zRBFohMqCkLNeIehwTWCm8yb7o1Kx1DmAckZl\nSPeOIaEqyYeQmJ6OS/EJJPMacYT5FwBgW/c/lB6PDecGDyIUmn4HDuFI/76oV1l6YsuPmZmoZGZG\nW7c2wB/jTgoyOA85fJTxddshFtJVEbrs2oP0XO1vgCjCTNfBjHVCUyUhdAtv17L2lJwHtcrayVyk\nSxtXCF30JSFp+d+xp+k8Srm0cenqhGX9785BE6va6Fi5OVH39FssdiedIxSGksTxY5FYveqCWsfw\naxeMzv71MSVQ8ezy8jJ50m48i1K/KeSokVsBqHfDTUjs+694++Ubbq+cgAsPo8HT4aG2Lb2yklP4\nCYfiPaDLMwSPp4PC4lzo6WguCWGpUBgajllBLJSFC+PgA1coZWtP3Ma4LqJ/aGH5Hy3rYFZ/8q7O\nrG3ncObeK8oivFFN0a5VUXExdHWoybDFg2p4utlR6sXlsdn1F6fB6OU4Om8w7CpaUMoB4GtGNqzN\nTWjrFgztgA6NBTHFe3nVxX9D/EgnF6qGz+fj1MnHuHUzBg8fJqpcPkfJpl45J6n17StRbUP1eKId\nqVWxh7GsXsmMBlGaiJ8aSMpLIH5dv3JlpGRm4lNWFqWPLFlCx926lSthiEcDpHzPROjNWyj8mfUU\nAHR5PLSyt1PRk8jm3tjRaLJOsLvYfc8+otzOwgImBvqI/ZpKRD8SwvSsfjXIGZwdQ0Khq6ODJX7t\nkJGXRwqBOq1lCyy9IZ9Zx19erbD42nWSsqDO5HYcQEzmW2yIPwojXUNYG7LPuyKLaS4DMP3pWnz5\n8Q1mesY4mXIDlz49LJFhVTV52nr61GOcPvUYFy/PUGtI9tzcfHTuKP9Jk7L4eC8Cj8fDxcvMyqmy\nDAreh9srJwAQJHFrNnE17qyaQNtW22FVqavhEoieLrtpXngYTVy/ThbtckoqCwDw3xBmrXhAW4En\nerMJq2nrW00ROH36N1NPXHVJZQEADPQEC63Z289T6oQIlQVVsmvnTXTvthI+3osoP23bLMbKFec5\nZYGDYPTDEOJ6qktfqW1jM9+pezq/DUwL0ccfPlCUBXllPf3wEZNPn0Hw9RskZcHGvCxi/tSsiaO1\nsTFiacZMSk/Hi0+fKcqCLCSftai4GFPPnCMpC48njMNoBbJoj2jUUO4+HMoR9HQNCouLcLyFaqOS\n1SvnjJMtl2JcZAj63PkHCVnvf3tlQZy2bRbh0aMktcjes/u2VpQFIXw+X62v68bJPXDpcSwAICIy\nBjuCmEN1a5tSccLQsUktSlm3Fm6UsrdfvhHX/RbuAQD8N7SDTPk3niWiZR2RQ1Zgj1bYfTEShUXF\ntMCOlPwAACAASURBVO2z8/IBAPMGqT5Tp4E+/Z9kaIfG2HDqDu69fqPyMaWxfdsNjY7HUXrIKMiG\nuYTTc3zWe9b9FXFm5GBGuPj99/JVUkZhcaa3aomRjRuxlkWXUXl0k8aY1rKFEjNVDh0ej5hfr337\nEfk+hdLGycoK54cMYiUvfmog+ACcJJ61f726mN9WOXOTrq61iOhOHOpH1YqCOIY6+kRYWXUyNXAv\nQkLpzT2Z4PP5aNtmsZpmxI5pf+7D4CEtMfB/qvtsGDJ4E5LflIwAJz7ei3DydCBMTAxVKreOvcis\n0tdDejCGzIIknEvuDkB02nDl/VB4V92q0jkxUSoUhsqWVBvUKlZlWfXtKGXX3dLMGGmZOdh27j5J\nYZDG0oNXWbVTlACGUwt9XcEJg7QcQ2+/fEO18qqNJsLBwcSc51uwov5E4n5spGjB1dyaqtBLIi3m\nOYfi/NOmNf5p0xqHk4aBjyL0tNsOADj/fibe5cwCIDilLOYXYHtcAOpY9EBhcR6aVRiHYn4RdsQF\noI/DbhjpWiB+aiCK+UXYm9AbxnpW+MN2Iwr5P7A7vgfsTD3RoiL9CUP81ED8s+QE/p3eBVnZP2D6\n80v24+cMqWY58VMD8SI6BbVrVmH1rAf7qmY3jgfZ5kKKmBOJJ5yLHMfF7eeQzePH8m8KaltZELJ9\n2w1UqlQOvu1kf/7LYmD/DUhJSVfBrFRHQOdQjfg1MHEuuTt8bfYi4p1Iofya91Rj45cKkyQDPape\no8NTfuo1q5UHAEQlUGP3rhzXBQDVB2HfZYED3J895ctAyZbKluwUIXGE/gld/tmGFpPWIPFjGsJ/\n+mcAUKttIcfvy4uMRBx7dx0A8OXHN8RmipzR/s/eWYdFtXVx+Dd0CgKipIDYioGKdUUMTOxEUfHD\nFru7CxW7AwtRbOwO7A5MQEBKJASRhvn+GCfOzJnu4bzPw3Pn7LP22mtGLrPX2SuW1vuf0Pme1g3l\nZlt5JyS6O/o57Wc5CwDQyW4l/lf9GvZ8YRSMeJERgqHVTqGp1f/wLuskAOBUnD/8q19C5E/2372z\n8WMwtNop9Km6GwCgQ9PH0GqnYKrLP2F9xKQQ3Hv0FW16BrGchTY9g5CRRazX7+O3DUmp7JPhzoM2\nQ19IHXJ14mzUR9Zr7gR1Cgppyc7OV7kKcWtWRyBwwmGpdLT3Wq1yzgITWX/e3J2em07YzFe2i+NZ\nmOvXlOn64qAWDoO8SPlXeakKyQnGf/UFt7of0l61GpkwnYa8wmL0XXIICw9eBQDUc6qClztVt5Qq\nhfpxvS37JGFH9Fl0vDsVvo/ZFUlW1h/Nd+777FjW6z528nG6KYC65rzV23Z/8cTFH9NAByPU0kTH\nGnpaxJCy30U/sOeLF77/YYci1jb3Ichc/DEN+752RMwf/uVGQ7aMAADcPz+TNcb5GgCGTzqIiCMT\nMXgMo4Z/m55BuBo2GbsO3RfhHao++16wExTXd1FcJRmK8kOfXqqXRwEAHz+KHprKzdu3CTK0RD7I\nymmYsPUMAIbTwPwJnce/l05i7i2+9xSB5jzK4cOFx1Ho0YK8uUpcaiYAYHr/tqT3+7Vxw6n77zBw\n+RGcWOiHbecYdbUF1clVFm2n7QSg2n0WKDQDGmh865wDQDNL3pwjJtNeswsJmOspt8yvJvMq4zDM\n9RxgoG0OB2NGwu4ApxAU0wtwNp5/pQ06yuDjsBlJeeQ5EACQlPcSY2rew4Fv0m2CZ00gzwEb0le1\nOq9Kyuq77PLYvevKp0AGhWYSvPGq0HKlHdqp1skCN+29VosdvnPp4hts3HBFThbJlnNnX6JXb3ep\ndGwP7IMNp+5hej/RHp69z9yG95nbAABnYluglF6EOhX5P6CTNRp7wsAMGVpySHgtYq+G1UjH5/ky\nEt6+JaUDAA5cfQYAODxbcPUXZZCTVyByHgYFhbScaLkUq9zGEMYCq/ejujerCGNq3kP1Ct4sZwEA\nKuo7w9qgNsbUZGxk65j3JMgz/2tr1BBNrUay7nHKccqOrH5VpjZra2uhsKgEUxeelKleZVB9A/v/\ng49TJgmQ1Gx+JNkI/Mn5wz/8gpOCglt8dZSUivdEmp+ezCzVKXl7MUJw74+HD78JzGdUFYb77RZL\nXl2cBQAy63MhqrMAMBKdO9qHwkTXHgbaVmhvfxh1LcYInygjNPaEYUj7xtjwrwFaUUkpqywpk6IS\nzavQ8uA9Vd6UQnE0tagltoNAORTlB+4QJACEZGbma6bcnTPTAQB3z81QgHWyhayaFBN9khw8Tae4\n+CNS04RXmMrOWYMKppMFymT+noG/f4/xvZ+S6gEtLTPY2XwWqIdOL0ZisiPf+3/zjuNv3nE42PHm\nNKoaixacUrYJIpGYmCmy7OJFp+VoiXzo0ikIV67x/p2TJ+b6NdHF8bxC12Si0X/JXu2aisZjg9F8\n4hZYVjDCCn9GidVxm08TZATRok5VPP4Yz+p/8HgreUMNJom/fuNNTDJikjMQnZzOGh+yKhTVbC3h\n5mIDV1tLNHS1k/RtkeJqZ4XopHS+jeLWjuomtGQXBQUFBYVsEKe0q6bB6Sw42CWDUYeKTVlZDpJS\nhCdv/khil5zU1raFbRViOF16xnDkF1xHWVk20jNHwsqCvLxkXv55ZGSOZV3b28aCRjNkXRcVvcXP\nX51Za6qy07B6VYSyTRCLYX67cfiI4Kfgjx59Q+SDrwqySHYUFZUo2wSForEhSUw2jO0BAMjIycO4\nzafFchYAYPukPgCAi08Y1S70+fRJYNJj4UEsCrmGQ9df4OGHONb4p4SfuPjkI1aF3sLI9bI9ct99\n8TGik9IFyszeewkf43/KdF0KCgoKCkZXZwczM2jTaOhVpzZiZkwrt84CJ4yNN2+ZPi2tCnCwSxF5\nY25sNJDHWQAAK8tDrNf5+fzDWTidBQe7FIKzAAB6eg1gVoEdb/8nd59IdimDmzc+KNsEsUgS4ZRh\n4Xz1ODEhY/7ccIWtFR7jTnjN+FFcg0gaXTUD4VTSKFVk/oEruPLsM/q0ro8FQ3k7WjNhnjyImxSt\naiXbKMRDmTWjFUl5+D0tL/+WFKIhz995aX/XmCcD0jypT0x2BZ3+VyQ9zPW0tSvDtsobwj06PQ+J\nydXE0iOKLDey/vc4HzEVJibEUrzq/HeO3+/U4UOROBSi3g1iFfW3OaPgPSwN6oOOMtxPngBP250I\nj3FnNXETgtQF9jX+hEHTufKMEbcpyFmgoKCgoKBQNJwbcHFhOgviUFrKe4qe8lP0zsM62g5irykv\nNgRdVrYJCkHdnQWA0Z1bUoauEX2unjajT9fZ2P/gabtT4jUlReMchtS0bLHn/Nd7vRwsUR1Ky8qU\nbQIFhVyZMrUzOnSshypVzJRtCoUKcCfyCzx9gmSq68MnyWvLlzd0ddn5CcwqRFm/Z0usT1i1JUGU\nlrJPCoTpKSn9IUCTYrl//wvheqiv4jeIsuTTp2SeMXU+MeFEku7cTI7OYXRtbjwumNWXgR9XE/rg\nRqIvSukFEq8nDRqX9JzxOw9VrMvfpmHYmuM4PIe33OvfgiL8N2U7AGCRX0dFm0VRDvhZkIURT1ei\nhE6sPKbIikg+PRrBp0cjoXIFBcX48CERDyO/4sP7RMTGpinAOvXD0ycI9yIUW/2j74idOB0yTia6\nvFrXhFdr2dgvS13lhSrWd1FY+BBp6f1YY7l/DyP372FoaVWAnc0XAbMpyEhJ+S1cSIWZOP6QRodV\nPnz4Da1aVZd4/qudUzF73yU0HheMju41sDagG49Mk0oL8SZjg6ghSDJH4xwGbrL/5MPMlJ3gFPU1\nBXVr2OC/3uvx4Cxv+b49xx5g9JD/AABrd1zD7PHkzYVUBWYlqA9xqXwrJAHAyUXD4GprqUDLKDSd\nZ5mfMP/dHrHmdLzLyKEZ6NgeAS7d5WGWQAwMdNGkiTOaNBG/Z0lOTj7B2RCnZCCFYK7cfK9sEyhk\njL5+K1YeQFJKHZSVZQFgVEgSJ8dBW9saujrCKyqJgoH+fzLRo2h69RCvo/OAgR4YM7adQJnZM8Pw\n4oXySrFLkyy8cHEvtG3Lv0EoAKxYfh53bn+UeA1xWbTglEQO0Zqw2zh57y1e7ZyKtQHdsDagG8r4\n5BY7V+gF5wq9CGOKdB40LumZ6RAIu8/pMHA7D92HbYdZBUMc2zaSnxqVY+nh6zj/KIpnvFOTmlgd\n0FUJFikGVU7802QOxV3F0bhrAmXIThiYDgO/++qOsn4ffUfvQ1JKFuua+3SAeWIweV4Y3rxnhF3o\n6mrj5hlis6oDxx7iUNgjHv1kpw2cIT/1atth+zpfHpm2PYJw98JMgqyjnQWO7Pof63ru8jN49CxG\n6Jpjph3B52+prGv3hlWxcfkAgszHL8kYN4Nds5+f3dyfBZmsqLouh03Cz1858A8MYY1fCpsEE2N9\ngiy/z9ZvQHME+Im/kVXHv31Zv2cj9+9hwhg/p4HpVOjp1kdla8mbZEmTyCwO8vj3GOzbAgGj2oqs\nu5lHNaxeM0C44D/Kyujo2H6NpOaJTdOmLlizbiAAyT6v1WsGoJkHeaNdfigy7EnF9wxU0jM3OX/y\nBd5/9zFRqI7SsjIkJKnX08PFw7zxatdUnh9NdhYo+JNX+Equ+rmdhf4OXiI5AHUqOMnJovLLsqAI\nJKVkYc6ULtgTPAwASOP3fXy34s37Hzi2OwDrlvRDcXEpj9ydB5/haGcBgLGxZ/5w4+kTBBoNCNnm\nj0mj2+PDpyScu8zbnZZOB9r12oD6te2wZlFfVLE2w471Q1j3/cbuR2ISw9HR1tbiu2bOnwJ8/paK\naeM64sKxiahsXQEv38TDdzSx/KWjvSX6dG8MVxdrgZ8Z92dB9pk52lvC37eVUF2T54XBPzAEm1cP\nwvE9owAA3QZtIcisCr6MQ2GPcC9iJu5FzIRNZUbY7IQALwwb2EKgfk2iovnaf5t29tajrEzwd21R\ncfk9fToe+ljkDe+tO3PFchYAQEuLptBN7vPnsQCAiAuCO1mTcevOXLGdBeY8VaffssNoPC6Y9aOq\naFxIUgt3F4H3B/dqCgCEEwXu0KQrRwU3Z6OgkAfZ+ddgZiibEDgj/cYy0UNG78h5rNcL645Am0oN\nRJ67ufFk1inDk4woNLesK3P7yhu37n8mPP2+F8F4on/tdhQ6tWN/vsXFZSw5e9uK2LtpGEZNIT7t\nZT759/QJIpwCcMJ8kn73AkOXc1Ur9PVpDE+fIPTqyptHcubQOJibGQEAWjQdzXe9iuZGfNesYGpA\neI8n949Bh94bCacqAGBirI/JY9qzdPKD+7NgfmbcukYMbokRg1sK1PUtNo308+fk2u0olpMAAGH7\nRsPTJwgDeiquhroq4WCXxHryn5rWjqcUqiyxqLgBmVnT5aZfFZB2U3zrzlyFPonfFHxVZNkpUzuL\nlJ8mCEW9vzOnn6NP36ZizWk9ZRsiN02Uk0WyReNOGGSBZ98NyjaBQk15m+CAtwkOePejGjJyjxDG\nCosZYRd/C1+wxph8Te2E5Kwl+JraiUdXftF71nXy7+V4m+CA778Y4XI5+Tfw/kd1vP9RizXv+y9/\nZOezTwBKy37j3Q9nwnqJmfN4bOC+5kduCfsUTxxngZuLybzhGRTisXYL/y/efUeI5Qr3BPsRrmtU\nqyzRmrFxv8SSZzoLssbetqLEc7k/C0XwO1vw6Xf5hXwbYl3pPOu1sFMIQRgbsUPlklLqSaxHVZHV\nE3RFPYkXd+MurbPARBHvb/u2m2LP8WmhPg/NNO6EQRbcO63ZTyMo5EcDxx94m+AAN4cYvE1wgKWJ\nHxo4MuKk3yY4oIHjDxSXJkFHyxJ17dlP1WpUuUY4YfiU3JJnHgDYmi+ErflC1ryS0kzUd/iGn9ns\nY0znSgcJDsOHxPqs+Uy0aAaEMc71PiTWRz174WEA51pL98TmTdY3qeZTMJ5cA+RP09PS/xCuHe15\nQ4ukQVZlS0Xh7sMvWLzmAgCgYT0HuDesivTMXIn1yfKzsLI0ESpzeMdIDBt/APNWnEVrD1eBjp66\n8yPJBpYWu2Bk2JOvTEYmuxqWbZUXpDL6es1Yr5NS6kJbuwpsq5CHspSWpiI5tRHfHAUdnaooKYlH\nWVkGfiTZCMxl+JFkCwc73hKgqoisN8GKPmkQhJGRPiIuTRMuKAaHj4zBML/dMtUpLSfuvsGJu8QT\ntlc7xWuwqygoh4FCZjy68wlnjz7Gp7c/YGSij9Yd6mJQQBtYl+Pa+ImZc2Fi0BLmRj6sMXOjnjA3\n6ol3CU5wc4wjnUfnKFHKvdknyKHo33/F67VBo2nzXU8UZwEAjHUMhAsJtEHqHKxyj3NVK0RzhcQo\nCkWuuXjNBejr6eD6afYX6ekI+ebpyJKqDpaYGdgJuw7ew7NX3zFrUmd061hf2WbJjYzMscjAWNa1\nnl4j0OlFKC7mLcwhKNDBwS6FFbpUWpoqcSM4m8pP8CPJFsx6KtI0lFMVRo32UrYJckXWzgIA2Mn4\noYksUFXngAzKYVBBOjdcxPfe1TfLZKpf1vqY5PzOw+VTz3H51HME7R+J+u5OUq+jjlQw7Ii49AAk\nZrKbFr1NcACNpgM6iH0L4n4FANBCA8d41LF7SggP4uc0lNEL8f5HdYCmgypm05FX9Aapv4NQVJKA\n7LwrcLTchPr2n1i6mHpKyrIIY5zruVY+A2N98eIwJaGVleZumBTF3k3D4NVDsY0n7Wwq8uQOSIuB\nvi4KCooFypwKGUu4/p2dJ1Mb5E3Q1mtKcewUjaFBB+QXEEMziop4TwYqmE6GWYU5QvU52KUg5Wcr\nlJTECpQzMBBcRtTBLhn5BTeRniEsHE31I7W1tGgYNLi5XHRfvjoTXTsr7vSQDHmGDxkb6+Pv30K5\n6Q85+AAj/EWverb70hN8S/qFbh51WGNeDcRP7lYEGu0w3LjwGhsWnGZdh92dC3MLYwBAZ7cFMDLR\nR14u+xfn6rsVIs1lzu/j1xJnjjDisLsP9MDE+YynyL08lqEgvwiO1ayREJMGGo2GwIU90LVfU3R2\nW4CLr5ZCR0eboItz7eZtayHqdTz+qEHMqyDnhkl5cxaYm3Lmf90cYknv85sn6jUA6Ok4oL4DO7TH\nSK8hXKyPEWS0tEx45jpYrIeDBXGjKegkg4wTCbcx0FHwlzQ393+9Zb0e6czbmIZCPLRoNNBovI3W\ntuy5hUmj20ulO+VnNiFRl0nongB4+gRhxMSDCNnmzxr38d2KiFDJCkb49vPAgWORAmUGjdqLy2GT\nADCavKkjzDAuGg1o3sQFaxb1VbJFssfK8si/V6XI+r0AhYUPUVKaAEAberr1YWGxBTrajmLptKn8\nkKGxNA3pmSNRXPwB2tp2MND/DxXNV0PUipGGBh1Y4UgZmeNQUHgHNJoBdHVqomLF9dDRFp7DpQrc\nuCXc0ZIUfX2N3hbifMRUdGgnv1KyRw5HiuUwHLz2HE+2qEehHY39zcj9U4ANC04TNuLcG/PQW7Nh\nYKgHAIh6HY8xvbdg91nGF5KwuQAwbGIHjJ7JW7a0IL+IZ27XfowntkPHtUP3xotZ9x/ciIJ3L2JF\nmyWbeOuZi7IxF5UF6wdhxYwwmeljIovTCgr1YV9shNgOw/KoENZrawPJk1Yp2Ny9MBMrN14i5BQ0\ndhNvQ8ZN/57uGBTAbsrH/WT8XsRMtOu1gbDmopk+kJThg1rgyInHBH1klYeY94/tDoC9bUWePApB\n1+I+3ZeHrqAl/aCtrYW/eYXYc/i+Ujpqywq3qcF4FywonEL732ZeNC69/Ixu7rUEygzaeB3hMy8K\n1XXy0TsMaOkmUGbDlZ5YNUSw4yn8PWomx09MwOCB25Wy9s3b8k1OVrVQ2CdbAuERuAVrODo78zth\nCI9xJx1XVPM2jXUY5gQcECrDdBYAoG6jqoiPSRNrDc75/Pid+ZdwPXRcOxzdeZt1vXL6cR5HRN60\n7lBH5pv7sTO7yFQfhWjIqgyrOIR4zMOIp6sAMBqxidqAbeQz9uZBmupKFLzMn9YN86fxP7Hhtynl\nNz4xoB0mBpA7gze+Mzqszg0GOjp/EmiXKJthpr5Ne3xQr9I6sXSROTLCEPWzYF7f+F6b7/sURRcz\nWZtbtk3LGgpNHFdliktL8bewSKjcl2TxKnQJoqGzrcx0KZLOXQQ7QrLA2rqC3NfghyL281ZWpkjn\nKgqhTJ5unSSSnL62OXo43ZKzNfxR/WA9CYmL/gmA8XSf+SMuks7V1tZCZ7cFWBx4BIParsaavf7C\nJ6k5vYaUn+ZD5R07w0qE6453p+JOGv9GPJlFOeh4dyp+5LEd8oV1R8jLPAo58jZtEpraHEVH509C\nnQVRkaUuVeTVu3hlmyA3nkcn4l5ULGuz7zY1GGnZuXCbyn6IcOH5R6Rl52LW4cssGSbM17raxCIM\nTE4+eidwfeZ9YXKiIkiP29Rg5BYUosG0YGTnFchkPUmYOUtzQzkXLe6tkHXWrR+kkHVkTQf7Y8KF\n5IjGnjAEzu+B4CVnpXp6L+nc0tIynHu6iO8JxNV3K9DdfTGcXCvDpIKhxPZRqC4dPFfh5r15wgXV\nlBttg1kN2ABg1cfDWPWR2ASM8z73XAr1JO3vDTSw3iJckIJFRGggK5zK0sIYdDqQmcU4eZ41qbOS\nrZOOpq72AIAmM7fgRRDjKWmHJXsJMu/jU7Hu3D3k5BVg3TDeEF51wsRAH3Q6YGYkXYU4dUBHRxsl\nJaXCBWWIZ1vBIWmyompVK4WsIy6/snNBAw1WZsak968k9EJflycKtoqNxp4wdOrDiPVKiGUfYW5f\nFSGWjtkcYU3izr1wXPA/aklxKaI/JeNU5Hyx9KoSr57EyFRf1JsE+HcPRtfGSxDQawtiv6bKVD+F\nbLnRNhi2huL94aWcBfUkMrETIhM7EV4zrwGglJ6PG99rs35+5RGPzTnv3YprKBObMvIf4sb32niX\nNhU3vtfG659j8aeIcVJBp5cQ1rzxvQ5hLvFebcK9W3EN+d6TlHsRMzFvalcUFpaguLgUQ/p54F7E\nTI0prdrUlZEs3MjZFu+Cp7Li/tss2In5/dohcuU4QdMBAHQ6Xex1M3IYjted97L9LlJV/Ee2Udha\nK1b1U9haFAwqmZmg+4L9fO+b6joiPMYd1370w73kcawfRaGxJwwA40l++MEHmDxkFxo0ccbizUPE\nmpsUn47eLZbDwtIE+y5MEWvtv7mFuHD8CXJz8nF4+y0sCvZFy/bsLy1TM0OFVUGSVZlWQXqkWYNs\nbmJcOsYP2CGyDgrlcMiD4fCmF2Zj8OMlpDL1zathY8OJCrSKQta0tmc0ArzxvTbrNSe34xoTwoo4\n4/65cwBufK+Nr5lrUMNCukovr1IDOPQG4258C5jqMTb4N+PqE9b8nLGCZQdZTgLnWBm9kMdeWdCp\nXV10aqc+XV2FYVPRFMvDb+HuhxjcWjoaABASOBDtFu1B23ouWDSgA+6vGIf2i/egvZsra96j1RPQ\nbPZW3Fw8iqDvRXQijtx9hYvz/bHpYiQO3HoOAFgRfotv4nEZnQ6fVSE4NWsoAIg8jxuyecxwKbep\nwXiyRjX+fg31a6WwtZo2dVHYWgDQpImzQteTJ3//FsLYWF8k2cbjiA/RIjfx/13zdjgplV3SQpPE\nq1cAKmmUKIzrtw07T/H+g3d3X4yLL5eyrju7LcDSrX7w8Kwpkl7mplqSjfPCiUfwPJK8q66sHAZB\nCFpDHJ1keuTZlVKaWtAdPFehmmtlxPzLpQGAaTO7omv3hgQZ7rAlzrEOnqswdUYXBK+/AgC4eW8e\nOngyko0HDWmBgH+Ne5hjnHDr7dh2FZxdrBHLkdjPbQ+F9Kjq76Os4JcATLap5nQYuKHRdNDBidgg\n8MOvWQKTnoXZ8jSpLzzsTvO1U1SH4VFid7S0v0h6T5XQ9N81dUMRHZJF+Xc5H/EaPX0ayWQ9RXZ9\nvnl7rkISnpnI871Nm94F3VTvu1XqT1ejTxiUQSMPFyybcgyLNrFPMzq7LcDhazNY10WFjAZFojoL\n0rJ8G7FRjSw3/tI4MqI0kEv5kQl/n00AgG7uS3Dp5RKx11EWjd2dsHv//wAARw9FYmPQZbE36Hb2\nFixHgelM9Oq2EWHHHrMcBm7n4PLFNzzOCJ0OuDdxxp4DAayxDp6rKIeBQmYI2lTLY8PN3PyLskYZ\nXXBTOE4KS38KF6KgUFGOHn+MTVuvAwAGD2yO0f/zlFiXlhYNZWWKeX6rYtVOpeLSpTciOwyNxwWL\n3O05MfcmHv+cTRhTVElVQINzGJTF6Jld8ej2J0KFJc/ObrC2MQfAcB56NF2q8FKqqsah7ewY59Yd\n6vCVs3Fgt3IvLS2Tq02yZsx4duOsocNbS6SjYaOqrNfVa1QBADT1EHxUzM8J4LSHgkJRGOo6Ir8k\nSeZ6o37Ng2vFqSJVWboT3wSmeoyESnODRvhbzI5553wNACVluTK3tbzireeLqW2XCLxPIVvCQ8fj\nzvXZGDa0FY6feAIv77X431jhZebJGDhIPt2kVYEa/75P5cGXzykiyb38liiW3sc/Z6N/tZeEH369\nGeQBdcIgBwQ5A+XdUWByfO891usFQkqcXXm9FF0aLQYA+DRbhohnsmtip044uzDKmerqEksQ5uUV\noWfX9VDN6EIKdaRDm5Ws1zfvCy/MwP20X5tmiHZOrwAw8h8if3QgOA38cgRSciNQyag9GlbeJnTN\n2lZLcCuuAaKzGDHAetpW8HR8QGqPm3UwKhszKhI1tQnF4yQf5BZFA2A4NJz2uFc5yJrrbD5aqB0U\nFIrAXcwYf/9hreE/jPGg6ufPHHTrGYy8/CJYWprg1PEJIukIGNUWx0Mfi22ruEyfofjqWb16u2Pd\n2ksKX5cT9+r2Yp2sdHQ4Lj9jREDjHQavTmsBAHeuzRYiSaEMzC3Iy4dxwtmZsbioRJ7mqCU9uqxH\no8ZOCApmP60jy2ugoJAWScOOWjvclGgeP9LybuLdzykCk5MF6W1hx7/qnYVhc8Jc14rlr9OvCm32\n7QAAIABJREFUIpjSZrGyTVArhgxtKdE8L++1rNdnTkxEn4Hb4OW9Fneuq86eqGs3xTfyFNcBkxet\n6opuR05RLMz1asjRGsFovMMwbrQXBvRtpmwzKPjQd5jiqj5oIuNGHQCNBoKzoGiCv5zE5RTBT6Gs\nDSriWPPyeTJEIXs+pM2Ck/ko4YIUSoEz1Cjq0Ve+oUd2rvILCxHG1/hfqFG1knBBFaFBA0eRZTMz\n/6LvIMYpXRN3ZwStHsC6d+f6bHh5r8WK1RFYMNdH5naqC1ZWpso2AQCwZUIvkWWf/pwPRxPl9W7R\naIeh/5AdKCgoQviZFwg/Nh4A+8Th8P5RcLC3gFentaDRGEmh1CmE4tm/6Tr2b7qubDNUgls3Pog9\nR0uL9zxTUacLfR7Ox5/iPJFk0wqyWI3c1K0XQ1xGFpwsKyrbDAoO2jm9ws24evj+exdrrG3Vp0q0\niIKT60WhAAA/10mwsrdA8N0lyjWIhGHzj2DTrD5Yc+AmSkrLcHErO/ysy/hdyMph/217cnSaMkyU\nCOaJgqATBP9hrRF+5rmiTKKQEdw5CzRoKTTpWaMdhvBj43Hh0mv06MYuMcZ0Ctp3WYdbV2YBAG5f\npRwFCuXQwXMVHBwt8SMhQ6L523f7o4PnKnTzXoc6de3x+lUcGjSsirdv4mVsKRF+XZxFnasMp6HW\nkmB8XiK+3ZSzoJp0cBLfwaZQLGPW++H0JuXGiQtiyrozrNfNh25kOQZZOXk4vGIoajhZY9j8I0j5\nlQObShWUZaZYiBJqNGxoKwwbSp3uqyOKdBC40WiHgZsNm6/B1cUaPX0aKaxUGIVglmzyRXMFtYNX\nJNylTsnGyGT43ed8PWuuD2ZxHCUL0yOqPaLyMJ1YP7+JRS2sdhsjdM6SD+xKHdI4DbWWBENbi4bS\nMjrLAai1JBimBvqoVaUSjozoj1pL2Lo/L5kKv5BwAIBfSDiOjOgPAGiwYiuKSktApzNkOm8NQUFx\nMVJzcll6Z525iiHNGqCBvQ1rPhOmHgoKCnJa92qK1r2aKtsMvozo6YGx/Rkb51tPv6L/jIMIX+8P\nAKjhZA0AOLzSD32m7seZ4P8pzU4KCn68z9iK+paBClmrXDkMX7+lom8vdwROO6ZsUyj+ce3cK410\nGOTJz4JkxOfFoJnFf0pZn3Pj39u+Dca79hY6p5VVfdxoGyzVyQQnUYvYndeHhYSzNvjLL99hjXOe\nJjCdCM5NfmFJCUHmauAIAMDHFHZzu3V9OuNtYgpBDwUFhfpjXsEQbtVtWde1XSojLfMPqWxqeo6i\nzKKgEIusos8KW0vjHQbOcKTd24YDALZuZDdVo/IWlMvju4r7ZVc0iz5MwrJ6W2Q+p7KBLSob2AqU\nkYS4v9FwMnYVWb6ygYVIzgIn1z03wvse49h/7adjmF17iJAZwtHV5iwzK/nJITNkKel3DurYWEtt\nlybhN2g7UpJ/871/9fZc6OiQt/URp0TrpvVXcPHCK1JZpp4zF6ch7vsvTAs8QrjPlOdcT9R1yeYw\nqVvPHpt3DBc4n1sHc72BfbYgI518E+rpVRsLl/YRqlcTWD5oMx6cIc8xYeY7KJpLW8eg1fBNGN2v\nJUyN9LHh8B1UtjRFq+GMRqFHLj6HX/emiE/Jgk/bekqxkUkbT+kfqiUmZsLe3kK4oIJp5lFN2Sao\nNBFxHeHjdAMAcC95HM/9XwVU4zaKckRaCv+NiKoS+GoI6KBj0quhrOuc4t+Y844dmpNVlMEzBwBh\nzvKPM1BYWsB3TviPEMJcJnF/o1mvD37fCgA4EsdIAN30dRkmv2Z3984vzUNhaQFeZD5ijXHaICmH\nPITX5+eGs0Tu4wzJY9AbrtzKCjva79cHtZYEo9maHfiQLLhLr/eWg3zvadFo6Lw1BFr/bEz7k4tp\npy5j5ZW7WHON3Tek4cqtqL1UvRK3peHgvnsCnQUA6NxutYKsAdavucjjLABAl/Zr8PdvIekcfj1K\nHj38KtBZAICoD4lCZcjo0GYlX2cBQLlwFlK+p8Fbz5evs6BMtLW1sGJiN+w59QgbDt/BqL4tcX7z\nKOhqa+H+wUnYHvYAzYduxMCZBzH3fx2VamszIc06vbzXCv3xG7lXQdaKR7t2/Bu3UgAFpZms12n5\nz3h+6PRShdmi8ScMFKrJuccL0KsFo4ndsC4bcfXNMiVbJD7MTTeTCrrmGFttpsA53Bv0hXXWC5Rv\nVLE5lkYJDuPxd2bELz7LfAA/p7HoYTsIwV+Xsu4viZqKvBJG99omFoxa3uNdpT9Z06ZJ97xBm6Yt\nXIgPb+YTYza5k5nJkpuFyXxcPIVwbW1qgo39eBsKca+t6Rw7HAkAGDCoOUZzdAvPyclHn+4bWdfL\nFp3BomXy3wQ/ivwKCwsTnDw3GQD7yX5xcSl6dlmPFWsGoHnL6lg0LxyPIr8CAPyH7kTIMd6nc4vm\nsnNSPJq7YuW6gaxrehkdHduyK451aLNSpCZ2AJCUlMV6ffj4eNjasRPnT514il3b+fel0CSG12T8\nP6WsUwRhdGheEx2a1ySM3T0wCQCjMlLr4Zsw1c9LGaYRaNzYSdkmyI0WLUU/1S6PcCY5kyU830oc\npjBbKIeBQikYGOphV/gEjO2/HQDQueEi0LRouPBkIXT12L+W7158x+zRIaD/S1JXFceigq45Vtbf\nLlBGh6Yr9ZzfRZlYXDdYrJMALa6NfMfKPuhQuTthzEDbkGfe3xL+T0PJoNPphBMDcRnm1EniuRSK\nhWyjXKGCIW7en8/asN+/K34DNklhOgsA4FLNGrEx7LyT5i2rAwCWrerPsi3xRya44Tw1CDs9CVaV\niHXZaVo03Lw/Hz26rEfev5OLRw+/omUr4Y2Thg/egb0ho+Dswhva1m+gB/oN9BCqQ1O49OeQsk2Q\nmMhDU4QLKYDKlc2EygirjpSdnS8rc2SKiYmBsk1QaywNFNf0jnIYVIzODQU3t+J3n99GWhJ9xiYG\nOB0pWQUdcXCqXhmWlUyR8YuxUaWX0eHTTDUcAmEsqBOE6W/84Vt1FNwrknfgDG4Ugimvh2NTo0Mc\nc0bCt2qAwDnT3vhjY0NG6MzLrEc4lxSKmqZ1AQAJebEI+rwQANCpSi90txWehNuhcnes/TQPhWUF\nWFR3I1+5q6nnEJawH8vrbxOqEwDmv9+DVUKqIwmip51kSduSlEalkJxqrpWVbYJA/jfaC/Nnn5BK\nB7ezwMmFKzNYzsWiueEinzKQOQvlkefX36Glj7twQQqJORoyWqiMmRnvQyIK9aeh1XSFrUU5DBRK\n5dgNRgjPoHZr8TvzL185axtzHL6iOs1zDLWNsKEhOx5+a2NG5S3upGGms8Cec4BnDjcbOfSOqTaD\ncM/RyIXvPE4buGVm1yY2c2PaySk3veZSiAKz2tHzzM/ILy2Eoba+SPMAdv8GSZ0FCsWz+0CAwPv/\nedbCg3vKK17QkCNcw6WaaJv0Tl7snAtRHIAKFQyRk8N4Qksvo4NG0jCRkwmTvEWyQ9O5XhQKbz1f\nLDwxBf/1bqZsc3hoPpT/AxR1atZmZ0v1iqGQP5TDoGLIOuRG3iE8stIfdpuqVqVOGGnrI6+0ED0e\nzMG51qthrCP8WJmzpOrE6pqf8FleMDMzUur6+vrsrzHHqlYizSktLRNrjXGBHbF25QUAwP69dxEw\nRnBce+9+qtt7QJH4mI0AACwfuImvjLLyG+ZsYvx7qpNjIAqlpWXQ1qbq2ZQXwmPcFdbMjXIYKBRG\nccEV6Bp0we9kB1So/Axa2jbKNomCBHF7JfSKnCuW/BwZlFKloCBDXvHQHTvVZzkMVy+/FeowUDCI\nyA5Rtgl8eR6VgOZuTso2Q+Z06BKEHVv8MHl6KJYu6o0W/8qW5uUVolsvtuMmSkdoCgpOKDeUQmHo\nGnRBwZ8NMLf9gT9p1BdueWXNp2Mya+BGQaFocv+oZvIohXisDOyOJ+/ilG2GXBg/6QiKi0sxb+Ep\n9tjko7hzfTbLUYiN/aUs8yjUFOqEgUJh/E52gLZuPRiYToeOfvmpEkJBQSEaP39mK9sEUjjLpNap\nZ69ESyhkRXM3JwTP7I3mQzeiU8taqO1ShXB/UOfGSrJMejhPD3yH7ULo4bGIj09njY0f2w7zFp9C\n2BHeUsMUqkdBaTpuJg5FfgnRydOm6SksHAmgHAa5UG0DO5EqZrpmxUdKg7ntD9ZrYwv1LbWn6dxo\nq3lNyf4UJyIivi/r2tdVeCOp0GgPkeQoZMeL57HKNoGUKxdfs15382mkREvUD1/niUhP4i1ry0RZ\nOQycCc/XHn3GtUfExH11dhg4ycziLSbiaG+BtDTxymhTKA8DbSt0r3pV2WZQDgOF4vid7EC45nQg\nKCjkiamuPfo4X8WZ752VbQqFAJj9VuRNuw51cftmFADgY1QS6tS1Eygfduwx63X7jvXkapsmMdZ9\nDstZcGtTG+/uf0L1xs749uo7AOBaAXnFN0WgacnOnDx89A2tWlZHfHw6CgtLeO6/fBWPmjWqkMxU\nLPr6usKFhDDl6Sls8uiH91nJqF/RVgZWUfCDchgoFAang0DlMFAoGgNtqvSgKpOXV6SwteYt6sVy\nGCaNCxFYWpWuGB9GI4l9n4BZB8ehwxBGGWVvPV9sf8LoaVFaUopOBkNUtgu0unLn+mx4ea8lXI+f\ndARDBjWHl/daaGnRUFZGV4mkZ3t76f4mt7u6Gbc7M5o4Us6C/CnXDgMzdIgKG1IMdPq/o1F6IWja\ngp/oUVBQSE5c1A+MbjhTZPnrxWFys8XewYLVaTkzMxcWFiakcj06B8nNBjIaNXbC61dxAIARQ3Yi\n5Bh5PHdHT3ZH6Cu35ijCNI2ibf8WpOPaOtoKtkR0mg/dqNYnENzOwI4tfgCA4X6t0aPvZoQekrzh\npiypWNFYqvlW+uy/JXG5GXAysZTWJJUmuygaZnrEXk+KLKtabqskFZTwHtPJipjp01g/FGxoNGPG\nj5YFTCyPKtscChXgR+4dhEYzEuDL6CU4Ht0CRWWM2NrQaA/8yL0DAAiPbY/QaA+8y9yNs3HdWHOY\nhEZ74FbSeIRGe+Bm0hhcThiClLwnItvxJmMbQqM98Co9GNcTR/Hop5Aczo34gF6b0aHNSlw4y/iC\nS0rKQnfvdaxOyktW9CXVIQ+CNrHL+yb+yESHNiuxeeNVlJXRkZtbgKEDt7PsAgBTUwPo6qruJldV\nWTqAmBNVWlKqJEsodHW1ceXCNKk36rKiShUzqeaf9PofTnx/iWYR62BnZC4jq1SXtPxnSl2/3J4w\n9D9+XNkmlDv+pLVHaclXAFT+girytyQV5+N6KjTR18GEHZr2IHUOWlZZhgcps9DebifrPp1eiuKy\nXJZdbhZjEBrtgUsJg9HNkf3/8c/8lxLb/jHrCNytpqGm+UAAQGbhJ1z9MUKyN0XBg0s1a8TGpLGu\ntwRfxZZgYhLfgMHN0bpNLYXadfP+fIJTEHHuJSLO8T6tq+pkhf2HVeOprDoxYIYPTq6PYF2fSduH\nLkZ+SrSofPAhKhHTZoWhuJjonKlCGBInRsb6UusY6OyOgc7uMrBG9dHVMlXq+uXWYfiYRtUgVjSm\n1rdYr7NTasLM5osSraHgxlinCrRp0v8Bl5Skvw/gabMeD1MXEMYvJPA+dW5SaSZe/JJtCAvTWQAA\nC/3aMtWtaJzqOuB6cRj+ZObiw8Mv+PDwMx6df46k6FSl2LPn4CgAgP/QXfiRkEG4V9/NAcHbhinD\nLABg5S8M6LUZmZm5hHvdezTGlBldlGGWRhCwajACVg1mXZuYG2H/+/WY1m4ZvP3aYNQaX4Xaw6yM\n9OToNEKVJE2Cmb+wfbMfDA2lTyqWJ6amhlLNb3VpAx52my4ja1Sf52lL4GjSBVo0xtadDvE61ktL\nuXUYKBRPQc5aGFRgPOHQNxmvZGsoyBhY7b6SVuafWVpcmsszpqulGkfqqo6phQla+LijhY87Rq1h\nhOB46w4SOk9QEjA3U2Z0EXlTffDoWInXFmSTJHO4OXlussiy0q5VnnGoaYvwpF1KWZs7L2HR2M7o\n2roOj5y6OxOqdpLAD2NjPanmP+w2Hb73DmKNe08AgKOJhSzMUlmcTLvjdCwxXLaPy0OFrV8uHAa/\n8FN4lJDA9z5n3wRuhOUhDAgLw8ukZInnc9tgbmCAlxPGo/rGYJRxledg6orJzIT3wRDCPQMdHURN\nniTyOvzY6tMdXWvUEMlmcWE6CwBgYCrdl7Mq8bc4BbeSJ6CkLB/dHEOhL6AaT2TqXKTkPYGzaXc0\nqUT+ZORtxi58+n0ENc0GopEV/3/Tm0lj8Sv/LZwrdEVz64V8pOi4kzwZWYVf0d5uB8z0XMR5a6R8\nyz6FF+kbYaFfCx3tdkGLxvtH/2f+CzxInQsTHRt0djgsUF+1Cj3wOn0r9P4dt2rRdJFV+BXOpl0B\nAJ62G3AjcTRhzpOfy6R+H9yU0guVesJCQUGhWDzdXYULUcgNHRkkvod6+svAEvWgqfVSNLVeqrT1\ny4XDIMhZUDV+FxRg8a1bPM4CwNjsx0yfxuMsAMKTuEvpdNTYKLwhV2DERZR164butWqKbLMk/E52\n0Ig8hrcZuxCVdZB1ffp7Z+hoGWKAy13WWGi0B7o6huJyAvv4/Wv2SXzNPskTc89MtnU1642v2eH4\n9Jtdp5wpG5V1CG8zdrDGY3MuIjbnIo+ukrJ8nIxtC22aHhxMvHApYTDhPlM+7s8VPPq5hGeczC5O\nMgqiEBbzHwa7PgaNo34CU9bJtBNyi1MIc8l0u1eajgtxfeBpuwEA0KrycrzJ2IHWVRix5ZUMGgAA\nwmO90N/lDgA66CjD4GqPeHRJCg1aOBHThmUflfRMQSF/vPV8lVZWVVAVpHkBHRVoiWy5cXkmvLzX\nqsUpg45Oua27o5aUC4dhXedOPGOzrl4TeF9UTg5iH+8XlZbiRVIS/MJPSawPAI6+eQtXCwtc8x+B\nRtu2I6ewkHWvwdZtAICn48bCTF8ftTZtZt078uYN/Bo2JNXJ7SzMb+uJke6MRKEHcfHwP32aFRQy\n+dIluFhYoI51JaneBxM6PQ80mhG7rKoGEZV1kLAJLi7LRXhsex65ywm+pBvr+NwbqGrS8Z8uRvdr\npr5mleawNq6ca9StOBx1Kw4n6A+N9sDr9C2EE4mTsW1Ry3wQGltNBQC0rLwModEeaG+3A5UN2Uli\nTqZd4GTahaVHEE6mXdCy8hLCusejW/A4AmSOEL+EZB2aAQpKM1iOgYOJFx6kziGEHfm6PkVYzH8s\n+/o6XweNJvrTKbKqSpx2DnZ9jBMc+ge7PsbxaPJykBQUFJpNj7b1lW2CxHTsysjt4uzFwETVnAht\nbekchoRcRrnm/NJi9L2zFx96LRAyg0IayoXD0LduXZ4xToeB7L4k6Glro6Wjo9R6+tStg6DOjI60\nrydOIIQR5RYVEcKcYqZPY91fcus2qcPAOf/y8GGoaWVFuP+fU1VET59GOIXwOXJEZmVhaTSjf//V\nrLhzss21rhajLvT9lFloY7OONV6n4nCCs8DkadpKlsPwIXM/9LQr8OgrLuON4edGi6aHT7+P8YQw\nMZ0FTh6kzEY/l5tCdZLB6SwAwIBq93AyxlMiXZwIczgAYFC1ByLPF/c+AAzk0q/IalEUFJpCSXEp\ndKjys0pD1ZwCecKZs/Cgq+aXsQ+PcUdF/VrIKvwMa8OmSMt/jjY221HZqLlC1i8XDoO6wXQWmAxy\nc0PYu3cy0c3tLHCiTaOhbmVrRP1klD/Mys9HRUPpqhjwQxPCkZiQOQ7JeY8J17XNh/DIAIywISZe\ntptxM4mYFCrIWYjNuYj43BvIKvyKMjp5l9yzcd3Q2+kSYYwZ+iMLdGgGpOP5Jekw1LFivaagoCgf\ndDX2g76RPiJ+H4S3nmKrIInLsUsvsPU4eaEHdW7cVl6odYady+ZtVxtbPPor0Rr508R6EZxNeyIi\nrhM8bRmFAxTZuI1yGNSAic09JHYYOE8XQgcI/5/pwtChrDlNduyUafO5spJYaOlIn3SravSsek6o\njL628AY11oaNUN2sL8EBaWw1GbXMiV+6odHNAdDRtNIseNkyQtKOR7fgKbHm6/qUEGYDgCcsSh70\nc7mJU7EdeGyhoKDQfLhzEtoOaIF5RwNJZZXpUJy49gpbj9+nHAM15nOfRco2QaEYajPCxG2MW7PG\ntGiKK51LOQxqgLUJu/25fYUKAiQF4+HgIAtzJEYTnQUAMNa1kZmub9mn0dXxGMz1BFXvoMPZtCuq\nm/XlGCGvx1xKL1L4Zv3s967QoukJDCEio0OfjTyNhgDgXsRMwrWnD7H/wojBLeHv24pwP3jlQEyd\nf4IgF7LdH86OxBM2bl0AUKemDXauH8q6LiwqgXdfYg4Qt00Ugrl26C42BJCX0uw1sTPGB49QrEEK\n4vOzaExqRR5X/V8fDyw8wRsyqGnUbSnfAhqSsvf0Y1Sxkvz7VN0oLCyBvr5mbfn63dmHU14BqHVm\nGfpUbYhV7j2UbZJciUyZjH7VnqNJpYW4mtAXnR1Po4xerLD1Neu3R0PRptFYr2tW4h9SJAxhJVXl\nTXZqPdDLslnX6h6W1NF+D0+5T1nw+fdxAWVSGVQ16SDwPidp+a9hbdhIWrNEpvRfeBQdZWKdZhQX\nlwrdiHv6BMHEWB+XwiYRxjgdBgCYOv8EQVda+h/0999FGPMbtx96ejq4cVrwps27bzBC9wTAzoZR\nLvdQ2CN4+gRRToMIiNLz4dy2qzi3jdH1edzG4egdKHqjNDL914vDRDdQTjpFed8PzjxlyV34fQgG\nMuh6q2ooqwKSKLRrVgNXHn5Uthky4ebtj+jQjtFP4nsceVPaz19S0KWTmyLNkjv5JYzvmvJy0tCv\n2nPWa1ez/jgd60EYkzeUw6Bm6GqpbzKZWZUPyjZBplQyaAAatBAa7QEboxZwNu2MuNzrSP77UOKn\n+hX1a7DKpHLCre9uyjT4uj5FXskvnIvrDmvDRkjLf02qkzsvglvfx6zD+F0Ug1/5bwAAlxOGwEzf\nBeZ61VC34gix30NPp/M4H9eTp8qQrVFLtLUVXtpXGJzOApN1W65i1qTOJNIMrK1Meca0tbVQVCS4\nHHHsvy9fprMAAMMHtcSBYw+FrlmeeRzxEov7iN+Je+e0Q/j8LBpzj5CHsHDTd0o3nN50SbigFAye\n00sseVGcBW56mA9H8+7uWHa2fDmhynQo5gV0xIW775W2vixZuSaC5TCMHH2Ar5ymOQyXOo5Howur\n8brHXCx5fQlLGnVTtkkKw9VsEFzNxP9bIw2Uw1COcLHg31BMEeRmDERJIbt2vrqfMACMnAA6ynA7\naSIe/1wKB5O2IlfbIS89+gQAjTB+PLoFLicMQVfHY6x50dlncTy6BaoYNSPV/6f4ByLi+/HtqcCp\nr07FYULfpyAHiPNeWEwr2BjxllnNK/mJc3GCj4v19XRYIUITA9qhf093UjmyMKJLN94TNu8GBsLj\nOkO2+cPTJ4ilLyI0EBVMiUnc81edE3lNCgZbJ+5HxO4bEs+/E/YQd8IeivRUf0yQH4/DkPUzGxUr\nC88ZIuPLixieMf/lon0pH11xGoeXhku0LgA8ufgS3rqDpD4hoeAPWQdnfl2d1Sm3gbsyElmlpJSU\n34oyR6G87jEXAMqVs6AsKIehHHHDX7kdEU0sjiA7tQHMbD6h8O8RpdoiS2jQQnu7HcIFRdTGjbl+\ndRSWZhHGXM16w9WsN18tV374CVylqCxHMvOEUEYvgafNep5xI53KQude/xca5OkThG37bmPbvtuk\nYT9kJwzcmIgY3nEvYibSM3LRd8RO+PhuhVkFQ1w4NpF1PysrT+Q1KYCEz0mkzoJH10ZYfp683OOL\n628xr9tqnnFJN88D7cdIvOkObDFfonkASJ0F53qO2P16HYk0kByTihG1pvCMf3sVi+qNNTPfixtF\nN25TJydA1tjYmCvbBJkz8clJDKvWDNaGpuh2YweiegsO5dUk+h4KxbuUn/g2R3F5UFSbPQrFQdOC\nrgGj50DBH94NAgU5WYVf0IZkEy4Ia8PGpOOpec8AQGx94hCfy7thDItpTSJJzr2ImSxHgezJvomx\nPumPpFhZmuBexExcPjEZ2Tn5OHLyCeueh7uzXNbUVALqT+cZW3J6Bl9nAQCaeDfgu8Gnl/F2vOem\ntkd10Q0Uk2ZdRMv96WnB+zDmWuFxvs4CANhWq0L6vid4zBPdQAoKLspTH4ZHabFoVskJTiaW5cpZ\nAICvvzIUviblMJQjdjxVdmlLHRhV3AIAMKuiGclmsqSr4zGERnvw/FQ16QgLffEqjbS12QhjXRse\nXbeTA9Hb6ZLY+kTF1/UpHqYu4Fm3jF4idl5HRTMj0vFeQ7fLwlQejI30AAAXr7FLGC+dwwijyvmT\nTzqHgg2/ZOGWPZqINJ9s89xJf7DQeZsjl/OMzfLmHROGr9N4nrEVF4Rvvp5ffYN8rt+Pk0l7QNPi\nPS0kQ9L3TUFR3nnVYw4AYPaLc+h1a7eSrVEsBSWC8+/kARWSpOF0rVEDl79+BQBsiHyI8R68TcYo\nVANzPVeZlkAVpT+EPJD0PXj1WI/ZkzvDo4kLbtz5iKzsPLi6WBNkhvTzwLFTT/G/SYfwP7/WeP46\nDmciXklUscjTJwh1atoicFQ7mJsZYlXwFQBA6J4AHlkf323w7ecBtzr2CD//Ai/fxlNVkuTA5b9H\n0dV4KGFs57RDGLdxuFh63tyJEnvt9KRMwrWuvmj1zef7rOEZM7eWrlynKCcrqoqqN2tj0nzoRozp\n1wr+vXi/E5sP3Viuw5fUjbVNxCtMQCEZlMOg4Wz16Y7LHOVUgx5EYuZ/ooeHyAI6/S/PWHZKLY1I\neqaQHXOndsWx8CdYv+06GjVwJN2Qjx7eBqOHt8Hy9RexYOU5uDesiovHiRV1+G3kucfvRczE5j23\nMG/5GZSW0eHTyQ3b1vI+2WXO8w8MQfi5F+jdrRE2rhgg6dvUSN7e5d2gH4neJrYeHT1p7UiqAAAg\nAElEQVTer6SzW68IdRiuF4dJVJ1IEJdyhedZpSXwdjGXJH9i8o4AbB6/T+x5qoqoeQnq4lyoE17e\na9HcoxpWL+/HumaiaeFKc1+ex2r3nso2Q2Kqr5G+aqAioRwGAJMuXsSW7t2VbYbc+DRlMmpvYnQE\n3vXsGfa/fInPUybzlffcuw+JOTky6/JMOQcUouDtVQfeXnVEkl04ozsWzpD+/9nJo9tj8uj2Iske\n3DpC6vU0lVneK3jGKleVvGeMLLi09ya6jRKtX8mmcXslWmOCx1yJ5nHTbVQHHoch9/dfmJgby0Q/\nRfmC6SyEHIlEvbr22Bo8hOA4aAo3kz+rtcOgbpRbh+HL1CmoGbwJAHDpy1dc+kJeWk3QplmURmj8\nZGS1GRcFPW1thA0ciEEnGJ1vi0tLFdrEjcxZoBwICgrNgU6XXQjN0jMzJerhYGhqSMgl2Dx+n8gO\nw+V9twjX9jVsRZqXnf5HdAPFZNf0w5ixf5zc9MuLM2mqfVLCWUZ196mH2H3qIY+MAclJlzpy6MhD\n1qnCyBH/Kdka2fPcZzZqnVkGAKhjXgVn2sm+kaq8kbTKkTJOJzTj/woJ0NHSgpWREdLz8pRtikJo\nam+HmOnTlN7tmYIc560b8D2Qt8KMOLQ4uBuP/cfIyCIKCslxqCnahpuMFj68/TfuhT+GZ/8WJNJs\nzmce5AlLKi4sFpqLEPM2jmfsQJTy/06+u/9J2SZIhIk5ebECMpTRuI2ZmyAoh0HdSfiRgafPYwlj\nX7+mKska+VJeujyrAuXWYQCAp+MYHXC/pKdj7f0HiIyPh6meHupXqYwpLVuioY2NwPmyPCUQpkvQ\nfXHsYMq+TErGrmfPEBkfDx0tLdSxtsb01q3QzN5eZF2iQqfngUYzIuQyUGFKskdPWzldwL3vTSN9\nwnyjrXrFZ1LIjs7+XjLVd3brFaEOAxndTPyE5hSMazJHUrNIkVUuRWpcmkz0UJCzeGxnpMrxhEhZ\n3Lk+mxV+xJmzEPnom7JMopAD1iYmSMvNVeia5dphYFLTygoH+vBvgqWJuNvZYm9vxVQWoIHxhI9G\no+Jx5cm9YbzVfeTJs8xPmP9uj1hzOt5lHL8OdGyPABfNzRsq79i5VpGpPlE3z5sjl2Nya+nqsZ/5\ntV+q+RSik53+B2ZWpkpZu0tr0fKl1BGy5GZNS3hmhiJxom6nDdI0XatZyZJyGCg0EBpvSICWTlUl\nGKLalNHpqLaNEQpxfsAQuFVmb7qct25AbOB0uGzdwBpjhjA5k4xxzlvT3htzbl0HAOz36Y12Tuwu\nss3278KvPGIVK1FCow7FXcXRuGuivjUeTiTcohwGDcaYTw8NScn6mS2SHFkTt6D/7cRMPrkAfq4T\necaoRGPF0d92jFLCkijUH3VzDmTNgYF9FL5muXEYBj5mhB+daLGLr8zpxEs4+SNCqByF9FSwjlS2\nCSqHz4mjBCfg47hJMNRhO1vHP7wj3cyTOQ6cNK5iS5BhvvY7dwqFpSWk94TB6Sz0c2iLMdUYlSqY\nJwj8GODQDid/3BZpDQr1RdQNvqjYOFkLF+LDjcP3+DoMP+N5y6JKy/msEJnrpKCgoFA25cZhEIXq\nJs7KNkEulNLLoE1TflPv3AxfGFuwyxdSIUpELg3yI1z7nTuFU/3YfQF867lJpLe6hSXpeNSvNDSx\nsRNbX+/IeazXC+uOQJtKDUSeO6qaD8theJIRheaWdVn3UvI/4GzCVJTRSwEAE2sRHYttn9uxXjPv\nbfvcjvDaSr8aBjnvxauMMDS2ZMSSP00/iOfpjJr6FvpO8HU+QNA5sdZtUt0UkvP5WTTaDmwpM321\nPFxFlh0T5IfdM4X3UCCDrGu0uBiaGEitQ52Z0Hy+sk2gKCc8+BmNg9+eYFSNVvCPPFLuTx3kDeUw\ncOBmXkfjThYGPxmPMnqZSrwvfeMAykkQEUtDI3zNyJDrGq9GjYfz1g2Yd+cGTkS9x+ZO3USal1vC\nKF1pa2gllrPAzdG46wSH4XT8JNZmvZRegh1fOmJ8zRugg47tn9sTNvLMjX5FPQck/H0BR+Mm0Kbp\nIb0wBgDw6NceNLYcBDroiM65y5r7POMowckAgF1fu1BOgow5u+0Kxm4YJtHc4sJinrHek7qKPL/v\nlG48DsOa4dsw5xAx/MjPldjwDyAPaaIQj2+vvivbBAoSvnxNRc0ass0tUjbbP91HWNuRADQvROnY\nq7dYcp39vSRNvoOsoBwGDaeMXqZsE/A72YF0nKqSRCQhOxuOZmYAgIz8PIxo0Fgh667y6ohVXh3F\nnrfDXboysHF/UwjXtkb1Wa+1aTqsk4bwuPHQpukRZLVpOjgdH4gONnNwM2UNPCqNxH+VJ+BuKrEy\n0+n4QAxxOcS6bmo5FE9/HSDIjK1xRar3QcELvUzyvgwhi07wjNVsUk0sHdUaOBHKpd4OjeRxGH7G\n/yJc950imsNMIRxZdXp22sPuxxE3eibPvUe+Y2BrUkF8AzUML++1rKRmQQ3aNC3xubC0RCOSn7kR\npcdC9TXBMNbTw5tpExRgEQONdBgi059hV8xh2BhURlAD6SpmiMPUN4uRVpCBzlXaws+pn0DZxVHr\n8fVPLJyMHbC6vujdQjd/24c3WVHQ19ZD44r1McSxD4x1yBMMfxb8Ih0XRkFpIYK/7sH77M+ob1Yb\nc2vzJgYKIvZvArZ+24+c4ly0rdQCfk6UYyAKnof34eIgP7xITgIALG4j29KU/GDmPqxp542BdesL\nkWZjrCNd6IWBtj7hWk+L/PQprzQLprrEGHZT3SrILfmFyoa1kVX0A1eTlmJirdv4VfCVIPen+CfL\n8WAyvuYNqeym4KWzvxeuHrwjE13hGy9KrWPnizU85U1//chAJQdGeN6X59E8c8YE+fGMCaO2R3V8\nekqVq5QHjQ9v43ESOBF0Txqc9gTJTbe84HYEyByDb9E/FWWOwjjbXv0atQmD6Sy0cXHC/gG9CWPc\n/C0qUphdgAY6DMzkZgBIyEvCwMdj4WriJPIcJsJCeDiTqIc+DURxGfsY/WLKTVxMuUmqY8iTiSih\nl7CuY3PjRUrI5rYxrzQft35G4tbPSAx06IE+9l35ypKN8VvL72kgijjey5vfHzDw8VhY6Vtge+NV\nfG2zNayM4IZLST8LM70K6GHrzfe9UTD4Hjgd3cKO4HdBgVhN3DiTnZmvRZlfd9cWNLGxwxSPFigs\nLcX/Is4i9W8uJjcTv969JDSxqEm4jst9QirXyXYBTsdPIoz9LkpEL4f1PLJeVaahuCwfNoYMx6dt\nlSl4lRmGJpZDZGQ1BRnT9ozhcRi2Tz6ICZv9lWQRL0NcJrB6MgS2XCATnZsjl/M4JpvG7sWUXaNk\nol8dEafqUXjybr73Mgvy+d6jEB9np0rKNoFCCHlFjL3T0k7t4NtI8nBfeaFRDgNzU9yh8n8Y5cLY\nINBBx6DH5BUymHBunsk224JY9jEYxWXFBB0l9BJ8zOF96sR0Fuqa1cSiOux4tKVRG/Ex5yuGPJmI\nY8238X1f3LYCwOWUW+hq017o+xElh4EpG+Dii46V27DGRzybgvTCTAx8PJavnuT8n6RrldBLoEPT\nqF8zucDc4HMnPnPfl/Ye53VecTHC+7E3Ox1dXHHq0weRHYYpr7dgU6NJwgU5WPh+H+v1nNpDCfda\nVBpFmnxsY1gPLSoFEO41tOgHe2NGyJaxjiWKypilYWnY/bUba66zSStcSlyIJxy19a0NamCAk/Jz\nejSd8zuuie0whG+I4BlbGSFZYzXP/i1wL/yxSLLc4UrScHn/LUzeEQCaFk1mOjUVaXow8DsJcNoT\nhNFuTXE2+iMmNW6BhZE3WXInPr/H7PtXsdGrK8z0DTD9zmW8Gc6by6LO8As70tFRfuETCsH4HDgK\nACrpLAAa5DC8/f2R9ZrpLAAADTScaLFLbEdAVKKyv/BsonVoOnAzq00Yo4OOEnoJdLV0Cc4CACyu\nOw0DH48lnDwwmfZmCQBAm6aF0OY7eO5zOwuSUsoRtsHpLABASLNNIn9+ZJ8Fheqy8clDTGveCldj\nvuFGbLRYJxtR2eInNz7JiOJ7L7Mwjm/ysbulL9wtyeOd/V3DCdfcOgQlNFPJzrKjz6SuOLPlMmHs\nwPzjGLlyMJ8ZvOydc4xnrGnnhhLZMz90ssgOQzvf1hKtAQDXi8N4Thk66Q8W2mGaQn68T/+J50PH\nAwD86jRijS97fBt2JhXQpzqj2IKmOQsU6k3qH9XuPK4xLueqT1sAMDa3isTZ2FEkuVHPGU84jnps\nJb0f4MLYDDH7QDBJyk8FAFJnQZb4P5sGANjYcAnp/Q0NGElEY17M4qtDFSoxUYjO98DpiMnKRM0d\nm3Dy43uRnYUQD3ZZVWF9FzgZ+Ww16zV5dSXJE2UplA9ZVaSwdedxae9NkeZzb7oBIOyHbP+mJMek\n4ubRB4QxbR1tqfVWrW3PM0b2fkRB0nnqiLCkZ0k53n0g6XiU/2Qk5ebAaU8QSsqUXxCEgoKTNi5O\nyjZBIBr3+NdQW7E1sNe4zRMuBOBPCaOFt7An9RHJ1zHAwUdqu8SlsKwQAGBnSF52zd7IFgDwuzhH\nYTapA637suPoJw5vi0E9mijRGvHZ3sUHrfuux4HToneNtDMkxsIynYaZtYhPkumg42rKU2z8wlv1\nZmHdEeIbSyE1iV+TScff3o1C1ToOMLeWruIM2dP2zeP3YfP4ffBb1A9+C4nFIOh0OjrpkZ9AGJoY\nwKKKuVT2XCs6TtA/otYUHpkr+bynGuKy99160o0+c6x5d3eMXe8H22rsv6/JMak4vDQct48/lHp9\nCtFhhicNuHAcz1IT1S7BWRhe3muxdGEvtPmvpnBhCpViZ98eqL4mGLXXbcanWZP5yik62ZmJxjkM\n6g5nwjGFehB5eobMdGVk/cXRs08xeWQ74cJi6LSsyL//hST232gbzHO6EPT5OOHa++40vnPJ6Ggr\nmvNNIRhJnlDP7Ci8YZmoITZkTgMAHFl2CkeWnRJJB41Gk0nHZBpNcXkE/N43ADy5+BJPLr5UmC3K\npKS4FDq60p/ayJuTPQajz3npnUVVhHIW1Bc7swpIys5B9TXBpL0XBh45gVdJjAc/iu7NQDkMCoYK\n29EMVm69git3GfH4zFMGzo33hr03EXHjHXp6N8DUAHaeSeu+6xF5egaGTQ2Bgb4u9qxh59ucvPgS\nW/5Vmgm/9EpknQBw4MQjhJx6jHo1bbFiRk9YmDNK7a7YegVX7xLzBpg6X0f9QOC/mvdkTkP2n3z4\nTjoAfV0dhG4dCQN9XcL9G22DUVRWgm73RXtCZ6prhDOtVookS6HeXC8OQ8+KI5CfWyD23DO/9sPE\nXHYNHtffWoQZ7XlrtQOMEwhZcr04DOObzUX06/LbvKyrsR/sq9vgQNQGuYQcjb1xHl8yGSXDax/Y\nBPfKtljTphPsTc2EzuXs68APL0cXgf0f1IF3HxLhVo83TI5C9bk77n9ou3M/y2lgwl1aVRmN3CiH\ngYJCAuYHdsH8wC4sB4CbimZGuHtyGjoN3YLTV14TZFr3XY9rRycheN8twvwB3d2x5eAd9O/WmOeE\nYdz842jaoCqpztZ916ND61q4Hz4d1+5/RM+AHXhwinFvQWAXXL0bRWpjo7oOiDw9gxBWxWT4tEOI\nif+FA0F+yPj9F9l/8nkcBgDQ09LBjbbBSC/MxuDHS0g/q/rm1bCxoeyq0FCoB+ezQnB0xWkcXhou\nXBiAlrYWrhaIXpJTVNza1OF7Tx4nEDv+5epIctKjZ6CLi3+OCBdUYbjLqrYd0ALzjpInFwtyKPht\n1Hd17ClwfWl7Nxzs3FeojCpz5/psQiM3CvXj7rj/AQBqrAnmyewb16IZpnm2UrxR0CCHobVVM0Sm\nP8Pmb/swuXqAss3hYW7tQKz+tBVDnwbyTXwWxJOMl2hu6S4HyxisdZuP2e9WYvSLWdjTZB3P/dH/\nkp0X1lF+e3J1YOSAlgCAa0cn8WzImZt35mZeFHZyVJoh0/nqQwIAoFObOugkYIMkKjHxv8QKVbLS\nN+MbaiQLAl6MQFUjJyyss0Rua2gKqlSdZ+iCvhi6gLEBy/6Vgw2jd+PryxjkZv2Fi1tVdBvdAZ2G\nt5W7Hcr4TDjXfHMnCtcO3cWrm+/w+1cOKjtWQp2WNTB4Ti/ShGlNoqWa5XWpO8xOz2QdnyknQr34\nqoRTBEFojMMQWH0kItOf4VH6Cx6HYcIr5cdGNzRnlHErLivGjuhDGO86nEcmMv0ZWls1I4wd9tiM\nYU8nI/jrXmxsaMc3KVlanIwdAADZJEnNsbnxrPF6ZlRspDCev43H1GXhaOJWFY3riVZFSxjeQ7cg\nL7+IVGfk6Rk4cOIRWvddDxoNrNMFTWJfkxBlm0AhJWaVKmDZWfUL7/g/e2cdFsX2xvEvsKSkiqig\ngoqBCbaC+VNBxY5rF1hY2H2vnYhid3d3Xb0qii12C6gogijdsb8/1o3Zndmd3Z0N8Hyeh8edOee8\n5x1Yd897zhtcULtFNdRuUU3XamgdZYq4EbiBGAUETVFoDAZAkHq0z91RStVcYOrLtjKyMgjrQdz4\ncQc3ftDnB5c2GEwNTUXjhDUZ6OQy0bCYB+7+fMzqeYTzMP1OSPwFOwLnHRHtzvP5wOb9oQpGiDEw\nAHLzZNP9pWdky5U5pFdjDOklONWQdpPSYtwngUAgsIYYFARCwaHQ1GEABMXN1ngsoNxrVKwODjXa\niKb2DXWkFZVDjTZiaHnZNILmRmZyF+SHGm1Emd+pTSWxNZafBjGw0jDMdGNOz0U3jyWPGnDYvERj\nYiwoSVT0TwCAV3fZ+AB5DOnVBCcuPgEAfP72i5XM//VZjVfvY5CXl49+43bQyuwzZjsA4OGzT6z0\nKOdYFJ7dVuBdZBxevouhjXPgCr+HgzD31Wz4PxwMv4eDcOLrMUr7rqgd8Hs4CAe/yC4u/B4OEo3b\nHrlFpk3yh+04AoFAIBB0RU5eHlyXBFN+pPE/chKvYuO0qlehOmEAgBKmxWkXtwEVByGg4iCZ+6ou\nhNVZQLdxaIY2Ds2UHrfid/E0ZalpU1UpfbfVC1JKPjEmqNw6NgntB62DnY0FY1AxE4N7NIKdtQVa\n9ApG0waumDuhAwDgyr5x6D5iM63MpdO7YN7q80hITINfb0/0aO8hI/Plu29o0SsYQ/9qjLo1ywGg\n1pCQzvS0L2QIEpPT0WfMdvB4hvh3P3ujUxXaOvigYTHBCYnfw0Ho4igOPBzoPBih8Tdkxox87E9x\nVfJ7OAhDXPwBAKMeD8OymitR1KSoUuMIBAJ3DKk+EevvLYJZEVNdqwIAqD06GE/W6pdfuCZo5b0M\n+fnUcNnevRpi2FDl1x0E7eO2PERhn+sfI3H9Y6RWsyUVOoOBQNAmTIHB53YG0PaR7k83vnPbWujc\nlloJ2dzMmFFmnRplcXDtULl6rpgpm/lDUVCzrbUFzu9izm4kLzMSGySDpIXGgjLk5OfInBwIyc7P\npjUWFI0jUAmNqihzz8q0NmqXYq6ncOdzHeTmJ4muy9oGoJyt7JeaULaX8wd8+Pk3YlL2ia6l5xbe\nY6NjGZtRcLajrwFC0C7R72JwYOlJDJ5HX3mZwD0t2iyFk6Md9uwYJnOfGAz6j/A0QdIQoDth0AXE\nYCAQCErT9+48xGUm6FoNlYOhSRC1fJ5974ukzHu0bSlZT5CZGw0zHjW7T1zqCbyNlw1q/py4Dt9T\njqJBGfqKxnx+jshYAICMnEg8/Nqa0ic5KxzWpu6Uexk5n/DwK7UeCQB8SVqPL0nr5RoZBO3R2Ff7\nWZI2nr+D3VcfobJTCazw64BiVhaU9u6LdsPcxBh7JlHdg3ddfYQN58IwtqMn+jQXvN8kTyWYXusb\n0sYCAPToVk8HmhCU4fI7wWfWGzlVnnVJoYphIBAImicuM4FzY2FseIDiTlK0KtEaaz+sFl2n5Ioz\nfDW1b47ZL+izo8kbRwC+pewVGQtezh9kfuo73ZQxFgCIjAVP57eU/iUsOyM7L5b2tAIAbn2qCi/n\nD2hc9hkA4OHX1jA3Lg8v5w/wdH4LAHga04MyJjb1mMhYkNavlJWgGCLTfLoiPz8BqWn7ERVdSteq\naI3S5R0wqfUCxR05pM2sLRjRrhHCgkZjR2BPxCakUNoP3HiCozMGYM+k3qg9WrxzW3t0MPq39MDd\nlWPwV9PalDZAkGyiQeWyyMuXTUqhb/z6lSZz79iJhzrQhKAM085dBgAYGern0pycMOgZzb1lcycL\nuX5RuXRp23bdxJ4D9NmYSpeyxf4dw5WSRyAAgtMFSbiovzCv+kKRm5Dk7n/wuyC8TH4OAPg39jL+\njb2MXmX6oLVDG/Qu2xcjHvmJxhkZGGFTnW0AgAHlBmHU42EU1yOhXHnjCMDHn/8AAOo6XqVtN+XJ\nJl8IjXIFAFQqvhgGMKK0VS6+AnGpJxnnK27hDQAwMhTvAtd1FHxxSssS8i5e8FlYo6RskbOKxeZS\nTiz0BUNDO1gW6YP4hIm6VkVr7HwTjLamfbFl+n74L+a+6jMd3ZvURKvpm3B1seD7za2sA6W9d7Pa\ntOOMjYxg+DulnKGhgWjR5u/dAAAwbcd5LB3cDpO3ncNKf1/4ta1PK0fXCAu3DervCa8mlfD2/Xcs\nCzqPxg0rIupTPPh8cWyDi7O9DjUlSGNkqN8pDYnBQCDoEQtfdsDMame1Mte+qJno67xQLRlcFWuz\nNbaldRMKrCR/cbWxzlbGtvUem1Ua9yeTmCF2GzI3LqfESMEixMGyB22rgYER+Pw8JGbchq05tUpp\nKWvVF5K2Zo1o75ezHYtPiSF4ETsU1R2IMagrhJWcjwSdxZEg+s81rlOrDvNpgGE+DTBj1wWcf/AG\n8/q1QceGimtg1HGlnprV/X0d0KExvv1MxqXHb7F0SDtce/oBsYmpGO2rm2q7ihAWbNu55xZ27rkl\nuh929wPC7lLd9EjNBv1ibRdf9Nt/BFm5uTDl6d/yXP80+sORPkWQd+KgiKEDm2LowKacySOwQ52F\nuK2JZgrzaYLpVfvrWgUCx3xOWgcAcLDszqlcR+shiE7ags9Ja2UMBlMj2RMLtihyO2KKw5AkKroU\nTIxrIDvnOeW+s1MMpY8kxYuuhaVFN8Z26fF/Krqss7BooA8WDfRB7dHBrAyGu2+oKafvvf0ser3r\nKtWdZ/fVR5jcTT8DiAujEZCbcRxZieJ4kSKl2KUHL2g0KCswUquvWCM3+9GAA4KkE+6O2nVv1E9H\nKQKhgHL660q1xge4Fpyd75YOHoo7EQoUKVmCOAIbM27dLYoYV6LIl8TQwIzTuSTJ52ey6ped8xyl\nHf6Ds1OM6EfIp6+CyuqSbfG/qNnDihcNoR1L0D61RwfjedR3AECXBbuUGttz8R7w+UCvJXsp98/e\nf42m1csDAGqVL42Td15woyyBFVmJgShS6pPopzBzbKAgEN91STA8123BsWcvAQBPv31H732H4bok\nGHc+fQEAHO7/l1Z1IycMBAJHrHjTC1l5aTA0MMKKN4I0gpOqHBK1L3zZAdVsmuNl0nUAgJd9bzQt\nIQjQvPBtHb6kv8KPrE8yLknSbkqS1wtfdhDdNzLgIY+fCwCYWe0sFr7sgMbFeyAs/oioj6QcG5MS\nlPE9y86Bq5X2/XJJxiL9gWdojey8TGTmfuFUblZeLADAxKgEp3K5zIRkYlyF9j6fn0NrBER/rw+n\nkvcBAJYW9K5YBO0jmbnoxKyBjG3S15KvD03rR+l3e4U4KcOuCfqdIrZFm6Vo6lUZc2d31rUqBBWo\nWaokHgeOgkfwesSmpGLaeUE8V/fdB0R9jAwNdZJJiRgMBAJHTKpyCAtfdkBZi+qMLklli1RDZyfZ\n+gc+pQVfSJILeLYIjYMh5VehhJkzRUZU2lORkbDkVRfk5GfB2FBQROlpwhVGQ4QNTxM/oJatfmWi\nIaiHg2VXfEnaiOikLShny90XUlzqCQBASSv9XmwxQedylCthVH393hg5uZHaVIlAYKSwGAtpMeVo\nXwtPGfh535AeJ45jMjR2g3nxC5QxRUp9QlqMM4RxVgXhhMLK1BTvpwXiZ3o6/r50DVfff4SlqQmm\nt2yGrjXcdKYXMRgIBC3iYeejMdklzJxl7g0uL3aRmuZ2AmveDcKYSjsBAMVNy6g0jyXPHKm5GZj0\nZB1nQc8E/cDZbhK+JG1k7cojTT4/C4YGslV903M+AgDK2IxQSz9pUrOew9K0Bqcy6ZDnZhQT1w45\nuZFyYx7+ZISBz3RczNgLQyPiGc01fD4fBgb6nXGHDcLFvXDhL42BUWnK/bSYcshMGAYzu82Ue2ID\nI4ZRlj5SzMICa7sov4moKf4Ig0EY6GtgAPx3QTYgSDIQePvGIShPk2pM2EdealMuU6ISCJogKz9D\n9NqSR18JWREnPBeh9XXB8f348BCsch/LiW4EfcEAAB+hURVZu/w0KvsQdz7Xxe1P1WjGcJ+33sSo\nBLLz4hAe00UrBdqiop3g7BRN25bLsftWYaKLvR8AYNLWEWgzgJqAo41JH3ib99NpYHRh5OSRsWjZ\ndlmhDH5mQ17mJco1z0LsXmZgRAx5dfgjDAY7WwskJKZDIv0wI36jduDa+SlKyWeTeai591JYW5vj\n9GGyuCrM8AxMkMPP0rUaIh78OoN6RX0BAGe+BqN9qdEKRrDjeJOF6Hp7Jl4mRaL19UCsrD0aNWwr\ncCKboFu8nN+Lsg8xZSGSXqTzDG1hbFQUOXm/RGN4hrbIzU9kHKMODcqE4UXsYCRkhMrNlMTFnM5O\nMfj01Vnm1EB4olCm9HNERZcStRuAB3MzagadT1/Lgs/PEV0L+xb2AOm0pHRsfxkEJ1fZhdrl7P1y\nTx8IqtG5RwgAcXpVSQqbEZGTtgnZyYvk9jEuMkBL2ihHRk4OagatlZsNSd/4IwyGiWO9MWvecVZ9\n8/NlrYqIqB+M/a9ce0m5XrnkL3jUFvvanbv4FMtXXQQAJCdnIC8vH0bkCLbQ0skHgfoAACAASURB\nVLXMNBz+PA/JOfFIyY2Hozl9IKWyhMUfQRXrxtgRMUGpcZdjNsEABuCDj2eJV+HryM2H04Xvd8Ez\nNEJufh4AYMKTtUrLIO5M+ouX8wc8/uaLtOzXrMc0LHMf0UlbEZmwBAA0ZiwIqe6wAzn5ibj7uS5t\ne1lbdsYxm0V7OccotWSUc/wst70wQ1yOtEthMwrkkZ28CBYO4TAwFJyWS8Y56DsLr96gve+6JFhv\njYg/wmDwbOwqep3P54uqOQLAzr2CQkXdu9TFUYbS6eMm0R+ZpqRmYuEycZAondtRe+9aaO9dS3QK\n0ar9cuKeVIhxtaovChy2Ni5OaWMTUEzXR/LeRImsS5Jtkn2YXgtPGoRIB2azDXgWuiMRCjcepc8o\nPcbJxg9ONn6s+tIZEWzvCTE2tNWKSxJBNS5l7kNbs7448m0TbIpbUdramPRBk071dKQZobAgNBYK\nGmdevdG1CkrzRxgMkuzeF4ZB/cSFg3buFVRCHOXfUmQwRH2Kh3M58WIvJVUQAFixAjUloG/31aLX\nioyAbp3q4NipRwCAE6cfo0tHksOeQCAQ1OF63EM0L0F/wkDQDXRuRj1KD6ftG/4fqWdAUA/JUwWe\nxV/ITT+oQ20KN3+gwXCbYjAIMTQUnzosWHYGW9cNlukzdUI7lecdM/J/IoNh9forf5zBUO/CDDzw\nofc1TM3NRIsr80TtqbmZWP7qDObWJLnNdUHydw9Yl3yM3OzH4JnIvk+JKxGBCxKyk+H34B9k5+dg\noHNH7Io6jXV1ZmDuy43YVm8uAOCvO1PQsFhNjK8kCFzsETYR7rZVMcPND2veH8Dl72EIersLZ7zW\nyMj3DR2DSZUHYv2HQzjUeDkAYOKTFUjMTsG2+nNF/frdnYFGxWsioOJf6Bg6Fvzf6RfPeK3Bnqiz\nePDrBUI8pgEA5r3cBBNDHqyMiyCg4l+Y8jQY82sEoM+daTjWZCUi0qIxMXwFFtUch6rWLpj9fC1e\nJUdgSc1xcLUSLGzGhS+FJc8cC2uMRVZ+Ngbem4XFNcfBpYij5n7Zekp6cobiTgSloItdEFJQ3ZWY\nshrR3Te1WSq3XV8yJLWsWB5nX73VtRpK8ccZDPlyIp8dSlgjNi4ZHz7G0ba7VnCgvV/YFv97I0Ox\n/t1lhLWdDwBY+vIUTkU/RPeyDTGhanv0vb0G0Wk/scS9DxrZV0JmXg5a/jsPuxsHoKJVSQBAv9tr\nYWtigbX1hqDehRkyczS7/A/qF6+I5R79YMmjVnq15JlRjAVJY6PPrTXY7zlGU49eqFCmpoKQpO81\nYFPyOQCAZ+LOtUoEgogB92bijNca+IaOQfcyrbEr6jTKWpQSGQu+oWNkDIEjjYOQyxfEzYxx7Y3L\n38NojQUhzUrURbMSdTEufCmseEUQVFtQA6Xf3RnY23ARXiR9wN6G4o2M014hotdTngZjWa1A9Hfu\nINLlwa8XlPmW1QqEb+gYHG68AgBQvogTTniuEvV/kvhW9IyS/wp5kfQBBxstQ0QafQamggjJeqRb\ntm8eQrl+9z4WS5afQ8/u2i/KSWAmuGM7nH31Fq5LBBtwVqbidNQewetZy3kcOIpz3Zj4YwwGS0tT\npKZSs9ds2xUKADDmGQEAJo3zxuSZhyl9zpx/olD2idOPceL0Y4401T19XTzRz8VLtFDvVrYBplbr\nJGp/lxyDBz6LEHB/OxrZV8LER3sQ1nY+1r29hIqVS8qcJjzwWSRjNNxo8w8e/YpgpY936VoAgD2R\nocRY0DAm5uK/c8oPX1jZK290EAhs2FR3DrrcGo8d9eex6h/8dg8CK/dHVl42eDxzpeaKzfyJOPwS\nXQuNhIqWzLVIotO/s5YvPJ+mM3LkUczEFoDA0CAQuMBFKi28i7M92raujpZtl2HksBY60opAR7ea\n1XDsmSBxTkqWeH0q+Vqf+GMMhg2rB6D/0C2Ue3sOhAEQ1F4AgHp1XGTGBYUIcvpaW5nJtBVWDH5/\n/QkX/RWtSmL7x/+w+f1V3PVeIOo3qIIgdeDACoL82gGV27KS//ezI5hbswfsTa1Z9Z9fqxda/jsP\nKTmZ6O/ixfo5CMpjbiP++xJjgaBJ7v96jlx+HoLe7sbimrJVpXc3WIjA8GVIzEnBjvrzUaeoG5a/\n2QkTQ2OMq9QXADClymD882ID/qk+knYO39AxcLJwwMFGywAAXW6Nh0sRR3Qr0xpNiteWq9/+Rkvh\nGzoGljwLrK8zk/VzjQtfirIW9Pnel9UKRPfbE8EHH8earMT6DweRk5+Lj6nRlNMNAoFr+vzVUNcq\nEKRY0q4NlrRrI7p+ExcP3+17SJYkXVPGkTmSvoyT4ih7efELM6f4wqVcccb2gsaIe1uxsYEftn64\nBr+KLZHLz8OQCi2w4d0VSr9R97eJThoe+CzCx5RYVLBygJ1JEfzITIaBgQGKm1rJyH+fLNi56xG6\nCvckDBB58AyMcLzZRPUfjkAg6AVtSjZGZ8eWomvpnXk7E2sEu4tr4jS1r4Om9nUofbzsPeBlz+wS\nKi3zhOcqyrWZkWxVannj6U4PJO8x9Rf+W9W6PI42CRK1L6ulXJpkAkFV9h24A7/BTRV3JOiMKiX0\nex35xxgMkvxKSENRuyK0bUUsTJGWnoUlQecwbWJ70f0mjVxp+wNA5KcfaN3SjXM9dcXGBoK0iH4V\nBV/mPAOBy5Z00LLwWvhvBStBjMflVrK7cZJjhW5FksYCU0C0kB7lGqKMRTH2D0FQidysUPBMBac4\nmSkhMLNSXGgwOz8X7W9OlttnVMUu6OJEvqwIYnZFnsaFmFuYXW046hWtpmt1CIRCAVPQc43qxO2N\noB5/pMFw6Nh9jPSj9+WbMbk9Zs49jotXXlAMBnnsP3QXwwY3U9yRoBIDw9YjKjUO/hVb6VoVzvmR\nkQZ7c3rjFQDG3zqDVZ6+jO1ck/ZrGGxKCYp1mVoOU9h/fHgIXiZFKuy3/sMJrP9wgmRYIogYWbEn\nRlbsqTH5ysQSEAiFhYKaCYmg//xRBsP0Se2xeMU5HDp6H7WqC4LdpGMT5J0kEAQoOg3gml2NtZcF\ngA7n3UsRNWAq2p3dgcSsTIR1o/pLu+xeisgBU7HmWRi2vLqPYdUaYHSNRqL2zS/vI+RZGJY29kb7\ncuLKzxNvn8Oxj9Q85FEDBB/2218/xMKH15DH5+NkxCtKm/PupXjXdxJMjIxkdFQXm1KvkfLDG/m5\nn2BpfxpGPPr/D7n8PPjcmKS0/NbXA1HWwgHb6k9TV1WtwOfz8fLFV0RExOHFi2hERvxARAR9FjVN\n06rFYsY2KyszOLvYo1o1R7i42KNadSeUKmWrRe0I6hIXl4yIiDi8fBGNiIgfePkiGikpmTrRRd57\nrXz5Er/fY45wdrGHi4s9rK2VC0InEAj06Gv8AvCHGQxt/1cdi1ecAwBs3HYdADB/TleV5Q3q10RU\nKbq591JSwbkQ47x7Ke73CMCDuGiZxTn/d/vYmo0R1KQDRlw/LjIYnHcvRWVbe9zuNgL1j6zDpNvn\n8bqPwG85qEl7HPv4gnahP6RqXQypWpf2hKFvJXdU3rcCkb/H/chI4/RZrewvKuwjbSzULVoFi2vS\nF2eKzUxAv7viTDif02PVU1BJsrJyERkZhxfPoxEZ+QORET/w9m2MVnXQNCkpmXj+7AueP/ui9Fge\nzwjOLsUFi8BqTnBxsYdbNUdKbRoCO379SsOL519EC/6IiDgkJqbrWi1OiYiIQ0REHK5efan0WBsb\nc1Sr5iQwbqsLjFsHBxsNaEkgELjmjzIYJPn85ScAoFYN5rR69x4I0n5WKF+Ctn1QP0+RwQAA0+Yc\nxZJ53eXOSwyLgskF38EoYW6J9uWqIACnsP31QwypKq4wK7no/9h/CmXspY6CLFxv+06E827mojps\nWdiwDfa9Cxdd1zuyFmNqNlZbLgDk535Eclxz0bVtadkFaEoOdQGkyM3IwcwOV5oH49y3O1j1TpC2\n2OfGJFxotoK1Xnl5+YiM/CFa9L94/gWfPsVDTlkVAktyc/Pw4X0sPryPxZXLylfedXQqCheX4iJj\nw9m5OOxLsMuApo/ExCTKvNfS07N1rVahICkpA2Fh7xEW9l7psSYmvN9GreNvg8MJ5coVhwGxaym0\naLMUDRtUwOL53UXXQoi7EkEd/liDQR4L5nTFrHnHMXX2EQDAppCBjH2vX5yK5t6C/5B3738UvVaF\n4WN3ITIqHtnZubTt0rJtrM3hXK44Vi/vI9P3yPEH2H/kHhIS6Hefv8UkysirWKEEbYVrAlDVTmw0\n1ipeCkseX6cYDPLgwkiQxsOeWhV2Ym1u0s0mx/2P1kiQpOttcVC7MjEJ7Us3wrHo6/iSHicqvsUG\nee4RBN3zNfoXvkb/wq3QdzJtV/+brgONVIO8z/Sb7OxcvH0bQ3s6WJDeZ9pAaCx0770Om9YNRCXX\nkujSk8T0ENTDUNcKaJsqlcT5sS0t6VPqeTam+m3zePJ/TdcvToWVpfp1Gt6++85oLNCRlJyBp8/p\nF3fvPnxnNBaYYKpwTaDyLjEe5a0Vp+IFAHvzIogaMJXywwXHffqh2gHBYr2iDXfZo8ytBQX2kr67\nI/XnX3L7dnZU3kjZXl/8xX4s+obS4wkEAoHAjp8/U1HJtSQAoGvnOgp6Ewjy+eNOGDaGDGDVT1m3\noTNHxYWHFi47g/sPI5GSmonKriXRsllV9Ohaj/M55TFzii9mTtFedp3CjmTcQkZuDi76DmE17kdG\nGt4k/EAVO0H1zafxMahVXGy0NnMsj7Dvn9C4ZDna8ScjXjFmSUrLyRYFXHOFqaU/AMCmZLiCnkCA\nq+rxPwBw8PO/6OZEsosRCAQClwwZth1fon9R7p2/8Az9+3Djukr4M/njDAZtQBbqhY/XfSaIXIsO\ne/dlPS5qwFSKS5IFzxiv+oiLNe1q1YPSTncCIWyXbmtYsizufv/MWhc2ZCTPQ1aquCK6IvckdUjP\n1U0GGAKBQCis/Hd5qihuQTJm4Xtskq5UIhQSiMFAILDAnGfM6E6kyM1InXZ5bQ9jo9GtQnW5spXF\nzGoSeCaNYWCo2OXq4a83qFu0isJ+TLRyYBcDQihcuI8KRvj6QGy5cA9bL96Hv099+Hk3ELXv/vcR\n1p0JQ2t3VywY5K1DTQmEggldcDMJeC6cdJm3Cwen94WpseaX839cDAOBUFjI5ecjqAm74oJsSf5e\nG8amzcEz8QDPxENu3+nPNikt/784savTuEo9lB5PKBz4rzqCnLw8bA3sgQ1n74juT9pyFmfuvsSN\n5SNR1MoCjcaTQE0CgUBgIir2l1aMBYAYDGrx5c1XXatA+ANpdGwDPA6v4SyAWhI+PwOJMS5I/FYG\nid/oUw43L+Euet3plnLZSRa92i16bWRAPn7+VFb4+2JUh8ao4VwSj9aOF92/Gv4eR2YNgJkJDxO6\nNUWmEkkgCAQCgaA5iEuSGgxxG48r+Ud0rQZBw2hiYa4Od6QqTXMJm5iFmW4DcP33SUF6biZ8Q6fi\njJf81LFr3h/F6a/imiXK1GAgFD5sijBnlXMfxT5VL4FAIPzJ3F89Fh6jg/F4reYrRBODQUUu77yu\naxUIBJ1RyrwYYjIExQ8z87LR+rr4w8rBrCh4Bkb4mvGDcTzPwEjjOhIKJuHrNf/FRyAQCIWB+uNC\nAADuAbIbLeHruP0sJQaDBC9vv8F4r9ky9yVPEVobUv2uJa+lTxtaG/bAlfwjGFlnCj6ERzL26+s8\nEnGf4xnnlJQlPb9n1wb4++gkRp0kad6rMWYeIF/GBPXZ3WAW0nMzaV2SYjN/0YwQMMOtP1qUkB8b\nQfizef81Hq6OxQEALz/Folo5Bx1rRCAQCPoJ10aBPIjBIMF4r9mwsDLHqSSxn3XvMsMpfYQLeeGi\nXJFL0t75RxH5/LOo38k1FyjtqQlpiPscj8nbA9BmUHORbKGBIElrwx5YdmUO3FvVAAC0MeqJW8fv\nUfr0rxBA0etY8FlsnLiLuE4ROMeCZ4YrzYPR5voE8MFX2P9c0+UwMSQfOQRmwtcHUlySzE2MEbZq\ntA41IhAIBAJADAYZgm/Oo1wf+KJ8JhjK+MXHcTH7oOi68xgfSnuXYoOw8NwM1PcRB5IKTxJ6OQ7D\noa+bRfdNzIxFxgIAXM47LHOa8D0yDhcyD4iuuwV2wMaJu9R6BgJBHpebr9S1CoQChCKXI+KSRCAQ\nCPoHSVMixXD3yZjZYTFn8pb9+7fCPpLGgiS/YhIo1/8cn8JqzrSkdFb9CARpMpIXAAASvzkzZkki\nEAgEAoGgH7gHBIt+AGDH5QdoO3OLglHKQwwGCa7kH8H6B0tx//xjkVuQupRzc+JAMwFVG7oq7NNn\nZld0dxgKfr7ARaSjdX/O5icUfrLT9gDgw7rEdY1WeSYQCAQCgaAe7gHBeLRmPCWWYXCbeohLTOV8\nLmIwSOFapzyu5B/B8t8nA1wYDdpk8Pze4BkboQ2vJ1ob9kBGaiaJXyCwxtL+HBK/lYUhzxk5med1\nrQ6BQCAQCAQ5GBoaaGUeEsPAQO2W1WmzEgnhGRshNyePk7nCTj1A4071ZO5bF7NSSV5uTt4fYyRc\n/U+5wmEE+RjxKopOFozN2ulYGwHkb0zQBtp6n9WcEIxnKzUbp9Fg2lrcW/LnBou3vSEuBnip2Sqt\nzFlYP6cK63MBhefZXn+ORdWy4mxy07ZrZrOPnDCoSOuBzTmRM/CfXvi7yzLKvU42AwAAx35sV1nu\ny9tv1NKL8OeS/F2Q9jQ3+7GONVGealMVF/1acPKaFjThnrjEVNTxJ0XNCPL578VHZGTn6FoNAoGg\nBcLXBaLP0v2i+AX3gGBcevRWI+lWyQmDBHSnCc7Vy9L2nbB5BC5svSq3DgMb+s3pjl3/HJKZe/GF\nmUrLkkS6nkRFdxdseLSMoTdBES/vR+Dyobt4/SgS8TGJyMnOhX1pO5StVBItu9aDV4faMDDQzrGg\nJkn72R/WJQWGghGP/r1f0Dlw5ylmdW6pazWUpuC/uwjqwuZ0okX1Cho/wSAQtEFGXhbisxJRxoLU\nYpFH+LpATNh8GjefRyLAtzEGt5H1WOECYjBIoOyCX1F/tvLY9GPqI3k/JiIWAyqOpu2ry1iM1Jzv\nsDQuqbP5VcHHaazCPjGf4hHzKR73rrzA4pGy7ReiQzSgmWYx5JUTvU79OQhW9mdp+51/+hYhl8Lw\nKzUdI//XEIOb1pHpM2n/efz74gNK21nh/OTBaul1NvwN5p+8imqODtg+rLvKcpot2Ky4k55ib2uJ\nR1vIQvBPZfq+C4o7EQiFiM63pgLQnltZQWblsI4an6PAGQwua4LwdtR4mBgZKTUuLz8fRoaqeWCp\nOqe25Y5wn8yJHC5Jz/2JnPyCk+Z1YpdVePUgQtdqAACqTw7Gi+XyF4hs+kj3b+haFluHdaNtN7dZ\ngNT4bsjLfQ1rh/u0faTdflacuwn3cqVRu1wpmT5FTE3wKT4R1aYGY3rH5ujXhD6FMBOSc1mameDe\nxy+oNjUYL5cqt3CW1lnyWllZ0py98wpL9l1DMesi2D2jN2wszSjtLyO/Y/qW83Cws8SWyT0pbXX8\ng/FoSyAajFiNg3/3h0upomgxbgNOLR4MawszSj8hdEaDUM6C3f/i1O0XmNCzGXq3kv1dX37wFrO2\nXkRefr5cefK4eP8t1hwLBZ/Px+iunmjXsCrtPMsO/IeElAzRvf1z+qFyGXvR9ZHrT7HhVBg8a7hg\n3hBvpXRQl5oT6F27JHfmpftcnzccRS0t5MqR7pPP56P2RPFip0LJYkrrWmdyCHLyxPFyknNKnyQo\nanu0fCzqTBZsZPz7tz/+N1eQenFoq3oY196T8bmGtKyH8R08QSAQ/mD4fL4+/nCOc8gKTYjVK85v\n+Zf/P4PuMvfb8HrS3tc0/36bxd/y1pPyI0T69duk87RtfD6ffyiiF/9gRE+N6+vtOIaznw7O49XW\np9qklRw8lazMoZuOqjzebcpKvtsU5fWqMW2VSuPcpqzkR8T9lLnnt+WY0rKEY1XRgwkPv5X85uPW\n8/l8Pj82IYXfZdYOmXbP0Wv5fD6f/zMpje/ht5J///VnSnvriZv4d19GUWR5+NHrKO++h99Kflpm\nNuVauk/vuXv4fD6fn5iSwShLHt9/pfBXHLxOkVnHnyqnzcRNCufx8FvJ33gqjM/n8/lvP8fxPfxW\n8rNzcpXWRxVqBK7k5+Tmia6bz9nIrxG4UqZPZk6O6DojK0flPpLsDw2XuaeM3mzH0vWTHC/5Oj+f\n2r9G4Ep+Xl6+Qnn6TJvr40Q/hILJ1/Qf5G/Igtqj6P9v0txXe21eoIKeXdYEwWVNEO19ANj59DGq\nbQzB7mdPRG2Pv3+D9/5dlPGSMoSvY1JTUHFdMAacOsZqTgDIysuF584tMnJd1gSh30mqW5CkjKC7\ntxQ+S58Th1FtYwjSc6jBa0xzAoCPXyvY2FuLakgIf/Lz8nWSNamydQcAgKfDJHg7roC34wrGvje/\nC4rlxWY8F91LzI7C1ndeKGleCyXNa2LrOy9k5iVqRFc2LkjKsOaC/p32cMXMTi2UHuNTq5LK87nY\nF6Vce1Z2xp0Pn1SWxxWeo9fCwc4S/60S+KOVsLXE8fmDRO0p6VkAgNA1AQCAotYWeLQlECOCjlLk\nXF4xDA3cBK5gQlmqMLpLE1iYGgNgPjXYP6cfAMicgrDFwc4SE3s1E10/2hIIPp/aJz4pTe48PpMF\nu9rDOzYCAFQqY4/Dcweg4UjtufDxjMRffb513ShtV59/AACY8sQH8GYmgtdhbz+x7nM47KnMvL09\na6utuzpULyvrGioZevXwYzQA2TSNRoaGmLZX/1yiDny+At/QyRh0fwFy8nNVkpGam455L7fD5+YE\nDH+4FJl52SrrsyfqInqGzYJv6GT4P1iMq7EPVJalChOerMaYx7LrioBHK9D19jTk8tlldoxOj8Pg\n+wvgc3MC5r7chuScNJX0iUj9ir53/0aH0EkIea/cGoTuOVThXEwYRjxchvY3J8L/wWI8/PVaLXl8\n8LH09R743JwA/weLEZ0ex4meBYEC5ZIUOWYi4+LdZU0QIsdMxKBaHmiycwuMDA3Qt3oteJQsjYt9\nBoramca+HDEWHwJkv2TlzVll/WqRTHnypZnY0BMTG3oyym2ycwtuD/IXyV3Q4n/oW70WqzmPxm5j\npYM2cCrSAADgYFYDdqblZdr5yIeBKJRTsOq48m0GqtsJ3DaORvVHvwpnYGZkCwCoX3wk9n70hV+l\nUE71jI/h3ghxrlKaEznu00JwfEI/DFh/GAlpGTLuR0wuScL7l56+w8S95yh9YpNS4T4tBOenDUbP\nVfsAAKH/jAAAJH4ro7BgW5/Gihc9nvM2IiEtQ2E/VTAyMJBZpOqCjKwc3FrLnLqy7/x9WtQGGNyu\nvlbmycrJRfDhm7j76hN+qFAcSFhQSFcZnyzNTOA9fxsuzh4KANj530PYFjEXtS84epV2XFl7W8w+\ncAlX/xnGqs/aC3e4V15NXEoUldsujJOgc9k6//gNlvTz0YheytIrbBYSc8TvvZiMeHQInQQAmFyl\nLysZGz+cwImvNyj3otJi0OnWFACAuZEpTnouVShnxrONeJQgm5Xwc3oslr3Zh2VvBJ8DdH74wvSv\ninz0mfpJ3pdMJdv2xnhcarYKufw8tL8pXiO0vzkRBjDAxWb0//d635mDX9nJlHth8c8RFi/YyOvs\n2BQjK3ZVqGN4wjtMe7ae0n7u222c+3Zb7vNKPgOb+8rK+Zwei5nPNykcLy1H2E9a7uf0WAx9sIhW\nlrDv0PK+6FmmFat52OgkRJgVSfq1kNYeqm/SMVGgDAZ5HO/RR/T69iB/VN+0RrTIVsTBrr1gYWys\n9Jw+FRRXXlYFobEAADVKOGDx7ZuiZ9HUnNqGZ2iGp7/2IjH7E2rY/YXnCQcBAJl5iWhgHyDqJzQW\nAMCcJ//LTlX615ujsM/R10tRxMpcbh8+n4+JnVfh9aNIrlRD+BLByUfoPyNQfTL7BVb9CmUAAG1r\nVcLEvecobZFxv0QGhLTcIsX2KJStKB6o1ozVyM3Lp8QGjNpxEjfecPd7KQgITxj0iTr+wbi+ehRG\nrzqu0vgW4zcgOS0TPg2qYKF/O5QqaoXWEzdR+ozo2Ah1/INxevEQzNhMnw+8VDFrSjyDNglbFICa\nE4JFi2LnEnY4PW2QqN3QgOG9zQeEuarY9BFugugTihK55eYJYlv0OcvSpCdrKMbCAGcflLFwQNDb\n/cjMy8byN4oNdT74FGOhuk15dHdqgSeJ73Hy600Aggw9Z77dgm9p5tiNmz+eyBgLFSwdYWdijZdJ\nEcjIE3wGbKw7ValnVJahDxbB3a4S6hV1w+aPJwGIF6E2xpYYWbErlrzeDUDw7HR43wiktPV39oZL\nkdI48uUaXidHAQBOfr2J+OwkzHZjTmJx/9crzH4uSC5ha2yJMa498Cn9O3ZHiU+ohAaNNHYm4tpT\nCdkptPfZYMWzQEquOHayq1NzVLUuh+tx4bgd/0x0f/TjIKz1YLfRK7moL2tREuZGJnib8hkA4F+e\nOeB4W8QZhQaDkB5l2GfvE6ZNdQ8I1kgKVToKjcHgXrIU5Totm/2xYgNHJ5XmvPDxPQDgTfwPlcaz\nwdrUlPIs2phTG/iWWY8Tn4YAAPwqhSI5Jxr3fqwFABho0VPuZ2yS3HZlMh0ZGBhg5Sn9+KK9/5H5\nlKBWuVKMbcamzRXKrjVjNV4sYX7O3Lx8lLazptzTF2PB2MiIEkCqLvv/fYw+//OgbVvg74Oxq09w\nNpe6jO3mhTXHQ2FlYYpdM3qrJCM5LVNhkLS/b0NsOnMHjsVtGOeJ+ZmMs0uGqqSDusw5eBlrhnZC\ns2qyp54AsLBPWwzbeEzm/uf4RKz168y6z8i2jbD4+H8caq55Fvf1oX0ufeJ50kcAgkXblnrTRPeb\n2gtOPpl2lyXxviF+D0suXBsVr4GRFbviQsxdrHp3EGvfH4WTeQm428nulcl+SwAAIABJREFU1j74\n9RoLX+2klaNtotPjsK3eDADArsjzyMoXrxkON14AAGhRwoPxdyNpLEg/R5PiNQEAHUOnICs/G7d+\nyLraSSI0FiTleKIW+pZrixEPlyEy7RsAICs/B6aG1I3ag43mi15L6ip5nw1Hmyyivd/U3p0i+32K\n/NN0aV2U+RtLn/owMeie+Nn85Bge+kCBimHQN3wrVUHtzeuwJOymjGuQplwm5M2pjxjAEPmQXaAV\nM6WelLQsNRfPEw7J9MvI/SV6nZ77k3P9xngz16YoWVb5jCb6gqWZCapPDkb1ycFYNcCX0mZuwnya\nlpmyEonfyiA/L5a2fUizuuDzgfffqX+LZWdvUq6/JVCPtfWFAZ7KZWmSx4mFgxF06AYys8W+05L/\n75tUdwYARMaI38OtJ2yCpbkpZzooQ8ixUPy3ahSnMuncipoErJE7z+11YwAIMghJcuXhO051Y+LF\nl++YffASo+HYsJKg/ojk31X4uqmbC+s+dPEKt15Hqax3TTmGPlcIn+vOO93HCNHxITVa9FrSWJBE\n0aLO/8EShX19SjUUvZZ2rREySwnXFk3Tt1xb0etJVcTeFu1LN2E1nunUQZLTXuLvynXvj8rpCUZX\nro11p4heB789wEo3TbDaXfmNPXX+xqe/MrtRx2QKvkvtTW0Z+8hDW6cLQCE6YdAFZ969oV20ty5f\nEVciPoiuEzMzNT6nvlKzaG+c+DQUfpVuyu1nZGDy+5X4zLxMkYbYF9FJFLOwP6IzSphV51S/hB8p\njG07wv7mdC5tkpqZrVS6VSFmVhNgZjUB+XnRtPEME9t5ISM7B52Dd8uMndKhKQDg8cIx8Ji5RiZ1\nKZsqzJpmQjsvbLvxkJO0qmVL2IJnZIgmAWso9yV34B9tCZRZVCubxlR6vPD6zvoxMDFm/xHepLoz\nmo+jLn6WDm+P/9Vl7+tqYWpM0WfvrD7ot2A/pc9/q0ai0Sjq70RyHjMTHo7OG4h6w6hfwIO866G1\nErqoytFJ/VF74ipRelEhkm44/80djvrT1ohcePh8wLGoDaW/ZB8bC3MkpmXI9PGtWxU1JwTDlMeD\ngSHVwFCWveP+ErlSOZewQ1Rcgtw0sMLrvk3dMbVzc9bzPFw2FnWnyJ6s6oOb0vhw9Rfmn9O/s+o3\np9oQzHu5XWG/ekVl0wprm9YlxfFLkqchPZyUS1Cxs8FsxZ0AnP52CwGuzPVwzI0Ub4rc//WKtV5c\nU8W6nOJOHLLuwzF0dPSS22dvw3+0o4waFBiDgS6zkTIL5/aulSky2IxlM6dkn2fDR8PKxBSb23eC\nx5b1orYlrdooLZetXqUsrRA2eBjrsdqmXvERMDOywc73rVHCvBraOUkFBjlSd/i9HZdLtAleH4rs\nAcCQ82DngszS0zcQHvUVANBywRZUdCiGzf7UYDTJ2ARljIekGFfwkQ/b0p9p22d1bim3UrIpj0e7\nCFdlYU43Zv3gzkrLUVcPJu5tHKewj9BASM3OhpFU9hlp40LRa0VzMN17+OYLHr//KtOvjn8wHimx\nSA+lCfKWnmd40FGF87iUKqqTInS7bzzCilM3ZRa/C45eRdv5W3Fpth8AoJiVhcIFMps+C/t4Y2Ef\n7mpMyJtPkS6S7dJ9Ja9NeEZ6YRzQoWomJDqGuHSQ2y50xVHEghrDuVBHLUqZiU/DrXjiOiClzIsr\nHLst4gytHE2TlsvdRqq+IumW9CE1GhUtqe7vJ6Jv0A1TCqYYBk3ENhQYg0HegpquTfreWu8OWOst\n+wGhrFwhdBmKamxag+fDBcftj/2pR/K93GqoNOfezuIKzXRzMmVa0idq2PVGDTtZX2ZpA4DJIOjl\nov2UsM6VNX/8rwjpRb7k9dSOzaS7i/CYHkLpm5CWgR6r9uHI+L60hoPkvZQfPrAp9V4dtQkMWJqY\nKO6kIQJWHZcpGqepefSZ4DO3aO9bmpnCmMdtYU6CflO/mJviTn8AN3+I09Cz8blXhJNFCbVlcEW7\nmxOQx89X3FEBLkXUz3oY8GiFjFvTxo+CGDcDKMhGoCeQGAaOaLt/F4LbtNP6nATN4NOPne+nPpKd\nS/XNTs/OQdni7PwjrewvIPFbGSR+K4OUeF/FA/5gbkcLTmCcNwjqi7htXS26vvYpAj/S05CURb+L\nVu13X+/DOykyep4UZAurukXQ/jUlGV9TknE7+jNiUlNw/bNqweO31o7G4CUH0XveXqw/GYY+8/eh\njn8wilpbKB6s5DwA0HveXmw5c1dj86jKmemDAFBjbHoG7cX2aw9wdjpz5hdC4aMIT37Wuz+FH1kJ\nnMpj446kadreGI+2N8ZTjIX/OdTD2Eo9scp9vCgQnC08Q9U3EySNhKx8cV0tSd2Y0tyqyqKD1ziV\nJ6TAnDDoG9L1GYqZW+B/LhW0PmdBimcoSNiXttO1CirzV+NaqD45GBamxkjPEnxAsXVJSv3ZTxS3\nkJv9UGM6FgZqO5REvV0baNuGXzyF98OZf+dpOTkiIwEATIwEX0j3YwRBnY8HC04oHa2sUWXLKmTm\nClwxDABEjpyktK7GPCOErgnAqODj2Hv5EaqXL6kRlyBjnhEebQnEoMUHsfnMXbhXcsSZJUNRupi1\n4sFawKmYDXaN6Qnv+dR6Ndfm6q9bJ0EzfE3/gRKmBfdznisczUuI4jp0HbzNBcIsTABQx64KFtUc\noUNtqHQMnSz6HXe9TR+0z5aVx29iz9VHAOjrMNxeyVwjSFWIwaAGulisEwNBOxibFtz/GrO6tMSs\nLuzzOVORPJ0oGMekuqLa1hBEjZwkWvin5+QgOUuQd31dG1/EZ6TDyMAAdmayO5lWJqZ4PnQM8n5n\nCuJJ1bWos3M9XvmNw7Mf3/Ff76F49uM72rq44kOC6pnCLMxMsHP6XyqPVwZtzaMK7i6OeuujT9Ae\n6z8cZ8y0pAy5/DzwDDTnznbnd9E0TRFYuRcCw1drdA5tMuKhOC6SyVhgkxWKS4qZ2OBnNjWFu7Ci\n+LmmqrmVT+jaFBO6NtVqHQbikkQgEERYFjsgcknKTF6oa3X0mqjfO/2S/1qbmiJq5CS0camI4uYW\ntMYCADwfKoh1MvqdhueV3ziKLOF1TfuSKGVphbYugjTEFe0KbqpfAkFdpING1UFRtiRhoTNF9Lg9\nU21d0vOYA4AXv1ZcTFMd3KxdRK/HPF6p0bmUQZN+/avfyaZw1yT7G81lbNOksck1xGAgEAgUbEt/\ngW3pL7Asrt8BrAQC4c9ibR3FJ+zC6spMLKsVIHotWQ1Ymv/iHrPSKT0vU+0da3k7/JJF2DTNuxT6\nzHi6oFyRkhqTfSHmrsZkK2J8+CqEKih+pwykDgOHvH3yCeM7KD7yqdvCDfP36N7XLeLVVwS0oS96\nIk0VD2cEn56gYY3U58j6f7F90WlWfQdN80Wv0a01qg8/n4/7V1/i7G76jCn6DD+fjw4ugcjPU5z5\nwcLKDMdeMxemoyMppipsSr1WVT2V0af3yNwhW3D3sqwbgHPlUthwdbrC8e3KjgM/X3YB4VCmKHbe\n+YcLFRmZ2mMNnt1RLsvVzE1D4NletsiYrnjzOAqBHdntdPKMjXAmUvf1PQAgPiYRM/qsw5f39EUP\nmfDq4I4ZG7UfcD2t11o8va24WJ4RzxDBpyfAtWZZLWglH8ld57Y3xuNI44WwNi4iuvc44S2mP6OP\nKxJSy9ZV5CLS/fYMnPJcBjMjcQazzLxsdLolLjDG5NcvmTLT+0YgepZphaHlZRNFvEiKwMQnIXLj\nA6LSYpDPz4ehgXgPNyU3Hd1vz5D7LFxxoelK+NwUrCXa3hiPmW6DRJWzJTn59SY2fDiulViHdXUm\nof1NgYHoc3MCLjRl95lgbMiTm36Xi0xQqiB8v7xOjsKCVzsAMBcfVIW2M7cgLjFVowaEAV9TJYnV\ng1YpH6extJ0vRMsWmYmL/oWBKhTCsLYrgkPPFys9Tl12LD6Dw+uuqDx+f/hC2NlbcagRFWV+90LW\nzjiMc2osysct+wvefRorPS4+JhFnd4XizuXn+PyOXZEeLpH3O1GVxSN34OaZcJXHn/u0CoZGig8U\n+fnxSPouroYsXbhNHqq8Rzo4j0derupp79j+rtnqxtSP7ZzqjleFgDZLEfHqKyeyuNaN7vexYN9I\n1GkmW+zq+slHWDpa9cxv57+shoGB9uNu/JstQPTHOM7kHXu9DBZWZpzJkyThRzL6uM9SeXy3ES3h\nN0u9OijqEpv5CwPuzWPdn2lxy2bheKHpSsoiXho++PC+wW6BpqoeBxvNw1935tDKEI5V9z4AfEmP\nhd8DdmsfuvFC2a5WZbDWg/kkSPJ5FRkein43bH+nVjwLymnSnoZ/o//duQp1YPtMbJHWiwvD63tC\nCnxmbYWRoSHy8vMRvi4Q0fFJ8P17u7TxoPaHY6E8YWDzpc1EckIafJzGokHr6vhnh+YzZ8wZsBEP\nrqlf8bCPu8CPUpNfNmyJ+5qAgQ3Ur5Lctncjpceo87fXR/p6zMKvuGTFHRXQvpzgg0rhgtDAEkWK\n7YGBgWaz2oz3DcLb8E8anUNZ2L53fJzGyvwez++9jTXT2PnF+jiNRcj5SWrt2LYvN57VKZOyCH8H\nmjB6hcwZsAnnPom/KLOzctCpgvpfxu3KCOI+NKm7kIy0LHStPFkjsrtVFexuc/kcP78noV9ddlV8\n5XFs4zUc23gN3n0aY9wy3QS2O5gVpezuS9LNqQWGVeiES9/vYeXbA3LlXGq2Crfjn9FWcy5haoc9\nDRV/hxnAAJearcKGD8dx8utNxn5BtZk/WyR39yUxNuThrNcKmhGaoYyFAy41W4WpT9fhSSLzKeXk\nKn21ptOlZqvQI2wmknPSlBp31msFOoSKs8lJGgu6zAR12msZOoYK/n/3KddGQW92+MzaKjIMhNmS\nnIrbyBuiMoXuhIHLBSOPZ4QzUZo77tbU4vZMZDB4xtwG0iize8zVc6nyhakPBgNXX/Qdy09ATjZ3\nlU2FDJjcHr3HteVcLtv3yIHVl7B7+TlO5uTqhKFLpUnITFfOV1jdzx1V3icBbZci4iU3pwmK4OJ9\nrO3PbDr5XPP4xhvM7LteY/IB4MCThbAtzs2J8WjvZfj4IpoTWZK06dUQgUF9OJerL7Q164tLmfs0\nMratmXjRreochIKJvFMeVZDMksT0+jdqnzAUqqBnrr94cnPzONn5okOTC1tfl0AMbswcla8pzu25\npRcL9sKAj9NYjRgLALB7+Tmd/Z18nMZyZiw4utirLePDc4HLlbLGAgCsniIostaxvGpxRB2clfel\nXXdpqkpzqYKm3yMZqVkam0OTcjVtLADgzFjwcRqrEWMBAC4fuks+71XkUua+Qmco1B7NbnN1+Jpj\nGtZEf5n5fCPnMsvY26LtzC2Ue+4BwfCq7sIwQnUKjUuSog8uj6ZV4NG0Cuwd7fA1Ig6XDt5B7Jdf\nCuVmZ+UgeNJ+BK7gbidFmQ/ZJj61ULOxK2yKWiI+JhGntt/Aj2+KKzN+/6x6vnZVSIxPwdrphzmT\nZ15E99UidYUy74/ybo5o3bMBipe2xac3Mbh2/CG+Rf1gNda/2QJsuaG6P7OyJMancCpv4zX1AwJX\njNuL0uWphkef8d4o7WKPFePkpzO8uD8M45b9JWPY1W3hhhZd6mDz3BNI+pnKOF6d2A221GpSCXWa\nVUGxkjbIysjBywcRuHr0PuvxI1stZhXorQpdqyh26fHp2xjl3RxhXsQUUW9jcHTDVdby1808goCF\nPdRRkUKXSsoXzFOFaesGcSJHGYO0Uq2y8GxfG6Vd7PErNhnXTz7Eq4fsqorTuegRCAWds/dfo0N9\n2VgrdXj46w0AoEGxapzJPP3PYNQfFyJyR3IPCIapMQ8hI7mPNSoULkl0KJM9o3+9OYiPSZTbh6sP\nREXPUNuzEhYfZFehj8/ni/x2mdC03iHnJ8O1ZhnG9rUXp6BCdcW5s/Ny8zG48VyRMaStLyAmvefv\nHYm6zbn9sGAD10GziuQZGBrg/GduivbIe48UK2mDvh6yxomZhQlOvGPnp5uXm09ZBHH5ewCAvY/m\no5gD1fczLTkD3d3Y7ep7NK2ChftHKTW3Ku/z/Lx8UUyKJP0ntUOf8d5KyersOglZGfJPV9QJJlZ2\nB7rrsBbwn9OFVd+hnvMVGsfa+twWYmhkSInPUMTjm28wsw/1xIILnbcvOo0j6/+V20eZeQY2+Btx\nX5k3qtSN+Wtr1hfnknehvfVAALJuOkwuPJL3Q0LnYazXHEqfCS3m4uWdd7Rj6eYtU7k0tj5dLmqT\nnkvy2tu8HyTXT9J95xwcj3l/Cd4L+yLWonhp2arSTK5Lg6tNwLePgmxb9b1rY/5JeuNaclf/ydpA\nyv2/+7bG3H2CRCo2RcxwY+lIUXvTKRuQnJ5JO5bPB9zHyMqtPToYuyf+hQFBB2FraY5R7Rph0eFr\nlPZR7Rtj/bkwwTNP7oNq5RxkdB6+5hg2jelGucc0J1vk/R6E8IwM8XC1eL2059ojBB0Xx52YmfBw\nd+UYmXGq6iRNh9BJouxNOoqjIEHPdJhbmuL4m+Ws++95MA9Rb75h5P+WMPbpUmkS64UNE8vGyC8E\no+wXhYGBAS5Eh8j9MtP07k/o2XBM7SErv31/T4xe3JO1HCOeIXbfF7hRHVh9iTP9ChLyvpABoFZj\nVyw5PEYpmReiQzCi5WJ8ehdD206X/pNrQs+G0y5eDj1fDGu7IjQj6DHiGYrey2PbcRsM6FqzjIyx\nAABFrOkLr9FBZywogp/Ph4Ghcp/jktmueMZGOPUhiFUGLDpOvl+hMFNVx/ITtJK6VNnPqW23ZuP1\no0hM6MSsW8/q03D4BfPnOhvGtWf3XlPlc9ajaRXRuNM7bmLD7KNKy6BDnrGw+OBo1PaspJS8Xffm\nMqYbBoB7V14oJY+ODjaDaBfPkovq/Lx8mUX2pcx9aGvWF2sDd4peC7EubiXq++t7Iu0CXXJeJuO5\nrVlfBKwaRLk378Qk1PcWpB71qzUZm6fuw7Cl4rkPB50VyVUmHqK99UDYSugt+TySuI8Jxq3lo2Bp\nLjiNrz06mLKo3XT+LmUxf+TWM/TwrAkAyM3LY1wAS8q9+uQDhgQfxvZAwXf5gKCDeLI2ELVHByMm\nQXBiPGrdcawP6AoASErPpMzJdpEtb05F1B4djHvBY2BqzEOuVCKIywv8UcLWUtRvyZH/MK1HCwBA\n0PGbFP1O3X0pei18RnWNBCHtb05ELj8PALCxrvbcSrmmUMUwAIIvUGWMBSHOVUrLzS6kio+zNP+d\neMjYduqjauXBAcVfVDdOsStAowpH1v+LjDRqoZwL0SFKGQvSsAnIrT45GIfvPBP9FAbkZZbqMep/\nShsLQjZek+9Somk/ZLrFy4XoEKWMBWlCznPrHhJyntk9pmwlxQWE5C2oZ24awth2cM1lhbLp2H57\nDi5Eh+BMZLDKxoKQs1Hyd7tyc/LUks8GVTc1qtaR76ebkshcmIst757KL2ZVxMqck02ZjoObajTQ\nHACqN6igtLEg5O/t/vDq4M7Yru7nyMWMvTL3jgZT453kvddDQmVTrf5zRBxfVLSkrcJ5Tc1NZNoH\nV5uAydtGoOMIau0XobEAAFufLsfxNRco7atDqXGEm6bIPh8dudm52BexVnR96MsGTGwp+2x8PkTG\nAh0X5/uJXruVdcCqk6Gi6/SsHLk6COW2ql0Rjz+KkyyUtBPH1ozr5Ik6FR3x4J04RmZyt2YUOYsP\nX5M7D5s55bHh3B0AgKmxYO+bJ/X+EBoLAOBV3QWHb1ILpuVLbJh1asidmxAgCG4W/giNBQBwKVKK\n03kAYPul+3APCBb97Lj8gPM5gEJ4wqDOTtix18s0tlvPtVsCnQymOZYE7ESzTh5qz8FWD21w8+/h\nKGppoZW5tEFnV/kL4CEzOqolX9FJ1IbZRzFyfne15lBGl4LEpmszFC6G5GUlk1cUbffycyplrCpV\nrrjSY+Sh6P2hSdR9PyjS/fvnnyhZtphKsod6zpfbvj98AezsNZuCWBkWjdjB2NbFvwWG/c3O3YuJ\nGRsHw8dJ9XowyrJ9tiBVMdMuuyR0bnPCcaUrOKBsFUel5xeO/19fL8a2KvUqoqSLvdzTWhMzY5xa\nfxnDl/VTal5FsA00tjI3RVqmeNPzUcg40dieTWthRs+WrOSWK0F1q+IZGSEnj35DoXQxaxy99RzT\npWQzwfZZJNl66T5KF2P+/yeUWdfVCdHxSciXcCF7sjYQvZfuw+svcTA2MsKD1Zr9/Ntcd5pGqle7\nBwTD0tyUkhHJc+I6hJy6xXkRt0JlMJSpKOsvpyy6/OIs6Gz4l7uqhYpou3g7+nm6o5StYMejZ6Oa\nWptbE8jzI+dqgS3vvX16x02tGAwFzVj4kzAxNUa2gp1HfaV6gwp4ce8jbdv6WUcwb/cIleQqipHQ\nJ2MBELj/MaGusSBkxfHxmNSV/lRq78oL6DfBh5N5AKB2czc8+ve5WhmFmGIe2I7NzcmTcSma9L/5\nmLBpGNoOFO+oXz98h1FOdmYOajZlHxPH9nlVdZkxMjSkuA5JGwxcuOJ8+5kMjwrsjTRV5qzlUorx\nNGLgykPYOq4H6roKYih7L92H7wnUxBsHpgreD53n7+TUBQnQbpxC6AqqO+ytoABREDSXFCqXpM3X\nZ3Iip3w15Xci5LF41E7GNi4XUPJkjfZextk8dLjVdYFzldIanUOSBwtHY5xPE/RsVLPAGwvdqzL7\nNLINAC0IuNXlPs0bF7jWLKPWeJtiloo7FQBOftBekSghXH3+LT/GnPxB1cKY/s0WyG0vSMZvtfrl\ntSJr38oLjG2qsOisYBMqIVaclOTwijMqyRpRV7UNLZ6xEWbuHUONjShmic9vxAtVOkPEv/YUyvXy\ny+wy0pmam7AybAwNDSguNv89ozeYVUFSrtDthw0zd12kXLONQ1B1TqH87FzZUw4bCzO8/So2+F9/\noVZjl8z34+/dQGZ8a/dK2HX1ESs9/hQK1QkDV6y7NJVxJ3bxqJ2Yvn6QUvJuntZcDAFbNJWLW0jQ\nSW6Pvv4k0lIyGNu6DmvB6VzT1w9iNGBn99+I+XtU24llg76+R1p1r6/W+M5+zblRRMeomgmpsBL9\nMY6xrdsIdm4W2mSe31bGthXHla/5IQ/XmmXx/pn82A6ukA5kLl7aDj0n+bIeLxwbdG0ObSwAG5p2\nb4jz265hduflmH9yMuYcCkRbs76iGAtpHQFg8LyeonuSMQmv73/A+KbieDVhH+GpwumEHZjdZYXC\n4m6PQ8aj9uhgLPodJ2Bpbopby9klXpB0/5GuCiwM+BXKHe3bhJVMQFATQCh7/xRxKvr0rBw0nij+\nHQj7CHf01ZkzfE0gbYalkBGdUHt0MJYfvQ4AuLV8FDwnizOSSY6RHCdk+dD2qD06GMEnbtK26wvh\n6wLhHhCMW0EBKGJmgntvPmPEmmOcuyMBhSit6uSQ/mjZtR5nCnAZc8Aka8iMjugx6n9KyVKEvDSJ\n6uyIKXLT0vZuW8jFMIz1bgwAaLVgC67O8ldJjj6kVdV0fIu25pMnt2gJa+x7LH/HVpPI0+342+UK\n637IG3/qQxBMzIxVHq9PO9XKVHRXR546MrU1V0H5mwnRpr7yUnr3neDDqVsSgUCgwtbdiOtKz4Xm\nhIFLY4FL1s86wtjGtbEAAJ2GNMPhdVdo2zJSs2BuyX1BNF3sTPZoWEP0OkNDFZEJ3LH+ivbiW5RF\n3SKBiowFAkEZ+t/zw54GzKcFyuJWjzt3JCHyPvP3cRzHICSg4yqsO83tSQmBUBDRxOkBGwpVDIM+\ncmZnqOJOHNK8cx3GtqOb2FdJVYYF+0Yq7sQxwmBnz783YNFfymeZ0Rc2zz3B2OY3m/tKjQAweDrz\ncf6xTezT4ClDYfHzJ/wZMG26AIB1UdXTAWuKywfvMrb9vV2101cu8HGdgnvXXqGb+xzRvRM7QtGh\nyjRER4r9y4d5r0B/r4Wi67V/n4Cv23S8+F1t2sd1CiJef6PI7lV/LmYNERtWrx5FwbfqdMR8/qmp\nx9EJ4Z+/oe/mQ/BcvAmeizei35ZDeBCpWRdjIVHxCZh8+DxaLt+KGnNWwWvJJgzefhRnnrzWyvzy\nOPH4JfptOYy689ai/vx1GLjtCB5/+qZ4IEFlCs0JA9fY2Vsj4UcybdundzEoV4n7XLpcYFvcirEt\n/OZb9J/YjvM5PZpW4VwmW27N1b6xwiUnt11nbPMdKJvKjws6Dm6GHYvpAwf3r7qIbsP1zz+bQNAm\nh9cyFz4bMbcbY5uuOBDCXOxSnXonXNCgpRuOhc/DlsVn4T+9A7oM9kKXwV7wcZ2CC++XoUvNWTjx\njOqu6OVTE6PnihM+XHi/DD6u4iBi4VgAuHriEVp1qYMqtcvizOvFlDY63GbJunO8WsDNji1Xsu98\n/IyhO47Rtv1Ky8DAbWLPhVNjBsDVQbW0wXS0WLYFscmptG0/U9PxMzUd9yK+YOpRcYAzF78/6d8d\nk0y63zEAPIiMRr8th0TXdZwdscdP9XpQBFmIwcBAs04eOLn1Om3bk1vvODEYtJ2+NT4mUXGnAkLH\n5bvQz1NcRKigZkpSlLtbE5hZyBYnEpKekqmROdnC5wNhzyLQpBY7N4on775i2ELBl8T9XRMU9P7z\neHr7HR789wqvHkTizeMo6GnMmt4hLxFBiy51tagJO77L2VXXlzThJ3fdgv/0DvBxnYK6TSuL7p94\ntgATeq7D6/BPooX+z9gkhQt/IatmHEWrLnXUKmCYlZsLU556y6FmSzfL3Ns8UPksd0wLYiY6rdkN\nQL1F+/3IaAzaxuw+rQi3WcFoUL4MdgzhLjV3bl4+pRDbuP1ncOXVB9bjH0WxK/5GYA8xGBjwaFqF\n0WC4eSYcnYY0o23TZ358S9C1CpwR+eMX5h0Xu1gVVIOBQMXAAKyNBQCoXckR93dNQP2BKzWolf4T\n9zUB/k0XFNg6CgWVSU9nIDYzDvWL1kV6XjpeJL2ixB/0vyeotusidnBRAAAgAElEQVRoXhoedrVw\n5tsFVLJyxWw3QSrlg5+P4lzMRXiXbI2PaRF4n8Jdakx94cD6q+g2pCk2X5gIAKjVqCLmbxsqOjFY\nELAbKw8HIO6r+PupXvMquPB+GSb2WoegQwEyMt3qOAMAXj3+hJMvFsq0y+PVgkCZRbn7P2vU3iX/\nkZImc8/T1Zn1+K7r9uJNjPy6H/JwmxWMsf9rjBHNZVOEyiM2OVUtY0HIvYgvqDFnFZ7P4ybOZHfY\nYwzxEhjntf4OYSwQR9AexGBgQF4l1aT4FMY2gna4M28ULM24D+AmEAoS+4MvYk/QeV2r8ccSmxlH\nMRAy8zJlgpYDKg5Hw2KCpBxpuRm4Fndd1HYu5iL6lfsLbUsKEmBEpkVhzgvdZRPTBL1HtQIAOLrY\nAwCW7B4GAKLTg1nrBgAASjiKqwhb2VgAAMVYkDxtCDooSB/q5lFOZj42pxL6xq+0dIXGQtlitgCA\nzz+ZPQVC/g1T2mBwsFYcX2ZmzEPFEsXwPSkV8amyhpGQvHw+Tjx+iS4e1ZTSgY6LL95hiFddtA7a\nppKxwOVpB0EAMRgYkBek+aMQufYUVBrOXk+5frFcP3MkE6jUH7gSLeu64trD9zA14eHAwgFwKiH4\nIlx35BaevvuKKs4OmNC3ucw4S3NTpGZkASDuRxM7B+PV74BQgm4RniIwITQWAKB1yRYUgwGAyFgA\nAJcizlyqRmCA7pTh/LO3aFezMsMI+TRYsF7m3o2pw1iNfRb9HX9tPCBzf8eQ7mhQXn5RSbqdd7dZ\nwUqflpS2tca3REHMpke50tjr3+v/7J11WBTbG8e/C0tJI4ogpWBhF3Z7bWy9FnZ3Xrvrmih2d7eo\n2HlNMAkDFSRFQFpy2d8f+9tlh5nZnA2W+TzPfe7OOWfe8+66zJ73nDdkuo/KfWrhxduMGAzBMfFI\n/pOFmOTCWFInGyvcmjlC4n33Pn7DlBNXpX52LPLDGgw05OfRW7T6SvhKsjADayAUT9o1rIy1k7sB\nEBgBQmMBACb1aw4A2HziIeW9/r7jYGTIPrK0xSedRUB/J+0LgtYWitNu/+yzNxQ2GNKzc0htZcxl\nCzanMhbOThiEGuXtpN77fvlUDNh9Ch+ifxLa5TUa7s4ehQ03H2NOp5Yy3wMAr5dMRv0V20ntV999\nRPc6ytcxarZmt+i1rO+nXTU3xoLYVU23m/vxMUVQILJ3hZrY0IicwVCWMeqC/fWlIfU3dZYAALC1\nt6Ltk4cl+yXvTLGw6BrB3+IAADxegdz3ssaCfMbCpNX90E3OTFusMSI/Xg7K1RzILciFoR59IgJl\nYX9nqGlYwZGUnjTqdwqcbOT7fV934xGpbUl32TLNPf5CPiX8sHwaIdhXGqfHD0TbDfvxM1U5V2l5\njQUAMDE0wNwurUifwbzzNxkxGIQUFwNAXq51Evxtup1eo9QYdcH+AtMQ8ZE+n6+NnSVtnzw06cQG\n6rKULOJ/p4sClF8c0s0fAVUhy2K+edc6WLhnpBq0YRHi/XI0DnvugT5HHyl5qTgbeQFj3WT7N+CA\ng1EBE0UxD9LcmxSB/Z2h5siofiSXmo6bD8m9OD3y7A2pbYBnbZnuHX/0MqlNHmNByP05o0nv5d7H\nb2hXzU1uWfIyrGk9SqOJKfYN760y2SzywRoMNLx+RF+YRFJxNBYWFsmU9PgDRSiQciJjYmqEi583\nqEkbFiHChf6ajxsQnvkDzWwby2wsAMDRRvuQmJOEEa/Go6tDJxxrtF8lRgMLNY7WlohOTmVUpqy+\n82lZ5BTWQ5vWY0yPKSeu6sTOfDN3cmC7qvG6dQB+HUcRdvW/DVhAGNPi6nbE/kmj7Q/6HYeetw8R\n2oqOYQK302tgYWiMt72Jv6vZvHxUP7ee0TlZg4GGh5df0/bVaVZZjZqw6DI2ZS3w+xd1gcDUpAyV\nVEhOkZDly8RM9ZmnxFOgihsP4u2nb7/BjEGtMbCj5B9Q8XuEr3XRIOnqIjlVIWssqI+Pr8NRrX4F\nQtuCanMox4pnSwIAR5PypDZbo9I45Lmb9h5Z4HA4bI0NBbg9ayRpZz4mOQ3lrS1kup+q4rKs2Xn6\n7DxBapvXpfila9dFQpPj4XZ6DdY16oZOjlXgE/SY0D/4/gnE/knDg24T4GRmjZrnNsDt9BrC4vzv\ne8cwvloTzKndBj8yktH22i7SGCboU6EWLoR/ILXXOr8RXZ09GJ2LNRhokBT0XM6ZuaqKLCWbwTM7\nY9u8M5R9lw88xLB/ujE+55UD9MfHA6Z0YHw+IZ7DNhMW84t3EdOBSlro0/XponEgLxsuTNO0CjpH\ny+718Pgq2dUEAI6sv45/z0xWs0aS6TWmNS7ufUDZ9/Dya/ZUXA7+2nRA5p35YUrULxDP/sNCzaBG\nsrl2qYJ7XcfD1dwGALC43l+Evhe/fhAW/sH95sDt9BpEZ6bC0VTgsh7ar7AyuYuZNT71n4uqZ9cx\nruf6Rt0oDQYevwC+TXsyOpfOpPvJTKOvzKlJajZ2p+0L+xClRk1YtJEuQ5rR9p32va2SOU9vo5fb\nf9JftH1Mc+vFJ7XNVZz58j5SYn+NRqr3Uy5pzN85nLbv/dMv6lNERsYsoa8ovG7yETVqUvyo5+JA\nauMVKHZaU9qslLLqsIixyEu24HFVIDQWijLuCbWRWM2qLPrfpf9bM9DTZ0QvKpzNrNH3TuHc815d\nV8k8OnPCsGXOKa0M9lt5bDx6VppN2Tez+2b4RchXBp6FpbjyYPdkggtRl2bMHpfqKud33aPta9WD\nOZ/ne+dfMSaLhUVTuB5dh4ihc0X/l8bxMX+T3JJqL92K4JWS3QCbr91Nansyb5x8yhaBqq6Bprj8\nNhSr/O7jTy5bPV6cZ/ERAKRnLTr19S0WBfqrQSPgQbcJBH3OfX+PypZlGJ9HZwyG/66/Y0wWX8Lu\ngtdw+dIUGpnQp8vLz2dLnbOoF/8Tz2j7XCrbq3RuUxND1oVIAV7dC6HtGzKzC2PzbJx+nDFZuk7w\ny29ad7JToZoDwmmy+53edlul7obaQqXjG0VGQntH+tP9oogXLgOAAhniQX5naqdXgzI0XbMLKX/I\nwdgshdQuXR7P4yMkxiJs+vAQO0OfkcaoOjXq4S8BaFGuIgDAv/MYxuXrjEsSkwyuv5i2b+KqfnLL\nk+SWNLLZCrnlsegW3UfQ57/es+wio3P5zj1N27f7/nxG52JhBg6Hvs/KlvmgeBbpzOmzVdMqkNh5\nZx5t35F119Soiea43X0kdgW/QFhqIl4nxMh8393Zo0ht7TbKF3x+b3bxzW41/dQ1eCzyYY0FGdjf\nsr/UMXs/vSC1BSao1gXd1tgUK9/cQYcbe1Q2h86cMACCPOX+0b5Ky0lOYDYYaf35qbQ51ON+JDI6\nF0vxY8LKvrh66DFl3+X9DzFuGZuHuiRTsbojQgO+U/a9vBuCdn0aKj0HW7CNjH+0r8TPpWel2bgc\ntlGNGinH53c/UKWO+lNUqpMKFjaYUKMxAODt38p9p+NS6LPJNaCobmxvZa7UfABQy7Gc0jLkpeaS\nLRJjNrrVrorZnVqgrDn95oQ2uVKpGmN9LnpXqAm302swuXpzjKriiWfxEZj36jre9ZkFALjeaTQ6\n3tiL9LwcmBsYYczjs7gf+5Uk6+WvHwhMFGTaepMYg70fX6CSpS3aOLjLNQYAXvacJjrBUEX6VkDH\nDAYm0MQPJ1OGDkvxZeicrji6gTpQianvh6TvtqrdkVgUp12fhrQGw95lF5U2GB5cClTq/pJKTlau\nplUg0WFAY9w+Td7dBIDp3Tbp/O+MeNzCpEdXsKNVD5nvre1kj/dRcTKNVZVf/+nxA1Uil47ZZ2/Q\nGgu6UMNBVWxo5AU9cLA95D9sD/mP1O9uYYvhlRuizoVNAAAzAyN8G7CA5JI06H5hat2I9N9Y9/4+\nAOKCX5Yx6kLnDAZlFlc93GZJ7FfmYSttt0pVRkN+Pg+B90PRuENNxmWzMMfAaR1pDQYAWDl6Pxbv\nV/zIW5ohzLojaS9dhjSjTb2blpyplOy83Hysn3JUKRm6jCzP7ba9G2KOr7cataJnxsZBtAYDoNrN\nqQUDd2DNqUkqkS0LfhGCYquuRwWpK+fXby3X/afGDSDtlHss8iEtnFf63SfdG7RCcoC0tnLjw2dS\nm8+AruhYo2TXmpJlMb6uUTesa0Sf9nxxvb9I6ViLypVlHnkNgy9/07smKotOxjAockoQ9iESuTn0\nuwal7SyVUQmA5FR9gEDvP+nM+BA+9nuLzo5T4eU6Q2IQN4v2IOmH/NnNDxjberVCcie0/1di//Uf\nWxSSy6IdeLkqthP44XkYuldkg9ClwdGTEEQC4P7FAMZOprMyc5SWJc0g6Ow4FQdWX1FqDiE5Wbno\nXnEmOjtOxdsn5MWnOvFyrYZ+7jURMXQuIobOxbjqjeSWUc5SulvRqZfvSW36Ur4jxYmSbiwUV6Iz\nBRXL9TmqW9brpMEACB6KWRk5Mo31brgEU7tI9kU9/nql0jq17C49BWKfav+gdxXqqqHSOLL+Gjo7\nCuIl1k44JP0GFq3D0MiAti/qa7zci4nOjlMR8Yk6c4oQPX2dfQzoDB4NK9L25efz5K7psnrcQczt\nt01ZtUoENyJlC3Du7DgVU7vIX3E75NV30XNb0Wd/UQ4+XSKx//yue+jsOBVfg+QPxAx8+BE9K81G\nZ8ep6FlpNvJy8xVVk3E2NFUua9j9OeRT3HU36AtdAkCvetWVmlNT7HxAPonisr8FxY56Fzej+dXt\naOW3A43KOqt0Lp1wSaI7Nu5dtfDhW7m2M5p3rYOy5W0QH52Eu+deIeprvEzyvWczl7pQ2hE3wMwu\nE0vx5Mq3TZjV0wehgeG0Y8S/G07udug8uCnKOtogKiwej668RsRn2fxwAeXc7FjUx6ZL0yU+E4QL\n1QZtPLD00BhwucQiQXw+H3P7bUPQC3LgnZC+E9pJrPlQkpHluQ0IinFqw7Pb3sUW/Sa2x7mddyWO\nm9JZfgOnuLDl/VNMr01fGFNWjjx7g7ldWgEAqi8mB/eu7q1YutpbM0ei4+aDhDYqFyhVcfIFORX9\nbm/5KwPn8dj08JrkTW/1nRLrhMGQnJCGG1Fb0cVpGu2YL+8jpVZMpcLC2hSDpndSRj0Ssv74sJRM\nNl2eIfP3I+prPPYuv6TQPKyxULywKWuB378kZ3ALfBCqkItS5drOGLWwB6xKm2P/qsuKqqjTFLfn\n9sgF3WFla459KxR7PhRHZC3WJoka5e0QHEO9mShDeQaZcbJR3s1ZGbLyyCdDlqWM5ZbjuXInE+qw\nFAN04vzpwaXX4HA4jC+ATMyMcCZoLaMyhfhH+5aIQjosiuEf7Ysp//6tEtlOlexYY6EYcuLNKrT0\nqsu43CvfNmHrdUE1+j7j2zIuX5fwj/ZF3RZVNK2GzPQe26ZExSiJGwuKni6cnTCI1PYh+ifl2IXd\n2ig0h5Cd3uQsTg1X7lBKpqy0qUp2c9z/WL6MacEx8cjJ1x6XNBbVohMGw4fnYaLXTC2EOg1sgouf\nVHtcO2xuN7Us3JyrsCkziyNdhjTDvB3DGZV5LGAF9j5YyKhMFvUxf9cIqUG48rD95j8S42ZYyKw5\nNQmzt2pHViRZ0NPXU8vvTK0mlVQ+h7ooWnPAe99ZRCenksYNblxHqXlaVyEv2jNzctFjm3KZy1Kz\npCdPmda+KantVvAXuebpv+ukXONZijc6YTC8uhdCuPaP9oXvDcWCx0qXs4R/tC+mbVBfPmT/aF/4\nR/uCI6mkq5xsvDhdJLd8hTKMyWVRL6161IN/tK9SKVUB4MyHtfCP9oWtvRVDmrFoihuRW5VeAHYe\n3BT+0b5wq+FI6us0iLyQYCHSrk9D+Ef74tIXZgu31W5WWWWLe+HvQb2WVRmT2W1YC5HcdeemMCaX\nCeqfVTyo/+HcMYTrPB4PHTYR4w0aViD/7ShC4JLJpLaw+CR4LPLBnVD6mKOirPS7D49FPvBY5IMm\nq3dJHe9kQ/1bcJ0i1WpRdj98WaKKtdGRFlcZabHOov90HQ6fSac85qBUSpL/KN1D9v2zMMzrL/3B\n0ah9DSw7PFZG9VSL/4ln8J17Wq57bO2tsPfBQpiYGalIKxZtoXeVOcjKlJ4BzMTUCBc/625QI4uA\nhYN24s3jTzKNnePrjba9la8MzULmztmX2DzzhPSBRRg0oxO8ZzGXWEMevBsuQWJcilz3rD4xEfVa\nMWd0qApl4xnqLd+GbAo/fyFMBiffDgnD9FPXJI7xcCgLzwpOKODz8e1XEl7/iFFaP0mLfqr7T718\nT1mHQtH5pemizcXj0mIrAODBrOxjcPRtkffnAgxNhxHG8PmZyElbD2PL5ZpRkojSO9I6bzAAQGen\nafCPki01nrrZu+ISbp95ifMhknPls7BI4tS6Kzi87DypXZ+rj/lHJ6JFL08NaFX8OLriAk5v8MMk\nn6HoOpr151eWKc2WIP5HIs5Gs4GRLNRk54fj488+yC/4TerjcLioXOYQLIxbaEAz+RfUyhAcE8+o\ni4+s+ilzUqDH4SB45XQ8/hKO8UeJyRJ032Bwhh7XDWZlH0gco29QE6Zl6IuyqhGlDQadcElSJZ0l\nZF5iAlNzE9ZYYFGKjibelMYCAPDyeVg1iM23Lysn1l4GL58H3ylsHRNlub7vPr68CUdqUjo6lRqq\naXVYtIzs/HAERLoiKLYNpbEAAHx+Pj7/8kZApCuS/9yUKtP16DrSf6rAxtSEcZk1yttpZIGszJzB\nKwUVrltWrsCUOlpAAdJ/1kX6T+kJJjicUkrPxudnIONXa2QmdAb49J4Dedn+SIutgD9J6nOXL0qJ\nMRg2zjgOb8+lhLa+1edhr1jKuT3LL8Gr4kwc+tcPAER90oyGXzHJ8CpSMXVW760Y3XJV4Vwe8/Dm\nyWf8XUtQ5nvJsD3o4jwdxzf7E+SParESW8XckYre93ftBRjSYAkKeAX4u7agLTM9C0MaLMHORcRF\nYw/32TjhU/iQ/R4aA68KM7Fx+nHaz4CleNHRRHrw5ajVA9SgCQsLkXNbCnfVtPQkm0VDZOQEIihW\nvgxDXxPHIyDSVeKYsdU9RZWerY1MlE6xamtmStn+3/zxSsmVROiqGZj3/7oPit4vrxEg7/j+DWtp\n9e6/omQmdEVarCv4BUngFyQhLdYZWcnEf2vxeAVeXhBlDIMsYwCAX5CA9DgPFOR/By8vBGlxlfAn\niZilS3hf1u9xAHjIz3mqsXiJEueSJHxN5aa0bMReLDs0lvZeaVDJntV7KzZdnEYr5/mtIDTpWBMA\nMN1rM7b4zZSop/Da78gTWJU2R4tuhVka7l8MRNveDQAAaycexvydw3H92H/o6t0cG6cfx6zNgwkZ\nVqj0ZCk+HFx8Fmc2+omub2Ud06A2uoG4AVZSPs/VQ7bj8YWXaN6zIRafYq7OQHZmDnrYCoL1By/o\nhaGLezMmu6QSlLgKkekX0cDOB3alWiGXl4J7UV1Q2Xoc3CyH4dXPKdDjGCI1JwTtnG+Cx8/GzYhm\naFH+JCwMq5CuX8SNRTYvAXXKrISVUQ21vIcPsa2Qk/9D4fs5HC4aOFEHA+8OeQkrQ2M0s3dFi4u7\nlTYYAO1wlbn4OgRX3oXiU1wCsvPy4WRjidpO9hjdsiEq2FozPt+O+y9wNuADEjMyYWdhjgau5bGw\nWxtYmshfp6E4kRbrDAuHSFKbidV6GJQaQGqX5m4kbQzdfOJtabHOMLHZDQPjLoQ2A5MuMLHeLfN7\nAwMuSTpRuE1RhLv2Zz6sAQAsPTAGXV1noGFbDyw7OEbSrTLLlod2fWUPRrQtV5jhYNGQXfj05gcq\n13EWGQyte9QHANiUFRSHeXLtHWZvGcKInizagbixUKNpZQ1qojuUFCNBnMcXXqpErrGpUYn8PFVJ\nFetJqGm7SHQdED8VnV2fia7j/zyCV8UPousPCSvRtcJrhKcKDISi1wlZL+BV8QP8vtci3KdKlDEW\nAIGb0p/cEJQyrE7qG1+9keg1E8ZCz23k7++dWaOUlvsn/xfOhRdWVR5WqfDfMCn7E65FjSS09a5f\nHb3rk9+vqpjUtjEmtW2stvm0gdyM/bR9WSn/kAwGpefLPCzzWHFjAQD0uFWQl30bzDvGSabEGAxf\ng6KRl5uPMg6ChXajv2pg4oo+SP2dIRoT+yMRV79uQrcKxN0DPp8vMeXprF5bsOnSdILsBq2roUnH\nmkiISZZZx52LzqNpx1q4deYFug1tLvN9rx99gn/UVpJblDhXvm5EZ6dpuPJ1I+6cfYmu3s0JnwEv\nv0Dm+Vi0j033FmtaBRYWFhVjqG+NbymHYW7ojrKlmqOW7VKJ492shgMAKlgOorxWNyE/OzMkpysa\nOkcwIksSX+ITSW3lrS2UlnsuvCfBIBCntHFV2j5FORLWlHGZ2jQfE+Skbwb1JjwHNE4vDMwHhdyL\nOBxDgK/+gnklwiWJRXZcD60XvY4Y8Q+pTZzatva44iV7ASM6OeJz0d1jrM/Fp6Fkg4hKX7oxdP3F\nlZLoPsPCPMLvEdMuSSyq42nsUDRzOCo6GfiZeR/lTNuSTgqE1zm8RBjp29Jeq+uEQVoMgjyow2Ao\n6o40p1NLjGheX2m56lxQ8/h5OP61lc7OxxQZ8c1RwIukdBECQNmujEtSRnxjFPBiSXKpZBQdk5nQ\nFby8IKn3FoHNksSiOu5Ehklc5L9PjJPYL8Tr6lGp41wPraccY29qDgDI5km3pje9eUJq2/LuqdT7\nWFhKKld33dG0CiwK0MxBUAlYuMgvZ9qWcC1EeG2kbyvxWl3uSEySXyBf/Qh5qb2UvAnJhLEgC0fC\nyMUTj4Q1xZGwpojMeITw9Dv4nRNG6MstyACPn4sz37sS7tPnKFbJXThfcs5XhKcTnxNXI72RW5CB\nkOSTJF3p5ssvyMKRsKbgowDRmU8p36MmKVX6iFrnM7Heodb5mKDEuCSxyM+Ye4LsSYOq1Maaph1F\n7T/SU9Dq/F7R9eSHV7G9dXdaOUFJP0WvVzRuj6HV6omuw9OS0ebCPtH115QkuFuVFl3/26wTht0+\nRyk3v4DoRrXt/XPMqkfM1731re4YDBkpmXh+7Q2u7b2HTwHfCH2SsiXJcvoQ9jYck5suoexTZud5\njfcOPDr/grJv+LK+GDi3h0Jyr+29h23TDlP2NeveAPOOTIShseQfypltVyLk+RfafnlObYSff8OO\ntbHq8mxRu++UQ7i+n1joyMyyFM5E7QTXQF9m+QAwv9s6vLkXTNl3IW43zKyoM7pQERESjYXd1yMx\nttBl8r/LAUp9jyTdK+93SCir6JxUc7To5YlFJ+WvMjyt5TLS35Ek2FM85UjMvMCovJiUjXCxWSV9\noILk8Xgqk60oknbtDfXMAAB/V2Qu579wPmsjd0J7d2fB30J160EITNwuk6wT39phoNstcKAHR9Nm\nsDLUrlSselw3AEB+9k1wjTv9//VtAIB5uRCF5fLygijb9Q0Fxmd22moYWyxUWL46YQ0GFokMqlIH\na5p2ILS5mFvhWMf+8L51FgBwLfwTrcEgzWWogoU1Ikb8IxrX/tIBwrhW5ekfKjMeCx6MpzoNwMCb\n1JWxhb5tHV0q0copDsiSPlURFvbYgMDbkncXhQvJfw6MR7tBzWSSS1dITpzDy86Lxsi6GLt15BE2\nj6cPTgOAp1cD4WU9El3HtMVU3xEyyWWKgFvvAQC3jz3BprF7KcdkpP5BV4vhAGR737L82/exHy+T\nPFV9j1TFh8cfUatlNXhZj0Rudh7lmCeXXqGjiTf8kg9KNRIB4P7pZ1g3YhfTqrJIISXrLsPy7sEF\nqjEYai4hZzQ8O0EzcR+yUNtmJI6ENYWxvhX+rnhD5fMd/9oKPD7136MkTn3rKH2QBjEw6YE/v4mZ\nMvUNG4GjZ66gvG7Iy7pGiFMQdyMyt/+E9LiqyM3YQ7hPTlcjtcEaDBomtyAPhnqKHRmqGhOuAclY\nENLCwVXq/ateFVZAvNlT8sJN3AD55z9/rG8uPTjOL/wjAKCJvfSgoT1te0kdUxKhMhasy1oiP4+H\n9OQMQvv6UbvRuGtdmFpKLlZDtSjl6HFg52yLnxEJpL55RybKpKu8i11pxsLsfWPx4OxzhD7/gsA7\n1LtAivD+USjJWCjnWobyvXc08Za4yKe6BwDsXGwR/4MckClNnipZeGIKQp59RsizMIS9DWdE5uLe\nm5CTlQt+QWFYG9eQCwNDLrIysgljvaxHYsnpaWjWowGtvM5mw1DAKzyZnLN/HNoPFiSYuHfyKdaP\nIqYptHWwxth1g9Cqb8nKGKMKMnPeMSovlxfHqDwh9VdsB6/I6bWBvj5qlLdTyXxMUKf0aNQpLUhh\nrOr4iIsRfTHE/SGELvHyuBYNcX8IfY6hahRjABPrbTCxlq3QqSyLehPrnTCxpq9yz+GUkiqHql9T\nlaNZg0HDzPnwL7bW0c4MN0GDJddlsDA0QloufWXC/SEBotdVrctIlCVugJwNC6I0GLLy82DC1U7j\nStVQLQKZCHqu1aIqPjz5hD2Ba+Fa3ZFyjPg8vcuNk2uuM5E7YFWGOqvI+0eh+KfTWrTp30SqnP5O\nRKPC0NgAfskHKcfePfEfNozeQ9knjoObHQbP70loY2IH/p9OawHQu+EUnYOXz4M+l9o9qZyr4O+m\nrLMtjn0m54MHgFc332Nxr42i6wu+/ugzldrgluTio2zQc8venmjZ25NWviJkZxY+X07/2A7r/6eJ\npptjxYCtEr+f4sZC0XHtBjVDu0HNCPJOfGOTaTAFH+rP6iIvQ/adQVYueef8/XI2GYAQQz0LZOX/\nhgm3NFJyv8t8XzWrfjj+tXWxC4ZmKYQ1GBSAx+dh0+cDeJMSgtqWVTG/2gTKcXzwMf3dKvzKTkR3\nh/YY6OxFGhP9R/ouyeOEV9jx9Tia2tbDtErDJY5dFLwJsVm/MLJCPzS3pd9pkwWunuSY+IqWNniX\noJpdHiqG3zmPM50FZdEj0qjT1b75FYt6ZR0AAHP+81ebbhMRyLEAACAASURBVMWVDbel+07eyjqm\n0MKvz9TOtMYCANRu5SGT8XF1912kJqaLrlddno2GHWvTjm8/uLlo11hTSHpfRT/PLubDpY6XhGen\n2jAxMxbtuO+de5LWYCiuyPN50vHyxlvR69VX5tCOW39zvsjo0+SJja5hbOCGPB71iZkicPWspA+i\ngKoQmyQGNaJ/1jCN+G698LUsC+w3ibsQknIaplw7yvGD3e7hXHh3GOqZo4fLCaV07OZ8EDejJyEl\n9xsGVLwJR1Pyhs9gt3s4/rU1zA3Ki+bzLDMDnmVm4Hx4L+Tzs1DfdjIqWXRTShcW9cIaDHJy/Mdl\nXIoRBMK4m7kgMDkIfZ5NxIWmxGOnUQHzkJKXBgDggIPz0f5oaFML7mYuAIA+zwp3TMVfAyDIEva5\nm7ngccIrPE54RZqrz7OJON90B/o+myRq8/lyUGmDgUlkyaZEh7tVaXxNScLLn1GitvH3LwMAhv8/\ngLqraxVcj/iMyQ+v4ll/gT/3uTCBm4mLuWI/LCzKEfYughE5O2YUZq/g6HEkGgvFhaVnp2N5/y2M\nyTv1fRt6llWu2KS2UsqCmfJEx1ZdEr1u0KEW7bjarTwYmY+FiJVxG6RnUydAUASbUqpfbFqXMsEi\nr7aMy6UzAiQZB5L66tlOQD1b6o1LAODqmaBfhauyKyhlvk6OhRl+2jlsopxP4LZEpm+FS5TtLNoP\nazDIyRCXnhjiQnRj6PNsIia8Xoxd9VcCAJaH+CIlL420sBdH2EdlbAhZGrIFJvrGON5os6ht8MsZ\nlPf0fTZJ4nzFmWvdh6Hq0c2Etk/Jgp2qZY3bAwB2tOmB64fWIzYzjfJ+FvXz4fFHzGy7EpvvM+dy\ndzPzKGOyVEXzntIrtjf1YjY9o4m5MaPytIlL8dTB4+JUb1JZYsYrAPjxMZoplbSSnPx81FpL9L/+\nvHgGaVyVlT5Sx6iCchbjEJWyljF5qsyQBAC96lXH6t7UMXxUdLYv3LDzjyt+KTOLG32rzEZmWhZl\nnyyf//GN13Fi0w1wDbjwiyQHudMh/u8s75zFHdZgYIhfOUmi1x9SPzEiMzj1C8FYAIB9DdbA++Us\n0tgq5hUZmVNVKFM0zVhfua+puaGRUvezKE7I8y9yZ1gq7kzYOETTKpQ4rO3IsQ1FafBXLTzze60G\nbTRDrbXb0LV6FWzu3YV2zM4nLwGoz0gojng4lMX5iYM1rQaLBEY3W05rLMjKiU2CbFL5edofW6Mt\nsAaDnPD4PPR/Lj3ndwPrmozMZ6JP3DkspU99PO9h4U7ZrmuEpSRJHRMQH40KFtZq0EZ38D/4AFsm\nUQcRy8utrGPwP/QQWyYeELWtH7VblIGm/8yuGLV6ACNzaSO25W1UIrd3uXHITP2jEtklgaVnp4ti\nHSTFJojHQ3QY2lItujGFJGMBAHwfPkPrSprLf29u5In0nFcamx8AQlexxpIidLafBM/2NbD8GL3r\nkzrgF/AR8/0XAKB8xbLY/3SpQnI4ehxC9jVZKXqSQHfioIuwBoOc9H8+BdaGltjfoPBotWgMAgB8\nyWAmrSCLAAM9feQV8LAn+CV+pFFX+OzjXgMXvgZj8fM7aCmhfgNLIR9ffcX0VssZl9t5RGt0HtGa\nMhj17ObrOLv5OjbfX4zqTSozPreuUdxqJxQXBlaYglPhRBeeom5Ns/ZoPi5E3IWoUpnSuDZ+KKF/\n9a2HOBH4njRW/BThwPPXOPbqLfgAHoaF044rKkOPw8HHRdNJ/fYW5ng4bTRhrGtpa9yaOFzie6lq\ndxYBka4Sx8hCA2fZC+6x6BYbphTGtClqLADAjRjZCs6xFFKsDAb/aO1IcSduLNCRlpchdYw09Dn6\n2PntOCa6Fbo47PhafDJ2mBoYIjMvFwBw5OMbDBOr8CwvK5v8hXlPb+JCWLCoGJuHTVnCmPXNO+PC\n12B8Sk5AOE0WJZZClvXzwfNrbwhtBkZcLD8/E/XbE0/IFF20Cndxu1qOQH4u8eh3ZtuV6DW5E8Zv\nYI//6aD63LuOaYt+07vCvmJZqWNZiBwP24IhlQQL4N8/UyR+Zld/H6DtUxdVVvpAX08Pr/+ZhNeR\nMRh18iKqrPQhLPIjk1PQws0FD8PCaU8PXv2IQhU7W8SlpaO0aSnUdKCuKVBlpQ/0ORyELpqOhIxM\nNPfZS5oPAOLS0lFlpQ+GetbFUM+6WHHzPrb1I2cBVAWWxi3BgXxV0lmU44nfG+mD1MSL28zVzGGR\nD8l5M1koGfSycMdlwAtyrQLxgObIP7EAgPPR/pQnEQDQ//lk0esf/x8PAGebbMO9+GeY+2EdACDw\ndxDu/3qOQw0VzzikTkKGFH5OS18oV+VzQGVBVhPxA8QbPYYTxuhzOKLXOTzB4rSPew2l5tVlxI2F\nTfcW41bWMVxLOUQyFpjgeuoh3Mo6RnIDubT9Jga4TKa5q2RTdDEr/Pym+o4gGQssslHGsTRuZR0D\nR49DO8atlgtuZR2DkYlmC0zVXSfYAQ1dOA0mBlw0d3MRLdzzeDzRuD0DemLPgJ6E18JrqjE1Hewo\nx7Xx3Y/a5csh9P8nCmXMTEXzXQ36SNLv8+IZWNixNZysLbFvYC8Yc2Xbf2zoHAF9BSvnWhq3QuWy\n2p/4QNdYM1bzxrOQogUbWdRHsTph0AaONdoE75ezRIv/Po6dYM41xeGIC4RxF5ruxKQ3SzHjXWEm\nh8al65LkXWi6E32eTSQYE+LZjs422Y7+zyeL+k813qq1laGpuNzNGz2vCRaJrofWw7eVF7pXrEY5\ndsSd83gQ/V2pAOmirKapVF3Subjtpui1sakRajRVn2vQraxjGFRxKpLiBKdAyb9S1TZ3ceXCT+mF\n6FhkY8WArSLfZW2usfCHooCYkIlnr2LfQGar18empuP6eOqMcpvu/4fuNamf24pQzzEIr6OqoIBP\nX/izKHUd3ylce0FTdHWcQigW6D2nKwbNlBxnIs7BVZdxbscdQlutppWw7sJ0mjvI9HKbgew/uWTd\nhrXA5H8lx5IF3AvB8uGF1c9f3Q3WSJagiE+x8Dv4CM/83xPa5dVFkxmOhHPfiNkOjh4HXs5TkZ8n\nMPzPflwPcytTAMDy4Xvw4tYHAMCiA2PQrEsdlesmK6zBICel9E0o05d6ObQjte2oJ5tvuKR0qPoc\nPanpUrU5nWqdMvZY1eQvLHoueOhNfeSHqY/81Da/shmWdJXDS8+JXmuimu3J774KudAcXXkRQxf3\nVoFG2o2ZZSmJ/f8O36WQXD19PdGCJjeHfoGqK/R1mID0ZIG7qDYbC0LsLcg78eUszPAqQjUpYv/a\nTk58YGtaCvlii16mqO/0GQCQk/8DoT97Ib/gN2lMadNeqFhavkJr2sCJTTdwfON1UvuxDddxbMN1\nqQvUO2deYPN06u/nh2dh6Gw/CXVaVMHas/QVqKUF414/8gTXjzyh1EWbAnm1SRcmmNl9E37+SBQZ\nCwDQv9o/8I/bQXqvq0btQ80mlbD+ouwGoiphV1MsKmdI1boYUrWuTMXb5jdoLZPMLq5VKNvLmJgi\nIStTHvVKJKUsTJCTJdh1+h2bLHFB+kfJ9HXKYmhsgNxswWL2xJpLJdJgkMaDM9KrwVLh4lEe4UGC\ngogBN99LGV38ERoLxYW4tHRS28+0DLR0d1XJfOdGDYKDpWLuQopixHVBXUft8ZFnAqGxIL4Yf3gp\nEOsmHgIgWATTGQ1hHyIJxsKZkHWwsDEDIMgQ1KW8wIXz3ZPPMulSpZ4rtlwnVjY/us4Pp7bchIkp\ndcpxukxAmsiSJCkrkbwnA+LjNWWIfHodLtKFz+eji4Pg3/Pg6isAgOvR26CnryfSL+h5mEb0pII1\nGFgIyOMOdLmbfDvEyroayXJ/wADd2o1QFSsuzsKUZksAAGPqzaPdbb15+BF8JuyXWW5HE29cTToA\no1KS/b9XD5E9Q4Vf8kHCaURHE2/4JR+EoXHxcc1Tll2zj2HCRuq/t66WIxSWu+7GfPR3Erg78vny\npxgsznQ08ca2pyvgXtsFevraF843o00z+Dx4StnHtDsSAMxp3wJtfPezNRoYouhitnWvBqjZxB1D\n6i4EIDht8J7TlXTf1I6CmMX5e0ahZXdiohCOHgf+cTvQxWEy+Hw+reExqNY80euixgIADJ3rhaFz\n1ROkzkJG+G/GEYu7PLf9Ni5/9xE9i3xvzsXUTus0oh8d2veUZGGc+Kw0eFxepmk1WLSIyvWI2VSK\nugfl/MlFzzJjRMZCGcfSMsvuXnoUOpp4o3vpUbi29x6yMwv9lK/uuoOOJt54fOGlqM17kfQTg6IG\njZf1SHQ08ca/w3fh7on/cHXXHawfuRsdTbxF/8lDYsxvBNwi7rC/uReM3z+pU/iqA3GD6PKO2/Db\nQ0wc4DNhPzqaeCM/Nx/6XMWyxljaEneTO5p448rO26LrqM+xCgWm/wiNwcNzL0TXv6KS8DlQ86kw\ntz9bQbie0mwJOpsNI3xvxP+7tP2WhjQFxjf3BAB4rNqCrLw8vIiIIlVpZpLRTRoAEGRKeh0Vg2+J\nv3Hg+WuVzqmrHH61grK9dLnCGIyTm2+Q+v+kFwb0FjUWxLkevY22DwD09NksUsUR8UQLlWo7a1AT\natgThhKAnYkF2pSjduFhKblsuL0QczqsFl3TLbKFi3V5F+E5f3KxbdphbJt2mHbMmcgdsCpjIZO8\nW1nHSDo8OPNMIXccWd7L/G7Uuzvq8n33Sz6I7qVHIef/AYvbpx/B9ulHSOM4ehzcSD+Mwe7TkBhD\n9gOXxsY7CzH7r8Lvwc5Zx7BzluzvMepzLEbXmStxzJfX3zG1xTLKPnXGEliXlV4RWpzdc45j95zj\nGot3+Lx4Bl79iEbrrfvhZlsaHxdNhx6HOsOTLCcD0sZ8XjwDeTweuu89jtiUNDSt6Ey6hz2BkI6d\nE/0GS7t+jXDv3EvKvj6VZ8kkXzzL1+LBO7HyBDED4/G3q0UuLV3KT2ZrDrAwAmswlBB2NB6oaRVY\ntIxaLapSLsLFkXehdCvrGMbWn4cfoTESx5lZllIo88+trGOIC/+F4R6Sf1hrt/KQW7Y2cjXpAMbU\nm4fIj9Sf58Y7C1GzeVUAwIZbCzCixmy556jZXPr3QBeY1+VfvH0QIrpu1qMB2g1sRlh85Wbn4fWd\nD7h97Anh3scXXqJln0Zq01UcTxdHvJytPr9xA319+E+gzpbEojzdhrWgNRjEkdXHPuTlV4n9/AJ+\nYYae2O0ENxgWFnlgDQY54PEL0MJ/I8wNjLCufm/UsXFSWNaIp0cQkhyLBbU6o6czOW0Wj1+AgY/2\nIzUvS+pcOz89wp4vj9HXpR4W1yb7REpD1rn2fnmCHZ8eSpznYNhTbPl4HxXNbHG61WgY6xP9zOV5\nXyySYWrXU1Y5so7b+/pfZdSRin2Fskq/d6Z3jBWRJ+s9+97I9nk6uNkp9b4UvdepioPGP8/Fp+iz\nxQCC6uJCY4FroI/raYdpx7bu1xiz9o6Fz4T9uHn4EQBBzI2mDAZNsCK4O5bUuKoy2eLIM8/KkJ7g\n8wvkvk+bqOBRnlF5WZnUqWn943ZgptdGfAwMF7UJA2zPf94IUwsTRvVg0X1Yg0FGhDEAoT2XgQ8+\n6vutQTYvD6E9lxHGnGg5CnX/vwiu67cKZlxjPOk8myQnpOdS8PlAjSvLseDNZZIcALj111Q4mlrT\nziVkdb0eeNrlH/S6T0yt+Cs7Ha8SwvH6dyTOhAcS7ldkrq2ef+N998Wo67cKp8IDCGO63duB7+kJ\nKGNsjqed5+BlYjh63N+FW39NlWsuZQmKchS9rukUTeor2iZ+j5lxc1Qoc5oxXegIinJU21wsJRvf\na0/hWdkJjSvL7w/bfP5O/LeWutikItSeXugL/36Let1aDiws/FuTZCyIM2PXaJHBwMIsii72F1e/\nDIBsdBQnZM0t4HNN/tPComz2E8hIT8lE/2qFSUP6VhG0q6P+AIvuwAY9y4FwYcsBB2+8BJkOYv4U\nBkU2tHXF4MeCiohvkiKRw8snGAvicjjgQI/DoV0sh/ZcBidTG9q5hPi3n4JeznVhxjXCnQ7EXL1l\njc3RzakWltbuJvV9SZvrtdcC/OUgKNzz1msRScb39AT0damHR51mwdzAGO3tqxGMBXnflzLUdIqm\nNAz09ah95anGsqiGD7EtERDpioBIV4X6tRVt1ffA3VfYcUOxlKvpWbIX1ZKF91tmqN1QYGHRNr5+\niJRpXNX6FWT+TxrmVqbwj9sB/7gdhMBaXatxwKJaisUJQ3x2DA5HbEBCThyhfWPtM2qZf9KLUyTX\nGiGDHx/Aw04Cf+ojzYfD694OeF5bi4z8HLz2WiDzHAMf78eplqNlnkuIi5ns2WuKIs9cJvqS02QC\nwIq69Ls+8r4vReAVpMLMuDltv0f5UKXnYFGOWg6PAdAvsGs5PNbaxTcg0Luhc4Sm1ZAZZRbomlzc\nd/BcgduvlsjcrgpCX2g2/7m4W5DvlzFIyY0XXa8I7o6/yo1EE9ueOB6xBN8z3onuq2PdHt3LTyXI\n6eIwHjdiCyv2zvc4CwM9Y8IYyfCxIrgHoaXoKcGK4O5oYtsLzxMvkcYUlS+8FpdB5QalStcoTeEz\n8zhtH9dAn1DQSxVc/u5DyP+/dvxBzN89UqVzsugGxcJg2PB5Jsy5VqhkVkMj879ICEc2L48yNemv\nbGJhHb92k+BxeRk8rOxlWmQLCU2Jk3suZdGluUJjBKcfBQVZotce5T8CADKyH+FX2nZk5jyX6zRB\n3L3JwqQT0rJuAhCcSAjcipohI/spqU9wrxOAwrNnW/PRsLdaRjuPuF5Rv6chJfOC6Fq8TzA2EkFR\nzpT9LKqDV6CZgoB0rjy1p/vg5tLR2Hf7JS48D6LsB4Cu9atijXdngsyXXyIxducFQpvw3iuvQrDk\n5G2SPKHMaV7NsdXvPwCAqbEhnv0r2KVM/ZONlgsK3SL19Dh4u1k7KpQqwow2hakxl57V7PtIyY0n\ntTWx7YlvGW/xPeOdaFFdwOdhVUgvNLTpCnsTN9HYG7G7CYv3taH9Rdd3fx4GULh4/5r+Gid/LCfM\ntSK4B2Hhvv3LeJyMWIZBrssI4z6lPadc4EszDHSN4JdfUaORO2VfbHgC7X1HA1dhUO35qlJLhHjg\n89Prb2W+LyP1jyrUYSkmFAuDQZ/DxVi3hbA31kxe2lo25RGY+ANBPaTvbHlcXoa/KzTAmfBAnI14\njf6u9WWao4aVg9xzKYsuzSU0DsITBpBiA8yMW8HMuBXBAJCVmk7RyOPF4VNsQ5GhIMS1zAlwwBUt\n+L/GdxK7L4ogJyjKkWAw6HHMkJcfjU9xjQkL/uy8EKRkXhC1ZeUGkwyKH4mj1G4kpGY/wpdfw9DQ\nOQJJmVfwPWmaaKddfNc9INIVNqW6w8qkDb4nzUBp0x6oWHqryvUT1+F1VDU4Ws2Gnfkokm5cPWu4\n2KzEt8TJ4HAM0MApjCCDw+GCq2cNW9P+iEvbIbo3Jz9CNE78tRHXVfQ69GcPWBg3BVfPClEpa9HA\n6Ss4HMUfsQV8PurO2EIyAsSvOy3fj/dbZmDJ3+1J97/fMoNgbIgzducFkZyiMnt4VkcPz+q09/7d\nvDZGtmsIAKgzo3CMZSljgpzm83fK8jYJ/E7KoHwNAAk/U+WWJ8Szcx288hfswnc08YZH40rweUB+\nFj2++AqrBxNz3Nu52KKpl2zPcaa5GbcXnezHAgDMuNYI/O2PBjaFxt+JiKUoa+wiutbj6KOMkRP2\nfZtBWJSLv+7hOB1XoreIrp8lXiT0u5sT36tfDDnn/+TKuylPJaZU3ivP29NZ5vT0oYwPmNOr8O/l\nTAg5bbN12UK3WUnVoIVkZebQVmuWlSGzJbssixMa8F2puViKN8XCYODx87HpM7laobpcknY1HoR6\nfquljlsT5A8AWFq7G1xMS2PZOz+ZDYbldb3kmosJmJ4ri5dLe6qizvfFNAb69pTtnCJ/Pvp6VoTr\nrNwgxCT/g9z8H6R7jQ2qkIwFAPiRKFgcSDJuXGwPyaQ3k1gatxK9Dk+aBX09c+TxEmCgX0bU/ja6\nNjjgws3WFwBQ2rQXAiJd1WIwCCng/0F9p1AERFaAnfkoUXse7xc40EddR8Fumo1zN0rXp+rlrsPE\nQFCzxNGq8JkjbhiIvxYnJz8KjlaCegRRKWsR8rMTatjfpRwrC0M2n4KRAfE7ZlCkIFOV8mWgbkyN\nCv/Gu9SrSjuuY135a7+cPfoUF08JUk4O6LyZ1D9hZke5ZQLAyouz0NlsGAp4ggw7oS/CZE4je/ST\nZgqXtbXzxv34Y3AuVR0AB17lp+DUj5UEgwEAKpt7Eq6rWDRCQgJxw0IcPTlDF4NTBSlmi3OgsSbo\nbD+JkMb08dU3CH5RmALVwsaM8r4T79ZgcJ0FIhkVPMpj571C9+aknylYNHAHIj7FAqAOXBbGJkxc\n0x9eI1oR+n7F/MawBotF1wOmSf+b6jG6Na7sfwgA6OY0BdeiiEZkZloWm3WpBFAsDAZAfcYBFULf\ne4/Ly3C4+XBUsyyH5wnfMf3VWULQ8vFvL0XXw92bICg5Bh6Xl5ECmz0uL0NQjyXQ43BQ/bLg6Nfd\nvCxprglVWmG4exPKuWThVWIEwtJ+ISztFwBg68f7qGPtiFo2jrA2LMXoXC5mpVHfbw3sjC1wtd1E\nfE9PxKDHBxDScynj76s4EBTliGoOb+Fu5y+6FudX2lZYmnShyNxUAA7HCDUcNV8Vlw4+8lG93A18\niG2N+k4hMOYKgu7yCwQ7wJqMQXgf00xkFIgT8rMrPMpJd4MQGguKUMuBmFEnK09yfnRpJKX/QTkr\nYiVmexvitXs5xWOYpu67An19PTCVlr31ot1IzsjCs38nwdTYEFk5uXLLGD+jI8bP6KiSWAX/jCMo\n4BWgi/lw8KWkqqnWyB1bHi5ldH55aV6mH+7HH8P5qHWYUfUwzLk2APhIzfuFno6FLlKf0l6grZ03\n4ZpJKps3REjqE513I2KK5ccmwLN9DXS2nySKEyiKpJMDGztL+MftEC36w0NjFA5O3rngLHYuOEvb\nL2uWpPEr+4kMBl5+AaU+2p5xSdJnKOv7YUJGcaZYGAx9HMdg9vu/UcG0KrhiR/zj3BZLuItZQnsu\nw8I3VzD8v8OitormtqLXHpeXkU4TNjXsC/+YYMx9fRHr6vcWtb/xWoiaVwr9Y4sumIVz7fr8CLs+\nPyLNJSviugLAns+CgFNvt8aYX7MTo3P5t5+C27GhmP7qLBpdF+SNLxrkzNRcxQWuPv3ur5lxczjb\n7sXHmNr4nXEcNmZDAADOpXfja7z8tTTUjRHXCQX8TPDBg2vpwqN1F+sVMOCW04hOfH4+8guSC68h\nHjyoB/GYElWgr2cufZAcrBvWBcO2EjdKIhOYyShW2cEWW0f3YMxYAIDkjCyCS9LdD1+xhjnxjKCn\nr4ebf45qWg25ERgLAh7/Oguv8oKFaHXLFghJJRaZS8yJRiXzBjLLNtE3x4FvszHKbSNlfx+nOaQ5\nVAUffHAg+FJej90lZbR24tleEGvpH7cDXs5TCUHMw+Z1l2lHX3h/VNhPjG25ktRXtrwNNvnNgq29\nFcWdgnsXD9qBwAfUiT7m7xmFlt3ryaSHuMzL+x5gz5LzpL6ipxgsukmxMBguRO8DAIRnftKoHqvr\n9cDqej0o+ySlRy2Ksb6B1F11SXNJmk/eMYrORdXWwcFD6felS/xK2wxr0wH4FOtJO6Za+fcIinKE\nhUkHcPXLwsSwNgDgy8/WsLdajqT0veDx/8Ct7CVaGeqijNkAZOV9hplR4WIkPm0/ylmME12nZj9C\npTIHNKJbXHphFhgTA3fEp+2HrWkfAICT1XxEJq9AVTv63TZto04FQVzTvxcfYIZXC7RYwNwC6kts\nIjJzcmBmrJz/c1G6rDyIG4tHYuZBP5Q2L6WwHHVlQiqOvE2+LTIYhIv5FcHdUcuqLT6k3AcADHSR\n/fObU+0EVgR3x6qQXnAu5YGIzCDSmKa2vbEiuDv0OPow41ojLS8RjUp7oaP9GGbeFATZnVYG94C7\neX18y3grMhzEychPRuQfwSI4OOURyhi7wM7YlTEdlIFqN9kv0lcpmU6Vyim8S73yJPMpU3uOaYOe\nY9owLlceFP08mNjtV0YG3b2SZGrbCQVH2tGshtBKpZiAykWJhaW48Da6rsjl53VUdfD52WjgXOg+\nJQgstkJZc28kZl5Ebn4MKQ1pLi8O72OaoKFzOECxKBC6NMmbvjQw0g2GXHvUcvgPfPDwOrIyhW6W\ncLFZg2+JkwBw/q9DYb+0OQMiXeFgOQVGXFekZN2Du+1OynsVfQ/qYPfNF9h35yVOzhwEAFh74QHe\nfo9haySwsLCw6C5KnycXixMGFhYW7UDc5aeirQ++Jowl9Dd0jkB40hzEpe2CtUkXuDk8FfVFJq9A\nfPpB0XVAZAXRPYJrV4IseRfdfPDg9v8FPAf6RVySBHIik1fge9I0VCl7AhbGzWSSW1TG2+ja0NMz\nhYPFFLnv1wZ23XxOMA4OT+1PmxFJU/yMTcHQntS7s+zpA4s62fB5A+ZUISddoWJEwAjR60MNqZNT\nTHozCTvqadfOMQuLLLAnDCwsLCxqJOdPLgZWmIRm3Rtg1r5x6Gg8GLeyTxDG9LYbI+pnmlHbzyHw\nazQcbCwQ+zsNAHBlwXC4lrVmfC5F6eC5AhfuzoE5m3mFRcPIYzAIGREwgjUYWLQN3T1hmP3+b6lj\nNJk5iYWFhUURlvbdhIvx+0TXbQY0BQCc23wN/WZ2IxgQqwf7YuGJqZRyFOXA5H6MylMVrLHAoouw\nxoLmqLzGB18WzKC9puPgy9e48+UbXkfFkMZvevAfAqNjKfs0jazvT1a01mAAWIOART7Ss18gJnUz\nsvN/oICfCUN9e5QyrAl7i3FKpctkkuQ/NxGXtgu5vGjwCrLA1beCpXFr2JTqDAvjFiqfv84UH7zc\nPAWdlx7AgJZ1MLZTIwDA959J6L36KGq6lkNQxE+8vV8LJQAAIABJREFU26ZdDz5Z4BVkIC3nGdKz\nnyEzNxh5vJ/IL0hFAT8HXD1LGOiXgYlBVZga1oJ1qY4wpKmvoWr+nu1FuJ53eBLycvKwf8Ep9JtJ\nLKLEtLFQXGjXuSYmDt2HnUeZC6otTnTqswU3LxSmTm3VZT0A4NGNfzSlUokhIjMCy0MLK113sOtA\n6Bd3OwLoXY+KEpwajNNRpxGTFUO6p+iJxOYvmzHUZShsjWylzjkiYAQONjyIkQEj5dZJFWTmvkdm\nbhDSsp8gOy8C+QWJyC9IhR6nFLh6FjDiuqKUoQdKGXigtGlPjekpDyMb1cfIRvVReQ3ZdXNWm+YA\nQNmna2i1wcDCIo1P8f2RnvOKsi+rIAxZeWFIyrwoauPqWaKu43t1qYf8gt94F+0JPvIp+3Pz/yAh\n4yQSMk4S2iuXPQZLFRkQjWZug6WpMXZef4Zrr0JxdckIjNp6TmQkeM7wxc3Xn9GpvnYYWVR8T5qG\npMwrMo/P4yUgj5eAP7mhSMq8iMjkZaQxduYj4Gyt+tz787qsJbkgDas6A4dCBIXK3Ou4itq/BH5H\n5QYVVa6TtlHa1hz3/IPQwXMFqa8kxDAYGOhj5/4HmDhasxlpSiLLQ5djQ60NhMX6QOeBAIDVH1fD\nwsACW+sIilEe/XEUXzO+wt3MXarcGpY1sMpyFWnxD4CQLh4AglKDRPMDkDrnyICRajcSCvjZCI77\nCzn59EUCxeHx08ArSENOfjTSsv8DAHxPmk4YwwEXzjbLUdZsMOP6ysLIUxfxOjoGDyaNhk0p5U44\nex08gUsjie9DuOMv/D+Pz0eNf7fi4/zpCEtIwvBTF/B06liRLuG/k3FhxCCSLpL6GvrsQlNXZ2zt\nxXx6dq01GLThdOHd86+YP2yf1HH+X8gl3tVF+0FbcffkNJWNlxVFi3UpkkVGmGVHEfILUkW6utqs\nQRmzQQrJkUbIz674kxui8P1ffhUWYqphfxMmBvQVdeVF/PSgzhTBrkhyRpao7ex8bwz3OaM1BkN8\n+iFEJi+XPpCBeeLTC390ORwu6pR/Ba6ejYS75KeosQAASXHJcHCzAwDseFFYEZ1pY4GJonocDhcN\nnJQrSieN0VPaY/SU9iqdQ1mYKlBI9QxMS8vCmYsBmDi6DfYefowJo1pj14GHon7hicOcqR2hp6cH\n94plUdndTik9NFlwUV5UnX1MfLFe3qS86PXXDMH3XnzR/yThCfY1kL5OkMS+BvswMmAkDjY8iIz8\nDELf3A9zkZaXJnFOdRgLYQmjkJJ1T6Vz8JGPH78X4sfvhaI2Q64Dajk8Boeh5SrdSYC4+878a7dx\n4UOIUu48l0YOJsi8+SmMNKbxlt3g/T+OeMyZS7gwYhClLpXL2mKEZz1sfPAf9j4PoOwrel+DzTsV\n1p0OrTUYNMmy8Yfx8v5HTashE0aGXLT52wd3T06Dvr4e/t15C78S07F5SV8AQP8J+2DA1ceJbSOx\ndvtNZGfnoXnvjfjv4mwNa64Y8emHKXeHFSHi9wJE/F7A+I8P0z+8wXGdYGzghpr2yj+sKznYIjox\nFY62lrRjDLn6yMvn0farC0EWJc3lP+Dz8/E2WvAgLms+FC7W5N1uJpjSfDH2vtHcpoO88PnUp2Ul\nidi07YzIsS7VSeqYE2df4NGNfwgGA8C6J6kLcy6xIOOWOltUMg///8+6ae+mobltc1F7en66yuaU\nBU0bkrn5sQiMFJymOFrNg73FeKXkXRxRuEnY+5DgZH/qxWsw0NcXta/t1gEXPii+4UfF1IvX4Dfa\nm9CWmpUteh2blo5y5maYevEagucWuqKu7dYBldf4YIRnPex9HkDbN+LURZQyLCyWGzhzIuNuUqzB\nIMahTf44u+ehyuR3rjyX1GZqbozzrxXfPU1Ny8J/F2ejee+N6N+tPuZNFFSRnL3qAj6G/cT1I4XF\nW+ZP7oR7zz6r5IRBHbyJrgleQTrjcmXJvy+PLFWQnfeNET3PzvNG3ak+sCxljNQ/2bC3sRCdMoRG\nxsPD2Q6jtp7DgJZ1GNBaMTT9A0XFr/Sj+JV+FNYmHeBeZi+jsrf9R67kqirKWYzDz7Q9SstJy36q\nUFpaXSEmhboqsry42+6WPohFo3xKJxaMDUoNIizomSQuOw4F/AKMqjBK1NaxXEeVzkmHNj6Ho1P+\nRXTKv7C3mABHK/J6ShZq2JNP4u58+YY27hWUVY88Vzk7TL14Db69BbFpVcoKTq7E3YhWdG6H8+8L\njZM7X77BUMx4KQpd34uISLSt7MaE2rSwBsP/oVrMM82VD6vQo9YiQltmejbNaPl5/uY7po4U+Lxu\nXNRH1P7PmktYv6AXY/NoAlU/vAIiXWFm1ADV7Mhl72XhW+Jk/P5zjWGtyAREuqK2w1MYcstLH0wB\nhwPagOZOS/bjZ3I6TI0MMcVLvYvBP7khCPnJvM8l0yRn3dbqomzScLKaz4jB8PnXYJW/f/H4BWHc\nQgfPFSUihgEAls7rjv1Hn2haDZ3icdxC/MigP6n1rvQC5lxzjAgYgRXVV+BwxGGUMy4n6j/U8BBG\nBIzAjbgb6OfUD/d/3cesyrMY0W173e2Y/HYyqb2HQw+VzVmUxMxzCE+SL4WsJohL24W4tF3gQJ9Q\nnFNR1nT9C3P9bjGgGZGLIweh8hofePrswohG9UXtF0YMQvDPeCzt2BYD6tYinASs6foXbnz8gi7V\nKlPKpOsb0ag+9r8IFF1n5TF/Eqy1BsPykLEY4jIdbmYe2PONegdunNtiRuZSh7EAAIbGBtIHyYmb\nSxks2nAV7ZpVxfJZ3dC890bUqOKAvl3rYdnma2jh6Y4Xr7+Lxmdn52HxRj+sLJKpRVMU8LOhxzGW\nOEZdOx0ZOYEQuMDIl644LGEMUrLuqEQnKt7HNkNdx/fg6tG7FSnCzRWjGZUnC3x+PgKjpAcMaiMB\nka5wtJoLe4sJmlZF5+jguQKDRrbA8PFtKAOfNUlOfiQjcqRl6WrbsiqW/3sVI4eod2dZl/mRcQ+O\nps3RxoH+hMi3ri+eJD7BitAVWFtzLbh6xGXSoYaHcPTHUez+thutyrQStecU5GD860J3GWHMgTC+\nQDwGoWgfAJhyTQEAG2uTdaObkynyeL/wLsaTcbmqhg8eAiJdUc3uIsyM6iksp1dND8z1u4UrwR/R\nvUY1VFnjg3qODozoaGpoiJSsbMxv11LUVt7SApPO++HyqMKg6JH/Nyh61fRA5TU+yOPx0LSCM5pt\n3YvQeQKvkM8LZqAKTd8/bVtg/4tARKWkQo/DQZsdBxjRXxytLdz2KycGZY0Eu6jLQ8ZhaXXld8Wo\nYMJYkCfomWo+mzLmOPF0EcXo4oOii3pjbgXUdHhA2x+WMBopWXcV1Eox6jq+kTnQNSXrDsISNJP6\nUdEdXj4f6Lv2KL7FJRHa1Z1KVRuPvBWllsMTGHGdNK2GTCRmnkd4kvIxTJXK7IOVyV8MaERG/CSB\n7rWmUGWws5BWXdbj0Y1/RP8Xbyv6mimK09+jos++Y2GN4V3pBbPKFHOK07+7NLT11LfZ1r14Om2s\nptVQunCbHhNaqAKhsQAAFUxVk62le42FUseUd7XFQt8h8P+yjpFsSPbOpUltvxOY98svLmTnh9P2\n8QrS1G4sABAFukqnQGPGAqDYg57PB+pO9cG3uCSUNi9F+E998HXqRwoAPsS2wLuY+tIHagG2pn0Z\nkaPJ776uIzQGxI0CutcsLIrA5+fr3HM4INIVMambNK0GgS57j2qDscAIWuuSJM5Q15kqkZuXS+3j\nxeFwcOPzvyqZ88CdOehSZZ5KZOsab6JraWzusIQxqFRGcqq8gEjN58d/F9MQdcoHyDy+9fxdmNGz\nBYa1a6BCrejRtR8ocfJ4SQiIdEUD52/ggD5oTRuwMG6BtGwm/OPld+GThWv/LUAHzxXoNUBQWPDi\nyRfYveU2OnppLhgfUM/pAovqaF9+G46FNUafCn4oxS2j1rmHDtyFo6eI7ovtW63B3UcL1KoHoNvP\n4djUbYhN3abxvzFdLORWLAwGVVA0+FjIkCl/YbAK839zONQ/rkGvvqOmp+YXoNpCTOpmjc4vLSZB\nW3ZX83gJco0va2kGWwtTFWkjGUGaVN0nMNJN4z9W0qhS9hgji4Y30TVRzzFYeYWKYGjIxe1XS0Tx\nC7u33EZFdzvMWtyd8blYSg53Y6YAAC6EU8fwlQR3JV02FsRhMvuhIihTw0Fb0VqDYfb7v0XF2xYF\nj8CqGswWJsnNziO1nXm1FBZW6nTNKGTt9BM4+YyZIO7ixqf4/qhqd5bQFpvqqyFtCqF74GTmBqk1\nyFka4UmzUaG0bGkez833Rp0pPmhb2x0mhswH4dNRUn6khAREuqKUYQ1UL6f6zFmahFeQIX2QEmg6\nXkE1aK0nsM5TEgwCSZTE53ADpzBwOOr7rdNltNZgUCVrppErrQLQmLEAAMmJqv3h1WbSc14RrrX9\noRb6UzsyTAlJzDwvs8EgrLnQZBa58JSqgp61/d9TVfzJDca7mAaoUz5Q+mANwNWzQX7Bb02rQcu2\ndTdw4/Ib8HgFhHZNGREhP7sxIqe+U/EoCsrCDO1braF8rW5K6nM4MKoSGjh/ZaxSdEmmRH6CT/w/\nkNrcPJhJoSUL1mXMkVyCA50lo11Zu7LyvsLEQPvTfubk/4AR10XqODYTknrJ4yUiPecVzI20L2Vh\nXcc3jPz7fEucDDdbZiofC9G2VKqAwABkAj2OESNyWBTnVcJGfE45r5YTh7uPFiAnJx9jhu8jxTCo\ni5L+HA6MdNd6N9HigNYaDIs9dmL2+79F1+KvhQhdlphg+2X1VT/2bF0Vt87JHqhaktA2P/fguPaE\nB422Png/xLbSugeitn5W6uZTfH8YcsujtsNTTauiEn7/uQY3MGswANrljpSUeZkROe62uxiRowrE\nnx85+T+QnhOIjJxApGTdRh4vif7GYsT1yKH4nfMFptxyhPb7sTNQ22YMSht7yCTn2c/ZcDbvDEfT\ndjKNNzLS3FKLfQ4L0HRMgy6gtQaDpUFplcYwaJKy9laaVqFY09D5O6j8gCN+L0BCxkmVzZvHS5Rr\nfA37u5SnE/HphxGZvIwhrbQTdf9ICQqojYOs/uG5vJ+ITfVV6feFMF9+DPj8fHA42vXIrWl/D0Fx\nsi16JJGREwgzI+Yyb91+tQQdG68Ev4B84qgJQ+J70nRG5FiX6syIHFVjxHWBEdcFtqZ9AKyVMroA\nyVl3kZETgOQ/d5CTH6EGDRXjd84X0anCsbDGovZGZefhUexcdHE+LJOc2MxHaFpONjdQIZo4XVDn\nc9iI64pKZXbDxKCqzPfk8RIQm+qLXxnHVKhZIbpoNEx7OxB9HUegRZkOmPZ2ILbWPaWyubTr16uE\nYG6tmSw12szH+L4S/ak54KKB81eJMlxt1sDVZg0+xLZm9EcrMKoyGjh9wbsY6QuiUobVUb3cdYlj\n7MyHw858OCKTlyE+/TBDWmoP6viRojMaZcVQv5zo+yIkJz8KH2JbMKAdNYFR7qhe7jpKGVZX2Rzy\nYmzgxoicj/F9Gf0h7uC5Ak6utthzYhy4BppNUcsHT6Pzaz96sDbpAGuTDnCykl7bSBt3vE25dkjP\ni5F5fFvHw0jMfgtb47oq1Eo5VP05u1gvR1nzYUrJMNAvAxeblXCxWSlqyy/4LUctJPn5ENsKtRwe\nqUy+uvGpcxx6HPU8I4uFwaBLpwsAkPQzVdMqaB0ZOfSBoZYmbVC5jOzfgVoODxl9WPL5uTKNM9S3\nl2osiONsvQwAGDMafiQvhYv1csq+OlN88G7bDLRbQF0xnQ/g/ppxSuvwM22v0jIkocrdISOuk0i+\noMZGgcTxihDys6vO7XCpigNnJ2paBQDAm6gajMgpZ6EdqZhZyHxMOY0qVn1kHm9jVB3nvtVHzwoP\nYaBnLtM9VDUXVFWH4Wea5BpCylCnfCAM9G1VJp+rZyN6RgZGujFusOfk/0B23ncYG+hGGvsZ74ag\nU7k+SMiJg4eFauvUFAuDQdd4dP29plUoNhjo28plLAhp6BzBqNEgTVYN+5tyHcUKcbZm7pThV/oR\nWoPBd1wPAEBS+h+82DQFxobEP/2sXHKaYXmJS9uF6BTlq6EXxda0HyqU3sC4XEkITjDA+GkVoH3H\n4vWdQvE6SjbfbUmkZj+BpTFzJzR0gc/qdkkq4GcxIkeW3XcW1aLPMcL/2DvrsKiyN45/Z4ahG2lE\nlLAVVMx17XatXddu13XX1rW7W2x3bcVcu9s1ftaqYICBokiDSHfM/P6YnWHiDhP3TMH9PA+P9554\nzwvCnfue80bwh6YSrkc3YschMe+5SgHQJyIFVd3Pfm4t09fX+zldNWnxNfsIYtKXE5XJAgeNPCOJ\nylQG4ZohsXWIpnB+ndBWr57BdNCkC5I0jMGgAxJj9TeVob5BJyVlw8rv8TymOkFtqLE0aaCWsSAk\nwOMlQmPrE9RIlu/rlO6mSBsLAIjUZNCEsVDL5QIsjOsSl6ss9dzuICFzG2LTyRosYQmdUMf1GlGZ\n6sJmkUknHZE8hNiHsD4FPJOAy3HWtQoMAAb63MXpzz1xOXo4gNI4hu6eh1SSo2ujoCyiUsmeWNR3\newhjI+1lkaSigUcY3ib1RXYBuWQxYQkdUcf1OjF5umL6y+FYW3+/VtZiDAY9wbeOu65V0DsaeITT\nmq+t9IU1nU/Tmm/EtiGkiWI0lVY1Jm0ZcZn6sgPkaj0OrtbjiJ5Y5RW9B4+fS+xlnS42pi2RkX9f\n12roHZEp44nI8Xd/QkQOA336VD2naxUAADeuk6+QTnpjo4FHODhs/Yi5rOl8AnlF7xCW0JmIvLyi\nCCJydM3a+vtxJeEkriaewpI622HDtdPYWkzJyf+4d1m2NoMm+Pw+gbJ94wkyH0zlCRIPKk2/dDpb\njSQip7bLZSJyvqRpf2e2sCQBiVm7CUpk642xIA5pnUi4AZHCz4lMlpLQWHI+tHMnH0HHxkskvrRN\nam75rtTNoD1u3p2D9q1WiL727b5DNH6hoDgGCZnbiMkL9IzSG2NBiBm3BhpVLjv5iSooswlUZ3oQ\nnkbGKi3zzptPqDM9iIZW8nkaGUspu4vrT2Cz2Fj2RrN1lirkCYOJGRcFeZI+2ysnH8b3XetpfO3f\nf9hI2c7mMLabOKRexDWNpx2ZF3RzYzIvj8lZB1HFTv6L1baLDzGue3Miawl5GdeMqDxh/IA+Qjo2\n5mv2cThaytaY0QUsGIGPYloyinnpRHTZu+0Wnj78KOGadProE3RsvERr7ko5hS+IyKnndo+IHAYy\nvEk7gucpmwFAFLcQkrINDSqNU0nOichGEBYaFboonYhsWKa7kiYCnIWQzPCmjxs2QlgsI6248apL\no2oeWl1vUugAuJtVQZD/YY2vVSHfUs++JO8+oQxUOcUBwN1LcxkHDBVSL+KapLKt5h7+mmL/zWfw\nnyC5QzFl13mZNmUpKI4hoZYIff6gEkJSx6jUmcRk0UVR2mJliU1fQ1vGsQMPZAyDPgOa0JarCm8S\nexGRY2LkSUQOA32CPzTF85TNMgHOJhxrhKcpf8oWn3MXXlY/yBgHxmxrInqqSm7hW2KyDOEZbMS2\nIVbThHT6WUtTY4St1exOvzibAo5iRo1VWlmrQhoM8ujip9kP7641ZlG2774+XaPrVnR8HDWT6tPF\negxReXbmXYnKo+LpxolwsbMSGQhH7obin1eRasc2VJRdLWlI6qqPeenpkJC5XdcqMDDIhSobUm27\nwXibdkxpGc+/LkOg00KZdiezQLlzHv4vQuSOJET8mg7hiWRenhtVNhy/fpJV03VRbDAzLx9dV+/D\nD2sPID03X+644Tv+Roflu5GRmw8OmyXTPyl0AC7EH8Pad7NxMlazJQgqrMFwJYI6o0sXv5lyTwLo\noGljpDzh704uEwIA2Jl1JCpPU/hU0s6L1tUlo/F040T4TwjCX1ceq20sRHwdTkynKva6OfWjgyEZ\nOMqiL9l8uvQMkIlZOH1Ue4HDZdWFUYWGld8RkcOgWfjgw4htpvT4SmYNwOfL1geIzbkld86CuSc1\n4pJEylho4BEGFsuYiCxtQeoZ/Cq+tdJjx+w6TRlHcPzRS3RZtQ91pgeVGcNQZ3oQNly6j+YLdmBg\nc3+kZOXgu4U7cPLJa4lxPD4fdaYH4dmnOIxuG4jvFu3Ann9kn0ubAo7iB7f+mF5jJZ5802xBOoMw\nGOaFjZBpe5ByVWPrda0xCx/Dla/6WBbzR+8t01g4+mg+kXXKE1yOo65VKPdwORzsn9IPGTnydzYU\nkZF3h5g+TpaDickyREgGC9OBVDafnMLXigeVwZS5P6Caj7NEwPOfQde0Fr/wNuknInLYLFMichg0\ny7mofmjqRO0BQEUz59U4+akxePzSmJ8HiVM1oZpCSLgjcTkO4LAtCWijfXwdyRSpyytS7JLJ5wMP\nI77gtw5NZfr6NauPK7NGKOWOtPfOM4StnYLBLQPwaMnvYLNZWHTypsSYejME8a5ha6egX7P6eL1m\nCu6+lY3vu554RnRdyCtQuDYdDDbouY5NY9oyrkSslvsyP6H3ZtH1j6O+x+iZ3ZSSyefz8fsPGxEV\nkahw7OyNg2DrYJh/pIYGm2VGrAATAFR3Ui1vtzZJzT0Pe/MeEm1lxSgI+1Q5aXgR10g95Sgw5J16\nUkHQxbx08FEMluE+kiV4k/gD7f/XP4/QrzyuS7wrkctYw0CG1q6rRbUXAOBewlx8yRacCriYq/ZM\n6+v9XFTA7URkQ9gY+6pUnyExMUOl9ah4HqN+/R9x/N3VryvR9NpsPO60kogegx5uwuHmk1SaY2vW\ngcjaYQnt5T6zqjnZ48C951h74R6R+IQOdX0l7reP7IWxu8/IjJNeq10db9wKkyyg19GlNxaHT0R1\nq7oaL+JmsJ9O15NOoq8HfR/yMy+Xonf9snf5T+25h1N75Ge6UMfdyK2Kg1ayMhkamnphcrUei7gM\ncqnOrE2/IyaLNJn5D2QMBtL1F4pKUojI8bIn80GjS5yshiE56wBtOc+iffTCeKrndp9obIqh8TK+\nBRE59ubKbTIxaI/Klq3Q3/smjkW2BwB8yb4FU44d+la7opY8VQyEi9emi2IWhP9evaX8qQYVPL76\nJ8RCdHmyIG1sqGosCOGwLYlWgpbGwcocay/cw+g28mNUVKFbgKShZ2Kk3HtPp3rVZQwGAFhYezPF\naPLotcHwx8t+lNdCSBgMpmbGcPeqhLgoMi9AyrLnxgytrmcouFhrZlfRyWoYUYNBn8nMf6RrFZTG\n0XKArlWgTRW7xUQMBn3BxKgyETmv4luinpt6xeC6fbccRYWyPuKA5qtAFxaTcUdl0E+4bEvKwGdN\nY2rK1WhaVXVp4CEoINf02mwMqdoKSfnpWFKvP5pem40G9tUwt86PcDezF90n52fgZMs/0PTabFSx\ncIQZhzruodudFXAwscLHrEQ87LgcbzJi8NvTXSgoKcLjTiuxIvwUAGBF+CnMqf0j+OCj2bU5IgOi\n6bXZIlmPO61EbO43LA87hdC0z5hTuw96eJS+vDfwCNNo8ghhTMLuf55iclf6m4U25uq5Kjpay9bF\niM+LgZsZmWe2IvTaYFhX/zgAQQzDsjqai/4WZinSRmByg+/8sHzvKI2vY6h42GomY5QR21YjcvWR\nguJohWNa/LENOQWFAAATrhGebJigtPzX8W3U1k0cfSsKRA8WhDnZ6VDCywRHR6kZSUMn5W5RYYnW\n4hU0gbOVfj7jfdZuQMjEcbA2MVFqfGxGBlrv3IOP05X3z/dZuwEAVJrDoDpPo6vRlmFhXFrL4I+a\nPfCTZzNMerYXACRe3B93Wim6j8xOAgAcbTEFVS2dJF7sxbnQahaGPtoCHp8HABj5eLvEacKc2j/i\nfOwzzKn9IwCABdkMQI87rUReieBzat3b89jReAxORD+SMBZI8izaG408ZXfw943ti0BvD1FAszbT\nporzIipepu3ht5v4yUM2zlcTGETQs7aQlzmJFG1+8GeMhXKApUmArlWghf+EIBTzeLiyeBQuLx4l\nalOW/OLPRPRo4BFORI4+EEjxIaMOIXpSjMi70ladrn/5wVx0bLwEb17HIvVbtsSXJolNJ/MZ4GlX\nXpJZyL7EGTK342WNmCMfWyI+l0ywf37JN4l78bSpQweQSwMqgEdbQi2Xc6LrdW/PAwA2NSq7aOrH\nrAQAQGzutzLHNb8+F4fUdDGiYmPDEbiV+Ap9PakLhZKo3cQH9ammEKGh8P3iv2ivpQzSmZM2X3sg\nM+b+1+uYFDpA9KVJ9PqEQYgmTxekERoNfQIWIC+HTMR590HNMG4hmSJADLqnip3hpQAV0n/1YQxt\n2xBTe38vanuyYQI2nlPOdSSrQHupLQ0LUnsv5FM6q4O9eXdEYjxtOS/iAtVKk9y1xXIAwORRe2X6\nNHnykJBJ/6WOy3EioIl+4GFjXa5OCuJyHkrcB39oiubO83ErbhKG+D5CWQaSMMBZEarENahLXMZ6\n4jIrmVhhWsgBPPj6Do87rcTeyNsI/nxXdCogvL/QWnCiwGVzMOzRFgQ6eFPKC2o4HG1uLkQvD0GC\nmsedVmLIw82wNDLFjsYCd/IV/oPQ8sY83O+wDD/eXwdAfhD1pbjnuBIfigOf7qCPZ1ORXCHOViMR\nnbZEZp6q8PnFYLHkvxqHrpqIgFmbcSssEu3qyH7vKVk5AICcgkJYmKifpnZ2rzZYdPImqjrZo2FV\ndyRnZINP8fGg6UBncQzCYNAFp0MFv3jHdtzGgaBrasmYFTQQrbrpx44hAznMjWvrWgW1+ZqRjdpV\nZHPt16qsXP79d0mysUTqUN/toeJBBkZN59N4m9SHtpy4jA1wt9H9S5qtWQek592gJaOo5Kvac7Xt\nklRUkkxEjr/7v0TkGAqxGZnosGcfGrm7I7gfmXS02uDQh+YAAG/rbvCwaInb8VPR1o18nFvY6xjU\nqUvWxzw+YwtRed/fmI97HZYCKI0dGOndFiNta+C6AAAgAElEQVS924rGSN83reSHppX85MpsVqk6\n/mm/WKItuPlEifu2znXQtoNgA+5Uyz8k+oRGgzBGYkX4aTzoKNhI6HV3tYzBQIrIb+PhU+lPuf1c\nDgerB3bBpAPn8WLVJBhxBJtF0rUXmswrzZKmjgvToBb+WHn2Hwzb/reEHOl1Cnh5WPZmKjzMvPCr\nt2bd6ll8KpNF90go9cfLfmCzOODxS+BrWQcfssPgauqJadXX6ko/BilIBRxpMksMo6Mgj3TAxCDc\nXvEr7K3MAQiMiA7zdimVSckQfoa6pLz9fEh8P+42U+Bmo5prwsGdd3BoN3VmOk0ZEuXt/44K6RiG\nzQ8eYfPDRzKnCNsePcHzuDg8i4tDbmGR3FMGYbxCUPeu4PH5mHbpClysrJCYlSV3Domfs7o/4+AP\nTUUBz+LXAHD443cY5PM/uXNPRDZUeHpQUJIOE45kvNyi+afwv3vv5c5RJxBalz9DfaYi/A1L8zkn\nAlUtBIbbpNABZZ040PYvNJgThjX1jmDJm7H41VvgG7r63WQda8TAYHiwWMDyoZ3Rdo6kD+a+yT/r\nSCOG8k5cRpDKBoM8Y4GBLJsfPsLwhg1k2sc1ayK6FhoF0uz6V1B19tHvv8LRQpDAoGetmnLH6xM5\nxZJ1kop5ebAz8ZUzWkAXz7MK5UobCwCwaKkgqHfogB04ePQ3FbRkYFCMiQoVyuliMAYDANS0CkBi\nfgxcTCtjRo3ylyJzyov+AIAg/2OiawBoaPcdBlcZL9EW5H9M7nwqpMf/m3oHR6P/RFWL6pjou1jO\nLEmdGMoH3QJroltgTZXn0cl6I445l0yxIX3EmOOKwpIEXatBDFfr34j49auKtt2RSP2fGcLOpLWJ\nCd4mf8UPB4LxYfpUtbcdV98VGHVCY8EQ6OV1SlS4Tfx04WhkGwzyKTuOy5JLz62IlLEQl6H/Bpmu\ncLIchOTsw7pWQ6usfieZol8Y+KyJ2AaDypLUt/KvWPde4Oc2+9UQHWujOS7EHwEAWBoJ0is+T/sf\npr6QjH7f+lEyuCcuL0p0zQILXhaSvoWLw3+XuG9s3xoA8DlH/lEpg/Zhs8w1Kr/vymC1575PHkxE\nhxrOJ4nI0UdqushW61SHpCzZYF9d4GFLxic2ryiCiBxN8TKOOvNKeYTH5+OHA8FwtrQsZzmQFGPF\ndccQ38cydRiG+D4Gm8XVkVaqEZ9Bv0hX+cniJYmjJZnPKENiU8BRyi9NYBAnDDNqlFrUbmZVKIu4\nlSduJ58X7egLd/j54Eu0RWa/kZjjbuaFVfX2yRxPFfDyMOvVCKQXpcqsY2/siNTCr4jJ/YTK5rI5\nnReFC3ZE5tbcRP+bYlAKNssUPH6uxuR/iE8RpVDd9GtPtKqjfC7vguIvRHTQZWVRTWPMcSEiJzpt\nCZytyk5vaEiEJXQ0iN13OlRzMIxTb791QbA2MUFStmZT1DII0qrqY7E2fa0TQhdzY9VPzhmUxyBO\nGJxM3EXXU/3WYF3946KibuWRgZ6/y7QNrqI4xSGVL1tZ/m3zawkyLWyIoH6gZRSlAQAqmSiXQYeB\nPiwN73K92DJF9PXgTRT8JwTBf0IQhq6v2C5nvAzq4kMMhuFmQ4d3SWTidxwsehORo2lCJo5DyMRx\nmNOmlUHEGxgS0nUYxCFfh4FBU6TknNK1CnqJQRgMFY2a1v4ybbWtlcsBTYUyL/w5xVlqyyeFsZG7\n4kHlHKpql5pizs9tRcZDJRvt+CFroopxcVJdFCf6oORra/Cy1gC8DJRklKboK070EX3Jg5d3AiXp\n4yXnJDcAL++EyvqwWOrn3i7PvE5op2sVKMkqqFhpUIWMbCT4TFHXaPC2tyepjt6TURip8CshV36W\nJRKk5Kj+PGJQnbTcy7pWQS8xCJek2a+HoIgnKA++sPZfsDKyxezXQ7Gy7kEda0aG7Iw8WNqUngQI\nYxfEMeUoFwl/Nu4g7n5V/pd9ZNVp2Pt5PeaF/SIR2LzsjSBf8rr62gsgMufW0tpaDMDMfZdxLUQQ\nw9Kxgfx82gAQm76GyJp+jhrwzefnAQA4jndQnOgDttUMcGzWSQwxcvkIfknZLlUcW0F14+LkQEED\nLxO8jNlgm/VVSR1fxz2ISKYfY5WRfx82pi1pyyEBCxyFVVAVkV9Epho2SdLyrhORU8vlPBE52ubj\n9KnwWbsBdTduwevJE0Tt867fxPuvX/E+JQUA0Hz7X2jg4Q6/Sg6Y2FwQ73Ft1HD4rN0An7UbsPGH\nbmCzWJh4/iK87OwQlZami29Ho1yPUe4kqqpVT9H1ucvTJKo9i18LUcVl6fO36UqPZVCf9LxbulZB\nLzEIg6GIV4h19Y9LxC70cVffv7eL30xRRWd9oG/gItr6pBZ+xdI3E2Ta7YwrIaMoFTw+dRn5ujaB\nlO3fCgVFjDgsDi29VMHUqIrW1qqovIlJwsA1R0T3p+cORTUXB4XzEjP/UjhGGSxNGhGRo0lYRr7g\n2B9RPFAOpF7y49LXwcZFPwyGhpXf4llM2UalIfLx6xgiciyM6xGRowuERsOCGzexpEN7AMCxl68k\nxiTn5ODq+whcfQ+RwSCc67t2AyZfuAQAeD7hd8RmZKLnwUPa+wa0iKI6DDlFcRL3FhYmIoOASavK\nYOgYhMFARUpBouJBZaAPRkMf//nIyy2kLSevJEdkLFClP539egTyS/Lkzu9beTROxOzGpYRj6Oba\nH4++Cazr3320m0nBhOul1fUqIgsPXVeqQJs0dHeXtYm46xHH/gD1mCR/sK3nik4PjFw+ojipDoyc\nw8CxPwJ+/nmUZC4Cx2o+WGa68U3PKXypk3WpIOVm9TK+ebmr8m1IwenyiqlJt8sbR8UHqbE2pqYq\nzTcUlKnDYMFl3GorMl2cf8OVJOVjVfKy82FmaSq6j/uUjIK8QlSr7aEJ9WhjMAZDXkmOxP2t5DPo\n4iq/7oAy9Kw7F+deL6clQ126+JEr4R0UMQ8A0Nt9GGV/WcYCADR3aI8TMbtxM+ksurn2x98xuwAA\nvpa1iemoDMYcJrha05yYXf7SERu5fKS8lm5jcUpPsIycX8iOcw4TXbNMe8DItAdJNQ0eX8dd+PD1\nF1oyCovjCWlDHz6f/mYNAHjaabdmBINu0Jc6DCQgVRGZQRJVjAUA+LXlEhwMLXVTc6/mRFolohhE\n0PO6+sex+/MqAMDi8F/xx8t+RLIkFRYUE31xV4aCvCKNrWnDlQ1C44Ov1NzOLoKd1uziTKI6qQKX\nUEpKBsW0+GObKENSk6lbdK0OgwFga9aBiJyEzD+JyKELCRcrLseRgCYMFYUd226ic7tVulaDgQBd\nnGUNQPG2xUMFxsO9c89l+paN3AkA+BovG+uTl1OgcO2BdbT73irEIAwGAJjgs1SUTpV0StUh38sG\nImmKXvXnEZc5zGsSAGB/lGQe8NySbJmCb/Lo5CIoX7/tv4JwvdyHEtRQOYzYtlpfU1XKQwYc/wlB\nKObxcGXxKFxePErUVp4Z8JiMr3pFx968O20Zsenl54XJ3/2prlVgMBC6dliDU3//i+Li0nhCqiBo\nhvLBwoMCA2HlmN2lbYO3YeHgbSgqLFJL5vJRO7F89C6sPDWZiI6qYjAuSZokJTEDY7qsx84r0zS2\nRlJcGoa30cwHpbuZl+haWOhNnHX1D+GPl8pVQEzMjwUAtHLsSkQ3VTBi22h9TVXhaLgSs6ZZd/ou\nnG0tcW1pqWvJkw0T0HnB7jJmMTAI8K60FanRF3WtBm0+p87QtQoM5ZASfgE4LBPKvsLCYty8O4cx\nEioQp7bfwMBp3UT3iw+Nk+g3NlGt7tLcPbrd+DKIEwZtVHaOiUzG9EGaOSqfP3qvUsZCkP8xmaBl\nVdqW1P4THmZVYcw2QX3bJqJxHJYRZTC0NMO8BFZrNYsaCsdqAg7bSifrqoKmC6tpmivP3mFq7+9l\n2qf2km0zdI7HnMXQf8dR9l1MuI7h/07A1cTbEu0jngqSB8x4tRjzw1bKzHubGYEhT37HmbhL5BWm\nILsgVCvraBtd+1CnZP+t0/UZdMebtCMI/tAUwR+aitpCUrYpnBedfUV0La8OQ3T2VY3oDAA8vmJX\nFQbtQRWvIN324+8dMGRGd7njz0Vvlmkzs6A2OM/uLP2sonKH0gYGYTCQxsyc2q0k7OlnLPmdbG2H\n7jVn49m992WOIZWtyYpri2nVV2J1vQMY7qV6JpyDUZsAABN8FxHRR3W0V7RMXVjQXppZTbB0SGfM\n3Cdbp2PGPu28AGuL8Mz3uBB/DQcab8XIpxMl+uaFrcCDlH+xr/Fm3E6+L+GulF9SgAGPx2Bx7Zlw\nM3OR6Jv8Yi5WvduE4CbbEZr2WituTnlFbzW+hqqYGHnqWgW9oIFHuK5VYFCRS9FD8TxlMyyMJOPl\n0gs/4lv+mzLnPkkqdSe+HvMz5dez5CVK65KYmKGS7lkFj1Uaz1C+EMZC6JIK6ZJ0+sVSvA39gqn9\ntsv0PboZTizlqqLg5h9HfY/RM7uVOUabKBsgzWC4NK9ZBcuHdpaJWdg3WbmiRIbCsjfrcbSpILBs\nb+BmiZf7yOwoUd+aegsx+MlYibnCvt+8R+De10ei9qT8r6K+JXVmacVgyC58AUcM1Pg6qlDP7Z7O\nTwjo8PkbGddTDpt8dfQ36ZcQknoc6YUC19DxNW4rmMGgCqkFERjiK3jxFj9haOu2ASc/dcdP1eRv\nnEjXYKCqySBdh0EccXek9q1WwM3NTqWibTkFspndGCoOGy6VFu1TNRsTKQzCYFhb/xixzEhCagZU\ngYW1GXIyqVOOHtl2CwPHtVNLdkZqDvo3LXun4cA/s+DkbqeWfE2wI3IZAKCt0w861oRB03QLrIlu\ngTV1rYbeEGCnfNGt4f+WFkc0YVMfHZNEH6sjkyI8sQtqu1xRPJAwKTmnaMuo5rCBgCay1LLthlq2\ngk2kre/aamQNBipYKCGQZldRHQZVDARp8os/qz2XgYEEBmEwTH8pCOSVjmWga0CcfLYIH8PjMKG3\nrB9Z8KbrOLT5Bi6/Vy1Qec0fx/DP+bL9jnVdME6IdIB0ZfNq+MFtkI60YSjvsFlmulaBkmepyu/c\n7W+sXApaNsuEiM9xUUkSbRmaINAzivYpQ26h9t2tcgvLdjtRFgeLPkTkMOgHZ6P6opWrbMySPBRV\nfNYEpH53GRjUxSAMBtJpVMXxqe0Oa1tzZKbnyvTx+Xz8e+cdGrdWLgi4V/15KMgrO12WvhgL0riZ\nVcFUPyZ7Q3ln17Un2HbxoVrVnunCZpkqHkSImTUmYui/v+NA4234/fl0ib4A27qY+WoJVtWbj9mv\nlykt09PcAwMej0GQ/zLE5sZj44e/cKgJ9dEwm2VGxGAo4eUoHmTAfM0+DkdLzSe1EBKeqP3sb+JI\nnxq4mtXBj1VkN6yUgccvxvb3HUX3Hd3mws+69FRcuBaVW9OthDV4m3FVpk9cP2uuK4Z6H6b8Hrq4\nL4a3VUuJ8U6mfvjZSz9qbMiDwzJB8Iem6Oq5X9R2I3Ycsopi4GLeSHeKKUEJP1vXKjBUcFh8vl76\nrWtdqS8fkjC2G/Uxs4WVKU4+X1zmfEXxCi061sG8rcpV2Y3IOI2QlK0o4kkaMULfS32EhE9zoGcU\nbRllQUJHY44L6rtr7v/hZVxTFJYk0pYj72fZbNpWjOveHIPbNFBJHpGfnZE76rs9oC3HEHgZ35xQ\nVWMWAj310xXhWYwP+Pxi2nI0/XcvDonf41ou52BhXF+lOZdi5+Fz9kNYcp0w3FuQsS6rKAnvMm8g\n0IE65fXWd23lxjCciZ6CuNyXGON3EcZsc2QXf8X+j/3QwmksAuwF8UjROU9xPmYmpQxZY4KPre/a\noZHDIDR1HCVnTOlcZ9MaSMp/h1/9LoPLNkVMznNUtmio1M9C158VRbxsHItsL7o35dihbzXVXONy\niuJgZuQIthbr8oTE1i73Gwj6hDafS1qCdlYZg8iSdCyaOuXZHy/74Y+X/ZBfIns6oCpVfJ1h50id\n1jMnKx9xUSly5yoyFuwdrZQ2Fop5eXiSvAbWXE+4mAdKfDEw0OXw9AHYckE3L+18Aj7ChgKp71Vf\n3bgAoGHld7pWQSeoaiwAwOfshwAgMhYAwIrrLNdYUERc7ktYcZ1hzBbUhbE0ckQHt9l4kFy6w+9p\nIfjMSMiTzOb0reATAGBg1b2itq3vBCcTQmMBKDUUiilOypLy32F8jdvgsgWnhsoaC/oAl22JIb6P\nRV+qGgsAcD9hAngEjGVVKOHRf89hYKCDQRgMz9LuiYwDYTzDns+rsLj2bqyrfxzzwkYQWefIg3lw\ncLKm7BvdcS2+JWfKtCsyFgaOb4/DD5Sv7nz+ywAM8X2Mrp770cF9i8QXAwNdqrk4YMGA9ug0f5fW\n1+bx87W+pq4g9b1y2PpbKJBFyKO1mJdKRI4iQmNVO1WjwoiteqKKsPQLAICBVffRXl+cYd5HJe6r\nW3eQGWPMtsCpLxMk2o5+Hg0AsDfxkmi35DpRrnM5dj4NLcsn+SXfYKTlv022nIJwDOWbnIQqlO38\nklgta2IgMQw2XHvMryXwFd7+cREA4G1mKCyMyBf6OvS/uUiI/oaR7dfI9A3+bjlOhy6BmYUJXjz6\niNnDyn7pOvdqGYxNVSv0ZaUgywIDAx3E06lKp1bVdFxDCS9Lo/L1iRIeGX9jjp5XP/dzCkZEsnKn\np/IIjW2gleN/EoZJgIfqhfQeJv8FALA3of7gVxdlsiiN8btAOa6hg2yq3uyiZMqx0TnP1FNQDxGm\nUrU18cYPnrLxGcrSq+pd3EsYh+9dFRd8I4UR25aIuyqD5sj72g58fg7MnQRuy/mpA8Eregdz5xDB\nAH4++Pxs5CV/D3MXQRB7bvJ3YBt5w9T+AAAgJ7EGwBdk77Rw/SIYkxQAjklbmNiuF4xJqAKzSmfB\n4niI1s5J8IaZ022wOVXA5+cgN6khwM+DkXk/mNjIvs+qg0EYDOL1AahqBZiwyQZTuno6wMndDslx\naTJ9fQIWoH5Tb7x8XHa6Q3WDmzt4bMPpz73Qp+pZteYzMJSFLoKdGdTHmOOmaxXKxMa0pa5VUIr4\nDPUCi0nA45doRG4nN+VPrnd96IFffM+L7ps5jpYZU92mA7wsmhDRTV8Z4vsYj5NX4UPGWZHxoG5s\noBnHCWc+t0Qbt91gsUpfpWyMvYnoKg2HbQkQ+FWyNZM9iWIgg5njLdF1UW4wTO2PABC84Fu4fkFx\n3ikUZMwRGQJFOTth7vQ/CRkWLrKunubOoSjKLnU3tHD9Al5R6eZF3teOsHCNFK2Tm1gLFq5fkJNQ\nhZixABiIwZBdnCGRUlV4fS3xb3Ry+RkFPPKuDgf+mYXk+HQMay2baq0sY8HUzBhnXi5Ve13hQ0y8\nqIwQfQ56ZmBgII+Fcd0y+zvcmYIbrYPKHGMIPI2uhkDPTxqTH5dBv26COrELABBYaSgefd2F3OI0\nmBuRq73jY90GLCXiGF3N6iIh7zUAwamEFdeZctznrAfo4DqbmH76SlOnWWjqNAsAkJIfLvqsZYGN\nwb4PlZJxIrI0ZuNGrORpjaZSrppy/ZBX9JG2HF/Hv2Ag3ugGSW5yY5g7/YuirA3gmkuevrK5tSTu\ni7I2g2uhXAFQjol8Y97EVnKDmsVxRUHGTLCNqiqptXIYhMGwpt5RyvZZrwbjRtIpNK/UkbKfLk5u\ntnCr4oD4L9+UGt+2ZwCmr+2veGAZMEYBgzZ4FZWAyTvPgwVgy9heqOVJ/RLBoFtMudV0rYJC3G2m\nEngh5xHRRZPUcjmn1ryGDgPw6Osu7P34I9HKzX++74zfql9TOO7HKpskXI2kYx+EFFbAoNpKprUx\nxPcx7icuQFTWdaXnkTIK9u66g5G/tFZqrBnXF7I+D6pTWJIEY44rAUkMVJg5nAEAmDs/A68wBGzj\nALC5/tRjnR+DVxgCllEVsNgOpR38XABcgKWaS7toOi8NJjbLQfoV3yAMBnmsqndI42vsuTEDqV+z\nMKhF2fnajz6aD1sHS43rw8BAF/8JQbC1NMOxGYIiff1WHUJGbj7jrqSH2Ji21rUKCnGzmUhkB19T\nxGXo/gRmqPdhHIwchK3v2sLVrA4sjCrhY9YdAJJpSy/HLUB87mvkl2QAEJwIOJhUhb1JVQkXpF98\nz2HXh57Y+q4tqlo2B49fjC85/8rIE8JmcXAwUjZuQcj4Grex9V1bbH3XFvYmVeBg4o3IrLvg8UuI\nGjn6hPgpfsNKk9DSZYnWdQgLUz5w1dI4gMiaWfn/wsGiJxFZADAhZBC2NFA/HqS8weII41A5YBsL\nEi2YVRJsNrC5ASJ3JABgsSzBMqZIxsAqDagXjmdzJf//xe+F18KxpvaHARiBV/IFbA652CmDNhi0\nhb2jFTx9nBH9kbrqqjAQmhTiDzLhicOxyPbo732T2BoVgR7j/8LWuT/D05WcG4Ch89OKg2jg7Y69\nk38Wtd1d/RtGbTqhQ60Y5MHlVFJ6rLR70oBHi5BSkCG6V6avw50pWFVvLGa9+pNynjzMuD603SXe\nJPZCLRfysVvxGZtoy2jgEUZrvjXXVfRSnpBXKut7Z8kMRp+y/ic9Fd8KPuNbwWcJg8GEYyWSJ0zZ\nCgCDqx2kXH+s31Vsf9+hTBem8TVuY9u7dkgt+ILUAsGLh4WR8r9/hsCLb3/idep+0X2fqmdhYeSi\nsfXatyJXDNXKtBkROblFYXAAOYOhvMPjl4DN4uhaDZXI//YjOMaBKCl8KmGg0IUxGJTkr8tTAVCn\nUe0TsIBYBecHiYtFRoK44VBEKOtKReL81l+xYOslLBnfTdeq6A1uDjb4vo6sX2OHAF8daMNACmlj\n4Xzc/5BWmCXRNuvVn1hVb6xM3y9PV4v6AGBh+F4JA2L3p4sYXa17mevXcb1JuyBXTuELWvOpIJWy\nlcMmc3qsaLde1d18ZcezWRylxo6rcUvhGEM+cQhPO4zBvg/Bou3Dz8eJSOrK0NLuSjfvzpErZdJ4\nagOPClJpVb/lnEVl27lEZFUEJoUONbgTFJJGgjiMwaAie27MwKgOslHnXfxmEjEavmTfQgsspC2n\nonL36QdYW5ph5a7r+HvDSBQVaSZDiaGy+dee8J8QhJ9a1JNoX3XiH/T/ntrPkkG/6XBnCq58v06i\n7UDUVZTweehwR9bNjKovKqc0XWMnl8ai60b2NXAx/oFCg4EU33LOwsGiFzF5JGovVHVYT0ATBn1g\nkM99InKuxfRFF89zsOR6KB5cBtWqUde+0CRFJV+1vqahkkegKHB5gjEYVMStigMuv1uFrjVmaUR+\ng0rjUcTLBpfQjlZFo1WgYKf87w0jsfTPqwisSzb3uaEjrL0gXYOBqo2JaTAMbrQOkjlhsDAyhZOJ\nLXY0+kNmfFl9AJBeWFovI6MoG5ZGylWbZrG44POLVNRekk/fJhM1GEhQyeJHXavAoGcU8XKUMhbK\nOl0AgElTO5NSiQh88DExRLL6uPTu+oSQQaLr3h6DIM3WDyvxPkvShc+cY4HV9XcqvYYiPma/w6YI\nyWyUtW0CMNa79JkmricADPX6DYH238ntl9ZDvF/8mvRpw+zjV/HP20/IypOtqF4W4au1//lssAZD\nTmaeRuVbWMv/kGSxWbgSsVrGPamL30ycfLaI1no1bH9G8IdmwH/1Jujmiq5o/LbkOF68EwSSPToy\nTcfa6B+MEVA+kTYaDjaZR3m6oKgPAO59fSm6/pAVq3Ta1kaVP9B2SyJJXAZzMsCgGbpXuYLL0T3Q\n1fO84sEGxMSQwRIvxB+z30oENU8IGQQPsyqYWVMQm/F3zH4ZGe+zwmRevIXGAtUawjGqvIhvilha\n5vgJIYNQ16YBxnhPk2hzMfVAZXMvAGUbQuL9mgrqrj1T98kYVMVgDYafGi3StQqUqKuXuDvTEN9H\nhLSpeOxY0E/xIAaVcbDohW85TDFBbWJuXFOl8dJGw4WWqyUMA/EX/7L6fvH+QdT3i/cPaulOBx4/\nF2yxLCHqEp+xhbYMR0v5mYUYKhbitRfKatNUHQZNc+TLLpk2H0vZZ5DQWACAnysPx/2vNzSqlzwU\nvciLGwtCdn/aiMV1NmpSLaXounaf2nNtzU2x/9efFQ/UAAZrMDAwUNFs4HpwuRwYsdm4vW+irtUp\nN1RzCCJiMESnLYGn3QICGukv0Wlk0jN6O2xTOEZ691/83pRjLPd0oKy+lIIMtYvBBXp+wtNoerUj\nnsfUQqBnFC0ZpPCyJ5flhsGwoWsItG+1Ak2a+eDJo49o3bYW7tx+g83bh6FWbXfFk7XAv6mCDF3S\nhkMzh9Yqy5oUOhQb/Pdh6osRaGgnm92J7hpbGhxGelGa6FTAycQV82tLxnEpWmNCyCBwWByM85kN\nN7PKKq1Ply8p6aJrcdeiZot2IDMvX8bdqN7sTSjh8cBhs/Bg4W9a01MaxmDQM4QuSC2cF6CadVcd\na2N4MG5ImkJxRVllSMraW+4NhqSsvUTkGELRNlnKTwVZI7atrlVgKGcsX/Uzfu6zGfMW9sK8hb3Q\nvtUKhXEO4phx/ZBXFKER3erbNkJI2mMMrPILLTlbGhzGhJBBmP5yFDq59ERXV9kYILprAIAt107C\nbeho9G4M8Byt1Brr3i9AJRNnLKyt/foxN8NK00+HLpfc1HS2sUBmXr7MnFcrJ+G3fWdx791ntFi8\nQ2dGQ/l5upcThvg+xhDfx+DxixH8oSmCPzTF2Sgm6I6BgcEwqOH8N20ZdLMbkYilCPAgn+aVgaFx\n49KNAGdnG5Xm1nAmUy/n07dJMm0jqgpqgrzPCpdoD8+Q/DsQ9/Wf9mKkjJwJIYOwMeAgNvjvpzQW\nAGDmq18l7j/nfFBO8f+gyl70taC0ThaHxaEMahZizDZGIa80yFj6e5SmiEcvmYM4226UupwbG0nW\nd/B0EGxS5BQUyszbMUKQDCI9Nx9XX2nGaFQEc8Kgp/jY9ICPTQ8AwOPklQj+0JQJfC6DXhN24uyW\nMWg2sDTQkTltIAuHbY0SXqau1WDQIC107yoAACAASURBVOq6IoljZdJY8SAFkKqfwMCgCU5ENqR0\nUbqfMAEtXcuOnZk6oxs2rL2MqdO7Iikpo8yx0hixVTMw5PEt5xyqOcgWNBSeDojT2qkzatv4S/QL\nx/T3HIVj0XskxtexaYDJoUNl5EqvIS/IWBlmvJQ9PZjoW1pbYmPAQUx9MVzuGhN950nowGZxUMO6\nrtz1pr4YrpaeVESlpMntc7cX/P+GxSahibd8N6lphy+hcz0/WnqoA2Mw6DkXvgxCemGkrtXQe85u\nGQOAMRI0ia/jLrxLoh9Unpn/CNaEqpbqG1kF/xKR42Qpf3esolDMS4MRW/Uq7YXFcRrQhoFBMQ6m\n9eX27d4veMlls1m4fPEFLl98gcqeDtpSTWkUvRBL97eo1FZ0ffjLToRlhGBTwEFRdeRpL0bIBCjT\nfelWZv4G//20ZUiPO7LxKkCztIuJkREKi6nrQ9X1EFQdPx/yltJgaF2zGu68/URPARoYrMFAqrKy\nvlHEy8WxyNI/QOZUgUFfsDJpQkTO++QBehPUSpp3SWSyV1SxX05Ejq6obDsbMekrackIjQ1Q6/fk\nZXwLWusCMLjfz90RLTHaj0xRMgb1CU/dgVp2oyn7vKo6iq5ViVuQxsa0JTLy6f9fp+VehZ052ToQ\nj7/dxaI6G0XGAgD8Um0qtn1cRXQdXRG89hIGTqb3M/u5SV3sufuMsq+rf3VMP3oZZ5+FY3nfjjL9\nhSW6LUTLxDDoGcci26Kp02xRLAODaoi7JDEwMOgGF+tfFQ9iYDAwTkQ2FKVSFV6Lf2kDP6dgInI+\npowlIkeaRWGTJe63fVxFPAvRgdUX0MV9guhr/eRDAIAu7hNEY+Rd9/SeKpr3LiRKQm7w2kuivrFt\nJTOkCWWIr6sOkzp/p3iQHB5GfFF7LgkM9oShvMIYCfR4dGQaElMyYWNlBjMTrq7VYWCosJgb10Zu\nYbjigXpGA4/XSo8tKMlEcGQ3AICXZStE5zxAL889sDcpDWy9FDsJCbkhMGZbwpLrjNSCSNFpQEFJ\nBoIju6OqVRtYGjnhddpxBDgMR0OHUaL5uyNawtuqAwp4mYjNeQJzo0oYWO0MACA254lonPi1h0UT\nifkA0NBhFF6kBqOEX8icRqiJMG7hSnQvdPGkn2Z69fLzmDm3B205+sKWBoeRWZSOFW9nIq3wG+rY\nBGik6NmxzddxJU5+rMia8QdwJFT2lHZk88U4+XYNuMaCV98u7hNEcvg8Pu5dCBHdH910DWFPIlGn\niTcA4ErcFonx6sJhl2YcHLv3DP4c2Vui39iIg8LiEtSeGSSRXvXMM90/SxmDQU+5EjMKKfnhjAGh\nBi6VrPHhSzJ8qzjpWhW9w39CEO6sHAtbS8lK5uceh6Nn09oK5/s67sKHr/RT4n3NPgZHy/605egT\nKTknicixMJYffGdI1Ha5RDtb0av4lqjnpvzLLYnfTQ7bSumxwZHdYMl1Qf+q8rPXJOSGyH1BD47s\njuZOU1HLVvDS0MRxPHZHtJQwGMTnhqefxKPk0mBVccNA/FoaoYwAh+HYHdES8bkhcDOn6YxdgfGv\n9AcROZ8/fyUiR5+w5tpiTk3Nu4zP+GkT1pyUzfYEAP+ceYYZW4fhnzPP0KZ3I1F7wpcUkbEAAL71\nSk8+pvbcgF335ovuB0zqhIEBcykND7rUcnfCm7hk3H8fJdMXunyiqAq0vGrQT5eOJ66TMjAGg57B\nBw+HP3yHQb7/w6EPzUXtTJYk1WCMBdWgSuNGha1ZByLrRaXOKncGw+dvZF4iarlcICKnPFBQHKPS\n+PQ87VedLctYUIaHyRvwMFl+PngevwQPktchLucpcopVe8E8ETUAQOkpg5DrcTMw3Pem6soyAABc\nzZVzK2nfagUGDm6Okb+0RvtW5IoAutlMRHzGZtpynkZ7GVy8DgDRLv+iYX/hyc0wXI7ZDBabhalB\ng7FjXunf45rxBxDx4gsmryut2F5SzBNdB10ofWYnx6ZK9AFA8NOlGtH/xMSyk1o09q6MfyOpn31n\nJg+BubFuvCcYgwFAn/+twOnv1A9CksdP/1uJ9KIc3GyzTOk556L6YbDvQ+K6VBS2H72Po5efoUZV\nZ+xaMlDxhArCk/fRmHPgCgCgz4qDEmXYsvMLUVBUjIGtApSSxeU4oagkmbZOxbxUGLHtacvRB/Q9\n3WyzbTvxaNwYra/LZpmCx5ctRKQKOYUvYWEsP/uMED6/mNY6AJkaEqoSWEl+vMfzlN0ITT2ARpV+\nwc9VjyGjMBqnvgxTWnZecRq8rTpIuEgxaA/x4OZWrWti/mJJ95O5M4+rJdfdZioRg0EAH6QKc2qb\nRQcEfzs9q03FuU8b0OHnJtgw5RCc3Euzq53dfUfCjYhjRB26O35VP5zYfhP9J8oGG2ubfWN+Qmp2\nLlou/UuiXboCtLZhDAagTGOBx+eDzVL+j6n9P/NEBsLJ72aj/T/zVNLFkuuq0ngGSX4f0BIxiWlY\nOaX8+IWSoEl1T9xa8SsCJgbh9JyhMi5JquDv/i+RwlihsQ0McneLipDYekTk1HfXzCmiLowFAGhY\n+R3t35U3iT2V+j15FuNDax1AvRoSMTmPUNlC/TTBXpatYGNMHRQamnpAwiXpfeZFlWR3dF+NSzET\n0ca1fFZXL+KVgMsWZORpcW0JHnRS7/tscHkeQrpKbuzF5abC3bx0Q6PJ1YXo5dEQs+vIfrb89eE2\nfvVtK9MujrSxAACB//nHqwOpjZun0VUN7jksHXAsHVew9+EiAACLxQKfz5cYJ29us071sGTkLhxY\nfUGmT0jNhlUl5tONZygLe0tznRsI0pSLLEnf35oJAMgtEVTu63xnIQCIXtZHPNmIQ1H/yJ3/3c0Z\nYrJmAQBic1MAQMJYSMwXFNxILsjA42/v8N3NGcgpzpeYL4+sojwU80vA4/ORUZQjd1x7980I/tAU\naQWCyofZRfEI/tAUbdzWKVyDQcDKKT3Qc/xOXauhl4zuSCY1KoNmMOa4yO3zW7tR9OWzRuDb6rMm\nCG127sXAo4Jj+DY79wIQ7BkeDn0JAJh26apoPAA03LwDLXfsxvZHT0DFmfA3omvhPOEccTniegBA\nel4+fNcESbQZEo6WA1Se42xWB9fiZiA8vTR+5einPkrP97HuiBNRA8ETOx05+LGLxJjEvFcAgKyi\nRISlyXd/isi8ItPmYlYffPBwIeY3Udv9pPKTkrzHHfmuXHT5+f5W0TWPz8OTzospjQUACo0FefTq\n00jxIDn4u5Op+WKIXInbIvEl3Sc8Rbgcu5myv6y58voAYMP5qWX2l3fKxQkD7z8L0pxjAgA4973A\nUMgvEfhl72simebru5szsLjuILRzlj3m/sW7E1renIn77WUfqoMerkPBfyXCWf8d4VkYmcKUY6xQ\nRyuuGdrcng1TjjGutFpc5tgO7ltxMXoIAOBMVB84mdWHh4X6qbgqIue26mZHVd8Z17254kFKYMS2\nRTEvnbac98mDUN2JfBYNbfLhK3XeddLw+Hy8+2MSjNhs+KwJwqBjJ/BxhmAHavFNwYZITLqgcmz9\njVvxarIgMG59t844F/5WJGds00D80rgRfNYE4fdmsgZk79q18CUtHVXsbHF6yECJOeLGRMR0yefq\nsZev8WGG7I5YTecTeJvUl863rhW87FWvG/FD5R14m34WD5LXi4KRK5lWV3p+a5f5qGrZBns/tBG1\neViUnnKM9rsvij9gs7gS9+K0cJqGe4krcC9xhWietAzhPBbYaOk8U4XvUn9Jyi+tlJz33+e98LSg\n1Y1luNthXpknD/8kvUUb55qie6qTBgBgs8rF3qpcDDWWgUG7lAuDQdplqOe9pbjaegmM2dTf3v/a\nr8GLNOpqeb09mmKIVxv0f7gGx5oLTg5ep0ehrq0XjraYAScTQenuqJxkDH4ku+svNFKomFe7PzIK\n5Z8uCHExb8QEOKvJg9BPaBHA+OtqmgCPF0TckjLzH6CElw0O25K+UjqAx89Heh6Z4NEAj5cKxxix\nS19chK4YAMCHYNPk44wpWPHPPTT1lJ/3PD0vXzRWHu127UPfenWwsnMHiTm9a9cCAARu+RNPJ0jm\ncW/q6UEpy9IkUO46yhKRPBR+Tgfl9idl7aW9hrrUtO2Fmra95PYrSmFaxfK7MsdI91GNpatDecDs\nv4074b/X2gqMojw5n8nbI27i+JfHaNOh1G3YTInNP3Vp32qFTME2qjZVsDfvgdTc83RVA6B6RjIG\n+qTn5mPhqRt48SUBKVmK3w3F0YW7UrkwGO61kzwNuNp6CQDgdlv5WQn87UpfKv/Xfo3o2tJI4Nst\nNBYAoK6tFwCIjAUA8LJwEs0TD2oWlyXdR3WiwUAWO2tzXaug9/y8KhgRcSky7S+2qPYAsjJpgqwC\narcWVQiJrWOwu1vPY2oQk2XEtlE8SIz9P/eBz5ogeNraws7MVNS+9+lzkTGQnJ2N5bfvAQCW376L\nuW1b4dybt9jz9DmKeTy5RsOtX0ag3a59IoNBes66bp3xY/BRvEn+irfTJqrz7apERv69Mvuj05bQ\nkm/GVf5UgEF/8LJ0lNvX8dZq3Os4T7RxeODTffyT9Bb7mwlOn3/ybIzf/drLnS/P0KCSpSu8K21G\najQZg6GgOAb5RZ9gymU23DRNbGoGOq3W3SaHurDEA0L0CL1Uig59H6xCU4fqmFZDNvCpPEBit1nT\nL40kdDTmuGgsMBUAXsY1RWFJIm058n6Wi4/cwJlHYSobB/Ig8TMVYmhGQ3LWAXxJW0hElr5970Lj\nghRFJSl4Eae+vzZQ9s+I7u+hvv38yzP68FnR8vpS3O84X/FAgmjihAEA8osi8TqhHS0Z4jB/C5ol\nMT0L7Vbupi1HjRMG2qmwysUJgyFwosUsXatQIRgx9xDefU4CIKj6zCDJhX/fYOMYchmk6rjeQFgC\nmdoMAA+GlIeBlLGgb3TcvR8jAxsSlcnlVKIt423Sj6jpfEqm/Uta+cwAxKA57necj0ZXFqCBfRXs\nbDJK8QQ9xpSrfqYlKph4Bs0y9M/S1M1sFgt35/8Kewv1sxZqE+aEgYEI+rBrJKT773/i4vaxMu3M\nCQPw6N0XzA++hpvLyR2lkzxlqO/2AMZG7sTkaYJiXipCY8lVyQ3wCCk39SjKgsSJDNXvNXO6YFjo\n02eFNiku5qFzu1USbVduzgSXy5EzQzVIPocBw/wZGwKjd5/Cow/RALQeh8CcMJDk07sEjO+5Cbow\noq5ElJ9Ud7okIioZI3o3RcibGDSoJT/ws6LSrEYVGBtx0H7uTmJGQ13XW8SOxF/Gt9D7DyqSxgKA\nCmEsAICT1bByeyojTutbguqxd9qVnQpbOA4AKps7YljVjmjvIls8UXycCZuLAHsfrKpv2LviFREj\nIzZt9yNtUt5PGvgoxrNoH61/j7tH/4jaMw0z9TRjMACY/NNWvH9FXYabwbDw83KCn5eTrtXQO/wn\nyD6gpNvUjWsw5XrD1qwD0vNuqDVfmqfRXqjv/gjGHP0qYljMS0dorD9RmYGeURjzbBh2Njog0b70\nzXzMr7WU6FrlET5KaM1v4PGKkCbqMdirHRxMrPE89QOWhR/GsvDDuNZmJUzYXIlxk6oLYt+yi/Jw\nLPqO0kYJQ8Uh0DOK+CnD02gvuFr/Dg9bxbWmDIWn0VWhayeW8NVTUHtmkODL3RmzerRCAy/9PlkH\nGIMBc0fuYYwFhnIPqSBnefg67iL6YfUyrhkCPT+DwCkqMUgbCyZGnnL7yqux4GDRG99yzqg9/8PX\n0fB1LA0YDE/oREsfDtua1ny6tHMOQFVLF/T2aAFAcJrQ6Z/ZMoaAsB8AhlRtj7a3Z4DH52lVVwb6\ntG8lyNwoPGn4fcxebN85kpj8Rp6ReBZNNqYhIXM7EjK3G/RpQ17Re4TRfFaQpl/Tejj++BXC45Iw\nZMffiidIoYu0qoYTYagBDmy4hpD/RehaDQYGrfHzqkNy+ybvPI+2c/5SW7aj5UC151LxNLoq4jLW\nE5WpDklZ+4jv3AFAPbfSVKEzXk7CmGfDAAC5JTmiawBILkjC4vC5GPNsGK4mXqSUNTn0N0x5MU50\nP+bZMCx7U+r+M/PVFCx7sxAbI9aK+ieH/oYHKfdE90vfzBfdn4s7haVv5iM6N4rMN/sf1RzoHcVL\n17zIK/pIS56+8YN7U6XGDfEilxWHQTu0b7UCf5+WTEEc8Z5+vJo4LJCJh6DiabQXUnOpnz/6CI9f\ngKfRXnga7aV3xkL9OZtw/LFuTzfVoUKfMBz787auVYC5pSn+flr+/XoZ9IOIuK/osnAPElIzAZSe\nPASdvY9AXw9sHNMD/hOC1DqR8LJfAT6/ACk5spls1CU+YwviM7agtstlmBvXIiZXGQqKY/EqXjMV\n1qV369bU3yS6NudYSPQd/RKMhbWX43TsCXR26U4pL7ckF4vrlFYqlnZxSitMxep6gpf1qS/Gi+Yc\niNqDU7GC3a2Y3GgciNqDFpW+R0O7QPR0/5HSXYouHLYFSniqFSnSBDWcjulaBRlicr8qNe7AZzLu\nfwzaxd5B8wUqNeGaJCQyZTwiMR5GbDsEeIRqZA11ySv6QDBjn+ZYd+keiksM83SwwhoM0/rv0Nna\nY2Z3R+8RLXW2PkPFJiE1Ey+2TMGWCw9ExsGRO6F4ulGw+9W2vg/WnLyDGT+1Vll2VYf1RA0GIeGJ\nXQFoL3PH85ga4PHzNSI70JO6yrw8Jvn9gf+l3EUfj75yx+xsdAA8vnL+/G5m7vij+mzR/br3KyXu\nAcCYY6KSjqrQwCOc1gtNXtEHmHF9EZE8TPHgMrAyVW43X5u8SItEEwfZYoDigc9CmPgFBnlo0mgA\ngGJemkh+dadgWJtq/30mM/8RolJnoKDYsFzKDz14Ibr+34KxsDOQlKpABTYY3oREye0z4nJwIZy6\nSnQXv5kS9z0GN8dvC3rKlSU9HgB2rrzIGAwMOoHNZiFk02QAwIQfWmDP9X8BAEUlpS+bM39qgx5L\n9qllMACa/bAqlctGPbfbMDEis05RSQpexbcAj19ARJ48XK3HgcoTdOXbJTBmczGt+myRO9KYZ8Mw\nxW8GcktycCf5Ni7Fn0dn125o5dhWZv64kF/gbOKMBbUFleXPxp3E9cQr2N5wj8zYP6rPxr+pj3Dk\ny0H08xwsut/3eReGeo1CM4cWMnP0ibCEjgj0/IyM/Ltqy3C07E9QI/UZ8UTypd/PygOr/UfLjBMG\nPRfyinAx7glicr/ij9CdWBeg20rDuoLPLwKLxVU8UI8IbFxNFMPwc+9NSE3NQdfuZOOiJNbz/Pxf\ngK9meZ88ROLexKgKKtvOgZ05PTcgPr8YqbmXkJj1J3IL39KSpU/s/7UvBm0XnG4akrEAVFCD4clt\n+b98xx4vgI29hdx+aZLi0srsvxKxGsXFJfihlmQ6tS5+M5lUqgxap1fT2ph94ApWDusid0zM13TY\nW5nTWkfTO1wAD6/iW4vunK1Gwt1mCjhsK6Vm8/mFiMvYhITMbRrSTxZjjis8bKfLtEu7/Ejfi7sF\nzXo1ldJg2NZgl8R9L/ef0Mv9J7kyG9s3Q2P7ZnLvnUycKeeRopbLebxJVLeAIP0MJ172qxQP0gLC\nLEmb3gsCwXc2nkw5TjzouZ9na2x8fxpnYx9qRUdp+ChBXmEEsgufIa/wHXKL3iO74Dm0mXnmWYyv\n0mNNjCrD0qQhzLjV//vXD0ZsWw1qR83Ktf3x5HEkgtZehq2dOY6dmgg2W5NJHVho4BGGkNg6GlxD\nloLiL/iY8qtW1zQk/Ku4wsrUBFn5mt2c0gQVsnAb1a4/oFwtBOm5zu522P+PclWcqdYtL0aDIRTj\nYQq3Cei8YDcS07IACGIYfl4VjLb1ffHn5UdoUt0TT95HE8mqxOcXqfTBXr5hq+yKVN6h8/dYxX45\nvqTOVXu+Jp81qtRh2NfkD1S1dClzXutbf1DKktdeFl9S5//3oh9BOyVtRYXNsoC5sR8sjRuist08\nXaujkMKSBLyMa6Z4YAVFV9mfSng81JtdGrvmamsFdztrWJiagMNSbEhuGabyhgtTuE3XJMenKz32\nSsRqGaOBOWlg0DZXl0i6PPw9S3CkPLh1ANrN3SnTry4sFhcBHiHEC50ZIoyxQBY6xoIZVz+N2EnV\ne4tOGjRFcnawRuVXBHj8HGQXhCK7IFRlg+H0yac4eughbO0ssC5oIGxs6Z3kKoMxxxUBHi+Ip4Vm\nUB+qwm0J6VlISM/SgTbKU6HTqopz6e1KxYMoUPWEZs6mQTJtibGpaq3NwEASSzMTPNkwAS52yrn1\nKIMR296g83fThQVOhf7+yyLA46VO1q3jqp8Zhnp7tIAph0sZ4CyNMmMY9Ath/MKJs5Owc+9o/DZm\nr6hN0xixbZnnEANtmBOG/2BztGM7texSD5h0WKJtRNvVzCkDg1agqvgsRJPF3TQf06B/cDnO8Hd/\noms19BYjto2uVdAo6mQ2utp6JVrf+gOzXu7BqvqjypR1o41+xGEwKE+fnwIBACwWcOTv8VozGIRU\nxOewPqKLomskYAwGHdDo++p4du+9rtVgqIBQGQU/rzqErDzNB2BVpA8rJ6thqGK3WNdq6D2WJg3/\nC5jVDgEeIRpfQ9m4AnnjpNuZ9KkMJKlIz2EGsjAuSTpg6W7ZUvB71lzWgSYMDMDfswajUwM/rawV\n6BkFM65snvnyRCPPSMZYUJKazuRrdpSFEdteq+sxMAjp/WMgIj8mi+4XzD2JwMbVdKJLoGcUGniE\n62RtBsOFOWFQEWd3O4WpVNXh5O67GDWjK3G5DAzK0MDbXWtr1XG9ijeJvZBT+ELxYAODhJ9w837r\n4ePpiI/Rgqq/D49PQ/N+60X9D49PAwAcvfgMW4JlaxEI+8XlScsAgKt7xsHa0lR0TyXPzISLWwcn\nSrRl5eSj00jqdLS92tfDjF9Kq61Kr7l7+SDU8nGhnMvAUJ45c+opzpx6KtMu7pZ08+4cmX5NwWFb\nMKcNDCrBGAwq0qZHAI7tuK1rNRgYiPHqcwIm/nVOozEM0tRyOQuATKpbfaBh5fdgs8hVRz64digA\nwQu38IX/5NVQbNhX+uwZ0L0RBnRvJDFPfLx0u3jb/Wcf0XnUNok2efK2HrqL8YNbido6jdyGfl0b\nYtKw1nLlC9uoxi0Y1wWdv68lanO07I+v2ccU/Uhow2SqYtAl2jQGVCHQMwoFxdF4Ff+9rlXROq7W\nv+laBYOCMRhUpHHrGozBwGCwyAt69nWrpGVNBAR6RiEt9yo+pozVyfp0YbGM0ahyhFbW6tGuroTB\noAoeLpKFqlo28lF67pnrLyUMBgASRgAVGVl5csct2XZFwmDwsl+lFYOB8cBlYKDGxMgTgZ5RSMza\njZi0ZbpWR+O420yFm81ExQM1zPyT13H6qXquYboInGYMBhWpGVBFpu1rQjocXbVfOZKBQVW0eYqg\nLHbmnRHoGYWcwpd4k9hT1+oohblxHdR2uaiVtYQ1fIy51I/rD1HJ2H7kPr7Ey0/PvGvZQKXXu3Qn\nDKeuvUDyN0FO8LyCIpkxPcb+hfN/Cqq5pqRly/T/vug4AFmXJHkYsW1RzFO+po2qVHc6Qtmel18E\nM1MuZd/yHVcx97fOGtOJoWLRvtUK0SmDrtyQFOFiNRouVqPB4+fjeUz5ijXzrrQN9ubddK2GCKpa\nDPoOs+XyHw+uh6k995fOTBYLBga6WBjXR6BnFJwsB+taFbmwWeYI9IzSmrEAACw5VT9vPnyP5v3W\nY9jMYKRn5qGZf1Ww5Yy1sTJTuI5Q3vId12BtaSZxCiBO8NphSEnLFrk/9Rj7F2r7uEqMiUlQLc4r\nwEOz8SzWps0l7s/ceIn+U/Zh5V/XRW3th29B9zE7RPeX7oRL9Dfvtx59xu/C+VuvKNcYOfsQdhy9\nLzKSmvdbj/GL/0Z8UgYAYPEWQWKLRf/9e+raCwmDasDUfRg5+xBaDjS8FwkG5SkqKsGPfRvrlaEg\nDZtlikDPKI3/XWoaW7N2CPSMQqBnVLkwFtrW8kbYqik6S8taIU8YHJys8S05U6Jt2fhgtWshFOTJ\n7sCVharF3hgYSBI4eTOKSkok2lgsIHSzfpw+VLFfhir2gmPxyJTxSM3V3ss5FSZGnqjndk+nOlCx\nYNNFdPm+FuaP6yJqO3ND/WJoCzZdlIlDOHLhmcw4o/9q1kiPFad3R3+cuBJS5hhdsnb3TTw8Pg3f\n0nJEbS0beuP+80iJcbN/7QgA6Dp6OwAg8WsmVu28gR7t6snI3LtyMGVwujC+48nLKADAg//W+LGT\nP9bvvSUa/yWOKeBZEejSfrVeGwviiBd8yyuKQFhCR90qpABr05ao7nQAhrQXLv7y32b5LiRnZssY\nBBGJKegdFIzbbyIhZ09IK1RIg2HO5kGY1n+H4oFy6D6oGS4efiTR1q3mbKWrRfesq1o5eUPAEKpI\nGoKO9d0fa1R+SGQcikpKZFyTyiropku8K22FN7aCx89DWEJnFBR/0dra9d0fwZjjqnigDhnUI1Dr\naw6bGaxwzJThbXDiimo1D3Tx9/k1LRsOdhYAgIUT5Gepq1rZAdsW9qO11uXdvyM7pwDX902g7J/7\nWyd0a11HZbmZOSdhbtoCRkr8rhrCM5A0qvx8NE1JCU/XKqiNGddP9PuTW/QOEcmDUFTyTac6sVnm\nqOawAXbmhuM6uPP2v6JracPAydoCyZmyLp5+LpXw75JxaLxgG2rPDNLZCYPhmGEEqdXAi9b8cQt7\nybTxlHwQ5OcVoqiwWKbdyd2Olk4MDMowfc9FrBou+2K0ZoT+HNdSwWaZoZ7bXdHxspPVUOJruNlM\nEskP9IzSe2MBAEbMOiS6fhhCPwvQq/dxomt5qVNv7B8PoDQjk/CLJ3Vyamdjjub91iMvv/QE9uI/\nYbh2/y1tPekydURbDJi6D+fE3IvGLT4ucUKwZFJ3DJq2HwCwbWE/NO+3HiNnH1I6LqN5v/UYv+Rv\nHNkwQtT208Tdoh3CQ+cELw4HYdhebgAAIABJREFUzwqqgZ+/9RojZx9Ci/7KyReSkDoRMck/qjSn\nIqEvP5+ABl7o1HYVdu//Rdeq0MacWwP+7s9Fz0ofx50w5mg2XbIxxwUetjMlntENK78xKGMBAK68\nlF+019nGEgCQU1Ao02dhYiy6vvpKO4k2pGHpqXuMxpXq4jdTpq3X8O/w65wf1J4PAGYWJjgduoSy\n7/KxJ9iy4DRln7ruUAwMqrDqxD+4G/YJVxaPkmjvvGA3ri4ZrSOtGMQRT1HavN96sNks/O/oVJk+\n4b2Qds2qY+nk7pRjqFyD5KVCFXLhr7GYs/48XkfEy8i7svt3ibiI1IxcdB+zQ0be8cvPsenAHdG9\nMdcIt4Mnyo21YGBgYCjP1J21UbS5In1SsPXGI+y4+Rir+3dB9wDZoPPGC7aJjAk1ThloP3QrrMEQ\nE5mMMV1kd3KUfXFPS8nGwOZLyxzj7G4HK1tzfAyPK3OcKusylE9Wv1uMuLxouJtVxiTfmTDlmGHF\n2wWwN7bHWO/JAIDJL8ZgsOdINLJvCgBY9W4RMosysKKuau5E/hOCYGpshLPzhgMAei7dj4KiYr3M\noMSgXwydfhC5BYU4uVnWuJRnmDAwMDAwCGi/cjcS0gUZ6KRf+p9+isXwv06gbmUXHBs/QGbuzGNX\ncDH0HeVcJaBtMFTIGAYAqOztRNl+7uAD9BzaQuF8u0qWCsckxaUpVRX65PPFCscwlG8+53zEtgb7\nwWFx8NvzodjR8CDm1FyClAJBtd+xz4fgz4alvuMbI1ZhVo1FAIAZr8ZjTb2tSq/1YssUpGTmoP/q\nw2CxWLi98leJ405tIf09Meg/TpWsKF2fnr7WXmyJvvI+xg0sGIGPUpdTU+O6yC98DR+3V+BwBLVO\nPsT6gcfPhrGRFwqLowAA1SvHS8ixNu8DV4etMvJ93d+BzbYGAMSljEB23jUAgL31ODjazJXR6XNC\nSxQWR4Jr5IGi4v+zd9ZhUWVvHP8O3QgoDQIqKrauXYiBYNdaP9s11m6x3bA71151bddWLBS7VmwE\nE6SR7hrm98c4xdw7eafgfJ6Hx5lzz3nPO9cLc95z3oj9MVcc5F07SJPzPXMF0rK2iXyO5IylSM/e\nw2+LjHHmXzPQd0AJOwkA4O0aDRZLkNpWFp0jY5xR0y0WkTGuInoKz8/E/RHWWU/PEqWleQDYAFg/\n+nEpKHqN6CSea4wegFIxfajmsjTrCWe7v8T0IpRfJnduiYWnrlNea+rFfZ7fxCRSXn/1jbpdXVRY\ng4GKZX+NRHO/2jL333JmCqb23ar0vOaWJkrLIOg++ix9AAAHHByI+gt9XQaCzWFT9v2WF8V/LY+x\nwKOylTlu/jlOIT11GW0zUrRNH2msm9eHH7NgYWaMvPwi/vH6kfUjGZ3LN2CNWJtfu1pYEtST0XmY\nxMPpLowMPBAZ4wy3KidgZtIWkTHOiEsdA3f788jJv4pSTo7IQjIhddKPBTC3zdiwNrLyzogZDAD4\nxgIAuFQ+AEB0UStMYfE7FJV8FpmrmB2HyBgXkTZpyCKnivUCpGfvxpf4pvByfoZSTo6IsSCMcFtq\n1lZ8iK3Kb5NH58gYV4nGD5P3R/h9dt4lxKeK/u2MTuoKD4frMDaiDlqnm+tLfFOAGAwaITnvAR4l\nTkIvL+rUse9SN+BT5iH++7L9zn9pSDtWEr1/qkNrMAgTEf8dtZyriLTFpKquVo0sVGiDIfjDagR4\nz1PYHahGXVccvrsAw9qtkN5Zgg4EQlnqWNXH5o9r0NSmBQKcemGA21DMez0FmcUZ+KvJYWxo+Bcm\nPB+GKsYO+NltKOpZN5JZ9s+rDuNDXIpYe3l3Sdr/VfHMaAQBxO2IHiMDD/5rM5O2/Nf5hc8AAHEp\no8XGONltR1beWf57D8cQsUVuZIwzXCsfKjtUIlGJnQHoi7QZ6rvIJUMeOd6uUYiMccbHuFooLc2C\np9MDqbLtrKYgJVOQXVAenU2NmkAZLwtF74+lWXdAKDlQUvpcAKA1FpSZqyKg6MJbWezNWkuc91Pm\nIYnXmdC53vxNeLNqukhbYMOauPIyEv02/4PazvbYPbYvPielYuSuU/w+tZ2pPWRUTYU2GADlF+yV\nHa1Rv7kXXj+RP0MJMRYIPIR3mXmvm9kKik11tO+KjvZdacfIyt23X/AhLgUHpv+MRtU0/4W19N0c\nJBUIjlkb2zTDOC/RtJMTng8Tee/v2B19XAZK7AMI7s/ksFEo4ZRQ9pX3HlLN09G+Kwa4DVWJPmXl\nrG2wHZYGVmJ91jbYgTmvfqWVQ9AehA0JOlgsY3zP/FPEjcbctJMCs7Fpd9hVIaemG3eH3tykPYwM\nPFU6l6lJCwXlyz+XJLLzLqttLoJ64EC16W+X9e2EZWduimWWA4C1gwNx5SU3k9L7+GS0/U38BOr0\ntKFibeqgwhsMTLD68HgAQO8Gi2Qq4nbx3QoYGOpL7UfQLsITknH2ZThCIj4jPS8fpoYGcLC0QNc6\n3uhYuxqqV7HTtIpSmbn3IjaN66kVxgIA9HMdgvpCpyNlF8gTng/DjsYHocfSE2kTNhgWvJmORjZN\nMd5rKuUc2xofEJGtzGK67Nj7KaH4J3qfiMEw4fkwsMDCzibUO8I8fXh96fSZ8HwYqpp5Iqg2N+ta\nUWkRpr4YQ9l/68c1xEjQEYqKP0rt4+36FZExzqhivRCf4uooPJeRoTc8HUMVHi+vnMgY7t+V3II7\n4HCKwGLJHxvFlM7qmsvAwAXsIumxiur8XOWBz5n/4G3qOrR1/hupBS8RnrZJZFf//JeGqG49AjE5\nl1HTZhxep6wQuw4A9ezmIqc4CvUrixfLozvdYMlQcYBuLHdeFupXDkJ01r9o6rAW5obuIn0GNK+H\nAc3r0cp+/scUNFlE7e6uqRoMADEYGOXcK2512shX33Bs5y18fBOLoqISuFdzwNh5gajdqKrMsh7F\nD0BW4Tva6/6e4Urrqy1c++rDf61tn2vcP2dx92MU5bX8omKk5ebjfeJ3bAwRPX6PWK6d7j09m/vg\nccQ3+NarpmlVAEDEWOBx5/tNtK/SCR+yudkghI0F7nt97P+6E6M9JwIAKhna4FXGc9UrS0Gbyr74\nJ3qfWDudsSArLzO4FZZ5xgIAGOlxF1/hWW/gYyX6ZbOgNn3GNn/z4aje0APbH3BlrRm7C/8L6g3n\nag7868amRthwcxGqN/SAv/lwWFibYdyqIdgwcS+cvOxRqbIV3j/9hGu5h+BvPhzV6rtj3KohaNje\nh3ZegjgsliFK2LIHLhYWvwe7NB2OtusUmE0fRcVM5GuXTU5hMbe+Rk23eHyO/wkfYj3kipWQZy5m\nYGYuZ9vt+JrYXi1zVSTepq7jL8htTRoiPG0TItJ3oJaN4CQ1oygcXaveBAB4Wv0sJkPdrk6Zhe9/\nzPuCVidZMDE0wLvVM7D+yj2cfPIaDtaWmN+jPVrVkH0NqQqIwaACajZwx7K/RmpaDYISZOQVoMXq\n8ufzvmRwZzScshHTerWBqZGh9AFqppKhDW4mBaN9lU44EcNddFO594SlP+UbDHNrLcWE58Mw4fkw\nNLdtjVGeE1SqY3ZJFs7HncLX3M9ILlRN1oqzcScp260MrXEq5giW1lklk5wZHX/HtVxR42Xu3vGI\n/5zEf8+7HmA1Eg3a1ua/9zfnFsf7+806fHoZhUmtl4j09zcfLiabIBlv1+gfbiml4NVNjYxxhoVp\nZ7G+LJYhohI7AgCszYfIPVdNtxhExjijsPgdjA0FpxQpmetR2Vr2OBRZ5UQlduQbCNWc/0NkjDNS\nszbAzmqmiLyi4g8wMvQGwA1c1tOzZFxnJj+XNIwMawAAPsXVRnUXQVHCUk4e9FhmEucqKvkq0XVL\nOPA/NHiuzDqVF3inBDw+ZhwUMRhaO+1Rt0oSeZbM7P/RrMC2mBUo3YVRXRCDQUtp6XxKrE14J56g\nOl7GJGDQ3uOaVoNRGk4RrdXQcpZ4BhZtCHo20jNGPjsPAHdhDsjmQvRXk8PggINfn4/Ak7QHsDGy\nw8p6mxjXb8LzYahp6YMZ3kEibUxTwC6gbDfWM0Hej/sjC+wS6ixbVJSyS8FmC/rzThMAwEyoSFvo\nqcfwHcCE/3jFpKZbvIgve2Xr2WKLakBgXFiaUWeFEpaRlrUdaVnb+fJF53IFhHyyFVl4S5MTGeMM\nW8sJFGOcUVwSB0dbQc2jtOydyMw9AYCb9amGS4Rcc8mKuu/P14RWInOyWEbwdo2SOJehgQe8nB5S\nytywVXomnfKOJoKhlYHDUW3sg6YhBgOBUIbyZiwA2mEMyEJyYSLaVfEDwHX3uZJwXuaxvLiBG0lX\n8G/sMcZ1W/F+MQCIGAuqol2VDrgYL14V/nthEgKdesksZ8udZfA3Hw7vxp7Yem85StmlWPvLbuRl\n52PShuGwdxONu1l7dQH8zYfDuZqDyCmEMCtH7sCBZeIbGhWdsgtRqteS2qTJVFxGrEz9lJFDpwtV\nu6PtRjjaSi42KU1nWT47E/dHns/lSbPwl3Wusly4oluLZVXA5hRCn2WsaTVkpon9n7gXP1LTaqgM\nYjAQCELUWkr/RbZtcE90qkXv+1/K4aDPzn9wfOwgVahWLrn3/Rba/jAQeAxxHwUA6OncH1cSzuN9\n1lvUtqJPWViWjvZdKQ0GT/Pq+Jr7SWFdy8ZSAPSnC7zie4rSzakPLsafwZ/vF2FhbW5sVFFpEQDu\nfZEHYbchPX09zNtP7bLF60flZuRczUHidQKBQFAEB7M2Iq5HvFOFXl4vxVySmDhxyCuJx8vvy5Fa\nwI0zCInpDSuj6mjqIFuc0MOE8cgq4iYuuBrdCXYmDfljbU0awtvmF5XorQ2wOBRpnbQArVRK02hz\ncLAyaNPnojMYtDWIWV4aTtmI0JUTUMnCVKR93/WnGNOlmVp1EV5sVza2R0phMgBRF6QSTgkmh40S\nGyvchyeHm26Ug+ySbNosRby+DiZOSCpIUCitqqGeEepbN8Lz9CfwtqyND9nvpaZDLauzLPpkFWdi\n7uvJYIEFcwML5JRko7JxFfxRd4OYjPKYIUkXC7cR6OG568gfCF0xKfv8V8QYhvLK9H8uYdP/uqt7\nWsWLlvyAnDAQCFJ4t3SaplVQObXdHNQ+pyyLXAOWgdR+8iyWlV1YC4//BZOVnkdSPytDa5njNwgE\nbYcYCrITEvpeeieCTsIu5eDGm4+oM28jJnZqgcmdW2paJZkhBkMF415sAPKKoymvNXM6BBuTn+SS\nJykQm+nTghdJU5CcF6Iy+Q8+U98XfT3pOZl1mVIOB7/uOKMzcQ4EAoFQnvl99UVNq0BQEesu3+W/\n1iVjASAGAyV5OQW4dOQxIl5F48PrWOTlFCA/r0ilc6qj6rO0LEtPE7gZUWRZiKfk38fzxHFS57M1\naYqmTgdlV5IWjkqNBQC48Kr87uokpmej65K9AADfIPHKkQQCgUAgEFTLtTe6W4+DGAwAArznaVoF\nlSNsLLCghy6eb/nvS0pzERLdVKSvpAV5av4DEWPBwawTGjps4b9PyLmM19/nAADSCp7hbow/2rld\nU1j3Lxm78DF9M/+9quIc7n8SP2HQherNsuBoY4mXW2dgxp4LWDq4s1gMA4EgDxwOMGX2EbwNj5PY\nr5t/ffw6zg/mZvJX/JWXngO3Iisrn/Ja85+8sHJ5P+jpKe3GK5Ebt8Px55pLEvvUr+uKLWvlr6ug\nCvYevIt/jj+mvKavr4dJ4/zQt2djRue8cTscO/fcRlp6Lm2f+nVdsXheD1SpbEnbR1XExKZh9cZg\njT3b+w7dY1Qek5SWcrDwtzN49OQz5fXBA5pj/GhpRezUg7Rne9v6oahd00nNWnFdknSVCh30vH7e\nSdw8q5kKsWWR5YRB0eBg4XFNnQ7A1qQ5Zb8bUY1QyikEAOixjNHZ44VSegj3a+N6CeaGXgrJU1dQ\ndO1lG1H216GphysOjxqgsjnVzZfEVNhamBGDgaAQ85ecxuNnXxQe//euMfBwl80Ipwp6HtivGSaO\n9eW/LywqgX+vDWL9JHF471i4udjKNUYSS/44h7sPFNs1nDjWFwP7MZdsQNZA2YC+m5CfL9+puTJB\nt6H3IrFshewpkoVxdLDG8b/HKzy3rHQIXCP2918e5Hm2eUTHpGL6vONIl2A8KQNTgdKPn37G/KX/\nyjXmxoVZMDTUZ2R+QHufbXlZc+kuDt7jrjvfrVarGzAJelaUER1WITkuXdNqqJy47LMi7+mMBQDo\n7PGCvzjnGQ5lEV68/+Qoucqiv2c4v//92O5yL/ZT8u/heaLgi0LVGZS003ZmFi/H8nFiQlAvVIt3\nRRg5fh8unJwKK0sThcbXqc3NtFPK4cAvcK1CMoaN5brmKbNImDxL+umKLOzcG4qde0Oxb/tIVPOy\nV1qeLPOd+PepyucBgAePPmLhb2eld5RCYlImfAPWwM3FFof3jmVAM1E08WwzNaeq+fwlGWMm/a3Q\n2M49ucX61LUYV+ezrQxzu7fjGwy6RvmO5qQhJzO/QhgLAPA2ZSH/dSePMKn9O1YV/MIJxwxQYWfa\nWqo8PZah1D50qNNYIBAI4rwNj2N8caOosQCAv4OrqLEgjDKfiwljQZgxk/7Gh4+JjMoEICJzwrTD\nal1QMWEsCBMTl4aufSQXfJMHbXu2tY2Fy88obCwI4xuwBmy2aisgK/NsW5irvzCcq601AMB/9X61\nz60MFfKEYUDTZZpWQSPos6T/MTPQs+C/fpE0hXahzmLJdtTYsepT3IhqBIB7YlDZtK3UMUXsVNz+\nJuinKmPh6rsPCIn4jJsRn5FfVEzZ51lUrMRibmWRp14DlVwm6j0oKleecYP2HsfLmASpMg+P/hlN\nq7pI7acLOlHpMqJlYwR1ZdZnV1tqgRw+/gj7DjLrT71yWT+lxru72Ulc5FX3skezJp4oYZfi6o03\nyMoukChv8KhdOHZANe4udX1cUMvbEfr6+giPiMebd5Kr/I6begiXT0+DOYMLmNPnn2PB7G44ePQh\nIj5I/92go14dV7nHTJvYCZt33pTYx8nRGq1bVIepqRFi49Jx+26ExP4FBcXIzS1U+h5p47OtTcxZ\neBLPwqIk9qnmZY/mP3mhpISNW3feIyU1h7Zvx+7rVHbSoOyzfem0+tOmX5s3GnXmbURsWiZOPnmN\nn5vXV7sOilAhDQZZ+KldTTRp6w2fxh6ws7eEianqg/Z0CReLPjL10xMq6x6deVgmg0EVxoI8i34C\nPbIuynkM238SAPBy0RSYGKrmz40mdTr4KIxxg4GKwLo1VT6HMNExqVIXVPNnBaJrJ8kVuNdtvoZL\nV1/x37dsTl8pXRaojIVu/vUxZ3pXsfZff+kgcRwAJCRmKqTH2WOT0WfwNpG2n/s2FZmTjplBJxD2\nkjqFc7f+mxldWN29/wFzpnfFgcP3xa7t2TYCNarR119Zue4yroW8AwBsXSd/kHafno3FDAZ3Nzsc\n2j2GdszSH0X5VHmPtOHZlqY/1fOqLteeD5+SaI2FPj0aY9qvncTahZ97v25rUUoR2OsbsIbxz1Bc\nwqZ8tqXNI/xsa4p3q2dg3L4zWH4mBMvPhGDnqN5oV8tTozpJgxgMQqgjtWl5wdq4ntxj0gqeSe1T\nNvXrw7g+aOXC7NE2QTGUMboa/rEVAPO75MrqVNfZAafHy7YYCl82HT7LNom1H3/2GoOaMrNDRPd5\nNgwIZES+rIwYt4/2mjxf+rOn+WP2NH8mVFJKl9Dgudi84ybOXhR3y1RkIWNTyQwAcPzv8XB0sJZr\n7IaVA1FQUMyoew0dBYXF6NxjvUibrJ81aHY3BM3uprQOshpSwmxYORAAvaFXXMxWKKA2N69IZ55t\nTTFuCnUadFnvza3L3AyJVP93TBoNVDEL6n62FaXOPPHf/YkHzsklQ80B0wAqaAwDFcRYkI9Sjvx1\nKWRxiSpLdlGk3GMIzJFbyP1/ZuqE5tejF5SWwaROb+OTZNZJj0WdZGLZJcmxPspiZaJeH9vFv9Mb\n6OrMJiINeXWh2hlVdn55jQUeJiaGaN2yBqP6yDKnuv//QoPnym0sCEN3j2YGnVBIXrd+4gY/D216\ntjXFHzQpgRW5N5396iirjkSEjQVNPNsVEWIwEBQiq0h+VyFrY+m7sMb69vD3DEfHqk/4bdIKzhFU\nx9ob99Bv11GJfbr41MDQ5g1R06GyVHm3Ij+jmM1WWidJxoK5sRG6+NRA/8Z1ZdZJVlb1Uf+O4tOg\nX9U6372HHynbtekLWVFdrK20J53wn0uo3TpDQlVTQPLqWd2r5E53j6TFg8iLNj3bmuTmbfHv9RsX\nZikka+Ec6h386JhUheRJQhefbV2EuCQRFCIu+yzqVv5Tar+0AsEuQJ0qv0nt7+seCgAw0LOEm+VA\nxGRzd5KkFZOThqJBv+WtDoO8HH/2Wqxtff9AdKsn2aeew+HWtaCi3m9blHJNotIpfNl02hMAHqfD\n3mLR+RuU15qu3IFnMizMezf0wfyz4kUId997hnFtm1KMkB3f9ZLTFKuDUROps3bcuKjYokHbOH9i\nCqWrxPHTTzGoP3P1EJTh5Jln6Ohbm1GZh/cwn45U1yjvz7ay0NVZUKaWwurf+2Pe4tMibSPG7WPU\nQNPFZ1sT7kRMUCFPGA7enq9pFTRCcWmWXH3qV1E+5dx/iYIANxN9+gA7KnwqLxXJ2vT6O9kF0jQR\ny2dINRYAgMXiBhWrg4jlM6QaCwDQv3FdWp2yC6jrjsjKhpvigXfykphFn2VEXXyNSqFsNzRgrgCT\nsjBdeRgAHjz+xLhMRUlIUiwQWxJurswVqlM3LZopFyjPQxeebU3y+Kn4Sauri41SMpv/RF2slUl0\n+dnWNSqkwWDvYoOdl0QtvADveRrSRrUI78rfim4htb9wHyeL7mLXbU0Eu3D3YyUHYpZyCsHhKOd+\nIlwXIiHnEu7EdFRKHkFx5D0VMDE0wMO5EyivXXwtOX2irGhCJ7o5b0bI7tpUlt33qBMCqDuVKhV2\nthbSO6mRqROZjUUAgC9fkxmXqShZWfmMyps+qTOj8tRN/bryp3SVFW17trWNf/b+ohK5iQwZxbr+\nbOsaFdJgAAAPb0fUqCuaiz3Aex6unZKeyUfXEA42/p53m7Yfr16CJJo6/c1/nVscJbGvsLwmjrul\nyqZD2OgpKFE83zJBcZZ291NonK05tc/44gvUrkHyoG06TT6meEA3EycUqmLv9pGaVkHl5ObJn8RB\nV+jdXfrfdW1GX0/66aE0qFJvAhXj2ZaFk2fUu+5hKqWprj/bukaFjmHYcmYqANHThU0LT2PTQoHP\nHUuPhRZ+tdHMtzZcPavAwdUGxiaG0Ndn1tYyLxOMx+YUIKfoA9ILniO76CMyCkVLib9ImgQLoxqw\nMKwBG5PGMDFwopXdySOMHzgcljQJADctqqvlABSXZuBj+hZwOCX8/izoo4vnG1p5/p7hfHm8f10t\n+8PWpDkK2An4kLZBpH8jh62obNpG2i2QSNk5u3i8BotVoR9ftTK4aQOlxh579kqkraC4hKa3fHKZ\nRB6d3i+bQRujwRTvlqq3oNCXqO+U7bwUogSCrnLw6EPKdvJsc9mxh34jURWEhL7HiCGt1DonQXnI\niguClKpUbkmcUg4e3QzHo5uqqTZcVgdAtqxAyXm3kVzmtEBSULDwghsAMgvfILOQ2iiQZCzw8Kv6\nCLeiW/Lfx2afRmz2abF+pgYusDdjxo2ous1UfErfAgC4HlVfZRWgCczya/vmYgaDsizpptjpAlPQ\nhUycefEOfRvJl04wOjWDsl1fT70HwHTZkbQJCwarIKuKeYtP48l/XzSthlazbdctnD73n6bVIEhB\nUlV1Zfiekq0SuQTVUuENhlmDdiA8jLqiZHmDt8C+H9sducWiX2jmhh5o43pFZlmGetbw9wxHfkks\n7sZ0EbvuWekXeNsw639drdIEVDFtg0fxPwNQPnMSQTbW91euaFgVS3OGNBEwpJlypwu1HavgfSL1\njrqsvF48FfV/3yLStuDcdbkNBv8tB8Tajo4ZqJRuinD3vvbXPKlVk/4kVVP0HLiV8biD8saWnTdx\n5oJ40TxCxSQ/v/y6AALUhdmYRhOZliq0waCtgc6qXgS3caUuzqIIpgauSusrz3gr47rESFAzsmRF\n0jUsGCiGZkSTXeVlTAIauim3sG3s7qzUeEVITctV+5zyYmUhf/FHVXHs1BPs2n9H02poNeQeEQjl\nhwprMATWrJipVQkEgmoZtPe4zNmNeu04rGJtZCcrm+ySywoTrhrm5sbIzVUuna82s3bTVVy+Jl4z\nRR7Mf7iglef7RCDIir6eHqb5t8IYX+Vq/ihKhTQYJvXaDA6Ho2k1CASCjhOxfIbEqtPSiEwSzw3/\nW0/m04bKgpNjJcTFp2tkbl1CmrEweXxH9O/dhBFZuoq0z1XXxwXb1g+VSdZvKy/g1l1m0jAT5INU\nwFYMWdyFeG5LQ1s3xIKeHST2vfwyAnOPBYNdWqoxYwGooGlVv7yP17QKBAKhHHPn41eFx/7cpB6D\nmsiOq7NyRZoqAivWXaa9NmNyZ4QGz5XZWKiIWFmZIjR4rszGAoFQHvFbsQcA4GBtIdVYAIBuDWvh\nzarpANQTH0FHhTxhkIRfr0aYs3aQptUgEAg6AlWK1fH/nJPqlkQV7NyuhgeTqslF316NSXYfKVyn\nyR9PdmIF0J0uKHqPSkpLlVGHQNA6kjJzAAC3FsheGE9PKDVf303/4Mz0/zGulzSIwSCEcGrT8srr\nNzGYNvuoSFuLZtWw8vf+/Pf/HHuEfX/fFelz+5ogQJzDAfy6rqa93sF/NW5fm4cO/oI+Xp5VsO+v\n0fz32/8KwemzgrR6xsYGuHphloKfikDQHHQpVr+lZcDdthLtOKp0qrv/14cpteSm+U9eGptbl+nm\nX1/TKpRrvn9XPgWns2MlxCdSpy8mALVrOuF9JCmKqg7+OHdLaRmRCcpl+FMUYjD8oCIYCwAwbfZR\nrPq9P5o3q0bbZ9/fd0WH4cUEAAAgAElEQVQMgLL4dV0tcv3V6xi+kcBD+H1pKQcdy+w6nT77n1j/\nsjIIBF3BzsIMqTl5Im1dNh+gPWU4/PiFOtRihKBl/2Llsn6aVkPj7D14l7J9zvSuatZEe6G7R2eP\nTVZYJhML2S3rhqD//3aItZNnm8u29UPRsfs6sfaHTz6hVfPqGtCo/HL66VtNq6AwFTKGoaIzf7F4\ngTUeK9ZcgqWE1IVrNwaLtTWo7ybW5tuuFv+1np7oFuzajcFo29pbpG3Qz81p5yTITikJ5tcID+aM\np2ynqx79Z3CoWJurjTWTKjHGoyefNa2CVnDrDgm8lQbdPdJ0ReXKdhaU7eTZ5qKvT70UXLDsjJo1\nKf84WFM/i7pAhTxh2B08C+MC1mtaDY3A28HnuQu5utri8D6BH93tOxEY2J8+Cv/6Ta4Pb1nDIbCr\n6LF8qxb0uxLXb76DR1U7qTII8hP89oOmVaiwmBoZIr+oWKSt4R9bxU4ZyvbhcXP6aMp2daLHYhGj\nk4bU1BxG5b0Nj2NUnjagzfeIPNuS8a7hiA8fEzWtRrnn0ISf+UHPG4PvY0ZAGw1rJDsV8oTBrZo9\nXDwqi7SF3a9YC63b1+bh9rV5iI1Nw/pNV/ntLZtXw+Vg+tzZvJOBOTMCxH5kpW1rb+TkFColg0DN\n8f+Uy3tOUJwXC2Vzu/hp5XYVa6I4Ny5SxxGV1/Sf8uDkRB+PogiTZx1hVJ42oM33SNef7c9fVeu3\nvnvLcMr25SsvqHTeiobwCcPe0GeITpEeW5OUmSOSHen+kgkq0U0aFdJgAIC91+eIvF84ep+GNNE8\n9x995L/+bUkfZGTm0fZdsqCn0vMtWdATiUmZSsshiPMsKlbTKhDKUHZXk10qvsv5ZP5EdakjETrX\nBACYGXRCjZpoH138fBiTtVZok6Y8QXePUhg+eVAEXX+2p889pvI5jI3EnU5u341Abl6RyueuSPw9\nfgD/deDaA6gzbyN+2XsG9yKjkF1QiGI2Gx8TUzH10AXUmbeRfyLBw8bcVN0qA6jABgPADXQWDnYO\n8J6HAO95mNhdc3luVQ0vuJj3AwBnT0wR6TN8aGvKfjx4GZCEf7b9FSKXHnNnBSotg0DQNrwq24q1\n+SzbJHWctSl93JC6oUt/GfYyWundWF3eKBjycwvKdnl3we89/Kh0BWRthe4eUQUcS+Lew48q2flf\nvrAXZXvYy2gE9pX+eyoJVT/b2TkFKpUPANfOz6Rs79Zvk9Ipl+8++KAzpzmqpqmXK2aWcUV6+DEa\nE/afRYulO9BwwRb03ngIIe9EY2zG+DaVqSicqqiQMQxlCf6wGmtmHcPtiy8BAFEfEhHgrd5sPerK\n0iRLFqJRw9tg1HDJfnWS5FBdK9sW0KUeArpopkBVeeXfMOoc8QT1cWXKCImVnw88fK5GbVSDb8Aa\n9OzWEDMnd5F5zMgJ+xEVza1qXd5qFrwNj8P7yATUrukktW/PgVuRlZWvBq20D1nv0Y3b4fhzzSWV\n6NC+TU3aa3n5RfANWIPDe8bCzVXc8KdDFc/2gD4/4ZRQ2nEevgFrVP7707VzXVy9IZ7JZ96PZCmX\n/50OczMjmWRxOIB/7w0oKqJO/lCRGePbFGN8m8pciO38zOGo7mCnYq0kUyENhiW/HMAzkvGCoIXU\nWb4Z75ZOU2jswvPXGdaGoAiVLcyRkpMr0jbj1GVsHNANq6+Jp52UVuBNE4QGz8XgUbuQkEi9a3rh\n8ktcuPxSzVppnro+LpSBuBOnHwYAdOtaH3OmCdKsFhQUY/7Sf/Hy9TdKeTcuzkLnHuUrAcftK3PR\nIVB8J1n4Hs2Y1AUGBlwHh4KCYhz45wFO/PuUUl5o8FxGd6alPdvDftnL2FyKMmmcH6XBAAhiLqq6\n2aF925pgAUhJy8Hbd3GIjkkV6auIcTF/ZiB6d2+ECdMOU17v1k+5kxiCKJo8MZCXCmkwEGNBdl6n\nLEb9yr/h5ff5aFhlNd6m/Ia6lZcg+Gt9BHhyj9WDv9YHB6UI9JSeX9g3ZDZCO4rmey4uZcNQT18l\n+usabAWrmj78Qr0gIaif+3PGiZ0yBL/9gI0DumlII8U4dmA8cSEow7b1QyXek8tXX+PyVdncjcrb\nSQsPukKGPLThHunCs+3maouY2DTa69ExqTh09KFK5q7l7SR1fkLFo0LHMBCkE5t9Fk8SxqC6NTf1\nanbxRzxKGIZKJg34fTgQLHIHPvgTviGzMe4pd8FUwmHjl6cb4RsyW0Run3vLf4zlYMdHQRYG35DZ\n8A2ZjV53l/Lbpj3fgWlhO3E5/gmljr4hs9H9zmLE53N3V1aGH0evu0vxKTuef3162E5ciqMeryka\nuFIfz0tyaaGi4R9bMfrgv0yoRFAhK6/eEWu7Pm2UBjSRndDgubhO49dcUWFiEVtejQUeocFzYWFu\nrLQMVaLtz/bhPWMxT4OZAw/vGVvun1OCfBCDgSARQz1rNHfaDwsjbl2FZo670dLpMFo6UR9XJhWk\nAwB2N+Mesxmw9LGn2Qzc9BPEaDxNjcDZtlyDgAUWptXsIyIjtOM6nG+3nP9+c5NfsbnxRHRzFi/u\nNvn5NoR2XIdL7X/HkIcrAQA9nFvgfLvlGPdsE1/epsYTsS7ilEL3QFWc+GUQ7bVaSzciPCFZ4vjs\ngkLUWrqRtjgYQXM0reoi1nbwUZhYm7sts2koVYGRkQFCg+eiTm1npWXNnxnIgEaaJzR4LipZy1+M\nrEE9N7FF2PjR7ZlSS6u4dHqaQvcIEDcWVHWPtP3ZDuhSD7evaHbRHho8F9MmdlJaztH944gBouNU\nSJckgmx8yzoBP/ebAIArX+si0PMt9Fni6bwkuSL1uLMYF9v/jujcJFSz4P5RbmZXC3eT36CdvWxB\nz7eTXqGDQwPKa/oscVemapbcnftSjqh7T1lXKG3g0qTh6L79EOW1vn/Jn4M8YvkMuU8oCMxzePTP\n5e7/YfuG//Fff4tJxS+TD6JQSjDjLyPbYehA6sw50lDV4oIpueeOc+tu5OQWYtyUg4hPoM6n3iOg\nAWZN9aeVM3hAcwwewEyle21bkPHuEQAMGb2b9h7VqOaA1b/3h62NOeV1Ju8RFcLP9o1b77Bu8zWV\nPtvywGIJ/l//PvIAf//zQGL/iWN9MbBfM0Z16NOzMfr0bAyA+7wPHrlLYtYmm0pmWP37AHhXd2BM\nB3U/2x4HVyNqhOQkMa9TE7Hw0TVc7D5CTVpplgppMKgrI5GuE5tzAa6WfZWSMaNWP/z+9giM9Aww\nz2cgv/3u99doVcUHt5NeITwzGqYGxhhXjXqHZvnbw1j+9jDlgn9z44nwDZkNSwNTHGwxh2I01yWp\nqV1NPEuN1Dqjobo9c1kPeMGz9pYWSM7WfN7zik51ezt8Sk6lvb5zCHWKR13A3c2ONgVjRcPC3BhH\n94/TtBpaj67co85+ddDZr46m1aBk5NDWGDm0tUZ1sDA3xsVTUzWqg7ZQ385RIWNBFmNEG9FZlyTf\n3YJMBuHJXNeN6ms3iPybkpuHuKwsPIz+hsTsbNz5+lX9iuowrZyPQI9lCEDyKYIwoR3XiSzK/Rwa\nYnHdoXxjgXdtUZ2hMGDpo7NjY0yr2YdvLJRd0A96sIIvs/Nt6l+w0I7rcLH976hqzt3NMNU3FpEV\n2nEd1jb8ReuMBR5MZMnZ9LMgoHaefzul5RGU59Ik6sqpPDrU9FKTJsD7zKvYFuGHbRF+cl3TBXRV\nbwKBQNAldPaEIXTcWP7rngf/wZx2bWGkL+qeUtncDHU2bkG3Wt78tvaengrP2Xz4Bjw5JH1X7c7z\nT2jfpLrC8yg7f3nieOsF8L8dBEdTW9zoUH5PhnhGg7xuLLUdq+DsxP+JtHWrVxOzTl9hTDeC4tCd\n9vRtpN4dzNrWXVHbuivl4lrSNVWSV5KGB8l/obPzArXOSyBUBBIyNyI15wSK2PFo7K5bWfQy80Ng\nbdpR02rgf9dP4H5CFFgAOIDIqcDqsDv4LykW9ewcsaSZqK4eB0XXKrxxPS4d5LfxXvNOKJLzc9Ds\n5HbKcZJklj2t8Di4GmGDpsLWmPlq0DprMAhzZNAANHdzw9q798SuhYwdhdeJSehSozo+p1KnCBuy\n4BBy8gpxYdMv/Lb2Y7ega6vaCBrdmXbe5sM3YM20nnzjIDElC/3nHsDa6ZJdDdYdvoWbjyMxbagv\nAlrVxr8hr7Dhn9v4d+1oOFa2AgBsPBKKf0NeYdeigajj5Yhxf5zgz1nRjIZrHVaqZR5tyIfP02H+\n2Ws49zKcsg+LBazo1QV9JCw6Ffksqvz8ispWlU6HRw1Qidyy3J39C6URuKK37EXPyisnosbD1ayR\nptUgEGSiz9bDqGpng01Duss91mch/UbQ1qE90dGnGmPyACD8zxlwsub+hH1zl0u2NvD5+yitMHJs\nTcz4i/FGx7cg8OIBXOnBzWw3rzE3EP+3pyFi40b7/IQlTcUNHp5x4HFwtZgrU7OT2/F5+Fzo/8hL\nHHjxAPJLimFqYMjvQ+XGVNfOAQOCj+BUwFCB3iowFgAddkkSprmbGwDg05yZIv8CgKOlJbrU4C7o\nq9lRV2/cv2yIiLEwetlR3Nk7FUGjO+PPffTFsMou3NccuoX7+6ch9L+P9LoO34DZw/xwdftEBLSq\nDQDo17EBHhyYjl4zBW5WsUkZuL9/Gup4OQIAdi8aSDknoXyyqo8/IpbPoPx5v2yGRGOBoD1QBa7b\nmcufOSYmV1AhWth96J8vw/nXtkX4ITzjCgrZ2dgW4Ye0wijFlJaDbRF+SC6IRF5JOrZF+CEuT1DM\nLTRxI7ZF+OFTdijepJ/DjkhRIym3hD6+g/dZkvLfi518bIvww+fsu8gp+U7ckQhqwWfhRkQmpuD6\nu4+ot7j8FC57n9gVb+Iai7VTGRll2zLzQ/AiphoSMuVP7pCRdwWvYxshPKEDsgsEtSTS8y7hXXxb\n/ny8H2Fi0pfgRUw15BSKF/rj9Y1JX4oXMdWRXxwhdo1HbuFzqcbUlnY9+K/7eNVBeJrkzIU8jka+\nhMfB1ZTGhCT0hYqYXOkxCq1O75Q65lL3kXiWHAsA+JqVhqXNlM9oRUe5OGFQlqdvozFn03n+Yjyw\njQ//2vVHEVg4RrbdwNYNuO5OLep7yDV/8+EbUK+6aE7+tTN6oeXIjbi1azJMjQ1pRgrwPCK+C/91\naJBC4+Y29MXEOi2ljqWSI8ucBEJFgSo17oO54+WW42beBGGpx9DYbjDsTWoiuSASAJBRFAs38yaI\nzuHWGPGpxI0FGlX9FA58GoDJtW4pob10hOV7WLTA5dhFGOd9CQDwNuOiyPV6Nr1lkrktwg9+jrNF\nPsv95B1oY/8rXqefAwBUs2zHn58YDcxR58R65JUUAQBq29jjSuAYtczreWQlrnUbC+9KVdQynzKw\nSzlyjwlbNgXPo+IQ8v4zwqLi8CEpRSkdwv+cgfD4ZISEf0JYdDzCouNRzGbLp9M3dzhYTYSZUR2E\nfXOHt8MpWBhTZ6LKLXwOC+OfhMZWBcBBdfsj+PJ9LLIL7sPbQbZaQLxFulflXcgteoGPyYP4pwmW\nJq1Q0/E8Xsc2RH1X8UryYd/cYWTggmpVDuBDUn+wWIZo5PZZpE9a7hkUFn+Fo9UUFJV8g6lhLUo9\nIpP6wMrEVyad5SXif7MAAF3O71MqwNnWRLbNJXNDIwBAh7N7VBpMXS5OGJSlbaNq2BEkcFFYe4j7\nJbfv/GPc2St7NoA1B7nW5KLtl2n7dG5eE/O3XERKeg4WbON+sVZzrYy9SwaL9ItLysD9fdOweAe9\nLGEuBIzC5Lqt0cJBvuPH+71/xcbWPTG0BjOuAQVsUhOAQM3v/4XA49AqTauhNjbfYrYK68PvewAA\n/apuBgui5XSD45cBEJw+HPikHperx9/38eeMynmMotI8RuTeSlwn8llepp0GADxI3gl7k5qMzCEJ\nDicfH2OdJf6UR/JKivB1aBC+Dg1Sm7GgCxyfIPh+Dv9TfjdJE0MDtK5RFUt6+uHc1GGM6OTjbI8p\nnVrhwJj+ePWbfFmLwr65w8asO1wqBcHGrCcau3/DhyTB3wyvyrsRnSoothqZ1AfeDmeEJHDQ2P0b\nrEzaoqFbJHIKn8k1v4fdJlQyC4BLpQUirkcGerYw0LMVec17n5LzDwCgrvMjWJm0Q2P3b+BwipGW\ne0ZEdmFJDKrbH4KT9TRYmwpv9rIQmSjqLl7dnjqlOVNc7yXf79DsB4LYQ4+DqxHSe6yE3gLeDZmB\nodePyzWXIpATBnB9wpvUduO/5500jOklmmOZyh1IOLiZd/3Bgem0c/0xSZDNZsVkri/k0RXDxeS7\nOdoAANbNEOzKSXJHqmfriHq2XPclqlMDOlzMreFibo3eHnVw5OMLmceVxd2iEurYOsJEnzxSynAn\nihug38L1LowNHOUeR0V7jw8K6cCELB5UhoLHoVWIGj5fIXm6wM474pXF9Vgsip6y8y7jMupU6oYO\nTqKV022M3JFbkorR1U8rJV8e7ifvxMu0U/xThGvxv+Nj1m1GZNOdjFgZOiOjKIaROSTxKU6yT7mF\naQ+J1wnli/pujgoZCtqMi80i2muVzLriS8o4VLWjzyyoaGxEPZf/8CbuJ0SlTkc9l6cw1Jfte47O\n9SkuYyVszQXp352sp1H2a+T2ES9imEtGIxyEvP/9fwBEA5F5TKwnXqvDzcKa34c3JmrEPNQ5shGn\nP70BAIyrI18tjQcJ0QioqtrNFLK6IzDCnV4TNa1CueJxbDuFF+fayLnA4WhY2bnCnDBcC6eOYwpf\nRr+ZIAu3E9ejTqVu8LEOwLOUQ/B35n7pD/TYJeaa8yrtXzSw7afUfJJIyHsDCJ10UBkLL9JOopHt\nzwCAUk4J9FiCrxx382aIzLopliWps/MCbIvwozQahnodEPmcTBkowgifHliZD4KDzQbG59A2hDeZ\nqNxLPY+sxNehQZh49wyuxkSKXQeAeic3IKe4EACwu31/dHatQTsH1XgLQ2ORPsS9VbUUlyTASF/y\nSRm7NBvvEtpR9lM0KNlQ354/9m1cC5mzOBnq26OY/V2s3UC/skzzslhG/Ndh39ylzlnWtWdJs44i\n2ZAkuf5Icwu6128CZfu7ofRGqSyuRjt9ZXP7VBRiMBAICsNBTOZ+uFkzf3SvJ/THTRbKGheSTgnU\nKYuHjbH8gb66zLQTlxiX6WnRCl9zBG5OT1L+FllUl/Xn/8lOkDVDuJ33mjdW0jVJDPDYIRKAPbHm\ndewUCmzm6fMg+S+RNh493VaJjOddq2nVCQBHRC/hcb3d1vGvNbEbIlVPZagIxgIgWJzzDAMq5j6+\njNwfLku5xUUi1zyPrISlobGInEN+g9DWiRvXN+X+OXhXqoJr3bguFue+itf1aX1uu8h4SboQlENf\nzxIfkwehoRt3Y6OYnSTWx9KkNd7ENUYpp1BlGYvqujyW+aSihv0pvIr1oWg/KvN81e2PID3vgsz9\ndYXMogJ4WtmofB6dMxief4/FzIcXEZubiYZ2zvifd2P08awrddyo2yfxMDEKzubWCO42RibXmeJS\nNuqcWI/NrXsiwJ0bOLMv4inWvAjFtPpt8auUwOBCdgk6XNiFzKICbGnTEx1dakjszyMy4zsWPAnG\nq9R4dHCpju1t+8BIT1/6QB3kdvxnLH56DbnFRRhZ6ydMq9dG6pjs4kJMvncOz1Ni8VMVVxzoMBDK\nOXooxuukUUjPf8ioweBg0QspeTfRxl1x9zBtpP3Zv0Tcj3zP7oKrhbUGNVI/yqaI7eb6h8h7qkU9\n3UJfkgGgTGB02bHS3ss6d02rzqhpRZ3S2tW8sci4llVk8/MlKMfl6Ai8G8gN5uQFWQrz+meBy2xf\nr3oYfus4f8H//HscJvgIXDN6U3xnO5ha8F9va9Mbk++fY0z3ik4pJx96LEGqzQau7xD2zR1xGStg\nZlQfX1N+RbUqe0XG1LA/RruYZ7EMEPbNHS6VglBUEovvOYdlNirCvrmjisVwVDILwNeUybT9whM6\nwc3mN6TnXYK77Qro61mAxTLE27gWcLdbi0/JQwGwYKAn+0LZyqQtXnxTX8FMdVDWtUmVsDgc+SP+\n1YCYUrWPr5UYUEu3EyHJn59qDK//xlY9MOPhRX77Pt8BWPXiNj5mCrIbmBoYInzgbLGxn4bMR/Wj\n1K4XLwZMRyUj6hy5hz+EYcmza7T6fhkaJNPCWNGMRbxxsmRJKmSXoNbxtWLt0ubkzfF5yHxUo7lH\nsxq0x+S6rSSOl4Y6dqZ4O+/a6DokfCqgrH5MyRJ2R9rUpgd6e5XP1LB0xfe0oc4HQTo8lyRDAw94\nODIbuK7t0O3qex5ZicuBo+Fj40A7joqybk0A1zB43HeK2PhzXUeggR333n/I+A7/y3spdRGuQUAX\nVyBPH6rrTNdNkCSfCXllZZa3eAsmCfvmjgau76CvZ6lpVdSN0vuqOnHC4HVkJd+CqGphg9BeAv+v\npc+u4/gn8fRbAGj9IVuf24743CyJR54zHl7E16FB6BF8AG/TEjEm9BRfTmJeNlqe3Yb8kmLKsTxj\n4fOQ+fwgx+pHV4HN4aDRqU20c/KMhTkNfUVOL/wu7sLXrDR4adERrbG+AeWXgazwjAVhGbWOr0Uh\nuwTrX92hNBh4c7R29MA/HQVZK0bePoE78V/gam6Ne71/lUsPgvoozwHOPOiMhRcL6XfS6OjouwIA\nEBJKKiETNI8BS3JSRWnfTdLcjUz1pacPBwCnSpZIyMimvb7svPTc94qkRiWUHyqgscAIWm8w/C/k\nGN9YoPqDtLxpFyxvKl4noUfwAQDcQhifhoguVB70noR36UnofmU/rdFwo/s4AMDFgFH8her+Dtzg\nPUcz6Q9bWZmfhsxHy7PbkJiXTTknb44nfafAXuhoFgBu9RjPv34g4hlG1WoqdX5doOw9iBg0h/85\nf39+E4ubUBcgETYWAODvDgPheWQlYnMzVaMogQCBMVDH2QE17O1gYWyEb2kZuPsxSuK4v0f2h6mR\nbIuhisjjR58AAC1aMpfBRFYkpUctLomivV7DNV6iLKrr8vbnXeddk6Qri2WM6i5fpc6pDXwdGiT3\nBpMw56YMQ/Pfd9BeP/n0NQBu9kMOBxh/8Cx2jegj0mfCobMS5yi7Qy+tsjJB+0nPu4yvKRPRwDVc\n06roLFpvMDxIjFJo3Nu0RAAQMxZ41KE5WuVR3dpOrK2Ds2zHhvt8qXOgP+ozWeofyrLGAo+z/iPQ\n59pB/Pb8ZrkwGOY36iDx+pkvb2kNBkWJydyLL+lraK+zoI92Hu9pryfmnMHntJUoKRU1TBRNQ5pT\n9B7P43tRXnOyHARvu99ox+oadNmRdPHU4V18Et7FiwcJ0tHC0016pwrMwqCTAMhJCj2l+BIvOU6P\nwynEx1hnmQwVVdCkiis8j6xEo8ousDQ0xt2EL+jnVQ/rWnJTh3seWQlXc2v0r1Yfhz88lyJNMpYm\nxvzX++/9h9Ftf6Lst6B7B/x58TbufYgSu/bgY7RSOhB0j6iUyXC2ng19Peo1FkE6Wm8w8LirQ2k7\n/Vzk2ymb84hbnM3UgH4XsmHl8lUoaLyPeG5iYTKK8hmdT5ZMPxywcf9bY7RxD6O8Hpmie4tbbaGs\nYVDCKYXP0fUa0kY9WJoY41kQcZHTZiTt7GtLDMPHWFcAAItliuoun8tcZeNjrMAgLeXkQI+l+IKI\nzq1ImrvR6S6Si5EJj6dKbFFWvnelKjK53667ek/EYIjPyOK/HtqiIf68KDntbo+GtaXOQSgfNHKX\nfAIXE+cEAHBzSVCHOjqJzhgMbhaVNK2CygiJ46Y2yy8pVuqotqJw+EMYhnk35r//5yP1Ap9HWEJf\nkfdUu/5P47ogvziK1ligGqds0LOFUW2VpDDVBQxYeihiszWthspY1r0jBjWtr2k1COUIcWMBAPRR\n3SUan+KqAgC+xNdFdZcoteqlCfT19MAuLRVrn/wPN2VmEw8XmeQs783sKTaBUJ7RGYOhPJP9o9gN\nQTI839clz65RZpOi25HKLhTk/KZb3Ddzuc6MkoQKjWdlGwRPGcm43P8N2YGE+AyRtp8HNsf4iR1p\nRgD+nVejpFjcKKNz/SkuZqNr59WU1/b/PQ5VPagLJAkHZ2dk5KFf701S5xw3Zi8+f06mlCNNz4qI\nS2X6XPMsluBkmsMpou1XnljcowNlcHNEArew1+KefmLXeMSkCX6PTAzJEohAkBWd+W1JK8yDbTkt\n/tTZtQaCv0VCn6WHT0NUn0tXl3nYZxJand0OF3NrJOZl4acqbtjapjeqmJprWjWCBKhiGDa37akB\nTRRHU2lReQvpTVuGoV59N1y/+garV13EyRNP8O/pZ7geIu4qxxvTq08TTJ3mDwDo13sTMjLy0NF3\nBeVifPECbia4Bg3csX7T/8BiAfPnHsezp18weuRuTJrSGX370cdPTZtyGG/fxMDIyACr1w4Cm12K\n2TOPokvXemJ9W7SqgRatuHVpjhx+AAAYOqy1PLelQmFm4qtpFdRKV6tRuJp1gPb6z83qS8yG5O0g\natzuCn2C8b7NAQAj9p5mRkkCoYKhMwbDmNBTOOs/QtNqyMT79GTUtrGXuf/vTbsi+Fsk2BzxI1aC\nADaHg1Znt2NinZaY29BXIRnfc6+ginkgs4oRpKKLwc3ahPACv0vXeujStR46+q4Amy3+N6OTH9et\ncf6CnujcRRAs+++56Thy+AH277uDfr034d9z00XGrVo7SEzWqjWD8PTJZwTNO4HtW29INBjevonB\njVtB0NMTpPumOyUYPaY9/zXPYBBuI5QfpC3+mSIpK0eszcXGCnHpWdh84yHfYEjM5KZkNTIon8VQ\nCQRVITmxshbg/iN24WWKfNkfenlwi0J50cQEvPmRRUkVBF7ZR9ne9N8tAMSrZ9iZCE5O5j6+rCq1\ndJ7aPwrFyWssCLshhX+fjjtR3nj/fbaEEQSC9nD67DS5+nN+5JgXNhZ48HbxMzLyZJbXrLls2eGO\nn5wsYiwQmEFfTy3JXZMAABNuSURBVDxjn65QlK96F6knX2IAAF3W7Re7FjxjFO24k78OUZlOBG4Q\ncQk7BnEJdRAT54SYOCckJnf4cc2F38YLNi47lqqdR27eCRn6nBaZQ/RHchIZunEVHa03GO4IZUei\nCwj+7flNsbZNrbnuDhxArMR8XkkRev6o03Crx3iGNBWl19W/Rd4/SIxCSkEuAG7F5rJ8GDwXAHDq\n82t8yPhOKXP9qzvMKqljbP7xf8or/MP78TqyEpPunQVbQtXysulSk3Mv4E6UNx7GSK5oTWCGaoep\nfeMJ0rGxkd3d7u/9dwEAXQPUH3Bdxd5K7XNWBPQ0WGSqq9Uokdd52fki7TEfEtDVapTID49+rr9i\ncI3p/Ne8Hx7FhSW0Y3lz8H4CrEfT6rj15iOuPIokCgb69Eucsm5LBOZJS5+G0tI0/vvi4ghkZq0D\noFpvipg4J6SlT6G9bmTUmPaaJMOgohsNOuGSJFzohc5oWEKRs5837nL0e1yOFs+v/2HwXBjqMX8s\n+ebnmah3cgOlrm9/nkU5xlBPHzd7jEOni7vhf3kvrexZDcSP7enuSdl2umJxZVnzMhRrXoby31c2\nMcezflMZmVMZ2jl5QY/FQmkZw4AD4Mq3CFyhqB7NgwV9tPf4AA6nGHej6/Dbi9mp/MxErd2fwUDP\nmjF9CQL+DZCcdpHADP+efgoAuBr8GleDX8s9nhfnQCAAQNPOAsPzatYBDPeZjUPh6/htbt5OIu5G\nwov+f2N38Nt4r4XpUeUXXErdCwND6u9gOrk8WteoigcfoxEWHSfSvntkX7G+APDX7Seo5VSF8hpB\nNRQWPuKnKeUttrOy1/PbYuPdweEUIzNrNaytmInfTEkdzn+taIpUqnE8/TmcHLCUSF2sy2j9CQOP\nr0ODsKAxdeaDsovZsuMGVm8g0mZmYIivQ4NUYiwAgIWhMb4ODYKVkYlI+9O+U2FuaEQ7rpqVHb4O\nDeK7YQlja2yGp33pP2d553VqAuqeXI9SDgdfhwaJ/ZzrKohvCU+nL6rFYhmivccHymxJD77pfkE8\nbeVWLFVKSALTsH+4Izk6WsPDo4rEn7J09F3BNxY6+Plg/cahuHZjHslWpAJK2JopsCYvUzYPR0kx\nG8fWXgQAJMemgkNxkruw93oM8ZY/KQCdsSALf/TpQtnepkZVkfeN3LnuJ1tuPsTBB5JTcBNUD4sl\nWANZmI8EAOTln2dMfn7BDQCAk8MDhcbbV6auAq73YzMxJW2CYoqVA3TihIHHL7Wb45fazeUet6p5\nIFY1ly3QlWp3Wta2srwaoFhWlTtyFqlTdBdfmd1/Vc1Jd53n4kV3vYGdM250H4fOl3Zj6M1jeDFg\nOmU/YXhGQ2p+KN4mjQPArYOgaF0FAj1Pk2Ow5fUDTK2v3ZlwVoYHIsjniqbVUJjAwAY4e+Y/NGri\ngdlzusk8jpdVac687hpxZyoPsFgm4HAKZOqbmCZfXIqmsHe1w5/Dt+Peuf8weE4PAMCqMbuw8NAk\nANydfzdvJ+z5bwX/vbpwsJZtl/fI+IHwWbgRgCDegaA5LC0EbmmGhtzCeSUlkouqyUp+gSA9uoGB\nl0IyjI2pi8pWslqMtIzZKCi4pZDc8oBOGQzlnUWvTuNmwls0s/PClqbDpQ/4wcPvHzH52UH++7DA\nP8T6NL6ySOL18kByPjdLhpWRsVzj7Ex9VaANQZjHid/wOPEbNry8J9JOsicxy+SpXXD2zH8IvvxK\nLoOBBzEWFMfEqDHyC7mVobPyTsLK7GfavvmFiu1+aoJ75/7jv7axt8Kd008QtF+wy8ozFhShlF0K\nPQlxBrLyPIrrliRr5qM23h5Kz0lQDAMDN6F3zDq5ZGdzXd/09WUr3CcXLN5ymT5WsrxDDAYtoVnw\nUpRw2Pi5anPcS46Ua2yrKjUQ0ikIHW/SV4n+L+B3vEyPxtjH9PERus7QEG5xow2tesg9tobdUnxM\nXc60SoQfKGIYhCTtwdNU0ePh+pU6o5uz4ORuZbj4yWHZEwIOOFgVLr54Fu4nLKesTF09cUiIz4CT\ns7h7o7xMHCeefYYgjq3VdMR95xoMSWnTJRoMusqsv8ZiUd8NIm097cfhfNIujG1C77q2eerf6D+1\nK57feoee47jFBtv3b45AmzGYvWssOBxg6/SDuJC8WyG9hu05CQBYP1A2I/n3Pp0VmgcAcguZzfzE\nhLyycX3ajerS2RYVvwIAGBsR92JVQAwGLaGEw+bv/M+vI/+C18ZIciYVPRYLjW09FFFNZfS4Nw8X\n28qXPcfzyEoc8huEtk6eAIBnyTGY9+QKvmZxMzFYGZmgSRVXuXVRxlgIS+iLxk5nFB5PECer+Due\npp7FvNoXoMei/zNVdjH/MOW4mFvRqvBucDatiRGeG6XK0XWXJIBb+6Cj7wr8bwh3t21eUA/U9nHG\n+3fxOHH8MaKivqN1a2/89md//ph69d3w5nUMOvquwLUb82BgqA82uxRdOooX3FMVe3ffxthx3LSL\nr199Q/0G7mqbmwnMjNuIvE/P/gs2lqL+zkXFEYhOoq9CrI0IBx//1KmeyHvh1/vCqDeshPu4VHfk\nvw7aP0HkpKLzkNaUY6je8/h77ACM3HuK/76jj2wpgB2s6N2ZeO5LdMw/fRXzT18Vaw//k9oFWd3y\nJPWhk6lrcErFa24AgJ6eFdjsArBLkymvE5SDGAwaZnPENRyL4qaFo3Ib4rUJuxE1vrJIZW5FM15s\nxdfceJxrsxLXE5/hauITRGZF43I7bg2EzqEzcMOX+8eox7156OzQFFkluVjkMwJTwjbBkKWPDY2m\noKi0BEve7MXz9Ejc8N2IzqEz0K5KQ9z9/hI3fDdi75dLKCllY++XSxjr1V2qXsKZsobfOk7ZR5+l\nRxk3wsuC1NTlCswMq4td/y9e+vySyC58iy/pa+FlM0cpOQQB2z+OgKtZbYnGAhWtKg/CneRDYu3x\n+fKd2uk6V67NRaD/GgDA6pUXpfbftGUYP47Bv7OoEc8zQFRFo8YeeBEWhWNHH+HY0Uci8+oajrZb\nkZjGTeeYkvkbUjJ/o+xXzTkSn+NrqlO1ckkzT9k2hwz19SnTrhJ0k4LCUMp2M9NeyM7Zg8IfroHl\nmWFNl+DwM+q/L6qCGAwMokgg8LRa/phWy1+lRoA8bGzE/bILvDsHxaUluOG7EYVs6iPTAnYRpnr3\nx6yX2wAAWxsLAo2N9AyQWpQJA5bg+HFxnRHocS8cADDWqzvOx92TyVjgoWyK1mdx0gPf5Ql4bupy\nDc/i/AEAMZl7EJO5R2Z5+cXReBpHfyyekH0cCdnihhGVPJ5BRAfddaZkNXW5CjND+QPMPA6tkuiq\nNMxjvVQZhaV52BDRX2KfIJ8rWBkeyHc1GuG5Ec6m2r9Yk7ZglnTd2NhA7gW3pP6KXpOFdRvKTwEt\nS7N+YJdm4XvGQto+Xs7vNFpbobwQ4DIFwXFbRXbNeW1lefWb9AyDxzZfw+Bp/ozvwgvLO70zBG27\nN4KDmy0j8ioq+QXitbcAoJL1b8jOEf8eLo+o21gAdCitKkE9PEuLAAC0sBPUKjgXd5+ybzNbboaD\n9Q0ni10LvDsHe5rOw86fqOtOAEBJqXp2fDwq0Rdw4eFlM0fu7Ehmhp5o71Gxdq61jQ0R/eFg4oUg\nnyv8HyqCfK5gUg1uYoCDX2dg7+dfKfsRCDVc41HDNR4ejortUlayGIUarvFwtN0OY0MfsFiGMDFq\nBNcqZ1DDNR76ejYi89RwpU6xKo8e0mQRNE9JMRv9J3ZUylggAMUlsn1Pq6vI2tOQdzi09jL2r7iA\nAFeuYZqfU4icTEE9mwl+XO+ID6++iY3njVk+eg//9YaZR0TGZaRkAwC6VZ0uNk74dQ/PGSLvLx+i\nXrspDIfD0cafCkejywtp28tek6evrPMowpuMzxwOh8PpfncuYzIJ5YuqB1fS/gy/eYJ23Ip3AZyj\nUQskyt4UMYiz7n1fkbYidj5nxbsAqXrR9ZFlLIFAkI+EqO/8112dJ3M4HA4n/XsWZ4Lfn5zJ/qs5\nqUmZHA6Hwwl0m8rJTM0WGRvoNlVsbNnXdG28968efuBcO/ZIpC0jJZszu89Gft+jm65K/Rz3L7/k\ncDgczv4V5/ltvNdldSsuLpEo6/O7WM6+P85Rji37Gd48/sQZ3CCI88cvezkcDodTXMSVXVxcwhnT\nejmtDOF7x0O4rew9YZJvsY6cb7GOYu9zco/z23Jyj4v1E+77LdaR8z11NKeo6C0nN/c0vy07Zx/l\nOKrxMXHVOZlZ6zjpGUs5sfE+tOMkyZOk66AGCzjdqk7jBLhN5fw+lvv/091jOmf/igv8PnFfk2nl\ndnWZwu/De132Wtn2sm2/dl7Fmdl7I2dmb+7zzC5hcwJcp3IiX0YLD1F6bU5ckggKM//1LrSyqwsL\nA1NNq0LQUqKGz0cBuwQm+vL9qRlffQ92ffoFHJSCRXMQam1kj4T8jyJt6yKoq7zKQ0ZxIioZOkrv\nyCBFbDaSc3Lham0FAEjPz4eNKTO/Vy/jE9DQWbDbFpuZxZ9HUZiQQag4TA1ci+wyFcQrVbZEtbpu\nYJewYWvPfZZK2aWwshUNSC5llyLARfopMR28sXr6eugyqAUGTOK6glrbWeDtE/kKSrYO5BaBHRXU\nk992ctsNnNx2Q6yvgZQUr3P7bsbpCG6cUacBgvpSg6b6i/Wt27wauo9oC5Ye92+hgaE+Vk48gMfX\n36CooJh2jlJ2KWVb2XvSrmdjBLhMwd77S+Diqflq2G4uCfwTgvz8K8jPF5wcW1r8Agvz0UiX4PYn\nPJ7DyUFm1jravsqSkZKNlccnoyCvEHWacYPuL36VHpguibLphofP6Yabp56i04BmlP3zcgqw/bqg\nUraevh6uxGxGgOtUBMduUUoXYYjBoOU4mlZCYn6GptWg5JKcGY4IFRN5jQUAsDVyQWOb7lgVLh7j\nwnM7Gum5WSQ2AQDm+1wSG0OVerW/2xLKeR1MvLDz42jK+RSh+toN+DRnJnoe/AcnhgyCqaEB/Pbs\nR9+6Ptjz9D+8msZ15/PZsBmnhw7mL8KbbtvJl/FpzkwAQO0Nm7Gnb2+08eBWsi0oKUHTbTsxuEF9\nLOjQnnL+Bpu34fjggSL6CM/jt2c/TAwMUMrh4OpobrV039378EeXTvx5zr4Lx/KbtxDUoT0G1q+H\nepu2IL+4hK9bMZuNVjt3Y5GfL3r51ObPFXjgENp4VKXVjVBx6DKoJcYu7i3WHnL6KQBg3vaREsdT\nxSXIgoGhPi5GbRJpMzWnrtNTXEi/8C5LXnYBzCxNAABHX66ATRX5Y1IC/tcKudn5MLc0Rei5/zBr\n0/8AAEYmhpT9ecYCIBqroYgxVfZ+Bu0chaCdzBbdc3NJkPgeAMzNBsLcbKBYO11/Jq/L259OV1kW\n5M4e9EYYb7yzRxX+a56xwHs/eJq4ESk874GHSyXKZgpiMGg5e1uMQffb68EBByyw0Oaa+gNdCARN\n4O/0K/ydJMcaUC3my7bJs+Af7bVN5r6ycijsBcKTk7Ho+g2s7xaAbxkZmNyyBSa3FFQU/TRnJl7G\ni35h8QwFQGB4LL0RIjAYikvwZjr9YoE3ZtTpMzjQvy/lPN8yMiTOczjsJZq7u+LlNEGc0pvpU0VO\nLVru2IX/pvyKlNw8nH0Xjj51fNB65248mDhOkdtFKIeMXdxbZGEbHLdVbNEbHLcVV2K2iPXj9RVu\nm9NvMwDgf40XYemBcajRwB2TuqwWaxu1oCd/7PYb8+HlQ1/Q69jmazi2+ZpE42RSl9X48i6WrwcA\nDPtpEdglpSJtsjBmkeCedBlIXV2YDstKZghwmYK6zSWnkZV2P3n3pGwfAoEKFkc7C35opVKqRFKW\npEWvTuNK3EsAwO8N+uNW4jusbzJUZCwVPHnZxQVof0Nc9pjqvpjk3UlZ1QkEAg1Lb4bgyItXGFi/\nHk68foNPc2byF+VlEV6El+1Tfe0GeNlyg2Wvj5FtJ5An40V8AhoJuSTJM0/N9ZsQOWs6yiIs4+an\nz+hUnbtwqbV+EyJmTRdzgyIQCASCRmEpK4CcMGgJklKq/tGgP/5oIEgd2c2locxjAcDS0EQrUrYS\nCBWN5Z06IiErG3/6d0ZCdrbM43zs7ZFfXAwDPT0Y6uvDxcoKV0ePxONvMTLL0P/hwjDw6HF8mC1b\nKkYXKyusDuiK/GKue8bLqZPRbPtOPP51AlbevoOFfr4AgE0PHmJP394w1NfHhLPn8WnOTHT7+xDe\nzZCevpJAIBAIugc5YSAQCAQCgUAgEMovSp8wkDoMBAKBQCAQCAQCgRZtdUlS2hIiEAgEAoFAIBAI\nykNOGAgEAoFAIBAIBAItxGAgEAgEAoFAIBAItBCDgUAgEAgEAoFAINBCDAYCgUAgEAgEAoFACzEY\nCAQCgUAgEAgEAi3EYCAQCAQCgUAgEAi0EIOBQCAQCAQCgUAg0EIMBgKBQCAQCAQCgUALMRgIBAKB\nQCAQCAQCLcRgIBAIBAKBQCAQCLQQg4FAIBAIBAKBQCDQQgwGAoFAIBAIBAKBQAsxGAgEAoFAIBAI\nBAItxGAgEAgEAoFAIBAItBCDgUAgEAgEAoFAINBCDAYCgUAg/L/9OhAAAAAAEORvPcEGZREALGEA\nAACWMAAAAEsYAACAJQwAAMASBgAAYAkDAACwhAEAAFgB2IdSbfJK2NIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Negative words\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4U9Ubx79puvfek+5FoYyykVkE\nBC0yBGQpKsoPlKGAoKiIAqUK7oGCWxRQGQKCglBWS6GFtowWOumie48kvz9ibnJ7R9ZN0pb7eZ48\n3HvGe05uQ3Lec94hkEgk4OHh4eHh4eHh4eHhocPI0BPg4eHh4eHh4eHh4em68AoDDw8PDw8PDw8P\nDw8jvMLAw8PDw8PDw8PDw8MIrzDw8PDw8PDw8PDw8DDCKww8PDw8PDw8PDw8PIzwCgMPDw8PDw8P\nDw8PDyO8wsDDw8PDw8PDw8PDwwivMPDw8PDw8PDw8PDwMMIrDDw8PDw8PDw8PDw8jBgbegJ0CAQC\ntdNPu4yYgPbaatSkX9TFlHRG8LI3cHvn66Sy8LVJyH5nBWOf8LVJxDVbOx4engcDcysnCI3NiPvW\npmp0tDcbcEY8PDw8PF0FiUQi0FZGzzlhkAAdTQ2GnoXaSEQdavfJfmfFA6kojO/zmqGnwMPDObFP\nvqO1jH7xa9BnzEvEy94tVGuZUSuTlDdiwGXQOL2Op2/8dyaq1X5C4CodzUS30M17bMD/9DJ29LPv\n0paHzn6Z03HY5PmMfQKmto6cjqdvhCbmiJut3ueVifCxS9Su12ZsrubNww09RmGoOHMUDbczDT0N\ntcn56C1DT4GHh8eApH271tBT4OFRmRN3P9DLONc+W0Nbbu7ozuk4bPIKT/yItroqTsfTN6L2Fv0N\nprZtiGF59z17Q0+hW9EjFIbwtUkIX5uEXotfppQbW9kgfG0SzFw9EbrqXZI5j+xa1t9n5jOMssPX\nJsHE1oFU5zhwJKnePX4aqT7kpbdJ9Uxy6bAJ7S2f1/SnVX8YAAKfWyfvO2OxWn07zy1g0Uqi3Dai\nL6nOvs9gSj/F/oHPrGGUa2LLzX9UY6EZcfJgY+FGOoUY3+c14n54xDK4O0RxMiZPz8bWIxh9nngD\nziFx6L9wu7RQIIC9byQAyMv+u3bwi6aU9V+4HU6BsYiatpZU7tgrFq7hw0jjKfaV3Vu79ULow88T\nZf0WbIODXzRCJ7Dv8CmDbuc/YOYL0n9nPE+pk+E6dAKEZuYAgPClb6s1prmLJ3EduSKRsUwGlycN\nXq++DNsRQ+Hz1mtwmDJJOnZIMOwnjIPN4Di4PrOIaOuz6XVYhAbD//2tAKSnCP47tsE8JEjpiQKT\nTEXcrEIAyHftFXfvma6V1SlrFx8o//72tolmlGEkEAIAhvksYJTPNIfR/tLPjQByi4cQp+FK5xuz\nNAnh89YjZmkSYpaS/+YeQx6hlAGAX/w84l/ZtUxWZ9kyrDwCELM0CaFPrELM0iQIhHJLbCZ5AOAY\nEYeYpUlwDB9AKjd3dCfJM7GyI40rrVtNO38m4mYnYsDMd+DgFUHaVe8//W2EjFiAkBELEZuwkdTe\nwTuS1DZudiJCRi6Ce9hw9Jv2But4fR/dIJ/zFPYNi7gntiF42DwEDZkDUws7YqzO8wcAUyt79Iqb\nAZdeAxA3extRP3DWlv/em7zMxMIWYaMWw8k3hvI+HLwiMPCJrUTZjQIPyvX0JyzxwovWRNm1XHfc\nKPAgtXVxNcKNAg+cSHal1CV9ZI9Hp1kg6SN74qU4xo0CD6RmuZP6PPBIJJIu94JUT1XrFb42SdJr\n8cuUMq9H5xHXEAgkNsFREu/HnyLKwtcmkdo7DxlLuhcIjSUAJAJjY1JbQibDfAIWvCQJeyWRuLfy\nC2acN12Z//zlSsehKzd385IEL32d1MY7YYFaz9Hc1ZO2ztzdm7g2tralfR7ha7YT9wJjE+I67OVt\npP5sz47pNb7Pa7Rl1uYupHsf53607en68y/+1fnVf6H8Mxz56GpSuf+wmeT2Un8rCQBJzMzXKf1l\nr+Dxi1Uaj6l/3zmbKOPIXq5+/SVDE7aRXs7efWjHchk0jlLmO2XBf/8uJJVHrUyive9crmyc8KWb\nKTLoyqJWJkkCZr7A6d/S+431xLX/zkTSv4rXbkuelpe9v5XSTmBiInH/3xJKP7r7znUAJBMCVxHX\n0a4PU8oUr4MdhzH2VbxmG0N2PSFwFfGKD1zJKMNMaCUZ4j2PUkfXlqlNfK8VpDLZi2m+DqH9Wf92\nMUvpP2d05Z3LmPq6x02QRC56Q6W2sjrH8AEqj9W5LvQJ5vev+IqbLf/MWDv7SYKGzqWUy657DZJ/\nB9m4+EsCBkwj6s2sHZXKZ5Krytxk10zy4mZvo21rbGpJlNO9t4GztvxXN0di4+JPkXHqoqsEgGTB\n01aSGwUeEgCS1Cx32vnK6gFIrt/xkExNsGB8b4ptZS8ra4Fk9Dhz4t7cQkDbrru9uFib94gTBjaK\nf/tGfiORoP72dVj3ktv35u1+n7guO/EbXEZOBAA4DRol7fKfj4GkowOVF/6GQ+xQknyBUEg7rri9\nFQIj+eNtzL+t1rzz9uwgzcttzFSV+gUsWonbH8p3F27veA02ob1V6us8ZCwAoKX8Hm19S2kRcd3R\nUEfbpmj/buJa0tFOXAuEQlJ/APB7khtb2IaWCuL6XlUGgjxGcyKX58HFysUPVi5+yEveS5Rl/pYI\n5+CB5HbOvkTbnL93M8qz9QhWeezUr1ei/8LtiJ0nt+Fua6xlHCe430yVZQuMqN9XRqbmiFqxHXW3\nM1j7ipobAQB3ftyp8ngA0FZToVIZANz9+SNOTxjaioppy838/WDm74eSJKl5jXlQEFHXWlBIaS9p\nb4eZvx/rWJ1lMmFpwn66Kpao79fGxtHcRBzNTcSxXOlJ1rHc7Rjf6yUM8JxBtInzegLnir7BnRr1\ng4ZcKP4BACAQyH/vZGMezWU+mfEdNxthT65TezxNcIoagpBZq+DWfxyMLW30MiYAmDt5Km/UiYb7\n+XD0lf5mt9TfJ8pl184B/Yiy+oo8uATFEfetDaqZT9258DPcQobC3jMMRRnHWNsqzqG+/A5r2/ry\nPNp+HW1NxLXsvQHS04S42YnE95KjbwzqK+QyZGx4pRYAsOY1WyS9Ww9vHyGsrck+vG++a4dzV9xI\nZQOjS7HlfXsc/9eFdd6K/HLQGR/vciBOGa7e5NYErjvTJaMk6RrFI8nmkgLiuirlX7iNfRQA4DJy\nEiQd5C/u8n8OIeyVbahOSwYgdT4OeGoVzF09IRGLcGPLaqJt/vcfQ2AkJMx0br2/gfjBVZeqlH8R\n9koiyk7+rlJ7JjMnZTgPn0B5z4r4zFgM68BwiNta0ZSfQ9um/tY1ledl6R2g0TzZcLIJQFX9Xc7l\n8jw4tDXWwtTSFtX55M+y76AE6WJ+QSJSd0tNLcImvoDLe6SmkEYmZhRZMtJ/fhN2XmGoLb4BY3Nr\ndLSwB2hI/Xoloh9/lbi3cHBHY0W+0nGU4Tp4PFwHj0djYQ7u7v0YAGDtJzWV8YqfiZrsywCAkKfX\nAwAC57yI3O+lmyrZH29A1MokXN/OHHDBdXA87CMHwMTKFraBkcj9/n3kfvceoQRkvid9bnRlMq5v\nX6F0HFWxjJaakQltbCARiwEAHTW1aM2TPkuZElCwZgOEdrYQ1daRFAOPlctQsn0nvDe+iuJN9E64\nTDI7M8T7SdiauaG+TaosHcvdrnNn6KO5icQYyYV7UN9WgVCnkTASCOFk4QtLE3s0tdfA0sQe8b1W\n4FzRt6T+HeJWTAhcRSz8h3hLzXaG+y7CmYKvAAA1LfcwNmAZSTmI77WCUCCYlIb0D6V/35il2wEI\niHuuiVmahPQPV6Dy+jk4RQ6C96gZyjsZkMBBs5B77kcAgLmNM1Euu84++Ym87ZAncOOfL9Qeo+JO\nCmEGdPEH9s+g4hxsXHsBAFrqKyA0Maf4R9i4BtD28wh/CCXZpwCAeG90Y9+5uBcBA6fj7qVfSOVn\nTrVi4GBTAMDnHzcgNYu8iL9+xwNRvUrw2ppakglRU6MEYb4lAIDsfA8IBCDumRAaKW/zoPJAKgyK\nCM0tIGqRhh+08PYnyutvXYNtWAyprVWvMDTkZJHK7u6S/qcLen4DPCbOQMkR+Y6kRCwiohkpC5XK\nhoW3P5qL2DV7RTQdp7nwDiz9ghjrrQPDSbLVVUy4iOxkJBBCLBER93fLzmJ8n9dw/OqbAAAzExuk\n5/1K1A8KeRoXbn0JcxNbtLTTn4rw8CiSsfdNuIQORr95W3Dv6nGUZJxE/4Xbkfq11B48/8J++A+d\ngbzkvbjy3TrEzHwdzTWluHXsM0aZHS0NsHbvhaCxi3D7xC7UFd+EkdAYsfO2AABJftikpbB08MSt\n4/KFQOrXKxEz83VIJBJk7H2TKDc2sVDrvdEtwhXLIpa9i6yda3Dry01qyZVRfv4Yys9TdyyVjdv5\nngtlAQAaU9PgsmgeBMbGyH9RqtgVvfYW3J57CuYhwSjeLLWplrS3w3ZUPGyHDUHeMvkipmT7Tvi9\ntwUVu/ago7oGgDxCkv/ORLSXlKL4nURamYrQLZolkNCW51ZfYOzLtmPP1K5zH0sTB6JMpgwwye3s\n4Hyu6BuGduRTp2N3VP9tSP9wpVr2/nS0VKq2wPMakaDVOLpkwIx3YGRsArGoA7kXfgIApB98l1jY\nZxyR/ltffpcoa2moJC3AO2Np74HoidLvlbjZibj86wZ0tEnXO3cv/gIrJx+l87pzcS8xXsHVw//N\nawtRpnh6kJP8PVGee+4Hory9uY6ioFz8YRXJd+HiD6tw/04qAgY+DtegOIjaW0nzWPC0FRobJAAA\na2sBiovk64Cfv1O+GRvuV0LxR2j4T54i0x+pxJ6fnDB/VqVSmQ8chvZX0LUPA9s1nQ+D06DRpHuB\nMbMPg5GJKXHtPGSsxGvqXOLed/YSxrkoKw9fmyTp9cwrGvU1c/GglLvHT1PrOZo5y20DnQaPoR2v\n19Or1fLpCFu9hfAnASAxsXfSyA5vUMhiybDwpZTyUVGrJINCyHbiMp+FUVGrJNF+CRrb/nH12nR9\nkmTT9UkGn0d3ew2c4cc/O4ZXZ98FZT4MdK+olUmSyOVbWX0TolYmqeS70NVerovmadyXzhehJ7wU\n/Qs8bSIMNo+YpUnES/G3VLFc9lLsZ+0dTFuu2D762XeJciuPAFJ7VeQ5hg9gnUPM0u2Mc2C7Z3op\n8yPQxavvoxsM/llU53WjwEPi5GxEXNvZG5HqbhR4SM6kukn2H3EmypPT3Ii6GwUeEgtLAa1c2UtW\nNnehFal856cOBn//2r64WJt3+xMGxV1uM2d34l7V3ezsd1YQfRpyslB54W/aOgDI/Zx8JB26inyv\nOKZAaEzqW/jrLuLawssP/vOWU96DYv+KU0dI81K1b2tFCRpyskhjlx7bx/DuqXR+zx0Ndag8fxIA\nUJN+kajL//YDtXwQbmx7BeFrk2Ab3oc0lrpcuEV//PrPdeadN7a6B53Qka64ebrc0NPgMSCq7OZz\ntePPY3jYTin0CZMJkjLTpIai27RtmPo1ltwl1XVuRyevKjsFVdkpjHNI/3AlQ/kK1vuuQtzsRDRV\n0/sqdlUUzYQ6mwwxmRANjS1TS66M775uxHdfa2ZC3pMR/Lej36XQJNOzJmhjJsTT9VE0VeKhZ9P1\nSVgfddjQ02Bl4Aw/THlNGhK3q89VnxgJTTB46mbaupuXvsf9oqt6nhEPDw8PT1eEi0zP3f6EgYeH\nCV5ZYMfeQz37956Om/8ABPZ9nBTthRaJBBVFV1GY/ReaG+ij/eiD3g8tNdjYXOPsHYPQgXNZ2xTd\nOIn8rKN6mhG3+IaPh084c/brtuZa5Gf+ifKCy3qcFQ8PT1fifrEXnL3oI7t1BfgTBv6EgUeHDFvQ\nCxNWhZPK2HbJN12fRLSZ/+lABA+Th4PbMeU0Ku4wR9eR9VVkY+yf6GgTk8oERgKMWx6KEU8FMspi\nmmPnMQ5syMDlA9QwlADg3dsez/1ADkPc3irCG/2YF31WjqZY+698YfX5nHOwczfHzO2xrPPSBDuX\nIEQNf5Yzee1tjbh0aCNn8mQITcwRED0Zbv5xyhtzTPL+1cobacjQBKpzsKpIJGKcO/AKh7Nhhmme\nyp6NNu8PAAqz/0JB9nGV2rKNlfbXNjTX697s0NreGzGjlzPW6/KzxMM9YcMWwsEzkrVNQ1UB8q4e\nRP39u3qaFY+m8CcMWsIrCzxdFbrF//I/RuKXNVeRfoi8A2FhZ4JXk8fTytmY9jBlkf1WxkTO5vTY\nW70hNDXCpZ/zKXWdlQUAMDETMppBxUzyxPQtfUllz3w/BO8+dEKj+bKh7WKODhNTK0Juyp+b0NZc\nq5EcZbvR3Z1BU96G0NhUKxkCgZH0WUskSD7wMkcz4wZrBx/EjFqmtRyf8HEqKww15bdh70qf6yN2\n3Gq9LNbZlIXW5hqdj69vBs+g+oKc36temFw6GQAgam/BpQPrVZYTMvhJOPmQozoWZh5HUaZqnx8A\nsHbyRfQY9T631o6+iBr9AnGv7vvvDNPz0FZuVxnzXp4nTE3I63bZicL9Yi/SPQC8+D8brHrRBt6B\nUn8TKysB8m95Em22brbHovlWAIAXllfj51+boEseaIWBh0fXnN19B2d3S0Pi0i242VBcVE9eF4lB\ns/0x/d0+FIVBpizQLcLtPalmR7J2iqcZymBqu+n6JEzZEEWrMJzdfQdHE7Np5XiE26IkmxzmVqYs\nKI5h42KGNafGKp2fqngGDUdA7ymcyWNiwMPrNV6k9WRlgXNFTSDA0IRtXWb32szSgRNlAQBy0vYq\nb/QfmWc/14kSzBWpf75t6Cl0OUzMrBnrhCbmasnqrCwAUFlZCBkyD07eqiV3VYZ08S3B+b3c/n+M\nnbQOaYfp/bW0IXos/f/VtibuFdzPP3LE5ctteGSaNKFdZ/MjZ69iQmmQ8f4H9Vi/xpa4v5nhgfUb\npRtRL6+0xcQJ5iSF49hfLaipJVsUcEmPz/TMw9Md6bwwP7Q5UyM5NfeauZgOACD7ZCmlrLPyoUhn\nZUGx/ZMfDqAd434eOTJFfUUrbTtNGJqwTS/KAgDUVuTqZZzuQr/4tTpd0A5N2AZrB+Ux5bnE0pac\nPGrw1M3oP4G7zMVlecxReuhgMzvStTLRb7x+zMO6Oi7+9N9rdMROVv0EQRcMnpGIwTMSOVMW5Agw\neEYijIzU349O/X0jbbmZlaOWc6LH2tGXtvzyIc3y0LDh4GCEklL1F/NNTXILfXNzAT79QmqW/PIK\nG7i7CXG/2ItQNLLSdZuVukefMFj5BsN/xhKV2lZe/hel//zGybiRq5iT0GQm6tYMSl9jG+rZKkL3\nXrPffwXijnbGPm4jH4HzgFFKZbdWliF3TyIkYpHStl2FlcdGYXv8P5zLHTjTDwDw/XLuHDJt3cg7\naDI/j10Lz1Paluc2wDWQeTdOFbzDxmjVX12un/lUr+N1ZazsPGCuox98RWJGLUNW8peoLrup87EA\nwNmrNwrqpEq0qYUdjIQmehmXibS/thnslMHc2pmx7tLhN/Q4E8PiFzMJFSoqekZCwy6/8q78Dv++\nU3UmP+7xd9U262lvZfbR4xpnv1i9jQUA02ffR0WRFxIelS7u3f1Uc27uFX4P8+daYc93jWhpIbv3\n6ttBuscpDCa2Dgh5ZoPa/Zz6jYBTvxEAgMq0Myj9+4DGcyjY/yV8E57WuL8uyN+nfvp4OtgUEia4\nfLbK8E14Gnl7PyGVCc0tELZUvSNxMyc3RKyQ/vg2FeXi7k8fcTZHrlkfdRhzP+yPsIfciJ3+c9/e\nxZEtWUp6qsbY/4UAUN+kCpCaGcVM8lTabsB06U4P3YlC2oFCiuO4Opha2MEvYoLSdjcufoPK4mtK\n25mYWSGo30w4ums+JzZSj6p29M62m30n/TdUlXDz99eGkAGz4eLTV2m7lsZKXD72LmubwD4JcO81\nmLVNxNCnceGPVyHqaFNrnprgGTwCBdnHYecSiKjhzzG2u1+Ujpy0XyDqoH62nbyiERQ7Xe2M3Zpg\nJDSGWNSh83E6o89FoD6pLMqg7M6zmRmpi5HQBGIR8+aXDBtnf43kl9w+o1RhqMhLRU7Kz0Cn4DiW\ndu4IG/4UzCwdWPsPnpGottJw9eg29JlANWnSRBYbwXGzacuriq9zNgYd6i7yOzqA7VvsERRkTPgy\nAEBtnRi//eKMR6ff53qKjPQohcH3sadgE8ju1a8KTrHD4dR3GDK30ydnUUb9HeYfat/HnkbBgS81\nnRorQQuY7QYb7lLNQ9SB02cbO1xnJy1WvmTHPzNHVwQtWqOVTEvvQESuStL56ZA2fLc0FQIB8Gb6\nRAiMBBjyZACGPBnASVQhM2vpzqk6JwxCEyO8ceVh4r7iTgMK06tRerseE1+OoLQ3NhMyympr0u6U\nZ8DD7Ef/+Zl/oujm36xtFGlvbUT2ua+Ie4/AoegV8yhxX1N+S/1JKtDaVK1Vf0A6Ry7kaIsqyoKq\n/ge5V/cj9+p+xI5/BRYsO9qDprytF58GobEZADAqC6rMobL4GklJHTDxNZia2yDzrGYbPDVlt2Dv\nFkJbN3jqOzp5Ln6RzEEUctJ+4Xy8rsKdlF80Nuexc6N3UFckeNAc3EzerbSdX8wjGs2BiZTfXkNH\nG7vzbFNtKdIOSTfh4qa9w+npWnOd8mRrukSVZ64pAgFIfgoy5WHKJAvEDZQGgkh81x4XU9rwyz7y\n32DJYmts2CgPpBEYXkKYI0kkUtm6PnHoEQqDqb0zgp/mznYUACAQSBeJ21dStGtVqMm6DPuIfpRy\nm0DqYokrzJw9dCJXk1MFVWRWXU1GyQnVs1CrS8SKRAiMuHPT6epKg0QCbOh9BADgGWGH5/cO4yQx\n27Wj99BnshdykivQ3qLa4l2mLNCNTacw5JyrQOgIV1pZvn3Zd7G0gYsFVEluMkpykwEADm5hqC67\nobXMnoAy85hzv63RyOQv7fgWGJtaIm4ys6mLvhyh6d6jNuOmHNEud0xm8hd6N0vyDmU28SzLu6TH\nmeiXjnbN/cMiRioP5+zoFaWSLBsnP0pZ1unPVep7fu8qrXfuL+5bi9Ah8+HoHU1bHz12Oa6d2KGx\nfEUGz9jGiUO1ay/6ENV0p4Bc0dnJeUA/U9y76wnPgHv443Az/jjcjFdfp4+sx6QI6NskqUc4PXOu\nLCgQuXI7APXD1xYf+Z6xzjogTIsZqU/52SMa99WFsiDDsc9QaPJsVaHXnOWcKgsydPk8uOReVi1O\nfMCNLff+V9MBAEt+ooZJZeP2WdWTmh1/T7rIjl9B/b/R5xEvSllXhVcWpDh5si92GmtLtPIP6mhr\n0npxrQu6QrSmJpYd2rhHuH1mpua2yhvxqIAE9/PTOJNWW6b6KScXZj43z+1hrLN2VD8YAXNIWW7W\nC4H9p9OPu/9VTuSrwsH9Ltj0Tp3yhl2Ibn3CIDASEnbmTLRWlSP3662QSJi908OWvg2hObMNaeSq\n7RrtLIvbWmBkSg2P5jftGc53qkMWM5tdVFzQLI69KovjrO2rWJ+t5/jpcOjNbHccuWo7bn+5GW01\n3NnheYxJgIUHddcFACpTT6P01O8s81H+nk3tnNBWW6nx/PTF4DkBrPWXfs7HwJl+cA2yQXlOPWM7\nsUh6wuYaZKPW+EFDqGYjTH4QZbel4w9fFIhjSfpZdLe1ML9nHu0IGzSfsa6tpQ5XT2qveLe11CPl\nz02MJmf6DrfaFZQFALhyIpHxlIFrX4kBE5n9Ba+c6B6bK9rQXFcGC1s3Upm5tTNaGtT7Pcs6/QVq\ny25RHHFNzW3R1tI9FpWy0wouELW3MNZp64ujSfQmLnD2Ksa3XzlhzCgznL/YprLTc1eiW58wKFMW\nMhNXIOerd1kXtABw48NXlS7glY1FR/ZO3Z18dMbEjj4KSUvFPdpyZYQvY3e8zExcgczEFUqf7b3j\nvyAzcQXE7cxOiFyfEDn2HUYp62isQ2biClZlAZC+r6z32H/4gxervgsxcnEQZmzti9UnRhNlGy8/\njOf3DsOktZGEs682bLo+CZuuT8KkNRGInuCJwXP8sen6JFg5mkIsZjan++MtqXPXst9GYN7HAxAd\n74ExS0Ow7iw1D8B7k06Rxnr0jd5Y/M1g4p4OgZEAy34fCWsnM/SZ7KXUaVrUISHGGL6wF6a+Ho1N\n1yfh4CbdOKFJxPp3AOUBUo68xZksZcnx9BVqta4yTy/jqEp7W6PyRjqmqa7E0FPQObmpVB8Nv5jJ\nasthOhEIHjyXtZ+zbx+1x+ouMOVdiJvGHhxBGQMTDJcT5MlFlfAMuIdps/TnqMwl3VZhMLV3Yq3X\nZAefrY/ASAhjS+4iIAiMudNyja2Yj4Vz96iv8ZvaO9GejMjQ5Nlm72B3POby2XYmf/8XuPnJRpXb\nS0Qi5P/6GSdjj1seit4TPWHnLt/ZMzYzgmeEHQbP8cfU1+ntPjVh8NwAzEzsi0lr5c7pr/VmN0fb\nOfU0ACBkhCtmbo/FqOeCYWlPzcJbmd9IktV/mg/8YplDZcp8F1wDrbHm9Fg8/m4fopzJJej1PkfQ\n2ihdxMevDMeA6b4QiyW4+BM1KRwXKIvwwaMZbBGD6qu4/1s21zObvnGVRE0Z1053rShqlw5tZKzj\nyiwpegRzWO2u4HCvD+rv51HKlPkeqJNTwNalF2u9Xww1r0xl4VWV5XdlWhurdCJXYEQfYEOdzNoP\nKt3WJCn4afpd3tbKMuR8vUVjuZmJKxCxYhvthyr0+Tc5MyWKeHErZ7JCl2zkRI4MpmcLaJfLQV/P\nVpGKc8fQcEf9CFENeTdR+vcBuI9+jLY+5NnXcOsz5T+8ik6/8VuH49jLZ0j1Sy7PYWzPJmvJ5Tn4\npN/3SvsotgOAgUticOmTdOK+PLeB0n/J5TmUfgAgFkvUcqBmarshmlnGW3HH1JLF0/WwcwlkrMs4\n9SHn46X9tdWgWY4zz6rmYNpV4MosydaZeTGramjgB5G+E5k3z+oq7sLWhd2UVBFTC+pm4a3z32k0\nr67I9ZMfIGrM/yjlAxPe5tzfgM0MikdKtzxhYFvQaqMsyMhK4s4W9cZH6ueE4ApNTKIEAuaPRGai\nZmFmFWF7tvZRA7WW35nyc/SLIQHfAAAgAElEQVQLUFWoTDvDWGdiY6+xXEOiqCww0VlR6MkYcqHJ\nox/C4p7Uqfya8ts6la8pTXXUzOwyoke+oMeZ8CjS+Te2vlJ+6pab8jNdB11Pqcui+GwUkYU0Vhem\n6FQ9ScnSJd1SYWAyR6rP0W3CDQDoNfcltdqLmpltSSNe3KrtdGBqzxyPXNymvsYcsZLehEn6bNUP\nL0tHTSZ9JkyvCbM4kS9DXyFQJ2wfiXlHExjrZacIHS0ixG8djoeTRpLq47cOx4K/ppHKBi7pjWcv\nPEEq8x3qSSljYsFf0zD+XbIvx5LLcxC/dTipbMCzvbE4eSYCx9E7iSsy69fJGPwi2SlvzJtDiBMJ\n2RgyFMeycDDDolPT4Te860U8GpqwDfauyuOi8yinzxj1vh+5gi3ev5OXZrHyVYOb70RdcOXEdsY6\nWyd/rWT3foi66yujsjhDK9k9ASt75ckqZWT9I080SucsHTNe+406HilM+S96ihmXrumWCgMTBb99\npbyRitTnZtKWW7ir70R37zj9jxkXfgy6DCmrCJfPtvjPHzmTpXOU5OCwdrfC6bcv4psJ+/H4t+zZ\nhEMmBeDYy2dwatNFPHtJnmXy2MtnsHvcPmKxLTQV4sqebHw26EeizNrdCiPWDsRng35UOs6zl2Zj\n97h9OL7mLKmc7uQg5bMMfDH0Z4x5kz2D7pLLc/DT44eQ8X025h+XKkdTPx+Ls9tSVTqRmPLZOHz1\n0C/w6u+GgIe8lbbnElWi10QOewZDE7axnrDxKMfKjnmhVFuRo7NxDRXvvyD7L4OMqypsWZYVkw2q\ni40jc7CGGxe/pS3fl9OHcj/lKXnulQ1fB2JfTh/sy+mj1qa6rM++nD745WYMY11nmUx1+3L6YFmi\nL1E3bw374r+hqpBSxuT4TOffIFYSfMHSzp21vqeT+gd9vhV1nZ8dPOlzYPHKgup0Ox8GtvChXFJw\nYBdnMferM87Dczx93F/P+Bm4d2wvJ+Moosnuur6erT7g6nSh/PxxuA6JZ6yffWAKPh8sVYB+ffIo\nq6y7p4oAAM1VLTASUn8RS9OlzpuLTk2nZD7uPE5n3wdF6GQzseTyHIjaxBB3sMfEl82tsaIZlk5S\nG+ibB+9g+CsDcDYxVek4joF2xJxj5obr3ewp49QHrLuiMoY8Jjdp7CphMnsKuVf2G3oKnFPYxRWG\nS4ffYDS78wgcijvpv6ktky17N1viq4YaEZZv98OOlXIzkz92lQMAfsrsje8TS/DWwlwA0kX7tCDl\nC7mfs2MY2/2U2ZtUpyiTrQ4Adq4qwM5VBUTdN+8yRxu8fvIDDJpOthawY8i2HTp0AfsbUgMrB5rT\nWg2SzNLh6B2N0CHMoZH1STtD+GsjoXrL17Bhi2jLeXMk1el2CgNT+ND7l/7W3xys7dDewB7OT1Uc\nogdprDAELuB2QdPTni0XtJRRd48UKbuuJDyawtrdPcaFtalbtNS8rDilFEeWn6KMIzQVQtSmebKr\nziz6ZzqxcJ/+w0TWtq5RVNO3GwfvoN/iaLTUtBJyZDkbAMBrgHxnbM/4/Wiq1DwzqrbUVxWo3Ue2\n0Lp87F20NHb9vBtdneYG1RP58XRdQgbMZqy78AfzptP8/tewL6cPoTDcvycPtW1iZoQFr3phwavq\nmSzOjcnAvpw++Pf3apIiIpPZ+VRDlTp1URZaXFf400RIyrvKHjacDQfPCMZFtaFJP5aImHhqgrm+\nE9fgyhHtwqzyqE6POX8vP6N5NmN1sQuPVd6oE9UZFzifh7mzB235/ZR/OB2nqz9bXdLRxB7P/PfF\nf+HJI4/Ba4A7add/SeoceMa6YkmKvKyjpQMxc8Mx72gCLu+S+9vEzA1HzNxwCIyk2sWR5aew5PIc\nBE/wx9yDjxLjPHN+Frz6u7GeLgDA1W+zETM3HFEzyLtcAiMBhKbyk4vMX28h4et4RDwWBAHNqYSJ\nhXw/QSAA+i6IxIK/puH4K3JncFsvayy5PIcwkzr8v78x+o3B8B/pjcYKuYIw/3gCYuaGY9TGwbB2\ns2Sdv65I3r8aog7mfCBM9Itfg6EJ2+AX+bAOZsXDo1saa5l3x7UxS9KGV3f1wrMjskhl04Kukl6q\n0N4mIdruy+mDUdPIm15sMjUZTx+U31XNvM7WlRqNrOT2WZqW7JiYWWPwjMQuqywAQFMtvQO/uTWz\nD6ciTKcRTHJ56Ol2JwxM6FPLtwuPVXtRfu/4Xjj0HkRbZ9MrAvV3smjrmHCIYbY5Lzt9UC1Zyujq\nz9bQfDvxAACyj8An/b8n/QsA302WHv+nfycP86rYh6789tE8Spkyc57z76cR19f3yhMCScQSHHnx\nFHF/8aN0ANKoSVkHyPblncf4dMAPAIAru+W+PXShV4sulqLoovRLOO90EaM8GTG/rITQShrxIm2i\n7kMxXvhDGmFNk+hI3qGj4R0qTcB3K/VHVBSkKenBw2N4rp58jzOzJE2j08hYP+s2vALNETuSHA60\nvVWM9/8Mw4sPa5blfcfKfOxYmY99OX3wz74qQqaJmRHaW6m/X2x1miDqaKU8Gxtnf9o8DYrcu3mK\nUpabsheuAeSIgf59pmp1esAEV5mZDUno0AW4mbybtQ2Tv0P6sa73/se9EYe/Xr9o6GnQ0q0UBttg\n5iRXXPkbqIKmITVFzY0QWlhRyn0Tnlbb5t5zHL1PhC7oDs+WxzAExfuhrqgB076Z0K3CsSbvXw1b\npwBEj3xeo/4h/Z9ASP8ncPHga+hoN5ypFQ+PKrS31sPEzIa2ztWvP8rzlfshAcCgKcxZutnMkWRk\npzbi+wxq1KpZkRmEk7EMVXb9Ze1lCsDlf+ooMhWRyWSr04Q7l/chOI5squUTNQFZpz4l7i1s3Sj9\n8tMPqSTfI2Q45wqDOspCWe455F09CLGonTOZ6pJyYAMGPEb9/ClLlKcrTK2M8dyZx4n7nbE/YVka\nOdLjztifAIBUrli2K/53PHVsKqV/+CMBpLZdhW6lMOgiTr8m0C36VeHGRxtYFt8CcBGir/hI91m0\n0aHps+XRP6QTlW6kLMioq7xLODZrmo9BljU35cibaGNwzuPhMTSXDr/J+BkP7jdTZYWB5JTVCTaH\nZ0Xm9KYPu6rJgl1ZH7Z6pjo60yVl3M9PoygMdq5BpPve47gLOdxZNqC6KROgfGFfeP0YirK6lkO/\nphszcdPeoS0/v5fqE6EOYzfGIf3n2zi95TJRxrTAZypvrm4l1cmUhq6mKMjoVj4MZs49N7xY+LK3\nVW5rbEXN7iijJusyYx0PDw89yftXaxUVacDE1xA3mT78Hw9PTyBs0DzGupsMoVR55KgT1efeDXaz\nXO+IcZSyu2mqRSEzt6LPYyXj/N5VXU5ZkHHlMP3iP3zE04x9jIQmOpnLkdXJuPT5dSxLm4W+c0JZ\n275wcQbMbE0p5eIOwzjMa0q3UhhMbBwMPQWtaS6hz1xoZGqusozQJRtpy5lyR/Dw8KiGTHHQRHkw\nNrXkM0fzdFly0n5lrOv90FKl/Z08mU2C7/PJ2tQmN4U5OmJ+xmFKmW/vScQ1ncOzWMSez0FG30lr\nGeu03XXXNUzR6uzdw2jLA/rSO/Wz5SdRFe8BbsQJwfCV5FDDFvZkf5Zd439Da10bHt81RqncmoKu\ne1LdrUySuIoxbEjufL9DZz4BBQd26UQuT88h9og00V/axM3ENQBU/XMdedv+IJVdX/Qx2kpraPvT\nwea0HPHZszD3Ie9sFew4gtaSalgGMZ8cej87Dq5TB6g1FlfIlIb+E16FmaXqvjVDE7bxORx4uhxl\neRcRFPs4bZ2No/JM7zyaQ5cQUh0TIgDwChuFAhpFgivO7+3e31le4WNQnH2SVOYePIy2bervG7Ue\nr62hHU8dn4qW2jaKCdGjHz8EGw8rfD5Keuoz7YvRMLUywdeTlAek+ebRw1hy9nHUFjXgh1nsuZ30\nTbdSGNpqK2Hm6Epbx1WiLv0gAZ0taMRLW5H13susPfXpgCyjez1bHlUI++Ap3F7zPRoyC9H34Bo4\njoqC46go3Fy5B55zR8CmbwCivnqedmEuamrFtbk7IW5ph5GpMfr8Jv3Mxh5ZR9u+908vwdhWmuwt\nbdI7gEQCnxcmwHf5RIhbmJ3oZMpJe1UDrs//EBKRGK5TB8D72XGIPbIO2Ut3oflOGRePg5XUo1Jz\nQYGREEMeVS3mt4N7OKpLs5U3fIAwNrVER1uToafxQFN44wR8wsbS1vWKeZQxYlLEEOaQm6lHda+8\ndwdqSm/C3p3eNCVy1BI9z4YeP4VTCirdY0P2/N5VtD4YvtEPUxQGXVKeXYVd4+kd0X+cfYx0//0M\n6sKfzU/hk2HMp4GGpFuZJLWUFSlv1A3I3kF/JChQM3OhIu31Ncob8egUvz3vUF6KCG2sGOs7X3ts\nfEF6Y2REkcMFloFuqM/Ih0Qkt6GUtIvQmF2M26/+yNgvbeJmpD++nVjoi9s6lO72E8rCxM3EKWHh\nR0eRNmkzjMzp7UstAqQbAxKxBNfm7iTmWf57CjFe+IdPqfJWOUMiFiF5/2rczfhDaVu2BdaDinsA\ncyhoHv1QkHWMsc4jcChjnYN7OGNda1O1VnPqKeSm/kIpMzKS/qbbOAfoezq0MEUUamuuoy3vzhib\n0uf7uXxok55n0nPoVgqDurkKuiridubkUVY+1OgHqnDrszc1nQ4PhxQueQP589cifz5VKfT+cD2K\nlr9Dqvd4axmtHNMAbwCA/WNjIG7Uz65s/vvcH3eH7VgIACjde45aybKhFf6R1IntymTulSVtuZdz\nRiWTI21j1ndH2HK2+EaM19m4unJs5GGnqY5PfCWjrYm6aecaSJ97SZVwqo3VxSqPXZZ7XqV2TInO\nGqu134x1DaCajuqKy3/Qr3cUTUf7T3mdtg3d34lHNbqVwlCbzZwoydiaOXJQd8J/JnNceN/H9Luj\nKqOnPFt9IG5qoS13XbkAACCqke/klL3zBUx95dm6LaKCYT28H1qycokyuymjUfqWPJa3Lqk6dV15\nIwZaS+h3GS2Dpe/v3u5TGsvuqihTGgZNefB2si4fYzbZorPj5orY8eymnDxyctKYnW3d/OMoZWyO\n/FdObOdkTtoQ31t5/gc2TI11F8qbyQSILmFbZzL+ek/lce5c3qdSu5aG+7TllnbaR6AMHDBTaxmq\n0tZCfyISO1n+WRAYCfU1nQeGbuXDwIbHmGko/P1rQ09DZXK/2Y7AeSvV6mMTGElbfvPTjRzMiJnu\n9my7IhaRwQDAaF5Ud+ws7KaNg1kvHxQt3wzvHesgtJMmWmovqeB8PuJmmlMuFU1YvRePhetj+smJ\nwuZk3RW4fuZTRA1/ztDT6DIYyjzFzILZKb0g+7geZ9L1KctLQVDsDNq6oNjHUZbXNbPM6orBwU/h\ndPZOncjm+uTLzi0YErFI4/6VRRnwCqdG6jGzctRmWhjwaNeycGBSgLL//VzPM+lZ9BiFgS0LdFek\npZz5uNHczZvir2Fkymze0NGgW/vD7vZsuyK1B/+B3aNjaE2VAKD6h8OEMiGqqUfJxo/gtU13Ie4k\nYvUd3KK/+R9MnKVKTOPNeyj98SwarhdC1NSKmF9WQmilvgmOqLGVtV/DtQK1ZeqT2opc5Y10hKij\nDUJjamxvwLDmUBKxiHF3z9zKiTE0oqaYK1nsFGZ3zZjyhqQg+zh8w7UzEetKkcDc7MJQVnsD8b3X\n41jGJliYOsDHsS9ulf5NlDFhbsLdCXr2v1+y5gTQlqC4J9DaUKVx/4Jrf9IqDNrgGTaK0V9AlzA5\nPzv79kXwoDm0fWpKb+l6Wj2abmWSBACl/3CbHt2Q3L/0N2154JPUqEShz+teg+9Jz7arUXPgBADA\nZjzZsVBoT/9j1Xa3CAIz+sWgIRBamRPKQtrEzbj50m7UXsqBqOm/7K7MCWCVyGVf2N565TvW14MM\n07E8AFg7eOtxJmQuHGQ2EekXv4bz8frFM8eV56GHTYmKHSdXBPyjJ+tjOlpTVnsDAHCvWpoPYnDw\nIgS4DqGYK8X3Xo8Qj9E6m0dN6Q1KmZNPH43l1ZbdJt2bmtvCxtmfVFZfSZ/bSV2UZX+mo/e4l5RE\nXtI/TKZRqvp58DDT7RSGysunGesMEXJUG8r+Ve74JMPImP5oM3O7emZNbPSkZ9sVyZ+/FtZD+5Ki\nJJn6kI9OZYqFjKrvlMdt1gfR3/4PAJDDEEFJaMm+8LcM8WCt51Gf+0VXGevcA+idLfWBsgRSXiEP\n6Wci6Fq74F2Nsjz6PAAWNvLQ5V7BI2nbcJH4She420vNdour0vFP1ns4lrGJdLpwLGMTbpX8TVIk\nJDoOJxoyeC7p/g5NNCUmsk5/prRN5t8fqTWfnEvM4TwHz0hU6XQyeuxyDJ6RCCsHL1J5c53uw1wr\nQpdojimjtqp+HoYgYk0S5aVuH/fxCTqfZ48xSequtNdWwcSOeqTu/tBUlJ5SYcef42R2LWVFMHej\n3520C49ldTx/0OlsbkRnflTy+oda9TcU7ZX1MPNyhBHdiQDL6ULWc58j4tNnEPb+QrWSrdUk34D9\n0DBEf/s/XHvyAw1mrB/USejGNWV5lxhj6huauvt3YcsQStI/ahKKb53iZBw2h1y2iE08QE7aL3Dz\n18wX6dLhNziejXYMDn4athbuqG8pBwDcLDmB8dHrCEd7mdIgUxRqmuQmv8k3PyXK2UyXuKLsDrc+\nIup+zivyUhE0cBZj/cAEad4ZUXsLKgvT0dZSB1MLu/+iIDF/2be31OPq0W0anVQ86GS9K7cqUUVZ\n0LSPtnS7EwYAyNrObNvd3XbCb31B/wXl1F++s+M++jHaNnd/Yl58akrut8zPz3vSXMY6np5N5mJp\npKZe6xJg01e+EPRePBaxh9eh6XYJbb+WgvsQ/edgHXtkHQRC6VeOx5zhiD2yjjG60p23pRkyTZxs\nEHtkHTzmDIepmx0sQzzgu/RhxB5Zp5JDdJ8xuk062H/Cq4x1ace36HRsZQ7GseMMFzno2r8fs9az\nLfRVRZmMcwde0XoMVYk5JN+xjv71FaLMKsoXUXtXQ2As/dxHfr8Cpq52pPYxh9Yj9MNnYBniCccx\nvYkyY3sreCxgN5/xeiYeJo7WFHmd5xRzaD0sAt1JZcoIjXtS5baG5FjGJpy//SWOZWzCuVtyp9bj\n1zbTnjAcy9iEizm7ibLG1kpKu57Opf3M31syhCbmcO0VB++IcXANGAg2ZeH6yQ+Q+odhlEi6U4bO\n5Kb8rIeZ9Hy6pcIgkYhZIwXoSmmwj+yvE7nKcIodTlveVHRHJ+M9SM+WR3WqTmUCAILffoJYsLs+\nNhAFHx7FjeXMUbTSp8l3nPoeXEMoAABwa+U3jP2kid6k1x5zhiPq6xcQ9v5COE/sq/Kcrew8MDRh\nm8oZmtVh8FT2HBHNDCEM9YWFjYtBx1dmDqSN0qCsr6idPryxrqg5I88RdO1xqaLYkJ6HxusFuD5j\nGyL2vAgAyJyThLbyWtz7imx6eHPp52i6dQ9VJzOIso7aJpTspvdzk1H8+TG0V5HNg0q/I5uWhnyw\nGOmTN6E5txSNmeQgAkyJ3Hwj4uHs1Zu2LvXPt1nnxBXO4U4Y//4YPPHnDMw/MweP73sMcS/pL9a/\npjTXcxvVrrIwnbFO1NGqkUxRRytnCcwqC9M586PQFeV3Uww9hR5BtzVJykpazbp4jVyVhKykVZCI\ntT+WDn1uI4ytbVF3KwM1malay+uMRCKmjVHuNmIyo5+DqEV3ybx60rPlIUNnFqRqWd7W31H8xQkE\nvjET5t5OqEvNxZ3N+1n7KNbZ9PZD4OvTIWpqQ+ZTH0Pc1qG836TNEBgLEfDyVNj2D0RHbROq/rmO\ne98w+9vQITASEovM2vt3cP3fT9Tqr4iTZzTCBs1jbVNdRnV+1AV3Mw4ioPcjjPVDE7Yhef/LUDlm\nrp4ZmrAN1/79GHX376rU3trBBzGj6JMdKnLh4AZtp6YW+Vv2w8TZFqEfPoPrs6QKcnt1A4RW5gCA\nG89IT1xiDq1HxtTNMDJl/+lNn7wJrtMGw2PhGKRPZl7YBW6ei9x1ZOd/97kjYR3th9pk6WfQ1MWO\nqGsrIyetKrxxAr4R8RS5Hr2GMI7Z2qy7xFcukc6YspveidbO1xZ2syMQNTsCAFBztxb7Zvyms7lo\nyp3UvYgc9QJtXUGG+skxcy7+CCefGPqxtLDLb2uqQfqx7YiJ19wP8sKvr1A2GHNT9iJwAH3YXkOg\niWlixJokiFqacfN9+UlM+OptEAiFuPP1drSUFZPaAmQTIQAIW/EOKbpl7q5taK2gP4nvLnRbhQEA\nbn/5NoKfZj5ai1gh/eJuLivCHRZTG0XswvvBY2wChGYWnMxRFbK2r6JdoDsPHA2hOX24shsfapes\nRhmZiStYlYbu8mx5uKW9uhE3ln2lUd/6jHxcnaa+faukQ0RSTLTFzrkX7Q51TdktVBRdRXtLPdrb\nGmFsagFLG3e4+MbC2t6LRhIzWcm7uJouK/dy/mVVGABgaMJW4rr49mlUl2RBLBbB1NwG5tbOsHMJ\nhK1TAMXZkQuH4eT9qzHg4fUwtbBjbBM9Qp6sUiIWIe/6YTQ3VEDU0QYrOw949BpCcsRVZUxDELF7\nGSRtcodvh4eipDv6Ygmabt9D850WQAJIRGI4PzIQZT+dZZTlu+pRlHx9Eh4L2ENg1p67CRNHG0p5\n7vrvCB3x+qxExBxaj1vLvoDD6N4oSPqD1Lb07gWKk7y+w2QKTYVYkKyeyat9gB2eSpmPmrxa7Jve\ndRSHugpm5bf4xj9qyxOLmYMI3M/XzqewqbaEMOnpO3EtzK2dVOhTivRjzN/j5Xcv6V1hYAqxCgAX\nftHMNFNoTl6nCITSUNG9Fq6kKAeKGFvbImTpRgBAzbUUdDTWwXnQGAQ+Jf1eYuvb1enWCkNbTSWK\nDn0H78nsXzQWbt7dzrdBhkNvw0U76enPlodHEXu3ENi7hWgt59LhjdpPRg0u/PEqBk1RzUzEK3gk\nY+QbXZHy5yaVzY8ERkIE9J6i8VgX/lBum60rmnNLcWv5l8Q93clA+iPSssw5SaztChJ/I7Vn4v6h\nFJIMMw9H1JzNhrmvC6x7+8M2LgR31n9P1NONlXtln8pRtTKTv1TeSE1MLI0x7zR93HxVsPe3w8Lz\nT+Lrwd9yOCvtUMWu3pDy6LhyhN3EUh30MV9DUPDLF/CdvphSXv7vn8S1TFlQVAzKTx1G+KotEBib\nQGAk1Cr5niHplj4MitTeSEPOV9zbJ+sbNkfuzjTdy9PdRBSovZGGzMTuqw3z8Oib5P2r0d7aqNcx\nRR1tqKvM0+uY6pK8fzUqCnQbYS15/2qIOmgymOsBU1c7mDhRd/r1jdsTw9Bytwwt+RVwmhCLin3c\nxp6vKbvJqTwAWikLMoyMjeA9RL1TQJ6ew6DpW2nLz+/V7LSx7mYGbXlDbjZt+f1z0rwmAQteAkB/\nipCdKA2GEP6y9gEfDEW3VxgAoLWqvNsvbNWxs7v7g27S2DPR3Z8tD48+MGTM/2unP0J1Kf2PWVfh\nVuqPKMvjNqQkAHS0NRk830JbeS0y575n0DkAQEHSHyj7WWrqdPOFz1B/RbXAGPmZR5W2Kb17Qau5\n0fHQW/QBPTQhfkfXDDHMo3vofEClaOa7VfInOaqSlX8w6d42VBoQwL53HKncwt1Ho/G6C93aJKkz\nmYkrIDS3QNhS7qM45Ozeitb7pZzLVRuO8y6oikxp0IX5UdXVcyg58Svncnl4kvevhpNnFMIGzdeJ\nfLGoA+d/7xr5MrLOSX1LuAhZqity0n5FTtqvsHbwRsyo5VrJamuuRcqfD04oTF1SdPMk/CInsLbJ\nvcJ94qvACb04lTcuaTT+WsEeWYqHRxmilmYAgLmbF1rKiuE3awnaa6uIeu/HFiDr3RXwnEifVVpf\neRH0TY9SGADpHzozcQWsfIPgP+N55R2UyLrxof5sYm99sQkhi9mdmbN26C+2OB1cKQ6ilmbc3rUZ\nomb9mm/wPHhU3rtO7ED7RsRzkuys6OZJlXZlDUHy/tUwt3JCv/g1GsvIPs8cJpcLGqqLkLx/Nexc\nghA1/Fm1+t4vzsDNi13HXr2nUHr3PNwDButtvICx/pzL9B3es3d4eagMePRN2vKU37SPlOYy/GEU\n/ir12yncRx/so+4GNext2T8HtR67K9LjFAYZjQU5nUxpBHCIjoNNUCQsvXpBaGYOUUsTOhrrUX8n\nC/V3snSW10BV2muruo35T+d5OkQPgk1QJMxdPGFiYw9xexva66rRVJKPmswUnTxbfTyr5pJ8yjjh\n65KIf2/veB0djfU6n4ehkb1nGdmbu8fntDMFWccYY8/3JFoaKylmOta9wuA1bQHKju1HTcYlA82M\nTG1FjsHNiZTR1efHFU6e0Yx1OWm/cD7e6Hf063zP0zNhiujV0dasldy2qnLYBEUQ9y3l9wAAxQe/\nh9cjcr+bot/2UPpWXlQ/GlZ3oMcqDFQkqL52AdXXuLfD5AH/bHl4ujg+s54BAHhMngWBsTGq084Z\neEY8XQkTM2vGurK8rqFgqoKliyWaKnSXp4iHGbuxo1B7Qn+L5bhp9AFv0g5pb5Z+78jP8J/7P1gH\nhJLKazMvkxQGRVrvl8HM2Q3GltboaGqgbdOdeYAUBio2g+Pg9MR0UpmkvQP5KzU/yuehsmDvOLiE\n2CH/Yjn2PvuvoafDw/PA4z7hcV5h4CGwc2b2JdAk8ZUh8R3hgxv7uI/mxKMcfSoLAGAkpF/CtjZV\nay27qUiaT8N1FH2eGzNnN0pZ7pdbELEmCSHL3uzW+RaYeGAVBs/VL8LUx5tS3lFVaYDZ9GxcQuyw\nrQ/v1MzD01VoyMky9BR4uhBRI5Yw1p07YFi/OXVx7+OqE4VhaMI23LiwB5X3rnMuW1dY9Y8FxGKY\nuLrAfmI88patgv/OREja2lH2yRdwX/48UQaJBOW79sD1qfko/egztNzKgf/ORJR++Blc5s9B4asb\nAQD+OxORt2wV5RoAXMx4AowAACAASURBVBfNQ/lX3xB1kEhQuvMTuC9bgrzlq+V9XnwZ7s8/g9IP\nP9X4vTElaqsu4TZanLmrJ8Tt1HDNgU/T/7/ITnwZ4au2Eo7PzffyYebiASMTUwDUkKsuwyfAzNkd\nlt4BMLaSh2aOWJOE1soytFaUovzUIbTVVJL6WHoFwMzFnejjGDsMjrFD0XyvAK0Vpbh//gSpDxc8\nsAqDTFlQ/LDzUFl99XHiOvNgPo5sSCGV55y6hwMvniPKSjOr4R7pgIJL5fj5mX+JdquvPk5SGmTl\nimUhY70wNXEwUS5rk3+xHH5xrvhx4SkUXblPmpOsf++EAMS/1g8AcPbjTJz/XPql8dLFx2BsJiS1\npZs7D8+DROFe7hNw8fB0BcztzQ09hS5DY6o894n9xHjiOn+VNLJby63b8rIVayARiZC3fDX83tuC\n/JdegUQkQsut2yh8dSNcn1mE8s+/QuMVuZNv69081vEVZRJzupIOiMVaKQtMpkgAcOPMLo3lMlG0\nfzfpvuzv3+E2eiptW0lHB+5+swMB86RR4Cw8/Vhluwwdz1hn5uQGMyc31F5PISsMjH0EsPD0g4Wn\nH+pvX+MVBh79I1tor0xNwJENKXj0vSFE2cJfyR/cb+ecpPSlUxYUF++y6wkb+1NOIhT7r0qbhsTY\nfbSnFaNWxZBknv88G49/NAyfT/oTjfdbiHZsc+fh6cl0V0d1Ht3CFjWsuaFCjzPhhrqinh+EQlU6\nnwB0RtwkdwyWiOTZhwVC6SZbR6U8lKiptzQxXsXX38J18UK0l5Wj5L0PWcdXlCmjo7oafu9tQVP6\nNVTs/k61N/IffjGT4Rn6EGM91xmmmcyKKi+dRuWl04z9mu/lq2ySpInpkqHMnXiFgUdlSrNqAAC9\nhrrDs7cjAODYm6mcyc+/UM5aLzASAABWpCTg4zGH0FInPybMO1dGae870JWkLAC6mzsPD0/PZ1zc\nG/jr4uuGngan+EbEM9alHafPoNuVKb54z9BT6HIITE016mfi6gIAENrZ4t7b8s+CZXQkEB2J6j8O\nqy3TbvRDxOlFZ5jMjHi6Bg+kwmDqo/8U8gJTU7guehLmwcFoLSxE6fsfqdzXYepk2D40HB0V91H2\n2VfoqDSMn4Vsob1z+O8IGOqO238XayRHcRGvuOhXlY/HSpWFJ756CD8uOsXY7tPxh/HSxcfwXtwB\nokzbufPw8OiPnrhA70pEDHmKsa61qUaPM+GO/FMFKre1dfJH9MgXSGVVJZnIPr+btr1IJP29IidH\nlCB5/8uMY9i5BCJq+HPEvVjUjvO/ryO1GZqwDdVlN5CVvItUBgAXDm6AqL2FVK5qqF/Z6YKkrY24\nVjxxkPkbdD6F6NxWVFtHqq/cux+ieupJjkwenUwZRW+8QygLyk5AVEXU0YpL+/WXM+tB5YFRGPx3\n0muuncs7f3hl9Wwfaro2imWea1bC1NODqDPvFSB1PBKLkf8i9YvGf2ciyj75Eu3lFfB+XZ5F1sTd\njbjvPB+ft1+H0MYG1X8cZo1UoMr76cyUbYPg08+FMOXpaBXB0tEMK1IScO6zLFz48obKsgDpgn/R\n/vGAAPhgxB9q9QWAWV+OhJm1CT57+Ahru6bqVnw55ShWpibg2u95OP5WmtZz74xE1KFVfx4eHnqi\ng6S+RuPi3gAAQnHorETQKRUmxpYYEbsKRWUpuJn/JwBgeJ+XkFP0NyICpiDt5reorssj9Rne5yWI\nxO04l0E2s4gKnAYnu0CcTX+f0/fXFXBwD2OsSz2qfWhKNiRiCXFqbAjiJr9BG8Pf0SMStk4BqKu8\nS6lrqiujyaQuYFzED03YCoD8Ho2EJrTtHdzo/xZhA+ciM1nqc2Ru5cjyjvSH04wEjRf6ohruFVFe\nWdAPD4zCoIkiwAWycTofwfnvTITAyIhRw3Zb8jQAoGrfb6g7fZYir3O/wlffgP/ORDhMmcSsMAg0\n+3L+YzU1v0L6r3eQ/is5GRtTJCS68q8SjlPKfl91nrZf5393T/+Lta/iePVlzdjef7/SuWuKLIU8\nAAQv2whja1vadpraj3tNnQvbyFjWNm2V5cj9jNkJjA2BkRHC1tAr04pyJWIRBEZCjcbgClnyuNaK\nUtz5YiupTMb9s8dR8a88A3PYmm2UeavztxCaWyBkBfPCqfjAHtRlUzN9Ms0dkCqZN7Yw70iqIqPs\nrwOoSjmjUls6uEo46BA7BO4THmesv5m4FuK2Vo1kX8v5Fe5O0WqfMIwZsAEnU97CyUvkDLDmZvYo\nuZ+OkvvpGBf3BorKU5F9V5qRVVHpULwe3nclUjK/wPXcfRAaaWbW0VUZ9MhbjHVFN04y1nHFNyN/\nwPwz9PHsNaW5qkV5o/+QKQvqJOYb8PB6XDmxHU11pURZyIDZcPHpC0ePSFSVZBLlnkEjAAhQXnAZ\nt1N/IskZmrCNpDTkZ/4Jv8iHace0d5PnAYgcpl5WdF2hzbpJcR2k7for/VgimmpLlTfk4QQjQ0/g\nQaBg7WsUe7373/6otJ+osZGkLADa/Qfz27YZAFC68xONZfBQsfDyR/i6JEZlAZAu4Cx9AlSWGb52\nO8LXJSlVFgDA1MkV4euSILSgz3jJRNDz6xmVBUW5ANBclKeWbF1i5uIOgH5R7DxM7sgevi6JVslR\ntphWbMemLACA12PzVZJX8KM8IoiAIXY4G+bu5BDQbMqCvghfl8SqLABA6Kp3VH7eXFHbUKS0TW7R\n3/BylUZViwmehcraXNp25qa2aGmTmmOIxOqbT3ZVAvtOg9CEOZpQftZRxjqu6Gjh/nT2h/ifOZfZ\nGUVlAQBupfwAAPCPmkgqD+gtjd/fWVkAgNZm6S576MC5AICim3+T6q3tpWbTxbfJjrVd5YTB0BRl\n/YXze1fxyoKe4RUGPSBupGadbEi5rLRf4Vr1dtaarmYAAFwWzKWtF5iaAABacuh/HOng8ycox3/+\nMpXa+T35P1j6BqomVIPToJCXNqHz8TcT5u7eMLFX7ccnfF0SGvNz1J6PLmFbqIat6WwyoD7qLnKV\ntW+8e4t0bx0UoZb8gEVdK8KRus8ndOVmHc2Eyv1a5Z9VsUQMwX//V1wcQmFn7Y3hfV7C8D4voaW1\ne9ruq0rM6BfhHjCIsV4s1p+ZZeZP3MXMF7VSnWhVITTuSZXbVpcym7Ba2LhSCyUS2rYyZ3Jn7xhS\nuUyJCx+8EI01xci7dkjlufUEzu9dpdKr8PoxQ0/1geSBMUkyFNWHdL9TI6P8q2/gvzMRVrF9KOHK\nnOfOAgDUHNbffB4EFBdOdKYuToNGwXW0PFOk39wXVDKJETU3SU8MJGLc/uBNdDTU0bbzn78cFl7y\nOM/h67YrlW/q5EpZgN54dzUkYuoPruz9uQxnjqRiCBxih+DWexsgam4EQP47CIyExL3is1Bs4/Xo\nkyj+7Vta2RQzp+QTqDhN9ZcxtrJB8PI3SP1UNXfymfG0xmZqqvSja8PVTn9nOUzzses9AJ6TnwAA\nGJmZq/V82OgQqW52ogo5RScR7DMO/6TqT6npzID52wEAKXtWatQ/sO80FN8+jZaG+7T1xiYWiHvk\nTdq6zpz/ba3yRhxxYfslRM4K50TW7mHqhehM3r8aMaNfhLNXbzj/55dwL+df3M04yNinvEC9yHol\nd8/TlotF7bTlkUMXI+PUBzC1sMPl4/RmpsqUiAk+yxnrjhbuoJSN834eQoEJpfxM6TdobKdmTFZX\n/gSf5ThauIO239XKIyhtuk0p1wR13scEn+Uoa85Fm6gJPtbRlD507wMAvKzCEe1IDcd+veoEihoz\nKeWy98z0/juPw/QeAKC+/T6SS7+nrdMXvMKgY1rz8vU6XtO1TFhGR8JpRgIq98pt960H9gcA1Bw7\nodf5qMOtQg9KWYhPiQFmoh7i9jbc3LaGtq7ywj+ou5GBoOflTlkBT63E3V3bWWXeem+9SmPn7dlB\nWcAJhELakHUyAp8lz5VtEZe9eYXeTUpURaYsAEDZid/hNpacSIftfdlG9KVVGBQVAEB6MkCnLABA\nR2M9bm5bg9DV8h92r6lzUfw7/cKl7PgBuI1/TF4gMAIkYsY5ygh8Tn8LOGX4PkG2oWZ7xrUZKbAJ\n7Q2b4EitxowJnon023JTkys3v8Po/q/i79S34eWi3GRPGXn3ziLYZxxcHcNRU1+AQdFL8G+a1FQv\n687vGBazHGfTd6Bf+AKtx9IV7gGDWE8NVEUde36u+HrIt1h4TvVdfjp2DdijUb/0v6WO7AMnb4SJ\nqRU8g0bAM2gE43Og21RhQ6DmSbGNoy9xLVYIqOEXORH5mdLvoc5mSorIFqWpFQdwv0UaLUoAAYa6\nz6Vd0I73XgojgRCN7dU4U/oN0T7eZxmGu8/DyeLP0C4mK+gN7VVo7KjClfvykKrxPv+DAEYY4bEA\n/5bspp2X4oJXKDDGOO8X0MdpIo420S/O1UGT9+FmIT3tV1y0x/ssgwACDHKbiQtlZPM2GxNnRDuO\nhwQSHCvcSXpvUY5jUdGSh1ZRI+iQ/V3+KvoIIkkHMefO/FX0MSb4LCfNVygwwTjv52Fj4qzWM9EF\nvEmSjpG0cLsbpozyL74GANgMG6LXcbkgxKeEeHUnmJQFGe2dsi2au3Eb1rfzos172kLGtnZR/Uj3\ntdeU75gpe3+GIPfTd0j3VSxJdNTB2MqGuBY1N5J8D+gQt7eRlDs2n5OqVLLfQfha1WKOmzq6kMYz\nJFYBcgdMVU4Lin4hZ10NXfUOQ0t6/rr4OklZAICa+kL8nSr1LSmuSKM4Refdo/fvUGyXd+8M6f6v\ni6+jvCobbe2NhLIgk382XbqguJy9u0eHeL1ywjAx8MXtYuwasAdNFVTTXWW0N3VorCwocunQRiTv\nX008A2okJM1gUuKExmaUMpky4uTVm1RekH0c3qGj1BpXpiwAgAQSnC39Fnn1aZR2RgKpj5dskS1r\nL1tEj/GiOlmfLf2WpCwAwLHCDwAAlsZ2jHNS3B0XSTqIMdhOLFRFk/cBUHf4jxXuhAQS2Ju6U9oO\ndZ9DtKGTMcrzacb5nS39DkcLdxDKAgAcL6JPene0cAdJuRFJ2lHcyJ3pnjbwCsMDgFW/vgCA2pOn\nDDuRB5jSo2RfEOtAbo7h6bDwZnau9pxCjkpy7+APSuUZepFKR1uVDjLQdtoNvPXeBpW6iZrJC52A\np5jNShrztDt+v7nNcKcNAQtf0qhf0b7dxLWRKXWhxGN4Ms9+jqY6avJLffLjxF/w2xxmc6DO7Bqw\nB9+M5NZEg/tnQH/CEDteGiWtqlS+EMy9Ks0XFNjnMVLbwmxpVEAXn74qj0q34O2Mq0UvAKDspOuC\n+nZ6Uzku4Pp9nCmRKqC+1jGUOgnofVKU0dCuXe6sYprTIUPAmyRpiXlIkKGnQKHg5fXw3boJ/u9v\nRd6LL8NlvnSRWP37g+VApQ/aa6pUaleddo7kqOszczEn9tx0CM0tdCK3pxOqJCKSqrCdIBX88AnJ\nxEtoYUlROBQJeqGzaZpmP1hcYO7ho1G/+psZHM+Eh0sMYYbEROWtKk5ODDRGw9DjdCTvX00JnwoA\nRkJjmJpLI+pln/uKKC/Lu4ig2MdhYmaNhupCijy/qIkoy0thHVNmKz/IbSapjI5IhzEAgJo2+khD\n95puwNOSPjeEu2Uw+jhNpK2jg+50gyu0eR90NHXUAgCC7OJQ0EAOmS2AgJMTEWU85LkI5kIb5Q31\nDK8wqIhV3xg0XqHGW3df+hxNa8MilplBGckPkPTtS3Gr0AOjBpejuEhE8k1ob5cgshd3odASd9pj\nymPkBfKy56px9DDZFEw2ByZzJ5kcdc2hqq/SO7V1B/ikc2SMzJjDTCpFItE4shWb4mhiJ49klbdH\ne1tfrmgp012mdAsHD0RNoYaPpnMIVnQWll3LkSBlD30Y6pBxz8DOM7RTcwlSvqG2Z3NIZqvrnbAW\nZjbMdscl1/9G0eXDlHJ13oc21JTfRubZzzmX211gMzviSokStbdAaGJOOxbbGHSZps0s7HHn6n5q\n404cLdwBV4teiHWWBtuY4LMcHeJWnCgmm1eaCtm/71pF9BsZigvmFlEDKlsKUNdWjnCHhxhldYjp\nnby5QNP3oQwTI/2fhvZxmgh3y2DivqL5LuraKyAUGMPfRnt/LW3hFQYl5L/0Cvze2wKXhU/CZcFc\nFKx9Df9n77zDm6reOP5Nm+69W7qALiilZRUKlJZdNihDliDg+IkosmWICCiIgKKIW4bK3iBQhqwC\npUApLdBB9x5075Hk90fMatZNcm6Slnyeh4fcc899z0ma3Hve8y4wGLAeORyWQ8I0PT2pZK/6FB5f\nbYLrulUAgIKd36t9Dqcu2MPaRg/Xrzbih13V2PClFQK6GyAlx4VInMKY8SaY8JoJ8nJZWPlxBczM\nGfhlny2++8kGGz+twl/7BAFIE0e9xJlL9ujW3QDPEsRvXq2VDqrUpD5Xev5UcBrxGmyDB9Eiu/Kp\n/NS+OqhRER8D66B+lPq+jLosUi9CGrZ9w0WO6/PUq/TLwtjJlZZgeFMbF3SbsFxs8R48dweC5+6Q\nmkUoeO4O5MVFIv8JtyCkW6+xcOk+VOI1vWd/BT19Jhoqi5Fw+ituI4OB4DnbZY6hCB7BE2FkYY+0\nmwdQlinYaAqeuwMcDhsPD0heLCryPoQRLD4ZcHDvASsHH1g7+oBpaAoOh4XGugrkp95GcZbsHepX\nibunVqFjwFg4dgyGPtMIZQXPkfroKFqa6yX2l7XAl3Yu+hzXrdGr52Q4evRGTXkuEu/tVXgMRRWY\n4vp0vmVhpNsiMPWM+NmKeBTWvYCLqZ80EXA28RFrE8760xpZCoOtkSuK6ulJza3M+6BCaYO4laeq\nqRh3i+TX0FKGDqZd+MpC689XEQsJnehiGOTAYbFQdvIM94DBgMfWTfDYspGvLNBdKVpZ2PXcG5KB\no4OcnvRhbaOHX/bU4L15ZYiPa8brY15i6IBiAMDdx04qy79wrh6+7gUY0r8YD+434ca1Rr4isn6T\naBG1xGdcJeHUBbKZBmS5k6iCiYsHuq7ZSZuyAAAt1ZW0yX7VUOSzFK5EDUiPDWid9elVoNt/loXW\nO/28BXan0OlSr+UtsgEgN1Z85x4A9PQNoKfPRGNNmUBZAAAOB4/+5saHdBunXKyGME7+3OeDsLLA\ng8GQ/dil8j6kw0FJzmOkxh7Fw0tfIPrsWtw/tx5x13bqlIVWcDhsZCScw/1z63H31CokRe+XupBX\nlbTHJ3DvzBok3NpD2xjSkBZcG1/G/Z51tQ6XeN6ESc4lxtOiBzFZrSH9PjpZcBODJFdEiZ2zNJRQ\na4MQ3WyHAgDyasU3Ien8/BThlbUwKLLQr7pxG1U3bsNu6uswD+kLVmUlyk6eQd3T51JlUZEvrY+8\naxVVUpoLNRfMtn1Ltchxbg43E4S9vfboqnb/zSW8X7HC1ypTtZeKzI7zPpZ4rvTuNZRG/wtWg+hD\nR6ndXj3t+Ru0dRhMybmzqUAlNqDoymml5bcV9P77Lb249pvYOc5/6WftvYKRESVeOTfhFLXsS71m\ncWstxJ8Qj1dht3CD+03t3MTOqQuq74NOJkUtBKuhGeeG/6rpqbxSXE7n7iKP7Jwks40UvN+Up0UP\nJFaolmVOk/72st6HtJoGPOyMPVAqlFEKAPysQwHQG6gtiQZWDcyYNjDUNxU7Z2UoeYPVa9sOpK1c\nxn8NABnrVoPdRE+ikldWYVCG0mMnUXpMvg+htpH3JZkUcaS4+W8jwoeq3z9w9JASXLzuAGcXfRQW\nCPJp3/vP2lGQr3ilUGNnV7G0qarSZdU2kWO6gqNNnDW3MGpvmLp3Vqi/vPoWXVeL+rGXPbil1Lzo\novrFM7GUqariF7EQAOAzTHp6Qmk0VFF7uMvb3a/ITYS1G30ZzORB9X3ooJ+LL/ww2ieZf7x8mwu2\nr6Qv5ffIzkl8BUFWmyxGuS8Gm8NCWlUMyhvzYG3kAl+rgVL73yn8GwOdZ2GU+2Lk1DxFQV0yguxG\nwUjfDIC4a0xe7XO4mvljlPti3CzYCzaHhRDHaTBhWqK6+aXUWgGlDdkY5b4YBXXJKKhLQaBdBJgM\nQ4ljKEPr9/GyIQv+NoOlvg+Am9o12OE1NLMb8az8Ggz1TOBvw01fe7Ngr1h/XkA5zy0ru+YJ9BkG\ncDXzBwA0sxtwLe9npd/D7YIDGOW+GA7GHeFi6oeCumT4Wg1EZ8s+yKqOk2tlqH2agMID+0SUCNLo\nthg1DMOQicBz6xB4TpANJfAstaJdsjBw5i6C2XXqNX9SIfYhOe03MdMFKTmi/6SRlsoN8r0VI25W\n3PNdjVLjW/iKV4lUBb9lotVm6VIWAMCss3b4RbYHhKttK4PjkLGiDUIB1PUF2dA2VC3GJgkzDe7s\n82ioIJOQIfECN1d7j2kb+G3W7gEABDuiOjTP5fQu/H/rfxTNbpb8RJA44+xTX4ycYoWzT31x9qmv\nTJlhYyz4MgHuT1n4uPW4ijBskiU6dxVsto2daS3WR4+hDx+r/ujrOIWvLFQ2FUpcNFc3v8SV3D0A\nAHfzAPR1nCxzkZ1QdgUNLK7XQLjLPAzp8DZMmJa4lLML94rELX88eDv/LqZ+6GU/nqiyIOl99LQf\nK/N9ANzicZdzd8NAzwg97MbwlYXalnLUt1RJvEZYlod5EF9ZACCxMJ6iRBcdBQAE2Y3CKPfF6GzZ\nB2wOS64FyGPVahQe2Kfy+PLQWRg0TPcTnyB+/GYRhUFK6mbKWA0fApsJ3AVI9ifUcsmrE3MLMqnr\neMpB38AiVJSzxdolseSDCnzzg+AmG3mDG+Px7dfV0i6RiVVAb+SfVTwXeE2a5EIsKmXq0aESeWf+\nguvE2WobL2nbSnRZybUm2fUfhuLrkv3VM/d+q7Y5aZL6ymKY2rgQCTpWFhMb6fcORagpycLT09sQ\nMGmlSNajx4c/RUsjPXFPOpSD5+7TevH+8RRBkoEJASm4nN4FEwJS5Mq7daFaxIUoMq0L//jYQx9M\n7fNCaReja6ercDmdK+/b454icwSUW4CzOM0KXXcj/w+J7WwOS6ocM6YNMeVAGoq+D0D2nKWhSH9F\nZVc0FUi9RlJ7Q1Ym3xVJHegUhnZCx+/Eq3Rqa0D2mPGq1wnY9aMNAKBHl0LU1VLPTf/P2Xp884M1\n4pKc0aNLITp5qecn0Olt0b9F7glxk6eyOA2fRLkvh80GQxe7IJGqZ7EiCoOBhTWaqysUllN6719K\n/Tgtomlt9QwMwW5ugk2fUIXHVAeld6/BbsAw2uTnx0XCe8hbMHfshJriDNrGkYWVKzmrW8CklajK\nT0HyFeXdFDQF579bqqGlEYYfmgU2i42YNZdQ9pSMBcamqyP6bRmNS5O4NRdcwjqjz4YRODdU8mdl\n4mSOkC1jYNHZFk+230TWeWqVb73eCELX+cEoTypBzNpLaK5pJDJ/RTG35FYinjc0HQBXORntkwwW\nS/G6Kjv+c4vy76Wrt/Oqk/eDePZLutyRAJ1LksZJXbGPb13o9Nl0BJ5bh6S3JWc1kEXpkRNgVVaC\n3diIl38e0lplAQBc3fRVljEglGvSVERZEMbUjMGfxxcbJJsfqaJvYia3j7FjB5Hj1otFVbDtSz29\nb9JW0e8FlWBp9zfeUXhO7QHvD9dT6td1jegOT/F15Qok+q3YCgBwHvk6v60y4aFSsuig+IaoBYR0\nWtXy7ASu3NGLiMoVhme96DH1M7FzekzuPaWxRnIxRlk1FaSRHiW/kro2UpFYjElRCzHmwgIYWBjB\n2NYUYT+9jklRC8X6SmqTdm5S1EJ0e78/wn+dAmN7M0yKWoixFxeg35ejoG+oL1V+xIk5sPK1B4MB\n9PxkCCZFLYSBheQ4OJ6MSVEL0f3DgWCaGcKhtyvGXlqgyEcgxo1zVXByM0CvgfLv98L88mUxwsdZ\noHNXIzi5cYNwORyAxeLg3HPp6UClEXm8Et+f7ojJvVSrGq9Dh6LoFAYNU5eUi8R536GpoAxG7vZI\nWrAbTUWK72pW37mHnE83IXvFWtQ80J78+q3dgy5e57oAfbZGtZSevJiDMeNFXXhkuSPx+OCdcgDA\nifPcBcD+32tldZeL75JNMs97LxJdeGYe+E5Gb8UUIBKLNqa5pdRzBlY2MPfSXBCouknZuVbkWN7n\n23HuRxD2IVTUfSh1j+zq0vnntGvBmfKt6HdZke+fcKVzaTw5zv0tBc/dIVJYzcjcFkFTqSlw8mis\nKYOBqSUCX18j1MpA71ncDEWtMygVJ98FwC3EJtxfvMCaOD2mbeDXkOD96/PmNrnXaRr7Xq5gNbbg\ndOgenAn7EadD9yDnMtcdx9LLTiXZnad0x+nQPShN4O6UG1gY4XToHpwO5fqgBy0XpMfkLf5558+E\n/8TvN/aidAVgUtRCZJx6yr9OWL4wwq5B8tyEvlycj6LcZsTeUex5cfy3MvxzsALx9+uQ9pwbFxHh\nxR1rvH+ySF9Jc5DU5hdojOoKxZN06Gh/eG3bIeKW5PzmXNrG0ikMWkDzyyokvbsHSW/vRlOx4sqC\ntlJUyL2hCQcke3lzXYAO/Snqx3v4pJ3EwGVpwcx7f+XetL/dY4OUHBckZQn67NwmOx7hyiXuTdvW\njtzXv+uanfCY8Z7EdgNL0cC0+txMqXKSt68ROeYuyMRjPvRNTJVWFloHUvt8tAFe/1st1s9p2ER4\nf8CNgWE305OmTdtgNdSjLkfUHabrmp0wlpBRym/ZlzBx7SjSpmiAcusMWw5hoxS6Xt2w6sSTA3Rd\nsxOd5osH5zPNzOEx43/oumYnuq7ZCZteA+TKb6qtQH05dyHpO+Jd/iI7cPJaGJpaqf4GIFAIjCzs\nhBbyXJfO5MgfxfpnRZ/gv27dn6dMtMbCSXrWLIaePiVlQ9OcGyZaBfrRxqsAgD7rh6sk99HmawCA\nuK9uAAAeb70ucr5DuPyMY7zFf8/VQ6T2ebJDuzKLkeT0vnJNT0GHFtDxs8+Rvlb02W3WPZC28XQx\nDBpGJNhZiPjxkQ2PNAAAIABJREFUm9U8E/I4OevD170A/UONsH2XNSor2Zg1pRTlZeJZQqa/rnhq\nUl/3Arw5zwyLPjZHSTEbSz4ox4sUrqvPT9/Lznr0/Tc1+HCJucoVp4XTY5p18pO7iJeX9Yjd1IiS\nW5dEFo6tXV4kybTp2R/Oo6dSnLV4Wk9DWwepc2+uKEXqni9oqeyrjWT9+T0MrGzh/YHgtylpQSwM\nu7kJyV9/otR4RVdP8+NQhCtAK5Mhi+rfyGfx51LPyRs38culcB49FTY9+/PbjJ3diH0/np4Vj8eS\nhqwAaWXPKdpfWKEAgN6zt0JP30DqNbadesIrTDS4nuRc6UZVC0PBLa5CXp3JXfRmXxDdQTeyEfXN\nT/o9Rqosz7Fd8XjLdbH2K28onoiiLbFno+ZqKylCZ9dwhQN/R4RsxJVo+dZEX88IpGRFUrqm9flL\nObswImQjIF7MmTidXcORnqdanQtp6JuZg6PGzTydhUHDFO7/l//v5TluJc6nU7XfZK0I96IaMbB3\nEcYMLZGoLKjCn3tr0S+oCONGlPCVBSp8uMRc5bFrM7k+pFQXdlT7vYy6DHYTteA8nszyx/co9Rfm\nxS5xP+7WlMXckus20x5prixD2o9fyu8IoLmyXGllAeB+xm2NwovHkHNEscJeHPar4UKhpy+7WFRF\n9lM1zUR5OCz6Ur+2ls1hy3bDLH6Qq/AYtXm6KvY6dJBGZ2HQMMXHRU3a+b9EIvDcunZhYdBWeK5I\nfbopt0sjaeHPazNx8YDDkLEw8/RGU/lL5J7cj8bifIXHSN7ONTMyzS3hPPJ1mPt0A7upEQ1FeSg4\nfxjNVeImaUV3pFtqq/nX2PQJhf3AEdAzMETFkxgUXTmlsnzSUNn5VuV8a5rKX/KvMfX0hsvoqTC0\nsUPjyyJUxEWj7MFtheSRnBvdcqhQk5bIH0/P0AgdJsyEqVsn6JuYorGkCDXpSSj+95za5tNW6D17\nq6anIBd2s+rKnb6h6sktAIBpqnwVdR3ag/Au//B+G3D1/gaJbZL6S8LTZSA8XUSL0vGu8fWMQG7R\nA9Q1SE5gIImhfdfh35jN0NMzAJvdzJfVyTUMGXm3+Mc+HiPxIvsy/9jC1BnO9oEibbaWnWFn7YUX\n2Vfg5T6MNgtDxrrV/PgFpxmzYN6zF9JW0ZfwRqcwKMiAoZ/CwFD27vStyNW64jxaTHQct6hdVRX5\nv1F9QTayD4r7QStLS00Vck/uIyZPGuUPo1D+MIr2cdoqdVmpSPtpi6anoXV4v/ExUo98C3ZTI3KP\nk0kV7Nh3BIpjrhCRpQlyHp6De5/xCJ67A6nX96I8+ymYxuZw6jIQHYK4LmfZMac1PEv6cR7YkYic\njuP9URyjBt8RGvA8sAWs8irkLtbdO4SRVHFduI2KW1JWwR0RlyQAyC95DABIyYrE4D6rceMh9c9d\nX4+bJW1Y309xJXo98oofwcrCHRl5t2Bt4Ym84lgAwIvsy/+NFQcA6NNtPq4/+FKkLchvBq4/4Frm\nM/OpbSyFzNiO4rQYpMccldnn4cnP0NLIjeFkNzUh49M1cPvwYxi5eyDjs3WCnMg00K4VBmtbLwT1\nfVdmn9tX1oHNapYrK3zUV5THDYvgfkmbmmpw71/ZGXQkxTBURlHLMa2DOq2DplWNXdChoz3jM2Mp\nDMyt8PxXrtta4OKdiN+1FF3mrUN54gMURUcicLFozELg4p3IOPUz7IJCYWhpi5LY6yhP5KaF7b5o\nGwpun8PLJ9Ifng69h8Cp30gU3b8sIjPlr6/hNWUhnv3MDcB3G/4GrLwCkPj7JrBbmhC4eAcay18i\n+cAWdF+0DQm7VwIAfGevhIGZBb+fuih8dgOFz24geO4OeA+ZJ3KuuigdSZd+UNtc1EX3xaFI2CW6\n4RC8KYKI7A5DvMTajO1MAQB3lymXwlid6NtYwvMAd01QH5+M4u37NDuhNsCV6PWUYxmEcbbrjmdp\np8BkGvOVB0XGBBiorS8BADxPP8O3egR3m48r0dx7IVPfGC2sBjjbd8eztJPILXoo1lZclgh9fUOw\nWE1wtPXHi2xyGyB+YfPx7Iqg/gK7sRHZ26mvT1Wh3SoMVBf4g0ZsRmlJEp4+kr471n+octWSDQ3N\nMWjkF7h9ea3UPu3V9UjbFuTaNp9xt6jlmj8fpnhNDh06VKH7R9uR8J24WdtzzFwk7RXcr+J3LRVT\nGqqzk9Hptff458oTH/KVDXM3b5nj6hub4ume1QhcvBMljwSBrI3lxXxlAQByrx5B7tUjfLkAA8kH\ntsD/nc/5ygIApPzFjQUT9FMv2hasTCdeUwPx7Ie7YLdwrbYjj5GpmP7i78fwmdUTPVYORty2GwAA\nppkhRp15CwBQfF+xrGRqh8MBGIIsdyaBfvA8sAWcFhay314PsNunJ0JntyHwcO4HfT1D2Fh2xKPE\n/bga/RnfEsBzPZLUxkMZpSGv5BFfHu+6kO7c1LwDgj7C09QTqKrNE2m7+0SQ5nxEyOci4wmsHoK/\n4ZBgbiZDnkLCc0USbnuWdpLf9jjpL8rzp4K5nTv/tde2HWKF2iS1kaLdKQzBg5bD1MxBoWvsHLog\nfNRXuHlpldg5RSwLktDTY0qVDQCOb4Si+IjOFeRV4/FmwY5DdXopwv6YjuqMMqQfjYOhtTG6vjcA\njzdeliFBhw56kOQuAABZF/YrLZOnWMhauBfe4RaGK7p3SaS9dbB04OKdqC8Sd1F5+SSKUj8dZDkd\nugeTohZiwo3/8dtaapv47arw7Md7SPz1Pibc+B86TvAXG1fbyZorSJPtuHQuTHpwK4kzmPrw3CdI\nJpG7mOu61F5Iz72O9FzR7FUccMQW/5LahI9lKQs8dyThfkkZ/yApQ7TAZHSC+PdEUhsAsNmi3iY8\nufLmRLWNBJWFKbTIpUK7UxgUVRaECR2xCVFXlLMmyKNX/w8Re0+8jLfz7MGwG9MHjbkvkb6Wq4kK\nuym1VwvEq07eZUHBnnG3FolZEtL+jsW4W4uQd1VzNwcdOkjAYbGQsHuF3H56BkZgNzfCuktvFMVI\nVpa7L/qar3S0tm4o00+HOLIW4tLOUW1X9BgA2C1shZQDbVUkindyFW4jL3c4fyaqSLnt4ia5KPvr\nHKovS67toYM+Wlsl1IVD52C4dhPUNbHzCISlk7gLnp6+AQxNuAVWk278prb5taZdKQyqWgP09Q1h\nYmaP+tqXAAD/HrNITAsAYGHlBq5ZSzwgpezyY5j6doCpnyvqkvMACBQF21G9UHYpltg8dLQd8q+9\n0PQUdLyCxH+3jJJFwGcm1+ztN+cTZEdKz3tfePc8JXkBC7l+3hlnpKdrTfl7GyUFgGo/HTrUTWNa\nDrLmcBUEl00fwtCzA/+c7ezxsJ09Ho0pmSjc/LOmpvjKoW5FgUdjTRmMzQV1TfQNjKFvYCy1f1lO\nvMgxu6kJDD09cHiubXp64DTLj8lVFgaHxohqZWEwGApPyqPzYHTyHU1kfJ77kCQF5MHt7airLZF6\nbSffCHh0HipXNg/hFKqBZ9cifsIXIm0Bx1a2u7oMOkSRZGGQ1a5Dhw4dOhSAwUDgWUEsIf+Zq0Up\nzG1njYNFxECxdnZtHXLel508RUfbh0qWJEl0/mIrGAbc1MMcFgvpq1dK7MfhcBgSTyhAu7EwyFIW\nMl9cRlbaNbF2A0NzDJAQ0Gxt64WWlnqx9puXPoEkC4EwGSmRKMiJQb9wJQo5MRgwsLUQaWLVUSvg\npUm6TvHDgFUhUs+zWRzE/vwYT/YmqHFWsun7UW90fzNAZp/ce3m4/PE1uYWFVIbDVQ7YzSykH4mD\nsYM53CL86B1TgxhZGiFglj86De8IKw9Lha4tef4SaRfT8exw284k5ujeC769pgMA8lJvIePZeRiZ\n2qCj/2gkPzyo4dnp0NG+CDy7FoV/Xkfx0TsSMxNqA+UnLsOkdzcw7a1F2vXMTOF5YAsakjNQ9MUv\nGpodzTCAjoM90f3NbnDsrphbOZvFQeKxJGRcy0RRXDFNE9Re0tcqXzRUUdqNhUGaO5K0YGNhTM0c\nEDxIdrELKnKozCkr7RoyX4j653bdtxiNeaX8GAarAV3guXoKAO2NYVjwYK5K119ceBn5D9SXuUjP\nQA/z7r6pspy/hh1GYxU9Spzf2yHwmtET9cU1uDnnIJHiSZrEI8wdw7YOhp6BegrKp5x5gdubtd//\n19zKFT0GL0bUmZUInbiNrzAAQOjEbYg6I3mHSIcOHcohYsmX8loTMPT14bFX8vhZc1bDemoErMYP\nFmtvy4z9ZRScezqpZayW+hZcWBiJkqcv1TKeKviFzUdzQ43CFgaq6CwM/yEt1oDqIr+utgSlxc9h\n5+gvv7MCpCWdh1eXcSJtnl7DxBSGxLd2iRxX3k2SexNTZcH+e7Dy2U6m/zMVZo6mSl/PY/QebgGj\n3/vul2e0URlVlRthZl/j7gqr8hlKI/m3aCT/Fk1crjpx8LfHhP1jNTK270Qf+E70AcC1RJyd+4+c\nKzRDl75v4mW+6tY2kt9rgJ7vtKYwsXBEtyHv4+HZz4nJfBU+b9LvUZ001TThzyGHND0NSthMHw3L\nMWESzwkrBBXHIlFxLBK2cyfCYhjXiu95YEubUxrG/ToaTj0c1T4u04SJCXsFz6ObG6KQ+k+a2udB\nheRbfyh8jdPM2TDv0VOsXZdWVQYOzoFibVmpVxWS8TR2v0pWCknkZt4WUxgkoW9mDO8d8wAwkLZq\nH1oq65Qaj07cQ90w8pthxOUuiOE+oOh4eM6/PwcMPZWVaonwHqza+NBXNyO/HQb3gW6anoYIDv72\n/L9RZVYljk/Rnsq6zY01MDVXPpsbj70hBzAveg6BGXFZ8GBuu/k+11cXS1UW+k/bjntHZVuUW9Pr\nvR4kpsXnj34HiMrTIZ+u+xaLbM5RdU0aMnwLEp8dQ2GBaslHDDo4osPWJRLP5X70JVgV1VKvLdt/\nBmX7z/ALwLUFtFH5DN8QivANoQCAu19FI/F4spwrtBvzHj1pUw4k0S4UBklkppKrrEcn+mZG6HZ4\nOaofpQEMwP+vpXj+5jdoqajV9NT4TD31OizdLOR3VIEFD+bij34HiMULqOtmReciy8TZAvWF0h8i\nmmbS3+Nh52ur6WnIxcrTCgsezEV1fg2OTjyh6engye0fEDpBfHMieOQaFGXFUJbDZmmfO2l7pefb\nQUTl0R4XpUOE+PGbEXhuHV9J4P1PxR3p+tXVcHIOwpDhW5CddQtpLy4qNLb5oN6we2eKxHPZ89eB\n09K2XU+FMbU3wYyL0zQ9DUoMWBWCAatCcHvjHaScS9X0dBAyYzulftGHFNvsIEm7VRiUoba6EGYW\nzmods9vhFWI3Lbr9Kvsu7oOYXQ8p9Z13703oMdXjgz7//hwcHHUU9aXiAedUMXM0xfR/phKclXwW\nPJiLqC/uIfk02ZoJtgEuyNMyhcHAlIk5N8mlG1YnFh3M+Yrk3gF/gt2soSqrHA6izqxC6ERu9jNX\n7zC4eoeBw2bhRdxxhURFfnQFEd+NoGOWWotjp77o2GMCEq7uAtPQFAHDPpRoMfAPfw/Pb6qemtLE\nVnqaQx1tB1WeqUWFT+DoFAQPzzA01JfDt8tEXL8q3y1IkkUg5/2NYNcq/4zTRgatHwjf8bIruWsr\ng9YPxKD13OxUbc3CmrZqOby27UBZ5EW0VFby26sfPqBlPJ3CIER+9j34dHtNpK25WTX3oLraEpWK\nydFB99ndKCkMsy6/oTZlgcfMS9Owb+BfYDUpt+uibmWBR+ja/mgor0fWTWqVZYVTpo67tUhqP20q\n3DbxwDjYd7WT37ENwAuA19wDgkMkuDn3Xj6BuQh47eB4nJp5jqhM0nTsORExJwUpMhV1L1KUmZFv\nEJWnDVYuHdTp3XchLC3dcfPf9fxKwHm5CsaacTjIemstoIVJZlRFG12PlGXBg7l4/NsTxP4cp/ax\nZVkOGAw99Ju+DfmJN0Tavb7iWiVsI0SzhOoUBjVQUZ4u1lZVka2SzNrqQsUVBi25pxjbaGZn7a07\ns5VayGn6xjV8+1DK8364TtSsLanegsdYskH4qqDpz5YuFjyYi4MRR1Ff1nZ3/FoaWsA0JnMrt/XR\nfhezmJNr0X/adrBZzYg5uRYcjoYsRUpSnV+j6Sno+A/vnfORulR2sOnjhz+DzVZuA4td14Cc/5EL\nvNcm3Pq7IuK74fI7tjF6vh0E/2ld8Neww5qeCh8Oh43oQ8sRMmM7suPO89vVGb8AAOrdPtZyeBWe\nhWluVM0lhNXSIPN8/PjN6H5qNd+/MuDoSsRP0HAqVYbmF4iKjq/p+fKgOo/CW/IzNZQlqC/trDQW\nPJirNZ8tXcyMnKb292hiLp4xRJ9phO4D/6ewrP2DpFdZVoa24Fpw7+hy3D+xGl3D3kH/adR8f7WB\nhz+oFjirgyymPh3k9hFWFphMxTbRSCsLWXNWa0WGpAUP5rZLZYGHkaURFjyYiw7BLpqeihiBo0WV\nBK9tO+C1bQf/2PlN+p5lOoVBCE3tVCW8tgXx4zcjfvxmPJ2m+arOvMxFmsYrohOlfm79XWmeiWJM\nPjpRof7SqjnXZJeTmI7StHdFoTXqer9egZPQe5i4+ZnV0ggr+85qmYMseP68bQESMQqymHxsElF5\nT/ZpT/HK9g7TxlzuPyoMGS6IQwgN186ib+rCe6zXK/VcGL1nJObcnKnpaYhgbCnwWOn42edIXyuq\nQJp1F88aSgqdS5IWoo5iMkwTJlrqW8Tau03vSuu4ijB4cxjSLmfIdNGy6GCudTsd1p2s5XfSYhbE\nzAXoyUar9Sx4MBc1BTU4MoE+P3PnjiGoLBV3f1SFyuwqhatmt1XELQqCGwRDTx9dB70NUytnMI3M\nEDDsQ9RXFSHtgaAYUnlBoogMWTEQ1h2tiM1bh3rxP/AxETnXr67GkOFbUFQYhxvXXl2F4VVSFIQx\nMDXQqpTTeQmCOl76ZubgNDepbWydwvCKErp2AG6suyXWHrKsrwZmI50FMbJ/qNPOTFbjbKgz6c9x\nOP3mefkdtYw3zk5+ZZUFHuYu5rQ+IOqqimBp25GozOOTTxF9oBtZGaGxkp6K5qoia4HPYbPkWh2S\nbv9OaZyuU/wUmpc8Mq9nEZWnQz7yNt5k1WIICBRkg8vKuI4Orn0REDgLT+PJugC2hmHAhMfvm7TC\n9YjHq6osCEM69XtreoyX/vc2NhckG8l7/i8t41NBpzBoAKoFY+jEK6KTmMLQ1m4KgXMDND0Fqdh1\nUSybkKRMSQ/X/IPCqAxSU5JLW/v70w1dSsPjG98gdOI22Dp1RVlRIr+9/9hNKC14Snw8ZZh9dbrW\n7KhpigGrQojKu7byBlF5OmSTMOlLuX0ac8TjFnm0VgzS0y5L6UkWIx9PtYxDFd1zQcD8+3NwaPRR\n1L0knyRDWCmQRutMShnrVvPjF5xmzIJ5z15IW0Vf1jidwqAhZO18aINCoU1M2DsWZ+f9I9YevKi3\nBmZDnTk3ZuLA4INy+/GUhYsjfwargZu2L+z36ejz5Vip8Q2k0T0UJEOX0lCSFwf/kHli7YkxylcA\nPhhxFDMj20bRpFcNVmP7Kc7VVuCw5MckJi/8SQ0zUQwDNydNT4GP7rkgzoyL03Aw4gjqy2QntFEU\nZQqysZuakPHpGrh9+DGM3D2Q8dk6WlP36hQGHQDI5xoniUOAvVhbW7iRGZgZUO7bWjG4teAwBnz/\nOukpSaQtfJaahA6lIfnhQSQ/lK9MKgLp1LDz78/BH/2UV2DaMgGzyKY03hf6F1F5OtSHq1s/5OXe\nV9t4xlpiYdA9F6QzM/INWt2TFIHd2Ijs7V+pZSydwqAB5PlV0h3wzKPPwl54uIeb5k/bq5kOWBWC\nu1/9VyznVfGx16P/jeoeCtTQpqA3dcFQw/dPW+n3cbCmp6ARZH3H7Xxt4dTDEZ7hHnAKcoS+kb4a\nZ6Y6Hde/ActgH/5x5b1kZH15TO51Dk6BalUYDNyc1TaWNHTPBfnMvz9H488E4XSqwtBVn0GnMLzC\nBM3rjod7YjFo3QBK/ZvrmnEgXPKu6LhfR8Oph3hueVJ0neLHVxiUSft6/p2LKIorFms3NDfEm9dn\nqDw/afRf2Q/3tsl/2Fh62aEqrVSkzbY7vTmg34qaTat8WRTFF+Pxr0+QF61YpeIBq0KIB6NSZfo/\nU3F4rPwFhia5vOQaRn4zTNPT0CHE+bcvyu/UBihNKUNpShmeH02S29fSzUJEudBUEVAePDff/N+u\noD4lH6b+bnB5axiljIRlpSno2fsdNDfXARCPbXDbRTY4Wd9Gs9nONKUssJpYuLHutsLJAYxtjBG6\ndgA8w91pmpl06NhIChq7AiaW4m5p6THHUJwmupZorRgYuXuAwaBvo4fB0cJS5QwGQ6FJhY9SjzmG\nFDcvrRI59j/wsVhOaHk3MVI/6mOvn8TUk7JdXxT5QVi6WWDqKXpcaXjzoPrek04k487WaMry6bpR\nyvv8JAU8S4NUTEO/JcEImKm+StLHJ59CZXYVLbJH7xmp1gI7JB4QoROl11uJOrNSJdkkv8eFj4vw\nz7uXiMlrC5BOK6zpXUhth9T3tammCX8OOSTxnDTFgEQKc88DW+R3UgJelqSQGbILEyrj+y4NdSoL\n19fcRPqVTFpkM/QYmHX5DRhZGdEiX5iWhhYixTP1mIboO5UbqF+Rn4jcp1fQVF8FS0cvePfnbmo2\n1VUg9ozs76vXth0SLQwcDkflu5rOwqBhAs+tQ+mlWNhF9ELh3zfgPGuwWis9k1QWAKAqtxrPDifS\nVs/BaxS1wla/990vs36DxGuC92tkd0Vdgc08jKyM1KIs1L2sx6HRR+V3VJGLC7nZS7xHd0b4xkG0\nj2doboimGuVzX3f0Hw1AdcVAGmmRGZSLHsrDuaf2BGCqjVfXE0uHFiKsEPSZvAkPT3wKANDTN0DX\nIe8RG2fSn+OIyZKGLC8FknDYHPw1/DAAIHzjIHiPpq8gJtOYCZ9x3nhxPlUlOTxlobUC+DLzEV5m\nPoJ1h67oEr5ApTFURacwaAF5P1yAWRc3FB+JQvGRKLUUbqOCsjtj0TtikHohDRMPkL0BUV3Mq7Kj\nR4fSELq2P6K+uEdUprKY2BrTHuB+Z2s0kk4k0zqGJFIvpiP1IrcgGp2K35vXZ+BgxFGlg4xdOvVH\nfnoU4VkJuLHuFjGFAQA6DfNExjVdDQFl+HvkEYX6f54wXqzts+7nSE1HLfDegzbNuzGvFG4fjEHu\nDxf4bR3XTUNjXpnca3n1GAwMzWFgYIKYe99K7EeqbkKHLUtg4Cru3ttz/Bq+sgAAbFYzzO09iIw5\nYd9YhVOBK8K/q28i42ombfJlcXP9bdxcfxsWHcxpq9sU9tlA1BbVIv9BgUpy4s5L95apyOem4A4c\nvRTxF3cCkBzDkL72E5XmIAudwqAllF6M1fQURPi9r2pm9JeJpfI70cDeENWzuhTFFRONx/Cb5Ks1\nCgPdyoK2uF/8HrwfEbuGw22AKy3yZ0ZOU/q9piechXfQZKQnnCU8K3oYunWw1vxd6WbC3rFE5TWU\nk029qIM6rdOTG7nawXZUL4XlCMcsdPaOUHle8mjKLZSoMLQ0i3+XGAw9ImM6dBPPREgKbbl3VOfX\n0OpFMHrPSJXfa0N1idw+JlaCoHi6gpuloVMYNEzSu3sAAKUXHvJvcGmrNZvK8NCYYwq780hi38C/\n8NYd9QXW1hbVgs1SfeLn37moVtekEafmwcjOTPJcCLorTT46iZis1iSdSsGdL7VDKeIRufgqAPqs\nDcoGvBVlPwSHw0boxG1IfXISDbWiynVFyQuV5xb7cxx6vddDZTnK4PnT1yLHWf9boZSMmtvRKP37\nhEi7sU9nOC17XyXZspCUwllZFImf4iG8Ky/J2qCDOnRY6Y2M6A9IbkzJhFm/QLH2hEs7xeIZCpJu\nqjyepmL3NMXvwfsBhnLJU+QxYd9YnH1LvGYUVbqPWoKES9/I7JP56LTS8lVFpzBomKYCgUlUG9yQ\nAKCupI6IHFaTeosVHR53XK3jkcLIzgy3FxxB5YsSjLu1COfDdsNrVi90eac/sTH0mHqw7mRFTJ4w\nh8YcI/adoYPfg/dj3t03oWdAZjdOGEt3S1TlKBbMLRzw7B0kHkNEIrbh8W9PiCoMTBMmWupbKPdX\ndSEv7fqGF+nI+t8KMaWEBFTjo6iiCbc8HeQZMlw0qDnxGb2Z0ppzCqWeIxngDAAjv6Uno5q2Kgt8\nONQSviiKqpYaMxtXOHn3R1Gq+OZbv+nc50bRi7v8ts5ffgUGU/YynqQVol0oDK2zDrV1jD0d0JAl\n3zRFBw++f0RUnroCiUmnu7y64jqGfz2EqExZVL4Q/Xun/R0L+x5uxOTPu/cmMVnCaP2D4T/2DvgT\nk49OIq40TT35msKfAV3Bzq2pyKyEdUcy73furVmU3qe+hWRLWVtg8Cb6A+Z1tD2uX5Udm0AqdoFH\nw4ssNGXmEZUpDfeB5J4xAFCRUYET084QlUkXVTnVtKxPlLU8Rx9ajuApm9EpeDI6BUuOtWitMDKY\nTDGFQFqWJBK0C4WhveG7+z2NWRviDzzVyLiqUltMdoc760Y2UXnK8DI2l4gcM0dTInJa01aUBR4n\npp3GtDOTYdHBXH5nBdDWom4npp5Wq2ud8K4/77WwpcB950bomZqIXJO39ku0lJYL+nyzCXom3Jz9\nRbt+QUOi6u5ZmiDlnGoZU6jSe7IHJmwIknhOUtCxrIBkWecW/zMUth7SlUFJ1zAYwIZ4UbcqDpuD\nDUHnpcqhi+4nPgHDUPJyR96zdsjwLSgpFjwXW9dhIA6LjYL14q6o7kFjkJsQCQ6bjOV+xoWpROQI\nI09Z0GMaou+U/7IBHRYsfkOmbxdrUxdXlv6LETuHqn1cSTw4vg76TCMET/1CpL0iPxFJN3/X0KwE\n6BQGHTrUgM84L7w4n0apr9f0nkg7/Bhd3x+AtEOqB8NP/4f8g+HvEYeJy1QHRyeewLzoOdDT13zu\nTJ5rUl4rGq0eAAAgAElEQVTqLWQ8Ow9Lu05gs5pRU0FGUSTN0K2D8e8nN6Se5ykHnj99LdGlKGfp\nepFj9283w/WLNSJ9c5Z8ypehTgzMDIjKu73xDlF50uApC7Vljbj9WyrM7Y0QOt8bAFcBIJGpaPW9\nUTA2N0Di1QIcXvKQLxsAil5UIeZQpsTrNsSPB4cDXNzyFEYWTAz7sAsYegxYOhqjqli9weAMQyYS\nJn4BDpuDLr9/iKQF38P94/EwdLKWe21NdQH9SgIFXPzCkPPkgvyOFDF1ILuRRGXTpPfE9RKVAlUU\nhZDp21W6Pvt2Diqzq2DlQS4+5Y1zU3BkvHIu0qyWRoVcz8yDeqDmSRwAwCygu1JjUkWnMGgA9yUT\nkPMNN0NK60wOmoSuXdKcqFy4h5I1fQpzZMIJ+Z2UoKmmCYbmhkRk9VsSLFVhuDDsR/7r82G7Me7W\nInRdOBBNVao/VF87OEFlGa3Ju5+PhopG4nLVxd6QAxo3Q4dO3IZH175G72GCxXJVaQZCJ24j6rLE\nbmFDj0kmdqPTME8icngU7/oVzquoFy2kkzk3ZhKT1VStfI0ORZGkEFz5JpFowLSxOVeZ4ikLvHE/\nTxgPJx9LPDwmOeXu4zM5OL0ujn9865cX+DxhPJZdG6GRlKscNjchhqEj100v59tzlJ6/hkYWtM6L\nKilR5J7PpO9/re99Nq7+8Bs0H4BAGeBZEYStCbzXPFr3ZbU04sHxtfy2mrIcmNu6o6ooFc+v/yRR\npjIcn3wKc27MJLZxYO6sHtfMtJXLYOLjC8+13M2YkmNHaM2cpFMYNABPWeDR2iSqTUoECa6uuE6b\nDz0A1BTU0CL34Q+xGLAqhIgsI0vpFSfZzaImZpKZkWx9bIjJ4nFp0RXiMtXN3gF/Yt5dst9JE1tj\n1JfJV/K6D3wPjfUVqK+hP05pf+hfmBc9h5g8px6OKIorVupaw47ucPnkI/4xp5l6EHVb4s+hkqsN\nq5Mr3yRixBJ6imdSRVhZaMu0NCtXb4U0FfmJCJmxnXjgs6pISvrgN2g+f/HuG/oWUqL28RUE4UW9\npAW+i98gfrt9x94i555e3iVyLEmmshwYfJCoIjX//hz80Y/+jJf1L1KQ9cVG2scBdAqDxpHkP1ly\nSvF0fNoMu4VNm2zerhEdJB5PJqYwyMLIxgSN5eQfSiRTRPLQRl99ZWA3s3F8ymlMOU4u1ezMyDco\nfT7GZnaoKs0gNq4sSKQZFmbcr6OV/g64fPKRiPuRWb/esJ83ndTUlIbOzQxNUVmgHYtcbYJpaYqW\nqjpwWlgKbcrdv7eTxllJRs/CDOzqWpE2XkrV1qlVFVUgSFsXjr1+SqytrrIQ5nZci2R+4nWF5LkH\njkVB8m0A3CrH6qQyqxJWnmQSRTD0FHN7NTA2R+/XNsjt1/rvzSvexrMsOL85F4V/0vOc1ikMaiZ8\n1FdyszoV/HFVTbNp+/By7bdlRpzhlnuvyS7HjdnkfGVJF6Fqrm0mKk/TVGZVamTclNjD6D7wf0h+\nJLoTbWblQiygUZjIxVcRsWs4cbmqog3KAgBiLluaYk30aBiZ0fco57A5YOgxEDzNEw+Oct2P1twb\nDQDYPVGxxaCmEN6YS3htC9w+GgfTLm5IWfiTBmclGaazPVy3LRPLvqRtlgVA+gaSqZUzakqVqw6f\nGStQQBw69UFJxkMZvclyfArZRBH6RvpgNVK7p/OUhbqKAsRfFK/gLImOn32O9LWr0fkLQepfs+7i\nNTxIoVMY1ET4KEHJbyq7G+rOklTwSHruZxLUFNbS4teXF51PXKa64bkg+S8KxbhbXJ/usif5uPvh\nSaVl0lHh+MDgg8Rlapq/hh3G7GvkFq5UYhkqX6ajJC+OH/Ts6h0GV+8wAPSkXM29SzZFo2tIB6V+\ndxwWSySYuXU9BT1jY7h/u4l/7LT4XQAAu6EROR9z75keP2wFQ1+f38fzp68BDgdZ7yv3uYV9FqrU\nddJQtwVOWmaj4GmeGPcpmYXDhqDzcOhsjkVnhojI1EQcAilyv1N/piaqGPuQjRUSRl1Z06IPL0ev\niesBDgexZzfJv0CI4rT78OwxDk7eA/Dk4na5/R8cX4t+b2zDy6xYpEWrnozj8W9P0PNtyZnHFOWt\nqNkK3RNS7x1SyKqib2YOTrP6YqZ0CgPNWNt2RlDf90TaCvf/y3/dXFYD9yUT8PLcA3BaWHB4LQRP\np25rLYZ2Hu15TKv8p38/Q8iyvrSO0dZ5vjsKz3dHwcDSGBHn3+YXcVMG0jvK5+aTy86hTTRWaSZ4\nO/nhQSQ/PIgegxfDzMIZafGnUZh1n7bx0i6lEytMNur7ETIfgtKKrmV/8InMvuyGBrkF3yTJUAWf\ncV5E5amTKdt6AQB+nyuekcnalWwGnEVnhmDH8CuoKlJvdqNXEQM3J6nn/MLmw8bVX6RNU5YHeQvh\n2DPifvVUYw2y4s4jK05UqZN2LaulEfePkNtoif05jpjCoCjqdsFSlHavMDg4B8K/xyyZfVpaGnD3\n2ufgcMj52hsYmmHA0PUSzxUfF1TqCzy3TsSaUPDHVbE2dVAUr1wgI1WeHU7UKQwUMbIxkd9JzRQn\naKaQoDogXbxHkYxJcTd2ye9EgBuf3iZeyViHKAfC1Zt603uAIwAgO7ZM7BwvtSpVGDLcrdc/5ro2\ntmVlQdozVRPPWnkYSbEwdOz9GvKeX0PyrT/+a2EgYOSHlOXaeJNLgFGdT0+ikfbIhP1jcXbuP5T6\nOvkMRNEL6imZM9at5scwOM2YBfOevZC2ij4Fsm07b8rAwNAc4aO+kqssAACTaYywiC1SF/iKEh6x\nlZgsHe0HS3fZeZ4Dlw/BuFuLMPjPWci9lKS0dcHMiazrV0t9+8xmo414do3Q9BQoMfuqdsQfqALp\nVM/Nder9nVzfkwwAmLSph0j7wpPhUq+pLeNa1CJWdBNpb11gTZhzG+IBcN2feP82xI/HxM81swvb\n3pFmYXD06oual8JxARyY23lQlvv6IXIpto9OpCeVubZQ8vwlMVkO/tSSj7DZLejU5zWFZLObmpDx\n6Ro0FxfDyN0DGZ+tAzj0JYJplxYGUzMHBA9SXMsyMDRD+KivcPvyWrDZit/89ZlGCB2uWHqr8mvx\nCDy3DlX3U8Bhc2DV3w8VN9tmtWV1Q2f2JTqw9baRmIKOF7cAAPeXn0VJjGpVpqefn6LS9a3ZH6b5\nokV0U1dSR7yQkTK4+w5DVmIkLbKrcqph6U4mp7yRlfQ0wW2Fkd8M0/QURJBWO0G4XThu4P7BDIxZ\nHYCek9zRc5K7yDW8Ogmt2RZ+GZ8njMeAOZ0xYI6oxakspxa27uKbDY/P5CBiZTeYWApy1DMYQK/X\nPdDrdQ/c+DGFr7y8inge2CK/EwHqKgr4r02snFBfWYTmhvax0x9h8zYiy3+T26asLEWvOzv3H7XF\ne/CIOfIJ+k7bgpAZ25Hx8BRlSwO7sRHZ27+S35EA7U5hCB3+OfSZxirJGDTyC9z9dyOam2rld/4P\n4aBmWbBZoplmcr49i5xvz0rprUMWD77Xbn+/1tj62CDzunjmiMvjf0NTZds197cHDo05RvQBMXrP\nSFxceJmYPBIce/2k2h+Crwpn36LmciALZYKIP+t+DkHj3TDhsyDUlDbih9duoOk/S4c0eZ91P4ce\nE90xZKEfWM1s/LXwPsqyJT/rQmZ1wuhPAqTGL3yeMB6D3/cVURhkvQ91B0r7/vAejD0cAEhONpL/\nq/zf6JDhXIXg+tXV6Oo/BYnPlavgqypPL38Hc3tP1LzMQtAY2bE+rRn+9RBi82hp0FmcSdA6Pa4w\nnfq8JtXaIByz4vL2uyj47RcAgGmXLnCaPRcZ61ZLvI4EWq8wuE6fDzPvLmAwmUjesBR+G3YiecNS\nqf1VVRZ4DBi6Xm76UwCwtfdD9z7zKcl88ewU8nO0r8YCiZ36oPlb8eQPQUBip+FzkXGV3owhSadS\naJVPGgs3ybu7JJUF79Fk/dRPTDtDVN6rQodgF7E2XhVnXnakts6gTwfg9qa78jtqIbOvzSAqr+QZ\nORcGRXlyLhdPzuUqdE3cmRzEncmR22/0JwEA2m78QsoHPwNQLVYhLvY39Oj1NgCgrOyF1H6t06Aq\ni8cvn4NhbCjxHM8lSdFAZ8/B1F2X5HFw1FGR4wgb7mcTX3sDhgwjZDU+gx2zA6yZTmjk1MHRwBOx\nNZfhYugNS307tHCa4G3SW2ErQIjFRERXn+GPKev6gZaTkVh3D8EWY/j9Qi2n4lndbfS1GMdvi7B5\nGw+q/0GAWZhCc1GUDn1dkB9TINJGIljd1NeP/9pl/jso+vtPeH21nbY4Bq2PYTDvEoCUzdQi4Knu\n8lNFljxDIwuEj/qKkrKQkRKJm5dWaaWyAAApZ1OJyzRz6khcZmvamm+9OsrFh28cRFReRUaFStcH\nLdrJ/2fh7ktoVuJjkGBf6F9E5PBoXbhHOGVqwp2fEHVmpdg/uiGZ9tN3gg8xWerGyFLygkwZnh16\nTkyWDu2DpywAgH8A/bE7DSmZtI+hCpLq8USW/4aCplRkNT4DAPSxGANvk97oZjoIDgZcZaWgKRUc\ncOBpHKDUuFZMrqXIxdALCbU3Zfa9U3UCZS35qGUJnl+JdXfQ1XSASL9aViXKWgpwq/KImIxLi64o\nNU9JjP5hJDFZkrAZMgxpK5eh5kmc7AwGKqL1FgaquLjLzsBz59oGqSXe+4QuhZm5lFRmDIZYEEn4\nqK0AqP1RqFgpNE3uPcl52lfEyfeF/7rHcdh494Ye0xA93+Uu3Frqq5Hw52dE59geMLZu+37fivJk\nN9caSGpRTydUC+xQZeyvo3B+wUWJ56pKM4mOpSlsfWxR9kI8S8+rRPTOB5qeAm00N7JgYKSPiBXd\nEPn1M5FzvBgJVhuIJVMlE9L1q6vRP3QVBgxajetX6XP34NGcWwiTQPHNFZ4Ly/NrP6KqOI2yvCFf\nkNs9ZzVRv0dKi0lIqY/hWyUU4WrFPvQ0HwFHA0/K1gmG0OJZn2GAu1Un0dN8hFAP6QHCeffbTo0n\n29FjUH79Gu3jaL3CkLxhKax69QOnuRnWffpLdUfy7TZZYjuVBfvDKO5iJixiCxgMUaNLeMRWvowB\nQ9fDwFD+LjGrpQFRV9vOgjnrpuQg2697CHw1h64Igld4B/w6jrsAChjvidEbgwEA5amP4BE2VcQl\nSRvw7D4Orn6DAQB3jy8HwMCAKdtw97hi/p+kMLGlN11q5xEdicqrKWgfAXWawinQUWK7LEtC9AX6\n7xvsFjax6savHRyv9mJlqjLnpvzMeVSpK6kjJksb2dznAlbfGyUxSBoAvgqLRF25+gpHaYp7UeoJ\nKgW4FgbLMeKLfJ4Li61bAF95eHZlN6pfZsqU13lkJ2Jz+2sYtcJo96vPoY/5aOQ3vUB3s8H8Bb6d\ngSv8W+3yy0KfwQSLw/UkYHFa4GjgiYyGeLnXDbKahme1t2GqZ8Vv62QchDp2JUz0BK7BZvrWsGW6\noItpf8pz0ibSVi5D5y3bkLFuDb+NVVNN23harzAAQGXsfVTGyihqJMUEU1aSpNA4tyJXS3RDYjD0\nERbxJSUZSfGHUZRPbxE04lDIwtV7lo+IAvH0XBYY+oLPXduUBQBw9RuMu8eXY8AUXnARB1QtQ3Sg\nZ6Avv5MKDPlSejpFZThDMXe0qnRbsBFME3MAQFNVGRIPiO4G2gUMgNtggbWLZ7WQBs+aIa+fNiLN\nCkqS/aF/YV70HNrH0VYMTMk99g6NOUZMlraypf8lTU9BZVSpwxAQyFUwDQzNYWBggph734qcJxW7\nwKM5p1Dm+bLcp3zloeeEtXh89gui48tCUsCzpN3+ipYiPKzhbi7mN6WK9LtdKf6bkSRDUtvzujvI\naUyUOUfh64Rf36/mJpe5W3VS7LxwG10wjZkyA8ZDZmxHcVoM0mOOyuyTE38Jec+u8tvSV4tuQGVu\n3KDyXKWh9TEMfht2wn3O/9Bh2lv8f63p1lPywy/h0V6Fx5NkkaCqLNy8tKrtKQsqUPS8nP/awNQC\nPd/dyf+nDdRXq16Mjt1Mztyub6D1PzcRGsrpD3QMWrQTTBNzPNm9FE92L4WhpS2cgkX9Pd0GT0Hi\ngc14snspqjKeyXRvcujJzQairLJAOvOWR5i7/E5qhs2iL0+3tmPf1U7tY3ZZ/CU6v7WMf+y/cifc\nJr1Fy1j+K0V/G12WbJV7jd+Hm8Su0yHgafzfeBr/Nx4//BkvS2QvVknQUlIuVwkJiFiMkBnbYWRm\nTft8tAl/04GanoLSdJ3ahYgcRy/NFcDV+hVM6tfrYWgv2bTPw97RX6wt9p5yRa8AoKpCsTz4Ny+t\nahOxCqqy9MHr/NcR63tj7lGBL2DA7M/x+Jel/H9B8+U/qOjGxEL0e8PQU3yHn2StB702pjCoC+HF\n/ZPdS+HcbxT/OGjRTsT/uAJNVVw/+Yx/fgerqQF23ULE5AS+vw0dBo5XybIQf4BsDZQRO4aKtTl3\nDNF4pqTIj8gF9LWlVK0TD4wjJ4yC3tXl4y+RtGsN0vft4Lc930b9+6mqYpH0jXzLb/L3n6o0xquE\nkZHs4pt0EjR2FUJmbEfIjO14GrkL0YeWI/qQbPfa1okXVEEb0qkqU19BW+jzQS8ickhlAlUGrXdJ\n8l6xEenfbEJzZbn8zkJUV8pPGSeNx9E/UMq49CTmZ1SUpSs9Tlvi6x7HsfjORJFA6O/DpNePKHxE\nbw56KrvfNeW5fHckn74z4eDRS+H4BTZL+wP66KC+jH7XGKpwWKKBdiWx/8KpbwRKnwmyjvlMWwKG\nPrNNuCF19B8NVksjcbl+6wW7xA15WSi6eAoN+ZI3P3LvtZ2APm1l3yDZWbW8314NPUNj/u69LEXB\nc/pCmLh4IP/iYVQlxQEAui7/Ggw9ffiv3ClXyfD94HPU5YgGwkoa12FgBOz6DhEZRxpeC7ibYGm/\nC56FrmNnwqpbH75caXPTNzWH9zurkX/+b1SnaUcWKT1DJthNgkUvg6KLKK8OA4/EZ5pxQ+OwmxVO\nxRmyjNxudNzv8mMHdEhHT5+M8lb4IoqIHGXQeoWh8OxReLzzMepzMvg7OvlH92l0Ts8e/4mXRfRV\nY1YlZzSd7BooOyd/a1ekDv24u3mPfyG/iCuKL5HbJ/6aqK/pi5iDxOfRXvnnHe31W2aaWoLVIFpo\nKvfGMTgEhiFo0U6tVxqqSjNhYUPeVSl5o+j7ZppbosPkObDoFgSAIXaeJNPPT8HhcZopaEUVpx6y\nLdWKIi+rVupvWygt9gEg6/AeAEDHGR/wF/KJ21fAbdJbyD29T+a1wmP4d+nBb+ct6IUpuROJkjuR\nIuPIlfnf6y6LudaSvH8OynVhMrS2R/KutdAzMIT7a/OQc0px92CSPJu5AwEnxK0tz+d8K6G3KOrI\njESF+IuKu435TyPjBgMAT/YlEJOlg4uL3yB49prIP3b06ivX5Sg3QXMFQbVeYaiMjUZlrPbUL3gV\nXI+UgQ6lQBbVufRlAmiLdBrekai8yuwqovKUhcNmw8orEJVpgt0t+8BQJP0pGldUX5yL7KsHYeUd\nBO8pHyH1+HdKj5l7Nw9uA1yVvl4ez+/vpdUliaGnh84frQPTUuDfXHRBfDEf+0scer3bQ6xdGcyc\n6K8xoirjfh1NTNa1VTeIyQK4i3IOq0XMmkYaquPU5WWKtRVeOwXXcbNQeO203HE6zf5I2SnSAqu6\nHvHjN6Pz5lkwC/BEXUoe0lZSy+5la+eDzl4ReBizG56dhsDOzheWVp64cW2N/IsJ4h40BrkJkeCw\n6f2O6FAfBcm3UZB8Gw6dg+HV7w2p/disFpRkPEDGgxNqnJ04Wq8wtKbzx+uQ/q1mdt9JKQuSStRr\nOzxXpKz7ooHER9+7JbF/z3d30qpElKXKd1ETZEcShZtiVXsYd2sRbrz5N2qyuO9pzNX3oWeoj4rE\nIkS9R838Hf55KJ1TVBo9pgGM7bhVj806eKGxogRN1YK/XWV6AoIW7UR9SS7AAUwc3RD/oyDrQ/ye\n5fwg55dPbsM+iFuYrrFScmXdhJ9WIWjRTgS8+yWe/qLcA/3W53cwM3KaUtdSwbNrBGqrCqQqDcoW\ncPNbvxPNleUoOPUX0r7dKLf/41+fEFMYXjUy/80iJqvrsq8Fu/krdoic0zcil4pZ1jitMXXtKNZW\n8fQBGAaGYNXX8uW01FSBm3mOA7OOvqjNTAEAlNy9jJIo7bNSpq/7W+Frmhqr8TBmN/qHroKxsbXG\nLA5O3v2R8+SCRsbWQS8l6Q/g1e8NuVmSNE2bUxgMrG01PQUiyHI50laFQjitKg8b714oT42Fc68R\nEq6gj/pSaj722qYcSIOnLHScHAg9Q3083ngZPddTrw6pb0hvylZl0DcyQcA7gpR/TsEj4BTM/Z7w\n3IYyL+wFQ58J32lLAHAX/ByWaHDdk91L4T70Ddh1H4DMi/tErA2SeLJ7qUqF4kjHb1h3shapmO3u\nO4yofB65f/8Ct1nvwuOtDwEAVQmPUHBK9gKpMrsKVh5kAjlDlgZrbRGzGRemanoKAACv+StgZO8M\ngAG/jzYj+bt1SP5+Hd/FJ/v4ryL9zTx95Lo1JW5fLuYixNDXR9dlXIVU3jg+768HwLU+VKXEI/f0\nPuSe3iceA8FgwGXEZLiMmMxvT9mzgd+v4MoJvsJg3b0vHAZw718pezb8p1i0Uf5L225oaCGno2SY\ndtZw/UbxzcbWmZJS7+lcats32p+9TmsVBiOnDmgsyoffhp1Si7W1VeTFJ5Sc0h4XLHmUp8YCAGy8\neyPxqCAzkksfcuZ/SdQUyi8qxmZrPquDogQsDsPlcb+hqaoB7mPFs3+1JViN9ZTiCTisFiQf+lpm\nn5x/jyDn3yMSz0kaQ5viGPos7ImrK67zj5W1IMijNi1JLE7BMqAXnMZNhZ6hkcQYhuOTTxHLctRt\nhr/WKgymDqbEZJ2YKt8lh0frhX7aH+Lfc3ZTo1SFgEr8A4fNFuvHYbHwfNsykTZp47z4UdwaVZUS\nL9bXf8UOiddTlamN+P+5BM/f/EZmHxMTO/h1fR03/+Vu5PGCoKlYGly3LQPT2V71iQKoyE9E32lb\n0dxYg/IcQTxBZqzk2MLubwYQGZdHW8qG1haRl/FKGu5LlsPQxUWkLW3lMim9VUNrFYbGIm4Wj/rs\nDJH2lsoKSd3bFQV/XJXfSQPYdbZEabrknSJhZQEAqrLpzYzRWCW/uii7pRl2roEozWtb2R2aqrgZ\noJqr6K+DIInS5DKNjNte8Rzsobax7EKHwS4sAgym4Nbe9LIIRRfU4/tq4WqB6rz2HV9UkVmp6Slo\nhIr4+yKWDEXSw2orTGv5sTclxU9RUixIcqKIS5KwstCcW4T8Ndwga88DXKWDZ0Uw7NgBLhu5lsG6\nh89Q8p14Bi5edWcjU2s4+w3it0tTGHzGelGep462ide2HahLfI6K2zfVMp7WKgw8sv/4XuQ47Zu2\nsXPRHpl/UtxFRpKbEgCkXaI3X3JzbbPcPkxDE/j1Fy/qp41uSn4L+qHTtB7I+UegaLkM8QY+U/9c\n8qLJp9w0tDFFU3kdcbltGXNrNwSGvo+CjHvIeHZeZXm8tKpl926g5Ir0lMetYbM4xFL+TTv9On4P\nphZMqi76LyeXWrKmQL5ls72Sf+kI8i9JtvJpI8LZBlV18x0Q+gnAAO7eVq6+UNa8tYCMFN1NmfnI\nmrMaNtPHwHLMIDitnI+ibX+I9FE0paqN16tV1O1VpWDv72obS+sVhvaOz663YdLZWaStqaAMSe/u\n0dCMJCNNMeBBd5Bza6gUkdFGxUAS58N2Y+jhOSh7ko8nX/2r6ekg9UKa/E4y6H/sfbAbW3B/NtdP\n2v2NYHR+J4x//ubwHXB/Ixid5oWCwdTjt/EYeHoRyh9n4/nn3EUv08wIfQ8swN3Je9B333zEvPUH\nwq8uQ+wHf6P7F6/h7pQf+eNIk6lthE7cBnA4fP9o4XZlXZaUTZu6N+RAu3Y38H+jKzFZRyZoNkuJ\nDuqkLPpZ5FiSKzAVRWJg2FrcufWF2GuFoFjPp/zwBViOGQTjAB/Fx9DR7gmZsV1hxZEkWq8wtI5h\naG8xDSadnRE/fjP8/16K57O4O4Rdflmo4VnpUDf/Tj8g1nY+jFq1clN7cplUAKA8XXm3P4a+Hu5N\n5S7ge+2ehdhFfyPnyAN0fidMZAGfc+QBco6I+7uHX13G72c/wBsv76bC2NkK6b/cRPjVZWgsEbi7\n1KSV4O6UH/nXSJOpDKwmFm2B5O5+wwEAUWdXEU+v6jbzHZh5iy6Q07/bjOYK9bmZTfpzHE6/qbrF\nhASW7soFqupo+zRkCWr1sBvku7BK4/nTwxJf00X1tWhYDAuBcYAPGp6+EDnnFzYfNq6isW2aXEDq\n0Cxpq5bDa9sOlEVeREulwFWy+iE9sWRarTB0mPaWyP/6xtQXRlQqNSsKKZmS0rNW3U/hvzZ0aZuZ\noFoXblN3bQYqDJiyvc1YHqji0sdFfic1YeHnjJ7fzUBzZT0MrJRTZMKvCgK2bg7fgZq0YtSkFcM2\nRNQnl9PCzUde9Yy8C1XBo0K49aenFoO7zxDkp98hLpdpaQ0Tj85ilga/9TuRvmsTmiulpyL+o98B\nzL8v7r6nDHZd7IjIIcHUk68Tk5VzJ5eYLB3q5elUyYp56Xn5C6sevd5GXW0JwGDAxMSOaP0FQ3dn\nNOUUirSVH7oAi2EhsH97MnI/FrhAdez9GvKeX0PyLZ6rEgMBIz8kNhcdbRAOh7YAZ0lotcKQf3Qf\n/Dbs1HhlZzrhtHBNlbnfnUfguXWovJOo3vHZZFJ5aYtyYGrlAlZLIxpry+DYMVjT01ELVp5k0mKS\noOd3M/gWAuGFvyIo6kpk0ZW8wlT2opw2hSE/4y7cvMKQniC7crqieMz9AC+2igdkVsbFwH3OQqR/\nL92VgtR9oD1z+eNrtI9xNq27xPYJXroqu3SQ93Ok3D501F1oKa0A084ajivmI/cj0SKU+tZcq5i+\njfl0AvIAACAASURBVOh93dGrLzIfnRJq4cDcTn0JFXSQhRfEzrMQ8Y61Ga1WGAC0K/cjSSS8JrhZ\nyEu3SgfsFum+lSvipqCxuhnfDTrDL9zWGnmxDeqmrrIQvHzGlvadkfpQNEjPu4/0aoqaYtytRXz3\nIz0DfYy59j7/HBW3JPuu2rOjW/OiCOFXl4ktQO9M2s1XIIQVgtZtjxcf4rfdm/YTmspqpY7F61d4\n6anEdlViGKpy6Msbn/nsH7h5h/PdkcysO2DghK1gMPRUSrnaXF4KXhEtYcy8uqCppFDiNcJcWnQF\no3aTqacy+egknJhGPf0oHZCMy5B1n9ShQ1Hyln0Nz31f8JUDYVy3c9Nr1kaLZvcrSRdYQzoFT9Z4\n1V8dqtPSKP35RhWvbaLPOTotDlqvMOigFw5L+s6isDLwMrUKe6dcltq3ddCzR/h0ZN+k399THMH7\nqXqZIaOfdjLm2vtoqqjH5Qm/Y9ytRZSuMXc2p3lW1Hn0vng6QABoqWmUuIBv3Vb1LF/qQp8XBC3t\nWnntilBbpPqNXBZRZ1bCt9d0OLr3grW9NwDg0TXZtSjkkfPXT/BbvxOp29eDVcfN5uMwYjyYFpZI\n+2aD3Ovz7pNz7bLuZEVMljawP1Ty95o0wpYEadYGdbJwsyv2rMvT9DSUgmpmJHVs1InFI7AFCqjn\ngS2oiryD+rgk2C+czm9/+aPo8zPj4UmY23ui5mUWnLz7w8m7P+3z1kEfkmJPMh6eQtEL6e6qra0Q\nXl9tF1MQvLbtePXqMLwq6BkZIOC4eEyDuqwNbIrZG67veKKQXOtO3TWkMAgozowRa2sL8QuXJ3DT\npOVcoOaeZmRpSOd0Xknqy+ivgZESexgpsWR/IylfrITvWoG/dmNxgdLZk1Sly2Q/JJ1I1sjYpGHL\n2Fhpr7y1yhmjZti2WYVB+Bnqu+d/aCooR+YmgcXZ7YMxMO7kJPV6XoG21ijiopS35Cu4frNKLHgZ\n4NZg4NVjsIwYCMuIgXLl1bzMAqALdG6vlOc+ld9JGAaZdNhU0SkMGibg+CqNuCIpSua9IpnnORw2\nTOxdUf8yD36vL0Xy6V1qmln7wSHYA+xmluC4LzX/VANTA7qmRISIgDWIfPql/I4KQHfKVFYjS34n\nLYTDalFJQYj9OQ693utBZC4DPwnRmMIw+dgkYrIufiDdstqeef1dB01PgRjG7vZIWfiTSFvuDxdk\nWiFIxC60lFbwi7NJImvuGnjuF703clpYyJ6vWt0IHW2PtqAEtguFQVLWIR3qJe7X5XANGQ+HSUuQ\ndPxrNFYUa3pKcPDohZLsWJG2fhM3Q9/AGPXVJXgcST6TljI0VzXw3Y+EYxaM7eVXIQUApolmfsZe\nDgORViI/2w9pZUEdtNCsMNi5BKBrX/GsRKrEMJDg8W9PiCkMmsS6IzmXqPyYAmKydOgQgcORqVAA\n8oNh28JCUwcZWv+ts77YCK9tO1AVcx8MPQYs+vRFxvq1tI3fLhSGtkx9mvxgRE2xIm4KP47ho6iJ\n+C5UdlaXvOhzyIs+p46pUcKn70wwDU3QKWgSYiO3oqGmFPoGxrh7fDl8+87S9PT4RI6TXBWbah2G\nlgYWDEw1/1OOCFiDm8nfI9zvQxElQdjCEBHATUl4K2UPwnwXirRf/j975x3fVLnG8V9W0733oJMW\nCgUKdFD2alG2IAgoDlQU8SpDFETByRT1Oq4iG5S9ypC9VylQoEBboHTTSfduxv0jJM042SfJSXu+\nn08/JO98Etrkfd5n3VuG+K4LlSoYCV0XoaTmEdILT0rmBrv3h42FM6oaCuHt2AVXMzcq7CceV16X\nA3tLT8k4ABje5VMkZ22DtYUznla2+o+zOEzy36DnuPp0R6fe0xSUA0//aL0KtwGt1Z6J0NTyUJld\nRdqB28rZCg3lDaSspSmdJ4YZdT9AFG/A5wsxPlTkUrBkQwB6DWwNaK0o5eH1WONlwBvzpiveXiyb\nPWzNvDycO6C+xsrI6S6YucRb8rytZG7qtPYDpL/7m+R52B/mUe9I+pAYO2U1Uo//jLryPBNKREMV\neFVVMvEKJbsMW4nd9KeMdo5VkCehWdQc3JSkEQc9W9g5o8uUxbj913wIhabNLFL05CoKH19G4ePL\niBq9FMmHloLPExXweXj9b5PKRiYt9S2UUBjEh/TMkktaj3tccgFCqPcTT8nZLfM8xL2/ZL1OXqKC\naDWNre5zdU3PpMZdREVdrmQcAJy8L7IyVdbL+mmzuIZ7P0O6T0B5keLhsSjnOkJ6EGcj0wTb0C4A\ngKd7tqC5TLULoSr2vnyAtAxDU49PwvqozaSspSlxn8aSttaN326pH/QcFkvkT0x0wHZyYyMxM8Lg\nh2xbBxb+uRVO2Df3Bz/M/cFPqQxUCLI2FHfHfItuiYsVvmtTx6qv2iwfy2CINKs0NLFTVgNCIbJu\n7EPx46umFocQ058y1BC2tPXGLGPpXEml57ZS8fnuGGorBp/cnoicpBJwrNiY9OcAhf5dMy/IPO8y\nZTFS1s5Fj7dX4fa6T4wlJiFOHq03jRyuLWwcvMFkGqZ6Lxn0+e94uPTw0diyIKapuon0as/6IBRq\n5s4jPc7J2g9DOs/Ry31JPPfK4/USSwbReprswXUwXCB51r1EBISPJH1d70lvmCzAua1yZ5N2B3zx\noVv6UC59iDek0sBiMWSUBfl9xLIpk0HZeHOzJBAi1P0SLvXOFoR2GosrF5fD26d91PahMT5Pru9G\nQK9xCIyagMCoCTJ9xY8uI+vGAcinzCai3WdJylg6Fyxrzfy5achjVY89eOm/fRE8QGTa9o9xVzk+\naMTbeJT4CwCgsVL3G06y4No4I26iyP/z6r5P0eel1piF4F4vI/PmbmVTjYpPfBgiFyvmv5euz6CK\n+pJ6OAU5GkI0lYR4DERexW008/RPQepiG6iTspBRdBpxIW8jvfAEenSYgDNpPwIA+AKejHKYUXQa\nfs6RqGt6JjNOGTbuhvu8Kc69gY6Rk+Du1wsleTcl7X1GfqOXO1L55bNkiAdAVHeAySbHLevFPxJw\n9D31BbLIwMqFPMW54rHyytiqkD9g11bxMSY4Ve2BXV/2P+yqVAZxm6FlaIs4OAaiuEiUJbCxQb1L\nlyps+/WE3Qv9YeHnCQBq4xcAxRiGiISPZJ7TMQxtg5LMJJRkJkm1MNB58Dtw8AyFR8e+8OgoyqJl\nyv9vs1AYAMB9xDg05GWbWgzSsfB0Qqe/PlBop4pL0r7/iIJa1cUwyFd6Tt9j+qqF8ilUxc9jxy9D\n9l3qxFpELh4uUQykay9IZ0xSRen9MvjEeqsfSDLKDvjygdDS46Qfi8f19J+kkbJAtE52WRKyy0Qf\nstJKwKkHK2XmisfIj1OGvZ9iQSWyEBdsC+05GaE9JxP2SaOpElF29ijCvlwDXk01CnZtgLClRaa/\nqUTz4N2NfbaS5pbk1cuTlHU0YeqxSaSttW9KovpBclw6UqW0b8HETKzcE6yPSEp5Yaqz5LEqRUBa\naYgeao/rpw1XoJBSMBjoltgaDCr+fu12aLHa79rMR0cBABHdp6Outgjl5YopUtUhTp+qiZzirEli\nZYIqCoGxXQuNgdPQ4ag4fZL0seQgRN7dY7CwdoKVvWzGMrEVQb5om6GhvMKQsXQuOn72PUqO7UfV\n7WRU3riCsKVrUHUrSf1kM6DTXx/g7uhv0XXPp7g3cQW4fq6mFokQdQHP5sS1/ebhg1qbo9kNZ2W2\n8kOKOdDCb0CQW19klV1FXPAMXH78l6lFIjXLjjyGyoQkDnhm29nDf8bHCv20u5LhWfVRrtK+9JR6\ng+37/jc+Ws9ZvNa/3VgZuiV+jqKtZ1Gy67LGBd3kSb2zRad5GisLACBsf/U+TAWDabjEFrpi7eiF\njnHTYOUge8lSW56Hx5e3obFWFJMn7XJEVLjNUFBeYQCAR8sXtT4RCs06dmHgiBWEaWDr0/MBAE15\nZRrdetCoJzLhU1jZKeYSN4fibQBgH6KZ8lh4w7zTPqbmt1p7qKAsAMa9FScLshWCDTFb8FaSYupX\nXRizcSQS3zxCylrKmHGdHIsIAGQe161KvKnPe+XFLeoHtVNKdqlPAU020spCzuuLJL8gmigRbFdH\n8Mr0c4Fqy0jfsmcumIcOn3yG3FXLwWCxIOTz4TfvE+T9sEpmrDRCgWJSFpcXRuLZv0ck461CQmDd\nMQzP/j0C54QRBrUwiF3Pih9fxZ2jmnloEMUqlOwyXMFc6qlYcrgMjEfY0jUyP+aIf/BQDByhPO9/\n/q9HYdstwHgCtQOs7NwkysGVPfNRUZSO1LO/mFgqYqRdkQBg5DlFNzVl1JeRm7aSSgHUpsLSydJg\na/cbuxJsDvF7TOSSZCqEAvJOv25djWA5JbHo6bnFF9QPoiD5T5pMLUKboUPAQABA127TJD/deuim\nlOZMX6i1Nmk/epBOe7UXqq+LvExqbt2EZUAgOG6iy0GmjQ38Fy2GhXtrFe/aO7fh//mXatd0HDxE\n5obec/qbePav6KKj8twZveT9KnU0vkodje6jfFWO8wjpg9gpqxE7ZTXs3bV3Yay5kayriGqhvIXB\ndfAIs7YoAEC/4d+AxSLOupL+7u8AgOaiCkksQ+ZC3UyfNLLUV8nevKddWoe4iaspZ2E4POBXjDwz\nS6I0EBVxMyY+sd54dDjTJHu3B0rybiH2xa9Q9jQV6clbJe39xq5EY71ugbaAyCWJyMrA9fRBwLvz\nTO6SxOKyzLaCtrnAsaD8HaDJ4DjboaW8RvLcdUy0yvH5uSKLRPqDPeDxRIoYm224iwQx/Jo6sOxs\nYNWlo8H3MmdK9+4Gg81G6e6d8Jv7CQTNopTpPu9/gJzvv4XLC62Z6Ir/Fn3OBn2/Ak8WKS/0K39j\nz6tudfdl2Rourg2QjVUJjpkMt6AohA99X9ImFPBx+9AyNNWbzupEeYWBDJxdwxDR+y3CPqGQj0sn\nv4RAwCN93159P4atnZfKMc2F5ZLHtBsSuVg7tL731vaeqK82feYmZRwZ8rupRZAQ8mIwrTAYkIe3\nduDhrR3oM/Ib9Bu7EiV5t+Du1xNXjyyW1AnRhYpr5xWUBnFcg67Kwq5x+zDpwEs6yyTNG5deNVjg\n5JhN5KWpNefgzs69rE0tAiW5O/pbmdgF8WNV37niM4FYWRA9bjSQhK3wn1WBZWcDloOtwfcya4RC\nBH2/ApkL5oHj5oac778BAHBcXBG88gfk/djq1qPMr985YQScE0ZIFIWg5asksQ2ZC+Yhb/VKydzC\nDcQFVg1BZtJOZCbJFmFzD45B5NjFsooFgatVu06rWpS4C2FL16A24z6EfNHt1NNdmzSaG959Kty8\nuqscw2Cw0D9eVLzl0qkl4JPwgWBn74Oecf/Rex0a/bh3TlTV88qe+ZL0qqlnTXNrb054R6lWcmm0\no7GS2E3k6pEv0G/sSrj79SQlELrkxEE49u4rURrCvlwDQVMjHq1YpH6yEmoKatQPogBuXaiRLKLn\nADvcumD896ykoAXuPhyt5lRXkH9JRmXM5ULOIkCU8a4xI9u0gpgB4oOxqiBgZW1E7U8+U6wdZajD\ntyq8wvqjQ+RoMBjUshhSXmGounUNVbeuaTXH2sYNUf21dzvpN+wrAMDFE5/rZHFgsbnoN+xrreb4\nzR0Lp8ERqL6WATCZsI/uiIrTd5H3k/Yp/UyJuNKz+N+w8XOQsV99+kpDUl3WGrhINTckTeDYcdFS\nQ22f5IoCXzj55Gs8PvmiJ0KCRB87cUOLkZYuG6Tp7cXC/RteSvvNkZS/biu0sTmWiH3xaxTn3sCj\nlF3oN3YlmuorkHxSi4wqBDz8fgHYtvYI+3INCnasQ+3DB3qtBwA3/0hBr/ci9V4HADjWHLTUk/t/\nSqUA9aUbA5RmHtqf0ZWwnQzeHpAuSZea8Iozju8oJxw3fJKT5PGrvRWrjdO0Il/hWYyxKj2X/LBJ\nr/lZp7IROCyAFFloDI98vY2WxhrcPrwC/BbFS2zr0DB4vf0uAEXrydO1fxhMRsorDPJ4T34DT3du\nUtrv6BKM7lHv6rVH//jvCDMZqSIwdAQ6BA3Wei+nwREKNx/dDi02O4VBHq6DYnYiY+PiE4GgnhPA\n4cqads1FebALdEH53acajW0ob4CVM/WDlaP6FwEQKRpEPC3kw8knX2m/OfLo8GOZ511i34KTRyeJ\nsgCIUq32G7sS0Qmf4/rx7zRem+uuaA3i1VShcP/f8J70JnLWtiaJ0KYOgzS3198lTWF47ewUbIgh\nN0brxT8SSFvrn4Rdeq/BYCjGt/qFcMFii6KyU6/pX+iQiPzMJvgGc/HBdz44vbcCvBZZIVhsBj5c\nJvq7qq3SPJZk8Vp/fPtuDqmyGhvvt4fj6TrtMtyIFYPYvp/g2mVRtp2o2I9UTVGKdVRX1CffUzvO\nLj6u9YmeKbfS9mbQCoMZUZ5/D5nXtoPfov6SsP5hhkyGKGNhdgqDXeduKvv1VRbEKEt/Ko+q+Ah5\nHt3fj6d52llLzIWSu+fR/U3RjYzYymBqgntNwvXEL0wtBiHyWZGUoWng85mF5zHyzxH6iETznKjZ\nvUhdr6Ve1lrp4BpM6IJ06eAC9Byi3Yd/wHuKJnRl/aYOegYABpPEVEYGoKFcv4xjj+424ODjCOXr\n1wnw+bQnhH1/ngmDlz9xcgyx9QAAmhoEOLGrAn99LXuZMCv+oWTcvnTl1ozs9Eb8Z6T64mM5GY3w\nD7NE9FB7mf3FmFMNB9exMVorDGIK8lu/s4ue3lQxUpH8j5bB9+eFcPtwGgCg8Mtf0ZxdoDDOulcX\nuH30quR57UXFfWKnrEZJZhJcA3vh+s7PAAAW1g7oOVb0HdfSWIub+5dKxhfeKNJKVnVw7S3QVK17\njJW2TP0lGmGDPPDoYgm2zZKtu/VV6mjJ4yURikVYxf3yff49nfHW5r4K4/k8Ab6OVJ32WX5NK3sO\nPrtM/J1LJJM6Hl/ZjCW3R2m1hrHdpSirMIQtXYOMpXO1SqOqKm2pLqhTGrTZT3od94miWwQhgPxf\nj6DbocUoO5gEMBhwHRNtNr6W0hRcO4iCa9Qq7laSk4ywPtNRUShrei/JNlzaMVNRdIvcgG4miwEB\nX/GG6+PZdliyUFTU7Le1ir7a8i5KYkuBNm5Lpqbr1HCDrn/l8OdK+26d0a7ojrGUgLxL+fDrR47V\nZ+BX/XB+ySVS1iKTKyv0v8yZN/4x4eFazORu95X2KVMW5OFaMRHSldiaOCY4Fb/82xH+ocTZfCpK\neBopCwDw4YuPsDetKzgW1FbyDE1Ixxfh7RMNCAWwtnFHXq7mv7v8impU/HMETlNFQfleX8teFBHV\nYxDU1ePZX3sI13Pp0AOFD84idspqXNs+H91emI+MCxtQUfBAwaWFbHrOjMTVVcYrmHvwy9tYcCEB\nHfu7qxxnacdBY02rm6ONE/Hf0Rc3RoLNJY4JYLGZ+Cp1tEaH9NCBHnh4vlipssBrUqzvoAnaKgum\ngLIKgziVakNuFnI3tObOD55DnEvXy091irTLp5eC10J8e9S731zY2HoQ9hHZlweOWA5Nk34TKRwl\ne67IPC8/niJ5/PSvExqtSzUi312DR4m/oLZIt4JHhsC74wCkHF+BhppSU4tCiDrrgWNnJb+TRiDh\nv8Px7weKv4tLFjpIDv+Wlgx88K5hU82ZAibHOIFmto6+6NbvfRRmXUXW/cNG2VNXTsw5jRnJ5BRG\nC3kxmDSFYeqxSaSsAwBpezJIWUfXm3eybuw/fEEzhUATJnRW70ZjDjSXVMGhb2dUXdY+bkPfmIXq\nY5dQfewS/Dd/LzpPqKBg/mrwSp4R9gmFAiTvEV028J67rbAtrFBXIbJYNFSX6CWnOsIndTKqwlBX\nodqacWzVfYz4pAvmnR6O76KPStpfX9cHALBlZusFwJSfoyTKAtFhfMmdUWAyGRopDX1fD8a0X6Px\nJKkMm9++qvHrUQaTxZAoC421LVjW55jGc+ksSXJIKwsAkPkjcVBxaJcJhO0FOZfxOE11PMCNSyIr\nBpHFYGDCcsmhn82xQt+hS9WJDABIvbkR5aXpGo1tC6SsnQsH/y6IfHcNCm8cQ9Etaig+VFUW7q46\nq3ZMzRPiLw5j4B2t6Bv/4wonnL3QGoDV2GjisrZmjLICbXGjv8eVQ7pnNTIkAp4ATDY5ypS9nz2q\n86r1XsfKhfpxOzSmpyb5Efw/Iz4jGMuin/O66O/aKrIznCaNANvDBcKmJtRevIWKHf8CBJWHpSlM\nPw+2hRV4zQ3wjxwF7/BBAACOpT2a66tgYe2gMKepuglcey7pr8WUDJ/TGQBwdcsTjPikCyysWDL9\nHqH2AIDMK63f/Z2GiBIj3DtGHBP4VffDEpcjdUpDQJQLAOisLMgXxBQrC9XFjfhhmOEqSZMB5RUG\nfVGnLEhz/tinSt2MBiQs0zjFlbYB022Fqpz7SFk7F0w2hzJxDOJ0qtJQIeg595By1wQx/CZqpT2c\nMNYK8xaZrmiMUTCC94Wtgw+A1kBnaZhM6n4kb+63DW9em07KWi/vG69/vQMS/6/ouiNtG5eRvU0t\ngoSGlDQ0pGhv6ci9fUTidlSSmYS8u8fg02UYIhI+wpPru8BiKyoG5764iISfh+kts6kQCkVGGUtb\nDhprRW5H/d4K0WqNYR93ljze/YnyGJQ/X7mImTv6a7TmVz10twiXZtW2riMVi0F1ZQEwA4UhbOka\nZHw1T2XGgC49iU3luhzciZQGTWMV2quiAIiyIoVPXggBrxl3NnxGCWWBCoqBMWl41mDQG9fMLB7C\nO2mX693cmLBzHKnrHX77X4W2iOduSOYGUUyLKZlxnRwXKQC48BX1YipoyMMc4wKJkC7aBQDZN/cj\n++Z+AEBJ5nWF8flXFAOs9WHQN/1x7ouLpK6pig2vX8aMLX3x2p8x+Guabn+j/WdopmA8va/5ZZg+\nn4WFaaLq0WJlIfNKqYz7lDYImpvBYDIhFFunmEwIWwyXipxaVSGUoSa9mKu7YpCiMbMR3bzyc7tW\nFgDAzqcjUtbOxZ0Nn5laFJVEjVpiahEU6L9WuR92t/mD8cKJmWBo4ApyaIbi4VQf+i7qI/N8yhvP\n8PEHbS9mQRrHQEWzvj4U31H0K66vKYKDSyCp+xiL4/+h/i2YtjTXGi/zCw2NORM8Isio++WmiOqJ\n+HZzIuxP2i6KmRSHhojH3TmsmGRDvBYVkA5w1lVZAICsxQsRtHwVglf+IPpZvgpPPjfcGYzyFoaS\nf/fDvlsvVN/VLp3Zo/v7dd5TlWuSNHeu/4nKcuIUee2NsgeygdwOHcJRlat/0Siy4VhS78Dr0Mld\nJs2qOBg6+JVI+MSH4fyb2zHyzCyk/XEFmf/cUroO2VV5O40PxeXvW2/Ci4pFudulayTcSJE9bJVX\nCGT6k5KbERPVmrWiMNMHlpaiT/crp0VB3Tm5PPToI0oBmHHbC+5uLKX9bYE7F35Fv7ErEdL9JUkb\nh2uDmBFLcOMUuZneyCb/qmZ1QTThzSuvYWPcVp3mRv+HvNS3WwdvJ20tGuoS8OVk2Ed1lDyvupqB\nnO93m1Ai7SHKhCRvdWgP3NqXCwA4+v09xEwJxH8OD8HPI89g+tpYAMC+hSkKcyoK6o0qozKk3ZAA\n4M0Ncdj41hUlo9VD12GQwv2F8QAAr5emSdrEGZRMSXu3KKgjaMTbJnFLikxYAAG/BXdO/UgYv0BV\n6gqqcO+n84hZNQYjz32AI4N+Q+hb0fg3XlS18eLbO9F/3WSVCoMxUJceNbir6gOlV7BqE3lYj0JE\nzFmD1B/V/+4Qjesw6g04dOym0XxDoyoP+qWDn6LfWJFy4BMyAD4hAyAU8NFYZ7pAd2OjTzaqiNcM\nVzWZDPpMWo2ru+YjZuJyhbiUGweXoqWpVmFO7MQVYDBlAzjzH5xE3r3jkudeHfshIHIcru4iPiT2\nmST6zJPv9+uaAN/w4TJtQgEf1/Yofo/1mbQavJYGJO//Ar1GfwkLK3uZfmV7U5luhxYDAJ6uO4mG\nh09hHe4LrzeGotuhxQZ1V/LfsgwN9x6hZOUGvdfqGv8fnZSDZxnlcAlz1nt/MYO+HYBziy+Qtp42\nDJwpUvgOLrkj0+7cwQYAwLVRfqR1eT6GCuTdLkdhWjWipwQgIMoFQTGueJJUZmqx1EJ5hYEKyoE0\ntKIgS9i4j5Fx4CdEvqt5vQxDknK8NYi0IOMcclJlg5OoqkScnSK6aT084FeJtYFl2RovUPVQs2xP\nfw/fgWknXyFfQDMh9/AmRMzR7Xdx9IYXSZXl6PvHVfQKCYu3mQM7x+zF5ETijDPa0nVaOO79bTpL\npN6B188hSonaZ9JqNDdU4+ahr2Xaeo9dqnDoFh/0r+1eAKFQ5I/sGz4cfl0T0NJYi6LHlwEAhY8u\nISByHPq8vApXdxMX7ZNXRojWZjBZiJ24QqLYyMPmWKHPpNWoKcuSkd8tIEr1G0FhpBWDurQ8lO69\nKlEkDIlV147qB2kAk61ZnQ55Drx6iLSUyAAQnBBoMoVhyOxOOs9V5tZkbPYtTJG4TGWcL8Jrf8Ti\n9XV9dKq9wHF2QYfPFLPqGcrqQPkYhrAlPyB43lJ4T3pD8mMqaGVBkYwDPwEAaouykLJ2ruSHClSX\ntT93scZK9WXltWHCLt2CgCPmrJH8dJzeejC2dPWWtAMAg8VqfS6Vo1zcxra2BQAEvPSupI1laa0w\nThWWbt4y45XhHuGm3Ytsp9QWKt6O60rMx+Z7ANUE6cM2ADy5uU9hjJPX8zSRu+ZLDvSAyLogFAoQ\n2HO8zPjq0kzCfP7WDqLUkTcOLlXoqyxMl1lbKODj5mHRAVpZ9r/KonTcO/ObTFtpGyx6aS7cPboa\nnqH9TC2G0cm7rTr24NDXdwEATCVV5A9/q1l9E7/uxlcoHl9uvQiUd1XShA6fLULmgnkQNDcjc8E8\nZH/7FQp++0X9RB2hvMIABgOZPyzF012bJD801ONRouwvKRWUhopCxZtLKmZOKruRh1EXZkt+zEbR\njwAAIABJREFUTo5dL7EyjLowG/YdXTHqwmyF/M3KKH9EXnCXPkHAqT/OReqPc8FvrJO0uUcPk7QD\nQNf/rJI8j/j4B4W5nWeKDlzZ+9ZK2sLf/1ZhXOh05cp8x1dF/+fBk/+j1FXJq7enzq+TiKSf1B+s\nol/VrqqzmJ6TvtF5rrZEv/oD4V43fjedaxyZt6WG5N4ZxcKMxZmKvsqd+s9Qusad44rv/f2z/yOc\n1z1B8bPNr2sCACDt4jqFvub6yufziG8j0y4ozjFXGjKL4POBrAUxYPEkNBVQJxBWHbFTViOg1zjE\nTlkt86MJ55eSmwVs8qGJpK6nivXTRdY1OzdR9fJd82TjWW/szgEATPmv6PJBvtJy8s5syWNVh/K3\nt4mUsYJU46YOl7Ys6KI0AEBTTjYAgF9dDZ8PPiRDLEIo75IkVFPMhIbG3Lk296BCmzjwufunQzBg\nvcjF6Mig3xTGEbF/Krkm6F7vReLmH4pBZJrSUl0hedz4rFCnNSLmrMGT3b+hLp84Xz7b1p6wHQDy\nT+wAx84R1t4BSse8+L8EneRShiHdbNgW1uoHGZg7G1PRe1ZPU4uhF1sG/WPQ9WvKsrUaL3Yd0hSx\nZUKaO8dl1/AIilW7tpW96SrKGwurYE9YBXvCZYTi76y0WxKV06/qE9z8+EgmBi4lzzph62m8eABx\nksxJq0WJDu6fII6TCx0o+j0+/O1dhb6l3Q9j6R1RZqK3t/bFutcuS/r8e7ngrU1xkudrpxovbayY\nJRGHNC4cR0Tp3t2w8PREc5Fhk4NQXmFgMJkIWyrrRkC1uAYaoPtby2VSqnZ/cxnubFxoQonaBndW\nnMGdFWdMKkOPGd30UhgcO/dG3jHiw5m0mwSg2oJSl58J2w7E/sC5hzYpnVdx/zoi5qxB4bkD6kQ1\nC65vM15WDGMwZvNIJL5+RKOxlo7kVa1tqTNcvnJdaKzVPOC9pbFGJuNbt+EfAwDqq2QPDGLlUpu1\n2yJUVgTMlZFrR+DIu8eMtl+HnpoFbqccyFNoEwqEKH1SC7cgW/j1cFZ6k69LHAFZnP09A4NnhQEA\nQgd44OGFYrVz8tasAgC0lJcjeKXIGlnwu6JlkyworzDQygH1EQc8Swc+P9i5zFTi0AAQtAj0ykJD\nJtJuQCVJsnn87/00X2rcPIXx4sfif2tzHym0AUBt3iPC/cQ0lOSjLIU4UK/vZ7GavRANqcyuInU9\nqpJ7MQ8d+vvpvY5buKvGY8kK6Ddm8SlNSTmq+WfmjcSv0GfSangE90Fx5lXYOPkSjit6fAleoQO1\nWrs9MML9PRwr+cN4G7KYAJ98b4mAXuOQfVOzi5D1UZtJtTx7RhrPMlVX3gQbZ/0uC34dexYA8PGx\noXDysVboK31CXmyWLpz730M8ulSCd//pj2m/RSN5Z7ba+Atpi4Ix0qtSXmGQty4AtBJBNVLWzlWw\nMNBoDsuSgxdOzCTsE7smacvGuK2kfjnokzOfCli5Ex+oAKDThDBS99r7MnUsGWwLa4QNmwlrB0/k\n3z2OwvvKrVXWzj4Ij5+NproKpB5aqXScmJNzz5D2O8a156KpmtyAfVVkHqNOQoTKwnQ4eumW/SWo\n1wQUZ4pqpWTdUgyozr59CF6hA+HXJR5590/oJSeN9uRMXwj/Lcvgv/E75Ewn3+IuDnQ3FUOWDcSZ\nhecNvs/Kgap/d7WxDPw04rROMuhrfdBkfkFqpUmtHOqgvMIgrxwQKRA0podWFnTnhRMzcf+Xi8ja\nfUf9YC0Q8IVgsogzR2gLk8OET6w3Cq5pVriLCnUQpFEmD9kBtM01+lUNFgcYE7kdyQcfK3NNkowT\nCmWy6fhFjoRf5EiFeQwGE1HTVkmeWzl4aBxUTZYl69XTr5CW4tTcSLu4Dn0mrUafSauRnXIAhY9a\nA1QtrOzRa/SXhKlPr+6aL7IyBMUAAIoeKy/+5NslHrzmepm1ASBmwjIk7W0frqNd7QbC10ox7oPL\ntMFg19cAAMdK/kC4XX90sOoCAChtysHNqn8xwv09AMCz5ny4WPhKxorbxc+JyJm+EH5/LIH/FpGV\np+x/O1B3VfPP+tgpq3Ft+3yNA5xVcX9HGrq8ovge6ErgsAC4bbuP0vvUryFAoz+UVxh0RZNKzaZa\nk07PSiMP2coCAGyM3ULqgXjEL8Pb7aFOU7YO0b1qcMeBbwIAHl8gfo/FB32NMyQxGArKgTjrkXS7\nWFlIP/0nqgsfyoxVx6Z+2/BW0nTN5NGTmDnkpGC9vyONlHXI5OruT9Dn5VUIiByHgEjtUhkH9X4Z\ntc9yla+9a77Oa7clfK06Sw710gd9d66/zGH/Qc1FPKi5qDBOrCBIKwrq3JrESoI0ru+/Atf31bvW\niS0S0sHO8oHPIXHToA3XfrhOqsIAAGM2jaS/F9oJlFcY5C0KZWeNF2RDozmR765Bytq56DhqFopS\nTqK2MJPOcNUG6b84Dhe/1b2MPZWgUnpOVZYFXbm+TbusKtLKglgWdUqDpql+yaDr1HBS1rn2w3VS\n1lGFqmrIhH1CoU4VlDWdo6zImz5rmhuVLcQZZPIaZDOaxbu9g7zGNKTVqE9FOsL9PZwu3YgWoeHd\n6YiyJD3Lua31OvunJmL8P2PIEEnCjOuvY300rTS0dSivMNDxCuaFjWcgagoeodsb3+Hups9NLY5Z\ncO/H8xh1YTYOD/xVXaIgrTk841+MWv8CaeuFju3YJhSG/l/EqR+kJSfn6uYbGxAjyml+7wjZVcgV\nf5kEvGbCirEFd1RVpTYOnSaEIX1vhkH3qC9rMOj6NNTFkaOZvz+TwdJIWQCAKl4pWoRNsGbZo55f\nrdBviLgFaSoK7ms9p/xRhfpB2sIAxm4ZhYPTD5O/Ng1loLzC4Pf6+8jb/D9Ti0GjIUKhEMEvvovK\nLMVcyMYgbqLqQ5eAz8O1/dSKt+g6ZyAAYNT52Qp9ugY9iym+W6LXfCJmJL9u9ibo0DHE6Vn1Ifdi\nvtZz7D1C4N6xDwCgvkK3GhVkUFX0UP0gJex+aR9e3veS3jL0/SxWqcIQ/9NQvdcHgO0v7CJlHRrz\n42njI4xwfw9CNbcy1bwyGVckVTiw3TDC/T2k115Bdr1pvvN0oamqCVwH8lIUA4BrZxdS16OhHpRX\nGKwDyf9ipyEfcWXnO+sXmFQO6UrOcRNXK1R2VqdQmAJ9lQJ1kJ1ODwDeSpqODTFbSF3TWBjCFUlX\nBarT8PdxY/un6D1lhUJsgTFhMnX/KqjOqyFREmL8+irPckVDowl3q0/jbrV6K+CV8j0KbeJYBWX/\nmgq/biOQd1d7N+1tw3YY5HNwRvLruL/9Aa6tUV/pnsb8oEaidhU0FigP5qKhDiEjZW9kur+5TKYu\ngyloblQ0EdOQA4PJwCtHXja1GFpDpbgFQBQnIODzkH/7KACgQ2/TBKW6BPXSa/6tP7X3pSYiKD6Q\nlHUIMV64BQ2NUbDSI63qpr7bSJSklS5TwjH+H+LCaG0dB38Hvb9jEsIXaTW+b/A7GNppPuy47nrt\nqwmUtzBY+nRQW+mZzjpkeux8QgEAjkHdUfnkDpgcLlLWzkX45IUmK+JmYWmPuImrUZB+BiyOJTyD\n41Cae9MksugCg8kgLajUEFYGG3drs3JPMpSyQMbrf3rvNCry7yNi1Cdw9A7D3UTys7ypwi04GllX\nd8q0eXTqr/H8lHV30HNmD73lGPzdADw5kSXTZu1mrWS0dtBBmTTmCBnpVIngN/NFSjQ5mbdlcO7o\nbFbfDfrgFOSIl3aONfq+4V4j4OfUU/I8LvhtAMDxB98bbE/KKwx00LN5IGgRZYmofCKbHtTC1skU\n4gAQuSc5uHdEp7g3wG9pxNW9CyAUmk/mJrtAZ1RnPiNtvb2TDmLCLvI/2Mzhi8FQykLKOvLS4TZU\nirK4WNob/qZIGgGfByaLjV6Tv8PNnaJEBVxbF/ibyNohz6QD+sdH0NCYK+X59/Dw4ibCvk4DZ+i1\n9vpo8i+SpJmR/Dx7Uhu07vX/si9CR4cYZO348IVgSGlyQghx4oHsxatYWTiVthJ8IU8yJ9itHzJL\nNQva1xbKuyTRmAd3Ni5C9zeXwa2r6Fby7qbPEfnuGtzZaNqiQFUlj5B04HPcOPINpZSF6JWtJluf\n+DDCn8CJ3UndszKrktT1pJmR/DpsPGwMtr6uDFzaz6BfiGS54oi5vm0ehAI+ol/9AQxG68ezuH6C\ndJpT6TavLkN03vPG9k/xLOsWWBxLyXrdxy3SOp7CUBVfWRYsvdegcpVyeysvnecmdNXOfYHG/MhK\n3qu0r6Y0S2mfphj6smfG9dcp5wqqCxxrDqadfAUzkkWvx1DKAgCJstDYUi15rsxViS/kAYBEoQhx\nG2AwuShvYaAxF4QyygG/uUESCG0q/MLjkfdAdUl5U+Ee6y95HLl4uNJxd1acIXVfQ7gmiXnl8ETw\nGnjYPOBvg6yvLYb+ktI36FvZgTz5H8XEAdoc3lWNvbGDWIHPvPw3Mi8r/r9ps2/WqWxg2UCNxyuD\n68BFU5XIYmnpZKn3eoCoIjVV6RP8Jo7fM5wbAY1509KoPKlAwQNyvh94jTywLQ17HBR/HlPdGi2N\ng78Dxm0dBbaVcY7KLIZon7MZP6GZXy9p7+YzBl4OXdXOT8regpgAwxXSbPMKQ2JmBABgTHAqpdc0\ndzg2Dug6bQkA4Pb6BbBx90dtYaZJZaKywiCfGYkoU5Jbbz+D7G1IpYFtxcaM5NchFAhNlkXJGLdZ\nbdXMri855/PgP1C/39tpJyZLfnemnZhMhlikk9B1keSQ72jti5ig6ZLn0n0MBhP9Q98Hh2mJ/Irb\nyChqzdJjbeGE3gFTJHPEyCsPDDDQO3AqHKy8UFSVjnsFirnu+wS/BSsLB5xJ+5HcF0rTLtjc/29M\n2D0OjgEOBt9L/PnMa+Rhc39qXC6Jif9pqEkzssUFvwMAMsoCANwtSNRIYais1z61tza0eYUhP7MJ\nvsHk5hvWh9V7gxHaw7rNKRtdpy1Bytq5iHx3DYR8HoIS3qILt2mIssDm6ifkxS/IszFuK9688prB\n1mcwGZiR/DoayhvwT4Lhc99b2FrgtbNTDL4PAFxefo1WFpRwav4ZvRU2BpPcKMy9kw6Sup4YJ5sO\nqKjLRS//SUrHxHf5DDnPktHUUoNQzyHwcuyCc+n/BQBYsK1xN/8gYoJeR9IT4ltXDssKQzrPgUDI\nQ1FVOnycuiGr7ArqmsolYxK6LkJmySVYWTjIKCs0bQ+iAGiiCtC6sPflA0Z1HWJbsiX7pe97iMvL\nrhptbwAIHR2CyHe6w9bL1qj7qoLNos5ZlYg2rzDMite9IJEhCO1BTsYPqtNca4BqklqSdfsAfMIG\noyDjrKlFUcmRQb8RtjeV1xO2k4GgRQABTwAm27BhTFbOVpIvheRfb+Lu5nukrj905SAEDPZXP5BE\nDF2NmIZcDBG786w2Cx3dB+J61lawWZZILzxFOE768J5Vdk3GklBZX0D4WJohnefgxP3lkvir1PxE\nhTHXs7ahok6UftzbMUKlAkJjvgT0Go97J39BbVnO8xYGusZ/SOoehrQ+q6LTS6Ho9FKo5HnO+Tyk\n701H/tWneq3r2tkFHQb4IXBYgFGsJ/pSUv0Qvk7Ks805WvmgsoH4s8IYtHmFgcY4pKydJ6m70OPt\n1bi9jpxbD30I7CHK8uIfMVKmXb6YW3tlY5+tGPHLcPjEehtlv6jZvRA1Wzbff/mjcjw5kY38a0/x\nLJ3YouIZ6QH/gR0QFB9AWopNXTEn/1tTsSFmC95K0s+P1inECRWP9b90IDOLlTQ3srfLHP5znl1H\nhO8YpOYngi9olhnbxedFOFn7gcux02kvdckaxMqCGEdrH5320RiGKJWkRw8POIc4wSnYER7d3Um3\nDGmLha2Fzofd5ppmFN8tQUVmJUrulqDiSaVRChJqg0dILLJv7pdqEYJjZU/6PqZSGqTxH+int2uj\nOXK/8Ch8nXogIXwRUgsO4WlVqsjl8XlcQkyg6v+Xzp7xBpWP8gpDYmYE5r+UiVnf+iAoXBQANyY4\nFd3jbPHNVlGRn21rirHrtxKFedKocwEKibDCmgPKo963rCrCnj9KZdosuAzseaDoVya/10crfTF0\ngmx6UW3loz5Ckwc5y0MrBuo59uFJk345OHd0hnNHZ/T+oKf6wSaGVhY0g4zaIVGze6L8kf4KA9lZ\nrOTxsA9DfbNITm/HrkjNT0RaoShuKsR9AILd++HB02NIe3ocAiGfUlmNHDrYw6O7O5xCnODRwx3O\nwU5gcfXPSGWOWNhZwK+vr07+6wK+EBWZFSi5W4qKzAoU3ylF5ZMKCPjk+i2WZCZJHgdGTUBW8l5w\nrR1J3UMMFZSG9srjkvMIcR+ICJ/RiPBpzaZY3ViE3PIb6Oo9CgBQ01gCO0t3RPq9jJS83XC09kUH\n594GlY3yCgMArN4XjM+nPkFqUh0SMyNkgo4TMyPw6lwPBYVBfACXP5gTMeNzL4x9yxULX3mC+8l1\nkvbEzAgIBcDYjsSH+T0PuuLghjKs/64QAPDaPA+8PMsdiZkRMgrAzwvy8fOCfBl5zF9BkCVw+Btw\nDOwm00Y1BYKqDNg4BfbBLoR9RMHQZLM+ajOm/DsJ1q5WBt/LXKGVBeOi6+FNmuo8w1d679Fhgozb\nUYjHQDwuFqWXDXbvh+Ssv1Fel6NsutEZsKQfOo4KNrUYbQomiwGXUGe4hDoT9pP12ZF1Y5/ksat/\nT3iE9EFzveFSZdNKg2nILLuMzLLL6OwZDz/nXiiteYyUvN2S/oLKu5LHbCYXQzvNk0m52q4Lt4lJ\nTaqTeT6hs8gX+u8fizFtjodea499yxUAZJQFANj+czGmfKR87XXfFiJxY5nk+dYfivHSTDewWKY1\nzZoCx8BulFMQmCw2er3wOTiWsq4AVLM82Ae74P4vF5G12zDuE5qw/YVd9JeDEqiuLHgx/FEopM6h\nFAB2jdtn8oJru1/ar36QHgiEfDAZsjfyvk49JAoDAPTo8JIkc5Eq64KzTQDK67IV2ivr85HQdRFO\n3l8BgZAPBoOJ2OA3cfXxenJeBI1ZkrzHOAlFaKXBdKQVnUBakeosjzxBE84/+hUxga+jsbkKSdmG\nzUxotoXbWppF5r7Ua3VqRurOmf2qtXdpZUHMV29lG0gaGm2JHb8cyYe/AiBSEiqK0pF69hcTS0WM\nKZUFMeujNiNtDx3QK0YoEFJeWRjGnIQujBgMY07CMOYkmfYARifJc+nHADCEOQGDmOMJ58Uwhyu0\na0tNAbX8vw3B9SeyX8538w+Cy24tXnj83vfIeZaM4V0+RYjHQKXZi47f+x4BrjGI7/IZogKnyfQl\nPdmCE/eXoXfAFAwLX4BuvmNoZYHGqKyP2oxnGeXqB9KYhMaWapx/+IvBlQXAjCwMyuCT7CcozduL\nta/A2VBH3QJBhkYc9CzG1BaH+qpCmedpl9YhbuJqylkYqMSVFdcQONSftIJZ5oyp6khowynBLgxj\nTsIpgXapa5lg4YyAuILsA0EyalAJV4YXOjN6I014QyfZbv6Rgl7vReo0V18EPMN/Dlc1FMooAYWV\n91FYeV9mTGbJJWSWXJI8V6Y03MrZqXQfoVCI61nbCPvk16NTqrZtxGlVxalUY6esJi2tqioOvHoI\nkxMnUCoFKY3xMXuFgQzEsRCJmRHY/1cZUq/V4sv1AQCAXxYathBGW8HUygER1g6tCp+1vSfqq4tN\nKI1yDg/4FaMuzEZjaS0y1iVBwG897BScMP6N/9/xosNLezVF7xyzF7WFtaYWw2TUQGRZLRMWogez\nv84Kw+31d02mMGzss9Uk+9LQGIouwz4winKgjJ1jRBcM7fV7wdgEuvZBkGsc2EzVtRkMGbMgD60w\nPEesNIx/xxXj3xHFNGxbU4yTu0xfT4BGN+6dE9U3uLJnPuImim5mUs8aPohYW0ZdmA0AsHSzRfeF\nQ2X6TKEwiGmP/qtUd0HSFRb9UU9DY9ZYOegXq0kW66M2441Lr7bbjFqGhsOywpCwOaYWgxD6W+Q5\niZkRSDpVje9mUit4kEZ3qsuyJI+p7IZkjExIurI+ajPGbhkF187EWZzaDEJgfXTbURZ4aAEXrVmv\nfBkhyBSSWzRPE/Iu5cOvn37ZjrTl2OyTRt2PhsYYPLy4GTZOPqirMF3hLjGb+m2DlbMlph6fbGpR\n2hxUVRYAWmGQ4cf5tPsRDY08B6cfBtB2TdEbYraQUjvAVFwUHMIw5iQ0oxEXBKJKwOcE+zGMOQnu\nDD9wYYkU4UWTyHZizmmj/94UJOlXHZaGhopUl2QisPd4eHTsK2kzpYtSQ3kj1kdthnuEG0ZveNFk\nclAJfb9LQt0HAwDu5B9AUfUDssQiDVphkGLH7XCFNj5PiPFhxr+Zo9EfsRuSPFS2NlCZ9VGbMXTF\nIAQM8Te1KKRQV1yHHaP2mFoMvWlCA2HQs6pAaGV98u3aBlMTIeAJwGSbbUI+GhrKkHVjP7JuGDZd\nsLaUpJZifdRmvHZmCizsLEwtjtHhNfCwecDfpKzl7Siq00VFZQFoowoDUbE2VZWVxX2Xj1Yh7VY9\nAFEV506R1ogeZq9QiE0fpAOslclDQw78lkYkHVxsajHUIo5hkIdX14xjL6w1sjSqOf3pOQBA+OTO\n6DM/2rTC6Mi9vx8g6adkU4vRbtjYZ6vRrAzyCmDEnDVI/ZF6CRloaNoaW4dsBwD4D+qAYasGm1ga\nw8Jv4mNTP+LMZfrA4zeBy6ZuJirKKwzyB2n55xkp9WrHqMLJTfQWTAy/h+YmRVNSlygbLNsRpPH6\nRPLIQysHxoHBovyvtwRxHMOoC7NlHlOVBzvT8GBnGrx6eeLFPxJMLY5GHJt9knZXaePUFRuuLg8N\njSkhSqFqrLSq2pBzLhfrozbDJ8YbI34dbmpxSOXUJ2eRcy7XYOvfe3oYMYHUdf01nxOVgVh3QVTQ\niEhZAICs9EZjikOjJ+4BUZLH2XcSETdxNZ6k7IOA3yJpL8k2j9vlx1t1S2dpTApvFkkyCyX8PAy+\ncT4mlkiWh4ce4+LXl00tRrunvrQe1m7WBt3j+s/U/3uhoWkvFCQ9lXw3MDlMvHnlNRNLpD07Ru0x\n6iVEZUMBhEIBEsIXGTVdqqa0e4XhzpVa9B5kp7SfKK6BhrqE9FbM2hAU+ZLMc3NRGCwcrNQPohDH\nPzoFALB2tcJLO8eBa28af9ailGIcmXkMMN845jbH9hd3G9wtKXXbfcL2iDlrIOTzwGCxZdyTuny4\nHAwmCwymKD2kdF/EnNYilMVXj6Pk2nEAQKd3vgTH1hECXguYbI5kjmi8EAADRZcOw6PPC8g9uhXV\nj++2yiDgg8Fkoa4gC092UbPiPA01Ceg5VuZfAJLfW3NA0CKQKA8Bg/0xdMUggGFamYi4+b8U3N5w\n16QynEhbjoTwRUgIX4SK+lw8LD6LqsZCpeOFQuMVC2YIhdT7VmUwGEYVSjqeoKaSDysbJtic1t/m\n7f8twfafqVn0S1vGXZoFADjQ73eDrW2o9dsqoy7Mxu3vTyH/WDoGb38NNj4Okj4qp1zVhk4vhSJq\ndi/Sg+JyL+Th8vJrqC+tJ3VdmraBdAwDy9IG7rHDUXjuAFx7DYJb1BCk/fElACBg/LvI3r9WMif7\nwF+oyUpTuZ70c/G/TA4X3oPHI//EDnT5cAXu//Lp8755EGuwxo6r8P9zpczznJkLDLIumWsDwIjg\n+TiWSZy4gozx6oj0HIOUokSFdiaDjQCHnnhSeZ20vTQh5pWVSNpB3vtLJazdrBE7NwqBwwIMvtfT\n5EKk7clA9hlqptBPCF+k1XhNLRFCoVBvFa3dWxgAUUzB7ydC4RvMhZ1jq9ZOZ0iiMQbSSsHZKVsR\nPK0ngiZF4uzUtlOtNn3fQ6Tve6jQ7tfXF25dXOEa7gJ7P3tw7bmwdOCiubYZDRWNaKpqQuGNIpSl\nP0PZgzLUFtE+6jS6wW+sg3OXGBSeOwD36OFgWVrJWBKkIVIWAKDigWrrpKClCU0VpQAAJpsjaY+Y\n84OOUtNQDYGQZ3RlAQByUw4ZfU9jUV9ajzMLzwMLzyv0uXZ2gXNHZ3hGusMxyBGWjpawsOWAa88F\nv4kPXhMPTVVNqCuuR1VeNSqfVKIopRjljyrMOl02FaEVhufMilc8zFCZjlMj0WVWH0re5Cct/NfU\nIpg1mX/fQubft0wthlHIu5yPvMt0/RMa48Bvqn/+bwPqC7ORfeAvreazrXXLYEJnalJOL68JuFm4\nFwAQ6zMN1wr+Ri8vkRtpQtBcMBiilLxi60F80BwwGSzwBS04mfWzyrVHBIsCgk9m/Qy+oEXlGDHi\nfZr5jZI+cVuMzxQ4WfqguO6hxPowIng+hEKBgpzS7UW1GbhdrN+BvzDDNLVUTE1Z2jOUpT3Dw8RH\nphbFKFAxdkEMrTCYKV1m9TG1CApQUXkxJ/r8dzxcevi0GTckGhoqwGRzIOC1oPN7XyPtzyUAgIwN\n3yq1LlQ/vivjNsS0sISgWZT8wi6gs2ScY6eeeHb7ktr9KzNuyazHYDIhFBjP75jq3CzcC3ebEPja\nRcDR0ut52z6MCJ6P409E/0dR3pMk409n/Qq+sAUsJgc9PcfjVhFxXQJpFyVV7krK2r1tO0v6EoLm\n4viTNUgqEKUOjfQcIzOWSE6xkhDpOUZvZYHGcPj/vkryOGfWJyaUhPrQCgMNjYnxiQ9D5GLF9HPS\nKVZpZInnTgUAnGj6B5YMawywGCfpKxLk4G6LYmakIdyJYKM1hqKAn4n7vCTC9WMsEuDAcJFpO9H0\nj1J5BlqMB5chG6R+qfkQ6oU1KuVXtbb0awxnR8OXFSLpS225gkJBtlJ5aES01FQg9I2F4Ng5ihqk\nYvbklQbxgT7n0CYEjH9H0ifk83DvvyLf8Qe/LyKco4q8o9vAtrKTmid8HtPQxtAjHjLEKQ72XHeU\n1GUS9vMErdkK+UKRpYAvaIGLteoikmIF5FqB9oW1yhqyJI/F1gN1SMvpaRuGQZbesGSsJeQuAAAg\nAElEQVQrT6qiCdGTluP6rs8kz10DeiGkzxQAQGVhOtLPrdNr/fYOr+wZCr5cTvq6HnPeR/GP/yN9\nXVNCKww0NCYmcvFwwtoLgha+qUQyG8QH9Xu8q2gSNiCM3UtBWWCAgeFc0RdsSssFlAryEcbuCX9W\nJ/iwghUO6+KDuvhQ7ssKQTg7GvHcqSoP9uLxrkxv9OQMQndOP1xtlnXPs2BwMchiAgAgqeUEGoS1\niOO8iHjuVFQKSnG95aTS9c817wVfyMdQ7iREcOLAb+GjRJCny9vWbkhf943SvuaqcqUH/uz9xK5K\n/KZGwjnSbaXJpxXasva2rYMDQG6Asz3XHc8acnCraD86uw5BWtkZpWMH+c/EuZw/Mch/Js5mK7dq\nN/JqUPk8u4xYcVCFBcsKzfwG7YVXwbmcP/VegylXTyikzxRJ7YXYKeQFeVMB58njYTcwTvJcfOPv\ntfBjWPj5yLT5/7oCYIoUuapjp1GZeEzGWiA9lgjpseLH4vEMLhcdfvxWps3n20VgOzvJyqBkP3G7\n/LpkMqDjLFhxHI3qwkQrDCqQzyjk3MUDA/6cIDOmpbYJR0as13jNodumwC7ASabtzg8XkLVfs+Dq\nXl8Og198qIKMRGjiIuTc1RMD/pBNO6rpa1K2t6CFj8TB6j8oxfOTvzyBgjOPAQCjTr4DthVHZtyF\nmXtRfl+zLFV9fx4Dt16+Go2lugtVbU6FqUWgPFyGlcwh/krzEYUxYmVBelwG7xYyeLcQz52KYFYE\nMvmtxRTllYJ8/mPk8x8jnjsVXdl9cI93VWGPk03bIXyeBadM8FSpNUKsLEj3n2veh3juVDgy3ZS+\nTunxJ5r+QTx3Knpw+qu0etDQmAt8YQtuFR4AAPg79FSpMFwt+BvDgz7CpdxN4AmaAbTGIUjHHJzL\n+RO9vF6Ci5U/LuVtVCtDb6+XYcWxx+ks5VZd6XgHVW5OLCYHPEETPG1DYcm2gw3HBfdLT6iVQR0d\n+74GfkuT3utQFbuBcQqHa26QP5qy81C47CcAgMOLw1B19BRyZn8qGeP/+ypUJh7T6mAuHktkCXCe\nOFphrcaMx3i2dZdkP3G/+F+mdauFOWfWJwa3MFhxHA22tjJohUFDlB2OObZcjLs0CwWnHyN5ifIP\nhNGn3wWLS/x2d583AN3nDcDJV/5GXX6VVvvrg76viSyivo6H/6jOcI/2I+wXK2mqDvghr3RH19l9\nDSKfqbAPcTW1CJRH0wNzqaBAaV8wW1ZhUIU3K5BQYRjMnYgzTbtVznVlegMgllmsBDgy3VApKFXo\no6Fpy5x80hq8LD6ESx/GpdObNvFqZcbLj5XmZuE+jWW4kr9F5rn0nkQyEe0tnhPnOx2ns3+T5Mjv\n4qZfxWMWhwt+SxNcOnSnXGVnMsmZ9Qm8F88Fx9sLuR9+BiGfD8+5swAmE3b9YyXjqo6egsdHM2EZ\nFqKXK5wynv29R7HtubKgDEE9udYpKkIrDBow6sQ7ksfSh9ZBG16GY6joVtBnaIjSw7VDqKuMsnBi\n4lbUF4l8m207OGLYPyKXg+E7puHw8L/Aa1DM5nB4uKyJfNTJdwjbNUU8X7yGeE/vwcGI/iZB7WsC\nFA/w+ig1YmVB2trAtubIvPcxy15QmoFJWllQJRdVrQry8Qojz31gQmnaHm5MH4W4AXW4ML3gzQqE\nHcMJlgzlVYobhfWwZFgjnjsV93lJKOAT+2F3ZHdXu2cYuyeSmo+rHccHDyz645uGhpJczF2Prm4J\n8LLrjILqVNwvVXQ11JRr2+dLXI9SEr8jS0TK8vRbUayP+Ba/5nIS6q7eQFN2rsw4C39fpa5BhoAb\nHIimzCz1A9sw9DeOBrCtOTjQ/3eFyrHn3hLdKIoPpHaBzqjJKleYP3iDKHMCv5GHQ8PWyvTV5lbi\nQL/fMebse2BymBh18h3CQy2REqGqXR1sKw4KLzxB0qJjMu1Pz2biQL/fJa9p3KVZRjtky+/Dq2+R\nkcWrfyDhPM9+AUrXELeZ4vVoyuEBv8Iu0EUSvzDqwmwUnHqIlK8Nb91RxbjPO6HvtA46zc29W4Vf\nXiEOKDYFPGj+dyKtWBQKsvGYdwf1whrEWYwkHH+hWeRKMZQ7CV3YMejCjgGgaBmwZag3IdsznDWW\nU19WPYjXa/4n4ab9/aShoTL3So/jXql65V8TlFkV2pq1QfrgX75TlP2qfPs+uM18HdbduwIA8hcs\nBb+2DkxLS6WKgiFiB1ymTgDHy0PjdS07BqmUY3DoR7Bg2wCQTaWqbeE2Y0IrDJqigdWr20f9cPlj\n2cqQo0+/K3ksryxIkzj4D8mhlsFkGKXgiLyyYEpUxTw83HYLoa/2VNrf5T31KWZbapvBsSW3yjCZ\n1GQ9o0xGpGW3h4FtoVlWEGV06OaAqPE+SN6v3BXImKS1JGuUVUisLJQKniKl5ZxWe5xuEpmsB1tM\nAIfBVQiSrhaUw4Hpomy6aIxQ8cKBhoaGpj2g7CBe+udmjceq65NH0ziDp98ouqPpI0NxTQb8nJSf\na6gIrTBoQFOlZr5pzl09FdqUxS2oYtg/U3HyFe3TwGmDpq/JWKjKCPR4+22VCoOtn4Pa9RtKasGx\nNd7trbmi762zNFRRFgCgMycKhU3ZGo/XVlmQ5mzzXkL3pwz+TUQzVb+/j3i3dd63PeG7cjFYDvZq\nx/GeVaBg8QpAh7oH/n+uVGjTNTOQ/Fq6rsO0soTfT18r7a9Lvo2ydeTFvNjG9YbL65PUD3wOmZmT\niPD8dDa4QcqtnsIWHvLmLoGwWTfLu/T/E+9ZBQoWLZPpd3hxKBzHJqhco3DZL2jONkD2MiYT/v/T\nPP1n0crf0JSZo/e26t5zAMj98HOd3/P2yoPCY3hQSHxpq0nmI1NYImiFQQOuzlfMvEIEy1L526lp\nFiQAsPFVfwDWF3WvSdDCB5PDMrgcmtBc1aiyP+2v6wh/L1blGPsg6ioL0qlU5TGm1YFMZYFqsMFR\nP0gFAy3G6y1DpaAMAAjTs4oVjHKBZtnA2hsMFgsdfl+mfqAcbBcnySEr/5NvwK8mrothDhApMPLY\nRPWATVQPAIY/vBsTTV47ADA4bHT4ReTn/3TJarQUlei8J9ulNZuh64wpsImO1Gie18IPAQC8kjIU\nfKGZ3KrQ5MBOOG+BKA6uYu8RVJ84r/V8Td9zAKS95zTURj+/g3ZCZYb+fwClN6lz2wqQ85qowsNt\ntySP7fydFPptO7T6jt/98aJRZNKWwwN+JfwxFt/eGGq0vYyN+HAez52KWIsRcGV6w5PZAb05QxHP\nnQomWhXjGmGFZKyYeO5UhaJs0n3x3KnwZYWACRbY4KA7p79SWU42bZfMc2S6gcPgYqCFKK1xnbBa\nvxeqJfu+TkPK4UK0NFK/3ocuyoI8vqu+IEES48O0sdbq8CbG/48VBpDGuFh1C9fptQOA91fzwWDr\nfyfKdnHSWFmQmefuCsvQYN03ZjLh/+dKnZQFaQytLEjj/dV8uH/whk5zaagPbWHQBBLCCShXhMvw\nIRJG5VlqIVwivDD07ylKx+QeTceTvZqlzzQmF9/eiVEXZiNz+y1UZz6T6Ss4kWHw/cP6uYJrrdqa\nlHOnCr9Nu64ytqb7C56I/yAY7kE22PRBCtli6sWJpn8QyRkEt+dF1cRk8u9BgNa/zavN/8KZ6SFR\nJgAgl/8Q6bwbhG5Gp5p2Yih3EsLZ0QhnR0vaLzcfJlQAhBDiRNM/GM59BdGc1lSLpkidenVHHq7u\nUO86QQXLE6/0GdhuxPEfddduof5WKpoLCsF2c4HLqxPAdiW2KPr/udLsbt791ixV2le2cQeas/LA\n8XSH3fD+sOwY1NrJYOh88BNTe+UGaq/cANvdFdY9uoAbEgDriM6SglmGxCqis9LDJ7+mFs8270ZL\ncQksvD1hP3wguCEBCuM6/PY9qo6cQmWibgH63OAAeC5QzP5Xd+0Was5ehqCpCTbRkXB4kfjCxWPe\nTBR+8yOa8wu12pdpbQW/H79SO45fXQNBXT3Ybi6kKEeAcmWBX1OLqsQTaMzMBpNrAeve3WE/VPFy\nRKzkqfs76/TFGoW29G/UV043FWJ5DS2jpoXYqhsKYW+lviAhmdAKg5FwCHFF0eVsU4vRZrn4/n64\nRHih//+IXUcyd99F6s+XjCyVZvRfNxkAEDxFMU7DGArD22tVB15pmg3nzr9FuPNvERkiqUWXA7am\ncQnlgmKltRLkEYAvsRpow8mmHWrHqHqN4gDr9kLB4hUyB5mc9z4lzL/OKytHweciFyTfFZ+D5ajo\n3mk3tB9qTlPzs0AeZYc3+cNYS3Ep6u/cBwDYxPSE61uvkCoHr6RMdFMtdVutrzKiDvfZbyq01V69\niWebdsrJ9gz1t0Wv3bZvFFymvyzT7zBymM4Kg7yyQHQIrjx4HJUHj4NpyYXfz4qVxb2+mKO1kqpM\nWRA2NSP3P4tVT2Yw4LlgFrhB/qg8qF2WJqL/U6L3HACanuSiYtchkWJKZM1iMAxSI4FGxNUs9cUI\nyYZWGIxE53eikbH5hqnFaNOIlQWqpU3VBKpkSJKHTp1JQxXy538Nfk2t5uM//Q4cDzd4fy2brcR5\n0hizUBgcXhhC2K7u8FmXdAt1SbcMfqA3JLoGnNdeTkbt5WSF+R1++x65H+geJFpz7irKt+9XOUbQ\n2IScmQv0ft81VRKVIhSiaMVv2u9LcOjPnb0Iwhae2v2IXrf/HytUyix9U09kbaChHnQMAwW5/rkW\n6U4ZhpPDnBCnpL0y77CJJdGeo0P/h5HnPkCnd2LhmxAGn/jWH1NCXw7RUAltlAUxLcWl6gdRFMdx\nIxTatLmprrt2k0xxTIq2N/RNmdkyz/V111GnLEgjqKvXay8ijOJGx5A9TFQfP6deWZCCSEb74QP0\nFouGOtAKg4GRvu0ec+49pePGnG3te3r+icbrx60epZtgbRQbb/WpFqnGi6ffB4PJQMhrvdHj8+GI\nXNz6Y2j8eygvJragC21doDF/in9UXv/GnKi/cUer8WUbFd1IzAEyLCNFKxWtzPKWJk0p/P6/Wo3P\nm7tUoc3p5dEazSV67U+/NvztO9G+FfuO6r2u00T6fNKWMBuXJKaFBQIWfQVeZSVyf1Kf/SHke9Ef\n2eNFsgEqLDs7BC78irDPUOQdz4BfQhiYbCZCX+0pk9UHAEafmQkmR6S7VWZodyPmHqNfBoW2Rvd5\nA9B9nuythlAgRG1OBa4uOIr6QuNmotEEU7ojRQx3N9neNDTGoDH9salFIIXSv7SvzcOvrAbL0fwu\nUaQp336AlHU4Hm46zWvOydd7b6uITqjYfUinuS0FxokLMzeYFly4x4+DbUgnMNgc1D68j8JE7eLJ\n3IaOglOvOAiFQjQW5qHwwD/g1Zr+jKBNjQVNg6TJwGwUhqCly/F40VwwuVyNxj9eNFeiNEjDr6lR\n2mcobn5zGn4JIveS8PdildYM4DfzcW7Gbq3XF7vjyGNIX35lewIAk8Mi7DekPAf6/a5UJgaTAbtA\nZ8TvftXgcpgbYf1cTS0CDQ2NHM5T9a/7AQAlv26E1+KPSFnLGHC8FYuf1py7otNajQ+fwDI0SP1A\nI8B2Um7JFSOT4eo5ur52falL0i3LnTHec/f4cXCOUXR1cugeBYfuUQDUZzLqtHg1wJB1sLEJDEXI\nnKUazZfHZ8J02IX30GmuPKYoyKYpZqMwiBE0NZlaBJ040O93cGy5GHlsBmH/iYlbUV+keVGhA/1+\nh0sPb/T/dRxZIpotdv5OMulUm6saZYq9cZ2twbG1kDwfd2mWUqWh9xs/ELbf2DQPcRNFpeGv7JlP\nhtiUwNmXuL4ADQ2N6bAb2IeUdZrzqFX/Rx1enykvYqkt9Tfv6n14rTp6mhRZGBbqC0d6zH1XoY0s\n64pKGIqBkGUbtM/8BpDznquj8tYVOMcMQEXyJRQf2ydp57p7IXCmyO3MffhYlJw8SDhfOsC6MHE7\nqu4kAwCYHAt0nP8NhFoG70mvp6+y4GYrqtvBF7TgVPoqvdYyBJRXGKQtAfJuRsHfrAKDJcof3/S0\nAHm/Eh/2dEXTm2hNx7XUNpF6u/3s9lOt19N0fOLgP0lZh6w1lI1lWXIkysK5t3aj8qFyly4Gk4Gx\nF94HILL0PPjjmhbSkkeP+E/w8NpW1Feb3tRsYUWNat40uuM56z1YhXYEAGR9PA8AEPhT62dh9rwF\nEPL5CPzpB0m/bVQv1Ca3naBYALAI8APH0x0cD1ewHB3AcXMBy8kBLAfzdslpTzC4Fgptpsz2VHft\nlvpBZGGE2hZE2PWPUWijcoat5rISwoN5U0khah89gG3HcDjHDiRUGEI/Wy55LL+GoKUZGcs+1UoW\n9/jWC1sy6jOEeogyo1FRWQDMQGEQKwch369RiDnI/KI1iMmYLkbSXM/xR7R/DqxtmKivE0jaGQxg\nx0lvTB72lJR9Esba4PjBOlLWAqgvn6aMPvUOAKAuv0qlsgBApuhYx6mRJlMYrO09TLIvTdvEKrSj\nRBEQI/1crCjU3b4DprU1BPX1cJs21WwVBtu+0XCZPtHUYtC0A8w5y5am2A5QVBjMlfwd61SmaGVy\nRAopGYd78T5CHg8Zy8jJYsVl25KyjqGgvMKgDveXJsOmc1dTiyGjLACilJRkHcYB4Jv/upJ6IKe6\nfNqSd/KRVuMr0kp03kvsmgQAvOZ6XE/8krAPAO6d+w3VZVkKfT3iW92apF2cOFxbRI1eKrNGW3KB\noiGfrI/nwefTT2Dh5SljYSj85Tc0ZrZmXCvZtAWBP/2A/O+Wofr8BVOJqzNsV2f4fPeZqcWgoWlT\nsBzVx1e0BRx7xZG2llN0awwFWcoCAOSUJyPEjbqpaM1aYWi1Ouw0uoXheo6/wuNo/xyFPnGbmIsZ\nHbB0bhmW/e6m0C897/KZBsx5s0SmXX4fVVzN9AeLDdRUCfA0n4ewLhZq5bue44+BnXNxPk2Ueen0\nkXosnFUq6ZMfK78ekXwRPblYv18UyNYvNBfNTUKZNYhery50erM30tdfVzlmxME3JI8vzNyr817S\nB3h5BUH+cB83cbWkTfxv3MTVuH1iNaFLUtTopTJrxIz9VmYNsrBx4qDPK36krmksRs4LxaAZARqN\n/eudm3h4+ZlhBVIDk8XAR7tj4d3JTu3Y0qw6/DDuKvgtArVjJTAYKFixSiYhhKCpCY2ZT+D1nw9k\nhtbfuw/fzxcqWCSojiYuEkIeD433H6LxcRZ4ZeVoKSgCr6wcQj6f0i4WNDSmhKlBfAXVYLDYCFuk\n3d+064AEANA7C1LQBwth4Sw6v5FhqZAms/QSQtwGYFinTyjplmTWCkPtPe3yUpOJ9GFZ/gBPdDAX\nw7VkwC+AozDnaLKvUkUg2j+HcB9VsNit897vW4wz91oPh6rkO5/WQWW/tvKt3+9J+F4dTfbF9vXV\n+PHrCo1fExH3fruCrh+Ibg6UBTPbBzljyJZXJM9bapv12tOYZN7ai9CYaVrP6zzQDV2GuCF6oi9R\nTJtGrHoQr9M8Q1WHXpYyDGyudn6+7/zVCwBwfW8Bdn9x3xBiKcXFzwqfHe+v1Ry3QBssvzMMALA8\n4SKe5TWoneM8etT/2Tvv8KaqN45/M9p0770HdEILLcuyV4soQxkqDkBFRBR/gjhAlriYTkTEgQsV\nRRBXWzYIWGSVQummey/adKUZvz9i0qS5Se5NblZ7P8/Th95zz3hvSJrznnfBeeJ4tGZcRP0PBwAA\nd46fRMi2d1C8+hWleIaaz76Az9OqwZXmTMCW19TeK1/9OkQt1Au6MVgORila1o8RNt9RSTlrzq/5\nwFWbwbGz72mQiNF06TwE9bXorKlA8KLnCMdx7aXuPkI++eQyRMiUBUDqlkS30pCW/RZSYtYgJWaN\nUVOmksGiFQaHQfEY8NZOdDfUo7uhXt7uMX0mXMZMAKAaKK0piNpY7Nt1R6Vt7oRKXCwJxt53m7H3\nPdX7+sBvJX9a+dPX+n2YFDl42h8AseIxd0IlTmUHgt8i1ut5C76/hrrL5Zj4xXwAmtO9AkDV2dvI\nePUvndfTRtLc7Wipv43cC1+hu0u3jYx/1CSl65Ib1Aro6LrRN1foeJ4Rc/wxYo4/Lh+pxA+v3KBB\nKvU4efGw7tR4veeRKRvrRp5AZ6v6iquNR35D4xHlHO/N6UfRnH4UgHI8Q8Brr6L8jbf1ls1YOE0Z\nS1hHwJw3NL3huDibWgQGBrW0XbwKlxmW8Z3B4nDkygLVjXp7WRHsgsJh4+OvlwyF77+O7pZmeQxD\nyJJVKN5LPeEOmfSpZPowdRgIINrUq9vo1/95BPV/HiE9jznQ3ibGiOAS/HzSD0tecKFkTaCT2ioR\nbXO5ebDx+098vP6iqksInc97J68eh8d8jKSdM+A1gtjNJv+7q7i5+4LOa5Ah4e5XUZ5zAqUUN/i9\nqcg5QZNElg1dG29FEmf6IXGmn8GsIM/uH6GxerYubM6YhIyfK/Dzev0sJCE7tqL2i69okso4EFXI\nLXmaWiYTU2M3JNbUIjAwqIV/7l8VhYHr6gJhU7OJJFJP0ELd0+42njsBu6BwvWXobpG+LjmbVyJq\n3U7Y+PjDMXIwWnOz9J7b3LEYhaG/MHdiJV550w2nsgMxIabM1OLoxZcf3cGzr7gSKgwy5k6UBl7T\n8bznV+pWSZMuxCIhrKx76hpEJS1W29cvYjwKLv1IeC8kbgaKr/c8i52Tj1mkYDU2dCsLiqw8nISd\ns+ktihQ93pN2ZUHGyLn++OvdPLQ1des8R/EqyzmV1wjFPOlWvjpWM5dICHPUU8VpKvUgRkFJOayD\nA/Re29K488cxON8zxdRimITW0xdU6m9w3VwgbDTsxl3UpGrhd3t0Lmo/+Myg6+qCzDrQVUOcsMXn\nnnlqx/ILbilcsQBQ+ztCRNHHbyPsmVfhP38xct98ERIxeW8Oc3M3IoNpEv/2cZa96IJte6V+bs+/\n5ooZ87WnyrpYEoyLJcFIvRyA+x9xxJQ45XL0bXwxLpYE40xOkN7yPbrUibJ8ab+24WJJMI5eCyR0\nMZLJl3q550vu690taGoQyZ+td6C4rP/FkmCV57VErqVvg3fYXUiaux1Jc7cj58I+wn7nf34RXiHD\n5f1633PyDJffS5q7HVY8e8J5+iqeIXak3ZAObszG+lEnsTomHatj0rFj1nkUXdIeF+Mb4UCr69am\n8xPx+O6hWvt1tgrxxbKreClWKu9Lsen4fOkVdLWpdzmSsfHcRExcEkqHuBZL82/ULUPeq5bptJaw\nrlGncb3herhRHlP1zke0rO2x+EHtncyI5iOq/7+BOzcaXxAT0Lj/kEqb/9umqfprGxthknW1UXtU\n6jnC8/YjvO+SoLngYcsNaV2NqHX01OwSNNSho0LqHRG5druW3pYPY2HQEyJXmt3b1Z8IaAps1sTE\nWGqn77L5ev8LAN/saQEI6rKpC94GgHUr6rFuRX3vIVrlS0kgVgRM5XKlD0SZinq3abvW1g4A14+/\np4N0PVBxt9G0aTaU2442XvpzjMb7574rxeE3cwjvVefzsfsxaeVOFgvYelOzUsBis5Tqc+iKnYvm\nTCNb7zmHutuqaYclEiDnbD1eGy51Q4sa64En9iSonWf6CwNxcu9t/YS1YIR11DNecRx1U7g7sm7B\ncbLm96LBIDipdHtoNuXKv/aj1L+XLAW2vZ2pRTApLA4HEhF9rsLmgI1fEHhevrALDAHPy1feHr5i\nHQR11WgvL4agthpdddUQNPbUwmj69294T7sfABC6dDWKP38PLBYLwY8/D56XLyRCIVhc9dvaykPf\nwmmQ9DMhi0FoyboMlpU1HAZEy8dSiY8o+eJ9+VyGCII2JxgLAwMDg9mgSYERCsRYHZOuVlnojUQi\nVXq2z1DverT1xlTKMvZGk8zfrryO1THphMoCETln67E6Jh0tdV06rdfXcRxPLZe6PqfTjQdU4+AC\ntq8n6KkejycX6Lx+bxwnUHt2cz0l1gZRQLvXs+rdO/sS5atfV2kL+tjwSQqIXnNDpiIOeeJ/8J3x\nAJyHjISNX4/XhJWzK+wHRMNzwt3wn78YYctfVRkrq8bM8/JF5KtbEPHKO+B5+YKfn43ct1+CsEWz\nC1fO5pWoPPSt/NppcCIcowbLlQWJSLu1l2hOUac0o52mwnGWDmNh+I/x0SvQ2lmLK7d/MLUoDAz9\nEvdA9SeJ3Z1irEk4ptO8NYV8fLL4Ep7+chjh/c0Zk7BupG6B5m9fU+9vvevhiyi+qpv/8ebxp7El\nayrYHGIfejtnK7Tf0T2ewVLhhZNL9QwAjuNG0X46zXEkX4mVxbOG/fAhOq/VeuJvOE5StnAE79lK\nOkOU14ondV7b3LAdHA2nlAloSTul03jr4AAISszf7VVdiuDgT7YYPNif6HSeyvtNBTab0FIG6Fe/\nQCLs1ji+4H1Vpas3LTeuyN2TyKJN5vxtaynNpw6y6VRlGZSMGQvR7ywMnk4DkRK/Tv4DACnx69Au\naJbf83aONrGUDAz9j1fSiN0/utpFOisLMgoz1Puj2zjqfm7CtSb+E/pOyt86KwsyXh58VO29TRcm\n6jW3pSARqrpikDn5DNy5EW4P36/3+h2Z2YTra3J7AKSWhaAP3tBr7cYfiTP9aXt+jpODxReqI9qk\nut4/HcF7toLr5U5qDqeUCQjesxXBe7bC7aHZdItoMEqXE8QtsFgI3rMVXs+TUwJ5YUHyZ9drXUjf\nb27zZ5KaQ/E1D979Dum19WWKwyNGW0sTodaDjbaWWGJ8N7V+Z2FICH0Qx7K2QCQWwMHGC9H+dyMt\nc7P8/rCwhzEkZK5SmyLDFqkGy1zap1w1NWjU/fCKGq3Sr6UyD3npBMEDsrkXbifMylGbcw6l//yi\ndhxZOYlk1QUyrwFdcG0cMOTBTZTGVF0/hoorhqu1IMMlaBAGTNJuKm+tLkBu6m6Dy9NXeW3YcVrm\neX3sKaw/O4Hwnp2LFdqbqZ3Y37tavctHQ1k7pbnUoUnm/kDp8lcJNz3Be7ai5ovl/U4AACAASURB\nVN1P0ZlTIG9j29nCa8UT4IUqJ4bgn/sXDqOH67R+7cf7CNcP2iU91Ws+ko6OzJuQiMSwjYuGy4yp\nYFkpx7PUvv8Z6Y1eb0qWvqT2+QGg4asD6CosAcfNBY5jR8IuMU6nddTBtrEBb0AIrPx9YBMu/VdT\nELdMLmFDE7orqtFVVAxBZY286jYVSpevkb/Oivhv7jlpF3d0QtTUDLa9HTjOqvU6LBGJUIi6vd/B\nc4lqwU7bmAil94OwrgESsRhcdzewuBy911b3fnOcPEYpnqe7shosHg9cd1e916SDY/xvtXfqY3QI\nmmDP8zDqmv1OYQAAkVha6ZffWYsgj2G4VdGzubxU9J3c8qALoWMXwD08kfCek18Ehi54E1f3q5qu\n1G3wAcArajSc/CJw4xfjaeymJmDYvfAZpNspqm/cFPjGSV1FWqrykZf2CZ2iUVZiHH0GYNiiHehs\nqceNXyynaJYxeepz4s8MnbQ2qK/w/WraWMpuSeMXhxC2d7TQ5yqkSWYOlwWRUP+AbXOnM7cQNpGq\n+dO9X9BesVpQXoWGr3/SWWEAADG/DWwH4sBpl5nJcJmpOaakIztP57UBQFjfqHaT7r5wvsax6jaA\n2gjYslavgnNcd1dw3V1hG6dqrSfr4iIRCsE/fwkOScSuhADAtrUB29ZHZznNlfZLmZA8Ng8snrXG\nflxPctYWKpQse0WrdcDKT7fXPMl+FqxY1rjSfgxdkg5E8oYjq/Os/P5ddjNgw7bHSX6Pa3iK4yKk\nte6TX4+wuxtWLGuca/sVNix7jHeQplJV7CNjqO1kuHG8cakjHXdE6pO2qFur93UUbySCrXve00Rr\nappvpN10ZLTrV6dJhrGVBaAfuiQZkqEPv6lWWZDBsbZRUQ40KQsybJw8SfWzdIYt2oFhi3borCz0\nxsl3IC3zyEh4dAtli4cMGycPDFu0A2yu5i+B/sjAu4i/+E58Sm9GoPpS4pN/qm5Jds7qsyKtH3WS\n0ly68tbV/pGvvmbnHgjKqyiPK1n6Eqo2vwsAaL+qe3XvslWbULmJeiBjW8ZV+eaYf+GyzutXrH0H\nJcteoTxOvva5izqvbWoavjpAS1XvTj2VNlNQuuI16bNTyO1PC2IxSpa+hO7KGr2mkQhUD04c2a44\nzf8JSfazIIYYflY9BwEpjotwof03nOT/gBTHRRjIk2YzutWVgWTHhfJ+rhxvnGv7FQDQKWlTu2lP\ncVyEqx3HcZy/H57cQNiw9UtPnuK4CDldGUhr3YcWUYNWZUGGI7vHCuPCUa0Jw2KxlX6I2hR/uBwb\nDAnQ391SF/qlhcFQcKxsKI/xG5JiAEksE3NXiIYt2g5pwRf9SHjkbVza9yLoKBzT1/nrvXxa5/tt\nSy4W79JeL0EbL/2h6nJobNQFRPdFqja/CxaXS+ii0htxRyfK/qeczajuk6/18uvvrqymdFpf9cb7\nEJRVyK+bDhyBw116WNH+28QF7Xpbq+tJzc496MwtVFj7NziMHqH72mZAydKXADYbwR+/TamYXt3u\nr9B+Tb8K6aamZNkr4Dg5IGAbtQxdgpJyVL31gc7rVm6Sfh8Hf7KF0mvOP38JDV8d0NpPKOmxng61\nnYROcU8mubTWfUhxXIT8risoFdxCNG8kBclVKei6igkOD+AUn7hYKlWqhcWk+p1rO4zR9rOR1roP\n9mxii11ytOphAFEbESUNxj0M6JcKQ2+XI31ckAAgYupTsPMIlF+LurvQVHwNHgNGqP2gJTz6Dq58\n8wr8hiiasyVoKLgE9wHqzeehYxfg9tn9eslrjhhKWbj+E3EsClX8hqZAk7LQWlMEQWsDrOyc4eSn\nPZ3hsEXbDRb3YWm8nGq8XPfZJ+vU3gsf4YbCi+T8rO3diK1ETRUdOsmlicrcVvhFOtI+r6UhEQr1\nOm2m46Ra1znE7R2oW/4Wxvo9hvK2nkDqBK+ZcLb2xsnyvQCAacH/g0jSjaOluzDWbyHOVn4FAIj3\nmAYbrhMyFNJMjvCeAzsrV1yq+QX8buL3LQssTPZ6Ei0bLiGjumcTl+S7ADYcB5wo/1S+bmrJe0gO\neg5FLf+i4OU3AQCTAp5CZv1faOiU1tnhsLiYEvgMGrsq8G/NQbVtBkEsNnimIDreI3TOI0PUwqd9\nTrIY+jUHpFaDOqH6WlMy5cLXKgzH+brtf/RVFk7w9yPFcZH8+rYgS+sYvrgn8cUY+/sIrRKyLEe2\nVs64K+xxWHFsNc4pEnejjp+PzHJqNVnooN8pDOqCmfXByT9S/rviyXHxuQOIuuc5OHiGqIxhc6ww\n9OGe07Ibh7ag804tAOD23z8gcMRseMeMVRnnHp7Y5xQGMspCY9EVFJ35TmMf37gp8E+4W6lN0KZf\nphoZfvGqfspX978GkUD9BtHRZwAip6mvMmvn5o/2xgq19/sLHkHmUZgp/m5v0gqDOk4YoKhaWVYL\nozBYOHZcZwz1vBdppT0nvo7WnrhSK82ElBL8PNJK3gcAXKo5jEkBT6Gxq0LlnmxjPzXoWRwt1V4N\nmsVi42jpLrmrg+IcvRnieQ/SSz9U6RflOhYdwla0C5sxNehZlbFEbQwMVMjruoxYmyRkdf4NAHBk\nK8fsnOB/j0CrKMTYjCLtCkQ3UbyRuNxxFPVCat/ZRYLrpPp1dN/Bidx3SadVNQX9TmEgg5tDCBr5\nxZTHEZ0Y5/zxodoNMceKBwC4/M3LKsVCyi4eJlQY+hralAUqp/BV14+h6npP+k23EN1zoGsi548P\nwa8r1tqvtboAl/atUvuMMTNXMlYGLRizSNmAEeqzvyjCs1PvEjJnYwzmbIyhSySGPsJY/4VIK1F2\nD0nyfUjexlKwXjZ1VaCk9Zr8mgUWpgX/T2ns0dKPkOA5A1524Ro368GOQxHhkoSmrkpcrPkZAFDW\nSryBuVb3h9J16X/9cprOIiV4BdJKPkBqyXuYFvw/1LQX4Grd7wBA2MbAQIXy7jwEW0cjxXERRBIh\nOCyukmIggQQxNqNUxgVaRcKB7QIAiLedgGZRLUoEUgvehfbflSwCZBSNqu4ipDguQrekC1YsntK9\nm53nMdXxUfn11Y4TqBWWwonjDm9uMBzYLrBnO8OaZYNCQabcKpLfdQUpjovkcReWTL9UGFztAzEk\nZB6qmm8ipyJN6Z7MPYlOS0TWwbcweA5xjmNAfWXB8st/ICDxHtrkMD80+0Xqu5luLL6mvRNFJCIh\nKWVBEU1KA4P54OxDLgYpYaafgSVh6GuUtl6Hg5U7+N0N8rbilqukxxMpBVfqfgMATAl8BsfKPiYc\nF+k6RmVsoGMcbjZqzwgW4BCL7MYTsGLzUNLS87dUZnXoLV/vNgaG3sg27b3/BaB1Q0204S/rzgUg\nDYzuTYuonrI14nrnGVzvPEN4b6zD/YQZlFpEDWgRNRCOUYQvbqIkiznS77IkBXuMwIgBi9DaWYtg\njxFyBWFw0CykxK/DnfZK2t2Wulq1v5mIqM4i/qPuFpagjzhmgzSImBhzPXm//A29/pyR056hPOb5\nVHLZcZ74biyeT50Cezee9s4MsLYll8c8PsXbwJIw9DVuNZ6CBGKkBK/AYPepAIDcprMY6jkDEwOW\naLQSSDfj4zA5cBncbPwBAB62wZgcuAyJXrPVKgsAcLriC0wOXAaWwld9asl7SPJdgEkBSzXKnF76\nISYFPAVnni9ymqSbqEHuU5Ec9BxaFRQfojaG/kXUD8oHotEH9YsLNUdaRbpt+G3ZDsjp+pd0f3N1\nRwL6oYUhyj9FSSGYGLuKFquCus29NhqKqJUnBwBn/yg06jDOnLCyVe+Tba7Kgj5ylfxzEMGj5qi0\nO/qo5pfXhou/dp//DVk9lTlfPJ2C7RPS0NbQRXktBlU8Q/VLz8fQP2nrblJxS7r6n5VAhkxxKLyj\nnP0kp+mMfNMOAPUdJThepr0YZIewhbDf+SrlODh1CossKFrGjYajuNFwVGubuWHNscXo0CfB4yp/\ndlNz+k9tI0MRc3iD0r8AUPDMh+q6Wyye3ADKLk6y/qaKu6Cbfqcw9CYj/wuMjX5Wb6tCbc45ncZV\nZVL/Q2vrYvknnPEPbCRsb6miN42muVCXc55QYdAVRYUAADYNPiL/PXCI1Bd///IM5J+pwYasmXjx\nVIpSHwbdsXdVX4OBgYHB/Jg08Hm0dtWhob3Y1KL0ObJnb0LUD2uQ86D5nozTgS6b/r6iKMiwKIUh\ncewLsHfUXmHwzJ/k3UbaBU1o4Ouf2UTXbDyyzEhU4DnSX93RXKC7KnNfpb1JgG3jUuEaYIcVf03B\nhqyZcoXggfekaXnzz0gL72wafAQbsmbCa6ATavNbTCZzX0Fi5DpKDAwM+nG68BN0dNOTMY9Blb6u\nLBgbFoutUouht6vS0MC5yK89BX6X9grWdGExCoO7dywpZYEMRHUXercZIv0qXehSII5BP+pyz5ta\nBABAwtxgQAJsG5cKAGgqb8cbCb/jtSv3yvvYuxPHLEx8Ngo/Pm85VV/P7y/DoTdumVoMFfiNArj4\nEn8GV8ekG1ma/oei60Nvar89jvqf/1Y/9tB6wto42bO1V28nGttZVI2ilXu0jmUwLVYcG3SoFh5m\nIIE/JxyxXGnhtPSu/ZjCewDHuugpgMZADJnCbV6OEfByjDBqzIPFKAyRcfMAULMeEGHOigBpKFRd\nZKCHkgsGLEhEgXvWDsahNcrxK6JuckfeA8eolqU3Z/xjnYyyzuHCeMwOzyTdvyCjEcNmM5mSTIFM\nWZAIhKj+Ig3dtc1wTUmE48goAIC1j/rUuIqKRtXHv0EiFMFvxWz5PXVKg9uMUfB5IqVn3c/+AtuW\nB+/FybAJ89E4lsE8SApZhJvVqShrpj9zXl8nljsS6V37kcxbAADIFapm9+r9GYj8ejVyH9tmNBn7\nEikx0gDy9Oy3IfmvppeszdRYjMJw/uhGjJu+xdRiMNCAvUJVbEVqb6k/GWSQUpbZhGHzQ3D993LK\nY7s7RQaQyHAExzubWgRCcs7Uq1UYnL15uFPDBJcbgsBXHgAAiDsEyHnobXk7/0qB1rEyZaHh8HnU\n7OuJG2s+kQmfJ6bBbcZItRt/mbLQe2zDrxeUAj77otLg6zYYg0Pv12lsh+AOLmR/AqGok2apdCPW\nZxpifaYptZlT0LODrRdig2fC2d5fp/FFVWdQUHmSZqlUCecMQpkoT2Of7nrTur76ug1GZOA0WHN1\nKwp6vehnVDfdpFkq7Xg5RgAAjuVslysL5oTFKAwAUFWaQUpp0McK4e4YhmFhD/cNS4SZ4hU9hrC9\n8hrjzqGNfYvOYUPWTLx0dhq2jk2Fs68t/pcuTdPYOxC6Nxn7i4whotH5JS8O90dIi0zJrAVcKxaE\n3RJwuCyIhBKle/qSmVqNR3bGEd6b9WoUvv6f/mswqGIbGQAAaM3I0XkOxQ2/jOrPU+E2Q+pyYeXh\npLTZcR47SOPY7NmbNLpIWRpTEl4Dm0UuvbA2bK2dMWmI8nfxzZIjqKgnX3+CLnRRDJITyf2/pl/W\nTVFksziYPHQtWDR5DIT5jkOY7zj5dRO/BP/m7tN7XkXrQjJvAU52/azSJ/s+hc+BRHptTGKDZ8Df\ng75083FhcxGHufJrQXcbTl1XnwaeLgb7zwAAiMQCg6+lCxajMDi7hcE3aCQtcynGK7R21uJ87h6l\n9rZO4wWR9Efs3IhPUIRdbUaWxHKxdbFWUhC2jUvFA+8NR1BCT0C8TKm45zXp5vbUrlyjy2kM2BwW\nDhfGK7UJuyXY+VsEAsJ4mB+bBQD4+49mHC6MxzOTc1BZbBgrwOBky89gZq6Uvfk9QrcvgfOEOFS8\nd4j0OJtwX619xB0CsG2t4bt8Jko3fStv918lzWxW9k7f9dlmgYWpieuNslZs8EzEBs9EbXMurhX+\nYJQ1DU2Q10iU1qoWDlMHi8XG1ATD1ylwdQhGcuIGCIRtOJWp32Y3vWu/5g4ScnFAdDN56KvgsK0N\nvo61lb1cgdRVQSSDxMwzaliMwhCT8DAA/WMYUuLX4d/Cr9HIL5FfxwXfB1+XQWjkF+Pfwm/0lpVB\nM9YO6v2MGbSjLj3qlwuVU/tuyJopVyr2LdIt7a8x+O7F63h4O/GJfUSSO/LOay8I1dtyQGRN2L6i\nBNtXlOguKINJ6SiohEQkBovDVjrV17ZR8Xu2R7HWZg1wGEJcF0XmDtWXCPMdiwF+k0yytpdLpFE2\nYDKmRfUEkcqsDdOiXqHFJSkqcBophYHDtsLkocb3Rbfm6rfZTeYtUFIYBnDjUCC8rtSH6HNlKAXC\nyc4Po6KXGGRuMshey+NX34JITG8k/bXyXzA8+GFYcWzRLeqgdW46sBiF4cKxzbTFMMiUBQC4evtH\nDA19AJklB1HdnE3L/AyaocsEy6AZS6m7cO3ParUKw5LPEpUyD735/QAERfDQ3SVBWUEnNjxWhNnh\nmUoWhtnhmeA3i3AwNw65V9ux5kGpj3vvPjLaW0WU3ZWOf3obk58KJbxHVslhoM6tOZvBcbBB5Lc9\nB0eyzYq6DQoviEKwfz/408SzcsT4uJWmFkNOcuIGZBYeQE2z4TKiFTdeRE7tCSXFwZiMG/wCbKyN\nk8RBE8mJG5BTlkrJItKbO2LVv229P3uuyYk6z6+JMYNWwI7napC5qTJ56BpIIMHRy6/TNmdjm3Rv\nOinyBY3Zj5LCngQANHdU0LY2GSxGYQCAopw/lJQGkYjYz+tcGnlzX11LPhr4txllgSQca1u95+hu\nbwHPyYMGaRj6G2sfIg5w7b3ZfyTxhtY+MhYMUe2rjdT38tUqDL2VHAZ6EfE7kT17EzhOdoj8erW8\nPebwBuQ88BbEXcqnfuIOATgONuhuaEH+E+/qtKax3C3sOS5oE0nrBUx0fQQnm77VMoIaQV4jEBV4\nN61z0kF8+HwAhrM25NefNci8ZBgftxI8K0eTrd+bqMBp6OhqQt0dzYHL6oizGo3jXQc09vFZOh1N\n6Zd1ml8dZGNKjAkLLCQnbqD1ffvP7X0YFboIKTFrIBJ3o6he6h3g6TgQkd6TYG/d43accfsr2tYl\nA9uoq+lJWNQ9StccjjXhjzb8XAfLf3xdB4HHdVBq83MdbKhHsHhsnD31noNfX0rYbmVr+hMYBtOw\nfuQJtfemPT/AiJKQR9BhWVmn+hqilnZkz96E7Nmb0HpRGp8T9aOqy0f9z9LNopW77n9fXKbSF1Cp\niSRnaUaiFPclONn0LSa4Pkzb3MmJG8xSWVAkOXEDPJzp/7xPjVildG1r5YyO7ju0zc9iEW+lkhM3\nmJWyIGPogId03oATKQsxhzco/dyaS1/SmAlxL5qlsqBIcuIG2tzN7nRU4njODgBSN7aBXhMAAAmB\n8+TKgkQiNmr9BRkWZWHQN35BxuCg2VrbKpuyaFmrr2HvEaz3HM0lWXAPU/0Cdg9PQPWNU3rP39eZ\nvjYOwx8M0drPUlySAKCjVaj23uSlYUh9X3vqTGOzNvE4tmUnE97blp3MWBmMSNlbP6iNT2g4fB7e\ni6bqNC//WiEchoTDb/kMNB+9on2AnjQLpdXZawVS1wQOi56vaHPfcCmSMOBhnMrcBoGwnbY5a1pz\n5e5Isn/pTKk60H8y8sqVs2hZwmse4jMaxdX6x7cZygKXOPBRWFvZG2RuuuGwrTAsYiEu5el/6i8U\ndyEt+y1Yc+0R45MCL8cICMVdyKk5hspm0+1NLUphoAMmXap++AyaqPccTSXXCdsDhs1gFAYSyJSF\nvQ+dQX0R37TC0Mipz4sx4YkQwnvbspPx+rjTaK23nBoHjNJgfvgunY6qPX+S7l+68Vu5IkJ1rC78\n2/IHAOBqq/R9c7xRv82HNdceE+Jf1FsuYzMhfjUkEjGOXqHn+/pqBfmsWroQ4p2kpDBYgrIAABH+\nU+DpPFBj+lVNGZI0JRHQV4mwlNdQETfHEFpdlATCNlwr/4WWuejAolySyBAYPsHUIvRprO3Ns5hW\nf2HWG0MBSK0HlTeaIWgXqv2xNP7Yodmndv2Z8bSvuS07GcnLiTPjkEGbQqDOAqErXGs27XNaCjGH\nNyD8o+XgONgotXNdHbRmPyp45iMAgOvdw1X62seFIuqHNWrnEPE75WODNjyidM995ii5G4a5YanK\nggwWi01rbn1jYWkbXVcHzV4Dw62myH+SeQtwl3WPW5vMJVDx9+zZm1D9eZpeMlnaa9ib0bHLTS2C\nQehzFobQyLtRVnjK1GIwMBiE+BkBphbBoKyOSde4IZbd25B0Eu3N1FPaTXt+ACYvDdNZPiJeHXIM\nb1+bova+TGZdrQ0rDoxE4CBGUQcAXoCHUoYkRfjXClG6kThIWFDZoFRkjcoGP/eRLeA42iLym5fg\nMDTcoMpBivsSpDXslV+PdZmPs82aA0zVQbey0C1sR2HVGbUZdhxsPDHAfxK8XKJoWzM2eAYiA1Jw\n4trb2jtrQOaGdLpwN62xC73xcY3Va7xEIkZ2yW+oac6GkCCpi6dzBAI8h8HTeaBe6/RG06n4v93H\nlK6DOdr/f10mxaPxt390loVOJBIxSmozUFz9N6GbmzXXHj5usQjyGgk7Hj0p3+1tPHS2NNwV9jic\nbHxI9zdmLEOfUxgYLBvv2PGouXna1GKYLbcz6hF2l/6B5+bMF8uu4vHdQzX22XRe6honEUtwbHcR\nTu8rQVdbj1XFN8IBsZO8MOw+P7gH2hlUXqFADLFIAjZHc05OmeJQU8DH6X0luJ5WI5eZy2MjON4F\nCTN8kTjLDxyuafJ7cq3Z8IlwQOhQF/hEOCI0wUVt3xePJKG6gI/iK82oKeCj+FozujsNV3goe/Ym\nsG2s4fXwRDiNGwyukz1Ere2o+/E0Gv+4SHoOlhUHIW89DttwX3SW1qLxyD9oPnFN4zhRaweyZ2+C\n/aAQeC2cCptgL3RVNqDqoyPoKKik4/EIYesYw0DXpqu2OQfXCskVreN31qn0pUMOLscaLBYLEolE\n5zlSc94Bj+uAiQOeBQB0Cfk4WfCR3rIp4ukcgbiwudo79qKw6jQKK0+R6lt3J08pu9FA/8kI9RlD\neU0i7Gzc0d6pPR20BKqf8dzHtlGqjaIOut63N4p/RWWD5s+0DIGwDaW1F1Fa2/M3JCJgKkK8k/SW\ng83mQiwmb+33dYqhpCwYG0ZhYCBNyOj5tM115ZuXkfCoal2NwOEzGYVBA988dUGpwnNf5NbpOq2W\nBhksNgtTl4djqh5uRXTw8uCjSLjXFw9t1Z5hzXuAA+a/EYv5b+h3GqkLdLozeQ9wgPcAB8RPI/8F\np29Mh7hTgOrP0/RyeZB0i3B79V7tHQlou1Gs81gyiHttxk43aamwS4C+my6hSKD3ib4MxRNWfeSa\nmrAeJzO3oluoezGrLiFfKdCZrsJtMoYOeIh034aWIlzO179IbH7FceRXHAeg///7mNhnCU/Ek3kL\nlK7FEKFUpOw+KstYpg8D/SfrNb69qwl/3/hArzlk5JUflcekjBn0nM6WhylD1+Lo5dchATllN8ZP\n6u5ligxIZDBbhYGuIm0M9OExcCRtc4lF6rXuYYt24NK+VWrv93e6+N3YkDUTW8emoqOZuBZJX2BD\n0km5JcESuPJ7FRJn+yEiyV17ZwYGAorar+o1Xt9NI5XNDVXSL29CXNhcnd12Jsa/pHcwaYx3MoJc\npXERVytME0x6JutddApaaJ83/fImDIt4DG6OxPVhyBDkNVLF5UxT0LMcFgsxh9ZLf5cA2fdR/3/S\nx1JiyGrhf9/4EIDun62pietJy3cq7wNMiVqtvaOJMFuFgUE/2hsrYOfmr9Ku62Y8ceE2OsRS4sah\nrRh030uE9xilQT08BysAwEtnp2nsZ0lpVYlob+4mbWkwF/Y+eRk2DlxsvjjJ1KIwWCCFHYZP3aoO\nQ266ZFwv+hkd/o0I9Rmr03hd/cKTI1eDzeJI89fnboVEYjjXOU0Y+jW+lPc1piauB0vHkuVRgdMI\nY1RGW98Le1ZPHZPeSkTMofVKFobAVx9A2dvkXNkA/RRdY7xvZesYOhhbJO7G8ZwdSIlZg9bOWtys\n+gP8rgaIJeoPWI35XjZrhSH/xi+oKqVWwpyxTEjJPrITwxbtILxHdTOubh596bxTo3XdvPQ9aKnU\nrSJl+MSFcA2OYxQPC0fmxvL6PxNh62RF27y/b8vD6S+LaZtPRidfiNUx6bBztsKmC/RaSN6YeBp3\naiwntSwDNWLtx+JmW09V4kEO43GDT85F0xI2XQCQX3EC+RUndJaXql84AKTn0n/gRQWhqBMnrhln\nb3L08utIHPgI3J3ocdNM5i0gZ2XQEXcn3ZJQXMj+BK0dmvcQdKOr0kBF0Z0cJd2vONp4YVToYq39\nmaDn/7jTWGxqEfosZJSGwOEz4B07waByXNq3SqNCEpG8FABQcv4n1OVpzrrA5lojdtaL4Dn2bZcQ\nS7cc6Mr6UScBAA++PQiJs/x0muPs1yU48k4unWKppf2O1ELCsWJj3clxsHfTXoWeiK+eu4Ybx2tp\nlo7BHPG3iVBSGPx4A0gpDCMiH9d5TWMqC4qcu7lLp/STU4auNZnMumIsZUHG5fxvdVbIWCw25VPr\nW3Pf6Al6FkuQff/rpMcmDnyU0lqA9CTe2MqCDF2VhoiAZOSVa47hivE170rsZqsw0FXVuT9z5ZtX\nkPCo+qAuXSwH2jb4ukBmzuCkeQhOmkfrugz6B6FSYeSC7QCAjP36pXv84dUbyP1nNviNZcg/q39V\nTXXQJa+oW4yNY07RIJH+6Pr/XVshVdC8/LVnBKqt8CPVz9Bz6LM2QM+zJs91QfrPzaTX/rv5Jzhx\n3dEibMBdzvfhXPPPpMa5OASSXkMRU2682zrrcfTK65iasJ7y2PFxq3D6OvnvIQeeB8aEPgmgp8Jz\nhOd45NUZPsGGqV7jU5nbMCGeuj/8lKFrlQrmXeo+gVjuKNwUqj+wkwhFOgU967Lxbu9swN836c1w\nRRVdlIYQ77u0Kgzu9iEAzDfouc8VbiOjaET6TcXUuDXy65EDFiMlfh1SJraw/wAAIABJREFU4tch\nzGu0IcUzKmJRNxoKL9M23+2zhjNLXvmGURAZyGNt7wK3QO0ZiRjowcu/0mQbeGND17MuXu2FlVt9\nKY1pF7XA13oAkt2fwHX+SbSJtNcM8HMfopN8OWV/6TSOTnRNlcqzcqDUf0zokyppVMPc79JpbSqc\nuEZfFiaqENUcIAOLpbwtHGY1Cf6cMCTzFsh/emPMwoWmVhb0YVT0Uxrvny3YbSRJdMNsLQyGYtTA\nJ+Bs54eq5ptIiV+H9OtvwtnOH2mZm8HjOmBC7AvwdR2Mc7mfmFpUWrh9dj+K//5B76BlRfelolPf\nIGwCdTOiJsQiIS7tW4XYWath62q+eYgthQ1ZM43iusRicxAybDZuXzxo8LUYGCyJOUt0S8WY256B\n3HbysXuDQmZRXqNT0KKUd96U6OriEew9CiU15IqDHc9/D92iTspr6ItQZNp4o6NXNmNqwjq95jBU\n/EJUoOakHURcLTDcoSVVdHnfOtlpP0A4kbsTKTFrtPaTYUxrRJ+zMGjD2c4PaZmbcb3kF6RlbkZy\n3FqkX38DgDRP85Xb38PBpm8VxpJIxDoH/krEqmMbi8kVRNGFm79uw6V9q9DVqr2ADBkuf02chYmB\nHmKmLofXAMOf1PUmY/+LersKWTIVJb547BHVgnQydxoAuHHVB7UVfko/gYEcpb4Z57yU7teUK8eG\nPPqwndJ9InqvoQuK45c9pXp6vHmjs1Kf0sKeL143NzbhurUVfvDw6PmK++l7d6U53t+pXJSO7mct\nukV9s8hmcXCX831IcV8CAIiy1/zZCvHRzSJ+JutdncYZCl2sHZEBKaT7ejtGUp5fXxTdekyFrhl0\nuBwbSv2L/vcJova/Ao/54+Q/2gjyop6mve5OPuUxlsakyJWmFkEtfc7CMG76Fr3iH+paCjTe13Xj\nbexxmuZic60RN+81cHn2hP1aa4qQl/YJJGKRUeQiIutgj9bsGjQYIWMeAMfaVuOYptIsFJ74CtAj\nj7ghn6svZmtycA8ytQj9Ev/gKtRW+OHrb3vcDv4+5YUvv2qTXw8aWq00ZvdHrrj8j7eSu01oCFfp\nurbCD7eu+yA6Tjr2m+/a8c137Wo3x9mZPrhxsxuTkuuU5qBCbYWf0hxb3nJW6bN0ib2KnLL4gcZG\n9Zui+nrpvYMH3DF2NE9ljudX9sQX0P2sK2bdRmpRtNr7REx2XYijjV/IFQZ/XgRy2i6o7R/hP4XS\n/ACQWfQT5TGGprT2IqICqQd8BnoOR1ndv1r7DfK5G4N8pPNPHPAceFx7Wou29UYo6jJZ6lY6iAm6\nB56VHBzvOoDhVsrvMTaLgwyBcuHEzuIa5Cwg/3oGe1M/ZDLHQHddrAyjop/CP7c+VXvfXOMXgD6o\nMFgqKy7cDytbLnYMOaC2z/LTs7Fr/GG91xILBbj2PfVAM1PRVJqFpv1ZOo2NX74Tpcf2w94vDO4x\nowAAmbtWgmNtg0FLej6YmbtUtfrw2c/AwX+AUltnQyVyf9hOuBbHxg6DnniD8B7R/AAQ/8wOgKWa\nM7vu2ilUnjsir+qs6F7U1ys9M5DH2poFgUCqIEcM5GLMBPXZlA4d7sCc+zQr3ZnXuxEfRz51rYcH\nGzHx1do7akFxE/7ymjtYvLDnMOPd7S74409ld5KPPubj2Wd6LBEvvXoH+bd8MDBaKkvWVW+88XZP\ncayxo3m4ldOtNEdunhC73nfF8uebSMmoy7O+9VwFUouiMS3sFqn+/7b8ATZLagUa6piM8830Fxer\nacqmfU460CVrUnTQdFIKQ2rOO/B0CMcQv9noEvJxqsCwfvCmjF2gA2+3WPxTLK2a7Mr2UnJLsmM5\n6j1/ZIDl1NahGzJuSeYKozBYCCMWR8HG2RqJD0fg8ne61SXorwROegAsNgctJbfgFByN+OU7AQCl\nx/YjaMp/AVwsFqAQgBe3bBtYbA4ACSrOSpU0/7H3wcbdD04hMWgpVv3SlSkLLbdvoinvEpxCYuEa\nOUytXDI5xN1dqPj7V7BYLPiPux8sNgeV53+j49FpxzN8BAKHTIcVT9ltRJZRSBFNLkMjHtqqElyn\nbQzVNRSzHLG5Vhg+/22VPtlHd6G17rbaObTNXXrlN1TlGD7Tijpu5/vAP7gKNjaqSmfCUGuk/u5B\nab6Tp7ooKQzG4L5ZtrCzY2k8zd/3dRu2vt1jmfD24uCDj/hKfdLSlV2EUtM68fRT9lj+PL3yKvLv\nKT4EXRK5paGqlLgy++IJhQCAZmENIuyGQwIxctouoEPcqnZuqoG/5k5bZ71B56/jF+JonmFqCpkz\nxTUXEELxRJ8FFlolUutbl0RZWW+XqL4nua4OiPiyx4KuS8YkBvPHbBUGWQE2RfciuoqypcSv03ht\njlz8MgcXv8wxtRiUWXllHnYmmNYEzmJz5Cf8sk367d8/Q0tJNppyLyF++U6Ez3wahb/uVhrTlHcF\npUe/lbfVXz+L2MWbEHrPkyoWg5jFGwEoWxKaCzJRekx7kFbWp6/Kf2+4qex+oC5wWVtAs6GsEM4+\nEWip7nHbcw+WZmhpKCEf1yLbbNffvoSifw7AztUXg6a9IL+nTgnI2L8argExcPQMhW/0BNLrDRzz\nGNyC4tDd2Ypbx/egs6UWUROXwMlnIGKmLoegvRlXDxNbhjTJn3/2azSWXSc9jm68/Cvlm+jSQl+U\nlCi7EKb+7qHkgvPM0w7YuM4Jmpg6hUe/oHqSfqwTiUOtkThKe971V15yVHkdZEy/2wZvbWlRuv7t\nD8MGwh7KUvad9w3SXosjr/1f5LVrPzUfH0fdxTG/4gTlMQzU+Ddvn6lFUCKvPJ2ywqDIaYF2K1fE\nl6uUlISoH9Yg50Fi15qRUU9QluHvGx9SHmMshCIBuBxqNXaCvEaQSjpAFPx8u+Ef5NWY5nNstgqD\noUjLNH0gUn+CxdatRL2haSlRthDY+QTLf499XFp0RlFZkHFz30bEP7MDPiOnoTojVd7ezb8DKzsn\nsDhcSETUqpBaEgXnlF8TmcLQu10bikpBW2MFMva/KN+I2zh6oLOV6LRRgqbym2gqv0lJYXALikNL\nTQFuHe/JfHbrxB5wrW2ROHczrO1cNIxWRibjrWO70VJbSHqcIVm3RqoEDE/SvKHWpiwAQGyMFWpr\nyfteNzWJkfqHB6bdo9/psOIcL6xQdnl4alkTqbiIAz+3Y+Xz0rEX/lE+yT/0awfum6XsjjVwABej\nx5MviKfLs5J1RZrk9hhONH6NFPclSGvYS3p+qtyuPqu9kwmpqL8Cf48ESmOGRSzEpTzD1WOhSlNr\nialFoJVJvHngQtnqqC1zUt2P6q2uzvYBlGVo72qkPMZY5JanIjaY2gFdVODdGhWGMeFPwZ5HbB0O\ndR+FUPdRJol1MFuFQV3gsraAZjqsECnx6wyuWCxJvRc8Byuc/eA6Mg8UQizUPVBXHYmPRCBpWSw6\nW7vx9bw0dLV2E/ab8OIQxN0fhrr8Zhx85gwEbZo3vI7etnjgi0lw9LZFwclKnNx2FfzaDsJ+VHn0\nh6nwGOCM3PQy/LmGXGpBRx87LDqYovU5NcHm9pwQcG2lpn6ZNYIIr6GTlBSG/J/eRfzynYh7eisA\nIHf/FnQ2ad7ACTv44No6IH75Tog623Hj89dIyWrplZ7Lrv1B2F5y6TCCh81G5PgnkPk7vZVRFZUF\nGUKB6ntWE3QVcqOTxFE1uPyPN+E9oVA5KFfRIqGIYptEohws3bt/76JmkYOqlTIGSSTQGIRMhEwu\n2Rwvvqxa6Oz5lc0qsnz6WRte29BTp+DZ55sxf640c9SsOcqb+qXPNKG9XaI0R2qasnVBl2eli8qu\nPCQ4SrP+hNsOVbpX2HFVpb8dz5W+xc2ImyW/UVYY3BxDDCMMAwCACytSqVV712LwXigNlu7r7kkV\n9VcpKwyaGK2gLJzJ34WObuVaLKNCF8HZ1g8pMWtwInenUdMFm63CYEgUXZCO39gG4X8vuIdjOBLD\nVIuS0Mn8vRMQONxLfj1lTSKmrElE8flqhCSp1h9YdW2+0rWmoGhZ/x1DDuCFS3PB5kp9xK3trfDs\n2ftUxlrZcbHi/P3ya794Dzx37n6UXqzFT0+dUju/IhFTAxAxNUBp7t59el8TPceSv+6Fk29Pmsjo\n6cGInh6Mj8cfRscdVb/fVdfmY+/0P/DEkbu1PqchYHFUPzqZu1bKlYzIBVLF9ta3b0JwhzhF7M0v\n1sMpJBah9zwBjo0d4pfvhEQixvWP9d+QmrNSUZl9krC9tV56MmfjRG9aY33chgTt0s2rTFm4eti8\nLJRlZSK1Rcb8glXbifpqKlJGpoAZHUXOes+hmP0JAL7/sR3f/6i9EJUmWV54sRkvvKi+6rKxnpWI\nnDZpPYEU9yWECkJv4sKoV71vaCmiPIaBoUlcq1KsrbcCYUiloLbZ8lyx9cHhP2VBnQXhn9v7AEjd\nlSZFrjSqpcGiFAZ90qXKGBf9HIRiAY5nbYGttQsmD1qNtMzNciUi/fobOlefJEPgcC9IxBIlv/7F\nh+8mVBYAaNyIq2PVtfnIPFCIY2+pr/LsFuqExYem4bfV55F3tFxl/PIzs7Fr3GGVdgDYmfATJGL1\nr1FvmbVt4CNTAuHka4dTO67h8jc9Ad2rrs3HM6dnqx3/4BcTkfXLbY3PqQ/qMhuRGeMUGovQ6U8g\n+pG1GudqKb4pvxc282k4BkYgfvlO3PrmTQha6KlF0d+pyVefllIbrfUlcmWhOucMBO3aK+8yMOgK\nWXckXTKtXM7/hvIYUyAQtsOaq1pjRBP+7kNQ0WC4+kBkMXTgtinonSVJH1wcqKfhvlb4Iy1rWwIJ\nQdI9lrmmVu1zhdu0KRW21i44niV1d+gQNKO0/l+5spCWudmgysLiQ9I80L2DgL+cTb1ojTa0baIX\nH5JWWeytLMiwcVIO4rnnHWlK0o/GHtKoLOjCvVukAVmKygLQo3ikbBxOOM7Rx85gyoK+tNy+SVnh\nKDryCa5/Ii00F/3oWkOI1S8RCXQ32boHxct/94kaB55933QFYTAcBzMjkVoULf9RJLUoGrt+CzWR\nZOZJTumflMdEBU03gCTUKagktp5aOsm8BUo/uhITfC+NUvU9POzDSPdtExg/rqPPKQxUyalIQwP/\ntlGCod1C9c9fTIbPZ1D/g6uNqGnSkwFd4gPIcH73DbX3Bs027hdqwaFdAIAB91HLCU5ESTq1U72+\nHDBtqShWlR4yi1HkGMiTWhQNe0c2/jnOx1PJxC5B4bE2SHaXZo6RFWzrz1Q33aQ8hsM2j1TA5lrj\nQh/Su/ar/OiKgw297qZ9jfo28im+7a3dDCgJMf1eYZDoURWYTug8tW8u42vv9B+rrs1X+TEFJRe0\np0zsTXeHYTbXbZXS7Df2fuGEsQphM5eqtIVMf5xwruDkR9Wuw2Krfvw4PM2B4uGjvZjCbSairlCa\n1YKoHoQl4uVfaTCffAbA1l76+Z4Wdgsbl5ShtKBLpc/3H0ldWEo7byoFPSv+MDAw9A8yyw4CAOID\n7jOxJMSYbQzD8PGrceXchxAJ6Y8AJ6q70LvN2OlXRd1icHkco64JaA+iNhoE1Y5NSe7+LYhc8LI8\n65E2nEMHacyqRETcMvUbT3XuTHe/OojSGgz0UZRxAG7B8eBweRi5YBsy9q82tUgMZsybX2n31/7n\nOB8PPetBOeiZQX+mRb2C1BzLrsjcH0hO3KC9Ux9BJJEegvo4RcMuzBUXir4g7Cerz1BY97fRZAPM\nWGGwtffA6ORNKoXb9A18Ntc6DKZQFsyJxEciUJlJf8BY74030UacqK2zqQaZu1bC1jMAgRPnw9bD\nH63leag6/zs66isI57Bx90XgpAdh6+6L7vZWNGZnoOZSunrZPl4Fv6QZcIseCbY1D12NNcg/+AHE\n3aonkTJsHMzD9N6b8LseROGFH0wthsG5dGDtfxYGlsYicwwMoVHai+A5OClbGckEPRNVSGdgMAUe\n88cBACRd3XCfeReaT1yDx7yxyH1sG0Qt2rOaMaiSlv0WUmLWwMnGh7Bwm4yLxd+gqb3MiJKZscIA\nABIJccVOS+VORRuc/e1NLYZOlF+uQ0CiJ1hsFmX3KTJjIqaqL+aSm2bcD4UiHXXlyDtAznLQ2VCF\n/J/eJT+5RILKc0dQeY58CtQjGzPx0IcjyK9hYHJPf4HI8Y/DI3QYPEKHKd2jczOtzg2od7sxNvCK\nReZsnbzR0ULdnc4ccb5nLFzmTEXTz+lo+ZOek6uQb7Rn+xDWNqJ8lf5uXmTWAoDiR9V/CdNJ+k/N\nmLVQs5/xK+/7U57XzZEJkrYEHnvJF7Of9EThjQ6svj9f6d7hwnjMDs8kdb3ztwjY2LKxaXERasp6\nUow7uHCw+3gUGqq6sXJWPsQi47tX1x84A0Bag0GWWrX2uxMI2/EUilZ9qtTX2soy9z6mIC37LdwV\nuhhOtsTZ0M4W7Ea7oMnIUpm5wsBimebU3VCF2z675w95nIAu6VLpZMeQA3JZPp/xp1Lcw7CFkRj/\nQrySjD8+cRKrrs3HyivzkH+sHEdePC+/N/i+UGQdUh+ss/LKPI2uT4qyEL0uv7+se1rMvkbeKWlR\nrWW/TMDu+0+ZVhgAzRXZyNj/IrwjRiMgLgUsFgf1ty+hLFM185e2zXxbY5naProoAmTGaOqj6z1L\nRHGz7fbQdEACtPxlXHN3X2P3phrMWuiGwzciMXtQrsp9Lz8rOLpwUHizx+02yCYWpZ035RWf73Ke\njQt3lNNbezoPpCyL0IjFncwJHtceSSGLweM6KLULhG0GdUc6XBiPZ5Nz8PXWKgDA7hNRWDaJWj2B\n57YEwt3bCitn5MHWng1hd49CcLgwHu2tIiwYckN+vXFREa6dbaXvISjCtuNB3N4Fr0cmoeW8avC3\nj2usCaSyXC7c/tLUIqhg1goDAHj7J6Cm4oqpxaCNqqwG+A52V1YSJMDhF/7G7PfGKPUNHumNuXvG\nK7VRLeSmCdlG/YnfyKWkk/UfOCVARQ51CkPmT4WInxeuVW6ZBaN3v8/uIa4K3J/ZNPgI1mfOwNpL\n9+C7ZRmovElcjErQbryMSzV551CTd85o6zEYFrcF0xmFgQYeGpGP7y8OVEqn2ju16vIZPX87I+1G\norSzJ0uQHcdZZU47G3fKcvTF+gBk6BK24WTBRyZZu7ywx7WUqrIAAKOnu+DBwVkAgI421erpMmUB\nAGaHZ6pYKYxJ9uxN8Ht2JpySYlC+7Sfwrxaq9HGwJa5Iz2A5sAxZd0BXWCyWBJDGLOiCvnEOVC0M\nrnMmo+ngcb3WZGAgC9ksSeZc7ZnBvOjtztOWkYW6j743ynp0uSSRWQswnkuSIut3ByApRTmt9oYn\ny5BxQjWj3RS3ReCwpLFKRDEN4+NWgmdFLUV3ZUMmbhQf1t7RTNAl0DX9Mr3VhvWRIWCADT5KiwQA\n/PBBDX54v1qpHxmXpBdm5OF2dgfhOocL4wnb1SkM+jxLMm+BUipVT7Y/6sSqcXzaGBX9lE4FB/sq\ndL9ftSGRSPTOLGPWFgbFjb+tvQeGj19NS7VnunGalsQoDGq4WBKMEcElBh9zKjsIE2JKKY2xVBhF\ngIFu6vcehMeSOfJrQyoL/ZHXlxEXyCTiWOM+jfc5bGuN94kQitQnUmCgn/KCTswOz8TIKc54dU8I\nxs1wwTNTqFkZRELNh7mmsibEWY3G8S5lDwGfJXfDNTkRLX/fgPPEeHk8gyJUlVwG88OsFQZFOtrM\n16TaXdNgahH6Pf1FWWBgMAT8M5fBP2OeVdMZlNFFYRBLmIKQpiDj2B25u5Al4ssJAQCl6s63hP+q\n9HO7Z4RcSah4/zAivlyFvMU7lPpwOdTft/2RlJg1OF/4GVq7apXaPR3CkRD0gPy6oe02LpUY92DH\nYhQGuiCqwUAGjosj/N94BhxXJ6V2QXElKtbuokO0Pg2LBYRHWaPglgA8Gxa6OiVwcGSD3yr1zZRZ\nFV55S3NWEXXWh97tew54Y+n8GkTHWePWdWlmifXb3fH6iw3yvr3/PXDCD/MnVWpdi4GBgaE3VtYs\nJIyxJ3QzohOxRCh3WSIL20QJRPorhwvjkXH0DiqLu3DfEi801nSr9Pk5Jw4/7arBQ//zAb+ZWkbI\nnCttOFwYj9yr7WhvFWHoOEec+KURH6ymN6NglagYg7lJpKo7s22tIe4QwHtxMire/UXlvi6Kbn+D\nBanXkKt9kJLC4O4QKlcWBKJ2WHPs4G4fiqSwJ3G+6DOjyWdRCgMd7ki6Zj8SNbei9FndYirMAdcR\nYXCM9oNDhA943k6wdrcHm2cFSCQQtQsgahegvbQBHeWNaL1VhTtXSyBspS+zhkQC7PrOCykJ5ejq\nlOCLwz4YEGWNcVFSy8DlC9K13lnTiPsfVm+6zLpCzrS+dL401aVMWQCAe+c54N55DuqGICRc+iU8\nfY49/vea8cuuMzAwWC7PveGD5LkumBZ2S96WWhStdE0HQlEXOGyqCoNFfdXTxrSoVwAAInE3jubt\n0NKbPt5dVYpHVvpg0EgHfLOtCgc/UT4tvm9AJj5MjcS0hz0wOzwTMx/3pDT/K/MKAAB7TkUjKMIG\nqd814JP15N3eqEBGWcievQk+S+6G8/g43F69F4KqRpU+QlEXuBzttUn6MxHekwAApY2XlNqHBT0E\nQJpuVUZKzBo42ngZTzhYmMLAoB6uAw/DvnsaHDvqWjzbmgsrFzvY+LkACCc15ta6X9D4j2omBE2U\nFErN4kQn9wHB5N6K4ZG6Fy5LCi+FUItf6PGsQEweXIY/D7bhYkmwzmsZg9VnpsHOVfn/+4tH/0bZ\nNdU/1ubG6KPmWSX53NRtphaBwUKZNEs1o5EhaO9qBM9K/cEHEXY2mg9ADhYMwZwB15SuP3+9An9+\nXQcAePB/Ppj3rA8A4NW5+ci71ibvu+dsLDx8pX+XxSIJ5kVmqsz7c/4QsP4LuVRcx9CYqpLz6cNN\nOH1YfZ58iQR4NqUn1e6RL+qU7pONT1g6gV5llAhZ0DMLbEzlPQiAWImo3vsXqveqptOW0S3s0Elh\nKKtTdYHqq/i7xJlaBI0wCoMFYxvgioQvngT0jn2nTvTm+5Wus9f+jKaLxKlVR461wYOPO+GpeT2Z\nIuwd2Dh5M1CuOHj7cTFyrA0+/FZz6jU7ezZSZtnD3ZOD/Z+1UJL5fGEQVi+pw5xHHLDisVrCPn8e\nbMNr29zB45F7UR0ifBC/61GNfTLu+wBCPn1BhxwrNl67ci/hvce/kabmZQKjGRiMS2OtEF7+hq/E\n3tZZB1eHIEpjbK1dKK8jUxYmznHDvGd95Bv93srFzx9V4+iPDfJ7z20Nwocv9cSU9e7PYJlM5T2I\n9K79iOGqFg4lE/Tc1lUPWx719+Gt0j91ktcSkUD1QHOAp7Sa9s1K5RTzHd3NsLWi/nrqA6MwUMRp\nyki0HMsw2fp2oZ4Y+ukik62vjpg358p/VzyllSkEGWc7VdoUrQxEbUSou08m1kDW53R6O+GavedY\nt0JDoD2LhdHp5Ip3jTy0AgB9p9cyZYFIKQgd6YHHPkvC2kv34M1hTA0Lc4JKek+X+yfD5b7JpPv3\nnl9dX5dZE+Eyd6o2UU2SetTSWbuoFHuPhuOV9/3xzvPU004S4WkdhDqBckKHhpYiBHgkUprHlueq\n8f5f39bjx1vxeCA6ExwOCzczeuIwnt0SpLThL7zRjs8vxOKJu6T1ImTKAgCkf9+A5IfclRQGRlno\nG/Al0no/zZI6lXu9g56jD67DrTnK7t93+OXwcBpgeEEtmOKGDER4TVRqC/eUHgKWNytbnWysjGPR\nVIRRGChiSmVhdPpqk1gTGFQhqywojTm6Wm+lYeBYqQVGnQXhdkY9Pnv4LJ78bqxe6zCYlt7KAoP5\nU1YojZeaMMMJE2b0JMfoXaiNCHVxDgmOKSq1GBpaivSQkpjPNpbj7kc8AADfZcXhwRjlzcnBgiFq\nxx4sGAKJGPgnvRl+oTa0y8ZgWspEeUq1GGK4I1ApUvUmUAx6Lt30rcr9Jj6TQEQbt+svIMJrIlJi\n1iAt+y2kxEgPbnJrVNP2s0ywGWQUBoqEfvsGbj/ymlHXHHHgGVi52ht1TQb16ON/r6/SMG/HMK19\nKq6r951lMB21O7+G18rHdB7vMGYo+H9fJbzn8fR8wnYG46K48fcJtMK+0wNIBT2nuC8hvYZQRF8y\nCkVu/SuNS7CyVt2I7N9RhYO7a1Taf7gZh6KbHVg9K1d+bY5MjVhFGChuqhgHS+KW8BJuCXuCcI91\n/ajSR9EFqebLdMJ5GluLaZetL3KrKg3RvilyZQGQWh7MAUZhoAqLhdDv3lRpvv3wWoMsZ67Boepo\nuUmPKZ6BmI47AljZ2ppaDAYdaL+qXLjJYXwi+KfJ1z5wf/J+tQqDw2j1J8CKNP96Es2/nlRp7+0u\nxaA/1WWqqTQ1QVTVmYoioS+vPZSPrYci0FyvXLNhzoBrOFgwBK3NQpTmdWLVByFYMlrqjvT9e9V4\n7GU/AMDguxzQVCeEV4D5pc/ksK0Y5cCAxBzeAEgkKHphDzqLVRVLBvKUNl2GQNSBwf734nb9BRTU\nnVXb19j1VRiFgSKGUgyIsDRlAQCyXtCegs2SGfjiNL3n4Dra6JyyNnXLDcx/d7jGPgFxmv2VGcwD\n1wemUVIYWBxyufQlIrGuIjGYCCJlQVO7oQgfbEcYczBnwDW8+2cUvAOt8cHqnviEX/fWor5SgO9v\nxOHg7hosm5Ct0X3JVJwu/MTUIlgsybwFEKIbbHDQLelCp6QdGd1pSn0ULQxej06Gx5wxhIHPDOSo\nbslGdUu2xj6KKVaNBdvoKzJohcVhW6SyAAAEQf5aCQvl4vRR+vMJ11f40z6vV8pgvecY/v0yncfe\nOlYFANiQNRMxyX5K93gOXGzImoknvhuLQ69e0UtGBsPDcSR2M3ScMkr+e/OhE5Tnrdr4sc4yMdAL\n3TUYTMkL03OwYPB1/JParNR+7o9mPDToOn7eJT1ZVlQ4dAl4tubbiZSJAAAgAElEQVTS737r66Q9\njoRBPSe6fgIbbJwWHMJt0U2V+zGHN4DrLq2fVPvNcUZZ6KMwFgYdcJw8Am7zk9FxsxC1H9Bfmjsp\ndRXtcxoDQWOb9k4EFN0WYsUqYr/7M8e9MG4ycQpUbbz7QSt+/6tDp7GGhM3T72O3Y1I6Vp1I1hjP\ncP13wxTxYdCP9iu3YJegefPivnCm/PfmX47B5b5J8msrPy90V2r+PAiKKzXeZzBfQm3jYc22hZdV\nEOw4zkazMLh5W2HvuVizyGgUEaA9i1dv2jo1ZLQDEOE5Ht2iDpQ1m/75LB0blp1Km0xB8F95P5zH\nDYawiY+8xaqF8kTibspFBz2dI1B3J4/SmEG/rseNWa9j0K/r5W03Zr0OALCLCkDYlscBAM0nr6P8\nvcOU5u7PMAoDRUK/exOly99B6/GLAICQr15H8cL1WkaRZ3S6hVoWAPz7gO4nm5nXif19Y6LU/3G5\nccUHgxKq1d5/cwu1Og2WAr+uE5sGHwGXx8Z9byUgeoovWms78eP//kXlzWbtEzCYjNp3v6EcL3Dn\nyCk4z5wAAPB7awVKFhk36QKD8Qi3HYpjjfsQ7B6LtIa9mOy2EMcbv1Lpx++sg4MNterAQV4jUVpL\nHDzZWNNtFsoCAPi5x1Me88+tT7X2ifWZhlgfZZdSJq5BO7LsSOld+zHReg5KRDkqfWIObwDEEhS+\n8Akqdv6idq6MnM+QFEPNwj50wENIv0zdYiFTGnoTtuVxeXvM9y9Tnrc/wygMFCl9dgtEza3y6+KF\n6+H3xjOofE1/NwCnwQF9Lm2qFZeFqhJl1xkP/57A6G1vu2DkCGtkZ3fj6eeUrQyXznsr/QsAw5Jq\n5G0+3hzCewDw+R43zLrXFj//0q40b32FP/Z8xsfSJ3sqpS5/vgk//iytzVBT6g8OB7iV043oKCt8\n+jkfa9bf0fn5DYmwS4yfVl3S3pHBomn6KV2uMLA4ql6kii5MDKZj0HA7bP8xWC83pEy+NH2iRCJB\notPdqBEQF8O8XvQz5Y1XVOA0tQqDpSMSaw4wZxQDejgpOEjYXrX7dzSlaY/H4nfo5i2gCw1H1L/X\nFS0PxmLiOBucPGOYDGfGglEYqCJWDShksejZ5Q/e+RAt85iClixiF5jrl3zgE1wBoZpg/tWvSk/E\nP/lQNVB3WFIN6iv8lRQBMvcA4ImljZhV4U94LzdfqKS01Ff4yxUGDqdHofl0l5vZKguWDpnUsi6J\nIXAa5A+3pIGwD6N2mmopcN2cIWzseY95LntA/ntXfinREBUUXZhq3/+OPuEYKLFqm69KW2pRNCUF\nok5QBgA42viFxn7G3HgZE3sbd1OLwKADTWmX4TIpHn4rZqP681Q0/kavYmrNtYNA2E5pjLCZT9je\nejkfJa/T70quiU/ed0NuvpBRGPobQR+/itJlb0HUIvXXp8slyTbIsH8oy7//B1W/XoWggfhD1BuO\nPQ8+98bDY3wUHAZ6a+2ftZL4Axg9pAr1/23c/UIrIRDoEBVNM19/Sy7WIiSEXFYaU+Ee7IBprwxC\n6EgP3KnswNF3s5FzvMrUYtFG8+ViNF8uRulX57T2dRocAKdB0h/XEaFGkI4eXB9IQd3uA/Jr+6Qe\nd4yGfb9Snq/9kmpAIoNx8PKn5ptNBqJKz/rA5dgYrI4DHdxF0WoCAFWN1w0gCYM6bFkO6JCo7iOa\nT2Si+UQmHIaEI+bwBjT+noHqz1JpWXN83CocvbJZe0cSOCYOVHvvTkUgnP3L1P6+5303PDhXGpR/\n/YYAY1Nq5Pd9B5ajKj8AAHD493YsXNogvydj46vS6syyeTWR/qsXRg7jya8Vx1w644uB4VzCuRTX\nI7MOFRiFgSK3H14L57tHw+X+SejIzKMtfiHh88dpmUfG5YV70Vmpuz+7qK0LFT9eRMWPFwnvu44I\nw8CXpsPKWXtNANmJ/RsbnfH0Egel031zY+XLzXIFp/mOYdJTVv+un6/woi9HI3iYsoLpFmyPB97r\nSbeqrhJ0X6Ulq1xu5bKkDGP2SUOUFAZFBKU9yl/7lWzYJcQAAFg8a0i6BEaRj4E8xw/dQfJcF1rn\nJKr0LONU5nZMiKdWcX7SkJd18gc3FmwW9UOarNuHDCAJg2J1Z0WIKgzbhHgj7L2nUfnhr2g+fk0e\nBB3x5SqV4Oe88nREBCRTkoXFoi+hZ95THxAGQwNAVY0ILs5sLH7UAQOHSJNH8KxZqK4VAQCWPt+I\npc83Avg/e2cd3uTVhvE7SZu2aZu6u1NKcSnFtchgYzBkgzFnwjZkjDGkwym2sfHN2JANhgwbDHen\nQLFSd3d3SfL9kSXN27xxb9/fde1act4jT0rl3Oc8QtyYA0BBijtBYAB8wWDlloOqPA98s7EK3+6U\nP65yQF8T0g1/ebYHps0pwdUbjcK1yESOmRkNyxZbYeM29XlJGJRgGDohCjfPSg9SkaePqlSdu4Oq\nc7JPPeXFqoeH7E5ykr3vNnL231PbfJKoeJCOB9N2KjRmxTdV+PB9C9kd5aSkRP0b+u1R1lIFTcGp\nJ3CZ3EulNdJ2XFJpvEAs/Pb6LeTFtsVn0Bk0fHVvAozNGIiMndzpRIOhUHH0EmymKZYJpvSnv+G5\nKxIA4DBvGoq/5/8hp5uZSBtGoUW2f1mAsdOscT49GNUVHNTV8DcZe677yRz7y8uhuF91UqFCbc2t\nymWlo6CQhyYe+U1UPa9GrM3Ey4k0lWprlfj3aGbRPYUFg6KQBTsLaC6qlPj88yUVWP21Fd6abYFv\nd1YjwM8Ib822wIIv2/7O/rDVFiOHmoqN3bVXPu8NRYh74IqQ/sSsdwwGcOIvyS66okKmuYXXeQWD\nPmDi5w7nL98C3YJ4sq5KQbduW2eqahYA+fzCtU2phDgCAb/+zxbBXYzg7maE/XvoOHy0HqfPtKVC\nfRjTTJhDdDPfrU8B6bP337HAqBH8jVTEGDP8uAM4d7GRMK88NhcVcxDSi5iFKf2HyyoLBlUY+Rk/\nJSeZGOByeNjQ/wyGzgvEiPldtG0ahZxU/XNNpmDgcTiE99zGJuFrVr9uwtc2r09Qr3EUKnH1ZBVG\nvmIFtg0DbBv+abmLp+zKx/er2lI7it4oaLPSs67p4fuark2gEOFGs+RsR+2pukHuFpa+QH0F88b2\nidT47diFKw048oe98P3ObbYI62eC5av53hpVeR5wDcxFXR1P7IYhr4D4O1tVrNxysHA+m/R2Qpqr\nkbrdkEShBIOCOC2ajax563Rthhj6KBYAyHQ/+uCTcqnPx08ukfiMwyGff9fuWuzaTa72yfoL2iaO\nN8PkaaW4e69tc1aa56ZWFypJsR7yMugdf5l9bv6STAkGA4JuZgJuQxMsRw0QtuUu2CzXWMvhbW5o\nzbnkCQAotMfmRfnYvIh/ImjMpOF0YheFgp7bux/JqsOQmHMeXTwUqz6vjY2XMjjZdFV4zOXH+ve3\nmIKfZlVa8baLMasxtk+kwvM6WgehuDJJFdPkorGJH2sZ1k/8BreuTvE4zJoaLrw8FHe3+3ZnNb7d\nWY2qPA+hYOBwgP277DH7fem1RzQBJRgUJPsT/UvP9nDmT7o2oUPw0/c28AyQXfTqzpgtSvnJVz7K\nkJhNSl4SrxSIVXimMGzY44eg8vhl2M6ZJGwTTd0sL2W7yFMeUuiGFi0keMgujlZYMACAKZONxmb9\nqVMzqtfXSo3j8tR7qkuhGF1PKr7pV4WefjO1InY/Xij5IPPaGSf07in71lCU/sMLkRDjipcnsmBr\nQ5frFqAqzwP5BRy4ujAQ/ajtENPWkx8TIbjhyMhqRc9wfrzb8AlFnTvoeVDEWqnvBTAYiv0DKovn\nzqXInh+ltvkClqruUiBv5iMK6XgG5Iu5UEm6XVBUNKjrBujvxY8QGTsZZlZMNFSRB74uvjoWjTXS\n85JT6Jb6hy+ErkXWU0ai8vhl0hoLBLhcgM7vYz11NCqPXSY8bkqnqnsbOiNsZuNaxX6R93NwreJP\nqWOepR1BD7/pCq0zNHSh3twyuNn1VLj6LwBcfrJeA9ZQKArZTYI8QkLZW4ZBIZ/gTtz/FB4nL6Kb\n7PYbbkkbcFn98gs5Cm/elXE7evKsuXO7JLUXArKEwa1zyp1USMPnwHqp7wHlYxgcR4coNU7AiyWH\nVRpPQUQR96M7Y7bA3M8RPX+eK7FP7l/3kbXnltL2MFltP6I8Hg8tDRz88d5dfHl7HIpTa3BpWxyy\nn5SDZcXEyM+7IHQCP60bFfCs35TuPgFPkVgEeSjb8w/s3p0CALB+ZaSYYKDQPxQt4tbIrZP6noyi\nSuUKxemLa1KI98tKjeNyJRT3odAaktyOpLkjqYq5qT3s2L4oq07X2BoU5Oi9YBDNeKSNDEhkqBLQ\nrGmqnqovRzeF4tSlFUu9PfDe9C6CDg5B0qwNSs2/LFryDZSjvyXe+Im8yq8msyRNvzsPR8J/UblP\nZ4ZbSwzAZ1hbCl9zqiQUHLr+UCgYAGKFZ25DE9kQCgPjXtUJQqCzrBgGASVVyXCwClR4PS/HMGQV\n31d4nLpQ5oQZAJJyLqjZEgp1Ytk3EDWPkmX2u/xkPUb3Unx/1SdgDq4/34rmFipTmDbRe8FAIZnq\nOP2tZ0DBxyzIHdxG5d2DDPWmIGHfE4nPKDEhjs3M8cLXxd/tl9KzDdEg6bLfqPiFjoK8IkGUJ6kH\nldp8B3lEoKQqGfVN0pNPaIKhoQuVHqtLkUMhG48Vs+S6ZeByW8HjcZWqszC8+xeITtyFqjrZcYe6\nRt9ihpSFEgwK4r07Epnv8H8QBK5Jyt5A2PT3VcmW2AXiRVUoKPSB2F/IC/4xTKhfOQJai8th5GgL\nALAY1FPY3pQq5dZQJI6B6d5Wgb3uwQvNGEmhEufTg+XqJ+q6JLhhuFS+G1ZGjqhoka96u7I+4YO7\nfYqYlD+16uIxvMcXYBqZKzVWH9yoKPioI+j50uO1St80DejC/1nR1+8J0c+lrzYqgkH99daFO1J7\ncr/cAQBg9QxC4YbdaIhLg82Msag4fFHhuRzHqBa/oAhui6eBPZi4XunRWyg5cJXQFnyC/w2eMGW1\n8LUoCVNIvulpNAQfF694TdpXToJPRBLG20T0hfOHE1H+zz0U7b0osZ+8n1MwVmBn4B9fgmHZVluj\n9nEqctYeIPRnD+4Gt8VTxeapfZSMnPVt6VLdl86AZVhbWlO6qbHY11KVr40+MP3uPOHrW4vPouBe\nW6DVwHVj4DHSV+wWYcLfs8Ren31NtTSzhkzp7hNw/updhcfYvyf+PagoDBs2TAO9YOzhDNMAL7Hn\nblsWoyWvCE0pWWjOLUJTSja49eSFnGRBN2XCJNAbTHcnmAR6genhTLTFzhrOy95FY0o2Wv5bq7VM\n+Sr1Jv6eYHo4wSRAfC0AcF3zichaWWjOKwZ4msloVJAtnpjA3LKtRkN2ahPmT84QPhtgNRkXynYh\nwu59cHkc9LYciyvl+zRimyh9Auagqi4P0Ym/aXwtZTeHFPqJskHPoiTnXkKgu2LFLEUZ2ycSd+L+\nh7pG7acabY+HQ18Ee07UtRkawaAEgz7QWsr/Q+a05E3hzYLV+EFKCQa7oUFqtU0SDDZLuIlOnrsF\nNBoNAXu/gP20ISg9dB08jnjF5OATkWgpqkDGl7/B2NEaPlv4St4yrAtq7ie2dRQRC7kbD6HmQRKc\n3o6A7eQwsc28ohg7WaOliP/1dp7H/wG0fXmgUDDQmMRvX7LP6fPdR7CfNgSsEC9kfb2HdB0GmwWG\npRkqzj7g2//uODGxAEAoFtI+2Ynm/DLYTR0Mx9mjCGIBAMDjoeYe/8TQcmAwwOWhJjqx/XQGjagY\naO9idG/FJXiICAoBAnEw/e68Ti0UBDTGpYm1ydqU196IUVoweP8pfxyNsbMdjJ3twOpDnhs/c470\n5BKKrEVj0GHa1Q+mXckrItc/fCGsbK3qWgDA9HED00dyQUlZn00R3h4u/m8syvn0YIyfYYN/9vFd\ngkzpFoTnDVzFMuApe8sAAFbmbhjR40tceyZfDRBlUFUsdIRT2o6EuoKeM4vuIsBtNGg0mtK2DAr5\nBFxuq06yZ3k6DlAqvbGhQQkGBfHeHYmm9DzCiVRThnKxBDS68j8cUOBALHDfEnDrm5D0RlsNiYQp\nqxF08Gt0ObqSdFNfF5uB7FV/AAA41fXCGwf3pTMI/QViQbStaM8FFO25gOATkQj4fRFS3t2u6KcD\nAHitnovUD/k3OqABRbsvwOmdiLbna4nZicg+Z8rbWxF08Guwgj0lrhO4bwnB/vTPfpTYV7Rf2bHb\nKDt2W6xP7uYjwtfBJyLBbW4ltFFQSCLnM/2r80KhOaIW5GHpd25CwXCj4i+hS9JYu3dxsex3hedU\nRTQYG5kJx156vBY8nvhhkqLYW/mjt/8bKs9DiQX9xumtMbAe3QuZX+1GU67iJ/2XHq9RWVDS6UbC\nOXjg4XLMWvAU2SzJgb/rSPi6DFHrnIaCQQkGCys31FYRN+dME0uEjVrBf8Pj4ea5rzRqQ+3d5zAL\n8UXGbP6axm4OKNywW6NrklHxMEN2JwAWfQIAgLCJFpA0awOCT0SCFeyJ+gSi37RALMhDrZRsCEa2\nlhKfSaPq2jNYjehBaCs/fZ8gGMwC3YUl6ZX9nABQ/s89ue0KOvAV6RoUFOqA10ReW0MaLfnFGrCE\nQhtcO1WNpd8RbzuUCXpujyqiQcCY3isBANnFD5CYc06hsXQaAwO6vAdLlrhLmDJQFZ31m64nI5H4\n+iYU7b0Ep7fHou5ZOmofpyo8jzq+bwXQQMOYPm2u0g1NFcgpeYSckofgcCUnIqGBBjsrf9hZ+sDD\noR/odIPaJmsUg/lKME0s0XvQZ4Q4BhuHQIT24/sAt7Y0wMjYDEPGb9BILQYBpb+dILxvySvR2FrS\nKL8v3w+jy/zJMvu4LZ6GlPdk3wJwG1tANxUvsGPRN5A03kEV8r8/KRQMdq+ES+73Hf/fQ5XPWbRP\nPneypqximHg5EmIfKCja47rqPeSvkc8XXBn3F0ljfA+uR/osyQkYRMdJ6ytrHmkIxqrTrUcW2lxL\n3QybxBZrUyatKhl34nZiUMh8pccL8HTsD0/H/irPoyyPkv+gKjobANx6fmrnoj0XEbjvCyTP3arU\nPOoUDaKYmdgg0H2MSrESnR2DEQz+Ia+ItQnEgkBEmJrZoP8Izd4w6AuNeRVy9TNiy85EwbBWLluF\nAG5Ds8aCBgHAcS7xB9zYwQotJVWENpU+p5ympy/4CUBbsHRnFg6iQc83F54Vvg54rRucw/il6cfs\nnYrq9HLk3cxC7vV00vEdMb2qBn8UKDoYy3YQbxfCrV4liISBVq/iXtVxpeauayzDg6Q96B/0tko2\n6pK4rFMor5HvNp1Cd1TfeoHgI8tRdTsO1iN7qFy4TVOigUI1DEYw2Dl1BZcjfo1UmPtQ+LqxQb5N\ndEegqVS+YLiq2y9gNTRUap+ae/Eq2VJ++j5KDl5TaQ5JWI3kp5ssPcqvllx5+Ql8ts9D4S9nCP20\n8TkFCASC49wxsHslXOXgbkND2iY/5e8XSPlbeopPQxYJvgfXo+yPM6g6dxeg0WD/9iSU7j5FOJU3\n6+rT1v+vdUh/fQUYNmyAwwGnuo7Q18TfA02pOcK5yU72he10Oj+tavt2CXYKntHNTMBtaILtjDFg\n+riicNM+iX1lzWUW6o+GWOm3m0x3RzTnFgs/uyQbPP+3FGV/nEFd9At474lE5tsd72dInrSqM/q2\nuXTmNiURnhU2Sw+alkVlbTZuxe7AkNDPVZpHFzxM2oOKWqowqSGQu62tDkz+9yfVMufFmNXoH/Q2\nrC0kxx9SaBfFq2XoiIa6EtAZbe4wQd2nAwCSnx/VlUk6hdcqXzBa/g6+y46pv6vYM7MA/umWqj/g\n9tOHqjReGnYvDwQAYVrUwp//BcPCDHYvE92UtPE521O87xJ4La1qnZNC/6k6d5f/gscDewy/eJpo\npjFOZQ0AwH3TfKS/wfcD51RUw33rAmEftw2fAIBQLAjmI0O4mefKH4DK47S5cAiqQJcfvgRWD/Fq\nwKJ9yciPbBN4Ll/LPq1uzuXHVGTMaTshJLPByJaNumi+uOyIYkEarS08PLxei3G+Cagqb/v6B5uH\nI8LufeF/gaz+wtfK0tBcaXABw5cfr6PEgoHQ9WQk6X/q4EHSHjQ0K59imUK9GMwNw6Nb32Lo+E2w\ndw4Fg8GEk3sfFOdJriZL8R9cHsDlwWfL+2Kn4N6b3wMA8FqU9w8VxDWY9/BF3TPxwj80Bp00bas8\ntFbWwcTTkdAmmMvU31XoM8k3RLOf0376MJQeuSHWTjOW/SNEFvdB0dFo2+xzm/67CWUwCD2yPuCn\n+xMKADodvgfWKh0vIA1BekKnz2eiKbsQlSeuy+wricbkbPgeXI+sj6NQd1+BAnF0GvDfj5z1lOFS\nbeioiBZkkwd1BDxL4mLMaozpvVKpqrraxNDETWdH4H7U9WSkyq5IZNyK5WdKpFyUdI/BCAbB6VvX\n3rOFTYnPDhG6ME3FA8gogISpaxB8IlL+QmwKIMhA5PnNHNLnidPXA0oKhoIfTsJjpeR0fPk7/yG8\nl/Y5U+ftUMoGAQ6zhsNh1nAAAK+VA5pR22YwcYbsvM/BJyLBrW8CnWXCt7UTuTB1Bmgi4sDYiV+9\nOXfJDqJrkCkT3MZm0EyY/GxI7W8MVMhBLoagGrSHMyqO890FPXd+KbWvLLx+XCqXuDHxc0dTWi58\n9n0jdEmqf5QgZgOnqhbmfbui7lE8vH75GlnzFKun0BExZ1ijjsM/UR1hMxvXKvardf5Lj9diaOhC\nmDL1729lc2sdrj9TLlCWouNzMWY1ege8AXu2v65N6bTo91FDO26eXYrKslTU1RSSVn0OG2G42TI0\nTcKU1cSTfi5PbZvWhCmrURuTItZeeuSGSi47grRstU/IfaYFxdHa29L+RiNhymq0FKt2rSkqCkTF\nQtr8neA1S/6MCVNWozGtAACEYkHNaaEpNITvwfWE/6SRPms5PLYthN3s8Sjc8ieh3fv3lfDYvhDc\nRn7KVOtJQ+CzNxJePy8jbMDTZy2H5w9L4PnDEqlrmfi6Ce1pb5vdmxPhszdSOG/OF9/B7q1J8N61\nAtnziQW52vcVzEc2b8bcb6TaJAqnug4+eyOR/Vnb5o/MhqwPN8K0my88ti6gxMJ/9GVPAMDPlHSt\nYj/6sNVfDOpm7Le49HiN2udVhUuP11JiwUBxenssnN4eS3gteK9uHqcc0GhhQU0Ql3W6w9ya0Xh6\nmNKDRqPpn1EaYNAl6RsDacTM/Q2N+Z0nyJtCMqOG8jd2t+5vQnNzjVrnvHprFXgGltJQlZ+rO2O2\nqNGSjoMqqVY7Mx+udMLPa4vE2gXB0Ff/qcLmhfnC9n7siXhYfQa9LMfiSc1FjLKdiyvl+8TGqxNd\nuXrwwMOlGP0SLqIo83XR141hR/osogzrvhgmxhayO2qZ+wm/orq+QNdmEODxeCpfYRuOSxIFBYXW\n6dPjfTx6+rOuzaDQIT5/rkHGm5T/sDK88ratmGAQzZw08mUrNNbz8P1y/ubiYfUZDLN5HTcq/oIR\njYlnNVc0buPFmNUwZphiRE/xW3tNwONxcfnJOujjYSWFYXHj+TYAQA+/6XCylp2RTJMUVybhadoh\n2R0NGEowUFDoGcMHfwMG3RhXbur+RJcSCxQZc1bJ7kQhxqqf3MXaBGJBEAx96GEAJsyyFgoGALhR\n8RcAoJXXjNKWXLXYEhU3DktDzkt83sJpJJwoDw6ZD5apnVrWBoC80seIyzqttvm0gSGcsMtLR/os\nZDxLO0J4H971Y1iYOWhsvaq6PEQnylecsyNhUILBzNwBDXW6qaxMQaEtGHTdZ1XSB7FCQWHI9AiX\nXUzy44kZ+Ot+gBasUYzbcTuFr40YJvB3HSl3tefG5mok5pxDcWWipsyjUJHgEfOQcE16PZywmVtx\n/9AXWrJIvdyN/5Hw3t4qAIFuYxQWEZW1OSisiENB2TO0cBrVaaJBYjCCofuAD2Bt50ca7GxosHwc\n4DK5p67NoKCgoFALvp+OhsvkXnL3T91+HkXnYjVmj22YH4LXvqrQmOhXf0Brjfo2BWVFLTC3NBG+\nNzHj5xgZ79eWrKG8WHZSiKi4cUi4XoyMxxUY87E/jE0ZhNuCqLhxKE6vxZ39WZiyKgQAhM89e1gL\n+4m+zn4mfxKIVk4TEnPOITHnnNxjKPQDVTb9qoqFxnwfsbamZh6svDNVmlcZSqtSUFolnpiFQjEM\nRjBY2Yp/8+krjhGhsAv3h02YH2h0NaZKFKHPvvc0Mq+i6GuQqCqBr5pG2tcstOvrWrSEoqOj6M+B\noj/PVt090G3bTIXGAID/onHwXzQOcV8eQeWTLIXHS4Jhaoyw0wtkdyRhwPFPAQDRU75Ha22TjN6y\n+WVtEdbva6tS+09cEABifT43H6Zcc+395DEA4MbvGYT2z4/yC1hum3QbAHD/cA6i4sYhINwOKXfL\nCMJAEZFAYfiIFrrtbETGTkbsmVwc/+qxrk0REhk7GatDT+naDJUwGMGQnngWfsEv6WRtujEDzpN6\nwnZQAKy6e+jEBoqOiyAjkbztktyFmptrYG/bBT26kdfESMu8hMzs6wrZIU/mJcG4KzeXq319SVAu\nU7pHHaI8ZPN0AMDdiK3gcVULglXXIcGAE58BUP0wJOZWHQBikHP7Qm4/n/OVa66ouHHY83EMEm8Q\nXXJdg9nC56K8tbMPlve+qLDNFJIJm7kVtWXZSLnzB0JGzweNRkfMP21ZnkJGz0f6g7/hP/ANmNu4\nCk/ow2by08WmP/wbDCMmvHq9TDi9D5u5Fc0NVYi/+hN6TliKZ+e2oKG6WPgs/eHf8Ow+EWkPDsOz\nxwQ8Oyvf9yWX0yLxGdPMCgOmR+HpvxsRGrEQAPCoXf0istuJsJlbAR4Pibd2o7WpDt3GfIYHfy+T\nupam6QgbcUPBYOow5GXc4r9QZ3EjEgZdWiL238Czi+Dz0UCGmFwAACAASURBVEhKLFDoNeYsB5HN\nOg/lFcT6FX7eY6SOLy1PQmur8i4ZYutXpsm9/rDwFcLXLxIP48rN5bgTvQU8HrGmRn7hIzx4/D+l\nbaRQHRqDrvYbvPALKrg/0GgauVEcdGkJzP0cZXeUwjjfBCQ8bkB1BQcz+iaLPTdmyv57tjTkPKIi\nbuDtH/sgKm4crF1MCc9v7M7AscgXhP/+2RCvkt0U5Ly49D2a6ivx+NQ6GJsRi9/FXd6JhuoixF7Y\nLjYu9f5BFKdFoyDpForTH8Dei+i+9/iftWisKcX9w0vQYwKxwKJvv9fw6MQqVOTFyS0WZGHGdkT0\nkaVoqq/EoxORMDKRHW8joCj1HirzE1Bblg1uazN6TNDNbf6A2b5Y9WwSAL5oiIydTHjO5fAw6B1/\nrIh5CbN+IMbfCPrauLOw/NFLmPPrQMJztpMZFlwYgykbe5Ou/eZv4fj031FKeZAsuDgGCy6K/y0M\nGeeGJTfH4aMTI0htldQmeD10XiCWP3oJQz4IVNgmeTGYGwYAeHrvRwwdvwk3z31FvNeloDBgRE/L\nRU/ZFT1FD+u7QOI4wbyhXWchNv4g6fhnL/4gtUMb6xsZmQEArt5aKRQJjU2VuHprJcGWhOQTCttF\nIT+Wwa6oSciX2if8/GKNrD3o0hKlTvUHXdRcYGbPn+eqfNOwcFqmxGftbxwkUZ7bgKUh5zEzqjuW\nXR5OiGGw82Th7LYklWykUB1zGzd49pgIc1vxg8XSzBjh6/QHR9B78gqUZj0RtgluIcior1R/Pv+G\navHaIPKSEXNc+LqmLAtWTroJ2o/en47o/ekSbxi8+9qjLLMWm8LP4YPDQ/H1g4nY0P+M8Pnc3eFg\nWTOx9507GP05MSXrwstj8P2EK+g301ts/sjYyTgV+RTFqTVY9WySQrcbkbGTsXnIeQQOcyLM+9Kq\n7ugx2QM7xl2Gg5+lwrcmc3eHI/txOfa+cwfv/jkYt34VP5xQBwYlGHoO/BgAMHT8Jqn9OkJgNAWF\nMkgSGeUVqbC18YejfTe9W79vz3nC1+1vFADg/qMdCOv7ufqMNHACj4mnSEyeqp46CaHfvY67EZI3\nL5qODVJUNGgjVmnQpSWInvIDWmt1kyXF1MIIjbX84OjAQfaEZ0tDziMqbhxcg9nIT6gGAER8FoAL\n34sHePoNsENadJnC63uvWgOGueTiWGlLF5G20+h0+G4k/16qi3+Bwn27Jc7pFyV+Si9pPUHftKWL\nxMa1b6t9/gxFB9RfCC9s5lbEnFyNhOu/Ct9LhgbR404upxUP/v5KYu+Wplr1GClCc0O12ufUN9jO\npri1i/9z8OMr18RO6o8seoSGymYAwL537wrbRTfrF7fEIWSsK94/NBS7Zt5ExJIQbB12AXXl/Bin\n1aGnhM/kQTDvs39y8Mq6tlumPq95C5/Vljbht9dvKSQaRD/Lmh6aS19sUIKBgoJCMtIqMqdlXoKt\njb9ers+25Oerb2mpJ31eV1+sunEdCFFxQCYeVEHaFbu2EgkMuvgF7oyVtuH6r58WExsMOPGpzhI8\nrI4eTXjfvp6CQDQI4PEgJhja95FWk6E9ArFQfvE8Km9eA8PcAjYjR4M9YKDEMTQGA74b+F8vbmMj\n8n76Aa1VlbAdHQGrwUNh3rUb6CYm4DaJB5eLbvBzvt2C5qJC2L/0MqwGDwUAeCxcgpxvxf8tXOd9\njKo7t1B56wa8vlohnKs+MR4NGemwG/8SLLr3QNEBuT+6QrQ0So71cg4cjMJkfmC634AZyH7atqmj\nM6htmCaIvyj9plSwwSajvbhgO/NvwPtM90bYm36qGyeDvNgKhfpL+yzqxKC+U6mbAwoKyTyP+0vi\ns8amKr1dPyv3Frw9hsHYmEX63NdrlMq2UaiGVrOO0Wjos+89xMyVXBhJF1nQlHWZUhV5Nvfq6tMe\nnzUbAQDZUevQUl4OAGitrEDJ8b9RcvxvieMEYqH9bUDp6ZMoPX0SflHb4bNmo8TbgqyNa9BaWSk+\nbuNWMJ1dwAoKRn0S0Z3LzNsX+b8Q8+8DQMEe/veR3XjVk6aI3hzEXtwhfF1dlIqwmVvB43FBo4mH\nhppaOhDGpkW3VQTOfXGR8KymNBNxl3dCXYjOLU+qVL8BM2Bm5QwA6P3yStSWZiH5zh8yRukfXI7y\nbuuSTvafnsjGnb2pqMpvUHpueXDvbiN8zWkh3rrTjXQXemxQgoGCgkIytXWFBrl+WsZFeHsMAwBY\nsT1RVZ1NeO7jNVJl2yjkh8FiglOvnRMrSZi62kh8xvK2l/iMQr20lJXCxNUNNmPGofiw5AMBReG1\ntIBmbAzz4BDUJcSJPRcVC6Kkr1gK3w1b4PLO+2Jio/K2uFtI5a0b6jH4PyRtuOOv/Sx1XGbMCWTG\nkMdf5b64iNwX5BmtVK2FIGl8+6Jtov3Sog/LPZ+s4m+GyPGvHuPTM6Pww8QrYs/ObojVSFYmHpcH\nOy8LlGXx3c/ePTAEf30cDQC48VMS3vwtHH+8x3ebWvlEN9lCAUowUFB0GLhSXIL0ff0rN1dg1NB1\nhHgGUXjg4erNFaTPNE3gsdVInhoJm4lhcHhnPOGZpNgBReIM/PYsBYMtfruS/sE2tJZp39e4589z\nEfPmLuF7XdU0kXSi32vX2zqwho+ubhl0Re6ObfCL2g7L3n1h2bsvCn7/FfXJ0is4O7z6GgCgNvaZ\nxD7lly/CbvxEOLw2E3VrVsptD48j+XdMQ4p44Hd9vLgYoehYrA49haV3x6OlgYPto1RPJRx7Jhdx\nF/Lx0YkRMGMb49ymWCRcags8Xx16CpMieyD0JXc8PZmDs+ufq7zmmh6nETTCGe/uH4ya0iaCILm1\nKwXN9Rx8/WAibv6ajNWhp0gzJ2kDgxQMNBodQT1mwMGlO5qbapD07DAqy9JkD6SgoNBT+IJg5NB1\nYk9uR0ehqUn3QXoO74wHeDyU7r8MVg8/sLqT59AXiIXKs9GouhwD1y9nwtjZVig82iMQC6X7L6P+\nRQacPngJJr4u8P11sdqCmRXB1KWtIrBFFxetry8NfS7I2FHJjloPz6X8ZAYu734AAKi+fxclJ46S\n9jcP7Q4AsAjtAQspwcsAwDAnT+cpLehZEpwGcTcRbrPqBfgo9J+ocGIVcrIbANE2WTcE3FYufppy\nTeLz06uf4fRqyYKYjPZrtn+fdK0Qm4eQuw1GH0hH9IF00rHarEFhcIJhyPiNBB9BE1MrdB/A/yVW\nnP8UiU/JU0ZSdC6qnmbDMsQNdGOGrk2hkBOBWNDHomztN/vlJ29L7AcQbxMyPtkBVg8/uK96E6zu\nvqh/nk4Y014UZC35WTiP3cyRKDt0VS2fQRl6/DBbZ2sDgNP4UBSdi9WpDe3p99eHePi6dBeUjkRL\neRnSli6Cw9TpYPcPAwCww8LBDgsnzZBEN+HXieBxuQBXPOuZPPBaW5UYpNlU68q6B6nqVkRBoS8Y\nlGAYOiEKAPD4zveorcoTeULD4Ii1cHTtCQ6nGSmxx3RjIIXe8GKJZD9MSZh52MIuPACW3dxgO8AP\n0GyNQFJaWxuENQk6E4K0qfcefqtjS8iR5gohD/XP+Deg7pFz5bo1yPn6N3hseA+2rw7WqWCQh9Tt\n51H9Ig8MFhNu0/vDfmiQ2ub2XzROKBj6Hf5Y7nHld1OR/ccdtFTVwyLQGcGrp6jNJqaDpdrmMiRK\njh1BybEjAAD3TxfAxN0TflHbkb7sC744+I+62Gew6NkbjVkZyP9ZuSKL6cu/lN2JgoJCqxiMYDBm\n8q8uyTMl8XD7wgoEdJsCF88wlQSDNv1TVblej5n7GxrzFUu9RSGdhpxy5B6OBmRoDU26ReTk3euU\nQb5GDBMAwIA+83Ht9jc6tYWM4l/PyO70H9XXn6q8HqeW715BY+juhqzr+qkSn9Wll+DpvL1i7Ulr\nTyEJgPvMAfB6d6ha7WHayq5GS/b7u7w0VdhOuTSph9wfvhO6DXks+hLZW9tqIxUfPQKLnr1h5qP5\n9JMUFBTaw2AEQ79hsq/1Ul6cgItnmBasoaDQDOlZV4SCYdTQ9WhuqUNNTR4sLJxhwmQDUL/Ljpmp\nLXy8RsKa7QUzM1vCsyFh/IJCra2NqK0vQlVVFlIzLqh1fQC4Hb0Zo4auB51uLLXKtK7clZqy5a+M\nyh7eE+zhPeXuH/h3JEDXXao8MqRtrOU5VMk9FI3cQ9Fq2aAPuvgFeDJSJMbM3YXGfPLMOqLcGbMF\n/gsj4DShu0o22Q/vgtLr0oN/OwvclhbCe16LSIYtGk0pVyGXd95Hwe5dsjtqkfUrbPH5B2zkFXCw\n45cq/Lhbvriq/n1McGyPE0xNafjraC0WrypHa6tm3aeYxjQs/dwaESPNEOhnDCaThvIKLmKeNeFO\ndCO++1nzabY7ElZsOjautMWQgabw8zZGUQkHD580Yd/BGpy5RF4/qCNiMIJBw+6JFDqAYcUGp0r3\nwaz6xpWby4WbZqaxOexsAzW6HotlDxenXlL7GBmZwprtBWu2l0YEQ0jQNLn6jRq6Xi9jHEQpP3YT\npX+Jp+QjQxCrUPHvPZTsaQt4Mw10h+fG9zVinyooegP76I1f0PcAeeYruaHRQDOS7B8YPeV7tNbK\nH9ya+u0FlQVD0PJJnUIw+EVtR/Hfh1Dz6AGhXfT2IPd78QDlsrOnYTdhEvw2bUNt7DMU7SdWV3Z4\n9TWwBwwUi4EQVGZmBQXDb9M2pH21mPDcokcvOL0+R2J1aUVpzPcRazN1zSC8j4q0xefzrITvvTyM\nsH2dHbavs8PRU3WY/SF5YUljYxpqsrwJbfPeYmPeW/yDHzO3DLXua8pSvWHOkvxz4urMgKszC5Mi\nWNi0qu1g6MSZOsx633CKY+bGesLeTvLNa/t/P2X55F02tq21I33m4sTA5HEsTB7Xlt2uoZEHG99M\ntaytrxiMYHh8ZwcGjFgmtU9At1e1ZI3h4vXTFmR//jXs334dJb/sg8eWb5Cz5BvhcxMfTzgt/hjV\nl2+i8uRZ4Zisj5bAPWoVcpeugcMHb6LswFFw69qUtfuGFeBxWpG/dht4zS2EcW7rl4PX0oL8bzYL\n+9u/+wbM+7adwmZ9RLkKiKLIplievs3NNRL7lZUnq7QJV2V9Y2MWhg5cLtc8AhEV6DcRyWnyuwhp\nG9upQ+UWDAJExQIAmAV5qtMktaCMu2ZTcTWyfrsJr/fU654koPx+mkJiQUD0lO8x4MRnGrBIt0R0\n/RoX4jeodU7H12bC8bWZpM8kbdwrb1xD5Y1r8IvaLle2pPZz+kVtB2g0pbIlqRMyQSHKtMnmePUl\nH7DciZvU8jRvsMykB8E15PmguIQDzx7ZUvtJYvQwM/x70FmpsaJMmWgu/JxePbNRVKzb9NzSyHku\nWSy0tvJg4Zmp8hqy/s0lYWZKE45luWcoG++v1xiMYGhq4F83D50QhZhb36GupoDwfHDEOtAZxshO\n1e8AQX2APWoYWD27wXPHBvBaWmA3ZzrK/jwCt7XLwGBbInv+V7B+aSxcvvocBZv41Sw9v9+AnC8i\nhQJDIAZoDAY8d27ib/hpNHj9uJmw+Rf0M+seInwNAKW/H4B5356UUOjkCMSCPFRUpsPG2hduLv31\nWjCoA4e3InRtAoHkTcp/vXMPR2tMMCSsPK7UOGVEhqGjjJhIW7oIxvYOsB09FqyQbqAxjNCQmoKy\ns6fRXFgg13i6iQkcp8+CedduaK2uQuX1a6i6R55lTHQcADjPeQtmgUHg1tejLu4Fys6dIbo8gVy0\nyNsmjbEj5Es+QacD65bbYsV6fiXs/T87yhQLAhwdFI9R6hbMxKMrbgqPk4esp55ge2WiuUX/XDqy\nn3nCwZ7861XfwIOtX6bKaygrFtpTn+uD4//W4fUPDOfmRh4MRjAA/IDnoROi0GfIAtLnOek3kJms\nfneJjkbVucuwnhyByn/OgdvQCLs5r6HszyMwsrcVbuAr/70Iq4ljhGMqT18Er7kFdAti4KFQLAAA\nj8e/idi4ArnL+CkyBc8anlMFdCgkU1ouXnSpPdbW/F/m5ZWpmjZHabK++BleWz9E4LHVSH9/G1rL\n+S53NAYDAYdWIPk18YJu7XFbOUfTZipMyZV4XZsghqoJKpLWnULQCuULINmG+aH8fsev/9NSWoKi\nQweUHs9takLhn3uVGmt+LgVpSo5VFis2HVXVXJw6IP/p/RefWAkFw7TJsoPzRWnM91HIjeZFgmar\nsFdneeO9BSXYf6RWo+soQtZTT4niqrSMA/dQ5W5pBMTedkeAr7FKc7Tn1ZfMUZPlDUuvTLXOq0sM\nSjAAfNHAYDAR1GMG7Jy6ormpBglPDqC6IkvXphkcXEGhG5rs0xBureRfHi7LPie851TXqGQXRefD\n3lZ6Kk4TEzZo/+W5ffZivzZMUoqmjALkrvkD7qvehO+uxTL750cdhOvSWWKVoZOnRpJWi/ZY/y7M\nuoi7K4n21UWxN1k8fnc3ev/+jq7NIFB6IwlBKhQP93hzEEEwhPu9h7tpvyHYeSw8bfsKT/NFT/Yj\nun5NmEPeE/+Irl+Dx+MSahBFZ+xDZUOelFFtY8leC9Z2Zgejh/sUQlsvj9dgZeaK68k7hP27u70M\news/XE1qcxPq5/UGrFluuJu+G3VNpRLXj8s/iwCn4biW9J2wfUTg56ioz8XT3GMYHvgZrid/j2GB\nn+Jm8k7YmHuhvC4TXHDRz3s2eDwOHmW11VgaFjAfGWX3kV3+SLjGnbRdGOj7DjJK7yK15BYAYEzw\nUiQVXRH2k4cft9hj4lhi5fWv1pRj7AgzjBwi/dbh1hlXwvvc/Fb87/dqLP3cGtZs7Sc2ePikCReu\n1qO0nAtXZwY+n2cFE6bsv/e/feegN4Ih84knnBzJxUJmdiu6hOWoNH/0JTe5xEJ5BRfH/61DXGIz\n7GzpmDbZAl0CpI8zNqYhP94Lrl07xv7U4AQDAHA4zYh//KeuzaD4j4KNO2R3oqAgITntDAL9JgIA\nhoQtw637GwnPjYxMMSx8pfA9h9sCQLvX5YpuwOufpSF5aiQc3hoHq9G9walpQNXFhyg/Ie6GUfsg\nEclTI+H9w6cwdrBG6cGrqPjnjsR1c5b/rtyHUIGHM35UeY6G7DI1WNKGPhROswhwIry3NHEEAHja\n9kVOxWNhewuHfzDT3iWoi/MYdHUZj/gCYpVaScQVnEVe5XMAgJ/DYAzwmSsmOMgECJlwEcXDtg8u\nxG8QiglLU0c8yfmbMMaMaY3nef8Q2kZ3WYLLifLd8uRWPkVu5VPhWFFbWEwb4dymRpbo6jIONuZe\nuJ36MwIdR+BC/AYwGSz0956DB5l/CsfamnvBzboH8ir5FXfrmstwKSFKuKZoP0WYOqnthsDWLxP1\nDfzfN9/9XAVXZwbSH5PHFz284obQYKbwvagf+7c/VcGcRUNZqjfp2NnTLRTaoJ84U4cpE8VvMtZv\nr8TarZLTra/ayH9mZERDbTa5LQJMmDQ0NevWNcnfxxjOTuRiITahGf1GyRbMsugRwpT47Na9RoyZ\nSu56t25bW1a27evs8PE7bNJ+ttb6lQFPFQxKMAgKt9XXliA59m/qVkHNNGfnwvP7jcj+bBmsJoxG\nS1GJzDFZnyyF109bkP/NZrQUl8K8f2/URcfItV7V+auwmToJFcdOq2o6hYGSk3cX+QUPMXzwN2Ay\nLaSmVE1KPY3c/PtatE41SvaeR8ne87I7Asj89AcNW6M8zeV1ujZBjOYS/b7FjC84D3sLX5TVZuB+\nxl7SPomFlxDR9Wu5BYNALABAWslt+DuoJy7ElkXcAA/0eQcXE/h1FQTCZ4jfh4TbDQC4nLgFvTym\nwdEyUKVA68F+83AxYRN6ur+KxMJL6OLc5gqbWnwDANDMqYcNy0PYLnpTIhAMPJ54lKmgnzL2Hf+3\nTigWBOQXcrB4ZRlp9hxRsUDmYlRXL3nzreiJ/qz3i9GY74O6eh7s/DPlHiegtZUHU9cM7Iyyx3tz\nyAsRVmV6qy3jkDKkP/aEqzO5WLh6qwETZhSqvIakmAUuF2KB7NJYtKIMi1aUoSHPh9RhQ1G3M33F\noARDfW0RWBZOYFk4oOfAtqqfXE4LkmOPojhf9YJJnZmCjTvAdHOB585NqLl6i5DVSCJcLrI+WgLX\nlYth5GCPupincguGyn/OwWXZ5/DYvgY5i1apaD2FocLhtuDKzeVgGpsjwHc8HB26gUajo6a2ECVl\n8cjMvq5rEynUQO7B+3Cf1fHr5HB4rQCAnu5TkVkWjdSSmzq2SD4Em+rM8rYUqm7WPRBfcB5Z5Q+R\nVCSe+etJzlEAwKgui3ElcZtS6wrchZzYXfA09zg8bHqhmSM5tz2XxyHcJKjaTxKSAlb/93u1xHSb\nAJCa0SLx2f4jtZg93UJpm0RRxwZ0/tJSvDnTAkxj+YK0tUVajIdEsfD3qTrMkZDKVhGKkyTfPCki\nFkQxc8uQKEKunHDBqCmyEwXoMwYlGB7dFE+xRqcbIbD7a+jScxa69JwFQFI1aAqgLQhZNDtR7b02\n/87mvAJkz/+KdIyk8QCQv1b8j0X7PmQZkSh3JgoBzS11iEs6iriko7o2heI/Elf/o7a5snbfUotg\naCpSY9EpHgA17ZUq6nNgaswW+ukz6MbwcxgsUTAw6Mbgadm9jgwOt5lwEp9cdBW9PKbBysxNuOFO\nKrqCIKdR8LLrj4eZB1BRnw17C1/0cHsFHF6rwmLhQvwGjAj8HJUNeULR0djCvzW6k/4b6W2BgEsJ\nUQj3fQ88Hgf3MvZI7Teqy2LUN5VL7aduug3KlfjsvQUlahMM6oLtlSlxkxsazESsGoOs5ak7kfLQ\nA24u5FvTb3+qwrK15WqxhW1J7iqkqhAzdSUXDYMGmKo0rz5gUIKBDK+AMXB0lb+qKgWFIRI+tc1X\n+O4xxVPRhk/dotQ4TSD4LFXFKYi79auOraGQRtntZF2bIEbi2lNqm6vsbgrsBgWoZa74gvPo5/UG\nbqX+RPo8OvMPRHT9Go9z/oaNmTt87AeqvWaCLPp4zkBa6R04WPghpfgGRgUtwuXErWL9BJt4UZKK\nrhBuGUpr03ElSXadBNHPKPr6WjLxsOhGCt8tT1QspJXeIR17N/03iWuIouytx9FT0t3wHj5uQr/e\nJkrNbUjMnm6BpavVs0EHgNR0ybcvAJD8wAMebuTb0qWry7HjF/UcFkgSbXv+0qyr44FfHPHGPMNN\ntWpQgmFQxFowGMQAFR6Pi8e3d6C2Ol9HVumeiO78VB8Xnq/TsSUUmkKw2RcVDqLIEgSaEAvKipC7\nx5ZI/BwUFLKoTVLdd1lA8flYtQmG2qYSglhov4mtrM8VtpXUpCC5+Jrcc0sLZlZmjsp6/in4laTt\n6OM5A9YsD6QUX1com1BH5otI6UH6P+6uxp7eDlqyRne8PN5crYIhOkZy/ZOkaA94upNvSWd/WCxT\nxCnCb9+R/9t99AV5pi9FmTizEGcOiaflnTrJHG+oWPhelxiUYGAwmKivLcKTu/8Dp7XzFd7RRyxM\nHVDbKDs4Wl3jKCgo9INx5z/A+XFtN0T9Nk5E0d1MZJ82nJorVc9VS8nYEYjJPqxrE/SOwiLp1Y5j\nnnWs/UdGVit8vMS3g64uiheWk0ZCMrl7U+J9D3h5kG9Hx08vxLXbDWq1Q9NcuWlY9sqLQeV7qq8t\nAcvCCYPGrsHQCVEYOiEKg8auBtNEtk9g+LStCJ+2FWFTNmnB0s7DoEDF5bIRw0SpcR2Z9ifuIUM+\nUOspPNlc4VO3wMV/MMKnbkGXgXMRFDaH0C986hZYOwWBZeWC8KlbYG7lKjYHGT49X0H41C0wYVkj\noN8suT9H4IDZCJ/aFmjPNLOibiL0mMtT9xLeP1lzEaGLhunGGCXh1Gu2CBZFxyQrp1XXJqiVzBxy\nVyF1B0OT3TDE33WHtye5WOg7Kk/tYuHxNc1Uye4MGJRgeHRzK26eXYqbZ5fi9oUVaGqsAsPIFGGj\nVgoFRPgY6TnT6QwjhE/bCme/cC1ZTdGegQHv6toEiv8oSOXXBrB27oKk+8TaJnePLUFlURLqqwpQ\nV5mHkKHyiTwXv0G4e2wJmuorkfLwoOwB/5EcvR+iEah9J6xAYfo9ucdTaBevSSGE956TQlARX6TR\nNRtyJeeYp6DQFrquT2CoxCcRBfrd867w9SYvfhY0IEcjVa27BpHXXdj+oxqTKXRQDMolSRQupwXR\nV9t8Mo2Z5gjt9y4srORTj4VpdzVlWqehh+erSo1jMW3VbAmFqtSWZ5O2+/WeBitHf5iaS04jSIa6\nbgbSnxxXyzwU6if440GoySxH8f0sgAZ0nT8Y/w7dqdE1iy++0Oj8miaiG7HSc3VDIe6l7dbqmvJS\nXpeFhxkHtLqmKHF5Z5FbQaVK70i0r0XRuzt54Lh7aDZKy6S7hambQ8f1o7K1PmNwgsErYDS8AsaQ\nPisvTsDNs9+Ltdt7tM+i1DFPB2g0OsaGiv+i5vF4uBhLXhDLiuWKMP93SJ+RBVELAqxltbUfq+w4\nZWwUnfvC83UwMbbE8ODP5R6rDxjL4WanTnhc4i9nF79B8On5ijCoOWToPFg5+Ms9n7JB1nePLUHo\niPmIvbaTilPSc/4duhN+M3uh38aJKH2Uq3GxAAD5x6igXG1ha+4l3PjnVTzHi7x/tbp+iNsEhLhN\nAABceKHdbFKGDJ0OfPW5NVYtsdG1KRJxdzVC6iMP0mc2vploaNT+Hu3BZcpVSRYGJRgElZ4FJMce\nRWHOQ5njnHwHEt6nPOyYQV4CsXAxdj14PB66e74CF+tuoNFoMGNaoaFZ/MpNsBFvaqnF9QR+/vAh\nQR+DZWKLiO4rxDbVSQWXha+DXEaLtUlC2XGiNqYW3UBa0S2ZNopia+GNfr6zAQAxGQdR3VAAP6ch\n8LTrJ9fa2oRGowtTCrKsXHRqi3f3SWhurBa+V0QsqIqlrRd8er6C6H9Wam1NCnHqs6RnigGAtENP\nkHboiRas4cNt7li+44aCm013mJvYIjr9D52sH9Ht8C7orwAAIABJREFUa1xN+BYtHP0OJm1u0c1h\npK01HfnxkguR6RM0GiSKBQA6EQsU8mFQgkHZgmwWNu6E9yVZHfOUqqG5EjcT2075nmefxPPsk4jo\nvgJDu3wq8dS/ffutpB+Fz9tvyDNL7gtfCzb+om2SUHacMjaK0s93tlBACUjIu4CEvAsy19YmCXd2\nY+CrbYI4/ekJ+PacAgCg0RnoOuhdsKz4adpCR8xHfXUR0mL+FvavKEwgrdXg32e6cFzfCStQU54l\nFqtAxr2TyxD+6mYMnLIJNDoD8bd3oevg9wl9JK1JljZV8Mynx2Sw2Hx72A5+6Dr4fdRV5iHrxVlC\nfxe/Qch4elKmnRSao/x+qsJjXro5Xys3DRTK09Rai7yKZ4Q2JoMFK5YrLE2dJI6zZrkjotvXSp32\nk60pgEFnwpxpCzsLX9BokoNsRwYvxMOM/SivI3ef1AfkKUymTiQVXNNnGvKk29yY76OWKtYU6seg\nBAOFdETFAhnGDDO9P6HRBDxt/xZXgorCBDE3HkGcDY/LkVngLOEOuR90aswRiWNEN/jt28DjidnT\n/r2kNcn6Csh4JrvoVmrMEfj3mS6zH4VmqUvRbAAzhW5oaqlFStENqX1crbsh1H2yVtcURVIMRD+f\n2ZR7EoB5b7GxY4NicWX6gLwCpz7XByx3SjToG51CMJTlxcLRq6+uzdAZCXnnEew2Dr28p+NB2j4A\nQE+vaQCAFzmndWmaVAzBRgr1499nut5Upe7MVMfmirWJ3iC8dHO+tk2i0BL5lS+QX/kCQc6j4G0/\ngPBM2VsGRRDMr47g6Y5GUrTkmgXtuRPdiM+WlSEuUXq2oapMb5gw1ZtCVRXodO3fNHz6lXqKtnVk\nOoVgyI2/2KkFQ3VDAQCAbdZWedDO0hcA0M1jErp5TNKJXbJQh42tHCpw1lAQuDE11BTr2BIKAGgu\nF6+sevuDthsrMtcjSkR0LJIKr4gJBl1jY+6BirrOWXBv0ypbmWLhpVmFuHzDMDwJTF0zcGyfEyaO\nYZE+L07ygmNQllZs2fVHjVbWMWQ6hWBorCOWNu8+agGeX/lOR9ZoHzqN/8/M4bYVZ+Hx+Flx7qfu\nQVV9nk7skoUh2EihPqhbBf2nMpESc52NqoZ8WJkRiza62/TUSsrTBxn70d9nNqGti8tY3Ev9XeNr\n6yMLPrSS+MzcIwMc7WYiVRrRtKlT5xZJdFViW9Lx8Tts/Li7mvS5OgnwNUZKOnkBOwo+BlW4TV20\nD4Lu6DiwAwEAJTUpwraCCn4+cyd2kE5skgdDsJGCgqINXQQ8sweEwWfdRvht3ga/zdvgOGOm8BmN\nwYDH4iXwWLSEn56FQmGe5YgnH3C3bZ+qXDNUkAQ4mzP1N12oJln4kWSx8NmyMpXEgrorOkvD1DVD\nrMaCNNej7evsYGOl+a3qzFe1m8rcEOk0giG+XdColaP20kTqGm8H/pVyYv5FYVtCPj9LkI+j/la8\nNgQbKSgodAedaQLbceORsWIZOLW14LW2ovjwIQCAw6vT4LtxM0pPHkfpqZPwi9qqY2sNk4bmSrE2\ncx0W3+TyDOQYXc1sXCn5a/7rPtVO4LWlpaVVyJYmGgoSNJ8ydvkia42vYeh0GsFQWZSMpPttOaRD\nhn6oQ2s0A1khNDNm26lEe39+Qc5/QZ0CRSmojAMABLtGKDVeHlS1kYKCQjMM//MNXZsA79Vrkbk6\nEgCQuSYSNKM2L1t22ECkfbkYDWlpaEhNQdqXi+G3eZuuTO1QcMHVyjpMI3OxtvSSu1pZ21DoSClI\n/ftKjk1RVwrZew8b1TJPZ6TTCAYAKMt9jqzYtmqV4dM63olTRPcVoNMYAIAQ94kY2uVTAMC1+G/F\n+l6M5WeisLXwRkT3FbC39IMxwwwO7AD0852DiO4r0Nt7ptg4Ac+zTwAAPO37gWnUFrTkwA6QamNZ\nbYbQVgHGDDN42okHpovaOCZ0Gewt/WBqzJbbRgrNM857IcZ5L9S1GRRaJnrxP7o2ARVXLoHpyK8d\nwHSSXEOAQnmM6EyxtvLaTK2s3dPjVbG2zNJoraxNoX1y81uxaYf4jZaA6ixvldcYM7VQ5Tk6K50i\n6FmUvKTrKEi9jbApmwC0iYa4Gz+jqkTxQkX6xIXn6zCq25cYE7qM0H4v5Xc0t4pnPBGMGeD/FqxZ\n7ujjM0vseWrRdalrZpZEw9thAEZ0XSQ2ryQepR8QioX2tyLZZeJF9VS1kcLw8Wb3RkVTPqqaqF/2\n+kKfdRMIWZN0QcXlS/xbAy4Xpf+eQtqXi3VqT0dkoP+7Ym1kcQ2awMZcckVgio7JN1EVWPChFUxN\nxP2kmMY0rF9hi+XryklGykdrq2S3qN++c8B7C0qUnruj0+kEAwBwOa1IvLsHXcLfFraFDFOfi9Ld\no1+obS55EN2cX3mxWeHx0al7lV47qeASkgouKTxOmqAgQ1EbFZ2fQnnOZ4rfXqmbLrbDkFJ5lxIM\nekT64SeYcOUjJO9+QGhPPRCjVTvyd/2ChpRk8QdcLryWLUfWxvUAAM+vlqNg929ata0jwNJRkHG4\n/3tibQ/SZVepp1CMQ7856toEMax9MiW6IC3+2Ao/76lGTl6r0vNHbqrA6q/Ev69nT7egBIMUOo1g\n6IjuRxQUnQFTI0tdm0BBQv6VFORfSZHdUYOYennD9f15hDbBLUPaV/zMSB6LlwA8IGfzRvC42vG9\n7ygEOo8Ua3ueozlXNDqNgQG+cwk1gwRcjNskjGmjUA+e7kZ4ZYJ4nIg+YOqagYY8H9KA7JSHHirF\nbkR9X0kqGADtF4wzJDqNYKCgMGRC7SPgyPIFj8dDTu1zpFTIDvyj0xgY4DwdbKYjalrKkF39FLm1\nL2SOMzWyRG/HybA0tkdu7QvElV1Rx0cgMNj1TZgZW+Fp8WmUNGRK7RvuovvgWgr9xO2TTwluSDaj\nRhM78HjI2bZFy1Z1DAb6vUO6cS+oilN4LraZs0pVmzVdWdqQefUlcxz/l9zlWBbJD/Tb5cvMLUPi\nTYOqG/vM7FZ4e5JvgR9ecUO/Ueqt/USjATzJ3lAGASUYKCj0GLJgYj+rAfCzGoCHhUdR1iieVYLJ\nYGGkB/HUlc10QDf7MehqNxIXs74nXeN85rdi63lYdoeHZXcxtyMyu6S5JkkKiu7jNAUAcL/gMCqb\n8qWOCbAOR4A1McWuNtyhKPQbupkZuA0NsB42HLYR41Fx5bKuTTI4jBlmsGa5oovLWKkuSNrauJfU\npCE+/ywaW6jquwLKK7mwtRbPU/PXr44Kb5y7BBjj6Q3DqEdl6qoZ0dAlLAf1uT6gk6T+CQ1mojHf\nB5ZemWhpUX6Xv/orGyz9jJ+u1atnNoqKDTslMCUYKCgMgPYbYyaDhWZOPWlfgVhIqbyLtEr5M4qI\nCgdRWEbi+alF+yiaIUl0bKDNIPha9UeYywyxdQXvBfMr+nkoNMtLN+cDABoKa3Bl+j6MOfE27s4/\njrq8Kq3ZkPblYnguXQYjK2tUR9+ngp7lQNnTfm2e8jtY+mFY0Kcoq83Ao8yDWltXn3HtmqWWjfP5\nI84YPthMnaZpHO9e2ch84kn6TBXRwHKXLEYAoCbLGwCwbG05vv1J9u81Gys6or6xxZszOqYbbacR\nDNoORKagUBexpRfF2iSJBcHmOqboJEoaFP8lSnZiX98qOc2dolzI2kF4n1xxB75W/dU2P4X2yDz2\nHC923MSoI3MBANFfnEL/rZNxbZZ2A1OzozZqdb3OBpfHwaW4KJ2sbWfhg4huX6O2qRR3Un6VPaAT\nI9j4+vbORn4h8ST7rVmW+HGLPelpOiD9FF8fKCySfjIfGsxEbEKzUnMPnZSPm6ddpfbZuNJWauG8\nzkKnEQwUbYS9thk0muQSHPeOkIurvpMjYWxKrpzJxgycvlX4TPBatD9ZGxnt+wnh8XDv7yXkzzoQ\nofZjUViXBA5P/qwQyoiFC5nfKTxGUciCFu8V/IWBLq8j0GYwkitua9wGCvUQ/9MdwnuWmzU4jcpn\nLqHQL+qby3Er+We1zFXdUIh7abvl6mvMMMPIYOKtpYWJPSK6fY2UouudunCbPBv79MfkJ/HS5jQE\nTF0zUJbqDXOWeBT0wytuct8CtOdBTJPeCyZ9oVMVbqPgb75FxUJZzjOU5T6XGY0zcPpWoVioq8hF\nws1dKExp29wNmLpJytgtKM+NBaelrcJi6OjPAAA5Ly7IXFdAzosLSLz1O1qb/ztdp9Hg1/c1qeMN\nndoWfr7pMV6fYpz3QnS1E89aoi540E1EVlVTEQDA1byLTtanUI4Jlz8CRP529103HjffptxHOgos\npm5OVFs4DbjwYgOi0/eJPQtwGq59g/QMvz6SqyEriqhY+GBhqdrm1RR2/pkSn6l6A2AowkmXUDcM\nnYgBr7b5oEo6zSdj4GttWUZEx1UWJiHjyUkMmLoRdIYx+r2yFg9PrhQbX5R2H+kxx/hz/ScALGw9\nhXO5h4wBjUaHf/+ZSH1wSDgubBr/GryqKBnxN9quox+eXCWcy9F3ALJjz6GlqVbuz2NI3M7j/9EM\ntBkMX6t+8LTsAU/LHgA6XsAvk2FYfrWdnX+H7oTvjF4wdTBH/6iX8O/Qnbo2iUIOpJ32t49tiOj2\ntc4yFFXW5+F2yi8YHEBM4KBLm/SBvIJWlU/E126twPrtRFfTPw7X4Ndv7VU1T+NoKghaMLdgHnVR\nU8uFQ2CW2ubTJdQNQyeCbsQEADw4vlyxgf8lQs58eor0cfQxfmVpIyb5hi/jCVlV0LbT7PI8fqpP\nK+dA4rJ0BgAQxIIogtuJvi9/Q253ByK54jbOZ35LcBvq7fiyDi1SPzXN+n/CRUEk/fATnBnxIx4s\n/VfXplBoCBpZInwtUddUprO19R1T1wwsXqnY1ycnjy822osFQ8PKO1PiM3Vs9k1dM2DqmoHMbOVc\nLJuaeRg6KR+mrhkdRiwAenzDMGIq/3qptYWHBdu9kJXUiH/3FMM3hIWxr9thetAzHVtoWDj5DRS+\n5rQ2KTVHQfJN2ev4hqEo/T6hjccVD1gqzXoifN1UVwEAYJqyFbInN/4SPLpFKDTG0OGBJ0x/6sjy\n1bU5aqGv06sAgCcl+rnp7PXBdmRdP4jy5IdS+zz5dZEWrdI9NiHO6L95EowtTQjt1E2D4XLhxQax\nW4axIct0eqIfnb4PA3znEtoCnUciufCqynOr4zRam2u253+/V+N/v1erbT512qZJF5+mZp5WXIi6\nhKnP/asjoLeC4doxvu/21I+csGhiIrKS+P7vV4+W4/TuYkyZ54gTvxTr0kSDwtmPn79e05UynQMG\niwkGMhRxIZIY9EwhRl1LBcyNbRDu+jru5v+la3PECLIZgqSKW4Q2ezMvAEBjK3nO9ermIrCZTnCz\nCNHbtKqdTSwAwKCfpiHz2HM0lipXNIpCP0ksuIwuLsQCeKO6foEr8br5PVxZL15Ay8UqRC2CgYKC\nQn70VjAIGDXdDk9vETcS5mwGxs6ypwSDArCs+BU76ysLNLqOmaWDXP14hl7yUAsIUqTywENq5T00\ncxpgb+YJJ1YAAOBu/n6xMbfy9mKM13ywmU4Y570QLdxGlDfmwcHMC3Qa/8dd1dgHE4Y5/K3DYMG0\nh6Vxm89rhNfnqGkpRWVjPmpaypBT81xsrI9VX/hY9UVyxR2YMFjwYvcCADRxJAvIu/l/YZz3QrCM\nrBDmMgu5Nc/BZjrCkeWH67m/qfRZ5IXX2oKgVxeBwTRD/KH1hGe9PtgOgFw0+E+YB0v3IOH7jiQs\nqJuEjklW2QMxwWBEZ+rIGnKMGCayO1FQUKgVvRcMH4+Ix7HUnmhq4OLEr8UI7mOOHoMtMdX/qa5N\nMyga68phamEHM7ajRtdpqFG/iFMkQLsjUdlUCGsTZ9BAE6twnFcbj+rmEtJxl7J2YpTnRzCmm8KY\nbgonlp/wmSKpWSVhwbSDh2V3sXYajQ420xFsJv97jEwwCNypAm0GCdtqm8twO/8PqWvezvsDg93e\nhLWJM6xNnFX8BIrjPXoOnvy6GCx7dzH3oye/LhKKBlF6fbAdT3d9AR6P2yFdlvxm9kLaoSeyO1IY\nHAkFFxHsMpbQpqtgY6aRuVhbfXOFWtfounQ74qMU+/kMXrwZNCMjtFRXoOLJHZTel37jYeHXFeyg\n7rAO7S+2lnX3AXAdPwP5Zw+iMlay6yNFxyVwDf9vSPIq/f07ofeCAQCm+j/FW8vdMH2+ExIf12lE\nLNAZRvDpOQVWjv4wMbMWBtx2lIJvxRkP4Bk6HnSGsUbXKUztvDmy1c39AuVTVF7J/knuvoreOJQ1\nZKt0S6HM2NqWMp1mhaorzgYA1JfmKjRO4AKYcXGP2m3SNQFz+yHovTAk73lAaE89EKMjiyjURXbZ\nIzHBAACmxmw0tqjPZ14eurlNFGvLK1fvHkBRsQAANCMjhcbVpsWjNi0e1qHihSorn0fDdfwMhW3o\nqASu2a7XG+fOikEIBgDYuz4Pe9eL+zKqQt+JK8E0s1LrnPpKXsIVeIaO/+8dDVAi575b8CjkJVyR\n2qco7Z7ixlFQ6DllCbLjcsgIeOljVGXHwS3s5Q53w3B+PFV5tyNDFgA9LGi+1m8ZHCz9xdqyy8lF\nadel/FPaimf3UXD+iFg7AKT+sh7NlWViz9pv/gU3CAIEz0Xnaj+2/U2FMjcX7T+POuczBBxfmqZr\nE3SCIQgkvU+r2nsYG74h6s7PTkP4tK1qEQvh07YS/tNv+CJh4PQtMvoRaW3iBzW2CQ4igqJtZNmQ\nVIHLaQFABT1T6B5zJy+Fx9QVZqA04R6Kn9/ocGKBonNQXJ0s1uZg6UfSUzOMCVkqd1/BZjo+ahFs\neoQJ04EDELYnbv8K/vOIacUlbcAFNwjxUYsAHhcuEa8R5mr/WlMYW+mmgJ6usO4fLrsThU7Q+xuG\npT/7YE6vWLXNZ2nnjdAR89U2X37yDbgGDhO+N2FZo6leP3Mc3zuyRLj5Fvy/JCsGDCMTWDt3AZ1h\n9F8/ohvWw38ihcXZBk7firqKPGTHnoG1cxe4BA4V9rt/VP5f7vIQfWwZBkzbBDrdSGhved4LMIxM\nYOUUIPK5OobbmKFzKi0UADDZT30/r/qCXZcwZN88Apa9u9xjzJ19YO7sA+9Rc9BSV4kXB9Zo0ELt\nE/LpEPi81gMNhTW4Mn0fRh6cg6uz/tS1WRRq5En2UbFbht5eM7Ryy9B+XQGS1i661lYnqOLJXQR8\nuBIpP/F/5oytbOE6bjrM3LyVsiX/3GG4TpiFggt/KzVeWeKjFgmFkF3/4WLihMzvXZIvPJmbj6Cv\nKJJOukXnDVhFvH2RNI5sfgCoirmPon/aboCcp8wCu1c/qWNVOYEXzJWy5ksErNoMACi9cg7lNy4R\n1pH3M2RsX4uWygqxftymRqSuJ/++Jft3MXF2g9fHiwn95Pmcivy7qRO9v2E4tKMQ3QZYqGUuhpGJ\nWsUCAGQ+P/1/9s47PIqqi8O/3fTee09ISEKASC/SiygKSLPwIdgVQTSA9AAhIAhEQVG6CCIWkCZK\nESkC0iG09N5I722z5ftj2MnOzmyfzW5g3ufhYebWM9tyz72nUO67Pc/8YTEW5BfXbgHd4ewTRSoL\nirh6cCFqy7IBADZOPogY+B5FWdDXov3qgQWUe2efKIqywMHRFtzeFoOO42MQNGI65bTgmfcSSIdn\n2evAYVPRVFGE29ticHtbDNKPb2V0jG7PBE3qSomUlLLzKnp+Trc352jfPKpOopUpWszrirNNIIZH\nztVqfHFLC3ktam6CiYUlAMDCxR1BU2cj55ctSE5YoKi70eMxZIxG7e06dSWvrQLoOXuki876tCTk\nbvsKDRmplHJFOHTrDZ6pKZqLC1H+zwmIGuohKKMHO5GO05ibhdztm1D48260VBHh8mWVBQCwDgmD\nsKYawppqskx6L1+uC6GxXyB3+0YAgOuw5xG6bB3yf9gCiYiwjuCbU6NvSZ9BIhIhd0sCSv48BAAI\nilnKOD7/8WdOHhNruuM+AAjKilF26g/UpzxQ+xmkMlVd+Rc5m9ehpaKcUq5PjP6E4dCWYvQZ5Yjv\nr0Vhz9pCSp00V4O69B63ilZWnHUNGTepH15dTIt4PKPXwbRe3N//R7MwikzzMJXlJB5DTuIxWrmy\nPrJELEpA0mrO5MOYMaTDsq5IFYSU3+k/yIpMjZxCnqHUNVUV60c4AyIfVrU8sRCdZg9U0JqDCXsr\nT50W322x05+YdwieDhG0chO+GUTiFoYedHR9TgAQiVvw90PF5rReIyeg8vYlAIBrn6HI2f8tACDo\njU+R/OVCAICprWbJQY2BtO9W0nbzpeTv/g6+0z+Eqb0DZVFdfvYkvF6ZhtrHu86+0z6g9GPa7c7/\nYQtZp8zp2GPcK5S68nOnlMqft+Nr8rruIT1yHgBkrl9Bk022jC2kchcf/Q0eYyZBIhKiISMVaSvm\nISwuAb7TPiAVig6LV1P6AEBTYT6qrvzL+BqlxsYgLC4BLkNHofyfE5R5QxasJNoso54mSIRCVFz8\nB7io3oKf6X3L+moVWef92pso3K+/ABtGrzAcTI8mr2eu9afUaaIwMCkBT0oEJA4ODuOiJi8Zz7yX\ngJq8JJjbOsPSyQMPf11jaLFYZfDeKTg3dR95P/zgdFye9bsBJeLQF0wO0MMj57WZA3R+5R08KPhT\naZuS838gcn4ChHVEFKf63HQAQPq21Yicn4Da9AewCaCeTtt37Apr3yAAgPugF9FcVoTqB9pH+ap+\ncBOR8xMgqCiBuTM1hLljl96w9iV2+l37DENTcQHqspJhZu8I+47EaYBj177gm1mg4tZFsl9LTSUi\n5ycgYxddWWrITAMAuI0ai6JfW0NTl589CZchz5H3ihQObchYw7y73p6ovXcLHmMmoeL835RyCy8f\n8lrRaQEAFB87AI+XJoJnZgZJC1Vpdhk8kqYwkOg5/5RtRGe9jm/0CoO+8i3cOL5SL+NycHBwZPz1\n5EcQsnC2xosXCBPPFy/MRFNZPSoSC1X04niSCPMcqveMy2eTN0IgVJ1NXFhXy+iALKxnLgeAmpRE\n1KQk4tGZw7Q62T5V967T8iMwjVnwxz4U/LGPVg4QoVOr7l5F4Z/UcNktNVUov34e5dfPM/aT0lyq\nOOmqXVQ0in7dA/voHooHkFusNmSlMzZrzM6AVaBix3ZRg2aZ3cPiElCwb6dGZjf6RtzcDABoKsyj\nlMsrVopeo+rrl+Hx0kR4jn8dRb/8oNacdUns+PbV3LnByjjaYPQKgz6oq8iFoJEdmzgAaGmuh5kF\ns43a00DEotajtOayYmRuWwsACF+wjsxn0VRcgKydG8h24Z+tReGxn+Dz8jQAUMukyMzOER1mxZL3\nsn3Mnd0Q8gFx7FyTlIiCQ8SX2NzJFSEfLmLsE/jGx7DyDWSsC3l/AcxdiB2i5C8+g0Soe8IzTZA6\nEE+IuI+DSVGUOokEGNuB+ccnoKMlvv6T7uOhzBFZOpcsc15OR9rdRsb2354Kg28I1dZzfPh9heNz\nPJmcHL3d0CJwtCFMpwxBrn2QWXIRQrFA5/GF4mZUNxSiuCYZeRVaJATkqW7SHjGxskHxP0fUaus5\n/nWUnmo177XpEI769GQAQK6MaRAAhQv4uuT7ShUGdUmNjQF4PISt2ACfKW9Ty40EsaBZab0qJUd+\nRz9zfRyC58bCzNGZ9NcIXUqcLLNlKmQf3UO5YqhH2oXC8NwUV7y52Adm5tRfBHVPH1z9oin3d//Z\nxJpsAFBbng1n706sjtleiFiUgJqkOyg4RM/Um7ZxGUSNDWQ7WXimZjBzctXI96DDrFiFi/egNz8l\nx4pYlIACwjcJgsoysjwsZhX8X30PuT8Tu79WvoEK55dIJJTxDOUjIVUW1n2cC2s7E3y0ygc8HlE+\nIYK6SB/ysiM+Xe8HAPjpq2Ik3WpA7I5AmJnzcCS9M6OSIVUWhC0SxL+Xg+BIS7wxzxMbDnXAqvdz\ncPVvapKm/bcjYWNPKIFblxeipkKIeZv88XtyFG1sDg4OKobIlMzmnOqOZYjnfBJRlCNCluob/8Gh\nR1/yvvLiWfLa4+VXSR+DprxsSj9F/hymdizmppJICAWBz0fYcsIsPCwugbDl17N5Dhuo8nkR1dVS\n7oU1RITMoJglpGLEMzNn9Vkrzv+NsjPKzfP0hdF76H6SEID+ox3xamQivp6XSyoJmpgq+UYM15d4\nAICmulK9jm/sMCkLACBqbIDX6FcQ9gmz+Vf5ZeVJ4ORpyElXuNOfskGxQ51T9/4IfmcuTCwtYRMc\nTqmLWJRAi3Md8uEiWLh6IGJRAk3RaWt2xBdhTMg9/Hu8Gid/riBPCuSVZwCksjAm5B5+/roEiZfq\nMCHiPsaF3QePB3yyjhoSdMeFcLL9+PD7uHWhFge2lJJzLN5Kzz0gVRbGhNzD8b3l+Pd4NcaE3MPy\nN7NZe2aO9sGLF2bixQsz0XsDEb2l4zt9MPrsDHgPCyVNlTg42gp5k6EnAXXyPBQfVRDqVSKBqZ09\nPF5iToTm9OwQ5vL+gzURUT3EYqTGxpCL6LAVG1R0MA4UvUamDo4AgOJj9Nde1n9BGipW3tlZF5wH\n6Xc9qwyjVxj6jXZE7OuEHZk0gduEDncQt4+e/VERFtb6TXzC45vpdfz2SsSiBBSfPozUr9hxkmqp\n0Ty/Rfj8dQB4yNyxHiVnqVp50uoYpG1chg4fLUHEotYfMFNrWyStjqH8MxRHvy9Tq525BaFAxL2T\nTasTi4jdjaHjnSjl7j6KP7eP8ugmBkERhBPY7jWPaHW3LtTSyjiebNL23MAfA7+BW08iGEWH/3XH\n3+N3o/BMmoEl4+B4+jBzdqXcS0OAcrBP8OOwqvUpD2l10hMdj3GvwPPl19pULn1j9ArDrrgCvDHf\nGwAwerobAODV2Z6wdTBRe4yW5jq9yCbF1beLXsc3ehSEkq1JTlRpI6gJDp01t9vjmZig8iYRccJ9\nyAu0emF97WOFoHXHPnPHevhOmK6tmAZh1T6h3ldfAAAgAElEQVQi+kbsjkAczehM+6cMpvaefua0\ndnO+JE4wft/+dJ+ocRCk7LgCAEjachkAwOPz0FJPfN9Lb+Qp7MfBwcE+/u/MotxXXW2NtPTod6qj\ndVZCPAB6KE/pfe523c22/d76iJJtGwC8Jv0PACCsVrL5JxYDIBy5DQl5GhKXABOb1lxgYXEJAI+n\n8jVy6NabuGDRHCnnuw2kDKb2raZjPBMT0uRLnxi9D8OJfa07rF9+mkOGWdXEJKmmNAOWNvo7ZTCz\ntNPb2MZO9g8bEbGQ+kGV7sjbh3eF2ZufwMrLn6mrxoga6igmQurs/IsaG9Bx7ucQC5qRvXsTAqfP\nJusiFhGZGfnm1MVxS3UF7Dp20XguQ9Khs5Xe5/ANtlDdiOOp4cULM3FvwzlEfNAPER/0AwB4D+mA\n/JMpcOvhZ2DpOPTJsAHEgvPMv0sMLAkHADRkpMI6JAxN+bmM9TV3qOZaLVUVyN+zFb5vvE9TGoqP\n/Erzd9AGq8AQZtMjiQSZGxRnvU9dPhdhcQnwmvwGvCa/0VpuAGdp6WsUMp8qr0QkUvoaNeZkwSqA\nCNebFr9QYTum3AuyZfnff0uJ1NRcVID8H7bAd9oHCJ67TN3HYA2exAgdT3g8HqtC8fgm6Dt+LXn/\n8N9tqCpOVdheNmeDOrka5HM8qJvfof/peWq1Y+LmtB1oKqxU3VAPFOV7oVffEuTliQwyv6HR5X0D\ngEsjFCcfkiI9FWCKbsRUt+l4KALDLZVGQ9JkDiY2nwyDXwcLhe01HU9f6PL+qPPetCfa+rXoPGcw\nAsZGoSq5BBff+5VW3xbfHU0xxOclOGAYgvyHtNsFN6cwaEffju/BzspT6/7X039AZV0OixJxPC1I\nJBKd44gZvUkSG0jE1IVt5ID3WBvbxExxcg8OjrZi/0Yik3BkD/2F9z3xE5GC3tOfbq7EwQEA9zac\nwx8Dv2FUFjhaCfJndqbkeLKprNfNVK+qnvkEgYOjLTBaheFgerTSfwl/dNRpfEePMFbk7D02nnJf\nmHqOlXHZ4NgRFxTlexlaDI424L9TRPjTNb8E622OYz8QCsN3f7Pz3eHg4OB4mqiq023Bb4wWIRyK\nCdykuV+BubcXAjetZ+yrzXhsYrQ+DGT41A89cOOfauSkNJF1Hn7m6PeCo0bjZd4+hOBnXibvIwe8\nhzunN6ChWnH2RFXImyIBQPbdP7Qej216dOd2gp8mqsuFcHAxxdGMzpjY6QEETYTzmIefObaf60gz\nFRoTco90cr79bx2WTc8CQPiwz17ri6HjnRjNi0xMeJjyqQf2fUmcanQfZIdluwL1+3AcHE8Aft59\nEBI4kryXmvZIkZr4PNt7PizM7SgmP4F+gxASOILSDgC6dX4LTo7BNPOgAX0Wwtys9cQxI/sUsvMu\nsPcwjzE3s8GAPq122iJRM85dZg6lDQChwc/D36c/ed/UVIlL15nDbCozfVJVJy1/Jmo6nJ1aoyo2\nNlXg8nXDhMsuqU42yLwchiH7Y/XM02XxXjBHYT9txmMToz1hkDJppgdFWQCA4jwBXpmt2c75o4xL\ntLLoEXMYF/2qCOk+mbHf1cOLNR6Lg4MtpvZKIr8rBx50IpWB7ecUn8ZJFYJnBtiS7Y+kdaaFYJVv\n/8pMd7L9sl2B5AkHBwcHM8MGxCMs5EWYmKjeyHmYepBWJlUW5HFypJ8qDhsQT1EWiP4jaQqKrnh5\ndKMoCwBgYmKBoQOYFYaBfRdTlAUAsLR0wrAB8TAzs2ZVNoB4HWSVBQCwstRvmHVliCVPp98fx5OB\n0Z4wSHm1010cTI9Gc6MYh7aVIKK7Dbo+a6dRlCQplw/MZVzoK1Ma+k0k4virQtBYDZGQvRCi2sJk\ngiRf5uVbpLReSkODBCFh9Jj7THh7m+DmNXfG8T/8wAaxS+gZE1uEgH+g9ic8TzLKHIeV1c16QfMY\n+Jo6KRvaqZmDoz0iuxOuymm4opKIjGJr44G6+mKyPCf/AgJ8B9Lap2a25phRNLa9nS96Rn+AIf2X\n4eylFVo+BZXIsPG0eQb2WQQzM2s42gegqqbVQVcq17Xbm1FbR/3dHzYgHgP7LGLViXrYgHgkpR1G\n4aMbrI3JQeC/Yy2qDv6Fmr/OKW2T+858vckwMjpWYd2pO4qjMGlK4Kb1yF++CqKaWnh89B4ebfwW\nAGBiZwu/VctRuO5LSJoF8Jr3CXLnLab1ZfNUgO3xNMXoTxgAwjzp1M/lmDzTA2YWPK2UBSnqRjBq\nRbWyIBIKcOO44iPYtsTLt4j8x1Qmv5gHgIoKMQ4faaS1sbbmwcFBvY+IImUBAKksyI5fVyeBmSng\n66t+Pg0ODg6Op4nQYGrumIys04zt8gqIXBgRoeMUjlVTmw8A4LOYaLSmroBWduHKagBAxw4vMfaR\nVxYA4EbiNgBE9Cg24ZQF3fFa/qlW/fSpLHTyH6O3sZkQVlRCIhSSygIA+K1ajuItOyHIK0BLSSlN\nWXgSaRcKAwDsXlWASR0TsfS1dNWNVXD5wFyU5WmvdMiSdecQrh5exMpYhqJTl2J8+BE1kYp04X/y\nL1emLqivJ5yv/PxMUJTvhZoaMaOyID29kK8LDSdOLq5fcddNeA4ODo4nFGfHEMq9BMTvblT4ZACA\nr1cvSr23J5Hc8tI15lNzqa9AxxDmxbymXL/9ncI6Wxv1w4dW1xDOwGxGj6qsymRtrKcZM1/tw8Dq\nCx/ntkvqlv3xXAR8uRaBm9bDsgP1+9j4MKnN5DAGjN4kCQBCu1pjyc4Q2DpSd6N1OWlIvfojMm8f\nRK8x2p8MaH5a0f4I8Gc+AaioIBxqr/1HLPg7RhYztgOAtDQhY/m6DbWYN+fpTXrHwcHBoQ4uTqHk\ndVl5MjzcuuB+8q+0EwgpTc3MmXSbmojcPR7uXZCScYx9QVVQW1fYZnNVVme32VzGgv8OIt+URCgE\nz9SU3OX337EWJQk74B7zDpFJmc+n1MmeBsjeu3/6NuX/ki93ku0kzQJiPrnxeOZmcHhpOOyfH0w7\nZZDKJ6quhYmDHW3eunNXYBkZChNHe5R+uxdN91PYe3F0IOdTQk6aSRCPx2omZ2PH6BWGj9b445mB\ndpjWg327aaGgkbLo7zToQzi4hShsX56fiJQre1mXwxgYNMgCP+/TzBlM0emBPKGhplx4Vw4ODg4N\nyMo9S+64R0dNI/0BEh/+SPoD8PlG/yfcgIgNLUCbI78Al8Vt1nSKkiCl5uQFysK37sJVsq7ky52E\nsiGjKEhxnDSacTyJoAVVB/+C/fODVcrou2k58j9eTt5X/HiIHE+RshDuM4qxXF84jRmNyqPHYRkS\nRCnPWxqHwI3rULg2AaK6OrhMnoCS7d+3qWxtjdH/2gwY44RXIxPbZK4H5xUfrz7JyC7mr1wV4Oix\nRmRni/DTj4oVCNk+hXle8PbjnJc5ODg42CIz5wzFROd+0s+M7QSCOlqZlaUzGpsqaOXWVi4AgOLS\nuyxJqRl2tt4GmfdpwTzQF55LZjHW1Zw8z1he9dtx+H69AvmzlsFr5RwULWUOcavueJrAt7bSuI+/\nWy/VjViEZ24O/3WrIMjLp5wuiKprkP3xXPitXAqemTkqj7aG1JfNlyC91sVZme3xtMXoFYZdK/Mx\ncKwTLhypNLQoTyTShX9amhADh5Sq3W/7znrELqtBUb4XeDzA0pKHpibmo7mvN9dh9ee1rMjLwcHB\n8TTSLKD+hnq4dQFADcFa31AKG2s3dOvyNi5dW0cbo1tnwrQkJb3tzZGUQwQXaW5+8sMztwgbYWaq\n+UJZHTyXzGLc9QcIEyJF8K0sAQBmXur7FCobTxvyZ8bCb/NKCEsr9OowrSkVBw6h4sAhhfV5S+lm\n7bos5pn6Gjr/ghSjVxiee90VgRFWmL0hgFaniw8DBxVNlAUA2L6jHgBhjvTgrgey0j3x4pgy3LzV\nQms76yPbdqMw8M1NYR3oCvsoH1gHucG+kw+s/NiN293/9DzyWiKWoPZhARqyy9CQVYaax9cS4dN3\nnK4OVr5OsA50I96fQFfYR/mCb8Hez5jsewMAzcU1qHlAvCfS96mlupG1+Tg4VCHrvyBLp/BJAIDy\nytZQyldubsSwAfGwtHCgtbe384WFhT0kEsP8tojELTDhm8HBzg/VtXmUumGP8zZcvPaFWmO5OivO\nLWPslFQnw8flGUOLQaE5PRvW3TtDVM38d5pnagqJkNkXkS18v4lD3owlkAjoawgO48DoFYY5LxmH\n08vTRk6m+pEROnUpRlG+F/446gof/yKIZf4erfmiFgs+s8Onn9jiy6/oR+d6gceDfZQPbILcWhf/\nga6EnaaRwePzYB/lC/soX636NxVWkUpG7YNCNGSXQlhn+HwgyrDwsId9lC/53tgEucHExsLQYjFi\n4WEPNw96DhF1aKlubFU0HiuDzcVP/g4qh/oMGxCP1IzjMDOzgpNjCG4mbqfU19TmIzpqGq2fRCIG\nj8cc5PD85ZUY1G8phg2IR1NTJXLyL8Lf91lYWRLJGP+5qDh+vT45d2kFhg2IR4/o9wEAKRnHYGfj\nRUZ2ahbQvxsCQR3MzW0xbEA8Coquo76xBGHBo9tUbraprM/VSmGobVSdE0lc30CeLAhLytUeu3jN\ndwrzJpQk7IDfllUA1AuVKnuyIb1W98TA79vWxIJFsQloKaQGUzE1sVRrHA79YPQKA4f2SCTEGllZ\n4rZpb1bih++dUJTvhaIiERwc+LC25qG8XAwXF/UX2F6+RSjK90JBrhdl/I2b6vDpbFt8NtcOn82l\nR0QSiQDfAO39H+R3hJ82LL0dYentqLLdpRF08wR987S/N2YOVnDo6geHrn4q2xri/eEwHGf+XYIA\n34HoEDQSYSGKF8DX72zFsAEraRmCr93ejN7dZkEspu/6CkXNOPPvEvTvOQeWlk5kPoSs3HPIzPmb\n3QfRENnnloZ2bRbU4OJV5pOFf6+ugbmZDQb0WQgfr54AiJOKc5dWwN01Cp0jXm0z2dmipFq7TVB1\n+uXPZk7IJ79gl7/nWyresGl6mKayv+y9MuVAUT95ZcW6V1d4fPYB8j+hPs/Qzp8pHJuJjrNWIuXr\npeBbWELc3AQAiPwsAQ+/iIGprT2Cp81B6uZlCJ+9Guk7PoewvpasN7N3gkQkhLC+FkFvfIqsPV8y\nzhH5WQIyd2+Apbs3Gh/lw3/Su0j7Lg7hs1cjeSMRcj/soxVI3bwM3qNeQeGJX4h+8zbg4bo5lHEe\nfhHDeG8XGoXatPsaPbs+aBcKw3NTXPHmYh+YmVMXsJxJknK8/Ypw9LALevYwJ8tEcpnpT51uwmtT\nKrB/nzO8vIgQqsvjarB1W73GkY2kSkNRPlVpCAx5BE9PE9y+QbWPbGyUIDhUvUzSHBwcHE8SOfkX\nkJN/QUUrCWP247r6YpVZkaU5F/SBqrmV1av33K0IWuoZxyspu69wHjYzRrONUNSkVb/K+lyWJWnF\n95s45H1o2MRjLu+8ivIdP4NnYgLX915H/qxlOo8pFhCn7RJhq5lTc3kJAEBYVwNTG2ITk29hCWE9\nYY4lqCDMs4OmfoLUzYQMipQFKU0lBWgqIZIYNhblkmNKkc5TeOIX2AaFoy4rWS2Lh8jPEgj5xSIk\nrTf8BpzRKwyfJATA2dMMr0YmYvDLzjh3qAIH06M5ZUFNxoxTfSx57nwzY2hUReFSlYVRVVT36JFI\nZfhVDg4ODg4ODjoVtVl6G9vQTsay80tEIkZ5tAkhbObgRI4pxdyJORltaz0RSUxQUaLxfOrgP+k9\nPPwihnK6oAjZEwdjwOgVhn6jHTG5IxFWNbiTFc4dIk4W4vZ1QOwU3bM+2zr5wT/qedg4+sDMwkbn\n8YCnI6Ebx9NN6G9x5HXaJMImOmjrXGS9z5xhloODg4OjfTA/cQKaa1tgYWeGtV0Pqmw/cFYn9H0n\nXK222tI79C0tevEe79JLkPzVIogFzeDxeHDtMwzOPQYh/8gPAIDc37YhbGYcKm6cBx77BmXv34zQ\nD2NR+Od+BLzyocaL99zftsG1zzAAIOcBgOoHN+E/4R3kHtyhtL9EJIJLz0EAj4+apNtoqWVOxtiW\nGL3CsCuuAG/M98aetYUYPd0Nu+IL8OpsT9g6MGcgVofe41bBxNQ4nSw5OIwd16kjkfbKckAspigO\nps7aOQdzcHBwcBgXXz17VO22F75+gL7vhOtRGsDOSv1ALFKYfAKkO/tlV86QdXVZyUj9JpZWnvZd\nHG0cZXMAQP7h3eSYdVnJtPYFx/epNU7SBsObIMnDHGbBiDixrwx71hLp5L/8NAcH06MxaZYnYl7U\nznGo38T1nLLAwaEDjqP7ghIKi4ODg4PDqLByNMe7R0bi7UMjwDch7OU/OjMabmFEyN35iRPIttLr\nl1b3JK/nJ06gtOnzVkfKtWydsRI09ROY2trDsUtviBrrDS1Ou8foFQZZLh6rxIQOd7T2X+g3kTOX\n4ODQldp/DZMlloODg4NDPT48+QJ+nHYeZ9YmYt6t8QCAEytuYfDsKLKNvSc1gdyxRddJs6K1XQ/q\n1cSoLcja+xWEdTWounsVKV8vNbQ47R6jN0liC05Z4OBgh+LNhyimSNJrqS8DBwcHB4dhSeh9GACQ\nfaXVeTfjQhEmft0PAHD/WA7eOjgCX/U/iktbkgwio7qE+zxnaBE40A4UBqaISDwesGBrMD5/L1Pn\n8a/8voAxljUHB4di0ibFwmlMfziNG4DmzEIUxO8xtEgcHBwcHI+ZnzgBwmYRLm+j29EPndsFf69N\nRNRLAQCAi989bGvxNMLfrbehReBAO1AYmDA15yOyp24RjR5e3IGqR/QvEgcHh3pUHr2EyqOXDC0G\nBweHAXGyDYCnYyc4WPvAytwRpqaWEIkEEAjrUN1QhMq6bJTXZqBRUK03GczNeYhdaY/Jr1sjzE+/\n4bvHjrdCz97mbTKXLiT+noUTK24BIKIYydJzaij+WU+Ylg6Z0wVnN6g2M7V1a80r0Ht6GIuScrQX\njFphOJgeTflflnf7PVB7HI/gvpR7iURsFMoCl91VN+ZffQlrexvHa7jk7jjEdzlMKSPkO2YgiQwP\n9/k2PMb2HhibPECrTNEziCRJd77VLvZ51PQVSD/6HZoqntxklJZm9hjY6ROV7UxNLGBqYgFrCxd4\nOUXR6qvq83At7XvW5BIIJFgyvxqTX7dmbUxFHPm9EUd+b2yTuaTUN6vOpyRP1/FBOLHiFqb/MoxS\n/u/mBxjwEaFAPPgjF9ETgtRSGLq/3gEXvn4AvikfJub6d3/l800R5jUc/m699D4Xh3rwJBKJoWWg\nwePxSKE2ngzH7Od0W9x3G7UAlratyTq4PAlPNkyL9ydxTkPN7b1oKgpX76WVh/4Wx/kxcLRbdFUY\ndO2vCyOj1fve/Z24CmKJSHVDGboFvw5X+w7aiKU2idm/obhKdzv61Dwvxl3/73Y5oVcfC3SPfKSw\n7U8HXWDvwMeLw4lMv2ZmPNxK8sCBnxuxYgn9dETRXOqg7vslJavkEtIKz6hu2A6xMndCjw5TYWXu\naGhRdObUnTjVjQyERCJRnVpaBUYfJWnPmkKdxzC3at8fxMC9q3Xub9OPfkrDBoF7V5P/OJ4OrLuE\nGFoEg9J7ygZWxnHyjVI4Vo9XVqP3lA0K66PHLVZa/6QTOv5jcoFuLAgb6/Bg93JDi6GUUO9hqhs9\nJtC9H0ZGx+pdWQCAroGTMDI6Fuam7CRPleX6fQ/8tr8R3SMfITXPiyy/fVOAH39zIe979DInlQU3\ndz4eZHqic4dHEIslWLSM3RwzjYJKjdpX1eWxOr+h4PH46B7yP4yMjiX/DYic9UQoC08DRq8w3Dxb\no/MYzQ2afTmNjeypi3TuX39Zu1C06oytrXxL7o4DACy8OYa8lv4vvV6SSNx3nxyksL868E35mHtp\nNADAO8qJ1jd8uDcmfdkbphYmmLK9v0byv7aln9J6+bLFd8Yi5FkPuATZwTPCkZSPbM+j9jWzMsGS\nu+PgEe4AHp+HWSdGqpTNwtaMHMPOzZImy5K74zDpS8KRTN3nlVJ5+F9YBGqeRKc9YWZlDzMrO73O\nUZl/H1f3zWGsu/HLIoV1AHDn8Cql9U86Np6BhhaBxv3vY9HSoPvfK30S4NZHZRsPxwiMjI5FmPfw\nNpCIyuCoORgZHQsedN4MJXFw4OOf000AgN9+bsClmx4AgFfGlaNXH3PGPpduepCnBytjazD9HXYV\nmZJqzfJIldaksjp/WyGrGIyMjsWIrkvgYhdsaLE4tMSofRjYorLoIazsBhlaDA4FmJgp1lvjuxKm\nNjd/zdJpjkW3xpBmO4X3K/Hgr3xK/QtLuyJh0F8AgH3vqnbkHTGvMz7vQWTC3P/BZY2Ul7W9/4Cw\nmWoWsOjWGPJZIQEe/JWPKdv6Y997lzD/6ksUk6OvR51SOce8y6Px5WDieWpLmyARS9B9chDldfzt\n06sA1HteWcp/PoPQ3+JQfeYmSrcfg3WXEHgvmoqCVfRISaEfxcLMjr579HBN25ttaELn5z/Fvb+M\nawebg0PfjOi6BDye4fcRR0QvRU7pVaQUnGRlvLP/uZPXAgHdDNvWloeFc6hmR7J9CvI1M+NSRVVd\nnlrKGweHMWH0CsPo6W6I6GGD9TOzEdnTFiv3E8ejmiRvy08+A+8wwygMHgvegmVoAArmJUBYQf1B\nCty7GtlTF8EixBcen72FpocZKNm4j1IvRdEuvt3wPnCZ+iLA59PayvYvXLgRgvxixvmdJo6A/YsD\nUbpxHxpuU/1FLMOD4P7pVIgbm1D67S9oTs3R8BUwHuQX9Yfm3yCvz27ULKzcM+MDcHrdPa3kkFcW\npEhPU9iivqKZvL6yJx2DZ0XorHhJyY/dCd+4t+EwrDsAoCk9Hw130mntGvOzYBbxDCtztgWyJj7d\nxi8nr+V38zu/MAfWTt4K6wN7joejTyQsbJxobfgmZug2cQWZcV4fJwVRoz6BjYsfpUx2nt5TNuDq\nvjmU532UfAE5N49oNV/0jARUpd9B9qk9lDKAatMvX+Y/9FU4h9OdGpsqi5G8fy2lLPC5aXAM6Uqb\nVxZF/gOKzJeY2ls6eyL81c/Uass0rjIZUn5ZD4lYhPDX5lPqyu5fRP6F32l9XKP6wXfgRMbxlM2l\nDYOj5hiFsiAlwK03iquSUFWfq/NYQ/qWMJZPe60Cbu58nL7gjujwR2r1YYNKFp6Jo33C4wEbznVH\nzKCbavfZnUoE7pke9p++xFILo1cY3pjvjVciEgEAK/d3IBWFnf91wtt91YuUJBQ0UO479nkDKVf0\nGzeeZ2qKgO/jkP3GYkAigf/25eBbmtMW/q7vTkDdhZvIfT8O1j2p0SSYFv6yBO5djZIvf0T2tCXk\nvez4qvrL9qk8cJpsJ+1nHuAFM18P5L4fR7Yt//4wav+5pvbroIyf3r8MWzdLHF9+G2ZWpnD2t8VP\nH1xmZWwmlDkGi0WaOf8/SmY/RKA+HZcDe7kh+2opa+M1JuWo5eBck3oP9nIKg6CCPTnkiVxALOCy\n9mxEY6Hmyq10Ud17ygbc+n05WhprGdtl3ziE2hIiD4xP55Ho9NzHeHByE1nvEdZfoSIgFrXgxi+L\nyHn0gY2LH2X+6HFL4OAVhuqiVtMGqdLABoLaSjh2iAZO0X9X+aZmEAtbKG1JOT2DkPXXLlRn3W+V\ndUYCLJ080OX9L3B3a+vCPfvkD5Q2gOoFs/szQ+Dd9yUAwIM9cWipqwIAmNs5I2IK8yZM+KufIXn/\nWjRVEhssHSfPgZWrD6JnJNDmY1KGlNHxlbm0fh0nz4Fr1LOwsHdFxh/byPIOY2fA1qcDErfMg0RM\nbDLw+Hx0/WA98s79hvKH7C0eNHXCbSt6hU6HWCzE33e195ErKRZh1z5nzHyvEguX2mPpgtbf7v8u\nNlP8GqT0iS5Gap4XBvYqgYMjH5u3O2H4s+wpEAJhPWtjcRgfu1P7KlzcSyRQqCwo6jc97D9SaTAk\nxrOdoICsh42wsCLEbJE5SrSyNdF6TBffLjrLpYqA7+MAsZj4dADIfXc5YzvrXp3RlJINAGi4fp+x\njTIabumWcCX7jcXkdek3+yl1gpwi1P59hbwvWvYtnF57Qaf5ZMn8rwTDPu2E27/n4Nq+DAyeFYHM\ny/rZ1Tm76SFeXM7eTvfety/iw6Ps2fie3fRQoVnTrQPZGLemh0bjXdqRioU3x5D3XpGOODj3uk4y\nakNDPv1EoyFf94SLTPhNfEcv4zIhVRYAoCT9P9i6BrTZ3KroOORdZF39lVKW+d9+BPd5lVKWcm4H\na3Pmnf2Zcu835BXyOmDkGwrbJv30OUVZAFoX03wT3fezpMrCnW9jSGUBAAS1FUjcwhwt796ORaSy\nAAApv7Kr1N3bQVVUpOPb+YdTym19iNN0qbJAXIsBAH6DJ7Emz/AuuvnI6Rs+3xR8vvLPQmqeF7nw\nl70GgGd7lCArQ4ibDzyRlcmcpLWyQky5rygXI8yvCEdOuOKbbY4UZUHZXBwcTzJGf8KwYEIqmYdB\nerqw6pdQbJqn2ZHe5QNz0W/ievK+38T1eg+vWrr1gMo2j+K36jSHmY87Wgp0WGTLhNVlGsf/u6Xg\n21ppP74KOr/ohyOLCG078jkf/D5P9aJW3jEaoO7Ox3c5jHmXR6OhUoDNo08DIBbQJuZ8vP/7UFg7\nW+Dcpoe4/bv25lUSsQR/xSdi4Y0x+GrYCZSktjo7qpKPiUs7UnFpRyre/30onPxscPLzu6R8f8bd\ngbWTBWYcGw57Tyv8FZ+IxCOtn//4Lofx9s+DYWlnRj7v2U0PcXbTQ8RceAHVhQ2sn16E/sYcPk7+\n1EFYSz+JqU3VXDFWB7sOkXoZt71h5xaIxqoiuHegZkctuEe1B6+voPrx6EJtfhrl3iWiN0SCJpiY\nW8AhsJPStvrCPXoIAEAkaNKon6btNUXX8SUSsU6mQ24OHVH62OnWWE8W5BneZRH+vrsaYjHzgl9V\neNOVsTVYGcvskK6sb++uxbQyY07Wxturz+wAACAASURBVGFYlv/ehXa9fHxrjotRb3mj2whnhHW3\no5wkqOqnDPmTB32aLRm9wgDQ/RUWv6LdH5yrhxej97hV5D2hNMwDoJ9cFHxrS9WNRGLVbRSQN3M1\n/L5p3R3KeYvdH//AvashyHuEwg9XAgDMfT3g/flsVueQX+grqlOnXJZ1/Y7TykQCMbaO/4exvewC\nXF2yr5WSjs/bJraOq0w+VbIrkq+hshnfvvS3wn47Xz3HWJ4w8E+t5FCGx0cvoyB+DxoS6T4L6qCv\nEwYOgkfJF2Dt6IXc23+0+dzW7n5oKCFCQOafPwATS2v4DhgPALBwcGHs49ljJDx7jWJdFtcuzwIA\niv5r+9dBn+jqZxDmPRyl1SmsRiJqC4Z3WWTUce45OKSL/N2pfRkX/Cd2FeLErkLaIl9VP0XYOppi\n/+fZOPk9ocR+n6Jfs6V2oTCwhUjYzHDS0Jp5NPnyblQUsrP7Kcgvhsu0MRSTHrbx+0b7kKbqUrio\n1S7bc+n7ep2Lo31g070jijcf0rq/qKmRRWkIfMdOZXW8wgdnED12Ca7/PF91YyMj/+5J9J6yAaED\npyPtwm4AgL1HB9QUa6fgaULQC2+TuQgq024BAKkwhLz0IWlSAwAmFlbo/DaxgVNw6QhKE8+TdWzk\nWDC1tAUACJvap734nW9jED0jQSPHanWwsSAUtxHRSzXum1b0D7KKL2rUx9TEAgMiZ8PMRI0NNBWM\njI7llIZ2BFvvlaYnYU/LZ2TNqWdg62iK1xYGtsl87VphkF34s0F4v+msjHP5wFwULtyIwL2r4bdp\nAWrP34DjuKEQ1Wr+h8s8gIjEYhHkA0FBCSSCFkq9rENz/ZW7KN1MtSU2dXcmxgnxhai2AaJqZidO\nRQTsjkfZd7/AbcYrqLt0B7YDulHqTexsYOZLxLU283RFy6MyjcbnaH+UbDlChHowoizx8o7VupJ3\n5094dxpGOiWzGclI3tFZfo6IYR/A3jNU63rptXxiN12eocefC8nr8jP3kLWBedfezFpxgitze2fk\nn28105QqC/rKjFybnwqHwE5wCn0GVRmJeplD39zdvgBd3l2DloZaSEQteHTtBCpSbqjuqAJNF2Da\nZIiWIhQ14+y9LwAAw7oshAnfTKtxODg4qDTWCjGzV9v5JrZrhcHYkd39rzpINydR53RAkFPI2M57\n5UzaGBZBPrRIScKSCoXzyJcL8osZoywBQP1VIoRo2TaqX4aoth6ipEy9nXTwzS0QHvO5Wm1Lzh1H\n2ZUzWs0T/ulq8C1U7YBJkPrNCgjrjDs5kzRSEEDPd+DSewg8hryksK+wvhapXy9TOr6gqByhv64A\nALSUVkHSJCDrcmK+0UZkjbH08IHHkDGwCQxlrA96Qz3TOWX5IBQtsOXLWxpraWXKFueqFu5JZ7bo\nVM+GDLLIKgsA4DKsM1yGdcaNF6jfy7J7F+Ha+Vl493sJzVWtkbBEgib4DpxAtHmgOgqaiQU7PlNZ\nf+5E9IwEOATrP8iFvujy7hq9KVTqwPZO7Zm7xGdGF9+JTn4v4UHeMbZEMhjS1zb48+mwjvTH/bHM\nr3XUkVhgrGZj2w7qDtd3J6Bs2wHUXbhFqw/8cTWy/2fczu4cqpk37LbSiExswykM7RTzQG9KhCMA\naM4qMJA0+kF24asO7oNHw33waLWTgrkPfB6u/UZoMAMPYTOXQyISImkdPU67MWITGIb6bCKUpjqv\np6mNHSIXJCDt25VoqWHOkB6QMJO8NnOjJ2XTJ5p+Jjh0wzbKT3Wjx+RfPATXzs/CPXoIkvevIcuz\nT+1ByIvvqT2O9OSBTXwHTkT+BdVBKIyRjpNikHZ4M8Qtzaobs0R2yX9ILTytt/FP3YnTWmnwcXnm\niVAYpGQu3E0oBSxSd/4mXN+doLCeUxb0S2l+M2PuBFnfBaZ6pn5zdkag8wBHSp+fVmfj1G7Cb+HM\nvkeUcZ96p2cOZvy3LCVzJACA/9b2EfFCFU7RfeE1ir2wgUy49B6iobLQCs/EFJELEow+WzEAuA96\nAVnZqRovtENnLEXGznVoLqVHBFEn/wKH8eE8ZAQqzmq2CHToHqx+YxkTtabK1ohrtbnJTK2Rduhr\nhL48C9EzEtBcXQoza3vwzSwgam5U+5RBVeI2qR+Aa1Q/uEb1o/XXZffetfOzpH+GIpl0PR2oTL0J\np7Du6PIu/ZT13s4lEDU3MPTSjaaWGr0qC1J0URr0QdSRWHKXn7zmAVGHCRlT3voSLeW1CFw+BbbP\nhAAAkqasg6iO8Mly6B8Jv88mou5OJrKX/cg4h9/cCXAYQEQNU3SiAAAdvnoflkEeaEwvZO35pAT+\n+DjfkpzS4L16FopWbIX/liWo/y8RZdsOUup9N80HhCIULNhIM43moDJvKP1UB1C9mGfqt+HtJKV9\n9q7Iwt4V7CRkVQVPYkR2yFJ4PJ7xCWWEmDjYwT1mKsz9PNGcmY9H8dtUdzJyVC1s67JSUJ+dCr6p\nGWwCQ2HtF0KpT/piHiVuuaZz1aTcRdnl02gqJk5rbALD4D/xHfBM6bp19f0bKPjjJ7XmaktozyUR\nAzKRVURNjcg7sIPMkaDMTIkNpajj7JUwsbJhZUwLN+aY5yFvz6PcFxz9EU0Myo48TArRk4o2CoNt\nhC/CNzA7lMubJGlL0KjpsA+MQm1eMjKP74QmUeuCR78LO78wNBTnIvP4dqUhS/0GT4JzeG8Im+pR\ndOUPVCS3fV4STYiekQBhYx3uf09fVMsnrmNr4X05eQvqmvSX4ZgJbWVn21zKb94E5K0/CEiADhvf\nR/rsrcxKhAxMZcoIWjUNWYuJBIQhCe8iI2Y74zhBn09H1sLdWs0hJfDH1RqZJAX+uBr5s7+AsLwK\n5v6esBveB+W7DsNx/DDYDemJvFnEqaHzGy+h6uDfENezH7xCEZzTs+5IJBKdw6JxJwws0XHO50jZ\nsFB1Qw1w7T8CZZcU/4EXVdeiaNm3rM5pSExtmR0mS/89gdJLp+jlMmW2IRHwn/Su2sqCLC3VFUj7\nLp6xrj47FUnrCfMj+YW4Q1QPvSsM8+5MxLpoHU0pZJQFpsV6+dWzKL96Fh0/WQUTS+rOrkOn7qh+\nQM9KqW4eBgBI2ah5NBZFqLvAF1SVtytlQNZPoPZeLlLm70PoqgQU7f8BXq9NQ0N6Kgq+3wLXF8bC\nqf8gAEDa4hiErkqApKUFDVnpsAmLQMGu79CQkYbQVcRnVVBSjJyNaylzha5KQNriGPIaAJqLCpH7\nDT2IRF0Sc64GUR17uQqyTuzWum/m8e0K62y87THi1/8BAA4/+y3yzv2GqpwzCH+zByp2E8pC2P+6\nocNr0cj49S5SftDdmXjcxRk4/Kzuv8mBz00HAEZlAQDqH2XDxjNQ53nkaWtlwZjIW3cQnQ4thbih\nGUlTviDLTWwI37ak14myqCOxyFr8A+rva57Hp6WkNXmguYdic05BEbM5qL4RlhPyCXIfwW5IT1Jh\nkFUuKvYcg9/XC0gFguPpwegzPbcX2FYWnkbCZi6nlT1cE8OoLMhTl5Gk8c71wzUxeLgmRqGywNRe\nHkVKjrEhbhGofH1SvlqMlqoKSpnPS1No7fzXzUDapFhSOZBet5QY5o/ck0zd/USkLY5BwfeEo7OF\nlzfSFseQC34ASF8+HzZhEUhbHAOftz4EALKNubsH2U5YXUVRFvw+mE22E5Q8UiiD/ElC6uL9uD35\nS9aeUV+M+PV/OPzst5QFfG1WBa7Htv6epP54C3+O3mUI8ZRi6eyhtF4fyoKhdmWNaTe49moy+Oat\n+6iPvj+NoNXTYBnkgbBts8jyxvRCRP6muR+A49CusAzyRNSRWCRNWaewndOwrjB1sEbkrwZcV/AU\nb0jLKwuh8QkIjef8y5502sUJQ8TC1g9ibcpd5P++GwAPEQuJkIFJn8eQ7eSvPYaNhXOvQbR2BYd+\ngM/L01CflYrcn5mjjjD1tQvthNq0B7AJCkN9FuFMGvLeApi7uJNt5GVO+jwGHedSv2Ap6xdQ2jWV\nFCJr53pKWfE/R9V+jdo7HT+hL9rbhY/AwOdR+OcvhhZDJckbFqjVLm1LvEqzMHM/N8ZyM3cnjeXi\n0AxRbQ34j0+BxEryWfi+PQP5O6k73R7jX6Xcm7u5k2OVHKXaK8vDlvmRMdBxWg+lpwkvnnwH5fcf\noamsHr7DQ3Fs2DbGssCxnVByNRdd5w5CbXYF7n/TGgGqZ9xIUjEZd3EG/p15GI4d3ZB18B7EQjHG\nXZwBcYsI/350CHYBTsj9K4UiQ8ov69D1g/WInpGAxC2tZpbO4T3hP/Q1AEBTJT0Lsbb8nci+o3l7\nJHfNb5T7ssP/oewwYXcuXeBLzYMeTloNTZH2lTcxUnT/cLJxfO8sQnzRnMFeZniO9km7UBgA6mKf\n+H8DWRY2Ow6pG2NJu3PZ9hYe3rR2AFCTnIiaz5UvSGX7SjG1d4L/q++jLiOJVBgytq2hKAikDGvm\nkI6AUgVBlsBps8nxfcYQR+fB737WWsZyMipjxsTSmnIvEQkNJIly8g/thu/L08l7u7DOgB4VhvXd\nDrJjlsQipbv+BM+ED4lIbFS5GNornpPVz85p17U7qv67CAtPL1RfV5wUsu7BXZjaU0+/ys+cQMXZ\n0+QpQ8bKxQhdlYDcb9bDsd8gFB/cr/UzPEmk/5KI5F2EyVJDYa3CsuwjDzBk12TYBjjCo48/qTAw\nmSUN+GYcACDqo344MvA7AMDRIVsBAJUP6WZAErEYd76NQZf3v0DXD6g70cKmetzfxZ6ZHwCtcyyw\nxdl7X2BIZ80izzna+KKqnr1FrJm7Azpun62Vv4AxYeriAOtenQEAdkN6gWdhjtrTxG+FTa8omPl5\nAgBc3hyL5tQc1F26o3S87P8tIh2lIZEAPB4XZekppd0oDExI7a0zthJaeNauDQCPh+B35iFzO2Fv\nKKyrobVTF9m+0uy0NQ9uwnPkeBQc3qO0b9LnMXDpMwQufYcj9cvFjG3Mnd3J8R+dInb4zOxa7RoF\nVeUayfskYaxhSxsKsin38ooO28y9RYTGm3dnIq1OXSWi6u41VmWqPnUdFsHeaM4sRNrkZaQ/Q80/\nzJEhOJTjO30wY7ms2ZF8WVNeDuVe/v+qKxdpY0gdnmXLpNecstCKRERXgpnKZBWDcRdnkOWHn/2W\nUld2pxAXZx7WSpa7W/X/O3g70/DvfYtIc5+YALe+qKr/TXVDdWUoqW73ygIACMurUfPXRdT8Rc/I\nXX/tPnDtPnNeKDklQPaeUxA4gHasMEjEYnIRLxvBpmPMavDNLch7h07dUXh0H62dOsj2lRL26Sok\nfR5DMX9SRPmVs3BXkiQr6/sN8HrxdeQf2EmW5csoIq79hqP0/J8aycyhXyTCtg0nx8bJQtEJ9v6o\nSmnObA33x4VZ5XiaeekMPcfEyfF7YO5gCUF1E1yjvRE4thPqcirRUi9AdVqZAaRUTGlNmqFF0AoP\nxwhDi8DB8VTBhVXlMDhu/UfCbcAoSpmh/RcsPXxg4eoJCzdPmNk6wNTWAeZOrjC1cwCPT40VYGhZ\n5ZH3QdBUPl37GwJ5mbP2bERjoeZRTNoaSz8XRG2lLjilUZI4ONRF29CkGY/OI+PReZal0Y5+4R/C\n1pLZP0oRihymp1+bjt29dpP/c+gXqcNz2hL9/K3QNayqdXAoPCZPAd/MHFVXL6H81HGVY7iPmQj7\nHr0hqq9D7Z2bKDv5B2M7nqkpfKa/B6uAYFRf/0+lPxgAeEx8HXado9GQnorCvTuUtnV7YSwc+w5A\nU34u8rZuUjm2IriwqhxPBHZhnSn3osb6Npch5J35sHBVHpmEgyD0tzjGUwVF5RyKifhymqFF4HiK\nMRZlAQCySy4jyn+socWgwLewQND8FeCbm9PqivbvRt2Du0r7O/TqB/cxVHPS+pSHSheJsotvnqkp\nOix/HOJVIkHa0jkAAKvgDvB9izCDkwiFSF+u3HTNtlMXeL02nVImKCtFzldqmmnz+QiNo4Zdrr56\nCSXHFC+O/WfEwMLbl3wWVchGWWJT8ZCGjpbiPGgYnAcNYzT5BADPia/D7pke5L2pvQOcBg6F08Ch\ntD7eU9+GTXgn8t6hd3849O6PjLhFEDe3mtlJZZCGwpZiEx6J0FUJtPYAwDe3QMiy1vfH0j8QoasS\n0JCZhoKd36n7+Kzy1CgM/Sa2fthvn/wCjbWGiTc9uM9SlFem4l5Kq6PsoN6LUd9QjBv3FP+ImJla\nIyzoeXi4RkEkFiKn4F9k519Qe14bKzdEho6HnY0XKmuycfvBbl0eg1XMnam7So2P8tpkXtd+I+A+\n8Pk2mUsXRi3rjs4vB9HKjckRmkNzLH1dYGJtobrhU459tyCExVMjPKmK2uT79lB4TuhNKcve+CfK\nTiayLp/LkE4ImjdGYX3ynD2oSypQWM9BUFiRyJrCwMapgqowoV6vTUf6snmQiOgO4yY2tgheyHz6\nYdMxEqHxCai8dB5lfx1ROL6poxOC5so4t/N4CF25AWlL55DKAkDscIfGJzAusnl8PjrE0fOrAIC5\nqxtC4xMgKC1BzkbFORUUvQ7SxbGixX3ut62hVr1em46i/bsVziFL4R7FuVU0RXahrlb7eMIPtuKf\nUyg/c0Jp2w5x68AzMaGN7Tx0JEJiVyMjfjHEjdRIdrJhrWXLQmJXU8rN3TwQ8Ml8FO3/AXX3W3+z\nnIeOhMuwUQhZsgoZ8cy+sfrkqVEY9ImsMgIAlw/MJa+H9yfChf59aQl57eHaGWKJCA9SD5BljvaB\nGN4/Hn9fWkIZq0v4a3B36UQp4/PN0CFgJDoEjCTHlodpXikujh0wvH88hMImnLsar7CfMtRtpxZy\nZnE8nonuY6rArkOkUmVBIhSiJvUu6jKTIagoRUtVOYQNdbDyDkDQG7P1Lp8UJmdnAKgtbrssmxws\nwOMhNG4yHLoHq2xq19mfkshNXbQNfarNXGyZTTHNLfscimTr8edC1CXlI3nOXrXGBIDA2S8gcPYL\nrIWI7XF8gdJY9VLCN7xBXj9J4WmfZOQXyenLP4NESETuM7G2gfcb78DSN4BRWQBAURbytm1CU242\ncfN40Q8ATv0HobkwD7WJzMEiguYuReaaZRDV1bbKw+MhND4BOZvWQlBSrFKpkVUW8nd+i8as9Na6\nZWvAMzOHuZu7wv723VuVbmFVJbLWryTvrUPD4TPtPaUyiOrrYGJjC9tOXZTK6TH+NfK6PjVJaVu9\n8vj7rEpZAACeCfM6peKfU+SiXl1FRZ6AT+YDAEVZkB2bb2XF1E3vcAoDC1QU3oezd5TSNsP7x+PM\n5WXg8XgY2nc5vNyi4eUWjet3t6G6NpdcgFtaOKCpuZrsl559Cu4unZCccRT5j1qj3fh790NY0AsA\ngMjQ8XiY9rvCeQHg70tLARALcwtzewzo+RlMTS3haB+Iqppssv2dh3sRHTmVUXmRYmpiyVj+9nX1\nzCt29vyBct9cXgwrL3/y3to3UK1xtMVjyEtw6T2EVm6stvrSkwTZ8KqKFAl9wre2RMgPRLQMpkzP\nGVPVS4DXHtD2syyPNotxDgJVr51thC96/LlQLQVDflxdFu66vKfSvsagOJTVpKtu1M7R5qRBlWmM\nqKEeeVs2atdfIkHakhiyjeek/ylUGOpTHkJUV0uOIzuuoITIwZERvxghS5hzaEjbiwXNyIijf2bT\nVyxASOwa8M3NFZ5QeLz8CjFGUxNFWQCAhrRkmlzyZH4eq1ZCN/tuPQEANbeuq2yrCfVJ92ETEUWE\nj968Ac2Fqk/6am5eVXt8TaPL5X33Fa1MLBAwmrwZI5zCwAKVRQ9VKgwAIJGIaGHrq2tzAQB1DcWw\ntfZAaOAoirlSQ1M548I9t/AyTE0sEew/FN7u3RQqDAD9FKBZUIOK6kw4OwSjR+d3KPVllSny3WkM\n7kMchcnKqQu1KfcoCgPP1IyVcRWhk7Kgxo5iW3D+y3ttPqe4oQlpk2IR9N0cZH24oc3n53h6cOwT\nqnEfTRbylt7OaCqsUN1QhzlUjWNopSEpX7Xj55NGWzpB16c8VFgnu9C28PJBcxF9IVv2l+rErcqS\nN0phUhZa6xZQTi9kFyiuz7VGeMyI1z2squfE1/HowE9K2xT/zm6I38Ifd8FlxAtwHjwc/h8R/h9F\n+75H3UPFfz9rbitO6iiPx4TX4DHhNdUNH9OUn6t2W4Duf2FoOIWBBcoL7iOk+2SlbUrKH9DKSiuS\nyeuCR9fRMfhFuDqHqz1vZt4/CPYfqrRNWjbz0dqt+7topkryWFk6o7GJ6Y8qsWguLmNn0Vp25Qzc\nB49mZSxt0ORkwcZPtUlJW9D55UBc+0G1cqcPCr9Q/qPP0b6QLlxtwn3g1DcMtpG+sO3ka1CZOsS2\nnqBVX0uHhY8zLH2cGdt2P/oZbo6lJjdrqahDzZ1suAxl3siJ2vG+Zgt2HtDjuGplofpmJpoLK2Hu\nagfHvmFK2xpaaWgUVKtu1E4Zsoa+KaQONmGtoVq1cby17dSVvFYV/UaK/0dzGOcSlDH7WTZmZ6gc\n0yqog1pzy+Lzxrso+GEbee80QL3XMPfrdfCfNU9hfdmJY3Ad9RLsonswKgyuz72osayaUH76T5Sf\nJsLTd1i+Fl5T3gSg2K+Bb6b+bn/B7m1oSEtW3VBLtDVp0hecwsACQkGDyjY1dYW0MllTIJFIAAAw\n4bO7u55TQE/eoopLNzegf/c56N89hsGn4nUAwKNS9p0HZTG1toWwoU6vc2iDa/+RbT5nQG935Fwt\nQWVunUFMkeRpzioytAjtBlULQqYda0OFVa1PLkB9Mn2ns63NqmTnk3/9mGThmZoQ/gQMfbLWH0PX\nfR/DzMlGN5mUKAs3x3wBiVBxpmTnAREIXjiOsS50+SSkLWc/T8rTTsDQAMaThOnXpivt59h/kE7z\nOvYdoFN/dRBWV6ls4zywdSNRHZMgALAM0G4zrLlY+d+Dyotn4TqKOK1w6NkX1df/o9Q7DSBkbX5E\nXyOxTfry+bAO7Qif6e/DfcxElBylBw5xGjRMbT8KpwGD9aowGBt81U042EDQQl/8trSoVjSk+Hv3\nx/D+8bR/+qCxqVJhnbtLJADgfqp+/8iFfWycGTc12X1gg3XRB5Bzldhp2jHmBM5/dQ8NFc3Y2F+7\nzLFPC6a29oYWgUNHtNl9vzn2C1pZ4hTm2OUuQzoxlsvT/Y8FjOWiuibceOFzpcoCAFT8m6TwWRx6\nab4TzKGa4tvFWvWz9PVX3UhZfx/1T+bkw2iqi0QsVi2Hf6DG4yqyoxc3aScnZQxBMwDAfewkhW1y\nv2GO5sQ2DWnEybx9916M9VaB6itO1iHKTxGfNDiFgQV4fDWi+miZIG9YvxUY3j8eYUFERJ+yylSk\nZh3HzXs7cPHGOhW9tedaIhHnV19KiTz1OfRso/r2ZdCUgNdmqG6kZ67tTsHmoccgqBcaTAbr6FBY\nR7X+qIb+FofQ3+Jg06OjwWSSx2vkBEOLwKEDBXuZQ0YrUyKE1Q2QtChfvMsSNPcl1Y0A8Ph0v6Wk\n2btxe/KXas8FKJadc4xnn7/e/4uxXKX/gli3nLFigUDttvr8+yYbvSln4xq1/zHKaaL7MlGRH4U0\nYpS+8Jn+Pq3M923i73jOV/Tnbcgk1iFMvgMdVlIVmpLDvxJtV9IVHd93Z4Jnqr0Bj9QUKXRVAsyc\nXSh1TgOGGMy3gTNJYoHgaObjZjaQhhhlJXypBtTU0U0TpOFda+ryWZ8vZ/93tGy9EXPXImkdc5xr\nNuHxTSARq57DJqBtdgPf2D8ce177u03m0ga3t15AzsdElBDXqSNRELcbDfcyjSpxG3fC0L4p2n9J\n4z53p23WrIMaAQy6HZrLWF6fpp1ZXuKUTei672Ot+nLon4asNNhGKg8Bqoz6lIew78a8cy2PorCc\nbNCQngq7Ls8AAASluuWc4rF8qm4X3QO1dx47Fj/+Dmas1N2pmgnr0I4KF9ctlXT/zIKd38H/ozmw\n8PZRuSivvn4FPDNzuI0ep5cFvDTJW+Ccts+3oAhOYWABj+C+ehm3X7dPABBRjQyJqaklhMImdAkn\nogFcS9yil3keromhKw3ziFOUtM1xaKlVbLvpNXICnLr1J8fRhIjP1intE/zmHFh6+Gg0pi54RDiS\n17KhVI0FE9vWGNBOY55F2d5TBpSGIGn9fETMXUspi5i3DknrFDvjtRdGBc3BiawN6O4xHm7WQTiR\ntYFSLiXCZQiSys+SdadzNkEkbgEADAuYiTM537S98G2IWMD+qRvfgr4LfHf6t1qP11LJnMXec3Jf\nPPr1P8Y6fVDXZJjEpW2NbFQkO1871ObXKm3/6Oc9ZO4C65AwNGSkajRf8e8/kwqDibUNRA3M77cs\nglLtzKeU8ejXvaTCoDUSiVpKtWM/9fw+Ks79DefBw+E58fVWheEx2ppnqUIbp+HczeqfelRdvoCq\ny6oT6CqTI2MFs8mjqn6GgFMYdKTHi/rbUTUzIxz1qmuZd/SfiVQvVry2nL+6GoN6L8Lg3osf53EA\nJBLV9pO60FJTBTN7R1p56Efsvc41KXdh35G6ixS5IAESkQgFR/dCUFkG2+BwuA0YBZ4J9SuS9MVc\nRHzWNraWxkrp93/CMtQXds9qvxPHNhJhC62MZ2JCKqCCihKAbwJzR+rxrrHm3pAls4qIC36z+HeM\nCpqjVp8HZacxIuBjUqEw4z/dGaVbKus1dnwOXcEc+U5Qolt0odLjt+A2uhulzHf64DZVGJqe4AhJ\nTJjbmaM2vxYTj0zEgbGKN2Bk/QN83vxAq0hJUoIXxiFtKfP31cLTm7zO2UT3u2ETm/BOqE+mR2lU\nRcHurfB58wMARDZpaeI6edxeUC87d/nff8J58HDihseD8+ARGsvEYVieKIVBPuOyIp557jM9SqGb\nDaQsiUn70KPzO6SjsSx9n/kYNtaKMzSyQYtQ6pTNQ7/unwIAzlzWr8lJ2reEs7P8SQOb5B/aDd+x\nU2EfQd2B4ZmYwPfl6Qr7tdXixClvGgAAIABJREFUUlDfQomGpCgykqFOHmr/vQu/Ne9D0iSgmCA1\nJucYRB4pTCdUUsyd9ftd0SfBjr2RWnkRES7qh4rMq72LTq7EH+RQp/4QS/Rr1mfsCEqqNVYYHHqG\n0MqEVeoHqlBEzuaTNIWhrWlmCMLxJPP6mddRllSGtCN0Xzl5xIJm8M0JBTt40Upkrl6q0VwNmWmw\nDg4FeDyYu7pBUFZKa+M/U8bUTUv/RpVypCXDOjQc3v97G/WpSSjcs11h26DPYpH1BTXQiOzpSofl\nXzAqT34ffKKRTHX37sC2czRCV6wD+IRvhC5KmaaEWHdDqHVPStmJsq0AgOdc3wPvccj4C5X70SBq\ntewY5Ur1hXhYdwm5Tff1LK3x8UQpDMbA5QPsmUDIhl0d3j8eTc3VMDezAZ9PvG35RVfh69VbQW92\nkIZYtbZ0Ud2YRR6uiUHoR7Ews6OfNihDUEn/cWYi/8hedPDyp+04K5NHikQk0qv96cb+R/D6D0Pg\n07VtX3NNyFuwlVaWv3SnASShokxpaK/UCIoxPGAW8uvuUUyQ5HG1CqTc59XeBQCEOPbByWzNHHSf\nNNgyV8rbcYaVcQyN1FTtSUdqjqRJsraMuIVkKFITaxuExidAVF+H2vt3YGJtC9vIzuTvP9Nit2DX\nd2T/gE8IZ9+C77dA1NgAr9emw8ypNZ+IohMINij4YRvhVMzjwSYsAqHxCRCUPEJDeipMHZ1gExah\n0jE3bekc0jE5ND4BtXduoPLSeVj6+MF9HHECJ2qoh4m1esp40S97ENo5mlQW2ppQ656kgjDK9X3y\nGgBOl+2AGGJanXy7Z+xGPJXKAsApDKxy+QCzg5wu/H1pCaIjp8LVqSMsLRwel0pIEyGBsAHBftol\nqVEH2RCrDY1lepuHibTNrTsePFMzeI14GdYBoTB3dIa4uRnNZY9QefcaqhKvaDV++pZV5LX7wOfh\nENkdpvYOaKmpQuWtSyi/do6xX1vYxf80jbBF18aHQdeTkPZgpqMMqfw8U1O4D3wBjp17wsTSGoLq\nCjTkpqM29R5q0xVnYTU27M09cDp7E0QS+iJvVNAcnMxKQCfXETDjW1LqHpSdxrCAmQD0b0rIJi1V\nqu2+DUX5P0/KQkE/u9rGyOTjk2HtZk3eq6M8pC2JgYWXD5kd2MTGFo69n1V7zrQlMTB3dUfAJ4R9\nutS0R0pLRTmyE1YxdWWVtKVz4NCzLxnO1NzdE+bunrR2Ck2WJBJkrlqC4MVEtES76B6wi+5BVudv\n/xqNOVlq53qQR9/mWJoghhg9HV6EnYnyjToTftuGVjcmniiF4fKBubC290TnoR/DxLRt39RbJ5hD\n5jFFN2IqKyy5hcKSW4xj3Hm4V+G8mblnkJlL3/VSJ6qSppGXLt/6SqP2bCIRtqDwr1/1Nn7Jhb9Q\ncoE5FB8HHeeXB8Ll9eHkvaiqDpnvGs+PPwBIhEIU/3MUxf8cNbQoOjMisDWyzv/ZO+/wpsr2j3+T\npunee+/BhkLZG4EKskFARUBeB+rrQBAVkCmCDF/15x4sAWWLgOxVoNCyy+jee++0acbvj5g04yQ5\nSc5JmvZ8rouLnOc8484hIc/93EtqZTidvQ3RriMwLvg9JJYcwKMK1eBzS7YV7pQeNZqcVCCoNdzt\nhy6YFKjmxYLEBdg1cBfEeqRLbSkuRPrKJeA4OMJn7gJY+fpD2FCPpsw0VMdfJHQ1kodfUYb0lUtg\nF9UVXjPmgsXhoCYhXlZ1WB3qXHR0bZdSm5SA2qQEsNhs+M77D6yDQiFsbAAvKx2lxw5odYkS8pqQ\nvnIJHGNi4TbmWVjY2aM6/iIqL5wmLYM8NbeuyZQvflkJ6XFUUNicKnMvyua1FZ+1s3DGMJfZClYF\nKWcrf1G4lrc2dDY6lMIAAE11Jbh1rC1FV//J68Dh2moYYRjZD/5CcXo8bfMzdG7aW4YkKW4vPIPy\nHf+g5p+bsI4MQMCG/8D345dQ9PnvphatQ6GcCSnAQTHQPKXqClKqrmico7wpixbZ6ELYRD6XPQOD\nNvRRFuQR1Nch/yfi4n9kaEx9onMcBB2IRSIU7vpJ7/F1d5NQdzfJYDl0sdRQjZ91FOGGf4jzTGQ2\nER/YdrUbiqTak6hspT6dvLnR4RQGZRKPS4Iy5QOi7535Arz6zpFWzlCkhduMXQfCXBk4V/I5y7z1\nJ8qz1P/nOnDuVtzcT70LmzEI2/mxQrBzc2oe0md9ioiD7bM6t7njbOWDmpZieNlGoJv7WFlsgjaG\n+S80O+sCAK2VkxkYyJK4PRGhcaHIOm1eSnNnoOTP3UZfs5yfr2AtuFlzDDWCUlyu3ovRri/DgeMG\nT26QwpgnDfEY5/6q7LpZ1IjLVe37YCx6pcRFLGUDte7FHV5hYNCfMUPWA+g8AXJUIFUCPEJjtfSk\nnmOZvTA17IFC28w3PRE72hFX/qrBqT3UxKA0ZxZRMg+Ddk5nb0Os9yy42gSgqOGpxqBnecYFv4vy\npmyzsy4wMFDBgsQFCtfD1w2XvdYlAJqBWjwmTZe9rk++b9S149xfx7nK3xRiwaQBzXwRj9DyEGDd\nFUE23RXuKWdM6kyYrcIwfPxGXD1DT3XAzozUoiDPpYS1JpCEgQpe+sBHRYkwlML1uxBxcB0KVv0C\nXkoe2HY2CP1pqYLVofsH2/Fo2xJwbO0R9cYaPN4uUaS6vrMJT75uK1QT/foapO34HCJ+i2yM8t8R\nCz9C+o5NCvMqrwO05QonmtOcSSo5qPOYszlf0SAJw+0JxLFqDO0LRikARo6T/J95+az6wmDGJGzV\nRrCtJIkZMj41jXVdXlnwULIkEOFvHY1aAbnMi50Bs1UYSgpuY0ScpLLr1TMfm1UWkPZMbmE8fL36\nQSjk486jX8FrVi2f3lmQuhdJMoqwZNaDmCmrwLV1Ar+pFlxbJ9KuRQPnbkUrrw6WNo6kZVi7OxR/\nflOKDXvDMD1S4opyLLMXNr+Zg+XfBWtUBlw8OAp/V5frn1qSyN3If/1/VPpIlYaGPEm+c0FTA1is\nthR68soCAHDsHdH1v5o3YVYaaigIGurQ7b0v8Ph/H8oKC5GZk4GBgYGBXoiyJ9U/vKdQIM9YnKn4\nWcE6IBQLtAYwJ9QcwTj3V+FnFSlru1C5ky4R2z1mqzCkPT6CtMdHAACR3abDJ0BSj+D2te1obFAt\ntV6Yegl+UfSlHzU1xzN7YHJYstr7bAsW/rjfFda2ks2bur7pOWeQnnOGFhnNiYFzt+LJhe9QV6bq\n0mFp46CgJJCJRxg4dysS//wIIpFAdk2GXkMccGp3pUxZkLL8u2AAwOHUnpgRRezTLlUQDFEUpMhb\nD8hg7eFDuq8hFoCUH9dI1vP0Q+BzLyPtt88NnpOBQS0sFm2FthgYOjpZG1dB2GSatMliiPTKcHS2\nQn3BO23YR3SF/2zFgzV1cQXRK7fL7kljEAAAYjFSPlNfryPqoy8U6mlQHbcgj2mqZ1CMvaOf7HW/\noUtklgd58h517pSZIqEYz/fQvTx8Z4ZIWQCA4qeX9ZpPqizowtSwBygv4uNYZi+FNukfdcqCqREL\nhbAPjED062tQfuu82n5Z+79G9w+2wyk6BpGvkgusZ1u2pUyOenUV7IMiETBxHqqSbyrM6dy1H+k5\nGRjI4DNnsKlFYGAwG9JXLlH4YyplwRQ4duujoiwASsoAASr3WSy1Y6JXblcpvqdtfkMwWwtDVI9Z\n8PaTFBC5cnq5yv2BIz/BzcsbZddisYiWwmoMnQ8n7wiA2rAAtYyd7YqaCkVF41hmL+zYWISgKGvs\n3V6CypI2v0xrWzaam+g19wZtf1vhmhsgcRkq3v4nGhIkSimvOBcNeekyC4A6mopyZNaA2hRJWjvp\ntfLfyq8BIPVnSWC+NMZBec6aJ7fJvzEGBi34zRuO4v3XTS0GAwNDO8Y+vAt8p81D8d/7UftAMVti\n9MrtCtYE5XuFh3eh/mnbBiP41Q9g7eUHu5AINGany9pD3pDse0tOHkDNvbbitRHvr4OFnT3VbwmA\nGSsMHt49CRUFKSwWy4jSaOfTX4LRb5SD7PryXzXYviRfdi11KTqe2UPW9tdvFfj1s2IAQFCUNb45\nFSG7l5vajP9OaPvwAMD35yLhF2olu9bkokSE/NoAMCUiGdLQkOOZPSAWSyzyxbl8+ARJTnmnRT6C\nUNjxTPRlGTfVuhrZuQbIXjt6haMkTfsGopVXh14Tl+PBSVXrlybO/SmJIZGPVVAXt0DUTnXAMwDk\nLvk/wvagL/8rUxgYGMweSegSAwMDg074z5GkYVVWFsggrywAQM7P2xC9cjs8x01F9o9bZO1W7l4A\noKAsAED6l5/SZmUwW4Xh2jnNhVASLtFfdl0X+o1yUNjAH8/soaAwSNvUbfK/ORWBxc+koTC7RdZ3\n9DQXXDxaLevzKLERi8emAQC+Px+JVT8HY/2rOaTkGz7JGZWlrVg4OEWtPFPCkzF5oTv+s9IHk8OS\nETfXFRv2huDjOR0vdWNW0iGIRAKFWAOp8pB0aCVhO6AYmxA2YLbs3p1j6zBw7lYMnLsVfF4dRELD\n4wraG1x/D9nrvOM7TSeImWNhZ6W9EwPtPF78M7r98KpKe/C7E5DzleZqvQztgwWJC/TKmCTNMKSJ\npBtfqsRLslhsjBi7UaVv8r1dqCx/qvOavKZK3Lq2haC35vWuXWIyG7ZXGtKfwD6iK+E9fpX6jExW\nHt50iUQas1UYiPAPHoqCnGumFoM024+FY8nUDNn1uv/kaOwvVRYAYPfWEry31V9BYfh2RaHs9eJn\n0lQsBppY+r8AUhaJ4zsq8J+VkoDWW+fr8OYGPy0jzJecO8eQc+eYSruwtVltkLOm4GdzLdTGYFxs\nQ71MLQIDAF4ecd0S9/G9GIWhAyPduJeXPsLjB5ICXTa27hgwVPL/d8qjgygpuguJCaqNoaPXgMOR\npA3Ny76E7IxzcHGLQM+YhejRZz4A4hSn8nM386px69oWWFk7YeCw5bCxdcPIcZvUpkZtUxbEuHp+\nFbhcewwYtgxDR60Gn98ALpce1xQGcuh60q9sLVDE9ObODqUwhEVPMiuFIaSrtcJ15iMe6bGPE6kP\nHtJFwWDovCjHMIDNAtfPA/ziStMIxMBAE/ee/xJ9Dryv0h5z+APcnUGuiB6D6Tgw8QAip0Ui7Wga\nqf6ubpL0mSJRq0xZAABeUwWuX1qHIaM+RVS36SgpuqMyVqosyG/uqypScfnsRzIlxMKCC6GQrzBO\nqixcu7QWglbJHqCZV43LZz/CwGHLYW3jgsEjVuDGFUWvCemc1VUZeHD7F8m45hpcObcCPv79EdV1\nOhhMS+HBHTr1F/FbtHcyIWalMIR3mWRqESjl7J/V2jupYeoiD+2ddETXmAe68R/kh/FfP6PX2D2j\n9oPfwNfesZ3CtmRjxNphCB0bTMl8d3+6j3s/UxPPoC6GwRj4D/bD+K90/0yIRWL8NmA3DRIZRtHv\n8fB9aZhKO9fDEfzyOhNIxCCPsKGZsJ1tw0W/Ux8bXMitx2+LIWzi48nbvxo0DwMxTeVNpJUFAOjW\nex4A4Fa8qhtQa2sTAIDFslC5FzPgLQBAZUUq4bxSpWHYmHVqrQVSZUGem/GbMXLcJnCtHJTutJ02\nS5UFeYoLEhmFoR1Qn9q+9lSGYlYKg1/QUFOLYBAsNiBfX+77VYXqOxMQEG6F/AyJBjpovCN+XFuk\ncH/Fj0H47PVcAMBPl6KQcJb8hmPTW3laazkYizGbRyJ4tPYqjJqYd2kuAKAoqRj/vHnWYJnivBbj\ndOn3Bs+jCa49VyY31cS81hsxr/UGAKQcTsX1TZpMn+2PkeuHISwuVO/xLDYLi5IkbgEJW27hyYEU\nLSOMQ9G+a4QKQ89db+H+nP9BUEfe6shAD7cnfI5+pz4mvNfv1MeovPgI2Vv/Jj2f86BIhK+aIbtu\nyiozWEYGauC31MHG1g3WNi5oaSH/++noJEmEkXxXtxPloNAxANqUESIErTxwLG0QEDQM+bnxAICw\nyGe1jmNgoBqzUhgA4hSqUojqL5Bh4LRNYFuQfxS15Zl4fEW3zaNYBCzZFoARk50BSDIQ6cLksGQc\nftodllzJycKLfZ+gvkao0Ofr5QUyt6IWngivjcqV3VN2N5JeSxWEG6dr8dnruQr9km81YsULxgto\nnh//IjjW1H4kfWN9sChpfrs9YX5m62gEjQjQ3pFComdEIXpGFADg4PQjqMuvN2g+zzemwK5PBLJf\nJ1eMThfmX30RHBtqPxODlg3AoGUDUPqwDCcWmb4+S8PjAth381dp7/3He7LXNTfTwS+rBcfRBrbh\n3rD2d1Poq+9JN8uCDfuu/rAJ9oBNsKfkdaC7VndZhx6BCptoEY+PhqeF4OWWg5dTjoanhWgu6Dgu\napqUBrfR3eE2uruRJWIgw4LEBSptmoKgb13bgpHjNqFP/8UqloCho1YDAEqL71MmX0Cw5LCgIFe9\nK3VB3jUEh41FUOhomcLg6y8pVFuYR02K37AvFN3rqs6cRvWFc5TM3RnJ+/17BL60GFGfbEHqxmW0\nrNFaXQlLFzc49eiH2uS29OEhr9GzHmBmCoMmZQEAqirImx4BoP/kdeBwbXWWw8kjDINnbkVl4UOk\nJpDbhLLYwLb387Ht/XzC+2RO9md0eaT2nnS8unnIzH/rfB2p8dLX1eUCyiwS0tNfupCeMP8au4v0\nmH4uzyG1PgE+1uGytm6Ow5Hf9AQBtt3wuO4KAIn14UzpDwi27YXsJnI/Ji+emwNrZ9Nnw5l1ZDry\n4vNxbslF0mPcXxyLin3nZRVvncb0RWt5DYL/733kvP0lZbLR/Znw6umJhQnzsGPQHlrX0UbKsj1q\nN6NSnAdGaLyvD9rW1AW2DReOMSFwjAlRuWeo2057QZPSwNA+UVYOXMJdSI+VxgiIxWKFNO1Pk/+g\nRDYAYLMlWzCxSKi2j7Tgp/yhpvS1UNhKOEZX6hJuwDokBFxvH0rm6+w05aRD2NQAC1t7RK/cjqac\ndAga62EbFA6OvSMAwysyZ377GaJXbofPlBfg9ewMlP5zGB6jJoDj6Ay6ckJ3iErPUpJvk/MDdfXt\nhsEzt+qlLMjj5tcTg2dulX3pqSAucjl8HLrA36kn4iI1K0hk53O1DZT9aW+M2jiC9o2hPIuS5sO3\nP7n/FN25AagXVCKt4ZasLcCmG+oEFXhcdwVjPF6RtYsh1qos9H2jDxYlzceipPntQlmQEjgsQKd/\nA+dJg2XKQsTBdUif9Sly3twOSy/yP8aamHloqtE+E2wO26ifP3V0lE11R+f2hM9RuOuKqcVg0JPn\ndj6ntY+8ZUHQyoNQyEd2xjlcPvuR2vgDfSn711rh7qXeQuXhKbH6l5e0Hc5VVUqyK7q6R1EiR/nR\nw8jfvhWZH35AyXyaCN20RcWi0RFJ3/4p0reuAADYBkfAsVsMOPaOEDY2IHUjNRkTUzYsgVgoBJtr\nBZ8pL4Dj6IyUDUuQv+9HSuZXxqwsDPJ4+vZBWdE9lfbh4zYiJ+Mc8rIuqRnJQvTghZTKMnD6Jtw+\nuQ58HjVBisX1knzNBbUPAUg2/afTNiu8drcNQaBzDPJr74FrYYvCOvXWh6qmPJW2cRFLkVp+Cbk1\nkmwPHnZhiPGdjrTKq8iuuiVb61rubxjgPxcXMr8GAAQ590W0x2hkVt1ARqVh5lCONYeyoF5dePbb\ncbi5PQmP9z8xaB6eUPLvfab0B4zzfA3VrcVIqlbvy9x7UU+D1qMbshYYfh59PtfefbzgFORE2/zq\nWJQ0HzuH/A4hX3LSx6vkwcbNxqgyMCfY5kHxnzdQfOAG+p00/N+KURTpZdSmUbLXHj08cPZt7fFs\nUsuCLsqBUNACC44V/AIGoTA/gfS41CdH4e3XTxYDQYSDk8RdMe3pUVlbTsZZuLlHwcU1jPRa7QUW\nu0OdU2tE2MwjbUnQ1E/TvdTPVV2QGrPSDLZgEGG2CkNUtxno0nMOgDZXpRFxm5H2+DAiu81QqzAM\nnqm+CAogRklmAioLk1FfmQORsBUcrg3sXYPgHzUKjh7qv5z9Jn6KG4fUa41kXXcK6x6hn//zuF1w\nQGO/iqZs9PN/HveKj2J8xDKNCoMyUqVD3uJQ2ZSDM+lbMDR4kUxhAIBGfqVMWQAAK44dzqRreobk\nmR//IiXz6MPAJbFaFYYqfhEcOG7wsGp7TpmNd+DIcUeAbVfcqDoEAHjGcxEuV+wBX6Q5QDXjZCbC\nJ7bv/+DJKA0Fq39D+B9rwLJgQ1BeQ9nazsFOmPhTHGXz6cqC6y/J3nthYjHCn9U/yFpfbk/4HCwL\nNvr+Td66WLDzMn0CMRAjbtvsR6yZBaf+4VoGSBDU85Cx9hAanhTQKR3Dv1z6SN3BIbVcu7QOI8Z+\nhoguUwgVhqhukiB3ZRcisVi9K5Iy8mPr63RLmMLQObC1cMJwt7l4WHcRRc26ueiTwWwVBpFIgPhz\nKwEAfQe/izs3vgIAFOcnojg/ETGD/ou7Cd8ojBk8UzUos64iC48uf6d2HQGfh5qSFNSUKGZV6TH6\nv3BwVczkM3jmVo1KAxmSS04CADhsLp4Jf19mWVCHWD7tkg5I3Z2k8z8T/h6aBQ0yVxN185c3ZiEu\ncjmuZP8AXmutzusKmiX+mO3BDWRR0nz8NmA3xCIx4f3E6r8AAPWCSmQ1SqxZ6Q2JAIDHdVdl/Sr5\nhTJlQVM2pStrrrV7hQEAes7vjoe71CugIl4LMuasUWlPn/WpQevOODjVoPFUIFWYMv/JMonCAABi\nocgoJ8/t4XRbHxn0GZO6fK/OY8iSvuYgbXMzGE7U9Cj0f78/bn9zG08PaK62LI+6as8ZKX+jQCnY\nWH7jP3TUaoVKyz5+sfDxiwUAxF9YpTJfSdFdePvGYOS4Tbhy7hPZb66PX6xM0bhy7hOVcekpxxER\nPRkjx23C7YSv0VAvyZrI4dhg6OjVpN+nvqhzK8pe+TFEfL7WvsptVLpDDev6LuKffEXZfObCcLe5\nOF32A+I832AUBnmqq9oqJNvYuqncd3BUrEAc86yq+fjGoWVQrtZIluSL3yCw+wT4R49WaOdY2hDm\nU9YVgYi+GgIisRBn0xWVp6K6J3hU+g9i/WdrHFvNK8DptM0KblK6UJNdi6l7ydfTaKltwanFZ1GV\nXkV4P2pqJIauGKSzHFJeufWyToHQRHhYBYEFFmwslHNlq3Jj800MXj5Qr3Xqixpw/5cHSPs7Q20f\nv4G+GPBuP52C+5SJfbuvRoWBDgxRIMUiMY7MOY6abGJrR68FPdDvrRidZDEko1bo1m3IWkq/L7Ax\nMMV7sYmIhM/rrxu0LhVzMJg/L15+ETe/uIk9w/YgfGI47H3s0VDcoHFMS0sdrKwc1d4Pj56E8OhJ\nKi5L0loLHEsbQmXjdgLxBjbl0QHY2XvCwdFfrnKznDzNtYQHg4V5NxARPRkA0G/QOyr3s9PPICRi\nvNr3YQjSzX7Dvbso3S9Rxq38/OD/7hKEbPgcmcuXKhw+5qxfI3sdvGqNShvV2HCN79ZqalhGCEk2\nW4XBw6uHLI3qjQtrMSJuM8qLJYWpWCy2ikuStZ2iUnHz6MfQV1mQkvfoFAqensPAaW0nXv2nrDfI\nyhDtMRpBLv1Q3pAh25CfTtuM8RHL8KSMmjRnZ9O34pnw99DIr0ZCXttmeWDgPNzM05wxZkjQK7Dj\nuuJM2hd6re3eRVW5U+bYvBOoTCGXkjH1WBpSj7Vp0vpsPHXNnqTMmdIfAABNwjqttRqeHkolpTDo\nmrlISuHNIhy5eVx2PXrTSISM0b2mhaHPRNe1dEWXNLkPdibjwc42l8DRn49AyDPBGse8cutlnWVi\nYGBoX1jaWiLzVCYAIONkBl66+hJ+H/672v5k4hfUWR7kx3XpMRseXt3RUFeMlEcH0NRUoVHOOzcl\nxTB9AwYiPGoiWlt5eJD0k9Zx0vUioifDN2AQ6mvzcTexzWMiN5t6lyzroGAAQFNaqkxZAICWwkJk\nfvgBwr7YhrDNigHUwnrV1N1EbeoorLwHP7c+OskZ6TsWaUUdPzXsAJepsGBxcKPqkMy6UC+gJ6W1\n2SoMyilW5eMYiO4rIoaIonRkVM0jJaX8IlLKVTeK0riB/Nq2TDzyCoU61N07n/E/hetHpar56InG\nXs/9Te1ahiJqFWHHYMNSXP4auwsTf4yDd4wXRVIZF6o36Rc/ugygfbiAERE9PVLnMaX3y3DiVf3r\nJ1z8+ArYn8Zj4Y15es/BwMDQ/hG1ihAaF4qs01kInxiOIzOOqO0b3f15AMDthK/V9gEAHq8KNjau\nGvs8Tf4TT5P/1FneovybKMrXvahmespxpKcc196RAvze+i8AoPiXn4yyHgA8yT+hs8IQ7DmoUygM\nt6qPKVyfLvuBtrXMVmFQB5Gi4BncX+Fa4opEHbVl6XDypD5PemeCyo3yyddPwzXCBdP2TSY9xpgn\n6r/G7pJt4KlQksiu+dKFubBy5JIe89L5Ofj9GepyjhMx5GPd3Mmo+jcStYrwa+wuvHLrZbDY1Oer\ndp0wEc6j29wV+UVFKNje5rPrNmUKnIYNl12LW1uR/XHbqWboVlWfX3n3GiJXIfveveHxwovI/nAZ\ngjd8Bra1tUoffVyMlGWRHx+8fgPYNorZpPI2fgZBVZVsbGt5GSw9PNXO4RDbHx6z21whc9ethTLK\nMpTt34eGO3d0mqO9ER7Gwc2rkoMNdz/VIFZXFzYG9Odiz29uhPcZtLN7SJsVMuOkeldOQOK1AEAW\nC6AObcpCZ6e1ogKW7u6UzinW0xtkdI8PcTFZP28IcyHO8w2Fa0ZhUMOQMavBsVSspUCkMHiH6e/j\nToase0fQZ7zhNRM6K4/2GpbelIiq9Gqcefc8xn/1DOkxYeNDkHkmm3JZiOBV8bBvvOZMWFTz+5j9\nOlkarJzorRXhHKKbn+m1z8inKyTLbwN202J9cR49WrYptuveA14LFsjucb294TRsuIoC4PPa6yj+\nSZI/u/jHH8BLT5fdD/4fetDZAAAgAElEQVRsIzyefx7lBySfGWFdHZyGD0ft1bbge8+X5iF7+YcA\ngJyVK1Q22S7j9ctAVf7nH6hPSpLJ6fLMWFSfl5zc5axaqdA3+LONCPxkhcJ7s/TwVHmv8nN4zJ6N\n8oMHUH/rluy+PFxvb0AsRtaypQpzyCsMHrNnq6zR3snIFGi8X1Utwj9nmo0kDUNGynFEdZuBkeM2\nqXVJIooVYFCktZJ6hUFfOBbWGNrlbVx7+n+mFoU26FQQlDHbhLgj4jbj+oW1uHJ6ucIfIuyc/Qjb\nqYJXX07r/B2ZBzuScet/SbTMXXCjECdfO026/8gNw7V3oghjKwtSdg5R779rbGYcIJ8V6era6wqx\nKlRCh2VJfvPa+EgxpbL/0mWou6GYZaXy+F+wiWxzz5JXFgCg+Kcf4dB/gOw6d91auE2eorKuWCiX\nplEshqWHh+zSZexYlO3fp9sbAWTKgkSOn+ASp17xkCo82lCeQ6osAEDtFcXCaP5LlykoC1ICV0iU\nFe9F/1G5pzwHQ+dkQeIC0hbE4sIkWbrSkeM2Ef6xd/AFoFuNhs6GTSg9mQAf5R3T3okAWytXjOv9\nKVgss93uthvM2MJA3kTF59XBytaZRlkY9OX2d3dpnb/kXimt85sb0sJkpsazh4f2TnKkn9DsTmAo\nt75MwoD3Y2ldQx7HwUPgOHiI2vsBH32scEonFhCfRrNtbCDi8RC0dp3KvezlHyLkiy0Kyov8qbxe\nKKVdtgoIgN+772mVUxd4GelwGjFCoY3IYsBxkWQCs4lQdQclmoOhc6IubTYRd25+AzePaPTos4Dw\n/vXL69HKb6RIso4Jy9KSlnmLqh6ie6D+qbfH9pIcMJy9r/p/pT442wXC26UbAt1jKZ1XVxiXJFKQ\n9zuur8qlVWFw9elq0PhhkxV97OKPf2jQfGaDYUmqSJN1Nhuh40JI9e3/Tl8kfm3gpqqdc2jmMcw8\nZNqaB5N+m0C6ryEpTsnyaN8ToyoMddevo+Ko+gBMS3d3hY2+bXQ0vP/zqmInsRjB6zcga+kHsLCz\nQ+HXimkbxaK2VIw2ERGK1geK8Hv3Pe1y6oiFnZ1Km6a4C0FNjYoLBNEcDJ0PkVD3OkWV5SmMBUED\nuRvXI+iTVfBb/BYKv//WuGuX30SQh35pyaWM691WL6ihuRxFVQ/AFzRAKGqFBZsLK0t72Fm5w87a\nHU629HqnUAHjkkSC5Ds7MCJuMyK7z0B4l0myP0Rk3T2scO1i4AZfmeghrxg0Pv74h51HSZDj1/7G\nCTK+tOKq9k7/0mNed9rkCN6jmmObTpynjCJsr80lX3CvPRSa0+WE0BD2jNpvlHUa7tyB4xD11gUi\niDbhym46LXl5Kn3EQiGCVq+Bz+tvyOIb6MRQZQEAPObMVbhuuHMHIZ+rL9ZWsEU1qFF5DobOxYLE\nBViQuABsC7bstfQPg3rY1tYAABZXvZVAUCOpd2MdEgqveW3xX1wfX1l9hqwV2hWugCW6J59JLTyr\n8xhN2Ft7INL3GXQPnIpewbPQPXAKInzGwNe1l1koC8rEOj9H6/xma2Ho0XchAMDHXzEDUsbTv1X6\nCvhNCtddhrxicEVmBvPi8f4n6DaXWkWxPcOyoOYswG+ALzJOZiLiIDlzq6HVnpUpvKk5YwmV8Bvo\nK5YoT9n+fbDv2xehW7eBX1wMAOD6+KAuIQEVhw/J+gUsX46aS5fg8fxsVP59HG6TiLN+uU2dhvpb\nxKkYs5d/SHsAMFk51SIWI3TrNtTduA67nr1QceQw3KfPkN0u278PoX23IXTrNjRnZsLS2xsWdnYy\nq4NYKFSYw3HwEJU5GDoXO/vvNLUIZgNRFWaXUWPgMmqM7Fq5CrO03oJ9j56wVxqfs34NxK3q083n\nb9+KgCVLwfX2VlibbKXn25l70C+MSYlNhD1H/4KtZGCJxUbyC9EBFotFuVCDZ25VahFTkl5Ved6m\nulLcP7tFr7mkrknmam3QJdvMwelHUZdfR6M0qpCVj1fJw744zUHJfpvehaWfF3IXrELQzvXImfcJ\nWBwLiAVCsCwsZO4fwXs2ImfeJ3AYGQu3RdOQM+8TWZt1l1BwPF3QcEXVBUrax2nySNQevyy7lq7h\nt+ldFH4kcUFxmz8ZlbuOI/DHT5H3etvG3nnKKNT8RVy4p/87fUlZU+qLGnBgymGV9oiD61C4fhea\nHmaCZclByE/LkLVQ/SmwPJN3TIRHd3JZNIyV6laKrhmTjC2fPkhTm+Zv1r0yOwO9VBRKTjE1pU2t\nKPTTmlZV3s2CDHnlt5BSeEanMcZA1/dhKr9xBtNib+2JwdFvaO9oRIz9WWSzLCASK7qZjnFfgAsV\nOwn7i8Vig/OHm62FgYgRcZvVZkoqy70Nz6B+ci0shPebjYzbuhdXkaKqhEBvZUEXrG1dEftMm8mv\nld+Im6dV844Pm/wFRCIBrp/4BP3HfgIrm7Y4joc3fkRtRSbh/IMnboCFBXG+/tS7f6CswPBAZWMr\nC7pg42ajtU/jrUdwnu6l4BcuFgjhu+FtWPp4IHfRagBAw7V7AID6y0lwWzRN1lfmniQSESoM9Zcl\nmWlqj1+GdWQwGq7cBgCw7W3hs2YxOK5tKUkrd0kK9tSdiif9HnMu5ZFSGGxcrFXanMb0VbAkiFsF\nyFr4OSIOriNlYSCrLJiCosRi+Pb3MbUYlMMoCwwMDB2FhuYyU4tgcpSVBQCoF1bTumaHUhg0kZH0\nh5LCAHgGx8IzOBb85jrcObkBYrH2AClXn65qYxZuHqE/UEpqhaguT0favT/BtXZEn+HvYNjkLwgt\nE2w2B8MmfwGxWIR7V7+GUNCCvqM+QM/BrwNQtWYoWzlsHbzQd9QHEIuEeJy4A9Vl9KS2NDtEqp8V\nqRVAHrv+3VHx40GFNrFAiNyFqzROX/nrUViF+qMlqwDeK19FzssrAAAuM8ei4L0v4PURibgZS/Vf\n77JkcqmAOTaqc7i9NA61F+gPDL+69hrtayjzz1tn221VbH0I3boNzVlZphaDQQmpZUH5WmpJ6BfD\nxem/PVTuX09owZSZFUaSkoGh/XL2/jo42HhhUNTrphal3ZBY/Ret85uVwiBvQRgRp/uJ2Y1DSwmt\nAlxrRwyaoRo4JxYJwWJbkJ5fJDI8pSAZGmoL8SjhZwAAv7kO8cc/xLDJX6hVGgDg2t8fKbxWzswE\nAP7hkjSE8nM01UvSkrLYFmavLCTveURrULOogYegnevRkpGPkg0/AQAE5VUI3rMRLWm5sn7VB87I\nLAxFK74BP6+YcD6ftW9KFBBWmyXRfkQ/2I/oh6JPvtYqj/OUUXCeMkpFiTGU4i37EbZ7BTJf/kzW\nZtc3itRYtiX52Ir0E8QWMAbtSOMWhHV1KPrOuJlMzJU437cBAKeL6C/ypM3F6PZdPlPdmYFBC/W8\nUpy9v05nV7aOSpznG0xaVSl3E76Rva6tzsH9W98r3CejRKhTGojQRVkwRhD1kImSDdq9K1+p3Eu9\nux9RMXMlm0uluJSbp9eQmt8/fCRhu0jYCrYFPbmVjUniN3coUxhq/rokiw+QbsjzFq9X6SeNM5Cn\n7p9rqPtH++m5dF75Db+mzb9yvALVioIU3pMcsG2sVAKhybgjxbzamxaZGBTRlIa0M8ICG2LonmKT\ngYGh/XP2/jqM6fkRLNjErtQdGamSQLeyAJiZwlBfWyB7XVH6WO95bhxaithJa2FpZXiu7oKn55H3\nmHw1YUPQtGkvK7iHqJi56D30LdyPVzwha1XKEqWOqtKn8Arop9JOtbKgS1pPStEhlN69ixsqnlbS\nJ4uZo282pF4Le1AsCfWIRWLS1WEZzIPxvm/iZsUh1PBLTC0KAwMDDVx4uAkAEOQxEFF+40wsjfE4\nXfYD+rtMMUo9BrNSGOQpyFHNra8u4JmIpL9Xw9WvO6IHLdBbhvaYmtXe2V/vsWn3DsAroB+GTd6M\n+OOSZ6mLlYUsGafav091lxlRiN9ww9RiMJiAzH+y2kX9CXOg95vbcf+7JbLrsMmL4eAfIWtjW1oh\nYtrb4Dq4ovJJAooSTphK1A6NuWYLinlhI+7ua7OEmuv70IfY+RK3waRdjDWQSnLLbyK3/CYs2JYY\n0/Nj2ta5m7UPFXUZtM2vDeUKz9JrxiWJJqoKH8k2/RYcK/QZ/yG4Nk5q+xdnXEf2/aPGEk8vGmoK\ntHfSgHw8hJR7V75CQy11/rSpf6VTNhddRE6JMGuFgWPDga27LRwDHGDrYQtHfwfYedjCIUDyt62H\nLeVrks2S1N55cjCFURgoovuCNXj4s/of7Tjft2UxA9IYAil5jcl4UntFoc3LOgx9XJ9VaKvmF+NW\nhWrqXxaLjSiHwQi2l7jBDXSfqdJHXbxCP7fJcLcKlF1nN9xFap36/w9GeS2ElUWbxfpCyS9oFTUT\n9tX1PZsjzv5dYeXojtIn6otmWto6wsLSyohSMXQmhKJWQgXUydYPbg6hcHMIha2VKyw5tmCBDaGo\nBS2tDWhsqURtYwGqG3NR02jYfopOjFnhWYpZKwyhkc/CJ3Ag6mvy8PD2rwbNJRS04PZJVR90c8GC\nI0l/mfXYsBO8nkMWA6C3FgSvkkfb3B0Vjg0H3WZ3QZdZ0bDzpH6zz9BG+ePOm4Wm7yvERd6qs+8j\n69Ienedjk9wQKm+cASCn8b5Km7KyAAAuXB+FTbiU8T5vkpRSuywh9jEIsY8hVDCI+o/x/o/W4Gmy\n79kciRizCHlJmjO2tDbVMafrnYzIddtRezsBpccPau9ME7VNhfD66APUAqgFUHX1PCrOn1LoE7lu\nOzwB1Hy6RGV85NptskQkaQT3TQkT9KyGEXGbcTfh/5CV9g/AYmHE+E0QiYWIP7vC1KLRhvT0v++o\nD3DnkuIP++AJEk26rirHoDWc3EJQU97+LQD6UptbC6cg9Vak9oBrhCum7ZtkajEUCP35Q1g42yN9\n1qekqz4bAqNUdgwe/LAUvd/cDgCoeHQdBVdVLQFxvm8jrS4BWQ3aU/WS3bAr943zfZt0DINAzMf5\n4p9IraEus1Kc79uESoz8fbLvOXb+NlTl3EfmlT0IjJ0Cz+ghqMhIRE7CIYV+du6BiB7/BhorC5Fy\n+luVOe7uW4E+c9bh9h7JYVCfuRuQfPgzCPht3zXXkD4I6DsRYLFRcOckKrPuqMyTtOsDBA+aBdfg\n3ii8fxqlT9vqv9i6+sG/j0SpC4ydgsDYKbJ78sqB1B1HuV2ZkCFz4BrcCw1lOci8+jsELY1an5cy\nlraO6DrhHVhYWiP7xgFU5z5U6RMd9xa4tk5Iv7QDvOq2rHXS99tr5krUl2YhK34fwkfOh42LD5KP\nblKYwzNqCPz6jEdtQQqyru0jlKXXrE8haG7A47+3K7R3fe59QCzCk5OKSTK6Pfc+bN38zUKxily3\nXesGuj1ssMOWS36/NMmi8d5qyb9F5Lrtavt0VMxWYQCA+tp8yQuxGFfOfKRXqlVTY+fkCyfXYNg5\nthWLiug1E031JWisK0FNhaqPnK2DF3oMfg2pd/8E18oefUa8CwC4dsJwf7366jw4e0QQpl011wrU\n8lRn1rRPhYEFzLs4F1z79pnlIevVL8D1cZNdE7keUalIVGfVUDYXg/Gw8wpSuBaLRLJ4ht5vbidU\nGACQ2jir417VKfRxnaD3eGWUlQUASK+/hQiHAYT9U+pUM56dKfoW433fgpd1GEqbidMD6/Kenf27\nyjbZrbx6eEQOUlAYpPfqitPg6BMh2+jK02fuerDAkvVtKMtGn7kbZP0CY6fAq+twtNRXgGXBRuiw\nFxA67AWVeWLnb4NYKEArrx6B/acisP9UWR9n/65oKM+Fk38X1BY8RUN5Loh4eGQjXAK6IyB2str3\nLJVTyOfB0TcSfeas03nj3KaYiCEStCJ85HzC9wOxGLzaMnSfvBR5iccUlCD3iP5oaaiGW2hfACxY\n2jjC2tEDNs7e4NVIFNDYl7cCLBbqS7PgFtYXbmF98eDgOvCbJAk+rBzc0XP6xxC0NEIsEiooTADw\n5MSXKm0AYOvmr6K0MRiGhZ29qUWgFC7bGnw17o9UY9YKQ0cgZsR7Km3eQf1lr5U36fHHPwTH0gaD\nnl2LAeMk1hRBazMS/jHcd3zAuJXgWjuiJDcRlSWPIBaLwWKx4e7TA16B/TTWeTAX6grqTS2CArOO\nTINjgKOpxSAFv9h4WaNqGIXBbLC0c0RrYx041nZgW+qu8D6quWjQ+g0CequbAkBlS76KwtDLZTwA\nIKdB1Y1I/G9Ktu7Oo1Faoqow6Pqe2Ryu2s2yBVdSmZ5oIyzfdnv3MpV2+U1qXtJfKm5ERJtYwg33\nvxQ9PAcA8OsTh9riNLUxDC31lSh5ckWtwhA7fxv4TbV4YMAhhLrnorwO0fspT0uASCipq+QVNQSP\n/93Q2zh54vGJLxHQbxKixy/GvT9Xo9esTwEWS2EeG2dv9Jr1qayt5/SPUZ6WQKjkyRPQbxLyb/8t\nWbfLMABAVjyxtYIqItdtR0tJEXi5WXAeMBSA0gk7iyVxwwHQXJAHrqc32FyurI9jr76yrvKv6x4o\nKjpcT28Ev/0hCnb9gKZMxZpOLEsuIlZtQnNRAfgVpXDs2RcNKY9RtK/N1TxizVaw2GzU3UuEbWgk\nOE7OOlks5GWTv1aWk2PvgNAP16o+BxJErtuO6uuXYN+1FyxdXAEAtXdvwSlmAG3WFQ6Li2Huc1HU\nksakVZUnvIvETUMsFiE7/QyGjfsMpYV34OgcCDsHH1w5Q3+lZarRZwMuaOWRGqepD9E9rrUjMh4e\nQXHOTYX2qtKnSLt/EMMmm58FRxl+Pd/UIgAA7DxtMefkLFOLoRfqApvzV/xM2Rq8auOcmDAYxv3v\nlshcjoT8ZmT89R3Cp7TFDkjvAQC/jljhbBBUkV6vt0scvG3C9ZSWWjysJdYUde5KAGDJJo7h0OU9\nayPymVcV3Gg6CoYoCwAQOWaR7IRf57FjX5e5ddUUPJG1V+clAwD4TbXgWEtOqrm2Tmgoy1YYL7U8\nyKPsQqZMbVEqvLuNlCkMgf2nopVH/wGX/Ea27OQRFVebyLUSC4zUFUcZ6Ybbe8aLKptvefhl6t0B\nI1ZtQktJIfJ+kKxdcmQ/Itco1stisdkKskau2w6/ea+icA+53x15OeWvlRE0GPbMue5eyP5yg4KL\nllMMsXWSCpqEdbhQsYO2+eUxK4XBL2ioSptPQNs/xIjxm3RKrcqgirKy0IYORQzaMUK+0NQiYH78\ni+BYm9VXjxTNafmUzSVsMf2/EwM55NOqKl8r3zOEWLcpcLMKAABcKt2BFqHEn92Z602YAYluWJBU\nLY8v22v0teWxcw9ARXqiwfNYObih53R6ij2aAjuPIFRkJOk11t4zWPZaPsZDKCA+cLL3DCG0GOhC\n2rmfVOa4f2CNQXNShTplgUpyv5N77yJJkUXvGS+g5LB6C4tdRBe6xdKZ+uR7Rl1vuNtc2Fq0uVkz\nQc//0pGVgS6DFsLBJQj5KWdRnGW6dJ5Ebkee/n0kVaQ7AKbeqC9Kmm/0NUVCMaozqlFfVI/qzBrU\nFzbAxtUasf/tq32wGiyc7RH6c9vnpP7qA5R8Q+yfrhcspnAagyJuVgEQigU4V6z4g2hj4WASeXIb\nHyLUPgaNRnCJ0kTJo8vw7j4SOQmGZZ7pOf0Tje5GxsbS2h6tzQ16j69IvyWJ9bhxQOexpY91S20r\nEvBxZ6+2GEIWtB28tdRXwrv7KNQVpWnsp5zN7M5v+m3obUMj4L9gMRpTn6Dy6jm0lLQvS5VD114a\nFYb2iKDRuG7PVyv3Y4z7Qlyo2KFSm4FqzEphkEddgLMuSkVozAx4hw6iSiQZuhZ0GzJtCyqLkpF4\nao1KHQhnz0jUlGn+z4MqBK08cCxtCAOeAeDWGfMvqsN1MF1QMZXKQllyOW5uS9Q7Baj/ID+D1g/9\n+UNUH4tHxf4LsO0ZCr8VL6PqyBXwC6lJScqxpr5gIIP5k16vagHt4jSC1Fg2qP1MpdXdQKh9DAZ7\nzMaN8j8pnVsXCu6ehE+P0QptDl6hBs8bOvQFg8Y7eodprMOgjd6z1xqUHSgn4RA8IrX/vjt4haG+\nVDHOJP8O+fTk+XdOIKDvc1r79X1pE+78rnl/8vDIRomS1he498cqwj5kUxWTwX/BYjTn56Bw7y+U\nzUkl9U9VM1oxqFLBN069CLNVGMRiEa6e0S8r0OCZW7V3MjIpt3YDAPg8RZ9Le2c/oykMCf+sNso6\npsQp0DQBxoYoC2l/ZyB+3XUKpTEM/9ULFeIYmu5nyNKtUlW4zcG3Y2WyYKCGaMehCkHGLLDAZVuT\nGtvffZrW2gj64GjpgVi3KUiqVAwYDrXva1D2J13IvPq7ijVA1822SNCiMMeTE1/CLUw/K+TjE1+i\n23PvE6ZPVZaTqE/Srg/Qb94XBr+n3JuHNc6RtOsDg9coeXQJtflPNAaIS9eR9hEJWiAWCsCyUL8F\nE7Q0Ebb3mbdRJ/m0weK2HaJZ+wcR9iGTMlUyGQsQ6+6+LBaJFNbwnDgdAFByyLTufubCg7pzGOfx\nGuIr99O6jtkqDE8f7Efv/m+gob4I8ma+jKd/qx1jwbHCgKmfGUE6Rbg2ToiNWwkAKMu7jfQ7ktOo\nIdO2yPpIX18/ukzlXlC3CQr3lO/Lj7l5fAUGTpa8x4rCh0hN1L3YUkfGOcTZ6Gvqqyyceec8ChKo\nq7BNFVbhhlknyNAuU98ymBSBmA8Oi4s437fRKmqG5b+KwrniHzDWh5wpXjlA2VAF4nTR/yHO9224\nWQUQBj9ToTCQ2cBWZd9DVbZ632nlTTLR6zt7VeMXlNcmkoWoramyQK3cZDfk0noRhlCWegNlqZpd\nfDXJo+5ZlT65qmA94dWWan1f7bGWQsHO7+G/YLHGmgJpny5B5NptKn2UFYiSQ3tl2ZSU70es3gKW\nhcTC5z//3++qXCB1+pqliFy3XWGN9PXGd0GXlxP4t9aCnJxsK2uEr9ioeB9AxbkTqIo3LNuboZwt\nV00HTTUssR7aIN2wWCytQo2I24xr5z+FUNBCak4rO1f0fdY4AV3yLklca0fEPrtKtqmP6DsHbr7d\ncfPvlbI+Q6ZtUVAG5PGPHIWCtEsKbfL92RaW8I8chbynZwmVDnXz0gHZjfGvsbtolkQ9umzeqZBz\n8s6J8OjmrtOYU2+cQfEd7QWmDMF/kB/Gf/0Mqb7Kz8Eq1AcOg7qjYu85hfaIA2uR/rxmK5Wxn7++\nmMNnmQ6orvRMNTYWjujnNglctg2yGu4iu+Eu6bFctg0Ge8wGl22DwqanSKm7BqFYQJlssW5T4Wrl\nh1p+KdLrb6GyhbokAAydB6JUr1JYbAvELFB1GdY3hoGhYzHIZToSqo8Q3hOLxQYHBpqthUEsEpJW\nFgBoVBZEIgEq8u6B11BOhWgK9Bj+JqpLUmTX6Xf+gGfgFg0jyCFvYRCLhMh7ehYATBowTRZbD1s0\nlRObWzsauioL5rABbckqRuDmxXCZOkxifv43QJkqdyQGBnXwhHV6ZyXii3i4XLqTWoHkSKo8Rtvc\nDJ2D3s+vhlikPkNc1IS3jCgNQ3smzE7VXdCB40bQkzrMVmFgsS0IA591CXrWNThZH8RikSQ5AsWo\nsxzwee2/4FX09Ejc/VG12FF7IvNMtvZOWrBy1C04beeQ3w1ekywWVoYFgHZk5cAtytXUIjAwMHQi\nwkbMg0tgDxQ9PI+iB2fV9rPzJI4xYOh8ZDaqujv6W0fTuqbZKgy6KAZsturbNIayAAAPLn+Ngc+t\nl11H9J0jqyBJBivbjrd5iZgY1u4VhtRjhgeav3huNum+pffLjFojws7LzmhrmRvBo5gfZQYGBuOR\necX07n4M5k9hcyqt85utwqBLWtWAbuMVrisLjJeqS9jajKa6EgyZtgUiYSvYFpY6xRV4hwyEu19P\ncLi2snEPLn9FGPRsLtj7tP8MOMW3DY8hYLHJm5ZOvPqPwevpgq6uUvJE/FuBNX/lL2hOzdNpbGtj\nKyztLPVe2xhETokwtQgMDAwMDAw6kdF4m9b5zVZhUFYMho/fiOsXiOsEeAQq+nql3txNm1xE3Lug\nufiNpg0/0b2G6gLCduU2c1Mk6KbPq71MLQIhD3YmG33N8Gf1z9MudUfy/u8MOGz4DwBIajIoBUET\ncfGTKxj/Fblga1Nh625jahEYGBgYFPDrN9HUIjB0csxWYVDm6plPMCJuM6GFwdK6/Z9oM9BPzGu9\njbZW4PAA0n1vf0s+00t7ouSbwyj55jA4ro4I/m4JXKYO0xrbUHCDfJpYtgULImH7y+JGN55dhyFg\n4FSdxoiFAuTdPIqKVNXCZlSgKZueV/eR8O8/idQ8af98j/riDKrEIgkLXacugY2rL+kRYpEQD/9Y\nB4EBlYbJQpSZikzWG3vvUNJBsOUpN5B3g8JK7EpYO3kidNQ8nZ5xU0U+0s/+YpRnTAZ9vncAkHv9\nIG3fOxabDb++E+HVY6TGfuqym5GF7ixLYaMXwDm4h9Z+wtYWPD68Ga1NtVr7GkpH+N4Zmw6jMGii\nqbYYds70545nYJDSbU4XU4tgNEJ+lMQDCWup/eF/6eJc7B6xj9I5tUJDggIyxCzcAhaLrfd4lgUH\nQUNmIWjILFlb8YPzKLpDjasbr1JV0dNnkxL57GLZazo3Kd2mfwhrZy+9x7PYFuj1wlrZdfKf68Fv\nbB8JJfR57h7Rg+ERPRgAdc/d0E2qrXuAyZ9x6KiX4RJimOWZiu+dpa0jIp9dDGsnT4NkaU90m/ER\nrJ08dBpjYWmFnnPaDp3aU7pYQ7939UXpSDv9A9ViGRWzVRjCu7SdaLFYFvANHAT5Am7ylGQlICxm\nppEkYyCDb6wPipKKTS0GISKByOA52nOmHf9BhivPnq8+B6dx/QEANSduoHzXaYPnVMbS1vixDuP/\nZ1x3qcDBM2Q/KFTj0+sZ6hSGmlLZa2tnL3SbbnhRrb6vbEP50+vISyDOG67fnFtBh9bXY/YqAGLc\n+c04yTLsPIPRWOVUW70AACAASURBVJaj0ObgHYbICW8aZX1NGKooqKPH7FUoTb6MgiT1xVepgmNl\nh14vErswG4o+37ueczTXrzE3qPqM9H1lG1JP/h8aSg3PWkgGou+dVA5DMXdlATBjhUG5onP6E/U5\nsEuzbiooDCwWW5LulMFkPPvdOKPWHIh4Lox0XyrSm3LtuQbPQRdkC7apI+LgOhRv2Y+yn0/oNf6P\niQcx5+Qs7R0BuIS7oDqjWq919MF/sHEskSw2GzELDK/HoomyJ9com6uxPBcA4NFlCAIHTadsXo8u\nQ2Dj6ovUk4ZVXAbo28i2wULfV7YZ5dTTs+tQZMttXMLGLIRzUHfa19UEncqtFK8eI+HVYyRtz9jc\nvnfmBh0Ke9RESQX1zvq9a0/obwM3YwZM26i9E0OHYvjqoaT7ikWG+83zG/gGz0EHbEvDv/Lpsz5F\nQ+JTvcc3lpEv2jd9/2S912mv2Lj60r5pAYD8m0cpm0vQ3AhLW0dKlQUp9l4hsPcMpnxeuqBfMQFc\ngtr8vQMGTqNs09JYlqv3WGP6Ynt1H0nLvOb2vTMnQke9DDp9OmPmE2fGpBL57x2AdvG908YYj4WI\n83yDtvnlMVsLQ1j0c/APHqbSrq4+Q0lWArxDBwGQ1GUI7D4BeY9O0Sojg2YWJc03ipVBl7z6BQnk\ng3I1UXy7BMGj218+/4U35lE2l//6RbCJDuowRdyGraT39BQArBxc0XWqbidleQlHUJ11H4KWRkkD\niwVH3wgEDJym1ueZV1VkqKgKcKzt1bpNiISteHJkC1rqKwnvR014C/bemrNyRT33X4NPEHPi/0Dw\nsDlq74tFQjw5uhXNtWVq+4SMeBGuYTFa12KxLTRW5DUUloXkp9mCawPPruoPO+oKU1H6+CrqClJk\nbXYegfDqPpLQNz/lxNcGyaXtGTdW5CPnyj6Nz7jPy5+DzdFsgfXvPwllT+Ipe8ZWDq7oPmuFTmNK\nHl5EafLltu8dAEe/SHh0GQrnwG6UyCWFzGdfk6Jqal//vgu3AizNykJjWQ5STv4foCaBgl+/ifDu\nOVrteJYFh3YLn/z3rvdLG9T2E7Q0IvvKPoXvHdfeBf6xk2j53mniQvkO2es4zzcgFAtwrvwXWtYy\nW4XBP3iYTsXbsu4elikMAOAfPZpRGEiQmBuE/kH0acfGYMwXI0n3PfPOeUrWzL2a3+4UBl3qQmhD\nWotBuY2s8lCZUgm3aHJl7OO+GYvT/9WestVQjFF/geymReOPoliMusI0PD7cduLGtXdBt2nLwLaU\nVBd/cozaU3D54FTScv5L6qlvAWg/mVfnP0yWyvQklc0sv7EGyX9ugLr4NmWyr+xF9pW96DN/M9gW\n6n8eYxZ8YZRNmrpNi6a1G8vzkHVpN3BJcu3dawz8+k6gRB71z3i9mhGq3Nv9MQDtnwcqnzHZ7929\nPZ9A1Nqi9n5dYRrqChWLevaZt1H2vavMUK2+2ynQoCzwqkvw5Kh2y07h7ZMovH0SgYOmw6PLEM1r\nacjaRgXqvnd3d36oVonlN1QrfO+oivXSBofFxTMeryCr6R5Ol0niJOI835C9pnQtymc0Grp/YG4c\nWorBM7fKrgfP3Iqm2mLcP0e/idkcWbqO/sDdUZ8Nx6UVV2lfx9hknMzEiDXk3KCcg51Qk0N/GrlX\nbr1MyTzu88YhffYaQCQiVBzIcGzeCSxKmk+qr99A8qka9WXyLvpznJNxZbm7Y5le8VX8hmrc2/MJ\nAMAtIlbn8fqg62buzm8faHwG0RRYGSrTk+AWEYvCpBMoSb6k9zz3di03iuuRJojcZ+7uWg6xUKDT\nPCUPLqDkwQVY2jpSJRoA4OH+NWjl1es9XtvngSo0WUSk5N88qnfsgfz3rjI9Sa85zBlN/4a1BSnI\nOPuzTvPlJRyBWCxWa1nru3Arrcq6rbu/SlvJgwsovKPbAXNzTalRDhVCbHvRohwQYcYKg36npTcO\nLUWvsUtg5yTZhNg6+SgoEXxeHerKM8FrKIdIpNt/zFIKUy7qNa698fx8B9rXCB0XgpY6Pm5spieP\nNdlNKQBknMqkRQZtzDg4lXbXLF2egzYcR8WgYs9Zg+epya6Fc4gTqb50u695dNW/8jUZLG00f5eE\nLTzc37uSkrXo3rTUF2cg7Z/v9RpL9yYxJ/4P5MT/Qclc2mT17DqU1gBXFlsx3sjQzUdrU51B46mS\nQ3kuOj8PljYOWhVoqt5PZ1QWNGWa0ke5lZJ/8yhKHpxHz7lrCO93nbYUT45uJbxnKF0mv69wbWp3\nL22kN6p+7uhSIMxWYUi+swMj4jajuCARImFbgKly9iQpA6Z+BguOldZ5uTaOcA/sY5Bs8gpDYq56\nt5RXppbg0b0Whb71dSKM6ZGvMu7ymSZ8+Fq5QtvrHzhj0TuKG67WVjGGhOeprKVODiJ3I+W+ytdU\nuyh1mRlFi8Kg6yb5ymrTZbdwi3JFZWoVLXNTqSwAQNlPf8Mq1BctWYb5yR9+/phOstGlNFD9fIhQ\n98MnhSplwRjoqyxI4VUVw8bVh/Cee9RA2opg6cPDP9aqjd3wHzDFaBlx2vumxRDEIpGKciSFzeFC\nJNA/gYS2711Hfq7GgGNlp/aevsqClFZePcRiEWF9GhsX4v8/qMbcPh+DXKYjoZq6NNXKmK3CUFWe\nolMMAxllgWoSc4MgFgMDgnMV2gD1m24HRzYSc4Pw1gulSLrerHFuANi6ugoHdkrMwpaWLFzPCCSM\nOxCLgdHd89HYIFKYg6iv9FqbrFSyKGk+6vLrcXC64R92tgULC2/q5n5DR4GwYy/+jal7yVXAnfr7\nJBx+/hhqsqlzTbJ2scaLZ2dTNp+UhpuPEb5/NVgcCwBt8Qx6BT+LoZOxcFHSfPw2YDclmazsve0w\n+2/667O4hGiuMG5OP0pZl/YYPMeTY1vVnioHDZnVrhQGTafyhhTa0wVz+nzow92dy9R+Hnxj4lCQ\neJyWdTv6c9WVMcPUB/leiFc90LDzCFTbn6pne3eH+s8G3SQfUP882gPGyowkj9kqDObCoDDFzXZT\nowi2dpp/aAYE55KK6blxmSdTFgCJdWHSoEL8neAHtgUgH5sjr7RIWTy7FN//qX81VKpxDHAw+BT5\n2e/GwTdW99OH1qZWvddUR2WabhaDGQeoc01amDAPbA59G5qMucRBsLrya/9dOp/wv3LrZRyZ8xeq\nM/WvCrvwxjxKUsySIXSU+sxU5pazvTr7vqlFYOhEOPpF6T3Wq9twCiXp+MgrBbF9FiPpnsSSGOSv\nmo0SAKInvWsUudTh1X0kSh9dpm1+foPx6v/oA5Hb0Qi3F2ldk1EYaEY5oL6uVrvCoE1ZeG2JMwDg\nvfmqqetKiyRmwP1nfDH7Gc0uI3duqrdgmBLpBpJX1YxjL/2NpnLNefu5DlzMuzhX7/WMWUBOG9L3\nro9Mg5cPRJeZ5H5gU46kIXp6pM5r0MFvA3brHJA9/Y8pAABhixB/Tj4EXpX2z/ILp5+HjZuN1n6t\nTQKkn8hA1+ejdZJJH8wpZ3tNTrKpReh0dPZTcCtHcpnUiPAfMEXtvc7+XDUxauhaXLrW5oYXHjIe\nuQXxpMcbqxq6f/9JtCkM5vr5uFK5l9b5O43CcOOQcT7Eypy564/xMQWya29fwx/59BftAWiOjwiJ\nsFRpW/eVO+Kmqvc5NAa/xu6Cjas1Xjij3VXGxtUac0+RqwisL2ffv0Dr/L/G6n6CDrQpDvWF9bj7\n8wNknFQMyGaxWej+QldET4+EY4Bu2U+aa1pw/fMEBI8OgrUzOVc9stmQ9HFLEovESP79MXq8pHtu\ncwsrC1KfJV3YPWIvLLgWRlEYzInMizspm6uhNBv2XiGUzcfQMWFbqP6OMdDLwyd7MaT/UlxP3Ao2\nm3i/orlWCbUpTwUtjRpjJRiMR6dRGExB/6BcWZyAcrshcK1YOs0T3YOL3Sd8CMdoUjroglfVjLz4\nfAQOCzD62vLsf/YAmip4tK+zb/wBvHDmeb3GOvg5YMSaoaRTtGrj6trrSD+RAQDYO/YP0sqMsiIQ\n9PW7yH3nK9m1haMduP4eesuV+NVtdJvThVY3KjJILTtCPjUFozQVeCp9dIWSNcyR1ib60wibO4ak\nLO3sMN87/amsSsP1REkGIpFIQBi/EDKCXtcXBXnSb8Or+wijrWduuHJ90d95Mk6X/UBb/QUppv11\n7iSseqcC/YNyZX8M5fgfDTr1V6csGJukb9qK2pxbchG1uabbNAh4AqMoCwDAqzLOOtoQi8QyZcEQ\n/Fa8rKAsAICwrhH+a18xaN4dgwwPqDWEPycfpnxOn5jxau/RFczJ0DEoSCTO+MegHeZ713Fo5VGT\nDtgU+M1dhMhVW+Acq/3AL2r1dtkfdfdch45RuVfFNyxboS4wFgYa2fGXNwDgzF+NWnrqxv82VOOF\nVx3x6vvO+PlL/QM/P/qM/sJs8jzc/Ujh+tBM3dJqUgWvkod9cQeMuqa+rklU0VTehP0TDlIyl1W4\nHyXzEGGq5/Tn5MNoKNZNESeDrSt9z4qBGtgcLqwc3GDl6AZLWydYObjB0tYRVo7u4FJc7EwXanI7\nTswIm8OFjYu35Lk6uP/7fNueN9Uw3zvqGD5oBa4mfEa6v6kLHrYXXPoPg1goRNr6ZeA4aK83lLp2\nCQAQKgzSe0QKQ6T9AAAAl20DMXQv+qkLjMJAI+f+bkK33lYKbj/FBQJsX1uNK2c1B/KS4dX3nDDt\nBXtMiC1QaL+aEojh0aq1GOTZ/KMHRsXZGiyDofwauwseXd2NUmkXAC6vikfm6SyjrKXMr7G7MGzV\nYEROjjDquv+8eRZFScWE966suaazu1PWws8RcXAdKnadRvXJBFiH+iJg0+toum+49QKQPKeBS2LR\nbW5XSuYjsx6DZlrqK00tgt5w7ZzRY/YqU4uhM4bUHzA27lEDETSE3ngzBnoZOWQ1Ll9fqzG9ameg\noTSbknk8n50m2+gL6unzpkhruIW0hlsAgDNlP9G2DsAoDLQSf6EJ761yUWjz8edgy88eyMtqxcxR\n+puS+gfl4mZ2ENw9LbTGIWiKpdA0dkBwLm7lUB+DoUz5kwr8MfEg5pyk9wenPWwM49ffgEgoRvQ0\n42Qo0vaeM05m6hUfUfH7WbjPj4P7/DgAgLC+CYWf7dZLRiJubk9CVWYNhq0cTNmcRGh6Po2ljbDz\nYoLtAIDfoL8l01QwJ530YmnjoLUwGoP5cPl6W6ps+biFMcPWm0Ick0FF7JDUSiD9W956IH1NdN3e\nMSuFYUTcZq19dCnmRieaip65ulvg9B1/lXZdN+IDQ8j3Vze3pjXFYuqUg4KEQo33G8ua8GvsLjgG\nOGDWkemUrCmlPSgK8lzfmIDrGxMw6rPhCB1HT6YYut9z9V/XUP0XvTUE0v5KR9pf6QifGEZZ0LcU\nMs/n1OKzmHVkGqXrmiuCZvMIwGWx2IhZuMXUYnRoPLsNQ8CAqaYWg4EmlIOcL11bYxI5TIbYcLee\n1LVLTKIM0B30bFYKg7wy0HfIe3iY9DNa+ZL4gEGjViLpWvs6UTp1hDh2oaqCmgws5sSZd8+T6leX\nXy/bzBniyy7gCbB75D5KKgLTxaUVV3FpxVUMWtofXWd3MXi+nIu5uLD8suGCtTMyTmYi42QmLLgW\nWHD9Jb3nKUgowpl3zpHuX5dvvsF2nZGQkS/BNbSPqcXo0DDPuPMhEne+/Yo5EGbXV+GabYQcRmal\nMMhjb+8tUxYAIOHSBoyI29xuLAwAMGG6Hda8X6HSbopUpsaA6lNt5fl8+nkjdGwIAob4wdrZGiw2\nC/XFDShPLkfy3seoSm/flRnVkbA1EQlbExXawsaHwH+IP3z6esPGxRpisRj8hlbUF9aj5G4p8uLz\nUfpAtXCfPrQ3C4w6hHyhiqxBIwMRPCoQfgN8YeVoBZFQhLr8OpTcL8P9Xx+CV2lYhipzeTadnZ5z\nVsOSZIByU2UBUk99B1FrC6n+jGuTBF2eQ0XaLeTf+ot5xmZITI9XkJV3ETW1OQCAMcM2EKZWJSL/\n1l8oe3yVRukYpGQ23lFpS29MonVNs1UYwGIZNJzN5mDg9M8BGDYPETcOLYVAIAaHw0JibhDiz/Mg\nEooxeLQNLC0l680Za7xUWB2F4tslKL5dYmoxjELmmWxknqEm+Kojk3s5D7mXNQf4M3RsvLoN16os\nCPnNuP/7CiNJ1PHw6jZcax/mGXcM7ib/hiGxH+DWve8wYtAK0soCAFg76V+LpzPQUkacfMRcMFuF\nITfzgkpMAxnrgqN7KLqPfJMusWQMDpNsYt5d6YK4qXaws2fj3q0WLHmlDPyW9usmw8DAwGBO+A+Y\novH+nd8+MJIkHRO2BYd5xp2M60nbMHzgJzopCwDgEtwLeTeor2fTUcj5fossELqlpBDyVbHl06kS\nBUtL8RgzUeGev3U0ujmOwJmyH+HAcUO9gL6MdmarMOSkn0VO+lmdxviED0VIb+MGa321oRpfbTBP\nVxkGBmPAcXWB3/pPFNpy31qmcM0N8IPPR++1NYjFyH37Q9ll0LdbkPvWMgR8sRZsO1vCOYK+bQuG\n5T1JRdm3vyjct+kSCc+3X1Urg9d7i1F39iI83/oPoQwMxsfeS3PSAGYjazh95mtONsI8444BUTpV\naRtZxYFjzWSVk6Iu4FnXdm33mkR1YP3rKTPEdRYT9EwVxlAWKvLv074GA0NHwm/9J6g+ehJ15y8D\nAAK2rlO47zRhLJwnjgO/sAjFG78Ey9IS3kvfVpkn6P++QMP1W6jcfxjWEaGK977dgqYHj1D+0y7Z\ndeD/Pkfeex8DAByfGQGXac/JlATb3j1kSogU64hQWEeEIvetZWBZchD4v8/BcXOBoFL9gUB19n24\nhPQmvMe1cwa/0fzSlbYnoiaqfg6kMBtZ+mmvz5j53umOrtYEhvYBU+mZBGHRz8E/eJhKuzq3pMEz\nt6qdqzQ7EbXl6RD+G6DVZcgrsnu5j04BACw41nBwC4STR7jK+ORL/4f6yhxdxP//9u47Pooy/wP4\nZzebnpDeExIIJY1QAhKaNAlYwFMUK4qeP+84LHiAdA6x0U5RjvP07oBTEVA5ThClgwKhJQFCOoT0\nQPqmbpJtvz/WnezszmzLbjbl+3698nJ35plnnhnc3ec7TyMEAOAcGwX/P/0egO4T7b5EWtbxpVey\ndB1rn+fDSaj49Au05t4CACilUtz98GOdPIoXr4RSpprRo/VWx+J8bomjAYAJFgDVvdZscdAMFgCg\n5bpqld2AxQtRse0z1nGqMshQ+90PCFq1BCVL+H9o75z5Cgk8FZdhT63tthUuQgypL860dRF40efO\nupoqCgy27pGuMcv/jwCAJL9XkdOUbNVz9diAITRiUqdnREr+fhk0+5BxKcs5zbk9fvqbcPMKAwAM\nm/oaijOPoTTb+CkbCQEAx4j+ti6CzYkP/cx0Bar655dMZV2TOljQRx0saPN4ZCYAdpckLlz7tVsq\nNClaWiB0cjRYLtL15O2tti5Cr3f75E5bF4HYyK2jn2Pkixs594UlPoaSSwe7uER9lzW7IGnrsQGD\nUtG5uYGTv1/aqePTT30CCAQYP1dVyegfOxM1pdchaazqVL6kbxEfOQ7xEdPG4nQ17a45llZ/7DTq\nj6kC89BN6+H3fy9Y9HxKSSvgZbgFpy+38PQ2FRlnLZST5WfRI2zDnlpnOJEZlAo5BEI7zn3RcxYj\n+9A2q5zXWpRyGQR23aPKppBLeff5x0ykgMFGPER+qJdZrw5q/ZUerITvi4CLuzf7KW5N6Q3LFEKp\nRNrRjih75MzuswYEIZbg/bRlV902pHT5es7tfq+av4hf5Wf/Niqdta5VIWvn3Ufzz1uHQsZfoTEF\n31NUYjkOrh5WyffGnrW8+1x8w6xyTmtqb+leC0mKizJ494XeN7sLS0LU4j2mWzX/7hGumkl7WlWA\newxDyNBprPe5l76yWBlam9gLs41/YmunWy86I2K77liNhtO/oPbgYbPyKXzddtdiiKWulfBznzTO\n6ucI37EF8voGtOblw3WM7iqyRa+9jfC/bUb4ji2QVlTBzsMdQicno1sEZLViNJw8i/AdW6CUyyGr\nrIZ9UIAq79/yUI9pcJ80Du1l5bAP8IdAJLJIq8O1L1fqDQyGP/sObnzzl06fh3TwGTym060MTp4B\nEHaTJ7q9lZNngNXylhtYNK6nfe5q76QhaPgDti4GI//ULt7vtYC4KSi9Qr/D1qQeu9CVeuy3oSnj\nF9y8rfs0obr0BnxDh1v1HLbiEBqM9lJaZE5b+I4tkFZWofydzay+70WLlrGmAFVIJDqDeN0SR8Nn\n/lM6eeqrnIbv2AJFaxtKlqzh7GvfcPIX1B38kfM43ryFQoRv36Sz32f+U8xAYe18jClv/082QiDS\nbQHkS1/52U54PfYIXIbHoSn5Cmr2fMdOoFSiaNEyuE1MhPcTcyBvbEb5Bv3jEbTVHTyChtPn4L/o\nFdgH+KP+6CmIDx/VKZ/vgmfgMjIesppazoHV5pJKGmHv7M65T+TkBlXXF1qfxVKcvQI7nUfs4zRl\nrj4hYx5B2VXd7xxTWPseG/rchU94EkUXvuPc391UZV/gDRgCYu9HRTdbYTnh5b/S4HIr4hq7MN77\nCaues8d2STKFyNG6cwPnWbDForMKX1/K/FmCqcFC+F8/hPdj5jVHcrUY6GPpazWVvb8fwndsgay6\nY6EUz4eTELRiMTPVptDZWec4eX0DFK2mD8oUOjkyFXxA9eRcrd8Dk03Oj492sGCK8O2bmGBB2d4O\nhUTSsY9n0LEkIxvl725B8VurdIMFDU3nL6F48SqUrX0f8np287wxLQHy+gbc/eAjFL+5QidYUKve\nvRfFb65E+YYtUEples/RfCXN6BaI9L3r9e5PeHkrHN19jMqLWF/s3BW2LkK3FzhsaqeO74rueIY+\nd75DE3vM506qp0uSoYX1rMVQQGCNf2O/6AkWz7O3SK793qr599gWBi6TZ23ibHmQt0sgdOJ+ykC4\nmVsJFzjYm3Wc0EW3Yt0TlK7cAHlDIwBVhdjjoRkoXf0e5OJ6eMycBs85D8J3wbOo3v0Nc4wkOw8l\nSzr61xqavYdFKNSppHrMmg7P2bMsNjhZMw+9LRRawv+2GRAIUP2ffWi+kspZxtBN63nHKfR2tXeu\nwXugbpcrtbgnVYvXXftypd5xD/qIHF0RN2817OxVszf19id8926cQuBw7n675j7hpHElxjPnHjv2\n80XcEyutVCJdqTuX6P03tcTnDgBGzP/App+7mN8tRdb/THvoZgnX96zBiOd0F31TS3j5r6jI+AWl\nVw6ZfY7gUbMQNGIG874q+4LZefU2vg5hGOExA/da7yCj8axVz9WrAgY+jXUl8A6KsXUxiB7ByxYb\nTtQNqYMF1jZxPQCgOeUaPOc8CKfoIRY7X+13P+hsqz96Cp6zZ1nsHGYTqGaU0Q4WgI4y2rn13ZVA\nC85+De+BI2Bo5p2RL3wIALiXfhplKUf0phXa2SNoZBIC46fpTddblaX+xBswAKZVaOOeXNVjnjZ3\npfxTuxA5/SXe/T3jHithyc8dAISMfrhbfe6cvYNs0g1I3iYxmCYgbjIC4iajpaYM2T98ZDB9YPw0\nBI96EAJhn+gE0yneDsE4WbUTIoEDZvn/kVZ6VtNsQeAa8MynNOsEO2AQCAClcf2Fh4x9DnmX95hU\nzr6q/8YNhhPxEPna5odaIBLB76X5cI6LRlv+Hdz71HIfNlmdKnCwZCW58ex5i+VFul7qzqVGP8EO\njJ/WrSok3ZZSyQSrXDTvt0IuRVtDDexd3I3qqiqpu4usg1v7dKuDuCjDjHtcDXuXfkbd4+t71kDe\nJrHqPU7duRQDpjyvt4VPrTt/7gy1lgCmt5BZIsBI3bkEQx76E9wDI/Wmc/EJ6TWfpQG716NgwXpb\nFwN5TZcBADKl+a1jxupRAYNmd6PqikxkXvuStZ8viGiqK2G9H5QwD7dT9vOepzjzGPrHqhZ78g0b\n2WcCBq4xBIa6JnEd02/aZPSbptunXjsvrmPNKYO5tM/lNHiQaptSicI3aE5+c5nUxaoPSt25BKMW\nbDZpamjCL3WX8UGY0M7e6AHR7c1iZB3s+i4e3ZHp9zjIqLTtzWKjnlBbQsHZr+EVEd/jP3c5h7Yh\nak73a5HP++nvSHh5K/rK2iXGBgsD976PO8+stlo5Zvn/EfnNqQhxGoqcpmREuiYAAPKbdVv6O6tH\nBQyabmWZvzCIf8QYvQFDafYJJmAAgBFJS3H9OP8Px/gnesePimbF3NgByFzHGDu1KdexXTWAWX0+\nubgeJWvfZW8XCBCxfWu3nlLWEgR21mnuld6tsEq+vUnabtXsML3laZutGfPk1RSVWedZi09V512G\n75CxFsu/J7L0PU7b/TZrAdauuMe94XPXXF2CmltX4DP4PlsXRUfqTtVvZk++v5oG7n0fZWs+Q/D6\nV1Ewfx1rOwCdQCDkvYUQ+XigaKFq/ZbQzW/opNcMIALeehYVH6vGNzoODoNjRDB8XniYOZddP1eE\nffxnVO74Di1pOZxlVHdButV81SLXrE+PDRja23T7jpsy1aopXPoFQigUQaGQ6eyjebp7nvBtqpYo\nSU4eKnZ8wdpX+PpSJpiwc3ODvKmpy8vXVez9/a2Sb/l7vSOA7gqpO5cgYtLT8Bk8xuJ5V+ddsXie\n3VnqziVIeGmr3q4zxkjbvQxKhYK1rej8t30+YAAsFzTY+h739M9d4bn9KL92HMPmrbH6ucyRunMJ\noh55Ha7+EVbJuyu1F91Fwfx1rIq+uuKvKWLnOhS+zO6WXfr2p0a3MASvfQUFL/wFDScuM9uC1r6C\nwt+/C5/nH4JAKEBzSrbOcdrrMdAYBguouHMJAQMTmfeGFlhrl9TDwbljBcrExztW/NS35Dzp/gR2\nqn877WBBrWLHFwhY9CrCPlzfq1sZ/P/0sq2LQAAUntuHwnP7AADD5q2Gg5u32XllHdwKSd1dSxWt\nx0ndpfq8sqm6sgAAE+lJREFUDprxCjzCok07tpfPKGUp6vs06qUtEAiMb6Vsa6xFxnfvG07YRTQ/\nd/3Hz4Vf1Hiz8yq9crjTCwWaqr2pDqk7l0BoJ8KIFz406d9CrTLznBVKppLz43bmddTsN+Hq19+s\nfArP7UfNLds9/FDKVK1grXnFetMJnR07dZ6W63k62xxC/ZnAxOPhCZyBx7HKL6CEQme7NfTYgIFv\nvAJfK0N+2vesgMGQlCPv8nY10hcsXP3xHaPPQbonSY7uB7c3svP0MJzIDCJfH9baFMR4N7/tqFAJ\nhEL4DL4P3pGj4OwZAJGTK+TSdkhb6tFSU4a6ghsQF2cYPYGDMbqq0nznzFfAGeutX3P7xL+Y1579\nY+EfNxnOngGwc3CGrK0FjXdvQ1x0E3UFN4zO01r3pqcGKmm7OsZ5+cdMgmfEMLj4hEBoZ4/2pjo0\nV5egIv0MWmrLjM7TVveiOPkAipMPAOj43HmERMEtcADsHJyhkMsgb29FU8UdNFcWoq4wXe+6CF1J\nIZex/i0Chk2BR1gMXLyCIbR3RHtTLdqbxagvzUF13qUuGzOiKefwJ8xrZ+9g+ESOglvQIDh7BUIg\nsINU0oBWcQXExZmouZ0ChYFVui3B1P/XnAaFWrwMzjEDO95wfI8XLdwIuVi3N42mmf6vst5TCwMH\npVKBX4+ZOpezamq1ops/oiz3rMHU2ef/jeiJvzc6d2lbE6St+v9xSfdh6kJxPZnL8Di03Mhg3gev\n/rNJx4e8uxpla/U/HSx+YwX6f7oRIe+sQPPVa6y1JwDAe95jsPPyQNXnu006d1dwHxWJxrR8zn3x\nh9eg5kgKyv7BvdibtSgVClTnXkJ17iWmHOmz+ec75+IU5ovWkmprFK/HEBdnQlycaeti9GqVWedQ\nmWW9p9WmGPvsVlz+xvyWYe3PXXek7xorbp5Fxc2zXVsgE0hqy1Faa9qCsKZwdvFF7PDnkHLxE8OJ\njRC2bQmq/3kQMDDFa9UXBxG4/AW0pOWyuhUBgFNUBBwHhqD+J9X6EX4L50Je1wiZgWAg/LMVqPn6\nJziEBaLu25OQ1dbrpLFmgKCtxwYMtdW5nK0M+sYxJH9v2sw3dfeyUZj+IyLiHzGYtq25Fqk/f2BS\n/qRv4ptFSHN74/lLqN17oNPnKlm6DmFbN8Dv1Rd19hUtWmZwRiN1GpG3p05a7cXclHI5k951zEi4\njtGdwrAlvXtW3Aa88wxvZdzUSrq1mFMO5yEhfT5gIL1H/MPLkH5E/3dWZ4KFnqKnXOOUpI04e9yy\nq6Y7OLojcshDyL7JPXGNpKXaYsECAJQsVo3Z0e4OpP2+8UwKGs+k6ByvTteaU6hzXO2+48xr9eBn\nfeewtR4bMPj4ReP8yXWQy6zbdFWedxbleWf1zoSUfGCZRbsFkK7RmfEJXCsf62xTKIxLZ+b5jNmv\nkEhQtGgZPOc8CLfE0VC2taP6q/1ou1NodFmKFi2DW+JoeDyUBKGLMyQZWajevVdveoFIhMAli+AQ\nFgJZbR3Eh4+h+WqawXN1RvzhNahPzoHH+ChkPrMVsXuX4uaj70OpUDL71TQr3+rt6v9y7SvZdhh1\np9jdV/jyG3ZgBQQOIs59+spesH4vBqx/Rje/H1ZDIBRw5iV0ECHuQMcPsnq/ZtnCFs/W2ad9jdr7\nuO7FsIOrIBCpnrKVfHwIdafTDV5XT5Q4531cOsT+oZ7w+BZc+C/3Z2XC46oK7K3U/ags0q0wdA8C\nuPQLREtDzx7f4uwRYOsiECMJhfZWyTch8XWIa7lbg/siFzsPjPN+HGWSXOQ0JVv1XD02YMjLOIDY\nkfPR0lwFKDsGfNzONjydpzn0DZAmhM/MuFU4lmH7lifxoZ8hPvSz0emjg2ciu/wY877pUgqaLhlf\nGVLKZLi7yfinPJa6T0Uffo/4w2sQ+vojuPef04j+cjGynv9YbyVZXUHmqthrVp416ctP4CBi7Ruy\n/VXkvc49wF5Ta0EFZ6X+5qPvM9s0iTxcEfP1W7zlBgCv6cN1Ah1D/OaO08lT+3pj9vy5SwMGfRV2\nS9MOFgxRl8s/fLQ1imMhSpsGC3b2Thj9JPv/Ke2n5CJHFyTM3cCZZuyzHQ/sNF9r5pHwxLsQOThz\n5g0ALp5BGPZQR7/1FvFd3PypY8ansc9uRf3dXHgEDeUtoz7R0xeiX4Bq4bKr367EmHmqlaOv7H0b\nyt/qKJplB4C0gxsglTQw+7JO7kBjZQGrTEqlAlf2vm3UNdo7umHU3PWsbfquYdzkVbj4yweYkqSa\n1EXdGqBuGRg28kXUVGXjXnka7n/gPVaa/gOmIiBoJK5d+QweXhGIGzEfv5xYxeStUEh5zzslaSOa\nmypw7eo/MH7yaqRe2o7mJuOm43Z07GcwTfSwp1gtEFOSNkImlSA7Yz/iRsxHetouDE94hbmW2OHP\nwy8gDudOrUXEoCQEhybi3Km13e4JP5cWeT1OVe0CAKuv9Nxj190eEjcXXj6DEdJ/PELCJzJ/xHYU\nra0AAIGTk41LYlkz41ZhXKRqRqEZsW8z2zT3q7k4eCE6KAmJkQs48wGASUMWMtvuH/InvedOjFyA\nqVFvMu/HRb7MOh8AuDr6YHTEMxgd8Qxr+/1DF6G/z2jm3O5OAXAUuSExcgGCPGIBAN6u4UiKXYFw\nn47pBZNiV6C/dwLrPN6uEZgRy+7uF+gRjaTYlZgZtwoTB/+BOU90UBKmRncsLBQTPAtToxdDKLBj\n0oR5j8QDMUs58ut4Wm7KfdLWmJYPaV0zRB6WW2XbXE4Rxk1fK601bQrfyE0vQnwuy5wi6VV14CLn\n9vjDa5g/UT8Xi5+X9F5yaSsuf7OU+WttrMaQ+xew0iTM3YC0A+tZ6dQ033PtB4DU79fqrRwPe2gJ\n61gXzyD4DmAHec4egcx+ubQN4Qm/M/oa+wVEMucfM+9D5nX0dNX3WHDMVCgUMib/rJN/x6jHOub2\nl7Y2IeaBRTr5puzv+B42dI2j5nLfPz6ale9WSR0AIKT/eFTcvQYAuHntPygvvQKFQqbTtSg0fAJS\nLm6DTCZBTVU2K1jQx8dXFZBdTf4YMqkEv55cgzHj3zLq2M44f+Yd1FTlQCCwQ13NbdY+v4A4nD2+\nAnK5FPm5R2BnZ53WkZ6uxwYMvxxdzvlHbKfu0E8AAPfx5s+l7ffic5YqDi/xT6on5xHbt0LAM5BJ\nYM9ufLuYvxOJkQtwInOz3rwnDVmI7LvHcSl/N2u75hN0FwcvZruzgydvXjPjVuFS/m6cyel4Un8x\nf6dOuomD/4CUwr1IKdyLKb8FF0mxK/Fr7g4U16QgIeJpAEBjawWmRL2BS/m7ER/2KACgtrkIxzM3\nwsM5mMnveOZGFNemsp74S+UtOJG5iRVE+LhG4Him6ina+VufM9uz7x7HmextzPus8qM4k72NFXCU\n1F7DyaytrPzu1WfjeOZGZpux94mLUtY108zZksBOwEz51xXSZ7/H+rO1+CmvYexs1RNpN68wpmsQ\noGqRmPDYZngFREFoZw83zxD2vsc3Q2TvjMCB43Ty1cxH09D7ntO735Ty8Znw+BaERT2AEdPfwrhH\nP4C9gysGjZoHAEiYuRLjHlV9JvtHJ+lcr6Fr0G4BEQjtTC6fpeSc/gJeoXHM++hpqgcO0jbrrHvD\nVRG/l3sekeOeZm279r+ORTwzT2xH4NDOP4R09x8AAAgb8TCu7uuodDdW3mGlS/vvetb7qKmq2W+4\n1n/iMnTKKzrbbl/Yg5G/W2vwWKVSjqsXtyEh8TUMjprDPJ23t3fBlKSNzJ+m5LPvYcz4tzAlaSMm\nTv2LUWUEgJjhzwMAb7620t3KY6xZ/n9k/o5Vfm74gE7osV2SiC7H8P6wDwqEU2QE7IOCmO3ukybA\nPjAA7Xfvoe1OIaR370FaVa1zrOPACDgEB8Jx4ABme+iGNcwx7XfvQZKRpbPgjlrjuWT4zHscgKoy\nXvmv3YBACJf4WLiOGoGixfwBXdWur+D30ny4jh4J5+ihqN77LYQuLnAaHInqL3X7y9v7+8E+OAhO\nAwfAPjiQda2OEeFoLfitzOX30F5SyjpW/PMJeCRNh0AkQvgnqgCg5UYGIABc4jt+xLTHONRLDDfp\nF9fqLsc+I3Y5q/J9OvsjDAmchjZpI6uiba6S2mvMa0eR6om6QCDQaYngMjVqMeyEIsj0NB8DQGNr\nJQCgoiGX2RbqPRKZ5Ya7Oc2MWwVJu9hgOm2Wvk/dnWOoD9pKjZ+ONn/lV4je9QZKPvqBN42Dv/6p\nc12GBOvdzyIQdKuxWu7e4Ux3oKa6Ep39Fw+tgkKuqmw1idlTe174r6ql8N4d7tYULrlX9gAAkv+3\nAgPi56Ag/ZBJ5asquaY3vVpJzkmU3z6H0KHTIG1vhl/YCNxO+xZOrt5MfsXZxxEaNZ3z+KjEF1Bf\nZbiP9/jfbTSrfObS7I4jbWUHBu6/deWxFje/cJ1tjZV3LBIQWJ4AgBIeQUOQf5F/rJg2j6AhAHS7\nPRkjK30f5LI2uPdjTx06Yeo6VsuCdmX6ygVVl65BQx8xeoCzpKUKDg7uSP6l+6zJAcDig7O7Cs2S\nRMwStPQNzu0CexGcY6LgHBMF/PYbo10Z5jtW5OUJUcII5n3Ze5shrajkLYPmSsn+rywwuuzNaTfQ\neqcQYe+uhdDVhXUsV8AQspY7+BDYi+A4MAKOAyNYZdJW9NYKOA8djIDXVE+2XIbHsfa33NQ/m0+7\nrFnvfk3qJ/PqoEEqb8UAX9WaIJbot8+3aItm3nzBg1hShmtF32F6NHtOapHQgfW+n3MgGiT3ENBv\nKLTpu4ak2BXMfmMCGE2WvE/aYxG0n5DfWbNHZ6Cv1/ThzIDhsMWzEbZ4Nnvcw6E1qt92jvzM4Rjs\njaGfLdTJT7Pc8YfXQCZuRtb8jyGtbkDGk5v0XlfAs/cj4Nn7WfvEv2Yyx9xeusuosqXPfg8xXy6G\nyMuN91y2MHxaR3e9JjH7wYA6WLA0pUKOoMgJBgMGgF0+U8hlbZA0VQEAhDzdI0pyTjKvs5L/jfGP\nbULyweXwCR5m9HgPc8tnKu1pQL1C41hdku5l/4KgmKlWO3/ZzRMIjZ/J2hYYfb/Vzmeuy98sZd2r\n6gLdB1B8yjNPISRuhknjLjJvfI3+A6aiuOCMwbSTZ7C/gwcMSkLBbdUsP7dzf0SokV3CUy5+iilJ\nG+HmHoSmRtVDuNDwiSgtOm/U8bXVeQgIGsk7S5K5xk5chsvnVa1s7h6haKwvNXBE92PtMQwUMPQi\nnZn1x5IrGpubl1xcb/SxliivJPeW2fmcyfnEpArwsYwPWEFDSuFeeLroXwhGfYz6NQBMGPR/AFQV\n8dx7p1BUc5Xz2Julh5hjz9/i/wLxdx/MdH3SFOw5DMGew5jzqsdwFFR1PJGVyluZc/yauwMSqe4c\n0WdzP+W8T+ptJ7P0Pw0z5j6paVbm1TQH/Oqr4DbdKNDZX3fqht4Bw+lzjJuG1diKdcOVW3oHMHNR\ntEr17ufaV7zlIIq3HORMoy+vrBe28e6zlRunLTd9oikaqu8YTgTrls87KAYl2ScAAHX3ciAQCPUu\nKsrFVvdPe/xC8fUjCIqZCpGDM2Ttll9YrCxDN2Bw941AYcpBniMsL//iPtz39CZc2ad62OXuP5A3\nrYOLJxqrC03KvzT9GELiZpjUElhVkYEpSRuZgKG5qRJtrR2twY31pRoDoldiStKHzD5f/1iED5zG\nvOeqwNdW5+kMqFa/1mytKDIiYFFLT9vJ6jrE1wISEDQS1ZVZyLj+pcE8zx5fgcRJy5nj5fJ2nDu1\nzsBRfQ8FDIQYoK40a84apLldk740mq+VSgXyKw0vdKR9jgu3/6n3nOr05eIMlIszdLbz/dfQebXf\n3z90EU5nf8S8nxG7HCcyN+mka5e1cJ5DX/7m3CfSNw0a9SRup3332ztVVw5rEQiEUCoVSEhajtQT\n+scycZev8zz8BqG+SjVg081TN5AeOf3PyLzwL53tXIoyj1q8fHxKrh9hdZW5sm857nuavY5S2n/f\nQcIT77K2aT8tL0o7xDtLEtdMShnHPkFzjaq72rWDG1hp2ppqUZF3wdxLMll1QQoixz3NKsONw9z9\n5YfPXo6r+3UXptW+RqVSgczj25lrvLp/BcY+wx6LYqjFQbPCfTX5I9a+1Mt/05P2Y735AqrKvTHn\nNRXfscZsV7/WTnvpnO66XoRNoOxGfVLVBAJB9ysUIRYyM24VZPJWnMr+yHDibkoosGMNYjaly5Cx\nU6j2hvtkLHNWce5LHJz6YdSMZaivKUB2ckclRCgUYfSDawAocf30NrRLVK1chtZN4NrHNehXnW7g\niMdQkn0Co2etRuaFfzItDAERYzFo1BOcx2iXryjzKCoK2SvA6iubf/hoVBalsLa5egQhdtIfUFl4\nFYUZR4y6Nu3r0i7f8Glvwt7RzajyEUK6l5n+f4Dgt76xxyo/h5LnoYlSqRR09lwUMBBCCCGEENJL\nWSJg6LHTqhJCCCGEEEKsr1u2MBBCCCGEEEK6B2phIIQQQgghhPCigIEQQgghhBDCiwIGQgghhBBC\nCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGEEEIIIbwoYCCE\nEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPCigIEQQgghhBDC\niwIGQgghhBBCCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGE\nEEIIIbwoYCCEEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQgiv/wdaGgfVu0+QjQAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, { "metadata": { "_uuid": "398461363c7a395e2a982e07e8ac6fccaee139c1", @@ -1805,6 +1682,16 @@ } ] }, + { + "metadata": { + "id": "RnHdy1BuNbsE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The following code is trying to use dynamic maximum pooling" + ] + }, { "metadata": { "id": "g2JGcOSPBIP7", From bca8451322ce26773761c810490b36edbe9079db Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Thu, 6 Dec 2018 09:24:10 -0800 Subject: [PATCH 5/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 536 ++++++++++++++++++++++++---------------- 1 file changed, 321 insertions(+), 215 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index a0ad43a..d9c6da7 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -43,15 +43,220 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3400 + }, + "outputId": "9e7a8519-9869-4c5d-98a3-11a887bb73c3" }, "cell_type": "code", "source": [ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 0, - "outputs": [] + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Collecting lightgbm\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/4c/3b/4ae113193b4ee01387ed76d5eea32788aec0589df9ae7378a8b7443eaa8b/lightgbm-2.2.2-py2.py3-none-manylinux1_x86_64.whl (1.2MB)\n", + "\u001b[K 100% |████████████████████████████████| 1.2MB 11.8MB/s \n", + "\u001b[?25hCollecting wordcloud\n", + "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a66717ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (361kB)\n", + "\u001b[K 100% |████████████████████████████████| 368kB 26.4MB/s \n", + "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", + "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", + "Installing collected packages: lightgbm, wordcloud\n", + "Successfully installed lightgbm-2.2.2 wordcloud-1.5.0\n", + "Collecting pydot\n", + " Downloading https://files.pythonhosted.org/packages/53/11/9db5c788f5ad05438b7c2a07fd7edd9820b7f3d95bb0690a16f7bf426204/pydot-1.4.0-py2.py3-none-any.whl\n", + "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Installing collected packages: pydot\n", + "Successfully installed pydot-1.4.0\n", + "Reading package lists... Done\n", + "Building dependency tree \n", + "Reading state information... Done\n", + "The following additional packages will be installed:\n", + " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "Suggested packages:\n", + " gsfonts graphviz-doc libgd-tools\n", + "The following NEW packages will be installed:\n", + " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", + " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", + " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", + " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", + " libxcb-shm0 libxmu6 libxpm4 libxt6\n", + "0 upgraded, 30 newly installed, 0 to remove and 8 not upgraded.\n", + "Need to get 4,154 kB of archives.\n", + "After this operation, 16.1 MB of additional disk space will be used.\n", + "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", + "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", + "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", + "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", + "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", + "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", + "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", + "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", + "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", + "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", + "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", + "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", + "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", + "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", + "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", + "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", + "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", + "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", + "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", + "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", + "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", + "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", + "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", + "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", + "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", + "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", + "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", + "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", + "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", + "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", + "Fetched 4,154 kB in 3s (1,249 kB/s)\n", + "Selecting previously unselected package fontconfig.\n", + "(Reading database ... 26397 files and directories currently installed.)\n", + "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", + "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", + "Selecting previously unselected package libann0.\n", + "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", + "Unpacking libann0 (1.1.2+doc-6) ...\n", + "Selecting previously unselected package libcdt5.\n", + "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", + "Unpacking libcdt5 (2.40.1-2) ...\n", + "Selecting previously unselected package libcgraph6.\n", + "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", + "Unpacking libcgraph6 (2.40.1-2) ...\n", + "Selecting previously unselected package libjbig0:amd64.\n", + "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", + "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", + "Selecting previously unselected package libtiff5:amd64.\n", + "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", + "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", + "Selecting previously unselected package libwebp6:amd64.\n", + "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", + "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", + "Selecting previously unselected package libxpm4:amd64.\n", + "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", + "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", + "Selecting previously unselected package libgd3:amd64.\n", + "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", + "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Selecting previously unselected package libgts-0.7-5:amd64.\n", + "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Selecting previously unselected package libpixman-1-0:amd64.\n", + "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", + "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Selecting previously unselected package libxcb-render0:amd64.\n", + "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libxcb-shm0:amd64.\n", + "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", + "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", + "Selecting previously unselected package libcairo2:amd64.\n", + "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", + "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", + "Selecting previously unselected package libltdl7:amd64.\n", + "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", + "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", + "Selecting previously unselected package libthai-data.\n", + "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", + "Unpacking libthai-data (0.1.27-2) ...\n", + "Selecting previously unselected package libdatrie1:amd64.\n", + "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", + "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", + "Selecting previously unselected package libthai0:amd64.\n", + "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", + "Unpacking libthai0:amd64 (0.1.27-2) ...\n", + "Selecting previously unselected package libpango-1.0-0:amd64.\n", + "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", + "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", + "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", + "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Selecting previously unselected package libpathplan4.\n", + "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", + "Unpacking libpathplan4 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvc6.\n", + "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvc6 (2.40.1-2) ...\n", + "Selecting previously unselected package libgvpr2.\n", + "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", + "Unpacking libgvpr2 (2.40.1-2) ...\n", + "Selecting previously unselected package liblab-gamut1.\n", + "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", + "Unpacking liblab-gamut1 (2.40.1-2) ...\n", + "Selecting previously unselected package libxt6:amd64.\n", + "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", + "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", + "Selecting previously unselected package libxmu6:amd64.\n", + "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", + "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", + "Selecting previously unselected package libxaw7:amd64.\n", + "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", + "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", + "Selecting previously unselected package graphviz.\n", + "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", + "Unpacking graphviz (2.40.1-2) ...\n", + "Selecting previously unselected package libgts-bin.\n", + "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", + "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", + "Setting up libpathplan4 (2.40.1-2) ...\n", + "Setting up liblab-gamut1 (2.40.1-2) ...\n", + "Setting up libxcb-render0:amd64 (1.13-1) ...\n", + "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", + "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", + "Setting up libtiff5:amd64 (4.0.9-5) ...\n", + "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", + "Setting up libltdl7:amd64 (2.4.6-2) ...\n", + "Setting up libann0 (1.1.2+doc-6) ...\n", + "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", + "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", + "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", + "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n", + "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", + "Setting up libthai-data (0.1.27-2) ...\n", + "Setting up libcdt5 (2.40.1-2) ...\n", + "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", + "Regenerating fonts cache... done.\n", + "Setting up libcgraph6 (2.40.1-2) ...\n", + "Setting up libwebp6:amd64 (0.6.1-2) ...\n", + "Setting up libcairo2:amd64 (1.15.10-2) ...\n", + "Setting up libgvpr2 (2.40.1-2) ...\n", + "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", + "Setting up libthai0:amd64 (0.1.27-2) ...\n", + "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", + "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", + "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", + "Setting up libgvc6 (2.40.1-2) ...\n", + "Setting up graphviz (2.40.1-2) ...\n", + "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n" + ], + "name": "stdout" + } + ] }, { "metadata": { @@ -61,7 +266,7 @@ "_kg_hide-input": true, "id": "9K7leB0DGZG9", "colab_type": "code", - "outputId": "cd14ad76-7b42-4e13-a775-b77a59a8025c", + "outputId": "0f8d38f0-1df7-4fbf-d3e3-3e04e06ca579", "colab": { "base_uri": "https://localhost:8080/", "height": 52 @@ -123,7 +328,7 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", - "outputId": "0fa96bd2-313a-45f8-b30f-cef0d962194d", + "outputId": "9f67177f-490b-44e2-ebfa-7c5dfca0a92e", "colab": { "base_uri": "https://localhost:8080/", "height": 124 @@ -179,6 +384,21 @@ "execution_count": 0, "outputs": [] }, + { + "metadata": { + "id": "Xyqvz9eLfST8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "class2 = train[train['Sentiment']==2]\n", + "class2Sample = class2.sample(frac=0.5) #, random_state=3\n", + "train = pd.concat([train[train['Sentiment']!=2], class2Sample])" + ], + "execution_count": 0, + "outputs": [] + }, { "metadata": { "id": "rilTf7HZbM4y", @@ -316,11 +536,11 @@ "metadata": { "id": "4ggBRYFGKih5", "colab_type": "code", + "outputId": "8119a6e8-0dde-4020-b867-e6a2ac351b2f", "colab": { "base_uri": "https://localhost:8080/", "height": 1283 - }, - "outputId": "8119a6e8-0dde-4020-b867-e6a2ac351b2f" + } }, "cell_type": "code", "source": [ @@ -352,7 +572,7 @@ "print(\"Negative words\")\n", "wordcloud_draw(train_neg)" ], - "execution_count": 11, + "execution_count": 0, "outputs": [ { "output_type": "stream", @@ -411,10 +631,10 @@ "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", "id": "AwnzDD_0GZIH", "colab_type": "code", - "outputId": "a520e46e-1794-4ea8-ba39-d9ce0ea3c23b", + "outputId": "db4860bb-4a3a-4540-a3f1-6786f643e356", "colab": { "base_uri": "https://localhost:8080/", - "height": 34 + "height": 35 } }, "cell_type": "code", @@ -434,7 +654,7 @@ "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot" ], - "execution_count": 0, + "execution_count": 9, "outputs": [ { "output_type": "stream", @@ -537,10 +757,10 @@ "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", "id": "4AlRADppGZIa", "colab_type": "code", - "outputId": "7b7b8a7e-8822-418f-ed21-05f49b94a63a", + "outputId": "584c886d-7e1f-4792-ecc5-1b0852f69964", "colab": { "base_uri": "https://localhost:8080/", - "height": 51 + "height": 52 } }, "cell_type": "code", @@ -550,7 +770,7 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 0, + "execution_count": 16, "outputs": [ { "output_type": "execute_result", @@ -563,7 +783,7 @@ "metadata": { "tags": [] }, - "execution_count": 12 + "execution_count": 16 } ] }, @@ -641,10 +861,10 @@ "metadata": { "id": "yrvsOTvmOPvZ", "colab_type": "code", - "outputId": "2cc4f555-8a55-483e-ebd2-3a41fb6cbd4a", + "outputId": "334fb16b-d159-43d2-f178-cee79a9b01b1", "colab": { "base_uri": "https://localhost:8080/", - "height": 1105 + "height": 585 } }, "cell_type": "code", @@ -653,77 +873,21 @@ "model1.summary()\n", "SVG(model_to_dot(trained_model1, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" ], - "execution_count": 0, + "execution_count": 18, "outputs": [ { - "output_type": "stream", - "text": [ - "__________________________________________________________________________________________________\n", - "Layer (type) Output Shape Param # Connected to \n", - "==================================================================================================\n", - "input_1 (InputLayer) (None, 50) 0 \n", - "__________________________________________________________________________________________________\n", - "embedding_1 (Embedding) (None, 50, 300) 5843700 input_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "spatial_dropout1d_1 (SpatialDro (None, 50, 300) 0 embedding_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "bidirectional_1 (Bidirectional) (None, 50, 128) 140544 spatial_dropout1d_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "bidirectional_2 (Bidirectional) (None, 50, 128) 187392 spatial_dropout1d_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "conv1d_1 (Conv1D) (None, 48, 32) 12320 bidirectional_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "conv1d_2 (Conv1D) (None, 48, 32) 12320 bidirectional_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "conv1d_3 (Conv1D) (None, 48, 32) 12320 bidirectional_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "conv1d_4 (Conv1D) (None, 48, 32) 12320 bidirectional_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_average_pooling1d_1 (Glo (None, 32) 0 conv1d_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_max_pooling1d_1 (GlobalM (None, 32) 0 conv1d_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_average_pooling1d_2 (Glo (None, 32) 0 conv1d_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_max_pooling1d_2 (GlobalM (None, 32) 0 conv1d_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_average_pooling1d_3 (Glo (None, 32) 0 conv1d_3[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_max_pooling1d_3 (GlobalM (None, 32) 0 conv1d_3[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_average_pooling1d_4 (Glo (None, 32) 0 conv1d_4[0][0] \n", - "__________________________________________________________________________________________________\n", - "global_max_pooling1d_4 (GlobalM (None, 32) 0 conv1d_4[0][0] \n", - "__________________________________________________________________________________________________\n", - "concatenate_1 (Concatenate) (None, 256) 0 global_average_pooling1d_1[0][0] \n", - " global_max_pooling1d_1[0][0] \n", - " global_average_pooling1d_2[0][0] \n", - " global_max_pooling1d_2[0][0] \n", - " global_average_pooling1d_3[0][0] \n", - " global_max_pooling1d_3[0][0] \n", - " global_average_pooling1d_4[0][0] \n", - " global_max_pooling1d_4[0][0] \n", - "__________________________________________________________________________________________________\n", - "batch_normalization_1 (BatchNor (None, 256) 1024 concatenate_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "dense_1 (Dense) (None, 64) 16448 batch_normalization_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "dropout_1 (Dropout) (None, 64) 0 dense_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "batch_normalization_2 (BatchNor (None, 64) 256 dropout_1[0][0] \n", - "__________________________________________________________________________________________________\n", - "dense_2 (Dense) (None, 32) 2080 batch_normalization_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "dropout_2 (Dropout) (None, 32) 0 dense_2[0][0] \n", - "__________________________________________________________________________________________________\n", - "dense_3 (Dense) (None, 5) 165 dropout_2[0][0] \n", - "==================================================================================================\n", - "Total params: 6,240,889\n", - "Trainable params: 396,549\n", - "Non-trainable params: 5,844,340\n", - "__________________________________________________________________________________________________\n" - ], - "name": "stdout" + "output_type": "error", + "ename": "ValueError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mSVG\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_to_dot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrained_model1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_shapes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_layer_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrankdir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'HB'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'dot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'svg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mbuild_model1\u001b[0;34m(lr, lr_d, units, spatial_dr, kernel_size1, kernel_size2, dense_units, dr, conv_size)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mbuild_model1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0minp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mInput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mmax_len\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mEmbedding\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m19479\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0membed_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0membedding_matrix\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrainable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSpatialDropout1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspatial_dr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs, **kwargs)\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;31m# Load weights that were specified at layer instantiation.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_weights\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 436\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_weights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 438\u001b[0m \u001b[0;31m# Raise exceptions in case the input is not compatible\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py\u001b[0m in \u001b[0;36mset_weights\u001b[0;34m(self, weights)\u001b[0m\n\u001b[1;32m 1055\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1056\u001b[0m \u001b[0;34m' not compatible with '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1057\u001b[0;31m 'provided weight shape ' + str(w.shape))\n\u001b[0m\u001b[1;32m 1058\u001b[0m \u001b[0mweight_value_tuples\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0mK\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_set_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweight_value_tuples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Layer weight shape (19479, 300) not compatible with provided weight shape (19455, 300)" + ] } ] }, @@ -1364,6 +1528,16 @@ "execution_count": 0, "outputs": [] }, + { + "metadata": { + "id": "JnzQurfeg0Mo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Model 4: Embedding + LSTM/GRU + Multi-layer CNN" + ] + }, { "metadata": { "id": "L3kxtJabtkYT", @@ -1640,48 +1814,6 @@ } ] }, - { - "metadata": { - "id": "tLziOKQltkg9", - "colab_type": "code", - "outputId": "fe22bca9-dbb1-4534-d238-1ab8a9930219", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - } - }, - "cell_type": "code", - "source": [ - "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", - "\n", - "pred = model4.predict(X_test, batch_size = 1024, verbose = 1)\n", - "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", - "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", - "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", - "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", - "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", - "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", - "submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend20.csv\", index=False)\n", - "\n", - "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", - "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", - "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", - "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", - "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", - "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", - "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend20.csv\", index=False)" - ], - "execution_count": 0, - "outputs": [ - { - "output_type": "stream", - "text": [ - "66292/66292 [==============================] - 3s 51us/step\n" - ], - "name": "stdout" - } - ] - }, { "metadata": { "id": "RnHdy1BuNbsE", @@ -1694,110 +1826,84 @@ }, { "metadata": { - "id": "g2JGcOSPBIP7", - "colab_type": "code", - "outputId": "e7f10c4d-3970-430c-f1e6-184a48f47736", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 85 - } + "id": "dLPox7LMfnTo", + "colab_type": "text" }, - "cell_type": "code", + "cell_type": "markdown", "source": [ - "!pip install theano\n", - "!pip install lasagne" - ], - "execution_count": 0, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Requirement already satisfied: theano in /usr/local/lib/python3.6/dist-packages (1.0.3)\n", - "Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.6/dist-packages (from theano) (1.14.6)\n", - "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from theano) (1.1.0)\n", - "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from theano) (1.11.0)\n" - ], - "name": "stdout" - } + "### Model5" ] }, { "metadata": { - "id": "BoTiBvritkn-", - "colab_type": "code", - "colab": {} - }, - "cell_type": "code", - "source": [ - "from google.colab import files\n", - "files.download('/content/drive/My Drive/DeepLearning/avg_blend20.csv')" - ], - "execution_count": 0, - "outputs": [] - }, - { - "metadata": { - "id": "onIcjzteA77o", + "id": "aYuVU-5bfmMO", "colab_type": "code", - "colab": {} + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "outputId": "ec68cd6e-c5fc-4689-8ec9-13492f651f10" }, "cell_type": "code", "source": [ - "import theano.tensor as T\n", - "from lasagne.layers.base import Layer\n", - "\n", - "\n", - "class KMaxPoolLayer(Layer):\n", - "\n", - " def __init__(self,incoming,k,**kwargs):\n", - " super(KMaxPoolLayer, self).__init__(incoming, **kwargs)\n", - " self.k = k\n", - "\n", - " def get_output_shape_for(self, input_shape):\n", - " return (input_shape[0], input_shape[1], input_shape[2], self.k)\n", - "\n", - " def get_output_for(self, input, **kwargs):\n", - " return self.kmaxpooling(input,self.k)\n", - "\n", - "\n", - " def kmaxpooling(self,input,k):\n", - "\n", - " sorted_values = T.argsort(input,axis=3)\n", - " topmax_indexes = sorted_values[:,:,:,-k:]\n", - " # sort indexes so that we keep the correct order within the sentence\n", - " topmax_indexes_sorted = T.sort(topmax_indexes)\n", - "\n", - " #given that topmax only gives the index of the third dimension, we need to generate the other 3 dimensions\n", - " dim0 = T.arange(0,self.input_shape[0]).repeat(self.input_shape[1]*self.input_shape[2]*k)\n", - " dim1 = T.arange(0,self.input_shape[1]).repeat(k*self.input_shape[2]).reshape((1,-1)).repeat(self.input_shape[0],axis=0).flatten()\n", - " dim2 = T.arange(0,self.input_shape[2]).repeat(k).reshape((1,-1)).repeat(self.input_shape[0]*self.input_shape[1],axis=0).flatten()\n", - " dim3 = topmax_indexes_sorted.flatten()\n", - " return input[dim0,dim1,dim2,dim3].reshape((self.input_shape[0], self.input_shape[1], self.input_shape[2], k))\n", - "\n", - "\n", - "\n", - "class DynamicKMaxPoolLayer(KMaxPoolLayer):\n", + "train = pd.read_csv('/content/drive/My Drive/DeepLearning/train.tsv', sep=\"\\t\")\n", + "test = pd.read_csv('/content/drive/My Drive/DeepLearning/test.tsv', sep=\"\\t\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "y = train['Sentiment']\n", + "class2 = train[train['Sentiment']==2]\n", + "class2Sample = class2.sample(frac=0.5) #, random_state=3\n", + "train = pd.concat([train[train['Sentiment']!=2], class2Sample])\n", "\n", - " def __init__(self,incoming,ktop,nroflayers,layernr,**kwargs):\n", - " super(DynamicKMaxPoolLayer, self).__init__(incoming,ktop, **kwargs)\n", - " self.ktop = ktop\n", - " self.layernr = layernr\n", - " self.nroflayers = nroflayers\n", + "tk = Tokenizer(lower = True, filters='')\n", + "full_text = list(train['Phrase'].values) + list(test['Phrase'].values)\n", + "tk.fit_on_texts(full_text)\n", + "train_tokenized = tk.texts_to_sequences(train['Phrase'])\n", + "test_tokenized = tk.texts_to_sequences(test['Phrase'])\n", "\n", - " def get_k(self,input_shape):\n", - " return T.cast(T.max([self.ktop,T.ceil((self.nroflayers-self.layernr)/float(self.nroflayers)*input_shape[3])]),'int32')\n", + "embedding_path = \"/content/drive/My Drive/DeepLearning/crawl-300d-2M.vec\"\n", + "#embedding_path = \"/content/drive/My Drive/DeepLearning/glove.twitter.27B.25d.txt\"\n", + "#embed_size = 25\n", + "embed_size = 300\n", + "max_features = 30000\n", "\n", - " def get_output_shape_for(self, input_shape):\n", - " return (input_shape[0], input_shape[1], input_shape[2], None)\n", + "def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32')\n", + "embedding_index = dict(get_coefs(*o.strip().split(\" \")) for o in open(embedding_path))\n", "\n", - " def get_output_for(self, input, **kwargs):\n", + "word_index = tk.word_index\n", + "nb_words = min(max_features, len(word_index))\n", + "embedding_matrix = np.zeros((nb_words + 1, embed_size))\n", + "for word, i in word_index.items():\n", + " if i >= max_features: continue\n", + " embedding_vector = embedding_index.get(word)\n", + " if embedding_vector is not None: embedding_matrix[i] = embedding_vector\n", + " \n", + " \n", + "max_len = 50\n", + "X_train = pad_sequences(train_tokenized, maxlen = max_len)\n", + "X_test = pad_sequences(test_tokenized, maxlen = max_len)\n", "\n", - " k = self.get_k(input.shape)\n", "\n", - " return self.kmaxpooling(input,k)\n" + "from sklearn.preprocessing import OneHotEncoder\n", + "ohe = OneHotEncoder(sparse=False)\n", + "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", + "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 0, - "outputs": [] + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "OneHotEncoder(categorical_features='all', dtype=,\n", + " handle_unknown='error', n_values='auto', sparse=False)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 10 + } + ] } ] } \ No newline at end of file From 05ca79109d2244f1f3194c9d786acd504fbb5d52 Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Wed, 12 Dec 2018 08:47:22 -0800 Subject: [PATCH 6/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 688 ++++++++++++++++++++-------------------- 1 file changed, 347 insertions(+), 341 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index d9c6da7..d0ef7ad 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -7,6 +7,7 @@ "version": "0.3.2", "provenance": [], "collapsed_sections": [], + "toc_visible": true, "include_colab_link": true }, "kernelspec": { @@ -43,216 +44,36 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", + "outputId": "ce417551-d1b7-4063-9b0f-ab3f31e90502", "colab": { "base_uri": "https://localhost:8080/", - "height": 3400 - }, - "outputId": "9e7a8519-9869-4c5d-98a3-11a887bb73c3" + "height": 280 + } }, "cell_type": "code", "source": [ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 3, + "execution_count": 1, "outputs": [ { "output_type": "stream", "text": [ - "Collecting lightgbm\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/4c/3b/4ae113193b4ee01387ed76d5eea32788aec0589df9ae7378a8b7443eaa8b/lightgbm-2.2.2-py2.py3-none-manylinux1_x86_64.whl (1.2MB)\n", - "\u001b[K 100% |████████████████████████████████| 1.2MB 11.8MB/s \n", - "\u001b[?25hCollecting wordcloud\n", - "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ae/af/849edf14d573eba9c8082db898ff0d090428d9485371cc4fe21a66717ad2/wordcloud-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (361kB)\n", - "\u001b[K 100% |████████████████████████████████| 368kB 26.4MB/s \n", - "\u001b[?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.19.2)\n", + "Requirement already satisfied: lightgbm in /usr/local/lib/python3.6/dist-packages (2.2.2)\n", + "Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (1.5.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.20.1)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", - "Installing collected packages: lightgbm, wordcloud\n", - "Successfully installed lightgbm-2.2.2 wordcloud-1.5.0\n", - "Collecting pydot\n", - " Downloading https://files.pythonhosted.org/packages/53/11/9db5c788f5ad05438b7c2a07fd7edd9820b7f3d95bb0690a16f7bf426204/pydot-1.4.0-py2.py3-none-any.whl\n", + "Requirement already satisfied: pydot in /usr/local/lib/python3.6/dist-packages (1.3.0)\n", "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", - "Installing collected packages: pydot\n", - "Successfully installed pydot-1.4.0\n", "Reading package lists... Done\n", "Building dependency tree \n", "Reading state information... Done\n", - "The following additional packages will be installed:\n", - " fontconfig libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", - " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", - " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", - " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", - " libxcb-shm0 libxmu6 libxpm4 libxt6\n", - "Suggested packages:\n", - " gsfonts graphviz-doc libgd-tools\n", - "The following NEW packages will be installed:\n", - " fontconfig graphviz libann0 libcairo2 libcdt5 libcgraph6 libdatrie1 libgd3\n", - " libgts-0.7-5 libgts-bin libgvc6 libgvpr2 libjbig0 liblab-gamut1 libltdl7\n", - " libpango-1.0-0 libpangocairo-1.0-0 libpangoft2-1.0-0 libpathplan4\n", - " libpixman-1-0 libthai-data libthai0 libtiff5 libwebp6 libxaw7 libxcb-render0\n", - " libxcb-shm0 libxmu6 libxpm4 libxt6\n", - "0 upgraded, 30 newly installed, 0 to remove and 8 not upgraded.\n", - "Need to get 4,154 kB of archives.\n", - "After this operation, 16.1 MB of additional disk space will be used.\n", - "Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]\n", - "Get:2 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libann0 amd64 1.1.2+doc-6 [24.8 kB]\n", - "Get:3 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcdt5 amd64 2.40.1-2 [19.6 kB]\n", - "Get:4 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libcgraph6 amd64 2.40.1-2 [40.8 kB]\n", - "Get:5 http://archive.ubuntu.com/ubuntu bionic/main amd64 libjbig0 amd64 2.1-3.1build1 [26.7 kB]\n", - "Get:6 http://archive.ubuntu.com/ubuntu bionic/main amd64 libtiff5 amd64 4.0.9-5 [152 kB]\n", - "Get:7 http://archive.ubuntu.com/ubuntu bionic/main amd64 libwebp6 amd64 0.6.1-2 [185 kB]\n", - "Get:8 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxpm4 amd64 1:3.5.12-1 [34.0 kB]\n", - "Get:9 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libgd3 amd64 2.2.5-4ubuntu0.2 [119 kB]\n", - "Get:10 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-0.7-5 amd64 0.7.6+darcs121130-4 [150 kB]\n", - "Get:11 http://archive.ubuntu.com/ubuntu bionic/main amd64 libpixman-1-0 amd64 0.34.0-2 [229 kB]\n", - "Get:12 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render0 amd64 1.13-1 [14.7 kB]\n", - "Get:13 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-shm0 amd64 1.13-1 [5,572 B]\n", - "Get:14 http://archive.ubuntu.com/ubuntu bionic/main amd64 libcairo2 amd64 1.15.10-2 [580 kB]\n", - "Get:15 http://archive.ubuntu.com/ubuntu bionic/main amd64 libltdl7 amd64 2.4.6-2 [38.8 kB]\n", - "Get:16 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai-data all 0.1.27-2 [133 kB]\n", - "Get:17 http://archive.ubuntu.com/ubuntu bionic/main amd64 libdatrie1 amd64 0.2.10-7 [17.8 kB]\n", - "Get:18 http://archive.ubuntu.com/ubuntu bionic/main amd64 libthai0 amd64 0.1.27-2 [18.0 kB]\n", - "Get:19 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpango-1.0-0 amd64 1.40.14-1ubuntu0.1 [153 kB]\n", - "Get:20 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangoft2-1.0-0 amd64 1.40.14-1ubuntu0.1 [33.2 kB]\n", - "Get:21 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpangocairo-1.0-0 amd64 1.40.14-1ubuntu0.1 [20.8 kB]\n", - "Get:22 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libpathplan4 amd64 2.40.1-2 [22.6 kB]\n", - "Get:23 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvc6 amd64 2.40.1-2 [601 kB]\n", - "Get:24 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgvpr2 amd64 2.40.1-2 [169 kB]\n", - "Get:25 http://archive.ubuntu.com/ubuntu bionic/universe amd64 liblab-gamut1 amd64 2.40.1-2 [178 kB]\n", - "Get:26 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxt6 amd64 1:1.1.5-1 [160 kB]\n", - "Get:27 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxmu6 amd64 2:1.1.2-2 [46.0 kB]\n", - "Get:28 http://archive.ubuntu.com/ubuntu bionic/main amd64 libxaw7 amd64 2:1.0.13-1 [173 kB]\n", - "Get:29 http://archive.ubuntu.com/ubuntu bionic/universe amd64 graphviz amd64 2.40.1-2 [601 kB]\n", - "Get:30 http://archive.ubuntu.com/ubuntu bionic/universe amd64 libgts-bin amd64 0.7.6+darcs121130-4 [41.3 kB]\n", - "Fetched 4,154 kB in 3s (1,249 kB/s)\n", - "Selecting previously unselected package fontconfig.\n", - "(Reading database ... 26397 files and directories currently installed.)\n", - "Preparing to unpack .../00-fontconfig_2.12.6-0ubuntu2_amd64.deb ...\n", - "Unpacking fontconfig (2.12.6-0ubuntu2) ...\n", - "Selecting previously unselected package libann0.\n", - "Preparing to unpack .../01-libann0_1.1.2+doc-6_amd64.deb ...\n", - "Unpacking libann0 (1.1.2+doc-6) ...\n", - "Selecting previously unselected package libcdt5.\n", - "Preparing to unpack .../02-libcdt5_2.40.1-2_amd64.deb ...\n", - "Unpacking libcdt5 (2.40.1-2) ...\n", - "Selecting previously unselected package libcgraph6.\n", - "Preparing to unpack .../03-libcgraph6_2.40.1-2_amd64.deb ...\n", - "Unpacking libcgraph6 (2.40.1-2) ...\n", - "Selecting previously unselected package libjbig0:amd64.\n", - "Preparing to unpack .../04-libjbig0_2.1-3.1build1_amd64.deb ...\n", - "Unpacking libjbig0:amd64 (2.1-3.1build1) ...\n", - "Selecting previously unselected package libtiff5:amd64.\n", - "Preparing to unpack .../05-libtiff5_4.0.9-5_amd64.deb ...\n", - "Unpacking libtiff5:amd64 (4.0.9-5) ...\n", - "Selecting previously unselected package libwebp6:amd64.\n", - "Preparing to unpack .../06-libwebp6_0.6.1-2_amd64.deb ...\n", - "Unpacking libwebp6:amd64 (0.6.1-2) ...\n", - "Selecting previously unselected package libxpm4:amd64.\n", - "Preparing to unpack .../07-libxpm4_1%3a3.5.12-1_amd64.deb ...\n", - "Unpacking libxpm4:amd64 (1:3.5.12-1) ...\n", - "Selecting previously unselected package libgd3:amd64.\n", - "Preparing to unpack .../08-libgd3_2.2.5-4ubuntu0.2_amd64.deb ...\n", - "Unpacking libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", - "Selecting previously unselected package libgts-0.7-5:amd64.\n", - "Preparing to unpack .../09-libgts-0.7-5_0.7.6+darcs121130-4_amd64.deb ...\n", - "Unpacking libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", - "Selecting previously unselected package libpixman-1-0:amd64.\n", - "Preparing to unpack .../10-libpixman-1-0_0.34.0-2_amd64.deb ...\n", - "Unpacking libpixman-1-0:amd64 (0.34.0-2) ...\n", - "Selecting previously unselected package libxcb-render0:amd64.\n", - "Preparing to unpack .../11-libxcb-render0_1.13-1_amd64.deb ...\n", - "Unpacking libxcb-render0:amd64 (1.13-1) ...\n", - "Selecting previously unselected package libxcb-shm0:amd64.\n", - "Preparing to unpack .../12-libxcb-shm0_1.13-1_amd64.deb ...\n", - "Unpacking libxcb-shm0:amd64 (1.13-1) ...\n", - "Selecting previously unselected package libcairo2:amd64.\n", - "Preparing to unpack .../13-libcairo2_1.15.10-2_amd64.deb ...\n", - "Unpacking libcairo2:amd64 (1.15.10-2) ...\n", - "Selecting previously unselected package libltdl7:amd64.\n", - "Preparing to unpack .../14-libltdl7_2.4.6-2_amd64.deb ...\n", - "Unpacking libltdl7:amd64 (2.4.6-2) ...\n", - "Selecting previously unselected package libthai-data.\n", - "Preparing to unpack .../15-libthai-data_0.1.27-2_all.deb ...\n", - "Unpacking libthai-data (0.1.27-2) ...\n", - "Selecting previously unselected package libdatrie1:amd64.\n", - "Preparing to unpack .../16-libdatrie1_0.2.10-7_amd64.deb ...\n", - "Unpacking libdatrie1:amd64 (0.2.10-7) ...\n", - "Selecting previously unselected package libthai0:amd64.\n", - "Preparing to unpack .../17-libthai0_0.1.27-2_amd64.deb ...\n", - "Unpacking libthai0:amd64 (0.1.27-2) ...\n", - "Selecting previously unselected package libpango-1.0-0:amd64.\n", - "Preparing to unpack .../18-libpango-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpangoft2-1.0-0:amd64.\n", - "Preparing to unpack .../19-libpangoft2-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpangocairo-1.0-0:amd64.\n", - "Preparing to unpack .../20-libpangocairo-1.0-0_1.40.14-1ubuntu0.1_amd64.deb ...\n", - "Unpacking libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Selecting previously unselected package libpathplan4.\n", - "Preparing to unpack .../21-libpathplan4_2.40.1-2_amd64.deb ...\n", - "Unpacking libpathplan4 (2.40.1-2) ...\n", - "Selecting previously unselected package libgvc6.\n", - "Preparing to unpack .../22-libgvc6_2.40.1-2_amd64.deb ...\n", - "Unpacking libgvc6 (2.40.1-2) ...\n", - "Selecting previously unselected package libgvpr2.\n", - "Preparing to unpack .../23-libgvpr2_2.40.1-2_amd64.deb ...\n", - "Unpacking libgvpr2 (2.40.1-2) ...\n", - "Selecting previously unselected package liblab-gamut1.\n", - "Preparing to unpack .../24-liblab-gamut1_2.40.1-2_amd64.deb ...\n", - "Unpacking liblab-gamut1 (2.40.1-2) ...\n", - "Selecting previously unselected package libxt6:amd64.\n", - "Preparing to unpack .../25-libxt6_1%3a1.1.5-1_amd64.deb ...\n", - "Unpacking libxt6:amd64 (1:1.1.5-1) ...\n", - "Selecting previously unselected package libxmu6:amd64.\n", - "Preparing to unpack .../26-libxmu6_2%3a1.1.2-2_amd64.deb ...\n", - "Unpacking libxmu6:amd64 (2:1.1.2-2) ...\n", - "Selecting previously unselected package libxaw7:amd64.\n", - "Preparing to unpack .../27-libxaw7_2%3a1.0.13-1_amd64.deb ...\n", - "Unpacking libxaw7:amd64 (2:1.0.13-1) ...\n", - "Selecting previously unselected package graphviz.\n", - "Preparing to unpack .../28-graphviz_2.40.1-2_amd64.deb ...\n", - "Unpacking graphviz (2.40.1-2) ...\n", - "Selecting previously unselected package libgts-bin.\n", - "Preparing to unpack .../29-libgts-bin_0.7.6+darcs121130-4_amd64.deb ...\n", - "Unpacking libgts-bin (0.7.6+darcs121130-4) ...\n", - "Setting up libgts-0.7-5:amd64 (0.7.6+darcs121130-4) ...\n", - "Setting up libpathplan4 (2.40.1-2) ...\n", - "Setting up liblab-gamut1 (2.40.1-2) ...\n", - "Setting up libxcb-render0:amd64 (1.13-1) ...\n", - "Setting up libjbig0:amd64 (2.1-3.1build1) ...\n", - "Setting up libdatrie1:amd64 (0.2.10-7) ...\n", - "Setting up libtiff5:amd64 (4.0.9-5) ...\n", - "Setting up libpixman-1-0:amd64 (0.34.0-2) ...\n", - "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n", - "Setting up libltdl7:amd64 (2.4.6-2) ...\n", - "Setting up libann0 (1.1.2+doc-6) ...\n", - "Setting up libxcb-shm0:amd64 (1.13-1) ...\n", - "Setting up libxpm4:amd64 (1:3.5.12-1) ...\n", - "Setting up libxt6:amd64 (1:1.1.5-1) ...\n", - "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n", - "Setting up libgts-bin (0.7.6+darcs121130-4) ...\n", - "Setting up libthai-data (0.1.27-2) ...\n", - "Setting up libcdt5 (2.40.1-2) ...\n", - "Setting up fontconfig (2.12.6-0ubuntu2) ...\n", - "Regenerating fonts cache... done.\n", - "Setting up libcgraph6 (2.40.1-2) ...\n", - "Setting up libwebp6:amd64 (0.6.1-2) ...\n", - "Setting up libcairo2:amd64 (1.15.10-2) ...\n", - "Setting up libgvpr2 (2.40.1-2) ...\n", - "Setting up libgd3:amd64 (2.2.5-4ubuntu0.2) ...\n", - "Setting up libthai0:amd64 (0.1.27-2) ...\n", - "Setting up libxmu6:amd64 (2:1.1.2-2) ...\n", - "Setting up libpango-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libxaw7:amd64 (2:1.0.13-1) ...\n", - "Setting up libpangoft2-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libpangocairo-1.0-0:amd64 (1.40.14-1ubuntu0.1) ...\n", - "Setting up libgvc6 (2.40.1-2) ...\n", - "Setting up graphviz (2.40.1-2) ...\n", - "Processing triggers for libc-bin (2.27-3ubuntu1) ...\n" + "graphviz is already the newest version (2.40.1-2).\n", + "0 upgraded, 0 newly installed, 0 to remove and 8 not upgraded.\n" ], "name": "stdout" } @@ -266,7 +87,7 @@ "_kg_hide-input": true, "id": "9K7leB0DGZG9", "colab_type": "code", - "outputId": "0f8d38f0-1df7-4fbf-d3e3-3e04e06ca579", + "outputId": "fbc69d88-a2a8-45c4-fd7e-616339fec09e", "colab": { "base_uri": "https://localhost:8080/", "height": 52 @@ -301,13 +122,13 @@ "nltk.download('stopwords')\n", "from google.colab import files\n" ], - "execution_count": 4, + "execution_count": 5, "outputs": [ { "output_type": "stream", "text": [ "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", - "[nltk_data] Unzipping corpora/stopwords.zip.\n" + "[nltk_data] Package stopwords is already up-to-date!\n" ], "name": "stdout" } @@ -328,7 +149,7 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", - "outputId": "9f67177f-490b-44e2-ebfa-7c5dfca0a92e", + "outputId": "9ce68286-71d7-4272-c067-7ad6cfa546e2", "colab": { "base_uri": "https://localhost:8080/", "height": 124 @@ -339,7 +160,7 @@ "from google.colab import drive\n", "drive.mount('/content/drive')\n" ], - "execution_count": 5, + "execution_count": 3, "outputs": [ { "output_type": "stream", @@ -416,10 +237,10 @@ "_uuid": "f9b8d8423bb09068cb168b67f4756ee8b250fc8c", "id": "xBg-49HYGZHE", "colab_type": "code", - "outputId": "ae41b3cc-4dd8-4551-9a0c-75dbf3e5ab8f", + "outputId": "4a3df630-c856-4270-ec54-198e3161f767", "colab": { "base_uri": "https://localhost:8080/", - "height": 680 + "height": 713 } }, "cell_type": "code", @@ -433,7 +254,7 @@ "print('Average word length of phrases in train is {0:.0f}.'.format(np.mean(train['Phrase'].apply(lambda x: len(x.split())))))\n", "print('Average word length of phrases in test is {0:.0f}.'.format(np.mean(test['Phrase'].apply(lambda x: len(x.split())))))" ], - "execution_count": 0, + "execution_count": 19, "outputs": [ { "output_type": "stream", @@ -455,22 +276,22 @@ "549 550 20 \n", "550 551 20 \n", "\n", - " Phrase Sentiment \n", - "536 It 's everything you 'd expect -- but nothing more . 2 \n", - "537 's everything you 'd expect -- but nothing more . 1 \n", - "538 's everything you 'd expect -- but nothing more 2 \n", - "539 everything you 'd expect -- but nothing more 1 \n", - "540 everything 2 \n", - "541 you 'd expect -- but nothing more 1 \n", - "542 'd expect -- but nothing more 2 \n", - "543 'd 2 \n", - "544 expect -- but nothing more 2 \n", - "545 expect -- but nothing 2 \n", - "546 expect -- 2 \n", - "547 expect 2 \n", - "548 but nothing 2 \n", - "549 nothing 1 \n", - "550 more 2 \n", + " Phrase Sentiment fold_id \n", + "536 It 's everything you 'd expect -- but nothing more . 2 0 \n", + "537 's everything you 'd expect -- but nothing more . 1 0 \n", + "538 's everything you 'd expect -- but nothing more 2 0 \n", + "539 everything you 'd expect -- but nothing more 1 0 \n", + "540 everything 2 0 \n", + "541 you 'd expect -- but nothing more 1 0 \n", + "542 'd expect -- but nothing more 2 0 \n", + "543 'd 2 0 \n", + "544 expect -- but nothing more 2 0 \n", + "545 expect -- but nothing 2 0 \n", + "546 expect -- 2 0 \n", + "547 expect 2 0 \n", + "548 but nothing 2 0 \n", + "549 nothing 1 0 \n", + "550 more 2 0 \n", "Average count of phrases per sentence in train is 18.\n", "Average count of phrases per sentence in test is 20.\n", "Number of phrases in train: 156060. Number of sentences in train: 8529.\n", @@ -496,10 +317,10 @@ "metadata": { "id": "7K_b0M-0Eye9", "colab_type": "code", - "outputId": "e0d12d5a-349e-4648-ab49-0126bbfe045d", + "outputId": "4eba33d3-dfa3-4018-d98b-64d41b3951f3", "colab": { "base_uri": "https://localhost:8080/", - "height": 51 + "height": 52 } }, "cell_type": "code", @@ -520,7 +341,7 @@ " else:\n", " return int(new_s)" ], - "execution_count": 0, + "execution_count": 20, "outputs": [ { "output_type": "stream", @@ -631,7 +452,7 @@ "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", "id": "AwnzDD_0GZIH", "colab_type": "code", - "outputId": "db4860bb-4a3a-4540-a3f1-6786f643e356", + "outputId": "d617185a-0436-499e-de74-b5bc6047dfa4", "colab": { "base_uri": "https://localhost:8080/", "height": 35 @@ -654,7 +475,7 @@ "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot" ], - "execution_count": 9, + "execution_count": 2, "outputs": [ { "output_type": "stream", @@ -757,10 +578,10 @@ "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", "id": "4AlRADppGZIa", "colab_type": "code", - "outputId": "584c886d-7e1f-4792-ecc5-1b0852f69964", + "outputId": "344b03cd-0261-4485-acef-b3d5b2e45d94", "colab": { "base_uri": "https://localhost:8080/", - "height": 52 + "height": 228 } }, "cell_type": "code", @@ -770,23 +591,96 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 16, + "execution_count": 19, "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.\n", + "If you want the future behaviour and silence this warning, you can specify \"categories='auto'\".\n", + "In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.\n", + " warnings.warn(msg, FutureWarning)\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.\n", + "If you want the future behaviour and silence this warning, you can specify \"categories='auto'\".\n", + "In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.\n", + " warnings.warn(msg, FutureWarning)\n" + ], + "name": "stderr" + }, { "output_type": "execute_result", "data": { "text/plain": [ - "OneHotEncoder(categorical_features='all', dtype=,\n", - " handle_unknown='error', n_values='auto', sparse=False)" + "OneHotEncoder(categorical_features=None, categories=None,\n", + " dtype=, handle_unknown='error',\n", + " n_values=None, sparse=False)" ] }, "metadata": { "tags": [] }, - "execution_count": 16 + "execution_count": 19 } ] }, + { + "metadata": { + "id": "ynCM0G_xBJN1", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "NUM_FOLDS = 2\n", + "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", + "\n", + "def Train_And_Prediction(model): \n", + " test_preds = np.zeros((test.shape[0], 5))\n", + " for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + "\n", + " print(\"Training the model...\")\n", + " model.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 1, verbose = 1, callbacks = [early_stop]) \n", + " model.save_weights(file_path) \n", + " test_preds += model.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + "\n", + " print(\"Save model after cross-validation...\")\n", + " model.save_weights(file_path) \n", + " test_preds /= NUM_FOLDS\n", + "\n", + "\n", + " print(\"Make the submission ready...\")\n", + " sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + " pred = model.predict(X_test, batch_size = 1024, verbose = 1)\n", + " predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + " submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + " submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + " submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + " submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + " submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + " submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + " predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + " submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + " submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + " submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + " submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + " submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + " submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 0, + "outputs": [] + }, { "metadata": { "id": "x2cpGj5WcMsH", @@ -861,33 +755,102 @@ "metadata": { "id": "yrvsOTvmOPvZ", "colab_type": "code", - "outputId": "334fb16b-d159-43d2-f178-cee79a9b01b1", + "outputId": "28df70e8-e2ef-4f52-f0c7-fb1eca8c98be", "colab": { "base_uri": "https://localhost:8080/", - "height": 585 + "height": 2663 } }, "cell_type": "code", "source": [ "model1 = build_model1(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", "model1.summary()\n", - "SVG(model_to_dot(trained_model1, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" + "SVG(model_to_dot(model1, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" ], - "execution_count": 18, + "execution_count": 30, "outputs": [ { - "output_type": "error", - "ename": "ValueError", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmodel1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mSVG\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_to_dot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrained_model1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_shapes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshow_layer_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrankdir\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'HB'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'dot'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'svg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mbuild_model1\u001b[0;34m(lr, lr_d, units, spatial_dr, kernel_size1, kernel_size2, dense_units, dr, conv_size)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mbuild_model1\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0minp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mInput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mmax_len\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mEmbedding\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m19479\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0membed_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0membedding_matrix\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrainable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mx1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSpatialDropout1D\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspatial_dr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs, **kwargs)\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;31m# Load weights that were specified at layer instantiation.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 435\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_weights\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 436\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_weights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 437\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 438\u001b[0m \u001b[0;31m# Raise exceptions in case the input is not compatible\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py\u001b[0m in \u001b[0;36mset_weights\u001b[0;34m(self, weights)\u001b[0m\n\u001b[1;32m 1055\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1056\u001b[0m \u001b[0;34m' not compatible with '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1057\u001b[0;31m 'provided weight shape ' + str(w.shape))\n\u001b[0m\u001b[1;32m 1058\u001b[0m \u001b[0mweight_value_tuples\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1059\u001b[0m \u001b[0mK\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_set_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweight_value_tuples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: Layer weight shape (19479, 300) not compatible with provided weight shape (19455, 300)" - ] + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_3 (InputLayer) (None, 50) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_3 (Embedding) (None, 50, 300) 5843700 input_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "spatial_dropout1d_3 (SpatialDro (None, 50, 300) 0 embedding_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_5 (Bidirectional) (None, 50, 128) 140544 spatial_dropout1d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_6 (Bidirectional) (None, 50, 128) 187392 spatial_dropout1d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_9 (Conv1D) (None, 48, 32) 12320 bidirectional_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_10 (Conv1D) (None, 48, 32) 12320 bidirectional_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_11 (Conv1D) (None, 48, 32) 12320 bidirectional_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_12 (Conv1D) (None, 48, 32) 12320 bidirectional_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_9 (Glo (None, 32) 0 conv1d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_9 (GlobalM (None, 32) 0 conv1d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_10 (Gl (None, 32) 0 conv1d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_10 (Global (None, 32) 0 conv1d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_11 (Gl (None, 32) 0 conv1d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_11 (Global (None, 32) 0 conv1d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_12 (Gl (None, 32) 0 conv1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_12 (Global (None, 32) 0 conv1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_3 (Concatenate) (None, 256) 0 global_average_pooling1d_9[0][0] \n", + " global_max_pooling1d_9[0][0] \n", + " global_average_pooling1d_10[0][0]\n", + " global_max_pooling1d_10[0][0] \n", + " global_average_pooling1d_11[0][0]\n", + " global_max_pooling1d_11[0][0] \n", + " global_average_pooling1d_12[0][0]\n", + " global_max_pooling1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_5 (BatchNor (None, 256) 1024 concatenate_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_7 (Dense) (None, 64) 16448 batch_normalization_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_5 (Dropout) (None, 64) 0 dense_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_6 (BatchNor (None, 64) 256 dropout_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_8 (Dense) (None, 32) 2080 batch_normalization_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_6 (Dropout) (None, 32) 0 dense_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_9 (Dense) (None, 5) 165 dropout_6[0][0] \n", + "==================================================================================================\n", + "Total params: 6,240,889\n", + "Trainable params: 396,549\n", + "Non-trainable params: 5,844,340\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140068280049224\n\ninput_3: InputLayer\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50)\n\n\n\n140068280049448\n\nembedding_3: Embedding\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50, 300)\n\n\n\n140068280049224->140068280049448\n\n\n\n\n\n140068280049392\n\nspatial_dropout1d_3: SpatialDropout1D\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 300)\n\n\n\n140068280049448->140068280049392\n\n\n\n\n\n140068279531280\n\nbidirectional_5(cu_dnngru_3): Bidirectional(CuDNNGRU)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140068280049392->140068279531280\n\n\n\n\n\n140067975612624\n\nbidirectional_6(cu_dnnlstm_3): Bidirectional(CuDNNLSTM)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140068280049392->140067975612624\n\n\n\n\n\n140067975713400\n\nconv1d_9: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140068279531280->140067975713400\n\n\n\n\n\n140067973474288\n\nconv1d_10: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140068279531280->140067973474288\n\n\n\n\n\n140067973189984\n\nconv1d_11: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140067975612624->140067973189984\n\n\n\n\n\n140067972907360\n\nconv1d_12: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140067975612624->140067972907360\n\n\n\n\n\n140067973474232\n\nglobal_average_pooling1d_9: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067975713400->140067973474232\n\n\n\n\n\n140067973474344\n\nglobal_max_pooling1d_9: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067975713400->140067973474344\n\n\n\n\n\n140067973190376\n\nglobal_average_pooling1d_10: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973474288->140067973190376\n\n\n\n\n\n140067973190152\n\nglobal_max_pooling1d_10: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973474288->140067973190152\n\n\n\n\n\n140067973285760\n\nglobal_average_pooling1d_11: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973189984->140067973285760\n\n\n\n\n\n140067973287328\n\nglobal_max_pooling1d_11: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973189984->140067973287328\n\n\n\n\n\n140067972996792\n\nglobal_average_pooling1d_12: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067972907360->140067972996792\n\n\n\n\n\n140067972996400\n\nglobal_max_pooling1d_12: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067972907360->140067972996400\n\n\n\n\n\n140067972996232\n\nconcatenate_3: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32)]\n\n(None, 256)\n\n\n\n140067973474232->140067972996232\n\n\n\n\n\n140067973474344->140067972996232\n\n\n\n\n\n140067973190376->140067972996232\n\n\n\n\n\n140067973190152->140067972996232\n\n\n\n\n\n140067973285760->140067972996232\n\n\n\n\n\n140067973287328->140067972996232\n\n\n\n\n\n140067972996792->140067972996232\n\n\n\n\n\n140067972996400->140067972996232\n\n\n\n\n\n140067972599536\n\nbatch_normalization_5: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 256)\n\n\n\n140067972996232->140067972599536\n\n\n\n\n\n140067972686456\n\ndense_7: Dense\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 64)\n\n\n\n140067972599536->140067972686456\n\n\n\n\n\n140067972598808\n\ndropout_5: Dropout\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140067972686456->140067972598808\n\n\n\n\n\n140067972835144\n\nbatch_normalization_6: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140067972598808->140067972835144\n\n\n\n\n\n140067971606904\n\ndense_8: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 32)\n\n\n\n140067972835144->140067971606904\n\n\n\n\n\n140067971984296\n\ndropout_6: Dropout\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n140067971606904->140067971984296\n\n\n\n\n\n140067971384600\n\ndense_9: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 5)\n\n\n\n140067971984296->140067971384600\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 } ] }, @@ -905,10 +868,10 @@ "metadata": { "id": "O9OLbhyJTfMc", "colab_type": "code", - "outputId": "6ee8bd27-0d55-4636-c033-93374d3602a6", + "outputId": "58b88c23-3fbc-4483-ab99-0e98f8121c78", "colab": { "base_uri": "https://localhost:8080/", - "height": 1479 + "height": 967 } }, "cell_type": "code", @@ -962,7 +925,7 @@ "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" ], - "execution_count": 0, + "execution_count": 31, "outputs": [ { "output_type": "stream", @@ -972,89 +935,25 @@ "Splitting the data into train and validation...\n", "Training the model...\n", "Train on 125230 samples, validate on 30830 samples\n", - "Epoch 1/15\n", - "125230/125230 [==============================] - 70s 557us/step - loss: 0.3728 - acc: 0.8319 - val_loss: 0.3122 - val_acc: 0.8580\n", - "Epoch 2/15\n", - "125230/125230 [==============================] - 62s 493us/step - loss: 0.3281 - acc: 0.8515 - val_loss: 0.3031 - val_acc: 0.8599\n", - "Epoch 3/15\n", - "125230/125230 [==============================] - 62s 492us/step - loss: 0.3184 - acc: 0.8549 - val_loss: 0.3007 - val_acc: 0.8629\n", - "Epoch 4/15\n", - "125230/125230 [==============================] - 62s 494us/step - loss: 0.3115 - acc: 0.8572 - val_loss: 0.2998 - val_acc: 0.8620\n", - "Epoch 5/15\n", - "125230/125230 [==============================] - 62s 493us/step - loss: 0.3046 - acc: 0.8599 - val_loss: 0.2952 - val_acc: 0.8663\n", - "Epoch 6/15\n", - "125230/125230 [==============================] - 62s 493us/step - loss: 0.2976 - acc: 0.8632 - val_loss: 0.2900 - val_acc: 0.8669\n", - "Epoch 7/15\n", - "125230/125230 [==============================] - 61s 489us/step - loss: 0.2941 - acc: 0.8648 - val_loss: 0.2888 - val_acc: 0.8678\n", - "Epoch 8/15\n", - "125230/125230 [==============================] - 61s 491us/step - loss: 0.2897 - acc: 0.8668 - val_loss: 0.2901 - val_acc: 0.8676\n", - "Epoch 9/15\n", - "125230/125230 [==============================] - 61s 490us/step - loss: 0.2868 - acc: 0.8683 - val_loss: 0.2883 - val_acc: 0.8687\n", - "Epoch 10/15\n", - "125230/125230 [==============================] - 61s 489us/step - loss: 0.2835 - acc: 0.8698 - val_loss: 0.2893 - val_acc: 0.8686\n", - "Epoch 11/15\n", - "125230/125230 [==============================] - 61s 490us/step - loss: 0.2812 - acc: 0.8710 - val_loss: 0.2877 - val_acc: 0.8688\n", - "Epoch 12/15\n", - "125230/125230 [==============================] - 61s 490us/step - loss: 0.2783 - acc: 0.8726 - val_loss: 0.2865 - val_acc: 0.8691\n", - "Epoch 13/15\n", - "125230/125230 [==============================] - 61s 490us/step - loss: 0.2762 - acc: 0.8739 - val_loss: 0.2898 - val_acc: 0.8666\n", - "Epoch 14/15\n", - "125230/125230 [==============================] - 61s 491us/step - loss: 0.2745 - acc: 0.8749 - val_loss: 0.2872 - val_acc: 0.8696\n", - "66292/66292 [==============================] - 4s 64us/step\n", - "\n", - "FOLD 2\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124608 samples, validate on 31452 samples\n", - "Epoch 1/15\n", - "124608/124608 [==============================] - 61s 488us/step - loss: 0.2808 - acc: 0.8720 - val_loss: 0.2489 - val_acc: 0.8887\n", - "Epoch 2/15\n", - "124608/124608 [==============================] - 61s 491us/step - loss: 0.2782 - acc: 0.8728 - val_loss: 0.2524 - val_acc: 0.8877\n", - "Epoch 3/15\n", - "124608/124608 [==============================] - 61s 490us/step - loss: 0.2751 - acc: 0.8746 - val_loss: 0.2513 - val_acc: 0.8877\n", - "66292/66292 [==============================] - 3s 48us/step\n", - "\n", - "FOLD 3\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 125022 samples, validate on 31038 samples\n", - "Epoch 1/15\n", - "125022/125022 [==============================] - 61s 488us/step - loss: 0.2765 - acc: 0.8740 - val_loss: 0.2355 - val_acc: 0.8952\n", - "Epoch 2/15\n", - "125022/125022 [==============================] - 61s 490us/step - loss: 0.2742 - acc: 0.8755 - val_loss: 0.2378 - val_acc: 0.8928\n", - "Epoch 3/15\n", - "125022/125022 [==============================] - 61s 489us/step - loss: 0.2727 - acc: 0.8764 - val_loss: 0.2400 - val_acc: 0.8924\n", - "66292/66292 [==============================] - 3s 48us/step\n", - "\n", - "FOLD 4\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124609 samples, validate on 31451 samples\n", - "Epoch 1/15\n", - "124609/124609 [==============================] - 61s 489us/step - loss: 0.2718 - acc: 0.8770 - val_loss: 0.2355 - val_acc: 0.8946\n", - "Epoch 2/15\n", - "124609/124609 [==============================] - 61s 490us/step - loss: 0.2693 - acc: 0.8779 - val_loss: 0.2391 - val_acc: 0.8937\n", - "Epoch 3/15\n", - "124609/124609 [==============================] - 61s 491us/step - loss: 0.2682 - acc: 0.8788 - val_loss: 0.2409 - val_acc: 0.8921\n", - "66292/66292 [==============================] - 3s 48us/step\n", - "\n", - "FOLD 5\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 124771 samples, validate on 31289 samples\n", - "Epoch 1/15\n", - "124771/124771 [==============================] - 61s 489us/step - loss: 0.2695 - acc: 0.8780 - val_loss: 0.2309 - val_acc: 0.8969\n", - "Epoch 2/15\n", - "124771/124771 [==============================] - 61s 492us/step - loss: 0.2673 - acc: 0.8791 - val_loss: 0.2326 - val_acc: 0.8955\n", - "Epoch 3/15\n", - "124771/124771 [==============================] - 61s 491us/step - loss: 0.2664 - acc: 0.8798 - val_loss: 0.2360 - val_acc: 0.8939\n", - "66292/66292 [==============================] - 3s 49us/step\n", - "\n", - "Save model after cross-validation...\n", - "Make the submission ready...\n", - "66292/66292 [==============================] - 3s 48us/step\n" + "Epoch 1/15\n" ], "name": "stdout" + }, + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Training the model...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalidation_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mval_seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_val\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m15\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallbacks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mearly_stop\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mtest_preds\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1024\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1037\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1039\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1040\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m def evaluate(self, x=None, y=None,\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2713\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legacy_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2714\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2715\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2716\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2717\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2673\u001b[0m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_metadata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2675\u001b[0;31m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2676\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfetched\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1437\u001b[0m ret = tf_session.TF_SessionRunCallable(\n\u001b[1;32m 1438\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstatus\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1439\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 1440\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] } ] }, @@ -1831,18 +1730,18 @@ }, "cell_type": "markdown", "source": [ - "### Model5" + "### Model5 Undersampling Embedding + {LSTM/GRU} + CNN" ] }, { "metadata": { "id": "aYuVU-5bfmMO", "colab_type": "code", + "outputId": "a58cec13-d203-4dce-a15d-dbf02e0f7efc", "colab": { "base_uri": "https://localhost:8080/", - "height": 52 - }, - "outputId": "ec68cd6e-c5fc-4689-8ec9-13492f651f10" + "height": 620 + } }, "cell_type": "code", "source": [ @@ -1888,20 +1787,127 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 10, + "execution_count": 9, "outputs": [ { - "output_type": "execute_result", - "data": { - "text/plain": [ - "OneHotEncoder(categorical_features='all', dtype=,\n", - " handle_unknown='error', n_values='auto', sparse=False)" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 10 + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mword_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mword_index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mword_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mword_index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_coefs\u001b[0;34m(word, *arr)\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mmax_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m30000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/numpy/core/numeric.py\u001b[0m in \u001b[0;36masarray\u001b[0;34m(a, dtype, order)\u001b[0m\n\u001b[1;32m 490\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 491\u001b[0m \"\"\"\n\u001b[0;32m--> 492\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 493\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 494\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ] + }, + { + "metadata": { + "id": "--QxBTEFBA6I", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model5(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19455, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " \n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " \n", + " \n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " \n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " \n", + " \n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sBnmScRvB-bV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 655 + }, + "outputId": "6e2b8f0c-57b2-478a-9d75-c37f0ae6cba1" + }, + "cell_type": "code", + "source": [ + "#print(\"Building the model...\")\n", + "#model5 = build_model5(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "Train_And_Prediction(model5)\n", + "#print(train)" + ], + "execution_count": 36, + "outputs": [ + { + "output_type": "stream", + "text": [ + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 58113 samples, validate on 58156 samples\n", + "Epoch 1/1\n", + "58113/58113 [==============================] - 39s 673us/step - loss: 0.3773 - acc: 0.8259 - val_loss: 0.3395 - val_acc: 0.8427\n", + "66292/66292 [==============================] - 4s 57us/step\n", + "\n", + "FOLD 2\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 58156 samples, validate on 58113 samples\n", + "Epoch 1/1\n", + "58156/58156 [==============================] - 39s 669us/step - loss: 0.3646 - acc: 0.8309 - val_loss: 0.3353 - val_acc: 0.8434\n", + "66292/66292 [==============================] - 3s 49us/step\n", + "\n", + "Save model after cross-validation...\n", + "Make the submission ready...\n", + "66292/66292 [==============================] - 3s 48us/step\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTrain_And_Prediction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#print(train)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mTrain_And_Prediction\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mround\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpred\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0msubmission\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mtest\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Sentiment'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 34\u001b[0;31m \u001b[0msubmission\u001b[0m \u001b[0;34m=\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubmission\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'left'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 35\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Sentiment\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_sentiment\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Sentiment_x'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Sentiment_y'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'save_test' is not defined" + ] } ] } From 3bd10bf5d4ec9eecb9fb6ee640b9bf53873c61a9 Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Wed, 12 Dec 2018 11:20:08 -0800 Subject: [PATCH 7/8] Created using Colaboratory --- SentimentAnalysis.ipynb | 201 ++++++++++++++++++++++++++-------------- 1 file changed, 133 insertions(+), 68 deletions(-) diff --git a/SentimentAnalysis.ipynb b/SentimentAnalysis.ipynb index d0ef7ad..851a694 100644 --- a/SentimentAnalysis.ipynb +++ b/SentimentAnalysis.ipynb @@ -13,8 +13,7 @@ "kernelspec": { "name": "python3", "display_name": "Python 3" - }, - "accelerator": "GPU" + } }, "cells": [ { @@ -44,7 +43,7 @@ "metadata": { "id": "Vq4S5_HIGpBc", "colab_type": "code", - "outputId": "ce417551-d1b7-4063-9b0f-ab3f31e90502", + "outputId": "92890594-d1dd-426e-a5ba-6f394c2ea339", "colab": { "base_uri": "https://localhost:8080/", "height": 280 @@ -55,15 +54,15 @@ "!pip install lightgbm wordcloud\n", "!pip install pydot && apt-get install graphviz\n" ], - "execution_count": 1, + "execution_count": 6, "outputs": [ { "output_type": "stream", "text": [ "Requirement already satisfied: lightgbm in /usr/local/lib/python3.6/dist-packages (2.2.2)\n", "Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (1.5.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.20.1)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", @@ -87,7 +86,7 @@ "_kg_hide-input": true, "id": "9K7leB0DGZG9", "colab_type": "code", - "outputId": "fbc69d88-a2a8-45c4-fd7e-616339fec09e", + "outputId": "b520c044-e2b5-44fb-ac24-33a8de490c06", "colab": { "base_uri": "https://localhost:8080/", "height": 52 @@ -122,13 +121,13 @@ "nltk.download('stopwords')\n", "from google.colab import files\n" ], - "execution_count": 5, + "execution_count": 7, "outputs": [ { "output_type": "stream", "text": [ "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", - "[nltk_data] Package stopwords is already up-to-date!\n" + "[nltk_data] Unzipping corpora/stopwords.zip.\n" ], "name": "stdout" } @@ -149,7 +148,7 @@ "metadata": { "id": "NOvuWhQPLPmH", "colab_type": "code", - "outputId": "9ce68286-71d7-4272-c067-7ad6cfa546e2", + "outputId": "155639e3-7355-4644-85dc-7f220c1718fa", "colab": { "base_uri": "https://localhost:8080/", "height": 124 @@ -160,7 +159,7 @@ "from google.colab import drive\n", "drive.mount('/content/drive')\n" ], - "execution_count": 3, + "execution_count": 8, "outputs": [ { "output_type": "stream", @@ -317,7 +316,7 @@ "metadata": { "id": "7K_b0M-0Eye9", "colab_type": "code", - "outputId": "4eba33d3-dfa3-4018-d98b-64d41b3951f3", + "outputId": "cd7b539e-acf5-43be-b654-07ab25094608", "colab": { "base_uri": "https://localhost:8080/", "height": 52 @@ -341,13 +340,13 @@ " else:\n", " return int(new_s)" ], - "execution_count": 20, + "execution_count": 16, "outputs": [ { "output_type": "stream", "text": [ - "Number of overlapping phrases 10297\n", - "% of neutral sentiment phrases 0.7301155676410604\n" + "Number of overlapping phrases 6597\n", + "% of neutral sentiment phrases 0.5787479157192663\n" ], "name": "stdout" } @@ -357,10 +356,10 @@ "metadata": { "id": "4ggBRYFGKih5", "colab_type": "code", - "outputId": "8119a6e8-0dde-4020-b867-e6a2ac351b2f", + "outputId": "6d83aa7b-602d-49a4-967a-163cd7b2da89", "colab": { "base_uri": "https://localhost:8080/", - "height": 1283 + "height": 1303 } }, "cell_type": "code", @@ -393,7 +392,7 @@ "print(\"Negative words\")\n", "wordcloud_draw(train_neg)" ], - "execution_count": 0, + "execution_count": 7, "outputs": [ { "output_type": "stream", @@ -405,9 +404,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXVYFF8Xx780qGBgYYOKAQgoFnaD\nhWJ3YWKLLYhioIAoit3dCqJgdysKws/EQkRFRUFp2PePfTeGmdmd2V6cz/PwODP33HvPrrB7z70n\ndHg8Hjg4ODg4ODg4ODg4OKjQVbcCHBwcHBwcHBwcHByaC2cwcHBwcHBwcHBwcHDQwhkMHBwcHBwc\nHBwcHBy0cAYDBwcHBwcHBwcHBwctnMHAwcHBwcHBwcHBwUELZzBwcHBwcHBwcHBwcNDCGQwcHBwc\nHBwcHBwcHLRwBgMHBwcHBwcHBwcHBy2cwcDBwcHBwcHBwcHBQYu+uhWggSs/zcHBwcHBwcHBwSE/\nOvIOoKkGAwcHBwcHBwcHYh6+w+M7r/Hm+We8e/0Vf9OzoK+vhxJmJmjgVAP17KuhW7/G6lZT67h5\nIQ5x0R/w+O4bpP3KQHpaJooVM0Ip8xKwtqkE+8ZW6NK7IXR05F5rFiliHr7D9ahYvP7vM74kpeJP\nehZMTAxRrmJJWNWpiFadbNG8bV3o6Bat902Hx9PIzXyNVOpfI/pqPF4/eQ8AqFKrIlr0bKRehTg4\n/kFsZwcLr+MCZqhREw4O5ZP6/Q8Gd1oNXoF8y4ARkzti0Ng2CtJK+8nLy4e783LkZOfKNU6zNnXh\nGzJEQVppPo9uv8bSGQeRk50n1zjTF/eCi7ta11ByWy//pMGwNK4nfGzDVdZPW3ExGyW8bt7NEYsP\nTVWjNhwc/yacwcABACcTHEnP3Gs+oW0XtJ1+2xgWxdqgacVAgqygPa8gE+HvnIVtzSsGw6J4W+H9\nz6xnuJY0nHJORcDj8dCrmR+ys+RbyErC0MgA4Q98lDa+vLjYezOSi4rxYzXukR03sCvkoiwqMWb/\nhdkoW8FMqXOoGqb/H/LA9v9SAXAuSbKg7EX/+eRtqGRSG3al2ip1Hg4ODg6Of4eelregr1scAHAy\noaHw+fmPPWBqUAOdqp0CALxI3YbvWdEoa9wQPS3v4vRbkbvOrc/jYaBrKrwPf+dMMjzE768lDVe4\nkSDA1cEHqti0zMnOhYu9NwyN9BH+YLHS51M3P76lYUinAJXMNbQzfx41LIAVjioMhcJzadP7xmVJ\nUgL3f5xRtwocHBwcHEUMgbEAAFVLuAqv/+Z+EhoLAFC39Fg8+DIHAKCrQ9wX/Jb5AD0sbzCes6RR\nHVnVpWXpjINwsfdWibEgTk52HlzsvdGnxXKVzqtKXOy9VWYsFJ738d03Kp9XEXi4rVOpsSCOi703\nBrVfpZa52VJkThiWxvWEtWlj1C/ZEqc/iY7wxU8Tlsb1pHwuoICXj2XxvUnPC8uKjzOv/hEY6pqQ\nnp/6tAanPq2hnUvTeXL1P3WrwMHB8Q+y/VUr4bWH9U01aqJd8Hj5hHvX6ueF180qBiH57zWCqxFd\n395WjwhtZgY1Fabj2WMPsX6Z+r8P//7Jgou9N2wbVkfgLg91q6MQtgVF4cTe22rVYeGEPQCAE7cX\nongJY7XqwoQgn5O4GKac0zM2pP74Axd7b7RxscP8Vf3VrQ4tReqE4XX6I5xJWo9FNqew0OYEShtW\nJLT72IZLXLwvi+8N57Lu8LENR4tyfYV9xFka1xPT6myHj204dHR04f/fAMrxe1eZKXU+TWZBr0Dp\nQhwcHBwKxsP6JmcoyMCrX7uho6NH+BFQqXh73P0yA6nZ/6GFxUZSX7p+isTF3lsjjAVx4qI/YHCH\n1epWgzF0i9v4Jx/UbiyIow0nOC723hphLIhzPeqZ2k46mFCkDAYeeFhocxK6OnrQ0zHAFOutrMfo\nWHEkAKBDheGU7T62YShpUB4A4G1zWmZdNR0NDYbn4ODg4CiEe80niP+5AScTHIU/VFz9NAQVijUn\nPOtl9ZDQj66vrOTl5mv0Iujn93SN1k+cIJ+TpGddHRdj1sjtatBGMi723nj26L261SCR+v2Pxv9/\nu9h7Iz+/QN1qkCgyLkmqo2jl1aWiQAN/UTk0i5y8fDScH0LZ1rhmFeya0E9if0HmH0HWn9z8fDjO\nox7vtNdw1Kpgzkiv/TefwD/8GmUbkwxDAr36N2sAnz4dGMlKGzs7Lw+N5q+XOrcAc9NiuO4zXqKM\ns88mpGVmkZ7r6ADPVjPPpLT9VSt4WN/Eg5SNiE09BAAw0C2OEbWiKGUFlDeuj57VthDa83m52PW6\nvfC+aTlP2JUeKNNcTHWXpE9Ro3DgceMKyyW2S+svQFdHX2LfwvOwIfFdCsb2ov671jRc7L21KgAV\nAPq3WYmCAs39vp49ZofGvaeDOmhHvEC3hos17r3jDAYxZtXdR4hDWFD/uMp1SP2WhjGO85CRnkkr\nY2RiCN/D0+DYrr7C5+fxeOhZfpzCx5WH/LwCLB+xEXfOPKZsb9+/OeZsV6/Ot8IeYfnwjZQnM+YW\npbDnWQD0DYvGn1sz7434k5VN2/4w4RNsZwcjZtU06OlKP8QUX3hT0StwLwDJi/Kr8QmYsluyu0Nh\nI0UVLD5+ESfuxxGeGejpITc/n6YHoCNlU0LS+8Xj8duf+k+Dvh6zA+Ttr1qhV/UdaFJukvD+QEJP\nDKkZTpAZWesi9HX5fslH3vXDztdtMbr2NaHMrtftMaLWBRj8P6Zr+6tWyOflwKHMcFZzMdVZmj4c\n6iXhZTI8+5PdnzQZF3tvRD5dqhWFym5f/g9pvzLUrYZUNMUQu3ouFqvmH1O3GqxwsffGmYeLYaAh\nawfN0EJDCHoxDP2rLUBds2Zyj5XLo19QUeE3dANuh1MviAuTnZmD+W6iLAjt+jXD3B2SdyTp2DTn\nIMI2S8/TfPfsE0JdBiZEpe2SSScBz26/xGxXf6lyV47exZWjdxUypziFXy/V2BHbrmDDrH0Sx/mR\n/Avdy46VOI6APlUm4W8a2VhU1Oui+j/UN9RHxPdtjPr3Dd5PMBbOzx+NymVKCu8vxyVg2h7+4s9+\n7jqpi3Pxxe+FBWNQqbQon/f683ew5dJ94f3MfRFYM6w75TjixkLrupbYOKaX8L6Ax0ODOWsJc6rK\naBA3FqjmFLx+picDAnkTQwM8XD6Z0CZuyDnMk/7ei1PWyFp47WF9k7B7fyChJ2qadhQuzgFggOUx\ngsyu1+1R0cReaCyIjyNuMEibiwlM9OFQL79T/yrFWLBrVAM2jtVRwswYf/9k49P777h1KV7uIm/i\nuDr4aMQClw5eAQ86ujrwm3lIrnF0dXXRsmN9VKlRFsWKGyHlaxpSvvzGnSuKT3jiO+0AfNept9ib\noo0Fk2KGcGhaEzXrWqBYcSNkZebg/euveBb9Hqnf/yhsnh6Nl2jM7+M/ZTD8yE7C1+z3AIC4X9dR\ntXg9YTyCgKMfVwiva5s6YVB19sVeDHSNEZEUiue/7yK7IAOjreiDqo4Gn8POxfL9Il89dg9Xj93D\nSJ8+GOhFvaAqDNvFvypJ/ZaGQbWmydRX8LoUaThIm4sNNRtUk9h+4tNGlf/fMDUWAODF5xQAgIt9\nHQQO7Upq72BbE3EBM4QLW6aLcyqZKV2cMaWLs3CsC7GvKfuKGx1XFo1F+ZIlCO26OjqIC5iBZt6h\n+JOVA4B/ItHORnHZX6TpRfceBA7tCq/958DjAYk/fqGqeSmp49KNdc9vEmHOz6lpBAOMjqrFm0ts\nz8xPRUL6JSSkX6KVyeflonvVDXLPxQQm+iiKjNxcFDMwYNXHau0avJ0+U0kaaQcD2krf6JGEjq4O\njl6bD9OSJtKFKRjWJRApX37LPL+LvTeOXJuHkqWLSxdWMcNcAvH9axqrPnXtqmDtftk2FU/svY1t\nQbK5DQq4d+2FXP3lRd6YhboNqmLtPtm9GKYN2YKXcZ9k7q8ppzRFKuhZEkvjeiL09UQc/8j3Xzv5\nKQjrXnpgR4IXQU5f1xAWJrVQzqgqXqc/gl+cG+u55tc/ii4WY/Ex4z8Y6dJ/4C3sFSS3sSAOU2NB\nk9njd1JmY0EcZS+6ZR1//XXpRYOojsOpTh1UzaSdoiB/KmNBHCN95nsRitztL2wsiHPPz1N4Lc19\nSVW42Ity3M89GCn3eHsniVLyrTh9lVEfQ13690xAaUNLyh+2MJmLCYrSRxzvK5dhHbIWV969BQDU\n2xAC29D1sFrLT4/9X0oKrEPWIjr5MwBg2MnjqLchBLFfvwAAbn38gPobqP31XatOE/4UdeRdnEU+\nXYrIJ0tlNhYAYN95L0TF+KGEmexjyGv0KAs2xoJVnYqIivGT2VgAgD7DWyAqxg+W1hWlC0vg6E71\nZD6T5/cxcJcH//2Tw1gAgHUHxiMqxg/TfNivJwWMd2ceB6csiswJg7T0pdLaj3xcDheLcWhiTlx0\nS6vdQDduU/MeaGreg3a+rx+/4/GVONp2ANDT14VDm/owMNTHi0dv8SuF3a6CNnIoQHLROz19XTRs\nZ4uM9EzE36PecRbgYjZKKScN8hgjugz8ys/+3I6upccQnvWpMknu19Lfcopc/W88f8dYdvWQrkLX\npGP3nqFfMzu55qZjWOgR4fWJGUOVMoeqiP/0TapMc+vqEtsbWlYWXj96y2xH60f2K6kybtW2ElyA\nqMgtyCS4JMk6FxOY6MOWGc2d4ddeFOj+fPJUwglD/XLl8GrqdOEJwu2PH/F2+kzh/Yn//sN/k6cK\nDYx/kQl9pZ8y0VHfoRrW7BkrXZAFx28uACD7onHV/GOYu1JyAgdx7M8sBg/07lGxPZbKpIcsKHpH\netMxTxQUFKCro2yVsneuu4D+o1XrNujuvEymfrq6ujj3ZImCtQFc+zjBtY+TTL+PHxKkfz8omyJj\nMMhLRl4aPmW8IBgMT1Kl+/bLygjb2ZTP2SwK9604jQP+YQDYny5ImodqQdy8myMWH5rKag428Ap4\ncC01mrJt97PVqFi9nMT+83qsxtPrz0nPFWk0vItLxA4f4omQaeniOPZB8pdkfl4BupUZg5JlTRnN\nw8SokIW0H2S/SmW5bnWwFbn7bLhwh9ZgMDUxkmueJ+8/C6/rVJL8OwIAKwe6YP5h/vH62nO3ML1r\nS7nmVySuDtZSZbaNdWc8nsD9Shq/cj4Q7tNyiYaGQ5lh2P2mk8TaCA3KDMaeN50JMl8yY1jPxQQm\n+shCGRMTbH38CNbm5mhbg3xaIc3VaHKTpgrVRxt5//qrTP2U7W4RFeOHuR47EfOQ+aYHwA+UbeBk\nCdc+TlJll8WeAQ88lRoFVIyd5YI+w1soZWxdXV1ExfjJbICdPx2NLr0aKlgrang8HjL+soslBYAt\nJ6eges3y0gXlICrGD4M6rGId66Bu16R/xiVJGqOsViHu9w0sjesp/DmTtF6lhdfYLt6GLeiFqLRd\nOP1lM0b69FGSVqqBzlg48WmjVGMBAPzPzMHBV9TZY54/UEy5+h0+x/Do0jPh/bnUHVKNBYB/KhKV\ntgtH3jJPL2hgRLbl+1abTCHJjH0rFFszxHZ2sNQfAT/S6TN5tLCuoVC9pNHBtpbwOipWMbvddNhX\ntxBe0y3enX02Ca/9B7kqVR86dKCL7a9agYcCJGc8wdF3g9DOwlfY7lSWfxy//VUrJGc8wd+8FMT8\n3EcIMm5SdiIA4NBb/ufQi9/hiEicjJG1iXEG0ub6m5eCN2nn8eA7/325820tnv8+jZ/Zor9hJvrI\nyrhGTthwXxRov+3xIwnSRFz27aFt23PPF0Ymhjj5XHuKhLFF1kWkqhZAq7ZTf8dIY93SMEZypxOf\noFpxZumflYVZqWJKMxbEkfX/LHjxKQVrQo+rA/v404jHvko3FgQcujwXZStIjzErzJekVCVowwzu\nhEEMba3KbFxMvl1adZOfR51Hmq0BVaZiKUwKHIqNXvsJz2d0XK6QnXRxY0HZQdVnUraRTnr+/Por\n83iCkyhxDr1eSyGpWszkPGFgSzEjUQDrl1/pSp3rwOSBQsOpmXcoujSwRtCwbgCAzJxcNPfZiLz/\n1zzp3dhGqbpIok7J7mhZYTbOfpqGjLzvGFHrPAx0ixFkPKxvIiv/F6KSvJCWk4Saph1JO/we1jfx\nOi0Su193gqVpW8oTAGlzFdcvh1pmXQCIjBAqmOgjK8cHiGpHTGsmCtIWnC7Q/ft62gzCvTjlK5fG\n6VcBpOdFhTUyLgRVvVsaFeMHr1HbERf9QbqwGEtnHIRP8GCJMmNqtcKmV8zihpTBOC8XuA9TvrEg\nQJ6TBmUztDP7v7VDl+dCX185Vc7p2H9hNuv3cGTXNWo7ZeAMBg61063MGOlCDOk5rgPJYAD4u/PH\nP8ruXyvOtkcrpAspifluAVgZRu3OxpbSFUpKF6JAV0cHsaunK0QHVZOeKTqiZpJBSF7EM0adj32F\n87OpTzX8+ndWui505PNyAQDdqqyTKGesVwq9qkmuKFvbzBW1zehPSpjOxQQm+nCohguno1n3Udei\nJ3CXB+tF2p0rZHfXwkys006tBoMqjQVNh20Wqc69GqJ0WcUkZGCLLIbXznUXMHqa6r8zOJckDo1E\nnh18qr7y7M4Xpqq1hXQhBUD1Op5cZZ8ju3DchbwUUBSn0xa2X30ovJ7USf4Un0ywKl9GeG1RyhSG\n+npwqFEJmz16Iy5ghkoLyXFwKBpZ0pe6DVbN3x4dshgrTBd1Dc740P4oC3UZX5FP2cdrPLypXFfQ\nsIN3WcmblzfDzCW9laQNMxYGDGAlr66MU9wJgwbx9PpzOLSpp241VArVaYAmU8lKNf6NiuTY2nOk\nZ34nisYitatjHZx78hIAEPMhmRA3QMUOMYOhe8O6tHKJP2XP4S7Ou28/8fbbTwCqrTDNwZ5N3scR\nvpvdF3FkIvVJiaT0qXR96MYwr1gS+x8yW5iJzyttnssnHiJwOvXn79I949G4fX1Gcw7rEshITpyJ\ncyWnZVYFZcqa4ud3xbolqiPguV3XBiqfU4AsFbHXLz+DvVGzlKANn02ryN93kjhwUTEn9vLQqrMt\nMPuIdEE1w50waBDzeqzW6IJqyiB862XSM4e2zL6o2HJu1zW5x9j5dJX8irCgcSfylwEbF64fn6kD\npKjGlYbA/x4AvqUprpKlPKweLFp4DNlwWKIsm4ORu68k+zi3XLxJYruAHgH8QNiZ3TSzCrGH9U20\nqbhALXN5NFkEt0qTEDhxJ7Yu5H9Zntx4Eb0qe+LTa35tg+EN5mLxwBAETdoJAHAp7YH4+28w1Eb0\nJf8jORXdK0wQ3ruU9kBOVg56V2WeJMC16jTWxoKq+CFHATIqbp19Cteq02iNBQDwGbEFrlWn4Xvy\nL4ljpf2iT2hAhyYUoAKAg5fnsO5z9thD6UIqhk3aV2UwckpHVvLfpPxOyUPYoXtKG1vTmDdW+cVp\nC6NVBsOLt1/Rf9oO9J+2Ayk/iQsW5wFBpB9N5sAL+lzdLmaj4GI2inaxV9QZv2KgdCEZ2DzvkFLG\nVSZUJwF0QeJUDKlLDsDsOEg2X9cuDURpP9v7MasOHZcoW5pFNjStVVV43X31blo5uzmizE3RK2VP\nEfwt7Q9+ZWSx6rPmrGYuRtXJp9dfsPPxcnhtGo2TG/kprN0ndcLppFB4NFkEAPiW+ANLDk9FtTqV\nhP3qOVlhf3wAhtTnGw0rRm1BxNfNcCntIZTJysjBqURmMUviu/KGxgaITFxH+DEpLgrMr1qrAqGN\njsJjyIJlPdFrPrXtmlT50zuuC68rVqXP1rN8gmihUaqsKc59XCvUMzwhCHr6omXBsCaSc+73b7NS\nql6azIjJ7Ba765dpVmIU/63q32Ac6NFG3SoI2eR/lpV85BP1psAVZ+NRT+lCYjx98FZJmtCjNQbD\nJN8jGD1/Pz59+YVPX37BbeIWxL3i52CnMw402Wgwr1Qa1o41JMoMqTsTLmajcP3EA9UopSFY2laV\nLiSFuk5WpGc5mczy0msDJ9ZHydzXa4uHdCEaujqKKhPbzg5Gc5+NJJk7rz6g6aJQ2M4OxrxD8lcv\nlsaO8X2F1+9TUjF683FCO48HQppXADBkkA3DdnYwKR1qRPQLxsYSANSuKFq4SUpBu+niv7MzJo65\nRWnCvUtpDwRO3EmSs2shMlYFdUp+JPM3VL58/AGPJotQpbaoEq1ZGdkCGMNek91rTr4QpUJNfKN8\nA1jAxgtzhddbl0rPQrTF96Twetcdan/5rtVEyQpauNrj0JNlBLcSA0N9RLwLho6u6Nna2dq30cKU\nQWMVt9hd9ixCqXEKVDg0JX/PcTBH/Pdc3VjVka+StirQCoMh7tVnPH3OL/BTx7ICRvflB0yN8xZ9\nkHmN6Yg7R2YJfwRsPHBDtcqyIOT6YkbBvStHbRKeOqR+VezxdFGlpZv0QjvaAtXvyLaFsvk7FjeT\nXIlXGqsHdyVkSErPzCYtfsdtO4m/2ao1zsTjAx4kJBL0ET9ZqFnBXGIsQeG2Zt6hhLEEBlBcwAwM\naeEgVa/DUyWnYhQQeuEuyaj5F3FoXRdj/di5WPxITsW2e36wbV6b9XwrJor+toJO0scdrD0jOqkL\nmnmA9TzKhlcg3d8u9u4b8P7vl1e7QTUs2kpfl+DcB1HK5fOHqY3Zc8fZu+doijuSPNBVDz718TH0\ndVWblpNDdmb5MS+Cqakc3n5dupAC0QqDQWAY3Do8E7v8h8Kjn7PQKNh65DYAwL2zPaGPoH1/uOb5\nHBYmKm0Xyks4QhZnUO3pcDEbxcot5V+E6ftZlBntMJf07MQn8okAW3R1dBAXMAPVypaSKBc0rBsi\n5oyUez6mxAXMwKYx9NkuYlZNQ5jXcEbjdLKjX3wKjAppcQm2s4PRaMF6AICJoQFm92iNJX07CX8W\n9GqHlnVqkPr8K0Slbidd+4d5oWRZU+G94F/BiSFVn6jU7dDR1cH0dSNIMtJ4dFWULrN+Y/rd2joO\n1YXX9y/GMR5fXg5GixbYqRICdPvazBNeb4ikDuKc23+98DrkrPSg09JilekT4sgVuUP8NMs9R1aq\nsUxkQVc9eETNFsgryFeESozgTheITB28mZV8p56OStJEdpq0qiNdSIzd6y9JF1IgWpUlSbdQRL7f\n9O7wXhuBHSuGqEkjxbE3nn8UficiGksHr5ciLQp8HTCzG0b59pUi/e9hpOXF7ApT18kKLx4RfRan\ntlmCkOv0Psaf335jPH5L90DcOunFSA4A+nVviHNzqf1nmYwlWHS3dA9Eyd86mDa6vVRZKr79SIf7\n2C3C+1snvaRmIxJ/DXTzBg/vLnEMADAy0KedS3zhL0mfwf8/pRiy4TBiPiRTyrDNrsRlY2JOhSpl\n8P4l/33PysiBcTFDSrm/aZmiPlXLUMoog9LlRLVCBjsuoo2HyPgjiqmpaVtFIXMPnNYFm7z57n1B\nMw8QXKRkoa2r+rL5SGLrqSms8+AXFBRAV5e43zq1bkec/hiN7PxcGOkZ0PRUHJoQv6BJvIpPUrcK\ncjN/VT/0pjnB0gS0ymAojHNDvoVd14ra90tXVwcFDI5qNQnn7g0RlbYLT68/x7weq6XKH1lzFkkJ\nX7FoH7uAmaJOeqpmZPFRFGuveJMyaL168p5WPmyLcnYeBIbAup1XpMooCkkGiPvYLTi5bTzKm5tS\ntlNx66SX0GhQNiNaN2Ikt3xAF4kB2+rAPoK8iHIyr4EdzRVXaFHdzFwzGFO78WPdZrgFY9NF6kXx\n9J6iJBWTl/dXiW6y0Ll/U0ZyktK+UpH4Wv7YjXn+6s3mo0iWTj8E3xDyRuWv3Ew0PkfvdqWOtKsc\n2oN4ggVNRKsNBhMjvhUvQypgjcehTT2h7/r3pFQMrUfOdiPgVtgjuJiNkqvYWVHj6TXplTm1jdLl\nzZD6jVjBcsu8QxjvP4gku2k22c+6qP5+sDEWVM2QltLjHADg3JMXStZEdXj22YDQE8xTmspLXm4+\nfqf+hXl59pW7azeoJrx+/+Iz/D33YF7oCILM6qn78ClBdFpXx7E6VEl4QhB61uS7EHW3nIGId0S3\ntVHOokXojCBmMTNsyctTnauNNnDvOvXfa3Q3yVmlOJRDxNF/KzGMutBqg+FfoWzl0ohK24Ufn1Mp\n02RykLkd/kjdKiicQ2/WkU4ZTm28QGkwSGP7odvYfewudHV0YFW9LKGtt8dmpPz8AwN9PeTm5TM+\nMTgc/ggxzz/h5v03pD4t3QNRorgRdHR0kP4nCz7Tu6Fza36RwrKlS6CleyB0dPgZjQR9x8zeJ+wv\nuN4RMIy2TdDe0j2Q4G60bucVHIuIVvjJBxMWHjmPXROk76xuLEJZklRpLACAvoGeTMaCgMjEdcId\n9+vh0bgeHi1RVtUYGIq+pqli174k/mA95sLN8rmz3LoUL1d/TWPQuLY4tPWautVgjCb636uTjSvZ\npVPVVPc4TYczGLQI80p8w2FUgzlIfp9CanctNRqRv8gpCbWNC/tvofPQlnKNkUkRmFbLXrU7g+ri\n5xdyYZwZocSMKLuP3RUuoA+HP8KG3deEbSk//wjbPn/9zTi+YWBPJwzs6UTr7hO1bwoAvvEgMBYA\nYNO+G8Lxc3LzMGrWXuwKGi40Dlq6BwqvBUhq0yQeJpCDRQvTcH6I8LqXk40y1VE6h7dew+51FxEV\nvxwAELTgBC6GRcPAUB9nnixBz0a+MDTQw5/0LKFM/xbLYVrSBDvOzcTXpFTMG7MTyYk/ERW/HPeu\nvUDgvGNC+cL3ABAw/ziGTGyHStXMcXLPbbiP4NcZObH7FvqMbAkXm4UoYWqMsXO6oos7tYuYuNFA\nx/F4f0W9TaxxalsPj/5/ahp79w0aNK8FAMgWSxVtVqY44/FadmN28kXHgS3X5OqvaQwe20arDIb+\nozWzEKS6KChglwTGtU/RyaKoSrTKYNDGegvKYFfsanj3CcbDi7GE50xS62kaJcua4neh7B9rJu2Q\n22CgIiBqvsLHVDVRabtIpwzn991El2GiL5DB1uSgV/H2wgzs6UQwGACozMcfAHp0tBNeGxro4/U7\n5sHamsrKgS6Yf5hfK4Np5iNDfT0sG9BZmWopnYHj2mL3uovC+wFj2+BiWDS2hPEL5eVk5SL8sS+h\nz9HbC4XXIzqLfu9c7RZhzwVMUE3VAAAgAElEQVQvgnFgVaci4R4AZq/si88f+bvs7iNa4FvyLxgY\n6qPPyJbo35Iv9yc9C8HeJ2kNhtQUkavfuQ9rNSo/OwD47ZsgNGjm9l8vPOnoZS3KiHQkZoXK9Hn3\n6ovK5lIF4qc42kBVy3LqVkGrsW9sqW4VtBLt+ivhEOJ3YgZp4aiNbHu4Av0tp6hkLk0PKJKVYM+d\nEg0CtlhblsfOIOnpR9nQvaOd0AgZ3Ksxoc3YWLkZRVJ+qD4AvkejeuhgWwtNFjGrNnx+/mhULlNS\nyVqpHl099gtvcWNAcL/BLxyTvXuivEUpwj0VwzsGQEdXB5HPlqF6rQoI2C29UOHghvwA7z13F2uc\nsaAMPr//jko1ykoX5GCFtMJtXNCzZsA2KxYHH60wGMQLsXEoH6rg2qQE5VQ4NTOnrsi6ZtIOzNwo\nWzaWYE/td8uShEkJY2SKpVEUx7OVL+nZuquSPxzdxmwi3L969w1ZWbnChfzFm8/RqVU9qq6Mibj0\nTGUxBH27NsSxiGhhDMO1u69UMm9hihkZ/HMpTl1sFgr/LbzwFzB90GYYGuljNcVCPip+OQa18UcJ\nU2OEHJ2E6+disXFlBHoM5Gf/iTr+iHCfk52Hng35gaYrt4+GY/OamLWiD9J/8dOgBuz2wNWzMQj1\nC8eE+d3R0Y3s+z3QQXTCUb6K6lKmssVlcHNEHbwLgO+KZGQiSgErXmiNDnG3qzGt/FQaj9Gyo3a7\n2lGR9isDZqWKEZ7RGQQNzvjgRpd5lG0cHNqCVhgMHKrF1tkaN08Tg4Y/vvistPlGL+mHnYuPEZ5d\n2H9LZoPh/L6bpGeNOxedIKdTnzeRTpcW9g7C8lOzkBDzgSRfpxG5wI94atHIvZPhOly0E37p4DR0\nHCxaTLi7OgoNBnFXpWMR0cKxCrcJrgVtHVrUJbSzMR4sKpQkjSeJ6R7tcSIyWtjn+JZx6Dt+KwBg\n1tLjuP/0vVD/YxHRmDq6Hfp3Z5b+lEMyhY2EStXMSc/WHpogcYxD10ULK5e+TnDp60R7b2ikTxq/\nk1tDwn27bvZo141Y2FOcUuYl8Pv/p1AbFx3HpGWaWddm2qqBQoPBo81yDJjcSdjG9FTEwFAfuTl5\nAPipVZkYDZt8TmDi0j4yaCzCzqmGXP01kSf3EtDGxU66IIATbTzR+rw/d8LAodXoCErFaxgKUSo7\nJw/thq0rkicUf9My0afKJNJzRaTOzEjPhHtl5YxNB5V7VenyZjj0ht0uGJ2bliy6U42lKalJXUuO\nRuG/Xar4BnfPzhi3kn0WJUUyccFBbFpBTPfYrn8wrh79t3bftY1/oQ6DADZ1CZgsshPffEX8w7d4\n/yIZ8Q8T8OaZKPi9pm0V2DhZopq1BWwaW6K6tQXjBX+fenMJRdrY6CSA6rUaFzOEZb1K+PYpFT++\n/ia0Ne9sB58dxNMgti4dm455wtKaul6SpsD2NXVyc8Sspe6M5Ruc8aE1GNjOHRVDX+tBHahb/3/Z\nxYjFeym3r6VWnTAsDD6Dq/dE7gWeQ1pjSM/GlLLth4cgKztXVaqxwsVsFLoMa0XKXMMGKmNBV0+X\nQpI9xUxNKJ8rs9bDoNk9cCjgDOFZ6rc0DLfxElbBlsYoe+qiSxHft8mtn6YR8WO7sNq3gKAJ20ly\n6jYWACAzKxcFBTzo/n9RdCrqKUYPcFazVhwcIhZsGoUVE5l9tknbmZdmfCTEfUJCHDF71qh5PdDf\ns6PUuU88X0Uaf204u1TbkYnr0N1yBiFFa1ZGDp4/fs9qHDZUqFxaaWOri8R33xnLdrgYoERNODhU\ng9YYDFSZkEIP3EDogRuEE4Thc/bizQdRytGbBzVzF/P8vpsE15nm3Ryx+NBUiX3SU/+iX3X6HOfn\nUncoTL/KtSoi6Q05E4aL2SjsiF6JyrUk7xbdPP0IrXoxT102wtsdPB4PhwMjCM+/Jf6Ai9ko1GtS\nC8GXFlL2ne3qj2e3X1K2WdQoB30ty4DBBD19snF48eBtNWgind1rRmDbwVs4cuYxLKuaY9WC3ihT\ninkKSA4OZSG++C5rUQrrz3mhVFlyIcD3Lz5j8cit+JaUKuynjpoMVMhSSE5Q/O3ElivYviyM1K6j\no4NZwUPQoQ/1hhxbihXBhBNfPv0kPZMU9My5I3FoO1qxknqbKLLkT4WORYWy/CI9AiPi5+8MlClZ\njGBUlDc3xemN41SrqBzcPftErqxHJUoWky7Egh3RK2n1GdOQWXpStqcRI336kAwGAc8fvGH9/hgY\n6WNX7GpWfbQJfQM95OXSV2C1aV5bhdpIZuzglhg7WPGpcjk4ZCXprSh9r1PbevDbRx9bUaNuJey5\n58vIdUnZhoQix+8zvj36jG+vsPH+JTL+5pCecUYBR1FGMT4sSmao1x4A/GxJAmNBcA8A3cdtIhgL\n6737aZWxIC/GxYxwPDFU4eOKZ+FQFYpyeapQrSzOpBQ9VyRxIn6QXZDECTq/QEWacHBoHx5tRMHS\nkowFcVyHcK50HHzy8+g3azg4iiJaccIgiXnjOsF/K79Q0PIZPdCumbWaNZKOSXEjykrEsrDvvyCU\nU1IqwLCvW/DlQwpG2s1Ryvh0CIwGWU9cIr5vK5JuSGxQdS55qgDZmO7MgrGufX2BaQ8PyNxf3vnF\n6X0tBG//kKuoi2Ooq49rneehuL7i3SwKvw5Jr2FJ7Gmc/PhY6phe9V0xzEozFrpU/08AMKVuR3jU\naqNibdjz9r8kdavAoSGUMKOO9ePgKKpoxQmDJAQGwp0js7TCWACAU8mbEZW2C826knOCM+XI2xBE\npe1SmrEgoGL1cohK2wUDI9UvwKPSdmHquhGM5YfO74WotF3/lLFw+stmyudhX7aoWBPZmfP4COXz\nfW9VF5PhEOED+whvqcYCAOQU5ME5ahnsI7yRzyuQKq9oLibHwz7Cm5GxAACB/0XSLtRVCZ0Oyx36\naIWxAAAvn5DTFnNIp6BA9X8nyobKYKCLYUjLzZRa1I2DQ9PR+pWVaXFjdasgM76HJQc5axLqcu/p\nOqotuo5qq5a5NSWFqiSMi1HvchsquXpyYTzrdEDoy8sy9c0uyKN8HvhfFIZZtZBpzBn1ujCSax7l\nh4w8si8yUxqe5RcNk+U0gwlpuZkwMxAtTDRh4S8LdHrvcvZAwzLsg3YVQcNWdRB9k58sQVoQ86uY\nj5jWXeT2OnvdMKXrV5RIfPcd1WuWV7caCqV2/UqMZcX/hjnUj6alpdUWtN5g4OD4l/EbukG6kAoY\nV7utzAaDvNz//pb0bGRN6QHWA25ulMtYEMc+wlspRsPF5Hj0qeYknEMbodP7VNupsCpRTsXaiFh+\ncBIhiFlwrW+gB9OSxZD6PZ22b3t35hngOIC3L78UOYOhmhXz39203EwlasLBoRq0ymCgSq3KpK0o\nFm7jkI3kr81hUeGuutVQGLfDyW4pmnIycjvlNVqUk5ypKeTFRbnnmXh/D+s+0hbfdcwq4lCridDT\nEXlthiU+gU/MSYljKtpo2P/uLvpUc4LTOV9aGZuSldGpkg1MDUzw6Mc7RCbFkmQ863RQqF5MoXuf\nr3eej1KGis3sJguRievg0WY5IWNSXm4+rbFw7uNa6OioNj6oKHDv+gu069pA3WooFEGV5+tfX2LK\nA1EMFp3rkUtlZlWhOTg0Fa0yGDg45CUv7726VVAYN04+ULcKEln7/IJUg2HHmxuEe8sS5fBOLI5g\n2+vrGFtbsn872ziCdxLiFA62nACbUpUp29yqOsKtKj/uiG4hrGij4W36N+xMuIncAmJGFp8GbsKT\nB3H6VnOCv2M/4X2Tc0uQXZCHcbXbKkwnptC9R/ddfWCsp1qXOUlsv86v7/I2PglHQi/iweV45GTn\nwaKaOeo7WWH8kt4oTlPMkoMZT+4lqFsFhVO5mjkAoE2FOojtsRTtL6zG9+w/JDldHR1sbz4KTuY1\nVKwhB4di0QqDgTsh4FAUVSsnq1sFhbFi5CbSs4OvgtWgCTWv0siF/6Rxuu1UwkJzw8tLUg2Gwgyo\n0URie69rIZTP2Sz0Y7r74VdOBtpcWElqc4jwwdPuisvHvu75BeH1YMvmmGvTlXHfB10XK0wPNtAZ\nC8qK9QCA1lGBuOHiRdmWkJ6CnldCEe/mS9vfyqYy5m8cqRzlaLAJ84Whrj6e9FjEuu+quCjMtXVR\nglaKJ+1XhrpVUDpXOs9BgzM+XC0GLSDly2+Uq1hSqXN0NhyMCzkHFTYWAPSe4oKJQcMVMqYsaH2W\nJA4ODhFlKpZS29w60AxXjXk23WjbFLmQpXOp4YHHeiwmzLPtzspYUBfqMBakUdO0nERjQV3Eu/nK\nZCwAwN6EewrWhjnm5c2kC3FwaCjnjj9U+hyKMhYEYylyPFkp8gbD5bsv1a0CBwWfPlsiMckCiUkW\nSPpsLbxOTLIQyiQmWeBnKrGy6s/UaQQZAPjxcxKhf+F2wVh0bQIKCn5LHUdTGFpvJunZeP9BatBE\nxMz6zDIT0SGLm8rOhJukZ7o6qvtYo1sEH3qv+MXcoBpNFT4mW0ylZHuRxViwCfNFQnoKWkcF4uXv\nL/iUkYomZ4knNzzw4H5tM/peI6cLXv/8CmzDluBH9h/YhPnCJsyXND7VcwG3v71B66hArIo7T+r3\n5OdH3PmWgFZRAXC7spH2NVARm/oJ2QV5aBSxHMtiz1G+bpswX7SOCqQdY9TtPWh2zh+bX14XPktI\nT4HLpRDa11b4dbaOCqRsT0hPgeOZZdj8iugWmM8rQMvI1RhycwetXsM91RMToyxiHr5TyDjc6YJ2\ncGQH+XuDQzpaZzD4b7mAVoODMX35cYlyX1LS4DwgCN5rI5Sqz7ToAHS7MRVL4rai242p6HaDmCq1\n242puP8jDt1uTEXQy320MoL2/nfmktql0e3GVIx/uIzwzPOxP1Y93y28X/V8N7rdmArfuM1YELsB\n3W5MxdVvD0njjLy/GIuebUS3G1Mx/UkgqV3w7+gHvuhxczoe/3zOSlcBPF4WqlZORulS/ijgpaNq\n5WSZ3YUyMk8J+9ONI2383Nx4JCXXlTqOJjDb1R/fk1JJz3tP6qwGbUQMp0iBeik5nlZ+/7s7hPu9\nLcaynlPcXUcaytr5nmdLPtHwjzsr15iFUefuvDj2pavSt8nx/va8EoobLl5wv7YZ5kbFMa1ee+HC\n9lNGKmzDluBk2wk43nY8bMJ88TtHlHVmSr32iHNbDHOjEoh38yWdJFA9E2AT5ovrX1/jhosXYU4B\nQ2/uREPzarjpMhth7SfRGh1UDLqxHR///MTj7gtRt2RFUl9JJx4f//6ETZgvdrYYjntd56FNRVGN\noZqm5RDVcSrhtbE9PWl+bhVMDYzxpMci1DIVZftxjlwF+3A/3HKdgwOtxtC+3i69GrKaT9Px9tyr\nbhU45KBYcXZFNOWtCzKiznR0NhyMbqYj0NlwMDZ77RO2/Uz+Bd++a4RuRAI6Gw5G5M6r6Gw4GN69\nA+BabBhB5vHFWHQ2HAwXk6GkvnRkpmch0INYi6lrceWlfNYag+FPRjacBwQh/Moz5OcX4EHsBzgP\nCELUjf9Isj7rzsJ9smrqBrz5k4izrUOw2HYczrYOgblRSax8TsxSszR+K862DsGsOsNwptVaynEE\n7UedVwEAK6NhZp2h+JT5jfDs/d/PmFtvpPD+Rko0zrYOga/tBKxoMBn+9lMR+GIfoc/Z1iHY3XQJ\nltlNwtnWIXid/pE0V7cbU3G2dQh2NvHFmVZr0ahMPcZ6UlG82EC5+iuKL986qlsFRnz5kIJnt8mn\nZm36SPbbVxdrJSzoA+IjCfd1zKhPdN6kf1WoTopmUI1mlM9zaOpLaDM1S5BTY/LAU6gxZqJniCFW\notOULhfXERbE8W6+cI5cxXpcOhbYuQLgn3B1qlQf4YkxhHZ5ArRrm/Hfr77V2S2wXS+FIN7NV+jm\nV6+kYk87R9RshvLGpgCAjhaiz/DfOZmIcxPFvYQ0GQifp+EKnVsTyckuen+r/xIzlvRW6XzJ777h\nQs5BnE3fgws5BzEhULRIL2NRCr7HyR4AAHDI/zS2xQTg/tkniMwgrr/md/PHhZyDiMrcjy4j2zIy\nGkxMjXFhr+iEcLF7EMJ/7ZbtRTFAK4KeAaDzKFG++Rkj2+HpiyRcvfcKS0Mj4dK6PgDg9KVYrN4m\nStO4y38o6lhWUJpOkx6RAx73NvXjL/brjRI+G1LdVXhd2F1iavRqAOwMhMJ0qNAEa17uF96HJ12n\nlGMyx8EPkbj+7TG+5/yibB9eo7tsStKgo8NuZ4CKCuUvCt2HypRei+LFBsg0jr5eNbl1UQQuZqNg\nVqYELG2ronjJYkh8+RmJr+hPO0qWNcX8XRNVqCFzEjN+su6zuekITBBLldrvRiiedFPOUf+x1p5K\nGRcAGp9bopCTgR3NxyhAG8XQoNAJQwGPB8ez1Gkk2bz2MkbF5dJLUSyx74F254PQs6o9AKC0HKlf\nzY1KKEothTOhDn0iAapThaUOPeWec/ua8/CYKZ/boqbgE6xe908OIq062ah0vrPpe4QLejaxBU27\nOqJ6PeosfD0nijwEZm0dh/O7rzEe92HUUzR2ccDdiMfQN9Bj3I8tWmEw9J2yHQCwblFfNLbjVwXt\n58rfsXEeEISeE7bgeyoxnZkqMislZ31nJGdhUpa27cPfZFiVqIxaJeRbrPat2hHzYtfDv8EUbEk4\ngerFyDtSnSs2p+3/NPUlFj4LhX0payywGQML47LofYv8HpY3Li2XnvLC42WTnhka2KJq5WSk/BiC\nn6nT8TN1umzuRDrK+0NjS9rPP4i5wczd68hb6qw/6qBnFUeEf3oi1xjNy9Ui3BfwmAcRT6nL7qTI\n2qwiK3l1oEnpGAsHeivCWAA0J2D+7Z8UWJqKPq/liYf5QZFiUx2w1UNZweHH99zSSIPh5oU41n2c\n29dXgiYcquTc8Yfo2rexTH0NjAxwIecgsv5mo7PhYARd9oFdq7pS++nq0X+epH79LZMuYT93wq3M\naKy5qvyMeFrhkvT5G/+NFBgL4rh3diAYC3eOzFJZGtaJtfqSnv3Koa8OSj1GP7z9k4Rp1oNIP2wY\nZdkTz369Ft5vdJpPkpE0x8JnoTjbOgQrGkxG9WIWMNTVjDzpBQVphPuMzDBa2XLmB+SKO8jLU0zg\nmyrRlCJtAvwc3BnJzYk+qpT5PWpR75xe+Mx+UcAGfQ0yNlWFqrIhjarljJkPjwnvZz06hn41GpHk\nFLFAH3pzJ060nSD3OPLS0aIeOl2kdl9VNhPvHZAuBGDnmRlK1kQ1LJ99RN0qcCiAIePbsZIP8ZPd\n1S4zPQsAYFzcCFXrVMKWOful9JDOzZP3hdddjIfAyo7ZJrJJCWMAwMx2S5SeSUkrThgkMcytMU5e\neIpTG8ehgrmpSufuXLE51r06hHxegbAi7JB7C7HKfpqUniJcLJyx/vVhPP31Cg6lRIFtD3/+h8Zl\n2O9ivPmTSNs28M48HHb2F96/SHuHumaWwvvcgjwY6PJ/JXrenM56bmWQmRWlknkqlIvA1xTFulsp\nEx0dHUT+3qluNRhx5tNT9KjiQHh2/vMzwn1FE8k5seN/JZEKqrHJRHT5CznWSZE0K1cTt769Uuoc\nmoQqU6d62XT+fyYgUQC9pCBm8fYH399hVdx5vPjNrwniHLkK1mYVsLvFSADADufhBBccA13FGX4t\ny9cijF2npOg0a/L9Q3idxo87+5H9B10urkNts/LY0JS/ibOuyQBS9qPCr7lXNQfK9hL6RoTnw2s2\nY5yCNd6NnHWJ7r2uVK0MozHFCfY9jRm+vVj30yTchzmrWwUOCoZNao8DW66y6pOTnQtDI/abo27m\no4XXBkYGOJsucqEVjz1g47Y0duVgobyhsQE2Pxat1cTHPLU+ijTmxgcrMKnJArYvgzVabzBUKMvP\nB61qY0HA2dYhhNiAadaDYVuyJusx3G7OQB5PVM01tNE81rrsb7YMQ+8twtnWZBeVs61DsPbVQYKu\nnSo2ExoMhV9H4Xt1ULVyMim9aWWLl0hKrkOQI6c/Jf5ap3zvj6zsm5TyghMJQ8NGqGwRTxpLHZmS\notJ2IWrPDdw9G434u6/xNz0TNe2qof1AZ7h7qjcTkiwsenqCZDAU5mBL4q7uAtseWBF3Rng/+NZm\n0mKUTSaimFR6Q1oRNCxT/Z8xGOiMBQBoFumHe6707VQUDmiWds1kHAFNylpKPDFoVs6Kdmyq52zc\ndZ7//kIrLzAMJCFtruWOvbDckbz4vt+NfLosXuBN2rhsXqO1TWW8ik9iLH/+1GONMhg+vWfmVizO\nOC9X6UIcWkHPJksRFcN+k0OSAUDXJv5ccC3+7Pvnn4z6UvH44jNse7paoowi0HqDQROgWqBLaqN6\nFtZK/gq9RnqGEtunWw/GdGv6yPvCekm7lwfxhTjdNdU9UxlxypVl5v6iq1tGY1KpuoxoDZcRrRUy\nlm/8IvjaLJMuSEMeLw/6Osr9qCgcIDqgRhOCwcCEPtWcaNu+Z7NzFWQLXRG3oobrlSCJ7Zn5OZj9\n+AgCGsmWeIBDuwg5OAEu9uwMRE3Cw22dulXgUCDFSxjj758sdauhcnYsPIQBs3sofR6tMhicB9B/\nWUlqo4tpuHfvDRYuEPnGmpuXwNFjU4T3ycm/MHTIJgCAqakxTocRfTZ9F5/EzZsvSe0d2q+Ep2dH\nhIZeAgBcvjIfHdqvFF4ri3635yhtbA5mvP2bAENdI1QxqaJuVYSwNRY8Ho3EdqfdwntlGwuKYoEd\nvUtZMT1D/C7IpG2Xl+z8XKWNrUl8zqDOnibOheQ4BIAzGDioGdjOH4evsj9BVzTZWez/ZiMe+ype\nEQ6FceL2QtYGbG/nZTh1R7Zq6+pG4KrUaWgrlcynFUHPymLhgmO4fGW+8EfcWNi+7RqGDtkkbFvk\n3Uu46Be0/83IJrQP+b9xAQChoZeExkGH9iuVaigEvtiHgXf4H8CKPAXgYMfs2BmwKl4TVUyqYG4s\ntZHq8WgkAOBLFt+nOvb3U+Tx8hD4kp9XfuoTTxTwCvD1/+10/en+PZp4GB6PRiI69TGpj/j1mlcB\nhHG3v9vK5CVibuws5PHycPzTUeQW8L9wn/2ORXaBKHvVEnvJObE3vrpCuK/LMMe8uFtRNkWNA0mB\nx1WLmzOaQ1be/2Xv2iArP1P/olO/YLR2C0DormsAANdBIVgZwq9r0dotAKOn78Es32OEfh36rhFe\nj/faL5SXlSZlrfCoqy9lmyS3pX+FGy5e6lZBJbB16fj18y9ePPukJG2Y49aUfapmff1/L7mBtlG6\nLLt0xpl/s7Fs1mElacOciUHDWfe5kHMQF3IOYvZO1aRV14qtQ2VmPfLxPo6lfuRsR4cO3YWnpyhF\no5OTJald3AhwcrLEl2Tpu2/K4NHPeBjpGRICmjlUT0ZehvD6b/5fAPwF+nJbf1Qw5gc8Cnb7K/7/\nPjs/G9OfTkZWPv8YNSP/L3R1dIXy0lhqsxwAsOT/4/ao5IYLX6NgU1JyXmrPWiLj2DfeG5+zPsPD\ncpzU+X7k/IC+jj76VumP6U8nY63DBtiVbECQ6VW1IRbHnKIdY8srYmDaWidmVS0XPT2BM+34wfib\nX16RIk2kTYU6iPulvEXK05/KjZEQp9fIjbgRNhut3QLgOaotWrsF4EbYbILMzrUjcFWswJ/nvIO4\n/P9iQuLyi1eHY8kc9jn2NzUdAef/p7/V09FFPo9cOdU+wltjKlRzaBbTh26RyXdcUSR/SmXdp2Zd\nxRbP41AOhy7PZX3KcOtSPNJ+ZcCs1L/hWior//QJw+Ur8zFqVBt0aL+ScHogIDT0krCNql28japd\nVRx29sceGXZLNJW9rx+h5uEVpB9NZ05dkQG5uD7//2O7027C4v/gR2J1x6rFqmGDI7G0OxsOJ/KD\noY4kHgIA6Oqwy2c/4bEHfG384FaJfSBidwv5izkBgIVJKcrnzcoSkwd8/PtDeL0z4SahrXk5yYkG\nRtVU7pHtyzTVxb4c3OSBdu5BOL5DcvpPaytRVeYF06gDNdkaC5WKlUJMdz+hsQAA0d2W0J4ScScN\n/wYHLs6WLlSIvi2XK0ET6Xz/moZR3dZIFyxE6JFJStCGQ1Po30Z9azht4Z82GADA0qqc0B2p8KJ/\nxgwXgstSYbeiwm3KdDtSFTfCozHVdTVWTmCW3/9vGtEvfKvvSXx+n6IM1TSe6sVqwDfeG37/+aKc\nEX+xNjF6LHzjRYumCVaemPDYA5Ff+Bl+dr3fgWsp7HbLxZlUcwo8o8djYs3JlO2FXZYKs7nRdnhG\nj0dXC5H//8SafB0BYP6zOfB4NFLYf7vTbvjGL0L459PoWIF5xqbjHx4ylhWwqmF/xrJL7CXXf1Bk\nukx1M85rHy4cnY7yZfmZ4WqLGQZMqG1VHomf+TusL15Tu77RUYnGuDvSin4xJS1QmgOw85I/6YU6\nMS9vxrrPn/QsBC46oQRtJDO0c4B0oULsCGeeKp1D/ch6euVi7428vHzpgmrk49tvapv7nzYY4uJE\nLgq5ucRfkjMRsxAcHIX8fNFR+4L5RwntHdqvJLQv8T2pRG3Z49l5FWb2XIN5/URxDX3rzsGaGaIi\nI8kfvqOnJT9Y27OTP1ZO3IXXsYmYv3kUAGB6t0CC/L6As0J5AOhbbw5cK4vcW8b5ihZuk7usEl6L\nyxRlfG384F3fV3i/qeE2+NqIPrzMDMywudF2uFbsBgCYX3cR2pZrLwwyFg82pqKwnLGeMUIbboGJ\nngkAwEjXGNuddsNI11goJ/gR7ydoB4DQhlsIlXYblW6MzY341dVX2q0m9Oe/xmXoKeVEYqglMVf5\nirgIAOR6CL2rkQtwCWCTeaiCMfsFCwCMuLNNpn5McKvqqJRxdwSPgIG+Hv5m5AjvxRG4G1W2EFVl\nF7/eETwCVSvx7+vWVlylazr3o88Zv3ApOZ6yjUO9TNxO7zrIFlkWaZfOPFVZ4bT8/AKZMzpVrl5W\nuhCHRnH6nmz/190b+ciUCh0AACAASURBVGL1guMK1kY+AhaegIu9N1zsvfHp/Q/pHZSEVsQwKItp\nU4nuIeInBMWKGSLi7Cx07iRa9FqJ7eQVK2aIYcNbEtq9fTQnvzQAvI3/hMik9cJ718pTCPcAYFG9\nLMLf8Xe3Qi/OI8iIX68YvxMLtozGgKmdMWx2N8IYhccUsOH8XBwMjsTgGa5was++CB2H9uJl44L9\n7+4I7wU+7qvjzxHkfBuo92/m6c+PSht7qZRTD1kZMG4rWjWrjZv3XpNiF9RNTHc/SjekWY8P476r\nD4z1NKOCPAefWy/eK3S8alblWe+A3rwQhx7XXuDMw8UK1UWcq+disWr+MemCFKgz1oJDdoxNJKeZ\nl8SVszG4cjZG7f/3mpay+J82GKS5EJmYGEqUGTmyFUaOJPtGi/ehu9Y2FmzhVzZkWxVx/5pIXDz2\nALvuKO/LgEPzED+xEOdL5m9W47SpUBfXv74Q3l/7+gJtK9SVSadTbaag93WycXs2KQbdKtvLNCag\nej99TTMSCkNnNDSNXKpRQdCz9kbgyfvP8O7TAe1sqGNg5h6IxOVnb+BcpzpCRkmO91h05ALOPP4P\nI9s0woxussXMpP7NREe/bWhSqyo2eVBnG/uTlYP2S7eietlSODZzKO1YvQP34t23VHRvVA9L+3di\nHd8kC1tPTcFwl0B8S2b3d56bkwcXe2+4D2uBcV4u0jswJCc7Fz2byB7fp63pNjn4RMX4ybXoFvQd\nNK4tRnh2UJRalMQ+eodFk/YiJ5ucAVBT+Kddkv4Vjm3k14OoacuuNkBN2ypI+v9u0aunHwAAviO3\nEGRq2VVFQT45Q4qA8HfB+PJBdSknOYoWKx2JGczWvbgo81hWptS+/gueyH78/Csng/L56bbqrZKu\nbubadKV8rkzjys4rGO2WkNMDd/TbBqf560myF2JfIyXtL6buCqeMIbDzCsa5Jy+QnZeHq/EJtDKv\nkr/DzisYYQ/jUVDAw86rj2TS3/vIBbRevBk5efm49eI95XwuK3ai+aJQZObk4sXnFNh5BSOv0Ofv\ntssPYOcVjDdffiC/oABhD+NhP3stSW/B+IJrRcVR7I2SPZ3syX234WLvjZiH7+TWo2eTJXIZCwBg\nUtxIbj041IsiTgkObb0GF3tvuDr6IC9XMTEOV8/FYkinAKGr0ZwxOzXaWAD+8ROGf4V+k/jpYTec\nnytVVty9SFze2qE6AMB393iC/PoocrG4SjXKCa/19fVw/LnyS5ZzFE2K6xO/sN+mf8O3rDTCMzax\nAgENB2B2NNln+lXaF1ibsffnb3OBOrOGZYlylM//FQZbNsfxj4+QkE52T2l4djGiuy1R+Jy1Kprj\nzReyf+/X338QGyCKu2qyYAPqVCqH42K781SL5WeBxEKddl7BWHz0Ipb070R43idoH5b07wT3JrZy\n6X/6YTxhTjuvYBy/9wx9m9kBAL6n/0XSz9947D8Vhv+vB2DnFQzHuesI/UIib8PctBiuLSZ+VlO9\nNjuvYNLrVAQ7zkzHmB5rpQvSMNdjJwC+W4l38CA0al5LSg/+aYL/vGO4c+W5zPOKo253FA7FIe9J\ngwBeAQ/dnXwJzxo4WcLGsRqqWZVHqTLFweMBGX+z8P1rGhJeJOPtyy9IeKm6LHrKhDMYOJSGRys/\nJL39RhvjoGqs1q7BotZtMLohfaAtGxL//ELVEtRZYzSVhN8/ULMkuyJmNfb64/1w+Suzvi20eCyc\nNpUphU8Z2MQKdK5ki82vr5IWsv1uhKKcsSkudWReLZ1ut3yXswfjMYoyJ9tMoXyP8nkFSqnRcMpr\nOGnhv+c6v4ChuDdOZk4uwVgQ0CdoH07MGkY7foPqFjj5II5kMACQ21gAgLDZI0jPlhy/JDQYBKcn\nhmLFwx6unILG88mfrz/SqU++VEXlauYKWaRlZeZg4YQ9CtKKOZyxUPSIeORLWuwrgthH7xD7SP4T\nMW2Ac0kqwqh7ob79prfadSiMo0Ulie1Wa5nn5x5zRbMyKTChQ5jysgIVxqNWG8K9V6Gd/TVOg2Qa\n9+ynGJl1AvgLWSpSstJhH+ENHngS+4+9t4vWWCihb4yGZarLpV9RQpJR8CqNXUpXJujr6WLCNlG2\nusAzNyjlxN1wBEbGq2Sy6+SN5+8wbMMRtF+6FbEfqHcJa1VUTBVxqwplGMmJ601lLIifHjjNU+/n\n78S51K5pmgxnLBRN9A30EPm06NSrUgfcCQPHP4WjhfzVOv0fX8Pm+HsA+LvvAEg78APOH0TM9884\n230UYUdfsFs/+soxJKb/xkU35rvRgr4zb0Ug/P1/2NDaDS7V6hBk1sXexta4+/C0a45Jds2Fz0++\njUPgkxsEnan07n/+AJ6nfsPouk6Y4UAM3Dz/8RU8b5xGL0sbBLYgZsqiYkrdjtj+5rrwvvCufmF3\nIzr0dfSQxxP5jUpb0DOBLjAXABwifGQe97bLQpn7FlXo3ut+N0Ixybo9xlu3U9hcT1ZNExoAmTm5\nAMiuRXTPxFkfdQdbL93Hgt7tsG/yAADAgLUH8d+nryRZQ33Vfo0ycSESyHRZvgN2XsHQ0QHBLUtV\nuA1uDrfBzTUu2wsVxUsY48Rt7u+3KKOjo6Mw96R/Ee6EgUMrEZwEWIeshdXaNcIfWQl9cF/YX9p4\n8xq1xfvh82BdqizeD59HWnTX2OuPhuUq4XCXwegQtg219weQ2gfWtoeNeQXC4p0JdoeDUbOkOY52\nGYIJ107B+cRGwrhHX8fiYOdB2PsymjC2u5Ut7vThF9cS6Eyld35BAbwcWiMk9jZp3rUxt3C0yxCc\nfBtHmFfZLHWgzhYDAE7mljKPq0iXGB3oaFQGIE3jQkfqzE4bX8letFAS5568QLNFoTL333rpPjZ5\n9MagFg7CZ8mpaRJ6yM/zJMUXZDq/cAx8+nQAT34bWy60YdeeMxb+HbTh91ET4QwGDq3Fau0anB82\nAm+nz8Tb6TNRzMBAZqPBs0lTvJ0+EwCE4wnu2VBjrz8m2zljbsO2cChbCe+Hz0NuATGrwvvh89C5\nqjXWtuwBn8YdsfThZcbjL2nSCZ52zdGwXGW8Hz4Pn//yFzFb4u9jsp0zbveZCPuyFrjX1xMTbZth\n38toxnq/Hz4PJ1yHYUTdRnhXyJhY0qQTInuMRsNylfF22FzhvLIyqibztJOSUp7uaD5aLj1iuvth\nUI1mco2xp8VYPO3OHXVLooKxGa1BpejMSc7W1TH3QCQKCniUu+omhgaMMgLp6hLTkKb+zaSRVAz9\ngw+Qni3tL6qmfmPJBABAUAS1mxUdjpaVJbY/fpvEajxZiYrxg//WUSqZiw1RMX7cAvIfhPt/Zw/n\nksSh1ViWFlWwjfOcItFgkMUAkIWZDswXw6PqOaHB4WD4NGaW49ndijq4cuOzu3gyYBrhmZdjGzgd\nDcGwOg0Z68N2XmkUrqMgYHq9zhTS6mGebTfMsekKx7PsXJFMDYxxqwu3K8mGkgYm+J1LXngrMgh6\nyzh3oUFAVXrgwYrJlGlExV193BrbYPzWkyhTohhS/2aAxwMOTB2EISGHFKIjFV0d65B06t3ERnhd\nurgJGllVxu5rj7H72mNa3amMIWMD+q/6kRuPQkcH4PGYuTvJg0NTK5y6swi9nZcpdR4m6OvrIeKx\nr7rV4FAzUTF+mDxwE948/6xuVaSyJ3IWKlRSX6IVrTcYMvJyYHc8UKFjetRtivkO7It0HE54ioUP\nz0kXBDC4VkP4OSmuQI042fl5sDm2mpGnd0lDY0S7K2chvSH+FoKfSd8Nm2PfDuPrifztrUsyS0l5\naYTm7VYBwO3k92hViZmrTHRKEmzKVJB7zhYWNUjz3k5+jyYVqso9tjyENB6ikHGU7e6jq0N0KXr/\n5zv848/i3Z8UpOdmoXKx0hhQvQncqzWCro7yDmY1ya1JGbrc6LJA4WPScWbuSNo2aQvjZQM6Y9kA\nslFbuJ+iFtiCcVYNkRwkvHtSf8ZjsZlXlZgUN0JUjB/Sf2eiX+sVKp+/ZOniOHJN/qxvHEWHDYcn\nAgAuRzxFwMITataGyJjpndFvlGyFIBWNVhsMNQ+r/sOGDra6HHwTjYNvojGmTlMscFRcBcFW4Rvw\nOYO5u8jvnCzUPLwCejo6eDVAcZWo2bwfq2OuYnXMVSQM5C8mHMwlH6ELsBI7XVAHb36Tc74PsXbE\nsEtHJKYh/fTnN6qUKAkA6BO5D2+GMU/lScfGNr1I6U+HS9FDHPuyFhh+6Qj2dhwgty5FgRolymJz\nU3KaSw7toUY51X4+ZOXkwdiQ/Veq3axgPAuaQXvfyW87LnoXvVS9piVNEBXjh4thTxDkc1J6Bzkx\nMjZA2H3ZExpwFH06dHdAh+4OuBYZC/95x9Smh2Ozmli5ZaTa5qdDaw0GTTEWeABqyaHLjpf3EfPz\nM450oM//zRR53pN8Hg81D68QLtrVoYdgfmM97fi1LODxSFmSljfrgsgPLwgBx9vbE6sVtzq5iXD6\no6+gHesyRiaEeYsbGFLKUWVJCus6AjX2+kvMoMTBoQ0oqmIxWyQZC03mb8CDlZMp28SNA6p7eYwF\nnyMXsJTipEST6OTmiE5u/OKLro4+4BUoNkJ78Li2GO6puE05jqJPW9cGaOvaAACwfPYR3LwQp/Q5\np3q7oWtfJ6XPIw86PHWnT6BGolKSFqQXu42HlakojWX4h3jMuBvGaFK36rYYUrshGpWtwki+e9R2\nPP+luMwWsi7Wf2VnotEpxX1JymM0KMKQSxi4gHIccb2s1q6hjEmge84UeftLQ1FF0Dg4OIgIDIXa\nFmVxUkIBNqXrMSsYd5d7ovnCUOHiX9xgaDx/PR6unEI6SZA0nkBOcD1h60lsHueO+68/omntarj1\n4j1a1q2BP1k5OHInBmPaNyb11UauRcbi0Lbr+JAg/Xu2vEVJ9BrijN5Dm0OHKniFg0NB3Lv+AltW\nn0Pyp1TGfXR0ddC0dR30H9UK9R2qKVE7ehXkHUA7tnLFOPX+GeXz5/3nwlBXj/S8Z3Ub9KxugzXP\nriM0/japXZ7FMZ2x0KmKNTa37EvZdvxdLObej6Bsa3MmFNd7eLLWg85Y0NfVRXzfOdDXJe9g/83L\ngf3xQErLTNaTBknGwp62g9CyItmv/7/Ur+hxfgfjcTg4OOjZv+82du3kxw1dvirZxXD2rEOIjn4v\nVU6cKZP34r/4JEbjS6NDu5Vo2LAGAoIkF/Dr0G4lo7mU4Y/PdO7ClDA2hImhAWVbVk4e7GbJt8GT\nncfPvOaxme9vraMDxAbOQAljQ6GxUBQQ3+nl4NAUmrWpi2Zt6qpbDZWjdWlVve6dIT1LGLiA0lgQ\nZ6ZdG8pFsDzuM4UxNTBCwsAFtMYCAPS1bICEgQsQ2sKd1Pbp72+0PcMuvz2d/gkDF+Bl/3mUxgIA\nFNc3xJuBC2gNA7bvy8DL+yifVy9RGgkDF1AaCwBQv3QFJAxcgDNdxrCaT5kooq4DB4c6GDqshdwL\neUn8F5+Ey1fnK3WOwqhyLmUhKCIHAEYG+ngWNAM7JtJ/T9BhpK8PHg/YNakfAGDtyB54FjQDp2dT\nx9tYlmdWPVpVtAkgVppPzVBuqtqigMPkYIn3iqDD/C1w8d7Oqo8y9ODQbLTKYIhMJKdnZHvGoqeA\no0q6mIWnfWYxHsOlal2sb0EuSJX49xfjMV7/TqF8zvZ0QBFxCw9TEimfX+k+kVH/+qUrIMSZvkBX\nYejchuR1JxKvwaAM16Si7o505m0D4Y+09pTMeyrWjh46fTlEpKdnqVsFrUDgAiQesyDuFvTIfwoA\noEktZhnMxPtuneAOHR2+ixMAdLCrBQCwqkBtGITP1azA/QZVKhLu3TeRa0+w4cr156zkPTx3Iy+v\nQKJM0mfmbibSaOu6Wu4xnm6YIfFeEVxeOR5RfqJYmYzsXAnSspGdn4fs/DyFj8uhOrTKYJh8m5xJ\n4Q3LxS5VJqC4n18Y90/OSKN045Fl0d21aj141G1Ket49ipml7xK5jfRspl0b1noA1PrL6xrE9j3p\nVq2eXPNxqJ8eVrHoYRUrczuHdDq0Wwkf7xNISPiGDu1WomP7lYz6ZWTkoEO7lUhI+IbTpx7jw4fv\nrOY1NTWmfL5wwTFMnbwPKSnpGD92Jzq0E+kTeS4G/2PvrMOi2N44/l1SSiRslFZExMBGRUQUA9Rr\n18/u5iper17rXgsRO7G7Gwu7CwOTRlRMQCSl9vfHurM7OzO7sw06n+fhYebEe84sy+55z3nDx3sR\n3r5NxcuX70l1APD1ayaWh57D58/f4eO9CH90XUGRL9lHWObjvQgJCZ8xc8YhUhvBa7IY9+7F49Wr\nFPh4L8IPsQWQj/ci7N1zB+/fpcHHexGSk0XRznr1WI0+vdcS8ylpbLn0AA2CVuHS7BEaG7PW7OWk\n3wDQdNF6AEBqVg5OPHlJ2y9gzU5Kv9V9/UltPmZkEtd+3ZajdYdg9B2yEYAgqETfIRuJRffte3Ho\n3GMlcT97wXHMX3wKsxccF8j6lIG2/iHo3GMlIfPN21SMnLCDaB+X8Bnzl5wk+giVAzYL+xlzj1Da\ndu+/DsPHbUf/YWFEXfsuoWjTaSmpL5P8R/Hv0X2B4HUKO3cPPRcKTurvvHojcz5MzNsTQbrvMFtg\n8vvms+BZrz9PQH5hEUasOsxK3sazgo2dBhNWkH7LS82ty1FzK3cqUZopVQqDuljz8ibrti1OrqGU\nGevR26qygS7fAxtH6nuf6T9QxtX2VHgudGQX5sts0+7MRpWN15LBdImDgwOIi/uEunWrY/6/3eHo\nWAGXrswA27gV/p2Wob2fOxwdK6BrNw+kpmapZE4LFvbEqjUDUb68GTaGkTNvr11zEU7OFVGtmhVc\nXatSzIuSk1MxJdAPFSqURcSlv5CRwd5E5dKVGXBwqIAFi3rCzc0GKWI7wwEB9dGkiSNq1aqCiEt/\nYehgwYIuLu4TAKBf/2aoamOJjZuGYsigTUS/1NQs7D8wDhUqlC2RplBrh3fFo+CJMDMy1NiYfRvX\nRVp2Lnp61MH9xHcAgAXdBJGXrEyNMetEBG2/+V185RonL0+g1O3bNgqAIDfKvm2jiPuTZ57iv9nd\ncPWsIAz1/JldSb/7DN6Ii6em4vThSfij31oAQGzcJ2xaPYjSXngtD0GTOyA3Nx+DB4i+Y/v2bIzN\naweja+f6RNn5E4G4HD6NuN+17w4xZ0k2nrmLv3u1we1XbzDCrwliU76i3vjlGLNW8TCzc/qTX/cd\ngYJQ2bYVBGGGc/ML4P3XBjyIobcKkGR9+B3UG78cxT8/aA7PlD+gwNbnkbIbcZR4OIUBwIPP7P5x\nmHjWY5rsRnKSWfBDan2/y9SjXDsz5exVKxmbUcrqH5Ftxx//nZqPoI9jPYXmsL21dAdIDtUjaY4j\nfn/9fR9EvBEptal5D3ExuT3ufNBOXHjh3M4mNSfmcyaxMaVdQsZOhCd64Oo7ejO3Yn4+rrztgnsf\nmU3mtP2sdMyZfRTLlpOT4enpSfffEidoeifi2s7OWmXzio39iNEjt6GLP3kH8fSZPxEX+wkd/UJQ\nTBMus7qtKKKdjg57c1F9ffIzr1g1AH9NP0jcT5zcniT348cMAMC8OccAiE4oRo3cynrM35XZndtg\n4ZkrmBvgg+UXBZtrM49dACA4YZjr35a2H5u/poGU9+7CkHAAQGGRwMF78bzuqOdendVpwNG9guAh\ntWpWZjELdliUM8a0WYcwuL8nsnMEG2kOdoIko/a2zP9Ljg7MiUjvRSfDw9kGf4aJfDOfrJmiUrMj\nUwnl0tLUGLdC2AdXEc5HOKfkL+zNpoXMv3NZ7j4cJY9SFyVJHegyOAZrikblq1F8AOodWSa3Sc+l\nTqOVmsetgAkUM6QivnR7TyYWNJKesfRXZdfOW7h8+QWS31CVKFXh5mYD33Zu6OxfX3Zjljz9Mgd1\ny8+jLKAzfrxEe9trAASL9epm3dG2+nniXodniE72D1Q2Dza8TA2FHs8IpxLc4Wd3E61s9uNUgjth\n6nQ6oR4aV1qNTvaRxDwbV1qNisYCc72C4iycS2qOTvYPoMMzxLmfyoc4dM/qZXMQZQ20GxlDT1cH\ngqjT4ssxxUJjy6NoSMPHexEOHZmIDZuGEPfiCHfq6aIyWVtRNynYIHmqwuezW6AWFxfDwEAPZ8+r\nfpPnVyakp+DzfN+IPgCAuzMEnxNWpsbo3qA2bZ+61QSL9VfzmRe/T2dPZKxr7GGP6f8chlvtqhjY\npxladwhGxQplSW3+me6PMZN3Yf2KgTiyZyxadwhG1SoWGD+yDZo1cZT5XEJTIgAoLuZj1fqL+Pwl\nE64uVTCgT1NKe+H/TOceK3DlTBBCVp6HsbEBMrPycGAH/fdv8yZOaN0hmPaU4e9ebQAA//PxACBY\nnLeduQkmhgY4MXsw/Oduw9uv34g6yXs61py6hR0XI/FgJf1ru+b0bXRqJP1zbPSaIzAy0MfGCd1x\nLjIas3aew4xebdDdsw70dXXRd8keNKmpldCgBG1bLQAAXLw+U6vzkIe2rRagU0B9TJlKvz46fOAe\nNqy9SNzL82xRT5MROEEUfEYdrwunMABoWkG7b/yQpgHwOrVWq3NQlMJixRSK0g6fz8foUdsQF/tJ\n42M/f/4Oz5+/w/LQc6RyY2ND9O3XDL16N4GeHnsl2MVyIl6nrULd8vPwOecWzA1dEJ+xHY7mgwEA\nBroWyCsSONjXLT+H6OfvEKUVZ2FXq0A4mPdHRLIv9HXKQl+HvIjo7PCE0ufJl3/Q3lYQbvRcUnM0\nr7IVOjzBzpuf3W3Sc0h7Vm37XywJ7o1JE3Zj1RqRWYAsJ05xQpedReCfHQCIzHNUgaWlicw2S5f1\nVZlfQOHPsKJCJk3chX8XyI46NHtON4wds12psUuib4Oq0YY5luSCuq23K9p6uzLWA4BP61rwaS3w\nfbOyNKW0qVqFnO1bsl7yfvI46WZUK5YIFKYrZwT99m4byUo+k0lSr1Z1AQBjOjUjyi4uEMk8NXcI\nqb3kPR3j/T0x3l9kNmVsSDaZFpoo9WpZl1HGzj/7ENd+HjXh51GTuPd0tYOnq53MeQhJyfrOum1p\nZvigTdi8Y6TUNrIW8RvWXkQzT2f8u6iX3OO7162Oi9dnEoqUOihVCoOxngFyJGzqr6bEo3UV2TsJ\nQugiLa1kGZ1nT9wj1uPIg42JuVrkaoINr26rXGZ1UwskZ6kuUoUq2LXzJrZvu6HtaUglJ+cHtmy+\nii2br1Lqpv/VGe3a16Ht51xuOF6nrSLuW1bZh9OJ9QmFAQBuvheYwZSUaEJl9Coy1vH5RTid2ADi\nO+/5ReRjdKsyzBk11fGsJ45HYtXKCzLb6erqYPvOkagisdARUqlyOURHfyAtWseOE5mELA0OR2Ki\nQOHp3XMNXGtXxZy5gs+3S1dmwMd7EcJPCxSqcRN8sXY1vf25vDAtoiXL5QlStzQ4HM+fCWzmhwze\nBDu78sSz/D0zgCSbx+OhenUrWjni1HSpjP8NakHq6+Zmg5WrBQrYylUDfwuFgINDUzTfpzofx5JM\nUiJ91Eq2CE9Nu3UvuXlUSpXCcLnzGDQ9vpJUNuz6AblMd+giLbH9DrvwLpr1OL8Ltz8lqVxmHcvK\nJUJhePUqBePH7tD2NFTCksWnsWSxIGGgjg4PIcv6oS4l26TgE4vHEzdVEfx38PmCHV1t77Cz4XRi\nfdSwGI2aFmMByL/wV+Wzrl0dgaNHH7JuX1RUjIH9NwAAjp+cDDMzI0qb8xH0u5UAMC2oE2MdQN05\n/uMPZsWJTX+mMkXrxMukPYtP29rwaUtvCiNL7qDBLTFocEvavm51bEqks/Pvwv0P7zDg7EHkFxVR\n6ro718ay1pozdS3i8+G4OYS2rknlajjQuQ9tnTycTYzBmIsnaOuOBvRHg4pVlB5DnKUPbmDtE+Zw\n1q1s7LGzg/z5QZjIK1R/GFXxHXUeD4i4JtrF5/MBXy/yjrv4Lv+PH4Xo5LuEVG9pZYqDxyaR5Iv3\nefQwEUGBe4ky8fHFr8X7dOkQguxsgV9qcGg/NGhIDu4i3i8ocC9FBp35lTZMskqVwlC+DP2x9+bX\n92jDk0qibJjQ1yyiF/1uxGbIF5qRDTXMrRGucqnseP06BePG/BpKAhPFxXwEThE5zQsXSHc/jCGZ\n4RTzC+FZZRsAoEXVPbiY3E6zE1UCobLARHreU1iUoT+SV8Wz/jvvOK5elS9GvCRdAwThC7kFLMev\njl3YUpltjsS+wJHYFzLbJY2Q7Z8iPt6Yek0wvVEr4t774GYkZkjfsLr34S0hg8140sZn4o+Tos9o\nRcYAgKz8fLjtWCm74U+uv0sk5jajiRdGuVMDSjBRf9capOfJjnLG5tmFsHluyUV094DlOHJS4N/h\n67WAsqAWVwAMDfVo6+VBfFHPtHg/cXaqVNniMugUipJCqYuSRHeasOjJJdQ6uISmtQhpGZHZkvYj\nh3Xb34V0NbwmZfXp472rk+JiPny8F/3yygIT1cy64EvubVQ36w4AKGvgjMefZ8CyTAMAgJGeIOFS\neGJDCE8iUvMicSqB2Q5Wm/AhsOuPz6D+Pf3sbuBmykAU8wU7PhHJZLtlpmeN+vovq7GzsvKUVhbE\n4UxkOH5l5FlAqoPweJHlwJQr4TKVBXEGusoXeGLPqycKPa9d2FJ8z5ceOZGujzzKgiSL7l1Dkz3r\nWbdnoyyomybNnJDxjVunqYtSdcIg5H/ODbEzlnzMn19cJPcJgrxRiGxMypUIU5mSRAUjU3zKVU08\ndwLlk3GzJicnH/6dlmluwBJGu3YCv4Z65f/F20zR0Xgrm0M4nVAPHhB9ufk7RCGv6AuuveuJ3MJP\nsC3bHf4OT4l6pvCszuVGwMVyAqXN3Q8iBzFVmjp1so/E5eSO0OGVQSubA7AsUx833w8g6vV1zNHJ\n/gGuvusBE30b+FaPoMyd7lndrf+ROfbHjxno33edyp5FiI/3Iu6kgeOXg27x7FPdEVva/0Eq4wOw\nZ1hom+gbYECt+33jeQAAIABJREFUeghq3Aq68jjJ/CQ5U+DfZB+2VO54Y/960oeUpW179wq2PKM3\nT6xjXRFdnVxRxOdjz6snePOdGrrUfccqJAyfCh2Wz5g0YhqjcmJZxgj+jrVQ09IaCd/SsJlhXp9y\nspCamwMrI2NWY2obj0b2uHcnjlS2USzqEAD07C2yRnkcmYRpU/agaXNn9B/oiVq1q8ocgy489O9C\nqVQY5ni0Qy2LiphxX3HDFUVyJ7haVOQUBgkqG5dVucKQkp2hUnlMdOoQQiQL+l2ZPqMzcS2+aOdB\nh3YRX0a3PLxs6DOEsln0K6sYiPdnutbh6cOnuiiClIUhNbqRDs8Qbaqdou0vRNqzMqEOZUEIn88H\nT4EFEQdHSaTbCWouISYTFN7Puk1RD7Dw3lVS3YvBk2j7yIv4MnCga32pysDfNy5g7+unjPWSpOfl\n0ioLr4dMQRk98jJspLvA6fXa20QMOkf+/HHYHCKXeZIOj0ckXOvnUhcLW9KbWs5q6g0A8DoQRlFW\nPHavZTUmUxtJpUVR8yo23L8bTykbNY757zhtyh65fQAeP0qSd1q/DKXOJElIL4e6uNOFOYYzEzo8\nHuL7/K1QduYO1bQbg70k4llR9bZ2L9LVH6rUx3vRb68scJQu2rZZrO0pAACS3lVGckpNqfVJ7+gT\nZuX9uEXUi/9kZKpP0eIomTz+nCJ3H+FiWtWIL2qTRkyTeXKwsGU7uRa+9XetoZQljZhGURbE8apm\nTzuG35HtrMdNGD4ViSOmIWnENEZlQZxrvUewll0SeXg/AZZWpqQyeaIXnTsjWwk8sPeO3PNSlkYs\ncopoglJ5wiCk2YlVlDJfmxqI/PIOGfm5sC5jgo7VXTG0ZmNUMS5LI0E+Old3xaTbx5WWI0ncd9U7\nDmuKUa7NsPblLZXKVEfkJSGZmXnoGrBcdsPfAHf3atqewi9Fu7bS/ahUQWk+ZUh6VwWiSFwG0Ner\ngfyC5wCA9Ix/YW4m3VGd49eG7QJ8qJsHtj6PJO6dtixD3LA/NToHeUjNpdrUyzOOpGnR6zT5wnfK\n+2lBZ8q048UjDKrdQE5J6qeZpzM5SpIOjxThiCkvgfBUYeny/qT6YSO9KW2dnCtRoh/RyZzxTxfG\nKEl0UZCMjQ1w8hy798GipX3QttUCkhybapZ49zaNuPdrs4iUk6dtqwWUqFHKUmoVhobHVpDuDXR0\n8arXdC3NRjmC7p3W9hQUxkTPQNtTYM3Tp8kInEw9Bv9dWb5ygOxGHKwpKlJ/EsOhg8OwTUZyoJKL\nQFmws/lAqSku1owZIkfpZ3azNiSFQVXJQ9VlKuOxm5yUtW31krFbLA/H416VOIWBrSmRtHb1Pewo\n9X0HNCfdb9gyjJVMH183+Pi6yT0Htu1kyTh3Wf0+bqXSJMnz5GpSdB5n8/JaVRaK+Mo5wTxNpR7N\n3ggYL7VPGV2qrtdIQomSF2X7i7P82XWVyVIF9+/Fc8oCh9qQzDysLpKTUzUyjrrg8ehNQXV0Sm/y\nSg4Oedgs4dCtCO0Pb1PBTJipZEI263n+Vf1mwhwln1KpMHzMySTdn+ugObu7cobUREq1DqretliW\nCdWT7tQjWGXDvtL1v+ov20zAiiY/xpoXNxWaw6EE9o5kbHn/Lg0z/jqocrkcHEJKehbwkgKfX4BP\nX3prexocHCTUZeQnfhKiDJ5VbUn30enqNWOuZGJGui8o1syGCEfJplQqDNokstsUSlkRn4+oNOox\nOxtqHKAqG+Nrt5DZT19Hl7a8xgHFYrY/T/tIW17NpJzMvve7qiZKBQD8pUTkKyb+N/D3SE0vDw08\n7LQ9hV+KfVpwhCttCE2Rcn9cJ5ydU9NLpxkph/a4nJygcpmrffxVLhMA5t+5TLq3LKNYeNIWEgoD\nx+/J2eRuxPWheA/c+jgFh+I9NDZ+qfVhEMf9cAiiekzV2HieFe1x61MiqazbhW1y53U4nfwSRXyq\n/eWUOq1oWlOJ7/M3JfeEouZRXS5spZTRnWLIg9P+hYiT4zX5UaT6NPJc0it6lob01fYUCGIzvqL9\nmU1I6Cvf/w9H6cPO5gOycg7ia5pgkyEzeycys3eiWuUo6OqW1/LsOLTJ/Y/v0LiSjcx2Q88fId17\nVVM+Up93NQelZbAhLS9H64nq8ouKMOPmBZxLjEF2Qb5W58IhH40rzAcgSExawagxPCst5xQGecku\nzGeVtM1EzwC2ZhYYXKMRutu7y2zPxE7vvnA+sIiIbyzEcf9CvOwZBEMa/wJJnPYvpE0SM7JWU7nm\ncsR3MLpHbKfM4381GmJOA9lh1BY9uYTNr+/R1pnpG7KexxrPPzD+1lFSGf/nXNgoUoF3TuLEm+es\nx2MDpyyUDpzNrRVWFhz2LeQUjRJEUZFsW2dT414wNe4FAPieuRFpGXPx9oM7rTM0x6+LLo9H2uDq\ndWqfTMdjOtOYHX49lJ6LiX7pCd4hLz+KClFzKxcZ8FegoFhgjn84vhF6OqrG3E0eSqXCsKhxJ4WS\ntmUX5uNl+icE3TtNRCbqYe+OJU06y+hJJbb3DFolxfVQMJpXtMMu7360/U4nv2QMzarD42F63TZy\nzaOeVRXa8p0xD7Er5iGe9ZwGI12qo+GPokK4HV5KUXqEyHtaIi1HheP+hdjeui9aVqLuBOUVFcLt\nULDcGTZlsXXLNRVL/HWoWtVC21PgKOUUF3+nLc/IXEtbzkRZs1EoKk5HRuZKfPjcAZUrnFXF9DhK\nAfHDp1J22+3CluJW31Goakr14Zt35xK2PX+kqen9Eoy/dBKnE6K1PQ2lCXqyHbe+vAIA3PKlhq/O\nKMhBx6vziHu6Nun5Weh87V/G+gepsZj8aDPjHIx0DXCxzb+M9Sfe3UPwK8Gm6ZnWc2Cuz878zDNC\nZJZJNy9xbnyYgHKGzDlw1E2pVBh6OdTFy/SP2BWrvIZ1ODEKhxOj5F4gA8A+nwHoe2k3pfz2pyRW\nJx6SxPZWLCwWnWkSINjhdzsk//GnqucBAIOv7lOJHLbs2X1bqf6/Mpu3DtfYWA77FsJQV48wN6th\nXh7nOoqCFPif20Ik6qM7KXA5sAT5YruKwjYO+0TvD/Fr8XpJeeJlDvsWYraHL+ZHRlD6AoDz/kWk\n3U/uFIMd37PC5O5jYf4XMjJXoqAgVg0zUj2XrtB/PubnF+JZ1FvcuhmDqGdvkZggX7z835FD/n3R\n8xT5u8FzH3ufM3VmDS7tOG8JleqsXMuqAqY2bIGWVe1goEv2iayzYxUy83+oe4qsme7aHQHX/mOs\nn/pYdtSo0NcnaMsPJt/EyuhTMvvnFuXDM2I646K+i00TQmHoeHWezMU/AHz5IQonHVxvsMz2Dcv/\ngyepy7RyugCUUoUhv7gI++Ifq1QmW9MZcRqXr66SxW1ZgzJ4/EegUjJUMQ+hHG3OQ9nxAWB56Dml\nZfzKGBho9t/+Va8g4tph30I8/voe9a2rAgBO+Q0jyiWpcWAxCouLaRfr0hQDtsyPjKDtW/vgUpQ1\nKIPIPwQBDmbcP8OZPtHwI/8xDA3qE/dM2Z2FdSbGf6C8JfUEQtivWpVnqp+kBjEw0INHQ3t4NJTf\npv7Ll0w8f/YWz569w80b0UhNzVLDDEsejSrZ4NWQyai1Tb6Q3nZlLXC1t+Y2PlTFoNoNMK+5j9rH\n2fo8klZZKK0KlpWBmdT6lxnJMmVc/hRFW96reguSwjDKqT3+Zy+y9HianoixDzcQ99KUBnnpel30\nvedZvpbM9vZlu8K+bFdSmSaVh1KnMNQ/Gorv+Xlqka2I0gAIFrk1DiymdWCWRZMKttjbpr/c/Zjm\nERp1TeHMy6pYrAvlyKs0SCbesy5jgq952QqNf/qUapVJZfFq7YLhI1qjShXFTYEePUrC0yfJuHLl\nFd6/S5PdgYEyZejj4GuSqXdP4VLn0TLbFRYXY5e3+pyzmUIp5hYV4KDv/4j7oLreOBD/RKosCwsT\npKcr9n4tbRiVaYPcvMv48Lkjpc7O5gOj4pCdcxTZOUdp6wCAx6OGrP5dKF/eDN5tXOHdxhUTJ0n3\nPSsu5uPWrRjMnc38WpYmjPT0abML06HL4yF+uOYCnKiaiDdxGlEYJKMzAfIpC3yVGwmrjqzCPJjq\nlZHaZnP8BQx3pP8/6mLThFI2tVY3dLOh9x+ta2GPW75LSKZDuUX5MNKl+r3MrN0TC14cAgB0vvYv\nTnv9I3WepY1SpTDQLUI3t+oF7ypOcsua9+gCdsY8pJTHf0+FY1krueXF9P4LAHD+XTTG3jwita0u\nT4dor2oC3b0Q6O6FguIiuByUrQVH9ZiqlmzNQuWj3+U9uPf5DWO7DtVcsMaTmshml3c/dDgrv3mD\nX7tgufuokmWh/VCvvupD4DVoYIcGDewwZChzBK3jxyKxOewqcnOZI1+En9X+l21mAfujblszS7XN\ngy5/iJCU7AxkFog2Jvb6SFfq/5zaAbNmHlbZ3EoyFa0FCRDTvy9GVvYB8HhlYG2xFGUMBeGg6ZyX\nhWVp3+YgJ+8CCgvfQl/PFmamg1DWtLRmrtYOOjo8tGypPTtmVdNg11qk5YlyAK307owuTrJ3W0sD\nLW3scONdEnGfkkXv+6NKrr9LpJTJe7KQlV9yoydNe7wN6xuNoa1bWn8Ipj3ehm0JlxgVhqBa1PUG\nk7IgTrvK9XHhg2AzcnLkZmxsTM1R1bFKQ0JhSM+XfkrY/soc4npfc3bfy+IRkYQnC4fiPTR2ylBq\nFAY6ZUGZHfE5DdrhwedkvPr2mVTud3aTwjb8ANDepqbKduqVQV9Ht0TMQ9HTkxrm5RWaf0GB5hPM\nWFqa4NCRiRofV5Ku3TzQtZvoA6W4mI8xo7YhLq5kZekcVKMh67YTbx3D0XaDlR6TKRIYE9c/JODf\nRn6s2zdr7izvlEo9FmX/gkVZ+TY+LMvNgyXmyW7I8dsgriyc7DoQ7uUraXE2qmVD2y6ovX2lRscM\njVTMwqC0EPUtiXSfUSA62W1uzRx8RVmGOfgSCkN05nvGdr2rt8CBZNmJa7MKRRtS1U3YhZSubtoB\nTSr+p9FQquKUisRtroeou8aqWAyf9qPaQDJFDdIGG6O9sDHaC0/S9mh7KqWCzMxcjY7XpasHLl2Z\nUSKUBTp0dHjYGDYUl67MIH60gcO+hbj8Po4IEDCutiepPqewgLZfQt+/8SQ1Ba1OrsW26AcYeIXe\ncd5h30Lc+ZSE9S9Fju41y1UgxvU5vQE7aE4TmUjo+zf2xD1Cj4gd2Bp9H+6Hl2Hw1f2s+6uTU+HK\n5Ub5VUjKfollr8di7vO+OP9hl0IytifOx8yoP4gfDs0jaYb0KykLAH241oa716l1zGdf6JOwlhQU\nPb0Y5dSetjzg2gIAwB/VmjH2/ZiXrtCY4lQ2EpkUFxQz54yaWFOUBFDcjImJwQ7sTdSczHuzbqsO\nSoXCoI6EXhy/Hl0D5HOcU4YlS/vItDXmEJDQ92/MjTyPtB85JMfhA/FP4LBvIRHJy2HfQorzc0Lf\nv1HVxBwLH1+k9TlI6Ps3/lejIUbeOIx32aKIE2c7DEcvx7oYdeMwZnu0w42AcXLP2VjPAIseX8Zw\nlybY3rqPzD7t/RTP7cIWY+NfN148W6K+3URY/Cyk5X9EQfEPXP9yTCE5bubNYWXI7KjNwaEKxtQl\n28x/zVWvr1P1suWU6m+v5sRyB2MUC24g7ogsTiFfYFUwuWYAqXxNjCj0PlOEJDr2vrkOz4jplJ9W\nF1W34bY94RJxPYLBdIqOy+8Hq2wOilBqTJLE+cO+jlbH3xjtBQAYVZOL9f87oq2d+tLMdZoFe2/H\neujtWE9m330+A6TWz/Voh7ke1A/dxY07YXHjTsS9uLLCJuLRTjkdroOmd8L5c/SROFTBxcvc+w4A\nDiSHoqlVR/hXVS5KTkPLtmho2RYAuBOGEoJd2FIkDJ8KHR5TSILSx/TGrbD+Kdkk0i5sqcIRi9Lz\ncmFRhjlAwJKWfuh1mn0Yc3FepH5Wu7vz/DuXMdRNOZOaR2nxaGDpSCrT5Qn2vwNduiL09XHse3Md\n42sIPv+FORyqGVvTypv3fD9hbqQKDrYIQq+bAsuYgOv/4WSrWaT6sPgLCsnt6RhJmCMJf3NRkmRg\nbya/UzLHr836dZdkN1IB51kcMXJwqINfaA2lNG7msp0UOUo+nRxqIlwisZjD5hBWfZtWrob9nWWf\n/JUE/vP0xaxbEaQyu7ClWNWmMwIc2Tl4r396D0vuXwcg3Ym5cWUbShkbBWXJ/esUxUYVrG/bBWMu\nknf4Ox3dgfA/Biksc1P8eWywHItzH6iJ/LpXa4bQ1/TJcf9xo5r0+Fz+B3lFZDOp/9wHwLsieWP6\nQ246etxczGp+VY1Ea9TUH5mkOuGJCAB4SCg9bNBWDgaglCoMdz+9wVjX5krLSf+RQynTlfGtnFlA\njQDCoX0OH7qv9jEmTm4PPb1SYcXHoSUuXZkBH+9FapGrCDOj/sAC96OY/awnin5+Uf1TezfK6FKz\nkL7IuIO9b0TmCKOcFqG6sSAaz+KXQ5FZ+A0L3EWhPGdG/QEDnTKY47YXAHAgeTmivt2gtBFiaVAR\nf7qsp51jP9sg1DZvSmpf1cgRY50F84nJfISXGffwIE2w6NqcMJskQ3JM8XvxeUiWc2iXtT4BCE9Q\nzATm7oe3sAtbCj0dHcQNK9m+PQNc62FT1AMkZ34jlU+8fBoTL59GNTNzLGnlh5oW1sgvLkJceir2\nvn6Ks4kxKpsDk9LwITsTzfZuIJWFteuGERcUM/WTpIN9DUrZi9TPsAtbipdDJsNYjxzqu4jPx55X\nT3Ay7hUOB/Qj1VUxskRKbhqefRNEXlzyUhCRUvK0gYna5tUpZeLKws5mU+Boqho/msZWNXA/lfr3\na39lLnG9yqN0RYgrlQrDrU/UsGGK0PAY1eb9dS/6qB/5xdm483kdXmecJsqEpklCpJko3fuyEU/S\n9lLKhzqfhb4OuxTikoiPzzT2/sR+yMgXefQb6JhgiPMZuceKyXyKzQn/IbjuISx9PRHTXFbJP+FS\nTpcuDbQ9hVLH75jsTNVKg7ImcDOj/sD0WptRVt8Sidkv8O+LAehqMwaNLH1JbQDRgjolNwFrY6ei\nuXVndKoyFKOdg7H0FfXLLb9YFOkj6tsN8H56mvDBx6yo7mhdoTt8K/UnxqBbzAPA9S/HsPdNMOa4\n7YWBThnEZT2Fk2ldor68oQ28KtjAq0J3hLwejd7VA1HNmLoQ4Sh9+FR3xKXkeIX7FxYXK2Xioymu\n9xmBXqf34f6Hd5S6t5kZ6Bd+QGVjMeW1YJPrQh2vI9N8XOVM2Let6UTSgjv/p/PxaikLb2lJ3VZE\nnyTdS1MWYqRERqJjeYNhhNPzmAfriVCwQgVFEbM7uhCqmgyrWmq3S71OUTOGygNTYjG6P+LGaC9s\ni+1IUhbkQRDpiKosAMDW2A4o4tNHiZElUwiTsrAx2oukLAACxUfQVz5LxRpmoi/vH8XqSZxXkjly\nbJK2p8BRilCFnwuPpxo5/lVHoKy+IJ+FvUltAMDxd6Kd/nupgszof7qIordUMXLAlJqrcfur4DOv\nnL7A9leY0Onip30YYEfdXPGvOgIAMCuqOwAQygIgUkYKiqlRUt7lxGKB+1EY6AgSMokrCwBgYVCB\n+AEAM71ylDKO0sXQ80dgF7ZUKWVBHDaLYW1zsHNfPB44XikZejrslm3PBskfvU9yR1+VNK5ENZWS\nF1M9+ZI7puVnYU/Sdcb6MymihXZfW+YcRwCwOkax9R9ADQULAJfa/Ce3nHrW2j1JKxUnDDG9Z6DG\nAfKO3bvsDDjuX4irnceimim7qABHE59h2r1TjPVMoVrFF+RsFuqSVDZyRwebYOjrkN/su+N7ILvw\nCzbHtJXLgXpjdOufVzyMqnmVUl9QnIOtsR0AAEOcw2GgY0rUFfMLEBbTFhujW8t1uhEaLXijBj3t\nieC6h1jPVRPcuqm6Y1s6DA31UK6cYqdAHL8vwsW+vKcNenq6OB8RpLJ5NLXqQLp3MK2DhCxRpJKT\n7zcBACwNyLtr1oZVAQDhKVvRqcpQAMDB5OXoXT0QVz4doj0paGIlyl3hbEbv0L4ubhom1dBsbHqO\nkoXk4t5E3wAvBsu3KRPy8AbWPL5LKvvv7hXMauqt9PzUiUUZI2IXf8SFY4h4EyezzwDXevjP01dm\nO3HMDAyRNGIatj1/hHl3pPv40ZkGGejqIr9IdXmNDvoLgkgMOHMQN98zJ3MV0ra6dDOjtzlfGesa\nWTnjQWospj3ehtffBSc6wfUGU9pZGpgi+2c+hJTcNKnjfciVPzRrcL3BCHqy/Wf/NOxOukrUGejI\nv/zOzJf9uqmTUqEw6PJ4sDezRGIm9Q/a+rRoV8xEzwANrKtCT0cXqXnZiM74wjokaxdbN5XNV5KA\n6qtpywc4HqaYNdHBEzsICotpC4APHnQwsuYV2vZCZWGg41GSsgAAOjx9dKm+BieSx2NrbAfWikpg\nzWWs2mmD4CXhshspwZlzih3R5uTlw7iMfGEwY5O/wLk6fRKXzcfuIOzoHdzbFajQfDi0g1Bx2L3r\nFrZtZd7tGjbcC/36K++bJQtHU3eSwiCLZxm3CIUh6ttN9K5Ofv/xwSdMkcSJzXxCG33oc95bOWfM\n8StRdyf5+7CrkytWeHdiaM3M1IYtkZqbg32vRZHJNj97yEphKCnmS2Htuql9jCFuDTDETX5z2pih\n6vme2d2xl0rkSNvxn1enHzpenUcoCwDgWZ7qXD7SqT3+iRLkubr2+TmjvD63FDu9Eh9z2L01pCRz\nihD//TDqWU+DDk+wdOejWCl58lIqFAYAuNhpNBodW4E0GkdlIdmF+bjxUX7/hpKQEVkaFYxcAQDb\nYjuimF8AHZ4uRtS4LLOfsR59NKlKRsqFpS1ppwxZWZo3kZoaehx6urpI+ZqBnf8Kwn4OmLkLVSuY\nY8mkACzcEoETVwWLMuECf+jcvUjNyMGJ5aJwkH7jNuDc2tEAgCYDQ3E1bAJRt2LPNUTci0b4KoF9\n5vBuzRB29I5Gno9D9QwY6IkBAz1lN1Qz+XKaFBrrmgEAelabhENvVyKzQLTTNsxhPsLiZ6Fr1dGU\nfm0q9oJPxdIRxYZDc2T8IL//FFEWhCxq2Z6kMHD8PghDpfajMSUy12dnEdCmojv+gSgxrmfEdMxw\n7YHOVRshKfszBtwOJcww/3HrjX+fy+9nMtKpPTbFnScpC7d8lxDX0zadxtKRnYn7G88SkPQpHQPb\nUkPPiodVFS/TFKXKh+FBt8k42X6oyuR1ru5a4pUFALAwsMPBpMHIL86GDk+flbKgKoKe9qT8qIp+\ndycT18titgAAVsfuAAB0vz0WADDlicDO79j7C+h+eyxeZ8YTdZogdEV/2vIbjxNw5WEsoSwAwO4F\nAzGxr+DE6O9hguNjobLQZGAots7thxPLh+OvlQKzuH/WnSGUBfG2Qib390L4qpFoM3KN6h6I47cn\nMk2+EMTeFQT/8/UsBO/tw29FAQ8cTN3wJvsVLn8+iPaVB5L63fqquM0vBwcHBx3tKtcn3Y+robjC\nCQCdqzYi3S96eRieEdPR//YyQlkAAL/KigU9GcSQcE7IpcexaDBmOf4XLMidMWndCXzP+cHYvqdj\nJOlHk5SaEwYhtS0qEYt8//Nb8DL9k1z9p9dtg5G1NBvDO7vwK3bHd1e4/4fcKKT/EJycmOrRm6vQ\nwcbcSRZ0JwlLXinntAUIFIK9TUQREv6sMQwAcPXLPUxwHoTpLoKF9PJ6goQnu98cR4fKrTHz2TL4\nVZLunKRK6talhmGjY97Gcwgc6A1z0zIy2y6eJEgd//dQ6TapQ+fuw9a5fZGdS3US5eBgy7zn/YjQ\npwCQVUgO7fif+xHMiuqOLQlzMMxhHlG+NWEuAKBOOfKpSFzWUwy2J4c1ffbtFvpUFznkGemaIrco\nS1WPIDffC9IIR28ODo5fhzlufVglWWtZ3hU3vryU2W6Gaw/McO2B0NcncOTtbVKdZ/laJN+HoQ5t\nsTXhotxzFmdHs8mkex0eDw/XTcbcnaJkbuMC1G+aqgilTmEQ51T7YdqegkxiMs7hykeR0+PwGheh\nyxM5F7FZ1F94Pwv6OsYoKM7B94IUxHy/gBplZacT72G3RbFJy2B6LeV3vI80X4fut8fiSPN1tPVr\n43ahceOl+FbwHeX0y6KsvimG2/fClc93MMJBZOZw9uxTpeeiCuLefoGZsSG8hq3CtS2C6BQu9hWJ\nehf7ikjLyIGluTGi33xGTVvZkV1aN3TC7aeqCSHM8fuSX5yHWVHd0c1mLI6+E0SX+8/9CFHPAw/V\njV2QkPUMq2KmoGX5rjj8VuCUPKv2TlqZTA7NQmbV3kmEUa1QphoqlbHF84w7KOYXaSQXwpJXw+Ff\ndTgy8lNx/csxGOoY4UdxLqnNnqQlSMp5hZzC7wAEYV/L6VujuokLxU+Do2Qiy5mX49dE3KSHicX1\n5EsMF+jSBYEuXaS2Geboi2GO8jmfS+JkWpl0P7N/W+y48BAn77zAyTsvoK+nixdvPqG2bUVK35NJ\nPvhR9I1SrqmThlKtMJQGhMqCV6XpcDHvqJCMysb1EFBtJQr5P7Alph2ufFjASmGwMnRSaDxZ/Pdy\nJGa5blJazpHm67Ahfg9GO1LNfrY1WoJed8ZjjOMAeFdoiik1BKZoE5z+R2p3Jlw7CoOk+dCu/wTm\nGEJlAQB2zO9Pey1UFozKkKNSSJb9r3MjylglweHZ9+oUAMDy+hPgZu6gcP+I1ssVGn/w8aO4/iaJ\nuE+YJP01uZSQgBGnjstsp0ocVoaS7jU5tiQL3I9izrPehLIwq/ZOipPyKKeFeJP9Gpvi/yaUhUH2\ns2CkSw6aUMXIASm5CazHnRXVHZ/z3hKOzi3KByj7ODKZX+cgZj/rhVPvNwMA2lTsjQqGNtifTA7c\n8PI7Navtt4Kv+Ebj2M1RMtn2nJzpd4+KHGo5ODRFN09BwJ1B7RoSZUNDDmDrVGpW6h9F39DD8QEp\nEI4m4RR4AUMUAAAgAElEQVQGDaGosgAA1U0aAwD0eIaoad4B0RlnsTHaS65QrMog6bcw0E51sYAl\nlQXhiYMOTwcHm4lOMtzNXQAATa3I9osvX8iXTEUeLCxM1CabA3iRkYja5vZy99veVRR5R3JhToeP\ngwOM9anKmSQXE+JhamCApjbVZLYbeeqEVCVAWMdmfppgXh3Zznq2Ji4yd//HOYdQyqT1ET/JYELe\nEwdh+zF+S7GeJoKZLk+PVqakaRWX9blkUGNrqNwReY7FvcSUK9ToeJ5VbVU1rV8Cp+Dl8KvpjDVd\nOstuzAGnYMEmVlzQFJXJ3J4gOgWb5Uav0PaYvxMJH1KJ+0fr6cfvZBuuNWUB4BQGubEwtCf8CZTl\nQ6780R1aV/oLsd8vophfIFNpuPpxMVpXos9cLQ8lKSKSJvnfoBbansIvzemU2wopDIrwfOwEmW1G\nnjqBvd1lO/WPPHVCFVPiUBI6ZYGj5ONsYYXYdNHiKL+oCHZhS9HHxR2LW7Zn7FfM52PqtbM4GvuC\ntr6khEpVN3MvXsbcttIdacXpU1e5qIgcyhEWL/JN6FCZGvmo74LdODz7f5RyOl6lb4VHee0F6ilV\nUZJKAj1sw4hreRb8+xMHkO53xPnjZLLsRQwdI2qInG7ofCCESoTwJCIhk6xUvPh2HBujvXDnC73/\nAIeAgC6KRUVQFtstwcTPr8zdVNkOacow4OhhOKwMJX6YiPr0ER6bBJmP+x05xNgn6tNH9D96mLhn\nI5sNWx9HqkxWaaGDfSDt7x7uf0utF/5mup45cAMAwekDADy6EY3Xj7Wb7IiDTESPoWhdjbpRsP91\nFOzCljL+OGwOYVQWEn8TZQEAdj9ib4YbFzQFLey4Uxdt4Rkxnbi+4rOAtk09p6qs5aXmPcGheA+c\nf9sD11LGED+agjthkBMdnj50eLoo5hdRFvx0u/297HfgYOIgZOS/pSzuG1gNhLlBdVz5QP9Gksao\nmtcIeV/zYmBdpgZjfUTKbEp/eZE0S/pdTx1kYbslGG+GKZelV9j/V1cYcovUmz+jg5MzcgoK8OTj\nB6ntuu7fK7Ve3nby0HDTeqTl5qK9kzNa29phxqUIOKwM1arPg7YQVwAUZdbGIQCApOgPhDyeDg9n\n4pVLPOkYIlLk4qf+fn8bVbPdrwea79uIlKzvSsv6XU4WACDw9FltT4FDCuIKgjj2phUZMzufufcK\nB64+IZUxmSRl5McDAL7nJ+I7NB8QhVMYFECYB+Hc+xl4n/MIZfUro5Y5vTOfhYEdRtW8hqi0A3ia\nfgA86KCeZT+4WYjssJkcmGX5KLCtf50Rjrtf1qOYXwhbk+aobzUAlobyOatyCgKHqmlgUUN2IyXo\n714X/d3rApDuSyDub7C3e09GHwZJvwRVLOrTcnMRO3EKdHkCJ+TebnXgsDIU9Tesw+PRyucbKal2\n+mV/+gedTRS8ls51bLDqpGoX4kLZHCWT231HAQBuvE/CwDPsv1/crCvioH9fGOtJ90tyCl6OuKAp\nhF26kJBOfuhaW5SBt+fu/XicQt1UiJ42mfi/lJQBAKsCOmHiSZEfhbjdO117yTbS5ihLnuQ9nVwh\na7p0hl9NZ9r5FPP5qLF0BW2donb8bGVm5OXBY9V6Shvx1x0QPEtZQ0N8/yHITSDtdf+UlQXPdSIr\nECGvp06Cng7ZoIbpbyTZZkLzppjUohltnZG+Hp5NkW4pYmdSEbubMX+2XQtl/zmv6bwLknAKgxL4\nVV0ku9FP3C17w92S6vWuCVzMO8HFXLnkJtwJA3XHX/wk4UT8Syx6cI3STtim4/EdeJH6ifb0QdFT\nCfFxDnTsg6aV2eWM0CbCCEkAMMzh93bEOxUTDQCkL0cA6F/HHXue/drZay3Km2HOsM14eO01wuNC\nsOLYZPg7T0OjNq6Y/fOUQJwVxyYhoGYQ6jYXLHzETZToFIOziaHo32QujEwMseLYZJiaG6n3gTgU\npmVVO7WdEnTbuRfO1lY4O5TZRvxxyge4lLfG6SGixINOwctRc+kKyqJZeO8UvBwTT4YjLmgKmq7d\niK/ZOaR2nWvVxAp/UaCTrPx81FuxFvufPqP4FDgFL8e6bv5o5yyIaugTtg1v0smhM8XHFb9nQrI9\nE8KFPeU5U1PpmrOCSWZWPjmfkMeq9axf9+CO7dHW2VHm6y5UFiSVLZeQlaSy9lt2UNo1Wr0B6bnk\n0MsAsPr2XVqFAQBFWQio2hgP0+KQlp8Frwq1MdtN/kz3DcYsZzxhAICo1BWIzdiP7g535ZatLJzC\nwMGK31FBEEdyUV9QXESq7+Loii6OroyL/zNdB8F2SzBWPr6NSfVFSVm2vpB/xyDs+QP8d+8KaRzb\nLcE4120walnKzu8gD+ILfEmmPF6tlGxHU/a2m78iC68LFMzfxW9BnNYBDdBnXFtMDBA8u46uDk7F\nLiXqhUqA8HfNerY4GR1MqZe8NzI2JMr23JurlrlzlB5efvqM6GmTGeuFC2rxRSsAYtf/a3YOrE2M\nafsOaSjwcfurdStMDT9HqhNXFgDA1MAAADDv4hWKwqCno0MoCwBwacQQVrvfyvIxU5BYkU75cLKy\nUkimNIVG+BqIt2P7urd1diSumV73z1nZtGPTneDEp6Zh0x/knAsPJoymtLs9diSar9uEczGx8Ksh\nOqVh+vtMd5UvQa/v9I1I/Z4ju+FPDsV7wNdmL6K/7SKVcXkYfgO8Oom+AEcN8UK/Hk1UKvdaOHnh\nev7SC4TtvI4vXzMpdbKY/XwQ8opyEFz3EHYkLcUgO/odIfFnkhzDq1MwDm4fjYrly5LK5y85hZt3\nY/Ejv1DueWkLfR1dufsY6Ooi9NFNksIw7+4l3Ow1Si45/927gi6OtUhlhzr1g9+x7Ur7T2iKHU1m\nansKWifjh8CHY2UH5U7/SiN9xrUFAJWbIXFwiDO9dUuZbZpUt2Gsm3DyNPb1pQ+FWbuiYHOmjB77\nZVRBURGlbEpL7WT1nXL6jFbGZYMir/uf4fL5d7Rxkm2WXcFUYDo5/vhpiiJya+wIucajI2LJKMqJ\nQoMxzMpii8orUM6wptLjKgqnMGiJ0VMEGqI6FshMMtv71EZ7n9qkRT1b5rvtIMySXn+n12ZlPRNT\n+ezp/gCg0Lw0ie2WYDwdMBHlDMso1D9m8J+wo3FkrmZmLresla39SfeNKzF/6SnDBa9QBEWtx5P0\nWJXJrGJkjSpG1iqTV1pp7+SME69fwb+G9r4AODh+ZaqULSuzTd3KlRjrHr1nDpggTVHY9vARFlxm\nlyfJtlw5Vu1UjbRn0zaKvO5PUj4CYOebIA893d1wKOo5cb/6tsAUqKKpKVMXuZA0P5r7P+akvAY6\n2nmvCOEUBi3xKuYD7G1Lz6JJqCysipmOBXXoo8WUtmeShzfDgrD5+UPU3b0KANCiii32dJDPJ0Vo\nqX4xOQ5tqzvBcRs1CRZb2h3dSimrYaH6157H42FpXbJTlrKZnksybzMyZCZuUxXL23fAidevEJuW\nCmdLxUwAODg4lCPyXQpjXYOqleWWJ1ywXhs9DFXFFBZNmBnJg2uF8nj28ZO2p0GLIq97DWsrPP3w\nUaVJ1wBgkZ8vDkU9x8mXrxHg6oKVN++oVL4kAc1qM9Zdfj8YbpZjxO6p/l7qhFMYNIz4Lnrim68U\n86H3KenoN4Ls5S+s8+oUjLatXXHx6ku4ulTBy9eCD7oju8bC2lKg7QbOPIDIJ29gb2uN7euGsp5X\nhx4rcPrAROjqiiIJeHUKJsaW5sMg65nOXnyOwyceIi7hs9wnKuKyy1ub4cvXTOjr6eLiCdVlm2bL\ncLeGGO7WEFOuheNoHH08cFnc6T0azQ5swJthQSgsLsb2dj0UknMiYKDMKCG/Ol9yBDar2fn5MBGz\nj1W0HQBMv3gBPWu7sRr/c3Y2KpiwywbOh0hhlKT9rh24M3wkKpoI/ofDHj2Eq3UFeFaX34n95KvX\nmBIu3dRgZONGmN5KtqmGz5ZtSEpPp63b16cXGtswn2oJw5Ae7tcX9atUhvOy5Sjm84n6tQH+hE2w\neMhSAIj9cwp0eEyvloAiPh81ljEvwOQNfRqwazdefPpMKT83eBCcra1QzqgMvuXShwHeH/UMMy9E\nAAAsjIzwcBy7uOhcqFbto8PjIfI9s8IQ2rmDwrKrsjjd0CYL2rdFwI49Whlbh8cjfR5IosjrHtLJ\nD76bt7Nuf+tNMjxt2X3GtrCzReDpswhwdQEAqU708rIx/C5i339BpyauRJl3XUfatj0dI3EoXpD8\nTfhbk5GTuMRtGuZaeBCxaLa3tSbdA0DVKhZE2bXwIFiUM0FAX5Fz6dhhrXEtPAgvX6cQbQaPEe02\nhy5QLBLT2cOT0SZAtON9NuIZRgxqRdwHPe1JnDL8FdUbq2JE8YZlPVOHtm7YsnqwQvMSygeAVUv6\n4lp4EAoKqXagmmS5l+I251VMyV8i3tUU26GvtUN7u1Vm+vROgJpCmOCsSdhGAECd9Wtok56xbSdE\nPGyqrHaOFpZounkjbbvGYRso5Y4MMhMmBeJEn/5otnkTUb/oxnW5lYU3377BMSRUprIAAJvuP5Ba\nvzUyEo4hoYzKAgD03X+QstCno9e+/Qi5cZOyOBh38hQAqrIAAM5SFAEAqL1ilVRlQSi33dbtMuf3\nKCUFjiGhtMoCAPht3wHPjWHoUIM5BHAfd5ETK12UFTqOvRAlLbQ21u7/0+9MzE+HaGHUHCHC04DK\nZmYqGaf1xi0qkTOicUOVyAEA15++AHQnH3mFhQrJlBad6UJsHHGtjtfd3tKCcWzJsLk25uYYdOAI\nqazD1p2Msrf3EoTB3/NYkDTP2Vp1J8Lh914hZKQ/vOs6Ej/S6OkYSfrRJNwJQwkkNS0LK9ZfRHTc\nR6R/yybVWVlS7eYys1SfAGvxirOkRb/4CUNNs3oYYj9D5WPKokol7dnvue5cgacDJkBfRxe9w/dJ\nbcsmTKr/iZ3oU9OdUv4i9ROi07/i4af3AICQyBtwLmeFllXtYVlGEBryzbAg2G4JRsuDm7CvY29k\n5ucjJPIG6pWvjAn16MO/qZKxTt2w5JV2dqYA9vkPFMmTwLZPxP8GM9bdHzFarjHrVKyodE6HNpvJ\nJmp1KlXEGn9/2JgLFNR7b9+h34GDAIApnsxOljeS3mDBFZHtdTtnJ6zvIsoxk52fD/dVa4h7x5BQ\nqbvjxXw+1t+7T7QRVxD2PBF8+b6cPBGGenqkuqlnziGkox9FnvuqNaTFjORpybXERAw9cgwAEJ+W\nhjEnTpLmL0nPvftJ948njENZQ0GkpUPPnuOv8xfwMTMT+55KD3M7sH497Hr8RGobcaaeFUV3uTdW\nvvcLh2rpVtsVx168pCw0oyaPV0jeqcED4L99N0XewAb1sOsR+/cIHdNbt0TY/YdS8zBI1o0/cZq4\n7uLqgmViu/eRE8fAY9V6mXkg5IGtzOipk1AzZKXKXncAePXnRNRatkrm2FdHDYVT8HK5zcTmRFzG\n3LZtFJ6fJFeexmNaTy80mbAKi4eLNiJlKQ3agseXciykRUrkpFSJV6dgWrMhr07BWBvSH261BCEn\nB43ZgqTkVFwLDyKZCDFdS5MtXk9nGrQ27DIOHn+IiGOB8O0WSmojPF0w0TODqV451LdogTYV/iD1\nV3RcafXCMqbn9fFmnwtDXi5dESlFjz+nYNSl40jNy0FggxYYV7cpY781T+8iNPIGallWQHjXQbRt\nVJER+kT8Syx+eB064GFi/WboXYOqgKgL36tTfkkfhtKI+EK7m6sr7UJbEVnSFIGzMTEYf1KwEGla\nvRr29CLnaRGX87/69TDHR/Alm/njB+qtXkvU1alUEccH9Gc1Ph+A08/65tWrY1cvZnM+cTkXhg6G\no6Ulpc3gw0dwI+kN43h0sti2k2VipApzJE199nFwcAAzzkXgUNRzlftIyMO1FJG544+iNGTkx6GB\n9V9wNO8ppReBdDtPFnAnDCUQobIAAEnJiidQkZdxI9rg4PGH6NhrJbp0rEeq+93zMNSvUAX3+7LL\nyDi+blOMl6JQTL95jrFOHoS5H7RBROuS4cDX8+YSHGoxnbHeM2I6bvkuUdl4Fz8+RdtKdYn7guIi\nZBfmoZwBO18GVXMxPp50r4yycPi5yC9new/p8cTFTXTuJr+V2laoLACAmaEhqe5o/36s5+cktsiW\npiwAgkW4cFHebut22kW5uLIQJ2XRvq6LP8aeOMV6nrIQN8+KGKpZp8WSxLuczxj2YCHOe9FnBZZF\nh+uBKOYXAwBqm9sjtN4k1n3bX5us8LgcvyfikZJUyZn7r9CxsShM+sk7Lxgdn72qUDNjH4r3YKsw\nKA3nw1ACWbLyLAoLi7FszQXUqiF/tABl4PGAgoIiBI5jDu3FoRz7o6PQq0Yd2Q05pOIZMR0puWnE\n/eC7KzHo7gq8yEgGAIx+sI5oBwB5RQVof2UOFrwQKb/vc1PR+pIoJ4Rkff/byzDsnsCHKPT1ccx5\ntpeQBwCtL/2NrEKRSeCp9/fR7soc4n5V9Cl4Rkwn9VElo46dIK6ntmyhlKzp584T1y3tbGW219cV\n5SKJiIuT0pIZWc7NmkLaLNo7O0upFTGsoQdxPffSZcZ2DdeKvvQdftpd/6qMfLiYsc7GuAIqGCr+\n/MX8Ypz3WoHzXivkUhYAwFSP8xvhYE9RsUAxPfY/9hscbFl2iBx+d/mR6yofQ1VwJwxagk2ugj/H\nt2OsY7qWJptN/aUTUzFg5Gap/RWRq2i9sEza85YGbMXyL9S0sMbSlopH3+AQcMt3CWkhHpuZQpTd\n8l2CDY3Gkk4YLn16ivPe80gyqhpZ4arPAgDk04iAa/+hZtmqmFqrG+pbCMyuAl264sjbO6QTi1u+\nS/AuR3QK6F+1MfyrNibuA2yaYGJNf/hcnqXip6cypklj2Y1UyNMJ4+C6QhBmePTxk2qN9HMnOZm4\nblClitLyNj8UOQtKnnooyt+tvbDlp9xdj59grg+9rXNGnup9zkoru5rOkd2IAVsT5vwJsjjiuVDh\nvhy/D+I+Drt690CdShVVPka7huQ8PO08Sm5eHk5h4CDRtssyXDlNn8WZQ3FKSwbmX5kKZdgnyDvp\nJVrgK2PWNOHhRhjpGuJSm/8U6l+SMZQjw62ybH/0mLgWRjZShnPRMcR1QC0XpWSJ42lbHbfeJDPW\nb3/0iLhe4tdeZeOqi+63/kZWYQ5xL27G43dtCvhi7obide2vTaZcM9XTmQZJG1eabDpTI/EyaeMK\n28lqIwln2vTrogl/hem9vUnZnSUTuYkjDKVKRnOntJzCoGYajBa8EW6uHA9jw5IbN1+Y76CEWAhw\ncMhkQ5zAF2Rd7BmMde7I2K7/7VDsaR6IsLgLCM4/irT8TNoF/MlWs9Dz5hKk5Wdifp3+CHqyHRXL\nkCNzza3TFyPur0VY43Eo5hfj3xcHkV2Yhz9dulLaAkB6fjbSkIWbX16iRXnt+Jv8CtyWsghXhBef\nRWFUXStUUJncnT17EMpM67AtuDpiGKn+38tXiesebswJmkoCXW4Gwd6kClbUpy6SAeCcl2iR8zwj\ngbQwF/4e+XAxNjX8i9KXbgEvTjXjCozjSpPtUtYWHa4H4mwrwd8g4EYQKau8rHElFQ5JZYOpjoND\nGaQpCeJoOoyqJJzCoCFKsrIAlE4zH47fm9FOfhjtJHLyFZ4CSJoMCdnUeJxUeVaGZiQHarpTBd9K\n9eBbSRAQQIengzlufRjl9bi5BDd9BTbcqna+/t3gie1k9KvrjuYsEy4xoaejg/wiQT4XaQmklOFt\nRgZjXTMFkvJpmukuAzHvxRZkFebItPlXdbS0V9+TcOzdNXSz8ZKr38r6U0jKwI/ifGxrzN4ccHfT\nuXKNx8GhLOKnC4BgrXhzheKhZdUJpzComUcbtBeCi4NDXfhenYJyBqY41PxfxjY9bs1CRkE2pXx1\ng8lwKSvbqba0c7jFdPS9HQId8DhlQUl8nRxx/OUrAIIM29ISqbGhkY0NriUmAgDuvX2LfnVVF5J4\nU7euGHnsOABg5oUILGjnC4CcuGq3jChPJYHm1nVw3msFVscewumUWzDXN8XB5oKTOT748Ls2BTNd\nB6FV+foqH/u81wrEZL6lNWeShZkSDs3lDZlz/Sx2H4v21ybDp2JDXPr0EIvd2UXN4+CQhuTpQsDs\nbYxt6U2SyKjzFIJTGDg4OORi2hNBHP1v+Vn4XpCNsvrUkKJZhTm0ygIATHi0osSEZVU3+5pP1fYU\n1Ma9t9LDqaqSic2bEQrDxbh4Ga1l07NObUJhOP06Gis7K569XRIfR9Fu+/6oZ4TCMObESZWNoUkm\nOPfEBOeepJ373rdn4ViLxTDWLQMAjP/rylDDrBrOe61Ap+t/ytXvsOdC9LnzD1zMbHGy5VKVzcfV\n3A4dKzfHpBq9EOQyQGVyNcnnz98xcfxOfPmSybrPpMntEdClgRpnpTw5OT8w9c99iH79QXbjn+jp\n6WDESG/06KnZYBGyMDKQviyXVAgOxXtozFSJUxg4Sg1fvmTi1s0YnDgeiWQN5qfgIPPkm2inlE5Z\nAIBuN2eS7he4j8SSV3vw/efCwvfqlN9GadAUXXbtwYmB/WU3ZMDM0BCZP36wbt/vgCj87MNxY6S0\nVB7bcqrN8q7sCYUsAlt4IvTmLdo6VZ5mqJP21ybDw8IFwx388TD9NakusGY/dLv5F060CMaL7wmY\n/SyMVsab7I+4/uUJrA3N4VrWnvXYf0dtQD/bdnj5PRGF/CK5556en4k7qc9hqKM6U+ANccdx5sNt\nnPlwGzzwMNdtOJpalWw/FADYvu0Gdu28qXD/lSvOY+UKUcjllasGwq2OjSqmphSbNl7Bgf13Fe5f\nWFiM9esuYf26S0TZipUDUMe9miqmpzAHZg1krOtkG67BmVAp0QqD0GH40YYp6Pj3ZnxME2jFEcEj\nYVXWhKgHAL9GNbFwGL3jo3g7ITo8Hh6upzo+CduumdANzWvbMc7tWlQ8pqw7ScxP1niyTJPEn3Xv\npUcIkYjNK48MaZRkE6m42E84cSISt27GICMjV9vTUWsmVU2hzoytFcrQx1Afel/0uunwdHDeaxkA\n4Ijnf/C9qp7336/wt5IF3d8yctxYeKwV5Jt4/umTUvKfTBhHOOy23bINF4exTypmYWSk1NhscLa2\nQuxXwUbBvbdv0aSa6r7YrycloZWdHW3d/MtX5JY3rmkTQmF4//07Nt5/QNT969tWoTlqmvNeK7Dg\n5XaMjQyBS1lbkllQU6va6FzFE11vTodneXeEt1pG60i8vP4k/PMsDEa6BoR/wKvvSZj8mBr1SFy+\niV4ZzHy2AfYmVRDeapncc7c0KIu0/O+UclnRm6Rx5sNtTKrRC8a6ZfCjuABznodhmIM/elXzAaC6\nzyBVfWb/+FGIjn6qO2ERMmniLgDAuQtB0NfXldFa9aSkpGNg/w1qkT150m4AwMZNQ+HkrPoQqky8\nfvsZQ0MOYNPknnCzZw4XfOX9UHSyPaOxeUlSohUGIcV8PqEsAIBv0CYE9fYmtTn3IJpWYWBaRBfz\n+WgwejllAb1xSg+MWn4Y41cfk7q4FioLq8d3Y/0cbKFTFgDQzle8TshffdsgKuEDztx7RWpT0cJU\ndZNUgPPnonDrZgzu3IlDcbF6HA05NMc0F/okNm9zRBFohMqCkLNeIehwTWCm8yb7o1Kx1DmAckZl\nSPeOIaEqyYeQmJ6OS/EJJPMacYT5FwBgW/c/lB6PDecGDyIUmn4HDuFI/76oV1l6YsuPmZmoZGZG\nW7c2wB/jTgoyOA85fJTxddshFtJVEbrs2oP0XO1vgCjCTNfBjHVCUyUhdAtv17L2lJwHtcrayVyk\nSxtXCF30JSFp+d+xp+k8Srm0cenqhGX9785BE6va6Fi5OVH39FssdiedIxSGksTxY5FYveqCWsfw\naxeMzv71MSVQ8ezy8jJ50m48i1K/KeSokVsBqHfDTUjs+694++Ubbq+cgAsPo8HT4aG2Lb2yklP4\nCYfiPaDLMwSPp4PC4lzo6WguCWGpUBgajllBLJSFC+PgA1coZWtP3Ma4LqJ/aGH5Hy3rYFZ/8q7O\nrG3ncObeK8oivFFN0a5VUXExdHWoybDFg2p4utlR6sXlsdn1F6fB6OU4Om8w7CpaUMoB4GtGNqzN\nTWjrFgztgA6NBTHFe3nVxX9D/EgnF6qGz+fj1MnHuHUzBg8fJqpcPkfJpl45J6n17StRbUP1eKId\nqVWxh7GsXsmMBlGaiJ8aSMpLIH5dv3JlpGRm4lNWFqWPLFlCx926lSthiEcDpHzPROjNWyj8mfUU\nAHR5PLSyt1PRk8jm3tjRaLJOsLvYfc8+otzOwgImBvqI/ZpKRD8SwvSsfjXIGZwdQ0Khq6ODJX7t\nkJGXRwqBOq1lCyy9IZ9Zx19erbD42nWSsqDO5HYcQEzmW2yIPwojXUNYG7LPuyKLaS4DMP3pWnz5\n8Q1mesY4mXIDlz49LJFhVTV52nr61GOcPvUYFy/PUGtI9tzcfHTuKP9Jk7L4eC8Cj8fDxcvMyqmy\nDAreh9srJwAQJHFrNnE17qyaQNtW22FVqavhEoieLrtpXngYTVy/ThbtckoqCwDw3xBmrXhAW4En\nerMJq2nrW00ROH36N1NPXHVJZQEADPQEC63Z289T6oQIlQVVsmvnTXTvthI+3osoP23bLMbKFec5\nZYGDYPTDEOJ6qktfqW1jM9+pezq/DUwL0ccfPlCUBXllPf3wEZNPn0Hw9RskZcHGvCxi/tSsiaO1\nsTFiacZMSk/Hi0+fKcqCLCSftai4GFPPnCMpC48njMNoBbJoj2jUUO4+HMoR9HQNCouLcLyFaqOS\n1SvnjJMtl2JcZAj63PkHCVnvf3tlQZy2bRbh0aMktcjes/u2VpQFIXw+X62v68bJPXDpcSwAICIy\nBjuCmEN1a5tSccLQsUktSlm3Fm6UsrdfvhHX/RbuAQD8N7SDTPk3niWiZR2RQ1Zgj1bYfTEShUXF\ntMCOlPwAACAASURBVO2z8/IBAPMGqT5Tp4E+/Z9kaIfG2HDqDu69fqPyMaWxfdsNjY7HUXrIKMiG\nuYTTc3zWe9b9FXFm5GBGuPj99/JVUkZhcaa3aomRjRuxlkWXUXl0k8aY1rKFEjNVDh0ej5hfr337\nEfk+hdLGycoK54cMYiUvfmog+ACcJJ61f726mN9WOXOTrq61iOhOHOpH1YqCOIY6+kRYWXUyNXAv\nQkLpzT2Z4PP5aNtmsZpmxI5pf+7D4CEtMfB/qvtsGDJ4E5LflIwAJz7ei3DydCBMTAxVKreOvcis\n0tdDejCGzIIknEvuDkB02nDl/VB4V92q0jkxUSoUhsqWVBvUKlZlWfXtKGXX3dLMGGmZOdh27j5J\nYZDG0oNXWbVTlACGUwt9XcEJg7QcQ2+/fEO18qqNJsLBwcSc51uwov5E4n5spGjB1dyaqtBLIi3m\nOYfi/NOmNf5p0xqHk4aBjyL0tNsOADj/fibe5cwCIDilLOYXYHtcAOpY9EBhcR6aVRiHYn4RdsQF\noI/DbhjpWiB+aiCK+UXYm9AbxnpW+MN2Iwr5P7A7vgfsTD3RoiL9CUP81ED8s+QE/p3eBVnZP2D6\n80v24+cMqWY58VMD8SI6BbVrVmH1rAf7qmY3jgfZ5kKKmBOJJ5yLHMfF7eeQzePH8m8KaltZELJ9\n2w1UqlQOvu1kf/7LYmD/DUhJSVfBrFRHQOdQjfg1MHEuuTt8bfYi4p1Iofya91Rj45cKkyQDPape\no8NTfuo1q5UHAEQlUGP3rhzXBQDVB2HfZYED3J895ctAyZbKluwUIXGE/gld/tmGFpPWIPFjGsJ/\n+mcAUKttIcfvy4uMRBx7dx0A8OXHN8RmipzR/s/eWYdFtXVx+Dd0CgKipIDYioGKdUUMTOxEUfHD\nFru7CxW7AwtRbOwO7A5MQEBKJASRhvn+GCfOzJnu4bzPw3Pn7LP22mtGLrPX2SuW1vuf0Pme1g3l\nZlt5JyS6O/o57Wc5CwDQyW4l/lf9GvZ8YRSMeJERgqHVTqGp1f/wLuskAOBUnD/8q19C5E/2372z\n8WMwtNop9Km6GwCgQ9PH0GqnYKrLP2F9xKQQ3Hv0FW16BrGchTY9g5CRRazX7+O3DUmp7JPhzoM2\nQ19IHXJ14mzUR9Zr7gR1Cgppyc7OV7kKcWtWRyBwwmGpdLT3Wq1yzgITWX/e3J2em07YzFe2i+NZ\nmOvXlOn64qAWDoO8SPlXeakKyQnGf/UFt7of0l61GpkwnYa8wmL0XXIICw9eBQDUc6qClztVt5Qq\nhfpxvS37JGFH9Fl0vDsVvo/ZFUlW1h/Nd+777FjW6z528nG6KYC65rzV23Z/8cTFH9NAByPU0kTH\nGnpaxJCy30U/sOeLF77/YYci1jb3Ichc/DEN+752RMwf/uVGQ7aMAADcPz+TNcb5GgCGTzqIiCMT\nMXgMo4Z/m55BuBo2GbsO3RfhHao++16wExTXd1FcJRmK8kOfXqqXRwEAHz+KHprKzdu3CTK0RD7I\nymmYsPUMAIbTwPwJnce/l05i7i2+9xSB5jzK4cOFx1Ho0YK8uUpcaiYAYHr/tqT3+7Vxw6n77zBw\n+RGcWOiHbecYdbUF1clVFm2n7QSg2n0WKDQDGmh865wDQDNL3pwjJtNeswsJmOspt8yvJvMq4zDM\n9RxgoG0OB2NGwu4ApxAU0wtwNp5/pQ06yuDjsBlJeeQ5EACQlPcSY2rew4Fv0m2CZ00gzwEb0le1\nOq9Kyuq77PLYvevKp0AGhWYSvPGq0HKlHdqp1skCN+29VosdvnPp4hts3HBFThbJlnNnX6JXb3ep\ndGwP7IMNp+5hej/RHp69z9yG95nbAABnYluglF6EOhX5P6CTNRp7wsAMGVpySHgtYq+G1UjH5/ky\nEt6+JaUDAA5cfQYAODxbcPUXZZCTVyByHgYFhbScaLkUq9zGEMYCq/ejujerCGNq3kP1Ct4sZwEA\nKuo7w9qgNsbUZGxk65j3JMgz/2tr1BBNrUay7nHKccqOrH5VpjZra2uhsKgEUxeelKleZVB9A/v/\ng49TJgmQ1Gx+JNkI/Mn5wz/8gpOCglt8dZSUivdEmp+ezCzVKXl7MUJw74+HD78JzGdUFYb77RZL\nXl2cBQAy63MhqrMAMBKdO9qHwkTXHgbaVmhvfxh1LcYInygjNPaEYUj7xtjwrwFaUUkpqywpk6IS\nzavQ8uA9Vd6UQnE0tagltoNAORTlB+4QJACEZGbma6bcnTPTAQB3z81QgHWyhayaFBN9khw8Tae4\n+CNS04RXmMrOWYMKppMFymT+noG/f4/xvZ+S6gEtLTPY2XwWqIdOL0ZisiPf+3/zjuNv3nE42PHm\nNKoaixacUrYJIpGYmCmy7OJFp+VoiXzo0ikIV67x/p2TJ+b6NdHF8bxC12Si0X/JXu2aisZjg9F8\n4hZYVjDCCn9GidVxm08TZATRok5VPP4Yz+p/8HgreUMNJom/fuNNTDJikjMQnZzOGh+yKhTVbC3h\n5mIDV1tLNHS1k/RtkeJqZ4XopHS+jeLWjuomtGQXBQUFBYVsEKe0q6bB6Sw42CWDUYeKTVlZDpJS\nhCdv/khil5zU1raFbRViOF16xnDkF1xHWVk20jNHwsqCvLxkXv55ZGSOZV3b28aCRjNkXRcVvcXP\nX51Za6qy07B6VYSyTRCLYX67cfiI4Kfgjx59Q+SDrwqySHYUFZUo2wSForEhSUw2jO0BAMjIycO4\nzafFchYAYPukPgCAi08Y1S70+fRJYNJj4UEsCrmGQ9df4OGHONb4p4SfuPjkI1aF3sLI9bI9ct99\n8TGik9IFyszeewkf43/KdF0KCgoKCkZXZwczM2jTaOhVpzZiZkwrt84CJ4yNN2+ZPi2tCnCwSxF5\nY25sNJDHWQAAK8tDrNf5+fzDWTidBQe7FIKzAAB6eg1gVoEdb/8nd59IdimDmzc+KNsEsUgS4ZRh\n4Xz1ODEhY/7ccIWtFR7jTnjN+FFcg0gaXTUD4VTSKFVk/oEruPLsM/q0ro8FQ3k7WjNhnjyImxSt\naiXbKMRDmTWjFUl5+D0tL/+WFKIhz995aX/XmCcD0jypT0x2BZ3+VyQ9zPW0tSvDtsobwj06PQ+J\nydXE0iOKLDey/vc4HzEVJibEUrzq/HeO3+/U4UOROBSi3g1iFfW3OaPgPSwN6oOOMtxPngBP250I\nj3FnNXETgtQF9jX+hEHTufKMEbcpyFmgoKCgoKBQNJwbcHFhOgviUFrKe4qe8lP0zsM62g5irykv\nNgRdVrYJCkHdnQWA0Z1bUoauEX2unjajT9fZ2P/gabtT4jUlReMchtS0bLHn/Nd7vRwsUR1Ky8qU\nbQIFhVyZMrUzOnSshypVzJRtCoUKcCfyCzx9gmSq68MnyWvLlzd0ddn5CcwqRFm/Z0usT1i1JUGU\nlrJPCoTpKSn9IUCTYrl//wvheqiv4jeIsuTTp2SeMXU+MeFEku7cTI7OYXRtbjwumNWXgR9XE/rg\nRqIvSukFEq8nDRqX9JzxOw9VrMvfpmHYmuM4PIe33OvfgiL8N2U7AGCRX0dFm0VRDvhZkIURT1ei\nhE6sPKbIikg+PRrBp0cjoXIFBcX48CERDyO/4sP7RMTGpinAOvXD0ycI9yIUW/2j74idOB0yTia6\nvFrXhFdr2dgvS13lhSrWd1FY+BBp6f1YY7l/DyP372FoaVWAnc0XAbMpyEhJ+S1cSIWZOP6QRodV\nPnz4Da1aVZd4/qudUzF73yU0HheMju41sDagG49Mk0oL8SZjg6ghSDJH4xwGbrL/5MPMlJ3gFPU1\nBXVr2OC/3uvx4Cxv+b49xx5g9JD/AABrd1zD7PHkzYVUBWYlqA9xqXwrJAHAyUXD4GprqUDLKDSd\nZ5mfMP/dHrHmdLzLyKEZ6NgeAS7d5WGWQAwMdNGkiTOaNBG/Z0lOTj7B2RCnZCCFYK7cfK9sEyhk\njL5+K1YeQFJKHZSVZQFgVEgSJ8dBW9saujrCKyqJgoH+fzLRo2h69RCvo/OAgR4YM7adQJnZM8Pw\n4oXySrFLkyy8cHEvtG3Lv0EoAKxYfh53bn+UeA1xWbTglEQO0Zqw2zh57y1e7ZyKtQHdsDagG8r4\n5BY7V+gF5wq9CGOKdB40LumZ6RAIu8/pMHA7D92HbYdZBUMc2zaSnxqVY+nh6zj/KIpnvFOTmlgd\n0FUJFikGVU7802QOxV3F0bhrAmXIThiYDgO/++qOsn4ffUfvQ1JKFuua+3SAeWIweV4Y3rxnhF3o\n6mrj5hlis6oDxx7iUNgjHv1kpw2cIT/1atth+zpfHpm2PYJw98JMgqyjnQWO7Pof63ru8jN49CxG\n6Jpjph3B52+prGv3hlWxcfkAgszHL8kYN4Nds5+f3dyfBZmsqLouh03Cz1858A8MYY1fCpsEE2N9\ngiy/z9ZvQHME+Im/kVXHv31Zv2cj9+9hwhg/p4HpVOjp1kdla8mbZEmTyCwO8vj3GOzbAgGj2oqs\nu5lHNaxeM0C44D/Kyujo2H6NpOaJTdOmLlizbiAAyT6v1WsGoJkHeaNdfigy7EnF9wxU0jM3OX/y\nBd5/9zFRqI7SsjIkJKnX08PFw7zxatdUnh9NdhYo+JNX+Equ+rmdhf4OXiI5AHUqOMnJovLLsqAI\nJKVkYc6ULtgTPAwASOP3fXy34s37Hzi2OwDrlvRDcXEpj9ydB5/haGcBgLGxZ/5w4+kTBBoNCNnm\nj0mj2+PDpyScu8zbnZZOB9r12oD6te2wZlFfVLE2w471Q1j3/cbuR2ISw9HR1tbiu2bOnwJ8/paK\naeM64sKxiahsXQEv38TDdzSx/KWjvSX6dG8MVxdrgZ8Z92dB9pk52lvC37eVUF2T54XBPzAEm1cP\nwvE9owAA3QZtIcisCr6MQ2GPcC9iJu5FzIRNZUbY7IQALwwb2EKgfk2iovnaf5t29tajrEzwd21R\ncfk9fToe+ljkDe+tO3PFchYAQEuLptBN7vPnsQCAiAuCO1mTcevOXLGdBeY8VaffssNoPC6Y9aOq\naFxIUgt3F4H3B/dqCgCEEwXu0KQrRwU3Z6OgkAfZ+ddgZiibEDgj/cYy0UNG78h5rNcL645Am0oN\nRJ67ufFk1inDk4woNLesK3P7yhu37n8mPP2+F8F4on/tdhQ6tWN/vsXFZSw5e9uK2LtpGEZNIT7t\nZT759/QJIpwCcMJ8kn73AkOXc1Ur9PVpDE+fIPTqyptHcubQOJibGQEAWjQdzXe9iuZGfNesYGpA\neI8n949Bh94bCacqAGBirI/JY9qzdPKD+7NgfmbcukYMbokRg1sK1PUtNo308+fk2u0olpMAAGH7\nRsPTJwgDeiquhroq4WCXxHryn5rWjqcUqiyxqLgBmVnT5aZfFZB2U3zrzlyFPonfFHxVZNkpUzuL\nlJ8mCEW9vzOnn6NP36ZizWk9ZRsiN02Uk0WyReNOGGSBZ98NyjaBQk15m+CAtwkOePejGjJyjxDG\nCosZYRd/C1+wxph8Te2E5Kwl+JraiUdXftF71nXy7+V4m+CA778Y4XI5+Tfw/kd1vP9RizXv+y9/\nZOezTwBKy37j3Q9nwnqJmfN4bOC+5kduCfsUTxxngZuLybzhGRTisXYL/y/efUeI5Qr3BPsRrmtU\nqyzRmrFxv8SSZzoLssbetqLEc7k/C0XwO1vw6Xf5hXwbYl3pPOu1sFMIQRgbsUPlklLqSaxHVZHV\nE3RFPYkXd+MurbPARBHvb/u2m2LP8WmhPg/NNO6EQRbcO63ZTyMo5EcDxx94m+AAN4cYvE1wgKWJ\nHxo4MuKk3yY4oIHjDxSXJkFHyxJ17dlP1WpUuUY4YfiU3JJnHgDYmi+ErflC1ryS0kzUd/iGn9ns\nY0znSgcJDsOHxPqs+Uy0aAaEMc71PiTWRz174WEA51pL98TmTdY3qeZTMJ5cA+RP09PS/xCuHe15\nQ4ukQVZlS0Xh7sMvWLzmAgCgYT0HuDesivTMXIn1yfKzsLI0ESpzeMdIDBt/APNWnEVrD1eBjp66\n8yPJBpYWu2Bk2JOvTEYmuxqWbZUXpDL6es1Yr5NS6kJbuwpsq5CHspSWpiI5tRHfHAUdnaooKYlH\nWVkGfiTZCMxl+JFkCwc73hKgqoisN8GKPmkQhJGRPiIuTRMuKAaHj4zBML/dMtUpLSfuvsGJu8QT\ntlc7xWuwqygoh4FCZjy68wlnjz7Gp7c/YGSij9Yd6mJQQBtYl+Pa+ImZc2Fi0BLmRj6sMXOjnjA3\n6ol3CU5wc4wjnUfnKFHKvdknyKHo33/F67VBo2nzXU8UZwEAjHUMhAsJtEHqHKxyj3NVK0RzhcQo\nCkWuuXjNBejr6eD6afYX6ekI+ebpyJKqDpaYGdgJuw7ew7NX3zFrUmd061hf2WbJjYzMscjAWNa1\nnl4j0OlFKC7mLcwhKNDBwS6FFbpUWpoqcSM4m8pP8CPJFsx6KtI0lFMVRo32UrYJckXWzgIA2Mn4\noYksUFXngAzKYVBBOjdcxPfe1TfLZKpf1vqY5PzOw+VTz3H51HME7R+J+u5OUq+jjlQw7Ii49AAk\nZrKbFr1NcACNpgM6iH0L4n4FANBCA8d41LF7SggP4uc0lNEL8f5HdYCmgypm05FX9Aapv4NQVJKA\n7LwrcLTchPr2n1i6mHpKyrIIY5zruVY+A2N98eIwJaGVleZumBTF3k3D4NVDsY0n7Wwq8uQOSIuB\nvi4KCooFypwKGUu4/p2dJ1Mb5E3Q1mtKcewUjaFBB+QXEEMziop4TwYqmE6GWYU5QvU52KUg5Wcr\nlJTECpQzMBBcRtTBLhn5BTeRniEsHE31I7W1tGgYNLi5XHRfvjoTXTsr7vSQDHmGDxkb6+Pv30K5\n6Q85+AAj/EWverb70hN8S/qFbh51WGNeDcRP7lYEGu0w3LjwGhsWnGZdh92dC3MLYwBAZ7cFMDLR\nR14u+xfn6rsVIs1lzu/j1xJnjjDisLsP9MDE+YynyL08lqEgvwiO1ayREJMGGo2GwIU90LVfU3R2\nW4CLr5ZCR0eboItz7eZtayHqdTz+qEHMqyDnhkl5cxaYm3Lmf90cYknv85sn6jUA6Ok4oL4DO7TH\nSK8hXKyPEWS0tEx45jpYrIeDBXGjKegkg4wTCbcx0FHwlzQ393+9Zb0e6czbmIZCPLRoNNBovI3W\ntuy5hUmj20ulO+VnNiFRl0nongB4+gRhxMSDCNnmzxr38d2KiFDJCkb49vPAgWORAmUGjdqLy2GT\nADCavKkjzDAuGg1o3sQFaxb1VbJFssfK8si/V6XI+r0AhYUPUVKaAEAberr1YWGxBTrajmLptKn8\nkKGxNA3pmSNRXPwB2tp2MND/DxXNV0PUipGGBh1Y4UgZmeNQUHgHNJoBdHVqomLF9dDRFp7DpQrc\nuCXc0ZIUfX2N3hbifMRUdGgnv1KyRw5HiuUwHLz2HE+2qEehHY39zcj9U4ANC04TNuLcG/PQW7Nh\nYKgHAIh6HY8xvbdg91nGF5KwuQAwbGIHjJ7JW7a0IL+IZ27XfowntkPHtUP3xotZ9x/ciIJ3L2JF\nmyWbeOuZi7IxF5UF6wdhxYwwmeljIovTCgr1YV9shNgOw/KoENZrawPJk1Yp2Ny9MBMrN14i5BQ0\ndhNvQ8ZN/57uGBTAbsrH/WT8XsRMtOu1gbDmopk+kJThg1rgyInHBH1klYeY94/tDoC9bUWePApB\n1+I+3ZeHrqAl/aCtrYW/eYXYc/i+Ujpqywq3qcF4FywonEL732ZeNC69/Ixu7rUEygzaeB3hMy8K\n1XXy0TsMaOkmUGbDlZ5YNUSw4yn8PWomx09MwOCB25Wy9s3b8k1OVrVQ2CdbAuERuAVrODo78zth\nCI9xJx1XVPM2jXUY5gQcECrDdBYAoG6jqoiPSRNrDc75/Pid+ZdwPXRcOxzdeZt1vXL6cR5HRN60\n7lBH5pv7sTO7yFQfhWjIqgyrOIR4zMOIp6sAMBqxidqAbeQz9uZBmupKFLzMn9YN86fxP7Hhtynl\nNz4xoB0mBpA7gze+Mzqszg0GOjp/EmiXKJthpr5Ne3xQr9I6sXSROTLCEPWzYF7f+F6b7/sURRcz\nWZtbtk3LGgpNHFdliktL8bewSKjcl2TxKnQJoqGzrcx0KZLOXQQ7QrLA2rqC3NfghyL281ZWpkjn\nKgqhTJ5unSSSnL62OXo43ZKzNfxR/WA9CYmL/gmA8XSf+SMuks7V1tZCZ7cFWBx4BIParsaavf7C\nJ6k5vYaUn+ZD5R07w0qE6453p+JOGv9GPJlFOeh4dyp+5LEd8oV1R8jLPAo58jZtEpraHEVH509C\nnQVRkaUuVeTVu3hlmyA3nkcn4l5ULGuz7zY1GGnZuXCbyn6IcOH5R6Rl52LW4cssGSbM17raxCIM\nTE4+eidwfeZ9YXKiIkiP29Rg5BYUosG0YGTnFchkPUmYOUtzQzkXLe6tkHXWrR+kkHVkTQf7Y8KF\n5IjGnjAEzu+B4CVnpXp6L+nc0tIynHu6iO8JxNV3K9DdfTGcXCvDpIKhxPZRqC4dPFfh5r15wgXV\nlBttg1kN2ABg1cfDWPWR2ASM8z73XAr1JO3vDTSw3iJckIJFRGggK5zK0sIYdDqQmcU4eZ41qbOS\nrZOOpq72AIAmM7fgRRDjKWmHJXsJMu/jU7Hu3D3k5BVg3TDeEF51wsRAH3Q6YGYkXYU4dUBHRxsl\nJaXCBWWIZ1vBIWmyompVK4WsIy6/snNBAw1WZsak968k9EJflycKtoqNxp4wdOrDiPVKiGUfYW5f\nFSGWjtkcYU3izr1wXPA/aklxKaI/JeNU5Hyx9KoSr57EyFRf1JsE+HcPRtfGSxDQawtiv6bKVD+F\nbLnRNhi2huL94aWcBfUkMrETIhM7EV4zrwGglJ6PG99rs35+5RGPzTnv3YprKBObMvIf4sb32niX\nNhU3vtfG659j8aeIcVJBp5cQ1rzxvQ5hLvFebcK9W3EN+d6TlHsRMzFvalcUFpaguLgUQ/p54F7E\nTI0prdrUlZEs3MjZFu+Cp7Li/tss2In5/dohcuU4QdMBAHQ6Xex1M3IYjted97L9LlJV/Ee2Udha\nK1b1U9haFAwqmZmg+4L9fO+b6joiPMYd1370w73kcawfRaGxJwwA40l++MEHmDxkFxo0ccbizUPE\nmpsUn47eLZbDwtIE+y5MEWvtv7mFuHD8CXJz8nF4+y0sCvZFy/bsLy1TM0OFVUGSVZlWQXqkWYNs\nbmJcOsYP2CGyDgrlcMiD4fCmF2Zj8OMlpDL1zathY8OJCrSKQta0tmc0ArzxvTbrNSe34xoTwoo4\n4/65cwBufK+Nr5lrUMNCukovr1IDOPQG4258C5jqMTb4N+PqE9b8nLGCZQdZTgLnWBm9kMdeWdCp\nXV10aqc+XV2FYVPRFMvDb+HuhxjcWjoaABASOBDtFu1B23ouWDSgA+6vGIf2i/egvZsra96j1RPQ\nbPZW3Fw8iqDvRXQijtx9hYvz/bHpYiQO3HoOAFgRfotv4nEZnQ6fVSE4NWsoAIg8jxuyecxwKbep\nwXiyRjX+fg31a6WwtZo2dVHYWgDQpImzQteTJ3//FsLYWF8k2cbjiA/RIjfx/13zdjgplV3SQpPE\nq1cAKmmUKIzrtw07T/H+g3d3X4yLL5eyrju7LcDSrX7w8Kwpkl7mplqSjfPCiUfwPJK8q66sHAZB\nCFpDHJ1keuTZlVKaWtAdPFehmmtlxPzLpQGAaTO7omv3hgQZ7rAlzrEOnqswdUYXBK+/AgC4eW8e\nOngyko0HDWmBgH+Ne5hjnHDr7dh2FZxdrBHLkdjPbQ+F9Kjq76Os4JcATLap5nQYuKHRdNDBidgg\n8MOvWQKTnoXZ8jSpLzzsTvO1U1SH4VFid7S0v0h6T5XQ9N81dUMRHZJF+Xc5H/EaPX0ayWQ9RXZ9\nvnl7rkISnpnI871Nm94F3VTvu1XqT1ejTxiUQSMPFyybcgyLNrFPMzq7LcDhazNY10WFjAZFojoL\n0rJ8G7FRjSw3/tI4MqI0kEv5kQl/n00AgG7uS3Dp5RKx11EWjd2dsHv//wAARw9FYmPQZbE36Hb2\nFixHgelM9Oq2EWHHHrMcBm7n4PLFNzzOCJ0OuDdxxp4DAayxDp6rKIeBQmYI2lTLY8PN3PyLskYZ\nXXBTOE4KS38KF6KgUFGOHn+MTVuvAwAGD2yO0f/zlFiXlhYNZWWKeX6rYtVOpeLSpTciOwyNxwWL\n3O05MfcmHv+cTRhTVElVQINzGJTF6Jld8ej2J0KFJc/ObrC2MQfAcB56NF2q8FKqqsah7ewY59Yd\n6vCVs3Fgt3IvLS2Tq02yZsx4duOsocNbS6SjYaOqrNfVa1QBADT1EHxUzM8J4LSHgkJRGOo6Ir8k\nSeZ6o37Ng2vFqSJVWboT3wSmeoyESnODRvhbzI5553wNACVluTK3tbzireeLqW2XCLxPIVvCQ8fj\nzvXZGDa0FY6feAIv77X431jhZebJGDhIPt2kVYEa/75P5cGXzykiyb38liiW3sc/Z6N/tZeEH369\nGeQBdcIgBwQ5A+XdUWByfO891usFQkqcXXm9FF0aLQYA+DRbhohnsmtip044uzDKmerqEksQ5uUV\noWfX9VDN6EIKdaRDm5Ws1zfvCy/MwP20X5tmiHZOrwAw8h8if3QgOA38cgRSciNQyag9GlbeJnTN\n2lZLcCuuAaKzGDHAetpW8HR8QGqPm3UwKhszKhI1tQnF4yQf5BZFA2A4NJz2uFc5yJrrbD5aqB0U\nFIrAXcwYf/9hreE/jPGg6ufPHHTrGYy8/CJYWprg1PEJIukIGNUWx0Mfi22ruEyfofjqWb16u2Pd\n2ksKX5cT9+r2Yp2sdHQ4Lj9jREDjHQavTmsBAHeuzRYiSaEMzC3Iy4dxwtmZsbioRJ7mqCU9uqxH\no8ZOCApmP60jy2ugoJAWScOOWjvclGgeP9LybuLdzykCk5MF6W1hx7/qnYVhc8Jc14rlr9OvCm32\n7QAAIABJREFUIpjSZrGyTVArhgxtKdE8L++1rNdnTkxEn4Hb4OW9Fneuq86eqGs3xTfyFNcBkxet\n6opuR05RLMz1asjRGsFovMMwbrQXBvRtpmwzKPjQd5jiqj5oIuNGHQCNBoKzoGiCv5zE5RTBT6Gs\nDSriWPPyeTJEIXs+pM2Ck/ko4YIUSoEz1Cjq0Ve+oUd2rvILCxHG1/hfqFG1knBBFaFBA0eRZTMz\n/6LvIMYpXRN3ZwStHsC6d+f6bHh5r8WK1RFYMNdH5naqC1ZWpso2AQCwZUIvkWWf/pwPRxPl9W7R\naIeh/5AdKCgoQviZFwg/Nh4A+8Th8P5RcLC3gFentaDRGEmh1CmE4tm/6Tr2b7qubDNUgls3Pog9\nR0uL9zxTUacLfR7Ox5/iPJFk0wqyWI3c1K0XQ1xGFpwsKyrbDAoO2jm9ws24evj+exdrrG3Vp0q0\niIKT60WhAAA/10mwsrdA8N0lyjWIhGHzj2DTrD5Yc+AmSkrLcHErO/ysy/hdyMph/217cnSaMkyU\nCOaJgqATBP9hrRF+5rmiTKKQEdw5CzRoKTTpWaMdhvBj43Hh0mv06MYuMcZ0Ctp3WYdbV2YBAG5f\npRwFCuXQwXMVHBwt8SMhQ6L523f7o4PnKnTzXoc6de3x+lUcGjSsirdv4mVsKRF+XZxFnasMp6HW\nkmB8XiK+3ZSzoJp0cBLfwaZQLGPW++H0JuXGiQtiyrozrNfNh25kOQZZOXk4vGIoajhZY9j8I0j5\nlQObShWUZaZYiBJqNGxoKwwbSp3uqyOKdBC40WiHgZsNm6/B1cUaPX0aKaxUGIVglmzyRXMFtYNX\nJNylTsnGyGT43ed8PWuuD2ZxHCUL0yOqPaLyMJ1YP7+JRS2sdhsjdM6SD+xKHdI4DbWWBENbi4bS\nMjrLAai1JBimBvqoVaUSjozoj1pL2Lo/L5kKv5BwAIBfSDiOjOgPAGiwYiuKSktApzNkOm8NQUFx\nMVJzcll6Z525iiHNGqCBvQ1rPhOmHgoKCnJa92qK1r2aKtsMvozo6YGx/Rkb51tPv6L/jIMIX+8P\nAKjhZA0AOLzSD32m7seZ4P8pzU4KCn68z9iK+paBClmrXDkMX7+lom8vdwROO6ZsUyj+ce3cK410\nGOTJz4JkxOfFoJnFf0pZn3Pj39u+Dca79hY6p5VVfdxoGyzVyQQnUYvYndeHhYSzNvjLL99hjXOe\nJjCdCM5NfmFJCUHmauAIAMDHFHZzu3V9OuNtYgpBDwUFhfpjXsEQbtVtWde1XSojLfMPqWxqeo6i\nzKKgEIusos8KW0vjHQbOcKTd24YDALZuZDdVo/IWlMvju4r7ZVc0iz5MwrJ6W2Q+p7KBLSob2AqU\nkYS4v9FwMnYVWb6ygYVIzgIn1z03wvse49h/7adjmF17iJAZwtHV5iwzK/nJITNkKel3DurYWEtt\nlybhN2g7UpJ/871/9fZc6OiQt/URp0TrpvVXcPHCK1JZpp4zF6ch7vsvTAs8QrjPlOdcT9R1yeYw\nqVvPHpt3DBc4n1sHc72BfbYgI518E+rpVRsLl/YRqlcTWD5oMx6cIc8xYeY7KJpLW8eg1fBNGN2v\nJUyN9LHh8B1UtjRFq+GMRqFHLj6HX/emiE/Jgk/bekqxkUkbT+kfqiUmZsLe3kK4oIJp5lFN2Sao\nNBFxHeHjdAMAcC95HM/9XwVU4zaKckRaCv+NiKoS+GoI6KBj0quhrOuc4t+Y844dmpNVlMEzBwBh\nzvKPM1BYWsB3TviPEMJcJnF/o1mvD37fCgA4EsdIAN30dRkmv2Z3984vzUNhaQFeZD5ijXHaICmH\nPITX5+eGs0Tu4wzJY9AbrtzKCjva79cHtZYEo9maHfiQLLhLr/eWg3zvadFo6Lw1BFr/bEz7k4tp\npy5j5ZW7WHON3Tek4cqtqL1UvRK3peHgvnsCnQUA6NxutYKsAdavucjjLABAl/Zr8PdvIekcfj1K\nHj38KtBZAICoD4lCZcjo0GYlX2cBQLlwFlK+p8Fbz5evs6BMtLW1sGJiN+w59QgbDt/BqL4tcX7z\nKOhqa+H+wUnYHvYAzYduxMCZBzH3fx2VamszIc06vbzXCv3xG7lXQdaKR7t2/Bu3UgAFpZms12n5\nz3h+6PRShdmi8ScMFKrJuccL0KsFo4ndsC4bcfXNMiVbJD7MTTeTCrrmGFttpsA53Bv0hXXWC5Rv\nVLE5lkYJDuPxd2bELz7LfAA/p7HoYTsIwV+Xsu4viZqKvBJG99omFoxa3uNdpT9Z06ZJ97xBm6Yt\nXIgPb+YTYza5k5nJkpuFyXxcPIVwbW1qgo39eBsKca+t6Rw7HAkAGDCoOUZzdAvPyclHn+4bWdfL\nFp3BomXy3wQ/ivwKCwsTnDw3GQD7yX5xcSl6dlmPFWsGoHnL6lg0LxyPIr8CAPyH7kTIMd6nc4vm\nsnNSPJq7YuW6gaxrehkdHduyK451aLNSpCZ2AJCUlMV6ffj4eNjasRPnT514il3b+fel0CSG12T8\nP6WsUwRhdGheEx2a1ySM3T0wCQCjMlLr4Zsw1c9LGaYRaNzYSdkmyI0WLUU/1S6PcCY5kyU830oc\npjBbKIeBQikYGOphV/gEjO2/HQDQueEi0LRouPBkIXT12L+W7158x+zRIaD/S1JXFceigq45Vtbf\nLlBGh6Yr9ZzfRZlYXDdYrJMALa6NfMfKPuhQuTthzEDbkGfe3xL+T0PJoNPphBMDcRnm1EniuRSK\nhWyjXKGCIW7en8/asN+/K34DNklhOgsA4FLNGrEx7LyT5i2rAwCWrerPsi3xRya44Tw1CDs9CVaV\niHXZaVo03Lw/Hz26rEfev5OLRw+/omUr4Y2Thg/egb0ho+Dswhva1m+gB/oN9BCqQ1O49OeQsk2Q\nmMhDU4QLKYDKlc2EygirjpSdnS8rc2SKiYmBsk1QaywNFNf0jnIYVIzODQU3t+J3n99GWhJ9xiYG\nOB0pWQUdcXCqXhmWlUyR8YuxUaWX0eHTTDUcAmEsqBOE6W/84Vt1FNwrknfgDG4Ugimvh2NTo0Mc\nc0bCt2qAwDnT3vhjY0NG6MzLrEc4lxSKmqZ1AQAJebEI+rwQANCpSi90txWehNuhcnes/TQPhWUF\nWFR3I1+5q6nnEJawH8vrbxOqEwDmv9+DVUKqIwmip51kSduSlEalkJxqrpWVbYJA/jfaC/Nnn5BK\nB7ezwMmFKzNYzsWiueEinzKQOQvlkefX36Glj7twQQqJORoyWqiMmRnvQyIK9aeh1XSFrUU5DBRK\n5dgNRgjPoHZr8TvzL185axtzHL6iOs1zDLWNsKEhOx5+a2NG5S3upGGms8Cec4BnDjcbOfSOqTaD\ncM/RyIXvPE4buGVm1yY2c2PaySk3veZSiAKz2tHzzM/ILy2Eoba+SPMAdv8GSZ0FCsWz+0CAwPv/\nedbCg3vKK17QkCNcw6WaaJv0Tl7snAtRHIAKFQyRk8N4Qksvo4NG0jCRkwmTvEWyQ9O5XhQKbz1f\nLDwxBf/1bqZsc3hoPpT/AxR1atZmZ0v1iqGQP5TDoGLIOuRG3iE8stIfdpuqVqVOGGnrI6+0ED0e\nzMG51qthrCP8WJmzpOrE6pqf8FleMDMzUur6+vrsrzHHqlYizSktLRNrjXGBHbF25QUAwP69dxEw\nRnBce+9+qtt7QJH4mI0AACwfuImvjLLyG+ZsYvx7qpNjIAqlpWXQ1qbq2ZQXwmPcFdbMjXIYKBRG\nccEV6Bp0we9kB1So/Axa2jbKNomCBHF7JfSKnCuW/BwZlFKloCBDXvHQHTvVZzkMVy+/FeowUDCI\nyA5Rtgl8eR6VgOZuTso2Q+Z06BKEHVv8MHl6KJYu6o0W/8qW5uUVolsvtuMmSkdoCgpOKDeUQmHo\nGnRBwZ8NMLf9gT9p1BdueWXNp2Mya+BGQaFocv+oZvIohXisDOyOJ+/ilG2GXBg/6QiKi0sxb+Ep\n9tjko7hzfTbLUYiN/aUs8yjUFOqEgUJh/E52gLZuPRiYToeOfvmpEkJBQSEaP39mK9sEUjjLpNap\nZ69ESyhkRXM3JwTP7I3mQzeiU8taqO1ShXB/UOfGSrJMejhPD3yH7ULo4bGIj09njY0f2w7zFp9C\n2BHeUsMUqkdBaTpuJg5FfgnRydOm6SksHAmgHAa5UG0DO5EqZrpmxUdKg7ntD9ZrYwv1LbWn6dxo\nq3lNyf4UJyIivi/r2tdVeCOp0GgPkeQoZMeL57HKNoGUKxdfs15382mkREvUD1/niUhP4i1ry0RZ\nOQycCc/XHn3GtUfExH11dhg4ycziLSbiaG+BtDTxymhTKA8DbSt0r3pV2WZQDgOF4vid7EC45nQg\nKCjkiamuPfo4X8WZ752VbQqFAJj9VuRNuw51cftmFADgY1QS6tS1Eygfduwx63X7jvXkapsmMdZ9\nDstZcGtTG+/uf0L1xs749uo7AOBaAXnFN0WgacnOnDx89A2tWlZHfHw6CgtLeO6/fBWPmjWqkMxU\nLPr6usKFhDDl6Sls8uiH91nJqF/RVgZWUfCDchgoFAang0DlMFAoGgNtqvSgKpOXV6SwteYt6sVy\nGCaNCxFYWpWuGB9GI4l9n4BZB8ehwxBGGWVvPV9sf8LoaVFaUopOBkNUtgu0unLn+mx4ea8lXI+f\ndARDBjWHl/daaGnRUFZGV4mkZ3t76f4mt7u6Gbc7M5o4Us6C/CnXDgMzdIgKG1IMdPq/o1F6IWja\ngp/oUVBQSE5c1A+MbjhTZPnrxWFys8XewYLVaTkzMxcWFiakcj06B8nNBjIaNXbC61dxAIARQ3Yi\n5Bh5PHdHT3ZH6Cu35ijCNI2ibf8WpOPaOtoKtkR0mg/dqNYnENzOwI4tfgCA4X6t0aPvZoQekrzh\npiypWNFYqvlW+uy/JXG5GXAysZTWJJUmuygaZnrEXk+KLKtabqskFZTwHtPJipjp01g/FGxoNGPG\nj5YFTCyPKtscChXgR+4dhEYzEuDL6CU4Ht0CRWWM2NrQaA/8yL0DAAiPbY/QaA+8y9yNs3HdWHOY\nhEZ74FbSeIRGe+Bm0hhcThiClLwnItvxJmMbQqM98Co9GNcTR/Hop5Aczo34gF6b0aHNSlw4y/iC\nS0rKQnfvdaxOyktW9CXVIQ+CNrHL+yb+yESHNiuxeeNVlJXRkZtbgKEDt7PsAgBTUwPo6qruJldV\nWTqAmBNVWlKqJEsodHW1ceXCNKk36rKiShUzqeaf9PofTnx/iWYR62BnZC4jq1SXtPxnSl2/3J4w\n9D9+XNkmlDv+pLVHaclXAFT+girytyQV5+N6KjTR18GEHZr2IHUOWlZZhgcps9DebifrPp1eiuKy\nXJZdbhZjEBrtgUsJg9HNkf3/8c/8lxLb/jHrCNytpqGm+UAAQGbhJ1z9MUKyN0XBg0s1a8TGpLGu\ntwRfxZZgYhLfgMHN0bpNLYXadfP+fIJTEHHuJSLO8T6tq+pkhf2HVeOprDoxYIYPTq6PYF2fSduH\nLkZ+SrSofPAhKhHTZoWhuJjonKlCGBInRsb6UusY6OyOgc7uMrBG9dHVMlXq+uXWYfiYRtUgVjSm\n1rdYr7NTasLM5osSraHgxlinCrRp0v8Bl5Skvw/gabMeD1MXEMYvJPA+dW5SaSZe/JJtCAvTWQAA\nC/3aMtWtaJzqOuB6cRj+ZObiw8Mv+PDwMx6df46k6FSl2LPn4CgAgP/QXfiRkEG4V9/NAcHbhinD\nLABg5S8M6LUZmZm5hHvdezTGlBldlGGWRhCwajACVg1mXZuYG2H/+/WY1m4ZvP3aYNQaX4Xaw6yM\n9OToNEKVJE2Cmb+wfbMfDA2lTyqWJ6amhlLNb3VpAx52my4ja1Sf52lL4GjSBVo0xtadDvE61ktL\nuXUYKBRPQc5aGFRgPOHQNxmvZGsoyBhY7b6SVuafWVpcmsszpqulGkfqqo6phQla+LijhY87Rq1h\nhOB46w4SOk9QEjA3U2Z0EXlTffDoWInXFmSTJHO4OXlussiy0q5VnnGoaYvwpF1KWZs7L2HR2M7o\n2roOj5y6OxOqdpLAD2NjPanmP+w2Hb73DmKNe08AgKOJhSzMUlmcTLvjdCwxXLaPy0OFrV8uHAa/\n8FN4lJDA9z5n3wRuhOUhDAgLw8ukZInnc9tgbmCAlxPGo/rGYJRxledg6orJzIT3wRDCPQMdHURN\nniTyOvzY6tMdXWvUEMlmcWE6CwBgYCrdl7Mq8bc4BbeSJ6CkLB/dHEOhL6AaT2TqXKTkPYGzaXc0\nqUT+ZORtxi58+n0ENc0GopEV/3/Tm0lj8Sv/LZwrdEVz64V8pOi4kzwZWYVf0d5uB8z0XMR5a6R8\nyz6FF+kbYaFfCx3tdkGLxvtH/2f+CzxInQsTHRt0djgsUF+1Cj3wOn0r9P4dt2rRdJFV+BXOpl0B\nAJ62G3AjcTRhzpOfy6R+H9yU0guVesJCQUGhWDzdXYULUcgNHRkkvod6+svAEvWgqfVSNLVeqrT1\ny4XDIMhZUDV+FxRg8a1bPM4CwNjsx0yfxuMsAMKTuEvpdNTYKLwhV2DERZR164butWqKbLMk/E52\n0Ig8hrcZuxCVdZB1ffp7Z+hoGWKAy13WWGi0B7o6huJyAvv4/Wv2SXzNPskTc89MtnU1642v2eH4\n9Jtdp5wpG5V1CG8zdrDGY3MuIjbnIo+ukrJ8nIxtC22aHhxMvHApYTDhPlM+7s8VPPq5hGeczC5O\nMgqiEBbzHwa7PgaNo34CU9bJtBNyi1MIc8l0u1eajgtxfeBpuwEA0KrycrzJ2IHWVRix5ZUMGgAA\nwmO90N/lDgA66CjD4GqPeHRJCg1aOBHThmUflfRMQSF/vPV8lVZWVVAVpHkBHRVoiWy5cXkmvLzX\nqsUpg45Oua27o5aUC4dhXedOPGOzrl4TeF9UTg5iH+8XlZbiRVIS/MJPSawPAI6+eQtXCwtc8x+B\nRtu2I6ewkHWvwdZtAICn48bCTF8ftTZtZt078uYN/Bo2JNXJ7SzMb+uJke6MRKEHcfHwP32aFRQy\n+dIluFhYoI51JaneBxM6PQ80mhG7rKoGEZV1kLAJLi7LRXhsex65ywm+pBvr+NwbqGrS8Z8uRvdr\npr5mleawNq6ca9StOBx1Kw4n6A+N9sDr9C2EE4mTsW1Ry3wQGltNBQC0rLwModEeaG+3A5UN2Uli\nTqZd4GTahaVHEE6mXdCy8hLCusejW/A4AmSOEL+EZB2aAQpKM1iOgYOJFx6kziGEHfm6PkVYzH8s\n+/o6XweNJvrTKbKqSpx2DnZ9jBMc+ge7PsbxaPJykBQUFJpNj7b1lW2CxHTsysjt4uzFwETVnAht\nbekchoRcRrnm/NJi9L2zFx96LRAyg0IayoXD0LduXZ4xToeB7L4k6Glro6Wjo9R6+tStg6DOjI60\nrydOIIQR5RYVEcKcYqZPY91fcus2qcPAOf/y8GGoaWVFuP+fU1VET59GOIXwOXJEZmVhaTSjf//V\nrLhzss21rhajLvT9lFloY7OONV6n4nCCs8DkadpKlsPwIXM/9LQr8OgrLuON4edGi6aHT7+P8YQw\nMZ0FTh6kzEY/l5tCdZLB6SwAwIBq93AyxlMiXZwIczgAYFC1ByLPF/c+AAzk0q/IalEUFJpCSXEp\ndKjys0pD1ZwCecKZs/Cgq+aXsQ+PcUdF/VrIKvwMa8OmSMt/jjY221HZqLlC1i8XDoO6wXQWmAxy\nc0PYu3cy0c3tLHCiTaOhbmVrRP1klD/Mys9HRUPpqhjwQxPCkZiQOQ7JeY8J17XNh/DIAIywISZe\ntptxM4mYFCrIWYjNuYj43BvIKvyKMjp5l9yzcd3Q2+kSYYwZ+iMLdGgGpOP5Jekw1LFivaagoCgf\ndDX2g76RPiJ+H4S3nmKrIInLsUsvsPU4eaEHdW7cVl6odYady+ZtVxtbPPor0Rr508R6EZxNeyIi\nrhM8bRmFAxTZuI1yGNSAic09JHYYOE8XQgcI/5/pwtChrDlNduyUafO5spJYaOlIn3SravSsek6o\njL628AY11oaNUN2sL8EBaWw1GbXMiV+6odHNAdDRtNIseNkyQtKOR7fgKbHm6/qUEGYDgCcsSh70\nc7mJU7EdeGyhoKDQfLhzEtoOaIF5RwNJZZXpUJy49gpbj9+nHAM15nOfRco2QaEYajPCxG2MW7PG\ntGiKK51LOQxqgLUJu/25fYUKAiQF4+HgIAtzJEYTnQUAMNa1kZmub9mn0dXxGMz1BFXvoMPZtCuq\nm/XlGCGvx1xKL1L4Zv3s967QoukJDCEio0OfjTyNhgDgXsRMwrWnD7H/wojBLeHv24pwP3jlQEyd\nf4IgF7LdH86OxBM2bl0AUKemDXauH8q6LiwqgXdfYg4Qt00Ugrl26C42BJCX0uw1sTPGB49QrEEK\n4vOzaExqRR5X/V8fDyw8wRsyqGnUbSnfAhqSsvf0Y1Sxkvz7VN0oLCyBvr5mbfn63dmHU14BqHVm\nGfpUbYhV7j2UbZJciUyZjH7VnqNJpYW4mtAXnR1Po4xerLD1Neu3R0PRptFYr2tW4h9SJAxhJVXl\nTXZqPdDLslnX6h6W1NF+D0+5T1nw+fdxAWVSGVQ16SDwPidp+a9hbdhIWrNEpvRfeBQdZWKdZhQX\nlwrdiHv6BMHEWB+XwiYRxjgdBgCYOv8EQVda+h/0999FGPMbtx96ejq4cVrwps27bzBC9wTAzoZR\nLvdQ2CN4+gRRToMIiNLz4dy2qzi3jdH1edzG4egdKHqjNDL914vDRDdQTjpFed8PzjxlyV34fQgG\nMuh6q2ooqwKSKLRrVgNXHn5Uthky4ebtj+jQjtFP4nsceVPaz19S0KWTmyLNkjv5JYzvmvJy0tCv\n2nPWa1ez/jgd60EYkzeUw6Bm6GqpbzKZWZUPyjZBplQyaAAatBAa7QEboxZwNu2MuNzrSP77UOKn\n+hX1a7DKpHLCre9uyjT4uj5FXskvnIvrDmvDRkjLf02qkzsvglvfx6zD+F0Ug1/5bwAAlxOGwEzf\nBeZ61VC34gix30NPp/M4H9eTp8qQrVFLtLUVXtpXGJzOApN1W65i1qTOJNIMrK1Meca0tbVQVCS4\nHHHsvy9fprMAAMMHtcSBYw+FrlmeeRzxEov7iN+Je+e0Q/j8LBpzj5CHsHDTd0o3nN50SbigFAye\n00sseVGcBW56mA9H8+7uWHa2fDmhynQo5gV0xIW775W2vixZuSaC5TCMHH2Ar5ymOQyXOo5Howur\n8brHXCx5fQlLGnVTtkkKw9VsEFzNxP9bIw2Uw1COcLHg31BMEeRmDERJIbt2vrqfMACMnAA6ynA7\naSIe/1wKB5O2IlfbIS89+gQAjTB+PLoFLicMQVfHY6x50dlncTy6BaoYNSPV/6f4ByLi+/HtqcCp\nr07FYULfpyAHiPNeWEwr2BjxllnNK/mJc3GCj4v19XRYIUITA9qhf093UjmyMKJLN94TNu8GBsLj\nOkO2+cPTJ4ilLyI0EBVMiUnc81edE3lNCgZbJ+5HxO4bEs+/E/YQd8IeivRUf0yQH4/DkPUzGxUr\nC88ZIuPLixieMf/lon0pH11xGoeXhku0LgA8ufgS3rqDpD4hoeAPWQdnfl2d1Sm3gbsyElmlpJSU\n34oyR6G87jEXAMqVs6AsKIehHHHDX7kdEU0sjiA7tQHMbD6h8O8RpdoiS2jQQnu7HcIFRdTGjbl+\ndRSWZhHGXM16w9WsN18tV374CVylqCxHMvOEUEYvgafNep5xI53KQude/xca5OkThG37bmPbvtuk\nYT9kJwzcmIgY3nEvYibSM3LRd8RO+PhuhVkFQ1w4NpF1PysrT+Q1KYCEz0mkzoJH10ZYfp683OOL\n628xr9tqnnFJN88D7cdIvOkObDFfonkASJ0F53qO2P16HYk0kByTihG1pvCMf3sVi+qNNTPfixtF\nN25TJydA1tjYmCvbBJkz8clJDKvWDNaGpuh2YweiegsO5dUk+h4KxbuUn/g2R3F5UFSbPQrFQdOC\nrgGj50DBH94NAgU5WYVf0IZkEy4Ia8PGpOOpec8AQGx94hCfy7thDItpTSJJzr2ImSxHgezJvomx\nPumPpFhZmuBexExcPjEZ2Tn5OHLyCeueh7uzXNbUVALqT+cZW3J6Bl9nAQCaeDfgu8Gnl/F2vOem\ntkd10Q0Uk2ZdRMv96WnB+zDmWuFxvs4CANhWq0L6vid4zBPdQAoKLspTH4ZHabFoVskJTiaW5cpZ\nAICvvzIUviblMJQjdjxVdmlLHRhV3AIAMKuiGclmsqSr4zGERnvw/FQ16QgLffEqjbS12QhjXRse\nXbeTA9Hb6ZLY+kTF1/UpHqYu4Fm3jF4idl5HRTMj0vFeQ7fLwlQejI30AAAXr7FLGC+dwwijyvmT\nTzqHgg2/ZOGWPZqINJ9s89xJf7DQeZsjl/OMzfLmHROGr9N4nrEVF4Rvvp5ffYN8rt+Pk0l7QNPi\nPS0kQ9L3TUFR3nnVYw4AYPaLc+h1a7eSrVEsBSWC8+/kARWSpOF0rVEDl79+BQBsiHyI8R68TcYo\nVANzPVeZlkAVpT+EPJD0PXj1WI/ZkzvDo4kLbtz5iKzsPLi6WBNkhvTzwLFTT/G/SYfwP7/WeP46\nDmciXklUscjTJwh1atoicFQ7mJsZYlXwFQBA6J4AHlkf323w7ecBtzr2CD//Ai/fxlNVkuTA5b9H\n0dV4KGFs57RDGLdxuFh63tyJEnvt9KRMwrWuvmj1zef7rOEZM7eWrlynKCcrqoqqN2tj0nzoRozp\n1wr+vXi/E5sP3Viuw5fUjbVNxCtMQCEZlMOg4Wz16Y7LHOVUgx5EYuZ/ooeHyAI6/S/PWHZKLY1I\neqaQHXOndsWx8CdYv+06GjVwJN2Qjx7eBqOHt8Hy9RexYOU5uDesiovHiRV1+G3kucfvRczE5j23\nMG/5GZSW0eHTyQ3b1vI+2WXO8w8MQfi5F+jdrRE2rhgg6dvUSN7e5d2gH4neJrYeHT1p7UiqAAAg\nAElEQVTer6SzW68IdRiuF4dJVJ1IEJdyhedZpSXwdjGXJH9i8o4AbB6/T+x5qoqoeQnq4lyoE17e\na9HcoxpWL+/HumaiaeFKc1+ex2r3nso2Q2Kqr5G+aqAioRwGAJMuXsSW7t2VbYbc+DRlMmpvYnQE\n3vXsGfa/fInPUybzlffcuw+JOTky6/JMOQcUouDtVQfeXnVEkl04ozsWzpD+/9nJo9tj8uj2Iske\n3DpC6vU0lVneK3jGKleVvGeMLLi09ya6jRKtX8mmcXslWmOCx1yJ5nHTbVQHHoch9/dfmJgby0Q/\nRfmC6SyEHIlEvbr22Bo8hOA4aAo3kz+rtcOgbpRbh+HL1CmoGbwJAHDpy1dc+kJeWk3QplmURmj8\nZGS1GRcFPW1thA0ciEEnGJ1vi0tLFdrEjcxZoBwICgrNgU6XXQjN0jMzJerhYGhqSMgl2Dx+n8gO\nw+V9twjX9jVsRZqXnf5HdAPFZNf0w5ixf5zc9MuLM2mqfVLCWUZ196mH2H3qIY+MAclJlzpy6MhD\n1qnCyBH/Kdka2fPcZzZqnVkGAKhjXgVn2sm+kaq8kbTKkTJOJzTj/woJ0NHSgpWREdLz8pRtikJo\nam+HmOnTlN7tmYIc560b8D2Qt8KMOLQ4uBuP/cfIyCIKCslxqCnahpuMFj68/TfuhT+GZ/8WJNJs\nzmce5AlLKi4sFpqLEPM2jmfsQJTy/06+u/9J2SZIhIk5ebECMpTRuI2ZmyAoh0HdSfiRgafPYwlj\nX7+mKska+VJeujyrAuXWYQCAp+MYHXC/pKdj7f0HiIyPh6meHupXqYwpLVuioY2NwPmyPCUQpkvQ\nfXHsYMq+TErGrmfPEBkfDx0tLdSxtsb01q3QzN5eZF2iQqfngUYzIuQyUGFKskdPWzldwL3vTSN9\nwnyjrXrFZ1LIjs7+XjLVd3brFaEOAxndTPyE5hSMazJHUrNIkVUuRWpcmkz0UJCzeGxnpMrxhEhZ\n3Lk+mxV+xJmzEPnom7JMopAD1iYmSMvNVeia5dphYFLTygoH+vBvgqWJuNvZYm9vxVQWoIHxhI9G\no+Jx5cm9YbzVfeTJs8xPmP9uj1hzOt5lHL8OdGyPABfNzRsq79i5VpGpPlE3z5sjl2Nya+nqsZ/5\ntV+q+RSik53+B2ZWpkpZu0tr0fKl1BGy5GZNS3hmhiJxom6nDdI0XatZyZJyGCg0EBpvSICWTlUl\nGKLalNHpqLaNEQpxfsAQuFVmb7qct25AbOB0uGzdwBpjhjA5k4xxzlvT3htzbl0HAOz36Y12Tuwu\nss3278KvPGIVK1FCow7FXcXRuGuivjUeTiTcohwGDcaYTw8NScn6mS2SHFkTt6D/7cRMPrkAfq4T\necaoRGPF0d92jFLCkijUH3VzDmTNgYF9FL5muXEYBj5mhB+daLGLr8zpxEs4+SNCqByF9FSwjlS2\nCSqHz4mjBCfg47hJMNRhO1vHP7wj3cyTOQ6cNK5iS5BhvvY7dwqFpSWk94TB6Sz0c2iLMdUYlSqY\nJwj8GODQDid/3BZpDQr1RdQNvqjYOFkLF+LDjcP3+DoMP+N5y6JKy/msEJnrpKCgoFA25cZhEIXq\nJs7KNkEulNLLoE1TflPv3AxfGFuwyxdSIUpELg3yI1z7nTuFU/3YfQF867lJpLe6hSXpeNSvNDSx\nsRNbX+/IeazXC+uOQJtKDUSeO6qaD8theJIRheaWdVn3UvI/4GzCVJTRSwEAE2sRHYttn9uxXjPv\nbfvcjvDaSr8aBjnvxauMMDS2ZMSSP00/iOfpjJr6FvpO8HU+QNA5sdZtUt0UkvP5WTTaDmwpM321\nPFxFlh0T5IfdM4X3UCCDrGu0uBiaGEitQ52Z0Hy+sk2gKCc8+BmNg9+eYFSNVvCPPFLuTx3kDeUw\ncOBmXkfjThYGPxmPMnqZSrwvfeMAykkQEUtDI3zNyJDrGq9GjYfz1g2Yd+cGTkS9x+ZO3USal1vC\nKF1pa2gllrPAzdG46wSH4XT8JNZmvZRegh1fOmJ8zRugg47tn9sTNvLMjX5FPQck/H0BR+Mm0Kbp\nIb0wBgDw6NceNLYcBDroiM65y5r7POMowckAgF1fu1BOgow5u+0Kxm4YJtHc4sJinrHek7qKPL/v\nlG48DsOa4dsw5xAx/MjPldjwDyAPaaIQj2+vvivbBAoSvnxNRc0ass0tUjbbP91HWNuRADQvROnY\nq7dYcp39vSRNvoOsoBwGDaeMXqZsE/A72YF0nKqSRCQhOxuOZmYAgIz8PIxo0Fgh667y6ohVXh3F\nnrfDXboysHF/UwjXtkb1Wa+1aTqsk4bwuPHQpukRZLVpOjgdH4gONnNwM2UNPCqNxH+VJ+BuKrEy\n0+n4QAxxOcS6bmo5FE9/HSDIjK1xRar3QcELvUzyvgwhi07wjNVsUk0sHdUaOBHKpd4OjeRxGH7G\n/yJc950imsNMIRxZdXp22sPuxxE3eibPvUe+Y2BrUkF8AzUML++1rKRmQQ3aNC3xubC0RCOSn7kR\npcdC9TXBMNbTw5tpExRgEQONdBgi059hV8xh2BhURlAD6SpmiMPUN4uRVpCBzlXaws+pn0DZxVHr\n8fVPLJyMHbC6vujdQjd/24c3WVHQ19ZD44r1McSxD4x1yBMMfxb8Ih0XRkFpIYK/7sH77M+ob1Yb\nc2vzJgYKIvZvArZ+24+c4ly0rdQCfk6UYyAKnof34eIgP7xITgIALG4j29KU/GDmPqxp542BdesL\nkWZjrCNd6IWBtj7hWk+L/PQprzQLprrEGHZT3SrILfmFyoa1kVX0A1eTlmJirdv4VfCVIPen+CfL\n8WAyvuYNqeym4KWzvxeuHrwjE13hGy9KrWPnizU85U1//chAJQdGeN6X59E8c8YE+fGMCaO2R3V8\nekqVq5QHjQ9v43ESOBF0Txqc9gTJTbe84HYEyByDb9E/FWWOwjjbXv0atQmD6Sy0cXHC/gG9CWPc\n/C0qUphdgAY6DMzkZgBIyEvCwMdj4WriJPIcJsJCeDiTqIc+DURxGfsY/WLKTVxMuUmqY8iTiSih\nl7CuY3PjRUrI5rYxrzQft35G4tbPSAx06IE+9l35ypKN8VvL72kgijjey5vfHzDw8VhY6Vtge+NV\nfG2zNayM4IZLST8LM70K6GHrzfe9UTD4Hjgd3cKO4HdBgVhN3DiTnZmvRZlfd9cWNLGxwxSPFigs\nLcX/Is4i9W8uJjcTv969JDSxqEm4jst9QirXyXYBTsdPIoz9LkpEL4f1PLJeVaahuCwfNoYMx6dt\nlSl4lRmGJpZDZGQ1BRnT9ozhcRi2Tz6ICZv9lWQRL0NcJrB6MgS2XCATnZsjl/M4JpvG7sWUXaNk\nol8dEafqUXjybr73Mgvy+d6jEB9np0rKNoFCCHlFjL3T0k7t4NtI8nBfeaFRDgNzU9yh8n8Y5cLY\nINBBx6DH5BUymHBunsk224JY9jEYxWXFBB0l9BJ8zOF96sR0Fuqa1cSiOux4tKVRG/Ex5yuGPJmI\nY8238X1f3LYCwOWUW+hq017o+xElh4EpG+Dii46V27DGRzybgvTCTAx8PJavnuT8n6RrldBLoEPT\nqF8zucDc4HMnPnPfl/Ye53VecTHC+7E3Ox1dXHHq0weRHYYpr7dgU6NJwgU5WPh+H+v1nNpDCfda\nVBpFmnxsY1gPLSoFEO41tOgHe2NGyJaxjiWKypilYWnY/bUba66zSStcSlyIJxy19a0NamCAk/Jz\nejSd8zuuie0whG+I4BlbGSFZYzXP/i1wL/yxSLLc4UrScHn/LUzeEQCaFk1mOjUVaXow8DsJcNoT\nhNFuTXE2+iMmNW6BhZE3WXInPr/H7PtXsdGrK8z0DTD9zmW8Gc6by6LO8As70tFRfuETCsH4HDgK\nACrpLAAa5DC8/f2R9ZrpLAAADTScaLFLbEdAVKKyv/BsonVoOnAzq00Yo4OOEnoJdLV0Cc4CACyu\nOw0DH48lnDwwmfZmCQBAm6aF0OY7eO5zOwuSUsoRtsHpLABASLNNIn9+ZJ8Fheqy8clDTGveCldj\nvuFGbLRYJxtR2eInNz7JiOJ7L7Mwjm/ysbulL9wtyeOd/V3DCdfcOgQlNFPJzrKjz6SuOLPlMmHs\nwPzjGLlyMJ8ZvOydc4xnrGnnhhLZMz90ssgOQzvf1hKtAQDXi8N4Thk66Q8W2mGaQn68T/+J50PH\nAwD86jRijS97fBt2JhXQpzqj2IKmOQsU6k3qH9XuPK4xLueqT1sAMDa3isTZ2FEkuVHPGU84jnps\nJb0f4MLYDDH7QDBJyk8FAFJnQZb4P5sGANjYcAnp/Q0NGElEY17M4qtDFSoxUYjO98DpiMnKRM0d\nm3Dy43uRnYUQD3ZZVWF9FzgZ+Ww16zV5dSXJE2UplA9ZVaSwdedxae9NkeZzb7oBIOyHbP+mJMek\n4ubRB4QxbR1tqfVWrW3PM0b2fkRB0nnqiLCkZ0k53n0g6XiU/2Qk5ebAaU8QSsqUXxCEgoKTNi5O\nyjZBIBr3+NdQW7E1sNe4zRMuBOBPCaOFt7An9RHJ1zHAwUdqu8SlsKwQAGBnSF52zd7IFgDwuzhH\nYTapA637suPoJw5vi0E9mijRGvHZ3sUHrfuux4HToneNtDMkxsIynYaZtYhPkumg42rKU2z8wlv1\nZmHdEeIbSyE1iV+TScff3o1C1ToOMLeWruIM2dP2zeP3YfP4ffBb1A9+C4nFIOh0OjrpkZ9AGJoY\nwKKKuVT2XCs6TtA/otYUHpkr+bynGuKy99160o0+c6x5d3eMXe8H22rsv6/JMak4vDQct48/lHp9\nCtFhhicNuHAcz1IT1S7BWRhe3muxdGEvtPmvpnBhCpViZ98eqL4mGLXXbcanWZP5yik62ZmJxjkM\n6g5nwjGFehB5eobMdGVk/cXRs08xeWQ74cJi6LSsyL//hST232gbzHO6EPT5OOHa++40vnPJ6Ggr\nmvNNIRhJnlDP7Ci8YZmoITZkTgMAHFl2CkeWnRJJB41Gk0nHZBpNcXkE/N43ADy5+BJPLr5UmC3K\npKS4FDq60p/ayJuTPQajz3npnUVVhHIW1Bc7swpIys5B9TXBpL0XBh45gVdJjAc/iu7NQDkMCoYK\n29EMVm69git3GfH4zFMGzo33hr03EXHjHXp6N8DUAHaeSeu+6xF5egaGTQ2Bgb4u9qxh59ucvPgS\nW/5Vmgm/9EpknQBw4MQjhJx6jHo1bbFiRk9YmDNK7a7YegVX7xLzBpg6X0f9QOC/mvdkTkP2n3z4\nTjoAfV0dhG4dCQN9XcL9G22DUVRWgm73RXtCZ6prhDOtVookS6HeXC8OQ8+KI5CfWyD23DO/9sPE\nXHYNHtffWoQZ7XlrtQOMEwhZcr04DOObzUX06/LbvKyrsR/sq9vgQNQGuYQcjb1xHl8yGSXDax/Y\nBPfKtljTphPsTc2EzuXs68APL0cXgf0f1IF3HxLhVo83TI5C9bk77n9ou3M/y2lgwl1aVRmN3CiH\ngYJCAuYHdsH8wC4sB4CbimZGuHtyGjoN3YLTV14TZFr3XY9rRycheN8twvwB3d2x5eAd9O/WmOeE\nYdz842jaoCqpztZ916ND61q4Hz4d1+5/RM+AHXhwinFvQWAXXL0bRWpjo7oOiDw9gxBWxWT4tEOI\nif+FA0F+yPj9F9l/8nkcBgDQ09LBjbbBSC/MxuDHS0g/q/rm1bCxoeyq0FCoB+ezQnB0xWkcXhou\nXBiAlrYWrhaIXpJTVNza1OF7Tx4nEDv+5epIctKjZ6CLi3+OCBdUYbjLqrYd0ALzjpInFwtyKPht\n1Hd17ClwfWl7Nxzs3FeojCpz5/psQiM3CvXj7rj/AQBqrAnmyewb16IZpnm2UrxR0CCHobVVM0Sm\nP8Pmb/swuXqAss3hYW7tQKz+tBVDnwbyTXwWxJOMl2hu6S4HyxisdZuP2e9WYvSLWdjTZB3P/dH/\nkp0X1lF+e3J1YOSAlgCAa0cn8WzImZt35mZeFHZyVJoh0/nqQwIAoFObOugkYIMkKjHxv8QKVbLS\nN+MbaiQLAl6MQFUjJyyss0Rua2gKqlSdZ+iCvhi6gLEBy/6Vgw2jd+PryxjkZv2Fi1tVdBvdAZ2G\nt5W7Hcr4TDjXfHMnCtcO3cWrm+/w+1cOKjtWQp2WNTB4Ti/ShGlNoqWa5XWpO8xOz2QdnyknQr34\nqoRTBEFojMMQWH0kItOf4VH6Cx6HYcIr5cdGNzRnlHErLivGjuhDGO86nEcmMv0ZWls1I4wd9tiM\nYU8nI/jrXmxsaMc3KVlanIwdAADZJEnNsbnxrPF6ZlRspDCev43H1GXhaOJWFY3riVZFSxjeQ7cg\nL7+IVGfk6Rk4cOIRWvddDxoNrNMFTWJfkxBlm0AhJWaVKmDZWfUL7/g/e2cdFsX2xvEvsKSkiqig\ngoqBCbaC+VNBxY5rF1hY2H2vnYhid3d3Xb0qii12C6gogijdsb8/1o3Zndmd3Z0N8Hyeh8edOee8\n5x1Yd897zhtcULtFNdRuUU3XamgdZYq4EbiBGAUETVFoDAZAkHq0z91RStVcYOrLtjKyMgjrQdz4\ncQc3ftDnB5c2GEwNTUXjhDUZ6OQy0bCYB+7+fMzqeYTzMP1OSPwFOwLnHRHtzvP5wOb9oQpGiDEw\nAHLzZNP9pWdky5U5pFdjDOklONWQdpPSYtwngUAgsIYYFARCwaHQ1GEABMXN1ngsoNxrVKwODjXa\niKb2DXWkFZVDjTZiaHnZNILmRmZyF+SHGm1Emd+pTSWxNZafBjGw0jDMdGNOz0U3jyWPGnDYvERj\nYiwoSVT0TwCAV3fZ+AB5DOnVBCcuPgEAfP72i5XM//VZjVfvY5CXl49+43bQyuwzZjsA4OGzT6z0\nKOdYFJ7dVuBdZBxevouhjXPgCr+HgzD31Wz4PxwMv4eDcOLrMUr7rqgd8Hs4CAe/yC4u/B4OEo3b\nHrlFpk3yh+04AoFAIBB0RU5eHlyXBFN+pPE/chKvYuO0qlehOmEAgBKmxWkXtwEVByGg4iCZ+6ou\nhNVZQLdxaIY2Ds2UHrfid/E0ZalpU1UpfbfVC1JKPjEmqNw6NgntB62DnY0FY1AxE4N7NIKdtQVa\n9ApG0waumDuhAwDgyr5x6D5iM63MpdO7YN7q80hITINfb0/0aO8hI/Plu29o0SsYQ/9qjLo1ywGg\n1pCQzvS0L2QIEpPT0WfMdvB4hvh3P3ujUxXaOvigYTHBCYnfw0Ho4igOPBzoPBih8Tdkxox87E9x\nVfJ7OAhDXPwBAKMeD8OymitR1KSoUuMIBAJ3DKk+EevvLYJZEVNdqwIAqD06GE/W6pdfuCZo5b0M\n+fnUcNnevRpi2FDl1x0E7eO2PERhn+sfI3H9Y6RWsyUVOoOBQNAmTIHB53YG0PaR7k83vnPbWujc\nlloJ2dzMmFFmnRplcXDtULl6rpgpm/lDUVCzrbUFzu9izm4kLzMSGySDpIXGgjLk5OfInBwIyc7P\npjUWFI0jUAmNqihzz8q0NmqXYq6ncOdzHeTmJ4muy9oGoJyt7JeaULaX8wd8+Pk3YlL2ia6l5xbe\nY6NjGZtRcLajrwFC0C7R72JwYOlJDJ5HX3mZwD0t2iyFk6Md9uwYJnOfGAz6j/A0QdIQoDth0AXE\nYCAQCErT9+48xGUm6FoNlYOhSRC1fJ5974ukzHu0bSlZT5CZGw0zHjW7T1zqCbyNlw1q/py4Dt9T\njqJBGfqKxnx+jshYAICMnEg8/Nqa0ic5KxzWpu6Uexk5n/DwK7UeCQB8SVqPL0nr5RoZBO3R2Ff7\nWZI2nr+D3VcfobJTCazw64BiVhaU9u6LdsPcxBh7JlHdg3ddfYQN58IwtqMn+jQXvN8kTyWYXusb\n0sYCAPToVk8HmhCU4fI7wWfWGzlVnnVJoYphIBAImicuM4FzY2FseIDiTlK0KtEaaz+sFl2n5Ioz\nfDW1b47ZL+izo8kbRwC+pewVGQtezh9kfuo73ZQxFgCIjAVP57eU/iUsOyM7L5b2tAIAbn2qCi/n\nD2hc9hkA4OHX1jA3Lg8v5w/wdH4LAHga04MyJjb1mMhYkNavlJWgGCLTfLoiPz8BqWn7ERVdSteq\naI3S5R0wqfUCxR05pM2sLRjRrhHCgkZjR2BPxCakUNoP3HiCozMGYM+k3qg9WrxzW3t0MPq39MDd\nlWPwV9PalDZAkGyiQeWyyMuXTUqhb/z6lSZz79iJhzrQhKAM085dBgAYGern0pycMOgZzb1lcycL\nuX5RuXRp23bdxJ4D9NmYSpeyxf4dw5WSRyAAgtMFSbiovzCv+kKRm5Dk7n/wuyC8TH4OAPg39jL+\njb2MXmX6oLVDG/Qu2xcjHvmJxhkZGGFTnW0AgAHlBmHU42EU1yOhXHnjCMDHn/8AAOo6XqVtN+XJ\nJl8IjXIFAFQqvhgGMKK0VS6+AnGpJxnnK27hDQAwMhTvAtd1FHxxSssS8i5e8FlYo6RskbOKxeZS\nTiz0BUNDO1gW6YP4hIm6VkVr7HwTjLamfbFl+n74L+a+6jMd3ZvURKvpm3B1seD7za2sA6W9d7Pa\ntOOMjYxg+DulnKGhgWjR5u/dAAAwbcd5LB3cDpO3ncNKf1/4ta1PK0fXCAu3DervCa8mlfD2/Xcs\nCzqPxg0rIupTPPh8cWyDi7O9DjUlSGNkqN8pDYnBQCDoEQtfdsDMame1Mte+qJno67xQLRlcFWuz\nNbaldRMKrCR/cbWxzlbGtvUem1Ua9yeTmCF2GzI3LqfESMEixMGyB22rgYER+Pw8JGbchq05tUpp\nKWvVF5K2Zo1o75ezHYtPiSF4ETsU1R2IMagrhJWcjwSdxZEg+s81rlOrDvNpgGE+DTBj1wWcf/AG\n8/q1QceGimtg1HGlnprV/X0d0KExvv1MxqXHb7F0SDtce/oBsYmpGO2rm2q7ihAWbNu55xZ27rkl\nuh929wPC7lLd9EjNBv1ibRdf9Nt/BFm5uTDl6d/yXP80+sORPkWQd+KgiKEDm2LowKacySOwQ52F\nuK2JZgrzaYLpVfvrWgUCx3xOWgcAcLDszqlcR+shiE7ags9Ja2UMBlMj2RMLtihyO2KKw5AkKroU\nTIxrIDvnOeW+s1MMpY8kxYuuhaVFN8Z26fF/Krqss7BooA8WDfRB7dHBrAyGu2+oKafvvf0ser3r\nKtWdZ/fVR5jcTT8DiAujEZCbcRxZieJ4kSKl2KUHL2g0KCswUquvWCM3+9GAA4KkE+6O2nVv1E9H\nKQKhgHL660q1xge4Fpyd75YOHoo7EQoUKVmCOAIbM27dLYoYV6LIl8TQwIzTuSTJ52ey6ped8xyl\nHf6Ds1OM6EfIp6+CyuqSbfG/qNnDihcNoR1L0D61RwfjedR3AECXBbuUGttz8R7w+UCvJXsp98/e\nf42m1csDAGqVL42Td15woyyBFVmJgShS6pPopzBzbKAgEN91STA8123BsWcvAQBPv31H732H4bok\nGHc+fQEAHO7/l1Z1IycMBAJHrHjTC1l5aTA0MMKKN4I0gpOqHBK1L3zZAdVsmuNl0nUAgJd9bzQt\nIQjQvPBtHb6kv8KPrE8yLknSbkqS1wtfdhDdNzLgIY+fCwCYWe0sFr7sgMbFeyAs/oioj6QcG5MS\nlPE9y86Bq5X2/XJJxiL9gWdojey8TGTmfuFUblZeLADAxKgEp3K5zIRkYlyF9j6fn0NrBER/rw+n\nkvcBAJYW9K5YBO0jmbnoxKyBjG3S15KvD03rR+l3e4U4KcOuCfqdIrZFm6Vo6lUZc2d31rUqBBWo\nWaokHgeOgkfwesSmpGLaeUE8V/fdB0R9jAwNdZJJiRgMBAJHTKpyCAtfdkBZi+qMLklli1RDZyfZ\n+gc+pQVfSJILeLYIjYMh5VehhJkzRUZU2lORkbDkVRfk5GfB2FBQROlpwhVGQ4QNTxM/oJatfmWi\nIaiHg2VXfEnaiOikLShny90XUlzqCQBASSv9XmwxQedylCthVH393hg5uZHaVIlAYKSwGAtpMeVo\nXwtPGfh535AeJ45jMjR2g3nxC5QxRUp9QlqMM4RxVgXhhMLK1BTvpwXiZ3o6/r50DVfff4SlqQmm\nt2yGrjXcdKYXMRgIBC3iYeejMdklzJxl7g0uL3aRmuZ2AmveDcKYSjsBAMVNy6g0jyXPHKm5GZj0\nZB1nQc8E/cDZbhK+JG1k7cojTT4/C4YGslV903M+AgDK2IxQSz9pUrOew9K0Bqcy6ZDnZhQT1w45\nuZFyYx7+ZISBz3RczNgLQyPiGc01fD4fBgb6nXGHDcLFvXDhL42BUWnK/bSYcshMGAYzu82Ue2ID\nI4ZRlj5SzMICa7sov4moKf4Ig0EY6GtgAPx3QTYgSDIQePvGIShPk2pM2EdealMuU6ISCJogKz9D\n9NqSR18JWREnPBeh9XXB8f348BCsch/LiW4EfcEAAB+hURVZu/w0KvsQdz7Xxe1P1WjGcJ+33sSo\nBLLz4hAe00UrBdqiop3g7BRN25bLsftWYaKLvR8AYNLWEWgzgJqAo41JH3ib99NpYHRh5OSRsWjZ\ndlmhDH5mQ17mJco1z0LsXmZgRAx5dfgjDAY7WwskJKZDIv0wI36jduDa+SlKyWeTeai591JYW5vj\n9GGyuCrM8AxMkMPP0rUaIh78OoN6RX0BAGe+BqN9qdEKRrDjeJOF6Hp7Jl4mRaL19UCsrD0aNWwr\ncCKboFu8nN+Lsg8xZSGSXqTzDG1hbFQUOXm/RGN4hrbIzU9kHKMODcqE4UXsYCRkhMrNlMTFnM5O\nMfj01Vnm1EB4olCm9HNERZcStRuAB3MzagadT1/Lgs/PEV0L+xb2AOm0pHRsfxkEJ1fZhdrl7P1y\nTx8IqtG5RwgAcXpVSQqbEZGTtgnZyYvk9jEuMkBL2ihHRk4OagatlZsNSd/4IwyGiWO9MWvecVZ9\n8/NlrYqIqB+M/a9ce0m5XrnkL3jUFvvanbv4FMtXXQQAJCdnIC8vH0bkCLbQ0skHgfoAACAASURB\nVLXMNBz+PA/JOfFIyY2Hozl9IKWyhMUfQRXrxtgRMUGpcZdjNsEABuCDj2eJV+HryM2H04Xvd8Ez\nNEJufh4AYMKTtUrLIO5M+ouX8wc8/uaLtOzXrMc0LHMf0UlbEZmwBAA0ZiwIqe6wAzn5ibj7uS5t\ne1lbdsYxm0V7OccotWSUc/wst70wQ1yOtEthMwrkkZ28CBYO4TAwFJyWS8Y56DsLr96gve+6JFhv\njYg/wmDwbOwqep3P54uqOQLAzr2CQkXdu9TFUYbS6eMm0R+ZpqRmYuEycZAondtRe+9aaO9dS3QK\n0ar9cuKeVIhxtaovChy2Ni5OaWMTUEzXR/LeRImsS5Jtkn2YXgtPGoRIB2azDXgWuiMRCjcepc8o\nPcbJxg9ONn6s+tIZEWzvCTE2tNWKSxJBNS5l7kNbs7448m0TbIpbUdramPRBk071dKQZobAgNBYK\nGmdevdG1CkrzRxgMkuzeF4ZB/cSFg3buFVRCHOXfUmQwRH2Kh3M58WIvJVUQAFixAjUloG/31aLX\nioyAbp3q4NipRwCAE6cfo0tHksOeQCAQ1OF63EM0L0F/wkDQDXRuRj1KD6ftG/4fqWdAUA/JUwWe\nxV/ITT+oQ20KN3+gwXCbYjAIMTQUnzosWHYGW9cNlukzdUI7lecdM/J/IoNh9forf5zBUO/CDDzw\nofc1TM3NRIsr80TtqbmZWP7qDObWJLnNdUHydw9Yl3yM3OzH4JnIvk+JKxGBCxKyk+H34B9k5+dg\noHNH7Io6jXV1ZmDuy43YVm8uAOCvO1PQsFhNjK8kCFzsETYR7rZVMcPND2veH8Dl72EIersLZ7zW\nyMj3DR2DSZUHYv2HQzjUeDkAYOKTFUjMTsG2+nNF/frdnYFGxWsioOJf6Bg6Fvzf6RfPeK3Bnqiz\nePDrBUI8pgEA5r3cBBNDHqyMiyCg4l+Y8jQY82sEoM+daTjWZCUi0qIxMXwFFtUch6rWLpj9fC1e\nJUdgSc1xcLUSLGzGhS+FJc8cC2uMRVZ+Ngbem4XFNcfBpYij5n7Zekp6cobiTgSloItdEFJQ3ZWY\nshrR3Te1WSq3XV8yJLWsWB5nX73VtRpK8ccZDPlyIp8dSlgjNi4ZHz7G0ba7VnCgvV/YFv97I0Ox\n/t1lhLWdDwBY+vIUTkU/RPeyDTGhanv0vb0G0Wk/scS9DxrZV0JmXg5a/jsPuxsHoKJVSQBAv9tr\nYWtigbX1hqDehRkyczS7/A/qF6+I5R79YMmjVnq15JlRjAVJY6PPrTXY7zlGU49eqFCmpoKQpO81\nYFPyOQCAZ+LOtUoEgogB92bijNca+IaOQfcyrbEr6jTKWpQSGQu+oWNkDIEjjYOQyxfEzYxx7Y3L\n38NojQUhzUrURbMSdTEufCmseEUQVFtQA6Xf3RnY23ARXiR9wN6G4o2M014hotdTngZjWa1A9Hfu\nINLlwa8XlPmW1QqEb+gYHG68AgBQvogTTniuEvV/kvhW9IyS/wp5kfQBBxstQ0QafQamggjJeqRb\ntm8eQrl+9z4WS5afQ8/u2i/KSWAmuGM7nH31Fq5LBBtwVqbidNQewetZy3kcOIpz3Zj4YwwGS0tT\npKZSs9ds2xUKADDmGQEAJo3zxuSZhyl9zpx/olD2idOPceL0Y4401T19XTzRz8VLtFDvVrYBplbr\nJGp/lxyDBz6LEHB/OxrZV8LER3sQ1nY+1r29hIqVS8qcJjzwWSRjNNxo8w8e/YpgpY936VoAgD2R\nocRY0DAm5uK/c8oPX1jZK290EAhs2FR3DrrcGo8d9eex6h/8dg8CK/dHVl42eDxzpeaKzfyJOPwS\nXQuNhIqWzLVIotO/s5YvPJ+mM3LkUczEFoDA0CAQuMBFKi28i7M92raujpZtl2HksBY60opAR7ea\n1XDsmSBxTkqWeH0q+Vqf+GMMhg2rB6D/0C2Ue3sOhAEQ1F4AgHp1XGTGBYUIcvpaW5nJtBVWDH5/\n/QkX/RWtSmL7x/+w+f1V3PVeIOo3qIIgdeDACoL82gGV27KS//ezI5hbswfsTa1Z9Z9fqxda/jsP\nKTmZ6O/ixfo5CMpjbiP++xJjgaBJ7v96jlx+HoLe7sbimrJVpXc3WIjA8GVIzEnBjvrzUaeoG5a/\n2QkTQ2OMq9QXADClymD882ID/qk+knYO39AxcLJwwMFGywAAXW6Nh0sRR3Qr0xpNiteWq9/+Rkvh\nGzoGljwLrK8zk/VzjQtfirIW9Pnel9UKRPfbE8EHH8earMT6DweRk5+Lj6nRlNMNAoFr+vzVUNcq\nEKRY0q4NlrRrI7p+ExcP3+17SJYkXVPGkTmSvoyT4ih7efELM6f4wqVcccb2gsaIe1uxsYEftn64\nBr+KLZHLz8OQCi2w4d0VSr9R97eJThoe+CzCx5RYVLBygJ1JEfzITIaBgQGKm1rJyH+fLNi56xG6\nCvckDBB58AyMcLzZRPUfjkAg6AVtSjZGZ8eWomvpnXk7E2sEu4tr4jS1r4Om9nUofbzsPeBlz+wS\nKi3zhOcqyrWZkWxVannj6U4PJO8x9Rf+W9W6PI42CRK1L6ulXJpkAkFV9h24A7/BTRV3JOiMKiX0\nex35xxgMkvxKSENRuyK0bUUsTJGWnoUlQecwbWJ70f0mjVxp+wNA5KcfaN3SjXM9dcXGBoK0iH4V\nBV/mPAOBy5Z00LLwWvhvBStBjMflVrK7cZJjhW5FksYCU0C0kB7lGqKMRTH2D0FQidysUPBMBac4\nmSkhMLNSXGgwOz8X7W9OlttnVMUu6OJEvqwIYnZFnsaFmFuYXW046hWtpmt1CIRCAVPQc43qxO2N\noB5/pMFw6Nh9jPSj9+WbMbk9Zs49jotXXlAMBnnsP3QXwwY3U9yRoBIDw9YjKjUO/hVb6VoVzvmR\nkQZ7c3rjFQDG3zqDVZ6+jO1ck/ZrGGxKCYp1mVoOU9h/fHgIXiZFKuy3/sMJrP9wgmRYIogYWbEn\nRlbsqTH5ysQSEAiFhYKaCYmg//xRBsP0Se2xeMU5HDp6H7WqC4LdpGMT5J0kEAQoOg3gml2NtZcF\ngA7n3UsRNWAq2p3dgcSsTIR1o/pLu+xeisgBU7HmWRi2vLqPYdUaYHSNRqL2zS/vI+RZGJY29kb7\ncuLKzxNvn8Oxj9Q85FEDBB/2218/xMKH15DH5+NkxCtKm/PupXjXdxJMjIxkdFQXm1KvkfLDG/m5\nn2BpfxpGPPr/D7n8PPjcmKS0/NbXA1HWwgHb6k9TV1WtwOfz8fLFV0RExOHFi2hERvxARAR9FjVN\n06rFYsY2KyszOLvYo1o1R7i42KNadSeUKmWrRe0I6hIXl4yIiDi8fBGNiIgfePkiGikpmTrRRd57\nrXz5Er/fY45wdrGHi4s9rK2VC0InEAj06Gv8AvCHGQxt/1cdi1ecAwBs3HYdADB/TleV5Q3q10RU\nKbq591JSwbkQ47x7Ke73CMCDuGiZxTn/d/vYmo0R1KQDRlw/LjIYnHcvRWVbe9zuNgL1j6zDpNvn\n8bqPwG85qEl7HPv4gnahP6RqXQypWpf2hKFvJXdU3rcCkb/H/chI4/RZrewvKuwjbSzULVoFi2vS\nF2eKzUxAv7viTDif02PVU1BJsrJyERkZhxfPoxEZ+QORET/w9m2MVnXQNCkpmXj+7AueP/ui9Fge\nzwjOLsUFi8BqTnBxsYdbNUdKbRoCO379SsOL519EC/6IiDgkJqbrWi1OiYiIQ0REHK5efan0WBsb\nc1Sr5iQwbqsLjFsHBxsNaEkgELjmjzIYJPn85ScAoFYN5rR69x4I0n5WKF+Ctn1QP0+RwQAA0+Yc\nxZJ53eXOSwyLgskF38EoYW6J9uWqIACnsP31QwypKq4wK7no/9h/CmXspY6CLFxv+06E827mojps\nWdiwDfa9Cxdd1zuyFmNqNlZbLgDk535Eclxz0bVtadkFaEoOdQGkyM3IwcwOV5oH49y3O1j1TpC2\n2OfGJFxotoK1Xnl5+YiM/CFa9L94/gWfPsVDTlkVAktyc/Pw4X0sPryPxZXLylfedXQqCheX4iJj\nw9m5OOxLsMuApo/ExCTKvNfS07N1rVahICkpA2Fh7xEW9l7psSYmvN9GreNvg8MJ5coVhwGxaym0\naLMUDRtUwOL53UXXQoi7EkEd/liDQR4L5nTFrHnHMXX2EQDAppCBjH2vX5yK5t6C/5B3738UvVaF\n4WN3ITIqHtnZubTt0rJtrM3hXK44Vi/vI9P3yPEH2H/kHhIS6Hefv8UkysirWKEEbYVrAlDVTmw0\n1ipeCkseX6cYDPLgwkiQxsOeWhV2Ym1u0s0mx/2P1kiQpOttcVC7MjEJ7Us3wrHo6/iSHicqvsUG\nee4RBN3zNfoXvkb/wq3QdzJtV/+brgONVIO8z/Sb7OxcvH0bQ3s6WJDeZ9pAaCx0770Om9YNRCXX\nkujSk8T0ENTDUNcKaJsqlcT5sS0t6VPqeTam+m3zePJ/TdcvToWVpfp1Gt6++85oLNCRlJyBp8/p\nF3fvPnxnNBaYYKpwTaDyLjEe5a0Vp+IFAHvzIogaMJXywwXHffqh2gHBYr2iDXfZo8ytBQX2kr67\nI/XnX3L7dnZU3kjZXl/8xX4s+obS4wkEAoHAjp8/U1HJtSQAoGvnOgp6Ewjy+eNOGDaGDGDVT1m3\noTNHxYWHFi47g/sPI5GSmonKriXRsllV9Ohaj/M55TFzii9mTtFedp3CjmTcQkZuDi76DmE17kdG\nGt4k/EAVO0H1zafxMahVXGy0NnMsj7Dvn9C4ZDna8ScjXjFmSUrLyRYFXHOFqaU/AMCmZLiCnkCA\nq+rxPwBw8PO/6OZEsosRCAQClwwZth1fon9R7p2/8Az9+3Djukr4M/njDAZtQBbqhY/XfSaIXIsO\ne/dlPS5qwFSKS5IFzxiv+oiLNe1q1YPSTncCIWyXbmtYsizufv/MWhc2ZCTPQ1aquCK6IvckdUjP\n1U0GGAKBQCis/Hd5qihuQTJm4Xtskq5UIhQSiMFAILDAnGfM6E6kyM1InXZ5bQ9jo9GtQnW5spXF\nzGoSeCaNYWCo2OXq4a83qFu0isJ+TLRyYBcDQihcuI8KRvj6QGy5cA9bL96Hv099+Hk3ELXv/vcR\n1p0JQ2t3VywY5K1DTQmEggldcDMJeC6cdJm3Cwen94WpseaX839cDAOBUFjI5ecjqAm74oJsSf5e\nG8amzcEz8QDPxENu3+nPNikt/784savTuEo9lB5PKBz4rzqCnLw8bA3sgQ1n74juT9pyFmfuvsSN\n5SNR1MoCjcaTQE0CgUBgIir2l1aMBYAYDGrx5c1XXatA+ANpdGwDPA6v4SyAWhI+PwOJMS5I/FYG\nid/oUw43L+Euet3plnLZSRa92i16bWRAPn7+VFb4+2JUh8ao4VwSj9aOF92/Gv4eR2YNgJkJDxO6\nNUWmEkkgCAQCgaA5iEuSGgxxG48r+Ud0rQZBw2hiYa4Od6QqTXMJm5iFmW4DcP33SUF6biZ8Q6fi\njJf81LFr3h/F6a/imiXK1GAgFD5sijBnlXMfxT5VL4FAIPzJ3F89Fh6jg/F4reYrRBODQUUu77yu\naxUIBJ1RyrwYYjIExQ8z87LR+rr4w8rBrCh4Bkb4mvGDcTzPwEjjOhIKJuHrNf/FRyAQCIWB+uNC\nAADuAbIbLeHruP0sJQaDBC9vv8F4r9ky9yVPEVobUv2uJa+lTxtaG/bAlfwjGFlnCj6ERzL26+s8\nEnGf4xnnlJQlPb9n1wb4++gkRp0kad6rMWYeIF/GBPXZ3WAW0nMzaV2SYjN/0YwQMMOtP1qUkB8b\nQfizef81Hq6OxQEALz/Folo5Bx1rRCAQCPoJ10aBPIjBIMF4r9mwsDLHqSSxn3XvMsMpfYQLeeGi\nXJFL0t75RxH5/LOo38k1FyjtqQlpiPscj8nbA9BmUHORbKGBIElrwx5YdmUO3FvVAAC0MeqJW8fv\nUfr0rxBA0etY8FlsnLiLuE4ROMeCZ4YrzYPR5voE8MFX2P9c0+UwMSQfOQRmwtcHUlySzE2MEbZq\ntA41IhAIBAJADAYZgm/Oo1wf+KJ8JhjK+MXHcTH7oOi68xgfSnuXYoOw8NwM1PcRB5IKTxJ6OQ7D\noa+bRfdNzIxFxgIAXM47LHOa8D0yDhcyD4iuuwV2wMaJu9R6BgJBHpebr9S1CoQChCKXI+KSRCAQ\nCPoHSVMixXD3yZjZYTFn8pb9+7fCPpLGgiS/YhIo1/8cn8JqzrSkdFb9CARpMpIXAAASvzkzZkki\nEAgEAoGgH7gHBIt+AGDH5QdoO3OLglHKQwwGCa7kH8H6B0tx//xjkVuQupRzc+JAMwFVG7oq7NNn\nZld0dxgKfr7ARaSjdX/O5icUfrLT9gDgw7rEdY1WeSYQCAQCgaAe7gHBeLRmPCWWYXCbeohLTOV8\nLmIwSOFapzyu5B/B8t8nA1wYDdpk8Pze4BkboQ2vJ1ob9kBGaiaJXyCwxtL+HBK/lYUhzxk5med1\nrQ6BQCAQCAQ5GBoaaGUeEsPAQO2W1WmzEgnhGRshNyePk7nCTj1A4071ZO5bF7NSSV5uTt4fYyRc\n/U+5wmEE+RjxKopOFozN2ulYGwHkb0zQBtp6n9WcEIxnKzUbp9Fg2lrcW/LnBou3vSEuBnip2Sqt\nzFlYP6cK63MBhefZXn+ORdWy4mxy07ZrZrOPnDCoSOuBzTmRM/CfXvi7yzLKvU42AwAAx35sV1nu\ny9tv1NKL8OeS/F2Q9jQ3+7GONVGealMVF/1acPKaFjThnrjEVNTxJ0XNCPL578VHZGTn6FoNAoGg\nBcLXBaLP0v2i+AX3gGBcevRWI+lWyQmDBHSnCc7Vy9L2nbB5BC5svSq3DgMb+s3pjl3/HJKZe/GF\nmUrLkkS6nkRFdxdseLSMoTdBES/vR+Dyobt4/SgS8TGJyMnOhX1pO5StVBItu9aDV4faMDDQzrGg\nJkn72R/WJQWGghGP/r1f0Dlw5ylmdW6pazWUpuC/uwjqwuZ0okX1Cho/wSAQtEFGXhbisxJRxoLU\nYpFH+LpATNh8GjefRyLAtzEGt5H1WOECYjBIoOyCX1F/tvLY9GPqI3k/JiIWAyqOpu2ry1iM1Jzv\nsDQuqbP5VcHHaazCPjGf4hHzKR73rrzA4pGy7ReiQzSgmWYx5JUTvU79OQhW9mdp+51/+hYhl8Lw\nKzUdI//XEIOb1pHpM2n/efz74gNK21nh/OTBaul1NvwN5p+8imqODtg+rLvKcpot2Ky4k55ib2uJ\nR1vIQvBPZfq+C4o7EQiFiM63pgLQnltZQWblsI4an6PAGQwua4LwdtR4mBgZKTUuLz8fRoaqeWCp\nOqe25Y5wn8yJHC5Jz/2JnPyCk+Z1YpdVePUgQtdqAACqTw7Gi+XyF4hs+kj3b+haFluHdaNtN7dZ\ngNT4bsjLfQ1rh/u0faTdflacuwn3cqVRu1wpmT5FTE3wKT4R1aYGY3rH5ujXhD6FMBOSc1mameDe\nxy+oNjUYL5cqt3CW1lnyWllZ0py98wpL9l1DMesi2D2jN2wszSjtLyO/Y/qW83Cws8SWyT0pbXX8\ng/FoSyAajFiNg3/3h0upomgxbgNOLR4MawszSj8hdEaDUM6C3f/i1O0XmNCzGXq3kv1dX37wFrO2\nXkRefr5cefK4eP8t1hwLBZ/Px+iunmjXsCrtPMsO/IeElAzRvf1z+qFyGXvR9ZHrT7HhVBg8a7hg\n3hBvpXRQl5oT6F27JHfmpftcnzccRS0t5MqR7pPP56P2RPFip0LJYkrrWmdyCHLyxPFyknNKnyQo\nanu0fCzqTBZsZPz7tz/+N1eQenFoq3oY196T8bmGtKyH8R08QSAQ/mD4fL4+/nCOc8gKTYjVK85v\n+Zf/P4PuMvfb8HrS3tc0/36bxd/y1pPyI0T69duk87RtfD6ffyiiF/9gRE+N6+vtOIaznw7O49XW\np9qklRw8lazMoZuOqjzebcpKvtsU5fWqMW2VSuPcpqzkR8T9lLnnt+WY0rKEY1XRgwkPv5X85uPW\n8/l8Pj82IYXfZdYOmXbP0Wv5fD6f/zMpje/ht5J///VnSnvriZv4d19GUWR5+NHrKO++h99Kflpm\nNuVauk/vuXv4fD6fn5iSwShLHt9/pfBXHLxOkVnHnyqnzcRNCufx8FvJ33gqjM/n8/lvP8fxPfxW\n8rNzcpXWRxVqBK7k5+Tmia6bz9nIrxG4UqZPZk6O6DojK0flPpLsDw2XuaeM3mzH0vWTHC/5Oj+f\n2r9G4Ep+Xl6+Qnn6TJvr40Q/hILJ1/Qf5G/Igtqj6P9v0txXe21eoIKeXdYEwWVNEO19ANj59DGq\nbQzB7mdPRG2Pv3+D9/5dlPGSMoSvY1JTUHFdMAacOsZqTgDIysuF584tMnJd1gSh30mqW5CkjKC7\ntxQ+S58Th1FtYwjSc6jBa0xzAoCPXyvY2FuLakgIf/Lz8nWSNamydQcAgKfDJHg7roC34wrGvje/\nC4rlxWY8F91LzI7C1ndeKGleCyXNa2LrOy9k5iVqRFc2LkjKsOaC/p32cMXMTi2UHuNTq5LK87nY\nF6Vce1Z2xp0Pn1SWxxWeo9fCwc4S/60S+KOVsLXE8fmDRO0p6VkAgNA1AQCAotYWeLQlECOCjlLk\nXF4xDA3cBK5gQlmqMLpLE1iYGgNgPjXYP6cfAMicgrDFwc4SE3s1E10/2hIIPp/aJz4pTe48PpMF\nu9rDOzYCAFQqY4/Dcweg4UjtufDxjMRffb513ShtV59/AACY8sQH8GYmgtdhbz+x7nM47KnMvL09\na6utuzpULyvrGioZevXwYzQA2TSNRoaGmLZX/1yiDny+At/QyRh0fwFy8nNVkpGam455L7fD5+YE\nDH+4FJl52SrrsyfqInqGzYJv6GT4P1iMq7EPVJalChOerMaYx7LrioBHK9D19jTk8tlldoxOj8Pg\n+wvgc3MC5r7chuScNJX0iUj9ir53/0aH0EkIea/cGoTuOVThXEwYRjxchvY3J8L/wWI8/PVaLXl8\n8LH09R743JwA/weLEZ0ex4meBYEC5ZIUOWYi4+LdZU0QIsdMxKBaHmiycwuMDA3Qt3oteJQsjYt9\nBoramca+HDEWHwJkv2TlzVll/WqRTHnypZnY0BMTG3oyym2ycwtuD/IXyV3Q4n/oW70WqzmPxm5j\npYM2cCrSAADgYFYDdqblZdr5yIeBKJRTsOq48m0GqtsJ3DaORvVHvwpnYGZkCwCoX3wk9n70hV+l\nUE71jI/h3ghxrlKaEznu00JwfEI/DFh/GAlpGTLuR0wuScL7l56+w8S95yh9YpNS4T4tBOenDUbP\nVfsAAKH/jAAAJH4ro7BgW5/Gihc9nvM2IiEtQ2E/VTAyMJBZpOqCjKwc3FrLnLqy7/x9WtQGGNyu\nvlbmycrJRfDhm7j76hN+qFAcSFhQSFcZnyzNTOA9fxsuzh4KANj530PYFjEXtS84epV2XFl7W8w+\ncAlX/xnGqs/aC3e4V15NXEoUldsujJOgc9k6//gNlvTz0YheytIrbBYSc8TvvZiMeHQInQQAmFyl\nLysZGz+cwImvNyj3otJi0OnWFACAuZEpTnouVShnxrONeJQgm5Xwc3oslr3Zh2VvBJ8DdH74wvSv\ninz0mfpJ3pdMJdv2xnhcarYKufw8tL8pXiO0vzkRBjDAxWb0//d635mDX9nJlHth8c8RFi/YyOvs\n2BQjK3ZVqGN4wjtMe7ae0n7u222c+3Zb7vNKPgOb+8rK+Zwei5nPNykcLy1H2E9a7uf0WAx9sIhW\nlrDv0PK+6FmmFat52OgkRJgVSfq1kNYeqm/SMVGgDAZ5HO/RR/T69iB/VN+0RrTIVsTBrr1gYWys\n9Jw+FRRXXlYFobEAADVKOGDx7ZuiZ9HUnNqGZ2iGp7/2IjH7E2rY/YXnCQcBAJl5iWhgHyDqJzQW\nAMCcJ//LTlX615ujsM/R10tRxMpcbh8+n4+JnVfh9aNIrlRD+BLByUfoPyNQfTL7BVb9CmUAAG1r\nVcLEvecobZFxv0QGhLTcIsX2KJStKB6o1ozVyM3Lp8QGjNpxEjfecPd7KQgITxj0iTr+wbi+ehRG\nrzqu0vgW4zcgOS0TPg2qYKF/O5QqaoXWEzdR+ozo2Ah1/INxevEQzNhMnw+8VDFrSjyDNglbFICa\nE4JFi2LnEnY4PW2QqN3QgOG9zQeEuarY9BFugugTihK55eYJYlv0OcvSpCdrKMbCAGcflLFwQNDb\n/cjMy8byN4oNdT74FGOhuk15dHdqgSeJ73Hy600Aggw9Z77dgm9p5tiNmz+eyBgLFSwdYWdijZdJ\nEcjIE3wGbKw7ValnVJahDxbB3a4S6hV1w+aPJwGIF6E2xpYYWbErlrzeDUDw7HR43wiktPV39oZL\nkdI48uUaXidHAQBOfr2J+OwkzHZjTmJx/9crzH4uSC5ha2yJMa498Cn9O3ZHiU+ohAaNNHYm4tpT\nCdkptPfZYMWzQEquOHayq1NzVLUuh+tx4bgd/0x0f/TjIKz1YLfRK7moL2tREuZGJnib8hkA4F+e\nOeB4W8QZhQaDkB5l2GfvE6ZNdQ8I1kgKVToKjcHgXrIU5Totm/2xYgNHJ5XmvPDxPQDgTfwPlcaz\nwdrUlPIs2phTG/iWWY8Tn4YAAPwqhSI5Jxr3fqwFABho0VPuZ2yS3HZlMh0ZGBhg5Sn9+KK9/5H5\nlKBWuVKMbcamzRXKrjVjNV4sYX7O3Lx8lLazptzTF2PB2MiIEkCqLvv/fYw+//OgbVvg74Oxq09w\nNpe6jO3mhTXHQ2FlYYpdM3qrJCM5LVNhkLS/b0NsOnMHjsVtGOeJ+ZmMs0uGqqSDusw5eBlrhnZC\ns2qyp54AsLBPWwzbeEzm/uf4RKz168y6z8i2jbD4+H8caq55Fvf1oX0ufeJ50kcAgkXblnrTRPeb\n2gtOPpl2lyXxviF+D0suXBsVr4GRFbviQsxdrHp3EGvfH4WTeQm428nulcl+SwAAIABJREFU1j74\n9RoLX+2klaNtotPjsK3eDADArsjzyMoXrxkON14AAGhRwoPxdyNpLEg/R5PiNQEAHUOnICs/G7d+\nyLraSSI0FiTleKIW+pZrixEPlyEy7RsAICs/B6aG1I3ag43mi15L6ip5nw1Hmyyivd/U3p0i+32K\n/NN0aV2U+RtLn/owMeie+Nn85Bge+kCBimHQN3wrVUHtzeuwJOymjGuQplwm5M2pjxjAEPmQXaAV\nM6WelLQsNRfPEw7J9MvI/SV6nZ77k3P9xngz16YoWVb5jCb6gqWZCapPDkb1ycFYNcCX0mZuwnya\nlpmyEonfyiA/L5a2fUizuuDzgfffqX+LZWdvUq6/JVCPtfWFAZ7KZWmSx4mFgxF06AYys8W+05L/\n75tUdwYARMaI38OtJ2yCpbkpZzooQ8ixUPy3ahSnMuncipoErJE7z+11YwAIMghJcuXhO051Y+LF\nl++YffASo+HYsJKg/ojk31X4uqmbC+s+dPEKt15Hqax3TTmGPlcIn+vOO93HCNHxITVa9FrSWJBE\n0aLO/8EShX19SjUUvZZ2rREySwnXFk3Tt1xb0etJVcTeFu1LN2E1nunUQZLTXuLvynXvj8rpCUZX\nro11p4heB789wEo3TbDaXfmNPXX+xqe/MrtRx2QKvkvtTW0Z+8hDW6cLQCE6YdAFZ969oV20ty5f\nEVciPoiuEzMzNT6nvlKzaG+c+DQUfpVuyu1nZGDy+5X4zLxMkYbYF9FJFLOwP6IzSphV51S/hB8p\njG07wv7mdC5tkpqZrVS6VSFmVhNgZjUB+XnRtPEME9t5ISM7B52Dd8uMndKhKQDg8cIx8Ji5RiZ1\nKZsqzJpmQjsvbLvxkJO0qmVL2IJnZIgmAWso9yV34B9tCZRZVCubxlR6vPD6zvoxMDFm/xHepLoz\nmo+jLn6WDm+P/9Vl7+tqYWpM0WfvrD7ot2A/pc9/q0ai0Sjq70RyHjMTHo7OG4h6w6hfwIO866G1\nErqoytFJ/VF74ipRelEhkm44/80djvrT1ohcePh8wLGoDaW/ZB8bC3MkpmXI9PGtWxU1JwTDlMeD\ngSHVwFCWveP+ErlSOZewQ1Rcgtw0sMLrvk3dMbVzc9bzPFw2FnWnyJ6s6oOb0vhw9Rfmn9O/s+o3\np9oQzHu5XWG/ekVl0wprm9YlxfFLkqchPZyUS1Cxs8FsxZ0AnP52CwGuzPVwzI0Ub4rc//WKtV5c\nU8W6nOJOHLLuwzF0dPSS22dvw3+0o4waFBiDgS6zkTIL5/aulSky2IxlM6dkn2fDR8PKxBSb23eC\nx5b1orYlrdooLZetXqUsrRA2eBjrsdqmXvERMDOywc73rVHCvBraOUkFBjlSd/i9HZdLtAleH4rs\nAcCQ82DngszS0zcQHvUVANBywRZUdCiGzf7UYDTJ2ARljIekGFfwkQ/b0p9p22d1bim3UrIpj0e7\nCFdlYU43Zv3gzkrLUVcPJu5tHKewj9BASM3OhpFU9hlp40LRa0VzMN17+OYLHr//KtOvjn8wHimx\nSA+lCfKWnmd40FGF87iUKqqTInS7bzzCilM3ZRa/C45eRdv5W3Fpth8AoJiVhcIFMps+C/t4Y2Ef\n7mpMyJtPkS6S7dJ9Ja9NeEZ6YRzQoWomJDqGuHSQ2y50xVHEghrDuVBHLUqZiU/DrXjiOiClzIsr\nHLst4gytHE2TlsvdRqq+IumW9CE1GhUtqe7vJ6Jv0A1TCqYYBk3ENhQYg0HegpquTfreWu8OWOst\n+wGhrFwhdBmKamxag+fDBcftj/2pR/K93GqoNOfezuIKzXRzMmVa0idq2PVGDTtZX2ZpA4DJIOjl\nov2UsM6VNX/8rwjpRb7k9dSOzaS7i/CYHkLpm5CWgR6r9uHI+L60hoPkvZQfPrAp9V4dtQkMWJqY\nKO6kIQJWHZcpGqepefSZ4DO3aO9bmpnCmMdtYU6CflO/mJviTn8AN3+I09Cz8blXhJNFCbVlcEW7\nmxOQx89X3FEBLkXUz3oY8GiFjFvTxo+CGDcDKMhGoCeQGAaOaLt/F4LbtNP6nATN4NOPne+nPpKd\nS/XNTs/OQdni7PwjrewvIPFbGSR+K4OUeF/FA/5gbkcLTmCcNwjqi7htXS26vvYpAj/S05CURb+L\nVu13X+/DOykyep4UZAurukXQ/jUlGV9TknE7+jNiUlNw/bNqweO31o7G4CUH0XveXqw/GYY+8/eh\njn8wilpbKB6s5DwA0HveXmw5c1dj86jKmemDAFBjbHoG7cX2aw9wdjpz5hdC4aMIT37Wuz+FH1kJ\nnMpj446kadreGI+2N8ZTjIX/OdTD2Eo9scp9vCgQnC08Q9U3EySNhKx8cV0tSd2Y0tyqyqKD1ziV\nJ6TAnDDoG9L1GYqZW+B/LhW0PmdBimcoSNiXttO1CirzV+NaqD45GBamxkjPEnxAsXVJSv3ZTxS3\nkJv9UGM6FgZqO5REvV0baNuGXzyF98OZf+dpOTkiIwEATIwEX0j3YwRBnY8HC04oHa2sUWXLKmTm\nClwxDABEjpyktK7GPCOErgnAqODj2Hv5EaqXL6kRlyBjnhEebQnEoMUHsfnMXbhXcsSZJUNRupi1\n4sFawKmYDXaN6Qnv+dR6Ndfm6q9bJ0EzfE3/gRKmBfdznisczUuI4jp0HbzNBcIsTABQx64KFtUc\noUNtqHQMnSz6HXe9TR+0z5aVx29iz9VHAOjrMNxeyVwjSFWIwaAGulisEwNBOxibFtz/GrO6tMSs\nLuzzOVORPJ0oGMekuqLa1hBEjZwkWvin5+QgOUuQd31dG1/EZ6TDyMAAdmayO5lWJqZ4PnQM8n5n\nCuJJ1bWos3M9XvmNw7Mf3/Ff76F49uM72rq44kOC6pnCLMxMsHP6XyqPVwZtzaMK7i6OeuujT9Ae\n6z8cZ8y0pAy5/DzwDDTnznbnd9E0TRFYuRcCw1drdA5tMuKhOC6SyVhgkxWKS4qZ2OBnNjWFu7Ci\n+LmmqrmVT+jaFBO6NtVqHQbikkQgEERYFjsgcknKTF6oa3X0mqjfO/2S/1qbmiJq5CS0camI4uYW\ntMYCADwfKoh1MvqdhueV3ziKLOF1TfuSKGVphbYugjTEFe0KbqpfAkFdpING1UFRtiRhoTNF9Lg9\nU21d0vOYA4AXv1ZcTFMd3KxdRK/HPF6p0bmUQZN+/avfyaZw1yT7G81lbNOksck1xGAgEAgUbEt/\ngW3pL7Asrt8BrAQC4c9ibR3FJ+zC6spMLKsVIHotWQ1Ymv/iHrPSKT0vU+0da3k7/JJF2DTNuxT6\nzHi6oFyRkhqTfSHmrsZkK2J8+CqEKih+pwykDgOHvH3yCeM7KD7yqdvCDfP36N7XLeLVVwS0oS96\nIk0VD2cEn56gYY3U58j6f7F90WlWfQdN80Wv0a01qg8/n4/7V1/i7G76jCn6DD+fjw4ugcjPU5z5\nwcLKDMdeMxemoyMppipsSr1WVT2V0af3yNwhW3D3sqwbgHPlUthwdbrC8e3KjgM/X3YB4VCmKHbe\n+YcLFRmZ2mMNnt1RLsvVzE1D4NletsiYrnjzOAqBHdntdPKMjXAmUvf1PQAgPiYRM/qsw5f39EUP\nmfDq4I4ZG7UfcD2t11o8va24WJ4RzxDBpyfAtWZZLWglH8ld57Y3xuNI44WwNi4iuvc44S2mP6OP\nKxJSy9ZV5CLS/fYMnPJcBjMjcQazzLxsdLolLjDG5NcvmTLT+0YgepZphaHlZRNFvEiKwMQnIXLj\nA6LSYpDPz4ehgXgPNyU3Hd1vz5D7LFxxoelK+NwUrCXa3hiPmW6DRJWzJTn59SY2fDiulViHdXUm\nof1NgYHoc3MCLjRl95lgbMiTm36Xi0xQqiB8v7xOjsKCVzsAMBcfVIW2M7cgLjFVowaEAV9TJYnV\ng1YpH6extJ0vRMsWmYmL/oWBKhTCsLYrgkPPFys9Tl12LD6Dw+uuqDx+f/hC2NlbcagRFWV+90LW\nzjiMc2osysct+wvefRorPS4+JhFnd4XizuXn+PyOXZEeLpH3O1GVxSN34OaZcJXHn/u0CoZGig8U\n+fnxSPouroYsXbhNHqq8Rzo4j0derupp79j+rtnqxtSP7ZzqjleFgDZLEfHqKyeyuNaN7vexYN9I\n1GkmW+zq+slHWDpa9cxv57+shoGB9uNu/JstQPTHOM7kHXu9DBZWZpzJkyThRzL6uM9SeXy3ES3h\nN0u9OijqEpv5CwPuzWPdn2lxy2bheKHpSsoiXho++PC+wW6BpqoeBxvNw1935tDKEI5V9z4AfEmP\nhd8DdmsfuvFC2a5WZbDWg/kkSPJ5FRkein43bH+nVjwLymnSnoZ/o//duQp1YPtMbJHWiwvD63tC\nCnxmbYWRoSHy8vMRvi4Q0fFJ8P17u7TxoPaHY6E8YWDzpc1EckIafJzGokHr6vhnh+YzZ8wZsBEP\nrqlf8bCPu8CPUpNfNmyJ+5qAgQ3Ur5Lctncjpceo87fXR/p6zMKvuGTFHRXQvpzgg0rhgtDAEkWK\n7YGBgWaz2oz3DcLb8E8anUNZ2L53fJzGyvwez++9jTXT2PnF+jiNRcj5SWrt2LYvN57VKZOyCH8H\nmjB6hcwZsAnnPom/KLOzctCpgvpfxu3KCOI+NKm7kIy0LHStPFkjsrtVFexuc/kcP78noV9ddlV8\n5XFs4zUc23gN3n0aY9wy3QS2O5gVpezuS9LNqQWGVeiES9/vYeXbA3LlXGq2Crfjn9FWcy5haoc9\nDRV/hxnAAJearcKGD8dx8utNxn5BtZk/WyR39yUxNuThrNcKmhGaoYyFAy41W4WpT9fhSSLzKeXk\nKn21ptOlZqvQI2wmknPSlBp31msFOoSKs8lJGgu6zAR12msZOoYK/n/3KddGQW92+MzaKjIMhNmS\nnIrbyBuiMoXuhIHLBSOPZ4QzUZo77tbU4vZMZDB4xtwG0iize8zVc6nyhakPBgNXX/Qdy09ATjZ3\nlU2FDJjcHr3HteVcLtv3yIHVl7B7+TlO5uTqhKFLpUnITFfOV1jdzx1V3icBbZci4iU3pwmK4OJ9\nrO3PbDr5XPP4xhvM7LteY/IB4MCThbAtzs2J8WjvZfj4IpoTWZK06dUQgUF9OJerL7Q164tLmfs0\nMratmXjRreochIKJvFMeVZDMksT0+jdqnzAUqqBnrr94cnPzONn5okOTC1tfl0AMbswcla8pzu25\npRcL9sKAj9NYjRgLALB7+Tmd/Z18nMZyZiw4utirLePDc4HLlbLGAgCsniIostaxvGpxRB2clfel\nXXdpqkpzqYKm3yMZqVkam0OTcjVtLADgzFjwcRqrEWMBAC4fuks+71XkUua+Qmco1B7NbnN1+Jpj\nGtZEf5n5fCPnMsvY26LtzC2Ue+4BwfCq7sIwQnUKjUuSog8uj6ZV4NG0Cuwd7fA1Ig6XDt5B7Jdf\nCuVmZ+UgeNJ+BK7gbidFmQ/ZJj61ULOxK2yKWiI+JhGntt/Aj2+KKzN+/6x6vnZVSIxPwdrphzmT\nZ15E99UidYUy74/ybo5o3bMBipe2xac3Mbh2/CG+Rf1gNda/2QJsuaG6P7OyJMancCpv4zX1AwJX\njNuL0uWphkef8d4o7WKPFePkpzO8uD8M45b9JWPY1W3hhhZd6mDz3BNI+pnKOF6d2A221GpSCXWa\nVUGxkjbIysjBywcRuHr0PuvxI1stZhXorQpdqyh26fHp2xjl3RxhXsQUUW9jcHTDVdby1808goCF\nPdRRkUKXSsoXzFOFaesGcSJHGYO0Uq2y8GxfG6Vd7PErNhnXTz7Eq4fsqorTuegRCAWds/dfo0N9\n2VgrdXj46w0AoEGxapzJPP3PYNQfFyJyR3IPCIapMQ8hI7mPNSoULkl0KJM9o3+9OYiPSZTbh6sP\nREXPUNuzEhYfZFehj8/ni/x2mdC03iHnJ8O1ZhnG9rUXp6BCdcW5s/Ny8zG48VyRMaStLyAmvefv\nHYm6zbn9sGAD10GziuQZGBrg/GduivbIe48UK2mDvh6yxomZhQlOvGPnp5uXm09ZBHH5ewCAvY/m\no5gD1fczLTkD3d3Y7ep7NK2ChftHKTW3Ku/z/Lx8UUyKJP0ntUOf8d5KyersOglZGfJPV9QJJlZ2\nB7rrsBbwn9OFVd+hnvMVGsfa+twWYmhkSInPUMTjm28wsw/1xIILnbcvOo0j6/+V20eZeQY2+Btx\nX5k3qtSN+Wtr1hfnknehvfVAALJuOkwuPJL3Q0LnYazXHEqfCS3m4uWdd7Rj6eYtU7k0tj5dLmqT\nnkvy2tu8HyTXT9J95xwcj3l/Cd4L+yLWonhp2arSTK5Lg6tNwLePgmxb9b1rY/5JeuNaclf/ydpA\nyv2/+7bG3H2CRCo2RcxwY+lIUXvTKRuQnJ5JO5bPB9zHyMqtPToYuyf+hQFBB2FraY5R7Rph0eFr\nlPZR7Rtj/bkwwTNP7oNq5RxkdB6+5hg2jelGucc0J1vk/R6E8IwM8XC1eL2059ojBB0Xx52YmfBw\nd+UYmXGq6iRNh9BJouxNOoqjIEHPdJhbmuL4m+Ws++95MA9Rb75h5P+WMPbpUmkS64UNE8vGyC8E\no+wXhYGBAS5Eh8j9MtP07k/o2XBM7SErv31/T4xe3JO1HCOeIXbfF7hRHVh9iTP9ChLyvpABoFZj\nVyw5PEYpmReiQzCi5WJ8ehdD206X/pNrQs+G0y5eDj1fDGu7IjQj6DHiGYrey2PbcRsM6FqzjIyx\nAABFrOkLr9FBZywogp/Ph4Ghcp/jktmueMZGOPUhiFUGLDpOvl+hMFNVx/ITtJK6VNnPqW23ZuP1\no0hM6MSsW8/q03D4BfPnOhvGtWf3XlPlc9ajaRXRuNM7bmLD7KNKy6BDnrGw+OBo1PaspJS8Xffm\nMqYbBoB7V14oJY+ODjaDaBfPkovq/Lx8mUX2pcx9aGvWF2sDd4peC7EubiXq++t7Iu0CXXJeJuO5\nrVlfBKwaRLk378Qk1PcWpB71qzUZm6fuw7Cl4rkPB50VyVUmHqK99UDYSugt+TySuI8Jxq3lo2Bp\nLjiNrz06mLKo3XT+LmUxf+TWM/TwrAkAyM3LY1wAS8q9+uQDhgQfxvZAwXf5gKCDeLI2ELVHByMm\nQXBiPGrdcawP6AoASErPpMzJdpEtb05F1B4djHvBY2BqzEOuVCKIywv8UcLWUtRvyZH/MK1HCwBA\n0PGbFP1O3X0pei18RnWNBCHtb05ELj8PALCxrvbcSrmmUMUwAIIvUGWMBSHOVUrLzS6kio+zNP+d\neMjYduqjauXBAcVfVDdOsStAowpH1v+LjDRqoZwL0SFKGQvSsAnIrT45GIfvPBP9FAbkZZbqMep/\nShsLQjZek+9Somk/ZLrFy4XoEKWMBWlCznPrHhJyntk9pmwlxQWE5C2oZ24awth2cM1lhbLp2H57\nDi5Eh+BMZLDKxoKQs1Hyd7tyc/LUks8GVTc1qtaR76ebkshcmIst757KL2ZVxMqck02ZjoObajTQ\nHACqN6igtLEg5O/t/vDq4M7Yru7nyMWMvTL3jgZT453kvddDQmVTrf5zRBxfVLSkrcJ5Tc1NZNoH\nV5uAydtGoOMIau0XobEAAFufLsfxNRco7atDqXGEm6bIPh8dudm52BexVnR96MsGTGwp+2x8PkTG\nAh0X5/uJXruVdcCqk6Gi6/SsHLk6COW2ql0Rjz+KkyyUtBPH1ozr5Ik6FR3x4J04RmZyt2YUOYsP\nX5M7D5s55bHh3B0AgKmxYO+bJ/X+EBoLAOBV3QWHb1ILpuVLbJh1asidmxAgCG4W/giNBQBwKVKK\n03kAYPul+3APCBb97Lj8gPM5gEJ4wqDOTtix18s0tlvPtVsCnQymOZYE7ESzTh5qz8FWD21w8+/h\nKGppoZW5tEFnV/kL4CEzOqolX9FJ1IbZRzFyfne15lBGl4LEpmszFC6G5GUlk1cUbffycyplrCpV\nrrjSY+Sh6P2hSdR9PyjS/fvnnyhZtphKsod6zpfbvj98AezsNZuCWBkWjdjB2NbFvwWG/c3O3YuJ\nGRsHw8dJ9XowyrJ9tiBVMdMuuyR0bnPCcaUrOKBsFUel5xeO/19fL8a2KvUqoqSLvdzTWhMzY5xa\nfxnDl/VTal5FsA00tjI3RVqmeNPzUcg40dieTWthRs+WrOSWK0F1q+IZGSEnj35DoXQxaxy99RzT\npWQzwfZZJNl66T5KF2P+/yeUWdfVCdHxSciXcCF7sjYQvZfuw+svcTA2MsKD1Zr9/Ntcd5pGqle7\nBwTD0tyUkhHJc+I6hJy6xXkRt0JlMJSpKOsvpyy6/OIs6Gz4l7uqhYpou3g7+nm6o5StYMejZ6Oa\nWptbE8jzI+dqgS3vvX16x02tGAwFzVj4kzAxNUa2gp1HfaV6gwp4ce8jbdv6WUcwb/cIleQqipHQ\nJ2MBELj/MaGusSBkxfHxmNSV/lRq78oL6DfBh5N5AKB2czc8+ve5WhmFmGIe2I7NzcmTcSma9L/5\nmLBpGNoOFO+oXz98h1FOdmYOajZlHxPH9nlVdZkxMjSkuA5JGwxcuOJ8+5kMjwrsjTRV5qzlUorx\nNGLgykPYOq4H6roKYih7L92H7wnUxBsHpgreD53n7+TUBQnQbpxC6AqqO+ytoABREDSXFCqXpM3X\nZ3Iip3w15Xci5LF41E7GNi4XUPJkjfZextk8dLjVdYFzldIanUOSBwtHY5xPE/RsVLPAGwvdqzL7\nNLINAC0IuNXlPs0bF7jWLKPWeJtiloo7FQBOftBekSghXH3+LT/GnPxB1cKY/s0WyG0vSMZvtfrl\ntSJr38oLjG2qsOisYBMqIVaclOTwijMqyRpRV7UNLZ6xEWbuHUONjShmic9vxAtVOkPEv/YUyvXy\ny+wy0pmam7AybAwNDSguNv89ozeYVUFSrtDthw0zd12kXLONQ1B1TqH87FzZUw4bCzO8/So2+F9/\noVZjl8z34+/dQGZ8a/dK2HX1ESs9/hQK1QkDV6y7NJVxJ3bxqJ2Yvn6QUvJuntZcDAFbNJWLW0jQ\nSW6Pvv4k0lIyGNu6DmvB6VzT1w9iNGBn99+I+XtU24llg76+R1p1r6/W+M5+zblRRMeomgmpsBL9\nMY6xrdsIdm4W2mSe31bGthXHla/5IQ/XmmXx/pn82A6ukA5kLl7aDj0n+bIeLxwbdG0ObSwAG5p2\nb4jz265hduflmH9yMuYcCkRbs76iGAtpHQFg8LyeonuSMQmv73/A+KbieDVhH+GpwumEHZjdZYXC\n4m6PQ8aj9uhgLPodJ2Bpbopby9klXpB0/5GuCiwM+BXKHe3bhJVMQFATQCh7/xRxKvr0rBw0nij+\nHQj7CHf01ZkzfE0gbYalkBGdUHt0MJYfvQ4AuLV8FDwnizOSSY6RHCdk+dD2qD06GMEnbtK26wvh\n6wLhHhCMW0EBKGJmgntvPmPEmmOcuyMBhSit6uSQ/mjZtR5nCnAZc8Aka8iMjugx6n9KyVKEvDSJ\n6uyIKXLT0vZuW8jFMIz1bgwAaLVgC67O8ldJjj6kVdV0fIu25pMnt2gJa+x7LH/HVpPI0+342+UK\n637IG3/qQxBMzIxVHq9PO9XKVHRXR546MrU1V0H5mwnRpr7yUnr3neDDqVsSgUCgwtbdiOtKz4Xm\nhIFLY4FL1s86wtjGtbEAAJ2GNMPhdVdo2zJSs2BuyX1BNF3sTPZoWEP0OkNDFZEJ3LH+ivbiW5RF\n3SKBiowFAkEZ+t/zw54GzKcFyuJWjzt3JCHyPvP3cRzHICSg4yqsO83tSQmBUBDRxOkBGwpVDIM+\ncmZnqOJOHNK8cx3GtqOb2FdJVYYF+0Yq7sQxwmBnz783YNFfymeZ0Rc2zz3B2OY3m/tKjQAweDrz\ncf6xTezT4ClDYfHzJ/wZMG26AIB1UdXTAWuKywfvMrb9vV2101cu8HGdgnvXXqGb+xzRvRM7QtGh\nyjRER4r9y4d5r0B/r4Wi67V/n4Cv23S8+F1t2sd1CiJef6PI7lV/LmYNERtWrx5FwbfqdMR8/qmp\nx9EJ4Z+/oe/mQ/BcvAmeizei35ZDeBCpWRdjIVHxCZh8+DxaLt+KGnNWwWvJJgzefhRnnrzWyvzy\nOPH4JfptOYy689ai/vx1GLjtCB5/+qZ4IEFlCs0JA9fY2Vsj4UcybdundzEoV4n7XLpcYFvcirEt\n/OZb9J/YjvM5PZpW4VwmW27N1b6xwiUnt11nbPMdKJvKjws6Dm6GHYvpAwf3r7qIbsP1zz+bQNAm\nh9cyFz4bMbcbY5uuOBDCXOxSnXonXNCgpRuOhc/DlsVn4T+9A7oM9kKXwV7wcZ2CC++XoUvNWTjx\njOqu6OVTE6PnihM+XHi/DD6u4iBi4VgAuHriEVp1qYMqtcvizOvFlDY63GbJunO8WsDNji1Xsu98\n/IyhO47Rtv1Ky8DAbWLPhVNjBsDVQbW0wXS0WLYFscmptG0/U9PxMzUd9yK+YOpRcYAzF78/6d8d\nk0y63zEAPIiMRr8th0TXdZwdscdP9XpQBFmIwcBAs04eOLn1Om3bk1vvODEYtJ2+NT4mUXGnAkLH\n5bvQz1NcRKigZkpSlLtbE5hZyBYnEpKekqmROdnC5wNhzyLQpBY7N4on775i2ELBl8T9XRMU9P7z\neHr7HR789wqvHkTizeMo6GnMmt4hLxFBiy51tagJO77L2VXXlzThJ3fdgv/0DvBxnYK6TSuL7p94\ntgATeq7D6/BPooX+z9gkhQt/IatmHEWrLnXUKmCYlZsLU556y6FmSzfL3Ns8UPksd0wLYiY6rdkN\nQL1F+/3IaAzaxuw+rQi3WcFoUL4MdgzhLjV3bl4+pRDbuP1ncOXVB9bjH0WxK/5GYA8xGBjwaFqF\n0WC4eSYcnYY0o23TZ358S9C1CpwR+eMX5h0Xu1gVVIOBQMXAAKyNBQCoXckR93dNQP2BKzWolf4T\n9zUB/k0XFNg6CgWVSU9nIDYzDvWL1kV6XjpeJL2ixB/0vyeotusidnBRAAAgAElEQVRoXhoedrVw\n5tsFVLJyxWw3QSrlg5+P4lzMRXiXbI2PaRF4n8Jdakx94cD6q+g2pCk2X5gIAKjVqCLmbxsqOjFY\nELAbKw8HIO6r+PupXvMquPB+GSb2WoegQwEyMt3qOAMAXj3+hJMvFsq0y+PVgkCZRbn7P2vU3iX/\nkZImc8/T1Zn1+K7r9uJNjPy6H/JwmxWMsf9rjBHNZVOEyiM2OVUtY0HIvYgvqDFnFZ7P4ybOZHfY\nYwzxEhjntf4OYSwQR9AexGBgQF4l1aT4FMY2gna4M28ULM24D+AmEAoS+4MvYk/QeV2r8ccSmxlH\nMRAy8zJlgpYDKg5Hw2KCpBxpuRm4Fndd1HYu5iL6lfsLbUsKEmBEpkVhzgvdZRPTBL1HtQIAOLrY\nAwCW7B4GAKLTg1nrBgAASjiKqwhb2VgAAMVYkDxtCDooSB/q5lFOZj42pxL6xq+0dIXGQtlitgCA\nzz+ZPQVC/g1T2mBwsFYcX2ZmzEPFEsXwPSkV8amyhpGQvHw+Tjx+iS4e1ZTSgY6LL95hiFddtA7a\nppKxwOVpB0EAMRgYkBek+aMQufYUVBrOXk+5frFcP3MkE6jUH7gSLeu64trD9zA14eHAwgFwKiH4\nIlx35BaevvuKKs4OmNC3ucw4S3NTpGZkASDuRxM7B+PV74BQgm4RniIwITQWAKB1yRYUgwGAyFgA\nAJcizlyqRmCA7pTh/LO3aFezMsMI+TRYsF7m3o2pw1iNfRb9HX9tPCBzf8eQ7mhQXn5RSbqdd7dZ\nwUqflpS2tca3REHMpke50tjr3+v/7J11WBTbG8e/C0tJI4ogpWBhF3Z7bWy9FnZ3Xrvrmih2d7eo\n2HlNMAkDFSRFQFpy2d8f+9tlh5nZnA2W+TzPfe7OOWfe8+66zJ73nDdkuo/KfWrhxduMGAzBMfFI\n/pOFmOTCWFInGyvcmjlC4n33Pn7DlBNXpX52LPLDGgw05OfRW7T6SvhKsjADayAUT9o1rIy1k7sB\nEBgBQmMBACb1aw4A2HziIeW9/r7jYGTIPrK0xSedRUB/J+0LgtYWitNu/+yzNxQ2GNKzc0htZcxl\nCzanMhbOThiEGuXtpN77fvlUDNh9Ch+ifxLa5TUa7s4ehQ03H2NOp5Yy3wMAr5dMRv0V20ntV999\nRPc6ytcxarZmt+i1rO+nXTU3xoLYVU23m/vxMUVQILJ3hZrY0IicwVCWMeqC/fWlIfU3dZYAALC1\nt6Ltk4cl+yXvTLGw6BrB3+IAADxegdz3ssaCfMbCpNX90E3OTFusMSI/Xg7K1RzILciFoR59IgJl\nYX9nqGlYwZGUnjTqdwqcbOT7fV934xGpbUl32TLNPf5CPiX8sHwaIdhXGqfHD0TbDfvxM1U5V2l5\njQUAMDE0wNwurUifwbzzNxkxGIQUFwNAXq51Evxtup1eo9QYdcH+AtMQ8ZE+n6+NnSVtnzw06cQG\n6rKULOJ/p4sClF8c0s0fAVUhy2K+edc6WLhnpBq0YRHi/XI0DnvugT5HHyl5qTgbeQFj3WT7N+CA\ng1EBE0UxD9LcmxSB/Z2h5siofiSXmo6bD8m9OD3y7A2pbYBnbZnuHX/0MqlNHmNByP05o0nv5d7H\nb2hXzU1uWfIyrGk9SqOJKfYN760y2SzywRoMNLx+RF+YRFJxNBYWFsmU9PgDRSiQciJjYmqEi583\nqEkbFiHChf6ajxsQnvkDzWwby2wsAMDRRvuQmJOEEa/Go6tDJxxrtF8lRgMLNY7WlohOTmVUpqy+\n82lZ5BTWQ5vWY0yPKSeu6sTOfDN3cmC7qvG6dQB+HUcRdvW/DVhAGNPi6nbE/kmj7Q/6HYeetw8R\n2oqOYQK302tgYWiMt72Jv6vZvHxUP7ee0TlZg4GGh5df0/bVaVZZjZqw6DI2ZS3w+xd1gcDUpAyV\nVEhOkZDly8RM9ZmnxFOgihsP4u2nb7/BjEGtMbCj5B9Q8XuEr3XRIOnqIjlVIWssqI+Pr8NRrX4F\nQtuCanMox4pnSwIAR5PypDZbo9I45Lmb9h5Z4HA4bI0NBbg9ayRpZz4mOQ3lrS1kup+q4rKs2Xn6\n7DxBapvXpfila9dFQpPj4XZ6DdY16oZOjlXgE/SY0D/4/gnE/knDg24T4GRmjZrnNsDt9BrC4vzv\ne8cwvloTzKndBj8yktH22i7SGCboU6EWLoR/ILXXOr8RXZ09GJ2LNRhokBT0XM6ZuaqKLCWbwTM7\nY9u8M5R9lw88xLB/ujE+55UD9MfHA6Z0YHw+IZ7DNhMW84t3EdOBSlro0/XponEgLxsuTNO0CjpH\ny+718Pgq2dUEAI6sv45/z0xWs0aS6TWmNS7ufUDZ9/Dya/ZUXA7+2nRA5p35YUrULxDP/sNCzaBG\nsrl2qYJ7XcfD1dwGALC43l+Evhe/fhAW/sH95sDt9BpEZ6bC0VTgsh7ar7AyuYuZNT71n4uqZ9cx\nruf6Rt0oDQYevwC+TXsyOpfOpPvJTKOvzKlJajZ2p+0L+xClRk1YtJEuQ5rR9p32va2SOU9vo5fb\nf9JftH1Mc+vFJ7XNVZz58j5SYn+NRqr3Uy5pzN85nLbv/dMv6lNERsYsoa8ovG7yETVqUvyo5+JA\nauMVKHZaU9qslLLqsIixyEu24HFVIDQWijLuCbWRWM2qLPrfpf9bM9DTZ0QvKpzNrNH3TuHc815d\nV8k8OnPCsGXOKa0M9lt5bDx6VppN2Tez+2b4RchXBp6FpbjyYPdkggtRl2bMHpfqKud33aPta9WD\nOZ/ne+dfMSaLhUVTuB5dh4ihc0X/l8bxMX+T3JJqL92K4JWS3QCbr91Nansyb5x8yhaBqq6Bprj8\nNhSr/O7jTy5bPV6cZ/ERAKRnLTr19S0WBfqrQSPgQbcJBH3OfX+PypZlGJ9HZwyG/66/Y0wWX8Lu\ngtdw+dIUGpnQp8vLz2dLnbOoF/8Tz2j7XCrbq3RuUxND1oVIAV7dC6HtGzKzC2PzbJx+nDFZuk7w\ny29ad7JToZoDwmmy+53edlul7obaQqXjG0VGQntH+tP9oogXLgOAAhniQX5naqdXgzI0XbMLKX/I\nwdgshdQuXR7P4yMkxiJs+vAQO0OfkcaoOjXq4S8BaFGuIgDAv/MYxuXrjEsSkwyuv5i2b+KqfnLL\nk+SWNLLZCrnlsegW3UfQ57/es+wio3P5zj1N27f7/nxG52JhBg6Hvs/KlvmgeBbpzOmzVdMqkNh5\nZx5t35F119Soiea43X0kdgW/QFhqIl4nxMh8393Zo0ht7TbKF3x+b3bxzW41/dQ1eCzyYY0FGdjf\nsr/UMXs/vSC1BSao1gXd1tgUK9/cQYcbe1Q2h86cMACCPOX+0b5Ky0lOYDYYaf35qbQ51ON+JDI6\nF0vxY8LKvrh66DFl3+X9DzFuGZuHuiRTsbojQgO+U/a9vBuCdn0aKj0HW7CNjH+0r8TPpWel2bgc\ntlGNGinH53c/UKWO+lNUqpMKFjaYUKMxAODt38p9p+NS6LPJNaCobmxvZa7UfABQy7Gc0jLkpeaS\nLRJjNrrVrorZnVqgrDn95oQ2uVKpGmN9LnpXqAm302swuXpzjKriiWfxEZj36jre9ZkFALjeaTQ6\n3tiL9LwcmBsYYczjs7gf+5Uk6+WvHwhMFGTaepMYg70fX6CSpS3aOLjLNQYAXvacJjrBUEX6VkDH\nDAYm0MQPJ1OGDkvxZeicrji6gTpQianvh6TvtqrdkVgUp12fhrQGw95lF5U2GB5cClTq/pJKTlau\nplUg0WFAY9w+Td7dBIDp3Tbp/O+MeNzCpEdXsKNVD5nvre1kj/dRcTKNVZVf/+nxA1Uil47ZZ2/Q\nGgu6UMNBVWxo5AU9cLA95D9sD/mP1O9uYYvhlRuizoVNAAAzAyN8G7CA5JI06H5hat2I9N9Y9/4+\nAOKCX5Yx6kLnDAZlFlc93GZJ7FfmYSttt0pVRkN+Pg+B90PRuENNxmWzMMfAaR1pDQYAWDl6Pxbv\nV/zIW5ohzLojaS9dhjSjTb2blpyplOy83Hysn3JUKRm6jCzP7ba9G2KOr7cataJnxsZBtAYDoNrN\nqQUDd2DNqUkqkS0LfhGCYquuRwWpK+fXby3X/afGDSDtlHss8iEtnFf63SfdG7RCcoC0tnLjw2dS\nm8+AruhYo2TXmpJlMb6uUTesa0Sf9nxxvb9I6ViLypVlHnkNgy9/07smKotOxjAockoQ9iESuTn0\nuwal7SyVUQmA5FR9gEDvP+nM+BA+9nuLzo5T4eU6Q2IQN4v2IOmH/NnNDxjberVCcie0/1di//Uf\nWxSSy6IdeLkqthP44XkYuldkg9ClwdGTEEQC4P7FAMZOprMyc5SWJc0g6Ow4FQdWX1FqDiE5Wbno\nXnEmOjtOxdsn5MWnOvFyrYZ+7jURMXQuIobOxbjqjeSWUc5SulvRqZfvSW36Ur4jxYmSbiwUV6Iz\nBRXL9TmqW9brpMEACB6KWRk5Mo31brgEU7tI9kU9/nql0jq17C49BWKfav+gdxXqqqHSOLL+Gjo7\nCuIl1k44JP0GFq3D0MiAti/qa7zci4nOjlMR8Yk6c4oQPX2dfQzoDB4NK9L25efz5K7psnrcQczt\nt01ZtUoENyJlC3Du7DgVU7vIX3E75NV30XNb0Wd/UQ4+XSKx//yue+jsOBVfg+QPxAx8+BE9K81G\nZ8ep6FlpNvJy8xVVk3E2NFUua9j9OeRT3HU36AtdAkCvetWVmlNT7HxAPonisr8FxY56Fzej+dXt\naOW3A43KOqt0Lp1wSaI7Nu5dtfDhW7m2M5p3rYOy5W0QH52Eu+deIeprvEzyvWczl7pQ2hE3wMwu\nE0vx5Mq3TZjV0wehgeG0Y8S/G07udug8uCnKOtogKiwej668RsRn2fxwAeXc7FjUx6ZL0yU+E4QL\n1QZtPLD00BhwucQiQXw+H3P7bUPQC3LgnZC+E9pJrPlQkpHluQ0IinFqw7Pb3sUW/Sa2x7mddyWO\nm9JZfgOnuLDl/VNMr01fGFNWjjx7g7ldWgEAqi8mB/eu7q1YutpbM0ei4+aDhDYqFyhVcfIFORX9\nbm/5KwPn8dj08JrkTW/1nRLrhMGQnJCGG1Fb0cVpGu2YL+8jpVZMpcLC2hSDpndSRj0Ssv74sJRM\nNl2eIfP3I+prPPYuv6TQPKyxULywKWuB378kZ3ALfBCqkItS5drOGLWwB6xKm2P/qsuKqqjTFLfn\n9sgF3WFla459KxR7PhRHZC3WJoka5e0QHEO9mShDeQaZcbJR3s1ZGbLyyCdDlqWM5ZbjuXInE+qw\nFAN04vzpwaXX4HA4jC+ATMyMcCZoLaMyhfhH+5aIQjosiuEf7Ysp//6tEtlOlexYY6EYcuLNKrT0\nqsu43CvfNmHrdUE1+j7j2zIuX5fwj/ZF3RZVNK2GzPQe26ZExSiJGwuKni6cnTCI1PYh+ifl2IXd\n2ig0h5Cd3uQsTg1X7lBKpqy0qUp2c9z/WL6MacEx8cjJ1x6XNBbVohMGw4fnYaLXTC2EOg1sgouf\nVHtcO2xuN7Us3JyrsCkziyNdhjTDvB3DGZV5LGAF9j5YyKhMFvUxf9cIqUG48rD95j8S42ZYyKw5\nNQmzt2pHViRZ0NPXU8vvTK0mlVQ+h7ooWnPAe99ZRCenksYNblxHqXlaVyEv2jNzctFjm3KZy1Kz\npCdPmda+KantVvAXuebpv+ukXONZijc6YTC8uhdCuPaP9oXvDcWCx0qXs4R/tC+mbVBfPmT/aF/4\nR/uCI6mkq5xsvDhdJLd8hTKMyWVRL6161IN/tK9SKVUB4MyHtfCP9oWtvRVDmrFoihuRW5VeAHYe\n3BT+0b5wq+FI6us0iLyQYCHSrk9D+Ef74tIXZgu31W5WWWWLe+HvQb2WVRmT2W1YC5HcdeemMCaX\nCeqfVTyo/+HcMYTrPB4PHTYR4w0aViD/7ShC4JLJpLaw+CR4LPLBnVD6mKOirPS7D49FPvBY5IMm\nq3dJHe9kQ/1bcJ0i1WpRdj98WaKKtdGRFlcZabHOov90HQ6fSac85qBUSpL/KN1D9v2zMMzrL/3B\n0ah9DSw7PFZG9VSL/4ln8J17Wq57bO2tsPfBQpiYGalIKxZtoXeVOcjKlJ4BzMTUCBc/625QI4uA\nhYN24s3jTzKNnePrjba9la8MzULmztmX2DzzhPSBRRg0oxO8ZzGXWEMevBsuQWJcilz3rD4xEfVa\nMWd0qApl4xnqLd+GbAo/fyFMBiffDgnD9FPXJI7xcCgLzwpOKODz8e1XEl7/iFFaP0mLfqr7T718\nT1mHQtH5pemizcXj0mIrAODBrOxjcPRtkffnAgxNhxHG8PmZyElbD2PL5ZpRkojSO9I6bzAAQGen\nafCPki01nrrZu+ISbp95ifMhknPls7BI4tS6Kzi87DypXZ+rj/lHJ6JFL08NaFX8OLriAk5v8MMk\nn6HoOpr151eWKc2WIP5HIs5Gs4GRLNRk54fj488+yC/4TerjcLioXOYQLIxbaEAz+RfUyhAcE8+o\ni4+s+ilzUqDH4SB45XQ8/hKO8UeJyRJ032Bwhh7XDWZlH0gco29QE6Zl6IuyqhGlDQadcElSJZ0l\nZF5iAlNzE9ZYYFGKjibelMYCAPDyeVg1iM23Lysn1l4GL58H3ylsHRNlub7vPr68CUdqUjo6lRqq\naXVYtIzs/HAERLoiKLYNpbEAAHx+Pj7/8kZApCuS/9yUKtP16DrSf6rAxtSEcZk1yttpZIGszJzB\nKwUVrltWrsCUOlpAAdJ/1kX6T+kJJjicUkrPxudnIONXa2QmdAb49J4Dedn+SIutgD9J6nOXL0qJ\nMRg2zjgOb8+lhLa+1edhr1jKuT3LL8Gr4kwc+tcPAER90oyGXzHJ8CpSMXVW760Y3XJV4Vwe8/Dm\nyWf8XUtQ5nvJsD3o4jwdxzf7E+SParESW8XckYre93ftBRjSYAkKeAX4u7agLTM9C0MaLMHORcRF\nYw/32TjhU/iQ/R4aA68KM7Fx+nHaz4CleNHRRHrw5ajVA9SgCQsLkXNbCnfVtPQkm0VDZOQEIihW\nvgxDXxPHIyDSVeKYsdU9RZWerY1MlE6xamtmStn+3/zxSsmVROiqGZj3/7oPit4vrxEg7/j+DWtp\n9e6/omQmdEVarCv4BUngFyQhLdYZWcnEf2vxeAVeXhBlDIMsYwCAX5CA9DgPFOR/By8vBGlxlfAn\niZilS3hf1u9xAHjIz3mqsXiJEueSJHxN5aa0bMReLDs0lvZeaVDJntV7KzZdnEYr5/mtIDTpWBMA\nMN1rM7b4zZSop/Da78gTWJU2R4tuhVka7l8MRNveDQAAaycexvydw3H92H/o6t0cG6cfx6zNgwkZ\nVqj0ZCk+HFx8Fmc2+omub2Ud06A2uoG4AVZSPs/VQ7bj8YWXaN6zIRafYq7OQHZmDnrYCoL1By/o\nhaGLezMmu6QSlLgKkekX0cDOB3alWiGXl4J7UV1Q2Xoc3CyH4dXPKdDjGCI1JwTtnG+Cx8/GzYhm\naFH+JCwMq5CuX8SNRTYvAXXKrISVUQ21vIcPsa2Qk/9D4fs5HC4aOFEHA+8OeQkrQ2M0s3dFi4u7\nlTYYAO1wlbn4OgRX3oXiU1wCsvPy4WRjidpO9hjdsiEq2FozPt+O+y9wNuADEjMyYWdhjgau5bGw\nWxtYmshfp6E4kRbrDAuHSFKbidV6GJQaQGqX5m4kbQzdfOJtabHOMLHZDQPjLoQ2A5MuMLHeLfN7\nAwMuSTpRuE1RhLv2Zz6sAQAsPTAGXV1noGFbDyw7OEbSrTLLlod2fWUPRrQtV5jhYNGQXfj05gcq\n13EWGQyte9QHANiUFRSHeXLtHWZvGcKInizagbixUKNpZQ1qojuUFCNBnMcXXqpErrGpUYn8PFVJ\nFetJqGm7SHQdED8VnV2fia7j/zyCV8UPousPCSvRtcJrhKcKDISi1wlZL+BV8QP8vtci3KdKlDEW\nAIGb0p/cEJQyrE7qG1+9keg1E8ZCz23k7++dWaOUlvsn/xfOhRdWVR5WqfDfMCn7E65FjSS09a5f\nHb3rk9+vqpjUtjEmtW2stvm0gdyM/bR9WSn/kAwGpefLPCzzWHFjAQD0uFWQl30bzDvGSabEGAxf\ng6KRl5uPMg6ChXajv2pg4oo+SP2dIRoT+yMRV79uQrcKxN0DPp8vMeXprF5bsOnSdILsBq2roUnH\nmkiISZZZx52LzqNpx1q4deYFug1tLvN9rx99gn/UVpJblDhXvm5EZ6dpuPJ1I+6cfYmu3s0JnwEv\nv0Dm+Vi0j033FmtaBRYWFhVjqG+NbymHYW7ojrKlmqOW7VKJ492shgMAKlgOorxWNyE/OzMkpysa\nOkcwIksSX+ITSW3lrS2UlnsuvCfBIBCntHFV2j5FORLWlHGZ2jQfE+Skbwb1JjwHNE4vDMwHhdyL\nOBxDgK/+gnklwiWJRXZcD60XvY4Y8Q+pTZzatva44iV7ASM6OeJz0d1jrM/Fp6Fkg4hKX7oxdP3F\nlZLoPsPCPMLvEdMuSSyq42nsUDRzOCo6GfiZeR/lTNuSTgqE1zm8RBjp29Jeq+uEQVoMgjyow2Ao\n6o40p1NLjGheX2m56lxQ8/h5OP61lc7OxxQZ8c1RwIukdBECQNmujEtSRnxjFPBiSXKpZBQdk5nQ\nFby8IKn3FoHNksSiOu5Ehklc5L9PjJPYL8Tr6lGp41wPraccY29qDgDI5km3pje9eUJq2/LuqdT7\nWFhKKld33dG0CiwK0MxBUAlYuMgvZ9qWcC1EeG2kbyvxWl3uSEySXyBf/Qh5qb2UvAnJhLEgC0fC\nyMUTj4Q1xZGwpojMeITw9Dv4nRNG6MstyACPn4sz37sS7tPnKFbJXThfcs5XhKcTnxNXI72RW5CB\nkOSTJF3p5ssvyMKRsKbgowDRmU8p36MmKVX6iFrnM7Heodb5mKDEuCSxyM+Ye4LsSYOq1Maaph1F\n7T/SU9Dq/F7R9eSHV7G9dXdaOUFJP0WvVzRuj6HV6omuw9OS0ebCPtH115QkuFuVFl3/26wTht0+\nRyk3v4DoRrXt/XPMqkfM1731re4YDBkpmXh+7Q2u7b2HTwHfCH2SsiXJcvoQ9jYck5suoexTZud5\njfcOPDr/grJv+LK+GDi3h0Jyr+29h23TDlP2NeveAPOOTIShseQfypltVyLk+RfafnlObYSff8OO\ntbHq8mxRu++UQ7i+n1joyMyyFM5E7QTXQF9m+QAwv9s6vLkXTNl3IW43zKyoM7pQERESjYXd1yMx\nttBl8r/LAUp9jyTdK+93SCir6JxUc7To5YlFJ+WvMjyt5TLS35Ek2FM85UjMvMCovJiUjXCxWSV9\noILk8Xgqk60oknbtDfXMAAB/V2Qu579wPmsjd0J7d2fB30J160EITNwuk6wT39phoNstcKAHR9Nm\nsDLUrlSselw3AEB+9k1wjTv9//VtAIB5uRCF5fLygijb9Q0Fxmd22moYWyxUWL46YQ0GFokMqlIH\na5p2ILS5mFvhWMf+8L51FgBwLfwTrcEgzWWogoU1Ikb8IxrX/tIBwrhW5ekfKjMeCx6MpzoNwMCb\n1JWxhb5tHV0q0copDsiSPlURFvbYgMDbkncXhQvJfw6MR7tBzWSSS1dITpzDy86Lxsi6GLt15BE2\nj6cPTgOAp1cD4WU9El3HtMVU3xEyyWWKgFvvAQC3jz3BprF7KcdkpP5BV4vhAGR737L82/exHy+T\nPFV9j1TFh8cfUatlNXhZj0Rudh7lmCeXXqGjiTf8kg9KNRIB4P7pZ1g3YhfTqrJIISXrLsPy7sEF\nqjEYai4hZzQ8O0EzcR+yUNtmJI6ENYWxvhX+rnhD5fMd/9oKPD7136MkTn3rKH2QBjEw6YE/v4mZ\nMvUNG4GjZ66gvG7Iy7pGiFMQdyMyt/+E9LiqyM3YQ7hPTlcjtcEaDBomtyAPhnqKHRmqGhOuAclY\nENLCwVXq/ateFVZAvNlT8sJN3AD55z9/rG8uPTjOL/wjAKCJvfSgoT1te0kdUxKhMhasy1oiP4+H\n9OQMQvv6UbvRuGtdmFpKLlZDtSjl6HFg52yLnxEJpL55RybKpKu8i11pxsLsfWPx4OxzhD7/gsA7\n1LtAivD+USjJWCjnWobyvXc08Za4yKe6BwDsXGwR/4MckClNnipZeGIKQp59RsizMIS9DWdE5uLe\nm5CTlQt+QWFYG9eQCwNDLrIysgljvaxHYsnpaWjWowGtvM5mw1DAKzyZnLN/HNoPFiSYuHfyKdaP\nIqYptHWwxth1g9Cqb8nKGKMKMnPeMSovlxfHqDwh9VdsB6/I6bWBvj5qlLdTyXxMUKf0aNQpLUhh\nrOr4iIsRfTHE/SGELvHyuBYNcX8IfY6hahRjABPrbTCxlq3QqSyLehPrnTCxpq9yz+GUkiqHql9T\nlaNZg0HDzPnwL7bW0c4MN0GDJddlsDA0QloufWXC/SEBotdVrctIlCVugJwNC6I0GLLy82DC1U7j\nStVQLQKZCHqu1aIqPjz5hD2Ba+Fa3ZFyjPg8vcuNk2uuM5E7YFWGOqvI+0eh+KfTWrTp30SqnP5O\nRKPC0NgAfskHKcfePfEfNozeQ9knjoObHQbP70loY2IH/p9OawHQu+EUnYOXz4M+l9o9qZyr4O+m\nrLMtjn0m54MHgFc332Nxr42i6wu+/ugzldrgluTio2zQc8venmjZ25NWviJkZxY+X07/2A7r/6eJ\npptjxYCtEr+f4sZC0XHtBjVDu0HNCPJOfGOTaTAFH+rP6iIvQ/adQVYueef8/XI2GYAQQz0LZOX/\nhgm3NFJyv8t8XzWrfjj+tXWxC4ZmKYQ1GBSAx+dh0+cDeJMSgtqWVTG/2gTKcXzwMf3dKvzKTkR3\nh/YY6OxFGhP9R/ouyeOEV9jx9Tia2tbDtErDJY5dFLwJsVm/MLJCPzS3pd9pkwWunuSY+IqWNniX\noJpdHiqG3zmPM50FZdEj0qjT1b75FYt6ZR0AAHP+81ebbhMRyLEAACAASURBVMWVDbel+07eyjqm\n0MKvz9TOtMYCANRu5SGT8XF1912kJqaLrlddno2GHWvTjm8/uLlo11hTSHpfRT/PLubDpY6XhGen\n2jAxMxbtuO+de5LWYCiuyPN50vHyxlvR69VX5tCOW39zvsjo0+SJja5hbOCGPB71iZkicPWspA+i\ngKoQmyQGNaJ/1jCN+G698LUsC+w3ibsQknIaplw7yvGD3e7hXHh3GOqZo4fLCaV07OZ8EDejJyEl\n9xsGVLwJR1Pyhs9gt3s4/rU1zA3Ki+bzLDMDnmVm4Hx4L+Tzs1DfdjIqWXRTShcW9cIaDHJy/Mdl\nXIoRBMK4m7kgMDkIfZ5NxIWmxGOnUQHzkJKXBgDggIPz0f5oaFML7mYuAIA+zwp3TMVfAyDIEva5\nm7ngccIrPE54RZqrz7OJON90B/o+myRq8/lyUGmDgUlkyaZEh7tVaXxNScLLn1GitvH3LwMAhv8/\ngLqraxVcj/iMyQ+v4ll/gT/3uTCBm4mLuWI/LCzKEfYughE5O2YUZq/g6HEkGgvFhaVnp2N5/y2M\nyTv1fRt6llWu2KS2UsqCmfJEx1ZdEr1u0KEW7bjarTwYmY+FiJVxG6RnUydAUASbUqpfbFqXMsEi\nr7aMy6UzAiQZB5L66tlOQD1b6o1LAODqmaBfhauyKyhlvk6OhRl+2jlsopxP4LZEpm+FS5TtLNoP\nazDIyRCXnhjiQnRj6PNsIia8Xoxd9VcCAJaH+CIlL420sBdH2EdlbAhZGrIFJvrGON5os6ht8MsZ\nlPf0fTZJ4nzFmWvdh6Hq0c2Etk/Jgp2qZY3bAwB2tOmB64fWIzYzjfJ+FvXz4fFHzGy7EpvvM+dy\ndzPzKGOyVEXzntIrtjf1YjY9o4m5MaPytIlL8dTB4+JUb1JZYsYrAPjxMZoplbSSnPx81FpL9L/+\nvHgGaVyVlT5Sx6iCchbjEJWyljF5qsyQBAC96lXH6t7UMXxUdLYv3LDzjyt+KTOLG32rzEZmWhZl\nnyyf//GN13Fi0w1wDbjwiyQHudMh/u8s75zFHdZgYIhfOUmi1x9SPzEiMzj1C8FYAIB9DdbA++Us\n0tgq5hUZmVNVKFM0zVhfua+puaGRUvezKE7I8y9yZ1gq7kzYOETTKpQ4rO3IsQ1FafBXLTzze60G\nbTRDrbXb0LV6FWzu3YV2zM4nLwGoz0gojng4lMX5iYM1rQaLBEY3W05rLMjKiU2CbFL5edofW6Mt\nsAaDnPD4PPR/Lj3ndwPrmozMZ6JP3DkspU99PO9h4U7ZrmuEpSRJHRMQH40KFtZq0EZ38D/4AFsm\nUQcRy8utrGPwP/QQWyYeELWtH7VblIGm/8yuGLV6ACNzaSO25W1UIrd3uXHITP2jEtklgaVnp4ti\nHSTFJojHQ3QY2lItujGFJGMBAHwfPkPrSprLf29u5In0nFcamx8AQlexxpIidLafBM/2NbD8GL3r\nkzrgF/AR8/0XAKB8xbLY/3SpQnI4ehxC9jVZKXqSQHfioIuwBoOc9H8+BdaGltjfoPBotWgMAgB8\nyWAmrSCLAAM9feQV8LAn+CV+pFFX+OzjXgMXvgZj8fM7aCmhfgNLIR9ffcX0VssZl9t5RGt0HtGa\nMhj17ObrOLv5OjbfX4zqTSozPreuUdxqJxQXBlaYglPhRBeeom5Ns/ZoPi5E3IWoUpnSuDZ+KKF/\n9a2HOBH4njRW/BThwPPXOPbqLfgAHoaF044rKkOPw8HHRdNJ/fYW5ng4bTRhrGtpa9yaOFzie6lq\ndxYBka4Sx8hCA2fZC+6x6BYbphTGtClqLADAjRjZCs6xFFKsDAb/aO1IcSduLNCRlpchdYw09Dn6\n2PntOCa6Fbo47PhafDJ2mBoYIjMvFwBw5OMbDBOr8CwvK5v8hXlPb+JCWLCoGJuHTVnCmPXNO+PC\n12B8Sk5AOE0WJZZClvXzwfNrbwhtBkZcLD8/E/XbE0/IFF20Cndxu1qOQH4u8eh3ZtuV6DW5E8Zv\nYI//6aD63LuOaYt+07vCvmJZqWNZiBwP24IhlQQL4N8/UyR+Zld/H6DtUxdVVvpAX08Pr/+ZhNeR\nMRh18iKqrPQhLPIjk1PQws0FD8PCaU8PXv2IQhU7W8SlpaO0aSnUdKCuKVBlpQ/0ORyELpqOhIxM\nNPfZS5oPAOLS0lFlpQ+GetbFUM+6WHHzPrb1I2cBVAWWxi3BgXxV0lmU44nfG+mD1MSL28zVzGGR\nD8l5M1koGfSycMdlwAtyrQLxgObIP7EAgPPR/pQnEQDQ//lk0esf/x8PAGebbMO9+GeY+2EdACDw\ndxDu/3qOQw0VzzikTkKGFH5OS18oV+VzQGVBVhPxA8QbPYYTxuhzOKLXOTzB4rSPew2l5tVlxI2F\nTfcW41bWMVxLOUQyFpjgeuoh3Mo6RnIDubT9Jga4TKa5q2RTdDEr/Pym+o4gGQssslHGsTRuZR0D\nR49DO8atlgtuZR2DkYlmC0zVXSfYAQ1dOA0mBlw0d3MRLdzzeDzRuD0DemLPgJ6E18JrqjE1Hewo\nx7Xx3Y/a5csh9P8nCmXMTEXzXQ36SNLv8+IZWNixNZysLbFvYC8Yc2Xbf2zoHAF9BSvnWhq3QuWy\n2p/4QNdYM1bzxrOQogUbWdRHsTph0AaONdoE75ezRIv/Po6dYM41xeGIC4RxF5ruxKQ3SzHjXWEm\nh8al65LkXWi6E32eTSQYE+LZjs422Y7+zyeL+k813qq1laGpuNzNGz2vCRaJrofWw7eVF7pXrEY5\ndsSd83gQ/V2pAOmirKapVF3Subjtpui1sakRajRVn2vQraxjGFRxKpLiBKdAyb9S1TZ3ceXCT+mF\n6FhkY8WArSLfZW2usfCHooCYkIlnr2LfQGar18empuP6eOqMcpvu/4fuNamf24pQzzEIr6OqoIBP\nX/izKHUd3ylce0FTdHWcQigW6D2nKwbNlBxnIs7BVZdxbscdQlutppWw7sJ0mjvI9HKbgew/uWTd\nhrXA5H8lx5IF3AvB8uGF1c9f3Q3WSJagiE+x8Dv4CM/83xPa5dVFkxmOhHPfiNkOjh4HXs5TkZ8n\nMPzPflwPcytTAMDy4Xvw4tYHAMCiA2PQrEsdlesmK6zBICel9E0o05d6ObQjte2oJ5tvuKR0qPoc\nPanpUrU5nWqdMvZY1eQvLHoueOhNfeSHqY/81Da/shmWdJXDS8+JXmuimu3J774KudAcXXkRQxf3\nVoFG2o2ZZSmJ/f8O36WQXD19PdGCJjeHfoGqK/R1mID0ZIG7qDYbC0LsLcg78eUszPAqQjUpYv/a\nTk58YGtaCvlii16mqO/0GQCQk/8DoT97Ib/gN2lMadNeqFhavkJr2sCJTTdwfON1UvuxDddxbMN1\nqQvUO2deYPN06u/nh2dh6Gw/CXVaVMHas/QVqKUF414/8gTXjzyh1EWbAnm1SRcmmNl9E37+SBQZ\nCwDQv9o/8I/bQXqvq0btQ80mlbD+ouwGoiphV1MsKmdI1boYUrWuTMXb5jdoLZPMLq5VKNvLmJgi\nIStTHvVKJKUsTJCTJdh1+h2bLHFB+kfJ9HXKYmhsgNxswWL2xJpLJdJgkMaDM9KrwVLh4lEe4UGC\ngogBN99LGV38ERoLxYW4tHRS28+0DLR0d1XJfOdGDYKDpWLuQopixHVBXUft8ZFnAqGxIL4Yf3gp\nEOsmHgIgWATTGQ1hHyIJxsKZkHWwsDEDIMgQ1KW8wIXz3ZPPMulSpZ4rtlwnVjY/us4Pp7bchIkp\ndcpxukxAmsiSJCkrkbwnA+LjNWWIfHodLtKFz+eji4Pg3/Pg6isAgOvR26CnryfSL+h5mEb0pII1\nGFgIyOMOdLmbfDvEyroayXJ/wADd2o1QFSsuzsKUZksAAGPqzaPdbb15+BF8JuyXWW5HE29cTToA\no1KS/b9XD5E9Q4Vf8kHCaURHE2/4JR+EoXHxcc1Tll2zj2HCRuq/t66WIxSWu+7GfPR3Erg78vny\npxgsznQ08ca2pyvgXtsFevraF843o00z+Dx4StnHtDsSAMxp3wJtfPezNRoYouhitnWvBqjZxB1D\n6i4EIDht8J7TlXTf1I6CmMX5e0ahZXdiohCOHgf+cTvQxWEy+Hw+reExqNY80euixgIADJ3rhaFz\n1ROkzkJG+G/GEYu7PLf9Ni5/9xE9i3xvzsXUTus0oh8d2veUZGGc+Kw0eFxepmk1WLSIyvWI2VSK\nugfl/MlFzzJjRMZCGcfSMsvuXnoUOpp4o3vpUbi29x6yMwv9lK/uuoOOJt54fOGlqM17kfQTg6IG\njZf1SHQ08ca/w3fh7on/cHXXHawfuRsdTbxF/8lDYsxvBNwi7rC/uReM3z+pU/iqA3GD6PKO2/Db\nQ0wc4DNhPzqaeCM/Nx/6XMWyxljaEneTO5p448rO26LrqM+xCgWm/wiNwcNzL0TXv6KS8DlQ86kw\ntz9bQbie0mwJOpsNI3xvxP+7tP2WhjQFxjf3BAB4rNqCrLw8vIiIIlVpZpLRTRoAEGRKeh0Vg2+J\nv3Hg+WuVzqmrHH61grK9dLnCGIyTm2+Q+v+kFwb0FjUWxLkevY22DwD09NksUsUR8UQLlWo7a1AT\natgThhKAnYkF2pSjduFhKblsuL0QczqsFl3TLbKFi3V5F+E5f3KxbdphbJt2mHbMmcgdsCpjIZO8\nW1nHSDo8OPNMIXccWd7L/G7Uuzvq8n33Sz6I7qVHIef/AYvbpx/B9ulHSOM4ehzcSD+Mwe7TkBhD\n9gOXxsY7CzH7r8Lvwc5Zx7BzluzvMepzLEbXmStxzJfX3zG1xTLKPnXGEliXlV4RWpzdc45j95zj\nGot3+Lx4Bl79iEbrrfvhZlsaHxdNhx6HOsOTLCcD0sZ8XjwDeTweuu89jtiUNDSt6Ey6hz2BkI6d\nE/0GS7t+jXDv3EvKvj6VZ8kkXzzL1+LBO7HyBDED4/G3q0UuLV3KT2ZrDrAwAmswlBB2NB6oaRVY\ntIxaLapSLsLFkXehdCvrGMbWn4cfoTESx5lZllIo88+trGOIC/+F4R6Sf1hrt/KQW7Y2cjXpAMbU\nm4fIj9Sf58Y7C1GzeVUAwIZbCzCixmy556jZXPr3QBeY1+VfvH0QIrpu1qMB2g1sRlh85Wbn4fWd\nD7h97Anh3scXXqJln0Zq01UcTxdHvJytPr9xA319+E+gzpbEojzdhrWgNRjEkdXHPuTlV4n9/AJ+\nYYae2O0ENxgWFnlgDQY54PEL0MJ/I8wNjLCufm/UsXFSWNaIp0cQkhyLBbU6o6czOW0Wj1+AgY/2\nIzUvS+pcOz89wp4vj9HXpR4W1yb7REpD1rn2fnmCHZ8eSpznYNhTbPl4HxXNbHG61WgY6xP9zOV5\nXyySYWrXU1Y5so7b+/pfZdSRin2Fskq/d6Z3jBWRJ+s9+97I9nk6uNkp9b4UvdepioPGP8/Fp+iz\nxQCC6uJCY4FroI/raYdpx7bu1xiz9o6Fz4T9uHn4EQBBzI2mDAZNsCK4O5bUuKoy2eLIM8/KkJ7g\n8wvkvk+bqOBRnlF5WZnUqWn943ZgptdGfAwMF7UJA2zPf94IUwsTRvVg0X1Yg0FGhDEAoT2XgQ8+\n6vutQTYvD6E9lxHGnGg5CnX/vwiu67cKZlxjPOk8myQnpOdS8PlAjSvLseDNZZIcALj111Q4mlrT\nziVkdb0eeNrlH/S6T0yt+Cs7Ha8SwvH6dyTOhAcS7ldkrq2ef+N998Wo67cKp8IDCGO63duB7+kJ\nKGNsjqed5+BlYjh63N+FW39NlWsuZQmKchS9rukUTeor2iZ+j5lxc1Qoc5oxXegIinJU21wsJRvf\na0/hWdkJjSvL7w/bfP5O/LeWutikItSeXugL/36Let1aDiws/FuTZCyIM2PXaJHBwMIsii72F1e/\nDIBsdBQnZM0t4HNN/tPComz2E8hIT8lE/2qFSUP6VhG0q6P+AIvuwAY9y4FwYcsBB2+8BJkOYv4U\nBkU2tHXF4MeCiohvkiKRw8snGAvicjjgQI/DoV0sh/ZcBidTG9q5hPi3n4JeznVhxjXCnQ7EXL1l\njc3RzakWltbuJvV9SZvrtdcC/OUgKNzz1msRScb39AT0damHR51mwdzAGO3tqxGMBXnflzLUdIqm\nNAz09ah95anGsqiGD7EtERDpioBIV4X6tRVt1ffA3VfYcUOxlKvpWbIX1ZKF91tmqN1QYGHRNr5+\niJRpXNX6FWT+TxrmVqbwj9sB/7gdhMBaXatxwKJaisUJQ3x2DA5HbEBCThyhfWPtM2qZf9KLUyTX\nGiGDHx/Aw04Cf+ojzYfD694OeF5bi4z8HLz2WiDzHAMf78eplqNlnkuIi5ns2WuKIs9cJvqS02QC\nwIq69Ls+8r4vReAVpMLMuDltv0f5UKXnYFGOWg6PAdAvsGs5PNbaxTcg0Luhc4Sm1ZAZZRbomlzc\nd/BcgduvlsjcrgpCX2g2/7m4W5DvlzFIyY0XXa8I7o6/yo1EE9ueOB6xBN8z3onuq2PdHt3LTyXI\n6eIwHjdiCyv2zvc4CwM9Y8IYyfCxIrgHoaXoKcGK4O5oYtsLzxMvkcYUlS+8FpdB5QalStcoTeEz\n8zhtH9dAn1DQSxVc/u5DyP+/dvxBzN89UqVzsugGxcJg2PB5Jsy5VqhkVkMj879ICEc2L48yNemv\nbGJhHb92k+BxeRk8rOxlWmQLCU2Jk3suZdGluUJjBKcfBQVZotce5T8CADKyH+FX2nZk5jyX6zRB\n3L3JwqQT0rJuAhCcSAjcipohI/spqU9wrxOAwrNnW/PRsLdaRjuPuF5Rv6chJfOC6Fq8TzA2EkFR\nzpT9LKqDV6CZgoB0rjy1p/vg5tLR2Hf7JS48D6LsB4Cu9atijXdngsyXXyIxducFQpvw3iuvQrDk\n5G2SPKHMaV7NsdXvPwCAqbEhnv0r2KVM/ZONlgsK3SL19Dh4u1k7KpQqwow2hakxl57V7PtIyY0n\ntTWx7YlvGW/xPeOdaFFdwOdhVUgvNLTpCnsTN9HYG7G7CYv3taH9Rdd3fx4GULh4/5r+Gid/LCfM\ntSK4B2Hhvv3LeJyMWIZBrssI4z6lPadc4EszDHSN4JdfUaORO2VfbHgC7X1HA1dhUO35qlJLhHjg\n89Prb2W+LyP1jyrUYSkmFAuDQZ/DxVi3hbA31kxe2lo25RGY+ANBPaTvbHlcXoa/KzTAmfBAnI14\njf6u9WWao4aVg9xzKYsuzSU0DsITBpBiA8yMW8HMuBXBAJCVmk7RyOPF4VNsQ5GhIMS1zAlwwBUt\n+L/GdxK7L4ogJyjKkWAw6HHMkJcfjU9xjQkL/uy8EKRkXhC1ZeUGkwyKH4mj1G4kpGY/wpdfw9DQ\nOQJJmVfwPWmaaKddfNc9INIVNqW6w8qkDb4nzUBp0x6oWHqryvUT1+F1VDU4Ws2Gnfkokm5cPWu4\n2KzEt8TJ4HAM0MApjCCDw+GCq2cNW9P+iEvbIbo3Jz9CNE78tRHXVfQ69GcPWBg3BVfPClEpa9HA\n6Ss4HMUfsQV8PurO2EIyAsSvOy3fj/dbZmDJ3+1J97/fMoNgbIgzducFkZyiMnt4VkcPz+q09/7d\nvDZGtmsIAKgzo3CMZSljgpzm83fK8jYJ/E7KoHwNAAk/U+WWJ8Szcx288hfswnc08YZH40rweUB+\nFj2++AqrBxNz3Nu52KKpl2zPcaa5GbcXnezHAgDMuNYI/O2PBjaFxt+JiKUoa+wiutbj6KOMkRP2\nfZtBWJSLv+7hOB1XoreIrp8lXiT0u5sT36tfDDnn/+TKuylPJaZU3ivP29NZ5vT0oYwPmNOr8O/l\nTAg5bbN12UK3WUnVoIVkZebQVmuWlSGzJbssixMa8F2puViKN8XCYODx87HpM7laobpcknY1HoR6\nfquljlsT5A8AWFq7G1xMS2PZOz+ZDYbldb3kmosJmJ4ri5dLe6qizvfFNAb69pTtnCJ/Pvp6VoTr\nrNwgxCT/g9z8H6R7jQ2qkIwFAPiRKFgcSDJuXGwPyaQ3k1gatxK9Dk+aBX09c+TxEmCgX0bU/ja6\nNjjgws3WFwBQ2rQXAiJd1WIwCCng/0F9p1AERFaAnfkoUXse7xc40EddR8Fumo1zN0rXp+rlrsPE\nQFCzxNGq8JkjbhiIvxYnJz8KjlaCegRRKWsR8rMTatjfpRwrC0M2n4KRAfE7ZlCkIFOV8mWgbkyN\nCv/Gu9SrSjuuY135a7+cPfoUF08JUk4O6LyZ1D9hZke5ZQLAyouz0NlsGAp4ggw7oS/CZE4je/ST\nZgqXtbXzxv34Y3AuVR0AB17lp+DUj5UEgwEAKpt7Eq6rWDRCQgJxw0IcPTlDF4NTBSlmi3OgsSbo\nbD+JkMb08dU3CH5RmALVwsaM8r4T79ZgcJ0FIhkVPMpj571C9+aknylYNHAHIj7FAqAOXBbGJkxc\n0x9eI1oR+n7F/MawBotF1wOmSf+b6jG6Na7sfwgA6OY0BdeiiEZkZloWm3WpBFAsDAZAfcYBFULf\ne4/Ly3C4+XBUsyyH5wnfMf3VWULQ8vFvL0XXw92bICg5Bh6Xl5ECmz0uL0NQjyXQ43BQ/bLg6Nfd\nvCxprglVWmG4exPKuWThVWIEwtJ+ISztFwBg68f7qGPtiFo2jrA2LMXoXC5mpVHfbw3sjC1wtd1E\nfE9PxKDHBxDScynj76s4EBTliGoOb+Fu5y+6FudX2lZYmnShyNxUAA7HCDUcNV8Vlw4+8lG93A18\niG2N+k4hMOYKgu7yCwQ7wJqMQXgf00xkFIgT8rMrPMpJd4MQGguKUMuBmFEnK09yfnRpJKX/QTkr\nYiVmexvitXs5xWOYpu67An19PTCVlr31ot1IzsjCs38nwdTYEFk5uXLLGD+jI8bP6KiSWAX/jCMo\n4BWgi/lw8KWkqqnWyB1bHi5ldH55aV6mH+7HH8P5qHWYUfUwzLk2APhIzfuFno6FLlKf0l6grZ03\n4ZpJKps3REjqE513I2KK5ccmwLN9DXS2nySKEyiKpJMDGztL+MftEC36w0NjFA5O3rngLHYuOEvb\nL2uWpPEr+4kMBl5+AaU+2p5xSdJnKOv7YUJGcaZYGAx9HMdg9vu/UcG0KrhiR/zj3BZLuItZQnsu\nw8I3VzD8v8OitormtqLXHpeXkU4TNjXsC/+YYMx9fRHr6vcWtb/xWoiaVwr9Y4sumIVz7fr8CLs+\nPyLNJSviugLAns+CgFNvt8aYX7MTo3P5t5+C27GhmP7qLBpdF+SNLxrkzNRcxQWuPv3ur5lxczjb\n7sXHmNr4nXEcNmZDAADOpXfja7z8tTTUjRHXCQX8TPDBg2vpwqN1F+sVMOCW04hOfH4+8guSC68h\nHjyoB/GYElWgr2cufZAcrBvWBcO2EjdKIhOYyShW2cEWW0f3YMxYAIDkjCyCS9LdD1+xhjnxjKCn\nr4ebf45qWg25ERgLAh7/Oguv8oKFaHXLFghJJRaZS8yJRiXzBjLLNtE3x4FvszHKbSNlfx+nOaQ5\nVAUffHAg+FJej90lZbR24tleEGvpH7cDXs5TCUHMw+Z1l2lHX3h/VNhPjG25ktRXtrwNNvnNgq29\nFcWdgnsXD9qBwAfUiT7m7xmFlt3ryaSHuMzL+x5gz5LzpL6ipxgsukmxMBguRO8DAIRnftKoHqvr\n9cDqej0o+ySlRy2Ksb6B1F11SXNJmk/eMYrORdXWwcFD6felS/xK2wxr0wH4FOtJO6Za+fcIinKE\nhUkHcPXLwsSwNgDgy8/WsLdajqT0veDx/8Ct7CVaGeqijNkAZOV9hplR4WIkPm0/ylmME12nZj9C\npTIHNKJbXHphFhgTA3fEp+2HrWkfAICT1XxEJq9AVTv63TZto04FQVzTvxcfYIZXC7RYwNwC6kts\nIjJzcmBmrJz/c1G6rDyIG4tHYuZBP5Q2L6WwHHVlQiqOvE2+LTIYhIv5FcHdUcuqLT6k3AcADHSR\n/fObU+0EVgR3x6qQXnAu5YGIzCDSmKa2vbEiuDv0OPow41ojLS8RjUp7oaP9GGbeFATZnVYG94C7\neX18y3grMhzEychPRuQfwSI4OOURyhi7wM7YlTEdlIFqN9kv0lcpmU6Vyim8S73yJPMpU3uOaYOe\nY9owLlceFP08mNjtV0YG3b2SZGrbCQVH2tGshtBKpZiAykWJhaW48Da6rsjl53VUdfD52WjgXOg+\nJQgstkJZc28kZl5Ebn4MKQ1pLi8O72OaoKFzOECxKBC6NMmbvjQw0g2GXHvUcvgPfPDwOrIyhW6W\ncLFZg2+JkwBw/q9DYb+0OQMiXeFgOQVGXFekZN2Du+1OynsVfQ/qYPfNF9h35yVOzhwEAFh74QHe\nfo9haySwsLCw6C5KnycXixMGFhYW7UDc5aeirQ++Jowl9Dd0jkB40hzEpe2CtUkXuDk8FfVFJq9A\nfPpB0XVAZAXRPYJrV4IseRfdfPDg9v8FPAf6RVySBHIik1fge9I0VCl7AhbGzWSSW1TG2+ja0NMz\nhYPFFLnv1wZ23XxOMA4OT+1PmxFJU/yMTcHQntS7s+zpA4s62fB5A+ZUISddoWJEwAjR60MNqZNT\nTHozCTvqadfOMQuLLLAnDCwsLCxqJOdPLgZWmIRm3Rtg1r5x6Gg8GLeyTxDG9LYbI+pnmlHbzyHw\nazQcbCwQ+zsNAHBlwXC4lrVmfC5F6eC5AhfuzoE5m3mFRcPIYzAIGREwgjUYWLQN3T1hmP3+b6lj\nNJk5iYWFhUURlvbdhIvx+0TXbQY0BQCc23wN/WZ2IxgQqwf7YuGJqZRyFOXA5H6MylMVrLHAoouw\nxoLmqLzGB18WzKC9puPgy9e48+UbXkfFkMZvevAfAqNjKfs0jazvT1a01mAAWIOART7Ss18gJnUz\nsvN/oICfCUN9e5QyrAl7i3FKpctkkuQ/NxGXtgu5vGjwCrLA1beCpXFr2JTqDAvjFiqfv84UH7zc\nPAWdlx7AgJZ1MLZTIwDA959J6L36KGq6lkNQxE+8vV8LJQAAIABJREFU26ZdDz5Z4BVkIC3nGdKz\nnyEzNxh5vJ/IL0hFAT8HXD1LGOiXgYlBVZga1oJ1qY4wpKmvoWr+nu1FuJ53eBLycvKwf8Ep9JtJ\nLKLEtLFQXGjXuSYmDt2HnUeZC6otTnTqswU3LxSmTm3VZT0A4NGNfzSlUokhIjMCy0MLK113sOtA\n6Bd3OwLoXY+KEpwajNNRpxGTFUO6p+iJxOYvmzHUZShsjWylzjkiYAQONjyIkQEj5dZJFWTmvkdm\nbhDSsp8gOy8C+QWJyC9IhR6nFLh6FjDiuqKUoQdKGXigtGlPjekpDyMb1cfIRvVReQ3ZdXNWm+YA\nQNmna2i1wcDCIo1P8f2RnvOKsi+rIAxZeWFIyrwoauPqWaKu43t1qYf8gt94F+0JPvIp+3Pz/yAh\n4yQSMk4S2iuXPQZLFRkQjWZug6WpMXZef4Zrr0JxdckIjNp6TmQkeM7wxc3Xn9GpvnYYWVR8T5qG\npMwrMo/P4yUgj5eAP7mhSMq8iMjkZaQxduYj4Gyt+tz787qsJbkgDas6A4dCBIXK3Ou4itq/BH5H\n5QYVVa6TtlHa1hz3/IPQwXMFqa8kxDAYGOhj5/4HmDhasxlpSiLLQ5djQ60NhMX6QOeBAIDVH1fD\nwsACW+sIilEe/XEUXzO+wt3MXarcGpY1sMpyFWnxD4CQLh4AglKDRPMDkDrnyICRajcSCvjZCI77\nCzn59EUCxeHx08ArSENOfjTSsv8DAHxPmk4YwwEXzjbLUdZsMOP6ysLIUxfxOjoGDyaNhk0p5U44\nex08gUsjie9DuOMv/D+Pz0eNf7fi4/zpCEtIwvBTF/B06liRLuG/k3FhxCCSLpL6GvrsQlNXZ2zt\nxXx6dq01GLThdOHd86+YP2yf1HH+X8gl3tVF+0FbcffkNJWNlxVFi3UpkkVGmGVHEfILUkW6utqs\nQRmzQQrJkUbIz674kxui8P1ffhUWYqphfxMmBvQVdeVF/PSgzhTBrkhyRpao7ex8bwz3OaM1BkN8\n+iFEJi+XPpCBeeLTC390ORwu6pR/Ba6ejYS75KeosQAASXHJcHCzAwDseFFYEZ1pY4GJonocDhcN\nnJQrSieN0VPaY/SU9iqdQ1mYKlBI9QxMS8vCmYsBmDi6DfYefowJo1pj14GHon7hicOcqR2hp6cH\n94plUdndTik9NFlwUV5UnX1MfLFe3qS86PXXDMH3XnzR/yThCfY1kL5OkMS+BvswMmAkDjY8iIz8\nDELf3A9zkZaXJnFOdRgLYQmjkJJ1T6Vz8JGPH78X4sfvhaI2Q64Dajk8Boeh5SrdSYC4+878a7dx\n4UOIUu48l0YOJsi8+SmMNKbxlt3g/T+OeMyZS7gwYhClLpXL2mKEZz1sfPAf9j4PoOwrel+DzTsV\n1p0OrTUYNMmy8Yfx8v5HTashE0aGXLT52wd3T06Dvr4e/t15C78S07F5SV8AQP8J+2DA1ceJbSOx\ndvtNZGfnoXnvjfjv4mwNa64Y8emHKXeHFSHi9wJE/F7A+I8P0z+8wXGdYGzghpr2yj+sKznYIjox\nFY62lrRjDLn6yMvn0farC0EWJc3lP+Dz8/E2WvAgLms+FC7W5N1uJpjSfDH2vtHcpoO88PnUp2Ul\nidi07YzIsS7VSeqYE2df4NGNfwgGA8C6J6kLcy6xIOOWOltUMg///8+6ae+mobltc1F7en66yuaU\nBU0bkrn5sQiMFJymOFrNg73FeKXkXRxRuEnY+5DgZH/qxWsw0NcXta/t1gEXPii+4UfF1IvX4Dfa\nm9CWmpUteh2blo5y5maYevEagucWuqKu7dYBldf4YIRnPex9HkDbN+LURZQyLCyWGzhzIuNuUqzB\nIMahTf44u+ehyuR3rjyX1GZqbozzrxXfPU1Ny8J/F2ejee+N6N+tPuZNFFSRnL3qAj6G/cT1I4XF\nW+ZP7oR7zz6r5IRBHbyJrgleQTrjcmXJvy+PLFWQnfeNET3PzvNG3ak+sCxljNQ/2bC3sRCdMoRG\nxsPD2Q6jtp7DgJZ1GNBaMTT9A0XFr/Sj+JV+FNYmHeBeZi+jsrf9R67kqirKWYzDz7Q9SstJy36q\nUFpaXSEmhboqsry42+6WPohFo3xKJxaMDUoNIizomSQuOw4F/AKMqjBK1NaxXEeVzkmHNj6Ho1P+\nRXTKv7C3mABHK/J6ShZq2JNP4u58+YY27hWUVY88Vzk7TL14Db69BbFpVcoKTq7E3YhWdG6H8+8L\njZM7X77BUMx4KQpd34uISLSt7MaE2rSwBsP/oVrMM82VD6vQo9YiQltmejbNaPl5/uY7po4U+Lxu\nXNRH1P7PmktYv6AXY/NoAlU/vAIiXWFm1ADV7Mhl72XhW+Jk/P5zjWGtyAREuqK2w1MYcstLH0wB\nhwPagOZOS/bjZ3I6TI0MMcVLvYvBP7khCPnJvM8l0yRn3dbqomzScLKaz4jB8PnXYJW/f/H4BWHc\nQgfPFSUihgEAls7rjv1Hn2haDZ3icdxC/MigP6n1rvQC5lxzjAgYgRXVV+BwxGGUMy4n6j/U8BBG\nBIzAjbgb6OfUD/d/3cesyrMY0W173e2Y/HYyqb2HQw+VzVmUxMxzCE+SL4WsJohL24W4tF3gQJ9Q\nnFNR1nT9C3P9bjGgGZGLIweh8hofePrswohG9UXtF0YMQvDPeCzt2BYD6tYinASs6foXbnz8gi7V\nKlPKpOsb0ag+9r8IFF1n5TF/Eqy1BsPykLEY4jIdbmYe2PONegdunNtiRuZSh7EAAIbGBtIHyYmb\nSxks2nAV7ZpVxfJZ3dC890bUqOKAvl3rYdnma2jh6Y4Xr7+Lxmdn52HxRj+sLJKpRVMU8LOhxzGW\nOEZdOx0ZOYEQuMDIl644LGEMUrLuqEQnKt7HNkNdx/fg6tG7FSnCzRWjGZUnC3x+PgKjpAcMaiMB\nka5wtJoLe4sJmlZF5+jguQKDRrbA8PFtKAOfNUlOfiQjcqRl6WrbsiqW/3sVI4eod2dZl/mRcQ+O\nps3RxoH+hMi3ri+eJD7BitAVWFtzLbh6xGXSoYaHcPTHUez+thutyrQStecU5GD860J3GWHMgTC+\nQDwGoWgfAJhyTQEAG2uTdaObkynyeL/wLsaTcbmqhg8eAiJdUc3uIsyM6iksp1dND8z1u4UrwR/R\nvUY1VFnjg3qODozoaGpoiJSsbMxv11LUVt7SApPO++HyqMKg6JH/Nyh61fRA5TU+yOPx0LSCM5pt\n3YvQeQKvkM8LZqAKTd8/bVtg/4tARKWkQo/DQZsdBxjRXxytLdz2KycGZY0Eu6jLQ8ZhaXXld8Wo\nYMJYkCfomWo+mzLmOPF0EcXo4oOii3pjbgXUdHhA2x+WMBopWXcV1Eox6jq+kTnQNSXrDsISNJP6\nUdEdXj4f6Lv2KL7FJRHa1Z1KVRuPvBWllsMTGHGdNK2GTCRmnkd4kvIxTJXK7IOVyV8MaERG/CSB\n7rWmUGWws5BWXdbj0Y1/RP8Xbyv6mimK09+jos++Y2GN4V3pBbPKFHOK07+7NLT11LfZ1r14Om2s\nptVQunCbHhNaqAKhsQAAFUxVk62le42FUseUd7XFQt8h8P+yjpFsSPbOpUltvxOY98svLmTnh9P2\n8QrS1G4sABAFukqnQGPGAqDYg57PB+pO9cG3uCSUNi9F+E998HXqRwoAPsS2wLuY+tIHagG2pn0Z\nkaPJ776uIzQGxI0CutcsLIrA5+fr3HM4INIVMambNK0GgS57j2qDscAIWuuSJM5Q15kqkZuXS+3j\nxeFwcOPzvyqZ88CdOehSZZ5KZOsab6JraWzusIQxqFRGcqq8gEjN58d/F9MQdcoHyDy+9fxdmNGz\nBYa1a6BCrejRtR8ocfJ4SQiIdEUD52/ggD5oTRuwMG6BtGwm/OPld+GThWv/LUAHzxXoNUBQWPDi\nyRfYveU2OnppLhgfUM/pAovqaF9+G46FNUafCn4oxS2j1rmHDtyFo6eI7ovtW63B3UcL1KoHoNvP\n4djUbYhN3abxvzFdLORWLAwGVVA0+FjIkCl/YbAK839zONQ/rkGvvqOmp+YXoNpCTOpmjc4vLSZB\nW3ZX83gJco0va2kGWwtTFWkjGUGaVN0nMNJN4z9W0qhS9hgji4Y30TVRzzFYeYWKYGjIxe1XS0Tx\nC7u33EZFdzvMWtyd8blYSg53Y6YAAC6EU8fwlQR3JV02FsRhMvuhIihTw0Fb0VqDYfb7v0XF2xYF\nj8CqGswWJsnNziO1nXm1FBZW6nTNKGTt9BM4+YyZIO7ixqf4/qhqd5bQFpvqqyFtCqF74GTmBqk1\nyFka4UmzUaG0bGkez833Rp0pPmhb2x0mhswH4dNRUn6khAREuqKUYQ1UL6f6zFmahFeQIX2QEmg6\nXkE1aK0nsM5TEgwCSZTE53ADpzBwOOr7rdNltNZgUCVrppErrQLQmLEAAMmJqv3h1WbSc14RrrX9\noRb6UzsyTAlJzDwvs8EgrLnQZBa58JSqgp61/d9TVfzJDca7mAaoUz5Q+mANwNWzQX7Bb02rQcu2\ndTdw4/Ib8HgFhHZNGREhP7sxIqe+U/EoCsrCDO1braF8rW5K6nM4MKoSGjh/ZaxSdEmmRH6CT/w/\nkNrcPJhJoSUL1mXMkVyCA50lo11Zu7LyvsLEQPvTfubk/4AR10XqODYTknrJ4yUiPecVzI20L2Vh\nXcc3jPz7fEucDDdbZiofC9G2VKqAwABkAj2OESNyWBTnVcJGfE45r5YTh7uPFiAnJx9jhu8jxTCo\ni5L+HA6MdNd6N9HigNYaDIs9dmL2+79F1+KvhQhdlphg+2X1VT/2bF0Vt87JHqhaktA2P/fguPaE\nB422Png/xLbSugeitn5W6uZTfH8YcsujtsNTTauiEn7/uQY3MGswANrljpSUeZkROe62uxiRowrE\nnx85+T+QnhOIjJxApGTdRh4vif7GYsT1yKH4nfMFptxyhPb7sTNQ22YMSht7yCTn2c/ZcDbvDEfT\ndjKNNzLS3FKLfQ4L0HRMgy6gtQaDpUFplcYwaJKy9laaVqFY09D5O6j8gCN+L0BCxkmVzZvHS5Rr\nfA37u5SnE/HphxGZvIwhrbQTdf9ICQqojYOs/uG5vJ+ITfVV6feFMF9+DPj8fHA42vXIrWl/D0Fx\nsi16JJGREwgzI+Yyb91+tQQdG68Ev4B84qgJQ+J70nRG5FiX6syIHFVjxHWBEdcFtqZ9AKyVMroA\nyVl3kZETgOQ/d5CTH6EGDRXjd84X0anCsbDGovZGZefhUexcdHE+LJOc2MxHaFpONjdQIZo4XVDn\nc9iI64pKZXbDxKCqzPfk8RIQm+qLXxnHVKhZIbpoNEx7OxB9HUegRZkOmPZ2ILbWPaWyubTr16uE\nYG6tmSw12szH+L4S/ak54KKB81eJMlxt1sDVZg0+xLZm9EcrMKoyGjh9wbsY6QuiUobVUb3cdYlj\n7MyHw858OCKTlyE+/TBDWmoP6viRojMaZcVQv5zo+yIkJz8KH2JbMKAdNYFR7qhe7jpKGVZX2Rzy\nYmzgxoicj/F9Gf0h7uC5Ak6utthzYhy4BppNUcsHT6Pzaz96sDbpAGuTDnCykl7bSBt3vE25dkjP\ni5F5fFvHw0jMfgtb47oq1Eo5VP05u1gvR1nzYUrJMNAvAxeblXCxWSlqyy/4LUctJPn5ENsKtRwe\nqUy+uvGpcxx6HPU8I4uFwaBLpwsAkPQzVdMqaB0ZOfSBoZYmbVC5jOzfgVoODxl9WPL5uTKNM9S3\nl2osiONsvQwAGDMafiQvhYv1csq+OlN88G7bDLRbQF0xnQ/g/ppxSuvwM22v0jIkocrdISOuk0i+\noMZGgcTxihDys6vO7XCpigNnJ2paBQDAm6gajMgpZ6EdqZhZyHxMOY0qVn1kHm9jVB3nvtVHzwoP\nYaBnLtM9VDUXVFWH4Wea5BpCylCnfCAM9G1VJp+rZyN6RgZGujFusOfk/0B23ncYG+hGGvsZ74ag\nU7k+SMiJg4eFauvUFAuDQdd4dP29plUoNhjo28plLAhp6BzBqNEgTVYN+5tyHcUKcbZm7pThV/oR\nWoPBd1wPAEBS+h+82DQFxobEP/2sXHKaYXmJS9uF6BTlq6EXxda0HyqU3sC4XEkITjDA+GkVoH3H\n4vWdQvE6SjbfbUmkZj+BpTFzJzR0gc/qdkkq4GcxIkeW3XcW1aLPMcL/2DvrsKiyN45/Z4ahG2lE\nlLAVVMx17XatXddu13XX1rW7W2x3bcVcu9s1ftaqYICBokiDSHfM/P6YnWHiDhP3TMH9PA+P9554\nzwvCnfue80bwh6YSrkc3YschMe+5SgHQJyIFVd3Pfm4t09fX+zldNWnxNfsIYtKXE5XJAgeNPCOJ\nylQG4ZohsXWIpnB+ndBWr57BdNCkC5I0jMGgAxJj9TeVob5BJyVlw8rv8TymOkFtqLE0aaCWsSAk\nwOMlQmPrE9RIlu/rlO6mSBsLAIjUZNCEsVDL5QIsjOsSl6ss9dzuICFzG2LTyRosYQmdUMf1GlGZ\n6sJmkUknHZE8hNiHsD4FPJOAy3HWtQoMAAb63MXpzz1xOXo4gNI4hu6eh1SSo2ujoCyiUsmeWNR3\newhjI+1lkaSigUcY3ib1RXYBuWQxYQkdUcf1OjF5umL6y+FYW3+/VtZiDAY9wbeOu65V0DsaeITT\nmq+t9IU1nU/Tmm/EtiGkiWI0lVY1Jm0ZcZn6sgPkaj0OrtbjiJ5Y5RW9B4+fS+xlnS42pi2RkX9f\n12roHZEp44nI8Xd/QkQOA336VD2naxUAADeuk6+QTnpjo4FHODhs/Yi5rOl8AnlF7xCW0JmIvLyi\nCCJydM3a+vtxJeEkriaewpI622HDtdPYWkzJyf+4d1m2NoMm+Pw+gbJ94wkyH0zlCRIPKk2/dDpb\njSQip7bLZSJyvqRpf2e2sCQBiVm7CUpk642xIA5pnUi4AZHCz4lMlpLQWHI+tHMnH0HHxkskvrRN\nam75rtTNoD1u3p2D9q1WiL727b5DNH6hoDgGCZnbiMkL9IzSG2NBiBm3BhpVLjv5iSooswlUZ3oQ\nnkbGKi3zzptPqDM9iIZW8nkaGUspu4vrT2Cz2Fj2RrN1lirkCYOJGRcFeZI+2ysnH8b3XetpfO3f\nf9hI2c7mMLabOKRexDWNpx2ZF3RzYzIvj8lZB1HFTv6L1baLDzGue3Miawl5GdeMqDxh/IA+Qjo2\n5mv2cThaytaY0QUsGIGPYloyinnpRHTZu+0Wnj78KOGadProE3RsvERr7ko5hS+IyKnndo+IHAYy\nvEk7gucpmwFAFLcQkrINDSqNU0nOichGEBYaFboonYhsWKa7kiYCnIWQzPCmjxs2QlgsI6248apL\no2oeWl1vUugAuJtVQZD/YY2vVSHfUs++JO8+oQxUOcUBwN1LcxkHDBVSL+KapLKt5h7+mmL/zWfw\nnyC5QzFl13mZNmUpKI4hoZYIff6gEkJSx6jUmcRk0UVR2mJliU1fQ1vGsQMPZAyDPgOa0JarCm8S\nexGRY2LkSUQOA32CPzTF85TNMgHOJhxrhKcpf8oWn3MXXlY/yBgHxmxrInqqSm7hW2KyDOEZbMS2\nIVbThHT6WUtTY4St1exOvzibAo5iRo1VWlmrQhoM8ujip9kP7641ZlG2774+XaPrVnR8HDWT6tPF\negxReXbmXYnKo+LpxolwsbMSGQhH7obin1eRasc2VJRdLWlI6qqPeenpkJC5XdcqMDDIhSobUm27\nwXibdkxpGc+/LkOg00KZdiezQLlzHv4vQuSOJET8mg7hiWRenhtVNhy/fpJV03VRbDAzLx9dV+/D\nD2sPID03X+644Tv+Roflu5GRmw8OmyXTPyl0AC7EH8Pad7NxMlazJQgqrMFwJYI6o0sXv5lyTwLo\noGljpDzh704uEwIA2Jl1JCpPU/hU0s6L1tUlo/F040T4TwjCX1ceq20sRHwdTkynKva6OfWjgyEZ\nOMqiL9l8uvQMkIlZOH1Ue4HDZdWFUYWGld8RkcOgWfjgw4htpvT4SmYNwOfL1geIzbkld86CuSc1\n4pJEylho4BEGFsuYiCxtQeoZ/Cq+tdJjx+w6TRlHcPzRS3RZtQ91pgeVGcNQZ3oQNly6j+YLdmBg\nc3+kZOXgu4U7cPLJa4lxPD4fdaYH4dmnOIxuG4jvFu3Ann9kn0ubAo7iB7f+mF5jJZ5802xBOoMw\nGOaFjZBpe5ByVWPrda0xCx/Dla/6WBbzR+8t01g4+mg+kXXKE1yOo65VKPdwORzsn9IPGTnydzYU\nkZF3h5g+TpaDickyREgGC9OBVDafnMLXigeVwZS5P6Caj7NEwPOfQde0Fr/wNuknInLYLFMichg0\ny7mofmjqRO0BQEUz59U4+akxePzSmJ8HiVM1oZpCSLgjcTkO4LAtCWijfXwdyRSpyytS7JLJ5wMP\nI77gtw5NZfr6NauPK7NGKOWOtPfOM4StnYLBLQPwaMnvYLNZWHTypsSYejME8a5ha6egX7P6eL1m\nCu6+lY3vu554RnRdyCtQuDYdDDbouY5NY9oyrkSslvsyP6H3ZtH1j6O+x+iZ3ZSSyefz8fsPGxEV\nkahw7OyNg2DrYJh/pIYGm2VGrAATAFR3Ui1vtzZJzT0Pe/MeEm1lxSgI+1Q5aXgR10g95Sgw5J16\nUkHQxbx08FEMluE+kiV4k/gD7f/XP4/QrzyuS7wrkctYw0CG1q6rRbUXAOBewlx8yRacCriYq/ZM\n6+v9XFTA7URkQ9gY+6pUnyExMUOl9ah4HqN+/R9x/N3VryvR9NpsPO60kogegx5uwuHmk1SaY2vW\ngcjaYQnt5T6zqjnZ48C951h74R6R+IQOdX0l7reP7IWxu8/IjJNeq10db9wKkyyg19GlNxaHT0R1\nq7oaL+JmsJ9O15NOoq8HfR/yMy+Xonf9snf5T+25h1N75Ge6UMfdyK2Kg1ayMhkamnphcrUei7gM\ncqnOrE2/IyaLNJn5D2QMBtL1F4pKUojI8bIn80GjS5yshiE56wBtOc+iffTCeKrndp9obIqh8TK+\nBRE59ubKbTIxaI/Klq3Q3/smjkW2BwB8yb4FU44d+la7opY8VQyEi9emi2IWhP9evaX8qQYVPL76\nJ8RCdHmyIG1sqGosCOGwLYlWgpbGwcocay/cw+g28mNUVKFbgKShZ2Kk3HtPp3rVZQwGAFhYezPF\naPLotcHwx8t+lNdCSBgMpmbGcPeqhLgoMi9AyrLnxgytrmcouFhrZlfRyWoYUYNBn8nMf6RrFZTG\n0XKArlWgTRW7xUQMBn3BxKgyETmv4luinpt6xeC6fbccRYWyPuKA5qtAFxaTcUdl0E+4bEvKwGdN\nY2rK1WhaVXVp4CEoINf02mwMqdoKSfnpWFKvP5pem40G9tUwt86PcDezF90n52fgZMs/0PTabFSx\ncIQZhzruodudFXAwscLHrEQ87LgcbzJi8NvTXSgoKcLjTiuxIvwUAGBF+CnMqf0j+OCj2bU5IgOi\n6bXZIlmPO61EbO43LA87hdC0z5hTuw96eJS+vDfwCNNo8ghhTMLuf55iclf6m4U25uq5Kjpay9bF\niM+LgZsZmWe2IvTaYFhX/zgAQQzDsjqai/4WZinSRmByg+/8sHzvKI2vY6h42GomY5QR21YjcvWR\nguJohWNa/LENOQWFAAATrhGebJigtPzX8W3U1k0cfSsKRA8WhDnZ6VDCywRHR6kZSUMn5W5RYYnW\n4hU0gbOVfj7jfdZuQMjEcbA2MVFqfGxGBlrv3IOP05X3z/dZuwEAVJrDoDpPo6vRlmFhXFrL4I+a\nPfCTZzNMerYXACRe3B93Wim6j8xOAgAcbTEFVS2dJF7sxbnQahaGPtoCHp8HABj5eLvEacKc2j/i\nfOwzzKn9IwCABdkMQI87rUReieBzat3b89jReAxORD+SMBZI8izaG408ZXfw943ti0BvD1FAszbT\nporzIipepu3ht5v4yUM2zlcTGETQs7aQlzmJFG1+8GeMhXKApUmArlWghf+EIBTzeLiyeBQuLx4l\nalOW/OLPRPRo4BFORI4+EEjxIaMOIXpSjMi70ladrn/5wVx0bLwEb17HIvVbtsSXJolNJ/MZ4GlX\nXpJZyL7EGTK342WNmCMfWyI+l0ywf37JN4l78bSpQweQSwMqgEdbQi2Xc6LrdW/PAwA2NSq7aOrH\nrAQAQGzutzLHNb8+F4fUdDGiYmPDEbiV+Ap9PakLhZKo3cQH9ammEKGh8P3iv2ivpQzSmZM2X3sg\nM+b+1+uYFDpA9KVJ9PqEQYgmTxekERoNfQIWIC+HTMR590HNMG4hmSJADLqnip3hpQAV0n/1YQxt\n2xBTe38vanuyYQI2nlPOdSSrQHupLQ0LUnsv5FM6q4O9eXdEYjxtOS/iAtVKk9y1xXIAwORRe2X6\nNHnykJBJ/6WOy3EioIl+4GFjXa5OCuJyHkrcB39oiubO83ErbhKG+D5CWQaSMMBZEarENahLXMZ6\n4jIrmVhhWsgBPPj6Do87rcTeyNsI/nxXdCogvL/QWnCiwGVzMOzRFgQ6eFPKC2o4HG1uLkQvD0GC\nmsedVmLIw82wNDLFjsYCd/IV/oPQ8sY83O+wDD/eXwdAfhD1pbjnuBIfigOf7qCPZ1ORXCHOViMR\nnbZEZp6q8PnFYLHkvxqHrpqIgFmbcSssEu3qyH7vKVk5AICcgkJYmKifpnZ2rzZYdPImqjrZo2FV\ndyRnZINP8fGg6UBncQzCYNAFp0MFv3jHdtzGgaBrasmYFTQQrbrpx44hAznMjWvrWgW1+ZqRjdpV\nZHPt16qsXP79d0mysUTqUN/toeJBBkZN59N4m9SHtpy4jA1wt9H9S5qtWQek592gJaOo5Kvac7Xt\nklRUkkxEjr/7v0TkGAqxGZnosGcfGrm7I7gfmXS02uDQh+YAAG/rbvCwaInb8VPR1o18nFvY6xjU\nqUvWxzw+YwtRed/fmI97HZYCKI0dGOndFiNta+C6AAAgAElEQVS924rGSN83reSHppX85MpsVqk6\n/mm/WKItuPlEifu2znXQtoNgA+5Uyz8k+oRGgzBGYkX4aTzoKNhI6HV3tYzBQIrIb+PhU+lPuf1c\nDgerB3bBpAPn8WLVJBhxBJtF0rUXmswrzZKmjgvToBb+WHn2Hwzb/reEHOl1Cnh5WPZmKjzMvPCr\nt2bd6ll8KpNF90go9cfLfmCzOODxS+BrWQcfssPgauqJadXX6ko/BilIBRxpMksMo6Mgj3TAxCDc\nXvEr7K3MAQiMiA7zdimVSckQfoa6pLz9fEh8P+42U+Bmo5prwsGdd3BoN3VmOk0ZEuXt/44K6RiG\nzQ8eYfPDRzKnCNsePcHzuDg8i4tDbmGR3FMGYbxCUPeu4PH5mHbpClysrJCYlSV3Domfs7o/4+AP\nTUUBz+LXAHD443cY5PM/uXNPRDZUeHpQUJIOE45kvNyi+afwv3vv5c5RJxBalz9DfaYi/A1L8zkn\nAlUtBIbbpNABZZ040PYvNJgThjX1jmDJm7H41VvgG7r63WQda8TAYHiwWMDyoZ3Rdo6kD+a+yT/r\nSCOG8k5cRpDKBoM8Y4GBLJsfPsLwhg1k2sc1ayK6FhoF0uz6V1B19tHvv8LRQpDAoGetmnLH6xM5\nxZJ1kop5ebAz8ZUzWkAXz7MK5UobCwCwaKkgqHfogB04ePQ3FbRkYFCMiQoVyuliMAYDANS0CkBi\nfgxcTCtjRo3ylyJzyov+AIAg/2OiawBoaPcdBlcZL9EW5H9M7nwqpMf/m3oHR6P/RFWL6pjou1jO\nLEmdGMoH3QJroltgTZXn0cl6I445l0yxIX3EmOOKwpIEXatBDFfr34j49auKtt2RSP2fGcLOpLWJ\nCd4mf8UPB4LxYfpUtbcdV98VGHVCY8EQ6OV1SlS4Tfx04WhkGwzyKTuOy5JLz62IlLEQl6H/Bpmu\ncLIchOTsw7pWQ6usfieZol8Y+KyJ2AaDypLUt/KvWPde4Oc2+9UQHWujOS7EHwEAWBoJ0is+T/sf\npr6QjH7f+lEyuCcuL0p0zQILXhaSvoWLw3+XuG9s3xoA8DlH/lEpg/Zhs8w1Kr/vymC1575PHkxE\nhxrOJ4nI0UdqushW61SHpCzZYF9d4GFLxic2ryiCiBxN8TKOOvNKeYTH5+OHA8FwtrQsZzmQFGPF\ndccQ38cydRiG+D4Gm8XVkVaqEZ9Bv0hX+cniJYmjJZnPKENiU8BRyi9NYBAnDDNqlFrUbmZVKIu4\nlSduJ58X7egLd/j54Eu0RWa/kZjjbuaFVfX2yRxPFfDyMOvVCKQXpcqsY2/siNTCr4jJ/YTK5rI5\nnReFC3ZE5tbcRP+bYlAKNssUPH6uxuR/iE8RpVDd9GtPtKqjfC7vguIvRHTQZWVRTWPMcSEiJzpt\nCZytyk5vaEiEJXQ0iN13OlRzMIxTb791QbA2MUFStmZT1DII0qrqY7E2fa0TQhdzY9VPzhmUxyBO\nGJxM3EXXU/3WYF3946KibuWRgZ6/y7QNrqI4xSGVL1tZ/m3zawkyLWyIoH6gZRSlAQAqmSiXQYeB\nPiwN73K92DJF9PXgTRT8JwTBf0IQhq6v2C5nvAzq4kMMhuFmQ4d3SWTidxwsehORo2lCJo5DyMRx\nmNOmlUHEGxgS0nUYxCFfh4FBU6TknNK1CnqJQRgMFY2a1v4ybbWtlcsBTYUyL/w5xVlqyyeFsZG7\n4kHlHKpql5pizs9tRcZDJRvt+CFroopxcVJdFCf6oORra/Cy1gC8DJRklKboK070EX3Jg5d3AiXp\n4yXnJDcAL++EyvqwWOrn3i7PvE5op2sVKMkqqFhpUIWMbCT4TFHXaPC2tyepjt6TURip8CshV36W\nJRKk5Kj+PGJQnbTcy7pWQS8xCJek2a+HoIgnKA++sPZfsDKyxezXQ7Gy7kEda0aG7Iw8WNqUngQI\nYxfEMeUoFwl/Nu4g7n5V/pd9ZNVp2Pt5PeaF/SIR2LzsjSBf8rr62gsgMufW0tpaDMDMfZdxLUQQ\nw9Kxgfx82gAQm76GyJp+jhrwzefnAQA4jndQnOgDttUMcGzWSQwxcvkIfknZLlUcW0F14+LkQEED\nLxO8jNlgm/VVSR1fxz2ISKYfY5WRfx82pi1pyyEBCxyFVVAVkV9Epho2SdLyrhORU8vlPBE52ubj\n9KnwWbsBdTduwevJE0Tt867fxPuvX/E+JQUA0Hz7X2jg4Q6/Sg6Y2FwQ73Ft1HD4rN0An7UbsPGH\nbmCzWJh4/iK87OwQlZami29Ho1yPUe4kqqpVT9H1ucvTJKo9i18LUcVl6fO36UqPZVCf9LxbulZB\nLzEIg6GIV4h19Y9LxC70cVffv7eL30xRRWd9oG/gItr6pBZ+xdI3E2Ta7YwrIaMoFTw+dRn5ujaB\nlO3fCgVFjDgsDi29VMHUqIrW1qqovIlJwsA1R0T3p+cORTUXB4XzEjP/UjhGGSxNGhGRo0lYRr7g\n2B9RPFAOpF7y49LXwcZFPwyGhpXf4llM2UalIfLx6xgiciyM6xGRowuERsOCGzexpEN7AMCxl68k\nxiTn5ODq+whcfQ+RwSCc67t2AyZfuAQAeD7hd8RmZKLnwUPa+wa0iKI6DDlFcRL3FhYmIoOASavK\nYOgYhMFARUpBouJBZaAPRkMf//nIyy2kLSevJEdkLFClP539egTyS/Lkzu9beTROxOzGpYRj6Oba\nH4++Cazr3320m0nBhOul1fUqIgsPXVeqQJs0dHeXtYm46xHH/gD1mCR/sK3nik4PjFw+ojipDoyc\nw8CxPwJ+/nmUZC4Cx2o+WGa68U3PKXypk3WpIOVm9TK+ebmr8m1IwenyiqlJt8sbR8UHqbE2pqYq\nzTcUlKnDYMFl3GorMl2cf8OVJOVjVfKy82FmaSq6j/uUjIK8QlSr7aEJ9WhjMAZDXkmOxP2t5DPo\n4iq/7oAy9Kw7F+deL6clQ126+JEr4R0UMQ8A0Nt9GGV/WcYCADR3aI8TMbtxM+ksurn2x98xuwAA\nvpa1iemoDMYcJrha05yYXf7SERu5fKS8lm5jcUpPsIycX8iOcw4TXbNMe8DItAdJNQ0eX8dd+PD1\nF1oyCovjCWlDHz6f/mYNAHjaabdmBINu0Jc6DCQgVRGZQRJVjAUA+LXlEhwMLXVTc6/mRFolohhE\n0PO6+sex+/MqAMDi8F/xx8t+RLIkFRYUE31xV4aCvCKNrWnDlQ1C44Ov1NzOLoKd1uziTKI6qQKX\nUEpKBsW0+GObKENSk6lbdK0OgwFga9aBiJyEzD+JyKELCRcrLseRgCYMFYUd226ic7tVulaDgQBd\nnGUNQPG2xUMFxsO9c89l+paN3AkA+BovG+uTl1OgcO2BdbT73irEIAwGAJjgs1SUTpV0StUh38sG\nImmKXvXnEZc5zGsSAGB/lGQe8NySbJmCb/Lo5CIoX7/tv4JwvdyHEtRQOYzYtlpfU1XKQwYc/wlB\nKObxcGXxKFxePErUVp4Z8JiMr3pFx968O20Zsenl54XJ3/2prlVgMBC6dliDU3//i+Li0nhCqiBo\nhvLBwoMCA2HlmN2lbYO3YeHgbSgqLFJL5vJRO7F89C6sPDWZiI6qYjAuSZokJTEDY7qsx84r0zS2\nRlJcGoa30cwHpbuZl+haWOhNnHX1D+GPl8pVQEzMjwUAtHLsSkQ3VTBi22h9TVXhaLgSs6ZZd/ou\nnG0tcW1pqWvJkw0T0HnB7jJmMTAI8K60FanRF3WtBm0+p87QtQoM5ZASfgE4LBPKvsLCYty8O4cx\nEioQp7bfwMBp3UT3iw+Nk+g3NlGt7tLcPbrd+DKIEwZtVHaOiUzG9EGaOSqfP3qvUsZCkP8xmaBl\nVdqW1P4THmZVYcw2QX3bJqJxHJYRZTC0NMO8BFZrNYsaCsdqAg7bSifrqoKmC6tpmivP3mFq7+9l\n2qf2km0zdI7HnMXQf8dR9l1MuI7h/07A1cTbEu0jngqSB8x4tRjzw1bKzHubGYEhT37HmbhL5BWm\nILsgVCvraBtd+1CnZP+t0/UZdMebtCMI/tAUwR+aitpCUrYpnBedfUV0La8OQ3T2VY3oDAA8vmJX\nFQbtQRWvIN324+8dMGRGd7njz0Vvlmkzs6A2OM/uLP2sonKH0gYGYTCQxsyc2q0k7OlnLPmdbG2H\n7jVn49m992WOIZWtyYpri2nVV2J1vQMY7qV6JpyDUZsAABN8FxHRR3W0V7RMXVjQXppZTbB0SGfM\n3Cdbp2PGPu28AGuL8Mz3uBB/DQcab8XIpxMl+uaFrcCDlH+xr/Fm3E6+L+GulF9SgAGPx2Bx7Zlw\nM3OR6Jv8Yi5WvduE4CbbEZr2WituTnlFbzW+hqqYGHnqWgW9oIFHuK5VYFCRS9FD8TxlMyyMJOPl\n0gs/4lv+mzLnPkkqdSe+HvMz5dez5CVK65KYmKGS7lkFj1Uaz1C+EMZC6JIK6ZJ0+sVSvA39gqn9\ntsv0PboZTizlqqLg5h9HfY/RM7uVOUabKBsgzWC4NK9ZBcuHdpaJWdg3WbmiRIbCsjfrcbSpILBs\nb+BmiZf7yOwoUd+aegsx+MlYibnCvt+8R+De10ei9qT8r6K+JXVmacVgyC58AUcM1Pg6qlDP7Z7O\nTwjo8PkbGddTDpt8dfQ36ZcQknoc6YUC19DxNW4rmMGgCqkFERjiK3jxFj9haOu2ASc/dcdP1eRv\nnEjXYKCqySBdh0EccXek9q1WwM3NTqWibTkFspndGCoOGy6VFu1TNRsTKQzCYFhb/xixzEhCagZU\ngYW1GXIyqVOOHtl2CwPHtVNLdkZqDvo3LXun4cA/s+DkbqeWfE2wI3IZAKCt0w861oRB03QLrIlu\ngTV1rYbeEGCnfNGt4f+WFkc0YVMfHZNEH6sjkyI8sQtqu1xRPJAwKTmnaMuo5rCBgCay1LLthlq2\ngk2kre/aamQNBipYKCGQZldRHQZVDARp8os/qz2XgYEEBmEwTH8pCOSVjmWga0CcfLYIH8PjMKG3\nrB9Z8KbrOLT5Bi6/Vy1Qec0fx/DP+bL9jnVdME6IdIB0ZfNq+MFtkI60YSjvsFlmulaBkmepyu/c\n7W+sXApaNsuEiM9xUUkSbRmaINAzivYpQ26h9t2tcgvLdjtRFgeLPkTkMOgHZ6P6opWrbMySPBRV\nfNYEpH53GRjUxSAMBtJpVMXxqe0Oa1tzZKbnyvTx+Xz8e+cdGrdWLgi4V/15KMgrO12WvhgL0riZ\nVcFUPyZ7Q3ln17Un2HbxoVrVnunCZpkqHkSImTUmYui/v+NA4234/fl0ib4A27qY+WoJVtWbj9mv\nlykt09PcAwMej0GQ/zLE5sZj44e/cKgJ9dEwm2VGxGAo4eUoHmTAfM0+DkdLzSe1EBKeqP3sb+JI\nnxq4mtXBj1VkN6yUgccvxvb3HUX3Hd3mws+69FRcuBaVW9OthDV4m3FVpk9cP2uuK4Z6H6b8Hrq4\nL4a3VUuJ8U6mfvjZSz9qbMiDwzJB8Iem6Oq5X9R2I3Ycsopi4GLeSHeKKUEJP1vXKjBUcFh8vl76\nrWtdqS8fkjC2G/Uxs4WVKU4+X1zmfEXxCi061sG8rcpV2Y3IOI2QlK0o4kkaMULfS32EhE9zoGcU\nbRllQUJHY44L6rtr7v/hZVxTFJYk0pYj72fZbNpWjOveHIPbNFBJHpGfnZE76rs9oC3HEHgZ35xQ\nVWMWAj310xXhWYwP+Pxi2nI0/XcvDonf41ou52BhXF+lOZdi5+Fz9kNYcp0w3FuQsS6rKAnvMm8g\n0IE65fXWd23lxjCciZ6CuNyXGON3EcZsc2QXf8X+j/3QwmksAuwF8UjROU9xPmYmpQxZY4KPre/a\noZHDIDR1HCVnTOlcZ9MaSMp/h1/9LoPLNkVMznNUtmio1M9C158VRbxsHItsL7o35dihbzXVXONy\niuJgZuQIthbr8oTE1i73Gwj6hDafS1qCdlYZg8iSdCyaOuXZHy/74Y+X/ZBfIns6oCpVfJ1h50id\n1jMnKx9xUSly5yoyFuwdrZQ2Fop5eXiSvAbWXE+4mAdKfDEw0OXw9AHYckE3L+18Aj7ChgKp71Vf\n3bgAoGHld7pWQSeoaiwAwOfshwAgMhYAwIrrLNdYUERc7ktYcZ1hzBbUhbE0ckQHt9l4kFy6w+9p\nIfjMSMiTzOb0reATAGBg1b2itq3vBCcTQmMBKDUUiilOypLy32F8jdvgsgWnhsoaC/oAl22JIb6P\nRV+qGgsAcD9hAngEjGVVKOHRf89hYKCDQRgMz9LuiYwDYTzDns+rsLj2bqyrfxzzwkYQWefIg3lw\ncLKm7BvdcS2+JWfKtCsyFgaOb4/DD5Sv7nz+ywAM8X2Mrp770cF9i8QXAwNdqrk4YMGA9ug0f5fW\n1+bx87W+pq4g9b1y2PpbKJBFyKO1mJdKRI4iQmNVO1WjwoiteqKKsPQLAICBVffRXl+cYd5HJe6r\nW3eQGWPMtsCpLxMk2o5+Hg0AsDfxkmi35DpRrnM5dj4NLcsn+SXfYKTlv022nIJwDOWbnIQqlO38\nklgta2IgMQw2XHvMryXwFd7+cREA4G1mKCyMyBf6OvS/uUiI/oaR7dfI9A3+bjlOhy6BmYUJXjz6\niNnDyn7pOvdqGYxNVSv0ZaUgywIDAx3E06lKp1bVdFxDCS9Lo/L1iRIeGX9jjp5XP/dzCkZEsnKn\np/IIjW2gleN/EoZJgIfqhfQeJv8FALA3of7gVxdlsiiN8btAOa6hg2yq3uyiZMqx0TnP1FNQDxGm\nUrU18cYPnrLxGcrSq+pd3EsYh+9dFRd8I4UR25aIuyqD5sj72g58fg7MnQRuy/mpA8Eregdz5xDB\nAH4++Pxs5CV/D3MXQRB7bvJ3YBt5w9T+AAAgJ7EGwBdk77Rw/SIYkxQAjklbmNiuF4xJqAKzSmfB\n4niI1s5J8IaZ022wOVXA5+cgN6khwM+DkXk/mNjIvs+qg0EYDOL1AahqBZiwyQZTuno6wMndDslx\naTJ9fQIWoH5Tb7x8XHa6Q3WDmzt4bMPpz73Qp+pZteYzMJSFLoKdGdTHmOOmaxXKxMa0pa5VUIr4\nDPUCi0nA45doRG4nN+VPrnd96IFffM+L7ps5jpYZU92mA7wsmhDRTV8Z4vsYj5NX4UPGWZHxoG5s\noBnHCWc+t0Qbt91gsUpfpWyMvYnoKg2HbQkQ+FWyNZM9iWIgg5njLdF1UW4wTO2PABC84Fu4fkFx\n3ikUZMwRGQJFOTth7vQ/CRkWLrKunubOoSjKLnU3tHD9Al5R6eZF3teOsHCNFK2Tm1gLFq5fkJNQ\nhZixABiIwZBdnCGRUlV4fS3xb3Ry+RkFPPKuDgf+mYXk+HQMay2baq0sY8HUzBhnXi5Ve13hQ0y8\nqIwQfQ56ZmBgII+Fcd0y+zvcmYIbrYPKHGMIPI2uhkDPTxqTH5dBv26COrELABBYaSgefd2F3OI0\nmBuRq73jY90GLCXiGF3N6iIh7zUAwamEFdeZctznrAfo4DqbmH76SlOnWWjqNAsAkJIfLvqsZYGN\nwb4PlZJxIrI0ZuNGrORpjaZSrppy/ZBX9JG2HF/Hv2Ag3ugGSW5yY5g7/YuirA3gmkuevrK5tSTu\ni7I2g2uhXAFQjol8Y97EVnKDmsVxRUHGTLCNqiqptXIYhMGwpt5RyvZZrwbjRtIpNK/UkbKfLk5u\ntnCr4oD4L9+UGt+2ZwCmr+2veGAZMEYBgzZ4FZWAyTvPgwVgy9heqOVJ/RLBoFtMudV0rYJC3G2m\nEngh5xHRRZPUcjmn1ryGDgPw6Osu7P34I9HKzX++74zfql9TOO7HKpskXI2kYx+EFFbAoNpKprUx\nxPcx7icuQFTWdaXnkTIK9u66g5G/tFZqrBnXF7I+D6pTWJIEY44rAUkMVJg5nAEAmDs/A68wBGzj\nALC5/tRjnR+DVxgCllEVsNgOpR38XABcgKWaS7toOi8NJjbLQfoV3yAMBnmsqndI42vsuTEDqV+z\nMKhF2fnajz6aD1sHS43rw8BAF/8JQbC1NMOxGYIiff1WHUJGbj7jrqSH2Ji21rUKCnGzmUhkB19T\nxGXo/gRmqPdhHIwchK3v2sLVrA4sjCrhY9YdAJJpSy/HLUB87mvkl2QAEJwIOJhUhb1JVQkXpF98\nz2HXh57Y+q4tqlo2B49fjC85/8rIE8JmcXAwUjZuQcj4Grex9V1bbH3XFvYmVeBg4o3IrLvg8UuI\nGjn6hPgpfsNKk9DSZYnWdQgLUz5w1dI4gMiaWfn/wsGiJxFZADAhZBC2NFA/HqS8weII41A5YBsL\nEi2YVRJsNrC5ASJ3JABgsSzBMqZIxsAqDagXjmdzJf//xe+F18KxpvaHARiBV/IFbA652CmDNhi0\nhb2jFTx9nBH9kbrqqjAQmhTiDzLhicOxyPbo732T2BoVgR7j/8LWuT/D05WcG4Ch89OKg2jg7Y69\nk38Wtd1d/RtGbTqhQ60Y5MHlVFJ6rLR70oBHi5BSkCG6V6avw50pWFVvLGa9+pNynjzMuD603SXe\nJPZCLRfysVvxGZtoy2jgEUZrvjXXVfRSnpBXKut7Z8kMRp+y/ic9Fd8KPuNbwWcJg8GEYyWSJ0zZ\nCgCDqx2kXH+s31Vsf9+hTBem8TVuY9u7dkgt+ILUAsGLh4WR8r9/hsCLb3/idep+0X2fqmdhYeSi\nsfXatyJXDNXKtBkROblFYXAAOYOhvMPjl4DN4uhaDZXI//YjOMaBKCl8KmGg0IUxGJTkr8tTAVCn\nUe0TsIBYBecHiYtFRoK44VBEKOtKReL81l+xYOslLBnfTdeq6A1uDjb4vo6sX2OHAF8daMNACmlj\n4Xzc/5BWmCXRNuvVn1hVb6xM3y9PV4v6AGBh+F4JA2L3p4sYXa17mevXcb1JuyBXTuELWvOpIJWy\nlcMmc3qsaLde1d18ZcezWRylxo6rcUvhGEM+cQhPO4zBvg/Bou3Dz8eJSOrK0NLuSjfvzpErZdJ4\nagOPClJpVb/lnEVl27lEZFUEJoUONbgTFJJGgjiMwaAie27MwKgOslHnXfxmEjEavmTfQgsspC2n\nonL36QdYW5ph5a7r+HvDSBQVaSZDiaGy+dee8J8QhJ9a1JNoX3XiH/T/ntrPkkG/6XBnCq58v06i\n7UDUVZTweehwR9bNjKovKqc0XWMnl8ai60b2NXAx/oFCg4EU33LOwsGiFzF5JGovVHVYT0ATBn1g\nkM99InKuxfRFF89zsOR6KB5cBtWqUde+0CRFJV+1vqahkkegKHB5gjEYVMStigMuv1uFrjVmaUR+\ng0rjUcTLBpfQjlZFo1WgYKf87w0jsfTPqwisSzb3uaEjrL0gXYOBqo2JaTAMbrQOkjlhsDAyhZOJ\nLXY0+kNmfFl9AJBeWFovI6MoG5ZGylWbZrG44POLVNRekk/fJhM1GEhQyeJHXavAoGcU8XKUMhbK\nOl0AgElTO5NSiQh88DExRLL6uPTu+oSQQaLr3h6DIM3WDyvxPkvShc+cY4HV9XcqvYYiPma/w6YI\nyWyUtW0CMNa79JkmricADPX6DYH238ntl9ZDvF/8mvRpw+zjV/HP20/IypOtqF4W4au1//lssAZD\nTmaeRuVbWMv/kGSxWbgSsVrGPamL30ycfLaI1no1bH9G8IdmwH/1Jujmiq5o/LbkOF68EwSSPToy\nTcfa6B+MEVA+kTYaDjaZR3m6oKgPAO59fSm6/pAVq3Ta1kaVP9B2SyJJXAZzMsCgGbpXuYLL0T3Q\n1fO84sEGxMSQwRIvxB+z30oENU8IGQQPsyqYWVMQm/F3zH4ZGe+zwmRevIXGAtUawjGqvIhvilha\n5vgJIYNQ16YBxnhPk2hzMfVAZXMvAGUbQuL9mgrqrj1T98kYVMVgDYafGi3StQqUqKuXuDvTEN9H\nhLSpeOxY0E/xIAaVcbDohW85TDFBbWJuXFOl8dJGw4WWqyUMA/EX/7L6fvH+QdT3i/cPaulOBx4/\nF2yxLCHqEp+xhbYMR0v5mYUYKhbitRfKatNUHQZNc+TLLpk2H0vZZ5DQWACAnysPx/2vNzSqlzwU\nvciLGwtCdn/aiMV1NmpSLaXounaf2nNtzU2x/9efFQ/UAAZrMDAwUNFs4HpwuRwYsdm4vW+irtUp\nN1RzCCJiMESnLYGn3QICGukv0Wlk0jN6O2xTOEZ691/83pRjLPd0oKy+lIIMtYvBBXp+wtNoerUj\nnsfUQqBnFC0ZpPCyJ5flhsGwoWsItG+1Ak2a+eDJo49o3bYW7tx+g83bh6FWbXfFk7XAv6mCDF3S\nhkMzh9Yqy5oUOhQb/Pdh6osRaGgnm92J7hpbGhxGelGa6FTAycQV82tLxnEpWmNCyCBwWByM85kN\nN7PKKq1Ply8p6aJrcdeiZot2IDMvX8bdqN7sTSjh8cBhs/Bg4W9a01MaxmDQM4QuSC2cF6CadVcd\na2N4MG5ImkJxRVllSMraW+4NhqSsvUTkGELRNlnKTwVZI7atrlVgKGcsX/Uzfu6zGfMW9sK8hb3Q\nvtUKhXEO4phx/ZBXFKER3erbNkJI2mMMrPILLTlbGhzGhJBBmP5yFDq59ERXV9kYILprAIAt107C\nbeho9G4M8Byt1Brr3i9AJRNnLKyt/foxN8NK00+HLpfc1HS2sUBmXr7MnFcrJ+G3fWdx791ntFi8\nQ2dGQ/l5upcThvg+xhDfx+DxixH8oSmCPzTF2Sgm6I6BgcEwqOH8N20ZdLMbkYilCPAgn+aVgaFx\n49KNAGdnG5Xm1nAmUy/n07dJMm0jqgpqgrzPCpdoD8+Q/DsQ9/Wf9mKkjJwJIYOwMeAgNvjvpzQW\nAGDmq18l7j/nfFBO8f+gyl70taC0ThaHxaEMahZizDZGIa80yFj6e5SmiEcvmYM4226UupwbG0nW\nd/B0EGxS5BQUyszbMUKQDCI9Nx9XX2nGaFQEc8Kgp/jY9ICPTQ8AwOPklQj+0JQJfC6DXhN24uyW\nMWg2sDTQkTltIAuHbY0SXqau1WDQIC107yoAACAASURBVOq6IoljZdJY8SAFkKqfwMCgCU5ENqR0\nUbqfMAEtXcuOnZk6oxs2rL2MqdO7Iikpo8yx0hixVTMw5PEt5xyqOcgWNBSeDojT2qkzatv4S/QL\nx/T3HIVj0XskxtexaYDJoUNl5EqvIS/IWBlmvJQ9PZjoW1pbYmPAQUx9MVzuGhN950nowGZxUMO6\nrtz1pr4YrpaeVESlpMntc7cX/P+GxSahibd8N6lphy+hcz0/WnqoA2Mw6DkXvgxCemGkrtXQe85u\nGQOAMRI0ia/jLrxLoh9Unpn/CNaEqpbqG1kF/xKR42Qpf3esolDMS4MRW/Uq7YXFcRrQhoFBMQ6m\n9eX27d4veMlls1m4fPEFLl98gcqeDtpSTWkUvRBL97eo1FZ0ffjLToRlhGBTwEFRdeRpL0bIBCjT\nfelWZv4G//20ZUiPO7LxKkCztIuJkREKi6nrQ9X1EFQdPx/yltJgaF2zGu68/URPARoYrMFAqrKy\nvlHEy8WxyNI/QOZUgUFfsDJpQkTO++QBehPUSpp3SWSyV1SxX05Ejq6obDsbMekrackIjQ1Q6/fk\nZXwLWusCMLjfz90RLTHaj0xRMgb1CU/dgVp2oyn7vKo6iq5ViVuQxsa0JTLy6f9fp+VehZ052ToQ\nj7/dxaI6G0XGAgD8Um0qtn1cRXQdXRG89hIGTqb3M/u5SV3sufuMsq+rf3VMP3oZZ5+FY3nfjjL9\nhSW6LUTLxDDoGcci26Kp02xRLAODaoi7JDEwMOgGF+tfFQ9iYDAwTkQ2FKVSFV6Lf2kDP6dgInI+\npowlIkeaRWGTJe63fVxFPAvRgdUX0MV9guhr/eRDAIAu7hNEY+Rd9/SeKpr3LiRKQm7w2kuivrFt\nJTOkCWWIr6sOkzp/p3iQHB5GfFF7LgkM9oShvMIYCfR4dGQaElMyYWNlBjMTrq7VYWCosJgb10Zu\nYbjigXpGA4/XSo8tKMlEcGQ3AICXZStE5zxAL889sDcpDWy9FDsJCbkhMGZbwpLrjNSCSNFpQEFJ\nBoIju6OqVRtYGjnhddpxBDgMR0OHUaL5uyNawtuqAwp4mYjNeQJzo0oYWO0MACA254lonPi1h0UT\nifkA0NBhFF6kBqOEX8icRqiJMG7hSnQvdPGkn2Z69fLzmDm3B205+sKWBoeRWZSOFW9nIq3wG+rY\nBGik6NmxzddxJU5+rMia8QdwJFT2lHZk88U4+XYNuMaCV98u7hNEcvg8Pu5dCBHdH910DWFPIlGn\niTcA4ErcFonx6sJhl2YcHLv3DP4c2Vui39iIg8LiEtSeGSSRXvXMM90/SxmDQU+5EjMKKfnhjAGh\nBi6VrPHhSzJ8qzjpWhW9w39CEO6sHAtbS8lK5uceh6Nn09oK5/s67sKHr/RT4n3NPgZHy/605egT\nKTknicixMJYffGdI1Ha5RDtb0av4lqjnpvzLLYnfTQ7bSumxwZHdYMl1Qf+q8rPXJOSGyH1BD47s\njuZOU1HLVvDS0MRxPHZHtJQwGMTnhqefxKPk0mBVccNA/FoaoYwAh+HYHdES8bkhcDOn6YxdgfGv\n9AcROZ8/fyUiR5+w5tpiTk3Nu4zP+GkT1pyUzfYEAP+ceYYZW4fhnzPP0KZ3I1F7wpcUkbEAAL71\nSk8+pvbcgF335ovuB0zqhIEBcykND7rUcnfCm7hk3H8fJdMXunyiqAq0vGrQT5eOJ66TMjAGg57B\nBw+HP3yHQb7/w6EPzUXtTJYk1WCMBdWgSuNGha1ZByLrRaXOKncGw+dvZF4iarlcICKnPFBQHKPS\n+PQ87VedLctYUIaHyRvwMFl+PngevwQPktchLucpcopVe8E8ETUAQOkpg5DrcTMw3Pem6soyAABc\nzZVzK2nfagUGDm6Okb+0RvtW5IoAutlMRHzGZtpynkZ7GVy8DgDRLv+iYX/hyc0wXI7ZDBabhalB\ng7FjXunf45rxBxDx4gsmryut2F5SzBNdB10ofWYnx6ZK9AFA8NOlGtH/xMSyk1o09q6MfyOpn31n\nJg+BubFuvCcYgwFAn/+twOnv1A9CksdP/1uJ9KIc3GyzTOk556L6YbDvQ+K6VBS2H72Po5efoUZV\nZ+xaMlDxhArCk/fRmHPgCgCgz4qDEmXYsvMLUVBUjIGtApSSxeU4oagkmbZOxbxUGLHtacvRB/Q9\n3WyzbTvxaNwYra/LZpmCx5ctRKQKOYUvYWEsP/uMED6/mNY6AJkaEqoSWEl+vMfzlN0ITT2ARpV+\nwc9VjyGjMBqnvgxTWnZecRq8rTpIuEgxaA/x4OZWrWti/mJJ95O5M4+rJdfdZioRg0EAH6QKc2qb\nRQcEfzs9q03FuU8b0OHnJtgw5RCc3Euzq53dfUfCjYhjRB26O35VP5zYfhP9J8oGG2ubfWN+Qmp2\nLlou/UuiXboCtLZhDAagTGOBx+eDzVL+j6n9P/NEBsLJ72aj/T/zVNLFkuuq0ngGSX4f0BIxiWlY\nOaX8+IWSoEl1T9xa8SsCJgbh9JyhMi5JquDv/i+RwlihsQ0McneLipDYekTk1HfXzCmiLowFAGhY\n+R3t35U3iT2V+j15FuNDax1AvRoSMTmPUNlC/TTBXpatYGNMHRQamnpAwiXpfeZFlWR3dF+NSzET\n0ca1fFZXL+KVgMsWZORpcW0JHnRS7/tscHkeQrpKbuzF5abC3bx0Q6PJ1YXo5dEQs+vIfrb89eE2\nfvVtK9MujrSxAACB//nHqwOpjZun0VUN7jksHXAsHVew9+EiAACLxQKfz5cYJ29us071sGTkLhxY\nfUGmT0jNhlUl5tONZygLe0tznRsI0pSLLEnf35oJAMgtEVTu63xnIQCIXtZHPNmIQ1H/yJ3/3c0Z\nYrJmAQBic1MAQMJYSMwXFNxILsjA42/v8N3NGcgpzpeYL4+sojwU80vA4/ORUZQjd1x7980I/tAU\naQWCyofZRfEI/tAUbdzWKVyDQcDKKT3Qc/xOXauhl4zuSCY1KoNmMOa4yO3zW7tR9OWzRuDb6rMm\nCG127sXAo4Jj+DY79wIQ7BkeDn0JAJh26apoPAA03LwDLXfsxvZHT0DFmfA3omvhPOEccTniegBA\nel4+fNcESbQZEo6WA1Se42xWB9fiZiA8vTR+5einPkrP97HuiBNRA8ETOx05+LGLxJjEvFcAgKyi\nRISlyXd/isi8ItPmYlYffPBwIeY3Udv9pPKTkrzHHfmuXHT5+f5W0TWPz8OTzospjQUACo0FefTq\n00jxIDn4u5Op+WKIXInbIvEl3Sc8Rbgcu5myv6y58voAYMP5qWX2l3fKxQkD7z8L0pxjAgA4973A\nUMgvEfhl72simebru5szsLjuILRzlj3m/sW7E1renIn77WUfqoMerkPBfyXCWf8d4VkYmcKUY6xQ\nRyuuGdrcng1TjjGutFpc5tgO7ltxMXoIAOBMVB84mdWHh4X6qbgqIue26mZHVd8Z17254kFKYMS2\nRTEvnbac98mDUN2JfBYNbfLhK3XeddLw+Hy8+2MSjNhs+KwJwqBjJ/BxhmAHavFNwYZITLqgcmz9\njVvxarIgMG59t844F/5WJGds00D80rgRfNYE4fdmsgZk79q18CUtHVXsbHF6yECJOeLGRMR0yefq\nsZev8WGG7I5YTecTeJvUl863rhW87FWvG/FD5R14m34WD5LXi4KRK5lWV3p+a5f5qGrZBns/tBG1\neViUnnKM9rsvij9gs7gS9+K0cJqGe4krcC9xhWietAzhPBbYaOk8U4XvUn9Jyi+tlJz33+e98LSg\n1Y1luNthXpknD/8kvUUb55qie6qTBgBgs8rF3qpcDDWWgUG7lAuDQdplqOe9pbjaegmM2dTf3v/a\nr8GLNOpqeb09mmKIVxv0f7gGx5oLTg5ep0ehrq0XjraYAScTQenuqJxkDH4ku+svNFKomFe7PzIK\n5Z8uCHExb8QEOKvJg9BPaBHA+OtqmgCPF0TckjLzH6CElw0O25K+UjqAx89Heh6Z4NEAj5cKxxix\nS19chK4YAMCHYNPk44wpWPHPPTT1lJ/3PD0vXzRWHu127UPfenWwsnMHiTm9a9cCAARu+RNPJ0jm\ncW/q6UEpy9IkUO46yhKRPBR+Tgfl9idl7aW9hrrUtO2Fmra95PYrSmFaxfK7MsdI91GNpatDecDs\nv4074b/X2gqMojw5n8nbI27i+JfHaNOh1G3YTInNP3Vp32qFTME2qjZVsDfvgdTc83RVA6B6RjIG\n+qTn5mPhqRt48SUBKVmK3w3F0YW7UrkwGO61kzwNuNp6CQDgdlv5WQn87UpfKv/Xfo3o2tJI4Nst\nNBYAoK6tFwCIjAUA8LJwEs0TD2oWlyXdR3WiwUAWO2tzXaug9/y8KhgRcSky7S+2qPYAsjJpgqwC\narcWVQiJrWOwu1vPY2oQk2XEtlE8SIz9P/eBz5ogeNraws7MVNS+9+lzkTGQnJ2N5bfvAQCW376L\nuW1b4dybt9jz9DmKeTy5RsOtX0ag3a59IoNBes66bp3xY/BRvEn+irfTJqrz7apERv69Mvuj05bQ\nkm/GVf5UgEF/8LJ0lNvX8dZq3Os4T7RxeODTffyT9Bb7mwlOn3/ybIzf/drLnS/P0KCSpSu8K21G\najQZg6GgOAb5RZ9gymU23DRNbGoGOq3W3SaHurDEA0L0CL1Uig59H6xCU4fqmFZDNvCpPEBit1nT\nL40kdDTmuGgsMBUAXsY1RWFJIm058n6Wi4/cwJlHYSobB/Ig8TMVYmhGQ3LWAXxJW0hElr5970Lj\nghRFJSl4Eae+vzZQ9s+I7u+hvv38yzP68FnR8vpS3O84X/FAgmjihAEA8osi8TqhHS0Z4jB/C5ol\nMT0L7Vbupi1HjRMG2qmwysUJgyFwosUsXatQIRgx9xDefU4CIKj6zCDJhX/fYOMYchmk6rjeQFgC\nmdoMAA+GlIeBlLGgb3TcvR8jAxsSlcnlVKIt423Sj6jpfEqm/Uta+cwAxKA57necj0ZXFqCBfRXs\nbDJK8QQ9xpSrfqYlKph4Bs0y9M/S1M1sFgt35/8Kewv1sxZqE+aEgYEI+rBrJKT773/i4vaxMu3M\nCQPw6N0XzA++hpvLyR2lkzxlqO/2AMZG7sTkaYJiXipCY8lVyQ3wCCk39SjKgsSJDNXvNXO6YFjo\n02eFNiku5qFzu1USbVduzgSXy5EzQzVIPocBw/wZGwKjd5/Cow/RALQeh8CcMJDk07sEjO+5Cbow\noq5ElJ9Ud7okIioZI3o3RcibGDSoJT/ws6LSrEYVGBtx0H7uTmJGQ13XW8SOxF/Gt9D7DyqSxgKA\nCmEsAICT1bByeyojTutbguqxd9qVnQpbOA4AKps7YljVjmjvIls8UXycCZuLAHsfrKpv2LviFREj\nIzZt9yNtUt5PGvgoxrNoH61/j7tH/4jaMw0z9TRjMACY/NNWvH9FXYabwbDw83KCn5eTrtXQO/wn\nyD6gpNvUjWsw5XrD1qwD0vNuqDVfmqfRXqjv/gjGHP0qYljMS0dorD9RmYGeURjzbBh2Njog0b70\nzXzMr7WU6FrlET5KaM1v4PGKkCbqMdirHRxMrPE89QOWhR/GsvDDuNZmJUzYXIlxk6oLYt+yi/Jw\nLPqO0kYJQ8Uh0DOK+CnD02gvuFr/Dg9bxbWmDIWn0VWhayeW8NVTUHtmkODL3RmzerRCAy/9PlkH\nGIMBc0fuYYwFhnIPqSBnefg67iL6YfUyrhkCPT+DwCkqMUgbCyZGnnL7yqux4GDRG99yzqg9/8PX\n0fB1LA0YDE/oREsfDtua1ny6tHMOQFVLF/T2aAFAcJrQ6Z/ZMoaAsB8AhlRtj7a3Z4DH52lVVwb6\ntG8lyNwoPGn4fcxebN85kpj8Rp6ReBZNNqYhIXM7EjK3G/RpQ17Re4TRfFaQpl/Tejj++BXC45Iw\nZMffiidIoYu0qoYTYagBDmy4hpD/RehaDQYGrfHzqkNy+ybvPI+2c/5SW7aj5UC151LxNLoq4jLW\nE5WpDklZ+4jv3AFAPbfSVKEzXk7CmGfDAAC5JTmiawBILkjC4vC5GPNsGK4mXqSUNTn0N0x5MU50\nP+bZMCx7U+r+M/PVFCx7sxAbI9aK+ieH/oYHKfdE90vfzBfdn4s7haVv5iM6N4rMN/sf1RzoHcVL\n17zIK/pIS56+8YN7U6XGDfEilxWHQTu0b7UCf5+WTEEc8Z5+vJo4LJCJh6DiabQXUnOpnz/6CI9f\ngKfRXnga7aV3xkL9OZtw/LFuTzfVoUKfMBz787auVYC5pSn+flr+/XoZ9IOIuK/osnAPElIzAZSe\nPASdvY9AXw9sHNMD/hOC1DqR8LJfAT6/ACk5spls1CU+YwviM7agtstlmBvXIiZXGQqKY/EqXjMV\n1qV369bU3yS6NudYSPQd/RKMhbWX43TsCXR26U4pL7ckF4vrlFYqlnZxSitMxep6gpf1qS/Gi+Yc\niNqDU7GC3a2Y3GgciNqDFpW+R0O7QPR0/5HSXYouHLYFSniqFSnSBDWcjulaBRlicr8qNe7AZzLu\nfwzaxd5B8wUqNeGaJCQyZTwiMR5GbDsEeIRqZA11ySv6QDBjn+ZYd+keiksM83SwwhoM0/rv0Nna\nY2Z3R+8RLXW2PkPFJiE1Ey+2TMGWCw9ExsGRO6F4ulGw+9W2vg/WnLyDGT+1Vll2VYf1RA0GIeGJ\nXQFoL3PH85ga4PHzNSI70JO6yrw8Jvn9gf+l3EUfj75yx+xsdAA8vnL+/G5m7vij+mzR/br3KyXu\nAcCYY6KSjqrQwCOc1gtNXtEHmHF9EZE8TPHgMrAyVW43X5u8SItEEwfZYoDigc9CmPgFBnlo0mgA\ngGJemkh+dadgWJtq/30mM/8RolJnoKDYsFzKDz14Ibr+34KxsDOQlKpABTYY3oREye0z4nJwIZy6\nSnQXv5kS9z0GN8dvC3rKlSU9HgB2rrzIGAwMOoHNZiFk02QAwIQfWmDP9X8BAEUlpS+bM39qgx5L\n9qllMACa/bAqlctGPbfbMDEis05RSQpexbcAj19ARJ48XK3HgcoTdOXbJTBmczGt+myRO9KYZ8Mw\nxW8GcktycCf5Ni7Fn0dn125o5dhWZv64kF/gbOKMBbUFleXPxp3E9cQr2N5wj8zYP6rPxr+pj3Dk\ny0H08xwsut/3eReGeo1CM4cWMnP0ibCEjgj0/IyM/Ltqy3C07E9QI/UZ8UTypd/PygOr/UfLjBMG\nPRfyinAx7glicr/ij9CdWBeg20rDuoLPLwKLxVU8UI8IbFxNFMPwc+9NSE3NQdfuZOOiJNbz/Pxf\ngK9meZ88ROLexKgKKtvOgZ05PTcgPr8YqbmXkJj1J3IL39KSpU/s/7UvBm0XnG4akrEAVFCD4clt\n+b98xx4vgI29hdx+aZLi0srsvxKxGsXFJfihlmQ6tS5+M5lUqgxap1fT2ph94ApWDusid0zM13TY\nW5nTWkfTO1wAD6/iW4vunK1Gwt1mCjhsK6Vm8/mFiMvYhITMbRrSTxZjjis8bKfLtEu7/Ejfi7sF\nzXo1ldJg2NZgl8R9L/ef0Mv9J7kyG9s3Q2P7ZnLvnUycKeeRopbLebxJVLeAIP0MJ172qxQP0gLC\nLEmb3gsCwXc2nkw5TjzouZ9na2x8fxpnYx9qRUdp+ChBXmEEsgufIa/wHXKL3iO74Dm0mXnmWYyv\n0mNNjCrD0qQhzLjV//vXD0ZsWw1qR83Ktf3x5HEkgtZehq2dOY6dmgg2W5NJHVho4BGGkNg6GlxD\nloLiL/iY8qtW1zQk/Ku4wsrUBFn5mt2c0gQVsnAb1a4/oFwtBOm5zu522P+PclWcqdYtL0aDIRTj\nYQq3Cei8YDcS07IACGIYfl4VjLb1ffHn5UdoUt0TT95HE8mqxOcXqfTBXr5hq+yKVN6h8/dYxX45\nvqTOVXu+Jp81qtRh2NfkD1S1dClzXutbf1DKktdeFl9S5//3oh9BOyVtRYXNsoC5sR8sjRuist08\nXaujkMKSBLyMa6Z4YAVFV9mfSng81JtdGrvmamsFdztrWJiagMNSbEhuGabyhgtTuE3XJMenKz32\nSsRqGaOBOWlg0DZXl0i6PPw9S3CkPLh1ANrN3SnTry4sFhcBHiHEC50ZIoyxQBY6xoIZVz+N2EnV\ne4tOGjRFcnawRuVXBHj8HGQXhCK7IFRlg+H0yac4eughbO0ssC5oIGxs6Z3kKoMxxxUBHi+Ip4Vm\nUB+qwm0J6VlISM/SgTbKU6HTqopz6e1KxYMoUPWEZs6mQTJtibGpaq3NwEASSzMTPNkwAS52yrn1\nKIMR296g83fThQVOhf7+yyLA46VO1q3jqp8Zhnp7tIAph0sZ4CyNMmMY9Ath/MKJs5Owc+9o/DZm\nr6hN0xixbZnnEANtmBOG/2BztGM7texSD5h0WKJtRNvVzCkDg1agqvgsRJPF3TQf06B/cDnO8Hd/\noms19BYjto2uVdAo6mQ2utp6JVrf+gOzXu7BqvqjypR1o41+xGEwKE+fnwIBACwWcOTv8VozGIRU\nxOewPqKLomskYAwGHdDo++p4du+9rtVgqIBQGQU/rzqErDzNB2BVpA8rJ6thqGK3WNdq6D2WJg3/\nC5jVDgEeIRpfQ9m4AnnjpNuZ9KkMJKlIz2EGsjAuSTpg6W7ZUvB71lzWgSYMDMDfswajUwM/rawV\n6BkFM65snvnyRCPPSMZYUJKazuRrdpSFEdteq+sxMAjp/WMgIj8mi+4XzD2JwMbVdKJLoGcUGniE\n62RtBsOFOWFQEWd3O4WpVNXh5O67GDWjK3G5DAzK0MDbXWtr1XG9ijeJvZBT+ELxYAODhJ9w837r\n4ePpiI/Rgqq/D49PQ/N+60X9D49PAwAcvfgMW4JlaxEI+8XlScsAgKt7xsHa0lR0TyXPzISLWwcn\nSrRl5eSj00jqdLS92tfDjF9Kq61Kr7l7+SDU8nGhnMvAUJ45c+opzpx6KtMu7pZ08+4cmX5NwWFb\nMKcNDCrBGAwq0qZHAI7tuK1rNRgYiPHqcwIm/nVOozEM0tRyOQuATKpbfaBh5fdgs8hVRz64digA\nwQu38IX/5NVQbNhX+uwZ0L0RBnRvJDFPfLx0u3jb/Wcf0XnUNok2efK2HrqL8YNbido6jdyGfl0b\nYtKw1nLlC9uoxi0Y1wWdv68lanO07I+v2ccU/Uhow2SqYtAl2jQGVCHQMwoFxdF4Ff+9rlXROq7W\nv+laBYOCMRhUpHHrGozBwGCwyAt69nWrpGVNBAR6RiEt9yo+pozVyfp0YbGM0ahyhFbW6tGuroTB\noAoeLpKFqlo28lF67pnrLyUMBgASRgAVGVl5csct2XZFwmDwsl+lFYOB8cBlYKDGxMgTgZ5RSMza\njZi0ZbpWR+O420yFm81ExQM1zPyT13H6qXquYboInGYMBhWpGVBFpu1rQjocXbVfOZKBQVW0eYqg\nLHbmnRHoGYWcwpd4k9hT1+oohblxHdR2uaiVtYQ1fIy51I/rD1HJ2H7kPr7Ey0/PvGvZQKXXu3Qn\nDKeuvUDyN0FO8LyCIpkxPcb+hfN/Cqq5pqRly/T/vug4AFmXJHkYsW1RzFO+po2qVHc6Qtmel18E\nM1MuZd/yHVcx97fOGtOJoWLRvtUK0SmDrtyQFOFiNRouVqPB4+fjeUz5ijXzrrQN9ubddK2GCKpa\nDPoOs+XyHw+uh6k995fOTBYLBga6WBjXR6BnFJwsB+taFbmwWeYI9IzSmrEAACw5VT9vPnyP5v3W\nY9jMYKRn5qGZf1Ww5Yy1sTJTuI5Q3vId12BtaSZxCiBO8NphSEnLFrk/9Rj7F2r7uEqMiUlQLc4r\nwEOz8SzWps0l7s/ceIn+U/Zh5V/XRW3th29B9zE7RPeX7oRL9Dfvtx59xu/C+VuvKNcYOfsQdhy9\nLzKSmvdbj/GL/0Z8UgYAYPEWQWKLRf/9e+raCwmDasDUfRg5+xBaDjS8FwkG5SkqKsGPfRvrlaEg\nDZtlikDPKI3/XWoaW7N2CPSMQqBnVLkwFtrW8kbYqik6S8taIU8YHJys8S05U6Jt2fhgtWshFOTJ\n7sCVharF3hgYSBI4eTOKSkok2lgsIHSzfpw+VLFfhir2gmPxyJTxSM3V3ss5FSZGnqjndk+nOlCx\nYNNFdPm+FuaP6yJqO3ND/WJoCzZdlIlDOHLhmcw4o/9q1kiPFad3R3+cuBJS5hhdsnb3TTw8Pg3f\n0nJEbS0beuP+80iJcbN/7QgA6Dp6OwAg8WsmVu28gR7t6snI3LtyMGVwujC+48nLKADAg//W+LGT\nP9bvvSUa/yWOKeBZEejSfrVeGwviiBd8yyuKQFhCR90qpABr05ao7nQAhrQXLv7y32b5LiRnZssY\nBBGJKegdFIzbbyIhZ09IK1RIg2HO5kGY1n+H4oFy6D6oGS4efiTR1q3mbKWrRfesq1o5eUPAEKpI\nGoKO9d0fa1R+SGQcikpKZFyTyiropku8K22FN7aCx89DWEJnFBR/0dra9d0fwZjjqnigDhnUI1Dr\naw6bGaxwzJThbXDiimo1D3Tx9/k1LRsOdhYAgIUT5Gepq1rZAdsW9qO11uXdvyM7pwDX902g7J/7\nWyd0a11HZbmZOSdhbtoCRkr8rhrCM5A0qvx8NE1JCU/XKqiNGddP9PuTW/QOEcmDUFTyTac6sVnm\nqOawAXbmhuM6uPP2v6JracPAydoCyZmyLp5+LpXw75JxaLxgG2rPDNLZCYPhmGEEqdXAi9b8cQt7\nybTxlHwQ5OcVoqiwWKbdyd2Olk4MDMowfc9FrBou+2K0ZoT+HNdSwWaZoZ7bXdHxspPVUOJruNlM\nEskP9IzSe2MBAEbMOiS6fhhCPwvQq/dxomt5qVNv7B8PoDQjk/CLJ3Vyamdjjub91iMvv/QE9uI/\nYbh2/y1tPekydURbDJi6D+fE3IvGLT4ucUKwZFJ3DJq2HwCwbWE/NO+3HiNnH1I6LqN5v/UYv+Rv\nHNkwQtT208Tdoh3CQ+cELw4HYdhebgAAIABJREFUzwqqgZ+/9RojZx9Ci/7KyReSkDoRMck/qjSn\nIqEvP5+ABl7o1HYVdu//Rdeq0MacWwP+7s9Fz0ofx50w5mg2XbIxxwUetjMlntENK78xKGMBAK68\nlF+019nGEgCQU1Ao02dhYiy6vvpKO4k2pGHpqXuMxpXq4jdTpq3X8O/w65wf1J4PAGYWJjgduoSy\n7/KxJ9iy4DRln7ruUAwMqrDqxD+4G/YJVxaPkmjvvGA3ri4ZrSOtGMQRT1HavN96sNks/O/oVJk+\n4b2Qds2qY+nk7pRjqFyD5KVCFXLhr7GYs/48XkfEy8i7svt3ibiI1IxcdB+zQ0be8cvPsenAHdG9\nMdcIt4Mnyo21YGBgYCjP1J21UbS5In1SsPXGI+y4+Rir+3dB9wDZoPPGC7aJjAk1ThloP3QrrMEQ\nE5mMMV1kd3KUfXFPS8nGwOZLyxzj7G4HK1tzfAyPK3OcKusylE9Wv1uMuLxouJtVxiTfmTDlmGHF\n2wWwN7bHWO/JAIDJL8ZgsOdINLJvCgBY9W4RMosysKKuau5E/hOCYGpshLPzhgMAei7dj4KiYr3M\noMSgXwydfhC5BYU4uVnWuJRnmDAwMDAwCGi/cjcS0gUZ6KRf+p9+isXwv06gbmUXHBs/QGbuzGNX\ncDH0HeVcJaBtMFTIGAYAqOztRNl+7uAD9BzaQuF8u0qWCsckxaUpVRX65PPFCscwlG8+53zEtgb7\nwWFx8NvzodjR8CDm1FyClAJBtd+xz4fgz4alvuMbI1ZhVo1FAIAZr8ZjTb2tSq/1YssUpGTmoP/q\nw2CxWLi98leJ405tIf09Meg/TpWsKF2fnr7WXmyJvvI+xg0sGIGPUpdTU+O6yC98DR+3V+BwBLVO\nPsT6gcfPhrGRFwqLowAA1SvHS8ixNu8DV4etMvJ93d+BzbYGAMSljEB23jUAgL31ODjazJXR6XNC\nSxQWR4Jr5IGi4v+zd9ZhUWVvHP8O3QgoDQIqKrauXYiBYNdaP9s11m6x3bA71151bddWLBS7VmwE\nE6SR7hrm98c4xdw7eafgfJ6Hx5lzz3nPO9cLc95z3oj9MVcc5F07SJPzPXMF0rK2iXyO5IylSM/e\nw2+LjHHmXzPQd0AJOwkA4O0aDRZLkNpWFp0jY5xR0y0WkTGuInoKz8/E/RHWWU/PEqWleQDYAFg/\n+nEpKHqN6CSea4wegFIxfajmsjTrCWe7v8T0IpRfJnduiYWnrlNea+rFfZ7fxCRSXn/1jbpdXVRY\ng4GKZX+NRHO/2jL333JmCqb23ar0vOaWJkrLIOg++ix9AAAHHByI+gt9XQaCzWFT9v2WF8V/LY+x\nwKOylTlu/jlOIT11GW0zUrRNH2msm9eHH7NgYWaMvPwi/vH6kfUjGZ3LN2CNWJtfu1pYEtST0XmY\nxMPpLowMPBAZ4wy3KidgZtIWkTHOiEsdA3f788jJv4pSTo7IQjIhddKPBTC3zdiwNrLyzogZDAD4\nxgIAuFQ+AEB0UStMYfE7FJV8FpmrmB2HyBgXkTZpyCKnivUCpGfvxpf4pvByfoZSTo6IsSCMcFtq\n1lZ8iK3Kb5NH58gYV4nGD5P3R/h9dt4lxKeK/u2MTuoKD4frMDaiDlqnm+tLfFOAGAwaITnvAR4l\nTkIvL+rUse9SN+BT5iH++7L9zn9pSDtWEr1/qkNrMAgTEf8dtZyriLTFpKquVo0sVGiDIfjDagR4\nz1PYHahGXVccvrsAw9qtkN5Zgg4EQlnqWNXH5o9r0NSmBQKcemGA21DMez0FmcUZ+KvJYWxo+Bcm\nPB+GKsYO+NltKOpZN5JZ9s+rDuNDXIpYe3l3Sdr/VfHMaAQBxO2IHiMDD/5rM5O2/Nf5hc8AAHEp\no8XGONltR1beWf57D8cQsUVuZIwzXCsfKjtUIlGJnQHoi7QZ6rvIJUMeOd6uUYiMccbHuFooLc2C\np9MDqbLtrKYgJVOQXVAenU2NmkAZLwtF74+lWXdAKDlQUvpcAKA1FpSZqyKg6MJbWezNWkuc91Pm\nIYnXmdC53vxNeLNqukhbYMOauPIyEv02/4PazvbYPbYvPielYuSuU/w+tZ2pPWRUTYU2GADlF+yV\nHa1Rv7kXXj+RP0MJMRYIPIR3mXmvm9kKik11tO+KjvZdacfIyt23X/AhLgUHpv+MRtU0/4W19N0c\nJBUIjlkb2zTDOC/RtJMTng8Tee/v2B19XAZK7AMI7s/ksFEo4ZRQ9pX3HlLN09G+Kwa4DVWJPmXl\nrG2wHZYGVmJ91jbYgTmvfqWVQ9AehA0JOlgsY3zP/FPEjcbctJMCs7Fpd9hVIaemG3eH3tykPYwM\nPFU6l6lJCwXlyz+XJLLzLqttLoJ64EC16W+X9e2EZWduimWWA4C1gwNx5SU3k9L7+GS0/U38BOr0\ntKFibeqgwhsMTLD68HgAQO8Gi2Qq4nbx3QoYGOpL7UfQLsITknH2ZThCIj4jPS8fpoYGcLC0QNc6\n3uhYuxqqV7HTtIpSmbn3IjaN66kVxgIA9HMdgvpCpyNlF8gTng/DjsYHocfSE2kTNhgWvJmORjZN\nMd5rKuUc2xofEJGtzGK67Nj7KaH4J3qfiMEw4fkwsMDCzibUO8I8fXh96fSZ8HwYqpp5Iqg2N+ta\nUWkRpr4YQ9l/68c1xEjQEYqKP0rt4+36FZExzqhivRCf4uooPJeRoTc8HUMVHi+vnMgY7t+V3II7\n4HCKwGLJHxvFlM7qmsvAwAXsIumxiur8XOWBz5n/4G3qOrR1/hupBS8RnrZJZFf//JeGqG49AjE5\nl1HTZhxep6wQuw4A9ezmIqc4CvUrixfLozvdYMlQcYBuLHdeFupXDkJ01r9o6rAW5obuIn0GNK+H\nAc3r0cp+/scUNFlE7e6uqRoMADEYGOXcK2512shX33Bs5y18fBOLoqISuFdzwNh5gajdqKrMsh7F\nD0BW4Tva6/6e4Urrqy1c++rDf61tn2vcP2dx92MU5bX8omKk5ebjfeJ3bAwRPX6PWK6d7j09m/vg\nccQ3+NarpmlVAEDEWOBx5/tNtK/SCR+yudkghI0F7nt97P+6E6M9JwIAKhna4FXGc9UrS0Gbyr74\nJ3qfWDudsSArLzO4FZZ5xgIAGOlxF1/hWW/gYyX6ZbOgNn3GNn/z4aje0APbH3BlrRm7C/8L6g3n\nag7868amRthwcxGqN/SAv/lwWFibYdyqIdgwcS+cvOxRqbIV3j/9hGu5h+BvPhzV6rtj3KohaNje\nh3ZegjgsliFK2LIHLhYWvwe7NB2OtusUmE0fRcVM5GuXTU5hMbe+Rk23eHyO/wkfYj3kipWQZy5m\nYGYuZ9vt+JrYXi1zVSTepq7jL8htTRoiPG0TItJ3oJaN4CQ1oygcXaveBAB4Wv0sJkPdrk6Zhe9/\nzPuCVidZMDE0wLvVM7D+yj2cfPIaDtaWmN+jPVrVkH0NqQqIwaACajZwx7K/RmpaDYISZOQVoMXq\n8ufzvmRwZzScshHTerWBqZGh9AFqppKhDW4mBaN9lU44EcNddFO594SlP+UbDHNrLcWE58Mw4fkw\nNLdtjVGeE1SqY3ZJFs7HncLX3M9ILlRN1oqzcScp260MrXEq5giW1lklk5wZHX/HtVxR42Xu3vGI\n/5zEf8+7HmA1Eg3a1ua/9zfnFsf7+806fHoZhUmtl4j09zcfLiabIBlv1+gfbiml4NVNjYxxhoVp\nZ7G+LJYhohI7AgCszYfIPVdNtxhExjijsPgdjA0FpxQpmetR2Vr2OBRZ5UQlduQbCNWc/0NkjDNS\nszbAzmqmiLyi4g8wMvQGwA1c1tOzZFxnJj+XNIwMawAAPsXVRnUXQVHCUk4e9FhmEucqKvkq0XVL\nOPA/NHiuzDqVF3inBDw+ZhwUMRhaO+1Rt0oSeZbM7P/RrMC2mBUo3YVRXRCDQUtp6XxKrE14J56g\nOl7GJGDQ3uOaVoNRGk4RrdXQcpZ4BhZtCHo20jNGPjsPAHdhDsjmQvRXk8PggINfn4/Ak7QHsDGy\nw8p6mxjXb8LzYahp6YMZ3kEibUxTwC6gbDfWM0Hej/sjC+wS6ixbVJSyS8FmC/rzThMAwEyoSFvo\nqcfwHcCE/3jFpKZbvIgve2Xr2WKLakBgXFiaUWeFEpaRlrUdaVnb+fJF53IFhHyyFVl4S5MTGeMM\nW8sJFGOcUVwSB0dbQc2jtOydyMw9AYCb9amGS4Rcc8mKuu/P14RWInOyWEbwdo2SOJehgQe8nB5S\nytywVXomnfKOJoKhlYHDUW3sg6YhBgOBUIbyZiwA2mEMyEJyYSLaVfEDwHX3uZJwXuaxvLiBG0lX\n8G/sMcZ1W/F+MQCIGAuqol2VDrgYL14V/nthEgKdesksZ8udZfA3Hw7vxp7Yem85StmlWPvLbuRl\n52PShuGwdxONu1l7dQH8zYfDuZqDyCmEMCtH7sCBZeIbGhWdsgtRqteS2qTJVFxGrEz9lJFDpwtV\nu6PtRjjaSi42KU1nWT47E/dHns/lSbPwl3Wusly4oluLZVXA5hRCn2WsaTVkpon9n7gXP1LTaqgM\nYjAQCELUWkr/RbZtcE90qkXv+1/K4aDPzn9wfOwgVahWLrn3/Rba/jAQeAxxHwUA6OncH1cSzuN9\n1lvUtqJPWViWjvZdKQ0GT/Pq+Jr7SWFdy8ZSAPSnC7zie4rSzakPLsafwZ/vF2FhbW5sVFFpEQDu\nfZEHYbchPX09zNtP7bLF60flZuRczUHidQKBQFAEB7M2Iq5HvFOFXl4vxVySmDhxyCuJx8vvy5Fa\nwI0zCInpDSuj6mjqIFuc0MOE8cgq4iYuuBrdCXYmDfljbU0awtvmF5XorQ2wOBRpnbQArVRK02hz\ncLAyaNPnojMYtDWIWV4aTtmI0JUTUMnCVKR93/WnGNOlmVp1EV5sVza2R0phMgBRF6QSTgkmh40S\nGyvchyeHm26Ug+ySbNosRby+DiZOSCpIUCitqqGeEepbN8Lz9CfwtqyND9nvpaZDLauzLPpkFWdi\n7uvJYIEFcwML5JRko7JxFfxRd4OYjPKYIUkXC7cR6OG568gfCF0xKfv8V8QYhvLK9H8uYdP/uqt7\nWsWLlvyAnDAQCFJ4t3SaplVQObXdHNQ+pyyLXAOWgdR+8iyWlV1YC4//BZOVnkdSPytDa5njNwgE\nbYcYCrITEvpeeieCTsIu5eDGm4+oM28jJnZqgcmdW2paJZkhBkMF415sAPKKoymvNXM6BBuTn+SS\nJykQm+nTghdJU5CcF6Iy+Q8+U98XfT3pOZl1mVIOB7/uOKMzcQ4EAoFQnvl99UVNq0BQEesu3+W/\n1iVjASAGAyV5OQW4dOQxIl5F48PrWOTlFCA/r0ilc6qj6rO0LEtPE7gZUWRZiKfk38fzxHFS57M1\naYqmTgdlV5IWjkqNBQC48Kr87uokpmej65K9AADfIPHKkQQCgUAgEFTLtTe6W4+DGAwAArznaVoF\nlSNsLLCghy6eb/nvS0pzERLdVKSvpAV5av4DEWPBwawTGjps4b9PyLmM19/nAADSCp7hbow/2rld\nU1j3Lxm78DF9M/+9quIc7n8SP2HQherNsuBoY4mXW2dgxp4LWDq4s1gMA4EgDxwOMGX2EbwNj5PY\nr5t/ffw6zg/mZvJX/JWXngO3Iisrn/Ja85+8sHJ5P+jpKe3GK5Ebt8Px55pLEvvUr+uKLWvlr6ug\nCvYevIt/jj+mvKavr4dJ4/zQt2djRue8cTscO/fcRlp6Lm2f+nVdsXheD1SpbEnbR1XExKZh9cZg\njT3b+w7dY1Qek5SWcrDwtzN49OQz5fXBA5pj/GhpRezUg7Rne9v6oahd00nNWnFdknSVCh30vH7e\nSdw8q5kKsWWR5YRB0eBg4XFNnQ7A1qQ5Zb8bUY1QyikEAOixjNHZ44VSegj3a+N6CeaGXgrJU1dQ\ndO1lG1H216GphysOjxqgsjnVzZfEVNhamBGDgaAQ85ecxuNnXxQe//euMfBwl80Ipwp6HtivGSaO\n9eW/LywqgX+vDWL9JHF471i4udjKNUYSS/44h7sPFNs1nDjWFwP7MZdsQNZA2YC+m5CfL9+puTJB\nt6H3IrFshewpkoVxdLDG8b/HKzy3rHQIXCP2918e5Hm2eUTHpGL6vONIl2A8KQNTgdKPn37G/KX/\nyjXmxoVZMDTUZ2R+QHufbXlZc+kuDt7jrjvfrVarGzAJelaUER1WITkuXdNqqJy47LMi7+mMBQDo\n7PGCvzjnGQ5lEV68/+Qoucqiv2c4v//92O5yL/ZT8u/heaLgi0LVGZS003ZmFi/H8nFiQlAvVIt3\nRRg5fh8unJwKK0sThcbXqc3NtFPK4cAvcK1CMoaN5brmKbNImDxL+umKLOzcG4qde0Oxb/tIVPOy\nV1qeLPOd+PepyucBgAePPmLhb2eld5RCYlImfAPWwM3FFof3jmVAM1E08WwzNaeq+fwlGWMm/a3Q\n2M49ucX61LUYV+ezrQxzu7fjGwy6RvmO5qQhJzO/QhgLAPA2ZSH/dSePMKn9O1YV/MIJxwxQYWfa\nWqo8PZah1D50qNNYIBAI4rwNj2N8caOosQCAv4OrqLEgjDKfiwljQZgxk/7Gh4+JjMoEICJzwrTD\nal1QMWEsCBMTl4aufSQXfJMHbXu2tY2Fy88obCwI4xuwBmy2aisgK/NsW5irvzCcq601AMB/9X61\nz60MFfKEYUDTZZpWQSPos6T/MTPQs+C/fpE0hXahzmLJdtTYsepT3IhqBIB7YlDZtK3UMUXsVNz+\nJuinKmPh6rsPCIn4jJsRn5FfVEzZ51lUrMRibmWRp14DlVwm6j0oKleecYP2HsfLmASpMg+P/hlN\nq7pI7acLOlHpMqJlYwR1ZdZnV1tqgRw+/gj7DjLrT71yWT+lxru72Ulc5FX3skezJp4oYZfi6o03\nyMoukChv8KhdOHZANe4udX1cUMvbEfr6+giPiMebd5Kr/I6begiXT0+DOYMLmNPnn2PB7G44ePQh\nIj5I/92go14dV7nHTJvYCZt33pTYx8nRGq1bVIepqRFi49Jx+26ExP4FBcXIzS1U+h5p47OtTcxZ\neBLPwqIk9qnmZY/mP3mhpISNW3feIyU1h7Zvx+7rVHbSoOyzfem0+tOmX5s3GnXmbURsWiZOPnmN\nn5vXV7sOilAhDQZZ+KldTTRp6w2fxh6ws7eEianqg/Z0CReLPjL10xMq6x6deVgmg0EVxoI8i34C\nPbIuynkM238SAPBy0RSYGKrmz40mdTr4KIxxg4GKwLo1VT6HMNExqVIXVPNnBaJrJ8kVuNdtvoZL\nV1/x37dsTl8pXRaojIVu/vUxZ3pXsfZff+kgcRwAJCRmKqTH2WOT0WfwNpG2n/s2FZmTjplBJxD2\nkjqFc7f+mxldWN29/wFzpnfFgcP3xa7t2TYCNarR119Zue4yroW8AwBsXSd/kHafno3FDAZ3Nzsc\n2j2GdszSH0X5VHmPtOHZlqY/1fOqLteeD5+SaI2FPj0aY9qvncTahZ97v25rUUoR2OsbsIbxz1Bc\nwqZ8tqXNI/xsa4p3q2dg3L4zWH4mBMvPhGDnqN5oV8tTozpJgxgMQqgjtWl5wdq4ntxj0gqeSe1T\nNvXrw7g+aOXC7NE2QTGUMboa/rEVAPO75MrqVNfZAafHy7YYCl82HT7LNom1H3/2GoOaMrNDRPd5\nNgwIZES+rIwYt4/2mjxf+rOn+WP2NH8mVFJKl9Dgudi84ybOXhR3y1RkIWNTyQwAcPzv8XB0sJZr\n7IaVA1FQUMyoew0dBYXF6NxjvUibrJ81aHY3BM3uprQOshpSwmxYORAAvaFXXMxWKKA2N69IZ55t\nTTFuCnUadFnvza3L3AyJVP93TBoNVDEL6n62FaXOPPHf/YkHzsklQ80B0wAqaAwDFcRYkI9Sjvx1\nKWRxiSpLdlGk3GMIzJFbyP1/ZuqE5tejF5SWwaROb+OTZNZJj0WdZGLZJcmxPspiZaJeH9vFv9Mb\n6OrMJiINeXWh2hlVdn55jQUeJiaGaN2yBqP6yDKnuv//QoPnym0sCEN3j2YGnVBIXrd+4gY/D216\ntjXFHzQpgRW5N5396iirjkSEjQVNPNsVEWIwEBQiq0h+VyFrY+m7sMb69vD3DEfHqk/4bdIKzhFU\nx9ob99Bv11GJfbr41MDQ5g1R06GyVHm3Ij+jmM1WWidJxoK5sRG6+NRA/8Z1ZdZJVlb1Uf+O4tOg\nX9U6372HHynbtekLWVFdrK20J53wn0uo3TpDQlVTQPLqWd2r5E53j6TFg8iLNj3bmuTmbfHv9RsX\nZikka+Ec6h386JhUheRJQhefbV2EuCQRFCIu+yzqVv5Tar+0AsEuQJ0qv0nt7+seCgAw0LOEm+VA\nxGRzd5KkFZOThqJBv+WtDoO8HH/2Wqxtff9AdKsn2aeew+HWtaCi3m9blHJNotIpfNl02hMAHqfD\n3mLR+RuU15qu3IFnMizMezf0wfyz4kUId997hnFtm1KMkB3f9ZLTFKuDUROps3bcuKjYokHbOH9i\nCqWrxPHTTzGoP3P1EJTh5Jln6Ohbm1GZh/cwn45U1yjvz7ay0NVZUKaWwurf+2Pe4tMibSPG7WPU\nQNPFZ1sT7kRMUCFPGA7enq9pFTRCcWmWXH3qV1E+5dx/iYIANxN9+gA7KnwqLxXJ2vT6O9kF0jQR\ny2dINRYAgMXiBhWrg4jlM6QaCwDQv3FdWp2yC6jrjsjKhpvigXfykphFn2VEXXyNSqFsNzRgrgCT\nsjBdeRgAHjz+xLhMRUlIUiwQWxJurswVqlM3LZopFyjPQxeebU3y+Kn4Sauri41SMpv/RF2slUl0\n+dnWNSqkwWDvYoOdl0QtvADveRrSRrUI78rfim4htb9wHyeL7mLXbU0Eu3D3YyUHYpZyCsHhKOd+\nIlwXIiHnEu7EdFRKHkFx5D0VMDE0wMO5EyivXXwtOX2irGhCJ7o5b0bI7tpUlt33qBMCqDuVKhV2\nthbSO6mRqROZjUUAgC9fkxmXqShZWfmMyps+qTOj8tRN/bryp3SVFW17trWNf/b+ohK5iQwZxbr+\nbOsaFdJgAAAPb0fUqCuaiz3Aex6unZKeyUfXEA42/p53m7Yfr16CJJo6/c1/nVscJbGvsLwmjrul\nyqZD2OgpKFE83zJBcZZ291NonK05tc/44gvUrkHyoG06TT6meEA3EycUqmLv9pGaVkHl5ObJn8RB\nV+jdXfrfdW1GX0/66aE0qFJvAhXj2ZaFk2fUu+5hKqWprj/bukaFjmHYcmYqANHThU0LT2PTQoHP\nHUuPhRZ+tdHMtzZcPavAwdUGxiaG0Ndn1tYyLxOMx+YUIKfoA9ILniO76CMyCkVLib9ImgQLoxqw\nMKwBG5PGMDFwopXdySOMHzgcljQJADctqqvlABSXZuBj+hZwOCX8/izoo4vnG1p5/p7hfHm8f10t\n+8PWpDkK2An4kLZBpH8jh62obNpG2i2QSNk5u3i8BotVoR9ftTK4aQOlxh579kqkraC4hKa3fHKZ\nRB6d3i+bQRujwRTvlqq3oNCXqO+U7bwUogSCrnLw6EPKdvJsc9mxh34jURWEhL7HiCGt1DonQXnI\niguClKpUbkmcUg4e3QzHo5uqqTZcVgdAtqxAyXm3kVzmtEBSULDwghsAMgvfILOQ2iiQZCzw8Kv6\nCLeiW/Lfx2afRmz2abF+pgYusDdjxo2ous1UfErfAgC4HlVfZRWgCczya/vmYgaDsizpptjpAlPQ\nhUycefEOfRvJl04wOjWDsl1fT70HwHTZkbQJCwarIKuKeYtP48l/XzSthlazbdctnD73n6bVIEhB\nUlV1Zfiekq0SuQTVUuENhlmDdiA8jLqiZHmDt8C+H9sducWiX2jmhh5o43pFZlmGetbw9wxHfkks\n7sZ0EbvuWekXeNsw639drdIEVDFtg0fxPwNQPnMSQTbW91euaFgVS3OGNBEwpJlypwu1HavgfSL1\njrqsvF48FfV/3yLStuDcdbkNBv8tB8Tajo4ZqJRuinD3vvbXPKlVk/4kVVP0HLiV8biD8saWnTdx\n5oJ40TxCxSQ/v/y6AALUhdmYRhOZliq0waCtgc6qXgS3caUuzqIIpgauSusrz3gr47rESFAzsmRF\n0jUsGCiGZkSTXeVlTAIauim3sG3s7qzUeEVITctV+5zyYmUhf/FHVXHs1BPs2n9H02poNeQeEQjl\nhwprMATWrJipVQkEgmoZtPe4zNmNeu04rGJtZCcrm+ySywoTrhrm5sbIzVUuna82s3bTVVy+Jl4z\nRR7Mf7iglef7RCDIir6eHqb5t8IYX+Vq/ihKhTQYJvXaDA6Ho2k1CASCjhOxfIbEqtPSiEwSzw3/\nW0/m04bKgpNjJcTFp2tkbl1CmrEweXxH9O/dhBFZuoq0z1XXxwXb1g+VSdZvKy/g1l1m0jAT5INU\nwFYMWdyFeG5LQ1s3xIKeHST2vfwyAnOPBYNdWqoxYwGooGlVv7yP17QKBAKhHHPn41eFx/7cpB6D\nmsiOq7NyRZoqAivWXaa9NmNyZ4QGz5XZWKiIWFmZIjR4rszGAoFQHvFbsQcA4GBtIdVYAIBuDWvh\nzarpANQTH0FHhTxhkIRfr0aYs3aQptUgEAg6AlWK1fH/nJPqlkQV7NyuhgeTqslF316NSXYfKVyn\nyR9PdmIF0J0uKHqPSkpLlVGHQNA6kjJzAAC3FsheGE9PKDVf303/4Mz0/zGulzSIwSCEcGrT8srr\nNzGYNvuoSFuLZtWw8vf+/Pf/HHuEfX/fFelz+5ogQJzDAfy6rqa93sF/NW5fm4cO/oI+Xp5VsO+v\n0fz32/8KwemzgrR6xsYGuHphloKfikDQHHQpVr+lZcDdthLtOKp0qrv/14cpteSm+U9eGptbl+nm\nX1/TKpRrvn9XPgWns2MlxCdSpy8mALVrOuF9JCmKqg7+OHdLaRmRCcpl+FMUYjD8oCIYCwAwbfZR\nrPq9P5o3q0bbZ9/fd0WH4cUEAAAgAElEQVQMgLL4dV0tcv3V6xi+kcBD+H1pKQcdy+w6nT77n1j/\nsjIIBF3BzsIMqTl5Im1dNh+gPWU4/PiFOtRihKBl/2Llsn6aVkPj7D14l7J9zvSuatZEe6G7R2eP\nTVZYJhML2S3rhqD//3aItZNnm8u29UPRsfs6sfaHTz6hVfPqGtCo/HL66VtNq6AwFTKGoaIzf7F4\ngTUeK9ZcgqWE1IVrNwaLtTWo7ybW5tuuFv+1np7oFuzajcFo29pbpG3Qz81p5yTITikJ5tcID+aM\np2ynqx79Z3CoWJurjTWTKjHGoyefNa2CVnDrDgm8lQbdPdJ0ReXKdhaU7eTZ5qKvT70UXLDsjJo1\nKf84WFM/i7pAhTxh2B08C+MC1mtaDY3A28HnuQu5utri8D6BH93tOxEY2J8+Cv/6Ta4Pb1nDIbCr\n6LF8qxb0uxLXb76DR1U7qTII8hP89oOmVaiwmBoZIr+oWKSt4R9bxU4ZyvbhcXP6aMp2daLHYhGj\nk4bU1BxG5b0Nj2NUnjagzfeIPNuS8a7hiA8fEzWtRrnn0ISf+UHPG4PvY0ZAGw1rJDsV8oTBrZo9\nXDwqi7SF3a9YC63b1+bh9rV5iI1Nw/pNV/ntLZtXw+Vg+tzZvJOBOTMCxH5kpW1rb+TkFColg0DN\n8f+Uy3tOUJwXC2Vzu/hp5XYVa6I4Ny5SxxGV1/Sf8uDkRB+PogiTZx1hVJ42oM33SNef7c9fVeu3\nvnvLcMr25SsvqHTeiobwCcPe0GeITpEeW5OUmSOSHen+kgkq0U0aFdJgAIC91+eIvF84ep+GNNE8\n9x995L/+bUkfZGTm0fZdsqCn0vMtWdATiUmZSsshiPMsKlbTKhDKUHZXk10qvsv5ZP5EdakjETrX\nBACYGXRCjZpoH138fBiTtVZok6Y8QXePUhg+eVAEXX+2p889pvI5jI3EnU5u341Abl6RyueuSPw9\nfgD/deDaA6gzbyN+2XsG9yKjkF1QiGI2Gx8TUzH10AXUmbeRfyLBw8bcVN0qA6jABgPADXQWDnYO\n8J6HAO95mNhdc3luVQ0vuJj3AwBnT0wR6TN8aGvKfjx4GZCEf7b9FSKXHnNnBSotg0DQNrwq24q1\n+SzbJHWctSl93JC6oUt/GfYyWundWF3eKBjycwvKdnl3we89/Kh0BWRthe4eUQUcS+Lew48q2flf\nvrAXZXvYy2gE9pX+eyoJVT/b2TkFKpUPANfOz6Rs79Zvk9Ipl+8++KAzpzmqpqmXK2aWcUV6+DEa\nE/afRYulO9BwwRb03ngIIe9EY2zG+DaVqSicqqiQMQxlCf6wGmtmHcPtiy8BAFEfEhHgrd5sPerK\n0iRLFqJRw9tg1HDJfnWS5FBdK9sW0KUeArpopkBVeeXfMOoc8QT1cWXKCImVnw88fK5GbVSDb8Aa\n9OzWEDMnd5F5zMgJ+xEVza1qXd5qFrwNj8P7yATUrukktW/PgVuRlZWvBq20D1nv0Y3b4fhzzSWV\n6NC+TU3aa3n5RfANWIPDe8bCzVXc8KdDFc/2gD4/4ZRQ2nEevgFrVP7707VzXVy9IZ7JZ96PZCmX\n/50OczMjmWRxOIB/7w0oKqJO/lCRGePbFGN8m8pciO38zOGo7mCnYq0kUyENhiW/HMAzkvGCoIXU\nWb4Z75ZOU2jswvPXGdaGoAiVLcyRkpMr0jbj1GVsHNANq6+Jp52UVuBNE4QGz8XgUbuQkEi9a3rh\n8ktcuPxSzVppnro+LpSBuBOnHwYAdOtaH3OmCdKsFhQUY/7Sf/Hy9TdKeTcuzkLnHuUrAcftK3PR\nIVB8J1n4Hs2Y1AUGBlwHh4KCYhz45wFO/PuUUl5o8FxGd6alPdvDftnL2FyKMmmcH6XBAAhiLqq6\n2aF925pgAUhJy8Hbd3GIjkkV6auIcTF/ZiB6d2+ECdMOU17v1k+5kxiCKJo8MZCXCmkwEGNBdl6n\nLEb9yr/h5ff5aFhlNd6m/Ia6lZcg+Gt9BHhyj9WDv9YHB6UI9JSeX9g3ZDZCO4rmey4uZcNQT18l\n+usabAWrmj78Qr0gIaif+3PGiZ0yBL/9gI0DumlII8U4dmA8cSEow7b1QyXek8tXX+PyVdncjcrb\nSQsPukKGPLThHunCs+3maouY2DTa69ExqTh09KFK5q7l7SR1fkLFo0LHMBCkE5t9Fk8SxqC6NTf1\nanbxRzxKGIZKJg34fTgQLHIHPvgTviGzMe4pd8FUwmHjl6cb4RsyW0Run3vLf4zlYMdHQRYG35DZ\n8A2ZjV53l/Lbpj3fgWlhO3E5/gmljr4hs9H9zmLE53N3V1aGH0evu0vxKTuef3162E5ciqMeryka\nuFIfz0tyaaGi4R9bMfrgv0yoRFAhK6/eEWu7Pm2UBjSRndDgubhO49dcUWFiEVtejQUeocFzYWFu\nrLQMVaLtz/bhPWMxT4OZAw/vGVvun1OCfBCDgSARQz1rNHfaDwsjbl2FZo670dLpMFo6UR9XJhWk\nAwB2N+Mesxmw9LGn2Qzc9BPEaDxNjcDZtlyDgAUWptXsIyIjtOM6nG+3nP9+c5NfsbnxRHRzFi/u\nNvn5NoR2XIdL7X/HkIcrAQA9nFvgfLvlGPdsE1/epsYTsS7ilEL3QFWc+GUQ7bVaSzciPCFZ4vjs\ngkLUWrqRtjgYQXM0reoi1nbwUZhYm7sts2koVYGRkQFCg+eiTm1npWXNnxnIgEaaJzR4LipZy1+M\nrEE9N7FF2PjR7ZlSS6u4dHqaQvcIEDcWVHWPtP3ZDuhSD7evaHbRHho8F9MmdlJaztH944gBouNU\nSJckgmx8yzoBP/ebAIArX+si0PMt9Fni6bwkuSL1uLMYF9v/jujcJFSz4P5RbmZXC3eT36CdvWxB\nz7eTXqGDQwPKa/oscVemapbcnftSjqh7T1lXKG3g0qTh6L79EOW1vn/Jn4M8YvkMuU8oCMxzePTP\n5e7/YfuG//Fff4tJxS+TD6JQSjDjLyPbYehA6sw50lDV4oIpueeOc+tu5OQWYtyUg4hPoM6n3iOg\nAWZN9aeVM3hAcwwewEyle21bkPHuEQAMGb2b9h7VqOaA1b/3h62NOeV1Ju8RFcLP9o1b77Bu8zWV\nPtvywGIJ/l//PvIAf//zQGL/iWN9MbBfM0Z16NOzMfr0bAyA+7wPHrlLYtYmm0pmWP37AHhXd2BM\nB3U/2x4HVyNqhOQkMa9TE7Hw0TVc7D5CTVpplgppMKgrI5GuE5tzAa6WfZWSMaNWP/z+9giM9Aww\nz2cgv/3u99doVcUHt5NeITwzGqYGxhhXjXqHZvnbw1j+9jDlgn9z44nwDZkNSwNTHGwxh2I01yWp\nqV1NPEuN1Dqjobo9c1kPeMGz9pYWSM7WfN7zik51ezt8Sk6lvb5zCHWKR13A3c2ONgVjRcPC3BhH\n94/TtBpaj67co85+ddDZr46m1aBk5NDWGDm0tUZ1sDA3xsVTUzWqg7ZQ385RIWNBFmNEG9FZlyTf\n3YJMBuHJXNeN6ms3iPybkpuHuKwsPIz+hsTsbNz5+lX9iuowrZyPQI9lCEDyKYIwoR3XiSzK/Rwa\nYnHdoXxjgXdtUZ2hMGDpo7NjY0yr2YdvLJRd0A96sIIvs/Nt6l+w0I7rcLH976hqzt3NMNU3FpEV\n2nEd1jb8ReuMBR5MZMnZ9LMgoHaefzul5RGU59Ik6sqpPDrU9FKTJsD7zKvYFuGHbRF+cl3TBXRV\nbwKBQNAldPaEIXTcWP7rngf/wZx2bWGkL+qeUtncDHU2bkG3Wt78tvaengrP2Xz4Bjw5JH1X7c7z\nT2jfpLrC8yg7f3nieOsF8L8dBEdTW9zoUH5PhnhGg7xuLLUdq+DsxP+JtHWrVxOzTl9hTDeC4tCd\n9vRtpN4dzNrWXVHbuivl4lrSNVWSV5KGB8l/obPzArXOSyBUBBIyNyI15wSK2PFo7K5bWfQy80Ng\nbdpR02rgf9dP4H5CFFgAOIDIqcDqsDv4LykW9ewcsaSZqK4eB0XXKrxxPS4d5LfxXvNOKJLzc9Ds\n5HbKcZJklj2t8Di4GmGDpsLWmPlq0DprMAhzZNAANHdzw9q798SuhYwdhdeJSehSozo+p1KnCBuy\n4BBy8gpxYdMv/Lb2Y7ega6vaCBrdmXbe5sM3YM20nnzjIDElC/3nHsDa6ZJdDdYdvoWbjyMxbagv\nAlrVxr8hr7Dhn9v4d+1oOFa2AgBsPBKKf0NeYdeigajj5Yhxf5zgz1nRjIZrHVaqZR5tyIfP02H+\n2Ws49zKcsg+LBazo1QV9JCw6Ffksqvz8ispWlU6HRw1Qidyy3J39C6URuKK37EXPyisnosbD1ayR\nptUgEGSiz9bDqGpng01Duss91mch/UbQ1qE90dGnGmPyACD8zxlwsub+hH1zl0u2NvD5+yitMHJs\nTcz4i/FGx7cg8OIBXOnBzWw3rzE3EP+3pyFi40b7/IQlTcUNHp5x4HFwtZgrU7OT2/F5+Fzo/8hL\nHHjxAPJLimFqYMjvQ+XGVNfOAQOCj+BUwFCB3iowFgAddkkSprmbGwDg05yZIv8CgKOlJbrU4C7o\nq9lRV2/cv2yIiLEwetlR3Nk7FUGjO+PPffTFsMou3NccuoX7+6ch9L+P9LoO34DZw/xwdftEBLSq\nDQDo17EBHhyYjl4zBW5WsUkZuL9/Gup4OQIAdi8aSDknoXyyqo8/IpbPoPx5v2yGRGOBoD1QBa7b\nmcufOSYmV1AhWth96J8vw/nXtkX4ITzjCgrZ2dgW4Ye0wijFlJaDbRF+SC6IRF5JOrZF+CEuT1DM\nLTRxI7ZF+OFTdijepJ/DjkhRIym3hD6+g/dZkvLfi518bIvww+fsu8gp+U7ckQhqwWfhRkQmpuD6\nu4+ot7j8FC57n9gVb+Iai7VTGRll2zLzQ/AiphoSMuVP7pCRdwWvYxshPKEDsgsEtSTS8y7hXXxb\n/ny8H2Fi0pfgRUw15BSKF/rj9Y1JX4oXMdWRXxwhdo1HbuFzqcbUlnY9+K/7eNVBeJrkzIU8jka+\nhMfB1ZTGhCT0hYqYXOkxCq1O75Q65lL3kXiWHAsA+JqVhqXNlM9oRUe5OGFQlqdvozFn03n+Yjyw\njQ//2vVHEVg4RrbdwNYNuO5OLep7yDV/8+EbUK+6aE7+tTN6oeXIjbi1azJMjQ1pRgrwPCK+C/91\naJBC4+Y29MXEOi2ljqWSI8ucBEJFgSo17oO54+WW42beBGGpx9DYbjDsTWoiuSASAJBRFAs38yaI\nzuHWGPGpxI0FGlX9FA58GoDJtW4pob10hOV7WLTA5dhFGOd9CQDwNuOiyPV6Nr1lkrktwg9+jrNF\nPsv95B1oY/8rXqefAwBUs2zHn58YDcxR58R65JUUAQBq29jjSuAYtczreWQlrnUbC+9KVdQynzKw\nSzlyjwlbNgXPo+IQ8v4zwqLi8CEpRSkdwv+cgfD4ZISEf0JYdDzCouNRzGbLp9M3dzhYTYSZUR2E\nfXOHt8MpWBhTZ6LKLXwOC+OfhMZWBcBBdfsj+PJ9LLIL7sPbQbZaQLxFulflXcgteoGPyYP4pwmW\nJq1Q0/E8Xsc2RH1X8UryYd/cYWTggmpVDuBDUn+wWIZo5PZZpE9a7hkUFn+Fo9UUFJV8g6lhLUo9\nIpP6wMrEVyad5SXif7MAAF3O71MqwNnWRLbNJXNDIwBAh7N7VBpMXS5OGJSlbaNq2BEkcFFYe4j7\nJbfv/GPc2St7NoA1B7nW5KLtl2n7dG5eE/O3XERKeg4WbON+sVZzrYy9SwaL9ItLysD9fdOweAe9\nLGEuBIzC5Lqt0cJBvuPH+71/xcbWPTG0BjOuAQVsUhOAQM3v/4XA49AqTauhNjbfYrYK68PvewAA\n/apuBgui5XSD45cBEJw+HPikHperx9/38eeMynmMotI8RuTeSlwn8llepp0GADxI3gl7k5qMzCEJ\nDicfH2OdJf6UR/JKivB1aBC+Dg1Sm7GgCxyfIPh+Dv9TfjdJE0MDtK5RFUt6+uHc1GGM6OTjbI8p\nnVrhwJj+ePWbfFmLwr65w8asO1wqBcHGrCcau3/DhyTB3wyvyrsRnSoothqZ1AfeDmeEJHDQ2P0b\nrEzaoqFbJHIKn8k1v4fdJlQyC4BLpQUirkcGerYw0LMVec17n5LzDwCgrvMjWJm0Q2P3b+BwipGW\ne0ZEdmFJDKrbH4KT9TRYmwpv9rIQmSjqLl7dnjqlOVNc7yXf79DsB4LYQ4+DqxHSe6yE3gLeDZmB\nodePyzWXIpATBnB9wpvUduO/5500jOklmmOZyh1IOLiZd/3Bgem0c/0xSZDNZsVkri/k0RXDxeS7\nOdoAANbNEOzKSXJHqmfriHq2XPclqlMDOlzMreFibo3eHnVw5OMLmceVxd2iEurYOsJEnzxSynAn\nihug38L1LowNHOUeR0V7jw8K6cCELB5UhoLHoVWIGj5fIXm6wM474pXF9Vgsip6y8y7jMupU6oYO\nTqKV022M3JFbkorR1U8rJV8e7ifvxMu0U/xThGvxv+Nj1m1GZNOdjFgZOiOjKIaROSTxKU6yT7mF\naQ+J1wnli/pujgoZCtqMi80i2muVzLriS8o4VLWjzyyoaGxEPZf/8CbuJ0SlTkc9l6cw1Jfte47O\n9SkuYyVszQXp352sp1H2a+T2ES9imEtGIxyEvP/9fwBEA5F5TKwnXqvDzcKa34c3JmrEPNQ5shGn\nP70BAIyrI18tjQcJ0QioqtrNFLK6IzDCnV4TNa1CueJxbDuFF+fayLnA4WhY2bnCnDBcC6eOYwpf\nRr+ZIAu3E9ejTqVu8LEOwLOUQ/B35n7pD/TYJeaa8yrtXzSw7afUfJJIyHsDCJ10UBkLL9JOopHt\nzwCAUk4J9FiCrxx382aIzLopliWps/MCbIvwozQahnodEPmcTBkowgifHliZD4KDzQbG59A2hDeZ\nqNxLPY+sxNehQZh49wyuxkSKXQeAeic3IKe4EACwu31/dHatQTsH1XgLQ2ORPsS9VbUUlyTASF/y\nSRm7NBvvEtpR9lM0KNlQ354/9m1cC5mzOBnq26OY/V2s3UC/skzzslhG/Ndh39ylzlnWtWdJs44i\n2ZAkuf5Icwu6128CZfu7ofRGqSyuRjt9ZXP7VBRiMBAICsNBTOZ+uFkzf3SvJ/THTRbKGheSTgnU\nKYuHjbH8gb66zLQTlxiX6WnRCl9zBG5OT1L+FllUl/Xn/8lOkDVDuJ33mjdW0jVJDPDYIRKAPbHm\ndewUCmzm6fMg+S+RNh493VaJjOddq2nVCQBHRC/hcb3d1vGvNbEbIlVPZagIxgIgWJzzDAMq5j6+\njNwfLku5xUUi1zyPrISlobGInEN+g9DWiRvXN+X+OXhXqoJr3bguFue+itf1aX1uu8h4SboQlENf\nzxIfkwehoRt3Y6OYnSTWx9KkNd7ENUYpp1BlGYvqujyW+aSihv0pvIr1oWg/KvN81e2PID3vgsz9\ndYXMogJ4WtmofB6dMxief4/FzIcXEZubiYZ2zvifd2P08awrddyo2yfxMDEKzubWCO42RibXmeJS\nNuqcWI/NrXsiwJ0bOLMv4inWvAjFtPpt8auUwOBCdgk6XNiFzKICbGnTEx1dakjszyMy4zsWPAnG\nq9R4dHCpju1t+8BIT1/6QB3kdvxnLH56DbnFRRhZ6ydMq9dG6pjs4kJMvncOz1Ni8VMVVxzoMBDK\nOXooxuukUUjPf8ioweBg0QspeTfRxl1x9zBtpP3Zv0Tcj3zP7oKrhbUGNVI/yqaI7eb6h8h7qkU9\n3UJfkgGgTGB02bHS3ss6d02rzqhpRZ3S2tW8sci4llVk8/MlKMfl6Ai8G8gN5uQFWQrz+meBy2xf\nr3oYfus4f8H//HscJvgIXDN6U3xnO5ha8F9va9Mbk++fY0z3ik4pJx96LEGqzQau7xD2zR1xGStg\nZlQfX1N+RbUqe0XG1LA/RruYZ7EMEPbNHS6VglBUEovvOYdlNirCvrmjisVwVDILwNeUybT9whM6\nwc3mN6TnXYK77Qro61mAxTLE27gWcLdbi0/JQwGwYKAn+0LZyqQtXnxTX8FMdVDWtUmVsDgc+SP+\n1YCYUrWPr5UYUEu3EyHJn59qDK//xlY9MOPhRX77Pt8BWPXiNj5mCrIbmBoYInzgbLGxn4bMR/Wj\n1K4XLwZMRyUj6hy5hz+EYcmza7T6fhkaJNPCWNGMRbxxsmRJKmSXoNbxtWLt0ubkzfF5yHxUo7lH\nsxq0x+S6rSSOl4Y6dqZ4O+/a6DokfCqgrH5MyRJ2R9rUpgd6e5XP1LB0xfe0oc4HQTo8lyRDAw94\nODIbuK7t0O3qex5ZicuBo+Fj40A7joqybk0A1zB43HeK2PhzXUeggR333n/I+A7/y3spdRGuQUAX\nVyBPH6rrTNdNkCSfCXllZZa3eAsmCfvmjgau76CvZ6lpVdSN0vuqOnHC4HVkJd+CqGphg9BeAv+v\npc+u4/gn8fRbAGj9IVuf24743CyJR54zHl7E16FB6BF8AG/TEjEm9BRfTmJeNlqe3Yb8kmLKsTxj\n4fOQ+fwgx+pHV4HN4aDRqU20c/KMhTkNfUVOL/wu7sLXrDR4adERrbG+AeWXgazwjAVhGbWOr0Uh\nuwTrX92hNBh4c7R29MA/HQVZK0bePoE78V/gam6Ne71/lUsPgvoozwHOPOiMhRcL6XfS6OjouwIA\nEBJKKiETNI8BS3JSRWnfTdLcjUz1pacPBwCnSpZIyMimvb7svPTc94qkRiWUHyqgscAIWm8w/C/k\nGN9YoPqDtLxpFyxvKl4noUfwAQDcQhifhoguVB70noR36UnofmU/rdFwo/s4AMDFgFH8her+Dtzg\nPUcz6Q9bWZmfhsxHy7PbkJiXTTknb44nfafAXuhoFgBu9RjPv34g4hlG1WoqdX5doOw9iBg0h/85\nf39+E4ubUBcgETYWAODvDgPheWQlYnMzVaMogQCBMVDH2QE17O1gYWyEb2kZuPsxSuK4v0f2h6mR\nbIuhisjjR58AAC1aMpfBRFYkpUctLomivV7DNV6iLKrr8vbnXeddk6Qri2WM6i5fpc6pDXwdGiT3\nBpMw56YMQ/Pfd9BeP/n0NQBu9kMOBxh/8Cx2jegj0mfCobMS5yi7Qy+tsjJB+0nPu4yvKRPRwDVc\n06roLFpvMDxIjFJo3Nu0RAAQMxZ41KE5WuVR3dpOrK2Ds2zHhvt8qXOgP+ozWeofyrLGAo+z/iPQ\n59pB/Pb8ZrkwGOY36iDx+pkvb2kNBkWJydyLL+lraK+zoI92Hu9pryfmnMHntJUoKRU1TBRNQ5pT\n9B7P43tRXnOyHARvu99ox+oadNmRdPHU4V18Et7FiwcJ0tHC0016pwrMwqCTAMhJCj2l+BIvOU6P\nwynEx1hnmQwVVdCkiis8j6xEo8ousDQ0xt2EL+jnVQ/rWnJTh3seWQlXc2v0r1Yfhz88lyJNMpYm\nxvzX++/9h9Ftf6Lst6B7B/x58TbufYgSu/bgY7RSOhB0j6iUyXC2ng19Peo1FkE6Wm8w8LirQ2k7\n/Vzk2ymb84hbnM3UgH4XsmHl8lUoaLyPeG5iYTKK8hmdT5ZMPxywcf9bY7RxD6O8Hpmie4tbbaGs\nYVDCKYXP0fUa0kY9WJoY41kQcZHTZiTt7GtLDMPHWFcAAItliuoun8tcZeNjrMAgLeXkQI+l+IKI\nzq1ImrvR6S6Si5EJj6dKbFFWvnelKjK53667ek/EYIjPyOK/HtqiIf68KDntbo+GtaXOQSgfNHKX\nfAIXE+cEAHBzSVCHOjqJzhgMbhaVNK2CygiJ46Y2yy8pVuqotqJw+EMYhnk35r//5yP1Ap9HWEJf\nkfdUu/5P47ogvziK1ligGqds0LOFUW2VpDDVBQxYeihiszWthspY1r0jBjWtr2k1COUIcWMBAPRR\n3SUan+KqAgC+xNdFdZcoteqlCfT19MAuLRVrn/wPN2VmEw8XmeQs783sKTaBUJ7RGYOhPJP9o9gN\nQTI839clz65RZpOi25HKLhTk/KZb3Ddzuc6MkoQKjWdlGwRPGcm43P8N2YGE+AyRtp8HNsf4iR1p\nRgD+nVejpFjcKKNz/SkuZqNr59WU1/b/PQ5VPagLJAkHZ2dk5KFf701S5xw3Zi8+f06mlCNNz4qI\nS2X6XPMsluBkmsMpou1XnljcowNlcHNEArew1+KefmLXeMSkCX6PTAzJEohAkBWd+W1JK8yDbTkt\n/tTZtQaCv0VCn6WHT0NUn0tXl3nYZxJand0OF3NrJOZl4acqbtjapjeqmJprWjWCBKhiGDa37akB\nTRRHU2lReQvpTVuGoV59N1y/+garV13EyRNP8O/pZ7geIu4qxxvTq08TTJ3mDwDo13sTMjLy0NF3\nBeVifPECbia4Bg3csX7T/8BiAfPnHsezp18weuRuTJrSGX370cdPTZtyGG/fxMDIyACr1w4Cm12K\n2TOPokvXemJ9W7SqgRatuHVpjhx+AAAYOqy1PLelQmFm4qtpFdRKV6tRuJp1gPb6z83qS8yG5O0g\natzuCn2C8b7NAQAj9p5mRkkCoYKhMwbDmNBTOOs/QtNqyMT79GTUtrGXuf/vTbsi+Fsk2BzxI1aC\nADaHg1Znt2NinZaY29BXIRnfc6+ginkgs4oRpKKLwc3ahPACv0vXeujStR46+q4Amy3+N6OTH9et\ncf6CnujcRRAs+++56Thy+AH277uDfr034d9z00XGrVo7SEzWqjWD8PTJZwTNO4HtW29INBjevonB\njVtB0NMTpPumOyUYPaY9/zXPYBBuI5QfpC3+mSIpK0eszcXGCnHpWdh84yHfYEjM5KZkNTIon8VQ\nCQRVITmxshbg/iN24WWKfNkfenlwi0J50cQEvPmRRUkVBF7ZR9ne9N8tAMSrZ9iZCE5O5j6+rCq1\ndJ7aPwrFyWssCLshhX+fjjtR3nj/fbaEEQSC9nD67DS5+nN+5JgXNhZ48HbxMzLyZJbXrLls2eGO\nn5wsYiwQmEFfTy3JXZMAABNuSURBVDxjn65QlK96F6knX2IAAF3W7Re7FjxjFO24k78OUZlOBG4Q\ncQk7BnEJdRAT54SYOCckJnf4cc2F38YLNi47lqqdR27eCRn6nBaZQ/RHchIZunEVHa03GO4IZUei\nCwj+7flNsbZNrbnuDhxArMR8XkkRev6o03Crx3iGNBWl19W/Rd4/SIxCSkEuAG7F5rJ8GDwXAHDq\n82t8yPhOKXP9qzvMKqljbP7xf8or/MP78TqyEpPunQVbQtXysulSk3Mv4E6UNx7GSK5oTWCGaoep\nfeMJ0rGxkd3d7u/9dwEAXQPUH3Bdxd5K7XNWBPQ0WGSqq9Uokdd52fki7TEfEtDVapTID49+rr9i\ncI3p/Ne8Hx7FhSW0Y3lz8H4CrEfT6rj15iOuPIokCgb69Eucsm5LBOZJS5+G0tI0/vvi4ghkZq0D\noFpvipg4J6SlT6G9bmTUmPaaJMOgohsNOuGSJFzohc5oWEKRs5837nL0e1yOFs+v/2HwXBjqMX8s\n+ebnmah3cgOlrm9/nkU5xlBPHzd7jEOni7vhf3kvrexZDcSP7enuSdl2umJxZVnzMhRrXoby31c2\nMcezflMZmVMZ2jl5QY/FQmkZw4AD4Mq3CFyhqB7NgwV9tPf4AA6nGHej6/Dbi9mp/MxErd2fwUDP\nmjF9CQL+DZCcdpHADP+efgoAuBr8GleDX8s9nhfnQCAAQNPOAsPzatYBDPeZjUPh6/htbt5OIu5G\nwov+f2N38Nt4r4XpUeUXXErdCwND6u9gOrk8WteoigcfoxEWHSfSvntkX7G+APDX7Seo5VSF8hpB\nNRQWPuKnKeUttrOy1/PbYuPdweEUIzNrNaytmInfTEkdzn+taIpUqnE8/TmcHLCUSF2sy2j9CQOP\nr0ODsKAxdeaDsovZsuMGVm8g0mZmYIivQ4NUYiwAgIWhMb4ODYKVkYlI+9O+U2FuaEQ7rpqVHb4O\nDeK7YQlja2yGp33pP2d553VqAuqeXI9SDgdfhwaJ/ZzrKohvCU+nL6rFYhmivccHymxJD77pfkE8\nbeVWLFVKSALTsH+4Izk6WsPDo4rEn7J09F3BNxY6+Plg/cahuHZjHslWpAJK2JopsCYvUzYPR0kx\nG8fWXgQAJMemgkNxkruw93oM8ZY/KQCdsSALf/TpQtnepkZVkfeN3LnuJ1tuPsTBB5JTcBNUD4sl\nWANZmI8EAOTln2dMfn7BDQCAk8MDhcbbV6auAq73YzMxJW2CYoqVA3TihIHHL7Wb45fazeUet6p5\nIFY1ly3QlWp3Wta2srwaoFhWlTtyFqlTdBdfmd1/Vc1Jd53n4kV3vYGdM250H4fOl3Zj6M1jeDFg\nOmU/YXhGQ2p+KN4mjQPArYOgaF0FAj1Pk2Ow5fUDTK2v3ZlwVoYHIsjniqbVUJjAwAY4e+Y/NGri\ngdlzusk8jpdVac687hpxZyoPsFgm4HAKZOqbmCZfXIqmsHe1w5/Dt+Peuf8weE4PAMCqMbuw8NAk\nANydfzdvJ+z5bwX/vbpwsJZtl/fI+IHwWbgRgCDegaA5LC0EbmmGhtzCeSUlkouqyUp+gSA9uoGB\nl0IyjI2pi8pWslqMtIzZKCi4pZDc8oBOGQzlnUWvTuNmwls0s/PClqbDpQ/4wcPvHzH52UH++7DA\nP8T6NL6ySOL18kByPjdLhpWRsVzj7Ex9VaANQZjHid/wOPEbNry8J9JOsicxy+SpXXD2zH8IvvxK\nLoOBBzEWFMfEqDHyC7mVobPyTsLK7GfavvmFiu1+aoJ75/7jv7axt8Kd008QtF+wy8ozFhShlF0K\nPQlxBrLyPIrrliRr5qM23h5Kz0lQDAMDN6F3zDq5ZGdzXd/09WUr3CcXLN5ymT5WsrxDDAYtoVnw\nUpRw2Pi5anPcS46Ua2yrKjUQ0ikIHW/SV4n+L+B3vEyPxtjH9PERus7QEG5xow2tesg9tobdUnxM\nXc60SoQfKGIYhCTtwdNU0ePh+pU6o5uz4ORuZbj4yWHZEwIOOFgVLr54Fu4nLKesTF09cUiIz4CT\ns7h7o7xMHCeefYYgjq3VdMR95xoMSWnTJRoMusqsv8ZiUd8NIm097cfhfNIujG1C77q2eerf6D+1\nK57feoee47jFBtv3b45AmzGYvWssOBxg6/SDuJC8WyG9hu05CQBYP1A2I/n3Pp0VmgcAcguZzfzE\nhLyycX3ajerS2RYVvwIAGBsR92JVQAwGLaGEw+bv/M+vI/+C18ZIciYVPRYLjW09FFFNZfS4Nw8X\n28qXPcfzyEoc8huEtk6eAIBnyTGY9+QKvmZxMzFYGZmgSRVXuXVRxlgIS+iLxk5nFB5PECer+Due\npp7FvNoXoMei/zNVdjH/MOW4mFvRqvBucDatiRGeG6XK0XWXJIBb+6Cj7wr8bwh3t21eUA/U9nHG\n+3fxOHH8MaKivqN1a2/89md//ph69d3w5nUMOvquwLUb82BgqA82uxRdOooX3FMVe3ffxthx3LSL\nr199Q/0G7mqbmwnMjNuIvE/P/gs2lqL+zkXFEYhOoq9CrI0IBx//1KmeyHvh1/vCqDeshPu4VHfk\nvw7aP0HkpKLzkNaUY6je8/h77ACM3HuK/76jj2wpgB2s6N2ZeO5LdMw/fRXzT18Vaw//k9oFWd3y\nJPWhk6lrcErFa24AgJ6eFdjsArBLkymvE5SDGAwaZnPENRyL4qaFo3Ib4rUJuxE1vrJIZW5FM15s\nxdfceJxrsxLXE5/hauITRGZF43I7bg2EzqEzcMOX+8eox7156OzQFFkluVjkMwJTwjbBkKWPDY2m\noKi0BEve7MXz9Ejc8N2IzqEz0K5KQ9z9/hI3fDdi75dLKCllY++XSxjr1V2qXsKZsobfOk7ZR5+l\nRxk3wsuC1NTlCswMq4td/y9e+vySyC58iy/pa+FlM0cpOQQB2z+OgKtZbYnGAhWtKg/CneRDYu3x\n+fKd2uk6V67NRaD/GgDA6pUXpfbftGUYP47Bv7OoEc8zQFRFo8YeeBEWhWNHH+HY0Uci8+oajrZb\nkZjGTeeYkvkbUjJ/o+xXzTkSn+NrqlO1ckkzT9k2hwz19SnTrhJ0k4LCUMp2M9NeyM7Zg8IfroHl\nmWFNl+DwM+q/L6qCGAwMokgg8LRa/phWy1+lRoA8bGzE/bILvDsHxaUluOG7EYVs6iPTAnYRpnr3\nx6yX2wAAWxsLAo2N9AyQWpQJA5bg+HFxnRHocS8cADDWqzvOx92TyVjgoWyK1mdx0gPf5Ql4bupy\nDc/i/AEAMZl7EJO5R2Z5+cXReBpHfyyekH0cCdnihhGVPJ5BRAfddaZkNXW5CjND+QPMPA6tkuiq\nNMxjvVQZhaV52BDRX2KfIJ8rWBkeyHc1GuG5Ec6m2r9Yk7ZglnTd2NhA7gW3pP6KXpOFdRvKTwEt\nS7N+YJdm4XvGQto+Xs7vNFpbobwQ4DIFwXFbRXbNeW1lefWb9AyDxzZfw+Bp/ozvwgvLO70zBG27\nN4KDmy0j8ioq+QXitbcAoJL1b8jOEf8eLo+o21gAdCitKkE9PEuLAAC0sBPUKjgXd5+ybzNbboaD\n9Q0ni10LvDsHe5rOw86fqOtOAEBJqXp2fDwq0Rdw4eFlM0fu7Ehmhp5o71Gxdq61jQ0R/eFg4oUg\nnyv8HyqCfK5gUg1uYoCDX2dg7+dfKfsRCDVc41HDNR4ejortUlayGIUarvFwtN0OY0MfsFiGMDFq\nBNcqZ1DDNR76ejYi89RwpU6xKo8e0mQRNE9JMRv9J3ZUylggAMUlsn1Pq6vI2tOQdzi09jL2r7iA\nAFeuYZqfU4icTEE9mwl+XO+ID6++iY3njVk+eg//9YaZR0TGZaRkAwC6VZ0uNk74dQ/PGSLvLx+i\nXrspDIfD0cafCkejywtp28tek6evrPMowpuMzxwOh8PpfncuYzIJ5YuqB1fS/gy/eYJ23Ip3AZyj\nUQskyt4UMYiz7n1fkbYidj5nxbsAqXrR9ZFlLIFAkI+EqO/8112dJ3M4HA4n/XsWZ4Lfn5zJ/qs5\nqUmZHA6Hwwl0m8rJTM0WGRvoNlVsbNnXdG28968efuBcO/ZIpC0jJZszu89Gft+jm65K/Rz3L7/k\ncDgczv4V5/ltvNdldSsuLpEo6/O7WM6+P85Rji37Gd48/sQZ3CCI88cvezkcDodTXMSVXVxcwhnT\nejmtDOF7x0O4rew9YZJvsY6cb7GOYu9zco/z23Jyj4v1E+77LdaR8z11NKeo6C0nN/c0vy07Zx/l\nOKrxMXHVOZlZ6zjpGUs5sfE+tOMkyZOk66AGCzjdqk7jBLhN5fw+lvv/091jOmf/igv8PnFfk2nl\ndnWZwu/De132Wtn2sm2/dl7Fmdl7I2dmb+7zzC5hcwJcp3IiX0YLD1F6bU5ckggKM//1LrSyqwsL\nA1NNq0LQUqKGz0cBuwQm+vL9qRlffQ92ffoFHJSCRXMQam1kj4T8jyJt6yKoq7zKQ0ZxIioZOkrv\nyCBFbDaSc3Lham0FAEjPz4eNKTO/Vy/jE9DQWbDbFpuZxZ9HUZiQQag4TA1ci+wyFcQrVbZEtbpu\nYJewYWvPfZZK2aWwshUNSC5llyLARfopMR28sXr6eugyqAUGTOK6glrbWeDtE/kKSrYO5BaBHRXU\nk992ctsNnNx2Q6yvgZQUr3P7bsbpCG6cUacBgvpSg6b6i/Wt27wauo9oC5Ye92+hgaE+Vk48gMfX\n36CooJh2jlJ2KWVb2XvSrmdjBLhMwd77S+Diqflq2G4uCfwTgvz8K8jPF5wcW1r8Agvz0UiX4PYn\nPJ7DyUFm1jravsqSkZKNlccnoyCvEHWacYPuL36VHpguibLphofP6Yabp56i04BmlP3zcgqw/bqg\nUraevh6uxGxGgOtUBMduUUoXYYjBoOU4mlZCYn6GptWg5JKcGY4IFRN5jQUAsDVyQWOb7lgVLh7j\nwnM7Gum5WSQ2AQDm+1wSG0OVerW/2xLKeR1MvLDz42jK+RSh+toN+DRnJnoe/AcnhgyCqaEB/Pbs\nR9+6Ptjz9D+8msZ15/PZsBmnhw7mL8KbbtvJl/FpzkwAQO0Nm7Gnb2+08eBWsi0oKUHTbTsxuEF9\nLOjQnnL+Bpu34fjggSL6CM/jt2c/TAwMUMrh4OpobrV039378EeXTvx5zr4Lx/KbtxDUoT0G1q+H\nepu2IL+4hK9bMZuNVjt3Y5GfL3r51ObPFXjgENp4VKXVjVBx6DKoJcYu7i3WHnL6KQBg3vaREsdT\nxSXIgoGhPi5GbRJpMzWnrtNTXEi/8C5LXnYBzCxNAABHX66ATRX5Y1IC/tcKudn5MLc0Rei5/zBr\n0/8AAEYmhpT9ecYCIBqroYgxVfZ+Bu0chaCdzBbdc3NJkPgeAMzNBsLcbKBYO11/Jq/L259OV1kW\n5M4e9EYYb7yzRxX+a56xwHs/eJq4ESk874GHSyXKZgpiMGg5e1uMQffb68EBByyw0Oaa+gNdCARN\n4O/0K/ydJMcaUC3my7bJs+Af7bVN5r6ycijsBcKTk7Ho+g2s7xaAbxkZmNyyBSa3FFQU/TRnJl7G\ni35h8QwFQGB4LL0RIjAYikvwZjr9YoE3ZtTpMzjQvy/lPN8yMiTOczjsJZq7u+LlNEGc0pvpU0VO\nLVru2IX/pvyKlNw8nH0Xjj51fNB65248mDhOkdtFKIeMXdxbZGEbHLdVbNEbHLcVV2K2iPXj9RVu\nm9NvMwDgf40XYemBcajRwB2TuqwWaxu1oCd/7PYb8+HlQ1/Q69jmazi2+ZpE42RSl9X48i6WrwcA\nDPtpEdglpSJtsjBmkeCedBlIXV2YDstKZghwmYK6zSWnkZV2P3n3pGwfAoEKFkc7C35opVKqRFKW\npEWvTuNK3EsAwO8N+uNW4jusbzJUZCwVPHnZxQVof0Nc9pjqvpjk3UlZ1QkEAg1Lb4bgyItXGFi/\nHk68foNPc2byF+VlEV6El+1Tfe0GeNlyg2Wvj5FtJ5An40V8AhoJuSTJM0/N9ZsQOWs6yiIs4+an\nz+hUnbtwqbV+EyJmTRdzgyIQCASCRmEpK4CcMGgJklKq/tGgP/5oIEgd2c2locxjAcDS0EQrUrYS\nCBWN5Z06IiErG3/6d0ZCdrbM43zs7ZFfXAwDPT0Y6uvDxcoKV0ePxONvMTLL0P/hwjDw6HF8mC1b\nKkYXKyusDuiK/GKue8bLqZPRbPtOPP51AlbevoOFfr4AgE0PHmJP394w1NfHhLPn8WnOTHT7+xDe\nzZCevpJAIBAIugc5YSAQCAQCgUAgEMovSp8wkDoMBAKBQCAQCAQCgRZtdUlS2hIiEAgEAoFAIBAI\nykNOGAgEAoFAIBAIBAItxGAgEAgEAoFAIBAItBCDgUAgEAgEAoFAINBCDAYCgUAgEAgEAoFACzEY\nCAQCgUAgEAgEAi3EYCAQCAQCgUAgEAi0EIOBQCAQCAQCgUAg0EIMBgKBQCAQCAQCgUALMRgIBAKB\nQCAQCAQCLcRgIBAIBAKBQCAQCLQQg4FAIBAIBAKBQCDQQgwGAoFAIBAIBAKBQAsxGAgEAoFAIBAI\nBAItxGAgEAgEAoFAIBAItBCDgUAgEAgEAoFAINBCDAYCgUAg/L/9OhAAAAAAEORvPcEGZREALGEA\nAACWMAAAAEsYAACAJQwAAMASBgAAYAkDAACwhAEAAFgB2IdSbfJK2NIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXVYFN0Xx7+wtKQKigomKIqFioot\noih2dxcWBha+xmu+JnZgdwcqCgIKigEKFoqKCSaNpNT+/tjfLju7szG7s4XzeR4fd+6ce+/ZYVnu\nufeEFpvNBgMDAwMDAwMDAwMDAxnaqlaAgYGBgYGBgYGBgUF9YQwGBgYGBgYGBgYGBgaRMAYDAwMD\nAwMDAwMDA4NIGIOBgYGBgYGBgYGBgUEkjMHAwMDAwMDAwMDAwCASxmBgYGBgYGBgYGBgYBAJYzAw\nMDAwMDAwMDAwMIiEMRgYGBgYGBgYGBgYGETCGAwMDAwMDAwMDAwMDCLRUbUCImDKT2sw2950gVe9\nEIXOcezjWHSx9kYVQ0eFzsPwd3Pi+H2MHNVG1WoIMd3zCHbtGatqNVRGbEYiHqS8xZvM73ib9R3Z\nhfkAAFNdQzQws0F9s6oYVqMtdLVZKtZUM7mYEInYzES8zvyKlD+/kV34Bya6BrAyMEMDMxu0qFAb\nXa0bqVpNtSQxNxV3fsYi7vd3vMpIxO+iPBSzS2CsYwB7E2vYm1pjgG1LVDYwV7WqDH8XWnIPwGar\n5dpcLZUSR7NJvojeP0fVaqgF8hgMVxIXo6/NOqnmsNCrhtG1jsg0DwODNEgyGDb8dx0LFvVUokZ/\nF5Ep8Zj15AjYNP1J8KjqhOUNB9IylqJxDvSRSi7Kfa3Mc4T8fAmfZ6dl7i/I8BptMLueB23jqTOF\nJcWY8Ggv3vz+Rst4hiw9nGozC1WNytMyHgODAIzBwKB+yGMwKON0Qpmsi9uE17/f8K6PtzxAuD8q\ncqJQGwD8E7sSX3ISYKZrip1OWxSupyR9/jZcO3IWYVM9XTFoSEtC25Wrc2BiaggP943Izy+EgYEu\nACAgcD7YbKBLJ47c2QszUbGiCen4oSGvsHa1P1gsbRQXlyA0zAdFhcXo5raecz/Mhzen4GuvmccR\n+zKR1w4Ae3aH4sK5SEJfTaWEzUb74OUoKClS6Dy7WkxAiwq1FTqHPCjSYOgdtgE/8zMo96NCqOsy\nmOgaKHQOVbDh9VVcSHik0DkczW1wqJWnQudg+OuQ22BQV5cktWTov8fRukEN3I55j59pvxG51wsA\n8Cs9Gz0W7CecMJSUsNFiylZ4DWyHbRfu8e79KSyCy7QdGNihEa4+eI2Hu2cCAGZuuwxjQ31YmRvj\nzO2nvLFl4Vn6JUSlnETzCsPgVJ58N40NNs5/8UJGwTf0qrYK1ob1SeXuJu3B83R/NLXoj7ZWk0ll\nXqRfxd2kPWhnNRWNLfrIrDed+MUPQG2TNnCtPBevM4NwL2kvpthdFpK78W0lPmQ/gEfVZahl7EK7\nHq9/vxG7ABd1b7XjMgDAjJi5tOvEIJ4JY/fzFt2rV17htQsu3AMC58O141oEBM7nyXTpJLzAJ+PD\n+18Iub0YWtpaOH4sAgDQzW09T95z8iHs8RuPOnUqCc2/bcconvHCPx73/oC+W3HxymzZH4CKGHB3\nMxJzU5U23/THB3mv5dmlVzUbX1/F/Pq9Jcql/MlCjzuST2/pwjV0JQCge5Um+LfRYKXNqwjis35g\nxP0dSpsvNiORZzCubDQY7lWaKG1uBgZRMAYDBeK/puDM8lHwGtgOzSb58torWRgLybaYspVnJIzu\n1hzTfC9h95z+cJm2g9e+eKQrT/5B7Gde+4ngaJl1PPB+MHKK0tC8wlA8SD6Ee0l7efe4O/d/SnKw\n913pwv7cl1mE+1y2venCex2ddg7RaefEyoT92oGwX7J9qfKPw/9a3HxWBvYYVmO30P06Jm2RV5yJ\n2Iwb0AILLzOuAQD2xvfFVLsrpGNd+7qMdD5ZOf7lNGLSnwPg7Nrz2v9vIKx4tRYfsj8S2qTlW953\n3PwRjK6VO8PWyAaTnszA/uY7eXMdb3kA06JnY3ezrdgRvxcZhZlYWn8hr3948j2cS7yE8nrlsaz+\nIuhq64qca1TkRPSp2hMDq/UFAJSwS+DzcgUMWYZY3mCxkOzS+gtRTqcclseuQa8q3dGnqua56yQl\n/+a9rlLVAgBwM+A5qlSzQOPGthL7Z2dz/On9r4s29ozK6UNLm7Pho6UlvPHz42cmAGDfgQlgl7Ax\ncfwBHDwySeR45SsY8+Y9emKqRB3VicTcVAy4u1mlOjgH+mCafVeMrdVRpXrIwvmERxINho2vr+K8\ngnfFRXHz+zPc/P5MY42yjsErkFtcoLL5l704hxUvz+NRtzUq04GBAWCyJFHC2FCfknyzSb68f5Gv\nv0gtLw85RWnwqheCNpYTMaPuDV47/0J477s+6GOzFl71Qnj/AKCYXfqluPtdL2hBmyCjBS0cfD9M\naM7Jdhd5MjWNW8mkN78egnqJkhOFEcuCJ/My4xq86oVgTK2j+FOczff+eqKifm2xc8lD36q9sNLx\nH85czbby/nFZ0cBHZtefPR8OoFn5pljy8l+MipwIlpY2wSiZ/GQmsoqyMSpyIlpWaIF3WfG8e9vj\n9+Dwp+MYYTsEZrqmGP9Y9LH37KcL0MGyHc9YAIAxUZPRskIL2BpVw6jIiShhlxD6PM14gaWxqzDQ\npi8ufL0iOKRGsGxFPxw8EAYAOHn8PgBg377bpMaChUU5wjWLpQ0DAz0YGxtAX1+0IUaGtnap4bB9\nxyje614em/H5c7LYvqHBsTA2NoCxsQH09DRnH2jxs1MqNxa47H53S2o3IE3COdBHZcaCoB7pBTmq\nVoMSzoE+KjUWuJSw2XAO9KEtloeBQRY05y+LGpCd94eSPNUgaEUETVczaoKvuc9410/TLgIAapRz\nJsi1sZyInW978BbOhSV5QovoWfWCCbvyEcn7AQCGLDNeW+9qqwkyqqBTZWF3LnO9qoTrwpJ8jKi5\nT0ju5KfJGFHTT24dTHSMSV/TwZecBDQ152Qo2e3kCxNdE4LBsLnJOuhq6WLSk+lwLt8MRixD3r1Z\ndqUGgkvFVpgaPYt0jlGRE9HQrAEm1hpDaOM3chqZO2JM1GRC2/XvN3nX7pXd5HynQK1TpbuSLpVr\n4ETn4XKPKYkWLWqhRYtaAErdgK5cLf3d5HczunCZ+Fm7FbqI91pXV3SGHv5Aau7r4NulJza21Svy\nXl+/6S3UX9DVif9aUwwGdV2cOwf6oLFFdexvOUXVqshFEbsYLkFLVa0GgW6312CuQ08MrU6/+yed\nqOtns2XgEgCa7ULHoLloxl8WNaFqRTP4nruLsGcfoMMqPZxJSOIEj73+/At1qlaAnq4OnvjNQbNJ\nvhjUsTFeff6JgwsGQ09XBxE7Z6DZJF8M7NgYka+/4MqacQCA7i3roZu3Hzo2qY0L4S9oMx74jQUA\neJp+iVSusUUf3E+mtuP9JlOzg5PJDJuUPx9VoAk1jHVKd7VNdIWDagUNFEGXo/SCdBz7fBrvsuOR\nU5Qr1H9c1FRoQQsL6gl/BvkNEzIMWGUvyJGBXqLTPsIzSr0D65+nf8HKlxewTEMyKpGhbsYCly1x\n12GgrYu+Ni1UrQop6mos8OMc6MMYDQxKhzEYKJCZk485g9tjzuD2hHZbK3OhBb6WFvmJgaG+Lmn7\n6ondea/5Yxuo4lUvhLAQtjNpjx5Vl/GutUV4ocl21KnZx6Oamo2JpSV7bvlRkRMxt+4seNlPAwBM\njxH+LB523osxUZMxNmoyjjgTT1skuVHpa+vJrBtD2UcTFmNcrn+LwfVvMRq5MFP357z21WX0qNoU\netrqswT5nJ2EwRFbJQuqCX+L0ZCSewsJmX7I/vMK+jpVYGs2GdYmQyT2K2EX4NmPocguiEM5vXpw\nqnIBWpDub+erpGnIyH+MNraPeW15hZ8R/b0PapVfgComI8T2Ly7JQVzKPKTlhsPUoCmaVD4l1bzq\nDhPDUMZIzHkKKwM7nl8+v7EAAM0rCMcgAMDzdOr+5nVNO8ukI4Nq4bozAcDvwixSmaPOfihmlxAM\nST1tPWQXZZPKM6ieWqfWEly41I3JkfK7+qkCdd2p5+dTdhLvtbobC1za3lomWUiJaJKxwEVTftay\n8PLXRIR/tserpBnI+vMCbBQjvygR71KXIvyzPd6kLBTZN/yzPe59cURWQSzYKEZ2wSvc/eyA8M/2\nIuW596K+uSElNwRFJZkE+ahvXVHMzkN86r8I/1xXzNz1EJHQFKm5t8FGMTLznxDG12TUx7zXAMK3\nT1O1ChIJS9qJzIIfKGYXgKUlvNvraN4DoT+34ENWBGqbtOW1P0g+hKn2/rxrE91K2P7GDbPqBfPa\ntr9xgwGr1AWmndVUxKRdQH5xFq897NdOud/Dt9wXqGqk2CqiutoGKq35sCZuIy8YeWzUZFQzrIr+\n1frAyaIJXv9+gwMfjyD5TwoAwDPaC/YmdphjP4OWufndisbXHC1S7njLAxgVOZEXJ3GwxW4hl6SG\nZg1IXZcYlMuuV/dVrYJYFLGwqWlshY6VGqB5+Vow0TVAfnEhfuRlIPzXa4QlvUIJTTWGitjFar+b\n6/XkCK52XCD3c9Zn6cK1kiPaWNZFJUNzGGjrIjE3FZ+yk3Dy8z3kFFGL45OEOjzXvOICdAheQeuY\nlvqmaF/JAS0r1EFFfVOwtLSRWZiL6LSPuJ/8Fu+zftI2lzo8Q7rhX1xraxmiUeXDMNN3Qn7RN8T8\nGIDC4jTUq7heqB+bXYS7X0pTxHeo8U5ozPDP9oR2fp5880BBcQo61HhHkOeOVViSgQcJzhDlXVGq\ntzbaVX8KbS1DAGyegSFubk2AKdxWxmCjBNvfdBVq518Ys8HG9jfCAaniUphSkSGTkxbB8fjHERdM\nzZXjNwK48mT3RI2nqW5KZRVVBD1rIvzP6eNw9dp1TMhJwcB78hcfrGVcCWfaUq9Pk16QjW636VlQ\nKXNhRnXxH+W+ViaD4VArTzia21Dqk1aQDXcNfKZk0GHM2plY42SbmTL1nRK1H0/TPsmtg6qfI13E\nJc9BUk4AAMCxkh8qGHaUui93wa7HqojWNg+E7j9IcEZhCSfmlMyYkKad34Dg5+WvSUjLCye9x9+v\nglEnOFoJJ1xRAkylZ4ZSBBfIXM5+noGc4jSMr102/OgY/h4Yg0E61NVgeJr2CVOi9svc34Cli7tu\n/9KmT0zaJ0yVQx9rQ3P4d1hAmz7iUKS7SZjbChix6Ik3Ck96jfkxJ+QaQ1WLXXmecY1yljjXjt7T\nVdfQlcgqzJepb1kokAeULqwbVz4BcwNnCdLkfcXt4pPJSDIY6ltuhWW5HmLnkHVuqrQauQWPTshU\n0FVug4GJYaCBtv03oW3/TTh6XvW5rp3KDxJqM9KxgI4WtRoSDAzqho4W83WlachjLMys606rsQAA\nTuVryrU4/ZGXQctusKqw1DdFlPta2owFAOhgVR/3aP45KQP+St9U8e+wgHZjAQBCXZdhnoNsxS5v\nfn8mWUjNycwvLVpL1VhIy7sr81ySKC/hlOP3nxhKc2sqTAxDGSMm7TzaWZXmD88tSsfH7IfwtL+q\nQq3KPk+SE7Hn1UPc//kJ5Q2M4FnfBaPsm9E2fn5xEVZHByP0WzxyiwrRzLIadrbtByMd+f/wz390\nDeHfP6KEzUY761rwdRFfNVZVmOoRU7Y+T/2OOQ+uIjE7HR2q1MaK5t1QrZyZiN7Sk/4nD2ufhuBm\nwlsYsHQw3K4p5jbqIPe4ABDyNR47YiPw/ncKSthsNCxvjW429phQr6XMY975/p4W3ejmxKd7MvdV\n9I5zlPta7Hl3C4c/hlHuOyVqv0a6f5xvNxfVy1WULCgD+ixdmV2iAE59hqDOS2jWSjyPUz/I1E/R\nP/sh1V0wpLqLTM9S0+MZEjL3yNw3MZPa5sSXzJ1oZHCY0MbSMiSVZWkbiR8rYzfvNZXg5pBHb/HP\nzgCUM9RDXn4hHhyfgyU7riM0knMCwT1JmLzyDF68+462TrV4fU8EPMHO03cJcoqGMRjk5Pnrr6pW\ngYdXvRBcTlwo5Js/zf46dLWZ/Ph08zz1O/oFHRFq/5mbheVPgrD8SRAAYGzdFljWTHIRMzK3kqYX\ntiCzQPiIOuz7Bzie2wQAMNLRRezg+ZR073J9Hz7+ThVq9/8cC//PsUJ6qAM1TCwAgDQT0O1v73H7\nG2fhrM/SQdwQ6m4jZOPmFhVgZ+x97IzlBBXbmVVEkMdkSuN63DyAuPQk0ntPkhPxJDkRa2JCeW12\nZpYI8phESU8q95XxM80rLsD2tzdl6qusBY+nfVf0tWmBPuEbKfcdcHczLrafpwCtFIOynqmsRoOy\nK0DLoqONUQWl/sxlfZYl7BJoa+hpbHq+cNyBtGTmP6Ekn5En7BHC0i5HIikZWfUOj+b8zQrdPwOt\nRnLivNbM7Ik1AuEw35MyeUYBVy7ofhyvrcf0vbixa6pMOlBBMz9VasTMZWdVrQKBfjbreSlVuf8Y\nY4F+4jNTSI0FMo68fYyljwMpz7HiyS1SY0GQ3KJCSuk0a51aS2osiJJVF2yNLaTS509xEWW9pZWP\nz0xBfyl/7gAw7s4ZkcaCKGT1YVYnZM06o+zdUWtDC5xwoR6smpgr3e+POqDsZ7q9+TiZ+j1P/0Kz\nJuTIYpwY6eirxECU5WfXKugfqeTs1/pSHlvRsLRkW7ADgC7LgpK8Dstc5rkE4de7Q413Ev9xMTMW\nPtFwGe2L5HRi+vKGdlWE5CxMjfD1Vwa+/sqA37KhtL0XcTAnDHJSUsLEZ/9tTAg7J+QGEj9sEVgC\nuzpu1/fhw/8X5ifjY3AyPkbq3V3+BayeNgtvhgrnnBZc5MZnJsPOzFLqcQFgXuMOmN6gDaFt3dNQ\n7I+LJPRRh5OGBY+u817HDVkAfRbx60vwvbW5shP3+0pORSvY73F/L1QwIP7h4n8mz1K/S/VMdr96\ngPAfpZXDW1jZ4GyXUaSyg4KPITqZc1r5oK/4BSzZvOoU9CxbEUjVBb7am1ojoutKynUBNMH9Y66M\n/vDy0KqinUz9JkXuU8rz7HZ7DeU+YV2WK0AT6XjQbRXlWiCRKfFoKebn4H1VttM/RVPVdDS+ZOyQ\nqW9185mIT5X+51TdzFOmeciwMZuIT+mbaRmrpIQNSwtjbD0RhtkjOwIA7jzmpGDfe640fXZU7BdU\nq8QxevL+FNIytySYEwY5UM8EUwyKRtBY+DjcR8hYAIDgnlPQwoqYrvDQmyhKcx3pNJTUWODOy0+3\nAPE+nAsjA4T6CxoLALC4qavQ2O9/p0ijrlL4ONxHyFjgtlcpZ8q7/pH7W+JYgsbCx+E+QsYCwHkm\nU+u3JrRJeiabnocRrkUZCwBw3m00Pg73QVhv+v6IqYqWgdR90QfYyh7DQQfqVHGYToZWd1HJvN71\ne6lkXkmseHGecp8H3VYpQBPp0dGSrjoxPzOfHCZtb7xxB+zX+uJq7BsAnFMG7j9+yE4fxMnxj8Mv\nY7/WFz+zsoXuh70nTxxQw1y21LQAUMWEvCitKKqaiq5BRBVbsymShaTk5u6p6Dp1N89YAIB7R7zQ\ncfx2TB1c+vf60Ym5GL3kOCYsPw1DfV3a5hdHmfuW3OwXgsuBorMFVLY0hd/6EShvLvvRF5cuw1RT\nGXL3sXCcuvJYqN1AXxfbVw5GfTtrhesQEvEGK7ZcJ723eIY7PDo7KlwHVTDw1lHCtaTd3LNdRqF/\n0BE8S/0OAFgdE4Lx9aTP/tDeupbY+++GLoL9mf+kGuv8h+e81zd7TBQjyeHlIG80PM+Jk+h63U/l\nO9eA5Ocd0WcGwQigcjoiSW5Bk0449f4pfv/fTYzKM/Fq2E4qOVtjasfq6oYs7h7aWlpYWL+PArSh\nhiw+4+p8yqBKvQbbtsam19dUNr8obnx/Skl+dr0eMi3Y6SbEdSm6hMpvuDyfz1mQcxf173zkz/Rk\nv9ZX7Djtd+zHywUzoa/DWW56XQ7A5HNXJM4tT5GzlNwQVDQSrrOUkqvIOkta4BRpk15v7zGd4T2m\nM4DSwGULUyPc2kssEqyrw0LYoVkEOQA4tkb0JpQiKDMGQ9v+m6SS+5n8G73Hl0biXz4wFZbljSX2\nuxz4DDuPhOFPQZFImf2nI7D/dIRUekRc8pZKjp++E/ciJS1b5P38P4WYvPAkAODw5tGwq2lFeQ5A\n+Fny65qXXwi34dvE9l+3MxDrdgaKfY/i5qCKx9hdyPydx7vW1WXhzlnFVB+OSfnGe72xlXS7aJe6\njZUpFkCaxaiOtnSHhIOCjxGu65pL/myU06Uv9aIy4XxtS4b/mVgbmYqRLOVJ/9lSG2j8bHt5T2qj\nQZORxd3jUTfqfRRFx0oNEPbrlarVKBM4mtsgNiNR1WrIxfAabVWtAgDAVJc8e4843mf9RB2TygrQ\nhsjugZKz6nGNBQDY1s8DN+NEL6gFqyyTLb4TMw/CxmyCULuj1R7EJnniVdI01Ku4HpWM+/Hu/cq+\ngjcpnGQYNS3oj0fpUOMtT+9HX9ujVTXBNK9sPP85BlblesHaRDj9vSag8S5JXivOSW0skNFv4l6J\nMm37b8JmvxCxxoIiufPwHdr23yTWWBBk3Lxjcj0XMjbsuSXRWJCVfSdlT8HIbywAUJixIMiAWg1l\n6ud6TfJnjm64/vEAYGMsW7DXssdBdKmjUKIHSvfz538m0sQ6ANIbaAAwqHZjwrXTBfULMmQgsqHp\nCMp9FFlgTVbU4dTjUCv1cq+j+nMiczNVJZucqO0mD7+/XUGaEOliX1vs/VY1qFURB4B21V/wXod/\nthf69zF9PWm/Ckau6FCD4271JmUhoQ/XWGhjG02rCxE/XOPmT9FPEr3rIiNf9bW65EG9fiMocvZa\nNKJfJMg1hktz8R92VXP8YiSWbpS9hgJdRsPV4Be4GvxCsqCUnN9LTBt5/GKkCEnxHDorexo2qux7\nTc8v+6esNFrGkZXRMtaHCPkme3VKZWKuR303ThGsb+lBuM4oyEOtU2sxKZy6H7UmMPDeFsp9ZC1S\nxVA2ic/6oWoVeNzvulLVKhBob+WgahVkwkCHuiOLtpYBOtR4h/qW5EaPtYm4itba6FDjHfRYxAQg\nuiwLdKjxDjraJpT1oUKHGu9I3aG0wEKTyqc19nQB0HCXpB2H7wi13T47G3q6ot9WYVExOg0u3enb\n4NNPpCwXUe4ygovxScPaYsygVhLHowLZzvvyOR5wa0f+5dF7/B6kZRD9iNv23ySXyw+bzTld4KKl\nBdy7SD7e5cBn2OwXgnq1xR+FWlsJF9gqKWFDW5ta9XJBg+HAxpGU+lMhMPGNwsYWhI4CZKJYExNK\nyPsvLb9ysxSgjfRI6zYkC4pKH/txuI/Q2KHf4nlt8cMWg6VF7TOvriTkUA+MH6KEoNxBI3bj/Emi\nT3CnbutxJ4g8mcCiBn3w3yt/SnME/3gBN+tGMutIJ7KkiVUXnqR+hJ0J/TF44b9eU+6jqbUM+Mkq\nzIeJruamVbcs544O5WTbqGptc1+y0P8RFXNA1i5NfEIDq90SZTQRzf+N4CPikrdYYwHgBI9EXPLm\n/VNnyE4HIi55izQWAODqIU8EHhf+gxH+KF5mPdoNKNUj4pK3SGMBAPq5N0HEJW+pFu7bVxJ3CdoP\nlD8tmSRDRR5ep/9S2NiC2JqoX/CrqpOCVVfDZyINH4f7IHoAuZuU3el1qHVqLfoGkWc1KcsYsEoz\newwYuhMAcPRE6R/5gcN2AQB27AnB2EkHpRpz5Dg/rFlPDLZt3ZJ4isy936nbenTqJuza0N+Gesam\nJc/PUO6jKOxNFZ/0QlE8SpH975Q45j89QUnevUoTheihbHqFk7vuNKmquZ8RBtWh0ScMZRmyCtLS\nGjjG5fQxfogLYfd9yQZ/uQ0kug0sJ0dbufp//ZFOkybSYaSji8yCYqXOqQiaWVYjTUuq7hQUK+7Z\nu1SuobCxAcBC3xAfh/vgReoPUuPgReoPtal3oSzOtSs1ombP7AoAOHI8Ak2bVEcjx2rwmuGGnv23\n4tjBSZjp2UXsqQAA9BuyA5fPzoT/9adYtvIyVi7jnB7PndWNILdkYS+E3H4tdixNRVvDT6sSc9Uj\nffPKRuJcXjSH3KI/pO3nxgzlpTi1MDJEem4eIWtROT09tSzsxqBaNG/V8Jcw/R/ijtWmfwZQ6i9o\nMACAz3p/rF0oW/pCZZ3GxMQmSG1IDJ1O3HUMOe2lCJV4dKxSB/6fYxU6hzIYYeeEvjU0L+1tbJri\n/JtPdB6usLH5aVTBmmcUpOTnwPkSMYlArVNrET1gDiz01SMOQ1pmPj5EuU9lg9Lg+3ZtONlFyluU\ng9e8k+jetSEWzOuBZSsvo7wFJwV2A4eqYse7fJZzstqnZ1Ns3XFLrKwk/DvMR5/wjXKNoQpudlqs\nahXkIvWP9Ik9/kZcKzsi9Cc9f4PEpTV96j1d7jHE3acjnassdHco/f24GbdO6P6hzYE4fyBcrIwq\n6e6wWKU6lSmXpPefk1WtgsJo5VRT7jHuRirmuFceTmwbR7ieteyczGMZKLh4ydi6zRU6vrI48S5a\n1SrIREGJ5p/u8FPRoBw+DvfBqhbuhPZmFzVvZy8y9b1kIQkkJf/GulUDAQA3b70Uuh/39rvcc0iL\ntSF197fUP6qN8QEACz3JKcLVmbziAtrHLGGX0D6mquhcSfM2etSJm3HrxC64x89zVzsjQZ0oUwbD\n2LlH0XEQ9Uwd6ga3loK8HPUdQ8s4S7160DIOGTVsKgi1ZeeQH6PyIxjfsWFJf9p0EkXjClVoGUfa\n+g2Kgr+WRFlElvSvg4OPK0AT6Rhh54TNrSXnMi/rDBm5B/Z2lbFqeenv8p2ghbxYA+853Wmbq7pt\nRZExDLIyJEI1hTwZxDPu0R7JQnx0sKqvIE3kR1MzJTGUDTTaYBAMmgWAouIStO2/CX0mUPuSUCde\nx9PjelG7uqVkISno1kGxX6DrFxMzVbmP2kF5DJdm4isiK4IeNw7I1E/W+g3y4N24I+E6p5D+nTx1\n4US8dCco/M/kSbJqC0z1q8nsHHJjCtq62BHiC+4ELcSdoIXo3lX63xtJ8QlH9k/gjUsXvwvzJAsx\nKJ24TGobJH1tWihIE/nRZylWCMAJAAAgAElEQVT2FF0d6VG/NK6ru8NiHN16i3DNz/XTjzCk9Sps\nWii7p4K8dHdYjNzsP+jV8B9eW5+my5AtUC8qLOA5xnRej1Gd/sPtq+QVyI/4BqF346WIffJJ5HzK\nfM8abTA4Odqif/empPdS03PQtv8mtO2/SenBsQzUaNOCWi2MkHvKS28qSFT/0jiJNxlJUvVRVMpO\nKkxrQExf2fA8vUX9lMWLVGrGdGUj0Tm3BZ/JwFtHZdLpbyetgLrfuUdVJwVowsAgP20s66paBQY+\n2Gxifr4z+4TT6QNAjwY+2LXSH7Z1KiH06lMhY0KZDGq1EsUlJejusBjdHRaj8E8RBrUsrevh918A\n1nufgY4uC2w2GxsXnsO6uacJYwxxWY2zfmGwa1AV80f5oW/TZULzKPs9a3zQ89xJrpg7yRXtBmwC\nW0TeR/7g2MATM2FspK8k7RhkpdvI7Qg6MYv03grf64TraaM7KEMlABy/c34kZbYRNBZipKxCrAje\nDF2IemdKXTCkzcozKfw8/nHqohZpTfsGHcY/Tl0wvp4z6X3B5/2gr/ic9HXNrfD2/4ZfTMo3dAvw\nQ5DHZLF98ooK0fjCZgR7TBH7TOqcXofnA+ehnK6e2PHI9JYHZWdb8ounXtNjch3hwkYMDOqAOlbu\nZgBysvIJ1xFBpcHfIzuuA7uETYg/+PL+l8qChANi1wAgBinzL+YnL/LA5EXEwp7dHRZj8ZZhAIDE\nj8n4nZ5D0P3O9WfYMP8s71oV71njDQYu3NoAkiobu4/cATNTQwQckS4LgDqgq8NStQoKx++/EZi8\nqDR2IydXepeZ4X2Ve4QsWIyr1qm1MNMzgL/7ONgacxaQiyIDcO7Dc0K/1pVqqLQKsZ628OeI+z4m\nOrREpyq1kVVYgFuJb3HpEzHo9B8n1S/wGpa3xsu0H1gdE4J1T0NxqdtYNCzPySc+NOQEopKIVd/9\n3ceRDUPgZo+JhJ9lfGYK73pZMzfUNbfE95wsPPz1WeiZSKKEzead5LC0tODXYRA6VanDu59TWID+\nt44gPpOYSvJMF/mLD9qd/g/hvaehSjlOsTs2gIAvr3Ej4Q12t6M33ifoxzPKfawNzSULqRg7E2u1\nqjzMwPA3s9zzKNwHtUDg+ccAgF2r/FG3kQ0AIPXXbzRoVoMgX71OJWWrSBvrvYXrunTq2YRgMKji\nPZcZg4ELN/3nvcj3WLz+CqlM5u88tO2/CYc2jYJ9LfX/UBUWla3sMGTUt5eukExQOLFip2NdegKR\nqSJoNGQW5KPjVdFxM2+GLiRdsCubj8N9EJmUgGEhxEJGB+IicSAuUkVaSYe/+zh0urYHX7LSUcxm\no0+g6GJnXarZ8YwJSXwc7oPWl7fjVx7RtWZldLBc+vJTzGZjQphkH9PYwfNhpEPdT1nw81jMLkFb\n/52Ux5GFHBG53jUdj6pNsfUNNYPhZUYCGprLV19GVuqZik87+zeSnP9b1Sr8taSl56DvGMkVj+9e\nnS9RJuRKDF5Ff8amE1MQcjkGty5FIyM1G6fulZ4GJf/IwMoZxOQVrV3VM4B9cKtVyMrMRadeTdB3\nVBtYViFuoHxPSJVqHGW/5zJnMHBp17IOIi55o7CoGJ0Gk6cpHO99HCGnvRSejpNBOpbP8cC/vgG8\na4+xu4ROglZtu0G43rtOOfnzyfg43AdT717Ara/iS8WrWzGulla2QgtMcfSq3kAt3JEA4E4vTzxO\nSsSQENFZjcJ7T4ONMbUd7If9ZqGwpBh1z0iXNedIp6ESn0l761q4++Oj1DrI+zmh8jNlkExdU+qb\nEVGp71VmMNQysVLJvOrMkzTpf/8Y1BPXPk64eOgu73ra0t7Yu5ZTrV2Lr1BhZloOlu0cpXT9ZCEr\nM1es25CLa32EigiE5kfZ77nMGgxcdHVYvFOHzX4huBxIPD7vMmyb0oqSSYuWFkTGY5Rl3No5EAyG\nTIGsAiUl6vdQ9rYfSNtYsi4Yld1PmZDp2MLKBh+H++D5j584+/wl1rq70TKXrjaL1mdypNNQ2saS\nFir6Lw0KxelnL/B+oeriatSZRubVKfeJzVBdtq0a5ejJileWeJL6QdUq/LXo6emgYnljpKTJV4zP\n+79BBP//7oOdsX35ZYLMlacr0bfpMrBL2NDSLjUi7t58gfbdG8k1vzIQDFb2Xj8YoVefIi+3AIZG\neqQyqnjPZd5g4Gfe5C6YMqKdTGk7lcmk4e3gd/Ke3OMIGkeayKptN3h1IHqMJrpYmJsaqUIlBjVh\nwDFOVgm6DAYGBn50ZXAh/JIjXfHQwcuP4cN3YbeD6P2yG29GLOFkHktH7cWq41NlHlPTkfbnwUA/\nxuX0cemIp1B7+96yVVCfsawP4dqmdumJmr6BLvyuz0GPBsQNk0ETO/AWz4ILbu61/7NV0NPXkVqG\nDgyN9Ahzbb8wA7MGEtc3Oy7ORP9my3nX/x2eiEXjSlO5S/Oe6eavMhgAzodYUbBBzw746AEtaTEY\nNvuF0KCNcrl30RvtBpQGrgeFv+YZDNm5RF/p60emKVU3BsUSHP8BnpeuSr3jzeyMM6gbmYW5EmWa\nTfLFwYWD0aQOvTEH+izhP+dPwuJonUPTSMxNU7UKDDQg6L5D5s5jU9tKrJuPNJmD6MguxD+GqNeX\nov+VOHed+lUkvm9J75luNLoOg6qxMCPucL//rLjdjDFz5M8RP3+q+u/E8rkkMvxleF66qmoVGBjk\nQtoAcLqNBTKCz0fy/ue+BoB/x+9HdxsvrPU8jFNbAwEA3W28UFxUAgC8/7l0t/HCkfXX0d3GC5pG\nXnHZDMhnYFAFjMEgB62cahKuwx6KD36lwp1zxN3TD1+oGSP7T0cItfXp2lgunZTFgqldCdfFxSX4\n/JV4fH9p/xRlqqR2bAyPQN0NWzHqzAWRMpdjX8Nh03b0O3pK7FhpuXmot3Eb73r5rdtotXMf8gqL\nhGSLSkowPyAIdTdsRbcDRxH07r1EXRfduIUGm3fA+3qgRFlFsT3iIRps3oGWO/Zh2S3qdQPEjdti\n+16J4/7+8wcttu9F8+17SJ8rPx33HsTDL6W+8A6btuNoNHkAXAmbjdFnLqLhlh34785dUhkuh5/E\noJHvTnhd5SQO0NFmvv7pRk9bfQ7t3Qa15P3PfQ0Aj4JjcTNxG3z2jMPw2e5ix+hu44WbidswdmFP\njF/cC7v/Ef19o47kFxeqWgUGhjKD+ny7UaRt/024e3EetCluSefmSZ/fXxJLZnbHzTuvCG2/Un6j\nUkVTucfW1WGhR2dH3LhdWpykbf9NUgVoj517VOi0I+S05uwO9e7aCBv2lpZ/7zFmp1BdBqsKoiv4\nlkXqrOdk+nq7YDbqbtgKADDQ0cHDL4nIyM+HuYEBqbybXW08+JLIu+Z34+G2VTYxRlFJCeqs98WC\nju3wITUNKTm5aLhlB0G+495D+JqZCQDoUc8eoe8/Yvrla0Ljcse2t6yAd8mpMDcwQCPrSrjyKg5X\nXsXhwfTJsDIuR5Al052L4Nitd/ohOSdH5H1+HDfvQH4RZ4Gux2IhLTcXp56+QEj8RzyYPklkP0nw\njwsAWoDIcbnvp7F1ZU5thi07hPTmf8/2lhUw6swFrOrmiqVBoTDV18eqkDCMaNqYsMjn9tHR1kab\nGrY4EBWNA1HR2N7HAz3q2ZPqULtCebz88Qt11vtihVtnofdVZ70vWFpaeLtgNqE9Iz8fzbftQcfa\nNXFgYF+pn9Pfhomu5DorRgZ6yPtTCEMNyc4neLIwbTV9iR4UjYmuIbIK8yQLMjAwSERjDQYAaD9g\nMwDAo7MjFs8Qv1MCAOPmHUP8pySF6jRgsh9tWZd8ZrgTDAaAYzTMm9wF/dybkPbpP3kfklKyhNo1\nLXXsiH7OOHk5CoBwEbd5k1VfRExV1N2wVaLvPplxsOXuA+x+SF5nIWLaJF6/DWH38H7hHOQVFvEW\ntlzCpo4X6ltYXAyHTduxLeIhvNq2Jtx7l5xKaki47PIjtHNfk+lNxsMZkwnyolgdGob8oiJ4tnbG\nvPZtxMpSgTsuIFnXsWcvkcrVWe+LOut9hdr5n8XSoFDC9fyAQPj24sTzrLkdLnLcWf4BBIOhke9O\nkbJkFJOkaGuxjVNjhDEWxFPJwIy0vdkk4rNuO4O8RoY8Qc/ywNLRRnFRMVg62oiL/gTHlrV5924m\nbhPTU70x1tGnbDCcbqs5m2sMDMpEow0GLgG3YxEgsLCWFnkX92Hn56LjoC2ENknVpqnMG3HJW2i8\nzX4hUgc06+qwhNybNAHPUe15BoMgooylv4FDg/qJvR+Z8BWA8OJwbnsX7H4YSbpI5adBJU7mCUNd\n6b4adFmcTDK7HkQKGQwnhw2SagxFceQJx42HTmOBf1xpgq4jPn/BROdmQu3jmjvh8JMYSvOGxJem\niDz8OAY7+/YUknkz34vgXgYAuQXSu2W89p6F+pu2C7WrX0JjxfMx+xflPvVNq5G2q8oQAICdPueQ\n8zsfC3eOFilz9NEK9LHzRrehrfDtUzI2XpgFgGMsdLfxQvteTXHv+jPcSNiqLLVpwcG0Gn7kZVDq\nU9tY/Yu5Mohm+YaruBPxVqjdw60hFs6UvLGsTty+9wYrNl4jvXfGbxKqVKZWb0heyoTBICt0nATo\nsBTvB0xmNEiDk6Mttq8crACN/k4K8gswzmkJUn+kS91n4/X5aNimLm06tK9VQ+z9dWL82PVYLBQU\ni68aXteyoixqoYRkV7qlLfni6W9jQcd2Qm2LOrenbDAIxj7MuHJd6r56LOEUoS1squJx4jdSuSEn\nz+LsiCGEe09n/11Zyd79plblGQAczNSr2jLZ6QBZW4VKZiJPErjtiyUX7VU7ahpbAdTtPgYNpNfI\nnUK1m/gJCH6JgOCXcGpki62rh4iU4+I6YAsKC0v/XkpTkZoMwTSy0ozz/NVXzFx8WqzM0Mn7AQB3\nLs8DSwnrUECDDYaIS944fjES+2RIP0p3oTbueLIs6hUxR307a/itH6EwXZTFjWMzhGovHNosepdM\nUcz32ICXD2QLaJ/fk/NlEZh+QIIkPcT9Eu1yV7tCecQliQ+e19cR/ZVwIuY5VgTfJrQJxk6oG9wT\nE1WOSxZnxaIhHVif+vWklrUnMQTrVKggZDAAwNEhAzDm7EXeNdelyUSfPCU1S0sbxewS0nuaTOhP\n6qfWbtaS8583m+QrdOLQbJIv9s0biOb1bCjPySCabtaNcPDDbcmCDBpLVnY+PIZLX1sr5kUC2vfe\nKHHhHnpxLmGxP2r6IRzfJeyWK46RngcJ18P7O0vsQ7VORad+HNd8WQ0aKmiswQAAowa0xKgBpdkf\n7jx4i5t3XuFjQgpS03OgpaWFWrYV0aJJdUwZIbzLRzfcRf3xi5G4/eAtEr6lwcBAF9Uqm6NXl0bo\n2aUhbXPcuB2LizefIvF7OozL6aNpAxssnuFOy4mHulS+NjUWXoza11TMAlAU7hYT5R5j3m5qXzLy\n0KhKZTz9Rr4z+j5V9pzk2X8KsCL4NmnQq6RYAlXyRoKBpIxxi9lsIQOhuET+BfZ6j25SZzr6QPKz\nT8ggd9VoU8MWAHA97i16OtRFbkEhfDq3Fzl258qOCP7xQio9uLDBhhbUO4fywxTqmwSyZkka2rkJ\nVh4NxtV1yvuu+BuoYazcvxfyIslllIFIcXEJqbEwdqgLxg1rAy0tjsy+Y3dx5vJjgow0RgM/XxKF\nCy1KIuEb8Xt36tgOYuXJjAUDA12c3T+Zl8b/7ftfWLjqItLScwhyuw6FYfr4jpR1pIJGGwyCdHKp\ni04u0rt/uGkPQnDJebnnvbE/BD0mlQbiChoydOOmPQgrLs2Hi642JpycpbB5VM2kBScI1+MGtxYh\nqRi6V5A9iw4/bsNcaBlHGs6PHCpyAV9YXAwLQ8lZXMhovcsPgOYFvZIF8Cp73E57D+KuJ9Hw7LTv\nkNw61N+0He8EshmJIq9QOI7h/ucEsX1mX72BnAJOwoHxLYTjMLh42nWlbDCc/BSBkTUVv4kjDwUl\n4tPf0kleQSHYCvqsMlDjY/Yv1FJRHIM8xkJSdo5QQomyDnd3nUu4/3yhWk4sljamjeuIaeM6ori4\nhNBHktFgV8sK8R9LT+1PXozECBnXdpUsxWfPFDQWbKuVx4ndE4Tk6taphCtHOe6h/G5YZ688RhNH\nG7Rxri3Uhy6YRNw04Dtln9LnbNPXGRPWar7bkTji3v8kXE8YSm/wqjjSkzLBLpH8B7xCZXO4eDRF\ns84NUKO++vjsCxoNm+/eBwA8njVVpvGcqlqTtrsfPCbTeMqgU21OnZTAt/EKGZcsOFiQEU0b4/tv\n4axlZG1U8GztjBI2GzHfvkuUFedmJgpuytUlgZKTK1QzKk95/NNf7lPuU5bxj3iFdVM8VK0GA4Cz\nXx6qWgWZ6Hv0pKpVUCqCC2wHe2uJhV9ZLG3UtCW6Z34TE5N4cOsYwvW+o+Jr3fBz6BTxO+78Qelr\nR+mwtEmNBUGunZhBuF68+pLUc8hCmTphkIXwcw+weihnccV/2uCmzcnwMu+AJ9zHc/54dmUN5u0C\n1WlaE3uiN/DkuP+LO7HgygCA157J6DmFU3nZs9kCvH/6Sah/0OE72DRhN6Fd1Hzc6+r1q+FArC+v\nralrQzwNfYmG7RywJXwlLm0NwJ65RxBUeBbddIfg1Je9sLSpgG66Q1BSXCI0pllFE2T+P00r2fNp\n4FIXWyNWE9r0DHQRkCu+WJi6M6zuPJH3Ri7sjZGLeks1TsTVaLpUkpr3C+fw0nZ2sauNyISvyPoj\nX8XTo0MG8Mac0qoFMvLycfb5S5o05jC6WRMci36GOut90at+Xbz+lYwPqWmEHTNXv8P4kk50peEa\nR5blyvFSrgLA/oF9UWe9Ly842MzAAJn5+bz7su7EccctKC5GnfW+0AIxixD/uP927YyTT5+jznpf\nNK5SGQDw/PtPueYHOJmf9jyMwuATZwEAFcsZISUnl1SHV/Nm8n52tSuUB0tbC++SU3FoUD+MP3+Z\ndPyRTo158SotqtEfyJuc/5v2MTWFlePdhdKsAoBjzcoq0IZBkMuJUVjcgN6T1EkXruDOh0+86z71\n62Fzr+68635HT+HlT050tqjvBcFNoEktm2Ph/xMq8N8TVXPn4YzJsCzHqX+TnJOD1jv9hGRuTxmH\nzvsO89pE1YoBgCmtWmB+h7bi3rZS2bdppFRyR3eOIxgbw6YcUIj//5EzD6SW3XUojHB9+7Lo9Ycq\n+esNBqcujXgL4TXDfLHk9ByCq1J3g2E8g0FLWwu3Cs8R+geXnKfk2sS/GOcaDPMOeKJO05q8dq7M\npgm7hcYlm4//+tX9NwT5DcHLCNeXtgUguOQ8RtTwRHDJeXQ3GIab+acRVHiWJ9NNdwjv+kJSqetE\nL5ORuJZ1gvT98rcV/inE7HZLsfXeKqmeCRl9JuwhXI/oJzlYSBmc+7AVpuWNpZZv21u0KwcVqC4u\n3y+cg2uv38I7IBD1rSxxecxwiWNKc/1PUAgOP46Bs201xC+cI9ILXZS+4t7Hsi6dsKxLJ/Q+chI3\n38Sji11tHB0ygCATOnmcyP7i5vMJDMaFF69Q2cQYQxo3xMw2rSiNI27ca6/fwsxAX+S43LoWbXfv\nh7aWFl7MmQEjPV3S8aS95m9bExqOY9FPUc3MFJt7dkezalVIZQ9ERWPrvQfoYlcbN8aPFjkul7Y1\nqyPi0xecHsFkWpOGQbbSfaY8WjvAo7WDgrVh4NKsfC1Ep31UqQ53PnwSWnwv7NSeV8CS+/0syp20\nznpfOFauhCsk3+NA6SYR97WsBL19T9q/95GT2DegN1zrlLq71FnvqzKDIT2D6L+/2Ku7CEly5nm6\nYfOeYN51cXGJyExDoRfnwnVAaer8uHc/4GBPfuLOJSMzl3B94ZD4k/2zVx6LvS+O25fnoTOfm1VO\n7h+UMyJPUCEvf73BYMK3+Lt3sbSwFf9pAJermcfgpj0I5a0tcPabn1zzVqlTupvk2WwBqUyjDvUp\nj9ugjfjMKZVqWAIAKv8/eLiogOOnO7/Lv3h2OxYG5fR5Jw2C5OeI36Ume2aykioQ0OM5SnTQpTKh\nYiyoml7166JXffpSugLA6m5dsLqbYgvnXR1Lv6vdWnc3rHV3U9m4hro6iPbypH1+AFji2gFLXMUH\n0wHAROdmpDUhRBHx6YvUso3MbfEiQ3xMRFlnnkMvVavAQMLaJkPR7fZaVashxJSL/qQbOaIQZSzQ\nyaSWzUnbX/9KIhgLqsZryVnCdXdXR0r9+3RvQjAY5i47j21ryFOt6uoSU1JP8T4h8USi96hdhGur\niiaU9KOCYKKbgycjMGuSq2LmUsioGsS5jVcxeD7HvWTh0VJ/MLITA30jfV57z3IjcD1Hdp/B73z+\n+W36OmPFJXqOxP4bvQOLjs2k3C/xzTch9yaq0BFAnp9fiC7DifnArx9Rbv73e1eekLafjVffbEAM\nDHRy/sUrANLvVh5oNRXOgT6KVEmpTHt8ULKQAGTpcxlUj4Ue9U0e75jj2OQ0SgHalCLoWqlM/hRR\nD+g/95yYZlgRGzDS8lmGjEXiePpS/GbHllWDMXfpObEysnLhmnA9HqqpVfkJufuGMRgURYUqFkLx\nAFy3Hy5kC2n+xXH7Qa2limHgH2PR8Vmk7VraWrhVRO2Dya9vldqyZXdI/Z4ON+1BMLYoR2k+7rVg\n24VfB2EmISuAIEfPP8L+0xFC7eamRpTGkZf718kLapkpcJeAgUEdmHzRH2m5eXj2nXrRMqpsfROA\n2fXUM9D3SeoHyUIyQlaH4er9V7gY/gJHfYYpbF4G6bmbFKfwOXrSfPorCX4jIejte8r9Bzemtotf\nlmjeuDrh2mP4DgSckm5jdvXiPmLv33skW40nUQi6Q9HJX20wcBf3riQ1GsgW/qKMgaVn5wJnSW9J\nNYao04XNd/6Vegxp27hjcv/nN5Ik9ee/pvJ8yJC2yJ0qakI8v/dGshADQxnkfUoakrKzcWvSWNQq\nb6HQuU59vq+2BoOyyc0vQMIv1e04MwiTW/QHRjr0+YJ7Xb2Bbb174GsmJ+B/ZVfpd4GdqlZBnfW+\niPOeBV0WC0UlJeh/7DTBfXNqK2fsfRQlcoyOew/xTgzX3ZE+2w9QGiNxdewI1P9/0cotdx9gbnvl\npQxXJ7Ky80XeEzwdaN/aXuxYb+I1pxT5X20wMKg3qiogl5EsX8pLBgZN5fYUakHl/FgbmuNHHrVF\nrzoWcOsbTt0dYJ+z5JotbvP2kb4GG0jLysWppWU7Tba8dG3NSaJx6+FSsW1kHGrlifGP9oiVEaRj\nyL+Icqcn9kFbSwssLS1eYLJg/RRJWY7OjRyCk0+fw4EvlbODlSVhDO8ObXA0Ooa0P3/mPP5rKuzt\n3xu9j5S6YWsBf5XBMGdqF/julZxmmp8OLuKNBTKqVjZHeSk8PVQBYzAoETp8/P8G5kx0xYAeTVU2\nP1NAiYGBOv4dFlCOY2gZuIS2RRldfM8TnZddFE3L15QoE7x5CvL+FKLtjJ0I3ix9TnaGUnr0dZKp\nn6O5Dc2aUKOEzcaWXt2xpRd5Nh9pYoVGNG2MEU0bi5V5OVe0m4wsmdj46WJX+68qCidIvx5NCQZD\nx76bEHaFuKnpteQM4XrVIvHuSADQoK41njwvTTDRsH41+MymlvVJWTAGA4NKUNXpAQMDAwOdNDCT\nvmCjob6uZCEGkfQb7Izn0Z/RuFkNBF1/BifnWoiJKk2Z2rX1Ktx6uJR38lDVpjwOn5sOAHCzbkS5\nIvnq2Iv4x3GAZEGGv4IWTWvg8dPPAIASksKuT18mUh7TrWN9gsEQHP5abQ0GptIzAwODwgg6fg+L\n+mxCnyrT0LfqdEzvsBInN1xTtVoAgNysPGyYcgCjGy5A9wqTMLLBfGyfc4yJYZGDYNd/KPcJ/Ulv\nAUB5kCXT0+HW1LK4CQY8M0hPRnou1q3gFBv0XXcdy9cJZ/Tr33Ujbj1cilsPl2L3kVJXsTWNh1Ke\n7+pX5RfeZJBMi6Y1aB3PsZ50xSk3/0v8vN2PEp0coZKUSV8EU8IWi0hrrw4wJwxqhvPYLYg6Mldl\n83/+kYYa1uVVNr8i+fLmOx4EPMW1/beR9iuTcn93i4mU+wSmH5B7fCpjKGpssv5kfXN+52FAddHH\n4h9eJODDiwQcX+fPa7NrUh077oj3QaZLv8G1Z+N3WjbpGCnf03HjyF3cOEIMCJT1+Svy5yntfHr6\nurj6k5rvtjyY6VLPaLb42WlEuTdUgDbU2PSauiFb21i2rHQMslFcXIK0FM7vb0kJG4ZGekIy/20r\nrfhLdp8qzoE+crvN/c2uPIpg87+DCMHFMxadxs7/pM8wNn3hKcL17g2y1bhYvPoSrybDr2Ri9frz\nB8ue2yFzwsBAYPDiI6pWQWFMab0MR1dflslYYBDmbfQnwnX3CpPEGguiiH/2RSZjjArFRSVwt5go\n0lgQh7vFRIxutJByP+eujUjb83PFF0CUhdENyYs/+v/YTftckpBlcaUONRzOJTyk3Od0Wy+Z5urq\n7Ydmk3yF/jHIj72D6Cq8NzotlmlMdToFYxDmxeuvlORfxn2TeS7rSmak7UMmyl7Mt78HMTbnnD95\nLShVwxgMDDyW7r2hahUYNIglA0sXOO4WE8Em8emkgrvFRKwYtkNetYTobT0NHpaT5RojKTGVslGz\n8uws0va+VafLpQsZSV/TSNu1NKiY2O53t1Q2tzINlmaTfHHcZxii989B9P45uLJmHEyNDBhXJSlx\nalET0ZEfMWQU9Qw9FfVNUNWI+gn64menMfgeY9CpE4N6E6vWS1vsTFBOUtVmQc7uJ/4tyc8vBMAJ\nbJd1zNlTiCl2dx68A9991DIyKYMy45LkPHYL7G0tcWKlcHVGMjcf57FbCNfH/h2JetWtxMoAIHUX\n4o4vKC+ra9Gzd98weS2xsAPZWJ09dyE7r3S3soJZOdzcJnwMJul9eMz2Q3JGNqm8Kt2jGNSb7AxO\ngRg6TwceBT6nbSyAs9ZZt0oAACAASURBVJtfkF9A23g9rabgetI+yYL/p17zWnjz5KNkwTJGmNsK\ndAxeQanPkY9h6GrdCHVMKitGKRF0u71Gpn7yuKlUKl9aBNLGyhwt6tkg7OkHdGxaW+Yx/xaWrRuE\nwT224Hq4bKcFl9t7y2Qgfs5Jxvusn0r/fFKliF0MHS2WqtVQODMndsb5q8QYk2kLTol1L5qx+DTt\neoyecQjzpnWVe5w+3ZvA/+Yz3vXlgKfQ1WFhxoROEvt++pKCMTMPw9mpJjatGCi3LqIoMwaDnY0l\n3iUkC7WTLZadx26Bawt7rJveEwDwMzULveftF1ocH10+Ag41S31UXSZsFRlj4DJhK22L6ynrzhLG\nch67Be0nb8ddv1mENgBCcoL6kckJErB1stSymow8/vpU+v9NLOhFvqszcmFvjFzUm/TenoWn4e8X\nKnJMd4uJtDzr/UvP4eJO8l1rUeO/jvqAud3WiRyzqLCYkg5bg31IP090vUcAGFSL3C1GlZ9XI5Ye\nPO3csCc+mFK/4fe3Y2eL8XCuUEdBmhGR9WRhs9NoWua/EhGLvm0dMXtwe/T1OYyofbK5OP1NGJXT\nR0FBkWRBMUS5r5XpZz/8/nZef3Xi0Ic72Pv/37WIriuhDqVNcnIL8CkhGS9ff8PHLyl4GfcN338K\n12lp33sjKluZoVb1inB0qIKathXhWK8qzEwNJc5x9+p8dOyzibe7H/vmG+8EQVeHBbtaVoj/lIRC\nEd/bVE8C+Ptx5/mZ9BvzV1zg3WOxZHPcmefphh6ujpjifYLXds7/iVq5J5UZl6STq4RPFrjU5Ts5\nKCjifHC4xgIAVK7A2e05cyuG0I/fWACAKxsniJxDW5u+Rxl5mLhgP7d2LPJJviDD9xH9xXu0qU+b\nDgwM0vAi4i3huoK1BQLTD4g0FgDAc/0wiYvZzBT5i+eRGQuB6QfEzl3fuTYC0w9g9YXZImV6WqlX\nMFtWeo6qVSBlXG3JO2NkzHh8iHKRLVmQxw2pnVU9WnRYdTQYCUkZ6LXoIPq1c5Tc4S/m1sOlcGpR\nk/eav53stSJxDvRBcv5vyYIKJLsoH86BPnAO9OEZC+pC+94b0X3oNkxbcAp7joQj6M4rUmOBy8+k\nTDx4/AF+x+5h8erL6DVyJ9r33ojsHMnxXmH+5CnaC4uK8frdD9qNBUncOi/6b4ckHOytEXxBfV0T\ny8wJAwDo6erAZcJWPDjI+YFxXcqO/1uaNWHiak5hDbKTh53nIzC0KzH4JOFnOo4GRCH6zVckpYle\nxJxeLdpgkZcaVch9LjtMkezvvW1ef3htvgTnsVvgPbITBndRXUE0hrIN1R3twPQDIk9zhtjNoXWH\nXEtLCzfT9kst39zVEesuz8XifsLfE1RPGXbfW45p7f4VaqfjlOEg384WPwHJsgfg0YmsO7mxGYlw\nDvTBjhbj0ZLm04bxj/YgNoN6vnQu8u4u88cqPPabDbe5++A7ow/aN64l17gM1JD1s8nFI+w/AEBX\n60ZYLUPKVqr8yEtHHxmqkHM5/HESxtWS/jtQk+Au/qWJYwi74g1tbfmPYExNDPE7K0+oXVdHPncw\nfT0d3L06H/EfkzBh9lGp+4VenAtdXcW6opUpgyFi/yyCIeA6bZeQTHyisNsSl4JC4i4+/1hdnO3h\n2twOx2+SHw+Zm1BPJ6gMWjeswYuv2HTiDjaduIOQXdNgWs5A1aoxlCGq1pEtveSUtUOwz+esZEE5\noWIscGnaUfSJ3YPrMXDpKV3V2VqOiqsye35bIGk7S0d9Do/3t5yCSZHSx33wM/PxIQBAqOsymOjK\n95119Ws0VsdelGuMA62mytVfEG0tLYT60jsmg/TIazQAwK0fL3Dr/wXhtjcfh1YV7ehQDde+RWNz\n3HXkFtGTVS31TwIt40iDonbvpZ332LlHuBkai6SU37CuZIburo4YMaAlrXNdPzmD1vEEsatlxXs/\nF6/HIOjOK3z4lAwdHRZsq1mgV7fG6N1NfOVvuilTBgOX6xGv0LNtA2Tn/UHwTmJRnVpVKiA+MVmi\nnz6ZP//vnHyRBoMqoBJrwJV1HrsFXabvLrNxCgyq4eBj2QJH+3m6KdxguPB5u8x9/SJXYXJLYTeH\nbXOOS20wAIBLTyc8uB4jWbAM0tiiutxjuIauBAA0MreFb7MxMNGV7N8MADFpnzDryWEUlMjn886l\nkbmt3GPwp0+d2rs1JvVqJfeYDLLzX9PhWPT0lGRBKZj15DDhumWFOmhlaY9m5WuhkoEpjFj6+FNS\nhJQ/v5GU/xsfs38hKvU9Hqd+QGEJtZNLadkU1430tbdDEC4nLsOH7Eh4OwTx7tc2aY1+1Vbwrrn3\ndscPQW4Rx63ITLcSJtU5phB96WD04FYYPbjs/F4N6OmEART+3iiKMmcw6OqwsPJAEH6kcPwLzYyJ\nu1KHlg5Du8myLSA2HBMdqEknbDbAnw3xvYhTkat3Y9G7PTW/V7JsTlx0WNooUuMqgwzqybGXG+Tq\nz9LRRnGR4j53xmayn/7Z2pPndKcaY7Hs+DTag59FuXOdead+6R+j3NeiV9h6/MqXrwbKi4wEuIau\nokkr6THVNUSIKz3+8YLpUwuKitFjwX6kZ+UxqVVVQOdKjrScNJARmfoekanvaR+XCvzGAPc1l342\nKwlGBAB8yBKuR7IprhvqmXZAz6qcZ+T/dSXpeAxlG/U5t6aJiP2cLBP7r5AX4dHX49hIohbN4rgV\n+VayEA20HEfUbfjS4zAyEK5YufqQcFDny/c/CNdUDACPtg2kluUnrzgTlxKXYte7QdgU103oC4ih\nbGNVTb7K4EPnetCkiTC6+mVuT0Qi5pYmkoVUwLWO1IvfqQNGOvq0GQtctpwL5xVra+25HVN6t2aM\nBRWzstFgVaugUt78vgNDlinvOjyJuJHBNRYAoE+1ZUrTi0F9KHN/Tfl35h8eJI9W5+6yi6ubQCYj\nbneeTvYvGSo0T9heor9c1JG5GL38hMQaCy4Ttgrdb2JflXTeJePc4B/+Uqo6DN/z4nDqM/VsAIJH\nogwMHfq3wMkN1xQy9rWfexUyriycjNuEEQ7CGT3oTLG6YJ9iK2bLS5T7WsyJPor7ycrZfJGXeqZV\ncMyFXl/lZpN8sXZyD8ZAUDPcqzSBe5UmalF1XBVc//Yfptufw653g/GnOBuPU89jSHXZg6wZyh5l\nzmAAAM8BbbDn4n2x+XCl8eEnk5G2TVa4Y0kz5jG+7E+SxqM6vzgScp7hXIJsu4Va0AYbnFOP+8nH\n0MaSnnzmDJqLeUVTyUJlgAqVzWkba1jdeaTtnTXAb9e32RjcTYqDd8xxVasiFp8G/dDXpgXt40bv\nnwO/a48IsQz/TfGAW3N72ucqSzxJu4Mf+QnQAlDNqDaamLfFk7Qw6LMM8DX3A7pVHgptLRYWPB+E\nIbYzkFuUjfJ6lmhg5owFzwfBRMccg2w8kfznO9pZ9sSC54MwqsY8nPqyFWsanoT2/4udKco9SV0x\n0y1NWGHIMoODaScE/eB8Nm2MGqlKLQY1pMy5JAHAnov34eczRNVqlEl2vxsss7EAAPMcbvJeP0w5\nSYdKDCqklbtyszRoOn6PVpK2pydR8+2nKq9utLdyULviV/xEua9ViLHAZXKvVni0ZxZ6unAycS3a\nF0AwIOhkyL3d+PfFFTQJWIqP2UkAgBJ2CZoELMXmuEA0CeC4W22O42TcSs7P4rU53eC4nix/cRmj\nH/hhybMLcAstjVlqErAULQNXYn7MWV4fRXE/5SZ6VRmDnlXG4E6SPwDgXOIuHP+8GXeSrsDn5Qie\nbDOLDmhn6YGjn0t3yJc22I96pk5oZ1lag+n4580oZhcT+gKcn786fz7pZFTN3YQMSh5VF+FdVoSQ\nXGFJHt/rfKXoxqBelLkTBtfpuwGIdrspSzh5lv6BcbCthJOLhUui88sAQMwe+Y7Bc4uJCxV+tyIm\nduHvo3kXptgUFWzrViFtH1Z3ntRuScfX+ZO2j1woulieuhLlvhZtbi1VWIYYquhqs3C/q2KDqvkN\ng2l9XRTumuRRtTFG12qD5Y36oknAUjzzWAWnG8vxzIPzPuc5uMM/MQaz6roBALxjzvD6civo+ifG\n8OQFDYNId64/u2I36bzsN2DB80GoY9wQc+xLDYENjc/LNF71cnUxvc5qsTJR7mvhcec/JP9RbZE2\nadHVZkFPm3xZp6ttgE1x3eBo1hUJuc8wuQ7nhM+AZYw98UNR38yVIK/FVy56nkMgNse5w0y3Mioa\n1MSHrIeoasR89/9tlBmDQRq/+7IGd/EvaBRQlZGWHW/78163sRyN1hVHiJFm+BtwdGHcKOiiqLAY\nOlIU3hEV7yGuurY6w12gtw76B8Vs1WRpM2LpIcxthVLmUnbswvCakt3UVr70Rx8bJ3zMTsLz9AR0\nrOQgJKPoEwRpeZ/9Ele+HUTfqhMwovocBPw4DlsjO1QysIGVvvQbhV9y3iLgx3EYssrB0aylyL4B\nnRYBADa+vorzCY9oeQ90oqetg7tuK6CtJd5hxKsu+UYDAMypd51wLRhfqAUtJuaQoewYDH+LkaBK\n/pTk8F7LYyyU17NBWoHslVYZ1AfT8saqVkHjuPJtF/pWnS7U3qvSVJkKzAGAXRP5ax2omofdOLu9\nyvQfr2FshXNtqSdv0CSiU7+gZUXxVaTdrDkZ8s58joSuNgtrmgzAw+T3aF6hJk+Ge8KgKhY8H8Q7\nTTidsA0A0NjcBY3NXQhy/CcO3NdkpxBUTybm1++N+fV7Y+nzswj68ZxSX0WwsH4fDLCltxhZWcHh\n8r+813H9lvNeO15ZJXJT4mWfpdDRpualv/ZFII5/iCS9Z6JrgKieot23uTrG9l0KFomxV1RSgob+\npb9z/O+DbBxxMnRRJmMYGNQbm3JMIFVZQUdHsaXoyyIGRvqk7ez/u3+I4/3zL6TtO+6ox+4vHXD9\nx1vSVDGXjLG1OiLKfW2ZNxYAYEokp5jYqPv70KpibQDA0oZ9eLEIbqEb8F9TTkrRoB+xWNV4AMrp\n6GPnuxDMqVfqZvqnuBAAcPP7C2WqT8qrzMcqm3tV4yGIcl+Lw62nSRammY1NR/J+P9TRWNj2pgsA\n4OD7YXiYcgQAEJd5CzveuiOr8BdProRdjBvfVuHM59KNk/NfvHAvSXFZ7Rwu/yv2BLOh/ypKrpEO\nl/8VaSwAQFZhvsQ5AWDb6zuk7d5PiFXpJf91UDxl5oRBHXDy9MXZf0ZhyGpi9g/+uIHU3zlwW+hH\nuN+yni32eA3gXe/0v49DgVFC48sbf0CGi9cO5BcUCY1dwmaj+bStCpmznI58efsZGDSdM+98MdRe\n+HcrL+cPDMuRGxQAMKOjand5lcmO5uMI1/+98selRNF/oMXxX9Ph6FxJs3yu6Qq6jenB2YE83mYK\nr22AbXMMsG0OAAh2XcBrD3dbzHt9ss1U3mv+04XuVRqRtpNBZ+Aw/4nA6oYnaBtXVhqYVRN6f4c/\nhmHPO+H6SFTQ1tJCn2otsLhBX7nGUSUT6pzmvXYw6woHs67Y9qYLvOqFAADOfJmO4TVKjQP+excS\n5mCgLX0JAAK+xsL7ceni27Nee/Sv3hQ/cjPhE30FX3MzePca+a+WuEufnJ+N9jc3E9p62TTEBLs2\nMNMzRMDXl9gUG8K753hlFV73W84XEUJk/7sIzG3gKtQe9O014bpP6B5cdfUUqdc+F8W7iDMGA80M\nWX1c7CLbbaEf7KtZ4syS0pSogvEFM/q0wYw+bQhtTp6+WHkiGMtGutGq74NtM+Hk6Yv07DxYGBvy\n2jvM3Q0bS/I0kFoiP/rSkcaXkYGB4W9EVHG1ftWmU67JYFZRPQu10c2iBn2wqEEfVauhltz+XBcA\n8D/2zjosqq2Lw78ZShoELBpFTMpuxO5rfwbYXruwuxuxE/WKca/d7cXAbixApRFRQJTOme+PuRNn\nzjnTifM+zzzO2XvtfdaMw8xee6/wdyHXt9CEncnfhRFufhjh5qdWHTSNLdHtYWtEdImrb0Uu1rk1\nuqNS7s81FmpZVsZZf74R7GBihZudpiI5Lwsdb2zltdc+u0yk0SBoLFgZGuNRt9mE/lHuLTDKvQWW\nvr6E4/EvAAB1xMwpigY2TniRmYRP2d9FyrWuXEOm+aVBZzCoAUFjgcvAlYdxfGGAyHHnHrxTuMHA\npd2s3QRDJ6+wGBEhZD9rAGDL+RMUnX1XrvE6dJQH9j9fhVENF0gs39mauijb8U/KScepqVxKiMKc\nh9dwputQeFjZyTSHS9g6sTIJgbKljxY395g6jbGgYVuZ5tahQ9sw1bfBYNfdIg0CF7MmsDZ0gJNp\nAxjrKa5ejSCCxoIgjqbWWNewN+Y8Pyt2jj0xEbznfZy9scqXfgNjqXd3nsEAAMMiDuFQq2GE+ybn\nZVGOjf7Fd9860noEIU5BEOFTCGWji2FQMDWq2YiV8R0fQngAwKcvGSS5iHfxGLHhODrO3UvqUyS3\n1v9JuN585p5S76dDhw7AvnplyvaeVeiPnX93nn5LxqR7F5BXWoxOFw6oWx2tgCqgUocOZcB1KxJk\ndI3jYIBJ6Ktv1YMg08thFVpXGg8X08aoXEHxmfeeiAg+BoCejpLFVW7+EM57LspY4PJXS76B8DQj\ngdC33If/HuSVFhP6Jj/+B5Kw/p187m/SojthUDAG+uLfUnFxAVwjYs7Atjg4ayChTRlUNDfh6PXp\nC3zd7RF28wX6tyYX5DLTt0VuKcewic15hOrmzaS+l65Wgw4doikuKpFYVlr3JW1n1G1iIODqF7cx\nv4H0u/UJgXNQwirD9aSPePY9Bc++p+DDD9FH/tLMnZafgxvJn/DsWwpuJn9CYVmpQubWUT4JT/BA\nVbPeqG27Vt2qlEssDCqo5b5N7Fxo+5ra8TOQjX14BEdbj+Rdc+Mqdjcj19YSJDVftQU8dVsPGsr2\nSb0x0M9bZffbPL4XRm86wbueN8ifJDPOnV+Z+WzKUqQVfpTqHsLGwoSaJ2gkdej4PbjwdadEciMb\nqC7VqCbT27Uu4TrQw1fmuQyYeujuUhvLGnfAle4jxA+Qgiom5gj08MW21j0RPSRIoXPrKF+UsLS7\navvvwt/xz5U298tM6jTzbaoQM8WtenOVUs7BRDluXMLoThjUwPAN/+CvWf8TKePr7qAibTi09uQE\nJeUUFEk85kj8ZFgZVsXo6n+JlIvPfY7TyURfbQaYMNGzlFpPHdITPEHnuqGpGFYwpGwf13wJdj/k\n+62mxpF3v4N2SL/IXbfzOi7dfEtoizg7U+p51MXyJh0QFvMSAFDV1AIOZrrvEB3azfPUPuKFdKid\ny8nE7026uAJlciT2KRZ4diG1r/BVTdFOncGgYh5snoQW07aTXIyE3ZSaT92GiuYmyMrNB1V6duHx\nUUnfeG3cuX7mFsB/1m7KceEbxsFKICsSlzYzdop0mZpZ+zrhpOBn8VdKNyNxrkdBtaktZR2K5+bf\nD9Wtgg4RnIjdjAHVifUAEqK+8J4nRqdSjuswuAVluygu3XyrVQYCFbIGI2s7xWUZeJ8+Az+LnsPW\nuB3q2YWAwZD+J/zt94n4UfgQegxj1LZdAxvjNjLpE5O5DOn5N1DCyoK5YR1UNesHe3PRG2GKIr8k\nEU9Su8LJYiSqW/NPcL7mnkVM5iJUt54NR4tAsfOUsQvwMm0ocouiYFWhMTxslsDEwFXsOGHS828i\nOnMRWOxiuFhOgLMldYICKgpKU6S+nzC/il4hOnMR8otjYWLgispmPeBiKV8s1Ku0APwsegkro4ao\nYT0L5kbalZaYi7kBfZpqaXib9UW8kJQs9OqClZHEtVB2SSFJbrlPDyx+dZHQdugzv+q4oHuTMtEZ\nDApEkpoFxkYGeLlrOsZtOY3nH5Ph6VYNB4IGkObZfekR/rr+DD2b1cWSAHJ2AUnuZWVmLFUdhZUj\numDhQfELeWGjQVp0JeapsahohuwfuaT2tMQMVHG2lWnOJ9fVX2RJh2joqmXHvUuGWz1HjGuu3Oqd\nOjQfbtpULun5N3A7sS70meZo7SSZq4TwHGXIR+S3sQCAJvaXYWogWVpG4XkAILvoLbKL3iImk/NZ\npUrvKir1K9XcgnLc9vqVtuNLzt/4UfAAAJD4ay++511DM4ebCE+oBW4S2U8/VuHTj1US3wsAsgof\n4fGXzgCAti5RYNB4bAu/DuF5YrM2IDZrA4z0KqOFIzmBCNX7B3CMna+51Jl66F4H1Vx5JbGIy9qM\nuKzNYDIqwM9ZdFVq4ddzO6E22OAXG8sqfIxnX/uimvkA1LLh190oYxfgbqK3SP2o7tPK6QkMmKpx\noVEkFfQMUCxQ2E1UFWdJGeLWmGQwTHtKrkDe38WXZDBsek8OMFc2OoNBBrw2bEfkrElyzRGel4SP\nO+gX8+O6N8O47tIHFcvDwoNXKU8dqOAu+jdGdYakmb51hoJoDrxcjX4uU0jtw73nyhzcuuR/W8UL\n6VA7DCYDbBbx72hCq2W4lhVKWQH64Ks1Mt+rVe+NhGttP3Eo7wguCg30KqKeXQjKWPmIzlyE4rIM\n2gUoFxa7CHcS+VlgqpkPhL35QJSUZeH1t1EAgCdfOHnxRS38ojMXITWHGHdmY+wHU8PqSMs9j+Iy\nTkKMJvZXpHuBUvD2O+d317PSbrz5zkmTWVCahDJWPgA2PCvtRGruSWTkU1fPBYCojPn4mssPnnev\nuADWFZogLe88kn7tB8BZNFsYeaFhVfo4u6zCJ3iVxjnFqGzaDS5W45GZfxefszYAAIrKviH+5za4\nWk0mjLM0Isbd/CriuNgZ6tnAWN9ZkrcBAMBiE3eiPWyWwMLIC+l5N5HwaxdP5tGXjmhmL1k2HcHP\nUlWzvmAwmEjN4SxgBY0FANBj8NcKib9CRZ6q/Cjgn3Jro7EAAB2q1cbpxFe8a3MlBVI/+h4HAGhd\nhbrS/cKXF7DStyfPeJGvKpZ06AwGGZDXWNBEiks5H77wDdS5iumYWfsaZzyrAI8zjiE29zF+FKXA\nWM8c7hYt0bBiX1gb2itc3/KImaUJbV/W91+wriSdv3YXmzHyqqRDRVzJ2IsuFSX//6rqIlv9AZ1x\noF18+sGvJCy8mG9p4o+c4vd4JsYHXtBYEJ7D3yUG+SUJePyFe2LMBt0SRNBYaOv8AQyGHu+6hvVs\nqiFKgfsa/F1ieAvcu0k+vHZbk3a89rTcc6hixq+YzAaLZyxYGvmgQVV++soahrNRw3o2b2x2keid\nea6xIPiemlq6w8lyNG+O+J/bSQZDg6p/E665sjbGraXKksRkVIB35f2oaNyS0G5uWBdu1tN48xaU\nJEo0H9d4FP6M1LJZKWIUAwAbsVkbRBoMr78pNqmAOhhfqzXBYFA0b7NSUd+6Gu96c+P+lHKnE19h\npUDMwuz6yil4R4UuSxINNVfzYwSy8gto+wBg2LHThPYhR06Q5ITHCLPlHtHPXJy8ouDWgmg6eatU\n7kvCGDKN0brSKIxw24eg2lcxoeYJdKgyRWcsKIhBHkHoXulP8YIAPjyNRWfr0aQdax2aC4NBvUij\nSrE6ft0gme8zMigMQctOIeUrJ23fzkPSFVG8lfIZLmHrxBYn48q4hK2DqwhZQTlx/VSP8k5y9iEA\ngD6Tupq3uWFdkb7qbDY/nSvd6YGJgQu4RgLHrYfMwxR+1jx/lxiCsaDJJPzaQ7i+nVCb91zQWBBE\n8H36kCHa7YTuPW1Y9bikKsqFsLEgSBvn11LN9aPgPvyc34oXFMDfJZr3/GfhCxGSZHltw17JmYiE\nMyAZ6xkQrnc0pY4PGl5DdZ4oOoNBBOl5eQAAaxPRbjqhAzk7GMz/fvSfJ0kfHDO1dXMEHOUc/U07\ndwVru6vGany5azrvoUP9hL2hXwSVlpShs/VojPCdh7h3xDRsn14nokeVcehsPRozOpHdVZh6uj91\nTefSt92kNqoibr3GtpP5Hp/iviN4ST/e9fEL0qUKbO/A93M/GEW9QDgQRZyTzmyNzPjKe97OobpU\nevwOcNxsOLRyfEwr52Y9jbbv0Zf2Et2rtdNTkf2FpYoP+FQFhaXU6SqN9CpJND4t95xM97UwUl1K\ndDoEXYYkhcmgztomCS/TqGsGPE0VLNKmSgcaxWNjZMp73vaaYjZ1jfQ4jj6RP1IIgczC+FcV7Xqo\nCnSrCBo+zp8OO1NT1FwdgieJorMYGOhxdltMDTl/bLLu63Lvc+VDDPp41hUjraM8UsnRBtO3DRcp\n8zU+HRNaLUNn69G8x+S2K1BSRF0c6lpWKJYeK39udOUNfUPle4gymfwf7D9G7sLpfZKdWlGx7Bl1\n0N3yZ/8CAPRoTk24BNzi78Lu9+9HKZMQOIf0+F14n8HP/iNLNiQAKCz9Kl4IgD7Tgvdc1K56XbuN\ntH2aCItNXQTRu8pBkePoTnQEMTaQPN5AGzA3rCPTOHEBz7nFnHpNjaqdkWl+TeJ+V75LZ1pBtsSp\nVa+kvKPtO+nHd0Vd+5YT5znKXXQGvPc/Jfu7VjS6GAYxRM+bhkabduFF0ASl3+vvgAFYfesuRjRp\noPR76dBcOg1tiZDJfylkLm6wdOOOnmIkdWgCFUyMUJhPXwvlj3GS7RjTcfd0EGavPIPnkYm4eGgC\nTE0Uk3KQivA/xqLN2T20/dnFktd8+R35Wai4QlFMhuT/zz8KImj7Kpl2U4Q6aocb5C0PFoaasan3\nLLUPcorfyz2PqWFNuefIKX4Pc5r3ha5d2wis0RRhAicBtc8uw5iaLTGjLvHk90ZqFKY+4cf9dHWg\nTkvrbkE+7ZpZT/T3/PhHx6RRWWHoDAYaBGMIPs7nuOtsCI/AvsfPef0DfepjRRfR/7HceXb07UFq\n4/7Lnb+Boz0GHT7Bu9Zkdn76H/JLs+SeR5c5iZprWaEY1XABvsR+k3mOy+l7FaiRDlVw7ssOdLam\nDx4ct0b+PPfrF6qmUJSzuXZmQ9EUyljkFMuyosekT6ggjKjKw3SpRn9HpDHClEFBaQoepdC7JzIZ\nFUiZlETBUIC7k+D1zAAAIABJREFU0LPUPoQTB8FsVOWFefU7oYRVhr/jnvHa9n28j30f76tMh/RC\nzneDuFNcRaMzGGigWrTP8m+FWf6taMdwTyEEx1LNow0GAR3y1F/QIR37n68CAOycfQwX9oVLPO7c\nlx2ooMSdYx3KRU+fibJSFqm9qqtsmZEEGRkUBmsLE0wf2x4OVa2w89BdTBgmXeGuKibmSMvPoeyb\n/ZC6jssfVw7jXNcAyj7bCqaU7b87Zoa1FbJzDAAlZZJv7lgZNaLtyy9J+C9IWrtp4/xaJh9/TSE9\n/zrefuek4GYyDODnTO3yIi7lrqIQzFjFYheCyeCkHI3KmA+AnJJV21ns1RWLvbrC58IqFJZRuwIL\nsqcZdXyHtAyv0Qx/fX7Euz7aeqRC5pUUncGgIWyLeIxtEY9we+IodatCy+9iLMha80BZTFg/GBPW\nc75w3j/+hJNbr+NzZCIy037C2s4C/gObYcDUzrQFwLjI87qU+Z5Y2JjJPb8y9VP152HtuSDM6r6B\n1H7wpey1F7h8ivuOiLMzeVmSjl94LrXBsKZZJ4z49xQAIPTDM4yuw19gnvhMXSjwdQZ1tWrufDrI\nVDHrhZwfijEYpMHJkn4REpu1AfUr7VChNsoh6dcBuFpNVLcaMsM1FgDQGgvq4k6iFymuoZr5ABpp\n5RDVW/pil7KMedVzAQDgeUYiDnx6iIfpcWCCgWaV3NDPxRdtq0jm5iXpvefU74g5KkyjKozOYFAi\n0pwkTG7VFJNbNVWiNorH3qQeWtmNgI2RE4z1LMQP0CE3dZu6o25T6oIuOsoHVMaColBE0HNbe35G\no5XPwwkGA5eFDTlpOAfX9Maxj+T0jkUCu3IdHHWfZyocLYbx6jB8zlpPW+uAxS6mnaOJ/WWJ/PVf\npfFPf2yMW9PKpeervrqsMoj/uVXjDIZSVp7UY/SZ9JtEH3+skkcdqRE8ZQD4pxsVjZurVA910NDW\nGQ1ty1cQPBU6h0QdMjGz9nUMcg6Gg0k9nbEgIZ4zZE/DJsnY5vN3wHNGiFz30aFeCvKoA4EV5WLG\nDXoOnHIQR7ePhK2YUylZ4RoRy5t04LWVCVSsXvvyjlLuW17hViCm4k5ifdo+UwN+GtzvefTxYlmF\nnLSqgtmSBGlS7RLveUGp6KyB4mCzyyjbv+VdomxXJMb6DoKaKP1+0pCeL1k1ZkFKRcS5pGSHyaOO\nXMRl8X+DvCuLzkilQ3vQGQw6dJQTHq7WrB0zHdLT24H6//DcF8W5gaxf2AfhJ6crPENSj8uHSG36\nDP5PTIfzfNcuuhoOOogIunaEJ3iQ0oRK4qNez24LAOBd+hSS/M/Cp4S21k7PQIWpIf8U6FEKp5Ky\ncG2GjPxwhCd4iNXpdmIdxGZtEnodtfA+PYhmhOJo5vAvmAwD3j057ykxMDg5+5BEr0NR2JnwjeqH\nKW1J/WyQDSzrCk14z998J9ZqySl+rzLdhTExcAMAJPwi15Sho4vLdNIj+4f0py3KotGhXXDZtRFD\nLp5A27/pDXc6krN/ITTyOVx20ackjvz+FS67NoqU0QR0LklKpLg0BenZu5BX/AJFJfFgsfMJ/V5O\n1EVlNBV38xb4lPNA3Wro0KFDRlr13oiIszPFC4ohyLsVgl8T02++zUwTOSYu+4fc9/0dMdSzRXFZ\nBgDgTiI5NWNt2zWIyphHO76SaWc4F49B4q99AOiNDHGVgYVdTgSrP0tC42rn8TS1FwAg8dceJP4i\np9w1N6yrsEBvOvyc3+FeUiOUsrIBcHzu1Un9Stt572thaSrl/49wTIBPlTCeHNdQoxqjasOhqf1V\nwj0N9WxUen9lkJ6fhy5uNbGrU0+ZxjtaWGK0V0OsfHiHVsarUlXZlFMxuhMGBfI+xRORSY68R1Rq\nM2TkhqGg+D3JWNBGejkshl/lsQA4AdB7P1NnPVEnnjNC4DtrC2aFXcaS4zcI7jlvEr/Cc0YIjkW8\nxt6bTwh9njNC0G3VQVx5Gc1z6zl05wVJxm/xHtyM/ISuqw6QXH88Z4TgVXwqPGeEYOuVB/AKoncN\n8p65GacevSWN33PjCc4/ew/PGSFosWAnqX/9ubtYdTpcarejRrO3wXNGCK69jsGwbcd1bksayKmt\n1yjbFRl0bWmumMwwkz0l90seUtOHtq+NvZsi1CnXtHR8QFkcS59pAX+XGFQ1E58mt7r1TPi7xMDG\n2I/UV8d2HfxdYiTKGuTvEgN/lxiY0eTs97BZSlvIy8ywFvxdYmCgZ01oZzD0ePP6VPlLrA6KoLXT\nM/i7xKCKaQ/Kfg+bJWILkikSf5cYOFgMpeyzN6dOpezvEgNnS3IKZherCTzdPWyWKkxHSRGMq2jp\n+FDl91ckXKe1RlXt1aqHpqA7YVAAMV/9UVjySan3SP1JTktmoFcVdubkL4y6e7bi/Z9TSO0AMPn6\nJTz5koKnI8fJpEfDin3RsGJfbIzqhOyS73JnTlJGHYYTM4aiRlXOzsaygfyMAkO3/IPLC0bA0YaT\nH/7p52R4zgjBm02c4PTkzJ/o6lsLc49cxcZh3dDRqyaCL9zjjefKAUAHL3fKRffIHSd5clO6Uldr\n9Jm5BUwGA/2aEX2PBed3srXCsG0nCP2vg6eB+V/e5WF+DQi6i6OotJQn29nbA6N3nUL421j4168u\nZqT0sNIoFhNMSzAMG4FhtR3i9ilI47ljzaYB+vRZJyjvCwag7wqGUTswzGeJV16NhC45pfR7/Mop\nQKvexGNveU8cCkpLYKxvwLv2tSP+uK5s2hFHP76iHLumqS5DkqSIWsBKurj1qkxfSE8aGle7KPPY\nVo6Pafu4RpAwdK9P2nZh6thtRB0pq1dLOre0BkfNiotQs+IiqcZUt56F6tb032v25oNgbz5I5ByK\nN4xUWxtAWQi6By1/cBvLH9wGACSMn0no514DwIE3L7D8wW1CW3lCqwyGiJvvsWrWcd71tdfLAQCd\nvRdj0vzu6D6gscp1ikxyVMl90rOpi3BRGQz5JSV4lpqCoedPYVeXnvB34ezi5RYX49KnGJgZGsJ1\nezDiJ0nvM7rz4wDkl9EX9tEEuMYCFVxjAQAW9PVHr7Vkv2sAaFNXtp3Pi/OGi+x/n/wNhvp6eLJ2\nkkg5H1fyjgZToEiLg42lTPpxWdDXH6N3nlKKwUAJ6xfYhbfATqsFAGBW+Sj92EJOhhaG5SowjPtL\nOJgNlMaBXRoHdt6+/+79AZr21bdowBbKdpuq1pTtsqIIdyRhDkQ9x8T6zXjXu/3+IPQLLx+OC6Re\nrWaqS5igQ3oajdyEZwdmqFsNHRSUsjg1Wpo5/KtmTeRD0DBY3KItRno2ULNG6kerXJJWzTqOa6+X\n8wwFLp16+2L7auVnWBAkp+C2yowFAHCy2UrZnpq1nLI98MJpvBs7GXPDb6Dmrs0AgFZh+xA/KQhv\nx06GuaER9r16LpUOIdHdNd5YEEf421jeI/5bFjaPoPZLNNInLyg9Z4Sg84r9KGORi2pxEbeQX37y\nFgqKS5CeTcxuMWX/BXjOCEFEVLwEr0I2hF/7gr70VUIVgn4tMKt85D9s+CcmrLSaYOcfFTmcbiz7\n1wKRYwnj/nswzCYI3LuOHC9K8bDZbDy7+Zay7+gH5aVYVRTBryMQnZXOu65kTJ95KSI1HiueSV6E\nUIcOKrTRWChlseAcugHOoZr7Ny2vbveS+CmWiRmpdJQHNGubTQTLp/+N+eupi39069cI18++lGq+\nz7lf8O+35/izei9Ce4c703HTT7R/d0bOAXzJkr7IhzxYm/ZGUibZzSg9Zx+qWS8mtUeNmwoAeDpy\nHFy3BwMAfhbys0EsauWHLU8fYYxPQ4l1KBPK0KGNyLujfm2RfIX1js8YgvfJ39Bu6T6CO9Gd97E4\nNHkgfFyrAQCefZYvdSEVKjtNoMPAG8wqH3muQ+zsZWCYDFH+WAAMs2lgmE0GK602Z3zBaTCM+0qn\nvxIoyC1Eb0fq06bQpysVfj/hoOe1269j7iT53IJYbLbEaVLXvbyL3BLq1LE6NIdl+6/j0oP3eBI6\nHU1Gh+DSxjGoXNEcjUbysxtxF+0sFhtNRocQ2gXlhOW5fYtGdETPVvV4bY3qOOHZhyT41LTH3rkD\nCXPMC2yPPn6eAIBmYzajtIxFMhq48oYG+niwh/NbGfclEwMXcU6RPWtUw/75/6OVVTbeR7YjcbR8\nbpHnY6PQq3ptuXWpF7YV7wLJr1te/biB5HTpeXVoN1pjMLx8HIvFIdS+eCXF4ktzCzM3chdOtZD+\nBzn6a1sUlXyWepxiYEBRuaMdzC2RVVgg83hlxB4om0vzRsBzRgja1HGDa+WK+Ov2c7StVx1bRkqe\n/eBYxGs42FhiUug5mfWo61gZr4OnkWIQhm07jgtzh+PSiyjcekOOifGcEYL/tfQCAwz8ff81KX6B\nLeKjYWlSAZ4zQjC4lTdKSlk4+eiNxPEPikZw4a/KsYAe7xk7e7nSDYbJbVeg76RO8OtLdJX8lpSB\nkCmH8PpuFO3YQUHd4OBeRan6AcC9J59kNhgOtx+AgFuck587X+IAAP1rUNcEcDSzRHLuL7z78Y3X\ntqvNH5SyOtTPklGdMHNwW/SaE4pnB2ag+dgteLh3KuXO/ug1/5Da6U4ABF2Jmo/dwjMYAGDnzH4k\neUEjg2swPNo3jWSQCM5bXMpPQzpw0SFKw4JKVplwd+65/3IX5oI7+oJt//YbiXanDlDKTrl9idDu\ndXgbfhZxNgNN9A0QNXwaAGDbq0fY+OI+5fyidBE2GlxCN/BWHcJ9dFmY6NLzlneiMzPUrYJS0RqD\nYcCIllgz9yTmrSX7Ls8Z85fU8+kx9MQLUSCJsWBu3BYO1itgqM+v/KcI96UalU/i8zfyl6owFfT1\n4bFrM97/OQUtDnFiH0ZdOgsAyC4qgoWREUKePkTn6r9XhVUnOyu82TQdfTccxuOPSZjT2w9DWtFn\ncBHmyoKRGLLlbzjacObxmUntdy4JTAYDZhWMeEbDm03Tse3KQ/TZEIbBLX1wbs4wQlA1k8nA643T\nsOLkv7j7IRY3FhNjV6gyNgH8QOqIleORW1iMHmsOgsVmY05vP5l1LxfoKT+N3afXiVg7ei/WjqaO\nPxLFsIW9laARYGSoj+KSUhga6KN74A4c2jxM5rlaVXMlta1v3pVSdnvrXuh1hVhIqouz6JSPLDYb\nL9K/ICYrHc/TUxCTlYGorO8EGZewdfC0qQJ3K1s0sLOHh7UdfGyrEeJ9qEjNy0Y0b950xPwk/9A3\nPLEdNa1s0aCSPTysbOFuZQsPKzuR8wJAdFY6Yn6m4/n3FMT8zMCL78TTwn0fnuJWyifUtLJDAzt7\nzj3s7GFuqNi6GPJiamyIarYcF8uS/xbW3IW6lZkxbm7l5P8/sGAQBi0Ow+eUDDzaNw36eqI9nalO\nH8ThWMlKrAzV6QfdOCpZZZI4ehacQzeQFtyC1y2O78WDgZwshJPCLyFx9CzcTYlHl7OHcLX3MNo5\nIgMm854LGiAbX9ynPDFIHD2L8oSBO78gyTm/cKhzP7RxIP+t06HK7FLqxM2qIuJ+ElNFn4imdi0t\nL2iNwTB4rB86ey/G3WtvcfbhQgDA97RfGNljM0pLy0hxDeLY3XAmOt6dgRttBL44fkSLHCNq0c+A\nPjydlOd/DgCmRk0o25N/zIJjRf4fetS4qXjzPQ21dm/Bri490MGVX+2T654EACf6SBf0bFfBDemF\ncVJqrXiaDQ4mXD86xn8dkuyan55FTgcrOI7uuYONJe4u52eXerVxKu0cVAj3P1w9gXA9uWtzTO7a\nnFL+9UbOrtGi/u2wCOTYA0let1kFQ9xe9qdYud8Bpi11ClNNQJFpVIW5dXwa7/mlMMUX+qNbpnvZ\nSmeg+Z/bJ3HdhjeZaXiTmYbTse94bVVMzPG43wRKeZewdRLNm1GYh4y0PDxMSyS0JwTOoR0j6dzx\n2VmIz87C9SRi8L+oudVN87FbeIvrZx+SCH1/Lw8EIFkwsiwL9OTvP8XKUM1LN05TYiDqHNqCvJJi\nUvu1PhxDvo2DKwKvic6etuF5BLa/Jmeeihs1E86hG2BrbIoXQ6j/FsTR/vQBxAyn/235XYwDKsIH\njeQVW2vj5Iq7SfEI7dIbo6+e5cnklZQg5kc6nn/lFDk89O4VGlSuhpoVbWGox9m0TsvLxccf/A2L\n0zHv0aCKPVwsxRvJqkZrDAaAkxWps/di9G7OcSUK7BzMa5cWa0NzsNlsdLhD/GNY5zWeUp4twn/f\nySYE1qbid/6VxY/cfwgGAwB4VqqCzxPIf+iyZEbiMsx1Fy+NanbJd1gYVJJ5LnkQNBCEjQcdmg/r\nm6d6xsrsyqQ6lGks6NAhD3d2TuLtzG8P4rvzCe7Wzx5KLOYmvJMvHN8gbuHOlV0xtguprdHITaho\nYYLrm8fRzntsWYDcOigL/1P7sa1td7Rz4sSWyRpwvP31Y95JgovAHHoMBhJHz8KvokLKkwlJqGdT\nWSadfhcSxs9E66P78PzrF/zVrS/8nIgnMXVDiV4ISyL+JYwFgKZhxKrYQeFXAQAxY6fBSE+zlugM\ntijHZ/WhcUrRnS5YGHeAq90BmcbLUumZTg9VVo3OLc3A7k+SB5yKQt5YiGaDgwkGhA71w1uY69cC\n0/YC53lZEth5oWDn/8OTo0utyh3P65dwrDiDgGE2BQwz0elsFUlna3LKYzpUZShwg55b99mIeh72\nGNCjAfyay25IrZ9+DLfPcxJOXI0Tnc++ixvnB9KmiiWOPJQu37yO34/yljpVeNF+KykWo26cQXCb\nLgi6y1kkUrkdCV5fjIvGpPCLmObbHNN9W/D6V7bogJAXD+BqaY3TPQbz2id5N8WNxM/4/DMT8aNm\nEuac7N0U0VkZCO3AcX+M/5UFv5OhuPhHADysbXmLVefQDejsUhPRP9Jxd4Dk32mS0sWFvLF5/OVK\nWFQ0Vfi9fnPkLpChWeaLFiKJsaAOBF2PBJHnhEHeIm06fjNKo2kX8ZLUYZBnLBXs3K1g524Fs+Ix\nwFDy7GCywjUCHl56iYeXX+Pl7ffIzsqDhbUp6jatgc4BrdGgXV2l60GFgb4+dq4ZBP/+IXIZDLKQ\nmabdqZl16JAF4R3+9k7VeW393OvRygle93CrhR5utSj7A2p7U7bPathKrC4A4GppTRvzoEMHoDMY\n5ELYDUhT4BoLdwJGwcTAQIy05vDuUyrGLPmb1C7vCYKw29KCPzuhe5t6pH6q+9D1+Q3fgiKh7Fx0\n49s19cDY/i0wMOiAWPnfAVkX/JKOpT25yBwIlLwC68dgMCs9A5jyFb+TlObdfdG8u69K7iUJbfoE\n4+4ZzmfPxYm+yKGiad3NC/cuRyL4lOpOedRJF7eZYk9ddNBTnk4XdOgoD2iNwXDq0AMc3XsHZx8s\nIPUtmXIUT+7FyBTLIMzgR8twrBmxxkJpGXWqrIpm/5P7ftLCZJiAxc4XKyfPSYI6aB24GSWlZZg9\nsj16t/fitRcUyl774XNSOgLmhuHoumFwc7TltTcbHIz9px/h7NYxAIAHR2egxRD6zB3WFiaEayoj\nou2IrbTuUf8+jsG/j2MIffK8Lq1B0CUJ/BMDVnobMO3uih0uuPCXdizlfDbHgdJPYGV0A+t7I7kM\nF21FuNLzgeBAld173rYAzNtGTjhQHrl/7Y14IR06dOjQIrTGYDh75CHmr6Mu3DZ4bBs8uaeYaP30\nInJWhYzcQwqZWxEY6jujsIQ+f7syUWbtBW7aPkFjAQCMK8h+QhIwl5PGUdBY4JKWkc17zk3BODDo\nII4HjyDJXtlNDoR/cIS4+3X74BQ0GxyMT4npcHcmp14UNiTkeV3aCrNyJFjfvICyr3KOLYXMX136\nv1cqYR3qYdWEMPFCGkRa3nW8+T4TbJTB1MAVLR0uI6c4Go9T/4d2zs/AZBjgenwdWBjWQTP7U7iZ\n4IMOLq8UqsOQxkvw43s2oe1K3CYwmJK7XlP5wwPA1QTRxVgFObDuEk7u+pfQZlPZEkeeLJV4DkF2\nLTmDC4cixMqNnNsD/cf5i5WTFeH3ZvqGQejYvzGNNHDuwD3sWX6Wtp+LtZ05jj2Tf7NW0dB9FgDp\nPg/qxGMFX8+YReIzIXqsCJFITla0xmAwrGAAAwPq2gkF+eS0ZFT0e7AQv0rycNMvhJQdSRQ/885L\nLKtsDPTsxBoM8ZOC4Lo9GFMbN0PfWnVRQZ//32xnormBRFQLc3mpbGNOamvi6YInbxJI7UlfiWkc\nqTIwzQ3h7JgzaX7EZgWfw7n/Ti5URXTWd4y9cwb3eo8TL6xOGMa8p6y0mtLt8DOMwTCfBXbOBrDS\n6vyWpwPqZHznjUj4mMa7ru3rjE2nJsPc0ljEKH6gsyBte/lidshgsffkjuW69URcicTqSYcJMj0C\nWmDCMvqaFWM7bkDyZ36xOFMLY5x6vULsvQGguLAE/X0Xo1joNJDBYODchzUwNCL/fMa8TsKcIbtI\nr0EYUa5KM/ptQ9RLfipXph4Tlz6uA0NEbQnh94rq3rZVLHGYJtg8s+AROrq+xfX4OmjpcBmJ2UdQ\nzawHOri8xr3k9mjteAsA0Mz+FB6nDlS4sQAAO6/Nwv98ifqt+PMAFu8bJdH468fJqUVlQdhYAIDt\nV6j/H0XpsnnOcanGHFh7EQfWXgQAHH+1EhbWyv2tPn/gLqXBIGqhTUVWeg5vjKYsxMuDsQDwjQRB\nw0GdaI3BMHxiO8wbdwhXXy0j9c37U7ITAOHKzjf9yP8JVIZEcVmqhFoqn5KydLEy3BiGLU8fYcvT\nR4Q+TXZVEnb9UQTfMnMkSr16aec4dJ+wm9R+dB2xsNXjSE6tDbo5v2VkU7Yrk1rWlTTfWPgPwUrN\n7KI7YBj5STyWYToG7JwNMo3lwi68IvWY3x2qRW/Uy0R0cZuJeVuH4kLYA7XoAAAXDz+gNRioxuRl\nF0gUW7Bg2F68jKA2StlsNnrVnkuag05HaaCag1XGQtfqsxAaPhf2LuTTUpJ+LDa61iAHqmaICDZP\nyTmBurZLedeffmxCdOZqSllLI+pq3vJiWdGM1Pbo5jsKSWpELdC3LzyFSStlT31uZUPWjQ5pF9xU\nDPRZiJmbhqBdH+UlZ4iLIq9rFKG7uikvxoImojUGQ5vO9bFm7kl09l6MLUfGwqOeA+I+pmHiwF1g\ns9lSxy9YG5J3ngHA1ZRcYIjJMEAZu0gmvRWNJO5ImmwUqBoX+4r4ewPZzUgYGyvObk7XcbtwZfd4\njFx0FADZnamyjTmSvmYpLGDZJWwtAKBlVRfc/5qAk52HolElB7gf2YASVhlM9Q3xfvAMHP34ClZG\nxujmXIs3LiFwLu95F2cP7GrTmzRvB0d37GvbF1SciXsHNpuNvtXrE+a8lfIZo8M5xYLeD54BU31D\nLHxyHUdiOLuK7RxqYL9/P8J9APD0EQfT9hJYGd3BzhoLhpQnBcSxHyDNVxgr8w+g5APnwkDyCt+/\nM4ILWKoF8popR0SOF7XjLSkBzTknAhei18LAkP//XVxUClCkBS8rY6G7+2wAwM4rQXCtxf9OT//6\nE4EtVqKL20yce78GRsZk10BBPWdtGgT/PxoQ+pNjv8OxOrkGDdVrlTToubioFL1qc/5+Rs3tjn5j\n/UivZ7T/WrTs4okFO+jjTjLTfmFo8xWwq2qFsAcLCX3Lxh4Uq0cnV87fRw3rKTDSs0NVs24S6a/p\nXD7yQC6DQRJ+/cglnZDIw8YZR7FxxlGVLHLTv/5EYDPyZqw0DJ+t/s+KKowF77Xb8XouJ3GDx4oQ\nTG/bAuNaNuZdC7oE9dx7GBm5+bgzdTSvUBsXrmx+cQm67wmDuZER9g/pA1tT6TZOO+/8C2wA1ycM\nl+t1SYLoGu4aBvd0YerQvejsvRgTBuwEm83GlZdLpZ7rRHNqA2Nvo9mkNiMDzS/4pG2kFX5EWiFx\nsbjvpOJ3KhO+SFYtFgBmj2yPrGxOQHlUbBqlzPj/kVPUyUtC4Fzc/5qAhMC5GP7vCQDAhuZdkRA4\nFyuadsSxj68xpKYPJt49RztekOOfI5EQOBcJgXNxL5W++ngft3oIenCZd32tB+fof3T4Kd74usc4\nweArm3Titf2b8pl0f0mNBQCAPv/vif1DyqBbgbGstDqUIqy0mpQPnrGA/wKgdUgM1cL3QvRaCknF\nk5H2C1fjNhKMBQAwNNKHIUUsENdYWHt0HMFYAAC7qlYYv+QPAMAfdeeJvO/VuI0kYwEApbEgL1xj\nAQDBWAAAPT0m7/2/f1V0MPXQ5ivg3dydZCwAwJK99BsnBkwLXI+vg+vxdVBQmgoXy+F4n7GI16ZD\nPJIaCzXqOaBZx/pwrVVNInlV7PrLaywAwMAJ7RWgieyo6mShoIToohhym7xuKSgphceKEBQUl6J+\ntcqov3orxh+/QJIDAJ912wEA0d/SEZX2XSpdPFaEIDnrF2pVtlOJ25LWnDAAHN9RRWRCkhYbs6HI\nL3qp8vuWZ47ETwZADKQ+cPYxxvRvobB7cGMVyspY0NMj2sZsNiDsEty7vRfWH7iFiBexAIAb+yaS\n5vRrxAmaVVbBuLwSTjzOH26c/Px93Oqh1tGNGFzTG32r18ePwny0OrNb5AJ90ZMbqGnJCbz+p6No\nX/G1zTgVVF3D1iL+vzk9rOzwKp1zXH22C2dB73F0Iwa5e2Fp4w5yvDo+zCofwEqrA3bxY0BK9yLZ\n3ZqYYFZ+CTAU7/qmLYyZdQT7NgzlXbfq/V98wFny7n9yrOgfL+EFvLLoESDbd4JXsxqU7T2HtcSu\nZdTG9wDfxTLdS1FciRWfqntw42U49nQJbf+aI39KfV9/Z77//91kf7RxDEd7F+JvHvf0obYN2RhR\nJtGvElHLx1nueYqLSinjThSBqMVqbV8XbDozVewco9uuxpd4apfjLi7TlXbSQKW7X09fzNkqPqPZ\nuimHceeC+tdGdO+/pK9DFtJz82j7vNduw7Ju7fA/X09em8eKEKT+ykY1SwtCm6xBylwD4f2C/z5b\nfbsp3WgCsnwHAAAgAElEQVTQKoNBXu6lR6KSkRVqWUj35VPRtD+SM7U/J3QpiwV9pmYeKt0Lm4bW\ngZt5sQFujraIS+aksxVcmEe8iMXSHVeQX8gPdOeOqWZnidNb+JUoN8/ti2aDg9EygPNH5Gpvg/gv\nmbx+ugX/3BBOkLu5aQXK/omDWmPH3/fQbHAwLMwqgMViIze/SOSc0nI69i36Vq+P07FvMa9BWwBA\ncItuBBcgOpY26gAfO8l2r/7n7oV9H54SSqvH/EwnjS8qK5XYWJAsIFmfVk7WWgu6QGjxRH9Ow+bQ\ncJy+/BIRZ2dixaye8GteE0uDL2FpUHeCbNima2Lnq2BiiEIJk07IiqigZkWT85NzwjhllXLdV+gQ\nFdjMJSsjh7bPrqqVTPcVPEXgGgbqoH3fRrh1+hmhLXT1BWw8OVnkuJcRxCyJ9q52pMX3hulHsGDn\ncJHzXDpM3i1uS3HKJEgvD/rCZtJkeQq9PR/FhSXoVYvs5QBwsi2NX9ZHorkkZUoPcjpxaQyTOVsD\nMGdrgFqLMYoy1pRlLABA4OFTmNCqCXZGPAEAsAG086jO6xc0FriMO34eF8bydZreVr4N0m51PeQa\nLy2auXpUEvvjLuF9dgIA6uBmacktfCj3HNKQkfMXZXtVq9mEBV96fh7l48mXZJXoKQsG+nqExTbX\nWGAK/YB+y8wmGAuCpKaTv7QeHQtCTReOCwHXWDDQ18Ptg1Mo5+jbwRssFht1a5BjWbgM7dEID45y\nDMjs3EKesdCwrhPtGGlZ9OQGXMLWYt7jaxhWi/iDtduPv4DqdGE/XMLW4mpiDFqe4WRnGVzTGy5h\na3kPcax6Ho67AkHTp7sE8Ma6/je+XsUqcAlbi+qH14mdr0fEZPSIEP0Dr4lkFv+USG/u65PlNcoz\nVhHYWJti2mh/1HSrDBabDUsLTpaj2w/JaakjH3Fcz0Ttyno2qU7bp266uM2kfYij88AmKtBQOiQ5\n0ZF1J76T6wfeQ51MXk1Onf7+WZzYcSvHEeMzJizvi2pCAeL3r0SKnSd0NdltZAqFToIUF5VStncb\n2kKqlLAAJxtksw71KPskSc0qLZ/e8tcEhkb6Mp9i2FRRTRFMYeiMBQaDodTYj/txiYjL+IGpfs0B\nAA/iErH6+h0E9+4iclxiJjFtfzVL6lhaSXGylm2DQFa06oShs7fo42Jx7kpl7DKkF2YpTJ/Y7wPh\n5aS6RfiXLGofyUoWk7H12SMwwMDkRk3R+AA52w8XTQ+IFrdD36+jD/p1lC5g9dBqyXcZZo5oh5kj\n2omVYzIYEp0miJPhuhYJ//thMPU4YVek6z2pUw5KFVMAwNmc/8XTwM6eNP5S9+EKuY+62Bt7CmOr\ni941tjG0QofKTUXK9IiYjMNNVsOKJmmCOC622sabRx009nZBq94b0ayBGzoN3orCwhJ41XXA8lk9\nSbJF/6UTNaY5aQM4aUo1lblbhooXokHahZ4qMKxggJJi6sUpF32a1OPagqwuQwV5xKQkvq08sOPK\nLPSuM0eqeYoKyJtRFUwMaeUHN6Jek7Tu7iNzkPXifaMwb8guvH5APjHdu+Icxi76Q6Z5RdFlcDOx\nhpEqMZDgc0BnLFQwMcTZD+I3tmQlyL8lZp/jn76eGDkIAw78DQBY0MmP156Rl08KYJ7bsY1CdTn4\n+AWmtW2u0DlFoTUGw+Fd4QDEGwWiCPGZgsGPluF0CqdSLN0pA1W6VTqiUpuhdrVH4gXlJDLJUWT/\nlEbNCNdUhsHPwkKF6iQrxawCdaugA/wMR9qy6JeHi6l3xRoMADCl5hCxMrIaC5rA/CldMH+K6F0w\nLq4eVRETmYRfP3JpZVITMhSlmsJp08Nb5rFxUalwqy2ZW5+qyMvWfW9Kg6iFvqLISqd2D5u3Xb4K\n6muOjqdcEJ/df1cpBoMmGQsAYGxqJLKfzlhQRRG5sS0aITj8Pu/ay74KSUaPyUSLTXt48QmTT3Lq\nawxqQHZTkpVhTXxx6Ak/fuSDlAHTsqA1BsM/offkDni2M7LiGQMd7kyXyjDwckqmXLQXl6bgZ/5F\nWJn0kEs3UbxNqU3b51CRnCv7/Z/U7jZWFeh3ClVJasF7UtuaD10BAPPq6PLkqwplGwrTXq1HbC7n\nBK6JjScW1iEWtEsvysLIp/wdulMtgmHE5P/I3894hXVRBwhjuDv0XHpETBbZJriTL/icagxdnyTz\ncNsEx57/chuhcWco59MUtu4Px5RR1NVlp6zqh4ndyT7OgsREJilDLbWhp8dEWRkLE7ttkjglqiJh\nlbHA1BPtKWwmplietlPLxxnRrxLFC/7HCYpCa7JQWlJGaqte155Wfs9y6sD52ZtlP9mShDsXXsKv\np6/C5hNV7VkToTMW3GpXw46r9PEkiubGRPqsYx8WTMX1qE+8IOTK5mZSBzcLBzBzr7nzzO/YBs1d\nnXjtYQH90NCJ/vOqCLTGYGjTqR5i3qXAo56DQuara+kq9RgDvUooKSNbcYkZE/DdcCdqVrmqCNUI\niDtZsDEju9uYGJBTDUrCxqhOvOcza18DwKDt16FDHLZG1tjsMxtlbBb+uD8VsyNDsN6L82X3ITsW\ncyI3468mK2BjaIX4vC/o9yAIZ1tuhj6D41YRHH0IvezbYrQbJ9CvR8Rk9IyYgguttkqsg+CCXtTC\nXZyrkKTzaBsnL72kNRjc6mjWDru0RFyJRKuuXlKNOfZ0CQY2oM9ApGx61pqLS5/Wi5T5++lS1Sij\nJqat+x/GdZTcpeTguksSy14++hDdhlC7cOxfc5HUNnXtQNq5zh24S9kuLkhaUsYs7IV9K8+T2tdN\nOaxQg2H6hkEKm0vZ0BkLvq08sOqw6oqXCi/+qYyBTrXdRRoJ4gwISQwMP3dXgtxRF9HrRXnRmqDn\n2av7YerQvUiOV8wR+GYf6l14UdSxf0HbV1D8DpFJjohKlT8taEHxB0QmOYo1FpQZP7ExqrPS5tbx\ne8A9UdBjMLHeazqisvnBi3MiNyPEZzZsDDmxE66m9rAzskbv+9N4MmdbbuYZCwBn0c4GuVCXDvGM\nn3cMACeNquBDUqgChRVR2VgZcE8GVk86jIENqH3M5w7ZjRO7w0ntFtamvOdd3GYSgkIFkfS1SyrH\n1bmsjIVj224S+lhlLN48NT0dtT5OQRzONckuHnuWn5V4vLsn/e/m9gUnafuoDAD3+spdgImiz2g/\ntd1bE6EzFnoEtlSpsfA7ozUnDFzG9KbfXVRFjQZXuwOITx9J219cmsRb6BvqO8DZdidMDMUH6f7M\nv4jEjAkS6+FW6Si9jtuDKWMYWoeF4l7gaIoRmsXl1BC8+xWOFraD0NJOdB0BOjKLkhEaNxFjq++G\ntWE1HIybAt+K3eBlRTwleZJ5Gk8yz8CIaYKe9rNR1didcr6Y7Ac4m7IGzqaeGORMdgPTIZraFm6k\ntumvRO+kAkAxqwTBMYcQn5eKH0XqS92n7exaw/k7cnawwZFt/KN0cUbD1biNvMUq1eL3fNRaQtEx\nQegWy7fPv8Tt88Tc7Yp2/9l7YxbGdtyA7Kx8Wj18W1EX5BR8zVN6bZHp/uLeN6rXu+f6LPzZaQMO\nh1zH4ZDrpH59Az1sOSc+n3955NyBe/hzsWTpdScu51e2HzihPY7vvKUstbQeJ3eycaaJ0BkLoxf0\nQt8xfqpV5jdGqwwGVRgE015tFXn6YGHcAfUdokTGFXApLk3BpzRy9hEu4k4Q6DAyqA7zCq1p+yc2\nbEIyGly3B6OmjS3tGGGmeFD7ZyqbNR+6op/jYnSuOgnro3ohIv0IIa5hzYeupDiHg3FTkFb4GfPq\nXOHFQgxyXgVXUx/s/swxkGbXvoD1UT1homcJd/OmvLlqmDXGKLcdiM97ib/ip8LcwBaT3MMI9wOA\n+pbtMKv2WeyPm0Spgw7pEefa0yNiMrysPLCy/iRCm7bwq4Q+WFhdCBoLAHXBNmGuxm3E6HbrCHnt\n6zVyxYbj5MKGmoJjjcq4GrcRh4Kv4Z8d5AXjmberRAZWXo3biK9JmRjpt4bUZ2Vjhr+fLRWrw9W4\njehZay4ps1GdBi6U8k7uHJ0XjQjF87vRvHYGk4EL0Wuhr1++TxYUhYc3P7Xs8NnddAaDCP43Ub3V\nmSWBzlhQZtpUHdRolcGgCuLzvoqVYTLNUN/xE94mU+9GKxMjg+qoVfWOSJmZTVuioKQUnnu3483Y\nSXDdHowxPg0xv4XolF6CVZfFIY2sMAl5L3AqaT5ln+BCXNAAkBYXUx+4mPpgzYeu6Ou4EHoMzkf9\nzve/eAaD4L3qWfrDiGmCU8lko7SPwwJ4WHBczcZW34M1H7ribMpq9Hagfg06yLz99YnU9jIrCr7W\nog1vQWNBEgrLlFtEjA5zfRPklOYT2s5/ua0WXcQxYd7fiI5NQ+iGALg5S7aJEPovfXpKutMBeU8N\nFHHqMCyoM4YFyeZeWdXJRm4dLkSLr4MizIqD0p8CqyNAWxMQPqmShGNbb2DwlI5K0Eb7cNWwTGDC\n0BkLvUcpNj2pDsnQmhgGRZGST116nUt+qWSpR5mMCqhemd4fUlmIMxa4LGrlh5ziIrhuD4alUQWx\nxoIqsTVyUen9aprzg9wyi+jjPriGhDBcY0GQjzmP5VesnCMYbzD/DdGVsFKFiljybidpzP10+gUA\n3emC4H36P6Sve/GlQHlp5wJdiSeJLDYLxawSpd1PVlr13oidawYh/MR07D58Dycu0MdlqYuy0jJM\nbLEY3SuOxNG15KBPZdLJNBD//qPagpw6yDRqK/4EHwA2zqB3zaXj8CbJkpPUayx9UcIqTjZSjxFF\nZYeKCp1PmIp2FkqdXx7+qE2/SXF2P3XAuQ7lolUnDMKF27guSp29F6OWpyM2h42hGsbjcMJ1hCVc\nw02/EIVUejYzagovp2R8+NIIJWVpcs8nCnEBzun5eaS2+ElBOBcThdnh13n9diamJDlVY6av2C9V\naRBcXBaW5SEkpr9M87DYogso/e50rdoKQa+D8SmHkx6xmY0X5tfh75zub7QMxawSkhGwpyH/b9zN\n1IGUwlRYPsClB3pGTBEpQ9Uu6A4lLM+9Pt1iEwyZkmUc61ylBbJL8nhj3cwcSPeku4+wPqpi/cI+\n+HPOUQzoqZisLoqiq+UInEjaAUsbc6TGflO3OjrUwPKDY0m7y+unHSGlLGWVsQjX09aRsxr1CGyJ\ni2H3Se2CUAU8r5fB5a5iJcUuwG0qW+Jbyg+FzqkN0J0sCMvo3JJUi1YZDADRSODSqbcvrp8VfzQZ\n4NIJAS78oFeqOgwd786QWqc69s8AyB6TIIpKFuNQ1WqBWDlR1Z0F+zW90rMsFLHyxQtREBLTH9aG\nVTGuxn5em6wuUDr4SLr4NWQaiJTd4kveYRKWH+DYEQMcO4qUkbVdWllxuqgzHWvIXk6u+oB+TTB+\n7jG4Odviwo03CD8p/8aJMrC04RTHq1a9spo10aEp3D73QmyNg04DyafEE5b3FWswUKVUZTCkr/Zd\nXKjYU8WiQvW4WGoLOqNBtWiNwfBn3+04dou6KEffwBYSGQyC0BVtq2shfX0GLtxTABY7HzFf/VFc\n+kWmeapazUUlC+l2N8qjISApWcWpUo/ZEsPJPS1oLGSXiHZXUxfFrBLs+HwMd74/U+l9LQ3MMMCx\nM9pXbo4KesqvmqpDeUwf247UNmu85vhxXw4Nx5UDt/E5knMi1cmUUyn3el4YQW7rlIOYsnUElg7Y\njKfXI+HXrwlm7yemVAxd8A8u7LmFgTN7YMjcXqR7ZXz5gQnNF6GslIWJmwLgP5CYl5/JZKAovxiD\nqk+Bcx17hPy7SJEvVYeCOLb1hsxjQ1edx+gF/M8GVdE2WUhLVuxpQFpSpkLn01aOv1qJgT4LKfuU\naTSUlbGgJ1RIsUX/YNz7ZzqpXRG0HBCM+yekW8uVlbHQ+n8heHBS+WtArTEYvqX+REVbc8q+nJ+y\n7TBTEeIjfxYWJsMEtasRfdwzc48gt/AB8oqeoZT1AwADBnp2qGDggYqmA2Fpovk72/IEOisSFrsU\nzP+CmMtkdA2yNKyE/AJims4dn4bJrZsieP0zGkvebVe3GvhVkot9caewL+4Uob26mRPWeE4jVGXW\noUMeykrL0CmwNToB2BF0GBODyQUpAeDhxZe4vP82jIwNUcnRBv/+85BgMHANjXaDWiBsxWmErThN\nMDr6OYxHTlYeWv7RCIW5hVg3cjdMzI3RtCs/9XV+TiF62o1Gu0Et8O/fD9DJNJBkuCiTXvelC/TX\nNoa79kZve7IBK0xVZ1t8TaSvuyRpLAIVp/fdIRgMwlhWNJNp3txfiluLAEBejmQxleUZrjGw8eRk\nzOxPfUq7MHAPVob9qUq1lAJbw8sMaY3BsPnwWHT1XYorL5eS+oJG7IdVRfX75ovCxmwobMyUWzJe\nEDYAt+3BvGtnSyvcCRilsvuLQ1bjI8BlA9ZFEQNMR7htxcE46QrxDXfdgjUfuhJckOTJyiQPU1+t\nQUKebKdR6iA2NwkDHpJd90a69kEve+qqwTqUx7/fHmPrpyMSyzuaVMF2X+rdOnXRc1wH3vMdQYcJ\n14Jkff9Fu3jvZsVJGcvtnx36J0Z5zyYs+HOy8jB8ST8Mmk2f7nrrlIOEObhGiA7VsuPKTPSpS6zx\nUVpaRptedtMZxdWo2HFFM4sS/i4wGAxcid9EaKvbyA3nYzaglwfZ0+TFvWj085yPU2/INZKu3v0A\n+8qW+PEzHyEHwnF+759o0T8YD04G8f4FQHiuaATnPnTmCfb+fR8PTgbhe2YOKtlQb4QLjy0oLMGC\n4AvYtIBTZ2TsgmPYu2owWv9PdS5ZWmMwuNSoBBaLhc7ei3H2IefH7nvaL4zssRkA8E84fUQ9Fcn5\n31G5QkUYMrXmLZCY/JIS1N2zFV1r1MSgup7ILirCxGsXaQu6aQJ0dQ2E2x1M6lLKctuE+4TTtIq7\npywyspBXWoDBj6ld7LSVA/FncCD+DACggp4RjjcLFjNChzxc+BKO/f+939KQnJ+GXvcnYahzD/R3\n7CR+gJbAdSsRtcDvOrIt/lp2CuH/PMS+l9QpTwMWSFYgTIdyoaqTcWbfHQwYT306UdvXhXYuxxqV\nkfyZOoD+4fW3pDabKpaSKalDKfzzYgVlu6GRPph6TFKwOwDkZRdQjunSpg5mrz2LZ2+SsDKoB+09\nty8jB8wrCsFwGK6xAECssbBy+1XMGMXZhDOuYIAnrxMAANNXnsbeVZxinFsW98fU5arJ2KlVq+Vr\nr5ejs/di9G6+EgAQ2DmY1y4tS97tx4HG8xSqn6ZQd89W7O/eG/4u/Oq68ZOC4Lpdt4BTN2mFGfjz\n+VJ1q6F0CsuKeK4V51uq372qvLEh+gDuZ0ifg16QI4kXcSTxYrn6/6nu6QR3H/o4tKnbRmDqthHo\nZBqITqaBcHCvgv2viRXHq7rpAq01lZO7w2kNBlHM3zEM4ztRV5Y/tSdcXrV0qJDLscG0WZTo4hke\nvIgDALRo4Ebqa9Gfvy5S5AlDcUkp2g6WrVI8lxv3o3H17gds2k/8jD5/m8h77l3HQa57SINWGQyA\n4qo9VzKyVsg8moqgscBlcau2atBEB1D+/ZLp+J+Tal28fMeH4OUuzcz8oygU/VnqdX9SuTEaYt8k\nYeejlWLluC5HnUwDEVB7Bg5HbRIzQocmIGuMgItHVVJbSXEpDAz1EfUyQaY5xcVYyMv03psp2w2N\ntG7ZpnCuJoRIbTTUced8Bo6ef4b+XX157cpyQ2o7eAvB3UkQFosNJlN8Fq45f3bAzfvR2LyoH6F9\nSM9GvOcnLquuls5vV7iNy1qvcRjyWDHGhyYSkZRAalseoZmVZ8szl7/e/W2NBQAYpGKDQRHEp4nO\ndHIsXL6dfXn4VqicrCmDHmm/z/b+1+so259ej+Q9z8smLzirutgpTScdyuHS4Qdyz3Fg7SXK9uGz\nu0k0fu+tuZTtY/zXyKyTINGvEinbd16brZD5tZ2Ln+irmw9uRKzZxWQysHx6dwAcl6DxQ1oBAAJ6\nN0G7oVuxMPgiWg7gL+rjkjJw60E0/n0Yg9ikDEI7APz7MAZp6dlidTx46hGWbb3CM1YAIOL4DLQa\nuAkLgy+i60hy8dKBk/dj6ZbLAIBubevh2ZtETFxyHFOXn+QZHuOGtEKL/sHY8/d9PHoVL1YPRVEu\nTNXXT+Mwd+xfUp0+cAu3URVwo0u5qi3QuR85WGhuVcfyRkFZIf5XDhZhvyN9lx0SeUqx8eRdDPb3\npe1XJmOfL1HKvPllhbiYegc9qvkpZX5V4OBeFdfzwkgxDLufruI9H+I+DQW5/MwzQ+b9gcCFfVSm\now7p6B7QgtI42LGImLlt+oZBYueq36Q63j6J5V2fO3AXfy7+gyQ3cEJ7iXTTN6AOvk6JU15FeQCw\nd9UZuADn/ac7achKzyGcNEQc5yfpuPsPX37c4JYYN7glabybky3cnGwp2yU9kaCTYzIZtH1U7dLI\nKptyYTAkfpb+D1TbjQJxxE8KwtqH93Ds3RtUNDbWqAxJ5Z3sklwEPKHeffqdaFupsVruy2YDA1cd\nhrmxEfYHDSD1f0xJR+D6f9CijjOCx/Gz5SR+y8Kk7WcBcFybuHCNh1svP2HL2Qjafi4jNx5HRnY+\njswdBAuTCoQ+rsvUhK1n8C4hDWFzBsGlsmTukUMfS5fYQVpC405phMEgKoWpJOlNRcmc+7ZX6rGq\nTKmqg8j4pX0kOk3o2F/8d828HcMwuOFisXLScOb9WlImJ0D+2gB07jarj4yXec7yytkP69C7DvV3\nY15OIUzNK1D26ZCecmEwfIhMUrcKaiUyyZFXNE6Quc1bY27z1mrQ6Pfld3Y/EmZaTfWkozwVEYkT\nCwOQV1hMimnwHR+CVvVc8XjrZN41t9+5sjUurhhJGwfR3tcd7X3dafvzCovRavoOXl+bGTuRU1BE\nku26IBRXVo0GwAmMk5Sc0jyJZXXoKA8wFVgcy5qmjpM8UGVy4iKr0UBnLACAT8uaUs9X3qlgYojR\n83sidPUFUl+/+vOw6vA4+LbyUINm5Q+NjmHo7L0YfzRbSbimety9/k7pukQmOSr9HtLCZpdS6uW6\nPRjX4z4p/H4bozrxHpowj6Yx/Ol8daugA0D/1l4AANMKhmjk4Yi/bnAqZF9/HgMA2DKR6Iaw7rhi\nYnsEjQUAuLtpAqUc11gAAEMDzdqzic9LUer8DcaE8B7ZeeKLUr1McpJIhlqOjYTMaRLpFZlSVyI5\nQX7kncbrZHek/twgkX6y3EOH5iPKl17aeAa6TE4AsOao7nSBjr5j28LBrRJl34KA3SgtVUwl798d\nzfq1EkI4JqH7gMaYNL87SS5k6TlcPyddIOKp5DtggYUBjpIXmqLbyVcHkUnOAMi5iAGOO1LrsFCM\nu8KxuIfW88IKP8n8MlWBh0VrxGTfU7caCkV3sqCZLBjcHgNWhGF4x0ZYfuQmAKI7EQAcv/MacwYq\nJoOY8NyKIjZXNd87016tVVnGpLbTduHFPvkzWvk6JdEYDAy42FBnmlEECZnT4esk/nSbK6MzGGTD\nu0VNvH7wkXctvAO/+ZxkRiEVwnNRZVMSh76BHi59Dkb3GmSf8pS47+jiMh3GpkY4/molDAzJS67S\n0jIMarBYZAaoNUfHw7uF7nRBFPvC59GezvSoMVMuFzFl0s+DPtbxVAy9MaoONNpgEKauD/Vuk4u7\n9HmzjyRex7mW0mczeJdSG/UcoqQep0iiUpuCzljgci+Qs4t57N0bLLhzE0feRcLc0Ahvxqp/Yetm\n1rhcGQw6Y4FMu8pN1a0CACDuayYc7KwAAA62lvj0JUOpaVeVNfeRxItKmVedNKxFfWqbkrUcmXkn\nUN/+KaG9oCQK0Wnd4WC1CHbmw0XO/TP/CuIyxkGPaQ4vh/e89jJWLt6ntkQpi5MJi7uYZ0AfUWld\nUMbKRr1qHJ/59NzDSMlaAjab7zbm65SExB+zkJl7HADn9IA7h+DzyJS6hPvqkJ1p6wZieEvqQl4A\n4OHtLPFc+gZ6vAJ/VExdK1vxLj19JkwtjGmLhxXkFaFnTdkLdeqMBcmQJd2qusnLLsDVrzvUrYZE\naLRLkjBtu3hStrvUoD6KEkUtc8m/ZAQpY+Xi/Rf1ZEgBOKccxaVfJJYfXM8T8ZOCED8pCM0dxB/v\nq4JqxnXUrYLCePVTvcajpjLFfai6VQAAzNxzERvGck4lqQKg6fglgbuMMGbGRviYki71OEl4mfVB\nKfOqkz1B/ShaWShl/YCXwzuk/eKfdHz9tQmpP9fBxzEWekxzsNjUCzMuViZdKXf/I1PqwNPhNezM\nh6GSOd81rJSVhdpVrqJ2letIyeKcbNuZBcDHMQ6+Tkm8BwA4V9wAX6ck6DHNJTph0CEflR0qKmyu\nmZuGiOyv5SPbugAATr1ZDccaii/6p4mLXE1G1PvVy0N2o02Hlp0w0OHTpLrUBd3Weo1DhzvTZcqW\nVFqWrgb3JDYiJfDnFWbH8yfY+Pg+AKC6teK+eOXB2tBe3SoohJdZH7DsPTmPsg71IuwW5FqF87k3\nMzbC+eUjSP3CpwLdm9ZB25m7aPuF78Htv7dpAqVLUnkvJKdI3qQ0gKfDKwBANavZSMvmGA1ff3Fc\ni7iuR4zMWfBxipP5PtUsZyI6rSccrLlZczhFlPSYZvieEyrQrqM80aaHD9ZOVl7Wq7235iIrI0ch\n2ZhUbShEPviIuQP5RvrVlK0AgC4OUwhy83ePQKvuPirVTVoOPViMYS3Ia8LiolIcWHsRI+f2UINW\n1GjL6QJQTgwGWVBEHYbP3/qhRuVT4gUVgLTGQstD+/Alh1NYZGrjZpjWuLky1JKJgrJf6lZBIeiM\nBWrqWbqr7d7iFueOdlZiZZYP64Tlw+gD8kWNFze3zngQB5u2RxG7+XpMC57RITifHtNM7rkFKWPl\nKnQ+HdqDta05riaEYPOc47h+/LHU4z28nLD5vGq/J/KyCwjGAgCsGX8QdvaclM8W1qYoyCtCSXEp\nVqkU2iIAACAASURBVI87iKspmm0wVLK3RmBQF4QFXyX1ndwdjq6Dm6OKk40aNNNutMZgKC4qBcCG\noZGBQuZTRB2GvKInSj9p+JjWCQXFot0RTAy9Cdeu24Oxv3tv+Lu4KU0veTgQO1q8kIajy4hEz6r6\nU9Wtgg4tpb7DCyRmzoCzzSZ8zznAa69mNQuRKXXg5cD5LmSzS8BgSP9bUMbKhrdjNJgME4nHJGct\ngaP1Mgnnz4Ue0xSiDB9x9HPoiA/ZsfiQHSte+DdBkbvtqtq5n7ZuIKat48RE7Ft5HmdC79DK9h3b\nFqPn96TtVwSiXne//+oYcE8VAP7JgmAbt/3wxisImNlV6XrJw6DJHTFockelzK0MulSdqPGnDVpj\nMCyadBiGRvpYsT1A3aqQ+PpzFapaLVD4vKk/V4o1FpiMCnCvQgyIjJ+k+gqAklLGLkVBmfiS6ppO\nVrH2vwYdOjQNBvTAZJojMqUu6tu/QErWUgBAFYvJsDUbitfJ7qhg4IFaVS4BAL78XIlv2ZxibC+T\nnGBj9j84V1xPyJokGIzMGbMOLHYBMnP/kejUoqQ0Fa+Ta8LGbCAcremDb32dkvAutTlsTAfA3oq/\noSBKFyoCXCRbOMblpuDxj0hEZcfizc+P4gfoUBtjFvbCmIW91K2GSEwtjCWSc/0/e2cdFtXTxfHv\n0iUhYhECYqMgiAh2YSt2K7ZiomL/FLEDMMDubsEObFRQwQIsVETKoKT7/WPfLfbu7t3ehft5Hh7v\nnXvmzFyEZc7MiSZ1cf14mMQMBgrlQWkMhrgPKQg8I788xHYWP3nWYvj9bw9+/9sj0ZMGMnUf7CwS\nwPC9JWL7i+c48i4KBppauD9mIlRovGXZict+huBE/jtqla2GgjAoU1YkDRV1aKioI7ckH+Vi7HpS\nUEiaDSfuYemYrlzt5karmTv67ItrNRUj2Jtz1pcxNVwBU8MVXDp4LcrZ29NyzjGv2TMaVexrbbKf\nUBdRFiTbus9Iz0VcrPXMYK1nJnS/orJi5glGRNo7xOeST6JBUXlx7NSElJx5g9r4/iFZoNyT+7FY\ns4y/y7bn/J5wHya4SjeDpJ/pmDCUOO2zXjUtXLq7iLQuBn3ar0Mxj8xZZ28sgFF1XaF1isLNlCAM\nbeyNc7GbQVMht1aTNUpjMMxa3hchp8Mx3buXxHSyxy8wXJT4BULzMxoAICv/Dgy0xT8CI2cs8DdO\nrAL9mNeZBQWoH+SP6traiJxEXExKHnSrPVveU1BqmurXx3grdzSuZiUxnQWlRQhOCsWTP5FIzP8l\ndH87Q6qipjSw1DWtFAu70yvHYKTvCQDAhUfvCA0GacK+219DTzEyeckaDRV12Bs2hr1hY4yy6EMo\no0ybIhSKx6Thu/Dzx1+Bcrv8b2GX/y3cCRccJO7Whn9im5zsAri18SWlCwCKi0vRp/06vjLDe/tB\nQ0MN1x5L3wW5V52ZAIDepqzfPUVzUVIag6FzrxbYtPQC7Jys4NKpsdj6riU/w7oWU9G6ehPCwGde\n8DMa4v9MgqqKnsh1Gr7+HomcgjC+MuqqNdHUNJKvDK8YBnYjgh821VzRoFpbfMl+SkpeFKY3OAk9\ntRpS0y8t5PmHdF7Dcehck/xujChoqWpghEVvjLAgPm7+nB2Pfd/O40v2D8LnvraUESgNFjeejBmR\n5PzoxaG+nnRTLzc0N8Gu+YPh6X8RAL3ysySKt5GFSoNKQUFM4tdfuLjnPld7xbbEr/w3kiou7MdO\n7oixkzuy9J0Ox97td5j3N8K4TwgF6Zw8sxuGjaUncsnNKcTAbps4ZAUZDeVl5VzGwo6Dk9C4GT2D\n44GgUJw7Tj8tLCoqEcoQERVFMw6IUBqDgcHqead4PhMmter+b1cRIkLhNoC/0VBaloPCknhoqlkK\npfNP9gGBxgIAgcYCA6KA51XtyVezHWDG+uW4kbwZsVn3SPflh4mmFcZb75GIrqrCfidf1NTknRJ3\n4sazOLREtIJDwtKwmiW22nHmsp72ygepBYJ3kyhEp662iUzGWdt8jmAhMXFuYoFtswdg3s4QAED/\nZYdwZf1EqY9LQUHBm28xSfgWw32KeWBtsMg6iRbZg0e2weCR9MKel89GQE2NfzkwjyGcLkgVderq\naeJO+EoOFyhBC/werqxYpCsPlkJLmzOBwuSZ3TB5ZjcOQyXq5Tc4OClmIhlZoXQGg6Sw0hW+BDw7\n/IyGj8nt0cz0NdRUye2gf0h2RVEJfxcjbQ1bNKzNnSJMGM7GRsPDTviic73rLkLvuos44hYWNrkt\n1lzIsO3+M+hraeLUy7cInctaUMSnZWD4gTNoVc8UQSPoAYKNfQLw0Ye1U8l+v/XuExyLeI03y2cz\n4zgYzwfuOYHcomLcmTNB4HymvlolydcTSONqVthkJziAXVbGAi/2tvKR29jR735i3iz+edVDHwuf\nkKBbB/5H1aLoVAZ0VLVkMk77FtaY0q8N9l8NR9KfLDhOCcDGaX3QvRVV0Zai6mF/agcyCwsQP0F4\nH3xJUDETkqwYONxZoExyYjrzmp8R0L4LuYKwh3axNj9pKjQuY4GdczcXYFgvumfGktknpH7KoOgo\nlcEgbHE2fmxrOQfdH3qhtTE90Ccm6zvmvd4BS93apHXwMxpiklpCT8sF9WueI3zOgEy8QoPaV6Cj\nQT7v8YuJ02EV6Ie+DRphRLMW+FdYCM+bV0j350W32rMQmkoccCQN9jyOwEcfL0x0dWQu8ItKSpGW\nm4eIxfQA+IqGAoOAoXTfXNcte/DMezoWdm8Ptx2HsXlgT9ib043FJ3HxuDydvB/zr4I0CbwVOULa\nEX+fHafQ42scG5lh38KhWHP0LoLDojncOhgyAJjtx26/wvYLTzjaennvx+9Mer54FRoNL/fNI+xL\nQSEpLj56hwev4/A8htulbcne61iy97pY+qmfWQplhAYa6aQkVYm/f7KZ18vWDBYoP3S0C86ffA4A\n6N1uLaG705ljLFfr28/+46vP0Igz4LmoqAQaGpJdNjPSqTJiGNhRNDcl/mdBlZyQdhvwIo0ebzDv\n9Q6MqeeG/U6LhdLBL/g4p+A5ykEcfQ+Qz4QkjLEAACY6uvg0Yx6uffmEMcHn4XnzChoa1xA73aq9\nkfyrIw7cewKOFtyVokNmjEW37fS87X13HUOvZvSdyvTcfKbM3lHumH6adbza3sZSupMVEX7GQuR+\nL0Tu98K+hUMBAP+N704oy5BzW0hPObnzUhizbfb2ywCAm1umMGXLyss5+vV0Fj9OSBbUNTNC7772\nMDAgn1efDNNmdoNtC3OoKFC2iktttyu1fgBYf+IeobFAQVGVeT1qNr55eAsWVBAqVn/mhaBAZUF4\njtvHvO7UvZlA+QnTuzCvS0rKxBqbiL3b7ggWEhJ2o+BmShDHl6KhVCcMAJCZnotZI3fj769/Yp84\n6KhpSaSAG7+ThncJlqipPxN1DJcw2zLzruLHX8HZisRJ06qhqqrQ9RhEpbiU80OAcbrQqFYNJGbQ\nK0jH/SY+CbCqYYTwRaKl5vWJls0vLy9jQVTSsnIBAE6NLfDzdyYAYNFI3rEsDKNEX0dTovOQFtWr\n62H+oj6Yv4iV7UWQOxEZhg53xtAKx+WS0CsOqjRVdDRxwqM/LyWue0MLL6jSVCWul4JCWgy4ehyx\n6b9xqPtgtK9ryVMuq6gAruf2oLZONdwbNImnXOeLB/CvqACRI3kntigtL8fcR1dxNyEOrWub4XC3\nIVBTId533f0+An5RTzChqSOWO5GPH+THyY9vsP7VQ3Q2s0ZgJ+J6HR8z/mDG/RDoqqvjWv/xpHWf\n3n4bx7ZwnvARFW0TxJ3wlRyGAuPac0FPuA8VLmlHZkYulx5JIqzOB3ejMXuRdOpPKKKBUBGlMhh6\n2hP7j/W0X4nGLcyx7dgUGc+IBf86DUFMg+Fzam/kF73nq0tNtQaamb6W+BwrA1c9x+JO7Be4NW3A\n9WyCiyPeJqagb3PW7rixnmR2nl9nipb5ShhOttksNd0RsT9gXtNQoFxHu/oAgBvhH7F4VBcB0hSy\nZn6j8RI3GFyM7dFUv75EdVIIJru4AB3vrmXeR/Vey0eagkF02i/0vXKUeT/2Nt3tt6L/v+XhzWhd\n2xwvUukbb1+z0mB5eDOXnF/UE+x8+xxqKiow0zOA5WHW53Crmqa40Gc0AODIhyj4hIcynz1JiofN\n0a14M2oODDU5Y38YOmyNa2F/9Evsj2b9zrKPzz4W0Tvwepdr3z/i2vePfN+lon72d6lIQV4R01io\na2mCvJwCZP7NRi+zObiZuAM/v/zC1M70DZNa5tVx5LkPoR4GFY0GANjldwu7/G7B0bk+Nmwnnoei\nk5NdIO8pyBWlMRhSkzIAsOIY2I2HyV49cCBAuCBcXvUW+NVhEAQ/o4GM+xEAWBgHwEh3iEjjM7AK\n9MP5wSPQqg636464yCLYmR+aampoW78eOgccQEFxCR7NnwINNfrO6OIeHbhiGp4unIYTEW+wNfQJ\n3O2awqevbPO+k2VOgzHQU+Nv3ETu90Lg5acIeRKN/8Z3Rwc7a1ZMw5QAjOzaEgtHdOLZd5TvCair\nqeLospE8x6hppIdJm87hXsB0kd+FQrqEtAuUWHrfOQ3GoGutNhLRRYbKEmOwJfY63mT8wMm2ote1\nqaauxTQSHG4ITi1JQafvlaNY4NAes+1cmG2Whzdj46tHWNKqI4fsy9SfXAv0ikbDzrfPMdjGFn7t\ne3PILXbsgBktWL8bHk0c4NGEM2lIo2P+sD+1g9AIENTGfl/RcCCC6F0CXofBq2U7jnchMpwEBVMP\nbLgQAPGJAuNUYcDEjpjuKziOgAEjQLin6xqUlbGKhkZGfGUaE1U9iJgdRixDxTZAcU4flMZgWDXn\nJE6FEvv4te7QUGiDQVoIKu7Gj+bmH6FCk0xVQWkYC7KGfeHPfq2rqYEHXpMF9mEwxtkeY5ztBcrx\n4lJiqGAhMSG7aJs1sC1mDWzLvCdagLG3sV+fWskd4M14zvh3yWjqVEEZkITRIGn3t6rE6fjnaGJQ\nV97TqHL8zKa7nbIbCwDgWNMUe95HcBkM30hmHZpVQR8A+L9+ymEwEHGw22CMuX2W1BjiQvQuxz++\n4TAYxEGfT0Xjs+828H3Oj1v/DyyeMW4fvn5O5XgmTH0DSRsXBoY6OH9roUR1igvDQDj3YTOqGeoy\nDYWLe+5h8HT5b3YqjcFQkF8ENTViH9u3L75JZIynf/m7CpFFFKNBnHgFIn5kZaKegWAXFArBHI0X\nPQ81GaiFG4UoMH5uHv95Bb9PR4TuR8GN443/UI5yjjZ2VyH2k4APWckc9+ynBeOt22NuY1YaagDY\n8ekOjnx9LLTr0einu/AhK5nnnKoSE0PpefbJ7MgDANmUBePvnMfjIVMBACVl9Di59a5uhLJPkuNx\n9vM7RP1Oxq+8bEIZaUD0LukFeVxtJWVlTJckxruQwb5dI8L2Dv0dRDYW2Nl9jP79zcsthHtX4Qqt\nSYOsTO7vnbxhGAi9TWfhRhLrc/rwumDKYBCG1TvGYESXzbgR5cP1LGjDdRiS/IFOyPuFSS82AgBh\nhefutZ3EmicDYYwGSRsL32ctgFWgX6UMeqaQPOzBvLzqC1QM+CUjx69WQdjjj/BZcZGrvXPXpli+\naiDf+VJw0sGkFTqYtAIARGd9QdjfKESmxyCtKAsmmkZwMGqKPnU7wky7lpxnqthsjLmKcpRzLMaj\nMxM5ZNiNgiYGdXm6JB399oTLYDjy9TH2OfMOuuXFh6xkPHZbAT01LebY0ZmJsDU0E1qXsvM1K12w\nkJC0q1sPYck/0CP4EBoY1sC17x8BAEMbNOeQi/+XgU4X9zPvXepYoJFRDTxI5Nyw/ObhDesjW2B5\neDOGN2yB81/oG5GyqLHQrm492BzdikZGNaCmooqYtF8Y2dBO6uMKg46uJmGMAxHNW9bD+9f0rGrp\nf3NQvYaetKcnVzJ+/4OGljpQDkxwXom9j/6DhpY6mrRSjIJxSmMwWNrURFlZGXrar8TlZ/Rdnd+p\nWZjYbxsA4Mx9culQLXRq4W6nAIwNX4vjbaTrN0rGaJC0sQDQYxjY/2WHMiIo5A2/bEMP7sXiwb1Y\nrNs0HM4uNjKcVeXA1qABbA0aAFQMs9BcSYziahNlUf6g+3J0vkv8M97K2EooXf0e+sPW0IxpLADA\nf83dMe7Znip5ymBrXAvv/qZKdPF9osdwND0egH9FhXic9B2X+oyBQ01ud7NOF/ejdS0znOs9itn2\nPCWBy2BQodEQ2Kk/Zj28gvNf3qNtnXo43mOYxObLjxM9hsPy8Gb8KyqEmooKz3ch4vGVKDy+wv07\nwKtdFsXe/HaPZxoWI/r6S/wk4m1UPOwcLCWqU1RupgRhtttGFOQV4UYy/XSBimEQg1tvfHHhaBgG\nutI/KMf19IORsR5O3xP+w2NDi2mSnh4h4sQ0iEplNApstvgjzns+4bOhJ0/j/Gjegbzi8OD3C6no\nZRDkyL9wjCzwmNQRRw4+AgAkJabD1Ky6SHpKilk1RzzncNeH+JmQhglj9pDStXzxWTRvYY6AwHEi\nzaUqcyL+LsZYEtfnEETYn/doZ9JcoJw4Yygqz3qsgsONFXC4sQKLm/XF8HqiBYMbqGsDAO6kvIdb\nHfr3UtSg5qS8dCTlpVNB0f/nSr9xpN2RyOJybjfySooRO1ZwXBu7sQAA3mE3CeVmPbwil6rNLud2\nw71+U2zr0FeofvKq9CwsE4cH4dBZ7gJnwnDp7iIM6k7/GfL2PKZQgdc77yzhuFcUQ4GB0hVuGzK+\nHW698WV+iWIsAICZjomEZ8YbfqcIsjYmlIVFN2+RlpWWsQAAlxLvSk03AIVwExkznhU0t3/PfZH1\n7AliBYcPGsKdb5vdWHB2sUHo4+VcX6vXsTKEvX/3Ez8TZFdduzJQWi5esSIyxkJlhrFrvynmGhxu\nrMCP3L8i6QlyGo8lrzmDYdfYiZb9ToWmQvhVlSEyGmLTf4uki+Gyw8igZHN0K09D4E8+qy5AbnER\nEnOy+M6R8dUz+DAKS0tEmp8wjGxoh+CvsRzvculrjNTHZeDWxhdubXyR/jeHr1yvtuRPx45cnM28\nTvyRhnXLL/CV3+Rzma+7k141LWhrazDv3dr4Ivn/WTiJyMkuwIAuG3Ew6B7pOVdWlOqEQZmxs/iJ\nL6n9kFf0hutZaVk2VFWqyWFW4rPiTih+ZmZilL0d5ly5hk8L6bs0Nlv8cXTYEIw/dwFx3vNhs8Uf\nQQP6YWbIVTSpaYIPv/8gzns+Gm0NwCxXF7z4mQhtdTXsG+SOP7m5uBQdC+8O7QEAJrr0+JTm23bg\n0JBBGHn6HMdpQ8XThz5HjmFuW1fc/vwFIbEfEOc9H7c+f0E9Q0PQaMDf3Dy0s6xH6v0S8lIk9a1S\nCsIef+Jq27z+Klebz4oL8FnLuQAKvvSKp152N6S5C3qh3wAHQrm27Rvh8InpTONiwpg9fGMhqgJd\nH8zHvc7+zH9HP1+Lky6sHedJLzbjYGv6xolqhYVkSn4arqeEY7J1H2Z/dp0V4XVyMC58A461WSrJ\n11JYGEbD0W9PMPDRNpFcf1xM6HViCkqLsSDyJACgj6k9vy482eIwEp1rNRGpb2UkfsIiWP1/QcxO\nxd1/svi/DgMAjPt/ytTfeTk4/+U9zn95z3FKsKVdLzid4dzxjZ+wiGseLud2A6DHE1gbGKOsvBxn\nPr9Fo2P+CB/uido6dD/8VmeC8JfNAAE4DSFRTij8X4dBT10Dg2xsme8y//F1zH98XaYnHiP6cn+2\n8ELQDn9dUyOOmIdH92Lx6J54RdxCHizhMCo8Bu8US19VQekMhqkDdyLh+x+ONnErPsuKBrWvEp4o\nRCc2lXgsg02QP0rLObN9zGrljAVtJJOCjUFmfj6sjaujR8MGTGNh4oVLeD9vDrTV1fB+Hmt3oEdD\n+h/Rq+PHwmYL/QNFT1MTs13pR/+MNoaBwPiXwft59HzQrvUs+M7pZ1YW3BrYwK2BDUJi6QXXvG/c\nZPa3PbED0V7kSttLk7Y1Wsp7CqS4c+sdAMC1bUOEP/+CsrJyQsOCLLyMBQbmFsYi664KpBbQAz8v\nJT7B+Z8P8acgk6fsjMgAZBfn4fQP0XbH1sQcQ2TGZ2QXK15GEWkz3ro9tn/kna6bzI5xp7vrUFRW\ngl51RQs8NdGqhgWRJ6tkvAI/vpNY/BItkCu2nfz4hqdsRUNgaIPmXIHQRH1TcrO52ta6dIfl4c1w\nv3oM4cPpgfKvRpB3rSHzLoz5Ro+Zx9H+IzsTHS/sIz2WIGa6bcK32CSJuDEJ4w509eFS9Ou0gZSs\niorg/Fh3wlfiYNA9nD3+lJTOmrUNSMlVZpTKYGAUazsdughGNfTw99c/+M4/jZ72K+G1yh09BvJe\niMja9YdGU4eWekPoaDhAS70hdDUdoaneAHYWP1FUkogPyZx5n8WdH7vBYRXoh5a16+DSEM4dF6tA\nP4kbDIED+gEAlt++i7Pv3iPOez4+/02Dtjr9R0tbXZ1vf30tTeY1rxgFrj6amnyfd7C05Gp7P28O\nmvhvR01dXYUwFgBgUWPhM6ZIi46dm+DRA/7VrH03DMWnj8mYOfUwX7nR49py3G/3Z7mXrfAhlwHJ\nuY0NIsLjAABXgyPRz92RVL+qxCCz9hhk1h7ebzjjQorLWQvZXnWcMcy8E4w0hD/B7PHIG7c7bgFA\nP5Go7DjcWAFjTT2caTcL1dS10OEO70U6DTR8y/mN3JJCFJWV4G5KNIbVc+aQedFrNVrfXAUAWGc/\nlEvHvdQYvM74gbh/vwAAi1+fQX29WrAzsoBzDXrU+u0ui5lxFXucJyC/pBiBn+5guGUbDLHgdvuj\nEI5NkY9kOl6T6jVlOh4APEqUTNp5MrAbAO9e/8Cda28Q8fQLsv/lQ99ABy2drLBk9SDQyOa7ZUNT\nS52p/3dqFjauuoy4zykoLyuHfSsr9BnoiDbtGgqlc9LMrpg0k56u9NG9WBwMCsWv1CzUrmOIVm3q\nY7Z3bwEaqhZKYzD4zD0JmyZ1EHh6BrOtRi197Dg5DbNH7UHA6mC+BoOsKS8vRn5RDPKLZOc/yE5F\nYwEAFrm0l/g4zxMS4GJhgXU9uuPsO3r6uNDJE9Buz36ETZ/C/JcXPzNZPqBvklNgX7cOAMDSyEji\nc705YZxU9FYGvLx7ExoM7IHMANCoseCMGxMmd+K4vxocybzu1KUpqfk4OFkxDYbrV99QBgMBjEX8\nfifO4kMn4u/iRPxd3Ovsj2n1+8Ht4UJmbAORGxIAHIu/jdspL5Fe9A/P02IQ5DgPB50WcRkKx+Jv\n43JiGApKC/E28yu22ItXEXznpTAcuflSLB3siFNJekVzd6x9H4zu9zYy2x50J3aHi+y9Bg43VqD9\nnTXMtooGgxqNXjfIWJM4FaR31GmO+7sp0biLaACcdRaieq+Fw40VmB7BMtT7mirH6aSis7fLQIy8\ndQZ/8nNhok0/0S4uK0WDo9wZBoVhYuhFHOrGqorseo5u1B/uLloci6gUl5ViZbj0C48S0aJlPbRo\nSc71V1hq1jaA/14Piers2LUpOnYl9/eJQS+r+bj5nbz7lbJDK6/gtqIgcE1qVLctPCs9A/TTB36u\nSZU9uLjiCUPMtDnQqbC732zvDsRM47273kNrNABAW08Lxz5vh371ypPzmD3OYcTpszgzcjipfuJW\n0+WHohXQYsQZsMcMuPf2Q05OAUc7Q66FvQX8d4wFABQWlqBP901c/dnlxUGYOAayNSOEhWyNCQrB\ndJq7C9l5hRLXK47BIA0cbqxQSnciaX7ueVgNxEBT+RehYnDq01sse8bpeja5mRNWtO4skr6y8nJY\nH9nC0Waqp4+nQ8UzrslA9C7Phk1HXV19iY0hSZckZebO+RcIWHRGmQwGEc51OFGaE4agszOwYfE5\nLN3Enc94ybQjUFMnrgJdFWEUbvPt2BVu1jbIKMhHv7Mn0KSGCf7m5XFUMjXR4S54l59TUKmMhYpE\nJSULFqrChFx+hQED6YXAGMaCqSn3ycy7NwnM6907pZtNiqLy0H52EPIKiuQ9Dakz+ukueU+BggSj\nGtlhVCPJFTdTodHkklIVkPy7KBOjnX2Q/vsf8964tgFOPF/FvL904BH2rwth3tNoNNz4xn2S9Csx\nHR7tOY38wVM6YfKy/sz74wG3cGrHHQD0UwYGSmQ8iITSGAxGxnp4dDsa8XG/sfcia/djv/9tvIn4\npjSBz7KAUbBt5aN7WPmIFez4/vcvOB3azSFbGWs2EBHnPR922wOhra7GDM6mIObQvodMg4HBus0j\nmNeTpnbGwX0POJ5fIyjsQ0FRkX+5BVIxFhaN7IzhXUTLQiRp2GsmnGknvZ36qsrd5A+Y++Is4bNY\ndx/ZToZCIWAs2kfO6o4mDpbwW3ga2jqcsY7714XAuLYBNp+ZifTf/+A9LJDLpSgp/g8md94A94kd\nMHRaF0Q9+QT/RWcQevEV02CY0nUjh14za9nHpcgLpTEYGPz4+psZ/MxOxbaqbECIawS49m8lWEgJ\neTuX+uNNhtxcblcRM3NWMbeRY1y5DAYGmpr8P1IoVx7FZ8OtR1jasyPhszmvF6K0vBQ1NIyx2pa+\nME7KT8aSdytRX88aX3O+YYvdOtTWIq4v0nnebq62kPUTYGZiyNHmOCUAADDD3RWT+3DGBrz6+BPT\n/Fi52B0bmSmMsQCA0AVpZuQ2BDnOI5CWPIy4E17xKspOaMoH+LbsjyH1FCdmUdnpZaYYiUBEYUYP\nuvsX+8L/TCT3+o/9ed16NXDl02b0b8R5EjSzN32zddp/7gCAboOd0G2wE4fM/nv04moMI4VxXxVQ\nKoOhKhsBsqRFByrnd1Wke8/muHvrvVB99u+5jynTuzDvFyzmX2G0sKAYmlr8M2dRyJejz6N4GgwZ\nRZnQU9PDt9x4eL9dji1267DuwxZ0rtkBE63GIav4H2ZFzcdx5wOkxhIUc5D0h7swVqvG5ojc4v3c\nrwAAIABJREFU78U0KiI/JcIz4BJ2eQ0iNaY8IGMsVKyvQZaK/Rg1OyormxwHIfDjAzQN9uF6Rp0w\niIYyxyPEf07BmHk9hO6nrsG9/N0Xuhjj267BlK4bq5QhQBalMhjEQdJ1DiozCR+S5D0FCjmweFl/\nDoNhvW+wwD5nTz3HxCmdmPddujXjkpm/qA/8N18HAPTtuQV3Hy4Tf7JKxOJLt3Dt/SeUlpXh42ov\nNF5FX+je95qEuob0YMTSsjI0W72d2efjatZCuvGqAAywa4KQtx+Yzxg62OUYsgxCPMeiUa0aHM/Y\n+9JowAcfL8K+7NfsYxiqG2CnA30XbmzEZABAdnE2zHXMAAAG6uSDKx9u9xQoE5fEu9Jy5H4vtJ8V\niLzCYkTE/iA9Lll2frmEa0nPsbTpaHSqST/B6Pt4KTysemKIOd2gyinJx7CnPhhm0RkeVj0BAJNf\nbEFuaQFOu/wHgHjHf1dcMEKSniLIcR5s9EzhEbERqQXpHAX1SsvLMCjsPxx1XgpDDT10fTAfIe3X\nYdhTH1xo5wsdVU3CfhVhf7by/WH4Np8g8e+VLHG7sx2JeRmI6LME1dS15D0dmfMlPQ3dTx9B/Exi\nTwJBzxUZyyD6Z4uwc3efSLzBwQ7jRMDIpBra9myB+s1MuWRq1jXCze/+6GuzkCnfY7gz5m0klySl\nslNp6ssTuSlRiMaNg/flPQUKOZObW4j7ofSUwHUJAp7ZCbnMu8IzAPTuy3IXKS9TyKxsUiXk7QfE\nrJoLAGi1PggfV3tBQ00VXQIOMmWard4Ot6YN8HG1F+7MncCxYGfoYCzcGQt/ANj54DlTpvGqAITO\nm4iPq71wfMJQDNh1nGsujL4fV3uhvBxotnob8xmjnf26okGSWcy94w8ApeWlhO38qKbDv54KACT9\nJR6PwZNAlpsh48RBErzN/IqZNu643WkL01jo+mA+rnXYgMb6rMKRcdlJuNFxE16mf2S2HWjtzTQW\nAGLXIAudWrjdcQts9OiLliPOS7hk3R4uREj7dRj5nHWyzhiv3+OlPPtVZFS9bsy0uk//CneCqIhM\nadgOC5t1r5LGAgA0qM6/sKWg54oAwzCQFHHRiXyf371AT91887s/Tr1YjZm+g9FzeBue8tfituLm\nd3/oG+ni9tkIDHf4j6dsVUKpDIae9isR4MO563nv2lv0tF+J1u2FK9hBwc2Bt1sEC1FUCY4dfsK6\nPs29EzxitCvzem8QPbCebDEeYdKsVjYDI6eQHvC7Y3g/Ztvx8NeopqWJHcPp7lwW1Q2hp6nBZTQw\nWNyjA/P6QBjdWGu8KgAtzevCzIhejdTJ0gxT2jlhzKFzHH3ZDYBtw/qgVMjvr6aKJsZGTMbYiMlY\n2Ggu85Th5A96EOq2z0FC6RNE1v+zdMmaJW/3QoVG/OfR1sCKeW1vZAMA6FmbVUTt8Z93Al2Cetdx\nRreHC5Bfyju1LI1GQ/eHC1Hy/8U++3jCMMm6N934SApjFuJTZla9uYqtMXfRNNiH64tC8cktlmzS\nA6Ma1bBkFP+MZLtWXeRqWz52D4EkJ2ej1sC6qSn+ZeRyPdPU1iA/yUqCUrkkea1yR8DqYKipq2L2\n8n5wd1mLgvwiXH62Ato6Ve8/T9KYN6oLPUMd5GTmoYfWaNwuOCnvKVHImPoNauHrl1+4fzear9zk\naZ1x5uQzAEBpKX1BM2N2d57yoY+XcxgK3Tqsw+p1Q9C2fSNC+ZPHnuLwgYfMvpUNDTVWGui9T15i\nclvORAOT27XCtnvPCPs2ZHMzKixhVXV+/TOZp5FBhL628Du0B5w4DQJGrEJqwS+m8UA2fkEa3Ir4\niJ7OjcXWs6b5JJSXl4NGYAVHZ33nMBoq0sGkhcCAYxWaCkI7+aHv46W41mEDoUx5eTlCO0tmJ3aw\neQfs+HwJA0zbSUSfPFHGOAXLID88GjMJ9QwMMfzyWUQkJzLdbiyD/JjXA86fxNvfqcx+Mx2d4d1G\nNv9n7POwDPJDg+rGuDvSA9lFhWi+P5DjGTsV3Ycsg/zwfPxUuBzdxyXD3pf9mkgHA0MtLbyZNJPn\nvE+9XI1eVvMxrOUKnHvNSjiwaEQQNp+h9/Pw7oM9qy9z9IsK+8ylq7f1ApyNWoNqhjrMtm+xxC7a\nw2Z0wXH/WzznVRlRKoOhx0AH9BjogJ72K3H9/EsYGOki+LngIDHLI5uY1/Eei3m2bYp8hN3vw/F1\n/CLUP7oZYUOmw0zPAH2uHEFM+i8OWeD/FSGPbRWoV5m4mLofHk28kPL9N3pojcb17GNUjYsqRNCe\nCejZdSMyCHZUBDFoSGu+zysaDauWX+AjLZjJ4/ch/vsfgXK8TjR4GSJkTkCE1cmPGno6+JPD+f3+\nk5PHU55oEQsAo1vb4b8+XQifSZvaWrXkZig0tayF2Hj65/OhGy8kYjC0qs5tyDKMACJjoZ+pK1cb\nUd+KsBsLFWX43fO65tXmaeOOYeaiFSKjEB8XU3PMuHUVN4aPRUQysftMn3PHEfPnN8fi2TLID23N\nLOBqZkHYR5p8SU8DAEy5EYI2pubM+bAbMRuePeYwNBgERkYQxiEQGUlEVPweCOLmd3/0YYs7AICB\nk1hxDQM82uPUjjtcNRPY7wHA238UhrXkXFOOX9AbI2Z14xpz1Gw3ZGfmUXUYlIWsjFwUFRZDQ5N3\n1hXLI5sQM9oLuuqcJxCMxXxGYT6zbWzjlhhiY4v6Rzcj3mMxWp7egYPdBqOubjVc7+8BAAh69xwz\nW7gAACaGXuAyCtj1OpzZiagRs8V+T1lz5EMAEj+nYFKLhehTbRwAgKZCQwMHK2hpC/Y7BoAtd4XP\n9kEhfyoah+4VUsqJS+jj5ejXYwvy88kdS1tVgRzXe0a7o5PffqzozVrQnYx4Q9rFCwBUVWg4+eKt\nTAyGJe9WIimfu/ihvAyGXLa6Dilp//hIVk1Ky8sw+OlKBLdTvorTwtD/3i5c6So4kF4erOnYDd1O\nHWbeNzOpicPvojChBSs1bMyf31jozH2asODeLTwfP1Um87zzLQ5/8/PQxtQc4Un0RDHhST9xZ6QH\nU4b9xGOpawfsff2SS8+6jtwLbGlzPW4r3+dno9ZwtVVc4Hd2d0Rnd0fSY077z52ZgrUqoFQxDBeO\nhqGn/UoMGuuKW298oa2rif7Oa5ArwM+1orEAAJ8y/qDzpX1ofZZ1xF5XVx/1DYxhpU8P8swozMfE\n0Au4+zMOlkc2wfLIJvi/Zvl2H3fjjpxn15tewHuXUBHpoTWa+TWpxUKOZ+Vl5fj86hvePflA6oui\ncjBrrhvPZ+07iraTe/W2N0IfL0f9BsS5+qtV04L/jrEIfbwc+49MEWkMZaK2Pr2quuepKwCAnxn0\nQF/2DEaCiFlFT9vpe52VsCDoYbjIc1p/8yFh+9iIyUjKT4aBuj7XlyRRUWFZS1vPEM+FwY/UDImO\nXdlQpalUemMBAL7lCD5tlBc2RvQ6Nik52QCAQLe+WP2EXstmtC2rMvPWiDBYBvkxv9j7SJtxze0R\n8PIZlj28i4BuvTjGbqgEgdTKRrvBWxEX/wftBtMNnW6jWFnyNu+5g6zsfKZc5PsEppw8UaoThgMB\ndzhqMVx+Sj/+Z2RIIlunoeXpHXg8eBoeDJqK4jLu7B7sR/59LJugs5k1upkLDjarqJfhrkRBoUyQ\ndatZtWawWOPsPThZrP4Hjkpn100eMRMfV3vh/qevsPXdjgF2TbiyE5HVcel1DDps3Q9dTXUs7dlJ\n5LnMOBWCZqu3w8PFAd5u7TmeS+okYZrfBexdMITw2fVNk9HLez8A4PS911g4ohMpnd1aUckvKiOy\nDmh+m9IfuUX847gE4VrvG1dbt1OHcXvkeFgZ0jclz8S+59iNb1XHFBcGjRBrXFHx7dCVaaTU0auG\ncwOHo/PJQ3KZS1XBY8FR5nXoqbloN3grwi4uxJW777BouhsGTd0LAJjrc46XCpmiVAYDL4Pg1htf\nnmlVbw+YCMsjmzDbzhUHYl7iw5j5mNTMCa4XdmNV665Y9/IBXo/kXeVwnYsbLI9swozmbZCQnYkN\nrj2hr0HsllNRLwUFBQV7qlIGrtYWXEZBl0b1Eb1yLs/+/K4ZDGrZDINactfCIJInmgOD3aMGELZL\nklcfedfGqWmox3E/aMURXFrrwSW37cJjjvv5w3jnY7fa6YcT7kNxJuYdrn35BC9nVwxu0gztjtAN\nk++zOX2qHQ7sQkY+y2W1urY2Iid7cukM6tUP3a3qo+EuVoraz57zoK7K6d4XmZKMIRdOc7RVHJNd\nLxEV5Q++icTaJw8F6qsMPOy5ADW1qvF8Limj4tkPa4noISK3uBiNqrOSFpyJfY8RTZsDAHb37I8Z\nt65IbWxhaV3XDAVsSRUY2OwOQNwM+udGgz3buJ5TkCPs4kKezxbPoBeiKykt4ysna5TKYOAHL2Oi\nkZEJM65gQUv6TtmsFi6Y9f84hCE2zbn63B9Id4Ng9CMbvCxIr6ywCvTD91ncfzh2R77ADEfegalU\nViQKcTj0bREmWm8WKOcbPQArbUOkOpebyXvRq+40jraojNtwMBK+IigFC21VbRSWFUJThVwsU0Ue\nbJ+BznN3M+9ffvwJp8bmhLIju7bE6XuvAQA/fmWQqrMgqLbDmODz+Ow5DzfjPiMg4hmufP6I77MX\nwGqnH05Fv8Mo2xZMWRdTcwT1oqe//ZOXi9YH96Dhrm347MlZtXnmzasAWIt1q51+aLhrG9fifciF\n04iZPgc66upMOaudflxyVjv94FTXDOcGD2fes+tnMOLSWUQkJeL9tNnQ09BAak42rHb6YVnbjpji\nwJl1qzLAz1gAgLo6hmKPkfxPejvqy9t2xLqnj5j37g2bIPgzy323V/0GiJ+5gCPIV4VGwzdPVlAt\nUZahM+7DOIKS+T0ng6ejM8f9IraYhfiZC7Dp+ROm7nHN7eHboStp3QzWduzGN0tSVaDd4K3YsNgd\nwbffwO8/+klr2MWFGD7zAM4G0U/frxycgXaDt2LbqqE4HfKSKScvaOXlCpnnnOekMtNzMWvkbvz9\n9Y+0C1JVQ1SDgYKbAWGzBAuJSEi7QKnpVmR8o/tjpa30dtJKy0twJ+Ugl8FAIT6M1KlEkHVVYl/4\n1zXWx9WNk0jJCuLAomFo2YC7eisD9oV3VGoyBp8/zbHIr2dgiIfjeM9l7u3rTAODSGfFscjs9vMy\nGNjbQj5/wLzbNwjl4mbNhyqbCy2v+QiLND/3PKwGYqCp8ItMQZyLf4VhluIZShVPF4jciigopAnD\nLUkKCJFGgxilOmFguB0Z19TnaqfRaLj5erU8pqUwWAX6EV6zQxkMFNKioiHAfn/6hy9G1iN2G2TI\nRWc9Rll5CVoYdoFvdH/Mb3wUempGhHK2BvTiZRd/bsFgc2+Ul5eB9v9CW6o04o819lMH3+j+qKfb\nDOOtNlQ48SgHQJO6UaOsSCJ+4daWKSgrK0et6vx3jAHg8Y6Z6DBHcDE4fV0tvsZCRRxq1+Vq+5GV\nybfPNAcnXPn8ka+MNDDS0uZqW/N/NyTVCqm05rR2wY4Xz7nkqwLiGgsVoYwFClny9cdfzPzvNEJP\ncbulKgpKYzCkJtEzYTBOFdhjFiZ79cCBgNtymZci8X3WAlz6GIsFoTe5nhlpaePa8DFymBVFVaWp\nAeso+0v2K76yvtH9AQAqNFW0MKSnBmU3FirKMQyGmKwnqK5RF51rjRZ6fuOt6Dnwnar3ZmsVexOG\nQgAmFeIT+KGrrYHI/V58TxoWj+qCYZ3teD4XlV2vIrDleZhEdfKKTajI+rBHWNaOHo8xPoS7Su31\nL5+E0kchHNW1JX8CQkHBj/r1auDWMcVOw680BsOqOSdxKtSb8FnrDg0pg+H/DGrcFAtCbxK6JFFQ\nyBJdVQNScuY6jTGBROwDkdxK2yvIL82W2ImAb3R/aKtWk3qMRWVjbMRkqdZhiNzvhX+5BZi0+Rzi\nU9Jh36Aupvd3hWMjM6mM1+rAbqTl58Ghdl1cHDoSAD0f/chLomUrSc7+h7ZH9oMG4PSg4XA2pc+b\naMHfzrwe9r9+hf2vWUZ23CzOAlNZhfRU4jt69BFpPpURSdZhqKPP2zWNgqKqojQGQ0F+EdTUiCsO\nv31BHR2yQxkLFIrOn8KfMNGkB+L9zPuI0NQj0FLVRWN9F9TQJF4E/sz7iE//IvCnMAHtTIYCAML/\nBqOeLneCgZfp12Fr2BHmOqxaEeW8Q6M4yC/NRuDn6ZjVcK+wr0UhRfR1tXB+9TiZjJWWn8cVB/A9\nQ/R6D23/n4npG4nYAkbBLH5xCAvatMO6sIfo11D8qtaVhbjs3xLTVV5eKDFdVYWEvBTMjlonUt+Z\nNiPhVruthGckGX4XpMEzag2Ky7gzRpFhnOUADDbrLuFZyQelMRhW7xiDEV0240aUD9ezoA3XYVhd\nV/aT+j/lKMHPtPnIyL0stznYWfBOUSgu5WXlOOp7AU8uRSApLhXGtQ3RfVxHjPtvMFRUlar2H2ne\nZX5GRPpbeU9Dqai4w88edMz+rKIc0ckAv7ZGYGXxaFPDnbTO3nWnEz5nzPNOykEqboGA8S+m4mjr\nfQCAWVHzuZ6TNcSUnWUP7kpU382vXwjbS8rK0NC4BuEzBpNbOmJd2EN8SU9DgypQVMv1xmZkFuUh\n1t1HJjUZvmesQ0tt3il6KViEJN3Hoe+XxNIRFHcaQXGnoUpTwaW2OyQ0M/E4nXADZxJuiK3nWHwI\njsXTT6zXN5+HZgaCa3opKkpjMFja1ERZWRlH7AL79Zn75FKfSpK3CeRTlcmayJRkjA4+j8JSTqtY\nmNOHHlrEfuF/kzNwemMwTm8MZrYpQ0rWyIwYhKe9w93UZwqxyJFmJhJZUZkyPWmp6uJHbgyqa9ZB\n4OdpWNr0PPNZZfi/EgSv/8v1zX2Y11nF/7hcjwrLCjH55UxpTk0uWO30w9lBw/H2VyrWP32EMc3t\ncOK9aJsINtWrIy49HYEvI+BW3wY9Th7hKfthxlw02b2dy13p2+wFHBE2b6bOhP0+ekD4sKa2+J2b\ni4c/vgOofPUYnvVexHH/pv8KaKhwLl8kYUjU0huOXzlnkV8cJ7YuSSKpzx8tVQ2cdfGXiK6ZUWuR\nmJcqEV0MSsvLmO86y2YUutd2lah+Mgx7Nh+FZUVS0b3sPatuhTL+7VQagwGgBzxfOBqGAwF3mG1G\nxno4fW8Rn16Sp6T0L2KSWsp0TGHof+4E3v/+JXL/lG+/4NGUeyeRHz20RmP1xQVo08dB5HHFIa+0\nABFpb3E95TG+ZP+QyxwolJsONVkVVtmNhaqOqTYro1A9XQuu56LWZFBkGLUZhl86CwAIcOsN90ZN\nRDYY7o6egB4nj8AvPAx+4WGopauH8InTuIyCV8lJGHrxDD55zoMGW+E3m6AAWFdIt2qgqYUrw8eg\n/9kTOBfLqkp8f+xEkeaoTFQ0FgDJ1GGob7wBv3Lo/+fPflhXukxJBaWSWQjLYgMlMO4UAuNOyXRh\nLcuNoQFhs7DFbiEaVrOU2ZjionR1GORNdGIzlJb9k/c0uGB3SeJVh4EM2ek5GEKQv37grJ5o09cB\npja1kfUnG7eOPMTVvdxH9Fq6mghJk0zxm6zibISnvcONlMeIz02SiE4KyaKMuySiUJVPGMjw8PcT\ndKrZXoKzqZpY7fTDR8+50FTlXBCXlZejfqC/zE4OlLEOgyThrMdAg2u9OMgzg5ok/z/E+T2fHbUO\nCXkpEpsLWewMG8HXVnoZhOT9+S6jv6NVqw6DIqCIxoIkYTcWbF0bwe8+d+58EzNjzGrpgVnbPQAA\n8zqswocX9CPcglzhgsX2fj2H8LS3SC/KEn3SFBQUckUSxkJqejYO33yJ+5FfkJ6dx2yP3O8ltm5l\nIiIpER0sLDnaOh6TXgYqChb5xV8R+3tChdZyPPtRX2hdino6UVBaBC1VDaH7uYfNlpsr79vMT7j3\nKxxda7WRuG55GwuMOSjD5htlMAiBosQs0GhqsDV9DxUV4nzm0VNni3TK0NfAg3m98cZStOxiS6rf\ntser8fZRLBb1oGdI6KU7Fjdzj5PqeyPlsVBzpKCgkB+SqPTMzocfvzBm7SmR5hIe8wPR8Swf6sl9\nnPlIKwfhE6ehzSHi7FyVLS5BGO4kx6K2tj5aGEknjS6D18mVI5sNP+a+Xo+9rXyE6qMIi+odX05g\nx5cTEltYZ5fkYky47GNfeTEgbBbOuGyFtqqWvKfCE8pgIElxKfmUbQbaPaCn1Q7qqibMtvi/0zlk\nalQbz3FfWpaF7IKnKCn9w1d3C/NvoNHUudqJKjsTtfEzIooLi5nXZI0FBnYdmzKvy0rLhOpLQUGh\nHBio6zOvc0vzUFJWAgsdc4yzHCW0Ln7F2MjQplk9zNzGys5SGQyGWrp6+D57ATxvXsXtr19grm+A\nnT37onnNWvKemlzxiwnFKGsntDAyQ9NgH9zqPgcWutXlPS2lJLXgr1Dyg54qVuXh8LR3aGPcQmw9\nimQsMBjxfCGC2+0ETUELiFIGA0likxz5PldXrYumphGk9ZkareX7vLj0F2KTuEvdv/tpjQa1r0NH\ng/MXRpK1F8b9N1ikfhPXDMeh/85KbB4UFBSKRaADd4aVsRGT0bCacKkCh6w8KqkpMfEKDEHArAES\n1ysPdvXqJ+8pKBQZhbnQV5f+zquiuhHJi+KyEpSWl8p7Ghxs+LAP510DoKHCvXFKFkU4MeGFe9hs\nhXVPqpxJ9GWMncVPoYwFMqir1oKdxU/C+gpfUvsgrzBKouOxM3r5IJH6DffuL+GZUFBQKDqLGnvB\nM5J8nIHT1G34npLO1d7NsQG2zRZuwX/yP1bq58dvqcVeZeVKV08sjwphpk7teXcHmgb7cH1RSI6c\nkjwMeTZP3tMgZOgz0eOaFNlYYKCoc6QMBjGxNfsg9TEIjYZfA1AOYsufyBWJ/ZlVoB+eJMTzlCkv\nEy2wiXJFoqCoelxKvMLhqsSP35k5KKuQmS989xxE7vfCpul90b6FNY+exDS2qCmUPIVyUlvbANe6\nzoSRho68p1JlGB0u23T1wuLxYpnQfV5nSn+9Jinupj6T9xS4oFySxMBI1x2qPAKPBVFc+gvqquT9\nUu0sfnIFXb9LsORZ4ZndaPg4g56mb87t6wifMA21dPX4BkWvHLQVa4K9Sc+NwbJ+m4TuQ0FBoTzw\nCnomG/Dcy3s/x72kMyA9i46Hq62lRHVSKAbW1UzwtPcijH58EBscB1IxDGIgKOOQ15uNMpyNaGQU\n/cOJH1cxph45972vOQnwiQ6S8qwkR2DcKbkUruMHdcJAgtxCYncjC+OdIussKkkQuo9NLe7y67wy\nN10eOgrfZy3A8wnT0Hj3dgDAja+fUUuXbuB0sbTG4vu3Cfu+uPVG6LkBwOv70YKFKCgolJbjzgcI\nv0TBz1PyLozXw5VnB5FCNLrWaSzvKSg9u+JO833+LSdRRjMRj/M/idcwRMx/s1mKM5EO2z+TyzYp\nK6gTBhJk5F6WuM78oljoajoJ1UcYeftadQAAtXVZJyClZSyXoSktW8HjyiVs6tKD2eZzfj58htKD\nGntojcbtgpOkx+uhxfIlPvh+K+l+FBQUVZNOLYXPbS+I5zHxAIBXnxMxNeA8NNXVYGKoh8Q/mahT\nXR/X101iyjrMYGVpsrWszUzRGrWbdeqRkv4PfZYfBI0GNDQ1wafEP1wygug4fxey8wu5+iw5eANP\no7/jScBM0mMx5lynuj5UVGhI+ptFOB+HGQEw1tdF2r9cqKmqoKS0TKg5KzITG7SV9xSUnhI+gcyK\n6j/PCzI1DJTRWACA+78jMLfhWHlPgwllMJAgt/ClxHUWFH8UsacKAM5Ygay8GzDQ6S2UlvT8fOhr\nanK0ufTjzATVQ2s01l9bAsduzXnqeXLpBdaO2s7RZtagjlBzoaictPagG58vjswn3Sc7rxBdPYOE\n6sMYS9g+FMKzNnYTVjTlTkfI7qok6omDJPiXWwAAmBpwnnARXZG1E3qhd+vGPGX6LD9ISg8/Hvl7\nwmFGAMrLARpbtsQ7rz5x6O6z/CB6OjXC+omsz/KKY1WcS8THBMzYfpFw3LbNLOEzzk2ouVZ1OCs8\niweVcUlx+JojvEeHouAeNhvB7UT3ZpEkSuWS9ORuDHrar2R+MehpvxLXzr2Q2rjFpamChYQkK++m\nSP1aWHB/CMX/ncZx/8XTixncbBXoh5cTZzBjGhj/zrx1FddHcFuuFU8VlvXdiB5ao3l+VTQWhDmV\noKCoCE0x009T/J9P2V8wI3IexkZMhvfb5QAAzygvdK7ZAcedDyDQwZ9vcTdpY25iiNXH7/B8vvHM\nfY57dmOhIv4XiYtKNreqg2Frjgk1LxUaDY6erMX/vddfCMdiNxbIjOXc2ILnM8pYoODH6wxu9z1l\nO11gsPQdbyNeWd+JgbyqaxOhVCcM67zPwtahHrYemsRhMJhb1UDg+mvoO6y1VMYtK8uVuM6SsjSR\n+tGgKlBGTUWFK6CZce926gisAv1QQ0cHJjq6hP1vF5zkcDEiC2UsUIiLnrYmdVKg4Ox23AaAdaqQ\nXZwNcx16BV6y2ZKkRaeWNrj47D3hs9aNLXDr5ScsGdGFlK5r4bEAhD9RIOJF0Fy08tzGvPfedw0G\nuqy6AsKMNdT3GL6miPb3g4KCwY4vJ3C49TrmfXjaOznORjxi/30lbN//7YKMZyIdMor+wUhDvp+t\ngBIZDNfOvYB9a2ts3OfB9WziXDesnndKamOrqdZEcWmK1PTLkjujPEjJ3S44ielOS/H9veCjvP7T\nu2PmNnJ6KSgolBdDdQN5T4EvE3u3xr13ccjJL+R6lptfCH1d8sW/dLU0kJmTLxHffxWCo7MHW2cI\nPZbDjABoa6oTxjVQiI9LvS+ChQCUlRUgp+gd/uRexu8c1qKUBlXSOuRNelEWx/2GD/vkNBPJEJ31\nBbYGDTjariU/lMtcJI3Hi2UKUcxNaQyG3Ztu4HqkD+EzUwtjqY6tq+mEzLwrUh1DEdmKKJJFAAAg\nAElEQVTzcoO8p0BRyUj6k4WB3gcxf1QnjHBzYLYPWHAAKWn/mPf8ThkYsREMnh2UfnEhsh/W8blJ\n+PDvGyLS3uFD9lcUlBZJeWayJbM4CzMi5yK3JA81NI2ZpwzH40+je60uKC4rJq3r8pP3GNied3wU\nGcat58z2Uk1HE0e8h6Pbor1csjE/fuHGOvLuUkcXjSDUIyqMWIbQzdO4XO/IjOUyh+7H/HQby8Wi\nqLhEYvOjIHeCDwCqKrow0HKBgZYLbIzpAbXPflijHKV49sNa6eIXjsWLt75RoalAlaaC4jL5/Twu\nf7+d43M6Kf+XRPWr0lQVruq1rFEag8He2Rrhjz6hTcdGXM+O7bon1bH1tbuIbTBoa9giv0g2aUf5\nFW7jVXuBgkIWDPQ+CHU1VQ5jAQBC/OgLuR+pGRi65DDP/gxj4dHe2dDWVMelB+/gOmkbT3lZY6lr\nCktdU/Sq016gbH5pASLS3iP231e8SH+HjKJ/AvvIm+POBzDn9ULU07XAGtv/mO2L3q5gGg++bO38\nWHssVCyDobwciPnOii/TVKf/OatejV7cK+DiY3gN7gAA2HaJHiNQu3o10voZegb6HMFlHw+R58mg\nmjY9yUTvZQcQsXMu4VgOMwJ4njL0aNUIV57HcLS1maMYwZAU9CBnRtB0RIItnC2UJ834xUTecT9E\n/Nd0OlpVt+UrI+/YAc/INSL3Pdx6Hapr8D9NlfX7Hfp+CROtBsl0zIoojcGwbtc49LRfiXW7xsHR\n1YbZnvE3B2GhsQh+vkJqYxvpDkZCmni7mObVN+NzKmdAW0xiCzQzk7zfIC+jgJ8hIS8U4ZiNH9L8\nUFD0d5ckcYl/MWrFMZzwHYuGFiY85erVNhKoa1DnFtDWVGdeV9fXwaKdyncCqK2qhU41ndCpphM8\nMYJUH3n/EQaAHS250yZvtltLqu+rfV5oNZXlQuM4JUCk4m1Tt55H5CfOXPHPds1mXkft9kKH+btw\nPDQSALjceMgStdsLSw/eEJitSBiKSkqhpsqdbyRqtxe+paTxHMtnnBtKSss4nkft9qJckhQIZ4to\nRCTYorQ8T95TkTh6ajo42YZ8elLG3zdZfmZll+SimpouQn89F7qvhoo6zruS/12S9fuFJN2nDAZh\n6N6/JZZ7sjJGMAKfJ8zuBi1tDZnPp6QsA2oqghc4AKCtwb2TVlKWIekp8cXLWbGqBlJUHUatOAbz\nWkZ8jQWyLBnfjeO+k6MND0kKRYNGA2oY6OJvFiuRhOOUAJjXNETwugkC+39J/IsRq8kVM3rs78n3\nOdGin6htw6Te2DBJuLTV/CCKZ2BgXceYrzGydkJPrJ3Qk6ON7HtQSB9Vmg7zOiFzKywMF8pxNoIh\nu9g10TTCASfRduxD2gXKbFE9+eVKnHXxw84vwiVg8bdfhPp6vDOO8UOW7ydvlMpgWOA7EAt8B8p7\nGkxiElvAzuKnWDrifg0irODMi/i/U0Ue69CbKMxxchEoJ0qGpIpQGZMoAMDEUI/pRnRgBblddArl\nY2zEZNL1F25vnQqvwBA8fsvy8/75OxOOU4h393i1M9DX0cKD7TP4yigC5f/Pjvhql/RjbiozTYN9\nAAC3u8+FuS65DTt5kJJ9XOENBjIEt9sJGsTLdy2rRXVBaSEOCJkZSRIn/SHtAjHy+ULklRaIrUuR\nUao6DMqOmkp1rjZhi8KRqd/AXoOB/SurkP8Pc8bvLIkYCxSSYUngVXlPQWz+ZOZgw8y+AIAes3fL\neTYUikLArAFQVZHMnx9FNxYcZgTAYUYAHD0DcG3tJMEdKPgS6+4Db1s39Li7HU2DfXA47pm8p8SD\nMsEiCk5NLWOxjQUGsnLBvZr8kLSsJAuinXbhdtWUNE/+RHK1uWmM4riW5hpOqU4YePHj629sWnoB\nu87xP4IWB2O9sUjL4T4KT889j+q6Q0npaGb2Fm8TzLna3yaYkzqpeP+TO+CbCFEDm0dYSO/7R1F1\n6erUEC+OzEdrD3+JVGR+EZOA1s1Yx8dl5YpT2KYywn56IMmibC/20gN/BZ0g8OLlvnl83XsUBco9\nSPJMsHHFBBu6i21AbCjz1GGghT3WObjLbV7vU4cwr010FccbQhSqaxhgf6vVEtW5t5UPpr3ykahO\nUZGGAdNUvz7PmhCSYOunw2hv4kj4zE1jFO4UncKu+cIVlRSGSmEwfI5NxrfPkq/GzI5Z9fWEBsPP\ntPmkDQZ+vE0wR70agTDUGcDzOS9q6s/m+UxUDr7bCrOGdSSul0J42BfZo1Ycw9SBrngQ+QX92jdD\nqyYWaO3hj9nD2uPErUj4Tu0FZ9t6AIDS0jJ0mLYTTw/MxZ5LTzF9UFt5vobEjIZZWy5w9G87eTsf\naQpxYXc10lDRwEGnXVwy4hgSjKDntjN3oqCIf1pGGg04v3o8rOpwn9bKE+sdfvg2R7SNmtLycjTY\nyUoVLKwe6x1+uDl6PBoZ1xBpfGXHq2k3PP4Vh09Zqbic8AaXE97At2V/DKnnILizBMkr/oTswijm\nvXV1H5mOL2nYi7pJitpalftndEMLL7nHM2jraUpNd6UwGH7ESTbfrrz48XcWfkD4H7Y6hoskOo89\nrzZSxoICUOP//v/si+Pkv1no5GiDTo42cJ20Dc8OzoOaqgrG9nbC2N5OTPlHUV9x9Uk0ikvoeaPl\nbSww2LFgEOb4XcKv9GzU+n+Ky7yCYngFXMa7uGSUltKP8Vt7+MPEUA/WpsbY6T2Y2b+9vTWevPmG\nTtMDMXWgC7adfiSX96iqNKwmvQDzp0GS3/iQBL6PHmBlx858ZYy0tEXW32CnP15PmwkDTfJF5diZ\n18a1ShoLmUV5cL1Bz9pjrKmHWHcf5rOmwT5obmSKRvq1hNJZDuHy7JeXlyI97w7i0rxRVl6xWCDl\n8U2EtqoW8uXs6y9N9ygaaCiH7E69PXyGwk1jFG7lnwAAnN4Yggm+w6UylkIbDD3tV8LRxQbrdo9j\n3ssTW7MPiE5swtX+N/soalQbT0qHncVPvqcFkoIohWp1bW1EThLsdpQa/wdWttKfIwV/7kZ85Gpr\nY2vJvC75/+K6rgl3vuj/9lxHQVEJZg0VXA9AWhCdIrRpbsnVrqOljr1Lh5HS6TeP7m4wePEh7A9+\njvBDXlBRUXy3lMrC4sbEJ0NkA56VkSNvowQaDJFTxXPnFNVYAIA5rQUnsqhMMNyP9NW1OYwEdtY5\nuGPIg714P0C4NcPzHw0EC5FA2Qq3VUSaC+ozLlvlugs/xVp8jxB+BLfbKdX3+5qTwJHRadSygRi1\njOX+dqfolNTGVmiDQU1NFd37t5T3NJioquhxtRnrjSFtLDCwMjmE738mSmRORLEPjXZvg4mOLl5M\nnM45roA6DFczj6CfoQd8hvhRWY4UgJaNzLBxVj+BLjwJqfT0vH8yc1BNl77wKCgqgXOzehjXxwl+\nJx9gwWj+Cx5l4+Imyfz+UFR+3E4cRlx6OvPe08kZC13aAQDm37mB4I8fmM+sDI1wbxz9Z8t6B+vz\nkv2a3WWIVzuDB/HfMOnKZeZ9LV09PJ80jZR+Ijenim2MfkRjW+/ww71xE9H12CEAwPGBQ9DWvB7z\neW5REZrv4Qz6NK2mjycTpnDpUiSaGdbF+U78swX+yElDu1rySbes7MaCnpqOYCElpm/djvKeglic\nTriBFU2nCxaUArRyxQwYJJxUyKlwDBjVhqv9xJ4HOLHnAW698QUAWJ9aDwD4NmoZPB6cwZHOkkvn\nGJPUEiWlabCzSBBLT3SiLUrLssTSwStQ2irQjzDw+cjbKHjYCfbrnGznjZ+fkpn3auqqMG9sCj0D\nHdBIBhluuUuukN7ZOCeO++E29KxReSW/cS9xIvpZXuOQ7Wt5BbpqdHepc3HOKGfLRMHoCwBv/m7D\np0xOo4f9OVmowm3SIzFzE1L+7YaTRbzUxniZYAkaVKGt0RB5RR+EHiu36A0y8m5LZZ7lAKz28s+s\nET+NMy2jvH8ej8afxHhL5cmk5rAvCPnFJfgwcy7h89KyMo5sTWQW6UTwkhG371H3wWhvYcm8r1Ot\nGp5OmEq6/6SWjljevhOhHPv9+dhoLA69zbyX5s+Zh9VADDTtKjX94sCo1CwMWmqWqKk3GGYGM6Uw\nIzqy3JGX1d8leZ0yyOL9pP1u7O8wop4nOgxug+DAW7hTdAp99cfj2r+jRN3EPopX6BOGijRvZUnY\nbmnD6ad4ossojLlPP5aZ0sRZonNoZvpaInpszaLxIdkFRSWJgoUJEKX+w9nYaIEGQ25WHoexAAAl\nxaX4/l48A4mIV7/Xo4nReLQwpv9yXfjaHqXlhVClaUJHrSbySrhjUxjGwqvf61GOMqYRcOFrewR/\n7w53q7sAgE+ZJzkMhIqGCUXl59PvMQCAVhaiZ63Q1bCHroY9Uv5JPiWs1d6toAH4Pk15crWH/nqg\nVAbDjFbO2BDGO86lYmpXLTXJ/0l89ysVLWrVFrqfh50Dxgdf5FjkVzQWBMEwFgQxtKktFofeFkq3\nojH68UGc7CBe2lplPx2g4M9R5w3ynoLESU/JhKf/OAQH3gIAuI2T3gmKUkXlWDck/tBt160p83QB\nANNYAICx909LfV6i0qTuc6EX/qbV1wns82LidFgF+mH27Wt4mpiAm1+/wCrQDx/T/vDt515jEgbV\nkt1x9Nd/l5nGAgD0t7yGa/H9OWSScul/7P/kR8FCz42jr5v5CY6+haWZPMfSUlWsrCoU0udfQZi8\npyAQZTIWJIHjlAD0WSy7eIcpDq3wbc4COO7bBesdfnDaz2n4We/wY351PXYIBSX8szQJy7c5CxD8\n8QNzDGEQFDchCaJ/0zdlrHf4wb62cie6eJsh2uYbhXwQtbKyOBiqV5PJOL628kvgcG1fqNR0K9UJ\nA1m+jVoG1+CdcL60Hd9GLZP3dATCMAA+JrdHYUk8oUzD2jehrWFLSp+Jji4+zZiHRru34dqXT/T+\nxjVweyT/WIv8HNlnLuC389/EyANhKQsx3OYl7idN43IpuvNzDM++lIHAn5cJlkwXm7yiaMSk9mXe\n5xRG4sOvwcz7N0lOKC5lGZs66o3RrM4tDl2tLL7iVUJ9jjEquvC8TLDkuLcy5l5Affg1GDmFnMVp\niPQ4WcRz6KupNwb1qq8lHIdxz67nZYIl6ujPgJnhYmabLFyklJ2etbujsKwQmiqip+5LTc9m1l64\nFzAdhnqiZxgiCyMo2XqHHyaEXMThAazMW7xiEiTFyo6dsbJjZ/zKzRE6/aqruQUSsrIw8tJZvJwi\n2QJ1X+csgM0OP6irquL2aA80MDaWqH5Jwgh0ppAu8xsJF48pDj7NPDE2YonMxrMzJFfHStnGupF7\nnFm8zU1jFLqMlF5GRKUyGLasuAjvtYMFyv3Kz8Ezd8VM0cePxnWfSEyXhqqqyAXcNLU1cCXjsMTm\nwg9+cQUtjGfiQ8YRns/rGwxGKxPZfeBUJrTUrFBSlgU1FQPEpPaFTY1dyCuKgY5GM3z8PRJaalYA\neC+2c4veQFfDntn2KqE+l0xChg8sjHz46mGHSCYq0RZxfz1hU2MXlyyvhT2jnUifIjHD3hldzx7C\nveHKE8B9K/UubqXeJXwmSqakrl57mNeMegySpOXeILya6glVttir+kbEC+Pj797w1NPjxBHcHuMh\n9PiRKUlwrGMKACguFb7y74mBQ5lGjLG2ZINR6+/ww4Nxk1DP0FCieqXFw54LUFOL9w4xZVSIT0cT\n2bnu6qtzJ5GRJvLc9Zc0yfl/UFfbBAA9xlSamZHYUSqD4d61t7h37S2Ma+rj5B3eR/l7Y5/jyKeX\nmNLEGUtbKmZwlSITkn5IJuMMsLqNs3FOTKOhvLwUNJoqh4wqTRNxWRcI+4Z878E0GMrLSxH+6z+4\n1F4v/YlXAqyM/fEzw5e5y2+k0xvvktujRd0nKC8vgpUxKxi3Uc0THH0b1jyG2FR3joU4jabOIVNT\nbyz+5JxhGgwA0LjWOQ4ZGtTwP/bOOqzJtY/j3w0Y3QioSCkcFUWxRVRMsMUWxY6jx0Q9tmAcbLDz\n2Ipx7Aa7u7ALE4NQUJrF+8fexbM92551sM91ebnn7iFu9/e+f8EB0QREtE0tjydiwgIAalcQDzmr\nb0yu3xhrH96C9/ol2Na2K2q4lhXLXGzHUF8SHkVQZ/hU3q3Dgbn94e2umhvC2uXKEZKihXh6YUaT\nUP6zCY3G35C39/8De7qKxy9/8dc4VF69jDQiEVmkI+H67v/tIYylaHI3MsjmDq7giZ0R1MJG1i3n\ngWbbN6ltfapGmlgAAFszxUPTGjGiT1zLvI/uFcI0Pq9eCYbTD+fgwqkULJy6n5+T4dD1GbC0YhDa\nzardCrNqt0I+sxi+iXF6YZakaiSFUJV262DvbIucrN84sOwkuo1vp66l8bEwcYKXbTjBLEn0xqGL\n70X897YhOvkkifVt732U0Lee60z1LtiAsDEPwvPvEQSzoCLmJ6F6Qfp5O4sQQl97iyZi47mIZDs3\noduAzSGauNma1yM8O1t3RmYeUQy++E4tHwOdppubgxrjEsTKHi0jPzn3FoqQ1P/kAdI2olGS9J3j\nCwaj/ZRNUtt0ncmN8OHp6oBD/wxUar5/O0RIrX89WnbGcYaJicSNtKwNNpUNOJU2e7uJCxl55xYV\nOv80b0UYt4jFRMNN6/lhX3UJSfkWhPGzc5XZhhcFyZRuh3oVJN8oGTGiy9z7+ZQvGFozIgk3DAOq\njMfW5+LfQ6pArwQDADRrE4hmbQIBAIkbLiIieB6/Ttjxudq+xchnliClu+6emKgLn1VLEVLBCzs6\ndZOr3760dWCWsNDOth82Tk3USC6GBm5z0cBtrsR6Os1UotmStWlZiXWiAkP02YgAmgo+Bkzp4snj\nZM5LY4iVadN8iKlkmGN5MTQxQIWyznYE06NO07bgcwZ5sIKP6dn8W4e2Dapg7uBwjaxRF6lbzkPl\nYzaqQHQ6HXbsCPrX0J28R/KyszF10z46jdy8iycoXKzbw99lhUrWpS+M8++n7SUYFD7WHniXpx5H\n/Oe/JEfz8q2uPmdyvRMMwkQOC0XksFD0brkIPzNz+eV+u+fjde+pWlyZ9pFXLPA4u0vgRxFmoXj4\nRGPiN/2AzSlARaEvRhb7l1ibnMJLsLcQhGrLKbio0Fyifg9ZeYfF2vwuvAlbC/FcK+qAxckjPP/I\nP6qRefWZqFtDxMySjn05iYyiTAzykX/DcSSOe4Ow9/xDLNp9QWK7kzef4+TN57CztsCFZap1/tVV\npCVlU5bELj0Quk38pmdbZ9k+goZAOTvlbq4MkWau9WQ3UjEWJuYoZBWpfR5tmO80dK6hNsEgDI1G\nw93kFNRpzT1Iv3pY/nxTVNFLwcBkstCx3lyw2Vwnsnmro1CnkSCle2kXCwDwKisT/s4ucvVRRiAY\n0U9epffn+w2Utx+H1xlD4FdmI7++jE0vvErvL3Tyz8arjAFy3wTQaRYEv4cSVgbYnHxCm7J2I/Ai\nvZfY2Jm5++BiQ81USR7Sf2+HlyP3VrKw5C1Y7FwZPdTDs6x0DDp1EN/ycvXy1sHb2gsHPh9WSDDw\n6Nm8Jno254rJxLP3sXQvee6EX3mF/FsHGg24vno0GGZ6+TUmE3X6EzTwqKDT/gqK0PHcGhxtMZJS\nWweLxmpejREqRHl1xMbU/9Q+T1+vDmqfQ5SmrnWR+PGE2udJKtqFb+8z0MF+ACoFeavVAVqvPmlf\nPP6McVEb+M97L0yGvaO1FlekO2TkC05Ln/85FlXWLcfYeg3RtXIAIRlRGSvjz8sIFyer9viRL8ik\nXc5+HNJylqGypcDx2NtpAfKKHxEcj81N5TePqF3hBe589CaMU8fzDe5+rMR/5oU4FXVyLmc/Tu75\nZMELy0pYT4U3uPtJsB5JUZz8ymyCg6Vqgil4S8n07L1+iV4IiEUvEtDKrbnKxotsWQuRLbkJJusO\nXwY2m0PajsMBGo5cCQBYMTYCjap5q2wNRvSP1FzpeYaEYXPUf6ptRDaNy9TWiGDQBu4W8h3YKjWX\ndxkcy9mq9nn0SjCMi9qAkVPaoWMv8uzNPAdn30RipJzS4PRcb/M6sbLlt29g+e0bhDJpTs9GM6LS\nRUWXVaiIVYQyspuDAPdTUsch6+PhMJmQ40BSO9Eysn5U5lOknaz1qNufwv/fBJS1scWNPlwnUzLx\nMOrscaxq2V6t66BCdkkOZj3h+hpF3RpCqJtVdSr8bCuSdVOaO+sFYnFkwkHcevaBtN2Y5Yf4r88s\nHQ4nO9WGIDWiXYJPLkJ2cT6edY5VSfjUl5l/oXZ53U/saOjYazi0qqEyou5UvH0k+GxU1y2DXgkG\nYadmMnjCQNMC4XtOAtJ/rQdbxCZak7wbJV/GaEMnsyAPLpbitykrH97A6JoNtbAiI0aIFLNYfLEg\nifMf3mpoNdJxMLPHiqAlpD4MmmLN+C4AgB+/89Eqer3Edq0mcOvihrVFWF3NJVDSN3a8boAov5va\nXgYlrrf9G6m/BTcIF8Kj4WZhR2gjj5AoYn5R1dIMAjcL3U3aZ0Q6rRmRiDs+he/DoE70SjDoCl9+\nzkHG742yGxpRihPvXmL0haNgcTgIKlMWhztG4e73NAw6cwB3e/8FhokJvDYtwrtBk+C3dSkWN26D\nLpUCsOLBdSy9Lzg9+jD4b4lzjLl4HBc/pyKl7xhNvCUjRuSipltZbS+BgLbEgjBOtla4svIvDFm0\nDy8/STZDmbbhJKZtOAlAdlI4fdo8i6LPa5cHX9sy/NeiYgEAylnJl4COFxGJjMy848jMOy6xngrB\nXpIj2egaXT1aaXsJaqN9uaayG+k5mhALAEDXyCwqJLzmLLE/HAk2rurg0ccKOi8WJOVg6H5gD2m5\nrrL92X2kDpoEADjcMQoff2fj3Ke3SOk7Bn5bBe8x5uY5vB04ETE3zgIAxgQFA+AKBWliwXfzYqwI\nbY+UvmPgtWmRGt+JESPimNBo6HdSPCkhAGx+fB8AsKu96p299Zl+cbtRe2gCGo9eLVUsiFJ7aAL+\nu/iItK6EnU9arg/o89oVRVJOhmH+IaTlwvi7LFfxagyDBs41tL0EtdHKLZhy28DoBARGJyDth2ZD\nbCvDvymL8WcdzQT60asbBl6yti3HxqFsBSekfczChAH/ok2tGIK5UoNDK3AzYgzfl0FVJkqPPlZQ\nyTjaorm35BMVQLVRklThD+FoYUl47nBkO7KLCrHmEfE0bW7DlgCAYdXlCwvH4nCMQsGI1ng7bAK8\n1y+B9/olmNeY+zuc+DwFc69fQAGzBDYMBmgyxtAGU1JmIa1A3KRDE1mgpdGkhi/i/+qEOsPI2y7Y\ndR5Vvd0R4O3GL9vxuoHYa9HTeuE2pnRL9K4oCP96/st4pOUR/cTkOe2/9m02Un8LfIRooKOv33X+\n887XweCATTo2lbXvT22HAlYW/7mqYx/UdhnNf96X2hpFLEEoZX2+qejhXUdmGxfrDsguvIz0XPJE\niaUVezPpWbT1GW/r8pTbpsSPR9fFO9Bm3mYAwMROTdCvaW0ZvbTLkEDuoWprRiS/rNT7MGxYchqt\nOwUherYgc2d5T2fsOT8Zy+YcQXjNWXzRsKN5b8SnXML9buPxOVc1SlHfxQIA3PnyGSNqaz7WsqKc\nev8KgMCkqId/IIZXr0vqmyAKnUZtqyXtBkLf4HCAmuOVz/AoKTMxGV9//kb4bNkbxdm9W6Nz/QBl\nliXXfB7O9jgxk3oiJ0k8fPcF/ZfvldomplcrdGlQTaHx3w+fiDnXL2DGFe7t2LTLyfxyXSTq1hDM\nrDoZ/rZ+shsrSeTcXXj5MV1mO1FzI97zvVefMWwxMQJLv38S0bK2Hxb+yXUk522QJZn1iJbvfB2M\nPW+bo1fF8wCAtLwbYvU/i97A0byS2FhkpP4+JVEE7HoTQlhjTvEHwnpkrX33m1AwOYVSRUAX7yMw\npVuKza3r7H53B4ufJKOQVUIop5IRupLzYlRyXgwOWHj/cz7Sc/8Di/1bTSs1om8cmBTFf90sZj2W\nHLkMAIioH4DZPVtra1kSUWcYVVH0RjAc3XMLx+/GkNaNm9UJpw/e4z+HneCaDEUHNsWB9BRUc3LX\nyBq1jbApkiSzJH3Da9MieNo64EqPYZheLxQVtywB8//5N6Rt9s91Hcy/Pfgw+G8se3ANW5/eRz6z\nBDe/fsSuNj3xYfDfhBsGfRYPb79locuC7Rqds8Y46uIkZncyYnYnyyVGROm1ZBeef5a9gQSAz1k5\nqDEuAffjx8KErpjlJdX3N3vPGRy9/Qxbx/SAo40lfuYWyDXPrOBmmBXcTJElagV1iwUqtwlt6lfG\nvCFtpI/j74F7G8dj5cGr2HpKkMzo7L3XCq8ttNwiXPgiWcw1K7cYV75NR0cv6SKTCmwOE83LCT7H\n7RlecvVncgrRyJ38O5MHTyzoE30ub8KDH8oH+aDBBD6OM+DjOINfVpozPRsR58JsblCKZ5+/o1d8\nIg7deoqKbs44NFm3smJH+Y3F9w8CE81Sf8PQJSoYK+Ydw5gZ4gk4EmKJGWOFTZAGVyYPwSoPOQXJ\ncrW3Nq8NUxN3mNDtQKcxlJ6fKryQqT6rlkoNnyoJecyICnILcXDFKWyfI7DBrhTkjdU3/pF7XkkI\nb+ADti/D037j8HbgRIlthKMf+do7EerGBTXCuKBGUufQV4KnrEZeYbFYuWcZB4wIbwgajYZ1p2/g\nffpPlcxXzGSh7kTFvkxrjEvAhpFdUd+fevp6ZearFb1c7vkA+cQQADxITUONcQmIbBKExMsP5Opb\n2uHmU1iBEiZLajsaDbi7QX7BObpLCKr7lMWENcpn8rY0kR5NxsLUGcUs1SUAtDRVLpa7nZl8IkMf\niK/XHYOvbcfxFqO0vRQjBkzcwfPYc5Xr99S0qi9S4rmfPWM2HUVgdAL/Wdu0ZkQiuTiR8Le60BvB\nMGhsK4TXnIWKf7ijXfe6/HIWi42kw/cxe4X6shSn/1otsY4GEwSqOV67LmJpY7nYTt0AACAASURB\nVIE+0yLQZ1oEmCUstLPthzcP3iPcqi9O5+9UyRxemxbB3MQURSymQWzs1YWoWLA2Z+D6wr8IZW1q\nccNLNp62Fr/yCwl18p76k23erS0YuL7gL7HySdtOIPnBK0LZsDUH5JpTnvmuPHuHURuIBwjD1hzA\n+bnD4WxLLTZ/yxjyoAYP4seBTieaus1MTMLR28/4z4YuFixNLFHELoI53VzpsTKycxE+SXYACSsL\nBq6sFP+3lofQIGKeiIT/LmN89yZyj3M3U7qQvJuxDFUdVfeFfScjAWEe4jl2qHLxyyR081V/tllN\n4mZhh9TfmaRhVKmYJBkxIo2OC7byD9dOTh8ED2d7Qv2KwR3ReMZabSyNEpM2/am2sfVGMADA8bsx\naF9nNlb+c4xQLpqfYead05hbN1xlTs/5RQ9Jy2t46mbuA0VuF5TB1MwESYW7EGbRBxw2Bx+fp8Gz\nCnVHI0kYRYJs6k1aSXhuVr0ilg3uKLH9lbgRmL7rNI7fec4vi9t/HtO6UcvUS3byLm3zv7h/Oyzu\n3w5B45eBzRFEM6sxLoGSaJB3vsZVffBo2XjsvfoIcfvP88ubz1xPab4T914gI4d4QhzbqxUiJPgo\nzI0Mw9zIMLlvJADZmZy91y9BVEBNzA1pKffY6qKAVYAhd8g371Scnr9m/UL7KZtktjOh03Fr3VhQ\ndEWiRGhQRVx8wM1rcfjKEzHB8DBrPezMKsDXri2/LMxjPXa8boAGrlOQVfQC6QUpBJ8Aa1N3fv3D\nrA0oZP1QaoMvTJTfTex43QA30uPgYl4VN9MXILQceZAGsrXz+u980whVHSLxMfcCfpd81mvHZgCo\ndewfNHbzw/qGqj8kNKXbgcn+JbuhEYMkMDoBPRvVwNEpA6S2q+Wr/P5G1VjaWODWiQdYPHgdWkXJ\nfxhCBb0SDKamJjKTtwFAP//aKnV6tmJUR34xeUg+I+IMDfrbmDVaQxSVMAnP0sQCj3/6hBMEw96r\njygJhmISkxGqNwUPEsaJbapjdidjdm/JTmTKzNczpAZBMFCZDwCm7RDPai1JLIiuSxHRIItTqa90\nSjAoGwlJllhwsLHEuQT1nJDVq+zJFwyi/2+i/G5i79tWMKNbEzbdrpY1EOaxDpe+ToGVqavYZruQ\n9QNRfjdx7EMf2DE80d3jpErXHOV3E8c/RuFz7lWJG31Ja+fVXf0Wg+fZe1DOqgE6e5OH8dUn7raf\nhuZJ8WoZ28mqNdJz9f9nZISLnZyZpKmaGS0fJPt7VlPw/BWO/NiMwdUnYs4h9QXM0CvBQJWwExth\nbcZAdGBTjHp4CDubK3dFXMn9CFI+eqtmcQbMssuzMa6JdCc7I/qLqGnQ3MgwufqLbqoP33oqdQOv\nqN+CovORcSVuBOW2G0Z2xbA1qg3X6G5tuOEOeZibmeL6mtGyGypJQbEgok4VL1ex+p4Vz5D2c7Ws\nie6+p0nrWByuOWAHL8UOSERFAJkoaO+5Q+Y4ktYOACHusxGC2QrNrYtUO8J9L+owSarkvAiVnI2h\ntg2FADtq0cqo0Gf5buwa21tl46mKH1+z8VeD6cj6yjWjmhWxxOj0zGFz0KaW9M0o7/ZB2ARJWbEA\ncP0UjMimSj3V/ec0ovt0rFdVo/Ptnxwlu5EMVp64htHtxJ3fAeKGkoedlQXlsak6VnuvX0L6mowj\nXfpSnl+bRN0aIvftg7uTLU4sHKKmFYnz4ZvA6b9ZkPGzSl/RlJ+Cz8qleDdatnmvz8qluD34T5Sx\nkh3uW96xjSiHt3U5lY31+MM3lY2lSnp5jcTB9H9h40DNR08Z9EYw9Gi2AOUqOGHzsXFamd+Ebg8W\nW3+y/2mDwrwibS/BiJrYkHxLLeMeuf0UnepRy8/gV1b+iDFLB7bHhC3H+c//nrktUTBMFGqnTgZU\nq4WtT+7LbLe2VUeYqNKIX0eo5V8eGydpPoP1iRsCM7w+rWppfH4jhomDhYVcYsGI5vCwMvyQ+l3G\ntMHT6y9Rv22Q2ufSG8Gw98JkTBm2jVJb/z0LwGSzkRo5DWueXsfIAOqpwSVRzeMJPmT+hex8QWi+\nRx8roKzDNLjaUTdbMGRiu6vHrlRV1NkjiHZV2dEFV798AAC4WFojsyAPALCvbSTquXloZX26zOqT\n1wnPQ1oplgCwf/Pa2HZekDNlVmIyqWC4n5qm0PiitKxBPWfA1efvCc9j24eoZA2ixDZqjthGzTE8\n+QjWt+6kljlUifDtQdQt5W4ERJOsaZLb68eqfEx9MeMxNMjMkQDtREl6MFS5CF5G1AeVLM+B0ar3\nPdMkB1ecQmiPhrIbqgC9EQx0Oh3vXn9DeM1ZEtvwTJKOhA1Cu1PcLzg/e+XiWAvj5bIaeWk3UcIS\nJI/6mh2Hr9nzUc3jGUzo8jnYGBoPzj/R9hKkcreX4IPde8sivB9IjML04mcGfO2cNL0svYSKIzAZ\n3YIDCYJBEifuvlBofFXSpnZltY7/T+NWah1fVSwIJAaaEDU9KmIXSYycJI0qh2bjeYS4mWnPi/9i\nb6hAmIy9tQ/JX56TtqWC6HhG9Jv5j7n+JM86x6LO8Tjcbc81QW5/bpXK53qVlYmwRMFB5Zk+A1HJ\nifsdsfTmNRx4/hRfc3+TmhcFrFuB/JISuFpbIz0vD27WNrg5aDi/vtr6lcgrFoTENpooqZ6yFtT2\nf1ScnXVVWJiamaCyhszB9UYwDGiXgN85BVj070AE1vGR2pYnFrolb8f9zM9Kh1UVpmp57mbn848p\nyMrlObpx8ORzFdL25maVwDApCzMTd9BoFqDRFMs6K4vyjvPUMi4V0j9lIcpvjNbmVxWVHcvgj+3x\neNkvWttLoczINg2x5tQN/jOVcKWi0XxGtpH/dEI0NjVVPF0cKLW79DSV8FyBYj9VUtZRvQ7HLpbq\ntzlVBeUtBXbA1ezF/VZUkZNBGNHN/fL6PVDlkLjTrqLjGdFvElNvY1k9rkmbr20Zfnnq70yVzxV1\nZD9hIy/sezChQSNMaNAIPiuXkvbNLynht621cQ2YbDah/vagP2FlZgYAuPslDWG7tiKpzwCVv4fS\njAnN8P1PmSUssWRtpd7p2dvPDVtPULvOVqVAkISH0wKUc4zB40/+UtsVlbxBUckbta9HFYIhzEI1\nca31NaTq/tdP0N2vuraXIRfDwxoQBAMgXTSQhf4cHtZALWtThqzfeYRnOyvVbkqNKMbkyuRierBP\nf4XG4wmBVuWqYEX9Htj46irin56TeZsgLCB4bascmo2Eet0x/vZ/CHb1xaZGUeh7eQvuZX0kjDfh\nzgGc/PyE0Hfty8sY8QcxdjnZHEa0T10Xb5z8/ASty1VFeDn1Bl5IVtEG/mdhAQLdiPb0PLEAAHXK\nlcerH1kqmcuIfOhKxmZFUZc4IENvBEPsskgM6rAMXz79QLVaXrCyFt9AzFnJjSiy+cVtDKqsmI01\nFR59rKC2sfWdTiPlC7WpLR5Ejob3FvHweaJmSvrA1fkjETJ1DaGMak4AebM8awo3B1t8/SFIoJST\nVyiltf4gnKxNVuI2fSLUtbFC/YQ3+wAw1D8E8U/PUe4nSnj5qggXqtvZZKDY7URG4W/KAuBp51mg\n66nj+cl3XLPBtj66bSoqL5sb9eP7MAzyayTRn0EV2JtTj5ImypaOXfi3D94OjjjSQ/WJ5lSBjal+\n3HRqG10VFq0ZkRoTDXojGADgy6cfAIAn9z9Ibedr56ymFXDw6CO10ImlEX26WXA0t9RLcUCGraU5\nHiaMR83x8tlYKiMWsvMK4GBtKXe/n7kFlNrV8C5LEAyfszQfoYzFZsOErh4TQiPKUeXQbDzpPBMm\nCph4lreiZt72PCIGm15fx/qXV3C7/WS559Em2UUp2l6CWhF2bl5Upyum3z+MRx1nam9BJAw8elAv\n/BLkTW5mpPSiV4KBSpZnABh//QgedFO9HbqhiwV92vAbIUKjAQ/ixyEoepnMtv/0CUf7uuQ+N1Q5\n/eAVeoXUkL/f/ZeU2oXV9KfcVl1cff4eTQN8tboGI+SEuFWECY2Omxnv0KCMdJ82UQ5/fIT5tTtj\n4eNkTK7OTeS39fUNjPijCf59dQ1D/AVhdwf7BWPJE8lJ0XSVG1/7aXsJGqO9R3W099BNU9IPOdnw\nste8/5U82JmqNiTsptQZeJ/3FHOrH1LpuJogMDpB4k3C2qSbWJvENf/dN6EPKpcXT/6oDSZsHI7v\nHzLg5lVGdmMl0SvBQJWc4kL4Jsbxn1Xh02A0QzI8hE2S3g/8G6MuHsWqUN1J+S4Ph289RczuZP6z\nqk2NIpsEIfHyA/7z/P3nFRIMCw5eIDxLysHQPFA1UR8+ZWZTbutgbYnsPMENyKzEJFz6R/Uhk6dd\nTsbk+lx7+V/F0nOX2DEM13dD2CxI0mtJZRuDueanwmJBkpmRaDnvmScWAODW/28QhMWCrHF1GQ6H\nqe0lqJTkL8/gbmmHQEfdCXkt7OzMe/13cGOMqF0P77K5SQLPvXsLUzodzzMzsedpik7eOKj6huFj\nvvYj3CmDcDSkgApu2D2e61C8NukGX0xIExaaZunQ9WJlpd7pWR404fRsRL/x3rIIvfwDMblOUwQl\nrgQALGvSHssfXsfYmsrn7dA0wmJhVDvVr39yl1CCYFAVcyJby270f9gcjtz25H0TdhOepUVbiunZ\nEuM3H+M/Z6vBb6KlV0UkPk9B4nOuyUjglpVS2xuKj4MRI8qw9OlZRPrWRaCjB6oejsXpVmPgaa3e\nENhkm3vhMmmb/+Y7NovVf/olMKuUNbYmsTRR3E+DDDaHpdLxtIGwMCDD1V53zLiMTs8qoO7B5aAB\nuN1F+WQ9aT9jZbYxodvB3z0ZDFPZiUKM6AYLGoUTnk3pdKx8pH+CQdTBeWir+hqZd/uFe+jXrLZG\n5gKAoPHL5L45Ed30H58xUGJbsluNYiYLDFNqofkKiktktvk3PIL/2mf9ErwzUEGQVXATqTnbkFV4\nGzTQ4WrVBBUdhsKOob7cFq9+rsSXvJMoYeXAzrwqarj8AwtTN4XH+5J7Au9/JSKn6DEsTN1R1joM\nlZ1Us6n7WfgA73/tREbBVXA4TNiZB6CsdRi87ZR1jOUg6b36An5oCxaHjW/5v2Q31CGGnziC9e24\niRkz8/Nx7ZN030ttIcvpeebjCKn1hoQlwwzbx/SU2W5gszoaWA11fnzLRv8/xiEg2B8LTqnvwNwg\nBYNvYhz/lkH4taJk5x2WWGdn2Qo+ZTYrNb4R3aGhu2H7qShDUuwQhMUKknYtPXJZLsFQ/2/pp+my\n5pMXeecjo+7EFZRFSoO/5UscFeppeP4RZz40Qglb3EH9a14SvuYlSe0rLZoPL+IPANR2Ww43qxak\ndTyyCm7i/CdBG3kiBZGNV8D8gtScLUjN2SL3eDx+Fb/A1bRupHU/C+/jZ+F9PMuaDwDwcxgBP0fZ\nyfDSco/iedYiFLMlm96RvR9RdD2S0s7GA9E8KQHb3nJtyMPPrCBtp41Mz2S8Gz0BPiuXEsyWLkQN\n0uKKJMMwMZPdqJQwrFV9dF+yk2Bu1HDqalyZRzRNvfX6E/o0CdL08khZPHgdrh+9i72f1uLpjVdq\njZpkkIJhVwtBEovtzXurYEQOaWkNz08qGFt3uXroNg4sP4Xnt1+Dwyb/GUhC1x2oTWg0BCWuxM4w\nbgKg6TeSsevFQ4OInEQleZsiuDuIJzKjOlfQ+GVgc4i/Q7L6uTvYwq+sC15/FSRkojrf/uspKCwm\n2nFT6RfdsQnij14mlCU9eImwoD+k9ms4Wf4ss32qyu8DoqtwwMapd4Eamev9r0S4WbXAr+KXuJrW\nVWb7MpYhlMa9/W0oMgtuyG4I+UKWZhXcwq1vgymNy+N19lq8zl4rc/xHGaXD/Nbd0p4vBjRlkqQs\nuuivQIY5nSGzjTwOzPp8IzG4RV1k/srjmyJdmvMnHG0sUXfySpyeMVgnsz2f2XGZLxDqhtXAwDmy\nb0gUxSAFw4Qbx9DQzQtMNhuXv6aik3c1cMDB7DqK5QgoYzcEX7PFY/YbKqNDZuLV3VTZDfWYtwMm\nocqOBLQ7ug0AsOvFQ9ztJftETxfp0qAaDt4kbiyo5mFYNawzGlelHmWGLBJTjXEJODdnGFzsyKNt\n1J24QkwsSDMNEmb/5Cix90JlvmIm0Y7WzoqanW7/5rXFBMPf205ifdItHJxCHnkmYsF25BfJNkcS\npaVXRbn76CqiYqGWazzcrQX+KRwOC6feEwVSoMtceNh2BiCfX0pWwS1wwBYTCzSaCWzNKuFXMTG6\nVl33dTLHZHOKSMWCr/1AlLEMQR7zA95kr0ch8zuh/mnWPwhwni51bGdLchNBZ4u68LLrAxO6Od7l\nbCed/0paFzQuf1Di2K5WTcTK0vMvy2yjzwQ5GQOQqBJTFWdDpoEGjoRDVn1gckQoJkeEEsruLBwN\nAFg7LAJTd53GmRjdzR6/Z9ER9J7SSS1j0zgcnfyH1blFkUVJMsQbhtKe7VmUTldHqW3sIyHyn0pL\n4sS9F5i245TC/X3cnHB4KvVsvVQFCRn9mtXGhE7ybWL0Zb59k/qix+KdhDJV3vbo4u/jqXeB4IDN\nf6ZqWiSrrbR+PEzp1mjtdYvSGJLh4OQ7QVhOhokTWnpeltj60++DeJw5i/9c3SUWFWzJTY14FLLS\ncTWtK1p6XpG5GkV/RqrqD6j392yATwQiyreQ3dAIH3X+e/T37owuHi1VNt7Gt1PxMf8F5VsJXfxM\nUxWaem9hFn34ViCn8nfAhNzvTukMlAZ5wyAcUhUwRk2iyrXDd0jLKwV5w8pG/iRdRjTHxmTlNk3v\nvv/A04/fEeBJzUn0+oK/EDxltdzzbB/XCzW8y8rd79Gy8Qpt4l3srOUWC4rOp4gwYHE4qLhhqVh5\nVEBNzA1R3Ze4OhEWC7JoVG4vrn0RXJmzOEUwoSkWOtbKzBOhHicV6iuMsFgAIFUsAEAF2y4EwfA4\nU7ZgsDBxpSQWAMCUbgMmO5dSWyNGlIWm4kzmQyvOV+l4RmSjqQNagxQMR8IHorqT/JsSadTw/CR2\ny8DhFINGk23/py/M6UU0NTGUWwIyAnYuQ15JMWmdPvkxDFixDw9S01QyVmR8IuVNr7UFA4+WjUen\nuK14n/6TUp/rC/6CtYXi/1+0MR9V0aDoLQJPLAwOrI0mHt5I+/0L825cxI6nD3Hg5VM8G6x8lDdN\nUtlJetQne3Ni3o3HmbNQs8xCheZShVgQpYKtbJ8IAKjqPJXvoAwAxexsMOiqSdDV2usmJUdlI0aM\nqB5pfgq6knsBACa1nofFyTM0OqdBCoZOp7cQnlV1wyAqGlI+VYQlozr83VX/xaVtDFksAEBeSbFe\nCQMyRDezDxPGQ97DItExms1YjwvzhlPuf2TaAP7rHRfv4dDNp3iX/gPlnezRp2kQejeuKd+C5Jjv\n0tNULD92FZ8ys+HmYIumAb4Y0qoeHFV4G8YTAkwWG+M2HUXK+6+wMjdD0wBfjOvYGJYM8QgjVMWD\n9/olmNe4JfpWJf6MIv/vDO29fgmS379Ba2/VJLHTBOVt2svV/lteMqCAYAj3vid3HzJEN+bVXWZT\n6udt14cgGM5+CNH5SENGjBiRTv+VewHoljCQxKOLzwBArVGRRDFIwdDHrxbm1g2X3VABanh+Qn7R\nfbz+znUqKSh+jEcfK8DJujsqOMerZU5N03tKZ20vwYgMYvecITzvmdhHbrEAiJ+i/8jNV3hNUaG1\nERWq3rwMrU9sQHZxAW50HoOmAb5oGsANTeq7Ow7HIwbiyY9vqL93Obr6BGJ+vbZi/UddO4Qzn19h\nVaMItPLwJ9T57o5Dau9puJfxGYMu7UVDNy+sa8w1NTE1oWPVsM4Yc+0wjn98hlcl6dh44CYAILX3\nNPjujsPcOuHo41eLdExJiIoFUaZcStIrwZBf8hnmJi6U25speCpPV9CMyYgRI8pBNQqSPJGVdIXX\nX7PQoU4VbS+DMq0Z3IigEWWITtiHMhQPRy4NgxQM6hILPKzMa4ndNvzI+w8/8v5T67zSUKUD9oDY\n7ioby4h6OCQSFamKh6uWVqIZhl3+D2fTXvM33xV3c/2U3gptxn13x+F026F41XMK+l3YLbZZF36O\nT7mE4Vf2i23mfXfH4WKHEXjUbQLuZnwSq0vtPQ0rGnXGw6wv6JK8ld//dNuhCD+5kSAYah8kmvgp\ngoetvdJjaJJ76aOl2uqL+jsEUjzR1xSaNgXKKryNX8UvkVv8GoXMDBSyviO/xPCCaegbVQ4Rfy+f\nR8RoaSW6R1NXcX+d3yU/8Sj7IlgcFgb4xKKijX6GjD4XOxT1p6zCP5Hq3UOqAt6tQmtGpNoEgigG\nKRjUQTHzEz5mjUVeEbljsCHBYrIkedkbDEMC6sJ7CzdUroslMTynvoVXbVXDT9tLUDvCYgHgCgXf\n3cTgBlUd3eBvXwYAsL1Zb0K9qHiIDmyKVU+vic3zqucUmNLpAIA6ZSSHb6zpXI7wzJtXmJ9F+bjR\neYzEMWwZ5qi5dRUeDhCPpPE4gxu+82DnSLE6XaaYJd2/RDT8ahkDC/kpi5c/l+Fttma+3I0oDk8g\niAoHI0BLN/JIihEe3M+xmY8jMLHyBtibiX8m6jqWDDOsHNwJgdEJGBHWEBVciAc27Wvrz+2DOjAK\nBoo8/xKs7SVojHmRKxCzT/dt+JRhRr1mmFGvmbaXoRIcbay0vQSNICoQRFkbIt1hVVZ/AHyxIItv\nBb/FylY1ikDkuV1IbNEHMXe5WY3dLG0kjvF44Gh4r18C7/VLSOuPd42ivB5t0tbnCeFk/uS7agj3\nfgA6jejfceFTK8JzLVfDMOGkQvKHBsbIR0ZKBd7WAVjyYphemiQJOzyvTRLPi6KLgkFT/guAgQkG\n38Q4pEZOM4ZVVRBTMxMwS1i4fvSu2udq4zsRp1LJN0qaHMMQ2HftEaZ3b65Q3w7ziAECmlfX3WRi\n0nwBAMDCVNwBWZ7+smjt4U8QHc97EJ3m23pWwahr3C/JHa/vYUmDDjLHfD98ImZePYsdTx+KlesT\nweV24/qX3vzn0++DZPYRTuymC9iY+SLAZabKx5Vk5lTbbQXcrMj/35bGKEmDru3Au9+ZON7yL1ib\nkkc3G3f7P9zP+ojYmu3RvCx59vX5j5OQmHob/Ss2wMRqrUjbAECTU0thQqPjQrhyh2Pjbv+Hc19f\nYHm9HhLXVJqwM3PW9hIURh+cnUUZHxqLhIuxGpnLoAQDTxgYBYJinPi9nZ+4Lcyij8oiJfWuGwtT\nMxPsuM79Ml4wlpvYSnjDf+fic8wftRO9R7dE9+Hck/9fP/Mwb+R2mJrSEbeDG7mnpJiJnrVisO/B\nHKXXJRpa9VbPkXCzknwirMtM33Ua//SRz+6SLGRowuCOqlqSypl557TC/kmVHVyV6g8AyZ9fURId\nh99z/Uu6+FSX0ZLL3JCWepNzQRIO5tXFbhok0cLzEsxNdG9TkVuSCmeLuiodk8xEyxhNSUCVQ7Ph\nb+eKV7/Skdx6DM58eY46x+ZjfcNINHEXmFr2vrQJD398xugqoYit2R4hJ5eAxWETfAuG30jE5W+v\n0ci1Iu60n4o/b+xClUOzCW2E53vQcToSU2+jyqHZYvNRgc3hIODwHIyuEor4ut0QeGSe2JpKIynZ\n0vOYGFEtT6+/0thcBiUYjChPUuEulYqGzgFTcfgpMZHLlOV9cenYQ8LtQFAjfxx88g/+DFvCFww9\na8fgVOoS5PzIxaSeq7F471/oWHkKTqUuwem9yiUqC9i5DCw2G4fa94W3nSMmXz2N+nvX6E2o1UkR\nTbH40CX+8/E7z/Eh/Sd2ju8tpRfA4QA9l+zEy7QMsbpNo3TX2f15j79RZd8inE17hRbl/bD37SOw\nOGzKtwYn2wyB7+447HpzH918A3En4xM+/P4p960D74bBhEZHW8/KWB5MjCi2vVlv9L+wGx28Asi6\nGzQ5RU8Jz47mNfCzKAUMuj087XrC33G0llamPc5+bEx4NooFcV79Sudvsgf5BcPR3ArDbyQSNt4P\nf3zGnqaDUcPJAwDwpPNMVDk0G2n52ShvxY20dfnba/Twro3ZQdzQvltD+qPKodliokF0vsVPzojN\nR4WAw9xDq5GVm0pckyFCJUrSIN+5GliJZgmMTtDJGwgzc+k366rEKBhKEZNazZNab+1gBa8q5TFp\n059YPHgdAPDFAwB4VfWAvbMtpbkWn+EmFNl7dw7a+E7Ev+enoLy35HCLv37mYdbgTfj45ju/rPuf\nXOFg72SDJ3feAQBadKkDAAjvWR/LpyoelUo0D8OGFhEoZDEx+9Y5xNRvofC4mqJv01oEwQAAjz98\nUygbMo86lTyUXZbaMDcxRWrvaehzfhf2vn2InhVrYl7dNnKNkdp7GpY/uYLNL26jiqMb9rSIotw3\nozAPABDhXQ02ZuYoYJXg0LvHOPbhGUF0hLj7gANgeXAnudZmCAhncDZujI0oSoRnTUy7d0SsnCcW\nhPnr5h4cbv4n/5knFnhMCGiJpU/PSp1vXq2OmHH/qEJr3RLST+aaShsjKi1BOUvdNW01NDqPCkNr\nRiSs7Cz5WbtLdVjVegMEznGnlg+Hs721lNbqQZVhS7VFypXnMtvcOCY5IdKHZ5/lntPc0oySn8H2\n+NNYdWw8pkWt55dZWonHWr9y8hEmLukl9zqoYGFiiiOpz/VCMADcHAotYzYiI0c5Z0pFsxRrg13N\nySN0kN0UkJWNrdYYY6s1FiuX1J5H/UPLxeoX1W8v5kh9P1P+/yOGgLApUrMKyVpciXzUd/8Xt74J\nYphf+9IDjcrt0+KKuA7SymBKt9ErB+sAh7KU2pFFLHqZ852kpYDB/o3EBIPofF29ghQWDAOvbpd7\nTfqOPjozSyMwOgFta1XGgr5tpGZ51lWGzo/E0PmaiaanF4Lh9tZoAEThoI8kJF7E+MhQbS9Do7Tx\nFThvCgsHa1sLgg9D0r7bOHfwHlYcHSd1vLIVnNHGdyKq1vZW+VqnXU/G3QbCPgAAIABJREFUuub6\nlbTu7OyheP01E90W7pC7796JfVDZwPM3qJL7mWmo5VKe/xx8eCVcLIiHF93ObEdMbd1y5tU05ib6\nE07R2ZK4Oc8peqallQhQdrPvbFEX3/MvqGg16ie7uIBSO0V8A/KZxWJlovMVskrkHpfH3Q5TJTpo\nG9Ef/iinP59Z2kQvBIOhsDv5vlYFg6qcmOVB0u3C/kfzZLbrPaqlWP26JNVEj3k/8G9+HgYe5azt\nEBesf5s9v7IuenVLoI+k9p6GPW8fYsSV/WBy2GhZ3h/XOwts8lueWI+veb/wtvc0KJBw26A4/T4I\n7tYt8YfjOFibeWt7OTIhCwvb3PM8LExki+mnWfPwNfc0WnpdJa2n08zB5hRRXosqoiPVdltJGOfy\n5w5o4nFM6XHVRVp+ttrGHnJN/CBFdL6p9w4rPH7Pi//ieMuRCvfXB2Y+jsAg37nwsTbMyF2ifglH\npwyAt6ujWDtdvX14cvUFoptz/WmSixPRmhGptlCrBiMYGgxKAJvNAQD0b1cPf3UPAQDsPfMAS3dd\n4N9S8Kg3IJ5QtvX4bazZL/jQF20vi4ev0jAsbi//2d3ZFkeXDuXPJTyvpDmE6y6uGw0rCzNC3Yiu\njZDy+guupXDt+Su4OeLAwoE4fOkx4rackfkejRDRFwdnVRB+YQ5ySvJxo/UCbS9Fb+lVsSZ6VaxJ\nWne23XANr0a3CCm/H1fTBBlgv+Wdxbc86bbj5iZl0MJTN07Ca7kuw/10we3m+Y/ccKcBzjPgZScw\ngfxReBfvf+3Ct7wz/DIGXbKDa5j3HUKyupPvqqFx+YOwZfgT2t359icyCshFh7LklrzDqfc10Mb7\nkVhdPjMNX3KPo5KDdn9/OQBfaIeeJrckEHVeJiPg8Bw87TyL//zwx2fYMyylznc6TbFbJUsTM7z9\nLR48whARFgszH0cYnFkSj6ldmpGKBV0muvkcvlAAgNAeDdU2l0EIhnoD4rF/wUB4unP/oVuMXA2f\nck5o26gqerYKwtJdxC+lh6/SxPqXcbQhbK7l3WwPi9srsb2wSZWkNqJ19QbEI3ZoONo2qsovW3vg\nGmn/zk2rI27LGULZhXuvUcHNcCM1lEaSvj5AWFnZ8e3JON1sluxGRvjM7ZmAmXuNtzZUsWNURjXn\nmXiSRT06ShErAyffVUOj8vtgz6gqu4MacbduiXruG3H721BC+dOseXiaJT1YhDRoEE+8dyWti9Q+\nbX2e4EnmHHz8rbgvheitCYfDknp7oU3B0NEzEFVF/BNEhcHziBh+xCNJ7Z5HxKCqSJuOnoFYWJsY\n1UfWfD+L8xF8YjGhnjfm9XaT4MjgJsq833EaZtw/KnVNRvSL3iHkB0KA/uRooOKrqigGIRgA8MUC\nAJxb8xfqDYjnb7arVSyLk9efoW0w93lY3F5U9CBG7DmRMEzpNbDZHNDp8hskrNx3RaysRV1/xG48\nTRAM0ogMr42luy5gQh9uZKHJK48ZbxcUwHvLIp28eYh9vBdJXx8g9jH3Fot3U9AweQomVumE5S+P\n43LLfwAA0x7tRFyNvvx6SbcK4Rfm8IVEMZsJBl3+j4OCrz7815Zl38ndX2cp7XZFcvD8xyK8yxF3\n/qTKtbQeOhFVycWyIeVcEsKEeByUWt/W5wnOfAhGCfuXzLF4P4dqLrOUEgwAUNd9He580/1oPW9/\nZVDaZFNp84xCG1nzOTKsKG/659XqiHm1dDd3jarILsmAg5nRzl8X6TC8JQZW5e71bhy/hx9f1Wfi\nZzCCQRqbZ/bmCohgweZ79zxiODRlHapvb41G/YHx4HAAKwszXFxHPeZ4YpJ4ZKJerWvh3B3qCTnG\n9WqKegPiMaFPM5QwWZT7GdEPYqv3RNLXB6Sb/64VGqJrBfmvIXOZhfzXTc/OUIm5UmuzXpi4aQSW\nDF4LFw8nJL5bg7ycfBQVFMPJ3QGtzXohuWQP4oetR5/pXeHm5YLMtB/YMmsvJm0awR8juWQPYUze\nM+91V7ch2P9tI2g0GnIyfsG+jJ3E9SSX7BH7+9nNV6jawB8fnn/GksHrsPL6PLSx7INTBVw/nysH\nuHk+igtLwCphwtLWUmxdRoCT76qDa+DBPU1v45MiR19hv4HqaOvzWGJbTQoKwVwcvM5ei0+/9qOQ\nlQEG3R5u1s3hadsD9ubyiYpWXtcBAIWsdDzLikN6/iWY0qzhbhOGPxzHwYwuHq5a2fdcxjKEP8an\n3wfxOnsNipjpsDB1g7NFPZS36SDm9G3ECBlLXxAPVKnkYjBUsyVdY/TKQYRndfkvAKVEMPBgstgw\nNRG/Igbk91kg49YWgemRPCZNdSpXwK2nHwhl918oFsb10v23mLL6GKwtjZEbRPHesghuVja41XOk\nmMNzaeRqqzh0v7oY/4VMgq2ZuJ2vItRvVwut+zXFtcO3YWrG/XgZEjgBuz+sBQB4+HFDGkZvGM7f\ngEd6j5S5EW9tRgylu+b2fIQxeuNk/i6JYkEaletWwrR285Fy+RmKC7lRUlhCQrtao8oAgEEB45H+\nMVPu8UsD2UUp4IkFAHKJBXE4sptoHBr8HEbCz0F1Tq0WJq6o5bqMUtuwoBgkPRAPJaoIFWy7oIKt\ndFMoI0bImFv9EGKfdAeLw9T2UtROxq9ctIjdyDc/qjVpOZgsNgDg9oLRsGCUqi2zGAb57ncn34eH\nK9F+39qSgZZ/rYZPOWdS86MF285iSv+WYuWKcHnDGDQZtoJy+5WTuordcKw9cE3sPchieJdgTFrB\nTXhzYe0oufqWBs5EDIafgzP/mcz0yBCEhPDNgSw+52ehw6U4JDdTjd0t4/9ZJ3liAQBoQmZ6HI78\nG8OyPq7Y9or4/8nNqwySS/Zg2Z8bcXLTOblP/sMtIgm3FqKYMkwAAGwW23irIIHrX5SL/W1vXg05\nRdo3RTJixIh0YqsJkqQastPz9MQk0ITMUZksNlLix4PN4aDmhGU66cdw9fAdzOkhiOBkamaCk3ny\nh1mngl4IhnbjNiAjmxubus3Y9WCYmaKShwu2xnC/sE4sGya24RY93b+wdhTqDYjH09RvKONoI9a2\n3oB4HLyQIlZOFdH5t8eKJ5iKjgyVGCVJ9D2UK2OPg4uIV02yGNyxAdYfvC5XH3VTfYLgF/nxUu3+\nZxMWC43LeWtvIQpypnkMGiZPAQCp5kN3s96iYfIUmNAEt2mdL8/H98IcAEBZS0ccbDyZP05w8lQ1\nrhpIfLcGPcoPw9QdY5D25hu/PLlkD2Z2Wki6IS/MK4KFNTdxX0baD0wJ/wct+zbBooGr+aZF49cP\ng7uv4nkkvn/IRFQlgbDuHt0eB5adgJm5GbK+/OSu/f0atDbrhak7RmPzjD3Y8WalwvMZMoqYthQx\n09WwEuUJrx0LDlsgbIVP+cOCYlC/iT+atq6GRTMOkra5d+Mtpo3cTloHAEf33MLqhSf5zyEtqmLm\nEkGW7LCgGNLXouMI163bNxI+fm7U3qAOoUkH4W7NF+L5eaNDshHJPEj9gg51uKbrWy/cRXjQHwAA\nOk13ndrm9EggmCFtnKo+kySaIid+GkAnF6UPhAxZjoOLBsHVSdwmVhvokmCgwp5XKejlLwiD2Omq\n+m5qjoSsUtvY8sDisAniQh4M1ulZR9Gl30dhHwRrM2809TiucH9As34KkuBtwneeikYZd3vs2nAR\nfYaFEuppdBpMTOg4emMG2Cw2hnZdha3HxhHarE78E5WqlMXVc88wd+JewmY/vFYs9p6bBHtHa1w4\nlYIF0w6Qmh5JM0kKC4pBcLPKiInvDTabjTa1Z2Pt3hHw9XdXyc9Bnb9nA3wiEFG+hdrG1wYnDtxF\nu6511Da+Lv17qPqGQZc+0/7ecRLnUt7g3uIxCIxOINwoiD5TQRPvTTTvwuDqE7HpMWn+K6VVj2K7\nBCM6SzGTpTNiQR8RFguGTsPkKWI3EUaMKEJeyXu52j/JnEN4lpT4TJOcOsgNPpH0YDbKuNsDAEEs\n8OCwOThxexZMTOgwY5iKiYWkB7NRqQrXVyekBfe0ctKQLfw2p+/Hwt6RmyG8WRv5P2/OHHuIsh6O\niInvDQCg0+lo1aEmRvRcK/dY+k5YnVik3H+Pm5dfoiCfmyBvdL8NKC5molfrJWJteWxfzw21/vCO\n4JCjU+M4ZP/II7Q7c/whMtN/Yf60/fwxju+/g7SPWdi65pya3pVuY6jmSACwKKotSlgsnU3SJonW\njEj+n08vvxCeVYlemCQZkc7iHefh6e6IpbsuIOgPD20vR29ofWgzXmWLO7TqYlhVdWBM4mZEGYLL\n7cb1L735z5KSgwlTzPqJsx8bi5VLS36mKXZuuKiScYRNhXik3HvPf81kstCu7hyxNlTZtuY8Mr7l\nkM5TGgms5Q0A6B2+FLtPT8CrZ1/AYJhiT/JEiX2SjjxAv+HNULOu4Ia0c6/6cHCyxpip7fllrdpz\n4/JfTH6CqXHcxITtu9UFAOzefAUDRhrWTYkRyfkWdNF/AVBvVCRRjILBAJgUxc1K2rOVYkm9SiPe\nWxbhv7aRqOtmFFhksAqTUPxTcgx3ec2PJJkuCZcrMo+s/vxx3J8ANGuZ4/DmIxtXWp2F6w3QTCSb\ngzDzE1GSM13mOk1tRsLMdpLMdrqAg3l1eNr24OcLkJUcTBK6YIoEAFb/95lRFmmRjfZtuYpNK86I\n+UXIg7WNOaq0CsD0RT0UXqMh4utP3Ydj18loMJksmJqa8Mtc/3+rpAhsdumxot77cQl6ekoWY0YM\nF6MtgpFSi1EskFOY0UyqWACob9SVGYNmUk5iHYfzW641FHyjvpGVNi6H+Ya0vDBdch6Mgq8+lMQC\nADBz16DgayVKbXWBai6zFL4dcLKoozNiAQDB8VhRaHQaVsZJ9uXYtua80nPMXdkXl888VXocQyGs\nTizC6sTinxXcZJX7zkzil/EYFbUBADBjzC5+WbsGcxFWJxZvXnyVObYsVi08QamdIfAk55q2l2BE\nSxhvGIwYMcKHXXwbHOZ7QQHNHJbuLwhtCtNDwGGlKSUahPuauxwF3aw6/7k4exJYBfth4Sr5i4lG\nI/rpmDvvBp1BjNTDzF2Lkt+CMLkFX30o31gIbhP8ADAJdWa2E2Fq85fY+yjOngSGw2KxMc3LnEZR\nRjgAgG4WAHMX8Q0l8WfJ+v8fE7F2ugjP/yC3+A1ufhuIYtZPiW2rucyCp61unox7+pRBcLPK/BP/\nchWc8OXTD7lyIZy+F4uwoBgc/+8OfP3d8el9JkqKmfwx/rs4GREhcVg+7xjsHaywe9NlWNtYSBwv\nLCgGLdvXRMrdd9hxihtVj3cSHhYUA1d3e3AAZHzLQURkA/w5qY2C715/SbobS3i2d7QWK1u1gxhK\nPaxOLL8N7zXPaVnYeVl0HOFnSa+NGCaKOD0bGkbBYKRUYm3GQD6zBFamZtpeik5RlEU8ZRUVCwBg\n4XoVhd/rg8NWLCwmdxMOmFh2AsNBPIkVw2ExQLLxFkXW5t/UZgRMbUYQN+OcQoAmeYPGHfeN0OvX\nYsKIJxYAgEZ35f8cWAX7SddNN/0DZvYLYGol+QTbsuw7wjwF36rD0v2Z1HXqGjaMSmjpeUXby1CK\nmPje+Jb2E7Hjd+Pbl2y0VSDyTdKD2Ug6fB8r55+AezkHrNk7gl9nZW2O47dmomvTBXAv74ikB7Nx\n9zr5rVXSg9mYNXYX7lx9hbCIWmJ1WRm/MSpyPUpKmFiwrj+C6vvKvdbSyn/n/ka7hnPhUsbOuNk3\nYoQipUIwjNt6DOcek38o92taG5M6NpFrvJ+5BQj7ZxMKiksI5S2qV8KyAR0ojcELN5qyZDw/UYi0\nEKTBM9bgd0GRxHpZjNh4CFdfvBcrvzJnBByspW+gJJF49SHmH7pAKHO2tcLF2OGUx1Am7Gr3+J14\nkZYBAKhS3hX7osVzXwgjmpSt6g7ySAilxelZFFYR0VxC2obcwu2WEjcMTNAZtUjFgropzpkGhkO8\njFbUT/bNHBai+MdAme2kiQUeBNHAKaC8BiOqxb28I9btI8/uTPW2IaxzLYR1rkVaZ8YwxdEbM/jP\ndYIlm6DNWS75M825jC12nyndtuSKbvbt7K1w4sZM1S6mFFHEzoc53Urby1AJgdEJaFurMhb0baN3\n0ZE0jcEKhs9ZOWgTt1lmu+2X7mH7pXtYP6wLgv/wkto2+dErTNh+QmL9ucdv+Btgqpvfoev2Y0RY\nQwxYvY9QXn1CAvZF90GV8q6ETbVwPZU5yPoK03gWNxRfFQ9X7BsvfcPN4+qL9xixkTy0WtbvfLl/\nBjyO3n2Gjv9PmkIFnlgAIFMsAKVXCFCl+Mdg/muaSQWZ7RkOK1CcPUahucydDyjUTxFoJu7gsLgJ\n41iFpwHIEgySETU5MjEPVWJlRowYkcWvont4mTEBhcwvsDD1gK/TFDhbtdb2skotc6sfwszHEbA3\nK4OJlTdoezlKc2BSFPzKuvCfY3u2Qpf64j5vRjFhoIKBzeFQEgvCyBILYzYfxYWnbymPR3VDf+vN\nJ9x684m0rkf8LtTyKS+xb8+EROwdLznOriyxIMzzz+m4+DQVoQHSr7VTPnyVKBZEid4mO5GTq70N\n0nO4Wbyn706iLBgO3zY6/akTc+e9MtuYWHYAFBQMmoRu6g/W/wWDsif3dHNjGEUjRjTFlffE25dC\n5kc8Sx+Jik6zUM6un5ZWReR77gG8ypwsVt7Ym9yqQd+Z+TgCAJBTksF/TYa+5GsQFgsApO65SjsG\nJxh+5hWgyax1hLKT0waigjN5JI/cwmKsPCXd6/9nbgFBLHSoXQVxkeGkbYU36VRFg6u9Dc7NGgoA\nSM/JRYs5G/l199+lYWKHJugfWhsA0GnRNqR+/wEAePb5u8QxRcWCpHUsPHwRO688AACM3nwE83q1\nRqe6ARLH7bNiD6Vxq09IwJmU1xLH4XFu1lC5hA2PmXuT+a/7NSG/+peG95ZF/BsHDgCf/5srGW8h\nuNBMyqpxdPUFZ2OXPAGr8Cw4rI///5MODotckJNBozsqVU8VDjsd7MILYJc8Aof1HWzWR4Al+f+z\nEd2niMXEoMOH8PDbVzSo4IlNHTtLbDvt3Bnsf/YU/WsGYXrjplLHDd26CbnFxUjq2x/OVuRmIPMu\nX8T+Z0/hYmWF0fUaoFPlKhLXGLxpI2zMGIhr0QqNPD2pv0ENIywWhDff+SVvYWVWURtLIsXNpivc\nbLryn0VFjqGhL0JAEfTRqVk00/N/8cfRPbq9lB6KY3BhVUXFwuOl4yWKBQCwsWBgakQz6WPGCMaM\nDKkpUSzw5hNm8dHLUscGwBcLAFc8iMITCwBw5O/+MscT3kyTrUmYyZ1DEVLZm/88Y0+yxLabz9+h\nPK485kgWDIFuPXBLdphFJotNeJ7USfoXrix8tizCw8gxaOVZCde/flBqLCOyoZmqbpPCYX1AwVcf\n/p+izA5g5i4Hq+AQ2MX35BIL3MXZqWxtohSmN+Svs/B7fRTnTAEzfzdYRefBYb4Bh/NbbXMbUS83\nP39ClVUrcOPzJxQwmbjwLhW+y8lN33yXx2PPk8dgstnYdP8eaTvf5fH4XVQE3+Xx+JiTgx8FBai7\ncR267dtN2nbzg/v4VVSE1J8/MT7pFOmY1dasRJVVK/CzoACffuUg6tB+NNq8UaydriF6Uq9LYsFI\n6UFfxMTGKepL5GZwNwzCPFw8VukxlhwjbvhliQsA2DaqB/qv4vokbL90T26namHodJrcfYTNdahs\n3NcOjaB0yp9w4ir/9f1FqjNFuTN/NH/+2H1n0JXEflCYoL+X8197lVHuxPfKl/cAAAdzC2xs0QWV\nt8fjRb9opcY0IgvVnFNIc7qm0R1BM6sKmokH2IVnwGH/oDYoTfWhTLl5FVgSak1BN60ImtkfoJl4\ngJm7RuXzG1E/kQf+w8UBg+BpLz0nhe/yeDBMTPBilOC7ad7li/BdHo/UscTPnRrrVhPK6mxYi/tf\niTkD6m3kHmaJ9hXlW24u8ktKxNr5Lo9H34P7sbNLN6n9jRgxoh+oM/OzQd0wiJ6Am9CVf3vbLt6T\nu4+oDdyRO4rb28vjBKwMdJpAmNxPTZPZ3sxE9sZqXLsQhdby9BN104zjUwYoNAePqKR9WBXakf9s\nbcZQajwjmkFULJg774Vl2Xf8PxZu92HutBMM+wWAgonFVAHX2ZooFoTXaVn2NczLnAbDYbneZHg2\nQs7Qo0cotRMWCwAwo0koabuGHsTAAxs6dBJrU9mlDKU5gzdtgKc9eSbj658+UhrDiBFDJ+t3Pq6R\nRJM0wsWgbhiET8Dn9QpT+fhUowiJMmNPslS/AGmEVpUvtvbdt5/5r01NqAumzvUCcPD/5kDzDp7H\nwYlRhHqen4M8DG5eF8uE/k2kMSo8GKtOXwcA9FqWKPFmpKiEKfc6yBgUUAfeWxbBx84J7X0qAwA2\nPrmDfW17q2R8I2qEk0d4lJWPQbS9JhHOAG3h9hA0OvmmzYh+kzo2Gr7L4/mmQCkjRsGGQX74IMlU\nSZS/GzUmPNtbiIe/3h7RFaFbN/HHnB3aHFE1apKO9zEnh/Lc2uDKez9wPcpEy8V9AiQ7FLNx5b2/\nWGk5u/6o6CQrjCp5XxrNDCFez2X0LV0sfTEM2SWCKIU8vwYOOJj1uAtmBeyBGd1cW8tTmE4LtiG3\nqAgPl4zT9lIoo84bBVEMSjAI06mu6k/mq3i4Um5byd0Zb75lKT2ni621XO33XH/Ef81ksRVyKP6Q\nIZ6pVVIeC1UxvFV9vmAAgNzCIthYiH/g1Ju2iv/a2lzx24BZ9ZpjVr3mhLKh1eoqPJ6hwS66Arp5\nY9kNtUDRzz/5r00sZec94eiIM7FRLBg2qWOjsftJCqafO4vAtatQyckJyVEDxNpt6dyF0ng2FD/f\nLg4YjPySElRbsxIxF88j5uJ5XOg/CF4OxJu14bXrokEF2eGStYe4WJCHnwVX8eT7ANK6L7+24cuv\nHWjs/UpifzKxAAAcTgmuvPeX2rc0cf/nOb5YqGQbhDe/BYeJNHAtFf551hex1f7TyvqUwcaSARtL\n/bMyGFF3Kt4+EvhfqktEGKxg0DYBFdxUIhjkuSUAiDcMilLMFLe3fvUlU+lxZWHJMOMnw2s4fQ3p\nLQObLfhSuRn3l1i9EdVQ9KOfzJN7Zu46qfXqgl10g//a1Ep2EAC9gVOo7RUYUZLe1QLRu1ogdj1O\nwczzZ3H05Qt0/KMyoU1TL2+Vz2tlZobUsdFgsdnwW7kMzbZtFvNX+Jr7Wy1zqwrRWwPezQLV8KQ8\nsUCjmSLEi5ihnjsWW7yTyFzS+j5LH4GqrmsprcWQOfR5Ffp4TUNlO+4BG1loVRZHNZYAmubgpH5o\nMHWV7IY6RGtGJOKOT0Gd1oFqn8ugfBh0CVMV+E8oQm5BsVrGLWKq/wPg9vxRUusn7zyp9jWUZizd\nXxKeOayvElpyKfm9UJ3LkQidUZ//mpm/Q2pbDkt/ol4VfCMPhWlEs3DYHKyJO4YuDeegd7MF2Lri\nDFgsyZtNMvpU5355z7l0Qayu5rrVKlknGSZ0Oq4PHiZWHlWjJo6+fEHSwzC4l8aNXEinMcQ2/AAQ\n4PYvAHLzJll9eYIlK/+Mytar7/DEAhmu5rp8iyUdK3MzpMSPR2B0Av49exvH7z0n/NFVNCEWAOMN\ng9p4R2LWownKOdnhXTo3IkyrQD/E91dNPF43ext8zMxWyVhUyc4rhIO1wG735APBhvb09EFKje39\n/7wLotiYMfCkr/7YL6oUGvEqtjA9WOItg7QIReqG4ZiAwu9c0cAqOAI4LCNtx2F+QGFGqAZXJh0O\n+wdodCfSOm3+PA2F8OrTAQCnH/+jcJt2NWcSxEF+bhH2bLyIPRsvSu3nv3IZXo0WfG48/s41g9sh\nEn3I39kFr7Iysf/ZU3SryvVr+56Xi4b/bpAZ6YgM3+XxWNQqjD8WwHVwFmV2aHPsePRQLBrTpOTT\naOPnj+Y+8vnK6Rr5JdxNfbDXY9J6J8tQhfsakY+MIuWtHLSFcDbnFSfF83O1r617hzr/pizGn3Wm\nYt3d+Wqfy2AFw6VnqWgqp8OwLB69/4oa3tQSWlGJNKQO/mzdgH8STyVxGlW61q9GcCpXF2PaNuL/\nR208a61E5+fyTsrbg/OStHU4uh3HOvbDo4yvqObirvS4+oxl2XeEzaus0KUctuaFMY1O9CXirpEO\nU6seAM0SzLwthHrR96RJGI5rUPxzJACg8Ds3n4qJRRvQTL3BLkkBu0jwpaStn6ciPM76hv5n/8P9\nnqPR7NBGXIjg5pLplbQbjzK/4lmfaNAAeG9biPf9J6PKrniEefphWWOuz8nd9M+YePUk2ODgcpfh\n/HHbH9+KCjYOWBsqSHr2IOML4u5ewMfcbNzqrj4zRJ6YoNFpOPlgLmj/D2n98vFnREetl3rLEOrt\nI+ZQTCYATvflZif2XR6Pv88k8ctP9IkSa0uFnV26oe/B/YSx6pQrj33de4q1TR0bjX6HDhDW6WJl\nhcWtJecV0jdoUDwssjJ9SxvfCz/CzUI8nw6bwwIHHJS11E8Bqi+5FoTxrFxeI2IBMDDB4FXGke+w\nO27rMTxYpHweBmH+3nUSSdMHy92vWYDmEs20DfpDLaY7/UNryy0YfuTmyz3P0Bb1SJX9tZcC05Jp\nXZqL1SvDsx/c08AaZcqi1aFNOBMh/7+xIWHhegWF6TIcnmlWsHC7j5Jfc8Q26JrAwvUmCtMbCJWw\nwczfI96ujHbNCEws2oiVsQpPiZXRTMrCwvU6Cr79AXDUY1aoSjoc34YljdrCe9tClLWyBQAwOWzs\nCeNGGeMJBQCovXclnveJxs6XAufIbqd28ev/vHgI60IjCH2EX/dMSsSrvhM19t5OPZpHeP6jugdO\nPJwrtQ9ZyFNpyLpNIKuv6OgkVh5cwVOum4ntEV1lN9JjlMmybOgZmlVFm7KDsOr1WDgxymL8H4K8\nMXd/nMGRNO7zyEpLtbU8I2rEoATD8SkD+FGBRLMBK8rCvm35G/CFLmO6AAAgAElEQVQvP35R6nP7\nDTG77IpBHSW0VD87rzxA38ZBSo8jmtOCwwFoMnLKNY1Zr9BcPYIDse96CgCg+oQEPF46Hn9uOMiv\n792ohkLjSoLFEThS86I8lGZoJh5cUyROAQq+VRWrs3C9wn82s5ulFcFAM3GDZdl3KPk1H8w8cRMM\nhv1CmFj1EOpgBnBKNLhCATyzLrJbDjojGObOuwRt3R6K/cx1kXAvf3SrVB3nPr/ll6VkfkWXkzvB\nEMnRcq/naABA3z8En0OtKgg2Z6c/CKLPeG8T94tpVt6Y2dcINSo6xWilb2ki2KUDfG2qY/Xr8XyH\nZ97flWxqor+P/v8cLz1LxeIjl5BXWIxuDavjr/BgbS9JIk+uvkB08zkAuNGRWjMijVGSFIG32VQG\n0RP7vKJimeE8B6/dz38ta1OtDkxN6HzBtPDwRZUIBgBwsLZAdh43kkvgROV/tpKY2bUFXzCoC+FE\ndU3K+/B9GnhmSkYA0Cxl5zgAhTwIFNsogpndVJjZTZU9v7v0kIjS1idr7VTfG6V2FH/m2oZMWHc5\nuZNwQyANUzq5+QevvzB0DX+IhlefjkM3Z8HSWv/iyJd2ytkpZtqlbN/ShruFNz/3gqFRY0IChM4Q\nsT75FtYn39JZc6Xo5nP4QgEAQns0lNFDcQwuSlJFN2fCc79Ve//H3lmHRdU9cfy7S7eECIqAgGKA\ngV3YKIqBndjt60/sLsRW1NcWuwsxUWzBblEREQSUVJRudn9/7LvLXrbu9i7cz/P4yD13zpy5lwXO\nnDNnRmqd28eW7RC0Wiw8wwV3LQEA+LBZ8R+y8qFYZGsx5BUWC5UNWz2VcL30zC0BksC0wGBSYwqC\ne5Jw/U1Z5gofdzep9LKJHVNWVfeYxyDEjZ1POQsUFFISlhSH01/fixbkgxZdAyNDz2L/pxciHQ55\ncPbRYs7X3q1Wo4frEvyMk386aQoKCtXg1ruvYDJZZxm4/03t3opwIFqVKS3mTYsvKyrcDkPwfB8M\n23YKH3+w4tLffk8iTILrWFsgNTMHmXnEnOfCVss7uzhCS0MDxaWsbwRbn3u9WujpVhfZ+YXYfesp\n/ubmE/qN76y8QmARW3wJz839tWM1czDBRGzqH7H16utoIa+QFdpx+eVnXH75Gc0dbTDK3Q0//2Ri\n3+3nnHfLvdMhLu83z+LYvPBkWcz3vL4dJNJHQUEhO9iHkrkPJ3PvDgyr04injV9/bpnoUWXnFCY1\naMFXVp6YmBrgZoQ/ju68g9P7WOlQJ/Rm/Q7SN9RB0NPlCrGDQnz0tRyRVxyDsDgn0nUbZNG3MlK+\n7oKxljmmOW2FgaaxkiySHcvPhMLTzZmnfWr31thz65kSLBJN78ldMbY+6xzT02uvEXbphdzGqnA7\nDABwetZwgfe+Jv/mcRbI8GbjTFhVMSK0PYr8joUnQ+AfdI/HWVg+sAtm9Won9jiy5Kn/NL7tManp\nEjkLAPB87QyeMKuXMT8x8/AVbLz8kPBu3278n0zDCewsqogWEgJ3KlVBaVUpKCgqN6NndMXNCH/M\nXFHmqOTlFHKyKFGoHk1rlO12P//RVqBccvZpift+/S069LEy4Od6CX6ulzDUlrVLn1WcjvWRo7Es\nwpvz79Gvi0q2UjKWDuyMexExogVViH/+HYdtD1dCR18Hl/69KbfzC0AF3GFgw94x6LLqANKycoTK\nnhHiYHBze9kEAECbpbuRnV/IV6ZnE2dsGNlTDEvlh6GuDuc9kAlLInsm4cNmXyT+yUQP/0N87++Z\n6I12de0BAFtHe2HWkavkDC7HsLaNcPpxWXjDtUVjJdJDQUFBIS49BzZHz4GsXWK2s3D55FP0HSG/\nGGEKyWlZ8yme/2iNotJUgRmPapku5Nve3v4bwuKchPYFgDoWvOkrBcmXbzfX74r6lnsF6lY3Gpi0\nIZxjiMgIx/kfW8EEE7dTTsC9qvpl5OrdrD50tbTgNm87ZvZsCx0tTZx/+gHfktMROG0goXibKtVk\nMKlqjKsZ8k8+UmEdBjZ3V0yUuc4na/iv3IuDsMm5qIm7JIeNZX1AuYaZCSmdXVydJB57cf/OBIdB\nFswPD8HGdrypLikoKCoGpaUMaGjIdvO8hbszXjyKwtGdtymHQUXR1qiK9vbf8Di+PhgCUhPbmEwQ\n2F9UX7fqki18VVQ+ZITh/A9i7REduh4G1vQVWglaleE+p7D1ahjh3oTdFwjXquQwcJORloUqlvIJ\nD6vwDgOF+sK9KzKwlavU+uLGzseUe8GccCRBYUnU4WcKCvWlV+NlfCsySxNS9OIRq8p8ew/pfw9R\nkEPS8wRt7T5LPKYkfSvbuQf2GQYrXXusdLkADVrFKXinqpmQ+OFdlb/zW1pSiit/5bPbQDkMFGrB\nikFdZaJnb2dWXLL94Y0q5Rh4tGYVhgp9ukzmunu6r0VpSSluPeGvmz02G0E2cMsF3Z4HQ0NdoeN6\ntPbDnmMT4Vi7clfPplAMx27Ng0/3TQCAAa39cPG/zzGTyYRnw6Ui+/dwXYLGLR2wPpBYuJG7r+8q\n7/LdKCgqJSkFcdj0ZTz61JiC+satRHegkCm5mXl8zyu8vfdRbmNSDgOFSnLo/ivO1y2cairREvVn\n0SpvaGsL/lFnOwjlHQdJ5djo6Ggq3FnwaO0nF6eLQvWxrF4Fey/NxBTvHcjNKeDZUbgZ4S9yl+Hd\n81iBMhcei3Y6KCgqOtznFpILvuNU/HqcjiemQe5kOQSdqw1VtGlSE/TsI1aeu60WOw0rzvO30aUt\nb5YnWUE5DBWAgEgPeNf0h72hbOIGAyI9AAC+9UJlok8iG66VxQ8enDpQ5vpVaXdB3rTvpJxYy6sP\nFJtV5PevbIWOR6F62DtVw80IfxzYHILLp57C1NwQE2b3QAfPhgDAN1SJzc0If0S+T8CBzSGIjUoB\ng8FA/cZ2WLt/DOj0CplQkIJCKqx1a2GO8z7O9cfMxzibsBn3086qpcOw9WoY6HQlVNuVgLZ9+c/3\ntHS05DZmpXUYYnOew8GwZYUZV1tDX8YalfNDU1BUguaL/lXK2KrC0QMPcPb4E4wY0x4jxrUXKnv5\nwkvsCbiF5q2d4LdZvX5B52QXYNqYA8jKzEeHLvXhu8hLoOzNq2+xb8dt1LSzwNa9Y6CpyTuBmz7m\ngDzNpVAjJs71xMS54ic3qNfIFluPT5aDRRQUFYvn6SG4lrSfp50GGrpbj1G8QTLAUE8bhnrayjZD\nZamUDsPR2An4U5iglBX0yz+WyXxcVdcnDFHpXmWd3UnV8Wjth36DW2Desj5Yt/wSjh54wBNi49Ha\nD0N92uLMscdwqF0No8Z3wLHABzy6Th0Ow5OwKHyNTAYgn/MR/NiwKhgf3/9AanKGwLMOvTutR2FB\nMeYt7wszM0MsmnUSIVfeEmzkDn2qXdcaqzYOwcZVl9GzvT9mL/ZCj95NAAA92q4BADAYTMI1ANyk\nwkgoKCgoZAZ34bau1Uagg6XsIwCUxc2l49WmorMgEr+loIaTfEKBK6XD8KcwQdkmUJCgsjkLAHFS\n36mbCzxa++HUkXAMH0MsAnjm2GOCLL+diOFj22P42PakzxzIigX/FbwSNu7V+8R86KFPl8GjtR8W\n/u8k1m8fQbh39vpsmJoZAABOBM/EqP7/YuvaaxyHge0UsMdTdychvTADn7NiEJ+XhPjcJERmxSK7\nJFfu4/YNnwEA0KZroZ6xA2z1rVHX2AF2+tVRU586uF7RYIKJqKzviM9LRmRWDOJyk/A996fcxz3y\n/RKOfGfFwVfXs+R81mz1rVHP2AF6GsKTKVAoF+4zDBWRD1t90XB2AGb2bAsrU2KxXlVKpUplSeID\nO56em/Ir4AGRHpjmfAm7o4gZLKz16mOo/TaBurivy+vcGdUHxQxiRWgjraqY4HSSR4dvvVAe3b1t\nlsPJqJ3IccuPze95+dl3K2kTPmfe5lyPdjwIM23ew8EBkR6oY+yOr1mPCO3l340ou0TZx0+eLWut\nVw9/i36ioDSbR3bFoK64+ioS7+OTYairjTm93eHdooHAMSojR/bd53EYKipvXsTytLGdBTa7Dk/A\nwB6bFWWSSP4WZSIyKxZxeUn4khWLuNwkZBar73mKIkYx3mdE4X1GFK4mPZCJzloGNWCrXx11jWvB\nTr86bA2sYaRpILojBYdCRhEScpMRl5eEyKwYxOcm4VuOei9+JeWnISk/TWb6DDX1YWdQHXWNHGBn\nYI26Rg6opmsuM/0URE7Gr8W37Hcw16mOrtVGqG39BTbcuws7bjzmua9KDoOgLElfX/P+DZUVKu0w\nBER6wFTbBmMcyyoKb4vszpmkc7M7yhv/OF+FJl2H0zc5n5hTmd2HzKHeYkYBJtY+DUNN1i+buJyX\nuPSDf/aMXVH90NR8ENwt+ReJK+8QCBt3Yu1TMNS0ILQFRHrgRfoZtDAvi1HvXn0eulefR3geQXzN\nekR4N+Fph/Ay/YxAO0XpA4DqevUxpJwz9i07nOMksZnuHAxtOut8xb7oIcgr+Ut4/oGtXGVSY4FC\n/dgdcAvB516I3Y+uIfvzNakF6YjnmojF5SUhvTBD5uNUVr7nJuJ7biIe/nopdl8TLUPUM3ZAzf9W\noG31q6OqjqkcrJQ/pUwGEvKSWDtIuayV/R95KWCCqWzTKgQ5JXn4lPkNnzLFr42gRdfk7HKwdjxY\nDi5NSef5VJnVn4agmFFW4C61IB4n49ey7rkGqe07U4fsSGwEZUmq5SK/rJIq6zCkFnwFAIKzAACz\n6t3iO6Gtqd+IMyEGgCH223A2bpZEYwdEesBEy5rjLADgZCC6kbgOPWsQs79U0a4u0FkQl/LOApsn\naYcJDoO4cL+bdpbj+DoM4jCk3O4EAIQmbYGTM9FhYDsLADDG4SB2f+0v1bgUFQN+dScUHToFlIXh\nUKgumcU5eJb+Ac/SP/Dcu9xupxIskgzqs6baFDNKEJPzAzE5P3juqdPnTN6s/TwKxYwizKsbCGMt\n4u7N8oj+WB7RH3Pq7kcVrapKsrByQGVJ4uJu8g4A5Fa7AaClBTHuWVfDSIAkOTKLk/mOHZPzhKet\nQ7UpUo3Fj9fp5xGX+wq/C78DgFqsQBUyhMdZR2beUZAlFOoAVS+BgoKCQr3IL80ReI5htWsQlkV4\nY8uXSRX+rIMqEbzrFnb7HkVo0SkUFRRDW1c+ToPKOgy/CllxWN41BefN5sZAS7Zxis3MB6OmfiNS\nsvqastseZzspna3+wQDbDYQ2dSQg0gMNqnRHRlEiEvM+wrVKT2WbpHZMnCGbKtcVnVqOlvgeI7t4\naAoKCgoK8Whi2hlv/95TthkSISxDUiN7axyfqXqpyz20hyO06BR2+x4FAMzutAo7n64R0UsyVNZh\nsDNww/ecFzIrRiYuOcW/FT72/ZRdAJRbME2WsA+DR2Xeh4GmmdKfy/7wRlJyyizq5tHaD736uaGR\nmz3WLg8CAAwa0VpsPe/fxOP+7Y/49L5se3380D2o72oDl0Y10d2rMUfu2qXXiOOaaP8z/iDsHSwJ\ncqeOhON7TBo+vWcdshzWexvsHarC3sESc5b05vQ9dSQcn94ncCbubLkGDWtiyv+Ijq9Haz/cerIM\nZ48/xqE90v+B2X10Ijzb+WOqzwHMWtgLH98nYMCwVlLrpaCgoKAgR2xOhLJNkBhBZxjuf4yBjqbK\nTpcJODd3lJtulS1f2dtmpdLG1qEb4EuW4j3kDxnXFT6mPAmI9ICNfiP8U/caxjkdU7Y5iBs7n/Pv\ndI+haGFVE59GzkLc2PnY3sGLI6MsatQ0w+mrs3A9+A3HWZA0bCfs/mfcCH6D+O+/OG0/4n/j1rV3\nOH0knCD38M4nglzU5yQeuSP77uPhnU+casqFBcUcOW6O7LuPl89ieOSCzjwnyC31HwAA6N7GD4f2\n3MOl2/Nh5yBdzKuGBh0rNwxGTHQK/hl/EPt23BbdiYKCgoJCLL5mvxZ4L7P4F7S4zkxWBDq5OGLK\n/iBlm0GKq3vl93dPZV0mDZomzHXsERDpAY/qc9HAhLU6mVOSjgPRw+S6Wj3N+RICIj14MhrdStrE\nyUwkDdcS/eBVg3ci6FVjKa78XAkGswR0GutbQzYcicksldouefAz7z3nGfQ0TNDecgIaVOmuZKuA\nYTfPEJyDvg710dehPibcCUJgV8UfzOZ2DEQ5CWSciBlzPDFjjuhKt2TlyDouZOXcO9dH6NP6hLYD\nJ4lngQTpMjTUFXivjbszdTaCgoKCQk6sdg3C8gjW30hNmhbsDOojs/g3fhcmcmSWN5AuqQoFeUKL\nTsHLeDQAVnjSrcKTInpIjso6DADg47AfAZEeCE3ajNAk2eVdZ4fKCKvDMK1OEHZ/7c8zYZeFwxCd\nFYaALN6xHY3agE7TxPYvZXH+9obN0d5yAo7HTiboKG/XsdhJPPrE4Xz8XPzMI2YhYY8x3uk4jLWq\nia1Ti65LqGWRX5qJ0OQtCE3eovTwJEG8SOXNkFER8XReiJCo9SLl0lOz8Ol1HNp2d4GGhnQbkp7O\nCzFkcicYGOti0IQOAICrJ59i9+rLGDK5E8bMltyRZJQyQJfSPgoKCgoK4dBAw9haq3H4+3KUMIsR\nk/Oec8/ZqBlG2vNPP68OXHsdydOWlVeI9Zfug6bCmWKvZR1VyDg0JlMls+/IxChnvwBELVOfvLoV\niYBID/SssQjOxp0I7aXMEuz40lPpDoP94Y2ooqOLo90GoZaJGda/eoBTUe95QpLkmQpRnVL1lZYy\npHIYigqK0bfRMh4nxdN5Ia59XiuV7pKSUtBoNIl0UKku1Rt1+hmiPmvqi7I/Z/L87Iyp5Q3vGl3k\npl8UqvQ3lt+hZ30dLYzt1ByTPVqKPb4inu2fNsvw75OylOTsQ9B8kNrlUekdBgrxuB8di061HZRt\nBofyzgIA/CmMV4IlvMSNnQ/7wxvR99pxTtumdqJDcxTBs3ufEbj+Blp1qYeLh8I4k+yZA3bi7+9s\nFOQVobSkFEFvVwNgTbr7+bRF8LHHOBm+BGZVjTjtdRvbIiczHwduzgEAlBSX4uOr71g0JpAwefd0\nXgiPAc3wKzkDn9/GI/idZDUR2LsIZ/fd5+i/HVQW73o76DW69W9KaL8b/AY0Go3T7um8EPWa2CIx\nLh1aWho4EbYYALBy6lG8ehiFxq2d0My9DvqNbsfRwWQyQftvCYith4KCLCVFJdDUpv4cUlBUZtSp\ncBubqFcxhOum3RrKbSzqN2QFYsqZyyqzo2KmY4uASA+0tBiOZuaD8bvwO87GsWyTtkaGrFDmAWdh\n3A1+gwVbh6K2iw0mLOjFaY/++JMzCfd0XggA2LzgHKdt8pLenFCjdbNOYejUzhg9ixi6pqmlgcat\nnXjGLO88SAJ3mNOY2d0xvd8O7AqeyZnAb110njCZ79a/KbYuOo8u/dwIuwNTl/VBn5FteGx5fi+S\nZ4eCrU/aHRCKyg3lLFBQiMeGyLHIKckgtE2vHQArXXvlGEQBAIj9IL9FWbX6Czv40Gk02bATb38m\n8b2fXViI5pt2Y9Sx80L1dNweCK+9wrP2iBqLLL32HkN9/+2YGxyColL+B5NFjfX0ewJab9mL1lv2\n4mVCIl+ZrIICvu3KYrRDIPQ1TfH89ynsiurHcRZG1tqDqXUuKtk61WbJjpFYPf04PJ0XoqRE+GH2\nB1ffwdN5Iecfm/DQj/AQY6X98JabPDokgduW2EjJfnb2+F2RiS0UFMnxv9C7+jQUF5UAAHpYlJ31\nYn99aHUQof3o2mD0spqCHhaTCO3XDj/E+JbUgXqKyg0TTCyL8OZxFgBgV7QvlkV4K8Eq2fHwUyzh\nuoffQUzYfUFJ1ojGw8cd3XVGICcjD+HBL/E3NVNuY6nFsorX3mOI/pWO53OnooqeLlpv2Ys/efmE\n1XRnP1bsGbuNfc2Nx67DiP+TQZBpYWeD4z6DxBqLDOXtOfcmAq5rdxD0kBmr0bp/0cjGGk/nTOGr\nFwD8bz3g+/WS7h3FslnWTK59VqnjS4L94Y0qsfNw/OEiAKIPJ8/06w+PAc142icu6IllEw4jMHQu\nqfHO7X/As3shCWQOUouiSRsnrD08Qaw+hfnF0DesWKn8KKTHf+w+XE3ajZUjd2Hliel8ZcYt749x\ny8syo41e3A+jF/cjyKyfFIiF+yfAa2wH9LCYhJu/98vVbgoKVWV5RH/Y6tfFRMd1PPdySjKwIXIs\nlkV4q2WlZ/+L93D28XtOaFLD2QHo2MARuYWFaLlwJ56vV71zSHMDp2BuIGt+2K5fc0HnF2SCWjgM\n0b/S8XLeVBjr6gIAns6ZAme/APzMyIRNFROU/ndw+93Cfzh9opb58jgN8X8yMMTNlXM91K0hzrwh\nZgYSNZY4zO7clvP1YDdXDOYam+xY7xf9Q+jD77nYjsGxF2+V7iRQSI+n80J4DW+N7Mw8aOuU/Yia\nWhhhWJs1KC1hQM+ANTn2GNAMns4L4dK8FtISM5CW9BchUevRb3Q77Ft7DbOH7oaGhgY2nWRl2fqV\nnIn46BQAwKfXcbCvYwUDI9bn7+a5F9i39hrBlrjoVMR/TQGDwUAtZ2vY17ESaHdI1Hp4Oi+Eu2dD\nfHn/A0fvL5Do+d8++YZ+jZehXmM7vHv6jeOEuLWrjd4NlqBVl/oIvxVBcE4GNF2BoVM74+Or79h0\nYrIg1RSVjFY9GgEAmnVuIJWex9feoGc11h9lKhsXRWWHn7MAAIaaVWCgaYLcEvmtcsuTkDdRaFPX\njtC2Y3wfAMKrQFcWVN5hWH/7EQBwJtVsGtewxpSzl3Ftsg/mBN0AAOhpiX4cbj0GOlpijyUOW+89\nxrhWTaGlocFzT9ZjqQvz9l2DvZUZmtWxQct6tmL1XX/mHhYO7Uxoc5sSgDd7ye3+kK30rGwErdL/\n/Z3N954geX7tVa1NUNXahOce+7rH4BaEdvva1WBfm3xKXWE7DGRtF6TD/+B4icalqLyc3HQNI+f3\nxsFVF+E1riNs61hLpGfJ4ckAs8wBoaCg4I+TYWO8z3iobDMkQkODBn1tbQBAvw1HsXeS4msyiYvf\nkG1YdnYW5/rNnQi4dXUV0kNyVN5hOPbiLQD+IUZsQiOjSela4dkZq0Luob2jHeh0Og4+fY1N/XqI\nNRZZopb5ggmgLpcu7jAismNtuhuGwCevpLZHVrhNCcCSEV0QFPYRJxcP57T3WnwQ1UwNcWjeEIJ8\nn2WH0bdNfYz3bIkRa08hMiEVADC9bxtCXx+PphjSsTGnzWf9aRSVlOLM0pEAgMGrj+FbUjrOPXgv\n0EEYvvYkTi0eAQBgMoERa0/i1JIRBBlR4Ubq4lRQUFCIJuTXPgDAhFUDAQD7n6zi3BMnrKhVd8pR\noKAgw/uMh3A2Us9Mdedmj0S31Qdw4M5zxKb+4dltUEWWnZ0FD+3huJl/Aj30RiL490G5jaXyDkMD\nK0t8SEoReobAwcIM0b/SReoa3qwRgj98xswL16CpoYEvy3wJiWnJjCUONBDPVHDXhSA7VuCTV7g2\nxQe1q5pz2qR1aDzteccMiSOvc0D7hujfriFndd/ddzceBUwDQFzx77/yKK74jeX0O7l4OM+OAPv6\n5ssoXHv2GV6t6vPdNTi33IfvDgM3pxaPQG5BEQx0tdFxzm483DqN9DMJQtn5tynkC/X9pVAU1GeN\nQlJU6bPj53oJyyK80c6iH7pbj+a0F5Tmwv/zSNBpGhhpv5S0PlV6tmpVDGGir4t/bzzBwNZlq/Q5\nBYXQLxeRQgZFPVto0Sl4aA9Hr4ldoG+sJ7dxVN5hOD9+GJz9AhDz+w8cLcz4ygRPGokG/ttRVFoK\nbT7hP2war9+J/OJigZN0MmNJSvmzB+KMxe0sHH/5TqZ2SQp31cOc/EK4TeF1OIJWjuZp4wd3X69W\n9dGpsaPEdrWftQtv9voiO6+Q5x6Zw8ySHnhOydwBK5OZItukoXzYzZsEWzSoHoZSRjb0tV04bW62\nCaR1iitPQSENLvMDYG6oj4fLBZ8z6bo2ECkZ2SLlxKHXmA4y0SOMlIxsWFVRjZTRFBTygp0FKfx3\nMMJ/B/PcZzBL+WZKUpdD0GFrpvK0Gerq4Nk61TvwDLAKtQ2a7cU57CykcJvUqLzDAADtHe3Rc89R\nrOvjgf6NGuBlQiKWXA1F6HTW6rUmnXUIjTsLEb9V+Gdzp6DRun957nE7EKLGIouzXwDW9vbAgMYN\nBNpDdqzLHyLRt2E9JGVmY83N+0LH3fXoGaa7txLLVllA9hxBefR1tBC+nfiD+OLLD4ntsK9mCgAI\n28Y/I0pFQ0dT9bdMKwO/c6/AwqCPTHQxmEWg07RloksdubN4Alzmq98Bw65rA/Fxo2rUwREPJg59\nbS9UggY6xtZ5pCB7Kj6hifPwM/cpAGC441Xoapgq2SLyqMvEnx/FjFwc/9YdgPq9d0GUdw7kmSWJ\nxvwvw5CKwdeo+Zdv4tbnaDSsYYU1Xt1gZ1aFcD8zvwCd/z0IZ8uqODVmMOFewt8MdNt5mGd3wfvA\nSehra+HkaKK8qLFEUcpkYvGVUNz8/BWGujq4PGkkLAz0+cqKGmvUsfP4nJIG305tMbJ5Y7462Iw/\nFYT3P1Pg7mSPrf178pWRJiSJezcgfPsMzjYdd7sw56F8uNH155FYdvgmAODSqjGwq2aKC48+YO2p\nuzy62GOw2zwXBSL1bzZMDHRxf8tUghwZB6bBiW3ILS7iXD8fMg3V9A0BABGJzeFa4yVnBZ61mh+O\n9JxTqF5lIc/KvCQ7DG8TasHV5jU06cQdpvK6mcxi0GhaYDJL8Dm5CxpUf8hXjl8b+zq74CmKShJg\nbjiE0/Y75zQS/ixQqR2GJ/EOaGPHyoMd+2c5HMxWK9ki+fItfT6czOV3buZhZCyWnguFrUUVnJw+\nlNPuMj8AHzf64snXeEw7HIw+Tetj9cBuhL6FxSXoujYQDCYTW0d6oaVTTcL9FRdu48rrSAT5jkQt\nSzOC7v4tXPA7Kxe7x/VD+1V7EbZiCudeDVNjBM/xQbtVe4eZh64AACAASURBVNG/eQMs6ccbZihs\nJ+JhZCxmHbuGiZ2bY1q31mK/k3H7LuBzYhrGuDfFlK4tOe1/cvIw+eAlpGbmYFGfjvBs7EzqfcSk\npmPHzce4+4lYcVUdnIdDX9uRkjPXqYO+dofkbE3lofx7H1cnXEmWVC4q+XuniRYRjlrsMLDZ2LcH\nNvbtIfC+iZ4uXs/nv7LcZ99xvu2jWzbB5ru8HxpRY4lCg0bDhr7dsaFvd5GyosbirhMhioPD5X+q\nn99knOwOQ3m5Xi3roVfLeoS2ge4NMdCdt7x5+b4h68TL1c9NgxPbUMpg4JLXSNgbm2JB+E20PLub\nE5JUXJqK3MLXqKLP+r6YGw5FVIoXShgZSMnaLfG43DBRyuMsAICVMTGVLo2mhS8pnigojgGDKX6B\nvjcJrGxUNGjA3HAIzAwGAAAsDIch4Y9kqU8lYdsCVl0O7/EdYCcgPSsNZSGFKdkn4GC2Gm8SO6Gg\nhFW9ku1M/Mz8FwkZAYS2J/EOnL7cbXSaLhjMAk4bPz6ljkBmwVO++qyNfFDLbCXn2tXqPCJSBqFB\ntRMw0W2Dt0ndUNWgL2xMZvDYwU9fi5pvoEmvgucJLihl5iE9l5XlraXtRyRm7kVS1gE0r/ma05/J\nLMbTBOf/dH0DQCeMYa7fHc5V9/A8U2hENGYfv4btPr3x+Gs8x0lg02P9IRSWlCBglBf+OXIFQS8+\ncu7f+xSDmUevYJtPb+QWFmH8/guEvq4LAuBgaY7d4/qi9+ajcLOvgWPTyhZdujRwxPTDl+EyPwBr\nBnvwjN1y2S7sHNsX0w4FIzolHUemkPsd57ogAEwmcGBif/xz5Ap2334m1sTcZX4ArKoYwae9G3aG\nPiE4DO6r92FCp+awrmKEeaduoIVTTZgb6ot8H2aG+lg5sBvuforhOEbqAINZTFq2j12gHC2hoKCQ\nlI/hXzC7M2thjX2WoVKHJMmC/cO8MerYeVx4+xEDm7DivRdeuYVL7z/L7JAzhXIpvwMhjNziIsJ5\nhf1dWDGXPS8fwY2+Y2Ck2xpfUwehiW0scgvfwM5sIxLpJrA0mgwtDQv5PMB/0GnEAmTcuwbsyT9Z\naDQtNKlJXPnMyLsOmCs25GPz7JO4G8TK9tWuZyOBDkMVPd7QiIKSeNSzPARTvY6ctt+5N3gcAPZ1\nUtYBQnsr288i7WtQ7SQA4EfGNh59H1OGENri/65HG7tYzm5Ik+q38TOTeLiN3ZefPna/lrYf8STe\nAS1tP3JkaphMQQ0T4qTzaYIzT9/y+vgx+/g1zqS2i4sTzj37gOUXbnN2Ero3rAPfnqwVt48bfQlh\nQDtuPgYAdHVxAgD0bVqfc+/y689gMoHLc3z49gWADvVYNoWtmAJTAz0sPRfKuZf4N4tjF7++wmAy\ny1buX/n/I1bf8k7LtG7E0E3ue0NaN0KTRTvwdh1rh1DY+zA10OP7tapzJLoT4bqSrbaqDA3NRogW\nqgR8ybiEJ2lbAMjvs2hv2BFxOQ8AVJz3Prvzao6jAABek7rKbaxK4zC0sLPBFu+emHPpBpZcu81p\nvz6lYtY7kBeSnlVQBLKwLSUvBwBgb74DEYnNAQBRqf3gZpuAGlWW4G2CA5goAQC42SYgOTMAv7KP\ngMHMQ2b+HThbXSG0ZRc+Q21L/t6+m20cwQEQFBqkSa+Ctz8cYKDtJtJ+DboRwcGo8V/4FADUs7oJ\nPe360Na0xZsEWxjq8FaIlhdsZ0EUGflhPG1t7GJRVJpGmCwbaNfjkXsS74DWdtFgMHkPvJOFRuP9\nlaijSQzF0aAbiq0vNecc9DTtYKzbUkQP2VJ+Qn3l9WeOw8B2FvgRPMcHLvMD4DI/ANM9WmNq17LJ\n9fb/Js9kJuv8JtA6JOrlCEOe5xsCboTjxrsv+JWdi5JSBqdd2PuQNb9TMnE+8CHCb0bgb3oOathZ\noK2HC8bMFr1bLSnDHa+JFqKQGZRzxgvbWZAnnauvkfsYyubJ1VeYuXOcXHRXGocBALxcnOHl4ixa\nkKJSsvhJKPZ27gcA0NKoxpl0c0/km9gSV7WtTXxhbeIrso0/dL5OQvlzDw1tPvDIlLeLTSObT4Rr\nS6OJsDSaSGirb32HhG3KgYlSztdWRqM4X2trWBJ2FH7lBqO2xVZC3yp67qBBAwkZAZzwIGmI+7sW\n9qaL8Ss3CLUtNkulK/7verSo+YanncxuFXeYlrhhqIcnkw9nLM/Hjb6I/52BXhsPY1foU84KfOl/\nE2mJdUt5bE6aZxIEg8lEwwXbsHpgN9xezAp1LO+YCHofssKr/mLOu+Xm5/dfOLvvPs7uYyW8qG5n\njoOh82Q6tq6GeGf0KCgoVIPek7tibP3ZAICn117jT3KG3MaqVA4DBQWbuLHzeYq0VTcwxto2Hkqy\niAIAwSlwMFtFSo5Nfcsj/92LESonDG5Hw950MUEH+3+2DLdu7n782rmdBe77zW1eiLSptV1ZYUr2\ns3HrEPaMzR1tROoXhp1FFZ6woeA5Pmi/aq/EugtLSqSySdJx6TQaXsT8QAvHmjz3mi7+F09WTYWx\nni4AYO+d53x18Hsf3DCYTNBp4jl1A5uvQm5WPmn5pPh0eDovRP+x7TFxYS+xxqKgUEXySkTX0aLg\nzz//EncT5JkliXIYKCotktZcoBCPtMS/yjahUnJ06mC4zA/AaPemMNLVwc7QJ6RXxV3mB6Bu9aqY\n6+WO2xHfCPdMDfSgqUGH64IA+Hq2R1jUd7yM+Ulat4OlGVzmB2DPOG9MPXQJrWvzTw3MbyNCU4MO\nl/kBmN2zPRL/ZuHs0/ekx/2wYRYnS9PAVq44eP8lnq1mJckIGOWFNiv24Nai8dh87RGefyOmdhb2\nPrhpuGAbDk4aiA8/kjGxUwuRNg1ougJ5OZKF0AUdDqMcBooKwZUE+YTQUMgWtUqrSiEbpK30TEEh\nDuU/b35HJ6NZh7pKsoaCQjUozC9Gv8bLpNZTvqCjKEqYBYjPCcPD5LIdPFnF1JcyCxGaOBfJeW/5\n3nc1G4HmFryFscTh5s9ZSMrjfybKUMsKHaxWoJqeK9/7ZHmWth2fM87zvadF10cn61WwMRA/pa8i\neJC8ErHZvGGnLavORAPTwXx6iOZn7nOEJs7he0+Dpg2f2ndAA10i3fzqgKjjGY/v2fdwP3k5T7s0\n753BLMXFuOHILk4ktEtYF0XqtKqUw6DiFBeVYMPM43h8k38cOwA071QPM9cOhoU1uThUMg7D51ff\nMWfgDr79m7rXxZpjsqnACrBWoCd3W4+CvCK+97W0NTF36wi4ewmvQSErmAwmejnOAb+fDQvrKjj2\neDlodMl/9h5de4uA+WeEPu+R8GUwszSWeAxRvHv8FYtG8KbiZEOj0zBsRjeMmu0p1Thf3sbD13sb\noU2RDsOftCyMaLGC7z2H+jWw68ZchdgBAIFrr+Difv6FF6eu6o8+o4UXz6KoWHg6L5SJHtcWDth4\nfJLA+2RrLQiCzOTtcepGRGVeIa2zodlINLMQLwXt0ehOKBUjFawkk6pTMV4oKCUfA26l1xg9a+4U\nKkPm/Ys7QebW6W13FKY6jsgtScPZWNFp1cUZ6/i3bihmkA+XI6M7LGUdorOuk9Yp6TjyeO/ceuX5\n3gHg+LfuKGbkim0fANQ29kR7qyXlmymHoSJSWsKAlxN/b54MonYLhDkMA1wWIS+HfK5/SXcmBjVa\ngpzMPIn6SrMbwv3s5fW8Df+KxSMFT6KlsYPfO5fHOMK4cjQMe1YEyc2OnrVm83WypEHSZ+/tNBcl\nJaWiBf9jyZ4xaOfZSKKxyn9vy9sszvd+1GxPDJ9JnaOpDMjKYQCE7zLI22FggoHDX93F1mut7wZP\nG/6LUuWR9BnITtIyiuIQFDdSLvrl7TBo0fXQ1/YwLsQNFdJD/PEkfedj6zwSutsg7ecRUA2HQZL3\n3rPmTljpiV745Ge7mY4TdDSMkZzHmzyjPPJyGKgzDCrG+yfRWDhcNoXByGJsZgBAskmtp70vrnzd\nBC1tch+liOcxmD9E+IoMmTGvx2wBXUPSLVAWP2LSUNPREgAwq28Aot7LvuKxNI4Ctw5pnQZp7fAc\nLnr7XVUWHyR5Vv+pR6ChSce1b7JN7SeuLZXJWZjdLwBJcb9x5p2/RP09a/5P6P2QH9vF1jmxoz9+\nxqTJVCc//GeelIkeMrSy5P8ZfJYWIFKGDOUnh45G3dDBmndXr/yKKZmJD8A7ebLQrYs+tryF5LKK\nfyLkx0zklrC+f91rkPtZzi/5w9dZMNOpjX52hwltH/6cxKvfrEUlLboBKf3ESSkTqfkfcf2HdGFZ\n3BQz8gmT1mGOV6CnUVYQNK8kHWdi+xL6HP/mgVFOoRBGU4vJeP17H+d6UK1zMNKqTpDJLk7G+e/E\nrGWHv7oLnYjz+6xxfxYFyYhLeRtS8yPk+t5bVJ0BF1Oi81D+s3vjxwyRTkr571X576cg3YoI46pY\nDkPJVzB+e0mlgm71VUbGiI8sJpfaulpi96nnZi9wbId61VHFwgifX38XGELTp8480hNa15aOQu9r\naWvCubEdtHU08SYsSqBcL8c5Uk+igwIf4H/rBmPbgrNiOwsz/MmldgyJCxD6fdXS1kTDVk4oLCjC\nxxeCs91I6jQU5BXBu7701ZxnrpUsBlORpCX+xei2qwXer+dmDwNjPSREp/A9iF1awpCJc8ZGFj/P\nFZWAOacQ+ToOAGviL6uJuLoQfitCYWPVrzKAbzv3JE2QDFnY4RnCGOV0CwBxonMsuit8apNP89zM\nYqrAglvGWjYY4iD+Durp2D6E63F1wiBoMbah2QgpC37RpD5fIQhL3Qbwst3H066vaY5xdcJxMW4Y\nMotYh/mLGaJ39xuZjUIjs5EQtjBtpGWNcXXCeSavpcxiaND4z0X4fdbKOwzSfh75oej3DoDnvZOB\nO2OUMCeg/Hv/kfsENQ3akB5HEiqMw8DMWgFm3mllmyEx5/fcFXhv8NQuGLtAsCN0POAmTm1n/TK+\n/GWjQDlBPL9DzN0/aGoXjBMw3t/f2RjejPdgz8F1VzF+UW9S451754/Bjcu2y3ZenwvHBjUEyt8P\nfo2Ns07wtEs7uQu79hYTFvXGrbPPOG1WNc1xOGypwD5LRu3Fm7Ao9BpB/gdTV1+b4Gzd+L4VNCGp\nFwU976sHkWjWkbdgmTCEOQvC7CgpLsXcgTvEcqQEfS8UdeiZn7PQ26cdpq0W/MeH36R+wdBd2HBm\nulS2lNc7YUlfDJjYka9sWtJfjG4j2NGpiEQ8jxEtJIIl+8bh08tYPL35Aak//8jAKmDutpF4cPkN\nPr2IRfQH2e84ygsmkyn0d4q8EeUsCKKEST78FZB9dd6YrFuE67omfSGDyA2lIGjSymaA/WnCBDMx\n9zlqGIgqJEnuXfjUvoNj0WUVhp+nbUObarKtFaKqyPK9f/x7Rqyx21jO4RS8u504X+67DBXHYVBj\nZwEADm3gX2mTzIR4lG8PjPLtIRM7/I5MEjopNbUw4rtqfmHfPdIOg1EVfdSoVRWB9xeTku/Uryk6\n9Wsq8xXb3OwCDGxYZsPRJ8thWd1UaB//4+Id1AOAS5834MqRMPQZQ+5Qa6d+TfHxRSxunHpCaF82\nZr9YDtLeVZf4tp975w+jKvpC+2pqaWDbZdb7zvor2cErRSJp5q+QuAAMdF2E3OyyicuHZ4LTZpKh\n/HsXZYdldVOVzVLGDvuR9Q7AxOX9sHo8K6xEz1BHIh3tejZCu56NMHmFN6dNVJiSKJwb28G5MTHN\nq7Q6FcHP2F+c8MqKTFLeK1TXl12F+ocpfoTryjLJBYBPGedIOAzk0KTpEq7jc8PQBpXnXYqDsPce\nmcH/b7Yg6lbxVkiFbDYVwmFgpNQhXCszrEgS+E12lu8fh9Ye8tlCE8TVb5uhqakhWhDA0OldcWaX\n5BWDyToL3Ghpa6K4SLqiT4KQ94SNrLPA5p+1g3D7wguJn5fJZOLyYd4MIZI8p7EpuVhdVeJy1CbS\nshci1vH8DEqze8V+7536umH+9lEipCsnrT1cK10YkjzJFxAuqooYaVkjuzhZor43f87CCMcQ6GgY\nydgqYKTTTZnrVBTDHcXPOiQo9a0syC+RzY6fqiPr915YmimNOXJHulOjKoi6OQv80NTSULizAIC0\nswAAo+fxFgy6eky+22Hn30t2OFIUg6d2kYteaZHmeb2ceNOFSuKkqQP96vGGXWnriLcWUs/NXkbW\nlEE5CxSKwsLKRNkmiIF404521RYRrk/GeMok005i3kvCtTbdUGqdykJXQ/zvfylTfZxMVUXW772m\nYVuxdKUVfBR7fGmoEDsM6gy/Vfqr0ZsVbocsJs2XDz9Cbx/pf5ELQkdPWy56hZ0PUSbSPC+jlEG4\n1tXXRo1aVaU1SSUpzCf+ApZkZ2Br0P9kGvKmqiFG4rB19illm0BBErOqsl9xl4RSZhGuJkzCn0Lp\nwvq4qWPSCz9znyAu5yGhndtpGOoQDH1NC7H0vk8/KhP7KgPCCrdRyI4OVst4ztUI41pCWYi0s0kf\nIZKygXIYlMzRTdIVMJEVspg0/05R7e00frTrKVnufXXjwod1yjZBLkS+iZOb7gdX3qBjHze56Vd1\nbp9/rmwTKiyamhpi1QlRdUqZhTgaLb+d2s7VWbutgnYWzsT2AwAMdbgMfU1zUjr/Fn2XjXEVmDfp\ngXiXfkTZZlRaDn1tJ/Ag87ly6WzbVpsvd3soh0HFIFutWRUpv9KrDizZPUbZJsgcfoeUNTQrXPQh\nAGDe4H/lpvv83ntq4TD8/Z2N4U0EZ/YCADNLY5x87SdUJuN3NpaM2IPYz4k896SteSCsv2srJ2w8\n/4/Q/hWNow8WYkQ7+YRYKprrP6YiNZ83Tay1vhvaVVsAIy1iBjxpwonYk6fY7Dt4kLyS5z47h/3o\n2vcFpvVkw6BCcoQi6PvUwHQImlpM5DnoLIswMQredKlk3msPm23yNIkD5TCoGLLKdqTOpPxIR/zX\nFHz/kow/qZlITkjn/F8RifmUiB8xqUj58QcpCelIT81Ecvxv/EnLkkjfzTPPRAtVEEpLGDxtsgot\nklWqTnlCNoPPn7QsofUO1CETUEVCliFERibCM57Jk4yiOB5nYUzth6DTyJ+HkwQHo65wMOoqcGfj\naHQnDHe8LjTG3FDLGn8LBde+qcwcie5IuNamG6r1oXB1g19tC0H4ON2BJl1XtKAMoBwGFaNtj4bK\nNkGhZP3JxaSu65H5J0fZpiiErD+5GOImfDVYWp4osChURSY3K1/ZJghF0CRfW1cLRQXFCrZGODPW\nDsanl7F4FhqB/NxCZZujEljbmstkEeTcC966OIqifIVkRVSb5UaDpvPfmEwc+krMRHcqppdQe+wM\nO1AOgwAYzLLsfMZaNhhYS7z6ABTS4+N0B8e+dRV4v121BahjQi6VvayoEA4D3eorJ7Uq889o0MzU\n9zCTgbEe33bvDccwpG0jDG3XCInpmahhboJLzz9h+7VwPPCbjHlHr2PTaN7MRaqKl9McvqvDFRVF\nVv39GZOqsLEoVANRIUF/f2XBtKqxWP25HRJpU6D2GtUWvUYRM4BU9l2NQ7fnwdN5oVQ6rn5UnbAm\neaQ6JQ8N4+qE41laAD5nXCTVw818PN6lH+ZcM8EAreIljhSbe0nEBS3KWVA8x751RQmDVRuoa/V1\nsDUULy27vKgwPx00E9YvTmbRUzDSKl4sXUxKOoa2Yx3QrWHO2mZdcSYUD/wmAwA2je6FwZt5qwOr\nIp72vmI5C9Z2FnBr7wzv8R3kaJV8yM3KF8tZoGvQYW1ngdYerhI/b1GhfGpVUKgvwpwFCuWx5fRU\niftaVjeFppZ8Q3/EoZHZaGWbgFaWki/MHI/2kKEl6svPXPFDWvNKfsnBksoL21kAoDLOAqAmOwyM\nPyOF3qfRjAFNR9BMNoOZORdgpBGLuWnWBujCK/iyoZspd9JdWsIQ64DqnptPOV93cnGUh0kyRdDk\n+dLnDdDVF51G9NLBhyJlVAnuStLcyPN5rWzN8eNb5d1lqAgpTSkqB/Xd7BAStV7snYaQqPVyskhy\nyIT3lDJVK1SuodlIfPjD+ptfwizAt6ybcDKu3OcIDbWskFEUJ1afM7HeooUoxMbWULUWv9XCYUDR\nC6G3mQBQKKTqcEm0TM2RJ68eRqJllwak5af2aC1Ha2QLP2ehqnUVHHu6QgnWyB9lPW9T97qV2mGo\njOxbdQmTV1B/tNWVkKj1rGxXbYWHGG04PgkNWzgoyCrxiM66gfZWwotDHo3uJJbOn7nPYWPQkrT8\nn8IYsfQ3s5jCcRgA4FHKmkrvMDQyH42HyatIy6fmv5ejNZWbhJxwJOQ+hq2BeAXd5IV6OAyViLXT\nj+Lyl42kZD8E+KL9kj3IzCvgXKsbFdVZ4EfdJnYIuDRL7uOMntsTwYfUaydGUvQMdCrtIdpqNmac\nTE7BgQ8QHPgANDoNV75tUalQFQpymFoYqeTOgTA0abooYZaFTwTHj0U/u8M8cveTl+N79j0ArIPK\npUxyP7PcxcIMtazRrfoGmOrwOkwMZglPZh+yeNr8i5CfZWl92dlp7A07cOo/sEkr+IhnadvxuyAS\ngOIPeSsCR6NuBIfh0Nd28LY7xve9yyqV6hCHIJyN7U/Q61P7Dk/qVgDIKv4JYy0bmYyrDtxJXEBK\nTlRWMFlAOQwqhqDsJoKcgTB/yWNglU3/CR2VbYLcCPS/zNOmCGcBAKlQp4rCzHWDsWHmcWWboRSO\nPF2BJSP24M2jL5w2JoOJ3g6zAQCL94xFe6/GyjKPohLgU/sOYdL4pzBa5CRydO27Ek00c4qTcSne\nh7Q82cm8tX4TdLBahocpxDolcTkPpZ4Qk+0vSK6PbSAsdOtKZYMkdLJehfvJZYt5ot77UIdgfPhz\nnPSB8/IYaFrytB2LFpwhSNT3Vl3fOxtx0qqyORXTC1p0A4xyIl8pWlzU4tAz3eqrwv4pmv+tH6Lw\nMVWFiUv7iiXvN/mQnCyRPTdOPRUtJAJZPq8iszSJoqRIdoey+RVWG9Wa/Ha6uuN/cipCfmzHoKm8\nuejXTj0Mz5r/Qy8V+t5TiEMp8pNrIT+5lrINEQrZiXnbavPFXpGXJIZbm24o9jiOxt0xrk44lSXp\nP2oZdUFTi0mkZMfVCYe+poVUB87ZeihYToykjmoxI5eQ+UvWUDsMSqbH0FbYvvAsoW1Gr83YeX2u\nkixSXdSpvoCGpvQhIbJ+XiaDCRqdJlOdkvDt00+06uYiM33aOpqEzFC/kzNkpltdGLe4D8Yt7oOQ\nk0+wo9zvE0YpQ2jRNgrVpCClCfSsvyvbDFKMqxOO1PwPuP5jGs89K73G6FlzJ6HNWMsGWcU/Rert\nWp0VopVW8AmPkv2E9mlvtQS1jT3FtJzI2DqPAAB3khYiIYf/BFZf0xydq/vDUld2v8NUkUZmPmhk\n5oMzsf2QV/Kb536LqjPgYjpUpmOOqxOOUmaxwLMuRlrV0d/+pEzHVBUYzGIc4XpuXQ0TDHe8Tqov\nt4PxJv0gGpuPlbl9AOUwqCQxnxKRk5kHQyVW8FQE759+Q6PWTso2Qy40au2Exzc/SNz/0PqrUo1/\nJHwZxrQjbrH3dJitEhmETm67hZGzZHew8HLUJp4dFE97X5V4VkXjOaINPEe0QXpKJkY2Jxb0opwG\n9aHwz0gwmdmc3QW241CadxZFWauhqecNLZM15fr4AGBCx4xciJ6sV3Sr6TUkrVPc3P6Wug0UWg+A\n7ahIi7xWzSXVK0m/oQ7BctVfHg2altR65LlbIYluMn24nYUa+s3R3Yb83y9JQpgkgdp/UwGCPvH+\nchrUaAkGN14itq7c7ALRQirCwmG7SMnFfk5UqZAaMizdy+vhz+5PbrIW+zkR5/fek2r8ajZmsKpp\nztOujPfo2KCGwscEJH/W+UN2ihZSccytTBDyYzsuRW0itN85LzzjHIVqoPNfem896++EXQYN/SHQ\ns/oETaM5KEhtymkv/DMKOmbHSDsLFBWX5RHH0PHuXM4/RcBgMuE9YS+mLyU6dYs38J7loxCNOM6C\nIqkQDgMjpQ6x7oIUMPMvgvGrPRhpbcDM3iITnaLQM9CBvbM1T3t2Rh487X3x6kGk0P6/kjMwsfM6\neNr7YqDrInmZKRfuBr0Sev/6ySeY3nOzgqyRL5Fv4kQ+74gWK2T2vIfDlvJt97T3hZfTHL73uAm7\n/g6e9r5SOxn8wutk7bgI2k3wtPfF01DRoV27l1/kPGvEc/FSM6oyuvraMK9WljnjwBryq4UUqgej\n5CsKf3ujIK0lmIw/nPaK6ig4bQzA5kePJe4fmfYLThuVN/lSxtirXX3woIti/2a6D9iCS4FTsGsN\nMUSJJoMI2PYD5PcsfzPz5Ka7IlKhQpKYeadA0x8uWd/cw2BmryvXtg/M3H0AIPcD0XtuzUffuvP5\nZklaNma/XMdWFNe+beGZqG6efRKbZ5OLSbz8ZSP2+wXj+skn8jBP5sjiefvWnS+VDSFxAXwn56Ul\nDKXv2pAZX5ywopC4APSsNRtMJpPQvnqS+hyWlweOLjZIT80EABibGijZGgpJKUh1g47lQ+hYXAKY\nxciX0SKZqlJQUoKouf+DBl3ydc16llVlaBEFP0b+j3XItl1/1sQ+PGgu4Zofu489RFDIO9w5/T9O\n2/6TYTh9+RV6dnbBvCndAAAbdt8Ck8mrWxDnrr1G22aOGO17FDPHdkIfj4YAgC377yDk/ieM6t8S\nowe14ui+eqdsMYlb92jfI8jIysflg+qbhVIeVIgdBjbMvFOsL0q+gPHLA4zURmDmkAt7Ke8s8Nz/\nO05a80Ry+ctGtPNsJPdxlIWGJh3D/9ddor5N2tWBtq4WZvgPkrFV8kOcit3lCfq0Htq6WnCoV11q\nO1Qhlv96jGJ2625836qQcZTN6gmBpGVf3P3E+XrutpESjffwyhuJ+lHIDk2DcShMbQtG0RMUpJEv\nZqaOXPz4Cde/RCHoUyQufiz7/C4MCcWgE2cw5/pNbfQF4gAAIABJREFUtNl9gNPutDEAa+4+QPN/\n9xLaxaHN7v0Yez4IY88HwWljANjLDmPOBWHMuSD4nL2IuddvEsYccy4Izpu28bRvfvRY4O7C95wU\ndLu/ANNe/YvcEt4Q4qkvd8DzwRJ8zIzj2//Nn2j0C1uJfmEr8T5DdHVteXNiOyv8NjxoLmHSLWhy\n7zFiB6b5dCA4C6P+dwSu9Wrg/jlfTBhWVqRswbTufHULIijkHVLSsnDn9P/Qtrkjp/2fsR1x5/T/\n8PJDvEjd7fpvxtGAMbh8cKpQp0eeMMEQS14R5xeACrbDgJKvPKFJzJztYOawYscF7RJw96FptwSN\ns73LACOFlYuXWRgOWukPQKOm7O3mYsmeMQCAOQN34PMr8TNkjJgl2YRcUYzy7YFRvj3EWt1WhQmv\npITEBSA3Kx8DGwqvgMpGV18blz5v4FzvCpknk52AkLgAMBlM9PwvR7+ioWvQBe52yBr250WSsaxs\nzXH4Ef9QLlXi6a0IeNYs+4M7YFIndB/WGjWdqgEAQs8+w/YFZ8EoJf7hcW5sR3qMGwnb0NOWVTtk\n/fSjWD/9KOZuG4kuA5qDyWTiw5NovH4UhUv77+MqSUctOyMPcV+S8P1LMqftd3IGXtz9hPrNakmU\n6KG0hIH4qGR8fEmcPL24+wn2ztawtDETWycAxH5KxPcvSYS2+8GvYe9sjVoycORFUT5DkqbhDGga\nzgAA6Far2A7cAJcGAIBSBoOww3Ah4hO+zWf9XLMn5POu38KKrp0wyq0xlnbpKHEYUFpOLp5Mm8TR\nzY6mCY+LJ4y5uRcrYcPyrp3g49aY0D7mXBBHdq57W4It7PMEA2u2x+1OG3Ai7i606GVTsDHPNiMu\nNwVX3FfDWEsf/cJWIqMohxBe1P3+ItQ3sUNw+5UEnYoOQZKGmyf+4WkL3DQSXYZuw9oFfeHesrbE\nupNSMtC0oS0AwJxrN/XZm+/Yceg+fv3JIaVHWY4Cm8Nf3aFF18Mop9sCZYoYOTgV0xsMJjEqRZ4H\nviuWwyACRkodkaFFNEIsKB30ap/ASGX98mL86qKwWg1bLswEAEQ8j8GmWSfwS0iqyBGzuouVdUZW\nE3Bp9ITEBSA/txD9Gyzke7+qdRWBVaClHVfRGBjrISQuAI+uvcW6Gcf4ynTs44YFO0bxvScrm2l0\nGkfXuT13cXjDNYGyljVM8Y//IDTrWE8mY7Nhjz+y5UpOmEx57OpYYex8L7Ts2kAmYx1YcxlBgQ8E\nyrm0cMSmczOkHkeZXNx/Hxf33xcqI26GJBqfAOTNs05g86wTpHWEX38H/ynC84Inx//GCgFhl4Js\n5naWBCEPnRv/4f/zS2WfUhzlHYIrkV9w6dNnrLoj/PMvCiMdHSy5dQd0Gg0murwVhsvTyYG3PsbT\n+AShfW51WgcduhYAYKQ9sXZKXG4Krnbwg5GmHgAguP1KdLw7F53vzcO9zps4/bl50GWzwg42ywo6\nn98rOtqaCA+ai93HHmLxhsukdhP4oa/HW7S0Xf/NOLF9LC7sI1dXAhAd+iQPxtR+iCPRHTjXxYx8\nsXcOutXYKGuzCFRIh4FmshE0vX6si+JIMNLLCoQx/04GzXQf/37arfk0aoGm1wfM/CvyMFUkri0d\nBU6c1R09Ax2VmGwpCnevJnD3aqJsMwAAg6d2wWA+xb4UxYnnKxU21sSlfcUuEqjqhPzYjll9tiLq\nbbxI2fMf10mcojnkx3b8+JaKSZ3WStSfQnk0DVmCk22no65xdTQNYWXca2HuiD0txnHus3nt6S9Q\nT6tby1HMKCW0dbVywYYmw3hkRz7ZjcjMRJE6uccXJVce9go+G//uXXH18xccHTJALD3lcathDf/u\nrOrCfh6ifzcuvXWHZ8yJLZsJ7cN2FgTBdhbYNDd3xsv0KJG2qDub9t7GvCndMM2nA04Fv5S5fvv/\nMga267+Z4Aw0a8h/x5XBZIJOo+HNxwS4udjK3B5+0GkaGFcnHCE/ZyI5T7wdRBNtOwxQQH2KCucw\n8OwAaNUD3aosVIlZeB8CD+5rt+LbTDPZrDSHgYJCXemh74ObefxXZEXhN2wHBs3uhfzsAjTpLHin\nobveKNzKl1+GmF2+RzE9YLTc9EvDtiuKCS+r6VRN4hX0dr0aC+zb+cYu3Os5XSK94toz4+kF7Gw9\nkHNd+/waRA8ihp5VxF2CFR8u4Ft2Kuf6RTorAxi3swAAfR5uwZUOxAQN5WW4uZPyEU1DlvBM9k+0\nmSa0n7RMadUCrgH/ooNDLdyMisa3+b4Y6NoAC0NCMez0OWjRNfAkPoHjVLxJZIWUPYj9jtoW5qhh\nbCxQd4Nq1Ti7F+617HFokDcAoF+Dehh99iJoNBo6Ozpw5B/HJ2D02Yt4lvCD0z7XvR2cNgZgaqsW\n2PNM/BTGonYL9n27jtPx0u2kKAp2WA+ZA8ujBrTEkGmByC8oxrUjxOJ/4UFz4T1hL6yrmWC3P6+T\nKorwoLkYMGk/6jha8tiwbeUgeE/YCyaA4MApHPk5qy/gdUQCls/qJfZ40uJpswMA8C79MN6kHxQo\nZ6rjiPbVFsNC11lRpoFWPqOIiiCWUZwzCBq2oFe9w18hVxak8k4Fuz/NeA1o+oOFjqGokCQKCnVH\nmsk82b6VwWFIT7KBeXXRVXHVdTw2VxI+oo+tfKrnlncYKgPsibt3zeZY6tKPc93Xpiku/3yN157+\n8Iu4hOCfrFTP5Sf/37JTMSR8B5qY2mNvy3HQpLGq13vcW4/0wmwAwNQ6XTHBkViVlz3OyFpt4Vu3\nJ1/b7qR8xIK3p/mOqyycNgZwHI3gT5HY//wlbozzkZn+jnfnCj1rIOo+W+ZIq7mwN7AS2U8dzzdQ\nyBWpk9xWqCxJgpwFAKAZkCiVLYukwRQUFYTueqPw+k4EehmPwT/tWGFxhflFAIDczDxMb8VaoR1g\nNZnTp6SoRKC+/lxyd06Gc8aY0HiBSFt2+R4l2CXOMwDA3nknCNdL+23m0cVXL42G/QtP45hfEOkx\ny5OeZCNxXwBKmbyLS+3zawj/r357i3Odlp+N2ufXcO4BQP2L6zDj6QVC/znPg3nkmgRv4mmrfX4N\nBtw9xNNeHgaTyZGx1itbWW5zdRtPP26dPg9Zn5V7SdGc/nklRRxZ16D1hLHZX/N7xtrn16DRpY2E\ncfi9D3my1IUVnsue2LOdBQBY5uotsJ+TUTW89vRHYKuJHGcBAEI7L4RXDVZo5Z6vvH9z2bpPfBdc\nP4HtLNzvqpoJBjY/CseIJorPWBifmypShttZCPohvwOuFBTlqXAhSRQUFLKjaVdXdB/dgZMiVkdP\nG1sm7cfDi89RmMeaRG2+vZSz0q+pLfhXSm5mHmdSrqGpga4jWAe6At9tENhHWpp1c8WPqCRM2TSS\n8zwAsCaYtfrWqEN9of1tnKzwNy0LPsv6y83GisSM+u2x78sTHP/2EsubsDK23UuO5gn/+TxgEcFh\niB60lG+Y0KH2w9DE3Ab5pcWY9uQ8drdhpVW+2EV0mmvnC/4cfbXPr8GSxh4AgCe9Z/GdrJfXOfnx\nWUL/6EFLcejrc0x0boOZDdwJtvNjffPe6GPrguD4CJyJfYOhDm4C34ci8K7ZDIExsglnWdVwIK4l\nvpVaj7GWnmghBfFoygS03LkPxro6ODtiiNDwJXnQwrwuRj/bhIX1h6CHdXO8z4jFxs/n0M3KDWMc\nPDhyoSmv4WHVFKkFGdjxlbcQY0xOMmJzyrKQXU96jloGVqhjbENw/GRJ/SWsUK7P/sqt7UMhXyqU\nw8AsegyadlvRghQUFKThrifBdgzm7J/EmfzXcq2JW/nH8TvpLxZ5bcCBN+sF6pI0fCg/p1Cifv5X\n5mO4w0ycit2BzPRsrL1KLISX8CVRaP+f0cm4cfA+fJb1B11DvA1Z7kq83F/T6GVpPtm7D3pG/0Np\nSSyMTPfw6OEXIiSsLT3JBjSaEXQNxyM/exs0tZugtCQW+kYLoWswCulJNqBrWELPcDaAYuRmLuOr\ny9B0BwpyAlFS/EHkLkdAK2+ciX2D/zXowDMZZ0+UJYEGGt6ls75Hk5zbSKzHo0ZdsfvUManKGft8\nZ9YO9eaIe/g8YBGp/uzwqn52rnANWs95D9K8D2mw0quisLGs9aogOT8Dnvc3IKQTcQeRHbK02EW1\nEhFUNzbC8xmTRQtKiKjQoI2NJwAA1n46jYAvQahnYosNjSfARt+CoON/b/Zge9QlTHD05KvT0dAa\njobW6GalnM8ZRcWlQoUkMf8IDjtipHE5EiUCsg6UCE+JRkFBASTFpBLCd3oY+ODDo0gETDmA9t4t\nCLKRL77hwflnAIAlJ2YgcPEZhF16gR9RxPz2orh9IgxRr2LECkdik578FwAwrUXZYczueqOQEJmI\nvwJSu3JzPesIPA3FP8dAo5txnAP219zOAhsz66/QN5rH11mQFGOLs9A3Yu2imFhchZnVB+RnlxXP\n09RuAV2DkdA1GAsa3YwnbMq8+k/o6PWHSdUbpMbzqtkAfv+FIWnRNdDMQvx6NVp03tXPBynf0Ni8\nBuefpIQmfhG7z9fMXzxjz2zgjt2R5MJAguI+cP6f31B5Gcmk5Wz8MzQNWcLzTxjXOs4DAKQVZAmU\nGVCzhcB7lZnFDYbhVqd12OY2leAssNnuNhXXO6yBtw21OKpqrLl6T9kmyJWKscNA0wOY+QAAxi8P\n0KuGEm4zcw8DjF+ca8bv3qxuBpPAzN3PJbcPNCNipgiKikvHHmWhMA9uLuC0sb+u7LB3A7gP/bLb\nuHcKbuayMiE1dCfWbGDL1GvhBABwH9AS7gNa8pURNLawcYX15ydzMmaHUH38dLGfXZ4Hq2k0yVKe\nCkNTq2G5Fg0wGL85V0amezlfV6l6E39TBU/e6PSqpMYs/S+BRpjXTFTRFhxqUv48Ajs85/OAReh7\nOxAMMHG120QAwNS6bdH22nbUNq6KI+7DSdnBJnrQUkwMP4PPGak43Yn1fSwsLYFL0HqesYX1/5KR\nhpMdR8HW0BRT6rZFSn4W6l1ci4H2jeHXtOxQb9/bgUjMy8Srvqy/Ie2q1ULDoA0I6T4ZNQwUt7ov\nKzrdWYOs4nzOtTZdE22r1kFdk+qw0TfHkndnhfbXpmuiiFGC+W9PYWMT8b53FBTqxpA9pxHxMwVL\ne3dWtilyo0I4DPRq78syJZXG8VR7JspGgJHKimPmdhaEwfhVcT8AlRVux4DbcaCgqHzIJlPel4Gs\naubmOmUVVvlNyIVN0i93m0C41tHQxGMvYkE1ceL/D7QbyqNPHJvK9wcAKz1jRA7grdxe3nZLPSN8\n6E9cfFDG2QVJOBL7kOMsnGn3D2obWfHIiHIYnnZfhaYhS3A35ROnbcoLVprIntUby9BaCgrlE/Ez\nRdkmyJ0K4TAAINRaEChj+RKg6fDK0oxAr/YajJQ6ZSlWTQMBMMH8O1GOVsuWsV02IuXnH5FyWtqa\nuBKhmAwd3OTlFGKk+1rk55KLR5+6rA/6jJQ8brmy8Cs5E2f33cP108+l0lPF3BCjZnZDz6EtRQtT\niAkD8owAzfzlIVqIi6z0QTA2Pw8AyPjVXR4mUagx/0aV7dLzcxYYYqZjD/7xCv1qNsPL9FgAgF+j\nQdIZqKI8vx+JDbNPIz+vSLSwEOq72WHuhsGwtjWXkWUUFNJTYRwGQLjTUL5+gqh6Csy/E3jaVLUG\ng6fzQrHki4tKOH2W7/ZB6y7CM8VIS/itCPjPFL8K4R6//7N31mFNfWEc/250g4oCdmJjd2ADdmB3\nt2CDIiqKLSiK3d0t2C3+bFAxsAMQke7Yfn/M9d12t927Yp/n2eO95577nndz7J73nDfOY0sAp2De\nofsLUMzeimrVtJKc7DzMHLAFX97Hye4sByl/MxDifwYh/md4bb4bhqC1Wx1KxymK/I0tB+vix1CQ\n/wJmllOVlmdgVB1/Y8vAqtheFOQ9Bosl2VeciIK8l8jJ3AOACTYrRStSt+rRHMY8Irc7b2VkivT8\nHAS8PoM2JTmB5+YGxnSqplJeRnyEz8idlMuNfv4Nozut4Z2bmhljxd6xqF5PNVWHlWHHnScIuioe\n5/NyyXQYG0rP0sTNtiTKqwAvGDAlp733OnIRV1/HEF5r41wRW4f3kjkmN8PTqst3sO+BeKVl0QxQ\nz7/9wrILt/Au7o9QO9F70JXsUTplMADKTeqZpSLB+k2ce5lht4OUDHkn7wBQuaYTNp2ZLvd9U3tv\nxKdo+YJHRVk6meN/HnRsMi0/Rop8HkQMabUcDCYDl9+uoETeuFFt0W9IKE4e4leVXB9yVcod6iUr\nIxeDWy1Dbna+SscNnME39JbvHoMGLauqdHy66F57AQryC5WWc/ndCjBk1G8p7vQTmal+SE8aAxMz\ncplhcrOOICNlDu+cG5TMndjb2l9HRsocpCeNhYl5P9iVeiRXvYdijjFITxqO/LynShsLVP2NH3vk\nB2s7C9kdVQBV70kVhL2XnJWMLqJSyCUIud3Rjxcg3fdeMADgbudFtOmlCqIef8a8YeQMJqrIyc6D\n94BQ3rk6/s/J0HvTQbwXmUBzqee/EVFLZ8BQQrY5ScYCANTxC5Y46U7PyZVoLADA3fdfUHthMF4v\n85KiOYcGi0OQky+5lpAgQ7cfJ9VPl9CJSs/Uj54NVmJPgBUPhrU/GGZ9Sd+q6INGnh+AvNwC9KxL\njy8sVT9EgTMO4V74K0pkiVK6QgnsvCK5zDxZbtyORsDKC7zzyhXtsWuL7PzuqkRTJy4nnvjD0lpz\ncqgrAlWfraY+vCVBdSVnXfwcNfXvjghJnxt3oi5YSZls26PEGEx5shcAZ0dgd/MJSMnLwuznh5BR\nkIOKlvb4kvFH7D4iGoUtBFvgka4plZ3l4XDoDRzYcE3daojBYDBw6W2gzEULuhGc7G8c0h0da1YR\nul7HLxiFLM53gGjiz71/aofmmNy+mdC1Q49eYvmFWxLvBYCj/0ViYFPxxd5WgVuRlJkt9V7u2C2q\nlMfDj98U3g3QgloU+krPtMAwA9P+KpilouQyFlRB9ItvtBkLADUPSo/qPrQZCwDw62siJXp2cK2J\n2+HzeC9NMhbcnedr9KTFs/ESuDvPR8wb6XUM9Oihmwr7NcfQ0BWalaiKypYlAQBZhXkYeD8EEx/v\nQkZBDpytnXCytezVWi6P3ZbSpSbtPL79Du7O8zXSWAAANpsNj+o+GvOssDAxFjMWAI5LERlEjQUA\nGNKMHyC/6vIdwvuIjAUAuO87kdS4AJQyFooKOueSpK1kZ+bCzMJEap/oF98wayB1udol4e48Hxej\nA2EgZ6Eq7r2qwt15vkatSioLnTtHdDG9TwgAYPiMzhg0WbuyiV1+uwIeNcgV4ZLG4JbLcfiB9Lz0\nugpVf+9UuRrq4UO0kk+2DQCOt55B2C7rPlGYDP5zRFt2F9bNP4HrZ56pWw254P4tqvOZ+GTRFLnv\nqbWQszJfu3QpiX2CB3WD15GL2PfgOeZ5tFVYPz3Kod9h0BCCF56Sej03O18lxgKXbjXF0wbKQh2r\nHIqOqWmpVLvXXqB1xoIg+zdcRU8XP3WrIRcMKUF08pCcmE6JHFWhiQHO8v5f1Dq8HhX2rxTbXRh9\n8wRh+8fUv4Tt3Db9LgV9yJtRSd24O8/XOmNBEHfn+Zjed5O61SAN9+sxrq3kWjAu5RxVpI1ucOvk\nfygsYFEuV7/DoCHcvRwFnyDJxW161VP9ZEyeFXx1bolq807D2rnHceOceEYGbSQvJx/uzvPhOa4t\nRs92V7c6emhm5sBQ2Z1IsOrAeLnvGVerCbxcWgHguyStf3kPla2LY/dwT1771+Gc36UnCT/wdfh8\n5BQWoM7RILwa6C10HQCGXTuKA53E6y7oUY7G4ZyFkAedF6tXERloilsPFcS8/gl35/nYfW2O1qRm\nnXH4guxOEui+YT8+JfxVavwqJVX7ObkV46fsD0/agf5VvXE8JgjD687D3hcrwDRgwrdPEAJPe6Nb\nqYm8JB3hSfwEPETtXLmrxu8U668sOmEwyKq/IA+amDpVnSu3J3bcgec46VuAX2N+q0gbybDZbLUH\nfsmLLj2gBDmx4w5O7LijFUbcgTs+GNZWeXeYjYtOY/rSPhRopD28fUEuU44s6japJPc942qKr0Zu\nffMIL/oTu9EMqsrxgzY1MER6Hr8OjH5ngV42vr/COzY1MFKjJtLR1d/i0Z3WYOtFb5SvKtndR1MY\n26YxzI3l/460Xbkdf9IzAQCWJsYIGdoDTSuV5V2Xln1JXfQsPUVsIp/2NwMAkPAzCRu8D8B74wiM\nWdIP+bkFWHVuNmo1q4L83AK4FRuH8KQdGFBtplD72yefUKNxZYQn7YBbsXG4lLANBobUOhHphMGg\ny/hP2Iu8HNWm0hRk99owqQZDRlo2JnVT/x+kR3UfuSaot8PnoUPXNbhxaY7szhTz4dVPzOinPVvG\niuLuPB/7b/vA3tFG3apIpIQDNbqFHXtc5AwGdbL77VNMqytc1NHbpTXWvbyHRY07kJYjuMOghxq4\nWZcEudFBM2N8Xjz8CN9R1NdR0CQm/ns+a/oCjq25KUa3biTXPbfffeYZC9oUsHzu12a4FRuH4o62\nOPRmjdC1UuWK48rB+5gRNAyV65SFZ2UvpCdnislITUzHLA++azWDyUBYIr3pfvUGgyAMc3VrIMbj\n2+/UrQIOb76BwVOIH8KejZeoWBvJrJx5BPPXDyLVlxvDQBTLcDt8HqV6CVJYyCoSxgKX4a4rNL5i\n99h5XbFz1SWl5XyN+Y0KMlbyuizdibhkfsxDVJD2POQEOX/gISVyRs5UrMr0upd3kZ6fi/txX3lt\nk2o3Q4X9K1HM1AxbXj/C+yHSUy9/GT4fFfavxDDnBohMjMUJt6EwMdA/EqkmvP082Bpr3rN1zZxj\nuHn+hbrVUBma6rpbtpgtfiSlYG34PbkNhoWnNbd2kizCk3bgR0w8b8fAurglsjNzMX/HOHh3WYnz\nO26h18QOsLKzwIlPwRJlqBKd+HWU142InbEZ7IwN/AajWmAWP0PY98/fDPQdtQWXj0yHibEhjIyk\nVypUhoTYZJR0suOd//iUQNtY8nBg4zWJBoMmcedSJGmDgU6jQBK/fyVjZHvNCrZWBVsCzqNDzwaw\nsDJVtyqE9B3dmhKDYVK3IKkP5HOP3yAuOZ1nJHxPTFF6THWxZdl5SuQMmNBOofsk7Qxw26fWkWyg\ncvswpMjRozjakAnp55c/RcpY4KKJRsOVWaMUdhsyMpA+Hzv8KFIhuaqibFUH3vHYxf2ww+8Epq8f\nis5DWuLakQfoNbEDtj5YjPsXnqNV9wZC99rZWxO2A0BxB1vERH5D9YYVKdW3SGZJYlhOAdPhA8fQ\nYFgB+W8kxkH0HbUFd89z3FboNBYAYHLPjULn4z3W0zqePAhWmeSiq36fdNC3oX+RNBa49Gu0GKM6\nrla3GmrF/6hwLvdyJWzVpIlyUOUiqQ1+1Xp0D8/GSzDObZ261VAbmvzcrrkgCBGfxGOj/qRnEhoV\n+8Z68o7zCgqFrn1K+ItlF25Sr6QMPIL2yuzzNy4FvctNw+Aas3m7BJ2HtMTlvZw6EzNDRuLTqx8A\nAGMTIzRsVxPD6szDjI6ByM/lVKI+8n4dGrariR5OkzGjY6CQ/EPRa3Aq5AqG1KTW5VondhiUgVnq\nGd9YKPgIGIoXHeFSUMiSWNacCjLTsnnHa+Yco20cRXj3UviPeM+6cDVpIp0R7VZi3y3N+kGM/fYX\nWRm5sjvqOPE/kpCcmA67ElbqVkWM1m51aCs2GBoegduvP/PSS9b15jz4RN2RDt19gfXn76FsCRuc\nnT9C6Fpd7yBEBXkjOy8fHfx3oKpjceybPoAWfWXRu4E/JXK2XtRcd6zJi3oi4vobvHn+Ta0xZHqo\nZXDLZcgQeM4WVbrW9MWl6EDZHVVE9HJvnkEwZrf0FPOClCvOX3Sp579R7HqdMg5IyszCr+Q05ZWU\nQde6zrgU9R5fE5PFjBvR+IrijrY48z1ETIagi5HgsZmlKQ68El9wNLM0xflY4mx1C/aSL1pHliJv\nMAAADMoChT/ASvQQc2+6e34Otu2/i3NhL7EreAQcS6kmgJPsduno2e68oGQ2m40joTdxYCM9VSmP\nbbvFcyE4vv22XPf2H++KUbPceOc3zj3H2rnHqVQPAJAQS87NQ1odBirdleYP34HI/z5RJo8s9VtU\nQduuLmjargZsi1sKXSssZOHjm1+4cvIJ7lyKVKkxM7jlcjRtVwOLt46Q3VmF+G4YQsnKG9GW/2S3\n5pjs1lyioQAALjODsHRgZzxbOx2FLBbqegchZGxPtK3FzyBU1zsIXRtWx8MVk7Hz+mOeEaFqWIXU\n5/fWNLoPaY7uQ5rLfV/st788Q+O/W2+LxGelLSyeuA/JiRkqHdOmmAXada+Pjr0aoHy1UjA0FPZS\nKMgvxLP7H/Ds3gdcOBShMr1YhSyNc0+KXu6NgkIWGi7ZhPxC4d2CGk4lcWrKEIn3LTl3A8ceRwm1\nP1k0BRYmxgBUkylpzQAPTGjXFD027Kd9LHXBYGtmURXVKpX/Eqy//QEon1ZV2UnHpehArPA+jPtX\nXkvsY21ngWOPpKda/e/WWyyeuE8pXYgIe78SrEIWupIo7GZsaoRzkQFS++Tl5FOeNnbj6WmoWqu0\n1D5JIlkHYj7+hu/iU7h0ygumptSl/1PV9u+CjUPQqksdpWTk5xVg5sAt+PjmF0VaSUaTHlRcetXz\nQ2628qvJkt6bNIOBqK+thSnuLpsk8V51GQxUfKcNjQxw4bXm+7rTSXJiBga3XKa0HLr/lhqPWo9i\n1uZYOKozZm08i8e7Z/LaW9erhDIlbRH28C2uhUzita+b3hOzNp7Dkz38vtzjQX77sdN3ICzMjNF4\n1Hqsn9ELi3eGY9ZgV3i0qEnLe3h+PwYLxuyiRbYgfUe3xth5XZWWwypkoVe9RcjPK6BAK8msPTwR\ntRpWoHUMPRqD0nnn9QbDP7huSaIGQ5sea9DZLHSuAAAgAElEQVSlXS2U/ReMPHyA9FUnuieI8j4c\nqNYn7P1KUjI1QU9FcHVbRdkOg6Z9F+Tla8xvWlPmXn63QuNqZ1Dxf1a8lDUO3hU3qKUZDAWFLDSc\nswGiP8fcvnW9g+DTpx0Gta4nJE/VBoNHDR+wWcr/PGuiwagOqPi+qcJg4E72AaDP/D04vXKUWDsA\n9F+wF4eWDIPRv5X0QX77cSRgOE7fjkIf17pC8ob4H8CBxUPB/PcbQCSPKuj8LVbFd/nQpus4GHKd\nFtlLt49C47bOtMjWo1Eo/bAtkkHPYhTGSb28wNsDwwc0l2ks0I0iP0xU/5jRYSwoeo8mQ/cDShWf\nV4WqpRD2fiXmrSOXeUpePKr70CJX3fz9Lb+/bIPZGzCwVT1EBXlLNAKszEyUVU1pqDAW9Gg3KelZ\nEq/9Tc3iGQsAkJDMcQHq41oXy/dwXGW3zuMEqsYlpuG/198Q8eorIl59xcaZ9NQxoeu3WFW/wwAw\nZGpHhL1fKZRFkSoWjd9DuUw9uoneYADASuwk8VqDuuWQk6v+oDdlfphUORnXFj2TkjPFXgeOUJNb\nfu4weoqnqPIBJYhrNxeEvV+JSQt7UC67X6PFlMtUhjIV7dU2tk8fxVKMqooVXocpkXP5rfKVtaki\n5CM5d8jZkeIB5kRtuorrZE7tmJtPYxC+QXIw5Y1Nk9FkNCe7X3jEW9zYNJl37ezdV+gyYysaVudU\n4b25eQqmrz+N5nUqoHmdCsjMyaNcbzqMBXX9DgPAvlvzaBm7Z92FlMvUo3voDQYAYEv+oXoe9R2d\nPYPRpscatOmxRmI/Oqno7KiWceWl/3hXdatAmj6DNom9du27h2P7Jykll81i49XjzxRpyUcTdmB6\nDGuB4ONTKJWZmZ6Dn1/+UCpTGXaEz6JEzuYl5+S+Jzef46+88dIDSnSgmrthUbI7kYDB1Bw3tGlV\npMdY6eFwO3Qq2kwMwYsPP2FsKD29eMROLzQfG4wMEQPAZ0RHJKUJ70482TMT7adsRl+fPXCp4kSp\nzlS7WxsaGWjE7zDAeR70GEZdMcy83AL8TaA/k5Cu4e4wGT8//Va3GiqjaBsMhbES6y9wuXt+jtBL\nHYSen6G0DM+xbSnQRDqCWZAUhariXtEvvkm9fjt8HuGrVElrpcb1qEGtm035f25BmoKzS1nK9dHF\nnOgXD8uX8aSkjSUazw1BXe8gXIuMwcQuzWjSTL107N2QdN/ZkQMQk/FaaCX/zK/d+JX9BfcTw3l9\nTvzYhvfpkTjynbMK/iTpNrZ9XobLcUewMWYBAOBZ8j3MixqMZ8n38CTpttAYgkT8vY6f2Z8R9EH+\nOKajP/jpDedFEWd00Wbubp2GWYP5u2CS4g0MmExE7PRCv3YuQu19XOsS3nNz8xScWjEK9naWYteU\ngUqXx26Dm2tckP6khT1QzJ66FNVDW2tOmlVtoXTlkihTuejUk9GJtKqyJv1kUTZDEh2sPUxNLt3R\nc9xxYucdSmQRQdUk8uTTxZRsIy+ZtF9mJimq+fw2llJ5Xfo1htfyvpTKpAqywe9k0aQUf0cj/DCw\nufIrzz8+/0HZSnwXJ2kBytcXjxNrm+zGj5kiuleVAc9U/V/PWukpuxOAgGiOK8u2T8L/Dw8Sr6Ct\nfTe0KsFfnPAsOwEAsONzIAaVm4pjP7YAAGLS+XU1jnzfhLUusmvbNC/eERtjFiAhV3pcGxFPk+5g\nYNnJmBs1GKvrUuO+pUcxqFy4WXdkEmo2KE+ZPCo5dH8BYr/9xZjO1Hg/9HTxk5nZUA+fnQ8Wq1sF\nlaITBgMVMMyHCZ1fv/MWHdvWwP5jwiuFqg58pjLlmWO54oj7/pcyeZpMmkjaVFUwpZd44RhFqd+i\nisYaC1yoNho0BZtiFpTIGe++TmOMIG2DxS4knOCvdTmGmwlnYWpgjhbFO0u8n4xxQMTsyAEK3zu5\nymJEpz0Di10os682QVfmIjqhKjjff8twjTUWuDiVL45x87tix8pLSstSdZHCw+sv48Dqi7zzsHjh\nImTuDpPhs30M2vRoKNQm2NfdYTLC4kNxbOMV7A3kuIJOXzMY7sNaSR3P3skO+5+L7xpx5Y1u5o+4\nr3x3WUHduDoQ6SxInyozkZ2RI3E87liC8hq1r4mAw1PFZG2YfQjhB/nuqjbFLXH0zWq5xlOWou2S\nBIBhPgJMhw9gWAuvRndsWwMAcPVONC9DkrqzJCnL7mv0uFRVqOZAqTxjCusgSEJS4TZpBd2k0aMO\ntUFjgXvGUiqPLqicEGuS8TF1cW91q6BzyOOy6F9rG8clKf0Vdnzmu0p8yohGCRNHpOen8toOftuA\nmPRXaGjXGgAwrLwXFr4eiajUR5gXNRgA0L/sBMyLGoLIlAgseCW9aGBOYbZCAc2VLGpg95fVWONy\nVO579VAHmRpBZKhU3RHN2tNTF4Jq+oxqTZms9T4nKJMljbPbb+LA6osIiw9FWHwogi/PFZo4A5zJ\n+Irxu5CdySkuWvAvzovIsDA0NODJ2jjnMMa1XCLWR3C8nKw8sfEE+667MIvXd96W0WJ6STMUuDJq\nNKwoczyu0RAWH4oLP0Lw9GY0En4mifUJP/iA1y8sPhTj/PuK9REdz8OJ2phDnTAYmA4fFH4xrBdI\nlX0wdIyK3oU4VWQUH9MUtlzwolTeBJ9ulMpTBVQW2NG2Vellu0bL7kSSS0f+o0yWMnQd1JQSOeM9\n1lMiR530a7xEdicSyJsUYa3LMVS1qoNxlfgTwMqWNVHXpim6OPBdm4aWn4GqVnUwqBxnVc7FtjmW\n1d6LujbNsOqfa1CTYu2xqu4huNg2x/I6+4TGEB3T1MCMsJ1IP1GKG5cCQ/l053qUgKrq2pvPKR87\nqEqoem5cO/2MEjmy2LbopNCk27lBBQDA5f33hPoxDZjoU5njftm97HQEHp9OKK/v5I68Y9sSVoTB\nyILjHX8n2Y3rwo+NsLPnxzO69m4k5Z2Iww24X35smszxBHUyNOIkFFgwIIQv699umaiB0qE//xkl\naTyq02DrXZI0mJDT02R30kE8BjZFiP8ZWmQL7iAoupsgCpUr49pmLABAw1bVMMKrM/YFX1Va1qbF\nZyibrGsCPz4lqFsFpclMy1ZaRoWquh8YeOfPRdmd9NAKVb/F2vg7DADHHvlhQDPlYxD8xu1BwI5R\nFGgkHaIV922LTsJjOH/H5NKvTXB3mMzrW79NdbF7ipWyETrffMMXQ1zE41gk7SiIYmik3NR4RpdV\nco0nSNW65RAT9Z0vy321lN7KjycPOrHDQCf7j0Vg/7EIbNt3V21pVTUZp/LF1a2CRL7GiK8w3A6f\nh07taxH2t7E2o6zKc1Fj4KT2lMmiaoVQWTr1IZ/RR1fZu/4KJXK2XKQnQFvReAM6aGvfDT41qItj\n0iMfyYnplMg58cSfEjnqwNqOmvirp3ffUyJHFkwDptirIF88Buj8d87f1blvGwjlFBPJbihqQEgb\njw4+R/+kbLzPb37A2ES6mzaV40lDv8MgA8G4hQkj2qhRE2ooU9Ge0rz3S1WwCqEoLx/GEK5sLpjb\nDdduvqHEOKDyh1VbV7W4lK1kjx+flf9uda3pqxGfxcwVnpRsz+8LvooRXpIDdDWZY9tuqVsFPXpI\nMbglNQGeltZmQuedmy3F1UeLCPuy2QBDwzzQjE2NVB68rCiXfm0i1a9Hueko7mCDnuVnEMYOxIsk\nc0n4lSTWR57xlKW8sxM+v/lJyXhlqzrgq4wMjFSOJw39DoMcpFKwNU+W8jRt4XsH9qNUXunyJSiV\nRyW3LryUeI2qnQS/cXsokaNNRe8ksT2MmqJngOqzdUjCQmTyoAhHt9ykQBPtheuXq0f1dPHaSrrv\n2BVH0Xj0ejQeLT3u5tAV1fi4q4N1R+Ur3KlpxgIAytKihh17TIkcabx//lVmH66bzcGXnArxc3sH\nifXJSBUuCDi1A3E1eTLjUcHGK9S5KQdfnqvS8aShswYDK9EdrPhqUl9k4FZ4btNjDRYEnqVZaz4D\nJrjSIlfTU8RRScybX7TKT4xPld2JJFQUvdMEVuylJrtTTxfV1tCQxEmK3BO0sYrq1w/xlMjR53XX\nDnb6DMST3dJTqH6J/YvQU/dVpBF5nj+IoUROzfrEz8eDu+6iWxvhwmadmy1F52ZLxfrG/kyCp9ta\neLqtRe6/hY8Lp5/Co9UywnvWLTuPHu2EJ7jcPuOHbMWIvpwA2Gmjdwn1iaR58rtx0Wla5XutHwov\nj9VIS8rgtZ3bKbyjyU0mwt1VCIsPxauIGMIkI5vn87OTpadkEhZU8/IQjgcQHY8qDAw5U2vRmAJF\nxjMxMyaUtWrSbpnjTWxL7W+vzrkkyVPEjdtXWsE2dVV3bte9Pum+f/64Iz8vEk6lYxEfVxMOjtE0\naqYaLK3NkKHkjo60DAEz5x/F+pUDxdpd3VaR3n0Y1pZ4FUNefDfoTlXYes2rqFsFjWRo60CNcLOS\nh0ndgymRQ5efsCKc3Xkb5/bcFXNhkETYD2Kf6aJKRafieLBd87IHLRCZTCvCnuuSV3KHjmmDoWPa\nCLknSXJTmjpqJ05fE5bVvU8jdO8jnmmnS4sAXHnoh1kLe6B3x1XYdWwKihXnVLz+HZeC7Yf4hVtD\ndo/B4B7BOHyek5VwzuT9EnXQhho5XQa3gH1pOwyoyf+sqrqUR8+x/GriPcpNx+XYzUL31W5aBT3K\nTRdyTWrUviYcypfgTZinrByIbiOFXcjD4kPx/M5boUm16HhkEJ2US6rJEBYfihluq5QeT5KsriNa\ny+wzYx21cwudMhhYCfKlvuLdF19NotHQpscadGlXC2Wd7ACovnAbGczMesPePgwAUKyY8j+cmkC1\numXw/D41q0ZEPH/5jTbZ8tLarY66VdAq2Gw23OvxH5Th/1aw3Vz8MHRSewydKP8Psh560JR6Io9v\nvIH/yO3qVoN2UjNy0HE6Z9JSzsEOxazNha6/+PAL41dyAsWZTAb+20k+GJ3rqlTM2hxXgieKXRPc\nnQg6egeHrz4TauPeTzQu935uH1k7HXTgULYYJXIy0nPg0WoZLtzxhYEMY1lwUWvbwYmYOnIHDl/g\nfDalHG3F+if+26lMTcmCpZUpJfpKI/z4Y7j1b0Kb/AZta0itZ0B0bc058e9GamIG+k7qiL6TOopd\nk2c8SWPKc12QDTIWH4lkbbxKbOjJkkW2jzLojMEgurPAsAsFw0TKl4edD9ZvfrYcaUbDAm8PSnSk\ni/z8SN5xaupC2Je8oZJxGUz6HDiru5Sj1WDQQx9UrW65O88nXJV3r7dIyEjg4uXfC8FLzlJuMFD1\nfmK//dXorGKCULU6Wb+FZuw4FQVjAQA6Tg8lnKQDQOC+6zhzJ4p3PTYxFZ2mb8G1jeT89rn3SYqL\nYLHYYP57Jhy++kxIrqBBEZuYKmZgAMDS3VcUMhQ0bSWdu+qfkZ6DxXOPYe0W6YUCuXz7+gflKthL\n7XP4gjfGDd6Cb5//SNxdoJINfqdpNRiKCu9Tf2PywxO44S5ewVmb0A2DoeCT0Kk0FyMeDCMwHT6A\nldAMYP2LqM97BhgLp1JsULcccnLzYSojrZU6MTSshNhfTgAAaxv6f0S4uHZ1oU22QxlqVnvowm/s\nbtmdSNBtsPp2rHren4pzrVSTNYIqZo3cKfFa+64uCF6iujgjeRnTeY3WuSXpAv1q8SeURdnF6Myd\nKKyYxC+K6VTCBikZ1CTysLYwRYdpobi1mV9Z1taSkzAgcN91ob5OJYhTXi4a3YUSXRShQ68GlMni\nZk6ytDKFkbHwFCt0XTgmC8SrDRzeEkmJGShWwhILvA7LNAJK2FvhGwWZ6PRwqHYyAB/6KR4vNy3i\nJEKay04k42xTSiXGwvnvr9CjHH0eCzphMLAS3XnHpIwFAZglH/F2J1hJg8TuD142QHkFacbKahas\nrKjLUEOWfmPbirW5O0ouRR4Wt1niNVFKV6Q3+9Icb3exeIVpsw6Rvv/pPfm+Z5KY4t+TEjmqJjz+\nPtwcWkm8PmlhD2xZdl7pcR5cfY2WnWvzzhN/p6IkwVY9APz5LV8Q+s2E02hfsg8AYG6kJ2pYN8So\nisSrlaeeLUHfhtqbn10d7LulGSu/3MJzRdFYEHVJ8tlyET5bqB/nRshkvjvR2+/o41qXd+3igzcA\nIDP7kjqZvaq/xGuCk3gyq/qCmZNWiMSnTRZJbjF6cge5xxk8sjVGkthFHTylAw5vVo23gToRdetp\ncG41MvJzAYBnDJz48gILnl0Uaqt2MkDoX9H2jk7OCG3RX6hN0v2ibQAQ3WcBDJlMXnuX0jV4xkW1\nkwEwYDBRyGaBAeB9Pz+hewHw2m/GfcDEB8cIxwaAGbVcMaVGa17b7MdnhfpSiU4YDMrCMGkNdu49\n2R1VhLxpCLOzz8PMrAcA4Hd8I5RyeEqHWmJUqu5I2C6PYSAJ22KWSsuQRtcudbEmKEys2nNRK9wW\n+vEI8lkFmFFtGACgkM3CwIhZ2Nl4KWyMrAAAuz6fQsTfl1hQcwIqWpTB5GcB+JX9G1s+HpW4Q9Fj\nWAtKDIZl0w4Krcp7+feCz4S9hH3H9tggl5vc9fiTaF+yD+ZF9sdqlxOYG+kpsa+5pQlpudKY3GMD\nQs9rXtCoIGO7rKVETkknYsNOj+pIShNON7lmag+4NqDXTWzympNCrkUdG1dDWMRbWuISiIp86TqH\n994jZTAMKSIGgyAnvrzArlaDUb94GWQX8lNzL3h2kTeBbnUpGPe7euHDv0m64MRa8LzOGeGkJqIT\n8A/9/MR2GAT7NDi3Gs97zhXqK8jbvgt4+gjez9WBawBMfHCMJ3fyw+M8I0bQeJhSozXh+6EavcEA\ngGEdAPYfV8Jro2fsg4EBA0EBA2BpQc2kQRaSUrtJgsngT65t7ajJbKIolWuXxZvHn1CrSWWl5Fha\n0x/QpahxcPP8C0rGF1w5VxeTqwzCh/SvuBR3B10d26LPg+k412oTPB9640QLTr7rMualsLMSf0Uj\ntKGfzB0GuqjfjPO96tNiGY7f8eG1d2u4GGw2G+EvyaeRq2hZAwDAhuRsWlTz5X2cysZSlF9fE5WW\nUaaidF9sPaqnX3sXzNl0XmjiTmXhsUWju+DOi09i7UvHuSMs4i01g4iOOV75OjiGhtpRJ4SbajVo\nO7liqVRlJ8tMy6akHo0qCHgZjpxCfspV7uS5gxM/xjUhW3pFcNGVfnlwv7oFn9ISUcbClrfLIYv6\nxcrI7KOMTlSiWwYDQ8FJpoGTxEsfvyTg7vk5yMgk959PBU1cq8vVPznZGw6OnMDnlORpKOVAzYRW\nET69/oHZPYm3nuXZedDkH6g1c45RImdhyFBK5ChLNasKWPBqA7o6tgUDDPR+MF3oeqdSLdDz/lQc\na74OpgaqMZqlER4ZgLULT6Fbo8UAOIHPHbrVw5zlfeWSM64S52Gy2uWE0L+SWHdkEmYNosGfQ4O4\ndOQRJXJ2hKveRVIPcHXDJJ7rT6XSxeE7gp/4Y97QDhju3ljINchvVGf0aM1ZuBBs5x5P6dcKIz2a\n4OzdV1i+95rYdUHjo3urWmg8ej0v8FkQwQxIAOBYwhrnVyufQevFw49Kywg5O112Jw1AFUHORKz3\nPQm/TcPUMra8+Lp0we/sNMyo5SrUbsggbxTKs0Kflp8jdG5mYIQP/fzwPSMZHcOpiw8kq5MRk17j\nV7cMBnaO7D5Et+U9lHo9/9+2p8+yM1ixsLdCY8hDRQmuPpKwsBzBC3q2tJpGh0pyQYVLkqx0dHqo\n4136F4yqyPles8HG2ZYhQteZDCbOtdqEARGzcKz5OgDAr+wElespyOxlfTF7mXwGgrJQVfTw0Kbr\nGDJVevo/dbFpseYGjSvKyTcr0a/WfAystwBHXy5Xtzq0YmdlJtX1x7G4tcTr0u7r1aYOerWRHUwp\nTYai1+imQlXxAl96+Dy89kbdKpBmYKUGaHNpAza/5biYy5poV7G2F4ph+CASSyDr/oiEL0JuQK+T\n41DtZAB8XTrz+nS7ug0f0jjPy8bn1+JJj9lyvaej7UbxdHrQzRv2ppLdtSO6zxSLyaASBputuu14\nOZBLKcGUqvIGPVNxvyBUpHg7F7UMxib02XJUpaEjTHlJUdAzQI2e8mal6dxjHa6el746Sufnp0v8\nd+stFk/cp7Qc78B+6NxXsRor0ihkF2D1u+lIzvvDi2GQtcsQuvQcLhyKUHpsTf2/p+K73bxDTSwK\nHU6BNtQxtNEi/P2dCmNTI5yLoSZGgwrU8RunK/z4/Afj3dcpLUeXPz/9s0qPAEo7H+rWDgMA5EcC\nRgqm+2SIu1scOvkfhvRryjuf6XcchSw2NiynL3uSvMYCd3eBi1PpWCrVkQsqdhfUSR5ByXk9itG0\nXQ1K5OxafVnIYHhy7wP8ph6Q2J9bo0EWS9+MxZLae6UGO4syeVFPSgyG5MQM2JWgN7BfXlKTMimR\noy5jwb2s7GDyvJx8Uv24FMXMStrCZh3cDdOjR5PRCYOB6fCBnxr1ryevTRasv54cA4Mrp9QrsT7b\n9t9FVnYeDpx4hLvn52DkoBaoW7MMfJefQeAC+t2TyFCqVAQMDKlxl9BlXN1WwdbGHGePTRPLjqRq\nGFRFGhYB0lL4mV4e3IhGwMwjuPxiCZhM5dzWJlRejKzCDADAy5T7MGIaKyVPHga3XKZxq3YDmysf\nWCdvhjc9ehQl8j/xAGs9evTQh04YDADAKLYH7CR+9gCuAcGwGAWYtAfDoBzASgY77zHY6YHiAgwr\nEsotX7Y4xg1rjTfvOav2VhacwOqHTzTnxyo11R/Fiu9VtxpScXecovbdB9GsSERZkmQZEo9uRlOi\nS/ch6ivYps1sCrwAJpOptLEAAE5mFXA/8TKMmMZIy0/B8jrk6nBUrV0GMa9/Kj2+LnKO5O6OHj16\n9OjRLnTHYDBuCYbATgMXduYeIHOP1KAIpv1tiZmSalR1RJsea9C8USX0HbUFf/5mYECvRpg9uTNh\nf3WQk3NVyC1JnS5J2k6J4tLdRA5toiav9fAZnSiRI0p1/yCcmjAYtZzIBfJV9w/CuyXeCo/3Oy0D\nbdftwBv/GTCgYBIvi7IV7JGbTd33u1UJD7Qq4SHXPRtPTaXEN9ijug8uv1shu6MK6FrTlxI5VKVy\nVAS9+5AeRaDKz1+PHl1HZwwGLkwCo0Fq/1LPAIaVxOu+Xu7w9XKXeF0TULeBIC3QWVORVIPh5CHp\n7+Xjm1+UjE9X2lh5J//KGAsAUMpauoHVoFVVPL8fo9QYAMf33NjUCKt3jYabCz2FaVa+nYr5NahL\nhScLTUo4wSpkKS0jcI/yaTL16NGjR49monMGA/AvfoGdB9bfPkABQSwD0wbM4mcBg9KqV44G0lKX\nIiNjK+9cHQaENHejnKw89K6s3MS0KJJXUIi6ARsBANGLvcD8F/dQ3T8Iu0f0xeh9pwDwJ/3V/TmF\n1kRX+7ntAGBiaIhIv2lC7YJGg2BfY0MDRPlNF2vfPrQ32lStQOo9tOhYixKD4dqZ5+g6iJN8YN3e\nsXBz8UMlZwc0allVrO/oGeR2/87+2iV0npT3m7Q+p18sRZ/66smLTjXP7iuXGY5L/Rb0VhDWo0eP\n5pISW5Z3bOv0Q2Yfsv0k9Un73RKswu9SdZJ0r7xjkblXkfu1DZ00GAAADGMwS1xUtxYqwdS0M6xt\nOJOXjIxQNWsjjqm56oJJ5WVNcDhu332HcuWKY8WSvrC1MVe3SjzqBmwUMgYEJ/YtKpUT2x14t8Rb\naGIPAI0CN+PlwmkwNTJEdf8gnrEgqT+3nTumaBuRLtLo0KsBJbn9b57jGwyzRu4EAHx+H4/P7+PF\n+pI1GB4mhgulUX2efIe0PmYUfaen9QlByGn11k5ZOGa3WsfXo9kc/PAcfo+v8M6/DPUh7Nfo5Ab8\nzcmS2U+PbsI0KAVWIWfRhc3OAUPRQroyEJ2kk+lLdiKf9rslrEs9UEgvW6dvcvVPiS0r1WDSROND\ndw2GIgSLzU+HaGExUuXjkwlmnrF2iAo0IQ+LxUZ7j9W887fvYtFrQAjcOtXB/Fny+bRrMp4N62Dd\n9ftY4O6qlJysvHzMOHYRz77L55JlakbNxDr6Bf/HmGzaVFmI1lyoZlVPrvvnrh2I1bOPKqUDVS5u\n6mY4SSNNHST8SsaIZovRpnt9+ISOlNmfm3ZVHxPBwe/xFVgZmeBOr0l49oc42L/BiWAk52bjSKch\ncLKwxrJn11WspR51Y2azCplJIwEAOWmrYGbjL/smdh7AUP4ZYWzWAwbGzcAq/IncjC0QLeWVGlcN\nNo7EO6mmVt7ISecsjsnasRAkPUG0+KbuF5vV/XdYBDA17QAASEhoj5Rk1bj+MJjypQV1G9KCJk0U\no73HatwOnyf2Cr8mnlpXm5nXpQ0OPHoBQLl4hUuv3mPHsN54vmAqVaqpnaAPc4TOh5aXr9psu+7y\nGRiSuHb6GSVyFOG/W28pkTNocntK5NDBiGaLAQBGxuTWx7zWDAIA9KwqX0VWXSZqwEzYmZihYxlx\nF0AASM7NhhHTAM1KlUM5S1tsb9uPVn10xdDWJYz+zUMAIDdzp9j1zKQJYm1pCW3E2tisVN6xqZX4\nb7Kt0w8YmXrA1ukH72VutxkmFsNgZu0DW6fvYqvzbHa2RL1FxyDSk4jCgve8Y8sS50jdo+3oDQYd\nomTJm7Artk0lY8lbR+B4yFWaNNEjC1Mj5TcS7338CgCYdFj9P4xsNhtuLn68Fxc3Fz8c3HqLtBzv\namswN9JTrsJtdLDeR3p1aTqhohJ32Ur2FGhCP7ODh5Lq12VgMwCcQHs95Cluqjp3zo/R+kyA2kZ+\nzmUAgJFpJ4BhBABgFYobftlp/B1kUyviRS4LEvMceVx6jM35zwCunvJgaNyAdN+U2LI8VynusehL\nU9FNl6TCX2ClzAIK3gJSLEsiyBR80zRyc27CxFRzV/gAYE/gOfSfpjluC13dFKwGrkIEdwQkHUu7\nB+DEGzycO5F33n3zflyYMlxif0njbI97NVkAACAASURBVBzQDQCwZXBPmWPSjXu9RTy3JEGDwcu/\nF4KXnMXQie1IyxJ0S/KNGozAuofl0mXz2emY0mujXPfoGtvDZqlbBT1yUPGgeCrfqbVbYFa9thL7\nCJ5zYxNE+8RnpfPaROMX+l89iCcJwhM4ohiHigdXYGmTLlgkEDMR0roXupUXrhr/8Y2+Doq2YlFs\nNwrzo5H+pwvh9bysYyrWCDC3XY+8LPILN+kJ/GeMieVEKT3F4RoymhqnIA3dMhgKPoCV2E3dWqic\nlBRfmJl1A4PJSXFpZeWl0vGTE9JgV9Ja4vXc7DwVakMOSwsTwiJttjbmQu2S0q9qE8Us+ClcLUw0\nNwCdDNyAZyLad3VB8BL5Aqzfp7/Ers/LUdGihtzGAgBUqkFcv0Ve0pIzYW1nQYkssvRvslSl4+lR\nP1kFnF0T0cl6xYMr4O3ShpeJTfB6xYMrCCf3on0czK0Q0UfcZTEzPw9PEn4I9d/46r5EuYseX5EZ\nMP3zS6LU63o0GwOjmrxjNisFDKatGrXhYGjSEgW5nIDnzKTxsCi2XWLfwoKPvGMz6wW066Yp6IzB\nIE/tBV2jhP0JGBiobxtrsIsPL/BZW2oyTBrXDpPGkV+J1lbeLfHG0N3H8f53Iia3bYqjYweqWyWl\nSPydipKOxA+XP79TCdslEfR+Nryd14oFP8uL59i2OLGTfIYlIgY0C0DY+5VKyZCX9NQs2Z1k0Lxj\nLQo00aMqah1di2HViN0nKh9aSUtmo9rH1om1Ta/TCkGR9wj7k9Hh969kpfXSQz1Gph5yu/SkJbSA\njUM0gSzRoGJ6sSx+lOcOlJ8TJrFfXtYhSsbTtt0FQEcMBnaOBP94g7KAgaNqlVEDv+ObCp2rug6D\nYJYkeyc77H+2TKyPthgSqkDe+A9lOTi6v0rHoxMv/17wmbCX8NrYHhvkCsb3dl5LiU6j57grbTBo\nK4s2D1O3CqRZNGIblu6THdC4fekZFWijPsbUaKKWcYlcoRQlOzOXMll6qMPcdhVS4zkGQ37ODV4g\ndHbacon3sFnpvGOhlXsbcQ8AYQqR/qcbCvNfK66wFHIyQmBqKZ7yOiuFXxnc0KSt2HVdRjcMhhTh\nbVBtjENQBnVXehakY/+msjsVcQwM9bkGFKV+s8oAgD4tluH4Hf5KZLeGi8FmsxH+Ur6Uq3MjPVHb\npilep/4H15K94OGovvS/PiN3YsVe1VRL3rDwlErG0QSCz8+EV4/1eHJTfBWTiDM7bgMAZgeRC5LW\nNswN1eOWGNmfulin7CzNc3PVAyHXopy0QJ7BkCtQWJaLqdVs5KQLL9rkpPEXG5kGJSWOQ1dgsLG5\nJy+WISdtNaHBIIhl8YO06KGp6NzMpagZCwCQnX1e3SrwGD6vO2E7mVoNRYWC/EKVjJOZq5sP1fDI\nALRoXwPdGi0GwAl8butWR+76DD5Rg7Da5QSGV5iN1S4ncDtB8QJzdZpUUvheLi8jPsruRBHhJ54o\nLeNSdCAFmtCPc/3yvGP3sjOwdxVxQc/wwxG8GgwA0KFfY9p1UwdBUXfVMq61sanYS1FYBSwKNdND\nB4UF4nMxU6tZAsczxK7n59yQIbWA0Fiwsg8XSrPKfcmLue16qdfZLAFXOCXrR6TElpOYJUlTMyXp\nxA5DUYfF0vtz6hFnQOgRXPQeoW41aGH2sr6YvayvUjLGVFqAuOyvcDSrgF/Zn8GA4q5iqw+Mh7vz\nfNkdNYAfnxIokcM00J71pv3/LcHwppxCUsc2XcOxTdek9g88PFkVaqmc7W37Yfydkwhs6i52bW0L\nehKGiGY9ogIzCxNKYnD00AEDooXTuJgqmZAlJbai0DkdcQCCwc+ibkmp8XX5YzvGKDkSG9alHoFp\nUFpJOapDxwwGA3UroBZSU3yQmsJ3z1C1i5K74xShoGf9boLi7LjzBPsfPIeliTECPbugfjniLDyX\no95jydkbMDM2QtDgroT9Pv9Jkjne86+/MGHfWVQpWRxHJkkPiL4Y+Q4+J8LRqEIZ7BlLb2EmVVDF\nsjbvuLRZJaxyOa6UPAaTATaL+EFJFq/+mxF8nN54n/Ee0lfRdBF7J1uE/dggtIMgCV2u8NypLKfw\nmmg8gWfluuhbqQ4tYw6r1gBvkuIJYxgUDbK2sjXTGwwaimXxo8j4O4B3npMuHvQuSnaqL8xs+DuW\nFsV2i/XJyz4tdE5X0LBg8LN0tyTlF0y0yVgAdM5gUI2rh6ahSTEMehSnpm8Q7/hvRhaGbD0G326u\nGNqivsR+6Tm5GLL1GKIDvQmvCx4DIOxnbmyEyB9xqOkbhOdLpgkVehO9HwD++6ze7A4f3vxCtVri\nP7RuLn5o1bEWFq4jnwnK79Vw5LL4tVqUyZh0LjIAPeosVPh+AHgfqR2ZM/Zcn6tuFRSCawyc2XEb\nV45G4PvH3yjpZAfXXg0xcl7RSMn9ZagP4rPS0f/qQTAZDBzoMBBlLSWntSQzqZfVZ2UzD8yp54oh\n1w/jd1YG+laug4UNO4j1I2tAWNtZIPbbX1J9pXH+1TLSFcCVoXGYL564a4cLn7IYmrTgHbNZachJ\nD5Z5T27mASGDwci0k1ifnLQ11CgoJ4UFH2BgWA1ZydLjGYoCOmYw6FEX7o5TYGdvBQAYXJfYNeNw\nlGrTRmobgpN5gGMMNF0aKmQw1PQNQq3SpXBiymCZcmr6BonJ5LLs/E2xMQ8+fIEG/iGE90iSo2oW\nzziER7ffEcYrLAsdjoWT95OWFRLjg4A65PvLgqqJx83zL9C+R33ZHRXgy/s4SuQ4lC1GiRx10Xuc\nK3qPc1W3GrRy789jtLYnzojkYG6Fu70mKSTX8+EknGixRa7xAE4l6PBu4kH9kuRJo7pLObx7+V2u\ne4iI/fYX5auWUlqOHmKy0wR2DexCxa6bWE5Cbga5/3s2K0WusfNzbsrVXxCrEheQnsiJx0xP6ABb\npx/Iy+bHuFGxu2Fd8h5SYsvCxvEjGAwTpeWpAh0xGAwBFKhbCbUR+8sJxsZNAbCQl/dELWlVhzdc\niD+xnFiK5D/pMu7QQwYrU+IfEWnGAlkOP4pE6HDhqs1DW9RH4MXbSsumk+cRnySmTm3UsqpcskZU\nmIu5kZ5CbcrWZKCCNXOO0WYwTO6hvLvNCC/yFdvz8wtxLSwKHgq8n5TkTNiquJidLpFdmKOysQrY\nBWLj5bHyYcw0omW88lUkZ9CRh9hviQobDLs+3cKJb4/AZDDQq0xjjK8qvmMCACl5mXLLDn53Gce+\nRsDVoSZW1Bskdv1vbjpmPN2HuOxkeNfoim6liWtrAACLzcaoiC34nPEbAS794VqKuHZKTHo85r84\nDHMDYxxoKV6ATxHys0/yjo3MxBOimFn7kjYYjMy6IS/rKOmxM5MUj98zMK6n8L3SIApmTo2rQthX\nE+s06ITBwHSI5hVuY8VXK3KZkhwco8BklgAAsFjKb9MqArf2gj6GQXGO/heJpecUXxWRF9fqymf2\nURW2xTlVzOs0LI9nD4mzCZ078kgumRkFqZQbCGHvV2pN8LOiDJzUXqytU4tlMDMzxvkbc9HVdSUu\n3eZ8Bh5tV6BH30ZC/fyW9cWKxWcQdteX13bt4UKh40D/M7h17Q3vPu71oX1CUKKkNYK36mYwP528\nTv2A2jbVeCv69xOfoFUJTiaop0lRaFSsLq7G30Vnhza8fwXxfrkUQfUW8c7ZYGPmywAE1VsEQ4b4\nVELUWBDcSVBkV0GQBq3kWxyQxMuIT3IXHyxks9AsnPN9HF+1A2KzkrHj4w3s+XQbEW78nc/GYb5C\n94mei7oocd2WGof5wtrIDHXsyuF63CvMrdkDdsYWYnJal6yOBsUqYknUSSyJOonH7suFEjc0DvOF\nX52+CHh1CoMqtISLXXnMeX5I4tgAcKW9r9B5bduy2NNc/p0oM+tFyE5bCjabfL0MWbEO5rZrhAyG\n9D9usLIPF+tXmPcC6Yk9yCsrAQu7rchMnggAyM++xGu3cXyrsExNNALkQScMBoCTTrWoGg3xcXV5\nuwrxcXX0MQ1ayNfEZCw9dxNvlntDsK4bUQwBVbDYbDBpLiL39oXybgMAUK85p/7Css3D4V5/EWGf\nLSsvwakceVeZ4A9zxNo0YYcBADLSsmFpbUapTLqDnf1X9IN7m0CeIQBwJvoh64Qf6s1bV0PYXV8h\nQ0EU3yW9cevaG6HrvTqvwdmrnP+za2FR6ORel/BePcTUtqkmdB76cT/PYFj/YScON9tIeN+v7HiU\nNnOAi00NoXYGGPiZRY2Lm7yUdLKjRM7bF9/kvqf3HU7tAMFJt39d8SQQgtfJxjDI6tflZqCY7Jk1\nuqLrrVVoErZA7N6AV6eE2lraO2PqE/GAYlGZXMNFEWMBAEwsxyE7balc93BjHZhMe4l9GMwSYLMS\nAQCF+W94K/ZMAwewCuNFehsAYEFSxiZZGJl1Bf4loOQaDgDAYFgqJE8X0BmDAQCYpaLA+s15iHCN\nBwCAYVWASe4HhllM+wpxOJWOxZ+EjgDDSO3GgjbtLri6EVeSvB0+T8WaAEO3HQMAIWMhOy+f1jGX\nnb+FRT3FV4up5MVDZVPPcajfgrOiyGAyYFfCEm4ufgCApm2c8TbqB9JSOBlTdl8gH2tBl3EwYEI7\nHNt2SykZno2XIOw9tTE/VKRTbeJaXeK1hk0qwa2b7K18IyPFstllZuSiUwvOTqaBAZO0wUAmM5Ik\ntDljElvGRKlxMRfecUM7TsawlPw0AMCTpCjeDsPR7xcwy3kcRlb0FBcix3iaSMybX3LfY2tsgbhs\n+fzpycJkSM+8k5SbQdh+qd08NA7zRVJuBoqZ8Ce0hgzhv7WmJYjdX9SJkakb8nP4iwpmtpIrPNs4\nvCB06xE1FhhMG9g4vEZ+9kVkJitm9NBNSmxZiTsObHYm0n63gonFYJhaiS9sqQvtSaQtBVZ8Nc7r\nt4QHSEEMkPeY3EtLsS95Hfb2YepWQ2twdVuFS6e9cDt8nthLGs4u9BRU6dVAfFu84eJNYm2jWzdC\nTd8gxPzmu56xpTynpx4kLuoXHeiNo/9FIjqWP4mkYzfj5M47lMjpLODWcuTGPIRHBsCjXyM8fRAD\newcbhEcGyF24jS5GzuyibhVoY8m2kVKv012b4drDhbj2cCHC7/nK7lzEiU6LwbD/JOe99642FnMj\nAzEvcgVmOY8HALDZbAx+NB1zq0/g9Xv09zk8H06C50PpE6/otBhMe068+wcA+5sGYeijGcgs4KdD\n5cr0fDgJOYXk3VfUyf4WU8AAA43DfNE4zBevUqhzM1lQu7fMPh6lJccDjYoQdvOaXZN85q+sAv7n\nn1lA7f+FqZXkhRyLYjuEzokyJAnCKcr2lfCaoUlr2Dr9gI3Da44sM+Uyn1mVuCB8bk9tPZHUOGfC\nQm2pcdVhajUduRk7NaqIm07tMBQ1Yn85qX1HQZuxMJc/M4Fbv8aUpL6MuBGN5h1q8s5nu7fG7ntP\nhSbtr5Z5oc5C4ZR0s91bY8/9p+i5QTi7D1EWoyf+U9B4yWYhmYL9ejeshX6bDsmUowzZWfRVm57u\n1xPT/XrK7qil+E/YK3OCTpY7lyKVlmFoKP/OAJsNUh4BZ088wd1bwr7B3Xo3xNs3vxAfl4J2HWth\nYUAf7Nh8A841nVCxUkmULV+clA6yirBlpGbj6a1oXD3+H69Nm3cWuHhXE89IBEAodmC1i7DhNaBc\ndwwoxw9OHfxoOq//se8XxO4XPJY0HhczA1McbLZB6D5l4hjUyWP35bgaF4UFL49i9L9JOhVpUy0M\nZT+TihtLdolJyEkTOrc1Jp80oO21JbA3tYYhg4m47BT0KqtcpXN5/PXl9+03IH2PUnEDDOFq5AZG\nNSV0VAw2Owtm1r7ITluBtARXWJe8zbtmYjEKJhajNMpgYLClLU+qD41UigxUBDySdUWI/eUEK6sZ\ngEhKLisZ1RSp0JFpwMSlaHrzStP5Wbq6rVLY9YgKvewdbbD/tmJFi7QJqgKAqXbPoZub519gzZxj\nSsuh6n2r8ndJ2+G6MKnCaND/vyiOJv229LmzDj+y/ko0GsjEMDQO88XK+oPRwaG21D6Whqa41Ul8\nJ6dxmC/6lWuKebV6SpVHpMv5n8/E4h30CGc1MrWaAVOr2ZTKFjRmBM9T45xh4/geAJCZNE5sF0ZB\nlA5Y1AmXpKKKU+lYWFnPg5WVl9BLj2xuh8+Dq9sq7D14H3HxqUhKzuS9VMGfuFSVjKOLPH0gHBfx\n82siPNsE4k+85nymVKVFffX4MyVy9JBn3WmOwXB6h3JxKHqKDqfbzlLZWBkFktPlco0FeQl4dQrN\nS1CTeUpXodJYkI5wiQCmgebUCdEbDHqKJNyA570HH2DQyK3oM2gT76WHGrIzqfGDrVzTiXd8dOcd\noeJsi2ccwtieG9B7aAsM67IWS7wOk5Z74/dpSvSTROO2zkrLmDtsu9IyeteT7FdOFrp3EzWJmo05\n6YZ3LD0ro6cedWKoYPC8sjQO88Xy12eE2pqH+8m8r+P1ZUqPzd0BaHeNn4HoxLdHaBzmK7UWgyzq\n2JZFRGIMLy6D+yrKZCRKD/KngpTYssjN2IaU2PJgMEv8i2eoCDabH+eTm7mPdj3Ioo9h0FMkUUcm\nJHVTe0cIXo9TXXn7bYEXKZEzcQHfp/rCsccwEAisfXT7HfqPbo3B411RvU5Z+E7cS1rujd8n0aFU\nH0p0JGLp9lEaUZMhJ1v5OBK6g5n16JGXkd5dsHP1ZaXl3At/hdZudeS65+yPJzj744lQmzR3HnMD\nY6TmZwlNwhV1/+GmPBWUZcgwIEztSoaswjy8SvmB0ubFUNOmDADgV1YSolN/kk4Hq3uwUZDHr+tj\nZa/890wUW6cfSIkti+w0jiFp4/ACBbkPkJXiDaBQo2IXuOgNBh0gL+8FjI3pqQyrR3dQpbEAAFdO\nPpHdiQS1G1XkHRcWFKJcZeEqr6NncCoPN/hXq4EsgXUP40fWR5Q1py/VoKGhAQoKCpWS8S3mt8LV\naCNuRCs1tjy41/BB2NsVKhtPDz24V5qNsM9rSberi75j2lBiMATOOCRXHIMiE+g7nRdTKpdMX0l9\nRNvbXl1M2Pdvbjrcbha9v+eslDlCBeIMjGrAwEg+g5IsogHZhiYtYV1Kc7N16vSyETtzD1gJLXlp\nV7WVCtvWIujpA4Q8f4SQ5+LVbFNTVOVbp1u4uq0Se5Fh+L8JqrL8/PJH6vWcggJU2RIEvzs3AAAV\nNq/DhZh3SMrOhstOfr2L5vu2o8PhPbzzCpvX8V6ibYLnKyPuouZ2frGmo9GvUCl0PSpsXofhF04p\n/f7ooOfg5vjygZNze3zvENRpVIF3rSBfvon53EhPhMT4YG6kJ+9FNWejlE/1OrGb4ulul07eL7uT\nDPbcmKu0DG0iaBZ5tzZNwb0S5xnQr54fdq+6JHb90IarGO0qPPnbveoShrUIAJvFzzHi1XsjTx5X\npqR2wetE53q0m8NfH6hbBZXATWvKfQkaCwBgZX9VTZppHrpnMLDzeQYCO30FwJI+KWNnnwM7cxfY\nmbtUpKBieDdqiWkNmmFag2Zi1/Lz3yL2lxPvpU7cHaeItW2adxSX9t1TgzaS2b7nDiwtTYTqL0yd\n0IGU0TBoMjXFzuYM2Sb1uomhIT5O8savdH6qvO5Vq6PB7lBEjuV/zhEjxuPG4FG8869TZuHrlFmo\nbFdMqE2U+c3bIHr8dHQ6shcA8DH5Lz5PngkA2N+9r0LviW4GjWsLAHBz8cP3zwlYs2sM79qahfIZ\nOatdToi9qMZAB1x5HMqQr56t7Vw5+oiXXrXrsFZq1kY+3CvNxsmXAXj1+DPmD9nKax/bfiUGTOmA\nnTfmCfVt0r4mDjz0g0cVfmGo4DPTAQBhn9cK7SZIatejG/S/J5y+Oy47Gfs/31WTNpqDUilZlSA/\n57paxpWFTrkksf60Awrlq9zIMOvJ231gmLoBBqXpUE0pWpQuJ/W6ptdiaN29PpaM2o6uI1qrWxUe\nh489Eotj6Ne7ETZtu6EyHVL+Elft5DLs/EkkZmXBWMqkMyMvDw13b0GbchWww4OfIaPC5nWERgIR\nMUmcInA7Xz5DbHo66pVyJHWfNJR1w+FC5DsvqUCbz6r+8FnVn5JxNY3AGYfgu2GIyscd4UW8mybJ\n/WjTkrOY6t9L6DrRseC/Xsv6okvfRnhw7Q1adhIvYKgsilZ6nhpIf9AjlRx+7A8ACDo1TWi1f+Xh\nSYQ1NGo35rj67biuWDzXmdeB6O48Dxfer8KAhotw6JHywfXysvPqbIztrLwB073WAlx4s5wCjbQP\nopgIALjdyZ9UXQhtx9x2JfKyTqEw/zXAMIGxWS+Y2ai3CGhm0ii1GSvS0BmDgZ08Xm5jQRTWnw5g\nOryjSCPqePjrOyps4/8ofp2gXVu/WxaeQOmK9upWg1LKVy2FbzG/lZbDZrPBYBCnR77/4xu+TpmF\n9of2EF4HgPq7QxEz0Qt5hfwJ+un30aSNBVFC3brL7kSC0R1XUyInYMco2Z0U5H7iZfzIisHH9NfI\nZ+dhbKWFKGdOfWrB3dfmYHSnNUrJuBf+Su57QpeeU2pMABg4Sb7dtKn+vQAAZubGUvu5NK3EOw5e\neApd+jaixVhQBAaTgcvfgmV31DBMzYg/czt7K8L2gxv4rhZDFXCzNDU35rkBpiVnoVhJa7llKEvp\n8iUokUPVAgfVVApej89eM2kfp2gGNnMwNh8CY3PVL8ZoI7phMOS/Bjv3Nu+U6fBB6DL5+AUWdTpR\niCwDIS7WGY5OnCIfWZmHYG6h+i+/oCsSkVtSWNxmsTZ10tXNBT08N+D8Cf7q48kzT0nfv/WiNyUZ\ncDyq+0gMuONO+m8OGSV0LmgMxEzk1N0wNuCvIPZxJq5GKXgf0fG85q3xJysT0Yl/sPzBbVwdNFLe\nt8ODqjoTDVrSlxv8StxRBNTZj7mRnljtcoL3L9U4liNXkZhqLhyKoE122NsViP3+F2O6rCXcaZCV\nVWnF7rFgs9kI2D4KfuP34NbFl2jXrR49uupA1WYyTOi8BvsfLERCbAqp/ooYCaJsvTIbq70PY/a6\nQUrLKqqcffcWzcqUgYOluGGnCmNBj+oQLM6miVmQZKH9DrYAWH/5qRFFjQVSMMwo1IZ63E/uw4wb\nl5CWl4tZt8LErpcsdYd3bGhUXZWq8QiL28wzCrjHgi9NY46XG9LSc4QCnjdtu1Ek061ycS5eAvbm\nFrjyOQaeNSRXG5XF6ydfKNSKPkZW5PxfWxhaY+8XcgHviiLJtUceZLmwUU3TdjWkXncqVxyX3yi2\nMslgMrBrbRgata4G164utBo3RQWuK9KIVstkxhmEfV7LC2AWDVYeNLUjYTsgHgxdvqoDbp17jg69\nG1LzJtTIPApqngBAm907UW/LZpyMfiPUnl1QgHpbNqPT/r28tnUPH2BmeBha7NyBSsHrhfpXCl4v\n1gYA8RnpcA7ZgNDH/4ldG3/+HHoeOURaV9c9u1B7cwgifgi7v4w4cwqdBfQEgPzCQjTevhUzwi5h\nwQ2+j72gjqL67nnxHC5bNuNZbKxYn5a7diAo4qFQ/+yCArTbuxud9u/F15RkXntGXh6qh2zAwhvC\nvv0ZeXlw3bMLbXfvEnsPmohFsZ1C57ZOPwhfmopu7DAoCcN8CNiZO2V3VBNv//5BWL8RSMvLxdCa\n4qtwv+MbwMSkFdgoRF5uhMbHNGgKRdk4IKJ9eY6bSKBrJ6XkzBkqPZibLPKkOlSEypYcFxj/WvQn\nPBg4qT32BSuXbWNQi2WkPxMqdr8Wbx0h8ZrfhL2IfPQJw6Z3gueYNlLlhL1dgTFd1vKOuZzafQ9j\n53hg3tqBcK/ho7S+RR1beytCQ0FS4L0ko2L4TDcMn+lGur+6CXu/kpLvexRFVdXvjh4LAAi4c5vX\n1nj7VjgXL4GXk4R332e1aInNj//Dw7HjxHYYPnvNFJuAN9y2BdOaNsP7aZyd8da7d+Lev/EqB6/H\np387EmRcmST1EWyvvTkEr6dw0nE7h2zgtVcKXo/lHTqSkj+qfgP8SktDzN+/qFqcs9v6LDYWD8aM\ng9/NGxhy6gQO9fVEbkEBxp07i1sjRwvJcd2zC4Pq1MW7f+9Z8H3WDd2kVbswRqZd1K2CUugNBkAj\nA50l0fvsITEXJU0yEDRxN4Eudl6ZjbFdlH+I9qizEOdfKV8FVI98vEp9hINf14MNNqpY1kbvMuNg\nb6LeLGOaAlGQrCAB20aKtQkaAyf/BeBy2XVFfLVasL8q6jdkpmdj5ZT9ePvsCzLTskndU1TcmRRh\nz+rLOL71Jo4+XaxuVShjYPMAHI2QXbWZDDOaNecd/83KwsHxihVWEyQ5Oxsj6/FrLv1K42fQO95/\noFyyLI2N0X7vHtwcKRwntrYL31jc2bMX7zjYzUNedXmUtrZGo21b8HTCJABAQyfO7+yUJk3QYucO\nAEC3wwdxbfhIsXu/p6ZiQqPGvHO2yHWi96ANaPJOgiR0wiWJB9NGsfvY5B4e6uLrhNnodeYQWh3a\nrnUBz9rGxOnk89aXrkBNwF1+XgElcjSB8BPUFGtTBXVsmmGVy3EMLDcNHzNeY807xbLpkKVpe+ku\nPmS4dvoZBZrIhor6EZqEe9kZ6FdzPp7eiiZtLGgTYZ/XSk3h227iJqXH2HT8HpqM4K94j5rrgb+t\nndDJW9yV5/5LalbryUKFyx8ApCZlKnV/peD1mH0lHPe+fUP0nwRKdCJLaWvi4HZJRE2eir29e6NS\n8HrMDOe7Ol/79An+t27C/9ZNhMXE8NrtLczl1okrx//WTXSt5iy1b0Km5M9eUM4wF76XxWevmYTv\nQdvRVGNCtwwGlmKBluwMzc+Icbb3EESNIq7UK1h7QRPqMBC9+lZTLGuPqnn3IU6u/gs2UhNgTsWW\nuiawQc5aCJI48nAhJXKksfj1KMyN9ERs9lfa6jAIjbdFsosPWdb7yNbxxtnnSo+jC/UjuCiaVlWX\nuLV1qsw+p29GSb0+tX9rPN4nG6rmMgAAIABJREFU7P4hes6lVb1KhO3yIksnLvJm85LGOLd1sjtJ\nYW0XN7QuXx7TL/ML6NmammL02TOE/UtZWOJlfDwp2aWtrbHzGX/RwN7CQildy9nY4rPXTJx995bX\nduVjDJa0a897cRly6qTc8gXlCMoiImLseMLPqLytLSyMjSXKIXoPeuhB75IEAOw8dWsgFfeT+1DN\nrgQCWnfEkgc3sa6du9B1B8dXhMfqQtQtyd1xCk59UO5HmAqePPuCxg05uceTkpVbSeLSqgt1JePT\nU7NgZSP/Ko6mMKgFdW5VtsUtKZMlicW1+elq36Y9x54vK2g3GoyMDWnfUVo77zit8rWVM+/XwFRG\nulddhLsrwJ3cNxsVhCHujXDy+kvc2c5ZhGo+OhiFhSys3Hed1+/UzUgEHb6D+zunyz3e/BEd0ad9\nXQAAi8VGl2lbkJqRw9OjsJCFthM24cL6sbCzNkeTEetxY8sUdPPajrCNE2BuagzP+XvwLS5ZSCdV\n8PPLH6nprqVhyGTy4g4EfeufT5yMBltDCa9FjBsv1t5i53bEZ3CSHAheuzd6LOqGbkLgvTticuRF\nMD7i0pBhvOPj/QcIXeOOUc7GljAI+/TAQbz2JqXLCN1HJEcS5kZGeBkfJ3bPrZGj0WX/Pmx98pin\nx+1Ro6W+Bz30wGCzRT3CNAK5lGLFO/NuYZZ6DjAsRa5z0qoSZlBiJYCVwKnoyTDrAYaNcj7pVKwU\niwY2Vti2Fl8nzEZaXi4+JSehvkhhrfi4WjA17Qw28pCTHQ5LK85DwMrKizYdmQZMXIoWz5Di7jiF\nZzAU5BfC0MgA3z/EYfm4Xdh2R75VY6o/S1e3VRg9vDWGD24htaKzvMHQHtV9QNXfEd2BvnRC1S7J\niSf+sLSmP3NZwJtxmFZtJWyNVJv2VNnPSdZ3hG752gZ3h0ET4xHoeF4Q0WTEet6kW/C49biNuLeD\nYxCcvhnFm+T7bbmMgEkeYv1lyeYiKIt7/fzd1+jRhpN9rb/PXhxfMRLzQy5g5bTuEvUTlEMGKndq\nde3vgEpUVR9CUdwrcnQzszDB6df0x0cpgmCKVRUhvwUsgk7sOzMd3vOOWb8bACxyeahR+JNnLABQ\n2lhQBb3PiqdMc3B8A1u7INjZbYaj0ydYWXlJNBZUif+w/9k767AouigO/+iSUkRAVFARxFYsVLBQ\nsRsDu1vs7kbFjk9sRRG7UDGwA1sUsMACRERCOvb7Y91le2Z3Z7aY93n2YfbOnXPPLruz99x7YgcA\nICEuGckJfwh600/4ldkYPMCd77ngQxYuR1N3Q7oTSm4LXtXo6EJdlhtFGAsAsLDGHoUbC1QwuZd4\nf/R96zXHj5cqOIZCF0fVneAoi1wxu123nn5Ak2EBaDIsANra8s0zqlYoi1ErjmPF3uIsYV8T/qDJ\nsACEP/8ol2xBdPUkB+tLg6a4iZZksjNzla2CRqExLknaVhdQlMyuUluU1Ohfqw60zJYUdyr8Clb+\nK7BSZwPgv1FqGcqeAYBuOIHOZvoGKh/0rMXz4/L8djS3iJuqZU8KPeMnsr2SjEW2vHo2oCQgdfXU\nIFjbWsClbkW5ZSmKnvUXU7bD0r53Q+JOak658pb4+UN2A/pD5Hex50L23BZ7jgz7b8yS63pVJSRy\nNfrUnCt1PIMq7krQxebjt9G6oRMsTI1wN3AKmo/cjJA1QzHJ/7RccuN/peLs+pGwMC1eCChisXDW\nfwQu3H0r4Uq2Tt1b1iJttFyIXEnpRL+T6zyRO+klHVXeXRAkMz0bJgpahNJ0NMIliXtR9nmw0mSY\nUOs6QtvqqixDCqGoLWZ5oNMliUrU4b3kpaRuh5fU1y0PdLkNMe5IwmSmZ6N3DdneF7oNBnW7x8lC\ni1FbcHrdcOTkFaDXrH20xyNE3I7BotH7iTuSxMhYH6dfLKNMHgP9ePPsJobGCsddqAKFBR+RkdRK\nkW5JcrskacwOA/AvBsGoK19MAxHa1g8AbWrSY9IFJ4aBQbWhqoAQwJ5IqPpE4HdSOnxbUGc0Uuna\npel0dp2HiwIGe2FhkZK0UW14jYXeY9ug85DmKGdfWokalSxy8wrQb/4hZGTmwNfbjfbxGnpKTt8p\nLdlZeWpxP5aXosIidK4xXyPuw6pqJPCSkdQKADuWQRSqmFpVowwGDpyYBtafMWDl3hLRQxfaZU4A\nejUVq5iMGOqq17+J44a09tRU1HZ3woL+27DiGHFaPwZ+VPlH6ldCGga3pPaHRZasJOrKkbvz5DK2\nRBkH8hYRnLOxv1zXqzolyb1IlVBkhiMOxx8uRL+m1NYSUeX7sTykpWRS/l4xEKOKBgERGhH0LA4t\ny93Qtnkv4vFObYwFAMgpKIDD7vXchyrjbTsBHQa6I/jdOm5b1LNYBG28rESthBGXJUlS9iQyUL11\n3bE6dcHEVEK1sbDjfMnKlV/G2oxymYnfUuS63rNTHYo0US1MLdQ3VTGDbJiXNqEleYImBUKfP/IA\n3s5zGGOBgTTqtXRdQlE3d6Qp6/mLmQ2a2RmBy05jwDTVDSynCiNjfWw5PQmTe26lRB6riAVv5zm4\nHL1aJVbgu9ddiNzsfEpljpzVEY7OtsQdNYzRczvjv9UXKZElrztS41bEVaj3fZ6KhOzirDatyw1D\nU6te3OcPkkNw6+dB7vP5NfhfWwErD2vf9RR5fuXbzuhkNwmX4reif6VleJ5yGTEZjzDIYQ0qmsi3\nuHPizWpsmHYU3hWmYGfYbDi4KLe4JYNiCIlYTMsEnyNTHXcbetRdhJxs1a47xaC6MAaDhlFUlAxt\nFYvJuHP+Geo0q6ZsNQDwF2wTLN72MymdkjGcapSnRA4vHV3monq9ith4fDzlsslC1+parxEetMhV\ndXoMbS6XwXBk63X4TmoLABjfVb5q9Ut2Sa5Cfeb7WiRkf+RO8jMLUmGsa87X59bPg5jreg7aWjq4\n+GMTVr7tzGcUrH3Xk3s+qyBN6DyghVnVT2JdVG94WvuiZ4U5WP2uu5DhIS0B04NwPYRd9Gmcl3Q7\niIwbk3pz4ski9G1ET8Cyt/Mcdp7/50tpkU8Vvd2WIDMjR9lqcPn9Mx3DPFZIXcBSXFyCN0G6ZGni\nGeQNlpb2+sz0bPSuM1+ovX4LZ6w8NEbq8emGMRjUAN6g59Pv36FnNVfuufgfwqtlduXjFaabINo6\n2vBxnYVVJyYhMz0b22YfR9TTWJVJq1ra0gQr17EnID378+ezNzczkrkWgyBUBkBziHrxFd7Oc2Dv\nWBZ7rkynVLYk6NyGV8dVOlXh6LZig+HrxySZ5ZDJXa+nbQgAKGIVQFtLFya6FnznBSf/nctPxavU\n63znXc1bQFuLPRbH2DjweQaGVma7Wda1bMft37xsPxlfjTDXTjymTBaDemFqboyL71ahs+s8WuRn\nZ+Zy749Dp7WHz5hWtIxDllP77iJw7SWl6iCOjNQs9K0nXfFWZeLtOE1mY2PJ3pES+0Y9j8O0XlvE\nnn9+N4YrT5UCuBmDQc2wMeGvYq1M40AUl75vRffKfpjoVTwRVBVjgcP8WZ0RdvMtZcaBOOgwGgDg\ne+wveDvPQT33qli1X/KNSVZYRSx0rb0ABfmFtMgHgMCr6uVqRweenerg9qVXStXh7CtiH+bOdlOQ\nmpeI1e+6AwCmuRyDkY4pX5+VbztLlPEu7S7epd3la/uRHS2lttLD7BKUbHR0tKGto40imrOIHdh4\nFQc2stOzDxjfBoOmeNE6XmRELFZNDcKf5Axax6EKQWPBwdkWc7YMAgCsm3oEn6OE5zK6ujoYPqcz\nOg10FzrHwbt/UzwKi6TkfThwdwGGtlght5zGrV3Fnju44TKOb7su9rwg0houdMIYDGrAtIbN0CHk\nAKqXscaZD+9UPqbh7OcAZatACN3GAoeA4PHw89lBi+wXDz7yGSQ+Y1ph6LT2MsnKzc7HkNZrkJaS\nSdyZAi5HreYr8ldSmbOxv1wGQ1FhEbR15MtdoUPyel+H4kD3lW87o6X1YDQr25fbRuQ65G7VB63K\nSXZ90gR+JaQh7n0i3j6LQ9yHRLx9Goe/6dm0jSduUcLesSwcqpVD9XqV4OBkg+r1K8HIWJ82PVSZ\nS+9WYcOcEFw/I39xTTIE7biBoB03RJ4r72AFl7oVUa68JYxNDKBvqIe8nHxk/c1F8s80fI/9hS8f\nk5BJ42dG0fTgSW1cqZoNdl3lLxC5/TJ7TsO7Sl/DzRHrQyYRyp68qg8mr+rD10bkpiQOwXTLLBaL\nVOzg2PbrCPsA7Ps1r7Ewd9tgeHSqK7Iv72tQFaOBMRjUgMn1m2Jy/aYAgIDWmh84rEm41K2IIVPb\n4eCma7SPFbz7FoJ3C6cRNrMwRmlrMxibGCA15S+SE9OQlyud/yiVWJQpxRgLPBga6csciLh/4xVo\nays+2d3Eavuw5+NErsFgbeiAkK/L0afiQpH9rQ0d8CA5RG0Mhj/Jf9kT/veJePec/fdP8l9lqyUV\n32N/4XvsL9y7Gin1tVY25nBwKodKTv8Mjmo2KO+gWrFx0jJ9TR+FGQyS+BGXjB9xycpWQ6HkZBXf\n3wSNBV72hc/H8JYrAQBvn8bSrpcoxizqjt3LzgIAetWch9NviTMCfnmfyD3uN6Gt2H6dqhYv9gbe\nnIvyjmXF9g2N3chnNGRm5MDE1JBQFzphDAYN4PdvX5QpcwQAkBBfGbZ2n5Wmi7ftBJVzQRLH1euR\nWL2+2N/TztYCQfupDzTqN641ol5+xZNw+t0vRJGemoX01CyljC3Iou2D0LRtDWWroVKceblMZte1\nk4F35BqbbAyJKHcj3h2FUVW2YeXbzkL9OH1GVdmGC/8CocXJUCRXQiKwecEppYytDiQnpiE5MQ1P\n774HcJewP6Ae8UihMWuwZOxBPL4VpWxVGERgW6mMslVA92EeXIMhOyuXsP+V4Ed8z4fMEL2oK9hP\nkrHAwbWBA949iwMA9K49T+m7DIzBoAZwgp4ddq+HFoBYAZckC4viG7UyjQV1Ijs7D6vXX0LLFi7o\n7F0HUTEJ2HvwDvoP3YVjB8ZSPt7S3UPhPzMYN8+/oFy2uqCnr8sYC2oKmYk9UZ8u5aeiS/mphNeK\nO2ZgoIIlu4Zg3/pQhOy5rWxVGNSAgNnB8FvrI/b85jknuMeSKsjz9qvh5khq7FWHx6K7q+rU/tDo\nwm2aRBGLhblNPPHQV3gy+yvJGwCQ9NMd8T+oT+mpiXj3CED4ldlYMr8b3Oo7YFD/pgi/MhsJiWm0\njTnT3wd9RnnSJl+VKWVmhPNv5A8mY6AOToYlBoaSxvAZ3rQUT2TQDDoOaMo9libL2oG75LJAzdrk\nS6qfgZFqxRwxOwxqgIO5BSr/twFxY2Zgyo1L2NymE995G9s3AADrcg+UoR4fY5f3gbftBGhpacHC\nij+jU9Br1d+yppvhM7zReUATDGklX0VpdaL74GYYM7+LstWQiby8Aujr03+bpCujliQGTmQMBoaS\ny5G77FSrmlS9Wd15fjdG2SoAACat7IPLQQ+5zyMjPqNmw8pC/TJkdPUd0lw9q2szOwxqQHi/kdzM\nSILGAgCwWPlITKgFAMjPf6tQ3QTZtTAEADu7wJ9fGXwPBjbWdpZq4e9LBXuvzVRbYwGAQowFdaFD\n3UVStTMwqAMl5V6sTJzrVOQed3MRH/Q8f/Bu7nEVGgqgSkMZm+LClDP7bhPZhzdVbElI5MH8GmoA\nmZn7ubsMrCJqqhXLiroEPIdfmY2WHYRX+U8enaAwHUJj1mBwy9X4lUCfG5QyUeQPse/4vejZqR7y\n8wuRmpaNMUM8EBb+Dh9ik2BspI99Qfdx5/xMAIBHV39sW90fgUfvYcuqfty2DUv74HDII24bAGRm\n5cGEJxXl9TtRSErOQFFREQKP3EP42Rnw6OoPQwM9+C/pjUlzj3HHkZbgx4vg05ieqrSCzA0YQJms\nKy8VozMDA12ExqzBPv9QhAQycQ10sOnsVG7Gn7zcAu5xtdoVoaOrjajncXz9S5kbYdtFxRUnFcWR\nh4ulSs96+dMGGrVRDZgdBg1AX6829zi/4KMSNVEvwq/MRv8+jWFiYgC3+g4IvzIbVmVKEV9IIYfC\n56J+cyeFjkk309f0UfiqXW5uAXp2qg+f7g1x9BTb59SrpSvGD2uJof2Ei/7UrmHPZxgAQMN6DkJt\nJgJ565etv4gBPRvBt3cTvvZrIVNRp4Y9GtSpJPNrMLMwlvlaafHoWHzP6NlsJRZMOIyhnQLQtTF7\nq/zyyQhE3HuPhRMPY8+/YlQcVs06gfs33nGfC+4wdKi7CM8ffcL9G+8QevoZt41VxCLcjehQdxFS\nUzL5+vVrvRa/k9IxuudWvn6/k9LRs9lKKV85g7rQvuFSLJhylLDfySPUuOIOn+nN7DbQiKgMP+9f\nfxUyFgAg5KXqfa9zBVJfLxq+R2ZZobEbZXooG8Zg0ABy8+4j/ocd4n/YgcVSTOEtcczsLrpom7ft\nBO5DlRgzoiUunZqK9avEZ0Ggm5V7RyA0Zg16DW+hNB2ooEYDB4TGrEHbHg0UPnY5EQGMHl39Rfa9\nc34mPnxO4jvPu/tAFjsbC6G2UiYGpK9XFo1bV+d73nOQO1ZsHwSvrvXQf6QHAKBj74a4fuElXkXE\n4dSh+9y+M0fsw7x1fdGsjfhKpgBQv0kVNGvjis3LznHbtLS14C4wtiBeXevBorQJrrxcht4e7Pzn\n7brVRxlrM/x3mr+I08B265GVSZz2kEF9adyiGmGfPZvDKB0zNGZNiTMcNp+cqJDX3aFf8UKLc52K\n0NXTgYGRPlp1q4+giKUqMzHm0LRdLe6xYLaiCJ7UvBfek//dAICvH37Kp5iSYFySNABT0+kwNVXu\n9h2HyMcfuUZBwMUZcGngiOldN6CCkw3+u7MQ6ycfQpeKk3Hh6xal6vnqzTdMmRkk8pyiqkALMnJ2\nJwyd1gFdas5XyvjyEHR/ASytFLs7w8vrt9+5x4KVi3Ny8oX6O1W2hm05c6F2UW28lLY04R5/j/8j\nrZqErD4wEnOHBlIul5clO/mLp3HeL20eH9wOdRdxXY14V/v99w7nO0eW0OdL0aXRMvgt7iaxX8L3\nFO6xrb0lAIisTsy4QZUMqteqIPH8GhpraYTGrMG1U08RMO8kbWMom5CIxShlZqSQsbbOD8GV4+xa\nBHvD58GukuoXAly0exgptyRdPR2p5C4ZFYh94er3O88YDBpA6p9psLBUHaucE8fAKeL2LuIzxq1k\nV4SdsWUwboSQT1NGF1NmBinNMJCErp4Od5WnT8Ol+JuerWSNxGNiZoSTEYuVrQYAoGUzZ+7xrTNs\n45mza2BoqCcyriB4z2hSbbycPTiee8yRySt7+RzJE2Ii6jatKtf1VGFqboQOdRehZn1hF6srL5dx\njYaZI/YBAAZ6+WPx5gGo5io6UHFPwFXk5xUgYOk5uNSuALsKovOVOzrZcA0USUZBpwZLUFhYRNiP\nQTVo33ApLj1ciE5N+bPDuDWtgpVbxKeYrOpsI1aeuOdXKbwntevlhna93AAAgzxXI5nGtNuKQN9Q\nDyceLYKBkZ7Cx+ZkHdI31FMLY4GDkbEBt4CbT/2FCH6+nGv4AMCSvSNJyRk5rysCV50HACR8+U29\nogqAMRg0AGOTgcpWgUtpghVaVaEeT9YGVSXk3w9frwaLkfVXdVwvrGzMcfj2XGWrwQeLxVK2CpTR\nvndDXD0ZQYtsSytTobb+/2qD9OepERIi4v/LOzHnHPvvHU6qX/y3FL4dC3GT/AlzO2HCXP5McP1F\n1C659GyJyOsZVJdOTZfj6CU/WP1zH2zfcCmePvwkkyyOUcAxFKg0EsTBueetn30CN84+p308qtDV\n1cHWM5PgUE208aVo8kTs+Koyp9+u5u4ypP9hu3xvnltchK1xa8numRx6jWrJNRgA4PqpCLTt1ZBC\nTemHiWHQAH4n91K2ClxSfrJXYNJT/gIAhrgtBAA8uPxSaTqJYuRQD7TssFbkQ9U49WwpQmPWoKuv\ncPCuIpmwuBtCY9aonLGgaUxdSd/3Oei+crbBn9x5j6KiIlw9+xxaWpqffpBBNFY8sUaDx7SU2FcR\nRoAszFjbF6Exa3Dm5TKULitsgKsCllam3JiEC29XqoyxwMHbcRoeXnujUQs9ZJizZRD3eMOMYzi4\n4TKp62b1U43sk1oq+g9TSaUYyOFbbx4sy5ph67XiIKFRzZfh+yd2oM+Wq7PhVFu5K/wtO6xVSZck\nadi25AwuHaPHvUtPXxdTV/ZC6671aJHPoHza99mEqyFTla2G2uJdYQrf89Bvm0lfQ6YvlciiK5W0\nb7gU0xd3Q7vOdbltr5/FYebYg3IZBorcYSDDqb13ELiO3CSQCswsTTBwQht0HaTcxSQyRNyKkjqz\n0LmotdA3JHafSvrxB7ExCXgb8RlxMQl8AckNPFxQqVo5uDZwhIOzLco7lpVa92+fkjC6LdtVeOKK\n3ti2gB3X0m9CWwyZ0VEqWb1rz0NmRo5Qu7WdJSysTJH6OwNJP4Tj4ygIBpd7pYZxSWKgnCMvVgm1\n7bmnWsWdRg8TdnNQNyYu6YGJS3pwn796/Ak3z71A+MWXyMstIC2nfjMntPCujQ591Gt7lEE+RAWD\nM5CHM+kWnIxTwdLhe7B43yhSfYc0XYqDDyVPmOnUlSw2tsJZxTSNXiM80GuEB19bxO0YXDr2CE9u\nR4NVJP1aqL6hHlp2qoOGns5o3r4W8QUqiokMwdXdqs8WO1HmncRL4tmdaDy7E43TAjU2pJmAV6hi\nzT3mGAsApDYWAODk61VYPfEQ7lzi97pIiv+DJBoSaVAJYzBoAFlZwUhLnQNbu1gAQEbGZmSkr4Vd\n+Xgla6a6/Lf/Nv7bL7pIj7ruPNRpXAV1GleB36reylZFrSgsYqHRyu3IypNuAm1nYYZT4wbCwtiQ\nJs3o5fYF2QrMMcgO2ZX9R2GRpGUm8WSWYlA9Gno6o6GnM3FHDSX191/0dyteMOw00B0TlvcS6ZqY\nkpSOgxtCce1E8c65t+M0lUq1yqGcvejEDWSYu20w5m4bjMBV53FqT7jEvr1GtcTIeV1lHotKGINB\nAygqSoGtXSx+J/dFGasTMDWdAiMj+bK1aDrqahQwUMed97EYc/iszNfHp6aj6eqdAIAaduVwchx1\n1ZMZGMiwduIhZavAwCARXmOBaOJf2toMfmt9MHZxd/SsITlWrkIVa4UaEnSMNXJeV5UxBsigtgZD\n3I8UDPDbj/nj2iPyQwJmj/YSef7BCXrqEwRfegafToovUCUSFju9YG7uPaSlzoe5xUpoaantv1Yq\nvNxXIOzBAmWrwaBGpGRmo9maXZTKlNdY8OwiXPhHcAeA08e0lCEy/ubA3s4SR3ePFHmuX4+GOH4m\nQqQs3rFE7TJ4dvGHq7Md3sXEo0J5S3z7508rSp9a1cujsVtlBB6+K1GmOPYcvosjJ9gpCkuZGODv\nv0JssozFeV021uZITEqTWhe6iI9LxogW/OlERe00CLoLSYo7kKavtIhzW1J03AMZevRvgjPHHhF3\nVDJV1wXg4yw/ymS1rOyIwN7dRZ7jIGo8Z/9NKPwXt7qhUwd0qyG5kKK8PLsTzT1eeXgs6euMjGUr\ngJlZ8BdzXo/B1vrCFcInPR/I1z7pOTu7ZGn9skjJ+wUAIq8jgiOnjH5Z/BYjh9PHyqAcknN/ytRn\n0vOBcDCpirjMjzDVM0dGfprMOsuK2s4qxy86jgu7x6KMpQk6taopdN6hfGnajIXkP3+x+WC4yhgM\n2jpWSIivwnVBiv9hBwCMSxKNqKKhooo6qRrPvvyAb+AJ4o4K5OPnJACSJ7eeXfzh7GSD/zYO4mtL\n+JnGV2zu4rFJOHf5JTbuDMPtCzPBYgEtBapXc8YRZaRweBcTLzQZ33P4LkYNYlcjXxVwGRbmxti2\njm0oDejVCK27b5B6gj5qUAuuTN6xeCEzllevANSrXRGbVvrwyVmy9jyWzFbuCp6dgxWpGAJBg0DS\nBF1QHlWT+c6OfkLyHodFYsnwPSjIL5S6QBXdjJ3WHmeOPaKtDoM0rLgRjlo25WifhEsyPDjneA0H\nXmJmTpV4nmp2Lyvewa3fnLhqt7yY6IouHro+eiFK6RZntJr2ciicTF0x2ak4a9zUF4OxP3YrhjlO\nEiVCIpIm7WTGIqtPXOZHISPiQvwJdLHrK7XOsqB2aVWPno9Azwl7kJqRjS5jdsG97wa4993A14fT\nJtjOex4Apq44iXZDt+FrPL8PaBGLhR7j/kPrQVsQdOEp37nZ/ufQdcxuvnGUjbGxD2ztivNZ25WP\nZ4wFBgYBNobdUzljAQBGTDmIVQt6EPbjNRY49Bv5n1BbV+/iTDSyZjANF1Ho7mhI8Uruw4jPaNao\nCve5YHVtKiEzVl5eAZ+xALB3Gm7di6FNL02ksKAIA/068LU19mIvyHWpTFzxVhxXIxajdgMHvrba\nDRwomdxfjVjM91AWB569UNrYqkr6nyyFjzmg0ijuaj2HL1mfsbp28a5yflE+3+QcADbVO4Tnf2Tb\nrbr+86LYc2TGIqvPlvpH+J43Kt0cYYnnoSjUbofBs5ETPBs5oe/kvTixZYTIPg9OTMevlL/oNna3\nWDke/QPg2cgJLRs7IeFXOirasQNYnryKw9SVpzB9RBsY6Oti1c6rqOdqj+pV2HmMJw3yxN2IjwAg\ndnwGxVJQUARvj+LMTG3a18KcxfwxHL+TM9CvK/8qnKjVeC/3FUJtvP14z/Mey7KyTzQWh+AjDxG4\n4wZfW5v2NTFncXepdFoyNwT3bxdPoLS0gGv3+ft4ua/AmWszcPZEBA7yZJWQ5vV56bAnbmGFwaSv\nUQR77tBTDK22vfw5zps1lr7Cs72dJb6LyKpBRZkDUTJ4M3Af3T0SXQZsxazJ7Mll3xG7YS5DFhQA\nGD/zKN5Gi1/gIDuWpB0TBvL4TvMWamvg6YJnt6NF9GbgXa2ffukKpl+6AkD0TgCnrxaADwLnOW5L\n4tyKDj9/iaXXbwGg151Ljl9fAAAgAElEQVSo8/7DiP6VLFIHXj3dtu5EanaOyD4c+k1oi93L2bsM\nI1quwt7weaR04BRKk4WmZVoi6Etx+tZXqaLv+4JGhazYGJbHuR/HcO7HMfhWGoPGZTyE+pAZi0wf\nLYHMqFpaWmApsAqB2hkM9jYWIo8FKVta9NYUhwPrBqFyBeHy5DPXnYWBvi56tWev0nUWcHciOz5V\n3IxjZ1do7UB+pUyWa6RFEWOQxdtjFXdCO238Idy4+kbIYOjXdTPOXpsJk1Js30gv9xWIfvsDLjXK\nc/t4ua9A9z4NMcGvPbftyL67fHI441Dh/uPkYosd+4qNTi/3FUJyw6+/Q+COG5i3tAdaedUAAKSn\nZcPMvHjCREanS+ee4/7tGCHjp12zFUJGw4mjD3Hs4H2ZX19YYTDXaFAV0rOF816LYlzLxpjcRnJO\n85z8AuwMf4z/7jwBABwb3U9u/WRBmSV0zEwNYWluTBgPQQTn+uunp0Hvn7uL4MSf7FiqEK+gCSgz\n9ao6wusGJGkizxvHUHVdAJz9N3FdhDg4rQvASd9+qGtni9W37vCdG1S/LgbVr0urO1Hgk2eI/pXM\n1dNz117U2LgVb6fxu+k4rQuAT51aWNG+LZ58+y5WXvfhHlyDIf5LMhYN34NlEtIF52bnobvrHL62\nSx/Xy/RaLsaHoLNdHwR+3iTyPFW+//Nd1wEAdn5chyNfduPIl91CssmMpchYBFlRO4OBKkQZCwBw\n++hUrqtR8wZVsG62cGCRquNmG4zIX7Jb6OrGzAXFPsobdwyGl/sKXL/yBm07sHNWc1bdOcYCAOw+\nNBpjBv8nNCn28q7N99x3OL9/NZXwGgsAe+IvuOuwctFplCplyDUWAPAZC2TZtPYy6tSvRDgeAKmM\nhUeXnmNhV3Z1bEk7Cu31+6OosAhV6zlg51N2f45R4dKoKrY+XMnXxpHnpePDlbt10j5M2jocAPDm\nbjSmtVzMNy7n2uDvu1Da1pJv/Mardkp8HRcnD0GVsuTS5Bnq6cLPqxn8vJqR6k+GjTvCMG28F3FH\nHn4kKDdn95+0LEom6WRkUDUWAzGqGNysCfDuKCxs0xLLb4QL9Xk3fTL0dNiG89xWwivVdLMm/A7f\nbsHtsSNEGii8ejaqYC9RplvL6ngazi6kFnErSqrdgwnLekFbBndHj7JeuJp4Fp3t+gBQzGR8XNVZ\nAKjbuVBF1C6GQRE8ODEdt4Om4tHLWJWIUZAWM4O6cLe/qWw1FEa7jrWF2oIO3hNq46zge7mvwJjB\nwr7fQ0Z5YsLwvSIn0cpkw47BlMjhNawkUdbajLTM5X03IqwwGLtfSHYHOZm4B2GFwchIyeS2hRUG\nI6wwGNFPPnLb2gxswW2XxLSWi/n6cQyLsMJg+NiTz8bBgayxQAc71w/EudCXEvvo6epgxJSDQu37\ntw6lSStyxCekUiov9Ib4+gOSxjLQ10WbHup3r1ZFrgQ9VLYKGgmvM4mFoejaLZxJuDKpui6A7yEK\nafRcvn8Ulh8YLbUeobEb0XmQbIsyfSoMBQDs+SQ6Faqetj6mvqDmd5UIMmMpUh95KLE7DETo6erg\nzjE/tBu6DS0Hbkb40eJtWmMjfWRl5ylRO+p49XMMUnLuwtKwCeqW2ye239OEPvibF4NGdhdgrFdJ\nbD9VQEsL+J38l69NR0cbV+5K9p/0HdYCvsNaYOm8k1yjgc6sQ5wxGjSqjHpuDrC1sxTZz5GnyqQ8\nWPNk05GERWkT0jK9BrErZleuXVFiv4yUv8hI+Yt119jvZ+S9aCz3CUDwD/44ozmHJsJLxwe9pnbC\n2A38N9CigkLucdfx7SFI/MdEAMDBGP4VUqLYhajl1KQ7lBVXZzvUrVlByBWHd0X9+plp8Oziz9fn\n1IFxsCoj2fVSkGkLTuDZqy/c57K6FMV8YL/X/Ufv4Wuv7FBWKiOmdg17Ph2aNqws01jXTvmhTY8N\nQu/hCN/mGOzTlLQ+qsSfX+mwLCvZeHdr5Yqnt95ROu7m2cfRYYDwe1ZYUAQdXfrXGA9/aIJBTtIF\nn8pyjbQoYgxVgKr0r7y4ebpw6xjcvfwKV4MfI+bVF+Rk5sHU0hhuni5o07Mh6jSVPpZLHGZ6Fnid\n9gwram0TOrex7n5MfTFYaDegs10ftLeRzqtEUIa2Fr8xRWYsKvWhE401GJJ+ZwBg+/lKEwTo3ncD\nSpkYYNbItvia8Ad/s3JxZie/dbxhbk+MW3Qc1+9HIzk1E/0UnF717tdGyC9KE4of4MQVcBAXX3Az\nzhmtHaJxM86F25aSff9fu/A1vHIf/WgHLRXbmMr8m8vnbsRiATVr82+TFhYWkZa3+F+l5A4tVtGW\nqnTfbnbwGhnZd8Oj4NFK/gC3Jw8/orE7dTdkALiy/xam7hqFTy/jUKWug9h+MU8/oVW/4tWimW2X\nITQnSGRfjivS2A2DYWFdbORcCryBKTvF+7/aVRUdfLzl5gOCV6F8Nq8mjoOQNKEXPMf7nPd44wri\n9Htk4gNGTzss1LZxRxjhTokgW9f0J+xDdqwbZ+hJoy2K6T02ITY6Htl/c7ltHN//yq7lsf3qLG77\n2Dar8fXDT7B4gk68K0yBjq42qjdwhP/JySLHGFB/IarUtEelajZ4++QzDjwUzgC0/NAYeFeYAu8K\nU9CqhxuyMrLx7HY0LnwuXlmVRtfQb5u58rS0tFChajl8/Wew7bw+Bw7OtlK9TyWNnIICZaug8rTo\nWActOtahfZyVtbZLPL+pHjVFD8m4O5EZi6iPqHF8K42FbyXpd9RlRW0NBqIaC9ZlTMX2kXSt4Lnh\nvYVXWuq4lKetxgMRkoKNOW2ChoNoOS7wqPgUutqmPG3OQkbDzThnGOhYo1mF4uDfN0kT8SsrTObX\nQDW9vDcI7R6s3FA8ERk2uiX2/xcutdwrd+fR5p50+ZxwCr6hPjtE9l0+/xRpo4VVxIKWtmgLecGM\n43xy1i2XPx1bzykd0c1iKAYv6cM1GDixBLzxB7U9XNG99DB0HNkGo9f5IjQnCAMdJ2Dw4j7QN9Tj\nyhvnNhupSenc60IS/kPvciNRta4jAl+LdzkJKwzG3nnHcGL9eWx9sBLV3IpXqgskGIsdaxF/VxjI\n8eLNV40cSxQbzkwl7vSPXTckV6wVRei3zbgW/AgH111C9t8ctPNpLLHvppnHEH7uOSo62WDermEy\n68qR9+3jT6wefwBf3ieiZbcGmOrfDwZG+lK/jtOx3dG50mHoa5sCYIHjmMO7Wh/2fQK87CVP7gRX\n9wtZ+fieeReVSrXGsU+tCPUQtTvwOf0yKpt1FDqfV5TxT1/pMNLTw/yr1/H8RwI+p6QgxJfaZAg5\nBQV4+v0HAODR12+wMzdD/fJ20OFZEf2c8gfP/vW5+ekznMtaobxZ8S7Vr8xMxPzLgPTo6zc4W5eF\nk1UZrgzeLE1Vy5TBx9+/ue0MDKq1VMwgkReJbBcNqjIT6RLcFDPy3gIAn7EAALWshbf4lElhYRHO\nhkQgP79Q5AR/wNDmAP5lEQp9jYd332PUwN24eOYZXz8v9xW4eOYZ8vIK8OjeB3i5r4B9RfG+7ZNH\n7QcAPHn4SWwfcazfzs6p/yGGvXo3vP9O/PiWItSPYwi1a74SD+++x4unsejcao1Yue2ar0RWVh5i\nPyXxtXMMhZmTjiAvrwDXr7xBWOhrtGpbQ5QY0uRm5+Fc6gH0mtqpeKx/sQS8cQhl7CxxNmU/Rq/z\n5bYdjd2O9kNb4lJmcW7pnU/X4thX/gDlkz8DsebqfFSsXpzRihP8zMuIVf1xNe8Yn7FARK8G8r3+\nkszWPcVxUpfC3uDr9xTMnCTsKqZuY6kK7Xya4Oiz5dh7dyEGTO0gse9U//44+94fWy5NR9N2teQe\nu0LVcthxbTYuxQVg9rbBMhkLANCk3BwEf/JCbmE6eL34tbWK1yoTs5+JuFIyF7/6olKp1gCA/lVu\nEfbvV+WGUBvHWBCkWF/peOM3EQvatMTZd1Ew0Zft/ZJEzY1bMfTEaQBAyJu36B90As7+xRmAqq4L\nQLvAA5h7hb2YN/rUOXju2ssno+n2//hkdN5/mE8GwDYOurm64EtqKtpUrcIYCwxctFjKzM0nHpVU\nShmQdTMSdY0klyTbUj1R3Wq1xOse/+iIzPxPEt2UVCGtKgCcDn6CPduvY+xkL3Tr3VBknw/RCVg8\nNwSsIhYGj/SEd5e6Qn1mTjyCqLff4VjFGmu3+MLYWPyNf+KIfYiL/YVBwz3g4yu9n3RifCqmjDmA\n0mVKYWvgcOhK8A8+eewRThx9iIKCIsxb2h1ujauI7LdrSxjOnXoK9xbVsHBFL6Hzu7eG4cyJCLi4\n2mHT7qFS6ywIb+YiVaX6QvFpCF8tngx9XeUHGqojB48/xKkLz2Cgr4tu3nXh27eJRozFQA+8q/hH\nPjaDb9X7Qu2inotqOxvXG90dTkq8hpeComzoavNnl+O9RtT1Z+P6oLtDCOkxGBhUHLkr9KitSxKD\nfBjolCPsk5UfR78iFNHTpxF6+jSS2MfJxRZBZ0T7C3Pw3+Yr8Twv2/bKN1G2sbNA8AVy7gK9+zdB\n7/7Ek6Sxk70wdrL49JxjJnlhzCTp0ndKQtWNBSIYY0F2hvRriiH9FBNQrMixGKjjc0YoKpuyC8Hx\nTthZrOIEBlaG0u/ydal0FN/+3kaFUp4I+SxcaE6QY59aiZ3sp+d9EdneprzoDDsMDCUVxiWJJEX5\nb+S6PjvRVS6Z0sQnUIWRnuTMNwwMDAwMDOIoY1AdZ+J64ujHFuha6Ti3fZDTI4R87oCwH5PgXYHt\nNvM7JwqHP7AXRQ5/aILcwlTuMecv51hHywCJ2U9x7FMr9KkcSqiHb9X7OB3bHaHfihc4mpabhyMf\nm0Ffhz8TFUff2IxrfO2DnB7h6MfmCP02Utq3gYFBI2BckkiS92c89C1FB6XKBCsfealTCGUKuv6Q\ncQUi45LkYD4OlS2nCrXzXpee+wpPE/qqhUsSA4M4JLkkKTulKgMDAwMDgwKQ2yWpROwwZCc4oiDz\nEAoy9yA7wZHbnvOzEYpy7yM7oSpf3+wERxRkHUVB5gEAAKvoF8DKZf/lITe5Kwr+7kLOL3aWhsLs\ns8hPX4WCv1v4xuHI5YXFShUpk4hWDuyKiZG/JLvWUIGZATv12YPv/FkoPv6RXKSLgYGBgYGBgYFB\ncygxMQy6JuwMQwVZ7MwtOUlNYFjuCQBAS5ff9cbINpbvuZZ2WUDLgP2XBwMrdlpK3VLsPLg6Rt1R\nlB+FgkzxBdCIZBJeB220dojBzThnPMhtza3o/CPjGGJ+L+Hry+u+JOtOAKdeA68sbS3pMkCIW+EN\nGuWDehXtJF67M/wxttwgzqPfv1EdLOrSWiq96Cbk6RssOnedVF9tLS3s9O0Oj2oO9ColgKj/zdpe\nHdC1Lrm6D4cePMfq0Nuk+hrq6eLOrNEwNTQg7iwjvzOzcPTRS1yP+ogPP38T9pe0+0AGRexQFLFY\nGHHgNB59JpdKtEsdF6zrTezXTTXi3kuy75G0n6WNfTuhlQv5jFgcpNWz6eqdSM3KkeoaQRacDcOp\nZ6KrWA9v3gAz23uQkiMPkT9+YlrwJXz7kybVdX3camFZt7Y0acVGns9Oj+1HEJ1IbuFtRHM3zGjf\nQirdFEFuQQE81+1BWrboz5k49HR0sKBzK/R1kz8zlqz4BV/Clcj3pPq62JbFmfHk4wTVjZoz2Z/j\nSH/N3LkuES5J2QmOXCMg51crGJa9hZykpjC0fsjXJtiXFzIuSbzXCsoRJZdyNyfaYHErPTcufwlG\nutLFNoj7MXBzKI/DI0QXkhpz+CzuvBf+PxBhVcoEd2dLX4aeSuou3YpcOQr4ONtY4eyEQRRqJB5R\n/5s21atg24CuUl8nDQa6ung0bxwM9aRfs1gTehtBj18hv7CQuDPN0GkwXH4Tg+knLsslQ5EuV7JO\n+nrvDMLb+J9yjb2xb0d4k6ypIY2eZD7njRztcXB4H6nHIzO+vCSkZaD1+kDK5M1o3wIjmrtRJo+D\nLJ8ddTD2iei67RCphQ2yGOrp4sWiSZTJE8f7n8notu2wXDKWd/dC7wY1KdJINSBjMNx6+wnLz9zE\nzQXii5DSBJMliSwFmeybJqsgDgBgaP0QOT/doG+xmdsmicKcUBTlRUBbX3TKTg5FufeQl76QlE5k\nZSofLbjZniTuJiVP434ItdVcvBmFReSrMguS/DcT1RcGoErZ0rg4eYg86klFYVERai7eTImsmMRk\n7o+hMn7UbkSJrysh7480B3kMqoMPnlOig6oy4sBpPPgkOnOLtHD+XyFjB6BmeeLMaIpk7JGzuB0j\n/aKAKOaevkbaYBBHTGIynG2suM/JftafxH5H9YUBQt9Vae8J1RcG4M6s0ShrakL6GlGcfxWF2Sev\nyCVDHOuv3sX6q3fRoFJ5HBlJXDWcDqi6BynrHvviazwG7Akm7igDOfkFtL6uA/efYe2VO5TIWng2\nDAvPhsG7ljM29hVdE0MTmXTgPKzNSylbDZkoMQaDrslIvr8AYFjuKQB+FyRRuwuS2kX14exWEF1P\nRmZJovna3XIZC7x8+pUi8kecDqic4AmiqNdABqp+qDnIsrug6VD9HnPosysIS7u1VarrAi+rLodT\nZiwAwBW/YcSdCFh8/jqOj2ZX55Xl//DtTxoqWJpzn8uygOCx7j+Zv+/v4pPQa+dRma6VlmdffmDK\n8YvY3K8zrePkFhTAQLf4PkHH90OR91i6vt+KgC7dQ9/E4O2Pn7hK8jt86M5zrLvA77oouKJfa1YA\neJ1nmjpVxJ7RwnWJiKg5MwCR/n4YtisEEZ++A2Cn4n6+WvoY0h9/0rH6LHtumJT2l7sbIUp/VaVE\nBD0zqD71l2/D779ZlMul+wa9+/YT2owFDqrwI6MKOmg6dL/Hi89dR5sNe4k70oxv4AkcfviCUpk2\nZvKv2L36lgAAePnvr7S021gcu/Y1JVVufaQlOz9foeNde/sBM0Lkc5kjgjd+jc7vhyLub4q8h96e\nRa27i+sienX/mpJK6v3ZeysC6y7chq6ONjYP6YoJ7YRrs6Rl5YDFAhb2bI1r80bAztIMDz98RVGR\nbJ7uzRbvRMSn77g0exh2juiBvIJCvsk+WcbsOY24X38AADra2nAoa8l9qAslwmBgVvJVmw3X7iE7\nj74fO7pu1NUXBmDT9fu0yBY1lrKgY+xnCydSLlOdUdT/Nz41HXWWblHIWBze/0zmHldfGIBnX4Rd\nEeWB6uJ7/f87TtxJDAvPhgEA2gfsl1mGrJ+FBpXKyzymrFx6HcN9zXSw794zAIr5flDlUioKRd+/\nrU2pc3mpvpB/tZ5OiN6ngMv3EOnvh5drpqBNzSoY59VEaHXe3NgQkf5+8GlaB3aWZrg2bwT0dHTQ\nesUemXTKLyxEpL8fKllZoIWLA05MHSi2b6S/n9jdgouzhuLirKEAgDKmxtznnDZ1gPEJYFA6gXcj\nxJ6TlEkpOuEXeuw4QmqM4QdOYd9Q6bckxUHWnUJHWxsnxw2Ai434bFhTj1/E1bcfCGUpwz2p2Zpd\nhH161a+BznWqo0nlCty26MRfWBt6R2xmH2N9PZl1kvY9UPU6DGQnE5XKWCB4TH+YGxmKPP81JZXU\nRDWvoBBeG/chbJpiqnSHvfuIauWskJCWQdjXxbYsZnfw5PssJf/NxI5bj3HsySuR11yeMpQqVYVc\nIgU/H0T/q5PPIvExiT+ItUe9GljVsx33eVLGX3iuk23yQoShni5y8iXHB3lUc8DSrm1hY24qts+e\nOxHYGHaP1Jgnn0VieXfqqseLki+JyW3cMa5lY7HnF5y5hlPP3xKOU1hUhPTsHJiJ+X7JiizGQoNK\n5TGuZWO4V6kErX+hqkUsFs6/jMKRRy8lJgnY6NNJVlWFqLFoE6l+bg7lcWBYH+hoi4+rdVuxHZm5\neYSyGq7YjogFE4Ta5x2/SkoXUVSyssBHGYPLgycP4HvuWt5aZj3UHcZgYFAqom6mk1o3xfhWTQiv\ndbEty/1BJ7opP/xELiUlGU48fYPFBOlSb80cRdpNYhOPHzDR61Ck0ZD8NxMpmdlC7aaGBngyf7zE\na11symL/MH4DLS07B01W7aRUR3WHzGTi2cKJpAysiqUtuJ+NiUHnJQavf/+ThujEXxINWao4/PAF\nfBrWEputh+jzbFXKBIu6tOZLm5yWnQP31btQxGKhvIWZhKulg3eVWZReUcv9CP9nvC5Nt2aMFJqY\nW5uWwqlxAyXGGxx6+AKDm9YjqzaXF4smCenXoWY1BEg5iRzl0RCjPNjJOMh8Rr+mpKJiaQupxiCL\nuB0MsvfBFT3aYUWPdsjIyUWjlZKzEjZetZPS+ytZY0FPRwevl0j2i9fW0kL3eq7oXs+Vrz07Lx+e\n/nuQkZMLAPCuWU02ZQUgo7s079XTf0ZAXPIfeG8+ILbf39w8pGRmo7SJEV/7pRfRpMa59voDph2+\nCABoX7saqtlaISk9k7Segjhal5b5Wk1D4wwGLx0fiefDCunJTqBK8L4H2x+vRjU36XOVK4vIpVOg\noy29pxyZH/JGK3cQTnTJQGQsvF02FdpasmUwi1ruh9brAyWuxhYWFcn0HklDRNx3DN4bItQuz4+p\nuZGhSqzoqwpkMkW9W+YHWT5K2wZ0RW5BAeou3Sq2T4/tRxTy/0jLzkGLtf8JtUtT70MQcyNDvF02\nlbijjEh6X14smoR6y8S/rxxMDQ3EruK72klepVwTGi6TwQAAVa3L4GPSb+zy7Q5PZ0fiCwggc29t\nH7BfYd/tUgb6IlegiTA1NMC2AV0xMeg8DVoJs4Ckq5a875uRvh73d+14xGu5ZEmDrHo7WFkSfqaa\nrdklJN/Jpgyi44nrbUw7fBGXZg9DJatiA/bIPWpjpkoqJSKGgUE9ODPBV66JMNENLCMnV650ngDg\ns/sYoQ6yGgscbs4YKfE8nb62HASNBW0tLWayTzGSJvMA+7Mkz0fJQFeXcNVSWbExUcv9ZDYW6IYo\nFoBsdi+ixYnmVSuJPSePz/iFSYMRtdyPEmOBg6p893W0tWUyFji0qV4Fuwf1kNjn3Mt3MsvnkJqV\nI7ZQHwdr01KUv6/9GtamRA7RfYEKvYlkCO4GHRdwDZIEr7EAAH9E7JQrEzpjNulE4wyGsMJgoQeD\nekCFewRRnALRJI2I198TxZ7bPai7XLJ5IbqZXnxNbnuWKuhczS2JiNq94YWqiYSejo5E/25loCqT\nT3Eoqr7ArA6eChmHKnhrVCiLyKVT5JbhUc1B4vk5p2T3lefQdLVk10tjfT3KMxlRReibGInnqfz+\nLujcSuw5josVB10d9nS15swAvqKdP9P+Cl3LyUYEQOZgZzrJyM4l7qSCaJzBwKCeUHUTalpFuirU\n0iAptVwZE2N4VKNuRQ9gV1UVx8yQUErHkoSqT/DUkYi472LPGckREC6KyW3cuT+2olDEjhUHTfks\nSQruJItTuTIUaKI4iKrPBz0WHZROFVR+dm7NpG+yTmaHQpWzxE2TUF2e6irSAxvXlXi+rUAa6Eh/\nP3Rzc0W9OVtQc2YAas4MQBsBgyDS3w+d1x3gnt8/to9K1TmI9PeDno4OVz9ZUrQqC8ZgYNA46JqU\nSHITuDdnDOXjjWjuRomc9LxoXI6tCQDcv2SxlZBJRRyxX5OxZC11fsKeXfwpk6UKTJfwgwwAz2mY\nTLxZIn5llqpiiSWJTrVcJJ6X5G6kqVyJfK9sFUhDRd0OcRDtUCirQjYV0FFsc23vDmLP/UhNF2pb\n6dOem75UXBpT3nMc9yRZjAZx18hrgLxYM1mi/qoKYzAwlDgOPXiubBUUyr0fvdHRUbI/rTiI4ilE\n4VjRCktmd5VpvDWbhHdObl+YKZMsVeUywZa/MjhNIu2kvMxs70H7GIqiGYFBMLRZAwVpojrEi5jc\nUcWdWaNpk61olFEvgyyS7k1+Xs1oGbNrHdWMZWIQhjEYGJTO3qE9FTre6tDbxJ0EkJSTnCiIji62\n33qklHF58ezij3OXX+LWPf4fmkPBD7nH7fts4usPAAeOPcDy9Rdx4txTjJ52mHs+9IawYSO4w+DZ\nxR9PX8bhzoP3uHj1NbetiMXC8TPia3qoA7IYaFQw/8w12scY3lxzJtH1KomuDcOByKBQV2rb24g9\nJ2o1mCrKmprQJluRqGrcAgdJu5+jPRopUBPVwfHIau5x9J8kVAtah0Mxz/j6LH96HdWC1iGnsIDv\nul1vH8H1+HqF6Uo3jMHAoHTcq1D/40p19dc9d8RPRImC6OhiZzg5g6GjYyTCv7XHzW9tZd5pkES3\njnXRqrmz2PNXQ4oDpivas3Na7w+6j4UzOqNvNzfEfBAfSC4Ot7oO8HCvhvXbi7f/tbW00K9HQ6ll\nqRKyuICRRdpc/AzisTIxVrYKSkFTJu50QRTHQWUF5pJCQaHyXCYdj6xGrO9cAEDAq7vwf3kb7wfM\nQik9fWQX5HP7TKrdDO8HzEKN4+u57QAwtkYTvOs3g8/oUGc0rg4D3RDVeegwrBWmB45VGbmyjK0J\nmaUCh/QkzESjDpgaGghli+BQWEQ+92LLCtJn/gge01/qa8Th2cUfgZuH4PDOEULn5HE54sSV3Do/\nA217bkRtV3tsXKG6PsLXSFT0posONavBL/iS2PNv43+ihl05Wsam8rOkClAdmM6gGSy/eFPZKsgM\nmUrsymDX7ceY2LqpQsfMzM9DzeANXGMBALa8YXsZcCb/sx5exseBswEA9U4U76LXCt7Ibdc0mB0G\nkgTODSKc1APAlf234FOefAAsq4hFWi6ZftKiicYCADR0sJd4Pq+gUOJ5VcGqlPwrmbyBztIEPUty\nP5AWA31djJxykPt8/PCWGD7pAF5GfkOXAcWpbtt4uCAxKQ3PXn6RSn7HvlsQsm+MShsLALAz/LGy\nVRDLprD7tMmm8rPEULJgdjUUw9YbD4k7KYFHn78pfMxR4Sdhrm8o1B7rO5f74DUKxLVrGswOAwkO\nLQ1B8LpzfG2BbzzALtAAACAASURBVDagkmvxpHT3jMM4GcAuR56SmAovHR/CyfehpSE4vOwkabkA\nSMkli6YaC2Q4/uQVBrvXJ9X3Y9JvieeVVfxKFRC3OzDYh39F6Nop/kwQPj0awuef+9CFoOJUfYtm\ndgEA2Fibix2D9znnuH6dirC0YE8sPLv4q2ygdHQicaVSZXHvo3RGGoP68/5nMu59+ILb7z/jU1IK\nfmdmKVslIYaQvE+rOlQW0qODMy8kJz5Q1u+cMu6ZQV7sInGOR1bjYc+JsDE2xfS6nqgVvBFvfKYB\nAPKLCqGnzXZ9Phf3Ft0caiCvsBBaWuC2F7FYchdyVSUYg4EEvJP6UWsHou8M4QwwY9YPwpj1g/gm\n4USTe165WlpauFZwnBK5ZCjJxgIAvPyeiMEk+16P+kirLnRT0cwHL5NmQktLB/amygnQppuHEZ9Q\nVMRC4s80uaojMzBoKlci32NGSKjapdEl2i1WF9rXcFK2CmpJZm6e0saO9Z3LjWOYWNMdA53qweWY\nP6pZlMV576HcPnvePYbLMX/0cKyJ1U28udfvePsQOyIf8Lk2qTOMwUCA4MRalLHAS1hhMCnXIcE+\noowFWeQKom8o7GvLK8epviN2RKyRWi5VKMv6jpRQsVmQ8JhYGjWhn5plFipbBdq5dW4GAMDO1gLh\n51Vzd4GIUgb6tI9hrK+HrLx84o4lFB1tzfLSbR+wH19TUpWthlw4WlkqWwVK6FrHVdkqMMgA72Tf\n0sAI0f2Ff19GuTbGKNfGQu0Ta7pjYk13WvVTJIzBIAWyrMJPbrYAW+6voESuQw17xL39TlouAD73\nJkDYUFGmsQBAYgVaOkmWYuv9y+8/xJ1UmIKiv7j2pQn3OR2Zkhjkx9xI2GeWaiyMjRiDQQJUVHBW\nBZZduIljT+itvKwoTA0NlK0CJWjKZ0sZxH23Jd3XwT6BRk2owfXsErzuuhC62tRmc6QbxmCggQrO\ndvgWEw8AiHpEXVaUPa83cCf8ZOVq8dykvA0H8J0raW5IvOTkk580/VXiligVXPvShDES1ABzY/oN\nBnMjQ1oLbDEoFxYLcF1UcmOqGDQTq9LbuMe6OtZI/NUXenrOMDUZBC0tQ6T8mQMWClTKWCByQ9LW\nUr/dTMZgkMDBJbKl5dxyfwV6WA2nXK48qGrMgrKyFRnrk3f/0NXWVmouaHUh8H0LOJl5w9NmHun+\nI6vdpVkr9SElM1sBY6heUCsDNdx5H4cxh8/IdK2hni5aODmgtUsVONtYwcXGWmQsUJ2lW9QmwxyD\n5lDKuBf3OO67LSravYe2dnHNGlOTgWCx8pCZdRomxootBCsL77ovUbYKMsEYDBK4d6Y4BWK91uTT\nUZaylJwGjleuIpjTfiXfc1UxFpRJOTPyBXTKmBhLrGIatdxP7DlVgTedqjy7DZF/TqCmpWqnLlVX\nUrPoNxjSsnNoH4NB8fxITZfKWJjr7Uk6SxwDg425KW4pqQq9KHiNBQ5aWvpI/jNDaoOh9vnluNhm\nAiqalEaf8P9goKOLIy3EL/hKYubTU7iREA1XC1vMq+UNVwvyrlSChMVHYcGLczDS0cOWxj6oban8\n4H/GYJDA16gf3GPBWACq5NJNO71+YAkU+KIyNau6Usee/Be5kWMFwpRzqgyV7kiPfm2lzGBgdhf4\nyckv0IgxGBRP2w17CftcmToMlcpYKEAbBlHceR8Hj2oOylZDJhJVrKhb3HdbIfejuO92KFt6O2kZ\nrmeXoFKpMnAvWxkdwragd6X6CPIYgTrnl+NmQjRa27rA9ewSAMI7Aq5nl/C1fUhPQrebO7CwTies\nc+uJk3HP0Tt8t9B1l79H4mZiNC5/j5S4y8AZN9B9EFJyM9HvdqBK7EqonxOVAjErU2zFZmVQtzLH\nK5duOMaClkDAVdjhOwrTQRWpX8mOdN8WTpVo1IR+0vOiuTsM0hRukwUtaCGzIAnHPvfEmS/DwYLs\nrlx/C34Syrn4bSIOfmwn8xgMDOrOtBOXCftELfdjjAUlc+9jnLJV0Ag4hkLcd1u+B8CCibF0acND\n207CrqYDAQAnvzyHnrYO9LV1EfDuhlRy+t0OBAD0d2wILWihj0MDkRP8jvY1sd6tt0RZrmeXwFTP\nEO+6L4G7dRV0rlBbJYwFgDEYJNKyb3Hxqftnn9AiVxFcKziOa/nH+XYV1g3dLuSqVJLoVZ/8xNm7\nljONmtDPvR+95d5luJ24CrcTV/Ed87Zx+Jb5EDcTlqB/5dOoWKoZ9r73xNmv/FvZyTkxeJYciMD3\nLUSOFfi+BY5+6oZbCUvFyiliFSLwfQt0rrANQ6pew4GPXgh83wIJWc/lep10412zmrJVEEuzqupt\nGJdUQt/ESDxPpcskE78gO4cfvlC2ChJxsSmrbBVI42CfIPIhD46lrAAATmbW+JQhXbG4k61GAwCG\n3z8klw4cHneaQ4kcqmEMBgkMXtyHe5yZRj5Y8MzWUNJy6Wb749XQ4ole493deHb9tcL0UDTnXr6T\neJ4p7iUdnjbzuMHMnGPeNg7ZhX/QpcIOAECDMiOgBW0k5/BPaKwMndHASrI/bHZhikQ5p77wl90b\nWjUMAGBrrNp+2ZPbqG5O7omtFbuQwSA/l15LNhZq29soSBMGdUeV702KwFhX9jo4jqWsEOQxAo9+\nfYbr2SUYcIfYRVAdYQwGCZiWJh8Yy8uOqQdokXtszVmZruPlVFIg2vp6cJ976fiAxWJJuIJ+6Kg8\nOufUVcpliuOQiq8c8e4u0J1e1crQhe95VbP2tMgx1i0jk1xl46DEIlSnnkuOw6lbQfYAPQblMCNE\nsjtS8Jj+CtKEAQDaqXE151YulZWtAmkKCr7h6w8nIbckaeo1UE3d0hXwrjs7tuFlyjduHIImwRgM\nUjC99VKprzkR/x9lcvfNPyaVXHHMPjiB73k73X4yy6KCxeeuK3V8MrR2qSL23OrL4YpTRE6KWPTW\nlLDUd1SInE72WwAA939uQHJOjFj3JnXj1Tf68ogvOHONNtkMDAzAhj4dla0Cbdx5H6tsFQAAv1LG\n43tiIxSx/tI+loW+sUzXyRtzwIJyF3HFwRgMBAyYV5yi6/VtyW4uALB2CH+UvmU5c4XKJYtgliTB\nOg2KhGjlk2p8GtaW+prtA7vSoInieZw4QtkqUIaPYwjep1/GhW/j4G2/QSOyLvXfc1wp41a3tVbK\nuAz0YahHbRLEIiXvRKsDujqSp1St1gcqSBPZcLEVH8cw5rD8Hg5UkJl1Bpbmc2mJYxBkVLXmAICC\nouLYncF39wvrVJBL2ZjaWlqocVb6xWlFwKRVJWDYch/cOfkQ39+zP4heOj4Yv2koekzyFuorOOne\n8WQ1JXL72o3Gn59ppORKQ1hhMJ/O3SyG4lzqAUpkKxOi1JFLurahfMzqCwNUrh7D5dia6OgYSXtm\nJGURHNtHLY2EoFE+GLBHdFpjZc3JTo8fqJyBGWjDoQy17m81Fm2iVF5JJDEtAyyW6sbQnRnvi+oL\nxVcKf/41HvUrks8wSBfmppMVMs6wqu7Y8/4eap9fzm0b4dQMT39/4evX8KLwnMxSYHdC0EWJ9znv\njkRkt8VwPbtEqL8qZErSGIMhJTEV64fvROT9aGT/FZ8CVXBSb1bGFK5Nq2H5uVlir9kftYnvuh1T\nDxDGKfSa2glODST7BO6P2gRvo4EoyCugVK40DJzfE0dXngYAZGVkY9WAzZgXNIUy+cqg3rKtShk3\nKy8fxvp6ShlbFJx4hXLGrdCgHPs9oWKH4UHSJrhbT5VbDhVwXJF0tQxQ3aInGpcdr2SNiKlH8IPr\nuigA75ZRa3y6LhI/CWDQTGKT/yhbhRJJ/Yp2eP41Xux510Wqt7hEloF7gpWuu45OWfxKmSBVzQVR\n8E7AeY9DWo7m6/ego/DccHoNL7GyyIxHZV9FojEuSenJGYi4+lKisSDyut8ZeHTxGWG/sMJgTN01\nipTMsMJgjN0wmLgjgNDso6Tlnk87SFouWYYu88G+txu5z28FP8DPOOlSilGBpFUNaTj7QrJ7l462\n7B95ohtlg+XbZJZNJxxjAQAa28iXvWGoUxjepZ5C4PsW3Ic0XP4+le86WeXs/9AaADC4aiiGOd1A\nb4cj+Jh+VW1iGc5PFP89pnqXYe2VOxJlKnsCwEAPuQXUFelrtmYXZbI0naOjiN17N4bdU4AmsvHf\nYMm1DKj6rZYVPd2qyMw6LTLgWZlBzyUBjTEYFEGnUW0RVhiMZt0biTx/LvWATBWUieTOOjABYYXB\nMCplKLVsMlRwKY/+c7pzn/tWmUjLOET02H5EbhlzT0vOjhS5VL7dk651qks8r+ybKS+XY2uKfMiD\nrpYhRla7y/fgMLLaXaE0q5428/j6dLTfJHS9LHIKWfkYWe0u9LVLQUdLH6X0bDCwyjm5XpsicSon\nOcsTVZ+jvIJCHLhPvCDCoJ4YKWBHM/RNDFIys2kfR5MgSlG6504EzrxQbOweWVo4ORD22XrzIf2K\niCEnV3ljl3Q0xiXJoWYFmSbrsrDk1HSVlivL+zB8ZX8MX6ncFHzRib+w5cYDmfNBE02yKpaWv9Lp\n2t4dcP5VFKEedKzaBke8xpLzN1C/oh2pVSyOSxInloFzrKm8Sz2jbBWkImq5n8TPbPWFAXixaJLM\nwat5BYWos3QLoQ4M6kv4jJFovGqn2PPy3ov23XsG/6t3ZL6+pDKuZWPsuv1YYqG7eaevYd7pa5R/\nBw8/fIFBTevJJYPo3rTj1iPsuPWIlvvHkH0heBL7XaxsqgObGcijMQYDg2awM/wxDj54jmcLpdvl\nILMie9VvmKxq8fFk/ng0WrmDUB9TQwM8mS+fT/2jz18xbP8puWRoKoHvW6CCSVNoa+niy1/27kNN\ny75K1ko6zI0MkZYt3o2y3rKtCJ85CuXMpKvdMu3EZcIKwH3cakklk0H1MDMi3nXOyMmFqaGB1LJr\nLt5MS42cksKrxZNJ/S5VXxiAbnVdsaaXbDVrAKCgsAi1lmzmPpfXYACA8hZm+JGaLrFP9YUBGNHc\nDTPay+cKuu7KHexndkJVHsZgYFA5svLyuTfaRV1ao3+jOiL7xSb/QcfNB0jJFCdDFkwNDQhXYAD2\nDzVvn251XdGljguaVa3E1+/190S8/BqP86+i8Tb+J2V6cujoGImbX1uDhSLaC7cpCnXMjiSKR/PG\nodfOo3gXnyS2T0v/PQCA0iZGCBk7AHYWZiL7JWX8hee6PaTHXtatrXTKMqgka3q1l1iokrO4QWY1\n+PnXeAwUk8ELAC5OHoLOWw5Kr2QJ5dG8cWgiYQeIw7mX73DuZXH83aCm9TCyhRusTYsXCgoKi3D7\nfSwuvYkhXAygguvTR2D5xZsIevxKYr+9955i772nAAAdbS2M9WwM71rOqFK2NLcPiwXc/RCLR5+/\nUWIY8MYqcHYcfiS6w67cLWhpSW8cy8u2aHZM3USXm6Ta1RXGYGBQKlHL/VBj0SaxOb6XXbiJZRfk\n/7It6tJabhmCdK7tgouvo0n3F/xRUCStK2rGDUsTOTVuIKmVyJTMbLTZIF/QOgfGFUlz6FbXlVRl\ne97PWGPHCihnVgo/0//i5bcEUgHSI5q78U0CGYgxNzLEyXED0HtnkFTXHX74AocfvqBJK/Is7Nya\n0GDgpbCIhe23HmH7rUe06RT33Ra6Ovawt43gMxzKWR3Dr5QxsC5zgNLxtkW3JpzwT3S5yTUOyLSr\nK0zQM4PSebuM3hSddE2O/Pt4Y1XPdrTIphIqg54Z6EGRE3jGWNA8utV1lar/49hvOP8qCo9jv5HO\npiSv20lJpYZdOYkF0VSdqOV+hAXpFI29bYRQm65uJWTnMAtjdKJanwKGEsfXlFQA9E1i6J4c9ahX\nQ+UnYB0dI7kPBtUlarmfTL7mZKltb6Pyn1UG2VjTqz1txfdmdfDg+9z0qFeDlnE0mTPjfdX6u/dm\nyRQcHqHa8WE5ufdgbNSF1jE4uwWZBb/x8JdsVbt5dxxepJzga9sW3ZrvWNKYp75MAgCExI3nth+L\nHYlCVoHQOFTBGAwMSiUi9jv3mMobaoNK5RW+akuH25MoyGRIYlBPnswfj8tThlIud0KrJggeo9ws\naAz0Ut3WGu1rOFEqs3+jOhjWrAFfmzrsqqoqUcv9ULN8OWWrIRNuDuzf1DImxsSd5aRTbWex5/T1\nXEXWW0j81UfuYm4cwuJXcR8cznz1Q7cK/gAAE90yePZbOjczUdxPYtc3sTeuK3TO3riu2DHPfPVD\nr0rs+kp9HHZw23/nfoaOFjvSYFDlw3LrJwgTw1BCuHH1DS6ceY7otz9gamYEj1bV0WdAE9jYyZ9q\nVB5uxXxGrwbFbjKcSX6XrYfwMem31PIqlragLBuStPRvVAf9G9UBi0VtZV0zI0M8njeOElnMLoPq\n42hliajlfsjMzYPbCvl+ANV5VZNBejb16wwAOPr4JVZcvCWznGOj+6FuBaYIFh2EjB0AAPiRmo62\nFMUkcTg5bgBq2NFrkNybMwYA8ODTF4w4cJoyuR1rOWND346E/ezK3UBaxk6u0cD5W8ZyPWW6eNkV\n1wGKSb8OAEjN+wEL/Qpyy+bENXSvuAG2RuxMdd0qbgDAQtcKa5BXlI336TfQreJ6HPjYT+SYqXk/\nCMcx17eTW1dBtFhUlxWlBpVQyst9hcTzYQ8WUDJOYWEROrQotmSpkgsAvTtuRFpqlsQ+VI4nCkkB\nnfaW5gibNlzs+fXX7mLv3aeEYwxxr4853p4y6UcnO8MfY8uNB1JfN6NdC4xo4UaDRgzqyMyQUNIB\n9t61nLGRxA8vg+ZzI+oTJgadJ93/yfzxtLrFMYjm4utozAwJlfo6j2oOWNfbG+Yk0uvSyfADp/Dw\n01eprtHV0ca+ob3Q0MGeJq2ogRP0nFWQgiOfh2B0tQsAgB0xXhjvHCbUT9z1gm0Af/ak+0m70Mx6\nLADg5JeJ6F1pm9gxswpSAGjBWNcS2YWp2P+xD8Y7h/GNdfH7fHS2X8k7rJa87wVjMEhAUQbDwB5b\nkfQzjXK5RPoDgO/wFhgykt6JtiSDQV9XB68WT6Z1/JLO5diaqF12BYpYeTDXd4W5ARP4zMDAIB03\nP33G6JOiq6l/nE1uJ6vqWtG/BWSvFyfv2ZRxMDdU7qSZQX35/G+XorKIonCCE/5d771RzawNWtvM\nAMCe6HNiEThMdLkp1O5q0ZF7DQDs/dATI5yKd2h4xyEaEwASs9/h7Lfp6Gq/FnbGtbntRz4Phr62\nCfo6CKXzldtgYFySJCBq4k5mEi4tdd0ccO0S+dRlZMjL48980aBRZazZNICv7W9GDkqZMjfZkoB9\nqe4AgCtx9dDBQfnp+hgYGBj+b+++w5uq+jiAfzuS7r0XdEHZRUA2CCjKEl4ZiohsFRVQFEQFRBAH\nChYEZYqICvIW0Be1FBEBAZWpRYSySqF776bpSN4/Qm5yc+9NbkbTtPw+z8NDeu45556ktJzfPctS\nuq/baHLQQe5tBcWaB5ZKpZxzjoPu6MDstuyRoH6Bs5mRATHpAHC9/CgrWNC9j6F7AkCwSwfe9MnR\nO3nvaQm06NkGLFz8KGbPGwovb1f8fMoyowsjB33A+lo3WABAwUITidy0GpGbLDff0hBvJ9WhdUm3\nOkGhFLeFIgDsuGWZ7W7fv0zTYwhp7obEROPGovnMH1OYW17Im0MGWrQ+cu/w9tT8W7TGoW8bUofg\neN7aRr9PY6ARBhsxbmIvjJvYq1HqnvOK6UfOk+avb+g3AIxf8Jwju2bxtlzNUC3E8vV8EQFeiy1e\nP1Epr/4OOUUv8l5zdeqHiMBEg3Wov1dxEdmi7plf+hZKKvi3GhRbByHGoFEFYi6JYxTvVKTG0pxP\nfaYRhnvA4KE0Z51Pu21rrfqkvzmpqi9h/la/BgC5ohr7MzULqd6/PAKrUx9DRvUl1kjC+5dHIL3q\nLxpdaCJCwQIAUcFCTtEc5nVN7QWLtIkQQkjzRSMM9wA3d9r1gk+NyBNO70Vujj6sv9Wc7Ll7cC9o\n9x0AIM6zHwDgk2uT8EaHJADAGx2S7pmgIaPgcXi6PgYvt6Y970A9MgCY/mTfz+tVlFer5tg6S7uJ\nKhPovQKB3it420EIIaR5o4CBEGJRNrHFWROorjkJZ2l8UzeD0TooyeSyUseoFjuN6IfLVzH/B+5n\n80jbWHz6mP6TYi/m5GHsTvaBTRHeXjj6nPDW0LGrEjAkNhpbxo1B30+3IL+yCgDw55zn4H/3ECzt\n3YP4ptnErkpAax9vHHlWdcbMoE2fI7OsnLk+LK4NNvxnlN62q53LzMLEb9i7unQLC8V/J9v+gZA/\nXrmKlw9wv3drRg3DmI7t9ZZVf8bqzzfx4iW8cfAwK88T8Z3x7rCHDLajsKoavTdsNpivJU2Z0t5J\nSFZzHDmFEwEAri6PINhvx908oVD/D9A65CIcHAIE65PX/o2s/OGsNB/PV+HjuYA3f2beQ6it+5dp\ngzHtFbqmy5R6s/Ifgbz2IitPeNAvkEoMn4heUr4WJeWrDOaz5pQpfShgaAKW3q7VUH3aZzyYcq+y\n0mqMH/Gx3jw/HFkEZxeJwbpsxZWiArPrSDh7Cnuv/YvC6mrE+fpjSqeuGB9n3elf53Oz8cLhAyit\nqcGkDl2wrF/jnjYtV1ShQVmnN89LbXfh/csjMKn1+9h1+41GbY+tqKj+oambwOEs5Z4eei/7KysH\nE77+VvD6oWs30HvDZvw55zne60JbgmaUliF2VQKifX3w8zPTePP8eiMNHx0/yQQLANB7w2bcWDSf\nU2/sqgTejubtklKU1tSgxzrOdolIvnpdsJyY93AhKxuxqxIwf0BfvNi3cdbS2RKhz2FPyj/Yk/KP\n3s9RqOy9RB0sAEC17BDqG7JwJ6cntB8X3c7pgtYhKXBwCGSVrZIlI6+I/3DVkvI1KClfg1Yh5+Ho\nwB6hDA/6hemsy2qOw8VZeDt4oYDAkhSKcqRn859InZmnCjr1dfSt0UZLo4CB6JWTXYIp4w2fNvvo\ng6t4t261JULrFfjS02fzP+Uol8vR5Yv1nPSLBblYcDQZC44m47G2HZAwxPRpONrtEWpHmbwG8V9s\nYKV98c8FfPHPBb3ljKGeVqTNyd4NEyLe5s0zNnwxJ52vDgCwg4PZ7bMl2UX8nUxiGwqrqlnBwqax\no/FQmxjm68yyMgzatF1UsJA4eSLuC9P8Zz/+q2/xd3YO0opLMDPxO3w+4THeOjb/eZbpiKrrG7BR\ntUj8xqL5KKiqQp8NWwCofs94OnGnkqqDBd0Orbo+fUGD9ns4Nnsmwr08ma97b9iMwqpqJJz4HRO6\ndEKguxtvHU1tVPs4jGqv6aSZ0nlXl5nbrzde6t+HSZ+0KxFnMjIBAG0/XItrr3F3iWujZyRIXW+P\n8DB8+9TjRreruUjLDGE6wupO750c1SGjuum3c7oiOpw9UqkdLOh2qDX1dUd0eBaEltnmFE4U9dQ9\nLPAn3nSh+xpDHSxEhqbC3t6LSc8uGIsa+R8AgLq665BI2nDKqkZi9LfF2aknQgP4zz1pKs0+YGi3\nTPVDGhfkj6t5hXCVSnBh8RzEv7Me8rtz1J8dcD9eeag/AGD14RPYdlJ1cnDq8qYZLrT0+Q6G6ks+\n8SYcHIxf3/7yczvw7z+ZzNf29nY4dJK9s83cWduReln1C+H8mTQM7buy0U+ONtWMzuy52Nvvdq51\n0/Wxt9OcfTIyJg4Lew5AK08v7LqcgiUnVEfIf3ftMhb27I9Qd0+hagSpgwVnR0ekzuLf1rTj5+tQ\nVad6yu9ob4+TTz2LIDd3vHYsGYmpl5h6LBE0NBYHe38AQHXNCWQUsKdCBPt+DC+3iXzFOJTKWlzP\njIUS7PUokcFH4SThf/qjq6RiC/JL3+ake7iORqjfJr1lK2U/o6BMswi8uPxTFJfzB9iNNcWnviEf\npZU7USlLhrzuMpMutIZAqB3G5rck7R2ZGhSluJHV4e4Ve8RFZHLy2dlJ0TY8XXT92tNH+DrU4V5e\nojrafHn2Pj2RyXc8TbhNO54Yy0nLKa9g6gxw03TS5x9IEgw8+NqgPVLxyLYvcWjWVNb1U+l3WHl1\n/TnnOez++yKWHjqCvp9uaVFTafjoBn0AsGvSBKz57RQ2/nEGCoEDbdWpA6Jac66pvwfnMrMs3Vyb\n5eXxPMoqVEFsoK/mAZar82BU1xyF7gRV7Y45X4c/OjwHeUXTUSVLRlpmGCdPdHiOUZ17J5Hrr0zF\n9x5CA/YzbczIGygQ2CgFy6vfY438jEXbagnNPmAAVB3/dssSmL8BIGXpXOZ6u2UJTMCw7eQ5pC6f\nj5yyiiZpa3OiHSx8snU62ncM4+RZv20GGhoUeqc92Yq3dKbrqAMG3XR93KVS3Jq9gHNk4uSOXTG5\nY1emw9/36y1Gd9i1RxaEggUATLBwfuoL8HPRLEL+aNAwfDRoGFOPLQcNEsdwZBc9i4rqHznXcotf\nQW7xKwY7qgWlK1Fc8RnvtfTcwZBK2iIq+JjeOvQtzK2oPoCr1Qd422ErC3ptpR2WpAkWAECBqxmh\niIvIZr1XpbKWSTeqbit0hHec+wvTetzHSe8fye1kCvkri//p6asD+wmWcZVKUF1bh5tFxZxrU/fs\nAwB46zkN+cmuXbD00BHRbWzOdIMFtVcH9sPGPwx31J7tdb+lm9RsOGlNdfR0m8oEDO6u45h0FyZg\n4BceJPzvLMjvC6bDXVa5FV7uz/DmU6Iedjxd2Izc/vrfgIU4O/UUvObuOhaV1fsFrzdXLXpb1Vf3\nJuH+99kdihAvD9bfhN/uL08xr7vdH8UbLKjpjl4seumbRmuXLdB3vnorTy89V4WJmYYEANOS9jGv\ntYMFbfqCDVtRLf+dCRb8PF9BdMhphPqz9/C/nTecrygAILNgMitYCPXbhJjQvxARsIdJq627hhtZ\nnQXr0O6AujkPROugnxAVcgKB3sthZ6f/UEM3l4dYf9QkjpGca7p5LEnffYxtR1xENqJDziDEbwM8\nXMUtoLW0aUnQrQAAFfFJREFUsqpvIHGMQEzoOVa6+vuoStf3E8h1Mv22RdomdlHxyiPHzL5XuVzO\nm/58H+FOyufj+UcktO2a1HKnyojlwTPVy1hCIxD3AhcnTdAqcYzgzeNg78NJq67RBAlSSQfOdT5F\npW8JXkvPiuVNr6u/CQDw8XxF1D1MFRrwveA1F6cBjXrvptIiRhj4tH87AVfeVj1NUo86AICzpMW+\nZYvavlnzdGDVuqcM5t/zw8t44lHV6YUXzt5qtHbZuuX9H8T0JOOeLIgNFgDg2B3VZ7v2wZGCeZwd\nbf/feEnFNrhIu6NVkGaxsMQxAnER2SgqX4vCsg9RU5sCed0VOEm4u59U1agOv9F9wuzoEMSkXc0I\nRYOiyGBbdOuQesTAx4P/qZZauP9O1tfq4MPDdaRVD6TTbYd2W/iuGSJxDIfEMRyermNxtdr6oxe5\nxQuZ74f2qEKDokgrPYtJzy9djkDvZXrrfPfIcYu0bVgcdy6ytvvCQgRHBqzh/gjhhzpqI7Yb/2+i\npZnXr7fZdUzds48zWqVe/9DSSRy1O+pCz5y5Qb2+zr8xosOzkJYZBqWSG1RXVms68T6eCy1yP2HC\nDy7s7MRtAFNTexbOUvZolXr9gy1qsSMMSiVw7FoaOi5vnkdwNze+fu5N3QSbILE3bjGvMcGCtv+0\n0b+FYHOgHSxo8/PUjJCk5z7IuX4zu4dR99E3UkGat0rZIYN5bhWXGMxjCa29va1yH2IeX1cXk8vG\n+vsxr2V17HVTk3apDkTsEMTeFailEdsZ1lVXb5mRPu1ua2Hp66wr+cXPAwAcHIItdK/GIZW0BQBk\n549mpSuVcmQXqNY6OUls78Bd238UaYB64bLQ3/8uY0/PODh3mvUa10xtXs/em9qcBdkt0ci9O/Fv\nYb7Z9WgHC24SqcllWyJfjxcE1yfUN6ieNAf76v8M7OwkUCrrUFObojefKXPhSeNwdeaff+zmzL/O\nqK4+3WCdge5uyC5v/DVr1gpMzNHSFzM3tuSZU7DxjzNY89spdP6Yu1uej4sLDkzTPyIfPy8BKZ+Y\n932In5cAqaMDzn48z6x6rEkqiUVt3VWL1BUSsA85BeNQXvkl/L0/4FxvHfKXRe7TWMKDjiMtMxxA\nA+8i7hD/3XBxHmT1dhnS7AMGYnm/n7je1E2wWTGb16BBa/5q79AILOw5AB39A+Hs6Ijvrl3G/F+N\nPzCrqq4Wb/52GO8NHCoqv4e0eZ/eLdQxVPP1nCsYMKjlFi9AbrHpi7pbBx1kRh80u/RkogUPvNo8\nqWMUf7okhjddjFHt47Dl9DnDGQ24VVyCKF/u3Gy1lJxcs+9hDu0zHoSU1dTAS8/CZ2LY8316Ys1v\nqjV+ge7uqJDL8XCbGKx51HojmeYGHE3B020qCkvftEhdLk59mdd19emQOEZapF5rCg86gsy8QQDs\nYWcngYO9D7zcn4WXx/NN3TRBFDAQjpws7i4bBIj/YgMTLAhNH6pTNIiuT13H4N2f41ZZCXZdTsEb\nvQeKCgb+mTHXYB5b5mxguNXB3rTF40a1QRqPuIhs3MhqjwZFGQDgakY4c51GHazP3p5/K2I7O+NG\n4LS9NmiARQKGoVt3iHpCr28nI3O9mXwY7w3jf6jwwKbPDZbvvm4jjTKYSffEaFP8nZaNqWtVGzQ8\nfF9bfDRdsyYtfl4CPpo+Eot2JDGLq7UDhPh5qvv7ebji13fZ54bEz0tAfFQIUm6p1tK0DfVH4utP\nM9cnfPAVrmUXsspYK/jwdJ/OBAzy2guitjz19XrdYJ6M3D6s7ValIrfTbmqqYAF3z5toHihgIBx+\n/h4oLNAM4dvquQrWViavAQA4OQj/2JzMNH6e5tEnZzJTjDpvXy9qLcOHp0/gtV7NdycGpbLW7Dpi\nwy5ZoCVAbNgVAMDN7O6ob9AsWr2aEQpfj9kI8LbMYj3S9Np9tA6pC18yqowddHeT10/fTkbm+m/K\nJcGAoa5B9bCiU3AQ59r2CY9hRuJ3jdYuYpxXt//IdNTj5yVgQMcojO6p2Tko8dRF/LxiFgK83NGg\nULDKpnwynwka+HSICMLO+ROZurVdyy5k3df6IxWqn6as/JGCB6/lFmoCHG8P4Z9VX8/XUVzOnY4U\nHnTM3EYSATT2TjhGjmncw06au75hrQSvHbiRalKd6bMXMOsY9K1PGBCu2sv9s79Om3QfW1EhO6j3\nuqz2vME66upvw8HeV9QfMWJCzyMuIps1slBcof/gNtI87JvyJACgXqFA7KoEpBawn7IqlEr0WLeR\n9+Tg61pPkmNXJeD0HfZuOI9/vYcpF+Mn7t+aOfjaqJ32/dRJnOsDoyNZeUfv4G59/evNNMSuSjDp\n9OR7kfqzUv/ptvYzzPmee64MnyMrn2VevzdlOJZ+zV68f+ZaBgK8VBuJONgb1017ffxg5rWXK3v6\nWYiPZjv5QC/rb1Sifeoz39z9tMwQVNeoDkCNDNM/NdrbUxNMyOS/W6iF1peWGcL6k54dh1ID03Gb\nCo0wEI7JMwbgy22W2YoQAK68Y9tD4Bsu/Ik53cRvtXf0Thpv+p/ZGWa149+Z85hgof22dbgyi/t0\n5atRE5g8k39MxNejJgjWt/rMSSzoaZ1DbIyl/SSfT17xIoN1ZBY8bbFRBl3aW3pmFDyOiID/Nsp9\niHXEhwTjrYcGY8Uvqu2iR23/yqjy2icpP7U7kTePp5MT54RlS9s/ZRLG7twl2KnXN01G+z1czss3\nOjDQl1/3Gl87jCn/Qp9eeGVgX1bauK92IyWbf53Iqz8m49Ufkw22wRJOvfAM+n22lZNeLpcj+ep1\nxK5KQHxoMPY9/aSo+gZ0iOSk+Xnwn7FjLEedM5JySiogv7u7U35ZpUXuYaxWIRdwJ0f1UFLo1ObQ\nwAOwtzMc0EgkbVBXdx05BapD41oFGz50T99J0XzXhEZCzOXi1B8y+UlOukJRjuKyd1Bc9g5ah1yE\ng0NAo9zfFDTCQO55q8+cxP5rlwEAeVWVSEzl74Qu6TuIeR275WPm9a2yEkRuWo2JB/ZgbFtxB9II\n+Wn8FACArL4Or/7K/xQ+ztcfgGr6U+Sm1Xj9+CEk37qOrSnnMGb/N4jctBqRm1Zjw4U/zWpLU5LX\nXRa85nj3F2iDwjprbWRy8aM59Q3m755FGseU7l2xfwr36bu2lY8IH2x3Y9F8OAo87R3aJgYXXn7B\nrPaJ0SUkCJcX8O+Mc/S5GQbL31g0n7U1qC5XqYTWOOjRc/0m3mBBV0p2Lk7cEjc9NT3fertrvT5+\nMAa9uQmPr/oaF9YaNzXPUhwdQhAdniO4PWt40C+cswmERAT9xq5b4CA5W3M7uxNvsMDJl9PFCq0R\nj0YYCK8pMwdi5+eqH8ahfVe2yHUMt2YvQNTdp/Wv/JqEV7R2N5rQjrsod1aXHoj28sWMg/tRr1Bw\npg7N6dYbC3r2Z4IPU3T0D0TqrJfRbtta7Lv2L5b2GwxvJ/aw8qHHpwHQTF369so/+PbKP5y62vgI\ndwxsgdB2plczNAdQ8V2PCU1hnv4b2hJVoSjnXUibnvsgIoOP8JTgCvUTPy2pvCoRIb7rROcn1tUl\nJMisDrGx6x8A/ifdQm0Q0zapg4NZ7yF55hSTynl2LsKFEaZvsa2vzf0PrcDJR/SvFRL7xN6U+4vJ\npx4FGde5I1aNeFiwvDrf9P/uF6zrj9Tb6NNONb306Y+/RUyIdX5Xf7D3qMnrFqLCMrE3rSeQ8x4m\nxIxj0vmewLu7joO76zhOOru+Oya1Q5exIwC6+RNvdseEGP4psIk3uyPahPvpe//qUQxD9ajz5RY+\nhWB/7hTCpkABA+H1tFbAAIgPGkqKq+Dj69aYTbMYO6jWDqSVFmNW8ve4U16KPmGtMLNzd8EyQ1pH\nI332Arz3x3HsuHQBnlInvP/AwxgaqTn90tCiZUPXnR0dRS18Tp+9AA1KJab9tBfncrMR6OqGB1tH\nY073PvB1Nv1wImvwcH0UFdU/3F1Y/Dy83adBXncZWYXTmTwuTsKLRwO8FqOg7F0AqqDBwd4L3u5T\nAThCJv8T1VpzWvkCCnndFSbocJZ2RoD3W3ByjIOs9i8UlC5Hbb1m2pm7i+HtEsP8tyOrcAbTnlaB\n/4PEsRXq6jNQITuAiur/ISZU/3kQTU2plEMmPwt53RXI5Jqh/ZyiF+Hi1ANSSTs4SeL0rgmprU+D\nvC6VVR4ACsrehZOkHVykPSBxbN1o74HYvm03jmFW7CBWmqFgwZboCxYAwN1Jikq5/k0d5mz+HvUN\nmsXM+98QF8S9tPUArt/d5aioohojlm9Hm1B/rHtmtIGSGtoLoSf074Ilj3MPx+Tzv/Qhgh1ra7ld\nkYTWHiOsdr+mfL/29h5QKCogk59osjboslMqjdn/wWpsqlF30gtx6WIG0m/m47vEs0z6fybcj8jo\nAHToFI7IqADY2QsfFa5LJqtFeloBbt3Mx78XM/Bz0kXm2lPT+qN1dAAiowIQFWPaqZHah60ln3gT\nDg7Gzz5TKoGH+3GfKLm4SNF3YFvU1NTh9KnrqK9n7+JgC6MR7ZYlMIf3WdN7B4/hzeGDWGkKpRJd\nV65Hp9Ag7Jr5hGDZdstUv8jFtluhVGLwx9sQ5u3Jqve+dzfgr8VzTK63MWnOO8gGoGSNJmjzcBmB\nUP9touvThy9guJ4VB4XC8GFexmytKpOfxp38xyxSlznYn7FxZcTSrbuuPgNpOb1MrkN9f1/PFxHg\ntVh0Ol9bWiJztvJUQonuSUsBACEu3vhp8ALUKRrQK3kZAODc8Hdgb2fHSlOPJJTWVmPIL+8xdQmN\nMHRLWsLJs/XGUWy8doSV1u/QCtQrG+Bo54BTd4OEsb+tQ3plAavu505vx9miNFbZbklLEOUegFuV\nBZgb9zCmxww0+rMwh9jvgfZ6DFua3sW3K5LYnZISb7IfovF1pNVP6hNvdoeTgzfkDaWsvPmyMzie\nrTpjoG/wGoS5DeI83U+vOIBID/7gR6gNpfKrOJw5iZWmW6/21+p6/JzjMSRsOxJvdofU3hO1inJW\nHT+kP4yahiJOPXzvLb3iAM7mL9f7+agZO8Lg4ToBAb6f6M0rkvgOqgAaYRAg5nTj77WCB236Osxi\n6v1mB//cNmt3xO3sVPfUbbNMVosjhxpnsWlzMXz9Dt5Tw71cuIcidXh7rajOeury+UznXgyhenV/\nKxhbb2Nid+7sEBeRjSrZL8gvfRv1ikJ4uo5BkM8qo+vLK3kNFdVJUCgr4Sy9Dz4es+DhMlKwXJsw\n1Ymj8tpLKKnchkrZITQoyiGVxMDL9XH4es4RLCvExakX4iKyUVT+CYrLPwGghJO0EwK8lsLFqYfR\n9ZnKlA60uZ1uiWOEWXUIlTU2nXAN/Hkl0+lWd/57JS9jdcQvjFjJSlubmoyX2w3DkF/eY+UTos7z\n8RXNuquN145wAoxTj7zFGWHYP/AlTt3rejwNZwcJlqbsZdJmxjyAF+OGolvSEqsHC9oKq6rh72Z4\nUXL/qJYzkqYOBMQ+cR8dqQoU1Z1wALhdcZDTobe303RBf89diL7BHxndhsOZkwQDBV1C18dEHWXa\nm3xnHIa12odHI3/mBCm6702d92z+cqbeg3f+I3h/scoqtzCvLRQsWAQFDMSgw78vQXmZDOOGr9Gb\nb+Dg9lj6rv55i9b26Kc70TMqAktHaLaam7P7AM6kZ+LMG5pFinsvXMJ7B49hdHx7vD1KNUSrPUqh\nHSB0XvEJ6hoaWE/uL2XnYfzmXYjy98GLgzQ7Lt3//mdMXeq8QvUaY9SGnZx61W0Qo92yBPi5u2Lf\nc09h3OZv8NmTYxAfHmx0OyzBzeUhRLkILzYVI8jnQwT5fGh0OSdpJwT7rjXr3rr8POfBz5N/YSoh\n1nZ86GKmQ35u+ApRZf6XcR4vtxsm+h7dkpbg7PAV8JRopkKOCOtqXEO1ODuoFsS2dvNn0j6/eRwX\nSzPwYHBHk+s1x4OxMThy4yZ6b9gMAOgRHob2gQHIKivHrzfZO+e5SiXY8fjYpmimoPXPjuGcy/DW\nRPN+7xoi1Vo/dn/gMs71cdGnmU58VtWvJt3DXSK8zbmxpPaeqKhLNyGvHUrlV3G+4F3e98lHPYLg\n5jIaDg7+kNeeh7yWPW01NPCAyJZbBwUMAhrrab61RgksfR9PLxebmGpkjK4r1+PvJXPx5R8X0P+j\nLTi58FnM2Lkf26eofpFrd9x7R0XgwuI5eG1/Mp756jtsfVp4ask/b83jdPQ7hQYhdfl8DF+/g5X3\n7BsvNMr0qB/nTOHUq26D2NGEUwufY+poqilchJDGZW9nj629Z6K7bxQrTc3u7pikdtr2PppzAsTo\nE9AGDnb22HjtCDN6kJT1N1bGj+fkvVSayUkTa3MvwztBNZbN40aj7YdrmdOXz2Vm4Vwm95TelY88\nhIldO1u7eQYN7BTdBAe1GWZn54DUki8wKHSL4cw8Kuv0L56urs8zqV5j9ApaCUd7NzwYvtNgXtWp\n1GEAVFO5q2T8QYG/z0eid4uyFgoYSIv195K5AICpfbrh/WTVuRK/37zN26GW1dXjia27cTmngDkx\nlRBCbIE5c+FHHl2NRR1H4XpFLmb8sRUnHl7KGmk4P+IdAOzRhyh31dbF2lOK9O2Q9On9U1l16cu/\ntsdkTppQXnXwkVFdhKEhnXCjIg/nim7heP4VbOw5nbdMY7r22stWv6ctU0/ZkfLsRCfW+Ogzoqc7\njY85y9xTnX94q+85af2C1zBpA0I2MOXV05q0vxayL60PANV7dLBzwtho4cPhXB2DcPDOGFH1AkB0\nODfQbA4oYCAtVoNCwXtKJt+T9N1nU7DnGdW2fXwBRU6Z4QWypmisegkhBAByZKUYGNgOABCpNcWn\nOXn61CYcG6pa9N7KzQ9H80zfupqYhq8TLDbNUJ6ege8I5GSzgz2nrLskgpMW6jaIlSb0Wt/X46L/\nMNhu9df/Fm9mXp/OW8wp11LQwW2kxYpfuR4A8MXv5xHooTo18oE2USiX1QBgd9YHx6l2W+75wUYm\nbUSnOOZ1zd3TMdVuFZp+2M6ITnFYeuAwb72EEGJJp4ctx/BfP8Rjx9fi057Tmro5Jjk2dDHmnt2J\nHgffwncZ55p0ahKxnOyqY0i82d2qW6U2hnzZWeTJTiO1dAfuVCYbLtBM0baqhBBCCCGEtFxmb6tK\nIwyEEEIIIYQQQRQwEEIIIYQQQgTZ6qJns4dOCCGEEEIIIeajEQZCCCGEEEKIIAoYCCGEEEIIIYIo\nYCCEEEIIIYQIooCBEEIIIYQQIogCBkIIIYQQQoggChgIIYQQQgghgihgIIQQQgghhAiigIEQQggh\nhBAiiAIGQgghhBBCiCAKGAghhBBCCCGCKGAghBBCCCGECKKAgRBCCCGEECKIAgZCCCGEEEKIIAoY\nCCGEEEIIIYIoYCCEEEIIIYQIooCBEEIIIYQQIogCBkIIIYQQQoggChgIIYQQQgghgihgIIQQQggh\nhAiigIEQQgghhBAiiAIGQgghhBBCiCAKGAghhBBCCCGCKGAghBBCCCGECPo/L2lPM39M8jsAAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -424,9 +423,9 @@ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4U9Ubx79puvfek+5FoYyykVkE\nBC0yBGQpKsoPlKGAoKiIAqUK7oGCWxRQGQKCglBWS6GFtowWOumie48kvz9ibnJ7R9ZN0pb7eZ48\n3HvGe05uQ3Lec94hkEgk4OHh4eHh4eHh4eHhocPI0BPg4eHh4eHh4eHh4em68AoDDw8PDw8PDw8P\nDw8jvMLAw8PDw8PDw8PDw8MIrzDw8PDw8PDw8PDw8DDCKww8PDw8PDw8PDw8PIzwCgMPDw8PDw8P\nDw8PDyO8wsDDw8PDw8PDw8PDwwivMPDw8PDw8PDw8PDwMMIrDDw8PDw8PDw8PDw8jBgbegJ0CAQC\ntdNPu4yYgPbaatSkX9TFlHRG8LI3cHvn66Sy8LVJyH5nBWOf8LVJxDVbOx4engcDcysnCI3NiPvW\npmp0tDcbcEY8PDw8PF0FiUQi0FZGzzlhkAAdTQ2GnoXaSEQdavfJfmfFA6kojO/zmqGnwMPDObFP\nvqO1jH7xa9BnzEvEy94tVGuZUSuTlDdiwGXQOL2Op2/8dyaq1X5C4CodzUS30M17bMD/9DJ29LPv\n0paHzn6Z03HY5PmMfQKmto6cjqdvhCbmiJut3ueVifCxS9Su12ZsrubNww09RmGoOHMUDbczDT0N\ntcn56C1DT4GHh8eApH271tBT4OFRmRN3P9DLONc+W0Nbbu7ozuk4bPIKT/yItroqTsfTN6L2Fv0N\nprZtiGF59z17Q0+hW9EjFIbwtUkIX5uEXotfppQbW9kgfG0SzFw9EbrqXZI5j+xa1t9n5jOMssPX\nJsHE1oFU5zhwJKnePX4aqT7kpbdJ9Uxy6bAJ7S2f1/SnVX8YAAKfWyfvO2OxWn07zy1g0Uqi3Dai\nL6nOvs9gSj/F/oHPrGGUa2LLzX9UY6EZcfJgY+FGOoUY3+c14n54xDK4O0RxMiZPz8bWIxh9nngD\nziFx6L9wu7RQIIC9byQAyMv+u3bwi6aU9V+4HU6BsYiatpZU7tgrFq7hw0jjKfaV3Vu79ULow88T\nZf0WbIODXzRCJ7Dv8CmDbuc/YOYL0n9nPE+pk+E6dAKEZuYAgPClb6s1prmLJ3EduSKRsUwGlycN\nXq++DNsRQ+Hz1mtwmDJJOnZIMOwnjIPN4Di4PrOIaOuz6XVYhAbD//2tAKSnCP47tsE8JEjpiQKT\nTEXcrEIAyHftFXfvma6V1SlrFx8o//72tolmlGEkEAIAhvksYJTPNIfR/tLPjQByi4cQp+FK5xuz\nNAnh89YjZmkSYpaS/+YeQx6hlAGAX/w84l/ZtUxWZ9kyrDwCELM0CaFPrELM0iQIhHJLbCZ5AOAY\nEYeYpUlwDB9AKjd3dCfJM7GyI40rrVtNO38m4mYnYsDMd+DgFUHaVe8//W2EjFiAkBELEZuwkdTe\nwTuS1DZudiJCRi6Ce9hw9Jv2But4fR/dIJ/zFPYNi7gntiF42DwEDZkDUws7YqzO8wcAUyt79Iqb\nAZdeAxA3extRP3DWlv/em7zMxMIWYaMWw8k3hvI+HLwiMPCJrUTZjQIPyvX0JyzxwovWRNm1XHfc\nKPAgtXVxNcKNAg+cSHal1CV9ZI9Hp1kg6SN74qU4xo0CD6RmuZP6PPBIJJIu94JUT1XrFb42SdJr\n8cuUMq9H5xHXEAgkNsFREu/HnyLKwtcmkdo7DxlLuhcIjSUAJAJjY1JbQibDfAIWvCQJeyWRuLfy\nC2acN12Z//zlSsehKzd385IEL32d1MY7YYFaz9Hc1ZO2ztzdm7g2tralfR7ha7YT9wJjE+I67OVt\npP5sz47pNb7Pa7Rl1uYupHsf53607en68y/+1fnVf6H8Mxz56GpSuf+wmeT2Un8rCQBJzMzXKf1l\nr+Dxi1Uaj6l/3zmbKOPIXq5+/SVDE7aRXs7efWjHchk0jlLmO2XBf/8uJJVHrUyive9crmyc8KWb\nKTLoyqJWJkkCZr7A6d/S+431xLX/zkTSv4rXbkuelpe9v5XSTmBiInH/3xJKP7r7znUAJBMCVxHX\n0a4PU8oUr4MdhzH2VbxmG0N2PSFwFfGKD1zJKMNMaCUZ4j2PUkfXlqlNfK8VpDLZi2m+DqH9Wf92\nMUvpP2d05Z3LmPq6x02QRC56Q6W2sjrH8AEqj9W5LvQJ5vev+IqbLf/MWDv7SYKGzqWUy657DZJ/\nB9m4+EsCBkwj6s2sHZXKZ5Krytxk10zy4mZvo21rbGpJlNO9t4GztvxXN0di4+JPkXHqoqsEgGTB\n01aSGwUeEgCS1Cx32vnK6gFIrt/xkExNsGB8b4ptZS8ra4Fk9Dhz4t7cQkDbrru9uFib94gTBjaK\nf/tGfiORoP72dVj3ktv35u1+n7guO/EbXEZOBAA4DRol7fKfj4GkowOVF/6GQ+xQknyBUEg7rri9\nFQIj+eNtzL+t1rzz9uwgzcttzFSV+gUsWonbH8p3F27veA02ob1V6us8ZCwAoKX8Hm19S2kRcd3R\nUEfbpmj/buJa0tFOXAuEQlJ/APB7khtb2IaWCuL6XlUGgjxGcyKX58HFysUPVi5+yEveS5Rl/pYI\n5+CB5HbOvkTbnL93M8qz9QhWeezUr1ei/8LtiJ0nt+Fua6xlHCe430yVZQuMqN9XRqbmiFqxHXW3\nM1j7ipobAQB3ftyp8ngA0FZToVIZANz9+SNOTxjaioppy838/WDm74eSJKl5jXlQEFHXWlBIaS9p\nb4eZvx/rWJ1lMmFpwn66Kpao79fGxtHcRBzNTcSxXOlJ1rHc7Rjf6yUM8JxBtInzegLnir7BnRr1\ng4ZcKP4BACAQyH/vZGMezWU+mfEdNxthT65TezxNcIoagpBZq+DWfxyMLW30MiYAmDt5Km/UiYb7\n+XD0lf5mt9TfJ8pl184B/Yiy+oo8uATFEfetDaqZT9258DPcQobC3jMMRRnHWNsqzqG+/A5r2/ry\nPNp+HW1NxLXsvQHS04S42YnE95KjbwzqK+QyZGx4pRYAsOY1WyS9Ww9vHyGsrck+vG++a4dzV9xI\nZQOjS7HlfXsc/9eFdd6K/HLQGR/vciBOGa7e5NYErjvTJaMk6RrFI8nmkgLiuirlX7iNfRQA4DJy\nEiQd5C/u8n8OIeyVbahOSwYgdT4OeGoVzF09IRGLcGPLaqJt/vcfQ2AkJMx0br2/gfjBVZeqlH8R\n9koiyk7+rlJ7JjMnZTgPn0B5z4r4zFgM68BwiNta0ZSfQ9um/tY1ledl6R2g0TzZcLIJQFX9Xc7l\n8jw4tDXWwtTSFtX55M+y76AE6WJ+QSJSd0tNLcImvoDLe6SmkEYmZhRZMtJ/fhN2XmGoLb4BY3Nr\ndLSwB2hI/Xoloh9/lbi3cHBHY0W+0nGU4Tp4PFwHj0djYQ7u7v0YAGDtJzWV8YqfiZrsywCAkKfX\nAwAC57yI3O+lmyrZH29A1MokXN/OHHDBdXA87CMHwMTKFraBkcj9/n3kfvceoQRkvid9bnRlMq5v\nX6F0HFWxjJaakQltbCARiwEAHTW1aM2TPkuZElCwZgOEdrYQ1daRFAOPlctQsn0nvDe+iuJN9E64\nTDI7M8T7SdiauaG+TaosHcvdrnNn6KO5icQYyYV7UN9WgVCnkTASCOFk4QtLE3s0tdfA0sQe8b1W\n4FzRt6T+HeJWTAhcRSz8h3hLzXaG+y7CmYKvAAA1LfcwNmAZSTmI77WCUCCYlIb0D6V/35il2wEI\niHuuiVmahPQPV6Dy+jk4RQ6C96gZyjsZkMBBs5B77kcAgLmNM1Euu84++Ym87ZAncOOfL9Qeo+JO\nCmEGdPEH9s+g4hxsXHsBAFrqKyA0Maf4R9i4BtD28wh/CCXZpwCAeG90Y9+5uBcBA6fj7qVfSOVn\nTrVi4GBTAMDnHzcgNYu8iL9+xwNRvUrw2ppakglRU6MEYb4lAIDsfA8IBCDumRAaKW/zoPJAKgyK\nCM0tIGqRhh+08PYnyutvXYNtWAyprVWvMDTkZJHK7u6S/qcLen4DPCbOQMkR+Y6kRCwiohkpC5XK\nhoW3P5qL2DV7RTQdp7nwDiz9ghjrrQPDSbLVVUy4iOxkJBBCLBER93fLzmJ8n9dw/OqbAAAzExuk\n5/1K1A8KeRoXbn0JcxNbtLTTn4rw8CiSsfdNuIQORr95W3Dv6nGUZJxE/4Xbkfq11B48/8J++A+d\ngbzkvbjy3TrEzHwdzTWluHXsM0aZHS0NsHbvhaCxi3D7xC7UFd+EkdAYsfO2AABJftikpbB08MSt\n4/KFQOrXKxEz83VIJBJk7H2TKDc2sVDrvdEtwhXLIpa9i6yda3Dry01qyZVRfv4Yys9TdyyVjdv5\nngtlAQAaU9PgsmgeBMbGyH9RqtgVvfYW3J57CuYhwSjeLLWplrS3w3ZUPGyHDUHeMvkipmT7Tvi9\ntwUVu/ago7oGgDxCkv/ORLSXlKL4nURamYrQLZolkNCW51ZfYOzLtmPP1K5zH0sTB6JMpgwwye3s\n4Hyu6BuGduRTp2N3VP9tSP9wpVr2/nS0VKq2wPMakaDVOLpkwIx3YGRsArGoA7kXfgIApB98l1jY\nZxyR/ltffpcoa2moJC3AO2Np74HoidLvlbjZibj86wZ0tEnXO3cv/gIrJx+l87pzcS8xXsHVw//N\nawtRpnh6kJP8PVGee+4Hory9uY6ioFz8YRXJd+HiD6tw/04qAgY+DtegOIjaW0nzWPC0FRobJAAA\na2sBiovk64Cfv1O+GRvuV0LxR2j4T54i0x+pxJ6fnDB/VqVSmQ8chvZX0LUPA9s1nQ+D06DRpHuB\nMbMPg5GJKXHtPGSsxGvqXOLed/YSxrkoKw9fmyTp9cwrGvU1c/GglLvHT1PrOZo5y20DnQaPoR2v\n19Or1fLpCFu9hfAnASAxsXfSyA5vUMhiybDwpZTyUVGrJINCyHbiMp+FUVGrJNF+CRrb/nH12nR9\nkmTT9UkGn0d3ew2c4cc/O4ZXZ98FZT4MdK+olUmSyOVbWX0TolYmqeS70NVerovmadyXzhehJ7wU\n/Qs8bSIMNo+YpUnES/G3VLFc9lLsZ+0dTFuu2D762XeJciuPAFJ7VeQ5hg9gnUPM0u2Mc2C7Z3op\n8yPQxavvoxsM/llU53WjwEPi5GxEXNvZG5HqbhR4SM6kukn2H3EmypPT3Ii6GwUeEgtLAa1c2UtW\nNnehFal856cOBn//2r64WJt3+xMGxV1uM2d34l7V3ezsd1YQfRpyslB54W/aOgDI/Zx8JB26inyv\nOKZAaEzqW/jrLuLawssP/vOWU96DYv+KU0dI81K1b2tFCRpyskhjlx7bx/DuqXR+zx0Ndag8fxIA\nUJN+kajL//YDtXwQbmx7BeFrk2Ab3oc0lrpcuEV//PrPdeadN7a6B53Qka64ebrc0NPgMSCq7OZz\ntePPY3jYTin0CZMJkjLTpIai27RtmPo1ltwl1XVuRyevKjsFVdkpjHNI/3AlQ/kK1vuuQtzsRDRV\n0/sqdlUUzYQ6mwwxmRANjS1TS66M775uxHdfa2ZC3pMR/Lej36XQJNOzJmhjJsTT9VE0VeKhZ9P1\nSVgfddjQ02Bl4Aw/THlNGhK3q89VnxgJTTB46mbaupuXvsf9oqt6nhEPDw8PT1eEi0zP3f6EgYeH\nCV5ZYMfeQz37956Om/8ABPZ9nBTthRaJBBVFV1GY/ReaG+ij/eiD3g8tNdjYXOPsHYPQgXNZ2xTd\nOIn8rKN6mhG3+IaPh084c/brtuZa5Gf+ifKCy3qcFQ8PT1fifrEXnL3oI7t1BfgTBv6EgUeHDFvQ\nCxNWhZPK2HbJN12fRLSZ/+lABA+Th4PbMeU0Ku4wR9eR9VVkY+yf6GgTk8oERgKMWx6KEU8FMspi\nmmPnMQ5syMDlA9QwlADg3dsez/1ADkPc3irCG/2YF31WjqZY+698YfX5nHOwczfHzO2xrPPSBDuX\nIEQNf5Yzee1tjbh0aCNn8mQITcwRED0Zbv5xyhtzTPL+1cobacjQBKpzsKpIJGKcO/AKh7Nhhmme\nyp6NNu8PAAqz/0JB9nGV2rKNlfbXNjTX697s0NreGzGjlzPW6/KzxMM9YcMWwsEzkrVNQ1UB8q4e\nRP39u3qaFY+m8CcMWsIrCzxdFbrF//I/RuKXNVeRfoi8A2FhZ4JXk8fTytmY9jBlkf1WxkTO5vTY\nW70hNDXCpZ/zKXWdlQUAMDETMppBxUzyxPQtfUllz3w/BO8+dEKj+bKh7WKODhNTK0Juyp+b0NZc\nq5EcZbvR3Z1BU96G0NhUKxkCgZH0WUskSD7wMkcz4wZrBx/EjFqmtRyf8HEqKww15bdh70qf6yN2\n3Gq9LNbZlIXW5hqdj69vBs+g+oKc36temFw6GQAgam/BpQPrVZYTMvhJOPmQozoWZh5HUaZqnx8A\nsHbyRfQY9T631o6+iBr9AnGv7vvvDNPz0FZuVxnzXp4nTE3I63bZicL9Yi/SPQC8+D8brHrRBt6B\nUn8TKysB8m95Em22brbHovlWAIAXllfj51+boEseaIWBh0fXnN19B2d3S0Pi0i242VBcVE9eF4lB\ns/0x/d0+FIVBpizQLcLtPalmR7J2iqcZymBqu+n6JEzZEEWrMJzdfQdHE7Np5XiE26IkmxzmVqYs\nKI5h42KGNafGKp2fqngGDUdA7ymcyWNiwMPrNV6k9WRlgXNFTSDA0IRtXWb32szSgRNlAQBy0vYq\nb/QfmWc/14kSzBWpf75t6Cl0OUzMrBnrhCbmasnqrCwAUFlZCBkyD07eqiV3VYZ08S3B+b3c/n+M\nnbQOaYfp/bW0IXos/f/VtibuFdzPP3LE5ctteGSaNKFdZ/MjZ69iQmmQ8f4H9Vi/xpa4v5nhgfUb\npRtRL6+0xcQJ5iSF49hfLaipJVsUcEmPz/TMw9Md6bwwP7Q5UyM5NfeauZgOACD7ZCmlrLPyoUhn\nZUGx/ZMfDqAd434eOTJFfUUrbTtNGJqwTS/KAgDUVuTqZZzuQr/4tTpd0A5N2AZrB+Ux5bnE0pac\nPGrw1M3oP4G7zMVlecxReuhgMzvStTLRb7x+zMO6Oi7+9N9rdMROVv0EQRcMnpGIwTMSOVMW5Agw\neEYijIzU349O/X0jbbmZlaOWc6LH2tGXtvzyIc3y0LDh4GCEklL1F/NNTXILfXNzAT79QmqW/PIK\nG7i7CXG/2ItQNLLSdZuVukefMFj5BsN/xhKV2lZe/hel//zGybiRq5iT0GQm6tYMSl9jG+rZKkL3\nXrPffwXijnbGPm4jH4HzgFFKZbdWliF3TyIkYpHStl2FlcdGYXv8P5zLHTjTDwDw/XLuHDJt3cg7\naDI/j10Lz1Paluc2wDWQeTdOFbzDxmjVX12un/lUr+N1ZazsPGCuox98RWJGLUNW8peoLrup87EA\nwNmrNwrqpEq0qYUdjIQmehmXibS/thnslMHc2pmx7tLhN/Q4E8PiFzMJFSoqekZCwy6/8q78Dv++\nU3UmP+7xd9U262lvZfbR4xpnv1i9jQUA02ffR0WRFxIelS7u3f1Uc27uFX4P8+daYc93jWhpIbv3\n6ttBuscpDCa2Dgh5ZoPa/Zz6jYBTvxEAgMq0Myj9+4DGcyjY/yV8E57WuL8uyN+nfvp4OtgUEia4\nfLbK8E14Gnl7PyGVCc0tELZUvSNxMyc3RKyQ/vg2FeXi7k8fcTZHrlkfdRhzP+yPsIfciJ3+c9/e\nxZEtWUp6qsbY/4UAUN+kCpCaGcVM8lTabsB06U4P3YlC2oFCiuO4Opha2MEvYoLSdjcufoPK4mtK\n25mYWSGo30w4ums+JzZSj6p29M62m30n/TdUlXDz99eGkAGz4eLTV2m7lsZKXD72LmubwD4JcO81\nmLVNxNCnceGPVyHqaFNrnprgGTwCBdnHYecSiKjhzzG2u1+Ujpy0XyDqoH62nbyiERQ7Xe2M3Zpg\nJDSGWNSh83E6o89FoD6pLMqg7M6zmRmpi5HQBGIR8+aXDBtnf43kl9w+o1RhqMhLRU7Kz0Cn4DiW\ndu4IG/4UzCwdWPsPnpGottJw9eg29JlANWnSRBYbwXGzacuriq9zNgYd6i7yOzqA7VvsERRkTPgy\nAEBtnRi//eKMR6ff53qKjPQohcH3sadgE8ju1a8KTrHD4dR3GDK30ydnUUb9HeYfat/HnkbBgS81\nnRorQQuY7QYb7lLNQ9SB02cbO1xnJy1WvmTHPzNHVwQtWqOVTEvvQESuStL56ZA2fLc0FQIB8Gb6\nRAiMBBjyZACGPBnASVQhM2vpzqk6JwxCEyO8ceVh4r7iTgMK06tRerseE1+OoLQ3NhMyympr0u6U\nZ8DD7Ef/+Zl/oujm36xtFGlvbUT2ua+Ie4/AoegV8yhxX1N+S/1JKtDaVK1Vf0A6Ry7kaIsqyoKq\n/ge5V/cj9+p+xI5/BRYsO9qDprytF58GobEZADAqC6rMobL4GklJHTDxNZia2yDzrGYbPDVlt2Dv\nFkJbN3jqOzp5Ln6RzEEUctJ+4Xy8rsKdlF80Nuexc6N3UFckeNAc3EzerbSdX8wjGs2BiZTfXkNH\nG7vzbFNtKdIOSTfh4qa9w+npWnOd8mRrukSVZ64pAgFIfgoy5WHKJAvEDZQGgkh81x4XU9rwyz7y\n32DJYmts2CgPpBEYXkKYI0kkUtm6PnHoEQqDqb0zgp/mznYUACAQSBeJ21dStGtVqMm6DPuIfpRy\nm0DqYokrzJw9dCJXk1MFVWRWXU1GyQnVs1CrS8SKRAiMuHPT6epKg0QCbOh9BADgGWGH5/cO4yQx\n27Wj99BnshdykivQ3qLa4l2mLNCNTacw5JyrQOgIV1pZvn3Zd7G0gYsFVEluMkpykwEADm5hqC67\nobXMnoAy85hzv63RyOQv7fgWGJtaIm4ys6mLvhyh6d6jNuOmHNEud0xm8hd6N0vyDmU28SzLu6TH\nmeiXjnbN/cMiRioP5+zoFaWSLBsnP0pZ1unPVep7fu8qrXfuL+5bi9Ah8+HoHU1bHz12Oa6d2KGx\nfEUGz9jGiUO1ay/6ENV0p4Bc0dnJeUA/U9y76wnPgHv443Az/jjcjFdfp4+sx6QI6NskqUc4PXOu\nLCgQuXI7APXD1xYf+Z6xzjogTIsZqU/52SMa99WFsiDDsc9QaPJsVaHXnOWcKgsydPk8uOReVi1O\nfMCNLff+V9MBAEt+ooZJZeP2WdWTmh1/T7rIjl9B/b/R5xEvSllXhVcWpDh5si92GmtLtPIP6mhr\n0npxrQu6QrSmJpYd2rhHuH1mpua2yhvxqIAE9/PTOJNWW6b6KScXZj43z+1hrLN2VD8YAXNIWW7W\nC4H9p9OPu/9VTuSrwsH9Ltj0Tp3yhl2Ibn3CIDASEnbmTLRWlSP3662QSJi908OWvg2hObMNaeSq\n7RrtLIvbWmBkSg2P5jftGc53qkMWM5tdVFzQLI69KovjrO2rWJ+t5/jpcOjNbHccuWo7bn+5GW01\n3NnheYxJgIUHddcFACpTT6P01O8s81H+nk3tnNBWW6nx/PTF4DkBrPWXfs7HwJl+cA2yQXlOPWM7\nsUh6wuYaZKPW+EFDqGYjTH4QZbel4w9fFIhjSfpZdLe1ML9nHu0IGzSfsa6tpQ5XT2qveLe11CPl\nz02MJmf6DrfaFZQFALhyIpHxlIFrX4kBE5n9Ba+c6B6bK9rQXFcGC1s3Upm5tTNaGtT7Pcs6/QVq\ny25RHHFNzW3R1tI9FpWy0wouELW3MNZp64ujSfQmLnD2Ksa3XzlhzCgznL/YprLTc1eiW58wKFMW\nMhNXIOerd1kXtABw48NXlS7glY1FR/ZO3Z18dMbEjj4KSUvFPdpyZYQvY3e8zExcgczEFUqf7b3j\nvyAzcQXE7cxOiFyfEDn2HUYp62isQ2biClZlAZC+r6z32H/4gxervgsxcnEQZmzti9UnRhNlGy8/\njOf3DsOktZGEs682bLo+CZuuT8KkNRGInuCJwXP8sen6JFg5mkIsZjan++MtqXPXst9GYN7HAxAd\n74ExS0Ow7iw1D8B7k06Rxnr0jd5Y/M1g4p4OgZEAy34fCWsnM/SZ7KXUaVrUISHGGL6wF6a+Ho1N\n1yfh4CbdOKFJxPp3AOUBUo68xZksZcnx9BVqta4yTy/jqEp7W6PyRjqmqa7E0FPQObmpVB8Nv5jJ\nasthOhEIHjyXtZ+zbx+1x+ouMOVdiJvGHhxBGQMTDJcT5MlFlfAMuIdps/TnqMwl3VZhMLV3Yq3X\nZAefrY/ASAhjS+4iIAiMudNyja2Yj4Vz96iv8ZvaO9GejMjQ5Nlm72B3POby2XYmf/8XuPnJRpXb\nS0Qi5P/6GSdjj1seit4TPWHnLt/ZMzYzgmeEHQbP8cfU1+ntPjVh8NwAzEzsi0lr5c7pr/VmN0fb\nOfU0ACBkhCtmbo/FqOeCYWlPzcJbmd9IktV/mg/8YplDZcp8F1wDrbHm9Fg8/m4fopzJJej1PkfQ\n2ihdxMevDMeA6b4QiyW4+BM1KRwXKIvwwaMZbBGD6qu4/1s21zObvnGVRE0Z1053rShqlw5tZKzj\nyiwpegRzWO2u4HCvD+rv51HKlPkeqJNTwNalF2u9Xww1r0xl4VWV5XdlWhurdCJXYEQfYEOdzNoP\nKt3WJCn4afpd3tbKMuR8vUVjuZmJKxCxYhvthyr0+Tc5MyWKeHErZ7JCl2zkRI4MpmcLaJfLQV/P\nVpGKc8fQcEf9CFENeTdR+vcBuI9+jLY+5NnXcOsz5T+8ik6/8VuH49jLZ0j1Sy7PYWzPJmvJ5Tn4\npN/3SvsotgOAgUticOmTdOK+PLeB0n/J5TmUfgAgFkvUcqBmarshmlnGW3HH1JLF0/WwcwlkrMs4\n9SHn46X9tdWgWY4zz6rmYNpV4MosydaZeTGramjgB5G+E5k3z+oq7sLWhd2UVBFTC+pm4a3z32k0\nr67I9ZMfIGrM/yjlAxPe5tzfgM0MikdKtzxhYFvQaqMsyMhK4s4W9cZH6ueE4ApNTKIEAuaPRGai\nZmFmFWF7tvZRA7WW35nyc/SLIQHfAAAgAElEQVQLUFWoTDvDWGdiY6+xXEOiqCww0VlR6MkYcqHJ\nox/C4p7Uqfya8ts6la8pTXXUzOwyoke+oMeZ8CjS+Te2vlJ+6pab8jNdB11Pqcui+GwUkYU0Vhem\n6FQ9ScnSJd1SYWAyR6rP0W3CDQDoNfcltdqLmpltSSNe3KrtdGBqzxyPXNymvsYcsZLehEn6bNUP\nL0tHTSZ9JkyvCbM4kS9DXyFQJ2wfiXlHExjrZacIHS0ixG8djoeTRpLq47cOx4K/ppHKBi7pjWcv\nPEEq8x3qSSljYsFf0zD+XbIvx5LLcxC/dTipbMCzvbE4eSYCx9E7iSsy69fJGPwi2SlvzJtDiBMJ\n2RgyFMeycDDDolPT4Te860U8GpqwDfauyuOi8yinzxj1vh+5gi3ev5OXZrHyVYOb70RdcOXEdsY6\nWyd/rWT3foi66yujsjhDK9k9ASt75ckqZWT9I080SucsHTNe+406HilM+S96ihmXrumWCgMTBb99\npbyRitTnZtKWW7ir70R37zj9jxkXfgy6DCmrCJfPtvjPHzmTpXOU5OCwdrfC6bcv4psJ+/H4t+zZ\nhEMmBeDYy2dwatNFPHtJnmXy2MtnsHvcPmKxLTQV4sqebHw26EeizNrdCiPWDsRng35UOs6zl2Zj\n97h9OL7mLKmc7uQg5bMMfDH0Z4x5kz2D7pLLc/DT44eQ8X025h+XKkdTPx+Ls9tSVTqRmPLZOHz1\n0C/w6u+GgIe8lbbnElWi10QOewZDE7axnrDxKMfKjnmhVFuRo7NxDRXvvyD7L4OMqypsWZYVkw2q\ni40jc7CGGxe/pS3fl9OHcj/lKXnulQ1fB2JfTh/sy+mj1qa6rM++nD745WYMY11nmUx1+3L6YFmi\nL1E3bw374r+hqpBSxuT4TOffIFYSfMHSzp21vqeT+gd9vhV1nZ8dPOlzYPHKgup0Ox8GtvChXFJw\nYBdnMferM87Dczx93F/P+Bm4d2wvJ+Moosnuur6erT7g6nSh/PxxuA6JZ6yffWAKPh8sVYB+ffIo\nq6y7p4oAAM1VLTASUn8RS9OlzpuLTk2nZD7uPE5n3wdF6GQzseTyHIjaxBB3sMfEl82tsaIZlk5S\nG+ibB+9g+CsDcDYxVek4joF2xJxj5obr3ewp49QHrLuiMoY8Jjdp7CphMnsKuVf2G3oKnFPYxRWG\nS4ffYDS78wgcijvpv6ktky17N1viq4YaEZZv98OOlXIzkz92lQMAfsrsje8TS/DWwlwA0kX7tCDl\nC7mfs2MY2/2U2ZtUpyiTrQ4Adq4qwM5VBUTdN+8yRxu8fvIDDJpOthawY8i2HTp0AfsbUgMrB5rT\nWg2SzNLh6B2N0CHMoZH1STtD+GsjoXrL17Bhi2jLeXMk1el2CgNT+ND7l/7W3xys7dDewB7OT1Uc\nogdprDAELuB2QdPTni0XtJRRd48UKbuuJDyawtrdPcaFtalbtNS8rDilFEeWn6KMIzQVQtSmebKr\nziz6ZzqxcJ/+w0TWtq5RVNO3GwfvoN/iaLTUtBJyZDkbAMBrgHxnbM/4/Wiq1DwzqrbUVxWo3Ue2\n0Lp87F20NHb9vBtdneYG1RP58XRdQgbMZqy78AfzptP8/tewL6cPoTDcvycPtW1iZoQFr3phwavq\nmSzOjcnAvpw++Pf3apIiIpPZ+VRDlTp1URZaXFf400RIyrvKHjacDQfPCMZFtaFJP5aImHhqgrm+\nE9fgyhHtwqzyqE6POX8vP6N5NmN1sQuPVd6oE9UZFzifh7mzB235/ZR/OB2nqz9bXdLRxB7P/PfF\nf+HJI4/Ba4A7add/SeoceMa6YkmKvKyjpQMxc8Mx72gCLu+S+9vEzA1HzNxwCIyk2sWR5aew5PIc\nBE/wx9yDjxLjPHN+Frz6u7GeLgDA1W+zETM3HFEzyLtcAiMBhKbyk4vMX28h4et4RDwWBAHNqYSJ\nhXw/QSAA+i6IxIK/puH4K3JncFsvayy5PIcwkzr8v78x+o3B8B/pjcYKuYIw/3gCYuaGY9TGwbB2\ns2Sdv65I3r8aog7mfCBM9Itfg6EJ2+AX+bAOZsXDo1saa5l3x7UxS9KGV3f1wrMjskhl04Kukl6q\n0N4mIdruy+mDUdPIm15sMjUZTx+U31XNvM7WlRqNrOT2WZqW7JiYWWPwjMQuqywAQFMtvQO/uTWz\nD6ciTKcRTHJ56Ol2JwxM6FPLtwuPVXtRfu/4Xjj0HkRbZ9MrAvV3smjrmHCIYbY5Lzt9UC1Zyujq\nz9bQfDvxAACyj8An/b8n/QsA302WHv+nfycP86rYh6789tE8Spkyc57z76cR19f3yhMCScQSHHnx\nFHF/8aN0ANKoSVkHyPblncf4dMAPAIAru+W+PXShV4sulqLoovRLOO90EaM8GTG/rITQShrxIm2i\n7kMxXvhDGmFNk+hI3qGj4R0qTcB3K/VHVBSkKenBw2N4rp58jzOzJE2j08hYP+s2vALNETuSHA60\nvVWM9/8Mw4sPa5blfcfKfOxYmY99OX3wz74qQqaJmRHaW6m/X2x1miDqaKU8Gxtnf9o8DYrcu3mK\nUpabsheuAeSIgf59pmp1esAEV5mZDUno0AW4mbybtQ2Tv0P6sa73/se9EYe/Xr9o6GnQ0q0UBttg\n5iRXXPkbqIKmITVFzY0QWlhRyn0Tnlbb5t5zHL1PhC7oDs+WxzAExfuhrqgB076Z0K3CsSbvXw1b\npwBEj3xeo/4h/Z9ASP8ncPHga+hoN5ypFQ+PKrS31sPEzIa2ztWvP8rzlfshAcCgKcxZutnMkWRk\npzbi+wxq1KpZkRmEk7EMVXb9Ze1lCsDlf+ooMhWRyWSr04Q7l/chOI5squUTNQFZpz4l7i1s3Sj9\n8tMPqSTfI2Q45wqDOspCWe455F09CLGonTOZ6pJyYAMGPEb9/ClLlKcrTK2M8dyZx4n7nbE/YVka\nOdLjztifAIBUrli2K/53PHVsKqV/+CMBpLZdhW6lMOgiTr8m0C36VeHGRxtYFt8CcBGir/hI91m0\n0aHps+XRP6QTlW6kLMioq7xLODZrmo9BljU35cibaGNwzuPhMTSXDr/J+BkP7jdTZYWB5JTVCTaH\nZ0Xm9KYPu6rJgl1ZH7Z6pjo60yVl3M9PoygMdq5BpPve47gLOdxZNqC6KROgfGFfeP0YirK6lkO/\nphszcdPeoS0/v5fqE6EOYzfGIf3n2zi95TJRxrTAZypvrm4l1cmUhq6mKMjoVj4MZs49N7xY+LK3\nVW5rbEXN7iijJusyYx0PDw89yftXaxUVacDE1xA3mT78Hw9PTyBs0DzGupsMoVR55KgT1efeDXaz\nXO+IcZSyu2mqRSEzt6LPYyXj/N5VXU5ZkHHlMP3iP3zE04x9jIQmOpnLkdXJuPT5dSxLm4W+c0JZ\n275wcQbMbE0p5eIOwzjMa0q3UhhMbBwMPQWtaS6hz1xoZGqusozQJRtpy5lyR/Dw8KiGTHHQRHkw\nNrXkM0fzdFly0n5lrOv90FKl/Z08mU2C7/PJ2tQmN4U5OmJ+xmFKmW/vScQ1ncOzWMSez0FG30lr\nGeu03XXXNUzR6uzdw2jLA/rSO/Wz5SdRFe8BbsQJwfCV5FDDFvZkf5Zd439Da10bHt81RqncmoKu\ne1LdrUySuIoxbEjufL9DZz4BBQd26UQuT88h9og00V/axM3ENQBU/XMdedv+IJVdX/Qx2kpraPvT\nwea0HPHZszD3Ie9sFew4gtaSalgGMZ8cej87Dq5TB6g1FlfIlIb+E16FmaXqvjVDE7bxORx4uhxl\neRcRFPs4bZ2No/JM7zyaQ5cQUh0TIgDwChuFAhpFgivO7+3e31le4WNQnH2SVOYePIy2bervG7Ue\nr62hHU8dn4qW2jaKCdGjHz8EGw8rfD5Keuoz7YvRMLUywdeTlAek+ebRw1hy9nHUFjXgh1nsuZ30\nTbdSGNpqK2Hm6Epbx1WiLv0gAZ0taMRLW5H13susPfXpgCyjez1bHlUI++Ap3F7zPRoyC9H34Bo4\njoqC46go3Fy5B55zR8CmbwCivnqedmEuamrFtbk7IW5ph5GpMfr8Jv3Mxh5ZR9u+908vwdhWmuwt\nbdI7gEQCnxcmwHf5RIhbmJ3oZMpJe1UDrs//EBKRGK5TB8D72XGIPbIO2Ut3oflOGRePg5XUo1Jz\nQYGREEMeVS3mt4N7OKpLs5U3fIAwNrVER1uToafxQFN44wR8wsbS1vWKeZQxYlLEEOaQm6lHda+8\ndwdqSm/C3p3eNCVy1BI9z4YeP4VTCirdY0P2/N5VtD4YvtEPUxQGXVKeXYVd4+kd0X+cfYx0//0M\n6sKfzU/hk2HMp4GGpFuZJLWUFSlv1A3I3kF/JChQM3OhIu31Ncob8egUvz3vUF6KCG2sGOs7X3ts\nfEF6Y2REkcMFloFuqM/Ih0Qkt6GUtIvQmF2M26/+yNgvbeJmpD++nVjoi9s6lO72E8rCxM3EKWHh\nR0eRNmkzjMzp7UstAqQbAxKxBNfm7iTmWf57CjFe+IdPqfJWOUMiFiF5/2rczfhDaVu2BdaDinsA\ncyhoHv1QkHWMsc4jcChjnYN7OGNda1O1VnPqKeSm/kIpMzKS/qbbOAfoezq0MEUUamuuoy3vzhib\n0uf7uXxok55n0nPoVgqDurkKuiridubkUVY+1OgHqnDrszc1nQ4PhxQueQP589cifz5VKfT+cD2K\nlr9Dqvd4axmtHNMAbwCA/WNjIG7Uz65s/vvcH3eH7VgIACjde45aybKhFf6R1IntymTulSVtuZdz\nRiWTI21j1ndH2HK2+EaM19m4unJs5GGnqY5PfCWjrYm6aecaSJ97SZVwqo3VxSqPXZZ7XqV2TInO\nGqu134x1DaCajuqKy3/Qr3cUTUf7T3mdtg3d34lHNbqVwlCbzZwoydiaOXJQd8J/JnNceN/H9Luj\nKqOnPFt9IG5qoS13XbkAACCqke/klL3zBUx95dm6LaKCYT28H1qycokyuymjUfqWPJa3Lqk6dV15\nIwZaS+h3GS2Dpe/v3u5TGsvuqihTGgZNefB2si4fYzbZorPj5orY8eymnDxyctKYnW3d/OMoZWyO\n/FdObOdkTtoQ31t5/gc2TI11F8qbyQSILmFbZzL+ek/lce5c3qdSu5aG+7TllnbaR6AMHDBTaxmq\n0tZCfyISO1n+WRAYCfU1nQeGbuXDwIbHmGko/P1rQ09DZXK/2Y7AeSvV6mMTGElbfvPTjRzMiJnu\n9my7IhaRwQDAaF5Ud+ws7KaNg1kvHxQt3wzvHesgtJMmWmovqeB8PuJmmlMuFU1YvRePhetj+smJ\nwuZk3RW4fuZTRA1/ztDT6DIYyjzFzILZKb0g+7geZ9L1KctLQVDsDNq6oNjHUZbXNbPM6orBwU/h\ndPZOncjm+uTLzi0YErFI4/6VRRnwCqdG6jGzctRmWhjwaNeycGBSgLL//VzPM+lZ9BiFgS0LdFek\npZz5uNHczZvir2Fkymze0NGgW/vD7vZsuyK1B/+B3aNjaE2VAKD6h8OEMiGqqUfJxo/gtU13Ie4k\nYvUd3KK/+R9MnKVKTOPNeyj98SwarhdC1NSKmF9WQmilvgmOqLGVtV/DtQK1ZeqT2opc5Y10hKij\nDUJjamxvwLDmUBKxiHF3z9zKiTE0oqaYK1nsFGZ3zZjyhqQg+zh8w7UzEetKkcDc7MJQVnsD8b3X\n41jGJliYOsDHsS9ulf5NlDFhbsLdCXr2v1+y5gTQlqC4J9DaUKVx/4Jrf9IqDNrgGTaK0V9AlzA5\nPzv79kXwoDm0fWpKb+l6Wj2abmWSBACl/3CbHt2Q3L/0N2154JPUqEShz+teg+9Jz7arUXPgBADA\nZjzZsVBoT/9j1Xa3CAIz+sWgIRBamRPKQtrEzbj50m7UXsqBqOm/7K7MCWCVyGVf2N565TvW14MM\n07E8AFg7eOtxJmQuHGQ2EekXv4bz8frFM8eV56GHTYmKHSdXBPyjJ+tjOlpTVnsDAHCvWpoPYnDw\nIgS4DqGYK8X3Xo8Qj9E6m0dN6Q1KmZNPH43l1ZbdJt2bmtvCxtmfVFZfSZ/bSV2UZX+mo/e4l5RE\nXtI/TKZRqvp58DDT7RSGysunGesMEXJUG8r+Ve74JMPImP5oM3O7emZNbPSkZ9sVyZ+/FtZD+5Ki\nJJn6kI9OZYqFjKrvlMdt1gfR3/4PAJDDEEFJaMm+8LcM8WCt51Gf+0VXGevcA+idLfWBsgRSXiEP\n6Wci6Fq74F2Nsjz6PAAWNvLQ5V7BI2nbcJH4She420vNdour0vFP1ns4lrGJdLpwLGMTbpX8TVIk\nJDoOJxoyeC7p/g5NNCUmsk5/prRN5t8fqTWfnEvM4TwHz0hU6XQyeuxyDJ6RCCsHL1J5c53uw1wr\nQpdojimjtqp+HoYgYk0S5aVuH/fxCTqfZ48xSequtNdWwcSOeqTu/tBUlJ5SYcef42R2LWVFMHej\n3520C49ldTx/0OlsbkRnflTy+oda9TcU7ZX1MPNyhBHdiQDL6ULWc58j4tNnEPb+QrWSrdUk34D9\n0DBEf/s/XHvyAw1mrB/USejGNWV5lxhj6huauvt3YcsQStI/ahKKb53iZBw2h1y2iE08QE7aL3Dz\n18wX6dLhNziejXYMDn4athbuqG8pBwDcLDmB8dHrCEd7mdIgUxRqmuQmv8k3PyXK2UyXuKLsDrc+\nIup+zivyUhE0cBZj/cAEad4ZUXsLKgvT0dZSB1MLu/+iIDF/2be31OPq0W0anVQ86GS9K7cqUUVZ\n0LSPtnS7EwYAyNrObNvd3XbCb31B/wXl1F++s+M++jHaNnd/Yl58akrut8zPz3vSXMY6np5N5mJp\npKZe6xJg01e+EPRePBaxh9eh6XYJbb+WgvsQ/edgHXtkHQRC6VeOx5zhiD2yjjG60p23pRkyTZxs\nEHtkHTzmDIepmx0sQzzgu/RhxB5Zp5JDdJ8xuk062H/Cq4x1ace36HRsZQ7GseMMFzno2r8fs9az\nLfRVRZmMcwde0XoMVYk5JN+xjv71FaLMKsoXUXtXQ2As/dxHfr8Cpq52pPYxh9Yj9MNnYBniCccx\nvYkyY3sreCxgN5/xeiYeJo7WFHmd5xRzaD0sAt1JZcoIjXtS5baG5FjGJpy//SWOZWzCuVtyp9bj\n1zbTnjAcy9iEizm7ibLG1kpKu57Opf3M31syhCbmcO0VB++IcXANGAg2ZeH6yQ+Q+odhlEi6U4bO\n5Kb8rIeZ9Hy6pcIgkYhZIwXoSmmwj+yvE7nKcIodTlveVHRHJ+M9SM+WR3WqTmUCAILffoJYsLs+\nNhAFHx7FjeXMUbTSp8l3nPoeXEMoAABwa+U3jP2kid6k1x5zhiPq6xcQ9v5COE/sq/Kcrew8MDRh\nm8oZmtVh8FT2HBHNDCEM9YWFjYtBx1dmDqSN0qCsr6idPryxrqg5I88RdO1xqaLYkJ6HxusFuD5j\nGyL2vAgAyJyThLbyWtz7imx6eHPp52i6dQ9VJzOIso7aJpTspvdzk1H8+TG0V5HNg0q/I5uWhnyw\nGOmTN6E5txSNmeQgAkyJ3Hwj4uHs1Zu2LvXPt1nnxBXO4U4Y//4YPPHnDMw/MweP73sMcS/pL9a/\npjTXcxvVrrIwnbFO1NGqkUxRRytnCcwqC9M586PQFeV3Uww9hR5BtzVJykpazbp4jVyVhKykVZCI\ntT+WDn1uI4ytbVF3KwM1malay+uMRCKmjVHuNmIyo5+DqEV3ybx60rPlIUNnFqRqWd7W31H8xQkE\nvjET5t5OqEvNxZ3N+1n7KNbZ9PZD4OvTIWpqQ+ZTH0Pc1qG836TNEBgLEfDyVNj2D0RHbROq/rmO\ne98w+9vQITASEovM2vt3cP3fT9Tqr4iTZzTCBs1jbVNdRnV+1AV3Mw4ioPcjjPVDE7Yhef/LUDlm\nrp4ZmrAN1/79GHX376rU3trBBzGj6JMdKnLh4AZtp6YW+Vv2w8TZFqEfPoPrs6QKcnt1A4RW5gCA\nG89IT1xiDq1HxtTNMDJl/+lNn7wJrtMGw2PhGKRPZl7YBW6ei9x1ZOd/97kjYR3th9pk6WfQ1MWO\nqGsrIyetKrxxAr4R8RS5Hr2GMI7Z2qy7xFcukc6YspveidbO1xZ2syMQNTsCAFBztxb7Zvyms7lo\nyp3UvYgc9QJtXUGG+skxcy7+CCefGPqxtLDLb2uqQfqx7YiJ19wP8sKvr1A2GHNT9iJwAH3YXkOg\niWlixJokiFqacfN9+UlM+OptEAiFuPP1drSUFZPaAmQTIQAIW/EOKbpl7q5taK2gP4nvLnRbhQEA\nbn/5NoKfZj5ai1gh/eJuLivCHRZTG0XswvvBY2wChGYWnMxRFbK2r6JdoDsPHA2hOX24shsfapes\nRhmZiStYlYbu8mx5uKW9uhE3ln2lUd/6jHxcnaa+faukQ0RSTLTFzrkX7Q51TdktVBRdRXtLPdrb\nGmFsagFLG3e4+MbC2t6LRhIzWcm7uJouK/dy/mVVGABgaMJW4rr49mlUl2RBLBbB1NwG5tbOsHMJ\nhK1TAMXZkQuH4eT9qzHg4fUwtbBjbBM9Qp6sUiIWIe/6YTQ3VEDU0QYrOw949BpCcsRVZUxDELF7\nGSRtcodvh4eipDv6Ygmabt9D850WQAJIRGI4PzIQZT+dZZTlu+pRlHx9Eh4L2ENg1p67CRNHG0p5\n7vrvCB3x+qxExBxaj1vLvoDD6N4oSPqD1Lb07gWKk7y+w2QKTYVYkKyeyat9gB2eSpmPmrxa7Jve\ndRSHugpm5bf4xj9qyxOLmYMI3M/XzqewqbaEMOnpO3EtzK2dVOhTivRjzN/j5Xcv6V1hYAqxCgAX\nftHMNFNoTl6nCITSUNG9Fq6kKAeKGFvbImTpRgBAzbUUdDTWwXnQGAQ+Jf1eYuvb1enWCkNbTSWK\nDn0H78nsXzQWbt7dzrdBhkNvw0U76enPlodHEXu3ENi7hWgt59LhjdpPRg0u/PEqBk1RzUzEK3gk\nY+QbXZHy5yaVzY8ERkIE9J6i8VgX/lBum60rmnNLcWv5l8Q93clA+iPSssw5SaztChJ/I7Vn4v6h\nFJIMMw9H1JzNhrmvC6x7+8M2LgR31n9P1NONlXtln8pRtTKTv1TeSE1MLI0x7zR93HxVsPe3w8Lz\nT+Lrwd9yOCvtUMWu3pDy6LhyhN3EUh30MV9DUPDLF/CdvphSXv7vn8S1TFlQVAzKTx1G+KotEBib\nQGAk1Cr5niHplj4MitTeSEPOV9zbJ+sbNkfuzjTdy9PdRBSovZGGzMTuqw3z8Oib5P2r0d7aqNcx\nRR1tqKvM0+uY6pK8fzUqCnQbYS15/2qIOmgymOsBU1c7mDhRd/r1jdsTw9Bytwwt+RVwmhCLin3c\nxp6vKbvJqTwAWikLMoyMjeA9RL1TQJ6ew6DpW2nLz+/V7LSx7mYGbXlDbjZt+f1z0rwmAQteAkB/\nipCdKA2GEP6y9gEfDEW3VxgAoLWqvNsvbNWxs7v7g27S2DPR3Z8tD48+MGTM/2unP0J1Kf2PWVfh\nVuqPKMvjNqQkAHS0NRk830JbeS0y575n0DkAQEHSHyj7WWrqdPOFz1B/RbXAGPmZR5W2Kb17Qau5\n0fHQW/QBPTQhfkfXDDHMo3vofEClaOa7VfInOaqSlX8w6d42VBoQwL53HKncwt1Ho/G6C93aJKkz\nmYkrIDS3QNhS7qM45Ozeitb7pZzLVRuO8y6oikxp0IX5UdXVcyg58Svncnl4kvevhpNnFMIGzdeJ\nfLGoA+d/7xr5MrLOSX1LuAhZqity0n5FTtqvsHbwRsyo5VrJamuuRcqfD04oTF1SdPMk/CInsLbJ\nvcJ94qvACb04lTcuaTT+WsEeWYqHRxmilmYAgLmbF1rKiuE3awnaa6uIeu/HFiDr3RXwnEifVVpf\neRH0TY9SGADpHzozcQWsfIPgP+N55R2UyLrxof5sYm99sQkhi9mdmbN26C+2OB1cKQ6ilmbc3rUZ\nomb9mm/wPHhU3rtO7ED7RsRzkuys6OZJlXZlDUHy/tUwt3JCv/g1GsvIPs8cJpcLGqqLkLx/Nexc\nghA1/Fm1+t4vzsDNi13HXr2nUHr3PNwDButtvICx/pzL9B3es3d4eagMePRN2vKU37SPlOYy/GEU\n/ir12yncRx/so+4GNext2T8HtR67K9LjFAYZjQU5nUxpBHCIjoNNUCQsvXpBaGYOUUsTOhrrUX8n\nC/V3snSW10BV2muruo35T+d5OkQPgk1QJMxdPGFiYw9xexva66rRVJKPmswUnTxbfTyr5pJ8yjjh\n65KIf2/veB0djfU6n4ehkb1nGdmbu8fntDMFWccYY8/3JFoaKylmOta9wuA1bQHKju1HTcYlA82M\nTG1FjsHNiZTR1efHFU6e0Yx1OWm/cD7e6Hf063zP0zNhiujV0dasldy2qnLYBEUQ9y3l9wAAxQe/\nh9cjcr+bot/2UPpWXlQ/GlZ3oMcqDFQkqL52AdXXuLfD5AH/bHl4ujg+s54BAHhMngWBsTGq084Z\neEY8XQkTM2vGurK8rqFgqoKliyWaKnSXp4iHGbuxo1B7Qn+L5bhp9AFv0g5pb5Z+78jP8J/7P1gH\nhJLKazMvkxQGRVrvl8HM2Q3GltboaGqgbdOdeYAUBio2g+Pg9MR0UpmkvQP5KzU/yuehsmDvOLiE\n2CH/Yjn2PvuvoafDw/PA4z7hcV5h4CGwc2b2JdAk8ZUh8R3hgxv7uI/mxKMcfSoLAGAkpF/CtjZV\nay27qUiaT8N1FH2eGzNnN0pZ7pdbELEmCSHL3uzW+RaYeGAVBs/VL8LUx5tS3lFVaYDZ9GxcQuyw\nrQ/v1MzD01VoyMky9BR4uhBRI5Yw1p07YFi/OXVx7+OqE4VhaMI23LiwB5X3rnMuW1dY9Y8FxGKY\nuLrAfmI88patgv/OREja2lH2yRdwX/48UQaJBOW79sD1qfko/egztNzKgf/ORJR++Blc5s9B4asb\nAQD+OxORt2wV5RoAXMx4AowAACAASURBVBfNQ/lX3xB1kEhQuvMTuC9bgrzlq+V9XnwZ7s8/g9IP\nP9X4vTElaqsu4TZanLmrJ8Tt1HDNgU/T/7/ITnwZ4au2Eo7PzffyYebiASMTUwDUkKsuwyfAzNkd\nlt4BMLaSh2aOWJOE1soytFaUovzUIbTVVJL6WHoFwMzFnejjGDsMjrFD0XyvAK0Vpbh//gSpDxc8\nsAqDTFlQ/LDzUFl99XHiOvNgPo5sSCGV55y6hwMvniPKSjOr4R7pgIJL5fj5mX+JdquvPk5SGmTl\nimUhY70wNXEwUS5rk3+xHH5xrvhx4SkUXblPmpOsf++EAMS/1g8AcPbjTJz/XPql8dLFx2BsJiS1\npZs7D8+DROFe7hNw8fB0BcztzQ09hS5DY6o894n9xHjiOn+VNLJby63b8rIVayARiZC3fDX83tuC\n/JdegUQkQsut2yh8dSNcn1mE8s+/QuMVuZNv69081vEVZRJzupIOiMVaKQtMpkgAcOPMLo3lMlG0\nfzfpvuzv3+E2eiptW0lHB+5+swMB86RR4Cw8/Vhluwwdz1hn5uQGMyc31F5PISsMjH0EsPD0g4Wn\nH+pvX+MVBh79I1tor0xNwJENKXj0vSFE2cJfyR/cb+ecpPSlUxYUF++y6wkb+1NOIhT7r0qbhsTY\nfbSnFaNWxZBknv88G49/NAyfT/oTjfdbiHZsc+fh6cl0V0d1Ht3CFjWsuaFCjzPhhrqinh+EQlU6\nnwB0RtwkdwyWiOTZhwVC6SZbR6U8lKiptzQxXsXX38J18UK0l5Wj5L0PWcdXlCmjo7oafu9tQVP6\nNVTs/k61N/IffjGT4Rn6EGM91xmmmcyKKi+dRuWl04z9mu/lq2ySpInpkqHMnXiFgUdlSrNqAAC9\nhrrDs7cjAODYm6mcyc+/UM5aLzASAABWpCTg4zGH0FInPybMO1dGae870JWkLAC6mzsPD0/PZ1zc\nG/jr4uuGngan+EbEM9alHafPoNuVKb54z9BT6HIITE016mfi6gIAENrZ4t7b8s+CZXQkEB2J6j8O\nqy3TbvRDxOlFZ5jMjHi6Bg+kwmDqo/8U8gJTU7guehLmwcFoLSxE6fsfqdzXYepk2D40HB0V91H2\n2VfoqDSMn4Vsob1z+O8IGOqO238XayRHcRGvuOhXlY/HSpWFJ756CD8uOsXY7tPxh/HSxcfwXtwB\nokzbufPw8OiPnrhA70pEDHmKsa61qUaPM+GO/FMFKre1dfJH9MgXSGVVJZnIPr+btr1IJP29IidH\nlCB5/8uMY9i5BCJq+HPEvVjUjvO/ryO1GZqwDdVlN5CVvItUBgAXDm6AqL2FVK5qqF/Z6YKkrY24\nVjxxkPkbdD6F6NxWVFtHqq/cux+ieupJjkwenUwZRW+8QygLyk5AVEXU0YpL+/WXM+tB5YFRGPx3\n0muuncs7f3hl9Wwfaro2imWea1bC1NODqDPvFSB1PBKLkf8i9YvGf2ciyj75Eu3lFfB+XZ5F1sTd\njbjvPB+ft1+H0MYG1X8cZo1UoMr76cyUbYPg08+FMOXpaBXB0tEMK1IScO6zLFz48obKsgDpgn/R\n/vGAAPhgxB9q9QWAWV+OhJm1CT57+Ahru6bqVnw55ShWpibg2u95OP5WmtZz74xE1KFVfx4eHnqi\ng6S+RuPi3gAAQnHorETQKRUmxpYYEbsKRWUpuJn/JwBgeJ+XkFP0NyICpiDt5reorssj9Rne5yWI\nxO04l0E2s4gKnAYnu0CcTX+f0/fXFXBwD2OsSz2qfWhKNiRiCXFqbAjiJr9BG8Pf0SMStk4BqKu8\nS6lrqiujyaQuYFzED03YCoD8Ho2EJrTtHdzo/xZhA+ciM1nqc2Ru5cjyjvSH04wEjRf6ohruFVFe\nWdAPD4zCoIkiwAWycTofwfnvTITAyIhRw3Zb8jQAoGrfb6g7fZYir3O/wlffgP/ORDhMmcSsMAg0\n+3L+YzU1v0L6r3eQ/is5GRtTJCS68q8SjlPKfl91nrZf5393T/+Lta/iePVlzdjef7/SuWuKLIU8\nAAQv2whja1vadpraj3tNnQvbyFjWNm2V5cj9jNkJjA2BkRHC1tAr04pyJWIRBEZCjcbgClnyuNaK\nUtz5YiupTMb9s8dR8a88A3PYmm2UeavztxCaWyBkBfPCqfjAHtRlUzN9Ms0dkCqZN7Yw70iqIqPs\nrwOoSjmjUls6uEo46BA7BO4THmesv5m4FuK2Vo1kX8v5Fe5O0WqfMIwZsAEnU97CyUvkDLDmZvYo\nuZ+OkvvpGBf3BorKU5F9V5qRVVHpULwe3nclUjK/wPXcfRAaaWbW0VUZ9MhbjHVFN04y1nHFNyN/\nwPwz9PHsNaW5qkV5o/+QKQvqJOYb8PB6XDmxHU11pURZyIDZcPHpC0ePSFSVZBLlnkEjAAhQXnAZ\nt1N/IskZmrCNpDTkZ/4Jv8iHace0d5PnAYgcpl5WdF2hzbpJcR2k7for/VgimmpLlTfk4QQjQ0/g\nQaBg7WsUe7373/6otJ+osZGkLADa/Qfz27YZAFC68xONZfBQsfDyR/i6JEZlAZAu4Cx9AlSWGb52\nO8LXJSlVFgDA1MkV4euSILSgz3jJRNDz6xmVBUW5ANBclKeWbF1i5uIOgH5R7DxM7sgevi6JVslR\ntphWbMemLACA12PzVZJX8KM8IoiAIXY4G+bu5BDQbMqCvghfl8SqLABA6Kp3VH7eXFHbUKS0TW7R\n3/BylUZViwmehcraXNp25qa2aGmTmmOIxOqbT3ZVAvtOg9CEOZpQftZRxjqu6Gjh/nT2h/ifOZfZ\nGUVlAQBupfwAAPCPmkgqD+gtjd/fWVkAgNZm6S576MC5AICim3+T6q3tpWbTxbfJjrVd5YTB0BRl\n/YXze1fxyoKe4RUGPSBupGadbEi5rLRf4Vr1dtaarmYAAFwWzKWtF5iaAABacuh/HOng8ycox3/+\nMpXa+T35P1j6BqomVIPToJCXNqHz8TcT5u7eMLFX7ccnfF0SGvNz1J6PLmFbqIat6WwyoD7qLnKV\ntW+8e4t0bx0UoZb8gEVdK8KRus8ndOVmHc2Eyv1a5Z9VsUQMwX//V1wcQmFn7Y3hfV7C8D4voaW1\ne9ruq0rM6BfhHjCIsV4s1p+ZZeZP3MXMF7VSnWhVITTuSZXbVpcym7Ba2LhSCyUS2rYyZ3Jn7xhS\nuUyJCx+8EI01xci7dkjlufUEzu9dpdKr8PoxQ0/1geSBMUkyFNWHdL9TI6P8q2/gvzMRVrF9KOHK\nnOfOAgDUHNbffB4EFBdOdKYuToNGwXW0PFOk39wXVDKJETU3SU8MJGLc/uBNdDTU0bbzn78cFl7y\nOM/h67YrlW/q5EpZgN54dzUkYuoPruz9uQxnjqRiCBxih+DWexsgam4EQP47CIyExL3is1Bs4/Xo\nkyj+7Vta2RQzp+QTqDhN9ZcxtrJB8PI3SP1UNXfymfG0xmZqqvSja8PVTn9nOUzzses9AJ6TnwAA\nGJmZq/V82OgQqW52ogo5RScR7DMO/6TqT6npzID52wEAKXtWatQ/sO80FN8+jZaG+7T1xiYWiHvk\nTdq6zpz/ba3yRhxxYfslRM4K50TW7mHqhehM3r8aMaNfhLNXbzj/55dwL+df3M04yNinvEC9yHol\nd8/TlotF7bTlkUMXI+PUBzC1sMPl4/RmpsqUiAk+yxnrjhbuoJSN834eQoEJpfxM6TdobKdmTFZX\n/gSf5ThauIO239XKIyhtuk0p1wR13scEn+Uoa85Fm6gJPtbRlD507wMAvKzCEe1IDcd+veoEihoz\nKeWy98z0/juPw/QeAKC+/T6SS7+nrdMXvMKgY1rz8vU6XtO1TFhGR8JpRgIq98pt960H9gcA1Bw7\nodf5qMOtQg9KWYhPiQFmoh7i9jbc3LaGtq7ywj+ou5GBoOflTlkBT63E3V3bWWXeem+9SmPn7dlB\nWcAJhELakHUyAp8lz5VtEZe9eYXeTUpURaYsAEDZid/hNpacSIftfdlG9KVVGBQVAEB6MkCnLABA\nR2M9bm5bg9DV8h92r6lzUfw7/cKl7PgBuI1/TF4gMAIkYsY5ygh8Tn8LOGX4PkG2oWZ7xrUZKbAJ\n7Q2b4EitxowJnon023JTkys3v8Po/q/i79S34eWi3GRPGXn3ziLYZxxcHcNRU1+AQdFL8G+a1FQv\n687vGBazHGfTd6Bf+AKtx9IV7gGDWE8NVEUde36u+HrIt1h4TvVdfjp2DdijUb/0v6WO7AMnb4SJ\nqRU8g0bAM2gE43Og21RhQ6DmSbGNoy9xLVYIqOEXORH5mdLvoc5mSorIFqWpFQdwv0UaLUoAAYa6\nz6Vd0I73XgojgRCN7dU4U/oN0T7eZxmGu8/DyeLP0C4mK+gN7VVo7KjClfvykKrxPv+DAEYY4bEA\n/5bspp2X4oJXKDDGOO8X0MdpIo420S/O1UGT9+FmIT3tV1y0x/ssgwACDHKbiQtlZPM2GxNnRDuO\nhwQSHCvcSXpvUY5jUdGSh1ZRI+iQ/V3+KvoIIkkHMefO/FX0MSb4LCfNVygwwTjv52Fj4qzWM9EF\nvEmSjpG0cLsbpozyL74GANgMG6LXcbkgxKeEeHUnmJQFGe2dsi2au3Eb1rfzos172kLGtnZR/Uj3\ntdeU75gpe3+GIPfTd0j3VSxJdNTB2MqGuBY1N5J8D+gQt7eRlDs2n5OqVLLfQfha1WKOmzq6kMYz\nJFYBcgdMVU4Lin4hZ10NXfUOQ0t6/rr4OklZAICa+kL8nSr1LSmuSKM4Refdo/fvUGyXd+8M6f6v\ni6+jvCobbe2NhLIgk382XbqguJy9u0eHeL1ywjAx8MXtYuwasAdNFVTTXWW0N3VorCwocunQRiTv\nX008A2okJM1gUuKExmaUMpky4uTVm1RekH0c3qGj1BpXpiwAgAQSnC39Fnn1aZR2RgKpj5dskS1r\nL1tEj/GiOlmfLf2WpCwAwLHCDwAAlsZ2jHNS3B0XSTqIMdhOLFRFk/cBUHf4jxXuhAQS2Ju6U9oO\ndZ9DtKGTMcrzacb5nS39DkcLdxDKAgAcL6JPene0cAdJuRFJ2lHcyJ3pnjbwCsMDgFW/vgCA2pOn\nDDuRB5jSo2RfEOtAbo7h6bDwZnau9pxCjkpy7+APSuUZepFKR1uVDjLQdtoNvPXeBpW6iZrJC52A\np5jNShrztDt+v7nNcKcNAQtf0qhf0b7dxLWRKXWhxGN4Ms9+jqY6avJLffLjxF/w2xxmc6DO7Bqw\nB9+M5NZEg/tnQH/CEDteGiWtqlS+EMy9Ks0XFNjnMVLbwmxpVEAXn74qj0q34O2Mq0UvAKDspOuC\n+nZ6Uzku4Pp9nCmRKqC+1jGUOgnofVKU0dCuXe6sYprTIUPAmyRpiXlIkKGnQKHg5fXw3boJ/u9v\nRd6LL8NlvnSRWP37g+VApQ/aa6pUaleddo7kqOszczEn9tx0CM0tdCK3pxOqJCKSqrCdIBX88AnJ\nxEtoYUlROBQJeqGzaZpmP1hcYO7ho1G/+psZHM+Eh0sMYYbEROWtKk5ODDRGw9DjdCTvX00JnwoA\nRkJjmJpLI+pln/uKKC/Lu4ig2MdhYmaNhupCijy/qIkoy0thHVNmKz/IbSapjI5IhzEAgJo2+khD\n95puwNOSPjeEu2Uw+jhNpK2jg+50gyu0eR90NHXUAgCC7OJQ0EAOmS2AgJMTEWU85LkI5kIb5Q31\nDK8wqIhV3xg0XqHGW3df+hxNa8MilplBGckPkPTtS3Gr0AOjBpejuEhE8k1ob5cgshd3odASd9pj\nymPkBfKy56px9DDZFEw2ByZzJ5kcdc2hqq/SO7V1B/ikc2SMzJjDTCpFItE4shWb4mhiJ49klbdH\ne1tfrmgp012mdAsHD0RNoYaPpnMIVnQWll3LkSBlD30Y6pBxz8DOM7RTcwlSvqG2Z3NIZqvrnbAW\nZjbMdscl1/9G0eXDlHJ13oc21JTfRubZzzmX211gMzviSokStbdAaGJOOxbbGHSZps0s7HHn6n5q\n404cLdwBV4teiHWWBtuY4LMcHeJWnCgmm1eaCtm/71pF9BsZigvmFlEDKlsKUNdWjnCHhxhldYjp\nnby5QNP3oQwTI/2fhvZxmgh3y2DivqL5LuraKyAUGMPfRnt/LW3hFQYl5L/0Cvze2wKXhU/CZcFc\nFKx9Df9n77zDm6reOP5Nm+69W7qALiilZRUKlJZdNihDliDg+IkosmWICCiIgKKIW4bK3iBQhqwC\npUApLdBB9x5075Hk90fMatZNcm6Slnyeh4fcc899z0ma3Hve8y4wGLAeORyWQ8I0PT2pZK/6FB5f\nbYLrulUAgIKd36t9Dqcu2MPaRg/Xrzbih13V2PClFQK6GyAlx4VInMKY8SaY8JoJ8nJZWPlxBczM\nGfhlny2++8kGGz+twl/7BAFIE0e9xJlL9ujW3QDPEsRvXq2VDqrUpD5Xev5UcBrxGmyDB9Eiu/Kp\n/NS+OqhRER8D66B+lPq+jLosUi9CGrZ9w0WO6/PUq/TLwtjJlZZgeFMbF3SbsFxs8R48dweC5+6Q\nmkUoeO4O5MVFIv8JtyCkW6+xcOk+VOI1vWd/BT19Jhoqi5Fw+ituI4OB4DnbZY6hCB7BE2FkYY+0\nmwdQlinYaAqeuwMcDhsPD0heLCryPoQRLD4ZcHDvASsHH1g7+oBpaAoOh4XGugrkp95GcZbsHepX\nibunVqFjwFg4dgyGPtMIZQXPkfroKFqa6yX2l7XAl3Yu+hzXrdGr52Q4evRGTXkuEu/tVXgMRRWY\n4vp0vmVhpNsiMPWM+NmKeBTWvYCLqZ80EXA28RFrE8760xpZCoOtkSuK6ulJza3M+6BCaYO4laeq\nqRh3i+TX0FKGDqZd+MpC689XEQsJnehiGOTAYbFQdvIM94DBgMfWTfDYspGvLNBdKVpZ2PXcG5KB\no4OcnvRhbaOHX/bU4L15ZYiPa8brY15i6IBiAMDdx04qy79wrh6+7gUY0r8YD+434ca1Rr4isn6T\naBG1xGdcJeHUBbKZBmS5k6iCiYsHuq7ZSZuyAAAt1ZW0yX7VUOSzFK5EDUiPDWid9elVoNt/loXW\nO/28BXan0OlSr+UtsgEgN1Z85x4A9PQNoKfPRGNNmUBZAAAOB4/+5saHdBunXKyGME7+3OeDsLLA\ng8GQ/dil8j6kw0FJzmOkxh7Fw0tfIPrsWtw/tx5x13bqlIVWcDhsZCScw/1z63H31CokRe+XupBX\nlbTHJ3DvzBok3NpD2xjSkBZcG1/G/Z51tQ6XeN6ESc4lxtOiBzFZrSH9PjpZcBODJFdEiZ2zNJRQ\na4MQ3WyHAgDyasU3Ien8/BThlbUwKLLQr7pxG1U3bsNu6uswD+kLVmUlyk6eQd3T51JlUZEvrY+8\naxVVUpoLNRfMtn1Ltchxbg43E4S9vfboqnb/zSW8X7HC1ypTtZeKzI7zPpZ4rvTuNZRG/wtWg+hD\nR6ndXj3t+Ru0dRhMybmzqUAlNqDoymml5bcV9P77Lb249pvYOc5/6WftvYKRESVeOTfhFLXsS71m\ncWstxJ8Qj1dht3CD+03t3MTOqQuq74NOJkUtBKuhGeeG/6rpqbxSXE7n7iKP7Jwks40UvN+Up0UP\nJFaolmVOk/72st6HtJoGPOyMPVAqlFEKAPysQwHQG6gtiQZWDcyYNjDUNxU7Z2UoeYPVa9sOpK1c\nxn8NABnrVoPdRE+ikldWYVCG0mMnUXpMvg+htpH3JZkUcaS4+W8jwoeq3z9w9JASXLzuAGcXfRQW\nCPJp3/vP2lGQr3ilUGNnV7G0qarSZdU2kWO6gqNNnDW3MGpvmLp3Vqi/vPoWXVeL+rGXPbil1Lzo\novrFM7GUqariF7EQAOAzTHp6Qmk0VFF7uMvb3a/ITYS1G30ZzORB9X3ooJ+LL/ww2ieZf7x8mwu2\nr6Qv5ffIzkl8BUFWmyxGuS8Gm8NCWlUMyhvzYG3kAl+rgVL73yn8GwOdZ2GU+2Lk1DxFQV0yguxG\nwUjfDIC4a0xe7XO4mvljlPti3CzYCzaHhRDHaTBhWqK6+aXUWgGlDdkY5b4YBXXJKKhLQaBdBJgM\nQ4ljKEPr9/GyIQv+NoOlvg+Am9o12OE1NLMb8az8Ggz1TOBvw01fe7Ngr1h/XkA5zy0ru+YJ9BkG\ncDXzBwA0sxtwLe9npd/D7YIDGOW+GA7GHeFi6oeCumT4Wg1EZ8s+yKqOk2tlqH2agMID+0SUCNLo\nthg1DMOQicBz6xB4TpANJfAstaJdsjBw5i6C2XXqNX9SIfYhOe03MdMFKTmi/6SRlsoN8r0VI25W\n3PNdjVLjW/iKV4lUBb9lotVm6VIWAMCss3b4RbYHhKttK4PjkLGiDUIB1PUF2dA2VC3GJgkzDe7s\n82ioIJOQIfECN1d7j2kb+G3W7gEABDuiOjTP5fQu/H/rfxTNbpb8RJA44+xTX4ycYoWzT31x9qmv\nTJlhYyz4MgHuT1n4uPW4ijBskiU6dxVsto2daS3WR4+hDx+r/ujrOIWvLFQ2FUpcNFc3v8SV3D0A\nAHfzAPR1nCxzkZ1QdgUNLK7XQLjLPAzp8DZMmJa4lLML94rELX88eDv/LqZ+6GU/nqiyIOl99LQf\nK/N9ANzicZdzd8NAzwg97MbwlYXalnLUt1RJvEZYlod5EF9ZACCxMJ6iRBcdBQAE2Y3CKPfF6GzZ\nB2wOS64FyGPVahQe2Kfy+PLQWRg0TPcTnyB+/GYRhUFK6mbKWA0fApsJ3AVI9ifUcsmrE3MLMqnr\neMpB38AiVJSzxdolseSDCnzzg+AmG3mDG+Px7dfV0i6RiVVAb+SfVTwXeE2a5EIsKmXq0aESeWf+\nguvE2WobL2nbSnRZybUm2fUfhuLrkv3VM/d+q7Y5aZL6ymKY2rgQCTpWFhMb6fcORagpycLT09sQ\nMGmlSNajx4c/RUsjPXFPOpSD5+7TevH+8RRBkoEJASm4nN4FEwJS5Mq7daFaxIUoMq0L//jYQx9M\n7fNCaReja6ercDmdK+/b454icwSUW4CzOM0KXXcj/w+J7WwOS6ocM6YNMeVAGoq+D0D2nKWhSH9F\nZVc0FUi9RlJ7Q1Ym3xVJHegUhnZCx+/Eq3Rqa0D2mPGq1wnY9aMNAKBHl0LU1VLPTf/P2Xp884M1\n4pKc0aNLITp5qecn0Olt0b9F7glxk6eyOA2fRLkvh80GQxe7IJGqZ7EiCoOBhTWaqysUllN6719K\n/Tgtomlt9QwMwW5ugk2fUIXHVAeld6/BbsAw2uTnx0XCe8hbMHfshJriDNrGkYWVKzmrW8CklajK\nT0HyFeXdFDQF579bqqGlEYYfmgU2i42YNZdQ9pSMBcamqyP6bRmNS5O4NRdcwjqjz4YRODdU8mdl\n4mSOkC1jYNHZFk+230TWeWqVb73eCELX+cEoTypBzNpLaK5pJDJ/RTG35FYinjc0HQBXORntkwwW\nS/G6Kjv+c4vy76Wrt/Oqk/eDePZLutyRAJ1LksZJXbGPb13o9Nl0BJ5bh6S3JWc1kEXpkRNgVVaC\n3diIl38e0lplAQBc3fRVljEglGvSVERZEMbUjMGfxxcbJJsfqaJvYia3j7FjB5Hj1otFVbDtSz29\nb9JW0e8FlWBp9zfeUXhO7QHvD9dT6td1jegOT/F15Qok+q3YCgBwHvk6v60y4aFSsuig+IaoBYR0\nWtXy7ASu3NGLiMoVhme96DH1M7FzekzuPaWxRnIxRlk1FaSRHiW/kro2UpFYjElRCzHmwgIYWBjB\n2NYUYT+9jklRC8X6SmqTdm5S1EJ0e78/wn+dAmN7M0yKWoixFxeg35ejoG+oL1V+xIk5sPK1B4MB\n9PxkCCZFLYSBheQ4OJ6MSVEL0f3DgWCaGcKhtyvGXlqgyEcgxo1zVXByM0CvgfLv98L88mUxwsdZ\noHNXIzi5cYNwORyAxeLg3HPp6UClEXm8Et+f7ojJvVSrGq9Dh6LoFAYNU5eUi8R536GpoAxG7vZI\nWrAbTUWK72pW37mHnE83IXvFWtQ80J78+q3dgy5e57oAfbZGtZSevJiDMeNFXXhkuSPx+OCdcgDA\nifPcBcD+32tldZeL75JNMs97LxJdeGYe+E5Gb8UUIBKLNqa5pdRzBlY2MPfSXBCouknZuVbkWN7n\n23HuRxD2IVTUfSh1j+zq0vnntGvBmfKt6HdZke+fcKVzaTw5zv0tBc/dIVJYzcjcFkFTqSlw8mis\nKYOBqSUCX18j1MpA71ncDEWtMygVJ98FwC3EJtxfvMCaOD2mbeDXkOD96/PmNrnXaRr7Xq5gNbbg\ndOgenAn7EadD9yDnMtcdx9LLTiXZnad0x+nQPShN4O6UG1gY4XToHpwO5fqgBy0XpMfkLf5558+E\n/8TvN/aidAVgUtRCZJx6yr9OWL4wwq5B8tyEvlycj6LcZsTeUex5cfy3MvxzsALx9+uQ9pwbFxHh\nxR1rvH+ySF9Jc5DU5hdojOoKxZN06Gh/eG3bIeKW5PzmXNrG0ikMWkDzyyokvbsHSW/vRlOx4sqC\ntlJUyL2hCQcke3lzXYAO/Snqx3v4pJ3EwGVpwcx7f+XetL/dY4OUHBckZQn67NwmOx7hyiXuTdvW\njtzXv+uanfCY8Z7EdgNL0cC0+txMqXKSt68ROeYuyMRjPvRNTJVWFloHUvt8tAFe/1st1s9p2ER4\nf8CNgWE305OmTdtgNdSjLkfUHabrmp0wlpBRym/ZlzBx7SjSpmiAcusMWw5hoxS6Xt2w6sSTA3Rd\nsxOd5osH5zPNzOEx43/oumYnuq7ZCZteA+TKb6qtQH05dyHpO+Jd/iI7cPJaGJpaqf4GIFAIjCzs\nhBbyXJfO5MgfxfpnRZ/gv27dn6dMtMbCSXrWLIaePiVlQ9OcGyZaBfrRxqsAgD7rh6sk99HmawCA\nuK9uAAAeb70ucr5DuPyMY7zFf8/VQ6T2ebJDuzKLkeT0vnJNT0GHFtDxs8+Rvlb02W3WPZC28XQx\nDBpGJNhZiPjxkQ2PNAAAIABJREFUm9U8E/I4OevD170A/UONsH2XNSor2Zg1pRTlZeJZQqa/rnhq\nUl/3Arw5zwyLPjZHSTEbSz4ox4sUrqvPT9/Lznr0/Tc1+HCJucoVp4XTY5p18pO7iJeX9Yjd1IiS\nW5dEFo6tXV4kybTp2R/Oo6dSnLV4Wk9DWwepc2+uKEXqni9oqeyrjWT9+T0MrGzh/YHgtylpQSwM\nu7kJyV9/otR4RVdP8+NQhCtAK5Mhi+rfyGfx51LPyRs38culcB49FTY9+/PbjJ3diH0/np4Vj8eS\nhqwAaWXPKdpfWKEAgN6zt0JP30DqNbadesIrTDS4nuRc6UZVC0PBLa5CXp3JXfRmXxDdQTeyEfXN\nT/o9Rqosz7Fd8XjLdbH2K28onoiiLbFno+ZqKylCZ9dwhQN/R4RsxJVo+dZEX88IpGRFUrqm9flL\nObswImQjIF7MmTidXcORnqdanQtp6JuZg6PGzTydhUHDFO7/l//v5TluJc6nU7XfZK0I96IaMbB3\nEcYMLZGoLKjCn3tr0S+oCONGlPCVBSp8uMRc5bFrM7k+pFQXdlT7vYy6DHYTteA8nszyx/co9Rfm\nxS5xP+7WlMXckus20x5prixD2o9fyu8IoLmyXGllAeB+xm2NwovHkHNEscJeHPar4UKhpy+7WFRF\n9lM1zUR5OCz6Ur+2ls1hy3bDLH6Qq/AYtXm6KvY6dJBGZ2HQMMXHRU3a+b9EIvDcunZhYdBWeK5I\nfbopt0sjaeHPazNx8YDDkLEw8/RGU/lL5J7cj8bifIXHSN7ONTMyzS3hPPJ1mPt0A7upEQ1FeSg4\nfxjNVeImaUV3pFtqq/nX2PQJhf3AEdAzMETFkxgUXTmlsnzSUNn5VuV8a5rKX/KvMfX0hsvoqTC0\nsUPjyyJUxEWj7MFtheSRnBvdcqhQk5bIH0/P0AgdJsyEqVsn6JuYorGkCDXpSSj+95za5tNW6D17\nq6anIBd2s+rKnb6h6sktAIBpqnwVdR3ag/Au//B+G3D1/gaJbZL6S8LTZSA8XUSL0vGu8fWMQG7R\nA9Q1SE5gIImhfdfh35jN0NMzAJvdzJfVyTUMGXm3+Mc+HiPxIvsy/9jC1BnO9oEibbaWnWFn7YUX\n2Vfg5T6MNgtDxrrV/PgFpxmzYN6zF9JW0ZfwRqcwKMiAoZ/CwFD27vStyNW64jxaTHQct6hdVRX5\nv1F9QTayD4r7QStLS00Vck/uIyZPGuUPo1D+MIr2cdoqdVmpSPtpi6anoXV4v/ExUo98C3ZTI3KP\nk0kV7Nh3BIpjrhCRpQlyHp6De5/xCJ67A6nX96I8+ymYxuZw6jIQHYK4LmfZMac1PEv6cR7YkYic\njuP9URyjBt8RGvA8sAWs8irkLtbdO4SRVHFduI2KW1JWwR0RlyQAyC95DABIyYrE4D6rceMh9c9d\nX4+bJW1Y309xJXo98oofwcrCHRl5t2Bt4Ym84lgAwIvsy/+NFQcA6NNtPq4/+FKkLchvBq4/4Frm\nM/OpbSyFzNiO4rQYpMccldnn4cnP0NLIjeFkNzUh49M1cPvwYxi5eyDjs3WCnMg00K4VBmtbLwT1\nfVdmn9tX1oHNapYrK3zUV5THDYvgfkmbmmpw71/ZGXQkxTBURlHLMa2DOq2DplWNXdChoz3jM2Mp\nDMyt8PxXrtta4OKdiN+1FF3mrUN54gMURUcicLFozELg4p3IOPUz7IJCYWhpi5LY6yhP5KaF7b5o\nGwpun8PLJ9Ifng69h8Cp30gU3b8sIjPlr6/hNWUhnv3MDcB3G/4GrLwCkPj7JrBbmhC4eAcay18i\n+cAWdF+0DQm7VwIAfGevhIGZBb+fuih8dgOFz24geO4OeA+ZJ3KuuigdSZd+UNtc1EX3xaFI2CW6\n4RC8KYKI7A5DvMTajO1MAQB3lymXwlid6NtYwvMAd01QH5+M4u37NDuhNsCV6PWUYxmEcbbrjmdp\np8BkGvOVB0XGBBiorS8BADxPP8O3egR3m48r0dx7IVPfGC2sBjjbd8eztJPILXoo1lZclgh9fUOw\nWE1wtPXHi2xyGyB+YfPx7Iqg/gK7sRHZ26mvT1Wh3SoMVBf4g0ZsRmlJEp4+kr471n+octWSDQ3N\nMWjkF7h9ea3UPu3V9UjbFuTaNp9xt6jlmj8fpnhNDh06VKH7R9uR8J24WdtzzFwk7RXcr+J3LRVT\nGqqzk9Hptff458oTH/KVDXM3b5nj6hub4ume1QhcvBMljwSBrI3lxXxlAQByrx5B7tUjfLkAA8kH\ntsD/nc/5ygIApPzFjQUT9FMv2hasTCdeUwPx7Ie7YLdwrbYjj5GpmP7i78fwmdUTPVYORty2GwAA\nppkhRp15CwBQfF+xrGRqh8MBGIIsdyaBfvA8sAWcFhay314PsNunJ0JntyHwcO4HfT1D2Fh2xKPE\n/bga/RnfEsBzPZLUxkMZpSGv5BFfHu+6kO7c1LwDgj7C09QTqKrNE2m7+0SQ5nxEyOci4wmsHoK/\n4ZBgbiZDnkLCc0USbnuWdpLf9jjpL8rzp4K5nTv/tde2HWKF2iS1kaLdKQzBg5bD1MxBoWvsHLog\nfNRXuHlpldg5RSwLktDTY0qVDQCOb4Si+IjOFeRV4/FmwY5DdXopwv6YjuqMMqQfjYOhtTG6vjcA\njzdeliFBhw56kOQuAABZF/YrLZOnWMhauBfe4RaGK7p3SaS9dbB04OKdqC8Sd1F5+SSKUj8dZDkd\nugeTohZiwo3/8dtaapv47arw7Md7SPz1Pibc+B86TvAXG1fbyZorSJPtuHQuTHpwK4kzmPrw3CdI\nJpG7mOu61F5Iz72O9FzR7FUccMQW/5LahI9lKQs8dyThfkkZ/yApQ7TAZHSC+PdEUhsAsNmi3iY8\nufLmRLWNBJWFKbTIpUK7UxgUVRaECR2xCVFXlLMmyKNX/w8Re0+8jLfz7MGwG9MHjbkvkb6Wq4kK\nuym1VwvEq07eZUHBnnG3FolZEtL+jsW4W4uQd1VzNwcdOkjAYbGQsHuF3H56BkZgNzfCuktvFMVI\nVpa7L/qar3S0tm4o00+HOLIW4tLOUW1X9BgA2C1shZQDbVUkindyFW4jL3c4fyaqSLnt4ia5KPvr\nHKovS67toYM+Wlsl1IVD52C4dhPUNbHzCISlk7gLnp6+AQxNuAVWk278prb5taZdKQyqWgP09Q1h\nYmaP+tqXAAD/HrNITAsAYGHlBq5ZSzwgpezyY5j6doCpnyvqkvMACBQF21G9UHYpltg8dLQd8q+9\n0PQUdLyCxH+3jJJFwGcm1+ztN+cTZEdKz3tfePc8JXkBC7l+3hlnpKdrTfl7GyUFgGo/HTrUTWNa\nDrLmcBUEl00fwtCzA/+c7ezxsJ09Ho0pmSjc/LOmpvjKoW5FgUdjTRmMzQV1TfQNjKFvYCy1f1lO\nvMgxu6kJDD09cHiubXp64DTLj8lVFgaHxohqZWEwGApPyqPzYHTyHU1kfJ77kCQF5MHt7airLZF6\nbSffCHh0HipXNg/hFKqBZ9cifsIXIm0Bx1a2u7oMOkSRZGGQ1a5Dhw4dOhSAwUDgWUEsIf+Zq0Up\nzG1njYNFxECxdnZtHXLel508RUfbh0qWJEl0/mIrGAbc1MMcFgvpq1dK7MfhcBgSTyhAu7EwyFIW\nMl9cRlbaNbF2A0NzDJAQ0Gxt64WWlnqx9puXPoEkC4EwGSmRKMiJQb9wJQo5MRgwsLUQaWLVUSvg\npUm6TvHDgFUhUs+zWRzE/vwYT/YmqHFWsun7UW90fzNAZp/ce3m4/PE1uYWFVIbDVQ7YzSykH4mD\nsYM53CL86B1TgxhZGiFglj86De8IKw9Lha4tef4SaRfT8exw284k5ujeC769pgMA8lJvIePZeRiZ\n2qCj/2gkPzyo4dnp0NG+CDy7FoV/Xkfx0TsSMxNqA+UnLsOkdzcw7a1F2vXMTOF5YAsakjNQ9MUv\nGpodzTCAjoM90f3NbnDsrphbOZvFQeKxJGRcy0RRXDFNE9Re0tcqXzRUUdqNhUGaO5K0YGNhTM0c\nEDxIdrELKnKozCkr7RoyX4j653bdtxiNeaX8GAarAV3guXoKAO2NYVjwYK5K119ceBn5D9SXuUjP\nQA/z7r6pspy/hh1GYxU9Spzf2yHwmtET9cU1uDnnIJHiSZrEI8wdw7YOhp6BegrKp5x5gdubtd//\n19zKFT0GL0bUmZUInbiNrzAAQOjEbYg6I3mHSIcOHcohYsmX8loTMPT14bFX8vhZc1bDemoErMYP\nFmtvy4z9ZRScezqpZayW+hZcWBiJkqcv1TKeKviFzUdzQ43CFgaq6CwM/yEt1oDqIr+utgSlxc9h\n5+gvv7MCpCWdh1eXcSJtnl7DxBSGxLd2iRxX3k2SexNTZcH+e7Dy2U6m/zMVZo6mSl/PY/QebgGj\n3/vul2e0URlVlRthZl/j7gqr8hlKI/m3aCT/Fk1crjpx8LfHhP1jNTK270Qf+E70AcC1RJyd+4+c\nKzRDl75v4mW+6tY2kt9rgJ7vtKYwsXBEtyHv4+HZz4nJfBU+b9LvUZ001TThzyGHND0NSthMHw3L\nMWESzwkrBBXHIlFxLBK2cyfCYhjXiu95YEubUxrG/ToaTj0c1T4u04SJCXsFz6ObG6KQ+k+a2udB\nheRbfyh8jdPM2TDv0VOsXZdWVQYOzoFibVmpVxWS8TR2v0pWCknkZt4WUxgkoW9mDO8d8wAwkLZq\nH1oq65Qaj07cQ90w8pthxOUuiOE+oOh4eM6/PwcMPZWVaonwHqza+NBXNyO/HQb3gW6anoYIDv72\n/L9RZVYljk/Rnsq6zY01MDVXPpsbj70hBzAveg6BGXFZ8GBuu/k+11cXS1UW+k/bjntHZVuUW9Pr\nvR4kpsXnj34HiMrTIZ+u+xaLbM5RdU0aMnwLEp8dQ2GBaslHDDo4osPWJRLP5X70JVgV1VKvLdt/\nBmX7z/ALwLUFtFH5DN8QivANoQCAu19FI/F4spwrtBvzHj1pUw4k0S4UBklkppKrrEcn+mZG6HZ4\nOaofpQEMwP+vpXj+5jdoqajV9NT4TD31OizdLOR3VIEFD+bij34HiMULqOtmReciy8TZAvWF0h8i\nmmbS3+Nh52ur6WnIxcrTCgsezEV1fg2OTjyh6engye0fEDpBfHMieOQaFGXFUJbDZmmfO2l7pefb\nQUTl0R4XpUOE+PGbEXhuHV9J4P1PxR3p+tXVcHIOwpDhW5CddQtpLy4qNLb5oN6we2eKxHPZ89eB\n09K2XU+FMbU3wYyL0zQ9DUoMWBWCAatCcHvjHaScS9X0dBAyYzulftGHFNvsIEm7VRiUoba6EGYW\nzmods9vhFWI3Lbr9Kvsu7oOYXQ8p9Z13703oMdXjgz7//hwcHHUU9aXiAedUMXM0xfR/phKclXwW\nPJiLqC/uIfk02ZoJtgEuyNMyhcHAlIk5N8mlG1YnFh3M+Yrk3gF/gt2soSqrHA6izqxC6ERu9jNX\n7zC4eoeBw2bhRdxxhURFfnQFEd+NoGOWWotjp77o2GMCEq7uAtPQFAHDPpRoMfAPfw/Pb6qemtLE\nVnqaQx1tB1WeqUWFT+DoFAQPzzA01JfDt8tEXL8q3y1IkkUg5/2NYNcq/4zTRgatHwjf8bIruWsr\ng9YPxKD13OxUbc3CmrZqOby27UBZ5EW0VFby26sfPqBlPJ3CIER+9j34dHtNpK25WTX3oLraEpWK\nydFB99ndKCkMsy6/oTZlgcfMS9Owb+BfYDUpt+uibmWBR+ja/mgor0fWTWqVZYVTpo67tUhqP20q\n3DbxwDjYd7WT37ENwAuA19wDgkMkuDn3Xj6BuQh47eB4nJp5jqhM0nTsORExJwUpMhV1L1KUmZFv\nEJWnDVYuHdTp3XchLC3dcfPf9fxKwHm5CsaacTjIemstoIVJZlRFG12PlGXBg7l4/NsTxP4cp/ax\nZVkOGAw99Ju+DfmJN0Tavb7iWiVsI0SzhOoUBjVQUZ4u1lZVka2SzNrqQsUVBi25pxjbaGZn7a07\ns5VayGn6xjV8+1DK8364TtSsLanegsdYskH4qqDpz5YuFjyYi4MRR1Ff1nZ3/FoaWsA0JnMrt/XR\nfhezmJNr0X/adrBZzYg5uRYcjoYsRUpSnV+j6Sno+A/vnfORulR2sOnjhz+DzVZuA4td14Cc/5EL\nvNcm3Pq7IuK74fI7tjF6vh0E/2ld8Neww5qeCh8Oh43oQ8sRMmM7suPO89vVGb8AAOrdPtZyeBWe\nhWluVM0lhNXSIPN8/PjN6H5qNd+/MuDoSsRP0HAqVYbmF4iKjq/p+fKgOo/CW/IzNZQlqC/trDQW\nPJirNZ8tXcyMnKb292hiLp4xRJ9phO4D/6ewrP2DpFdZVoa24Fpw7+hy3D+xGl3D3kH/adR8f7WB\nhz+oFjirgyymPh3k9hFWFphMxTbRSCsLWXNWa0WGpAUP5rZLZYGHkaURFjyYiw7BLpqeihiBo0WV\nBK9tO+C1bQf/2PlN+p5lOoVBCE3tVCW8tgXx4zcjfvxmPJ2m+arOvMxFmsYrohOlfm79XWmeiWJM\nPjpRof7SqjnXZJeTmI7StHdFoTXqer9egZPQe5i4+ZnV0ggr+85qmYMseP68bQESMQqymHxsElF5\nT/ZpT/HK9g7TxlzuPyoMGS6IQwgN186ib+rCe6zXK/VcGL1nJObcnKnpaYhgbCnwWOn42edIXyuq\nQJp1F88aSgqdS5IWoo5iMkwTJlrqW8Tau03vSuu4ijB4cxjSLmfIdNGy6GCudTsd1p2s5XfSYhbE\nzAXoyUar9Sx4MBc1BTU4MoE+P3PnjiGoLBV3f1SFyuwqhatmt1XELQqCGwRDTx9dB70NUytnMI3M\nEDDsQ9RXFSHtgaAYUnlBoogMWTEQ1h2tiM1bh3rxP/AxETnXr67GkOFbUFQYhxvXXl2F4VVSFIQx\nMDXQqpTTeQmCOl76ZubgNDepbWydwvCKErp2AG6suyXWHrKsrwZmI50FMbJ/qNPOTFbjbKgz6c9x\nOP3mefkdtYw3zk5+ZZUFHuYu5rQ+IOqqimBp25GozOOTTxF9oBtZGaGxkp6K5qoia4HPYbPkWh2S\nbv9OaZyuU/wUmpc8Mq9nEZWnQz7yNt5k1WIICBRkg8vKuI4Orn0REDgLT+PJugC2hmHAhMfvm7TC\n9YjHq6osCEM69XtreoyX/vc2NhckG8l7/i8t41NBpzBoAKoFY+jEK6KTmMLQ1m4KgXMDND0Fqdh1\nUSybkKRMSQ/X/IPCqAxSU5JLW/v70w1dSsPjG98gdOI22Dp1RVlRIr+9/9hNKC14Snw8ZZh9dbrW\n7KhpigGrQojKu7byBlF5OmSTMOlLuX0ac8TjFnm0VgzS0y5L6UkWIx9PtYxDFd1zQcD8+3NwaPRR\n1L0knyRDWCmQRutMShnrVvPjF5xmzIJ5z15IW0Vf1jidwqAhZO18aINCoU1M2DsWZ+f9I9YevKi3\nBmZDnTk3ZuLA4INy+/GUhYsjfwargZu2L+z36ejz5Vip8Q2k0T0UJEOX0lCSFwf/kHli7YkxylcA\nPhhxFDMj20bRpFcNVmP7Kc7VVuCw5MckJi/8SQ0zUQwDNydNT4GP7rkgzoyL03Aw4gjqy2QntFEU\nZQqysZuakPHpGrh9+DGM3D2Q8dk6WlP36hQGHQDI5xoniUOAvVhbW7iRGZgZUO7bWjG4teAwBnz/\nOukpSaQtfJaahA6lIfnhQSQ/lK9MKgLp1LDz78/BH/2UV2DaMgGzyKY03hf6F1F5OtSHq1s/5OXe\nV9t4xlpiYdA9F6QzM/INWt2TFIHd2Ijs7V+pZSydwqAB5PlV0h3wzKPPwl54uIeb5k/bq5kOWBWC\nu1/9VyznVfGx16P/jeoeCtTQpqA3dcFQw/dPW+n3cbCmp6ARZH3H7Xxt4dTDEZ7hHnAKcoS+kb4a\nZ6Y6Hde/ActgH/5x5b1kZH15TO51Dk6BalUYDNyc1TaWNHTPBfnMvz9H488E4XSqwtBVn0GnMLzC\nBM3rjod7YjFo3QBK/ZvrmnEgXPKu6LhfR8Oph3hueVJ0neLHVxiUSft6/p2LKIorFms3NDfEm9dn\nqDw/afRf2Q/3tsl/2Fh62aEqrVSkzbY7vTmg34qaTat8WRTFF+Pxr0+QF61YpeIBq0KIB6NSZfo/\nU3F4rPwFhia5vOQaRn4zTNPT0CHE+bcvyu/UBihNKUNpShmeH02S29fSzUJEudBUEVAePDff/N+u\noD4lH6b+bnB5axiljIRlpSno2fsdNDfXARCPbXDbRTY4Wd9Gs9nONKUssJpYuLHutsLJAYxtjBG6\ndgA8w91pmpl06NhIChq7AiaW4m5p6THHUJwmupZorRgYuXuAwaBvo4fB0cJS5QwGQ6FJhY9SjzmG\nFDcvrRI59j/wsVhOaHk3MVI/6mOvn8TUk7JdXxT5QVi6WWDqKXpcaXjzoPrek04k487WaMry6bpR\nyvv8JAU8S4NUTEO/JcEImKm+StLHJ59CZXYVLbJH7xmp1gI7JB4QoROl11uJOrNSJdkkv8eFj4vw\nz7uXiMlrC5BOK6zpXUhth9T3tammCX8OOSTxnDTFgEQKc88DW+R3UgJelqSQGbILEyrj+y4NdSoL\n19fcRPqVTFpkM/QYmHX5DRhZGdEiX5iWhhYixTP1mIboO5UbqF+Rn4jcp1fQVF8FS0cvePfnbmo2\n1VUg9ozs76vXth0SLQwcDkflu5rOwqBhAs+tQ+mlWNhF9ELh3zfgPGuwWis9k1QWAKAqtxrPDifS\nVs/BaxS1wla/990vs36DxGuC92tkd0Vdgc08jKyM1KIs1L2sx6HRR+V3VJGLC7nZS7xHd0b4xkG0\nj2doboimGuVzX3f0Hw1AdcVAGmmRGZSLHsrDuaf2BGCqjVfXE0uHFiKsEPSZvAkPT3wKANDTN0DX\nIe8RG2fSn+OIyZKGLC8FknDYHPw1/DAAIHzjIHiPpq8gJtOYCZ9x3nhxPlUlOTxlobUC+DLzEV5m\nPoJ1h67oEr5ApTFURacwaAF5P1yAWRc3FB+JQvGRKLUUbqOCsjtj0TtikHohDRMPkL0BUV3Mq7Kj\nR4fSELq2P6K+uEdUprKY2BrTHuB+Z2s0kk4k0zqGJFIvpiP1IrcgGp2K35vXZ+BgxFGlg4xdOvVH\nfnoU4VkJuLHuFjGFAQA6DfNExjVdDQFl+HvkEYX6f54wXqzts+7nSE1HLfDegzbNuzGvFG4fjEHu\nDxf4bR3XTUNjXpnca3n1GAwMzWFgYIKYe99K7EeqbkKHLUtg4Cru3ttz/Bq+sgAAbFYzzO09iIw5\nYd9YhVOBK8K/q28i42ombfJlcXP9bdxcfxsWHcxpq9sU9tlA1BbVIv9BgUpy4s5L95apyOem4A4c\nvRTxF3cCkBzDkL72E5XmIAudwqAllF6M1fQURPi9r2pm9JeJpfI70cDeENWzuhTFFRONx/Cb5Ks1\nCgPdyoK2uF/8HrwfEbuGw22AKy3yZ0ZOU/q9piechXfQZKQnnCU8K3oYunWw1vxd6WbC3rFE5TWU\nk029qIM6rdOTG7nawXZUL4XlCMcsdPaOUHle8mjKLZSoMLQ0i3+XGAw9ImM6dBPPREgKbbl3VOfX\n0OpFMHrPSJXfa0N1idw+JlaCoHi6gpuloVMYNEzSu3sAAKUXHvJvcGmrNZvK8NCYYwq780hi38C/\n8NYd9QXW1hbVgs1SfeLn37moVtekEafmwcjOTPJcCLorTT46iZis1iSdSsGdL7VDKeIRufgqAPqs\nDcoGvBVlPwSHw0boxG1IfXISDbWiynVFyQuV5xb7cxx6vddDZTnK4PnT1yLHWf9boZSMmtvRKP37\nhEi7sU9nOC17XyXZspCUwllZFImf4iG8Ky/J2qCDOnRY6Y2M6A9IbkzJhFm/QLH2hEs7xeIZCpJu\nqjyepmL3NMXvwfsBhnLJU+QxYd9YnH1LvGYUVbqPWoKES9/I7JP56LTS8lVFpzBomKYCgUlUG9yQ\nAKCupI6IHFaTeosVHR53XK3jkcLIzgy3FxxB5YsSjLu1COfDdsNrVi90eac/sTH0mHqw7mRFTJ4w\nh8YcI/adoYPfg/dj3t03oWdAZjdOGEt3S1TlKBbMLRzw7B0kHkNEIrbh8W9PiCoMTBMmWupbKPdX\ndSEv7fqGF+nI+t8KMaWEBFTjo6iiCbc8HeQZMlw0qDnxGb2Z0ppzCqWeIxngDAAjv6Uno5q2Kgt8\nONQSviiKqpYaMxtXOHn3R1Gq+OZbv+nc50bRi7v8ts5ffgUGU/YynqQVol0oDK2zDrV1jD0d0JAl\n3zRFBw++f0RUnroCiUmnu7y64jqGfz2EqExZVL4Q/Xun/R0L+x5uxOTPu/cmMVnCaP2D4T/2DvgT\nk49OIq40TT35msKfAV3Bzq2pyKyEdUcy73furVmU3qe+hWRLWVtg8Cb6A+Z1tD2uX5Udm0AqdoFH\nw4ssNGXmEZUpDfeB5J4xAFCRUYET084QlUkXVTnVtKxPlLU8Rx9ajuApm9EpeDI6BUuOtWitMDKY\nTDGFQFqWJBK0C4WhveG7+z2NWRviDzzVyLiqUltMdoc760Y2UXnK8DI2l4gcM0dTInJa01aUBR4n\npp3GtDOTYdHBXH5nBdDWom4npp5Wq2ud8K4/77WwpcB950bomZqIXJO39ku0lJYL+nyzCXom3Jz9\nRbt+QUOi6u5ZmiDlnGoZU6jSe7IHJmwIknhOUtCxrIBkWecW/zMUth7SlUFJ1zAYwIZ4UbcqDpuD\nDUHnpcqhi+4nPgHDUPJyR96zdsjwLSgpFjwXW9dhIA6LjYL14q6o7kFjkJsQCQ6bjOV+xoWpROQI\nI09Z0GMaou+U/7IBHRYsfkOmbxdrUxdXlv6LETuHqn1cSTw4vg76TCMET/1CpL0iPxFJN3/X0KwE\n6BQGHTrUgM84L7w4n0apr9f0nkg7/Bhd3x+AtEOqB8NP/4f8g+HvEYeJy1QHRyeewLzoOdDT13zu\nTJ5rUl4rGq0eAAAgAElEQVTqLWQ8Ow9Lu05gs5pRU0FGUSTN0K2D8e8nN6Se5ykHnj99LdGlKGfp\nepFj9283w/WLNSJ9c5Z8ypehTgzMDIjKu73xDlF50uApC7Vljbj9WyrM7Y0QOt8bAFcBIJGpaPW9\nUTA2N0Di1QIcXvKQLxsAil5UIeZQpsTrNsSPB4cDXNzyFEYWTAz7sAsYegxYOhqjqli9weAMQyYS\nJn4BDpuDLr9/iKQF38P94/EwdLKWe21NdQH9SgIFXPzCkPPkgvyOFDF1ILuRRGXTpPfE9RKVAlUU\nhZDp21W6Pvt2Diqzq2DlQS4+5Y1zU3BkvHIu0qyWRoVcz8yDeqDmSRwAwCygu1JjUkWnMGgA9yUT\nkPMNN0NK60wOmoSuXdKcqFy4h5I1fQpzZMIJ+Z2UoKmmCYbmhkRk9VsSLFVhuDDsR/7r82G7Me7W\nInRdOBBNVao/VF87OEFlGa3Ju5+PhopG4nLVxd6QAxo3Q4dO3IZH175G72GCxXJVaQZCJ24j6rLE\nbmFDj0kmdqPTME8icngU7/oVzquoFy2kkzk3ZhKT1VStfI0ORZGkEFz5JpFowLSxOVeZ4ikLvHE/\nTxgPJx9LPDwmOeXu4zM5OL0ujn9865cX+DxhPJZdG6GRlKscNjchhqEj100v59tzlJ6/hkYWtM6L\nKilR5J7PpO9/re99Nq7+8Bs0H4BAGeBZEYStCbzXPFr3ZbU04sHxtfy2mrIcmNu6o6ooFc+v/yRR\npjIcn3wKc27MJLZxYO6sHtfMtJXLYOLjC8+13M2YkmNHaM2cpFMYNABPWeDR2iSqTUoECa6uuE6b\nDz0A1BTU0CL34Q+xGLAqhIgsI0vpFSfZzaImZpKZkWx9bIjJ4nFp0RXiMtXN3gF/Yt5dst9JE1tj\n1JfJV/K6D3wPjfUVqK+hP05pf+hfmBc9h5g8px6OKIorVupaw47ucPnkI/4xp5l6EHVb4s+hkqsN\nq5Mr3yRixBJ6imdSRVhZaMu0NCtXb4U0FfmJCJmxnXjgs6pISvrgN2g+f/HuG/oWUqL28RUE4UW9\npAW+i98gfrt9x94i555e3iVyLEmmshwYfJCoIjX//hz80Y/+jJf1L1KQ9cVG2scBdAqDxpHkP1ly\nSvF0fNoMu4VNm2zerhEdJB5PJqYwyMLIxgSN5eQfSiRTRPLQRl99ZWA3s3F8ymlMOU4u1ezMyDco\nfT7GZnaoKs0gNq4sSKQZFmbcr6OV/g64fPKRiPuRWb/esJ83ndTUlIbOzQxNUVmgHYtcbYJpaYqW\nqjpwWlgKbcrdv7eTxllJRs/CDOzqWpE2XkrV1qlVFVUgSFsXjr1+SqytrrIQ5nZci2R+4nWF5LkH\njkVB8m0A3CrH6qQyqxJWnmQSRTD0FHN7NTA2R+/XNsjt1/rvzSvexrMsOL85F4V/0vOc1ikMaiZ8\n1FdyszoV/HFVTbNp+/By7bdlRpzhlnuvyS7HjdnkfGVJF6Fqrm0mKk/TVGZVamTclNjD6D7wf0h+\nJLoTbWblQiygUZjIxVcRsWs4cbmqog3KAgBiLluaYk30aBiZ0fco57A5YOgxEDzNEw+Oct2P1twb\nDQDYPVGxxaCmEN6YS3htC9w+GgfTLm5IWfiTBmclGaazPVy3LRPLvqRtlgVA+gaSqZUzakqVqw6f\nGStQQBw69UFJxkMZvclyfArZRBH6RvpgNVK7p/OUhbqKAsRfFK/gLImOn32O9LWr0fkLQepfs+7i\nNTxIoVMY1ET4KEHJbyq7G+rOklTwSHruZxLUFNbS4teXF51PXKa64bkg+S8KxbhbXJ/usif5uPvh\nSaVl0lHh+MDgg8Rlapq/hh3G7GvkFq5UYhkqX6ajJC+OH/Ts6h0GV+8wAPSkXM29SzZFo2tIB6V+\ndxwWSySYuXU9BT1jY7h/u4l/7LT4XQAAu6EROR9z75keP2wFQ1+f38fzp68BDgdZ7yv3uYV9FqrU\nddJQtwVOWmaj4GmeGPcpmYXDhqDzcOhsjkVnhojI1EQcAilyv1N/piaqGPuQjRUSRl1Z06IPL0ev\niesBDgexZzfJv0CI4rT78OwxDk7eA/Dk4na5/R8cX4t+b2zDy6xYpEWrnozj8W9P0PNtyZnHFOWt\nqNkK3RNS7x1SyKqib2YOTrP6YqZ0CgPNWNt2RlDf90TaCvf/y3/dXFYD9yUT8PLcA3BaWHB4LQRP\np25rLYZ2Hu15TKv8p38/Q8iyvrSO0dZ5vjsKz3dHwcDSGBHn3+YXcVMG0jvK5+aTy86hTTRWaSZ4\nO/nhQSQ/PIgegxfDzMIZafGnUZh1n7bx0i6lEytMNur7ETIfgtKKrmV/8InMvuyGBrkF3yTJUAWf\ncV5E5amTKdt6AQB+nyuekcnalWwGnEVnhmDH8CuoKlJvdqNXEQM3J6nn/MLmw8bVX6RNU5YHeQvh\n2DPifvVUYw2y4s4jK05UqZN2LaulEfePkNtoif05jpjCoCjqdsFSlHavMDg4B8K/xyyZfVpaGnD3\n2ufgcMj52hsYmmHA0PUSzxUfF1TqCzy3TsSaUPDHVbE2dVAUr1wgI1WeHU7UKQwUMbIxkd9JzRQn\naKaQoDogXbxHkYxJcTd2ye9EgBuf3iZeyViHKAfC1Zt603uAIwAgO7ZM7BwvtSpVGDLcrdc/5ro2\ntmVlQdozVRPPWnkYSbEwdOz9GvKeX0PyrT/+a2EgYOSHlOXaeJNLgFGdT0+ikfbIhP1jcXbuP5T6\nOvkMRNEL6imZM9at5scwOM2YBfOevZC2ij4Fsm07b8rAwNAc4aO+kqssAACTaYywiC1SF/iKEh6x\nlZgsHe0HS3fZeZ4Dlw/BuFuLMPjPWci9lKS0dcHMiazrV0t9+8xmo414do3Q9BQoMfuqdsQfqALp\nVM/Nder9nVzfkwwAmLSph0j7wpPhUq+pLeNa1CJWdBNpb11gTZhzG+IBcN2feP82xI/HxM81swvb\n3pFmYXD06oual8JxARyY23lQlvv6IXIpto9OpCeVubZQ8vwlMVkO/tSSj7DZLejU5zWFZLObmpDx\n6Ro0FxfDyN0DGZ+tAzj0JYJplxYGUzMHBA9SXMsyMDRD+KivcPvyWrDZit/89ZlGCB2uWHqr8mvx\nCDy3DlX3U8Bhc2DV3w8VN9tmtWV1Q2f2JTqw9baRmIKOF7cAAPeXn0VJjGpVpqefn6LS9a3ZH6b5\nokV0U1dSR7yQkTK4+w5DVmIkLbKrcqph6U4mp7yRlfQ0wW2Fkd8M0/QURJBWO0G4XThu4P7BDIxZ\nHYCek9zRc5K7yDW8Ogmt2RZ+GZ8njMeAOZ0xYI6oxakspxa27uKbDY/P5CBiZTeYWApy1DMYQK/X\nPdDrdQ/c+DGFr7y8inge2CK/EwHqKgr4r02snFBfWYTmhvax0x9h8zYiy3+T26asLEWvOzv3H7XF\ne/CIOfIJ+k7bgpAZ25Hx8BRlSwO7sRHZ27+S35EA7U5hCB3+OfSZxirJGDTyC9z9dyOam2rld/4P\n4aBmWbBZoplmcr49i5xvz0rprUMWD77Xbn+/1tj62CDzunjmiMvjf0NTZds197cHDo05RvQBMXrP\nSFxceJmYPBIce/2k2h+Crwpn36LmciALZYKIP+t+DkHj3TDhsyDUlDbih9duoOk/S4c0eZ91P4ce\nE90xZKEfWM1s/LXwPsqyJT/rQmZ1wuhPAqTGL3yeMB6D3/cVURhkvQ91B0r7/vAejD0cAEhONpL/\nq/zf6JDhXIXg+tXV6Oo/BYnPlavgqypPL38Hc3tP1LzMQtAY2bE+rRn+9RBi82hp0FmcSdA6Pa4w\nnfq8JtXaIByz4vL2uyj47RcAgGmXLnCaPRcZ61ZLvI4EWq8wuE6fDzPvLmAwmUjesBR+G3YiecNS\nqf1VVRZ4DBi6Xm76UwCwtfdD9z7zKcl88ewU8nO0r8YCiZ36oPlb8eQPQUBip+FzkXGV3owhSadS\naJVPGgs3ybu7JJUF79Fk/dRPTDtDVN6rQodgF7E2XhVnXnakts6gTwfg9qa78jtqIbOvzSAqr+QZ\nORcGRXlyLhdPzuUqdE3cmRzEncmR22/0JwEA2m78QsoHPwNQLVYhLvY39Oj1NgCgrOyF1H6t06Aq\ni8cvn4NhbCjxHM8lSdFAZ8/B1F2X5HFw1FGR4wgb7mcTX3sDhgwjZDU+gx2zA6yZTmjk1MHRwBOx\nNZfhYugNS307tHCa4G3SW2ErQIjFRERXn+GPKev6gZaTkVh3D8EWY/j9Qi2n4lndbfS1GMdvi7B5\nGw+q/0GAWZhCc1GUDn1dkB9TINJGIljd1NeP/9pl/jso+vtPeH21nbY4Bq2PYTDvEoCUzdQi4Knu\n8lNFljxDIwuEj/qKkrKQkRKJm5dWaaWyAAApZ1OJyzRz6khcZmvamm+9OsrFh28cRFReRUaFStcH\nLdrJ/2fh7ktoVuJjkGBf6F9E5PBoXbhHOGVqwp2fEHVmpdg/uiGZ9tN3gg8xWerGyFLygkwZnh16\nTkyWDu2DpywAgH8A/bE7DSmZtI+hCpLq8USW/4aCplRkNT4DAPSxGANvk97oZjoIDgZcZaWgKRUc\ncOBpHKDUuFZMrqXIxdALCbU3Zfa9U3UCZS35qGUJnl+JdXfQ1XSASL9aViXKWgpwq/KImIxLi64o\nNU9JjP5hJDFZkrAZMgxpK5eh5kmc7AwGKqL1FgaquLjLzsBz59oGqSXe+4QuhZm5lFRmDIZYEEn4\nqK0AqP1RqFgpNE3uPcl52lfEyfeF/7rHcdh494Ye0xA93+Uu3Frqq5Hw52dE59geMLZu+37fivJk\nN9caSGpRTydUC+xQZeyvo3B+wUWJ56pKM4mOpSlsfWxR9kI8S8+rRPTOB5qeAm00N7JgYKSPiBXd\nEPn1M5FzvBgJVhuIJVMlE9L1q6vRP3QVBgxajetX6XP34NGcWwiTQPHNFZ4Ly/NrP6KqOI2yvCFf\nkNs9ZzVRv0dKi0lIqY/hWyUU4WrFPvQ0HwFHA0/K1gmG0OJZn2GAu1Un0dN8hFAP6QHCeffbTo0n\n29FjUH79Gu3jaL3CkLxhKax69QOnuRnWffpLdUfy7TZZYjuVBfvDKO5iJixiCxgMUaNLeMRWvowB\nQ9fDwFD+LjGrpQFRV9vOgjnrpuQg2697CHw1h64Igld4B/w6jrsAChjvidEbgwEA5amP4BE2VcQl\nSRvw7D4Orn6DAQB3jy8HwMCAKdtw97hi/p+kMLGlN11q5xEdicqrKWgfAXWawinQUWK7LEtC9AX6\n7xvsFjax6savHRyv9mJlqjLnpvzMeVSpK6kjJksb2dznAlbfGyUxSBoAvgqLRF25+gpHaYp7UeoJ\nKgW4FgbLMeKLfJ4Li61bAF95eHZlN6pfZsqU13lkJ2Jz+2sYtcJo96vPoY/5aOQ3vUB3s8H8Bb6d\ngSv8W+3yy0KfwQSLw/UkYHFa4GjgiYyGeLnXDbKahme1t2GqZ8Vv62QchDp2JUz0BK7BZvrWsGW6\noItpf8pz0ibSVi5D5y3bkLFuDb+NVVNN23harzAAQGXsfVTGyihqJMUEU1aSpNA4tyJXS3RDYjD0\nERbxJSUZSfGHUZRPbxE04lDIwtV7lo+IAvH0XBYY+oLPXduUBQBw9RuMu8eXY8AUXnARB1QtQ3Sg\nZ6Avv5MKDPlSejpFZThDMXe0qnRbsBFME3MAQFNVGRIPiO4G2gUMgNtggbWLZ7WQBs+aIa+fNiLN\nCkqS/aF/YV70HNrH0VYMTMk99g6NOUZMlraypf8lTU9BZVSpwxAQyFUwDQzNYWBggph734qcJxW7\nwKM5p1Dm+bLcp3zloeeEtXh89gui48tCUsCzpN3+ipYiPKzhbi7mN6WK9LtdKf6bkSRDUtvzujvI\naUyUOUfh64Rf36/mJpe5W3VS7LxwG10wjZkyA8ZDZmxHcVoM0mOOyuyTE38Jec+u8tvSV4tuQGVu\n3KDyXKWh9TEMfht2wn3O/9Bh2lv8f63p1lPywy/h0V6Fx5NkkaCqLNy8tKrtKQsqUPS8nP/awNQC\nPd/dyf+nDdRXq16Mjt1Mztyub6D1PzcRGsrpD3QMWrQTTBNzPNm9FE92L4WhpS2cgkX9Pd0GT0Hi\ngc14snspqjKeyXRvcujJzQairLJAOvOWR5i7/E5qhs2iL0+3tmPf1U7tY3ZZ/CU6v7WMf+y/cifc\nJr1Fy1j+K0V/G12WbJV7jd+Hm8Su0yHgafzfeBr/Nx4//BkvS2QvVknQUlIuVwkJiFiMkBnbYWRm\nTft8tAl/04GanoLSdJ3ahYgcRy/NFcDV+hVM6tfrYWgv2bTPw97RX6wt9p5yRa8AoKpCsTz4Ny+t\nahOxCqqy9MHr/NcR63tj7lGBL2DA7M/x+Jel/H9B8+U/qOjGxEL0e8PQU3yHn2StB702pjCoC+HF\n/ZPdS+HcbxT/OGjRTsT/uAJNVVw/+Yx/fgerqQF23ULE5AS+vw0dBo5XybIQf4BsDZQRO4aKtTl3\nDNF4pqTIj8gF9LWlVK0TD4wjJ4yC3tXl4y+RtGsN0vft4Lc930b9+6mqYpH0jXzLb/L3n6o0xquE\nkZHs4pt0EjR2FUJmbEfIjO14GrkL0YeWI/qQbPfa1okXVEEb0qkqU19BW+jzQS8ickhlAlUGrXdJ\n8l6xEenfbEJzZbn8zkJUV8pPGSeNx9E/UMq49CTmZ1SUpSs9Tlvi6x7HsfjORJFA6O/DpNePKHxE\nbw56KrvfNeW5fHckn74z4eDRS+H4BTZL+wP66KC+jH7XGKpwWKKBdiWx/8KpbwRKnwmyjvlMWwKG\nPrNNuCF19B8NVksjcbl+6wW7xA15WSi6eAoN+ZI3P3LvtZ2APm1l3yDZWbW8314NPUNj/u69LEXB\nc/pCmLh4IP/iYVQlxQEAui7/Ggw9ffiv3ClXyfD94HPU5YgGwkoa12FgBOz6DhEZRxpeC7ibYGm/\nC56FrmNnwqpbH75caXPTNzWH9zurkX/+b1SnaUcWKT1DJthNgkUvg6KLKK8OA4/EZ5pxQ+OwmxVO\nxRmyjNxudNzv8mMHdEhHT5+M8lb4IoqIHGXQeoWh8OxReLzzMepzMvg7OvlH92l0Ts8e/4mXRfRV\nY1YlZzSd7BooOyd/a1ekDv24u3mPfyG/iCuKL5HbJ/6aqK/pi5iDxOfRXvnnHe31W2aaWoLVIFpo\nKvfGMTgEhiFo0U6tVxqqSjNhYUPeVSl5o+j7ZppbosPkObDoFgSAIXaeJNPPT8HhcZopaEUVpx6y\nLdWKIi+rVupvWygt9gEg6/AeAEDHGR/wF/KJ21fAbdJbyD29T+a1wmP4d+nBb+ct6IUpuROJkjuR\nIuPIlfnf6y6LudaSvH8OynVhMrS2R/KutdAzMIT7a/OQc0px92CSPJu5AwEnxK0tz+d8K6G3KOrI\njESF+IuKu435TyPjBgMAT/YlEJOlg4uL3yB49prIP3b06ivX5Sg3QXMFQbVeYaiMjUZlrPbUL3gV\nXI+UgQ6lQBbVufRlAmiLdBrekai8yuwqovKUhcNmw8orEJVpgt0t+8BQJP0pGldUX5yL7KsHYeUd\nBO8pHyH1+HdKj5l7Nw9uA1yVvl4ez+/vpdUliaGnh84frQPTUuDfXHRBfDEf+0scer3bQ6xdGcyc\n6K8xoirjfh1NTNa1VTeIyQK4i3IOq0XMmkYaquPU5WWKtRVeOwXXcbNQeO203HE6zf5I2SnSAqu6\nHvHjN6Pz5lkwC/BEXUoe0lZSy+5la+eDzl4ReBizG56dhsDOzheWVp64cW2N/IsJ4h40BrkJkeCw\n6f2O6FAfBcm3UZB8Gw6dg+HV7w2p/disFpRkPEDGgxNqnJ04Wq8wtKbzx+uQ/q1mdt9JKQuSStRr\nOzxXpKz7ooHER9+7JbF/z3d30qpElKXKd1ETZEcShZtiVXsYd2sRbrz5N2qyuO9pzNX3oWeoj4rE\nIkS9R838Hf55KJ1TVBo9pgGM7bhVj806eKGxogRN1YK/XWV6AoIW7UR9SS7AAUwc3RD/oyDrQ/ye\n5fwg55dPbsM+iFuYrrFScmXdhJ9WIWjRTgS8+yWe/qLcA/3W53cwM3KaUtdSwbNrBGqrCqQqDcoW\ncPNbvxPNleUoOPUX0r7dKLf/41+fEFMYXjUy/80iJqvrsq8Fu/krdoic0zcil4pZ1jitMXXtKNZW\n8fQBGAaGYNXX8uW01FSBm3mOA7OOvqjNTAEAlNy9jJIo7bNSpq/7W+Frmhqr8TBmN/qHroKxsbXG\nLA5O3v2R8+SCRsbWQS8l6Q/g1e8NuVmSNE2bUxgMrG01PQUiyHI50laFQjitKg8b714oT42Fc68R\nEq6gj/pSaj722qYcSIOnLHScHAg9Q3083ngZPddTrw6pb0hvylZl0DcyQcA7gpR/TsEj4BTM/Z7w\n3IYyL+wFQ58J32lLAHAX/ByWaHDdk91L4T70Ddh1H4DMi/tErA2SeLJ7qUqF4kjHb1h3shapmO3u\nO4yofB65f/8Ct1nvwuOtDwEAVQmPUHBK9gKpMrsKVh5kAjlDlgZrbRGzGRemanoKAACv+StgZO8M\ngAG/jzYj+bt1SP5+Hd/FJ/v4ryL9zTx95Lo1JW5fLuYixNDXR9dlXIVU3jg+768HwLU+VKXEI/f0\nPuSe3iceA8FgwGXEZLiMmMxvT9mzgd+v4MoJvsJg3b0vHAZw718pezb8p1i0Uf5L225oaCGno2SY\ndtZw/UbxzcbWmZJS7+lcats32p+9TmsVBiOnDmgsyoffhp1Si7W1VeTFJ5Sc0h4XLHmUp8YCAGy8\neyPxqCAzkksfcuZ/SdQUyi8qxmZrPquDogQsDsPlcb+hqaoB7mPFs3+1JViN9ZTiCTisFiQf+lpm\nn5x/jyDn3yMSz0kaQ5viGPos7ImrK67zj5W1IMijNi1JLE7BMqAXnMZNhZ6hkcQYhuOTTxHLctRt\nhr/WKgymDqbEZJ2YKt8lh0frhX7aH+Lfc3ZTo1SFgEr8A4fNFuvHYbHwfNsykTZp47z4UdwaVZUS\nL9bXf8UOiddTlamN+P+5BM/f/EZmHxMTO/h1fR03/+Vu5PGCoKlYGly3LQPT2V71iQKoyE9E32lb\n0dxYg/IcQTxBZqzk2MLubwYQGZdHW8qG1haRl/FKGu5LlsPQxUWkLW3lMim9VUNrFYbGIm4Wj/rs\nDJH2lsoKSd3bFQV/XJXfSQPYdbZEabrknSJhZQEAqrLpzYzRWCW/uii7pRl2roEozWtb2R2aqrgZ\noJqr6K+DIInS5DKNjNte8Rzsobax7EKHwS4sAgym4Nbe9LIIRRfU4/tq4WqB6rz2HV9UkVmp6Slo\nhIr4+yKWDEXSw2orTGv5sTclxU9RUixIcqKIS5KwstCcW4T8Ndwga88DXKWDZ0Uw7NgBLhu5lsG6\nh89Q8p14Bi5edWcjU2s4+w3it0tTGHzGelGep462ide2HahLfI6K2zfVMp7WKgw8sv/4XuQ47Zu2\nsXPRHpl/UtxFRpKbEgCkXaI3X3JzbbPcPkxDE/j1Fy/qp41uSn4L+qHTtB7I+UegaLkM8QY+U/9c\n8qLJp9w0tDFFU3kdcbltGXNrNwSGvo+CjHvIeHZeZXm8tKpl926g5Ir0lMetYbM4xFL+TTv9On4P\nphZMqi76LyeXWrKmQL5ls72Sf+kI8i9JtvJpI8LZBlV18x0Q+gnAAO7eVq6+UNa8tYCMFN1NmfnI\nmrMaNtPHwHLMIDitnI+ibX+I9FE0paqN16tV1O1VpWDv72obS+sVhvaOz663YdLZWaStqaAMSe/u\n0dCMJCNNMeBBd5Bza6gUkdFGxUAS58N2Y+jhOSh7ko8nX/2r6ekg9UKa/E4y6H/sfbAbW3B/NtdP\n2v2NYHR+J4x//ubwHXB/Ixid5oWCwdTjt/EYeHoRyh9n4/nn3EUv08wIfQ8swN3Je9B333zEvPUH\nwq8uQ+wHf6P7F6/h7pQf+eNIk6lthE7cBnA4fP9o4XZlXZaUTZu6N+RAu3Y38H+jKzFZRyZoNkuJ\nDuqkLPpZ5FiSKzAVRWJg2FrcufWF2GuFoFjPp/zwBViOGQTjAB/Fx9DR7gmZsV1hxZEkWq8wtI5h\naG8xDSadnRE/fjP8/16K57O4O4Rdflmo4VnpUDf/Tj8g1nY+jFq1clN7cplUAKA8XXm3P4a+Hu5N\n5S7ge+2ehdhFfyPnyAN0fidMZAGfc+QBco6I+7uHX13G72c/wBsv76bC2NkK6b/cRPjVZWgsEbi7\n1KSV4O6UH/nXSJOpDKwmFm2B5O5+wwEAUWdXEU+v6jbzHZh5iy6Q07/bjOYK9bmZTfpzHE6/qbrF\nhASW7soFqupo+zRkCWr1sBvku7BK4/nTwxJf00X1tWhYDAuBcYAPGp6+EDnnFzYfNq6isW2aXEDq\n0Cxpq5bDa9sOlEVeREulwFWy+iE9sWRarTB0mPaWyP/6xtQXRlQqNSsKKZmS0rNW3U/hvzZ0aZuZ\noFoXblN3bQYqDJiyvc1YHqji0sdFfic1YeHnjJ7fzUBzZT0MrJRTZMKvCgK2bg7fgZq0YtSkFcM2\nRNQnl9PCzUde9Yy8C1XBo0K49aenFoO7zxDkp98hLpdpaQ0Tj85ilga/9TuRvmsTmiulpyL+o98B\nzL8v7r6nDHZd7IjIIcHUk68Tk5VzJ5eYLB3q5elUyYp56Xn5C6sevd5GXW0JwGDAxMSOaP0FQ3dn\nNOUUirSVH7oAi2EhsH97MnI/FrhAdez9GvKeX0PyLZ6rEgMBIz8kNhcdbRAOh7YAZ0lotcKQf3Qf\n/Dbs1HhlZzrhtHBNlbnfnUfguXWovJOo3vHZZFJ5aYtyYGrlAlZLIxpry+DYMVjT01ELVp5k0mKS\noOd3M/gWAuGFvyIo6kpk0ZW8wlT2opw2hSE/4y7cvMKQniC7crqieMz9AC+2igdkVsbFwH3OQqR/\nL92VgtR9oD1z+eNrtI9xNq27xPYJXroqu3SQ93Ok3D501F1oKa0A084ajivmI/cj0SKU+tZcq5i+\njfl0AvIAACAASURBVOh93dGrLzIfnRJq4cDcTn0JFXSQhRfEzrMQ8Y61Ga1WGAC0K/cjSSS8JrhZ\nyEu3SgfsFum+lSvipqCxuhnfDTrDL9zWGnmxDeqmrrIQvHzGlvadkfpQNEjPu4/0aoqaYtytRXz3\nIz0DfYy59j7/HBW3JPuu2rOjW/OiCOFXl4ktQO9M2s1XIIQVgtZtjxcf4rfdm/YTmspqpY7F61d4\n6anEdlViGKpy6Msbn/nsH7h5h/PdkcysO2DghK1gMPRUSrnaXF4KXhEtYcy8uqCppFDiNcJcWnQF\no3aTqacy+egknJhGPf0oHZCMy5B1n9ShQ1Hyln0Nz31f8JUDYVy3c9Nr1kaLZvcrSRdYQzoFT9Z4\n1V8dqtPSKP35RhWvbaLPOTotDlqvMOigFw5L+s6isDLwMrUKe6dcltq3ddCzR/h0ZN+k399THMH7\nqXqZIaOfdjLm2vtoqqjH5Qm/Y9ytRZSuMXc2p3lW1Hn0vng6QABoqWmUuIBv3Vb1LF/qQp8XBC3t\nWnntilBbpPqNXBZRZ1bCt9d0OLr3grW9NwDg0TXZtSjkkfPXT/BbvxOp29eDVcfN5uMwYjyYFpZI\n+2aD3Ovz7pNz7bLuZEVMljawP1Ty95o0wpYEadYGdbJwsyv2rMvT9DSUgmpmJHVs1InFI7AFCqjn\ngS2oiryD+rgk2C+czm9/+aPo8zPj4UmY23ui5mUWnLz7w8m7P+3z1kEfkmJPMh6eQtEL6e6qra0Q\nXl9tF1MQvLbtePXqMLwq6BkZIOC4eEyDuqwNbIrZG67veKKQXOtO3TWkMAgozowRa2sL8QuXJ3DT\npOVcoOaeZmRpSOd0Xknqy+ivgZESexgpsWR/IylfrITvWoG/dmNxgdLZk1Sly2Q/JJ1I1sjYpGHL\n2Fhpr7y1yhmjZti2WYVB+Bnqu+d/aCooR+YmgcXZ7YMxMO7kJPV6XoG21ijiopS35Cu4frNKLHgZ\n4NZg4NVjsIwYCMuIgXLl1bzMAqALdG6vlOc+ld9JGAaZdNhU0SkMGibg+CqNuCIpSua9IpnnORw2\nTOxdUf8yD36vL0Xy6V1qmln7wSHYA+xmluC4LzX/VANTA7qmRISIgDWIfPql/I4KQHfKVFYjS34n\nLYTDalFJQYj9OQ693utBZC4DPwnRmMIw+dgkYrIufiDdstqeef1dB01PgRjG7vZIWfiTSFvuDxdk\nWiFIxC60lFbwi7NJImvuGnjuF703clpYyJ6vWt0IHW2PtqAEtguFQVLWIR3qJe7X5XANGQ+HSUuQ\ndPxrNFYUa3pKcPDohZLsWJG2fhM3Q9/AGPXVJXgcST6TljI0VzXw3Y+EYxaM7eVXIQUApolmfsZe\nDgORViI/2w9pZUEdtNCsMNi5BKBrX/GsRKrEMJDg8W9PiCkMmsS6IzmXqPyYAmKydOgQgcORqVAA\n8oNh28JCUwcZWv+ts77YCK9tO1AVcx8MPQYs+vRFxvq1tI3fLhSGtkx9mvxgRE2xIm4KP47ho6iJ\n+C5UdlaXvOhzyIs+p46pUcKn70wwDU3QKWgSYiO3oqGmFPoGxrh7fDl8+87S9PT4RI6TXBWbah2G\nlgYWDEw1/1OOCFiDm8nfI9zvQxElQdjCEBHATUl4K2UPwnwXirRf/j975x3fVLnG8V9W0733oJMW\nCgUKdFD2alG2IAgoDlQU8SpDFETByRT1Oq4iG5S9ypC9VylQoEBboHTTSfduxv0jJM042SfJSXu+\nn08/JO98Etrkfd5n3VuG+K4LlSoYCV0XoaTmEdILT0rmBrv3h42FM6oaCuHt2AVXMzcq7CceV16X\nA3tLT8k4ABje5VMkZ22DtYUznla2+o+zOEzy36DnuPp0R6fe0xSUA0//aL0KtwGt1Z6J0NTyUJld\nRdqB28rZCg3lDaSspSmdJ4YZdT9AFG/A5wsxPlTkUrBkQwB6DWwNaK0o5eH1WONlwBvzpiveXiyb\nPWzNvDycO6C+xsrI6S6YucRb8rytZG7qtPYDpL/7m+R52B/mUe9I+pAYO2U1Uo//jLryPBNKREMV\neFVVMvEKJbsMW4nd9KeMdo5VkCehWdQc3JSkEQc9W9g5o8uUxbj913wIhabNLFL05CoKH19G4ePL\niBq9FMmHloLPExXweXj9b5PKRiYt9S2UUBjEh/TMkktaj3tccgFCqPcTT8nZLfM8xL2/ZL1OXqKC\naDWNre5zdU3PpMZdREVdrmQcAJy8L7IyVdbL+mmzuIZ7P0O6T0B5keLhsSjnOkJ6EGcj0wTb0C4A\ngKd7tqC5TLULoSr2vnyAtAxDU49PwvqozaSspSlxn8aSttaN326pH/QcFkvkT0x0wHZyYyMxM8Lg\nh2xbBxb+uRVO2Df3Bz/M/cFPqQxUCLI2FHfHfItuiYsVvmtTx6qv2iwfy2CINKs0NLFTVgNCIbJu\n7EPx46umFocQ058y1BC2tPXGLGPpXEml57ZS8fnuGGorBp/cnoicpBJwrNiY9OcAhf5dMy/IPO8y\nZTFS1s5Fj7dX4fa6T4wlJiFOHq03jRyuLWwcvMFkGqZ6Lxn0+e94uPTw0diyIKapuon0as/6IBRq\n5s4jPc7J2g9DOs/Ry31JPPfK4/USSwbReprswXUwXCB51r1EBISPJH1d70lvmCzAua1yZ5N2B3zx\noVv6UC59iDek0sBiMWSUBfl9xLIpk0HZeHOzJBAi1P0SLvXOFoR2GosrF5fD26d91PahMT5Pru9G\nQK9xCIyagMCoCTJ9xY8uI+vGAcinzCai3WdJylg6Fyxrzfy5achjVY89eOm/fRE8QGTa9o9xVzk+\naMTbeJT4CwCgsVL3G06y4No4I26iyP/z6r5P0eel1piF4F4vI/PmbmVTjYpPfBgiFyvmv5euz6CK\n+pJ6OAU5GkI0lYR4DERexW008/RPQepiG6iTspBRdBpxIW8jvfAEenSYgDNpPwIA+AKejHKYUXQa\nfs6RqGt6JjNOGTbuhvu8Kc69gY6Rk+Du1wsleTcl7X1GfqOXO1L55bNkiAdAVHeAySbHLevFPxJw\n9D31BbLIwMqFPMW54rHyytiqkD9g11bxMSY4Ve2BXV/2P+yqVAZxm6FlaIs4OAaiuEiUJbCxQb1L\nlyps+/WE3Qv9YeHnCQBq4xcAxRiGiISPZJ7TMQxtg5LMJJRkJkm1MNB58Dtw8AyFR8e+8OgoyqJl\nyv9vs1AYAMB9xDg05GWbWgzSsfB0Qqe/PlBop4pL0r7/iIJa1cUwyFd6Tt9j+qqF8ilUxc9jxy9D\n9l3qxFpELh4uUQykay9IZ0xSRen9MvjEeqsfSDLKDvjygdDS46Qfi8f19J+kkbJAtE52WRKyy0Qf\nstJKwKkHK2XmisfIj1OGvZ9iQSWyEBdsC+05GaE9JxP2SaOpElF29ijCvlwDXk01CnZtgLClRaa/\nqUTz4N2NfbaS5pbk1cuTlHU0YeqxSaSttW9KovpBclw6UqW0b8HETKzcE6yPSEp5Yaqz5LEqRUBa\naYgeao/rpw1XoJBSMBjoltgaDCr+fu12aLHa79rMR0cBABHdp6Outgjl5YopUtUhTp+qiZzirEli\nZYIqCoGxXQuNgdPQ4ag4fZL0seQgRN7dY7CwdoKVvWzGMrEVQb5om6GhvMKQsXQuOn72PUqO7UfV\n7WRU3riCsKVrUHUrSf1kM6DTXx/g7uhv0XXPp7g3cQW4fq6mFokQdQHP5sS1/ebhg1qbo9kNZ2W2\n8kOKOdDCb0CQW19klV1FXPAMXH78l6lFIjXLjjyGyoQkDnhm29nDf8bHCv20u5LhWfVRrtK+9JR6\ng+37/jc+Ws9ZvNa/3VgZuiV+jqKtZ1Gy67LGBd3kSb2zRad5GisLACBsf/U+TAWDabjEFrpi7eiF\njnHTYOUge8lSW56Hx5e3obFWFJMn7XJEVLjNUFBeYQCAR8sXtT4RCs06dmHgiBWEaWDr0/MBAE15\nZRrdetCoJzLhU1jZKeYSN4fibQBgH6KZ8lh4w7zTPqbmt1p7qKAsAMa9FScLshWCDTFb8FaSYupX\nXRizcSQS3zxCylrKmHGdHIsIAGQe161KvKnPe+XFLeoHtVNKdqlPAU020spCzuuLJL8gmigRbFdH\n8Mr0c4Fqy0jfsmcumIcOn3yG3FXLwWCxIOTz4TfvE+T9sEpmrDRCgWJSFpcXRuLZv0ck461CQmDd\nMQzP/j0C54QRBrUwiF3Pih9fxZ2jmnloEMUqlOwyXMFc6qlYcrgMjEfY0jUyP+aIf/BQDByhPO9/\n/q9HYdstwHgCtQOs7NwkysGVPfNRUZSO1LO/mFgqYqRdkQBg5DlFNzVl1JeRm7aSSgHUpsLSydJg\na/cbuxJsDvF7TOSSZCqEAvJOv25djWA5JbHo6bnFF9QPoiD5T5pMLUKboUPAQABA127TJD/deuim\nlOZMX6i1Nmk/epBOe7UXqq+LvExqbt2EZUAgOG6iy0GmjQ38Fy2GhXtrFe/aO7fh//mXatd0HDxE\n5obec/qbePav6KKj8twZveT9KnU0vkodje6jfFWO8wjpg9gpqxE7ZTXs3bV3Yay5kayriGqhvIXB\ndfAIs7YoAEC/4d+AxSLOupL+7u8AgOaiCkksQ+ZC3UyfNLLUV8nevKddWoe4iaspZ2E4POBXjDwz\nS6I0EBVxMyY+sd54dDjTJHu3B0rybiH2xa9Q9jQV6clbJe39xq5EY71ugbaAyCWJyMrA9fRBwLvz\nTO6SxOKyzLaCtrnAsaD8HaDJ4DjboaW8RvLcdUy0yvH5uSKLRPqDPeDxRIoYm224iwQx/Jo6sOxs\nYNWlo8H3MmdK9+4Gg81G6e6d8Jv7CQTNopTpPu9/gJzvv4XLC62Z6Ir/Fn3OBn2/Ak8WKS/0K39j\nz6tudfdl2Rourg2QjVUJjpkMt6AohA99X9ImFPBx+9AyNNWbzupEeYWBDJxdwxDR+y3CPqGQj0sn\nv4RAwCN93159P4atnZfKMc2F5ZLHtBsSuVg7tL731vaeqK82feYmZRwZ8rupRZAQ8mIwrTAYkIe3\nduDhrR3oM/Ib9Bu7EiV5t+Du1xNXjyyW1AnRhYpr5xWUBnFcg67Kwq5x+zDpwEs6yyTNG5deNVjg\n5JhN5KWpNefgzs69rE0tAiW5O/pbmdgF8WNV37niM4FYWRA9bjSQhK3wn1WBZWcDloOtwfcya4RC\nBH2/ApkL5oHj5oac778BAHBcXBG88gfk/djq1qPMr985YQScE0ZIFIWg5asksQ2ZC+Yhb/VKydzC\nDcQFVg1BZtJOZCbJFmFzD45B5NjFsooFgatVu06rWpS4C2FL16A24z6EfNHt1NNdmzSaG959Kty8\nuqscw2Cw0D9eVLzl0qkl4JPwgWBn74Oecf/Rex0a/bh3TlTV88qe+ZL0qqlnTXNrb054R6lWcmm0\no7GS2E3k6pEv0G/sSrj79SQlELrkxEE49u4rURrCvlwDQVMjHq1YpH6yEmoKatQPogBuXaiRLKLn\nADvcumD896ykoAXuPhyt5lRXkH9JRmXM5ULOIkCU8a4xI9u0gpgB4oOxqiBgZW1E7U8+U6wdZajD\ntyq8wvqjQ+RoMBjUshhSXmGounUNVbeuaTXH2sYNUf21dzvpN+wrAMDFE5/rZHFgsbnoN+xrreb4\nzR0Lp8ERqL6WATCZsI/uiIrTd5H3k/Yp/UyJuNKz+N+w8XOQsV99+kpDUl3WGrhINTckTeDYcdFS\nQ22f5IoCXzj55Gs8PvmiJ0KCRB87cUOLkZYuG6Tp7cXC/RteSvvNkZS/biu0sTmWiH3xaxTn3sCj\nlF3oN3YlmuorkHxSi4wqBDz8fgHYtvYI+3INCnasQ+3DB3qtBwA3/0hBr/ci9V4HADjWHLTUk/t/\nSqUA9aUbA5RmHtqf0ZWwnQzeHpAuSZea8Iozju8oJxw3fJKT5PGrvRWrjdO0Il/hWYyxKj2X/LBJ\nr/lZp7IROCyAFFloDI98vY2WxhrcPrwC/BbFS2zr0DB4vf0uAEXrydO1fxhMRsorDPJ4T34DT3du\nUtrv6BKM7lHv6rVH//jvCDMZqSIwdAQ6BA3Wei+nwREKNx/dDi02O4VBHq6DYnYiY+PiE4GgnhPA\n4cqads1FebALdEH53acajW0ob4CVM/WDlaP6FwEQKRpEPC3kw8knX2m/OfLo8GOZ511i34KTRyeJ\nsgCIUq32G7sS0Qmf4/rx7zRem+uuaA3i1VShcP/f8J70JnLWtiaJ0KYOgzS3198lTWF47ewUbIgh\nN0brxT8SSFvrn4Rdeq/BYCjGt/qFcMFii6KyU6/pX+iQiPzMJvgGc/HBdz44vbcCvBZZIVhsBj5c\nJvq7qq3SPJZk8Vp/fPtuDqmyGhvvt4fj6TrtMtyIFYPYvp/g2mVRtp2o2I9UTVGKdVRX1CffUzvO\nLj6u9YmeKbfS9mbQCoMZUZ5/D5nXtoPfov6SsP5hhkyGKGNhdgqDXeduKvv1VRbEKEt/Ko+q+Ah5\nHt3fj6d52llLzIWSu+fR/U3RjYzYymBqgntNwvXEL0wtBiHyWZGUoWng85mF5zHyzxH6iETznKjZ\nvUhdr6Ve1lrp4BpM6IJ06eAC9Byi3Yd/wHuKJnRl/aYOegYABpPEVEYGoKFcv4xjj+424ODjCOXr\n1wnw+bQnhH1/ngmDlz9xcgyx9QAAmhoEOLGrAn99LXuZMCv+oWTcvnTl1ozs9Eb8Z6T64mM5GY3w\nD7NE9FB7mf3FmFMNB9exMVorDGIK8lu/s4ue3lQxUpH8j5bB9+eFcPtwGgCg8Mtf0ZxdoDDOulcX\nuH30quR57UXFfWKnrEZJZhJcA3vh+s7PAAAW1g7oOVb0HdfSWIub+5dKxhfeKNJKVnVw7S3QVK17\njJW2TP0lGmGDPPDoYgm2zZKtu/VV6mjJ4yURikVYxf3yff49nfHW5r4K4/k8Ab6OVJ32WX5NK3sO\nPrtM/J1LJJM6Hl/ZjCW3R2m1hrHdpSirMIQtXYOMpXO1SqOqKm2pLqhTGrTZT3od94miWwQhgPxf\nj6DbocUoO5gEMBhwHRNtNr6W0hRcO4iCa9Qq7laSk4ywPtNRUShrei/JNlzaMVNRdIvcgG4miwEB\nX/GG6+PZdliyUFTU7Le1ir7a8i5KYkuBNm5Lpqbr1HCDrn/l8OdK+26d0a7ojrGUgLxL+fDrR47V\nZ+BX/XB+ySVS1iKTKyv0v8yZN/4x4eFazORu95X2KVMW5OFaMRHSldiaOCY4Fb/82xH+ocTZfCpK\neBopCwDw4YuPsDetKzgW1FbyDE1Ixxfh7RMNCAWwtnFHXq7mv7v8impU/HMETlNFQfleX8teFBHV\nYxDU1ePZX3sI13Pp0AOFD84idspqXNs+H91emI+MCxtQUfBAwaWFbHrOjMTVVcYrmHvwy9tYcCEB\nHfu7qxxnacdBY02rm6ONE/Hf0Rc3RoLNJY4JYLGZ+Cp1tEaH9NCBHnh4vlipssBrUqzvoAnaKgum\ngLIKgziVakNuFnI3tObOD55DnEvXy091irTLp5eC10J8e9S731zY2HoQ9hHZlweOWA5Nk34TKRwl\ne67IPC8/niJ5/PSvExqtSzUi312DR4m/oLZIt4JHhsC74wCkHF+BhppSU4tCiDrrgWNnJb+TRiDh\nv8Px7weKv4tLFjpIDv+Wlgx88K5hU82ZAibHOIFmto6+6NbvfRRmXUXW/cNG2VNXTsw5jRnJ5BRG\nC3kxmDSFYeqxSaSsAwBpezJIWUfXm3eybuw/fEEzhUATJnRW70ZjDjSXVMGhb2dUXdY+bkPfmIXq\nY5dQfewS/Dd/LzpPqKBg/mrwSp4R9gmFAiTvEV028J67rbAtrFBXIbJYNFSX6CWnOsIndTKqwlBX\nodqacWzVfYz4pAvmnR6O76KPStpfX9cHALBlZusFwJSfoyTKAtFhfMmdUWAyGRopDX1fD8a0X6Px\nJKkMm9++qvHrUQaTxZAoC421LVjW55jGc+ksSXJIKwsAkPkjcVBxaJcJhO0FOZfxOE11PMCNSyIr\nBpHFYGDCcsmhn82xQt+hS9WJDABIvbkR5aXpGo1tC6SsnQsH/y6IfHcNCm8cQ9Etaig+VFUW7q46\nq3ZMzRPiLw5j4B2t6Bv/4wonnL3QGoDV2GjisrZmjLICbXGjv8eVQ7pnNTIkAp4ATDY5ypS9nz2q\n86r1XsfKhfpxOzSmpyb5Efw/Iz4jGMuin/O66O/aKrIznCaNANvDBcKmJtRevIWKHf8CBJWHpSlM\nPw+2hRV4zQ3wjxwF7/BBAACOpT2a66tgYe2gMKepuglcey7pr8WUDJ/TGQBwdcsTjPikCyysWDL9\nHqH2AIDMK63f/Z2GiBIj3DtGHBP4VffDEpcjdUpDQJQLAOisLMgXxBQrC9XFjfhhmOEqSZMB5RUG\nfVGnLEhz/tinSt2MBiQs0zjFlbYB022Fqpz7SFk7F0w2hzJxDOJ0qtJQIeg595By1wQx/CZqpT2c\nMNYK8xaZrmiMUTCC94Wtgw+A1kBnaZhM6n4kb+63DW9em07KWi/vG69/vQMS/6/ouiNtG5eRvU0t\ngoSGlDQ0pGhv6ci9fUTidlSSmYS8u8fg02UYIhI+wpPru8BiKyoG5764iISfh+kts6kQCkVGGUtb\nDhprRW5H/d4K0WqNYR93ljze/YnyGJQ/X7mImTv6a7TmVz10twiXZtW2riMVi0F1ZQEwA4UhbOka\nZHw1T2XGgC49iU3luhzciZQGTWMV2quiAIiyIoVPXggBrxl3NnxGCWWBCoqBMWl41mDQG9fMLB7C\nO2mX693cmLBzHKnrHX77X4W2iOduSOYGUUyLKZlxnRwXKQC48BX1YipoyMMc4wKJkC7aBQDZN/cj\n++Z+AEBJ5nWF8flXFAOs9WHQN/1x7ouLpK6pig2vX8aMLX3x2p8x+Guabn+j/WdopmA8va/5ZZg+\nn4WFaaLq0WJlIfNKqYz7lDYImpvBYDIhFFunmEwIWwyXipxaVSGUoSa9mKu7YpCiMbMR3bzyc7tW\nFgDAzqcjUtbOxZ0Nn5laFJVEjVpiahEU6L9WuR92t/mD8cKJmWBo4ApyaIbi4VQf+i7qI/N8yhvP\n8PEHbS9mQRrHQEWzvj4U31H0K66vKYKDSyCp+xiL4/+h/i2YtjTXGi/zCw2NORM8Isio++WmiOqJ\n+HZzIuxP2i6KmRSHhojH3TmsmGRDvBYVkA5w1lVZAICsxQsRtHwVglf+IPpZvgpPPjfcGYzyFoaS\nf/fDvlsvVN/VLp3Zo/v7dd5TlWuSNHeu/4nKcuIUee2NsgeygdwOHcJRlat/0Siy4VhS78Dr0Mld\nJs2qOBg6+JVI+MSH4fyb2zHyzCyk/XEFmf/cUroO2VV5O40PxeXvW2/Ci4pFudulayTcSJE9bJVX\nCGT6k5KbERPVmrWiMNMHlpaiT/crp0VB3Tm5PPToI0oBmHHbC+5uLKX9bYE7F35Fv7ErEdL9JUkb\nh2uDmBFLcOMUuZneyCb/qmZ1QTThzSuvYWPcVp3mRv+HvNS3WwdvJ20tGuoS8OVk2Ed1lDyvupqB\nnO93m1Ai7SHKhCRvdWgP3NqXCwA4+v09xEwJxH8OD8HPI89g+tpYAMC+hSkKcyoK6o0qozKk3ZAA\n4M0Ncdj41hUlo9VD12GQwv2F8QAAr5emSdrEGZRMSXu3KKgjaMTbJnFLikxYAAG/BXdO/UgYv0BV\n6gqqcO+n84hZNQYjz32AI4N+Q+hb0fg3XlS18eLbO9F/3WSVCoMxUJceNbir6gOlV7BqE3lYj0JE\nzFmD1B/V/+4Qjesw6g04dOym0XxDoyoP+qWDn6LfWJFy4BMyAD4hAyAU8NFYZ7pAd2OjTzaqiNcM\nVzWZDPpMWo2ru+YjZuJyhbiUGweXoqWpVmFO7MQVYDBlAzjzH5xE3r3jkudeHfshIHIcru4iPiT2\nmST6zJPv9+uaAN/w4TJtQgEf1/Yofo/1mbQavJYGJO//Ar1GfwkLK3uZfmV7U5luhxYDAJ6uO4mG\nh09hHe4LrzeGotuhxQZ1V/LfsgwN9x6hZOUGvdfqGv8fnZSDZxnlcAlz1nt/MYO+HYBziy+Qtp42\nDJwpUvgOLrkj0+7cwQYAwLVRfqR1eT6GCuTdLkdhWjWipwQgIMoFQTGueJJUZmqx1EJ5hYEKyoE0\ntKIgS9i4j5Fx4CdEvqt5vQxDknK8NYi0IOMcclJlg5OoqkScnSK6aT084FeJtYFl2RovUPVQs2xP\nfw/fgWknXyFfQDMh9/AmRMzR7Xdx9IYXSZXl6PvHVfQKCYu3mQM7x+zF5ETijDPa0nVaOO79bTpL\npN6B188hSonaZ9JqNDdU4+ahr2Xaeo9dqnDoFh/0r+1eAKFQ5I/sGz4cfl0T0NJYi6LHlwEAhY8u\nISByHPq8vApXdxMX7ZNXRojWZjBZiJ24QqLYyMPmWKHPpNWoKcuSkd8tIEr1G0FhpBWDurQ8lO69\nKlEkDIlV147qB2kAk61ZnQ55Drx6iLSUyAAQnBBoMoVhyOxOOs9V5tZkbPYtTJG4TGWcL8Jrf8Ti\n9XV9dKq9wHF2QYfPFLPqGcrqQPkYhrAlPyB43lJ4T3pD8mMqaGVBkYwDPwEAaouykLJ2ruSHClSX\ntT93scZK9WXltWHCLt2CgCPmrJH8dJzeejC2dPWWtAMAg8VqfS6Vo1zcxra2BQAEvPSupI1laa0w\nThWWbt4y45XhHuGm3Ytsp9QWKt6O60rMx+Z7ANUE6cM2ADy5uU9hjJPX8zSRu+ZLDvSAyLogFAoQ\n2HO8zPjq0kzCfP7WDqLUkTcOLlXoqyxMl1lbKODj5mHRAVpZ9r/KonTcO/ObTFtpGyx6aS7cPboa\nnqH9TC2G0cm7rTr24NDXdwEATCVV5A9/q1l9E7/uxlcoHl9uvQiUd1XShA6fLULmgnkQNDcjc8E8\nZH/7FQp++0X9RB2hvMIABgOZPyzF012bJD801ONRouwvKRWUhopCxZtLKmZOKruRh1EXZkt+zEbR\njwAAIABJREFUTo5dL7EyjLowG/YdXTHqwmyF/M3KKH9EXnCXPkHAqT/OReqPc8FvrJO0uUcPk7QD\nQNf/rJI8j/j4B4W5nWeKDlzZ+9ZK2sLf/1ZhXOh05cp8x1dF/+fBk/+j1FXJq7enzq+TiKSf1B+s\nol/VrqqzmJ6TvtF5rrZEv/oD4V43fjedaxyZt6WG5N4ZxcKMxZmKvsqd+s9Qusad44rv/f2z/yOc\n1z1B8bPNr2sCACDt4jqFvub6yufziG8j0y4ozjFXGjKL4POBrAUxYPEkNBVQJxBWHbFTViOg1zjE\nTlkt86MJ55eSmwVs8qGJpK6nivXTRdY1OzdR9fJd82TjWW/szgEATPmv6PJBvtJy8s5syWNVh/K3\nt4mUsYJU46YOl7Ys6KI0AEBTTjYAgF9dDZ8PPiRDLEIo75IkVFPMhIbG3Lk296BCmzjwufunQzBg\nvcjF6Mig3xTGEbF/Krkm6F7vReLmH4pBZJrSUl0hedz4rFCnNSLmrMGT3b+hLp84Xz7b1p6wHQDy\nT+wAx84R1t4BSse8+L8EneRShiHdbNgW1uoHGZg7G1PRe1ZPU4uhF1sG/WPQ9WvKsrUaL3Yd0hSx\nZUKaO8dl1/AIilW7tpW96SrKGwurYE9YBXvCZYTi76y0WxKV06/qE9z8+EgmBi4lzzph62m8eABx\nksxJq0WJDu6fII6TCx0o+j0+/O1dhb6l3Q9j6R1RZqK3t/bFutcuS/r8e7ngrU1xkudrpxovbayY\nJRGHNC4cR0Tp3t2w8PREc5Fhk4NQXmFgMJkIWyrrRkC1uAYaoPtby2VSqnZ/cxnubFxoQonaBndW\nnMGdFWdMKkOPGd30UhgcO/dG3jHiw5m0mwSg2oJSl58J2w7E/sC5hzYpnVdx/zoi5qxB4bkD6kQ1\nC65vM15WDGMwZvNIJL5+RKOxlo7kVa1tqTNcvnJdaKzVPOC9pbFGJuNbt+EfAwDqq2QPDGLlUpu1\n2yJUVgTMlZFrR+DIu8eMtl+HnpoFbqccyFNoEwqEKH1SC7cgW/j1cFZ6k69LHAFZnP09A4NnhQEA\nQgd44OGFYrVz8tasAgC0lJcjeKXIGlnwu6JlkyworzDQygH1EQc8Swc+P9i5zFTi0AAQtAj0ykJD\nJtJuQCVJsnn87/00X2rcPIXx4sfif2tzHym0AUBt3iPC/cQ0lOSjLIU4UK/vZ7GavRANqcyuInU9\nqpJ7MQ8d+vvpvY5buKvGY8kK6Ddm8SlNSTmq+WfmjcSv0GfSangE90Fx5lXYOPkSjit6fAleoQO1\nWrs9MML9PRwr+cN4G7KYAJ98b4mAXuOQfVOzi5D1UZtJtTx7RhrPMlVX3gQbZ/0uC34dexYA8PGx\noXDysVboK31CXmyWLpz730M8ulSCd//pj2m/RSN5Z7ba+Atpi4Ix0qtSXmGQty4AtBJBNVLWzlWw\nMNBoDsuSgxdOzCTsE7smacvGuK2kfjnokzOfCli5Ex+oAKDThDBS99r7MnUsGWwLa4QNmwlrB0/k\n3z2OwvvKrVXWzj4Ij5+NproKpB5aqXScmJNzz5D2O8a156KpmtyAfVVkHqNOQoTKwnQ4eumW/SWo\n1wQUZ4pqpWTdUgyozr59CF6hA+HXJR5590/oJSeN9uRMXwj/Lcvgv/E75Ewn3+IuDnQ3FUOWDcSZ\nhecNvs/Kgap/d7WxDPw04rROMuhrfdBkfkFqpUmtHOqgvMIgrxwQKRA0podWFnTnhRMzcf+Xi8ja\nfUf9YC0Q8IVgsogzR2gLk8OET6w3Cq5pVriLCnUQpFEmD9kBtM01+lUNFgcYE7kdyQcfK3NNkowT\nCmWy6fhFjoRf5EiFeQwGE1HTVkmeWzl4aBxUTZYl69XTr5CW4tTcSLu4Dn0mrUafSauRnXIAhY9a\nA1QtrOzRa/SXhKlPr+6aL7IyBMUAAIoeKy/+5NslHrzmepm1ASBmwjIk7W0frqNd7QbC10ox7oPL\ntMFg19cAAMdK/kC4XX90sOoCAChtysHNqn8xwv09AMCz5ny4WPhKxorbxc+JyJm+EH5/LIH/FpGV\np+x/O1B3VfPP+tgpq3Ft+3yNA5xVcX9HGrq8ovge6ErgsAC4bbuP0vvUryFAoz+UVxh0RZNKzaZa\nk07PSiMP2coCAGyM3ULqgXjEL8Pb7aFOU7YO0b1qcMeBbwIAHl8gfo/FB32NMyQxGArKgTjrkXS7\nWFlIP/0nqgsfyoxVx6Z+2/BW0nTN5NGTmDnkpGC9vyONlHXI5OruT9Dn5VUIiByHgEjtUhkH9X4Z\ntc9yla+9a77Oa7clfK06Sw710gd9d66/zGH/Qc1FPKi5qDBOrCBIKwrq3JrESoI0ru+/Atf31bvW\niS0S0sHO8oHPIXHToA3XfrhOqsIAAGM2jaS/F9oJlFcY5C0KZWeNF2RDozmR765Bytq56DhqFopS\nTqK2MJPOcNUG6b84Dhe/1b2MPZWgUnpOVZYFXbm+TbusKtLKglgWdUqDpql+yaDr1HBS1rn2w3VS\n1lGFqmrIhH1CoU4VlDWdo6zImz5rmhuVLcQZZPIaZDOaxbu9g7zGNKTVqE9FOsL9PZwu3YgWoeHd\n6YiyJD3Lua31OvunJmL8P2PIEEnCjOuvY300rTS0dSivMNDxCuaFjWcgagoeodsb3+Hups9NLY5Z\ncO/H8xh1YTYOD/xVXaIgrTk841+MWv8CaeuFju3YJhSG/l/EqR+kJSfn6uYbGxAjyml+7wjZVcgV\nf5kEvGbCirEFd1RVpTYOnSaEIX1vhkH3qC9rMOj6NNTFkaOZvz+TwdJIWQCAKl4pWoRNsGbZo55f\nrdBviLgFaSoK7ms9p/xRhfpB2sIAxm4ZhYPTD5O/Ng1loLzC4Pf6+8jb/D9Ti0GjIUKhEMEvvovK\nLMVcyMYgbqLqQ5eAz8O1/dSKt+g6ZyAAYNT52Qp9ugY9iym+W6LXfCJmJL9u9ibo0DHE6Vn1Ifdi\nvtZz7D1C4N6xDwCgvkK3GhVkUFX0UP0gJex+aR9e3veS3jL0/SxWqcIQ/9NQvdcHgO0v7CJlHRrz\n42njI4xwfw9CNbcy1bwyGVckVTiw3TDC/T2k115Bdr1pvvN0oamqCVwH8lIUA4BrZxdS16OhHpRX\nGKwDyf9ipyEfcWXnO+sXmFQO6UrOcRNXK1R2VqdQmAJ9lQJ1kJ1ODwDeSpqODTFbSF3TWBjCFUlX\nBarT8PdxY/un6D1lhUJsgTFhMnX/KqjOqyFREmL8+irPckVDowl3q0/jbrV6K+CV8j0KbeJYBWX/\nmgq/biOQd1d7N+1tw3YY5HNwRvLruL/9Aa6tUV/pnsb8oEaidhU0FigP5qKhDiEjZW9kur+5TKYu\ngyloblQ0EdOQA4PJwCtHXja1GFpDpbgFQBQnIODzkH/7KACgQ2/TBKW6BPXSa/6tP7X3pSYiKD6Q\nlHUIMV64BQ2NUbDSI63qpr7bSJSklS5TwjH+H+LCaG0dB38Hvb9jEsIXaTW+b/A7GNppPuy47nrt\nqwmUtzBY+nRQW+mZzjpkeux8QgEAjkHdUfnkDpgcLlLWzkX45IUmK+JmYWmPuImrUZB+BiyOJTyD\n41Cae9MksugCg8kgLajUEFYGG3drs3JPMpSyQMbrf3rvNCry7yNi1Cdw9A7D3UTys7ypwi04GllX\nd8q0eXTqr/H8lHV30HNmD73lGPzdADw5kSXTZu1mrWS0dtBBmTTmCBnpVIngN/NFSjQ5mbdlcO7o\nbFbfDfrgFOSIl3aONfq+4V4j4OfUU/I8LvhtAMDxB98bbE/KKwx00LN5IGgRZYmofCKbHtTC1skU\n4gAQuSc5uHdEp7g3wG9pxNW9CyAUmk/mJrtAZ1RnPiNtvb2TDmLCLvI/2Mzhi8FQykLKOvLS4TZU\nirK4WNob/qZIGgGfByaLjV6Tv8PNnaJEBVxbF/ibyNohz6QD+sdH0NCYK+X59/Dw4ibCvk4DZ+i1\n9vpo8i+SpJmR/Dx7Uhu07vX/si9CR4cYZO348IVgSGlyQghx4oHsxatYWTiVthJ8IU8yJ9itHzJL\nNQva1xbKuyTRmAd3Ni5C9zeXwa2r6Fby7qbPEfnuGtzZaNqiQFUlj5B04HPcOPINpZSF6JWtJluf\n+DDCn8CJ3UndszKrktT1pJmR/DpsPGwMtr6uDFzaz6BfiGS54oi5vm0ehAI+ol/9AQxG68ezuH6C\ndJpT6TavLkN03vPG9k/xLOsWWBxLyXrdxy3SOp7CUBVfWRYsvdegcpVyeysvnecmdNXOfYHG/MhK\n3qu0r6Y0S2mfphj6smfG9dcp5wqqCxxrDqadfAUzkkWvx1DKAgCJstDYUi15rsxViS/kAYBEoQhx\nG2AwuShvYaAxF4QyygG/uUESCG0q/MLjkfdAdUl5U+Ee6y95HLl4uNJxd1acIXVfQ7gmiXnl8ETw\nGnjYPOBvg6yvLYb+ktI36FvZgTz5H8XEAdoc3lWNvbGDWIHPvPw3Mi8r/r9ps2/WqWxg2UCNxyuD\n68BFU5XIYmnpZKn3eoCoIjVV6RP8Jo7fM5wbAY1509KoPKlAwQNyvh94jTywLQ17HBR/HlPdGi2N\ng78Dxm0dBbaVcY7KLIZon7MZP6GZXy9p7+YzBl4OXdXOT8regpgAwxXSbPMKQ2JmBABgTHAqpdc0\ndzg2Dug6bQkA4Pb6BbBx90dtYaZJZaKywiCfGYkoU5Jbbz+D7G1IpYFtxcaM5NchFAhNlkXJGLdZ\nbdXMri855/PgP1C/39tpJyZLfnemnZhMhlikk9B1keSQ72jti5ig6ZLn0n0MBhP9Q98Hh2mJ/Irb\nyChqzdJjbeGE3gFTJHPEyCsPDDDQO3AqHKy8UFSVjnsFirnu+wS/BSsLB5xJ+5HcF0rTLtjc/29M\n2D0OjgEOBt9L/PnMa+Rhc39qXC6Jif9pqEkzssUFvwMAMsoCANwtSNRIYais1z61tza0eYUhP7MJ\nvsHk5hvWh9V7gxHaw7rNKRtdpy1Bytq5iHx3DYR8HoIS3qILt2mIssDm6ifkxS/IszFuK9688prB\n1mcwGZiR/DoayhvwT4Lhc99b2FrgtbNTDL4PAFxefo1WFpRwav4ZvRU2BpPcKMy9kw6Sup4YJ5sO\nqKjLRS//SUrHxHf5DDnPktHUUoNQzyHwcuyCc+n/BQBYsK1xN/8gYoJeR9IT4ltXDssKQzrPgUDI\nQ1FVOnycuiGr7ArqmsolYxK6LkJmySVYWTjIKCs0bQ+iAGiiCtC6sPflA0Z1HWJbsiX7pe97iMvL\nrhptbwAIHR2CyHe6w9bL1qj7qoLNos5ZlYg2rzDMite9IJEhCO1BTsYPqtNca4BqklqSdfsAfMIG\noyDjrKlFUcmRQb8RtjeV1xO2k4GgRQABTwAm27BhTFbOVpIvheRfb+Lu5nukrj905SAEDPZXP5BE\nDF2NmIZcDBG786w2Cx3dB+J61lawWZZILzxFOE768J5Vdk3GklBZX0D4WJohnefgxP3lkvir1PxE\nhTHXs7ahok6UftzbMUKlAkJjvgT0Go97J39BbVnO8xYGusZ/SOoehrQ+q6LTS6Ho9FKo5HnO+Tyk\n701H/tWneq3r2tkFHQb4IXBYgFGsJ/pSUv0Qvk7Ks805WvmgsoH4s8IYtHmFgcY4pKydJ6m70OPt\n1bi9jpxbD30I7CHK8uIfMVKmXb6YW3tlY5+tGPHLcPjEehtlv6jZvRA1Wzbff/mjcjw5kY38a0/x\nLJ3YouIZ6QH/gR0QFB9AWopNXTEn/1tTsSFmC95K0s+P1inECRWP9b90IDOLlTQ3srfLHP5znl1H\nhO8YpOYngi9olhnbxedFOFn7gcux02kvdckaxMqCGEdrH5320RiGKJWkRw8POIc4wSnYER7d3Um3\nDGmLha2Fzofd5ppmFN8tQUVmJUrulqDiSaVRChJqg0dILLJv7pdqEYJjZU/6PqZSGqTxH+int2uj\nOXK/8Ch8nXogIXwRUgsO4WlVqsjl8XlcQkyg6v+Xzp7xBpWP8gpDYmYE5r+UiVnf+iAoXBQANyY4\nFd3jbPHNVlGRn21rirHrtxKFedKocwEKibDCmgPKo963rCrCnj9KZdosuAzseaDoVya/10crfTF0\ngmx6UW3loz5Ckwc5y0MrBuo59uFJk345OHd0hnNHZ/T+oKf6wSaGVhY0g4zaIVGze6L8kf4KA9lZ\nrOTxsA9DfbNITm/HrkjNT0RaoShuKsR9AILd++HB02NIe3ocAiGfUlmNHDrYw6O7O5xCnODRwx3O\nwU5gcfXPSGWOWNhZwK+vr07+6wK+EBWZFSi5W4qKzAoU3ylF5ZMKCPjk+i2WZCZJHgdGTUBW8l5w\nrR1J3UMMFZSG9srjkvMIcR+ICJ/RiPBpzaZY3ViE3PIb6Oo9CgBQ01gCO0t3RPq9jJS83XC09kUH\n594GlY3yCgMArN4XjM+nPkFqUh0SMyNkgo4TMyPw6lwPBYVBfACXP5gTMeNzL4x9yxULX3mC+8l1\nkvbEzAgIBcDYjsSH+T0PuuLghjKs/64QAPDaPA+8PMsdiZkRMgrAzwvy8fOCfBl5zF9BkCVw+Btw\nDOwm00Y1BYKqDNg4BfbBLoR9RMHQZLM+ajOm/DsJ1q5WBt/LXKGVBeOi6+FNmuo8w1d679Fhgozb\nUYjHQDwuFqWXDXbvh+Ssv1Fel6NsutEZsKQfOo4KNrUYbQomiwGXUGe4hDoT9pP12ZF1Y5/ksat/\nT3iE9EFzveFSZdNKg2nILLuMzLLL6OwZDz/nXiiteYyUvN2S/oLKu5LHbCYXQzvNk0m52q4Lt4lJ\nTaqTeT6hs8gX+u8fizFtjodea499yxUAZJQFANj+czGmfKR87XXfFiJxY5nk+dYfivHSTDewWKY1\nzZoCx8BulFMQmCw2er3wOTiWsq4AVLM82Ae74P4vF5G12zDuE5qw/YVd9JeDEqiuLHgx/FEopM6h\nFAB2jdtn8oJru1/ar36QHgiEfDAZsjfyvk49JAoDAPTo8JIkc5Eq64KzTQDK67IV2ivr85HQdRFO\n3l8BgZAPBoOJ2OA3cfXxenJeBI1ZkrzHOAlFaKXBdKQVnUBakeosjzxBE84/+hUxga+jsbkKSdmG\nzUxotoXbWppF5r7Ua3VqRurOmf2qtXdpZUHMV29lG0gaGm2JHb8cyYe/AiBSEiqK0pF69hcTS0WM\nKZUFMeujNiNtDx3QK0YoEFJeWRjGnIQujBgMY07CMOYkmfYARifJc+nHADCEOQGDmOMJ58Uwhyu0\na0tNAbX8vw3B9SeyX8538w+Cy24tXnj83vfIeZaM4V0+RYjHQKXZi47f+x4BrjGI7/IZogKnyfQl\nPdmCE/eXoXfAFAwLX4BuvmNoZYHGqKyP2oxnGeXqB9KYhMaWapx/+IvBlQXAjCwMyuCT7CcozduL\nta/A2VBH3QJBhkYc9CzG1BaH+qpCmedpl9YhbuJqylkYqMSVFdcQONSftIJZ5oyp6khowynBLgxj\nTsIpgXapa5lg4YyAuILsA0EyalAJV4YXOjN6I014QyfZbv6Rgl7vReo0V18EPMN/Dlc1FMooAYWV\n91FYeV9mTGbJJWSWXJI8V6Y03MrZqXQfoVCI61nbCPvk16NTqrZtxGlVxalUY6esJi2tqioOvHoI\nkxMnUCoFKY3xMXuFgQzEsRCJmRHY/1cZUq/V4sv1AQCAXxYathBGW8HUygER1g6tCp+1vSfqq4tN\nKI1yDg/4FaMuzEZjaS0y1iVBwG897BScMP6N/9/xosNLezVF7xyzF7WFtaYWw2TUQGRZLRMWogez\nv84Kw+31d02mMGzss9Uk+9LQGIouwz4winKgjJ1jRBcM7fV7wdgEuvZBkGsc2EzVtRkMGbMgD60w\nPEesNIx/xxXj3xHFNGxbU4yTu0xfT4BGN+6dE9U3uLJnPuImim5mUs8aPohYW0ZdmA0AsHSzRfeF\nQ2X6TKEwiGmP/qtUd0HSFRb9UU9DY9ZYOegXq0kW66M2441Lr7bbjFqGhsOywpCwOaYWgxD6W+Q5\niZkRSDpVje9mUit4kEZ3qsuyJI+p7IZkjExIurI+ajPGbhkF187EWZzaDEJgfXTbURZ4aAEXrVmv\nfBkhyBSSWzRPE/Iu5cOvn37ZjrTl2OyTRt2PhsYYPLy4GTZOPqirMF3hLjGb+m2DlbMlph6fbGpR\n2hxUVRYAWmGQ4cf5tPsRDY08B6cfBtB2TdEbYraQUjvAVFwUHMIw5iQ0oxEXBKJKwOcE+zGMOQnu\nDD9wYYkU4UWTyHZizmmj/94UJOlXHZaGhopUl2QisPd4eHTsK2kzpYtSQ3kj1kdthnuEG0ZveNFk\nclAJfb9LQt0HAwDu5B9AUfUDssQiDVphkGLH7XCFNj5PiPFhxr+Zo9EfsRuSPFS2NlCZ9VGbMXTF\nIAQM8Te1KKRQV1yHHaP2mFoMvWlCA2HQs6pAaGV98u3aBlMTIeAJwGSbbUI+GhrKkHVjP7JuGDZd\nsLaUpJZifdRmvHZmCizsLEwtjtHhNfCwecDfpKzl7Siq00VFZQFoowoDUbE2VZWVxX2Xj1Yh7VY9\nAFEV506R1ogeZq9QiE0fpAOslclDQw78lkYkHVxsajHUIo5hkIdX14xjL6w1sjSqOf3pOQBA+OTO\n6DM/2rTC6Mi9vx8g6adkU4vRbtjYZ6vRrAzyCmDEnDVI/ZF6CRloaNoaW4dsBwD4D+qAYasGm1ga\nw8Jv4mNTP+LMZfrA4zeBy6ZuJirKKwzyB2n55xkp9WrHqMLJTfQWTAy/h+YmRVNSlygbLNsRpPH6\nRPLIQysHxoHBovyvtwRxHMOoC7NlHlOVBzvT8GBnGrx6eeLFPxJMLY5GHJt9knZXaePUFRuuLg8N\njSkhSqFqrLSq2pBzLhfrozbDJ8YbI34dbmpxSOXUJ2eRcy7XYOvfe3oYMYHUdf01nxOVgVh3QVTQ\niEhZAICs9EZjikOjJ+4BUZLH2XcSETdxNZ6k7IOA3yJpL8k2j9vlx1t1S2dpTApvFkkyCyX8PAy+\ncT4mlkiWh4ce4+LXl00tRrunvrQe1m7WBt3j+s/U/3uhoWkvFCQ9lXw3MDlMvHnlNRNLpD07Ru0x\n6iVEZUMBhEIBEsIXGTVdqqa0e4XhzpVa9B5kp7SfKK6BhrqE9FbM2hAU+ZLMc3NRGCwcrNQPohDH\nPzoFALB2tcJLO8eBa28af9ailGIcmXkMMN845jbH9hd3G9wtKXXbfcL2iDlrIOTzwGCxZdyTuny4\nHAwmCwymKD2kdF/EnNYilMVXj6Pk2nEAQKd3vgTH1hECXguYbI5kjmi8EAADRZcOw6PPC8g9uhXV\nj++2yiDgg8Fkoa4gC092UbPiPA01Ceg5VuZfAJLfW3NA0CKQKA8Bg/0xdMUggGFamYi4+b8U3N5w\n16QynEhbjoTwRUgIX4SK+lw8LD6LqsZCpeOFQuMVC2YIhdT7VmUwGEYVSjqeoKaSDysbJtic1t/m\n7f8twfafqVn0S1vGXZoFADjQ73eDrW2o9dsqoy7Mxu3vTyH/WDoGb38NNj4Okj4qp1zVhk4vhSJq\ndi/Sg+JyL+Th8vJrqC+tJ3VdmraBdAwDy9IG7rHDUXjuAFx7DYJb1BCk/fElACBg/LvI3r9WMif7\nwF+oyUpTuZ70c/G/TA4X3oPHI//EDnT5cAXu//Lp8755EGuwxo6r8P9zpczznJkLDLIumWsDwIjg\n+TiWSZy4gozx6oj0HIOUokSFdiaDjQCHnnhSeZ20vTQh5pWVSNpB3vtLJazdrBE7NwqBwwIMvtfT\n5EKk7clA9hlqptBPCF+k1XhNLRFCoVBvFa3dWxgAUUzB7ydC4RvMhZ1jq9ZOZ0iiMQbSSsHZKVsR\nPK0ngiZF4uzUtlOtNn3fQ6Tve6jQ7tfXF25dXOEa7gJ7P3tw7bmwdOCiubYZDRWNaKpqQuGNIpSl\nP0PZgzLUFtE+6jS6wW+sg3OXGBSeOwD36OFgWVrJWBKkIVIWAKDigWrrpKClCU0VpQAAJpsjaY+Y\n84OOUtNQDYGQZ3RlAQByUw4ZfU9jUV9ajzMLzwMLzyv0uXZ2gXNHZ3hGusMxyBGWjpawsOWAa88F\nv4kPXhMPTVVNqCuuR1VeNSqfVKIopRjljyrMOl02FaEVhufMilc8zFCZjlMj0WVWH0re5Cct/NfU\nIpg1mX/fQubft0wthlHIu5yPvMt0/RMa48Bvqn/+bwPqC7ORfeAvreazrXXLYEJnalJOL68JuFm4\nFwAQ6zMN1wr+Ri8vkRtpQtBcMBiilLxi60F80BwwGSzwBS04mfWzyrVHBIsCgk9m/Qy+oEXlGDHi\nfZr5jZI+cVuMzxQ4WfqguO6hxPowIng+hEKBgpzS7UW1GbhdrN+BvzDDNLVUTE1Z2jOUpT3Dw8RH\nphbFKFAxdkEMrTCYKV1m9TG1CApQUXkxJ/r8dzxcevi0GTckGhoqwGRzIOC1oPN7XyPtzyUAgIwN\n3yq1LlQ/vivjNsS0sISgWZT8wi6gs2ScY6eeeHb7ktr9KzNuyazHYDIhFBjP75jq3CzcC3ebEPja\nRcDR0ut52z6MCJ6P409E/0dR3pMk409n/Qq+sAUsJgc9PcfjVhFxXQJpFyVV7krK2r1tO0v6EoLm\n4viTNUgqEKUOjfQcIzOWSE6xkhDpOUZvZYHGcPj/vkryOGfWJyaUhPrQCgMNjYnxiQ9D5GLF9HPS\nKVZpZInnTgUAnGj6B5YMawywGCfpKxLk4G6LYmakIdyJYKM1hqKAn4n7vCTC9WMsEuDAcJFpO9H0\nj1J5BlqMB5chG6R+qfkQ6oU1KuVXtbb0awxnR8OXFSLpS225gkJBtlJ5aES01FQg9I2F4Ng5ihqk\nYvbklQbxgT7n0CYEjH9H0ifk83DvvyLf8Qe/LyKco4q8o9vAtrKTmid8HtPQxtAjHjLEKQ72XHeU\n1GUS9vMErdkK+UKRpYAvaIGLteoikmIF5FqB9oW1yhqyJI/F1gN1SMvpaRuGQZbesGSsJeQuAAAg\nAElEQVQrT6qiCdGTluP6rs8kz10DeiGkzxQAQGVhOtLPrdNr/fYOr+wZCr5cTvq6HnPeR/GP/yN9\nXVNCKww0NCYmcvFwwtoLgha+qUQyG8QH9Xu8q2gSNiCM3UtBWWCAgeFc0RdsSssFlAryEcbuCX9W\nJ/iwghUO6+KDuvhQ7ssKQTg7GvHcqSoP9uLxrkxv9OQMQndOP1xtlnXPs2BwMchiAgAgqeUEGoS1\niOO8iHjuVFQKSnG95aTS9c817wVfyMdQ7iREcOLAb+GjRJCny9vWbkhf943SvuaqcqUH/uz9xK5K\n/KZGwjnSbaXJpxXasva2rYMDQG6Asz3XHc8acnCraD86uw5BWtkZpWMH+c/EuZw/Mch/Js5mK7dq\nN/JqUPk8u4xYcVCFBcsKzfwG7YVXwbmcP/VegylXTyikzxRJ7YXYKeQFeVMB58njYTcwTvJcfOPv\ntfBjWPj5yLT5/7oCYIoUuapjp1GZeEzGWiA9lgjpseLH4vEMLhcdfvxWps3n20VgOzvJyqBkP3G7\n/LpkMqDjLFhxHI3qwkQrDCqQzyjk3MUDA/6cIDOmpbYJR0as13jNodumwC7ASabtzg8XkLVfs+Dq\nXl8Og198qIKMRGjiIuTc1RMD/pBNO6rpa1K2t6CFj8TB6j8oxfOTvzyBgjOPAQCjTr4DthVHZtyF\nmXtRfl+zLFV9fx4Dt16+Go2lugtVbU6FqUWgPFyGlcwh/krzEYUxYmVBelwG7xYyeLcQz52KYFYE\nMvmtxRTllYJ8/mPk8x8jnjsVXdl9cI93VWGPk03bIXyeBadM8FSpNUKsLEj3n2veh3juVDgy3ZS+\nTunxJ5r+QTx3Knpw+qu0etDQmAt8YQtuFR4AAPg79FSpMFwt+BvDgz7CpdxN4AmaAbTGIUjHHJzL\n+RO9vF6Ci5U/LuVtVCtDb6+XYcWxx+ks5VZd6XgHVW5OLCYHPEETPG1DYcm2gw3HBfdLT6iVQR0d\n+74GfkuT3utQFbuBcQqHa26QP5qy81C47CcAgMOLw1B19BRyZn8qGeP/+ypUJh7T6mAuHktkCXCe\nOFphrcaMx3i2dZdkP3G/+F+mdauFOWfWJwa3MFhxHA22tjJohUFDlB2OObZcjLs0CwWnHyN5ifIP\nhNGn3wWLS/x2d583AN3nDcDJV/5GXX6VVvvrg76viSyivo6H/6jOcI/2I+wXK2mqDvghr3RH19l9\nDSKfqbAPcTW1CJRH0wNzqaBAaV8wW1ZhUIU3K5BQYRjMnYgzTbtVznVlegMgllmsBDgy3VApKFXo\no6Fpy5x80hq8LD6ESx/GpdObNvFqZcbLj5XmZuE+jWW4kr9F5rn0nkQyEe0tnhPnOx2ns3+T5Mjv\n4qZfxWMWhwt+SxNcOnSnXGVnMsmZ9Qm8F88Fx9sLuR9+BiGfD8+5swAmE3b9YyXjqo6egsdHM2EZ\nFqKXK5wynv29R7HtubKgDEE9udYpKkIrDBow6sQ7ksfSh9ZBG16GY6joVtBnaIjSw7VDqKuMsnBi\n4lbUF4l8m207OGLYPyKXg+E7puHw8L/Aa1DM5nB4uKyJfNTJdwjbNUU8X7yGeE/vwcGI/iZB7WsC\nFA/w+ig1YmVB2trAtubIvPcxy15QmoFJWllQJRdVrQry8Qojz31gQmnaHm5MH4W4AXW4ML3gzQqE\nHcMJlgzlVYobhfWwZFgjnjsV93lJKOAT+2F3ZHdXu2cYuyeSmo+rHccHDyz645uGhpJczF2Prm4J\n8LLrjILqVNwvVXQ11JRr2+dLXI9SEr8jS0TK8vRbUayP+Ba/5nIS6q7eQFN2rsw4C39fpa5BhoAb\nHIimzCz1A9sw9DeOBrCtOTjQ/3eFyrHn3hLdKIoPpHaBzqjJKleYP3iDKHMCv5GHQ8PWyvTV5lbi\nQL/fMebse2BymBh18h3CQy2REqGqXR1sKw4KLzxB0qJjMu1Pz2biQL/fJa9p3KVZRjtky+/Dq2+R\nkcWrfyDhPM9+AUrXELeZ4vVoyuEBv8Iu0EUSvzDqwmwUnHqIlK8Nb91RxbjPO6HvtA46zc29W4Vf\nXiEOKDYFPGj+dyKtWBQKsvGYdwf1whrEWYwkHH+hWeRKMZQ7CV3YMejCjgGgaBmwZag3IdsznDWW\nU19WPYjXa/4n4ab9/aShoTL3So/jXql65V8TlFkV2pq1QfrgX75TlP2qfPs+uM18HdbduwIA8hcs\nBb+2DkxLS6WKgiFiB1ymTgDHy0PjdS07BqmUY3DoR7Bg2wCQTaWqbeE2Y0IrDJqigdWr20f9cPlj\n2cqQo0+/K3ksryxIkzj4D8mhlsFkGKXgiLyyYEpUxTw83HYLoa/2VNrf5T31KWZbapvBsSW3yjCZ\n1GQ9o0xGpGW3h4FtoVlWEGV06OaAqPE+SN6v3BXImKS1JGuUVUisLJQKniKl5ZxWe5xuEpmsB1tM\nAIfBVQiSrhaUw4Hpomy6aIxQ8cKBhoaGpj2g7CBe+udmjceq65NH0ziDp98ouqPpI0NxTQb8nJSf\na6gIrTBoQFOlZr5pzl09FdqUxS2oYtg/U3HyFe3TwGmDpq/JWKjKCPR4+22VCoOtn4Pa9RtKasGx\nNd7trbmi762zNFRRFgCgMycKhU3ZGo/XVlmQ5mzzXkL3pwz+TUQzVb+/j3i3dd63PeG7cjFYDvZq\nx/GeVaBg8QpAh7oH/n+uVGjTNTOQ/Fq6rsO0soTfT18r7a9Lvo2ydeTFvNjG9YbL65PUD3wOmZmT\niPD8dDa4QcqtnsIWHvLmLoGwWTfLu/T/E+9ZBQoWLZPpd3hxKBzHJqhco3DZL2jONkD2MiYT/v/T\nPP1n0crf0JSZo/e26t5zAMj98HOd3/P2yoPCY3hQSHxpq0nmI1NYImiFQQOuzlfMvEIEy1L526lp\nFiQAsPFVfwDWF3WvSdDCB5PDMrgcmtBc1aiyP+2v6wh/L1blGPsg6ioL0qlU5TGm1YFMZYFqsMFR\nP0gFAy3G6y1DpaAMAAjTs4oVjHKBZtnA2hsMFgsdfl+mfqAcbBcnySEr/5NvwK8mrothDhApMPLY\nRPWATVQPAIY/vBsTTV47ADA4bHT4ReTn/3TJarQUlei8J9ulNZuh64wpsImO1Gie18IPAQC8kjIU\nfKGZ3KrQ5MBOOG+BKA6uYu8RVJ84r/V8Td9zAKS95zTURj+/g3ZCZYb+fwClN6lz2wqQ85qowsNt\ntySP7fydFPptO7T6jt/98aJRZNKWwwN+JfwxFt/eGGq0vYyN+HAez52KWIsRcGV6w5PZAb05QxHP\nnQomWhXjGmGFZKyYeO5UhaJs0n3x3KnwZYWACRbY4KA7p79SWU42bZfMc2S6gcPgYqCFKK1xnbBa\nvxeqJfu+TkPK4UK0NFK/3ocuyoI8vqu+IEES48O0sdbq8CbG/48VBpDGuFh1C9fptQOA91fzwWDr\nfyfKdnHSWFmQmefuCsvQYN03ZjLh/+dKnZQFaQytLEjj/dV8uH/whk5zaagPbWHQBBLCCShXhMvw\nIRJG5VlqIVwivDD07ylKx+QeTceTvZqlzzQmF9/eiVEXZiNz+y1UZz6T6Ss4kWHw/cP6uYJrrdqa\nlHOnCr9Nu64ytqb7C56I/yAY7kE22PRBCtli6sWJpn8QyRkEt+dF1cRk8u9BgNa/zavN/8KZ6SFR\nJgAgl/8Q6bwbhG5Gp5p2Yih3EsLZ0QhnR0vaLzcfJlQAhBDiRNM/GM59BdGc1lSLpkidenVHHq7u\nUO86QQXLE6/0GdhuxPEfddduof5WKpoLCsF2c4HLqxPAdiW2KPr/udLsbt791ixV2le2cQeas/LA\n8XSH3fD+sOwY1NrJYOh88BNTe+UGaq/cANvdFdY9uoAbEgDriM6SglmGxCqis9LDJ7+mFs8270ZL\ncQksvD1hP3wguCEBCuM6/PY9qo6cQmWibgH63OAAeC5QzP5Xd+0Was5ehqCpCTbRkXB4kfjCxWPe\nTBR+8yOa8wu12pdpbQW/H79SO45fXQNBXT3Ybi6kKEeAcmWBX1OLqsQTaMzMBpNrAeve3WE/VPFy\nRKzkqfs76/TFGoW29G/UV043FWJ5DS2jpoXYqhsKYW+lviAhmdAKg5FwCHFF0eVsU4vRZrn4/n64\nRHih//+IXUcyd99F6s+XjCyVZvRfNxkAEDxFMU7DGArD22tVB15pmg3nzr9FuPNvERkiqUWXA7am\ncQnlgmKltRLkEYAvsRpow8mmHWrHqHqN4gDr9kLB4hUyB5mc9z4lzL/OKytHweciFyTfFZ+D5ajo\n3mk3tB9qTlPzs0AeZYc3+cNYS3Ep6u/cBwDYxPSE61uvkCoHr6RMdFMtdVutrzKiDvfZbyq01V69\niWebdsrJ9gz1t0Wv3bZvFFymvyzT7zBymM4Kg7yyQHQIrjx4HJUHj4NpyYXfz4qVxb2+mKO1kqpM\nWRA2NSP3P4tVT2Yw4LlgFrhB/qg8qF2WJqL/U6L3HACanuSiYtchkWJKZM1iMAxSI4FGxNUs9cUI\nyYZWGIxE53eikbH5hqnFaNOIlQWqpU3VBKpkSJKHTp1JQxXy538Nfk2t5uM//Q4cDzd4fy2brcR5\n0hizUBgcXhhC2K7u8FmXdAt1SbcMfqA3JLoGnNdeTkbt5WSF+R1++x65H+geJFpz7irKt+9XOUbQ\n2IScmQv0ft81VRKVIhSiaMVv2u9LcOjPnb0Iwhae2v2IXrf/HytUyix9U09kbaChHnQMAwW5/rkW\n6U4ZhpPDnBCnpL0y77CJJdGeo0P/h5HnPkCnd2LhmxAGn/jWH1NCXw7RUAltlAUxLcWl6gdRFMdx\nIxTatLmprrt2k0xxTIq2N/RNmdkyz/V111GnLEgjqKvXay8ijOJGx5A9TFQfP6deWZCCSEb74QP0\nFouGOtAKg4GRvu0ec+49pePGnG3te3r+icbrx60epZtgbRQbb/WpFqnGi6ffB4PJQMhrvdHj8+GI\nXNz6Y2j8eygvJragC21doDF/in9UXv/GnKi/cUer8WUbFd1IzAEyLCNFKxWtzPKWJk0p/P6/Wo3P\nm7tUoc3p5dEazSV67U+/NvztO9G+FfuO6r2u00T6fNKWMBuXJKaFBQIWfQVeZSVyf1Kf/SHke9Ef\n2eNFsgEqLDs7BC78irDPUOQdz4BfQhiYbCZCX+0pk9UHAEafmQkmR6S7VWZodyPmHqNfBoW2Rvd5\nA9B9nuythlAgRG1OBa4uOIr6QuNmotEEU7ojRQx3N9neNDTGoDH9salFIIXSv7SvzcOvrAbL0fwu\nUaQp336AlHU4Hm46zWvOydd7b6uITqjYfUinuS0FxokLMzeYFly4x4+DbUgnMNgc1D68j8JE7eLJ\n3IaOglOvOAiFQjQW5qHwwD/g1Zr+jKBNjQVNg6TJwGwUhqCly/F40VwwuVyNxj9eNFeiNEjDr6lR\n2mcobn5zGn4JIveS8PdildYM4DfzcW7Gbq3XF7vjyGNIX35lewIAk8Mi7DekPAf6/a5UJgaTAbtA\nZ8TvftXgcpgbYf1cTS0CDQ2NHM5T9a/7AQAlv26E1+KPSFnLGHC8FYuf1py7otNajQ+fwDI0SP1A\nI8B2Um7JFSOT4eo5ur52falL0i3LnTHec/f4cXCOUXR1cugeBYfuUQDUZzLqtHg1wJB1sLEJDEXI\nnKUazZfHZ8J02IX30GmuPKYoyKYpZqMwiBE0NZlaBJ040O93cGy5GHlsBmH/iYlbUV+keVGhA/1+\nh0sPb/T/dRxZIpotdv5OMulUm6saZYq9cZ2twbG1kDwfd2mWUqWh9xs/ELbf2DQPcRNFpeGv7JlP\nhtiUwNmXuL4ADQ2N6bAb2IeUdZrzqFX/Rx1enykvYqkt9Tfv6n14rTp6mhRZGBbqC0d6zH1XoY0s\n64pKGIqBkGUbtM/8BpDznquj8tYVOMcMQEXyJRQf2ydp57p7IXCmyO3MffhYlJw8SDhfOsC6MHE7\nqu4kAwCYHAt0nP8NhFoG70mvp6+y4GYrqtvBF7TgVPoqvdYyBJRXGKQtAfJuRsHfrAKDJcof3/S0\nAHm/Eh/2dEXTm2hNx7XUNpF6u/3s9lOt19N0fOLgP0lZh6w1lI1lWXIkysK5t3aj8qFyly4Gk4Gx\nF94HILL0PPjjmhbSkkeP+E/w8NpW1Feb3tRsYUWNat40uuM56z1YhXYEAGR9PA8AEPhT62dh9rwF\nEPL5CPzpB0m/bVQv1Ca3naBYALAI8APH0x0cD1ewHB3AcXMBy8kBLAfzdslpTzC4Fgptpsz2VHft\nlvpBZGGE2hZE2PWPUWijcoat5rISwoN5U0khah89gG3HcDjHDiRUGEI/Wy55LL+GoKUZGcs+1UoW\n9/jWC1sy6jOEeogyo1FRWQDMQGEQKwch369RiDnI/KI1iMmYLkbSXM/xR7R/DqxtmKivE0jaGQxg\nx0lvTB72lJR9Esba4PjBOlLWAqgvn6aMPvUOAKAuv0qlsgBApuhYx6mRJlMYrO09TLIvTdvEKrSj\nRBEQI/1crCjU3b4DprU1BPX1cJs21WwVBtu+0XCZPtHUYtC0A8w5y5am2A5QVBjMlfwd61SmaGVy\nRAopGYd78T5CHg8Zy8jJYsVl25KyjqGgvMKgDveXJsOmc1dTiyGjLACilJRkHcYB4Jv/upJ6IKe6\nfNqSd/KRVuMr0kp03kvsmgQAvOZ6XE/8krAPAO6d+w3VZVkKfT3iW92apF2cOFxbRI1eKrNGW3KB\noiGfrI/nwefTT2Dh5SljYSj85Tc0ZrZmXCvZtAWBP/2A/O+Wofr8BVOJqzNsV2f4fPeZqcWgoWlT\nsBzVx1e0BRx7xZG2llN0awwFWcoCAOSUJyPEjbqpaM1aYWi1Ouw0uoXheo6/wuNo/xyFPnGbmIsZ\nHbB0bhmW/e6m0C897/KZBsx5s0SmXX4fVVzN9AeLDdRUCfA0n4ewLhZq5bue44+BnXNxPk2Ueen0\nkXosnFUq6ZMfK78ekXwRPblYv18UyNYvNBfNTUKZNYhery50erM30tdfVzlmxME3JI8vzNyr817S\nB3h5BUH+cB83cbWkTfxv3MTVuH1iNaFLUtTopTJrxIz9VmYNsrBx4qDPK36krmksRs4LxaAZARqN\n/eudm3h4+ZlhBVIDk8XAR7tj4d3JTu3Y0qw6/DDuKvgtArVjJTAYKFixSiYhhKCpCY2ZT+D1nw9k\nhtbfuw/fzxcqWCSojiYuEkIeD433H6LxcRZ4ZeVoKSgCr6wcQj6f0i4WNDSmhKlBfAXVYLDYCFuk\n3d+064AEANA7C1LQBwth4Sw6v5FhqZAms/QSQtwGYFinTyjplmTWCkPtPe3yUpOJ9GFZ/gBPdDAX\nw7VkwC+AozDnaLKvUkUg2j+HcB9VsNit897vW4wz91oPh6rkO5/WQWW/tvKt3+9J+F4dTfbF9vXV\n+PHrCo1fExH3fruCrh+Ibg6UBTPbBzljyJZXJM9bapv12tOYZN7ai9CYaVrP6zzQDV2GuCF6oi9R\nTJtGrHoQr9M8Q1WHXpYyDGyudn6+7/zVCwBwfW8Bdn9x3xBiKcXFzwqfHe+v1Ry3QBssvzMMALA8\n4SKe5TWoneM8etT/2Tvv8KaqN45/M9p0770HdEILLcuyV4soQxkqDkBFRBR/gjhAlriYTkTEgQsV\nRRBXWzYIWGSVQummey/adKUZvz9i0qS5Se5NblZ7P8/Th95zz3hvSJrznnfBeeJ4tGZcRP0PBwAA\nd46fRMi2d1C8+hWleIaaz76Az9OqwZXmTMCW19TeK1/9OkQt1Au6MVgORila1o8RNt9RSTlrzq/5\nwFWbwbGz72mQiNF06TwE9bXorKlA8KLnCMdx7aXuPkI++eQyRMiUBUDqlkS30pCW/RZSYtYgJWaN\nUVOmksGiFQaHQfEY8NZOdDfUo7uhXt7uMX0mXMZMAKAaKK0piNpY7Nt1R6Vt7oRKXCwJxt53m7H3\nPdX7+sBvJX9a+dPX+n2YFDl42h8AseIxd0IlTmUHgt8i1ut5C76/hrrL5Zj4xXwAmtO9AkDV2dvI\nePUvndfTRtLc7Wipv43cC1+hu0u3jYx/1CSl65Ib1Aro6LrRN1foeJ4Rc/wxYo4/Lh+pxA+v3KBB\nKvU4efGw7tR4veeRKRvrRp5AZ6v6iquNR35D4xHlHO/N6UfRnH4UgHI8Q8Brr6L8jbf1ls1YOE0Z\nS1hHwJw3NL3huDibWgQGBrW0XbwKlxmW8Z3B4nDkygLVjXp7WRHsgsJh4+OvlwyF77+O7pZmeQxD\nyJJVKN5LPeEOmfSpZPowdRgIINrUq9vo1/95BPV/HiE9jznQ3ibGiOAS/HzSD0tecKFkTaCT2ioR\nbXO5ebDx+098vP6iqksInc97J68eh8d8jKSdM+A1gtjNJv+7q7i5+4LOa5Ah4e5XUZ5zAqUUN/i9\nqcg5QZNElg1dG29FEmf6IXGmn8GsIM/uH6GxerYubM6YhIyfK/Dzev0sJCE7tqL2i69okso4EFXI\nLXmaWiYTU2M3JNbUIjAwqIV/7l8VhYHr6gJhU7OJJFJP0ELd0+42njsBu6BwvWXobpG+LjmbVyJq\n3U7Y+PjDMXIwWnOz9J7b3LEYhaG/MHdiJV550w2nsgMxIabM1OLoxZcf3cGzr7gSKgwy5k6UBl7T\n8bznV+pWSZMuxCIhrKx76hpEJS1W29cvYjwKLv1IeC8kbgaKr/c8i52Tj1mkYDU2dCsLiqw8nISd\ns+ktihQ93pN2ZUHGyLn++OvdPLQ1des8R/EqyzmV1wjFPOlWvjpWM5dICHPUU8VpKvUgRkFJOayD\nA/Re29K488cxON8zxdRimITW0xdU6m9w3VwgbDTsxl3UpGrhd3t0Lmo/+Myg6+qCzDrQVUOcsMXn\nnnlqx/ILbilcsQBQ+ztCRNHHbyPsmVfhP38xct98ERIxeW8Oc3M3IoNpEv/2cZa96IJte6V+bs+/\n5ooZ87WnyrpYEoyLJcFIvRyA+x9xxJQ45XL0bXwxLpYE40xOkN7yPbrUibJ8ab+24WJJMI5eCyR0\nMZLJl3q550vu690taGoQyZ+td6C4rP/FkmCV57VErqVvg3fYXUiaux1Jc7cj58I+wn7nf34RXiHD\n5f1633PyDJffS5q7HVY8e8J5+iqeIXak3ZAObszG+lEnsTomHatj0rFj1nkUXdIeF+Mb4UCr69am\n8xPx+O6hWvt1tgrxxbKreClWKu9Lsen4fOkVdLWpdzmSsfHcRExcEkqHuBZL82/ULUPeq5bptJaw\nrlGncb3herhRHlP1zke0rO2x+EHtncyI5iOq/7+BOzcaXxAT0Lj/kEqb/9umqfprGxthknW1UXtU\n6jnC8/YjvO+SoLngYcsNaV2NqHX01OwSNNSho0LqHRG5druW3pYPY2HQEyJXmt3b1Z8IaAps1sTE\nWGqn77L5ev8LAN/saQEI6rKpC94GgHUr6rFuRX3vIVrlS0kgVgRM5XKlD0SZinq3abvW1g4A14+/\np4N0PVBxt9G0aTaU2442XvpzjMb7574rxeE3cwjvVefzsfsxaeVOFgvYelOzUsBis5Tqc+iKnYvm\nTCNb7zmHutuqaYclEiDnbD1eGy51Q4sa64En9iSonWf6CwNxcu9t/YS1YIR11DNecRx1U7g7sm7B\ncbLm96LBIDipdHtoNuXKv/aj1L+XLAW2vZ2pRTApLA4HEhF9rsLmgI1fEHhevrALDAHPy1feHr5i\nHQR11WgvL4agthpdddUQNPbUwmj69294T7sfABC6dDWKP38PLBYLwY8/D56XLyRCIVhc9dvaykPf\nwmmQ9DMhi0FoyboMlpU1HAZEy8dSiY8o+eJ9+VyGCII2JxgLAwMDg9mgSYERCsRYHZOuVlnojUQi\nVXq2z1DverT1xlTKMvZGk8zfrryO1THphMoCETln67E6Jh0tdV06rdfXcRxPLZe6PqfTjQdU4+AC\ntq8n6KkejycX6Lx+bxwnUHt2cz0l1gZRQLvXs+rdO/sS5atfV2kL+tjwSQqIXnNDpiIOeeJ/8J3x\nAJyHjISNX4/XhJWzK+wHRMNzwt3wn78YYctfVRkrq8bM8/JF5KtbEPHKO+B5+YKfn43ct1+CsEWz\nC1fO5pWoPPSt/NppcCIcowbLlQWJSLu1l2hOUac0o52mwnGWDmNh+I/x0SvQ2lmLK7d/MLUoDAz9\nEvdA9SeJ3Z1irEk4ptO8NYV8fLL4Ep7+chjh/c0Zk7BupG6B5m9fU+9vvevhiyi+qpv/8ebxp7El\nayrYHGIfejtnK7Tf0T2ewVLhhZNL9QwAjuNG0X46zXEkX4mVxbOG/fAhOq/VeuJvOE5StnAE79lK\nOkOU14ondV7b3LAdHA2nlAloSTul03jr4AAISszf7VVdiuDgT7YYPNif6HSeyvtNBTab0FIG6Fe/\nQCLs1ji+4H1Vpas3LTeuyN2TyKJN5vxtaynNpw6y6VRlGZSMGQvR7ywMnk4DkRK/Tv4DACnx69Au\naJbf83aONrGUDAz9j1fSiN0/utpFOisLMgoz1Puj2zjqfm7CtSb+E/pOyt86KwsyXh58VO29TRcm\n6jW3pSARqrpikDn5DNy5EW4P36/3+h2Z2YTra3J7AKSWhaAP3tBr7cYfiTP9aXt+jpODxReqI9qk\nut4/HcF7toLr5U5qDqeUCQjesxXBe7bC7aHZdItoMEqXE8QtsFgI3rMVXs+TUwJ5YUHyZ9drXUjf\nb27zZ5KaQ/E1D979Dum19WWKwyNGW0sTodaDjbaWWGJ8N7V+Z2FICH0Qx7K2QCQWwMHGC9H+dyMt\nc7P8/rCwhzEkZK5SmyLDFqkGy1zap1w1NWjU/fCKGq3Sr6UyD3npBMEDsrkXbifMylGbcw6l//yi\ndhxZOYlk1QUyrwFdcG0cMOTBTZTGVF0/hoorhqu1IMMlaBAGTNJuKm+tLkBu6m6Dy9NXeW3YcVrm\neX3sKaw/O4Hwnp2LFdqbqZ3Y37tavctHQ1k7pbnUoUnm/kDp8lcJNz3Be7ai5ovl/U4AACAASURB\nVN1P0ZlTIG9j29nCa8UT4IUqJ4bgn/sXDqOH67R+7cf7CNcP2iU91Ws+ko6OzJuQiMSwjYuGy4yp\nYFkpx7PUvv8Z6Y1eb0qWvqT2+QGg4asD6CosAcfNBY5jR8IuMU6nddTBtrEBb0AIrPx9YBMu/VdT\nELdMLmFDE7orqtFVVAxBZY286jYVSpevkb/Oivhv7jlpF3d0QtTUDLa9HTjOqvU6LBGJUIi6vd/B\nc4lqwU7bmAil94OwrgESsRhcdzewuBy911b3fnOcPEYpnqe7shosHg9cd1e916SDY/xvtXfqY3QI\nmmDP8zDqmv1OYQAAkVha6ZffWYsgj2G4VdGzubxU9J3c8qALoWMXwD08kfCek18Ehi54E1f3q5qu\n1G3wAcArajSc/CJw4xfjaeymJmDYvfAZpNspqm/cFPjGSV1FWqrykZf2CZ2iUVZiHH0GYNiiHehs\nqceNXyynaJYxeepz4s8MnbQ2qK/w/WraWMpuSeMXhxC2d7TQ5yqkSWYOlwWRUP+AbXOnM7cQNpGq\n+dO9X9BesVpQXoWGr3/SWWEAADG/DWwH4sBpl5nJcJmpOaakIztP57UBQFjfqHaT7r5wvsax6jaA\n2gjYslavgnNcd1dw3V1hG6dqrSfr4iIRCsE/fwkOScSuhADAtrUB29ZHZznNlfZLmZA8Ng8snrXG\nflxPctYWKpQse0WrdcDKT7fXPMl+FqxY1rjSfgxdkg5E8oYjq/Os/P5ddjNgw7bHSX6Pa3iK4yKk\nte6TX4+wuxtWLGuca/sVNix7jHeQplJV7CNjqO1kuHG8cakjHXdE6pO2qFur93UUbySCrXve00Rr\nappvpN10ZLTrV6dJhrGVBaAfuiQZkqEPv6lWWZDBsbZRUQ40KQsybJw8SfWzdIYt2oFhi3borCz0\nxsl3IC3zyEh4dAtli4cMGycPDFu0A2yu5i+B/sjAu4i/+E58Sm9GoPpS4pN/qm5Jds7qsyKtH3WS\n0ly68tbV/pGvvmbnHgjKqyiPK1n6Eqo2vwsAaL+qe3XvslWbULmJeiBjW8ZV+eaYf+GyzutXrH0H\nJcteoTxOvva5izqvbWoavjpAS1XvTj2VNlNQuuI16bNTyO1PC2IxSpa+hO7KGr2mkQhUD04c2a44\nzf8JSfazIIYYflY9BwEpjotwof03nOT/gBTHRRjIk2YzutWVgWTHhfJ+rhxvnGv7FQDQKWlTu2lP\ncVyEqx3HcZy/H57cQNiw9UtPnuK4CDldGUhr3YcWUYNWZUGGI7vHCuPCUa0Jw2KxlX6I2hR/uBwb\nDAnQ391SF/qlhcFQcKxsKI/xG5JiAEksE3NXiIYt2g5pwRf9SHjkbVza9yLoKBzT1/nrvXxa5/tt\nSy4W79JeL0EbL/2h6nJobNQFRPdFqja/CxaXS+ii0htxRyfK/qeczajuk6/18uvvrqymdFpf9cb7\nEJRVyK+bDhyBw116WNH+28QF7Xpbq+tJzc496MwtVFj7NziMHqH72mZAydKXADYbwR+/TamYXt3u\nr9B+Tb8K6aamZNkr4Dg5IGAbtQxdgpJyVL31gc7rVm6Sfh8Hf7KF0mvOP38JDV8d0NpPKOmxng61\nnYROcU8mubTWfUhxXIT8risoFdxCNG8kBclVKei6igkOD+AUn7hYKlWqhcWk+p1rO4zR9rOR1roP\n9mxii11ytOphAFEbESUNxj0M6JcKQ2+XI31ckAAgYupTsPMIlF+LurvQVHwNHgNGqP2gJTz6Dq58\n8wr8hiiasyVoKLgE9wHqzeehYxfg9tn9eslrjhhKWbj+E3EsClX8hqZAk7LQWlMEQWsDrOyc4eSn\nPZ3hsEXbDRb3YWm8nGq8XPfZJ+vU3gsf4YbCi+T8rO3diK1ETRUdOsmlicrcVvhFOtI+r6UhEQr1\nOm2m46Ra1znE7R2oW/4Wxvo9hvK2nkDqBK+ZcLb2xsnyvQCAacH/g0jSjaOluzDWbyHOVn4FAIj3\nmAYbrhMyFNJMjvCeAzsrV1yq+QX8buL3LQssTPZ6Ei0bLiGjumcTl+S7ADYcB5wo/1S+bmrJe0gO\neg5FLf+i4OU3AQCTAp5CZv1faOiU1tnhsLiYEvgMGrsq8G/NQbVtBkEsNnimIDreI3TOI0PUwqd9\nTrIY+jUHpFaDOqH6WlMy5cLXKgzH+brtf/RVFk7w9yPFcZH8+rYgS+sYvrgn8cUY+/sIrRKyLEe2\nVs64K+xxWHFsNc4pEnejjp+PzHJqNVnooN8pDOqCmfXByT9S/rviyXHxuQOIuuc5OHiGqIxhc6ww\n9OGe07Ibh7ag804tAOD23z8gcMRseMeMVRnnHp7Y5xQGMspCY9EVFJ35TmMf37gp8E+4W6lN0KZf\nphoZfvGqfspX978GkUD9BtHRZwAip6mvMmvn5o/2xgq19/sLHkHmUZgp/m5v0gqDOk4YoKhaWVYL\nozBYOHZcZwz1vBdppT0nvo7WnrhSK82ElBL8PNJK3gcAXKo5jEkBT6Gxq0LlnmxjPzXoWRwt1V4N\nmsVi42jpLrmrg+IcvRnieQ/SSz9U6RflOhYdwla0C5sxNehZlbFEbQwMVMjruoxYmyRkdf4NAHBk\nK8fsnOB/j0CrKMTYjCLtCkQ3UbyRuNxxFPVCat/ZRYLrpPp1dN/Bidx3SadVNQX9TmEgg5tDCBr5\nxZTHEZ0Y5/zxodoNMceKBwC4/M3LKsVCyi4eJlQY+hralAUqp/BV14+h6npP+k23EN1zoGsi548P\nwa8r1tqvtboAl/atUvuMMTNXMlYGLRizSNmAEeqzvyjCs1PvEjJnYwzmbIyhSySGPsJY/4VIK1F2\nD0nyfUjexlKwXjZ1VaCk9Zr8mgUWpgX/T2ns0dKPkOA5A1524Ro368GOQxHhkoSmrkpcrPkZAFDW\nSryBuVb3h9J16X/9cprOIiV4BdJKPkBqyXuYFvw/1LQX4Grd7wBA2MbAQIXy7jwEW0cjxXERRBIh\nOCyukmIggQQxNqNUxgVaRcKB7QIAiLedgGZRLUoEUgvehfbflSwCZBSNqu4ipDguQrekC1YsntK9\nm53nMdXxUfn11Y4TqBWWwonjDm9uMBzYLrBnO8OaZYNCQabcKpLfdQUpjovkcReWTL9UGFztAzEk\nZB6qmm8ipyJN6Z7MPYlOS0TWwbcweA5xjmNAfWXB8st/ICDxHtrkMD80+0Xqu5luLL6mvRNFJCIh\nKWVBEU1KA4P54OxDLgYpYaafgSVh6GuUtl6Hg5U7+N0N8rbilqukxxMpBVfqfgMATAl8BsfKPiYc\nF+k6RmVsoGMcbjZqzwgW4BCL7MYTsGLzUNLS87dUZnXoLV/vNgaG3sg27b3/BaB1Q0204S/rzgUg\nDYzuTYuonrI14nrnGVzvPEN4b6zD/YQZlFpEDWgRNRCOUYQvbqIkiznS77IkBXuMwIgBi9DaWYtg\njxFyBWFw0CykxK/DnfZK2t2Wulq1v5mIqM4i/qPuFpagjzhmgzSImBhzPXm//A29/pyR056hPOb5\nVHLZcZ74biyeT50Cezee9s4MsLYll8c8PsXbwJIw9DVuNZ6CBGKkBK/AYPepAIDcprMY6jkDEwOW\naLQSSDfj4zA5cBncbPwBAB62wZgcuAyJXrPVKgsAcLriC0wOXAaWwld9asl7SPJdgEkBSzXKnF76\nISYFPAVnni9ymqSbqEHuU5Ec9BxaFRQfojaG/kXUD8oHotEH9YsLNUdaRbpt+G3ZDsjp+pd0f3N1\nRwL6oYUhyj9FSSGYGLuKFquCus29NhqKqJUnBwBn/yg06jDOnLCyVe+Tba7Kgj5ylfxzEMGj5qi0\nO/qo5pfXhou/dp//DVk9lTlfPJ2C7RPS0NbQRXktBlU8Q/VLz8fQP2nrblJxS7r6n5VAhkxxKLyj\nnP0kp+mMfNMOAPUdJThepr0YZIewhbDf+SrlODh1CossKFrGjYajuNFwVGubuWHNscXo0CfB4yp/\ndlNz+k9tI0MRc3iD0r8AUPDMh+q6Wyye3ADKLk6y/qaKu6Cbfqcw9CYj/wuMjX5Wb6tCbc45ncZV\nZVL/Q2vrYvknnPEPbCRsb6miN42muVCXc55QYdAVRYUAADYNPiL/PXCI1Bd///IM5J+pwYasmXjx\nVIpSHwbdsXdVX4OBgYHB/Jg08Hm0dtWhob3Y1KL0ObJnb0LUD2uQ86D5nozTgS6b/r6iKMiwKIUh\ncewLsHfUXmHwzJ/k3UbaBU1o4Ouf2UTXbDyyzEhU4DnSX93RXKC7KnNfpb1JgG3jUuEaYIcVf03B\nhqyZcoXggfekaXnzz0gL72wafAQbsmbCa6ATavNbTCZzX0Fi5DpKDAwM+nG68BN0dNOTMY9Blb6u\nLBgbFoutUouht6vS0MC5yK89BX6X9grWdGExCoO7dywpZYEMRHUXercZIv0qXehSII5BP+pyz5ta\nBABAwtxgQAJsG5cKAGgqb8cbCb/jtSv3yvvYuxPHLEx8Ngo/Pm85VV/P7y/DoTdumVoMFfiNArj4\nEn8GV8ekG1ma/oei60Nvar89jvqf/1Y/9tB6wto42bO1V28nGttZVI2ilXu0jmUwLVYcG3SoFh5m\nIIE/JxyxXGnhtPSu/ZjCewDHuugpgMZADJnCbV6OEfByjDBqzIPFKAyRcfMAULMeEGHOigBpKFRd\nZKCHkgsGLEhEgXvWDsahNcrxK6JuckfeA8eolqU3Z/xjnYyyzuHCeMwOzyTdvyCjEcNmM5mSTIFM\nWZAIhKj+Ig3dtc1wTUmE48goAIC1j/rUuIqKRtXHv0EiFMFvxWz5PXVKg9uMUfB5IqVn3c/+AtuW\nB+/FybAJ89E4lsE8SApZhJvVqShrpj9zXl8nljsS6V37kcxbAADIFapm9+r9GYj8ejVyH9tmNBn7\nEikx0gDy9Oy3IfmvppeszdRYjMJw/uhGjJu+xdRiMNCAvUJVbEVqb6k/GWSQUpbZhGHzQ3D993LK\nY7s7RQaQyHAExzubWgRCcs7Uq1UYnL15uFPDBJcbgsBXHgAAiDsEyHnobXk7/0qB1rEyZaHh8HnU\n7OuJG2s+kQmfJ6bBbcZItRt/mbLQe2zDrxeUAj77otLg6zYYg0Pv12lsh+AOLmR/AqGok2apdCPW\nZxpifaYptZlT0LODrRdig2fC2d5fp/FFVWdQUHmSZqlUCecMQpkoT2Of7nrTur76ug1GZOA0WHN1\nKwp6vehnVDfdpFkq7Xg5RgAAjuVslysL5oTFKAwAUFWaQUpp0McK4e4YhmFhD/cNS4SZ4hU9hrC9\n8hrjzqGNfYvOYUPWTLx0dhq2jk2Fs68t/pcuTdPYOxC6Nxn7i4whotH5JS8O90dIi0zJrAVcKxaE\n3RJwuCyIhBKle/qSmVqNR3bGEd6b9WoUvv6f/mswqGIbGQAAaM3I0XkOxQ2/jOrPU+E2Q+pyYeXh\npLTZcR47SOPY7NmbNLpIWRpTEl4Dm0UuvbA2bK2dMWmI8nfxzZIjqKgnX3+CLnRRDJITyf2/pl/W\nTVFksziYPHQtWDR5DIT5jkOY7zj5dRO/BP/m7tN7XkXrQjJvAU52/azSJ/s+hc+BRHptTGKDZ8Df\ng75083FhcxGHufJrQXcbTl1XnwaeLgb7zwAAiMQCg6+lCxajMDi7hcE3aCQtcynGK7R21uJ87h6l\n9rZO4wWR9Efs3IhPUIRdbUaWxHKxdbFWUhC2jUvFA+8NR1BCT0C8TKm45zXp5vbUrlyjy2kM2BwW\nDhfGK7UJuyXY+VsEAsJ4mB+bBQD4+49mHC6MxzOTc1BZbBgrwOBky89gZq6Uvfk9QrcvgfOEOFS8\nd4j0OJtwX619xB0CsG2t4bt8Jko3fStv918lzWxW9k7f9dlmgYWpieuNslZs8EzEBs9EbXMurhX+\nYJQ1DU2Q10iU1qoWDlMHi8XG1ATD1ylwdQhGcuIGCIRtOJWp32Y3vWu/5g4ScnFAdDN56KvgsK0N\nvo61lb1cgdRVQSSDxMwzaliMwhCT8DAA/WMYUuLX4d/Cr9HIL5FfxwXfB1+XQWjkF+Pfwm/0lpVB\nM9YO6v2MGbSjLj3qlwuVU/tuyJopVyr2LdIt7a8x+O7F63h4O/GJfUSSO/LOay8I1dtyQGRN2L6i\nBNtXlOguKINJ6SiohEQkBovDVjrV17ZR8Xu2R7HWZg1wGEJcF0XmDtWXCPMdiwF+k0yytpdLpFE2\nYDKmRfUEkcqsDdOiXqHFJSkqcBophYHDtsLkocb3Rbfm6rfZTeYtUFIYBnDjUCC8rtSH6HNlKAXC\nyc4Po6KXGGRuMshey+NX34JITG8k/bXyXzA8+GFYcWzRLeqgdW46sBiF4cKxzbTFMMiUBQC4evtH\nDA19AJklB1HdnE3L/AyaocsEy6AZS6m7cO3ParUKw5LPEpUyD735/QAERfDQ3SVBWUEnNjxWhNnh\nmUoWhtnhmeA3i3AwNw65V9ux5kGpj3vvPjLaW0WU3ZWOf3obk58KJbxHVslhoM6tOZvBcbBB5Lc9\nB0eyzYq6DQoviEKwfz/408SzcsT4uJWmFkNOcuIGZBYeQE2z4TKiFTdeRE7tCSXFwZiMG/wCbKyN\nk8RBE8mJG5BTlkrJItKbO2LVv229P3uuyYk6z6+JMYNWwI7napC5qTJ56BpIIMHRy6/TNmdjm3Rv\nOinyBY3Zj5LCngQANHdU0LY2GSxGYQCAopw/lJQGkYjYz+tcGnlzX11LPhr4txllgSQca1u95+hu\nbwHPyYMGaRj6G2sfIg5w7b3ZfyTxhtY+MhYMUe2rjdT38tUqDL2VHAZ6EfE7kT17EzhOdoj8erW8\nPebwBuQ88BbEXcqnfuIOATgONuhuaEH+E+/qtKax3C3sOS5oE0nrBUx0fQQnm77VMoIaQV4jEBV4\nN61z0kF8+HwAhrM25NefNci8ZBgftxI8K0eTrd+bqMBp6OhqQt0dzYHL6oizGo3jXQc09vFZOh1N\n6Zd1ml8dZGNKjAkLLCQnbqD1ffvP7X0YFboIKTFrIBJ3o6he6h3g6TgQkd6TYG/d43accfsr2tYl\nA9uoq+lJWNQ9StccjjXhjzb8XAfLf3xdB4HHdVBq83MdbKhHsHhsnD31noNfX0rYbmVr+hMYBtOw\nfuQJtfemPT/AiJKQR9BhWVmn+hqilnZkz96E7Nmb0HpRGp8T9aOqy0f9z9LNopW77n9fXKbSF1Cp\niSRnaUaiFPclONn0LSa4Pkzb3MmJG8xSWVAkOXEDPJzp/7xPjVildG1r5YyO7ju0zc9iEW+lkhM3\nmJWyIGPogId03oATKQsxhzco/dyaS1/SmAlxL5qlsqBIcuIG2tzN7nRU4njODgBSN7aBXhMAAAmB\n8+TKgkQiNmr9BRkWZWHQN35BxuCg2VrbKpuyaFmrr2HvEaz3HM0lWXAPU/0Cdg9PQPWNU3rP39eZ\nvjYOwx8M0drPUlySAKCjVaj23uSlYUh9X3vqTGOzNvE4tmUnE97blp3MWBmMSNlbP6iNT2g4fB7e\ni6bqNC//WiEchoTDb/kMNB+9on2AnjQLpdXZawVS1wQOi56vaHPfcCmSMOBhnMrcBoGwnbY5a1pz\n5e5Isn/pTKk60H8y8sqVs2hZwmse4jMaxdX6x7cZygKXOPBRWFvZG2RuuuGwrTAsYiEu5el/6i8U\ndyEt+y1Yc+0R45MCL8cICMVdyKk5hspm0+1NLUphoAMmXap++AyaqPccTSXXCdsDhs1gFAYSyJSF\nvQ+dQX0R37TC0Mipz4sx4YkQwnvbspPx+rjTaK23nBoHjNJgfvgunY6qPX+S7l+68Vu5IkJ1rC78\n2/IHAOBqq/R9c7xRv82HNdceE+Jf1FsuYzMhfjUkEjGOXqHn+/pqBfmsWroQ4p2kpDBYgrIAABH+\nU+DpPFBj+lVNGZI0JRHQV4mwlNdQETfHEFpdlATCNlwr/4WWuejAolySyBAYPsHUIvRprO3Ns5hW\nf2HWG0MBSK0HlTeaIWgXqv2xNP7Yodmndv2Z8bSvuS07GcnLiTPjkEGbQqDOAqErXGs27XNaCjGH\nNyD8o+XgONgotXNdHbRmPyp45iMAgOvdw1X62seFIuqHNWrnEPE75WODNjyidM995ii5G4a5YanK\nggwWi01rbn1jYWkbXVcHzV4Dw62myH+SeQtwl3WPW5vMJVDx9+zZm1D9eZpeMlnaa9ib0bHLTS2C\nQehzFobQyLtRVnjK1GIwMBiE+BkBphbBoKyOSde4IZbd25B0Eu3N1FPaTXt+ACYvDdNZPiJeHXIM\nb1+bova+TGZdrQ0rDoxE4CBGUQcAXoCHUoYkRfjXClG6kThIWFDZoFRkjcoGP/eRLeA42iLym5fg\nMDTcoMpBivsSpDXslV+PdZmPs82aA0zVQbey0C1sR2HVGbUZdhxsPDHAfxK8XKJoWzM2eAYiA1Jw\n4trb2jtrQOaGdLpwN62xC73xcY3Va7xEIkZ2yW+oac6GkCCpi6dzBAI8h8HTeaBe6/RG06n4v93H\nlK6DOdr/f10mxaPxt390loVOJBIxSmozUFz9N6GbmzXXHj5usQjyGgk7Hj0p3+1tPHS2NNwV9jic\nbHxI9zdmLEOfUxgYLBvv2PGouXna1GKYLbcz6hF2l/6B5+bMF8uu4vHdQzX22XRe6honEUtwbHcR\nTu8rQVdbj1XFN8IBsZO8MOw+P7gH2hlUXqFADLFIAjZHc05OmeJQU8DH6X0luJ5WI5eZy2MjON4F\nCTN8kTjLDxyuafJ7cq3Z8IlwQOhQF/hEOCI0wUVt3xePJKG6gI/iK82oKeCj+FozujsNV3goe/Ym\nsG2s4fXwRDiNGwyukz1Ere2o+/E0Gv+4SHoOlhUHIW89DttwX3SW1qLxyD9oPnFN4zhRaweyZ2+C\n/aAQeC2cCptgL3RVNqDqoyPoKKik4/EIYesYw0DXpqu2OQfXCskVreN31qn0pUMOLscaLBYLEolE\n5zlSc94Bj+uAiQOeBQB0Cfk4WfCR3rIp4ukcgbiwudo79qKw6jQKK0+R6lt3J08pu9FA/8kI9RlD\neU0i7Gzc0d6pPR20BKqf8dzHtlGqjaIOut63N4p/RWWD5s+0DIGwDaW1F1Fa2/M3JCJgKkK8k/SW\ng83mQiwmb+33dYqhpCwYG0ZhYCBNyOj5tM115ZuXkfCoal2NwOEzGYVBA988dUGpwnNf5NbpOq2W\nBhksNgtTl4djqh5uRXTw8uCjSLjXFw9t1Z5hzXuAA+a/EYv5b+h3GqkLdLozeQ9wgPcAB8RPI/8F\np29Mh7hTgOrP0/RyeZB0i3B79V7tHQlou1Gs81gyiHttxk43aamwS4C+my6hSKD3ib4MxRNWfeSa\nmrAeJzO3oluoezGrLiFfKdCZrsJtMoYOeIh034aWIlzO179IbH7FceRXHAeg///7mNhnCU/Ek3kL\nlK7FEKFUpOw+KstYpg8D/SfrNb69qwl/3/hArzlk5JUflcekjBn0nM6WhylD1+Lo5dchATllN8ZP\n6u5ligxIZDBbhYGuIm0M9OExcCRtc4lF6rXuYYt24NK+VWrv93e6+N3YkDUTW8emoqOZuBZJX2BD\n0km5JcESuPJ7FRJn+yEiyV17ZwYGAorar+o1Xt9NI5XNDVXSL29CXNhcnd12Jsa/pHcwaYx3MoJc\npXERVytME0x6JutddApaaJ83/fImDIt4DG6OxPVhyBDkNVLF5UxT0LMcFgsxh9ZLf5cA2fdR/3/S\nx1JiyGrhf9/4EIDun62pietJy3cq7wNMiVqtvaOJMFuFgUE/2hsrYOfmr9Ku62Y8ceE2OsRS4sah\nrRh030uE9xilQT08BysAwEtnp2nsZ0lpVYlob+4mbWkwF/Y+eRk2DlxsvjjJ1KIwWCCFHYZP3aoO\nQ266ZFwv+hkd/o0I9Rmr03hd/cKTI1eDzeJI89fnboVEYjjXOU0Y+jW+lPc1piauB0vHkuVRgdMI\nY1RGW98Le1ZPHZPeSkTMofVKFobAVx9A2dvkXNkA/RRdY7xvZesYOhhbJO7G8ZwdSIlZg9bOWtys\n+gP8rgaIJeoPWI35XjZrhSH/xi+oKqVWwpyxTEjJPrITwxbtILxHdTOubh596bxTo3XdvPQ9aKnU\nrSJl+MSFcA2OYxQPC0fmxvL6PxNh62RF27y/b8vD6S+LaZtPRidfiNUx6bBztsKmC/RaSN6YeBp3\naiwntSwDNWLtx+JmW09V4kEO43GDT85F0xI2XQCQX3EC+RUndJaXql84AKTn0n/gRQWhqBMnrhln\nb3L08utIHPgI3J3ocdNM5i0gZ2XQEXcn3ZJQXMj+BK0dmvcQdKOr0kBF0Z0cJd2vONp4YVToYq39\nmaDn/7jTWGxqEfosZJSGwOEz4B07waByXNq3SqNCEpG8FABQcv4n1OVpzrrA5lojdtaL4Dn2bZcQ\nS7cc6Mr6UScBAA++PQiJs/x0muPs1yU48k4unWKppf2O1ELCsWJj3clxsHfTXoWeiK+eu4Ybx2tp\nlo7BHPG3iVBSGPx4A0gpDCMiH9d5TWMqC4qcu7lLp/STU4auNZnMumIsZUHG5fxvdVbIWCw25VPr\nW3Pf6Al6FkuQff/rpMcmDnyU0lqA9CTe2MqCDF2VhoiAZOSVa47hivE170rsZqsw0FXVuT9z5ZtX\nkPCo+qAuXSwH2jb4ukBmzuCkeQhOmkfrugz6B6FSYeSC7QCAjP36pXv84dUbyP1nNviNZcg/q39V\nTXXQJa+oW4yNY07RIJH+6Pr/XVshVdC8/LVnBKqt8CPVz9Bz6LM2QM+zJs91QfrPzaTX/rv5Jzhx\n3dEibMBdzvfhXPPPpMa5OASSXkMRU2682zrrcfTK65iasJ7y2PFxq3D6OvnvIQeeB8aEPgmgp8Jz\nhOd45NUZPsGGqV7jU5nbMCGeuj/8lKFrlQrmXeo+gVjuKNwUqj+wkwhFOgU967Lxbu9swN836c1w\nRRVdlIYQ77u0Kgzu9iEAzDfouc8VbiOjaET6TcXUuDXy65EDFiMlfh1SJraw/wAAIABJREFU4tch\nzGu0IcUzKmJRNxoKL9M23+2zhjNLXvmGURAZyGNt7wK3QO0ZiRjowcu/0mQbeGND17MuXu2FlVt9\nKY1pF7XA13oAkt2fwHX+SbSJtNcM8HMfopN8OWV/6TSOTnRNlcqzcqDUf0zokyppVMPc79JpbSqc\nuEZfFiaqENUcIAOLpbwtHGY1Cf6cMCTzFsh/emPMwoWmVhb0YVT0Uxrvny3YbSRJdMNsLQyGYtTA\nJ+Bs54eq5ptIiV+H9OtvwtnOH2mZm8HjOmBC7AvwdR2Mc7mfmFpUWrh9dj+K//5B76BlRfelolPf\nIGwCdTOiJsQiIS7tW4XYWath62q+eYgthQ1ZM43iusRicxAybDZuXzxo8LUYGCyJOUt0S8WY256B\n3HbysXuDQmZRXqNT0KKUd96U6OriEew9CiU15IqDHc9/D92iTspr6ItQZNp4o6NXNmNqwjq95jBU\n/EJUoOakHURcLTDcoSVVdHnfOtlpP0A4kbsTKTFrtPaTYUxrRJ+zMGjD2c4PaZmbcb3kF6RlbkZy\n3FqkX38DgDRP85Xb38PBpm8VxpJIxDoH/krEqmMbi8kVRNGFm79uw6V9q9DVqr2ADBkuf02chYmB\nHmKmLofXAMOf1PUmY/+LersKWTIVJb547BHVgnQydxoAuHHVB7UVfko/gYEcpb4Z57yU7teUK8eG\nPPqwndJ9InqvoQuK45c9pXp6vHmjs1Kf0sKeL143NzbhurUVfvDw6PmK++l7d6U53t+pXJSO7mct\nukV9s8hmcXCX831IcV8CAIiy1/zZCvHRzSJ+JutdncYZCl2sHZEBKaT7ejtGUp5fXxTdekyFrhl0\nuBwbSv2L/vcJova/Ao/54+Q/2gjyop6mve5OPuUxlsakyJWmFkEtfc7CMG76Fr3iH+paCjTe13Xj\nbexxmuZic60RN+81cHn2hP1aa4qQl/YJJGKRUeQiIutgj9bsGjQYIWMeAMfaVuOYptIsFJ74CtAj\nj7ghn6svZmtycA8ytQj9Ev/gKtRW+OHrb3vcDv4+5YUvv2qTXw8aWq00ZvdHrrj8j7eSu01oCFfp\nurbCD7eu+yA6Tjr2m+/a8c137Wo3x9mZPrhxsxuTkuuU5qBCbYWf0hxb3nJW6bN0ib2KnLL4gcZG\n9Zui+nrpvYMH3DF2NE9ljudX9sQX0P2sK2bdRmpRtNr7REx2XYijjV/IFQZ/XgRy2i6o7R/hP4XS\n/ACQWfQT5TGGprT2IqICqQd8BnoOR1ndv1r7DfK5G4N8pPNPHPAceFx7Wou29UYo6jJZ6lY6iAm6\nB56VHBzvOoDhVsrvMTaLgwyBcuHEzuIa5Cwg/3oGe1M/ZDLHQHddrAyjop/CP7c+VXvfXOMXgD6o\nMFgqKy7cDytbLnYMOaC2z/LTs7Fr/GG91xILBbj2PfVAM1PRVJqFpv1ZOo2NX74Tpcf2w94vDO4x\nowAAmbtWgmNtg0FLej6YmbtUtfrw2c/AwX+AUltnQyVyf9hOuBbHxg6DnniD8B7R/AAQ/8wOgKWa\nM7vu2ilUnjsir+qs6F7U1ys9M5DH2poFgUCqIEcM5GLMBPXZlA4d7sCc+zQr3ZnXuxEfRz51rYcH\nGzHx1do7akFxE/7ymjtYvLDnMOPd7S74409ld5KPPubj2Wd6LBEvvXoH+bd8MDBaKkvWVW+88XZP\ncayxo3m4ldOtNEdunhC73nfF8uebSMmoy7O+9VwFUouiMS3sFqn+/7b8ATZLagUa6piM8830Fxer\nacqmfU460CVrUnTQdFIKQ2rOO/B0CMcQv9noEvJxqsCwfvCmjF2gA2+3WPxTLK2a7Mr2UnJLsmM5\n6j1/ZIDl1NahGzJuSeYKozBYCCMWR8HG2RqJD0fg8ne61SXorwROegAsNgctJbfgFByN+OU7AQCl\nx/YjaMp/AVwsFqAQgBe3bBtYbA4ACSrOSpU0/7H3wcbdD04hMWgpVv3SlSkLLbdvoinvEpxCYuEa\nOUytXDI5xN1dqPj7V7BYLPiPux8sNgeV53+j49FpxzN8BAKHTIcVT9ltRJZRSBFNLkMjHtqqElyn\nbQzVNRSzHLG5Vhg+/22VPtlHd6G17rbaObTNXXrlN1TlGD7Tijpu5/vAP7gKNjaqSmfCUGuk/u5B\nab6Tp7ooKQzG4L5ZtrCzY2k8zd/3dRu2vt1jmfD24uCDj/hKfdLSlV2EUtM68fRT9lj+PL3yKvLv\nKT4EXRK5paGqlLgy++IJhQCAZmENIuyGQwIxctouoEPcqnZuqoG/5k5bZ71B56/jF+JonmFqCpkz\nxTUXEELxRJ8FFlolUutbl0RZWW+XqL4nua4OiPiyx4KuS8YkBvPHbBUGWQE2RfciuoqypcSv03ht\njlz8MgcXv8wxtRiUWXllHnYmmNYEzmJz5Cf8sk367d8/Q0tJNppyLyF++U6Ez3wahb/uVhrTlHcF\npUe/lbfVXz+L2MWbEHrPkyoWg5jFGwEoWxKaCzJRekx7kFbWp6/Kf2+4qex+oC5wWVtAs6GsEM4+\nEWip7nHbcw+WZmhpKCEf1yLbbNffvoSifw7AztUXg6a9IL+nTgnI2L8argExcPQMhW/0BNLrDRzz\nGNyC4tDd2Ypbx/egs6UWUROXwMlnIGKmLoegvRlXDxNbhjTJn3/2azSWXSc9jm68/Cvlm+jSQl+U\nlCi7EKb+7qHkgvPM0w7YuM4Jmpg6hUe/oHqSfqwTiUOtkThKe971V15yVHkdZEy/2wZvbWlRuv7t\nD8MGwh7KUvad9w3SXosjr/1f5LVrPzUfH0fdxTG/4gTlMQzU+Ddvn6lFUCKvPJ2ywqDIaYF2K1fE\nl6uUlISoH9Yg50Fi15qRUU9QluHvGx9SHmMshCIBuBxqNXaCvEaQSjpAFPx8u+Ef5NWY5nNstgqD\noUjLNH0gUn+CxdatRL2haSlRthDY+QTLf499XFp0RlFZkHFz30bEP7MDPiOnoTojVd7ezb8DKzsn\nsDhcSETUqpBaEgXnlF8TmcLQu10bikpBW2MFMva/KN+I2zh6oLOV6LRRgqbym2gqv0lJYXALikNL\nTQFuHe/JfHbrxB5wrW2ROHczrO1cNIxWRibjrWO70VJbSHqcIVm3RqoEDE/SvKHWpiwAQGyMFWpr\nyfteNzWJkfqHB6bdo9/psOIcL6xQdnl4alkTqbiIAz+3Y+Xz0rEX/lE+yT/0awfum6XsjjVwABej\nx5MviKfLs5J1RZrk9hhONH6NFPclSGvYS3p+qtyuPqu9kwmpqL8Cf48ESmOGRSzEpTzD1WOhSlNr\nialFoJVJvHngQtnqqC1zUt2P6q2uzvYBlGVo72qkPMZY5JanIjaY2gFdVODdGhWGMeFPwZ5HbB0O\ndR+FUPdRJol1MFuFQV3gsraAZjqsECnx6wyuWCxJvRc8Byuc/eA6Mg8UQizUPVBXHYmPRCBpWSw6\nW7vx9bw0dLV2E/ab8OIQxN0fhrr8Zhx85gwEbZo3vI7etnjgi0lw9LZFwclKnNx2FfzaDsJ+VHn0\nh6nwGOCM3PQy/LmGXGpBRx87LDqYovU5NcHm9pwQcG2lpn6ZNYIIr6GTlBSG/J/eRfzynYh7eisA\nIHf/FnQ2ad7ACTv44No6IH75Tog623Hj89dIyWrplZ7Lrv1B2F5y6TCCh81G5PgnkPk7vZVRFZUF\nGUKB6ntWE3QVcqOTxFE1uPyPN+E9oVA5KFfRIqGIYptEohws3bt/76JmkYOqlTIGSSTQGIRMhEwu\n2Rwvvqxa6Oz5lc0qsnz6WRte29BTp+DZ55sxf640c9SsOcqb+qXPNKG9XaI0R2qasnVBl2eli8qu\nPCQ4SrP+hNsOVbpX2HFVpb8dz5W+xc2ImyW/UVYY3BxDDCMMAwCACytSqVV712LwXigNlu7r7kkV\n9VcpKwyaGK2gLJzJ34WObuVaLKNCF8HZ1g8pMWtwInenUdMFm63CYEgUXZCO39gG4X8vuIdjOBLD\nVIuS0Mn8vRMQONxLfj1lTSKmrElE8flqhCSp1h9YdW2+0rWmoGhZ/x1DDuCFS3PB5kp9xK3trfDs\n2ftUxlrZcbHi/P3ya794Dzx37n6UXqzFT0+dUju/IhFTAxAxNUBp7t59el8TPceSv+6Fk29Pmsjo\n6cGInh6Mj8cfRscdVb/fVdfmY+/0P/DEkbu1PqchYHFUPzqZu1bKlYzIBVLF9ta3b0JwhzhF7M0v\n1sMpJBah9zwBjo0d4pfvhEQixvWP9d+QmrNSUZl9krC9tV56MmfjRG9aY33chgTt0s2rTFm4eti8\nLJRlZSK1Rcb8glXbifpqKlJGpoAZHUXOes+hmP0JAL7/sR3f/6i9EJUmWV54sRkvvKi+6rKxnpWI\nnDZpPYEU9yWECkJv4sKoV71vaCmiPIaBoUlcq1KsrbcCYUiloLbZ8lyx9cHhP2VBnQXhn9v7AEjd\nlSZFrjSqpcGiFAZ90qXKGBf9HIRiAY5nbYGttQsmD1qNtMzNciUi/fobOlefJEPgcC9IxBIlv/7F\nh+8mVBYAaNyIq2PVtfnIPFCIY2+pr/LsFuqExYem4bfV55F3tFxl/PIzs7Fr3GGVdgDYmfATJGL1\nr1FvmbVt4CNTAuHka4dTO67h8jc9Ad2rrs3HM6dnqx3/4BcTkfXLbY3PqQ/qMhuRGeMUGovQ6U8g\n+pG1GudqKb4pvxc282k4BkYgfvlO3PrmTQha6KlF0d+pyVefllIbrfUlcmWhOucMBO3aK+8yMOgK\nWXckXTKtXM7/hvIYUyAQtsOaq1pjRBP+7kNQ0WC4+kBkMXTgtinonSVJH1wcqKfhvlb4Iy1rWwIJ\nQdI9lrmmVu1zhdu0KRW21i44niV1d+gQNKO0/l+5spCWudmgysLiQ9I80L2DgL+cTb1ojTa0baIX\nH5JWWeytLMiwcVIO4rnnHWlK0o/GHtKoLOjCvVukAVmKygLQo3ikbBxOOM7Rx85gyoK+tNy+SVnh\nKDryCa5/Ii00F/3oWkOI1S8RCXQ32boHxct/94kaB55933QFYTAcBzMjkVoULf9RJLUoGrt+CzWR\nZOZJTumflMdEBU03gCTUKagktp5aOsm8BUo/uhITfC+NUvU9POzDSPdtExg/rqPPKQxUyalIQwP/\ntlGCod1C9c9fTIbPZ1D/g6uNqGnSkwFd4gPIcH73DbX3Bs027hdqwaFdAIAB91HLCU5ESTq1U72+\nHDBtqShWlR4yi1HkGMiTWhQNe0c2/jnOx1PJxC5B4bE2SHaXZo6RFWzrz1Q33aQ8hsM2j1TA5lrj\nQh/Su/ar/OiKgw297qZ9jfo28im+7a3dDCgJMf1eYZDoURWYTug8tW8u42vv9B+rrs1X+TEFJRe0\np0zsTXeHYTbXbZXS7Df2fuGEsQphM5eqtIVMf5xwruDkR9Wuw2Krfvw4PM2B4uGjvZjCbSairlCa\n1YKoHoQl4uVfaTCffAbA1l76+Z4Wdgsbl5ShtKBLpc/3H0ldWEo7byoFPSv+MDAw9A8yyw4CAOID\n7jOxJMSYbQzD8PGrceXchxAJ6Y8AJ6q70LvN2OlXRd1icHkco64JaA+iNhoE1Y5NSe7+LYhc8LI8\n65E2nEMHacyqRETcMvUbT3XuTHe/OojSGgz0UZRxAG7B8eBweRi5YBsy9q82tUgMZsybX2n31/7n\nOB8PPetBOeiZQX+mRb2C1BzLrsjcH0hO3KC9Ux9BJJEegvo4RcMuzBUXir4g7Cerz1BY97fRZAPM\nWGGwtffA6ORNKoXb9A18Ntc6DKZQFsyJxEciUJlJf8BY74030UacqK2zqQaZu1bC1jMAgRPnw9bD\nH63leag6/zs66isI57Bx90XgpAdh6+6L7vZWNGZnoOZSunrZPl4Fv6QZcIseCbY1D12NNcg/+AHE\n3aonkTJsHMzD9N6b8LseROGFH0wthsG5dGDtfxYGlsYicwwMoVHai+A5OClbGckEPRNVSGdgMAUe\n88cBACRd3XCfeReaT1yDx7yxyH1sG0Qt2rOaMaiSlv0WUmLWwMnGh7Bwm4yLxd+gqb3MiJKZscIA\nABIJccVOS+VORRuc/e1NLYZOlF+uQ0CiJ1hsFmX3KTJjIqaqL+aSm2bcD4UiHXXlyDtAznLQ2VCF\n/J/eJT+5RILKc0dQeY58CtQjGzPx0IcjyK9hYHJPf4HI8Y/DI3QYPEKHKd2jczOtzg2od7sxNvCK\nReZsnbzR0ULdnc4ccb5nLFzmTEXTz+lo+ZOek6uQb7Rn+xDWNqJ8lf5uXmTWAoDiR9V/CdNJ+k/N\nmLVQs5/xK+/7U57XzZEJkrYEHnvJF7Of9EThjQ6svj9f6d7hwnjMDs8kdb3ztwjY2LKxaXERasp6\nUow7uHCw+3gUGqq6sXJWPsQi47tX1x84A0Bag0GWWrX2uxMI2/EUilZ9qtTX2soy9z6mIC37LdwV\nuhhOtsTZ0M4W7Ea7oMnIUpm5wsBimebU3VCF2z675w95nIAu6VLpZMeQA3JZPp/xp1Lcw7CFkRj/\nQrySjD8+cRKrrs3HyivzkH+sHEdePC+/N/i+UGQdUh+ss/LKPI2uT4qyEL0uv7+se1rMvkbeKWlR\nrWW/TMDu+0+ZVhgAzRXZyNj/IrwjRiMgLgUsFgf1ty+hLFM185e2zXxbY5naProoAmTGaOqj6z1L\nRHGz7fbQdEACtPxlXHN3X2P3phrMWuiGwzciMXtQrsp9Lz8rOLpwUHizx+02yCYWpZ035RWf73Ke\njQt3lNNbezoPpCyL0IjFncwJHtceSSGLweM6KLULhG0GdUc6XBiPZ5Nz8PXWKgDA7hNRWDaJWj2B\n57YEwt3bCitn5MHWng1hd49CcLgwHu2tIiwYckN+vXFREa6dbaXvISjCtuNB3N4Fr0cmoeW8avC3\nj2usCaSyXC7c/tLUIqhg1goDAHj7J6Cm4oqpxaCNqqwG+A52V1YSJMDhF/7G7PfGKPUNHumNuXvG\nK7VRLeSmCdlG/YnfyKWkk/UfOCVARQ51CkPmT4WInxeuVW6ZBaN3v8/uIa4K3J/ZNPgI1mfOwNpL\n9+C7ZRmovElcjErQbryMSzV551CTd85o6zEYFrcF0xmFgQYeGpGP7y8OVEqn2ju16vIZPX87I+1G\norSzJ0uQHcdZZU47G3fKcvTF+gBk6BK24WTBRyZZu7ywx7WUqrIAAKOnu+DBwVkAgI421erpMmUB\nAGaHZ6pYKYxJ9uxN8Ht2JpySYlC+7Sfwrxaq9HGwJa5Iz2A5sAxZd0BXWCyWBJDGLOiCvnEOVC0M\nrnMmo+ngcb3WZGAgC9ksSeZc7ZnBvOjtztOWkYW6j743ynp0uSSRWQswnkuSIut3ByApRTmt9oYn\ny5BxQjWj3RS3ReCwpLFKRDEN4+NWgmdFLUV3ZUMmbhQf1t7RTNAl0DX9Mr3VhvWRIWCADT5KiwQA\n/PBBDX54v1qpHxmXpBdm5OF2dgfhOocL4wnb1SkM+jxLMm+BUipVT7Y/6sSqcXzaGBX9lE4FB/sq\ndL9ftSGRSPTOLGPWFgbFjb+tvQeGj19NS7VnunGalsQoDGq4WBKMEcElBh9zKjsIE2JKKY2xVBhF\ngIFu6vcehMeSOfJrQyoL/ZHXlxEXyCTiWOM+jfc5bGuN94kQitQnUmCgn/KCTswOz8TIKc54dU8I\nxs1wwTNTqFkZRELNh7mmsibEWY3G8S5lDwGfJXfDNTkRLX/fgPPEeHk8gyJUlVwG88OsFQZFOtrM\n16TaXdNgahH6Pf1FWWBgMAT8M5fBP2OeVdMZlNFFYRBLmIKQpiDj2B25u5Al4ssJAQCl6s63hP+q\n9HO7Z4RcSah4/zAivlyFvMU7lPpwOdTft/2RlJg1OF/4GVq7apXaPR3CkRD0gPy6oe02LpUY92DH\nYhQGuiCqwUAGjosj/N94BhxXJ6V2QXElKtbuokO0Pg2LBYRHWaPglgA8Gxa6OiVwcGSD3yr1zZRZ\nFV55S3NWEXXWh97tew54Y+n8GkTHWePWdWlmifXb3fH6iw3yvr3/PXDCD/MnVWpdi4GBgaE3VtYs\nJIyxJ3QzohOxRCh3WSIL20QJRPorhwvjkXH0DiqLu3DfEi801nSr9Pk5Jw4/7arBQ//zAb+ZWkbI\nnCttOFwYj9yr7WhvFWHoOEec+KURH6ymN6NglagYg7lJpKo7s22tIe4QwHtxMire/UXlvi6Kbn+D\nBanXkKt9kJLC4O4QKlcWBKJ2WHPs4G4fiqSwJ3G+6DOjyWdRCgMd7ki6Zj8SNbei9FndYirMAdcR\nYXCM9oNDhA943k6wdrcHm2cFSCQQtQsgahegvbQBHeWNaL1VhTtXSyBspS+zhkQC7PrOCykJ5ejq\nlOCLwz4YEGWNcVFSy8DlC9K13lnTiPsfVm+6zLpCzrS+dL401aVMWQCAe+c54N55DuqGICRc+iU8\nfY49/vea8cuuMzAwWC7PveGD5LkumBZ2S96WWhStdE0HQlEXOGyqCoNFfdXTxrSoVwAAInE3jubt\n0NKbPt5dVYpHVvpg0EgHfLOtCgc/UT4tvm9AJj5MjcS0hz0wOzwTMx/3pDT/K/MKAAB7TkUjKMIG\nqd814JP15N3eqEBGWcievQk+S+6G8/g43F69F4KqRpU+QlEXuBzttUn6MxHekwAApY2XlNqHBT0E\nQJpuVUZKzBo42ngZTzhYmMLAoB6uAw/DvnsaHDvqWjzbmgsrFzvY+LkACCc15ta6X9D4j2omBE2U\nFErN4kQn9wHB5N6K4ZG6Fy5LCi+FUItf6PGsQEweXIY/D7bhYkmwzmsZg9VnpsHOVfn/+4tH/0bZ\nNdU/1ubG6KPmWSX53NRtphaBwUKZNEs1o5EhaO9qBM9K/cEHEXY2mg9ADhYMwZwB15SuP3+9An9+\nXQcAePB/Ppj3rA8A4NW5+ci71ibvu+dsLDx8pX+XxSIJ5kVmqsz7c/4QsP4LuVRcx9CYqpLz6cNN\nOH1YfZ58iQR4NqUn1e6RL+qU7pONT1g6gV5llAhZ0DMLbEzlPQiAWImo3vsXqveqptOW0S3s0Elh\nKKtTdYHqq/i7xJlaBI0wCoMFYxvgioQvngT0jn2nTvTm+5Wus9f+jKaLxKlVR461wYOPO+GpeT2Z\nIuwd2Dh5M1CuOHj7cTFyrA0+/FZz6jU7ezZSZtnD3ZOD/Z+1UJL5fGEQVi+pw5xHHLDisVrCPn8e\nbMNr29zB45F7UR0ifBC/61GNfTLu+wBCPn1BhxwrNl67ci/hvce/kabmZQKjGRiMS2OtEF7+hq/E\n3tZZB1eHIEpjbK1dKK8jUxYmznHDvGd95Bv93srFzx9V4+iPDfJ7z20Nwocv9cSU9e7PYJlM5T2I\n9K79iOGqFg4lE/Tc1lUPWx719+Gt0j91ktcSkUD1QHOAp7Sa9s1K5RTzHd3NsLWi/nrqA6MwUMRp\nyki0HMsw2fp2oZ4Y+ukik62vjpg358p/VzyllSkEGWc7VdoUrQxEbUSou08m1kDW53R6O+GavedY\nt0JDoD2LhdHp5Ip3jTy0AgB9p9cyZYFIKQgd6YHHPkvC2kv34M1hTA0Lc4JKek+X+yfD5b7JpPv3\nnl9dX5dZE+Eyd6o2UU2SetTSWbuoFHuPhuOV9/3xzvPU004S4WkdhDqBckKHhpYiBHgkUprHlueq\n8f5f39bjx1vxeCA6ExwOCzczeuIwnt0SpLThL7zRjs8vxOKJu6T1ImTKAgCkf9+A5IfclRQGRlno\nG/Al0no/zZI6lXu9g56jD67DrTnK7t93+OXwcBpgeEEtmOKGDER4TVRqC/eUHgKWNytbnWysjGPR\nVIRRGChiSmVhdPpqk1gTGFQhqywojTm6Wm+lYeBYqQVGnQXhdkY9Pnv4LJ78bqxe6zCYlt7KAoP5\nU1YojZeaMMMJE2b0JMfoXaiNCHVxDgmOKSq1GBpaivSQkpjPNpbj7kc8AADfZcXhwRjlzcnBgiFq\nxx4sGAKJGPgnvRl+oTa0y8ZgWspEeUq1GGK4I1ApUvUmUAx6Lt30rcr9Jj6TQEQbt+svIMJrIlJi\n1iAt+y2kxEgPbnJrVNP2s0ywGWQUBoqEfvsGbj/ymlHXHHHgGVi52ht1TQb16ON/r6/SMG/HMK19\nKq6r951lMB21O7+G18rHdB7vMGYo+H9fJbzn8fR8wnYG46K48fcJtMK+0wNIBT2nuC8hvYZQRF8y\nCkVu/SuNS7CyVt2I7N9RhYO7a1Taf7gZh6KbHVg9K1d+bY5MjVhFGChuqhgHS+KW8BJuCXuCcI91\n/ajSR9EFqebLdMJ5GluLaZetL3KrKg3RvilyZQGQWh7MAUZhoAqLhdDv3lRpvv3wWoMsZ67Boepo\nuUmPKZ6BmI47AljZ2ppaDAYdaL+qXLjJYXwi+KfJ1z5wf/J+tQqDw2j1J8CKNP96Es2/nlRp7+0u\nxaA/1WWqqTQ1QVTVmYoioS+vPZSPrYci0FyvXLNhzoBrOFgwBK3NQpTmdWLVByFYMlrqjvT9e9V4\n7GU/AMDguxzQVCeEV4D5pc/ksK0Y5cCAxBzeAEgkKHphDzqLVRVLBvKUNl2GQNSBwf734nb9BRTU\nnVXb19j1VRiFgSKGUgyIsDRlAQCyXtCegs2SGfjiNL3n4Dra6JyyNnXLDcx/d7jGPgFxmv2VGcwD\n1wemUVIYWBxyufQlIrGuIjGYCCJlQVO7oQgfbEcYczBnwDW8+2cUvAOt8cHqnviEX/fWor5SgO9v\nxOHg7hosm5Ct0X3JVJwu/MTUIlgsybwFEKIbbHDQLelCp6QdGd1pSn0ULQxej06Gx5wxhIHPDOSo\nbslGdUu2xj6KKVaNBdvoKzJohcVhW6SyAAAEQf5aCQvl4vRR+vMJ11f40z6vV8pgvecY/v0yncfe\nOlYFANiQNRMxyX5K93gOXGzImoknvhuLQ69e0UtGBsPDcSR2M3ScMkr+e/OhE5Tnrdr4sc4yMdAL\n3TUYTMkL03OwYPB1/JParNR+7o9mPDToOn7eJT1ZVlQ4dAl4tubbiZSJAAAgAElEQVTS737r66Q9\njoRBPSe6fgIbbJwWHMJt0U2V+zGHN4DrLq2fVPvNcUZZ6KMwFgYdcJw8Am7zk9FxsxC1H9Bfmjsp\ndRXtcxoDQWOb9k4EFN0WYsUqYr/7M8e9MG4ycQpUbbz7QSt+/6tDp7GGhM3T72O3Y1I6Vp1I1hjP\ncP13wxTxYdCP9iu3YJegefPivnCm/PfmX47B5b5J8msrPy90V2r+PAiKKzXeZzBfQm3jYc22hZdV\nEOw4zkazMLh5W2HvuVizyGgUEaA9i1dv2jo1ZLQDEOE5Ht2iDpQ1m/75LB0blp1Km0xB8F95P5zH\nDYawiY+8xaqF8kTibspFBz2dI1B3J4/SmEG/rseNWa9j0K/r5W03Zr0OALCLCkDYlscBAM0nr6P8\nvcOU5u7PMAoDRUK/exOly99B6/GLAICQr15H8cL1WkaRZ3S6hVoWAPz7gO4nm5nXif19Y6LU/3G5\nccUHgxKq1d5/cwu1Og2WAr+uE5sGHwGXx8Z9byUgeoovWms78eP//kXlzWbtEzCYjNp3v6EcL3Dn\nyCk4z5wAAPB7awVKFhk36QKD8Qi3HYpjjfsQ7B6LtIa9mOy2EMcbv1Lpx++sg4MNterAQV4jUVpL\nHDzZWNNtFsoCAPi5x1Me88+tT7X2ifWZhlgfZZdSJq5BO7LsSOld+zHReg5KRDkqfWIObwDEEhS+\n8Akqdv6idq6MnM+QFEPNwj50wENIv0zdYiFTGnoTtuVxeXvM9y9Tnrc/wygMFCl9dgtEza3y6+KF\n6+H3xjOofE1/NwCnwQF9Lm2qFZeFqhJl1xkP/57A6G1vu2DkCGtkZ3fj6eeUrQyXznsr/QsAw5Jq\n5G0+3hzCewDw+R43zLrXFj//0q40b32FP/Z8xsfSJ3sqpS5/vgk//iytzVBT6g8OB7iV043oKCt8\n+jkfa9bf0fn5DYmwS4yfVl3S3pHBomn6KV2uMLA4ql6kii5MDKZj0HA7bP8xWC83pEy+NH2iRCJB\notPdqBEQF8O8XvQz5Y1XVOA0tQqDpSMSaw4wZxQDejgpOEjYXrX7dzSlaY/H4nfo5i2gCw1H1L/X\nFS0PxmLiOBucPGOYDGfGglEYqCJWDShksejZ5Q/e+RAt85iClixiF5jrl3zgE1wBoZpg/tWvSk/E\nP/lQNVB3WFIN6iv8lRQBMvcA4ImljZhV4U94LzdfqKS01Ff4yxUGDqdHofl0l5vZKguWDpnUsi6J\nIXAa5A+3pIGwD6N2mmopcN2cIWzseY95LntA/ntXfinREBUUXZhq3/+OPuEYKLFqm69KW2pRNCUF\nok5QBgA42viFxn7G3HgZE3sbd1OLwKADTWmX4TIpHn4rZqP681Q0/kavYmrNtYNA2E5pjLCZT9je\nejkfJa/T70quiU/ed0NuvpBRGPobQR+/itJlb0HUIvXXp8slyTbIsH8oy7//B1W/XoWggfhD1BuO\nPQ8+98bDY3wUHAZ6a+2ftZL4Axg9pAr1/23c/UIrIRDoEBVNM19/Sy7WIiSEXFYaU+Ee7IBprwxC\n6EgP3KnswNF3s5FzvMrUYtFG8+ViNF8uRulX57T2dRocAKdB0h/XEaFGkI4eXB9IQd3uA/Jr+6Qe\nd4yGfb9Snq/9kmpAIoNx8PKn5ptNBqJKz/rA5dgYrI4DHdxF0WoCAFWN1w0gCYM6bFkO6JCo7iOa\nT2Si+UQmHIaEI+bwBjT+noHqz1JpWXN83CocvbJZe0cSOCYOVHvvTkUgnP3L1P6+5303PDhXGpR/\n/YYAY1Nq5Pd9B5ajKj8AAHD493YsXNogvydj46vS6syyeTWR/qsXRg7jya8Vx1w644uB4VzCuRTX\nI7MOFRiFgSK3H14L57tHw+X+SejIzKMtfiHh88dpmUfG5YV70Vmpuz+7qK0LFT9eRMWPFwnvu44I\nw8CXpsPKWXtNANmJ/RsbnfH0Egel031zY+XLzXIFp/mOYdJTVv+un6/woi9HI3iYsoLpFmyPB97r\nSbeqrhJ0X6Ulq1xu5bKkDGP2SUOUFAZFBKU9yl/7lWzYJcQAAFg8a0i6BEaRj4E8xw/dQfJcF1rn\nJKr0LONU5nZMiKdWcX7SkJd18gc3FmwW9UOarNuHDCAJg2J1Z0WIKgzbhHgj7L2nUfnhr2g+fk0e\nBB3x5SqV4Oe88nREBCRTkoXFoi+hZ95THxAGQwNAVY0ILs5sLH7UAQOHSJNH8KxZqK4VAQCWPt+I\npc83Avg/e2cd3uTVhvE7SZu2aZu6u1NKcSnFtchgYzBkgzFnwjZkjDGkwym2sfHN2JANhgwbDHen\nQLFSd3d3SfL9kSXN27xxb9/fde1act4jT0rl3Oc8QtyYA0BBijtBYAB8wWDlloOqPA98s7EK3+6U\nP65yQF8T0g1/ebYHps0pwdUbjcK1yESOmRkNyxZbYeM29XlJGJRgGDohCjfPSg9SkaePqlSdu4Oq\nc7JPPeXFqoeH7E5ykr3vNnL231PbfJKoeJCOB9N2KjRmxTdV+PB9C9kd5aSkRP0b+u1R1lIFTcGp\nJ3CZ3EulNdJ2XFJpvEAs/Pb6LeTFtsVn0Bk0fHVvAozNGIiMndzpRIOhUHH0EmymKZYJpvSnv+G5\nKxIA4DBvGoq/5/8hp5uZSBtGoUW2f1mAsdOscT49GNUVHNTV8DcZe677yRz7y8uhuF91UqFCbc2t\nymWlo6CQhyYe+U1UPa9GrM3Ey4k0lWprlfj3aGbRPYUFg6KQBTsLaC6qlPj88yUVWP21Fd6abYFv\nd1YjwM8Ib822wIIv2/7O/rDVFiOHmoqN3bVXPu8NRYh74IqQ/sSsdwwGcOIvyS66okKmuYXXeQWD\nPmDi5w7nL98C3YJ4sq5KQbduW2eqahYA+fzCtU2phDgCAb/+zxbBXYzg7maE/XvoOHy0HqfPtKVC\nfRjTTJhDdDPfrU8B6bP337HAqBH8jVTEGDP8uAM4d7GRMK88NhcVcxDSi5iFKf2HyyoLBlUY+Rk/\nJSeZGOByeNjQ/wyGzgvEiPldtG0ahZxU/XNNpmDgcTiE99zGJuFrVr9uwtc2r09Qr3EUKnH1ZBVG\nvmIFtg0DbBv+abmLp+zKx/er2lI7it4oaLPSs67p4fuark2gEOFGs+RsR+2pukHuFpa+QH0F88b2\nidT47diFKw048oe98P3ObbYI62eC5av53hpVeR5wDcxFXR1P7IYhr4D4O1tVrNxysHA+m/R2Qpqr\nkbrdkEShBIOCOC2ajax563Rthhj6KBYAyHQ/+uCTcqnPx08ukfiMwyGff9fuWuzaTa72yfoL2iaO\nN8PkaaW4e69tc1aa56ZWFypJsR7yMugdf5l9bv6STAkGA4JuZgJuQxMsRw0QtuUu2CzXWMvhbW5o\nzbnkCQAotMfmRfnYvIh/ImjMpOF0YheFgp7bux/JqsOQmHMeXTwUqz6vjY2XMjjZdFV4zOXH+ve3\nmIKfZlVa8baLMasxtk+kwvM6WgehuDJJFdPkorGJH2sZ1k/8BreuTvE4zJoaLrw8FHe3+3ZnNb7d\nWY2qPA+hYOBwgP277DH7fem1RzQBJRgUJPsT/UvP9nDmT7o2oUPw0/c28AyQXfTqzpgtSvnJVz7K\nkJhNSl4SrxSIVXimMGzY44eg8vhl2M6ZJGwTTd0sL2W7yFMeUuiGFi0keMgujlZYMACAKZONxmb9\nqVMzqtfXSo3j8tR7qkuhGF1PKr7pV4WefjO1InY/Xij5IPPaGSf07in71lCU/sMLkRDjipcnsmBr\nQ5frFqAqzwP5BRy4ujAQ/ajtENPWkx8TIbjhyMhqRc9wfrzb8AlFnTvoeVDEWqnvBTAYiv0DKovn\nzqXInh+ltvkClqruUiBv5iMK6XgG5Iu5UEm6XVBUNKjrBujvxY8QGTsZZlZMNFSRB74uvjoWjTXS\n85JT6Jb6hy+ErkXWU0ai8vhl0hoLBLhcgM7vYz11NCqPXSY8bkqnqnsbOiNsZuNaxX6R93NwreJP\nqWOepR1BD7/pCq0zNHSh3twyuNn1VLj6LwBcfrJeA9ZQKArZTYI8QkLZW4ZBIZ/gTtz/FB4nL6Kb\n7PYbbkkbcFn98gs5Cm/elXE7evKsuXO7JLUXArKEwa1zyp1USMPnwHqp7wHlYxgcR4coNU7AiyWH\nVRpPQUQR96M7Y7bA3M8RPX+eK7FP7l/3kbXnltL2MFltP6I8Hg8tDRz88d5dfHl7HIpTa3BpWxyy\nn5SDZcXEyM+7IHQCP60bFfCs35TuPgFPkVgEeSjb8w/s3p0CALB+ZaSYYKDQPxQt4tbIrZP6noyi\nSuUKxemLa1KI98tKjeNyJRT3odAaktyOpLkjqYq5qT3s2L4oq07X2BoU5Oi9YBDNeKSNDEhkqBLQ\nrGmqnqovRzeF4tSlFUu9PfDe9C6CDg5B0qwNSs2/LFryDZSjvyXe+Im8yq8msyRNvzsPR8J/UblP\nZ4ZbSwzAZ1hbCl9zqiQUHLr+UCgYAGKFZ25DE9kQCgPjXtUJQqCzrBgGASVVyXCwClR4PS/HMGQV\n31d4nLpQ5oQZAJJyLqjZEgp1Ytk3EDWPkmX2u/xkPUb3Unx/1SdgDq4/34rmFipTmDbRe8FAIZnq\nOP2tZ0DBxyzIHdxG5d2DDPWmIGHfE4nPKDEhjs3M8cLXxd/tl9KzDdEg6bLfqPiFjoK8IkGUJ6kH\nldp8B3lEoKQqGfVN0pNPaIKhoQuVHqtLkUMhG48Vs+S6ZeByW8HjcZWqszC8+xeITtyFqjrZcYe6\nRt9ihpSFEgwK4r07Epnv8H8QBK5Jyt5A2PT3VcmW2AXiRVUoKPSB2F/IC/4xTKhfOQJai8th5GgL\nALAY1FPY3pQq5dZQJI6B6d5Wgb3uwQvNGEmhEufTg+XqJ+q6JLhhuFS+G1ZGjqhoka96u7I+4YO7\nfYqYlD+16uIxvMcXYBqZKzVWH9yoKPioI+j50uO1St80DejC/1nR1+8J0c+lrzYqgkH99daFO1J7\ncr/cAQBg9QxC4YbdaIhLg82Msag4fFHhuRzHqBa/oAhui6eBPZi4XunRWyg5cJXQFnyC/w2eMGW1\n8LUoCVNIvulpNAQfF694TdpXToJPRBLG20T0hfOHE1H+zz0U7b0osZ+8n1MwVmBn4B9fgmHZVluj\n9nEqctYeIPRnD+4Gt8VTxeapfZSMnPVt6VLdl86AZVhbWlO6qbHY11KVr40+MP3uPOHrW4vPouBe\nW6DVwHVj4DHSV+wWYcLfs8Ren31NtTSzhkzp7hNw/updhcfYvyf+PagoDBs2TAO9YOzhDNMAL7Hn\nblsWoyWvCE0pWWjOLUJTSja49eSFnGRBN2XCJNAbTHcnmAR6genhTLTFzhrOy95FY0o2Wv5bq7VM\n+Sr1Jv6eYHo4wSRAfC0AcF3zichaWWjOKwZ4msloVJAtnpjA3LKtRkN2ahPmT84QPhtgNRkXynYh\nwu59cHkc9LYciyvl+zRimyh9Auagqi4P0Ym/aXwtZTeHFPqJskHPoiTnXkKgu2LFLEUZ2ycSd+L+\nh7pG7acabY+HQ18Ee07UtRkawaAEgz7QWsr/Q+a05E3hzYLV+EFKCQa7oUFqtU0SDDZLuIlOnrsF\nNBoNAXu/gP20ISg9dB08jnjF5OATkWgpqkDGl7/B2NEaPlv4St4yrAtq7ie2dRQRC7kbD6HmQRKc\n3o6A7eQwsc28ohg7WaOliP/1dp7H/wG0fXmgUDDQmMRvX7LP6fPdR7CfNgSsEC9kfb2HdB0GmwWG\npRkqzj7g2//uODGxAEAoFtI+2Ynm/DLYTR0Mx9mjCGIBAMDjoeYe/8TQcmAwwOWhJjqx/XQGjagY\naO9idG/FJXiICAoBAnEw/e68Ti0UBDTGpYm1ydqU196IUVoweP8pfxyNsbMdjJ3twOpDnhs/c470\n5BKKrEVj0GHa1Q+mXckrItc/fCGsbK3qWgDA9HED00dyQUlZn00R3h4u/m8syvn0YIyfYYN/9vFd\ngkzpFoTnDVzFMuApe8sAAFbmbhjR40tceyZfDRBlUFUsdIRT2o6EuoKeM4vuIsBtNGg0mtK2DAr5\nBFxuq06yZ3k6DlAqvbGhQQkGBfHeHYmm9DzCiVRThnKxBDS68j8cUOBALHDfEnDrm5D0RlsNiYQp\nqxF08Gt0ObqSdFNfF5uB7FV/AAA41fXCGwf3pTMI/QViQbStaM8FFO25gOATkQj4fRFS3t2u6KcD\nAHitnovUD/k3OqABRbsvwOmdiLbna4nZicg+Z8rbWxF08Guwgj0lrhO4bwnB/vTPfpTYV7Rf2bHb\nKDt2W6xP7uYjwtfBJyLBbW4ltFFQSCLnM/2r80KhOaIW5GHpd25CwXCj4i+hS9JYu3dxsex3hedU\nRTQYG5kJx156vBY8nvhhkqLYW/mjt/8bKs9DiQX9xumtMbAe3QuZX+1GU67iJ/2XHq9RWVDS6UbC\nOXjg4XLMWvAU2SzJgb/rSPi6DFHrnIaCQQkGCys31FYRN+dME0uEjVrBf8Pj4ea5rzRqQ+3d5zAL\n8UXGbP6axm4OKNywW6NrklHxMEN2JwAWfQIAgLCJFpA0awOCT0SCFeyJ+gSi37RALMhDrZRsCEa2\nlhKfSaPq2jNYjehBaCs/fZ8gGMwC3YUl6ZX9nABQ/s89ue0KOvAV6RoUFOqA10ReW0MaLfnFGrCE\nQhtcO1WNpd8RbzuUCXpujyqiQcCY3isBANnFD5CYc06hsXQaAwO6vAdLlrhLmDJQFZ31m64nI5H4\n+iYU7b0Ep7fHou5ZOmofpyo8jzq+bwXQQMOYPm2u0g1NFcgpeYSckofgcCUnIqGBBjsrf9hZ+sDD\noR/odIPaJmsUg/lKME0s0XvQZ4Q4BhuHQIT24/sAt7Y0wMjYDEPGb9BILQYBpb+dILxvySvR2FrS\nKL8v3w+jy/zJMvu4LZ6GlPdk3wJwG1tANxUvsGPRN5A03kEV8r8/KRQMdq+ES+73Hf/fQ5XPWbRP\nPneypqximHg5EmIfKCja47rqPeSvkc8XXBn3F0ljfA+uR/osyQkYRMdJ6ytrHmkIxqrTrUcW2lxL\n3QybxBZrUyatKhl34nZiUMh8pccL8HTsD0/H/irPoyyPkv+gKjobANx6fmrnoj0XEbjvCyTP3arU\nPOoUDaKYmdgg0H2MSrESnR2DEQz+Ia+ItQnEgkBEmJrZoP8Izd4w6AuNeRVy9TNiy85EwbBWLluF\nAG5Ds8aCBgHAcS7xB9zYwQotJVWENpU+p5ympy/4CUBbsHRnFg6iQc83F54Vvg54rRucw/il6cfs\nnYrq9HLk3cxC7vV00vEdMb2qBn8UKDoYy3YQbxfCrV4liISBVq/iXtVxpeauayzDg6Q96B/0tko2\n6pK4rFMor5HvNp1Cd1TfeoHgI8tRdTsO1iN7qFy4TVOigUI1DEYw2Dl1BZcjfo1UmPtQ+LqxQb5N\ndEegqVS+YLiq2y9gNTRUap+ae/Eq2VJ++j5KDl5TaQ5JWI3kp5ssPcqvllx5+Ql8ts9D4S9nCP20\n8TkFCASC49wxsHslXOXgbkND2iY/5e8XSPlbeopPQxYJvgfXo+yPM6g6dxeg0WD/9iSU7j5FOJU3\n6+rT1v+vdUh/fQUYNmyAwwGnuo7Q18TfA02pOcK5yU72he10Oj+tavt2CXYKntHNTMBtaILtjDFg\n+riicNM+iX1lzWUW6o+GWOm3m0x3RzTnFgs/uyQbPP+3FGV/nEFd9At474lE5tsd72dInrSqM/q2\nuXTmNiURnhU2Sw+alkVlbTZuxe7AkNDPVZpHFzxM2oOKWqowqSGQu62tDkz+9yfVMufFmNXoH/Q2\nrC0kxx9SaBfFq2XoiIa6EtAZbe4wQd2nAwCSnx/VlUk6hdcqXzBa/g6+y46pv6vYM7MA/umWqj/g\n9tOHqjReGnYvDwQAYVrUwp//BcPCDHYvE92UtPE521O87xJ4La1qnZNC/6k6d5f/gscDewy/eJpo\npjFOZQ0AwH3TfKS/wfcD51RUw33rAmEftw2fAIBQLAjmI0O4mefKH4DK47S5cAiqQJcfvgRWD/Fq\nwKJ9yciPbBN4Ll/LPq1uzuXHVGTMaTshJLPByJaNumi+uOyIYkEarS08PLxei3G+Cagqb/v6B5uH\nI8LufeF/gaz+wtfK0tBcaXABw5cfr6PEgoHQ9WQk6X/q4EHSHjQ0K59imUK9GMwNw6Nb32Lo+E2w\ndw4Fg8GEk3sfFOdJriZL8R9cHsDlwWfL+2Kn4N6b3wMA8FqU9w8VxDWY9/BF3TPxwj80Bp00bas8\ntFbWwcTTkdAmmMvU31XoM8k3RLOf0376MJQeuSHWTjOW/SNEFvdB0dFo2+xzm/67CWUwCD2yPuCn\n+xMKADodvgfWKh0vIA1BekKnz2eiKbsQlSeuy+wricbkbPgeXI+sj6NQd1+BAnF0GvDfj5z1lOFS\nbeioiBZkkwd1BDxL4mLMaozpvVKpqrraxNDETWdH4H7U9WSkyq5IZNyK5WdKpFyUdI/BCAbB6VvX\n3rOFTYnPDhG6ME3FA8gogISpaxB8IlL+QmwKIMhA5PnNHNLnidPXA0oKhoIfTsJjpeR0fPk7/yG8\nl/Y5U+ftUMoGAQ6zhsNh1nAAAK+VA5pR22YwcYbsvM/BJyLBrW8CnWXCt7UTuTB1Bmgi4sDYiV+9\nOXfJDqJrkCkT3MZm0EyY/GxI7W8MVMhBLoagGrSHMyqO890FPXd+KbWvLLx+XCqXuDHxc0dTWi58\n9n0jdEmqf5QgZgOnqhbmfbui7lE8vH75GlnzFKun0BExZ1ijjsM/UR1hMxvXKvardf5Lj9diaOhC\nmDL1729lc2sdrj9TLlCWouNzMWY1ege8AXu2v65N6bTo91FDO26eXYrKslTU1RSSVn0OG2G42TI0\nTcKU1cSTfi5PbZvWhCmrURuTItZeeuSGSi47grRstU/IfaYFxdHa29L+RiNhymq0FKt2rSkqCkTF\nQtr8neA1S/6MCVNWozGtAACEYkHNaaEpNITvwfWE/6SRPms5PLYthN3s8Sjc8ieh3fv3lfDYvhDc\nRn7KVOtJQ+CzNxJePy8jbMDTZy2H5w9L4PnDEqlrmfi6Ce1pb5vdmxPhszdSOG/OF9/B7q1J8N61\nAtnziQW52vcVzEc2b8bcb6TaJAqnug4+eyOR/Vnb5o/MhqwPN8K0my88ti6gxMJ/9GVPAMDPlHSt\nYj/6sNVfDOpm7Le49HiN2udVhUuP11JiwUBxenssnN4eS3gteK9uHqcc0GhhQU0Ql3W6w9ya0Xh6\nmNKDRqPpn1EaYNAl6RsDacTM/Q2N+Z0nyJtCMqOG8jd2t+5vQnNzjVrnvHprFXgGltJQlZ+rO2O2\nqNGSjoMqqVY7Mx+udMLPa4vE2gXB0Ff/qcLmhfnC9n7siXhYfQa9LMfiSc1FjLKdiyvl+8TGqxNd\nuXrwwMOlGP0SLqIo83XR141hR/osogzrvhgmxhayO2qZ+wm/orq+QNdmEODxeCpfYRuOSxIFBYXW\n6dPjfTx6+rOuzaDQIT5/rkHGm5T/sDK88ratmGAQzZw08mUrNNbz8P1y/ubiYfUZDLN5HTcq/oIR\njYlnNVc0buPFmNUwZphiRE/xW3tNwONxcfnJOujjYSWFYXHj+TYAQA+/6XCylp2RTJMUVybhadoh\n2R0NGEowUFDoGcMHfwMG3RhXbur+RJcSCxQZc1bJ7kQhxqqf3MXaBGJBEAx96GEAJsyyFgoGALhR\n8RcAoJXXjNKWXLXYEhU3DktDzkt83sJpJJwoDw6ZD5apnVrWBoC80seIyzqttvm0gSGcsMtLR/os\nZDxLO0J4H971Y1iYOWhsvaq6PEQnylecsyNhUILBzNwBDXW6qaxMQaEtGHTdZ1XSB7FCQWHI9AiX\nXUzy44kZ+Ot+gBasUYzbcTuFr40YJvB3HSl3tefG5mok5pxDcWWipsyjUJHgEfOQcE16PZywmVtx\n/9AXWrJIvdyN/5Hw3t4qAIFuYxQWEZW1OSisiENB2TO0cBrVaaJBYjCCofuAD2Bt50ca7GxosHwc\n4DK5p67NoKCgoFALvp+OhsvkXnL3T91+HkXnYjVmj22YH4LXvqrQmOhXf0Brjfo2BWVFLTC3NBG+\nNzHj5xgZ79eWrKG8WHZSiKi4cUi4XoyMxxUY87E/jE0ZhNuCqLhxKE6vxZ39WZiyKgQAhM89e1gL\n+4m+zn4mfxKIVk4TEnPOITHnnNxjKPQDVTb9qoqFxnwfsbamZh6svDNVmlcZSqtSUFolnpiFQjEM\nRjBY2Yp/8+krjhGhsAv3h02YH2h0NaZKFKHPvvc0Mq+i6GuQqCqBr5pG2tcstOvrWrSEoqOj6M+B\noj/PVt090G3bTIXGAID/onHwXzQOcV8eQeWTLIXHS4Jhaoyw0wtkdyRhwPFPAQDRU75Ha22TjN6y\n+WVtEdbva6tS+09cEABifT43H6Zcc+395DEA4MbvGYT2z4/yC1hum3QbAHD/cA6i4sYhINwOKXfL\nCMJAEZFAYfiIFrrtbETGTkbsmVwc/+qxrk0REhk7GatDT+naDJUwGMGQnngWfsEv6WRtujEDzpN6\nwnZQAKy6e+jEBoqOiyAjkbztktyFmptrYG/bBT26kdfESMu8hMzs6wrZIU/mJcG4KzeXq319SVAu\nU7pHHaI8ZPN0AMDdiK3gcVULglXXIcGAE58BUP0wJOZWHQBikHP7Qm4/n/OVa66ouHHY83EMEm8Q\nXXJdg9nC56K8tbMPlve+qLDNFJIJm7kVtWXZSLnzB0JGzweNRkfMP21ZnkJGz0f6g7/hP/ANmNu4\nCk/ow2by08WmP/wbDCMmvHq9TDi9D5u5Fc0NVYi/+hN6TliKZ+e2oKG6WPgs/eHf8Ow+EWkPDsOz\nxwQ8Oyvf9yWX0yLxGdPMCgOmR+HpvxsRGrEQAPCoXf0istuJsJlbAR4Pibd2o7WpDt3GfIYHfy+T\nupam6QgbcUPBYOow5GXc4r9QZ3EjEgZdWiL238Czi+Dz0UCGmFwAACAASURBVEhKLFDoNeYsB5HN\nOg/lFcT6FX7eY6SOLy1PQmur8i4ZYutXpsm9/rDwFcLXLxIP48rN5bgTvQU8HrGmRn7hIzx4/D+l\nbaRQHRqDrvYbvPALKrg/0GgauVEcdGkJzP0cZXeUwjjfBCQ8bkB1BQcz+iaLPTdmyv57tjTkPKIi\nbuDtH/sgKm4crF1MCc9v7M7AscgXhP/+2RCvkt0U5Ly49D2a6ivx+NQ6GJsRi9/FXd6JhuoixF7Y\nLjYu9f5BFKdFoyDpForTH8Dei+i+9/iftWisKcX9w0vQYwKxwKJvv9fw6MQqVOTFyS0WZGHGdkT0\nkaVoqq/EoxORMDKRHW8joCj1HirzE1Bblg1uazN6TNDNbf6A2b5Y9WwSAL5oiIydTHjO5fAw6B1/\nrIh5CbN+IMbfCPrauLOw/NFLmPPrQMJztpMZFlwYgykbe5Ou/eZv4fj031FKeZAsuDgGCy6K/y0M\nGeeGJTfH4aMTI0htldQmeD10XiCWP3oJQz4IVNgmeTGYGwYAeHrvRwwdvwk3z31FvNeloDBgRE/L\nRU/ZFT1FD+u7QOI4wbyhXWchNv4g6fhnL/4gtUMb6xsZmQEArt5aKRQJjU2VuHprJcGWhOQTCttF\nIT+Wwa6oSciX2if8/GKNrD3o0hKlTvUHXdRcYGbPn+eqfNOwcFqmxGftbxwkUZ7bgKUh5zEzqjuW\nXR5OiGGw82Th7LYklWykUB1zGzd49pgIc1vxg8XSzBjh6/QHR9B78gqUZj0RtgluIcior1R/Pv+G\navHaIPKSEXNc+LqmLAtWTroJ2o/en47o/ekSbxi8+9qjLLMWm8LP4YPDQ/H1g4nY0P+M8Pnc3eFg\nWTOx9507GP05MSXrwstj8P2EK+g301ts/sjYyTgV+RTFqTVY9WySQrcbkbGTsXnIeQQOcyLM+9Kq\n7ugx2QM7xl2Gg5+lwrcmc3eHI/txOfa+cwfv/jkYt34VP5xQBwYlGHoO/BgAMHT8Jqn9OkJgNAWF\nMkgSGeUVqbC18YejfTe9W79vz3nC1+1vFADg/qMdCOv7ufqMNHACj4mnSEyeqp46CaHfvY67EZI3\nL5qODVJUNGgjVmnQpSWInvIDWmt1kyXF1MIIjbX84OjAQfaEZ0tDziMqbhxcg9nIT6gGAER8FoAL\n34sHePoNsENadJnC63uvWgOGueTiWGlLF5G20+h0+G4k/16qi3+Bwn27Jc7pFyV+Si9pPUHftKWL\nxMa1b6t9/gxFB9RfCC9s5lbEnFyNhOu/Ct9LhgbR404upxUP/v5KYu+Wplr1GClCc0O12ufUN9jO\npri1i/9z8OMr18RO6o8seoSGymYAwL537wrbRTfrF7fEIWSsK94/NBS7Zt5ExJIQbB12AXXl/Bin\n1aGnhM/kQTDvs39y8Mq6tlumPq95C5/Vljbht9dvKSQaRD/Lmh6aS19sUIKBgoJCMtIqMqdlXoKt\njb9ers+25Oerb2mpJ31eV1+sunEdCFFxQCYeVEHaFbu2EgkMuvgF7oyVtuH6r58WExsMOPGpzhI8\nrI4eTXjfvp6CQDQI4PEgJhja95FWk6E9ArFQfvE8Km9eA8PcAjYjR4M9YKDEMTQGA74b+F8vbmMj\n8n76Aa1VlbAdHQGrwUNh3rUb6CYm4DaJB5eLbvBzvt2C5qJC2L/0MqwGDwUAeCxcgpxvxf8tXOd9\njKo7t1B56wa8vlohnKs+MR4NGemwG/8SLLr3QNEBuT+6QrQ0So71cg4cjMJkfmC634AZyH7atqmj\nM6htmCaIvyj9plSwwSajvbhgO/NvwPtM90bYm36qGyeDvNgKhfpL+yzqxKC+U6mbAwoKyTyP+0vi\ns8amKr1dPyv3Frw9hsHYmEX63NdrlMq2UaiGVrOO0Wjos+89xMyVXBhJF1nQlHWZUhV5Nvfq6tMe\nnzUbAQDZUevQUl4OAGitrEDJ8b9RcvxvieMEYqH9bUDp6ZMoPX0SflHb4bNmo8TbgqyNa9BaWSk+\nbuNWMJ1dwAoKRn0S0Z3LzNsX+b8Q8+8DQMEe/veR3XjVk6aI3hzEXtwhfF1dlIqwmVvB43FBo4mH\nhppaOhDGpkW3VQTOfXGR8KymNBNxl3dCXYjOLU+qVL8BM2Bm5QwA6P3yStSWZiH5zh8yRukfXI7y\nbuuSTvafnsjGnb2pqMpvUHpueXDvbiN8zWkh3rrTjXQXemxQgoGCgkIytXWFBrl+WsZFeHsMAwBY\nsT1RVZ1NeO7jNVJl2yjkh8FiglOvnRMrSZi62kh8xvK2l/iMQr20lJXCxNUNNmPGofiw5AMBReG1\ntIBmbAzz4BDUJcSJPRcVC6Kkr1gK3w1b4PLO+2Jio/K2uFtI5a0b6jH4PyRtuOOv/Sx1XGbMCWTG\nkMdf5b64iNwX5BmtVK2FIGl8+6Jtov3Sog/LPZ+s4m+GyPGvHuPTM6Pww8QrYs/ObojVSFYmHpcH\nOy8LlGXx3c/ePTAEf30cDQC48VMS3vwtHH+8x3ebWvlEN9lCAUowUFB0GLhSXIL0ff0rN1dg1NB1\nhHgGUXjg4erNFaTPNE3gsdVInhoJm4lhcHhnPOGZpNgBReIM/PYsBYMtfruS/sE2tJZp39e4589z\nEfPmLuF7XdU0kXSi32vX2zqwho+ubhl0Re6ObfCL2g7L3n1h2bsvCn7/FfXJ0is4O7z6GgCgNvaZ\nxD7lly/CbvxEOLw2E3VrVsptD48j+XdMQ4p44Hd9vLgYoehYrA49haV3x6OlgYPto1RPJRx7Jhdx\nF/Lx0YkRMGMb49ymWCRcags8Xx16CpMieyD0JXc8PZmDs+ufq7zmmh6nETTCGe/uH4ya0iaCILm1\nKwXN9Rx8/WAibv6ajNWhp0gzJ2kDgxQMNBodQT1mwMGlO5qbapD07DAqy9JkD6SgoNBT+IJg5NB1\nYk9uR0ehqUn3QXoO74wHeDyU7r8MVg8/sLqT59AXiIXKs9GouhwD1y9nwtjZVig82iMQC6X7L6P+\nRQacPngJJr4u8P11sdqCmRXB1KWtIrBFFxetry8NfS7I2FHJjloPz6X8ZAYu734AAKi+fxclJ46S\n9jcP7Q4AsAjtAQspwcsAwDAnT+cpLehZEpwGcTcRbrPqBfgo9J+ocGIVcrIbANE2WTcE3FYufppy\nTeLz06uf4fRqyYKYjPZrtn+fdK0Qm4eQuw1GH0hH9IF00rHarEFhcIJhyPiNBB9BE1MrdB/A/yVW\nnP8UiU/JU0ZSdC6qnmbDMsQNdGOGrk2hkBOBWNDHomztN/vlJ29L7AcQbxMyPtkBVg8/uK96E6zu\nvqh/nk4Y014UZC35WTiP3cyRKDt0VS2fQRl6/DBbZ2sDgNP4UBSdi9WpDe3p99eHePi6dBeUjkRL\neRnSli6Cw9TpYPcPAwCww8LBDgsnzZBEN+HXieBxuQBXPOuZPPBaW5UYpNlU68q6B6nqVkRBoS8Y\nlGAYOiEKAPD4zveorcoTeULD4Ii1cHTtCQ6nGSmxx3RjIIXe8GKJZD9MSZh52MIuPACW3dxgO8AP\n0GyNQFJaWxuENQk6E4K0qfcefqtjS8iR5gohD/XP+Deg7pFz5bo1yPn6N3hseA+2rw7WqWCQh9Tt\n51H9Ig8MFhNu0/vDfmiQ2ub2XzROKBj6Hf5Y7nHld1OR/ccdtFTVwyLQGcGrp6jNJqaDpdrmMiRK\njh1BybEjAAD3TxfAxN0TflHbkb7sC744+I+62Gew6NkbjVkZyP9ZuSKL6cu/lN2JgoJCqxiMYDBm\n8q8uyTMl8XD7wgoEdJsCF88wlQSDNv1TVblej5n7GxrzFUu9RSGdhpxy5B6OBmRoDU26ReTk3euU\nQb5GDBMAwIA+83Ht9jc6tYWM4l/PyO70H9XXn6q8HqeW715BY+juhqzr+qkSn9Wll+DpvL1i7Ulr\nTyEJgPvMAfB6d6ha7WHayq5GS/b7u7w0VdhOuTSph9wfvhO6DXks+hLZW9tqIxUfPQKLnr1h5qP5\n9JMUFBTaw2AEQ79hsq/1Ul6cgItnmBasoaDQDOlZV4SCYdTQ9WhuqUNNTR4sLJxhwmQDUL/Ljpmp\nLXy8RsKa7QUzM1vCsyFh/IJCra2NqK0vQlVVFlIzLqh1fQC4Hb0Zo4auB51uLLXKtK7clZqy5a+M\nyh7eE+zhPeXuH/h3JEDXXao8MqRtrOU5VMk9FI3cQ9Fq2aAPuvgFeDJSJMbM3YXGfPLMOqLcGbMF\n/gsj4DShu0o22Q/vgtLr0oN/OwvclhbCe16LSIYtGk0pVyGXd95Hwe5dsjtqkfUrbPH5B2zkFXCw\n45cq/Lhbvriq/n1McGyPE0xNafjraC0WrypHa6tm3aeYxjQs/dwaESPNEOhnDCaThvIKLmKeNeFO\ndCO++1nzabY7ElZsOjautMWQgabw8zZGUQkHD580Yd/BGpy5RF4/qCNiMIJBw+6JFDqAYcUGp0r3\nwaz6xpWby4WbZqaxOexsAzW6HotlDxenXlL7GBmZwprtBWu2l0YEQ0jQNLn6jRq6Xi9jHEQpP3YT\npX+Jp+QjQxCrUPHvPZTsaQt4Mw10h+fG9zVinyooegP76I1f0PcAeeYruaHRQDOS7B8YPeV7tNbK\nH9ya+u0FlQVD0PJJnUIw+EVtR/Hfh1Dz6AGhXfT2IPd78QDlsrOnYTdhEvw2bUNt7DMU7SdWV3Z4\n9TWwBwwUi4EQVGZmBQXDb9M2pH21mPDcokcvOL0+R2J1aUVpzPcRazN1zSC8j4q0xefzrITvvTyM\nsH2dHbavs8PRU3WY/SF5YUljYxpqsrwJbfPeYmPeW/yDHzO3DLXua8pSvWHOkvxz4urMgKszC5Mi\nWNi0qu1g6MSZOsx633CKY+bGesLeTvLNa/t/P2X55F02tq21I33m4sTA5HEsTB7Xlt2uoZEHG99M\ntaytrxiMYHh8ZwcGjFgmtU9At1e1ZI3h4vXTFmR//jXs334dJb/sg8eWb5Cz5BvhcxMfTzgt/hjV\nl2+i8uRZ4Zisj5bAPWoVcpeugcMHb6LswFFw69qUtfuGFeBxWpG/dht4zS2EcW7rl4PX0oL8bzYL\n+9u/+wbM+7adwmZ9RLkKiKLIplievs3NNRL7lZUnq7QJV2V9Y2MWhg5cLtc8AhEV6DcRyWnyuwhp\nG9upQ+UWDAJExQIAmAV5qtMktaCMu2ZTcTWyfrsJr/fU654koPx+mkJiQUD0lO8x4MRnGrBIt0R0\n/RoX4jeodU7H12bC8bWZpM8kbdwrb1xD5Y1r8IvaLle2pPZz+kVtB2g0pbIlqRMyQSHKtMnmePUl\nH7DciZvU8jRvsMykB8E15PmguIQDzx7ZUvtJYvQwM/x70FmpsaJMmWgu/JxePbNRVKzb9NzSyHku\nWSy0tvJg4Zmp8hqy/s0lYWZKE45luWcoG++v1xiMYGhq4F83D50QhZhb36GupoDwfHDEOtAZxshO\n1e8AQX2APWoYWD27wXPHBvBaWmA3ZzrK/jwCt7XLwGBbInv+V7B+aSxcvvocBZv41Sw9v9+AnC8i\nhQJDIAZoDAY8d27ib/hpNHj9uJmw+Rf0M+seInwNAKW/H4B5356UUOjkCMSCPFRUpsPG2hduLv31\nWjCoA4e3InRtAoHkTcp/vXMPR2tMMCSsPK7UOGVEhqGjjJhIW7oIxvYOsB09FqyQbqAxjNCQmoKy\ns6fRXFgg13i6iQkcp8+CedduaK2uQuX1a6i6R55lTHQcADjPeQtmgUHg1tejLu4Fys6dIbo8gVy0\nyNsmjbEj5Es+QacD65bbYsV6fiXs/T87yhQLAhwdFI9R6hbMxKMrbgqPk4esp55ge2WiuUX/XDqy\nn3nCwZ7861XfwIOtX6bKaygrFtpTn+uD4//W4fUPDOfmRh4MRjAA/IDnoROi0GfIAtLnOek3kJms\nfneJjkbVucuwnhyByn/OgdvQCLs5r6HszyMwsrcVbuAr/70Iq4ljhGMqT18Er7kFdAti4KFQLAAA\nj8e/idi4ArnL+CkyBc8anlMFdCgkU1ouXnSpPdbW/F/m5ZWpmjZHabK++BleWz9E4LHVSH9/G1rL\n+S53NAYDAYdWIPk18YJu7XFbOUfTZipMyZV4XZsghqoJKpLWnULQCuULINmG+aH8fsev/9NSWoKi\nQweUHs9takLhn3uVGmt+LgVpSo5VFis2HVXVXJw6IP/p/RefWAkFw7TJsoPzRWnM91HIjeZFgmar\nsFdneeO9BSXYf6RWo+soQtZTT4niqrSMA/dQ5W5pBMTedkeAr7FKc7Tn1ZfMUZPlDUuvTLXOq0sM\nSjAAfNHAYDAR1GMG7Jy6ormpBglPDqC6IkvXphkcXEGhG5rs0xBureRfHi7LPie851TXqGQXRefD\n3lZ6Kk4TEzZo/+W5ffZivzZMUoqmjALkrvkD7qvehO+uxTL750cdhOvSWWKVoZOnRpJWi/ZY/y7M\nuoi7K4n21UWxN1k8fnc3ev/+jq7NIFB6IwlBKhQP93hzEEEwhPu9h7tpvyHYeSw8bfsKT/NFT/Yj\nun5NmEPeE/+Irl+Dx+MSahBFZ+xDZUOelFFtY8leC9Z2Zgejh/sUQlsvj9dgZeaK68k7hP27u70M\news/XE1qcxPq5/UGrFluuJu+G3VNpRLXj8s/iwCn4biW9J2wfUTg56ioz8XT3GMYHvgZrid/j2GB\nn+Jm8k7YmHuhvC4TXHDRz3s2eDwOHmW11VgaFjAfGWX3kV3+SLjGnbRdGOj7DjJK7yK15BYAYEzw\nUiQVXRH2k4cft9hj4lhi5fWv1pRj7AgzjBwi/dbh1hlXwvvc/Fb87/dqLP3cGtZs7Sc2ePikCReu\n1qO0nAtXZwY+n2cFE6bsv/e/feegN4Ih84knnBzJxUJmdiu6hOWoNH/0JTe5xEJ5BRfH/61DXGIz\n7GzpmDbZAl0CpI8zNqYhP94Lrl07xv7U4AQDAHA4zYh//KeuzaD4j4KNO2R3oqAgITntDAL9JgIA\nhoQtw637GwnPjYxMMSx8pfA9h9sCQLvX5YpuwOufpSF5aiQc3hoHq9G9walpQNXFhyg/Ie6GUfsg\nEclTI+H9w6cwdrBG6cGrqPjnjsR1c5b/rtyHUIGHM35UeY6G7DI1WNKGPhROswhwIry3NHEEAHja\n9kVOxWNhewuHfzDT3iWoi/MYdHUZj/gCYpVaScQVnEVe5XMAgJ/DYAzwmSsmOMgECJlwEcXDtg8u\nxG8QiglLU0c8yfmbMMaMaY3nef8Q2kZ3WYLLifLd8uRWPkVu5VPhWFFbWEwb4dymRpbo6jIONuZe\nuJ36MwIdR+BC/AYwGSz0956DB5l/CsfamnvBzboH8ir5FXfrmstwKSFKuKZoP0WYOqnthsDWLxP1\nDfzfN9/9XAVXZwbSH5PHFz284obQYKbwvagf+7c/VcGcRUNZqjfp2NnTLRTaoJ84U4cpE8VvMtZv\nr8TarZLTra/ayH9mZERDbTa5LQJMmDQ0NevWNcnfxxjOTuRiITahGf1GyRbMsugRwpT47Na9RoyZ\nSu56t25bW1a27evs8PE7bNJ+ttb6lQFPFQxKMAgKt9XXliA59m/qVkHNNGfnwvP7jcj+bBmsJoxG\nS1GJzDFZnyyF109bkP/NZrQUl8K8f2/URcfItV7V+auwmToJFcdOq2o6hYGSk3cX+QUPMXzwN2Ay\nLaSmVE1KPY3c/PtatE41SvaeR8ne87I7Asj89AcNW6M8zeV1ujZBjOYS/b7FjC84D3sLX5TVZuB+\nxl7SPomFlxDR9Wu5BYNALABAWslt+DuoJy7ElkXcAA/0eQcXE/h1FQTCZ4jfh4TbDQC4nLgFvTym\nwdEyUKVA68F+83AxYRN6ur+KxMJL6OLc5gqbWnwDANDMqYcNy0PYLnpTIhAMPJ54lKmgnzL2Hf+3\nTigWBOQXcrB4ZRlp9hxRsUDmYlRXL3nzreiJ/qz3i9GY74O6eh7s/DPlHiegtZUHU9cM7Iyyx3tz\nyAsRVmV6qy3jkDKkP/aEqzO5WLh6qwETZhSqvIakmAUuF2KB7NJYtKIMi1aUoSHPh9RhQ1G3M33F\noARDfW0RWBZOYFk4oOfAtqqfXE4LkmOPojhf9YJJnZmCjTvAdHOB585NqLl6i5DVSCJcLrI+WgLX\nlYth5GCPupincguGyn/OwWXZ5/DYvgY5i1apaD2FocLhtuDKzeVgGpsjwHc8HB26gUajo6a2ECVl\n8cjMvq5rEynUQO7B+3Cf1fHr5HB4rQCAnu5TkVkWjdSSmzq2SD4Em+rM8rYUqm7WPRBfcB5Z5Q+R\nVCSe+etJzlEAwKgui3ElcZtS6wrchZzYXfA09zg8bHqhmSM5tz2XxyHcJKjaTxKSAlb/93u1xHSb\nAJCa0SLx2f4jtZg93UJpm0RRxwZ0/tJSvDnTAkxj+YK0tUVajIdEsfD3qTrMkZDKVhGKkyTfPCki\nFkQxc8uQKEKunHDBqCmyEwXoMwYlGB7dFE+xRqcbIbD7a+jScxa69JwFQFI1aAqgLQhZNDtR7b02\n/87mvAJkz/+KdIyk8QCQv1b8j0X7PmQZkSh3JgoBzS11iEs6iriko7o2heI/Elf/o7a5snbfUotg\naCpSY9EpHgA17ZUq6nNgaswW+ukz6MbwcxgsUTAw6Mbgadm9jgwOt5lwEp9cdBW9PKbBysxNuOFO\nKrqCIKdR8LLrj4eZB1BRnw17C1/0cHsFHF6rwmLhQvwGjAj8HJUNeULR0djCvzW6k/4b6W2BgEsJ\nUQj3fQ88Hgf3MvZI7Teqy2LUN5VL7aduug3KlfjsvQUlahMM6oLtlSlxkxsazESsGoOs5ak7kfLQ\nA24u5FvTb3+qwrK15WqxhW1J7iqkqhAzdSUXDYMGmKo0rz5gUIKBDK+AMXB0lb+qKgWFIRI+tc1X\n+O4xxVPRhk/dotQ4TSD4LFXFKYi79auOraGQRtntZF2bIEbi2lNqm6vsbgrsBgWoZa74gvPo5/UG\nbqX+RPo8OvMPRHT9Go9z/oaNmTt87AeqvWaCLPp4zkBa6R04WPghpfgGRgUtwuXErWL9BJt4UZKK\nrhBuGUpr03ElSXadBNHPKPr6WjLxsOhGCt8tT1QspJXeIR17N/03iWuIouytx9FT0t3wHj5uQr/e\nJkrNbUjMnm6BpavVs0EHgNR0ybcvAJD8wAMebuTb0qWry7HjF/UcFkgSbXv+0qyr44FfHPHGPMNN\ntWpQgmFQxFowGMQAFR6Pi8e3d6C2Ol9HVumeiO78VB8Xnq/TsSUUmkKw2RcVDqLIEgSaEAvKipC7\nx5ZI/BwUFLKoTVLdd1lA8flYtQmG2qYSglhov4mtrM8VtpXUpCC5+Jrcc0sLZlZmjsp6/in4laTt\n6OM5A9YsD6QUX1com1BH5otI6UH6P+6uxp7eDlqyRne8PN5crYIhOkZy/ZOkaA94upNvSWd/WCxT\nxCnCb9+R/9t99AV5pi9FmTizEGcOiaflnTrJHG+oWPhelxiUYGAwmKivLcKTu/8Dp7XzFd7RRyxM\nHVDbKDs4Wl3jKCgo9INx5z/A+XFtN0T9Nk5E0d1MZJ82nJorVc9VS8nYEYjJPqxrE/SOwiLp1Y5j\nnnWs/UdGVit8vMS3g64uiheWk0ZCMrl7U+J9D3h5kG9Hx08vxLXbDWq1Q9NcuWlY9sqLQeV7qq8t\nAcvCCYPGrsHQCVEYOiEKg8auBtNEtk9g+LStCJ+2FWFTNmnB0s7DoEDF5bIRw0SpcR2Z9ifuIUM+\nUOspPNlc4VO3wMV/MMKnbkGXgXMRFDaH0C986hZYOwWBZeWC8KlbYG7lKjYHGT49X0H41C0wYVkj\noN8suT9H4IDZCJ/aFmjPNLOibiL0mMtT9xLeP1lzEaGLhunGGCXh1Gu2CBZFxyQrp1XXJqiVzBxy\nVyF1B0OT3TDE33WHtye5WOg7Kk/tYuHxNc1Uye4MGJRgeHRzK26eXYqbZ5fi9oUVaGqsAsPIFGGj\nVgoFRPgY6TnT6QwjhE/bCme/cC1ZTdGegQHv6toEiv8oSOXXBrB27oKk+8TaJnePLUFlURLqqwpQ\nV5mHkKHyiTwXv0G4e2wJmuorkfLwoOwB/5EcvR+iEah9J6xAYfo9ucdTaBevSSGE956TQlARX6TR\nNRtyJeeYp6DQFrquT2CoxCcRBfrd867w9SYvfhY0IEcjVa27BpHXXdj+oxqTKXRQDMolSRQupwXR\nV9t8Mo2Z5gjt9y4srORTj4VpdzVlWqehh+erSo1jMW3VbAmFqtSWZ5O2+/WeBitHf5iaS04jSIa6\nbgbSnxxXyzwU6if440GoySxH8f0sgAZ0nT8Y/w7dqdE1iy++0Oj8miaiG7HSc3VDIe6l7dbqmvJS\nXpeFhxkHtLqmKHF5Z5FbQaVK70i0r0XRuzt54Lh7aDZKy6S7hambQ8f1o7K1PmNwgsErYDS8AsaQ\nPisvTsDNs9+Ltdt7tM+i1DFPB2g0OsaGiv+i5vF4uBhLXhDLiuWKMP93SJ+RBVELAqxltbUfq+w4\nZWwUnfvC83UwMbbE8ODP5R6rDxjL4WanTnhc4i9nF79B8On5ijCoOWToPFg5+Ms9n7JB1nePLUHo\niPmIvbaTilPSc/4duhN+M3uh38aJKH2Uq3GxAAD5x6igXG1ha+4l3PjnVTzHi7x/tbp+iNsEhLhN\nAABceKHdbFKGDJ0OfPW5NVYtsdG1KRJxdzVC6iMP0mc2vploaNT+Hu3BZcpVSRYGJRgElZ4FJMce\nRWHOQ5njnHwHEt6nPOyYQV4CsXAxdj14PB66e74CF+tuoNFoMGNaoaFZ/MpNsBFvaqnF9QR+/vAh\nQR+DZWKLiO4rxDbVSQWXha+DXEaLtUlC2XGiNqYW3UBa0S2ZNopia+GNfr6zAQAxGQdR3VAAP6ch\n8LTrJ9fa2oRGowtTCrKsXHRqi3f3SWhurBa+V0QsqIqlrRd8er6C6H9Wam1NCnHqs6RnigGAtENP\nkHboiRas4cNt7li+44aCm013mJvYIjr9D52sH9Ht8C7orwAAIABJREFUa1xN+BYtHP0OJm1u0c1h\npK01HfnxkguR6RM0GiSKBQA6EQsU8mFQgkHZgmwWNu6E9yVZHfOUqqG5EjcT2075nmefxPPsk4jo\nvgJDu3wq8dS/ffutpB+Fz9tvyDNL7gtfCzb+om2SUHacMjaK0s93tlBACUjIu4CEvAsy19YmCXd2\nY+CrbYI4/ekJ+PacAgCg0RnoOuhdsKz4adpCR8xHfXUR0mL+FvavKEwgrdXg32e6cFzfCStQU54l\nFqtAxr2TyxD+6mYMnLIJNDoD8bd3oevg9wl9JK1JljZV8Mynx2Sw2Hx72A5+6Dr4fdRV5iHrxVlC\nfxe/Qch4elKmnRSao/x+qsJjXro5Xys3DRTK09Rai7yKZ4Q2JoMFK5YrLE2dJI6zZrkjotvXSp32\nk60pgEFnwpxpCzsLX9BokoNsRwYvxMOM/SivI3ef1AfkKUymTiQVXNNnGvKk29yY76OWKtYU6seg\nBAOFdETFAhnGDDO9P6HRBDxt/xZXgorCBDE3HkGcDY/LkVngLOEOuR90aswRiWNEN/jt28DjidnT\n/r2kNcn6Csh4JrvoVmrMEfj3mS6zH4VmqUvRbAAzhW5oaqlFStENqX1crbsh1H2yVtcURVIMRD+f\n2ZR7EoB5b7GxY4NicWX6gLwCpz7XByx3SjToG51CMJTlxcLRq6+uzdAZCXnnEew2Dr28p+NB2j4A\nQE+vaQCAFzmndWmaVAzBRgr1499nut5Upe7MVMfmirWJ3iC8dHO+tk2i0BL5lS+QX/kCQc6j4G0/\ngPBM2VsGRRDMr47g6Y5GUrTkmgXtuRPdiM+WlSEuUXq2oapMb5gw1ZtCVRXodO3fNHz6lXqKtnVk\nOoVgyI2/2KkFQ3VDAQCAbdZWedDO0hcA0M1jErp5TNKJXbJQh42tHCpw1lAQuDE11BTr2BIKAGgu\nF6+sevuDthsrMtcjSkR0LJIKr4gJBl1jY+6BirrOWXBv0ypbmWLhpVmFuHzDMDwJTF0zcGyfEyaO\nYZE+L07ygmNQllZs2fVHjVbWMWQ6hWBorCOWNu8+agGeX/lOR9ZoHzqN/8/M4bYVZ+Hx+Flx7qfu\nQVV9nk7skoUh2EihPqhbBf2nMpESc52NqoZ8WJkRiza62/TUSsrTBxn70d9nNqGti8tY3Ev9XeNr\n6yMLPrSS+MzcIwMc7WYiVRrRtKlT5xZJdFViW9Lx8Tts/Li7mvS5OgnwNUZKOnkBOwo+BlW4TV20\nD4Lu6DiwAwEAJTUpwraCCn4+cyd2kE5skgdDsJGCgqINXQQ8sweEwWfdRvht3ga/zdvgOGOm8BmN\nwYDH4iXwWLSEn56FQmGe5YgnH3C3bZ+qXDNUkAQ4mzP1N12oJln4kWSx8NmyMpXEgrorOkvD1DVD\nrMaCNNej7evsYGOl+a3qzFe1m8rcEOk0giG+XdColaP20kTqGm8H/pVyYv5FYVtCPj9LkI+j/la8\nNgQbKSgodAedaQLbceORsWIZOLW14LW2ovjwIQCAw6vT4LtxM0pPHkfpqZPwi9qqY2sNk4bmSrE2\ncx0W3+TyDOQYXc1sXCn5a/7rPtVO4LWlpaVVyJYmGgoSNJ8ydvkia42vYeh0GsFQWZSMpPttOaRD\nhn6oQ2s0A1khNDNm26lEe39+Qc5/QZ0CRSmojAMABLtGKDVeHlS1kYKCQjMM//MNXZsA79Vrkbk6\nEgCQuSYSNKM2L1t22ECkfbkYDWlpaEhNQdqXi+G3eZuuTO1QcMHVyjpMI3OxtvSSu1pZ21DoSClI\n/ftKjk1RVwrZew8b1TJPZ6TTCAYAKMt9jqzYtmqV4dM63olTRPcVoNMYAIAQ94kY2uVTAMC1+G/F\n+l6M5WeisLXwRkT3FbC39IMxwwwO7AD0852DiO4r0Nt7ptg4Ac+zTwAAPO37gWnUFrTkwA6QamNZ\nbYbQVgHGDDN42okHpovaOCZ0Gewt/WBqzJbbRgrNM857IcZ5L9S1GRRaJnrxP7o2ARVXLoHpyK8d\nwHSSXEOAQnmM6EyxtvLaTK2s3dPjVbG2zNJoraxNoX1y81uxaYf4jZaA6ixvldcYM7VQ5Tk6K50i\n6FmUvKTrKEi9jbApmwC0iYa4Gz+jqkTxQkX6xIXn6zCq25cYE7qM0H4v5Xc0t4pnPBGMGeD/FqxZ\n7ujjM0vseWrRdalrZpZEw9thAEZ0XSQ2ryQepR8QioX2tyLZZeJF9VS1kcLw8Wb3RkVTPqqaqF/2\n+kKfdRMIWZN0QcXlS/xbAy4Xpf+eQtqXi3VqT0dkoP+7Ym1kcQ2awMZcckVgio7JN1EVWPChFUxN\nxP2kmMY0rF9hi+XryklGykdrq2S3qN++c8B7C0qUnruj0+kEAwBwOa1IvLsHXcLfFraFDFOfi9Ld\no1+obS55EN2cX3mxWeHx0al7lV47qeASkgouKTxOmqAgQ1EbFZ2fQnnOZ4rfXqmbLrbDkFJ5lxIM\nekT64SeYcOUjJO9+QGhPPRCjVTvyd/2ChpRk8QdcLryWLUfWxvUAAM+vlqNg929ata0jwNJRkHG4\n/3tibQ/SZVepp1CMQ7856toEMax9MiW6IC3+2Ao/76lGTl6r0vNHbqrA6q/Ev69nT7egBIMUOo1g\n6IjuRxQUnQFTI0tdm0BBQv6VFORfSZHdUYOYennD9f15hDbBLUPaV/zMSB6LlwA8IGfzRvC42vG9\n7ygEOo8Ua3ueozlXNDqNgQG+cwk1gwRcjNskjGmjUA+e7kZ4ZYJ4nIg+YOqagYY8H9KA7JSHHirF\nbkR9X0kqGADtF4wzJDqNYKCgMGRC7SPgyPIFj8dDTu1zpFTIDvyj0xgY4DwdbKYjalrKkF39FLm1\nL2SOMzWyRG/HybA0tkdu7QvElV1Rx0cgMNj1TZgZW+Fp8WmUNGRK7RvuovvgWgr9xO2TTwluSDaj\nRhM78HjI2bZFy1Z1DAb6vUO6cS+oilN4LraZs0pVmzVdWdqQefUlcxz/l9zlWBbJD/Tb5cvMLUPi\nTYOqG/vM7FZ4e5JvgR9ecUO/Ueqt/USjATzJ3lAGASUYKCj0GLJgYj+rAfCzGoCHhUdR1iieVYLJ\nYGGkB/HUlc10QDf7MehqNxIXs74nXeN85rdi63lYdoeHZXcxtyMyu6S5JkkKiu7jNAUAcL/gMCqb\n8qWOCbAOR4A1McWuNtyhKPQbupkZuA0NsB42HLYR41Fx5bKuTTI4jBlmsGa5oovLWKkuSNrauJfU\npCE+/ywaW6jquwLKK7mwtRbPU/PXr44Kb5y7BBjj6Q3DqEdl6qoZ0dAlLAf1uT6gk6T+CQ1mojHf\nB5ZemWhpUX6Xv/orGyz9jJ+u1atnNoqKDTslMCUYKCgMgPYbYyaDhWZOPWlfgVhIqbyLtEr5M4qI\nCgdRWEbi+alF+yiaIUl0bKDNIPha9UeYywyxdQXvBfMr+nkoNMtLN+cDABoKa3Bl+j6MOfE27s4/\njrq8Kq3ZkPblYnguXQYjK2tUR9+ngp7lQNnTfm2e8jtY+mFY0Kcoq83Ao8yDWltXn3HtmqWWjfP5\nI84YPthMnaZpHO9e2ch84kn6TBXRwHKXLEYAoCbLGwCwbG05vv1J9u81Gys6or6xxZszOqYbbacR\nDNoORKagUBexpRfF2iSJBcHmOqboJEoaFP8lSnZiX98qOc2dolzI2kF4n1xxB75W/dU2P4X2yDz2\nHC923MSoI3MBANFfnEL/rZNxbZZ2A1OzozZqdb3OBpfHwaW4KJ2sbWfhg4huX6O2qRR3Un6VPaAT\nI9j4+vbORn4h8ST7rVmW+HGLPelpOiD9FF8fKCySfjIfGsxEbEKzUnMPnZSPm6ddpfbZuNJWauG8\nzkKnEQwUbYS9thk0muQSHPeOkIurvpMjYWxKrpzJxgycvlX4TPBatD9ZGxnt+wnh8XDv7yXkzzoQ\nofZjUViXBA5P/qwQyoiFC5nfKTxGUciCFu8V/IWBLq8j0GYwkitua9wGCvUQ/9MdwnuWmzU4jcpn\nLqHQL+qby3Er+We1zFXdUIh7abvl6mvMMMPIYOKtpYWJPSK6fY2UouudunCbPBv79MfkJ/HS5jQE\nTF0zUJbqDXOWeBT0wytuct8CtOdBTJPeCyZ9oVMVbqPgb75FxUJZzjOU5T6XGY0zcPpWoVioq8hF\nws1dKExp29wNmLpJytgtKM+NBaelrcJi6OjPAAA5Ly7IXFdAzosLSLz1O1qb/ztdp9Hg1/c1qeMN\nndoWfr7pMV6fYpz3QnS1E89aoi540E1EVlVTEQDA1byLTtanUI4Jlz8CRP529103HjffptxHOgos\npm5OVFs4DbjwYgOi0/eJPQtwGq59g/QMvz6SqyEriqhY+GBhqdrm1RR2/pkSn6l6A2AowkmXUDcM\nnYgBr7b5oEo6zSdj4GttWUZEx1UWJiHjyUkMmLoRdIYx+r2yFg9PrhQbX5R2H+kxx/hz/ScALGw9\nhXO5h4wBjUaHf/+ZSH1wSDgubBr/GryqKBnxN9quox+eXCWcy9F3ALJjz6GlqVbuz2NI3M7j/9EM\ntBkMX6t+8LTsAU/LHgA6XsAvk2FYfrWdnX+H7oTvjF4wdTBH/6iX8O/Qnbo2iUIOpJ32t49tiOj2\ntc4yFFXW5+F2yi8YHEBM4KBLm/SBvIJWlU/E126twPrtRFfTPw7X4Ndv7VU1T+NoKghaMLdgHnVR\nU8uFQ2CW2ubTJdQNQyeCbsQEADw4vlyxgf8lQs58eor0cfQxfmVpIyb5hi/jCVlV0LbT7PI8fqpP\nK+dA4rJ0BgAQxIIogtuJvi9/Q253ByK54jbOZ35LcBvq7fiyDi1SPzXN+n/CRUEk/fATnBnxIx4s\n/VfXplBoCBpZInwtUddUprO19R1T1wwsXqnY1ycnjy822osFQ8PKO1PiM3Vs9k1dM2DqmoHMbOVc\nLJuaeRg6KR+mrhkdRiwAenzDMGIq/3qptYWHBdu9kJXUiH/3FMM3hIWxr9thetAzHVtoWDj5DRS+\n5rQ2KTVHQfJN2ev4hqEo/T6hjccVD1gqzXoifN1UVwEAYJqyFbInN/4SPLpFKDTG0OGBJ0x/6sjy\n1bU5aqGv06sAgCcl+rnp7PXBdmRdP4jy5IdS+zz5dZEWrdI9NiHO6L95EowtTQjt1E2D4XLhxQax\nW4axIct0eqIfnb4PA3znEtoCnUciufCqynOr4zRam2u253+/V+N/v1erbT512qZJF5+mZp5WXIi6\nhKnP/asjoLeC4doxvu/21I+csGhiIrKS+P7vV4+W4/TuYkyZ54gTvxTr0kSDwtmPn79e05UynQMG\niwkGMhRxIZIY9EwhRl1LBcyNbRDu+jru5v+la3PECLIZgqSKW4Q2ezMvAEBjK3nO9ermIrCZTnCz\nCNHbtKqdTSwAwKCfpiHz2HM0lipXNIpCP0ksuIwuLsQCeKO6foEr8br5PVxZL15Ay8UqRC2CgYKC\nQn70VjAIGDXdDk9vETcS5mwGxs6ypwSDArCs+BU76ysLNLqOmaWDXP14hl7yUAsIUqTywENq5T00\ncxpgb+YJJ1YAAOBu/n6xMbfy9mKM13ywmU4Y570QLdxGlDfmwcHMC3Qa/8dd1dgHE4Y5/K3DYMG0\nh6Vxm89rhNfnqGkpRWVjPmpaypBT81xsrI9VX/hY9UVyxR2YMFjwYvcCADRxJAvIu/l/YZz3QrCM\nrBDmMgu5Nc/BZjrCkeWH67m/qfRZ5IXX2oKgVxeBwTRD/KH1hGe9PtgOgFw0+E+YB0v3IOH7jiQs\nqJuEjklW2QMxwWBEZ+rIGnKMGCayO1FQUKgVvRcMH4+Ix7HUnmhq4OLEr8UI7mOOHoMtMdX/qa5N\nMyga68phamEHM7ajRtdpqFG/iFMkQLsjUdlUCGsTZ9BAE6twnFcbj+rmEtJxl7J2YpTnRzCmm8KY\nbgonlp/wmSKpWSVhwbSDh2V3sXYajQ420xFsJv97jEwwCNypAm0GCdtqm8twO/8PqWvezvsDg93e\nhLWJM6xNnFX8BIrjPXoOnvy6GCx7dzH3oye/LhKKBlF6fbAdT3d9AR6P2yFdlvxm9kLaoSeyO1IY\nHAkFFxHsMpbQpqtgY6aRuVhbfXOFWtfounQ74qMU+/kMXrwZNCMjtFRXoOLJHZTel37jYeHXFeyg\n7rAO7S+2lnX3AXAdPwP5Zw+iMlay6yNFxyVwDf9vSPIq/f07ofeCAQCm+j/FW8vdMH2+ExIf12lE\nLNAZRvDpOQVWjv4wMbMWBtx2lIJvxRkP4Bk6HnSGsUbXKUztvDmy1c39AuVTVF7J/knuvoreOJQ1\nZKt0S6HM2NqWMp1mhaorzgYA1JfmKjRO4AKYcXGP2m3SNQFz+yHovTAk73lAaE89EKMjiyjURXbZ\nIzHBAACmxmw0tqjPZ14eurlNFGvLK1fvHkBRsQAANCMjhcbVpsWjNi0e1qHihSorn0fDdfwMhW3o\nqASu2a7XG+fOikEIBgDYuz4Pe9eL+zKqQt+JK8E0s1LrnPpKXsIVeIaO/+8dDVAi575b8CjkJVyR\n2qco7Z7ixlFQ6DllCbLjcsgIeOljVGXHwS3s5Q53w3B+PFV5tyNDFgA9LGi+1m8ZHCz9xdqyy8lF\nadel/FPaimf3UXD+iFg7AKT+sh7NlWViz9pv/gU3CAIEz0Xnaj+2/U2FMjcX7T+POuczBBxfmqZr\nE3SCIQgkvU+r2nsYG74h6s7PTkP4tK1qEQvh07YS/tNv+CJh4PQtMvoRaW3iBzW2CQ4igqJtZNmQ\nVIHLaQFABT1T6B5zJy+Fx9QVZqA04R6Kn9/ocGKBonNQXJ0s1uZg6UfSUzOMCVkqd1/BZjo+ahFs\neoQJ04EDELYnbv8K/vOIacUlbcAFNwjxUYsAHhcuEa8R5mr/WlMYW+mmgJ6usO4fLrsThU7Q+xuG\npT/7YE6vWLXNZ2nnjdAR89U2X37yDbgGDhO+N2FZo6leP3Mc3zuyRLj5Fvy/JCsGDCMTWDt3AZ1h\n9F8/ohvWw38ihcXZBk7firqKPGTHnoG1cxe4BA4V9rt/VP5f7vIQfWwZBkzbBDrdSGhved4LMIxM\nYOUUIPK5OobbmKFzKi0UADDZT30/r/qCXZcwZN88Apa9u9xjzJ19YO7sA+9Rc9BSV4kXB9Zo0ELt\nE/LpEPi81gMNhTW4Mn0fRh6cg6uz/tS1WRRq5En2UbFbht5eM7Ryy9B+XQGS1i661lYnqOLJXQR8\nuBIpP/F/5oytbOE6bjrM3LyVsiX/3GG4TpiFggt/KzVeWeKjFgmFkF3/4WLihMzvXZIvPJmbj6Cv\nKJJOukXnDVhFvH2RNI5sfgCoirmPon/aboCcp8wCu1c/qWNVOYEXzJWy5ksErNoMACi9cg7lNy4R\n1pH3M2RsX4uWygqxftymRqSuJ/++Jft3MXF2g9fHiwn95Pmcivy7qRO9v2E4tKMQ3QZYqGUuhpGJ\nWsUCAGQ+P/1/9s47PIqqi8O/3fTee09ISEKASC/SiygKSLPwIdgVQTSA9AAhIAhEQVG6CCIWkCZK\nESkC0iG09N5I722z5ftj2MnOzmyfzW5g3ufhYebWM9tyz72nUO67Pc/8YTEW5BfXbgHd4ewTRSoL\nirh6cCFqy7IBADZOPogY+B5FWdDXov3qgQWUe2efKIqywMHRFtzeFoOO42MQNGI65bTgmfcSSIdn\n2evAYVPRVFGE29ticHtbDNKPb2V0jG7PBE3qSomUlLLzKnp+Trc352jfPKpOopUpWszrirNNIIZH\nztVqfHFLC3ktam6CiYUlAMDCxR1BU2cj55ctSE5YoKi70eMxZIxG7e06dSWvrQLoOXuki876tCTk\nbvsKDRmplHJFOHTrDZ6pKZqLC1H+zwmIGuohKKMHO5GO05ibhdztm1D48260VBHh8mWVBQCwDgmD\nsKYawppqskx6L1+uC6GxXyB3+0YAgOuw5xG6bB3yf9gCiYiwjuCbU6NvSZ9BIhIhd0sCSv48BAAI\nilnKOD7/8WdOHhNruuM+AAjKilF26g/UpzxQ+xmkMlVd+Rc5m9ehpaKcUq5PjP6E4dCWYvQZ5Yjv\nr0Vhz9pCSp00V4O69B63ilZWnHUNGTepH15dTIt4PKPXwbRe3N//R7MwikzzMJXlJB5DTuIxWrmy\nPrJELEpA0mrO5MOYMaTDsq5IFYSU3+k/yIpMjZxCnqHUNVUV60c4AyIfVrU8sRCdZg9U0JqDCXsr\nT50W322x05+YdwieDhG0chO+GUTiFoYedHR9TgAQiVvw90PF5rReIyeg8vYlAIBrn6HI2f8tACDo\njU+R/OVCAICprWbJQY2BtO9W0nbzpeTv/g6+0z+Eqb0DZVFdfvYkvF6ZhtrHu86+0z6g9GPa7c7/\nYQtZp8zp2GPcK5S68nOnlMqft+Nr8rruIT1yHgBkrl9Bk022jC2kchcf/Q0eYyZBIhKiISMVaSvm\nISwuAb7TPiAVig6LV1P6AEBTYT6qrvzL+BqlxsYgLC4BLkNHofyfE5R5QxasJNoso54mSIRCVFz8\nB7io3oKf6X3L+moVWef92pso3K+/ABtGrzAcTI8mr2eu9afUaaIwMCkBT0oEJA4ODuOiJi8Zz7yX\ngJq8JJjbOsPSyQMPf11jaLFYZfDeKTg3dR95P/zgdFye9bsBJeLQF0wO0MMj57WZA3R+5R08KPhT\naZuS838gcn4ChHVEFKf63HQAQPq21Yicn4Da9AewCaCeTtt37Apr3yAAgPugF9FcVoTqB9pH+ap+\ncBOR8xMgqCiBuTM1hLljl96w9iV2+l37DENTcQHqspJhZu8I+47EaYBj177gm1mg4tZFsl9LTSUi\n5ycgYxddWWrITAMAuI0ai6JfW0NTl589CZchz5H3ihQObchYw7y73p6ovXcLHmMmoeL835RyCy8f\n8lrRaQEAFB87AI+XJoJnZgZJC1Vpdhk8kqYwkOg5/5RtRGe9jm/0CoO+8i3cOL5SL+NycHBwZPz1\n5EcQsnC2xosXCBPPFy/MRFNZPSoSC1X04niSCPMcqveMy2eTN0IgVJ1NXFhXy+iALKxnLgeAmpRE\n1KQk4tGZw7Q62T5V967T8iMwjVnwxz4U/LGPVg4QoVOr7l5F4Z/UcNktNVUov34e5dfPM/aT0lyq\nOOmqXVQ0in7dA/voHooHkFusNmSlMzZrzM6AVaBix3ZRg2aZ3cPiElCwb6dGZjf6RtzcDABoKsyj\nlMsrVopeo+rrl+Hx0kR4jn8dRb/8oNacdUns+PbV3LnByjjaYPQKgz6oq8iFoJEdmzgAaGmuh5kF\ns43a00DEotajtOayYmRuWwsACF+wjsxn0VRcgKydG8h24Z+tReGxn+Dz8jQAUMukyMzOER1mxZL3\nsn3Mnd0Q8gFx7FyTlIiCQ8SX2NzJFSEfLmLsE/jGx7DyDWSsC3l/AcxdiB2i5C8+g0Soe8IzTZA6\nEE+IuI+DSVGUOokEGNuB+ccnoKMlvv6T7uOhzBFZOpcsc15OR9rdRsb2354Kg28I1dZzfPh9heNz\nPJmcHL3d0CJwtCFMpwxBrn2QWXIRQrFA5/GF4mZUNxSiuCYZeRVaJATkqW7SHjGxskHxP0fUaus5\n/nWUnmo177XpEI769GQAQK6MaRAAhQv4uuT7ShUGdUmNjQF4PISt2ACfKW9Ty40EsaBZab0qJUd+\nRz9zfRyC58bCzNGZ9NcIXUqcLLNlKmQf3UO5YqhH2oXC8NwUV7y52Adm5tRfBHVPH1z9oin3d//Z\nxJpsAFBbng1n706sjtleiFiUgJqkOyg4RM/Um7ZxGUSNDWQ7WXimZjBzctXI96DDrFiFi/egNz8l\nx4pYlIACwjcJgsoysjwsZhX8X30PuT8Tu79WvoEK55dIJJTxDOUjIVUW1n2cC2s7E3y0ygc8HlE+\nIYK6SB/ysiM+Xe8HAPjpq2Ik3WpA7I5AmJnzcCS9M6OSIVUWhC0SxL+Xg+BIS7wxzxMbDnXAqvdz\ncPVvapKm/bcjYWNPKIFblxeipkKIeZv88XtyFG1sDg4OKobIlMzmnOqOZYjnfBJRlCNCluob/8Gh\nR1/yvvLiWfLa4+VXSR+DprxsSj9F/hymdizmppJICAWBz0fYcsIsPCwugbDl17N5Dhuo8nkR1dVS\n7oU1RITMoJglpGLEMzNn9Vkrzv+NsjPKzfP0hdF76H6SEID+ox3xamQivp6XSyoJmpgq+UYM15d4\nAICmulK9jm/sMCkLACBqbIDX6FcQ9gmz+Vf5ZeVJ4ORpyElXuNOfskGxQ51T9/4IfmcuTCwtYRMc\nTqmLWJRAi3Md8uEiWLh6IGJRAk3RaWt2xBdhTMg9/Hu8Gid/riBPCuSVZwCksjAm5B5+/roEiZfq\nMCHiPsaF3QePB3yyjhoSdMeFcLL9+PD7uHWhFge2lJJzLN5Kzz0gVRbGhNzD8b3l+Pd4NcaE3MPy\nN7NZe2aO9sGLF2bixQsz0XsDEb2l4zt9MPrsDHgPCyVNlTg42gp5k6EnAXXyPBQfVRDqVSKBqZ09\nPF5iToTm9OwQ5vL+gzURUT3EYqTGxpCL6LAVG1R0MA4UvUamDo4AgOJj9Nde1n9BGipW3tlZF5wH\n6Xc9qwyjVxj6jXZE7OuEHZk0gduEDncQt4+e/VERFtb6TXzC45vpdfz2SsSiBBSfPozUr9hxkmqp\n0Ty/Rfj8dQB4yNyxHiVnqVp50uoYpG1chg4fLUHEotYfMFNrWyStjqH8MxRHvy9Tq525BaFAxL2T\nTasTi4jdjaHjnSjl7j6KP7eP8ugmBkERhBPY7jWPaHW3LtTSyjiebNL23MAfA7+BW08iGEWH/3XH\n3+N3o/BMmoEl4+B4+jBzdqXcS0OAcrBP8OOwqvUpD2l10hMdj3GvwPPl19pULn1j9ArDrrgCvDHf\nGwAwerobAODV2Z6wdTBRe4yW5jq9yCbF1beLXsc3ehSEkq1JTlRpI6gJDp01t9vjmZig8iYRccJ9\nyAu0emF97WOFoHXHPnPHevhOmK6tmAZh1T6h3ldfAAAgAElEQVQi+kbsjkAczehM+6cMpvaefua0\ndnO+JE4wft/+dJ+ocRCk7LgCAEjachkAwOPz0FJPfN9Lb+Qp7MfBwcE+/u/MotxXXW2NtPTod6qj\ndVZCPAB6KE/pfe523c22/d76iJJtGwC8Jv0PACCsVrL5JxYDIBy5DQl5GhKXABOb1lxgYXEJAI+n\n8jVy6NabuGDRHCnnuw2kDKb2raZjPBMT0uRLnxi9D8OJfa07rF9+mkOGWdXEJKmmNAOWNvo7ZTCz\ntNPb2MZO9g8bEbGQ+kGV7sjbh3eF2ZufwMrLn6mrxoga6igmQurs/IsaG9Bx7ucQC5qRvXsTAqfP\nJusiFhGZGfnm1MVxS3UF7Dp20XguQ9Khs5Xe5/ANtlDdiOOp4cULM3FvwzlEfNAPER/0AwB4D+mA\n/JMpcOvhZ2DpOPTJsAHEgvPMv0sMLAkHADRkpMI6JAxN+bmM9TV3qOZaLVUVyN+zFb5vvE9TGoqP\n/Erzd9AGq8AQZtMjiQSZGxRnvU9dPhdhcQnwmvwGvCa/0VpuAGdp6WsUMp8qr0QkUvoaNeZkwSqA\nCNebFr9QYTum3AuyZfnff0uJ1NRcVID8H7bAd9oHCJ67TN3HYA2exAgdT3g8HqtC8fgm6Dt+LXn/\n8N9tqCpOVdheNmeDOrka5HM8qJvfof/peWq1Y+LmtB1oKqxU3VAPFOV7oVffEuTliQwyv6HR5X0D\ngEsjFCcfkiI9FWCKbsRUt+l4KALDLZVGQ9JkDiY2nwyDXwcLhe01HU9f6PL+qPPetCfa+rXoPGcw\nAsZGoSq5BBff+5VW3xbfHU0xxOclOGAYgvyHtNsFN6cwaEffju/BzspT6/7X039AZV0OixJxPC1I\nJBKd44gZvUkSG0jE1IVt5ID3WBvbxExxcg8OjrZi/0Yik3BkD/2F9z3xE5GC3tOfbq7EwQEA9zac\nwx8Dv2FUFjhaCfJndqbkeLKprNfNVK+qnvkEgYOjLTBaheFgerTSfwl/dNRpfEePMFbk7D02nnJf\nmHqOlXHZ4NgRFxTlexlaDI424L9TRPjTNb8E622OYz8QCsN3f7Pz3eHg4OB4mqiq023Bb4wWIRyK\nCdykuV+BubcXAjetZ+yrzXhsYrQ+DGT41A89cOOfauSkNJF1Hn7m6PeCo0bjZd4+hOBnXibvIwe8\nhzunN6ChWnH2RFXImyIBQPbdP7Qej216dOd2gp8mqsuFcHAxxdGMzpjY6QEETYTzmIefObaf60gz\nFRoTco90cr79bx2WTc8CQPiwz17ri6HjnRjNi0xMeJjyqQf2fUmcanQfZIdluwL1+3AcHE8Aft59\nEBI4kryXmvZIkZr4PNt7PizM7SgmP4F+gxASOILSDgC6dX4LTo7BNPOgAX0Wwtys9cQxI/sUsvMu\nsPcwjzE3s8GAPq122iJRM85dZg6lDQChwc/D36c/ed/UVIlL15nDbCozfVJVJy1/Jmo6nJ1aoyo2\nNlXg8nXDhMsuqU42yLwchiH7Y/XM02XxXjBHYT9txmMToz1hkDJppgdFWQCA4jwBXpmt2c75o4xL\ntLLoEXMYF/2qCOk+mbHf1cOLNR6Lg4MtpvZKIr8rBx50IpWB7ecUn8ZJFYJnBtiS7Y+kdaaFYJVv\n/8pMd7L9sl2B5AkHBwcHM8MGxCMs5EWYmKjeyHmYepBWJlUW5HFypJ8qDhsQT1EWiP4jaQqKrnh5\ndKMoCwBgYmKBoQOYFYaBfRdTlAUAsLR0wrAB8TAzs2ZVNoB4HWSVBQCwstRvmHVliCVPp98fx5OB\n0Z4wSHm1010cTI9Gc6MYh7aVIKK7Dbo+a6dRlCQplw/MZVzoK1Ma+k0k4virQtBYDZGQvRCi2sJk\ngiRf5uVbpLReSkODBCFh9Jj7THh7m+DmNXfG8T/8wAaxS+gZE1uEgH+g9ic8TzLKHIeV1c16QfMY\n+Jo6KRvaqZmDoz0iuxOuymm4opKIjGJr44G6+mKyPCf/AgJ8B9Lap2a25phRNLa9nS96Rn+AIf2X\n4eylFVo+BZXIsPG0eQb2WQQzM2s42gegqqbVQVcq17Xbm1FbR/3dHzYgHgP7LGLViXrYgHgkpR1G\n4aMbrI3JQeC/Yy2qDv6Fmr/OKW2T+858vckwMjpWYd2pO4qjMGlK4Kb1yF++CqKaWnh89B4ebfwW\nAGBiZwu/VctRuO5LSJoF8Jr3CXLnLab1ZfNUgO3xNMXoTxgAwjzp1M/lmDzTA2YWPK2UBSnqRjBq\nRbWyIBIKcOO44iPYtsTLt4j8x1Qmv5gHgIoKMQ4faaS1sbbmwcFBvY+IImUBAKksyI5fVyeBmSng\n66t+Pg0ODg6Op4nQYGrumIys04zt8gqIXBgRoeMUjlVTmw8A4LOYaLSmroBWduHKagBAxw4vMfaR\nVxYA4EbiNgBE9Cg24ZQF3fFa/qlW/fSpLHTyH6O3sZkQVlRCIhSSygIA+K1ajuItOyHIK0BLSSlN\nWXgSaRcKAwDsXlWASR0TsfS1dNWNVXD5wFyU5WmvdMiSdecQrh5exMpYhqJTl2J8+BE1kYp04X/y\nL1emLqivJ5yv/PxMUJTvhZoaMaOyID29kK8LDSdOLq5fcddNeA4ODo4nFGfHEMq9BMTvblT4ZACA\nr1cvSr23J5Hc8tI15lNzqa9AxxDmxbymXL/9ncI6Wxv1w4dW1xDOwGxGj6qsymRtrKcZM1/tw8Dq\nCx/ntkvqlv3xXAR8uRaBm9bDsgP1+9j4MKnN5DAGjN4kCQBCu1pjyc4Q2DpSd6N1OWlIvfojMm8f\nRK8x2p8MaH5a0f4I8Gc+AaioIBxqr/1HLPg7RhYztgOAtDQhY/m6DbWYN+fpTXrHwcHBoQ4uTqHk\ndVl5MjzcuuB+8q+0EwgpTc3MmXSbmojcPR7uXZCScYx9QVVQW1fYZnNVVme32VzGgv8OIt+URCgE\nz9SU3OX337EWJQk74B7zDpFJmc+n1MmeBsjeu3/6NuX/ki93ku0kzQJiPrnxeOZmcHhpOOyfH0w7\nZZDKJ6quhYmDHW3eunNXYBkZChNHe5R+uxdN91PYe3F0IOdTQk6aSRCPx2omZ2PH6BWGj9b445mB\ndpjWg327aaGgkbLo7zToQzi4hShsX56fiJQre1mXwxgYNMgCP+/TzBlM0emBPKGhplx4Vw4ODg4N\nyMo9S+64R0dNI/0BEh/+SPoD8PlG/yfcgIgNLUCbI78Al8Vt1nSKkiCl5uQFysK37sJVsq7ky52E\nsiGjKEhxnDSacTyJoAVVB/+C/fODVcrou2k58j9eTt5X/HiIHE+RshDuM4qxXF84jRmNyqPHYRkS\nRCnPWxqHwI3rULg2AaK6OrhMnoCS7d+3qWxtjdH/2gwY44RXIxPbZK4H5xUfrz7JyC7mr1wV4Oix\nRmRni/DTj4oVCNk+hXle8PbjnJc5ODg42CIz5wzFROd+0s+M7QSCOlqZlaUzGpsqaOXWVi4AgOLS\nuyxJqRl2tt4GmfdpwTzQF55LZjHW1Zw8z1he9dtx+H69AvmzlsFr5RwULWUOcavueJrAt7bSuI+/\nWy/VjViEZ24O/3WrIMjLp5wuiKprkP3xXPitXAqemTkqj7aG1JfNlyC91sVZme3xtMXoFYZdK/Mx\ncKwTLhypNLQoTyTShX9amhADh5Sq3W/7znrELqtBUb4XeDzA0pKHpibmo7mvN9dh9ee1rMjLwcHB\n8TTSLKD+hnq4dQFADcFa31AKG2s3dOvyNi5dW0cbo1tnwrQkJb3tzZGUQwQXaW5+8sMztwgbYWaq\n+UJZHTyXzGLc9QcIEyJF8K0sAQBmXur7FCobTxvyZ8bCb/NKCEsr9OowrSkVBw6h4sAhhfV5S+lm\n7bos5pn6Gjr/ghSjVxiee90VgRFWmL0hgFaniw8DBxVNlAUA2L6jHgBhjvTgrgey0j3x4pgy3LzV\nQms76yPbdqMw8M1NYR3oCvsoH1gHucG+kw+s/NiN293/9DzyWiKWoPZhARqyy9CQVYaax9cS4dN3\nnK4OVr5OsA50I96fQFfYR/mCb8Hez5jsewMAzcU1qHlAvCfS96mlupG1+Tg4VCHrvyBLp/BJAIDy\nytZQyldubsSwAfGwtHCgtbe384WFhT0kEsP8tojELTDhm8HBzg/VtXmUumGP8zZcvPaFWmO5OivO\nLWPslFQnw8flGUOLQaE5PRvW3TtDVM38d5pnagqJkNkXkS18v4lD3owlkAjoawgO48DoFYY5LxmH\n08vTRk6m+pEROnUpRlG+F/446gof/yKIZf4erfmiFgs+s8Onn9jiy6/oR+d6gceDfZQPbILcWhf/\nga6EnaaRwePzYB/lC/soX636NxVWkUpG7YNCNGSXQlhn+HwgyrDwsId9lC/53tgEucHExsLQYjFi\n4WEPNw96DhF1aKlubFU0HiuDzcVP/g4qh/oMGxCP1IzjMDOzgpNjCG4mbqfU19TmIzpqGq2fRCIG\nj8cc5PD85ZUY1G8phg2IR1NTJXLyL8Lf91lYWRLJGP+5qDh+vT45d2kFhg2IR4/o9wEAKRnHYGfj\nRUZ2ahbQvxsCQR3MzW0xbEA8Coquo76xBGHBo9tUbraprM/VSmGobVSdE0lc30CeLAhLytUeu3jN\ndwrzJpQk7IDfllUA1AuVKnuyIb1W98TA79vWxIJFsQloKaQGUzE1sVRrHA79YPQKA4f2SCTEGllZ\n4rZpb1bih++dUJTvhaIiERwc+LC25qG8XAwXF/UX2F6+RSjK90JBrhdl/I2b6vDpbFt8NtcOn82l\nR0QSiQDfAO39H+R3hJ82LL0dYentqLLdpRF08wR987S/N2YOVnDo6geHrn4q2xri/eEwHGf+XYIA\n34HoEDQSYSGKF8DX72zFsAEraRmCr93ejN7dZkEspu/6CkXNOPPvEvTvOQeWlk5kPoSs3HPIzPmb\n3QfRENnnloZ2bRbU4OJV5pOFf6+ugbmZDQb0WQgfr54AiJOKc5dWwN01Cp0jXm0z2dmipFq7TVB1\n+uXPZk7IJ79gl7/nWyresGl6mKayv+y9MuVAUT95ZcW6V1d4fPYB8j+hPs/Qzp8pHJuJjrNWIuXr\npeBbWELc3AQAiPwsAQ+/iIGprT2Cp81B6uZlCJ+9Guk7PoewvpasN7N3gkQkhLC+FkFvfIqsPV8y\nzhH5WQIyd2+Apbs3Gh/lw3/Su0j7Lg7hs1cjeSMRcj/soxVI3bwM3qNeQeGJX4h+8zbg4bo5lHEe\nfhHDeG8XGoXatPsaPbs+aBcKw3NTXPHmYh+YmVMXsJxJknK8/Ypw9LALevYwJ8tEcpnpT51uwmtT\nKrB/nzO8vIgQqsvjarB1W73GkY2kSkNRPlVpCAx5BE9PE9y+QbWPbGyUIDhUvUzSHBwcHE8SOfkX\nkJN/QUUrCWP247r6YpVZkaU5F/SBqrmV1av33K0IWuoZxyspu69wHjYzRrONUNSkVb/K+lyWJWnF\n95s45H1o2MRjLu+8ivIdP4NnYgLX915H/qxlOo8pFhCn7RJhq5lTc3kJAEBYVwNTG2ITk29hCWE9\nYY4lqCDMs4OmfoLUzYQMipQFKU0lBWgqIZIYNhblkmNKkc5TeOIX2AaFoy4rWS2Lh8jPEgj5xSIk\nrTf8BpzRKwyfJATA2dMMr0YmYvDLzjh3qAIH06M5ZUFNxoxTfSx57nwzY2hUReFSlYVRVVT36JFI\nZfhVDg4ODg4ODjoVtVl6G9vQTsay80tEIkZ5tAkhbObgRI4pxdyJORltaz0RSUxQUaLxfOrgP+k9\nPPwihnK6oAjZEwdjwOgVhn6jHTG5IxFWNbiTFc4dIk4W4vZ1QOwU3bM+2zr5wT/qedg4+sDMwkbn\n8YCnI6Ebx9NN6G9x5HXaJMImOmjrXGS9z5xhloODg4OjfTA/cQKaa1tgYWeGtV0Pqmw/cFYn9H0n\nXK222tI79C0tevEe79JLkPzVIogFzeDxeHDtMwzOPQYh/8gPAIDc37YhbGYcKm6cBx77BmXv34zQ\nD2NR+Od+BLzyocaL99zftsG1zzAAIOcBgOoHN+E/4R3kHtyhtL9EJIJLz0EAj4+apNtoqWVOxtiW\nGL3CsCuuAG/M98aetYUYPd0Nu+IL8OpsT9g6MGcgVofe41bBxNQ4nSw5OIwd16kjkfbKckAspigO\nps7aOQdzcHBwcBgXXz17VO22F75+gL7vhOtRGsDOSv1ALFKYfAKkO/tlV86QdXVZyUj9JpZWnvZd\nHG0cZXMAQP7h3eSYdVnJtPYFx/epNU7SBsObIMnDHGbBiDixrwx71hLp5L/8NAcH06MxaZYnYl7U\nznGo38T1nLLAwaEDjqP7ghIKi4ODg4PDqLByNMe7R0bi7UMjwDch7OU/OjMabmFEyN35iRPIttLr\nl1b3JK/nJ06gtOnzVkfKtWydsRI09ROY2trDsUtviBrrDS1Ou8foFQZZLh6rxIQOd7T2X+g3kTOX\n4ODQldp/DZMlloODg4NDPT48+QJ+nHYeZ9YmYt6t8QCAEytuYfDsKLKNvSc1gdyxRddJs6K1XQ/q\n1cSoLcja+xWEdTWounsVKV8vNbQ47R6jN0liC05Z4OBgh+LNhyimSNJrqS8DBwcHB4dhSeh9GACQ\nfaXVeTfjQhEmft0PAHD/WA7eOjgCX/U/iktbkgwio7qE+zxnaBE40A4UBqaISDwesGBrMD5/L1Pn\n8a/8voAxljUHB4di0ibFwmlMfziNG4DmzEIUxO8xtEgcHBwcHI+ZnzgBwmYRLm+j29EPndsFf69N\nRNRLAQCAi989bGvxNMLfrbehReBAO1AYmDA15yOyp24RjR5e3IGqR/QvEgcHh3pUHr2EyqOXDC0G\nBweHAXGyDYCnYyc4WPvAytwRpqaWEIkEEAjrUN1QhMq6bJTXZqBRUK03GczNeYhdaY/Jr1sjzE+/\n4bvHjrdCz97mbTKXLiT+noUTK24BIKIYydJzaij+WU+Ylg6Z0wVnN6g2M7V1a80r0Ht6GIuScrQX\njFphOJgeTflflnf7PVB7HI/gvpR7iURsFMoCl91VN+ZffQlrexvHa7jk7jjEdzlMKSPkO2YgiQwP\n9/k2PMb2HhibPECrTNEziCRJd77VLvZ51PQVSD/6HZoqntxklJZm9hjY6ROV7UxNLGBqYgFrCxd4\nOUXR6qvq83At7XvW5BIIJFgyvxqTX7dmbUxFHPm9EUd+b2yTuaTUN6vOpyRP1/FBOLHiFqb/MoxS\n/u/mBxjwEaFAPPgjF9ETgtRSGLq/3gEXvn4AvikfJub6d3/l800R5jUc/m699D4Xh3rwJBKJoWWg\nwePxSKE2ngzH7Od0W9x3G7UAlratyTq4PAlPNkyL9ydxTkPN7b1oKgpX76WVh/4Wx/kxcLRbdFUY\ndO2vCyOj1fve/Z24CmKJSHVDGboFvw5X+w7aiKU2idm/obhKdzv61Dwvxl3/73Y5oVcfC3SPfKSw\n7U8HXWDvwMeLw4lMv2ZmPNxK8sCBnxuxYgn9dETRXOqg7vslJavkEtIKz6hu2A6xMndCjw5TYWXu\naGhRdObUnTjVjQyERCJRnVpaBUYfJWnPmkKdxzC3at8fxMC9q3Xub9OPfkrDBoF7V5P/OJ4OrLuE\nGFoEg9J7ygZWxnHyjVI4Vo9XVqP3lA0K66PHLVZa/6QTOv5jcoFuLAgb6/Bg93JDi6GUUO9hqhs9\nJtC9H0ZGx+pdWQCAroGTMDI6Fuam7CRPleX6fQ/8tr8R3SMfITXPiyy/fVOAH39zIe979DInlQU3\ndz4eZHqic4dHEIslWLSM3RwzjYJKjdpX1eWxOr+h4PH46B7yP4yMjiX/DYic9UQoC08DRq8w3Dxb\no/MYzQ2afTmNjeypi3TuX39Zu1C06oytrXxL7o4DACy8OYa8lv4vvV6SSNx3nxyksL868E35mHtp\nNADAO8qJ1jd8uDcmfdkbphYmmLK9v0byv7aln9J6+bLFd8Yi5FkPuATZwTPCkZSPbM+j9jWzMsGS\nu+PgEe4AHp+HWSdGqpTNwtaMHMPOzZImy5K74zDpS8KRTN3nlVJ5+F9YBGqeRKc9YWZlDzMrO73O\nUZl/H1f3zWGsu/HLIoV1AHDn8Cql9U86Np6BhhaBxv3vY9HSoPvfK30S4NZHZRsPxwiMjI5FmPfw\nNpCIyuCoORgZHQsedN4MJXFw4OOf000AgN9+bsClmx4AgFfGlaNXH3PGPpduepCnBytjazD9HXYV\nmZJqzfJIldaksjp/WyGrGIyMjsWIrkvgYhdsaLE4tMSofRjYorLoIazsBhlaDA4FmJgp1lvjuxKm\nNjd/zdJpjkW3xpBmO4X3K/Hgr3xK/QtLuyJh0F8AgH3vqnbkHTGvMz7vQWTC3P/BZY2Ul7W9/4Cw\nmWoWsOjWGPJZIQEe/JWPKdv6Y997lzD/6ksUk6OvR51SOce8y6Px5WDieWpLmyARS9B9chDldfzt\n06sA1HteWcp/PoPQ3+JQfeYmSrcfg3WXEHgvmoqCVfRISaEfxcLMjr579HBN25ttaELn5z/Fvb+M\nawebg0PfjOi6BDye4fcRR0QvRU7pVaQUnGRlvLP/uZPXAgHdDNvWloeFc6hmR7J9CvI1M+NSRVVd\nnlrKGweHMWH0CsPo6W6I6GGD9TOzEdnTFiv3E8ejmiRvy08+A+8wwygMHgvegmVoAArmJUBYQf1B\nCty7GtlTF8EixBcen72FpocZKNm4j1IvRdEuvt3wPnCZ+iLA59PayvYvXLgRgvxixvmdJo6A/YsD\nUbpxHxpuU/1FLMOD4P7pVIgbm1D67S9oTs3R8BUwHuQX9Yfm3yCvz27ULKzcM+MDcHrdPa3kkFcW\npEhPU9iivqKZvL6yJx2DZ0XorHhJyY/dCd+4t+EwrDsAoCk9Hw130mntGvOzYBbxDCtztgWyJj7d\nxi8nr+V38zu/MAfWTt4K6wN7joejTyQsbJxobfgmZug2cQWZcV4fJwVRoz6BjYsfpUx2nt5TNuDq\nvjmU532UfAE5N49oNV/0jARUpd9B9qk9lDKAatMvX+Y/9FU4h9OdGpsqi5G8fy2lLPC5aXAM6Uqb\nVxZF/gOKzJeY2ls6eyL81c/Uass0rjIZUn5ZD4lYhPDX5lPqyu5fRP6F32l9XKP6wXfgRMbxlM2l\nDYOj5hiFsiAlwK03iquSUFWfq/NYQ/qWMJZPe60Cbu58nL7gjujwR2r1YYNKFp6Jo33C4wEbznVH\nzKCbavfZnUoE7pke9p++xFILo1cY3pjvjVciEgEAK/d3IBWFnf91wtt91YuUJBQ0UO479nkDKVf0\nGzeeZ2qKgO/jkP3GYkAigf/25eBbmtMW/q7vTkDdhZvIfT8O1j2p0SSYFv6yBO5djZIvf0T2tCXk\nvez4qvrL9qk8cJpsJ+1nHuAFM18P5L4fR7Yt//4wav+5pvbroIyf3r8MWzdLHF9+G2ZWpnD2t8VP\nH1xmZWwmlDkGi0WaOf8/SmY/RKA+HZcDe7kh+2opa+M1JuWo5eBck3oP9nIKg6CCPTnkiVxALOCy\n9mxEY6Hmyq10Ud17ygbc+n05WhprGdtl3ziE2hIiD4xP55Ho9NzHeHByE1nvEdZfoSIgFrXgxi+L\nyHn0gY2LH2X+6HFL4OAVhuqiVtMGqdLABoLaSjh2iAZO0X9X+aZmEAtbKG1JOT2DkPXXLlRn3W+V\ndUYCLJ080OX9L3B3a+vCPfvkD5Q2gOoFs/szQ+Dd9yUAwIM9cWipqwIAmNs5I2IK8yZM+KufIXn/\nWjRVEhssHSfPgZWrD6JnJNDmY1KGlNHxlbm0fh0nz4Fr1LOwsHdFxh/byPIOY2fA1qcDErfMg0RM\nbDLw+Hx0/WA98s79hvKH7C0eNHXCbSt6hU6HWCzE33e195ErKRZh1z5nzHyvEguX2mPpgtbf7v8u\nNlP8GqT0iS5Gap4XBvYqgYMjH5u3O2H4s+wpEAJhPWtjcRgfu1P7KlzcSyRQqCwo6jc97D9SaTAk\nxrOdoICsh42wsCLEbJE5SrSyNdF6TBffLjrLpYqA7+MAsZj4dADIfXc5YzvrXp3RlJINAGi4fp+x\njTIabumWcCX7jcXkdek3+yl1gpwi1P59hbwvWvYtnF57Qaf5ZMn8rwTDPu2E27/n4Nq+DAyeFYHM\ny/rZ1Tm76SFeXM7eTvfety/iw6Ps2fie3fRQoVnTrQPZGLemh0bjXdqRioU3x5D3XpGOODj3uk4y\nakNDPv1EoyFf94SLTPhNfEcv4zIhVRYAoCT9P9i6BrTZ3KroOORdZF39lVKW+d9+BPd5lVKWcm4H\na3Pmnf2Zcu835BXyOmDkGwrbJv30OUVZAFoX03wT3fezpMrCnW9jSGUBAAS1FUjcwhwt796ORaSy\nAAApv7Kr1N3bQVVUpOPb+YdTym19iNN0qbJAXIsBAH6DJ7Emz/AuuvnI6Rs+3xR8vvLPQmqeF7nw\nl70GgGd7lCArQ4ibDzyRlcmcpLWyQky5rygXI8yvCEdOuOKbbY4UZUHZXBwcTzJGf8KwYEIqmYdB\nerqw6pdQbJqn2ZHe5QNz0W/ievK+38T1eg+vWrr1gMo2j+K36jSHmY87Wgp0WGTLhNVlGsf/u6Xg\n21ppP74KOr/ohyOLCG078jkf/D5P9aJW3jEaoO7Ox3c5jHmXR6OhUoDNo08DIBbQJuZ8vP/7UFg7\nW+Dcpoe4/bv25lUSsQR/xSdi4Y0x+GrYCZSktjo7qpKPiUs7UnFpRyre/30onPxscPLzu6R8f8bd\ngbWTBWYcGw57Tyv8FZ+IxCOtn//4Lofx9s+DYWlnRj7v2U0PcXbTQ8RceAHVhQ2sn16E/sYcPk7+\n1EFYSz+JqU3VXDFWB7sOkXoZt71h5xaIxqoiuHegZkctuEe1B6+voPrx6EJtfhrl3iWiN0SCJpiY\nW8AhsJPStvrCPXoIAEAkaNKon6btNUXX8SUSsU6mQ24OHVH62OnWWE8W5BneZRH+vrsaYjHzgl9V\neNOVsTVYGcvskK6sb++uxbQyY07Wxturz+wAACAASURBVGFYlv/ehXa9fHxrjotRb3mj2whnhHW3\no5wkqOqnDPmTB32aLRm9wgDQ/RUWv6LdH5yrhxej97hV5D2hNMwDoJ9cFHxrS9WNRGLVbRSQN3M1\n/L5p3R3KeYvdH//AvashyHuEwg9XAgDMfT3g/flsVueQX+grqlOnXJZ1/Y7TykQCMbaO/4exvewC\nXF2yr5WSjs/bJraOq0w+VbIrkq+hshnfvvS3wn47Xz3HWJ4w8E+t5FCGx0cvoyB+DxoS6T4L6qCv\nEwYOgkfJF2Dt6IXc23+0+dzW7n5oKCFCQOafPwATS2v4DhgPALBwcGHs49ljJDx7jWJdFtcuzwIA\niv5r+9dBn+jqZxDmPRyl1SmsRiJqC4Z3WWTUce45OKSL/N2pfRkX/Cd2FeLErkLaIl9VP0XYOppi\n/+fZOPk9ocR+n6Jfs6V2oTCwhUjYzHDS0Jp5NPnyblQUsrP7Kcgvhsu0MRSTHrbx+0b7kKbqUrio\n1S7bc+n7ep2Lo31g070jijcf0rq/qKmRRWkIfMdOZXW8wgdnED12Ca7/PF91YyMj/+5J9J6yAaED\npyPtwm4AgL1HB9QUa6fgaULQC2+TuQgq024BAKkwhLz0IWlSAwAmFlbo/DaxgVNw6QhKE8+TdWzk\nWDC1tAUACJvap734nW9jED0jQSPHanWwsSAUtxHRSzXum1b0D7KKL2rUx9TEAgMiZ8PMRI0NNBWM\njI7llIZ2BFvvlaYnYU/LZ2TNqWdg62iK1xYGtsl87VphkF34s0F4v+msjHP5wFwULtyIwL2r4bdp\nAWrP34DjuKEQ1Wr+h8s8gIjEYhHkA0FBCSSCFkq9rENz/ZW7KN1MtSU2dXcmxgnxhai2AaJqZidO\nRQTsjkfZd7/AbcYrqLt0B7YDulHqTexsYOZLxLU283RFy6MyjcbnaH+UbDlChHowoizx8o7VupJ3\n5094dxpGOiWzGclI3tFZfo6IYR/A3jNU63rptXxiN12eocefC8nr8jP3kLWBedfezFpxgitze2fk\nn28105QqC/rKjFybnwqHwE5wCn0GVRmJeplD39zdvgBd3l2DloZaSEQteHTtBCpSbqjuqAJNF2Da\nZIiWIhQ14+y9LwAAw7oshAnfTKtxODg4qDTWCjGzV9v5JrZrhcHYkd39rzpINydR53RAkFPI2M57\n5UzaGBZBPrRIScKSCoXzyJcL8osZoywBQP1VIoRo2TaqX4aoth6ipEy9nXTwzS0QHvO5Wm1Lzh1H\n2ZUzWs0T/ulq8C1U7YBJkPrNCgjrjDs5kzRSEEDPd+DSewg8hryksK+wvhapXy9TOr6gqByhv64A\nALSUVkHSJCDrcmK+0UZkjbH08IHHkDGwCQxlrA96Qz3TOWX5IBQtsOXLWxpraWXKFueqFu5JZ7bo\nVM+GDLLIKgsA4DKsM1yGdcaNF6jfy7J7F+Ha+Vl493sJzVWtkbBEgib4DpxAtHmgOgqaiQU7PlNZ\nf+5E9IwEOATrP8iFvujy7hq9KVTqwPZO7Zm7xGdGF9+JTn4v4UHeMbZEMhjS1zb48+mwjvTH/bHM\nr3XUkVhgrGZj2w7qDtd3J6Bs2wHUXbhFqw/8cTWy/2fczu4cqpk37LbSiExswykM7RTzQG9KhCMA\naM4qMJA0+kF24asO7oNHw33waLWTgrkPfB6u/UZoMAMPYTOXQyISImkdPU67MWITGIb6bCKUpjqv\np6mNHSIXJCDt25VoqWHOkB6QMJO8NnOjJ2XTJ5p+Jjh0wzbKT3Wjx+RfPATXzs/CPXoIkvevIcuz\nT+1ByIvvqT2O9OSBTXwHTkT+BdVBKIyRjpNikHZ4M8Qtzaobs0R2yX9ILTytt/FP3YnTWmnwcXnm\niVAYpGQu3E0oBSxSd/4mXN+doLCeUxb0S2l+M2PuBFnfBaZ6pn5zdkag8wBHSp+fVmfj1G7Cb+HM\nvkeUcZ96p2cOZvy3LCVzJACA/9b2EfFCFU7RfeE1ir2wgUy49B6iobLQCs/EFJELEow+WzEAuA96\nAVnZqRovtENnLEXGznVoLqVHBFEn/wKH8eE8ZAQqzmq2CHToHqx+YxkTtabK1ohrtbnJTK2Rduhr\nhL48C9EzEtBcXQoza3vwzSwgam5U+5RBVeI2qR+Aa1Q/uEb1o/XXZffetfOzpH+GIpl0PR2oTL0J\np7Du6PIu/ZT13s4lEDU3MPTSjaaWGr0qC1J0URr0QdSRWHKXn7zmAVGHCRlT3voSLeW1CFw+BbbP\nhAAAkqasg6iO8Mly6B8Jv88mou5OJrKX/cg4h9/cCXAYQEQNU3SiAAAdvnoflkEeaEwvZO35pAT+\n+DjfkpzS4L16FopWbIX/liWo/y8RZdsOUup9N80HhCIULNhIM43moDJvKP1UB1C9mGfqt+HtJKV9\n9q7Iwt4V7CRkVQVPYkR2yFJ4PJ7xCWWEmDjYwT1mKsz9PNGcmY9H8dtUdzJyVC1s67JSUJ+dCr6p\nGWwCQ2HtF0KpT/piHiVuuaZz1aTcRdnl02gqJk5rbALD4D/xHfBM6bp19f0bKPjjJ7XmaktozyUR\nAzKRVURNjcg7sIPMkaDMTIkNpajj7JUwsbJhZUwLN+aY5yFvz6PcFxz9EU0Myo48TArRk4o2CoNt\nhC/CNzA7lMubJGlL0KjpsA+MQm1eMjKP74QmUeuCR78LO78wNBTnIvP4dqUhS/0GT4JzeG8Im+pR\ndOUPVCS3fV4STYiekQBhYx3uf09fVMsnrmNr4X05eQvqmvSX4ZgJbWVn21zKb94E5K0/CEiADhvf\nR/rsrcxKhAxMZcoIWjUNWYuJBIQhCe8iI2Y74zhBn09H1sLdWs0hJfDH1RqZJAX+uBr5s7+AsLwK\n5v6esBveB+W7DsNx/DDYDemJvFnEqaHzGy+h6uDfENezH7xCEZzTs+5IJBKdw6JxJwws0XHO50jZ\nsFB1Qw1w7T8CZZcU/4EXVdeiaNm3rM5pSExtmR0mS/89gdJLp+jlMmW2IRHwn/Su2sqCLC3VFUj7\nLp6xrj47FUnrCfMj+YW4Q1QPvSsM8+5MxLpoHU0pZJQFpsV6+dWzKL96Fh0/WQUTS+rOrkOn7qh+\nQM9KqW4eBgBI2ah5NBZFqLvAF1SVtytlQNZPoPZeLlLm70PoqgQU7f8BXq9NQ0N6Kgq+3wLXF8bC\nqf8gAEDa4hiErkqApKUFDVnpsAmLQMGu79CQkYbQVcRnVVBSjJyNaylzha5KQNriGPIaAJqLCpH7\nDT2IRF0Sc64GUR17uQqyTuzWum/m8e0K62y87THi1/8BAA4/+y3yzv2GqpwzCH+zByp2E8pC2P+6\nocNr0cj49S5SftDdmXjcxRk4/Kzuv8mBz00HAEZlAQDqH2XDxjNQ53nkaWtlwZjIW3cQnQ4thbih\nGUlTviDLTWwI37ak14myqCOxyFr8A+rva57Hp6WkNXmguYdic05BEbM5qL4RlhPyCXIfwW5IT1Jh\nkFUuKvYcg9/XC0gFguPpwegzPbcX2FYWnkbCZi6nlT1cE8OoLMhTl5Gk8c71wzUxeLgmRqGywNRe\nHkVKjrEhbhGofH1SvlqMlqoKSpnPS1No7fzXzUDapFhSOZBet5QY5o/ck0zd/USkLY5BwfeEo7OF\nlzfSFseQC34ASF8+HzZhEUhbHAOftz4EALKNubsH2U5YXUVRFvw+mE22E5Q8UiiD/ElC6uL9uD35\nS9aeUV+M+PV/OPzst5QFfG1WBa7Htv6epP54C3+O3mUI8ZRi6eyhtF4fyoKhdmWNaTe49moy+Oat\n+6iPvj+NoNXTYBnkgbBts8jyxvRCRP6muR+A49CusAzyRNSRWCRNWaewndOwrjB1sEbkrwZcV/AU\nb0jLKwuh8QkIjef8y5502sUJQ8TC1g9ibcpd5P++GwAPEQuJkIFJn8eQ7eSvPYaNhXOvQbR2BYd+\ngM/L01CflYrcn5mjjjD1tQvthNq0B7AJCkN9FuFMGvLeApi7uJNt5GVO+jwGHedSv2Ap6xdQ2jWV\nFCJr53pKWfE/R9V+jdo7HT+hL9rbhY/AwOdR+OcvhhZDJckbFqjVLm1LvEqzMHM/N8ZyM3cnjeXi\n0AxRbQ34j0+BxEryWfi+PQP5O6k73R7jX6Xcm7u5k2OVHKXaK8vDlvmRMdBxWg+lpwkvnnwH5fcf\noamsHr7DQ3Fs2DbGssCxnVByNRdd5w5CbXYF7n/TGgGqZ9xIUjEZd3EG/p15GI4d3ZB18B7EQjHG\nXZwBcYsI/350CHYBTsj9K4UiQ8ov69D1g/WInpGAxC2tZpbO4T3hP/Q1AEBTJT0Lsbb8nci+o3l7\nJHfNb5T7ssP/oewwYXcuXeBLzYMeTloNTZH2lTcxUnT/cLJxfO8sQnzRnMFeZniO9km7UBgA6mKf\n+H8DWRY2Ow6pG2NJu3PZ9hYe3rR2AFCTnIiaz5UvSGX7SjG1d4L/q++jLiOJVBgytq2hKAikDGvm\nkI6AUgVBlsBps8nxfcYQR+fB737WWsZyMipjxsTSmnIvEQkNJIly8g/thu/L08l7u7DOgB4VhvXd\nDrJjlsQipbv+BM+ED4lIbFS5GNornpPVz85p17U7qv67CAtPL1RfV5wUsu7BXZjaU0+/ys+cQMXZ\n0+QpQ8bKxQhdlYDcb9bDsd8gFB/cr/UzPEmk/5KI5F2EyVJDYa3CsuwjDzBk12TYBjjCo48/qTAw\nmSUN+GYcACDqo344MvA7AMDRIVsBAJUP6WZAErEYd76NQZf3v0DXD6g70cKmetzfxZ6ZHwCtcyyw\nxdl7X2BIZ80izzna+KKqnr1FrJm7Azpun62Vv4AxYeriAOtenQEAdkN6gWdhjtrTxG+FTa8omPl5\nAgBc3hyL5tQc1F26o3S87P8tIh2lIZEAPB4XZekppd0oDExI7a0zthJaeNauDQCPh+B35iFzO2Fv\nKKyrobVTF9m+0uy0NQ9uwnPkeBQc3qO0b9LnMXDpMwQufYcj9cvFjG3Mnd3J8R+dInb4zOxa7RoF\nVeUayfskYaxhSxsKsin38ooO28y9RYTGm3dnIq1OXSWi6u41VmWqPnUdFsHeaM4sRNrkZaQ/Q80/\nzJEhOJTjO30wY7ms2ZF8WVNeDuVe/v+qKxdpY0gdnmXLpNecstCKRERXgpnKZBWDcRdnkOWHn/2W\nUld2pxAXZx7WSpa7W/X/O3g70/DvfYtIc5+YALe+qKr/TXVDdWUoqW73ygIACMurUfPXRdT8Rc/I\nXX/tPnDtPnNeKDklQPaeUxA4gHasMEjEYnIRLxvBpmPMavDNLch7h07dUXh0H62dOsj2lRL26Sok\nfR5DMX9SRPmVs3BXkiQr6/sN8HrxdeQf2EmW5csoIq79hqP0/J8aycyhXyTCtg0nx8bJQtEJ9v6o\nSmnObA33x4VZ5XiaeekMPcfEyfF7YO5gCUF1E1yjvRE4thPqcirRUi9AdVqZAaRUTGlNmqFF0AoP\nxwhDi8DB8VTBhVXlMDhu/UfCbcAoSpmh/RcsPXxg4eoJCzdPmNk6wNTWAeZOrjC1cwCPT40VYGhZ\n5ZH3QdBUPl37GwJ5mbP2bERjoeZRTNoaSz8XRG2lLjilUZI4ONRF29CkGY/OI+PReZal0Y5+4R/C\n1pLZP0oRihymp1+bjt29dpP/c+gXqcNz2hL9/K3QNayqdXAoPCZPAd/MHFVXL6H81HGVY7iPmQj7\nHr0hqq9D7Z2bKDv5B2M7nqkpfKa/B6uAYFRf/0+lPxgAeEx8HXado9GQnorCvTuUtnV7YSwc+w5A\nU34u8rZuUjm2IriwqhxPBHZhnSn3osb6Npch5J35sHBVHpmEgyD0tzjGUwVF5RyKifhymqFF4HiK\nMRZlAQCySy4jyn+socWgwLewQND8FeCbm9PqivbvRt2Du0r7O/TqB/cxVHPS+pSHSheJsotvnqkp\nOix/HOJVIkHa0jkAAKvgDvB9izCDkwiFSF+u3HTNtlMXeL02nVImKCtFzldqmmnz+QiNo4Zdrr56\nCSXHFC+O/WfEwMLbl3wWVchGWWJT8ZCGjpbiPGgYnAcNYzT5BADPia/D7pke5L2pvQOcBg6F08Ch\ntD7eU9+GTXgn8t6hd3849O6PjLhFEDe3mtlJZZCGwpZiEx6J0FUJtPYAwDe3QMiy1vfH0j8QoasS\n0JCZhoKd36n7+Kzy1CgM/Sa2fthvn/wCjbWGiTc9uM9SlFem4l5Kq6PsoN6LUd9QjBv3FP+ImJla\nIyzoeXi4RkEkFiKn4F9k519Qe14bKzdEho6HnY0XKmuycfvBbl0eg1XMnam7So2P8tpkXtd+I+A+\n8Pk2mUsXRi3rjs4vB9HKjckRmkNzLH1dYGJtobrhU459tyCExVMjPKmK2uT79lB4TuhNKcve+CfK\nTiayLp/LkE4ImjdGYX3ynD2oSypQWM9BUFiRyJrCwMapgqowoV6vTUf6snmQiOgO4yY2tgheyHz6\nYdMxEqHxCai8dB5lfx1ROL6poxOC5so4t/N4CF25AWlL55DKAkDscIfGJzAusnl8PjrE0fOrAIC5\nqxtC4xMgKC1BzkbFORUUvQ7SxbGixX3ut62hVr1em46i/bsVziFL4R7FuVU0RXahrlb7eMIPtuKf\nUyg/c0Jp2w5x68AzMaGN7Tx0JEJiVyMjfjHEjdRIdrJhrWXLQmJXU8rN3TwQ8Ml8FO3/AXX3W3+z\nnIeOhMuwUQhZsgoZ8cy+sfrkqVEY9ImsMgIAlw/MJa+H9yfChf59aQl57eHaGWKJCA9SD5BljvaB\nGN4/Hn9fWkIZq0v4a3B36UQp4/PN0CFgJDoEjCTHlodpXikujh0wvH88hMImnLsar7CfMtRtpxZy\nZnE8nonuY6rArkOkUmVBIhSiJvUu6jKTIagoRUtVOYQNdbDyDkDQG7P1Lp8UJmdnAKgtbrssmxws\nwOMhNG4yHLoHq2xq19mfkshNXbQNfarNXGyZTTHNLfscimTr8edC1CXlI3nOXrXGBIDA2S8gcPYL\nrIWI7XF8gdJY9VLCN7xBXj9J4WmfZOQXyenLP4NESETuM7G2gfcb78DSN4BRWQBAURbytm1CU242\ncfN40Q8ATv0HobkwD7WJzMEiguYuReaaZRDV1bbKw+MhND4BOZvWQlBSrFKpkVUW8nd+i8as9Na6\nZWvAMzOHuZu7wv723VuVbmFVJbLWryTvrUPD4TPtPaUyiOrrYGJjC9tOXZTK6TH+NfK6PjVJaVu9\n8vj7rEpZAACeCfM6peKfU+SiXl1FRZ6AT+YDAEVZkB2bb2XF1E3vcAoDC1QU3oezd5TSNsP7x+PM\n5WXg8XgY2nc5vNyi4eUWjet3t6G6NpdcgFtaOKCpuZrsl559Cu4unZCccRT5j1qj3fh790NY0AsA\ngMjQ8XiY9rvCeQHg70tLARALcwtzewzo+RlMTS3haB+Iqppssv2dh3sRHTmVUXmRYmpiyVj+9nX1\nzCt29vyBct9cXgwrL3/y3to3UK1xtMVjyEtw6T2EVm6stvrSkwTZ8KqKFAl9wre2RMgPRLQMpkzP\nGVPVS4DXHtD2syyPNotxDgJVr51thC96/LlQLQVDflxdFu66vKfSvsagOJTVpKtu1M7R5qRBlWmM\nqKEeeVs2atdfIkHakhiyjeek/ylUGOpTHkJUV0uOIzuuoITIwZERvxghS5hzaEjbiwXNyIijf2bT\nVyxASOwa8M3NFZ5QeLz8CjFGUxNFWQCAhrRkmlzyZH4eq1ZCN/tuPQEANbeuq2yrCfVJ92ETEUWE\nj968Ac2Fqk/6am5eVXt8TaPL5X33Fa1MLBAwmrwZI5zCwAKVRQ9VKgwAIJGIaGHrq2tzAQB1DcWw\ntfZAaOAoirlSQ1M548I9t/AyTE0sEew/FN7u3RQqDAD9FKBZUIOK6kw4OwSjR+d3KPVllSny3WkM\n7kMchcnKqQu1KfcoCgPP1IyVcRWhk7Kgxo5iW3D+y3ttPqe4oQlpk2IR9N0cZH24oc3n53h6cOwT\nqnEfTRbylt7OaCqsUN1QhzlUjWNopSEpX7Xj55NGWzpB16c8VFgnu9C28PJBcxF9IVv2l+rErcqS\nN0phUhZa6xZQTi9kFyiuz7VGeMyI1z2squfE1/HowE9K2xT/zm6I38Ifd8FlxAtwHjwc/h8R/h9F\n+75H3UPFfz9rbitO6iiPx4TX4DHhNdUNH9OUn6t2W4Duf2FoOIWBBcoL7iOk+2SlbUrKH9DKSiuS\nyeuCR9fRMfhFuDqHqz1vZt4/CPYfqrRNWjbz0dqt+7topkryWFk6o7GJ6Y8qsWguLmNn0Vp25Qzc\nB49mZSxt0ORkwcZPtUlJW9D55UBc+0G1cqcPCr9Q/qPP0b6QLlxtwn3g1DcMtpG+sO3ka1CZOsS2\nnqBVX0uHhY8zLH2cGdt2P/oZbo6lJjdrqahDzZ1suAxl3siJ2vG+Zgt2HtDjuGplofpmJpoLK2Hu\nagfHvmFK2xpaaWgUVKtu1E4Zsoa+KaQONmGtoVq1cby17dSVvFYV/UaK/0dzGOcSlDH7WTZmZ6gc\n0yqog1pzy+Lzxrso+GEbee80QL3XMPfrdfCfNU9hfdmJY3Ad9RLsonswKgyuz72osayaUH76T5Sf\nJsLTd1i+Fl5T3gSg2K+Bb6b+bn/B7m1oSEtW3VBLtDVp0hecwsACQkGDyjY1dYW0MllTIJFIAAAw\n4bO7u55TQE/eoopLNzegf/c56N89hsGn4nUAwKNS9p0HZTG1toWwoU6vc2iDa/+RbT5nQG935Fwt\nQWVunUFMkeRpzioytAjtBlULQqYda0OFVa1PLkB9Mn2ns63NqmTnk3/9mGThmZoQ/gQMfbLWH0PX\nfR/DzMlGN5mUKAs3x3wBiVBxpmTnAREIXjiOsS50+SSkLWc/T8rTTsDQAMaThOnXpivt59h/kE7z\nOvYdoFN/dRBWV6ls4zywdSNRHZMgALAM0G4zrLlY+d+Dyotn4TqKOK1w6NkX1df/o9Q7DSBkbX5E\nXyOxTfry+bAO7Qif6e/DfcxElBylBw5xGjRMbT8KpwGD9aowGBt81U042EDQQl/8trSoVjSk+Hv3\nx/D+8bR/+qCxqVJhnbtLJADgfqp+/8iFfWycGTc12X1gg3XRB5Bzldhp2jHmBM5/dQ8NFc3Y2F+7\nzLFPC6a29oYWgUNHtNl9vzn2C1pZ4hTm2OUuQzoxlsvT/Y8FjOWiuibceOFzpcoCAFT8m6TwWRx6\nab4TzKGa4tvFWvWz9PVX3UhZfx/1T+bkw2iqi0QsVi2Hf6DG4yqyoxc3aScnZQxBMwDAfewkhW1y\nv2GO5sQ2DWnEybx9916M9VaB6itO1iHKTxGfNDiFgQV4fDWi+miZIG9YvxUY3j8eYUFERJ+yylSk\nZh3HzXs7cPHGOhW9tedaIhHnV19KiTz1OfRso/r2ZdCUgNdmqG6kZ67tTsHmoccgqBcaTAbr6FBY\nR7X+qIb+FofQ3+Jg06OjwWSSx2vkBEOLwKEDBXuZQ0YrUyKE1Q2QtChfvMsSNPcl1Y0A8Ph0v6Wk\n2btxe/KXas8FKJadc4xnn7/e/4uxXKX/gli3nLFigUDttvr8+yYbvSln4xq1/zHKaaL7MlGRH4U0\nYpS+8Jn+Pq3M923i73jOV/Tnbcgk1iFMvgMdVlIVmpLDvxJtV9IVHd93Z4Jnqr0Bj9QUKXRVAsyc\nXSh1TgOGGMy3gTNJYoHgaObjZjaQhhhlJXypBtTU0U0TpOFda+ryWZ8vZ/93tGy9EXPXImkdc5xr\nNuHxTSARq57DJqBtdgPf2D8ce177u03m0ga3t15AzsdElBDXqSNRELcbDfcyjSpxG3fC0L4p2n9J\n4z53p23WrIMaAQy6HZrLWF6fpp1ZXuKUTei672Ot+nLon4asNNhGKg8Bqoz6lIew78a8cy2PorCc\nbNCQngq7Ls8AAASluuWc4rF8qm4X3QO1dx47Fj/+Dmas1N2pmgnr0I4KF9ctlXT/zIKd38H/ozmw\n8PZRuSivvn4FPDNzuI0ep5cFvDTJW+Ccts+3oAhOYWABj+C+ehm3X7dPABBRjQyJqaklhMImdAkn\nogFcS9yil3keromhKw3ziFOUtM1xaKlVbLvpNXICnLr1J8fRhIjP1intE/zmHFh6+Gg0pi54RDiS\n17KhVI0FE9vWGNBOY55F2d5TBpSGIGn9fETMXUspi5i3DknrFDvjtRdGBc3BiawN6O4xHm7WQTiR\ntYFSLiXCZQiSys+SdadzNkEkbgEADAuYiTM537S98G2IWMD+qRvfgr4LfHf6t1qP11LJnMXec3Jf\nPPr1P8Y6fVDXZJjEpW2NbFQkO1871ObXKm3/6Oc9ZO4C65AwNGSkajRf8e8/kwqDibUNRA3M77cs\nglLtzKeU8ejXvaTCoDUSiVpKtWM/9fw+Ks79DefBw+E58fVWheEx2ppnqUIbp+HczeqfelRdvoCq\ny6oT6CqTI2MFs8mjqn6GgFMYdKTHi/rbUTUzIxz1qmuZd/SfiVQvVry2nL+6GoN6L8Lg3osf53EA\nJBLV9pO60FJTBTN7R1p56Efsvc41KXdh35G6ixS5IAESkQgFR/dCUFkG2+BwuA0YBZ4J9SuS9MVc\nRHzWNraWxkrp93/CMtQXds9qvxPHNhJhC62MZ2JCKqCCihKAbwJzR+rxrrHm3pAls4qIC36z+HeM\nCpqjVp8HZacxIuBjUqEw4z/dGaVbKus1dnwOXcEc+U5Qolt0odLjt+A2uhulzHf64DZVGJqe4AhJ\nTJjbmaM2vxYTj0zEgbGKN2Bk/QN83vxAq0hJUoIXxiFtKfP31cLTm7zO2UT3u2ETm/BOqE+mR2lU\nRcHurfB58wMARDZpaeI6edxeUC87d/nff8J58HDihseD8+ARGsvEYVieKIVBPuOyIp557jM9SqGb\nDaQsiUn70KPzO6SjsSx9n/kYNtaKMzSyQYtQ6pTNQ7/unwIAzlzWr8lJ2reEs7P8SQOb5B/aDd+x\nU2EfQd2B4ZmYwPfl6Qr7tdXixClvGgAAIABJREFUUlDfQomGpCgykqFOHmr/vQu/Ne9D0iSgmCA1\nJucYRB4pTCdUUsyd9ftd0SfBjr2RWnkRES7qh4rMq72LTq7EH+RQp/4QS/Rr1mfsCEqqNVYYHHqG\n0MqEVeoHqlBEzuaTNIWhrWlmCMLxJPP6mddRllSGtCN0Xzl5xIJm8M0JBTt40Upkrl6q0VwNmWmw\nDg4FeDyYu7pBUFZKa+M/U8bUTUv/RpVypCXDOjQc3v97G/WpSSjcs11h26DPYpH1BTXQiOzpSofl\nXzAqT34ffKKRTHX37sC2czRCV6wD+IRvhC5KmaaEWHdDqHVPStmJsq0AgOdc3wPvccj4C5X70SBq\ntewY5Ur1hXhYdwm5Tff1LK3x8UQpDMbA5QPsmUDIhl0d3j8eTc3VMDezAZ9PvG35RVfh69VbQW92\nkIZYtbZ0Ud2YRR6uiUHoR7Ews6OfNihDUEn/cWYi/8hedPDyp+04K5NHikQk0qv96cb+R/D6D0Pg\n07VtX3NNyFuwlVaWv3SnASShokxpaK/UCIoxPGAW8uvuUUyQ5HG1CqTc59XeBQCEOPbByWzNHHSf\nNNgyV8rbcYaVcQyN1FTtSUdqjqRJsraMuIVkKFITaxuExidAVF+H2vt3YGJtC9vIzuTvP9Nit2DX\nd2T/gE8IZ9+C77dA1NgAr9emw8ypNZ+IohMINij4YRvhVMzjwSYsAqHxCRCUPEJDeipMHZ1gExah\n0jE3bekc0jE5ND4BtXduoPLSeVj6+MF9HHECJ2qoh4m1esp40S97ENo5mlQW2ppQ656kgjDK9X3y\nGgBOl+2AGGJanXy7Z+xGPJXKAsApDKxy+QCzg5wu/H1pCaIjp8LVqSMsLRwel0pIEyGBsAHBftol\nqVEH2RCrDY1lepuHibTNrTsePFMzeI14GdYBoTB3dIa4uRnNZY9QefcaqhKvaDV++pZV5LX7wOfh\nENkdpvYOaKmpQuWtSyi/do6xX1vYxf80jbBF18aHQdeTkPZgpqMMqfw8U1O4D3wBjp17wsTSGoLq\nCjTkpqM29R5q0xVnYTU27M09cDp7E0QS+iJvVNAcnMxKQCfXETDjW1LqHpSdxrCAmQD0b0rIJi1V\nqu2+DUX5P0/KQkE/u9rGyOTjk2HtZk3eq6M8pC2JgYWXD5kd2MTGFo69n1V7zrQlMTB3dUfAJ4R9\nutS0R0pLRTmyE1YxdWWVtKVz4NCzLxnO1NzdE+bunrR2Ck2WJBJkrlqC4MVEtES76B6wi+5BVudv\n/xqNOVlq53qQR9/mWJoghhg9HV6EnYnyjToTftuGVjcmniiF4fKBubC290TnoR/DxLRt39RbJ5hD\n5jFFN2IqKyy5hcKSW4xj3Hm4V+G8mblnkJlL3/VSJ6qSppGXLt/6SqP2bCIRtqDwr1/1Nn7Jhb9Q\ncoE5FB8HHeeXB8Ll9eHkvaiqDpnvGs+PPwBIhEIU/3MUxf8cNbQoOjMisDWyzv/ZO+/wpsr2j3+T\npunee+/BhkLZG4EKskFARUBeB+rrQBAVkCmCDF/15x4sAWWLgOxVoNCyy+jee++0acbvj5g04yQ5\nSc5JmvZ8rouLnOc8484hIc/93EtqZTidvQ3RriMwLvg9JJYcwKMK1eBzS7YV7pQeNZqcVCCoNdzt\nhy6YFKjmxYLEBdg1cBfEeqRLbSkuRPrKJeA4OMJn7gJY+fpD2FCPpsw0VMdfJHQ1kodfUYb0lUtg\nF9UVXjPmgsXhoCYhXlZ1WB3qXHR0bZdSm5SA2qQEsNhs+M77D6yDQiFsbAAvKx2lxw5odYkS8pqQ\nvnIJHGNi4TbmWVjY2aM6/iIqL5wmLYM8NbeuyZQvflkJ6XFUUNicKnMvyua1FZ+1s3DGMJfZClYF\nKWcrf1G4lrc2dDY6lMIAAE11Jbh1rC1FV//J68Dh2moYYRjZD/5CcXo8bfMzdG7aW4YkKW4vPIPy\nHf+g5p+bsI4MQMCG/8D345dQ9PnvphatQ6GcCSnAQTHQPKXqClKqrmico7wpixbZ6ELYRD6XPQOD\nNvRRFuQR1Nch/yfi4n9kaEx9onMcBB2IRSIU7vpJ7/F1d5NQdzfJYDl0sdRQjZ91FOGGf4jzTGQ2\nER/YdrUbiqTak6hspT6dvLnR4RQGZRKPS4Iy5QOi7535Arz6zpFWzlCkhduMXQfCXBk4V/I5y7z1\nJ8qz1P/nOnDuVtzcT70LmzEI2/mxQrBzc2oe0md9ioiD7bM6t7njbOWDmpZieNlGoJv7WFlsgjaG\n+S80O+sCAK2VkxkYyJK4PRGhcaHIOm1eSnNnoOTP3UZfs5yfr2AtuFlzDDWCUlyu3ovRri/DgeMG\nT26QwpgnDfEY5/6q7LpZ1IjLVe37YCx6pcRFLGUDte7FHV5hYNCfMUPWA+g8AXJUIFUCPEJjtfSk\nnmOZvTA17IFC28w3PRE72hFX/qrBqT3UxKA0ZxZRMg+Ddk5nb0Os9yy42gSgqOGpxqBnecYFv4vy\npmyzsy4wMFDBgsQFCtfD1w2XvdYlAJqBWjwmTZe9rk++b9S149xfx7nK3xRiwaQBzXwRj9DyEGDd\nFUE23RXuKWdM6kyYrcIwfPxGXD1DT3XAzozUoiDPpYS1JpCEgQpe+sBHRYkwlML1uxBxcB0KVv0C\nXkoe2HY2CP1pqYLVofsH2/Fo2xJwbO0R9cYaPN4uUaS6vrMJT75uK1QT/foapO34HCJ+i2yM8t8R\nCz9C+o5NCvMqrwO05QonmtOcSSo5qPOYszlf0SAJw+0JxLFqDO0LRikARo6T/J95+az6wmDGJGzV\nRrCtJIkZMj41jXVdXlnwULIkEOFvHY1aAbnMi50Bs1UYSgpuY0ScpLLr1TMfm1UWkPZMbmE8fL36\nQSjk486jX8FrVi2f3lmQuhdJMoqwZNaDmCmrwLV1Ar+pFlxbJ9KuRQPnbkUrrw6WNo6kZVi7OxR/\nflOKDXvDMD1S4opyLLMXNr+Zg+XfBWtUBlw8OAp/V5frn1qSyN3If/1/VPpIlYaGPEm+c0FTA1is\nthR68soCAHDsHdH1v5o3YVYaaigIGurQ7b0v8Ph/H8oKC5GZk4GBgYGBXoiyJ9U/vKdQIM9YnKn4\nWcE6IBQLtAYwJ9QcwTj3V+FnFSlru1C5ky4R2z1mqzCkPT6CtMdHAACR3abDJ0BSj+D2te1obFAt\ntV6Yegl+UfSlHzU1xzN7YHJYstr7bAsW/rjfFda2ks2bur7pOWeQnnOGFhnNiYFzt+LJhe9QV6bq\n0mFp46CgJJCJRxg4dysS//wIIpFAdk2GXkMccGp3pUxZkLL8u2AAwOHUnpgRRezTLlUQDFEUpMhb\nD8hg7eFDuq8hFoCUH9dI1vP0Q+BzLyPtt88NnpOBQS0sFm2FthgYOjpZG1dB2GSatMliiPTKcHS2\nQn3BO23YR3SF/2zFgzV1cQXRK7fL7kljEAAAYjFSPlNfryPqoy8U6mlQHbcgj2mqZ1CMvaOf7HW/\noUtklgd58h517pSZIqEYz/fQvTx8Z4ZIWQCA4qeX9ZpPqizowtSwBygv4uNYZi+FNukfdcqCqREL\nhbAPjED062tQfuu82n5Z+79G9w+2wyk6BpGvkgusZ1u2pUyOenUV7IMiETBxHqqSbyrM6dy1H+k5\nGRjI4DNnsKlFYGAwG9JXLlH4YyplwRQ4duujoiwASsoAASr3WSy1Y6JXblcpvqdtfkMwWwtDVI9Z\n8PaTFBC5cnq5yv2BIz/BzcsbZddisYiWwmoMnQ8n7wiA2rAAtYyd7YqaCkVF41hmL+zYWISgKGvs\n3V6CypI2v0xrWzaam+g19wZtf1vhmhsgcRkq3v4nGhIkSimvOBcNeekyC4A6mopyZNaA2hRJWjvp\ntfLfyq8BIPVnSWC+NMZBec6aJ7fJvzEGBi34zRuO4v3XTS0GAwNDO8Y+vAt8p81D8d/7UftAMVti\n9MrtCtYE5XuFh3eh/mnbBiP41Q9g7eUHu5AINGany9pD3pDse0tOHkDNvbbitRHvr4OFnT3VbwmA\nGSsMHt49CRUFKSwWy4jSaOfTX4LRb5SD7PryXzXYviRfdi11KTqe2UPW9tdvFfj1s2IAQFCUNb45\nFSG7l5vajP9OaPvwAMD35yLhF2olu9bkokSE/NoAMCUiGdLQkOOZPSAWSyzyxbl8+ARJTnmnRT6C\nUNjxTPRlGTfVuhrZuQbIXjt6haMkTfsGopVXh14Tl+PBSVXrlybO/SmJIZGPVVAXt0DUTnXAMwDk\nLvk/wvagL/8rUxgYGMweSegSAwMDg074z5GkYVVWFsggrywAQM7P2xC9cjs8x01F9o9bZO1W7l4A\noKAsAED6l5/SZmUwW4Xh2jnNhVASLtFfdl0X+o1yUNjAH8/soaAwSNvUbfK/ORWBxc+koTC7RdZ3\n9DQXXDxaLevzKLERi8emAQC+Px+JVT8HY/2rOaTkGz7JGZWlrVg4OEWtPFPCkzF5oTv+s9IHk8OS\nETfXFRv2huDjOR0vdWNW0iGIRAKFWAOp8pB0aCVhO6AYmxA2YLbs3p1j6zBw7lYMnLsVfF4dRELD\n4wraG1x/D9nrvOM7TSeImWNhZ6W9EwPtPF78M7r98KpKe/C7E5DzleZqvQztgwWJC/TKmCTNMKSJ\npBtfqsRLslhsjBi7UaVv8r1dqCx/qvOavKZK3Lq2haC35vWuXWIyG7ZXGtKfwD6iK+E9fpX6jExW\nHt50iUQas1UYiPAPHoqCnGumFoM024+FY8nUDNn1uv/kaOwvVRYAYPfWEry31V9BYfh2RaHs9eJn\n0lQsBppY+r8AUhaJ4zsq8J+VkoDWW+fr8OYGPy0jzJecO8eQc+eYSruwtVltkLOm4GdzLdTGYFxs\nQ71MLQIDAF4ecd0S9/G9GIWhAyPduJeXPsLjB5ICXTa27hgwVPL/d8qjgygpuguJCaqNoaPXgMOR\npA3Ny76E7IxzcHGLQM+YhejRZz4A4hSn8nM386px69oWWFk7YeCw5bCxdcPIcZvUpkZtUxbEuHp+\nFbhcewwYtgxDR60Gn98ALpce1xQGcuh60q9sLVDE9ObODqUwhEVPMiuFIaSrtcJ15iMe6bGPE6kP\nHtJFwWDovCjHMIDNAtfPA/ziStMIxMBAE/ee/xJ9Dryv0h5z+APcnUGuiB6D6Tgw8QAip0Ui7Wga\nqf6ubpL0mSJRq0xZAABeUwWuX1qHIaM+RVS36SgpuqMyVqosyG/uqypScfnsRzIlxMKCC6GQrzBO\nqixcu7QWglbJHqCZV43LZz/CwGHLYW3jgsEjVuDGFUWvCemc1VUZeHD7F8m45hpcObcCPv79EdV1\nOhhMS+HBHTr1F/FbtHcyIWalMIR3mWRqESjl7J/V2jupYeoiD+2ddETXmAe68R/kh/FfP6PX2D2j\n9oPfwNfesZ3CtmRjxNphCB0bTMl8d3+6j3s/UxPPoC6GwRj4D/bD+K90/0yIRWL8NmA3DRIZRtHv\n8fB9aZhKO9fDEfzyOhNIxCCPsKGZsJ1tw0W/Ux8bXMitx2+LIWzi48nbvxo0DwMxTeVNpJUFAOjW\nex4A4Fa8qhtQa2sTAIDFslC5FzPgLQBAZUUq4bxSpWHYmHVqrQVSZUGem/GbMXLcJnCtHJTutJ02\nS5UFeYoLEhmFoR1Qn9q+9lSGYlYKg1/QUFOLYBAsNiBfX+77VYXqOxMQEG6F/AyJBjpovCN+XFuk\ncH/Fj0H47PVcAMBPl6KQcJb8hmPTW3laazkYizGbRyJ4tPYqjJqYd2kuAKAoqRj/vHnWYJnivBbj\ndOn3Bs+jCa49VyY31cS81hsxr/UGAKQcTsX1TZpMn+2PkeuHISwuVO/xLDYLi5IkbgEJW27hyYEU\nLSOMQ9G+a4QKQ89db+H+nP9BUEfe6shAD7cnfI5+pz4mvNfv1MeovPgI2Vv/Jj2f86BIhK+aIbtu\nyiozWEYGauC31MHG1g3WNi5oaSH/++noJEmEkXxXtxPloNAxANqUESIErTxwLG0QEDQM+bnxAICw\nyGe1jmNgoBqzUhgA4hSqUojqL5Bh4LRNYFuQfxS15Zl4fEW3zaNYBCzZFoARk50BSDIQ6cLksGQc\nftodllzJycKLfZ+gvkao0Ofr5QUyt6IWngivjcqV3VN2N5JeSxWEG6dr8dnruQr9km81YsULxgto\nnh//IjjW1H4kfWN9sChpfrs9YX5m62gEjQjQ3pFComdEIXpGFADg4PQjqMuvN2g+zzemwK5PBLJf\nJ1eMThfmX30RHBtqPxODlg3AoGUDUPqwDCcWmb4+S8PjAth381dp7/3He7LXNTfTwS+rBcfRBrbh\n3rD2d1Poq+9JN8uCDfuu/rAJ9oBNsKfkdaC7VndZhx6BCptoEY+PhqeF4OWWg5dTjoanhWgu6Dgu\napqUBrfR3eE2uruRJWIgw4LEBSptmoKgb13bgpHjNqFP/8UqloCho1YDAEqL71MmX0Cw5LCgIFe9\nK3VB3jUEh41FUOhomcLg6y8pVFuYR02K37AvFN3rqs6cRvWFc5TM3RnJ+/17BL60GFGfbEHqxmW0\nrNFaXQlLFzc49eiH2uS29OEhr9GzHmBmCoMmZQEAqirImx4BoP/kdeBwbXWWw8kjDINnbkVl4UOk\nJpDbhLLYwLb387Ht/XzC+2RO9md0eaT2nnS8unnIzH/rfB2p8dLX1eUCyiwS0tNfupCeMP8au4v0\nmH4uzyG1PgE+1uGytm6Ow5Hf9AQBtt3wuO4KAIn14UzpDwi27YXsJnI/Ji+emwNrZ9Nnw5l1ZDry\n4vNxbslF0mPcXxyLin3nZRVvncb0RWt5DYL/733kvP0lZbLR/Znw6umJhQnzsGPQHlrX0UbKsj1q\nN6NSnAdGaLyvD9rW1AW2DReOMSFwjAlRuWeo2057QZPSwNA+UVYOXMJdSI+VxgiIxWKFNO1Pk/+g\nRDYAYLMlWzCxSKi2j7Tgp/yhpvS1UNhKOEZX6hJuwDokBFxvH0rm6+w05aRD2NQAC1t7RK/cjqac\ndAga62EbFA6OvSMAwysyZ377GaJXbofPlBfg9ewMlP5zGB6jJoDj6Ay6ckJ3iErPUpJvk/MDdfXt\nhsEzt+qlLMjj5tcTg2dulX3pqSAucjl8HLrA36kn4iI1K0hk53O1DZT9aW+M2jiC9o2hPIuS5sO3\nP7n/FN25AagXVCKt4ZasLcCmG+oEFXhcdwVjPF6RtYsh1qos9H2jDxYlzceipPntQlmQEjgsQKd/\nA+dJg2XKQsTBdUif9Sly3twOSy/yP8aamHloqtE+E2wO26ifP3V0lE11R+f2hM9RuOuKqcVg0JPn\ndj6ntY+8ZUHQyoNQyEd2xjlcPvuR2vgDfSn711rh7qXeQuXhKbH6l5e0Hc5VVUqyK7q6R1EiR/nR\nw8jfvhWZH35AyXyaCN20RcWi0RFJ3/4p0reuAADYBkfAsVsMOPaOEDY2IHUjNRkTUzYsgVgoBJtr\nBZ8pL4Dj6IyUDUuQv+9HSuZXxqwsDPJ4+vZBWdE9lfbh4zYiJ+Mc8rIuqRnJQvTghZTKMnD6Jtw+\nuQ58HjVBisX1knzNBbUPAUg2/afTNiu8drcNQaBzDPJr74FrYYvCOvXWh6qmPJW2cRFLkVp+Cbk1\nkmwPHnZhiPGdjrTKq8iuuiVb61rubxjgPxcXMr8GAAQ590W0x2hkVt1ARqVh5lCONYeyoF5dePbb\ncbi5PQmP9z8xaB6eUPLvfab0B4zzfA3VrcVIqlbvy9x7UU+D1qMbshYYfh59PtfefbzgFORE2/zq\nWJQ0HzuH/A4hX3LSx6vkwcbNxqgyMCfY5kHxnzdQfOAG+p00/N+KURTpZdSmUbLXHj08cPZt7fFs\nUsuCLsqBUNACC44V/AIGoTA/gfS41CdH4e3XTxYDQYSDk8RdMe3pUVlbTsZZuLlHwcU1jPRa7QUW\nu0OdU2tE2MwjbUnQ1E/TvdTPVV2QGrPSDLZgEGG2CkNUtxno0nMOgDZXpRFxm5H2+DAiu81QqzAM\nnqm+CAogRklmAioLk1FfmQORsBUcrg3sXYPgHzUKjh7qv5z9Jn6KG4fUa41kXXcK6x6hn//zuF1w\nQGO/iqZs9PN/HveKj2J8xDKNCoMyUqVD3uJQ2ZSDM+lbMDR4kUxhAIBGfqVMWQAAK44dzqRreobk\nmR//IiXz6MPAJbFaFYYqfhEcOG7wsGp7TpmNd+DIcUeAbVfcqDoEAHjGcxEuV+wBX6Q5QDXjZCbC\nJ7bv/+DJKA0Fq39D+B9rwLJgQ1BeQ9nazsFOmPhTHGXz6cqC6y/J3nthYjHCn9U/yFpfbk/4HCwL\nNvr+Td66WLDzMn0CMRAjbtvsR6yZBaf+4VoGSBDU85Cx9hAanhTQKR3Dv1z6SN3BIbVcu7QOI8Z+\nhoguUwgVhqhukiB3ZRcisVi9K5Iy8mPr63RLmMLQObC1cMJwt7l4WHcRRc26ueiTwWwVBpFIgPhz\nKwEAfQe/izs3vgIAFOcnojg/ETGD/ou7Cd8ojBk8UzUos64iC48uf6d2HQGfh5qSFNSUKGZV6TH6\nv3BwVczkM3jmVo1KAxmSS04CADhsLp4Jf19mWVCHWD7tkg5I3Z2k8z8T/h6aBQ0yVxN185c3ZiEu\ncjmuZP8AXmutzusKmiX+mO3BDWRR0nz8NmA3xCIx4f3E6r8AAPWCSmQ1SqxZ6Q2JAIDHdVdl/Sr5\nhTJlQVM2pStrrrV7hQEAes7vjoe71CugIl4LMuasUWlPn/WpQevOODjVoPFUIFWYMv/JMonCAABi\nocgoJ8/t4XRbHxn0GZO6fK/OY8iSvuYgbXMzGE7U9Cj0f78/bn9zG08PaK62LI+6as8ZKX+jQCnY\nWH7jP3TUaoVKyz5+sfDxiwUAxF9YpTJfSdFdePvGYOS4Tbhy7hPZb66PX6xM0bhy7hOVcekpxxER\nPRkjx23C7YSv0VAvyZrI4dhg6OjVpN+nvqhzK8pe+TFEfL7WvsptVLpDDev6LuKffEXZfObCcLe5\nOF32A+I832AUBnmqq9oqJNvYuqncd3BUrEAc86yq+fjGoWVQrtZIluSL3yCw+wT4R49WaOdY2hDm\nU9YVgYi+GgIisRBn0xWVp6K6J3hU+g9i/WdrHFvNK8DptM0KblK6UJNdi6l7ydfTaKltwanFZ1GV\nXkV4P2pqJIauGKSzHFJeufWyToHQRHhYBYEFFmwslHNlq3Jj800MXj5Qr3Xqixpw/5cHSPs7Q20f\nv4G+GPBuP52C+5SJfbuvRoWBDgxRIMUiMY7MOY6abGJrR68FPdDvrRidZDEko1bo1m3IWkq/L7Ax\nMMV7sYmIhM/rrxu0LhVzMJg/L15+ETe/uIk9w/YgfGI47H3s0VDcoHFMS0sdrKwc1d4Pj56E8OhJ\nKi5L0loLHEsbQmXjdgLxBjbl0QHY2XvCwdFfrnKznDzNtYQHg4V5NxARPRkA0G/QOyr3s9PPICRi\nvNr3YQjSzX7Dvbso3S9Rxq38/OD/7hKEbPgcmcuXKhw+5qxfI3sdvGqNShvV2HCN79ZqalhGCEk2\nW4XBw6uHLI3qjQtrMSJuM8qLJYWpWCy2ikuStZ2iUnHz6MfQV1mQkvfoFAqensPAaW0nXv2nrDfI\nyhDtMRpBLv1Q3pAh25CfTtuM8RHL8KSMmjRnZ9O34pnw99DIr0ZCXttmeWDgPNzM05wxZkjQK7Dj\nuuJM2hd6re3eRVW5U+bYvBOoTCGXkjH1WBpSj7Vp0vpsPHXNnqTMmdIfAABNwjqttRqeHkolpTDo\nmrlISuHNIhy5eVx2PXrTSISM0b2mhaHPRNe1dEWXNLkPdibjwc42l8DRn49AyDPBGse8cutlnWVi\nYGBoX1jaWiLzVCYAIONkBl66+hJ+H/672v5k4hfUWR7kx3XpMRseXt3RUFeMlEcH0NRUoVHOOzcl\nxTB9AwYiPGoiWlt5eJD0k9Zx0vUioifDN2AQ6mvzcTexzWMiN5t6lyzroGAAQFNaqkxZAICWwkJk\nfvgBwr7YhrDNigHUwnrV1N1EbeoorLwHP7c+OskZ6TsWaUUdPzXsAJepsGBxcKPqkMy6UC+gJ6W1\n2SoMyilW5eMYiO4rIoaIonRkVM0jJaX8IlLKVTeK0riB/Nq2TDzyCoU61N07n/E/hetHpar56InG\nXs/9Te1ahiJqFWHHYMNSXP4auwsTf4yDd4wXRVIZF6o36Rc/ugygfbiAERE9PVLnMaX3y3DiVf3r\nJ1z8+ArYn8Zj4Y15es/BwMDQ/hG1ihAaF4qs01kInxiOIzOOqO0b3f15AMDthK/V9gEAHq8KNjau\nGvs8Tf4TT5P/1FneovybKMrXvahmespxpKcc196RAvze+i8AoPiXn4yyHgA8yT+hs8IQ7DmoUygM\nt6qPKVyfLvuBtrXMVmFQB5Gi4BncX+Fa4opEHbVl6XDypD5PemeCyo3yyddPwzXCBdP2TSY9xpgn\n6r/G7pJt4KlQksiu+dKFubBy5JIe89L5Ofj9GepyjhMx5GPd3Mmo+jcStYrwa+wuvHLrZbDY1Oer\ndp0wEc6j29wV+UVFKNje5rPrNmUKnIYNl12LW1uR/XHbqWboVlWfX3n3GiJXIfveveHxwovI/nAZ\ngjd8Bra1tUoffVyMlGWRHx+8fgPYNorZpPI2fgZBVZVsbGt5GSw9PNXO4RDbHx6z21whc9ethTLK\nMpTt34eGO3d0mqO9ER7Gwc2rkoMNdz/VIFZXFzYG9Odiz29uhPcZtLN7SJsVMuOkeldOQOK1AEAW\nC6AObcpCZ6e1ogKW7u6UzinW0xtkdI8PcTFZP28IcyHO8w2Fa0ZhUMOQMavBsVSspUCkMHiH6e/j\nToase0fQZ7zhNRM6K4/2GpbelIiq9Gqcefc8xn/1DOkxYeNDkHkmm3JZiOBV8bBvvOZMWFTz+5j9\nOlkarJzorRXhHKKbn+m1z8inKyTLbwN202J9cR49WrYptuveA14LFsjucb294TRsuIoC4PPa6yj+\nSZI/u/jHH8BLT5fdD/4fetDZAAAgAElEQVRsIzyefx7lBySfGWFdHZyGD0ft1bbge8+X5iF7+YcA\ngJyVK1Q22S7j9ctAVf7nH6hPSpLJ6fLMWFSfl5zc5axaqdA3+LONCPxkhcJ7s/TwVHmv8nN4zJ6N\n8oMHUH/rluy+PFxvb0AsRtaypQpzyCsMHrNnq6zR3snIFGi8X1Utwj9nmo0kDUNGynFEdZuBkeM2\nqXVJIooVYFCktZJ6hUFfOBbWGNrlbVx7+n+mFoU26FQQlDHbhLgj4jbj+oW1uHJ6ucIfIuyc/Qjb\nqYJXX07r/B2ZBzuScet/SbTMXXCjECdfO026/8gNw7V3oghjKwtSdg5R779rbGYcIJ8V6era6wqx\nKlRCh2VJfvPa+EgxpbL/0mWou6GYZaXy+F+wiWxzz5JXFgCg+Kcf4dB/gOw6d91auE2eorKuWCiX\nplEshqWHh+zSZexYlO3fp9sbAWTKgkSOn+ASp17xkCo82lCeQ6osAEDtFcXCaP5LlykoC1ICV0iU\nFe9F/1G5pzwHQ+dkQeIC0hbE4sIkWbrSkeM2Ef6xd/AFoFuNhs6GTSg9mQAf5R3T3okAWytXjOv9\nKVgss93uthvM2MJA3kTF59XBytaZRlkY9OX2d3dpnb/kXimt85sb0sJkpsazh4f2TnKkn9DsTmAo\nt75MwoD3Y2ldQx7HwUPgOHiI2vsBH32scEonFhCfRrNtbCDi8RC0dp3KvezlHyLkiy0Kyov8qbxe\nKKVdtgoIgN+772mVUxd4GelwGjFCoY3IYsBxkWQCs4lQdQclmoOhc6IubTYRd25+AzePaPTos4Dw\n/vXL69HKb6RIso4Jy9KSlnmLqh6ie6D+qbfH9pIcMJy9r/p/pT442wXC26UbAt1jKZ1XVxiXJFKQ\n9zuur8qlVWFw9elq0PhhkxV97OKPf2jQfGaDYUmqSJN1Nhuh40JI9e3/Tl8kfm3gpqqdc2jmMcw8\nZNqaB5N+m0C6ryEpTsnyaN8ToyoMddevo+Ko+gBMS3d3hY2+bXQ0vP/zqmInsRjB6zcga+kHsLCz\nQ+HXimkbxaK2VIw2ERGK1geK8Hv3Pe1y6oiFnZ1Km6a4C0FNjYoLBNEcDJ0PkVD3OkWV5SmMBUED\nuRvXI+iTVfBb/BYKv//WuGuX30SQh35pyaWM691WL6ihuRxFVQ/AFzRAKGqFBZsLK0t72Fm5w87a\nHU629HqnUAHjkkSC5Ds7MCJuMyK7z0B4l0myP0Rk3T2scO1i4AZfmeghrxg0Pv74h51HSZDj1/7G\nCTK+tOKq9k7/0mNed9rkCN6jmmObTpynjCJsr80lX3CvPRSa0+WE0BD2jNpvlHUa7tyB4xD11gUi\niDbhym46LXl5Kn3EQiGCVq+Bz+tvyOIb6MRQZQEAPObMVbhuuHMHIZ+rL9ZWsEU1qFF5DobOxYLE\nBViQuABsC7bstfQPg3rY1tYAABZXvZVAUCOpd2MdEgqveW3xX1wfX1l9hqwV2hWugCW6J59JLTyr\n8xhN2Ft7INL3GXQPnIpewbPQPXAKInzGwNe1l1koC8rEOj9H6/xma2Ho0XchAMDHXzEDUsbTv1X6\nCvhNCtddhrxicEVmBvPi8f4n6DaXWkWxPcOyoOYswG+ALzJOZiLiIDlzq6HVnpUpvKk5YwmV8Bvo\nK5YoT9n+fbDv2xehW7eBX1wMAOD6+KAuIQEVhw/J+gUsX46aS5fg8fxsVP59HG6TiLN+uU2dhvpb\nxKkYs5d/SHsAMFk51SIWI3TrNtTduA67nr1QceQw3KfPkN0u278PoX23IXTrNjRnZsLS2xsWdnYy\nq4NYKFSYw3HwEJU5GDoXO/vvNLUIZgNRFWaXUWPgMmqM7Fq5CrO03oJ9j56wVxqfs34NxK3q083n\nb9+KgCVLwfX2VlibbKXn25l70C+MSYlNhD1H/4KtZGCJxUbyC9EBFotFuVCDZ25VahFTkl5Ved6m\nulLcP7tFr7mkrknmam3QJdvMwelHUZdfR6M0qpCVj1fJw744zUHJfpvehaWfF3IXrELQzvXImfcJ\nWBwLiAVCsCwsZO4fwXs2ImfeJ3AYGQu3RdOQM+8TWZt1l1BwPF3QcEXVBUrax2nySNQevyy7lq7h\nt+ldFH4kcUFxmz8ZlbuOI/DHT5H3etvG3nnKKNT8RVy4p/87fUlZU+qLGnBgymGV9oiD61C4fhea\nHmaCZclByE/LkLVQ/SmwPJN3TIRHd3JZNIyV6laKrhmTjC2fPkhTm+Zv1r0yOwO9VBRKTjE1pU2t\nKPTTmlZV3s2CDHnlt5BSeEanMcZA1/dhKr9xBtNib+2JwdFvaO9oRIz9WWSzLCASK7qZjnFfgAsV\nOwn7i8Vig/OHm62FgYgRcZvVZkoqy70Nz6B+ci0shPebjYzbuhdXkaKqhEBvZUEXrG1dEftMm8mv\nld+Im6dV844Pm/wFRCIBrp/4BP3HfgIrm7Y4joc3fkRtRSbh/IMnboCFBXG+/tS7f6CswPBAZWMr\nC7pg42ajtU/jrUdwnu6l4BcuFgjhu+FtWPp4IHfRagBAw7V7AID6y0lwWzRN1lfmniQSESoM9Zcl\nmWlqj1+GdWQwGq7cBgCw7W3hs2YxOK5tKUkrd0kK9tSdiif9HnMu5ZFSGGxcrFXanMb0VbAkiFsF\nyFr4OSIOriNlYSCrLJiCosRi+Pb3MbUYlMMoCwwMDB2FhuYyU4tgcpSVBQCoF1bTumaHUhg0kZH0\nh5LCAHgGx8IzOBb85jrcObkBYrH2AClXn65qYxZuHqE/UEpqhaguT0favT/BtXZEn+HvYNjkLwgt\nE2w2B8MmfwGxWIR7V7+GUNCCvqM+QM/BrwNQtWYoWzlsHbzQd9QHEIuEeJy4A9Vl9KS2NDtEqp8V\nqRVAHrv+3VHx40GFNrFAiNyFqzROX/nrUViF+qMlqwDeK19FzssrAAAuM8ei4L0v4PURibgZS/Vf\n77JkcqmAOTaqc7i9NA61F+gPDL+69hrtayjzz1tn221VbH0I3boNzVlZphaDQQmpZUH5WmpJ6BfD\nxem/PVTuX09owZSZFUaSkoGh/XL2/jo42HhhUNTrphal3ZBY/Ret85uVwiBvQRgRp/uJ2Y1DSwmt\nAlxrRwyaoRo4JxYJwWJbkJ5fJDI8pSAZGmoL8SjhZwAAv7kO8cc/xLDJX6hVGgDg2t8fKbxWzswE\nAP7hkjSE8nM01UvSkrLYFmavLCTveURrULOogYegnevRkpGPkg0/AQAE5VUI3rMRLWm5sn7VB87I\nLAxFK74BP6+YcD6ftW9KFBBWmyXRfkQ/2I/oh6JPvtYqj/OUUXCeMkpFiTGU4i37EbZ7BTJf/kzW\nZtc3itRYtiX52Ir0E8QWMAbtSOMWhHV1KPrOuJlMzJU437cBAKeL6C/ypM3F6PZdPlPdmYFBC/W8\nUpy9v05nV7aOSpznG0xaVSl3E76Rva6tzsH9W98r3CejRKhTGojQRVkwRhD1kImSDdq9K1+p3Eu9\nux9RMXMlm0uluJSbp9eQmt8/fCRhu0jYCrYFPbmVjUniN3coUxhq/rokiw+QbsjzFq9X6SeNM5Cn\n7p9rqPtH++m5dF75Db+mzb9yvALVioIU3pMcsG2sVAKhybgjxbzamxaZGBTRlIa0M8ICG2LonmKT\ngYGh/XP2/jqM6fkRLNjErtQdGamSQLeyAJiZwlBfWyB7XVH6WO95bhxaithJa2FpZXiu7oKn55H3\nmHw1YUPQtGkvK7iHqJi56D30LdyPVzwha1XKEqWOqtKn8Arop9JOtbKgS1pPStEhlN69ixsqnlbS\nJ4uZo282pF4Le1AsCfWIRWLS1WEZzIPxvm/iZsUh1PBLTC0KAwMDDVx4uAkAEOQxEFF+40wsjfE4\nXfYD+rtMMUo9BrNSGOQpyFHNra8u4JmIpL9Xw9WvO6IHLdBbhvaYmtXe2V/vsWn3DsAroB+GTd6M\n+OOSZ6mLlYUsGafav091lxlRiN9ww9RiMJiAzH+y2kX9CXOg95vbcf+7JbLrsMmL4eAfIWtjW1oh\nYtrb4Dq4ovJJAooSTphK1A6NuWYLinlhI+7ua7OEmuv70IfY+RK3waRdjDWQSnLLbyK3/CYs2JYY\n0/Nj2ta5m7UPFXUZtM2vDeUKz9JrxiWJJqoKH8k2/RYcK/QZ/yG4Nk5q+xdnXEf2/aPGEk8vGmoK\ntHfSgHw8hJR7V75CQy11/rSpf6VTNhddRE6JMGuFgWPDga27LRwDHGDrYQtHfwfYedjCIUDyt62H\nLeVrks2S1N55cjCFURgoovuCNXj4s/of7Tjft2UxA9IYAil5jcl4UntFoc3LOgx9XJ9VaKvmF+NW\nhWrqXxaLjSiHwQi2l7jBDXSfqdJHXbxCP7fJcLcKlF1nN9xFap36/w9GeS2ElUWbxfpCyS9oFTUT\n9tX1PZsjzv5dYeXojtIn6otmWto6wsLSyohSMXQmhKJWQgXUydYPbg6hcHMIha2VKyw5tmCBDaGo\nBS2tDWhsqURtYwGqG3NR02jYfopOjFnhWYpZKwyhkc/CJ3Ag6mvy8PD2rwbNJRS04PZJVR90c8GC\nI0l/mfXYsBO8nkMWA6C3FgSvkkfb3B0Vjg0H3WZ3QZdZ0bDzpH6zz9BG+ePOm4Wm7yvERd6qs+8j\n69Ienedjk9wQKm+cASCn8b5Km7KyAAAuXB+FTbiU8T5vkpRSuywh9jEIsY8hVDCI+o/x/o/W4Gmy\n79kciRizCHlJmjO2tDbVMafrnYzIddtRezsBpccPau9ME7VNhfD66APUAqgFUHX1PCrOn1LoE7lu\nOzwB1Hy6RGV85NptskQkaQT3TQkT9KyGEXGbcTfh/5CV9g/AYmHE+E0QiYWIP7vC1KLRhvT0v++o\nD3DnkuIP++AJEk26rirHoDWc3EJQU97+LQD6UptbC6cg9Vak9oBrhCum7ZtkajEUCP35Q1g42yN9\n1qekqz4bAqNUdgwe/LAUvd/cDgCoeHQdBVdVLQFxvm8jrS4BWQ3aU/WS3bAr943zfZt0DINAzMf5\n4p9IraEus1Kc79uESoz8fbLvOXb+NlTl3EfmlT0IjJ0Cz+ghqMhIRE7CIYV+du6BiB7/BhorC5Fy\n+luVOe7uW4E+c9bh9h7JYVCfuRuQfPgzCPht3zXXkD4I6DsRYLFRcOckKrPuqMyTtOsDBA+aBdfg\n3ii8fxqlT9vqv9i6+sG/j0SpC4ydgsDYKbJ78sqB1B1HuV2ZkCFz4BrcCw1lOci8+jsELY1an5cy\nlraO6DrhHVhYWiP7xgFU5z5U6RMd9xa4tk5Iv7QDvOq2rHXS99tr5krUl2YhK34fwkfOh42LD5KP\nblKYwzNqCPz6jEdtQQqyru0jlKXXrE8haG7A47+3K7R3fe59QCzCk5OKSTK6Pfc+bN38zUKxily3\nXesGuj1ssMOWS36/NMmi8d5qyb9F5Lrtavt0VMxWYQCA+tp8yQuxGFfOfKRXqlVTY+fkCyfXYNg5\nthWLiug1E031JWisK0FNhaqPnK2DF3oMfg2pd/8E18oefUa8CwC4dsJwf7366jw4e0QQpl011wrU\n8lRn1rRPhYEFzLs4F1z79pnlIevVL8D1cZNdE7keUalIVGfVUDYXg/Gw8wpSuBaLRLJ4ht5vbidU\nGACQ2jir417VKfRxnaD3eGWUlQUASK+/hQiHAYT9U+pUM56dKfoW433fgpd1GEqbidMD6/Kenf27\nyjbZrbx6eEQOUlAYpPfqitPg6BMh2+jK02fuerDAkvVtKMtGn7kbZP0CY6fAq+twtNRXgGXBRuiw\nFxA67AWVeWLnb4NYKEArrx6B/acisP9UWR9n/65oKM+Fk38X1BY8RUN5Loh4eGQjXAK6IyB2str3\nLJVTyOfB0TcSfeas03nj3KaYiCEStCJ85HzC9wOxGLzaMnSfvBR5iccUlCD3iP5oaaiGW2hfACxY\n2jjC2tEDNs7e4NVIFNDYl7cCLBbqS7PgFtYXbmF98eDgOvCbJAk+rBzc0XP6xxC0NEIsEiooTADw\n5MSXKm0AYOvmr6K0MRiGhZ29qUWgFC7bGnw17o9UY9YKQ0cgZsR7Km3eQf1lr5U36fHHPwTH0gaD\nnl2LAeMk1hRBazMS/jHcd3zAuJXgWjuiJDcRlSWPIBaLwWKx4e7TA16B/TTWeTAX6grqTS2CArOO\nTINjgKOpxSAFv9h4WaNqGIXBbLC0c0RrYx041nZgW+qu8D6quWjQ+g0CequbAkBlS76KwtDLZTwA\nIKdB1Y1I/G9Ktu7Oo1Faoqow6Pqe2Ryu2s2yBVdSmZ5oIyzfdnv3MpV2+U1qXtJfKm5ERJtYwg33\nvxQ9PAcA8OsTh9riNLUxDC31lSh5ckWtwhA7fxv4TbV4YMAhhLrnorwO0fspT0uASCipq+QVNQSP\n/93Q2zh54vGJLxHQbxKixy/GvT9Xo9esTwEWS2EeG2dv9Jr1qayt5/SPUZ6WQKjkyRPQbxLyb/8t\nWbfLMABAVjyxtYIqItdtR0tJEXi5WXAeMBSA0gk7iyVxwwHQXJAHrqc32FyurI9jr76yrvKv6x4o\nKjpcT28Ev/0hCnb9gKZMxZpOLEsuIlZtQnNRAfgVpXDs2RcNKY9RtK/N1TxizVaw2GzU3UuEbWgk\nOE7OOlks5GWTv1aWk2PvgNAP16o+BxJErtuO6uuXYN+1FyxdXAEAtXdvwSlmAG3WFQ6Li2Huc1HU\nksakVZUnvIvETUMsFiE7/QyGjfsMpYV34OgcCDsHH1w5Q3+lZarRZwMuaOWRGqepD9E9rrUjMh4e\nQXHOTYX2qtKnSLt/EMMmm58FRxl+Pd/UIgAA7DxtMefkLFOLoRfqApvzV/xM2Rq8auOcmDAYxv3v\nlshcjoT8ZmT89R3Cp7TFDkjvAQC/jljhbBBUkV6vt0scvG3C9ZSWWjysJdYUde5KAGDJJo7h0OU9\nayPymVcV3Gg6CoYoCwAQOWaR7IRf57FjX5e5ddUUPJG1V+clAwD4TbXgWEtOqrm2Tmgoy1YYL7U8\nyKPsQqZMbVEqvLuNlCkMgf2nopVH/wGX/Ea27OQRFVebyLUSC4zUFUcZ6Ybbe8aLKptvefhl6t0B\nI1ZtQktJIfJ+kKxdcmQ/Itco1stisdkKskau2w6/ea+icA+53x15OeWvlRE0GPbMue5eyP5yg4KL\nllMMsXWSCpqEdbhQsYO2+eUxK4XBL2ioSptPQNs/xIjxm3RKrcqgirKy0IYORQzaMUK+0NQiYH78\ni+BYm9VXjxTNafmUzSVsMf2/EwM55NOqKl8r3zOEWLcpcLMKAABcKt2BFqHEn92Z602YAYluWJBU\nLY8v22v0teWxcw9ARXqiwfNYObih53R6ij2aAjuPIFRkJOk11t4zWPZaPsZDKCA+cLL3DCG0GOhC\n2rmfVOa4f2CNQXNShTplgUpyv5N77yJJkUXvGS+g5LB6C4tdRBe6xdKZ+uR7Rl1vuNtc2Fq0uVkz\nQc//0pGVgS6DFsLBJQj5KWdRnGW6dJ5Ebkee/n0kVaQ7AKbeqC9Kmm/0NUVCMaozqlFfVI/qzBrU\nFzbAxtUasf/tq32wGiyc7RH6c9vnpP7qA5R8Q+yfrhcspnAagyJuVgEQigU4V6z4g2hj4WASeXIb\nHyLUPgaNRnCJ0kTJo8vw7j4SOQmGZZ7pOf0Tje5GxsbS2h6tzQ16j69IvyWJ9bhxQOexpY91S20r\nEvBxZ6+2GEIWtB28tdRXwrv7KNQVpWnsp5zN7M5v+m3obUMj4L9gMRpTn6Dy6jm0lLQvS5VD114a\nFYb2iKDRuG7PVyv3Y4z7Qlyo2KFSm4FqzEphkEddgLMuSkVozAx4hw6iSiQZuhZ0GzJtCyqLkpF4\nao1KHQhnz0jUlGn+z4MqBK08cCxtCAOeAeDWGfMvqsN1MF1QMZXKQllyOW5uS9Q7Baj/ID+D1g/9\n+UNUH4tHxf4LsO0ZCr8VL6PqyBXwC6lJScqxpr5gIIP5k16vagHt4jSC1Fg2qP1MpdXdQKh9DAZ7\nzMaN8j8pnVsXCu6ehE+P0QptDl6hBs8bOvQFg8Y7eodprMOgjd6z1xqUHSgn4RA8IrX/vjt4haG+\nVDHOJP8O+fTk+XdOIKDvc1r79X1pE+78rnl/8vDIRomS1he498cqwj5kUxWTwX/BYjTn56Bw7y+U\nzUkl9U9VM1oxqFLBN069CLNVGMRiEa6e0S8r0OCZW7V3MjIpt3YDAPg8RZ9Le2c/oykMCf+sNso6\npsQp0DQBxoYoC2l/ZyB+3XUKpTEM/9ULFeIYmu5nyNKtUlW4zcG3Y2WyYKCGaMehCkHGLLDAZVuT\nGtvffZrW2gj64GjpgVi3KUiqVAwYDrXva1D2J13IvPq7ijVA1822SNCiMMeTE1/CLUw/K+TjE1+i\n23PvE6ZPVZaTqE/Srg/Qb94XBr+n3JuHNc6RtOsDg9coeXQJtflPNAaIS9eR9hEJWiAWCsCyUL8F\nE7Q0Ebb3mbdRJ/m0weK2HaJZ+wcR9iGTMlUyGQsQ6+6+LBaJFNbwnDgdAFByyLTufubCg7pzGOfx\nGuIr99O6jtkqDE8f7Efv/m+gob4I8ma+jKd/qx1jwbHCgKmfGUE6Rbg2ToiNWwkAKMu7jfQ7ktOo\nIdO2yPpIX18/ukzlXlC3CQr3lO/Lj7l5fAUGTpa8x4rCh0hN1L3YUkfGOcTZ6Gvqqyyceec8ChKo\nq7BNFVbhhlknyNAuU98ymBSBmA8Oi4s437fRKmqG5b+KwrniHzDWh5wpXjlA2VAF4nTR/yHO9224\nWQUQBj9ToTCQ2cBWZd9DVbZ632nlTTLR6zt7VeMXlNcmkoWoramyQK3cZDfk0noRhlCWegNlqZpd\nfDXJo+5ZlT65qmA94dWWan1f7bGWQsHO7+G/YLHGmgJpny5B5NptKn2UFYiSQ3tl2ZSU70es3gKW\nhcTC5z//3++qXCB1+pqliFy3XWGN9PXGd0GXlxP4t9aCnJxsK2uEr9ioeB9AxbkTqIo3LNuboZwt\nV00HTTUssR7aIN2wWCytQo2I24xr5z+FUNBCak4rO1f0fdY4AV3yLklca0fEPrtKtqmP6DsHbr7d\ncfPvlbI+Q6ZtUVAG5PGPHIWCtEsKbfL92RaW8I8chbynZwmVDnXz0gHZjfGvsbtolkQ9umzeqZBz\n8s6J8OjmrtOYU2+cQfEd7QWmDMF/kB/Gf/0Mqb7Kz8Eq1AcOg7qjYu85hfaIA2uR/rxmK5Wxn7++\nmMNnmQ6orvRMNTYWjujnNglctg2yGu4iu+Eu6bFctg0Ge8wGl22DwqanSKm7BqFYQJlssW5T4Wrl\nh1p+KdLrb6GyhbokAAydB6JUr1JYbAvELFB1GdY3hoGhYzHIZToSqo8Q3hOLxQYHBpqthUEsEpJW\nFgBoVBZEIgEq8u6B11BOhWgK9Bj+JqpLUmTX6Xf+gGfgFg0jyCFvYRCLhMh7ehYATBowTRZbD1s0\nlRObWzsauioL5rABbckqRuDmxXCZOkxifv43QJkqdyQGBnXwhHV6ZyXii3i4XLqTWoHkSKo8Rtvc\nDJ2D3s+vhlikPkNc1IS3jCgNQ3smzE7VXdCB40bQkzrMVmFgsS0IA591CXrWNThZH8RikSQ5AsWo\nsxzwee2/4FX09Ejc/VG12FF7IvNMtvZOWrBy1C04beeQ3w1ekywWVoYFgHZk5cAtytXUIjAwMHQi\nwkbMg0tgDxQ9PI+iB2fV9rPzJI4xYOh8ZDaqujv6W0fTuqbZKgy6KAZsturbNIayAAAPLn+Ngc+t\nl11H9J0jqyBJBivbjrd5iZgY1u4VhtRjhgeav3huNum+pffLjFojws7LzmhrmRvBo5gfZQYGBuOR\necX07n4M5k9hcyqt85utwqBLWtWAbuMVrisLjJeqS9jajKa6EgyZtgUiYSvYFpY6xRV4hwyEu19P\ncLi2snEPLn9FGPRsLtj7tP8MOMW3DY8hYLHJm5ZOvPqPwevpgq6uUvJE/FuBNX/lL2hOzdNpbGtj\nKyztLPVe2xhETokwtQgMDAwMDAw6kdF4m9b5zVZhUFYMho/fiOsXiOsEeAQq+nql3txNm1xE3Lug\nufiNpg0/0b2G6gLCduU2c1Mk6KbPq71MLQIhD3YmG33N8Gf1z9MudUfy/u8MOGz4DwBIajIoBUET\ncfGTKxj/Fblga1Nh625jahEYGBgYFPDrN9HUIjB0csxWYVDm6plPMCJuM6GFwdK6/Z9oM9BPzGu9\njbZW4PAA0n1vf0s+00t7ouSbwyj55jA4ro4I/m4JXKYO0xrbUHCDfJpYtgULImH7y+JGN55dhyFg\n4FSdxoiFAuTdPIqKVNXCZlSgKZueV/eR8O8/idQ8af98j/riDKrEIgkLXacugY2rL+kRYpEQD/9Y\nB4EBlYbJQpSZikzWG3vvUNJBsOUpN5B3g8JK7EpYO3kidNQ8nZ5xU0U+0s/+YpRnTAZ9vncAkHv9\nIG3fOxabDb++E+HVY6TGfuqym5GF7ixLYaMXwDm4h9Z+wtYWPD68Ga1NtVr7GkpH+N4Zmw6jMGii\nqbYYds70545nYJDSbU4XU4tgNEJ+lMQDCWup/eF/6eJc7B6xj9I5tUJDggIyxCzcAhaLrfd4lgUH\nQUNmIWjILFlb8YPzKLpDjasbr1JV0dNnkxL57GLZazo3Kd2mfwhrZy+9x7PYFuj1wlrZdfKf68Fv\nbB8JJfR57h7Rg+ERPRgAdc/d0E2qrXuAyZ9x6KiX4RJimOWZiu+dpa0jIp9dDGsnT4NkaU90m/ER\nrJ08dBpjYWmFnnPaDp3aU7pYQ7939UXpSDv9A9ViGRWzVRjCu7SdaLFYFvANHAT5Am7ylGQlICxm\nppEkYyCDb6wPipKKTS0GISKByOA52nOmHf9BhivPnq8+B6dx/QEANSduoHzXaYPnVMbS1vixDuP/\nZ1x3qcDBM2Q/KFTj0+sZ6hSGmlLZa2tnL3SbbnhRrb6vbEP50+vISyDOG67fnFtBh9bXY/YqAGLc\n+c04yTLsPIPRWOVUW70AACAASURBVJaj0ObgHYbICW8aZX1NGKooqKPH7FUoTb6MgiT1xVepgmNl\nh14vErswG4o+37ueczTXrzE3qPqM9H1lG1JP/h8aSg3PWkgGou+dVA5DMXdlATBjhUG5onP6E/U5\nsEuzbiooDCwWW5LulMFkPPvdOKPWHIh4Lox0XyrSm3LtuQbPQRdkC7apI+LgOhRv2Y+yn0/oNf6P\niQcx5+Qs7R0BuIS7oDqjWq919MF/sHEskSw2GzELDK/HoomyJ9com6uxPBcA4NFlCAIHTadsXo8u\nQ2Dj6ovUk4ZVXAbo28i2wULfV7YZ5dTTs+tQZMttXMLGLIRzUHfa19UEncqtFK8eI+HVYyRtz9jc\nvnfmBh0Ke9RESQX1zvq9a0/obwM3YwZM26i9E0OHYvjqoaT7ikWG+83zG/gGz0EHbEvDv/Lpsz5F\nQ+JTvcc3lpEv2jd9/2S912mv2Lj60r5pAYD8m0cpm0vQ3AhLW0dKlQUp9l4hsPcMpnxeuqBfMQFc\ngtr8vQMGTqNs09JYlqv3WGP6Ynt1H0nLvOb2vTMnQke9DDp9OmPmE2fGpBL57x2AdvG908YYj4WI\n83yDtvnlMVsLQ1j0c/APHqbSrq4+Q0lWArxDBwGQ1GUI7D4BeY9O0Sojg2YWJc03ipVBl7z6BQnk\ng3I1UXy7BMGj218+/4U35lE2l//6RbCJDuowRdyGraT39BQArBxc0XWqbidleQlHUJ11H4KWRkkD\niwVH3wgEDJym1ueZV1VkqKgKcKzt1bpNiISteHJkC1rqKwnvR014C/bemrNyRT33X4NPEHPi/0Dw\nsDlq74tFQjw5uhXNtWVq+4SMeBGuYTFa12KxLTRW5DUUloXkp9mCawPPruoPO+oKU1H6+CrqClJk\nbXYegfDqPpLQNz/lxNcGyaXtGTdW5CPnyj6Nz7jPy5+DzdFsgfXvPwllT+Ipe8ZWDq7oPmuFTmNK\nHl5EafLltu8dAEe/SHh0GQrnwG6UyCWFzGdfk6Jqal//vgu3AizNykJjWQ5STv4foCaBgl+/ifDu\nOVrteJYFh3YLn/z3rvdLG9T2E7Q0IvvKPoXvHdfeBf6xk2j53mniQvkO2es4zzcgFAtwrvwXWtYy\nW4XBP3iYTsXbsu4elikMAOAfPZpRGEiQmBuE/kH0acfGYMwXI0n3PfPOeUrWzL2a3+4UBl3qQmhD\nWotBuY2s8lCZUgm3aHJl7OO+GYvT/9WestVQjFF/geymReOPoliMusI0PD7cduLGtXdBt2nLwLaU\nVBd/cozaU3D54FTScv5L6qlvAWg/mVfnP0yWyvQklc0sv7EGyX9ugLr4NmWyr+xF9pW96DN/M9gW\n6n8eYxZ8YZRNmrpNi6a1G8vzkHVpN3BJcu3dawz8+k6gRB71z3i9mhGq3Nv9MQDtnwcqnzHZ7929\nPZ9A1Nqi9n5dYRrqChWLevaZt1H2vavMUK2+2ynQoCzwqkvw5Kh2y07h7ZMovH0SgYOmw6PLEM1r\nacjaRgXqvnd3d36oVonlN1QrfO+oivXSBofFxTMeryCr6R5Ol0niJOI835C9pnQtymc0Grp/YG4c\nWorBM7fKrgfP3Iqm2mLcP0e/idkcWbqO/sDdUZ8Nx6UVV2lfx9hknMzEiDXk3KCcg51Qk0N/GrlX\nbr1MyTzu88YhffYaQCQiVBzIcGzeCSxKmk+qr99A8qka9WXyLvpznJNxZbm7Y5le8VX8hmrc2/MJ\nAMAtIlbn8fqg62buzm8faHwG0RRYGSrTk+AWEYvCpBMoSb6k9zz3di03iuuRJojcZ+7uWg6xUKDT\nPCUPLqDkwQVY2jpSJRoA4OH+NWjl1es9XtvngSo0WUSk5N88qnfsgfz3rjI9Sa85zBlN/4a1BSnI\nOPuzTvPlJRyBWCxWa1nru3Arrcq6rbu/SlvJgwsovKPbAXNzTalRDhVCbHvRohwQYcYKg36npTcO\nLUWvsUtg5yTZhNg6+SgoEXxeHerKM8FrKIdIpNt/zFIKUy7qNa698fx8B9rXCB0XgpY6Pm5spieP\nNdlNKQBknMqkRQZtzDg4lXbXLF2egzYcR8WgYs9Zg+epya6Fc4gTqb50u695dNW/8jUZLG00f5eE\nLTzc37uSkrXo3rTUF2cg7Z/v9RpL9yYxJ/4P5MT/Qclc2mT17DqU1gBXFlsx3sjQzUdrU51B46mS\nQ3kuOj8PljYOWhVoqt5PZ1QWNGWa0ke5lZJ/8yhKHpxHz7lrCO93nbYUT45uJbxnKF0mv69wbWp3\nL22kN6p+7uhSIMxWYUi+swMj4jajuCARImFbgKly9iQpA6Z+BguOldZ5uTaOcA/sY5Bs8gpDYq56\nt5RXppbg0b0Whb71dSKM6ZGvMu7ymSZ8+Fq5QtvrHzhj0TuKG67WVjGGhOeprKVODiJ3I+W+ytdU\nuyh1mRlFi8Kg6yb5ymrTZbdwi3JFZWoVLXNTqSwAQNlPf8Mq1BctWYb5yR9+/phOstGlNFD9fIhQ\n98MnhSplwRjoqyxI4VUVw8bVh/Cee9RA2opg6cPDP9aqjd3wHzDFaBlx2vumxRDEIpGKciSFzeFC\nJNA/gYS2711Hfq7GgGNlp/aevsqClFZePcRiEWF9GhsX4v8/qMbcPh+DXKYjoZq6NNXKmK3CUFWe\nolMMAxllgWoSc4MgFgMDgnMV2gD1m24HRzYSc4Pw1gulSLrerHFuANi6ugoHdkrMwpaWLFzPCCSM\nOxCLgdHd89HYIFKYg6iv9FqbrFSyKGk+6vLrcXC64R92tgULC2/q5n5DR4GwYy/+jal7yVXAnfr7\nJBx+/hhqsqlzTbJ2scaLZ2dTNp+UhpuPEb5/NVgcCwBt8Qx6BT+LoZOxcFHSfPw2YDclmazsve0w\n+2/667O4hGiuMG5OP0pZl/YYPMeTY1vVnioHDZnVrhQGTafyhhTa0wVz+nzow92dy9R+Hnxj4lCQ\neJyWdTv6c9WVMcPUB/leiFc90LDzCFTbn6pne3eH+s8G3SQfUP882gPGyowkj9kqDObCoDDFzXZT\nowi2dpp/aAYE55KK6blxmSdTFgCJdWHSoEL8neAHtgUgH5sjr7RIWTy7FN//qX81VKpxDHAw+BT5\n2e/GwTdW99OH1qZWvddUR2WabhaDGQeoc01amDAPbA59G5qMucRBsLrya/9dOp/wv3LrZRyZ8xeq\nM/WvCrvwxjxKUsySIXSU+sxU5pazvTr7vqlFYOhEOPpF6T3Wq9twCiXp+MgrBbF9FiPpnsSSGOSv\nmo0SAKInvWsUudTh1X0kSh9dpm1+foPx6v/oA5Hb0Qi3F2ldk1EYaEY5oL6uVrvCoE1ZeG2JMwDg\nvfmqqetKiyRmwP1nfDH7Gc0uI3duqrdgmBLpBpJX1YxjL/2NpnLNefu5DlzMuzhX7/WMWUBOG9L3\nro9Mg5cPRJeZ5H5gU46kIXp6pM5r0MFvA3brHJA9/Y8pAABhixB/Tj4EXpX2z/ILp5+HjZuN1n6t\nTQKkn8hA1+ejdZJJH8wpZ3tNTrKpReh0dPZTcCtHcpnUiPAfMEXtvc7+XDUxauhaXLrW5oYXHjIe\nuQXxpMcbqxq6f/9JtCkM5vr5uFK5l9b5O43CcOOQcT7Eypy564/xMQWya29fwx/59BftAWiOjwiJ\nsFRpW/eVO+Kmqvc5NAa/xu6Cjas1Xjij3VXGxtUac0+RqwisL2ffv0Dr/L/G6n6CDrQpDvWF9bj7\n8wNknFQMyGaxWej+QldET4+EY4Bu2U+aa1pw/fMEBI8OgrUzOVc9stmQ9HFLEovESP79MXq8pHtu\ncwsrC1KfJV3YPWIvLLgWRlEYzInMizspm6uhNBv2XiGUzcfQMWFbqP6OMdDLwyd7MaT/UlxP3Ao2\nm3i/orlWCbUpTwUtjRpjJRiMR6dRGExB/6BcWZyAcrshcK1YOs0T3YOL3Sd8CMdoUjroglfVjLz4\nfAQOCzD62vLsf/YAmip4tK+zb/wBvHDmeb3GOvg5YMSaoaRTtGrj6trrSD+RAQDYO/YP0sqMsiIQ\n9PW7yH3nK9m1haMduP4eesuV+NVtdJvThVY3KjJILTtCPjUFozQVeCp9dIWSNcyR1ib60wibO4ak\nLO3sMN87/amsSsP1REkGIpFIQBi/EDKCXtcXBXnSb8Or+wijrWduuHJ90d95Mk6X/UBb/QUppv11\n7iSseqcC/YNyZX8M5fgfDTr1V6csGJukb9qK2pxbchG1uabbNAh4AqMoCwDAqzLOOtoQi8QyZcEQ\n/Fa8rKAsAICwrhH+a18xaN4dgwwPqDWEPycfpnxOn5jxau/RFczJ0DEoSCTO+MegHeZ713Fo5VGT\nDtgU+M1dhMhVW+Acq/3AL2r1dtkfdfdch45RuVfFNyxboS4wFgYa2fGXNwDgzF+NWnrqxv82VOOF\nVx3x6vvO+PlL/QM/P/qM/sJs8jzc/Ujh+tBM3dJqUgWvkod9cQeMuqa+rklU0VTehP0TDlIyl1W4\nHyXzEGGq5/Tn5MNoKNZNESeDrSt9z4qBGtgcLqwc3GDl6AZLWydYObjB0tYRVo7u4FJc7EwXanI7\nTswIm8OFjYu35Lk6uP/7fNueN9Uw3zvqGD5oBa4mfEa6v6kLHrYXXPoPg1goRNr6ZeA4aK83lLp2\nCQAQKgzSe0QKQ6T9AAAAl20DMXQv+qkLjMJAI+f+bkK33lYKbj/FBQJsX1uNK2c1B/KS4dX3nDDt\nBXtMiC1QaL+aEojh0aq1GOTZ/KMHRsXZGiyDofwauwseXd2NUmkXAC6vikfm6SyjrKXMr7G7MGzV\nYEROjjDquv+8eRZFScWE966suaazu1PWws8RcXAdKnadRvXJBFiH+iJg0+toum+49QKQPKeBS2LR\nbW5XSuYjsx6DZlrqK00tgt5w7ZzRY/YqU4uhM4bUHzA27lEDETSE3ngzBnoZOWQ1Ll9fqzG9ameg\noTSbknk8n50m2+gL6unzpkhruIW0hlsAgDNlP9G2DsAoDLQSf6EJ761yUWjz8edgy88eyMtqxcxR\n+puS+gfl4mZ2ENw9LbTGIWiKpdA0dkBwLm7lUB+DoUz5kwr8MfEg5pyk9wenPWwM49ffgEgoRvQ0\n42Qo0vaeM05m6hUfUfH7WbjPj4P7/DgAgLC+CYWf7dZLRiJubk9CVWYNhq0cTNmcRGh6Po2ljbDz\nYoLtAIDfoL8l01QwJ530YmnjoLUwGoP5cPl6W6ps+biFMcPWm0Ick0FF7JDUSiD9W956IH1NdN3e\nMSuFYUTcZq19dCnmRieaip65ulvg9B1/lXZdN+IDQ8j3Vze3pjXFYuqUg4KEQo33G8ua8GvsLjgG\nOGDWkemUrCmlPSgK8lzfmIDrGxMw6rPhCB1HT6YYut9z9V/XUP0XvTUE0v5KR9pf6QifGEZZ0LcU\nMs/n1OKzmHVkGqXrmiuCZvMIwGWx2IhZuMXUYnRoPLsNQ8CAqaYWg4EmlIOcL11bYxI5TIbYcLee\n1LVLTKIM0B30bFYKg7wy0HfIe3iY9DNa+ZL4gEGjViLpWvs6UTp1hDh2oaqCmgws5sSZd8+T6leX\nXy/bzBniyy7gCbB75D5KKgLTxaUVV3FpxVUMWtofXWd3MXi+nIu5uLD8suGCtTMyTmYi42QmLLgW\nWHD9Jb3nKUgowpl3zpHuX5dvvsF2nZGQkS/BNbSPqcXo0DDPuPMhEne+/Yo5EGbXV+GabYQcRmal\nMMhjb+8tUxYAIOHSBoyI29xuLAwAMGG6Hda8X6HSbopUpsaA6lNt5fl8+nkjdGwIAob4wdrZGiw2\nC/XFDShPLkfy3seoSm/flRnVkbA1EQlbExXawsaHwH+IP3z6esPGxRpisRj8hlbUF9aj5G4p8uLz\nUfpAtXCfPrQ3C4w6hHyhiqxBIwMRPCoQfgN8YeVoBZFQhLr8OpTcL8P9Xx+CV2lYhipzeTadnZ5z\nVsOSZIByU2UBUk99B1FrC6n+jGuTBF2eQ0XaLeTf+ot5xmZITI9XkJV3ETW1OQCAMcM2EKZWJSL/\n1l8oe3yVRukYpGQ23lFpS29MonVNs1UYwGIZNJzN5mDg9M8BGDYPETcOLYVAIAaHw0JibhDiz/Mg\nEooxeLQNLC0l680Za7xUWB2F4tslKL5dYmoxjELmmWxknqEm+Kojk3s5D7mXNQf4M3RsvLoN16os\nCPnNuP/7CiNJ1PHw6jZcax/mGXcM7ib/hiGxH+DWve8wYtAK0soCAFg76V+LpzPQUkacfMRcMFuF\nITfzgkpMAxnrgqN7KLqPfJMusWQMDpNsYt5d6YK4qXaws2fj3q0WLHmlDPyW9usmw8DAwGBO+A+Y\novH+nd8+MJIkHRO2BYd5xp2M60nbMHzgJzopCwDgEtwLeTeor2fTUcj5fossELqlpBDyVbHl06kS\nBUtL8RgzUeGev3U0ujmOwJmyH+HAcUO9gL6MdmarMOSkn0VO+lmdxviED0VIb+MGa321oRpfbTBP\nVxkGBmPAcXWB3/pPFNpy31qmcM0N8IPPR++1NYjFyH37Q9ll0LdbkPvWMgR8sRZsO1vCOYK+bQuG\n5T1JRdm3vyjct+kSCc+3X1Urg9d7i1F39iI83/oPoQwMxsfeS3PSAGYjazh95mtONsI8444BUTpV\naRtZxYFjzWSVk6Iu4FnXdm33mkR1YP3rKTPEdRYT9EwVxlAWKvLv074GA0NHwm/9J6g+ehJ15y8D\nAAK2rlO47zRhLJwnjgO/sAjFG78Ey9IS3kvfVpkn6P++QMP1W6jcfxjWEaGK977dgqYHj1D+0y7Z\ndeD/Pkfeex8DAByfGQGXac/JlATb3j1kSogU64hQWEeEIvetZWBZchD4v8/BcXOBoFL9gUB19n24\nhPQmvMe1cwa/0fzSlbYnoiaqfg6kMBtZ+mmvz5j53umOrtYEhvYBU+mZBGHRz8E/eJhKuzq3pMEz\nt6qdqzQ7EbXl6RD+G6DVZcgrsnu5j04BACw41nBwC4STR7jK+ORL/4f6yhxdxP//9u47Pooy/wP4\nZzebnpDeExIIJY1QAhKaNAlYwFMUK4qeP+84LHiAdA6x0U5RjvP07oBTEVA5ThClgwKhJQFCOoT0\nQPqmbpJtvz/WnezszmzLbjbl+3698nJ35plnnhnc3ec7TyMEAOAcGwX/P/0egO4T7b5EWtbxpVey\ndB1rn+fDSaj49Au05t4CACilUtz98GOdPIoXr4RSpprRo/VWx+J8bomjAYAJFgDVvdZscdAMFgCg\n5bpqld2AxQtRse0z1nGqMshQ+90PCFq1BCVL+H9o75z5Cgk8FZdhT63tthUuQgypL860dRF40efO\nupoqCgy27pGuMcv/jwCAJL9XkdOUbNVz9diAITRiUqdnREr+fhk0+5BxKcs5zbk9fvqbcPMKAwAM\nm/oaijOPoTTb+CkbCQEAx4j+ti6CzYkP/cx0Bar655dMZV2TOljQRx0saPN4ZCYAdpckLlz7tVsq\nNClaWiB0cjRYLtL15O2tti5Cr3f75E5bF4HYyK2jn2Pkixs594UlPoaSSwe7uER9lzW7IGnrsQGD\nUtG5uYGTv1/aqePTT30CCAQYP1dVyegfOxM1pdchaazqVL6kbxEfOQ7xEdPG4nQ17a45llZ/7DTq\nj6kC89BN6+H3fy9Y9HxKSSvgZbgFpy+38PQ2FRlnLZST5WfRI2zDnlpnOJEZlAo5BEI7zn3RcxYj\n+9A2q5zXWpRyGQR23aPKppBLeff5x0ykgMFGPER+qJdZrw5q/ZUerITvi4CLuzf7KW5N6Q3LFEKp\nRNrRjih75MzuswYEIZbg/bRlV902pHT5es7tfq+av4hf5Wf/Niqdta5VIWvn3Ufzz1uHQsZfoTEF\n31NUYjkOrh5WyffGnrW8+1x8w6xyTmtqb+leC0mKizJ494XeN7sLS0LU4j2mWzX/7hGumkl7WlWA\newxDyNBprPe5l76yWBlam9gLs41/YmunWy86I2K77liNhtO/oPbgYbPyKXzddtdiiKWulfBznzTO\n6ucI37EF8voGtOblw3WM7iqyRa+9jfC/bUb4ji2QVlTBzsMdQicno1sEZLViNJw8i/AdW6CUyyGr\nrIZ9UIAq79/yUI9pcJ80Du1l5bAP8IdAJLJIq8O1L1fqDQyGP/sObnzzl06fh3TwGTym060MTp4B\nEHaTJ7q9lZNngNXylhtYNK6nfe5q76QhaPgDti4GI//ULt7vtYC4KSi9Qr/D1qQeu9CVeuy3oSnj\nF9y8rfs0obr0BnxDh1v1HLbiEBqM9lJaZE5b+I4tkFZWofydzay+70WLlrGmAFVIJDqDeN0SR8Nn\n/lM6eeqrnIbv2AJFaxtKlqzh7GvfcPIX1B38kfM43ryFQoRv36Sz32f+U8xAYe18jClv/082QiDS\nbQHkS1/52U54PfYIXIbHoSn5Cmr2fMdOoFSiaNEyuE1MhPcTcyBvbEb5Bv3jEbTVHTyChtPn4L/o\nFdgH+KP+6CmIDx/VKZ/vgmfgMjIesppazoHV5pJKGmHv7M65T+TkBlXXF1qfxVKcvQI7nUfs4zRl\nrj4hYx5B2VXd7xxTWPseG/rchU94EkUXvuPc391UZV/gDRgCYu9HRTdbYTnh5b/S4HIr4hq7MN77\nCaues8d2STKFyNG6cwPnWbDForMKX1/K/FmCqcFC+F8/hPdj5jVHcrUY6GPpazWVvb8fwndsgay6\nY6EUz4eTELRiMTPVptDZWec4eX0DFK2mD8oUOjkyFXxA9eRcrd8Dk03Oj492sGCK8O2bmGBB2d4O\nhUTSsY9n0LEkIxvl725B8VurdIMFDU3nL6F48SqUrX0f8np287wxLQHy+gbc/eAjFL+5QidYUKve\nvRfFb65E+YYtUEples/RfCXN6BaI9L3r9e5PeHkrHN19jMqLWF/s3BW2LkK3FzhsaqeO74rueIY+\nd75DE3vM506qp0uSoYX1rMVQQGCNf2O/6AkWz7O3SK793qr599gWBi6TZ23ibHmQt0sgdOJ+ykC4\nmVsJFzjYm3Wc0EW3Yt0TlK7cAHlDIwBVhdjjoRkoXf0e5OJ6eMycBs85D8J3wbOo3v0Nc4wkOw8l\nSzr61xqavYdFKNSppHrMmg7P2bMsNjhZMw+9LRRawv+2GRAIUP2ffWi+kspZxtBN63nHKfR2tXeu\nwXugbpcrtbgnVYvXXftypd5xD/qIHF0RN2817OxVszf19id8926cQuBw7n675j7hpHElxjPnHjv2\n80XcEyutVCJdqTuX6P03tcTnDgBGzP/App+7mN8tRdb/THvoZgnX96zBiOd0F31TS3j5r6jI+AWl\nVw6ZfY7gUbMQNGIG874q+4LZefU2vg5hGOExA/da7yCj8axVz9WrAgY+jXUl8A6KsXUxiB7ByxYb\nTtQNqYMF1jZxPQCgOeUaPOc8CKfoIRY7X+13P+hsqz96Cp6zZ1nsHGYTqGaU0Q4WgI4y2rn13ZVA\nC85+De+BI2Bo5p2RL3wIALiXfhplKUf0phXa2SNoZBIC46fpTddblaX+xBswAKZVaOOeXNVjnjZ3\npfxTuxA5/SXe/T3jHithyc8dAISMfrhbfe6cvYNs0g1I3iYxmCYgbjIC4iajpaYM2T98ZDB9YPw0\nBI96EAJhn+gE0yneDsE4WbUTIoEDZvn/kVZ6VtNsQeAa8MynNOsEO2AQCAClcf2Fh4x9DnmX95hU\nzr6q/8YNhhPxEPna5odaIBLB76X5cI6LRlv+Hdz71HIfNlmdKnCwZCW58ex5i+VFul7qzqVGP8EO\njJ/WrSok3ZZSyQSrXDTvt0IuRVtDDexd3I3qqiqpu4usg1v7dKuDuCjDjHtcDXuXfkbd4+t71kDe\nJrHqPU7duRQDpjyvt4VPrTt/7gy1lgCmt5BZIsBI3bkEQx76E9wDI/Wmc/EJ6TWfpQG716NgwXpb\nFwN5TZcBADKl+a1jxupRAYNmd6PqikxkXvuStZ8viGiqK2G9H5QwD7dT9vOepzjzGPrHqhZ78g0b\n2WcCBq4xBIa6JnEd02/aZPSbptunXjsvrmPNKYO5tM/lNHiQaptSicI3aE5+c5nUxaoPSt25BKMW\nbDZpamjCL3WX8UGY0M7e6AHR7c1iZB3s+i4e3ZHp9zjIqLTtzWKjnlBbQsHZr+EVEd/jP3c5h7Yh\nak73a5HP++nvSHh5K/rK2iXGBgsD976PO8+stlo5Zvn/EfnNqQhxGoqcpmREuiYAAPKbdVv6O6tH\nBQyabmWZvzCIf8QYvQFDafYJJmAAgBFJS3H9OP8Px/gnesePimbF3NgByFzHGDu1KdexXTWAWX0+\nubgeJWvfZW8XCBCxfWu3nlLWEgR21mnuld6tsEq+vUnabtXsML3laZutGfPk1RSVWedZi09V512G\n75CxFsu/J7L0PU7b/TZrAdauuMe94XPXXF2CmltX4DP4PlsXRUfqTtVvZk++v5oG7n0fZWs+Q/D6\nV1Ewfx1rOwCdQCDkvYUQ+XigaKFq/ZbQzW/opNcMIALeehYVH6vGNzoODoNjRDB8XniYOZddP1eE\nffxnVO74Di1pOZxlVHdButV81SLXrE+PDRja23T7jpsy1aopXPoFQigUQaGQ6eyjebp7nvBtqpYo\nSU4eKnZ8wdpX+PpSJpiwc3ODvKmpy8vXVez9/a2Sb/l7vSOA7gqpO5cgYtLT8Bk8xuJ5V+ddsXie\n3VnqziVIeGmr3q4zxkjbvQxKhYK1rej8t30+YAAsFzTY+h739M9d4bn9KL92HMPmrbH6ucyRunMJ\noh55Ha7+EVbJuyu1F91Fwfx1rIq+uuKvKWLnOhS+zO6WXfr2p0a3MASvfQUFL/wFDScuM9uC1r6C\nwt+/C5/nH4JAKEBzSrbOcdrrMdAYBguouHMJAQMTmfeGFlhrl9TDwbljBcrExztW/NS35Dzp/gR2\nqn877WBBrWLHFwhY9CrCPlzfq1sZ/P/0sq2LQAAUntuHwnP7AADD5q2Gg5u32XllHdwKSd1dSxWt\nx0ndpfq8sqm6sgAAE+lJREFUDprxCjzCok07tpfPKGUp6vs06qUtEAiMb6Vsa6xFxnfvG07YRTQ/\nd/3Hz4Vf1Hiz8yq9crjTCwWaqr2pDqk7l0BoJ8KIFz406d9CrTLznBVKppLz43bmddTsN+Hq19+s\nfArP7UfNLds9/FDKVK1grXnFetMJnR07dZ6W63k62xxC/ZnAxOPhCZyBx7HKL6CEQme7NfTYgIFv\nvAJfK0N+2vesgMGQlCPv8nY10hcsXP3xHaPPQbonSY7uB7c3svP0MJzIDCJfH9baFMR4N7/tqFAJ\nhEL4DL4P3pGj4OwZAJGTK+TSdkhb6tFSU4a6ghsQF2cYPYGDMbqq0nznzFfAGeutX3P7xL+Y1579\nY+EfNxnOngGwc3CGrK0FjXdvQ1x0E3UFN4zO01r3pqcGKmm7OsZ5+cdMgmfEMLj4hEBoZ4/2pjo0\nV5egIv0MWmrLjM7TVveiOPkAipMPAOj43HmERMEtcADsHJyhkMsgb29FU8UdNFcWoq4wXe+6CF1J\nIZex/i0Chk2BR1gMXLyCIbR3RHtTLdqbxagvzUF13qUuGzOiKefwJ8xrZ+9g+ESOglvQIDh7BUIg\nsINU0oBWcQXExZmouZ0ChYFVui3B1P/XnAaFWrwMzjEDO95wfI8XLdwIuVi3N42mmf6vst5TCwMH\npVKBX4+ZOpezamq1ops/oiz3rMHU2ef/jeiJvzc6d2lbE6St+v9xSfdh6kJxPZnL8Di03Mhg3gev\n/rNJx4e8uxpla/U/HSx+YwX6f7oRIe+sQPPVa6y1JwDAe95jsPPyQNXnu006d1dwHxWJxrR8zn3x\nh9eg5kgKyv7BvdibtSgVClTnXkJ17iWmHOmz+ec75+IU5ovWkmprFK/HEBdnQlycaeti9GqVWedQ\nmWW9p9WmGPvsVlz+xvyWYe3PXXek7xorbp5Fxc2zXVsgE0hqy1Faa9qCsKZwdvFF7PDnkHLxE8OJ\njRC2bQmq/3kQMDDFa9UXBxG4/AW0pOWyuhUBgFNUBBwHhqD+J9X6EX4L50Je1wiZgWAg/LMVqPn6\nJziEBaLu25OQ1dbrpLFmgKCtxwYMtdW5nK0M+sYxJH9v2sw3dfeyUZj+IyLiHzGYtq25Fqk/f2BS\n/qRv4ptFSHN74/lLqN17oNPnKlm6DmFbN8Dv1Rd19hUtWmZwRiN1GpG3p05a7cXclHI5k951zEi4\njtGdwrAlvXtW3Aa88wxvZdzUSrq1mFMO5yEhfT5gIL1H/MPLkH5E/3dWZ4KFnqKnXOOUpI04e9yy\nq6Y7OLojcshDyL7JPXGNpKXaYsECAJQsVo3Z0e4OpP2+8UwKGs+k6ByvTteaU6hzXO2+48xr9eBn\nfeewtR4bMPj4ReP8yXWQy6zbdFWedxbleWf1zoSUfGCZRbsFkK7RmfEJXCsf62xTKIxLZ+b5jNmv\nkEhQtGgZPOc8CLfE0VC2taP6q/1ou1NodFmKFi2DW+JoeDyUBKGLMyQZWajevVdveoFIhMAli+AQ\nFgJZbR3Eh4+h+WqawXN1RvzhNahPzoHH+ChkPrMVsXuX4uaj70OpUDL71TQr3+rt6v9y7SvZdhh1\np9jdV/jyG3ZgBQQOIs59+spesH4vBqx/Rje/H1ZDIBRw5iV0ECHuQMcPsnq/ZtnCFs/W2ad9jdr7\nuO7FsIOrIBCpnrKVfHwIdafTDV5XT5Q4531cOsT+oZ7w+BZc+C/3Z2XC46oK7K3U/ags0q0wdA8C\nuPQLREtDzx7f4uwRYOsiECMJhfZWyTch8XWIa7lbg/siFzsPjPN+HGWSXOQ0JVv1XD02YMjLOIDY\nkfPR0lwFKDsGfNzONjydpzn0DZAmhM/MuFU4lmH7lifxoZ8hPvSz0emjg2ciu/wY877pUgqaLhlf\nGVLKZLi7yfinPJa6T0Uffo/4w2sQ+vojuPef04j+cjGynv9YbyVZXUHmqthrVp416ctP4CBi7Ruy\n/VXkvc49wF5Ta0EFZ6X+5qPvM9s0iTxcEfP1W7zlBgCv6cN1Ah1D/OaO08lT+3pj9vy5SwMGfRV2\nS9MOFgxRl8s/fLQ1imMhSpsGC3b2Thj9JPv/Ke2n5CJHFyTM3cCZZuyzHQ/sNF9r5pHwxLsQOThz\n5g0ALp5BGPZQR7/1FvFd3PypY8ansc9uRf3dXHgEDeUtoz7R0xeiX4Bq4bKr367EmHmqlaOv7H0b\nyt/qKJplB4C0gxsglTQw+7JO7kBjZQGrTEqlAlf2vm3UNdo7umHU3PWsbfquYdzkVbj4yweYkqSa\n1EXdGqBuGRg28kXUVGXjXnka7n/gPVaa/gOmIiBoJK5d+QweXhGIGzEfv5xYxeStUEh5zzslaSOa\nmypw7eo/MH7yaqRe2o7mJuOm43Z07GcwTfSwp1gtEFOSNkImlSA7Yz/iRsxHetouDE94hbmW2OHP\nwy8gDudOrUXEoCQEhybi3Km13e4JP5cWeT1OVe0CAKuv9Nxj190eEjcXXj6DEdJ/PELCJzJ/xHYU\nra0AAIGTk41LYlkz41ZhXKRqRqEZsW8z2zT3q7k4eCE6KAmJkQs48wGASUMWMtvuH/InvedOjFyA\nqVFvMu/HRb7MOh8AuDr6YHTEMxgd8Qxr+/1DF6G/z2jm3O5OAXAUuSExcgGCPGIBAN6u4UiKXYFw\nn47pBZNiV6C/dwLrPN6uEZgRy+7uF+gRjaTYlZgZtwoTB/+BOU90UBKmRncsLBQTPAtToxdDKLBj\n0oR5j8QDMUs58ut4Wm7KfdLWmJYPaV0zRB6WW2XbXE4Rxk1fK601bQrfyE0vQnwuy5wi6VV14CLn\n9vjDa5g/UT8Xi5+X9F5yaSsuf7OU+WttrMaQ+xew0iTM3YC0A+tZ6dQ033PtB4DU79fqrRwPe2gJ\n61gXzyD4DmAHec4egcx+ubQN4Qm/M/oa+wVEMucfM+9D5nX0dNX3WHDMVCgUMib/rJN/x6jHOub2\nl7Y2IeaBRTr5puzv+B42dI2j5nLfPz6ale9WSR0AIKT/eFTcvQYAuHntPygvvQKFQqbTtSg0fAJS\nLm6DTCZBTVU2K1jQx8dXFZBdTf4YMqkEv55cgzHj3zLq2M44f+Yd1FTlQCCwQ13NbdY+v4A4nD2+\nAnK5FPm5R2BnZ53WkZ6uxwYMvxxdzvlHbKfu0E8AAPfx5s+l7ffic5YqDi/xT6on5xHbt0LAM5BJ\nYM9ufLuYvxOJkQtwInOz3rwnDVmI7LvHcSl/N2u75hN0FwcvZruzgydvXjPjVuFS/m6cyel4Un8x\nf6dOuomD/4CUwr1IKdyLKb8FF0mxK/Fr7g4U16QgIeJpAEBjawWmRL2BS/m7ER/2KACgtrkIxzM3\nwsM5mMnveOZGFNemsp74S+UtOJG5iRVE+LhG4Him6ina+VufM9uz7x7HmextzPus8qM4k72NFXCU\n1F7DyaytrPzu1WfjeOZGZpux94mLUtY108zZksBOwEz51xXSZ7/H+rO1+CmvYexs1RNpN68wpmsQ\noGqRmPDYZngFREFoZw83zxD2vsc3Q2TvjMCB43Ty1cxH09D7ntO735Ty8Znw+BaERT2AEdPfwrhH\nP4C9gysGjZoHAEiYuRLjHlV9JvtHJ+lcr6Fr0G4BEQjtTC6fpeSc/gJeoXHM++hpqgcO0jbrrHvD\nVRG/l3sekeOeZm279r+ORTwzT2xH4NDOP4R09x8AAAgb8TCu7uuodDdW3mGlS/vvetb7qKmq2W+4\n1n/iMnTKKzrbbl/Yg5G/W2vwWKVSjqsXtyEh8TUMjprDPJ23t3fBlKSNzJ+m5LPvYcz4tzAlaSMm\nTv2LUWUEgJjhzwMAb7620t3KY6xZ/n9k/o5Vfm74gE7osV2SiC7H8P6wDwqEU2QE7IOCmO3ukybA\nPjAA7Xfvoe1OIaR370FaVa1zrOPACDgEB8Jx4ABme+iGNcwx7XfvQZKRpbPgjlrjuWT4zHscgKoy\nXvmv3YBACJf4WLiOGoGixfwBXdWur+D30ny4jh4J5+ihqN77LYQuLnAaHInqL3X7y9v7+8E+OAhO\nAwfAPjiQda2OEeFoLfitzOX30F5SyjpW/PMJeCRNh0AkQvgnqgCg5UYGIABc4jt+xLTHONRLDDfp\nF9fqLsc+I3Y5q/J9OvsjDAmchjZpI6uiba6S2mvMa0eR6om6QCDQaYngMjVqMeyEIsj0NB8DQGNr\nJQCgoiGX2RbqPRKZ5Ya7Oc2MWwVJu9hgOm2Wvk/dnWOoD9pKjZ+ONn/lV4je9QZKPvqBN42Dv/6p\nc12GBOvdzyIQdKuxWu7e4Ux3oKa6Ep39Fw+tgkKuqmw1idlTe174r6ql8N4d7tYULrlX9gAAkv+3\nAgPi56Ag/ZBJ5asquaY3vVpJzkmU3z6H0KHTIG1vhl/YCNxO+xZOrt5MfsXZxxEaNZ3z+KjEF1Bf\nZbiP9/jfbTSrfObS7I4jbWUHBu6/deWxFje/cJ1tjZV3LBIQWJ4AgBIeQUOQf5F/rJg2j6AhAHS7\nPRkjK30f5LI2uPdjTx06Yeo6VsuCdmX6ygVVl65BQx8xeoCzpKUKDg7uSP6l+6zJAcDig7O7Cs2S\nRMwStPQNzu0CexGcY6LgHBMF/PYbo10Z5jtW5OUJUcII5n3Ze5shrajkLYPmSsn+rywwuuzNaTfQ\neqcQYe+uhdDVhXUsV8AQspY7+BDYi+A4MAKOAyNYZdJW9NYKOA8djIDXVE+2XIbHsfa33NQ/m0+7\nrFnvfk3qJ/PqoEEqb8UAX9WaIJbot8+3aItm3nzBg1hShmtF32F6NHtOapHQgfW+n3MgGiT3ENBv\nKLTpu4ak2BXMfmMCGE2WvE/aYxG0n5DfWbNHZ6Cv1/ThzIDhsMWzEbZ4Nnvcw6E1qt92jvzM4Rjs\njaGfLdTJT7Pc8YfXQCZuRtb8jyGtbkDGk5v0XlfAs/cj4Nn7WfvEv2Yyx9xeusuosqXPfg8xXy6G\nyMuN91y2MHxaR3e9JjH7wYA6WLA0pUKOoMgJBgMGgF0+U8hlbZA0VQEAhDzdI0pyTjKvs5L/jfGP\nbULyweXwCR5m9HgPc8tnKu1pQL1C41hdku5l/4KgmKlWO3/ZzRMIjZ/J2hYYfb/Vzmeuy98sZd2r\n6gLdB1B8yjNPISRuhknjLjJvfI3+A6aiuOCMwbSTZ7C/gwcMSkLBbdUsP7dzf0SokV3CUy5+iilJ\nG+HmHoSmRtVDuNDwiSgtOm/U8bXVeQgIGsk7S5K5xk5chsvnVa1s7h6haKwvNXBE92PtMQwUMPQi\nnZn1x5IrGpubl1xcb/SxliivJPeW2fmcyfnEpArwsYwPWEFDSuFeeLroXwhGfYz6NQBMGPR/AFQV\n8dx7p1BUc5Xz2Julh5hjz9/i/wLxdx/MdH3SFOw5DMGew5jzqsdwFFR1PJGVyluZc/yauwMSqe4c\n0WdzP+W8T+ptJ7P0Pw0z5j6paVbm1TQH/Oqr4DbdKNDZX3fqht4Bw+lzjJuG1diKdcOVW3oHMHNR\ntEr17ufaV7zlIIq3HORMoy+vrBe28e6zlRunLTd9oikaqu8YTgTrls87KAYl2ScAAHX3ciAQCPUu\nKsrFVvdPe/xC8fUjCIqZCpGDM2Ttll9YrCxDN2Bw941AYcpBniMsL//iPtz39CZc2ad62OXuP5A3\nrYOLJxqrC03KvzT9GELiZpjUElhVkYEpSRuZgKG5qRJtrR2twY31pRoDoldiStKHzD5f/1iED5zG\nvOeqwNdW5+kMqFa/1mytKDIiYFFLT9vJ6jrE1wISEDQS1ZVZyLj+pcE8zx5fgcRJy5nj5fJ2nDu1\nzsBRfQ8FDIQYoK40a84apLldk740mq+VSgXyKw0vdKR9jgu3/6n3nOr05eIMlIszdLbz/dfQebXf\n3z90EU5nf8S8nxG7HCcyN+mka5e1cJ5DX/7m3CfSNw0a9SRup3332ztVVw5rEQiEUCoVSEhajtQT\n+scycZev8zz8BqG+SjVg081TN5AeOf3PyLzwL53tXIoyj1q8fHxKrh9hdZW5sm857nuavY5S2n/f\nQcIT77K2aT8tL0o7xDtLEtdMShnHPkFzjaq72rWDG1hp2ppqUZF3wdxLMll1QQoixz3NKsONw9z9\n5YfPXo6r+3UXptW+RqVSgczj25lrvLp/BcY+wx6LYqjFQbPCfTX5I9a+1Mt/05P2Y735AqrKvTHn\nNRXfscZsV7/WTnvpnO66XoRNoOxGfVLVBAJB9ysUIRYyM24VZPJWnMr+yHDibkoosGMNYjaly5Cx\nU6j2hvtkLHNWce5LHJz6YdSMZaivKUB2ckclRCgUYfSDawAocf30NrRLVK1chtZN4NrHNehXnW7g\niMdQkn0Co2etRuaFfzItDAERYzFo1BOcx2iXryjzKCoK2SvA6iubf/hoVBalsLa5egQhdtIfUFl4\nFYUZR4y6Nu3r0i7f8Glvwt7RzajyEUK6l5n+f4Dgt76xxyo/h5LnoYlSqRR09lwUMBBCCCGEENJL\nWSJg6LHTqhJCCCGEEEKsr1u2MBBCCCGEEEK6B2phIIQQQgghhPCigIEQQgghhBDCiwIGQgghhBBC\nCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGEEEIIIbwoYCCE\nEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPCigIEQQgghhBDC\niwIGQgghhBBCCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGE\nEEIIIbwoYCCEEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQgiv/wdaGgfVu0+QjQAAAABJRU5ErkJg\ngg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4U9Ubx7/pnnTvXVpWoZRddlH2\nHoKATOGHiCJLBAQBERQoQ0QRZIrIBpU9Ze9VyqaUznTvmTZN8vsjZtzce5ObnZb7eZ485J77nnPe\nJCU57znv4IhEIrCwsLCwsLCwsLCwsFBhZmwFWFhYWFhYWFhYWFhMF9ZgYGFhYWFhYWFhYWGhhTUY\nWFhYWFhYWFhYWFhoYQ0GFhYWFhYWFhYWFhZaWIOBhYWFhYWFhYWFhYUW1mBgYWFhYWFhYWFhYaGF\nNRhYWFhYWFhYWFhYWGhhDQYWFhYWFhYWFhYWFlpYg4GFhYWFhYWFhYWFhRYLYytABYfDYctPs7C8\no4QfWob8/RdRcOQKAMBnzkg4RDchtOl7/oThi/U2vuuwrgZ5HSwsLCwAMOneeADA9ja/G1kTFmMh\nEok42o7BnjDUMVp8sg4AUC+gEaKmrEFIz4mUclaOrmg8Yh4aD58LcytbaXvTsd/CzMKKNB7dNYv2\nJKZ5G1sFvRN+aJn0ufu4XkplFRfrmWv363UBz8LCwsLCwqIckzxhYNGO5h//ADNLa5RyE+Ac0gwt\nPlmHR1tmS++7N2mPgM7DUV1aADMLS0ROXAF+RQme/rEU6TeOwqd1L3BvH4elvRMAwLqeG6pK8o31\ncljqMBJDoujMHeRuP6lWP4kREX5oGcruvkBm7D5YuDnB3N4GVanZAACOhTnC9i0BIDNEqNoCY6fB\nOtgbvESu0nkd2jaGz9xRhL7hh5ZBVM0Hx8qS0CZBsS1v91nSuPKnDuEHlgJmZtK+9fcsIsgmjlmu\n/M1hYWFhYWHRNSKRyOQeAETsQ7NHi0/WibxavE9qkzznmJkTrqlkJM9bTFkrsnP3FzX/+AcRAJFz\naHORR0Qno79GXT+CNscSHpbenir7JKZ5i8ZNsJM+NzOTtTs7m4kAiBJSvAny1+94iACIGjW2II2l\nOP6hv9xEAERHj7uJvpznKG2/eNWDJPvHPlfCOJJ/F3zjSDlHYpq3yMICIgcHDqnd3Fz83NGRIwIg\nmjnHQbRtl4sIgGjIB7YiW1uORu9x+KFlItuIEJFtRIjIZ9YIEQBRYOw06X3/ZZMI8q7DupLGkG/z\nnjVCBLHroihwzWciACK7qHBR2L4lorD9S0W2TYKl80r6BK6aStsmP7/8fcWH17Qhsr+b9dNVylM9\nvGcOp31tASs/MejfPvtgH+yj7j8m3RsvmnRvvF7Gbjn4G1H0qDWU96JHraG9xz4M+9DF2pw9YaiD\nZD+6SHuvft8pzAficFCRlw4zS2sAQECnYXiyu465hnDIbn2+S+ciZepclV1376oAAIweXoAjx9ww\npL/4FKaoSAgAaB2ZQ5Dv1C4XAPDyRY3ScfcecsXwIeKxhg7IR2KaN9asKgUABIeYk+Q/HlcIABAK\nie0/fFdKO0dNDVBWJiK0fTGtCAKB+Hlpqfje9JkOqB+QBQD463Albj/0RHRL4utiSuWzJACAfasG\nAABLDyfpPX5OoVpjZa0/iPADSyGsrELihB8AAB4T+4BjIX5/PP83ACmzNhL6WHi6kMaRtPGzCxjN\nKyguk/V1cVRLZwlUc5nZiN0ArXzcGI8Tum+FRvOnfrEGNbnqvd+6mDd/90kUn75p0DklCErKkfHN\nZvBzmH3OLCws2pNw4w/wykzv/1yLgQvx6Jh23ynvImwMwzuGg08oAHEsgvyDCRa2DvpUzShY1w/W\neoznz/ho2Ehme0+cbI+Jk+0xdLitkl70RLWwpL0nWcjLw+eL28rLifcS07wxcbI9fP2IRgbVGABw\n5VIVZbvk9UycbI8tm8qV6q4OqfO3SJ/X6xql0Rhm9rL32MrXHUUnb6Hk8iNY+XuIG+WsqPRF22jb\n6sW0AADYt2mkdD6XwZ0BAO4f9UDmmv20cpI4DffxvaVtbqO6AwBch3aVtpk72hHGTft6KwJXfapU\nB20J/OlLhO5bAatAw8bOuI3rh9B9K+CzYIJB5wUA83r2CNgwB6H7VsC+dWODz8/C8i6Sn/oY5QVp\nxlaDhLU9efOIRTXsCcM7Ru7Ta/CMjCHENNAhEslvWWsdYK+UoM2xAMBoZ1+XVL1JIrUJiorVGuPM\nRXdMniDbsd25TbtFddf2uXB3N0NenhBu7mYQKD+QUIo6ujx65oXwoCxCG48nQvxjPh7cq9ZcCRAD\nmSU+/PysAsr7ACizCCm2JXy4lHaO7F/+IslUc3Pp2/7rW37vpdIA6/x94tO7vD/P0+oOyF5j3u9n\n5PpeIMkLSisIbdXcXKTO+5V2fl3iv2o6AODtqIUGmU+CbWQ4QvetQPL/lkNYVmnQuQHAa84YAIZ/\n3cai4eLBcOvUgPa+oLIacVN2oCq7xIBa6ZYxF0bC2sma1C4SirCj3W7KPvKZgyTPFVGWVSiwcwB6\nrHuP8t6hoUdRkkY+4ZXM82TPM9zdcF+lXsruq4Ku/8d3xoFjRv49v/jVZSRfSlE9MIeDNsOWo6q8\nAPGn10KkzQ/Uf7j4NUH96FGoKOTixeWtEAkFpDlbD1kKAZ+HR8d/UKKaGRp2mQgn7wYozU3C83+3\nQOyRI6PVkCWMdPJt0g0BkX1QlPECr67u1E7/OgJrMLxjcG8dg2dkjAopEew8/JFycQ8AoCInFV5R\n3fSmk/uEkXobmwmC0nKYO9pLr9PnMwsqvX7HAz6+5qioEOHmdfGCOiwwi5D1SOLOow65uUKtxwAA\nkUi9DEwnj/NI80aEZ+PJKy/Y2Yl/YBqFZktPNIxN2P4leDPyW8NOql+72SiE7lthlMVz8NZFSBq3\nBCK+9gsOTdDkdXc49xXh+mbP1Rr1A4AXCw+j8N5bvczZaNlQuEaHMdLN3NYKrf6YCgAouPUGL5cc\nZdRPQtujM2DhQFysM31fVEH1vt0d9hNqSnnSa/kFdMa9TDw/+BL1e4UgpHswOGYcTLo3XunCX9L/\n7flkJJx4g9aftoBbIzfpPbq+UmNBBFz//hbMLDjoMC8aADD86FCc/OQMsh5mq/eCVSDRVcgXYmeH\nPwAAdu62GHV6BACgJK0UV5ddR3Yctdvo2H9HgWPGAa+oCjdX3YZHEzc0G9sUAPD+6hiVaVe9wjsg\npPVQ8bzOPogetQZ5yQ9g7UB0pYwetUb6vLqyGA///o5yvOhRa5B0/6h0zHpeYXD1b4b81DipTET3\nz+DoEQIAsLC2R/SoNchJvIO3dw8RxvJt0g2BzftJr+t5hSF6VCxu7/uSpJPitUSG6p6LXwSiR61R\nKiM/p6L+dQnWYHgHebRlNqUbkuTUIfHUVjQcOlt6/ervDWgxZS14hbr98pNgH91KL+MyJX3uUo36\nSWIS5BGJqBf4yhb96shHNaH/DCT3JH3DAlWPIT/PzM+LMPNzsnyzhvr53LXF4MYCqE8+TAUmi1+f\nRZNgGxFKatfGaNBm3pDd32o0r7p96GIgzGysIORpfnrm3DoERffJp5TyNF03mrK98YoPdLawBoCw\nOX3g2auZVmO4tg9Dh3Nf4f7oTajOK1PdAcDdoRtIC/sOZ7/CzV66e23yyBsL9p520ufyi92Uy6nA\ngivSBbaNiw14hbJ+isj3Tb8pzpQm6esX7Qvu7QyCvOTekeF/oyhZdiL94vAruIa7YsjeAei3pbfe\n6h5IjAUAqMirlJ6S1AtwpDUWAMDK0YqgU9KFZNz96YH09agyrkJaD0X2m1tIundE2ka1cKZbpFPh\n5BVOWozL4+gRQrjP4Zih3cjVBIPBI7QNApv3UzqOok50stGj1qC8kIsnZ9YT5qQyGpSNw5SeLckn\n1OceLqOQND5sDIMOCNm7Qvow9rhUrkZ0bYoPCSVpL4l9RCI82jIbLw6uUu8FsLCwmBSZy7cjb+dx\nynuWvh56nZduka/PeSW8HbUQohqym0DwTmbuCXQE/y9GpUy9pv4aj+8/uj1jWUElX+N5FGm9d5p2\np2k6OImz8XVWKTPy5HAAwIGBRyjvP9wi3un96NyHtGPsjtlL2V5VIo7pavM5cUOryYeyGBh5Y0FC\nQYLM1TIoJpB2XmNQw6M+zZO8VmUERIrjseSNBV3w+jq9geIZFk1qI7pKi6nfjv7z1QR5Y0F+To/Q\nNjqdp7bBGgwmjKha9gPgPmWoETXRH66jaufr0tRNiOXdw8upEbo2/gItgkcYWxUAQMm528haRf6R\nDlg7U+9zG2teAEgaq32Gt2dfHSBc24Xo19gJnNCZcP18/kFa2aRNFyjb+YXleDpnH272XE16pP1x\ng3a8DmfJ7kB0JP92idTWZv9njPtT0XIXOaMf3YlMWSb1acijbY9VzsMvpza0Xh97AwBwa+hKaG//\nZVsAYp9/Ov5dID6J7B6rP1deTfi9y5+U7ZLXqgzvBp0p22uq9ReHFBjZF4B411/+YSyCWgw02tym\nAOuSZMJUPHwJ+2jxEbNjTCvk/aaeb2ltwLEr8x00lrpNc99B8HJsgHOvYo2tis6IaTwT1pbi7GIl\nlWIj09zMEt2bzsPZeOMVYKuIe/1OzasriuMYBIUqIfHHs6g/U3mlc2UUPUxmLHt7wDoIq5THh6T9\ncQNpf9ygjBUAgJBp3WkNEXkyDt9D8BTi4tjS1Z5GWvcwDQTWJcoChJMuJAM/dKW9bzS0CD8T1FTB\n3JIcWM7h6G/fWSCohgXstHb70RU1VbrLEggAtta1K1sTe8JgwpTffWZsFVhY9E4jz/fQu9F8uNkH\nw4xDTAHbu9F8I2mlPb4uzWBt6YCz8csJxoFAqDvXERb1qHyaaND5OBbEn9jsU8Qdb+c2ITqdT/70\nQJWxoNhPJCSvJn0Gt2Q8RuY/DxnLqoLKgImbskNn49dWhHyxa8yke+PRdkZr+LTyxqDd/aUG06Eh\n+ttUTHl4jLKdyojQFa9VZCfSGxT1mQCozJakLs72mrsrGgP2hMGE4XM1K5BVG/D4ZBzsWpAD9CTp\nVZmgTgrWej26wmVYf0aymT9sQHVKOuOx5VHUX15HtzEfwKFTO+l19vrN4L0iL2A4lpYI3Pg97Tia\n4tC+NdzGU/t6ll65hYJ9xjnBCnZti0tvfkZVTVmtNhAUaejTHUXlppeD3NhUxifANjLcKHMLK+gD\nXzXFPaYx8i6/oLzX4GvlLgwNFw7CncE/Ut6zcLDRWjd1uNU7lvakgQlJv1yAzyCigdF67zTcH71J\nW9UAABXJebT39BVcbGrs7PAHBu7qB48IdzQbE4FmYyKk93Z12gNBlf7SeeanxiG84xi0+3AV7hyY\nBwAwM9fvErK8UByAHtH9Mzy78Aut3P2jS9B66LewcXQHr5T+7wQAirMS4ORN//1TUZSJ6JGxhFON\n4JaDAACVJbpNAOJg66nT8fQNazCYMJIc7bUd54G94NS3u7HVMCpUhpDXrKmASISUT2U/0h5TxsKu\nZSRl/9TP5kMkUP8HwX3yR7BvrbwwmmPX9nDs2h5CXhXSZi5Sew5tqaphlpFFFZHHFyF52QGU3EvQ\nyXjawBdUwtpSs2rQdRlhpeoAS31hXV/7Hb2cs08I2YiCp8TQGgzK6h8AgLmdFe294KnEHP+5/z5X\nQ0vTwMpdN8U+TbFGRGiPYLw9n0x5r34v3Z4cyeMR4Q7AOEZSatxJBEb1I8QRpD4+hcDmfaXXjh4h\niOgui1+xsnWSyifc3IP8FPVSjuYk3oFn/Xak2AX5BX1NVTkK0uIR1Z+84aTozvTi0hZSLIS8TPzp\ntZSxErf3675GlIMNazCw6AibBqaVYUFT3nVjwX/VN/Q3ORw4dGiDspv3YO5Uj9JYkBD4y0q1ThrM\nneopn5sCMxtrBG2OReGh4yi5eFWtvqZC8GLZKUrOoRvI2k0OyDQE119tRq9IsvHVM/LdKBhGh11U\nQ6PNbeHmpPUYb9aeJhgMVu7qGYWpO68icGIXlXKePZsSrhNWnlBrHmOQsu0KgiYTffcbLRuKl4uZ\nn162+pNc6fzB2M1K+8Qs74LLiwzzfXV+9kX0WPc+un3fldZgiFku/nyvLL1OaC9IKIBruCvC+4fR\nFm5Thqqibvom48UlZLwgf59mPP9X+rw0N4lxzAETubd3D5FqLlDx+jp1gT5N5mWily7iKpwdAmjv\ndb0wR62xrnRfq606KmFjGEwYj89MI6tKXaD87iMUn7pA6QKkb8yd6im97zZO/DkzWdwHbWKW2tY6\nOEBtY0Eel+ED4DpyiMb91aWJV09SW+dQcpYUdfEc3hGRxxeh0fbpWo+lCc+5p9ArchF6RS6CZ70G\n6BW5CBxwjBrwbGw41pbGVkFK8Un6LEHawjEn/rxyD9wBAKTvu01otwty15sOhoZ78A6pjWkBOQnW\nHswNsL29xVmj9Lmjr0jqNZm7qlsDV9J913BZ25uTxN+bez+L4zxsnKn9/pkGb1NVamapfVia07sd\nXum+lvAAgGv9fiK1C/kCFNxLNoi+7AmDiWLp5wmOZd34eJTtiivz+dclguISFB07y0gHXSIZW/51\nec2cAptGRB/KgLXiImRl1+8gf89het3MmNn43vO/ILWlzlgIURV9kSrFuRxjOqDgwN/ianR65MzL\nlejdaD4CXcT+z/JxDGderlRrrPgBy+HaswX8p/cjtFt5OiHy+H+7/SIR4gfqtmYKHWn5D5GWr7tg\nUF3BMTcntRmi4rKx5gWoi7fl7zmlt/la7ZlKuE7ZTl30L+q3j/VW5MwYZB1/BO8BLQht/qPbI33v\nLZV9qepOFNykdy+szK+EoFoAcytz6WI7Oy4HvCIefNv4wNJebJzqekdeUiht8J8DAAA3vr8FkQjo\ntFCm/7VlZGNUUhQOEBsHuU/zELcjHiHdgxDWt77Keff2OoDRZz/Ex3fGKdWNpW4RueoDAICwipww\n41qfH9U+jdAU9oTBBHGbOBD+sTMIbTkbD9BIs5g6mSuIQY3ZP/5GkjGzF1cslTcWAKDqjfIqslRQ\nGUApU+cqNRYkMqSxfjXMQubMy5V4xP0LFdWFqOAX4XHGP2obCxIKzj1C/IDliB+wHDUlFHFAHA4i\njy9C5PFF4FiSF7DvAiF7yJVEk8ZpV8TMVOe19HWnNBbefqT5CZwiigtkALByY+i/X8c2i99uPE9q\nU6wnQQeV3Mulfynts6vjHnEa0//wivJEUEyg1FjQFwcHy9ysOn7dnmAsnJh8Gq+PU9c2kF/QezR1\nR49170mNBVWL/dFnVRcoM0aKWRb9Uq+xj7FVAMCeMDCGabVlXVd7llB+K14v47Lon+o0LqlNxOeD\nY6n6By1rzSa1TkB8viYXwVLn1CZl6lzSfK6jhqBgn/IfbV2QXfoK2aWvdDrm84/WSZ832DQVNgFE\n949mRxdIn7+e/ht4yYbJTNYrcpHR3JKoFs9Ff102yrzGGEskECJpjHbGgqCyGua2soDl0Ok9kHX8\nkVZjKoOqSjUT/D5sh6BJJlgPgCFUO6pU/LvgCrCA+gSHDlWL87sb7iuNMyjllmq8m6+sH909JvEL\ng//oD7dGbui9sQfOTJcZbtq+VhbjcmvkFnQ6Nh31Gvug5EUm4Z6hThcA1mCoFQiKSo2tAouOKT5z\nCc4DiH77BQf/0Xpcq0A/wjV34fc0ksxx7NrBIAaDvnk9TRw4ybEwR7O/FpDuN9gojpnIPXILmbsu\nGlQ3fWPuaIeg36iDrUXVfBQcJO8K62pev+8/g4W7M+X9t6MMFwBenZ6D9LkbdDJW4o9n0WDBAMby\nZa+JleH5xRWwdLKjlff/qAPh+u3PqounydPh7FzaXPKGIHXHVQR+TAzs9vuwnTSOgwq7YHIsx+2B\n63WuW22k10/ixCHXVyh367qy5DqGHhgEnzamsSPNohsEFdXIPPUELTaOprx/tZdh/p+wBgNDcn85\naJQg5OzVu1ERp9tdVxbDwc+i3rEuv/OAZDCU/nudUpYpTv16kNpq8gvVHqf49EU49XlfK13UoXej\n+bTuR8ruaYqoRoD4AbLd/fqrx8O+sSxbhcew9vAYJnYvKH+ehsR5tcMnWJNd96rEdHAX/WrweQHD\nGgsAYOXvCac+HVB8+qbWY+VdeqHUYLD2JCY6iP+cmMHl4dgtaHdslvTaLsgNFSn50uvA8Z0I8ooF\n3+jQpo6CLknff5tkMARN6qrUYIj67WNyo37Dp2oNHhEeAAB+uXK30v7b+gAA4rYz+3tRl4qMYLXk\n7XyT9aLHu8jrdefwet05o+rAGgwMKbvxGGU3xP8Jzexs4Pvdp7D00W92i+TxSwwWEMiiH+iyMgmK\ndJ9XXNEA0ZTikxcMajAYm8SvxAaBbZgPwtdPItyzbxKAyOOLwEvOwevp5NgTRajSqJoqSeOM8/1S\nsP8civ5Rz31EV7iN6we3cf2QtXo3Kh7pbyOm4TeDlN4X8IiuNg0WDtK6krEqY6G6oAwp268g9/wz\njcdQh+yTcfDqR6z/4tQ8EMWPU3U2x7vCvwsuo88vPZWmcu3zS09YOYrd5B5t1Y/BcOZCpfQ5v0aE\nmE42cHQwQ2GREA/jqxAaZImQIPGykjUW6h6swaABwgoe0ufIjoDk4xaSRutv16zz+8tw7eJikxmH\njojmY+DhJcshfvlc3aneqy78TOrKkKIa0zUETVk3XWPfNAj1fxirUs4m2BORxxcRTiboYBKbYEzD\nInfzEZReMXzmJt7rVGQs2aKTsZieTjgPiYHrCPLJm/dX4wChUKeBz/I4NFTPJYTKHUcdlC30b/Za\nbZSd+sQN50gGQ0TsSNzsSU6k0PJ3cgrlux9s1JtutY2MuzK/dUksg5AvhJklOW/NkRF/602PoeOI\nv2cVGcGUhkHP92wxf6YzVv5YpDddWAwPazDUEqxtnGBuTl8V1NDjKOPZ4z0AgJieunUlqY3U5Cov\nU69v9JkyVlvk06fKP9c35vY2iNhPX3Tn6YjVEFaKj/5dujVDwGzZbnHk8UV4MuQHjYNQTQGbJiFG\nMRiMUYiy6K/L0oBu32WfwCZcTgczM4TsWoKkCd9qNHbaHzcQMLaj9NrCwQY1ZTySHJ07UXliDuzr\nq670mvnXA430i5/+B8peZaoWNAFsfMgxLjUllRSS7y7b2/wO52AnDDs0GABIxsLpz84RDAt9k/go\ngPYU4dy/lfh7j5dSg6FnS/1tWr5rdL0wxyCF21iDoZZQxSvWyU69rsZhYYaQV2VsFUyWMy9XItJ3\nAHzrRVDeTy16hOdZ1LUzNCF40QjUa9eA8p6ougZPhpEN3MJLT1B46Qmhb7O/FtCeNBizIBvdrrti\njIFjl5bI/fWI3uf1XTwZNo0NV1BLFRmLt5DeC461FcxsrCDkKfcNp0LRYPD7sB1lrYXEH6n/hl99\n9w9a7vofqd2rb3PCddLmf0ky8jT8ZjBluykYC6m7rpFSpTo09CHo5jusDanfm7Wn9a5bbaQoudhk\n6iyUlArxwUB7HD5WbmxVWAwEazDomdbtZ8DK2hF3rq2GQED/o2Tv4IVW0V+grJSLh3c2aTRX+y4L\nUFPDw72b2kXMB9fvjsCQGGRxH+D1C3J2HBfXMDSJHAVAfJpQVKh+rYB3hXfJvUcT4jOOw7dehM4D\nmyW49moB/8/70d6PH7ickbtG8vKD8B4TA88PxcGo9do1QMmd1xrrZUjD4u2ohaSFcui+FXoPOs5Y\nts0o8yqD6r0I3rlEJzpJDIawL/sykudlEBMSRKz8EM/mH0DodAUXKhWFE906k43gp1/uY6SDvknf\ne4tkMERuHEtwSwr+pBupX87ZJ3rXjUU7WnThoiIjGLs3eyCsZRoysgTwcDfH3q0e6NjOBjMW5Kse\nhIUWh/qeCJ/xPh59If6/3HTFECNrxBoMOqEqIRXW4cTjdmfXUES1ngKhkI8qXgk6v78MvMpC3L62\niiAX03MlqqtKYWXtCJFIgHpO5GN7edceqtMBF7cwNG81GQkv/iHI8/nluHHpO8bjxPRcicrKAtja\nuqKkOA2+Ae3gG9COICsZg1dZCECEqDaf0I7HwsIEkUio8zED5w2Fc6cmtPeZxCIokrXnstRg8B7b\nTSuDwdBUxifANjJctaAB5vWc/mGdLkTp2bOpaiEKnFoGAQA45trXUy2JT9N6DF2RfToeXn0ija0G\nix6Y/EUetv3kjjcPAwjt+QUCbP2dTQevDU0WD4Ctn8xVz61dqBG1EcMaDDog8/sdCN65lNAW1XoK\nbl5ejurqMmkbnU//7WurIRTSF6iRLMbp+jdvNRkZ6XfBTRPnaLZ39IavfzuCscBkHACoqizCnWuy\n3R9FWTpDg8X04GfnImOJYSo1a8PZV7rTMfI4fTCxJkYCHVZeTozk7K3d0Knhp6R2Q7suZf6wyyi7\n/VTzOnSIRMGfp1FToPtMYUyofJoI26b1jTK3KUPn2qQtievPkAyGDue+ws2eq2EXRA72jpu6Uy96\nsOievYfLsPdwmWpBFrW5O347qY0uTsFQxdu038pggaiKj6TRC6UZkhpGfAAABGNBQnhjcro9ZcYC\nU2r4sgAxQY3mfvNx91WnjmSpHVh6eRhbBZMgfsBynRoLAFDFLWAk16nhp0jNv4ez8ctxNn45zj0R\nL56NkSWp4sELUlvAWnJlcF1DZZQE/jJP7/PSIawgByZrjAp3oaL7yt01RULTKTRA5dqkK4ofplC2\nR/02kdRW8TZXb3qwsLBoDnvCoAfkU4rKU1jwBl7eUVLXIV1RU1OFwJCueJsgDhQLCO4CPl9/gUht\nOsyCvYOX3sZnefdQliVJk/gGQXkVno3UX4aogguq85xHh4kLUb3gyoJeRSIRzsYvN4rBkLVmD2m3\n39L33TMqrUN8dTZW0uZ/EfIpfc2SV98p/65/s/YUwufKYmwsHKwJ99P33dZIr6ZrRqkVx6Dvgm/P\n5h+gnkOhGnVVjuanTnPjPtC4L4tqYqMOG1uFdxplWZCqCysMogN7wqAHKsqoq/va23uhokL3aTav\n/7sEJcVp6NhtMTp0XYjL5xaQ3JF0RUzPlXgevxeXz82XPlhYtKF3o/ng8Utw5uVKCEU1OPNypdRI\n+DfhJ7XGkpwm6MtYkIyff+IBNCMtAAAgAElEQVSeSlkzjjmKKrh60UNTqHb7Q3YtNcq8mlaI1hYL\nDxedjaWY8lRxl15QqTz7kmIRtfB5/QnXqTuvqtTh8ae7SG31IgPIgjQYrTo0h9z0YMxmw+vBohfU\nrQrNojm3hv9qkHlYg0EPPI3bTdluZe2I54//1Pl8Ldp+inpOAbhxaRluXlkBfVfpKS+TFW8xM2MP\nqUyFnJ+2GVsFjbmcKM4MVlUjc+M783Il3gv/wlgqac2thG1wtvMzthoq4VhbgmOp///HNQXFpLaA\n9bP1Pq8h0TYOwKWd+rEV5YnUG1Qdzn0Ft84Nafs1XDyYZCxUpjNztdMExcxHHc4ayVBhYWHRCHa1\npweqq8tQUZGHmJ4rcfXCIgiFNbLsQjz1Kh/a2LrA3sEbTs7BAICAoM4oL8tGYUEiRCJx8ajH97eh\nS/fvlAYoMxmHKV6+LZGd8RA2Ns6I7kI+YXBw9IG9g7f02sevDcrLslFSnKrWPCzqUfn8FaktaHMs\nUqbONYI2mlFQYTrZXTSBytWIqq2UR73IMwRUqUVDdn+r9wDo1M9Wk12ivN30OqciVKcaRcdV7+Jr\nQvp+Zu5E/OJKWDrZajVXxpF7lPUMGn5Djpmj41afNRAJhHo7cXiz9jQ8ezWjvV9wM0Ev87LoDsmp\ngaRgmz5OEZ4kH0VmwVOdj6st7Yevwa1D9AU/NUHd4nVtdkyEXaAroe36wI0QVKhfR0YT2BMGPXH3\n+hq8eXUCXbovR0zPlRAIqjVy34nuPA/NWoxHYEhXAED9hv0Q2epjuLrLjr67dP8O+bkvpC5Cd66L\n3TECgruoNQ4TsjMfoXHTEYjpuRLRXahdklq3n4HGzT6UXjeMGIaW7aYxGt+uJZt+TxuyN5CD1v2+\nqz1uY2/yrqOBR4yx1dA7jjaqK/zqk5rcQlJbyG7NKh7XhnkB+kDrgr3aFQfMOhFH2Z66g5kh8nrF\nMcp2dRbQyVsugcclv7dMudlzNUQC3ac3VqQ4jjr4GQBeLiXX/GExLfh8Ear5+vVgKCwzzU0jXRsL\n6tL1whypscAvqYSoRrzR2+nYdDRZ1F9ZV53BnjDokfSU60hPua5URpURwdTIePJIVv2xsiIfL58e\nRGh4H6QlX2U8DpWMYtuLJwfw4skBpTLaxDV4TBlbq3bETQ3eiwRUJSbDun6wtM3Cww1Bv65Gyqfq\n7Ry6DOmLer26GeTzCHWLxtv826jkFyPULRqhbtF6n5MKr9EyIzt7r/o7z8as9KwOqV+sIVc9NoBb\nEt28LiO6o/DgBZ3P59itNTym0Bc8ejta++Dztz+dg3f/KI370y2i1V1AP5y4FZbOdmhz8HPGfQpu\nv8HLxUcJbUK+AGaW5mrNzZRnX1EHPwur2AKXtQGnIOLf6pffFGDTdupAdU1PH3jVZNdFCY07T4aA\nz0N1ZTG8wzrh9hHxJoBk97+eR32ER3+EB8eXSdvTnp2Fq18zJD/6CyV54qxl4e1Gw8ElABUl2Xh1\nc5d0/PbD16CA+xTO3o1w56hsHWPv7IuImGm4+/cigmxJbiJ4ZfnwDGkrNSjo5tSGpt+JXR2pAp85\nFmbocmYWsPyE1vOogjUY6iiNmo7A3RvrjK2GSvL/OAS3scMJbUGbY1Gw/y+UXr5J249jYS61sFmI\nZMX+gqDNCkG/HA6CNseiJicPWbE/Q1BKzqJlG9EQzkP7wcrPx0CailHMgnTm5Up0Cf0EhZXpeJJ5\n0qC6eI3SzmCoTfAz82DpQ8yDb4jaDEljFiNkzzJCm8uQbmoZDLoImBZV8VWmRWWKfOViY/SXwC+q\nEI/F4aD9yTngWFA7EST+eBbZp6gzfd3uR5+NRV/cHmj6v1UsZK7d0mGKYgY4ezeSLsx9GnSVtt85\nMh/th8cC4Ejv+zaMkT5Pf36e4FLkHtiSdGIQENGT9hShvCiDsv3ZZXGwceL9g9I5kx4eRVbiTdKc\n2uDaJpjW7UhUo/+TQQmswVAHeB6/jxS/cO/mOlSUG89PmillN+7CddQQcCyIf4quI4fAdaTyUuhM\nd75Ji2cV+CyYoVLG1E9BUqbOpXzdFp7u8I9daniF1OTq2y3GVkEnNA8cCm9n6orTxj6NSJu9nnLh\n7fP1RGR+r7/iWSKBAMVnb8GpV3uDzitP0rglEPGJu9pOfbqj+LTmpxyq+vfqboM9291x804VBo0g\n1xro1sUGW39xxesEPvoOpa5F4ONtjh2/uiKisSVOnOFh2kzqIGUnRw62evwJN1cz7NlfjrkLqWPn\n9v/uju7dbLD4uyJs2kpfgGvRvHr4Ypojjp+sxKRpegiMNp1yFCxq8OQ5ve+8JM5B1/iEdwYAJMfJ\nUhYLhTUQCmoQf15meAY07Q2RULapKC8v4JMNHd9G7yHt2TnGetw69CU8glohrO0ovLy+A4WZzxHQ\ntDfSn52l1FEbbo/6De0PkQuAGhrWYKgD5GQ9Rk6W6rzwpkrq5wvUXtSzqIbOaGAxDOZmVvB2bgJu\n4WMUlafD0sIWlua2CPFob3RjQcLbj75B6J/EFMy2zcL0Pm/+rhMkg8EQ8wp51UieSB0zIeLz4fP1\nLJTfj0PJuUvS9sCffkDh0RMovXwDAMCxskTA2u9Q9eatNGbId9FsWPr6wHlAL6RMk20mFHL9MWRk\nLv7aL6t30aUjsdaCRE5C+3bWKOT6w8UvnVYGAEYNt8Oo4XYq5SZPcMDkCQ4EOQsLIDdFJrdiqTNW\nLHUmyCiOAwBDB9lh6CDynEyx8XUmtcV/Rp1VkMW4/Bv7GA/+NL1A9MyEa6Q2B5cA1FSVI6r3PNmp\nwrNzlLK0475W/0Q5N+UBclMeSE8S0p+dg52TDxLu7FV7LGVUF1Yg78YbtN42AQ+m/iH1rnBuEYjm\nscNxY8gvOp2PDtZgYDEJ2MWtfkiZOhdmNtYI+FH9BWpNYRG4C/SfKz/EtR0aenajva9J4TZToHXo\naADA07TjAAAHGw+U8XLxOvMiekUuMg2jQUh9nO3QIRJlN+P1OrWoRgCOBdFXXl8uUXk7j6PknPKs\nRS5D+yNl2lw4D+oLm0bh4L1MQNCmWKRMmwubBvXh0KENym7eQ+CP3xOMAgDIWL6O9oThr/0e2LCp\nFEtXUPtmOziICxLIL8K/mlWPZDQEN85AcQnx8yrk+mPdKhfMnkcMeK7fNAMFhfSuChJjQdFAuPWv\nF9q/l02QHTUhD2fO8why/5vogK076U8k6Gi5awqprSwhS+1xTInyPB5S7uTg+alUJN/KxpcPhxlb\nJbV5uP8Nrqx/gpoq03bzzUt9iFYDFqOQ+wxe9dtLjYNm3Wfg1qEvYW5pg/bDY3Hr0FxwX/6L9sPX\nID89HiKREO4BUUrdg1KfnPovhuEJ7Jx88Oi0+HfHzMwCdk4+4HDMYOPgDl6ZuJZW++FrwH1xES5+\nEVLXRsmcHDMLRnOqg3tH8YZKlzMzSfc6/vUZqU1ZoTdN4Yh05MOpSzgcjukpxWJQHDq2Rb2eMbBw\nc4Gwsgo1eXkou3EPZTfu6szv+F3FvnVz2Ee3hnVoEDjWVqjJzkPV22QUnTwPQSF9wJm+6N1oPi4n\nbgKPr3mVV10ReVwW1BY/QLsF/fsRc1HKy8bdRPEOaqhnJ7zNESdBMBmDgUWKU98eKD51HgAQ9PMq\npHw+D0GbiJsYEkMhaFMsKuKeIPc32e44lcEg2aVXtiNfyPXHpzMKsP9wBald1U4+1fiFXH/weCL4\n1KcuGjh5ggNiVzhTji0/J53uhVx/8GtE8AxSvyghVcCzruI3jI2jtx2mnumrUd+nx1NwbtkDCPja\n+6N3/jwC0ZMbq91vY5dj4JWol57zj80eGDbQnvKeKpckupSi5x4uo2yvixjyPRCJRBSlEtWDPWFg\nMUnKbtxF8kEu3P10Wyn39DEP9BlI7R+sK1atcMY8Gp9hfZDH9VPrfSq//xjl903LhU0dY8G1Zws9\naqI7uIWPEeTeVnod7h0jNRhYTA+HDm1RfOo8zGxsUHb7PgDxKUjqF+SsbynT5sJlKDGVoeJpiQRl\nO/0Sft3gil83uKqU+2W9C0aPoF6gSZgxtxAbYl1QyPXHq9d8RHcjnhhMn+qgch5VWFqov/Zof5q8\n0/p84SGtdTEV1DEWHvyZgH9j9fMdfO3nZ7j2s6yC+Kfn+sHBU3Wdj+lXB6qt17CB9qRMSRYWHJSk\nBqF3d1ucuVCpnvLvGOW8fNjbGLYWjTawBgOLXsnj+qG8XISgBhm4dcUL7btmExa48s9Dgi1waK8b\n8guE6NU/lzSOux8X9254oU1H8Q/gg1veaNWe/jj73EkPBPhZoHFUpnQMRcLDLPD9MrFf7fDRedL2\njCRfLF5WjG07y5HH9UNMzxzk5Qmxe4crevYT6xb7gzPGjrZHYHgGqqvFpx6ZKb6wtOBg0gR76evq\n3NEam392QUQLma6D+tti+xbxAkH+vdi6owxDB9uhYTOxzlcueMLby1x6ncf1w5x5RVi22AlBDWSZ\nGwYPsMWq752lcuq8T7UN/+n9jK0CI15mnCMYDAB1ETcW04D7zffwWTAT5Q8eI3+PeCGb+sV8BKz7\nDjXZechctQEA4DZmBOzbtkTB3sOE/hauLghcvxyps4ifcVWV6hPRNp2z8Oat8tSihVx/ZGULVMYZ\n7N5bjt17y8HhAJmJfqQTAQOUW6CEY07O2FR0T/uUk8Zm2M+dENrJW6VcbkIxdg0/bwCNiPzaU5Zp\nbvbdoTC3oi+/1eqjcDTs4U/oQ8fl4z4YODobFy4TjYKaGhHsfJNRkRGsduAzv6ZCtVAdoqg8lTUY\nWFjkmfC/fGSm+OLpU75SuRuXPeEbTE5fpmhUSAgKpM8VTrXr7u7HJRkNt654wd2Pi6jmVti32w2j\nxuVL+w4dLNuVef26BhnJvnD340oNn7kLijB3QRFhLp+gDMIJg7eXOT6b6oCIFlkEuS9nOVLqs+Cb\nYiz4RuYW1LW7ONPVpbOe6NZL/Pz3PeX4fU85YbxTZ3n4+3imtI3p+2QK8Pgl6NlwLs69qnsxLPJu\nR2fjl6Nd2AQIhHzcf/unEbVioUQkQuYPP5Ka02Z/Q7jO33MQ+XsOkuTyft8P/E5qZsSXM+ph6gzV\n2Ycat8xkPKZIBHiHcrHkayfM/MxR2r56XQmj0wxd0uEsOavcnYHrDaqDvmBiLMRGHVYpYwjWtT0K\njhlHaZyFg6ct/neiD7b2P610rMYNLUnGgrYUlqXqdDxTp6ySeSbLrhfmKL2vj5gFRViDQQUhe5UH\nffK5OSi//xy8VymojHttIK1qF5euVGH3HtU7B3v2kmUki3QJYU3EP5hTJjkguks2SV7CqTPM8kP/\nvkdcjyDucTV6vG8jbZcs5I/+LZ5bvrpleJiFVKa8XPnu4cPbXvANERtBJ07JvlwbN7IEh8Gpfh7X\nDympApWLfskJh4SwJplYusgJGZkCpe+TsejdiOzmQdUG0Ac9axtjQIV8DIM+uPNml17HZ6l9+NTn\nIjPRD3MXFaG0VLb9b23NUXo64ePNbCPg3gOiX/r+wxX4dYMrKUaikOsPboZug145Zhy0P0OdglrA\nU76BZPJwgLmPPlAqcu3nZ7i97YWBFGKGSChCbNRhpacNzv72aNDdD68v0Lu6DhmTg5LUINQLJBce\njGpmpZFuOcWvNOpXW2Fa1Tp4YkcAMqOg64U5sufnZyPz9FP9KKgAazBoiaWfJ5z9PAltSaP1W/io\ntlNDc/JOFcvsG5xB2EkvKhZi+xZXDOpvC3c/+iwdXTqRUxcy1UXiQqUKeVciOq7dqJI+b9ua+CUq\nEkFp7EHiCx9Gc1BRVCzE5586/Ken+tlM9E1tzXzEYtrsT2iNkeH3ja2GWvB44i++1Je+pHtUAcfZ\nOQJ4edIbC1RuSopxFC5+6Sjk+pNkm7ZhfoIhT+gXPVF09y3KE7PBsTCHe0wjBE7sQitfFwKdVRkL\nAEzOWJBnXdujmBtH/xoGrWmv9GTk5l0eLCw4qMgIRpPodCSn1qB+sCUu/uMNTw9zle5I71JwMx1l\nlcw283z7N6etVXKlxzp0vTAHr9cxryGhKazBwGJwvIPIrjjKkLjuSBbPg/rbYvVa5UGyS5cXS+eQ\n9Ht8T3x0/PqpD9asL8Vv26kX0nO/LiL1pYLuNUyaYC+NYfhwTD5y0/3A4QA//VIqlSkqFqqco22n\nbMo5JG2qjJphI/PQro1mOz0s2tMrchHeZF1GIkWgM5slST+YmrHAtF4BEzldjsVEju4+Vbt3/yh4\n949iNG9dMBaaDgxWel8oEGFtqyOGUUYLYqMOKzUa5sZ9oNRosPNNxvoVbnh+W2Z4ZmYL9Fa0ra4h\nFDE70asurIClk+rAdX3DGgwsekWyGFbMGkS1SFYmoyi/el0plLHrj3Ls+qOc0Na8DTnwV35OyRwH\nD1fgoFyKQ0k73b+KKLZ7+BOvH93xlrpWKeuXny+knIMqNoPqeU2N6veJhUUf/B7fEkd+zsDouf6Y\nP/A5kl9UYH9CawDAn6vS8dE8f+niXtJ+amc2+k70kravPh6B1NcVMDPjwMnNEt+Ne4Utt5rjqwHP\nUZwndmf541krjI14AABw9bbCpmuRBKNhf0JrZLzl4dKhPMKcm282x70LRbCxM0PnQW4mZ2hoyo3k\nEHQMNt1A4vyrdcPlpM+y1krv1wZjQcKjA4lo8WF9egEOlFbinrUwH7MW5utcLxYZr9eeRYuNo6XX\nJS8yETyhI5J33TCoHqzBoEuEQvBem3bQTtPZ6wjXgioeXvzyNaHNzi8EAFDBNb0fnqjmVkhJUZ5N\nxNTZu78cu7e74auvi3DvhhcCwlS7P6lLVHMr/HPYXedpaVlYmDA+8iEA4NhvWfjjaUuMbSq+lizM\nz+4hBvtJ2vtM8JK2BTayxVcDxOkhJUbFJ+0fE9yOLK1kgUAFWdQ55E/uyMbFA7mEOZ09LLF9sdj3\nuvOg2pOlpDZzb8TP4BfV/iw4LUcqr0j+6rxmVbCNxYUfHik1GOY+Un7KwKIdL9OUB5cDYgNBnkfT\n96LrhTkIGhOtL7UoYQ0GFdSVeARFQ0EZoR9OBwA8XTdbX+poTNzjarTqYHpBvOoQu16266+uscDU\nAIh7XF1njQV9BDvrEvnUqWHeMQjzjiHJCIS1POBTCRaWHOx+0hIrJyfg1YMyWFqTAyuredS5PSvL\nVB/RlxSINwx+PN8UX/Z9pkIauHgglzRnRakAI+f4QSgEyovVC/SV7OLL7+bfSA5B/1apOPEgkNA2\nODoVf9+WtZ1/FoQRXdLxy0EfjH6femF5I1m8YTO8SxoOXQ2Q9p3znRtOHCjFjhN+6BichNXbvXDm\nrzJ897MnOgYn4aOpTgCAVVu9sOG7fGnfj2c6IyDEEi/jq9FzkD0mDRR/53w80xl3r1ZiwEhH/PBV\nHj6e6YyHN3lo2MwaR34vQU0N8wKZdwb/CK9+UfB8PwLWPk4QCUQoe5mBhNUn64SRIM/785W7Xh2b\nq7yieG3Ewtqcsgp0RUYwAMAxIBkC0y4SbbKk5t5jJKeYBckQWZEUYQ0GI6Oq6NYvG1zwy69leP5S\n8wUGx0wWICfgVeL1ju8h4JWrZUSw1H26c4i+rBdE796uki6MEUlsgrIYhrpEXIrMfzkqKB0741pi\ndCOxm1CTto503TRmSrs4hEXawzvYBukJmqV13Dj7LSytzHD3XCEOrqf+/lV8XYpsW18off7oDg+F\n+QKCO5Dk+bl/ZLFSdvZmKC4U0BoLin13bhC7TP5+2g/j+/wXi3VXnAGu4/t2aNvFFtkZNWjRzgZ/\nbi7GtPmumPc/4obKpJku0vG++EaWTjU4zAo7fizC04dVUrkdPyYh7i4PJx8Gol9L5qflgopqZBy6\ni4xDdxn3UQdVn4WhcPJVXjSvtvLkn2Q0GxRMe3/GjUFY2/ooqb1r/0xcOeGD0jRx39bvZeD5S/Wq\nRauLn3UDuFh4o5CfBW41OTNlkHVTpFRRZw3q5TIZZwu36UwXB3NnlAmYF2n1s26ApnZd8LT8KqXu\npg5rMBgIL09zvBdjjX0H1dtt+WxGoWohFUTMFOe3f7l5CWoqVPu0V2alwtY7ED4xg5F5+W+t5zdl\nbNx94NK4DVybd4SZhaXa/Xm5GSh4dgdFL+5DUFW7q1pKDARFw4FFM56k/QNbSydjq2FwxkY8kLoQ\nTWkXp5NxJjR/SLi3/EhjbJj5ltAmkZX8qywuIfVVJX65Gim9/qjRAwgEzHbUO4cm4drbECyfIysu\naaYkRfK3M2Ry8qcPTGINJLv8NXJpnTn/HdhUlgthYcnB2J5cnI4LRJewZJXjyc/59hX9wk4dY+Fd\nYsqpPkrvl+XUzt+AM0vuKzUYzCyo06/ee1glDXB2sDdDTkKg9N6Akdm4eFX37we36jW4Va/hZ9WA\n8n4ju2hag0GXxkIz+64o4GeqZTBwq16jqR199jBldD45A9f6bdCor65gDQYDcfGMB1asVJ7ZR98w\nMRYAoPhVHGy9A+EYGlGnDAZza1sE9hsPh0DqLxpNsPHwhW/MEPjGDCHdy751Bjl39J/qjMU0ySh8\nolX/ZjNN8wTwyY+qXRXlF+uS53QLePn2j1s+kj7nV4uULvpvnSQWOqOSpev/4/mmhHvycRaqOPck\nCF3qJxHSQDdvawNnV3OcfEh0SZoyJANDxtSTGhe9hzrgwU31F1GTBmbgy+Vu+GdvKSJbi+vFfDc7\nFxaWHJSXCWFuQW+x/LyiAL+f8cOPS/Lx/RYv9Iki582XyA0e7YiURD7KSoVIeK7fneK6yLkVzP6G\n9EGDZevwevFs2mvP/sPg1CoaZS+fIvOAhhUGlVBWLpQaD3M+c8Lx/V4aZ0tSPAlgcjLQy2Uy6bni\nGFRt2fxkeFkG41LRHnRzHoPimlzcLv2HNObV4gOoFJYS2n2twtHUvgthXHOOBbo7TwAAVIt4uFS0\nRyev18zaQlq87c6YbeBlFcPQ1AmDIY/rh8NHKzB1eiHyuH6Y8lkBjv4t/lJ+/sgbUW2zUb++Ba5d\n9CTltXf34+LiaU80j7SU3jtz3APHTlRi05Yy/LHDDX162RD6CYXA6PH5SEmtga0tB/FPVLsLeXvR\n580ePswOh45UII/rh579cvEwTvZFncf1w/RZhYSTiTyuHzKzBGjWKgu9e9pgz043lf7qIhG1zzAV\n1SXiH2ILB927Exia8I++hI0HOb+5IfBq3xte7XsT2ioyk5F44Cej6GMs6n/4Bex8glXKMVmIsrzb\nfDDdFzHD3PF5TLxW41ham6HXWE84Olvggy98pS5UTHhwkyc1Fi4+D8b7TZKlRgKVS9KzR7IThjNH\ny0hyisjf27VRtnu5ZlE+4f6VsxWkPlTz79tajH1bxYsLeWNBfmyJnKny208lmDStHiaPzFUtbEQS\nr2hWx0LfSIyHnBP6y97k52OBhAcy17H6LZgVJdMVkgU2nXFxtnAbwQCQEFd2AfbmTujmPIYkQ7eI\nl8gpuhZZcCzxvvN4gvHAxNipEhI9T2pEZGNdErMQNCYa7fZMJrUbgjphMADA1Oli1x2foAxkpvhK\nK/Q2aSFOpfmCIgZAssh+v08OId9965ZW6D1A/MU09uN8Ui78gLAMpRU41eXQEfEfy3c/lODAn24I\nj1D9pdOslfh1nTnHrKIxh0N9pEiFY3AjAEAFN5lxH1PDVHdn7XyC0WzmOhS+uI/0s3spZbpzPsAF\n0WGVMQWOcEY7TndC2zXRSVSBuINJ5WLEQwWui05p8hKYw+Gg2QzmX2bNZq7Dm33rUZlt2B8altrD\n4Y0ZOLxR+6xi8qcL6o7X4T07AED/EY5Y8EntTsBQW9i0tgSbVNTeYVFO4NTZSN2s+e+iX3M3cB+T\n06eO+9ABm9e7AwCq+SK4BKdQFmE1ZcoF1MayrZkjIuw6wdGCWSa1aMdBAEBpmCjjcvFeNLbrgBcV\nNxFs0wwXi3bTyqbsuY2UPbdh6+eMtr9Pkp46GMJwqDMGgwS+QmaHPK4fioqF+GG1el82F0/Lqjc/\njicaG7o0FuTJyRHAxZn5wl5fuDQTp+pKOfqbkTVRD46FBZp+XjuKAtEZCxK6cz7ARdERiJQkwG7H\n6U4wENzgjc6cfngouoYCyBYyz0T3kAnZzqIvgtGEozyPuC5Qx1iQEDZqFp7+NBciYe1PudHItweC\n3NtRFmhjC7fVXjrXF+/cnzjI1jhhqR1IXJMaLFtHuFaHlqPDSAaDJEtSXSzUFmHXGSlVT3G/TJz2\nlIkRwOFwkFn9BvHll9WeL9C6CV5U3ERD23ZI5ql2Z63kFuHVmrNo+GUvtefSlDpnMChy6gwP4yaJ\n/8hXrXBm3O/9PjmqhWoZDf+3GK+2Ki/HzjGX/Umo48ZkbBpP+RYWdrXfhUrCPdElpcZCZ05/ACCc\nJuRDfOrUktOZcBohbywAQAaS0QT6NRi0OeFp+kWs0dyTIo/LUqJqmzHJz6V5nU6fysLCUrt4vXg2\n3LpptsD0bU7eZTeEoeBk4aH3OajwtgrFs4prtPdrRHzYmDkQ2m6V/IP3ncdpZDCIIIIZh951XZ5m\nK4bCtZ04/XLe9QQ8W3pM7fk0oc4YDObmgEAA3LvhhbR02e6kv5/4A7CgeKUH9rjhwzH5qOdI3tW3\ntOBITys4HGh9xBb/hI/xY+3VzpKkC56um42ms9fB0tEZ9cfMRuIe6sVcQP/xcGrQ/L+r2nOm2OTT\n72FubWNsNRhTkaE6O0oxlFfOtIYNkvBCVyqZHOY2dhDwanf+9hphFWzewSxJLCwsxiH0yyV4u+Zb\nBH02l9AeMHk60ndugkgggFu3Xsi/dFbtsW2drXWlJiN6uUxGuaAY1ma2hPZgm2ZwMHeBvZkTrM1s\nUSLIRx6fmGq3U70PYGteD+cLdwAAvKxC4GIhLgrZwLYNygSFyKh+o3T+ayUH0ctlMnL5qfCwDCTd\nv15yCDFOo+FtFQIHcxecLdyGGlE1cvmp6OUyGUKRAGYcc1QKy3C1eD9szOzhbRUKAPC3bghzjgVS\nq55Lx7tQtAs9nCfiRlHTnu8AACAASURBVAl9nInE/QgA3v52BWkHDVuhvs4YDC4uZrh91QtjPy7A\nrdtV0vZ/L/OQkeyLRs2ysH1XOaHPh2Py8e8ZT7x4xScEDbv7cTFsiB2+/9YJKWk1mDC5ABmZ2rlI\nvNc7Bwvn1UPiCx/8tr0cq9Yod5EaNcIOG9e7AAA2rnfBxvUuWhXiSjr8K0I++BS2nv6E+gvm1jak\negy8vEy82R2r8VyGxFRjFZSReHCjTsYJQWOEcBqrlJOPYShCHipQpkRaexpN+kbrMZpMXV7rg6Bv\nv9mFmMYzSO3NAgYaQRvDIp83X5F2Dbmo4jHbkLhw3wfuHqp33fp1ygI3jXkFeGX6fTY+DzcuM4sN\n0yWKtQYGfGCH79a6EmSWzS/E0X3lJHn5furMQ4Wq1383wQ9W/1XYLioQIqYFsxgQaxsO7rySxQPS\n6brriCeiWlvRjqNNHQZVr33utHycP1k7U6PKuxml/EL8/U7btpFSTh1EQur/s4XJQbD+7+9BcuIw\nfUo97N5fhuISzbwUlAUJq3LXoeqbXZ2E7OokvKy4TSsrH9AMANXCSqV6VAkrKO8/LKPOjMgTliOZ\n94RWf6FIvMYsE1Cn0u96YQ7e/PwvuH8/orxvCOqMwZCXJ0RYE3Kw8PKVJVj+XzrTeQvJ+XLf603t\nenTkrwoc+Yu8w6nNon3FqhKsWEU0FOTH23ewQnoCIf9clQ5MdCpPTZCeNCiVS3uDpEObVI5nCtRG\nY0GXJIqeqTxlkBgLigHTvpxgPWkFWDq66G3s2kQV/78UfJGLwOOXorA8BT7OTQEAz7mnjama3rC3\n5+DGcz+lMnde+TFamKla3Mlz8ro344WkqnF/+d0d8Y+Mn1JU0VgAgMUrXXB0Xznta4jubIPb16gX\n+3b2HNxU8dkA4te/aFYBThyl/v2JbsjFwyTx/M6uzGPubj6TzV2Yb1h3VzNz4OFb1X9PsZvcMH96\nAc4c0+x0s0nfQDw/VTdrWJTnkf+uJDEMGVkC+HrLDPv9R8uR8SIQ9n7JBtKu9hPjNBovK+mrhBuj\nsrMidcZgYGHG03W1e9dWwrtuLNSAj/qcCCSJ6q5bUl3gbPxyWJjboFXwh/BwDEda/kM85+o5O5UR\nkRgL8jvhEuQXubGb3FQu8EcPyMHe4+LkE1NG5eLuzSrC/YZNLHHgtBdhfFVjKi60FeW9fMxx9rYP\nIlvQ73AbgrgUf5z6uwJfzyiQXsvfA4DurTORlytAaLgljl4Qvw+b97jTvgfyxoJIBLQIJsq1aGON\nnYfF/uLL17vi6+Uu6NCEvBklVFjrz/raCeu/V52SVS48Dt1a0p9KTBhG3sRTx3ikQt5YyM0WoEdb\n4uZiYIgFjl32BgCs3OiKqbPqYXC3LLXn6fd921ppMET0D1Ipk3iV+J5NmeCIy9d56DtC/D5JjAcA\nyM0TgKOkmCELkR4uH+NmyRHabE2mgvFT8ugATXb9tTkpYDEuzWYa39LWlHLuW9VCDLgsEheWac7p\nQLrnAOV+82wlZ8NSI+DhTuLvuPgstk4bCxKmT8wjGQsAeXGuahH4PL4aUUHpiApKJxkLAPDqOZ80\npqsb/U9a/QbESu5UC+vsTIFWLi+6RGIsAGIDTJ7XL/jIyxW7MLxNUB1YL/9en/q7gmQsAMCje1Vo\nEyb7XbSz56AZjeEkv6gf/4lpJ5uQf+3De2WTjAUASE2qQctQ2XsSHPpu7aX2Xd5GpcyzE8TkGQtn\nO0uNBV1y5E0UBk7yxNdbQ3HkTRT8w8TxiV0GueDImyisPNIAR95E6XxeY3K+cIfJGwsAe8LAUssQ\nZ3GqvVsXbw/9rLOxLov+QQxnEMkAeCS6hjKIv3wk9RzkZS6J/kY3zmDSeIrjyF8rujQZE/lMRnWZ\niowkccG7WrRVl5UhwLV/6f3fo4LStd4tVsZPO9wxZhCNm+l52WmEKqOgR9tMnL/ro1PdtOHovnIs\nXilz9RvRm3n9hwEf2BGu5Q0RRfh8EaIbcXH7pfg04o+/PSnfq7j76rls3U9UHbugD1q0IQbqJlDU\nY5IgFABL5xZiaaz4fWZyYkWFo7cdSrNqd8IGKnJeEl26Hz+tRt8edjh1Xvev9dj2HBzbnoMjb6KQ\n/kb8fTJjbRCGhcVJZY68iSJcs+gf1mBgqVU0nV476ixoA9PFeQ34jGSpZJi2segHJnUYmATH23r6\nwc43FPXqN4W9bwghLbIx6NtRvUq3P/zkigVf0C9gmXD7Gg/RncW7kA2aWKqQZkZudu2vAyJBPhbi\n4hnVAb28SvUz5LVpb417t8inQBIsLIxj9EpcrABg8oeqq0T/fbBcajBoytQzfREbVXu+S0ds6aJR\nv4Gjs1GREUyZWrUiIxgLl1MH75oyTYMHw9c1kpHsuYfKU9TXRViDgaXWENBrtN7GTjryK8rSEjTu\nb+PmDfeWXeES0Y5WpvDZHY3HZ2GhojKHi8ocLvLj6POFU6GvGCBF/3Yq/jlYjkEj7AEAfQbZaW0w\nJCbUILqz+Lkke48iQ0faazWHoUlNYp7xSR3mfKI8XTMVLdpY49E9sjHQuVkGrj3xBQBs3e9Buxu/\ncIVpJEG4f5veoGFKWW4lHDxsVcrNjfugVhgN7ac0RlA7T9WCNPxxoIwQuyB5LhQC6zdp5mLDTZSd\nUOrzBMHC3BrvNZ+nt/HrIqzBoAdC9q7Q+ZhJoxdq3FeSGYlpwLNfr1FwiWhjcgHSzo11W2zs1c4V\nqC5W/weUCl5+FtLPH0D6+QPSNgtbe4SPmw8LW/FiRf4ei/ZoW1iNCm3dnRr69ECNsAqJ2VcR5N5W\nR1rVLY4dqZAaDOrSpr01mre2RlgDC3h6m8PDyxwBQap/xnoNtFMpw4RuLRfAwlxW8+X8vSWUcj3a\nfKtSRhmZXNM54Rgz2YHSYChlmDJz+BjZZ921ObMUrPpAF65wv/U7jdl3hzKSnXFjMDZ0/FvrOfVJ\np2kRjOSEAupTp09m5eGTWXnYv90T73e1xe37PAwdmwM+X/M6Tn71bWBpxQG/mjhGWbEA6040xOz+\nr7D2eEPM6PVS4zl6tlyscd93GdZg0CEBP38FC9faX6ip+NUjuES0gXurGOQ9uGxsdXRO9q0zyLlD\nnStZl9RUluPFFu1rEtQ28h9fh1vzTlqNUZqs+Y+BMQn2EJ8wJWZfRSPfnkbWxjR5o8SPXBEzM+Be\ngj+09bRq3FQ3rkqXHv4AgGgQUCExElTJ0VFRbti0o8pQjAOQ5+7NKrTtIL5/7YkvOjdTbhAUF5nO\n69IEQTVz/a3sLRA5NATxR1UX6jQGc+OYJ7/Y0EG54TNyEnXckLpY24qTFmw83xhm5hy4eVtiyZg3\neHq7DONbPUGHPs7Y+yQSm75OQ3qi+rVSGvn3RqCncTdylBkrpu7mxBoMOkIfpwrGouy/xZp7m/dM\nxmAIHjxFJ+PU9mJgtYGMS0e1NhiS//5NR9oYFsW4hIdJ+5FbSq4o2ivy3QjcpqKGobeNsh3he7eq\nwE2rQUaaAJ3fs6HN5iPB2rr2BI4DgMCE1tXWSgr8ThmVK/2cHOuRM1TJf4Y/fEOug2RIkt/qxs1r\n9+iLGLf3fUayvRa3Qq/FrUzKPanrrGZoO76hWn1qqgxz4rX3SSTJDWnTpSaY1k1cEfnm6SLcPK3Z\n31FtOFWIDBmG+CT6Ss/GhjUYdID3gonGVkGncMzEX/zm1qp9NQ2FY3AjrcdgjQXDkf/4Btyad9So\nry4zSRmbwoo0Y6tgcgQxSFmpaCwoK/TWoIklmqkYL4MrQEh99udOE94mKF9o19SIGAU1H9it3wrz\nqtCkrgIV2c/VD+adG/cBchOKsWv4eZ3ooCnqnCpIWNNStoCVj1dgAlVAtDIKc/g48iYKZ//MQ4OW\n9ghpbKt1HIODrSc6NJ6q1Ri6JKvwGbxdqF3BvF0iWIOhrmPbLIzUVnbjMXJ/OWgEbbQnYuYaAEDR\n83tG1kR3cC8eMrYK7xQZl45oZDCUpb5WWatCH7EL+kBZFiRVGZLqMhM/VZ63X3Fhryq1JdXOtiL7\ndpXh6++cVSvHQmLDSuXBq63rc6UG3t0EP7QNr/s1jmKjDqu9+PYId5L2OTb3Nl6dN0x6WU2MBHlE\nQlksgaIBUJERDPf6KahQyKxVmBwE9/rEug1MmNzhmUY60tG9xUKYccxVCxqQ+KQjtAYDIDZwyip1\n4+Kla1iDQQ9oE6CsC5wbt1KrXYK5rT28OvWTXnPPm4bBo4vsSAVPbulAE+PQ8n/r8HCreqcjURNX\nIW6ncTNAPPlxNppMXQ5zG2YBpwl7YsHLUy8tp64puvbcqPO/C/ToKzu5pHIT+WGjm1rjteuoxGfm\nPw7uZg0GABg1wQH7dqm3069OdiH5LFXfb5Clc6U7HTIkkz93xLafS42tBgBgYGy09Pmbyxk4t/wh\nyvPU98mnomEPf/RZ1hqWttov75S5Us2YWg8fTcklGQsA4BKcQpty1VBYWdibnLHAhA6Np5psLANr\nMGiJ86CuhOv0WcavQuzf5yO12k0dbbMjvYuuSGYWlrC0qwd+RYlR9Xi+Weyr7xjSBMGDJpPu88tL\n8Gr7MoiY5OM0AKmrjxpbhVrNvTd+hGrBqqByEzGFKru1qFaeSob3ysahs+KidfO+dVZpMNjaqf/i\n01JqpNmqxn/iiN+3lKLvYNlGwdxpuslGpy6TP8zFtgPiWgyfz3XSqcGgySkDFWExvgiL8dWBRrpl\nbSvlrjELZjkjvJVpVEVXxNbaBZ0jpmvcn1ddguqactSz00/xxlsvtqB9408Yyzs28kbLnz/Cle6y\n9WXXC3OkzwWVfFwf8JNOdaTC+N/MtRz7aKL3LD9bu5ziukCSDrXBpEWwcnJVIU0m89+jyI+7rmu1\n3jn82w9G+i3jpNVT90RC35QmPX8nDDd1gpnroluSpSUHZmb09RiYpLa8dK4SfQYxO5ViKgcA505U\nomd/W6keylydHiXrrxq1oVGsbmxnz0FFOX3ay1svZFWZszKYBbsO6JIl/Wxnfe2E37fIFubV1Zqn\n2NQWxdORL+Y54adVmtUHoEJXRoOpIRSIaFOpSpizqADZrwMpTxF+Xq3eKaGuUcdYyCx4gifJf1He\n01egdGkl80rtABD2aTfCdb3GYkPmSve1MLO2ROeTX+hMN2WwBoOWWAV4GVsFWl5vFy9I1K3DwKIb\nPJt2MZrBwGIcFI0AqorOoZ6dEOrZwZBqGZSHSf74/bdSrF9BXJgpGgt0C/YFXxQQDIGHb/3RMpQo\na2fPwc3nfopdlfLVZ/no2V+mA5XRYGXFwd0E9catDUQFpUvff8n7pvjam0ZZYc8/xCJevdtr5iL4\n8K3sfTZ2TIP8a/94miM+nuaIcycq8dVnxFOPwBALLFvjiqjWVtJ+TKhrRsPVn57izg7Vaa3/PFSG\nrRvcaQOhjeWOFOrdmZGcqbr9UOEQ5gl+icytr8XG0bjSQ3zaIKxinqZaW1iDQUtq8oth4WEalSxZ\nyJSmKP/ia/m/dShOfYbEs9ul14Bshz6o6yi4NWgjvZbcl0dxN19eRlGeauefyZh27v5oNITYFr97\nEWqqKqTXrmGtENxN5nambK6Xf69Ho8GzlM5pbm2L5uOo0wWb2gmGKdLErw/4ArJf8tuc6wj3jjG8\nQnrm13UleK+3LRo2scT4KY4YP4U+uJlH4fcsT1JijTT42cxc+cmE/IJQFf8bmYut+z2k18r6PX9S\njSbNlKdrrU0sm1+IxStlv1Wq3jOmC2YJXZtn4MpjsWuNmYau40w+RzoZZfp+PDwXOw7JPvee/2fv\nvMOaut44/k0ghL33XgrIUNxaLW6xrlpH62irVVtHXaBttWqttdpqxVGr/mqdtbZa697iwF0HqICg\nDNl7bxJIfn+kCQm52TcDvJ/n8TH3nHPPfQMEzvecd4wyEhGPqtJeRAOrtkkuscCHLwpunHVCaIgB\nniewsGh5KeKes9RkoWx8nQdK7edwmxEdp9tp8L2d3kZ6/i3BdemDNNiF8VLhGlj/VwhRCwd3lGBQ\nkbqnr2A+tJe2zZBKVWo8zH1lJR5sn+Rc/lPmGAt3yRkLbDr2ALgtn0wuh4O4vUsF111nR4kFJQuL\nC1kLa/4CPm7vUoEfv7VvV7Fx/uMikHhsAxoriwEAXaZvQMhH60TmL0t9grLUJyLzSsL/3SUi93ad\nHYWQaWvx/HDLEWznj77Hq3O/oCY/DQBg6uCFjmMWUGJBTlysu6CqXrtB3Jrkf9uq8L9tVVi1wQrj\np0iu5JyUwMbkkdKP5McNKkD0YyfY2klfeSq6qH10vxHvjyjE0YuST4abmrjo7pOLnn2Z+PVPO5E+\ne6tOMDVq2YXv6DYMNfVFqKrNE2Q2sTb3hqmRA6zM3AEAAZ6jUVtfjJr6QpRVaa+I14k/a3H1fD1u\nx8v2l1f06woQF2Wb/3GJwvOog9iHjQoJS2Vo66Lh0cFXuLnluVL3DhytG7/nHCw7yRyj62IBAHyc\nwkQEw4vvziEszA/+X46Aw1DZ71FdUIJBRUr3n9F5wZB1Zr+2TVAahqlqlbOb6qQHuaVHH4D3kOlC\nLVwAokF/SSdaAo2ExQIAPN3/FbrM+EEp20Jn8dLXtl6Al6XGio1tPebpgeUyRYE0Ws+XePR7BL4v\nnt2LLxYAoKZQNyuW6ir/pu5Hnw7igd59OszUgjXqo/Xi8rvl5fhueTlMTGg4cMIePh0YeHCnAWu/\nKpfbJx4AhnTnLUK692Zi3RZr2DvqIeEZC3/ur8HF03UiYxVZ4L58wRaM333YFqE9mKis4GDtV+W4\nc6PlROjhvUaxeYvKX6Co/AXS825KnL+sKh1lVenIKlQsM5us9yCtX973X13FEYwdOc4Yi5dbwMKK\njpirDfjpuwoU5qtWoEsZoUHm/fLOzzSkYdNOG3TpbgAGg4bkRBZ2bKrCk3/lzwhFxKYux/H2wiD0\n+kT1ukGaRJcKy6lCZ2/pgk2X3JCKKl/C3oK4gB4N4okHYoZsRv+Li5G64zpyT8UJ2nsdnq02G1tD\nCQaSoTH0wWWTU1GSAjBx8Vbr/BWvW3ZUrH27IefBGRjbuoFpYSfYza8vy5N4P6dJ+aNXGk12/nhN\n0VilnSwm6iRg3wIw7JQXnKrWe6iqLwCrqY4wEPp+ym8qzd0WqK3lYuJwxYL7iHj8oFFpX3pZzJkm\neQc8KLJFkNdkpSDj712Ca6a1PRrLVM+VzjC3gpmnP5yHTkTCZvGTu6DIKMJ2Mjh/sg4xsa6oyXyl\nkeepAtl2NTZwsfAT9Zx+3NqegFvbExDx8D3oGejO73giDk25plQhurbI7QT1ZxFShLySpxIFgyRu\nj9gq1vbvtD1kmSQTSjCQALeRDRqTAQDwPPit1uswtCfMPAM09izPgVMFO++hn2xE3L4vxMbwd/Wb\n2Y0oT32CxirdOHJXB0n/bBI7xYj/Y412jFEA343TYRygG1lubrxQ/hSIQnv4z1srdYHaYcZXpCxg\n2VXlKHt+H85DJxL26+LinUI+onryUjSHLQlGz48VWxiqm02hx7XiA69N6lkV2jZBhKLKl9o2QWEo\nwUACGTPWwOtIi1+c244vkP35Ri1a1H4wsLTVynNpevyPRstv1dYB0QDvlMCl1xhNmqYx6st4u7pt\nLWZBVbGQt+cKSs48JMkairZIQ2EurxgDV3RVJXzqwH8tvKgX7ue3m7j5wmvSPEF7+pFtqMuXXQWX\naH4A6DD9CzBtHAEAjeXFSNm3AQCgZ2iMgPmip2LKCg6fqYth5OhOOE9QZBSSd30D/7nfCvosO3WH\nY9gYJO9aLTIuYXOE2PuXNRcA0A0M0WnBegBA4e3zSr0HXSFmSzxitsQj+F1PhK9RraaQqrQX1yMi\nPB3ab+Y5XYESDCTxesrXAtGgb20BryPfg9vIRsaMNdo1DC1pVRVFF9KwGljayR6kIkUJt2BgKp7p\nyrXPOCSfkBE8PE7610iPwUQzm9gvtqbwNUwdvOQ3VMN0+WQjSl/+q/z9c6PwdJfqP0P6RqZobqyT\nq7ib0ydDBK+5HC7ix7YI+U5/REDfnJeus7W7UchZnttQU3kN6WKB75JUVPUKcRnH4GjZCeZGjniV\nf53U51CQR8Y//0Pg4o2g6ekj58JhVCTx4or4C1oiF5nWbfzr2uxUwnZZJGyOEBEgfJg2jiJ28AmY\nv07QbmjnjIZiya6UfDwnzCFsT/ujxfXBvEMIOi1Yjxc/rxC0cZpYIu+h4sVjuI6YIrh2GjgO1a+T\nAEDs/cuaiz9GuM2h/0iZ70XXiT+VgfhTGYJrdcc61JY04Nhnt1CSpt3inZqio8sQiX33k37VoCXk\nQ6PT8PaVCImF2xJWn0LpvTSiW0mFEgwkIiwaAIDGZIhcszLz0ZiRB64SeXNLD5wlxca2Bp2h/rSG\nOQ9OI3DiV2Ltdp36Iuc+cUEXALBw7wQjG+kZRzpPX4/YPZGEfa/O/EyYZcnUyUck2FhbPDuwHKEz\nN8HGTzSoP/a3SLGdV3XiNyECL/6QL57AblxvwWthsQAA7JJqgWBozfPR6xBydiX0rUzh/d0UpK86\norzBQvDFQl75c+jrGQIACipeoLP7e5Rg0HESt/JcEoMio+Ay7AMkbhN3UWwN0QIfAExcfeDQfyQM\n7TRT0ddt5DSkHJB9yp1xfLdYDAMf+97DYBHQFUwrO7HS1xyW+CZIXvRx8BJGcGHTtb/Igt/E1QfO\nQyeCYWYp9judaK43AX6sAx8LFxN0meiNrpN9oc9ULC9tSVoVHvyWjKSLWWSb2S6orhevKN+W8Fs6\nnLD9VvhWBK4Zg6C174qICXVBCQYSEBYF0jDwcIKBh3Klxt9YwaDPUP9DuFwwLeyQ++8Z4UbQWiUT\nj90TIVjgt24jQtJ4WWOIxslD6zmkPVceQmduQsXr5yh//QwAwDAyhWufceg6a7PIfBaegfAaMRNF\nz27CvvMAwalCc2MdgmZ8h6qsJFh4BiF+L29XscvcKBQ9vQG7zmF4trsl65TXiJmw8AxEbX46qnNe\noeDxFVj79wDD1BJWHXsA4KAs+ZHC74MPu7QKRt6S02nyRYNpF3IC7Z2teKmM+YXbQj0nkTIvhWaR\ntNMvaWxrgiKjUHj3ItL/3C64VgcJmyMQuGQTuE1sZJ09pNJcQZFReLH9KxQ9uAIjBzf4TFsi856y\nZ/cQFLEZCVGiGyT895+y/wfBNYU4lbm1iNkaj5it8do2hULHsHnLVyTmpP+FRSh7lAFuUzMSVp4U\nOW1QJ5RgeAOQ17WIRtdD4OJNACDii/omIL6QJ/4AEi28pS3G5VmoyxojqZ9IfKjyrNZ1GRqrS5Ee\nfUBkTFHCbTFhYuXXAw3lhci7dwZ591pElx7TWCAeuszl3eM57GPk3jmJ4vjbyLt/VsRtycIzUMyF\nqSz5EdwHTkb5q0dyuSTxqX4ifkLTmFMK9Ogg1/0hZ1eqnCUpyHU0iqtSVZqjvWPnboivj3dBQ00T\n/rf4JV4/l54GWRI7nvbB513E05iuPh0KN/+WmhCz/e7INV9QxGYkbv0CXE4z/OetRXNjvcx7OOxG\ndJjxFVL2/wAajQ6/z1YjefcaADyXHQDwn6u+tI7+89YiZe8GsKrKSJmPw+ZlgJNHLAig0WDbY5CY\ncFLm/du/FY6iu5cQ8Pl6+Z9PQdEOaSyugb4nU3BNN9BH/PJ/NG6Hbuf8otAoXE6zQFyo8w8bRduA\nri/uDuYQIl5FM+PyAZQmPUCXuVFw6CbZjxQALLyCUZn5gjQbJUGU2rg+XbPH0iXVabAz99XoM9sS\n834JwPqr3cHlAsbm+jA0Va48cJfBNmAaEd+7fXYifluqeDaSFz8vR8eZKxC4eBNyzh9G0g7RzHcp\n+39EpwXr4Tn+05Z7ti9H1pkD6LTwB/hO/0IgFhI2R8DzvU/hP/dbsY2YoMgowY678Gs6g0nYLg06\ngwn3sTPgMy0CAZ+vR1Ck8i4KKQc2otPCH+AzZZFCgdOph36C49ujRNr4799nyiK5N6ISNkeAaWkH\n34+XIWnHCrH+8+mBgn/dwkzF2nUJdr4P/Hw1cFJO0W5JXHNa8DrsqvZiS6kTBgoxyp7dhXXnt2Bg\nbk3abhVF2yL5xGb4vxeJrrOj0MxqgJ6BoaDvxXFx3+jiZzEofhaDLnM2o/BJtMR5s28ehVvYRKSd\n3S23LVxOM+j6BmhmNcge/B/mvcXTGFbcTIB75Ltyz6EqsRlHMTxkJQJcwpGUewkAQKfpYWjwctQ2\ntr+6F4oSOsQGaXHV+OGDZyrN8/RaqcSTg4oiFv49W4xZPymW1pLDZuHlnu8k9jeWFYoE7graSwvw\nYrt4PFTKgR8Fr4UX4JIW4xx2o8Q+ovsDl2xC8s5VaG5s+YzIIzKE4xeE52v9PuSxGQAaivMI+xV9\n/wCQff53wnHn0wPB5QCjfBPFxMGHfV7i9/uaTWEa1tcIj582orZO/hNQCgpFqM8pR+7JWIHrkXC8\ngsfU3pJuI502Ixj4Jdc3dTmOcVv7wndAS/AYP1WYvb8lPv6rZYfz4cGXiNlC7A845eBAuHS2kfg8\naenH+LacXHwPqTfz4P38b3T9QHwnsbGaje39T4u1B4/zQvg33WQ+h8/QFaGYIPT+1U3BrbOw7vwW\nXMIn4/WxX9T+PArdo640F7F7IuA9dAbMXf3QWFWK4hd3UBQfIza2y9wo1OSmgl1fLRYc2Zqyl4/g\nPmgynPuOgV3I23i6W7bvZfr5PQieuR6FT6KR//CC0u9JGJo+Hdwm9f+Bv/x8HYaHrIS7DS+d4tDg\n5ahnVeDOy10y7nwzKMyQ7epDIZvk3WsQ8Pl6lDy+AX0jU1gG9hBZcLc3RvkmEraXFWq+aGr0P84I\n6p+Fl6ntXzDU5XkqNN7YOUMtdrQHmAwzhcan/nIDqb/cEGvP/OMBMv94QJZZUmkzgoEPXY8mIhYA\n3gJ+/4QrImIBAHp+7EcoGPgLfmksezoB+8dfkZqSbNyWvmhiNUvMaMA0Y2DZ0wlii/z4k68FgoGo\nvzVdJvkA4KVJ0w4pCwAAIABJREFU0wT8YF9jF91N+UmhGdKv7pc5RjjuIPPq74TtRK+F4x1ajxGm\nOueV3OlZk2ZsR8D+hTLHBZ9cgfh314Pb3PJHnm6onoxc/KBnCh57XvYTvO47zh59x9kDEI0v4I+p\nr24SuCy1HtN6LnnjE9ojzfW1IrvwOZf+1KI1FO2VS9EtAp/dxMWAfoYwM6WjvIKD2OeN8PZgwMuD\n91mlxIJ0+gR8pm0TFKbNCYbIJ+MFC+xPTg6DjZc5AGDG8WH4d1+yIE0ZXxSY2BiitlR0od1YzYa+\noR6iepwQmz9wtAfe+a4Hb85/hklfzNMAfaYeChLL8fvUayJdwqKk4xAXvIrOVfCd8jC1MxK83jnk\nnFJzKIrrO9MAAA0F2Rp5HgUFWbBLWgS+kbejWNxC0sfbEHBwEQAg+NQKgAvUJGTCNNhDZFz+ftHP\nMwV58Bf2e172w72TRdj/1SuJY/j0n+iIj9aJn+IKz0VBMWSCpcQ+dr4PGE5p+HWzHWZMMRe0HzpW\njZmLikTGtSYrtwk+3UWL7QmPS7jtLtLHcBJNupCb3yw2r3uXDOQXNou0dQli4tFV0cKTHqGZyCsQ\nPTnhv5fWc7Z+L2Tz3keFItd1eZ6EwmDYICN8tdgSP2zVXHXlpuYGQerq1rjYhiK3JE5jtsiDgT5x\nim9dps0JBmH2jbsisjAXzmnMZ8Ta7jg+X/SPD5GbEJ/Es5kwNDfAoGWd5bajtVgAeK5DfNvG/tRH\nTHj81PUfLI0dD4AnOpoam8XmAIC5VzVbsEaPaQgzrwAAQPpfP2v02RQUZEIU5Mwuq0bl/Zew6POf\nnzMNYmKB28RB8QnxjDuK4mwVjGC3sdQJAwnc/ruAUDC0Vcw8A2AV2BOmbr6g6TPAKi9G1eskVL6M\nRUOp5nPGM8ytYBPcFxZ+oTAws0JTfQ3qi3JQnZGM0qe3NW6PLM6nB2Kkt6hb0rGn/jAx18Ots5US\n7yt95YXfDleJLeiFmbmoCIeOiWbrYuf74MuFVvhxe7mgjT8HO9/nP5ckyfWVylO9YOGdjrp6ruCe\nrKeeInZs/MYGS+ZYirSFDzJGZpwHob2lr7zAdEmDAsnjSCUtzk3iKcKV6/U4ddhBo4LhSeoR9PL7\nhLAv0H20zgkGaTx8JX6y7/FhH3h+3FLNmh/H4BgeBL+lw6k6DGTgFGyt8D1P/kiRWzD8HHZGYh+r\ntgkGJsRfYi6nJanukn/HyXRL2jP6klz2EKFspWcuV3s+mXqGJrDp/JbWnk/RdpGVDjVz/d+Cys6t\naaqsw4tp5OSJ93OSnjGKQjpf/dUZPqGK+fnqMkxrB3T86EvCPkM7FxjaucC+Z8vPTM7VoyhPVL7S\nukxoNAQvIl5k6BubwcwzAGaeAXAeME5zNsnBSO9EkWxIa/e3CP7MV434cVGOxHvNzej4cq30hAOt\nxQKfyHmWIoJBEZqbIRALAPDx/EIc/EW0JsySOeKnI5eu1wEAZn9ojj2/i7pHm5vRtSYWAKCqmoMJ\nY0xw/Eyt9owQorJW8vdd17Ay9ZDaX1Ej7t3h+XFfgSgQrrtQcClBYmE3smlzgqG6kDhIrjKX+IfW\n0Fy9lYIbKlkS+/Kel8Kzj+RCUdc3PZNbmFRk1yhsmyrkXjmq1vlNPfxg7hMM6+DeoNHUl903eLH2\niwTFb9VeGjRpOPUfA9tuA7RtBiHq/po9H70OoAEdt82Goac9Ku8mI2vTCREhrzo0sJrqSJzvzYHv\nYkQU10A2iv6OUPRn08TVB94T5it0DwC4Dn0frkPfx+t/dqEmO0Xh+yVBZxggcP4PSt3Lt6nw/iUU\n/XuFNJsUZaR3IjoEG2H+Oid4BRgi7k4t1nySKfO+qXMKZY6RhJWF8n+nZi8RdRN68py4uvX3W4gF\nyfLFVmKCQZX3QgZhI/NR8NIdmTlNeBQr+n7q8jxRXaNbQeA0Gl2rm6DC9Oj4sULjA78dqyZLFKPN\nCYayDGL1L6ldGk7B1hi1oRcsXU1kD1YCjowsLMInGZ/HjMGOVqcVfJclTVGX9xr5N0+jvkDx8vI0\nPX2Y+wTB3DsIlv5d1WAdBQXJcIFXC/eobfobL6IwPIT4JINCMlH3ewEQFQt0PenZtzQJTU8f3Gb5\nsvGQsWHhNX4uACBh21KVFzxkbaA49AmHQ59wZJ47gKrU56TMqSgp8fVYPDZdoXueJRIv1IURjgtI\nTmEhPknypqC8PIyTL2HJ10us8PUSK7F2N2fxpZo870WdVFVzMGthCWLOOYn1lZY1wy1It2Igh4au\nxJVY7deXGhq6SuF7rLp5gNtE7LauSdqcYGhmEX/RFNkZ9OrrgAk7+5NlkkrE/pWKrh/4wshC/CSE\nRuf9kTy3XLUjYHkrPcuLLuzaU1C0BR6l/47OHuPxLFPzVTnbKqW5jTCzFi109b8XuuOe6DJoPHKu\nyj6BJfv3ZNCin5B14RAqXz1V6n51/N72GDUdTbVVSNqzhvS5tUG/XrygWSO3dDQ1tawpJo4xlXQL\nqazZWCbxlEEXOXK8BkeOa9b7QRqxaX+iq89kif3Duq7WumigyUg9Hh33vVhb9l8P4Tmd+Hcg096c\nsF0dtDnBoCp9Zgeg33ye7yOrrgnb+p4iHCdP6lUyuPbDU8IaDuFrugteJ13ULaVOQUEhG+HTBUeC\nkwYqGJqY7yc8xZ6X/URckOZ3uYdfnvYVGdfaRYl/fe1QHv76Pl3qGFVSsFoF9pIuGKTEBqiK+zsf\nAe98pJBbFJ3BROD8DWqxBwD0TcwRtPAnJGxfqrZnKAJRQLS8XPmbl7JdWCzIA4NBzgnYmi+s25Rg\n0DVKKmW77oUFL0FM/BYNWCOKl8Nb6OAyWOoYLpcLDld8Uzzz8AN4Tn8LYdGReDL3MK+RBvh/MQIO\nQzshfrlmNqTeOMHAFwsAJIoFbTHv2ijsHMxLnRr8ricAIO1WvhYtoqCgUBZKEEhH2qKdqK91mzyL\nfm3UZlCXWBCGYWoJdo18GWjUKRb40Oh0+E1fgZcH1qv9Werk4NFqzJomumPbOjiZiBP7HdGxt+Ku\nvMJs2V2BJXMsYcikoaGRzFiqN4trTzdgcJflEvuZDDONnzQMCI6EAUO26/vVOMnV5WOGbEZYdCS6\n7eKlvQ+7ygt8Tvj6JMoeZZBipyzeOMHA58CkqxL7nEMkV4BWBzuHnMO86FEwseEdhxpbMQV9Jxbe\n1agtFBTtjZAzX4tVoJaVSYmCQhk05a7pP2s1XuxeheYG6RlqNOk+amBpC5q+PrhNmq+2TBZzlxVj\n1jRzkTgGfqYiSazZWIY1X1iL3CMtbaskvvi2FOu3lKM6w1usT5n5tI2kGg3qppkjOb2tMMO6rga7\nqQ43nv+kNlv6BsyBqZG9XGPvJe2WOUYTqVOl8cYKhpoiyUFIUw8N1KAlohWce37sh36fB0oZrRz6\nJubw/2yNQveQHftAQaFJJKVOlWc8JSgoFMWu+yCNPq/TnO+kuiYFzlP/yUJrgj7fSHqGs/PpgchO\nbcScYamCa2WQd9Gt6OL8+y3lUt2IiOZ7mcombK+o4sj1/LYoIDTJldi1GNZ1tcxxDH1jDOu6Glxw\ncSdxB+obyXEHCwuOAJOhWNxLTb36Cu6RxRsrGD6/OZqw9kHkE81mJuJz+MPrmPb7IIQtCRa0PTz4\nkpS5GWaW8Jst+8NDQdEeoNFpCD79tcL3FRy+CcdpA0i1ZVDgUjAIqo/ee/Urqht0/w8EBTEmbr6o\nzU4VaXPsN0rjdhjZu6K+iCj/PA10AyZBu/rpNPd7vNil+OdPErMGpCA/SzRTkaQYBT09Gs6kdCLt\n2RSi1OV5AoDg5IB/rYvIKxoAgAYa+gcuUGj+/kGLYGRgoYxpYqjqHhUWHUkVblMHzSwO9Ax4+ZSn\nHhqEI9NvgMvhovuHHTEwMgQAr9aDmYORRu3Kjy8Ta4vZEk/K3MJi4eWetWBXa676IgWFpmktFvJ+\nvYySs49knjgUHb0jEAxO0wcj/4B4BXdFsDB2BkPPUCyWoW+H2ejb8VMqxqEN4zrkfbzc35LNxGXI\nJK3Y4TslgnBHP3ix9lwX9Jjk/u1sLRak0dxM+f6rEzabi7b0FS6ufAk7Cz+1zK0rYkGTqK9ilo4S\n1fOE4LVziDWWxo7HsqcTBGKhqqAOu4ef15Z5aiVx61JKLFC8MbBLq/F89DqUnH2k8L124/uo/PxQ\nj4lgN4sXmryXor7aDxSawcBCNM7NOqi3liwBGKaiCxeLDvIVA6WgUBQLj0xYerQUyNuwpQLGzhmE\n/3SBuLSjKKxI0rYZEskr004NE2VpMycMRO5DyrQL9334x2A4BFiiKLkC935NQurNPIXul8U/CxQL\nWN4z6iJmnxuh0DMUgavNOvIUOkf+7TPIv30GRg5uMHH2grlPEIydvUCj62nbNKUJOdNyipA0fZsW\nLQGKq1Nhb95RqzZok4EnZ4FpbazwfZfCtqvBGvURtFB9QZPy4D/rG5FTBveRilWRVQfBi6PUVq1d\nVspUeVKqdjjO29VNmbAaHY6vRcoE9brsBo3xRN85AbBwVk+RWE1AtCY5dV73K9k/S/8bAOR2T9IU\nsk4WwqIjNWSJ/LQZwaAOfp+qmssB2XzwW5ja5uawtVsVkkI++tlOhom+BfLrU5FQdYMwJ7O8mOpb\no6/NJFQ1FeNBqXie5t4242Gmb41HZWdRUngLJXG3ZM7JtLKH8X/iwsTFm3T3A5XRnYLASMw5D9eQ\nULH2QNeRKn1f2wLhMQu1bYLGoNFlH9QXPYxGVeozcFgsmPsGqy3eIWD2GrnHsqrKkHftOBrKCmBk\n7wqnsHdhYG6tFrt0Cb5A4IuGhrRctTwn/JtuCB7npZa5dYX4F5LdxXTllIGPIjEN6kZeNyR54xI0\nJS7eaMGga5g58nbjdodfIH1uOoO8ADh17RwRoWpaQE3aqgrhjvMAAJcKdgIA3Iw7YZjDZ4Jr/hjh\na2ltAJBR+wxXCnfD26SbSH8/2w9gqm+Na0X7wOY0YJD9DBjQjcTmIaKxvAiN5UUoT5RefVzb1cAr\nbilXuIlM+IXbhhMUbSNqb48xDZXJhbj/meyqyG0Rz7GzYOYZILE/flskwBX3+C5+fB3Fj68DIO9z\nYmjrhIaSfOibSK/6yqooIayVwK6uQFVaAgBA38QMAbO/Vdkmh77voPAe+X/LTMz0UFtNnuBuKq4k\nbS637nZq3fijUI0rsWthZGCJ/kHa2dBIzb+J9HzZG3O6CiUYdAS6XsvWaHWB7h/zUZDPq+oHgtfZ\ndS+QXfdC6bmuFv6KZi4vH3p67RORPp5Y2As2h3fqdL1oP8Id58FIzxz1zVVKP1OXYNiYaduEdikA\nFKW9igUAMPOSnI1H3o2K+K0RpIiGDlOXIuk36Yv8l/u/B6uyVOZcTbXVKEt4oHJchn3PIWoRDMee\n+QMAVk3PROytGsUn4HJBY7QsfUx7k5NVadnTCaTMQ6Fe6lkVuBK7Ft06TIONmXjNC3VQVp2BxymH\nFLpH2zUXiHjjgp51EVN7I0E619xnsn+hKwq/nkJQhHZ3fSkkk1OfhI5mvTHIfgYp8/HFQmt6WY8D\nAIFY4FPSmIXeNu+R8mxdwCTQXaX7uSz5i08FLKc+VxQtKHqqScopKI0m1R0pec8aucQCn9zoY6hI\njlXdLjUw0jsRe9YV4LsDHjifHojz6YEY+K6l3PenTPwGdCMmuI1suHwzXeX4BQtnkzdWLHz0vinq\n8jzF/qXHuWnbNJk8STmMK7FrcSV2LfJKn6nlGfz5FRULiqIpcUGdMGgJSb9gjnx8Qy3PS4iKQFBE\nlEA0VLx4hNrc1+A2Sa6KWJH0RGIfBbkkVN5AQuUNhDvOE3NPIhNLAwcALW5L7Y2iY3dhP+ktpe4N\nPLpM8Dpp1g6yTHojuRS2HW//+THCYxai4EYKnq65qG2TNELqn1uVuq/gzjm1xTVUpSeCXav4yWH2\npcOw9O+qBotU59S+UpzaVwo7ZwYO3OmIpVEuWBrlgujjFdjyheyYhOaqWqRO/Y4UWz69MIKUedoi\nu7fYAgC8umSjsKgZLk76+GuvHbp1YWL6ZFMc+FOJEyAtkJB5GgmZpwEANube6OY7Tal5SqvS8Oz1\ncTQ1t8+YUUow6AhcDhc/dRUPTCUDopMFy049YNmph9T7KMGgefgioZf1OML4BFXJqUuGm3EntYgR\nXaDg9xsCwRBydiUSp2xGc7V4atPWtK7R0FSu2B86/ilD2v82gFVWDACwCOoG59FTAQDVL58j58QB\nsfEAkLQhQqw9/8IxVDzjuai5f/AZTLz88GrL1+i45Hu82rYazXU1UufRBYwcef70jgM7IHxgB7nv\na2tZkvg0lOShvjBLqXuLH19Xm2DIPLNX6Xuzzh2A+6jp5BlDMsV5bEFWJBtHBg7c7oAhEyylZkri\nBzsLo+wpw5t6sgAAcbdcMH1eMY6dqhW05eY3of87+QB4Rd3aimAQprQqXSdrI0grztb9t+kw8eSl\nelbnaQMlGLSEOtKmUrQf/i07SXgKQAMNqpTOSay6CTfjTjDVt0JNU7kqJuosdS9zYeznAgAIPMLL\nHpG/L1psHMPOAn4754BuyBBpfz5a8dgD/mI9YHkU7zWNDufRUwXtfkt/EIwNWB6F5E1fgNsk6vYk\nuPe/15XxD8HlcGDi5YekDRGCft+5K5G6a53IeIaFFQKWb0bSBt1IxfcmZUnik3JYtfSqaUe3w+d9\ncr9u5UmPVbq/MlW1PPHm3oGoSld/AgK6Hg2H7smXwri1OCASEPLwJomFkjTxEyoLM7qIWKBQP8LZ\nkPjCwKyjA0w8bZD5+304j+2i1qrPb6xg4H/hbw3fAm6z6vUJ5PkmSRpD06MrZYO8Pxj8GAYK3SXc\ncR4SKm8gpz5JcE3EcMe5gtMBZd2KShqz0M92MuIrryO3PhnWBs4IshiIW8V/KGe8jpG6dD8CDi4C\nw7ol8NnpkyEiYyRVfY5/VzyDjDJ4z4xE3rkjguvsY7+J9LcWC63JO3cE3rO+QNqvP4j1MSzFU1+y\nK8uhUzllhci7+hLJv9wCq1z2Sc+bTF1+Bulz5lw+InuQGrHvPVytgsEn0BDbz/oIrvdvLMTx3SUK\nzVFy6DLZZrULLqx6hMSzmRL7ew/Lw6HddvhoTjFhP4utek1orzGf4vWZX1WeBwBCFkTh+c+qr4XI\nmkcZ6vMqUJNSBLuwjui0ejRerD2LoHW8uMSMg/eQcfAewqIjYexmjbrsMtKf/8YKhpghm3WyMAbF\nm8nlgl0IshiEAPP+aOKycL3oAFgc0WxZlwp2wsHQG8Mc5qCCXSDRrUiWu9Hj8nMAgBCLwehk/jYq\n2YV4XHaOnDeiIyR9vA16poYI/HOpXOM5rCYkjBdfnCsLTU8fnIaWBXJdVqqCEyh+kqRrLklA23Uv\nUpS6fMkLK0XgsBpANzAkZa7a3HRS5lEFI3tX0ufsPsAU3+7zEFzvWVeAU/vkD+j2ObSi5YJGA92I\nifIzihVZXRo7XqHxuk7KjTycirgHRX7lFBU3o1tnJuryPJGWwUZKahN6dDWAjTWv8OfBv2pw4pCD\nYPx7HxUqbJeZh7/C92iLXU96Ym63h4R9B171wfSO9xW+j0/otskoup6EpPX/ZR37rmXT28BatBgg\nq7QGQd+Pw8OPlHdFlITOCoaw6Eg8mLIHvY/MBiDql8X/QuX8/Rhp/4sBANAZeuh/cbFYe1h0JJ5/\ncRwhGyeIzUP0zNbPkTbeKtQdIZsmAgDYVS2LA+H7hF8317EEtgvPy7A0Rp+jn4m1v31pCWj6dJF2\nSc+kaNtwwUV85TXEV0ovJljYkI4rDbtJeebzymuAjOe1ZZprGvB89DoYOFmhQ9RM6JmKL8TqknOQ\nuuwA6c9O+/VHBHz1k8RFPE1PD9xmybnknUdORvLGZRL7KXSLtKPkCKP047/Adwo5G1npf7fPwH2+\nWIic8BrJsYqnIE/7SPVTRBpdtdO8hwdfIuVaHgqTytHMFvUuiHz8Huj6xAksY7bGozhFvG4EXZ8G\nC2cTOAVZo9NIxTPE1ZU2KCQW+Hh58JaQPp4M+HiKunZ+/IGpXHOYewXCqd8YVL1OhF3oAMHuvVVA\nD5H/y5MeAQBCPt+MotjrsO82GMmHeKmCQxZEoSYnBXUFWbDvPlgwR9CcDeA2N6PqdSKa6qoFzwxZ\nEIXypIdgmFrC2MkTCbu+ErRzmtiozngBC9/OgnlCFkSh6PE12HcfrPgXCZAoFuTFyNUKJffT5Bpb\nk1YM6x6eKj1PEjorGADALqyj2MJbeAEesmkiHMODUHApAf0vLhZpF6Y8NlMu153qlwWw6u6J8scZ\nMOvogPrcCqnjQzZNFLFPFnrGBoRCwmFoJ6nvEwA6LBiMlJ+vKfxMCoo3HVZ+ORInq+ZfLo38i8fg\n+t50GLv7tAgELgdJGyLgNGISzAO7ovzxbRTdPA+AdxJgFdoX9gNHoS7nNbKP7RG0e360EAwrW7lO\nC5I2RMC0QyCcR36AhsI8ZP21m7BQmDa4FLYd1p1dEB6zEFknnuHFthhtm6RmyPm61xepp+qwKuTd\nOAHngbqTcllaQLM86FmYoLlSed/7+TdGK3zP+RUP8eKCfAHx5dk1sPEiLsDHrm/C67sF0p/1tehu\n9agNPREwQrqI6DzBG50neCscW0lGNWergB7IunwY9UXZyL9zRtBenvQIbkMmC4QCn+c7eOuegvsX\nEPL5ZsGivujxNdRkv0LRo6uCsXQGE893tyz6BXMIuRQJtwNAwq4vRa69xn6GnBt/oyzhPgrunxcb\n35r+E+xRlteIxHs8YWftaICoW91ERINvqBk+3eSLuGvlqK2SncL78eyD6HNsDrL/4n1vvWb2A0C8\nBrTu6YXCq8rXcJKGTguGvNNPpfan/XIDXba8j4JLCWLtyhA7/w/BQr3rzmkay22bdzqOsF3kh4HL\nRcrPmtsNDoqIomIfKCjkoOLpA1Q8fUDYl3/xGPIvHhNrL4+7h/K4e2LtGYfEd6r54qH1/wBQk5KI\nV1tXKWW3Ohl+Y4FgF9b9vc5wf6+z3Pe+KW5MbYWyhAc6JRhUxXvvl2BlF6HueRqK91+Ead8gOC2Z\nCNBocmVLMrZiKvQ8RRfhNUUNEgWDhYsJYbs0zi1/iHPLH6LLRG8M/Vp6mtxlTydoPCFL5oUDCJix\nGgxTS8T/sgxcjvQq3pIW7LW5PLdPLkf2Atyx70jYd5PvtMDUrQNyb8r+mtRWNWHRLn9Y2jPw7fh4\nQXtZAUts7MqjQQIBMXyGk8y5WWW1YJXVigU9O4/uDCNXK9gP9EfIpomoTefFkyT/qJ401jotGCwC\nnVEeJ1mVW3XzQNnjDML22gzFAp/4NNU0gs5kyB5IIub+ToTvUxcr/VFQUFDIQlWXjbZE6bM72jZB\nDFlB9QrN1UzeXGTxzlRrzP9OfKE1usMLcJpln/ZkLuG5a7mtnw3Djm4CoeCxfREyF26TeJ8+U09u\nG2uK67Fr6Hm5x/OpyK6BRy97wj5bXwuF5+Pz9O90PP07HbPPjYClq2ThoYhoMDen485FJ/h6Ea+Z\n5D2BSNrPy1QlK6A4eN5GQb+FTwg83pku1/ytse82WMTdSBrFsTfg2HsEsi4fljrO1oUJWxcmZvgr\n5n5UXyNdIPG5P0ncFTnvLK/gXNqumwha+y4chwW+uWlV+e43oT9PQfkTXlDZqy1XYdrBATUphfCZ\nO0DkiyPcnvOPcjUE7r67A73//BS3R0r+pSEMw9wITXXiChIA6AbEX16GhZHg/QDE7zNp/QW8fWkx\nboWLFwKS9kwyYFoR/7KioKAATEKCYTv5A3Dq6pD93feEY8x694LNuHfBLi5G7k+qVYK2n/4xjIMC\nUXTgIOoSpLtjuCxbCoatDQoPHER9UrJKz1WFN+mUoOiheMpebZN/+7S2TRCgb2SKpnry8vHvvOwL\njw68Xf4/thWhJK8JPQeZos9wc5xN6YRpvV6ivFg+kWPg4SByzbCXXjH6ve3yF4VURiwAQE1xg8Q+\nSxdjpeYUZs+oi1gWN0FqUjV5RUNBsmRXp5175SsWGLIgCqXxd6HHNCYUpy4DJ0DPwBBZlw8j8+JB\ndJy8FOXJj2DqLjsgmtPEQuDsdahMew5WlWjWIOvA3nDu/67MOQru8dyQWFVlsO8+ROK4+upmzO32\nUGqAMxFGpvKLUGkkrD5FyjzSoHF1xOdVGBqNxg2LjsStYVHgcjRvnzrz2LYFrAJ7wmX4BzrhkhS8\nWLXFVvxW7b+HN5H2+H3z2rIZ3OZm1MbGoeToMZj27AHbSRNR++w5ig4cFBnXXFuLnHXrwXR3h+Pc\nz1ARfQ3l5y8I+gHg9ZJIsfnrEhJQuHc/r4FGg1fUTyi/dBkVV67C86eNoNHphPcV7jsAh0+mo/DX\n30BjMmE3dTIylon64gqjyvdHF783qqBrP6uq2gPolk3ZF39HxUtit1tlOJ8eKDGOYekWVwwcayE1\nzoHp5QT3TXMB8GoyOMx7F+aDeK46r+dsRlOJeFAxH3lrL6ji1hMwwh2jNvRUy9zCDFkRitBJPhL7\n6ysasWPAWYn9xw/ao6iEg3mRPG+OujxPwYlCxDwLFBQ148jxtle4TVmEsx3xRcOkZR54Z7azyDi+\nmDjwqg8A4PY/Rdi7XL6AZlXgcrkqH/vq9AkDaDSQFUwmL3QmQ9OPJA3HsDGw7TYAiVuXgstpybxg\nGdBNoXnMO8rvb0xBoVPQaAg58zXSVx1BzVPy00rS9PRQfORPAED1/QewnTQRJp1DBP2WQ3k7UFkr\neS4O9a9eoSE1DZZDBgsEQ0X0NVgOIfafFYgFAF5RvEDtistXAAAZkcvgtWUz9K2t0VQmulvm8Ml0\nESFR+1R6/BeF7sJhN4LOUMxPXpdhWjvIHkQSPy3JwcCx0t12Gl/ni8QqFO48hcKd5O3O7nvvikr3\n1xRrJvth9Po4qYLByJIJS1cTVOQQB4gPetsI1l7E6YSjdlaiLs/zjRIMwqlR+aLg2KZMHNtE/DVS\nNHNSv7PrpQv1AAAgAElEQVQLoWck2V1eE5vcui0YNAxRytO2hG23AQCAwMU/iZwOuI6YqiWL2i8B\nJ78BAJQcv43iP66TPr//8VWg6dHRmF2M9IXS6ypQtNAh6hMAgPd3U5Sq2CyLvC2iroqs/AIYODkK\nrq3eGSF2T8Ge3+D54wbBdfn5C7AcMhiWw4ai4govo4d5/36EzyvYJe636jDzE+RuEs361NouXcMh\nzBc+H/aAeQc7AG+Wy5Ki1Oakw8wrQNtmkIaBhY1YWy+78bAy4O28Xsr9GTTQMdxlPi7l/qxp80in\nNF0+VxxJ1BRpLl36LwPPSs36NPvcCIknGq8zmhDQkYGkV2x1mUfxH2YdHaBnxEDsvMOofqV4PQuy\n0FnBoI1Fe1sVChTtD5oeLw83081Oy5a0LYx8ZWecUIXGLNHkBJKCS/luR5JgF5fAakS4QDDYvDcO\nzbXiO3mOc+eItRk4i7/H1nbpCuExCxUaF/P+AdQXqLbgauvUZL9qX4LBUvx3mJWBMy7l/oxwlwUA\nAC44YmOUYdlW2YXiHD5/D6Y9/fH6s80w9HeHy9cfypUdSVNI2tFXB3XljXh6LA1dpJw0mDsZoypf\nvN5F90G5qM31FAls5ld+PrKn7cZBMvQM4eHQB1am7jAzcoCeHhM0goCPK7FrNWZT558mAYBWxQKg\nw4KBQnFkxRzIG5Ng13MwHPqNJMMkncesFy9wqvpf7QWIUrQ/WscZtCZn/QYxUcF3YxIm86sV4DQ2\nkmqbphh87jO5xz5bewmdV4cj7Oj0N/70obGsSNsmkIq+kXhGHi5XNYFwPj0Q0996heL8lt3t3x/4\nwdpeHzFnJccgAID5gC4CgVAXl4Lq289VskUYoqJqiqLpuM2r6+OkCobPLr5DeMrA5QKenbMF18bO\nGajL88SEMbzvt5UnOdXP1Y2rbVd0ch+lbTOk0lBUDRNP8ZM6TUMJBgox6nJfa9sEjUBj6MP1q/cB\nAEnjvtWyNaLomj0U6sEqfDgaMiT/YXVevAg5P27UoEXk0H3TWDDMeH74lwZsF8SFSTpxyL/2Cp1X\nh2vKPNKozSU/TqaxXDXBUPEyliRLyIFIMHDAwSCnWQCAgY6fgKlngpiCg2LjiBjpnYjZKx1x4G5H\nwj5FMekhO9uOvPw99zZpc+kSDCN9sOvFT1OLikVTgpJRyE0T2Fv6o4v3JG2bITePZx3QiUK9lGB4\nQxAuiy6LhpJ8NVqiO3j+8Im2TaBoZ2StXA33dfIdVWeuXA2P/8bmRW0R6+eyWGA4ai5glExse3oA\naP+xCnX5GSLXPadtRvr9v1CS9ohwvDw0N6rmw16bo/6MK4pA0xNfZlzN2wVP01D4mPVAFbsYTwr2\nKTTnnnUF2LNOesVjSaR9tB4djrd8RusTyNsgqy2RnBJVlzn++R1M2EEcRwXwqltv7X1Sgxapj2Fd\ntet+Ju350tycEtecEYiGirgsNLNEBVzC1+r//lCCgWS8jhDnZVeV11O+Vvre7PO/g1VZKvd4Vf9g\ntRUMvdXr706heYr+vgv7ifLnSieb5tpaZCz7kjCGobWbEkcoZqExO0dsfMaXy2H7/iSxuWS5O1Fo\njprsFJHrh4d535uQscthaGaL1Nu/oyxTsYxVHJZqLmjV6YrvsqsTIsEAABk1ccioIS/dqrxw6hp0\nKmZBF3h9R7r4YhgS1wqoy/PEynXliNqpuiuWutG2UJAHS1M3VNRkE/YFrhnTMi5Ucv0LdUIJBhJR\nl1hQlUolcmDX57cN/0MKCmEKDt1Qm2AgWqgTngw0Ncm9qJc1ruToMZQcPabSHBTqo6Ekj7D9+ekN\ncO8+Fr79PwT6f4hnJ9ehsbZcrjm5HPkqv0qCXdu+g8a3n/WBT6Ch1DHKuCZRKMe6lVZYt9IK12/X\nY9T72g3KlYQuiYVmDht6dOL0qD07zpB4yqALSXkowUASuioWlCXtT91O06gM/FSoivTJiiVgF5bL\nnLv64UvkbPhLadvkjWfgz5E2dztYBeXwO7IcdCMDlebt+PuX0DOV/sdZ0TnVTfLMHfDf+zlCzq5U\nS2rV1ph19YF5Lz9Yj+iG+DHfqe05wWdWAYBan0GhGE21oq6eDEMzhE5Yg6aGGsQe/wZZj3kVlzuP\nW4lnJ9X/s9hWCHdZIJZClaiNCJ9AQ1w/WYETv5WCzVI9QNjQxwUNabkqz9PWSbmeiw6DXBS6hx+z\nQKMBRSkeqMvzBAAkvWSj20Dtf01tLTqgq89kbZshwrWnG3RKwCgCJRhIQF1ioXj3P6i5pVsBbBSi\nNGYVS13sA4BZTz/omRujuUo8NZ06sP94GMx6yw7k8/11MVI/3Sqx323lFDGxwGlgg24ouXiMLsAq\nqkD8+B8Q/M9XCDm7EimL9qA+XX07X9WxaaiOTYP1CMUKJFIIoXINUt0gaFSkwC1JmJK0hwSjKZRl\nc6Tii1HhuIXWtCUXJf/hbki+TOy2ogpJl7IVFgx8uFzAzpfnlbByqSVWRFiKVH7WFromFuShl/8s\n/Jv8m0L3hEVHUoXb2jJ5K3eiMV30l5qwsCCKSbD9ZCzMhrSUhLebM54SDCTSevdbeKGv7M64548z\nW+Z471uRKuGem2bDyJdXnKjjwWVSnyHNNkURFgvSbGLYSa+Iatqtg0T73Nd8CJPO3gCA3M3/oOpO\ngtL2qgMTf1fUvcyFsZ8LOmybrdQcmjidaO903TAascvPyhwXfpOXPYlV0bbjp+KOryFsz32uWvXf\n9g6dRuwjT8S1fypwPj0QPyzIQU5aI9hs8VOGnDTiOBAiYWDoo9wiWVt0m+qrFsHwKlq6CHPpYoPc\np7JjIXt1140q5bq8i19Rkw1LUzfCPgtjZw1bIz+UYFADygYol+w7jZJ9p+GxbzXohrwPndeR71UK\neBbG1NMfjv1HgmnlAJq+7G+9vHUb3nSy1/6BmrhUsfaMZXsQcOIbwe6poa8zGlKJfZ7VAZFAyVi2\nBwYutvDZMR8AT5gQjZMlprLW/C4Y4xI5XmcEQ8jZldo2gZCOu+eD6WwtuK5LzkHaF/sVHtMaXXVT\nuhS2HeExC2Hf1wvhMQtFUqsKY9fbE91+bAnmuz52jwatJJ9u76/Hk6MrAADGVi4IGhlBeOLwpnOv\n6KigaBsfeas8Dx5vCQD46mfJRdqIYhgknSKQ6Y6kz9RDU6NqMSiycA5RTz5+WfUfgsZ4ShQMmc/d\nYGfLE33pGU1aP1lQVCzUNBTjadpR1DWWqTSPvDx8tV+nBY0kKMGgIkxfUZWY+anqu5KZn6wVOY3w\n+mMdXk9VfiFkYGmLjp+sUNkuCmKIxAKflBk/ocOBpQAA+2mDkbXmd43YJO00g5VbQsoziv+8CbvJ\nA0iZqz3jumgMmM7WgkU93ZiJwL++gP2kfig6dkfuMa3RVbHA5+rwnRh6eR6AlhMEPkT1GNpDCtas\nx6dA1zcAp5lNiQUpVLGL5BYIROhqUHNAuBviT2eoPE91YT3MHIxUN4hEbH3Nxdr4MQsAcPRkLWbM\nL9agRaoTE78FjWz5U85rkv7nF4LOZAhcjag6DO0Ay3cHiFxzasg5Un895esW0UBTzcGXEgvao6my\nJXWmSYiXFi0hH3ZxhbZNEEMX3YisBndG/t4WlxROXSPy90fDacYQgRiQZ4wwwWdWIXfXBZRdfKL+\nN6AkzQ1NuBS2HUMuzoG+seTg+6ZaFqLf2a1By9RHcdpDdBq+AIbmdpRYUCPW9vooKxIvJCYvnjsj\nwLC3FFyTFcMw/JtupAiGG5ufYczG3qobRCLWHmZibQf/qsHcCHI2oMhCnp376LjvweGq9yRIFewt\n/HB7pPgGiqQ4BU2JCUowqAjTW33+j+z8EjCcbAEA5kN7oerqvyrNR7kYkU9DmgJF7lQUfrqG1TAq\nyFdeSk6LfnZLTt6H04whCo8B/jtZ4HJ1WiwIEz2CJwYc+vvAb14/GDmag1VRj5Tf7iPnvG7uFCtK\nt/dbToQba8qhzzQRtD05So5LaXuis9VwOBmLV2qW99Th9wd+UvulnUB0OL4WmYu2w2PbQqS+/y3c\nf5or1zPlgUYn53f8yys5gIYLvEuqtcDHwFQ82YWuiQWaHH9jpRVH0xU6ug5BUeVLbZshBiUYVETP\nwlRtc+dEbhGcMtjMGKOyYKAgn9p48qqE6hIFv16A46fvAABsJ76Nkr9viY0x8icO2tIWRhYMrLo3\nBH9GxGFyVCi+DroILhdYnzgCeUlVqKtgw7ePDVYEXgQALL85COc2vED38W6IPZWDZxfaRoXznO1n\n4bpwtLbNUJjC22kovK1bVYjJghIFiuFk3FFplyQy3JH4bpnc5maUnyZ2+dNlPr85GjsGyE4moAh9\nPusktb+ZzSH1eepgaOgqqf26JBaq6wthZuRA2GfMFI9TkZYFiVWumQyMdI08pR3TXC6//xuXxVaj\nJZJJ2smLf3AZ9r5Wnt+e4Tbp7rGmKpRffCR4bTdlIGzG9xNcM+wsSMkwRTZfXBmAb7pdQfxlXtVS\n7n8xfCsCL2LHhLvYN0s0taWZHRPxlwuw/9NHeO+7YLXaZuQrWlXcqIN4Jgx5xgBAefRTZEedEsQw\nUFC0Ndgc1apZk4nZW+r97KsDI0vyMxH1mi791KYqv1Zqv65TWJGkbRNEyC1VrAK8NO5P3EXaXNKg\nThhUpP5FOkz7dZFrbO2/CTDtHwoAYDjagF0gO0UZGTQ31CEhKgJBEVGwCuol932UC9ObTdK4bwXC\nwH7aYNhPGyw2pi4hQ8NWSebR8WwMX+KHcxteiPW984U/QsdIdh989Df5aQqF8Y2aJRKc7Lt5plJj\n+FTcjIdbxLsIPrNKZ4Oe30R6TttMxS7IAYOuvdSbRbt4xfRSJ6+VWpuBiOTL2fAfrhsnq15vOeL1\n3QLyJpThzVP4Qvdi1hThWfrf2jZBhLzSp/B3Ha5tMxSCEgwqUvb7ebkFQ8mekwLB4BoVQVq6VFn4\nzV4Nhpml7IEUFK1orqqDnrmx4DXNgIG6xAxkrzuiZcvEubApGesTR+DchhcCtyOA55K0IvAiLmzk\n9fPZOua24PW5H5TbfWq9y8+/Ljn7EPl7LgPgZTEKPrMKwWdWoTG3FEwXG0E7H3nGtEb4Hl0WDQZW\nxhh0apZImyIZkXw3RCF1OfHmBdPJGTR9BhqyM1WykSxKX1N1c+SldVpVQP4YBlWovMaL/eGymxQO\ndj775b8yBcOie+9iW99TStvHh93QLDWuYMIv/bCpy3GVnwMArt1sZY6JO6rb7oTWZm0rqUhTs+Kn\nbCE/ToBVVw9CcUcVbmsDNFeL+o7p21ujqaiMcKyi7is2H45U2i5hKLFAoQyGvs4CsaArbkeyYDdI\n/owZW4oG7c060AtR79xCQ7XyroLyLtTjx3wH9y/Gw7yPPzI3/I2q+8kKjyF6li4LBYA4faq0cTHv\nH0B9QZXc8zfma66uiTzYeIUi7e4f2jZD59GEMJAXGkMfXLbyGZdaY2BMzrLqyEfX8fGxoVLHuHW3\nQ/Zj1VOZTt47QOaYvOea8YhQFj/XYRL7ckvjNGiJeqDSqrZD3LZGyn1yILUoG40G8xF9SbSMcjGi\nUAyvTbwKyfk7zmjZEvlYnzgC3/e/JrhedKoftr17R3DaUFfBFjl5MLU2EIgF/imEOsna+A8pY9oK\nrcUCq7weBlbEueVvvLcXA0/MRNjR6YSnD74bogAAeft2oy7llUhb2tdLweVwxMbykXQ6oR5o6DlN\ndKePclHSDfTtLNFEkArayN8ddfHpcs9TX8mCkYXkNMEA4BBgicIk1Vx4il5VyhzzwW9huLU9Af/u\nE9+AkBe/oZIL4LUlJAUQA0BiJrkB4pqm86aJADRziiANSjBoGa8j3yNnSRTYhS3q3fbT92A2QDRl\nZcmvJzVtGgUFAMDp8zGouNY2dmhqy1iC14210k/0GmvI21WkEKX7prGC18JVniWdODSWSg+o5C/6\nhd2T+P/T6KK5O7J/jkJjXo5UVyZ1QYkD+ejvMA0m+lZi7eo8efDaFYGUCasJ4xYUcU3aM/IiFt4Z\nK3XMR38OIcVdqLGGDSZBOlNh3l4YBCs3E1z6VvE0yzZe5hizSbfqPVCIYxHiiuZ67STNEYYSDCSQ\nNWc93He3FEfTt7NCU3E54ViRgmz/4bpF9h+16puPlbYvISoCnRb8gKCIKCTtXInmBs2k4NJ1qh8k\nwax3AAAIgnubymugZ24Mmh5vEaIJVxyHmeFgetiD6W4PfQsTsX6+bZwGNhqzi1CflI3C/ZfVblf6\nwp3w3j5PxAZJ6ILL0orAi/j0UG84djTD9d2p2D31vtTx2969g++eDkd5br3aTxfeNGx7egDQTvVm\ns2490JiXo/HnUsiPib4VLuX+jHCXBbiU+zP0aPp4y36KWp8pLAqEX+sR/M6VRmON5hZu2/udxrKn\nE2SOCx7nheBxXtgz6iIqcuTLZrQ0djxpdSMo1EvyxksIWP6Ots2gBAMZNFe1fEBr7j6TKBb4FG76\nHQ7LPpR7flaWapkQ/Od8CzqDd4QaME/+Srjt3YUp58dj8D++SiAOAEDfSn11NSRhPUq+zFV0QwaM\nOrjAqIOLRgQDq4A4FoeIgJPf6IRo+PWjB3KPrcivx6ou6v86UmgWyz79YNmnH15/t1Ljz+YXa6PR\n6KDrG6A47SFe3z+qcTt0ndZpVZu5TTDWt9DIs1ufJjRXKp4uNOdJicxA4VlnwvHbmEsKz60Ks8/x\nkjqkxeTjxOK7gpM9PqGTfDBkRajC8x6edp0M8yiUpOhaEgKWvwNjN2vUZcv/d5lsKMFAEopkPKqL\nS0b1tYcwG9xT5tjc5TvAylStoJS+sXhJdwoeyRN4QaOWg0NhPaYPDFxswC6qQOmpe6i4IvmIV5HF\nsayxZC20ybRJ+ETh5eT14DQQ76pZj+kNhxm81HD+x1YieZL8gpSCQl7oBgbgsFiyBwLgNjUhbfWX\naraImNYF3HpO20wJBgL4aVXLGnPR224iDPU0v1GjCn/OvClz59/KnZz3tKnLcblOGYTxCXPCsjjF\n7pFGfoL2FqkULfTYP0NiH5UliWSG0CchmnNM22YAAEr2nkbJ3tNi7knCZHy0mpTCYO39pEARQhZE\nEbY//zmizfjpywv/vVa8fIKsK/JnblGkKFvZmQcCwUBjSE4BSCGZMbfnAwDO9P9Fy5boLuY9esNm\n+EiRmARJwc1cLgcO708F09kVBvYOGo9joJANP1bhYckJhDl+DBanHjcL9qv1mdJqLiiaXvVNYv+E\nK9o2gQLaD3gG3jDBoItoqhYDBQUFhc4ixZWav+CvuHuLsF0Y79XfI/2b5YLr1qJC3bTOkJR+T/fq\nlegaMQUHNfIcvijw3LEYGZ9vFbQrWryNT31Fo8yKy/OujcLOweeUml+Y3cPPY85lctKsK0pJqvxp\njinkx9dpgLZNUJg2JRgG0yfiGodXrY9/WkAHHRxwQAMdfejhuMe5gIH08bjBaT/pCSnI4/nPLYsM\nSacNFBQUqtFYUgumrQnCYxbKFfgcfpOXPSn98COVnpu+9msRkaBp1yQqS5Luw3C0FrkuP3NXqXl2\nDDgr0VXo4AfRKEomrzJydWE9Lq99guGru8keTCJb+6hegE4XMDN2RHUdiVWxScDb6W1tm6AwbUow\n0EDDEPokkTYOOOhFHwoTmIMOnkvELc4pDKFPwj3OBdShRhumUlC8cTSkqRZrQ9F+uDF+ryCFanjM\nQpHUqsLY9fZEtx/HCK5f7ZGe2UoetOmC1PqEAaBEBBHdbcbicelpkTZ+xiRZnE8PxEjvRKX7OQ0s\neO2OROaSHWB6OsJqzFsoOaRc8oOa4nqY2rXUFrm6Pg5Pj6mnIvLzE681KhjiT2WAXd92Uk/nlsTB\nxZY4oDvU+wPcSthK2KeLlFSmiLW5jOsK3/kDJd5DxTAQ0DoGQTgugS8mmtGsM7EKFBRtDS67WRCP\nEHDyG+TvOicWAO40bzQsh3YVaXu99FeN2Uih+1wK294iGm6K1l8gqsegjRSsZFOenYCUGPX64rdH\n6DTNxT+lTWtJzFCflKlS/MKuoeex6O672PaWZnbilQmAVoaKnFpcWqN8KndtkJh1VqJgMDQw17A1\nqhGb9qfItXmgM3znD8TdsTvQVNuIsOhIxAzZDD1DBvqdW4hbwzTjLaGzgqEbfSBMYQEOmlHLrUIs\nNwbRnGMiJwzRnGNgg4XB9AmoREvhs9Zj+DSBrVOBzxQUukjypHUigc9Oc0fBae4oqfckjVfOD1hb\nhK4YDKe3vVFXWI3EHXdR/Chb7nsNLI3Qfe1w2IQ4oSQuF49XXQa7plHmfRYdbNF19VAwrYzx6sAj\npB9/rspbaBNcCtuOIRfnQN9YcmXcploWot/ZrUGr1IeVWxBV6VkKb9lPgRnDBgDvREGYRyVt0/1F\nU2KBj7pFQ8r1XJyKUP2kj0IyQ7uuUmi8/xfhAICm2lbpiBvYiBmyWSAg1I3OCoYnnBuE7a0X+zEc\n8Q+rJEFwk0NVS6ZQHlkxD893RAJccb8L/n3C8ROKjpE33oLo/sbKUgR++j30mEYEdxDfw8+O5PXT\npzD0cSK8r+zMfRTub1sZNPgZifiYe9ugTxTPJSbtr6dI/EXcn1k4i1Hr++26u2HExVmCfnmfG7So\nP4IW9UfC9juKv4k2RvSI9iEG5CHn6QXkJVzTthk6y90iXhA4kUuSNFx9mFKvAcDGXh/r//BUyb62\nwqYux+E31JX0Ks3SqlO77/2x5YLDQdbs5RLH6iLDuq7GlVjtb2z5OIWBJi3LAwF6xtKD6zWFzgoG\nCgpdpjguBqyqUth3HwKGCe+4M+TzzVJFgbIIi4X4HUvB5XIAGg0hn/N2FFjV5SiJu4mSZ7cJ72dV\nlQnEQv7dc+A0seDY5x3oGRgCANyHTZWYdrU9uRkJL9qFF/eB89+Czwdd4PNBF0LB0Pr+61P+QE02\nL6DRY1QndP6S51c65tZ8nHlbXDQIP/fcwF3gNHEAAP3/NwFBC/up8I4odA1rz1C4dnkHzewGQVvr\n2gwUUEgsAMAvF32gr9+yyPrfVV+JYw9vKVLarrbEy6s5pJ02/DUzBtlPiqWOyZrJSyAgIhx0jKKK\nZNhb+kvs93Mdhpc52t3k8nEKk9qfkCG+CZ77zxN4zeov2kgDYVyYOqEEAwk4fz8P+pZmyJqvux8k\nCtUhEgOlz++ILN7JxrJjS5yAyPO5XDz/OQIhC6JgYGYlUSwAgNuQD5Dwv+XgsFqOM0uf3wHT2gF+\nU7+EpV83heo0tEX8ZvQQvG59EpD4y13UFVQjeHF/jLk9X+pJQeu+zHMvkHnuBU8UEGwa6RkyJN57\n+7PjGPL3RzB2pAorthcSzv2kbRPaJWM7vhC8lhXU3Bbo9AVvE+jFRtU3mPinAsbWTMw8ORyGFpLd\n/4S5tvEpYo+kqvx8XeJp+jEM6yo5JsXDvjeyiv5FPatSg1a1IM02Pnll4q6qWX89FBEMfDckTUMJ\nBhJgerkAgKAIGxm1FVoXdKPqNegwBG5IZOH0Fi92oDThnkrzCIsFPo1lhSrN2Zbw+4RXVf3sgF2E\n/a//eY7gxf0J+/hUpZVK7Sdi6PGPeC8k/IhETzwk5q5EQdHeCbB4G0mVvLoaPW3HQZ/OxL2iv7Rs\nlWzMfAPh9t5MUhb6ZFNX1oifw85o2wytk5p3A77OkrMJ9Q9ahBdZ55FT8kTiGLIxZJjj7eDFMsfd\nipecyal1jMLD6fsQum0yCi4nIP3XWxLuIhdKMOgorOxCGLg5aNsMCi3DdyUiWvBTKA63maP0vfcW\nKR7caGDBc/t6tok4JouC4k3Ew7SzQDBYMV1Q1pgjd1pVbeL23kxtm6DzuG5dDbqZiUgb352Jj/ve\nH5E180sx96achd+CU1snNpaImph/UXbohFh7esFtqYIBADq5j4SNmReevZYcs0EWbnbdEeD2jlxj\nG9jyF8mrzynHvfE7lTVLKSjBoKPkfrld5JTBKKQD6p+L5+bVBOGO83CpQLM/mLpMwPRVYJhZaeRZ\nqcd/RsfJS2HXdSDy755Vao6a7FckW9V2UWU3n1XZIHuQBDLPvpA9qJ1h5muL6tQSif3CqVVZFfW4\nPnaPJsyi0AEamnn1kYRFQuusSZLQhjuSvokZnIa1xArwXYoAcbci90mfwdTTT3DNbW5G0uZlsh9C\no6HTss0ovnsZxXdF60IIP6/k3+soilG9erQ64C/uhQWC07qlAoHQeqxwm1FoJ7hu/0akzX3vj6i+\negflf50VaSva9CsakiXXu3j4ch96+n0i1VYHq04YZsVzEYqJj0Ijm7yaXTQaDYO7rFAoXbAuBGTL\ngq5tA9o6NKaov2DRtj8ljFQN20/HqWVeCvkJWRCFkAVRGhMLANBQkid4HfTZBjF7AKA666XUOZrq\nqsk3jIJCCv0OTMVbe6cQ1lsAxOswGFgaYeiVeZowjUIHMNQzhR6NIXugGuhwXHRhZjNJ+m40AHSc\n9w3MfANbGricln+tMPX0Q13ua2T9/Stq0pNA09ODx6Q5Mp/RaRnP5YRILHCbm5H196+ozXwF216D\nwDDX3N8gRcn74geR6/yVvLgeuqFopp+mIlEXz/o44k0VYbHAx26JdDFQUZujkAAIC47AsK6rMazr\nanR0GSr3fcKYGztjcJevMKzragwNXaWQWCgol29DKSw6UvCPT+dNEzUWz0CdMKiI9STRH67afxPU\n8hx9awu5x/JPBMId54HFacD1on2CtkDzAUisugkaaBjuOFdwchDuOA8Py06jjJWr8olCkMUAJFTe\nhD7NAHSaPlicOtgx3WHOsEdazWOYM2zhYdwZ8ZXXYMd0R1erkbhcsEukXdcQzlREFPwsb9pTZeAH\nN9MNmGLPyb9zBsVxN9X27PaGtIBmdcK0NkZjWZ3sge0EUy9ern2iYmzDr30ueF32LBessjo4DuwA\nPaY+um0YjSfLlTtJo2g73CjYh34OUwSnCzZMN8GpgzIMGGOBT1c74usPM/E6SbGTQOtJA1F6TLrL\n4NpuizUAACAASURBVItNSwEIBSv/d004VujEoeZ1siDuQRqdvohCWewdFESfEGsHIDihqHmdDJqe\nHgIiN+lkHAUANJWWE7Y7rJiH/NVbBNcF3++Qaz6XzV8jN1I0prNok+zTyJj4KLmCjFvj6dAHng59\nZI5TZm4iErPOIrckTuY44VoLwgLh2bK/KcHQVjDs5KVtEyRSxsqDtYEzAKCwgXd8l1h1EwDAJYjC\nLGPlkvJce6YXgJto4rIALgsA0M1qlECEVLFL4GLkh/jKaxLbdRV1pE2l6cn/MVTH8ynUj88HXfBi\np2qB6+0Fmj7vYDt2xTkU3U0HADC3x2DgyVmw66u7v0//z955hzdVvXH8m9G996Z70AJl771liaAg\ngqCIC/QHCgIKiEBRECyiIiCCC1AUEGTInrIKlJZRWtrSQifde6QZvz9CbprmJvcmuVnlfp6nD7nn\nvvecNy1Nz3vexcIcjaJanC/8hbgubczBuUJ6HbKPPIzBi+3uo75Oerq/5UQYAsKkp9ffHQnF+UOV\n+HJuLumzXu9NAKDoZSjcoN9GrtUZ6kOoZEZBS2NBRmmCojEjEYmYUczA8D3cFK7FNdQHKLI8h+Z5\nDIKHj9GYkU1rzROJKxnb2OsLOsZCzIrnDaAJNazBoCMWvh56m7sxIwdWYQEaP1crlNaIv152EMO8\n3gYA3KqQujlHes9GXn0acur0Fwd6pugnhNt3R6h9Vxwv3EwYJ9GO/QmZx3VyT4yq8dYG19KKNHk5\nZtYqtc/RafzGoh5BZQMsnawpy6YyTdKaM+i4eDDCpnQiNRjcu/gbTBdToHkoksxYANBqvC/dXvkS\nHC4Pj28cRGHqBXSf9hXb6VkPyIwFAAgIs8KmZQU4uqsM4e1t8PXBEJUGw5Pv9sNxYEekv6i/TWTz\nfAO6suq8BW7dB8GtO3XYlKlTfVJ16W8qWuY/aMKJxJXwcW2P9kGmFdb9IO8ksp/Q66jt0iUQEqHx\nDUXWYNARSZMQHAv9fBslYu3Kdd6pPANbnhPqRJW4V3WWeA1IjYhShjwJ6kivSUBufSqGeb2NE0+k\nnV5TqshLf92vukjq8TAX6IYjxbwZhzublJPfuJb0ujhyeDyzPV0yNsfGbCcSngf9OgVnp5PnGgWM\njETOMfU5IZrw+Mh9dFw8GADA4XKUfqd7f20aJ0eGRtQoNLYKeqG+shB3j8TDO6o/tfAzTCfXUfCy\nCVUYO5H/PcQSzT7fIjtKq8gd3VUGAEi/U0/5jD6NhaBXpOF2qRsWQ9wk9a7zrGwQOXc1qbxEKASH\nz0f0wniVRkPugZ9R9UC5Nr+p4jJ5DMr3KCdlV+w/TiJtGArK7sDWyg2hPqbxe1la9ZC2sQAAOX8k\nIOi1PqT3rDwdmVKLEtZg0BFBdoHewpKsI9po9VxFUyGRh5BXn6aQk9DNVbpBEUvEyKmjl2iTWXMT\nI72lCYl0chtkss3lZTkVMupElbhQvAvHCr9HX/cpsOe7KIzrA1uvNrB284GdbzCs3XwU7kVMXYTG\nskLU5mehoawANTnkFak6vB+Phwc2ozY/C34DJ8I1ugcAQCISqgwtkuUgcLg8dHg/Hk+uHoOwsQ5+\nA6Tu8caKYlg5q/ZUpfz4KaJnrUT72etUytz/aQWaaozTjMZcODttNwbtfAUOwa4qqyXd30r/Q5wu\nD/9KRshLsRh7XjmpV9wkAofLAYf3bNWfODm8dVZda6hS3y2XRYqXTahSCVVtyqrG7w/Bt0vyqQVb\nEPT9h7DwdCaumTIibP1DkHvgZ8JYAADHth1Vyt+PXwhA6mlou2A97q9Xzo3wHf2K0Q0Gvpc7HIf1\nhYWft3SAy4XX4nfRmJGN+qQUNGY8AgAUrvoW3sveh8PwfihYFg/rmHC4vDxW515FZKVVNfU6ZBac\nQ2bBOQzt+Am4XONtfbWphvRo51UEvdYHA07Nx813d0oHOUDUwufgNSwadz7ex7CW5LAGg47UXE42\nyTyG5ht7Va/pyANAes01pNdc02ptOuP/leinslRLwiapbpxi7eoFa1cvOIXFAlAO/5Ft+gEgZPy7\nSvdsvQMR9tJclfML62vAt7EHAHj1HKlwL+23L9R6KaJnUX/AtH19ORuyREH1o3L8028Txp6fDQ6X\npC0zgPSdiYyve/eb/1CUkIOe68Yo3Ts8eAtCp3RCzOzejK9raow8R14xqTXhGtgRtndOgcPjo9vU\ndci5ZZrlL42Npp6Elkyd64m+o6Qnq8d+J0+yVUX43pV4NPcbBG78HzImr0Cb9e9SP6QBFs6Ksfo+\nw1+ifCblyw8RvTAeAS/MRM7fO+Q3JBJwLeh1btYn1m3DYD9IMRHYKjwIVuFB4NrbEQaDIDsXOW8v\nQcDW1fBZJf17VHX0LCr2HdNq3Tbb1yJ37gqFfAeeoz38NizT8p0Ap5I+B8Bc0jJdrqVtR2Wt9tEd\nsu7OXTZPAwAMOCkNdby75G+UXc9mQkVKWINBR6rPXIf7rPHEtdvr41D6E9tt0RTRdUN9+9sP4RLV\nFb4DJkAiEiH3zB5UPZTmXNQVPlI7f8qP0g8nn77Pwz22L4R1NUjfE0+UPFX1LJ38BZmMc0RnVDyQ\nb3jpvN9n0cg4NECz0206OQ9UMkVXH6mUyfz9FjJ/p058M0f6/jwV/722C20mxAJPbbRTz20xrlJ6\nJGHnfEQOfhOOXmFI2rcSTQ1sSWMyhBKBwnUvj8m4WkyviZagQYxX5noQr5uzdDO9nD9BnrQ/iEQk\nQt2dhxTScpqqymHh6IKQ1+aj8OQ+2PgGovT6eYX7XgPHoqEwBw1FeYj832o0lhTCyt2bcu66nEw4\nhLdTGEtZNx/RC+MRvTAe5UmXIWqoh2vnvuBaWhm0SlLNuauoOXeVlqxEKKQ8/Vd1X6F/wwrpAV/L\n5GhRFTP9Ek4kroQF3waDOtDokaEDj4quIi33BCNztez2bGhYg4FhHIf1YMRgCNy2VOE6/9PW+0fW\nnChPvYHy1BtaP1/w30EU/HeQlmzA0CkAgNI7l9TKZR38AcHPv4WAoS8rGAwsLMbi2IBvMPL8/2Af\n7KaQ6FyWlAdhnUDNk+ZP2hm2AR0ZLRuztbzu6fEirZCkF6Lvq7wX926OxnpZ+rhRCz0lfcsqgMNF\nyPR58B//OqpbhAqlb1kF5/bdETBhJoR1tSo39WTj2b+THyikfPkhbP1D4DdmKjg8PkoTzqL4MjMb\nUFNGWFYJC38fpXHr6HDG1mgS1iuECLUNGIUAj646zSmBBGeS1kAkbtJVPZODNRj0gF2Pdjr1Y+Da\n2YBrZ6Mw1pih+Qchi3njHNkFAFCRnqRWztYnEABQX6J5LC8Li744O2E7Bu1XrD+fMJc81rZT3GhD\nqKR3uk9TPgFkqyRJ0TQ/QV8UbZYe2GRMWanUxI0WEjEe/qI6hLTiTgIq7iRoqx4pdbkPpcbKM0Tx\nxp/kJVXFYoDDkX4BEJZV6GXN+zlHcT/nKHHN51nB0zkKrvZBcLLzg5WFA/g8KwhFAtQ1lqKmvgj5\nZckoq87Wiz4EHA4GnFTvUTKE94E1GBjgyZe/wmvhdOLac+4USJqEyJ6xXOO5+K5OCPhuIZPqqSV6\n8dOybmvouTcdozrCf/x02vJ0iZizHHwHJ8bnNWcKrx6FT+8xCJ0wR23okFf3EQCAjD+/NpRqLCyU\nNJbWkjZuI+PW0iN61sYwtDQOyAwIFmXvggxDGBWVp28CkFY41GfFJBbd0aWcKhMIRY3IL01Gfmky\nLfnIfSuQNlF53+f24gCU7j1P8gQ9+h2dC0iA88OM+3nybJXm0BN1ScplGDkWfATvXq3UDl0dwTtX\nkRoLjyjq9BuSqtQkdlNvIIpvniFed3g/Hi6RXcCztAbP2hZOYbHo8H68XjtMs7CwsOiDB1WXia+S\nBmnC7Ml8emG3vUcwW0ZSX2XRWViY4r/RG4kcMGPC/qYwRNYrSxC8W7nWcuAO3U4w8j/dAnGdZq3u\nWVoPt7/9EO3e/gJcSysEDJ+qQmY+YMZ9LFhYWgstPQoPL+82kiamzcPqm/LXkL6mW1Z1yeYAjA5h\nrvGoTVQbjRKfnzWOJQbA2ZWH/07VYcGsIgDA1ewg9AzKJmS2/uWN2G7WCmO68Pr7zvjpW+3Cjpqf\n8nvPfh6F3x9E5F/LkfbSCgCA0+DOqDyTCA6fB4lQhKCv5yB73ibi2erL95D/lfru37I1PGaMQPEv\nqvtLeEwbiuKdp+A+ZbBOHgZZ/54Bp1SHN7IhSWZGztz1CNioXEdZF4yRu+DWfSC8Bo9T8CTY+AYi\neLq8bCiZlyF6cTxSN3yCgIkzYdcmTK1s6KyFROUIQVkRhLXV4Ds4Mfk2jErbnk7436ZIvNtF91jW\nu1s/ZkAjFibwd+0EH5f2KKvJQpj3QBxPlnr/RsQuw6Pia/B16QA+zxonbsdhUMyHuJS2FQJhLSEj\nk2dpnbD5CqaLunwFY4Ym2blbo9+cGLR/Qffy7GXZ1Tg4/wpKMqsY0EyKsytPyRBoef32S4W4mh3E\n2Jq68HjJdgCAVYAnCr9/WmCEy0XkPqnBALEYlWcSwXOwhf+SqbDyV+yBRGUsAEDlWWlVO3XGAgAU\n7zwFACj7+z9N3oISPXbOAgAkz/8TFbdzjHY+yBoMDCIsLlfpadCUrGnLpIk+BsYxKlbJWACA+vxH\nxJgs74GMqA8+R+Gpv/Fot7R0ZcjMBYheHK8wX9Arc2Dl7k2MWbl5IvTNxUy/FaNy/yrbRK01Ym3p\niPLax8h8chGZTy4S4zJDIDX/BEbESmuEn70Xr2Ak3M1hyy0/a3A4XHR+aSUS//oUEonhP89NFbIc\nhsL6DL2vS2YY8Jzs9L4uAQeYvnsovNo6U8tqgWuQA17fN1xhrKFKgB/HHkN9JXPVyVp6GMiYPNMR\nH3zqivF9cnHgkj8AYMPKMoWxnkHZOJYYgGkj83E4IUBpzubrXM0OwtieOTh0NUBhLDNVgB3fVeL0\nYenBTH3qY4Rs/RAW7k4K+QQtcwvcpwxG9oItCFg+Q+P379i3PQq/OwCunTXEtaojQLjWlhA3CGDf\noy2Kd57UeB0Z91cfQadvX0FFsnGL37AGgx7IemUJeE72aLNZ85Phxsxc5C/brAetqLELDIP/+Bk6\n5yiU3ZBvpB7uWK9kYNi2CUX65jjiurG0SKf1tGHVoVjcvViBLsNd4eZrhTeipTWmf37QC/s35mDC\n3AB8/so9PLhRBSsbLrYm98D+r3MwYV4AXou4QsgCwLEd+Rg505cYV8XPD3rh2tFS+ARbwy/clliT\nxXzIKDwPX5cOGBG7DAJhLc7ek/7fHhG7DKn5J1BQfkdBXiCU1hDvFzUHF1Op+zmwmDeykCShoB6J\nfy5Ft6nrkLBzPrpP+4r1PjRD1+TmNz72wvYvnmj0jCovgqiyVidd6NB+fBBGfqZbuU5tsXa0xHvn\nxwEAkvc9xIlVhim9vWdHFT741BWFeUK1YyM7SzfB334ub8BXlC9UMkpkr48fVPx5TR2pXB3Qwt0J\nVRfkJW/TJi4nPAzZ8zejMbsQTkM6w3FgLB59tFXj91Z5KpGYT2aIBD1tABj8zfvI+p/0/3f4riUA\ngNzVOzVeozlV9wtwZ8l+DDg1HzWZRRCU1ELSws1wd8nfOq1BB9Zg0BOiyhpkvSL9z+L8/EC4TB6m\nUlaQlY+i7/agqaDEUOqREjhlNnL2bjfIWk2VZQZZRxUBkbZYNjYZe758RGz8n5sl3/T/sykXPz/o\nhdcirmBrcg/5+Pe5GPO2Hw5vlXZslI3X14gwY0UIfllOHgv73Cxf/LYiC6d3FQKQGxss5kd++W3k\nl9/GsA6fEGOn766DUKR80nT23ldwsvWFrZWrIVVkMRKlWTeReWk3/GMVu7nn3VYfusBCn9Eh9/DX\n7baI7W2PbXGFKC8RKsnkZjYaQTNl2j4XgDFf9DC2GgSxE0MQOzEE9w4/wtGl142tDgC5F8HSSp7V\nu3S9u5Kcg6O0Rs/6ZaW05i3YqFjCuaWHgayaEdkYGU9+PIInPypWdsteoHzQS3c+OrRfPQEAYB/q\nCYQyNq1GsAaDAag4eA4VB88ZWw21yLwAdblZOs0jrNYuFEdYUwW+PbPVL9QhqFcOD5g4LwAiodxq\n3/15Numz4+b4EwaDjBO/FOCby11VGgwT5wXg729yMfw1H7Vzs5g2wzssBUdWC1wk35QMaSftFlpR\nq+wy7hn+BpIf7TeMgixGRdT09P8ER7EAobCxjkT62aWtU3/cr7wAAOju/gL4XCtcLvqD1rNHHsYA\nAEJjrLHm9yBSGbKk6PC9K5H+4qfEv/pk+LLOiJ0Yotc1dCFmTCBixgSitrQB3w85bFRdJBLA3YuH\nya87EInOP8RX4KdvK3DkegBGd5N+pp683QazXijAC9McsGq+6sPVyH0r8HjpDoPobkiM3eUZYA0G\nlqekrF2A6IXrEDkvzihlU/n2DgZdz9JGuaLwgW9zceLnAspnWxoLADDydV9c2Ks6tOrAt7nwj7DF\n1gXpmilqoth4BcDa3QfWbj6w9Q2GtbsPuHwLxuZvP08exiaRiNFYWoiGkkLUFWSjobQQdflZkIhF\njK1HlxO340jHqZKZCyuYq+pCBd/WgfiZ2PkGw9rNB3w75n6/mv9sAKCpqhwNpQXSn01JARpKCyGo\npHcK2NpwCWgHz4jeEDU1wLVNByTtX4V2YxbA1tkHT9J0S3xsTQTaxxIGg4uVH8oac2lXSWKyQpI+\n+CjpRWOrQBs7N2t8lPQi1nXcq1KGLFdB0zGy0CLZv72Cpf/KQpMAEIaDzFhoLn/3VqPSWHOYPNU3\nRyI3zkTaXP0YTKzBwCJFIkbK2vkIf3epUpKyPuDbO0JY07ySg2GLDOc+qCPCgr6dI+2jcXhrHrYm\n94DVU2OivkaEdzsn4LWIKwohRM1zFeLPd4GrjyUa68V4O/YaAMVwI1lY0+GteRj1pq/KefSNjacf\nrNyebiCfbvS5lvR7hBgTDocLa3dfWLv7wjmqMyNzNtVWobGkALUF2cS/wlrmKosAQKhXf/i5dsSF\n++qbl/Gs7WDnFwxrN2/Y+obA2t0HFvbmUzHMwtEFFo4ucAiOZmQ+cVMjGkoL0VhaiNr8bDSWFqCu\n8DEjc+ubW7JKLM24e3i9ETQxbRpENQAUS6mqaubGFBmTP0P4X9KfT8uKSUx4HF78ri+C+3rrPI8x\n+CjpRUjEEqzvTN6JncU8cB3SQa/zswYDiwLpm+MQvTgebReux/0vmS0RK6O+4DEi3vuMMEr4tvZ6\nWUcdbj5WpBt22aa/Jao29x8OuKk0pkr26LZ8HN2mnKClb1qeCLMAFnaOsLBzhH1gJDEmaqhFypZl\njK2R+eQCMp9cUCvj3mUQfPqNZWzN1gDXwgq23oGw9Q6ES4w8/vvO1+bRMDJyyNtw8AzG7YNrIKjT\nrpZ8a8eaZw8ehzmPJB0kIjHSX1qul5CkyGH+ZmssyOBwOZTeBhYpPAcbdPhD+fMob/tpFO2XFjPp\ndGQJbo1eTbyWIRuT4T2lL3ymDZDfH7NaqWxqzI73YOklP0SqzypC6nvb5AIcIGTZS3DqEUG5ni6Y\npcFgFxSBwMnvqJURNdQhbeNStTJtXnoT9iFtSe+JBY1I3UCvylH0ItUbspS15tdUK2XNh4heHA+f\n4RNRcEJ64tCy0lHza029EVm/fI2wtz4m5mgsLkDqhk8Q9cHnOmrOwsLCYjyaV0OysLZnqyOp4Gzh\nDvT1eoXwLrhZBRBeBzqMmuqKOat8lMbHhqdALFL/95ZpY8GcQpDoYEijYXhn6c8iLfc4HhWRH9aZ\nGjah3oj65g1iI87hcdHxn4+R9PwaSISKYbK+0wfCa3IflZt2z+e7w2faAOK+XaQfOh1eoiRf+PtF\nlJ5Mll5wOOh0+BO4DIxB+bmn4XkS4OHKv9DpyBLUZRSwIUnNoTIWAEDUUK/2vlu3ASqNBQDgWloh\nelE8Utaq3wyrMxak979C2jfLIKrXf+k2bVC12W85TscooDsXAGT88AXt5/UBEw3VDBlSxMLCYvrk\nJh8jXjc10N8AP2s0impxvvAX4rq0MQfnCn+i9ez3x8MQGC4Np9y1sQgl+UJ0H2yPXiMccSg9GtN6\npKG8WLlykj7wjDCf0EFNMLSnIdJ/BCL9RwAAcopv4H7OUYOtrSmhyycpXEtE0gIqMT/Nwd1XFcNP\n1RkLAOD31jCF+7Vp0vxI9+c6o+RfeflbwlgAAIkEEpEY/m8OkxsMBsLsDIbmG3RVm3kOlwuJmqZn\n3kPGw7VrfwBA7oGfUZV2W0lGtk7ozI+QuWOdWl1UeSPC310GC0cXRP5vFaXhwcLCwsJi3vjHjkT+\nHWmDJgtrwxZyeFYIDLdSSnw+8Ze0hv+CDf7YeS3SIInRoQN8MGFjH0bnrMyvRcLPD5B9uRAVudSH\njC6BDgju5YXwIX5o082DUl4T5l19AV/31F9t/95tyQ9+Azy6mrTBUHPnMVwGxiiNV91QrpDYVEKd\nF9c8fEiG31vDFAyGltSm5MK+fRvKuZnG7AwGGbWPVFebUWcsACCMhfrCHFJjAQAEZcWwdPWAlYey\n2xMArNzl8YqqQpfSN68ijApb/xDU5ZKX3GRhYWFhMX9u/PEx0bxNIhKy4UgGZv0HuRj0vGFO/Zkw\nFs5tuI3rvzzQ+vnyR9Uof1SNxD8Uu2S7tLHHrH9GqniKHhbWPPjFuiEvWT8Vz+xtPBmfUxbi1JL8\n0mTcfXSQkTWy1x2Ay8AYxOyYg9xtpxCyVBqS9nijcnnapgpqo08iVg6h4/B5CtdkRoUxMFuDwS4w\nXOc5sn7ZoPJexrYviM2+lbsXGksUu0qGvrFQo7WCpr7HehlYWFhYWjFioYA1Ep4BvGNctH725q50\nnFmXTC2oA+WPa4iQonZjA/Hcqm5azfPKL4PYJGgSbo35HJ0Of4KQJROR/9MZPNmrfXhy0lj1uZsd\n/5EeSDcPXYrcOBO2YeSH2fpEuRi9iVOacJZ4Hb0oHhyuZm/BIUzZlUSF37hXVd6rSL6q8XwsLCws\nLK0fmbeBxTB89LW/QdZ5ddcQjZ9Z13Ev1nXcq3djoSV3Dz0i1qYT5tSSgC7Mhjq1Bjod/gS3Rq/G\nrTGf62QsANJEZ3VweFylPAhVxoK4sQlcS/1VHzM7D8OTs4fg1n0Qcd32I2mN64ytqyGooHaduXbp\nR7ymSliWYe2uulyac2xPOMf2pDUPCwsLCwsLi24ceRiD1/o8QHFBEzH229VIuHrycf5QpV7XnrS1\nv0byVQV12PqcacTkbxvzLwDNKju9vH2AQb0MEon6kHJToXmYUO39XDxY8IsaaXIebzyCiPjXcGfK\nBgirpN3gLT0cIShWzH2IWD+DmN/vzaEq5ys6kADvyczm1TTH7AwGQJbszEH0IvnpTdjb0h+eRCjE\n/a9UhwvZBoRqviDH7BwxLCZIwqNAdA98pNEzAUF8dOhqjeVfueHXzVX4bk25VjIsLCz6g/UkGI7R\nIffw5lJv/HwpgvSevgnsQT/23lTDedZ13Iu5l8fD0pbeFjCwhyceXStibH0/t44q72UXmXb1wdBV\nUwAA6Yt+g6iuEVxrC3hP6afQd4EupSeSICiuRPvfP1AYbz7PrdGr0enIEsJAyfxsD/K2nSLNayj4\n9Ry8J/dh+zAoI0HK2g/BtbBE1IdriFEOn6+2HKq4qRE8ni0A1VWWNCF713d6T2buEzwTN3L2oFGo\n6E4cGbUYx1LXqHiKpTWQky1ETnYNln/lppMMCwuL/kjatwKCeuWKKKwhoR+2xRViW1yhwdeNHE4/\n5Gnnq2f0qInubOx9gLanYdLW/owaP64OwSrvlVVnM7aOPnDsHKK0Cc9c9rvSBp7uRr36VhalLNl9\nVc8waSC0xIwNBiniJgGx8bf1D0bQVGl7eVVGQ8Wd63DrNkBpXFtcOvXW2WCQbfyHhM9DRUM+bub8\nqXC/uCZTyVjoF/Im8SwA2oZD35A3YcG1wtmM7wBIjZGyuse4/+SUkj4yhoTPQ01jMa493kWMdQt4\nGXcLj6FfyJtIKTyO3EryalO6wlR316Cenpi8tZ/CWFl2NbY9f4KR+U0Zdd/DTu/E49YW003GJ9NP\nnc6d3pGGGeZfO4Int07rXT9dKbl5FiU3z1ILPiU8Lh7pS/X38/IYOwHOPfoCgMbr8B2dEbzwU4Xn\nwpavQcaKxbSeD4+L12pdXWHiM4bMWACgdQK0qXW1ZkKfkX7vU8rIGrmp48jDGBTnN+G90ZmoqRRR\nyjPJuC/phR9vHnYENcXqe0GZAus67jVK4zknO1+V98prNPPCGwOulQXEjU3Ugq2MVhVrU5ebhcqU\nm2plnpw9xOiaTtGdGZlnZNRinE7/Ghxw4OOo2FCuoj5PSf7iQ2lb8GOpa2gbCyOjFuO/h9twNuM7\nwtC4lLUDgS5dFeSKa6UGkLWFI6FXYt4+4hkAcLMLQpTnIJxIW4d2PqPov1EjMXlLP2ohBvlquycS\nHgUSX21ClBOREh4F0hrTJ6ZsLACa62fq78fUKT603+AbdhnGWpfFMDyoukx8pVSch0Bcj8zq6yis\nl5YEPZm/hdY8dTViePhaYM+tKBx5GIMjD2NwKD0aEbE2+lSfNhKxxCyMBRk/v3TS4Gta8u1V3hOL\nDdN0Txdi9y9EzM/vI+qbNxTChVo7Zu9haEneoV1wiu6iWqBZQo17r6EouXJKtawaxIJGcC2ttHqW\nDNmm/0bOHgyLmI+CqvvEvaKaDFWP0SbMvS/K63KI66yya+jeZioSmnkNAKBrwGTcyNkDABgYOpvQ\nq0nUgKwyxdbtt/KkTV2S85mpb6xXOIZdrt9QG3w8uxinj0gTmQxtCLCwmAJ0vQutBVsXP7QbrWj4\nqPIyjAym5304lsVMWJOh12vJw2r5Yd5Iv/eVvAlkY2S81OG+wvXMxV6Y8KY7NvwdQowZIpdBFes7\n7zPa2tpQnK7fJHEy+Dzm9k6G5tbo1bD0cETEhtdh5eeGkiM3kfP9MeoHWwGtzmCQhSSpQyIS+13O\nPAAAIABJREFUgsPjw7P/KIgFjSi7eVGlrF1gOGmTuNQNHxNVltTlTGgDj8t8WawQt16ob6pAt4CX\niTGJROrOPZPxLRGG5G6nGFvYXF4VTaJGZpVlGA7XsNbCjNnSxkEyYwEA+kc9xoVUw3dmVAWXbwH/\nPi/ArW1PhVN5aUiPBAAHZWnX4RLeGRwuD7e2fIhO78RDLBQAHC64PD7K028i+7TU4LR29UbbSQvR\nVFsFCztH3P1tBZpqpX+I2s9YAb6NA4QNteBb2ymtJ25qBIdvAQ6HS9xTpV/z52S/x3S9Cp3eiUdT\nXRUsbB2R9MNHkIipwxnaTV8BC1t5x17ZWvbewQgf/z7xfpO3LYRYJCTWyT69C0FDpgIAniSeQn6C\ntEpK7Kw14HB54HB5CvPRRiJBwFv/A4fPB8/eAVlfrgAgDedpeJwNvpMz+E7OxGl9yMcrwbOzR9XN\na3Ds0oMYl8kLKytg376j1qf7PDt7hHy8ElW3boBraalwzyYoFP6z5ijMbRMcBv83ZqM6+SYcYrtA\n3FCPzDj1p3PhcfGouZcMm6BQVFz9D2VnTxDjJScOw7lnP/DtHZD+6QJivPn7lL126T8Erv0Ho+b+\nPTh26kr7PbfcaKvbUEcNfRsJO+eDb2UHYWMdokfMobUGi3Y4uPAwaporOAY+EGptCGqFsLRTvx0M\nG+iLjHP5jKwnFAnA51mS3uNwOJBIlJuZmRKC4ircnbbR2GoYHLMzGGSb9NyDv6IqNUnhnv/4GbD1\nf7rhVfMf7v76hcQ83kNfgEffEXj401doqpJWl7HxDUTgpLfBtbIGoDo5uqmyDBZOroReuQd+QVWa\ntMYy18oa7j2Hwr3nYLVzGIqssmvwcYzG9Zw/lO4JnuZH2Fq6QCxR3ESRyZsbU37UrAyerrw03QF3\nEhWNqIZ60/oAFAub8Pj8n3BrqxyTe2vLfFg7e6Lty4sJQ0HGgwPfor5EGiIn2xgDQNtJC5UMAdk1\n38ZB5cY47+ohFCUpx/Cr00+q44fEOo4BUajKSVX7fju+vV6lfqqwdHCBhS257jWFWQrj7aavwN1f\nlxPX9j4hSs9Z2DmDy7ckxjvMVN+whxQOBzk/fANAHvMPKIbzNB/n2dkT9xy79CCXb6+6YgkVIR+v\nJObymTJD4V59dqaSfH1WBiFf+NcuBV3JcOzcHcKKchT8Li0pGB4XTxgMAFB+4QzKL5yhnAcA3IeP\nJtaWCJvgPnIsSo6pD1HlkLgmXa0DUNaQQyINFKScAwDYufqjsiAN9h6qkzufdUb6vY+8uvtwtPCE\ng4UbCurodTz+4XQ4/ILlm02JGPh6YR5O7q3Ql6qtni0jj+B/F59XKxMxxI8xg6GhqRL2PPL+Di72\nQSirzmJkHRZmMTuDQYb/89OB56ervJ/ypXr3a8raDwmjgWdti/B3l2msQ/qWOIUqTf7jZ1A8wSxi\niQgjoxajurEIl7J2qJVNL74AP8d2GBm1GI3CWljx7RRyH9KKzqJ/yNsKY8dS12Bk1GKIJSJIJCLw\nuJZmWZUpoIu7QdfjcACxeZSSVklDBXkJPZmxoAm3f1pCeC5ubVH8vfTrOQZ+PceiOicNGUe2ajx3\nWdp1BA+fgeTtH6uV43C4CoYPHaJenI+yB6pzotTNl3PhL6WxtpM+onxOW4IXLgff0Ym2vHPPfvAY\n8wKjOhQfPQj7mFj1QhwOwlfRD3nxHD8Jeds3qbzvENsFzr37Q1hFb7PY0rCgMhgseNZKY1Zq4q8D\nOo1Gwb0ziBzyFm4f/ELt3GSeCj7XEkMDqb3k2kC2ni3fCf0DZullPbW60Ag9UoXMWNiyogCHfilj\nSiVG+G2q6RdaIKOxmjqBN7An/XKyVJRXZ8PemtxgiPAbiqup2xhbq7UztE8cTl1aSlwP6vkpeDxL\n3Evfi4KiJDVPao7ZGQwpaz9ExPsrwbcl/9BO+XKBQp4C1Vwt+znIaKqqwMNf4iGqq1E7h6xKk8+I\nl+DSsZfS/bxDO1GZkqh2jpabcLqb8hNp62jJyTiX+b3Ke1ll15RyFNTp0ny8pFa/ZWXNjb07q/Hu\nAmeFsWfZZS5qrMetLR/C3i9M6WRfZkCEjnpTq4pNPGtbCBvrqAWhefiPSNAACxvyz5lO78Qj49Bm\nVOelE9fU89Wj9kk2Mo8y/8ew6tZ1lJ6Uhj3ROW33GPOCQtgOE9gEhlDKhK/6SqU3hIzqpJuwbxeL\n+kfKJ47CqkrUpt5FdbL6QhfN0TT0SiBSTl4tqLlPIilFlq9wffdCdH5xhcZVkoRigUbyulInNHz8\nuq6MDrmHsdNd8c5nPnhnubzj7XdL8/HvbuP2oCm813p74Ng4M5d3UFKVgQCPbqT3HG3JuxizqKZL\nu5lwcQrGqUvLwONZ4tSlpRjaJ441GADgwbefMjibhJFwoYLjf6HguPKpIsuzx0/fVuLdBc4YMMIW\n549LN7PXssmTnj28eSgulIaBHbqivkW8KRA58QOk7dsACztnlTIu4S0rh3EASFCTpzp5P/PoNq1O\n3p0CY3BrK/WmrDwjEZ4dBxHhT/a+YajJV19M4N6uOLU61RRKN7ERE+bS0pVqPjo0lZch4J15AAcQ\nVspP1V0HDIWkSQC3oaMgKH5Cay7XgUNh366jgryllw+svKR/sO0io1GbnqrWXZb15QqEx8WjKjEB\nEqG8ugnf0QlW3tLSiQ6xXdDwOAtN5dLT4JAlcSi/eBbuw0crzGUX0ZaQFzwpQGNhPp7s/x3hcfHg\nOzrBJjAEFZcvKKwRukx6il+dfBOFf8kLOAS8Mw/WfgEQ1coPfJ78vQfhcfGoy3wA29AI2sbDieyN\n6Of/Ojjg4FzOD7SekYhFuPnnUmpBFgK6Sc8AcOjXMhz6VdG70HOYA3Zdj4SzG9+oSc+tFWEjcyVs\niyuV80JZtEPQVIubd6URJhwOr9kd5sOgTd5g6DbjK1z/Rbta1rrOqY+1DTE3i5x+c6KNsm7Cfw1Y\n94Pc5fpCvzz8fVHRIJBIgCPX5I2ACvKUy8k1r640/V1HTH/XEQAUOkbTkWlJ842r7DWdE/jci/sJ\n+aQfPiLGW+Y6KOYLyD14ZQ9uqNQj+cfFpOMt9RPUlBNjZWnXiXwlv17j4Bk7EADg22M0fHuMxv0/\n16GhrADZp3ai0zvx8Os5FoDUgKAyGADg3q5VpO8r/eAmdHzzSwDA/T1r0XbyIsq5pPPFqfw+0SH7\nqzjScdnmt+zcKdJxVa9bygueFEDwpADVt9V7RWUIqyoV5i36Zy8x3vJeSx3KLyiGb9Q+uE+6iScb\nsw0NR1NpMbI3SA0G9+Fj1MoDQNXNa6i6qexFpUIsEeJ8jnZeoe7TvtK6FwOLenoOc8Abn3jDN1Ax\nebahzszjQU2UqgJ6nlwmsOTbQiA03HrmzIWELzC0j/TvQtrDw3iQdRT+Pj2gj9KQHFPMRudwOIRS\nxjQYWPTP9GszAQD/zjqM4jtFmHbpNezs8zOmX5uJX3uoz8ugw6LkiSrvPSuN25jC1Ju8sTw7+M+c\njaaKcjzZ/zsAIPTTL5C5Un0eiz6RGQZdJit2WeVZWGtsMGhSlYkJDLVecw+CqiZudBu3AdJzgh9X\nF+LAjlLmlKSAqskZk92QDQ3Ve7vyw3389z1znpvhndVHily8uxH1As1C5lTNmV+ajLuPzKD8ux6R\nSCQ6WxAm72EApBv8gjun4dN+CLHR7zbjK5RkJMDSzhn2HkG4uetjYlwsakJFTgpcg2IV5GVz0MHR\nJxyRw99RMCzaPf8RrB09kHvrX3hF9kHyvjgFXdxDu0EsalLQJeXIRkSPnovkvasgqJWGENi6+iJm\n7HyFubvNkH5It3yfwX0mwz2sO0of3oRbSJdWZ+jIjAKZgZC2T1rtJnnbLWOqxcLCYsLk7vgezr36\nIfTTNRAUFyJr3Uqj6nP3iPTzO/38z6gqlIdbdJ+m382+OdHcGMitvYe7FWcU7tPpBA0Yt8fCs8yd\nA9mMzldUkQpP5yiV9/u1m4vS6oe4mb6T0XVbI13bz4KzYxBx3TwJmknMwmCQbZKbb/bJNtsybu6U\nhjZknpde+3V6jpDPTTyqJE9GVYFyjJ2Nszdu/b4UnabEIXH3J0q6ZF3aozR3bclj3Ny5GGKRvApB\nXRl5aTKy9+ke1p0Yry8vpNTb3JElB5dn6F79witKdZw9CwuLeVNx5SIqrqjuoWNI6sqln+k1xWw5\nSDqUCwqMrQKLhlTm1zI6X9LDPym9DG4OIRje+VOUVj3EzQzWcCCjc8zruJ36OwRNzP58yDALg4EM\n/86j4dN+MC1Zn/aDkXfrX0bWFQqkVTPEQrkB0GXqF+DyyZuQWNo5I/bFpbj+ywKt12xuhBTcPaNG\n0vyQhSSdfP84xv81Efa+DvDq4gOXUBedQ5Je20PPm8RCDzYciYVFPbLmfTLY/AVy8uqUK03pUmrV\nVIgc7o+0E7nGVqPV4eYYQmlcqMPXLRa+bhQln02IE4n0PaYcDtcgxgJgxgaDT/vBCuFG6qgupE5u\n1IXHCQdQnH5NSRdRUyMEtRU6GQsAWl0YUnOaGwUHXtpnRE1YWFiMgSYx9IPbzIYlz4a2fMv508sv\nIbPiKi09VKHvnAIW82XYks5maTDYe9pQC+mB6rpCONh6G2Xt1sLttN8xtE8cMh/LC1hk5ZzTy1pm\nazAAgEdET7Tppr47IQCkndiqUQ4Dl28FBy9ph057z2DUVxRAJGhQKR/UexLA4SCo10sK4zwLK3Sb\n8RUkEjFu/LoQgARcvhVsXaVlC53826K+ohCCGtW1mwvunEa3GV+h/NFtuAS219n4AABwgFd/GwTf\n9q5aPS6oE+LvD64g+yp5cy9j49XWGVO2Gba7s6kROcwPY1Z3A9+KRy38lAvf3cOVbeo7JrcGPMIc\nMXPfMI2eubjpHi7/0Pq/N6ZOS2MBAGz4jqgXVtF6XpWxoCuyZGdhYx2s7F0hamoAz8IaxZkJyLqy\nRy9rmjN9PF+Bg4Ub8upS4W4VACueHc4UbIdAbNqVceK77ceH1yeovG/jRB5pYOq8e2K02vtMhyPJ\nuJL6g06eAxagqalObzkLLTH5KknmirN/W3hF90faCWn3WlOozPTBledhaasfG3F9t78hEmhezm76\ntZkQ1jdBLJL/yP8YQj9W0creAoMXdECHF4I0XltfrI01jqfEI8IJM/8ayshce96+aDIGobpKV5p8\nr9XNowmJv2fi5BrtGuLMvTgW1o7qNxXlj2vww9jjWs3PFFweBx8lqt4YyWDi/7omHgYyL0B5Qx6u\nFfxBKm/Dd8SAgDdpzd3dZxKcrXzB5ag3stXN0WHcItz+Z618Ti3KqrbWKkkKa5L0XNCkD4MxaY2V\nkoz9nlijQRFNQpJa4u4aiZKyNKXxZ6ZKkjni3W4wKvOMfyI57ZeB8Ovopvd1Flx/gXhdmFKOX6bQ\ny7Wgm6fgEe6El7f1g60Lc90mWwv6MAQnb+0HAGiqFyK+p3mXo2PKUJDReUooOk8JxZn1t3H9N80a\nEG3sd4hSH5c25N2lDQkdY+HyD6o7HmtC4pOD6OxF7SluTkl9NtxtggAALtaqGx5295lMe86Egj9J\nx+mGKgEtGyexqEIkUe45Yy789sppvLpbdaTCuHU98c9H+vFk6QPXIAe197U5CNSUE4krWaOBITq2\nffXZrpJkjqQe2wS/jiPQdfo6VObeN4p3gemNEl28o12wKHkixEIx1nX5W61sz0W9cXXtZco5Z+5l\n5uS8NWFlZ4F5l8fpdQ0LGz4WJU/EV90PMNrp0xD4xLhg+m56hRG0QVNjobVxcVMKI/MU1dHLMbPh\nOxKvbxTuo7WRb/6MIbC0c1YopZpx8TeDrm8u8DiKWw9f20gjaaI5hSmqQ4gBIHKYv9r7psYbB0ao\nvR/ffb9B9GCNBs3pHvsOHO0N9/+NNRj0SF7SceQlGT60YFHSRH00+dOYU2uSKWUiJkQhYoJiLWYm\nGra1duZdHgcrOwuDrTc/YTwA44VbacqM3YPhHeNibDVIObU2GUMXqa/YsSh5otG+11yecT883Gza\noLT+sdJ4/4BZKp+x5juigSKPoUqg/xC767sX6n2N1sCxvG8V+i48rL5hFuFIMtZ13Ks2jOejpBfN\nIjSJKhTJ0MhCcVjDgR4JyVvQIWoKbqf+TozJuj7rA9ZgaGWMXtXVJIwFALj110NKGdY40BxjeY5k\na5u60fDmPyPgGqjfsB5dEqBv7s6gNBiMyQdXqMODHpzO09v6ES79cKV+l9I4p8UHm1giBPfpSXWs\nxyiVeQwy7hazXd1NCXMyELTB1I2G6FFtKGWMpb/McPBwCken0ClG0cFcaG4sAPpr2gawBgNthnVb\nQTp+8vpyrZ+n+yxdgnt5od24QEbnNDS9l/TF5dX/GVsNk2X2yVHGVsGkjAavts54cr+CuObyOHo3\nFgBp1SRdqK9ohI2z+nycFzb0wt8fXNFpHW2gU1nr7w+ZjdFunpPgZEWvzGJK6Rm0cx8OgDyPwcs2\nTOG6SvBENyVZGMOW74Q6YaWx1dAJKi8DAAya3wFnv7ptII3oM+yTTug4KVStzG9TTxtIG9UUV6Zr\nlACsyjORX5qMu4/MOxdPFUP7xCkYCS2vmYQ1GGiSnPEHnO3bwNOlLWysNA91yMg9BWeHQLg7hetB\nOymTtvTV+JmSh1W4tuMBHpzJg6BWORHNO8YF/WZHI6SvZrWSj61M1FgXAAgbF8EaDCrQ1rOQf7sM\n/yxOQGWeYmk8KwcLdH0lDH1nR2uliykYDV2nhuHI0hsAALdgB8w6MFyreSRiCThcw7nmvhlwmPLn\nGTHY10DayBn2cUdKGbLPCV2hyknwtlOOcc+tvkMYDGR00jCRmsVwuFu1QbTXQABActlxFNQ/MK5C\nWkJlNHR9NQJdX40wGU8Dh8vBgkTqvyN5SaUovKc+V4PFNDh1aSmG9onDmSufYXCvz1gPgylQVH4f\nReX38SBHmpOgyuOgiqyCi0DBRa2epcPEb3rTlm2sbsLXff+hJVt4rxx/zbmkMBbQ1QOvbFff5yB5\nX5ba+6+cm47dA38lOj1Toc3mlGpDVpZdjW3Pm0eYwsJb1FVrmlNVUIfNI9V3N2+sbsKlrfdxaau0\n2s3I5Z0ROyFYI52+7GSYhDhVRA71IwwGOsbCv5/dxO2/s2nNHdzbCy9t6qNkSCT+kamxnmSImsTg\nWXDVyvR+qy1j1Yjo0Pll9aeOALCht+FP6mI95J61/BrDfT9Y9MPj2jt4XHsHADDM9x3EukoTb80x\nTOnrnn9j3tUX1Mp8lPQiIAHWdTKe4TDr4Ai4BKqviARI/y7ufu2sATRiYQqZ0aDvfgyswdBKCBvg\nQ0uOiVPhnBvFCvOE9vfBi9/KDRY6uQu7B/4KQDmHga4B8SzhHeNC+/Rbk5K2LTm2IhHHViQifLAv\nJmzoRSnP4XKM7mmwsJF+hKkzDn9++bRC2BJdsi4/UTCIxn7eDdGj2+DkF9r1YGjJ+q5/Uxq1/eZE\nG9RgMBVcrQNQ1pBDXHM4csPqdvFRjedLKjrEiF4szMPjGK54gz5oahDRCk8CRzHJ+MgnCUg5qpzc\nzxTdZkRg4AcdNHrm5q50nFlHXazkWab/qLWorniMW5c3aT2Hf3B/hLRVbJZ34egijedpmeAsu2ZD\nklhUEjOaOnkJ0F+Fm8wLBcTc7x57Difibmk9V8quu0yp1WqYQbM06E+TTqMoTfONcUvSz+Rjbew+\noyZXa0JwLy+V95j8P3/ok+s49Ml1xuYzNXw7aNf5XR9EuPbD1fzdlHLZVTcR5NgFABDg0AE51eTx\n4oW15hny0lppY9ce0c4DAQDXSw6gtDFH/QNmwLqOezFjz1B4RjrTkh/9eXeM/rw7cV2WXY17hx/j\nzoEs1JY00F7X3tMGYQN80GNmFBx9bDXWW8amwYdQV9ao9fPPEg7O9PZcZPQftVbleEriTpQU3qE9\nl6E6PMt4Jg0GPs8a7UMmws0pDBU1ObiRat6VesZ83o1SxlCnwFRhMFTc+CaBIU1aB3Q37dueP4Gy\n7GpG16ZrNBjby0CWu1NdVI/vh2l+Em1orvyYil6zotTKzD4xCt8P1/97efW3QZQyhvo5O1vR85im\nlp4jDIYY92EqDQYW06K44RHj4UemViJUU1yDHNDvvRj0ey/GKOsHdPFA2slco6xtrvQb+Tk4XHmR\niPKSdNxJ+FGlfJsw1Q3/ACC68zSUPknBvZu/0NbB0y0aRaXynjgebm1RXKofr7TJGwyyeP/7jw4j\nt0h+umdj5YK+HeYBUK425OIQhK5RryMz7ywe5p8jnU8uG0iMMV21iIWarvN6IPrlGIVSsGypVc1I\nO5XHuLEgY13n/bS6/vZ+K0qnUqNMUl/RaBbGAgBc+PYepcHg4GVjIG2My8OKawhx7qE0bm8p71RP\n11NA1+BgMQ71IvU9M1gMz7h1PYnXqcdzcGjRNSNqY/qQeQpc3MPRf9RaleFFQRHyPLvmMj4B3RHe\nXno45+alWRGSqNBxCgZD29DxejMY1GfcmQDFFWkAgLaBYxTG+3aYS7x2slMsqdc5YhoAKBgLXK4F\nYRiIxU04df0znLy+XMFI0EcyMot6krcl4teeO/BrD/kXixQ69fAB4MB8ZktcNkcskmD7Cycp5frN\nMc6pGBnfDDhsbBU04t5h6jjmF7/ro1cd6HiS1ndV37VdVx6Uk1dH6+U7lXhNNxeho+dYRnRi0Q9c\nDg8j/d4nmre5WvkRic8sxidqRAA+SnqR+Jpzhv190gRVYUcyhELFkLOCnAQU5mgX7lpQlAQLC3ko\nWmGx/nJQTN5gSMlWVc2Hg+q6QgBAh7DJCne4XOUkqiFd5LFep2/GQQIJcd3caOj01NhgMQxNtU3G\nVsFksbSldgAeX6Vd+VpNKHloPqeB67rod1OrDw4vof5DEdpPs7LG+kDUJDboepY8qWdFk6RYT1tp\nlSdrvrwaTF2T7nk9LMwy3He2QkhSWWMefGwijKgRizpsXdX3jDEVxBKRQde7f2sXLhxdRHwJm+qI\ne90Gqu76/jj9lNLYgzvyCloRHeiH16VnH0P/bosxtE8chvaJw4Ms/XnXTd5gEDTVqLx3/5H0tMna\n0on2fKrCjs7dklqE+uyTwKLM9Gsz4RjgaGw1TI4O44NoySXtVV++linEQurN4rxL4wygiRok9PRk\nUaTTpBBKmZSjhk9KDXLsSktOIKonXke7KRcIuFtynDGdWJihScwm17IwT9HTiBR9weXJDy8uHF2E\n4gLFnKnLJ1egpFBauMXG1g2qqKpQ71X29qfOS23O6cuf4tSlpXpPgjZ5g4EMP/fOAIDKmlzkFJEn\nyRZXyOOpPZypTy6ahHWUMuYMVZy0sfi1xw5U5ZjPCbaheG5FF0qZE6u1r0alKXRO7q3sjVsecW1H\n4zeS0xZZLwx1TNqseWNGOgxf0olS5tDHhilGUFr/iHgd4txdjaSci7nbidfWfOXDh7IGNpHT1LDg\nKp5YB9t3NpImLK2JnGL9VrFr15W67HtK4m+UMs09Ec1paYDQpXfnDwgPQ8tSq0xi8knPZEQHy2O7\nUx8dRYBnd9hYuaC+sRzeru0AKIYyBXrL/9C2xjyF1BO5iBrur1am//sxuPKjaSSlsjDDrT+p+10Y\nmsihfkg7lWf4hSXUIqbMf9+noM/bbdXKBPdWXT62tXCv5CT6B8wiroOd5CdtVYInpM+wp9Xmx/WS\nv4n8Bdm/5ti0jcW0KK95RC2kAw7O0n1W6ZN7epm/vPgBPHw0653Rtf2buHLrG3SOeQ03725X6FnD\nNGbhYUh8IG3yZWPlQnJXulPo0/5/AID2oS8BAARNtYSEs4P2NXPNgYMf0atmsCh5oslXXBn5w2hq\nIRajsG/uZUqZ8V/1pJTRB+bsXZBx+0A2pcyAue0YXZNOZ+dTaw3XyKlOWKlwHekq7yh/OW8nrTn8\n7OUJ+IaOaWahR2ljLo7lfavwxcJi6ohFwqev6DVSVYBD/Ux9XYnG01rwbSCRiODiFAwAGNzrM43n\noItZeBhKKzMBACG+A3Av6wCpjDqrStBUAysLaRLcs146dfaJUQAMV09dU9yjPYytgtExhQRXMjLO\nFRhbhVbNv8tvUuau9JwZifMbmWtuOOzjjpQyN3dnMLaevhCI6okkaX+H9sR4SqlyciELCwuLNpSX\npMHTt5PGpU8BwN6healncuPBwtJe43mv3voWXA4P6dnHMbRPHC7d+ErjOehiFgaDDF/3ToTBoMpw\nIOPB4+NoH2reTV2o0LQzr0x2fbe/IRIYPlF0+tWZpL8zbFlVeiU0c29pfhLBwtIcniW1gznnRrEB\nNNGdi7k7MCRwDgDAxVpeZju3mr5xZcWzg72lO1ys/eBgIf3XkqfcOXdk8HzUCytRIyhFeWM+agQl\nqBaUoL6Fd4TOes7WvnCw9ICLlfRfdeuVN+SjpqkUNYISlDfko0lcTzKrauwsXGFv6Ua8P3XrVQuK\nUS0oQU1TKSoa8lAtKNV4PaV5n4YeqYP1NLCYMqlJf8DTV33OV7uurxGvm/dk6NxX3grA3bs9Hmec\nVnrWP7ifxjpJIIFEIsKjvIt4lHdR4+c1wawMBkDapRkA8kvkCZ+19cWws/FQWS2psOxOqzcYtGXB\n9RcAAKfXJePGTsOdJP7akzUMdOHKNjYfpTVycdM9yp4WAz9oj3Mb7ui81oc0+nzsfuOCzuswQV6N\n+pjhJnGD2vvqGBk8X+NnbPhOsOE7wcNWucLUsSz1J3xar2dP/vdNH+s5WHrAwZLc20u1niqaGwMj\n/d5XuOaAi75eU8keo826jnuphVhaPScSVxpknf6j1iLt9p94knuTGOs1dDksLJ8a4RIJwOGQ9mQI\nihhOajA4ugTqrNfQPnF6q5ZkFjkMAJCecwIA0DniVaV7l+9uAgB0Cpd+4GTkKf8gZFAlPeszYUTf\nrI3dB4lYu+zPIR/FYlHyRCxKngivts4Ma8bCNA8vkSeAmgRahHeySKHTLbvHa8zUq+dY3gVrAAAg\nAElEQVTyTfOzLqvyhtLYneJjRtCERV+0zC2RQAw7Pvt3h8X0eZgq73MQ2WES+o9aS3wRxgKAC/8u\nVjtPy/Cjrv0/JF7fuBBPS5fggIFKX/rENP9ikJBdeAkA4GRPVg1Iukm2t5VWEcnKVz4VO3n9M+L1\nsG4rEO4/jLh2d45A73bvYVi3FfD3oK5/a20pL93H41rSUZ+Az5OXk5PlVTDJl5326zzHa38MwaLk\niRi7hl5ZQxaW5oT196EWYlFJ0l7q6lfRzwXoXY/aEu1P7XUhrew8I/M8rKBXDILF8HA5PFhy5QU4\nBvu8YURtWFjok/vwPGVXZlkYUstmbjcvbsCdhB8BAL2GLkP/UWvRe9hy9B+1Frb28ip4dTX0DgSz\ncs4pfekTswtJAoCUrINaPCXBqRsrMLSrNOk5yKcvgnzo1TXvHv0mnOzIy5YO7rJE4ZosqVqVV6N/\nxwUK1yKxAGdurqalkzrWxu7DR4kTwOXpdtQb/VwAop8LQFO9EPE9tfmeszyLBPXyQsZ5wyVICxtb\nVyWc46tuoeOL6pupjV3THSn/at9MjU6ezHdDjmg9v65oE/aidaiMls9pS8v1bDpGoz4pxWDrmQLH\n8r5VyGloFNWy+QssZsODO3uR/eA4eg5RDP0pLbqPezd+Vhi7fFJx/1dbXahwzbdQzCOSiE3375lZ\nGQzqKhzRqX4kkYgJuRDfAQj07gOJRIzCsjvIzDursnlbQso27RTWQDemWdd5P8ABFiXRT4RWhYUN\nn0iSri6qx/fD9Nd6nMX8CeisusOlPqgqaN1NF/WBqVbiehbxeH8GHr+xyNhqGBzWQGhdVOYpej2d\n/JQPNCrzAtCmbR4qq5QLrTR/Pr9QhLZd8plXkkEEjdWEJ0FTLhxdRJrbkHTle1SV69ZLQp/dns3K\nYGCSh/nn8TCfGde3ySKReht8YlwwffdgRqZ08LTBouSJyLxQgL3vU9flZ2ld1JU3wtbFSq2Mo7dy\n5RUWzTi/8S5lz4WY0W1w78hjjedu0426dPEmLb0LbbY3+yMokeDxrMVK9x+/sQieC9+GdaTUiyIR\nCpHztqKnFgBsu3aA+7vyRFhNN9V+8UvBc3IgnuN7uMJ3zSKFeWT6kOlfl5CMkq27Sd/j4zcWwSdu\nASx85N/LlvoFbP0cHD5PYay5DN/dBV6L3lFal2wuFhZTRrbZb9ejAG6uXCycp9xxXUaTkDzPUmZg\ntDQ8WivaGhvG5Jk1GJ4lCu6VE30XNCm9qo7Q/j5YlDwRIoEY67v9zcicLKaPoFZIaTBYO2qW18Oi\nzNUdaZQGw5jPu2llMEz5sT+lTI0W+Qtttq9FzdmrKNsp/Txwff1FpQ25TK78939Q9OVW4lrVxl02\n5jC8H+lc6ij4NB7+G+XeXd8vFgIALLw90FRYDK69nVr922xfizbdY0nXbLN9LQo+3YCmvEJCv5b3\nG+4+QNGG7cSYXd+uCjLCknLkffSFxu9Ln4yI/kRp7HjK50bQhEWf3LjgAzs7DqOn+C4BORCLgZxc\n4JWZ5GW/ybwOLOaD2SQ9szDD2th9jCRGy+BZcrEoeSL4VjxqYRazh87PWVAvpJRhoSbxj0xKGfdQ\n1Sd5hsQnTpqPJdtsA0DZT9Iyl14fz1aQlTQKUH3qEnFduPIb0jlz3pJvXqtPSOuL2/XuQlsncU2L\nUDUOB6LySri/Ow0A4DJlLCr2HlWpv7pNfO68lYSx0Fy/5jQ3FgCg9j/l6k8sLMYgPJT5s2Kx4ds5\nsRgY1mDQA5tSBxpbBbVIxBKsjd2HtbH7cOLzJEbmnJ8wXivvBd+aj5eOTmFEBxb9Y+9hTSlTXahb\ngycWKSe/oP7dfGP/MEqZ5gT28KSUWdtR8y7wFj4eePLF96T3rMIUa4vnvKeY0yV4lKdw7b1Umgwb\n8MPnhPdB5nFwffUFjXVzfG4A8bpgWTws/KX5G3Y9O6Hq3/OU+nsvfU9pTFxdq3bNsl/3K+htLhxP\n+Zz4MgYjoj8h9XKYE81Dar5e66IUYtP8+rcf3FGZF6DwtWyRcr8N2TMtZZsz81V7pftka8vGfL15\nKuXovs/mz6qbS5d1yOaQfd2/6Uu8vnPVvKvzjbs4B+6d/KgFjQgbkvSMc2tPJm7tkZ5kMhGutCh5\nIhH+RIcpZ1/FnuHyOOFeH/fBlS8uqXmCxdQpy642tgqthvSz+Qgf5KtWhm/Fo10p6uUfaHQS1a6V\nC5ryaPYGoTiKtAxU/X45lhaaqASIxXCeMBKiyhrpZb3qUCtV+lsGav5HvOb8NQiyc+H96f8IoyF3\n7gplrwdLq+b1afb4NK4CUyfZYdeftRjYT37gYmvLwbjRNkphOpV5AVi9rlLp16QyL0BtSM+GNS5o\naJTAKyRXpUzzPAFdE4ub60KlG5P5Cc3nqqkRw8kvX5pMHWD+29ne34wHAGTsSkTKlitG1kYZ8/8O\nmxAbkvrh302KGe6bUgdiTtQ5rL/eF+kJFdg65y4A4OXlEegzyQfp1yvwzWvJAIC+k33Rc4I3Ns26\njUEz/BHRwxlfvyo9Zfzoz87wjbDDipEJqChs1Iv+zTf68y6Pg5Wdhn+cn6KJ0fBbr58UrkNGhbEG\ng5mTfs60q1uYE/vnXaE05OcnjNfISFfHT5NUN72kwrZ7LGrO6977oC7xHmy7tmckrr9w1bfwXj4X\nbm9MQvmew2plVelfeyVRq7UFj/KI9+A67QX4b1xuMrkKLPrFy5OHJ0VSI37j5mpU5gVg15+12LfT\nA5KnBnlBOnmpdgAoz1HegE+bRZ4X0Bxrq2era2bfYVIjv6hYBE8Pw4VFczhc9HvuC53maJn0/E+/\nTcTrcRfnIGxqZwBA7skHSFx5Uu1cA3ssBZfLw5kr6hsT6wobksQQm1IH4oOOF3Fyu7KVHXe2FxZ0\n+w+Hv8kmxvatycD7Meex7f17mLG2LQBgyooIrJ+ciPXX++Lod9kI7ybvfLluUiI+6HgRq8/10vt7\nAYCve/+DtbH7UKVleAldb4WVo2ICbdIW7f44s5gOmRcLqYVYDM7sk6MoZYrSKrSau/FBFlynTyC9\nJ3ismQFZsmUXAOUkYW1ovrYsz0BYVAqunWIlL3X6l+74S2c9mudGtHa8HaMxOPIDDIn8EF6OkbSf\ns7eirt5lLqz+lLxrNZ8PfLJCu9+xQ/+q/1vc/OT9Wak01CiQWl9CA7YusLR21NlYoOKffpvwT79N\nKE7Igf+wCIy7OAcjDr6uUv7ctTicubICnaJnYGifOFjw9VOpkDUYGEYiVvbnLx0kdS3lpdUQY02N\nUn9jfbUQ3Z/3UnoGABpqlJNHK57ox7ugis0jjmJt7D7S98UEk09OxfRrM4mve7vu6GWd1oa1k+lW\nIqorM+z/0dbOjZ0ZlDIW1tSnaw6eNpQy2vJk7RYAgOsM+UGB7HXhio2aTSaRABIJ3F5/SWHYKlJ9\nMzu6lGzeCc8Fb0LSJP98JdNfl/wDz/mzFK6tYyLUyvttWKb1WqaCjaUzRkR/glj/8bDg2YDPs0ZH\n/4kYEf0J2nqPIH1GlrMwIvoT9Al9k3Tc3PIa7txrwksvqN6wfb9NfyGbTn45+OKrSgBSw+HhHdOO\niTdHeg5WLgGtL67M/wdHR26DuEkEK1dbjLs4B6OOv0Uq2yHqFbi5hOPUpaUICxyGQb2Y7/9lliFJ\nI5ylbeSPV2ynkDRNRr4biOSTJSjIUEycq69WNBBkrktZWBMAWNsZpxqRrLLSe2fGwM5NfVlNGXRC\nk37tsUNn3VobErEEHK561/LITzvjwPyrBtKIxZicXpeMrtPC1Mp8eE33sKRDn1zX6fnHbyxCmx/X\nwL5/d+mARKJ1CM7jWYvB93RT3LSLxXj85sc66QhIvQ6WbXxRsCxecc0W+tcn30fxNz9rtQbXxlrJ\n4CDrNUGs2yJB2txClwZHfgALntQgffDkDLJKpZ9NoR79EObRD21cu8DR2gvXsn9VeO5s2tcK14Mi\n55GOmxODRj1BySN/vDbNHkPHyvNi3nrd3iDrr4mvwpr4KgDPTk8DY6GvXgp+Q8LR5bPhxPXhQZsh\nFkoPmfv/OAnjLs4hQpiG9olDVs5Z3E6V54LezzwIP+9ujOtllgaDNvA4FhjqNF1p3BhGx9DXA3Bs\nszTXgaNhyKG1vXF/ZN8NPgwHLxvMPkEd3qANvZf0xeXV/+llbnPh3IY7GDS/g1qZyKHsydGzRNrJ\nPEQO0/5n3v/9GEqZFC16OrSkZaM2pfsqNsJk48KiUkY2zmRzqNSDQn91zzanMO47asU0nNOUkRkL\nLasrZRZfRGbxRYyI/gTOtsox+wIReRK4qnFzQNaYLG6pE/yjpBXA/thbi5VLFMOUXplZgt073Enn\neHdemX6VhLRKEotmBIQOJF7rw1joFvccfAbIPanN8xqIdWf9iXEX5xDXqjo766Pjs1mHJPlahmGE\n8xsKX6ogMxYAqH1GE+ZEncPXSf0xdCa1Rb+g+39YdbYnVp3tSXvujXf6463v2mHDtFu6qqoz1U/q\n8XWff2jJTtigWc5F2Dj1rvtngYRf042tAimOPmwHZ2NxYAG1N0ld3lCvWVFqn007laf2PguLKtr7\njaWUSS2UJm2aU2iRrjg4yLdXb88tg40NB1t3yMOSjxyvx+frK5VKhe7cU4vdf6kv20sGVUnV5vz4\nS43SM/qCTvnVXt2tVJZ8nfi86fzdCQgZQC2kJeMuzoHPgBAcG72dyGHQhqF94hjWTI5Zexja2yr/\n8EY4v6HkNXDhexOvm9+TGQsBllHIEaTqrM+8jhcAAKd2yBOfZaFELVk26KqSzIJu/5FeA8Dc9hd0\n1o9JGmuaUJxRBY8w9Y2jwgeTl0icfm2mPtRi0SMzfh9MKSOoY5u2mRpcHrUbkw1vY9EWX6f2AIDc\nctWHWY/KriPKW7OeIeYMWYlRsrG1G6rw2x+1OLbfEyIxMH5KMR49Vv4MpdMh2ckvB1+ucsHUSXYQ\nNEnwxpxSnDlPXkZ4/iflWPd1FW5c8EZpmRjvfqCbR4NOSVV1XElopJRreb/5NZMdq9XB5WpXOZIO\nmhgIMtnggIF60oYcszYYAKC4KQcZDTfhwHNFO9v+AJSNBplhkS9QTB48XrEdI5zfQLRtH0YMhmeN\nHRNPat27QVXuAmtI0McryhlPUrWruKENti7UuSsbeh00gCbPJltHH8PbR0Zq/NxHieTVf2QIalkj\nj0V30ovOG1sFsyS/QIQOvQoYmWvhsnIsXFZOS7awSESETLHQo7jgNrz86Xeb1zdZOeeUxkLbDNXb\nemZtMDQ3CqpEpcgTpJOGGNlwpclGJULVDU1YTIOUXXcNthadDbCxuPXXQ3R6SX1VmNf2DGGs/j4V\nYQPNu4tma6AilzpMYcbuwfjllTMazbuhN2vkseiOOecdsLDQIf3e34waDM1zEehAxwtRUp6mrTqU\nmHUOAxnqkpiFkialsSoRdTMUFsNx45sEg61lyqVJT8TRy1Vx8NJfqczmTNzYm1Lm1NpkA2hiGKJs\n6OUXAcAQp1f1qIkiu15Xf4rrHeOicN1vTrQ+1WFhIXCw8jS2CiwsekUsku8hXdzDdZ5PlqvwT79N\nODRwMwCg6Ooj+diA75F7PA2Q0A9ZSkr5TWe9VGHWHgYmqBSWwJFHXqmARf90mt0F7WfEAgAkIjF+\n6/2zcRUyIYrSKuAZSd4ASMbsE6MM5mWg4uZu6n4B5kJqPb2Yfi4MW2kkN5H6gMPWxQp15dJeGL3f\naqtvlVhYAACBbt1xN199N21TxopjgwE2L1LKZTYlI7PptlZrDLdVPlwoEeUhsVEzr6Cma1SLy3Cl\n4YjWc/a0HgVHrptamRpxBS43HNJ6DRkt9T9RR74BJnufLbnccAg1YmbDdosLkuHhE4v23Wfh8snP\nIGzSrrltS8aeexeHB2+BuEnehU4iliAx7hTs/J3x3L+z8O9zPyo9x+XyMbjXZ/g/e+cd3lTZ/vFv\nVpt00b13C3RCC2V3sAuoyFBU3OIrKuIAFcXFcIC+gP5AffV9FRUVRVFA2W2hZY9SymhL6S7dk+42\n4/z+iEmTnpPkJDlZJZ/r6tWcZ945bXKe+3nuAUgjIw0PvQs3SnT/W6tj0CkMThz1/9QDYbMG3SGL\nReGT4Cv3Z+C78OEV7426HGumYADYvihdZx8RJjEHGZhGZrpY1nsVwbax8pNJNosDF44X4uynIf12\n/4NqvONcCNiOaBJWoUVch8refACAG88PLLDhwQsEADQIKygDL8jmzO3MgCcvCEO4HjjRJs0gPNo+\nFSL0oUfShSDbKBxp3a7Xe1u6fxZtMyNzNEeawXuIVHZUuNOo89HhoigNLUSD0eaTUS4pQKHY9NHy\nZBQ3nkKY+yT4OY9QqTAEu40zslT0YYOD6XaLabcP441EGG8kioSXUSLULtFonbgCXpxApTJ3juFD\nZOuqLKQI7oMti94ptgPbGTPtHoUYIqR3Ge7zSkdRkDGRL43gda7nIG5LmLEmyc/5GbYCFzg5B2Li\njDWor85BweVfGBlbUVlQ5PRLe3BX2lLKuqQxq5B26m15dCR/73FWhYEKe/YQdEpuK5VNcJwHQPpw\n7pV0oVXc/4XuZzMUDULlWON+NtYwnrpy31bNZiqXfilWW3/gqf4diZ6WHizYMxM/p/ygpgezPPXb\ndHx7f5rR5jMEdBLk6TM2HczllEMbZIt6xe8ECSFGk4gccWMIx4NSCWgQVoCAhPS9oop2SQtqu0qV\nytx5/vKxg21jNI7x5ayDeO7QbJX1Nvb0v9atDs+6k8Dtdy40pEIzkCB2BILYEUafVxVF9ZkIc5+k\nts1wr2kAgCP5G4whEm1m2D0CFrRMhvQP4bw4hPPiVO6AU5Hbm0m54PXg+KFBrL8DcgB3uN5jAEAI\nLwZDefE69eWAi5l2jyKv7xxuiQoZkQcAXDneSLDVLdLWOP5s9BLdyOz+XW85kucoJ2T09I2Hp6/2\n94oqj4PNED76bpMjW03d+bDKcXLzf0R4kDTJmw3PAacvbdFaFrpY5PZ6aY/UVjrR6T61eRhs2Xbw\n4gUBAIREL7x4wYYTigXwnek70b6QvRgvZC+GZ5SrXtOuyl0Irq1pErCEJWt2hD360WW19bP/e7f8\nNd9VgKPLDuktlwyZWYY6PIYNYWw+Q0B3IW6IUwCvCPXmUDKEPdS7IpZCm9jwSZJkdIqpj8eDbKMR\nZBtNyxSqrYaec6nfSPWnrXRyO1ihh76nBvrMyzGwWRybpVkBbe6SKsypUauVlIdQ90ny3AvdwlYQ\nhITWnEnhzypdcwwQznKm3aM6KwvkcegvpSQgf1/G22oOWU2HSJuxpDJtd/sn8u/RWVlQJMpmHEbY\nJus9TgBXuqmrq7Igw5YlYOw+G4pZfy/BrL+XQOAhDdTjGuON1L1PQuDhgGtbqRPatraVo6ruIghC\ngiC/RHT30IuSpQsWecJQ2HMR9aJKjHO4m1RHgMCRVqmJixPHHeMd78HVrizU9BUrKRUECPmXRaOQ\nXvQkO1c+upqp4xqDAHpayQvUFy4uxraEn0nl20b/jBey6R+DqmPl+Xny1z88fAw11wy7AGJz2Xgt\nez4jYx38199I/XIOHAOcsP/xvWi4Vs/IuACwdfLftBbShtyhZ4LN4/Zgxbl5Gtutyl2IrZP/pqUo\n0RmLLpvH7dF7PlMyyXEBMtt0P1LmspSd59sVFJAEh1m42KFZCS7vva7VnD8+dhyP/DBZbRtN9TeO\nWkMqUqFq196V5YVY7kTYgE9ZP4P3kE47/pr6eLD9EMKOxhAWtQI4lbeIkZMGVUnVZkS+rnRd316I\nnErlndoLZT+CzeJiRuTrCPdMQbhnisY+VGQWbkXKsOWws3ElyTMwi7Q+qDNryek9hgYxeU3ABhvT\n7ah3emfYPUz7pCGt62etzGrowlGxnBOD/ilihM0YOLCpN4puiW4ir496k2Gy4H7YsMifC29OECrZ\nnmiR6P5cj7QZh0gbsknbld4TqBWXUc6pSlHxMIL5l67sS/ocLA4bd2c8ixl/PN5fQcPhubunGemn\n3zWwhBaqMABAq6gOh1u/wTB+AoL4seiWtCOn46iSiVKbuFHJHrhBWAkPnjSToOLOQnbnYVpzPvDT\nLGyfreXiSP8NDK147KcpAKQJtAwRE//FzHsgcKYXXYiuffTh5w7oIxIjmLPSoM0O/vLjd0PYI9Z5\nEc+15SgpoJo4tO6STvOYAylOD4LPtoeY6H+gKp5SKvoipN3+QaluoHmSrO5w6zc43f6n/Ppkm+ZF\nkiwfjKqxqajKbVJb7zncvE/OLJFmog6Zwj8BAH7sMERxyLu5uioN6miQVKFBIlXuHFjOmMAlm6MN\n48Tr7deg74JcQohwOO9DeDlFIMb3LhAEges1B1DXRj/HUY+oHYfzPkS4RxL8nOPAYfPQ1FmKK7eY\n25RIFFB/vxUKs1EmzFPZTwIJjnTtAJfFw1TBg6T6mXaPamWeNBA2OJSnD3SZZqffKRcbHARyyRnh\nJRAjrYu86anI8W6pPxaVIjSGn6rXfRnIbUkjzvUcVFlfKy5HbdcOlUpZlM14lYoPHahMiZiCEEvw\nV8oXWvWZPul9pJ16W349cdQrBjNLsliFQUZhz0UU9lyk1fZS5xEAwETHebDnOCO74zCaRfQTpth7\nqk9R7hnlivo8/Xb3X8hejG2jpR/OpScW4aukXTqNY2PHJe0St9V0Ye/r51B9hb6MQeM88eDXSTrJ\nQMc+mipRm6qkbrrwxcwDeP7IHFptZffrp8eP49Zl9QsyGRwbNuLvD0VEqr/cBMQQisfGkbtp7/rz\n+Bx52/M/3MSxTeojegSO8cBD/03WWrnV5j6ZI1SnCqoW62JCqLKOqpxuGZ06XXhyl/rkPV/OUv3A\ntaKZKkkxqiTFRjdF6iBacVS4kzRvEDvCbByh69oKtFISqChqOIGihhMMSdSPHzccdixHUnl6107a\nO/EiQogjKhakkTZjkd+nOTR4p6QN9mwnpbLpdosZXVgDqiMMUUHl+K1pcU41H9V90VeZknGjLxvl\nItVKHR1Z/LlD9VIYzAlZpmfZbzaLi9vtmjNr64rFKwy6cLrdPE0oUt4Yg5Jj/X/sr5J2YeG3M7D7\nqaOMjO/kY4dHd0xhZCxN0F0075y6A8JOcn4Mpmiv0z7k2cPfT2ZeEAbQRmmQMfaxoRj7mP7xogdy\n5n8FFq0sDAa+mHEAzx+lpwwPhK4fhBX1dBHtlAtQQ6NoUjuQuU+64+m3pf5lc8O0i+JjCFgs4O2v\ng7H+X2WmFgXRNhNIZaXCa1qZ7cgoFuYijDdSqSyAO5yWwnCqZ69BzJJ0JUlAbWKsjbIgQ9VCXV8I\nELSVBRmFwmwM45lPZmY6BN8bjejliWDzOBpPG0orjyMkYAplxmdDYJFOz4OV6PlhCJ0SIHeIfiF7\nMXxGephaLK35+h56Jl4ADKosyMj9o1RzIwvBXMymsrZqZ3NvbjC9o28K2ut1i/9df+O25kZWaHFK\nRA4jGsw2fLK8S6JjKuv2bW9kTFHYVxzLyDjtt/WLxjXEjQsOxzD2vTeFup3M6JqLQR26OglP4JP9\nOYuE9BNpClgOpDJ9TgQIEKQyuuFZVXG060et+6gyMXPj+OoliyFg8ziYe2IZRrw6GRxb5b38uSeW\nIfm/91P2M5ayAFgVBq2QiOhFeNCVA6+eQG97H7aN/lnpx5L4ctZBtFR0aGz3YPojeDD9ETx27ik8\ndu4p+fWD6Y8wLtOhtZdwbjtz4d1MzcaRu00WDvPb+9LMRmmxAny/WPuET9sXWXYYYXMngM38id5A\nmok6rfvEJzlgx4VIrPs+hFS340IkdpyPBJcnXZRPv88Fu/OlIX73FcdqVBwW/MsDXx+ThvT89Uq0\nvHxfcSz2FsVi6nzlDOSPrPDC5j3h+O9x5TCgMqWAw2HJ55x+nwt2nI/En4UxJDmeWOWNb09FgE46\nJUNEyOmQkJVvV443rb7Husnmxt6cIJ3kcGS7kMpKDKDQ0IVqcU8nKZ6xCOYaXqnXlrsznsWJpb9T\nOjhf33oSzhHUmdRLK1VvHjCNxZskBdnGIJw/ClwWvbBr+uws7n7qKF7IXozSzFvwS/DC18lSR5+Q\nFH+4hQ+Bg5c9HL1rUJzRb1ZESAi8kL0Yty7WYc/SdGkhCxg+R/qlHTUvHDYOFbh1vhZlJ6rAYrHw\nwsXFaCpuhVu4s0UpDNosJH+Zpv1ugT4c//Qqxj05eHJubJm4FyvO3guewHgf4Z1PZ6HhpnV32pyo\nvW64EHpWdEPfnVQ66BIO1CfIFo+OycewkXbYVxwrP4VQfO3mxUNTnRBpv7cg7fcWpTp1PPGGN+aG\nXcXem7HYuLw/J4niHIosWuaJuWFX4RVgg4de9MTO/1MdRSft9xa8uNEf84ddg1jcv3O9rzgWbz5Y\ngu821tKSkypCzpVe/fwk8vrOYCx/llJZtM1EnOj+Q2NfIaF/NDugP+yorgzljWJEDkPC1L2SoSoS\nlDGIm/AcAODymS9JdS151BsBTVdU+9paMz3TYKbzU4zEUNaGuutNlAv40sxbKM2kDs36+RiKiBkE\ncGN/KW7sJ5vKfJ3ym1Yy6WLXzjTfLDiKxuI2nfo+du4p1GbX4OgLh0BIyMeYTLJx5G7Yudpi+THy\n8a0lsnm8NAqVof/+ZWfq8euzzDsgWmGGP145gwVbyLbZVFz+ffCY55krtwlmMsqqI5ozXus+B36U\n+hwV5ir7rwj7CKz9LgTvPVGKpjr9TERZbODcUfrPgrrKPjz0kpdahUEd1y90AgCem6HbCTJVWE5t\naJWQM30LWPa0++f1nUPUgJCho2yn4lIv/ZNDqpCj2vQP4UWTykx5OkHFiZ4/de4rhogUctYYSr0q\nnFyCte4z8dN7VdZNHve2UqZnH89RBlMYLNIkKc5+qtGVBXNm48jdJjETyd5ZjI0jd+usLADSiEhH\nnj+I4BmhmP2/uymjJjFJV3MvNo7cbXDlxJhsHLkbnyX/pbmhjmNblQXz5mYGOddtK/IAACAASURB\nVDO1Kg6vt9wwuJZCheSGwefwYQcrXfdCsz/LvuJYPPCCJ3yClMNiL4y8hsO/NGNfcazcJMnU2PDp\nyfHQS1546CUvJN+jfseYbeDkdrpClQnZXYtcAapyLzTqmTW6UnRTr/5MIyIM7+toDsw9sYxU5hLl\nBa69Dc6s2EfZ59L17UqZns9d3mYw+SzyhMGLJzXnqezNR173aRNLYz4oKg0cHhtP7JoG91AnNT20\nQ9wnwaeJ+yDqZS6zr0xByHwzAwefJjsQGoqP46VHxrYOPDzzdyrsXOhn6aYi87NrOPut4RcKqui5\n3Sf/+/OH2OClrHt0Gqcoswa7X7R+pgYjHY0qkk5a0Zmx3JmksjqJ4cIaAkAIhVN1llBz5L83HyrB\n9fOd4HDJi/HTh25jbthV/HAuEo+Ny2dETl2Y+YALDv7cjM/+VvYDaa4TIixWgMLLyqcjOz+j58tB\ntYsOqE/gZko8OH5ooLHop8q9UCUq0nv+FIFprRbuRPYlfY7QRSPlSgOLzZK/Vpe4rbWtHK1t5Sgq\nl6YNgAF1K4tUGGRYlQXViIUSfDOfHI7VOcAeAaPcETTWE84B9hjiZw++Iw9cGw7EQgm62/rQUHgb\ntXktuLq3nJYDMxOIuk3jxNvbIcTWyf2KimuwI8KSvBE1JwD2bnw4egkg7Bahq6UPtXktqLrchGt/\nlaO7tc8k8tJBUXkAAM/hzhj72FB4R7vA2U96XN7T1oeKiw0ozqrF9f0VqoYyC/Q9PZuW/AFabpeC\nxWIj+/LXDEklJS7mcVy+9j2jY+pCzm8liL8/VG2bz6cZ5pj6TkZV9mVDwAIL03nkhGHZImXzE0V/\nAUXb/o92Sv8/Th+6rbI9lR+ArF6XyEuqZFHFc+v98Nx6Pzw+IR/fn4mUlz8xsYAkx9ywqxpll+HO\n8ddadmNRJSqCHzdcqSzedqrOUYqu951hQiwrJqBkVy5KdtGPbmVsLFphMHemTP0IxzLeNKs5Wys7\n0VrZiat7y+XtAVD2mTL1IyAcaGkpweWc/xpEXlmSttDZ4Zj9v7vhEeupV+K2qRmvKF1nTNUu42Fz\nWTuay9pxYYf0SJbFYWPK0ZcAWwDxgGM80L2Deky/Va+iauO/lcpCPt2E0pdXaiUDk8jm//utCyaT\ngWkSx72Ok+c+1qrPpdz/GUQWN1fzcKTXpCxYYRZVi/cMoXY+aAD0Sv5GlVVa1cJZ23JNdVTtBran\nMyed16rGoiufHUXYUHPhet8ZksJABxsW3wDSWDEktgLDO1sPzPzMJFaF4Q7nWMabcqVBVb0hUXR6\nLjmo/1Eq0yT9+SypjGtnA1EX+YTBxsfHGCJZLNOSP0B17UVwuQJ0dNaitDxDXl5ZdRoBfhNx8uwG\n9Pa1w811GMKCZ6CltRiB/klIz3oLAODjNQq2tkPg4yWN7FFTp94mX9ZuYPuR0Y/A3S0SrbfL0Nxa\njNLyDLBYbExJXIvKqjMI9J8kn3Na8gcAgNq6HHh7xSvJQjW2OTKYfHZMiT3LCeO5syht4qskxTol\nANOWbqIDJ0WG8VkarHBoRlE0FUKiFzyWslksGxxIoNr8d7KAHJe/TWJNpqkvyXM2yl9nHViltp5J\nhj85BsOfGqu2zUDTJJmjs7GwKgwGJjhkGoKCJiPz+DtK5ckpa1FXl4sbBdTh1xRPCgICJsHG1gl+\nfhOQlfmuTnO6u0ciIvI+dHTU4HKO+t3WiMiF8PCIJclhCPQ5TTAGXAeyb4NLQhAasvqdwkI+3UR6\nrXiq4JAwGh6PLAYAVK5ZB1HrbXnbstfeQPAnG0h9ZOMQIhHKXu3/0vJ9+UXYBktjdZe+8ipAaF4I\nKs6vOEfAO6vBdZOaVFR9shl9VVXyuWXtBJER8F76L/m13+uvQtjYCPsRsaTx6JBfqBztYlryB/IF\neGHxfvl1U3MhmpqlDoGB/kny9jV1lxA1fCHtxbmq9u5ukfJ5ZUxNWi8vu1lyAD7eo1FTmw0A8nJv\nr3idZTEUKS/GaGzz7zHmmd3eHNF1xz9PrDnDLxMIWA6whYCWo7MVKb1EF+PJyZjkWPcukj/FNLuH\ntE5WdrbnACPymMt9uZOQKQvdDR3obab32aY6STCkEmGRCsOVruMYYTcZExzn4Uy7eT8Iy0rTUVaa\nLl94CwSuSBjzArIy3wNAb0EePvRuHMt4E8VF9NK0D5wTABob83HyxHpacxbk70ZB/m4kJb+HE1lr\nac05WGk8UwL3CcrmHorKAtC/aFZlftR9o1BlG567G6nPwDay65At/8atDzdC2NCgdj518we8+xYq\n130AfmgoGn7ciZ7SUq3GsvH1QdXH/9bYjor0rLfku/WKi3VZmSJsNhdTEk37vxc5dJ5cYTBnxi8Z\nrrGNoZNO3qkQIJAm/MXo8ybz5v0zvwRpwl/1Hs/3mWUQhIapbSNub0fZB+/pPZcpaBbX6mT2Y0rU\nRYIcmPvByuBAnXMzXQxljgRYqMJQ01eMENsRcOK4IdV5iV7J2IzNqNHP4vz5z7TqQ9DYRdYEh2OD\n6JjFcHYO1nusO4krb+0l+UVoi7i9XWVdX00tZbniqYUcFgv+b72h1/xcV1cAgOcTj6Li3f4Fecvf\nzOxMaUKmKEwYswJnLmxWKlNkSuJakkmQsalvvGaSebUhdJKXxjY7l2QZQZI7j3Thr5BAf0WMyg+B\niiB2BIZx4pXKWGBjBu8h2mMMxPP+h+A4egytthxHR4Rt2AxhUyMqPvlQp/lMRa24zOIUBgAYYZtE\nmVzOme1BKkvrYi7Jqx3LEV2E6ufWYObU4XcwKvFFVJao/96kMlfShOMQf8RPWk5Zty/pc3lUpLaS\nJkiE5O+WrKfJ2cGNiUUqDAOTtqU6L6Hd19TKRUdHLeztvNDbozpjLp+v7BgjFuuf5dDZJRRXcr8D\nALU+C1bIaOs4zQSqdvuZcqAWNignl+J5kh9AAGDj483IfIB04V9WcRx+PmORnSuNViQ7dWi9XQa+\nrTP4fGe5ohASNBV2Ane0tSuHqcy5+i0mjlmBxuYbKCxmLvJPetZbmJq0HpVVp5T8JjQxccwKtLVX\n4VqB/ju92nL/F4ka21RcJCeXsqKadqKVstyRpfy9PI47C2dExlG0AaBcUoBySQEAstmULkpD2IbN\nOsnBc3NH2IbNKH5jhU79TUGTWHWmXHPhSNcOklmSNycYV0AvD446fwdtibOdgtM91HH/BzticR8u\nZOp2iq6J9tvUCX4B5RwMTqH0o68F+6eAy7FFUfkRcDm28PMei/Iqw+ROskiFwZKTtuVe/lZuEmRj\n46hUlzDmBVy8sA0TJmqvuWrCxSUMTY0FiIwkO0pZMW84Dg4Qd3Sg88pVBH34PspX63/kWLP1c/i9\n8RqqNnwCAHAYOwYNP5NNK1zn6pbPgQrZAry47ChluaYyGc0txTh9gf5iR5vxM05I/X5ulhyibDuw\nH12lwhDwnWw0tjn9dYERJBlcnBVRm35O4M6Gg4LS4MAaYiyRSJwU/YVErvJncxgnHoXiHFr9dVUW\nBo5hSUoDFVE245HXd9bUYqjFnj0EnZL+DUZHtguj41NlQnZgm+5/+05GF5OkYP9kHD8rNTcXiXsR\nGjDFqjAoYupTAroo+glQve7ra1cqv3hhG6ktAK38CFTNWXRTuhObn/8b8vN/U9lH13mtSHf/gzZ8\nAElnJyrX635kX/rySjjPmA7nGdPQVXAD9d9+BwDy3wHvvQ02n4/qz7ZCWEsvcREVVRv/jYB330Jv\neYXSyUXZytcRuG4NxJ0dUt8JKvMoKybnpROalbkTn183giR3BmdEB0k7+9N5DzDiQ6At3UQHCBBK\nm2dB7AhaCkPYR8x9ni1JaWiVNJBMefy5Q81KYUjv2klKxjaJP1fJCXkC/25SP32clNO7dpptArs7\nibRFO3BX2lIce2wnuqrbaPc7l7MN0ye9j+KKdPh5jUZxRTpCAiYDAEorjzMqo0UqDFasmCvlbyjv\nOA80IVK8Vmde1Ho0Da1H0yjrKtfSj4Kgbn4QBCrXkf0DCLEYFe+uoexjypwSVqyYmkaiGu4sX/k1\nC2zwYAMhjJ/I8bIoC/HcFO07spg9oWdxuSBEpkm8qQ3new6Z/cLYGGF56eLPHYpbopuaG1phhOm7\npP+b039V/T9KdQLR3dsid3QurTxmGOH+waowWLFixYqFsSp3ocY2+mbItkImR5RJOmWYzFuos9Ox\nPjQS1Vr34djZMy5H6PsfW8wpAxUz7R61mDCi4/izSWWZ3fp/zruJDlLY2Sib8WgUV6OH6NR7/MGE\nLs7OdNA1QpKPZzyihyo/D6yJ26woEffxArgmBKmsL/3+DEq/1+2odWBUoGMzPgMh1i4aiDxDsgK6\nOg8n7l4KGxc7UvnVd/9Cw0lmkr1pEwnJkE7QXHtbjPpsERxC3Ul1LZcrkbPid53GpZMBO/CBBIQv\nTSKVA8D1Dw6iLt0w9vDDX5kGv3tGqKxvvVqFG1vS0Vmmf1IiQ91fYxI7L9jUItzRHBXuZMTp2BT4\nLXvZ1CIoMeSeqXCeNx19lTVo/mEPeksqNXfSg4u9R5FgO4NUzpTSwAILBPSLani25wDG8+colcXb\nTkFO7zEMYZO/t3qJLr3mA4AT3X9Snr4kCxYwcl/YYDMSUWwwwLTCEeSXaNBQqorcMQrDUP5oAMDN\nHvOPq66KYS9Mhv+CeM0NAYQ8PgEhj08ACCBjmvGj/DCBpkV87DqpDXfWvV9C1N5jDJEMBsfOBil/\nL1PbxiUuQH5PmFRa/OfHYdjyKWrbRL81G9FvzcbVd/eh4WSx3nM6x/ph1GeLaLcd9+1j8uvcN/eg\n6VypVvOZ8v4yzZy1ozW2sZ4uDH482H5a9+G50Y++YmiCtksTVgprG2ET6AsWn5wkk2maxdRhrAH9\nlIZYm0T4cENwrHsXhIR+UQ2psjV7cPxVtG3Way5FsnvTMNp2Oql8pt2jyOz+Hb2E9okCPTj+iLeV\nPlss5RTHlHgkBGDClrmkcnWnD5eufUtK1mY9YdCTUH4cAMtUGPTKA8CS9j/72HfoutXCnFAGhO/p\niIm/PE27ffLe53D7ejWylxvf+ZAJdPn7Ts14Bc3ZFbj8mm4LQ//5cbj152Wt545dJ/0y03VBzbHl\nIuUgdRxqumirLJji/hoKOqZIVgyPOZwyxHGSjTaXoSh/Uvu8MvpypGsHpggWgcciKyiyXfY+ogfX\n+86gQawcBnMI2w2+3HAEcIcZVMYyYR6CeVEa253tYS6sdJO4Bqd69mESn7xgTRHcJ39dLLyCYmGu\nUj2fZQdvbgiG8UYxJs+dxtysZQALOLrwe3TXd8jLBd6OmHtiGc6/eQC1J8nPPkd7H+sJg5V+jqf+\nHyYfflGvMcb/8IRZ75rKYLFZWikLMoZE+yJiBXl3hC5nHv4WQ2L94DEpDENifClNoAyBPsqg6+hA\njP3fozj/tPY7N6FLJiH8Wd0XHEOfT8HNLzK17qevsqAtprq/hoCusvBx/B8GlsQKANRLKuHJDlAq\nC2QPQ4Wk0EQSWaHLse5dah2gbVh8+c64KSgUZpMUhqmCBw0+b6fkNkSEEFwWT2WbMN4IhPFUm5Ba\n0RGWCqfm2nY0XKzE2I/mUNbHRz9BKrOeMNzBSITKCVmuv38AdRk31PahWihNzXjF7JWGKWlkG9va\no/nI++gQRWvAIykcsWulpkm+d8fqPG93zW1019xG7ZE8Up2+mZ5VQTXurT9yULjtuMo+A/05HELd\nwXPiQ9imnUkW1045hn/BpqOo3k+d2ZjnxEfSnueUygLuG6WVwsC24WLyIWploejLLFT8pvrkz3Go\nJxK+XAwWm6XV/68u93dgH13vL5Noc6qwc0kWCIn+meGtaCZXfBIz2MqnDMM5o42iMAw83QDoZ4w2\nNTJTpIGvFU8bZOWixhZw3aV5B5p//gvtR09R9lWE7qnFka4d8OWGIcZmIn3hTcjARbyhIhhldEvz\n8Zh7RKk7iXOr9uPu9Gcp69JOvQ07vhsmjHoJlTVnUVhquGSSVoXBQrh9rRo5K38nKQ+qyJi6xWAL\nXUPhEh9AKpP0ilQqCwDQcKLIIt8rh0/ewan4LRtFX6pPR39y4Vek95q05zm9FEFNfYVtPcj76BCi\n3pylVJ6873lkzf2C1hyqlAU6crffrMex6Z/SmkcG1f3NmLYFmvwRqf6X9L2/A1FUAIQ9YjQU3kbr\nrU70dgghcLaBX5wbHD0FOo1tzepsXMok+QhmRyqVjeJOwSWRYcIbDuPEI4gdQSoXM5jl19DIFvRB\n2zeoXNwPLA/avgGui+9RUhhkVC5bC0mX9vb1AFAtKka9uIKR3ft6caXe/guKtEjq4ML2Ullv6PwR\nR7p2YIbdw2CBrdc4BAgc7fqRIanuTMZ/Qs69IcPVOQxuzkORfvpdcLl8uLkMRVOLYZRJs1YYUp2X\nyF8rJmtTLL9TyH5Re/v8sh/PIfiRcQaQxjDEb7qPVHZ89lZafUu+PY3QpyxjpwgAUg68oHRN59RI\nBtWidsQH9+LKW3u1luP0YnpJEGuP5mPY8ingOvTb/Sq+VofAz5lUVrUvFzc+zaAnpA5Q3V+6wUuY\nvL+a4PE58B3hCt8RrnqPNZgdnal21OliyJ33m+LLCGJHKCVQc2N5w4nlgjaCns+YPu9NRoZwl95j\nmDPt6WfgOG0CZZ2uyoIMESGUO+R6cQIx0pZebgsCEuT2nkC9uEKv+VVxoeeIyl3+PsI4J55Hu34C\nAHDAJSWUU0e5KA83+izPX1QbElPfB5uj2nRLEwOjJdVklWDuiWUgJATSHtiB7tp2eE0IwtgNd4HF\nZql0fI4Zdj+yzv9zIifqQfTQ+5B1/iOd5VKHWSsMVvSj5NvTFqMwcB35pLJjMz+j3b/sx3MWozC4\nTwojldFVFmQUbDqKiJX94QHdJ4TqJEtPLf2MkicXfIXJR7T3pZmw40lSmSGVBXO6v8ZiMCsL5k6a\n8BfSon8cd5bRTIQsxRRJG9h8WwR8sYbxJHOaqBNXmFU0H3ORRQyR0WRhep70LuY/H8lzNjI+5oW3\nDiJobjRGvjYZM357TKlOXZSkrPMbMH3S+7hVex6+nqOQcWYN47LJMGuF4XDrN4izn4bC7gsq6+ly\nJ55KWBLJe58jlREi7eI2d1e3QuBL3s02N0asV45CcW2t9pEuqvdfU1rQ6kImzdMbGRIRM2YPRV+d\nYGQcVZjL/TUWWyYyf/JhRTuyhHuQzJunVBbKjkaJ5LrB5jwjOoAO4rbBxjcVPG93+H70qpJZktvT\n98NhkuZwwgMJ3bQJAFCyUn2GevcFC+A0aRKprapyK3cuhlAWZJTvu47yfdp/Z8icnAuK9zEtkhJm\nrTAAwOXOdFOLYMVCuLb+AMZ8udjUYmhNfaZpoqqIe0UGnyPooTGksopfLxp8XkVMdX+NgfVkwTzo\nBdksJowzgnGFoY1oxgVRGiQ6+iy0ZmbAOWUqozIxjdfq5yBqUjbnshsVrfU4AW+8QXuR3/jHH2j8\n4w+5gqGp3IoVACi/mYbym0dNLYbRMHuFwYoVurTfqDO1CFYGEPr0JFOLMGgZrMqCoU1sxnz7OMp/\nPIf6jAJG56M7jilNiJoO/s24wtByLI3R8cSNLbAJVk5KxxaQTVY1wfPwYEokK1YAAK4ew+Wvc05t\nRfvtW2paa8eod2bg0nrtlY/xcS/g7OVt/dfxy3E2RzvrAbpYFQYLxj7EDUEPJMB7puYEL5ZGZzlz\nGSzNHUuL8KQNrAE2yHSjfDHJYLq/lRcb8PMS9ZG0rKhm+KszYR/khqi35sgVBiv60XyY2TCONeu2\nIWj7BlLIVVVhVLUhdNMm+amD4mt9mBUiHeNQqfUUYrATFn2v/DWTygIA+M8cplJhmPjpvXAf7U/p\ny0AQErXXTGKRCoM2vguDjag3UgelgjCQ9kLracFgpPlCmalFMDkbR+6Gk48dxj0xDKMeJDtoDyTn\n12KkbcyFRGzNr6AvNQeuwmd2jNHnnZy+Ai2XKpD72u9Gn3sgzYcPwDV1DiNjlbz1ms591eVLoKob\nWGaKLNFW7mz4AheTzFu4Ixvuo/0p687lfiF3evb3HmvQrM8WqTDogqUrGYNpl5QOvY0dmhtZsTg6\nK+iFmhzstNV04ehHl3H0o8umFuWOoi2vBsenbTbqnDyKCHCmpOVYGnhu7nBMGKvXOMVvrGBIIitM\n4iYIxBjv+/U68ZgVshIXan9HU3c5g5JZPu23b8HJOdDo8zoP91Rbb3V6tiJHUyjL5uxy1BzKQ0PW\nTZLJh6kUDTZXv2QvbBsOQ5JYMSc4fOtXjpU7i9H/edjUIpCo//0XsAUC2EfH6tT/1ufaJVK0YjwS\nvMn5jLSBxzYvBdecqLiZhpgxTxls/Bm7H8fRhd+TyqOeo85BYmysT28zR9WCn8nMs4aA7zNEr/4O\noXeOw5q5/y2ZxGUkOZu3obmT7q+xcBzujYhVqbALcEVHUT2q/sxB7ZE82v3ZPA5iP5wPpygfCNt6\n0HSqCDe3aZcd2XtWNIIfnwiODRd1Gfko+vy4lu9CexL++yjsAl1R9u1pVPxKHe57IHxv/b4LDUXt\nju0AgLAN9E9ceirLUfU5/fw45oa4o0Me8ainpERerhgFKXTTJlR88AFEzc0qy80ZxSSCujAtaBlD\nkgw+mhu0y+ejDfuSPsfcE8sw94T0/kv6xEobp+pyMRgLq8JgYRASAsemm//uzpAoH736O4+kttez\nYtnYh7iZWgQresBisZCSpryJ4TjMCxGrZiFi1SwAUGvy4zk1AlFvKdvPc/g8+M2Ph9/8eJX9J6ev\nUKqTXcvwXzAK/gtGUfb1mxeHocvJkYE0mSYpzpm4d5lSZvPQZ5IQ+kySyjEGygcALqMCKcuNbSI1\nEJlpkceCRXAaO56yTUtGGpqPMOvcbGioHJrL33uPdlt15epgsziI87wb7oJgNPfcwuX6vyCS9NHu\n78z3RaTrFDjauKO55xauNRxGj5ieiS6bZR4n8858X8R73gMem4/K9qvIb9I9UecwlyT4O8ZAQohR\n2Z6L4tZzDEqqO8lzNpKyNevLvqTPMf3XR2Hn6yRXFoQdvTg4+3+MzqMrVoXBjHEdE0QqM4WywOKw\nQYi187wPezpRvznZxs3wacUwtN+sh+NQ9faXViwDFpeNlMMvAwDq0guQ/2H/AjLokXEIeXISrq7+\nU2X/0V8shuNwb/n1hSXfo7OsCQDgvyAe4cum4ORc9btofE9HjN/5L0h6Rbjw9A/orm4F18EWsR/O\nR9UfOZR9qvZcRtUeqa8Ih89D0v7l9N7wP8gW+dfX/oWGrJsAgKQDL4Jjy8Xk9BU4cfdWiLuFSn1O\nLfhS/nrSH9KklK1XbuH6mr+0mpsJ4ia/BHsnH9SVX0BRLnUo3qHxi+DeNwJd+4tRlLsbnW21RpZy\ncCCLmCTDXRCM6UHS/zdNPgUpAf+CgOtE6j85cCkAIK8pHRVtZJ+ngXNqKqeSg6rtGBWmTereB9U4\nQU7xCHKK19hXsf+h0k1IDVlBOi0Z6pKIoS6JJo1IlXVgFeInLYfjEH8kz9mI+uocFFz+hbHx0x4w\nj+zeVFi0wqBL9mZLcn4OfWKiqUUAANj5O6OjpFGrPjxngYGkUY3v3brZ45qawEWjUbEr29RiGIS8\nDYcw7hvlNPcsFgsEYbyIP4P5/hqThK8fBQB0V7UqKQsAUP7jOZT/qHrnj8VmyZWFhqxCXF/7t1L9\nrT9ycEvFgl+R8Tv/hdvXqpHzUv8DWtTRi5wX6T2wxT1CzY0oGHgKcGLO/yFp/3KpAvL3clK98DY5\nkRshklCWG5LEez+WzQ7v4HGUCkN/G8DRNQhcG3sjSTe4kC12K9uvIK8xDQQIJHgvhLsgWF6vaqHr\nwHOTKwtiiRCnqnegS9gCd0EwErwXAgCi3KZRKgxFrWeUrsOdJ1CWq0Oxrax/dUceukT0M4nPCOr3\ntRRLhEiv+BwSQozhrskIGSJN4KnuHigyPWi5XFkoaM7E7d4aBDiOhK9DJK41HqEtky5om8nZ0zce\nnr7xWs/D9OmEMbBYhUEXZcHScAjXz44/jKGkWb5zYlC47TgjY6mi+WI5XBPIJyraELFiOkPSGJfw\nZ5MH7YK2s7SJVDb56EtGPSkbzPfXmNi4SheS3TX0FxEyUo72mzENVBa0RVFZMAaEiPp09cRdWylN\njMyF6AnSZ+TJva9rbEunjRXNZFR8gT5xv1J4sVaqoMmUCQ6LBzFBVloT/Z8AADR1V+BC7W/y8sbu\nMhwq3STvT7XgLmo5rXQtVxgGlKtDsa2sf1VHHu0oSc62vuCweQCAo2X/p/QebzRn4UZzlvw9uAkC\n0dRdoXY8LtsGVxoOorqj3y+qpacKVxosyyxusKFfKBsToagslPTk4nDrN7R/LImeuja9+gct1i9s\nngz/BdppzykHXtB6jsuv/0Eqi9+sX7QHc4XKCXewvlcA6ChqULo2tLnZnXZ/jcWZ+74CALgmBCFx\nn26Okfra6+e+avw8Buef2K6xTdDicUaQRDtcPIdrbmSFMZq6K5SUBSpmBJMjHqaG9CudisqCIuae\nFG6870MAgNPVP1IqRIBUcQCAMd73axzvbPVOJWXBinlgsScMAHCkdTsIGC6rnamp3n8N4UuTdOrr\nmTJU53mLvjpBmpfnxIewrYdWfw6fp/PcirjE0Y+oY2l5KoRtPeA59Yevc4kLgONwL7TfGHwJ684/\n8yPp7zM14xWDRi+iur/GZOXlRdgUt8vsxtIHiUiMzrIm2Ae7gWtvi8npK9Db2IEzD3xtNBlactTv\nTBoCOicqnlOHo/xn/Z0xFc2DZCju/ife+zHpNCAu5UU4OPvLyweOoXitTRtVMp36600QEjGpzcm9\nr5PaWuLJxSz3pbjcnoba3mJSXaggDiXd1LlTVC32ASC3fj9Get5FWSczvTlfQ+8zHuU2DXlN6bTa\nGpu2XtXPr9LbFzDcNZnWOK291UyJpDWWaCpkLCxaYRjMygIAVPx6kbRwQLqkQAAAIABJREFUj1g5\nAwWbqNOHy9B38Uw1b9Ke53D9/QOoy1AdVsw51g+jPluk87wZU7fotLBM/P0Znec0FSfmfUl6r2O+\nXAxRRy+y5n5BawzXMUGI27gAgPmHDu2uboXA11mpbGrGKyj97gxKfzhLawzfu2IQsXIGrfdKdX+n\nZrxitPtLtcCPvCsI3a29KDtFdihVpxSYg7Ig48ISaYzwxD3Pg+vIh627g9wsJ3Pmp1oHRxgs2AXr\nH/0r8d6PIeztwLlD6/QaZ6BSQLVo16SEyJhw9/vovF2DnONbNLZXN46l0dhHVkw5LN2XSzWdBRgJ\naoVBxlgfes9OP8dos1UYVDlaWxkcWLTCcCfie1cMvKdH4PjsraS64IfHInSJst+CsL1Hp0yjTWdL\n4TY+RKks+u05iFgxHacf/lbJec8jeShi19yt1LYu4wa8pjJzJD414xVI+kQ4Pkv5PQc/Mg6hTzHv\nGM73coJzrC/sQ9zhHOtHqh+5YT46SxvReq0anWVN6K5q1Wmekwu/QuLupUplXAdb+UL31p+XUXM4\nD6LOXtj5OWNItC+8U6PA93TUaT5TcuaR7ZSKbMgTExDyhNRmtuyn82g6Wwrh7W7YejrCZ2YkvGdG\n6TynLvc36OGxtEymuLYcPP57KlgsFv5+4wxqr0ljsy/5aw6cAxwAKC/0x/8rCpOWxSiNsSluF8Im\n+yL5pZEApErDwH6qyjbF7cJju2bCzpWPr2f9DYmCnf0jP8+AV5SL0jxMc3KeVOka/eXDcBzmBQBI\nOfIycl76FbevVTE+n7nT19zJyDg8W/NyOOZwbJSUBRnDRj2IwkvKviQVBeo3snRhlvtSHGr8CpOc\n74cj1xWHGr9CqCAObBYHRV3ZmOW+FGJCBA6Li3ZRM061qt7lVxwTAHolXbBl2+FQ41ekNqIBZjUJ\nTtJQwAKOE1x5vgCAi22msafnsJg5wbdiRVusCoOZQ7Xrzrbl0jpFkO2K6nLikLt6D2U/jp0Nkv58\nVm3fsp/Oo+SbUzopDBlTtyB573PgDlBy2Daa3zPVvdKEbNdaG9zGBsNtbDACH1Aviyb6WrrUyuw/\nPw7+8+O0ks2cyZi6BVPTX4GqvELBD49F8MPM+N0Ahr2/L51bSLkQ/+Ye6SJCttCXcfa/eZi0LAa7\nl2UpnTAUH69G8fFqlScMm+J2kcaSjS9rT+e1och+7icAQPCj4xH8xETEf/aAyfMKMI1TlA/a8mrU\ntrm1+5Le88hMehLv/RgSiQin/1qt95hMQGUm5Rkwiqww3GBeYZDhyHVFt6QdADDMfhwONX6FWe5L\ncbJlFzrELQCkikAAPwqVPZpt3xWVhGluTyC96TvKOhky5UCdSZK+mLufAh0Gw3uwohqLdHq+08i6\nh54JhSJMmKjoMoa4V4SSb07pNW/WvV+i6VypVn1kskr6RHrNbQoypm4xaphRU5IxbQsKNqUZd04D\n3d/kl0cwPiZdTm67arK5qSjbQc+sbOQnlud8PjDRHBWVv17U2IbF0fy4Pbn3dTTVXAObzUXivR/D\nM2CU5nFZhn2Mn9z7OuWPscnrOAFfW2XfPJmyAABVvYUYZq/9hgOPZau5kRUrVizzhOFw6zdIdV6C\nVOclONfxF1pF9aYWyaCIOnuRMXULAhbGY+iyySrbEWIJMudsg0QoHlABlbu6mpAtxCcffhFsnuos\nkje/yETl7/rvssnIfXMPACD6nTnwmqL6pGKgUnNpxe9I2PYgY3IYi2PTpGFGvWdGIeqNVI3tCYJA\n5qyt5L+1BVC9/yqq90sXvHRPhHobO3BuyQ6I2uk53g+E6furuIvf09aHz5P36CSXrtTlt1CWl52p\nlZ9IFBw0voOwKk7O+wKJe56Hy6hABD4wBhW/XjC1SLThew+hLE8+SI54ow662evzz/8AAPAOHo9h\nox5EfaX671X7Ib5ayWFJZLcdRJAgBnkdJ9HQVyk3J6LCneeHpj7TmcO58gPQ3FNJWTfCQ7PSOdZn\nEW3HZytWTIFZKwy+NuGU5X2SHmS27USK00MY53APAKBVVIdaYRmEhPoFRXVfEeNyGovK3Tmo3K05\nudFAMqbpf9pwPPX/tJ+XgVOO6+sP4Pp6+raibXk1Ws1bvf8aqvdf00U0g1B7JA+1R5gPJ8eUUzTT\nztXGdtZm+v6qMhmiQtQrhr2b9v5E2hA8wdtgZkgy5+acl37B7Wv9UUzcJoQi9v15avuK2nvQ19IF\nGxc7hD6ThNBnknBq/hfyyGvuieGIWTsXgP6hV9XBEehm/z05fQUKP01D9V9XAABJ+5eDbSN9fGbN\nUf/d2HiyCO6J0meZ+6RwNJ7qfwbZBbqiq6KZsl9t2VmEj1xAKvfwj0fDLe2fA7oyMmkZck+oz8Bt\nKBr6KjDJ+X4l34SGfxySS7py5D4OAGDLtsfldsOZRQFAAD9KpUnSWJ9FKk1yfB0iVY7Z2F0Gd0Ew\nXPnGjeSmCUeeO+08DDJmBr+MI2XGy7FjCmSJ3XSJpjRi3L/g7Bauc39TY9YKQ6xdCu22zlwvOHO9\nNLazZIXBihUr5sHKy4tQfaUJviPc0FHfHwBg6FQ/uIVLd6QTHhuOxuLbcp+FHQ8cwZN7ZiN2QSh8\nR7hh8yhlB83nMu4FCAJfTtsHAAgc6wn3f8aa9HwMqnIbKSMsUckGALXXm/HTw8ybf8V/pvoET91i\n//R9/1FKdDbpz+cZlYuK4a/OhM/sGMq6gUnXVMl+fNpmTE5fgWEvT8ewl5WTQ5b9cAaSXvVmkNfe\n2yefK2bdXMrxAamvQF3FRRTn/gEbviMSZrxJ/Z5GP4T25jJIxCKMnfUOutrrYOeo+dmnCzK/igl3\nrcPVU19jiFsIQmLuMapJkiPXVen6eoc0nn9h13nYcuzlpw4ZzT8YXBYBx1E+H5Wvg5Otl9rQolSL\n6Yu1u9UmZlPEzzEGVe30NrgCneIoM0PTJcJtMsra6CW8PFX1Ayb5PQY2i4ORHnOQqybBmoONOzr6\nGnWWy5Kpr74sVxgsEZY52k6zWCwCMEw2Z3NP3jYzYQ2OXFxDKh8Zdj+ulOwGQegXtnBi9PM4fV17\nnwgqpo16C+mXPtB7HFXv+U4jNWo1Dud9aLDxY/3uwdWqv2jNlxq1GkfyN+j9/8YE0yNeQ1rBJ6YW\nw+yZvDIOxzcpLxCWZc7D5ynMmkuFPZsCtwmhsPNzgbCtG2Xfn0HVXu0WJrYejoh9/17Yh7ijp64N\n9ekFKP2OfmZaYyBb5CsqEglfPQr7EDeUfncaFT+f13rMERsWYEiMH/pau1B/rAClA/y9wuPug6d/\nPETCbmSnfwKxqJc0hr2TD0YkPY/erhZcOmYcB/OgyFT4D52C9uYKXDnJzPNjsCBb7IsJoTyCEQEC\nveJO8DkOSm3VKQN0Q5JqcixOCfgXBFwn+XWPuAMcFgc8toBWfzaLg5nBL8uvxYQQQkmv/L2o6m/L\nsceUQPUBUQCpgtTYXUZZJ7sH5uw8rc8JA4vFRtLsjyj7zz2xDFc2ZaJsD1khnHtiGYSdfTg46786\nSCyFIAi9M6aa9QmDuS/ujUluseZwcXRwEHgyMg4ARpQFK8ZDUVmwJJhUFthcNjzjvTF962z8OF75\n+8Ul3BUsLhvNBZa5+zVsZoCSwsATcFF4lNqmWh+K/5OJ4v9k6jVGb0M7Li79kSGJjMfFpTsAALuL\n4rDwZ+37X3mDnNFekaLLv6Posvps1p1tNTiz/x3tJ1fBht3D8MbCQrVtyvMPozz/MGNzDkaOlv0f\nkgOehh13CFhgKSkLIkkv0sq3qe1/qHSTRqWhR9SuUY7Myv8iNfgVuTP8QKVFExJCjOuNaYh2l56m\ncVg8cDiaTfl6xZ04V/MrxvmoCR/4T7s7FU0bcFTKAgDc/PEShj6iOQCCwSEIwux+IHXTveN+grzG\nEzMT1hBBXuOJIK/x8nIHgQcxM2ENwbdxUmo/M2ENYcd3IyZGP0dMH/22vHxGwnvE1Pg3iJFh9xMz\nE9ZoHF/VT8rIV4kRofcRIT5JxIhQ5bG8XCKVrmXyRAXdTcSEzCdmJqwhuBy+vFxRdlk/mRxUMs1M\nWEPED11MjI96hpgQ9azSexs19GHSexsMP6lRq0llU4a9RAAgRvrPJ0YHPigvnxT2DMFisUn9k8Kf\nJVgsNsECS+P4qVGrCTaLQ9hw7CjrFMf3cx6pJAud9zLUM4WYGfUm4eUUQZLBSeAjfx0fcB8R4DJK\nrZyK137OIwkXuwCV94zOzyNnl5j8722In8mvxhEvnVtIPPrLDMI1xNHk8ljyz+T0FcTk9BWUdbuL\n4kwuny4/liq39cf6Yy4/yXM2EslzNjLef+6JZSr7uMR4q62n88PE2twaVtWMKK87K/8tew0AHd0N\nKvvEBM/D6etfIi37fXkZCyxk5GxAbvFvSqY+qsZXhS3PAVdKfsdQv2m4UqJ8wlHXkk/Zh2/jjGul\nf+LIxTVIjF2udnxFORRfe7lEoruvFTk3f8bZvK/haOet9N4u3fyJ9N4GI7F+9+BY4WcAgNxbf8Ld\nIVRe52DrTrlbcaMuHQQhAQGC1hwSQow+cZfGdjG+dynJMjFUs7lgUX0WWGChof2mvCy/9ggAoK27\nP659TuXviPKZJb++1aLeoTPG9y60dEl3zi+U/UhLFk3YedghaHooKfTlvN2LMPHdFDx47DEI3O3k\n5Y+cXYKEV8bjkbNLlMpNzfF/X8Zn43Zjx4NH0VyqeTfSiu58snc4dhfFYfP+CADSUwcZ9y3r9ykI\nihBgd1GcvF72endRHF77XDk5piJU7Vis/nJXL5687KcrI7C7KA7vfR8GAHhne5jSnADw89URSr8B\n4P1fhiq1SV3sDt+Q/jCjsronVvuRxrNixYp2sDWd1KgwGop8ZjzzwuiAWZskWdHMwIU8ABy5uAYJ\nwx+Hq2MIrpbsRk2z8WK255Xvk7+24eqWtXRE6P1gsdiYmbCGVHfk4hrMTHgPAMvo783YeDoOQ7hH\nkvy6uOGExj4NHcUGk0dRlvp29SYMAORKi6Ly0txJHXVDQkjDl04e9iKOF2qOyKWtLJroauhCeVoJ\nSWFw8HPEnoW7cHodsPjkk/g5cTseObtEbs50cctZpWsrdw6v3XsDALB+p3onxoXPeWFhuLKPh+xa\n0wJ8YLvfb8YplS0Mv4yfrozA4tgrSv3WP0n+HlgcewW7i+KU2r794E0lGQ7/3Cgfd9WXIfK5giMF\npPdgxYoV7UhMfV9lnUQoxtysZbjy7+Mo23tdXu45LhDu8X4488o+lX2NhVVhGKRcvPE9AKlDsakX\n1QQhAYulOofDQGqar6K7twXF1ccp649cXAvAPN6bISmoPYqq1iuaGxqJIhoKiyYivKfjYvlOUnla\nwSfgcviw5dKzt2VCFm1hc/uViUfOMh+QwYpl0lDVRyrj2/V/31UUdpPq9cHeSTr2Y6Ok332PxF3F\n5+mR8A6yVVImFg3PhVhM76RRkWO7pWFex87ozz/RUi+Uz9vZZnm5X6xYMSVcLh8TZ65V2+bvqf/B\n3BPLMOLVyRjx6mSlupa8OjRcZN4fTVssUmGQRU/Sxik61XkJuiUdyGr71VBimQ1BXuPVmhzxuHYQ\nijSboTDFzap0JMYsx9HsdUiMUW+mBADXSv/EzIQ1coUhzDcFxdVSJ0tN783SifKZBS7bFleq9qKq\n9QpSo1ajpasCfN4QCHhDdIqixOc5wUUgTRrlaOuJ9l5posOO3kZMGfYSWCw2RJL+RY+znbStt1MU\nWrsq0S28jcN5HyI1ajVq2/IxROCLrJu6xWV3sw9BQtBDcLUPRkN7f4hjgpAgKWwpekUd8jIO2waO\nfKmTvodDGDp6G0myeDtFGjSylCqsJwpWUua5InNPM1LmueL/Xq1A/sVOOLlw0dYiwvylnvjxk2rN\ng2iJWEygp0sCsYgAz0ZqvyARE1g2jWwiKhYTiJ3oiKuntTNN27aqAjZ8Nn75rD+Eb/K9LvhsJf2Y\n/O4ebJzMpg71GhFYQ1luzhRU+MhfW6L8VjTD9/RFT73yZ1YWEYkKdXWaKLhM3jQDgH1Jn4PFZiHp\nq/swZKg76s9V4OJ7hyHuUR+62ViYdVhVVeiqMGjbx4oVK4MLOy97OIe6YOqWVBxZ+jfqc6Ux053D\nXOAc6gIWm4WWoma0FkszKSuaGw18XZ9TC3sfB9h7O1gVCCsm4z+ZUdj4bCkkBLD57+FmYzoUFs7F\ntFQ+EsbaYPQYG9g7SBUcS1xwWxWGwQHP0VllnVPsaDSdTlcq00cpUMX1i9+hqZ7aB9SQMBFW1aow\nWLFixYoVKxaKzOdg4GtzQ7botsQFt1VhGBxErlaftyT/wxWU5Twbe0yY/q7e859JWwthn/GsOxQZ\n9HkYrKjHxscXTgljYRcRDa6LC4ieHvQ11KE9+yLaL54DITF90q2BCELC4Dg6AXaR0eDY2UPc2QlR\nSzM6C/LQkXMRwuZmU4s46OEHBsPWzx+CsHBwXd3AcXAARyAAQRCQdHdD3N6Gvtoa9FRWovtmgfVv\nYkUlczKX40DKVlOLcUejqCCYq7Jgxbyx8fGFrV8A+P4BsA0IBFtgB46DA1gcDsSdnZD0dKOvpgq9\n1dXoq6lGV2GBqUXWGVVKgcBfdcQyYV+nPNGaPonbdMUnJRRj3p+NfUm6mQIzxR2hMLhx/UwtAmP4\nLXsJ/IAgyjqWnR34QSHgB4XAY8H98vKeijJUfaE58oyhCF2/ESwedTgxjoMDOA4OsA0IhOuMWUp1\nlZs3oq++jjE5Nl6fpbnRP6yKPsTYvKbCZco0uKbeRbs9CwDbxhbcIc6w9Q+EY8I4ynbdpcWo/voL\nwAxPJ61oT8j9cSj9zbrQtGJlsGM3LAJuc+6BjbeP5sb/wHVyApycYOPpBYeRKpKHEQQa9+/F7ZNZ\nDElqGFQpCwDQfavUiJJoh1OIm6lFAGAhCoPMnIhuuSqudekeWSVsg/qjLE0Uv6H6H1UTLC4Xoe9/\nrHN/fmCwXP7GvX/g9pmTOo9FF+fkKXCbc49eYwSs6Nfgq7/5D7pv6hc+M3tvlfx1fXEnZq8YBgC4\neaYJnc19GJ7kDoETD9ufy9ZrHlPAxP2miyAkDGEfbVIq67x+FbU7thtlflOi7/fAQPT5XmACv9QI\nk86vicF2v6lg+j0aE0lPD0rXrDa1GFYo4Dg6IuClV8FxcDT8ZCwW3O+eB/e75ykV13z3P3QV5Bl+\nfgvFIdAZHRWtGtu5xtJX8AyJRSgMTFHVp3+8dmMTsu4jsG1sNTekifu9C+B+7wKDPjgN8QD0XfIs\nQBAofnOlzmPsWt0fgnXj9VkqTxHU1ZkT/JBQ+C19wdRiAADso2Plf/ey9e9A3NlpYokMQ+e1K7CP\nGaG5oYFQNAEKnBuDmJVT5NcsNgtTfnsCGQulipvvtGGIWTkFoq4+3Pj6NKqO3JCPw7bhYPT6OfAY\nHwwAiHyhP6/FQBMjvrs9JnxxP7j2Nrh1IB/5n5M3XjzGBiJh41zUnSrBpbcPMPqemaLjaq6pRbCi\nJTY2LFwq8AZXxUqlsUGCxNH0T6GvFnuDx1Ntyr3r5y68+8ZtbcWUYw6+Dn7PLQc/SLV5jTHxeeJp\nAAAhEqHk7ddNLI0yMn+GluyTqD38ByJXb1Z7AmEIpv70sNzMaO6JZUadWxcsQmFQdFQOsI1AlGAS\nrX4ECNT2leJq13HamW/NBbZAgJD3PjDY+GEbNoMQClHyDnN2eMHvrgfHTrdkbbRgsRC2YTNaMzPQ\ndPBvg03TUs1s3HSmMfcdyeB31stfF69+FTBDXxpdqf3xO0bvf+Drb6PiY9XJfNQRs3IKRJ198Jk6\nFDUZNzF28zxkPfYTAGB2+jKU/XkFR+Z8BUCqaIxcPRMHJkuVAUmfGBdW/YU5mcuRv+2ESpOkOZnS\nMMgHp30OQiRB9CuTKdvkfngUB6dsw9hN8xjza2D6/7zup+8ZHc+K4blS5K223t2DjYIKH42L86Mn\nPREQqDkXUGen7usEmbIgFgHRocZVFox5wqwLLC5X/nnuzLuO2h9MH3xGphx4py4AAHTfKqPVj0nf\nhYE+Cap8FMa8Pxs+KaGMzasrFqEwKFLZWyBXGAZrxCN+UAj8ntOcr0BfWDwe/J5/kRH/BmMuYp1T\npsJp/ESUvmeYo3AXX4FBxtUHjoMDgt9eZ2oxtCbsw38DME9TEHOA5+qqVfvSXZfhHOmF1nzprmre\n1izEvjYVNRk34RbvD1GnNJ/GwWnKD54DKVvli3/asjnYyvvKuL7lOKndjf+eQdVhqRPk+ZV7tJ7H\nGBBCoalFsKIjZSUizJrcQCpX3M3fsNkZb6ygNu1gsaCkLGzb0o5tWzpI7fLLfbBxfZtOMirKYkxl\nwfvRJ2EfHWu0+ZjAPioaYRs2Q9TSjPKNum2WGAKei3n4CVDRVtJkFgoDW3MTK8bGGMqCDH5gMAJX\nvqHXGEGr3mZIGvqwbfkkO3ptefSzeFLZ4n+P1GtMQxD8znqLVBYUCduw2ST/J4ZAdFuzzak2aGNj\nXPDlSQx9arz8+tbBfHDtbBiVR0bChnvQ00heWA2k+MeLjM89JDGZ0fFK3tXvO86KaYgIrKFUFmR1\nMubdp3qTJ79c2UyISlkAgMgg3Rb6pjBD4tjZI2zDZotTFhThurgibMNm2AYEmmT+yDcV1g8sNrj2\nRvD1UMPhe1X7ALYVNxlREtVY3AkDABT1XEI4X4W3vpniPnc+Gvf9qbaNvs7NusLz8ETYhs067QKb\n1DyGxULwW2tR9sF7WnddFX0IG6/Pooyc9EaMefgvhKz5EGw+39RiMIbsASFsqEfFpg2mFkdnyj9a\nx+j/ffDba2l/9ggJAY+x0gds06VbKtvJdvkL/3cWDRcq0FOnXbZfAHAMdUP9mTKt+zHBQOdJvbFG\n9BqUiMUAR42l0YxZ/d+fa9/S3TdBFcZWFky1RjAk/steBgCUvf8uxB2aNyiYIv+jlfCZswiOESPR\nVVlidP+FgfQ2q87PUJNZbPKQqoCFKgzFPTko7skxtRhaMWRikkaFwdRfBGwbG0j6+mi3dxpDHXbT\nmHAcHeE0bgLazp3Ruq85Ozabu5+CPuijoFqR4p0Uhuy39suvhwzzILXR14+gOr0QgXNjcHn9Yb3G\n0RYmgzxYGdzcyBciKoY6ZDcAbP3aRf565w5mE2YZW1mwjxkB70eeMPg8piL47XVo3Pcnbp/WPZql\nttQc2IWaA7uMNp+lY5EKw2DE1MoCAISs20B7Eed211w4J002rEA08Zh/v04KgzkymBWFgYRt2Izb\np0+icd8fphZFa4rfWMHo34rr4gJRSwvt9qPenyNXCMr3XEXMyim48fVple1V+RXUHLuJiGcnUTo9\nX9t0DIFzYzDizem48lEabdn0JWTdR4yOZ1VMBwd8AQtz5wswbqINvLw5CA7hwt3DNFbVxlYW7pTn\ngvvc+XCfO98on1lZlKT8D1cCOgbF4XBsMCl1vcZ21eVnUHR9j05zmBNWHwYzgB8QBJaquHFGhu4X\nk7koCzJ0Ubge3hRHaZY07dkwpsTSijvloaDIkImJevuiDAaCVr2jc9+8zzIxJMILxT8p5w+Zk7lc\n/nPqmV8p++asOQQWl63UVpFrm4/Df1akynorVgyJrS0LBRU+KKjwweUb3li3YQjumitAwlgbs1AW\nDA13iPMd+VwI27DZ4CeN+R+uQP6HKxC5ehMiV2+GR8psrfonzvqAlrIAAL5BE5A8ZyNYLNX/s+rC\nqnqODzKLsKvmsUq9Q3BOTEHryUxSud+yl0wgjWpYHA4IsVhlvTl+gbG4XNhHx6Lz+lXNjSHNtSAW\nEXh79FG8nz1DqW7m8qFI/0+xIcSkxH/ZyyZz/DIL/gmXa2k7weUfrkXQau39Z/RloKkRISFIZVTm\nSKpMlNSZLlXsvYqKvao/U9rMQwe2gNkIZWXrdVfErJiWr793RfKU/kXjn791451VrRCJ+ttknveE\nl7fmcKmGhE5YV10wx+esMZGdNBr6uZD/4Qq4TZwGz8l3oSHzIK0+yXM2UpYThBg9XS3g8gTg2ZBD\nzCfN/ggnD70FiURE0Vs19WfLtWpv7+yLztZqrfrQweIVBkeOCyY6LlAqM9dwq253zSUpDI4JY00k\njWpCP/hE5YdUED7UyNLQx/vRJ7X6clk90ri22VQ4jZt4ZysLCoRt2Izyj9YxHoXIUIjamHWi9F/2\nMm59/imjY1oaTOeeGawJBO8EFJUFUyVBo+Kh+U3Iye5D+FAu/k6X+g4xrTSErrfcoBBM4/vMMlR/\nbRiH36BHX4BdQChaL5+l7fSckKzc7vyxDejpVm9OqqhgJM76QOtcDkn/uU+r9gInb6vCMJBU5yVa\ntTO5IsEiZ5j0vO9BEwiiGYfYkZSZUX2ffs4E0gxO7vQdJCqC3nwXtd9/g87866YWxehYFUdmafjz\nN1OLYEVHfv/bXf5a3UJc0+lCby8BW1vVmZ11ISdbGhik6KYII8Jr5cnlNn7qjFUv67/ZYX0uKCMI\nDTPICbTPnEUo37FN6352Dl4AAIKQ4MTBN2n1yTqwCq4eEYgZ8yQAIDH1fZw8LA0zrmhqpM7s6NBd\nyuvXYRMeA0Cg8MwOTLj/36T2jRWXaMmmDRarMAxUFhqFt+DO86ds2y5ugSPHBcMF43Cj+5wxxKNF\nyNoPTS2CSrwefhwdAz6gghDT2PZrg/8Lr+DWti2mFkMjvs88b2oRzBbvx5eg4c/fLMKRvXbHdng/\n+qRJ5k6evRFZB5nLOqqJgNDJ8A9Jxpn0dUplIcNnMyKHz5P/0nsMRSzh/8cKNZHRqiMfaUNqcgOO\nn/MEAPz8hxsWL2A2nn1fX7+z7L0LBPhqawdKirUzN1HEqiyoJuCV11C55RPGxtMlOpKiDwJdZUFG\nc0OB/DWb0///LQuXOvfEMq1Cpxae+UH++vrxL9DWUCK/dvGJ1Eo2ulik0/OUIQ/LXx9u/QaHW79B\ndqdq85KLHVK7tGDbGIPLpg1sW8uKse+71PRON5qw9Q+g3faZ7WQUX7u8AAAgAElEQVRzsA9zU5kU\nhxKPhQ9AEBpu8HksGY/595taBFrQ9Zmhi3PyFNptCULC6NyaqCw5rqQsyMqYwm64YR5y5k7tj9+h\nPScbwuZmU4tiNmSf1xze+z/bNWdJr63p98UblWCYBIeKJyAHjpHDG9PFqiyox8bLBx4LFjE2nu89\nixG5ejO8U6Um7RGrNAdOCY/WLz/MtQvf6tVfFYrKAgCDmCMBFnrCYMOSLrTpmhj1Ed2GFEcntPly\n6K2uQs32ryFu/yf5EosFv2eWgR9i2FThdhFR6CrIAwD4Pa+9Y7aktxcNf/yGjtz+ozH7qGh4PfwE\nWOqy7eiJIGwouotvqm2zKvoQPrg0Ux4hSfZb2CPG6pFHDSabw4g4k+ev6C4uQkduDjrzrkHcQU7o\nxXFwhK2fPxxiR5rUxyZsw2ZUbt6Ivvo6k8lAh85rV2AfM4KRsdzm3IPWrGNKZcmzN+LcsQ8xbspq\npZ38lsZCneYICp8OYV8HHIb4o/Dq7wgKnw6BvQcqS45jWOx9yDm9FT4B4/6fvbOOb+p6//gnSdvU\nXai7USjD3aUdOjZmzMdgjAnfAcPdC4yNKYMxHxPYfoxZcS3uVuru7k1jvz+y3CaNJ+fmJm3er1df\nJPee85ynJXKe8xh4rXXwCx6C5sYyZD/8W7NgGX2leg6dsAEpR42feFx/1XQ8yZpouncHTffu6DyP\nzeXCoXsP2IaEwaF7D3CcmO1US5IXn66iqhEpyw94kOsLNhsoLxPC20f9d0lMUImcLABY/L9aHP5d\nsi+IiLLCG287YtI0O2q8rnRcQ1cZpEsJ6wqvsABND+6iOT0dvMJ8pWOs3NxhHxkN++gYxjpMOw8Y\nhLqUc2grMzxfpPrKGRT/uZ8yGPj1msPJfPwNaxhcXZGm8h7JxmxtLeSbFAJmajCYMx4Tp6Dqnz+1\nGlv40fvgFRcp3hCLUfSFJPbOxtcPgfMXkVSRwvfl16i4QdugYK3nVf55CHUpZ5Xea3pwH9kr3gNA\n34mK3+w3tIp3XNHnKC3rq4Jtw4XPzBeNuqZYIEDxF5+itUD7KgvCxgY0p6WiOS0V5Qd/br/BYiF0\n9UbilWzUEbhgiclXTyr94Ruir2W2rS1Era3Uc+nmOy9TvhfCvWtf6yXf3tEbqbfaZQVHjqfWcHKR\nhHWWFEg23NUVDzHi0SSdDIaKkvbcJ22NBdKGacVvysvImhrBkVxs+zUUabdasPoV9e/Rv7PjAAAv\nDUlHZSkfIh4PDTev4+ffWgE8oK4rhcWCQ2wcbENCdfJi6Yu60qPK7inbYN+41kZ5BZTNuXW9Dc9M\nr9KqzOnMx6uw/3cP6vm2D12x7UNXjfN0YeLoCsrDkJrni9hg7Ta1vi+9ZvRmhYWffABeYYFOcwQ1\n1ai/chH1V+RD/ThOTghZsY6kemoJfPc9It8JrWXyeythk+Yu0wIBDzYcMuFyhhI7/DWknvsSAOAb\nORwlGfQ3vLMYDEbGdcRojR/YurwZ2kqKiTeR6kjIyvWaBwFoenAPpd9p73LLWroA3V54hbHTCmNi\nGxQC/3nvGGWtpvt3Ufq9fptJtYjFyFm3gnpq7eGJoPeWk1+nA+ZYctUQQtduVvr7ikVkQpCaGlR7\nbKSGgyH5Eam39iM4cjyCI8ZpLYNk8QdRi+l5lFXx2ZEITArTLsF/Uth9ymjQ5rocYjGaHtxD04N7\nRjEYSDDz8So4O7Nx5Z6P3HU+X4ye4aU6ybpxrQ0xQSXo1dsav/zhqXTMvFk1OHmsVek9bcjOak+C\nZrG08zRYubjCPra73mtqC505YcKGBrnPK+dBQ+D1mG5VfXSFxHdC7LL3kbploeQJiw27gBCNcwpz\nziIsZqLea4bHTtZ7bkcc3bU/xCVFlzAYpCFMsiRGLlY7JzmDmc7L+dv0KytIl9HgMngYOI6OGseV\nfL0XzWmpOssv/f5ryam1vb0+6ulExwZt6lgSl0x0bWMYC2U//SAX/kU3/KpKZC1dABtvHwQuoDf5\n1tSNBkFdLaxcyJ5Y6kNg2EhUlj1AS1OF1nOyH/6NvsP+h4e3f0GvgXNw4bjktJDDscHgsav10iM4\nYpzWtcZJhyfKGrUWmCEmqAR704bh/vkafDhLtUG0N23Yf/+GoyK/FRum30RLY3vewftXh+CcjP1X\nX8nHP1/In4xrG/4jXetcC5SuJTsGkB8jXWNv2jDsTWsv/iHV58R3kpjxtjaxTuFIwcv0e39pS9mP\n3yqtdkgn9ZcuoP7SBbiPT4Tb2Am0rRPw1v9Q+In+ZagLfv2S6vbs1neYVmVVC7PPtBsMLBYg1q1D\ntH/ocJX3PHr5Yegn09XOlw1bun/qU7nqSCGPTJMbe/EA+cgTszYYXDheqBNq/mKUJklLk5+BdoMg\nMXKxnHHAZnEQ4EwmHllXDN0QZS1fhPDNiuW1DMFz2uMax9SdP6uXsSAlZ/1K4sYOx94Bwmb5GuzX\n/2h3QZZnNeHRBVEAgIyLVWiqbkP0cE/YOVvj6zfkO+YaCt3JbPnbN4FfRbb6hy60lZdJXrtsNvHX\nnyymbDTkbVlP9P+Z4+Co4CLPzzqhcV5BtmJjyI50lFOYcxaFOZIQQqmxIPUMnD+6UqM8VV6E80e0\n27iHbSJX+aQzED/YAXcuNmHic+54c4Ov1h4Ic2Ve/AUAQFR/Z3x0fTAAYHb0eaVjnNytseVEPzyz\nIkxhDOm16NaHzu+F3A2rGO9BUn0sGdXHkuE2ZhzcJ+h/Kq8KbkAQvB6bgYpDB/Wa35iVqnXvBWWM\neHQrUm/tR0WxdgaZbC+GC8fWKtwf+sl0FB5Nw40NxxXuKaO5vpQyCowVkmSWVZKuNkriaQc5TYWP\ndajasbLlV6sEmjPHRWIhor3Mw2WrgEikNImVbir/OmSwjJZM/RI4VeHznGKuwK/L71I/jy6IwpK4\nZCyJS8aXr13FT4tvY+3gE1gSl4xXPu9LTA/3BPIflLJkLV3AqLEgh0hksht6cyNklXZhgKaIrZ0b\n2nia44EtKOfORclG758fu0bVJD5PBD5PhPvna1VuuqVjqkt4eL17CgBgzeHetK5Fpz50GgtZSxcw\nbizIUnPyOG3fC86DhhCTZe2iueoWALl8rthHZmL4o1tgbaM6CiN+4Bw5Y0EsFkLAVx42qa2xwBRm\n6WGoFpTieuMR9HVMwCMOYxTuK2vopqqi0tWiXxTCk5gIRyL1hsrduMao5dlI6V385W6ietuF69+R\nuqaYXAy02+hxxGTJIqivQ95m4yWa6YL0NUHH69CUvQx05xKZC60tNbh0coNWY1nWZBMITfW1oS1s\nDgt/ZnTHV1vLcCvFYnSpo7VJqHmQEdFWHytnF1rWz1q+CCCU50QHWUsXIGTleq1CnHWB1HeCfWAo\n6uo0G+mF2WdRXf4Q/UZI8h9YLDYGj9O+Ety5f8nn/RnDuwCYqcEAAJWCQhS2PUSATYzGsUdrVSfi\nVjXnMZavIKX81/2Mrq8vYiHZD2xRc7NRchk04eZHpgpQ6PqtROR0pP7KRVT8bvpdbPN3bEHQIt2a\n22iDKRsNJPF7bS6Kv9zNtBq0EraO2XKSpsZv92I7fQiSobh6SyonJT2reylaOtBVn+Dla4jrUPDB\ndpM2FqTkblzN6KGKNGdBFXX3tAtHbm4sR+b9Qzr1Zaitysady1+oHTP2p+dw4tkftZZpbMzWYACA\n+80puN+cgn6Oj8LDyk/hfmbrDWS13mRAM91ouHGNqLzqI//QHgoDgCqPSoq8pI1G7X79wq7e+H6+\n/Otj5o5eRGSzOBywbehpFGQOxgIA8CsrkLtxtdZVtizIYxcRxbQK9MMmFxVbfuAnYrKYYt2sPPx8\nIwa/7anEy4vlqwP1HyU5mR0z3QVXTzciJ1VS0ad7X3ul182NqAEueO975RXzZJOR8x806pW/oO1a\ndOpDR/NTU8hX0AU6PLG6HCKpyltwjtOtx0Jx3kUU513EwDHLwLVVU/BCLMbZf5dqlHfm1V8w8qun\nMfXcm+BVN6OlQvH/9OxrunenJolZGwxSZJOZdWVs+DuwZstXUbpR/DvKmzINVYsxak4dp91gEDaS\nd5eLeGS/6GyDQ9Gal6P03pK4ZCTdT1RaOWlpD8MrJNGRyMkryEfhp/pXhWACYWMj418QxiR75WKE\nbSTnsXSIjUNTKjMnzsnZks7LiWGpWL8vEBveKAS/TbeqIOrwefYFYrIAoOH6VaLyjEFHb8KtC014\nps9DAMCB3ZVy966eblTqfXhwvdmsvRKym+8PXr2HBymKDbRkN+QstmTOb9tzkfxlIfG16NTHLjRc\n7X1dMcXPQG2g4zvBecBghR4RHVGX5Nycp9+e7/JJMl7SkV89TT3mutuD6858tEVHOoXBYAjWbFsk\nZ2zDmLC3cTL7Y1hz7OBqq+itoIuaE8ZtHkaK3I30loMjgcuQoSoNBoB86VS6MTdjQZaG61fh1Lc/\nUZkOPeL16pBLJ2KBdqVEtaXbS7MY2RQkZ8diSsxD/PlQEvK5elYBdv1fCOZPzyW2hmMv3ZNWLXQ+\npJtvZ09rvJ8yUONpvVgEJM28gyX743U2GLRZiy59fF+do5OumjBHA1kW0kaD1+NPajQY1CForCem\niz6Q7PRMF2ZZJYkOiuvvAQD4whb09tU+Ls1Qqo/Rs2kt+mwXLXLNCcdehrVx1xc6YjTN9SRJSvmB\nn1B75iRRmd2ef5moPFLo0rzQlOnoTXD3Nt3zJUPqsVswDeorJV2qZU/4VeHsYViyvDZrEdWHxYJ9\nlOZ8S22pu3i+U4Tgka6OaIFeTPcbQAPjXV8BWw97p2O1JJ5AElrzsPIUVS3pcqF5JiHL0pqfx7QK\nJk/C/CgMeTYItk6KbwN9vQ/20bGGqqVA4UfvE5fJBFX//gXXkYpVzQyBbWdncp19mx7cIyqPZWVF\n3HOhCYFAjLh+7S7xv9Ji8GQfcl/uDj3I9rrhFeYTlWeBGWZHn9e4QWexgTc+jkXuXcPCYrVZi5Q+\n4VvIfoZX/vE7UXlMQbo6Yuj6LchZTb7QhrEIGB+FuLeGqgxHYtoLYZYGg7KyqfpyKucz6rGxqyUZ\n0uyMSWpPa24gpS81J4/DbQw9pUhlkeYuPDhVjpZ6PjG5vq/MJiYLABpv3wCvuEjzQDOBdIx/6JpN\nZu990UTYxm1G/x0nRz2EtQ0LDbVCfHUqHJOjHxKVT9I7VHtOc7M6Q4if376hubNL9/8H6Xx95po7\nccPcFDbcmkJ8tj9/F3vThsmN6yjj1I8l2L8+y2D9lK3FpD7akLuRfJUlJslatpCYQcW24RKRwwRT\nz0kS4sVCEapuFcPjET805tXAMdgNdekVODNL+4RnroM7eE3k+7iYpcEgJb3lKnJ4hscwR3mMQJBr\nH9S2FuFakfEq0FT8n34dCpmmKvlvzYP0pOH6ZaMYDIB55DCU/fQD0yoQRSwQQCwUgsXhEJPp1Le/\nycXz1p4+AddRY5lWwyD4bWKiXgUKFououKq//yAqzwIZtKkcpGxM+tU66rqh1ZB0WYsufdwTJuk8\nRx1MNGelFTG5QgoA4Dd7Hor3fqZ5oIEMS9gINkf/0Liz/yxRuPbnyM8gFkn+HlPPvYmTz++nHvsM\nDkbZRe0iR+ydu9FiMJh1DgMJYyExcjHSq87ieNaHuFZ0AIMCX0C05yjDldMCQW2NUdYxJ0yma7Ee\nhG/eQVReczrZU11TgXQ5Xu8nnyUqjwSkjeqwDfT09FCFtEKSLNt/DiYim3R4hiYiD6xX+LHQdQnc\npd3/v8sk7Q1+dWPdRpM7OOis3tTGO7eIybILjyAmSxk2ts4YMTHJIGNBFVJjoSOHh3+Kgdsmy10b\n+PgWDHxcUqFp8JM75H5ihr1KXDfATD0M9cIqOHM8aJF9qeB7jA2fj7TK07TIt9CJIVhTHgBKvtpD\nVJ4F4yKoqYGVmxsRWSxrenp66EJsbzINDUnSmqu6CpoUXnYJ8pd8bgRtLJgDBfO1qPBH6LOcdGW4\nzkrZ/u/gGP8I02poxaAxK5hWAQBw+ff2XI20C9+iuugu9dwziJ4KdGZpMFxsOARnjieVy1DGz0Wt\noAxtYs11/Ivb5GvtNvAq5J4/4jsVp7I/Iacsg/CKi8D18ycu05xgsdkQK+mAuX7YSSTdT8TOaedR\nlml4TwnngUMMliELv6KcqDxTI2fdCoSu2URMnvv4RNoqjulLXtIGRrua6ovUu9DRy7D0ecMTiz0n\nk61AV7T7Y82D2GRDoCyoJnjPNrTcfoDGi9fgNfdF5M1ZDJcp42Ht44m23EI4DOyNkk0fIXjPNuTN\nkRQZCfpkE/LfWgGXKePBe5gFm2B/NJy6ALFQiOA92yAWCFC2/XNYd/NG40XlnXiD92xD4eJN8Fu/\nEIXvrqPm5s1ZjMAP1qLg3bVyY6VrA0DgRxtQvCIJPu/NRfHq/7zESr4zgvdsQ8n6D+C7+l1qvvSa\nS+Jo1P2tmNtH0vtZ9c+fxGR1dqxc3YwSwZGXcRx5GceIyQuaGIv8f9pzW4d89BguvHOIym9QRV15\nhtzz5roSYjrJYpYGgx3bCYOdplHPfaxD4GMdotVcqcEgrYjU8TEAdIuIoT0B2hidGetSzhIP1yj7\n6Xui8ujGLjwSzRlpCtdXn5dU61nwh/IKGLrmN3hNn6G7cmrIf9+4ISjGhnRlI7exE0zOYCBNt+df\nRukP39C+TmJYKpKzY5EYRr4og8uwEeSEaRn7bOXmpBCGlPGkcfrIePcz7zwWfSj/9Bu5565TxgMA\nHAa0n3pW7/8/AADHyQH5b61oH/ffWLcZk5A3V9IdN3/ecgAAL6dA7boB2yRygj7dhLy5S5E3Z7GC\ncaAMti0Xvqvmo3Cx6gOMwA/WAgB8V7/bfu2j9ZTshlMX1K5Bgtqzp2hfg0kKPtiGwHfV/19pS/DS\nVbSEbwWGj6IeK8tBMISOFZAOD/8UU8+9KTEWxMDhEaorJAn58oflzXWlRHWTYpYGwwjnpwyWYeyK\nSB1puHaZ9jVaMjM0D9IRczv5tvLwAJT8Gcwh4bmzk5e0AcFLVhGTx3FwhLCJfAdyQ8jbsh7By8hs\nTkmXIlUHHcYCabJXafeFnf1aEs2aKMc5tDu6DSWb8KqK7rHWOHHME74BiieLhXm+2JLUgE8/Y+69\n0XHT3nD6Imy7R8Lnf7Pl7mna3KuiNT0bZTt2y19ksVD51c/wfvtVlH+sujeKrLdA1fqCqhqUyHgp\nAEBY097oi+3sqDCHZBihuVZU1IW2Mno2uSTpFjjAqOsxXUa1I2ZpMEjp2FPBnKg9f5b2NQR1ii3t\n6WYCdyYA4ChvP9zZPrABF6Ui5mqkc33p79pNOtm55hR9ZWtNCUENWZdxyKr1JpcUSPo9aBcWjpZs\n45RvJI3X9CeJyqOrN4VsGVVd7qkj/UeynxEdeZCqvDS0oyMLAcH0hCdoi/SkX/Y5APj8bzZa7j1U\nOq5k/QdoK9Re75bbD+Tm8ksr4L91OQoXrUfrg3Sql4n/ZonXwm/9Iir8SDqPly1fgcZ1WgJcpyUg\nb85ilGzcheDdW6nchrw5i1G8Zgc1V5lBQrJQQcnXe4nJ6iqwuVyIeDyiMrlcZ6LySDHw8S1yOQ19\nJq3Ejb83El/HrA0Gc0bYwGwbcjroaz0aR3n7KaOhWlSG0TZPoLSNOYPBysWV/kUIJztXH6GvbK0F\n88ZvzptGMYpkQ5KkuQyGeh2cBw42WC8ppd9/rfXYyAPrjRaCpIzGwky0VhbrNKek0BeffNYIdzc2\nsnOE+PSzRnA4Em/Bth0NWLzICY89UYXLl9tUyhg/Tr4m/bHjZDdPylDlLVB2cq/NNW09DvXHzqL+\nmPwhXOEiSRiasL7ds1K0XHETr2oNBV3+C5HSRz8LxsfnuZeIFw5prC+GsxuZanEd0ZSnAKj2OHQM\nQeK30rO/NEuD4UjtPiS4zkIQtzvyeQ+YVsfCf3BZ8lVUWGChXky+FrAucJxdlF6XNm5TRWcMWUq6\nn2i034vF0i7EvPzX/fB+aiaxdU0x+Tl7xXsI27SdaTX04scLkZg9PgsFWW3YfykSMwfpF+Zo4+1D\nVK+m+3c1D/oPXn6ZTrJlG6xx3bwQ/aLunWMFLU0oOnUQdRm3dZ4rZe/eJpRXtCffFub5UiFHH3zY\niJJCX6UhSFKMYSBYUA7T1ZGGj9uAc8fJhXsaa01BfT2snMmc4ttHxRCRI8udK3sxLIH8yb0UfUOQ\nHN0DqcfWXEc4ugeRUkkOszQYACCXdxexdoMRa6fbqZU5hzGZOhfa/qG8C7YsB4ywmYajvP2M6sRx\ncFB5T7p5XnNhLNYNkYQB9XvMH09u6mkU3ZRRccg8m/l1RNtePA03rhE1GEgkP7tEeGD8t5Lwmfqc\nahx9XtJhM/blvkj9RnmVFnWIhUKD9FGAzVZaxYUOPLpZoSBLcopt56C/Jy1wAdkEQV2w9lB+aKAN\nvJoK8GorwHX1AmC8bs2+ASX443cPDBhgI2cUzH6t/fNs9drO56XuLJAsNkLqAMTaxhH8NsPzWEYm\nbMWZI4reFhJUH/0H3jOeoUU2CURC5aF/pLDzcUJLme6N+S4eWITBT+6Qe04HZtm4LcF1FkK4zG3q\nLKjmKG8/jvL2o1XcxLixAABsW1uNY2TLql47VISWeu0/FIIWkv3grL8kqbYx/s0ITFwQDUDeGzJj\nfQ84etgoXNf0OGF+lMa1pWM7/qvNmgNmtJ9waJIPACtPj9Y4nglmpMzF+G+fxOl5it2D42b3R+hk\n/U6tSr8ld1BBOmdGGYlhqfjjfjQVhrR6dwBeG28auRO6VhBjO9ga1Lgt6wAzZbanPV4F34ASpKV2\nAwC0topx6zYfe79son46K2NGb8aY0ZuZVsMkqDlxVOl1rq0LRozfhN4D54HF5lDXRyZsVWgqFhk7\nDUNGr8TIhK0YmbBVbqyyx24ekRgxYRPi+82irnXz74fh4zdSYzvOVdbILCrucfQftlDuWmjkBASG\njKBkydJw7YrS39WUqCiReA1HTEyClTW53jT8pjaMP/giVRlJ2Y86Lh5YRP3Qhdl6GCx0YsRiSUwL\nAVgczS/xh2cqYGXDhqBNcmqbfr5Sa/nWXt5666aOUbPCsKKP5Iuiua7dgOn/RAAOrr4HANg3+xpe\n29sfX86+Kjd33+xr1OMvXpZ8AB/ZlY4xc8J00qG1UaD1mk+si8OVg6rLHr66uy8+mJ5CPXfyao+v\nbnpwHw7d43TSjU4ODt2t8l7My32R85fuHbibUu8bohIjTItrL0e8fm4hg5rIo2ulNkPzFwTNup/4\nGUpJoS/1WOphCI0oRVZ6N9jbSz4bGxrEiIotxcrlTnhzniM174cfm/Hekjqj62zBuAwauYw66efa\nOoP3X9z6mSNL5TbzAJCR+gf8ggZr7Rmwc/DE2aMr4OQSiIjYqchMPYzSomsoLbqm1MOgbM2RCVtx\n/cIupN//XW5OUNgYpJxYh4Lcs7R6K+gi9eZ+cO3c4OwahCHj16K8+CYe3vrZYLnWDjZorWpGylu/\no6nQNN+/ZmkwkAwrSoxcjGZ+Dc7mWqoQGIo0HKkjunoaxAIBWNZk2q6zOByNY07vy5aL7+810Rf7\n39M/9pgEOyafw+bbCfhwegrsXZT/LfLv1iKkj2JSd/7d9so8hfe1/+BpbehQdUZJWJHsmh89dQFv\nfD8Qn7+guURw+EAPxAz3QsQgSYf2P5PaN91l+79F2EZmyxxri62baXQ79npshtmEr4Ws1O1EXx38\namZzooyFqtyE8CjF0pMbNzdg42bjGzUWlOMxaZrmQYThEU5yLc6/CABoqCtAn0FvIjP1sF5yGhsk\nr+PMh/JN5wQCsn14jIkN1wmtTVVwdpXkCXj79Ya3n+6dlZX1cTj6mPbFHGQZ/OQOXDywCJ5BvRE5\n8DkA9IQlmaXBQBJpPwYfxyj09n0MAhEPx7N2MayVaaIpFluZYRDO6aHXOqQMBlWeirRzFQrXNCVC\nayubBDXFLbh3rBTl2Y1yicpSLwgALDs2CjsmnVOYu+zYKKwZdBwAsODQMGydcMYgXVStWXS/HiF9\n3LRKpt4y7jRWnBqNZfFHFO6RLo/pNf1JVPzfAaIypVxP0v9vWXPqONxGjyOih/OgIbQaDAdvRsHR\nRd7YXju7AJdO6B4DzXFUrFGvL/nbdE84VBaCpKvXwVi5CxbMH9fhI4nJarhxTeW9M0eWIr7fLLh5\nROLssRUQi8jkSrHZVhg+fiMe3PoRjQ26VfdSRW01M+GMdpFRaMlIJypz0NiVROVJOfbkd1TYUUNO\nNYRtiv+fZ1/7VencsmyJgRc58DlcPLAIEQPINuyV0mkMhmBuHAJtYmDPcUaTsA6pLRdRLdC+jnNZ\nYzqOZX6A4SGvUZ2fmW7uZmq0lej+4RFqFYcs4T0atDGMr+bKJ6/qUz3IfVwCKXUAALWn5fsv9HrU\nF70elYQmLIs/ApFQjBW9j1KGzd1jZagtlXR47HhdiqOHDZLuJ6I8W/9kN1VrAsDva+/j8bXy4UQd\nDa8lcclorGpD8q506l5rowBrBh7XWyd1OA8cbJDBMCNlrkJYUuxLfQAA+Uf1b4ZYfeQfYgYD3Ti6\ncJAYlopfr0fhqb7pcHbjILa37t4V0u8RfehoHOiaw2DBAlOoyl+QcufaPrA51hg+dj3OHluhdqxY\nrJ1BMXTsWlw9vxPNTeSatEbETMHtq8aP4nCMiyduMNDF+AMvUo+dQt11musR+AhqS9NQV54JALDm\nqi72YghmbTCEcHsi2k6x854jxw39HSdSz0/UfQeBWHUiq9RAOJa5E6dzPpe7bjEa2uEVq49jVhaS\nZAqJz3ThNnYCUXlVye39Fzqe2q+9NBZrB0kMCmXGjaBNpPT6yr7HtF5f6pWgqkcNat/QqzKoLh8o\nwOUD8rkLqsae2ZeDM/tylN7jV1fD2l23D0k6ODh0N6KeiceMlLkAAOdQd+qxutwGbSH5e3o/+SzK\nD/xERJYqjv8uCWmrrxFi1ecBmBytW/6GG0GDofkhmRLadatx3ScAACAASURBVCd0r3RlQX+cnQPQ\nr+88lfdPnlqudr6bWzh6PzJL4bqmedFRU+HvP0jh+qnTKyEWy1cZGzN6M0QiIU6fWaVwXbLWCnSM\n0RwzejOqqtJw+863avUwBH6V6nw62ZwBaR5Az76vwt0zirrf0lyFK+ckJZ3PHl1BzZGOF4kEGJmw\nFU2N7YdM546tpMZVlCk/7JOVo2rNM0eXUeNKCq8qlUM3Tv0GEPfEKgslIoEhXZ3TL3yHbhFD8OCM\n5DvKtRv5krKAGRsMtmwHpcaCMsa6vKgy78FiFGgPv6pK7X1zMw4S5kdhyLNBsHVSfBuYQh+Glz/t\ngztHSvHUpp5Y/oj6kyZzp/bMCeKdgPUl/ec7SP/5Di2y87dtRPhW/boFd8Spb3/aDIaqMkmY2J5N\nZVTjtoVP5ambQjsl33yp1zwrj/a67ja+nnAZ2xfluxWrYFkgzyO9XoG7e6Te83284xEXp7zM5pjR\nm1UaDeoqLI0etRG373yLqqo0uetstup8t5joaXiYdoh63q2bJGY9TeaasVGWLHz3umLHaXVzzh1T\nHl6jLhG54z2Va4rFSuXIXqM74ZllZZ5b3BFfPgWXCA8UHc/AjU3HleYTylJXnoG68nbvN12Vkszy\nr2nLdsBIZ8mHSDk/DzebVIc2JLjOov5VZjSoMxYshoQ8/ErFuH9ZJnBnKhgNIZxYeLMDcYVvWhte\naWjMg1PlOpVRNRayBsuNw2TiSE2Z+ssXiRoMLGsbiPmqu+B2Frh+/uAVFxGX+9zg9i8ffTs8ezw6\nmZQ6BvWyEFTVyz0m0fU5fr56o6/k3GFU3Dht8DrmjtRYOJ+yGW1KegCwNOSBxcU9g8ysf5GfL5+r\nJTUIRo1ch9Nn1sjdi4l5nHrc0aCws3XD4MHvoVf8Sxo9FD7e8dRjP78BcgZD91jJZ1UrzzSr2Vgw\nP1hsFqacaffEidqECEiIRkCCpLy6IR4IUpilwSA1FtJariCXp77jp7QrNABE2Q1AeovmOr9Mex26\n+0xAfu0NNPIqkRizFGKIwRc042Tmx4zpBADCBs2VOKRhSVf4R1ErqkSkVS+ktP2N8dxncYxHb/iE\nrpiCF8ECPTj3H4C6C+eZVkM5BMsGB7yzEFlLySfkfn06Ar5BksIDDbVCrHi5AOl3dKts4jpyDDF9\nslcx1/hNluDJr8AlXHMPIN/hU+E7fKolWfo/lBkLACDWosNjR2MBAC5d3olBAxeAzVYsjuHn2w8A\ncOq0YtfhltYa8Hj14HKdMWzocpxPkRge1dUZCp6Q7t2fAgCUlFyHr29fjXoCADeQbIddUt5IC6bP\nlDPzIGoT4q+xiqGvU8+9idHfP4tTLzC7hzLLxm1SNBkLUqSehVCZZm8sFlvlD9MEuPZCI689dvHI\nwyTYWNGTxKILwkbNpdukjdsGWEvi+wuEGWgWN4AF+ioKWbDQEad+A/WaNyNlLpxD3FTe8xsWYoBW\nEkxl86uOV0ZlIjEsFYlhqZg1NgtvrfehQpMYwUidrdXh1r2/VsaCLJo8EV2Ffn3f0Gteaqry+PPm\nZuWx/RyZ5mGqknxTLkji6m1s2qt3SUOL3NzCqWssFhvNzRVyngVNOPXpp/VYCxY6osxYAIAbG4/D\nKYT5HD+z9DCQICFikcmGHGVXXUC4xxD4OndH8kPduprSibC5We39GpF8VQVXthdsWfZ0qtRpaLhO\nb1JYxGbJxqUlKwNF+z7XMNr84fr56z23PrdG5b1+K0fjcKJ+tbKlkC4jG/TeCuRv30RUZnJ2LC6d\naMTa2QWorxHincdydZpvSiejrpMGo/bvi9Rz7zlTUL7nTzUzFAmZ+hqcQ7tTzx/sWQ1Bi+rKY91n\nr4OVvRMAidHQVT0NaemHER01Fc7Ogf8lFgtw+oz2IWElpTd0Wi++p7TSjGbPhSwtrTX/zX8BZ86u\npa5fv7GbMjx69ngOd+/9SN178ECxxKXL4GE6rWvBgjZU39G+4iedMH+cbkGBzMoUeDlGoKmtPcm4\nY1UHJhDxeGrvX+UfxwTuTEzgzsR1/kn0tR4NL7Y/htlMhQhkakSTYt3QE0i6nwifCHI14g2hOT1N\n8yADKP3pO2QuXyBnLHCcnGDlotj4zYJqxAIy78PS7w0zOmSx9vAgJktKYlgqinLakJwdi+TsWIyc\n4qx5Ek3o03sBkCQ7W3k4g21vSz228feEy/j+OsuSNRbu7Fqg1lgAgAd716Ahr72ilM8gHXu8dBKK\nii7JVR5is60wZvRmtUnJhuDsLAkJatKzJCiHYwMA8PSUeNP4/PYwPC8vSfloachTadktvfW0YEEZ\nfqPClV4f9+sLRtZEOV3Ww2Dqyc6X8r6Te34kjXmdoEW8qWzS8wme8iYjTKGsMduCP5SfCGnKb2Cx\nydraTXcN//IJmPsOrN09kb9rG4RNkg2N70uvwSH6v83Osy8ic7nkpNNj/ES5ngDS6wDgOmQEPBIn\no/7GVVQckvQziNi8E5nLFyBkyWoIGxtQ8OkHButrqvR4fQDufaE81+n8wn+IrNF0X7twSibJz+RB\nJATYHGDZLn8MGeeELfPJJ1hrQt/uzoKqerCsrSBqbpVLfNY16Tlubrv3RhdPQc6hPYh67j3YevrC\nZ+AElF3qmjlTIpGQSjAOCBiCqEhJMnx7yVL1yce6IBTywOFYUxt/fYnvqXqDJptUbcECKf6ZsAcT\nj86hngt5AnC47Vt0S9KzgQRxY5HP01zBQ5r0nNV6k26ViDIk5BWUN2Ygs9JEkzdVMNLmMQDAmTbm\nSs4pg2SSs21oGDFZACA2MEY7YvNOZK5YCIjFiNj0vuQxgJJvJaUorVxcIairpcZXHZM0EctNWi93\n3T4qFmxbW2StXgyurz98npyJsgP729dYvgCOPXrBdfho1J47ZZDOpkj5tSLEvNgHEU/F49BYyd/O\nZ2Aghu+cBACoSVNfKUwXmu7dgUOPeM0DtcDj0cmo+vcvIrIAYMv3QfhySzkmRupeISloMblOqLK9\nSfRBzDc8/IvD1b1hnZT0H7db8hhkKCy8gMLCC/DzG4CYaMn3BIvFJuZBLy+/i4CAwbC1VZ6HpC8i\nkQBstllvlyzQQIhjb+Q2ktlXClr4ODz8U4w/+CLsfJwoY6E2rUJlh2djY5YhSdIk5li7IZQxoAwX\njpfc/cxWxXjIseHz0avbVDjaeCDQ5REkRi4G14rZMBU/5zg84v8YLuS2hy0kxtBbr5gELmxPDLRJ\nwJm2QzjTdggDrRPgxvZmWi1a4PoHMq2CIv95gDJXLETQu/q9Xvxeno3qk5ISuLySIjj1bk/iK/xC\nUqWr8d5teD46xUBlTZOz8//EwaG7wWKzMCNlLmakzMXwnZNQeDKLSOM2WUp/+IaYLJIViQBg2Qv5\nyHrQqnmgEkg24OvY/VwvGTL5CxZMg+LiKyguuQYAGDZ0GTG56Rmac1NsbZWHYRYWXpB7LhK1G5uX\nLluMPgvyDPN+DjEuw5Do/zb1Q4JjM77D4eGfUj+mYiwAZuxhuNl0HL0dJCEV6owGKaoat1mzubhd\nehgA0NhWhYK6WxgfsQDHMun7gNBUU7yH70QcTdtO2/p00c96jFwY0mX+EYzlPmVyoUkksPbyYloF\ntXAc9Td6vaa2u9zrLrV7twS1qpOBOxv/N3ov0yroTEcvEhO4DhvJ6PoWzAdp5Tw+X30xDX0JCR6F\n3LzTCteHDF4MQNFAyMj8BwEBQ2BjI0lWv//gF+pea6vkfWVv7wnANHIKLTCLo7X8wUhRs379aswJ\ns/QwAJKGbaqMAFnK+DlqxzXw5EMMHvGdihNZuwzWTy0i9QZDSs4+jIl8R+4aX6jfaZ8xuck/S5VT\nBYCBNgm4xj/JoEb0wfULYFoFlbgOG4nczWs0jhPU18O2Q91wflUlKg7/LvdjgT5qTqpuOqkrwcsM\nb0hmKB6TpxGTJQ2nM2cMCWfqDIwZvZnKWZAlKHAY1dvg0mWy+VDSnIiwsAmIjZ2hoI+U9Az5ED6p\nETBooCRPpaLivoLsfn3fBADcuGl+BwoW6OVujWGf5VPPvQk7b9MowqIKs/UwSJEaA2G2veBvEwU7\ntiOahHW433IetQLVlRISIxcrfQwA3SJiaE181hSv3tRWjfTy01QYUoTnMJMqr6qKalEpmtjBVPO2\nHOED1ImU18s2d9i2prURyFy+gCqdKua3ofb8GY1zcreupeZIk57z3t9MXQMAfnUV8naQLdlp6nj0\n8MHAdeNg381J4R7psKTqo//Abcw4zQPNALYNl6i85tQHROXpS0NuKpxC9OtBIZsw3VUJCBiCgIAh\nSu+1tWluBqoPN27uRZ/es+HbrQ98u/VRuK8u0drKSvnruK2tkerdUFeXR0ZRCxZkaClXX32Nacze\nYJCS3Xob2a23tR7PaCUkLUpEF9bdQWHdHfp1Icx9wWXcF1xmWg3aYXMNq8JBB7KVjjqiKlRF2Rxt\nrqlby5x54tzrYLEtTQb1IXQduVKZYj6fmCxDyfljL5W4rEtPhbDpc6nHRad+o0U3Uycv7wyCg5WH\nqZ06vUKrTs/6UFubg5OnliuUb83JOY6cXNVe7/bkZkW97t//Gb17v0ZaVQsWzIZOYzB0Jhxs3MEX\ntqJN2B7bmRiz1Cy8DB2ZwJ0pV2q1s8C2szSk64yw2CziXgRNZC1dQKzRWfjWnchaypAxxyJnaJla\nN+zcw18iZKpksxg/fyfEQgHSf9gOXq1i1aywx9+AY2Ak9ZzfVI+qOylG09WUyMo+gqzsIzrP06bU\nKqkxsqhrKldTm020BKyFzkMjX7/Szx2JXzgSd97XHB3AFF3eYBgb/g6s2bZy124U/47ypkyGNAJ6\nBzyB89mWGEmThuDmyIIFC6ZNfc4DNOQ9hFNwDACAxbFC9EvaVfdJ/XItjZpZsGCBaWw4tpoHaeDw\n8E+R+Ncs+I4Iw5Fp5Bp7kqTLGwzWbFskZ2zDqNC5OJ0jOVns1W0KowaDQNgKa46tWSQ6A6ByFroS\nopZmcBxMO0HJgp6woFXYIFFEIoBQM8CAdxai8KP3icjSFlIeEgDMeUg0kHNoDzhcO63zEnL/+hr1\nWabfoM+CBQuGYcM2POJg6rk3lT6WhenmbWZpMDhyXDHU6QmV1Y9crXww0FG+MoOmikqlDWnUYx/H\nKMOVNIBLed8jMWYpsqouoLQ+Fb39H0d+zXVGddKEqrCjzmpMiHg8i8HQCflz4jeYcX4uHnx1DQ/2\nXTPautmrlyJsI5m8Kq6fPxE5FhQR8lpwZ9cCOAZEIOyJNwAoehqLTh1E1Z0LipMtWLBgQQVMGwPa\nYJYGw1CnJwBIDINaQZncve52QxDIVaxokeA6S6nRcLtUUlrtYeUpqloSownR/yGbr3A2+wsGNdGM\nuhyFzpi/AADCxgZYu3swrYYFwkz552UAQPdX+6H7q/0U7tOV3yAWGN6RmCl8X53DtApGp7EwE3d2\nLWRaDQsWLDBEctHHcs3aIp0HIaP+EoMa0Y9ZGgxSOhoLAChjQSgW4HjdtwDaG7u5W3VDtaBUbnxJ\nQ3vpPlMwFCwYh6T7iagtacWWcaf1ms8vL4dtUAhRnSwwj7ETnmUp/e4rdHvxVSKy3MaMI9rjQR32\nUTHEZOVuYL6XhAVmcYjwgbW7I2qvZBl1XfehUYhaPR2XEpKMuq4q8rdtAr+6imk1LKihsOk+Ahzi\nAADhTv0tBoM5wWG1/zpSYwGQhCMluM5Cf8dJSr0Msn0YqppzcbWI+c7E0h4MsphDlSRlIUim6GVY\nEpeMd34dgqT7iQAAIV+ElX2PQSTULni9tSAfTv0G0KmihS5G04N7xGS5T5hoNIOBJMIm065DboF+\nmjLLACgeBtJNdUq60ddUh7WHp8VgMHHu1Z6Er300tfdM9H8byUUfM6wVfXQqg2Gcy0sAADG0b9ue\nGLlYzrMwKPAFRHuOQlrladLqac3I8Lk4k7UbLXzltfNNlX7WY3GSdwAjuI/hJO8AelgNwj2B6Vrc\nHz0liTO24rKx6cYEbLmTAAD47LlLyLul/m/Pr1DdFNAUKCr0hX9Aicr7LBbg58dBUZH6ruNdEZcI\nD4z/9kkAQH1ONY4+LzlAiH25L1K/Me1cIlnY9vYQNTdrHmgATv0GEpNVceggMVkWjMegI0sg4gvB\ntuZQ16Sn9AMOLwSbayV3bdCRJXKn+D0/eQnl/95B2d83MeiIpJzujec+Q1tle1M3z7FxiFgsyUus\nPp+G9A2HNOokXcPG04mSxfV2Ru/v35Abq86j0FHXjs/phOPiapR1LBjGseLPMdT7WThZewLo3EYD\nmbIcJsax2m/0nnup4HsEuPQip4wetAlbzc5YAAA3tjcE4KNFLDklvCe4hBE20xjWSjMCnghL4pKx\nJC4ZRffrMe/HQUi6n4iEdyJVzmnNzTaihvTQ0qLoTTlx3IsBTUyHnm8MpIyFjsTN7g8HX8XuzySp\nPaO6qZSuhK7eSEyWKrxnPE1MVv2lzpkoHDd3M+LmkmtqZ4pcmbwDgPzmm821Qv5Xp3EpIQmXEpIo\nY+Du29+i32//o8Y5RHZD2d83qfnKNuQRiydT91z7hcEu2FMvPXt//4bcGpo2/2KBCDae9L7nVcH1\n9WNkXQu6k1L+E86X/Ug9T/R/G4n+byPYkdm9JGk6jYdhpPMz1GOxFjURWSyJrXQq5zOEuQ1EXt1N\nuNr6or//04znMlQ2ZZtlSNIt/ll4swNwpe0YhttMQ7moALXiSqbV0ooXdvVGj3E+AIDmOj7WDTmB\nDdfGY8zr4Vg94Dh4TfJJqWKR9l4sbbCPikFz+kOiMtUhFgPV1Yq/Q0xMp/lI0Ivo53tTeQwzUuYq\n3B/x8VT8O+NHheukqPr3L7iOHEObfJKwOBzNgyyAwzW8Rrs50mf/W7j2xIcK15vSS2HlyKWeV51J\n1Uqe1OAAgPjdr+Lyo3p+T+tQNvnypO2UVyF80SSj5jfYRag+sKKToL3tf9f82YvVjNQNl8cS4DJp\nLETNLSicv4aYXHXQ9bsAwAS/eWCz1H8GxrqMQKzLCIPWMSVvRafZHdiyHQAAZ+p/0mp8QsQiuedR\nnu3t6zuGKRmbjIqzyKg4y9j6+lIhKqIeFwmz4Mb2xnU+uRNT0rBYwIZr42FtK3nTp52vxFevt5fS\nXNXvGBYnj8D6K+OwJC6ZVl3sIqOJGwyFBb64fKUNgwbaIDikBNJCPAkJthjQ3wbnz/Nw6jSPGr9p\no4vcvytW1hHVpzNg62ZH+xqCmhpYubnRvo6hhK4nd4DRcO0KMVkWTAN+tep8lJyPjgKQeA4yNh/W\nKCtt7W+ouahfbyTZkCSpp0PEF+LypB1azRcLJQcrXuN7IGvH33rpoA82Pt2MtpYxcJk0FgDAtqf/\nM9QYaDIWOiNmaTBcafwbAxwnUdWPZGkVKcbsulkpvvGY9iJ0drKF9wATDo+XJjvf/qcE+9+7rXLc\ntsSz1Fg6ce43AFV//0FUZkBgew6DbE7DkSOtOHKkFaNHceXGr1hZh5dftrcYCmq4nnSG9jXykjYQ\na4QWvnUnbY3QSHoYyg/+TESO/8whKNqvXWiTLmMt6M7t2V9i4L+LcfnRbWCx5ftVyOYrZG77S6Os\n6LVP4M7rX6E5twJOsf5oSC3SOMdtcCRqLmagx64XKM9A31/fRu7nx1F6SPtcpMsTtyP0rQmoPPlA\n82ATxHvBHJTv3MO0GhK3Nkuxb4kF88EsDYYaQSkEYj6sWNZy10/Ufa90/ADHSQCAfJ52b3imPQxA\ne5WkzMrzyKw8j8SYpSYfkqSMCdyZJlkl6f82PMCln/M1jrN1Ms5bhG3XOU5dTIWme3f0njsjZa5C\nedXYl/oAAPKPZhiklwVFRC0tROSwOJ0yJc+sufHMJ+j769toLa5RGs5TdyNX7rls2BEAuVyDsP8l\nwishHiUHLms0GC4lJKHnxy/BOzFebl0WiwXf6f3h2j8cTt39wLHn4lJCEnp//wa43s5yOsjO85nS\nW6twJFFLi0l9ltvGRMA2NoJpNQAA+XOWaB5kwaQxS4MBAE7UfafznNSWi9RjV1tf1LaWULkMpsSo\niDcp4yDCcxjD2mimh9Vg3BNcxBiu8mRRU0QbYwEAWhsEtIcjWSBP9bEjes07OHQ3op6Jp/IXnEPd\nqcfG7NHQkpEOu0gyHef9Zr+B4r2fE5ElJWTlOmKyctatANBegcb/2cEo+ukiHtk3G7dm7QXLigOx\nQIhee2bh9hxJWezAl0eg4Bv5sE1p6IgUrq8rfB7thfyvzlCynR8JhmufEOR/dQaBLw23eBgI0DGB\nWHZjza9rxvWnlMdgK9uAq9uUZ3+YjOwPtf8svvv2twrXrJxsce3Jj6jnUuPg5gvq3x81F7U7KKj6\n5zC8niBXCMBQvBd2vaaKxsKUcguMhdkaDLqgrPfCoMAXkJyxTSGXwRRoE9BbCpE09wQSQ8wK1gre\nBGV9GUyBpPuJaKppw/phpptjYSjSMKQ9e9ywZk291vNYLIn32JjYBocQlddWprqkrCbSf76D9J/1\n91CQoHjfbmJhSXbh5JMnOY7kK8eU/ysJDSz66SKcegTANsAdAGDlbIceu14A18uZGuv/7GB4je+B\nG899plJez49fgpWTLfyeHkRdi14zHVenSxJxi3+VL/kcP5/M39uC6SJoapPzYmhKnFbmbVBH/bUr\nJmUwWLBAki5hMChDNuSoY/iRbCM3JriQ+7VclaQIz2FmEY50m3+eaRW0ZklcMt7+ZbBcfsLGkafQ\nUMlTM0seYWMDLRsnEsj2YJgzp0bpGNmEZ2XzjInlS1YJIhHAJuMBtY+MRnNGGhFZdmHkQhx4hQXU\n4+wPk+EY5YvG9BLE7XgO9Xcl9wJfGo6bL3yO2K3trxHpBi54zmjk7TlFXZftBVBx5A6KD14Bv6aJ\nuladkgGOnQ2ELW1wHxKF/H3056RYMB2UVW1Sh85VkQiftDgPHIL6yzp6wVgsuEwcA5fHEqhLstWC\nZNGqchCLhaAvtsrlH2hb6ciQdaVzpWPtenWH11svy41pPHMJ1T/8rlGWtmtpq5sp4P5oX/g8MwJt\npTXIWvKNUdbssgaDFGW5CkznLwCmX0JVGWUixTAfU8xfkPLx0xLPCMeajc23JmDlmdEAgH93puP0\nPs19FqqPJsPrcXJhWI6P9EHjrRvE5JkTNt4+TKugEWW5DXSSvWoJwjZtJyLLd9brxJKf/ebMIyIH\nAAo/+UDueY+PX5Rs0lhAZpIkGdY7MR7eifG4M/crapzsKbGsweA/cwj8Zw7BpYQk5O09hYH/vEfl\nNlxKSELWjr+puQ9XWRrFWTBt3Cc8qpPBoGqDrjdstsRY6HjZ3g5Be7cZbXPt+frzsO8Xr3DdceQg\nOI4cZJAe5mgs9Dy8inrcVlojd/3u1A20rdvlDQYLFoR8EZWn8NLHffDogiitDIb6KxeJGgyeU6Z3\nWYPBgiJioQmXGaMJZXHwusS6d7x+eaKiwaXp1PjOLrJVpSyhTsrZmyafn5fyWxm+WS6fKzD7/WgM\nmCzfTHJ2tLwnO+l0fywZdVVOXlluC1YmtFdCiujrjCX72zecl/+swJeLFD1usjLEImBOrPxaO84P\nwKJhV+TGrZ54AyVZ9IQRcxwcdBrfcke+p4VdfKzS69oiNRb4peWo+HAfOK7O8HzjRXBcJJ51TUZD\n/uzFsAkOADciBG7PTNVLB7te3SljoeH4OdT/ewq2cdHweLXd4+j27GOo+Ul9929lBH7S3tyyeLnx\nemwYQsT7kuqgUsMgPOllo63d5Q0GU6iI1BFlTdtKGx7iVpHubwhjIE12FolFsGFJSnWKIQYLLKQL\nbiJXqN+HlTFJeCcSY14PZ1QHXb8cLCinZN8Xuk3QoZGTsSn9dh+6vaRYProzkLN6GdMqWGCIvWnD\nFDb+o571VRgDyBsIvcd7KMhy9+UqlSel/0RPzPkgRu7+Z7eH4JObg/FW7/ZCKHvThmH9tJsoeCgJ\nYes/yUtBrouXjcK1vWnDsP6xmyhIbQ99Y4qKj7+Wey49Pe94XRdkDQJBVQ2KFm2AbY9oeM+XfC5Z\neXtCUK66QWtbXiHa8gr1Nhi83noZEImQ/3r7vqjp4nU0XbxO/X5OY4bobDCYo2cBAOwi/VR6EcQi\ner/IurzBYIooC0dSZkSYCid5BwAAoZzuyBWmynXaDuHEMqWWVqw6NwaO7jYAgJZ6PtYOPsGwRl0P\np34DicrTNVZ/xvm5ars7M0lT6n1isoKXr0HeZsOqG3lOmU5IG0DUpn2+kNEwdra/BYrTP7XnT3Ht\nJLkoHY2Am8eqlM5VZSwAUDAWAGBerwtyXoKkU/2Rc7uBMhYA4OrfFZizMxqDpnrj0uFytWvN+yQW\ny8ZKmn62lZcRDbG09vAAv0r57003NT8p7w3Ueq/9M9b9+cdp7/MgayzIUrRgPfx3rtZZnrkaC5ro\n2O+ENF3eYLha9AvTKnQa/DhhyBM+pAwGFtgI4ESYpIdBmuyce7MGG4brXymp4vdf4fX4U6TU6pJ4\nz2A24bljXoKqPAVTMyZ0xcrZxWAZLkOHE9DEdKnPMc/mXOZGYw1fqQdByrJfFePVDaFj+FNH3P24\ncPfjKh334sYIOYNBGZ4BttTjgp1JxCqcAUDQeytoa76oiYaTKRrH2MYw55kXNqjuJq4KqbEgamlF\n4Tu6GxtMw69qUJqrwHGwVTGDHF3eYOjvr3yzwmSYkjJvwo3C3xjQRDdS2v5SKKNqqknPh7ekIuWH\nPIPl1F+5RNRgsHb3AL+amdMkC6ZJzakTcBs9logsU0msL/xUt2o1xoB07oIF1bw76DJ6DHfD/C/j\nsDdtGMRiYE5Mu+HgE2pPdL36Sj6RMRaUQHP35tYH5JplynoWzNFYAICHr3yInodXoefhVWgrqwXH\nnosevy0Hy5qDhhtZtK7d5Q0GU8tfAMyzQpIUUzUQOkLCWKCDoMXMnSYxgW1QCFF5YoHAoPnqqiCV\nX1PfXZYuqo/8Tcxg8Hnmeb0NBpKnprwC7RondgYsnBRsAQAAIABJREFUhohy7p2robwLe9OGyeUG\nHP+2CImvBRBba+HQyxrH/LIlG1f+qiCzoFhM+0a6q9CWT+Zzl3gFKTX42Iahl3si2CyOwj0SDd/u\nTt0AjpMdglc8DSsnO9ScvI2iT/82WK4mTK/NsQULFroM/vPeISqPzpPrs/P/pE22JgQ11YytTZq6\n82c1D7LQpbh1Qt6r+tv2XAAAi9AO5fUPY9TeP7g9F7PfjyazGEC8s7pjr95E5VkA/LevIC6zn8c0\nJPq/jd4ek5QaC5pwtPaQ+1GHsKEF2Uu/wf1nthnFWAAsHgalVZIGBDyLK4U/MaSRhMSYpbha8DNq\nmwsR5NYXhXV3IBBJkgTFYhGjunUGZBu2KUNaZlUbqv7+Ax6TphmqEoXb6LGoOWVJvtaHtpJiplWg\nhbykjcRO+K3c3HU2QNzGTiCyNgBU/mWa1d4sGA9prkBjDR+ObtYAgI9fl88feXfQZexJVcwpUJfg\nrIzZ0eexN20Y+j2qWtaRLwvxxMIQpTkMuq4HAC3ZmTrPUYfPsy+g8fZNojK7GtLkZradLQI+Wg+O\nqwuxXhJuNr4Y6DXDYDme3CDEuLS/BnX1Rjj1j0TDVXIhXB2xeBiU4Gbrz+j6A4OfR/LDrahqyoVQ\nLEBO9WWMjZwPsVhkMRYIsiQuGUviktFcx6ceH1hxV2c5tefIdot1T5hEVF6XgUCFmz6LRxBQxLQJ\nXrJS5znu49Ub2NoiqK8nIseCebN2yk1UFbXCwcUa5w+WYXb0edw5LW/ENtbwMTv6PM4fLINIKEZB\nahN2vnxPQZY2G/rZ0eex/YW7aKzho6Gaj6NfFSnMmxN7Hm/0SEFpdgv4rSLcPlmtMEbZWrOjzyu9\nbmh4ZEc49pay2yQQtbSi4pNvqOdsJ8P+rsGOvYgYCwCQ2yhvFMa46FZkImTVM0T0UEWX9zB0JMZz\nNHJqrjCqgw3HDtYcO/CFLYzq0VWoL2ulHl87VIQnN/VkUJuug8+zLxCVl7fFsJKhABA2rTtubDPR\nkJlOEBedt3kt0ypYMAGK0puwdMw1rcZ+uyID364w/NQ0/Uod3h2kPpdBwBdj1aPX1Y7RltyNqxG6\ndjMRWQAQsnpDl8pvo5OW2+3erICdawzyMsS60HfIFOL4CB7WnaNNvq50eYMhOWMbEiPbXyxZ1ReQ\nUaW7C5Ik57L3on/Qs/CwD6aumXMitKlz868SWNmwIWiTeG9u/1OiYYYiOauXIXT9FmI6Ofbq3eld\n0KTjcjv76XXWsoXEwpJcR4xG7dlTRGR1RfxGTYdnL+Wnf03FOcg++KnFG9zFEbW2ah5kJPw2LUbx\nCtMr8MIk+bMXI/DzLWBZcRC0dxsK56+BqFm3Q9pE/7cVrh0r/hxCsUDjOFVkNVxFuFN/uWs9D69C\n7bn7KNj+O3oeXqWTjiSxhCRBYjRIf5g2FqRczf8JyQ+3Uj8W6OP0vmxsutkeo91roq+a0coh3YSK\n9Om7qeHz9HNE5TVc01wFxUI7HhOnaD3W95XZZBbtBE3Rol9chvj5O1UaCwDg4BeKnu/sQPx8clWl\nLFgAgIB3Fuo1z8rbE0F7kmDl4wUrDzc4DOkHzzfo/47hODvCvk8PuEwZL3fd/fnH4TR6CGyC/MHi\n6J4cTIqCN9q7zQfs0s1DzeUolv5NLvpYwVjQlYz6S3LPWf9t0+nMTdCWLu9hMFX6BT4NT4dQZFae\nR2bleYyN/B9OZJhe7XIACr0XOmKKpVbTzimWz9OUCK2Jos8/gv8b5Kr+eD02AxWHDhKTZ0o49u5L\nVF75QTINGA8O3Y0ZKXOR+ds93NppGocHsmSveA9hm7YbdU37aDLd2rOW6bfZMRX0MQDi5+9E9v/t\nRmN+Og0aWTB1spYuIFqOmOvnDytnFwjq67Qanz97cXs5URYLfhvfI6aLJtSVMXUcOUjhGlMdl2X/\nRrokQY/uNkvuOYlyqcqIchms0KQtd/3PaLimaEDQ7X3o8gaDbJUkaWjS8axdVEUiJvBzjoNAxEPy\nw62I8JRkzFtz6O/ipy+yBsEE7kwc4/0EMcSYwJ1pksYCAHw1Vz5OVZeqSKpozcs1WIYszoOGdEqD\nwdrLm2kVVCLt5hzxRA9EPNFD4b66Pg3GQCwUGnU9Jk//TImOxkJLWQEyD3wMsVDxNNF3+BR49RlN\nPQ+bPtfSi8ECMYKXr9EplyF/9mKwOBx4zHoG9n17QtTSisbzV1H35zGV47WVa8h9Q+VrM47U78Ik\nHlz5fiT1l9PQdJ+ZPlJd3mCQIms4TIhYiKOZ7zOmS6zPeJP1JqhjDHeGnIFwlLcfY7hP4iTvAINa\nGRnCiamuw0cSr8LENEELFTuZG0LeZsOTnaUwbRAYk9A1m5CzTn0tclLejOwVxjvZJE3I5Feox7ya\nCqR9pz5XqeTcnyg59ydsnNwQ86rkxC9+/k6L0dBFIe1lAADPyY/pVJ5YLBSics+PRHWw0E5mA32F\nchyt5Psx5G36VeXYjp4I0lhyGAA42Mj/h7QKmE2evJT3HcZEyoe28IWmk0CliiJhNnpaDaGe97Aa\nhGJhDoMaqee59x9B0v1EhVCksXPD9ZZJOuyCZH8HUyB8C3lDXFv3fGehYGcSETlsOzsicrTB2J4R\nkjiHt1dN02QsyNLWUIP67Pt0qGShi+MybATAtmzfTIWq1gLaZItgOp+dXf4Vl5yxDU1tVXLN287m\n7mVQI6CprRonMz5CT9/JCHHvD3+XeLPwOKQJbuCe4CJG2TyB0TZP4L7gMh4KtCudZ2yS7icibpwP\nVvZVdMtOeDvSINmteWSNJNKnU0zB5nKJlwXtimUG28rLiMmycnElJsuCIrl/7mNaBQsmACkjX5bw\nzTuIy7SgH2xSLcmVUMuTr9rY8/AqBL7LzEFilzcYTJm7JX/hePoHKKq7w7QqWiOGGKfbfsOptt8g\nhmlXRVne6wj4reSt96LPySc/2QaFEJdpbELXkSs7SycuER6YkTIXM1LmYsIPT1HXY18mm6htCDUn\njxORE/TecpX3nAcoJibqQ/77lipvFro2JI18WTrLYZK542MXQZvsouZUuef8ynq4jo5Hz8OrEPP1\n/2hbVxkWgwFAd69xSIg0nRhbNosDWysn6vGEaNPRTRMjbaZTVZO6Ww0AG5akSRL4zyNXfYkJ6Phi\na7hB3nvV842BGP/tk0rvxc3uDwdfJ+Jr6kP10X+IyGFZqU5j83r8KZX3dIFfUU5EjoWujcPQPgjY\nJd+lPPjrrXKPpT/aejLl5sjgt2kBdd318faS29zIYOp60N5NcnKcJ46k7ll381RYK2v5Iq100hWL\n0cA8QQ7kmr127MFQ0iJfDenhq7twd+oGVB66BGsPJ/Q8vMpovRm6vMGQGLkYDyqOg4X2D5jBgczW\nwB8V8SZaBQ0AgAnR7+Fo2nYkxpBNFKWDvtajcabt/6jnDwRXMNLmMQY1Yg46QmXCt+6EjbcPcbl0\nE7yUng+z8l/JV+CKfr43Dg7drTL5ecTHU4mv2ZmpOX6E0fV7cAYaLCPz14/0nus/6nGD17cgoSnl\nBjjOjtRz95lT0HInDYBkw573ylLqJ/grzd7MwM/WonL3T9QcKcFfb0VZ0h7qOjeivYGqz6LXqOv5\ns1fIGRr1yeeoe35blBgHIvoa+XV1oyHwXeYPVWX3kIYQ6aydZ7fkq2O4O3UD7k7dgNx1PxnFcOjy\nBoMyHLleTKtAcbPo/zQPMhGc2R4K10wpYacjc74eoHBt8+0EYvLLfiFflSJwwRLiMukkaOFSWLm6\nEZfLVO6CrZvxEoU10ZJJXyMft7ETNA/SgmqGDQa+uM1gGc0ludRjB79QneZ69JKUxbZUSCJD9XeH\nKO+B0/ihKP/ga+qeKm+BKgrmrYXn3GclxkWHBOKAXSspWbax7UUwWDbWqtfRwiCg83OrKxoNwctW\nSw7SfHRvtmoolyrkqz8m+L9lsMyOHaFzG29pNa/heiZ4hZUGr6+JLl9WVSyWf5NPiFiIk9n0NODQ\nlpMZH1EeBXPq8nyKd5AKR7JlOWCEzTST7cOwJC4Zm25MoCokSf/ltwqxvJfy+tS60njzOvGOxoDk\ni6Hq7z9MvtwqXV9gYhpP6jRxPcl0/ubFX35O5G8ctnEbslfK1yF3H29YE0NtCGJHgQ0O/FihuCD8\nR+56hbgYgzgTkCG6jUJRFgDAkeWKgZzxSBfdQoFIYiwFsMMRxe6Ns4I/MMTqUdwSnkO9uAY+rEDE\nc4ZAAD7SRDfl1u3PGQt7lhMeCq+jTNxe3WSU1XTUi6txQ6j4f3xn1wJEPf8ewp+UfKGn/7ANrVWl\nSn8vjq09YmetAdvKmpprgQwNpy5R3oS23CK5e7JeAm2RzvF66wVUfPK9RlmNZ6+i6uvfdF5Hlpw1\ny2jL5wrfuhMt2Vko3vMpLfJNgbBN202iP0xtm+L7P9H/bb0buHU0FgDgYd05tXPCtrwEh7ggAEDp\ntydQ8dsFvdbWli5vMBzJ3EE1bEuMXIzbpX9BIDL8VMpQOhoK5mI4HOXtxwibxzDQeoLJGgtSVvQ5\nSvsaWcsW0lJK1GPSNPCKi9CSlUlcNgnoPO3KpikWWMqMlLkKIUmxL/UBAOQfpe9UXy9EIoPLK6rL\nYzCE5rRUtfej2b1xTPAL8pGG8VZP45hA0q07kBWBRnEdTgl+BxcSj044uwecWW44ITgAX1YIOOBA\nCCFi2f1wTPALNV/6b5m4AMcEv2C0lXxIkNw67AhI6zLIXh9hNRVnBYepOdZObvAbPhW2Hu2nmFHP\na9/oSdsO0RbDQnucJ45Eybr2jVnJmo/gt3khipdLPms95zyNyj3qu78H7FqJwv9tAsRiWPu3h3qW\nrPkIwV9vRcG8tRC1tMJhaB80pdwAADiO6I/Wh9loungTVt4e6LZsLgrf3aRqCaWIePQ2hbULC0f4\n1p2dqoKcbUgo/OcqbqiZJrnoY4WNfqL/2yhpycDtau2awY7u9iq4HAeF69W8QuUTWECPA8vAspF8\nbmcv/w5N94zTyI0lFpteJRsWi2VySpHcAIlaW5GzVnV1EpKQ1NtYH0ChazeDbUuuszXTH5wcR0eE\nrFxPm3ymfz9ZvJ+aCac+/WiTb4zfNeqZeMS/PUThuqk2dSPxHu/4d6VDZkfGWT2F4wJJEyLZDbvs\ndSnjrZ6Wey6GGMcFv2Ks1QycEBxUMBikjLZ6HKcEv1PP+3HGwI3lheOCX6kqbsOtpsAW9nLyZWVo\nu+E3FGMZDOb6XdbZMFYIkSl9P2iLXVgE/ObM02kOU7+nO9cfAzzJ5irlNN5AWl2K0ns9D69CzfFb\nKPzoT51kisVig5MsuqyHQepVUIVsXwYL2iMNSZJiyl6GhPlRGPJsEGydFN8GS+K0Ox3QBmFjIzFZ\nygjfuhMtGeko3sfshpbuL0BjhSKl/3wH6T+bTyljEnhMnoaqv/4AAPjMfNFgedo0alOVJCiEQOl1\n2U28FBF0e01cE54EIDEkOLDCccGvYIGFc4I/0YpmnWRZsGAIdHSAVoZ0jYJdO9BWUkz7evri+Egf\n+DzzPNNq6Ew1rwjnyn7AcB9yuqsyFgD6uzmro8saDEcyJU1PbDj2CHLpjZyaK3DiemJgwHMWY0FP\nhtpMxnHez9SXOBtsDLOZgvNtulnCxmDLnQSwOWSbiKmD7i8Hu8gohG/dyciXQtiGrWBZ29C+Dt2h\nSOZK6XdfoduLrxokw3XYSMpgcIx/xGCdclaRTc4XQQhXlidqxWQS+04Jfqe8FpcERzHCaqqCV0OK\nJVTIAl3kb9+sthcKSQLnSz4/G+/cQtn+74yypjpsA4Ml5cIJN/NkgiZBjdLwJF3Ja7yN1LqzhLQi\nT5c1GKTJzqND51EGQk1LEZIztmFs+Ds4kaV/Kb2uSokwV+7ETwwxioTZDGqkGjaHRdSLoA3GOFGS\nfikAkrKjdPQqAIDQdZvB5pILG9OEMd3N1o42mHZEfgNel1mFYy8dUDGDWZoe3GNaBQW08Qa1oRWh\n7O7wZYUo9R7IckJwENawwVirGWgU1+GyUH1hAtkQJtkwpVB2LELZ3VEnrqKutaEVxwW/YoTVVLDB\nxlnBnyZd3c1C54FfVYnGu7fh2LOX0dZ0jH9E7lBAxGtFyb4v0JpPPg7ePrY7PCdNg7Wn6VSepBNp\nwvM439dhxdb+EO1q5SFU8Qo0D/yP6C/ehI2vu8L1zIX70JJB34FhlzUYVDEo8HkU1ZveF7ApM4Yr\naXQlFAsQYRUPMcRUuMF1/kkmVTM5jOWGBiT5BN5PSULEqo/8jZpTJ/SWxfXzh89zL8HaQ7EhEd0Y\n01gYvGkC/EeFAQBaKprAq22Ba6Qn1f3ZVPMYSOHUT7HUMF2wwUGO6AFy8EDuumzOgSx8tOGE4KDS\nsdLNf8d/O5IjSkWOSHkytmyis7nCsraGTTdf2Pj4wi4kFDbduoEbEETbemxbW4XPM351NXh5OeCV\nlYKXlwteWQlEzZZwL1WU/fgtbOYvgo2vHyPrs7m28J83X+k9URsPvIJ8iFpbIWppBjhWYFtbg21n\nBysXV8n3QSfwEJDmeMkX1GMfu3AEO8TDwcodNhw7tAjqUdNWjPT6i+AJm3SW7fnYINj4uiuEJgUu\nmo6I92fRGrLU5Q2G5IxtiPQYjmDXvqhrLcGlgh+YVsnsOMkzzZNXUyVn7XKErt1s1DXdEybBPWGS\nUdckgbET2fxHheHgsN1U9RxZZqTMxZCtibiw1LieKW3If38rghYa1tzR49HJcB05xmBdzDHJkilY\nHA5suvnCNjhUstHv5gvboGDNE00Ya3d3WLu7w1HzUK0Q8XhozctBW1kp2kpL0JqXC35lBSHppkHB\nrh0IWbkeHEdSfzUysG24sAuPZFoNs6asJQtlLVnE5Pm+Oh7/z955hzV1vn38mxD23gKCgIggICoq\nuCdKXXXXqq3a1mqHba3W0ap1W2db7fK1trbOn7WuqhU3KiLiAEEZgizZe6+QvH+kWeScJCc7cD7X\nxWXOc55xE0POcz/3ejZdMi1v7q4zsArzU9k6RHR4hQEAXpTdwYsy6fluadoXGwZdx/ZnEdjz+l0U\npas3KLktnMZGjfqu6ittawNoDJIcbXX51XDu11mzsshJS0mx0nOoQlmgApklob3REQtqqRKmsTHM\nfP1g5iv/Zkgfldaszevg8cWXWrHi0ugXnGbixBDssmq1rtvhFQYn827o4zpFol2bgc/mRvYY4r1Q\nol3XazHwi7VFNZ8FA8BQo8m43XwOjVzqZjd1wC/OJsrn5wYT9lV3fENLWSmyt29Cl5XqLeWur7xc\nuwpcNvGXorYwd7XCxSmHZXfUEhXXr6isQrOiZG/doLG1en6yB0/3yt4YkvWTdzwNjabI2bkVznPm\naTSmgUa/4La0Iuj8WkLXI6K4BlXS4RWGPq5TdC4r0iCvBTqvHBAxyGi8WBrVK03HMNr4DVxrkh7Q\nqCk0HeQsC3ZFBTI3fAWvr6kV/mnvZKxeBmipPsy5sb9hevRiPNx2C1kXUgAADCYD4YdnoiqjHA3F\nuqH8ElF+9bLWFQZ2dZVW16eh0XeKjv6Bmu7+cFkgeWhIQ5M0bSuCzq9F0Pm1aCmpQlN+OSyCvQAA\nzcWVal1buRKhNGrhetp36Oc+S9tiUCaq6Qw8DfwF111ZPXGrqWO4HSgKp6FBL83n6iJj1edaUxYA\nCLIj9V09HNOjF2N69GJMu7MIVp62sO5qJ2jj/9AI4adlpULPT/bIfN32OmjJLtJ5GAYGvH+ZBoTr\nWbj7ksoS+AHvkIbJMkTnUW+Q9qOhUTf1qcn0c4GGlMRJm5C66Eewq+ph2tUFZRfjeG3v7ZM9WAk6\nvIWhqPYFYRE3bVodwrvzUmNG+IkHMeqq1aFtsTZfVm/B664GgTpdvE1X0GT2JF1FFx6Q+p4FqeFF\nGky7kW+K1Unl3SiVzVUcd430HoNBfs7FbW1FtzeXwdjWCUk/SdaC6DJ+Pp79Qhw7xPyvlkjgh9tp\nVyUanSBj1efoum03nYmIRoLmgnKkf/6rRtfs8ArDk4Iz2hZBAl1VDMigFQLV0JGVBl1QFtoD+Qd/\naRefIQ67RaFxsuISWmoqSO8l/rgCzmGScU7y4OswDN52YQCAy2nbFZqDhoaIjNXL4PX1FjBNTbUt\nCo2OYDsqGC4Lx8LAzFjiHp1WtYMS7DoJDubeSCu5hdzKeG2LQ6MBMlZ9DjAYvFOlDoCuKQq+bwYj\n7XgC4T1bfydUJCufjUjtcDgAU7PeprUJTxQey3cnen5gHWmfp/uWCfol/iAsTth2bGtjPYI+3on6\nwmxknPpBoh9fmej25jIAQPe3ViEn8igainPBbWXDuf8Y2rpAo3NkbvgKAJ1xS5cJd/0ABgzVb6n5\nxeD4BJ3nJUop+/cROPVNKl9PGrTCQEBEtxVaD4SO8FuF5KJreFkWAz/n0bA2cUFS4b9alUkW/AJu\nAMCCIQAgjf0EWa3EhZJoSOBy27+1gcvlBTfrGD0/HoCeHw3g1WIQwWVQFwza8ZpeuCy9XLsS3lt2\nanTNouOKZ48i2qAXx7Wp5MzlSvQjGvfs/9bINf+L4x1DIadpX2Ss+hy2I0fDbsw4bYuiU+Ts1p5X\nhrt5IAJsRmh0TXVaEaTRYRUGvlJAFL+gbcJ9PxdzS4rLOY4Iv1U6rzAQFXAbYDSOVhgUJGPV52AY\nGsF7k365qMlC16wKopwa9AtG/z4d06MX49qCU6hMKxUEN+uDsgDw/Pg1CadZs6dc6qLnJ3vErBI0\nNLpIxY1rqLhxDVb9QuE4reMG55ec+QvVsTFalcHeuLNWlAW/Q5+BXVGLuue54LapyVD4x3W1rd1h\nFYbonEOC122tCdpWIvKrn8PS2Ak1TXrg/iAFFgwFlgYaxeC2NCNj1edwX7oCRs6dtC2OUpRfuYSK\nG+TBrLrCtQWnwDI1xORr7wIAqtLLcHUeXc2cjMx1qxUeq0vuP7okCw2NLKrjYlEdF4suK9eCZWur\nbXE0Rs7OLWgpK9O2GACAfg6SNbzUTeDpL8FgGcDQzhKmXV0k7tMKgxrgb8bTSm9rWRJJnhVeRlf7\ngRjk9Y6gTR8CodtmS8ppTcWdZuqpFmkkyf32P6VWD+MbXn71hcZPvZUl4iTvs8zlcGHtYw8GkwEu\nR3vpXqnS7l3aaGhoAADZ23nuKUwzM3it26xlaVQPl81G1qZ14DQ1alsUMUa5SNbJqGNX4E7REbWu\ny2AZ0C5J2uJlxX2JNm3HLwBARtk9ZJTd07YYlKCzJWmA/+IbGCwWvDdr/3NKio7GKMiCyWJiatT7\nAIQuSFOuv4dpdxbhnwl/oKmiQep4737T4ejdX5D6M+3uIZS/SkLYrF24f4IXrCv62iN4PHISLgrG\ni95rLzAZBujv/iasjDuhtrkMycVXUdHwiuIcLAQ6R6CTpR+aW+vxJP8MqhoLKM/Rr/MbsDZxQXVj\nIZJLrlOeo4fTGLhY9UAzuw7JJddQWpcJAOByOZTmoaFRNZz6eoG7Z5cv14NlZaVliRSHy2bj1d7d\naC4u0rYopBgyTSTa1K0sALzCbYGnViNp+ja1r9WWDq8w6AsRfqt01srQ1rLQFlqRUD1cNlvwcDCw\nsIDnVxu0nqu76t4dlJ7XvTTFVJga9T5uLj6LssRCQduZUbxc19OjF0uNYwgY/TGeXfsBL+NOwdln\nIBy9+qL8VZLU9Vz9R4gpDKosWpezaxs8livuLiQP0uJRTA2tMMzrA7E2K2MnhLrPIexPlI60h1M4\nPGz6iLWZsCwxwONtqeNkzWFj6iaYg81pxrX0b6XOEeErXtPB0MgYfd1mAgAKap4jp/IJutoPlDoH\nDY2myN66XvDaetBQOEycrD1h5KD6wX2UnD6pbTGUom02I3UR+Devjgw/W1Jb1Gl9YHC1WFWVDAaD\noXtCqQm390bBeWooAODxuK2k/XRZYRBljPFsXG06Di64GGM8Wy3KgtfRLQCAzDlfqXxufcfA3Byu\niz6GkZOzRtareRiL4lP/08hauk7PiGV4epnnLmbv0QudA8ORcImXrYjMwtA1dBYYTCbSY47BPWgs\ncpOuaLXStSoR3WSLbur7uE6Dk4UPAOBl+X2klRIXfDNgsBDeTWilyq2KR3pZNMyN7NC/85tifcmU\nhgEe82BtIoz9SSy8hNL6TDiZd0WAs3jNBbI52ioLT/LPoLqpCF1sQuBp2w8AkFedBDerQKnz0NBo\nG6axMTrNfw+mXl21JwSXi/LrV1BxLVJ7MqiACLclgtf17CrcLvpTi9LIhsvlKn2iSFsYdIhwX97D\n0YCpn4HCYUYRYgrClaZjCDOKwP3my1qUqmPRWleH3D3CDQvL2gZ2Y16DZUg/peduLixA0YkjaC6k\n5sbRUXh6eTfCZu0SXMvjWpQRewJhs3YhPeYY3ALCkZuo3w9RPqO6fiJ43XYD/Tj/b4R5zIWNiRu8\n7cJIFQZRZUF0jiZ2LS6nbYeZoQ2Gei0CAAzweBsxOeIPbBOWpUBZqGkqRnT274J7uVUJyK1KwBDP\nhTA3sgMAMMAAF9KVNVE5UkpuIKXkBiJ8VwqUBXnpteE1dBreDU+3XEH+lRRKY2mUIyKK99m8PGyv\nliXRPJymJuTv/1GszbSrDxwnT4eho5NK1+Ky2ahNTEDFjatoKdHvBC6ySK+J1bYIGoFWGHSIq2m8\n00kia0KE3yq55vA6ukVrJ+8VnGIEsQYikc2LvQhkhaGSU6oVWWh4sKsqUfzXcRT/dVzbougN1j72\nCP+DV1OkOrMcV+byTOX+80OQfOiR1LGKxB/kPv0Xjl79wG6WHh+hTxga8KrSZpQTpz28n3NE4uRe\nlHCfpYLXZCf29S2VuJGxDyO7LoG1iWS2kOHeHwpeiyoLotzJOoDwbp/DgGGIsb4rJNYis5KIcjlt\nu9TfhYhOw7sBAHp+NYZWGGi0SkNGulbrGLQH6tjkFeTbE5otB0ojF0SuR/zgOmkwLbRbOj6V/RiW\nTBuMMZ6NMcazYc10QAr7oVZloqGhQtAHoQLXwmWvAAAgAElEQVRloS0BC/vB3MVS6viwWbsEP/1n\nCP+OG2tKBO0N1eKBfHnPr6Nr6Bt4eJrYJ1WfqW9W7EFqwDQCADSya6T2a26tlzmXrDmuvpCdTaq6\nSbXBl4U3XwAA7n+kP+l6+SfzNDQ04lgZqtY6o6vQFgY94WGubD/xLvslq5xqmnvNl7QtAg2NwnSf\n21sQ2Mwv2CbK0H2T8O/0o4Rj22Y4EnVPir8o3a+dw2FLva+vBDpHIK86UaLdmGUh1/i2bkbS6OXy\nOuILJNM4q2KOh6+kb+wrG/NgY+Im9zrx6/8F1ut2IU5RnIf5aFsEGhqdJcBmBHLrpCe4aA/ovcLg\ntXoKbAb5oT4tH5k7zqG5sFKucS5vDYXztDCwK+qQsvQQ2JV1co1jGBrAe/UUWPbxRl1KHjK/OSv3\n2M6LwuE4sS9qnmQife0JAACXLZmOj8wlSZeDnu3fngCLQb0AJgOl/3cadXHPNLa2ef8AOCycCgAo\nPXAadQ/kW9s8LAi2M8PBcrBBzdVYlB2+KHuQirEcFgK7uePAZbei7l6CSmTYlzwCm8bFojhT9ukr\n2fgl/jeVlqM9YmIrnxXPxtVf7jnD3tiJ+//7QlGRdJIHucfQ3302GAwmTA2t0NBSLXZ/hPdHcs3T\nxK6Ve017M0+1zdHcKv07vrqxiJLCoG/03jhO2yJojIVxb8vuJIUD/XQ7+JVGNVQ1F8HaSDPJRXQF\nvVIY+lzipZN6PG6r4DUfcz83BP72oeA+6RwXvwREYsWNnK3R89inAID4yTvAaSY/6Wu7pmXPLnKN\n9dn4Bqz6CrMSWIV4C+ZKW3EEnWYOIF1TFvyMQbLaAGFWIbPe3eG8/G1Unr2Fir+uCu67rFsIk+6e\nvL5z14hlayHLTES0ltNnvDSrTS9fIX/tzxR+G2oYebrCbYv4xsPpU97ar1Z8j5Y84kCrLvvXSLhv\nWUUMhFUELy0iWQyIPNmZpPURvWcVHgb7+RMJZVA2BkWezb4uKgW6KFNbHm0nDtAFxOMXKvOT5Y5n\noKosDBvLOziIipQvrkkblDfkIr7gHHq5vC6RWpVPc2sDbmSoMvBUFdmlFJujldMisw+RS0/+1VQ8\n3Sw90L1tkO7Ym0vAYAofYkV3MvBkjeyDBqL1S+Ny8HD5WdIxNj06od+3U6XOISobEd6zQ+C7aJBY\n2935R1GbKb1ar4mjBYafekei/fGXF1Ac/VLqWAAYfGgOLLzsBdfx6/8VuIK1FzYkTsTXQf8Q3nPx\nt8bik0NJ79MoR0zJSbFMSRFuSzSWWlVb6JXCwIe/2X659TQq7/ICxky9nOD/43uC+0RKQ+9/VgmU\nBdENfo/9i2Dibo9eZ1eQKhv8NVvKapD4lvBDIWuscScbgbJQeS8VLzf/DQBwe3cUnKeFwnfHXLH+\n/OBmeYOccxYLN+wev3wl0UZE/ZNUAIDN5OFiCgNfWQAA+3kTUXbovNR5uuwXbmxzPtyG1ireSZ7N\n1JGwnTYKxt6d4fL1IhRs2C/X70IVvrIgqtzwN+Wdd3xKuPFm2dsIlIXy45GounD7v3ZruO9dIZhD\nnYHjLHsb2M+fCG5zC/JW7UVLUTmYZiZw/mIeqiPVX6wvdHIn2Z06MET1Fvzn8fL451xpXxsOdVJY\nk4IUliX8HEdK3HtaeAH51bItgSYsKzSyq2X2A4Cy+my1zcFiGoPNaSIdZ2HsINf8yuAY2gUhO16X\naHce0hXhkR/i6tifCMeF/jAdtkGuhPcc+nkgIuoTwg2/KmIWyOYYfGgOsv73GCk/3aU0DgD6bJ0A\nQLqSQjS+1/rXkGxvLk1cnUaackBEQXIVrSyomesF/4dRLu8Lrt3NA9u1a5JeKgwAkDBjN1rrhF/g\nDZnFhJYHPp0XhYNhwIvxbruxf75oPyyDPdFt22xCZaPzonAAAKeZLaYs8Mfy13SeHoaiU+KVowP+\ns3o8e+8XNOWXC9rzDl5H3sHrEvJeTvkGAzznISbrD+lvwH+01ki6nRC1UcUqPFSqwmA9cSiYFmYA\nJE/TK0/fQOXpG/A6ugUmvh5KyyKNtmtnzvlKoDRYvzYIVf9Gi91338s7zc16ex24ra2CdnZZldhY\nsxB/1D9KVovM7nu/QM7iLWL/T5z6RkLFSvTUPXi0I97bFyh2Ci96f1/yCEE70Un9rodDYWxuIDaW\nrP/k5V0x6l3h/119VQtWhok/3EXHA8CN33NxZke62P3cZzXYMf2hxDj+elRk0gSnBv0C31k9BfEL\nVl52gtfSirbRSOLnOAKetv1RWpeJh3mKFWUa2GW+3FYIotgDeeZgiJicyeYIcZuO2Fzi2BUAcDSX\nnddedIOryGY8ZMfrqEotRsz7JwRthhbGGHVxEQxMWAj8YhSSdl6XGMdXFog22I6hXeD/6TC55aWS\nipQ/pj6vErdn/ylxz/ONPnAe6oOoWYckxpbG5YDbysGjlW2eQQwg4hZvXgaLSezSK/LeiskrMlZT\nbEgUWpEPzLmLV095SQAMDJlY93i8WHtbheDDv4fh/pFMPD6TI5iH/69oP35bfUUztg/lWasmruuJ\nvjO6EPZ9diUfAWNcxe7ZuJpiaeRoMdlpZUM2LZwm3Cv+HwY6vQGAF8sQYDMCiRXXkFevnv2DNtFb\nhUFUWZAHp9d5eegbMondVGoSsmSOjZ+8g/B++prj8Nn8JtzeGSmhMPARVRZkIa+yoA5qbsbBcoR4\nzn4jT8nTKbtZYwEApQfJzdmCvm9GoPy46msxZC1YT9jObWGDYciC1dgBYgqD4+Lpwj4iyoIoZX9e\ngP3bE+D8+Vy1WhkUUeoWfBuAysIm2HYyRkVhEwxNxJOcESkOoizve1vsvrQN+ah3PQT3DVgMfJc4\nHHauJijPbySdY1/yCDy/U4bUGPkz4/Bl4o/XBZektBNPkXbiqbbF0Hs8bfsDgELKQm1zGSyM7GFk\nID1mxJgl+8RY1hyju5FXq+Zja9pZZh91w+VwxZQFAGipbULR7Qw4D+2KzhMCCBUGaZTEZqNktup9\n7n3mhwpet1UWAN5GPiLqE5i6WBGOJ3WTEvEY67NpPB6tFt/UGpgIaxhJKDdcoKGwGqadiNdUB203\n6/zrtY/GC17z23eNvIqv4ydgQ68LAABnXys8PpMjmIfMwiA6D59/Nj7FPxufirXxuX8kEyeXPcKE\nNUGCtqWRoyXk6agE20XI7gSAw2WjtqUclc2FuF5wAKNcFgruBdmORpCtUAErb8pDC6cRHEgquLJI\nKNedOlZ6qTBwGmX7i5KRtVO6m40iVD+WnfKUDE4zG0wj3flvKD9ySUJhsJ/zGgCg/uFzif41N+JI\n56qJegTLYSGwnjBELQoDt5n4c9D0IgcmPbzBcrQVa7cY0psnlxSZqyNjYP/2BNUJSUDh1oMKjTNg\nMbB2xD0sPxmCXTMfYdqqbiqWTIjoxr2VzXtKf/RrMDaNExaoWTNM3H2Ky+Hi49966cSmn0Z36Nlp\nAp4WXqA05m7Wr4LaBiO8P8LNlz8S9hvh/THpHM+KIhHgzDvYIHNLMmFZwoDB+/7NrJAsvnQv+xAG\ndpkPAOhqN4CwrkSY+1yJNnUQOYLYP/rJ2os6l/LUZwFPYYgc+YPK5y66kwHnIV1h31fSej38rwW8\nFyShKFFvHFLre8XlyBcD89u8aIm2mpJGMA2E1q7aUmqHovKS84R3eHn7gHrdK6UFjyedSEbMbvLn\nsDZxMVX9c9XOWPGECAmgFQalKLum+Omf/0/vKTyWzN1JGSpuPoP92GCxNk+7/uByOciuELpyqDpL\nUktROQyd7QTXtjP/c7tqbEbp/52Gw/vCQDeTHt4AgKJvyU3yRFScvArLYSEqkJYaXK70L23RuA1t\n0PBMdsCeKEPndMbto68E112CeCdkg95wxf3Tmqu67ORlJnZdVSz+QFs/5j42XFM8gJ+mfXEn6wCG\neC6Eq1UAXK0CSPvJKohmzLJAhO9KvKpKwIuyuzAztEGo+xyZc+RWxcOYZQ4f+8EY7s0LvE4q+hcl\ndS/hYOaFoE7imX9SS25JzCFaf6Gbw1B0cxiKJ/lnUNVYCDfrQHSzHwIASCy8iKBO40l/R10gIuoT\nNBRUE7oAqQtuK/UTVVk0FvHqajCNDCTuGVqZAABiPzml8nXlIft2ruD1wHld0VTXgkenciT6VeYT\nW5h3j74KYwsW3js8GDtHXFGbnG3hWzDYzRxs7KP5bIE01Ag6T16zJ3HSJrWtq5cKg7RMRvoGu65R\noq2r/UBcf/GdWtctPXAaLmveg4GtFVorqmHz+nDBvZqoR3B4fyqMvd3Q9DJP4TVaK6UXTNIWrdXy\npcHVBVqaOJj8RVfUljcT3j+xPk3DEpFTnif5WabpuHR3GC5XvwjflaRKw+O8v9HHbRoAoLN1MDpb\nB0v0IRsLAOll0ahuLBLMEej8mkQfLriITCN2N+XPL1rJubfrFIk18qqTdFZh4Lv/AICpi5Xg9ZXR\nP4LTQuyaqSqUOc13nxCIgC8kA+bloeJpvsLrgguxTIpUKIwXujwPfb8bvhnEOx22cDCWa3x1USOh\nG5G6+fL+ax3aDUmf4CsL6lQMyNBLhUEZ4qfsBKdJMZcmaelaFcXYxVaiLafyMfydw5FcpL6T8MZk\nnhuV08dvoGDTAQBAU6a4cuC68QNeBiIFMXLXzRzFRu7OaM5VbeVWdfHNlDisvRSKBXsCcGqL0ITs\nEcirONzaovoTPEUJHG4vs4+BoWqLy0tLMdqpcz90D5gmuCbqwx9fVpKMpMfEsUP8Pm3hcltx+4p8\ncS78Oe5HbUNTYxUAwM6xO4L6LCDsr4qUqaJyv0z7F7mZ5ClhVQ1/gy1tM2/AMET4f/ED7ta9kFsV\nL9GnuC4dl9O2g8FgIsh5PFys/NHErkF8/jlUNsq3KRSdI9R9DqxNXFDZkIfUkptyz8H/PQKcI+Bi\n6Ycmdi2eF19DWX2WRB9dhO/P33vzeDgP4QVoj7nGyzKnTsUhYaNi7hSiisaLX2OQcVjovtJzzVi4\nhndXWjYycu6+gscQxWJWsm4JLQzfDLqMj84Mh7mdEXYMk99awOFw8e82yUw7Xwf9g3WPxyM3oQK/\nL5CeTU9U6diQOBHfjr1OatUAeM+Rzy6PQllWHdyDbWFswVJKgeizUFKxp1Ed2lAWgA6oMHReHI6c\n73WnGrFNmK9E24uS24jwW4UutkJ3nshU8hMwZTDx8xS8LtnXppo0Q3jMwi6WP2ibj/X4wYqKpVas\nxw1Gyf6/VT6voaujyucULb4WdYTnllTwog4z10p+buSlubEVRiaS5nyqiAZBA8D7PwZJ9HEPsBS7\nXvhDoNLrykv3gKmyO/1HWpLk5yG430LY2JFnv2EwDDBs7DeUNveOzkF4lX0Xg0dtgAFLvlNHRRBV\nFtKe/Y2CV5rzF+YrC/Ut0ototnKFBze+DsMIFQY+XC4HTwv/wdNCxTcxXC4H93MOKzweAJ4VXcaz\nIt3xKaYKv16D16w+6P4B7/t5zLWPKGU/okLBdeoW0JHnhMGjRHKJ1qAgw9jODE3limULLHparLDC\nUJMnblX/ccotwWvRDXh1USNhOwAwmQw8OJFFOH9bdyHRsWSvyfqLymBswcL2IcJ6IMpaOULe11+F\nQS9qKTAYYnWyNIVqj/t0GE4Dz6XDYWwvhcf2Pq+GQkkk332XU74R++Fy1XCSzOHNadbHDwDQUiQs\npNM2pWreV8RBh27bPyWd3mIIL3d9/nr11GGgyqvl3wIALIb2Ie0j7feRReednyk8lgpbJz1Al55W\nSL4rVOK6D7DFuI+98N5e3ob8o1+DMWWlD4LDJZWYnf+lOfUfbAemAQND3qQekHXtYA42XB+AJb/3\ngqExEx//1gsMJkMs4Dn+SgkAYPW5/jBgMTB1lQ/8B9mRTQkAWHYiBEwDBnoMlW2tEMXapgtBq/x+\nBc3N4tWA2yoLcXd3IypyleAnP1cYIEtmgSCis+dgDBv7jUBZeHjvO8Gct698CTa7Qe65yBCVJypy\nlUaVBVFic4/I3belVfnfm0Z+Mk88VpuSIIqBMfUzSSMbXlara+OI0xi7jJJ9WNJ7k+LuYaJWAk2y\nIXGi1jIUtTS0CtbfkDgRG4KpJSnQNmawwGjGdIQywjGaMV3s3mjGdHRn9FZoXld4SsynbZLn7kbQ\nOcU9P5ShwygM8dN2CV57Lp9E2s92iD/pWAaLKajlQBWigGn/H95VaC5Z2E4bJVe/ssO80wrbGaMl\n7lVf5W2IjDo7AeDVCRCFn3KUf18aTS8kg760QUtBqeC1aFC3KPzfJ+vtdaTz8BUsURT9XCjD0a9S\nBK8//q0XXvvIU6Ag+A2yw8j57gIFQpTCjHok3SzFhweC8X3ScMxcR91acW5XBr5/+wl8w2yxJ34Y\nug+wlciOdPDTJDy/XQZXX3N8lzgcI+a549PAW6RzJt0shWewFb5PGo4P9vekJI9393GyO8kNQ0xZ\niIpchfq6ErEeL56fEbMsyKs0GJvYAABKi5IQFbkKdTWFgntcLgfR1zco5Y4kKkdC3P8pPI8qcLWS\n35qUVKy/p/Y0kjRX8RTA8CsfKjwHu444bksaSduvAQBsAl0I79uHuMucozKrivK6quDroH+0Fkew\nbeBlwfpfB/0DjpzZnoiw85F0s1Y3oYzRSOMmIJZ7Fde44gHv17inkMp9onGZ1IXH6hkAeLEMRD/q\npEO5JPELu9mNDITdSOKHWeGJaFTckSy4kf7VcfhseZNXLVrK/GRrAsRKA1GxOSMDM4zsJh4s9rIs\nBmkl0n2Q89f+DNdNH8Bm6kjYTB2J8qOXwDQ1gXE3d5gGdZOoK1B95T7s502EkQfxlysg/cQ954Ot\n8Pj5S16xMy4XFadvABBXWPJWqz6tnjLwi7NZDguB5bAQ1N5+jOacQtjNeU3ggsWpbySs01B9+R6s\nIgbCedlbAICKv6/DwMocVuFhAICGZxkwDZBdwIkqRGlK27ZRTWW6/8NEpdYDgPS4Spnr/rxIMqMZ\n2RhpMpHR2FAOE1M7WBFaGHiUl6bBzsEXgX3micUpOHaSdKECgGFjtwley9q8FxckwMmFZ3738o1A\nZprsjW/as9MoePVAZj+qtLUsaIvCmhR0svRDd4fhKKpJJXRN6mo/UJBhCADK63XjUKG9ERH1CWIW\n/Q9VKZIxW/yMQlTnk8cycWPSAUEcQkTUJ7g65ie0NoknK+EHNZPNR7SWrCDqV5eeI3DlaNLx/fZM\nIRqmN3x7JwRLhzySu12da5Ix7bhmg7b5FgBfRjB8wfsu5isN/HvPuQ+RjyyxMQ2ogyl4dVxucM+A\nA94znwEGRjF4sW9PuMSVyLXJy9Xaq9PVoRQGgHiDzofL4SL/8G3Ce9VPMmWOpbomWRD1QK8FghSq\nlsaOqGkqQYTfKpkKQ9PLV2jKzIOxF8/FxG6Oik5dSXzlWqvrBJtoMBgSlo2cD7bqZEairPlfw/PQ\nBgCS7kn1D5+Tpo8tO3wRZv0DwLKzBiCuGLFLK1G49TdBpWgazZCa9DeC+y2UaLe29QIAtDTXIjXp\nFAYM/xL2juLWw67dla+3kfz0uEBh8PAaLpfCoG5l4cGdnSqfnwrxBecQYcmzwg31WiSzvy4HC6sK\nso2ua3h3iQBeVbsKDdj/htT7LdWys5uJZloi+l2IZBYdQ8XSIM9a0hQHaeM5La1gMBlasQjLS8Ag\na3z6kx/O/fQKM5Z5YN3rT5GTXIdeI2xh62yEXiN4J/jxN3kFMsnaD6UNQOylMrh4mcCtmxne7XEf\nh9IGIP1xDXz6WILLARhMYL5vDA6lDUBhZgOeXK/Aa++5YsusJLx4XEM6ty5xjXsKoxnTJZQC0XtE\nPOJGoRH1sIA1RjKmCJSMUYxpEgoHDQ+9UhjkyVKkqj6qHittXNt7TIYwINXJ0hc1TSVth5CSv+Yn\nME2N4bRkFkx7dgO7pAK1MU9RcZI445K0asbyVDouO3wRZYcvwv7tCbzCaFwuSn89g7oHz+SWmSqy\n5Crc+pvU+9wWNjLnfAXz/gGwm/0aDGytUHMtVuCiJY3cJTvANDGG02ezYRrgjcbUbBRs/lUu2dRZ\nObqjUlmeQdge0IuXp/9F8nk0N0kW7AIAYxOe4ldSKLRsODgL6wVUllOrl6EtBo38WvA65tZW0t9X\nk1xO246RXZfAyMCMtE9WxUOklFCrTKwqfLbtQfpq2RWe9Z34r/9Frw2SqWQF99f/i8Kb8hXwyruc\nDLcISZddaVwethdjby4hDVS+/+FfhO35V1LgOkbS9ZMsrqEtj1acQ8iO1yXar4z+USzgWxd5Fl2F\n94N5LsEX9+fhQGIoFgbFCjbrbTftZO2HN2Ti+lGey+OhNGF9nM2zknAobQCWDnmEXbeEB2b/25GN\nJ9cr8L8d2TiUNgDzfWNI524PNIIXFF8Lche0fGTCFV6aEknn0SuFoaNwM/0HBLu+joT8c+jmMATd\nHIbIHiQCp6EJhTs0a7Yq+/MCyv7Ur0CpugfPFFJsOI1NKPzmd8H1mJCvceXRBlWKJhVvl6F4WUBs\nCevI2Dl2R3lJKgDA0MgCAFBSKLvI4/MEoUXJq9tYwevsjGsqllD1iFoW7t3chJZm3bHo3cjQ3Wwj\nmlYWlLEayDOWrE/hrRe4PEw+hSBo6R4kfkv+viRuu4rEbeIHT7LGAJIVquUZ83TLFTzdQp6KVNZ7\nUhKbTdon88RjZJ54LHW8NvnyeCB8elng6ymJKMpugKGxYtYQE3MDjJnPczc+tjVL4n5lSTNaGoXJ\nVJ5cV14peOuadGuWvlHFLYcrQ/cUhu77P4KRi2QCkfRlB9HwQokaJDKgFQYdhMvlICH/HACotLoz\nDU17pqvveIHC0BYulwMGgwlv39fwMu1f0jlMTYXZmRrqy0j76QJDRovn4h44Yq1WYxd0DZ9tewSv\nuWw2MtaugO3wUbAfy8ugw1cabAYNhYmnNwqPHgIAuMxdgIasl6i8GwX7MeNgO4LnE5+1fRPYle3v\npFXTyFIWOjq+IZaY7xsDAPDrbyV2jyyTJlF7Z18z7F8un7IIAAMmOSDmfKlEO5XsnSbW6ksVrQ1c\nGZ7aFkECh8lhMHKxk6jF4L58Cnx2v6vWGg2668hHQ6MFBvb4ELYWHmAwmAj25mUj4LuIMRhMDA5c\nAoBnVWhLeB9hZiU3B+I0bnaWnmLjBwd8LLbGwB5CX19+HyMWuVsHDfAimadcm1nwMlw5u/LN7MIn\n3cNoXkpdd69hAIDOXYhdEppFTugNDXX7fWcaGAIQj1mgkuK1PeO9fivSV38uUAoy1q4AAFTcui5h\nXaiMvg2LQGFWLvOAIFTejYJl7xAYd3YXzOO5Ur0ZSHQBCw9feE4RxgTZ9RwAU+fO8JmzTNAWtHQP\nLLp0R9DSPURTiPWz8QtBp8ETJNrbXps4uqHHB1vatLkK+gYt3QNTZ3cELd0D++BB6Dx2NgDAY/zb\nsPYNlimLJsiNyZPdSQ7O7nuFQ2kDcChtAPLSxdMNL+geI7gnqz03tU7Q1rY/Ea9S6wV9+QqLtDV1\nHWOYwpvRAwDgxvCCO+RLSFKCfIxmTMcQxnhkc8nriES4LRH7USXS5nV5JxzPpm+TaM/ddQacZrZE\nuyqhLQw0NCIUVTxDRS0vY0tNAy+zCIfbip7e0+Fk3R1MJvmfDIPBEGzyuVwu8kolU7mV12QBAArK\nn8LGwgNmJrwTbUOWKfr4zIGFqbBuQmZhNACgma1YAaKOQn5ODLr5C/2Vu/WYDIAXEM2nbVrULj6j\nCNvLSpLh6h4KALBz6I7amgK1yKwK6uuKEXdXcqPUf/ByPLi7i2BEx6H6wX1K/ZsKhJu9ljLeKavD\nhCkwMDMTs1S0d2pz0lCbk4aubyxBxv/2ofwpb+OYfnS3oA+7rhq12alI/PZzqRt1DrsZlSmys+vw\nLQ7Pf/5Koq02W2gxbCji1UcoS4hG0IipeBV5DDkX/+TdVLzsgsooSpA/1lAaZ/fl4uw+YS0I0c07\n0TVZ+6UD+bh0IJ+wD//fD0KECRhyU+vlnlvXaJtKFQCa0ICX3Od4iecy+4teJ3DvSe2rC5ApBuwy\n9cav6ZWFYVn8TLF/aWhUDReS9tcxIV/j6ctTuPZEdgakK4824MqjDbj6eCNpH2tzVyRmnkH/7gtQ\nUZsNAPBxHYmY5P0oqxYG2rZyiPOQiwbF00hiYGAEACjMe0jah8XiFYd6HCPuX/3i+RnBay/fCDVI\npzpElYWoyFWC4o6m5g6wsKJejE8aZnau6LtgNxhM4kcGWbu2KL10HnYjxwCQL14hd+9uuLz9Lhxf\nn47sXbwkFA0vUlF8+qTAwtARgqT5GNk4AJC0BgBAY1mhRBsRDUXKn7hnniYp+slgwHPK+zC2k10H\nSBHy4+T7HUXJutWxUwOH7xyhbRE6BNyWVtJ6C0RxDapELy0Mv4w+L7uTmjGxdECP8I9haGKhwGgu\nUm8eRGVBiuyuNAAY8AqdDqeuoQqNrsxPxsuY/6GlqVZ2ZwJa2A0YE/K1wPIAAFFPd0u4JV15tEHQ\nFvP8F4GFoi2hfgsFQdKJmacB8FyYXO2DcT9ZdrEtb5eh8HYZqlCgtbGFPbzDZsLKSbF6EQXJt5Dz\nRHeD2/luOtLo5NZX8Lq1lXpxKFGsbT2Fc7GblJpLWW5f+VLgkhQyYIlK4xnqy9UXSKcuWsol/bGl\nYe7Py5BVco53olh44jB8tu1BdRzPWmEZ3Ac1CbobLKs6GMj8WzwbkcuwySiIOguA57YEAM6DpKft\nNndTPFjU//31SP6/9VL7GNs6ormC2v+xvBQmFMO1XydKYyoyJOuN6AuqsCB4DpddFI+GOm5m/sir\nF9YGS5q2VVCkraWkCk355bAI5v2tNRer9zPI4FKJaNEQDAaDUCgrFzO8+cco7B/zD4wtDNFU26Ix\nmXyHvQNbtx5qm7+qIA0pN7VbmVVeQmfL5+7QXFeJJ+c2K7RG92HvwEZt7zcXD0+u0foGTxNYu/jC\nb8T7al0j9thytc4vD/yNcm7Wbbh7DsSv8w8AACAASURBVAUgWbyMyL+faFNtbGKDsGGrpPYhmlMV\n/eSBPxfZPHKtxWCg7/xdqMh6ClvPnnj4O89Hve+C3ajOS4WlazeUv3yCzNvHBEP6LtiNR398AS7n\nP0uGjTMCpqxAWXocTO1c8fyc7rjutE2b6vHZF8j5Trv1KWj0B/vudph6hFqdlgP9/lSTNPrBwri3\n5e6bdCIZMbvj1CiN+mkbX3A5T3VZ4UTnrmwuxP0SyfTDRi528PhiKow62aIyKhH5+6XXAOJyucS5\njSmgVxaG6oJ67B/DK52uKWVB3s2xsli7+CJ09i5wuRw8OL5CI2uqGyNzG8pjNPN+M9B3Js+96OGp\ntWhtbpDRX//w6j8dTj5hGlmL/3/28K81aG2RXQRKHXBaW8A0MISzC3GwOQBkpFxAVz/Zm4Cmxkpw\nua1g/Of6FRSyAImPfpfoJ7oxF3Vl0jYP732PvgN5FdqHjdmGqCurJfr0nb9LoCSIUp2XirQrvIOL\nvgt2iykMbQmYskIwh1sf3Xbf4jS1/8MBGtVRllqubRH0im7jFbNY08jGjGVN2N5cUI70z38lvKcu\n9Eph0CT9Zm4Fk2Wk8XUZDCZCZ+9CY3UJEi60/wqofPxGLIS1S3fZHVVM3+m8FGS6cEquCqw7dYPf\nSNnVddVB3xk8a5I23su052fgFzQTRsaWAIC87GiJPq+y78qlMADA7StfCRQCO4fuMrMP5efGUpRY\nfdSJBmozGAjqswCJjyUVHiJyHyjm7lmYdEuhcWT8kjJU7HrjxEfIfyF/jYmSs6fEgpU7UvwBDY2m\nGb5+kLZFaLcYMk20LYIAvVIYPomZir0DTqt1DU1ZFGRhYuWI0Nm70FxfiSdnFXPr0QcsHT3RI/xj\nbYvBs+5wWvHgxEpti6IQNq5+6D78PW2LAUD4N6RJxaEo/zH8goTJENJT/pE5pvCVdJN4VOQqdPWb\nQJqCFQDuR21FU6P2Kyu3JSpylVDhceyOsGGrcD9KdspVK9duaKikHvBpauOC2uJMyuPURVXsPVTF\n3pPdsR0y5KsB8JvcTak52E2tiFx6XaHgX5qOQ/fXfRD2WV/ZHWkUpqZF/jidoPNr1VqHQW8UBqIM\nSbt7nVThCgyEztY9H1cjMxuEzt6ltyfgVs4+qC5KJ7xnbuumE8oCHwbTAP1mbkXcyS+1LQoldEXJ\nbUvo7F1Iuvw96spzZXdWAfLEBlCNH8hIuYCMlAuwd+oB3x5TYGhohpKiJLxIPgt2i/yubKoMQJZ3\nLmn9CuKvwr3fROTG/QNT205oqOBtDN1DJ6Po+R2Y2cvOslRblAm/8UuQcnEf/MZ/TOjiRCNEXh9v\nRXzhe80PQr+PyN3xqMIyNsD4n8YIro9N+Bt1ReqpIv5d8ih85n9do2OVWbOj4tLbGWFL+8LB3152\nZxkEzvJH4Cx/FUhFDX2IM2mbBbGgnrwWhKbRG4Vhd6+TarMw6OqGS5TQ2bvAbq7Ho1PrZHfWIfxG\nLCQ8tdfV95zJMtIbBc3SyRs9Rn8ou6MWCYzg+dLrw/spjbLi54gplsznra/kPREGyPGVBQCCTX99\nWZ6EAtD2OuXSD6T3aDQDlUBTZZh9YRoAgN3Ixu9DyONa+IhuyEVfLz7QC36DeRtOsg37p0dD8P2c\nRxJj5WXT3SE4vPwZ0u4L4xB2J47E/oXxYm0AwGAAI9/pgusHsymt0Z7xifBG2NK+MLXTHVeYjoKb\nmR+CbMPF2jJrHyPo/FpU3nmG3J2nSVOqagK9URgAdFhlgQ/LyAwBY5bg2RXVReOrGwZTsmaAV+gM\nLUhCDV1XGgwMTXReWRBF199PGhp9QhVuR4rAMmFhYdzbODH5DGryaiiNFVUEPj1G7sbi1UeYLOP+\n39TS+fIVjNdXdEN5fgNKcxrE2kQVBkMTJjZHD8XKkFuU1mhPOAY4YMDSvnAOVk89C32ns1kP2Jt4\nyNU32E6xxA9MMGFp6EAa3MynJu6FQvOrEr1SGGbsH4a/FkWpbD59Uhb4WDh00evNV9+ZW2DAMta2\nGHKhq+9z3xmbYWCof6c/uvp+0tDoDQxg4QPNWBWkMevsFADUXDye/FuMXhFO4HKB+MvENWoAoeVh\n6pe+OLEmmbQfEdHHXwEAzu14gT1JI/F54A2xNlF2PhnR4d2SJh+SXkujo2Nt5AwXU/kUc3n7UYGf\nqrVtXELWxhOoeSipQKjb+qBb5Tll4BHqrLK59FFZEEUf5XcLHK03ygIfReQ9mxEsdv3TdT9ViQNL\nRy+9VBb46OPnloZGk3iHexK2OwY46ISyIAoVl6jbR3LRf4orEiKLEfWn9Limr28MwtC3qBcCC53m\nCgAwtWTh9pFciTZRlva4jm+fjaS8Bg2NNqmOTUXdM+240OmVwqAq1LlpaawuQVn2ExS9uIfSrMcK\nZRyRl35vyM56okt07qmaXO31lQUoy0lAcfp9VLx6hrryPJXMSwS/XoMyGJuq5s/M0MQSPcI/Uslc\nbWlpqEZ57lMUZ8Si5GUcqgrS0Nygnuw/tNJAQ0NO6JIQwnZdPQ0mUhoSrhTju+RR+C55lFh7j6H2\n+C55FGZt4gW8LjnM+103RA3Gh78Jg7ZtXUzw6B/pz84vzvQHAKy+GAb3QCsAwP1T+fgueRS2PRiG\ns9+8kGgThcsFvn3zIZgGxPWsqnJ1L/sZjWZ5VnkTl/P2IbnqtkbXLW/KIy0El73lJDgNzYT31Jkh\nCdCzSs9gAMue/JcliQvs7k09S1K/N7aBaWCojHgAAA6HjbgTimc+6TlhBUytVOM3qGk3D6obvvTo\no/AZNIfyOg3VRXh6QbHMVeZ27oKAW2WhWkzvVEpPTPd7qpK1+Th694N32BtKz1OZ9xypUb8pPF5V\n72td+SskXf5O6Xlo2ifK1mHQRaicxou6+jgHOWLSb6+pQySVIss9STSAefCbnXH3P1chWX21Regn\nIej5VoBcfTktHBwceETNEqkeTQXN6wqqypJkZeiIgU6zVDIXADS11iGz9jGyauNVNmdbOlylZ3CV\nS6Xq0XuC0spCXtJVvHoaqdQcAPD0wg4AvJiEgDFLZPSWjrm9O+rKFEtdOfUtK5w+rN6TFKrKQmVB\nClJvKlfBsK48V6BIKXuizWBQsxCc/IHcP1dRlFUWsuJOo+iF8nnpBe8rg4HQNxVPQ2xu1xlGZjZo\nrq9UWiYamvaMPigLAPDuvblSN815KbUCi0NjLZtUYfgueRT2zn2kFhmpUBhfLLfCUBhfrGZpaHSJ\n6pYScMEBQ8RJh8wi0J7QK5ckCydTLIufCWNLQxgYURPdLTAcLv7DFV47+/F5xB5brhJlQZTa0mzE\nHluOx6fXKzxH4NhPYeWkWGn204ercTjSDdFZXvhgpZ3CMqiCyrzniD22XGlloS2893eDUnNQUTpU\nrTAoo/A8vcgLNFaFsiAGl4vYY8uVsm71nrxGhQLR0LQ/9OkEmGnIhIGRZFY8PjunxOIz/+v4zP86\nVvUjT17ymf91vHyk/YOE7DvyH8JlReWoURIaXeRh6TmtrBt0fi1cFo4lvadO9MrCsOjKROzudRLG\nloZobeZQGtu5J/EbLA9pUb+hIk+9OdhbGmvx4PgK9H9zh0Lj/Ud/oPDm7a2xvBiAN961RnSWF9KT\nmzHvNfXFBRARd2IVOBy22uZvaazBy9iT8A6dKbuzkhiZMHHkcSBu/F2OiNn2mNnjKZqbFHP98x+1\nWGE5Hv71FVpbmhQeLy+xx5YrnP2q+/B3kXrroBqkUh/D57hi3IceaKxtxZ63n6KyiPw97hJoiY/2\n804pj6x5gac3yzQlpsbo2tsKIeMc0XO4PWw6GaO1hYPc5FqkxFTi0s854LSqz+3VyISJuZt94d3L\nClYORqgobMLNw3m4dZRaOk5dw3eiD7pP8lFobFN1M64suyH3qXfQnB4qq9b7TvQcvSiOJRcUPrb6\namGI/V41lpzQT4njbsgofFKM7NuaKeipLsqayF3qtEVjtno/h3qlMIjCZDHBYcunNIRM36jwOpqM\nD+ByOYg9tlzhE+Vek75E/PmtCo21sTPAJ2t5FoZ5r+Xh9dmWeHepLSb1U//Jiabe45KMByh5Gaew\nKw3LyAzs5nqZ/Q7F9sDMHrwYhl/WvsKJxCDMCkpUaE0rZ8U2DZqOa3l48iv0mbIOhqZWlMbZuPrD\nwMgUrc3yV01WN2395xf78QLegobb4aNfAgXtVvbAN1GhYn34bIzsB6cupmJtH/7MUxzSH1Zh19wE\nSjIQrSEvqpwLAOxcjLH1ZijpfZahAXxCrOETYo0JH3cRu3fv70L8+RX1yqWlucLPh7OnKTZc7kfY\nz9nTFLPW+mDWWuHfzWd9o9FY20p5TW0ybN1ASv3vbIlBylnF8rQnHn2OxKO8A7GQRb3Q572eCs3D\n5/Xfx+HcgktKzaFvlKWWy+6kgzw98kwl81BVGEpTy1S2No0QEw9Htc6vVwrD7t4nsSyed0LMaeXi\n25C/5BrHMjJTaL2Hf32l0DhlUVRpMLag7lK0+1AnhA03RV0tB4M8MwXt547VYMVWB8rzUUXjefmV\nCPIPnrQaj07JNvnN7SP8Ihw+xRZvhSQptF7fGYplaNJWrYPHZzYq9LntO32TXtRnEFUW2vJLylDB\nJpzBgISyIIpPX2sMm+2KqGP6dwq+424YrByMFB4/cFonhRSG5kbe4dCeBwNhZkXtsfXdw0F6qTTI\ng7yVl+Xl0f54PNofr5QrlFOg+p8bmqLdWEto9J5O84QZx8z93cWuAcB6kD/v4aNG9CqGgR/0vLvX\nSbmVBUVP62OPLdeIO4e09RWB6u+7bH4hBnlmYkygZF5fUQVCHcSfU8waoiyKvrcsI/JNoCiiLhi3\nzlSgpZm6kmJu6wYDQ+ouPtreeCu6vlvgaBVLolqITunJ+vycLLvvm+sUsxxpi+FzXPFLylCllAUA\nuPqb4mb8H54Opqws8Pnu4SBM/txL4bV1kYNhh1WqLIhyoN+feH4qVS1z0wiZe/9dTP3nTW2LQaMg\nefXUCgsqQ+Ef19GUWwoAMPVxgeO0gWI/nKYWtadV1QsLw7y/xuKPGZH4JGYq9g44rW1xNIYy7knK\ncDKqM2YOU69/XnNDNZrqtGfGLc6IhVNXcrcKbRP42lLKY2KPf6EGSahTkZsEW3fy03giOveMQF7S\nNTVJpByjF3QWvOZbEdaeD4Gbr7lE342RQleZrVMfI+d5LYxMmNgbP1ii7+z13XBsvWJuJJpG1MWH\niKzEGlz8MRtlrxrBZDHQe4wjRi9wg7GpeBDs3zteKrR+6OvOYLVJdFFb0YJvZjxB6atGQZubrznW\nnid2j4h43x1n96j3EERTaOLkO3p7LMydzNBlKPUCarMvTMOxCX+rQSoaGt0hseIaEis099yquJEA\n6yE90JRfjoIDqk3AIw96YWGwcpV8MMuDoulKtX1Kqywh05TLCOTWRfk6FbJ4ckbxuBJVkBkrn4Wq\nLfaevWV3akPbys9qQ0dqqqTdOaRtEVTK9JXeAMT9/jdNIg4W5LsiLfa7jZzntQB47jQf+EvGDAyd\n5aJqUdUCmXWF08rFYr/bWOx3G9/MeILEW+XIT6/Hq5Q6/LM3C5/2jhbcL8lRLkZlwfbuYteL/W5j\n+YAYMWUBAPLS6rDY7zap25OaLfYa4X9TzmhsrSvLbio0ztxZsWc2DQ2NdAr/vKG1tfXCwrBv0Gks\nujoRhqYsQQwDILsmg4VDF6n3iVB1Sk9lUcTKwDKW/WUdnaU983xTrf5mivEZOAdlWU+k9lFWQeg5\ngbqlQNeU3OdXf0CP8I8pjXELGoO8xCtqkkg5Ys5Ipspd7HebcDNNlBVIR3Q5ypApC5/0uiuIK5CH\ntWPiVCLPw0sl+PVz2W4A9/4uROhEJ3QPsxFr/zl5qFIB39pGGz71B/r9qVBMA9OAodYMWe2G/74c\nwn8aB8eeznj0fSxS/1I8K+O0C2+i8FEBor++Bbvu9hi+MxynJ52Q6BfwVk/0+qAv8qJzceuLq1Ln\ndBvsgeHbR6HoSSFufBYpd8IZabg49kJBCa9QmYWZM6ytPJBXGIfRgzYDAGrqChEb/wMACNrq6osR\n82Qvb4x5J4T14j1jrkWvEetXU5uP2ISfCNftHTAP9jbdAABRsVvQwm4AwMDoQTx3nsamStx9uAtM\nhgFGDuQdvl6PXgsulbRZaqQxs0gr1gVATxQGANgf/g8ll6RuQxQL2qosSFFonDppaaimnH2m38yt\niDv5pdQ+ZDEK6lYm4s9vU+v8csPlqu3IcXJXYRYcqgqEqZWzqsXRODUlWZTHdNZhheGP1fL7c68Z\n/UCNkmifFYPvU1IWVIk8ygKfb+c/lSv2RF+I3h6rbREoMWbPSFz+VLvVmvWBqqxKzL3/ruC637IB\n6LdsAI6ECdNNz73/rtg1Ufvc++8i7e9kmDqYwWtsV8R+cxfj/phMOF50vc5DPAjnF+3Dp1NfV7gP\n90T2NcVcC0UpKImHh+sA5OTHIKz3ElyLXgOfLmNwI2Y9OBw2+gd/KOjbViEAgL5B7wna2/aTxpNn\nfwhejxywHjdi1mNE2BrB2GH9efumkQM3iK0rz9ztHb1wSeJDJX7Bzp16arhHf6+jPEYTPFbAfYfJ\nkh6cKC2g+d4N2alDFaUyX3cUsodyZDxSBFFlgehaGorUC9E160JHp7xAe8kSVMmM1cTFIKtLmzUs\nCY/z32dRHtNYp3xmJPt3ZsLA1lrpeZRFm0HIilg23Ae6UeofFrmS8hqqxH6on1ZkcOnvhiNhB8V+\nFKUyo0IwftbNeTgSdhCnJx4X6zP3/rsoTy0TW68ivZxQQQAgIZsqlAU+vl7jAQAFxTyrfedO/cFk\nssBimeDxs98AAK7OIQgJfEdibHbeXcI5B/b5DOZmTqRrjh60GbbWvENRJpN3Zn4rdgtGD9qM0YM2\n43bcN4r/Qhog8NRqdNu3iPCeugu36YXCMO8v3ibqk5ipal2H3aS+jbI+8cU7qq1ULErqLd1x+Wpt\naZTdScO4BYZrWwSV0dJQTXlMe/r99Z1R8yQ3fB8F3tGCJDwu/Uy9JowiY0Tx+HU7zAeGwG3nl/D4\ndbvYPfefNsPj1+0S7WAyBe0sZ9WkGD3/3mWVzENDTtntFNwfu112Rx0m/bykUllfIrmvuTTvrNj1\nxbm8uJiuE3zVIxgJdx/uhL2ND5694AXIxyb8iIBu08FmN4LN5j2fu3lG4FHSb3LPee/xdwgJJFZ+\n+FRUZcLORnggwuVy8CjpIK5FrwGXyxG0CdENdyQAYBixUHlTsbpOyqI3LklUsHXroW0RVE5hyh10\n8htCaUzwhJVIuED9CzA6y0vtKVXbM38l98QM/6faFkPrPD67iXKRvM49xyIvSbo/LY32aGXrzoNT\nHlLvVyo1Pue9lfD4dTvyvtiK1ooqQbvHr9uR8/5qgMMRXr/HO522mztZ8Fq0XRmKEvSzkjCNbBrK\nVFe0UjS2gEhRkEXIp/2RcYF6nRRFaWyqwuC+XwjcfRoaK5CQfESsT1SssB6RqFtQZu4t0nlvPyB3\ne+bPUV6ZIXg9uO9ypL68AAvzTugbtBC37m/C9XvrRMZQO7lnMJgY4jQHZiwbmX0TKiJRUE/tPS85\nfY+wnduqXldRvVAY/pgRSSno2XeYpPlKFgXPFcsGoSmyH5+jrDCYWKm36h9VMu5LBl61R5a9rrkv\n3LQo+U9eNI6+RvrSwMTcQKKtMEN7Fti22ZDkpaVJjQ9QDvHc1ZdU+yw5NOy47E4a4Mlviej9TpDa\n1/H/Zhase/MSlpTfSUXa5rMSfVhWpuj71yeC65yDUcg/eV+iX1jkStwfux2hl74Aw0DoUCFqSXAY\nFQCfFRMI74nOAwAPZ+wVW7elog6PZv1A2r8tRHNzObrzPdlUpVl3SgszZ+QWxGh0TSJMjG1QUs5z\nl65vKFVqrgg3atk5g23HIth2LJKrbiO7Vj73ZYfXQ1F6TjKmSfQzrg70QmEAqAc9UyUn/qJa5tVV\ntJElqfTlQ42vqQ32/ttdok2eOAZFAvUr8hTPpkFDQ8a4Dzwk2g4u11780fVDeVpbmyomfj6ovaua\nrFAA0FLforK5lOHhz0/UrjCERa5E2sYzSF51QnDN3/Tz6XfmMxiYGYu1hUWuhPO4YDyZv59wzgeT\n9oDTxHsf3eeJH7yVXn+G0uvPBH2l0fevTyTWDfnfEjx6Y59Y2/MvjqH6aS4AwDKgMwL2zFHa3YnB\nZIgpF70+6KuyuRhMXvKPW8s1a92trS9C6kvt771ELRcPEn5WaI7RrovAYihe2NLfeij8rYcipy4R\nzytvkfbL3XMW7p9PllAYehxVfyyjXsQw8OlIRduIqC2j7o/rHvwa6b1BnpmEPzTKMblrgsSPPCgS\nqE9Dow4ChtpJtOUm12pBEh55qdpbu/5xEpw+XSDWVrLvEDz+j+f2YDlavCif3fzpAAATP+KgcRpy\nOM1slEcLLbTp3/wj0cfAzBh5J8StCffHboexC7H7R9rmswJlAQBy/1A8Dqftpj99+z8wtDGT6MdX\nFgCg5plqiqDOuDxH7DpwnmLpuyvSyzHnnrgXBv+6Kks5F76OSoTbEqWUBVE8zINgamBJer/yViLY\nFbUIOr9W7MfA0hQZK35XiQxk6JXCYOFkimXxM2FsaQgDI2LRnX0HaVgqzfHizh+yO7XBNWAUYbu2\nsiTR0NDoPtaOqnn4qYq6KrbW1i796TBaikrh/pMwpWNDQjJeLdsM9/1bwTQxFotTeLV0Ixw+fAvW\nk8KVjl9Iv6y6jDT6wIst58SuS28SW1Bzf48ibG9rPQB4bk3qovSGZiy8tXk1MLIyxtz77wp+bixV\nLBc/P8BZdC4AODpQh91bdRhZLkjlTXlIKI/EveL/4U7RETwqO4+MGukWyGGd5oMB8pTvyfO+RerC\nfahPywenvgmVtxKROGkT6lNUo5ySoTcuSQCw6MpE7O51EsaWhmhtJvYf9ew7hfK8Ou0HLkJzfZXs\nTipAnVmSOgLfXeyOz8YLH1J7/+2OT15T/UMrN+GSyudUNbWl2ZQLKBqb26KprkJNEtHIg6GJbp0l\naTscpvTnIxJtnJo65C6SrHXDYLFQ+tNhlax7cy1x6sj2SkVsulLjXab3V8qCoCrCIlei+PJTcFs5\ncB7fCw25xMVKyVKotm0/O404XlO0H9lrea6pyEYjxMWUOKvU5bx9hO0AUMeuQEljNl5UC61kloYO\nGOT0pli/sW4fS52nuagSGcs1+3+kVwqDKEwWUyXVBoGO7QdOFsugatekxhrlAon0CYdOhmLX9m2u\nibBzp+4bXJyu+4WcGmvLKCsM1q5+KH6h/UC4jkxVcTOcuphqWwyaDoahtRlaKhW3cDfmaf+g4f7Y\n7QiLXAmbft7gtnKQuu4UKmIztC0WjRoIthOvm5RaFY3M2seU56lpKcXlvH0S1gozljXq2Zo5KJYH\nvVIYdvc6iSGf9ETwjK44POsKqvLqtC2SXmBoYomWxhrCe20VAwMWA4ay97eU0dUKvupgbkgSzmYE\n4/KxMkTMtpcrhqHrgNmU12E36f7nn91I3ffculM3WmHQMo8jSxHxvrtYm09fa6Q/1J2Hl64imn6V\nhhq+66fi2WdCa46BKbFrnImbLaFy8Hz5MbXJJi9hkSuRue8Kii480bYoNGqkr/0ksevG1lqFlAVR\n2ioNQ53fJrQyBJxaDaYR8fY9cdImpWSQhl4pDABwZ+9T3NlL57ingpNPKPKSrsnVt5XNxaUnXTA2\nKFulMpS/SlLpfLoOX0n4Za18PoVMFnUtLXT2Lspj9AFTa2dti9DhefRviYTCMP5DD3z/jnYKBnVE\nXlzseKfSlv7ixQL7nV1K2K/Xb++LBSAHH1wIAGDX6kYxTq8lY+C1ZAwAgNPSiszvL6Pkasd6BrZ3\nHEzELee3ClUTcBxXegb9HMhd6/0OfgKmEQsV1+LRlF8OQ0drMAyYsBvTG6nvS6b4VSV6pzDQUMfF\nfzipwkDkkjR7lOoDZzjsZpXPSdM+MTKx0rYIWqelkaPVOAKijEj+A221IEnH5d4u1aVm1Rf47jxt\n29peBx94T2Y/eWk7j+i1onOW301F2X/B1oY2Zui6fDy6Lh+v95WkaYhp5aouKUNZk/j+q4tFsFh9\nBkNHazyfvROt/ynHFr28URv/Enk/XEDQ+bW0haEjYGAAtLaqaW5DE9J7dBpV1bPxcFeseysDK3/y\nRF1VK57H1eHG6XJti6U3SPu8dhQqi5vg6KF8DEGnrpIpH2n0g+bajnXIwt9My7OpTlj4K6U51dmn\nbV2GhPd+lQhyLjz7SGaNBxr9RTSAWdV0NushUdCtVcSSZt7DHbXxvGxqVdHqjcfVrVQYHZTbD5wg\nJYOWGK0tmq3ESEOdLt15G97Q0Vb4YXUuPvqms5Yl0jMYcv4xtGNuHy+QaPMJsaY8z/qLihd3Or5B\nMmPNLylDFZ6PhqYj0PBK8nDIdUaoRmUwMDXEuKglGBdFreowjWKUNeXK7qQgFob2Em0Ok8MEr51m\nCb+TzXtIFtxUJbTCIMKFa474erM10nJdcDPGCctX84pn/HbUDr8dtcMfx+2w4zthcZjTlxzwPNMF\nSRmdkJbrImhPy3XBV+utEJvgDEcnpqDtzxP2WLbSUqzv1Bmm6ORigCnTzDB1huwTxYZq1aQ85bsi\naaPic3vn/WHJOJsRjKm+vFibm6e1n7mDRr+4+rukW+Dyo4oValKUqOP5Gl2PhkbfacguRdjlFXAY\n0QMAYGhrDt91U+Dx3nCwa3QjvoJG9UgrtKYsTa3i7qGVt5Pg8k64WFvQ+bXw/2MpWLYWapMDoBUG\nMXy7s7BhDS/DxYTwEry1wBwAMHioMd6ZU455b5Zj8jThpn7NiioM6FWEiWOEKUNfn2oKX/cCbFlf\njdDgIkQ/EgZwJiW2YPf2GoQPKRG0nf6rAQBw5u96wWtpNNfTlRh1naYGjlhmpB9Wqe/0gYaGjK03\n+qtlXtrKQENDTML7B9FSUQefQyDz9wAAIABJREFUVRMRFrkSISc+ht0gXyR++DseTv9e2+LpLL4b\n98AysBccX5sM674DlJ7PZebbMPPygZmXjwqkk427eaDa5i5pFE9Ak7vrjFicwvM3dwIAWLYWqE1Q\nr4s5HcNAQmMjF6am0l0jUlNa0MoGauuE9SC+2W2Dnd8Tl6jfvb0aAPDqleIBMi0NxOlRqTLUJwuR\nibwofyIrAx3bQEOjXXKTa+HuL35i9EvKUCz2uy1zrKo29Yv9bhPO9UvKUOQ+r8WWqfKlEXT2NMXX\nF/uCacCQS34aGn3l0Sz1Zqppj7TW1aImKR41SfGCNrth4SiPugqAp1AAALelBfVZ6TDv5o9Xh35G\n/csXhPOxqypRnynuUsmfo6kwH9k/7RJray4pQta+7WJtAJC27nPSNlEcTTzl/2Vl0LbC87PKm1L7\nt9Y1qjXQWRS9UBjCFvYgbL9/QPcKrl2+1IClH6nPCsBpbVHJPK1sLsYGZSM6y4tWDmhodJAtUx6T\nbtY5rVx8FHhHrAKymRULu2MHSoSAnP8+C5M+9VRYjiW97mJf/GCJdvceFgL5Hlwoxu3jBagsaoKZ\nFQt+A20ROskJbr7mCq9LQ0PTMSi98S98N+5B9g870VQsGb/F58WmlfDduAdp6z5Ht7Xb8WITcSC5\n7aDhsB00HIBwg/9i4wpw2Wx4LBZu+IkUAtF2PnWpz5F3VHqgva2RKyqalXfjHOv2sdJzqAu9UBgG\nfRSI3b2IS6NrgrN/N+DQMTtwAdy8Jj3oeOlHlUjLdUFcbDPYLVwMGGwMX3fyPwAAmD+7HMmZLvjj\nYB22rK+W2pfBVO1/Ga0s0NDoLmQn/EwDBn5Olm1F4J/mK6MwtDRysLTfPXwbN5C0T/8JTug/wUnh\nNWhoaDouVXExqIqLAZhMeC9bh5e7N8ocw5BSYbYi+hZKIs+L92cZgsEyxKtDPwMArPuEwjI4BK9+\n/0nmWnlHf4Xnp6vBMrdA+tavAEgWWQt1nEZYZI0KbSs9p1fHKjWfqtELhUFTygJ/Y9/23xWfEVsM\nWtnCf0WVAiIFQbSttY1H0r07TTKVCj5MAzWUYaahodFZHl4sQd/xjpTH7X1XdUXWGmrYpMoLDQ0N\njSowcfMQuBnZDhyO8qirsBsyUiVzd5o6G/nHDgquHcZORMa2NXKPz/p+m4Qloi0Rbktwr/h/qG4p\npixfW2UBANJrHlCeR53ohcJAI8TEUjLFljLcSvOEoZFkrAZtedB9itKitS0CjQb4dVkyfl2WjO23\nw2DtZCSz/7M75di3UD1VZfkWiw9/CkDPkdS+iw4uS0HcReoPUpr2TZcpPRHw2TDCe7kXniFx5w25\n5xpxcj5MncUz1tRmleP2vKNSx/HTj3JbOfh35I9ibQBwaZjw5NjAmIWxVz4gvCcLojSn6YfjkPYr\n9Tz+YyM/gIGJcAvXXN2IaxMPAABaG6S7LvPlyDz5BMk/3pVrPbL3Q5U05mahMDcLAP6fvbMOj+L6\n+vh3d5ONZ+Me4oGQECyCa3GXUrxUKAXa0h9a2mJFi720lHoLLVqKFQpFigZLgoaQQNyNuOvu+8d2\nZ3d2Zl2T7Od5eNi5c+bes8Mwe8+9R5C6lb+SXxp1DaVRwmdA4C5EF0sgQHx3AQDJWOD3LzQWRPuS\n1q/4OfFdBgDo4/QG8fneq+OoaKTPbGnEZKOL7TA4m/rSno9+dVKiHrqiVRkM806NhL2vsAqsLt2U\ndIWJpZ1a+zNmMwzGgQZY/5svuvWzwrTOcWhs4Mm+QAkyHpzWSL/tHUWCcjUlS8eqAfxJhbEpE2MW\neaH3RGdY2RujvKgR988U4tJP2Wiopa/+qO5A428XPSc+R4xzQvgYJ3iHWsHSxhh11c1Ie1yJZzdL\ncfOIcj696tI3L7nGEGStpzj39UHPLWOlyniODYbn2GCZE9SI3RPh0NOT9pyltx1G3/wQyfujkXxA\n+ootg8VPHCk+sR9980NcGLgXLDNjjLj4Pu05aUirh+A/Jxz+c8Lxz+BvwOPK/q2w9ndAv19mUNrZ\n1qYYffNDXJuyH/XF1ErtdPhM6y63wWCAnpjiU4hwmEx7rrfjNKX6zKlNUEs8hLppVQaDva91uzQS\nRDGxUK/BkPKiEZZWTFRXcWULG5CLrcf9sXpaCs6kdkVjAw+HH4dgVnfNrPgaaH801XNxZnc6zuzW\nD0M/5lwRYs5pd+fAz6YXUss1V13VgGYZcel9sEyp7rXVGfyiZ5be8v/OiU/GuU0teL7nJhgMBoKX\nDgKDyd9BD3grEl6TQ/HveOnBq4L+nmy8hG5rRhDto65/QPT1bPtVdFk5lHSNJKNBXL/iB9nIuZAA\nMxcr+M+NIHYJRl3/AJUpr3D7nWMSdev3ywxY+zsQx7wWLhL2RoHb2IyQ5UPAYDIw5ORbKIxKk/od\nm2saYWTB3610jPTCq+hMqfJsW9WrzrdVShtyaXcalCW2+IxGC8GpQqsyGARM+2kQjs+/oWs12gT+\nndhEelVRDLsOyuPoRnYbeZWnnsxWBgzoE33cZ8OUZYVrWfwgwpE+y3AxfRcGes5HbvVzpJTdxUif\nZQCAi+m7CJkHBSfRwbobzIw4yKiIRW41P9vdcO+P8bL0JjIrH0sc04cTDn+b3kgpv0e0jfRZhtu5\nvyHSdRquZvIDGEMchsPZwh83sn5CC68JI32WoaapDFE5v2K498e4nLEHANDPfR5MjMwJOQOaJ2T5\nYJKx8OL7O0g7Sp+el2HERKjIxFycyP+bRHzmNrXg4mvkANasc/yFGsGknc0xg9/Mnkg98lCqjoLJ\nf97VJIy+wb9WYCwIzmWfT5BZSVn0fNmzfNz74ATpfOrhhyQ5a3/psUqixsKjdf+g4IYwdWj2+QSi\nL+f+9G4uAi6P/oEYM3z7eJk7JK+deZf4fGXsj1JlWxumVg6oryqWLSiDi7l7MdxtEZgMlkp96DOt\nymAQ7C4kXsjE4psTsW/gGR1r1DqQVh3aYBion3f7JeDYsy4AgDOpXUlF3AyolyEDN9O2NzRU4s79\nL5Xut3+fz/D8xXGUltLn+dZ3JN2Xazc/U0v/I3yW4lI6NQCwm9M43Mz+iTi+mL6LMBoEFNdlIMxl\nCnEutzqBMDbsTOndSgQYM01xJfNrjPRZhvSKWKK9pqmUMBYAIL74MuKLLxP9AkBUzq8Y0mEhYSwA\nwO3cAwBAkjOgWTqMExa5yr38QqKxAAC8Zi6ebrki8bx9Dw/is7ixIMqFgXuJCXLHBX2kGgyxK0X8\n38U8hF58p1zcWENpLcVYEOWfwd9g1HV+Os2QpYMRv5uae9/cnUN8rs2rIBkLojxefxHd149USk95\naKqSnimytdF13CeIPrJcLX1dzuM/g4ruNtwo2I/6FvncyHRJqzIYBDw7nY5npw0TXXnJffavQvLH\nb3pg2sAcDWnTPpjeRX0ZagxoF8Fku1uXeWqbYLc1xIsLCXhSdE7pPsV3I+hIKosCACSXkSduPB7Z\npXKkzzJUNFAXSsR3LyTJGdAMbI7QtaWhrBZPN0s2BmQhunoft1X2b1z87usIWToYAD9g+NKI72jl\npLnnpB2Tr1AhfwxhrMPVSb9IkQQpdqHDhBBag2HQkbnE5xszfpfYV/71ZLkMhouvfYuR/y4CwN/Z\nqEx5RSvXZYUwS1H8TulFxAzw0fedAmVplQaDAcUoyXwiW0gEdy9D6lZVOJPaFavfSEHigxqNjsM2\n56CxtkKjY+g74hN6SSvr2sbRoTNauE0q7VCwjS3A4XjhVbHiBSr19b5IgstrIa38S4LFNEYLtwlu\nlp0lxjAM9/6Y5AIlCXnlDKiP/r/NJD5fnSh9Eq0IORcTZcpk/RVPGAyi2YU0BV2MhraoK6yiZIsS\nh9skTJDQ75fpEt2SPMcGE58FLl66xtTSHl3Hr6a0i+4U2HqEIHDAPInnI2fupP2srt2GtkirMBg+\nujsZX/c5hWVPyBHn6gqANjKxQHODZid3uoWaeUFQ4flOho8O9GnbCFyQJrzriLdWu+HLRRm4d0n6\nxD43/grcQ4YpNI5f75lIvEq/SmZAedSxq9AleJbKblH9+nyqNn3UzcX0XejjPue/GAbJriCCifhI\nn2V4WCg5q9fljD14zetD1DSV4V7eIYlyXtbd4cfphZs5P0mUuZyxB4M830N6xQM0ttRKlRvh/T+8\nKL0pVc6A+jCxNde1CjpBVqyDukncG4Uem0bLFuQBgs1CBosJXovk5CelcfqTtafr+NVSJ/ZunQfD\ns9sYkox/n1mInLmTaBP8LdpmQDqtwmD4us8pAEBpehX2T/pHqmxZTjxsPUKkyojj1X0cUu9LzkzQ\nFhGNXRCPYzAYEerhr59fYcYSF6z61ltmHEPOs8sKGwzWzn6qqKdVTG1NUV9Wr3I/M6/NxJEhR9Sg\nkeYwNmofGUXu5h4kHdO5Eom3CY7F/waAfzNlb+OnlccgrZycGpNu3BvZ/MDMzMpHJBnxXYlLGf9H\nkjNgoC1QkSRf1rJ/XtuHUVcXAwBG/rsI/wz+hnReNG7i/of6VReg55Qv8PDkWtpznt3GoLmBvAiQ\ncvcw7L27a0O1NkurMBgEyDIWACDp1gHS9pI8OPiGtQqDwaVjP4WvEfftFYcu6Dn6Vp3C4xgQsvmo\nP4IjLDCza7z8sQw8zdRq0DbWntaY+MdElLwowfm3zwMAOk3phF6rehEyByIOAABYbBamnZ+GlsYW\nnH/rPGqK+Lt882Lm4UDEAcy8NhMFDwtwbQW/aM/4g+PBtmRjXsw8Uj/6Rv++8lcPlYSZmXoLNBow\nYKD90Fgp3+IMr1k4PxBkgRJFNG5Cn4g+shyuQYOIuV5tWR6e/UNOwmBkYq7wXNCAdFqVwdDe8eo5\nUeFrMmIVL+61dG6BwtcYEPLZDPrsFZqBATqXM10x+eRkykT+xckX6LWqF6W9x8IeODrsKAChkSDg\n9XOv48iQI7D1tyXazs45q/c7DEymel6p4T0WqaUfdcHheCHAbzSsLN1QVp6OpOSzqK1TPRWhNHz2\n7EL6x8toj3327AK3vh7N5eVgu7iQ22vr0FxZQWoXnAMAbl0dmGZmpHMGDGgSTVVGloSxlYncsten\nHcDg4/MAAP33z0TUW9T3a3Nto7pUUxv5iTeQn3gDAN+tSNy1qOpVOhKu7NORdm2TVmUwLHsyTWOF\n28ysnaWmH22tFKXckylz+IoHvAPIAVqGdKvqQ97UqrnPLsO9y3CF+o6csR3RR1coq5pGGLJjCLEr\nII3Yr2IxbM8w2AdRV9P/HPcnAKAspUzt+oljZmaP3hFLac/JEz8gKaDYxMRaofSmkmQ1nSJVGgP6\nroGRkSmpzc7WD70i/gcAeFWcgGfPD2tk7OI//gQYDIDHg/vK5Si/ws+EYztyBGmybzd+HFw/XIz8\nvftoDQRRDEaCgfaA66AAuWXrCquIz1a+wnfxiMsLic+XR/2gHsU0RE7cJXiECovsZT3+Gx26S68i\nbkBxWpXBIC/JUb8hoP+bCl3TZfRSxBxbpSGNVIdlbCpbSAnuZPhg99oSnPy9EkZGDPx42hVvj9Of\n4Kb2RI4SBgMY9OktdcWBiAOw9rSm7BjQISoz6/oszSsngbq6Ejx++jM4HG842gfByspdoevF3f4Y\nDKbEc/L2o2wf6sTVpQfJWCh69QylZalwc+kJa2t+vQRHh85gMFjg8VokdaM0Vffuw3vXdmQsWwm2\nmytyt/PdCzhDBsFmJP3/E/OQYDi/+7badTGgHsqe5cO2iysAgGVihJaGZh1r1DYJmBehch8sE/2d\nHvJdjXgoz3sJM2tHmFjaozhDWFsjP/EG3LsMQ+TMneDxuOA2NYDF5seW0QU4R87ciYqCJJhaOuDJ\n2S1K6WTMNMFQ1/eUulYa+pSiVX+fCBp4XB6cOtmi6EUZZh8dhkMz6HM4l2YrngOfwVS+Op826D5x\njcLXVBbK5xpz8vdKAEBzMw9vj8vDhr1OWPehfEFTBqicSe2qaxV0SmV2JX7r9RupraGyAWb2Zqgr\noY+PMbaQLwUh25ItW0gJysrTUVaejozM6wqnIL1+i/x/U3C9olmSRPsR1UG8f20R1HEKAKClpRE3\nb28g2vPy+QXTBDoOHvCFxnY7GCzqe7khNw/5X9H/iDq/+zbJPcmAfnHvgxNExqARlxeq5KqT9dcz\ndJjAL5DZ/8BMRM2T7qrY/4AwpWvh7TSlx5WXwqg0ouIym2OGxgrtxQYaWSj2nrw6+VcMPcU3tAPe\njEDyb8LEAncX/qlW3dRBzLFVCB7+ATguAWisrUD0kRUQd819cPwzWDv7wydiKthm1sh6ch75CdQ6\nEtFHlsMnYiocfcNRnvdCKX0ULdTWWmHKFtEfdvf4E0Uv+C4KkoyFtgrLWH6fRAGJV79XSL5LT/5q\nYmiY4mMZEHLvYgUm+j0l/mia4OH687IatmcY5tyeg+BZwaT2o68dRe9PemPaeWFq5AvzL2D2rdnw\nG+WHf96TndAAAK4uvYq5d+ai14pesoUNKI2owSJqLIgiaiR0ClQ8vkoeio8dh9Nbb5JcifK/2guf\nPbvAdncDAHCGDqZcxzTVzI6sAfUy+oby76743TeIz1Y+0pMEuA4OIMk8/Oy80uPKy8PPhWO8dvZd\nmDpZqtSfqHElLU1r+JfjFO67oUSYVj7g7UhSdqTyBP2LaeRxWxB/8SvEHFv1344AfRxfZWEKnp7b\nhtjjn9IaCwLSY04g5tgqJN3ar7Au7cVYAFqZwaAI3GbFg3QCB7ylAU30mw1LhNUdvz/pijsZPpjU\nO1uHGrV+vlycQTpWxGhIvXdU4fEsHbwUvkZTXPn4Cg72O4j4g9QCP9dWXMPxMcIYpKKnRTg04BBS\n/0lF4RNh/JA0V6bs29n4ve/vuL+DvmiXAfUS+0hyjQVR3FzDNTJ+1f1oWHQNpbSnf7wMdhPGwXv3\nDkCkSm72F5vgvWs7rPv3Q/nFyxrRyYBq3Jwlko6XwZ/8Mo3pd/j93wyXOjkWTQM6+uaH4AQ6UmSs\n/R1IlY+vjJNcw0PdiFaNHvLnW/CbHSZRtu+PbyhUr2HU9Q8obeZuHDj28lZIRwHRS88QnyN3a2YB\noK3RnowFoJW5JAmCnk2sjNFQ1SRVNvb4pwqn1LL1CJYtpAOUSQ0mnoNYEpf/qiY+GwKd1YN4kPOK\nvV7Y8WGmlCuEFKc/hF/vGQqPaSg+Y0ATVFXl6nR8y549wK2nTxFZ8C01ELO5tAwZy1bSyhsCnvWD\nmpxyXBi4lzQ5HvmvclnBeFwebs45hIEHZwMA+v40Xaq8trMVxa48CyMLNoZfWAAA6Di/NzrO7610\nf6L3jcFkSDQwxO+vPJQ8FC4UmrlYAwD+nfizkppKx8pVtd0WfaAThz7N/bOyK8itVc61Sd9pVQaD\nNgh/Yxti//hE12oQGJtKL+8uCUkFTegQL9RmMBzUS68RHNlCIohnfDBgQFcoGs+hTlw/WgxTX1/D\nRL+NcmHgXoy6/gFt/n9FqMkqk2uCrG1jQUBzTSMuDNorn/uVHBmyZX1XVb5n4r4oBC3uTxw3lmkm\n7sIx2EEj/WoTb0tqEThtBij7H98IAEiZtgZmwT6oe675eVurMhgeHkzCR3cnI+VGLoJGe8lMsRp9\nZLnCq/NMlhGcA/uiMOmOKqqqjR6T1yl8TVN9tWyh/7iT4UMxEI5e88CMITkKj2sAGDiBXzdAEPhc\nXtyMKYFxCvWRG39FKYPBsMtgoC2R/7Uhh3pbR7yysCqoMlGWdq2y50jw1GuwyNOXMuOlH39CGAwJ\nX91S+Hp5MXcw01jfukKbxoL3DyuRMm0NYTRow1gAWpnBcGPXE9zY9QQAcOHTaI2N4x02SS8MBgcf\nyf6O0nh0ar1K41ZX6iaNo7bYFD8Gn4doJujt5l9lCBtijV1L5HNBkgSP26JU5q6I6V/qdXpgA60L\nbdR6MGDAgH7gNVkYL5RxSvMJOwwoB7dKzOX8v3o1mqbNBj0LSPhXuVUq/766ywsvwK+3dH9MdTC5\nTzYOX/GAnQMLzm5GOH3PE/Mn5oFlxADLSP05/ruNdYe1c9vOYKKqsQBA6Uk/g8lC17EGg8GAAQMG\nDChG8JKBSl3XXN++62kkVcoukKtOspZ/A6+vPgYAWIR1gv8fX2hl3Fa1w7DsyTTs7XsKjTXN6L8k\nFFFfyXb1qCpKR1NdJYzNrBUay96rOzgugXh4UnGXIFVhm3OUqrsA4L98xPJTmNeMWcOE7keCDEkt\nzeq3VjfFjyEdC1b5RVf8rZ1NsfLqUNK56pIGWNqbIPd5Bb574zY2xY/Buu7/YMPjUQCAH2bdQfbT\ncgDAp1HDYG7Lz0G9MfISGmr4L7Il5wbC0Ud7gVZ/JobCmC00uJRJrxp3fidCxyjuYmRq7YgeU9bj\n0cn1Cl+rCxz9IvAqNUa2oAGtExw0Dc8Tpbt+GjDQWuCE9YLThGm053J+2ou6LNmuHX6fbgbTjOxS\nk/nVVjQWv5JwBRCwcTcAIHnNUtKxaBvDmA3/tdso7VJ1WbMNTDa55kL6jg1orqyQea043pOF9YOS\nDyj2Pr69LRqD1vdV6JppJybi+NQzsgVbAa/qM7Q+ZuaSPcTnlGnaqdXT6nYYGv+bAMpjLAh4dFo5\n68vIxAJmNi5KXasKyhoLTfVVkCtqSkcIjIDtQ68q5BK0beC/+DzkPL574zbRtv7RKHwech6fh5zH\ngsP8FxWTyUDU/jSifU00Pw7A1t0Mjj6WRLum2XrcH68HxSE+uhpr56QqHMMgoK5C+fzXxiaWSmXX\n0hYMBhMR079E5MydMDZp/Rkz6DAxUWyRQpTGxio1aqI8zk7tuwihgTYCg4GAjbslGgsA4DH/Q1iF\n9pB43jK4KwI27qYYCwDgtWQ1OiyWb3FH1FgAAPe3FgIAyVgAAP8Nkt/fFh0783VhUwu0+axYRxlD\nHjovGUB8Tt6vmMt38vlUhcfjeCn/ftQ3TFna/w3z/mEl/I9vJP5og1a1w3B26R28/dcoJF/NRcTb\nnXD7m2dgMBi4/1OCzGszH/4Fr54TFB4zdDT/JaCNYNJOQxaA4xKg9PWPTtEXWGqLfDXuBqXtk1uv\nwdyGjRFLO5HaPzg5APvf1VzMizgW1vzYg5BIS3w+MxUnk0KVNhqUCdwXJXLmTlQWJCPxGjUFpbYx\nNrVSKoi/PfI0/iDCe/BTTYZ0no74hGNaHf/azc+IDElDBm6WGsvQO3I57kXrr3FqQH9Y8GA2fgg7\npNUxWRaW8P1EZNGQy0XOge9Rl54CAOBE9IHTuKkAgKq4R7R9BHyxi+8nDgA8HpLXrwC4/Fg/tznz\nYREYBBMXNwRs3C11ZyDgi114deE0yu9FEZN6c98AeC/7HDUvniPv8C/w+3wrmCYmYDDp13NN3Dzg\nNvtd/lepr0fq5k+Jc5bBoXCdPo8/lhRdQlcNRXliIVgmRgic3xssE+FUUJvZpOw72qHkZanWxtMU\nXWxfw7V8zaSgpcP7h5XIWLBda+MJaFUGQ/K1XCRf4+cFj/pasQlYwcsoePUcD0A5v/zImTsRfXSF\nxgJLuk9cA7a5Yuk3RVGmQqE+Im98Q2NdC6WttrwJW/pRK4DXVTXB3Ia6EqMplox+CQD47ct8nEnt\nivcGJqrUX8K/+9D5tcVKX2/tEoDImTvx9OxW1FeXqKSLophZOyNk5BIwjdR//42NzMDheMPSwhkc\njhcsLYS7gSYm1ujZfQFqagpRUZmF6ppC2poCDAYTFhbOsPnveg6HXASvb69VqKjMRHVNISoqMlFT\nU4jGphpKP6JE3d2C/n34P+JDBm5GYVEcSstSYGHhBFuOD6ys3GUGE4vq6uTYBUMGdkFSyjkADNjb\nBsDOPhDXb35Oe62Zqa3E+zKw31pUVGShulb4fWrr6J+J6NivEBm+hPgeAFBbVwIGgwEzUzup+hsw\noC+IGgt0E+iKmLuoiLkrvZP/jIXqxGfIP0L+rc07+BMYLBb81+8AABhZ26C5slxiP+X3ogAAqVs+\ng9+n/P9XxjZ2yNi1id++aTVhTNj0GYDyu+RsRR0W/vcduFySsQAA1c/jkPnVNngt4aeGt+raE1VP\nH1LU8BjdGR6jO1PaW7QcizD50Fj8FP67VsfUBGymdrM+ZSzYDv/jG8FtaARa+IZr2jzNp8BuVQaD\nqkQfWYGI6V8qlX0GACJn8F8IKXcOoSTziRo0YiByxnbhyoWSvLj+Iyryk9Sgj+ZJ+LcAc78LxzeT\no4i2S7sSETTEGYnXCvH+EcX8IEXZM/YGKR5i8MIAXP8uGTuHXcOm+DF4djEP9l4WKn8HWfD+SzJ1\n+scinP6xSOX+qorS0VBTChML1SZpXcevJj7nxF1CbjzVuFIFO89QeIdNVDheSFn696WfMAvgWHcA\nx7oDUYU46u5mNDWRs0uEdX8fVlbuEvswMbGGk2MXODl2IdpkTfabmmrwqjgBjg78H2Rnp1A4O1Gr\nFctCdJUfAAL9x8l1Xe9IybuhLJYJ7OwCYGcXAHj0I8aho6a2iKKDuZk9RU78nhowIMrovUNQkVmJ\nplrhZLT/6ggknkpB0JQARG3h7/52HO+HpL/TEDorCE8PyvYakAfBhBwAUjcqV19J1DVI3FgQwGsR\nLmD5rFgrcWW/5IrQJZZbJ7vGgU1kf5LB4PeZ8Pskr6P/f95YXMTf/WAy4TJ1Fq3BIE5dYRWuTzsg\nU04aP4X/jvmxcxW+bn7s3FZpNFzM3Uuq9NzXaQbuFB3Vyth+B9dqLW5BlFZlMAgqPS97Mg3PTqfj\n8oZYhfuIObZKZd9u/76z4d93NuqrivHsn93gNjcqdL1ntzFw6zxYJR1EaS3GAgAc+fghZuzugZXX\nhmL7kKsAgKj9aVj4Rz+M+zwEn4ecpwRHK8KaLufx0ZkBYFsY4dRnwkDj9T35QdK/L1L8mVGUM6ld\nUVnWjD+/KcS5A8U4k9oVyXG12DAvDdUV1J0ReXjy1xZEzNgOBkM9YUceoSOEtR54PBSl3kdewnU0\nVEvfHraw8wTHxR+OfpG680aKAAAgAElEQVQwtdJt8R11pPyMffSt3LIRTlMQU3RSLtlnzw8DAFyc\nuyPAfwyMWGyUlWcgLz8WRa+eyT3mtZufgc22QudOU2Br64+mxmrk5sUgI+uG1GvUCb8/BjoGjIOT\nYwgAoLqmEIkvT6K+XsJKqgED/+HZ2w0XPrwGAOj+Nv/56TwlEFFbYxC1JRqTD47GqTkX0G9lOF6e\nTVWbsQCAFG/AbVTsd1qAJNcgcXJ+2QePd6TvBFe/iFdobCOODemYacr/Pi010mstvbpwBo5jJ0s8\nr6sidpKYHzsXh0f9idpizRSK0xRF9elwMuUXvrUy1t7vYeqcL2AZ2RnV0er7vyIPrcpgEPD9a2dR\nU1yv9PWq+oULMLVyQPi0LSr3oyxcbjNij+lPVWp5ObqU6icqGtAsGphMF6Qs3iZ6zOMBX0+kFpxp\nbuBiXfd/JPapbuaGPScdr5iUjKNxXTAjVP7JojgxR1fCI3QE3EOGqaoeGQYDTv694eTfW739tjHk\nNRZEKSh8jILCxyqN29hYhSdxBxS+zjIgGG5jZ4LHbUHlswcovHaWVs7UxQMek94Ey8IK6ft3o7GE\nbleMh+z652jq3BFGFlYojyuUaiwYW9nAe97HaCgpRNaR7xTWXRyHvsNh32swarPTkH38J6myHWa8\nD3NPP6R+vwVNlWW0MgwmC15zP4Qxxw55Zw+hJl36oguTbQKft/irxnlnD6MuP0u8Q/i+swxsO0eU\nxt5C0fW/5f9yBgAAv/Q7hnfvzkDBk1f4e9G/au278pHqWdhKrl2Uer4uQxj46zJ1FgpOHKbINBYV\n0l7bUke/S8dg0XtDsCwslQps1jQtjS1gsZXz4Jj1z+sAgBdnkhG1WfU0pUwjJrrMDILfSF/YB/AL\nqqp7J+NRyd94zW0BjBh8l1vBjoM2irhp21gAWpnBUJ5dTewyqIq6jAadweO1SmOhPfD4Fj/DTd/R\nNigvEW7D11Ypt7sgSk7cJbiHvAZlY3EMtA+CVpMnE3aRg2AXOQiJW8muEv6L1sCYY0sc+73Hf6eI\ny4n3Z99rCOx7DaGVS9qzBv4frAUAGFlaI2j1boqcst/F0i8IQat34+XuT8FtqCfJlD26A9seQpdG\n/8Vr0FxdieS960n9mbp4EJN/AOgw/X0Akr9zVdIzWAUKXdK8531MkpX33rRX8h4Wos+yMNSWCFeP\nH/3yDPaBtug8JQCn5lwg2g+PPY26UuUXAyVR9Ux1F+K6dPkzAZn7d1Sob15Tk6Lq6CW/9j2slFuS\nKJ0mBqDTRGHyl6S/U1HyshTVBdVgmRjBzNYUFk7msO9kB1tvDswdzVVVWyX+zfsBPpY90JEjfPcI\nDIeUymhk1jxFE7dBV+qplVZlMPwy7oJsIQWI+3s7QseuVGuf2iL6qGL1Fgxojw1vpeFoXBcc2pmP\nOxfKMat7PM6kdsXUTsplShIn+sgKdB33ic5dgrTNSM8leFR8Dp1tByOp/A7yal8Q7a/q0mHCsoA1\n2wkXs78CAAxxmw82yxyVjUWkdl/rMPhYhaGoLg3uFkFEOwCYG9mgv+tc1DSV4XbBQQCAEdME9iae\n6O4whiQrGLuZ2wAGg4WX5beRVa0/1VHFJ6wm9s6kY9ue/WDMsUXi1mUg0jEzGAj6ZBcsfAJJq+6v\noi6i+PZlkasZCFq9C3Zh/VH6IIrUb+DHGykT6oCPNiD5a8UzZAkm46L9uY2dgY5Lt1C+n22Pvqh4\n9gB5fx8h9DCytAaTbQJuo/AH2+etpcg5uR9VSYLdPv53Mba2QRNNsKpVYBfyWGIxZynffIGmKtHr\nJN+b9si5BcJYqScH+Duvsd/x/59EbRWu/M88NwmXlt2Aub0Zph4do9ZsSi210l145EH0GZKFwHWo\nPVKWXgFbH+UTuIgTONYPGOuntv7Uib91JPytIqSft45UaQxt7FbIS6syGNRNXWVRq9tpKMl8jJQ7\n1K3O9sS4f+fj3GvS3RJ0jajrUU1li1KF26Tx9Nw2WNh5IGTkx2rtV98pqktDUV0ahnt8gLzaFwix\nG4qMqsd4Uc53Q3M1F67ssVnmxAR/pOcSoj2Q05doL67PRG/n6bhXyE9bam/qiUvZX5PGbOY2oLAu\nhaJLqP0IigGhXzAgWpeloYTsDuEyXODjLJL5jcdD9olf0GH6+6RJMtlYEF7jNHQ8ZVJcX0jORpXy\n3Wb4L1Q+riL7jx9Jx3l/HwWnSzjtzoXAWACApD1rELR6Nzou20rIie4aiH6XupwM+C9eS7srQGkT\ny5RHNhb4/QH098aAZKxcLVCaUg4rN0u1lxMy8/JBQ16ObEEpmLp5yt1HvRwF4FSh8PQxtbhZaYIT\n0/7C/Ji5bX4TXDTgWVv4H9+IlGlraOsuaCMIutUVbtME2qixoA6qijPavbEAQKKx0PPzoVrWRDJn\nUrviTGpXGLMZCI7QTGammtKcVvPsqgsO2xm9nafjeh7/GXC36Axvq+4Y6bkEIz2XoKv9SLn6EZXn\nsIUr76/q5P+hdzUPVEx5LRO0ehdcR0kuVAUAFc+pGVSqk5/TSNJDl3GuNJYcQ9RUrloq3+q0Fypd\nLw+VSerZ/RNF2Wx87ZUfwg6Bx+WhMqcKP4Srt1aD/WD53gvS4ETKn8GvPPq2bCEVsOkzUKP9q8pP\nEa0v61FrQNQoSJm2hvRHG7TrHQZRoo8sB8clAJ2GLNC1KrS0p4nhxNuLwGvhoqW+GUYWbJzpJ8xk\nEzCrO4IX9ia1AUD4huFwH+oPpjH/Rzp2nfiKqPY49CgEE/2e4kxqVzQ18rDxkB8mK1m4TR6ijyyH\niaU9uomkTW1NcFvk99+taCwkdgMAIK7kEgI4vXEr/zeFxlTHzkBC2Q2wmWZo5OpfZo/ErUvBMrdE\n4JIvYNOtF9EmTn2BfCumon76TeWlaCiWXIW8uapCQW21j3jcgSr4L/ocxhx+ymNuYwNqsxSvemtA\ns9BVZ1YUExc3qed9lgknbdXPNfe+BwATZ1eN9q8OlE2zakA2ukipChgMBhIVBcmIPrIcYa9vBsvY\nRNfqAAAyH/2Fghftb1v7r4Hf07YnH36M4IXUbD6x6y7Dfai/Tg0FAY9uVhKfWUYMnDtQrPExG6pL\nEH1kuUp1RrRNTUk24i8pNnEXuBbFFJ1EaUMO8muTEGo/AoPd5qOuuQI2Jq4yjYH40n8x0nMJSuqz\nYG/aQaa8pbE9kTLP0cwHxXUZ4IGH7OpnGOm5BE3cBrTwGmHKstIrF6WW2mq+4WBqhsD/baZ14TFz\n85JwtRBzT18AwMudn4DbJExNKWnSzbZzRE2Gfqd6VldAsrmnL4w5dqjNTkPmoW+IdnUaJAaUJ+/g\nT3CbMx8A4PfZFkqhM3lI3/EFfFaslSlnZGMrU0ZVsr7ZgQ4f8OMXXafPQ/6xAxofUxXastGgT7EF\n2sJgMNDw4E++v23nYYth5eijEx2eX/oa1SVZsgXbIJnnEjDx9iIU3svEvRWaT4Gqbnb/LwtzVrii\npYUHB1dj7N+Sp7WxY46tAgDNpF9VA/kJ15H1RPF/0winKYgu+hNlDfx7OdJzCTE5v5RN/+IWnbyL\nfs6peY6cGnq3m/oWanBkdVMJqptKkF/7UuoY+kpLfR0Sty6lncRaB3VD7hmy+4D7hNmk4w4zFwIA\nyViQhsuIKSh7dIc4tgvrr6jKZH3Gz0buWaqLiry7I0QlRQCNZSVg21KLzymL4N6IGgsG9IeapEQ0\nV5bDyNoGTFNTBGzcjZR1y8Hjcimyfp9vReom6i6taNXmgI27kfPzXtRlkl0XRVOcSirapg4aCvNR\nl5kOMy8fWAaHwmfFOqTv2ECRM/X0gud7S5C2dQ1aaqVXptc0P4X/jhlnp8DSVfNFU9sLglgGbWMw\nGKSQcGUfAKDr2FUwtXbUypgvb/yC8rxErYylrzz+8gYef3kDEZtHYuLtRRT3o9bAwR35OLgjX2fj\n58RdQk7cJdh5hiKgv25XeFqaGggjXBU8LIIJg0FTuIS5YeC2ofjjtYNEG9OICaduLih4oPzYs++/\ng0O9ftH6tQKMbahVwrOOfc9PKcpgCAN5GQxYd+6BvHPC4OGKuFjCrUlAh+nyu246D5uE5poq5RQH\nD9bBPUgGg9uYGQCA9P1UA8hr9gfE5D3w400AgJe7hc9e6vf8nRbvuUuQ8TvZ2DN1dqcEbMtCcG+M\nLKyI76jIvTGgedJ3fEGa0ItWbpaX5DVLiT483pUc7Fp09k/FFVSQnJ/3EroYWXP0sh6DOEfHn0S3\neSEIX9xD16oYUAGDwSAHT//+kvjs1XMiXDr2U1vfDTWlePKX7oq/KYO24iliPruIibcXyS1fnvRK\n4TE08V0GTbJFt75WyEsXpuE7vo++YI+mKc2OI31H7/DJcA7oo7HxuC1NiL/4FeoqJPu4K4N40TRN\nrezTGQXcZq5KxoIuoNtNePEl+VmvSU/Ci+0rEPTJLlJ7ZeITVMQ/II7z/zkOm269SH1WxEmumJ78\n9TrK+MqkVAWAxK3L4DJ8MqU/SS5FTLYJSTb1x22UdJiC3RbxPpXZJcj/5zg4oREI+Ei4ylsRF4vM\nw9/Ca5b87y4DmiV5zVIwWCz4r98hUUbWSnzymqVwmTYHVl26SzyvLeT5PgV/HtL57oIoTw7E48mB\neJhYszH36nStj598IU3rY2oC3wOfkf4GAKa5qVZ2HBg8nprzl6kBBoOhf0pJwMm/F7x6TADTyFim\nLI/HRW7cZeQlXAOPR90S1RQDRn2JW/+s0kp/A0YJjSs6GZ+Oo+DpO0iqjKiRkH3xJR5uukppFyC+\n+yCQ0eWuxMmXoZjSUbNBb+rC1MoB3mGTwHFVrNBQQ00pSrPiUJL5FDWl2RrSTn76bhgEnxF+SDqV\niJqCGjz//SkYTAZm3X0bj76JQY8PIohVetcId3SeE4qC2Dx0XxRGWb1/4985pB0GOqZemIm/Z59G\nfSk/4FnWLsDs++8AAB7vi0X3xeGE7Oz77yA/Ng+1BdXwGxdIak84/Awe/TrA2otD6TvgxBeUMfK3\nH0V1jG53J4NW70bm4W9Rm0VNQ6vpcQH1xSYYMGBA8/T/tBc6TdJMtrnMm9m4vPy6RvrWNX5H1yN1\nxnqFruHxeConujXsMKhIUcp9FKXc17UasHMKQmmR7l2ZBAaAqOEgSvrLf5D+8h+J5wHJk315jAB9\ncF/6fq1q+b4l4bN1K9JXqzcTUn1VMV5cV66mhbG9PVzeXwB7BgMVt26hIooanC9JZ49ly8B2E2Yd\nSVu2TCkdiHFG+FEm1bPuvk20JRx6hqFfj8TVjy4iPyYX+TF815PgOV0ofcnDidFHSEZCcXyRzGsE\nskw2CxEr+yJm+x2Szp6DhAHIcT8/QtzPj/FobwxhbBhQD0MGb8G164oHv6p6rSbGGzJ4C168PI28\nPMk7PvJgY+MNG443SkqTUVWlmFtWa8N9znvIPfgjpT1ww25k/bAb9SrWa1AEE2c3MFhM+cdkMgGa\n+IvWStSW+4ja8t/8iQH0W9ULHcf7g2ksf8b/wrhXiDv0HBnX20/MZ/F+9RYxlheDwdBGCOk5T627\nCNLQ1jitlcVbPLF4iyepTVrhNs6AAai4dUvieQAw4nDAYLPVop868N3Fd2PJ2rQJzWVlsO5LzVEu\nTeec/64X9KMqTdX0AbmdpgcTn3Pv8ndChv8wFk1VDXjyw0MwGMovutSX1wMAJvz5Ov56XX7f5Rd/\nPMfUCzMRs/0OZt9/B7m3sxCz8x5Jl4TD8UrrZUA62pzwaxp1fZfy8gyUl2fAyspdLf3pMxb+nWjb\nk9Zpf3eqoVB+V0cGiwXweOquaac/8IDb2+7j9jbdL8DqOxWXdVO0z2AwtHIsrd0Q3ONNALLdgWwd\nAhES9hZKihKQ8IjsciHqZtS992JYWLsh6dkJFOU9JslI61+dmJrZonvfj9BYX4mHt/+Pcl6gr7Wt\nF4J7vIn62hLEP9iPpqZajeolD4pWdbafMEGmwdBcUaHyKry6qc/IQHNZGQCg8s4dynl90PnFMWo2\nJKeuzsTKvrGl8kbYiZGHYd/ZEVae1gpd13lGCFLPCdOOXl9+haJL0PRgPNv/RGnd2jNmprbo3XsF\nHjz8FmE9F6GmtgjR0XsA8FfkAepEOzJiCSws+AX8amuLcT/6v6BSIxMM6M+Pv0hNuyTX+JERS2Bu\n7gAGg0UaS3y3QHA8ZPAWNDfXw8jIlND5xs214HKbAQCDB22k9CX6XWIf7CPtCkga39jYDP37kf2c\npRkcjo4hCOo0CbeihFVltb3DIovADbtRHnMbNhH90FRehqr4xyi+8jc85i6AmU8A6jJSYe4bQBgD\n1t3DSX9XPubvzBhZc+C7bB2SN5AzKAVu2I2yO9dh23cw0Ufght2oTU9GfU4W7PoPlWloBG7YjebK\nctSmJcOycyhSNq8mxjTr4IPqhDjKmDwuF02lxah4cBdl924R+jIYTPB4XELvwA27SXqJfuY1NaEu\nO4P0/QM37EZ9dgaM7R3Ba2lB2s71St55A+0Rg8HQyqmuzEP0ja0y4xQGjPoSL+OOI+rianQJf5dW\n3tzSGWH9l+LWP5+AwWCg15DPSQaDLHcjdTFg1JdoaWnEnctriOOq8iw8vrePJNfntXXITLmKe1e/\ngKtnJJqb60nnjyWHUfqeHvCA0qYMpr6+cH6Tb6gV7t+P+owMWjmbwYPBGTgQLdXVKDl7FnVJ5Pz0\n6igoJMB96VIYOzig+ORJVD+kVvAFAJuhQ2E7fDgaCwuRu1u17BpNrxQPMlcU6z59YBYYiMIDB8Bg\nsdBh3TpkrlsnzOojhUO9fsH062/CyIz/mjvSfz+4TVzE/fyYFFMgQNT1R9TdSNwlSNSNaNSv4xH1\nuXx+spPOvAELF0s01zXj2OD/Cs3xQKtLyLxu6Lqgp1z96hO6iiEQHdfW1g9RtzfB1aUHMSEXIH4s\nwMLCmTSxFzCg/zrSBNnPd4RMXUT7cnOlvoPouBX1BYYM3gIbjjeePPkV/ft9hpu3+IHU12/w34Ms\nljFpwi7PdxEdv3+/NUS7paULevaQns3p1at4dAmZSRwHB09HSYn+1dcoOn8KNhH9kPH1FgSs2Y7i\nK3/D3K8jMUm27TWAkK18HAuXiTOICbeA5kpqsUHXN94k+nh1+RxpQl4adRW1qUkouXlFLh3TdvFj\njgK7hZPGrIp/AgaT7H5TeutfFF8lu5wI9GUwmbQpYelI3kSdDxRdOEVUoQ7coP/ZlVoj/taR8DQP\nhglLPWlk9aneQ6syGEzMbRE2gry6kZt8Exnxf1Nk+07aIVNOVKaqNANxN/dRzt85vYIkV5gRjZTH\nJyjj9Ry+CqYWDhL70jXpSRdRmMufRD6L/Zl20s83FvgvGR6Ph3tXqYGVmiZyMP/fV2AsAMCDqN0I\n60+diJSVpCA3g//yy8+O1o6CELrRcOvrAR4Pbh/y0+yJr6aLutuwrKzgumABSUb0vOhnaf3Qrdiz\nnZ3hsXIlwOOBW18Pp5kzYTt8OLK3biX10ZCZCRMvLzS9egUTd3f47tql8A6AqC5W4eGwCg9XSmd5\nxsn/7jvYjR4NppkZ7MeNA2fQIP65nTspfUoKUiYm5iLw4wMeUdolBS3LSmma+a/s7BsS++5N3350\n4AGZfRqgp7qmEE1NtSivyNC1KqiqViy1cnlFBng8HlgsauHQFgUqoksa38jIFM3N9Qju/Aaysm7L\nvD4m9muYmFijoaESzk6hOt1dYLs5wLKP0MWw9MRNsgCPx08RLEZ1En3NFVlYdpIc31SX/l9Qf0uz\nUn1Lo+Kx5n7LnEZPhtPoyRrrv71iy3ZDpOMUXauhcVqVwRA24lPc/3sNWpr4K8lGbHO4+ZFTnHIc\nfBHSfyEK0u8h9cmp/1oZgJjnX99JOxB38xtUlWbyjyduR+8JW3Hvr9UUubtnVhFZjfpO2gHHDj1J\ncn0n7UBjfSXunF5B9CUwNvSF7FTZq6BZqde0oIl0TEw5AOTbxUh8fFjT6tAiPlllsFjw2b6d1CaY\nMEubLAvOyZq4i8rR4bFyJfL27iXtcvju2gX7ceNQcu4c0caysaEYLK4LFyL/u+8kji1Nl6rYWLw6\ndkwpneXB9f33kbZ8OXx37QJn0CC19KkuQt/tDr+xgTg98Q9dq2JADMG7Wt8yAPJ4LXLIaE7nqNub\n0bPHAkTHfIXoGPnSEldXFxC7GroOhvb6+iPSMcVgkIDz+GnIOSD/O05A4V+6+b/tPvs9ZHy9lfYc\nw5gNXkM97Tl5qE1LQs5v3yt9vQEqI90l1+Voa8gfiq4nCIwFAGhurEVW4mXS+ZD+/MqbQmMBEDcW\nug/lr1YLjAUAuHNmJZhMqv10/9znlBSodHKx/wj9PO+cWQkAcOrQulwKmhr1I2dzfV0ZSgoTKH/0\nFV4L/USg4NdftaYDnUuUYEVeQNbGjRQZMz8/DWmkOrUvqZWV9YW4nx/j9MQ/UFNArQxtoG0heN8P\n6L9WpX6Sks8jwH8MAGDQQPl3bz3c+UXzhgzegqwsaiYyeekV+TGKXim+2t7S0oQuXWYj9oF+7ZpL\no/LpAwSu2wmPue/D3CeAct5nyadwnSqsaG7i5AoAsArpDmMbW34fT2IRuGE3HEeM57sjrVc+Hstv\n5RdwmTgd3AZhTRATJ1dYdekOq5DuMHF2JdrZ9o4IWLsDnm9/QHEb8v90CxyGjiaOuQ318P90K5wn\nvIGm0mKZepj7BiLg823weHOhRlySLqYFIXyQpcp9XEwLUpNGmqW73WjZQiqgbyHurWqHAeCv5uen\n3UHa0zMSZRLuSZ+omVu7En3JoqWZXPSnsa4CbDMOcdx10EcS+/LrNgVFWfS+5AYkY2pmi5gb23St\nhkSse/eGw9SpMuVqnyu3Fa4OGnJyYOLhQW6kW71UIUuQpmmpUrY6sIH2jGAlXPC3uBsNnVuNaJuk\nz7ei5Jvki14juiqfmyvM/nLj5lqKPN24knSRt010fCMjM6Sn/0sc0wUw0+0i3Ly1jjZWQpuY+LrR\ntgtiCsT/Ljh1BAWnjki9RpSGonzadiKG4dJZ2uvljSdI3f7fv/cZ4Y5sQ1E+GoqoLmvSgqjFz6Vs\noXcRk9SHpjNBNdbzEHtD+4soF9OCMNJX+2nlnc3oF9zqWipRWJeKJi5//hhg3Ys4l1+XDAAwYZrD\nzoQ+K5msuAUje2s0l1Qqo7JKtCqD4c7pFegYPhuuvn3h6tsXhZkxSHlETWdYWZKuNZ0sbCSnoWOy\nZBdzUydmFo6oq9F8IKomuX35c/Qbvgkd/IciK+Uq0e7k1p0UgK1LHKZORfHJk6i8e5do0wc3GVGM\nOBzZQgYMGGg3RN3epNR1vXuvQF6+anUeVMVz87s6Hd+AfIzv/ELXKmiNPk5vUNriy68hp4a6UChq\nMDwtvUg5b2lkh37Os4jjQS5v4UbBfolje3+3Ao3ZRWAYsZC5hJ8Bzv8P/oJGyhuq7YRKo1UZDADw\nMvYQXsYegkfHofDqPBL2riGIPr+OJGNp446KV6ky+1JHjEFtZQEsOG46j1d4dOdrhA9YThyrO+2p\ni2cEAkOEQT10KVbF4w4Ex7cvfUakCJQkI+iD29KEB1G7ENZ/GbwDhpNk9cVgAEAyFsCk9+xzmDIF\nxSdPakkjMiwrK52Ma8CAAf1kQP+1KCh8Ah6PC1eXHsQ7WRIRER+huakOZqa2uPfitJa0pIdh3Oqm\nKgbaONbGTqTjRm4drbEgD9XNpbiYu5eIhzBlWaKX4+u4/0pyfZ+8Lb+DW98I28kDUXbqJmEouK6c\nhfztmonvbLX/C3NeXoWDeygsONStypB+70udwNfXFBMZjVTlyfU96Dtxu2xBDVNdmSvRSKBrF2+T\nZWAUZMegIFt6sRB5jBR5ZGqri2TK6VPxON8dVHe06kePYN2nD0rOngWvSfHsJgrrIBI4zTThZ1jR\ndQ0EAwYM6A+i7keJidRMf+LExHytSXXaDbooCKcqF9OCcO2vCgyZQL9TLe7+IxpzMH9YKrJT6Qtp\nCuQeRtWgZ39y2lHRPnlc0MYxiMqInxc91oV70rX8n1XuQ9RosGG7SJRrqapFcwk/FbDtpAGoOH8P\n3Ab+PTfvRo3ZURetymAwYpujuVFYmIvOWEh9chJ+3abAza8/8lLpA8QeXv4SfSftQPehy/D4qtCV\nJHLMBspuhUz+8wsXz4rkGzoBaXF/KdaXgVaDqAtS+urV8NlKzmpRdPgwjDgc+Gwjx2JImsRLSkMq\n7upEJ5e2bBl8d+0incv6QvspcQXIo7MkmYqoKJSckRyfZMCAAQMGNM+QCRyM9E3E6q/cMXCcNRaP\nS0fq83pcTAvCqj3u+PJjYbyLYIIuLVhZcE580t/cxMPYjmRXJgYTSHhUh6VTM0iyfUdY4c6lKtp+\ndGEkCKhtptbxUJb7r06glyM/RnKk+4e08QyZH+yG/3F+EpP8nUfhe3ANqm49QeE3J1F2Wr7sYcrA\n0LfUcwDAYDBolRIPLM5MuIicl1fpRCmydDsOfSZ+CQZD6E7yMvYwinOE1VXpUqOGj/wcbDMOpT0w\nbAYcPXsQxxWvUhB/+wda3QxoB00WbjNgQBYW4Z1g1a8LTAM8YWRvDW5tPZryS1B9PwFVd+PRXKz8\nj0zACapBmL/9KKpj6H80jeys4PjuWJh16gCmmQmaS6tQdespys7eAbeugfYadcNgMWE/YyjMuwfC\n2IEDsJjgVtWi5lESqqMTURsn241UWzCMjeC8aCLMgn3A4ligpbQStQkZKP7tEloqNZNNjsFigjMy\nEtZDeujl/ZH0PNcn5aDs77sqPc/S8Nj0Dsw6eVHak6dqzldbETjDwmE9qCvYHZzBa25BfXIOKq89\nQvV9/cnsxzA2gt2UAbAe0hNGtpZoLq6Q+jyLTu7ZpgycTehEMgoaG3gYH0SNV7iYFiRxh0GSwSBP\nm6C9poqLKV2p2fN0YTCIplN9UHIWxfWZcsnKU4hNUXl54PF4Kmc4aVU7DIrECcgje/eMdLcWuj5i\nL9IHjiU9OIqkB919z0EAACAASURBVEflU86AAQNtDgbbGP5H1kg8z7IyB8vKHKaBnnCYS64YnLV0\nHxqyClUav6VGLD87k4mA4+tpZY2dbWH3+iDYvT6IaEuds1ntxoPHpndh1qmDxPNMUzY4IyLAGRFB\ntDVmFSFz6Tdq04HOuJI02fT9eSVYNtS0kEaONrAe2A3WA7sRbVV34lHwf8dV0k2Z+wNoZ7LMYBvD\n95eVYJpRi8gB5OfZZmxv0jlVnmdjV3t4rH0TRo42UuXo/l1loa775rp8Oix7daY9Z9EjEBY9Aonj\n+tRcZK9S3+Khtp/nxnrq+i3bRDfZ9Sys9LMSQEOL5lLS27LdUNaYp7H+FaFVGQzK0m/iDuQkX0fG\n8wuyhQ0YMGBAAVyXvQHL3sGyBaXQYfdiAKpNaOpfZhGflZlM+R38TGUdAMDn+2UwclA+Sxe7gxOh\nv7ZWkX33fwKWlblC11j1DVHKYFD1/gDQ6P3R9vOszLOqK5TR1dTPvdU8z8WHLqP5VblGdBrln4h/\nUoLwd1In/H2wDGNm8etd6NKVSF3Ysl1R1SS7DoYyBFj3QkzxKVIb28sFHXYsBrdWuEiUNm+zRsYX\npV0YDO0dJouBIy/IReSkueZsPdMZPsHCl01OSh2Wj1K9pgDblIkPdvkgYritRJmUpzXYsyQVxbn0\nQVNtjelL3TFxoSvtudS4Gnw2RTMvU6t+XeD6P2otiZrHKcjddFAjY7ZF9Gmyw2vmFxBUVaeAE18o\nPbFR9/1QRRdFxtAW+n5/9Ol51idYNpbw/Xmlyv3o+/OsKWMB4Acyb/0oF5/scceEN+3w+G4NPp2b\nJfvCVoC7eRCyap5ppG9LYztKm+eWBUiZJnk3W1MYDIY2gLiv/sK+T1FW1ER7TvwaUcPBzJKF/Y+7\nU2Q9/M1wLDkMPC4wo6NiMQDvb/PGoCnyZ6Ty72qBb26EEseLB8ShJF+3xsPB+B4wNqFuhSobD/HF\nH50Q2EN2NUy/UAvi3yn9eS1WT1SPT2zgyQ0Szxk7SzbmDAhhezjCa8+HsgUVoPLaI5X7UNeET9mJ\nTXNpFYzs1JvSV5OTLFXuF69FvqJdoujr/dHX51kfMA3wgOfW99TWX1t6nhVl9dfubWJHQRwO21lu\nWS/Lrsisfiq3PItBnaanv7edX3RVyzHI7dZg6DdxB1KfnkZ++l3i+MGVLxE2jBzXcPvMCsp1otRU\n5uPxtd3EOYG8pY07ug36mDi2tvNG6IDFlP40waIdPtj8ZhJ+f9ZDpqyJGRMNdfwXBZ2xIApDAffB\nBVu9MXiq6qlr990KxaJ+cSgt1I3RcCihJ4yMqf6aG+dQA6/kQZIBJwufYHMcSw7DrKCHaGlW/iUh\naizkfPE7ap+SAykZLP30EdUnGEYsmZOrxtxi5K7fj+Yy+mrV9m8MIcUPAEDht6plh6KbLBT/fgll\nZ+/QyjNN2fA79LnE/qwHd0fldcVqn6S/t4NWj9zNB1H7OFnqtdImO5YRQRIDupWlw67FtO2pb24F\nt6aO0s52d4DXVx8Rx1nL9ik8pr7eH3mMhfT5OzTyPMuaPEv63lpx72EyJRsLPB5Spn8BXksL/XkG\nAwF/0i/OaMJo0MXzTAeLJT2+QTSTUkZSA/43OQN1taobK5/tc8fmxdRK5fpGEGeAQgZDRWMRpc13\nP7XCtzZ2HNqlwdBv4g5wW5oIY0FA2LBVpAl9v4k7YOfSGaUF/JXdkL4LAIgYEQwG+k2gr8HQuddb\nqCxJB4PBBI/HhW/oRADasQa79LEGwHcBksVvcT0wPeABug+Sz6f2WHKYXCvrDWp4AQj49nYoZgQ+\n0LYxjciRtrTGwvJRz5GTQn0By0JZY0GUw4k91ZbpSdxYALSzytTa8T8mOfVy7dMU5G78XWYfJX9c\nQ8kf1wDwJ3uuK2eoTT8BsiYk3PpGJE9dK3FC5rx4ksIGAwD+qheDgYasQmQtlX8Skjx1Lbz3/Y92\nl8t15Qy1TrBYlmYw8SKvCsrqvzG3mJBxWjAejTmvlBtcz+6PIHZF2riy0MbzrAskJQ0oPngZZX/d\nln4xj4fkqWvh8uEUWA3sSjltO7Efys7I6EMBdPU8i6dS/f6iL/H5zQEpKMzhezs4uRtTrvUONMHp\n+I5q2XXoP8oaF9P4cx9t7GIU1CXDxUxY88CW7Yqyxnxa2RcVUejE6U8ch9gMQXz5NVpZGzbZRTmz\n+glFRhfuSEA7Mhjqa0oA/LeTcHkr6mtLKTJ3z60mHeen30Wn8Nm4e45vzdk4+pN3CHg8PL/7M2ln\nIbDndCQ9PAa2KQcxFzchbPhqPLi8FZY27oi7pR4LXh52nOcHrT2NqsTWt5MAAF0HcLD6F2pRDzsX\nNlb9xG8vf9WE9/vwrd/t54LRoZOZUuMf2JiFkXOdKO0VxU3Y81EaEmOpK1VTP3LD1A+ptTUA4GiS\nfIaKujjyoieYNCsl8yOeoKpMeoVUOiQZCzweMLMj1RhiMIDNJ4Pg28WCco28Rps0qqLiVLq+veI0\nf6zEc8pO2KpjEtW+2qhIf9KMBqXGfl3BWjYiZCz+P6340fseEL7rs1Z8h4Z0+h96SRT9cFbpsVW9\nP04LxoMzTPXFB4D/PEvKgqRPz7MusJ3Un7Zd0e9WsPckmOYmsAjvRGp3mD1cbQaD6P8ZdTzP4hNu\n0WNp56Txe5Q/rezfLzvh+MNATOuZJLU/aePows3pSelFjHQXzqciHadKTIGaUf2EZDB4WATD3aIz\nLuWSs8GJplMVUFifpiaNVafd+B/UVhai38QdaKiroDUWAIDbQp4ItjQ3gMmiWsWilBUJXVMKMu7D\nyZMcXGxqLgxYqSzNUFBr5fEMNEPM5TLCWACAp7fo82R/G8WPGaipaCGMBQBYOY4+0LnPWGoQjjS4\nLTzM7fII0wMeYEHvp7TGAgCc+DpPL+okDJriQGsszO3ySK3GwvSABxJ3Tng84NPJiRLvh6q7FU3F\nlSpd314RT28pQJ8mSMrook/6py/YSdsuPuFSB4X7Tis8udI1kowVZe5Pa3iedYXDrGGUtpQ31ivV\nV96XR2jbZe3uKENre56NjBnIz2r7SU7y68guhwwwMNL9Q9IfcXg8/drxbzcGAz9+YCVMzDgwMZOe\n31lZUp6cBAC4+vbRi3/o3YupLifSJuTvhFHdD+iy9Hz0f76UNjqmBzzA9IAHmNnpIRrr5b8f0wMe\ngNtCnUWvP6r+CYM4R5PC8P42b0r7jMAHCn0HAbsvh1DaaipbFDKMJMk6uLEV0sXYSTPPvTKwLM3g\nvmYOAv9chw5fvgezztTCTPL04bNvCQL/XAfXZa9rPP6iw46FtO0VV3Rv5Aoo/E69VbJtJ/RTa3/y\n0FxCb8zaSVjxVQWlXK70FHXdH316nnWFy0dTaNtVcdlMm7eV0iZpd0dZ9N3Qu5gWBNcObNg6GGHo\nJA7hzrRkUoZuFVMS0R2FqMJDUmWfll4Elych3kUCl/LIXimC6s7+xzdS/miDduOSlJN8HQAPd899\nij7jtqgt+NjWmTqJ9e0yAS9jDxPHRsbKufXoA6lxmitIIo2ZnR5SVtE7hcnOLKQKo+c5g0ETr6XK\nroebjyml7Z2eik9S3ur+mBKU/s3NUJm6ScqIZDepH+wmUSeDSVOo7hKCPujOCXCYPYzoT1YfgSfW\nQ/RGm/q7w3Pj21LHEFyf/38nUHX7GeV7WfUJgVWfEIl9+P32CViWZjK/h/h4qW9uQ0s1P17FxIc+\n/a0q7inqpvKq8plpGtLyYeJL/o4WYR1l+2prCWNXe7X2p0//bupA0fvjtfsD2nZ57su4rwfBIdAW\n+0eeJrW/9c9EgMGgtLc2rAZQYw5UNaQE7xFNoe/P8/jOL3A2oRP23/Aj2irLWghXpNbKpbx9ci8Q\nX877lnYngY7bRYcpbaKxC4a0qlqA29KEhPu/kuIO5KUgM5p8HYOB4N7vUPphMJgozuP7iGe9uIyg\nXvOQGH1AHeob0BDS3IaUxdyKRWnLSKhVqq+6asVWJgTUPCS/jC168iuQNhWUojFXM4VmpCGYiDfm\nFqPgq5OAEQtuK6fD6L9qpIEnN0id0Lv+bypRP6Ixtxi5mw6CZWuFDlveJY0h3kfqm9uIsW3H90HZ\nWXLCAzodAdk/8qWnbkk935qouBwDp/cnkNpMvF10pA0VRQtRyaKtraQren/YHagxZvI8z+/dfB0H\nxpxBY3UTpf3HgX8qpIM4gSO9kXQxQ6U+NIWmJuQsG0u0lFer3I++P8+N9bw2mVJVUW+Si7l7Yct2\nRaQjtQ4SwM+KdO/VH1L7MAQ9a5HSgkQUZT9U2GhIeXwCLl6RpNSq9bVlJJni3KdwcBeuTmS9uIJ+\nnYbjWdR3qiuuAAnR9HECkoi/23592l9fQh9orWo8xS8PqGlqP5mgfC2FY7tyMX2ZO6nt7XUd8OsG\nycVvcreQVykEk+GqewkoPnRFaV1UIXPF92hIE/rZpr2zAywrc/gdWCXlKjKiBkFTUTmSpqyD78/L\nYWQrO8e945sjpBoMAvJ3ya7iW3LkX5kyrYWWSqoxq26XCQP6jejz3H9ZD4S8HoifBv6J5gb+gsX4\nfYPBtjTGezdfBwB805Pvmz/zzzFgWxrjg4czSe0eES4Ys2sAki5l4PqmGKLvrjM7wcLRDKHTAvB9\nX/7/s5CpARi0OhzDN/ch9aFtbCdq1w2PM7QnSk/e1OqYBnRLWWO+xABpfaZdGAx0RkHSw2NIenhM\nqkzG8wvIeH5BZl+ivIg9BMSSfdm0UXtBnLt/0wd2S+L6Ce2vNusDmthZEKBI3Qp5OPN9PsVgGD7b\nSarBoG8U/XKBZCwIaKkSTlY91r+JnPW/Se2DjrR3dxIGEV0fBfvOwGXxRKn6ddg2n/hcdVcY9G/q\n704nrlc0ZlHzdRugp+ZR63aDUBVZz/MHD2fim55HELXrEfqv6ImK7CrEHUvC2cXXiXOiHHn9PKXd\n2t0SxUll+KE/3yBYeG86vuvN/83tv6wHvul5BHe/Erpnxp9IxqDV4TozFAQ4zB6u1fGsBnQ1GAx6\nSlGucDHRyT1Ph5pQ8dy+CCbeQhdSQx0GA0qjaJ2A9OfKucq0ZjRpLBigp/xCtEwZs46eGumj8tpj\nwmCwnz4EJceoebBNAzxo+7Ps1VnmmLqmNl5/0u+Jw7Iyh9OC8XpzH2ufpOhaBRLavj/yjCPYLQD4\nme7ijilmZE3dPxy/Dj9FHLPYwhUUHlfLRXXUgKbS/Ro5WGukXwNtF6dFk1Fy+DJqn2r3PWYwGNoo\nRTmKpSkryW/7ac1E8epE7++rLmMhuBe9a4w6ire1dRhs6amMVemjqagMxk62sH99IK3BIKD4yFXS\nsXmonwRJ/aExW/92GLRRU0EZmtXgM64OdHV/5HmeVV3pl5ZRqKlW8fTUbRWmiWLZ7gwYsIwIQtG3\np2QLqhmDwdBGKStSzABoqNN8Gti1hzqic6RsH3NNs+xbf4QPo6YYVefOwvDZ1IBCA7onfeEewm3J\nql8XVN1+RpyzGdOL+Fx6khz8SVddV99oqdBNRjNxTAM94bllvmxBXdKsXBIBdaAP90ee51kQgMxi\nMwEe0NKk2G/E/lFn8PrvI/Dn3EuwcDCTa4ciO7oAA1aE4dYOwy6vAQOSSJu3GZ47FiN71XcAV3sp\n/A0GQxtFD8pAEOjbqjqdsQCop4KyAO8g9WZ00Xto0tHqKy3VdWBZmsH1f1NJBoPT26MAAPXJOZRr\n1LHr0R7w3f+J0tmMeM0taCoqQ2NWkd64Lqkbddyf5sIymHcPkH2BFGQ9z9/0PILuc4Kw8N4beHE+\nnRSwrAhROx7i/TvTkHQxE9c2ynYl/GvRNYzeNQBvXZzU6lOz6jtekZPh1LEvcRz7+zIdamNAEYh6\nDMeEGf0MMQwGWjX6ZigAsnU6lNATszs/VHkcJ4/2lV3GpIOzrlWQG9EUqwJEJ1BZn/xEuaapsAxs\nD0eN69aakeVek7PmF9QlZqqlr9aIz/fLpBoL2rw/8jzPjw8m4vFBahpMSa5KdO0Fz4qJLEiiSEu/\nemGZ/qUq5jU1I2VG23omM6NPITOa79YSPneXjrUxoAiGtKpqYlgv/n/qK/fXEp8B4MaDbWhqrkWf\nrh/BwsyBaL9yn74yIpPBwtBIaj74wtLniEuSniM3LPgd2FrRV66tri3Evbh9tOcAwNrSHZEhCySe\nl6SvviFrYl7+qglHduTg1ukSpfvQBEbGDHz2WyA2v6laFpWKkibYOJJX8a4ceYXje3JV6ldfseih\n2oqnrrAe1A2VN57A/9BqfoOE7d2G9HyDwSAFaRPh3A0HUPtMfwOytQHLyhxGDhzac7q4P4bnWTEY\nxm1uqqQzBJmHnNzzMH6sGX7+ge8ed/J0HRZ+UEaSAYCg0AKUlNC/lznWTNy95QRHR3JKwqIiLkK6\nF8ilz7df22LqFHJxXUUzIv3fThvMmkF+B37yWQV+PaA5N1FDliQ1MjRiLSqqc2Bl7gIm0wiDwj5B\nYelzWJg54EX6eXTyGQMA6Nn5LTxM2E+61tG2E7p15GeIaGyqRnruLViYOcLDORzOdsEY1usLiRN3\nUSOlurYImfl3YMrmwM9zCADA0lzySqz4tTmFMTA2MoeXax8YGVErBusrkib6G2a+RGKsYvUhNMX7\nfZ6i/FUTfLtYYMupINK5Ln2s4dXJHJkvlM8clRpXg55Dya5PHTqaoaqs9Qb7sazMSelPWzOF+/6C\n8+IJcPlwEipvPAGDxS+yl/Q6fWXs8vP3YNU/VJsqtip8939C2548tXUscGgafbs/hue57ePbbybs\nfLoj8/4JvEqW7Q4mDQaTheBxy2BqaY+qojS8vPKDWnQUGAsAMGWSGVZ/VoGkBHKxyMQ4F3TuWoDi\nYrLRIGpUiOPkxERRrhvu3mvExKmSU8ZL6qMo1w0NDbIzeQ0eZII/DtNXWN+2mYNtmzkaScfq9c1S\n/H975x0eRdX98e8mmxBCeu+FFBJKgCBSJEgxSlFESqgiQnxBEBBQigFEIAKW8KqAP1GKghQpFlRA\nXgQF6UVCJ4H0kEZ6IWUzvz/WnS0zszvZbDYbPJ/nuU9mztx77t3JJHvP3HPPSXsjweB6dfHYGgyQ\nSHD++iYAyom4u1MH5URfIkFYwBA42QVymiqMheMX30dd3SNWfivlIKtLm9EAcFcC7medAADYWOve\nDCvU1ty85UZTWDLyFpITTWNTpuo+hfvXKnB0Vz6ix6m/bVt7sD3GhV4Eo2f0v79+LuQYDO262ein\nzEQI2raQNwuz/8evN8NoGkfJ75fhPvNF3RX/4VHy47ky1JQ0RybxlkRz3h96noUpOXoR9tGm504r\nhu6TPkZ5Xgps3JTzmoBeMQjoFaP3HgVNdyU7z1B0n/Qxru5fhZoK+YpA17GrILVszduHor3mtbws\nL3YyrZi4K4wFTfn1Kx7w8OWfeM+cU4S9+9TDyCva9e4lPGdSNRaeHpiPW7eVmctzM73QqpX2jXk2\nNhLWWCgtq0dwmHJFw8wMyMnw4nxOQ1FfVW1QfWIxcGop0+HK7e1ar2fknOWVP91Nnm22sDRFzVhQ\ncPxCfKPGVV6pf+hDmcz0Q5/OXc8N15ebXm2SxoKCzcv4/YZ33dX/S6OhifNMGaZWuSpi/0w3tWsu\nE55BqwAPzSYtgtq8YgCA4wu99NZh0yNcd6XHHOeY/rzytDmfGnkkpklLuj/0PAP5X/3c3ENoFDZu\ngci78xcufDMfF76Zj6v7VwEAuo7Rbw/G1X0rWF2KAgCdRy5h61zZvUSoOQCguky7cXzmrHJu8+Vm\n5Vzh8hW53IxnpurmnQ0372yOsaC4puDN2dpf1PkEPlAzFgDA3Uf3BP/+Hbk7UGamTM1YAOSerU2Z\n6C3j7Q3w/XAm/41pQh5bg6GwhOsTWl6Zq7OdpUUbAOC4KSmok4mz7KIi3xJVz9Btm5sez3HD9c0Z\neI2npmkhFB3JFDduG5uksSvZY/fXhyF0/3tscRoRhbLT13lXHkydlNfXAQBcJw8CAL0+g+fb4ww6\nppaI/bPdm3sIJo2p3h++PAn0PAvnj2hJG/EVm5kBoKaiCPWyOkhbtdFLV01liah6DFOP7pM+UpOZ\nSeXBPxK/X82pf+So8oXsG28Wscdxy5T9bfqq8S8a35zFDeX+0wHlPtaaGn43ArET/sgeuueV2tyn\n9CXj7Q1GDakKPMYGAx8VVeKXgKN7rhAs2riT+isAwMrSDtE9VyAidIzoPjXb8m26JpoOIaPh68RI\ng/Ux8yOuC1xL4O7Id1F85AJHnr12Fx58LBzx5HFCaCJh3SXYyCMxLcysDRsRLHBTy31hwoeh749i\nv01jSZ3OHxnH1J5nWTMk2TN2Bt2mJjvxt0br8OjQD+2ip6utLKhycfsCaMbX7jb+fUF9f/2lXFXI\nyuLPi/KwsPETYmtrrmtRzx6Nc+9+sru49ocOc71UWjKP7x4GHuqZpk/Wk55zFuk5Z9G/+zuQmlux\nm6QB4F7m77ifeUJ0WzOJuei2jxt8rk3GYGzIRc6qQqvWZnrlaODTFfWiMza8ldLocepLY1YC8jb9\njLxN6sv1kbEJuHx+nlbdkbEJwKHGjU3suPX9fEnjV+mskzxmOe9bRu8lk/7Vm3srr95Dm+5hBtMn\ndbIzmC5TwND3J3iPYV4k1RXxB6Awtee57MwNOAzuYdQ+s1Z+w/u3HrxrWYsMr1pbWap3W8UehLRz\n+3Hn6P+pydSRv6nvOmYFruxRPj9CeyeS7yldXYVelIvZQ9gt0hKHDrrorsjDwV+47kxiWPu+MuJZ\nU6we6EKRh0EVipLUjDQ2fOnxC3LLulfETDYyUpDPADjZtcXFm1tEtfX37I1Q/0Fs2yCfAS0mrGpj\n4XNtMhZvPJ2I9X9wI4h4BVohO6XxbwzGzPXGnnX/nk2Hl7+SGxSRscaP6iAWprpWdyUAdQUlvOEx\nQ/atMKlJljEpOniad0Js6eWMmmzhsMl8hHy33ECjMh1M+f60hOe5cP8fRjcYAODBx3vgOV/dQ0Bi\nIYXvmmnIWGSYKEHGws6zcWGvr+xZhrpq3e5Bspoq1vWp0/CFWuvW1OoZUeQf9u9xRlSfxq3eZWTo\n9xI5JKR5p86axoHjS32N0u+/yiWpOTiTuAFHzy7DH5c+AAA42gXAzUlcFtO0B6dx9OwyNSNBbNvm\ngi/DtH9YwzKbNve+gYLsGhzdlc+RJ/zWEcOne/K0EOatwTc4spdmeGLHzW48tQljokjexsjEf2mk\nCLhxAPJJlu3TnfUai8fcmBblI61K1c1UXrn/p3MapCdk3wqjb+IzBqZ8f3Q9z4Ffvq2XXkM+z0Iu\nSU3991J+hvu/GwCsgr3lfUv0S2/vPHYAQvatMOrfu3Pbxn3fiDEWAODyP5ufA3qNhpWdG6rLmyb4\nx9VL7qyxcPKvanYDtGoRg4eHfu59OQ+UEx2+vvUdj74UfW+cZIeP339nA+HtZji/dUCezyG/6DYA\nIDzwhQa3b0xbY7J4+E2ObO1B8UZOcxsLCjYvS0NxPvet89j53g3Sk5lchbJibu4FqYVEr886IMYF\nu5Oe0Nk26NlYAED7kQvQafxy3jqKN/5t3AMQMXEl2g2bw7sxLvT5N9BhTBxaOwkbS35RMeg07l1Y\nu/qJ/CR8Y56KrlM+hFOw+pebYpzePYYhoN8EAEDbgZPRYfRivfvy/0gZCjYppmFf3JlLNgte85g1\nEiH7VsBtmva/U6tgb/ismMJOHGyf6tigMZgaqpG0VBEzKfKYO7rFGktiMeX7o20lQepoK8pwaK7n\nuamfG233JmTvewjZtwLWnbW7z7Zq64m2Xy1g743TqH4GHiUXVZehLqPlLmz3Tu7grSuR6J4GBkVN\nZI/DnpuhtS7D1MM1pCcAIPFA46JKCuH5z0T//IUajIxp2CqdKoOf0y+/1c7dzZuPqO22OGX5egmv\ni1JTQC5JGhy/EI/+3ePQvu1w5D68iTqZ4TatuDjIlwWLShvuw96YtsYk9Rb/H9LupCdQkF2DudHX\nUKsSlcBcKsHs/7bldUH6dVsuhkwWTnTX1EzvfZV3Yt7Q/Qyvdf9bcIKvKS/MqUFNNQNXH0uYm+v3\nBgsA7P3ay/cXfDUPEjMzRMYmoDw3BXcPfqZWL+LlVci58hsSdyyFS1gvyGqVPp3OoT3g33cMEncs\nRd2jCnSZvAZm5ha4vFndJ1Xez3xIzCToOuUj3n60YeMRiNDnZ+HarvdQW1GCwP4vI6DfBNaVCQC6\nTvkIV7a8hcjYBNh6heDazuWIjE2Ae8QA5Cb+rrMPxWqCJndHLRc9TgVVt9OQNGqZ1smKfXR32Eeb\nZnScpiB5nPAb04ZO6tLmrkdNRt5jZUQY8v7Iyqtwf/Jqg94fXc+zwnBoLpInrETwt/w+2mLHpa+L\nla574730Fb30NiUXv12oZjRc3P42GI3lf819CKrnqvsObh36DOGDZ8EpsCsAIP3CD7h9ZKPAPgZ5\nX0LXDM3zw/XLZfL31Vp06WyB1q31+45N+KQMixZwoy8Zi/uTm8YQ0wUZDBrUyapRVV2E1q0c0b/7\nO0jNPoWkdGWEgfC2w+DjJp/kae4nUGxQvnHve2TnX1G71r/7O5BI5FZxYtJ3vH1H91yBnIfXcU3j\neojfszrbmhK/bMnF0Cncib6LlyW23xC3NDoh7BJkMqZZDQaAf+My0HCjYWzIRey68wR0vcxx8jBc\ncj7FhJupr0f+zVNwbd+HU6csOwl51+XLmQW3z6hd8+87Rm3S/ve2RYiMTYCZuRT1MuUbU2U/DC5/\nNa/BexVCn5+F/Jt/obZCHk4v5fh2OAZ1hUNABIpTEwEAVYXKJV0La/mm2Nxrx+Ee0U+UwcBH/tdH\nxO2qE0DXROLfRtEPp+A4nPuMNQRZcTlqMvTPVWPKGOJ5kRWX437sBwYakTqm/Dwz1bUoP38LNk82\nT54IU743fDCyOp2J2sQmcivPT+Wtq6v9pZ36rwA3lmmvaQ8h++yQfJ2bleNXcPf28HHooAsGv/Dv\nSFJJBgMP1nktPQAAFIhJREFUp66sYyf/AV59EODVsC/BDkEvoUPQS7zXzl77XGtbD+eO8HDmX86t\nruWPamFqbF+dgW4D7OERoN9yX0OjETU1QkbDiJmeOLDhgWg949pdxMg3vDB6jvGjKmScPsBrMKQc\n+7rBuoIHT8PdnzcYYlgsGaf3q50/TLoA317DWYOhJJ3rT1xbUQKplbjs2U2VJyJp1DIE7VgCM6uW\nm4XdUBTs+A01Dwrg/vpwvdoX7juBh7uVxl/ltfuw7tTWUMMzCXI//8Gk748pP88PPtgF16lDm2UD\nNCC/N22/WgBzB3H/c3TB1DV91MbmIHTgawCA+rqmTzR7/YoHOnbN4chXLhc32Qf4MzH7eJvjtana\njY7Va8uweKEtukVa4s9jbug7kP9Fx8ZPHTFjdhHvNX3xfHs8Hny406A6xfDYGQx8UYSEIgtpizik\nuObtFokAryhYWtigoioP15P3o/IR/0YeRRsftyfg5doVNm3cIYEZisvTcfnWN5wlQb72DrZ+CPV7\nDjZt3GFmZoGi0hQkp/8PJeWZWtuaGm9GX4edsxSbznYR3ebS78X4cJp6/OvaGgYWlvq75hgKPqMh\n5k1v9BrihLeH8m+O42P/+mzsX5+NfiNdMH1NgF5jWTfrHs4dNuw/oIZg5diwjd9iCIqewpFVFiif\neVmNfuHvjMG9ifKQrG26hcJr8UQdtbk05VtjY1N67DJKj12Gd9zLsO4qLjJLyZHzyPuSm103671t\nLeqtrhhawv0x5ec5f/MvyN/8C7zfndwsxiT7uSQShOzld3PURvGvZ5G/5VcDj6r58YkcivK8+wju\n9yokZubIuXmiSfsbNLQAh39xgZubGe9KQfK9Okz5TyH+POYmqMPNO5tty6cjN08GdzfhTdHrPi3D\nlm0VSLrlgbAwqdYVC0MbDBYeTgbVJ5bHzmDQhf3QgSj55Zjo+ll5l5GVd7lBfWTmXURmnn5vyYvL\n0nH+xpcNaqNPfoCmrK+g9GEdxoZcRHBEG7y3JwzmUv6J/5dL03BsNzcqEQC83OGSXn0Dhl+pMKS+\nE/sLcGJ/ASRmwNofO8AvrLVg3dz0asS/chd5meKyjPMhZmObWB7eOWcwXQruH/saTH3LfuNWceku\n6ydtbt8GtlGdYdurPSy8XGDexgqy0kpUp+Wi7ORVlJ281qDoTJo0RcjL8vO3DKY3K347e+w08mnY\nRz8Bc0db1FdVoyY1B+XnbqL4kO7nyBDjMZXwoKoI3R/IZHh0N9Oo90cI1ecZABye7837PFfdTEXR\nD6ca9Tw3lKz3trHHzuOfQZvIUFh6u4CprUNdcTkqLtxGxeUkVN3Qb89fSZYvAMDeO4MjU8jZeyOR\nwK5vZzgM7Qmpsz3MrFtBVlaJ6vsPUHr8CsrPcQOBNAZTfJ49Ow4AMAAAkHvrT2RcPNik/V3+uwbH\nT1Sjfz9uWNXUtDr07ivOrVHVaFBl+YpSbPyiHPfveMLGRviFZUlpPTx8s5GTIWws/HjQ8C+70uev\nh4WrA2rziw2uWysMw5hcgTwDCAOA8d/0AWPh7cH4bXyflbUKDmD8Nr7PSKRSeZ0v1jJeK99mzG1t\n1Oo5TxrF+K5bzkgsLViZ/dCBDADGMeYFVuYSO47x/e97jGq/plgCd8abTL/NNZbHtbTy8mFCViUw\n7iPHM459+mmta2Zlxdi0j2BCViUI1omMTWD8+sSonUfGJnDqaOun0/jlTMTEFey5lYMbrw7VfsJf\nmi+oV0jeccwSrWOJjE1g3Dr25XwOt459dX4G/29W6/X7sH9xgM46qrr17cdYxdTHJ1QGhS82mK6n\n2sYKXuvs/WKzf1ZDFFsfOybmt4nM0B0vsTKfKD9m/KlX2fOJZ6Yyw74bxVg5tmbGnZzMyl0j3JmY\noxMZcwtzVhYW04EZ9+dkptPUrlr7fX7nCGb0kYlqsm6zn2RG/Tqe8e3nz8paOVgxw78fwwzeMoyV\njfp1PNN3zUC1tqMOjWdG/DSWPZdaSTmypiq//ejGkZVk+Wo911YsHa3VzqP+9xZvvS7rJzT789MS\nSsTBJYyFi12zj6M5S/B3KzlFVxuDzM2b2zgQYzBIzM3VPrjDiMHsNb6f3u8vYjR1KI7thwxg3GZN\nYazCghkAjNTVibdeSyk2T3Vu8j6MaRzYPNWZkZibNft9NXYJfncNY+nC/aLSVnQZDF2nfMhOsPkm\n1rom24o6unRo68elXU+ODr567UctErxuSIOhdWQ447d1FUfm89k7ajKFweA44XlRulWP3d6cxLjO\nnqh1XHzFY+l0NX0+n8gnyz6fLGZgZsZYtQ9ir/t8FsdYdQhSa68pk0iljN+m9xiJ1JwMBgPrMtWi\naigoSteZ3RkAzMSzU3l/Dj8Qw9h42zJdZzyhJgfAdJn+RIP6f3HvaAYAM+H0FKaVgxXnuqpuzfMJ\np6cwAJixJ17R2a4pi7+flCMryfLlFLH6ntw1Te1cyGCgIq6QwaBfMcTcvEW4JGkuddoP6g/7Qf0F\n60td5P5d/ps+QE2auu+/7dO9UFdcike35b7y3isXGD1ZkN8XcUifFo/AnfFImbgUqK+Hx+JXkbN6\nK1ymvgjbgU8CAKqTM5C9TJ6KPXCnPIxWyvg4Vo9C5jozRu2aY0w0HIb3AwBkzP4QdQXFbP36ykcw\ns7ZS0y2EQn99uTJUqsOwp+E49lneseS8vwUe70wRHItqfacJg2E/VL4JtybtAbIWrxf8PBILKQK+\nlvuLlvxyCoXfHtLaZ3MTskoZJSjji0/wKCMNISs/RtLS+XDo3RfmVq3x8PcjCFmVgKQl89j6/m8u\nAgAkLZnH6uE7FsuVLdpjp6tGQNK3jq7rBXfOouDOWZ393Ny3RlQfqsd51/9kIzyJwenlYSjeewTp\nry6B35aVSJ+ylJVlznqflQFAfdUj+H+zGmmTtEf68P9mNedc0UZMe1Us2/qwxznLN6ImOxfmdjYw\nt7OB54o3YOnrgbRX3oHf5pVIn7oUZtZWcBw7BEW7f+WV+W56V/559Eww1VA87drjQelNDApfjKtZ\nP+BB6S0MCl+Mw7dWY1D4YtTKHkFq3goSSHD4lvK+DQpfjOKqTDi09kFq4Tnczv0d7T2eZa8rjm/m\nyKPVOVn74Un/CSiszICTtS+O3FoDBozWsSl0aOoCAB+HzujoOYQzprr6akjNlC4PV7N+woPSG3r1\nbyx+mfg9R3ZlwwUAwN0Dt3nb2HjZ4sXvRkFiboYOk9QTD2afycDEs1Pxw4jvUJ4tHHRj4tmpeHir\nALa+8ghmEjMJqou5IcmvfiHsYioxkz+nu/t9jQmnp0AikWBHL3nOkx09N3NkTUWtQAZiVfekhtDK\nVTj8ZtT/3sLJZz7iHGueR6wbi8S5u1lZp49icO0t4YiJinoW9taoLalUk9l39kXJVflnkUjNwNTV\no8d3r+NcjDwgS0BsFFK/Oql1bAqcnusKz1cHouJaGlLj97LywHfHwjrcB9lfHkXRsaus3Hv6INQW\nlMJtbBSyPj+EomOJ2m8egLBNM2Bu3wbJczejOvuf/aP19QjfOht1xRVImqt8HtzHRsF1ZG+UXUpG\n2hr1QBphX86E1KENUld+h/LEVFYevnU26qtqcGeG9vkQATT7aoKYFQZoWErmdjYMXx3Vn34bV/Pq\nsB86kHF9fRLTOiKcAcA4jhpqdEtP8cbeZdoIxuU/LzFtekUwlv6eate0tWuITOhY7BjF9hu4M55p\n3TlUTSaxkDZ4LIE74zkrDNp0aPZpakWxCqD6U1OmOJbaOfC21TzWJlMUMasH/4aitgqwVfnsOE0e\nLigDwPj8dxHjsXyGeN3/HBvCTclpotJd0nXWBMb22d6M/zerWX1OryjdZxTj1ykzwgpDVNB/GED+\nJv+5sIUMACa63XxOPc03/R52YYI6+VYFNGViVw601RPSqfjpZd+RGRg6t1H9G6M4BDlyZBY2lgwA\nZvxJuVsS30pD5KwnGSun1oJ6tb3hV+jl061ZOr3aRVCvMVcRtBUvT3OO7GGaL7Pt/5wZAIylhYT5\n66iHaH2aKwqq50LHAJjA2L6ca4qf7Zdrd6FTbauqQ1FY2dH5vOPg1ONZFXEcGMGErJP/zmw6B7Ly\ngKVjGIlU/h0e8VOcWpvwr99kzG3lz5mVr4vOexdxcAkjMZMwABhzGytWFnFwCQOAsX8qnD0GwNhE\nBDAAGOfB3dTkqsd+C0bwylWPH8fyr1lh0ERiaQnfT1eg4vRFFO7+ibdO+ozF8Fkbh5Lf/oCsVD21\nfP7n36BNd3n0nqJ9v8Bx9POwG9gHuR9vwqOk+00+fgCwG9QbBV8cQODOeNg81QWpr7xrUP2Kt/XG\npOrqXbVzvw2LBMeStUh8Yi+1dgs/1dqnSWBmBt/YN2DhKhyhAQCyttIbDWOStSgBjuOGoGjXr7Ad\n0AOF237glQFA2fHzKD18Cr6bliPjP8vFd1KvEglN/vKjQShWLAp3yDcNWnfviPzPvoWlvxfqyyoA\nALYDe6Lw6x/hOH4osuM+0SmzjhSfab0xtLF0BgBkl1yHl708NPS5tG8BAH3axsKmlStvu7bOvdHF\n+yXczPkN6UXighwMCjdujPcaWSUszJVhoo3dv1jq6+oRc/RlVOZV4OcJBwAAzuEuGLDuOezss1Ww\n3eXPzsPGyxYTTk/BnX03cTFBvio4dMdLsHKwwre9twi23Rm1FRP+ehWXPj3Pynb03Ixuc3ogcHAw\nzq0+hYw/0njb7ui5GaMOjUd+Yh529JS/Kfbq6YP+H0fjwfls/D73CACgV1wU2g4JVpM1FdkPuJu3\nnf2Vqws1tQyeiuaG8hREj/8DACCr4oYlvbf+GCRSM9xc/mOD2zJ1MpwatE5NVpEqz5J8MlqZaO3c\n6I2oKdKdydj3zWFIfEEeUav8agorT125hz2+MU49gZuFkw1kZfJNwI8ytOcuaPf568jaeAhMvfz+\nycqVK1b3FsjDgZf8dUutjWLl4OGhS/CeMZiVyyqr0e6LGbgzbSPSP5D/XYSun4aMdcr54/13toPQ\njskbDGn/WcCR1RUUImP2Mk4dzZ+ZC+UT1bJjp9i6ighJFRf+ZmVFe39G0V5u2LqmQlZWCeeXh6D0\n8GkAcpcbQ5K99HNU32v+MKyyikrkrN3GOxZzRzsgvQH/dBXt7G2AjFxDDK9JcOzTD87RQ5H8rtwd\nSOFuVPa3fCJUlZIMiaU8xnnlPRM0dh4jFJNvhWtQXe5DVCXegd/WVayrkELm89k7HPchproGhVu4\nLh7aSJscB9c5L8uPX3lHbRxsnUmLeWUAUJuRg8Ltyi8xWaE8md3DLQcAWT1b12d9HB5u2ova7DxB\nWXrsMvhteg/przc8/KO+hLo+jWvZP8PDLgwAUPpI/jcukZizLj+ak+3TKVtYuUNrLyRm646wouo+\n1Bw0d/9ClKaV4Lto9YlPzoVsNWNBMTHX/FmeXcYxDPhcnPj49im5/tt7lCGmL31yDpc+UY/0dG3r\n39Bk32D1ePLZZzNZfQrOxJ/EmfiTosZialycshVR/3sLAHjdegAgImEsAKDHnum4sfQHlN/l/260\n8rBHn8PzUF8rw+XYrajKEh8lJ+UfNyPVcVx+bRt6/zQbp4cpX8Q9uXs6JOZmWserjYiDS1BbWIbM\n/x4EUydD+TV+Y1EXUkcbVD/gD0dak1/CkUnMJOj0YxwebD2G8r9T1K7dGPMhLD0dEXFwCYqOX0NG\nwo+wcLGFXY9QWIcqIxzpO9Z/Dc3tfqTLJelxLLZPd1NzSxLrNsR3zW/DQlH1dOnWVlesS5JmHU2X\nJDFj8duwkGkV7CtqLKYYqSkoLp6x7RzJnivchiQWFoxdZHdGamvHWLq6M/bde6m1M7RLEpWWWVrq\n5mRA7pqjcM9xtw1lApyeZK919ByiVo/3szt1Z/oGv87RydeP6rml1Fr0+MRe03RJcrFpy5E1tH8q\nVBpb2q9Qbmpv7s3TQi48qnLX4T1EteErzoMimY77uPMbzU3PCp2d9i9q0Pgcotoz7b7Q7nb6OJV/\nrUtSS6fsj0uwfkKe4r7giwMws+LGElbFY9FktI6QJ/kJ3BmP2txCZM6VL/Wlz1wL3/ULIJFIkD5z\nLQD55l/3BZPQKsgXD7/6ARUXxCcWU5AyPg4+CfNQX1aB4h9PsHJV96LAnfFaNxoztXVIGR8H388W\nQGJpgYw31oKprWP1e62YDqmzPXLWbEPNP6sG6TPXwm3OOFh3bYfUycvZus5ThqF1hyCT2dgsxL34\nOLg+PwKuQ4YjY5PS7YqprYX7iHHyjctlpfCfsxAlF85o1ZW0ZB6ClryPqtR7anVVN1WHrEpA6ser\nUFvEn0yQaDn4b41v0CZpU+NSxl508x0NAMgtu4tB4YuRWih3U6mrf4Rnwxbgj+QNSC44pdaud+Cr\nsLVyx5WM/fgz+XO1a38kf45n2s1DUWUmLmXIN3kevrUaQS690da5N6pqS3Dqvri8NYdvrcYz7eah\nRlbF9qO62qE41rV6oNp/QcV9XMk8IKp/gmgszr2DEHX0LUAC3FnbvAngEl9YhYiDS9TOAYCpq2fl\nCpk+PDx8GZBIePvg49rINWzdnO0n1K6p6rg7W/7/ovjkTdQ+LBOtnwAkjJ7+dU2JRCIxvUERBEEQ\nBEEQRAuDYZhGh8szbjxRgiAIgiAIgiBaFCa5wkAQBEEQBEEQhGlAKwwEQRAEQRAEQQhCBgNBEARB\nEARBEIKQwUAQBEEQBEEQhCBkMBAEQRAEQRAEIQgZDARBEARBEARBCEIGA0EQBEEQBEEQgpDBQBAE\nQRAEQRCEIGQwEARBEARBEAQhCBkMBEEQBEEQBEEIQgYDQRAEQRAEQRCCkMFAEARBEARBEIQgZDAQ\nBEEQBEEQBCEIGQwEQRAEQRAEQQhCBgNBEARBEARBEIKQwUAQBEEQBEEQhCBkMBAEQRAEQRAEIQgZ\nDARBEARBEARBCEIGA0EQBEEQBEEQgpDBQBAEQRAEQRCEIGQwEARBEARBEAQhCBkMBEEQBEEQBEEI\nQgYDQRAEQRAEQRCCkMFAEARBEARBEIQg/w+RLwDi3MgjoAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": { @@ -452,11 +451,7 @@ "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", "id": "AwnzDD_0GZIH", "colab_type": "code", - "outputId": "d617185a-0436-499e-de74-b5bc6047dfa4", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - } + "colab": {} }, "cell_type": "code", "source": [ @@ -475,16 +470,8 @@ "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot" ], - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ], - "name": "stderr" - } - ] + "execution_count": 0, + "outputs": [] }, { "metadata": { @@ -578,7 +565,7 @@ "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", "id": "4AlRADppGZIa", "colab_type": "code", - "outputId": "344b03cd-0261-4485-acef-b3d5b2e45d94", + "outputId": "93c9145a-d1e0-4c30-d9bd-f1468b43ab0f", "colab": { "base_uri": "https://localhost:8080/", "height": 228 @@ -591,7 +578,7 @@ "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" ], - "execution_count": 19, + "execution_count": 21, "outputs": [ { "output_type": "stream", @@ -619,7 +606,7 @@ "metadata": { "tags": [] }, - "execution_count": 19 + "execution_count": 21 } ] }, @@ -648,13 +635,16 @@ " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", "\n", " print(\"Training the model...\")\n", - " model.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 1, verbose = 1, callbacks = [early_stop]) \n", + " #model.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 1, verbose = 1, callbacks = [early_stop]) \n", + " model.fit(train_seq, y_train, batch_size = 128, epochs = 1, verbose = 1)\n", + "\n", " model.save_weights(file_path) \n", " test_preds += model.predict([X_test], batch_size=1024, verbose=1) \n", " print()\n", "\n", " print(\"Save model after cross-validation...\")\n", - " model.save_weights(file_path) \n", + " #model.save_weights(file_path) \n", + " model.save(file_path)\n", " test_preds /= NUM_FOLDS\n", "\n", "\n", @@ -1815,7 +1805,7 @@ "source": [ "def build_model5(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", " inp = Input(shape = (max_len,))\n", - " x = Embedding(19455, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x = Embedding(19452, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", " x1 = SpatialDropout1D(spatial_dr)(x)\n", "\n", " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", @@ -1859,54 +1849,129 @@ "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", - "height": 655 + "height": 256 }, - "outputId": "6e2b8f0c-57b2-478a-9d75-c37f0ae6cba1" + "outputId": "5e19a534-e198-42fb-f153-e9cff144544f" }, "cell_type": "code", "source": [ - "#print(\"Building the model...\")\n", - "#model5 = build_model5(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "print(\"Building the model...\")\n", + "model5 = build_model5(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", "Train_And_Prediction(model5)\n", "#print(train)" ], - "execution_count": 36, + "execution_count": 39, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "NameError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Building the model...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmodel5\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model5\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mTrain_And_Prediction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#print(train)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'build_model5' is not defined" + ] + } + ] + }, + { + "metadata": { + "id": "4noaMsufYjd1", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional\n", + "\n", + "def build_model6(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " input_words = Input((max_len, ))\n", + " #x_words = Embedding(19453, embed_size,weights=[embedding_matrix],trainable=False)(input_words)\n", + " x_words = Embedding(input_dim = 19453, output_dim = 128, input_length = 50)(input_words)\n", + "\n", + " x_words = SpatialDropout1D(0.3)(x_words)\n", + " x_words = LSTM(units = 50, return_sequences = True, recurrent_dropout = 0.2)(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + " x_words = Conv1D(256, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = Conv1D(128, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = Conv1D(64, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = GlobalMaxPool1D()(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + "\n", + " x = Dense(50, activation=\"relu\")(x_words)\n", + " x = Dropout(0.2)(x)\n", + " predictions = Dense(5, activation=\"softmax\")(x)\n", + "\n", + " model = Model(inputs=[input_words], outputs=predictions)\n", + " model.compile(optimizer='nadam' ,loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xze_K-cHb84-", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3168 + }, + "outputId": "28cbf6c6-6a90-4af3-df47-0f874ec747db" + }, + "cell_type": "code", + "source": [ + "print(\"Building the model...\")\n", + "model6 = build_model6(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "Train_And_Prediction(model6)\n", + "#print(train)" + ], + "execution_count": 44, "outputs": [ { "output_type": "stream", "text": [ + "Building the model...\n", "FOLD 1\n", "Splitting the data into train and validation...\n", "Training the model...\n", - "Train on 58113 samples, validate on 58156 samples\n", - "Epoch 1/1\n", - "58113/58113 [==============================] - 39s 673us/step - loss: 0.3773 - acc: 0.8259 - val_loss: 0.3395 - val_acc: 0.8427\n", - "66292/66292 [==============================] - 4s 57us/step\n", - "\n", - "FOLD 2\n", - "Splitting the data into train and validation...\n", - "Training the model...\n", - "Train on 58156 samples, validate on 58113 samples\n", - "Epoch 1/1\n", - "58156/58156 [==============================] - 39s 669us/step - loss: 0.3646 - acc: 0.8309 - val_loss: 0.3353 - val_acc: 0.8434\n", - "66292/66292 [==============================] - 3s 49us/step\n", - "\n", - "Save model after cross-validation...\n", - "Make the submission ready...\n", - "66292/66292 [==============================] - 3s 48us/step\n" + "Epoch 1/1\n" ], "name": "stdout" }, { "output_type": "error", - "ename": "NameError", + "ename": "InvalidArgumentError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mTrain_And_Prediction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#print(train)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mTrain_And_Prediction\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0mpredictions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mround\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpred\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0msubmission\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mtest\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'Sentiment'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpredictions\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 34\u001b[0;31m \u001b[0msubmission\u001b[0m \u001b[0;34m=\u001b[0m\u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmerge\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msubmission\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msave_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'PhraseId'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'left'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 35\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Sentiment\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_sentiment\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0msubmission\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Sentiment_x'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Sentiment_y'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mNameError\u001b[0m: name 'save_test' is not defined" + "\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1333\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1334\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1335\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mOpError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run_fn\u001b[0;34m(feed_dict, fetch_list, target_list, options, run_metadata)\u001b[0m\n\u001b[1;32m 1316\u001b[0m \u001b[0;31m# Ensure any changes to the graph are reflected in the runtime.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1317\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1318\u001b[0m return self._call_tf_sessionrun(\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_extend_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1351\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_graph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session_run_lock\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=protected-access\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1352\u001b[0;31m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mExtendSession\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1353\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mInvalidArgumentError\u001b[0m: No OpKernel was registered to support Op 'CudnnRNN' with these attrs. Registered devices: [CPU,XLA_CPU], Registered kernels:\n \n\n\t [[{{node bidirectional_1/CudnnRNN}} = CudnnRNN[T=DT_FLOAT, direction=\"unidirectional\", dropout=0, input_mode=\"linear_input\", is_training=true, rnn_mode=\"lstm\", seed=87654321, seed2=0](bidirectional_1/transpose, bidirectional_1/ExpandDims_1, bidirectional_1/ExpandDims_2, bidirectional_1/concat)]]", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mInvalidArgumentError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Building the model...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmodel6\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuild_model6\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlr_d\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munits\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mspatial_dr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size1\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel_size2\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdense_units\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m64\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconv_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mTrain_And_Prediction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m#print(train)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mTrain_And_Prediction\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Training the model...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;31m#model.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 1, verbose = 1, callbacks = [early_stop])\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1037\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1039\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1040\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m def evaluate(self, x=None, y=None,\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2695\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2696\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2697\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_session\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'_make_callable_from_options'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2698\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_sparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2699\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36mget_session\u001b[0;34m()\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0;31m# not already marked as initialized.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m is_initialized = session.run(\n\u001b[0;32m--> 199\u001b[0;31m [tf.is_variable_initialized(v) for v in candidate_vars])\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0muninitialized_vars\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mflag\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_initialized\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcandidate_vars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 927\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 928\u001b[0m result = self._run(None, fetches, feed_dict, options_ptr,\n\u001b[0;32m--> 929\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 930\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 931\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self, handle, fetches, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1150\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfinal_fetches\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mfinal_targets\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfeed_dict_tensor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1151\u001b[0m results = self._do_run(handle, final_targets, final_fetches,\n\u001b[0;32m-> 1152\u001b[0;31m feed_dict_tensor, options, run_metadata)\n\u001b[0m\u001b[1;32m 1153\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1154\u001b[0m \u001b[0mresults\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_run\u001b[0;34m(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)\u001b[0m\n\u001b[1;32m 1326\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhandle\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1327\u001b[0m return self._do_call(_run_fn, feeds, fetches, targets, options,\n\u001b[0;32m-> 1328\u001b[0;31m run_metadata)\n\u001b[0m\u001b[1;32m 1329\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1330\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_do_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_prun_fn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeeds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfetches\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m_do_call\u001b[0;34m(self, fn, *args)\u001b[0m\n\u001b[1;32m 1346\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1347\u001b[0m \u001b[0mmessage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0merror_interpolation\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minterpolate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1348\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode_def\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1349\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1350\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_extend_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mInvalidArgumentError\u001b[0m: No OpKernel was registered to support Op 'CudnnRNN' with these attrs. Registered devices: [CPU,XLA_CPU], Registered kernels:\n \n\n\t [[node bidirectional_1/CudnnRNN (defined at /usr/local/lib/python3.6/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py:922) = CudnnRNN[T=DT_FLOAT, direction=\"unidirectional\", dropout=0, input_mode=\"linear_input\", is_training=true, rnn_mode=\"lstm\", seed=87654321, seed2=0](bidirectional_1/transpose, bidirectional_1/ExpandDims_1, bidirectional_1/ExpandDims_2, bidirectional_1/concat)]]\n\nCaused by op 'bidirectional_1/CudnnRNN', defined at:\n File \"/usr/lib/python3.6/runpy.py\", line 193, in _run_module_as_main\n \"__main__\", mod_spec)\n File \"/usr/lib/python3.6/runpy.py\", line 85, in _run_code\n exec(code, run_globals)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py\", line 16, in \n app.launch_new_instance()\n File \"/usr/local/lib/python3.6/dist-packages/traitlets/config/application.py\", line 658, in launch_instance\n app.start()\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/kernelapp.py\", line 477, in start\n ioloop.IOLoop.instance().start()\n File \"/usr/local/lib/python3.6/dist-packages/tornado/ioloop.py\", line 888, in start\n handler_func(fd_obj, events)\n File \"/usr/local/lib/python3.6/dist-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py\", line 450, in _handle_events\n self._handle_recv()\n File \"/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py\", line 480, in _handle_recv\n self._run_callback(callback, msg)\n File \"/usr/local/lib/python3.6/dist-packages/zmq/eventloop/zmqstream.py\", line 432, in _run_callback\n callback(*args, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/tornado/stack_context.py\", line 277, in null_wrapper\n return fn(*args, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py\", line 283, in dispatcher\n return self.dispatch_shell(stream, msg)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py\", line 235, in dispatch_shell\n handler(stream, idents, msg)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/kernelbase.py\", line 399, in execute_request\n user_expressions, allow_stdin)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/ipkernel.py\", line 196, in do_execute\n res = shell.run_cell(code, store_history=store_history, silent=silent)\n File \"/usr/local/lib/python3.6/dist-packages/ipykernel/zmqshell.py\", line 533, in run_cell\n return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 2718, in run_cell\n interactivity=interactivity, compiler=compiler, result=result)\n File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 2822, in run_ast_nodes\n if self.run_code(code, result):\n File \"/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py\", line 2882, in run_code\n exec(code_obj, self.user_global_ns, self.user_ns)\n File \"\", line 2, in \n model6 = build_model6(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n File \"\", line 7, in build_model6\n x_words = Bidirectional(CuDNNLSTM(50, return_sequences=True))(x_words)\n File \"/usr/local/lib/python3.6/dist-packages/keras/layers/wrappers.py\", line 427, in __call__\n return super(Bidirectional, self).__call__(inputs, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py\", line 457, in __call__\n output = self.call(inputs, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/keras/layers/wrappers.py\", line 522, in call\n y = self.forward_layer.call(inputs, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/keras/layers/cudnn_recurrent.py\", line 90, in call\n output, states = self._process_batch(inputs, initial_state)\n File \"/usr/local/lib/python3.6/dist-packages/keras/layers/cudnn_recurrent.py\", line 517, in _process_batch\n is_training=True)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py\", line 1544, in __call__\n input_data, input_h, input_c, params, is_training=is_training)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py\", line 1435, in __call__\n seed=self._seed)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py\", line 922, in _cudnn_rnn\n outputs, output_h, output_c, _ = gen_cudnn_rnn_ops.cudnn_rnn(**args)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_cudnn_rnn_ops.py\", line 116, in cudnn_rnn\n is_training=is_training, name=name)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py\", line 787, in _apply_op_helper\n op_def=op_def)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/deprecation.py\", line 488, in new_func\n return func(*args, **kwargs)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py\", line 3274, in create_op\n op_def=op_def)\n File \"/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py\", line 1770, in __init__\n self._traceback = tf_stack.extract_stack()\n\nInvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'CudnnRNN' with these attrs. Registered devices: [CPU,XLA_CPU], Registered kernels:\n \n\n\t [[node bidirectional_1/CudnnRNN (defined at /usr/local/lib/python3.6/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py:922) = CudnnRNN[T=DT_FLOAT, direction=\"unidirectional\", dropout=0, input_mode=\"linear_input\", is_training=true, rnn_mode=\"lstm\", seed=87654321, seed2=0](bidirectional_1/transpose, bidirectional_1/ExpandDims_1, bidirectional_1/ExpandDims_2, bidirectional_1/concat)]]\n" ] } ] From b7f772688bb22b6ad753f46c47b4ddfe8c303435 Mon Sep 17 00:00:00 2001 From: MangoHaha Date: Wed, 12 Dec 2018 11:23:54 -0800 Subject: [PATCH 8/8] Add files via upload --- SentimentAnalysis_copy.ipynb | 1947 ++++++++++++++++++++++++++++++++++ 1 file changed, 1947 insertions(+) create mode 100644 SentimentAnalysis_copy.ipynb diff --git a/SentimentAnalysis_copy.ipynb b/SentimentAnalysis_copy.ipynb new file mode 100644 index 0000000..6c8c0cd --- /dev/null +++ b/SentimentAnalysis_copy.ipynb @@ -0,0 +1,1947 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "SentimentAnalysis.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + } + }, + "cells": [ + { + "metadata": { + "_uuid": "839fc1317e1b7253241839bbfa2d40303c53a3f1", + "id": "CDx4CA09GZG8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## General information\n", + "\n", + "In this kernel I'll work with data from Movie Review Sentiment Analysis Playground Competition.\n" + ] + }, + { + "metadata": { + "id": "Vq4S5_HIGpBc", + "colab_type": "code", + "outputId": "92890594-d1dd-426e-a5ba-6f394c2ea339", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 280 + } + }, + "cell_type": "code", + "source": [ + "!pip install lightgbm wordcloud\n", + "!pip install pydot && apt-get install graphviz\n" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Requirement already satisfied: lightgbm in /usr/local/lib/python3.6/dist-packages (2.2.2)\n", + "Requirement already satisfied: wordcloud in /usr/local/lib/python3.6/dist-packages (1.5.0)\n", + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.1.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from lightgbm) (1.14.6)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from lightgbm) (0.20.1)\n", + "Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from wordcloud) (4.0.0)\n", + "Requirement already satisfied: olefile in /usr/local/lib/python3.6/dist-packages (from pillow->wordcloud) (0.46)\n", + "Requirement already satisfied: pydot in /usr/local/lib/python3.6/dist-packages (1.3.0)\n", + "Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.6/dist-packages (from pydot) (2.3.0)\n", + "Reading package lists... Done\n", + "Building dependency tree \n", + "Reading state information... Done\n", + "graphviz is already the newest version (2.40.1-2).\n", + "0 upgraded, 0 newly installed, 0 to remove and 8 not upgraded.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", + "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", + "trusted": true, + "_kg_hide-input": true, + "id": "9K7leB0DGZG9", + "colab_type": "code", + "outputId": "b520c044-e2b5-44fb-ac24-33a8de490c06", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "from nltk.tokenize import TweetTokenizer\n", + "import datetime\n", + "import lightgbm as lgb\n", + "from scipy import stats\n", + "from scipy.sparse import hstack, csr_matrix\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from wordcloud import WordCloud\n", + "from collections import Counter\n", + "from nltk.corpus import stopwords\n", + "from nltk.util import ngrams\n", + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import LinearSVC\n", + "from sklearn.multiclass import OneVsRestClassifier\n", + "pd.set_option('max_colwidth',400)\n", + "from google.colab import drive\n", + "import nltk\n", + "nltk.download('stopwords')\n", + "from google.colab import files\n" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package stopwords to /root/nltk_data...\n", + "[nltk_data] Unzipping corpora/stopwords.zip.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "yoOIXlOaxB9k", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Data Preparation:\n", + "Import dataset are stored inside my google drive" + ] + }, + { + "metadata": { + "id": "NOvuWhQPLPmH", + "colab_type": "code", + "outputId": "155639e3-7355-4644-85dc-7f220c1718fa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 124 + } + }, + "cell_type": "code", + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')\n" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fpeopleapi.readonly&response_type=code\n", + "\n", + "Enter your authorization code:\n", + "··········\n", + "Mounted at /content/drive\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZnmH5hSQxQYa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Read dataset: train test submission" + ] + }, + { + "metadata": { + "_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0", + "_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a", + "trusted": true, + "scrolled": true, + "id": "Qp7EQ0TrGZHB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "train = pd.read_csv('/content/drive/My Drive/DeepLearning/train.tsv', sep=\"\\t\")\n", + "test = pd.read_csv('/content/drive/My Drive/DeepLearning/test.tsv', sep=\"\\t\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "y = train['Sentiment']" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Xyqvz9eLfST8", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "class2 = train[train['Sentiment']==2]\n", + "class2Sample = class2.sample(frac=0.5) #, random_state=3\n", + "train = pd.concat([train[train['Sentiment']!=2], class2Sample])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "rilTf7HZbM4y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "This dataset is interesting for NLP researching. Sentences from original dataset were split in separate phrases and each of them has a sentiment label. Also a lot of phrases are really short which makes classifying them quite challenging.\n", + "We can see than sentences were split in 18-20 phrases at average and a lot of phrases contain each other. Sometimes one word or even one punctuation mark influences the sentiment" + ] + }, + { + "metadata": { + "trusted": true, + "_uuid": "f9b8d8423bb09068cb168b67f4756ee8b250fc8c", + "id": "xBg-49HYGZHE", + "colab_type": "code", + "outputId": "4a3df630-c856-4270-ec54-198e3161f767", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 713 + } + }, + "cell_type": "code", + "source": [ + "#print(train.head(10))\n", + "print(train.loc[train.SentenceId == 20])\n", + "print('Average count of phrases per sentence in train is {0:.0f}.'.format(train.groupby('SentenceId')['Phrase'].count().mean()))\n", + "print('Average count of phrases per sentence in test is {0:.0f}.'.format(test.groupby('SentenceId')['Phrase'].count().mean()))\n", + "print('Number of phrases in train: {}. Number of sentences in train: {}.'.format(train.shape[0], len(train.SentenceId.unique())))\n", + "print('Number of phrases in test: {}. Number of sentences in test: {}.'.format(test.shape[0], len(test.SentenceId.unique())))\n", + "print('Average word length of phrases in train is {0:.0f}.'.format(np.mean(train['Phrase'].apply(lambda x: len(x.split())))))\n", + "print('Average word length of phrases in test is {0:.0f}.'.format(np.mean(test['Phrase'].apply(lambda x: len(x.split())))))" + ], + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "text": [ + " PhraseId SentenceId \\\n", + "536 537 20 \n", + "537 538 20 \n", + "538 539 20 \n", + "539 540 20 \n", + "540 541 20 \n", + "541 542 20 \n", + "542 543 20 \n", + "543 544 20 \n", + "544 545 20 \n", + "545 546 20 \n", + "546 547 20 \n", + "547 548 20 \n", + "548 549 20 \n", + "549 550 20 \n", + "550 551 20 \n", + "\n", + " Phrase Sentiment fold_id \n", + "536 It 's everything you 'd expect -- but nothing more . 2 0 \n", + "537 's everything you 'd expect -- but nothing more . 1 0 \n", + "538 's everything you 'd expect -- but nothing more 2 0 \n", + "539 everything you 'd expect -- but nothing more 1 0 \n", + "540 everything 2 0 \n", + "541 you 'd expect -- but nothing more 1 0 \n", + "542 'd expect -- but nothing more 2 0 \n", + "543 'd 2 0 \n", + "544 expect -- but nothing more 2 0 \n", + "545 expect -- but nothing 2 0 \n", + "546 expect -- 2 0 \n", + "547 expect 2 0 \n", + "548 but nothing 2 0 \n", + "549 nothing 1 0 \n", + "550 more 2 0 \n", + "Average count of phrases per sentence in train is 18.\n", + "Average count of phrases per sentence in test is 20.\n", + "Number of phrases in train: 156060. Number of sentences in train: 8529.\n", + "Number of phrases in test: 66292. Number of sentences in test: 3310.\n", + "Average word length of phrases in train is 7.\n", + "Average word length of phrases in test is 7.\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "tI8pN6fob_mC", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "On Overlapping sentences in both Train and Test set" + ] + }, + { + "metadata": { + "id": "7K_b0M-0Eye9", + "colab_type": "code", + "outputId": "cd7b539e-acf5-43be-b654-07ab25094608", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + } + }, + "cell_type": "code", + "source": [ + "save_test = pd.merge(test, train[[\"Phrase\", \"Sentiment\"]], on=\"Phrase\", how=\"inner\")\n", + "print (\"Number of overlapping phrases \", save_test.shape[0])\n", + "print (\"% of neutral sentiment phrases\",save_test[(save_test['Sentiment'] == 2)].count()[0] /save_test.shape[0])\n", + "save_test = save_test[save_test[\"Sentiment\"].notnull()]\n", + "save_test.drop(['SentenceId', 'Phrase'], axis=1,inplace=True)\n", + "save_test = save_test[save_test[\"Sentiment\"].notnull()]\n", + "\n", + "import math\n", + "def get_sentiment(row):\n", + " old_s = row['Sentiment_x']\n", + " new_s = row['Sentiment_y']\n", + " if math.isnan(new_s):\n", + " return int(old_s)\n", + " else:\n", + " return int(new_s)" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Number of overlapping phrases 6597\n", + "% of neutral sentiment phrases 0.5787479157192663\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4ggBRYFGKih5", + "colab_type": "code", + "outputId": "6d83aa7b-602d-49a4-967a-163cd7b2da89", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1303 + } + }, + "cell_type": "code", + "source": [ + "from wordcloud import WordCloud,STOPWORDS\n", + "\n", + "def wordcloud_draw(data, color = 'black'):\n", + " words = ' '.join(data)\n", + " cleaned_word = \" \".join([word for word in words.split()\n", + " if 'http' not in word\n", + " and not word.startswith('@')\n", + " and not word.startswith('#')\n", + " and word != 'RT'\n", + " ])\n", + " wordcloud = WordCloud(stopwords=STOPWORDS,\n", + " background_color=color,\n", + " width=2500,\n", + " height=2000\n", + " ).generate(cleaned_word)\n", + " plt.figure(1,figsize=(13, 13))\n", + " plt.imshow(wordcloud)\n", + " plt.axis('off')\n", + " plt.show()\n", + "train_pos = train[ train['Sentiment'] == 4]\n", + "train_pos = train_pos['Phrase']\n", + "train_neg = train[ train['Sentiment'] == 0]\n", + "train_neg = train_neg['Phrase'] \n", + "print(\"Positive words\")\n", + "wordcloud_draw(train_pos,'white')\n", + "print(\"Negative words\")\n", + "wordcloud_draw(train_neg)" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Positive words\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXVYFN0Xx7+wtKQKigomKIqFioot\noih2dxcWBha+xmu+JnZgdwcqCgIKigEKFoqKCSaNpNT+/tjfLju7szG7s4XzeR4fd+6ce+/ZYVnu\nufeEFpvNBgMDAwMDAwMDAwMDAxnaqlaAgYGBgYGBgYGBgUF9YQwGBgYGBgYGBgYGBgaRMAYDAwMD\nAwMDAwMDA4NIGIOBgYGBgYGBgYGBgUEkjMHAwMDAwMDAwMDAwCASxmBgYGBgYGBgYGBgYBAJYzAw\nMDAwMDAwMDAwMIiEMRgYGBgYGBgYGBgYGETCGAwMDAwMDAwMDAwMDCLRUbUCImDKT2sw2950gVe9\nEIXOcezjWHSx9kYVQ0eFzsPwd3Pi+H2MHNVG1WoIMd3zCHbtGatqNVRGbEYiHqS8xZvM73ib9R3Z\nhfkAAFNdQzQws0F9s6oYVqMtdLVZKtZUM7mYEInYzES8zvyKlD+/kV34Bya6BrAyMEMDMxu0qFAb\nXa0bqVpNtSQxNxV3fsYi7vd3vMpIxO+iPBSzS2CsYwB7E2vYm1pjgG1LVDYwV7WqDH8XWnIPwGar\n5dpcLZUSR7NJvojeP0fVaqgF8hgMVxIXo6/NOqnmsNCrhtG1jsg0DwODNEgyGDb8dx0LFvVUokZ/\nF5Ep8Zj15AjYNP1J8KjqhOUNB9IylqJxDvSRSi7Kfa3Mc4T8fAmfZ6dl7i/I8BptMLueB23jqTOF\nJcWY8Ggv3vz+Rst4hiw9nGozC1WNytMyHgODAIzBwKB+yGMwKON0Qpmsi9uE17/f8K6PtzxAuD8q\ncqJQGwD8E7sSX3ISYKZrip1OWxSupyR9/jZcO3IWYVM9XTFoSEtC25Wrc2BiaggP943Izy+EgYEu\nACAgcD7YbKBLJ47c2QszUbGiCen4oSGvsHa1P1gsbRQXlyA0zAdFhcXo5raecz/Mhzen4GuvmccR\n+zKR1w4Ae3aH4sK5SEJfTaWEzUb74OUoKClS6Dy7WkxAiwq1FTqHPCjSYOgdtgE/8zMo96NCqOsy\nmOgaKHQOVbDh9VVcSHik0DkczW1wqJWnQudg+OuQ22BQV5cktWTov8fRukEN3I55j59pvxG51wsA\n8Cs9Gz0W7CecMJSUsNFiylZ4DWyHbRfu8e79KSyCy7QdGNihEa4+eI2Hu2cCAGZuuwxjQ31YmRvj\nzO2nvLFl4Vn6JUSlnETzCsPgVJ58N40NNs5/8UJGwTf0qrYK1ob1SeXuJu3B83R/NLXoj7ZWk0ll\nXqRfxd2kPWhnNRWNLfrIrDed+MUPQG2TNnCtPBevM4NwL2kvpthdFpK78W0lPmQ/gEfVZahl7EK7\nHq9/vxG7ABd1b7XjMgDAjJi5tOvEIJ4JY/fzFt2rV17htQsu3AMC58O141oEBM7nyXTpJLzAJ+PD\n+18Iub0YWtpaOH4sAgDQzW09T95z8iHs8RuPOnUqCc2/bcconvHCPx73/oC+W3HxymzZH4CKGHB3\nMxJzU5U23/THB3mv5dmlVzUbX1/F/Pq9Jcql/MlCjzuST2/pwjV0JQCge5Um+LfRYKXNqwjis35g\nxP0dSpsvNiORZzCubDQY7lWaKG1uBgZRMAYDBeK/puDM8lHwGtgOzSb58torWRgLybaYspVnJIzu\n1hzTfC9h95z+cJm2g9e+eKQrT/5B7Gde+4ngaJl1PPB+MHKK0tC8wlA8SD6Ee0l7efe4O/d/SnKw\n913pwv7cl1mE+1y2venCex2ddg7RaefEyoT92oGwX7J9qfKPw/9a3HxWBvYYVmO30P06Jm2RV5yJ\n2Iwb0AILLzOuAQD2xvfFVLsrpGNd+7qMdD5ZOf7lNGLSnwPg7Nrz2v9vIKx4tRYfsj8S2qTlW953\n3PwRjK6VO8PWyAaTnszA/uY7eXMdb3kA06JnY3ezrdgRvxcZhZlYWn8hr3948j2cS7yE8nrlsaz+\nIuhq64qca1TkRPSp2hMDq/UFAJSwS+DzcgUMWYZY3mCxkOzS+gtRTqcclseuQa8q3dGnqua56yQl\n/+a9rlLVAgBwM+A5qlSzQOPGthL7Z2dz/On9r4s29ozK6UNLm7Pho6UlvPHz42cmAGDfgQlgl7Ax\ncfwBHDwySeR45SsY8+Y9emKqRB3VicTcVAy4u1mlOjgH+mCafVeMrdVRpXrIwvmERxINho2vr+K8\ngnfFRXHz+zPc/P5MY42yjsErkFtcoLL5l704hxUvz+NRtzUq04GBAWCyJFHC2FCfknyzSb68f5Gv\nv0gtLw85RWnwqheCNpYTMaPuDV47/0J477s+6GOzFl71Qnj/AKCYXfqluPtdL2hBmyCjBS0cfD9M\naM7Jdhd5MjWNW8mkN78egnqJkhOFEcuCJ/My4xq86oVgTK2j+FOczff+eqKifm2xc8lD36q9sNLx\nH85czbby/nFZ0cBHZtefPR8OoFn5pljy8l+MipwIlpY2wSiZ/GQmsoqyMSpyIlpWaIF3WfG8e9vj\n9+Dwp+MYYTsEZrqmGP9Y9LH37KcL0MGyHc9YAIAxUZPRskIL2BpVw6jIiShhlxD6PM14gaWxqzDQ\npi8ufL0iOKRGsGxFPxw8EAYAOHn8PgBg377bpMaChUU5wjWLpQ0DAz0YGxtAX1+0IUaGtnap4bB9\nxyje614em/H5c7LYvqHBsTA2NoCxsQH09DRnH2jxs1MqNxa47H53S2o3IE3COdBHZcaCoB7pBTmq\nVoMSzoE+KjUWuJSw2XAO9KEtloeBQRY05y+LGpCd94eSPNUgaEUETVczaoKvuc9410/TLgIAapRz\nJsi1sZyInW978BbOhSV5QovoWfWCCbvyEcn7AQCGLDNeW+9qqwkyqqBTZWF3LnO9qoTrwpJ8jKi5\nT0ju5KfJGFHTT24dTHSMSV/TwZecBDQ152Qo2e3kCxNdE4LBsLnJOuhq6WLSk+lwLt8MRixD3r1Z\ndqUGgkvFVpgaPYt0jlGRE9HQrAEm1hpDaOM3chqZO2JM1GRC2/XvN3nX7pXd5HynQK1TpbuSLpVr\n4ETn4XKPKYkWLWqhRYtaAErdgK5cLf3d5HczunCZ+Fm7FbqI91pXV3SGHv5Aau7r4NulJza21Svy\nXl+/6S3UX9DVif9aUwwGdV2cOwf6oLFFdexvOUXVqshFEbsYLkFLVa0GgW6312CuQ08MrU6/+yed\nqOtns2XgEgCa7ULHoLloxl8WNaFqRTP4nruLsGcfoMMqPZxJSOIEj73+/At1qlaAnq4OnvjNQbNJ\nvhjUsTFeff6JgwsGQ09XBxE7Z6DZJF8M7NgYka+/4MqacQCA7i3roZu3Hzo2qY0L4S9oMx74jQUA\neJp+iVSusUUf3E+mtuP9JlOzg5PJDJuUPx9VoAk1jHVKd7VNdIWDagUNFEGXo/SCdBz7fBrvsuOR\nU5Qr1H9c1FRoQQsL6gl/BvkNEzIMWGUvyJGBXqLTPsIzSr0D65+nf8HKlxewTEMyKpGhbsYCly1x\n12GgrYu+Ni1UrQop6mos8OMc6MMYDQxKhzEYKJCZk485g9tjzuD2hHZbK3OhBb6WFvmJgaG+Lmn7\n6ondea/5Yxuo4lUvhLAQtjNpjx5Vl/GutUV4ocl21KnZx6Oamo2JpSV7bvlRkRMxt+4seNlPAwBM\njxH+LB523osxUZMxNmoyjjgTT1skuVHpa+vJrBtD2UcTFmNcrn+LwfVvMRq5MFP357z21WX0qNoU\netrqswT5nJ2EwRFbJQuqCX+L0ZCSewsJmX7I/vMK+jpVYGs2GdYmQyT2K2EX4NmPocguiEM5vXpw\nqnIBWpDub+erpGnIyH+MNraPeW15hZ8R/b0PapVfgComI8T2Ly7JQVzKPKTlhsPUoCmaVD4l1bzq\nDhPDUMZIzHkKKwM7nl8+v7EAAM0rCMcgAMDzdOr+5nVNO8ukI4Nq4bozAcDvwixSmaPOfihmlxAM\nST1tPWQXZZPKM6ieWqfWEly41I3JkfK7+qkCdd2p5+dTdhLvtbobC1za3lomWUiJaJKxwEVTftay\n8PLXRIR/tserpBnI+vMCbBQjvygR71KXIvyzPd6kLBTZN/yzPe59cURWQSzYKEZ2wSvc/eyA8M/2\nIuW596K+uSElNwRFJZkE+ahvXVHMzkN86r8I/1xXzNz1EJHQFKm5t8FGMTLznxDG12TUx7zXAMK3\nT1O1ChIJS9qJzIIfKGYXgKUlvNvraN4DoT+34ENWBGqbtOW1P0g+hKn2/rxrE91K2P7GDbPqBfPa\ntr9xgwGr1AWmndVUxKRdQH5xFq897NdOud/Dt9wXqGqk2CqiutoGKq35sCZuIy8YeWzUZFQzrIr+\n1frAyaIJXv9+gwMfjyD5TwoAwDPaC/YmdphjP4OWufndisbXHC1S7njLAxgVOZEXJ3GwxW4hl6SG\nZg1IXZcYlMuuV/dVrYJYFLGwqWlshY6VGqB5+Vow0TVAfnEhfuRlIPzXa4QlvUIJTTWGitjFar+b\n6/XkCK52XCD3c9Zn6cK1kiPaWNZFJUNzGGjrIjE3FZ+yk3Dy8z3kFFGL45OEOjzXvOICdAheQeuY\nlvqmaF/JAS0r1EFFfVOwtLSRWZiL6LSPuJ/8Fu+zftI2lzo8Q7rhX1xraxmiUeXDMNN3Qn7RN8T8\nGIDC4jTUq7heqB+bXYS7X0pTxHeo8U5ozPDP9oR2fp5880BBcQo61HhHkOeOVViSgQcJzhDlXVGq\ntzbaVX8KbS1DAGyegSFubk2AKdxWxmCjBNvfdBVq518Ys8HG9jfCAaniUphSkSGTkxbB8fjHERdM\nzZXjNwK48mT3RI2nqW5KZRVVBD1rIvzP6eNw9dp1TMhJwcB78hcfrGVcCWfaUq9Pk16QjW636VlQ\nKXNhRnXxH+W+ViaD4VArTzia21Dqk1aQDXcNfKZk0GHM2plY42SbmTL1nRK1H0/TPsmtg6qfI13E\nJc9BUk4AAMCxkh8qGHaUui93wa7HqojWNg+E7j9IcEZhCSfmlMyYkKad34Dg5+WvSUjLCye9x9+v\nglEnOFoJJ1xRAkylZ4ZSBBfIXM5+noGc4jSMr102/OgY/h4Yg0E61NVgeJr2CVOi9svc34Cli7tu\n/9KmT0zaJ0yVQx9rQ3P4d1hAmz7iUKS7SZjbChix6Ik3Ck96jfkxJ+QaQ1WLXXmecY1yljjXjt7T\nVdfQlcgqzJepb1kokAeULqwbVz4BcwNnCdLkfcXt4pPJSDIY6ltuhWW5HmLnkHVuqrQauQWPTshU\n0FVug4GJYaCBtv03oW3/TTh6XvW5rp3KDxJqM9KxgI4WtRoSDAzqho4W83WlachjLMys606rsQAA\nTuVryrU4/ZGXQctusKqw1DdFlPta2owFAOhgVR/3aP45KQP+St9U8e+wgHZjAQBCXZdhnoNsxS5v\nfn8mWUjNycwvLVpL1VhIy7sr81ySKC/hlOP3nxhKc2sqTAxDGSMm7TzaWZXmD88tSsfH7IfwtL+q\nQq3KPk+SE7Hn1UPc//kJ5Q2M4FnfBaPsm9E2fn5xEVZHByP0WzxyiwrRzLIadrbtByMd+f/wz390\nDeHfP6KEzUY761rwdRFfNVZVmOoRU7Y+T/2OOQ+uIjE7HR2q1MaK5t1QrZyZiN7Sk/4nD2ufhuBm\nwlsYsHQw3K4p5jbqIPe4ABDyNR47YiPw/ncKSthsNCxvjW429phQr6XMY975/p4W3ejmxKd7MvdV\n9I5zlPta7Hl3C4c/hlHuOyVqv0a6f5xvNxfVy1WULCgD+ixdmV2iAE59hqDOS2jWSjyPUz/I1E/R\nP/sh1V0wpLqLTM9S0+MZEjL3yNw3MZPa5sSXzJ1oZHCY0MbSMiSVZWkbiR8rYzfvNZXg5pBHb/HP\nzgCUM9RDXn4hHhyfgyU7riM0knMCwT1JmLzyDF68+462TrV4fU8EPMHO03cJcoqGMRjk5Pnrr6pW\ngYdXvRBcTlwo5Js/zf46dLWZ/Ph08zz1O/oFHRFq/5mbheVPgrD8SRAAYGzdFljWTHIRMzK3kqYX\ntiCzQPiIOuz7Bzie2wQAMNLRRezg+ZR073J9Hz7+ThVq9/8cC//PsUJ6qAM1TCwAgDQT0O1v73H7\nG2fhrM/SQdwQ6m4jZOPmFhVgZ+x97IzlBBXbmVVEkMdkSuN63DyAuPQk0ntPkhPxJDkRa2JCeW12\nZpYI8phESU8q95XxM80rLsD2tzdl6qusBY+nfVf0tWmBPuEbKfcdcHczLrafpwCtFIOynqmsRoOy\nK0DLoqONUQWl/sxlfZYl7BJoa+hpbHq+cNyBtGTmP6Ekn5En7BHC0i5HIikZWfUOj+b8zQrdPwOt\nRnLivNbM7Ik1AuEw35MyeUYBVy7ofhyvrcf0vbixa6pMOlBBMz9VasTMZWdVrQKBfjbreSlVuf8Y\nY4F+4jNTSI0FMo68fYyljwMpz7HiyS1SY0GQ3KJCSuk0a51aS2osiJJVF2yNLaTS509xEWW9pZWP\nz0xBfyl/7gAw7s4ZkcaCKGT1YVYnZM06o+zdUWtDC5xwoR6smpgr3e+POqDsZ7q9+TiZ+j1P/0Kz\nJuTIYpwY6eirxECU5WfXKugfqeTs1/pSHlvRsLRkW7ADgC7LgpK8Dstc5rkE4de7Q413Ev9xMTMW\nPtFwGe2L5HRi+vKGdlWE5CxMjfD1Vwa+/sqA37KhtL0XcTAnDHJSUsLEZ/9tTAg7J+QGEj9sEVgC\nuzpu1/fhw/8X5ifjY3AyPkbq3V3+BayeNgtvhgrnnBZc5MZnJsPOzFLqcQFgXuMOmN6gDaFt3dNQ\n7I+LJPRRh5OGBY+u817HDVkAfRbx60vwvbW5shP3+0pORSvY73F/L1QwIP7h4n8mz1K/S/VMdr96\ngPAfpZXDW1jZ4GyXUaSyg4KPITqZc1r5oK/4BSzZvOoU9CxbEUjVBb7am1ojoutKynUBNMH9Y66M\n/vDy0KqinUz9JkXuU8rz7HZ7DeU+YV2WK0AT6XjQbRXlWiCRKfFoKebn4H1VttM/RVPVdDS+ZOyQ\nqW9185mIT5X+51TdzFOmeciwMZuIT+mbaRmrpIQNSwtjbD0RhtkjOwIA7jzmpGDfe640fXZU7BdU\nq8QxevL+FNIytySYEwY5UM8EUwyKRtBY+DjcR8hYAIDgnlPQwoqYrvDQmyhKcx3pNJTUWODOy0+3\nAPE+nAsjA4T6CxoLALC4qavQ2O9/p0ijrlL4ONxHyFjgtlcpZ8q7/pH7W+JYgsbCx+E+QsYCwHkm\nU+u3JrRJeiabnocRrkUZCwBw3m00Pg73QVhv+v6IqYqWgdR90QfYyh7DQQfqVHGYToZWd1HJvN71\ne6lkXkmseHGecp8H3VYpQBPp0dGSrjoxPzOfHCZtb7xxB+zX+uJq7BsAnFMG7j9+yE4fxMnxj8Mv\nY7/WFz+zsoXuh70nTxxQw1y21LQAUMWEvCitKKqaiq5BRBVbsymShaTk5u6p6Dp1N89YAIB7R7zQ\ncfx2TB1c+vf60Ym5GL3kOCYsPw1DfV3a5hdHmfuW3OwXgsuBorMFVLY0hd/6EShvLvvRF5cuw1RT\nGXL3sXCcuvJYqN1AXxfbVw5GfTtrhesQEvEGK7ZcJ723eIY7PDo7KlwHVTDw1lHCtaTd3LNdRqF/\n0BE8S/0OAFgdE4Lx9aTP/tDeupbY+++GLoL9mf+kGuv8h+e81zd7TBQjyeHlIG80PM+Jk+h63U/l\nO9eA5Ocd0WcGwQigcjoiSW5Bk0449f4pfv/fTYzKM/Fq2E4qOVtjasfq6oYs7h7aWlpYWL+PArSh\nhiw+4+p8yqBKvQbbtsam19dUNr8obnx/Skl+dr0eMi3Y6SbEdSm6hMpvuDyfz1mQcxf173zkz/Rk\nv9ZX7Djtd+zHywUzoa/DWW56XQ7A5HNXJM4tT5GzlNwQVDQSrrOUkqvIOkta4BRpk15v7zGd4T2m\nM4DSwGULUyPc2kssEqyrw0LYoVkEOQA4tkb0JpQiKDMGQ9v+m6SS+5n8G73Hl0biXz4wFZbljSX2\nuxz4DDuPhOFPQZFImf2nI7D/dIRUekRc8pZKjp++E/ciJS1b5P38P4WYvPAkAODw5tGwq2lFeQ5A\n+Fny65qXXwi34dvE9l+3MxDrdgaKfY/i5qCKx9hdyPydx7vW1WXhzlnFVB+OSfnGe72xlXS7aJe6\njZUpFkCaxaiOtnSHhIOCjxGu65pL/myU06Uv9aIy4XxtS4b/mVgbmYqRLOVJ/9lSG2j8bHt5T2qj\nQZORxd3jUTfqfRRFx0oNEPbrlarVKBM4mtsgNiNR1WrIxfAabVWtAgDAVJc8e4843mf9RB2TygrQ\nhsjugZKz6nGNBQDY1s8DN+NEL6gFqyyTLb4TMw/CxmyCULuj1R7EJnniVdI01Ku4HpWM+/Hu/cq+\ngjcpnGQYNS3oj0fpUOMtT+9HX9ujVTXBNK9sPP85BlblesHaRDj9vSag8S5JXivOSW0skNFv4l6J\nMm37b8JmvxCxxoIiufPwHdr23yTWWBBk3Lxjcj0XMjbsuSXRWJCVfSdlT8HIbywAUJixIMiAWg1l\n6ud6TfJnjm64/vEAYGMsW7DXssdBdKmjUKIHSvfz538m0sQ6ANIbaAAwqHZjwrXTBfULMmQgsqHp\nCMp9FFlgTVbU4dTjUCv1cq+j+nMiczNVJZucqO0mD7+/XUGaEOliX1vs/VY1qFURB4B21V/wXod/\nthf69zF9PWm/Ckau6FCD4271JmUhoQ/XWGhjG02rCxE/XOPmT9FPEr3rIiNf9bW65EG9fiMocvZa\nNKJfJMg1hktz8R92VXP8YiSWbpS9hgJdRsPV4Be4GvxCsqCUnN9LTBt5/GKkCEnxHDorexo2qux7\nTc8v+6esNFrGkZXRMtaHCPkme3VKZWKuR303ThGsb+lBuM4oyEOtU2sxKZy6H7UmMPDeFsp9ZC1S\nxVA2ic/6oWoVeNzvulLVKhBob+WgahVkwkCHuiOLtpYBOtR4h/qW5EaPtYm4itba6FDjHfRYxAQg\nuiwLdKjxDjraJpT1oUKHGu9I3aG0wEKTyqc19nQB0HCXpB2H7wi13T47G3q6ot9WYVExOg0u3enb\n4NNPpCwXUe4ygovxScPaYsygVhLHowLZzvvyOR5wa0f+5dF7/B6kZRD9iNv23ySXyw+bzTld4KKl\nBdy7SD7e5cBn2OwXgnq1xR+FWlsJF9gqKWFDW5ta9XJBg+HAxpGU+lMhMPGNwsYWhI4CZKJYExNK\nyPsvLb9ysxSgjfRI6zYkC4pKH/txuI/Q2KHf4nlt8cMWg6VF7TOvriTkUA+MH6KEoNxBI3bj/Emi\nT3CnbutxJ4g8mcCiBn3w3yt/SnME/3gBN+tGMutIJ7KkiVUXnqR+hJ0J/TF44b9eU+6jqbUM+Mkq\nzIeJruamVbcs544O5WTbqGptc1+y0P8RFXNA1i5NfEIDq90SZTQRzf+N4CPikrdYYwHgBI9EXPLm\n/VNnyE4HIi55izQWAODqIU8EHhf+gxH+KF5mPdoNKNUj4pK3SGMBAPq5N0HEJW+pFu7bVxJ3CdoP\nlD8tmSRDRR5ep/9S2NiC2JqoX/CrqpOCVVfDZyINH4f7IHoAuZuU3el1qHVqLfoGkWc1KcsYsEoz\newwYuhMAcPRE6R/5gcN2AQB27AnB2EkHpRpz5Dg/rFlPDLZt3ZJ4isy936nbenTqJuza0N+Gesam\nJc/PUO6jKOxNFZ/0QlE8SpH975Q45j89QUnevUoTheihbHqFk7vuNKmquZ8RBtWh0ScMZRmyCtLS\nGjjG5fQxfogLYfd9yQZ/uQ0kug0sJ0dbufp//ZFOkybSYaSji8yCYqXOqQiaWVYjTUuq7hQUK+7Z\nu1SuobCxAcBC3xAfh/vgReoPUuPgReoPtal3oSzOtSs1ombP7AoAOHI8Ak2bVEcjx2rwmuGGnv23\n4tjBSZjp2UXsqQAA9BuyA5fPzoT/9adYtvIyVi7jnB7PndWNILdkYS+E3H4tdixNRVvDT6sSc9Uj\nffPKRuJcXjSH3KI/pO3nxgzlpTi1MDJEem4eIWtROT09tSzsxqBaNG/V8Jcw/R/ijtWmfwZQ6i9o\nMACAz3p/rF0oW/pCZZ3GxMQmSG1IDJ1O3HUMOe2lCJV4dKxSB/6fYxU6hzIYYeeEvjU0L+1tbJri\n/JtPdB6usLH5aVTBmmcUpOTnwPkSMYlArVNrET1gDiz01SMOQ1pmPj5EuU9lg9Lg+3ZtONlFyluU\ng9e8k+jetSEWzOuBZSsvo7wFJwV2A4eqYse7fJZzstqnZ1Ns3XFLrKwk/DvMR5/wjXKNoQpudlqs\nahXkIvWP9Ik9/kZcKzsi9Cc9f4PEpTV96j1d7jHE3acjnassdHco/f24GbdO6P6hzYE4fyBcrIwq\n6e6wWKU6lSmXpPefk1WtgsJo5VRT7jHuRirmuFceTmwbR7ieteyczGMZKLh4ydi6zRU6vrI48S5a\n1SrIREGJ5p/u8FPRoBw+DvfBqhbuhPZmFzVvZy8y9b1kIQkkJf/GulUDAQA3b70Uuh/39rvcc0iL\ntSF197fUP6qN8QEACz3JKcLVmbziAtrHLGGX0D6mquhcSfM2etSJm3HrxC64x89zVzsjQZ0oUwbD\n2LlH0XEQ9Uwd6ga3loK8HPUdQ8s4S7160DIOGTVsKgi1ZeeQH6PyIxjfsWFJf9p0EkXjClVoGUfa\n+g2Kgr+WRFlElvSvg4OPK0AT6Rhh54TNrSXnMi/rDBm5B/Z2lbFqeenv8p2ghbxYA+853Wmbq7pt\nRZExDLIyJEI1hTwZxDPu0R7JQnx0sKqvIE3kR1MzJTGUDTTaYBAMmgWAouIStO2/CX0mUPuSUCde\nx9PjelG7uqVkISno1kGxX6DrFxMzVbmP2kF5DJdm4isiK4IeNw7I1E/W+g3y4N24I+E6p5D+nTx1\n4US8dCco/M/kSbJqC0z1q8nsHHJjCtq62BHiC+4ELcSdoIXo3lX63xtJ8QlH9k/gjUsXvwvzJAsx\nKJ24TGobJH1tWihIE/nRZylWCMAJAAAgAElEQVT2FF0d6VG/NK6ru8NiHN16i3DNz/XTjzCk9Sps\nWii7p4K8dHdYjNzsP+jV8B9eW5+my5AtUC8qLOA5xnRej1Gd/sPtq+QVyI/4BqF346WIffJJ5HzK\nfM8abTA4Odqif/empPdS03PQtv8mtO2/SenBsQzUaNOCWi2MkHvKS28qSFT/0jiJNxlJUvVRVMpO\nKkxrQExf2fA8vUX9lMWLVGrGdGUj0Tm3BZ/JwFtHZdLpbyetgLrfuUdVJwVowsAgP20s66paBQY+\n2Gxifr4z+4TT6QNAjwY+2LXSH7Z1KiH06lMhY0KZDGq1EsUlJejusBjdHRaj8E8RBrUsrevh918A\n1nufgY4uC2w2GxsXnsO6uacJYwxxWY2zfmGwa1AV80f5oW/TZULzKPs9a3zQ89xJrpg7yRXtBmwC\nW0TeR/7g2MATM2FspK8k7RhkpdvI7Qg6MYv03grf64TraaM7KEMlABy/c34kZbYRNBZipKxCrAje\nDF2IemdKXTCkzcozKfw8/nHqohZpTfsGHcY/Tl0wvp4z6X3B5/2gr/ic9HXNrfD2/4ZfTMo3dAvw\nQ5DHZLF98ooK0fjCZgR7TBH7TOqcXofnA+ehnK6e2PHI9JYHZWdb8ounXtNjch3hwkYMDOqAOlbu\nZgBysvIJ1xFBpcHfIzuuA7uETYg/+PL+l8qChANi1wAgBinzL+YnL/LA5EXEwp7dHRZj8ZZhAIDE\nj8n4nZ5D0P3O9WfYMP8s71oV71njDQYu3NoAkiobu4/cATNTQwQckS4LgDqgq8NStQoKx++/EZi8\nqDR2IydXepeZ4X2Ve4QsWIyr1qm1MNMzgL/7ONgacxaQiyIDcO7Dc0K/1pVqqLQKsZ628OeI+z4m\nOrREpyq1kVVYgFuJb3HpEzHo9B8n1S/wGpa3xsu0H1gdE4J1T0NxqdtYNCzPySc+NOQEopKIVd/9\n3ceRDUPgZo+JhJ9lfGYK73pZMzfUNbfE95wsPPz1WeiZSKKEzead5LC0tODXYRA6VanDu59TWID+\nt44gPpOYSvJMF/mLD9qd/g/hvaehSjlOsTs2gIAvr3Ej4Q12t6M33ifoxzPKfawNzSULqRg7E2u1\nqjzMwPA3s9zzKNwHtUDg+ccAgF2r/FG3kQ0AIPXXbzRoVoMgX71OJWWrSBvrvYXrunTq2YRgMKji\nPZcZg4ELN/3nvcj3WLz+CqlM5u88tO2/CYc2jYJ9LfX/UBUWla3sMGTUt5eukExQOLFip2NdegKR\nqSJoNGQW5KPjVdFxM2+GLiRdsCubj8N9EJmUgGEhxEJGB+IicSAuUkVaSYe/+zh0urYHX7LSUcxm\no0+g6GJnXarZ8YwJSXwc7oPWl7fjVx7RtWZldLBc+vJTzGZjQphkH9PYwfNhpEPdT1nw81jMLkFb\n/52Ux5GFHBG53jUdj6pNsfUNNYPhZUYCGprLV19GVuqZik87+zeSnP9b1Sr8taSl56DvGMkVj+9e\nnS9RJuRKDF5Ff8amE1MQcjkGty5FIyM1G6fulZ4GJf/IwMoZxOQVrV3VM4B9cKtVyMrMRadeTdB3\nVBtYViFuoHxPSJVqHGW/5zJnMHBp17IOIi55o7CoGJ0Gk6cpHO99HCGnvRSejpNBOpbP8cC/vgG8\na4+xu4ROglZtu0G43rtOOfnzyfg43AdT717Ara/iS8WrWzGulla2QgtMcfSq3kAt3JEA4E4vTzxO\nSsSQENFZjcJ7T4ONMbUd7If9ZqGwpBh1z0iXNedIp6ESn0l761q4++Oj1DrI+zmh8jNlkExdU+qb\nEVGp71VmMNQysVLJvOrMkzTpf/8Y1BPXPk64eOgu73ra0t7Yu5ZTrV2Lr1BhZloOlu0cpXT9ZCEr\nM1es25CLa32EigiE5kfZ77nMGgxcdHVYvFOHzX4huBxIPD7vMmyb0oqSSYuWFkTGY5Rl3No5EAyG\nTIGsAiUl6vdQ9rYfSNtYsi4Yld1PmZDp2MLKBh+H++D5j584+/wl1rq70TKXrjaL1mdypNNQ2saS\nFir6Lw0KxelnL/B+oeriatSZRubVKfeJzVBdtq0a5ejJileWeJL6QdUq/LXo6emgYnljpKTJV4zP\n+79BBP//7oOdsX35ZYLMlacr0bfpMrBL2NDSLjUi7t58gfbdG8k1vzIQDFb2Xj8YoVefIi+3AIZG\neqQyqnjPZd5g4Gfe5C6YMqKdTGk7lcmk4e3gd/Ke3OMIGkeayKptN3h1IHqMJrpYmJsaqUIlBjVh\nwDFOVgm6DAYGBn50ZXAh/JIjXfHQwcuP4cN3YbeD6P2yG29GLOFkHktH7cWq41NlHlPTkfbnwUA/\nxuX0cemIp1B7+96yVVCfsawP4dqmdumJmr6BLvyuz0GPBsQNk0ETO/AWz4ILbu61/7NV0NPXkVqG\nDgyN9Ahzbb8wA7MGEtc3Oy7ORP9my3nX/x2eiEXjSlO5S/Oe6eavMhgAzodYUbBBzw746AEtaTEY\nNvuF0KCNcrl30RvtBpQGrgeFv+YZDNm5RF/p60emKVU3BsUSHP8BnpeuSr3jzeyMM6gbmYW5EmWa\nTfLFwYWD0aQOvTEH+izhP+dPwuJonUPTSMxNU7UKDDQg6L5D5s5jU9tKrJuPNJmD6MguxD+GqNeX\nov+VOHed+lUkvm9J75luNLoOg6qxMCPucL//rLjdjDFz5M8RP3+q+u/E8rkkMvxleF66qmoVGBjk\nQtoAcLqNBTKCz0fy/ue+BoB/x+9HdxsvrPU8jFNbAwEA3W28UFxUAgC8/7l0t/HCkfXX0d3GC5pG\nXnHZDMhnYFAFjMEgB62cahKuwx6KD36lwp1zxN3TD1+oGSP7T0cItfXp2lgunZTFgqldCdfFxSX4\n/JV4fH9p/xRlqqR2bAyPQN0NWzHqzAWRMpdjX8Nh03b0O3pK7FhpuXmot3Eb73r5rdtotXMf8gqL\nhGSLSkowPyAIdTdsRbcDRxH07r1EXRfduIUGm3fA+3qgRFlFsT3iIRps3oGWO/Zh2S3qdQPEjdti\n+16J4/7+8wcttu9F8+17SJ8rPx33HsTDL6W+8A6btuNoNHkAXAmbjdFnLqLhlh34785dUhkuh5/E\noJHvTnhd5SQO0NFmvv7pRk9bfQ7t3Qa15P3PfQ0Aj4JjcTNxG3z2jMPw2e5ix+hu44WbidswdmFP\njF/cC7v/Ef19o47kFxeqWgUGhjKD+ny7UaRt/024e3EetCluSefmSZ/fXxJLZnbHzTuvCG2/Un6j\nUkVTucfW1WGhR2dH3LhdWpykbf9NUgVoj517VOi0I+S05uwO9e7aCBv2lpZ/7zFmp1BdBqsKoiv4\nlkXqrOdk+nq7YDbqbtgKADDQ0cHDL4nIyM+HuYEBqbybXW08+JLIu+Z34+G2VTYxRlFJCeqs98WC\nju3wITUNKTm5aLhlB0G+495D+JqZCQDoUc8eoe8/Yvrla0Ljcse2t6yAd8mpMDcwQCPrSrjyKg5X\nXsXhwfTJsDIuR5Al052L4Nitd/ohOSdH5H1+HDfvQH4RZ4Gux2IhLTcXp56+QEj8RzyYPklkP0nw\njwsAWoDIcbnvp7F1ZU5thi07hPTmf8/2lhUw6swFrOrmiqVBoTDV18eqkDCMaNqYsMjn9tHR1kab\nGrY4EBWNA1HR2N7HAz3q2ZPqULtCebz88Qt11vtihVtnofdVZ70vWFpaeLtgNqE9Iz8fzbftQcfa\nNXFgYF+pn9Pfhomu5DorRgZ6yPtTCEMNyc4neLIwbTV9iR4UjYmuIbIK8yQLMjAwSERjDQYAaD9g\nMwDAo7MjFs8Qv1MCAOPmHUP8pySF6jRgsh9tWZd8ZrgTDAaAYzTMm9wF/dybkPbpP3kfklKyhNo1\nLXXsiH7OOHk5CoBwEbd5k1VfRExV1N2wVaLvPplxsOXuA+x+SF5nIWLaJF6/DWH38H7hHOQVFvEW\ntlzCpo4X6ltYXAyHTduxLeIhvNq2Jtx7l5xKaki47PIjtHNfk+lNxsMZkwnyolgdGob8oiJ4tnbG\nvPZtxMpSgTsuIFnXsWcvkcrVWe+LOut9hdr5n8XSoFDC9fyAQPj24sTzrLkdLnLcWf4BBIOhke9O\nkbJkFJOkaGuxjVNjhDEWxFPJwIy0vdkk4rNuO4O8RoY8Qc/ywNLRRnFRMVg62oiL/gTHlrV5924m\nbhPTU70x1tGnbDCcbqs5m2sMDMpEow0GLgG3YxEgsLCWFnkX92Hn56LjoC2ENknVpqnMG3HJW2i8\nzX4hUgc06+qwhNybNAHPUe15BoMgooylv4FDg/qJvR+Z8BWA8OJwbnsX7H4YSbpI5adBJU7mCUNd\n6b4adFmcTDK7HkQKGQwnhw2SagxFceQJx42HTmOBf1xpgq4jPn/BROdmQu3jmjvh8JMYSvOGxJem\niDz8OAY7+/YUknkz34vgXgYAuQXSu2W89p6F+pu2C7WrX0JjxfMx+xflPvVNq5G2q8oQAICdPueQ\n8zsfC3eOFilz9NEK9LHzRrehrfDtUzI2XpgFgGMsdLfxQvteTXHv+jPcSNiqLLVpwcG0Gn7kZVDq\nU9tY/Yu5Mohm+YaruBPxVqjdw60hFs6UvLGsTty+9wYrNl4jvXfGbxKqVKZWb0heyoTBICt0nATo\nsBTvB0xmNEiDk6Mttq8crACN/k4K8gswzmkJUn+kS91n4/X5aNimLm06tK9VQ+z9dWL82PVYLBQU\ni68aXteyoixqoYRkV7qlLfni6W9jQcd2Qm2LOrenbDAIxj7MuHJd6r56LOEUoS1squJx4jdSuSEn\nz+LsiCGEe09n/11Zyd79plblGQAczNSr2jLZ6QBZW4VKZiJPErjtiyUX7VU7ahpbAdTtPgYNpNfI\nnUK1m/gJCH6JgOCXcGpki62rh4iU4+I6YAsKC0v/XkpTkZoMwTSy0ozz/NVXzFx8WqzM0Mn7AQB3\nLs8DSwnrUECDDYaIS944fjES+2RIP0p3oTbueLIs6hUxR307a/itH6EwXZTFjWMzhGovHNosepdM\nUcz32ICXD2QLaJ/fk/NlEZh+QIIkPcT9Eu1yV7tCecQliQ+e19cR/ZVwIuY5VgTfJrQJxk6oG9wT\nE1WOSxZnxaIhHVif+vWklrUnMQTrVKggZDAAwNEhAzDm7EXeNdelyUSfPCU1S0sbxewS0nuaTOhP\n6qfWbtaS8583m+QrdOLQbJIv9s0biOb1bCjPySCabtaNcPDDbcmCDBpLVnY+PIZLX1sr5kUC2vfe\nKHHhHnpxLmGxP2r6IRzfJeyWK46RngcJ18P7O0vsQ7VORad+HNd8WQ0aKmiswQAAowa0xKgBpdkf\n7jx4i5t3XuFjQgpS03OgpaWFWrYV0aJJdUwZIbzLRzfcRf3xi5G4/eAtEr6lwcBAF9Uqm6NXl0bo\n2aUhbXPcuB2LizefIvF7OozL6aNpAxssnuFOy4mHulS+NjUWXoza11TMAlAU7hYT5R5j3m5qXzLy\n0KhKZTz9Rr4z+j5V9pzk2X8KsCL4NmnQq6RYAlXyRoKBpIxxi9lsIQOhuET+BfZ6j25SZzr6QPKz\nT8ggd9VoU8MWAHA97i16OtRFbkEhfDq3Fzl258qOCP7xQio9uLDBhhbUO4fywxTqmwSyZkka2rkJ\nVh4NxtV1yvuu+BuoYazcvxfyIslllIFIcXEJqbEwdqgLxg1rAy0tjsy+Y3dx5vJjgow0RgM/XxKF\nCy1KIuEb8Xt36tgOYuXJjAUDA12c3T+Zl8b/7ftfWLjqItLScwhyuw6FYfr4jpR1pIJGGwyCdHKp\ni04u0rt/uGkPQnDJebnnvbE/BD0mlQbiChoydOOmPQgrLs2Hi642JpycpbB5VM2kBScI1+MGtxYh\nqRi6V5A9iw4/bsNcaBlHGs6PHCpyAV9YXAwLQ8lZXMhovcsPgOYFvZIF8Cp73E57D+KuJ9Hw7LTv\nkNw61N+0He8EshmJIq9QOI7h/ucEsX1mX72BnAJOwoHxLYTjMLh42nWlbDCc/BSBkTUVv4kjDwUl\n4tPf0kleQSHYCvqsMlDjY/Yv1FJRHIM8xkJSdo5QQomyDnd3nUu4/3yhWk4sljamjeuIaeM6ori4\nhNBHktFgV8sK8R9LT+1PXozECBnXdpUsxWfPFDQWbKuVx4ndE4Tk6taphCtHOe6h/G5YZ688RhNH\nG7Rxri3Uhy6YRNw04Dtln9LnbNPXGRPWar7bkTji3v8kXE8YSm/wqjjSkzLBLpH8B7xCZXO4eDRF\ns84NUKO++vjsCxoNm+/eBwA8njVVpvGcqlqTtrsfPCbTeMqgU21OnZTAt/EKGZcsOFiQEU0b4/tv\n4axlZG1U8GztjBI2GzHfvkuUFedmJgpuytUlgZKTK1QzKk95/NNf7lPuU5bxj3iFdVM8VK0GA4Cz\nXx6qWgWZ6Hv0pKpVUCqCC2wHe2uJhV9ZLG3UtCW6Z34TE5N4cOsYwvW+o+Jr3fBz6BTxO+78Qelr\nR+mwtEmNBUGunZhBuF68+pLUc8hCmTphkIXwcw+weihnccV/2uCmzcnwMu+AJ9zHc/54dmUN5u0C\n1WlaE3uiN/DkuP+LO7HgygCA157J6DmFU3nZs9kCvH/6Sah/0OE72DRhN6Fd1Hzc6+r1q+FArC+v\nralrQzwNfYmG7RywJXwlLm0NwJ65RxBUeBbddIfg1Je9sLSpgG66Q1BSXCI0pllFE2T+P00r2fNp\n4FIXWyNWE9r0DHQRkCu+WJi6M6zuPJH3Ri7sjZGLeks1TsTVaLpUkpr3C+fw0nZ2sauNyISvyPoj\nX8XTo0MG8Mac0qoFMvLycfb5S5o05jC6WRMci36GOut90at+Xbz+lYwPqWmEHTNXv8P4kk50peEa\nR5blyvFSrgLA/oF9UWe9Ly842MzAAJn5+bz7su7EccctKC5GnfW+0AIxixD/uP927YyTT5+jznpf\nNK5SGQDw/PtPueYHOJmf9jyMwuATZwEAFcsZISUnl1SHV/Nm8n52tSuUB0tbC++SU3FoUD+MP3+Z\ndPyRTo158SotqtEfyJuc/5v2MTWFlePdhdKsAoBjzcoq0IZBkMuJUVjcgN6T1EkXruDOh0+86z71\n62Fzr+68635HT+HlT050tqjvBcFNoEktm2Ph/xMq8N8TVXPn4YzJsCzHqX+TnJOD1jv9hGRuTxmH\nzvsO89pE1YoBgCmtWmB+h7bi3rZS2bdppFRyR3eOIxgbw6YcUIj//5EzD6SW3XUojHB9+7Lo9Ycq\n+esNBqcujXgL4TXDfLHk9ByCq1J3g2E8g0FLWwu3Cs8R+geXnKfk2sS/GOcaDPMOeKJO05q8dq7M\npgm7hcYlm4//+tX9NwT5DcHLCNeXtgUguOQ8RtTwRHDJeXQ3GIab+acRVHiWJ9NNdwjv+kJSqetE\nL5ORuJZ1gvT98rcV/inE7HZLsfXeKqmeCRl9JuwhXI/oJzlYSBmc+7AVpuWNpZZv21u0KwcVqC4u\n3y+cg2uv38I7IBD1rSxxecxwiWNKc/1PUAgOP46Bs201xC+cI9ILXZS+4t7Hsi6dsKxLJ/Q+chI3\n38Sji11tHB0ygCATOnmcyP7i5vMJDMaFF69Q2cQYQxo3xMw2rSiNI27ca6/fwsxAX+S43LoWbXfv\nh7aWFl7MmQEjPV3S8aS95m9bExqOY9FPUc3MFJt7dkezalVIZQ9ERWPrvQfoYlcbN8aPFjkul7Y1\nqyPi0xecHsFkWpOGQbbSfaY8WjvAo7WDgrVh4NKsfC1Ep31UqQ53PnwSWnwv7NSeV8CS+/0syp20\nznpfOFauhCsk3+NA6SYR97WsBL19T9q/95GT2DegN1zrlLq71FnvqzKDIT2D6L+/2Ku7CEly5nm6\nYfOeYN51cXGJyExDoRfnwnVAaer8uHc/4GBPfuLOJSMzl3B94ZD4k/2zVx6LvS+O25fnoTOfm1VO\n7h+UMyJPUCEvf73BYMK3+Lt3sbSwFf9pAJermcfgpj0I5a0tcPabn1zzVqlTupvk2WwBqUyjDvUp\nj9ugjfjMKZVqWAIAKv8/eLiogOOnO7/Lv3h2OxYG5fR5Jw2C5OeI36Ume2aykioQ0OM5SnTQpTKh\nYiyoml7166JXffpSugLA6m5dsLqbYgvnXR1Lv6vdWnc3rHV3U9m4hro6iPbypH1+AFji2gFLXMUH\n0wHAROdmpDUhRBHx6YvUso3MbfEiQ3xMRFlnnkMvVavAQMLaJkPR7fZaVashxJSL/qQbOaIQZSzQ\nyaSWzUnbX/9KIhgLqsZryVnCdXdXR0r9+3RvQjAY5i47j21ryFOt6uoSU1JP8T4h8USi96hdhGur\niiaU9KOCYKKbgycjMGuSq2LmUsioGsS5jVcxeD7HvWTh0VJ/MLITA30jfV57z3IjcD1Hdp/B73z+\n+W36OmPFJXqOxP4bvQOLjs2k3C/xzTch9yaq0BFAnp9fiC7DifnArx9Rbv73e1eekLafjVffbEAM\nDHRy/sUrANLvVh5oNRXOgT6KVEmpTHt8ULKQAGTpcxlUj4Ue9U0e75jj2OQ0SgHalCLoWqlM/hRR\nD+g/95yYZlgRGzDS8lmGjEXiePpS/GbHllWDMXfpObEysnLhmnA9HqqpVfkJufuGMRgURYUqFkLx\nAFy3Hy5kC2n+xXH7Qa2limHgH2PR8Vmk7VraWrhVRO2Dya9vldqyZXdI/Z4ON+1BMLYoR2k+7rVg\n24VfB2EmISuAIEfPP8L+0xFC7eamRpTGkZf718kLapkpcJeAgUEdmHzRH2m5eXj2nXrRMqpsfROA\n2fXUM9D3SeoHyUIyQlaH4er9V7gY/gJHfYYpbF4G6bmbFKfwOXrSfPorCX4jIejte8r9Bzemtotf\nlmjeuDrh2mP4DgSckm5jdvXiPmLv33skW40nUQi6Q9HJX20wcBf3riQ1GsgW/qKMgaVn5wJnSW9J\nNYao04XNd/6Vegxp27hjcv/nN5Ik9ee/pvJ8yJC2yJ0qakI8v/dGshADQxnkfUoakrKzcWvSWNQq\nb6HQuU59vq+2BoOyyc0vQMIv1e04MwiTW/QHRjr0+YJ7Xb2Bbb174GsmJ+B/ZVfpd4GdqlZBnfW+\niPOeBV0WC0UlJeh/7DTBfXNqK2fsfRQlcoyOew/xTgzX3ZE+2w9QGiNxdewI1P9/0cotdx9gbnvl\npQxXJ7Ky80XeEzwdaN/aXuxYb+I1pxT5X20wMKg3qiogl5EsX8pLBgZN5fYUakHl/FgbmuNHHrVF\nrzoWcOsbTt0dYJ+z5JotbvP2kb4GG0jLysWppWU7Tba8dG3NSaJx6+FSsW1kHGrlifGP9oiVEaRj\nyL+Icqcn9kFbSwssLS1eYLJg/RRJWY7OjRyCk0+fw4EvlbODlSVhDO8ObXA0Ooa0P3/mPP5rKuzt\n3xu9j5S6YWsBf5XBMGdqF/julZxmmp8OLuKNBTKqVjZHeSk8PVQBYzAoETp8/P8G5kx0xYAeTVU2\nP1NAiYGBOv4dFlCOY2gZuIS2RRldfM8TnZddFE3L15QoE7x5CvL+FKLtjJ0I3ix9TnaGUnr0dZKp\nn6O5Dc2aUKOEzcaWXt2xpRd5Nh9pYoVGNG2MEU0bi5V5OVe0m4wsmdj46WJX+68qCidIvx5NCQZD\nx76bEHaFuKnpteQM4XrVIvHuSADQoK41njwvTTDRsH41+MymlvVJWTAGA4NKUNXpAQMDAwOdNDCT\nvmCjob6uZCEGkfQb7Izn0Z/RuFkNBF1/BifnWoiJKk2Z2rX1Ktx6uJR38lDVpjwOn5sOAHCzbkS5\nIvnq2Iv4x3GAZEGGv4IWTWvg8dPPAIASksKuT18mUh7TrWN9gsEQHP5abQ0GptIzAwODwgg6fg+L\n+mxCnyrT0LfqdEzvsBInN1xTtVoAgNysPGyYcgCjGy5A9wqTMLLBfGyfc4yJYZGDYNd/KPcJ/Ulv\nAUB5kCXT0+HW1LK4CQY8M0hPRnou1q3gFBv0XXcdy9cJZ/Tr33Ujbj1cilsPl2L3kVJXsTWNh1Ke\n7+pX5RfeZJBMi6Y1aB3PsZ50xSk3/0v8vN2PEp0coZKUSV8EU8IWi0hrrw4wJwxqhvPYLYg6Mldl\n83/+kYYa1uVVNr8i+fLmOx4EPMW1/beR9iuTcn93i4mU+wSmH5B7fCpjKGpssv5kfXN+52FAddHH\n4h9eJODDiwQcX+fPa7NrUh077oj3QaZLv8G1Z+N3WjbpGCnf03HjyF3cOEIMCJT1+Svy5yntfHr6\nurj6k5rvtjyY6VLPaLb42WlEuTdUgDbU2PSauiFb21i2rHQMslFcXIK0FM7vb0kJG4ZGekIy/20r\nrfhLdp8qzoE+crvN/c2uPIpg87+DCMHFMxadxs7/pM8wNn3hKcL17g2y1bhYvPoSrybDr2Ri9frz\nB8ue2yFzwsBAYPDiI6pWQWFMab0MR1dflslYYBDmbfQnwnX3CpPEGguiiH/2RSZjjArFRSVwt5go\n0lgQh7vFRIxutJByP+eujUjb83PFF0CUhdENyYs/+v/YTftckpBlcaUONRzOJTyk3Od0Wy+Z5urq\n7Ydmk3yF/jHIj72D6Cq8NzotlmlMdToFYxDmxeuvlORfxn2TeS7rSmak7UMmyl7Mt78HMTbnnD95\nLShVwxgMDDyW7r2hahUYNIglA0sXOO4WE8Em8emkgrvFRKwYtkNetYTobT0NHpaT5RojKTGVslGz\n8uws0va+VafLpQsZSV/TSNu1NKiY2O53t1Q2tzINlmaTfHHcZxii989B9P45uLJmHEyNDBhXJSlx\nalET0ZEfMWQU9Qw9FfVNUNWI+gn64menMfgeY9CpE4N6E6vWS1vsTFBOUtVmQc7uJ/4tyc8vBMAJ\nbJd1zNlTiCl2dx68A9991DIyKYMy45LkPHYL7G0tcWKlcHVGMjcf57FbCNfH/h2JetWtxMoAIHUX\n4o4vKC+ra9Gzd98weS2xsAPZWJ09dyE7r3S3soJZOdzcJnwMJul9eMz2Q3JGNqm8Kt2jGNSb7AxO\ngRg6TwceBT6nbSyAs9ZZt0oAACAASURBVJtfkF9A23g9rabgetI+yYL/p17zWnjz5KNkwTJGmNsK\ndAxeQanPkY9h6GrdCHVMKitGKRF0u71Gpn7yuKlUKl9aBNLGyhwt6tkg7OkHdGxaW+Yx/xaWrRuE\nwT224Hq4bKcFl9t7y2Qgfs5Jxvusn0r/fFKliF0MHS2WqtVQODMndsb5q8QYk2kLTol1L5qx+DTt\neoyecQjzpnWVe5w+3ZvA/+Yz3vXlgKfQ1WFhxoROEvt++pKCMTMPw9mpJjatGCi3LqIoMwaDnY0l\n3iUkC7WTLZadx26Bawt7rJveEwDwMzULveftF1ocH10+Ag41S31UXSZsFRlj4DJhK22L6ynrzhLG\nch67Be0nb8ddv1mENgBCcoL6kckJErB1stSymow8/vpU+v9NLOhFvqszcmFvjFzUm/TenoWn4e8X\nKnJMd4uJtDzr/UvP4eJO8l1rUeO/jvqAud3WiRyzqLCYkg5bg31IP090vUcAGFSL3C1GlZ9XI5Ye\nPO3csCc+mFK/4fe3Y2eL8XCuUEdBmhGR9WRhs9NoWua/EhGLvm0dMXtwe/T1OYyofbK5OP1NGJXT\nR0FBkWRBMUS5r5XpZz/8/nZef3Xi0Ic72Pv/37WIriuhDqVNcnIL8CkhGS9ff8PHLyl4GfcN338K\n12lp33sjKluZoVb1inB0qIKathXhWK8qzEwNJc5x9+p8dOyzibe7H/vmG+8EQVeHBbtaVoj/lIRC\nEd/bVE8C+Ptx5/mZ9BvzV1zg3WOxZHPcmefphh6ujpjifYLXds7/iVq5J5UZl6STq4RPFrjU5Ts5\nKCjifHC4xgIAVK7A2e05cyuG0I/fWACAKxsniJxDW5u+Rxl5mLhgP7d2LPJJviDD9xH9xXu0qU+b\nDgwM0vAi4i3huoK1BQLTD4g0FgDAc/0wiYvZzBT5i+eRGQuB6QfEzl3fuTYC0w9g9YXZImV6WqlX\nMFtWeo6qVSBlXG3JO2NkzHh8iHKRLVmQxw2pnVU9WnRYdTQYCUkZ6LXoIPq1c5Tc4S/m1sOlcGpR\nk/eav53stSJxDvRBcv5vyYIKJLsoH86BPnAO9OEZC+pC+94b0X3oNkxbcAp7joQj6M4rUmOBy8+k\nTDx4/AF+x+5h8erL6DVyJ9r33ojsHMnxXmH+5CnaC4uK8frdD9qNBUncOi/6b4ckHOytEXxBfV0T\ny8wJAwDo6erAZcJWPDjI+YFxXcqO/1uaNWHiak5hDbKTh53nIzC0KzH4JOFnOo4GRCH6zVckpYle\nxJxeLdpgkZcaVch9LjtMkezvvW1ef3htvgTnsVvgPbITBndRXUE0hrIN1R3twPQDIk9zhtjNoXWH\nXEtLCzfT9kst39zVEesuz8XifsLfE1RPGXbfW45p7f4VaqfjlOEg384WPwHJsgfg0YmsO7mxGYlw\nDvTBjhbj0ZLm04bxj/YgNoN6vnQu8u4u88cqPPabDbe5++A7ow/aN64l17gM1JD1s8nFI+w/AEBX\n60ZYLUPKVqr8yEtHHxmqkHM5/HESxtWS/jtQk+Au/qWJYwi74g1tbfmPYExNDPE7K0+oXVdHPncw\nfT0d3L06H/EfkzBh9lGp+4VenAtdXcW6opUpgyFi/yyCIeA6bZeQTHyisNsSl4JC4i4+/1hdnO3h\n2twOx2+SHw+Zm1BPJ6gMWjeswYuv2HTiDjaduIOQXdNgWs5A1aoxlCGq1pEtveSUtUOwz+esZEE5\noWIscGnaUfSJ3YPrMXDpKV3V2VqOiqsye35bIGk7S0d9Do/3t5yCSZHSx33wM/PxIQBAqOsymOjK\n95119Ws0VsdelGuMA62mytVfEG0tLYT60jsmg/TIazQAwK0fL3Dr/wXhtjcfh1YV7ehQDde+RWNz\n3HXkFtGTVS31TwIt40iDonbvpZ332LlHuBkai6SU37CuZIburo4YMaAlrXNdPzmD1vEEsatlxXs/\nF6/HIOjOK3z4lAwdHRZsq1mgV7fG6N1NfOVvuilTBgOX6xGv0LNtA2Tn/UHwTmJRnVpVKiA+MVmi\nnz6ZP//vnHyRBoMqoBJrwJV1HrsFXabvLrNxCgyq4eBj2QJH+3m6KdxguPB5u8x9/SJXYXJLYTeH\nbXOOS20wAIBLTyc8uB4jWbAM0tiiutxjuIauBAA0MreFb7MxMNGV7N8MADFpnzDryWEUlMjn886l\nkbmt3GPwp0+d2rs1JvVqJfeYDLLzX9PhWPT0lGRBKZj15DDhumWFOmhlaY9m5WuhkoEpjFj6+FNS\nhJQ/v5GU/xsfs38hKvU9Hqd+QGEJtZNLadkU1430tbdDEC4nLsOH7Eh4OwTx7tc2aY1+1Vbwrrn3\ndscPQW4Rx63ITLcSJtU5phB96WD04FYYPbjs/F4N6OmEART+3iiKMmcw6OqwsPJAEH6kcPwLzYyJ\nu1KHlg5Du8myLSA2HBMdqEknbDbAnw3xvYhTkat3Y9G7PTW/V7JsTlx0WNooUuMqgwzqybGXG+Tq\nz9LRRnGR4j53xmayn/7Z2pPndKcaY7Hs+DTag59FuXOdead+6R+j3NeiV9h6/MqXrwbKi4wEuIau\nokkr6THVNUSIKz3+8YLpUwuKitFjwX6kZ+UxqVVVQOdKjrScNJARmfoekanvaR+XCvzGAPc1l342\nKwlGBAB8yBKuR7IprhvqmXZAz6qcZ+T/dSXpeAxlG/U5t6aJiP2cLBP7r5AX4dHX49hIohbN4rgV\n+VayEA20HEfUbfjS4zAyEK5YufqQcFDny/c/CNdUDACPtg2kluUnrzgTlxKXYte7QdgU103oC4ih\nbGNVTb7K4EPnetCkiTC6+mVuT0Qi5pYmkoVUwLWO1IvfqQNGOvq0GQtctpwL5xVra+25HVN6t2aM\nBRWzstFgVaugUt78vgNDlinvOjyJuJHBNRYAoE+1ZUrTi0F9KHN/Tfl35h8eJI9W5+6yi6ubQCYj\nbneeTvYvGSo0T9heor9c1JG5GL38hMQaCy4Ttgrdb2JflXTeJePc4B/+Uqo6DN/z4nDqM/VsAIJH\nogwMHfq3wMkN1xQy9rWfexUyriycjNuEEQ7CGT3oTLG6YJ9iK2bLS5T7WsyJPor7ycrZfJGXeqZV\ncMyFXl/lZpN8sXZyD8ZAUDPcqzSBe5UmalF1XBVc//Yfptufw653g/GnOBuPU89jSHXZg6wZyh5l\nzmAAAM8BbbDn4n2x+XCl8eEnk5G2TVa4Y0kz5jG+7E+SxqM6vzgScp7hXIJsu4Va0AYbnFOP+8nH\n0MaSnnzmDJqLeUVTyUJlgAqVzWkba1jdeaTtnTXAb9e32RjcTYqDd8xxVasiFp8G/dDXpgXt40bv\nnwO/a48IsQz/TfGAW3N72ucqSzxJu4Mf+QnQAlDNqDaamLfFk7Qw6LMM8DX3A7pVHgptLRYWPB+E\nIbYzkFuUjfJ6lmhg5owFzwfBRMccg2w8kfznO9pZ9sSC54MwqsY8nPqyFWsanoT2/4udKco9SV0x\n0y1NWGHIMoODaScE/eB8Nm2MGqlKLQY1pMy5JAHAnov34eczRNVqlEl2vxsss7EAAPMcbvJeP0w5\nSYdKDCqklbtyszRoOn6PVpK2pydR8+2nKq9utLdyULviV/xEua9ViLHAZXKvVni0ZxZ6unAycS3a\nF0AwIOhkyL3d+PfFFTQJWIqP2UkAgBJ2CZoELMXmuEA0CeC4W22O42TcSs7P4rU53eC4nix/cRmj\nH/hhybMLcAstjVlqErAULQNXYn7MWV4fRXE/5SZ6VRmDnlXG4E6SPwDgXOIuHP+8GXeSrsDn5Qie\nbDOLDmhn6YGjn0t3yJc22I96pk5oZ1lag+n4580oZhcT+gKcn786fz7pZFTN3YQMSh5VF+FdVoSQ\nXGFJHt/rfKXoxqBelLkTBtfpuwGIdrspSzh5lv6BcbCthJOLhUui88sAQMwe+Y7Bc4uJCxV+tyIm\nduHvo3kXptgUFWzrViFtH1Z3ntRuScfX+ZO2j1woulieuhLlvhZtbi1VWIYYquhqs3C/q2KDqvkN\ng2l9XRTumuRRtTFG12qD5Y36oknAUjzzWAWnG8vxzIPzPuc5uMM/MQaz6roBALxjzvD6civo+ifG\n8OQFDYNId64/u2I36bzsN2DB80GoY9wQc+xLDYENjc/LNF71cnUxvc5qsTJR7mvhcec/JP9RbZE2\nadHVZkFPm3xZp6ttgE1x3eBo1hUJuc8wuQ7nhM+AZYw98UNR38yVIK/FVy56nkMgNse5w0y3Mioa\n1MSHrIeoasR89/9tlBmDQRq/+7IGd/EvaBRQlZGWHW/78163sRyN1hVHiJFm+BtwdGHcKOiiqLAY\nOlIU3hEV7yGuurY6w12gtw76B8Vs1WRpM2LpIcxthVLmUnbswvCakt3UVr70Rx8bJ3zMTsLz9AR0\nrOQgJKPoEwRpeZ/9Ele+HUTfqhMwovocBPw4DlsjO1QysIGVvvQbhV9y3iLgx3EYssrB0aylyL4B\nnRYBADa+vorzCY9oeQ90oqetg7tuK6CtJd5hxKsu+UYDAMypd51wLRhfqAUtJuaQoewYDH+LkaBK\n/pTk8F7LYyyU17NBWoHslVYZ1AfT8saqVkHjuPJtF/pWnS7U3qvSVJkKzAGAXRP5ax2omofdOLu9\nyvQfr2FshXNtqSdv0CSiU7+gZUXxVaTdrDkZ8s58joSuNgtrmgzAw+T3aF6hJk+Ge8KgKhY8H8Q7\nTTidsA0A0NjcBY3NXQhy/CcO3NdkpxBUTybm1++N+fV7Y+nzswj68ZxSX0WwsH4fDLCltxhZWcHh\n8r+813H9lvNeO15ZJXJT4mWfpdDRpualv/ZFII5/iCS9Z6JrgKieot23uTrG9l0KFomxV1RSgob+\npb9z/O+DbBxxMnRRJmMYGNQbm3JMIFVZQUdHsaXoyyIGRvqk7ez/u3+I4/3zL6TtO+6ox+4vHXD9\nx1vSVDGXjLG1OiLKfW2ZNxYAYEokp5jYqPv70KpibQDA0oZ9eLEIbqEb8F9TTkrRoB+xWNV4AMrp\n6GPnuxDMqVfqZvqnuBAAcPP7C2WqT8qrzMcqm3tV4yGIcl+Lw62nSRammY1NR/J+P9TRWNj2pgsA\n4OD7YXiYcgQAEJd5CzveuiOr8BdProRdjBvfVuHM59KNk/NfvHAvSXFZ7Rwu/yv2BLOh/ypKrpEO\nl/8VaSwAQFZhvsQ5AWDb6zuk7d5PiFXpJf91UDxl5oRBHXDy9MXZf0ZhyGpi9g/+uIHU3zlwW+hH\nuN+yni32eA3gXe/0v49DgVFC48sbf0CGi9cO5BcUCY1dwmaj+bStCpmznI58efsZGDSdM+98MdRe\n+HcrL+cPDMuRGxQAMKOjand5lcmO5uMI1/+98selRNF/oMXxX9Ph6FxJs3yu6Qq6jenB2YE83mYK\nr22AbXMMsG0OAAh2XcBrD3dbzHt9ss1U3mv+04XuVRqRtpNBZ+Aw/4nA6oYnaBtXVhqYVRN6f4c/\nhmHPO+H6SFTQ1tJCn2otsLhBX7nGUSUT6pzmvXYw6woHs67Y9qYLvOqFAADOfJmO4TVKjQP+excS\n5mCgLX0JAAK+xsL7ceni27Nee/Sv3hQ/cjPhE30FX3MzePca+a+WuEufnJ+N9jc3E9p62TTEBLs2\nMNMzRMDXl9gUG8K753hlFV73W84XEUJk/7sIzG3gKtQe9O014bpP6B5cdfUUqdc+F8W7iDMGA80M\nWX1c7CLbbaEf7KtZ4syS0pSogvEFM/q0wYw+bQhtTp6+WHkiGMtGutGq74NtM+Hk6Yv07DxYGBvy\n2jvM3Q0bS/I0kFoiP/rSkcaXkYGB4W9EVHG1ftWmU67JYFZRPQu10c2iBn2wqEEfVauhltz+XBcA\n8D/2zjosqq2Lw78ZShoELBpFTMpuxO5rfwbYXruwuxuxE/WKca/d7cXAbixApRFRQJTOme+PuRNn\nzjnTifM+zzzO2XvtfdaMw8xee6/wdyHXt9CEncnfhRFufhjh5qdWHTSNLdHtYWtEdImrb0Uu1rk1\nuqNS7s81FmpZVsZZf74R7GBihZudpiI5Lwsdb2zltdc+u0yk0SBoLFgZGuNRt9mE/lHuLTDKvQWW\nvr6E4/EvAAB1xMwpigY2TniRmYRP2d9FyrWuXEOm+aVBZzCoAUFjgcvAlYdxfGGAyHHnHrxTuMHA\npd2s3QRDJ6+wGBEhZD9rAGDL+RMUnX1XrvE6dJQH9j9fhVENF0gs39mauijb8U/KScepqVxKiMKc\nh9dwputQeFjZyTSHS9g6sTIJgbKljxY395g6jbGgYVuZ5tahQ9sw1bfBYNfdIg0CF7MmsDZ0gJNp\nAxjrKa5ejSCCxoIgjqbWWNewN+Y8Pyt2jj0xEbznfZy9scqXfgNjqXd3nsEAAMMiDuFQq2GE+ybn\nZVGOjf7Fd9860noEIU5BEOFTCGWji2FQMDWq2YiV8R0fQngAwKcvGSS5iHfxGLHhODrO3UvqUyS3\n1v9JuN585p5S76dDhw7AvnplyvaeVeiPnX93nn5LxqR7F5BXWoxOFw6oWx2tgCqgUocOZcB1KxJk\ndI3jYIBJ6Ktv1YMg08thFVpXGg8X08aoXEHxmfeeiAg+BoCejpLFVW7+EM57LspY4PJXS76B8DQj\ngdC33If/HuSVFhP6Jj/+B5Kw/p187m/SojthUDAG+uLfUnFxAVwjYs7Atjg4ayChTRlUNDfh6PXp\nC3zd7RF28wX6tyYX5DLTt0VuKcewic15hOrmzaS+l65Wgw4doikuKpFYVlr3JW1n1G1iIODqF7cx\nv4H0u/UJgXNQwirD9aSPePY9Bc++p+DDD9FH/tLMnZafgxvJn/DsWwpuJn9CYVmpQubWUT4JT/BA\nVbPeqG27Vt2qlEssDCqo5b5N7Fxo+5ra8TOQjX14BEdbj+Rdc+Mqdjcj19YSJDVftQU8dVsPGsr2\nSb0x0M9bZffbPL4XRm86wbueN8ifJDPOnV+Z+WzKUqQVfpTqHsLGwoSaJ2gkdej4PbjwdadEciMb\nqC7VqCbT27Uu4TrQw1fmuQyYeujuUhvLGnfAle4jxA+Qgiom5gj08MW21j0RPSRIoXPrKF+UsLS7\navvvwt/xz5U298tM6jTzbaoQM8WtenOVUs7BRDluXMLoThjUwPAN/+CvWf8TKePr7qAibTi09uQE\nJeUUFEk85kj8ZFgZVsXo6n+JlIvPfY7TyURfbQaYMNGzlFpPHdITPEHnuqGpGFYwpGwf13wJdj/k\n+62mxpF3v4N2SL/IXbfzOi7dfEtoizg7U+p51MXyJh0QFvMSAFDV1AIOZrrvEB3azfPUPuKFdKid\ny8nE7026uAJlciT2KRZ4diG1r/BVTdFOncGgYh5snoQW07aTXIyE3ZSaT92GiuYmyMrNB1V6duHx\nUUnfeG3cuX7mFsB/1m7KceEbxsFKICsSlzYzdop0mZpZ+zrhpOBn8VdKNyNxrkdBtaktZR2K5+bf\nD9Wtgg4RnIjdjAHVifUAEqK+8J4nRqdSjuswuAVluygu3XyrVQYCFbIGI2s7xWUZeJ8+Az+LnsPW\nuB3q2YWAwZD+J/zt94n4UfgQegxj1LZdAxvjNjLpE5O5DOn5N1DCyoK5YR1UNesHe3PRG2GKIr8k\nEU9Su8LJYiSqW/NPcL7mnkVM5iJUt54NR4tAsfOUsQvwMm0ocouiYFWhMTxslsDEwFXsOGHS828i\nOnMRWOxiuFhOgLMldYICKgpKU6S+nzC/il4hOnMR8otjYWLgispmPeBiKV8s1Ku0APwsegkro4ao\nYT0L5kbalZaYi7kBfZpqaXib9UW8kJQs9OqClZHEtVB2SSFJbrlPDyx+dZHQdugzv+q4oHuTMtEZ\nDApEkpoFxkYGeLlrOsZtOY3nH5Ph6VYNB4IGkObZfekR/rr+DD2b1cWSAHJ2AUnuZWVmLFUdhZUj\numDhQfELeWGjQVp0JeapsahohuwfuaT2tMQMVHG2lWnOJ9fVX2RJh2joqmXHvUuGWz1HjGuu3Oqd\nOjQfbtpULun5N3A7sS70meZo7SSZq4TwHGXIR+S3sQCAJvaXYWogWVpG4XkAILvoLbKL3iImk/NZ\npUrvKir1K9XcgnLc9vqVtuNLzt/4UfAAAJD4ay++511DM4ebCE+oBW4S2U8/VuHTj1US3wsAsgof\n4fGXzgCAti5RYNB4bAu/DuF5YrM2IDZrA4z0KqOFIzmBCNX7B3CMna+51Jl66F4H1Vx5JbGIy9qM\nuKzNYDIqwM9ZdFVq4ddzO6E22OAXG8sqfIxnX/uimvkA1LLh190oYxfgbqK3SP2o7tPK6QkMmKpx\noVEkFfQMUCxQ2E1UFWdJGeLWmGQwTHtKrkDe38WXZDBsek8OMFc2OoNBBrw2bEfkrElyzRGel4SP\nO+gX8+O6N8O47tIHFcvDwoNXKU8dqOAu+jdGdYakmb51hoJoDrxcjX4uU0jtw73nyhzcuuR/W8UL\n6VA7DCYDbBbx72hCq2W4lhVKWQH64Ks1Mt+rVe+NhGttP3Eo7wguCg30KqKeXQjKWPmIzlyE4rIM\n2gUoFxa7CHcS+VlgqpkPhL35QJSUZeH1t1EAgCdfOHnxRS38ojMXITWHGHdmY+wHU8PqSMs9j+Iy\nTkKMJvZXpHuBUvD2O+d317PSbrz5zkmTWVCahDJWPgA2PCvtRGruSWTkU1fPBYCojPn4mssPnnev\nuADWFZogLe88kn7tB8BZNFsYeaFhVfo4u6zCJ3iVxjnFqGzaDS5W45GZfxefszYAAIrKviH+5za4\nWk0mjLM0Isbd/CriuNgZ6tnAWN9ZkrcBAMBiE3eiPWyWwMLIC+l5N5HwaxdP5tGXjmhmL1k2HcHP\nUlWzvmAwmEjN4SxgBY0FANBj8NcKib9CRZ6q/Cjgn3Jro7EAAB2q1cbpxFe8a3MlBVI/+h4HAGhd\nhbrS/cKXF7DStyfPeJGvKpZ06AwGGZDXWNBEiks5H77wDdS5iumYWfsaZzyrAI8zjiE29zF+FKXA\nWM8c7hYt0bBiX1gb2itc3/KImaUJbV/W91+wriSdv3YXmzHyqqRDRVzJ2IsuFSX//6rqIlv9AZ1x\noF18+sGvJCy8mG9p4o+c4vd4JsYHXtBYEJ7D3yUG+SUJePyFe2LMBt0SRNBYaOv8AQyGHu+6hvVs\nqiFKgfsa/F1ieAvcu0k+vHZbk3a89rTcc6hixq+YzAaLZyxYGvmgQVV++soahrNRw3o2b2x2keid\nea6xIPiemlq6w8lyNG+O+J/bSQZDg6p/E665sjbGraXKksRkVIB35f2oaNyS0G5uWBdu1tN48xaU\nJEo0H9d4FP6M1LJZKWIUAwAbsVkbRBoMr78pNqmAOhhfqzXBYFA0b7NSUd+6Gu96c+P+lHKnE19h\npUDMwuz6yil4R4UuSxINNVfzYwSy8gto+wBg2LHThPYhR06Q5ITHCLPlHtHPXJy8ouDWgmg6eatU\n7kvCGDKN0brSKIxw24eg2lcxoeYJdKgyRWcsKIhBHkHoXulP8YIAPjyNRWfr0aQdax2aC4NBvUij\nSrE6ft0gme8zMigMQctOIeUrJ23fzkPSFVG8lfIZLmHrxBYn48q4hK2DqwhZQTlx/VSP8k5y9iEA\ngD6Tupq3uWFdkb7qbDY/nSvd6YGJgQu4RgLHrYfMwxR+1jx/lxiCsaDJJPzaQ7i+nVCb91zQWBBE\n8H36kCHa7YTuPW1Y9bikKsqFsLEgSBvn11LN9aPgPvyc34oXFMDfJZr3/GfhCxGSZHltw17JmYiE\nMyAZ6xkQrnc0pY4PGl5DdZ4oOoNBBOl5eQAAaxPRbjqhAzk7GMz/fvSfJ0kfHDO1dXMEHOUc/U07\ndwVru6vGany5azrvoUP9hL2hXwSVlpShs/VojPCdh7h3xDRsn14nokeVcehsPRozOpHdVZh6uj91\nTefSt92kNqoibr3GtpP5Hp/iviN4ST/e9fEL0qUKbO/A93M/GEW9QDgQRZyTzmyNzPjKe97OobpU\nevwOcNxsOLRyfEwr52Y9jbbv0Zf2Et2rtdNTkf2FpYoP+FQFhaXU6SqN9CpJND4t95xM97UwUl1K\ndDoEXYYkhcmgztomCS/TqGsGPE0VLNKmSgcaxWNjZMp73vaaYjZ1jfQ4jj6RP1IIgczC+FcV7Xqo\nCnSrCBo+zp8OO1NT1FwdgieJorMYGOhxdltMDTl/bLLu63Lvc+VDDPp41hUjraM8UsnRBtO3DRcp\n8zU+HRNaLUNn69G8x+S2K1BSRF0c6lpWKJYeK39udOUNfUPle4gymfwf7D9G7sLpfZKdWlGx7Bl1\n0N3yZ/8CAPRoTk24BNzi78Lu9+9HKZMQOIf0+F14n8HP/iNLNiQAKCz9Kl4IgD7Tgvdc1K56XbuN\ntH2aCItNXQTRu8pBkePoTnQEMTaQPN5AGzA3rCPTOHEBz7nFnHpNjaqdkWl+TeJ+V75LZ1pBtsSp\nVa+kvKPtO+nHd0Vd+5YT5znKXXQGvPc/Jfu7VjS6GAYxRM+bhkabduFF0ASl3+vvgAFYfesuRjRp\noPR76dBcOg1tiZDJfylkLm6wdOOOnmIkdWgCFUyMUJhPXwvlj3GS7RjTcfd0EGavPIPnkYm4eGgC\nTE0Uk3KQivA/xqLN2T20/dnFktd8+R35Wai4QlFMhuT/zz8KImj7Kpl2U4Q6aocb5C0PFoaasan3\nLLUPcorfyz2PqWFNuefIKX4Pc5r3ha5d2wis0RRhAicBtc8uw5iaLTGjLvHk90ZqFKY+4cf9dHWg\nTkvrbkE+7ZpZT/T3/PhHx6RRWWHoDAYaBGMIPs7nuOtsCI/AvsfPef0DfepjRRfR/7HceXb07UFq\n4/7Lnb+Boz0GHT7Bu9Zkdn76H/JLs+SeR5c5iZprWaEY1XABvsR+k3mOy+l7FaiRDlVw7ssOdLam\nDx4ct0b+PPfrF6qmUJSzuXZmQ9EUyljkFMuyosekT6ggjKjKw3SpRn9HpDHClEFBaQoepdC7JzIZ\nFUiZlETBUIC7k+D1zAAAIABJREFU0LPUPoQTB8FsVOWFefU7oYRVhr/jnvHa9n28j30f76tMh/RC\nzneDuFNcRaMzGGigWrTP8m+FWf6taMdwTyEEx1LNow0GAR3y1F/QIR37n68CAOycfQwX9oVLPO7c\nlx2ooMSdYx3KRU+fibJSFqm9qqtsmZEEGRkUBmsLE0wf2x4OVa2w89BdTBgmXeGuKibmSMvPoeyb\n/ZC6jssfVw7jXNcAyj7bCqaU7b87Zoa1FbJzDAAlZZJv7lgZNaLtyy9J+C9IWrtp4/xaJh9/TSE9\n/zrefuek4GYyDODnTO3yIi7lrqIQzFjFYheCyeCkHI3KmA+AnJJV21ns1RWLvbrC58IqFJZRuwIL\nsqcZdXyHtAyv0Qx/fX7Euz7aeqRC5pUUncGgIWyLeIxtEY9we+IodatCy+9iLMha80BZTFg/GBPW\nc75w3j/+hJNbr+NzZCIy037C2s4C/gObYcDUzrQFwLjI87qU+Z5Y2JjJPb8y9VP152HtuSDM6r6B\n1H7wpey1F7h8ivuOiLMzeVmSjl94LrXBsKZZJ4z49xQAIPTDM4yuw19gnvhMXSjwdQZ1tWrufDrI\nVDHrhZwfijEYpMHJkn4REpu1AfUr7VChNsoh6dcBuFpNVLcaMsM1FgDQGgvq4k6iFymuoZr5ABpp\n5RDVW/pil7KMedVzAQDgeUYiDnx6iIfpcWCCgWaV3NDPxRdtq0jm5iXpvefU74g5KkyjKozOYFAi\n0pwkTG7VFJNbNVWiNorH3qQeWtmNgI2RE4z1LMQP0CE3dZu6o25T6oIuOsoHVMaColBE0HNbe35G\no5XPwwkGA5eFDTlpOAfX9Maxj+T0jkUCu3IdHHWfZyocLYbx6jB8zlpPW+uAxS6mnaOJ/WWJ/PVf\npfFPf2yMW9PKpeervrqsMoj/uVXjDIZSVp7UY/SZ9JtEH3+skkcdqRE8ZQD4pxsVjZurVA910NDW\nGQ1ty1cQPBU6h0QdMjGz9nUMcg6Gg0k9nbEgIZ4zZE/DJsnY5vN3wHNGiFz30aFeCvKoA4EV5WLG\nDXoOnHIQR7ePhK2YUylZ4RoRy5t04LWVCVSsXvvyjlLuW17hViCm4k5ifdo+UwN+GtzvefTxYlmF\nnLSqgtmSBGlS7RLveUGp6KyB4mCzyyjbv+VdomxXJMb6DoKaKP1+0pCeL1k1ZkFKRcS5pGSHyaOO\nXMRl8X+DvCuLzkilQ3vQGQw6dJQTHq7WrB0zHdLT24H6//DcF8W5gaxf2AfhJ6crPENSj8uHSG36\nDP5PTIfzfNcuuhoOOogIunaEJ3iQ0oRK4qNez24LAOBd+hSS/M/Cp4S21k7PQIWpIf8U6FEKp5Ky\ncG2GjPxwhCd4iNXpdmIdxGZtEnodtfA+PYhmhOJo5vAvmAwD3j057ykxMDg5+5BEr0NR2JnwjeqH\nKW1J/WyQDSzrCk14z998J9ZqySl+rzLdhTExcAMAJPwi15Sho4vLdNIj+4f0py3KotGhXXDZtRFD\nLp5A27/pDXc6krN/ITTyOVx20ackjvz+FS67NoqU0QR0LklKpLg0BenZu5BX/AJFJfFgsfMJ/V5O\n1EVlNBV38xb4lPNA3Wro0KFDRlr13oiIszPFC4ohyLsVgl8T02++zUwTOSYu+4fc9/0dMdSzRXFZ\nBgDgTiI5NWNt2zWIyphHO76SaWc4F49B4q99AOiNDHGVgYVdTgSrP0tC42rn8TS1FwAg8dceJP4i\np9w1N6yrsEBvOvyc3+FeUiOUsrIBcHzu1Un9Stt572thaSrl/49wTIBPlTCeHNdQoxqjasOhqf1V\nwj0N9WxUen9lkJ6fhy5uNbGrU0+ZxjtaWGK0V0OsfHiHVsarUlXZlFMxuhMGBfI+xRORSY68R1Rq\nM2TkhqGg+D3JWNBGejkshl/lsQA4AdB7P1NnPVEnnjNC4DtrC2aFXcaS4zcI7jlvEr/Cc0YIjkW8\nxt6bTwh9njNC0G3VQVx5Gc1z6zl05wVJxm/xHtyM/ISuqw6QXH88Z4TgVXwqPGeEYOuVB/AKoncN\n8p65GacevSWN33PjCc4/ew/PGSFosWAnqX/9ubtYdTpcarejRrO3wXNGCK69jsGwbcd1bksayKmt\n1yjbFRl0bWmumMwwkz0l90seUtOHtq+NvZsi1CnXtHR8QFkcS59pAX+XGFQ1E58mt7r1TPi7xMDG\n2I/UV8d2HfxdYiTKGuTvEgN/lxiY0eTs97BZSlvIy8ywFvxdYmCgZ01oZzD0ePP6VPlLrA6KoLXT\nM/i7xKCKaQ/Kfg+bJWILkikSf5cYOFgMpeyzN6dOpezvEgNnS3IKZherCTzdPWyWKkxHSRGMq2jp\n+FDl91ckXKe1RlXt1aqHpqA7YVAAMV/9UVjySan3SP1JTktmoFcVdubkL4y6e7bi/Z9TSO0AMPn6\nJTz5koKnI8fJpEfDin3RsGJfbIzqhOyS73JnTlJGHYYTM4aiRlXOzsaygfyMAkO3/IPLC0bA0YaT\nH/7p52R4zgjBm02c4PTkzJ/o6lsLc49cxcZh3dDRqyaCL9zjjefKAUAHL3fKRffIHSd5clO6Uldr\n9Jm5BUwGA/2aEX2PBed3srXCsG0nCP2vg6eB+V/e5WF+DQi6i6OotJQn29nbA6N3nUL421j4168u\nZqT0sNIoFhNMSzAMG4FhtR3i9ilI47ljzaYB+vRZJyjvCwag7wqGUTswzGeJV16NhC45pfR7/Mop\nQKvexGNveU8cCkpLYKxvwLv2tSP+uK5s2hFHP76iHLumqS5DkqSIWsBKurj1qkxfSE8aGle7KPPY\nVo6Pafu4RpAwdK9P2nZh6thtRB0pq1dLOre0BkfNiotQs+IiqcZUt56F6tb032v25oNgbz5I5ByK\nN4xUWxtAWQi6By1/cBvLH9wGACSMn0no514DwIE3L7D8wW1CW3lCqwyGiJvvsWrWcd71tdfLAQCd\nvRdj0vzu6D6gscp1ikxyVMl90rOpi3BRGQz5JSV4lpqCoedPYVeXnvB34ezi5RYX49KnGJgZGsJ1\nezDiJ0nvM7rz4wDkl9EX9tEEuMYCFVxjAQAW9PVHr7Vkv2sAaFNXtp3Pi/OGi+x/n/wNhvp6eLJ2\nkkg5H1fyjgZToEiLg42lTPpxWdDXH6N3nlKKwUAJ6xfYhbfATqsFAGBW+Sj92EJOhhaG5SowjPtL\nOJgNlMaBXRoHdt6+/+79AZr21bdowBbKdpuq1pTtsqIIdyRhDkQ9x8T6zXjXu/3+IPQLLx+OC6Re\nrWaqS5igQ3oajdyEZwdmqFsNHRSUsjg1Wpo5/KtmTeRD0DBY3KItRno2ULNG6kerXJJWzTqOa6+X\n8wwFLp16+2L7auVnWBAkp+C2yowFAHCy2UrZnpq1nLI98MJpvBs7GXPDb6Dmrs0AgFZh+xA/KQhv\nx06GuaER9r16LpUOIdHdNd5YEEf421jeI/5bFjaPoPZLNNInLyg9Z4Sg84r9KGORi2pxEbeQX37y\nFgqKS5CeTcxuMWX/BXjOCEFEVLwEr0I2hF/7gr70VUIVgn4tMKt85D9s+CcmrLSaYOcfFTmcbiz7\n1wKRYwnj/nswzCYI3LuOHC9K8bDZbDy7+Zay7+gH5aVYVRTBryMQnZXOu65kTJ95KSI1HiueSV6E\nUIcOKrTRWChlseAcugHOoZr7Ny2vbveS+CmWiRmpdJQHNGubTQTLp/+N+eupi39069cI18++lGq+\nz7lf8O+35/izei9Ce4c703HTT7R/d0bOAXzJkr7IhzxYm/ZGUibZzSg9Zx+qWS8mtUeNmwoAeDpy\nHFy3BwMAfhbys0EsauWHLU8fYYxPQ4l1KBPK0KGNyLujfm2RfIX1js8YgvfJ39Bu6T6CO9Gd97E4\nNHkgfFyrAQCefZYvdSEVKjtNoMPAG8wqH3muQ+zsZWCYDFH+WAAMs2lgmE0GK602Z3zBaTCM+0qn\nvxIoyC1Eb0fq06bQpysVfj/hoOe1269j7iT53IJYbLbEaVLXvbyL3BLq1LE6NIdl+6/j0oP3eBI6\nHU1Gh+DSxjGoXNEcjUbysxtxF+0sFhtNRocQ2gXlhOW5fYtGdETPVvV4bY3qOOHZhyT41LTH3rkD\nCXPMC2yPPn6eAIBmYzajtIxFMhq48oYG+niwh/NbGfclEwMXcU6RPWtUw/75/6OVVTbeR7YjcbR8\nbpHnY6PQq3ptuXWpF7YV7wLJr1te/biB5HTpeXVoN1pjMLx8HIvFIdS+eCXF4ktzCzM3chdOtZD+\nBzn6a1sUlXyWepxiYEBRuaMdzC2RVVgg83hlxB4om0vzRsBzRgja1HGDa+WK+Ov2c7StVx1bRkqe\n/eBYxGs42FhiUug5mfWo61gZr4OnkWIQhm07jgtzh+PSiyjcekOOifGcEYL/tfQCAwz8ff81KX6B\nLeKjYWlSAZ4zQjC4lTdKSlk4+eiNxPEPikZw4a/KsYAe7xk7e7nSDYbJbVeg76RO8OtLdJX8lpSB\nkCmH8PpuFO3YQUHd4OBeRan6AcC9J59kNhgOtx+AgFuck587X+IAAP1rUNcEcDSzRHLuL7z78Y3X\ntqvNH5SyOtTPklGdMHNwW/SaE4pnB2ag+dgteLh3KuXO/ug1/5Da6U4ABF2Jmo/dwjMYAGDnzH4k\neUEjg2swPNo3jWSQCM5bXMpPQzpw0SFKw4JKVplwd+65/3IX5oI7+oJt//YbiXanDlDKTrl9idDu\ndXgbfhZxNgNN9A0QNXwaAGDbq0fY+OI+5fyidBE2GlxCN/BWHcJ9dFmY6NLzlneiMzPUrYJS0RqD\nYcCIllgz9yTmrSX7Ls8Z85fU8+kx9MQLUSCJsWBu3BYO1itgqM+v/KcI96UalU/i8zfyl6owFfT1\n4bFrM97/OQUtDnFiH0ZdOgsAyC4qgoWREUKePkTn6r9XhVUnOyu82TQdfTccxuOPSZjT2w9DWtFn\ncBHmyoKRGLLlbzjacObxmUntdy4JTAYDZhWMeEbDm03Tse3KQ/TZEIbBLX1wbs4wQlA1k8nA643T\nsOLkv7j7IRY3FhNjV6gyNgH8QOqIleORW1iMHmsOgsVmY05vP5l1LxfoKT+N3afXiVg7ei/WjqaO\nPxLFsIW9laARYGSoj+KSUhga6KN74A4c2jxM5rlaVXMlta1v3pVSdnvrXuh1hVhIqouz6JSPLDYb\nL9K/ICYrHc/TUxCTlYGorO8EGZewdfC0qQJ3K1s0sLOHh7UdfGyrEeJ9qEjNy0Y0b950xPwk/9A3\nPLEdNa1s0aCSPTysbOFuZQsPKzuR8wJAdFY6Yn6m4/n3FMT8zMCL78TTwn0fnuJWyifUtLJDAzt7\nzj3s7GFuqNi6GPJiamyIarYcF8uS/xbW3IW6lZkxbm7l5P8/sGAQBi0Ow+eUDDzaNw36eqI9nalO\nH8ThWMlKrAzV6QfdOCpZZZI4ehacQzeQFtyC1y2O78WDgZwshJPCLyFx9CzcTYlHl7OHcLX3MNo5\nIgMm854LGiAbX9ynPDFIHD2L8oSBO78gyTm/cKhzP7RxIP+t06HK7FLqxM2qIuJ+ElNFn4imdi0t\nL2iNwTB4rB86ey/G3WtvcfbhQgDA97RfGNljM0pLy0hxDeLY3XAmOt6dgRttBL44fkSLHCNq0c+A\nPjydlOd/DgCmRk0o25N/zIJjRf4fetS4qXjzPQ21dm/Bri490MGVX+2T654EACf6SBf0bFfBDemF\ncVJqrXiaDQ4mXD86xn8dkuyan55FTgcrOI7uuYONJe4u52eXerVxKu0cVAj3P1w9gXA9uWtzTO7a\nnFL+9UbOrtGi/u2wCOTYA0let1kFQ9xe9qdYud8Bpi11ClNNQJFpVIW5dXwa7/mlMMUX+qNbpnvZ\nSmeg+Z/bJ3HdhjeZaXiTmYbTse94bVVMzPG43wRKeZewdRLNm1GYh4y0PDxMSyS0JwTOoR0j6dzx\n2VmIz87C9SRi8L+oudVN87FbeIvrZx+SCH1/Lw8EIFkwsiwL9OTvP8XKUM1LN05TYiDqHNqCvJJi\nUvu1PhxDvo2DKwKvic6etuF5BLa/Jmeeihs1E86hG2BrbIoXQ6j/FsTR/vQBxAyn/235XYwDKsIH\njeQVW2vj5Iq7SfEI7dIbo6+e5cnklZQg5kc6nn/lFDk89O4VGlSuhpoVbWGox9m0TsvLxccf/A2L\n0zHv0aCKPVwsxRvJqkZrDAaAkxWps/di9G7OcSUK7BzMa5cWa0NzsNlsdLhD/GNY5zWeUp4twn/f\nySYE1qbid/6VxY/cfwgGAwB4VqqCzxPIf+iyZEbiMsx1Fy+NanbJd1gYVJJ5LnkQNBCEjQcdmg/r\nm6d6xsrsyqQ6lGks6NAhD3d2TuLtzG8P4rvzCe7Wzx5KLOYmvJMvHN8gbuHOlV0xtguprdHITaho\nYYLrm8fRzntsWYDcOigL/1P7sa1td7Rz4sSWyRpwvP31Y95JgovAHHoMBhJHz8KvokLKkwlJqGdT\nWSadfhcSxs9E66P78PzrF/zVrS/8nIgnMXVDiV4ISyL+JYwFgKZhxKrYQeFXAQAxY6fBSE+zlugM\ntijHZ/WhcUrRnS5YGHeAq90BmcbLUumZTg9VVo3OLc3A7k+SB5yKQt5YiGaDgwkGhA71w1uY69cC\n0/YC53lZEth5oWDn/8OTo0utyh3P65dwrDiDgGE2BQwz0elsFUlna3LKYzpUZShwg55b99mIeh72\nGNCjAfyay25IrZ9+DLfPcxJOXI0Tnc++ixvnB9KmiiWOPJQu37yO34/yljpVeNF+KykWo26cQXCb\nLgi6y1kkUrkdCV5fjIvGpPCLmObbHNN9W/D6V7bogJAXD+BqaY3TPQbz2id5N8WNxM/4/DMT8aNm\nEuac7N0U0VkZCO3AcX+M/5UFv5OhuPhHADysbXmLVefQDejsUhPRP9Jxd4Dk32mS0sWFvLF5/OVK\nWFQ0Vfi9fnPkLpChWeaLFiKJsaAOBF2PBJHnhEHeIm06fjNKo2kX8ZLUYZBnLBXs3K1g524Fs+Ix\nwFDy7GCywjUCHl56iYeXX+Pl7ffIzsqDhbUp6jatgc4BrdGgXV2l60GFgb4+dq4ZBP/+IXIZDLKQ\nmabdqZl16JAF4R3+9k7VeW393OvRygle93CrhR5utSj7A2p7U7bPathKrC4A4GppTRvzoEMHoDMY\n5ELYDUhT4BoLdwJGwcTAQIy05vDuUyrGLPmb1C7vCYKw29KCPzuhe5t6pH6q+9D1+Q3fgiKh7Fx0\n49s19cDY/i0wMOiAWPnfAVkX/JKOpT25yBwIlLwC68dgMCs9A5jyFb+TlObdfdG8u69K7iUJbfoE\n4+4ZzmfPxYm+yKGiad3NC/cuRyL4lOpOedRJF7eZYk9ddNBTnk4XdOgoD2iNwXDq0AMc3XsHZx8s\nIPUtmXIUT+7FyBTLIMzgR8twrBmxxkJpGXWqrIpm/5P7ftLCZJiAxc4XKyfPSYI6aB24GSWlZZg9\nsj16t/fitRcUyl774XNSOgLmhuHoumFwc7TltTcbHIz9px/h7NYxAIAHR2egxRD6zB3WFiaEayoj\nou2IrbTuUf8+jsG/j2MIffK8Lq1B0CUJ/BMDVnobMO3uih0uuPCXdizlfDbHgdJPYGV0A+t7I7kM\nF21FuNLzgeBAld173rYAzNtGTjhQHrl/7Y14IR06dOjQIrTGYDh75CHmr6Mu3DZ4bBs8uaeYaP30\nInJWhYzcQwqZWxEY6jujsIQ+f7syUWbtBW7aPkFjAQCMK8h+QhIwl5PGUdBY4JKWkc17zk3BODDo\nII4HjyDJXtlNDoR/cIS4+3X74BQ0GxyMT4npcHcmp14UNiTkeV3aCrNyJFjfvICyr3KOLYXMX136\nv1cqYR3qYdWEMPFCGkRa3nW8+T4TbJTB1MAVLR0uI6c4Go9T/4d2zs/AZBjgenwdWBjWQTP7U7iZ\n4IMOLq8UqsOQxkvw43s2oe1K3CYwmJK7XlP5wwPA1QTRxVgFObDuEk7u+pfQZlPZEkeeLJV4DkF2\nLTmDC4cixMqNnNsD/cf5i5WTFeH3ZvqGQejYvzGNNHDuwD3sWX6Wtp+LtZ05jj2Tf7NW0dB9FgDp\nPg/qxGMFX8+YReIzIXqsCJFITla0xmAwrGAAAwPq2gkF+eS0ZFT0e7AQv0rycNMvhJQdSRQ/885L\nLKtsDPTsxBoM8ZOC4Lo9GFMbN0PfWnVRQZ//32xnormBRFQLc3mpbGNOamvi6YInbxJI7UlfiWkc\nqTIwzQ3h7JgzaX7EZgWfw7n/Ti5URXTWd4y9cwb3eo8TL6xOGMa8p6y0mtLt8DOMwTCfBXbOBrDS\n6vyWpwPqZHznjUj4mMa7ru3rjE2nJsPc0ljEKH6gsyBte/lidshgsffkjuW69URcicTqSYcJMj0C\nWmDCMvqaFWM7bkDyZ36xOFMLY5x6vULsvQGguLAE/X0Xo1joNJDBYODchzUwNCL/fMa8TsKcIbtI\nr0EYUa5KM/ptQ9RLfipXph4Tlz6uA0NEbQnh94rq3rZVLHGYJtg8s+AROrq+xfX4OmjpcBmJ2UdQ\nzawHOri8xr3k9mjteAsA0Mz+FB6nDlS4sQAAO6/Nwv98ifqt+PMAFu8bJdH468fJqUVlQdhYAIDt\nV6j/H0XpsnnOcanGHFh7EQfWXgQAHH+1EhbWyv2tPn/gLqXBIGqhTUVWeg5vjKYsxMuDsQDwjQRB\nw0GdaI3BMHxiO8wbdwhXXy0j9c37U7ITAOHKzjf9yP8JVIZEcVmqhFoqn5KydLEy3BiGLU8fYcvT\nR4Q+TXZVEnb9UQTfMnMkSr16aec4dJ+wm9R+dB2xsNXjSE6tDbo5v2VkU7Yrk1rWlTTfWPgPwUrN\n7KI7YBj5STyWYToG7JwNMo3lwi68IvWY3x2qRW/Uy0R0cZuJeVuH4kLYA7XoAAAXDz+gNRioxuRl\nF0gUW7Bg2F68jKA2StlsNnrVnkuag05HaaCag1XGQtfqsxAaPhf2LuTTUpJ+LDa61iAHqmaICDZP\nyTmBurZLedeffmxCdOZqSllLI+pq3vJiWdGM1Pbo5jsKSWpELdC3LzyFSStlT31uZUPWjQ5pF9xU\nDPRZiJmbhqBdH+UlZ4iLIq9rFKG7uikvxoImojUGQ5vO9bFm7kl09l6MLUfGwqOeA+I+pmHiwF1g\ns9lSxy9YG5J3ngHA1ZRcYIjJMEAZu0gmvRWNJO5ImmwUqBoX+4r4ewPZzUgYGyvObk7XcbtwZfd4\njFx0FADZnamyjTmSvmYpLGDZJWwtAKBlVRfc/5qAk52HolElB7gf2YASVhlM9Q3xfvAMHP34ClZG\nxujmXIs3LiFwLu95F2cP7GrTmzRvB0d37GvbF1SciXsHNpuNvtXrE+a8lfIZo8M5xYLeD54BU31D\nLHxyHUdiOLuK7RxqYL9/P8J9APD0EQfT9hJYGd3BzhoLhpQnBcSxHyDNVxgr8w+g5APnwkDyCt+/\nM4ILWKoF8popR0SOF7XjLSkBzTknAhei18LAkP//XVxUClCkBS8rY6G7+2wAwM4rQXCtxf9OT//6\nE4EtVqKL20yce78GRsZk10BBPWdtGgT/PxoQ+pNjv8OxOrkGDdVrlTToubioFL1qc/5+Rs3tjn5j\n/UivZ7T/WrTs4okFO+jjTjLTfmFo8xWwq2qFsAcLCX3Lxh4Uq0cnV87fRw3rKTDSs0NVs24S6a/p\nXD7yQC6DQRJ+/cglnZDIw8YZR7FxxlGVLHLTv/5EYDPyZqw0DJ+t/s+KKowF77Xb8XouJ3GDx4oQ\nTG/bAuNaNuZdC7oE9dx7GBm5+bgzdTSvUBsXrmx+cQm67wmDuZER9g/pA1tT6TZOO+/8C2wA1ycM\nl+t1SYLoGu4aBvd0YerQvejsvRgTBuwEm83GlZdLpZ7rRHNqA2Nvo9mkNiMDzS/4pG2kFX5EWiFx\nsbjvpOJ3KhO+SFYtFgBmj2yPrGxOQHlUbBqlzPj/kVPUyUtC4Fzc/5qAhMC5GP7vCQDAhuZdkRA4\nFyuadsSxj68xpKYPJt49RztekOOfI5EQOBcJgXNxL5W++ngft3oIenCZd32tB+fof3T4Kd74usc4\nweArm3Titf2b8pl0f0mNBQCAPv/vif1DyqBbgbGstDqUIqy0mpQPnrGA/wKgdUgM1cL3QvRaCknF\nk5H2C1fjNhKMBQAwNNKHIUUsENdYWHt0HMFYAAC7qlYYv+QPAMAfdeeJvO/VuI0kYwEApbEgL1xj\nAQDBWAAAPT0m7/2/f1V0MPXQ5ivg3dydZCwAwJK99BsnBkwLXI+vg+vxdVBQmgoXy+F4n7GI16ZD\nPJIaCzXqOaBZx/pwrVVNInlV7PrLaywAwMAJ7RWgieyo6mShoIToohhym7xuKSgphceKEBQUl6J+\ntcqov3orxh+/QJIDAJ912wEA0d/SEZX2XSpdPFaEIDnrF2pVtlOJ25LWnDAAHN9RRWRCkhYbs6HI\nL3qp8vuWZ47ETwZADKQ+cPYxxvRvobB7cGMVyspY0NMj2sZsNiDsEty7vRfWH7iFiBexAIAb+yaS\n5vRrxAmaVVbBuLwSTjzOH26c/Px93Oqh1tGNGFzTG32r18ePwny0OrNb5AJ90ZMbqGnJCbz+p6No\nX/G1zTgVVF3D1iL+vzk9rOzwKp1zXH22C2dB73F0Iwa5e2Fp4w5yvDo+zCofwEqrA3bxY0BK9yLZ\n3ZqYYFZ+CTAU7/qmLYyZdQT7NgzlXbfq/V98wFny7n9yrOgfL+EFvLLoESDbd4JXsxqU7T2HtcSu\nZdTG9wDfxTLdS1FciRWfqntw42U49nQJbf+aI39KfV9/Z77//91kf7RxDEd7F+JvHvf0obYN2RhR\nJtGvElHLx1nueYqLSinjThSBqMVqbV8XbDozVewco9uuxpd4apfjLi7TlXbSQKW7X09fzNkqPqPZ\nuimHceeC+tdGdO+/pK9DFtJz82j7vNduw7Ju7fA/X09em8eKEKT+ykY1SwtCm6xBylwD4f2C/z5b\nfbsp3WgCsnwHAAAgAElEQVTQKoNBXu6lR6KSkRVqWUj35VPRtD+SM7U/J3QpiwV9pmYeKt0Lm4bW\ngZt5sQFujraIS+aksxVcmEe8iMXSHVeQX8gPdOeOqWZnidNb+JUoN8/ti2aDg9EygPNH5Gpvg/gv\nmbx+ugX/3BBOkLu5aQXK/omDWmPH3/fQbHAwLMwqgMViIze/SOSc0nI69i36Vq+P07FvMa9BWwBA\ncItuBBcgOpY26gAfO8l2r/7n7oV9H54SSqvH/EwnjS8qK5XYWJAsIFmfVk7WWgu6QGjxRH9Ow+bQ\ncJy+/BIRZ2dixaye8GteE0uDL2FpUHeCbNima2Lnq2BiiEIJk07IiqigZkWT85NzwjhllXLdV+gQ\nFdjMJSsjh7bPrqqVTPcVPEXgGgbqoH3fRrh1+hmhLXT1BWw8OVnkuJcRxCyJ9q52pMX3hulHsGDn\ncJHzXDpM3i1uS3HKJEgvD/rCZtJkeQq9PR/FhSXoVYvs5QBwsi2NX9ZHorkkZUoPcjpxaQyTOVsD\nMGdrgFqLMYoy1pRlLABA4OFTmNCqCXZGPAEAsAG086jO6xc0FriMO34eF8bydZreVr4N0m51PeQa\nLy2auXpUEvvjLuF9dgIA6uBmacktfCj3HNKQkfMXZXtVq9mEBV96fh7l48mXZJXoKQsG+nqExTbX\nWGAK/YB+y8wmGAuCpKaTv7QeHQtCTReOCwHXWDDQ18Ptg1Mo5+jbwRssFht1a5BjWbgM7dEID45y\nDMjs3EKesdCwrhPtGGlZ9OQGXMLWYt7jaxhWi/iDtduPv4DqdGE/XMLW4mpiDFqe4WRnGVzTGy5h\na3kPcax6Ho67AkHTp7sE8Ma6/je+XsUqcAlbi+qH14mdr0fEZPSIEP0Dr4lkFv+USG/u65PlNcoz\nVhHYWJti2mh/1HSrDBabDUsLTpaj2w/JaakjH3Fcz0Ttyno2qU7bp266uM2kfYij88AmKtBQOiQ5\n0ZF1J76T6wfeQ51MXk1Onf7+WZzYcSvHEeMzJizvi2pCAeL3r0SKnSd0NdltZAqFToIUF5VStncb\n2kKqlLAAJxtksw71KPskSc0qLZ/e8tcEhkb6Mp9i2FRRTRFMYeiMBQaDodTYj/txiYjL+IGpfs0B\nAA/iErH6+h0E9+4iclxiJjFtfzVL6lhaSXGylm2DQFa06oShs7fo42Jx7kpl7DKkF2YpTJ/Y7wPh\n5aS6RfiXLGofyUoWk7H12SMwwMDkRk3R+AA52w8XTQ+IFrdD36+jD/p1lC5g9dBqyXcZZo5oh5kj\n2omVYzIYEp0miJPhuhYJ//thMPU4YVek6z2pUw5KFVMAwNmc/8XTwM6eNP5S9+EKuY+62Bt7CmOr\ni941tjG0QofKTUXK9IiYjMNNVsOKJmmCOC622sabRx009nZBq94b0ayBGzoN3orCwhJ41XXA8lk9\nSbJF/6UTNaY5aQM4aUo1lblbhooXokHahZ4qMKxggJJi6sUpF32a1OPagqwuQwV5xKQkvq08sOPK\nLPSuM0eqeYoKyJtRFUwMaeUHN6Jek7Tu7iNzkPXifaMwb8guvH5APjHdu+Icxi76Q6Z5RdFlcDOx\nhpEqMZDgc0BnLFQwMcTZD+I3tmQlyL8lZp/jn76eGDkIAw78DQBY0MmP156Rl08KYJ7bsY1CdTn4\n+AWmtW2u0DlFoTUGw+Fd4QDEGwWiCPGZgsGPluF0CqdSLN0pA1W6VTqiUpuhdrVH4gXlJDLJUWT/\nlEbNCNdUhsHPwkKF6iQrxawCdaugA/wMR9qy6JeHi6l3xRoMADCl5hCxMrIaC5rA/CldMH+K6F0w\nLq4eVRETmYRfP3JpZVITMhSlmsJp08Nb5rFxUalwqy2ZW5+qyMvWfW9Kg6iFvqLISqd2D5u3Xb4K\n6muOjqdcEJ/df1cpBoMmGQsAYGxqJLKfzlhQRRG5sS0aITj8Pu/ay74KSUaPyUSLTXt48QmTT3Lq\nawxqQHZTkpVhTXxx6Ak/fuSDlAHTsqA1BsM/offkDni2M7LiGQMd7kyXyjDwckqmXLQXl6bgZ/5F\nWJn0kEs3UbxNqU3b51CRnCv7/Z/U7jZWFeh3ClVJasF7UtuaD10BAPPq6PLkqwplGwrTXq1HbC7n\nBK6JjScW1iEWtEsvysLIp/wdulMtgmHE5P/I3894hXVRBwhjuDv0XHpETBbZJriTL/icagxdnyTz\ncNsEx57/chuhcWco59MUtu4Px5RR1NVlp6zqh4ndyT7OgsREJilDLbWhp8dEWRkLE7ttkjglqiJh\nlbHA1BPtKWwmplietlPLxxnRrxLFC/7HCYpCa7JQWlJGaqte155Wfs9y6sD52ZtlP9mShDsXXsKv\np6/C5hNV7VkToTMW3GpXw46r9PEkiubGRPqsYx8WTMX1qE+8IOTK5mZSBzcLBzBzr7nzzO/YBs1d\nnXjtYQH90NCJ/vOqCLTGYGjTqR5i3qXAo56DQuara+kq9RgDvUooKSNbcYkZE/DdcCdqVrmqCNUI\niDtZsDEju9uYGJBTDUrCxqhOvOcza18DwKDt16FDHLZG1tjsMxtlbBb+uD8VsyNDsN6L82X3ITsW\ncyI3468mK2BjaIX4vC/o9yAIZ1tuhj6D41YRHH0IvezbYrQbJ9CvR8Rk9IyYgguttkqsg+CCXtTC\nXZyrkKTzaBsnL72kNRjc6mjWDru0RFyJRKuuXlKNOfZ0CQY2oM9ApGx61pqLS5/Wi5T5++lS1Sij\nJqat+x/GdZTcpeTguksSy14++hDdhlC7cOxfc5HUNnXtQNq5zh24S9kuLkhaUsYs7IV9K8+T2tdN\nOaxQg2H6hkEKm0vZ0BkLvq08sOqw6oqXCi/+qYyBTrXdRRoJ4gwISQwMP3dXgtxRF9HrRXnRmqDn\n2av7YerQvUiOV8wR+GYf6l14UdSxf0HbV1D8DpFJjohKlT8taEHxB0QmOYo1FpQZP7ExqrPS5tbx\ne8A9UdBjMLHeazqisvnBi3MiNyPEZzZsDDmxE66m9rAzskbv+9N4MmdbbuYZCwBn0c4GuVCXDvGM\nn3cMACeNquBDUqgChRVR2VgZcE8GVk86jIENqH3M5w7ZjRO7w0ntFtamvOdd3GYSgkIFkfS1SyrH\n1bmsjIVj224S+lhlLN48NT0dtT5OQRzONckuHnuWn5V4vLsn/e/m9gUnafuoDAD3+spdgImiz2g/\ntd1bE6EzFnoEtlSpsfA7ozUnDFzG9KbfXVRFjQZXuwOITx9J219cmsRb6BvqO8DZdidMDMUH6f7M\nv4jEjAkS6+FW6Si9jtuDKWMYWoeF4l7gaIoRmsXl1BC8+xWOFraD0NJOdB0BOjKLkhEaNxFjq++G\ntWE1HIybAt+K3eBlRTwleZJ5Gk8yz8CIaYKe9rNR1didcr6Y7Ac4m7IGzqaeGORMdgPTIZraFm6k\ntumvRO+kAkAxqwTBMYcQn5eKH0XqS92n7exaw/k7cnawwZFt/KN0cUbD1biNvMUq1eL3fNRaQtEx\nQegWy7fPv8Tt88Tc7Yp2/9l7YxbGdtyA7Kx8Wj18W1EX5BR8zVN6bZHp/uLeN6rXu+f6LPzZaQMO\nh1zH4ZDrpH59Az1sOSc+n3955NyBe/hzsWTpdScu51e2HzihPY7vvKUstbQeJ3eycaaJ0BkLoxf0\nQt8xfqpV5jdGqwwGVRgE015tFXn6YGHcAfUdokTGFXApLk3BpzRy9hEu4k4Q6DAyqA7zCq1p+yc2\nbEIyGly3B6OmjS3tGGGmeFD7ZyqbNR+6op/jYnSuOgnro3ohIv0IIa5hzYeupDiHg3FTkFb4GfPq\nXOHFQgxyXgVXUx/s/swxkGbXvoD1UT1homcJd/OmvLlqmDXGKLcdiM97ib/ip8LcwBaT3MMI9wOA\n+pbtMKv2WeyPm0Spgw7pEefa0yNiMrysPLCy/iRCm7bwq4Q+WFhdCBoLAHXBNmGuxm3E6HbrCHnt\n6zVyxYbj5MKGmoJjjcq4GrcRh4Kv4Z8d5AXjmberRAZWXo3biK9JmRjpt4bUZ2Vjhr+fLRWrw9W4\njehZay4ps1GdBi6U8k7uHJ0XjQjF87vRvHYGk4EL0Wuhr1++TxYUhYc3P7Xs8NnddAaDCP43Ub3V\nmSWBzlhQZtpUHdRolcGgCuLzvoqVYTLNUN/xE94mU+9GKxMjg+qoVfWOSJmZTVuioKQUnnu3483Y\nSXDdHowxPg0xv4XolF6CVZfFIY2sMAl5L3AqaT5ln+BCXNAAkBYXUx+4mPpgzYeu6Ou4EHoMzkf9\nzve/eAaD4L3qWfrDiGmCU8lko7SPwwJ4WHBczcZW34M1H7ribMpq9Hagfg06yLz99YnU9jIrCr7W\nog1vQWNBEgrLlFtEjA5zfRPklOYT2s5/ua0WXcQxYd7fiI5NQ+iGALg5S7aJEPovfXpKutMBeU8N\nFHHqMCyoM4YFyeZeWdXJRm4dLkSLr4MizIqD0p8CqyNAWxMQPqmShGNbb2DwlI5K0Eb7cNWwTGDC\n0BkLvUcpNj2pDsnQmhgGRZGST116nUt+qWSpR5mMCqhemd4fUlmIMxa4LGrlh5ziIrhuD4alUQWx\nxoIqsTVyUen9aprzg9wyi+jjPriGhDBcY0GQjzmP5VesnCMYbzD/DdGVsFKFiljybidpzP10+gUA\n3emC4H36P6Sve/GlQHlp5wJdiSeJLDYLxawSpd1PVlr13oidawYh/MR07D58Dycu0MdlqYuy0jJM\nbLEY3SuOxNG15KBPZdLJNBD//qPagpw6yDRqK/4EHwA2zqB3zaXj8CbJkpPUayx9UcIqTjZSjxFF\nZYeKCp1PmIp2FkqdXx7+qE2/SXF2P3XAuQ7lolUnDMKF27guSp29F6OWpyM2h42hGsbjcMJ1hCVc\nw02/EIVUejYzagovp2R8+NIIJWVpcs8nCnEBzun5eaS2+ElBOBcThdnh13n9diamJDlVY6av2C9V\naRBcXBaW5SEkpr9M87DYogso/e50rdoKQa+D8SmHkx6xmY0X5tfh75zub7QMxawSkhGwpyH/b9zN\n1IGUwlRYPsClB3pGTBEpQ9Uu6A4lLM+9Pt1iEwyZkmUc61ylBbJL8nhj3cwcSPeku4+wPqpi/cI+\n+HPOUQzoqZisLoqiq+UInEjaAUsbc6TGflO3OjrUwPKDY0m7y+unHSGlLGWVsQjX09aRsxr1CGyJ\ni2H3Se2CUAU8r5fB5a5iJcUuwG0qW+Jbyg+FzqkN0J0sCMvo3JJUi1YZDADRSODSqbcvrp8VfzQZ\n4NIJAS78oFeqOgwd786QWqc69s8AyB6TIIpKFuNQ1WqBWDlR1Z0F+zW90rMsFLHyxQtREBLTH9aG\nVTGuxn5em6wuUDr4SLr4NWQaiJTd4kveYRKWH+DYEQMcO4qUkbVdWllxuqgzHWvIXk6u+oB+TTB+\n7jG4Odviwo03CD8p/8aJMrC04RTHq1a9spo10aEp3D73QmyNg04DyafEE5b3FWswUKVUZTCkr/Zd\nXKjYU8WiQvW4WGoLOqNBtWiNwfBn3+04dou6KEffwBYSGQyC0BVtq2shfX0GLtxTABY7HzFf/VFc\n+kWmeapazUUlC+l2N8qjISApWcWpUo/ZEsPJPS1oLGSXiHZXUxfFrBLs+HwMd74/U+l9LQ3MMMCx\nM9pXbo4KesqvmqpDeUwf247UNmu85vhxXw4Nx5UDt/E5knMi1cmUUyn3el4YQW7rlIOYsnUElg7Y\njKfXI+HXrwlm7yemVAxd8A8u7LmFgTN7YMjcXqR7ZXz5gQnNF6GslIWJmwLgP5CYl5/JZKAovxiD\nqk+Bcx17hPy7SJEvVYeCOLb1hsxjQ1edx+gF/M8GVdE2WUhLVuxpQFpSpkLn01aOv1qJgT4LKfuU\naTSUlbGgJ1RIsUX/YNz7ZzqpXRG0HBCM+yekW8uVlbHQ+n8heHBS+WtArTEYvqX+REVbc8q+nJ+y\n7TBTEeIjfxYWJsMEtasRfdwzc48gt/AB8oqeoZT1AwADBnp2qGDggYqmA2Fpovk72/IEOisSFrsU\nzP+CmMtkdA2yNKyE/AJims4dn4bJrZsieP0zGkvebVe3GvhVkot9caewL+4Uob26mRPWeE4jVGXW\noUMeykrL0CmwNToB2BF0GBODyQUpAeDhxZe4vP82jIwNUcnRBv/+85BgMHANjXaDWiBsxWmErThN\nMDr6OYxHTlYeWv7RCIW5hVg3cjdMzI3RtCs/9XV+TiF62o1Gu0Et8O/fD9DJNJBkuCiTXvelC/TX\nNoa79kZve7IBK0xVZ1t8TaSvuyRpLAIVp/fdIRgMwlhWNJNp3txfiluLAEBejmQxleUZrjGw8eRk\nzOxPfUq7MHAPVob9qUq1lAJbw8sMaY3BsPnwWHT1XYorL5eS+oJG7IdVRfX75ovCxmwobMyUWzJe\nEDYAt+3BvGtnSyvcCRilsvuLQ1bjI8BlA9ZFEQNMR7htxcE46QrxDXfdgjUfuhJckOTJyiQPU1+t\nQUKebKdR6iA2NwkDHpJd90a69kEve+qqwTqUx7/fHmPrpyMSyzuaVMF2X+rdOnXRc1wH3vMdQYcJ\n14Jkff9Fu3jvZsVJGcvtnx36J0Z5zyYs+HOy8jB8ST8Mmk2f7nrrlIOEObhGiA7VsuPKTPSpS6zx\nUVpaRptedtMZxdWo2HFFM4sS/i4wGAxcid9EaKvbyA3nYzaglwfZ0+TFvWj085yPU2/INZKu3v0A\n+8qW+PEzHyEHwnF+759o0T8YD04G8f4FQHiuaATnPnTmCfb+fR8PTgbhe2YOKtlQb4QLjy0oLMGC\n4AvYtIBTZ2TsgmPYu2owWv9PdS5ZWmMwuNSoBBaLhc7ei3H2IefH7nvaL4zssRkA8E84fUQ9Fcn5\n31G5QkUYMrXmLZCY/JIS1N2zFV1r1MSgup7ILirCxGsXaQu6aQJ0dQ2E2x1M6lLKctuE+4TTtIq7\npywyspBXWoDBj6ld7LSVA/FncCD+DACggp4RjjcLFjNChzxc+BKO/f+939KQnJ+GXvcnYahzD/R3\n7CR+gJbAdSsRtcDvOrIt/lp2CuH/PMS+l9QpTwMWSFYgTIdyoaqTcWbfHQwYT306UdvXhXYuxxqV\nkfyZOoD+4fW3pDabKpaSKalDKfzzYgVlu6GRPph6TFKwOwDkZRdQjunSpg5mrz2LZ2+SsDKoB+09\nty8jB8wrCsFwGK6xAECssbBy+1XMGMXZhDOuYIAnrxMAANNXnsbeVZxinFsW98fU5arJ2KlVq+Vr\nr5ejs/di9G6+EgAQ2DmY1y4tS97tx4HG8xSqn6ZQd89W7O/eG/4u/Oq68ZOC4Lpdt4BTN2mFGfjz\n+VJ1q6F0CsuKeK4V51uq372qvLEh+gDuZ0ifg16QI4kXcSTxYrn6/6nu6QR3H/o4tKnbRmDqthHo\nZBqITqaBcHCvgv2viRXHq7rpAq01lZO7w2kNBlHM3zEM4ztRV5Y/tSdcXrV0qJDLscG0WZTo4hke\nvIgDALRo4Ebqa9Gfvy5S5AlDcUkp2g6WrVI8lxv3o3H17gds2k/8jD5/m8h77l3HQa57SINWGQyA\n4qo9VzKyVsg8moqgscBlcau2atBEB1D+/ZLp+J+Tal28fMeH4OUuzcz8oygU/VnqdX9SuTEaYt8k\nYeejlWLluC5HnUwDEVB7Bg5HbRIzQocmIGuMgItHVVJbSXEpDAz1EfUyQaY5xcVYyMv03psp2w2N\ntG7ZpnCuJoRIbTTUced8Bo6ef4b+XX157cpyQ2o7eAvB3UkQFosNJlN8Fq45f3bAzfvR2LyoH6F9\nSM9GvOcnLquuls5vV7iNy1qvcRjyWDHGhyYSkZRAalseoZmVZ8szl7/e/W2NBQAYpGKDQRHEp4nO\ndHIsXL6dfXn4VqicrCmDHmm/z/b+1+so259ej+Q9z8smLzirutgpTScdyuHS4Qdyz3Fg7SXK9uGz\nu0k0fu+tuZTtY/zXyKyTINGvEinbd16brZD5tZ2Ln+irmw9uRKzZxWQysHx6dwAcl6DxQ1oBAAJ6\nN0G7oVuxMPgiWg7gL+rjkjJw60E0/n0Yg9ikDEI7APz7MAZp6dlidTx46hGWbb3CM1YAIOL4DLQa\nuAkLgy+i60hy8dKBk/dj6ZbLAIBubevh2ZtETFxyHFOXn+QZHuOGtEKL/sHY8/d9PHoVL1YPRVEu\nTNXXT+Mwd+xfUp0+cAu3URVwo0u5qi3QuR85WGhuVcfyRkFZIf5XDhZhvyN9lx0SeUqx8eRdDPb3\npe1XJmOfL1HKvPllhbiYegc9qvkpZX5V4OBeFdfzwkgxDLufruI9H+I+DQW5/MwzQ+b9gcCFfVSm\now7p6B7QgtI42LGImLlt+oZBYueq36Q63j6J5V2fO3AXfy7+gyQ3cEJ7iXTTN6AOvk6JU15FeQCw\nd9UZuADn/ac7achKzyGcNEQc5yfpuPsPX37c4JYYN7glabybky3cnGwp2yU9kaCTYzIZtH1U7dLI\nKptyYTAkfpb+D1TbjQJxxE8KwtqH93Ds3RtUNDbWqAxJ5Z3sklwEPKHeffqdaFupsVruy2YDA1cd\nhrmxEfYHDSD1f0xJR+D6f9CijjOCx/Gz5SR+y8Kk7WcBcFybuHCNh1svP2HL2Qjafi4jNx5HRnY+\njswdBAuTCoQ+rsvUhK1n8C4hDWFzBsGlsmTukUMfS5fYQVpC405phMEgKoWpJOlNRcmc+7ZX6rGq\nTKmqg8j4pX0kOk3o2F/8d828HcMwuOFisXLScOb9WlImJ0D+2gB07jarj4yXec7yytkP69C7DvV3\nY15OIUzNK1D26ZCecmEwfIhMUrcKaiUyyZFXNE6Quc1bY27z1mrQ6Pfld3Y/EmZaTfWkozwVEYkT\nCwOQV1hMimnwHR+CVvVc8XjrZN41t9+5sjUurhhJGwfR3tcd7X3dafvzCovRavoOXl+bGTuRU1BE\nku26IBRXVo0GwAmMk5Sc0jyJZXXoKA8wFVgcy5qmjpM8UGVy4iKr0UBnLACAT8uaUs9X3qlgYojR\n83sidPUFUl+/+vOw6vA4+LbyUINm5Q+NjmHo7L0YfzRbSbimety9/k7pukQmOSr9HtLCZpdS6uW6\nPRjX4z4p/H4bozrxHpowj6Yx/Ol8daugA0D/1l4AANMKhmjk4Yi/bnAqZF9/HgMA2DKR6Iaw7rhi\nYnsEjQUAuLtpAqUc11gAAEMDzdqzic9LUer8DcaE8B7ZeeKLUr1McpJIhlqOjYTMaRLpFZlSVyI5\nQX7kncbrZHek/twgkX6y3EOH5iPKl17aeAa6TE4AsOao7nSBjr5j28LBrRJl34KA3SgtVUwl798d\nzfq1EkI4JqH7gMaYNL87SS5k6TlcPyddIOKp5DtggYUBjpIXmqLbyVcHkUnOAMi5iAGOO1LrsFCM\nu8KxuIfW88IKP8n8MlWBh0VrxGTfU7caCkV3sqCZLBjcHgNWhGF4x0ZYfuQmAKI7EQAcv/MacwYq\nJoOY8NyKIjZXNd87016tVVnGpLbTduHFPvkzWvk6JdEYDAy42FBnmlEECZnT4esk/nSbK6MzGGTD\nu0VNvH7wkXctvAO/+ZxkRiEVwnNRZVMSh76BHi59Dkb3GmSf8pS47+jiMh3GpkY4/molDAzJS67S\n0jIMarBYZAaoNUfHw7uF7nRBFPvC59GezvSoMVMuFzFl0s+DPtbxVAy9MaoONNpgEKauD/Vuk4u7\n9HmzjyRex7mW0mczeJdSG/UcoqQep0iiUpuCzljgci+Qs4t57N0bLLhzE0feRcLc0Ahvxqp/Yetm\n1rhcGQw6Y4FMu8pN1a0CACDuayYc7KwAAA62lvj0JUOpaVeVNfeRxItKmVedNKxFfWqbkrUcmXkn\nUN/+KaG9oCQK0Wnd4WC1CHbmw0XO/TP/CuIyxkGPaQ4vh/e89jJWLt6ntkQpi5MJi7uYZ0AfUWld\nUMbKRr1qHJ/59NzDSMlaAjab7zbm65SExB+zkJl7HADn9IA7h+DzyJS6hPvqkJ1p6wZieEvqQl4A\n4OHtLPFc+gZ6vAJ/VExdK1vxLj19JkwtjGmLhxXkFaFnTdkLdeqMBcmQJd2qusnLLsDVrzvUrYZE\naLRLkjBtu3hStrvUoD6KEkUtc8m/ZAQpY+Xi/Rf1ZEgBOKccxaVfJJYfXM8T8ZOCED8pCM0dxB/v\nq4JqxnXUrYLCePVTvcajpjLFfai6VQAAzNxzERvGck4lqQKg6fglgbuMMGbGRviYki71OEl4mfVB\nKfOqkz1B/ShaWShl/YCXwzuk/eKfdHz9tQmpP9fBxzEWekxzsNjUCzMuViZdKXf/I1PqwNPhNezM\nh6GSOd81rJSVhdpVrqJ2letIyeKcbNuZBcDHMQ6+Tkm8BwA4V9wAX6ck6DHNJTph0CEflR0qKmyu\nmZuGiOyv5SPbugAATr1ZDccaii/6p4mLXE1G1PvVy0N2o02Hlp0w0OHTpLrUBd3Weo1DhzvTZcqW\nVFqWrgb3JDYiJfDnFWbH8yfY+Pg+AKC6teK+eOXB2tBe3SoohJdZH7DsPTmPsg71IuwW5FqF87k3\nMzbC+eUjSP3CpwLdm9ZB25m7aPuF78Htv7dpAqVLUnkvJKdI3qQ0gKfDKwBANavZSMvmGA1ff3Fc\ni7iuR4zMWfBxipP5PtUsZyI6rSccrLlZczhFlPSYZvieEyrQrqM80aaHD9ZOVl7Wq7235iIrI0ch\n2ZhUbShEPviIuQP5RvrVlK0AgC4OUwhy83ePQKvuPirVTVoOPViMYS3Ia8LiolIcWHsRI+f2UINW\n1GjL6QJQTgwGWVBEHYbP3/qhRuVT4gUVgLTGQstD+/Alh1NYZGrjZpjWuLky1JKJgrJf6lZBIeiM\nBWrqWbqr7d7iFueOdlZiZZYP64Tlw+gD8kWNFze3zngQB5u2RxG7+XpMC57RITifHtNM7rkFKWPl\nKnQ+HdqDta05riaEYPOc47h+/LHU4z28nLD5vGq/J/KyCwjGAgCsGX8QdvaclM8W1qYoyCtCSXEp\nVqkU2iIAACAASURBVI87iKspmm0wVLK3RmBQF4QFXyX1ndwdjq6Dm6OKk40aNNNutMZgKC4qBcCG\noZGBQuZTRB2GvKInSj9p+JjWCQXFot0RTAy9Cdeu24Oxv3tv+Lu4KU0veTgQO1q8kIajy4hEz6r6\nU9Wtgg4tpb7DCyRmzoCzzSZ8zznAa69mNQuRKXXg5cD5LmSzS8BgSP9bUMbKhrdjNJgME4nHJGct\ngaP1Mgnnz4Ue0xSiDB9x9HPoiA/ZsfiQHSte+DdBkbvtqtq5n7ZuIKat48RE7Ft5HmdC79DK9h3b\nFqPn96TtVwSiXne//+oYcE8VAP7JgmAbt/3wxisImNlV6XrJw6DJHTFockelzK0MulSdqPGnDVpj\nMCyadBiGRvpYsT1A3aqQ+PpzFapaLVD4vKk/V4o1FpiMCnCvQgyIjJ+k+gqAklLGLkVBmfiS6ppO\nVrH2vwYdOjQNBvTAZJojMqUu6tu/QErWUgBAFYvJsDUbitfJ7qhg4IFaVS4BAL78XIlv2ZxibC+T\nnGBj9j84V1xPyJokGIzMGbMOLHYBMnP/kejUoqQ0Fa+Ta8LGbCAcremDb32dkvAutTlsTAfA3oq/\noSBKFyoCXCRbOMblpuDxj0hEZcfizc+P4gfoUBtjFvbCmIW91K2GSEwtjCWSc/0/e2cdFtXTxfHv\n0iUhYhECYqMgiAh2YSt2K7ZiomL/FLEDMMDubsEObFRQwQIsVETKoKT7/WPfLfbu7t3ehft5Hh7v\nnXvmzFyEZc7MiSZ1cf14mMQMBgrlQWkMhrgPKQg8I788xHYWP3nWYvj9bw9+/9sj0ZMGMnUf7CwS\nwPC9JWL7i+c48i4KBppauD9mIlRovGXZict+huBE/jtqla2GgjAoU1YkDRV1aKioI7ckH+Vi7HpS\nUEiaDSfuYemYrlzt5karmTv67ItrNRUj2Jtz1pcxNVwBU8MVXDp4LcrZ29NyzjGv2TMaVexrbbKf\nUBdRFiTbus9Iz0VcrPXMYK1nJnS/orJi5glGRNo7xOeST6JBUXlx7NSElJx5g9r4/iFZoNyT+7FY\ns4y/y7bn/J5wHya4SjeDpJ/pmDCUOO2zXjUtXLq7iLQuBn3ar0Mxj8xZZ28sgFF1XaF1isLNlCAM\nbeyNc7GbQVMht1aTNUpjMMxa3hchp8Mx3buXxHSyxy8wXJT4BULzMxoAICv/Dgy0xT8CI2cs8DdO\nrAL9mNeZBQWoH+SP6traiJxEXExKHnSrPVveU1BqmurXx3grdzSuZiUxnQWlRQhOCsWTP5FIzP8l\ndH87Q6qipjSw1DWtFAu70yvHYKTvCQDAhUfvCA0GacK+219DTzEyeckaDRV12Bs2hr1hY4yy6EMo\no0ybIhSKx6Thu/Dzx1+Bcrv8b2GX/y3cCRccJO7Whn9im5zsAri18SWlCwCKi0vRp/06vjLDe/tB\nQ0MN1x5L3wW5V52ZAIDepqzfPUVzUVIag6FzrxbYtPQC7Jys4NKpsdj6riU/w7oWU9G6ehPCwGde\n8DMa4v9MgqqKnsh1Gr7+HomcgjC+MuqqNdHUNJKvDK8YBnYjgh821VzRoFpbfMl+SkpeFKY3OAk9\ntRpS0y8t5PmHdF7Dcehck/xujChoqWpghEVvjLAgPm7+nB2Pfd/O40v2D8LnvraUESgNFjeejBmR\n5PzoxaG+nnRTLzc0N8Gu+YPh6X8RAL3ysySKt5GFSoNKQUFM4tdfuLjnPld7xbbEr/w3kiou7MdO\n7oixkzuy9J0Ox97td5j3N8K4TwgF6Zw8sxuGjaUncsnNKcTAbps4ZAUZDeVl5VzGwo6Dk9C4GT2D\n44GgUJw7Tj8tLCoqEcoQERVFMw6IUBqDgcHqead4PhMmter+b1cRIkLhNoC/0VBaloPCknhoqlkK\npfNP9gGBxgIAgcYCA6KA51XtyVezHWDG+uW4kbwZsVn3SPflh4mmFcZb75GIrqrCfidf1NTknRJ3\n4sazOLREtIJDwtKwmiW22nHmsp72ygepBYJ3kyhEp662iUzGWdt8jmAhMXFuYoFtswdg3s4QAED/\nZYdwZf1EqY9LQUHBm28xSfgWw32KeWBtsMg6iRbZg0e2weCR9MKel89GQE2NfzkwjyGcLkgVderq\naeJO+EoOFyhBC/werqxYpCsPlkJLmzOBwuSZ3TB5ZjcOQyXq5Tc4OClmIhlZoXQGg6Sw0hW+BDw7\n/IyGj8nt0cz0NdRUye2gf0h2RVEJfxcjbQ1bNKzNnSJMGM7GRsPDTviic73rLkLvuos44hYWNrkt\n1lzIsO3+M+hraeLUy7cInctaUMSnZWD4gTNoVc8UQSPoAYKNfQLw0Ye1U8l+v/XuExyLeI03y2cz\n4zgYzwfuOYHcomLcmTNB4HymvlolydcTSONqVthkJziAXVbGAi/2tvKR29jR735i3iz+edVDHwuf\nkKBbB/5H1aLoVAZ0VLVkMk77FtaY0q8N9l8NR9KfLDhOCcDGaX3QvRVV0Zai6mF/agcyCwsQP0F4\nH3xJUDETkqwYONxZoExyYjrzmp8R0L4LuYKwh3axNj9pKjQuY4GdczcXYFgvumfGktknpH7KoOgo\nlcEgbHE2fmxrOQfdH3qhtTE90Ccm6zvmvd4BS93apHXwMxpiklpCT8sF9WueI3zOgEy8QoPaV6Cj\nQT7v8YuJ02EV6Ie+DRphRLMW+FdYCM+bV0j350W32rMQmkoccCQN9jyOwEcfL0x0dWQu8ItKSpGW\nm4eIxfQA+IqGAoOAoXTfXNcte/DMezoWdm8Ptx2HsXlgT9ib043FJ3HxuDydvB/zr4I0CbwVOULa\nEX+fHafQ42scG5lh38KhWHP0LoLDojncOhgyAJjtx26/wvYLTzjaennvx+9Mer54FRoNL/fNI+xL\nQSEpLj56hwev4/A8htulbcne61iy97pY+qmfWQplhAYa6aQkVYm/f7KZ18vWDBYoP3S0C86ffA4A\n6N1uLaG705ljLFfr28/+46vP0Igz4LmoqAQaGpJdNjPSqTJiGNhRNDcl/mdBlZyQdhvwIo0ebzDv\n9Q6MqeeG/U6LhdLBL/g4p+A5ykEcfQ+Qz4QkjLEAACY6uvg0Yx6uffmEMcHn4XnzChoa1xA73aq9\nkfyrIw7cewKOFtyVokNmjEW37fS87X13HUOvZvSdyvTcfKbM3lHumH6adbza3sZSupMVEX7GQuR+\nL0Tu98K+hUMBAP+N704oy5BzW0hPObnzUhizbfb2ywCAm1umMGXLyss5+vV0Fj9OSBbUNTNC7772\nMDAgn1efDNNmdoNtC3OoKFC2iktttyu1fgBYf+IeobFAQVGVeT1qNr55eAsWVBAqVn/mhaBAZUF4\njtvHvO7UvZlA+QnTuzCvS0rKxBqbiL3b7ggWEhJ2o+BmShDHl6KhVCcMAJCZnotZI3fj769/Yp84\n6KhpSaSAG7+ThncJlqipPxN1DJcw2zLzruLHX8HZisRJ06qhqqrQ9RhEpbiU80OAcbrQqFYNJGbQ\nK0jH/SY+CbCqYYTwRaKl5vWJls0vLy9jQVTSsnIBAE6NLfDzdyYAYNFI3rEsDKNEX0dTovOQFtWr\n62H+oj6Yv4iV7UWQOxEZhg53xtAKx+WS0CsOqjRVdDRxwqM/LyWue0MLL6jSVCWul4JCWgy4ehyx\n6b9xqPtgtK9ryVMuq6gAruf2oLZONdwbNImnXOeLB/CvqACRI3kntigtL8fcR1dxNyEOrWub4XC3\nIVBTId533f0+An5RTzChqSOWO5GPH+THyY9vsP7VQ3Q2s0ZgJ+J6HR8z/mDG/RDoqqvjWv/xpHWf\n3n4bx7ZwnvARFW0TxJ3wlRyGAuPac0FPuA8VLmlHZkYulx5JIqzOB3ejMXuRdOpPKKKBUBGlMhh6\n2hP7j/W0X4nGLcyx7dgUGc+IBf86DUFMg+Fzam/kF73nq0tNtQaamb6W+BwrA1c9x+JO7Be4NW3A\n9WyCiyPeJqagb3PW7rixnmR2nl9nipb5ShhOttksNd0RsT9gXtNQoFxHu/oAgBvhH7F4VBcB0hSy\nZn6j8RI3GFyM7dFUv75EdVIIJru4AB3vrmXeR/Vey0eagkF02i/0vXKUeT/2Nt3tt6L/v+XhzWhd\n2xwvUukbb1+z0mB5eDOXnF/UE+x8+xxqKiow0zOA5WHW53Crmqa40Gc0AODIhyj4hIcynz1JiofN\n0a14M2oODDU5Y38YOmyNa2F/9Evsj2b9zrKPzz4W0Tvwepdr3z/i2vePfN+lon72d6lIQV4R01io\na2mCvJwCZP7NRi+zObiZuAM/v/zC1M70DZNa5tVx5LkPoR4GFY0GANjldwu7/G7B0bk+Nmwnnoei\nk5NdIO8pyBWlMRhSkzIAsOIY2I2HyV49cCBAuCBcXvUW+NVhEAQ/o4GM+xEAWBgHwEh3iEjjM7AK\n9MP5wSPQqg636464yCLYmR+aampoW78eOgccQEFxCR7NnwINNfrO6OIeHbhiGp4unIYTEW+wNfQJ\n3O2awqevbPO+k2VOgzHQU+Nv3ETu90Lg5acIeRKN/8Z3Rwc7a1ZMw5QAjOzaEgtHdOLZd5TvCair\nqeLospE8x6hppIdJm87hXsB0kd+FQrqEtAuUWHrfOQ3GoGutNhLRRYbKEmOwJfY63mT8wMm2ote1\nqaauxTQSHG4ITi1JQafvlaNY4NAes+1cmG2Whzdj46tHWNKqI4fsy9SfXAv0ikbDzrfPMdjGFn7t\ne3PILXbsgBktWL8bHk0c4NGEM2lIo2P+sD+1g9AIENTGfl/RcCCC6F0CXofBq2U7jnchMpwEBVMP\nbLgQAPGJAuNUYcDEjpjuKziOgAEjQLin6xqUlbGKhkZGfGUaE1U9iJgdRixDxTZAcU4flMZgWDXn\nJE6FEvv4te7QUGiDQVoIKu7Gj+bmH6FCk0xVQWkYC7KGfeHPfq2rqYEHXpMF9mEwxtkeY5ztBcrx\n4lJiqGAhMSG7aJs1sC1mDWzLvCdagLG3sV+fWskd4M14zvh3yWjqVEEZkITRIGn3t6rE6fjnaGJQ\nV97TqHL8zKa7nbIbCwDgWNMUe95HcBkM30hmHZpVQR8A+L9+ymEwEHGw22CMuX2W1BjiQvQuxz++\n4TAYxEGfT0Xjs+828H3Oj1v/DyyeMW4fvn5O5XgmTH0DSRsXBoY6OH9roUR1igvDQDj3YTOqGeoy\nDYWLe+5h8HT5b3YqjcFQkF8ENTViH9u3L75JZIynf/m7CpFFFKNBnHgFIn5kZaKegWAXFArBHI0X\nPQ81GaiFG4UoMH5uHv95Bb9PR4TuR8GN443/UI5yjjZ2VyH2k4APWckc9+ynBeOt22NuY1YaagDY\n8ekOjnx9LLTr0einu/AhK5nnnKoSE0PpefbJ7MgDANmUBePvnMfjIVMBACVl9Di59a5uhLJPkuNx\n9vM7RP1Oxq+8bEIZaUD0LukFeVxtJWVlTJckxruQwb5dI8L2Dv0dRDYW2Nl9jP79zcsthHtX4Qqt\nSYOsTO7vnbxhGAi9TWfhRhLrc/rwumDKYBCG1TvGYESXzbgR5cP1LGjDdRiS/IFOyPuFSS82AgBh\nhefutZ3EmicDYYwGSRsL32ctgFWgX6UMeqaQPOzBvLzqC1QM+CUjx69WQdjjj/BZcZGrvXPXpli+\naiDf+VJw0sGkFTqYtAIARGd9QdjfKESmxyCtKAsmmkZwMGqKPnU7wky7lpxnqthsjLmKcpRzLMaj\nMxM5ZNiNgiYGdXm6JB399oTLYDjy9TH2OfMOuuXFh6xkPHZbAT01LebY0ZmJsDU0E1qXsvM1K12w\nkJC0q1sPYck/0CP4EBoY1sC17x8BAEMbNOeQi/+XgU4X9zPvXepYoJFRDTxI5Nyw/ObhDesjW2B5\neDOGN2yB81/oG5GyqLHQrm492BzdikZGNaCmooqYtF8Y2dBO6uMKg46uJmGMAxHNW9bD+9f0rGrp\nf3NQvYaetKcnVzJ+/4OGljpQDkxwXom9j/6DhpY6mrRSjIJxSmMwWNrURFlZGXrar8TlZ/Rdnd+p\nWZjYbxsA4Mx9culQLXRq4W6nAIwNX4vjbaTrN0rGaJC0sQDQYxjY/2WHMiIo5A2/bEMP7sXiwb1Y\nrNs0HM4uNjKcVeXA1qABbA0aAFQMs9BcSYziahNlUf6g+3J0vkv8M97K2EooXf0e+sPW0IxpLADA\nf83dMe7Znip5ymBrXAvv/qZKdPF9osdwND0egH9FhXic9B2X+oyBQ01ud7NOF/ejdS0znOs9itn2\nPCWBy2BQodEQ2Kk/Zj28gvNf3qNtnXo43mOYxObLjxM9hsPy8Gb8KyqEmooKz3ch4vGVKDy+wv07\nwKtdFsXe/HaPZxoWI/r6S/wk4m1UPOwcLCWqU1RupgRhtttGFOQV4UYy/XSBimEQg1tvfHHhaBgG\nutI/KMf19IORsR5O3xP+w2NDi2mSnh4h4sQ0iEplNApstvgjzns+4bOhJ0/j/Gjegbzi8OD3C6no\nZRDkyL9wjCzwmNQRRw4+AgAkJabD1Ky6SHpKilk1RzzncNeH+JmQhglj9pDStXzxWTRvYY6AwHEi\nzaUqcyL+LsZYEtfnEETYn/doZ9JcoJw4Yygqz3qsgsONFXC4sQKLm/XF8HqiBYMbqGsDAO6kvIdb\nHfr3UtSg5qS8dCTlpVNB0f/nSr9xpN2RyOJybjfySooRO1ZwXBu7sQAA3mE3CeVmPbwil6rNLud2\nw71+U2zr0FeofvKq9CwsE4cH4dBZ7gJnwnDp7iIM6k7/GfL2PKZQgdc77yzhuFcUQ4GB0hVuGzK+\nHW698WV+iWIsAICZjomEZ8YbfqcIsjYmlIVFN2+RlpWWsQAAlxLvSk03AIVwExkznhU0t3/PfZH1\n7AliBYcPGsKdb5vdWHB2sUHo4+VcX6vXsTKEvX/3Ez8TZFdduzJQWi5esSIyxkJlhrFrvynmGhxu\nrMCP3L8i6QlyGo8lrzmDYdfYiZb9ToWmQvhVlSEyGmLTf4uki+Gyw8igZHN0K09D4E8+qy5AbnER\nEnOy+M6R8dUz+DAKS0tEmp8wjGxoh+CvsRzvculrjNTHZeDWxhdubXyR/jeHr1yvtuRPx45cnM28\nTvyRhnXLL/CV3+Rzma+7k141LWhrazDv3dr4Ivn/WTiJyMkuwIAuG3Ew6B7pOVdWlOqEQZmxs/iJ\nL6n9kFf0hutZaVk2VFWqyWFW4rPiTih+ZmZilL0d5ly5hk8L6bs0Nlv8cXTYEIw/dwFx3vNhs8Uf\nQQP6YWbIVTSpaYIPv/8gzns+Gm0NwCxXF7z4mQhtdTXsG+SOP7m5uBQdC+8O7QEAJrr0+JTm23bg\n0JBBGHn6HMdpQ8XThz5HjmFuW1fc/vwFIbEfEOc9H7c+f0E9Q0PQaMDf3Dy0s6xH6v0S8lIk9a1S\nCsIef+Jq27z+Klebz4oL8FnLuQAKvvSKp152N6S5C3qh3wAHQrm27Rvh8InpTONiwpg9fGMhqgJd\nH8zHvc7+zH9HP1+Lky6sHedJLzbjYGv6xolqhYVkSn4arqeEY7J1H2Z/dp0V4XVyMC58A461WSrJ\n11JYGEbD0W9PMPDRNpFcf1xM6HViCkqLsSDyJACgj6k9vy482eIwEp1rNRGpb2UkfsIiWP1/QcxO\nxd1/svi/DgMAjPt/ytTfeTk4/+U9zn95z3FKsKVdLzid4dzxjZ+wiGseLud2A6DHE1gbGKOsvBxn\nPr9Fo2P+CB/uido6dD/8VmeC8JfNAAE4DSFRTij8X4dBT10Dg2xsme8y//F1zH98XaYnHiP6cn+2\n8ELQDn9dUyOOmIdH92Lx6J54RdxCHizhMCo8Bu8US19VQekMhqkDdyLh+x+ONnErPsuKBrWvEp4o\nRCc2lXgsg02QP0rLObN9zGrljAVtJJOCjUFmfj6sjaujR8MGTGNh4oVLeD9vDrTV1fB+Hmt3oEdD\n+h/Rq+PHwmYL/QNFT1MTs13pR/+MNoaBwPiXwft59HzQrvUs+M7pZ1YW3BrYwK2BDUJi6QXXvG/c\nZPa3PbED0V7kSttLk7Y1Wsp7CqS4c+sdAMC1bUOEP/+CsrJyQsOCLLyMBQbmFsYi664KpBbQAz8v\nJT7B+Z8P8acgk6fsjMgAZBfn4fQP0XbH1sQcQ2TGZ2QXK15GEWkz3ro9tn/kna6bzI5xp7vrUFRW\ngl51RQs8NdGqhgWRJ6tkvAI/vpNY/BItkCu2nfz4hqdsRUNgaIPmXIHQRH1TcrO52ta6dIfl4c1w\nv3oM4cPpgfKvRpB3rSHzLoz5Ro+Zx9H+IzsTHS/sIz2WIGa6bcK32CSJuDEJ4w509eFS9Ou0gZSs\niorg/Fh3wlfiYNA9nD3+lJTOmrUNSMlVZpTKYGAUazsdughGNfTw99c/+M4/jZ72K+G1yh09BvJe\niMja9YdGU4eWekPoaDhAS70hdDUdoaneAHYWP1FUkogPyZx5n8WdH7vBYRXoh5a16+DSEM4dF6tA\nP4kbDIED+gEAlt++i7Pv3iPOez4+/02Dtjr9R0tbXZ1vf30tTeY1rxgFrj6amnyfd7C05Gp7P28O\nmvhvR01dXYUwFgBgUWPhM6ZIi46dm+DRA/7VrH03DMWnj8mYOfUwX7nR49py3G/3Z7mXrfAhlwHJ\nuY0NIsLjAABXgyPRz92RVL+qxCCz9hhk1h7ebzjjQorLWQvZXnWcMcy8E4w0hD/B7PHIG7c7bgFA\nP5Go7DjcWAFjTT2caTcL1dS10OEO70U6DTR8y/mN3JJCFJWV4G5KNIbVc+aQedFrNVrfXAUAWGc/\nlEvHvdQYvM74gbh/vwAAi1+fQX29WrAzsoBzDXrU+u0ui5lxFXucJyC/pBiBn+5guGUbDLHgdvuj\nEI5NkY9kOl6T6jVlOh4APEqUTNp5MrAbAO9e/8Cda28Q8fQLsv/lQ99ABy2drLBk9SDQyOa7ZUNT\nS52p/3dqFjauuoy4zykoLyuHfSsr9BnoiDbtGgqlc9LMrpg0k56u9NG9WBwMCsWv1CzUrmOIVm3q\nY7Z3bwEaqhZKYzD4zD0JmyZ1EHh6BrOtRi197Dg5DbNH7UHA6mC+BoOsKS8vRn5RDPKLZOc/yE5F\nYwEAFrm0l/g4zxMS4GJhgXU9uuPsO3r6uNDJE9Buz36ETZ/C/JcXPzNZPqBvklNgX7cOAMDSyEji\nc705YZxU9FYGvLx7ExoM7IHMANCoseCMGxMmd+K4vxocybzu1KUpqfk4OFkxDYbrV99QBgMBjEX8\nfifO4kMn4u/iRPxd3Ovsj2n1+8Ht4UJmbAORGxIAHIu/jdspL5Fe9A/P02IQ5DgPB50WcRkKx+Jv\n43JiGApKC/E28yu22ItXEXznpTAcuflSLB3siFNJekVzd6x9H4zu9zYy2x50J3aHi+y9Bg43VqD9\nnTXMtooGgxqNXjfIWJM4FaR31GmO+7sp0biLaACcdRaieq+Fw40VmB7BMtT7mirH6aSis7fLQIy8\ndQZ/8nNhok0/0S4uK0WDo9wZBoVhYuhFHOrGqorseo5u1B/uLloci6gUl5ViZbj0C48S0aJlPbRo\nSc71V1hq1jaA/14Piers2LUpOnYl9/eJQS+r+bj5nbz7lbJDK6/gtqIgcE1qVLctPCs9A/TTB36u\nSZU9uLjiCUPMtDnQqbC732zvDsRM47273kNrNABAW08Lxz5vh371ypPzmD3OYcTpszgzcjipfuJW\n0+WHohXQYsQZsMcMuPf2Q05OAUc7Q66FvQX8d4wFABQWlqBP901c/dnlxUGYOAayNSOEhWyNCQrB\ndJq7C9l5hRLXK47BIA0cbqxQSnciaX7ueVgNxEBT+RehYnDq01sse8bpeja5mRNWtO4skr6y8nJY\nH9nC0Waqp4+nQ8UzrslA9C7Phk1HXV19iY0hSZckZebO+RcIWHRGmQwGEc51OFGaE4agszOwYfE5\nLN3Enc94ybQjUFMnrgJdFWEUbvPt2BVu1jbIKMhHv7Mn0KSGCf7m5XFUMjXR4S54l59TUKmMhYpE\nJSULFqrChFx+hQED6YXAGMaCqSn3ycy7NwnM6907pZtNiqLy0H52EPIKiuQ9Dakz+ukueU+BggSj\nGtlhVCPJFTdTodHkklIVkPy7KBOjnX2Q/vsf8964tgFOPF/FvL904BH2rwth3tNoNNz4xn2S9Csx\nHR7tOY38wVM6YfKy/sz74wG3cGrHHQD0UwYGSmQ8iITSGAxGxnp4dDsa8XG/sfcia/djv/9tvIn4\npjSBz7KAUbBt5aN7WPmIFez4/vcvOB3azSFbGWs2EBHnPR922wOhra7GDM6mIObQvodMg4HBus0j\nmNeTpnbGwX0POJ5fIyjsQ0FRkX+5BVIxFhaN7IzhXUTLQiRp2GsmnGknvZ36qsrd5A+Y++Is4bNY\ndx/ZToZCIWAs2kfO6o4mDpbwW3ga2jqcsY7714XAuLYBNp+ZifTf/+A9LJDLpSgp/g8md94A94kd\nMHRaF0Q9+QT/RWcQevEV02CY0nUjh14za9nHpcgLpTEYGPz4+psZ/MxOxbaqbECIawS49m8lWEgJ\neTuX+uNNhtxcblcRM3NWMbeRY1y5DAYGmpr8P1IoVx7FZ8OtR1jasyPhszmvF6K0vBQ1NIyx2pa+\nME7KT8aSdytRX88aX3O+YYvdOtTWIq4v0nnebq62kPUTYGZiyNHmOCUAADDD3RWT+3DGBrz6+BPT\n/Fi52B0bmSmMsQCA0AVpZuQ2BDnOI5CWPIy4E17xKspOaMoH+LbsjyH1FCdmUdnpZaYYiUBEYUYP\nuvsX+8L/TCT3+o/9ed16NXDl02b0b8R5EjSzN32zddp/7gCAboOd0G2wE4fM/nv04moMI4VxXxVQ\nKoOhKhsBsqRFByrnd1Wke8/muHvrvVB99u+5jynTuzDvFyzmX2G0sKAYmlr8M2dRyJejz6N4GgwZ\nRZnQU9PDt9x4eL9dji1267DuwxZ0rtkBE63GIav4H2ZFzcdx5wOkxhIUc5D0h7swVqvG5ojc4v3c\nrwAAIABJREFU78U0KiI/JcIz4BJ2eQ0iNaY8IGMsVKyvQZaK/Rg1OyormxwHIfDjAzQN9uF6Rp0w\niIYyxyPEf07BmHk9hO6nrsG9/N0Xuhjj267BlK4bq5QhQBalMhjEQdJ1DiozCR+S5D0FCjmweFl/\nDoNhvW+wwD5nTz3HxCmdmPddujXjkpm/qA/8N18HAPTtuQV3Hy4Tf7JKxOJLt3Dt/SeUlpXh42ov\nNF5FX+je95qEuob0YMTSsjI0W72d2efjatZCuvGqAAywa4KQtx+Yzxg62OUYsgxCPMeiUa0aHM/Y\n+9JowAcfL8K+7NfsYxiqG2CnA30XbmzEZABAdnE2zHXMAAAG6uSDKx9u9xQoE5fEu9Jy5H4vtJ8V\niLzCYkTE/iA9Lll2frmEa0nPsbTpaHSqST/B6Pt4KTysemKIOd2gyinJx7CnPhhm0RkeVj0BAJNf\nbEFuaQFOu/wHgHjHf1dcMEKSniLIcR5s9EzhEbERqQXpHAX1SsvLMCjsPxx1XgpDDT10fTAfIe3X\nYdhTH1xo5wsdVU3CfhVhf7by/WH4Np8g8e+VLHG7sx2JeRmI6LME1dS15D0dmfMlPQ3dTx9B/Exi\nTwJBzxUZyyD6Z4uwc3efSLzBwQ7jRMDIpBra9myB+s1MuWRq1jXCze/+6GuzkCnfY7gz5m0klySl\nslNp6ssTuSlRiMaNg/flPQUKOZObW4j7ofSUwHUJAp7ZCbnMu8IzAPTuy3IXKS9TyKxsUiXk7QfE\nrJoLAGi1PggfV3tBQ00VXQIOMmWard4Ot6YN8HG1F+7MncCxYGfoYCzcGQt/ANj54DlTpvGqAITO\nm4iPq71wfMJQDNh1nGsujL4fV3uhvBxotnob8xmjnf26okGSWcy94w8ApeWlhO38qKbDv54KACT9\nJR6PwZNAlpsh48RBErzN/IqZNu643WkL01jo+mA+rnXYgMb6rMKRcdlJuNFxE16mf2S2HWjtzTQW\nAGLXIAudWrjdcQts9OiLliPOS7hk3R4uREj7dRj5nHWyzhiv3+OlPPtVZFS9bsy0uk//CneCqIhM\nadgOC5t1r5LGAgA0qM6/sKWg54oAwzCQFHHRiXyf371AT91887s/Tr1YjZm+g9FzeBue8tfituLm\nd3/oG+ni9tkIDHf4j6dsVUKpDIae9isR4MO563nv2lv0tF+J1u2FK9hBwc2Bt1sEC1FUCY4dfsK6\nPs29EzxitCvzem8QPbCebDEeYdKsVjYDI6eQHvC7Y3g/Ztvx8NeopqWJHcPp7lwW1Q2hp6nBZTQw\nWNyjA/P6QBjdWGu8KgAtzevCzIhejdTJ0gxT2jlhzKFzHH3ZDYBtw/qgVMjvr6aKJsZGTMbYiMlY\n2Ggu85Th5A96EOq2z0FC6RNE1v+zdMmaJW/3QoVG/OfR1sCKeW1vZAMA6FmbVUTt8Z93Al2Cetdx\nRreHC5Bfyju1LI1GQ/eHC1Hy/8U++3jCMMm6N934SApjFuJTZla9uYqtMXfRNNiH64tC8cktlmzS\nA6Ma1bBkFP+MZLtWXeRqWz52D4EkJ2ej1sC6qSn+ZeRyPdPU1iA/yUqCUrkkea1yR8DqYKipq2L2\n8n5wd1mLgvwiXH62Ato6Ve8/T9KYN6oLPUMd5GTmoYfWaNwuOCnvKVHImPoNauHrl1+4fzear9zk\naZ1x5uQzAEBpKX1BM2N2d57yoY+XcxgK3Tqsw+p1Q9C2fSNC+ZPHnuLwgYfMvpUNDTVWGui9T15i\nclvORAOT27XCtnvPCPs2ZHMzKixhVXV+/TOZp5FBhL628Du0B5w4DQJGrEJqwS+m8UA2fkEa3Ir4\niJ7OjcXWs6b5JJSXl4NGYAVHZ33nMBoq0sGkhcCAYxWaCkI7+aHv46W41mEDoUx5eTlCO0tmJ3aw\neQfs+HwJA0zbSUSfPFHGOAXLID88GjMJ9QwMMfzyWUQkJzLdbiyD/JjXA86fxNvfqcx+Mx2d4d1G\nNv9n7POwDPJDg+rGuDvSA9lFhWi+P5DjGTsV3Ycsg/zwfPxUuBzdxyXD3pf9mkgHA0MtLbyZNJPn\nvE+9XI1eVvMxrOUKnHvNSjiwaEQQNp+h9/Pw7oM9qy9z9IsK+8ylq7f1ApyNWoNqhjrMtm+xxC7a\nw2Z0wXH/WzznVRlRKoOhx0AH9BjogJ72K3H9/EsYGOki+LngIDHLI5uY1/Eei3m2bYp8hN3vw/F1\n/CLUP7oZYUOmw0zPAH2uHEFM+i8OWeD/FSGPbRWoV5m4mLofHk28kPL9N3pojcb17GNUjYsqRNCe\nCejZdSMyCHZUBDFoSGu+zysaDauWX+AjLZjJ4/ch/vsfgXK8TjR4GSJkTkCE1cmPGno6+JPD+f3+\nk5PHU55oEQsAo1vb4b8+XQifSZvaWrXkZig0tayF2Hj65/OhGy8kYjC0qs5tyDKMACJjoZ+pK1cb\nUd+KsBsLFWX43fO65tXmaeOOYeaiFSKjEB8XU3PMuHUVN4aPRUQysftMn3PHEfPnN8fi2TLID23N\nLOBqZkHYR5p8SU8DAEy5EYI2pubM+bAbMRuePeYwNBgERkYQxiEQGUlEVPweCOLmd3/0YYs7AICB\nk1hxDQM82uPUjjtcNRPY7wHA238UhrXkXFOOX9AbI2Z14xpz1Gw3ZGfmUXUYlIWsjFwUFRZDQ5N3\n1hXLI5sQM9oLuuqcJxCMxXxGYT6zbWzjlhhiY4v6Rzcj3mMxWp7egYPdBqOubjVc7+8BAAh69xwz\nW7gAACaGXuAyCtj1OpzZiagRs8V+T1lz5EMAEj+nYFKLhehTbRwAgKZCQwMHK2hpC/Y7BoAtd4XP\n9kEhfyoah+4VUsqJS+jj5ejXYwvy88kdS1tVgRzXe0a7o5PffqzozVrQnYx4Q9rFCwBUVWg4+eKt\nTAyGJe9WIimfu/ihvAyGXLa6Dilp//hIVk1Ky8sw+OlKBLdTvorTwtD/3i5c6So4kF4erOnYDd1O\nHWbeNzOpicPvojChBSs1bMyf31jozH2asODeLTwfP1Um87zzLQ5/8/PQxtQc4Un0RDHhST9xZ6QH\nU4b9xGOpawfsff2SS8+6jtwLbGlzPW4r3+dno9ZwtVVc4Hd2d0Rnd0fSY077z52ZgrUqoFQxDBeO\nhqGn/UoMGuuKW298oa2rif7Oa5ArwM+1orEAAJ8y/qDzpX1ofZZ1xF5XVx/1DYxhpU8P8swozMfE\n0Au4+zMOlkc2wfLIJvi/Zvl2H3fjjpxn15tewHuXUBHpoTWa+TWpxUKOZ+Vl5fj86hvePflA6oui\ncjBrrhvPZ+07iraTe/W2N0IfL0f9BsS5+qtV04L/jrEIfbwc+49MEWkMZaK2Pr2quuepKwCAnxn0\nQF/2DEaCiFlFT9vpe52VsCDoYbjIc1p/8yFh+9iIyUjKT4aBuj7XlyRRUWFZS1vPEM+FwY/UDImO\nXdlQpalUemMBAL7lCD5tlBc2RvQ6Nik52QCAQLe+WP2EXstmtC2rMvPWiDBYBvkxv9j7SJtxze0R\n8PIZlj28i4BuvTjGbqgEgdTKRrvBWxEX/wftBtMNnW6jWFnyNu+5g6zsfKZc5PsEppw8UaoThgMB\ndzhqMVx+Sj/+Z2RIIlunoeXpHXg8eBoeDJqK4jLu7B7sR/59LJugs5k1upkLDjarqJfhrkRBoUyQ\ndatZtWawWOPsPThZrP4Hjkpn100eMRMfV3vh/qevsPXdjgF2TbiyE5HVcel1DDps3Q9dTXUs7dlJ\n5LnMOBWCZqu3w8PFAd5u7TmeS+okYZrfBexdMITw2fVNk9HLez8A4PS911g4ohMpnd1aUckvKiOy\nDmh+m9IfuUX847gE4VrvG1dbt1OHcXvkeFgZ0jclz8S+59iNb1XHFBcGjRBrXFHx7dCVaaTU0auG\ncwOHo/PJQ3KZS1XBY8FR5nXoqbloN3grwi4uxJW777BouhsGTd0LAJjrc46XCpmiVAYDL4Pg1htf\nnmlVbw+YCMsjmzDbzhUHYl7iw5j5mNTMCa4XdmNV665Y9/IBXo/kXeVwnYsbLI9swozmbZCQnYkN\nrj2hr0HsllNRLwUFBQV7qlIGrtYWXEZBl0b1Eb1yLs/+/K4ZDGrZDINactfCIJInmgOD3aMGELZL\nklcfedfGqWmox3E/aMURXFrrwSW37cJjjvv5w3jnY7fa6YcT7kNxJuYdrn35BC9nVwxu0gztjtAN\nk++zOX2qHQ7sQkY+y2W1urY2Iid7cukM6tUP3a3qo+EuVoraz57zoK7K6d4XmZKMIRdOc7RVHJNd\nLxEV5Q++icTaJw8F6qsMPOy5ADW1qvF8Limj4tkPa4noISK3uBiNqrOSFpyJfY8RTZsDAHb37I8Z\nt65IbWxhaV3XDAVsSRUY2OwOQNwM+udGgz3buJ5TkCPs4kKezxbPoBeiKykt4ysna5TKYOAHL2Oi\nkZEJM65gQUv6TtmsFi6Y9f84hCE2zbn63B9Id4Ng9CMbvCxIr6ywCvTD91ncfzh2R77ADEfegalU\nViQKcTj0bREmWm8WKOcbPQArbUOkOpebyXvRq+40jraojNtwMBK+IigFC21VbRSWFUJThVwsU0Ue\nbJ+BznN3M+9ffvwJp8bmhLIju7bE6XuvAQA/fmWQqrMgqLbDmODz+Ow5DzfjPiMg4hmufP6I77MX\nwGqnH05Fv8Mo2xZMWRdTcwT1oqe//ZOXi9YH96Dhrm347MlZtXnmzasAWIt1q51+aLhrG9fifciF\n04iZPgc66upMOaudflxyVjv94FTXDOcGD2fes+tnMOLSWUQkJeL9tNnQ09BAak42rHb6YVnbjpji\nwJl1qzLAz1gAgLo6hmKPkfxPejvqy9t2xLqnj5j37g2bIPgzy323V/0GiJ+5gCPIV4VGwzdPVlAt\nUZahM+7DOIKS+T0ng6ejM8f9IraYhfiZC7Dp+ROm7nHN7eHboStp3QzWduzGN0tSVaDd4K3YsNgd\nwbffwO8/+klr2MWFGD7zAM4G0U/frxycgXaDt2LbqqE4HfKSKScvaOXlCpnnnOekMtNzMWvkbvz9\n9Y+0C1JVQ1SDgYKbAWGzBAuJSEi7QKnpVmR8o/tjpa30dtJKy0twJ+Ugl8FAIT6M1KlEkHVVYl/4\n1zXWx9WNk0jJCuLAomFo2YC7eisD9oV3VGoyBp8/zbHIr2dgiIfjeM9l7u3rTAODSGfFscjs9vMy\nGNjbQj5/wLzbNwjl4mbNhyqbCy2v+QiLND/3PKwGYqCp8ItMQZyLf4VhluIZShVPF4jciigopAnD\nLUkKCJFGgxilOmFguB0Z19TnaqfRaLj5erU8pqUwWAX6EV6zQxkMFNKioiHAfn/6hy9G1iN2G2TI\nRWc9Rll5CVoYdoFvdH/Mb3wUempGhHK2BvTiZRd/bsFgc2+Ul5eB9v9CW6o04o819lMH3+j+qKfb\nDOOtNlQ48SgHQJO6UaOsSCJ+4daWKSgrK0et6vx3jAHg8Y6Z6DBHcDE4fV0tvsZCRRxq1+Vq+5GV\nybfPNAcnXPn8ka+MNDDS0uZqW/N/NyTVCqm05rR2wY4Xz7nkqwLiGgsVoYwFClny9cdfzPzvNEJP\ncbulKgpKYzCkJtEzYTBOFdhjFiZ79cCBgNtymZci8X3WAlz6GIsFoTe5nhlpaePa8DFymBVFVaWp\nAeso+0v2K76yvtH9AQAqNFW0MKSnBmU3FirKMQyGmKwnqK5RF51rjRZ6fuOt6Dnwnar3ZmsVexOG\nQgAmFeIT+KGrrYHI/V58TxoWj+qCYZ3teD4XlV2vIrDleZhEdfKKTajI+rBHWNaOHo8xPoS7Su31\nL5+E0kchHNW1JX8CQkHBj/r1auDWMcVOw680BsOqOSdxKtSb8FnrDg0pg+H/DGrcFAtCbxK6JFFQ\nyBJdVQNScuY6jTGBROwDkdxK2yvIL82W2ImAb3R/aKtWk3qMRWVjbMRkqdZhiNzvhX+5BZi0+Rzi\nU9Jh36Aupvd3hWMjM6mM1+rAbqTl58Ghdl1cHDoSAD0f/chLomUrSc7+h7ZH9oMG4PSg4XA2pc+b\naMHfzrwe9r9+hf2vWUZ23CzOAlNZhfRU4jt69BFpPpURSdZhqKPP2zWNgqKqojQGQ0F+EdTUiCsO\nv31BHR2yQxkLFIrOn8KfMNGkB+L9zPuI0NQj0FLVRWN9F9TQJF4E/sz7iE//IvCnMAHtTIYCAML/\nBqOeLneCgZfp12Fr2BHmOqxaEeW8Q6M4yC/NRuDn6ZjVcK+wr0UhRfR1tXB+9TiZjJWWn8cVB/A9\nQ/R6D23/n4npG4nYAkbBLH5xCAvatMO6sIfo11D8qtaVhbjs3xLTVV5eKDFdVYWEvBTMjlonUt+Z\nNiPhVruthGckGX4XpMEzag2Ky7gzRpFhnOUADDbrLuFZyQelMRhW7xiDEV0240aUD9ezoA3XYVhd\nV/aT+j/lKMHPtPnIyL0stznYWfBOUSgu5WXlOOp7AU8uRSApLhXGtQ3RfVxHjPtvMFRUlar2H2ne\nZX5GRPpbeU9Dqai4w88edMz+rKIc0ckAv7ZGYGXxaFPDnbTO3nWnEz5nzPNOykEqboGA8S+m4mjr\nfQCAWVHzuZ6TNcSUnWUP7kpU382vXwjbS8rK0NC4BuEzBpNbOmJd2EN8SU9DgypQVMv1xmZkFuUh\n1t1HJjUZvmesQ0tt3il6KViEJN3Hoe+XxNIRFHcaQXGnoUpTwaW2OyQ0M/E4nXADZxJuiK3nWHwI\njsXTT6zXN5+HZgaCa3opKkpjMFja1ERZWRlH7AL79Zn75FKfSpK3CeRTlcmayJRkjA4+j8JSTqtY\nmNOHHlrEfuF/kzNwemMwTm8MZrYpQ0rWyIwYhKe9w93UZwqxyJFmJhJZUZkyPWmp6uJHbgyqa9ZB\n4OdpWNr0PPNZZfi/EgSv/8v1zX2Y11nF/7hcjwrLCjH55UxpTk0uWO30w9lBw/H2VyrWP32EMc3t\ncOK9aJsINtWrIy49HYEvI+BW3wY9Th7hKfthxlw02b2dy13p2+wFHBE2b6bOhP0+ekD4sKa2+J2b\ni4c/vgOofPUYnvVexHH/pv8KaKhwLl8kYUjU0huOXzlnkV8cJ7YuSSKpzx8tVQ2cdfGXiK6ZUWuR\nmJcqEV0MSsvLmO86y2YUutd2lah+Mgx7Nh+FZUVS0b3sPatuhTL+7VQagwGgBzxfOBqGAwF3mG1G\nxno4fW8Rn16Sp6T0L2KSWsp0TGHof+4E3v/+JXL/lG+/4NGUeyeRHz20RmP1xQVo08dB5HHFIa+0\nABFpb3E95TG+ZP+QyxwolJsONVkVVtmNhaqOqTYro1A9XQuu56LWZFBkGLUZhl86CwAIcOsN90ZN\nRDYY7o6egB4nj8AvPAx+4WGopauH8InTuIyCV8lJGHrxDD55zoMGW+E3m6AAWFdIt2qgqYUrw8eg\n/9kTOBfLqkp8f+xEkeaoTFQ0FgDJ1GGob7wBv3Lo/+fPflhXukxJBaWSWQjLYgMlMO4UAuNOyXRh\nLcuNoQFhs7DFbiEaVrOU2ZjionR1GORNdGIzlJb9k/c0uGB3SeJVh4EM2ek5GEKQv37grJ5o09cB\npja1kfUnG7eOPMTVvdxH9Fq6mghJk0zxm6zibISnvcONlMeIz02SiE4KyaKMuySiUJVPGMjw8PcT\ndKrZXoKzqZpY7fTDR8+50FTlXBCXlZejfqC/zE4OlLEOgyThrMdAg2u9OMgzg5ok/z/E+T2fHbUO\nCXkpEpsLWewMG8HXVnoZhOT9+S6jv6NVqw6DIqCIxoIkYTcWbF0bwe8+d+58EzNjzGrpgVnbPQAA\n8zqswocX9CPcglzhgsX2fj2H8LS3SC/KEn3SFBQUckUSxkJqejYO33yJ+5FfkJ6dx2yP3O8ltm5l\nIiIpER0sLDnaOh6TXgYqChb5xV8R+3tChdZyPPtRX2hdino6UVBaBC1VDaH7uYfNlpsr79vMT7j3\nKxxda7WRuG55GwuMOSjD5htlMAiBosQs0GhqsDV9DxUV4nzm0VNni3TK0NfAg3m98cZStOxiS6rf\ntser8fZRLBb1oGdI6KU7Fjdzj5PqeyPlsVBzpKCgkB+SqPTMzocfvzBm7SmR5hIe8wPR8Swf6sl9\nnPlIKwfhE6ehzSHi7FyVLS5BGO4kx6K2tj5aGEknjS6D18mVI5sNP+a+Xo+9rXyE6qMIi+odX05g\nx5cTEltYZ5fkYky47GNfeTEgbBbOuGyFtqqWvKfCE8pgIElxKfmUbQbaPaCn1Q7qqibMtvi/0zlk\nalQbz3FfWpaF7IKnKCn9w1d3C/NvoNHUudqJKjsTtfEzIooLi5nXZI0FBnYdmzKvy0rLhOpLQUGh\nHBio6zOvc0vzUFJWAgsdc4yzHCW0Ln7F2MjQplk9zNzGys5SGQyGWrp6+D57ATxvXsXtr19grm+A\nnT37onnNWvKemlzxiwnFKGsntDAyQ9NgH9zqPgcWutXlPS2lJLXgr1Dyg54qVuXh8LR3aGPcQmw9\nimQsMBjxfCGC2+0ETUELiFIGA0likxz5PldXrYumphGk9ZkareX7vLj0F2KTuEvdv/tpjQa1r0NH\ng/MXRpK1F8b9N1ikfhPXDMeh/85KbB4UFBSKRaADd4aVsRGT0bCacKkCh6w8KqkpMfEKDEHArAES\n1ysPdvXqJ+8pKBQZhbnQV5f+zquiuhHJi+KyEpSWl8p7Ghxs+LAP510DoKHCvXFKFkU4MeGFe9hs\nhXVPqpxJ9GWMncVPoYwFMqir1oKdxU/C+gpfUvsgrzBKouOxM3r5IJH6DffuL+GZUFBQKDqLGnvB\nM5J8nIHT1G34npLO1d7NsQG2zRZuwX/yP1bq58dvqcVeZeVKV08sjwphpk7teXcHmgb7cH1RSI6c\nkjwMeTZP3tMgZOgz0eOaFNlYYKCoc6QMBjGxNfsg9TEIjYZfA1AOYsufyBWJ/ZlVoB+eJMTzlCkv\nEy2wiXJFoqCoelxKvMLhqsSP35k5KKuQmS989xxE7vfCpul90b6FNY+exDS2qCmUPIVyUlvbANe6\nzoSRho68p1JlGB0u23T1wuLxYpnQfV5nSn+9Jinupj6T9xS4oFySxMBI1x2qPAKPBVFc+gvqquT9\nUu0sfnIFXb9LsORZ4ZndaPg4g56mb87t6wifMA21dPX4BkWvHLQVa4K9Sc+NwbJ+m4TuQ0FBoTzw\nCnomG/Dcy3s/x72kMyA9i46Hq62lRHVSKAbW1UzwtPcijH58EBscB1IxDGIgKOOQ15uNMpyNaGQU\n/cOJH1cxph45972vOQnwiQ6S8qwkR2DcKbkUruMHdcJAgtxCYncjC+OdIussKkkQuo9NLe7y67wy\nN10eOgrfZy3A8wnT0Hj3dgDAja+fUUuXbuB0sbTG4vu3Cfu+uPVG6LkBwOv70YKFKCgolJbjzgcI\nv0TBz1PyLozXw5VnB5FCNLrWaSzvKSg9u+JO833+LSdRRjMRj/M/idcwRMx/s1mKM5EO2z+TyzYp\nK6gTBhJk5F6WuM78oljoajoJ1UcYeftadQAAtXVZJyClZSyXoSktW8HjyiVs6tKD2eZzfj58htKD\nGntojcbtgpOkx+uhxfIlPvh+K+l+FBQUVZNOLYXPbS+I5zHxAIBXnxMxNeA8NNXVYGKoh8Q/mahT\nXR/X101iyjrMYGVpsrWszUzRGrWbdeqRkv4PfZYfBI0GNDQ1wafEP1wygug4fxey8wu5+iw5eANP\no7/jScBM0mMx5lynuj5UVGhI+ptFOB+HGQEw1tdF2r9cqKmqoKS0TKg5KzITG7SV9xSUnhI+gcyK\n6j/PCzI1DJTRWACA+78jMLfhWHlPgwllMJAgt/ClxHUWFH8UsacKAM5Ygay8GzDQ6S2UlvT8fOhr\nanK0ufTjzATVQ2s01l9bAsduzXnqeXLpBdaO2s7RZtagjlBzoaictPagG58vjswn3Sc7rxBdPYOE\n6sMYS9g+FMKzNnYTVjTlTkfI7qok6omDJPiXWwAAmBpwnnARXZG1E3qhd+vGPGX6LD9ISg8/Hvl7\nwmFGAMrLARpbtsQ7rz5x6O6z/CB6OjXC+omsz/KKY1WcS8THBMzYfpFw3LbNLOEzzk2ouVZ1OCs8\niweVcUlx+JojvEeHouAeNhvB7UT3ZpEkSuWS9ORuDHrar2R+MehpvxLXzr2Q2rjFpamChYQkK++m\nSP1aWHB/CMX/ncZx/8XTixncbBXoh5cTZzBjGhj/zrx1FddHcFuuFU8VlvXdiB5ao3l+VTQWhDmV\noKCoCE0x009T/J9P2V8wI3IexkZMhvfb5QAAzygvdK7ZAcedDyDQwZ9vcTdpY25iiNXH7/B8vvHM\nfY57dmOhIv4XiYtKNreqg2Frjgk1LxUaDY6erMX/vddfCMdiNxbIjOXc2ILnM8pYoODH6wxu9z1l\nO11gsPQdbyNeWd+JgbyqaxOhVCcM67zPwtahHrYemsRhMJhb1UDg+mvoO6y1VMYtK8uVuM6SsjSR\n+tGgKlBGTUWFK6CZce926gisAv1QQ0cHJjq6hP1vF5zkcDEiC2UsUIiLnrYmdVKg4Ox23AaAdaqQ\nXZwNcx16BV6y2ZKkRaeWNrj47D3hs9aNLXDr5ScsGdGFlK5r4bEAhD9RIOJF0Fy08tzGvPfedw0G\nuqy6AsKMNdT3GL6miPb3g4KCwY4vJ3C49TrmfXjaOznORjxi/30lbN//7YKMZyIdMor+wUhDvp+t\ngBIZDNfOvYB9a2ts3OfB9WziXDesnndKamOrqdZEcWmK1PTLkjujPEjJ3S44ielOS/H9veCjvP7T\nu2PmNnJ6KSgolBdDdQN5T4EvE3u3xr13ccjJL+R6lptfCH1d8sW/dLU0kJmTLxHffxWCo7MHW2cI\nPZbDjABoa6oTxjVQiI9LvS+ChQCUlRUgp+gd/uRexu8c1qKUBlXSOuRNelEWx/2GD/vkNBPJEJ31\nBbYGDTjariU/lMtcJI3Hi2UKUcxNaQyG3Ztu4HqkD+EzUwtjqY6tq+mEzLwrUh1DEdmKKJJFAAAg\nAElEQVTzcoO8p0BRyUj6k4WB3gcxf1QnjHBzYLYPWHAAKWn/mPf8ThkYsREMnh2UfnEhsh/W8blJ\n+PDvGyLS3uFD9lcUlBZJeWayJbM4CzMi5yK3JA81NI2ZpwzH40+je60uKC4rJq3r8pP3GNied3wU\nGcat58z2Uk1HE0e8h6Pbor1csjE/fuHGOvLuUkcXjSDUIyqMWIbQzdO4XO/IjOUyh+7H/HQby8Wi\nqLhEYvOjIHeCDwCqKrow0HKBgZYLbIzpAbXPflijHKV49sNa6eIXjsWLt75RoalAlaaC4jL5/Twu\nf7+d43M6Kf+XRPWr0lQVruq1rFEag8He2Rrhjz6hTcdGXM+O7bon1bH1tbuIbTBoa9giv0g2aUf5\nFW7jVXuBgkIWDPQ+CHU1VQ5jAQBC/OgLuR+pGRi65DDP/gxj4dHe2dDWVMelB+/gOmkbT3lZY6lr\nCktdU/Sq016gbH5pASLS3iP231e8SH+HjKJ/AvvIm+POBzDn9ULU07XAGtv/mO2L3q5gGg++bO38\nWHssVCyDobwciPnOii/TVKf/OatejV7cK+DiY3gN7gAA2HaJHiNQu3o10voZegb6HMFlHw+R58mg\nmjY9yUTvZQcQsXMu4VgOMwJ4njL0aNUIV57HcLS1maMYwZAU9CBnRtB0RIItnC2UJ834xUTecT9E\n/Nd0OlpVt+UrI+/YAc/INSL3Pdx6Hapr8D9NlfX7Hfp+CROtBsl0zIoojcGwbtc49LRfiXW7xsHR\n1YbZnvE3B2GhsQh+vkJqYxvpDkZCmni7mObVN+NzKmdAW0xiCzQzk7zfIC+jgJ8hIS8U4ZiNH9L8\nUFD0d5ckcYl/MWrFMZzwHYuGFiY85erVNhKoa1DnFtDWVGdeV9fXwaKdyncCqK2qhU41ndCpphM8\nMYJUH3n/EQaAHS250yZvtltLqu+rfV5oNZXlQuM4JUCk4m1Tt55H5CfOXPHPds1mXkft9kKH+btw\nPDQSALjceMgStdsLSw/eEJitSBiKSkqhpsqdbyRqtxe+paTxHMtnnBtKSss4nkft9qJckhQIZ4to\nRCTYorQ8T95TkTh6ajo42YZ8elLG3zdZfmZll+SimpouQn89F7qvhoo6zruS/12S9fuFJN2nDAZh\n6N6/JZZ7sjJGMAKfJ8zuBi1tDZnPp6QsA2oqghc4AKCtwb2TVlKWIekp8cXLWbGqBlJUHUatOAbz\nWkZ8jQWyLBnfjeO+k6MND0kKRYNGA2oY6OJvFiuRhOOUAJjXNETwugkC+39J/IsRq8kVM3rs78n3\nOdGin6htw6Te2DBJuLTV/CCKZ2BgXceYrzGydkJPrJ3Qk6ON7HtQSB9Vmg7zOiFzKywMF8pxNoIh\nu9g10TTCASfRduxD2gXKbFE9+eVKnHXxw84vwiVg8bdfhPp6vDOO8UOW7ydvlMpgWOA7EAt8B8p7\nGkxiElvAzuKnWDrifg0irODMi/i/U0Ue69CbKMxxchEoJ0qGpIpQGZMoAMDEUI/pRnRgBblddArl\nY2zEZNL1F25vnQqvwBA8fsvy8/75OxOOU4h393i1M9DX0cKD7TP4yigC5f/Pjvhql/RjbiozTYN9\nAAC3u8+FuS65DTt5kJJ9XOENBjIEt9sJGsTLdy2rRXVBaSEOCJkZSRIn/SHtAjHy+ULklRaIrUuR\nUao6DMqOmkp1rjZhi8KRqd/AXoOB/SurkP8Pc8bvLIkYCxSSYUngVXlPQWz+ZOZgw8y+AIAes3fL\neTYUikLArAFQVZHMnx9FNxYcZgTAYUYAHD0DcG3tJMEdKPgS6+4Db1s39Li7HU2DfXA47pm8p8SD\nMsEiCk5NLWOxjQUGsnLBvZr8kLSsJAuinXbhdtWUNE/+RHK1uWmM4riW5hpOqU4YePHj629sWnoB\nu87xP4IWB2O9sUjL4T4KT889j+q6Q0npaGb2Fm8TzLna3yaYkzqpeP+TO+CbCFEDm0dYSO/7R1F1\n6erUEC+OzEdrD3+JVGR+EZOA1s1Yx8dl5YpT2KYywn56IMmibC/20gN/BZ0g8OLlvnl83XsUBco9\nSPJMsHHFBBu6i21AbCjz1GGghT3WObjLbV7vU4cwr010FccbQhSqaxhgf6vVEtW5t5UPpr3ykahO\nUZGGAdNUvz7PmhCSYOunw2hv4kj4zE1jFO4UncKu+cIVlRSGSmEwfI5NxrfPkq/GzI5Z9fWEBsPP\ntPmkDQZ+vE0wR70agTDUGcDzOS9q6s/m+UxUDr7bCrOGdSSul0J42BfZo1Ycw9SBrngQ+QX92jdD\nqyYWaO3hj9nD2uPErUj4Tu0FZ9t6AIDS0jJ0mLYTTw/MxZ5LTzF9UFt5vobEjIZZWy5w9G87eTsf\naQpxYXc10lDRwEGnXVwy4hgSjKDntjN3oqCIf1pGGg04v3o8rOpwn9bKE+sdfvg2R7SNmtLycjTY\nyUoVLKwe6x1+uDl6PBoZ1xBpfGXHq2k3PP4Vh09Zqbic8AaXE97At2V/DKnnILizBMkr/oTswijm\nvXV1H5mOL2nYi7pJitpalftndEMLL7nHM2jraUpNd6UwGH7ESTbfrrz48XcWfkD4H7Y6hoskOo89\nrzZSxoICUOP//v/si+Pkv1no5GiDTo42cJ20Dc8OzoOaqgrG9nbC2N5OTPlHUV9x9Uk0ikvoeaPl\nbSww2LFgEOb4XcKv9GzU+n+Ky7yCYngFXMa7uGSUltKP8Vt7+MPEUA/WpsbY6T2Y2b+9vTWevPmG\nTtMDMXWgC7adfiSX96iqNKwmvQDzp0GS3/iQBL6PHmBlx858ZYy0tEXW32CnP15PmwkDTfJF5diZ\n18a1ShoLmUV5cL1Bz9pjrKmHWHcf5rOmwT5obmSKRvq1hNJZDuHy7JeXlyI97w7i0rxRVl6xWCDl\n8U2EtqoW8uXs6y9N9ygaaCiH7E69PXyGwk1jFG7lnwAAnN4Yggm+w6UylkIbDD3tV8LRxQbrdo9j\n3ssTW7MPiE5swtX+N/soalQbT0qHncVPvqcFkoIohWp1bW1EThLsdpQa/wdWttKfIwV/7kZ85Gpr\nY2vJvC75/+K6rgl3vuj/9lxHQVEJZg0VXA9AWhCdIrRpbsnVrqOljr1Lh5HS6TeP7m4wePEh7A9+\njvBDXlBRUXy3lMrC4sbEJ0NkA56VkSNvowQaDJFTxXPnFNVYAIA5rQUnsqhMMNyP9NW1OYwEdtY5\nuGPIg714P0C4NcPzHw0EC5FA2Qq3VUSaC+ozLlvlugs/xVp8jxB+BLfbKdX3+5qTwJHRadSygRi1\njOX+dqfolNTGVmiDQU1NFd37t5T3NJioquhxtRnrjSFtLDCwMjmE738mSmRORLEPjXZvg4mOLl5M\nnM45roA6DFczj6CfoQd8hvhRWY4UgJaNzLBxVj+BLjwJqfT0vH8yc1BNl77wKCgqgXOzehjXxwl+\nJx9gwWj+Cx5l4+Imyfz+UFR+3E4cRlx6OvPe08kZC13aAQDm37mB4I8fmM+sDI1wbxz9Z8t6B+vz\nkv2a3WWIVzuDB/HfMOnKZeZ9LV09PJ80jZR+Ijenim2MfkRjW+/ww71xE9H12CEAwPGBQ9DWvB7z\neW5REZrv4Qz6NK2mjycTpnDpUiSaGdbF+U78swX+yElDu1rySbes7MaCnpqOYCElpm/djvKeglic\nTriBFU2nCxaUArRyxQwYJJxUyKlwDBjVhqv9xJ4HOLHnAW698QUAWJ9aDwD4NmoZPB6cwZHOkkvn\nGJPUEiWlabCzSBBLT3SiLUrLssTSwStQ2irQjzDw+cjbKHjYCfbrnGznjZ+fkpn3auqqMG9sCj0D\nHdBIBhluuUuukN7ZOCeO++E29KxReSW/cS9xIvpZXuOQ7Wt5BbpqdHepc3HOKGfLRMHoCwBv/m7D\np0xOo4f9OVmowm3SIzFzE1L+7YaTRbzUxniZYAkaVKGt0RB5RR+EHiu36A0y8m5LZZ7lAKz28s+s\nET+NMy2jvH8ej8afxHhL5cmk5rAvCPnFJfgwcy7h89KyMo5sTWQW6UTwkhG371H3wWhvYcm8r1Ot\nGp5OmEq6/6SWjljevhOhHPv9+dhoLA69zbyX5s+Zh9VADDTtKjX94sCo1CwMWmqWqKk3GGYGM6Uw\nIzqy3JGX1d8leZ0yyOL9pP1u7O8wop4nOgxug+DAW7hTdAp99cfj2r+jRN3EPopX6BOGijRvZUnY\nbmnD6ad4ossojLlPP5aZ0sRZonNoZvpaInpszaLxIdkFRSWJgoUJEKX+w9nYaIEGQ25WHoexAAAl\nxaX4/l48A4mIV7/Xo4nReLQwpv9yXfjaHqXlhVClaUJHrSbySrhjUxjGwqvf61GOMqYRcOFrewR/\n7w53q7sAgE+ZJzkMhIqGCUXl59PvMQCAVhaiZ63Q1bCHroY9Uv5JPiWs1d6toAH4Pk15crWH/nqg\nVAbDjFbO2BDGO86lYmpXLTXJ/0l89ysVLWrVFrqfh50Dxgdf5FjkVzQWBMEwFgQxtKktFofeFkq3\nojH68UGc7CBe2lplPx2g4M9R5w3ynoLESU/JhKf/OAQH3gIAuI2T3gmKUkXlWDck/tBt160p83QB\nANNYAICx909LfV6i0qTuc6EX/qbV1wns82LidFgF+mH27Wt4mpiAm1+/wCrQDx/T/vDt515jEgbV\nkt1x9Nd/l5nGAgD0t7yGa/H9OWSScul/7P/kR8FCz42jr5v5CY6+haWZPMfSUlWsrCoU0udfQZi8\npyAQZTIWJIHjlAD0WSy7eIcpDq3wbc4COO7bBesdfnDaz2n4We/wY351PXYIBSX8szQJy7c5CxD8\n8QNzDGEQFDchCaJ/0zdlrHf4wb62cie6eJsh2uYbhXwQtbKyOBiqV5PJOL628kvgcG1fqNR0K9UJ\nA1m+jVoG1+CdcL60Hd9GLZP3dATCMAA+JrdHYUk8oUzD2jehrWFLSp+Jji4+zZiHRru34dqXT/T+\nxjVweyT/WIv8HNlnLuC389/EyANhKQsx3OYl7idN43IpuvNzDM++lIHAn5cJlkwXm7yiaMSk9mXe\n5xRG4sOvwcz7N0lOKC5lGZs66o3RrM4tDl2tLL7iVUJ9jjEquvC8TLDkuLcy5l5Affg1GDmFnMVp\niPQ4WcRz6KupNwb1qq8lHIdxz67nZYIl6ujPgJnhYmabLFyklJ2etbujsKwQmiqip+5LTc9m1l64\nFzAdhnqiZxgiCyMo2XqHHyaEXMThAazMW7xiEiTFyo6dsbJjZ/zKzRE6/aqruQUSsrIw8tJZvJwi\n2QJ1X+csgM0OP6irquL2aA80MDaWqH5Jwgh0ppAu8xsJF48pDj7NPDE2YonMxrMzJFfHStnGupF7\nnFm8zU1jFLqMlF5GRKUyGLasuAjvtYMFyv3Kz8Ezd8VM0cePxnWfSEyXhqqqyAXcNLU1cCXjsMTm\nwg9+cQUtjGfiQ8YRns/rGwxGKxPZfeBUJrTUrFBSlgU1FQPEpPaFTY1dyCuKgY5GM3z8PRJaalYA\neC+2c4veQFfDntn2KqE+l0xChg8sjHz46mGHSCYq0RZxfz1hU2MXlyyvhT2jnUifIjHD3hldzx7C\nveHKE8B9K/UubqXeJXwmSqakrl57mNeMegySpOXeILya6glVttir+kbEC+Pj797w1NPjxBHcHuMh\n9PiRKUlwrGMKACguFb7y74mBQ5lGjLG2ZINR6+/ww4Nxk1DP0FCieqXFw54LUFOL9w4xZVSIT0cT\n2bnu6qtzJ5GRJvLc9Zc0yfl/UFfbBAA9xlSamZHYUSqD4d61t7h37S2Ma+rj5B3eR/l7Y5/jyKeX\nmNLEGUtbKmZwlSITkn5IJuMMsLqNs3FOTKOhvLwUNJoqh4wqTRNxWRcI+4Z878E0GMrLSxH+6z+4\n1F4v/YlXAqyM/fEzw5e5y2+k0xvvktujRd0nKC8vgpUxKxi3Uc0THH0b1jyG2FR3joU4jabOIVNT\nbyz+5JxhGgwA0LjWOQ4ZGtTwP/bOOqzJtY/j3w0Y3QioSCkcFUWxRVRMsMUWxY6jx0Q9tmAcbLDz\n2Ipx7Aa7u7ALE4NQUJrF+8fexbM92551sM91ebnn7iFu9/e+f8EB0QREtE0tjydiwgIAalcQDzmr\nb0yu3xhrH96C9/ol2Na2K2q4lhXLXGzHUF8SHkVQZ/hU3q3Dgbn94e2umhvC2uXKEZKihXh6YUaT\nUP6zCY3G35C39/8De7qKxy9/8dc4VF69jDQiEVmkI+H67v/tIYylaHI3MsjmDq7giZ0R1MJG1i3n\ngWbbN6ltfapGmlgAAFszxUPTGjGiT1zLvI/uFcI0Pq9eCYbTD+fgwqkULJy6n5+T4dD1GbC0YhDa\nzardCrNqt0I+sxi+iXF6YZakaiSFUJV262DvbIucrN84sOwkuo1vp66l8bEwcYKXbTjBLEn0xqGL\n70X897YhOvkkifVt732U0Lee60z1LtiAsDEPwvPvEQSzoCLmJ6F6Qfp5O4sQQl97iyZi47mIZDs3\noduAzSGauNma1yM8O1t3RmYeUQy++E4tHwOdppubgxrjEsTKHi0jPzn3FoqQ1P/kAdI2olGS9J3j\nCwaj/ZRNUtt0ncmN8OHp6oBD/wxUar5/O0RIrX89WnbGcYaJicSNtKwNNpUNOJU2e7uJCxl55xYV\nOv80b0UYt4jFRMNN6/lhX3UJSfkWhPGzc5XZhhcFyZRuh3oVJN8oGTGiy9z7+ZQvGFozIgk3DAOq\njMfW5+LfQ6pArwQDADRrE4hmbQIBAIkbLiIieB6/Ttjxudq+xchnliClu+6emKgLn1VLEVLBCzs6\ndZOr3760dWCWsNDOth82Tk3USC6GBm5z0cBtrsR6Os1UotmStWlZiXWiAkP02YgAmgo+Bkzp4snj\nZM5LY4iVadN8iKlkmGN5MTQxQIWyznYE06NO07bgcwZ5sIKP6dn8W4e2Dapg7uBwjaxRF6lbzkPl\nYzaqQHQ6HXbsCPrX0J28R/KyszF10z46jdy8iycoXKzbw99lhUrWpS+M8++n7SUYFD7WHniXpx5H\n/Oe/JEfz8q2uPmdyvRMMwkQOC0XksFD0brkIPzNz+eV+u+fjde+pWlyZ9pFXLPA4u0vgRxFmoXj4\nRGPiN/2AzSlARaEvRhb7l1ibnMJLsLcQhGrLKbio0Fyifg9ZeYfF2vwuvAlbC/FcK+qAxckjPP/I\nP6qRefWZqFtDxMySjn05iYyiTAzykX/DcSSOe4Ow9/xDLNp9QWK7kzef4+TN57CztsCFZap1/tVV\npCVlU5bELj0Quk38pmdbZ9k+goZAOTvlbq4MkWau9WQ3UjEWJuYoZBWpfR5tmO80dK6hNsEgDI1G\nw93kFNRpzT1Iv3pY/nxTVNFLwcBkstCx3lyw2Vwnsnmro1CnkSCle2kXCwDwKisT/s4ucvVRRiAY\n0U9epffn+w2Utx+H1xlD4FdmI7++jE0vvErvL3Tyz8arjAFy3wTQaRYEv4cSVgbYnHxCm7J2I/Ai\nvZfY2Jm5++BiQ81USR7Sf2+HlyP3VrKw5C1Y7FwZPdTDs6x0DDp1EN/ycvXy1sHb2gsHPh9WSDDw\n6Nm8Jno254rJxLP3sXQvee6EX3mF/FsHGg24vno0GGZ6+TUmE3X6EzTwqKDT/gqK0PHcGhxtMZJS\nWweLxmpejREqRHl1xMbU/9Q+T1+vDmqfQ5SmrnWR+PGE2udJKtqFb+8z0MF+ACoFeavVAVqvPmlf\nPP6McVEb+M97L0yGvaO1FlekO2TkC05Ln/85FlXWLcfYeg3RtXIAIRlRGSvjz8sIFyer9viRL8ik\nXc5+HNJylqGypcDx2NtpAfKKHxEcj81N5TePqF3hBe589CaMU8fzDe5+rMR/5oU4FXVyLmc/Tu75\nZMELy0pYT4U3uPtJsB5JUZz8ymyCg6Vqgil4S8n07L1+iV4IiEUvEtDKrbnKxotsWQuRLbkJJusO\nXwY2m0PajsMBGo5cCQBYMTYCjap5q2wNRvSP1FzpeYaEYXPUf6ptRDaNy9TWiGDQBu4W8h3YKjWX\ndxkcy9mq9nn0SjCMi9qAkVPaoWMv8uzNPAdn30RipJzS4PRcb/M6sbLlt29g+e0bhDJpTs9GM6LS\nRUWXVaiIVYQyspuDAPdTUsch6+PhMJmQ40BSO9Eysn5U5lOknaz1qNufwv/fBJS1scWNPlwnUzLx\nMOrscaxq2V6t66BCdkkOZj3h+hpF3RpCqJtVdSr8bCuSdVOaO+sFYnFkwkHcevaBtN2Y5Yf4r88s\nHQ4nO9WGIDWiXYJPLkJ2cT6edY5VSfjUl5l/oXZ53U/saOjYazi0qqEyou5UvH0k+GxU1y2DXgkG\nYadmMnjCQNMC4XtOAtJ/rQdbxCZak7wbJV/GaEMnsyAPLpbitykrH97A6JoNtbAiI0aIFLNYfLEg\nifMf3mpoNdJxMLPHiqAlpD4MmmLN+C4AgB+/89Eqer3Edq0mcOvihrVFWF3NJVDSN3a8boAov5va\nXgYlrrf9G6m/BTcIF8Kj4WZhR2gjj5AoYn5R1dIMAjcL3U3aZ0Q6rRmRiDs+he/DoE70SjDoCl9+\nzkHG742yGxpRihPvXmL0haNgcTgIKlMWhztG4e73NAw6cwB3e/8FhokJvDYtwrtBk+C3dSkWN26D\nLpUCsOLBdSy9Lzg9+jD4b4lzjLl4HBc/pyKl7xhNvCUjRuSipltZbS+BgLbEgjBOtla4svIvDFm0\nDy8/STZDmbbhJKZtOAlAdlI4fdo8i6LPa5cHX9sy/NeiYgEAylnJl4COFxGJjMy848jMOy6xngrB\nXpIj2egaXT1aaXsJaqN9uaayG+k5mhALAEDXyCwqJLzmLLE/HAk2rurg0ccKOi8WJOVg6H5gD2m5\nrrL92X2kDpoEADjcMQoff2fj3Ke3SOk7Bn5bBe8x5uY5vB04ETE3zgIAxgQFA+AKBWliwXfzYqwI\nbY+UvmPgtWmRGt+JESPimNBo6HdSPCkhAGx+fB8AsKu96p299Zl+cbtRe2gCGo9eLVUsiFJ7aAL+\nu/iItK6EnU9arg/o89oVRVJOhmH+IaTlwvi7LFfxagyDBs41tL0EtdHKLZhy28DoBARGJyDth2ZD\nbCvDvymL8WcdzQT60asbBl6yti3HxqFsBSekfczChAH/ok2tGIK5UoNDK3AzYgzfl0FVJkqPPlZQ\nyTjaorm35BMVQLVRklThD+FoYUl47nBkO7KLCrHmEfE0bW7DlgCAYdXlCwvH4nCMQsGI1ng7bAK8\n1y+B9/olmNeY+zuc+DwFc69fQAGzBDYMBmgyxtAGU1JmIa1A3KRDE1mgpdGkhi/i/+qEOsPI2y7Y\ndR5Vvd0R4O3GL9vxuoHYa9HTeuE2pnRL9K4oCP96/st4pOUR/cTkOe2/9m02Un8LfIRooKOv33X+\n887XweCATTo2lbXvT22HAlYW/7mqYx/UdhnNf96X2hpFLEEoZX2+qejhXUdmGxfrDsguvIz0XPJE\niaUVezPpWbT1GW/r8pTbpsSPR9fFO9Bm3mYAwMROTdCvaW0ZvbTLkEDuoWprRiS/rNT7MGxYchqt\nOwUherYgc2d5T2fsOT8Zy+YcQXjNWXzRsKN5b8SnXML9buPxOVc1SlHfxQIA3PnyGSNqaz7WsqKc\nev8KgMCkqId/IIZXr0vqmyAKnUZtqyXtBkLf4HCAmuOVz/AoKTMxGV9//kb4bNkbxdm9W6Nz/QBl\nliXXfB7O9jgxk3oiJ0k8fPcF/ZfvldomplcrdGlQTaHx3w+fiDnXL2DGFe7t2LTLyfxyXSTq1hDM\nrDoZ/rZ+shsrSeTcXXj5MV1mO1FzI97zvVefMWwxMQJLv38S0bK2Hxb+yXUk522QJZn1iJbvfB2M\nPW+bo1fF8wCAtLwbYvU/i97A0byS2FhkpP4+JVEE7HoTQlhjTvEHwnpkrX33m1AwOYVSRUAX7yMw\npVuKza3r7H53B4ufJKOQVUIop5IRupLzYlRyXgwOWHj/cz7Sc/8Di/1bTSs1om8cmBTFf90sZj2W\nHLkMAIioH4DZPVtra1kSUWcYVVH0RjAc3XMLx+/GkNaNm9UJpw/e4z+HneCaDEUHNsWB9BRUc3LX\nyBq1jbApkiSzJH3Da9MieNo64EqPYZheLxQVtywB8//5N6Rt9s91Hcy/Pfgw+G8se3ANW5/eRz6z\nBDe/fsSuNj3xYfDfhBsGfRYPb79locuC7Rqds8Y46uIkZncyYnYnyyVGROm1ZBeef5a9gQSAz1k5\nqDEuAffjx8KErpjlJdX3N3vPGRy9/Qxbx/SAo40lfuYWyDXPrOBmmBXcTJElagV1iwUqtwlt6lfG\nvCFtpI/j74F7G8dj5cGr2HpKkMzo7L3XCq8ttNwiXPgiWcw1K7cYV75NR0cv6SKTCmwOE83LCT7H\n7RlecvVncgrRyJ38O5MHTyzoE30ub8KDH8oH+aDBBD6OM+DjOINfVpozPRsR58JsblCKZ5+/o1d8\nIg7deoqKbs44NFm3smJH+Y3F9w8CE81Sf8PQJSoYK+Ydw5gZ4gk4EmKJGWOFTZAGVyYPwSoPOQXJ\ncrW3Nq8NUxN3mNDtQKcxlJ6fKryQqT6rlkoNnyoJecyICnILcXDFKWyfI7DBrhTkjdU3/pF7XkkI\nb+ADti/D037j8HbgRIlthKMf+do7EerGBTXCuKBGUufQV4KnrEZeYbFYuWcZB4wIbwgajYZ1p2/g\nffpPlcxXzGSh7kTFvkxrjEvAhpFdUd+fevp6ZearFb1c7vkA+cQQADxITUONcQmIbBKExMsP5Opb\n2uHmU1iBEiZLajsaDbi7QX7BObpLCKr7lMWENcpn8rY0kR5NxsLUGcUs1SUAtDRVLpa7nZl8IkMf\niK/XHYOvbcfxFqO0vRQjBkzcwfPYc5Xr99S0qi9S4rmfPWM2HUVgdAL/Wdu0ZkQiuTiR8Le60BvB\nMGhsK4TXnIWKf7ijXfe6/HIWi42kw/cxe4X6shSn/1otsY4GEwSqOV67LmJpY7nYTt0AACAASURB\nVIE+0yLQZ1oEmCUstLPthzcP3iPcqi9O5+9UyRxemxbB3MQURSymQWzs1YWoWLA2Z+D6wr8IZW1q\nccNLNp62Fr/yCwl18p76k23erS0YuL7gL7HySdtOIPnBK0LZsDUH5JpTnvmuPHuHURuIBwjD1hzA\n+bnD4WxLLTZ/yxjyoAYP4seBTieaus1MTMLR28/4z4YuFixNLFHELoI53VzpsTKycxE+SXYACSsL\nBq6sFP+3lofQIGKeiIT/LmN89yZyj3M3U7qQvJuxDFUdVfeFfScjAWEe4jl2qHLxyyR081V/tllN\n4mZhh9TfmaRhVKmYJBkxIo2OC7byD9dOTh8ED2d7Qv2KwR3ReMZabSyNEpM2/am2sfVGMADA8bsx\naF9nNlb+c4xQLpqfYead05hbN1xlTs/5RQ9Jy2t46mbuA0VuF5TB1MwESYW7EGbRBxw2Bx+fp8Gz\nCnVHI0kYRYJs6k1aSXhuVr0ilg3uKLH9lbgRmL7rNI7fec4vi9t/HtO6UcvUS3byLm3zv7h/Oyzu\n3w5B45eBzRFEM6sxLoGSaJB3vsZVffBo2XjsvfoIcfvP88ubz1xPab4T914gI4d4QhzbqxUiJPgo\nzI0Mw9zIMLlvJADZmZy91y9BVEBNzA1pKffY6qKAVYAhd8g371Scnr9m/UL7KZtktjOh03Fr3VhQ\ndEWiRGhQRVx8wM1rcfjKEzHB8DBrPezMKsDXri2/LMxjPXa8boAGrlOQVfQC6QUpBJ8Aa1N3fv3D\nrA0oZP1QaoMvTJTfTex43QA30uPgYl4VN9MXILQceZAGsrXz+u980whVHSLxMfcCfpd81mvHZgCo\ndewfNHbzw/qGqj8kNKXbgcn+JbuhEYMkMDoBPRvVwNEpA6S2q+Wr/P5G1VjaWODWiQdYPHgdWkXJ\nfxhCBb0SDKamJjKTtwFAP//aKnV6tmJUR34xeUg+I+IMDfrbmDVaQxSVMAnP0sQCj3/6hBMEw96r\njygJhmISkxGqNwUPEsaJbapjdidjdm/JTmTKzNczpAZBMFCZDwCm7RDPai1JLIiuSxHRIItTqa90\nSjAoGwlJllhwsLHEuQT1nJDVq+zJFwyi/2+i/G5i79tWMKNbEzbdrpY1EOaxDpe+ToGVqavYZruQ\n9QNRfjdx7EMf2DE80d3jpErXHOV3E8c/RuFz7lWJG31Ja+fVXf0Wg+fZe1DOqgE6e5OH8dUn7raf\nhuZJ8WoZ28mqNdJz9f9nZISLnZyZpKmaGS0fJPt7VlPw/BWO/NiMwdUnYs4h9QXM0CvBQJWwExth\nbcZAdGBTjHp4CDubK3dFXMn9CFI+eqtmcQbMssuzMa6JdCc7I/qLqGnQ3MgwufqLbqoP33oqdQOv\nqN+CovORcSVuBOW2G0Z2xbA1qg3X6G5tuOEOeZibmeL6mtGyGypJQbEgok4VL1ex+p4Vz5D2c7Ws\nie6+p0nrWByuOWAHL8UOSERFAJkoaO+5Q+Y4ktYOACHusxGC2QrNrYtUO8J9L+owSarkvAiVnI2h\ntg2FADtq0cqo0Gf5buwa21tl46mKH1+z8VeD6cj6yjWjmhWxxOj0zGFz0KaW9M0o7/ZB2ARJWbEA\ncP0UjMimSj3V/ec0ovt0rFdVo/Ptnxwlu5EMVp64htHtxJ3fAeKGkoedlQXlsak6VnuvX0L6mowj\nXfpSnl+bRN0aIvftg7uTLU4sHKKmFYnz4ZvA6b9ZkPGzSl/RlJ+Cz8qleDdatnmvz8qluD34T5Sx\nkh3uW96xjSiHt3U5lY31+MM3lY2lSnp5jcTB9H9h40DNR08Z9EYw9Gi2AOUqOGHzsXFamd+Ebg8W\nW3+y/2mDwrwibS/BiJrYkHxLLeMeuf0UnepRy8/gV1b+iDFLB7bHhC3H+c//nrktUTBMFGqnTgZU\nq4WtT+7LbLe2VUeYqNKIX0eo5V8eGydpPoP1iRsCM7w+rWppfH4jhomDhYVcYsGI5vCwMvyQ+l3G\ntMHT6y9Rv22Q2ufSG8Gw98JkTBm2jVJb/z0LwGSzkRo5DWueXsfIAOqpwSVRzeMJPmT+hex8QWi+\nRx8roKzDNLjaUTdbMGRiu6vHrlRV1NkjiHZV2dEFV798AAC4WFojsyAPALCvbSTquXloZX26zOqT\n1wnPQ1oplgCwf/Pa2HZekDNlVmIyqWC4n5qm0PiitKxBPWfA1efvCc9j24eoZA2ixDZqjthGzTE8\n+QjWt+6kljlUifDtQdQt5W4ERJOsaZLb68eqfEx9MeMxNMjMkQDtREl6MFS5CF5G1AeVLM+B0ar3\nPdMkB1ecQmiPhrIbqgC9EQx0Oh3vXn9DeM1ZEtvwTJKOhA1Cu1PcLzg/e+XiWAvj5bIaeWk3UcIS\nJI/6mh2Hr9nzUc3jGUzo8jnYGBoPzj/R9hKkcreX4IPde8sivB9IjML04mcGfO2cNL0svYSKIzAZ\n3YIDCYJBEifuvlBofFXSpnZltY7/T+NWah1fVSwIJAaaEDU9KmIXSYycJI0qh2bjeYS4mWnPi/9i\nb6hAmIy9tQ/JX56TtqWC6HhG9Jv5j7n+JM86x6LO8Tjcbc81QW5/bpXK53qVlYmwRMFB5Zk+A1HJ\nifsdsfTmNRx4/hRfc3+TmhcFrFuB/JISuFpbIz0vD27WNrg5aDi/vtr6lcgrFoTENpooqZ6yFtT2\nf1ScnXVVWJiamaCyhszB9UYwDGiXgN85BVj070AE1vGR2pYnFrolb8f9zM9Kh1UVpmp57mbn848p\nyMrlObpx8ORzFdL25maVwDApCzMTd9BoFqDRFMs6K4vyjvPUMi4V0j9lIcpvjNbmVxWVHcvgj+3x\neNkvWttLoczINg2x5tQN/jOVcKWi0XxGtpH/dEI0NjVVPF0cKLW79DSV8FyBYj9VUtZRvQ7HLpbq\ntzlVBeUtBXbA1ezF/VZUkZNBGNHN/fL6PVDlkLjTrqLjGdFvElNvY1k9rkmbr20Zfnnq70yVzxV1\nZD9hIy/sezChQSNMaNAIPiuXkvbNLynht621cQ2YbDah/vagP2FlZgYAuPslDWG7tiKpzwCVv4fS\njAnN8P1PmSUssWRtpd7p2dvPDVtPULvOVqVAkISH0wKUc4zB40/+UtsVlbxBUckbta9HFYIhzEI1\nca31NaTq/tdP0N2vuraXIRfDwxoQBAMgXTSQhf4cHtZALWtThqzfeYRnOyvVbkqNKMbkyuRierBP\nf4XG4wmBVuWqYEX9Htj46irin56TeZsgLCB4bascmo2Eet0x/vZ/CHb1xaZGUeh7eQvuZX0kjDfh\nzgGc/PyE0Hfty8sY8QcxdjnZHEa0T10Xb5z8/ASty1VFeDn1Bl5IVtEG/mdhAQLdiPb0PLEAAHXK\nlcerH1kqmcuIfOhKxmZFUZc4IENvBEPsskgM6rAMXz79QLVaXrCyFt9AzFnJjSiy+cVtDKqsmI01\nFR59rKC2sfWdTiPlC7WpLR5Ejob3FvHweaJmSvrA1fkjETJ1DaGMak4AebM8awo3B1t8/SFIoJST\nVyiltf4gnKxNVuI2fSLUtbFC/YQ3+wAw1D8E8U/PUe4nSnj5qggXqtvZZKDY7URG4W/KAuBp51mg\n66nj+cl3XLPBtj66bSoqL5sb9eP7MAzyayTRn0EV2JtTj5ImypaOXfi3D94OjjjSQ/WJ5lSBjal+\n3HRqG10VFq0ZkRoTDXojGADgy6cfAIAn9z9Ibedr56ymFXDw6CO10ImlEX26WXA0t9RLcUCGraU5\nHiaMR83x8tlYKiMWsvMK4GBtKXe/n7kFlNrV8C5LEAyfszQfoYzFZsOErh4TQiPKUeXQbDzpPBMm\nCph4lreiZt72PCIGm15fx/qXV3C7/WS559Em2UUp2l6CWhF2bl5Upyum3z+MRx1nam9BJAw8elAv\n/BLkTW5mpPSiV4KBSpZnABh//QgedFO9HbqhiwV92vAbIUKjAQ/ixyEoepnMtv/0CUf7uuQ+N1Q5\n/eAVeoXUkL/f/ZeU2oXV9KfcVl1cff4eTQN8tboGI+SEuFWECY2Omxnv0KCMdJ82UQ5/fIT5tTtj\n4eNkTK7OTeS39fUNjPijCf59dQ1D/AVhdwf7BWPJE8lJ0XSVG1/7aXsJGqO9R3W099BNU9IPOdnw\nste8/5U82JmqNiTsptQZeJ/3FHOrH1LpuJogMDpB4k3C2qSbWJvENf/dN6EPKpcXT/6oDSZsHI7v\nHzLg5lVGdmMl0SvBQJWc4kL4Jsbxn1Xh02A0QzI8hE2S3g/8G6MuHsWqUN1J+S4Ph289RczuZP6z\nqk2NIpsEIfHyA/7z/P3nFRIMCw5eIDxLysHQPFA1UR8+ZWZTbutgbYnsPMENyKzEJFz6R/Uhk6dd\nTsbk+lx7+V/F0nOX2DEM13dD2CxI0mtJZRuDueanwmJBkpmRaDnvmScWAODW/28QhMWCrHF1GQ6H\nqe0lqJTkL8/gbmmHQEfdCXkt7OzMe/13cGOMqF0P77K5SQLPvXsLUzodzzMzsedpik7eOKj6huFj\nvvYj3CmDcDSkgApu2D2e61C8NukGX0xIExaaZunQ9WJlpd7pWR404fRsRL/x3rIIvfwDMblOUwQl\nrgQALGvSHssfXsfYmsrn7dA0wmJhVDvVr39yl1CCYFAVcyJby270f9gcjtz25H0TdhOepUVbiunZ\nEuM3H+M/Z6vBb6KlV0UkPk9B4nOuyUjglpVS2xuKj4MRI8qw9OlZRPrWRaCjB6oejsXpVmPgaa3e\nENhkm3vhMmmb/+Y7NovVf/olMKuUNbYmsTRR3E+DDDaHpdLxtIGwMCDD1V53zLiMTs8qoO7B5aAB\nuN1F+WQ9aT9jZbYxodvB3z0ZDFPZiUKM6AYLGoUTnk3pdKx8pH+CQdTBeWir+hqZd/uFe+jXrLZG\n5gKAoPHL5L45Ed30H58xUGJbsluNYiYLDFNqofkKiktktvk3PIL/2mf9ErwzUEGQVXATqTnbkFV4\nGzTQ4WrVBBUdhsKOob7cFq9+rsSXvJMoYeXAzrwqarj8AwtTN4XH+5J7Au9/JSKn6DEsTN1R1joM\nlZ1Us6n7WfgA73/tREbBVXA4TNiZB6CsdRi87ZR1jOUg6b36An5oCxaHjW/5v2Q31CGGnziC9e24\niRkz8/Nx7ZN030ttIcvpeebjCKn1hoQlwwzbx/SU2W5gszoaWA11fnzLRv8/xiEg2B8LTqnvwNwg\nBYNvYhz/lkH4taJk5x2WWGdn2Qo+ZTYrNb4R3aGhu2H7qShDUuwQhMUKknYtPXJZLsFQ/2/pp+my\n5pMXeecjo+7EFZRFSoO/5UscFeppeP4RZz40Qglb3EH9a14SvuYlSe0rLZoPL+IPANR2Ww43qxak\ndTyyCm7i/CdBG3kiBZGNV8D8gtScLUjN2SL3eDx+Fb/A1bRupHU/C+/jZ+F9PMuaDwDwcxgBP0fZ\nyfDSco/iedYiFLMlm96RvR9RdD2S0s7GA9E8KQHb3nJtyMPPrCBtp41Mz2S8Gz0BPiuXEsyWLkQN\n0uKKJMMwMZPdqJQwrFV9dF+yk2Bu1HDqalyZRzRNvfX6E/o0CdL08khZPHgdrh+9i72f1uLpjVdq\njZpkkIJhVwtBEovtzXurYEQOaWkNz08qGFt3uXroNg4sP4Xnt1+Dwyb/GUhC1x2oTWg0BCWuxM4w\nbgKg6TeSsevFQ4OInEQleZsiuDuIJzKjOlfQ+GVgc4i/Q7L6uTvYwq+sC15/FSRkojrf/uspKCwm\n2nFT6RfdsQnij14mlCU9eImwoD+k9ms4Wf4ss32qyu8DoqtwwMapd4Eamev9r0S4WbXAr+KXuJrW\nVWb7MpYhlMa9/W0oMgtuyG4I+UKWZhXcwq1vgymNy+N19lq8zl4rc/xHGaXD/Nbd0p4vBjRlkqQs\nuuivQIY5nSGzjTwOzPp8IzG4RV1k/srjmyJdmvMnHG0sUXfySpyeMVgnsz2f2XGZLxDqhtXAwDmy\nb0gUxSAFw4Qbx9DQzQtMNhuXv6aik3c1cMDB7DqK5QgoYzcEX7PFY/YbKqNDZuLV3VTZDfWYtwMm\nocqOBLQ7ug0AsOvFQ9ztJftETxfp0qAaDt4kbiyo5mFYNawzGlelHmWGLBJTjXEJODdnGFzsyKNt\n1J24QkwsSDMNEmb/5Cix90JlvmIm0Y7WzoqanW7/5rXFBMPf205ifdItHJxCHnkmYsF25BfJNkcS\npaVXRbn76CqiYqGWazzcrQX+KRwOC6feEwVSoMtceNh2BiCfX0pWwS1wwBYTCzSaCWzNKuFXMTG6\nVl33dTLHZHOKSMWCr/1AlLEMQR7zA95kr0ch8zuh/mnWPwhwni51bGdLchNBZ4u68LLrAxO6Od7l\nbCed/0paFzQuf1Di2K5WTcTK0vMvy2yjzwQ5GQOQqBJTFWdDpoEGjoRDVn1gckQoJkeEEsruLBwN\nAFg7LAJTd53GmRjdzR6/Z9ER9J7SSS1j0zgcnfyH1blFkUVJMsQbhtKe7VmUTldHqW3sIyHyn0pL\n4sS9F5i245TC/X3cnHB4KvVsvVQFCRn9mtXGhE7ybWL0Zb59k/qix+KdhDJV3vbo4u/jqXeB4IDN\nf6ZqWiSrrbR+PEzp1mjtdYvSGJLh4OQ7QVhOhokTWnpeltj60++DeJw5i/9c3SUWFWzJTY14FLLS\ncTWtK1p6XpG5GkV/RqrqD6j392yATwQiyreQ3dAIH3X+e/T37owuHi1VNt7Gt1PxMf8F5VsJXfxM\nUxWaem9hFn34ViCn8nfAhNzvTukMlAZ5wyAcUhUwRk2iyrXDd0jLKwV5w8pG/iRdRjTHxmTlNk3v\nvv/A04/fEeBJzUn0+oK/EDxltdzzbB/XCzW8y8rd79Gy8Qpt4l3srOUWC4rOp4gwYHE4qLhhqVh5\nVEBNzA1R3Ze4OhEWC7JoVG4vrn0RXJmzOEUwoSkWOtbKzBOhHicV6iuMsFgAIFUsAEAF2y4EwfA4\nU7ZgsDBxpSQWAMCUbgMmO5dSWyNGlIWm4kzmQyvOV+l4RmSjqQNagxQMR8IHorqT/JsSadTw/CR2\ny8DhFINGk23/py/M6UU0NTGUWwIyAnYuQ15JMWmdPvkxDFixDw9S01QyVmR8IuVNr7UFA4+WjUen\nuK14n/6TUp/rC/6CtYXi/1+0MR9V0aDoLQJPLAwOrI0mHt5I+/0L825cxI6nD3Hg5VM8G6x8lDdN\nUtlJetQne3Ni3o3HmbNQs8xCheZShVgQpYKtbJ8IAKjqPJXvoAwAxexsMOiqSdDV2usmJUdlI0aM\nqB5pfgq6knsBACa1nofFyTM0OqdBCoZOp7cQnlV1wyAqGlI+VYQlozr83VX/xaVtDFksAEBeSbFe\nCQMyRDezDxPGQ97DItExms1YjwvzhlPuf2TaAP7rHRfv4dDNp3iX/gPlnezRp2kQejeuKd+C5Jjv\n0tNULD92FZ8ys+HmYIumAb4Y0qoeHFV4G8YTAkwWG+M2HUXK+6+wMjdD0wBfjOvYGJYM8QgjVMWD\n9/olmNe4JfpWJf6MIv/vDO29fgmS379Ba2/VJLHTBOVt2svV/lteMqCAYAj3vid3HzJEN+bVXWZT\n6udt14cgGM5+CNH5SENGjBiRTv+VewHoljCQxKOLzwBArVGRRDFIwdDHrxbm1g2X3VABanh+Qn7R\nfbz+znUqKSh+jEcfK8DJujsqOMerZU5N03tKZ20vwYgMYvecITzvmdhHbrEAiJ+i/8jNV3hNUaG1\nERWq3rwMrU9sQHZxAW50HoOmAb5oGsANTeq7Ow7HIwbiyY9vqL93Obr6BGJ+vbZi/UddO4Qzn19h\nVaMItPLwJ9T57o5Dau9puJfxGYMu7UVDNy+sa8w1NTE1oWPVsM4Yc+0wjn98hlcl6dh44CYAILX3\nNPjujsPcOuHo41eLdExJiIoFUaZcStIrwZBf8hnmJi6U25speCpPV9CMyYgRI8pBNQqSPJGVdIXX\nX7PQoU4VbS+DMq0Z3IigEWWITtiHMhQPRy4NgxQM6hILPKzMa4ndNvzI+w8/8v5T67zSUKUD9oDY\n7ioby4h6OCQSFamKh6uWVqIZhl3+D2fTXvM33xV3c/2U3gptxn13x+F026F41XMK+l3YLbZZF36O\nT7mE4Vf2i23mfXfH4WKHEXjUbQLuZnwSq0vtPQ0rGnXGw6wv6JK8ld//dNuhCD+5kSAYah8kmvgp\ngoetvdJjaJJ76aOl2uqL+jsEUjzR1xSaNgXKKryNX8UvkVv8GoXMDBSyviO/xPCCaegbVQ4Rfy+f\nR8RoaSW6R1NXcX+d3yU/8Sj7IlgcFgb4xKKijX6GjD4XOxT1p6zCP5Hq3UOqAt6tQmtGpNoEgigG\nKRjUQTHzEz5mjUVeEbljsCHBYrIkedkbDEMC6sJ7CzdUroslMTynvoVXbVXDT9tLUDvCYgHgCgXf\n3cTgBlUd3eBvXwYAsL1Zb0K9qHiIDmyKVU+vic3zqucUmNLpAIA6ZSSHb6zpXI7wzJtXmJ9F+bjR\neYzEMWwZ5qi5dRUeDhCPpPE4gxu+82DnSLE6XaaYJd2/RDT8ahkDC/kpi5c/l+Fttma+3I0oDk8g\niAoHI0BLN/JIihEe3M+xmY8jMLHyBtibiX8m6jqWDDOsHNwJgdEJGBHWEBVciAc27Wvrz+2DOjAK\nBoo8/xKs7SVojHmRKxCzT/dt+JRhRr1mmFGvmbaXoRIcbay0vQSNICoQRFkbIt1hVVZ/AHyxIItv\nBb/FylY1ikDkuV1IbNEHMXe5WY3dLG0kjvF44Gh4r18C7/VLSOuPd42ivB5t0tbnCeFk/uS7agj3\nfgA6jejfceFTK8JzLVfDMOGkQvKHBsbIR0ZKBd7WAVjyYphemiQJOzyvTRLPi6KLgkFT/guAgQkG\n38Q4pEZOM4ZVVRBTMxMwS1i4fvSu2udq4zsRp1LJN0qaHMMQ2HftEaZ3b65Q3w7ziAECmlfX3WRi\n0nwBAMDCVNwBWZ7+smjt4U8QHc97EJ3m23pWwahr3C/JHa/vYUmDDjLHfD98ImZePYsdTx+KlesT\nweV24/qX3vzn0++DZPYRTuymC9iY+SLAZabKx5Vk5lTbbQXcrMj/35bGKEmDru3Au9+ZON7yL1ib\nkkc3G3f7P9zP+ojYmu3RvCx59vX5j5OQmHob/Ss2wMRqrUjbAECTU0thQqPjQrhyh2Pjbv+Hc19f\nYHm9HhLXVJqwM3PW9hIURh+cnUUZHxqLhIuxGpnLoAQDTxgYBYJinPi9nZ+4Lcyij8oiJfWuGwtT\nMxPsuM79Ml4wlpvYSnjDf+fic8wftRO9R7dE9+Hck/9fP/Mwb+R2mJrSEbeDG7mnpJiJnrVisO/B\nHKXXJRpa9VbPkXCzknwirMtM33Ua//SRz+6SLGRowuCOqlqSypl557TC/kmVHVyV6g8AyZ9fURId\nh99z/Uu6+FSX0ZLL3JCWepNzQRIO5tXFbhok0cLzEsxNdG9TkVuSCmeLuiodk8xEyxhNSUCVQ7Ph\nb+eKV7/Skdx6DM58eY46x+ZjfcNINHEXmFr2vrQJD398xugqoYit2R4hJ5eAxWETfAuG30jE5W+v\n0ci1Iu60n4o/b+xClUOzCW2E53vQcToSU2+jyqHZYvNRgc3hIODwHIyuEor4ut0QeGSe2JpKIynZ\n0vOYGFEtT6+/0thcBiUYjChPUuEulYqGzgFTcfgpMZHLlOV9cenYQ8LtQFAjfxx88g/+DFvCFww9\na8fgVOoS5PzIxaSeq7F471/oWHkKTqUuwem9yiUqC9i5DCw2G4fa94W3nSMmXz2N+nvX6E2o1UkR\nTbH40CX+8/E7z/Eh/Sd2ju8tpRfA4QA9l+zEy7QMsbpNo3TX2f15j79RZd8inE17hRbl/bD37SOw\nOGzKtwYn2wyB7+447HpzH918A3En4xM+/P4p960D74bBhEZHW8/KWB5MjCi2vVlv9L+wGx28Asi6\nGzQ5RU8Jz47mNfCzKAUMuj087XrC33G0llamPc5+bEx4NooFcV79Sudvsgf5BcPR3ArDbyQSNt4P\nf3zGnqaDUcPJAwDwpPNMVDk0G2n52ShvxY20dfnba/Twro3ZQdzQvltD+qPKodliokF0vsVPzojN\nR4WAw9xDq5GVm0pckyFCJUrSIN+5GliJZgmMTtDJGwgzc+k366rEKBhKEZNazZNab+1gBa8q5TFp\n059YPHgdAPDFAwB4VfWAvbMtpbkWn+EmFNl7dw7a+E7Ev+enoLy35HCLv37mYdbgTfj45ju/rPuf\nXOFg72SDJ3feAQBadKkDAAjvWR/LpyoelUo0D8OGFhEoZDEx+9Y5xNRvofC4mqJv01oEwQAAjz98\nUygbMo86lTyUXZbaMDcxRWrvaehzfhf2vn2InhVrYl7dNnKNkdp7GpY/uYLNL26jiqMb9rSIotw3\nozAPABDhXQ02ZuYoYJXg0LvHOPbhGUF0hLj7gANgeXAnudZmCAhncDZujI0oSoRnTUy7d0SsnCcW\nhPnr5h4cbv4n/5knFnhMCGiJpU/PSp1vXq2OmHH/qEJr3RLST+aaShsjKi1BOUvdNW01NDqPCkNr\nRiSs7Cz5WbtLdVjVegMEznGnlg+Hs721lNbqQZVhS7VFypXnMtvcOCY5IdKHZ5/lntPc0oySn8H2\n+NNYdWw8pkWt55dZWonHWr9y8hEmLukl9zqoYGFiiiOpz/VCMADcHAotYzYiI0c5Z0pFsxRrg13N\nySN0kN0UkJWNrdYYY6s1FiuX1J5H/UPLxeoX1W8v5kh9P1P+/yOGgLApUrMKyVpciXzUd/8Xt74J\nYphf+9IDjcrt0+KKuA7SymBKt9ErB+sAh7KU2pFFLHqZ852kpYDB/o3EBIPofF29ghQWDAOvbpd7\nTfqOPjozSyMwOgFta1XGgr5tpGZ51lWGzo/E0PmaiaanF4Lh9tZoAEThoI8kJF7E+MhQbS9Do7Tx\nFThvCgsHa1sLgg9D0r7bOHfwHlYcHSd1vLIVnNHGdyKq1vZW+VqnXU/G3QbCPgAAIABJREFUuub6\nlbTu7OyheP01E90W7pC7796JfVDZwPM3qJL7mWmo5VKe/xx8eCVcLIiHF93ObEdMbd1y5tU05ib6\nE07R2ZK4Oc8peqallQhQdrPvbFEX3/MvqGg16ie7uIBSO0V8A/KZxWJlovMVskrkHpfH3Q5TJTpo\nG9Ef/iinP59Z2kQvBIOhsDv5vlYFg6qcmOVB0u3C/kfzZLbrPaqlWP26JNVEj3k/8G9+HgYe5azt\nEBesf5s9v7IuenVLoI+k9p6GPW8fYsSV/WBy2GhZ3h/XOwts8lueWI+veb/wtvc0KJBw26A4/T4I\n7tYt8YfjOFibeWt7OTIhCwvb3PM8LExki+mnWfPwNfc0WnpdJa2n08zB5hRRXosqoiPVdltJGOfy\n5w5o4nFM6XHVRVp+ttrGHnJN/CBFdL6p9w4rPH7Pi//ieMuRCvfXB2Y+jsAg37nwsTbMyF2ifglH\npwyAt6ujWDtdvX14cvUFoptz/WmSixPRmhGptlCrBiMYGgxKAJvNAQD0b1cPf3UPAQDsPfMAS3dd\n4N9S8Kg3IJ5QtvX4bazZL/jQF20vi4ev0jAsbi//2d3ZFkeXDuXPJTyvpDmE6y6uGw0rCzNC3Yiu\njZDy+guupXDt+Su4OeLAwoE4fOkx4rackfkejRDRFwdnVRB+YQ5ySvJxo/UCbS9Fb+lVsSZ6VaxJ\nWne23XANr0a3CCm/H1fTBBlgv+Wdxbc86bbj5iZl0MJTN07Ca7kuw/10we3m+Y/ccKcBzjPgZScw\ngfxReBfvf+3Ct7wz/DIGXbKDa5j3HUKyupPvqqFx+YOwZfgT2t359icyCshFh7LklrzDqfc10Mb7\nkVhdPjMNX3KPo5KDdn9/OQBfaIeeJrckEHVeJiPg8Bw87TyL//zwx2fYMyylznc6TbFbJUsTM7z9\nLR48whARFgszH0cYnFkSj6ldmpGKBV0muvkcvlAAgNAeDdU2l0EIhnoD4rF/wUB4unP/oVuMXA2f\nck5o26gqerYKwtJdxC+lh6/SxPqXcbQhbK7l3WwPi9srsb2wSZWkNqJ19QbEI3ZoONo2qsovW3vg\nGmn/zk2rI27LGULZhXuvUcHNcCM1lEaSvj5AWFnZ8e3JON1sluxGRvjM7ZmAmXuNtzZUsWNURjXn\nmXiSRT06ShErAyffVUOj8vtgz6gqu4MacbduiXruG3H721BC+dOseXiaJT1YhDRoEE+8dyWti9Q+\nbX2e4EnmHHz8rbgvheitCYfDknp7oU3B0NEzEFVF/BNEhcHziBh+xCNJ7Z5HxKCqSJuOnoFYWJsY\n1UfWfD+L8xF8YjGhnjfm9XaT4MjgJsq833EaZtw/KnVNRvSL3iHkB0KA/uRooOKrqigGIRgA8MUC\nAJxb8xfqDYjnb7arVSyLk9efoW0w93lY3F5U9CBG7DmRMEzpNbDZHNDp8hskrNx3RaysRV1/xG48\nTRAM0ogMr42luy5gQh9uZKHJK48ZbxcUwHvLIp28eYh9vBdJXx8g9jH3Fot3U9AweQomVumE5S+P\n43LLfwAA0x7tRFyNvvx6SbcK4Rfm8IVEMZsJBl3+j4OCrz7815Zl38ndX2cp7XZFcvD8xyK8yxF3\n/qTKtbQeOhFVycWyIeVcEsKEeByUWt/W5wnOfAhGCfuXzLF4P4dqLrOUEgwAUNd9He580/1oPW9/\nZVDaZFNp84xCG1nzOTKsKG/659XqiHm1dDd3jarILsmAg5nRzl8X6TC8JQZW5e71bhy/hx9f1Wfi\nZzCCQRqbZ/bmCohgweZ79zxiODRlHapvb41G/YHx4HAAKwszXFxHPeZ4YpJ4ZKJerWvh3B3qCTnG\n9WqKegPiMaFPM5QwWZT7GdEPYqv3RNLXB6Sb/64VGqJrBfmvIXOZhfzXTc/OUIm5UmuzXpi4aQSW\nDF4LFw8nJL5bg7ycfBQVFMPJ3QGtzXohuWQP4oetR5/pXeHm5YLMtB/YMmsvJm0awR8juWQPYUze\nM+91V7ch2P9tI2g0GnIyfsG+jJ3E9SSX7BH7+9nNV6jawB8fnn/GksHrsPL6PLSx7INTBVw/nysH\nuHk+igtLwCphwtLWUmxdRoCT76qDa+DBPU1v45MiR19hv4HqaOvzWGJbTQoKwVwcvM5ei0+/9qOQ\nlQEG3R5u1s3hadsD9ubyiYpWXtcBAIWsdDzLikN6/iWY0qzhbhOGPxzHwYwuHq5a2fdcxjKEP8an\n3wfxOnsNipjpsDB1g7NFPZS36SDm9G3ECBlLXxAPVKnkYjBUsyVdY/TKQYRndfkvAKVEMPBgstgw\nNRG/Igbk91kg49YWgemRPCZNdSpXwK2nHwhl918oFsb10v23mLL6GKwtjZEbRPHesghuVja41XOk\nmMNzaeRqqzh0v7oY/4VMgq2ZuJ2vItRvVwut+zXFtcO3YWrG/XgZEjgBuz+sBQB4+HFDGkZvGM7f\ngEd6j5S5EW9tRgylu+b2fIQxeuNk/i6JYkEaletWwrR285Fy+RmKC7lRUlhCQrtao8oAgEEB45H+\nMVPu8UsD2UUp4IkFAHKJBXE4sptoHBr8HEbCz0F1Tq0WJq6o5bqMUtuwoBgkPRAPJaoIFWy7oIKt\ndFMoI0bImFv9EGKfdAeLw9T2UtROxq9ctIjdyDc/qjVpOZgsNgDg9oLRsGCUqi2zGAb57ncn34eH\nK9F+39qSgZZ/rYZPOWdS86MF285iSv+WYuWKcHnDGDQZtoJy+5WTuordcKw9cE3sPchieJdgTFrB\nTXhzYe0oufqWBs5EDIafgzP/mcz0yBCEhPDNgSw+52ehw6U4JDdTjd0t4/9ZJ3liAQBoQmZ6HI78\nG8OyPq7Y9or4/8nNqwySS/Zg2Z8bcXLTOblP/sMtIgm3FqKYMkwAAGwW23irIIHrX5SL/W1vXg05\nRdo3RTJixIh0YqsJkqQastPz9MQk0ITMUZksNlLix4PN4aDmhGU66cdw9fAdzOkhiOBkamaCk3ny\nh1mngl4IhnbjNiAjmxubus3Y9WCYmaKShwu2xnC/sE4sGya24RY93b+wdhTqDYjH09RvKONoI9a2\n3oB4HLyQIlZOFdH5t8eKJ5iKjgyVGCVJ9D2UK2OPg4uIV02yGNyxAdYfvC5XH3VTfYLgF/nxUu3+\nZxMWC43LeWtvIQpypnkMGiZPAQCp5kN3s96iYfIUmNAEt2mdL8/H98IcAEBZS0ccbDyZP05w8lQ1\nrhpIfLcGPcoPw9QdY5D25hu/PLlkD2Z2Wki6IS/MK4KFNTdxX0baD0wJ/wct+zbBooGr+aZF49cP\ng7uv4nkkvn/IRFQlgbDuHt0eB5adgJm5GbK+/OSu/f0atDbrhak7RmPzjD3Y8WalwvMZMoqYthQx\n09WwEuUJrx0LDlsgbIVP+cOCYlC/iT+atq6GRTMOkra5d+Mtpo3cTloHAEf33MLqhSf5zyEtqmLm\nEkGW7LCgGNLXouMI163bNxI+fm7U3qAOoUkH4W7NF+L5eaNDshHJPEj9gg51uKbrWy/cRXjQHwAA\nOk13ndrm9EggmCFtnKo+kySaIid+GkAnF6UPhAxZjoOLBsHVSdwmVhvokmCgwp5XKejlLwiD2Omq\n+m5qjoSsUtvY8sDisAniQh4M1ulZR9Gl30dhHwRrM2809TiucH9As34KkuBtwneeikYZd3vs2nAR\nfYaFEuppdBpMTOg4emMG2Cw2hnZdha3HxhHarE78E5WqlMXVc88wd+JewmY/vFYs9p6bBHtHa1w4\nlYIF0w6Qmh5JM0kKC4pBcLPKiInvDTabjTa1Z2Pt3hHw9XdXyc9Bnb9nA3wiEFG+hdrG1wYnDtxF\nu6511Da+Lv17qPqGQZc+0/7ecRLnUt7g3uIxCIxOINwoiD5TQRPvTTTvwuDqE7HpMWn+K6VVj2K7\nBCM6SzGTpTNiQR8RFguGTsPkKWI3EUaMKEJeyXu52j/JnEN4lpT4TJOcOsgNPpH0YDbKuNsDAEEs\n8OCwOThxexZMTOgwY5iKiYWkB7NRqQrXVyekBfe0ctKQLfw2p+/Hwt6RmyG8WRv5P2/OHHuIsh6O\niInvDQCg0+lo1aEmRvRcK/dY+k5YnVik3H+Pm5dfoiCfmyBvdL8NKC5molfrJWJteWxfzw21/vCO\n4JCjU+M4ZP/II7Q7c/whMtN/Yf60/fwxju+/g7SPWdi65pya3pVuY6jmSACwKKotSlgsnU3SJonW\njEj+n08vvxCeVYlemCQZkc7iHefh6e6IpbsuIOgPD20vR29ofWgzXmWLO7TqYlhVdWBM4mZEGYLL\n7cb1L735z5KSgwlTzPqJsx8bi5VLS36mKXZuuKiScYRNhXik3HvPf81kstCu7hyxNlTZtuY8Mr7l\nkM5TGgms5Q0A6B2+FLtPT8CrZ1/AYJhiT/JEiX2SjjxAv+HNULOu4Ia0c6/6cHCyxpip7fllrdpz\n4/JfTH6CqXHcxITtu9UFAOzefAUDRhrWTYkRyfkWdNF/AVBvVCRRjILBAJgUxc1K2rOVYkm9SiPe\nWxbhv7aRqOtmFFhksAqTUPxTcgx3ec2PJJkuCZcrMo+s/vxx3J8ANGuZ4/DmIxtXWp2F6w3QTCSb\ngzDzE1GSM13mOk1tRsLMdpLMdrqAg3l1eNr24OcLkJUcTBK6YIoEAFb/95lRFmmRjfZtuYpNK86I\n+UXIg7WNOaq0CsD0RT0UXqMh4utP3Ydj18loMJksmJqa8Mtc/3+rpAhsdumxot77cQl6ekoWY0YM\nF6MtgpFSi1EskFOY0UyqWACob9SVGYNmUk5iHYfzW641FHyjvpGVNi6H+Ya0vDBdch6Mgq8+lMQC\nADBz16DgayVKbXWBai6zFL4dcLKoozNiAQDB8VhRaHQaVsZJ9uXYtua80nPMXdkXl888VXocQyGs\nTizC6sTinxXcZJX7zkzil/EYFbUBADBjzC5+WbsGcxFWJxZvXnyVObYsVi08QamdIfAk55q2l2BE\nSxhvGIwYMcKHXXwbHOZ7QQHNHJbuLwhtCtNDwGGlKSUahPuauxwF3aw6/7k4exJYBfth4Sr5i4lG\nI/rpmDvvBp1BjNTDzF2Lkt+CMLkFX30o31gIbhP8ADAJdWa2E2Fq85fY+yjOngSGw2KxMc3LnEZR\nRjgAgG4WAHMX8Q0l8WfJ+v8fE7F2ugjP/yC3+A1ufhuIYtZPiW2rucyCp61unox7+pRBcLPK/BP/\nchWc8OXTD7lyIZy+F4uwoBgc/+8OfP3d8el9JkqKmfwx/rs4GREhcVg+7xjsHaywe9NlWNtYSBwv\nLCgGLdvXRMrdd9hxihtVj3cSHhYUA1d3e3AAZHzLQURkA/w5qY2C715/SbobS3i2d7QWK1u1gxhK\nPaxOLL8N7zXPaVnYeVl0HOFnSa+NGCaKOD0bGkbBYKRUYm3GQD6zBFamZtpeik5RlEU8ZRUVCwBg\n4XoVhd/rg8NWLCwmdxMOmFh2AsNBPIkVw2ExQLLxFkXW5t/UZgRMbUYQN+OcQoAmeYPGHfeN0OvX\nYsKIJxYAgEZ35f8cWAX7SddNN/0DZvYLYGol+QTbsuw7wjwF36rD0v2Z1HXqGjaMSmjpeUXby1CK\nmPje+Jb2E7Hjd+Pbl2y0VSDyTdKD2Ug6fB8r55+AezkHrNk7gl9nZW2O47dmomvTBXAv74ikB7Nx\n9zr5rVXSg9mYNXYX7lx9hbCIWmJ1WRm/MSpyPUpKmFiwrj+C6vvKvdbSyn/n/ka7hnPhUsbOuNk3\nYoQipUIwjNt6DOcek38o92taG5M6NpFrvJ+5BQj7ZxMKiksI5S2qV8KyAR0ojcELN5qyZDw/UYi0\nEKTBM9bgd0GRxHpZjNh4CFdfvBcrvzJnBByspW+gJJF49SHmH7pAKHO2tcLF2OGUx1Am7Gr3+J14\nkZYBAKhS3hX7osVzXwgjmpSt6g7ySAilxelZFFYR0VxC2obcwu2WEjcMTNAZtUjFgropzpkGhkO8\njFbUT/bNHBai+MdAme2kiQUeBNHAKaC8BiOqxb28I9btI8/uTPW2IaxzLYR1rkVaZ8YwxdEbM/jP\ndYIlm6DNWS75M825jC12nyndtuSKbvbt7K1w4sZM1S6mFFHEzoc53Urby1AJgdEJaFurMhb0baN3\n0ZE0jcEKhs9ZOWgTt1lmu+2X7mH7pXtYP6wLgv/wkto2+dErTNh+QmL9ucdv+Btgqpvfoev2Y0RY\nQwxYvY9QXn1CAvZF90GV8q6ETbVwPZU5yPoK03gWNxRfFQ9X7BsvfcPN4+qL9xixkTy0WtbvfLl/\nBjyO3n2Gjv9PmkIFnlgAIFMsAKVXCFCl+Mdg/muaSQWZ7RkOK1CcPUahucydDyjUTxFoJu7gsLgJ\n41iFpwHIEgySETU5MjEPVWJlRowYkcWvont4mTEBhcwvsDD1gK/TFDhbtdb2skotc6sfwszHEbA3\nK4OJlTdoezlKc2BSFPzKuvCfY3u2Qpf64j5vRjFhoIKBzeFQEgvCyBILYzYfxYWnbymPR3VDf+vN\nJ9x684m0rkf8LtTyKS+xb8+EROwdLznOriyxIMzzz+m4+DQVoQHSr7VTPnyVKBZEid4mO5GTq70N\n0nO4Wbyn706iLBgO3zY6/akTc+e9MtuYWHYAFBQMmoRu6g/W/wWDsif3dHNjGEUjRjTFlffE25dC\n5kc8Sx+Jik6zUM6un5ZWReR77gG8ypwsVt7Ym9yqQd+Z+TgCAJBTksF/TYa+5GsQFgsApO65SjsG\nJxh+5hWgyax1hLKT0waigjN5JI/cwmKsPCXd6/9nbgFBLHSoXQVxkeGkbYU36VRFg6u9Dc7NGgoA\nSM/JRYs5G/l199+lYWKHJugfWhsA0GnRNqR+/wEAePb5u8QxRcWCpHUsPHwRO688AACM3nwE83q1\nRqe6ARLH7bNiD6Vxq09IwJmU1xLH4XFu1lC5hA2PmXuT+a/7NSG/+peG95ZF/BsHDgCf/5srGW8h\nuNBMyqpxdPUFZ2OXPAGr8Cw4rI///5MODotckJNBozsqVU8VDjsd7MILYJc8Aof1HWzWR4Al+f+z\nEd2niMXEoMOH8PDbVzSo4IlNHTtLbDvt3Bnsf/YU/WsGYXrjplLHDd26CbnFxUjq2x/OVuRmIPMu\nX8T+Z0/hYmWF0fUaoFPlKhLXGLxpI2zMGIhr0QqNPD2pv0ENIywWhDff+SVvYWVWURtLIsXNpivc\nbLryn0VFjqGhL0JAEfTRqVk00/N/8cfRPbq9lB6KY3BhVUXFwuOl4yWKBQCwsWBgakQz6WPGCMaM\nDKkpUSzw5hNm8dHLUscGwBcLAFc8iMITCwBw5O/+MscT3kyTrUmYyZ1DEVLZm/88Y0+yxLabz9+h\nPK485kgWDIFuPXBLdphFJotNeJ7USfoXrix8tizCw8gxaOVZCde/flBqLCOyoZmqbpPCYX1AwVcf\n/p+izA5g5i4Hq+AQ2MX35BIL3MXZqWxtohSmN+Svs/B7fRTnTAEzfzdYRefBYb4Bh/NbbXMbUS83\nP39ClVUrcOPzJxQwmbjwLhW+y8lN33yXx2PPk8dgstnYdP8eaTvf5fH4XVQE3+Xx+JiTgx8FBai7\ncR267dtN2nbzg/v4VVSE1J8/MT7pFOmY1dasRJVVK/CzoACffuUg6tB+NNq8UaydriF6Uq9LYsFI\n6UFfxMTGKepL5GZwNwzCPFw8VukxlhwjbvhliQsA2DaqB/qv4vokbL90T26namHodJrcfYTNdahs\n3NcOjaB0yp9w4ir/9f1FqjNFuTN/NH/+2H1n0JXEflCYoL+X8197lVHuxPfKl/cAAAdzC2xs0QWV\nt8fjRb9opcY0IgvVnFNIc7qm0R1BM6sKmokH2IVnwGH/oDYoTfWhTLl5FVgSak1BN60ImtkfoJl4\ngJm7RuXzG1E/kQf+w8UBg+BpLz0nhe/yeDBMTPBilOC7ad7li/BdHo/UscTPnRrrVhPK6mxYi/tf\niTkD6m3kHmaJ9hXlW24u8ktKxNr5Lo9H34P7sbNLN6n9jRgxoh+oM/OzQd0wiJ6Am9CVf3vbLt6T\nu4+oDdyRO4rb28vjBKwMdJpAmNxPTZPZ3sxE9sZqXLsQhdby9BN104zjUwYoNAePqKR9WBXakf9s\nbcZQajwjmkFULJg774Vl2Xf8PxZu92HutBMM+wWAgonFVAHX2ZooFoTXaVn2NczLnAbDYbneZHg2\nQs7Qo0cotRMWCwAwo0koabuGHsTAAxs6dBJrU9mlDKU5gzdtgKc9eSbj658+UhrDiBFDJ+t3Pq6R\nRJM0wsWgbhiET8Dn9QpT+fhUowiJMmNPslS/AGmEVpUvtvbdt5/5r01NqAumzvUCcPD/5kDzDp7H\nwYlRhHqen4M8DG5eF8uE/k2kMSo8GKtOXwcA9FqWKPFmpKiEKfc6yBgUUAfeWxbBx84J7X0qAwA2\nPrmDfW17q2R8I2qEk0d4lJWPQbS9JhHOAG3h9hA0OvmmzYh+kzo2Gr7L4/mmQCkjRsGGQX74IMlU\nSZS/GzUmPNtbiIe/3h7RFaFbN/HHnB3aHFE1apKO9zEnh/Lc2uDKez9wPcpEy8V9AiQ7FLNx5b2/\nWGk5u/6o6CQrjCp5XxrNDCFez2X0LV0sfTEM2SWCKIU8vwYOOJj1uAtmBeyBGd1cW8tTmE4LtiG3\nqAgPl4zT9lIoo84bBVEMSjAI06mu6k/mq3i4Um5byd0Zb75lKT2ni621XO33XH/Ef81ksRVyKP6Q\nIZ6pVVIeC1UxvFV9vmAAgNzCIthYiH/g1Ju2iv/a2lzx24BZ9ZpjVr3mhLKh1eoqPJ6hwS66Arp5\nY9kNtUDRzz/5r00sZec94eiIM7FRLBg2qWOjsftJCqafO4vAtatQyckJyVEDxNpt6dyF0ng2FD/f\nLg4YjPySElRbsxIxF88j5uJ5XOg/CF4OxJu14bXrokEF2eGStYe4WJCHnwVX8eT7ANK6L7+24cuv\nHWjs/UpifzKxAAAcTgmuvPeX2rc0cf/nOb5YqGQbhDe/BYeJNHAtFf551hex1f7TyvqUwcaSARtL\n/bMyGFF3Kt4+EvhfqktEGKxg0DYBFdxUIhjkuSUAiDcMilLMFLe3fvUlU+lxZWHJMOMnw2s4fQ3p\nLQObLfhSuRn3l1i9EdVQ9KOfzJN7Zu46qfXqgl10g//a1Ep2EAC9gVOo7RUYUZLe1QLRu1ogdj1O\nwczzZ3H05Qt0/KMyoU1TL2+Vz2tlZobUsdFgsdnwW7kMzbZtFvNX+Jr7Wy1zqwrRWwPezQLV8KQ8\nsUCjmSLEi5ihnjsWW7yTyFzS+j5LH4GqrmsprcWQOfR5Ffp4TUNlO+4BG1loVRZHNZYAmubgpH5o\nMHWV7IY6RGtGJOKOT0Gd1oFqn8ugfBh0CVMV+E8oQm5BsVrGLWKq/wPg9vxRUusn7zyp9jWUZizd\nXxKeOayvElpyKfm9UJ3LkQidUZ//mpm/Q2pbDkt/ol4VfCMPhWlEs3DYHKyJO4YuDeegd7MF2Lri\nDFgsyZtNMvpU5355z7l0Qayu5rrVKlknGSZ0Oq4PHiZWHlWjJo6+fEHSwzC4l8aNXEinMcQ2/AAQ\n4PYvAHLzJll9eYIlK/+Mytar7/DEAhmu5rp8iyUdK3MzpMSPR2B0Av49exvH7z0n/NFVNCEWAOMN\ng9p4R2LWownKOdnhXTo3IkyrQD/E91dNPF43ext8zMxWyVhUyc4rhIO1wG735APBhvb09EFKje39\n/7wLotiYMfCkr/7YL6oUGvEqtjA9WOItg7QIReqG4ZiAwu9c0cAqOAI4LCNtx2F+QGFGqAZXJh0O\n+wdodCfSOm3+PA2F8OrTAQCnH/+jcJt2NWcSxEF+bhH2bLyIPRsvSu3nv3IZXo0WfG48/s41g9sh\nEn3I39kFr7Iysf/ZU3SryvVr+56Xi4b/bpAZ6YgM3+XxWNQqjD8WwHVwFmV2aHPsePRQLBrTpOTT\naOPnj+Y+8vnK6Rr5JdxNfbDXY9J6J8tQhfsakY+MIuWtHLSFcDbnFSfF83O1r617hzr/pizGn3Wm\nYt3d+Wqfy2AFw6VnqWgqp8OwLB69/4oa3tQSWlGJNKQO/mzdgH8STyVxGlW61q9GcCpXF2PaNuL/\nR208a61E5+fyTsrbg/OStHU4uh3HOvbDo4yvqObirvS4+oxl2XeEzaus0KUctuaFMY1O9CXirpEO\nU6seAM0SzLwthHrR96RJGI5rUPxzJACg8Ds3n4qJRRvQTL3BLkkBu0jwpaStn6ciPM76hv5n/8P9\nnqPR7NBGXIjg5pLplbQbjzK/4lmfaNAAeG9biPf9J6PKrniEefphWWOuz8nd9M+YePUk2ODgcpfh\n/HHbH9+KCjYOWBsqSHr2IOML4u5ewMfcbNzqrj4zRJ6YoNFpOPlgLmj/D2n98vFnREetl3rLEOrt\nI+ZQTCYATvflZif2XR6Pv88k8ctP9IkSa0uFnV26oe/B/YSx6pQrj33de4q1TR0bjX6HDhDW6WJl\nhcWtJecV0jdoUDwssjJ9SxvfCz/CzUI8nw6bwwIHHJS11E8Bqi+5FoTxrFxeI2IBMDDB4FXGke+w\nO27rMTxYpHweBmH+3nUSSdMHy92vWYDmEs20DfpDLaY7/UNryy0YfuTmyz3P0Bb1SJX9tZcC05Jp\nXZqL1SvDsx/c08AaZcqi1aFNOBMh/7+xIWHhegWF6TIcnmlWsHC7j5Jfc8Q26JrAwvUmCtMbCJWw\nwczfI96ujHbNCEws2oiVsQpPiZXRTMrCwvU6Cr79AXDUY1aoSjoc34YljdrCe9tClLWyBQAwOWzs\nCeNGGeMJBQCovXclnveJxs6XAufIbqd28ev/vHgI60IjCH2EX/dMSsSrvhM19t5OPZpHeP6jugdO\nPJwrtQ9ZyFNpyLpNIKuv6OgkVh5cwVOum4ntEV1lN9JjlMmybOgZmlVFm7KDsOr1WDgxymL8H4K8\nMXd/nMGRNO7zyEpLtbU8I2rEoATD8SkD+FGBRLMBK8rCvm35G/CFLmO6AAAgAElEQVQvP35R6nP7\nDTG77IpBHSW0VD87rzxA38ZBSo8jmtOCwwFoMnLKNY1Zr9BcPYIDse96CgCg+oQEPF46Hn9uOMiv\n792ohkLjSoLFEThS86I8lGZoJh5cUyROAQq+VRWrs3C9wn82s5ulFcFAM3GDZdl3KPk1H8w8cRMM\nhv1CmFj1EOpgBnBKNLhCATyzLrJbDjojGObOuwRt3R6K/cx1kXAvf3SrVB3nPr/ll6VkfkWXkzvB\nEMnRcq/naABA3z8En0OtKgg2Z6c/CKLPeG8T94tpVt6Y2dcINSo6xWilb2ki2KUDfG2qY/Xr8XyH\nZ97flWxqor+P/v8cLz1LxeIjl5BXWIxuDavjr/BgbS9JIk+uvkB08zkAuNGRWjMijVGSFIG32VQG\n0RP7vKJimeE8B6/dz38ta1OtDkxN6HzBtPDwRZUIBgBwsLZAdh43kkvgROV/tpKY2bUFXzCoC+FE\ndU3K+/B9GnhmSkYA0Cxl5zgAhTwIFNsogpndVJjZTZU9v7v0kIjS1idr7VTfG6V2FH/m2oZMWHc5\nuZNwQyANUzq5+QevvzB0DX+IhlefjkM3Z8HSWv/iyJd2ytkpZtqlbN/ShruFNz/3gqFRY0IChM4Q\nsT75FtYn39JZc6Xo5nP4QgEAQns0lNFDcQwuSlJFN2fCc79Ve//H3lmHRdU9cfy7S7eECIqAgGKA\ngV3YKIqBndjt60/sLsRW1NcWuwsxUWzBblEREQSUVJRudn9/7LvLXrbu9i7cz/P4yD13zpy5lwXO\nnDNnRmqd28eW7RC0Wiw8wwV3LQEA+LBZ8R+y8qFYZGsx5BUWC5UNWz2VcL30zC0BksC0wGBSYwqC\ne5Jw/U1Z5gofdzep9LKJHVNWVfeYxyDEjZ1POQsUFFISlhSH01/fixbkgxZdAyNDz2L/pxciHQ55\ncPbRYs7X3q1Wo4frEvyMk386aQoKCtXg1ruvYDJZZxm4/03t3opwIFqVKS3mTYsvKyrcDkPwfB8M\n23YKH3+w4tLffk8iTILrWFsgNTMHmXnEnOfCVss7uzhCS0MDxaWsbwRbn3u9WujpVhfZ+YXYfesp\n/ubmE/qN76y8QmARW3wJz839tWM1czDBRGzqH7H16utoIa+QFdpx+eVnXH75Gc0dbTDK3Q0//2Ri\n3+3nnHfLvdMhLu83z+LYvPBkWcz3vL4dJNJHQUEhO9iHkrkPJ3PvDgyr04injV9/bpnoUWXnFCY1\naMFXVp6YmBrgZoQ/ju68g9P7WOlQJ/Rm/Q7SN9RB0NPlCrGDQnz0tRyRVxyDsDgn0nUbZNG3MlK+\n7oKxljmmOW2FgaaxkiySHcvPhMLTzZmnfWr31thz65kSLBJN78ldMbY+6xzT02uvEXbphdzGqnA7\nDABwetZwgfe+Jv/mcRbI8GbjTFhVMSK0PYr8joUnQ+AfdI/HWVg+sAtm9Won9jiy5Kn/NL7tManp\nEjkLAPB87QyeMKuXMT8x8/AVbLz8kPBu3278n0zDCewsqogWEgJ3KlVBaVUpKCgqN6NndMXNCH/M\nXFHmqOTlFHKyKFGoHk1rlO12P//RVqBccvZpift+/S069LEy4Od6CX6ulzDUlrVLn1WcjvWRo7Es\nwpvz79Gvi0q2UjKWDuyMexExogVViH/+HYdtD1dCR18Hl/69KbfzC0AF3GFgw94x6LLqANKycoTK\nnhHiYHBze9kEAECbpbuRnV/IV6ZnE2dsGNlTDEvlh6GuDuc9kAlLInsm4cNmXyT+yUQP/0N87++Z\n6I12de0BAFtHe2HWkavkDC7HsLaNcPpxWXjDtUVjJdJDQUFBIS49BzZHz4GsXWK2s3D55FP0HSG/\nGGEKyWlZ8yme/2iNotJUgRmPapku5Nve3v4bwuKchPYFgDoWvOkrBcmXbzfX74r6lnsF6lY3Gpi0\nIZxjiMgIx/kfW8EEE7dTTsC9qvpl5OrdrD50tbTgNm87ZvZsCx0tTZx/+gHfktMROG0goXibKtVk\nMKlqjKsZ8k8+UmEdBjZ3V0yUuc4na/iv3IuDsMm5qIm7JIeNZX1AuYaZCSmdXVydJB57cf/OBIdB\nFswPD8HGdrypLikoKCoGpaUMaGjIdvO8hbszXjyKwtGdtymHQUXR1qiK9vbf8Di+PhgCUhPbmEwQ\n2F9UX7fqki18VVQ+ZITh/A9i7REduh4G1vQVWglaleE+p7D1ahjh3oTdFwjXquQwcJORloUqlvIJ\nD6vwDgOF+sK9KzKwlavU+uLGzseUe8GccCRBYUnU4WcKCvWlV+NlfCsySxNS9OIRq8p8ew/pfw9R\nkEPS8wRt7T5LPKYkfSvbuQf2GQYrXXusdLkADVrFKXinqpmQ+OFdlb/zW1pSiit/5bPbQDkMFGrB\nikFdZaJnb2dWXLL94Y0q5Rh4tGYVhgp9ukzmunu6r0VpSSluPeGvmz02G0E2cMsF3Z4HQ0NdoeN6\ntPbDnmMT4Vi7clfPplAMx27Ng0/3TQCAAa39cPG/zzGTyYRnw6Ui+/dwXYLGLR2wPpBYuJG7r+8q\n7/LdKCgqJSkFcdj0ZTz61JiC+satRHegkCm5mXl8zyu8vfdRbmNSDgOFSnLo/ivO1y2cairREvVn\n0SpvaGsL/lFnOwjlHQdJ5djo6Ggq3FnwaO0nF6eLQvWxrF4Fey/NxBTvHcjNKeDZUbgZ4S9yl+Hd\n81iBMhcei3Y6KCgqOtznFpILvuNU/HqcjiemQe5kOQSdqw1VtGlSE/TsI1aeu60WOw0rzvO30aUt\nb5YnWUE5DBWAgEgPeNf0h72hbOIGAyI9AAC+9UJlok8iG66VxQ8enDpQ5vpVaXdB3rTvpJxYy6sP\nFJtV5PevbIWOR6F62DtVw80IfxzYHILLp57C1NwQE2b3QAfPhgDAN1SJzc0If0S+T8CBzSGIjUoB\ng8FA/cZ2WLt/DOj0CplQkIJCKqx1a2GO8z7O9cfMxzibsBn3086qpcOw9WoY6HQlVNuVgLZ9+c/3\ntHS05DZmpXUYYnOew8GwZYUZV1tDX8YalfNDU1BUguaL/lXK2KrC0QMPcPb4E4wY0x4jxrUXKnv5\nwkvsCbiF5q2d4LdZvX5B52QXYNqYA8jKzEeHLvXhu8hLoOzNq2+xb8dt1LSzwNa9Y6CpyTuBmz7m\ngDzNpVAjJs71xMS54ic3qNfIFluPT5aDRRQUFYvn6SG4lrSfp50GGrpbj1G8QTLAUE8bhnrayjZD\nZamUDsPR2An4U5iglBX0yz+WyXxcVdcnDFHpXmWd3UnV8Wjth36DW2Desj5Yt/wSjh54wBNi49Ha\nD0N92uLMscdwqF0No8Z3wLHABzy6Th0Ow5OwKHyNTAYgn/MR/NiwKhgf3/9AanKGwLMOvTutR2FB\nMeYt7wszM0MsmnUSIVfeEmzkDn2qXdcaqzYOwcZVl9GzvT9mL/ZCj95NAAA92q4BADAYTMI1ANyk\nwkgoKCgoZAZ34bau1Uagg6XsIwCUxc2l49WmorMgEr+loIaTfEKBK6XD8KcwQdkmUJCgsjkLAHFS\n36mbCzxa++HUkXAMH0MsAnjm2GOCLL+diOFj22P42PakzxzIigX/FbwSNu7V+8R86KFPl8GjtR8W\n/u8k1m8fQbh39vpsmJoZAABOBM/EqP7/YuvaaxyHge0UsMdTdychvTADn7NiEJ+XhPjcJERmxSK7\nJFfu4/YNnwEA0KZroZ6xA2z1rVHX2AF2+tVRU586uF7RYIKJqKzviM9LRmRWDOJyk/A996fcxz3y\n/RKOfGfFwVfXs+R81mz1rVHP2AF6GsKTKVAoF+4zDBWRD1t90XB2AGb2bAsrU2KxXlVKpUplSeID\nO56em/Ir4AGRHpjmfAm7o4gZLKz16mOo/TaBurivy+vcGdUHxQxiRWgjraqY4HSSR4dvvVAe3b1t\nlsPJqJ3IccuPze95+dl3K2kTPmfe5lyPdjwIM23ew8EBkR6oY+yOr1mPCO3l340ou0TZx0+eLWut\nVw9/i36ioDSbR3bFoK64+ioS7+OTYairjTm93eHdooHAMSojR/bd53EYKipvXsTytLGdBTa7Dk/A\nwB6bFWWSSP4WZSIyKxZxeUn4khWLuNwkZBar73mKIkYx3mdE4X1GFK4mPZCJzloGNWCrXx11jWvB\nTr86bA2sYaRpILojBYdCRhEScpMRl5eEyKwYxOcm4VuOei9+JeWnISk/TWb6DDX1YWdQHXWNHGBn\nYI26Rg6opmsuM/0URE7Gr8W37Hcw16mOrtVGqG39BTbcuws7bjzmua9KDoOgLElfX/P+DZUVKu0w\nBER6wFTbBmMcyyoKb4vszpmkc7M7yhv/OF+FJl2H0zc5n5hTmd2HzKHeYkYBJtY+DUNN1i+buJyX\nuPSDf/aMXVH90NR8ENwt+ReJK+8QCBt3Yu1TMNS0ILQFRHrgRfoZtDAvi1HvXn0eulefR3geQXzN\nekR4N+Fph/Ay/YxAO0XpA4DqevUxpJwz9i07nOMksZnuHAxtOut8xb7oIcgr+Ut4/oGtXGVSY4FC\n/dgdcAvB516I3Y+uIfvzNakF6YjnmojF5SUhvTBD5uNUVr7nJuJ7biIe/nopdl8TLUPUM3ZAzf9W\noG31q6OqjqkcrJQ/pUwGEvKSWDtIuayV/R95KWCCqWzTKgQ5JXn4lPkNnzLFr42gRdfk7HKwdjxY\nDi5NSef5VJnVn4agmFFW4C61IB4n49ey7rkGqe07U4fsSGwEZUmq5SK/rJIq6zCkFnwFAIKzAACz\n6t3iO6Gtqd+IMyEGgCH223A2bpZEYwdEesBEy5rjLADgZCC6kbgOPWsQs79U0a4u0FkQl/LOApsn\naYcJDoO4cL+bdpbj+DoM4jCk3O4EAIQmbYGTM9FhYDsLADDG4SB2f+0v1bgUFQN+dScUHToFlIXh\nUKgumcU5eJb+Ac/SP/Dcu9xupxIskgzqs6baFDNKEJPzAzE5P3juqdPnTN6s/TwKxYwizKsbCGMt\n4u7N8oj+WB7RH3Pq7kcVrapKsrByQGVJ4uJu8g4A5Fa7AaClBTHuWVfDSIAkOTKLk/mOHZPzhKet\nQ7UpUo3Fj9fp5xGX+wq/C78DgFqsQBUyhMdZR2beUZAlFOoAVS+BgoKCQr3IL80ReI5htWsQlkV4\nY8uXSRX+rIMqEbzrFnb7HkVo0SkUFRRDW1c+ToPKOgy/CllxWN41BefN5sZAS7Zxis3MB6OmfiNS\nsvqastseZzspna3+wQDbDYQ2dSQg0gMNqnRHRlEiEvM+wrVKT2WbpHZMnCGbKtcVnVqOlvgeI7t4\naAoKCgoK8Whi2hlv/95TthkSISxDUiN7axyfqXqpyz20hyO06BR2+x4FAMzutAo7n64R0UsyVNZh\nsDNww/ecFzIrRiYuOcW/FT72/ZRdAJRbME2WsA+DR2Xeh4GmmdKfy/7wRlJyyizq5tHaD736uaGR\nmz3WLg8CAAwa0VpsPe/fxOP+7Y/49L5se3380D2o72oDl0Y10d2rMUfu2qXXiOOaaP8z/iDsHSwJ\ncqeOhON7TBo+vWcdshzWexvsHarC3sESc5b05vQ9dSQcn94ncCbubLkGDWtiyv+Ijq9Haz/cerIM\nZ48/xqE90v+B2X10Ijzb+WOqzwHMWtgLH98nYMCwVlLrpaCgoKAgR2xOhLJNkBhBZxjuf4yBjqbK\nTpcJODd3lJtulS1f2dtmpdLG1qEb4EuW4j3kDxnXFT6mPAmI9ICNfiP8U/caxjkdU7Y5iBs7n/Pv\ndI+haGFVE59GzkLc2PnY3sGLI6MsatQ0w+mrs3A9+A3HWZA0bCfs/mfcCH6D+O+/OG0/4n/j1rV3\nOH0knCD38M4nglzU5yQeuSP77uPhnU+casqFBcUcOW6O7LuPl89ieOSCzjwnyC31HwAA6N7GD4f2\n3MOl2/Nh5yBdzKuGBh0rNwxGTHQK/hl/EPt23BbdiYKCgoJCLL5mvxZ4L7P4F7S4zkxWBDq5OGLK\n/iBlm0GKq3vl93dPZV0mDZomzHXsERDpAY/qc9HAhLU6mVOSjgPRw+S6Wj3N+RICIj14MhrdStrE\nyUwkDdcS/eBVg3ci6FVjKa78XAkGswR0GutbQzYcicksldouefAz7z3nGfQ0TNDecgIaVOmuZKuA\nYTfPEJyDvg710dehPibcCUJgV8UfzOZ2DEQ5CWSciBlzPDFjjuhKt2TlyDouZOXcO9dH6NP6hLYD\nJ4lngQTpMjTUFXivjbszdTaCgoKCQk6sdg3C8gjW30hNmhbsDOojs/g3fhcmcmSWN5AuqQoFeUKL\nTsHLeDQAVnjSrcKTInpIjso6DADg47AfAZEeCE3ajNAk2eVdZ4fKCKvDMK1OEHZ/7c8zYZeFwxCd\nFYaALN6xHY3agE7TxPYvZXH+9obN0d5yAo7HTiboKG/XsdhJPPrE4Xz8XPzMI2YhYY8x3uk4jLWq\nia1Ti65LqGWRX5qJ0OQtCE3eovTwJEG8SOXNkFER8XReiJCo9SLl0lOz8Ol1HNp2d4GGhnQbkp7O\nCzFkcicYGOti0IQOAICrJ59i9+rLGDK5E8bMltyRZJQyQJfSPgoKCgoK4dBAw9haq3H4+3KUMIsR\nk/Oec8/ZqBlG2vNPP68OXHsdydOWlVeI9Zfug6bCmWKvZR1VyDg0JlMls+/IxChnvwBELVOfvLoV\niYBID/SssQjOxp0I7aXMEuz40lPpDoP94Y2ooqOLo90GoZaJGda/eoBTUe95QpLkmQpRnVL1lZYy\npHIYigqK0bfRMh4nxdN5Ia59XiuV7pKSUtBoNIl0UKku1Rt1+hmiPmvqi7I/Z/L87Iyp5Q3vGl3k\npl8UqvQ3lt+hZ30dLYzt1ByTPVqKPb4inu2fNsvw75OylOTsQ9B8kNrlUekdBgrxuB8di061HZRt\nBofyzgIA/CmMV4IlvMSNnQ/7wxvR99pxTtumdqJDcxTBs3ufEbj+Blp1qYeLh8I4k+yZA3bi7+9s\nFOQVobSkFEFvVwNgTbr7+bRF8LHHOBm+BGZVjTjtdRvbIiczHwduzgEAlBSX4uOr71g0JpAwefd0\nXgiPAc3wKzkDn9/GI/idZDUR2LsIZ/fd5+i/HVQW73o76DW69W9KaL8b/AY0Go3T7um8EPWa2CIx\nLh1aWho4EbYYALBy6lG8ehiFxq2d0My9DvqNbsfRwWQyQftvCYith4KCLCVFJdDUpv4cUlBUZtSp\ncBubqFcxhOum3RrKbSzqN2QFYsqZyyqzo2KmY4uASA+0tBiOZuaD8bvwO87GsWyTtkaGrFDmAWdh\n3A1+gwVbh6K2iw0mLOjFaY/++JMzCfd0XggA2LzgHKdt8pLenFCjdbNOYejUzhg9ixi6pqmlgcat\nnXjGLO88SAJ3mNOY2d0xvd8O7AqeyZnAb110njCZ79a/KbYuOo8u/dwIuwNTl/VBn5FteGx5fi+S\nZ4eCrU/aHRCKyg3lLFBQiMeGyLHIKckgtE2vHQArXXvlGEQBAIj9IL9FWbX6Czv40Gk02bATb38m\n8b2fXViI5pt2Y9Sx80L1dNweCK+9wrP2iBqLLL32HkN9/+2YGxyColL+B5NFjfX0ewJab9mL1lv2\n4mVCIl+ZrIICvu3KYrRDIPQ1TfH89ynsiurHcRZG1tqDqXUuKtk61WbJjpFYPf04PJ0XoqRE+GH2\nB1ffwdN5Iecfm/DQj/AQY6X98JabPDokgduW2EjJfnb2+F2RiS0UFMnxv9C7+jQUF5UAAHpYlJ31\nYn99aHUQof3o2mD0spqCHhaTCO3XDj/E+JbUgXqKyg0TTCyL8OZxFgBgV7QvlkV4K8Eq2fHwUyzh\nuoffQUzYfUFJ1ojGw8cd3XVGICcjD+HBL/E3NVNuY6nFsorX3mOI/pWO53OnooqeLlpv2Ys/efmE\n1XRnP1bsGbuNfc2Nx67DiP+TQZBpYWeD4z6DxBqLDOXtOfcmAq5rdxD0kBmr0bp/0cjGGk/nTOGr\nFwD8bz3g+/WS7h3FslnWTK59VqnjS4L94Y0qsfNw/OEiAKIPJ8/06w+PAc142icu6IllEw4jMHQu\nqfHO7X/As3shCWQOUouiSRsnrD08Qaw+hfnF0DesWKn8KKTHf+w+XE3ajZUjd2Hliel8ZcYt749x\ny8syo41e3A+jF/cjyKyfFIiF+yfAa2wH9LCYhJu/98vVbgoKVWV5RH/Y6tfFRMd1PPdySjKwIXIs\nlkV4q2WlZ/+L93D28XtOaFLD2QHo2MARuYWFaLlwJ56vV71zSHMDp2BuIGt+2K5fc0HnF2SCWjgM\n0b/S8XLeVBjr6gIAns6ZAme/APzMyIRNFROU/ndw+93Cfzh9opb58jgN8X8yMMTNlXM91K0hzrwh\nZgYSNZY4zO7clvP1YDdXDOYam+xY7xf9Q+jD77nYjsGxF2+V7iRQSI+n80J4DW+N7Mw8aOuU/Yia\nWhhhWJs1KC1hQM+ANTn2GNAMns4L4dK8FtISM5CW9BchUevRb3Q77Ft7DbOH7oaGhgY2nWRl2fqV\nnIn46BQAwKfXcbCvYwUDI9bn7+a5F9i39hrBlrjoVMR/TQGDwUAtZ2vY17ESaHdI1Hp4Oi+Eu2dD\nfHn/A0fvL5Do+d8++YZ+jZehXmM7vHv6jeOEuLWrjd4NlqBVl/oIvxVBcE4GNF2BoVM74+Or79h0\nYrIg1RSVjFY9GgEAmnVuIJWex9feoGc11h9lKhsXRWWHn7MAAIaaVWCgaYLcEvmtcsuTkDdRaFPX\njtC2Y3wfAMKrQFcWVN5hWH/7EQBwJtVsGtewxpSzl3Ftsg/mBN0AAOhpiX4cbj0GOlpijyUOW+89\nxrhWTaGlocFzT9ZjqQvz9l2DvZUZmtWxQct6tmL1XX/mHhYO7Uxoc5sSgDd7ye3+kK30rGwErdL/\n/Z3N954geX7tVa1NUNXahOce+7rH4BaEdvva1WBfm3xKXWE7DGRtF6TD/+B4icalqLyc3HQNI+f3\nxsFVF+E1riNs61hLpGfJ4ckAs8wBoaCg4I+TYWO8z3iobDMkQkODBn1tbQBAvw1HsXeS4msyiYvf\nkG1YdnYW5/rNnQi4dXUV0kNyVN5hOPbiLQD+IUZsQiOjSela4dkZq0Luob2jHeh0Og4+fY1N/XqI\nNRZZopb5ggmgLpcu7jAismNtuhuGwCevpLZHVrhNCcCSEV0QFPYRJxcP57T3WnwQ1UwNcWjeEIJ8\nn2WH0bdNfYz3bIkRa08hMiEVADC9bxtCXx+PphjSsTGnzWf9aRSVlOLM0pEAgMGrj+FbUjrOPXgv\n0EEYvvYkTi0eAQBgMoERa0/i1JIRBBlR4Ubq4lRQUFCIJuTXPgDAhFUDAQD7n6zi3BMnrKhVd8pR\noKAgw/uMh3A2Us9Mdedmj0S31Qdw4M5zxKb+4dltUEWWnZ0FD+3huJl/Aj30RiL490G5jaXyDkMD\nK0t8SEoReobAwcIM0b/SReoa3qwRgj98xswL16CpoYEvy3wJiWnJjCUONBDPVHDXhSA7VuCTV7g2\nxQe1q5pz2qR1aDzteccMiSOvc0D7hujfriFndd/ddzceBUwDQFzx77/yKK74jeX0O7l4OM+OAPv6\n5ssoXHv2GV6t6vPdNTi33IfvDgM3pxaPQG5BEQx0tdFxzm483DqN9DMJQtn5tynkC/X9pVAU1GeN\nQlJU6bPj53oJyyK80c6iH7pbj+a0F5Tmwv/zSNBpGhhpv5S0PlV6tmpVDGGir4t/bzzBwNZlq/Q5\nBYXQLxeRQgZFPVto0Sl4aA9Hr4ldoG+sJ7dxVN5hOD9+GJz9AhDz+w8cLcz4ygRPGokG/ttRVFoK\nbT7hP2war9+J/OJigZN0MmNJSvmzB+KMxe0sHH/5TqZ2SQp31cOc/EK4TeF1OIJWjuZp4wd3X69W\n9dGpsaPEdrWftQtv9voiO6+Q5x6Zw8ySHnhOydwBK5OZItukoXzYzZsEWzSoHoZSRjb0tV04bW62\nCaR1iitPQSENLvMDYG6oj4fLBZ8z6bo2ECkZ2SLlxKHXmA4y0SOMlIxsWFVRjZTRFBTygp0FKfx3\nMMJ/B/PcZzBL+WZKUpdD0GFrpvK0Gerq4Nk61TvwDLAKtQ2a7cU57CykcJvUqLzDAADtHe3Rc89R\nrOvjgf6NGuBlQiKWXA1F6HTW6rUmnXUIjTsLEb9V+Gdzp6DRun957nE7EKLGIouzXwDW9vbAgMYN\nBNpDdqzLHyLRt2E9JGVmY83N+0LH3fXoGaa7txLLVllA9hxBefR1tBC+nfiD+OLLD4ntsK9mCgAI\n28Y/I0pFQ0dT9bdMKwO/c6/AwqCPTHQxmEWg07RloksdubN4Alzmq98Bw65rA/Fxo2rUwREPJg59\nbS9UggY6xtZ5pCB7Kj6hifPwM/cpAGC441Xoapgq2SLyqMvEnx/FjFwc/9YdgPq9d0GUdw7kmSWJ\nxvwvw5CKwdeo+Zdv4tbnaDSsYYU1Xt1gZ1aFcD8zvwCd/z0IZ8uqODVmMOFewt8MdNt5mGd3wfvA\nSehra+HkaKK8qLFEUcpkYvGVUNz8/BWGujq4PGkkLAz0+cqKGmvUsfP4nJIG305tMbJ5Y7462Iw/\nFYT3P1Pg7mSPrf178pWRJiSJezcgfPsMzjYdd7sw56F8uNH155FYdvgmAODSqjGwq2aKC48+YO2p\nuzy62GOw2zwXBSL1bzZMDHRxf8tUghwZB6bBiW3ILS7iXD8fMg3V9A0BABGJzeFa4yVnBZ61mh+O\n9JxTqF5lIc/KvCQ7DG8TasHV5jU06cQdpvK6mcxi0GhaYDJL8Dm5CxpUf8hXjl8b+zq74CmKShJg\nbjiE0/Y75zQS/ixQqR2GJ/EOaGPHyoMd+2c5HMxWK9ki+fItfT6czOV3buZhZCyWnguFrUUVnJw+\nlNPuMj8AHzf64snXeEw7HIw+Tetj9cBuhL6FxSXoujYQDCYTW0d6oaVTTcL9FRdu48rrSAT5jkQt\nSzOC7v4tXPA7Kxe7x/VD+1V7EbZiCudeDVNjBM/xQbtVe4eZh64AACAASURBVNG/eQMs6ccbZihs\nJ+JhZCxmHbuGiZ2bY1q31mK/k3H7LuBzYhrGuDfFlK4tOe1/cvIw+eAlpGbmYFGfjvBs7EzqfcSk\npmPHzce4+4lYcVUdnIdDX9uRkjPXqYO+dofkbE3lofx7H1cnXEmWVC4q+XuniRYRjlrsMLDZ2LcH\nNvbtIfC+iZ4uXs/nv7LcZ99xvu2jWzbB5ru8HxpRY4lCg0bDhr7dsaFvd5GyosbirhMhioPD5X+q\nn99knOwOQ3m5Xi3roVfLeoS2ge4NMdCdt7x5+b4h68TL1c9NgxPbUMpg4JLXSNgbm2JB+E20PLub\nE5JUXJqK3MLXqKLP+r6YGw5FVIoXShgZSMnaLfG43DBRyuMsAICVMTGVLo2mhS8pnigojgGDKX6B\nvjcJrGxUNGjA3HAIzAwGAAAsDIch4Y9kqU8lYdsCVl0O7/EdYCcgPSsNZSGFKdkn4GC2Gm8SO6Gg\nhFW9ku1M/Mz8FwkZAYS2J/EOnL7cbXSaLhjMAk4bPz6ljkBmwVO++qyNfFDLbCXn2tXqPCJSBqFB\ntRMw0W2Dt0ndUNWgL2xMZvDYwU9fi5pvoEmvgucJLihl5iE9l5XlraXtRyRm7kVS1gE0r/ma05/J\nLMbTBOf/dH0DQCeMYa7fHc5V9/A8U2hENGYfv4btPr3x+Gs8x0lg02P9IRSWlCBglBf+OXIFQS8+\ncu7f+xSDmUevYJtPb+QWFmH8/guEvq4LAuBgaY7d4/qi9+ajcLOvgWPTyhZdujRwxPTDl+EyPwBr\nBnvwjN1y2S7sHNsX0w4FIzolHUemkPsd57ogAEwmcGBif/xz5Ap2334m1sTcZX4ArKoYwae9G3aG\nPiE4DO6r92FCp+awrmKEeaduoIVTTZgb6ot8H2aG+lg5sBvuforhOEbqAINZTFq2j12gHC2hoKCQ\nlI/hXzC7M2thjX2WoVKHJMmC/cO8MerYeVx4+xEDm7DivRdeuYVL7z/L7JAzhXIpvwMhjNziIsJ5\nhf1dWDGXPS8fwY2+Y2Ck2xpfUwehiW0scgvfwM5sIxLpJrA0mgwtDQv5PMB/0GnEAmTcuwbsyT9Z\naDQtNKlJXPnMyLsOmCs25GPz7JO4G8TK9tWuZyOBDkMVPd7QiIKSeNSzPARTvY6ctt+5N3gcAPZ1\nUtYBQnsr288i7WtQ7SQA4EfGNh59H1OGENri/65HG7tYzm5Ik+q38TOTeLiN3ZefPna/lrYf8STe\nAS1tP3JkaphMQQ0T4qTzaYIzT9/y+vgx+/g1zqS2i4sTzj37gOUXbnN2Ero3rAPfnqwVt48bfQlh\nQDtuPgYAdHVxAgD0bVqfc+/y689gMoHLc3z49gWADvVYNoWtmAJTAz0sPRfKuZf4N4tjF7++wmAy\ny1buX/n/I1bf8k7LtG7E0E3ue0NaN0KTRTvwdh1rh1DY+zA10OP7tapzJLoT4bqSrbaqDA3NRogW\nqgR8ybiEJ2lbAMjvs2hv2BFxOQ8AVJz3Prvzao6jAABek7rKbaxK4zC0sLPBFu+emHPpBpZcu81p\nvz6lYtY7kBeSnlVQBLKwLSUvBwBgb74DEYnNAQBRqf3gZpuAGlWW4G2CA5goAQC42SYgOTMAv7KP\ngMHMQ2b+HThbXSG0ZRc+Q21L/t6+m20cwQEQFBqkSa+Ctz8cYKDtJtJ+DboRwcGo8V/4FADUs7oJ\nPe360Na0xZsEWxjq8FaIlhdsZ0EUGflhPG1t7GJRVJpGmCwbaNfjkXsS74DWdtFgMHkPvJOFRuP9\nlaijSQzF0aAbiq0vNecc9DTtYKzbUkQP2VJ+Qn3l9WeOw8B2FvgRPMcHLvMD4DI/ANM9WmNq17LJ\n9fb/Js9kJuv8JtA6JOrlCEOe5xsCboTjxrsv+JWdi5JSBqdd2PuQNb9TMnE+8CHCb0bgb3oOathZ\noK2HC8bMFr1bLSnDHa+JFqKQGZRzxgvbWZAnnauvkfsYyubJ1VeYuXOcXHRXGocBALxcnOHl4ixa\nkKJSsvhJKPZ27gcA0NKoxpl0c0/km9gSV7WtTXxhbeIrso0/dL5OQvlzDw1tPvDIlLeLTSObT4Rr\nS6OJsDSaSGirb32HhG3KgYlSztdWRqM4X2trWBJ2FH7lBqO2xVZC3yp67qBBAwkZAZzwIGmI+7sW\n9qaL8Ss3CLUtNkulK/7verSo+YanncxuFXeYlrhhqIcnkw9nLM/Hjb6I/52BXhsPY1foU84KfOl/\nE2mJdUt5bE6aZxIEg8lEwwXbsHpgN9xezAp1LO+YCHofssKr/mLOu+Xm5/dfOLvvPs7uYyW8qG5n\njoOh82Q6tq6GeGf0KCgoVIPek7tibP3ZAICn117jT3KG3MaqVA4DBQWbuLHzeYq0VTcwxto2Hkqy\niAIAwSlwMFtFSo5Nfcsj/92LESonDG5Hw950MUEH+3+2DLdu7n782rmdBe77zW1eiLSptV1ZYUr2\ns3HrEPaMzR1tROoXhp1FFZ6woeA5Pmi/aq/EugtLSqSySdJx6TQaXsT8QAvHmjz3mi7+F09WTYWx\nni4AYO+d53x18Hsf3DCYTNBp4jl1A5uvQm5WPmn5pPh0eDovRP+x7TFxYS+xxqKgUEXySkTX0aLg\nzz//EncT5JkliXIYKCotktZcoBCPtMS/yjahUnJ06mC4zA/AaPemMNLVwc7QJ6RXxV3mB6Bu9aqY\n6+WO2xHfCPdMDfSgqUGH64IA+Hq2R1jUd7yM+Ulat4OlGVzmB2DPOG9MPXQJrWvzTw3MbyNCU4MO\nl/kBmN2zPRL/ZuHs0/ekx/2wYRYnS9PAVq44eP8lnq1mJckIGOWFNiv24Nai8dh87RGefyOmdhb2\nPrhpuGAbDk4aiA8/kjGxUwuRNg1ougJ5OZKF0AUdDqMcBooKwZUE+YTQUMgWtUqrSiEbpK30TEEh\nDuU/b35HJ6NZh7pKsoaCQjUozC9Gv8bLpNZTvqCjKEqYBYjPCcPD5LIdPFnF1JcyCxGaOBfJeW/5\n3nc1G4HmFryFscTh5s9ZSMrjfybKUMsKHaxWoJqeK9/7ZHmWth2fM87zvadF10cn61WwMRA/pa8i\neJC8ErHZvGGnLavORAPTwXx6iOZn7nOEJs7he0+Dpg2f2ndAA10i3fzqgKjjGY/v2fdwP3k5T7s0\n753BLMXFuOHILk4ktEtYF0XqtKqUw6DiFBeVYMPM43h8k38cOwA071QPM9cOhoU1uThUMg7D51ff\nMWfgDr79m7rXxZpjsqnACrBWoCd3W4+CvCK+97W0NTF36wi4ewmvQSErmAwmejnOAb+fDQvrKjj2\neDlodMl/9h5de4uA+WeEPu+R8GUwszSWeAxRvHv8FYtG8KbiZEOj0zBsRjeMmu0p1Thf3sbD13sb\noU2RDsOftCyMaLGC7z2H+jWw68ZchdgBAIFrr+Difv6FF6eu6o8+o4UXz6KoWHg6L5SJHtcWDth4\nfJLA+2RrLQiCzOTtcepGRGVeIa2zodlINLMQLwXt0ehOKBUjFawkk6pTMV4oKCUfA26l1xg9a+4U\nKkPm/Ys7QebW6W13FKY6jsgtScPZWNFp1cUZ6/i3bihmkA+XI6M7LGUdorOuk9Yp6TjyeO/ceuX5\n3gHg+LfuKGbkim0fANQ29kR7qyXlmymHoSJSWsKAlxN/b54MonYLhDkMA1wWIS+HfK5/SXcmBjVa\ngpzMPIn6SrMbwv3s5fW8Df+KxSMFT6KlsYPfO5fHOMK4cjQMe1YEyc2OnrVm83WypEHSZ+/tNBcl\nJaWiBf9jyZ4xaOfZSKKxyn9vy9sszvd+1GxPDJ9JnaOpDMjKYQCE7zLI22FggoHDX93F1mut7wZP\nG/6LUuWR9BnITtIyiuIQFDdSLvrl7TBo0fXQ1/YwLsQNFdJD/PEkfedj6zwSutsg7ecRUA2HQZL3\n3rPmTljpiV745Ge7mY4TdDSMkZzHmzyjPPJyGKgzDCrG+yfRWDhcNoXByGJsZgBAskmtp70vrnzd\nBC1tch+liOcxmD9E+IoMmTGvx2wBXUPSLVAWP2LSUNPREgAwq28Aot7LvuKxNI4Ctw5pnQZp7fAc\nLnr7XVUWHyR5Vv+pR6ChSce1b7JN7SeuLZXJWZjdLwBJcb9x5p2/RP09a/5P6P2QH9vF1jmxoz9+\nxqTJVCc//GeelIkeMrSy5P8ZfJYWIFKGDOUnh45G3dDBmndXr/yKKZmJD8A7ebLQrYs+tryF5LKK\nfyLkx0zklrC+f91rkPtZzi/5w9dZMNOpjX52hwltH/6cxKvfrEUlLboBKf3ESSkTqfkfcf2HdGFZ\n3BQz8gmT1mGOV6CnUVYQNK8kHWdi+xL6HP/mgVFOoRBGU4vJeP17H+d6UK1zMNKqTpDJLk7G+e/E\nrGWHv7oLnYjz+6xxfxYFyYhLeRtS8yPk+t5bVJ0BF1Oi81D+s3vjxwyRTkr571X576cg3YoI46pY\nDkPJVzB+e0mlgm71VUbGiI8sJpfaulpi96nnZi9wbId61VHFwgifX38XGELTp8480hNa15aOQu9r\naWvCubEdtHU08SYsSqBcL8c5Uk+igwIf4H/rBmPbgrNiOwsz/MmldgyJCxD6fdXS1kTDVk4oLCjC\nxxeCs91I6jQU5BXBu7701ZxnrpUsBlORpCX+xei2qwXer+dmDwNjPSREp/A9iF1awpCJc8ZGFj/P\nFZWAOacQ+ToOAGviL6uJuLoQfitCYWPVrzKAbzv3JE2QDFnY4RnCGOV0CwBxonMsuit8apNP89zM\nYqrAglvGWjYY4iD+Durp2D6E63F1wiBoMbah2QgpC37RpD5fIQhL3Qbwst3H066vaY5xdcJxMW4Y\nMotYh/mLGaJ39xuZjUIjs5EQtjBtpGWNcXXCeSavpcxiaND4z0X4fdbKOwzSfh75oej3DoDnvZOB\nO2OUMCeg/Hv/kfsENQ3akB5HEiqMw8DMWgFm3mllmyEx5/fcFXhv8NQuGLtAsCN0POAmTm1n/TK+\n/GWjQDlBPL9DzN0/aGoXjBMw3t/f2RjejPdgz8F1VzF+UW9S451754/Bjcu2y3ZenwvHBjUEyt8P\nfo2Ns07wtEs7uQu79hYTFvXGrbPPOG1WNc1xOGypwD5LRu3Fm7Ao9BpB/gdTV1+b4Gzd+L4VNCGp\nFwU976sHkWjWkbdgmTCEOQvC7CgpLsXcgTvEcqQEfS8UdeiZn7PQ26cdpq0W/MeH36R+wdBd2HBm\nulS2lNc7YUlfDJjYka9sWtJfjG4j2NGpiEQ8jxEtJIIl+8bh08tYPL35Aak//8jAKmDutpF4cPkN\nPr2IRfQH2e84ygsmkyn0d4q8EeUsCKKEST78FZB9dd6YrFuE67omfSGDyA2lIGjSymaA/WnCBDMx\n9zlqGIgqJEnuXfjUvoNj0WUVhp+nbUObarKtFaKqyPK9f/x7Rqyx21jO4RS8u504X+67DBXHYVBj\nZwEADm3gX2mTzIR4lG8PjPLtIRM7/I5MEjopNbUw4rtqfmHfPdIOg1EVfdSoVRWB9xeTku/Uryk6\n9Wsq8xXb3OwCDGxYZsPRJ8thWd1UaB//4+Id1AOAS5834MqRMPQZQ+5Qa6d+TfHxRSxunHpCaF82\nZr9YDtLeVZf4tp975w+jKvpC+2pqaWDbZdb7zvor2cErRSJp5q+QuAAMdF2E3OyyicuHZ4LTZpKh\n/HsXZYdldVOVzVLGDvuR9Q7AxOX9sHo8K6xEz1BHIh3tejZCu56NMHmFN6dNVJiSKJwb28G5MTHN\nq7Q6FcHP2F+c8MqKTFLeK1TXl12F+ocpfoTryjLJBYBPGedIOAzk0KTpEq7jc8PQBpXnXYqDsPce\nmcH/b7Yg6lbxVkiFbDYVwmFgpNQhXCszrEgS+E12lu8fh9Ye8tlCE8TVb5uhqakhWhDA0OldcWaX\n5BWDyToL3Ghpa6K4SLqiT4KQ94SNrLPA5p+1g3D7wguJn5fJZOLyYd4MIZI8p7EpuVhdVeJy1CbS\nshci1vH8DEqze8V+7536umH+9lEipCsnrT1cK10YkjzJFxAuqooYaVkjuzhZor43f87CCMcQ6GgY\nydgqYKTTTZnrVBTDHcXPOiQo9a0syC+RzY6fqiPr915YmimNOXJHulOjKoi6OQv80NTSULizAIC0\nswAAo+fxFgy6eky+22Hn30t2OFIUg6d2kYteaZHmeb2ceNOFSuKkqQP96vGGXWnriLcWUs/NXkbW\nlEE5CxSKwsLKRNkmiIF404521RYRrk/GeMok005i3kvCtTbdUGqdykJXQ/zvfylTfZxMVUXW772m\nYVuxdKUVfBR7fGmoEDsM6gy/Vfqr0ZsVbocsJs2XDz9Cbx/pf5ELQkdPWy56hZ0PUSbSPC+jlEG4\n1tXXRo1aVaU1SSUpzCf+ApZkZ2Br0P9kGvKmqiFG4rB19illm0BBErOqsl9xl4RSZhGuJkzCn0Lp\nwvq4qWPSCz9znyAu5yGhndtpGOoQDH1NC7H0vk8/KhP7KgPCCrdRyI4OVst4ztUI41pCWYi0s0kf\nIZKygXIYlMzRTdIVMJEVspg0/05R7e00frTrKVnufXXjwod1yjZBLkS+iZOb7gdX3qBjHze56Vd1\nbp9/rmwTKiyamhpi1QlRdUqZhTgaLb+d2s7VWbutgnYWzsT2AwAMdbgMfU1zUjr/Fn2XjXEVmDfp\ngXiXfkTZZlRaDn1tJ/Ag87ly6WzbVpsvd3soh0HFIFutWRUpv9KrDizZPUbZJsgcfoeUNTQrXPQh\nAGDe4H/lpvv83ntq4TD8/Z2N4U0EZ/YCADNLY5x87SdUJuN3NpaM2IPYz4k896SteSCsv2srJ2w8\n/4/Q/hWNow8WYkQ7+YRYKprrP6YiNZ83Tay1vhvaVVsAIy1iBjxpwonYk6fY7Dt4kLyS5z47h/3o\n2vcFpvVkw6BCcoQi6PvUwHQImlpM5DnoLIswMQredKlk3msPm23yNIkD5TCoGLLKdqTOpPxIR/zX\nFHz/kow/qZlITkjn/F8RifmUiB8xqUj58QcpCelIT81Ecvxv/EnLkkjfzTPPRAtVEEpLGDxtsgot\nklWqTnlCNoPPn7QsofUO1CETUEVCliFERibCM57Jk4yiOB5nYUzth6DTyJ+HkwQHo65wMOoqcGfj\naHQnDHe8LjTG3FDLGn8LBde+qcwcie5IuNamG6r1oXB1g19tC0H4ON2BJl1XtKAMoBwGFaNtj4bK\nNkGhZP3JxaSu65H5J0fZpiiErD+5GOImfDVYWp4osChURSY3K1/ZJghF0CRfW1cLRQXFCrZGODPW\nDsanl7F4FhqB/NxCZZujEljbmstkEeTcC966OIqifIVkRVSb5UaDpvPfmEwc+krMRHcqppdQe+wM\nO1AOgwAYzLLsfMZaNhhYS7z6ABTS4+N0B8e+dRV4v121BahjQi6VvayoEA4D3eorJ7Uq889o0MzU\n9zCTgbEe33bvDccwpG0jDG3XCInpmahhboJLzz9h+7VwPPCbjHlHr2PTaN7MRaqKl9McvqvDFRVF\nVv39GZOqsLEoVANRIUF/f2XBtKqxWP25HRJpU6D2GtUWvUYRM4BU9l2NQ7fnwdN5oVQ6rn5UnbAm\neaQ6JQ8N4+qE41laAD5nXCTVw818PN6lH+ZcM8EAreIljhSbe0nEBS3KWVA8x751RQmDVRuoa/V1\nsDUULy27vKgwPx00E9YvTmbRUzDSKl4sXUxKOoa2Yx3QrWHO2mZdcSYUD/wmAwA2je6FwZt5qwOr\nIp72vmI5C9Z2FnBr7wzv8R3kaJV8yM3KF8tZoGvQYW1ngdYerhI/b1GhfGpVUKgvwpwFCuWx5fRU\niftaVjeFppZ8Q3/EoZHZaGWbgFaWki/MHI/2kKEl6svPXPFDWvNKfsnBksoL21kAoDLOAqAmOwyM\nPyOF3qfRjAFNR9BMNoOZORdgpBGLuWnWBujCK/iyoZspd9JdWsIQ64DqnptPOV93cnGUh0kyRdDk\n+dLnDdDVF51G9NLBhyJlVAnuStLcyPN5rWzN8eNb5d1lqAgpTSkqB/Xd7BAStV7snYaQqPVyskhy\nyIT3lDJVK1SuodlIfPjD+ptfwizAt6ybcDKu3OcIDbWskFEUJ1afM7HeooUoxMbWULUWv9XCYUDR\nC6G3mQBQKKTqcEm0TM2RJ68eRqJllwak5af2aC1Ha2QLP2ehqnUVHHu6QgnWyB9lPW9T97qV2mGo\njOxbdQmTV1B/tNWVkKj1rGxXbYWHGG04PgkNWzgoyCrxiM66gfZWwotDHo3uJJbOn7nPYWPQkrT8\nn8IYsfQ3s5jCcRgA4FHKmkrvMDQyH42HyatIy6fmv5ejNZWbhJxwJOQ+hq2BeAXd5IV6OAyViLXT\nj+Lyl42kZD8E+KL9kj3IzCvgXKsbFdVZ4EfdJnYIuDRL7uOMntsTwYfUaydGUvQMdCrtIdpqNmac\nTE7BgQ8QHPgANDoNV75tUalQFQpymFoYqeTOgTA0abooYZaFTwTHj0U/u8M8cveTl+N79j0ArIPK\npUxyP7PcxcIMtazRrfoGmOrwOkwMZglPZh+yeNr8i5CfZWl92dlp7A07cOo/sEkr+IhnadvxuyAS\ngOIPeSsCR6NuBIfh0Nd28LY7xve9yyqV6hCHIJyN7U/Q61P7Dk/qVgDIKv4JYy0bmYyrDtxJXEBK\nTlRWMFlAOQwqhqDsJoKcgTB/yWNglU3/CR2VbYLcCPS/zNOmCGcBAKlQp4rCzHWDsWHmcWWboRSO\nPF2BJSP24M2jL5w2JoOJ3g6zAQCL94xFe6/GyjKPohLgU/sOYdL4pzBa5CRydO27Ek00c4qTcSne\nh7Q82cm8tX4TdLBahocpxDolcTkPpZ4Qk+0vSK6PbSAsdOtKZYMkdLJehfvJZYt5ot77UIdgfPhz\nnPSB8/IYaFrytB2LFpwhSNT3Vl3fOxtx0qqyORXTC1p0A4xyIl8pWlzU4tAz3eqrwv4pmv+tH6Lw\nMVWFiUv7iiXvN/mQnCyRPTdOPRUtJAJZPq8iszSJoqRIdoey+RVWG9Wa/Ha6uuN/cipCfmzHoKm8\nuejXTj0Mz5r/Qy8V+t5TiEMp8pNrIT+5lrINEQrZiXnbavPFXpGXJIZbm24o9jiOxt0xrk44lSXp\nP2oZdUFTi0mkZMfVCYe+poVUB87ZeihYToykjmoxI5eQ+UvWUDsMSqbH0FbYvvAsoW1Gr83YeX2u\nkixSXdSpvoCGpvQhIbJ+XiaDCRqdJlOdkvDt00+06uYiM33aOpqEzFC/kzNkpltdGLe4D8Yt7oOQ\nk0+wo9zvE0YpQ2jRNgrVpCClCfSsvyvbDFKMqxOO1PwPuP5jGs89K73G6FlzJ6HNWMsGWcU/Rert\nWp0VopVW8AmPkv2E9mlvtQS1jT3FtJzI2DqPAAB3khYiIYf/BFZf0xydq/vDUld2v8NUkUZmPmhk\n5oMzsf2QV/Kb536LqjPgYjpUpmOOqxOOUmaxwLMuRlrV0d/+pEzHVBUYzGIc4XpuXQ0TDHe8Tqov\nt4PxJv0gGpuPlbl9AOUwqCQxnxKRk5kHQyVW8FQE759+Q6PWTso2Qy40au2Exzc/SNz/0PqrUo1/\nJHwZxrQjbrH3dJitEhmETm67hZGzZHew8HLUJp4dFE97X5V4VkXjOaINPEe0QXpKJkY2Jxb0opwG\n9aHwz0gwmdmc3QW241CadxZFWauhqecNLZM15fr4AGBCx4xciJ6sV3Sr6TUkrVPc3P6Wug0UWg+A\n7ahIi7xWzSXVK0m/oQ7BctVfHg2altR65LlbIYluMn24nYUa+s3R3Yb83y9JQpgkgdp/UwGCPvH+\nchrUaAkGN14itq7c7ALRQirCwmG7SMnFfk5UqZAaMizdy+vhz+5PbrIW+zkR5/fek2r8ajZmsKpp\nztOujPfo2KCGwscEJH/W+UN2ihZSccytTBDyYzsuRW0itN85LzzjHIVqoPNfem896++EXQYN/SHQ\ns/oETaM5KEhtymkv/DMKOmbHSDsLFBWX5RHH0PHuXM4/RcBgMuE9YS+mLyU6dYs38J7loxCNOM6C\nIqkQDgMjpQ6x7oIUMPMvgvGrPRhpbcDM3iITnaLQM9CBvbM1T3t2Rh487X3x6kGk0P6/kjMwsfM6\neNr7YqDrInmZKRfuBr0Sev/6ySeY3nOzgqyRL5Fv4kQ+74gWK2T2vIfDlvJt97T3hZfTHL73uAm7\n/g6e9r5SOxn8wutk7bgI2k3wtPfF01DRoV27l1/kPGvEc/FSM6oyuvraMK9WljnjwBryq4UUqgej\n5CsKf3ujIK0lmIw/nPaK6ig4bQzA5kePJe4fmfYLThuVN/lSxtirXX3woIti/2a6D9iCS4FTsGsN\nMUSJJoMI2PYD5PcsfzPz5Ka7IlKhQpKYeadA0x8uWd/cw2BmryvXtg/M3H0AIPcD0XtuzUffuvP5\nZklaNma/XMdWFNe+beGZqG6efRKbZ5OLSbz8ZSP2+wXj+skn8jBP5sjiefvWnS+VDSFxAXwn56Ul\nDKXv2pAZX5ywopC4APSsNRtMJpPQvnqS+hyWlweOLjZIT80EABibGijZGgpJKUh1g47lQ+hYXAKY\nxciX0SKZqlJQUoKouf+DBl3ydc16llVlaBEFP0b+j3XItl1/1sQ+PGgu4Zofu489RFDIO9w5/T9O\n2/6TYTh9+RV6dnbBvCndAAAbdt8Ck8mrWxDnrr1G22aOGO17FDPHdkIfj4YAgC377yDk/ieM6t8S\nowe14ui+eqdsMYlb92jfI8jIysflg+qbhVIeVIgdBjbMvFOsL0q+gPHLA4zURmDmkAt7Ke8s8Nz/\nO05a80Ry+ctGtPNsJPdxlIWGJh3D/9ddor5N2tWBtq4WZvgPkrFV8kOcit3lCfq0Htq6WnCoV11q\nO1Qhlv96jGJ2625836qQcZTN6gmBpGVf3P3E+XrutpESjffwyhuJ+lHIDk2DcShMbQtG0RMUpJEv\nZqaOXPz4Cde/RCHoUyQufiz7/C4MCcWgE2cw5/pNbfQF4gAAIABJREFUtNl9gNPutDEAa+4+QPN/\n9xLaxaHN7v0Yez4IY88HwWljANjLDmPOBWHMuSD4nL2IuddvEsYccy4Izpu28bRvfvRY4O7C95wU\ndLu/ANNe/YvcEt4Q4qkvd8DzwRJ8zIzj2//Nn2j0C1uJfmEr8T5DdHVteXNiOyv8NjxoLmHSLWhy\n7zFiB6b5dCA4C6P+dwSu9Wrg/jlfTBhWVqRswbTufHULIijkHVLSsnDn9P/Qtrkjp/2fsR1x5/T/\n8PJDvEjd7fpvxtGAMbh8cKpQp0eeMMEQS14R5xeACrbDgJKvPKFJzJztYOawYscF7RJw96FptwSN\ns73LACOFlYuXWRgOWukPQKOm7O3mYsmeMQCAOQN34PMr8TNkjJgl2YRcUYzy7YFRvj3EWt1WhQmv\npITEBSA3Kx8DGwqvgMpGV18blz5v4FzvCpknk52AkLgAMBlM9PwvR7+ioWvQBe52yBr250WSsaxs\nzXH4Ef9QLlXi6a0IeNYs+4M7YFIndB/WGjWdqgEAQs8+w/YFZ8EoJf7hcW5sR3qMGwnb0NOWVTtk\n/fSjWD/9KOZuG4kuA5qDyWTiw5NovH4UhUv77+MqSUctOyMPcV+S8P1LMqftd3IGXtz9hPrNakmU\n6KG0hIH4qGR8fEmcPL24+wn2ztawtDETWycAxH5KxPcvSYS2+8GvYe9sjVoycORFUT5DkqbhDGga\nzgAA6Far2A7cAJcGAIBSBoOww3Ah4hO+zWf9XLMn5POu38KKrp0wyq0xlnbpKHEYUFpOLp5Mm8TR\nzY6mCY+LJ4y5uRcrYcPyrp3g49aY0D7mXBBHdq57W4It7PMEA2u2x+1OG3Ai7i606GVTsDHPNiMu\nNwVX3FfDWEsf/cJWIqMohxBe1P3+ItQ3sUNw+5UEnYoOQZKGmyf+4WkL3DQSXYZuw9oFfeHesrbE\nupNSMtC0oS0AwJxrN/XZm+/Yceg+fv3JIaVHWY4Cm8Nf3aFF18Mop9sCZYoYOTgV0xsMJjEqRZ4H\nviuWwyACRkodkaFFNEIsKB30ap/ASGX98mL86qKwWg1bLswEAEQ8j8GmWSfwS0iqyBGzuouVdUZW\nE3Bp9ITEBSA/txD9Gyzke7+qdRWBVaClHVfRGBjrISQuAI+uvcW6Gcf4ynTs44YFO0bxvScrm2l0\nGkfXuT13cXjDNYGyljVM8Y//IDTrWE8mY7Nhjz+y5UpOmEx57OpYYex8L7Ts2kAmYx1YcxlBgQ8E\nyrm0cMSmczOkHkeZXNx/Hxf33xcqI26GJBqfAOTNs05g86wTpHWEX38H/ynC84Inx//GCgFhl4Js\n5naWBCEPnRv/4f/zS2WfUhzlHYIrkV9w6dNnrLoj/PMvCiMdHSy5dQd0Gg0murwVhsvTyYG3PsbT\n+AShfW51WgcduhYAYKQ9sXZKXG4Krnbwg5GmHgAguP1KdLw7F53vzcO9zps4/bl50GWzwg42ywo6\nn98rOtqaCA+ai93HHmLxhsukdhP4oa/HW7S0Xf/NOLF9LC7sI1dXAhAd+iQPxtR+iCPRHTjXxYx8\nsXcOutXYKGuzCFRIh4FmshE0vX6si+JIMNLLCoQx/04GzXQf/37arfk0aoGm1wfM/CvyMFUkri0d\nBU6c1R09Ax2VmGwpCnevJnD3aqJsMwAAg6d2wWA+xb4UxYnnKxU21sSlfcUuEqjqhPzYjll9tiLq\nbbxI2fMf10mcojnkx3b8+JaKSZ3WStSfQnk0DVmCk22no65xdTQNYWXca2HuiD0txnHus3nt6S9Q\nT6tby1HMKCW0dbVywYYmw3hkRz7ZjcjMRJE6uccXJVce9go+G//uXXH18xccHTJALD3lcathDf/u\nrOrCfh6ifzcuvXWHZ8yJLZsJ7cN2FgTBdhbYNDd3xsv0KJG2qDub9t7GvCndMM2nA04Fv5S5fvv/\nMga267+Z4Aw0a8h/x5XBZIJOo+HNxwS4udjK3B5+0GkaGFcnHCE/ZyI5T7wdRBNtOwxQQH2KCucw\n8OwAaNUD3aosVIlZeB8CD+5rt+LbTDPZrDSHgYJCXemh74ObefxXZEXhN2wHBs3uhfzsAjTpLHin\nobveKNzKl1+GmF2+RzE9YLTc9EvDtiuKCS+r6VRN4hX0dr0aC+zb+cYu3Os5XSK94toz4+kF7Gw9\nkHNd+/waRA8ihp5VxF2CFR8u4Ft2Kuf6RTorAxi3swAAfR5uwZUOxAQN5WW4uZPyEU1DlvBM9k+0\nmSa0n7RMadUCrgH/ooNDLdyMisa3+b4Y6NoAC0NCMez0OWjRNfAkPoHjVLxJZIWUPYj9jtoW5qhh\nbCxQd4Nq1Ti7F+617HFokDcAoF+Dehh99iJoNBo6Ozpw5B/HJ2D02Yt4lvCD0z7XvR2cNgZgaqsW\n2PNM/BTGonYL9n27jtPx0u2kKAp2WA+ZA8ujBrTEkGmByC8oxrUjxOJ/4UFz4T1hL6yrmWC3P6+T\nKorwoLkYMGk/6jha8tiwbeUgeE/YCyaA4MApHPk5qy/gdUQCls/qJfZ40uJpswMA8C79MN6kHxQo\nZ6rjiPbVFsNC11lRpoFWPqOIiiCWUZwzCBq2oFe9w18hVxak8k4Fuz/NeA1o+oOFjqGokCQKCnVH\nmsk82b6VwWFIT7KBeXXRVXHVdTw2VxI+oo+tfKrnlncYKgPsibt3zeZY6tKPc93Xpiku/3yN157+\n8Iu4hOCfrFTP5Sf/37JTMSR8B5qY2mNvy3HQpLGq13vcW4/0wmwAwNQ6XTHBkViVlz3OyFpt4Vu3\nJ1/b7qR8xIK3p/mOqyycNgZwHI3gT5HY//wlbozzkZn+jnfnCj1rIOo+W+ZIq7mwN7AS2U8dzzdQ\nyBWpk9xWqCxJgpwFAKAZkCiVLYukwRQUFYTueqPw+k4EehmPwT/tWGFxhflFAIDczDxMb8VaoR1g\nNZnTp6SoRKC+/lxyd06Gc8aY0HiBSFt2+R4l2CXOMwDA3nknCNdL+23m0cVXL42G/QtP45hfEOkx\ny5OeZCNxXwBKmbyLS+3zawj/r357i3Odlp+N2ufXcO4BQP2L6zDj6QVC/znPg3nkmgRv4mmrfX4N\nBtw9xNNeHgaTyZGx1itbWW5zdRtPP26dPg9Zn5V7SdGc/nklRRxZ16D1hLHZX/N7xtrn16DRpY2E\ncfi9D3my1IUVnsue2LOdBQBY5uotsJ+TUTW89vRHYKuJHGcBAEI7L4RXDVZo5Z6vvH9z2bpPfBdc\nP4HtLNzvqpoJBjY/CseIJorPWBifmypShttZCPohvwOuFBTlqXAhSRQUFLKjaVdXdB/dgZMiVkdP\nG1sm7cfDi89RmMeaRG2+vZSz0q+pLfhXSm5mHmdSrqGpga4jWAe6At9tENhHWpp1c8WPqCRM2TSS\n8zwAsCaYtfrWqEN9of1tnKzwNy0LPsv6y83GisSM+u2x78sTHP/2EsubsDK23UuO5gn/+TxgEcFh\niB60lG+Y0KH2w9DE3Ab5pcWY9uQ8drdhpVW+2EV0mmvnC/4cfbXPr8GSxh4AgCe9Z/GdrJfXOfnx\nWUL/6EFLcejrc0x0boOZDdwJtvNjffPe6GPrguD4CJyJfYOhDm4C34ci8K7ZDIExsglnWdVwIK4l\nvpVaj7GWnmghBfFoygS03LkPxro6ODtiiNDwJXnQwrwuRj/bhIX1h6CHdXO8z4jFxs/n0M3KDWMc\nPDhyoSmv4WHVFKkFGdjxlbcQY0xOMmJzyrKQXU96jloGVqhjbENw/GRJ/SWsUK7P/sqt7UMhXyqU\nw8AsegyadlvRghQUFKThrifBdgzm7J/EmfzXcq2JW/nH8TvpLxZ5bcCBN+sF6pI0fCg/p1Cifv5X\n5mO4w0ycit2BzPRsrL1KLISX8CVRaP+f0cm4cfA+fJb1B11DvA1Z7kq83F/T6GVpPtm7D3pG/0Np\nSSyMTPfw6OEXIiSsLT3JBjSaEXQNxyM/exs0tZugtCQW+kYLoWswCulJNqBrWELPcDaAYuRmLuOr\ny9B0BwpyAlFS/EHkLkdAK2+ciX2D/zXowDMZZ0+UJYEGGt6ls75Hk5zbSKzHo0ZdsfvUManKGft8\nZ9YO9eaIe/g8YBGp/uzwqn52rnANWs95D9K8D2mw0quisLGs9aogOT8Dnvc3IKQTcQeRHbK02EW1\nEhFUNzbC8xmTRQtKiKjQoI2NJwAA1n46jYAvQahnYosNjSfARt+CoON/b/Zge9QlTHD05KvT0dAa\njobW6GalnM8ZRcWlQoUkMf8IDjtipHE5EiUCsg6UCE+JRkFBASTFpBLCd3oY+ODDo0gETDmA9t4t\nCLKRL77hwflnAIAlJ2YgcPEZhF16gR9RxPz2orh9IgxRr2LECkdik578FwAwrUXZYczueqOQEJmI\nvwJSu3JzPesIPA3FP8dAo5txnAP219zOAhsz66/QN5rH11mQFGOLs9A3Yu2imFhchZnVB+RnlxXP\n09RuAV2DkdA1GAsa3YwnbMq8+k/o6PWHSdUbpMbzqtkAfv+FIWnRNdDMQvx6NVp03tXPBynf0Ni8\nBuefpIQmfhG7z9fMXzxjz2zgjt2R5MJAguI+cP6f31B5Gcmk5Wz8MzQNWcLzTxjXOs4DAKQVZAmU\nGVCzhcB7lZnFDYbhVqd12OY2leAssNnuNhXXO6yBtw21OKpqrLl6T9kmyJWKscNA0wOY+QAAxi8P\n0KuGEm4zcw8DjF+ca8bv3qxuBpPAzN3PJbcPNCNipgiKikvHHmWhMA9uLuC0sb+u7LB3A7gP/bLb\nuHcKbuayMiE1dCfWbGDL1GvhBABwH9AS7gNa8pURNLawcYX15ydzMmaHUH38dLGfXZ4Hq2k0yVKe\nCkNTq2G5Fg0wGL85V0amezlfV6l6E39TBU/e6PSqpMYs/S+BRpjXTFTRFhxqUv48Ajs85/OAReh7\nOxAMMHG120QAwNS6bdH22nbUNq6KI+7DSdnBJnrQUkwMP4PPGak43Yn1fSwsLYFL0HqesYX1/5KR\nhpMdR8HW0BRT6rZFSn4W6l1ci4H2jeHXtOxQb9/bgUjMy8Srvqy/Ie2q1ULDoA0I6T4ZNQwUt7ov\nKzrdWYOs4nzOtTZdE22r1kFdk+qw0TfHkndnhfbXpmuiiFGC+W9PYWMT8b53FBTqxpA9pxHxMwVL\ne3dWtilyo0I4DPRq78syJZXG8VR7JspGgJHKimPmdhaEwfhVcT8AlRVux4DbcaCgqHzIJlPel4Gs\naubmOmUVVvlNyIVN0i93m0C41tHQxGMvYkE1ceL/D7QbyqNPHJvK9wcAKz1jRA7grdxe3nZLPSN8\n6E9cfFDG2QVJOBL7kOMsnGn3D2obWfHIiHIYnnZfhaYhS3A35ROnbcoLVprIntUby9BaCgrlE/Ez\nRdkmyJ0K4TAAINRaEChj+RKg6fDK0oxAr/YajJQ6ZSlWTQMBMMH8O1GOVsuWsV02IuXnH5FyWtqa\nuBKhmAwd3OTlFGKk+1rk55KLR5+6rA/6jJQ8brmy8Cs5E2f33cP108+l0lPF3BCjZnZDz6EtRQtT\niAkD8owAzfzlIVqIi6z0QTA2Pw8AyPjVXR4mUagx/0aV7dLzcxYYYqZjD/7xCv1qNsPL9FgAgF+j\nQdIZqKI8vx+JDbNPIz+vSLSwEOq72WHuhsGwtjWXkWUUFNJTYRwGQLjTUL5+gqh6Csy/E3jaVLUG\ng6fzQrHki4tKOH2W7/ZB6y7CM8VIS/itCPjPFL8K4R6//7N31mFNfWEc/250g4oCdmJjd2ADdmB3\nt2CDIiqKLSiK3d0t2C3+bFAxsAMQke7Yfn/M9d12t927Yp/n2eO95577nndz7J73nDfOY0sAp2De\nofsLUMzeimrVtJKc7DzMHLAFX97Hye4sByl/MxDifwYh/md4bb4bhqC1Wx1KxymK/I0tB+vix1CQ\n/wJmllOVlmdgVB1/Y8vAqtheFOQ9Bosl2VeciIK8l8jJ3AOACTYrRStSt+rRHMY8Irc7b2VkivT8\nHAS8PoM2JTmB5+YGxnSqplJeRnyEz8idlMuNfv4Nozut4Z2bmhljxd6xqF5PNVWHlWHHnScIuioe\n5/NyyXQYG0rP0sTNtiTKqwAvGDAlp733OnIRV1/HEF5r41wRW4f3kjkmN8PTqst3sO+BeKVl0QxQ\nz7/9wrILt/Au7o9QO9F70JXsUTplMADKTeqZpSLB+k2ce5lht4OUDHkn7wBQuaYTNp2ZLvd9U3tv\nxKdo+YJHRVk6meN/HnRsMi0/Rop8HkQMabUcDCYDl9+uoETeuFFt0W9IKE4e4leVXB9yVcod6iUr\nIxeDWy1Dbna+SscNnME39JbvHoMGLauqdHy66F57AQryC5WWc/ndCjBk1G8p7vQTmal+SE8aAxMz\ncplhcrOOICNlDu+cG5TMndjb2l9HRsocpCeNhYl5P9iVeiRXvYdijjFITxqO/LynShsLVP2NH3vk\nB2s7C9kdVQBV70kVhL2XnJWMLqJSyCUIud3Rjxcg3fdeMADgbudFtOmlCqIef8a8YeQMJqrIyc6D\n94BQ3rk6/s/J0HvTQbwXmUBzqee/EVFLZ8BQQrY5ScYCANTxC5Y46U7PyZVoLADA3fdfUHthMF4v\n85KiOYcGi0OQky+5lpAgQ7cfJ9VPl9CJSs/Uj54NVmJPgBUPhrU/GGZ9Sd+q6INGnh+AvNwC9KxL\njy8sVT9EgTMO4V74K0pkiVK6QgnsvCK5zDxZbtyORsDKC7zzyhXtsWuL7PzuqkRTJy4nnvjD0lpz\ncqgrAlWfraY+vCVBdSVnXfwcNfXvjghJnxt3oi5YSZls26PEGEx5shcAZ0dgd/MJSMnLwuznh5BR\nkIOKlvb4kvFH7D4iGoUtBFvgka4plZ3l4XDoDRzYcE3daojBYDBw6W2gzEULuhGc7G8c0h0da1YR\nul7HLxiFLM53gGjiz71/aofmmNy+mdC1Q49eYvmFWxLvBYCj/0ViYFPxxd5WgVuRlJkt9V7u2C2q\nlMfDj98U3g3QgloU+krPtMAwA9P+KpilouQyFlRB9ItvtBkLADUPSo/qPrQZCwDw62siJXp2cK2J\n2+HzeC9NMhbcnedr9KTFs/ESuDvPR8wb6XUM9Oihmwr7NcfQ0BWalaiKypYlAQBZhXkYeD8EEx/v\nQkZBDpytnXCytezVWi6P3ZbSpSbtPL79Du7O8zXSWAAANpsNj+o+GvOssDAxFjMWAI5LERlEjQUA\nGNKMHyC/6vIdwvuIjAUAuO87kdS4AJQyFooKOueSpK1kZ+bCzMJEap/oF98wayB1udol4e48Hxej\nA2EgZ6Eq7r2qwt15vkatSioLnTtHdDG9TwgAYPiMzhg0WbuyiV1+uwIeNcgV4ZLG4JbLcfiB9Lz0\nugpVf+9UuRrq4UO0kk+2DQCOt55B2C7rPlGYDP5zRFt2F9bNP4HrZ56pWw254P4tqvOZ+GTRFLnv\nqbWQszJfu3QpiX2CB3WD15GL2PfgOeZ5tFVYPz3Kod9h0BCCF56Sej03O18lxgKXbjXF0wbKQh2r\nHIqOqWmpVLvXXqB1xoIg+zdcRU8XP3WrIRcMKUF08pCcmE6JHFWhiQHO8v5f1Dq8HhX2rxTbXRh9\n8wRh+8fUv4Tt3Db9LgV9yJtRSd24O8/XOmNBEHfn+Zjed5O61SAN9+sxrq3kWjAu5RxVpI1ucOvk\nfygsYFEuV7/DoCHcvRwFnyDJxW161VP9ZEyeFXx1bolq807D2rnHceOceEYGbSQvJx/uzvPhOa4t\nRs92V7c6emhm5sBQ2Z1IsOrAeLnvGVerCbxcWgHguyStf3kPla2LY/dwT1771+Gc36UnCT/wdfh8\n5BQWoM7RILwa6C10HQCGXTuKA53E6y7oUY7G4ZyFkAedF6tXERloilsPFcS8/gl35/nYfW2O1qRm\nnXH4guxOEui+YT8+JfxVavwqJVX7ObkV46fsD0/agf5VvXE8JgjD687D3hcrwDRgwrdPEAJPe6Nb\nqYm8JB3hSfwEPETtXLmrxu8U668sOmEwyKq/IA+amDpVnSu3J3bcgec46VuAX2N+q0gbybDZbLUH\nfsmLLj2gBDmx4w5O7LijFUbcgTs+GNZWeXeYjYtOY/rSPhRopD28fUEuU44s6japJPc942qKr0Zu\nffMIL/oTu9EMqsrxgzY1MER6Hr8OjH5ngV42vr/COzY1MFKjJtLR1d/i0Z3WYOtFb5SvKtndR1MY\n26YxzI3l/460Xbkdf9IzAQCWJsYIGdoDTSuV5V2Xln1JXfQsPUVsIp/2NwMAkPAzCRu8D8B74wiM\nWdIP+bkFWHVuNmo1q4L83AK4FRuH8KQdGFBtplD72yefUKNxZYQn7YBbsXG4lLANBobUOhHphMGg\ny/hP2Iu8HNWm0hRk99owqQZDRlo2JnVT/x+kR3UfuSaot8PnoUPXNbhxaY7szhTz4dVPzOinPVvG\niuLuPB/7b/vA3tFG3apIpIQDNbqFHXtc5AwGdbL77VNMqytc1NHbpTXWvbyHRY07kJYjuMOghxq4\nWZcEudFBM2N8Xjz8CN9R1NdR0CQm/ns+a/oCjq25KUa3biTXPbfffeYZC9oUsHzu12a4FRuH4o62\nOPRmjdC1UuWK48rB+5gRNAyV65SFZ2UvpCdnislITUzHLA++azWDyUBYIr3pfvUGgyAMc3VrIMbj\n2+/UrQIOb76BwVOIH8KejZeoWBvJrJx5BPPXDyLVlxvDQBTLcDt8HqV6CVJYyCoSxgKX4a4rNL5i\n99h5XbFz1SWl5XyN+Y0KMlbyuizdibhkfsxDVJD2POQEOX/gISVyRs5UrMr0upd3kZ6fi/txX3lt\nk2o3Q4X9K1HM1AxbXj/C+yHSUy9/GT4fFfavxDDnBohMjMUJt6EwMdA/EqkmvP082Bpr3rN1zZxj\nuHn+hbrVUBma6rpbtpgtfiSlYG34PbkNhoWnNbd2kizCk3bgR0w8b8fAurglsjNzMX/HOHh3WYnz\nO26h18QOsLKzwIlPwRJlqBKd+HWU142InbEZ7IwN/AajWmAWP0PY98/fDPQdtQWXj0yHibEhjIyk\nVypUhoTYZJR0suOd//iUQNtY8nBg4zWJBoMmcedSJGmDgU6jQBK/fyVjZHvNCrZWBVsCzqNDzwaw\nsDJVtyqE9B3dmhKDYVK3IKkP5HOP3yAuOZ1nJHxPTFF6THWxZdl5SuQMmNBOofsk7Qxw26fWkWyg\ncvswpMjRozjakAnp55c/RcpY4KKJRsOVWaMUdhsyMpA+Hzv8KFIhuaqibFUH3vHYxf2ww+8Epq8f\nis5DWuLakQfoNbEDtj5YjPsXnqNV9wZC99rZWxO2A0BxB1vERH5D9YYVKdW3SGZJYlhOAdPhA8fQ\nYFgB+W8kxkH0HbUFd89z3FboNBYAYHLPjULn4z3W0zqePAhWmeSiq36fdNC3oX+RNBa49Gu0GKM6\nrla3GmrF/6hwLvdyJWzVpIlyUOUiqQ1+1Xp0D8/GSzDObZ261VAbmvzcrrkgCBGfxGOj/qRnEhoV\n+8Z68o7zCgqFrn1K+ItlF25Sr6QMPIL2yuzzNy4FvctNw+Aas3m7BJ2HtMTlvZw6EzNDRuLTqx8A\nAGMTIzRsVxPD6szDjI6ByM/lVKI+8n4dGrariR5OkzGjY6CQ/EPRa3Aq5AqG1KTW5VondhiUgVnq\nGd9YKPgIGIoXHeFSUMiSWNacCjLTsnnHa+Yco20cRXj3UviPeM+6cDVpIp0R7VZi3y3N+kGM/fYX\nWRm5sjvqOPE/kpCcmA67ElbqVkWM1m51aCs2GBoegduvP/PSS9b15jz4RN2RDt19gfXn76FsCRuc\nnT9C6Fpd7yBEBXkjOy8fHfx3oKpjceybPoAWfWXRu4E/JXK2XtRcd6zJi3oi4vobvHn+Ta0xZHqo\nZXDLZcgQeM4WVbrW9MWl6EDZHVVE9HJvnkEwZrf0FPOClCvOX3Sp579R7HqdMg5IyszCr+Q05ZWU\nQde6zrgU9R5fE5PFjBvR+IrijrY48z1ETIagi5HgsZmlKQ68El9wNLM0xflY4mx1C/aSL1pHliJv\nMAAADMoChT/ASvQQc2+6e34Otu2/i3NhL7EreAQcS6kmgJPsduno2e68oGQ2m40joTdxYCM9VSmP\nbbvFcyE4vv22XPf2H++KUbPceOc3zj3H2rnHqVQPAJAQS87NQ1odBirdleYP34HI/z5RJo8s9VtU\nQduuLmjargZsi1sKXSssZOHjm1+4cvIJ7lyKVKkxM7jlcjRtVwOLt46Q3VmF+G4YQsnKG9GW/2S3\n5pjs1lyioQAALjODsHRgZzxbOx2FLBbqegchZGxPtK3FzyBU1zsIXRtWx8MVk7Hz+mOeEaFqWIXU\n5/fWNLoPaY7uQ5rLfV/st788Q+O/W2+LxGelLSyeuA/JiRkqHdOmmAXada+Pjr0aoHy1UjA0FPZS\nKMgvxLP7H/Ds3gdcOBShMr1YhSyNc0+KXu6NgkIWGi7ZhPxC4d2CGk4lcWrKEIn3LTl3A8ceRwm1\nP1k0BRYmxgBUkylpzQAPTGjXFD027Kd9LHXBYGtmURXVKpX/Eqy//QEon1ZV2UnHpehArPA+jPtX\nXkvsY21ngWOPpKda/e/WWyyeuE8pXYgIe78SrEIWupIo7GZsaoRzkQFS++Tl5FOeNnbj6WmoWqu0\n1D5JIlkHYj7+hu/iU7h0ygumptSl/1PV9u+CjUPQqksdpWTk5xVg5sAt+PjmF0VaSUaTHlRcetXz\nQ2628qvJkt6bNIOBqK+thSnuLpsk8V51GQxUfKcNjQxw4bXm+7rTSXJiBga3XKa0HLr/lhqPWo9i\n1uZYOKozZm08i8e7Z/LaW9erhDIlbRH28C2uhUzita+b3hOzNp7Dkz38vtzjQX77sdN3ICzMjNF4\n1Hqsn9ELi3eGY9ZgV3i0qEnLe3h+PwYLxuyiRbYgfUe3xth5XZWWwypkoVe9RcjPK6BAK8msPTwR\ntRpWoHUMPRqD0nnn9QbDP7huSaIGQ5sea9DZLHSuAAAgAElEQVSlXS2U/ReMPHyA9FUnuieI8j4c\nqNYn7P1KUjI1QU9FcHVbRdkOg6Z9F+Tla8xvWlPmXn63QuNqZ1Dxf1a8lDUO3hU3qKUZDAWFLDSc\nswGiP8fcvnW9g+DTpx0Gta4nJE/VBoNHDR+wWcr/PGuiwagOqPi+qcJg4E72AaDP/D04vXKUWDsA\n9F+wF4eWDIPRv5X0QX77cSRgOE7fjkIf17pC8ob4H8CBxUPB/PcbQCSPKuj8LVbFd/nQpus4GHKd\nFtlLt49C47bOtMjWo1Eo/bAtkkHPYhTGSb28wNsDwwc0l2ks0I0iP0xU/5jRYSwoeo8mQ/cDShWf\nV4WqpRD2fiXmrSOXeUpePKr70CJX3fz9Lb+/bIPZGzCwVT1EBXlLNAKszEyUVU1pqDAW9Gg3KelZ\nEq/9Tc3iGQsAkJDMcQHq41oXy/dwXGW3zuMEqsYlpuG/198Q8eorIl59xcaZ9NQxoeu3WFW/wwAw\nZGpHhL1fKZRFkSoWjd9DuUw9uoneYADASuwk8VqDuuWQk6v+oDdlfphUORnXFj2TkjPFXgeOUJNb\nfu4weoqnqPIBJYhrNxeEvV+JSQt7UC67X6PFlMtUhjIV7dU2tk8fxVKMqooVXocpkXP5rfKVtaki\n5CM5d8jZkeIB5kRtuorrZE7tmJtPYxC+QXIw5Y1Nk9FkNCe7X3jEW9zYNJl37ezdV+gyYysaVudU\n4b25eQqmrz+N5nUqoHmdCsjMyaNcbzqMBXX9DgPAvlvzaBm7Z92FlMvUo3voDQYAYEv+oXoe9R2d\nPYPRpscatOmxRmI/Oqno7KiWceWl/3hXdatAmj6DNom9du27h2P7Jykll81i49XjzxRpyUcTdmB6\nDGuB4ONTKJWZmZ6Dn1/+UCpTGXaEz6JEzuYl5+S+Jzef46+88dIDSnSgmrthUbI7kYDB1Bw3tGlV\npMdY6eFwO3Qq2kwMwYsPP2FsKD29eMROLzQfG4wMEQPAZ0RHJKUJ70482TMT7adsRl+fPXCp4kSp\nzlS7WxsaGWjE7zDAeR70GEZdMcy83AL8TaA/k5Cu4e4wGT8//Va3GiqjaBsMhbES6y9wuXt+jtBL\nHYSen6G0DM+xbSnQRDqCWZAUhariXtEvvkm9fjt8HuGrVElrpcb1qEGtm035f25BmoKzS1nK9dHF\nnOgXD8uX8aSkjSUazw1BXe8gXIuMwcQuzWjSTL107N2QdN/ZkQMQk/FaaCX/zK/d+JX9BfcTw3l9\nTvzYhvfpkTjynbMK/iTpNrZ9XobLcUewMWYBAOBZ8j3MixqMZ8n38CTpttAYgkT8vY6f2Z8R9EH+\nOKajP/jpDedFEWd00Wbubp2GWYP5u2CS4g0MmExE7PRCv3YuQu19XOsS3nNz8xScWjEK9naWYteU\ngUqXx26Dm2tckP6khT1QzJ66FNVDW2tOmlVtoXTlkihTuejUk9GJtKqyJv1kUTZDEh2sPUxNLt3R\nc9xxYucdSmQRQdUk8uTTxZRsIy+ZtF9mJimq+fw2llJ5Xfo1htfyvpTKpAqywe9k0aQUf0cj/DCw\nufIrzz8+/0HZSnwXJ2kBytcXjxNrm+zGj5kiuleVAc9U/V/PWukpuxOAgGiOK8u2T8L/Dw8Sr6Ct\nfTe0KsFfnPAsOwEAsONzIAaVm4pjP7YAAGLS+XU1jnzfhLUusmvbNC/eERtjFiAhV3pcGxFPk+5g\nYNnJmBs1GKvrUuO+pUcxqFy4WXdkEmo2KE+ZPCo5dH8BYr/9xZjO1Hg/9HTxk5nZUA+fnQ8Wq1sF\nlaITBgMVMMyHCZ1fv/MWHdvWwP5jwiuFqg58pjLlmWO54oj7/pcyeZpMmkjaVFUwpZd44RhFqd+i\nisYaC1yoNho0BZtiFpTIGe++TmOMIG2DxS4knOCvdTmGmwlnYWpgjhbFO0u8n4xxQMTsyAEK3zu5\nymJEpz0Di10os682QVfmIjqhKjjff8twjTUWuDiVL45x87tix8pLSstSdZHCw+sv48Dqi7zzsHjh\nImTuDpPhs30M2vRoKNQm2NfdYTLC4kNxbOMV7A3kuIJOXzMY7sNaSR3P3skO+5+L7xpx5Y1u5o+4\nr3x3WUHduDoQ6SxInyozkZ2RI3E87liC8hq1r4mAw1PFZG2YfQjhB/nuqjbFLXH0zWq5xlOWou2S\nBIBhPgJMhw9gWAuvRndsWwMAcPVONC9DkrqzJCnL7mv0uFRVqOZAqTxjCusgSEJS4TZpBd2k0aMO\ntUFjgXvGUiqPLqicEGuS8TF1cW91q6BzyOOy6F9rG8clKf0Vdnzmu0p8yohGCRNHpOen8toOftuA\nmPRXaGjXGgAwrLwXFr4eiajUR5gXNRgA0L/sBMyLGoLIlAgseCW9aGBOYbZCAc2VLGpg95fVWONy\nVO579VAHmRpBZKhU3RHN2tNTF4Jq+oxqTZms9T4nKJMljbPbb+LA6osIiw9FWHwogi/PFZo4A5zJ\n+Irxu5CdySkuWvAvzovIsDA0NODJ2jjnMMa1XCLWR3C8nKw8sfEE+667MIvXd96W0WJ6STMUuDJq\nNKwoczyu0RAWH4oLP0Lw9GY0En4mifUJP/iA1y8sPhTj/PuK9REdz8OJ2phDnTAYmA4fFH4xrBdI\nlX0wdIyK3oU4VWQUH9MUtlzwolTeBJ9ulMpTBVQW2NG2Vellu0bL7kSSS0f+o0yWMnQd1JQSOeM9\n1lMiR530a7xEdicSyJsUYa3LMVS1qoNxlfgTwMqWNVHXpim6OPBdm4aWn4GqVnUwqBxnVc7FtjmW\n1d6LujbNsOqfa1CTYu2xqu4huNg2x/I6+4TGEB3T1MCMsJ1IP1GKG5cCQ/l053qUgKrq2pvPKR87\nqEqoem5cO/2MEjmy2LbopNCk27lBBQDA5f33hPoxDZjoU5njftm97HQEHp9OKK/v5I68Y9sSVoTB\nyILjHX8n2Y3rwo+NsLPnxzO69m4k5Z2Iww24X35smszxBHUyNOIkFFgwIIQv699umaiB0qE//xkl\naTyq02DrXZI0mJDT02R30kE8BjZFiP8ZWmQL7iAoupsgCpUr49pmLABAw1bVMMKrM/YFX1Va1qbF\nZyibrGsCPz4lqFsFpclMy1ZaRoWquh8YeOfPRdmd9NAKVb/F2vg7DADHHvlhQDPlYxD8xu1BwI5R\nFGgkHaIV922LTsJjOH/H5NKvTXB3mMzrW79NdbF7ipWyETrffMMXQ1zE41gk7SiIYmik3NR4RpdV\nco0nSNW65RAT9Z0vy321lN7KjycPOrHDQCf7j0Vg/7EIbNt3V21pVTUZp/LF1a2CRL7GiK8w3A6f\nh07taxH2t7E2o6zKc1Fj4KT2lMmiaoVQWTr1IZ/RR1fZu/4KJXK2XKQnQFvReAM6aGvfDT41qItj\n0iMfyYnplMg58cSfEjnqwNqOmvirp3ffUyJHFkwDptirIF88Buj8d87f1blvGwjlFBPJbihqQEgb\njw4+R/+kbLzPb37A2ES6mzaV40lDv8MgA8G4hQkj2qhRE2ooU9Ge0rz3S1WwCqEoLx/GEK5sLpjb\nDdduvqHEOKDyh1VbV7W4lK1kjx+flf9uda3pqxGfxcwVnpRsz+8LvooRXpIDdDWZY9tuqVsFPXpI\nMbglNQGeltZmQuedmy3F1UeLCPuy2QBDwzzQjE2NVB68rCiXfm0i1a9Hueko7mCDnuVnEMYOxIsk\nc0n4lSTWR57xlKW8sxM+v/lJyXhlqzrgq4wMjFSOJw39DoMcpFKwNU+W8jRt4XsH9qNUXunyJSiV\nRyW3LryUeI2qnQS/cXsokaNNRe8ksT2MmqJngOqzdUjCQmTyoAhHt9ykQBPtheuXq0f1dPHaSrrv\n2BVH0Xj0ejQeLT3u5tAV1fi4q4N1R+Ur3KlpxgIAytKihh17TIkcabx//lVmH66bzcGXnArxc3sH\nifXJSBUuCDi1A3E1eTLjUcHGK9S5KQdfnqvS8aShswYDK9EdrPhqUl9k4FZ4btNjDRYEnqVZaz4D\nJrjSIlfTU8RRScybX7TKT4xPld2JJFQUvdMEVuylJrtTTxfV1tCQxEmK3BO0sYrq1w/xlMjR53XX\nDnb6DMST3dJTqH6J/YvQU/dVpBF5nj+IoUROzfrEz8eDu+6iWxvhwmadmy1F52ZLxfrG/kyCp9ta\neLqtRe6/hY8Lp5/Co9UywnvWLTuPHu2EJ7jcPuOHbMWIvpwA2Gmjdwn1iaR58rtx0Wla5XutHwov\nj9VIS8rgtZ3bKbyjyU0mwt1VCIsPxauIGMIkI5vn87OTpadkEhZU8/IQjgcQHY8qDAw5U2vRmAJF\nxjMxMyaUtWrSbpnjTWxL7W+vzrkkyVPEjdtXWsE2dVV3bte9Pum+f/64Iz8vEk6lYxEfVxMOjtE0\naqYaLK3NkKHkjo60DAEz5x/F+pUDxdpd3VaR3n0Y1pZ4FUNefDfoTlXYes2rqFsFjWRo60CNcLOS\nh0ndgymRQ5efsCKc3Xkb5/bcFXNhkETYD2Kf6aJKRafieLBd87IHLRCZTCvCnuuSV3KHjmmDoWPa\nCLknSXJTmjpqJ05fE5bVvU8jdO8jnmmnS4sAXHnoh1kLe6B3x1XYdWwKihXnVLz+HZeC7Yf4hVtD\ndo/B4B7BOHyek5VwzuT9EnXQhho5XQa3gH1pOwyoyf+sqrqUR8+x/GriPcpNx+XYzUL31W5aBT3K\nTRdyTWrUviYcypfgTZinrByIbiOFXcjD4kPx/M5boUm16HhkEJ2US6rJEBYfihluq5QeT5KsriNa\ny+wzYx21cwudMhhYCfKlvuLdF19NotHQpscadGlXC2Wd7ACovnAbGczMesPePgwAUKyY8j+cmkC1\numXw/D41q0ZEPH/5jTbZ8tLarY66VdAq2Gw23OvxH5Th/1aw3Vz8MHRSewydKP8Psh560JR6Io9v\nvIH/yO3qVoN2UjNy0HE6Z9JSzsEOxazNha6/+PAL41dyAsWZTAb+20k+GJ3rqlTM2hxXgieKXRPc\nnQg6egeHrz4TauPeTzQu935uH1k7HXTgULYYJXIy0nPg0WoZLtzxhYEMY1lwUWvbwYmYOnIHDl/g\nfDalHG3F+if+26lMTcmCpZUpJfpKI/z4Y7j1b0Kb/AZta0itZ0B0bc058e9GamIG+k7qiL6TOopd\nk2c8SWPKc12QDTIWH4lkbbxKbOjJkkW2jzLojMEgurPAsAsFw0TKl4edD9ZvfrYcaUbDAm8PSnSk\ni/z8SN5xaupC2Je8oZJxGUz6HDiru5Sj1WDQQx9UrW65O88nXJV3r7dIyEjg4uXfC8FLzlJuMFD1\nfmK//dXorGKCULU6Wb+FZuw4FQVjAQA6Tg8lnKQDQOC+6zhzJ4p3PTYxFZ2mb8G1jeT89rn3SYqL\nYLHYYP57Jhy++kxIrqBBEZuYKmZgAMDS3VcUMhQ0bSWdu+qfkZ6DxXOPYe0W6YUCuXz7+gflKthL\n7XP4gjfGDd6Cb5//SNxdoJINfqdpNRiKCu9Tf2PywxO44S5ewVmb0A2DoeCT0Kk0FyMeDCMwHT6A\nldAMYP2LqM97BhgLp1JsULcccnLzYSojrZU6MTSshNhfTgAAaxv6f0S4uHZ1oU22QxlqVnvowm/s\nbtmdSNBtsPp2rHren4pzrVSTNYIqZo3cKfFa+64uCF6iujgjeRnTeY3WuSXpAv1q8SeURdnF6Myd\nKKyYxC+K6VTCBikZ1CTysLYwRYdpobi1mV9Z1taSkzAgcN91ob5OJYhTXi4a3YUSXRShQ68GlMni\nZk6ytDKFkbHwFCt0XTgmC8SrDRzeEkmJGShWwhILvA7LNAJK2FvhGwWZ6PRwqHYyAB/6KR4vNy3i\nJEKay04k42xTSiXGwvnvr9CjHH0eCzphMLAS3XnHpIwFAZglH/F2J1hJg8TuD142QHkFacbKahas\nrKjLUEOWfmPbirW5O0ouRR4Wt1niNVFKV6Q3+9Icb3exeIVpsw6Rvv/pPfm+Z5KY4t+TEjmqJjz+\nPtwcWkm8PmlhD2xZdl7pcR5cfY2WnWvzzhN/p6IkwVY9APz5LV8Q+s2E02hfsg8AYG6kJ2pYN8So\nisSrlaeeLUHfhtqbn10d7LulGSu/3MJzRdFYEHVJ8tlyET5bqB/nRshkvjvR2+/o41qXd+3igzcA\nIDP7kjqZvaq/xGuCk3gyq/qCmZNWiMSnTRZJbjF6cge5xxk8sjVGkthFHTylAw5vVo23gToRdetp\ncG41MvJzAYBnDJz48gILnl0Uaqt2MkDoX9H2jk7OCG3RX6hN0v2ibQAQ3WcBDJlMXnuX0jV4xkW1\nkwEwYDBRyGaBAeB9Pz+hewHw2m/GfcDEB8cIxwaAGbVcMaVGa17b7MdnhfpSiU4YDMrCMGkNdu49\n2R1VhLxpCLOzz8PMrAcA4Hd8I5RyeEqHWmJUqu5I2C6PYSAJ22KWSsuQRtcudbEmKEys2nNRK9wW\n+vEI8lkFmFFtGACgkM3CwIhZ2Nl4KWyMrAAAuz6fQsTfl1hQcwIqWpTB5GcB+JX9G1s+HpW4Q9Fj\nWAtKDIZl0w4Krcp7+feCz4S9hH3H9tggl5vc9fiTaF+yD+ZF9sdqlxOYG+kpsa+5pQlpudKY3GMD\nQs9rXtCoIGO7rKVETkknYsNOj+pIShNON7lmag+4NqDXTWzympNCrkUdG1dDWMRbWuISiIp86TqH\n994jZTAMKSIGgyAnvrzArlaDUb94GWQX8lNzL3h2kTeBbnUpGPe7euHDv0m64MRa8LzOGeGkJqIT\n8A/9/MR2GAT7NDi3Gs97zhXqK8jbvgt4+gjez9WBawBMfHCMJ3fyw+M8I0bQeJhSozXh+6EavcEA\ngGEdAPYfV8Jro2fsg4EBA0EBA2BpQc2kQRaSUrtJgsngT65t7ajJbKIolWuXxZvHn1CrSWWl5Fha\n0x/QpahxcPP8C0rGF1w5VxeTqwzCh/SvuBR3B10d26LPg+k412oTPB9640QLTr7rMualsLMSf0Uj\ntKGfzB0GuqjfjPO96tNiGY7f8eG1d2u4GGw2G+EvyaeRq2hZAwDAhuRsWlTz5X2cysZSlF9fE5WW\nUaaidF9sPaqnX3sXzNl0XmjiTmXhsUWju+DOi09i7UvHuSMs4i01g4iOOV75OjiGhtpRJ4SbajVo\nO7liqVRlJ8tMy6akHo0qCHgZjpxCfspV7uS5gxM/xjUhW3pFcNGVfnlwv7oFn9ISUcbClrfLIYv6\nxcrI7KOMTlSiWwYDQ8FJpoGTxEsfvyTg7vk5yMgk959PBU1cq8vVPznZGw6OnMDnlORpKOVAzYRW\nET69/oHZPYm3nuXZedDkH6g1c45RImdhyFBK5ChLNasKWPBqA7o6tgUDDPR+MF3oeqdSLdDz/lQc\na74OpgaqMZqlER4ZgLULT6Fbo8UAOIHPHbrVw5zlfeWSM64S52Gy2uWE0L+SWHdkEmYNosGfQ4O4\ndOQRJXJ2hKveRVIPcHXDJJ7rT6XSxeE7gp/4Y97QDhju3ljINchvVGf0aM1ZuBBs5x5P6dcKIz2a\n4OzdV1i+95rYdUHjo3urWmg8ej0v8FkQwQxIAOBYwhrnVyufQevFw49Kywg5O112Jw1AFUHORKz3\nPQm/TcPUMra8+Lp0we/sNMyo5SrUbsggbxTKs0Kflp8jdG5mYIQP/fzwPSMZHcOpiw8kq5MRk17j\nV7cMBnaO7D5Et+U9lHo9/9+2p8+yM1ixsLdCY8hDRQmuPpKwsBzBC3q2tJpGh0pyQYVLkqx0dHqo\n4136F4yqyPles8HG2ZYhQteZDCbOtdqEARGzcKz5OgDAr+wElespyOxlfTF7mXwGgrJQVfTw0Kbr\nGDJVevo/dbFpseYGjSvKyTcr0a/WfAystwBHXy5Xtzq0YmdlJtX1x7G4tcTr0u7r1aYOerWRHUwp\nTYai1+imQlXxAl96+Dy89kbdKpBmYKUGaHNpAza/5biYy5poV7G2F4ph+CASSyDr/oiEL0JuQK+T\n41DtZAB8XTrz+nS7ug0f0jjPy8bn1+JJj9lyvaej7UbxdHrQzRv2ppLdtSO6zxSLyaASBputuu14\nOZBLKcGUqvIGPVNxvyBUpHg7F7UMxib02XJUpaEjTHlJUdAzQI2e8mal6dxjHa6el746Sufnp0v8\nd+stFk/cp7Qc78B+6NxXsRor0ihkF2D1u+lIzvvDi2GQtcsQuvQcLhyKUHpsTf2/p+K73bxDTSwK\nHU6BNtQxtNEi/P2dCmNTI5yLoSZGgwrU8RunK/z4/Afj3dcpLUeXPz/9s0qPAEo7H+rWDgMA5EcC\nRgqm+2SIu1scOvkfhvRryjuf6XcchSw2NiynL3uSvMYCd3eBi1PpWCrVkQsqdhfUSR5ByXk9itG0\nXQ1K5OxafVnIYHhy7wP8ph6Q2J9bo0EWS9+MxZLae6UGO4syeVFPSgyG5MQM2JWgN7BfXlKTMimR\noy5jwb2s7GDyvJx8Uv24FMXMStrCZh3cDdOjR5PRCYOB6fCBnxr1ryevTRasv54cA4Mrp9QrsT7b\n9t9FVnYeDpx4hLvn52DkoBaoW7MMfJefQeAC+t2TyFCqVAQMDKlxl9BlXN1WwdbGHGePTRPLjqRq\nGFRFGhYB0lL4mV4e3IhGwMwjuPxiCZhM5dzWJlRejKzCDADAy5T7MGIaKyVPHga3XKZxq3YDmysf\nWCdvhjc9ehQl8j/xAGs9evTQh04YDADAKLYH7CR+9gCuAcGwGAWYtAfDoBzASgY77zHY6YHiAgwr\nEsotX7Y4xg1rjTfvOav2VhacwOqHTzTnxyo11R/Fiu9VtxpScXecovbdB9GsSERZkmQZEo9uRlOi\nS/ch6ivYps1sCrwAJpOptLEAAE5mFXA/8TKMmMZIy0/B8jrk6nBUrV0GMa9/Kj2+LnKO5O6OHj16\n9OjRLnTHYDBuCYbATgMXduYeIHOP1KAIpv1tiZmSalR1RJsea9C8USX0HbUFf/5mYECvRpg9uTNh\nf3WQk3NVyC1JnS5J2k6J4tLdRA5toiav9fAZnSiRI0p1/yCcmjAYtZzIBfJV9w/CuyXeCo/3Oy0D\nbdftwBv/GTCgYBIvi7IV7JGbTd33u1UJD7Qq4SHXPRtPTaXEN9ijug8uv1shu6MK6FrTlxI5VKVy\nVAS9+5AeRaDKz1+PHl1HZwwGLkwCo0Fq/1LPAIaVxOu+Xu7w9XKXeF0TULeBIC3QWVORVIPh5CHp\n7+Xjm1+UjE9X2lh5J//KGAsAUMpauoHVoFVVPL8fo9QYAMf33NjUCKt3jYabCz2FaVa+nYr5NahL\nhScLTUo4wSpkKS0jcI/yaTL16NGjR49monMGA/AvfoGdB9bfPkABQSwD0wbM4mcBg9KqV44G0lKX\nIiNjK+9cHQaENHejnKw89K6s3MS0KJJXUIi6ARsBANGLvcD8F/dQ3T8Iu0f0xeh9pwDwJ/3V/TmF\n1kRX+7ntAGBiaIhIv2lC7YJGg2BfY0MDRPlNF2vfPrQ32lStQOo9tOhYixKD4dqZ5+g6iJN8YN3e\nsXBz8UMlZwc0allVrO/oGeR2/87+2iV0npT3m7Q+p18sRZ/66smLTjXP7iuXGY5L/Rb0VhDWo0eP\n5pISW5Z3bOv0Q2Yfsv0k9Un73RKswu9SdZJ0r7xjkblXkfu1DZ00GAAADGMwS1xUtxYqwdS0M6xt\nOJOXjIxQNWsjjqm56oJJ5WVNcDhu332HcuWKY8WSvrC1MVe3SjzqBmwUMgYEJ/YtKpUT2x14t8Rb\naGIPAI0CN+PlwmkwNTJEdf8gnrEgqT+3nTumaBuRLtLo0KsBJbn9b57jGwyzRu4EAHx+H4/P7+PF\n+pI1GB4mhgulUX2efIe0PmYUfaen9QlByGn11k5ZOGa3WsfXo9kc/PAcfo+v8M6/DPUh7Nfo5Ab8\nzcmS2U+PbsI0KAVWIWfRhc3OAUPRQroyEJ2kk+lLdiKf9rslrEs9UEgvW6dvcvVPiS0r1WDSROND\ndw2GIgSLzU+HaGExUuXjkwlmnrF2iAo0IQ+LxUZ7j9W887fvYtFrQAjcOtXB/Fny+bRrMp4N62Dd\n9ftY4O6qlJysvHzMOHYRz77L55JlakbNxDr6Bf/HmGzaVFmI1lyoZlVPrvvnrh2I1bOPKqUDVS5u\n6mY4SSNNHST8SsaIZovRpnt9+ISOlNmfm3ZVHxPBwe/xFVgZmeBOr0l49oc42L/BiWAk52bjSKch\ncLKwxrJn11WspR51Y2azCplJIwEAOWmrYGbjL/smdh7AUP4ZYWzWAwbGzcAq/IncjC0QLeWVGlcN\nNo7EO6mmVt7ISecsjsnasRAkPUG0+KbuF5vV/XdYBDA17QAASEhoj5Rk1bj+MJjypQV1G9KCJk0U\no73HatwOnyf2Cr8mnlpXm5nXpQ0OPHoBQLl4hUuv3mPHsN54vmAqVaqpnaAPc4TOh5aXr9psu+7y\nGRiSuHb6GSVyFOG/W28pkTNocntK5NDBiGaLAQBGxuTWx7zWDAIA9KwqX0VWXSZqwEzYmZihYxlx\nF0AASM7NhhHTAM1KlUM5S1tsb9uPVn10xdDWJYz+zUMAIDdzp9j1zKQJYm1pCW3E2tisVN6xqZX4\nb7Kt0w8YmXrA1ukH72VutxkmFsNgZu0DW6fvYqvzbHa2RL1FxyDSk4jCgve8Y8sS50jdo+3oDQYd\nomTJm7Artk0lY8lbR+B4yFWaNNEjC1Mj5TcS7338CgCYdFj9P4xsNhtuLn68Fxc3Fz8c3HqLtBzv\namswN9JTrsJtdLDeR3p1aTqhohJ32Ur2FGhCP7ODh5Lq12VgMwCcQHs95Cluqjp3zo/R+kyA2kZ+\nzmUAgJFpJ4BhBABgFYobftlp/B1kUyviRS4LEvMceVx6jM35zwCunvJgaNyAdN+U2LI8VynusehL\nU9FNl6TCX2ClzAIK3gJSLEsiyBR80zRyc27CxFRzV/gAYE/gOfSfpjluC13dFKwGrkIEdwQkHUu7\nB+DEGzycO5F33n3zflyYMlxif0njbI97NVkAACAASURBVBzQDQCwZXBPmWPSjXu9RTy3JEGDwcu/\nF4KXnMXQie1IyxJ0S/KNGozAuofl0mXz2emY0mujXPfoGtvDZqlbBT1yUPGgeCrfqbVbYFa9thL7\nCJ5zYxNE+8RnpfPaROMX+l89iCcJwhM4ohiHigdXYGmTLlgkEDMR0roXupUXrhr/8Y2+Doq2YlFs\nNwrzo5H+pwvh9bysYyrWCDC3XY+8LPILN+kJ/GeMieVEKT3F4RoymhqnIA3dMhgKPoCV2E3dWqic\nlBRfmJl1A4PJSXFpZeWl0vGTE9JgV9Ja4vXc7DwVakMOSwsTwiJttjbmQu2S0q9qE8Us+ClcLUw0\nNwCdDNyAZyLad3VB8BL5Aqzfp7/Ers/LUdGihtzGAgBUqkFcv0Ve0pIzYW1nQYkssvRvslSl4+lR\nP1kFnF0T0cl6xYMr4O3ShpeJTfB6xYMrCCf3on0czK0Q0UfcZTEzPw9PEn4I9d/46r5EuYseX5EZ\nMP3zS6LU63o0GwOjmrxjNisFDKatGrXhYGjSEgW5nIDnzKTxsCi2XWLfwoKPvGMz6wW066Yp6IzB\nIE/tBV2jhP0JGBiobxtrsIsPL/BZW2oyTBrXDpPGkV+J1lbeLfHG0N3H8f53Iia3bYqjYweqWyWl\nSPydipKOxA+XP79TCdslEfR+Nryd14oFP8uL59i2OLGTfIYlIgY0C0DY+5VKyZCX9NQs2Z1k0Lxj\nLQo00aMqah1di2HViN0nKh9aSUtmo9rH1om1Ta/TCkGR9wj7k9Hh969kpfXSQz1Gph5yu/SkJbSA\njUM0gSzRoGJ6sSx+lOcOlJ8TJrFfXtYhSsbTtt0FQEcMBnaOBP94g7KAgaNqlVEDv+ObCp2rug6D\nYJYkeyc77H+2TKyPthgSqkDe+A9lOTi6v0rHoxMv/17wmbCX8NrYHhvkCsb3dl5LiU6j57grbTBo\nK4s2D1O3CqRZNGIblu6THdC4fekZFWijPsbUaKKWcYlcoRQlOzOXMll6qMPcdhVS4zkGQ37ODV4g\ndHbacon3sFnpvGOhlXsbcQ8AYQqR/qcbCvNfK66wFHIyQmBqKZ7yOiuFXxnc0KSt2HVdRjcMhhTh\nbVBtjENQBnVXehakY/+msjsVcQwM9bkGFKV+s8oAgD4tluH4Hf5KZLeGi8FmsxH+Ur6Uq3MjPVHb\npilep/4H15K94OGovvS/PiN3YsVe1VRL3rDwlErG0QSCz8+EV4/1eHJTfBWTiDM7bgMAZgeRC5LW\nNswN1eOWGNmfulin7CzNc3PVAyHXopy0QJ7BkCtQWJaLqdVs5KQLL9rkpPEXG5kGJSWOQ1dgsLG5\nJy+WISdtNaHBIIhl8YO06KGp6NzMpagZCwCQnX1e3SrwGD6vO2E7mVoNRYWC/EKVjJOZq5sP1fDI\nALRoXwPdGi0GwAl8butWR+76DD5Rg7Da5QSGV5iN1S4ncDtB8QJzdZpUUvheLi8jPsruRBHhJ54o\nLeNSdCAFmtCPc/3yvGP3sjOwdxVxQc/wwxG8GgwA0KFfY9p1UwdBUXfVMq61sanYS1FYBSwKNdND\nB4UF4nMxU6tZAsczxK7n59yQIbWA0Fiwsg8XSrPKfcmLue16qdfZLAFXOCXrR6TElpOYJUlTMyXp\nxA5DUYfF0vtz6hFnQOgRXPQeoW41aGH2sr6YvayvUjLGVFqAuOyvcDSrgF/Zn8GA4q5iqw+Mh7vz\nfNkdNYAfnxIokcM00J71pv3/LcHwppxCUsc2XcOxTdek9g88PFkVaqmc7W37Yfydkwhs6i52bW0L\nehKGiGY9ogIzCxNKYnD00AEDooXTuJgqmZAlJbai0DkdcQCCwc+ibkmp8XX5YzvGKDkSG9alHoFp\nUFpJOapDxwwGA3UroBZSU3yQmsJ3z1C1i5K74xShoGf9boLi7LjzBPsfPIeliTECPbugfjniLDyX\no95jydkbMDM2QtDgroT9Pv9Jkjne86+/MGHfWVQpWRxHJkkPiL4Y+Q4+J8LRqEIZ7BlLb2EmVVDF\nsjbvuLRZJaxyOa6UPAaTATaL+EFJFq/+mxF8nN54n/Ee0lfRdBF7J1uE/dggtIMgCV2u8NypLKfw\nmmg8gWfluuhbqQ4tYw6r1gBvkuIJYxgUDbK2sjXTGwwaimXxo8j4O4B3npMuHvQuSnaqL8xs+DuW\nFsV2i/XJyz4tdE5X0LBg8LN0tyTlF0y0yVgAdM5gUI2rh6ahSTEMehSnpm8Q7/hvRhaGbD0G326u\nGNqivsR+6Tm5GLL1GKIDvQmvCx4DIOxnbmyEyB9xqOkbhOdLpgkVehO9HwD++6ze7A4f3vxCtVri\nP7RuLn5o1bEWFq4jnwnK79Vw5LL4tVqUyZh0LjIAPeosVPh+AHgfqR2ZM/Zcn6tuFRSCawyc2XEb\nV45G4PvH3yjpZAfXXg0xcl7RSMn9ZagP4rPS0f/qQTAZDBzoMBBlLSWntSQzqZfVZ2UzD8yp54oh\n1w/jd1YG+laug4UNO4j1I2tAWNtZIPbbX1J9pXH+1TLSFcCVoXGYL564a4cLn7IYmrTgHbNZachJ\nD5Z5T27mASGDwci0k1ifnLQ11CgoJ4UFH2BgWA1ZydLjGYoCOmYw6FEX7o5TYGdvBQAYXJfYNeNw\nlGrTRmobgpN5gGMMNF0aKmQw1PQNQq3SpXBiymCZcmr6BonJ5LLs/E2xMQ8+fIEG/iGE90iSo2oW\nzziER7ffEcYrLAsdjoWT95OWFRLjg4A65PvLgqqJx83zL9C+R33ZHRXgy/s4SuQ4lC1GiRx10Xuc\nK3qPc1W3GrRy789jtLYnzojkYG6Fu70mKSTX8+EknGixRa7xAE4l6PBu4kH9kuRJo7pLObx7+V2u\ne4iI/fYX5auWUlqOHmKy0wR2DexCxa6bWE5Cbga5/3s2K0WusfNzbsrVXxCrEheQnsiJx0xP6ABb\npx/Iy+bHuFGxu2Fd8h5SYsvCxvEjGAwTpeWpAh0xGAwBFKhbCbUR+8sJxsZNAbCQl/dELWlVhzdc\niD+xnFiK5D/pMu7QQwYrU+IfEWnGAlkOP4pE6HDhqs1DW9RH4MXbSsumk+cRnySmTm3UsqpcskZU\nmIu5kZ5CbcrWZKCCNXOO0WYwTO6hvLvNCC/yFdvz8wtxLSwKHgq8n5TkTNiquJidLpFdmKOysQrY\nBWLj5bHyYcw0omW88lUkZ9CRh9hviQobDLs+3cKJb4/AZDDQq0xjjK8qvmMCACl5mXLLDn53Gce+\nRsDVoSZW1Bskdv1vbjpmPN2HuOxkeNfoim6liWtrAACLzcaoiC34nPEbAS794VqKuHZKTHo85r84\nDHMDYxxoKV6ATxHys0/yjo3MxBOimFn7kjYYjMy6IS/rKOmxM5MUj98zMK6n8L3SIApmTo2rQthX\nE+s06ITBwHSI5hVuY8VXK3KZkhwco8BklgAAsFjKb9MqArf2gj6GQXGO/heJpecUXxWRF9fqymf2\nURW2xTlVzOs0LI9nD4mzCZ078kgumRkFqZQbCGHvV2pN8LOiDJzUXqytU4tlMDMzxvkbc9HVdSUu\n3eZ8Bh5tV6BH30ZC/fyW9cWKxWcQdteX13bt4UKh40D/M7h17Q3vPu71oX1CUKKkNYK36mYwP528\nTv2A2jbVeCv69xOfoFUJTiaop0lRaFSsLq7G30Vnhza8fwXxfrkUQfUW8c7ZYGPmywAE1VsEQ4b4\nVELUWBDcSVBkV0GQBq3kWxyQxMuIT3IXHyxks9AsnPN9HF+1A2KzkrHj4w3s+XQbEW78nc/GYb5C\n94mei7oocd2WGof5wtrIDHXsyuF63CvMrdkDdsYWYnJal6yOBsUqYknUSSyJOonH7suFEjc0DvOF\nX52+CHh1CoMqtISLXXnMeX5I4tgAcKW9r9B5bduy2NNc/p0oM+tFyE5bCjabfL0MWbEO5rZrhAyG\n9D9usLIPF+tXmPcC6Yk9yCsrAQu7rchMnggAyM++xGu3cXyrsExNNALkQScMBoCTTrWoGg3xcXV5\nuwrxcXX0MQ1ayNfEZCw9dxNvlntDsK4bUQwBVbDYbDBpLiL39oXybgMAUK85p/7Css3D4V5/EWGf\nLSsvwakceVeZ4A9zxNo0YYcBADLSsmFpbUapTLqDnf1X9IN7m0CeIQBwJvoh64Qf6s1bV0PYXV8h\nQ0EU3yW9cevaG6HrvTqvwdmrnP+za2FR6ORel/BePcTUtqkmdB76cT/PYFj/YScON9tIeN+v7HiU\nNnOAi00NoXYGGPiZRY2Lm7yUdLKjRM7bF9/kvqf3HU7tAMFJt39d8SQQgtfJxjDI6tflZqCY7Jk1\nuqLrrVVoErZA7N6AV6eE2lraO2PqE/GAYlGZXMNFEWMBAEwsxyE7balc93BjHZhMe4l9GMwSYLMS\nAQCF+W94K/ZMAwewCuNFehsAYEFSxiZZGJl1Bf4loOQaDgDAYFgqJE8X0BmDAQCYpaLA+s15iHCN\nBwCAYVWASe4HhllM+wpxOJWOxZ+EjgDDSO3GgjbtLri6EVeSvB0+T8WaAEO3HQMAIWMhOy+f1jGX\nnb+FRT3FV4up5MVDZVPPcajfgrOiyGAyYFfCEm4ufgCApm2c8TbqB9JSOBlTdl8gH2tBl3EwYEI7\nHNt2SykZno2XIOw9tTE/VKRTbeJaXeK1hk0qwa2b7K18IyPFstllZuSiUwvOTqaBAZO0wUAmM5Ik\ntDljElvGRKlxMRfecUM7TsawlPw0AMCTpCjeDsPR7xcwy3kcRlb0FBcix3iaSMybX3LfY2tsgbhs\n+fzpycJkSM+8k5SbQdh+qd08NA7zRVJuBoqZ8Ce0hgzhv7WmJYjdX9SJkakb8nP4iwpmtpIrPNs4\nvCB06xE1FhhMG9g4vEZ+9kVkJitm9NBNSmxZiTsObHYm0n63gonFYJhaiS9sqQvtSaQtBVZ8Nc7r\nt4QHSEEMkPeY3EtLsS95Hfb2YepWQ2twdVuFS6e9cDt8nthLGs4u9BRU6dVAfFu84eJNYm2jWzdC\nTd8gxPzmu56xpTynpx4kLuoXHeiNo/9FIjqWP4mkYzfj5M47lMjpLODWcuTGPIRHBsCjXyM8fRAD\newcbhEcGyF24jS5GzuyibhVoY8m2kVKv012b4drDhbj2cCHC7/nK7lzEiU6LwbD/JOe99642FnMj\nAzEvcgVmOY8HALDZbAx+NB1zq0/g9Xv09zk8H06C50PpE6/otBhMe068+wcA+5sGYeijGcgs4KdD\n5cr0fDgJOYXk3VfUyf4WU8AAA43DfNE4zBevUqhzM1lQu7fMPh6lJccDjYoQdvOaXZN85q+sAv7n\nn1lA7f+FqZXkhRyLYjuEzokyJAnCKcr2lfCaoUlr2Dr9gI3Da44sM+Uyn1mVuCB8bk9tPZHUOGfC\nQm2pcdVhajUduRk7NaqIm07tMBQ1Yn85qX1HQZuxMJc/M4Fbv8aUpL6MuBGN5h1q8s5nu7fG7ntP\nhSbtr5Z5oc5C4ZR0s91bY8/9p+i5QTi7D1EWoyf+U9B4yWYhmYL9ejeshX6bDsmUowzZWfRVm57u\n1xPT/XrK7qil+E/YK3OCTpY7lyKVlmFoKP/OAJsNUh4BZ088wd1bwr7B3Xo3xNs3vxAfl4J2HWth\nYUAf7Nh8A841nVCxUkmULV+clA6yirBlpGbj6a1oXD3+H69Nm3cWuHhXE89IBEAodmC1i7DhNaBc\ndwwoxw9OHfxoOq//se8XxO4XPJY0HhczA1McbLZB6D5l4hjUyWP35bgaF4UFL49i9L9JOhVpUy0M\nZT+TihtLdolJyEkTOrc1Jp80oO21JbA3tYYhg4m47BT0KqtcpXN5/PXl9+03IH2PUnEDDOFq5AZG\nNSV0VAw2Owtm1r7ITluBtARXWJe8zbtmYjEKJhajNMpgYLClLU+qD41UigxUBDySdUWI/eUEK6sZ\ngEhKLisZ1RSp0JFpwMSlaHrzStP5Wbq6rVLY9YgKvewdbbD/tmJFi7QJqgKAqXbPoZub519gzZxj\nSsuh6n2r8ndJ2+G6MKnCaND/vyiOJv229LmzDj+y/ko0GsjEMDQO88XK+oPRwaG21D6Whqa41Ul8\nJ6dxmC/6lWuKebV6SpVHpMv5n8/E4h30CGc1MrWaAVOr2ZTKFjRmBM9T45xh4/geAJCZNE5sF0ZB\nlA5Y1AmXpKKKU+lYWFnPg5WVl9BLj2xuh8+Dq9sq7D14H3HxqUhKzuS9VMGfuFSVjKOLPH0gHBfx\n82siPNsE4k+85nymVKVFffX4MyVy9JBn3WmOwXB6h3JxKHqKDqfbzlLZWBkFktPlco0FeQl4dQrN\nS1CTeUpXodJYkI5wiQCmgebUCdEbDHqKJNyA570HH2DQyK3oM2gT76WHGrIzqfGDrVzTiXd8dOcd\noeJsi2ccwtieG9B7aAsM67IWS7wOk5Z74/dpSvSTROO2zkrLmDtsu9IyeteT7FdOFrp3EzWJmo05\n6YZ3LD0ro6cedWKoYPC8sjQO88Xy12eE2pqH+8m8r+P1ZUqPzd0BaHeNn4HoxLdHaBzmK7UWgyzq\n2JZFRGIMLy6D+yrKZCRKD/KngpTYssjN2IaU2PJgMEv8i2eoCDabH+eTm7mPdj3Ioo9h0FMkUUcm\nJHVTe0cIXo9TXXn7bYEXKZEzcQHfp/rCsccwEAisfXT7HfqPbo3B411RvU5Z+E7cS1rujd8n0aFU\nH0p0JGLp9lEaUZMhJ1v5OBK6g5n16JGXkd5dsHP1ZaXl3At/hdZudeS65+yPJzj744lQmzR3HnMD\nY6TmZwlNwhV1/+GmPBWUZcgwIEztSoaswjy8SvmB0ubFUNOmDADgV1YSolN/kk4Hq3uwUZDHr+tj\nZa/890wUW6cfSIkti+w0jiFp4/ACBbkPkJXiDaBQo2IXuOgNBh0gL+8FjI3pqQyrR3dQpbEAAFdO\nPpHdiQS1G1XkHRcWFKJcZeEqr6NncCoPN/hXq4EsgXUP40fWR5Q1py/VoKGhAQoKCpWS8S3mt8LV\naCNuRCs1tjy41/BB2NsVKhtPDz24V5qNsM9rSberi75j2lBiMATOOCRXHIMiE+g7nRdTKpdMX0l9\nRNvbXl1M2Pdvbjrcbha9v+eslDlCBeIMjGrAwEg+g5IsogHZhiYtYV1Kc7N16vSyETtzD1gJLXlp\nV7WVCtvWIujpA4Q8f4SQ5+LVbFNTVOVbp1u4uq0Se5Fh+L8JqrL8/PJH6vWcggJU2RIEvzs3AAAV\nNq/DhZh3SMrOhstOfr2L5vu2o8PhPbzzCpvX8V6ibYLnKyPuouZ2frGmo9GvUCl0PSpsXofhF04p\n/f7ooOfg5vjygZNze3zvENRpVIF3rSBfvon53EhPhMT4YG6kJ+9FNWejlE/1OrGb4ulul07eL7uT\nDPbcmKu0DG0iaBZ5tzZNwb0S5xnQr54fdq+6JHb90IarGO0qPPnbveoShrUIAJvFzzHi1XsjTx5X\npqR2wetE53q0m8NfH6hbBZXATWvKfQkaCwBgZX9VTZppHrpnMLDzeQYCO30FwJI+KWNnnwM7cxfY\nmbtUpKBieDdqiWkNmmFag2Zi1/Lz3yL2lxPvpU7cHaeItW2adxSX9t1TgzaS2b7nDiwtTYTqL0yd\n0IGU0TBoMjXFzuYM2Sb1uomhIT5O8savdH6qvO5Vq6PB7lBEjuV/zhEjxuPG4FG8869TZuHrlFmo\nbFdMqE2U+c3bIHr8dHQ6shcA8DH5Lz5PngkA2N+9r0LviW4GjWsLAHBz8cP3zwlYs2sM79qahfIZ\nOatdToi9qMZAB1x5HMqQr56t7Vw5+oiXXrXrsFZq1kY+3CvNxsmXAXj1+DPmD9nKax/bfiUGTOmA\nnTfmCfVt0r4mDjz0g0cVfmGo4DPTAQBhn9cK7SZIatejG/S/J5y+Oy47Gfs/31WTNpqDUilZlSA/\n57paxpWFTrkksf60Awrlq9zIMOvJ231gmLoBBqXpUE0pWpQuJ/W6ptdiaN29PpaM2o6uI1qrWxUe\nh489Eotj6Ne7ETZtu6EyHVL+Elft5DLs/EkkZmXBWMqkMyMvDw13b0GbchWww4OfIaPC5nWERgIR\nMUmcInA7Xz5DbHo66pVyJHWfNJR1w+FC5DsvqUCbz6r+8FnVn5JxNY3AGYfgu2GIyscd4UW8mybJ\n/WjTkrOY6t9L6DrRseC/Xsv6okvfRnhw7Q1adhIvYKgsilZ6nhpIf9AjlRx+7A8ACDo1TWi1f+Xh\nSYQ1NGo35rj67biuWDzXmdeB6O48Dxfer8KAhotw6JHywfXysvPqbIztrLwB073WAlx4s5wCjbQP\nopgIALjdyZ9UXQhtx9x2JfKyTqEw/zXAMIGxWS+Y2ai3CGhm0ii1GSvS0BmDgZ08Xm5jQRTWnw5g\nOryjSCPqePjrOyps4/8ofp2gXVu/WxaeQOmK9upWg1LKVy2FbzG/lZbDZrPBYBCnR77/4xu+TpmF\n9of2EF4HgPq7QxEz0Qt5hfwJ+un30aSNBVFC3brL7kSC0R1XUyInYMco2Z0U5H7iZfzIisHH9NfI\nZ+dhbKWFKGdOfWrB3dfmYHSnNUrJuBf+Su57QpeeU2pMABg4Sb7dtKn+vQAAZubGUvu5NK3EOw5e\neApd+jaixVhQBAaTgcvfgmV31DBMzYg/czt7K8L2gxv4rhZDFXCzNDU35rkBpiVnoVhJa7llKEvp\n8iUokUPVAgfVVApej89eM2kfp2gGNnMwNh8CY3PVL8ZoI7phMOS/Bjv3Nu+U6fBB6DL5+AUWdTpR\niCwDIS7WGY5OnCIfWZmHYG6h+i+/oCsSkVtSWNxmsTZ10tXNBT08N+D8Cf7q48kzT0nfv/WiNyUZ\ncDyq+0gMuONO+m8OGSV0LmgMxEzk1N0wNuCvIPZxJq5GKXgf0fG85q3xJysT0Yl/sPzBbVwdNFLe\nt8ODqjoTDVrSlxv8StxRBNTZj7mRnljtcoL3L9U4liNXkZhqLhyKoE122NsViP3+F2O6rCXcaZCV\nVWnF7rFgs9kI2D4KfuP34NbFl2jXrR49uupA1WYyTOi8BvsfLERCbAqp/ooYCaJsvTIbq70PY/a6\nQUrLKqqcffcWzcqUgYOluGGnCmNBj+oQLM6miVmQZKH9DrYAWH/5qRFFjQVSMMwo1IZ63E/uw4wb\nl5CWl4tZt8LErpcsdYd3bGhUXZWq8QiL28wzCrjHgi9NY46XG9LSc4QCnjdtu1Ek061ycS5eAvbm\nFrjyOQaeNSRXG5XF6ydfKNSKPkZW5PxfWxhaY+8XcgHviiLJtUceZLmwUU3TdjWkXncqVxyX3yi2\nMslgMrBrbRgata4G164utBo3RQWuK9KIVstkxhmEfV7LC2AWDVYeNLUjYTsgHgxdvqoDbp17jg69\nG1LzJtTIPApqngBAm907UW/LZpyMfiPUnl1QgHpbNqPT/r28tnUPH2BmeBha7NyBSsHrhfpXCl4v\n1gYA8RnpcA7ZgNDH/4ldG3/+HHoeOURaV9c9u1B7cwgifgi7v4w4cwqdBfQEgPzCQjTevhUzwi5h\nwQ2+j72gjqL67nnxHC5bNuNZbKxYn5a7diAo4qFQ/+yCArTbuxud9u/F15RkXntGXh6qh2zAwhvC\nvv0ZeXlw3bMLbXfvEnsPmohFsZ1C57ZOPwhfmopu7DAoCcN8CNiZO2V3VBNv//5BWL8RSMvLxdCa\n4qtwv+MbwMSkFdgoRF5uhMbHNGgKRdk4IKJ9eY6bSKBrJ6XkzBkqPZibLPKkOlSEypYcFxj/WvQn\nPBg4qT32BSuXbWNQi2WkPxMqdr8Wbx0h8ZrfhL2IfPQJw6Z3gueYNlLlhL1dgTFd1vKOuZzafQ9j\n53hg3tqBcK/ho7S+RR1beytCQ0FS4L0ko2L4TDcMn+lGur+6CXu/kpLvexRFVdXvjh4LAAi4c5vX\n1nj7VjgXL4GXk4R332e1aInNj//Dw7HjxHYYPnvNFJuAN9y2BdOaNsP7aZyd8da7d+Lev/EqB6/H\np387EmRcmST1EWyvvTkEr6dw0nE7h2zgtVcKXo/lHTqSkj+qfgP8SktDzN+/qFqcs9v6LDYWD8aM\ng9/NGxhy6gQO9fVEbkEBxp07i1sjRwvJcd2zC4Pq1MW7f+9Z8H3WDd2kVbswRqZd1K2CUugNBkAj\nA50l0fvsITEXJU0yEDRxN4Eudl6ZjbFdlH+I9qizEOdfKV8FVI98vEp9hINf14MNNqpY1kbvMuNg\nb6LeLGOaAlGQrCAB20aKtQkaAyf/BeBy2XVFfLVasL8q6jdkpmdj5ZT9ePvsCzLTskndU1TcmRRh\nz+rLOL71Jo4+XaxuVShjYPMAHI2QXbWZDDOaNecd/83KwsHxihVWEyQ5Oxsj6/FrLv1K42fQO95/\noFyyLI2N0X7vHtwcKRwntrYL31jc2bMX7zjYzUNedXmUtrZGo21b8HTCJABAQyfO7+yUJk3QYucO\nAEC3wwdxbfhIsXu/p6ZiQqPGvHO2yHWi96ANaPJOgiR0wiWJB9NGsfvY5B4e6uLrhNnodeYQWh3a\nrnUBz9rGxOnk89aXrkBNwF1+XgElcjSB8BPUFGtTBXVsmmGVy3EMLDcNHzNeY807xbLpkKVpe+ku\nPmS4dvoZBZrIhor6EZqEe9kZ6FdzPp7eiiZtLGgTYZ/XSk3h227iJqXH2HT8HpqM4K94j5rrgb+t\nndDJW9yV5/5LalbryUKFyx8ApCZlKnV/peD1mH0lHPe+fUP0nwRKdCJLaWvi4HZJRE2eir29e6NS\n8HrMDOe7Ol/79An+t27C/9ZNhMXE8NrtLczl1okrx//WTXSt5iy1b0Km5M9eUM4wF76XxWevmYTv\nQdvRVGNCtwwGlmKBluwMzc+Icbb3EESNIq7UK1h7QRPqMBC9+lZTLGuPqnn3IU6u/gs2UhNgTsWW\nuiawQc5aCJI48nAhJXKksfj1KMyN9ERs9lfa6jAIjbdFsosPWdb7yNbxxtnnSo+jC/UjuCiaVlWX\nuLV1qsw+p29GSb0+tX9rPN4nG6rmMgAAIABJREFU7P4hes6lVb1KhO3yIksnLvJm85LGOLd1sjtJ\nYW0XN7QuXx7TL/ML6NmammL02TOE/UtZWOJlfDwp2aWtrbHzGX/RwN7CQildy9nY4rPXTJx995bX\nduVjDJa0a897cRly6qTc8gXlCMoiImLseMLPqLytLSyMjSXKIXoPeuhB75IEAOw8dWsgFfeT+1DN\nrgQCWnfEkgc3sa6du9B1B8dXhMfqQtQtyd1xCk59UO5HmAqePPuCxg05uceTkpVbSeLSqgt1JePT\nU7NgZSP/Ko6mMKgFdW5VtsUtKZMlicW1+elq36Y9x54vK2g3GoyMDWnfUVo77zit8rWVM+/XwFRG\nulddhLsrwJ3cNxsVhCHujXDy+kvc2c5ZhGo+OhiFhSys3Hed1+/UzUgEHb6D+zunyz3e/BEd0ad9\nXQAAi8VGl2lbkJqRw9OjsJCFthM24cL6sbCzNkeTEetxY8sUdPPajrCNE2BuagzP+XvwLS5ZSCdV\n8PPLH6nprqVhyGTy4g4EfeufT5yMBltDCa9FjBsv1t5i53bEZ3CSHAheuzd6LOqGbkLgvTticuRF\nMD7i0pBhvOPj/QcIXeOOUc7GljAI+/TAQbz2JqXLCN1HJEcS5kZGeBkfJ3bPrZGj0WX/Pmx98pin\nx+1Ro6W+Bz30wGCzRT3CNAK5lGLFO/NuYZZ6DjAsRa5z0qoSZlBiJYCVwKnoyTDrAYaNcj7pVKwU\niwY2Vti2Fl8nzEZaXi4+JSehvkhhrfi4WjA17Qw28pCTHQ5LK85DwMrKizYdmQZMXIoWz5Di7jiF\nZzAU5BfC0MgA3z/EYfm4Xdh2R75VY6o/S1e3VRg9vDWGD24htaKzvMHQHtV9QNXfEd2BvnRC1S7J\niSf+sLSmP3NZwJtxmFZtJWyNVJv2VNnPSdZ3hG752gZ3h0ET4xHoeF4Q0WTEet6kW/C49biNuLeD\nYxCcvhnFm+T7bbmMgEkeYv1lyeYiKIt7/fzd1+jRhpN9rb/PXhxfMRLzQy5g5bTuEvUTlEMGKndq\nde3vgEpUVR9CUdwrcnQzszDB6df0x0cpgmCKVRUhvwUsgk7sOzMd3vOOWb8bACxyeahR+JNnLABQ\n2lhQBb3PiqdMc3B8A1u7INjZbYaj0ydYWXlJNBZUif+w/9k767AouigO/+iSUkRAVFARxFYsVLBQ\nsRsDu1vs7kbFjk9sRRG7UDGwA1sUsMACRERCOvb7Y91le2Z3Z7aY93n2YfbOnXPPLruz99x7YgcA\nICEuGckJfwh600/4ldkYPMCd77ngQxYuR1N3Q7oTSm4LXtXo6EJdlhtFGAsAsLDGHoUbC1QwuZd4\nf/R96zXHj5cqOIZCF0fVneAoi1wxu123nn5Ak2EBaDIsANra8s0zqlYoi1ErjmPF3uIsYV8T/qDJ\nsACEP/8ol2xBdPUkB+tLg6a4iZZksjNzla2CRqExLknaVhdQlMyuUluU1Ohfqw60zJYUdyr8Clb+\nK7BSZwPgv1FqGcqeAYBuOIHOZvoGKh/0rMXz4/L8djS3iJuqZU8KPeMnsr2SjEW2vHo2oCQgdfXU\nIFjbWsClbkW5ZSmKnvUXU7bD0r53Q+JOak658pb4+UN2A/pD5Hex50L23BZ7jgz7b8yS63pVJSRy\nNfrUnCt1PIMq7krQxebjt9G6oRMsTI1wN3AKmo/cjJA1QzHJ/7RccuN/peLs+pGwMC1eCChisXDW\nfwQu3H0r4Uq2Tt1b1iJttFyIXEnpRL+T6zyRO+klHVXeXRAkMz0bJgpahNJ0NMIliXtR9nmw0mSY\nUOs6QtvqqixDCqGoLWZ5oNMliUrU4b3kpaRuh5fU1y0PdLkNMe5IwmSmZ6N3DdneF7oNBnW7x8lC\ni1FbcHrdcOTkFaDXrH20xyNE3I7BotH7iTuSxMhYH6dfLKNMHgP9ePPsJobGCsddqAKFBR+RkdRK\nkW5JcrskacwOA/AvBsGoK19MAxHa1g8AbWrSY9IFJ4aBQbWhqoAQwJ5IqPpE4HdSOnxbUGc0Uuna\npel0dp2HiwIGe2FhkZK0UW14jYXeY9ug85DmKGdfWokalSxy8wrQb/4hZGTmwNfbjfbxGnpKTt8p\nLdlZeWpxP5aXosIidK4xXyPuw6pqJPCSkdQKADuWQRSqmFpVowwGDpyYBtafMWDl3hLRQxfaZU4A\nejUVq5iMGOqq17+J44a09tRU1HZ3woL+27DiGHFaPwZ+VPlH6ldCGga3pPaHRZasJOrKkbvz5DK2\nRBkH8hYRnLOxv1zXqzolyb1IlVBkhiMOxx8uRL+m1NYSUeX7sTykpWRS/l4xEKOKBgERGhH0LA4t\ny93Qtnkv4vFObYwFAMgpKIDD7vXchyrjbTsBHQa6I/jdOm5b1LNYBG28rESthBGXJUlS9iQyUL11\n3bE6dcHEVEK1sbDjfMnKlV/G2oxymYnfUuS63rNTHYo0US1MLdQ3VTGDbJiXNqEleYImBUKfP/IA\n3s5zGGOBgTTqtXRdQlE3d6Qp6/mLmQ2a2RmBy05jwDTVDSynCiNjfWw5PQmTe26lRB6riAVv5zm4\nHL1aJVbgu9ddiNzsfEpljpzVEY7OtsQdNYzRczvjv9UXKZElrztS41bEVaj3fZ6KhOzirDatyw1D\nU6te3OcPkkNw6+dB7vP5NfhfWwErD2vf9RR5fuXbzuhkNwmX4reif6VleJ5yGTEZjzDIYQ0qmsi3\nuHPizWpsmHYU3hWmYGfYbDi4KLe4JYNiCIlYTMsEnyNTHXcbetRdhJxs1a47xaC6MAaDhlFUlAxt\nFYvJuHP+Geo0q6ZsNQDwF2wTLN72MymdkjGcapSnRA4vHV3monq9ith4fDzlsslC1+parxEetMhV\ndXoMbS6XwXBk63X4TmoLABjfVb5q9Ut2Sa5Cfeb7WiRkf+RO8jMLUmGsa87X59bPg5jreg7aWjq4\n+GMTVr7tzGcUrH3Xk3s+qyBN6DyghVnVT2JdVG94WvuiZ4U5WP2uu5DhIS0B04NwPYRd9Gmcl3Q7\niIwbk3pz4ski9G1ET8Cyt/Mcdp7/50tpkU8Vvd2WIDMjR9lqcPn9Mx3DPFZIXcBSXFyCN0G6ZGni\nGeQNlpb2+sz0bPSuM1+ovX4LZ6w8NEbq8emGMRjUAN6g59Pv36FnNVfuufgfwqtlduXjFaabINo6\n2vBxnYVVJyYhMz0b22YfR9TTWJVJq1ra0gQr17EnID378+ezNzczkrkWgyBUBkBziHrxFd7Oc2Dv\nWBZ7rkynVLYk6NyGV8dVOlXh6LZig+HrxySZ5ZDJXa+nbQgAKGIVQFtLFya6FnznBSf/nctPxavU\n63znXc1bQFuLPRbH2DjweQaGVma7Wda1bMft37xsPxlfjTDXTjymTBaDemFqboyL71ahs+s8WuRn\nZ+Zy749Dp7WHz5hWtIxDllP77iJw7SWl6iCOjNQs9K0nXfFWZeLtOE1mY2PJ3pES+0Y9j8O0XlvE\nnn9+N4YrT5UCuBmDQc2wMeGvYq1M40AUl75vRffKfpjoVTwRVBVjgcP8WZ0RdvMtZcaBOOgwGgDg\ne+wveDvPQT33qli1X/KNSVZYRSx0rb0ABfmFtMgHgMCr6uVqRweenerg9qVXStXh7CtiH+bOdlOQ\nmpeI1e+6AwCmuRyDkY4pX5+VbztLlPEu7S7epd3la/uRHS2lttLD7BKUbHR0tKGto40imrOIHdh4\nFQc2stOzDxjfBoOmeNE6XmRELFZNDcKf5Axax6EKQWPBwdkWc7YMAgCsm3oEn6OE5zK6ujoYPqcz\nOg10FzrHwbt/UzwKi6TkfThwdwGGtlght5zGrV3Fnju44TKOb7su9rwg0houdMIYDGrAtIbN0CHk\nAKqXscaZD+9UPqbh7OcAZatACN3GAoeA4PHw89lBi+wXDz7yGSQ+Y1ph6LT2MsnKzc7HkNZrkJaS\nSdyZAi5HreYr8ldSmbOxv1wGQ1FhEbR15MtdoUPyel+H4kD3lW87o6X1YDQr25fbRuQ65G7VB63K\nSXZ90gR+JaQh7n0i3j6LQ9yHRLx9Goe/6dm0jSduUcLesSwcqpVD9XqV4OBkg+r1K8HIWJ82PVSZ\nS+9WYcOcEFw/I39xTTIE7biBoB03RJ4r72AFl7oVUa68JYxNDKBvqIe8nHxk/c1F8s80fI/9hS8f\nk5BJ42dG0fTgSW1cqZoNdl3lLxC5/TJ7TsO7Sl/DzRHrQyYRyp68qg8mr+rD10bkpiQOwXTLLBaL\nVOzg2PbrCPsA7Ps1r7Ewd9tgeHSqK7Iv72tQFaOBMRjUgMn1m2Jy/aYAgIDWmh84rEm41K2IIVPb\n4eCma7SPFbz7FoJ3C6cRNrMwRmlrMxibGCA15S+SE9OQlyud/yiVWJQpxRgLPBga6csciLh/4xVo\nays+2d3Eavuw5+NErsFgbeiAkK/L0afiQpH9rQ0d8CA5RG0Mhj/Jf9kT/veJePec/fdP8l9lqyUV\n32N/4XvsL9y7Gin1tVY25nBwKodKTv8Mjmo2KO+gWrFx0jJ9TR+FGQyS+BGXjB9xycpWQ6HkZBXf\n3wSNBV72hc/H8JYrAQBvn8bSrpcoxizqjt3LzgIAetWch9NviTMCfnmfyD3uN6Gt2H6dqhYv9gbe\nnIvyjmXF9g2N3chnNGRm5MDE1JBQFzphDAYN4PdvX5QpcwQAkBBfGbZ2n5Wmi7ftBJVzQRLH1euR\nWL2+2N/TztYCQfupDzTqN641ol5+xZNw+t0vRJGemoX01CyljC3Iou2D0LRtDWWroVKceblMZte1\nk4F35BqbbAyJKHcj3h2FUVW2YeXbzkL9OH1GVdmGC/8CocXJUCRXQiKwecEppYytDiQnpiE5MQ1P\n774HcJewP6Ae8UihMWuwZOxBPL4VpWxVGERgW6mMslVA92EeXIMhOyuXsP+V4Ed8z4fMEL2oK9hP\nkrHAwbWBA949iwMA9K49T+m7DIzBoAZwgp4ddq+HFoBYAZckC4viG7UyjQV1Ijs7D6vXX0LLFi7o\n7F0HUTEJ2HvwDvoP3YVjB8ZSPt7S3UPhPzMYN8+/oFy2uqCnr8sYC2oKmYk9UZ8u5aeiS/mphNeK\nO2ZgoIIlu4Zg3/pQhOy5rWxVGNSAgNnB8FvrI/b85jknuMeSKsjz9qvh5khq7FWHx6K7q+rU/tDo\nwm2aRBGLhblNPPHQV3gy+yvJGwCQ9NMd8T+oT+mpiXj3CED4ldlYMr8b3Oo7YFD/pgi/MhsJiWm0\njTnT3wd9RnnSJl+VKWVmhPNv5A8mY6AOToYlBoaSxvAZ3rQUT2TQDDoOaMo9libL2oG75LJAzdrk\nS6qfgZFqxRwxOwxqgIO5BSr/twFxY2Zgyo1L2NymE995G9s3AADrcg+UoR4fY5f3gbftBGhpacHC\nij+jU9Br1d+yppvhM7zReUATDGklX0VpdaL74GYYM7+LstWQiby8Aujr03+bpCujliQGTmQMBoaS\ny5G77FSrmlS9Wd15fjdG2SoAACat7IPLQQ+5zyMjPqNmw8pC/TJkdPUd0lw9q2szOwxqQHi/kdzM\nSILGAgCwWPlITKgFAMjPf6tQ3QTZtTAEADu7wJ9fGXwPBjbWdpZq4e9LBXuvzVRbYwGAQowFdaFD\n3UVStTMwqAMl5V6sTJzrVOQed3MRH/Q8f/Bu7nEVGgqgSkMZm+LClDP7bhPZhzdVbElI5MH8GmoA\nmZn7ubsMrCJqqhXLiroEPIdfmY2WHYRX+U8enaAwHUJj1mBwy9X4lUCfG5QyUeQPse/4vejZqR7y\n8wuRmpaNMUM8EBb+Dh9ik2BspI99Qfdx5/xMAIBHV39sW90fgUfvYcuqfty2DUv74HDII24bAGRm\n5cGEJxXl9TtRSErOQFFREQKP3EP42Rnw6OoPQwM9+C/pjUlzj3HHkZbgx4vg05ieqrSCzA0YQJms\nKy8VozMDA12ExqzBPv9QhAQycQ10sOnsVG7Gn7zcAu5xtdoVoaOrjajncXz9S5kbYdtFxRUnFcWR\nh4ulSs96+dMGGrVRDZgdBg1AX6829zi/4KMSNVEvwq/MRv8+jWFiYgC3+g4IvzIbVmVKEV9IIYfC\n56J+cyeFjkk309f0UfiqXW5uAXp2qg+f7g1x9BTb59SrpSvGD2uJof2Ei/7UrmHPZxgAQMN6DkJt\nJgJ565etv4gBPRvBt3cTvvZrIVNRp4Y9GtSpJPNrMLMwlvlaafHoWHzP6NlsJRZMOIyhnQLQtTF7\nq/zyyQhE3HuPhRMPY8+/YlQcVs06gfs33nGfC+4wdKi7CM8ffcL9G+8QevoZt41VxCLcjehQdxFS\nUzL5+vVrvRa/k9IxuudWvn6/k9LRs9lKKV85g7rQvuFSLJhylLDfySPUuOIOn+nN7DbQiKgMP+9f\nfxUyFgAg5KXqfa9zBVJfLxq+R2ZZobEbZXooG8Zg0ABy8+4j/ocd4n/YgcVSTOEtcczsLrpom7ft\nBO5DlRgzoiUunZqK9avEZ0Ggm5V7RyA0Zg16DW+hNB2ooEYDB4TGrEHbHg0UPnY5EQGMHl39Rfa9\nc34mPnxO4jvPu/tAFjsbC6G2UiYGpK9XFo1bV+d73nOQO1ZsHwSvrvXQf6QHAKBj74a4fuElXkXE\n4dSh+9y+M0fsw7x1fdGsjfhKpgBQv0kVNGvjis3LznHbtLS14C4wtiBeXevBorQJrrxcht4e7Pzn\n7brVRxlrM/x3mr+I08B265GVSZz2kEF9adyiGmGfPZvDKB0zNGZNiTMcNp+cqJDX3aFf8UKLc52K\n0NXTgYGRPlp1q4+giKUqMzHm0LRdLe6xYLaiCJ7UvBfek//dAICvH37Kp5iSYFySNABT0+kwNVXu\n9h2HyMcfuUZBwMUZcGngiOldN6CCkw3+u7MQ6ycfQpeKk3Hh6xal6vnqzTdMmRkk8pyiqkALMnJ2\nJwyd1gFdas5XyvjyEHR/ASytFLs7w8vrt9+5x4KVi3Ny8oX6O1W2hm05c6F2UW28lLY04R5/j/8j\nrZqErD4wEnOHBlIul5clO/mLp3HeL20eH9wOdRdxXY14V/v99w7nO0eW0OdL0aXRMvgt7iaxX8L3\nFO6xrb0lAIisTsy4QZUMqteqIPH8GhpraYTGrMG1U08RMO8kbWMom5CIxShlZqSQsbbOD8GV4+xa\nBHvD58GukuoXAly0exgptyRdPR2p5C4ZFYh94er3O88YDBpA6p9psLBUHaucE8fAKeL2LuIzxq1k\nV4SdsWUwboSQT1NGF1NmBinNMJCErp4Od5WnT8Ol+JuerWSNxGNiZoSTEYuVrQYAoGUzZ+7xrTNs\n45mza2BoqCcyriB4z2hSbbycPTiee8yRySt7+RzJE2Ii6jatKtf1VGFqboQOdRehZn1hF6srL5dx\njYaZI/YBAAZ6+WPx5gGo5io6UHFPwFXk5xUgYOk5uNSuALsKovOVOzrZcA0USUZBpwZLUFhYRNiP\nQTVo33ApLj1ciE5N+bPDuDWtgpVbxKeYrOpsI1aeuOdXKbwntevlhna93AAAgzxXI5nGtNuKQN9Q\nDyceLYKBkZ7Cx+ZkHdI31FMLY4GDkbEBt4CbT/2FCH6+nGv4AMCSvSNJyRk5rysCV50HACR8+U29\nogqAMRg0AGOTgcpWgUtpghVaVaEeT9YGVSXk3w9frwaLkfVXdVwvrGzMcfj2XGWrwQeLxVK2CpTR\nvndDXD0ZQYtsSytTobb+/2qD9OepERIi4v/LOzHnHPvvHU6qX/y3FL4dC3GT/AlzO2HCXP5McP1F\n1C659GyJyOsZVJdOTZfj6CU/WP1zH2zfcCmePvwkkyyOUcAxFKg0EsTBueetn30CN84+p308qtDV\n1cHWM5PgUE208aVo8kTs+Koyp9+u5u4ypP9hu3xvnltchK1xa8numRx6jWrJNRgA4PqpCLTt1ZBC\nTemHiWHQAH4n91K2ClxSfrJXYNJT/gIAhrgtBAA8uPxSaTqJYuRQD7TssFbkQ9U49WwpQmPWoKuv\ncPCuIpmwuBtCY9aonLGgaUxdSd/3Oei+crbBn9x5j6KiIlw9+xxaWpqffpBBNFY8sUaDx7SU2FcR\nRoAszFjbF6Exa3Dm5TKULitsgKsCllam3JiEC29XqoyxwMHbcRoeXnujUQs9ZJizZRD3eMOMYzi4\n4TKp62b1U43sk1oq+g9TSaUYyOFbbx4sy5ph67XiIKFRzZfh+yd2oM+Wq7PhVFu5K/wtO6xVSZck\nadi25AwuHaPHvUtPXxdTV/ZC6671aJHPoHza99mEqyFTla2G2uJdYQrf89Bvm0lfQ6YvlciiK5W0\nb7gU0xd3Q7vOdbltr5/FYebYg3IZBorcYSDDqb13ELiO3CSQCswsTTBwQht0HaTcxSQyRNyKkjqz\n0LmotdA3JHafSvrxB7ExCXgb8RlxMQl8AckNPFxQqVo5uDZwhIOzLco7lpVa92+fkjC6LdtVeOKK\n3ti2gB3X0m9CWwyZ0VEqWb1rz0NmRo5Qu7WdJSysTJH6OwNJP4Tj4ygIBpd7pYZxSWKgnCMvVgm1\n7bmnWsWdRg8TdnNQNyYu6YGJS3pwn796/Ak3z71A+MWXyMstIC2nfjMntPCujQ591Gt7lEE+RAWD\nM5CHM+kWnIxTwdLhe7B43yhSfYc0XYqDDyVPmOnUlSw2tsJZxTSNXiM80GuEB19bxO0YXDr2CE9u\nR4NVJP1aqL6hHlp2qoOGns5o3r4W8QUqiokMwdXdqs8WO1HmncRL4tmdaDy7E43TAjU2pJmAV6hi\nzT3mGAsApDYWAODk61VYPfEQ7lzi97pIiv+DJBoSaVAJYzBoAFlZwUhLnQNbu1gAQEbGZmSkr4Vd\n+Xgla6a6/Lf/Nv7bL7pIj7ruPNRpXAV1GleB36reylZFrSgsYqHRyu3IypNuAm1nYYZT4wbCwtiQ\nJs3o5fYF2QrMMcgO2ZX9R2GRpGUm8WSWYlA9Gno6o6GnM3FHDSX191/0dyteMOw00B0TlvcS6ZqY\nkpSOgxtCce1E8c65t+M0lUq1yqGcvejEDWSYu20w5m4bjMBV53FqT7jEvr1GtcTIeV1lHotKGINB\nAygqSoGtXSx+J/dFGasTMDWdAiMj+bK1aDrqahQwUMed97EYc/iszNfHp6aj6eqdAIAaduVwchx1\n1ZMZGMiwduIhZavAwCARXmOBaOJf2toMfmt9MHZxd/SsITlWrkIVa4UaEnSMNXJeV5UxBsigtgZD\n3I8UDPDbj/nj2iPyQwJmj/YSef7BCXrqEwRfegafToovUCUSFju9YG7uPaSlzoe5xUpoaantv1Yq\nvNxXIOzBAmWrwaBGpGRmo9maXZTKlNdY8OwiXPhHcAeA08e0lCEy/ubA3s4SR3ePFHmuX4+GOH4m\nQqQs3rFE7TJ4dvGHq7Md3sXEo0J5S3z7508rSp9a1cujsVtlBB6+K1GmOPYcvosjJ9gpCkuZGODv\nv0JssozFeV021uZITEqTWhe6iI9LxogW/OlERe00CLoLSYo7kKavtIhzW1J03AMZevRvgjPHHhF3\nVDJV1wXg4yw/ymS1rOyIwN7dRZ7jIGo8Z/9NKPwXt7qhUwd0qyG5kKK8PLsTzT1eeXgs6euMjGUr\ngJlZ8BdzXo/B1vrCFcInPR/I1z7pOTu7ZGn9skjJ+wUAIq8jgiOnjH5Z/BYjh9PHyqAcknN/ytRn\n0vOBcDCpirjMjzDVM0dGfprMOsuK2s4qxy86jgu7x6KMpQk6taopdN6hfGnajIXkP3+x+WC4yhgM\n2jpWSIivwnVBiv9hBwCMSxKNqKKhooo6qRrPvvyAb+AJ4o4K5OPnJACSJ7eeXfzh7GSD/zYO4mtL\n+JnGV2zu4rFJOHf5JTbuDMPtCzPBYgEtBapXc8YRZaRweBcTLzQZ33P4LkYNYlcjXxVwGRbmxti2\njm0oDejVCK27b5B6gj5qUAuuTN6xeCEzllevANSrXRGbVvrwyVmy9jyWzFbuCp6dgxWpGAJBg0DS\nBF1QHlWT+c6OfkLyHodFYsnwPSjIL5S6QBXdjJ3WHmeOPaKtDoM0rLgRjlo25WifhEsyPDjneA0H\nXmJmTpV4nmp2Lyvewa3fnLhqt7yY6IouHro+eiFK6RZntJr2ciicTF0x2ak4a9zUF4OxP3YrhjlO\nEiVCIpIm7WTGIqtPXOZHISPiQvwJdLHrK7XOsqB2aVWPno9Azwl7kJqRjS5jdsG97wa4993A14fT\nJtjOex4Apq44iXZDt+FrPL8PaBGLhR7j/kPrQVsQdOEp37nZ/ufQdcxuvnGUjbGxD2ztivNZ25WP\nZ4wFBgYBNobdUzljAQBGTDmIVQt6EPbjNRY49Bv5n1BbV+/iTDSyZjANF1Ho7mhI8Uruw4jPaNao\nCve5YHVtKiEzVl5eAZ+xALB3Gm7di6FNL02ksKAIA/068LU19mIvyHWpTFzxVhxXIxajdgMHvrba\nDRwomdxfjVjM91AWB569UNrYqkr6nyyFjzmg0ijuaj2HL1mfsbp28a5yflE+3+QcADbVO4Tnf2Tb\nrbr+86LYc2TGIqvPlvpH+J43Kt0cYYnnoSjUbofBs5ETPBs5oe/kvTixZYTIPg9OTMevlL/oNna3\nWDke/QPg2cgJLRs7IeFXOirasQNYnryKw9SVpzB9RBsY6Oti1c6rqOdqj+pV2HmMJw3yxN2IjwAg\ndnwGxVJQUARvj+LMTG3a18KcxfwxHL+TM9CvK/8qnKjVeC/3FUJtvP14z/Mey7KyTzQWh+AjDxG4\n4wZfW5v2NTFncXepdFoyNwT3bxdPoLS0gGv3+ft4ua/AmWszcPZEBA7yZJWQ5vV56bAnbmGFwaSv\nUQR77tBTDK22vfw5zps1lr7Cs72dJb6LyKpBRZkDUTJ4M3Af3T0SXQZsxazJ7Mll3xG7YS5DFhQA\nGD/zKN5Gi1/gIDuWpB0TBvL4TvMWamvg6YJnt6NF9GbgXa2ffukKpl+6AkD0TgCnrxaADwLnOW5L\n4tyKDj9/iaXXbwGg151Ljl9fAAAgAElEQVSo8/7DiP6VLFIHXj3dtu5EanaOyD4c+k1oi93L2bsM\nI1quwt7weaR04BRKk4WmZVoi6Etx+tZXqaLv+4JGhazYGJbHuR/HcO7HMfhWGoPGZTyE+pAZi0wf\nLYHMqFpaWmApsAqB2hkM9jYWIo8FKVta9NYUhwPrBqFyBeHy5DPXnYWBvi56tWev0nUWcHciOz5V\n3IxjZ1do7UB+pUyWa6RFEWOQxdtjFXdCO238Idy4+kbIYOjXdTPOXpsJk1Js30gv9xWIfvsDLjXK\nc/t4ua9A9z4NMcGvPbftyL67fHI441Dh/uPkYosd+4qNTi/3FUJyw6+/Q+COG5i3tAdaedUAAKSn\nZcPMvHjCREanS+ee4/7tGCHjp12zFUJGw4mjD3Hs4H2ZX19YYTDXaFAV0rOF816LYlzLxpjcRnJO\n85z8AuwMf4z/7jwBABwb3U9u/WRBmSV0zEwNYWluTBgPQQTn+uunp0Hvn7uL4MSf7FiqEK+gCSgz\n9ao6wusGJGkizxvHUHVdAJz9N3FdhDg4rQvASd9+qGtni9W37vCdG1S/LgbVr0urO1Hgk2eI/pXM\n1dNz117U2LgVb6fxu+k4rQuAT51aWNG+LZ58+y5WXvfhHlyDIf5LMhYN34NlEtIF52bnobvrHL62\nSx/Xy/RaLsaHoLNdHwR+3iTyPFW+//Nd1wEAdn5chyNfduPIl91CssmMpchYBFlRO4OBKkQZCwBw\n++hUrqtR8wZVsG62cGCRquNmG4zIX7Jb6OrGzAXFPsobdwyGl/sKXL/yBm07sHNWc1bdOcYCAOw+\nNBpjBv8nNCn28q7N99x3OL9/NZXwGgsAe+IvuOuwctFplCplyDUWAPAZC2TZtPYy6tSvRDgeAKmM\nhUeXnmNhV3Z1bEk7Cu31+6OosAhV6zlg51N2f45R4dKoKrY+XMnXxpHnpePDlbt10j5M2jocAPDm\nbjSmtVzMNy7n2uDvu1Da1pJv/Mardkp8HRcnD0GVsuTS5Bnq6cLPqxn8vJqR6k+GjTvCMG28F3FH\nHn4kKDdn95+0LEom6WRkUDUWAzGqGNysCfDuKCxs0xLLb4QL9Xk3fTL0dNiG89xWwivVdLMm/A7f\nbsHtsSNEGii8ejaqYC9RplvL6ngazi6kFnErSqrdgwnLekFbBndHj7JeuJp4Fp3t+gBQzGR8XNVZ\nAKjbuVBF1C6GQRE8ODEdt4Om4tHLWJWIUZAWM4O6cLe/qWw1FEa7jrWF2oIO3hNq46zge7mvwJjB\nwr7fQ0Z5YsLwvSIn0cpkw47BlMjhNawkUdbajLTM5X03IqwwGLtfSHYHOZm4B2GFwchIyeS2hRUG\nI6wwGNFPPnLb2gxswW2XxLSWi/n6cQyLsMJg+NiTz8bBgayxQAc71w/EudCXEvvo6epgxJSDQu37\ntw6lSStyxCekUiov9Ib4+gOSxjLQ10WbHup3r1ZFrgQ9VLYKGgmvM4mFoejaLZxJuDKpui6A7yEK\nafRcvn8Ulh8YLbUeobEb0XmQbIsyfSoMBQDs+SQ6Faqetj6mvqDmd5UIMmMpUh95KLE7DETo6erg\nzjE/tBu6DS0Hbkb40eJtWmMjfWRl5ylRO+p49XMMUnLuwtKwCeqW2ye239OEPvibF4NGdhdgrFdJ\nbD9VQEsL+J38l69NR0cbV+5K9p/0HdYCvsNaYOm8k1yjgc6sQ5wxGjSqjHpuDrC1sxTZz5GnyqQ8\nWPNk05GERWkT0jK9BrErZleuXVFiv4yUv8hI+Yt119jvZ+S9aCz3CUDwD/44ozmHJsJLxwe9pnbC\n2A38N9CigkLucdfx7SFI/MdEAMDBGP4VUqLYhajl1KQ7lBVXZzvUrVlByBWHd0X9+plp8Oziz9fn\n1IFxsCoj2fVSkGkLTuDZqy/c57K6FMV8YL/X/Ufv4Wuv7FBWKiOmdg17Ph2aNqws01jXTvmhTY8N\nQu/hCN/mGOzTlLQ+qsSfX+mwLCvZeHdr5Yqnt95ROu7m2cfRYYDwe1ZYUAQdXfrXGA9/aIJBTtIF\nn8pyjbQoYgxVgKr0r7y4ebpw6xjcvfwKV4MfI+bVF+Rk5sHU0hhuni5o07Mh6jSVPpZLHGZ6Fnid\n9gwram0TOrex7n5MfTFYaDegs10ftLeRzqtEUIa2Fr8xRWYsKvWhE401GJJ+ZwBg+/lKEwTo3ncD\nSpkYYNbItvia8Ad/s3JxZie/dbxhbk+MW3Qc1+9HIzk1E/0UnF717tdGyC9KE4of4MQVcBAXX3Az\nzhmtHaJxM86F25aSff9fu/A1vHIf/WgHLRXbmMr8m8vnbsRiATVr82+TFhYWkZa3+F+l5A4tVtGW\nqnTfbnbwGhnZd8Oj4NFK/gC3Jw8/orE7dTdkALiy/xam7hqFTy/jUKWug9h+MU8/oVW/4tWimW2X\nITQnSGRfjivS2A2DYWFdbORcCryBKTvF+7/aVRUdfLzl5gOCV6F8Nq8mjoOQNKEXPMf7nPd44wri\n9Htk4gNGTzss1LZxRxjhTokgW9f0J+xDdqwbZ+hJoy2K6T02ITY6Htl/c7ltHN//yq7lsf3qLG77\n2Dar8fXDT7B4gk68K0yBjq42qjdwhP/JySLHGFB/IarUtEelajZ4++QzDjwUzgC0/NAYeFeYAu8K\nU9CqhxuyMrLx7HY0LnwuXlmVRtfQb5u58rS0tFChajl8/Wew7bw+Bw7OtlK9TyWNnIICZaug8rTo\nWActOtahfZyVtbZLPL+pHjVFD8m4O5EZi6iPqHF8K42FbyXpd9RlRW0NBqIaC9ZlTMX2kXSt4Lnh\nvYVXWuq4lKetxgMRkoKNOW2ChoNoOS7wqPgUutqmPG3OQkbDzThnGOhYo1mF4uDfN0kT8SsrTObX\nQDW9vDcI7R6s3FA8ERk2uiX2/xcutdwrd+fR5p50+ZxwCr6hPjtE9l0+/xRpo4VVxIKWtmgLecGM\n43xy1i2XPx1bzykd0c1iKAYv6cM1GDixBLzxB7U9XNG99DB0HNkGo9f5IjQnCAMdJ2Dw4j7QN9Tj\nyhvnNhupSenc60IS/kPvciNRta4jAl+LdzkJKwzG3nnHcGL9eWx9sBLV3IpXqgskGIsdaxF/VxjI\n8eLNV40cSxQbzkwl7vSPXTckV6wVRei3zbgW/AgH111C9t8ctPNpLLHvppnHEH7uOSo62WDermEy\n68qR9+3jT6wefwBf3ieiZbcGmOrfDwZG+lK/jtOx3dG50mHoa5sCYIHjmMO7Wh/2fQK87CVP7gRX\n9wtZ+fieeReVSrXGsU+tCPUQtTvwOf0yKpt1FDqfV5TxT1/pMNLTw/yr1/H8RwI+p6QgxJfaZAg5\nBQV4+v0HAODR12+wMzdD/fJ20OFZEf2c8gfP/vW5+ekznMtaobxZ8S7Vr8xMxPzLgPTo6zc4W5eF\nk1UZrgzeLE1Vy5TBx9+/ue0MDKq1VMwgkReJbBcNqjIT6RLcFDPy3gIAn7EAALWshbf4lElhYRHO\nhkQgP79Q5AR/wNDmAP5lEQp9jYd332PUwN24eOYZXz8v9xW4eOYZ8vIK8OjeB3i5r4B9RfG+7ZNH\n7QcAPHn4SWwfcazfzs6p/yGGvXo3vP9O/PiWItSPYwi1a74SD+++x4unsejcao1Yue2ar0RWVh5i\nPyXxtXMMhZmTjiAvrwDXr7xBWOhrtGpbQ5QY0uRm5+Fc6gH0mtqpeKx/sQS8cQhl7CxxNmU/Rq/z\n5bYdjd2O9kNb4lJmcW7pnU/X4thX/gDlkz8DsebqfFSsXpzRihP8zMuIVf1xNe8Yn7FARK8G8r3+\nkszWPcVxUpfC3uDr9xTMnCTsKqZuY6kK7Xya4Oiz5dh7dyEGTO0gse9U//44+94fWy5NR9N2teQe\nu0LVcthxbTYuxQVg9rbBMhkLANCk3BwEf/JCbmE6eL34tbWK1yoTs5+JuFIyF7/6olKp1gCA/lVu\nEfbvV+WGUBvHWBCkWF/peOM3EQvatMTZd1Ew0Zft/ZJEzY1bMfTEaQBAyJu36B90As7+xRmAqq4L\nQLvAA5h7hb2YN/rUOXju2ssno+n2//hkdN5/mE8GwDYOurm64EtqKtpUrcIYCwxctFjKzM0nHpVU\nShmQdTMSdY0klyTbUj1R3Wq1xOse/+iIzPxPEt2UVCGtKgCcDn6CPduvY+xkL3Tr3VBknw/RCVg8\nNwSsIhYGj/SEd5e6Qn1mTjyCqLff4VjFGmu3+MLYWPyNf+KIfYiL/YVBwz3g4yu9n3RifCqmjDmA\n0mVKYWvgcOhK8A8+eewRThx9iIKCIsxb2h1ujauI7LdrSxjOnXoK9xbVsHBFL6Hzu7eG4cyJCLi4\n2mHT7qFS6ywIb+YiVaX6QvFpCF8tngx9XeUHGqojB48/xKkLz2Cgr4tu3nXh27eJRozFQA+8q/hH\nPjaDb9X7Qu2inotqOxvXG90dTkq8hpeComzoavNnl+O9RtT1Z+P6oLtDCOkxGBhUHLkr9KitSxKD\nfBjolCPsk5UfR78iFNHTpxF6+jSS2MfJxRZBZ0T7C3Pw3+Yr8Twv2/bKN1G2sbNA8AVy7gK9+zdB\n7/7Ek6Sxk70wdrL49JxjJnlhzCTp0ndKQtWNBSIYY0F2hvRriiH9FBNQrMixGKjjc0YoKpuyC8Hx\nTthZrOIEBlaG0u/ydal0FN/+3kaFUp4I+SxcaE6QY59aiZ3sp+d9EdneprzoDDsMDCUVxiWJJEX5\nb+S6PjvRVS6Z0sQnUIWRnuTMNwwMDAwMDOIoY1AdZ+J64ujHFuha6Ti3fZDTI4R87oCwH5PgXYHt\nNvM7JwqHP7AXRQ5/aILcwlTuMecv51hHywCJ2U9x7FMr9KkcSqiHb9X7OB3bHaHfihc4mpabhyMf\nm0Ffhz8TFUff2IxrfO2DnB7h6MfmCP02Utq3gYFBI2BckkiS92c89C1FB6XKBCsfealTCGUKuv6Q\ncQUi45LkYD4OlS2nCrXzXpee+wpPE/qqhUsSA4M4JLkkKTulKgMDAwMDgwKQ2yWpROwwZCc4oiDz\nEAoy9yA7wZHbnvOzEYpy7yM7oSpf3+wERxRkHUVB5gEAAKvoF8DKZf/lITe5Kwr+7kLOL3aWhsLs\ns8hPX4WCv1v4xuHI5YXFShUpk4hWDuyKiZG/JLvWUIGZATv12YPv/FkoPv6RXKSLgYGBgYGBgYFB\ncygxMQy6JuwMQwVZ7MwtOUlNYFjuCQBAS5ff9cbINpbvuZZ2WUDLgP2XBwMrdlpK3VLsPLg6Rt1R\nlB+FgkzxBdCIZBJeB220dojBzThnPMhtza3o/CPjGGJ+L+Hry+u+JOtOAKdeA68sbS3pMkCIW+EN\nGuWDehXtJF67M/wxttwgzqPfv1EdLOrSWiq96Cbk6RssOnedVF9tLS3s9O0Oj2oO9ColgKj/zdpe\nHdC1Lrm6D4cePMfq0Nuk+hrq6eLOrNEwNTQg7iwjvzOzcPTRS1yP+ogPP38T9pe0+0AGRexQFLFY\nGHHgNB59JpdKtEsdF6zrTezXTTXi3kuy75G0n6WNfTuhlQv5jFgcpNWz6eqdSM3KkeoaQRacDcOp\nZ6KrWA9v3gAz23uQkiMPkT9+YlrwJXz7kybVdX3camFZt7Y0acVGns9Oj+1HEJ1IbuFtRHM3zGjf\nQirdFEFuQQE81+1BWrboz5k49HR0sKBzK/R1kz8zlqz4BV/Clcj3pPq62JbFmfHk4wTVjZoz2Z/j\nSH/N3LkuES5J2QmOXCMg51crGJa9hZykpjC0fsjXJtiXFzIuSbzXCsoRJZdyNyfaYHErPTcufwlG\nutLFNoj7MXBzKI/DI0QXkhpz+CzuvBf+PxBhVcoEd2dLX4aeSuou3YpcOQr4ONtY4eyEQRRqJB5R\n/5s21atg24CuUl8nDQa6ung0bxwM9aRfs1gTehtBj18hv7CQuDPN0GkwXH4Tg+knLsslQ5EuV7JO\n+nrvDMLb+J9yjb2xb0d4k6ypIY2eZD7njRztcXB4H6nHIzO+vCSkZaD1+kDK5M1o3wIjmrtRJo+D\nLJ8ddTD2iei67RCphQ2yGOrp4sWiSZTJE8f7n8notu2wXDKWd/dC7wY1KdJINSBjMNx6+wnLz9zE\nzQXii5DSBJMliSwFmeybJqsgDgBgaP0QOT/doG+xmdsmicKcUBTlRUBbX3TKTg5FufeQl76QlE5k\nZSofLbjZniTuJiVP434ItdVcvBmFReSrMguS/DcT1RcGoErZ0rg4eYg86klFYVERai7eTImsmMRk\n7o+hMn7UbkSJrysh7480B3kMqoMPnlOig6oy4sBpPPgkOnOLtHD+XyFjB6BmeeLMaIpk7JGzuB0j\n/aKAKOaevkbaYBBHTGIynG2suM/JftafxH5H9YUBQt9Vae8J1RcG4M6s0ShrakL6GlGcfxWF2Sev\nyCVDHOuv3sX6q3fRoFJ5HBlJXDWcDqi6BynrHvviazwG7Akm7igDOfkFtL6uA/efYe2VO5TIWng2\nDAvPhsG7ljM29hVdE0MTmXTgPKzNSylbDZkoMQaDrslIvr8AYFjuKQB+FyRRuwuS2kX14exWEF1P\nRmZJovna3XIZC7x8+pUi8kecDqic4AmiqNdABqp+qDnIsrug6VD9HnPosysIS7u1VarrAi+rLodT\nZiwAwBW/YcSdCFh8/jqOj2ZX55Xl//DtTxoqWJpzn8uygOCx7j+Zv+/v4pPQa+dRma6VlmdffmDK\n8YvY3K8zrePkFhTAQLf4PkHH90OR91i6vt+KgC7dQ9/E4O2Pn7hK8jt86M5zrLvA77oouKJfa1YA\neJ1nmjpVxJ7RwnWJiKg5MwCR/n4YtisEEZ++A2Cn4n6+WvoY0h9/0rH6LHtumJT2l7sbIUp/VaVE\nBD0zqD71l2/D779ZlMul+wa9+/YT2owFDqrwI6MKOmg6dL/Hi89dR5sNe4k70oxv4AkcfviCUpk2\nZvKv2L36lgAAePnvr7S021gcu/Y1JVVufaQlOz9foeNde/sBM0Lkc5kjgjd+jc7vhyLub4q8h96e\nRa27i+sienX/mpJK6v3ZeysC6y7chq6ONjYP6YoJ7YRrs6Rl5YDFAhb2bI1r80bAztIMDz98RVGR\nbJ7uzRbvRMSn77g0exh2juiBvIJCvsk+WcbsOY24X38AADra2nAoa8l9qAslwmBgVvJVmw3X7iE7\nj74fO7pu1NUXBmDT9fu0yBY1lrKgY+xnCydSLlOdUdT/Nz41HXWWblHIWBze/0zmHldfGIBnX4Rd\nEeWB6uJ7/f87TtxJDAvPhgEA2gfsl1mGrJ+FBpXKyzymrFx6HcN9zXSw794zAIr5flDlUioKRd+/\nrU2pc3mpvpB/tZ5OiN6ngMv3EOnvh5drpqBNzSoY59VEaHXe3NgQkf5+8GlaB3aWZrg2bwT0dHTQ\nesUemXTKLyxEpL8fKllZoIWLA05MHSi2b6S/n9jdgouzhuLirKEAgDKmxtznnDZ1gPEJYFA6gXcj\nxJ6TlEkpOuEXeuw4QmqM4QdOYd9Q6bckxUHWnUJHWxsnxw2Ai434bFhTj1/E1bcfCGUpwz2p2Zpd\nhH161a+BznWqo0nlCty26MRfWBt6R2xmH2N9PZl1kvY9UPU6DGQnE5XKWCB4TH+YGxmKPP81JZXU\nRDWvoBBeG/chbJpiqnSHvfuIauWskJCWQdjXxbYsZnfw5PssJf/NxI5bj3HsySuR11yeMpQqVYVc\nIgU/H0T/q5PPIvExiT+ItUe9GljVsx33eVLGX3iuk23yQoShni5y8iXHB3lUc8DSrm1hY24qts+e\nOxHYGHaP1Jgnn0VieXfqqseLki+JyW3cMa5lY7HnF5y5hlPP3xKOU1hUhPTsHJiJ+X7JiizGQoNK\n5TGuZWO4V6kErX+hqkUsFs6/jMKRRy8lJgnY6NNJVlWFqLFoE6l+bg7lcWBYH+hoi4+rdVuxHZm5\neYSyGq7YjogFE4Ta5x2/SkoXUVSyssBHGYPLgycP4HvuWt5aZj3UHcZgYFAqom6mk1o3xfhWTQiv\ndbEty/1BJ7opP/xELiUlGU48fYPFBOlSb80cRdpNYhOPHzDR61Ck0ZD8NxMpmdlC7aaGBngyf7zE\na11symL/MH4DLS07B01W7aRUR3WHzGTi2cKJpAysiqUtuJ+NiUHnJQavf/+ThujEXxINWao4/PAF\nfBrWEputh+jzbFXKBIu6tOZLm5yWnQP31btQxGKhvIWZhKulg3eVWZReUcv9CP9nvC5Nt2aMFJqY\nW5uWwqlxAyXGGxx6+AKDm9YjqzaXF4smCenXoWY1BEg5iRzl0RCjPNjJOMh8Rr+mpKJiaQupxiCL\nuB0MsvfBFT3aYUWPdsjIyUWjlZKzEjZetZPS+ytZY0FPRwevl0j2i9fW0kL3eq7oXs+Vrz07Lx+e\n/nuQkZMLAPCuWU02ZQUgo7s079XTf0ZAXPIfeG8+ILbf39w8pGRmo7SJEV/7pRfRpMa59voDph2+\nCABoX7saqtlaISk9k7Segjhal5b5Wk1D4wwGLx0fiefDCunJTqBK8L4H2x+vRjU36XOVK4vIpVOg\noy29pxyZH/JGK3cQTnTJQGQsvF02FdpasmUwi1ruh9brAyWuxhYWFcn0HklDRNx3DN4bItQuz4+p\nuZGhSqzoqwpkMkW9W+YHWT5K2wZ0RW5BAeou3Sq2T4/tRxTy/0jLzkGLtf8JtUtT70MQcyNDvF02\nlbijjEh6X14smoR6y8S/rxxMDQ3EruK72klepVwTGi6TwQAAVa3L4GPSb+zy7Q5PZ0fiCwggc29t\nH7BfYd/tUgb6IlegiTA1NMC2AV0xMeg8DVoJs4Ckq5a875uRvh73d+14xGu5ZEmDrHo7WFkSfqaa\nrdklJN/Jpgyi44nrbUw7fBGXZg9DJatiA/bIPWpjpkoqJSKGgUE9ODPBV66JMNENLCMnV650ngDg\ns/sYoQ6yGgscbs4YKfE8nb62HASNBW0tLWayTzGSJvMA+7Mkz0fJQFeXcNVSWbExUcv9ZDYW6IYo\nFoBsdi+ixYnmVSuJPSePz/iFSYMRtdyPEmOBg6p893W0tWUyFji0qV4Fuwf1kNjn3Mt3MsvnkJqV\nI7ZQHwdr01KUv6/9GtamRA7RfYEKvYlkCO4GHRdwDZIEr7EAAH9E7JQrEzpjNulE4wyGsMJgoQeD\nekCFewRRnALRJI2I198TxZ7bPai7XLJ5IbqZXnxNbnuWKuhczS2JiNq94YWqiYSejo5E/25loCqT\nT3Eoqr7ArA6eChmHKnhrVCiLyKVT5JbhUc1B4vk5p2T3lefQdLVk10tjfT3KMxlRReibGInnqfz+\nLujcSuw5josVB10d9nS15swAvqKdP9P+Cl3LyUYEQOZgZzrJyM4l7qSCaJzBwKCeUHUTalpFuirU\n0iAptVwZE2N4VKNuRQ9gV1UVx8yQUErHkoSqT/DUkYi472LPGckREC6KyW3cuT+2olDEjhUHTfks\nSQruJItTuTIUaKI4iKrPBz0WHZROFVR+dm7NpG+yTmaHQpWzxE2TUF2e6irSAxvXlXi+rUAa6Eh/\nP3Rzc0W9OVtQc2YAas4MQBsBgyDS3w+d1x3gnt8/to9K1TmI9PeDno4OVz9ZUrQqC8ZgYNA46JqU\nSHITuDdnDOXjjWjuRomc9LxoXI6tCQDcv2SxlZBJRRyxX5OxZC11fsKeXfwpk6UKTJfwgwwAz2mY\nTLxZIn5llqpiiSWJTrVcJJ6X5G6kqVyJfK9sFUhDRd0OcRDtUCirQjYV0FFsc23vDmLP/UhNF2pb\n6dOem75UXBpT3nMc9yRZjAZx18hrgLxYM1mi/qoKYzAwlDgOPXiubBUUyr0fvdHRUbI/rTiI4ilE\n4VjRCktmd5VpvDWbhHdObl+YKZMsVeUywZa/MjhNIu2kvMxs70H7GIqiGYFBMLRZAwVpojrEi5jc\nUcWdWaNpk61olFEvgyyS7k1+Xs1oGbNrHdWMZWIQhjEYGJTO3qE9FTre6tDbxJ0EkJSTnCiIji62\n33qklHF58ezij3OXX+LWPf4fmkPBD7nH7fts4usPAAeOPcDy9Rdx4txTjJ52mHs+9IawYSO4w+DZ\nxR9PX8bhzoP3uHj1NbetiMXC8TPia3qoA7IYaFQw/8w12scY3lxzJtH1KomuDcOByKBQV2rb24g9\nJ2o1mCrKmprQJluRqGrcAgdJu5+jPRopUBPVwfHIau5x9J8kVAtah0Mxz/j6LH96HdWC1iGnsIDv\nul1vH8H1+HqF6Uo3jMHAoHTcq1D/40p19dc9d8RPRImC6OhiZzg5g6GjYyTCv7XHzW9tZd5pkES3\njnXRqrmz2PNXQ4oDpivas3Na7w+6j4UzOqNvNzfEfBAfSC4Ot7oO8HCvhvXbi7f/tbW00K9HQ6ll\nqRKyuICRRdpc/AzisTIxVrYKSkFTJu50QRTHQWUF5pJCQaHyXCYdj6xGrO9cAEDAq7vwf3kb7wfM\nQik9fWQX5HP7TKrdDO8HzEKN4+u57QAwtkYTvOs3g8/oUGc0rg4D3RDVeegwrBWmB45VGbmyjK0J\nmaUCh/QkzESjDpgaGghli+BQWEQ+92LLCtJn/gge01/qa8Th2cUfgZuH4PDOEULn5HE54sSV3Do/\nA217bkRtV3tsXKG6PsLXSFT0posONavBL/iS2PNv43+ihl05Wsam8rOkClAdmM6gGSy/eFPZKsgM\nmUrsymDX7ceY2LqpQsfMzM9DzeANXGMBALa8YXsZcCb/sx5exseBswEA9U4U76LXCt7Ibdc0mB0G\nkgTODSKc1APAlf234FOefAAsq4hFWi6ZftKiicYCADR0sJd4Pq+gUOJ5VcGqlPwrmbyBztIEPUty\nP5AWA31djJxykPt8/PCWGD7pAF5GfkOXAcWpbtt4uCAxKQ3PXn6RSn7HvlsQsm+MShsLALAz/LGy\nVRDLprD7tMmm8rPEULJgdjUUw9YbD4k7KYFHn78pfMxR4Sdhrm8o1B7rO5f74DUKxLVrGswOAwkO\nLQ1B8LpzfG2BbzzALtAAACAASURBVDagkmvxpHT3jMM4GcAuR56SmAovHR/CyfehpSE4vOwkabkA\nSMkli6YaC2Q4/uQVBrvXJ9X3Y9JvieeVVfxKFRC3OzDYh39F6Nop/kwQPj0awuef+9CFoOJUfYtm\ndgEA2Fibix2D9znnuH6dirC0YE8sPLv4q2ygdHQicaVSZXHvo3RGGoP68/5nMu59+ILb7z/jU1IK\nfmdmKVslIYaQvE+rOlQW0qODMy8kJz5Q1u+cMu6ZQV7sInGOR1bjYc+JsDE2xfS6nqgVvBFvfKYB\nAPKLCqGnzXZ9Phf3Ft0caiCvsBBaWuC2F7FYchdyVSUYg4EEvJP6UWsHou8M4QwwY9YPwpj1g/gm\n4USTe165WlpauFZwnBK5ZCjJxgIAvPyeiMEk+16P+kirLnRT0cwHL5NmQktLB/amygnQppuHEZ9Q\nVMRC4s80uaojMzBoKlci32NGSKjapdEl2i1WF9rXcFK2CmpJZm6e0saO9Z3LjWOYWNMdA53qweWY\nP6pZlMV576HcPnvePYbLMX/0cKyJ1U28udfvePsQOyIf8Lk2qTOMwUCA4MRalLHAS1hhMCnXIcE+\noowFWeQKom8o7GvLK8epviN2RKyRWi5VKMv6jpRQsVmQ8JhYGjWhn5plFipbBdq5dW4GAMDO1gLh\n51Vzd4GIUgb6tI9hrK+HrLx84o4lFB1tzfLSbR+wH19TUpWthlw4WlkqWwVK6FrHVdkqMMgA72Tf\n0sAI0f2Ff19GuTbGKNfGQu0Ta7pjYk13WvVTJIzBIAWyrMJPbrYAW+6voESuQw17xL39TlouAD73\nJkDYUFGmsQBAYgVaOkmWYuv9y+8/xJ1UmIKiv7j2pQn3OR2Zkhjkx9xI2GeWaiyMjRiDQQJUVHBW\nBZZduIljT+itvKwoTA0NlK0CJWjKZ0sZxH23Jd3XwT6BRk2owfXsErzuuhC62tRmc6QbxmCggQrO\ndvgWEw8AiHpEXVaUPa83cCf8ZOVq8dykvA0H8J0raW5IvOTkk580/VXiligVXPvShDES1ABzY/oN\nBnMjQ1oLbDEoFxYLcF1UcmOqGDQTq9LbuMe6OtZI/NUXenrOMDUZBC0tQ6T8mQMWClTKWCByQ9LW\nUr/dTMZgkMDBJbKl5dxyfwV6WA2nXK48qGrMgrKyFRnrk3f/0NXWVmouaHUh8H0LOJl5w9NmHun+\nI6vdpVkr9SElM1sBY6heUCsDNdx5H4cxh8/IdK2hni5aODmgtUsVONtYwcXGWmQsUJ2lW9QmwxyD\n5lDKuBf3OO67LSravYe2dnHNGlOTgWCx8pCZdRomxootBCsL77ovUbYKMsEYDBK4d6Y4BWK91uTT\nUZaylJwGjleuIpjTfiXfc1UxFpRJOTPyBXTKmBhLrGIatdxP7DlVgTedqjy7DZF/TqCmpWqnLlVX\nUrPoNxjSsnNoH4NB8fxITZfKWJjr7Uk6SxwDg425KW4pqQq9KHiNBQ5aWvpI/jNDaoOh9vnluNhm\nAiqalEaf8P9goKOLIy3EL/hKYubTU7iREA1XC1vMq+UNVwvyrlSChMVHYcGLczDS0cOWxj6oban8\n4H/GYJDA16gf3GPBWACq5NJNO71+YAkU+KIyNau6Usee/Be5kWMFwpRzqgyV7kiPfm2lzGBgdhf4\nyckv0IgxGBRP2w17CftcmToMlcpYKEAbBlHceR8Hj2oOylZDJhJVrKhb3HdbIfejuO92KFt6O2kZ\nrmeXoFKpMnAvWxkdwragd6X6CPIYgTrnl+NmQjRa27rA9ewSAMI7Aq5nl/C1fUhPQrebO7CwTies\nc+uJk3HP0Tt8t9B1l79H4mZiNC5/j5S4y8AZN9B9EFJyM9HvdqBK7EqonxOVAjErU2zFZmVQtzLH\nK5duOMaClkDAVdjhOwrTQRWpX8mOdN8WTpVo1IR+0vOiuTsM0hRukwUtaCGzIAnHPvfEmS/DwYLs\nrlx/C34Syrn4bSIOfmwn8xgMDOrOtBOXCftELfdjjAUlc+9jnLJV0Ag4hkLcd1u+B8CCibF0acND\n207CrqYDAQAnvzyHnrYO9LV1EfDuhlRy+t0OBAD0d2wILWihj0MDkRP8jvY1sd6tt0RZrmeXwFTP\nEO+6L4G7dRV0rlBbJYwFgDEYJNKyb3Hxqftnn9AiVxFcKziOa/nH+XYV1g3dLuSqVJLoVZ/8xNm7\nljONmtDPvR+95d5luJ24CrcTV/Ed87Zx+Jb5EDcTlqB/5dOoWKoZ9r73xNmv/FvZyTkxeJYciMD3\nLUSOFfi+BY5+6oZbCUvFyiliFSLwfQt0rrANQ6pew4GPXgh83wIJWc/lep10412zmrJVEEuzqupt\nGJdUQt/ESDxPpcskE78gO4cfvlC2ChJxsSmrbBVI42CfIPIhD46lrAAATmbW+JQhXbG4k61GAwCG\n3z8klw4cHneaQ4kcqmEMBgkMXtyHe5yZRj5Y8MzWUNJy6Wb749XQ4ole493deHb9tcL0UDTnXr6T\neJ4p7iUdnjbzuMHMnGPeNg7ZhX/QpcIOAECDMiOgBW0k5/BPaKwMndHASrI/bHZhikQ5p77wl90b\nWjUMAGBrrNp+2ZPbqG5O7omtFbuQwSA/l15LNhZq29soSBMGdUeV702KwFhX9jo4jqWsEOQxAo9+\nfYbr2SUYcIfYRVAdYQwGCZiWJh8Yy8uOqQdokXtszVmZruPlVFIg2vp6cJ976fiAxWJJuIJ+6Kg8\nOufUVcpliuOQiq8c8e4u0J1e1crQhe95VbP2tMgx1i0jk1xl46DEIlSnnkuOw6lbQfYAPQblMCNE\nsjtS8Jj+CtKEAQDaqXE151YulZWtAmkKCr7h6w8nIbckaeo1UE3d0hXwrjs7tuFlyjduHIImwRgM\nUjC99VKprzkR/x9lcvfNPyaVXHHMPjiB73k73X4yy6KCxeeuK3V8MrR2qSL23OrL4YpTRE6KWPTW\nlLDUd1SInE72WwAA939uQHJOjFj3JnXj1Tf68ogvOHONNtkMDAzAhj4dla0Cbdx5H6tsFQAAv1LG\n43tiIxSx/tI+loW+sUzXyRtzwIJyF3HFwRgMBAyYV5yi6/VtyW4uALB2CH+UvmU5c4XKJYtgliTB\nOg2KhGjlk2p8GtaW+prtA7vSoInieZw4QtkqUIaPYwjep1/GhW/j4G2/QSOyLvXfc1wp41a3tVbK\nuAz0YahHbRLEIiXvRKsDujqSp1St1gcqSBPZcLEVH8cw5rD8Hg5UkJl1Bpbmc2mJYxBkVLXmAICC\nouLYncF39wvrVJBL2ZjaWlqocVb6xWlFwKRVJWDYch/cOfkQ39+zP4heOj4Yv2koekzyFuorOOne\n8WQ1JXL72o3Gn59ppORKQ1hhMJ/O3SyG4lzqAUpkKxOi1JFLurahfMzqCwNUrh7D5dia6OgYSXtm\nJGURHNtHLY2EoFE+GLBHdFpjZc3JTo8fqJyBGWjDoQy17m81Fm2iVF5JJDEtAyyW6sbQnRnvi+oL\nxVcKf/41HvUrks8wSBfmppMVMs6wqu7Y8/4eap9fzm0b4dQMT39/4evX8KLwnMxSYHdC0EWJ9znv\njkRkt8VwPbtEqL8qZErSGIMhJTEV64fvROT9aGT/FZ8CVXBSb1bGFK5Nq2H5uVlir9kftYnvuh1T\nDxDGKfSa2glODST7BO6P2gRvo4EoyCugVK40DJzfE0dXngYAZGVkY9WAzZgXNIUy+cqg3rKtShk3\nKy8fxvp6ShlbFJx4hXLGrdCgHPs9oWKH4UHSJrhbT5VbDhVwXJF0tQxQ3aInGpcdr2SNiKlH8IPr\nuigA75ZRa3y6LhI/CWDQTGKT/yhbhRJJ/Yp2eP41Xux510Wqt7hEloF7gpWuu45OWfxKmSBVzQVR\n8E7AeY9DWo7m6/ego/DccHoNL7GyyIxHZV9FojEuSenJGYi4+lKisSDyut8ZeHTxGWG/sMJgTN01\nipTMsMJgjN0wmLgjgNDso6Tlnk87SFouWYYu88G+txu5z28FP8DPOOlSilGBpFUNaTj7QrJ7l462\n7B95ohtlg+XbZJZNJxxjAQAa28iXvWGoUxjepZ5C4PsW3Ic0XP4+le86WeXs/9AaADC4aiiGOd1A\nb4cj+Jh+VW1iGc5PFP89pnqXYe2VOxJlKnsCwEAPuQXUFelrtmYXZbI0naOjiN17N4bdU4AmsvHf\nYMm1DKj6rZYVPd2qyMw6LTLgWZlBzyUBjTEYFEGnUW0RVhiMZt0biTx/LvWATBWUieTOOjABYYXB\nMCplKLVsMlRwKY/+c7pzn/tWmUjLOET02H5EbhlzT0vOjhS5VL7dk651qks8r+ybKS+XY2uKfMiD\nrpYhRla7y/fgMLLaXaE0q5428/j6dLTfJHS9LHIKWfkYWe0u9LVLQUdLH6X0bDCwyjm5XpsicSon\nOcsTVZ+jvIJCHLhPvCDCoJ4YKWBHM/RNDFIys2kfR5MgSlG6504EzrxQbOweWVo4ORD22XrzIf2K\niCEnV3ljl3Q0xiXJoWYFmSbrsrDk1HSVlivL+zB8ZX8MX6ncFHzRib+w5cYDmfNBE02yKpaWv9Lp\n2t4dcP5VFKEedKzaBke8xpLzN1C/oh2pVSyOSxInloFzrKm8Sz2jbBWkImq5n8TPbPWFAXixaJLM\nwat5BYWos3QLoQ4M6kv4jJFovGqn2PPy3ov23XsG/6t3ZL6+pDKuZWPsuv1YYqG7eaevYd7pa5R/\nBw8/fIFBTevJJYPo3rTj1iPsuPWIlvvHkH0heBL7XaxsqgObGcijMQYDg2awM/wxDj54jmcLpdvl\nILMie9VvmKxq8fFk/ng0WrmDUB9TQwM8mS+fT/2jz18xbP8puWRoKoHvW6CCSVNoa+niy1/27kNN\ny75K1ko6zI0MkZYt3o2y3rKtCJ85CuXMpKvdMu3EZcIKwH3cakklk0H1MDMi3nXOyMmFqaGB1LJr\nLt5MS42cksKrxZNJ/S5VXxiAbnVdsaaXbDVrAKCgsAi1lmzmPpfXYACA8hZm+JGaLrFP9YUBGNHc\nDTPay+cKuu7KHexndkJVHsZgYFA5svLyuTfaRV1ao3+jOiL7xSb/QcfNB0jJFCdDFkwNDQhXYAD2\nDzVvn251XdGljguaVa3E1+/190S8/BqP86+i8Tb+J2V6cujoGImbX1uDhSLaC7cpCnXMjiSKR/PG\nodfOo3gXnyS2T0v/PQCA0iZGCBk7AHYWZiL7JWX8hee6PaTHXtatrXTKMqgka3q1l1iokrO4QWY1\n+PnXeAwUk8ELAC5OHoLOWw5Kr2QJ5dG8cWgiYQeIw7mX73DuZXH83aCm9TCyhRusTYsXCgoKi3D7\nfSwuvYkhXAygguvTR2D5xZsIevxKYr+9955i772nAAAdbS2M9WwM71rOqFK2NLcPiwXc/RCLR5+/\nUWIY8MYqcHYcfiS6w67cLWhpSW8cy8u2aHZM3USXm6Ta1RXGYGBQKlHL/VBj0SaxOb6XXbiJZRfk\n/7It6tJabhmCdK7tgouvo0n3F/xRUCStK2rGDUsTOTVuIKmVyJTMbLTZIF/QOgfGFUlz6FbXlVRl\ne97PWGPHCihnVgo/0//i5bcEUgHSI5q78U0CGYgxNzLEyXED0HtnkFTXHX74AocfvqBJK/Is7Nya\n0GDgpbCIhe23HmH7rUe06RT33Ra6Ovawt43gMxzKWR3Dr5QxsC5zgNLxtkW3JpzwT3S5yTUOyLSr\nK0zQM4PSebuM3hSddE2O/Pt4Y1XPdrTIphIqg54Z6EGRE3jGWNA8utV1lar/49hvOP8qCo9jv5HO\npiSv20lJpYZdOYkF0VSdqOV+hAXpFI29bYRQm65uJWTnMAtjdKJanwKGEsfXlFQA9E1i6J4c9ahX\nQ+UnYB0dI7kPBtUlarmfTL7mZKltb6Pyn1UG2VjTqz1txfdmdfDg+9z0qFeDlnE0mTPjfdX6u/dm\nyRQcHqHa8WE5ufdgbNSF1jE4uwWZBb/x8JdsVbt5dxxepJzga9sW3ZrvWNKYp75MAgCExI3nth+L\nHYlCVoHQOFTBGAwMSiUi9jv3mMobaoNK5RW+akuH25MoyGRIYlBPnswfj8tThlIud0KrJggeo9ws\naAz0Ut3WGu1rOFEqs3+jOhjWrAFfmzrsqqoqUcv9ULN8OWWrIRNuDuzf1DImxsSd5aRTbWex5/T1\nXEXWW0j81UfuYm4cwuJXcR8cznz1Q7cK/gAAE90yePZbOjczUdxPYtc3sTeuK3TO3riu2DHPfPVD\nr0rs+kp9HHZw23/nfoaOFjvSYFDlw3LrJwgTw1BCuHH1DS6ceY7otz9gamYEj1bV0WdAE9jYyZ9q\nVB5uxXxGrwbFbjKcSX6XrYfwMem31PIqlragLBuStPRvVAf9G9UBi0VtZV0zI0M8njeOElnMLoPq\n42hliajlfsjMzYPbCvl+ANV5VZNBejb16wwAOPr4JVZcvCWznGOj+6FuBaYIFh2EjB0AAPiRmo62\nFMUkcTg5bgBq2NFrkNybMwYA8ODTF4w4cJoyuR1rOWND346E/ezK3UBaxk6u0cD5W8ZyPWW6eNkV\n1wGKSb8OAEjN+wEL/Qpyy+bENXSvuAG2RuxMdd0qbgDAQtcKa5BXlI336TfQreJ6HPjYT+SYqXk/\nCMcx17eTW1dBtFhUlxWlBpVQyst9hcTzYQ8WUDJOYWEROrQotmSpkgsAvTtuRFpqlsQ+VI4nCkkB\nnfaW5gibNlzs+fXX7mLv3aeEYwxxr4853p4y6UcnO8MfY8uNB1JfN6NdC4xo4UaDRgzqyMyQUNIB\n9t61nLGRxA8vg+ZzI+oTJgadJ93/yfzxtLrFMYjm4utozAwJlfo6j2oOWNfbG+Yk0uvSyfADp/Dw\n01eprtHV0ca+ob3Q0MGeJq2ogRP0nFWQgiOfh2B0tQsAgB0xXhjvHCbUT9z1gm0Af/ak+0m70Mx6\nLADg5JeJ6F1pm9gxswpSAGjBWNcS2YWp2P+xD8Y7h/GNdfH7fHS2X8k7rJa87wVjMEhAUQbDwB5b\nkfQzjXK5RPoDgO/wFhgykt6JtiSDQV9XB68WT6Z1/JLO5diaqF12BYpYeTDXd4W5ARP4zMDAIB03\nP33G6JOiq6l/nE1uJ6vqWtG/BWSvFyfv2ZRxMDdU7qSZQX35/G+XorKIonCCE/5d771RzawNWtvM\nAMCe6HNiEThMdLkp1O5q0ZF7DQDs/dATI5yKd2h4xyEaEwASs9/h7Lfp6Gq/FnbGtbntRz4Phr62\nCfo6CKXzldtgYFySJCBq4k5mEi4tdd0ccO0S+dRlZMjL48980aBRZazZNICv7W9GDkqZMjfZkoB9\nqe4AgCtx9dDBQfnp+hgYGBj+b+++w5uq+jiAfzuS7r0XdEHZRUA2CCjKEl4ZiohsFRVQFEQFRBAH\nChYEZYqICvIW0Be1FBEBAZWpRYSySqF776bpSN4/Qm5yc+9NbkbTtPw+z8NDeu45556ktJzfPctS\nuq/baHLQQe5tBcWaB5ZKpZxzjoPu6MDstuyRoH6Bs5mRATHpAHC9/CgrWNC9j6F7AkCwSwfe9MnR\nO3nvaQm06NkGLFz8KGbPGwovb1f8fMoyowsjB33A+lo3WABAwUITidy0GpGbLDff0hBvJ9WhdUm3\nOkGhFLeFIgDsuGWZ7W7fv0zTYwhp7obEROPGovnMH1OYW17Im0MGWrQ+cu/w9tT8W7TGoW8bUofg\neN7aRr9PY6ARBhsxbmIvjJvYq1HqnvOK6UfOk+avb+g3AIxf8Jwju2bxtlzNUC3E8vV8EQFeiy1e\nP1Epr/4OOUUv8l5zdeqHiMBEg3Wov1dxEdmi7plf+hZKKvi3GhRbByHGoFEFYi6JYxTvVKTG0pxP\nfaYRhnvA4KE0Z51Pu21rrfqkvzmpqi9h/la/BgC5ohr7MzULqd6/PAKrUx9DRvUl1kjC+5dHIL3q\nLxpdaCJCwQIAUcFCTtEc5nVN7QWLtIkQQkjzRSMM9wA3d9r1gk+NyBNO70Vujj6sv9Wc7Ll7cC9o\n9x0AIM6zHwDgk2uT8EaHJADAGx2S7pmgIaPgcXi6PgYvt6Y970A9MgCY/mTfz+tVlFer5tg6S7uJ\nKhPovQKB3it420EIIaR5o4CBEGJRNrHFWROorjkJZ2l8UzeD0TooyeSyUseoFjuN6IfLVzH/B+5n\n80jbWHz6mP6TYi/m5GHsTvaBTRHeXjj6nPDW0LGrEjAkNhpbxo1B30+3IL+yCgDw55zn4H/3ECzt\n3YP4ptnErkpAax9vHHlWdcbMoE2fI7OsnLk+LK4NNvxnlN62q53LzMLEb9i7unQLC8V/J9v+gZA/\nXrmKlw9wv3drRg3DmI7t9ZZVf8bqzzfx4iW8cfAwK88T8Z3x7rCHDLajsKoavTdsNpivJU2Z0t5J\nSFZzHDmFEwEAri6PINhvx908oVD/D9A65CIcHAIE65PX/o2s/OGsNB/PV+HjuYA3f2beQ6it+5dp\ngzHtFbqmy5R6s/Ifgbz2IitPeNAvkEoMn4heUr4WJeWrDOaz5pQpfShgaAKW3q7VUH3aZzyYcq+y\n0mqMH/Gx3jw/HFkEZxeJwbpsxZWiArPrSDh7Cnuv/YvC6mrE+fpjSqeuGB9n3elf53Oz8cLhAyit\nqcGkDl2wrF/jnjYtV1ShQVmnN89LbXfh/csjMKn1+9h1+41GbY+tqKj+oambwOEs5Z4eei/7KysH\nE77+VvD6oWs30HvDZvw55zne60JbgmaUliF2VQKifX3w8zPTePP8eiMNHx0/yQQLANB7w2bcWDSf\nU2/sqgTejubtklKU1tSgxzrOdolIvnpdsJyY93AhKxuxqxIwf0BfvNi3cdbS2RKhz2FPyj/Yk/KP\n3s9RqOy9RB0sAEC17BDqG7JwJ6cntB8X3c7pgtYhKXBwCGSVrZIlI6+I/3DVkvI1KClfg1Yh5+Ho\nwB6hDA/6hemsy2qOw8VZeDt4oYDAkhSKcqRn859InZmnCjr1dfSt0UZLo4CB6JWTXYIp4w2fNvvo\ng6t4t261JULrFfjS02fzP+Uol8vR5Yv1nPSLBblYcDQZC44m47G2HZAwxPRpONrtEWpHmbwG8V9s\nYKV98c8FfPHPBb3ljKGeVqTNyd4NEyLe5s0zNnwxJ52vDgCwg4PZ7bMl2UX8nUxiGwqrqlnBwqax\no/FQmxjm68yyMgzatF1UsJA4eSLuC9P8Zz/+q2/xd3YO0opLMDPxO3w+4THeOjb/eZbpiKrrG7BR\ntUj8xqL5KKiqQp8NWwCofs94OnGnkqqDBd0Orbo+fUGD9ns4Nnsmwr08ma97b9iMwqpqJJz4HRO6\ndEKguxtvHU1tVPs4jGqv6aSZ0nlXl5nbrzde6t+HSZ+0KxFnMjIBAG0/XItrr3F3iWujZyRIXW+P\n8DB8+9TjRreruUjLDGE6wupO750c1SGjuum3c7oiOpw9UqkdLOh2qDX1dUd0eBaEltnmFE4U9dQ9\nLPAn3nSh+xpDHSxEhqbC3t6LSc8uGIsa+R8AgLq665BI2nDKqkZi9LfF2aknQgP4zz1pKs0+YGi3\nTPVDGhfkj6t5hXCVSnBh8RzEv7Me8rtz1J8dcD9eeag/AGD14RPYdlJ1cnDq8qYZLrT0+Q6G6ks+\n8SYcHIxf3/7yczvw7z+ZzNf29nY4dJK9s83cWduReln1C+H8mTQM7buy0U+ONtWMzuy52Nvvdq51\n0/Wxt9OcfTIyJg4Lew5AK08v7LqcgiUnVEfIf3ftMhb27I9Qd0+hagSpgwVnR0ekzuLf1rTj5+tQ\nVad6yu9ob4+TTz2LIDd3vHYsGYmpl5h6LBE0NBYHe38AQHXNCWQUsKdCBPt+DC+3iXzFOJTKWlzP\njIUS7PUokcFH4SThf/qjq6RiC/JL3+ake7iORqjfJr1lK2U/o6BMswi8uPxTFJfzB9iNNcWnviEf\npZU7USlLhrzuMpMutIZAqB3G5rck7R2ZGhSluJHV4e4Ve8RFZHLy2dlJ0TY8XXT92tNH+DrU4V5e\nojrafHn2Pj2RyXc8TbhNO54Yy0nLKa9g6gxw03TS5x9IEgw8+NqgPVLxyLYvcWjWVNb1U+l3WHl1\n/TnnOez++yKWHjqCvp9uaVFTafjoBn0AsGvSBKz57RQ2/nEGCoEDbdWpA6Jac66pvwfnMrMs3Vyb\n5eXxPMoqVEFsoK/mAZar82BU1xyF7gRV7Y45X4c/OjwHeUXTUSVLRlpmGCdPdHiOUZ17J5Hrr0zF\n9x5CA/YzbczIGygQ2CgFy6vfY438jEXbagnNPmAAVB3/dssSmL8BIGXpXOZ6u2UJTMCw7eQ5pC6f\nj5yyiiZpa3OiHSx8snU62ncM4+RZv20GGhoUeqc92Yq3dKbrqAMG3XR93KVS3Jq9gHNk4uSOXTG5\nY1emw9/36y1Gd9i1RxaEggUATLBwfuoL8HPRLEL+aNAwfDRoGFOPLQcNEsdwZBc9i4rqHznXcotf\nQW7xKwY7qgWlK1Fc8RnvtfTcwZBK2iIq+JjeOvQtzK2oPoCr1Qd422ErC3ptpR2WpAkWAECBqxmh\niIvIZr1XpbKWSTeqbit0hHec+wvTetzHSe8fye1kCvkri//p6asD+wmWcZVKUF1bh5tFxZxrU/fs\nAwB46zkN+cmuXbD00BHRbWzOdIMFtVcH9sPGPwx31J7tdb+lm9RsOGlNdfR0m8oEDO6u45h0FyZg\n4BceJPzvLMjvC6bDXVa5FV7uz/DmU6Iedjxd2Izc/vrfgIU4O/UUvObuOhaV1fsFrzdXLXpb1Vf3\nJuH+99kdihAvD9bfhN/uL08xr7vdH8UbLKjpjl4seumbRmuXLdB3vnorTy89V4WJmYYEANOS9jGv\ntYMFbfqCDVtRLf+dCRb8PF9BdMhphPqz9/C/nTecrygAILNgMitYCPXbhJjQvxARsIdJq627hhtZ\nnQXr0O6AujkPROugnxAVcgKB3sthZ6f/UEM3l4dYf9QkjpGca7p5LEnffYxtR1xENqJDziDEbwM8\nXMUtoLW0aUnQrQAAFfFJREFUsqpvIHGMQEzoOVa6+vuoStf3E8h1Mv22RdomdlHxyiPHzL5XuVzO\nm/58H+FOyufj+UcktO2a1HKnyojlwTPVy1hCIxD3AhcnTdAqcYzgzeNg78NJq67RBAlSSQfOdT5F\npW8JXkvPiuVNr6u/CQDw8XxF1D1MFRrwveA1F6cBjXrvptIiRhj4tH87AVfeVj1NUo86AICzpMW+\nZYvavlnzdGDVuqcM5t/zw8t44lHV6YUXzt5qtHbZuuX9H8T0JOOeLIgNFgDg2B3VZ7v2wZGCeZwd\nbf/feEnFNrhIu6NVkGaxsMQxAnER2SgqX4vCsg9RU5sCed0VOEm4u59U1agOv9F9wuzoEMSkXc0I\nRYOiyGBbdOuQesTAx4P/qZZauP9O1tfq4MPDdaRVD6TTbYd2W/iuGSJxDIfEMRyermNxtdr6oxe5\nxQuZ74f2qEKDokgrPYtJzy9djkDvZXrrfPfIcYu0bVgcdy6ytvvCQgRHBqzh/gjhhzpqI7Yb/2+i\npZnXr7fZdUzds48zWqVe/9DSSRy1O+pCz5y5Qb2+zr8xosOzkJYZBqWSG1RXVms68T6eCy1yP2HC\nDy7s7MRtAFNTexbOUvZolXr9gy1qsSMMSiVw7FoaOi5vnkdwNze+fu5N3QSbILE3bjGvMcGCtv+0\n0b+FYHOgHSxo8/PUjJCk5z7IuX4zu4dR99E3UkGat0rZIYN5bhWXGMxjCa29va1yH2IeX1cXk8vG\n+vsxr2V17HVTk3apDkTsEMTeFailEdsZ1lVXb5mRPu1ua2Hp66wr+cXPAwAcHIItdK/GIZW0BQBk\n549mpSuVcmQXqNY6OUls78Bd238UaYB64bLQ3/8uY0/PODh3mvUa10xtXs/em9qcBdkt0ci9O/Fv\nYb7Z9WgHC24SqcllWyJfjxcE1yfUN6ieNAf76v8M7OwkUCrrUFObojefKXPhSeNwdeaff+zmzL/O\nqK4+3WCdge5uyC5v/DVr1gpMzNHSFzM3tuSZU7DxjzNY89spdP6Yu1uej4sLDkzTPyIfPy8BKZ+Y\n932In5cAqaMDzn48z6x6rEkqiUVt3VWL1BUSsA85BeNQXvkl/L0/4FxvHfKXRe7TWMKDjiMtMxxA\nA+8i7hD/3XBxHmT1dhnS7AMGYnm/n7je1E2wWTGb16BBa/5q79AILOw5AB39A+Hs6Ijvrl3G/F+N\nPzCrqq4Wb/52GO8NHCoqv4e0eZ/eLdQxVPP1nCsYMKjlFi9AbrHpi7pbBx1kRh80u/RkogUPvNo8\nqWMUf7okhjddjFHt47Dl9DnDGQ24VVyCKF/u3Gy1lJxcs+9hDu0zHoSU1dTAS8/CZ2LY8316Ys1v\nqjV+ge7uqJDL8XCbGKx51HojmeYGHE3B020qCkvftEhdLk59mdd19emQOEZapF5rCg86gsy8QQDs\nYWcngYO9D7zcn4WXx/NN3TRBFDAQjpws7i4bBIj/YgMTLAhNH6pTNIiuT13H4N2f41ZZCXZdTsEb\nvQeKCgb+mTHXYB5b5mxguNXB3rTF40a1QRqPuIhs3MhqjwZFGQDgakY4c51GHazP3p5/K2I7O+NG\n4LS9NmiARQKGoVt3iHpCr28nI3O9mXwY7w3jf6jwwKbPDZbvvm4jjTKYSffEaFP8nZaNqWtVGzQ8\nfF9bfDRdsyYtfl4CPpo+Eot2JDGLq7UDhPh5qvv7ebji13fZ54bEz0tAfFQIUm6p1tK0DfVH4utP\nM9cnfPAVrmUXsspYK/jwdJ/OBAzy2guitjz19XrdYJ6M3D6s7ValIrfTbmqqYAF3z5toHihgIBx+\n/h4oLNAM4dvquQrWViavAQA4OQj/2JzMNH6e5tEnZzJTjDpvXy9qLcOHp0/gtV7NdycGpbLW7Dpi\nwy5ZoCVAbNgVAMDN7O6ob9AsWr2aEQpfj9kI8LbMYj3S9Np9tA6pC18yqowddHeT10/fTkbm+m/K\nJcGAoa5B9bCiU3AQ59r2CY9hRuJ3jdYuYpxXt//IdNTj5yVgQMcojO6p2Tko8dRF/LxiFgK83NGg\nULDKpnwynwka+HSICMLO+ROZurVdyy5k3df6IxWqn6as/JGCB6/lFmoCHG8P4Z9VX8/XUVzOnY4U\nHnTM3EYSATT2TjhGjmncw06au75hrQSvHbiRalKd6bMXMOsY9K1PGBCu2sv9s79Om3QfW1EhO6j3\nuqz2vME66upvw8HeV9QfMWJCzyMuIps1slBcof/gNtI87JvyJACgXqFA7KoEpBawn7IqlEr0WLeR\n9+Tg61pPkmNXJeD0HfZuOI9/vYcpF+Mn7t+aOfjaqJ32/dRJnOsDoyNZeUfv4G59/evNNMSuSjDp\n9OR7kfqzUv/ptvYzzPmee64MnyMrn2VevzdlOJZ+zV68f+ZaBgK8VBuJONgb1017ffxg5rWXK3v6\nWYiPZjv5QC/rb1Sifeoz39z9tMwQVNeoDkCNDNM/NdrbUxNMyOS/W6iF1peWGcL6k54dh1ID03Gb\nCo0wEI7JMwbgy22W2YoQAK68Y9tD4Bsu/Ik53cRvtXf0Thpv+p/ZGWa149+Z85hgof22dbgyi/t0\n5atRE5g8k39MxNejJgjWt/rMSSzoaZ1DbIyl/SSfT17xIoN1ZBY8bbFRBl3aW3pmFDyOiID/Nsp9\niHXEhwTjrYcGY8Uvqu2iR23/yqjy2icpP7U7kTePp5MT54RlS9s/ZRLG7twl2KnXN01G+z1czss3\nOjDQl1/3Gl87jCn/Qp9eeGVgX1bauK92IyWbf53Iqz8m49Ufkw22wRJOvfAM+n22lZNeLpcj+ep1\nxK5KQHxoMPY9/aSo+gZ0iOSk+Xnwn7FjLEedM5JySiogv7u7U35ZpUXuYaxWIRdwJ0f1UFLo1ObQ\nwAOwtzMc0EgkbVBXdx05BapD41oFGz50T99J0XzXhEZCzOXi1B8y+UlOukJRjuKyd1Bc9g5ah1yE\ng0NAo9zfFDTCQO55q8+cxP5rlwEAeVWVSEzl74Qu6TuIeR275WPm9a2yEkRuWo2JB/ZgbFtxB9II\n+Wn8FACArL4Or/7K/xQ+ztcfgGr6U+Sm1Xj9+CEk37qOrSnnMGb/N4jctBqRm1Zjw4U/zWpLU5LX\nXRa85nj3F2iDwjprbWRy8aM59Q3m755FGseU7l2xfwr36bu2lY8IH2x3Y9F8OAo87R3aJgYXXn7B\nrPaJ0SUkCJcX8O+Mc/S5GQbL31g0n7U1qC5XqYTWOOjRc/0m3mBBV0p2Lk7cEjc9NT3fertrvT5+\nMAa9uQmPr/oaF9YaNzXPUhwdQhAdniO4PWt40C+cswmERAT9xq5b4CA5W3M7uxNvsMDJl9PFCq0R\nj0YYCK8pMwdi5+eqH8ahfVe2yHUMt2YvQNTdp/Wv/JqEV7R2N5rQjrsod1aXHoj28sWMg/tRr1Bw\npg7N6dYbC3r2Z4IPU3T0D0TqrJfRbtta7Lv2L5b2GwxvJ/aw8qHHpwHQTF369so/+PbKP5y62vgI\ndwxsgdB2plczNAdQ8V2PCU1hnv4b2hJVoSjnXUibnvsgIoOP8JTgCvUTPy2pvCoRIb7rROcn1tUl\nJMisDrGx6x8A/ifdQm0Q0zapg4NZ7yF55hSTynl2LsKFEaZvsa2vzf0PrcDJR/SvFRL7xN6U+4vJ\npx4FGde5I1aNeFiwvDrf9P/uF6zrj9Tb6NNONb306Y+/RUyIdX5Xf7D3qMnrFqLCMrE3rSeQ8x4m\nxIxj0vmewLu7joO76zhOOru+Oya1Q5exIwC6+RNvdseEGP4psIk3uyPahPvpe//qUQxD9ajz5RY+\nhWB/7hTCpkABA+H1tFbAAIgPGkqKq+Dj69aYTbMYO6jWDqSVFmNW8ve4U16KPmGtMLNzd8EyQ1pH\nI332Arz3x3HsuHQBnlInvP/AwxgaqTn90tCiZUPXnR0dRS18Tp+9AA1KJab9tBfncrMR6OqGB1tH\nY073PvB1Nv1wImvwcH0UFdU/3F1Y/Dy83adBXncZWYXTmTwuTsKLRwO8FqOg7F0AqqDBwd4L3u5T\nAThCJv8T1VpzWvkCCnndFSbocJZ2RoD3W3ByjIOs9i8UlC5Hbb1m2pm7i+HtEsP8tyOrcAbTnlaB\n/4PEsRXq6jNQITuAiur/ISZU/3kQTU2plEMmPwt53RXI5Jqh/ZyiF+Hi1ANSSTs4SeL0rgmprU+D\nvC6VVR4ACsrehZOkHVykPSBxbN1o74HYvm03jmFW7CBWmqFgwZboCxYAwN1Jikq5/k0d5mz+HvUN\nmsXM+98QF8S9tPUArt/d5aioohojlm9Hm1B/rHtmtIGSGtoLoSf074Ilj3MPx+Tzv/Qhgh1ra7ld\nkYTWHiOsdr+mfL/29h5QKCogk59osjboslMqjdn/wWpsqlF30gtx6WIG0m/m47vEs0z6fybcj8jo\nAHToFI7IqADY2QsfFa5LJqtFeloBbt3Mx78XM/Bz0kXm2lPT+qN1dAAiowIQFWPaqZHah60ln3gT\nDg7Gzz5TKoGH+3GfKLm4SNF3YFvU1NTh9KnrqK9n7+JgC6MR7ZYlMIf3WdN7B4/hzeGDWGkKpRJd\nV65Hp9Ag7Jr5hGDZdstUv8jFtluhVGLwx9sQ5u3Jqve+dzfgr8VzTK63MWnOO8gGoGSNJmjzcBmB\nUP9touvThy9guJ4VB4XC8GFexmytKpOfxp38xyxSlznYn7FxZcTSrbuuPgNpOb1MrkN9f1/PFxHg\ntVh0Ol9bWiJztvJUQonuSUsBACEu3vhp8ALUKRrQK3kZAODc8Hdgb2fHSlOPJJTWVmPIL+8xdQmN\nMHRLWsLJs/XGUWy8doSV1u/QCtQrG+Bo54BTd4OEsb+tQ3plAavu505vx9miNFbZbklLEOUegFuV\nBZgb9zCmxww0+rMwh9jvgfZ6DFua3sW3K5LYnZISb7IfovF1pNVP6hNvdoeTgzfkDaWsvPmyMzie\nrTpjoG/wGoS5DeI83U+vOIBID/7gR6gNpfKrOJw5iZWmW6/21+p6/JzjMSRsOxJvdofU3hO1inJW\nHT+kP4yahiJOPXzvLb3iAM7mL9f7+agZO8Lg4ToBAb6f6M0rkvgOqgAaYRAg5nTj77WCB236Osxi\n6v1mB//cNmt3xO3sVPfUbbNMVosjhxpnsWlzMXz9Dt5Tw71cuIcidXh7rajOeury+UznXgyhenV/\nKxhbb2Nid+7sEBeRjSrZL8gvfRv1ikJ4uo5BkM8qo+vLK3kNFdVJUCgr4Sy9Dz4es+DhMlKwXJsw\n1Ymj8tpLKKnchkrZITQoyiGVxMDL9XH4es4RLCvExakX4iKyUVT+CYrLPwGghJO0EwK8lsLFqYfR\n9ZnKlA60uZ1uiWOEWXUIlTU2nXAN/Hkl0+lWd/57JS9jdcQvjFjJSlubmoyX2w3DkF/eY+UTos7z\n8RXNuquN145wAoxTj7zFGWHYP/AlTt3rejwNZwcJlqbsZdJmxjyAF+OGolvSEqsHC9oKq6rh72Z4\nUXL/qJYzkqYOBMQ+cR8dqQoU1Z1wALhdcZDTobe303RBf89diL7BHxndhsOZkwQDBV1C18dEHWXa\nm3xnHIa12odHI3/mBCm6702d92z+cqbeg3f+I3h/scoqtzCvLRQsWAQFDMSgw78vQXmZDOOGr9Gb\nb+Dg9lj6rv55i9b26Kc70TMqAktHaLaam7P7AM6kZ+LMG5pFinsvXMJ7B49hdHx7vD1KNUSrPUqh\nHSB0XvEJ6hoaWE/uL2XnYfzmXYjy98GLgzQ7Lt3//mdMXeq8QvUaY9SGnZx61W0Qo92yBPi5u2Lf\nc09h3OZv8NmTYxAfHmx0OyzBzeUhRLkILzYVI8jnQwT5fGh0OSdpJwT7rjXr3rr8POfBz5N/YSoh\n1nZ86GKmQ35u+ApRZf6XcR4vtxsm+h7dkpbg7PAV8JRopkKOCOtqXEO1ODuoFsS2dvNn0j6/eRwX\nSzPwYHBHk+s1x4OxMThy4yZ6b9gMAOgRHob2gQHIKivHrzfZO+e5SiXY8fjYpmimoPXPjuGcy/DW\nRPN+7xoi1Vo/dn/gMs71cdGnmU58VtWvJt3DXSK8zbmxpPaeqKhLNyGvHUrlV3G+4F3e98lHPYLg\n5jIaDg7+kNeeh7yWPW01NPCAyJZbBwUMAhrrab61RgksfR9PLxebmGpkjK4r1+PvJXPx5R8X0P+j\nLTi58FnM2Lkf26eofpFrd9x7R0XgwuI5eG1/Mp756jtsfVp4ask/b83jdPQ7hQYhdfl8DF+/g5X3\n7BsvNMr0qB/nTOHUq26D2NGEUwufY+poqilchJDGZW9nj629Z6K7bxQrTc3u7pikdtr2PppzAsTo\nE9AGDnb22HjtCDN6kJT1N1bGj+fkvVSayUkTa3MvwztBNZbN40aj7YdrmdOXz2Vm4Vwm95TelY88\nhIldO1u7eQYN7BTdBAe1GWZn54DUki8wKHSL4cw8Kuv0L56urs8zqV5j9ApaCUd7NzwYvtNgXtWp\n1GEAVFO5q2T8QYG/z0eid4uyFgoYSIv195K5AICpfbrh/WTVuRK/37zN26GW1dXjia27cTmngDkx\nlRBCbIE5c+FHHl2NRR1H4XpFLmb8sRUnHl7KGmk4P+IdAOzRhyh31dbF2lOK9O2Q9On9U1l16cu/\ntsdkTppQXnXwkVFdhKEhnXCjIg/nim7heP4VbOw5nbdMY7r22stWv6ctU0/ZkfLsRCfW+Ogzoqc7\njY85y9xTnX94q+85af2C1zBpA0I2MOXV05q0vxayL60PANV7dLBzwtho4cPhXB2DcPDOGFH1AkB0\nODfQbA4oYCAtVoNCwXtKJt+T9N1nU7DnGdW2fXwBRU6Z4QWypmisegkhBAByZKUYGNgOABCpNcWn\nOXn61CYcG6pa9N7KzQ9H80zfupqYhq8TLDbNUJ6ege8I5GSzgz2nrLskgpMW6jaIlSb0Wt/X46L/\nMNhu9df/Fm9mXp/OW8wp11LQwW2kxYpfuR4A8MXv5xHooTo18oE2USiX1QBgd9YHx6l2W+75wUYm\nbUSnOOZ1zd3TMdVuFZp+2M6ITnFYeuAwb72EEGJJp4ctx/BfP8Rjx9fi057Tmro5Jjk2dDHmnt2J\nHgffwncZ55p0ahKxnOyqY0i82d2qW6U2hnzZWeTJTiO1dAfuVCYbLtBM0baqhBBCCCGEtFxmb6tK\nIwyEEEIIIYQQQRQwEEIIIYQQQgTZ6qJns4dOCCGEEEIIIeajEQZCCCGEEEKIIAoYCCGEEEIIIYIo\nYCCEEEIIIYQIooCBEEIIIYQQIogCBkIIIYQQQoggChgIIYQQQgghgihgIIQQQgghhAiigIEQQggh\nhBAiiAIGQgghhBBCiCAKGAghhBBCCCGCKGAghBBCCCGECKKAgRBCCCGEECKIAgZCCCGEEEKIIAoY\nCCGEEEIIIYIoYCCEEEIIIYQIooCBEEIIIYQQIogCBkIIIYQQQoggChgIIYQQQgghgihgIIQQQggh\nhAiigIEQQgghhBAiiAIGQgghhBBCiCAKGAghhBBCCCGCKGAghBBCCCGECPo/L2lPM39M8jsAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "stream", + "text": [ + "Negative words\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAJnCAYAAAA6O9RWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4U9Ubx7/pnnTvXVpWoZRddlH2\nHoKATOGHiCJLBAQBERQoQ0QRZIrIBpU9Ze9VyqaUznTvmTZN8vsjZtzce5ObnZb7eZ485J77nnPe\nJCU57znv4IhEIrCwsLCwsLCwsLCwsFBhZmwFWFhYWFhYWFhYWFhMF9ZgYGFhYWFhYWFhYWGhhTUY\nWFhYWFhYWFhYWFhoYQ0GFhYWFhYWFhYWFhZaWIOBhYWFhYWFhYWFhYUW1mBgYWFhYWFhYWFhYaGF\nNRhYWFhYWFhYWFhYWGhhDQYWFhYWFhYWFhYWFlpYg4GFhYWFhYWFhYWFhRYLYytABYfDYctPs7C8\no4QfWob8/RdRcOQKAMBnzkg4RDchtOl7/oThi/U2vuuwrgZ5HSwsLCwAMOneeADA9ja/G1kTFmMh\nEok42o7BnjDUMVp8sg4AUC+gEaKmrEFIz4mUclaOrmg8Yh4aD58LcytbaXvTsd/CzMKKNB7dNYv2\nJKZ5G1sFvRN+aJn0ufu4XkplFRfrmWv363UBz8LCwsLCwqIckzxhYNGO5h//ADNLa5RyE+Ac0gwt\nPlmHR1tmS++7N2mPgM7DUV1aADMLS0ROXAF+RQme/rEU6TeOwqd1L3BvH4elvRMAwLqeG6pK8o31\ncljqMBJDoujMHeRuP6lWP4kREX5oGcruvkBm7D5YuDnB3N4GVanZAACOhTnC9i0BIDNEqNoCY6fB\nOtgbvESu0nkd2jaGz9xRhL7hh5ZBVM0Hx8qS0CZBsS1v91nSuPKnDuEHlgJmZtK+9fcsIsgmjlmu\n/M1hYWFhYWHRNSKRyOQeAETsQ7NHi0/WibxavE9qkzznmJkTrqlkJM9bTFkrsnP3FzX/+AcRAJFz\naHORR0Qno79GXT+CNscSHpbenir7JKZ5i8ZNsJM+NzOTtTs7m4kAiBJSvAny1+94iACIGjW2II2l\nOP6hv9xEAERHj7uJvpznKG2/eNWDJPvHPlfCOJJ/F3zjSDlHYpq3yMICIgcHDqnd3Fz83NGRIwIg\nmjnHQbRtl4sIgGjIB7YiW1uORu9x+KFlItuIEJFtRIjIZ9YIEQBRYOw06X3/ZZMI8q7DupLGkG/z\nnjVCBLHroihwzWciACK7qHBR2L4lorD9S0W2TYKl80r6BK6aStsmP7/8fcWH17Qhsr+b9dNVylM9\nvGcOp31tASs/MejfPvtgH+yj7j8m3RsvmnRvvF7Gbjn4G1H0qDWU96JHraG9xz4M+9DF2pw9YaiD\nZD+6SHuvft8pzAficFCRlw4zS2sAQECnYXiyu465hnDIbn2+S+ciZepclV1376oAAIweXoAjx9ww\npL/4FKaoSAgAaB2ZQ5Dv1C4XAPDyRY3ScfcecsXwIeKxhg7IR2KaN9asKgUABIeYk+Q/HlcIABAK\nie0/fFdKO0dNDVBWJiK0fTGtCAKB+Hlpqfje9JkOqB+QBQD463Albj/0RHRL4utiSuWzJACAfasG\nAABLDyfpPX5OoVpjZa0/iPADSyGsrELihB8AAB4T+4BjIX5/PP83ACmzNhL6WHi6kMaRtPGzCxjN\nKyguk/V1cVRLZwlUc5nZiN0ArXzcGI8Tum+FRvOnfrEGNbnqvd+6mDd/90kUn75p0DklCErKkfHN\nZvBzmH3OLCws2pNw4w/wykzv/1yLgQvx6Jh23ynvImwMwzuGg08oAHEsgvyDCRa2DvpUzShY1w/W\neoznz/ho2Ehme0+cbI+Jk+0xdLitkl70RLWwpL0nWcjLw+eL28rLifcS07wxcbI9fP2IRgbVGABw\n5VIVZbvk9UycbI8tm8qV6q4OqfO3SJ/X6xql0Rhm9rL32MrXHUUnb6Hk8iNY+XuIG+WsqPRF22jb\n6sW0AADYt2mkdD6XwZ0BAO4f9UDmmv20cpI4DffxvaVtbqO6AwBch3aVtpk72hHGTft6KwJXfapU\nB20J/OlLhO5bAatAw8bOuI3rh9B9K+CzYIJB5wUA83r2CNgwB6H7VsC+dWODz8/C8i6Sn/oY5QVp\nxlaDhLU9efOIRTXsCcM7Ru7Ta/CMjCHENNAhEslvWWsdYK+UoM2xAMBoZ1+XVL1JIrUJiorVGuPM\nRXdMniDbsd25TbtFddf2uXB3N0NenhBu7mYQKD+QUIo6ujx65oXwoCxCG48nQvxjPh7cq9ZcCRAD\nmSU+/PysAsr7ACizCCm2JXy4lHaO7F/+IslUc3Pp2/7rW37vpdIA6/x94tO7vD/P0+oOyF5j3u9n\n5PpeIMkLSisIbdXcXKTO+5V2fl3iv2o6AODtqIUGmU+CbWQ4QvetQPL/lkNYVmnQuQHAa84YAIZ/\n3cai4eLBcOvUgPa+oLIacVN2oCq7xIBa6ZYxF0bC2sma1C4SirCj3W7KPvKZgyTPFVGWVSiwcwB6\nrHuP8t6hoUdRkkY+4ZXM82TPM9zdcF+lXsruq4Ku/8d3xoFjRv49v/jVZSRfSlE9MIeDNsOWo6q8\nAPGn10KkzQ/Uf7j4NUH96FGoKOTixeWtEAkFpDlbD1kKAZ+HR8d/UKKaGRp2mQgn7wYozU3C83+3\nQOyRI6PVkCWMdPJt0g0BkX1QlPECr67u1E7/OgJrMLxjcG8dg2dkjAopEew8/JFycQ8AoCInFV5R\n3fSmk/uEkXobmwmC0nKYO9pLr9PnMwsqvX7HAz6+5qioEOHmdfGCOiwwi5D1SOLOow65uUKtxwAA\nkUi9DEwnj/NI80aEZ+PJKy/Y2Yl/YBqFZktPNIxN2P4leDPyW8NOql+72SiE7lthlMVz8NZFSBq3\nBCK+9gsOTdDkdXc49xXh+mbP1Rr1A4AXCw+j8N5bvczZaNlQuEaHMdLN3NYKrf6YCgAouPUGL5cc\nZdRPQtujM2DhQFysM31fVEH1vt0d9hNqSnnSa/kFdMa9TDw/+BL1e4UgpHswOGYcTLo3XunCX9L/\n7flkJJx4g9aftoBbIzfpPbq+UmNBBFz//hbMLDjoMC8aADD86FCc/OQMsh5mq/eCVSDRVcgXYmeH\nPwAAdu62GHV6BACgJK0UV5ddR3Yctdvo2H9HgWPGAa+oCjdX3YZHEzc0G9sUAPD+6hiVaVe9wjsg\npPVQ8bzOPogetQZ5yQ9g7UB0pYwetUb6vLqyGA///o5yvOhRa5B0/6h0zHpeYXD1b4b81DipTET3\nz+DoEQIAsLC2R/SoNchJvIO3dw8RxvJt0g2BzftJr+t5hSF6VCxu7/uSpJPitUSG6p6LXwSiR61R\nKiM/p6L+dQnWYHgHebRlNqUbkuTUIfHUVjQcOlt6/ervDWgxZS14hbr98pNgH91KL+MyJX3uUo36\nSWIS5BGJqBf4yhb96shHNaH/DCT3JH3DAlWPIT/PzM+LMPNzsnyzhvr53LXF4MYCqE8+TAUmi1+f\nRZNgGxFKatfGaNBm3pDd32o0r7p96GIgzGysIORpfnrm3DoERffJp5TyNF03mrK98YoPdLawBoCw\nOX3g2auZVmO4tg9Dh3Nf4f7oTajOK1PdAcDdoRtIC/sOZ7/CzV66e23yyBsL9p520ufyi92Uy6nA\ngivSBbaNiw14hbJ+isj3Tb8pzpQm6esX7Qvu7QyCvOTekeF/oyhZdiL94vAruIa7YsjeAei3pbfe\n6h5IjAUAqMirlJ6S1AtwpDUWAMDK0YqgU9KFZNz96YH09agyrkJaD0X2m1tIundE2ka1cKZbpFPh\n5BVOWozL4+gRQrjP4Zih3cjVBIPBI7QNApv3UzqOok50stGj1qC8kIsnZ9YT5qQyGpSNw5SeLckn\n1OceLqOQND5sDIMOCNm7Qvow9rhUrkZ0bYoPCSVpL4l9RCI82jIbLw6uUu8FsLCwmBSZy7cjb+dx\nynuWvh56nZduka/PeSW8HbUQohqym0DwTmbuCXQE/y9GpUy9pv4aj+8/uj1jWUElX+N5FGm9d5p2\np2k6OImz8XVWKTPy5HAAwIGBRyjvP9wi3un96NyHtGPsjtlL2V5VIo7pavM5cUOryYeyGBh5Y0FC\nQYLM1TIoJpB2XmNQw6M+zZO8VmUERIrjseSNBV3w+jq9geIZFk1qI7pKi6nfjv7z1QR5Y0F+To/Q\nNjqdp7bBGgwmjKha9gPgPmWoETXRH66jaufr0tRNiOXdw8upEbo2/gItgkcYWxUAQMm528haRf6R\nDlg7U+9zG2teAEgaq32Gt2dfHSBc24Xo19gJnNCZcP18/kFa2aRNFyjb+YXleDpnH272XE16pP1x\ng3a8DmfJ7kB0JP92idTWZv9njPtT0XIXOaMf3YlMWSb1acijbY9VzsMvpza0Xh97AwBwa+hKaG//\nZVsAYp9/Ov5dID6J7B6rP1deTfi9y5+U7ZLXqgzvBp0p22uq9ReHFBjZF4B411/+YSyCWgw02tym\nAOuSZMJUPHwJ+2jxEbNjTCvk/aaeb2ltwLEr8x00lrpNc99B8HJsgHOvYo2tis6IaTwT1pbi7GIl\nlWIj09zMEt2bzsPZeOMVYKuIe/1OzasriuMYBIUqIfHHs6g/U3mlc2UUPUxmLHt7wDoIq5THh6T9\ncQNpf9ygjBUAgJBp3WkNEXkyDt9D8BTi4tjS1Z5GWvcwDQTWJcoChJMuJAM/dKW9bzS0CD8T1FTB\n3JIcWM7h6G/fWSCohgXstHb70RU1VbrLEggAtta1K1sTe8JgwpTffWZsFVhY9E4jz/fQu9F8uNkH\nw4xDTAHbu9F8I2mlPb4uzWBt6YCz8csJxoFAqDvXERb1qHyaaND5OBbEn9jsU8Qdb+c2ITqdT/70\nQJWxoNhPJCSvJn0Gt2Q8RuY/DxnLqoLKgImbskNn49dWhHyxa8yke+PRdkZr+LTyxqDd/aUG06Eh\n+ttUTHl4jLKdyojQFa9VZCfSGxT1mQCozJakLs72mrsrGgP2hMGE4XM1K5BVG/D4ZBzsWpAD9CTp\nVZmgTgrWej26wmVYf0aymT9sQHVKOuOx5VHUX15HtzEfwKFTO+l19vrN4L0iL2A4lpYI3Pg97Tia\n4tC+NdzGU/t6ll65hYJ9xjnBCnZti0tvfkZVTVmtNhAUaejTHUXlppeD3NhUxifANjLcKHMLK+gD\nXzXFPaYx8i6/oLzX4GvlLgwNFw7CncE/Ut6zcLDRWjd1uNU7lvakgQlJv1yAzyCigdF67zTcH71J\nW9UAABXJebT39BVcbGrs7PAHBu7qB48IdzQbE4FmYyKk93Z12gNBlf7SeeanxiG84xi0+3AV7hyY\nBwAwM9fvErK8UByAHtH9Mzy78Aut3P2jS9B66LewcXQHr5T+7wQAirMS4ORN//1TUZSJ6JGxhFON\n4JaDAACVJbpNAOJg66nT8fQNazCYMJIc7bUd54G94NS3u7HVMCpUhpDXrKmASISUT2U/0h5TxsKu\nZSRl/9TP5kMkUP8HwX3yR7BvrbwwmmPX9nDs2h5CXhXSZi5Sew5tqaphlpFFFZHHFyF52QGU3EvQ\nyXjawBdUwtpSs2rQdRlhpeoAS31hXV/7Hb2cs08I2YiCp8TQGgzK6h8AgLmdFe294KnEHP+5/z5X\nQ0vTwMpdN8U+TbFGRGiPYLw9n0x5r34v3Z4cyeMR4Q7AOEZSatxJBEb1I8QRpD4+hcDmfaXXjh4h\niOgui1+xsnWSyifc3IP8FPVSjuYk3oFn/Xak2AX5BX1NVTkK0uIR1Z+84aTozvTi0hZSLIS8TPzp\ntZSxErf3675GlIMNazCw6AibBqaVYUFT3nVjwX/VN/Q3ORw4dGiDspv3YO5Uj9JYkBD4y0q1ThrM\nneopn5sCMxtrBG2OReGh4yi5eFWtvqZC8GLZKUrOoRvI2k0OyDQE119tRq9IsvHVM/LdKBhGh11U\nQ6PNbeHmpPUYb9aeJhgMVu7qGYWpO68icGIXlXKePZsSrhNWnlBrHmOQsu0KgiYTffcbLRuKl4uZ\nn162+pNc6fzB2M1K+8Qs74LLiwzzfXV+9kX0WPc+un3fldZgiFku/nyvLL1OaC9IKIBruCvC+4fR\nFm5Thqqibvom48UlZLwgf59mPP9X+rw0N4lxzAETubd3D5FqLlDx+jp1gT5N5mWily7iKpwdAmjv\ndb0wR62xrnRfq606KmFjGEwYj89MI6tKXaD87iMUn7pA6QKkb8yd6im97zZO/DkzWdwHbWKW2tY6\nOEBtY0Eel+ED4DpyiMb91aWJV09SW+dQcpYUdfEc3hGRxxeh0fbpWo+lCc+5p9ArchF6RS6CZ70G\n6BW5CBxwjBrwbGw41pbGVkFK8Un6LEHawjEn/rxyD9wBAKTvu01otwty15sOhoZ78A6pjWkBOQnW\nHswNsL29xVmj9Lmjr0jqNZm7qlsDV9J913BZ25uTxN+bez+L4zxsnKn9/pkGb1NVamapfVia07sd\nXum+lvAAgGv9fiK1C/kCFNxLNoi+7AmDiWLp5wmOZd34eJTtiivz+dclguISFB07y0gHXSIZW/51\nec2cAptGRB/KgLXiImRl1+8gf89het3MmNn43vO/ILWlzlgIURV9kSrFuRxjOqDgwN/ianR65MzL\nlejdaD4CXcT+z/JxDGderlRrrPgBy+HaswX8p/cjtFt5OiHy+H+7/SIR4gfqtmYKHWn5D5GWr7tg\nUF3BMTcntRmi4rKx5gWoi7fl7zmlt/la7ZlKuE7ZTl30L+q3j/VW5MwYZB1/BO8BLQht/qPbI33v\nLZV9qepOFNykdy+szK+EoFoAcytz6WI7Oy4HvCIefNv4wNJebJzqekdeUiht8J8DAAA3vr8FkQjo\ntFCm/7VlZGNUUhQOEBsHuU/zELcjHiHdgxDWt77Keff2OoDRZz/Ex3fGKdWNpW4RueoDAICwipww\n41qfH9U+jdAU9oTBBHGbOBD+sTMIbTkbD9BIs5g6mSuIQY3ZP/5GkjGzF1cslTcWAKDqjfIqslRQ\nGUApU+cqNRYkMqSxfjXMQubMy5V4xP0LFdWFqOAX4XHGP2obCxIKzj1C/IDliB+wHDUlFHFAHA4i\njy9C5PFF4FiSF7DvAiF7yJVEk8ZpV8TMVOe19HWnNBbefqT5CZwiigtkALByY+i/X8c2i99uPE9q\nU6wnQQeV3Mulfynts6vjHnEa0//wivJEUEyg1FjQFwcHy9ysOn7dnmAsnJh8Gq+PU9c2kF/QezR1\nR49170mNBVWL/dFnVRcoM0aKWRb9Uq+xj7FVAMCeMDCGabVlXVd7llB+K14v47Lon+o0LqlNxOeD\nY6n6By1rzSa1TkB8viYXwVLn1CZl6lzSfK6jhqBgn/IfbV2QXfoK2aWvdDrm84/WSZ832DQVNgFE\n949mRxdIn7+e/ht4yYbJTNYrcpHR3JKoFs9Ff102yrzGGEskECJpjHbGgqCyGua2soDl0Ok9kHX8\nkVZjKoOqSjUT/D5sh6BJJlgPgCFUO6pU/LvgCrCA+gSHDlWL87sb7iuNMyjllmq8m6+sH909JvEL\ng//oD7dGbui9sQfOTJcZbtq+VhbjcmvkFnQ6Nh31Gvug5EUm4Z6hThcA1mCoFQiKSo2tAouOKT5z\nCc4DiH77BQf/0Xpcq0A/wjV34fc0ksxx7NrBIAaDvnk9TRw4ybEwR7O/FpDuN9gojpnIPXILmbsu\nGlQ3fWPuaIeg36iDrUXVfBQcJO8K62pev+8/g4W7M+X9t6MMFwBenZ6D9LkbdDJW4o9n0WDBAMby\nZa+JleH5xRWwdLKjlff/qAPh+u3PqounydPh7FzaXPKGIHXHVQR+TAzs9vuwnTSOgwq7YHIsx+2B\n63WuW22k10/ixCHXVyh367qy5DqGHhgEnzamsSPNohsEFdXIPPUELTaOprx/tZdh/p+wBgNDcn85\naJQg5OzVu1ERp9tdVxbDwc+i3rEuv/OAZDCU/nudUpYpTv16kNpq8gvVHqf49EU49XlfK13UoXej\n+bTuR8ruaYqoRoD4AbLd/fqrx8O+sSxbhcew9vAYJnYvKH+ehsR5tcMnWJNd96rEdHAX/WrweQHD\nGgsAYOXvCac+HVB8+qbWY+VdeqHUYLD2JCY6iP+cmMHl4dgtaHdslvTaLsgNFSn50uvA8Z0I8ooF\n3+jQpo6CLknff5tkMARN6qrUYIj67WNyo37Dp2oNHhEeAAB+uXK30v7b+gAA4rYz+3tRl4qMYLXk\n7XyT9aLHu8jrdefwet05o+rAGgwMKbvxGGU3xP8Jzexs4Pvdp7D00W92i+TxSwwWEMiiH+iyMgmK\ndJ9XXNEA0ZTikxcMajAYm8SvxAaBbZgPwtdPItyzbxKAyOOLwEvOwevp5NgTRajSqJoqSeOM8/1S\nsP8civ5Rz31EV7iN6we3cf2QtXo3Kh7pbyOm4TeDlN4X8IiuNg0WDtK6krEqY6G6oAwp268g9/wz\njcdQh+yTcfDqR6z/4tQ8EMWPU3U2x7vCvwsuo88vPZWmcu3zS09YOYrd5B5t1Y/BcOZCpfQ5v0aE\nmE42cHQwQ2GREA/jqxAaZImQIPGykjUW6h6swaABwgoe0ufIjoDk4xaSRutv16zz+8tw7eJikxmH\njojmY+DhJcshfvlc3aneqy78TOrKkKIa0zUETVk3XWPfNAj1fxirUs4m2BORxxcRTiboYBKbYEzD\nInfzEZReMXzmJt7rVGQs2aKTsZieTjgPiYHrCPLJm/dX4wChUKeBz/I4NFTPJYTKHUcdlC30b/Za\nbZSd+sQN50gGQ0TsSNzsSU6k0PJ3cgrlux9s1JtutY2MuzK/dUksg5AvhJklOW/NkRF/602PoeOI\nv2cVGcGUhkHP92wxf6YzVv5YpDddWAwPazDUEqxtnGBuTl8V1NDjKOPZ4z0AgJieunUlqY3U5Cov\nU69v9JkyVlvk06fKP9c35vY2iNhPX3Tn6YjVEFaKj/5dujVDwGzZbnHk8UV4MuQHjYNQTQGbJiFG\nMRiMUYiy6K/L0oBu32WfwCZcTgczM4TsWoKkCd9qNHbaHzcQMLaj9NrCwQY1ZTySHJ07UXliDuzr\nq670mvnXA430i5/+B8peZaoWNAFsfMgxLjUllRSS7y7b2/wO52AnDDs0GABIxsLpz84RDAt9k/go\ngPYU4dy/lfh7j5dSg6FnS/1tWr5rdL0wxyCF21iDoZZQxSvWyU69rsZhYYaQV2VsFUyWMy9XItJ3\nAHzrRVDeTy16hOdZ1LUzNCF40QjUa9eA8p6ougZPhpEN3MJLT1B46Qmhb7O/FtCeNBizIBvdrrti\njIFjl5bI/fWI3uf1XTwZNo0NV1BLFRmLt5DeC461FcxsrCDkKfcNp0LRYPD7sB1lrYXEH6n/hl99\n9w9a7vofqd2rb3PCddLmf0ky8jT8ZjBluykYC6m7rpFSpTo09CHo5jusDanfm7Wn9a5bbaQoudhk\n6iyUlArxwUB7HD5WbmxVWAwEazDomdbtZ8DK2hF3rq2GQED/o2Tv4IVW0V+grJSLh3c2aTRX+y4L\nUFPDw72b2kXMB9fvjsCQGGRxH+D1C3J2HBfXMDSJHAVAfJpQVKh+rYB3hXfJvUcT4jOOw7dehM4D\nmyW49moB/8/70d6PH7ickbtG8vKD8B4TA88PxcGo9do1QMmd1xrrZUjD4u2ohaSFcui+FXoPOs5Y\nts0o8yqD6r0I3rlEJzpJDIawL/sykudlEBMSRKz8EM/mH0DodAUXKhWFE906k43gp1/uY6SDvknf\ne4tkMERuHEtwSwr+pBupX87ZJ3rXjUU7WnThoiIjGLs3eyCsZRoysgTwcDfH3q0e6NjOBjMW5Kse\nhIUWh/qeCJ/xPh59If6/3HTFECNrxBoMOqEqIRXW4cTjdmfXUES1ngKhkI8qXgk6v78MvMpC3L62\niiAX03MlqqtKYWXtCJFIgHpO5GN7edceqtMBF7cwNG81GQkv/iHI8/nluHHpO8bjxPRcicrKAtja\nuqKkOA2+Ae3gG9COICsZg1dZCECEqDaf0I7HwsIEkUio8zED5w2Fc6cmtPeZxCIokrXnstRg8B7b\nTSuDwdBUxifANjJctaAB5vWc/mGdLkTp2bOpaiEKnFoGAQA45trXUy2JT9N6DF2RfToeXn0ija0G\nix6Y/EUetv3kjjcPAwjt+QUCbP2dTQevDU0WD4Ctn8xVz61dqBG1EcMaDDog8/sdCN65lNAW1XoK\nbl5ejurqMmkbnU//7WurIRTSF6iRLMbp+jdvNRkZ6XfBTRPnaLZ39IavfzuCscBkHACoqizCnWuy\n3R9FWTpDg8X04GfnImOJYSo1a8PZV7rTMfI4fTCxJkYCHVZeTozk7K3d0Knhp6R2Q7suZf6wyyi7\n/VTzOnSIRMGfp1FToPtMYUyofJoI26b1jTK3KUPn2qQtievPkAyGDue+ws2eq2EXRA72jpu6Uy96\nsOievYfLsPdwmWpBFrW5O347qY0uTsFQxdu038pggaiKj6TRC6UZkhpGfAAABGNBQnhjcro9ZcYC\nU2r4sgAxQY3mfvNx91WnjmSpHVh6eRhbBZMgfsBynRoLAFDFLWAk16nhp0jNv4ez8ctxNn45zj0R\nL56NkSWp4sELUlvAWnJlcF1DZZQE/jJP7/PSIawgByZrjAp3oaL7yt01RULTKTRA5dqkK4ofplC2\nR/02kdRW8TZXb3qwsLBoDnvCoAfkU4rKU1jwBl7eUVLXIV1RU1OFwJCueJsgDhQLCO4CPl9/gUht\nOsyCvYOX3sZnefdQliVJk/gGQXkVno3UX4aogguq85xHh4kLUb3gyoJeRSIRzsYvN4rBkLVmD2m3\n39L33TMqrUN8dTZW0uZ/EfIpfc2SV98p/65/s/YUwufKYmwsHKwJ99P33dZIr6ZrRqkVx6Dvgm/P\n5h+gnkOhGnVVjuanTnPjPtC4L4tqYqMOG1uFdxplWZCqCysMogN7wqAHKsqoq/va23uhokL3aTav\n/7sEJcVp6NhtMTp0XYjL5xaQ3JF0RUzPlXgevxeXz82XPlhYtKF3o/ng8Utw5uVKCEU1OPNypdRI\n+DfhJ7XGkpwm6MtYkIyff+IBNCMtAAAgAElEQVSeSlkzjjmKKrh60UNTqHb7Q3YtNcq8mlaI1hYL\nDxedjaWY8lRxl15QqTz7kmIRtfB5/QnXqTuvqtTh8ae7SG31IgPIgjQYrTo0h9z0YMxmw+vBohfU\nrQrNojm3hv9qkHlYg0EPPI3bTdluZe2I54//1Pl8Ldp+inpOAbhxaRluXlkBfVfpKS+TFW8xM2MP\nqUyFnJ+2GVsFjbmcKM4MVlUjc+M783Il3gv/wlgqac2thG1wtvMzthoq4VhbgmOp///HNQXFpLaA\n9bP1Pq8h0TYOwKWd+rEV5YnUG1Qdzn0Ft84Nafs1XDyYZCxUpjNztdMExcxHHc4ayVBhYWHRCHa1\npweqq8tQUZGHmJ4rcfXCIgiFNbLsQjz1Kh/a2LrA3sEbTs7BAICAoM4oL8tGYUEiRCJx8ajH97eh\nS/fvlAYoMxmHKV6+LZGd8RA2Ns6I7kI+YXBw9IG9g7f02sevDcrLslFSnKrWPCzqUfn8FaktaHMs\nUqbONYI2mlFQYTrZXTSBytWIqq2UR73IMwRUqUVDdn+r9wDo1M9Wk12ivN30OqciVKcaRcdV7+Jr\nQvp+Zu5E/OJKWDrZajVXxpF7lPUMGn5Djpmj41afNRAJhHo7cXiz9jQ8ezWjvV9wM0Ev87LoDsmp\ngaRgmz5OEZ4kH0VmwVOdj6st7Yevwa1D9AU/NUHd4nVtdkyEXaAroe36wI0QVKhfR0YT2BMGPXH3\n+hq8eXUCXbovR0zPlRAIqjVy34nuPA/NWoxHYEhXAED9hv0Q2epjuLrLjr67dP8O+bkvpC5Cd66L\n3TECgruoNQ4TsjMfoXHTEYjpuRLRXahdklq3n4HGzT6UXjeMGIaW7aYxGt+uJZt+TxuyN5CD1v2+\nqz1uY2/yrqOBR4yx1dA7jjaqK/zqk5rcQlJbyG7NKh7XhnkB+kDrgr3aFQfMOhFH2Z66g5kh8nrF\nMcp2dRbQyVsugcclv7dMudlzNUQC3ac3VqQ4jjr4GQBeLiXX/GExLfh8Ear5+vVgKCwzzU0jXRsL\n6tL1whypscAvqYSoRrzR2+nYdDRZ1F9ZV53BnjDokfSU60hPua5URpURwdTIePJIVv2xsiIfL58e\nRGh4H6QlX2U8DpWMYtuLJwfw4skBpTLaxDV4TBlbq3bETQ3eiwRUJSbDun6wtM3Cww1Bv65Gyqfq\n7Ry6DOmLer26GeTzCHWLxtv826jkFyPULRqhbtF6n5MKr9EyIzt7r/o7z8as9KwOqV+sIVc9NoBb\nEt28LiO6o/DgBZ3P59itNTym0Bc8ejta++Dztz+dg3f/KI370y2i1V1AP5y4FZbOdmhz8HPGfQpu\nv8HLxUcJbUK+AGaW5mrNzZRnX1EHPwur2AKXtQGnIOLf6pffFGDTdupAdU1PH3jVZNdFCY07T4aA\nz0N1ZTG8wzrh9hHxJoBk97+eR32ER3+EB8eXSdvTnp2Fq18zJD/6CyV54qxl4e1Gw8ElABUl2Xh1\nc5d0/PbD16CA+xTO3o1w56hsHWPv7IuImGm4+/cigmxJbiJ4ZfnwDGkrNSjo5tSGpt+JXR2pAp85\nFmbocmYWsPyE1vOogjUY6iiNmo7A3RvrjK2GSvL/OAS3scMJbUGbY1Gw/y+UXr5J249jYS61sFmI\nZMX+gqDNCkG/HA6CNseiJicPWbE/Q1BKzqJlG9EQzkP7wcrPx0CailHMgnTm5Up0Cf0EhZXpeJJ5\n0qC6eI3SzmCoTfAz82DpQ8yDb4jaDEljFiNkzzJCm8uQbmoZDLoImBZV8VWmRWWKfOViY/SXwC+q\nEI/F4aD9yTngWFA7EST+eBbZp6gzfd3uR5+NRV/cHmj6v1UsZK7d0mGKYgY4ezeSLsx9GnSVtt85\nMh/th8cC4Ejv+zaMkT5Pf36e4FLkHtiSdGIQENGT9hShvCiDsv3ZZXGwceL9g9I5kx4eRVbiTdKc\n2uDaJpjW7UhUo/+TQQmswVAHeB6/jxS/cO/mOlSUG89PmillN+7CddQQcCyIf4quI4fAdaTyUuhM\nd75Ji2cV+CyYoVLG1E9BUqbOpXzdFp7u8I9daniF1OTq2y3GVkEnNA8cCm9n6orTxj6NSJu9nnLh\n7fP1RGR+r7/iWSKBAMVnb8GpV3uDzitP0rglEPGJu9pOfbqj+LTmpxyq+vfqboM9291x804VBo0g\n1xro1sUGW39xxesEPvoOpa5F4ONtjh2/uiKisSVOnOFh2kzqIGUnRw62evwJN1cz7NlfjrkLqWPn\n9v/uju7dbLD4uyJs2kpfgGvRvHr4Ypojjp+sxKRpegiMNp1yFCxq8OQ5ve+8JM5B1/iEdwYAJMfJ\nUhYLhTUQCmoQf15meAY07Q2RULapKC8v4JMNHd9G7yHt2TnGetw69CU8glohrO0ovLy+A4WZzxHQ\ntDfSn52l1FEbbo/6De0PkQuAGhrWYKgD5GQ9Rk6W6rzwpkrq5wvUXtSzqIbOaGAxDOZmVvB2bgJu\n4WMUlafD0sIWlua2CPFob3RjQcLbj75B6J/EFMy2zcL0Pm/+rhMkg8EQ8wp51UieSB0zIeLz4fP1\nLJTfj0PJuUvS9sCffkDh0RMovXwDAMCxskTA2u9Q9eatNGbId9FsWPr6wHlAL6RMk20mFHL9MWRk\nLv7aL6t30aUjsdaCRE5C+3bWKOT6w8UvnVYGAEYNt8Oo4XYq5SZPcMDkCQ4EOQsLIDdFJrdiqTNW\nLHUmyCiOAwBDB9lh6CDynEyx8XUmtcV/Rp1VkMW4/Bv7GA/+NL1A9MyEa6Q2B5cA1FSVI6r3PNmp\nwrNzlLK0475W/0Q5N+UBclMeSE8S0p+dg52TDxLu7FV7LGVUF1Yg78YbtN42AQ+m/iH1rnBuEYjm\nscNxY8gvOp2PDtZgYDEJ2MWtfkiZOhdmNtYI+FH9BWpNYRG4C/SfKz/EtR0aenajva9J4TZToHXo\naADA07TjAAAHGw+U8XLxOvMiekUuMg2jQUh9nO3QIRJlN+P1OrWoRgCOBdFXXl8uUXk7j6PknPKs\nRS5D+yNl2lw4D+oLm0bh4L1MQNCmWKRMmwubBvXh0KENym7eQ+CP3xOMAgDIWL6O9oThr/0e2LCp\nFEtXUPtmOziICxLIL8K/mlWPZDQEN85AcQnx8yrk+mPdKhfMnkcMeK7fNAMFhfSuChJjQdFAuPWv\nF9q/l02QHTUhD2fO8why/5vogK076U8k6Gi5awqprSwhS+1xTInyPB5S7uTg+alUJN/KxpcPhxlb\nJbV5uP8Nrqx/gpoq03bzzUt9iFYDFqOQ+wxe9dtLjYNm3Wfg1qEvYW5pg/bDY3Hr0FxwX/6L9sPX\nID89HiKREO4BUUrdg1KfnPovhuEJ7Jx88Oi0+HfHzMwCdk4+4HDMYOPgDl6ZuJZW++FrwH1xES5+\nEVLXRsmcHDMLRnOqg3tH8YZKlzMzSfc6/vUZqU1ZoTdN4Yh05MOpSzgcjukpxWJQHDq2Rb2eMbBw\nc4Gwsgo1eXkou3EPZTfu6szv+F3FvnVz2Ee3hnVoEDjWVqjJzkPV22QUnTwPQSF9wJm+6N1oPi4n\nbgKPr3mVV10ReVwW1BY/QLsF/fsRc1HKy8bdRPEOaqhnJ7zNESdBMBmDgUWKU98eKD51HgAQ9PMq\npHw+D0GbiJsYEkMhaFMsKuKeIPc32e44lcEg2aVXtiNfyPXHpzMKsP9wBald1U4+1fiFXH/weCL4\n1KcuGjh5ggNiVzhTji0/J53uhVx/8GtE8AxSvyghVcCzruI3jI2jtx2mnumrUd+nx1NwbtkDCPja\n+6N3/jwC0ZMbq91vY5dj4JWol57zj80eGDbQnvKeKpckupSi5x4uo2yvixjyPRCJRBSlEtWDPWFg\nMUnKbtxF8kEu3P10Wyn39DEP9BlI7R+sK1atcMY8Gp9hfZDH9VPrfSq//xjl903LhU0dY8G1Zws9\naqI7uIWPEeTeVnod7h0jNRhYTA+HDm1RfOo8zGxsUHb7PgDxKUjqF+SsbynT5sJlKDGVoeJpiQRl\nO/0Sft3gil83uKqU+2W9C0aPoF6gSZgxtxAbYl1QyPXHq9d8RHcjnhhMn+qgch5VWFqov/Zof5q8\n0/p84SGtdTEV1DEWHvyZgH9j9fMdfO3nZ7j2s6yC+Kfn+sHBU3Wdj+lXB6qt17CB9qRMSRYWHJSk\nBqF3d1ucuVCpnvLvGOW8fNjbGLYWjTawBgOLXsnj+qG8XISgBhm4dcUL7btmExa48s9Dgi1waK8b\n8guE6NU/lzSOux8X9254oU1H8Q/gg1veaNWe/jj73EkPBPhZoHFUpnQMRcLDLPD9MrFf7fDRedL2\njCRfLF5WjG07y5HH9UNMzxzk5Qmxe4crevYT6xb7gzPGjrZHYHgGqqvFpx6ZKb6wtOBg0gR76evq\n3NEam392QUQLma6D+tti+xbxAkH+vdi6owxDB9uhYTOxzlcueMLby1x6ncf1w5x5RVi22AlBDWSZ\nGwYPsMWq752lcuq8T7UN/+n9jK0CI15mnCMYDAB1ETcW04D7zffwWTAT5Q8eI3+PeCGb+sV8BKz7\nDjXZechctQEA4DZmBOzbtkTB3sOE/hauLghcvxyps4ifcVWV6hPRNp2z8Oat8tSihVx/ZGULVMYZ\n7N5bjt17y8HhAJmJfqQTAQOUW6CEY07O2FR0T/uUk8Zm2M+dENrJW6VcbkIxdg0/bwCNiPzaU5Zp\nbvbdoTC3oi+/1eqjcDTs4U/oQ8fl4z4YODobFy4TjYKaGhHsfJNRkRGsduAzv6ZCtVAdoqg8lTUY\nWFjkmfC/fGSm+OLpU75SuRuXPeEbTE5fpmhUSAgKpM8VTrXr7u7HJRkNt654wd2Pi6jmVti32w2j\nxuVL+w4dLNuVef26BhnJvnD340oNn7kLijB3QRFhLp+gDMIJg7eXOT6b6oCIFlkEuS9nOVLqs+Cb\nYiz4RuYW1LW7ONPVpbOe6NZL/Pz3PeX4fU85YbxTZ3n4+3imtI3p+2QK8Pgl6NlwLs69qnsxLPJu\nR2fjl6Nd2AQIhHzcf/unEbVioUQkQuYPP5Ka02Z/Q7jO33MQ+XsOkuTyft8P/E5qZsSXM+ph6gzV\n2Ycat8xkPKZIBHiHcrHkayfM/MxR2r56XQmj0wxd0uEsOavcnYHrDaqDvmBiLMRGHVYpYwjWtT0K\njhlHaZyFg6ct/neiD7b2P610rMYNLUnGgrYUlqXqdDxTp6ySeSbLrhfmKL2vj5gFRViDQQUhe5UH\nffK5OSi//xy8VymojHttIK1qF5euVGH3HtU7B3v2kmUki3QJYU3EP5hTJjkguks2SV7CqTPM8kP/\nvkdcjyDucTV6vG8jbZcs5I/+LZ5bvrpleJiFVKa8XPnu4cPbXvANERtBJ07JvlwbN7IEh8Gpfh7X\nDympApWLfskJh4SwJplYusgJGZkCpe+TsejdiOzmQdUG0Ac9axtjQIV8DIM+uPNml17HZ6l9+NTn\nIjPRD3MXFaG0VLb9b23NUXo64ePNbCPg3gOiX/r+wxX4dYMrKUaikOsPboZug145Zhy0P0OdglrA\nU76BZPJwgLmPPlAqcu3nZ7i97YWBFGKGSChCbNRhpacNzv72aNDdD68v0Lu6DhmTg5LUINQLJBce\njGpmpZFuOcWvNOpXW2Fa1Tp4YkcAMqOg64U5sufnZyPz9FP9KKgAazBoiaWfJ5z9PAltSaP1W/io\ntlNDc/JOFcvsG5xB2EkvKhZi+xZXDOpvC3c/+iwdXTqRUxcy1UXiQqUKeVciOq7dqJI+b9ua+CUq\nEkFp7EHiCx9Gc1BRVCzE5586/Ken+tlM9E1tzXzEYtrsT2iNkeH3ja2GWvB44i++1Je+pHtUAcfZ\nOQJ4edIbC1RuSopxFC5+6Sjk+pNkm7ZhfoIhT+gXPVF09y3KE7PBsTCHe0wjBE7sQitfFwKdVRkL\nAEzOWJBnXdujmBtH/xoGrWmv9GTk5l0eLCw4qMgIRpPodCSn1qB+sCUu/uMNTw9zle5I71JwMx1l\nlcw283z7N6etVXKlxzp0vTAHr9cxryGhKazBwGJwvIPIrjjKkLjuSBbPg/rbYvVa5UGyS5cXS+eQ\n9Ht8T3x0/PqpD9asL8Vv26kX0nO/LiL1pYLuNUyaYC+NYfhwTD5y0/3A4QA//VIqlSkqFqqco22n\nbMo5JG2qjJphI/PQro1mOz0s2tMrchHeZF1GIkWgM5slST+YmrHAtF4BEzldjsVEju4+Vbt3/yh4\n949iNG9dMBaaDgxWel8oEGFtqyOGUUYLYqMOKzUa5sZ9oNRosPNNxvoVbnh+W2Z4ZmYL9Fa0ra4h\nFDE70asurIClk+rAdX3DGgwsekWyGFbMGkS1SFYmoyi/el0plLHrj3Ls+qOc0Na8DTnwV35OyRwH\nD1fgoFyKQ0k73b+KKLZ7+BOvH93xlrpWKeuXny+knIMqNoPqeU2N6veJhUUf/B7fEkd+zsDouf6Y\nP/A5kl9UYH9CawDAn6vS8dE8f+niXtJ+amc2+k70kravPh6B1NcVMDPjwMnNEt+Ne4Utt5rjqwHP\nUZwndmf541krjI14AABw9bbCpmuRBKNhf0JrZLzl4dKhPMKcm282x70LRbCxM0PnQW4mZ2hoyo3k\nEHQMNt1A4vyrdcPlpM+y1krv1wZjQcKjA4lo8WF9egEOlFbinrUwH7MW5utcLxYZr9eeRYuNo6XX\nJS8yETyhI5J33TCoHqzBoEuEQvBem3bQTtPZ6wjXgioeXvzyNaHNzi8EAFDBNb0fnqjmVkhJUZ5N\nxNTZu78cu7e74auvi3DvhhcCwlS7P6lLVHMr/HPYXedpaVlYmDA+8iEA4NhvWfjjaUuMbSq+lizM\nz+4hBvtJ2vtM8JK2BTayxVcDxOkhJUbFJ+0fE9yOLK1kgUAFWdQ55E/uyMbFA7mEOZ09LLF9sdj3\nuvOg2pOlpDZzb8TP4BfV/iw4LUcqr0j+6rxmVbCNxYUfHik1GOY+Un7KwKIdL9OUB5cDYgNBnkfT\n96LrhTkIGhOtL7UoYQ0GFdSVeARFQ0EZoR9OBwA8XTdbX+poTNzjarTqYHpBvOoQu16266+uscDU\nAIh7XF1njQV9BDvrEvnUqWHeMQjzjiHJCIS1POBTCRaWHOx+0hIrJyfg1YMyWFqTAyuredS5PSvL\nVB/RlxSINwx+PN8UX/Z9pkIauHgglzRnRakAI+f4QSgEyovVC/SV7OLL7+bfSA5B/1apOPEgkNA2\nODoVf9+WtZ1/FoQRXdLxy0EfjH6femF5I1m8YTO8SxoOXQ2Q9p3znRtOHCjFjhN+6BichNXbvXDm\nrzJ897MnOgYn4aOpTgCAVVu9sOG7fGnfj2c6IyDEEi/jq9FzkD0mDRR/53w80xl3r1ZiwEhH/PBV\nHj6e6YyHN3lo2MwaR34vQU0N8wKZdwb/CK9+UfB8PwLWPk4QCUQoe5mBhNUn64SRIM/785W7Xh2b\nq7yieG3Ewtqcsgp0RUYwAMAxIBkC0y4SbbKk5t5jJKeYBckQWZEUYQ0GI6Oq6NYvG1zwy69leP5S\n8wUGx0wWICfgVeL1ju8h4JWrZUSw1H26c4i+rBdE796uki6MEUlsgrIYhrpEXIrMfzkqKB0741pi\ndCOxm1CTto503TRmSrs4hEXawzvYBukJmqV13Dj7LSytzHD3XCEOrqf+/lV8XYpsW18off7oDg+F\n+QKCO5Dk+bl/ZLFSdvZmKC4U0BoLin13bhC7TP5+2g/j+/wXi3VXnAGu4/t2aNvFFtkZNWjRzgZ/\nbi7GtPmumPc/4obKpJku0vG++EaWTjU4zAo7fizC04dVUrkdPyYh7i4PJx8Gol9L5qflgopqZBy6\ni4xDdxn3UQdVn4WhcPJVXjSvtvLkn2Q0GxRMe3/GjUFY2/ooqb1r/0xcOeGD0jRx39bvZeD5S/Wq\nRauLn3UDuFh4o5CfBW41OTNlkHVTpFRRZw3q5TIZZwu36UwXB3NnlAmYF2n1s26ApnZd8LT8KqXu\npg5rMBgIL09zvBdjjX0H1dtt+WxGoWohFUTMFOe3f7l5CWoqVPu0V2alwtY7ED4xg5F5+W+t5zdl\nbNx94NK4DVybd4SZhaXa/Xm5GSh4dgdFL+5DUFW7q1pKDARFw4FFM56k/QNbSydjq2FwxkY8kLoQ\nTWkXp5NxJjR/SLi3/EhjbJj5ltAmkZX8qywuIfVVJX65Gim9/qjRAwgEzHbUO4cm4drbECyfIysu\naaYkRfK3M2Ry8qcPTGINJLv8NXJpnTn/HdhUlgthYcnB2J5cnI4LRJewZJXjyc/59hX9wk4dY+Fd\nYsqpPkrvl+XUzt+AM0vuKzUYzCyo06/ee1glDXB2sDdDTkKg9N6Akdm4eFX37we36jW4Va/hZ9WA\n8n4ju2hag0GXxkIz+64o4GeqZTBwq16jqR199jBldD45A9f6bdCor65gDQYDcfGMB1asVJ7ZR98w\nMRYAoPhVHGy9A+EYGlGnDAZza1sE9hsPh0DqLxpNsPHwhW/MEPjGDCHdy751Bjl39J/qjMU0ySh8\nolX/ZjNN8wTwyY+qXRXlF+uS53QLePn2j1s+kj7nV4uULvpvnSQWOqOSpev/4/mmhHvycRaqOPck\nCF3qJxHSQDdvawNnV3OcfEh0SZoyJANDxtSTGhe9hzrgwU31F1GTBmbgy+Vu+GdvKSJbi+vFfDc7\nFxaWHJSXCWFuQW+x/LyiAL+f8cOPS/Lx/RYv9Iki582XyA0e7YiURD7KSoVIeK7fneK6yLkVzP6G\n9EGDZevwevFs2mvP/sPg1CoaZS+fIvOAhhUGlVBWLpQaD3M+c8Lx/V4aZ0tSPAlgcjLQy2Uy6bni\nGFRt2fxkeFkG41LRHnRzHoPimlzcLv2HNObV4gOoFJYS2n2twtHUvgthXHOOBbo7TwAAVIt4uFS0\nRyev18zaQlq87c6YbeBlFcPQ1AmDIY/rh8NHKzB1eiHyuH6Y8lkBjv4t/lJ+/sgbUW2zUb++Ba5d\n9CTltXf34+LiaU80j7SU3jtz3APHTlRi05Yy/LHDDX162RD6CYXA6PH5SEmtga0tB/FPVLsLeXvR\n580ePswOh45UII/rh579cvEwTvZFncf1w/RZhYSTiTyuHzKzBGjWKgu9e9pgz043lf7qIhG1zzAV\n1SXiH2ILB927Exia8I++hI0HOb+5IfBq3xte7XsT2ioyk5F44Cej6GMs6n/4Bex8glXKMVmIsrzb\nfDDdFzHD3PF5TLxW41ham6HXWE84Olvggy98pS5UTHhwkyc1Fi4+D8b7TZKlRgKVS9KzR7IThjNH\ny0hyisjf27VRtnu5ZlE+4f6VsxWkPlTz79tajH1bxYsLeWNBfmyJnKny208lmDStHiaPzFUtbEQS\nr2hWx0LfSIyHnBP6y97k52OBhAcy17H6LZgVJdMVkgU2nXFxtnAbwQCQEFd2AfbmTujmPIYkQ7eI\nl8gpuhZZcCzxvvN4gvHAxNipEhI9T2pEZGNdErMQNCYa7fZMJrUbgjphMADA1Oli1x2foAxkpvhK\nK/Q2aSFOpfmCIgZAssh+v08OId9965ZW6D1A/MU09uN8Ui78gLAMpRU41eXQEfEfy3c/lODAn24I\nj1D9pdOslfh1nTnHrKIxh0N9pEiFY3AjAEAFN5lxH1PDVHdn7XyC0WzmOhS+uI/0s3spZbpzPsAF\n0WGVMQWOcEY7TndC2zXRSVSBuINJ5WLEQwWui05p8hKYw+Gg2QzmX2bNZq7Dm33rUZlt2B8altrD\n4Y0ZOLxR+6xi8qcL6o7X4T07AED/EY5Y8EntTsBQW9i0tgSbVNTeYVFO4NTZSN2s+e+iX3M3cB+T\n06eO+9ABm9e7AwCq+SK4BKdQFmE1ZcoF1MayrZkjIuw6wdGCWSa1aMdBAEBpmCjjcvFeNLbrgBcV\nNxFs0wwXi3bTyqbsuY2UPbdh6+eMtr9Pkp46GMJwqDMGgwS+QmaHPK4fioqF+GG1el82F0/Lqjc/\njicaG7o0FuTJyRHAxZn5wl5fuDQTp+pKOfqbkTVRD46FBZp+XjuKAtEZCxK6cz7ARdERiJQkwG7H\n6U4wENzgjc6cfngouoYCyBYyz0T3kAnZzqIvgtGEozyPuC5Qx1iQEDZqFp7+NBciYe1PudHItweC\n3NtRFmhjC7fVXjrXF+/cnzjI1jhhqR1IXJMaLFtHuFaHlqPDSAaDJEtSXSzUFmHXGSlVT3G/TJz2\nlIkRwOFwkFn9BvHll9WeL9C6CV5U3ERD23ZI5ql2Z63kFuHVmrNo+GUvtefSlDpnMChy6gwP4yaJ\n/8hXrXBm3O/9PjmqhWoZDf+3GK+2Ki/HzjGX/Umo48ZkbBpP+RYWdrXfhUrCPdElpcZCZ05/ACCc\nJuRDfOrUktOZcBohbywAQAaS0QT6NRi0OeFp+kWs0dyTIo/LUqJqmzHJz6V5nU6fysLCUrt4vXg2\n3LpptsD0bU7eZTeEoeBk4aH3OajwtgrFs4prtPdrRHzYmDkQ2m6V/IP3ncdpZDCIIIIZh951XZ5m\nK4bCtZ04/XLe9QQ8W3pM7fk0oc4YDObmgEAA3LvhhbR02e6kv5/4A7CgeKUH9rjhwzH5qOdI3tW3\ntOBITys4HGh9xBb/hI/xY+3VzpKkC56um42ms9fB0tEZ9cfMRuIe6sVcQP/xcGrQ/L+r2nOm2OTT\n72FubWNsNRhTkaE6O0oxlFfOtIYNkvBCVyqZHOY2dhDwanf+9hphFWzewSxJLCwsxiH0yyV4u+Zb\nBH02l9AeMHk60ndugkgggFu3Xsi/dFbtsW2drXWlJiN6uUxGuaAY1ma2hPZgm2ZwMHeBvZkTrM1s\nUSLIRx6fmGq3U70PYGteD+cLdwAAvKxC4GIhLgrZwLYNygSFyKh+o3T+ayUH0ctlMnL5qfCwDCTd\nv15yCDFOo+FtFQIHcxecLdyGGlE1cvmp6OUyGUKRAGYcc1QKy3C1eD9szOzhbRUKAPC3bghzjgVS\nq55Lx7tQtAs9nCfiRlHTnu8AACAASURBVAl9nInE/QgA3v52BWkHDVuhvs4YDC4uZrh91QtjPy7A\nrdtV0vZ/L/OQkeyLRs2ysH1XOaHPh2Py8e8ZT7x4xScEDbv7cTFsiB2+/9YJKWk1mDC5ABmZ2rlI\nvNc7Bwvn1UPiCx/8tr0cq9Yod5EaNcIOG9e7AAA2rnfBxvUuWhXiSjr8K0I++BS2nv6E+gvm1jak\negy8vEy82R2r8VyGxFRjFZSReHCjTsYJQWOEcBqrlJOPYShCHipQpkRaexpN+kbrMZpMXV7rg6Bv\nv9mFmMYzSO3NAgYaQRvDIp83X5F2Dbmo4jHbkLhw3wfuHqp33fp1ygI3jXkFeGX6fTY+DzcuM4sN\n0yWKtQYGfGCH79a6EmSWzS/E0X3lJHn5furMQ4Wq1383wQ9W/1XYLioQIqYFsxgQaxsO7rySxQPS\n6brriCeiWlvRjqNNHQZVr33utHycP1k7U6PKuxml/EL8/U7btpFSTh1EQur/s4XJQbD+7+9BcuIw\nfUo97N5fhuISzbwUlAUJq3LXoeqbXZ2E7OokvKy4TSsrH9AMANXCSqV6VAkrKO8/LKPOjMgTliOZ\n94RWf6FIvMYsE1Cn0u96YQ7e/PwvuH8/orxvCOqMwZCXJ0RYE3Kw8PKVJVj+XzrTeQvJ+XLf603t\nenTkrwoc+Yu8w6nNon3FqhKsWEU0FOTH23ewQnoCIf9clQ5MdCpPTZCeNCiVS3uDpEObVI5nCtRG\nY0GXJIqeqTxlkBgLigHTvpxgPWkFWDq66G3s2kQV/78UfJGLwOOXorA8BT7OTQEAz7mnjama3rC3\n5+DGcz+lMnde+TFamKla3Mlz8ro344WkqnF/+d0d8Y+Mn1JU0VgAgMUrXXB0Xznta4jubIPb16gX\n+3b2HNxU8dkA4te/aFYBThyl/v2JbsjFwyTx/M6uzGPubj6TzV2Yb1h3VzNz4OFb1X9PsZvcMH96\nAc4c0+x0s0nfQDw/VTdrWJTnkf+uJDEMGVkC+HrLDPv9R8uR8SIQ9n7JBtKu9hPjNBovK+mrhBuj\nsrMidcZgYGHG03W1e9dWwrtuLNSAj/qcCCSJ6q5bUl3gbPxyWJjboFXwh/BwDEda/kM85+o5O5UR\nkRgL8jvhEuQXubGb3FQu8EcPyMHe4+LkE1NG5eLuzSrC/YZNLHHgtBdhfFVjKi60FeW9fMxx9rYP\nIlvQ73AbgrgUf5z6uwJfzyiQXsvfA4DurTORlytAaLgljl4Qvw+b97jTvgfyxoJIBLQIJsq1aGON\nnYfF/uLL17vi6+Uu6NCEvBklVFjrz/raCeu/V52SVS48Dt1a0p9KTBhG3sRTx3ikQt5YyM0WoEdb\n4uZiYIgFjl32BgCs3OiKqbPqYXC3LLXn6fd921ppMET0D1Ipk3iV+J5NmeCIy9d56DtC/D5JjAcA\nyM0TgKOkmCELkR4uH+NmyRHabE2mgvFT8ugATXb9tTkpYDEuzWYa39LWlHLuW9VCDLgsEheWac7p\nQLrnAOV+82wlZ8NSI+DhTuLvuPgstk4bCxKmT8wjGQsAeXGuahH4PL4aUUHpiApKJxkLAPDqOZ80\npqsb/U9a/QbESu5UC+vsTIFWLi+6RGIsAGIDTJ7XL/jIyxW7MLxNUB1YL/9en/q7gmQsAMCje1Vo\nEyb7XbSz56AZjeEkv6gf/4lpJ5uQf+3De2WTjAUASE2qQctQ2XsSHPpu7aX2Xd5GpcyzE8TkGQtn\nO0uNBV1y5E0UBk7yxNdbQ3HkTRT8w8TxiV0GueDImyisPNIAR95E6XxeY3K+cIfJGwsAe8LAUssQ\nZ3GqvVsXbw/9rLOxLov+QQxnEMkAeCS6hjKIv3wk9RzkZS6J/kY3zmDSeIrjyF8rujQZE/lMRnWZ\niowkccG7WrRVl5UhwLV/6f3fo4LStd4tVsZPO9wxZhCNm+l52WmEKqOgR9tMnL/ro1PdtOHovnIs\nXilz9RvRm3n9hwEf2BGu5Q0RRfh8EaIbcXH7pfg04o+/PSnfq7j76rls3U9UHbugD1q0IQbqJlDU\nY5IgFABL5xZiaaz4fWZyYkWFo7cdSrNqd8IGKnJeEl26Hz+tRt8edjh1Xvev9dj2HBzbnoMjb6KQ\n/kb8fTJjbRCGhcVJZY68iSJcs+gf1mBgqVU0nV476ixoA9PFeQ34jGSpZJi2segHJnUYmATH23r6\nwc43FPXqN4W9bwghLbIx6NtRvUq3P/zkigVf0C9gmXD7Gg/RncW7kA2aWKqQZkZudu2vAyJBPhbi\n4hnVAb28SvUz5LVpb417t8inQBIsLIxj9EpcrABg8oeqq0T/fbBcajBoytQzfREbVXu+S0ds6aJR\nv4Gjs1GREUyZWrUiIxgLl1MH75oyTYMHw9c1kpHsuYfKU9TXRViDgaXWENBrtN7GTjryK8rSEjTu\nb+PmDfeWXeES0Y5WpvDZHY3HZ2GhojKHi8ocLvLj6POFU6GvGCBF/3Yq/jlYjkEj7AEAfQbZaW0w\nJCbUILqz+Lkke48iQ0faazWHoUlNYp7xSR3mfKI8XTMVLdpY49E9sjHQuVkGrj3xBQBs3e9Buxu/\ncIVpJEG4f5veoGFKWW4lHDxsVcrNjfugVhgN7ac0RlA7T9WCNPxxoIwQuyB5LhQC6zdp5mLDTZSd\nUOrzBMHC3BrvNZ+nt/HrIqzBoAdC9q7Q+ZhJoxdq3FeSGYlpwLNfr1FwiWhjcgHSzo11W2zs1c4V\nqC5W/weUCl5+FtLPH0D6+QPSNgtbe4SPmw8LW/FiRf4ei/ZoW1iNCm3dnRr69ECNsAqJ2VcR5N5W\nR1rVLY4dqZAaDOrSpr01mre2RlgDC3h6m8PDyxwBQap/xnoNtFMpw4RuLRfAwlxW8+X8vSWUcj3a\nfKtSRhmZXNM54Rgz2YHSYChlmDJz+BjZZ921ObMUrPpAF65wv/U7jdl3hzKSnXFjMDZ0/FvrOfVJ\np2kRjOSEAupTp09m5eGTWXnYv90T73e1xe37PAwdmwM+X/M6Tn71bWBpxQG/mjhGWbEA6040xOz+\nr7D2eEPM6PVS4zl6tlyscd93GdZg0CEBP38FC9faX6ip+NUjuES0gXurGOQ9uGxsdXRO9q0zyLlD\nnStZl9RUluPFFu1rEtQ28h9fh1vzTlqNUZqs+Y+BMQn2EJ8wJWZfRSPfnkbWxjR5o8SPXBEzM+Be\ngj+09bRq3FQ3rkqXHv4AgGgQUCExElTJ0VFRbti0o8pQjAOQ5+7NKrTtIL5/7YkvOjdTbhAUF5nO\n69IEQTVz/a3sLRA5NATxR1UX6jQGc+OYJ7/Y0EG54TNyEnXckLpY24qTFmw83xhm5hy4eVtiyZg3\neHq7DONbPUGHPs7Y+yQSm75OQ3qi+rVSGvn3RqCncTdylBkrpu7mxBoMOkIfpwrGouy/xZp7m/dM\nxmAIHjxFJ+PU9mJgtYGMS0e1NhiS//5NR9oYFsW4hIdJ+5FbSq4o2ivy3QjcpqKGobeNsh3he7eq\nwE2rQUaaAJ3fs6HN5iPB2rr2BI4DgMCE1tXWSgr8ThmVK/2cHOuRM1TJf4Y/fEOug2RIkt/qxs1r\n9+iLGLf3fUayvRa3Qq/FrUzKPanrrGZoO76hWn1qqgxz4rX3SSTJDWnTpSaY1k1cEfnm6SLcPK3Z\n31FtOFWIDBmG+CT6Ss/GhjUYdID3gonGVkGncMzEX/zm1qp9NQ2FY3AjrcdgjQXDkf/4Btyad9So\nry4zSRmbwoo0Y6tgcgQxSFmpaCwoK/TWoIklmqkYL4MrQEh99udOE94mKF9o19SIGAU1H9it3wrz\nqtCkrgIV2c/VD+adG/cBchOKsWv4eZ3ooCnqnCpIWNNStoCVj1dgAlVAtDIKc/g48iYKZ//MQ4OW\n9ghpbKt1HIODrSc6NJ6q1Ri6JKvwGbxdqF3BvF0iWIOhrmPbLIzUVnbjMXJ/OWgEbbQnYuYaAEDR\n83tG1kR3cC8eMrYK7xQZl45oZDCUpb5WWatCH7EL+kBZFiRVGZLqMhM/VZ63X3Fhryq1JdXOtiL7\ndpXh6++cVSvHQmLDSuXBq63rc6UG3t0EP7QNr/s1jmKjDqu9+PYId5L2OTb3Nl6dN0x6WU2MBHlE\nQlksgaIBUJERDPf6KahQyKxVmBwE9/rEug1MmNzhmUY60tG9xUKYccxVCxqQ+KQjtAYDIDZwyip1\n4+Kla1iDQQ9oE6CsC5wbt1KrXYK5rT28OvWTXnPPm4bBo4vsSAVPbulAE+PQ8n/r8HCreqcjURNX\nIW6ncTNAPPlxNppMXQ5zG2YBpwl7YsHLUy8tp64puvbcqPO/C/ToKzu5pHIT+WGjm1rjteuoxGfm\nPw7uZg0GABg1wQH7dqm3069OdiH5LFXfb5Clc6U7HTIkkz93xLafS42tBgBgYGy09Pmbyxk4t/wh\nyvPU98mnomEPf/RZ1hqWttov75S5Us2YWg8fTcklGQsA4BKcQpty1VBYWdibnLHAhA6Np5psLANr\nMGiJ86CuhOv0WcavQuzf5yO12k0dbbMjvYuuSGYWlrC0qwd+RYlR9Xi+Weyr7xjSBMGDJpPu88tL\n8Gr7MoiY5OM0AKmrjxpbhVrNvTd+hGrBqqByEzGFKru1qFaeSob3ysahs+KidfO+dVZpMNjaqf/i\n01JqpNmqxn/iiN+3lKLvYNlGwdxpuslGpy6TP8zFtgPiWgyfz3XSqcGgySkDFWExvgiL8dWBRrpl\nbSvlrjELZjkjvJVpVEVXxNbaBZ0jpmvcn1ddguqactSz00/xxlsvtqB9408Yyzs28kbLnz/Cle6y\n9WXXC3OkzwWVfFwf8JNOdaTC+N/MtRz7aKL3LD9bu5ziukCSDrXBpEWwcnJVIU0m89+jyI+7rmu1\n3jn82w9G+i3jpNVT90RC35QmPX8nDDd1gpnroluSpSUHZmb09RiYpLa8dK4SfQYxO5ViKgcA505U\nomd/W6keylydHiXrrxq1oVGsbmxnz0FFOX3ay1svZFWZszKYBbsO6JIl/Wxnfe2E37fIFubV1Zqn\n2NQWxdORL+Y54adVmtUHoEJXRoOpIRSIaFOpSpizqADZrwMpTxF+Xq3eKaGuUcdYyCx4gifJf1He\n01egdGkl80rtABD2aTfCdb3GYkPmSve1MLO2ROeTX+hMN2WwBoOWWAV4GVsFWl5vFy9I1K3DwKIb\nPJt2MZrBwGIcFI0AqorOoZ6dEOrZwZBqGZSHSf74/bdSrF9BXJgpGgt0C/YFXxQQDIGHb/3RMpQo\na2fPwc3nfopdlfLVZ/no2V+mA5XRYGXFwd0E9catDUQFpUvff8n7pvjam0ZZYc8/xCJevdtr5iL4\n8K3sfTZ2TIP8a/94miM+nuaIcycq8dVnxFOPwBALLFvjiqjWVtJ+TKhrRsPVn57izg7Vaa3/PFSG\nrRvcaQOhjeWOFOrdmZGcqbr9UOEQ5gl+icytr8XG0bjSQ3zaIKxinqZaW1iDQUtq8oth4WEalSxZ\nyJSmKP/ia/m/dShOfYbEs9ul14Bshz6o6yi4NWgjvZbcl0dxN19eRlGeauefyZh27v5oNITYFr97\nEWqqKqTXrmGtENxN5nambK6Xf69Ho8GzlM5pbm2L5uOo0wWb2gmGKdLErw/4ArJf8tuc6wj3jjG8\nQnrm13UleK+3LRo2scT4KY4YP4U+uJlH4fcsT1JijTT42cxc+cmE/IJQFf8bmYut+z2k18r6PX9S\njSbNlKdrrU0sm1+IxStlv1Wq3jOmC2YJXZtn4MpjsWuNmYau40w+RzoZZfp+PDwXOw7JPvee/2fv\nvMOaut44/k0ghL33XgrIUNxaLW6xrlpH62irVVtHXaBttWqttdpqxVGr/mqdtbZa697iwF0HqICg\nDNl7bxJIfn+kCQm52TcDvJ/n8TH3nHPPfQMEzvecd4wyEhGPqtJeRAOrtkkuscCHLwpunHVCaIgB\nniewsGh5KeKes9RkoWx8nQdK7edwmxEdp9tp8L2d3kZ6/i3BdemDNNiF8VLhGlj/VwhRCwd3lGBQ\nkbqnr2A+tJe2zZBKVWo8zH1lJR5sn+Rc/lPmGAt3yRkLbDr2ALgtn0wuh4O4vUsF111nR4kFJQuL\nC1kLa/4CPm7vUoEfv7VvV7Fx/uMikHhsAxoriwEAXaZvQMhH60TmL0t9grLUJyLzSsL/3SUi93ad\nHYWQaWvx/HDLEWznj77Hq3O/oCY/DQBg6uCFjmMWUGJBTlysu6CqXrtB3Jrkf9uq8L9tVVi1wQrj\np0iu5JyUwMbkkdKP5McNKkD0YyfY2klfeSq6qH10vxHvjyjE0YuST4abmrjo7pOLnn2Z+PVPO5E+\ne6tOMDVq2YXv6DYMNfVFqKrNE2Q2sTb3hqmRA6zM3AEAAZ6jUVtfjJr6QpRVaa+I14k/a3H1fD1u\nx8v2l1f06woQF2Wb/3GJwvOog9iHjQoJS2Vo66Lh0cFXuLnluVL3DhytG7/nHCw7yRyj62IBAHyc\nwkQEw4vvziEszA/+X46Aw1DZ71FdUIJBRUr3n9F5wZB1Zr+2TVAahqlqlbOb6qQHuaVHH4D3kOlC\nLVwAokF/SSdaAo2ExQIAPN3/FbrM+EEp20Jn8dLXtl6Al6XGio1tPebpgeUyRYE0Ws+XePR7BL4v\nnt2LLxYAoKZQNyuW6ir/pu5Hnw7igd59OszUgjXqo/Xi8rvl5fhueTlMTGg4cMIePh0YeHCnAWu/\nKpfbJx4AhnTnLUK692Zi3RZr2DvqIeEZC3/ur8HF03UiYxVZ4L58wRaM333YFqE9mKis4GDtV+W4\nc6PlROjhvUaxeYvKX6Co/AXS825KnL+sKh1lVenIKlQsM5us9yCtX973X13FEYwdOc4Yi5dbwMKK\njpirDfjpuwoU5qtWoEsZoUHm/fLOzzSkYdNOG3TpbgAGg4bkRBZ2bKrCk3/lzwhFxKYux/H2wiD0\n+kT1ukGaRJcKy6lCZ2/pgk2X3JCKKl/C3oK4gB4N4okHYoZsRv+Li5G64zpyT8UJ2nsdnq02G1tD\nCQaSoTH0wWWTU1GSAjBx8Vbr/BWvW3ZUrH27IefBGRjbuoFpYSfYza8vy5N4P6dJ+aNXGk12/nhN\n0VilnSwm6iRg3wIw7JQXnKrWe6iqLwCrqY4wEPp+ym8qzd0WqK3lYuJwxYL7iHj8oFFpX3pZzJkm\neQc8KLJFkNdkpSDj712Ca6a1PRrLVM+VzjC3gpmnP5yHTkTCZvGTu6DIKMJ2Mjh/sg4xsa6oyXyl\nkeepAtl2NTZwsfAT9Zx+3NqegFvbExDx8D3oGejO73giDk25plQhurbI7QT1ZxFShLySpxIFgyRu\nj9gq1vbvtD1kmSQTSjCQALeRDRqTAQDwPPit1uswtCfMPAM09izPgVMFO++hn2xE3L4vxMbwd/Wb\n2Y0oT32CxirdOHJXB0n/bBI7xYj/Y412jFEA343TYRygG1lubrxQ/hSIQnv4z1srdYHaYcZXpCxg\n2VXlKHt+H85DJxL26+LinUI+onryUjSHLQlGz48VWxiqm02hx7XiA69N6lkV2jZBhKLKl9o2QWEo\nwUACGTPWwOtIi1+c244vkP35Ri1a1H4wsLTVynNpevyPRstv1dYB0QDvlMCl1xhNmqYx6st4u7pt\nLWZBVbGQt+cKSs48JMkairZIQ2EurxgDV3RVJXzqwH8tvKgX7ue3m7j5wmvSPEF7+pFtqMuXXQWX\naH4A6DD9CzBtHAEAjeXFSNm3AQCgZ2iMgPmip2LKCg6fqYth5OhOOE9QZBSSd30D/7nfCvosO3WH\nY9gYJO9aLTIuYXOE2PuXNRcA0A0M0WnBegBA4e3zSr0HXSFmSzxitsQj+F1PhK9RraaQqrQX1yMi\nPB3ab+Y5XYESDCTxesrXAtGgb20BryPfg9vIRsaMNdo1DC1pVRVFF9KwGljayR6kIkUJt2BgKp7p\nyrXPOCSfkBE8PE7610iPwUQzm9gvtqbwNUwdvOQ3VMN0+WQjSl/+q/z9c6PwdJfqP0P6RqZobqyT\nq7ib0ydDBK+5HC7ix7YI+U5/REDfnJeus7W7UchZnttQU3kN6WKB75JUVPUKcRnH4GjZCeZGjniV\nf53U51CQR8Y//0Pg4o2g6ekj58JhVCTx4or4C1oiF5nWbfzr2uxUwnZZJGyOEBEgfJg2jiJ28AmY\nv07QbmjnjIZiya6UfDwnzCFsT/ujxfXBvEMIOi1Yjxc/rxC0cZpYIu+h4sVjuI6YIrh2GjgO1a+T\nAEDs/cuaiz9GuM2h/0iZ70XXiT+VgfhTGYJrdcc61JY04Nhnt1CSpt3inZqio8sQiX33k37VoCXk\nQ6PT8PaVCImF2xJWn0LpvTSiW0mFEgwkIiwaAIDGZIhcszLz0ZiRB64SeXNLD5wlxca2Bp2h/rSG\nOQ9OI3DiV2Ltdp36Iuc+cUEXALBw7wQjG+kZRzpPX4/YPZGEfa/O/EyYZcnUyUck2FhbPDuwHKEz\nN8HGTzSoP/a3SLGdV3XiNyECL/6QL57AblxvwWthsQAA7JJqgWBozfPR6xBydiX0rUzh/d0UpK86\norzBQvDFQl75c+jrGQIACipeoLP7e5Rg0HESt/JcEoMio+Ay7AMkbhN3UWwN0QIfAExcfeDQfyQM\n7TRT0ddt5DSkHJB9yp1xfLdYDAMf+97DYBHQFUwrO7HS1xyW+CZIXvRx8BJGcGHTtb/Igt/E1QfO\nQyeCYWYp9judaK43AX6sAx8LFxN0meiNrpN9oc9ULC9tSVoVHvyWjKSLWWSb2S6orhevKN+W8Fs6\nnLD9VvhWBK4Zg6C174qICXVBCQYSEBYF0jDwcIKBh3Klxt9YwaDPUP9DuFwwLeyQ++8Z4UbQWiUT\nj90TIVjgt24jQtJ4WWOIxslD6zmkPVceQmduQsXr5yh//QwAwDAyhWufceg6a7PIfBaegfAaMRNF\nz27CvvMAwalCc2MdgmZ8h6qsJFh4BiF+L29XscvcKBQ9vQG7zmF4trsl65TXiJmw8AxEbX46qnNe\noeDxFVj79wDD1BJWHXsA4KAs+ZHC74MPu7QKRt6S02nyRYNpF3IC7Z2teKmM+YXbQj0nkTIvhWaR\ntNMvaWxrgiKjUHj3ItL/3C64VgcJmyMQuGQTuE1sZJ09pNJcQZFReLH9KxQ9uAIjBzf4TFsi856y\nZ/cQFLEZCVGiGyT895+y/wfBNYU4lbm1iNkaj5it8do2hULHsHnLVyTmpP+FRSh7lAFuUzMSVp4U\nOW1QJ5RgeAOQ17WIRtdD4OJNACDii/omIL6QJ/4AEi28pS3G5VmoyxojqZ9IfKjyrNZ1GRqrS5Ee\nfUBkTFHCbTFhYuXXAw3lhci7dwZ591pElx7TWCAeuszl3eM57GPk3jmJ4vjbyLt/VsRtycIzUMyF\nqSz5EdwHTkb5q0dyuSTxqX4ifkLTmFMK9Ogg1/0hZ1eqnCUpyHU0iqtSVZqjvWPnboivj3dBQ00T\n/rf4JV4/l54GWRI7nvbB513E05iuPh0KN/+WmhCz/e7INV9QxGYkbv0CXE4z/OetRXNjvcx7OOxG\ndJjxFVL2/wAajQ6/z1YjefcaADyXHQDwn6u+tI7+89YiZe8GsKrKSJmPw+ZlgJNHLAig0WDbY5CY\ncFLm/du/FY6iu5cQ8Pl6+Z9PQdEOaSyugb4nU3BNN9BH/PJ/NG6Hbuf8otAoXE6zQFyo8w8bRduA\nri/uDuYQIl5FM+PyAZQmPUCXuVFw6CbZjxQALLyCUZn5gjQbJUGU2rg+XbPH0iXVabAz99XoM9sS\n834JwPqr3cHlAsbm+jA0Va48cJfBNmAaEd+7fXYifluqeDaSFz8vR8eZKxC4eBNyzh9G0g7RzHcp\n+39EpwXr4Tn+05Z7ti9H1pkD6LTwB/hO/0IgFhI2R8DzvU/hP/dbsY2YoMgowY678Gs6g0nYLg06\ngwn3sTPgMy0CAZ+vR1Ck8i4KKQc2otPCH+AzZZFCgdOph36C49ujRNr4799nyiK5N6ISNkeAaWkH\n34+XIWnHCrH+8+mBgn/dwkzF2nUJdr4P/Hw1cFJO0W5JXHNa8DrsqvZiS6kTBgoxyp7dhXXnt2Bg\nbk3abhVF2yL5xGb4vxeJrrOj0MxqgJ6BoaDvxXFx3+jiZzEofhaDLnM2o/BJtMR5s28ehVvYRKSd\n3S23LVxOM+j6BmhmNcge/B/mvcXTGFbcTIB75Ltyz6EqsRlHMTxkJQJcwpGUewkAQKfpYWjwctQ2\ntr+6F4oSOsQGaXHV+OGDZyrN8/RaqcSTg4oiFv49W4xZPymW1pLDZuHlnu8k9jeWFYoE7graSwvw\nYrt4PFTKgR8Fr4UX4JIW4xx2o8Q+ovsDl2xC8s5VaG5s+YzIIzKE4xeE52v9PuSxGQAaivMI+xV9\n/wCQff53wnHn0wPB5QCjfBPFxMGHfV7i9/uaTWEa1tcIj582orZO/hNQCgpFqM8pR+7JWIHrkXC8\ngsfU3pJuI502Ixj4Jdc3dTmOcVv7wndAS/AYP1WYvb8lPv6rZYfz4cGXiNlC7A845eBAuHS2kfg8\naenH+LacXHwPqTfz4P38b3T9QHwnsbGaje39T4u1B4/zQvg33WQ+h8/QFaGYIPT+1U3BrbOw7vwW\nXMIn4/WxX9T+PArdo640F7F7IuA9dAbMXf3QWFWK4hd3UBQfIza2y9wo1OSmgl1fLRYc2Zqyl4/g\nPmgynPuOgV3I23i6W7bvZfr5PQieuR6FT6KR//CC0u9JGJo+Hdwm9f+Bv/x8HYaHrIS7DS+d4tDg\n5ahnVeDOy10y7nwzKMyQ7epDIZvk3WsQ8Pl6lDy+AX0jU1gG9hBZcLc3RvkmEraXFWq+aGr0P84I\n6p+Fl6ntXzDU5XkqNN7YOUMtdrQHmAwzhcan/nIDqb/cEGvP/OMBMv94QJZZUmkzgoEPXY8mIhYA\n3gJ+/4QrImIBAHp+7EcoGPgLfmksezoB+8dfkZqSbNyWvmhiNUvMaMA0Y2DZ0wlii/z4k68FgoGo\nvzVdJvkA4KVJ0w4pCwAAIABJREFU0wT8YF9jF91N+UmhGdKv7pc5RjjuIPPq74TtRK+F4x1ajxGm\nOueV3OlZk2ZsR8D+hTLHBZ9cgfh314Pb3PJHnm6onoxc/KBnCh57XvYTvO47zh59x9kDEI0v4I+p\nr24SuCy1HtN6LnnjE9ojzfW1IrvwOZf+1KI1FO2VS9EtAp/dxMWAfoYwM6WjvIKD2OeN8PZgwMuD\n91mlxIJ0+gR8pm0TFKbNCYbIJ+MFC+xPTg6DjZc5AGDG8WH4d1+yIE0ZXxSY2BiitlR0od1YzYa+\noR6iepwQmz9wtAfe+a4Hb85/hklfzNMAfaYeChLL8fvUayJdwqKk4xAXvIrOVfCd8jC1MxK83jnk\nnFJzKIrrO9MAAA0F2Rp5HgUFWbBLWgS+kbejWNxC0sfbEHBwEQAg+NQKgAvUJGTCNNhDZFz+ftHP\nMwV58Bf2e172w72TRdj/1SuJY/j0n+iIj9aJn+IKz0VBMWSCpcQ+dr4PGE5p+HWzHWZMMRe0HzpW\njZmLikTGtSYrtwk+3UWL7QmPS7jtLtLHcBJNupCb3yw2r3uXDOQXNou0dQli4tFV0cKTHqGZyCsQ\nPTnhv5fWc7Z+L2Tz3keFItd1eZ6EwmDYICN8tdgSP2zVXHXlpuYGQerq1rjYhiK3JE5jtsiDgT5x\nim9dps0JBmH2jbsisjAXzmnMZ8Ta7jg+X/SPD5GbEJ/Es5kwNDfAoGWd5bajtVgAeK5DfNvG/tRH\nTHj81PUfLI0dD4AnOpoam8XmAIC5VzVbsEaPaQgzrwAAQPpfP2v02RQUZEIU5Mwuq0bl/Zew6POf\nnzMNYmKB28RB8QnxjDuK4mwVjGC3sdQJAwnc/ruAUDC0Vcw8A2AV2BOmbr6g6TPAKi9G1eskVL6M\nRUOp5nPGM8ytYBPcFxZ+oTAws0JTfQ3qi3JQnZGM0qe3NW6PLM6nB2Kkt6hb0rGn/jAx18Ots5US\n7yt95YXfDleJLeiFmbmoCIeOiWbrYuf74MuFVvhxe7mgjT8HO9/nP5ckyfWVylO9YOGdjrp6ruCe\nrKeeInZs/MYGS+ZYirSFDzJGZpwHob2lr7zAdEmDAsnjSCUtzk3iKcKV6/U4ddhBo4LhSeoR9PL7\nhLAv0H20zgkGaTx8JX6y7/FhH3h+3FLNmh/H4BgeBL+lw6k6DGTgFGyt8D1P/kiRWzD8HHZGYh+r\ntgkGJsRfYi6nJanukn/HyXRL2jP6klz2EKFspWcuV3s+mXqGJrDp/JbWnk/RdpGVDjVz/d+Cys6t\naaqsw4tp5OSJ93OSnjGKQjpf/dUZPqGK+fnqMkxrB3T86EvCPkM7FxjaucC+Z8vPTM7VoyhPVL7S\nukxoNAQvIl5k6BubwcwzAGaeAXAeME5zNsnBSO9EkWxIa/e3CP7MV434cVGOxHvNzej4cq30hAOt\nxQKfyHmWIoJBEZqbIRALAPDx/EIc/EW0JsySOeKnI5eu1wEAZn9ojj2/i7pHm5vRtSYWAKCqmoMJ\nY0xw/Eyt9owQorJW8vdd17Ay9ZDaX1Ej7t3h+XFfgSgQrrtQcClBYmE3smlzgqG6kDhIrjKX+IfW\n0Fy9lYIbKlkS+/Kel8Kzj+RCUdc3PZNbmFRk1yhsmyrkXjmq1vlNPfxg7hMM6+DeoNHUl903eLH2\niwTFb9VeGjRpOPUfA9tuA7RtBiHq/po9H70OoAEdt82Goac9Ku8mI2vTCREhrzo0sJrqSJzvzYHv\nYkQU10A2iv6OUPRn08TVB94T5it0DwC4Dn0frkPfx+t/dqEmO0Xh+yVBZxggcP4PSt3Lt6nw/iUU\n/XuFNJsUZaR3IjoEG2H+Oid4BRgi7k4t1nySKfO+qXMKZY6RhJWF8n+nZi8RdRN68py4uvX3W4gF\nyfLFVmKCQZX3QgZhI/NR8NIdmTlNeBQr+n7q8jxRXaNbQeA0Gl2rm6DC9Oj4sULjA78dqyZLFKPN\nCYayDGL1L6ldGk7B1hi1oRcsXU1kD1YCjowsLMInGZ/HjMGOVqcVfJclTVGX9xr5N0+jvkDx8vI0\nPX2Y+wTB3DsIlv5d1WAdBQXJcIFXC/eobfobL6IwPIT4JINCMlH3ewEQFQt0PenZtzQJTU8f3Gb5\nsvGQsWHhNX4uACBh21KVFzxkbaA49AmHQ59wZJ47gKrU56TMqSgp8fVYPDZdoXueJRIv1IURjgtI\nTmEhPknypqC8PIyTL2HJ10us8PUSK7F2N2fxpZo870WdVFVzMGthCWLOOYn1lZY1wy1It2Igh4au\nxJVY7deXGhq6SuF7rLp5gNtE7LauSdqcYGhmEX/RFNkZ9OrrgAk7+5NlkkrE/pWKrh/4wshC/CSE\nRuf9kTy3XLUjYHkrPcuLLuzaU1C0BR6l/47OHuPxLFPzVTnbKqW5jTCzFi109b8XuuOe6DJoPHKu\nyj6BJfv3ZNCin5B14RAqXz1V6n51/N72GDUdTbVVSNqzhvS5tUG/XrygWSO3dDQ1tawpJo4xlXQL\nqazZWCbxlEEXOXK8BkeOa9b7QRqxaX+iq89kif3Duq7WumigyUg9Hh33vVhb9l8P4Tmd+Hcg096c\nsF0dtDnBoCp9Zgeg33ye7yOrrgnb+p4iHCdP6lUyuPbDU8IaDuFrugteJ13ULaVOQUEhG+HTBUeC\nkwYqGJqY7yc8xZ6X/URckOZ3uYdfnvYVGdfaRYl/fe1QHv76Pl3qGFVSsFoF9pIuGKTEBqiK+zsf\nAe98pJBbFJ3BROD8DWqxBwD0TcwRtPAnJGxfqrZnKAJRQLS8XPmbl7JdWCzIA4NBzgnYmi+s25Rg\n0DVKKmW77oUFL0FM/BYNWCOKl8Nb6OAyWOoYLpcLDld8Uzzz8AN4Tn8LYdGReDL3MK+RBvh/MQIO\nQzshfrlmNqTeOMHAFwsAJIoFbTHv2ijsHMxLnRr8ricAIO1WvhYtoqCgUBZKEEhH2qKdqK91mzyL\nfm3UZlCXWBCGYWoJdo18GWjUKRb40Oh0+E1fgZcH1qv9Werk4NFqzJomumPbOjiZiBP7HdGxt+Ku\nvMJs2V2BJXMsYcikoaGRzFiqN4trTzdgcJflEvuZDDONnzQMCI6EAUO26/vVOMnV5WOGbEZYdCS6\n7eKlvQ+7ygt8Tvj6JMoeZZBipyzeOMHA58CkqxL7nEMkV4BWBzuHnMO86FEwseEdhxpbMQV9Jxbe\n1agtFBTtjZAzX4tVoJaVSYmCQhk05a7pP2s1XuxeheYG6RlqNOk+amBpC5q+PrhNmq+2TBZzlxVj\n1jRzkTgGfqYiSazZWIY1X1iL3CMtbaskvvi2FOu3lKM6w1usT5n5tI2kGg3qppkjOb2tMMO6rga7\nqQ43nv+kNlv6BsyBqZG9XGPvJe2WOUYTqVOl8cYKhpoiyUFIUw8N1KAlohWce37sh36fB0oZrRz6\nJubw/2yNQveQHftAQaFJJKVOlWc8JSgoFMWu+yCNPq/TnO+kuiYFzlP/yUJrgj7fSHqGs/PpgchO\nbcScYamCa2WQd9Gt6OL8+y3lUt2IiOZ7mcombK+o4sj1/LYoIDTJldi1GNZ1tcxxDH1jDOu6Glxw\ncSdxB+obyXEHCwuOAJOhWNxLTb36Cu6RxRsrGD6/OZqw9kHkE81mJuJz+MPrmPb7IIQtCRa0PTz4\nkpS5GWaW8Jst+8NDQdEeoNFpCD79tcL3FRy+CcdpA0i1ZVDgUjAIqo/ee/Urqht0/w8EBTEmbr6o\nzU4VaXPsN0rjdhjZu6K+iCj/PA10AyZBu/rpNPd7vNil+OdPErMGpCA/SzRTkaQYBT09Gs6kdCLt\n2RSi1OV5AoDg5IB/rYvIKxoAgAYa+gcuUGj+/kGLYGRgoYxpYqjqHhUWHUkVblMHzSwO9Ax4+ZSn\nHhqEI9NvgMvhovuHHTEwMgQAr9aDmYORRu3Kjy8Ta4vZEk/K3MJi4eWetWBXa676IgWFpmktFvJ+\nvYySs49knjgUHb0jEAxO0wcj/4B4BXdFsDB2BkPPUCyWoW+H2ejb8VMqxqEN4zrkfbzc35LNxGXI\nJK3Y4TslgnBHP3ix9lwX9Jjk/u1sLRak0dxM+f6rEzabi7b0FS6ufAk7Cz+1zK0rYkGTqK9ilo4S\n1fOE4LVziDWWxo7HsqcTBGKhqqAOu4ef15Z5aiVx61JKLFC8MbBLq/F89DqUnH2k8L124/uo/PxQ\nj4lgN4sXmryXor7aDxSawcBCNM7NOqi3liwBGKaiCxeLDvIVA6WgUBQLj0xYerQUyNuwpQLGzhmE\n/3SBuLSjKKxI0rYZEskr004NE2VpMycMRO5DyrQL9334x2A4BFiiKLkC935NQurNPIXul8U/CxQL\nWN4z6iJmnxuh0DMUgavNOvIUOkf+7TPIv30GRg5uMHH2grlPEIydvUCj62nbNKUJOdNyipA0fZsW\nLQGKq1Nhb95RqzZok4EnZ4FpbazwfZfCtqvBGvURtFB9QZPy4D/rG5FTBveRilWRVQfBi6PUVq1d\nVspUeVKqdjjO29VNmbAaHY6vRcoE9brsBo3xRN85AbBwVk+RWE1AtCY5dV73K9k/S/8bAOR2T9IU\nsk4WwqIjNWSJ/LQZwaAOfp+qmssB2XzwW5ja5uawtVsVkkI++tlOhom+BfLrU5FQdYMwJ7O8mOpb\no6/NJFQ1FeNBqXie5t4242Gmb41HZWdRUngLJXG3ZM7JtLKH8X/iwsTFm3T3A5XRnYLASMw5D9eQ\nULH2QNeRKn1f2wLhMQu1bYLGoNFlH9QXPYxGVeozcFgsmPsGqy3eIWD2GrnHsqrKkHftOBrKCmBk\n7wqnsHdhYG6tFrt0Cb5A4IuGhrRctTwn/JtuCB7npZa5dYX4F5LdxXTllIGPIjEN6kZeNyR54xI0\nJS7eaMGga5g58nbjdodfIH1uOoO8ADh17RwRoWpaQE3aqgrhjvMAAJcKdgIA3Iw7YZjDZ4Jr/hjh\na2ltAJBR+wxXCnfD26SbSH8/2w9gqm+Na0X7wOY0YJD9DBjQjcTmIaKxvAiN5UUoT5RefVzb1cAr\nbilXuIlM+IXbhhMUbSNqb48xDZXJhbj/meyqyG0Rz7GzYOYZILE/flskwBX3+C5+fB3Fj68DIO9z\nYmjrhIaSfOibSK/6yqooIayVwK6uQFVaAgBA38QMAbO/Vdkmh77voPAe+X/LTMz0UFtNnuBuKq4k\nbS637nZq3fijUI0rsWthZGCJ/kHa2dBIzb+J9HzZG3O6CiUYdAS6XsvWaHWB7h/zUZDPq+oHgtfZ\ndS+QXfdC6bmuFv6KZi4vH3p67RORPp5Y2As2h3fqdL1oP8Id58FIzxz1zVVKP1OXYNiYaduEdikA\nFKW9igUAMPOSnI1H3o2K+K0RpIiGDlOXIuk36Yv8l/u/B6uyVOZcTbXVKEt4oHJchn3PIWoRDMee\n+QMAVk3PROytGsUn4HJBY7QsfUx7k5NVadnTCaTMQ6Fe6lkVuBK7Ft06TIONmXjNC3VQVp2BxymH\nFLpH2zUXiHjjgp51EVN7I0E619xnsn+hKwq/nkJQhHZ3fSkkk1OfhI5mvTHIfgYp8/HFQmt6WY8D\nAIFY4FPSmIXeNu+R8mxdwCTQXaX7uSz5i08FLKc+VxQtKHqqScopKI0m1R0pec8aucQCn9zoY6hI\njlXdLjUw0jsRe9YV4LsDHjifHojz6YEY+K6l3PenTPwGdCMmuI1suHwzXeX4BQtnkzdWLHz0vinq\n8jzF/qXHuWnbNJk8STmMK7FrcSV2LfJKn6nlGfz5FRULiqIpcUGdMGgJSb9gjnx8Qy3PS4iKQFBE\nlEA0VLx4hNrc1+A2Sa6KWJH0RGIfBbkkVN5AQuUNhDvOE3NPIhNLAwcALW5L7Y2iY3dhP+ktpe4N\nPLpM8Dpp1g6yTHojuRS2HW//+THCYxai4EYKnq65qG2TNELqn1uVuq/gzjm1xTVUpSeCXav4yWH2\npcOw9O+qBotU59S+UpzaVwo7ZwYO3OmIpVEuWBrlgujjFdjyheyYhOaqWqRO/Y4UWz69MIKUedoi\nu7fYAgC8umSjsKgZLk76+GuvHbp1YWL6ZFMc+FOJEyAtkJB5GgmZpwEANube6OY7Tal5SqvS8Oz1\ncTQ1t8+YUUow6AhcDhc/dRUPTCUDopMFy049YNmph9T7KMGgefgioZf1OML4BFXJqUuGm3EntYgR\nXaDg9xsCwRBydiUSp2xGc7V4atPWtK7R0FSu2B86/ilD2v82gFVWDACwCOoG59FTAQDVL58j58QB\nsfEAkLQhQqw9/8IxVDzjuai5f/AZTLz88GrL1+i45Hu82rYazXU1UufRBYwcef70jgM7IHxgB7nv\na2tZkvg0lOShvjBLqXuLH19Xm2DIPLNX6Xuzzh2A+6jp5BlDMsV5bEFWJBtHBg7c7oAhEyylZkri\nBzsLo+wpw5t6sgAAcbdcMH1eMY6dqhW05eY3of87+QB4Rd3aimAQprQqXSdrI0grztb9t+kw8eSl\nelbnaQMlGLSEOtKmUrQf/i07SXgKQAMNqpTOSay6CTfjTjDVt0JNU7kqJuosdS9zYeznAgAIPMLL\nHpG/L1psHMPOAn4754BuyBBpfz5a8dgD/mI9YHkU7zWNDufRUwXtfkt/EIwNWB6F5E1fgNsk6vYk\nuPe/15XxD8HlcGDi5YekDRGCft+5K5G6a53IeIaFFQKWb0bSBt1IxfcmZUnik3JYtfSqaUe3w+d9\ncr9u5UmPVbq/MlW1PPHm3oGoSld/AgK6Hg2H7smXwri1OCASEPLwJomFkjTxEyoLM7qIWKBQP8LZ\nkPjCwKyjA0w8bZD5+304j+2i1qrPb6xg4H/hbw3fAm6z6vUJ5PkmSRpD06MrZYO8Pxj8GAYK3SXc\ncR4SKm8gpz5JcE3EcMe5gtMBZd2KShqz0M92MuIrryO3PhnWBs4IshiIW8V/KGe8jpG6dD8CDi4C\nw7ol8NnpkyEiYyRVfY5/VzyDjDJ4z4xE3rkjguvsY7+J9LcWC63JO3cE3rO+QNqvP4j1MSzFU1+y\nK8uhUzllhci7+hLJv9wCq1z2Sc+bTF1+Bulz5lw+InuQGrHvPVytgsEn0BDbz/oIrvdvLMTx3SUK\nzVFy6DLZZrULLqx6hMSzmRL7ew/Lw6HddvhoTjFhP4utek1orzGf4vWZX1WeBwBCFkTh+c+qr4XI\nmkcZ6vMqUJNSBLuwjui0ejRerD2LoHW8uMSMg/eQcfAewqIjYexmjbrsMtKf/8YKhpghm3WyMAbF\nm8nlgl0IshiEAPP+aOKycL3oAFgc0WxZlwp2wsHQG8Mc5qCCXSDRrUiWu9Hj8nMAgBCLwehk/jYq\n2YV4XHaOnDeiIyR9vA16poYI/HOpXOM5rCYkjBdfnCsLTU8fnIaWBXJdVqqCEyh+kqRrLklA23Uv\nUpS6fMkLK0XgsBpANzAkZa7a3HRS5lEFI3tX0ufsPsAU3+7zEFzvWVeAU/vkD+j2ObSi5YJGA92I\nifIzihVZXRo7XqHxuk7KjTycirgHRX7lFBU3o1tnJuryPJGWwUZKahN6dDWAjTWv8OfBv2pw4pCD\nYPx7HxUqbJeZh7/C92iLXU96Ym63h4R9B171wfSO9xW+j0/otskoup6EpPX/ZR37rmXT28BatBgg\nq7QGQd+Pw8OPlHdFlITOCoaw6Eg8mLIHvY/MBiDql8X/QuX8/Rhp/4sBANAZeuh/cbFYe1h0JJ5/\ncRwhGyeIzUP0zNbPkTbeKtQdIZsmAgDYVS2LA+H7hF8317EEtgvPy7A0Rp+jn4m1v31pCWj6dJF2\nSc+kaNtwwUV85TXEV0ovJljYkI4rDbtJeebzymuAjOe1ZZprGvB89DoYOFmhQ9RM6JmKL8TqknOQ\nuuwA6c9O+/VHBHz1k8RFPE1PD9xmybnknUdORvLGZRL7KXSLtKPkCKP047/Adwo5G1npf7fPwH2+\nWIic8BrJsYqnIE/7SPVTRBpdtdO8hwdfIuVaHgqTytHMFvUuiHz8Huj6xAksY7bGozhFvG4EXZ8G\nC2cTOAVZo9NIxTPE1ZU2KCQW+Hh58JaQPp4M+HiKunZ+/IGpXHOYewXCqd8YVL1OhF3oAMHuvVVA\nD5H/y5MeAQBCPt+MotjrsO82GMmHeKmCQxZEoSYnBXUFWbDvPlgwR9CcDeA2N6PqdSKa6qoFzwxZ\nEIXypIdgmFrC2MkTCbu+ErRzmtiozngBC9/OgnlCFkSh6PE12HcfrPgXCZAoFuTFyNUKJffT5Bpb\nk1YM6x6eKj1PEjorGADALqyj2MJbeAEesmkiHMODUHApAf0vLhZpF6Y8NlMu153qlwWw6u6J8scZ\nMOvogPrcCqnjQzZNFLFPFnrGBoRCwmFoJ6nvEwA6LBiMlJ+vKfxMCoo3HVZ+ORInq+ZfLo38i8fg\n+t50GLv7tAgELgdJGyLgNGISzAO7ovzxbRTdPA+AdxJgFdoX9gNHoS7nNbKP7RG0e360EAwrW7lO\nC5I2RMC0QyCcR36AhsI8ZP21m7BQmDa4FLYd1p1dEB6zEFknnuHFthhtm6RmyPm61xepp+qwKuTd\nOAHngbqTcllaQLM86FmYoLlSed/7+TdGK3zP+RUP8eKCfAHx5dk1sPEiLsDHrm/C67sF0p/1tehu\n9agNPREwQrqI6DzBG50neCscW0lGNWergB7IunwY9UXZyL9zRtBenvQIbkMmC4QCn+c7eOuegvsX\nEPL5ZsGivujxNdRkv0LRo6uCsXQGE893tyz6BXMIuRQJtwNAwq4vRa69xn6GnBt/oyzhPgrunxcb\n35r+E+xRlteIxHs8YWftaICoW91ERINvqBk+3eSLuGvlqK2SncL78eyD6HNsDrL/4n1vvWb2A0C8\nBrTu6YXCq8rXcJKGTguGvNNPpfan/XIDXba8j4JLCWLtyhA7/w/BQr3rzmkay22bdzqOsF3kh4HL\nRcrPmtsNDoqIomIfKCjkoOLpA1Q8fUDYl3/xGPIvHhNrL4+7h/K4e2LtGYfEd6r54qH1/wBQk5KI\nV1tXKWW3Ohl+Y4FgF9b9vc5wf6+z3Pe+KW5MbYWyhAc6JRhUxXvvl2BlF6HueRqK91+Ead8gOC2Z\nCNBocmVLMrZiKvQ8RRfhNUUNEgWDhYsJYbs0zi1/iHPLH6LLRG8M/Vp6mtxlTydoPCFL5oUDCJix\nGgxTS8T/sgxcjvQq3pIW7LW5PLdPLkf2Atyx70jYd5PvtMDUrQNyb8r+mtRWNWHRLn9Y2jPw7fh4\nQXtZAUts7MqjQQIBMXyGk8y5WWW1YJXVigU9O4/uDCNXK9gP9EfIpomoTefFkyT/qJ401jotGCwC\nnVEeJ1mVW3XzQNnjDML22gzFAp/4NNU0gs5kyB5IIub+ToTvUxcr/VFQUFDIQlWXjbZE6bM72jZB\nDFlB9QrN1UzeXGTxzlRrzP9OfKE1usMLcJpln/ZkLuG5a7mtnw3Djm4CoeCxfREyF26TeJ8+U09u\nG2uK67Fr6Hm5x/OpyK6BRy97wj5bXwuF5+Pz9O90PP07HbPPjYClq2ThoYhoMDen485FJ/h6Ea+Z\n5D2BSNrPy1QlK6A4eN5GQb+FTwg83pku1/ytse82WMTdSBrFsTfg2HsEsi4fljrO1oUJWxcmZvgr\n5n5UXyNdIPG5P0ncFTnvLK/gXNqumwha+y4chwW+uWlV+e43oT9PQfkTXlDZqy1XYdrBATUphfCZ\nO0DkiyPcnvOPcjUE7r67A73//BS3R0r+pSEMw9wITXXiChIA6AbEX16GhZHg/QDE7zNp/QW8fWkx\nboWLFwKS9kwyYFoR/7KioKAATEKCYTv5A3Dq6pD93feEY8x694LNuHfBLi5G7k+qVYK2n/4xjIMC\nUXTgIOoSpLtjuCxbCoatDQoPHER9UrJKz1WFN+mUoOiheMpebZN/+7S2TRCgb2SKpnry8vHvvOwL\njw68Xf4/thWhJK8JPQeZos9wc5xN6YRpvV6ivFg+kWPg4SByzbCXXjH6ve3yF4VURiwAQE1xg8Q+\nSxdjpeYUZs+oi1gWN0FqUjV5RUNBsmRXp5175SsWGLIgCqXxd6HHNCYUpy4DJ0DPwBBZlw8j8+JB\ndJy8FOXJj2DqLjsgmtPEQuDsdahMew5WlWjWIOvA3nDu/67MOQru8dyQWFVlsO8+ROK4+upmzO32\nUGqAMxFGpvKLUGkkrD5FyjzSoHF1xOdVGBqNxg2LjsStYVHgcjRvnzrz2LYFrAJ7wmX4BzrhkhS8\nWLXFVvxW7b+HN5H2+H3z2rIZ3OZm1MbGoeToMZj27AHbSRNR++w5ig4cFBnXXFuLnHXrwXR3h+Pc\nz1ARfQ3l5y8I+gHg9ZJIsfnrEhJQuHc/r4FGg1fUTyi/dBkVV67C86eNoNHphPcV7jsAh0+mo/DX\n30BjMmE3dTIylon64gqjyvdHF783qqBrP6uq2gPolk3ZF39HxUtit1tlOJ8eKDGOYekWVwwcayE1\nzoHp5QT3TXMB8GoyOMx7F+aDeK46r+dsRlOJeFAxH3lrL6ji1hMwwh2jNvRUy9zCDFkRitBJPhL7\n6ysasWPAWYn9xw/ao6iEg3mRPG+OujxPwYlCxDwLFBQ148jxtle4TVmEsx3xRcOkZR54Z7azyDi+\nmDjwqg8A4PY/Rdi7XL6AZlXgcrkqH/vq9AkDaDSQFUwmL3QmQ9OPJA3HsDGw7TYAiVuXgstpybxg\nGdBNoXnMO8rvb0xBoVPQaAg58zXSVx1BzVPy00rS9PRQfORPAED1/QewnTQRJp1DBP2WQ3k7UFkr\neS4O9a9eoSE1DZZDBgsEQ0X0NVgOIfafFYgFAF5RvEDtistXAAAZkcvgtWUz9K2t0VQmulvm8Ml0\nESFR+1R6/BeF7sJhN4LOUMxPXpdhWjvIHkQSPy3JwcCx0t12Gl/ni8QqFO48hcKd5O3O7nvvikr3\n1xRrJvth9Po4qYLByJIJS1cTVOQQB4gPetsI1l7E6YSjdlaiLs/zjRIMwqlR+aLg2KZMHNtE/DVS\nNHNSv7PrpQv1AAAgAElEQVQLoWck2V1eE5vcui0YNAxRytO2hG23AQCAwMU/iZwOuI6YqiWL2i8B\nJ78BAJQcv43iP66TPr//8VWg6dHRmF2M9IXS6ypQtNAh6hMAgPd3U5Sq2CyLvC2iroqs/AIYODkK\nrq3eGSF2T8Ge3+D54wbBdfn5C7AcMhiWw4ai4govo4d5/36EzyvYJe636jDzE+RuEs361NouXcMh\nzBc+H/aAeQc7AG+Wy5Ki1Oakw8wrQNtmkIaBhY1YWy+78bAy4O28Xsr9GTTQMdxlPi7l/qxp80in\nNF0+VxxJ1BRpLl36LwPPSs36NPvcCIknGq8zmhDQkYGkV2x1mUfxH2YdHaBnxEDsvMOofqV4PQuy\n0FnBoI1Fe1sVChTtD5oeLw83081Oy5a0LYx8ZWecUIXGLNHkBJKCS/luR5JgF5fAakS4QDDYvDcO\nzbXiO3mOc+eItRk4i7/H1nbpCuExCxUaF/P+AdQXqLbgauvUZL9qX4LBUvx3mJWBMy7l/oxwlwUA\nAC44YmOUYdlW2YXiHD5/D6Y9/fH6s80w9HeHy9cfypUdSVNI2tFXB3XljXh6LA1dpJw0mDsZoypf\nvN5F90G5qM31FAls5ld+PrKn7cZBMvQM4eHQB1am7jAzcoCeHhM0goCPK7FrNWZT558mAYBWxQKg\nw4KBQnFkxRzIG5Ng13MwHPqNJMMkncesFy9wqvpf7QWIUrQ/WscZtCZn/QYxUcF3YxIm86sV4DQ2\nkmqbphh87jO5xz5bewmdV4cj7Oj0N/70obGsSNsmkIq+kXhGHi5XNYFwPj0Q0996heL8lt3t3x/4\nwdpeHzFnJccgAID5gC4CgVAXl4Lq289VskUYoqJqiqLpuM2r6+OkCobPLr5DeMrA5QKenbMF18bO\nGajL88SEMbzvt5UnOdXP1Y2rbVd0ch+lbTOk0lBUDRNP8ZM6TUMJBgox6nJfa9sEjUBj6MP1q/cB\nAEnjvtWyNaLomj0U6sEqfDgaMiT/YXVevAg5P27UoEXk0H3TWDDMeH74lwZsF8SFSTpxyL/2Cp1X\nh2vKPNKozSU/TqaxXDXBUPEyliRLyIFIMHDAwSCnWQCAgY6fgKlngpiCg2LjiBjpnYjZKx1x4G5H\nwj5FMekhO9uOvPw99zZpc+kSDCN9sOvFT1OLikVTgpJRyE0T2Fv6o4v3JG2bITePZx3QiUK9lGB4\nQxAuiy6LhpJ8NVqiO3j+8Im2TaBoZ2StXA33dfIdVWeuXA2P/8bmRW0R6+eyWGA4ai5glExse3oA\naP+xCnX5GSLXPadtRvr9v1CS9ohwvDw0N6rmw16bo/6MK4pA0xNfZlzN2wVP01D4mPVAFbsYTwr2\nKTTnnnUF2LNOesVjSaR9tB4djrd8RusTyNsgqy2RnBJVlzn++R1M2EEcRwXwqltv7X1Sgxapj2Fd\ntet+Ju350tycEtecEYiGirgsNLNEBVzC1+r//lCCgWS8jhDnZVeV11O+Vvre7PO/g1VZKvd4Vf9g\ntRUMvdXr706heYr+vgv7ifLnSieb5tpaZCz7kjCGobWbEkcoZqExO0dsfMaXy2H7/iSxuWS5O1Fo\njprsFJHrh4d535uQscthaGaL1Nu/oyxTsYxVHJZqLmjV6YrvsqsTIsEAABk1ccioIS/dqrxw6hp0\nKmZBF3h9R7r4YhgS1wqoy/PEynXliNqpuiuWutG2UJAHS1M3VNRkE/YFrhnTMi5Ucv0LdUIJBhJR\nl1hQlUolcmDX57cN/0MKCmEKDt1Qm2AgWqgTngw0Ncm9qJc1ruToMZQcPabSHBTqo6Ekj7D9+ekN\ncO8+Fr79PwT6f4hnJ9ehsbZcrjm5HPkqv0qCXdu+g8a3n/WBT6Ch1DHKuCZRKMe6lVZYt9IK12/X\nY9T72g3KlYQuiYVmDht6dOL0qD07zpB4yqALSXkowUASuioWlCXtT91O06gM/FSoivTJiiVgF5bL\nnLv64UvkbPhLadvkjWfgz5E2dztYBeXwO7IcdCMDlebt+PuX0DOV/sdZ0TnVTfLMHfDf+zlCzq5U\nS2rV1ph19YF5Lz9Yj+iG+DHfqe05wWdWAYBan0GhGE21oq6eDEMzhE5Yg6aGGsQe/wZZj3kVlzuP\nW4lnJ9X/s9hWCHdZIJZClaiNCJ9AQ1w/WYETv5WCzVI9QNjQxwUNabkqz9PWSbmeiw6DXBS6hx+z\nQKMBRSkeqMvzBAAkvWSj20Dtf01tLTqgq89kbZshwrWnG3RKwCgCJRhIQF1ioXj3P6i5pVsBbBSi\nNGYVS13sA4BZTz/omRujuUo8NZ06sP94GMx6yw7k8/11MVI/3Sqx323lFDGxwGlgg24ouXiMLsAq\nqkD8+B8Q/M9XCDm7EimL9qA+XX07X9WxaaiOTYP1CMUKJFIIoXINUt0gaFSkwC1JmJK0hwSjKZRl\nc6Tii1HhuIXWtCUXJf/hbki+TOy2ogpJl7IVFgx8uFzAzpfnlbByqSVWRFiKVH7WFromFuShl/8s\n/Jv8m0L3hEVHUoXb2jJ5K3eiMV30l5qwsCCKSbD9ZCzMhrSUhLebM54SDCTSevdbeKGv7M64548z\nW+Z471uRKuGem2bDyJdXnKjjwWVSnyHNNkURFgvSbGLYSa+Iatqtg0T73Nd8CJPO3gCA3M3/oOpO\ngtL2qgMTf1fUvcyFsZ8LOmybrdQcmjidaO903TAascvPyhwXfpOXPYlV0bbjp+KOryFsz32uWvXf\n9g6dRuwjT8S1fypwPj0QPyzIQU5aI9hs8VOGnDTiOBAiYWDoo9wiWVt0m+qrFsHwKlq6CHPpYoPc\np7JjIXt1140q5bq8i19Rkw1LUzfCPgtjZw1bIz+UYFADygYol+w7jZJ9p+GxbzXohrwPndeR71UK\neBbG1NMfjv1HgmnlAJq+7G+9vHUb3nSy1/6BmrhUsfaMZXsQcOIbwe6poa8zGlKJfZ7VAZFAyVi2\nBwYutvDZMR8AT5gQjZMlprLW/C4Y4xI5XmcEQ8jZldo2gZCOu+eD6WwtuK5LzkHaF/sVHtMaXXVT\nuhS2HeExC2Hf1wvhMQtFUqsKY9fbE91+bAnmuz52jwatJJ9u76/Hk6MrAADGVi4IGhlBeOLwpnOv\n6KigaBsfeas8Dx5vCQD46mfJRdqIYhgknSKQ6Y6kz9RDU6NqMSiycA5RTz5+WfUfgsZ4ShQMmc/d\nYGfLE33pGU1aP1lQVCzUNBTjadpR1DWWqTSPvDx8tV+nBY0kKMGgIkxfUZWY+anqu5KZn6wVOY3w\n+mMdXk9VfiFkYGmLjp+sUNkuCmKIxAKflBk/ocOBpQAA+2mDkbXmd43YJO00g5VbQsoziv+8CbvJ\nA0iZqz3jumgMmM7WgkU93ZiJwL++gP2kfig6dkfuMa3RVbHA5+rwnRh6eR6AlhMEPkT1GNpDCtas\nx6dA1zcAp5lNiQUpVLGL5BYIROhqUHNAuBviT2eoPE91YT3MHIxUN4hEbH3Nxdr4MQsAcPRkLWbM\nL9agRaoTE78FjWz5U85rkv7nF4LOZAhcjag6DO0Ay3cHiFxzasg5Un895esW0UBTzcGXEgvao6my\nJXWmSYiXFi0hH3ZxhbZNEEMX3YisBndG/t4WlxROXSPy90fDacYQgRiQZ4wwwWdWIXfXBZRdfKL+\nN6AkzQ1NuBS2HUMuzoG+seTg+6ZaFqLf2a1By9RHcdpDdBq+AIbmdpRYUCPW9vooKxIvJCYvnjsj\nwLC3FFyTFcMw/JtupAiGG5ufYczG3qobRCLWHmZibQf/qsHcCHI2oMhCnp376LjvweGq9yRIFewt\n/HB7pPgGiqQ4BU2JCUowqAjTW33+j+z8EjCcbAEA5kN7oerqvyrNR7kYkU9DmgJF7lQUfrqG1TAq\nyFdeSk6LfnZLTt6H04whCo8B/jtZ4HJ1WiwIEz2CJwYc+vvAb14/GDmag1VRj5Tf7iPnvG7uFCtK\nt/dbToQba8qhzzQRtD05So5LaXuis9VwOBmLV2qW99Th9wd+UvulnUB0OL4WmYu2w2PbQqS+/y3c\nf5or1zPlgUYn53f8yys5gIYLvEuqtcDHwFQ82YWuiQWaHH9jpRVH0xU6ug5BUeVLbZshBiUYVETP\nwlRtc+dEbhGcMtjMGKOyYKAgn9p48qqE6hIFv16A46fvAABsJ76Nkr9viY0x8icO2tIWRhYMrLo3\nBH9GxGFyVCi+DroILhdYnzgCeUlVqKtgw7ePDVYEXgQALL85COc2vED38W6IPZWDZxfaRoXznO1n\n4bpwtLbNUJjC22kovK1bVYjJghIFiuFk3FFplyQy3JH4bpnc5maUnyZ2+dNlPr85GjsGyE4moAh9\nPusktb+ZzSH1eepgaOgqqf26JBaq6wthZuRA2GfMFI9TkZYFiVWumQyMdI08pR3TXC6//xuXxVaj\nJZJJ2smLf3AZ9r5Wnt+e4Tbp7rGmKpRffCR4bTdlIGzG9xNcM+wsSMkwRTZfXBmAb7pdQfxlXtVS\n7n8xfCsCL2LHhLvYN0s0taWZHRPxlwuw/9NHeO+7YLXaZuQrWlXcqIN4Jgx5xgBAefRTZEedEsQw\nUFC0Ndgc1apZk4nZW+r97KsDI0vyMxH1mi791KYqv1Zqv65TWJGkbRNEyC1VrAK8NO5P3EXaXNKg\nThhUpP5FOkz7dZFrbO2/CTDtHwoAYDjagF0gO0UZGTQ31CEhKgJBEVGwCuol932UC9ObTdK4bwXC\nwH7aYNhPGyw2pi4hQ8NWSebR8WwMX+KHcxteiPW984U/QsdIdh989Df5aQqF8Y2aJRKc7Lt5plJj\n+FTcjIdbxLsIPrNKZ4Oe30R6TttMxS7IAYOuvdSbRbt4xfRSJ6+VWpuBiOTL2fAfrhsnq15vOeL1\n3QLyJpThzVP4Qvdi1hThWfrf2jZBhLzSp/B3Ha5tMxSCEgwqUvb7ebkFQ8mekwLB4BoVQVq6VFn4\nzV4Nhpml7IEUFK1orqqDnrmx4DXNgIG6xAxkrzuiZcvEubApGesTR+DchhcCtyOA55K0IvAiLmzk\n9fPZOua24PW5H5TbfWq9y8+/Ljn7EPl7LgPgZTEKPrMKwWdWoTG3FEwXG0E7H3nGtEb4Hl0WDQZW\nxhh0apZImyIZkXw3RCF1OfHmBdPJGTR9BhqyM1WykSxKX1N1c+SldVpVQP4YBlWovMaL/eGymxQO\ndj775b8yBcOie+9iW99TStvHh93QLDWuYMIv/bCpy3GVnwMArt1sZY6JO6rb7oTWZm0rqUhTs+Kn\nbCE/ToBVVw9CcUcVbmsDNFeL+o7p21ujqaiMcKyi7is2H45U2i5hKLFAoQyGvs4CsaArbkeyYDdI\n/owZW4oG7c060AtR79xCQ7XyroLyLtTjx3wH9y/Gw7yPPzI3/I2q+8kKjyF6li4LBYA4faq0cTHv\nH0B9QZXc8zfma66uiTzYeIUi7e4f2jZD59GEMJAXGkMfXLbyGZdaY2BMzrLqyEfX8fGxoVLHuHW3\nQ/Zj1VOZTt47QOaYvOea8YhQFj/XYRL7ckvjNGiJeqDSqrZD3LZGyn1yILUoG40G8xF9SbSMcjGi\nUAyvTbwKyfk7zmjZEvlYnzgC3/e/JrhedKoftr17R3DaUFfBFjl5MLU2EIgF/imEOsna+A8pY9oK\nrcUCq7weBlbEueVvvLcXA0/MRNjR6YSnD74bogAAeft2oy7llUhb2tdLweVwxMbykXQ6oR5o6DlN\ndKePclHSDfTtLNFEkArayN8ddfHpcs9TX8mCkYXkNMEA4BBgicIk1Vx4il5VyhzzwW9huLU9Af/u\nE9+AkBe/oZIL4LUlJAUQA0BiJrkB4pqm86aJADRziiANSjBoGa8j3yNnSRTYhS3q3fbT92A2QDRl\nZcmvJzVtGgUFAMDp8zGouNY2dmhqy1iC14210k/0GmvI21WkEKX7prGC18JVniWdODSWSg+o5C/6\nhd2T+P/T6KK5O7J/jkJjXo5UVyZ1QYkD+ejvMA0m+lZi7eo8efDaFYGUCasJ4xYUcU3aM/IiFt4Z\nK3XMR38OIcVdqLGGDSZBOlNh3l4YBCs3E1z6VvE0yzZe5hizSbfqPVCIYxHiiuZ67STNEYYSDCSQ\nNWc93He3FEfTt7NCU3E54ViRgmz/4bpF9h+16puPlbYvISoCnRb8gKCIKCTtXInmBs2k4NJ1qh8k\nwax3AAAIgnubymugZ24Mmh5vEaIJVxyHmeFgetiD6W4PfQsTsX6+bZwGNhqzi1CflI3C/ZfVblf6\nwp3w3j5PxAZJ6ILL0orAi/j0UG84djTD9d2p2D31vtTx2969g++eDkd5br3aTxfeNGx7egDQTvVm\ns2490JiXo/HnUsiPib4VLuX+jHCXBbiU+zP0aPp4y36KWp8pLAqEX+sR/M6VRmON5hZu2/udxrKn\nE2SOCx7nheBxXtgz6iIqcuTLZrQ0djxpdSMo1EvyxksIWP6Ots2gBAMZNFe1fEBr7j6TKBb4FG76\nHQ7LPpR7flaWapkQ/Od8CzqDd4QaME/+Srjt3YUp58dj8D++SiAOAEDfSn11NSRhPUq+zFV0QwaM\nOrjAqIOLRgQDq4A4FoeIgJPf6IRo+PWjB3KPrcivx6ou6v86UmgWyz79YNmnH15/t1Ljz+YXa6PR\n6KDrG6A47SFe3z+qcTt0ndZpVZu5TTDWt9DIs1ufJjRXKp4uNOdJicxA4VlnwvHbmEsKz60Ks8/x\nkjqkxeTjxOK7gpM9PqGTfDBkRajC8x6edp0M8yiUpOhaEgKWvwNjN2vUZcv/d5lsKMFAEopkPKqL\nS0b1tYcwG9xT5tjc5TvAylStoJS+sXhJdwoeyRN4QaOWg0NhPaYPDFxswC6qQOmpe6i4IvmIV5HF\nsayxZC20ybRJ+ETh5eT14DQQ76pZj+kNhxm81HD+x1YieZL8gpSCQl7oBgbgsFiyBwLgNjUhbfWX\naraImNYF3HpO20wJBgL4aVXLGnPR224iDPU0v1GjCn/OvClz59/KnZz3tKnLcblOGYTxCXPCsjjF\n7pFGfoL2FqkULfTYP0NiH5UliWSG0CchmnNM22YAAEr2nkbJ3tNi7knCZHy0mpTCYO39pEARQhZE\nEbY//zmizfjpywv/vVa8fIKsK/JnblGkKFvZmQcCwUBjSE4BSCGZMbfnAwDO9P9Fy5boLuY9esNm\n+EiRmARJwc1cLgcO708F09kVBvYOGo9joJANP1bhYckJhDl+DBanHjcL9qv1mdJqLiiaXvVNYv+E\nK9o2gQLaD3gG3jDBoItoqhYDBQUFhc4ixZWav+CvuHuLsF0Y79XfI/2b5YLr1qJC3bTOkJR+T/fq\nlegaMQUHNfIcvijw3LEYGZ9vFbQrWryNT31Fo8yKy/OujcLOweeUml+Y3cPPY85lctKsK0pJqvxp\njinkx9dpgLZNUJg2JRgG0yfiGodXrY9/WkAHHRxwQAMdfejhuMe5gIH08bjBaT/pCSnI4/nPLYsM\nSacNFBQUqtFYUgumrQnCYxbKFfgcfpOXPSn98COVnpu+9msRkaBp1yQqS5Luw3C0FrkuP3NXqXl2\nDDgr0VXo4AfRKEomrzJydWE9Lq99guGru8keTCJb+6hegE4XMDN2RHUdiVWxScDb6W1tm6AwbUow\n0EDDEPokkTYOOOhFHwoTmIMOnkvELc4pDKFPwj3OBdShRhumUlC8cTSkqRZrQ9F+uDF+ryCFanjM\nQpHUqsLY9fZEtx/HCK5f7ZGe2UoetOmC1PqEAaBEBBHdbcbicelpkTZ+xiRZnE8PxEjvRKX7OQ0s\neO2OROaSHWB6OsJqzFsoOaRc8oOa4nqY2rXUFrm6Pg5Pj6mnIvLzE681KhjiT2WAXd92Uk/nlsTB\nxZY4oDvU+wPcSthK2KeLlFSmiLW5jOsK3/kDJd5DxTAQ0DoGQTgugS8mmtGsM7EKFBRtDS67WRCP\nEHDyG+TvOicWAO40bzQsh3YVaXu99FeN2Uih+1wK294iGm6K1l8gqsegjRSsZFOenYCUGPX64rdH\n6DTNxT+lTWtJzFCflKlS/MKuoeex6O672PaWZnbilQmAVoaKnFpcWqN8KndtkJh1VqJgMDQw17A1\nqhGb9qfItXmgM3znD8TdsTvQVNuIsOhIxAzZDD1DBvqdW4hbwzTjLaGzgqEbfSBMYQEOmlHLrUIs\nNwbRnGMiJwzRnGNgg4XB9AmoREvhs9Zj+DSBrVOBzxQUukjypHUigc9Oc0fBae4oqfckjVfOD1hb\nhK4YDKe3vVFXWI3EHXdR/Chb7nsNLI3Qfe1w2IQ4oSQuF49XXQa7plHmfRYdbNF19VAwrYzx6sAj\npB9/rspbaBNcCtuOIRfnQN9YcmXcploWot/ZrUGr1IeVWxBV6VkKb9lPgRnDBgDvREGYRyVt0/1F\nU2KBj7pFQ8r1XJyKUP2kj0IyQ7uuUmi8/xfhAICm2lbpiBvYiBmyWSAg1I3OCoYnnBuE7a0X+zEc\n8Q+rJEFwk0NVS6ZQHlkxD893RAJccb8L/n3C8ROKjpE33oLo/sbKUgR++j30mEYEdxDfw8+O5PXT\npzD0cSK8r+zMfRTub1sZNPgZifiYe9ugTxTPJSbtr6dI/EXcn1k4i1Hr++26u2HExVmCfnmfG7So\nP4IW9UfC9juKv4k2RvSI9iEG5CHn6QXkJVzTthk6y90iXhA4kUuSNFx9mFKvAcDGXh/r//BUyb62\nwqYux+E31JX0Ks3SqlO77/2x5YLDQdbs5RLH6iLDuq7GlVjtb2z5OIWBJi3LAwF6xtKD6zWFzgoG\nCgpdpjguBqyqUth3HwKGCe+4M+TzzVJFgbIIi4X4HUvB5XIAGg0hn/N2FFjV5SiJu4mSZ7cJ72dV\nlQnEQv7dc+A0seDY5x3oGRgCANyHTZWYdrU9uRkJL9qFF/eB89+Czwdd4PNBF0LB0Pr+61P+QE02\nL6DRY1QndP6S51c65tZ8nHlbXDQIP/fcwF3gNHEAAP3/NwFBC/up8I4odA1rz1C4dnkHzewGQVvr\n2gwUUEgsAMAvF32gr9+yyPrfVV+JYw9vKVLarrbEy6s5pJ02/DUzBtlPiqWOyZrJSyAgIhx0jKKK\nZNhb+kvs93Mdhpc52t3k8nEKk9qfkCG+CZ77zxN4zeov2kgDYVyYOqEEAwk4fz8P+pZmyJqvux8k\nCtUhEgOlz++ILN7JxrJjS5yAyPO5XDz/OQIhC6JgYGYlUSwAgNuQD5Dwv+XgsFqOM0uf3wHT2gF+\nU7+EpV83heo0tEX8ZvQQvG59EpD4y13UFVQjeHF/jLk9X+pJQeu+zHMvkHnuBU8UEGwa6RkyJN57\n+7PjGPL3RzB2pAorthcSzv2kbRPaJWM7vhC8lhXU3Bbo9AVvE+jFRtU3mPinAsbWTMw8ORyGFpLd\n/4S5tvEpYo+kqvx8XeJp+jEM6yo5JsXDvjeyiv5FPatSg1a1IM02Pnll4q6qWX89FBEMfDckTUMJ\nBhJgerkAgKAIGxm1FVoXdKPqNegwBG5IZOH0Fi92oDThnkrzCIsFPo1lhSrN2Zbw+4RXVf3sgF2E\n/a//eY7gxf0J+/hUpZVK7Sdi6PGPeC8k/IhETzwk5q5EQdHeCbB4G0mVvLoaPW3HQZ/OxL2iv7Rs\nlWzMfAPh9t5MUhb6ZFNX1oifw85o2wytk5p3A77OkrMJ9Q9ahBdZ55FT8kTiGLIxZJjj7eDFMsfd\nipecyal1jMLD6fsQum0yCi4nIP3XWxLuIhdKMOgorOxCGLg5aNsMCi3DdyUiWvBTKA63maP0vfcW\nKR7caGDBc/t6tok4JouC4k3Ew7SzQDBYMV1Q1pgjd1pVbeL23kxtm6DzuG5dDbqZiUgb352Jj/ve\nH5E180sx96achd+CU1snNpaImph/UXbohFh7esFtqYIBADq5j4SNmReevZYcs0EWbnbdEeD2jlxj\nG9jyF8mrzynHvfE7lTVLKSjBoKPkfrld5JTBKKQD6p+L5+bVBOGO83CpQLM/mLpMwPRVYJhZaeRZ\nqcd/RsfJS2HXdSDy755Vao6a7FckW9V2UWU3n1XZIHuQBDLPvpA9qJ1h5muL6tQSif3CqVVZFfW4\nPnaPJsyi0AEamnn1kYRFQuusSZLQhjuSvokZnIa1xArwXYoAcbci90mfwdTTT3DNbW5G0uZlsh9C\no6HTss0ovnsZxXdF60IIP6/k3+soilG9erQ64C/uhQWC07qlAoHQeqxwm1FoJ7hu/0akzX3vj6i+\negflf50VaSva9CsakiXXu3j4ch96+n0i1VYHq04YZsVzEYqJj0Ijm7yaXTQaDYO7rFAoXbAuBGTL\ngq5tA9o6NKaov2DRtj8ljFQN20/HqWVeCvkJWRCFkAVRGhMLANBQkid4HfTZBjF7AKA666XUOZrq\nqsk3jIJCCv0OTMVbe6cQ1lsAxOswGFgaYeiVeZowjUIHMNQzhR6NIXugGuhwXHRhZjNJ+m40AHSc\n9w3MfANbGricln+tMPX0Q13ua2T9/Stq0pNA09ODx6Q5Mp/RaRnP5YRILHCbm5H196+ozXwF216D\nwDDX3N8gRcn74geR6/yVvLgeuqFopp+mIlEXz/o44k0VYbHAx26JdDFQUZujkAAIC47AsK6rMazr\nanR0GSr3fcKYGztjcJevMKzragwNXaWQWCgol29DKSw6UvCPT+dNEzUWz0CdMKiI9STRH67afxPU\n8hx9awu5x/JPBMId54HFacD1on2CtkDzAUisugkaaBjuOFdwchDuOA8Py06jjJWr8olCkMUAJFTe\nhD7NAHSaPlicOtgx3WHOsEdazWOYM2zhYdwZ8ZXXYMd0R1erkbhcsEukXdcQzlREFPwsb9pTZeAH\nN9MNmGLPyb9zBsVxN9X27PaGtIBmdcK0NkZjWZ3sge0EUy9ern2iYmzDr30ueF32LBessjo4DuwA\nPaY+um0YjSfLlTtJo2g73CjYh34OUwSnCzZMN8GpgzIMGGOBT1c74usPM/E6SbGTQOtJA1F6TLrL\n4NpuizUAACAASURBVItNSwEIBSv/d004VujEoeZ1siDuQRqdvohCWewdFESfEGsHIDihqHmdDJqe\nHgIiN+lkHAUANJWWE7Y7rJiH/NVbBNcF3++Qaz6XzV8jN1I0prNok+zTyJj4KLmCjFvj6dAHng59\nZI5TZm4iErPOIrckTuY44VoLwgLh2bK/KcHQVjDs5KVtEyRSxsqDtYEzAKCwgXd8l1h1EwDAJYjC\nLGPlkvJce6YXgJto4rIALgsA0M1qlECEVLFL4GLkh/jKaxLbdRV1pE2l6cn/MVTH8ynUj88HXfBi\np2qB6+0Fmj7vYDt2xTkU3U0HADC3x2DgyVmw66u7v0//z955hzdVvXH8m9G996Z70AJl771liaAg\ngqCIC/QHCgIKiEBRECyiIiCCC1AUEGTInrIKlJZRWtrSQifde6QZvz9CbprmJvcmuVnlfp6nD7nn\nvvecNy1Nz3vexcIcjaJanC/8hbgubczBuUJ6HbKPPIzBi+3uo75Oerq/5UQYAsKkp9ffHQnF+UOV\n+HJuLumzXu9NAKDoZSjcoN9GrtUZ6kOoZEZBS2NBRmmCojEjEYmYUczA8D3cFK7FNdQHKLI8h+Z5\nDIKHj9GYkU1rzROJKxnb2OsLOsZCzIrnDaAJNazBoCMWvh56m7sxIwdWYQEaP1crlNaIv152EMO8\n3gYA3KqQujlHes9GXn0acur0Fwd6pugnhNt3R6h9Vxwv3EwYJ9GO/QmZx3VyT4yq8dYG19KKNHk5\nZtYqtc/RafzGoh5BZQMsnawpy6YyTdKaM+i4eDDCpnQiNRjcu/gbTBdToHkoksxYANBqvC/dXvkS\nHC4Pj28cRGHqBXSf9hXb6VkPyIwFAAgIs8KmZQU4uqsM4e1t8PXBEJUGw5Pv9sNxYEekv6i/TWTz\nfAO6suq8BW7dB8GtO3XYlKlTfVJ16W8qWuY/aMKJxJXwcW2P9kGmFdb9IO8ksp/Q66jt0iUQEqHx\nDUXWYNARSZMQHAv9fBslYu3Kdd6pPANbnhPqRJW4V3WWeA1IjYhShjwJ6kivSUBufSqGeb2NE0+k\nnV5TqshLf92vukjq8TAX6IYjxbwZhzublJPfuJb0ujhyeDyzPV0yNsfGbCcSngf9OgVnp5PnGgWM\njETOMfU5IZrw+Mh9dFw8GADA4XKUfqd7f20aJ0eGRtQoNLYKeqG+shB3j8TDO6o/tfAzTCfXUfCy\nCVUYO5H/PcQSzT7fIjtKq8gd3VUGAEi/U0/5jD6NhaBXpOF2qRsWQ9wk9a7zrGwQOXc1qbxEKASH\nz0f0wniVRkPugZ9R9UC5Nr+p4jJ5DMr3KCdlV+w/TiJtGArK7sDWyg2hPqbxe1la9ZC2sQAAOX8k\nIOi1PqT3rDwdmVKLEtZg0BFBdoHewpKsI9po9VxFUyGRh5BXn6aQk9DNVbpBEUvEyKmjl2iTWXMT\nI72lCYl0chtkss3lZTkVMupElbhQvAvHCr9HX/cpsOe7KIzrA1uvNrB284GdbzCs3XwU7kVMXYTG\nskLU5mehoawANTnkFak6vB+Phwc2ozY/C34DJ8I1ugcAQCISqgwtkuUgcLg8dHg/Hk+uHoOwsQ5+\nA6Tu8caKYlg5q/ZUpfz4KaJnrUT72etUytz/aQWaaozTjMZcODttNwbtfAUOwa4qqyXd30r/Q5wu\nD/9KRshLsRh7XjmpV9wkAofLAYf3bNWfODm8dVZda6hS3y2XRYqXTahSCVVtyqrG7w/Bt0vyqQVb\nEPT9h7DwdCaumTIibP1DkHvgZ8JYAADHth1Vyt+PXwhA6mlou2A97q9Xzo3wHf2K0Q0Gvpc7HIf1\nhYWft3SAy4XX4nfRmJGN+qQUNGY8AgAUrvoW3sveh8PwfihYFg/rmHC4vDxW515FZKVVNfU6ZBac\nQ2bBOQzt+Am4XONtfbWphvRo51UEvdYHA07Nx813d0oHOUDUwufgNSwadz7ex7CW5LAGg47UXE42\nyTyG5ht7Va/pyANAes01pNdc02ptOuP/leinslRLwiapbpxi7eoFa1cvOIXFAlAO/5Ft+gEgZPy7\nSvdsvQMR9tJclfML62vAt7EHAHj1HKlwL+23L9R6KaJnUX/AtH19ORuyREH1o3L8028Txp6fDQ6X\npC0zgPSdiYyve/eb/1CUkIOe68Yo3Ts8eAtCp3RCzOzejK9raow8R14xqTXhGtgRtndOgcPjo9vU\ndci5ZZrlL42Npp6Elkyd64m+o6Qnq8d+J0+yVUX43pV4NPcbBG78HzImr0Cb9e9SP6QBFs6Ksfo+\nw1+ifCblyw8RvTAeAS/MRM7fO+Q3JBJwLeh1btYn1m3DYD9IMRHYKjwIVuFB4NrbEQaDIDsXOW8v\nQcDW1fBZJf17VHX0LCr2HdNq3Tbb1yJ37gqFfAeeoz38NizT8p0Ap5I+B8Bc0jJdrqVtR2Wt9tEd\nsu7OXTZPAwAMOCkNdby75G+UXc9mQkVKWINBR6rPXIf7rPHEtdvr41D6E9tt0RTRdUN9+9sP4RLV\nFb4DJkAiEiH3zB5UPZTmXNQVPlI7f8qP0g8nn77Pwz22L4R1NUjfE0+UPFX1LJ38BZmMc0RnVDyQ\nb3jpvN9n0cg4NECz0206OQ9UMkVXH6mUyfz9FjJ/p058M0f6/jwV/722C20mxAJPbbRTz20xrlJ6\nJGHnfEQOfhOOXmFI2rcSTQ1sSWMyhBKBwnUvj8m4WkyviZagQYxX5noQr5uzdDO9nD9BnrQ/iEQk\nQt2dhxTScpqqymHh6IKQ1+aj8OQ+2PgGovT6eYX7XgPHoqEwBw1FeYj832o0lhTCyt2bcu66nEw4\nhLdTGEtZNx/RC+MRvTAe5UmXIWqoh2vnvuBaWhm0SlLNuauoOXeVlqxEKKQ8/Vd1X6F/wwrpAV/L\n5GhRFTP9Ek4kroQF3waDOtDokaEDj4quIi33BCNztez2bGhYg4FhHIf1YMRgCNy2VOE6/9PW+0fW\nnChPvYHy1BtaP1/w30EU/HeQlmzA0CkAgNI7l9TKZR38AcHPv4WAoS8rGAwsLMbi2IBvMPL8/2Af\n7KaQ6FyWlAdhnUDNk+ZP2hm2AR0ZLRuztbzu6fEirZCkF6Lvq7wX926OxnpZ+rhRCz0lfcsqgMNF\nyPR58B//OqpbhAqlb1kF5/bdETBhJoR1tSo39WTj2b+THyikfPkhbP1D4DdmKjg8PkoTzqL4MjMb\nUFNGWFYJC38fpXHr6HDG1mgS1iuECLUNGIUAj646zSmBBGeS1kAkbtJVPZODNRj0gF2Pdjr1Y+Da\n2YBrZ6Mw1pih+Qchi3njHNkFAFCRnqRWztYnEABQX6J5LC8Li744O2E7Bu1XrD+fMJc81rZT3GhD\nqKR3uk9TPgFkqyRJ0TQ/QV8UbZYe2GRMWanUxI0WEjEe/qI6hLTiTgIq7iRoqx4pdbkPpcbKM0Tx\nxp/kJVXFYoDDkX4BEJZV6GXN+zlHcT/nKHHN51nB0zkKrvZBcLLzg5WFA/g8KwhFAtQ1lqKmvgj5\nZckoq87Wiz4EHA4GnFTvUTKE94E1GBjgyZe/wmvhdOLac+4USJqEyJ6xXOO5+K5OCPhuIZPqqSV6\n8dOybmvouTcdozrCf/x02vJ0iZizHHwHJ8bnNWcKrx6FT+8xCJ0wR23okFf3EQCAjD+/NpRqLCyU\nNJbWkjZuI+PW0iN61sYwtDQOyAwIFmXvggxDGBWVp28CkFY41GfFJBbd0aWcKhMIRY3IL01Gfmky\nLfnIfSuQNlF53+f24gCU7j1P8gQ9+h2dC0iA88OM+3nybJXm0BN1ScplGDkWfATvXq3UDl0dwTtX\nkRoLjyjq9BuSqtQkdlNvIIpvniFed3g/Hi6RXcCztAbP2hZOYbHo8H68XjtMs7CwsOiDB1WXia+S\nBmnC7Ml8emG3vUcwW0ZSX2XRWViY4r/RG4kcMGPC/qYwRNYrSxC8W7nWcuAO3U4w8j/dAnGdZq3u\nWVoPt7/9EO3e/gJcSysEDJ+qQmY+YMZ9LFhYWgstPQoPL+82kiamzcPqm/LXkL6mW1Z1yeYAjA5h\nrvGoTVQbjRKfnzWOJQbA2ZWH/07VYcGsIgDA1ewg9AzKJmS2/uWN2G7WCmO68Pr7zvjpW+3Cjpqf\n8nvPfh6F3x9E5F/LkfbSCgCA0+DOqDyTCA6fB4lQhKCv5yB73ibi2erL95D/lfru37I1PGaMQPEv\nqvtLeEwbiuKdp+A+ZbBOHgZZ/54Bp1SHN7IhSWZGztz1CNioXEdZF4yRu+DWfSC8Bo9T8CTY+AYi\neLq8bCiZlyF6cTxSN3yCgIkzYdcmTK1s6KyFROUIQVkRhLXV4Ds4Mfk2jErbnk7436ZIvNtF91jW\nu1s/ZkAjFibwd+0EH5f2KKvJQpj3QBxPlnr/RsQuw6Pia/B16QA+zxonbsdhUMyHuJS2FQJhLSEj\nk2dpnbD5CqaLunwFY4Ym2blbo9+cGLR/Qffy7GXZ1Tg4/wpKMqsY0EyKsytPyRBoef32S4W4mh3E\n2Jq68HjJdgCAVYAnCr9/WmCEy0XkPqnBALEYlWcSwXOwhf+SqbDyV+yBRGUsAEDlWWlVO3XGAgAU\n7zwFACj7+z9N3oISPXbOAgAkz/8TFbdzjHY+yBoMDCIsLlfpadCUrGnLpIk+BsYxKlbJWACA+vxH\nxJgs74GMqA8+R+Gpv/Fot7R0ZcjMBYheHK8wX9Arc2Dl7k2MWbl5IvTNxUy/FaNy/yrbRK01Ym3p\niPLax8h8chGZTy4S4zJDIDX/BEbESmuEn70Xr2Ak3M1hyy0/a3A4XHR+aSUS//oUEonhP89NFbIc\nhsL6DL2vS2YY8Jzs9L4uAQeYvnsovNo6U8tqgWuQA17fN1xhrKFKgB/HHkN9JXPVyVp6GMiYPNMR\nH3zqivF9cnHgkj8AYMPKMoWxnkHZOJYYgGkj83E4IUBpzubrXM0OwtieOTh0NUBhLDNVgB3fVeL0\nYenBTH3qY4Rs/RAW7k4K+QQtcwvcpwxG9oItCFg+Q+P379i3PQq/OwCunTXEtaojQLjWlhA3CGDf\noy2Kd57UeB0Z91cfQadvX0FFsnGL37AGgx7IemUJeE72aLNZ85Phxsxc5C/brAetqLELDIP/+Bk6\n5yiU3ZBvpB7uWK9kYNi2CUX65jjiurG0SKf1tGHVoVjcvViBLsNd4eZrhTeipTWmf37QC/s35mDC\n3AB8/so9PLhRBSsbLrYm98D+r3MwYV4AXou4QsgCwLEd+Rg505cYV8XPD3rh2tFS+ARbwy/clliT\nxXzIKDwPX5cOGBG7DAJhLc7ek/7fHhG7DKn5J1BQfkdBXiCU1hDvFzUHF1Op+zmwmDeykCShoB6J\nfy5Ft6nrkLBzPrpP+4r1PjRD1+TmNz72wvYvnmj0jCovgqiyVidd6NB+fBBGfqZbuU5tsXa0xHvn\nxwEAkvc9xIlVhim9vWdHFT741BWFeUK1YyM7SzfB334ub8BXlC9UMkpkr48fVPx5TR2pXB3Qwt0J\nVRfkJW/TJi4nPAzZ8zejMbsQTkM6w3FgLB59tFXj91Z5KpGYT2aIBD1tABj8zfvI+p/0/3f4riUA\ngNzVOzVeozlV9wtwZ8l+DDg1HzWZRRCU1ELSws1wd8nfOq1BB9Zg0BOiyhpkvSL9z+L8/EC4TB6m\nUlaQlY+i7/agqaDEUOqREjhlNnL2bjfIWk2VZQZZRxUBkbZYNjYZe758RGz8n5sl3/T/sykXPz/o\nhdcirmBrcg/5+Pe5GPO2Hw5vlXZslI3X14gwY0UIfllOHgv73Cxf/LYiC6d3FQKQGxss5kd++W3k\nl9/GsA6fEGOn766DUKR80nT23ldwsvWFrZWrIVVkMRKlWTeReWk3/GMVu7nn3VYfusBCn9Eh9/DX\n7baI7W2PbXGFKC8RKsnkZjYaQTNl2j4XgDFf9DC2GgSxE0MQOzEE9w4/wtGl142tDgC5F8HSSp7V\nu3S9u5Kcg6O0Rs/6ZaW05i3YqFjCuaWHgayaEdkYGU9+PIInPypWdsteoHzQS3c+OrRfPQEAYB/q\nCYQyNq1GsAaDAag4eA4VB88ZWw21yLwAdblZOs0jrNYuFEdYUwW+PbPVL9QhqFcOD5g4LwAiodxq\n3/15Numz4+b4EwaDjBO/FOCby11VGgwT5wXg729yMfw1H7Vzs5g2wzssBUdWC1wk35QMaSftFlpR\nq+wy7hn+BpIf7TeMgixGRdT09P8ER7EAobCxjkT62aWtU3/cr7wAAOju/gL4XCtcLvqD1rNHHsYA\nAEJjrLHm9yBSGbKk6PC9K5H+4qfEv/pk+LLOiJ0Yotc1dCFmTCBixgSitrQB3w85bFRdJBLA3YuH\nya87EInOP8RX4KdvK3DkegBGd5N+pp683QazXijAC9McsGq+6sPVyH0r8HjpDoPobkiM3eUZYA0G\nlqekrF2A6IXrEDkvzihlU/n2DgZdz9JGuaLwgW9zceLnAspnWxoLADDydV9c2Ks6tOrAt7nwj7DF\n1gXpmilqoth4BcDa3QfWbj6w9Q2GtbsPuHwLxuZvP08exiaRiNFYWoiGkkLUFWSjobQQdflZkIhF\njK1HlxO340jHqZKZCyuYq+pCBd/WgfiZ2PkGw9rNB3w75n6/mv9sAKCpqhwNpQXSn01JARpKCyGo\npHcK2NpwCWgHz4jeEDU1wLVNByTtX4V2YxbA1tkHT9J0S3xsTQTaxxIGg4uVH8oac2lXSWKyQpI+\n+CjpRWOrQBs7N2t8lPQi1nXcq1KGLFdB0zGy0CLZv72Cpf/KQpMAEIaDzFhoLn/3VqPSWHOYPNU3\nRyI3zkTaXP0YTKzBwCJFIkbK2vkIf3epUpKyPuDbO0JY07ySg2GLDOc+qCPCgr6dI+2jcXhrHrYm\n94DVU2OivkaEdzsn4LWIKwohRM1zFeLPd4GrjyUa68V4O/YaAMVwI1lY0+GteRj1pq/KefSNjacf\nrNyebiCfbvS5lvR7hBgTDocLa3dfWLv7wjmqMyNzNtVWobGkALUF2cS/wlrmKosAQKhXf/i5dsSF\n++qbl/Gs7WDnFwxrN2/Y+obA2t0HFvbmUzHMwtEFFo4ucAiOZmQ+cVMjGkoL0VhaiNr8bDSWFqCu\n8DEjc+ubW7JKLM24e3i9ETQxbRpENQAUS6mqaubGFBmTP0P4X9KfT8uKSUx4HF78ri+C+3rrPI8x\n+CjpRUjEEqzvTN6JncU8cB3SQa/zswYDiwLpm+MQvTgebReux/0vmS0RK6O+4DEi3vuMMEr4tvZ6\nWUcdbj5WpBt22aa/Jao29x8OuKk0pkr26LZ8HN2mnKClb1qeCLMAFnaOsLBzhH1gJDEmaqhFypZl\njK2R+eQCMp9cUCvj3mUQfPqNZWzN1gDXwgq23oGw9Q6ES4w8/vvO1+bRMDJyyNtw8AzG7YNrIKjT\nrpZ8a8eaZw8ehzmPJB0kIjHSX1qul5CkyGH+ZmssyOBwOZTeBhYpPAcbdPhD+fMob/tpFO2XFjPp\ndGQJbo1eTbyWIRuT4T2lL3ymDZDfH7NaqWxqzI73YOklP0SqzypC6nvb5AIcIGTZS3DqEUG5ni6Y\npcFgFxSBwMnvqJURNdQhbeNStTJtXnoT9iFtSe+JBY1I3UCvylH0ItUbspS15tdUK2XNh4heHA+f\n4RNRcEJ64tCy0lHza029EVm/fI2wtz4m5mgsLkDqhk8Q9cHnOmrOwsLCYjyaV0OysLZnqyOp4Gzh\nDvT1eoXwLrhZBRBeBzqMmuqKOat8lMbHhqdALFL/95ZpY8GcQpDoYEijYXhn6c8iLfc4HhWRH9aZ\nGjah3oj65g1iI87hcdHxn4+R9PwaSISKYbK+0wfCa3IflZt2z+e7w2faAOK+XaQfOh1eoiRf+PtF\nlJ5Mll5wOOh0+BO4DIxB+bmn4XkS4OHKv9DpyBLUZRSwIUnNoTIWAEDUUK/2vlu3ASqNBQDgWloh\nelE8Utaq3wyrMxak979C2jfLIKrXf+k2bVC12W85TscooDsXAGT88AXt5/UBEw3VDBlSxMLCYvrk\nJh8jXjc10N8AP2s0impxvvAX4rq0MQfnCn+i9ez3x8MQGC4Np9y1sQgl+UJ0H2yPXiMccSg9GtN6\npKG8WLlykj7wjDCf0EFNMLSnIdJ/BCL9RwAAcopv4H7OUYOtrSmhyycpXEtE0gIqMT/Nwd1XFcNP\n1RkLAOD31jCF+7Vp0vxI9+c6o+RfeflbwlgAAIkEEpEY/m8OkxsMBsLsDIbmG3RVm3kOlwuJmqZn\n3kPGw7VrfwBA7oGfUZV2W0lGtk7ozI+QuWOdWl1UeSPC310GC0cXRP5vFaXhwcLCwsJi3vjHjkT+\nHWmDJgtrwxZyeFYIDLdSSnw+8Ze0hv+CDf7YeS3SIInRoQN8MGFjH0bnrMyvRcLPD5B9uRAVudSH\njC6BDgju5YXwIX5o082DUl4T5l19AV/31F9t/95tyQ9+Azy6mrTBUHPnMVwGxiiNV91QrpDYVEKd\nF9c8fEiG31vDFAyGltSm5MK+fRvKuZnG7AwGGbWPVFebUWcsACCMhfrCHFJjAQAEZcWwdPWAlYey\n2xMArNzl8YqqQpfSN68ijApb/xDU5ZKX3GRhYWFhMX9u/PEx0bxNIhKy4UgGZv0HuRj0vGFO/Zkw\nFs5tuI3rvzzQ+vnyR9Uof1SNxD8Uu2S7tLHHrH9GqniKHhbWPPjFuiEvWT8Vz+xtPBmfUxbi1JL8\n0mTcfXSQkTWy1x2Ay8AYxOyYg9xtpxCyVBqS9nijcnnapgpqo08iVg6h4/B5CtdkRoUxMFuDwS4w\nXOc5sn7ZoPJexrYviM2+lbsXGksUu0qGvrFQo7WCpr7HehlYWFhYWjFioYA1Ep4BvGNctH725q50\nnFmXTC2oA+WPa4iQonZjA/Hcqm5azfPKL4PYJGgSbo35HJ0Of4KQJROR/9MZPNmrfXhy0lj1uZsd\n/5EeSDcPXYrcOBO2YeSH2fpEuRi9iVOacJZ4Hb0oHhyuZm/BIUzZlUSF37hXVd6rSL6q8XwsLCws\nLK0fmbeBxTB89LW/QdZ5ddcQjZ9Z13Ev1nXcq3djoSV3Dz0i1qYT5tSSgC7Mhjq1Bjod/gS3Rq/G\nrTGf62QsANJEZ3VweFylPAhVxoK4sQlcS/1VHzM7D8OTs4fg1n0Qcd32I2mN64ytqyGooHaduXbp\nR7ymSliWYe2uulyac2xPOMf2pDUPCwsLCwsLi24ceRiD1/o8QHFBEzH229VIuHrycf5QpV7XnrS1\nv0byVQV12PqcacTkbxvzLwDNKju9vH2AQb0MEon6kHJToXmYUO39XDxY8IsaaXIebzyCiPjXcGfK\nBgirpN3gLT0cIShWzH2IWD+DmN/vzaEq5ys6kADvyczm1TTH7AwGQJbszEH0IvnpTdjb0h+eRCjE\n/a9UhwvZBoRqviDH7BwxLCZIwqNAdA98pNEzAUF8dOhqjeVfueHXzVX4bk25VjIsLCz6g/UkGI7R\nIffw5lJv/HwpgvSevgnsQT/23lTDedZ13Iu5l8fD0pbeFjCwhyceXStibH0/t44q72UXmXb1wdBV\nUwAA6Yt+g6iuEVxrC3hP6afQd4EupSeSICiuRPvfP1AYbz7PrdGr0enIEsJAyfxsD/K2nSLNayj4\n9Ry8J/dh+zAoI0HK2g/BtbBE1IdriFEOn6+2HKq4qRE8ni0A1VWWNCF713d6T2buEzwTN3L2oFGo\n6E4cGbUYx1LXqHiKpTWQky1ETnYNln/lppMMCwuL/kjatwKCeuWKKKwhoR+2xRViW1yhwdeNHE4/\n5Gnnq2f0qInubOx9gLanYdLW/owaP64OwSrvlVVnM7aOPnDsHKK0Cc9c9rvSBp7uRr36VhalLNl9\nVc8waSC0xIwNBiniJgGx8bf1D0bQVGl7eVVGQ8Wd63DrNkBpXFtcOvXW2WCQbfyHhM9DRUM+bub8\nqXC/uCZTyVjoF/Im8SwA2oZD35A3YcG1wtmM7wBIjZGyuse4/+SUkj4yhoTPQ01jMa493kWMdQt4\nGXcLj6FfyJtIKTyO3EryalO6wlR316Cenpi8tZ/CWFl2NbY9f4KR+U0Zdd/DTu/E49YW003GJ9NP\nnc6d3pGGGeZfO4Int07rXT9dKbl5FiU3z1ILPiU8Lh7pS/X38/IYOwHOPfoCgMbr8B2dEbzwU4Xn\nwpavQcaKxbSeD4+L12pdXWHiM4bMWACgdQK0qXW1ZkKfkX7vU8rIGrmp48jDGBTnN+G90ZmoqRRR\nyjPJuC/phR9vHnYENcXqe0GZAus67jVK4zknO1+V98prNPPCGwOulQXEjU3Ugq2MVhVrU5ebhcqU\nm2plnpw9xOiaTtGdGZlnZNRinE7/Ghxw4OOo2FCuoj5PSf7iQ2lb8GOpa2gbCyOjFuO/h9twNuM7\nwtC4lLUDgS5dFeSKa6UGkLWFI6FXYt4+4hkAcLMLQpTnIJxIW4d2PqPov1EjMXlLP2ohBvlquycS\nHgUSX21ClBOREh4F0hrTJ6ZsLACa62fq78fUKT603+AbdhnGWpfFMDyoukx8pVSch0Bcj8zq6yis\nl5YEPZm/hdY8dTViePhaYM+tKBx5GIMjD2NwKD0aEbE2+lSfNhKxxCyMBRk/v3TS4Gta8u1V3hOL\nDdN0Txdi9y9EzM/vI+qbNxTChVo7Zu9haEneoV1wiu6iWqBZQo17r6EouXJKtawaxIJGcC2ttHqW\nDNmm/0bOHgyLmI+CqvvEvaKaDFWP0SbMvS/K63KI66yya+jeZioSmnkNAKBrwGTcyNkDABgYOpvQ\nq0nUgKwyxdbtt/KkTV2S85mpb6xXOIZdrt9QG3w8uxinj0gTmQxtCLCwmAJ0vQutBVsXP7QbrWj4\nqPIyjAym5304lsVMWJOh12vJw2r5Yd5Iv/eVvAlkY2S81OG+wvXMxV6Y8KY7NvwdQowZIpdBFes7\n7zPa2tpQnK7fJHEy+Dzm9k6G5tbo1bD0cETEhtdh5eeGkiM3kfP9MeoHWwGtzmCQhSSpQyIS+13O\nPAAAIABJREFUgsPjw7P/KIgFjSi7eVGlrF1gOGmTuNQNHxNVltTlTGgDj8t8WawQt16ob6pAt4CX\niTGJROrOPZPxLRGG5G6nGFvYXF4VTaJGZpVlGA7XsNbCjNnSxkEyYwEA+kc9xoVUw3dmVAWXbwH/\nPi/ArW1PhVN5aUiPBAAHZWnX4RLeGRwuD7e2fIhO78RDLBQAHC64PD7K028i+7TU4LR29UbbSQvR\nVFsFCztH3P1tBZpqpX+I2s9YAb6NA4QNteBb2ymtJ25qBIdvAQ6HS9xTpV/z52S/x3S9Cp3eiUdT\nXRUsbB2R9MNHkIipwxnaTV8BC1t5x17ZWvbewQgf/z7xfpO3LYRYJCTWyT69C0FDpgIAniSeQn6C\ntEpK7Kw14HB54HB5CvPRRiJBwFv/A4fPB8/eAVlfrgAgDedpeJwNvpMz+E7OxGl9yMcrwbOzR9XN\na3Ds0oMYl8kLKytg376j1qf7PDt7hHy8ElW3boBraalwzyYoFP6z5ijMbRMcBv83ZqM6+SYcYrtA\n3FCPzDj1p3PhcfGouZcMm6BQVFz9D2VnTxDjJScOw7lnP/DtHZD+6QJivPn7lL126T8Erv0Ho+b+\nPTh26kr7PbfcaKvbUEcNfRsJO+eDb2UHYWMdokfMobUGi3Y4uPAwaporOAY+EGptCGqFsLRTvx0M\nG+iLjHP5jKwnFAnA51mS3uNwOJBIlJuZmRKC4ircnbbR2GoYHLMzGGSb9NyDv6IqNUnhnv/4GbD1\nf7rhVfMf7v76hcQ83kNfgEffEXj401doqpJWl7HxDUTgpLfBtbIGoDo5uqmyDBZOroReuQd+QVWa\ntMYy18oa7j2Hwr3nYLVzGIqssmvwcYzG9Zw/lO4JnuZH2Fq6QCxR3ESRyZsbU37UrAyerrw03QF3\nEhWNqIZ60/oAFAub8Pj8n3BrqxyTe2vLfFg7e6Lty4sJQ0HGgwPfor5EGiIn2xgDQNtJC5UMAdk1\n38ZB5cY47+ohFCUpx/Cr00+q44fEOo4BUajKSVX7fju+vV6lfqqwdHCBhS257jWFWQrj7aavwN1f\nlxPX9j4hSs9Z2DmDy7ckxjvMVN+whxQOBzk/fANAHvMPKIbzNB/n2dkT9xy79CCXb6+6YgkVIR+v\nJObymTJD4V59dqaSfH1WBiFf+NcuBV3JcOzcHcKKchT8Li0pGB4XTxgMAFB+4QzKL5yhnAcA3IeP\nJtaWCJvgPnIsSo6pD1HlkLgmXa0DUNaQQyINFKScAwDYufqjsiAN9h6qkzufdUb6vY+8uvtwtPCE\ng4UbCurodTz+4XQ4/ILlm02JGPh6YR5O7q3Ql6qtni0jj+B/F59XKxMxxI8xg6GhqRL2PPL+Di72\nQSirzmJkHRZmMTuDQYb/89OB56ervJ/ypXr3a8raDwmjgWdti/B3l2msQ/qWOIUqTf7jZ1A8wSxi\niQgjoxajurEIl7J2qJVNL74AP8d2GBm1GI3CWljx7RRyH9KKzqJ/yNsKY8dS12Bk1GKIJSJIJCLw\nuJZmWZUpoIu7QdfjcACxeZSSVklDBXkJPZmxoAm3f1pCeC5ubVH8vfTrOQZ+PceiOicNGUe2ajx3\nWdp1BA+fgeTtH6uV43C4CoYPHaJenI+yB6pzotTNl3PhL6WxtpM+onxOW4IXLgff0Ym2vHPPfvAY\n8wKjOhQfPQj7mFj1QhwOwlfRD3nxHD8Jeds3qbzvENsFzr37Q1hFb7PY0rCgMhgseNZKY1Zq4q8D\nOo1Gwb0ziBzyFm4f/ELt3GSeCj7XEkMDqb3k2kC2ni3fCf0DZullPbW60Ag9UoXMWNiyogCHfilj\nSiVG+G2q6RdaIKOxmjqBN7An/XKyVJRXZ8PemtxgiPAbiqup2xhbq7UztE8cTl1aSlwP6vkpeDxL\n3Evfi4KiJDVPao7ZGQwpaz9ExPsrwbcl/9BO+XKBQp4C1Vwt+znIaKqqwMNf4iGqq1E7h6xKk8+I\nl+DSsZfS/bxDO1GZkqh2jpabcLqb8hNp62jJyTiX+b3Ke1ll15RyFNTp0ny8pFa/ZWXNjb07q/Hu\nAmeFsWfZZS5qrMetLR/C3i9M6WRfZkCEjnpTq4pNPGtbCBvrqAWhefiPSNAACxvyz5lO78Qj49Bm\nVOelE9fU89Wj9kk2Mo8y/8ew6tZ1lJ6Uhj3ROW33GPOCQtgOE9gEhlDKhK/6SqU3hIzqpJuwbxeL\n+kfKJ47CqkrUpt5FdbL6QhfN0TT0SiBSTl4tqLlPIilFlq9wffdCdH5xhcZVkoRigUbyulInNHz8\nuq6MDrmHsdNd8c5nPnhnubzj7XdL8/HvbuP2oCm813p74Ng4M5d3UFKVgQCPbqT3HG3JuxizqKZL\nu5lwcQrGqUvLwONZ4tSlpRjaJ441GADgwbefMjibhJFwoYLjf6HguPKpIsuzx0/fVuLdBc4YMMIW\n549LN7PXssmTnj28eSgulIaBHbqivkW8KRA58QOk7dsACztnlTIu4S0rh3EASFCTpzp5P/PoNq1O\n3p0CY3BrK/WmrDwjEZ4dBxHhT/a+YajJV19M4N6uOLU61RRKN7ERE+bS0pVqPjo0lZch4J15AAcQ\nVspP1V0HDIWkSQC3oaMgKH5Cay7XgUNh366jgryllw+svKR/sO0io1GbnqrWXZb15QqEx8WjKjEB\nEqG8ugnf0QlW3tLSiQ6xXdDwOAtN5dLT4JAlcSi/eBbuw0crzGUX0ZaQFzwpQGNhPp7s/x3hcfHg\nOzrBJjAEFZcvKKwRukx6il+dfBOFf8kLOAS8Mw/WfgEQ1coPfJ78vQfhcfGoy3wA29AI2sbDieyN\n6Of/Ojjg4FzOD7SekYhFuPnnUmpBFgK6Sc8AcOjXMhz6VdG70HOYA3Zdj4SzG9+oSc+tFWEjcyVs\niyuV80JZtEPQVIubd6URJhwOr9kd5sOgTd5g6DbjK1z/Rbta1rrOqY+1DTE3i5x+c6KNsm7Cfw1Y\n94Pc5fpCvzz8fVHRIJBIgCPX5I2ACvKUy8k1r640/V1HTH/XEQAUOkbTkWlJ842r7DWdE/jci/sJ\n+aQfPiLGW+Y6KOYLyD14ZQ9uqNQj+cfFpOMt9RPUlBNjZWnXiXwlv17j4Bk7EADg22M0fHuMxv0/\n16GhrADZp3ai0zvx8Os5FoDUgKAyGADg3q5VpO8r/eAmdHzzSwDA/T1r0XbyIsq5pPPFqfw+0SH7\nqzjScdnmt+zcKdJxVa9bygueFEDwpADVt9V7RWUIqyoV5i36Zy8x3vJeSx3KLyiGb9Q+uE+6iScb\nsw0NR1NpMbI3SA0G9+Fj1MoDQNXNa6i6qexFpUIsEeJ8jnZeoe7TvtK6FwOLenoOc8Abn3jDN1Ax\nebahzszjQU2UqgJ6nlwmsOTbQiA03HrmzIWELzC0j/TvQtrDw3iQdRT+Pj2gj9KQHFPMRudwOIRS\nxjQYWPTP9GszAQD/zjqM4jtFmHbpNezs8zOmX5uJX3uoz8ugw6LkiSrvPSuN25jC1Ju8sTw7+M+c\njaaKcjzZ/zsAIPTTL5C5Un0eiz6RGQZdJit2WeVZWGtsMGhSlYkJDLVecw+CqiZudBu3AdJzgh9X\nF+LAjlLmlKSAqskZk92QDQ3Ve7vyw3389z1znpvhndVHily8uxH1As1C5lTNmV+ajLuPzKD8ux6R\nSCQ6WxAm72EApBv8gjun4dN+CLHR7zbjK5RkJMDSzhn2HkG4uetjYlwsakJFTgpcg2IV5GVz0MHR\nJxyRw99RMCzaPf8RrB09kHvrX3hF9kHyvjgFXdxDu0EsalLQJeXIRkSPnovkvasgqJWGENi6+iJm\n7HyFubvNkH5It3yfwX0mwz2sO0of3oRbSJdWZ+jIjAKZgZC2T1rtJnnbLWOqxcLCYsLk7vgezr36\nIfTTNRAUFyJr3Uqj6nP3iPTzO/38z6gqlIdbdJ+m382+OdHcGMitvYe7FWcU7tPpBA0Yt8fCs8yd\nA9mMzldUkQpP5yiV9/u1m4vS6oe4mb6T0XVbI13bz4KzYxBx3TwJmknMwmCQbZKbb/bJNtsybu6U\nhjZknpde+3V6jpDPTTyqJE9GVYFyjJ2Nszdu/b4UnabEIXH3J0q6ZF3aozR3bclj3Ny5GGKRvApB\nXRl5aTKy9+ke1p0Yry8vpNTb3JElB5dn6F79witKdZw9CwuLeVNx5SIqrqjuoWNI6sqln+k1xWw5\nSDqUCwqMrQKLhlTm1zI6X9LDPym9DG4OIRje+VOUVj3EzQzWcCCjc8zruJ36OwRNzP58yDALg4EM\n/86j4dN+MC1Zn/aDkXfrX0bWFQqkVTPEQrkB0GXqF+DyyZuQWNo5I/bFpbj+ywKt12xuhBTcPaNG\n0vyQhSSdfP84xv81Efa+DvDq4gOXUBedQ5Je20PPm8RCDzYciYVFPbLmfTLY/AVy8uqUK03pUmrV\nVIgc7o+0E7nGVqPV4eYYQmlcqMPXLRa+bhQln02IE4n0PaYcDtcgxgJgxgaDT/vBCuFG6qgupE5u\n1IXHCQdQnH5NSRdRUyMEtRU6GQsAWl0YUnOaGwUHXtpnRE1YWFiMgSYx9IPbzIYlz4a2fMv508sv\nIbPiKi09VKHvnAIW82XYks5maTDYe9pQC+mB6rpCONh6G2Xt1sLttN8xtE8cMh/LC1hk5ZzTy1pm\nazAAgEdET7Tppr47IQCkndiqUQ4Dl28FBy9ph057z2DUVxRAJGhQKR/UexLA4SCo10sK4zwLK3Sb\n8RUkEjFu/LoQgARcvhVsXaVlC53826K+ohCCGtW1mwvunEa3GV+h/NFtuAS219n4AABwgFd/GwTf\n9q5aPS6oE+LvD64g+yp5cy9j49XWGVO2Gba7s6kROcwPY1Z3A9+KRy38lAvf3cOVbeo7JrcGPMIc\nMXPfMI2eubjpHi7/0Pq/N6ZOS2MBAGz4jqgXVtF6XpWxoCuyZGdhYx2s7F0hamoAz8IaxZkJyLqy\nRy9rmjN9PF+Bg4Ub8upS4W4VACueHc4UbIdAbNqVceK77ceH1yeovG/jRB5pYOq8e2K02vtMhyPJ\nuJL6g06eAxagqalObzkLLTH5KknmirN/W3hF90faCWn3WlOozPTBledhaasfG3F9t78hEmhezm76\ntZkQ1jdBLJL/yP8YQj9W0creAoMXdECHF4I0XltfrI01jqfEI8IJM/8ayshce96+aDIGobpKV5p8\nr9XNowmJv2fi5BrtGuLMvTgW1o7qNxXlj2vww9jjWs3PFFweBx8lqt4YyWDi/7omHgYyL0B5Qx6u\nFfxBKm/Dd8SAgDdpzd3dZxKcrXzB5ag3stXN0WHcItz+Z618Ti3KqrbWKkkKa5L0XNCkD4MxaY2V\nkoz9nlijQRFNQpJa4u4aiZKyNKXxZ6ZKkjni3W4wKvOMfyI57ZeB8Ovopvd1Flx/gXhdmFKOX6bQ\ny7Wgm6fgEe6El7f1g60Lc90mWwv6MAQnb+0HAGiqFyK+p3mXo2PKUJDReUooOk8JxZn1t3H9N80a\nEG3sd4hSH5c25N2lDQkdY+HyD6o7HmtC4pOD6OxF7SluTkl9NtxtggAALtaqGx5295lMe86Egj9J\nx+mGKgEtGyexqEIkUe45Yy789sppvLpbdaTCuHU98c9H+vFk6QPXIAe197U5CNSUE4krWaOBITq2\nffXZrpJkjqQe2wS/jiPQdfo6VObeN4p3gemNEl28o12wKHkixEIx1nX5W61sz0W9cXXtZco5Z+5l\n5uS8NWFlZ4F5l8fpdQ0LGz4WJU/EV90PMNrp0xD4xLhg+m56hRG0QVNjobVxcVMKI/MU1dHLMbPh\nOxKvbxTuo7WRb/6MIbC0c1YopZpx8TeDrm8u8DiKWw9f20gjaaI5hSmqQ4gBIHKYv9r7psYbB0ao\nvR/ffb9B9GCNBs3pHvsOHO0N9/+NNRj0SF7SceQlGT60YFHSRH00+dOYU2uSKWUiJkQhYoJiLWYm\nGra1duZdHgcrOwuDrTc/YTwA44VbacqM3YPhHeNibDVIObU2GUMXqa/YsSh5otG+11yecT883Gza\noLT+sdJ4/4BZKp+x5juigSKPoUqg/xC767sX6n2N1sCxvG8V+i48rL5hFuFIMtZ13Ks2jOejpBfN\nIjSJKhTJ0MhCcVjDgR4JyVvQIWoKbqf+TozJuj7rA9ZgaGWMXtXVJIwFALj110NKGdY40BxjeY5k\na5u60fDmPyPgGqjfsB5dEqBv7s6gNBiMyQdXqMODHpzO09v6ES79cKV+l9I4p8UHm1giBPfpSXWs\nxyiVeQwy7hazXd1NCXMyELTB1I2G6FFtKGWMpb/McPBwCken0ClG0cFcaG4sAPpr2gawBgNthnVb\nQTp+8vpyrZ+n+yxdgnt5od24QEbnNDS9l/TF5dX/GVsNk2X2yVHGVsGkjAavts54cr+CuObyOHo3\nFgBp1SRdqK9ohI2z+nycFzb0wt8fXNFpHW2gU1nr7w+ZjdFunpPgZEWvzGJK6Rm0cx8OgDyPwcs2\nTOG6SvBENyVZGMOW74Q6YaWx1dAJKi8DAAya3wFnv7ptII3oM+yTTug4KVStzG9TTxtIG9UUV6Zr\nlACsyjORX5qMu4/MOxdPFUP7xCkYCS2vmYQ1GGiSnPEHnO3bwNOlLWysNA91yMg9BWeHQLg7hetB\nOymTtvTV+JmSh1W4tuMBHpzJg6BWORHNO8YF/WZHI6SvZrWSj61M1FgXAAgbF8EaDCrQ1rOQf7sM\n/yxOQGWeYmk8KwcLdH0lDH1nR2uliykYDV2nhuHI0hsAALdgB8w6MFyreSRiCThcw7nmvhlwmPLn\nGTHY10DayBn2cUdKGbLPCV2hyknwtlOOcc+tvkMYDGR00jCRmsVwuFu1QbTXQABActlxFNQ/MK5C\nWkJlNHR9NQJdX40wGU8Dh8vBgkTqvyN5SaUovKc+V4PFNDh1aSmG9onDmSufYXCvz1gPgylQVH4f\nReX38SBHmpOgyuOgiqyCi0DBRa2epcPEb3rTlm2sbsLXff+hJVt4rxx/zbmkMBbQ1QOvbFff5yB5\nX5ba+6+cm47dA38lOj1Toc3mlGpDVpZdjW3Pm0eYwsJb1FVrmlNVUIfNI9V3N2+sbsKlrfdxaau0\n2s3I5Z0ROyFYI52+7GSYhDhVRA71IwwGOsbCv5/dxO2/s2nNHdzbCy9t6qNkSCT+kamxnmSImsTg\nWXDVyvR+qy1j1Yjo0Pll9aeOALCht+FP6mI95J61/BrDfT9Y9MPj2jt4XHsHADDM9x3EukoTb80x\nTOnrnn9j3tUX1Mp8lPQiIAHWdTKe4TDr4Ai4BKqviARI/y7ufu2sATRiYQqZ0aDvfgyswdBKCBvg\nQ0uOiVPhnBvFCvOE9vfBi9/KDRY6uQu7B/4KQDmHga4B8SzhHeNC+/Rbk5K2LTm2IhHHViQifLAv\nJmzoRSnP4XKM7mmwsJF+hKkzDn9++bRC2BJdsi4/UTCIxn7eDdGj2+DkF9r1YGjJ+q5/Uxq1/eZE\nG9RgMBVcrQNQ1pBDXHM4csPqdvFRjedLKjrEiF4szMPjGK54gz5oahDRCk8CRzHJ+MgnCUg5qpzc\nzxTdZkRg4AcdNHrm5q50nFlHXazkWab/qLWorniMW5c3aT2Hf3B/hLRVbJZ34egijedpmeAsu2ZD\nklhUEjOaOnkJ0F+Fm8wLBcTc7x57Difibmk9V8quu0yp1WqYQbM06E+TTqMoTfONcUvSz+Rjbew+\noyZXa0JwLy+V95j8P3/ok+s49Ml1xuYzNXw7aNf5XR9EuPbD1fzdlHLZVTcR5NgFABDg0AE51eTx\n4oW15hny0lppY9ce0c4DAQDXSw6gtDFH/QNmwLqOezFjz1B4RjrTkh/9eXeM/rw7cV2WXY17hx/j\nzoEs1JY00F7X3tMGYQN80GNmFBx9bDXWW8amwYdQV9ao9fPPEg7O9PZcZPQftVbleEriTpQU3qE9\nl6E6PMt4Jg0GPs8a7UMmws0pDBU1ObiRat6VesZ83o1SxlCnwFRhMFTc+CaBIU1aB3Q37dueP4Gy\n7GpG16ZrNBjby0CWu1NdVI/vh2l+Em1orvyYil6zotTKzD4xCt8P1/97efW3QZQyhvo5O1vR85im\nlp4jDIYY92EqDQYW06K44RHj4UemViJUU1yDHNDvvRj0ey/GKOsHdPFA2slco6xtrvQb+Tk4XHmR\niPKSdNxJ+FGlfJsw1Q3/ACC68zSUPknBvZu/0NbB0y0aRaXynjgebm1RXKofr7TJGwyyeP/7jw4j\nt0h+umdj5YK+HeYBUK425OIQhK5RryMz7ywe5p8jnU8uG0iMMV21iIWarvN6IPrlGIVSsGypVc1I\nO5XHuLEgY13n/bS6/vZ+K0qnUqNMUl/RaBbGAgBc+PYepcHg4GVjIG2My8OKawhx7qE0bm8p71RP\n11NA1+BgMQ71IvU9M1gMz7h1PYnXqcdzcGjRNSNqY/qQeQpc3MPRf9RaleFFQRHyPLvmMj4B3RHe\nXno45+alWRGSqNBxCgZD29DxejMY1GfcmQDFFWkAgLaBYxTG+3aYS7x2slMsqdc5YhoAKBgLXK4F\nYRiIxU04df0znLy+XMFI0EcyMot6krcl4teeO/BrD/kXixQ69fAB4MB8ZktcNkcskmD7Cycp5frN\nMc6pGBnfDDhsbBU04t5h6jjmF7/ro1cd6HiS1ndV37VdVx6Uk1dH6+U7lXhNNxeho+dYRnRi0Q9c\nDg8j/d4nmre5WvkRic8sxidqRAA+SnqR+Jpzhv190gRVYUcyhELFkLOCnAQU5mgX7lpQlAQLC3ko\nWmGx/nJQTN5gSMlWVc2Hg+q6QgBAh7DJCne4XOUkqiFd5LFep2/GQQIJcd3caOj01NhgMQxNtU3G\nVsFksbSldgAeX6Vd+VpNKHloPqeB67rod1OrDw4vof5DEdpPs7LG+kDUJDboepY8qWdFk6RYT1tp\nlSdrvrwaTF2T7nk9LMwy3He2QkhSWWMefGwijKgRizpsXdX3jDEVxBKRQde7f2sXLhxdRHwJm+qI\ne90Gqu76/jj9lNLYgzvyCloRHeiH16VnH0P/bosxtE8chvaJw4Ms/XnXTd5gEDTVqLx3/5H0tMna\n0on2fKrCjs7dklqE+uyTwKLM9Gsz4RjgaGw1TI4O44NoySXtVV++linEQurN4rxL4wygiRok9PRk\nUaTTpBBKmZSjhk9KDXLsSktOIKonXke7KRcIuFtynDGdWJihScwm17IwT9HTiBR9weXJDy8uHF2E\n4gLFnKnLJ1egpFBauMXG1g2qqKpQ71X29qfOS23O6cuf4tSlpXpPgjZ5g4EMP/fOAIDKmlzkFJEn\nyRZXyOOpPZypTy6ahHWUMuYMVZy0sfi1xw5U5ZjPCbaheG5FF0qZE6u1r0alKXRO7q3sjVsecW1H\n4zeS0xZZLwx1TNqseWNGOgxf0olS5tDHhilGUFr/iHgd4txdjaSci7nbidfWfOXDh7IGNpHT1LDg\nKp5YB9t3NpImLK2JnGL9VrFr15W67HtK4m+UMs09Ec1paYDQpXfnDwgPQ8tSq0xi8knPZEQHy2O7\nUx8dRYBnd9hYuaC+sRzeru0AKIYyBXrL/9C2xjyF1BO5iBrur1am//sxuPKjaSSlsjDDrT+p+10Y\nmsihfkg7lWf4hSXUIqbMf9+noM/bbdXKBPdWXT62tXCv5CT6B8wiroOd5CdtVYInpM+wp9Xmx/WS\nv4n8Bdm/5ti0jcW0KK95RC2kAw7O0n1W6ZN7epm/vPgBPHw0653Rtf2buHLrG3SOeQ03725X6FnD\nNGbhYUh8IG3yZWPlQnJXulPo0/5/AID2oS8BAARNtYSEs4P2NXPNgYMf0atmsCh5oslXXBn5w2hq\nIRajsG/uZUqZ8V/1pJTRB+bsXZBx+0A2pcyAue0YXZNOZ+dTaw3XyKlOWKlwHekq7yh/OW8nrTn8\n7OUJ+IaOaWahR2ljLo7lfavwxcJi6ohFwqev6DVSVYBD/Ux9XYnG01rwbSCRiODiFAwAGNzrM43n\noItZeBhKKzMBACG+A3Av6wCpjDqrStBUAysLaRLcs146dfaJUQAMV09dU9yjPYytgtExhQRXMjLO\nFRhbhVbNv8tvUuau9JwZifMbmWtuOOzjjpQyN3dnMLaevhCI6okkaX+H9sR4SqlyciELCwuLNpSX\npMHTt5PGpU8BwN6healncuPBwtJe43mv3voWXA4P6dnHMbRPHC7d+ErjOehiFgaDDF/3ToTBoMpw\nIOPB4+NoH2reTV2o0LQzr0x2fbe/IRIYPlF0+tWZpL8zbFlVeiU0c29pfhLBwtIcniW1gznnRrEB\nNNGdi7k7MCRwDgDAxVpeZju3mr5xZcWzg72lO1ys/eBgIf3XkqfcOXdk8HzUCytRIyhFeWM+agQl\nqBaUoL6Fd4TOes7WvnCw9ICLlfRfdeuVN+SjpqkUNYISlDfko0lcTzKrauwsXGFv6Ua8P3XrVQuK\nUS0oQU1TKSoa8lAtKNV4PaV5n4YeqYP1NLCYMqlJf8DTV33OV7uurxGvm/dk6NxX3grA3bs9Hmec\nVnrWP7ifxjpJIIFEIsKjvIt4lHdR4+c1wawMBkDapRkA8kvkCZ+19cWws/FQWS2psOxOqzcYtGXB\n9RcAAKfXJePGTsOdJP7akzUMdOHKNjYfpTVycdM9yp4WAz9oj3Mb7ui81oc0+nzsfuOCzuswQV6N\n+pjhJnGD2vvqGBk8X+NnbPhOsOE7wcNWucLUsSz1J3xar2dP/vdNH+s5WHrAwZLc20u1niqaGwMj\n/d5XuOaAi75eU8keo826jnuphVhaPScSVxpknf6j1iLt9p94knuTGOs1dDksLJ8a4RIJwOGQ9mQI\nihhOajA4ugTqrNfQPnF6q5ZkFjkMAJCecwIA0DniVaV7l+9uAgB0Cpd+4GTkKf8gZFAlPeszYUTf\nrI3dB4lYu+zPIR/FYlHyRCxKngivts4Ma8bCNA8vkSeAmgRahHeySKHTLbvHa8zUq+dY3gVrAAAg\nAElEQVTyTfOzLqvyhtLYneJjRtCERV+0zC2RQAw7Pvt3h8X0eZgq73MQ2WES+o9aS3wRxgKAC/8u\nVjtPy/Cjrv0/JF7fuBBPS5fggIFKX/rENP9ikJBdeAkA4GRPVg1Iukm2t5VWEcnKVz4VO3n9M+L1\nsG4rEO4/jLh2d45A73bvYVi3FfD3oK5/a20pL93H41rSUZ+Az5OXk5PlVTDJl5326zzHa38MwaLk\niRi7hl5ZQxaW5oT196EWYlFJ0l7q6lfRzwXoXY/aEu1P7XUhrew8I/M8rKBXDILF8HA5PFhy5QU4\nBvu8YURtWFjok/vwPGVXZlkYUstmbjcvbsCdhB8BAL2GLkP/UWvRe9hy9B+1Frb28ip4dTX0DgSz\ncs4pfekTswtJAoCUrINaPCXBqRsrMLSrNOk5yKcvgnzo1TXvHv0mnOzIy5YO7rJE4ZosqVqVV6N/\nxwUK1yKxAGdurqalkzrWxu7DR4kTwOXpdtQb/VwAop8LQFO9EPE9tfmeszyLBPXyQsZ5wyVICxtb\nVyWc46tuoeOL6pupjV3THSn/at9MjU6ezHdDjmg9v65oE/aidaiMls9pS8v1bDpGoz4pxWDrmQLH\n8r5VyGloFNWy+QssZsODO3uR/eA4eg5RDP0pLbqPezd+Vhi7fFJx/1dbXahwzbdQzCOSiE3375lZ\nGQzqKhzRqX4kkYgJuRDfAQj07gOJRIzCsjvIzDursnlbQso27RTWQDemWdd5P8ABFiXRT4RWhYUN\nn0iSri6qx/fD9Nd6nMX8CeisusOlPqgqaN1NF/WBqVbiehbxeH8GHr+xyNhqGBzWQGhdVOYpej2d\n/JQPNCrzAtCmbR4qq5QLrTR/Pr9QhLZd8plXkkEEjdWEJ0FTLhxdRJrbkHTle1SV69ZLQp/dns3K\nYGCSh/nn8TCfGde3ySKReht8YlwwffdgRqZ08LTBouSJyLxQgL3vU9flZ2ld1JU3wtbFSq2Mo7dy\n5RUWzTi/8S5lz4WY0W1w78hjjedu0426dPEmLb0LbbY3+yMokeDxrMVK9x+/sQieC9+GdaTUiyIR\nCpHztqKnFgBsu3aA+7vyRFhNN9V+8UvBc3IgnuN7uMJ3zSKFeWT6kOlfl5CMkq27Sd/j4zcWwSdu\nASx85N/LlvoFbP0cHD5PYay5DN/dBV6L3lFal2wuFhZTRrbZb9ejAG6uXCycp9xxXUaTkDzPUmZg\ntDQ8WivaGhvG5Jk1GJ4lCu6VE30XNCm9qo7Q/j5YlDwRIoEY67v9zcicLKaPoFZIaTBYO2qW18Oi\nzNUdaZQGw5jPu2llMEz5sT+lTI0W+Qtttq9FzdmrKNsp/Txwff1FpQ25TK78939Q9OVW4lrVxl02\n5jC8H+lc6ij4NB7+G+XeXd8vFgIALLw90FRYDK69nVr922xfizbdY0nXbLN9LQo+3YCmvEJCv5b3\nG+4+QNGG7cSYXd+uCjLCknLkffSFxu9Ln4yI/kRp7HjK50bQhEWf3LjgAzs7DqOn+C4BORCLgZxc\n4JWZ5GW/ybwOLOaD2SQ9szDD2th9jCRGy+BZcrEoeSL4VjxqYRazh87PWVAvpJRhoSbxj0xKGfdQ\n1Sd5hsQnTpqPJdtsA0DZT9Iyl14fz1aQlTQKUH3qEnFduPIb0jlz3pJvXqtPSOuL2/XuQlsncU2L\nUDUOB6LySri/Ow0A4DJlLCr2HlWpv7pNfO68lYSx0Fy/5jQ3FgCg9j/l6k8sLMYgPJT5s2Kx4ds5\nsRgY1mDQA5tSBxpbBbVIxBKsjd2HtbH7cOLzJEbmnJ8wXivvBd+aj5eOTmFEBxb9Y+9hTSlTXahb\ngycWKSe/oP7dfGP/MEqZ5gT28KSUWdtR8y7wFj4eePLF96T3rMIUa4vnvKeY0yV4lKdw7b1Umgwb\n8MPnhPdB5nFwffUFjXVzfG4A8bpgWTws/KX5G3Y9O6Hq3/OU+nsvfU9pTFxdq3bNsl/3K+htLhxP\n+Zz4MgYjoj8h9XKYE81Dar5e66IUYtP8+rcf3FGZF6DwtWyRcr8N2TMtZZsz81V7pftka8vGfL15\nKuXovs/mz6qbS5d1yOaQfd2/6Uu8vnPVvKvzjbs4B+6d/KgFjQgbkvSMc2tPJm7tkZ5kMhGutCh5\nIhH+RIcpZ1/FnuHyOOFeH/fBlS8uqXmCxdQpy642tgqthvSz+Qgf5KtWhm/Fo10p6uUfaHQS1a6V\nC5ryaPYGoTiKtAxU/X45lhaaqASIxXCeMBKiyhrpZb3qUCtV+lsGav5HvOb8NQiyc+H96f8IoyF3\n7gplrwdLq+b1afb4NK4CUyfZYdeftRjYT37gYmvLwbjRNkphOpV5AVi9rlLp16QyL0BtSM+GNS5o\naJTAKyRXpUzzPAFdE4ub60KlG5P5Cc3nqqkRw8kvX5pMHWD+29ne34wHAGTsSkTKlitG1kYZ8/8O\nmxAbkvrh302KGe6bUgdiTtQ5rL/eF+kJFdg65y4A4OXlEegzyQfp1yvwzWvJAIC+k33Rc4I3Ns26\njUEz/BHRwxlfvyo9Zfzoz87wjbDDipEJqChs1Iv+zTf68y6Pg5Wdhn+cn6KJ0fBbr58UrkNGhbEG\ng5mTfs60q1uYE/vnXaE05OcnjNfISFfHT5NUN72kwrZ7LGrO6977oC7xHmy7tmckrr9w1bfwXj4X\nbm9MQvmew2plVelfeyVRq7UFj/KI9+A67QX4b1xuMrkKLPrFy5OHJ0VSI37j5mpU5gVg15+12LfT\nA5KnBnlBOnmpdgAoz1HegE+bRZ4X0Bxrq2era2bfYVIjv6hYBE8Pw4VFczhc9HvuC53maJn0/E+/\nTcTrcRfnIGxqZwBA7skHSFx5Uu1cA3ssBZfLw5kr6hsT6wobksQQm1IH4oOOF3Fyu7KVHXe2FxZ0\n+w+Hv8kmxvatycD7Meex7f17mLG2LQBgyooIrJ+ciPXX++Lod9kI7ybvfLluUiI+6HgRq8/10vt7\nAYCve/+DtbH7UKVleAldb4WVo2ICbdIW7f44s5gOmRcLqYVYDM7sk6MoZYrSKrSau/FBFlynTyC9\nJ3ismQFZsmUXAOUkYW1ovrYsz0BYVAqunWIlL3X6l+74S2c9mudGtHa8HaMxOPIDDIn8EF6OkbSf\ns7eirt5lLqz+lLxrNZ8PfLJCu9+xQ/+q/1vc/OT9Wak01CiQWl9CA7YusLR21NlYoOKffpvwT79N\nKE7Igf+wCIy7OAcjDr6uUv7ctTicubICnaJnYGifOFjw9VOpkDUYGEYiVvbnLx0kdS3lpdUQY02N\nUn9jfbUQ3Z/3UnoGABpqlJNHK57ox7ugis0jjmJt7D7S98UEk09OxfRrM4mve7vu6GWd1oa1k+lW\nIqorM+z/0dbOjZ0ZlDIW1tSnaw6eNpQy2vJk7RYAgOsM+UGB7HXhio2aTSaRABIJ3F5/SWHYKlJ9\nMzu6lGzeCc8Fb0LSJP98JdNfl/wDz/mzFK6tYyLUyvttWKb1WqaCjaUzRkR/glj/8bDg2YDPs0ZH\n/4kYEf0J2nqPIH1GlrMwIvoT9Al9k3Tc3PIa7txrwksvqN6wfb9NfyGbTn45+OKrSgBSw+HhHdOO\niTdHeg5WLgGtL67M/wdHR26DuEkEK1dbjLs4B6OOv0Uq2yHqFbi5hOPUpaUICxyGQb2Y7/9lliFJ\nI5ylbeSPV2ynkDRNRr4biOSTJSjIUEycq69WNBBkrktZWBMAWNsZpxqRrLLSe2fGwM5NfVlNGXRC\nk37tsUNn3VobErEEHK561/LITzvjwPyrBtKIxZicXpeMrtPC1Mp8eE33sKRDn1zX6fnHbyxCmx/X\nwL5/d+mARKJ1CM7jWYvB93RT3LSLxXj85sc66QhIvQ6WbXxRsCxecc0W+tcn30fxNz9rtQbXxlrJ\n4CDrNUGs2yJB2txClwZHfgALntQgffDkDLJKpZ9NoR79EObRD21cu8DR2gvXsn9VeO5s2tcK14Mi\n55GOmxODRj1BySN/vDbNHkPHyvNi3nrd3iDrr4mvwpr4KgDPTk8DY6GvXgp+Q8LR5bPhxPXhQZsh\nFkoPmfv/OAnjLs4hQpiG9olDVs5Z3E6V54LezzwIP+9ujOtllgaDNvA4FhjqNF1p3BhGx9DXA3Bs\nszTXgaNhyKG1vXF/ZN8NPgwHLxvMPkEd3qANvZf0xeXV/+llbnPh3IY7GDS/g1qZyKHsydGzRNrJ\nPEQO0/5n3v/9GEqZFC16OrSkZaM2pfsqNsJk48KiUkY2zmRzqNSDQn91zzanMO47asU0nNOUkRkL\nLasrZRZfRGbxRYyI/gTOtsox+wIReRK4qnFzQNaYLG6pE/yjpBXA/thbi5VLFMOUXplZgt073Enn\neHdemX6VhLRKEotmBIQOJF7rw1joFvccfAbIPanN8xqIdWf9iXEX5xDXqjo766Pjs1mHJPlahmGE\n8xsKX6ogMxYAqH1GE+ZEncPXSf0xdCa1Rb+g+39YdbYnVp3tSXvujXf6463v2mHDtFu6qqoz1U/q\n8XWff2jJTtigWc5F2Dj1rvtngYRf042tAimOPmwHZ2NxYAG1N0ld3lCvWVFqn007laf2PguLKtr7\njaWUSS2UJm2aU2iRrjg4yLdXb88tg40NB1t3yMOSjxyvx+frK5VKhe7cU4vdf6kv20sGVUnV5vz4\nS43SM/qCTvnVXt2tVJZ8nfi86fzdCQgZQC2kJeMuzoHPgBAcG72dyGHQhqF94hjWTI5Zexja2yr/\n8EY4v6HkNXDhexOvm9+TGQsBllHIEaTqrM+8jhcAAKd2yBOfZaFELVk26KqSzIJu/5FeA8Dc9hd0\n1o9JGmuaUJxRBY8w9Y2jwgeTl0icfm2mPtRi0SMzfh9MKSOoY5u2mRpcHrUbkw1vY9EWX6f2AIDc\nctWHWY/KriPKW7OeIeYMWYlRsrG1G6rw2x+1OLbfEyIxMH5KMR49Vv4MpdMh2ckvB1+ucsHUSXYQ\nNEnwxpxSnDlPXkZ4/iflWPd1FW5c8EZpmRjvfqCbR4NOSVV1XElopJRreb/5NZMdq9XB5WpXOZIO\nmhgIMtnggIF60oYcszYYAKC4KQcZDTfhwHNFO9v+AJSNBplhkS9QTB48XrEdI5zfQLRtH0YMhmeN\nHRNPat27QVXuAmtI0McryhlPUrWruKENti7UuSsbeh00gCbPJltHH8PbR0Zq/NxHieTVf2QIalkj\nj0V30ovOG1sFsyS/QIQOvQoYmWvhsnIsXFZOS7awSESETLHQo7jgNrz86Xeb1zdZOeeUxkLbDNXb\nemZtMDQ3CqpEpcgTpJOGGNlwpclGJULVDU1YTIOUXXcNthadDbCxuPXXQ3R6SX1VmNf2DGGs/j4V\nYQPNu4tma6AilzpMYcbuwfjllTMazbuhN2vkseiOOecdsLDQIf3e34waDM1zEehAxwtRUp6mrTqU\nmHUOAxnqkpiFkialsSoRdTMUFsNx45sEg61lyqVJT8TRy1Vx8NJfqczmTNzYm1Lm1NpkA2hiGKJs\n6OUXAcAQp1f1qIkiu15Xf4rrHeOicN1vTrQ+1WFhIXCw8jS2CiwsekUsku8hXdzDdZ5PlqvwT79N\nODRwMwCg6Ooj+diA75F7PA2Q0A9ZSkr5TWe9VGHWHgYmqBSWwJFHXqmARf90mt0F7WfEAgAkIjF+\n6/2zcRUyIYrSKuAZSd4ASMbsE6MM5mWg4uZu6n4B5kJqPb2Yfi4MW2kkN5H6gMPWxQp15dJeGL3f\naqtvlVhYAACBbt1xN199N21TxopjgwE2L1LKZTYlI7PptlZrDLdVPlwoEeUhsVEzr6Cma1SLy3Cl\n4YjWc/a0HgVHrptamRpxBS43HNJ6DRkt9T9RR74BJnufLbnccAg1YmbDdosLkuHhE4v23Wfh8snP\nIGzSrrltS8aeexeHB2+BuEnehU4iliAx7hTs/J3x3L+z8O9zPyo9x+XyMbjXZ/g/e+cd3lTZ/vFv\nVpt00b13C3RCC2V3sAuoyFBU3OIrKuIAFcXFcIC+gP5AffV9FRUVRVFA2W2hZY9SymhL6S7dk+42\n4/z+iEmTnpPkJDlZJZ/r6tWcZ945bXKe+3nuAUgjIw0PvQs3SnT/W6tj0CkMThz1/9QDYbMG3SGL\nReGT4Cv3Z+C78OEV7426HGumYADYvihdZx8RJjEHGZhGZrpY1nsVwbax8pNJNosDF44X4uynIf12\n/4NqvONcCNiOaBJWoUVch8refACAG88PLLDhwQsEADQIKygDL8jmzO3MgCcvCEO4HjjRJs0gPNo+\nFSL0oUfShSDbKBxp3a7Xe1u6fxZtMyNzNEeawXuIVHZUuNOo89HhoigNLUSD0eaTUS4pQKHY9NHy\nZBQ3nkKY+yT4OY9QqTAEu40zslT0YYOD6XaLabcP441EGG8kioSXUSLULtFonbgCXpxApTJ3juFD\nZOuqLKQI7oMti94ptgPbGTPtHoUYIqR3Ge7zSkdRkDGRL43gda7nIG5LmLEmyc/5GbYCFzg5B2Li\njDWor85BweVfGBlbUVlQ5PRLe3BX2lLKuqQxq5B26m15dCR/73FWhYEKe/YQdEpuK5VNcJwHQPpw\n7pV0oVXc/4XuZzMUDULlWON+NtYwnrpy31bNZiqXfilWW3/gqf4diZ6WHizYMxM/p/ygpgezPPXb\ndHx7f5rR5jMEdBLk6TM2HczllEMbZIt6xe8ECSFGk4gccWMIx4NSCWgQVoCAhPS9oop2SQtqu0qV\nytx5/vKxg21jNI7x5ayDeO7QbJX1Nvb0v9atDs+6k8Dtdy40pEIzkCB2BILYEUafVxVF9ZkIc5+k\nts1wr2kAgCP5G4whEm1m2D0CFrRMhvQP4bw4hPPiVO6AU5Hbm0m54PXg+KFBrL8DcgB3uN5jAEAI\nLwZDefE69eWAi5l2jyKv7xxuiQoZkQcAXDneSLDVLdLWOP5s9BLdyOz+XW85kucoJ2T09I2Hp6/2\n94oqj4PNED76bpMjW03d+bDKcXLzf0R4kDTJmw3PAacvbdFaFrpY5PZ6aY/UVjrR6T61eRhs2Xbw\n4gUBAIREL7x4wYYTigXwnek70b6QvRgvZC+GZ5SrXtOuyl0Irq1pErCEJWt2hD360WW19bP/e7f8\nNd9VgKPLDuktlwyZWYY6PIYNYWw+Q0B3IW6IUwCvCPXmUDKEPdS7IpZCm9jwSZJkdIqpj8eDbKMR\nZBtNyxSqrYaec6nfSPWnrXRyO1ihh76nBvrMyzGwWRybpVkBbe6SKsypUauVlIdQ90ny3AvdwlYQ\nhITWnEnhzypdcwwQznKm3aM6KwvkcegvpSQgf1/G22oOWU2HSJuxpDJtd/sn8u/RWVlQJMpmHEbY\nJus9TgBXuqmrq7Igw5YlYOw+G4pZfy/BrL+XQOAhDdTjGuON1L1PQuDhgGtbqRPatraVo6ruIghC\ngiC/RHT30IuSpQsWecJQ2HMR9aJKjHO4m1RHgMCRVqmJixPHHeMd78HVrizU9BUrKRUECPmXRaOQ\nXvQkO1c+upqp4xqDAHpayQvUFy4uxraEn0nl20b/jBey6R+DqmPl+Xny1z88fAw11wy7AGJz2Xgt\nez4jYx38199I/XIOHAOcsP/xvWi4Vs/IuACwdfLftBbShtyhZ4LN4/Zgxbl5Gtutyl2IrZP/pqUo\n0RmLLpvH7dF7PlMyyXEBMtt0P1LmspSd59sVFJAEh1m42KFZCS7vva7VnD8+dhyP/DBZbRtN9TeO\nWkMqUqFq196V5YVY7kTYgE9ZP4P3kE47/pr6eLD9EMKOxhAWtQI4lbeIkZMGVUnVZkS+rnRd316I\nnErlndoLZT+CzeJiRuTrCPdMQbhnisY+VGQWbkXKsOWws3ElyTMwi7Q+qDNryek9hgYxeU3ABhvT\n7ah3emfYPUz7pCGt62etzGrowlGxnBOD/ilihM0YOLCpN4puiW4ir496k2Gy4H7YsMifC29OECrZ\nnmiR6P5cj7QZh0gbsknbld4TqBWXUc6pSlHxMIL5l67sS/ocLA4bd2c8ixl/PN5fQcPhubunGemn\n3zWwhBaqMABAq6gOh1u/wTB+AoL4seiWtCOn46iSiVKbuFHJHrhBWAkPnjSToOLOQnbnYVpzPvDT\nLGyfreXiSP8NDK147KcpAKQJtAwRE//FzHsgcKYXXYiuffTh5w7oIxIjmLPSoM0O/vLjd0PYI9Z5\nEc+15SgpoJo4tO6STvOYAylOD4LPtoeY6H+gKp5SKvoipN3+QaluoHmSrO5w6zc43f6n/Ppkm+ZF\nkiwfjKqxqajKbVJb7zncvE/OLJFmog6Zwj8BAH7sMERxyLu5uioN6miQVKFBIlXuHFjOmMAlm6MN\n48Tr7deg74JcQohwOO9DeDlFIMb3LhAEges1B1DXRj/HUY+oHYfzPkS4RxL8nOPAYfPQ1FmKK7eY\n25RIFFB/vxUKs1EmzFPZTwIJjnTtAJfFw1TBg6T6mXaPamWeNBA2OJSnD3SZZqffKRcbHARyyRnh\nJRAjrYu86anI8W6pPxaVIjSGn6rXfRnIbUkjzvUcVFlfKy5HbdcOlUpZlM14lYoPHahMiZiCEEvw\nV8oXWvWZPul9pJ16W349cdQrBjNLsliFQUZhz0UU9lyk1fZS5xEAwETHebDnOCO74zCaRfQTpth7\nqk9R7hnlivo8/Xb3X8hejG2jpR/OpScW4aukXTqNY2PHJe0St9V0Ye/r51B9hb6MQeM88eDXSTrJ\nQMc+mipRm6qkbrrwxcwDeP7IHFptZffrp8eP49Zl9QsyGRwbNuLvD0VEqr/cBMQQisfGkbtp7/rz\n+Bx52/M/3MSxTeojegSO8cBD/03WWrnV5j6ZI1SnCqoW62JCqLKOqpxuGZ06XXhyl/rkPV/OUv3A\ntaKZKkkxqiTFRjdF6iBacVS4kzRvEDvCbByh69oKtFISqChqOIGihhMMSdSPHzccdixHUnl6107a\nO/EiQogjKhakkTZjkd+nOTR4p6QN9mwnpbLpdosZXVgDqiMMUUHl+K1pcU41H9V90VeZknGjLxvl\nItVKHR1Z/LlD9VIYzAlZpmfZbzaLi9vtmjNr64rFKwy6cLrdPE0oUt4Yg5Jj/X/sr5J2YeG3M7D7\nqaOMjO/kY4dHd0xhZCxN0F0075y6A8JOcn4Mpmiv0z7k2cPfT2ZeEAbQRmmQMfaxoRj7mP7xogdy\n5n8FFq0sDAa+mHEAzx+lpwwPhK4fhBX1dBHtlAtQQ6NoUjuQuU+64+m3pf5lc8O0i+JjCFgs4O2v\ng7H+X2WmFgXRNhNIZaXCa1qZ7cgoFuYijDdSqSyAO5yWwnCqZ69BzJJ0JUlAbWKsjbIgQ9VCXV8I\nELSVBRmFwmwM45lPZmY6BN8bjejliWDzOBpPG0orjyMkYAplxmdDYJFOz4OV6PlhCJ0SIHeIfiF7\nMXxGephaLK35+h56Jl4ADKosyMj9o1RzIwvBXMymsrZqZ3NvbjC9o28K2ut1i/9df+O25kZWaHFK\nRA4jGsw2fLK8S6JjKuv2bW9kTFHYVxzLyDjtt/WLxjXEjQsOxzD2vTeFup3M6JqLQR26OglP4JP9\nOYuE9BNpClgOpDJ9TgQIEKQyuuFZVXG060et+6gyMXPj+OoliyFg8ziYe2IZRrw6GRxb5b38uSeW\nIfm/91P2M5ayAFgVBq2QiOhFeNCVA6+eQG97H7aN/lnpx5L4ctZBtFR0aGz3YPojeDD9ETx27ik8\ndu4p+fWD6Y8wLtOhtZdwbjtz4d1MzcaRu00WDvPb+9LMRmmxAny/WPuET9sXWXYYYXMngM38id5A\nmok6rfvEJzlgx4VIrPs+hFS340IkdpyPBJcnXZRPv88Fu/OlIX73FcdqVBwW/MsDXx+ThvT89Uq0\nvHxfcSz2FsVi6nzlDOSPrPDC5j3h+O9x5TCgMqWAw2HJ55x+nwt2nI/En4UxJDmeWOWNb09FgE46\nJUNEyOmQkJVvV443rb7Husnmxt6cIJ3kcGS7kMpKDKDQ0IVqcU8nKZ6xCOYaXqnXlrsznsWJpb9T\nOjhf33oSzhHUmdRLK1VvHjCNxZskBdnGIJw/ClwWvbBr+uws7n7qKF7IXozSzFvwS/DC18lSR5+Q\nFH+4hQ+Bg5c9HL1rUJzRb1ZESAi8kL0Yty7WYc/SdGkhCxg+R/qlHTUvHDYOFbh1vhZlJ6rAYrHw\nwsXFaCpuhVu4s0UpDNosJH+Zpv1ugT4c//Qqxj05eHJubJm4FyvO3guewHgf4Z1PZ6HhpnV32pyo\nvW64EHpWdEPfnVQ66BIO1CfIFo+OycewkXbYVxwrP4VQfO3mxUNTnRBpv7cg7fcWpTp1PPGGN+aG\nXcXem7HYuLw/J4niHIosWuaJuWFX4RVgg4de9MTO/1MdRSft9xa8uNEf84ddg1jcv3O9rzgWbz5Y\ngu821tKSkypCzpVe/fwk8vrOYCx/llJZtM1EnOj+Q2NfIaF/NDugP+yorgzljWJEDkPC1L2SoSoS\nlDGIm/AcAODymS9JdS151BsBTVdU+9paMz3TYKbzU4zEUNaGuutNlAv40sxbKM2kDs36+RiKiBkE\ncGN/KW7sJ5vKfJ3ym1Yy6WLXzjTfLDiKxuI2nfo+du4p1GbX4OgLh0BIyMeYTLJx5G7Yudpi+THy\n8a0lsnm8NAqVof/+ZWfq8euzzDsgWmGGP145gwVbyLbZVFz+ffCY55krtwlmMsqqI5ozXus+B36U\n+hwV5ir7rwj7CKz9LgTvPVGKpjr9TERZbODcUfrPgrrKPjz0kpdahUEd1y90AgCem6HbCTJVWE5t\naJWQM30LWPa0++f1nUPUgJCho2yn4lIv/ZNDqpCj2vQP4UWTykx5OkHFiZ4/de4rhogUctYYSr0q\nnFyCte4z8dN7VdZNHve2UqZnH89RBlMYLNIkKc5+qtGVBXNm48jdJjETyd5ZjI0jd+usLADSiEhH\nnj+I4BmhmP2/uymjJjFJV3MvNo7cbXDlxJhsHLkbnyX/pbmhjmNblQXz5mYGOddtK/IAACAASURB\nVDO1Kg6vt9wwuJZCheSGwefwYQcrXfdCsz/LvuJYPPCCJ3yClMNiL4y8hsO/NGNfcazcJMnU2PDp\nyfHQS1546CUvJN+jfseYbeDkdrpClQnZXYtcAapyLzTqmTW6UnRTr/5MIyIM7+toDsw9sYxU5hLl\nBa69Dc6s2EfZ59L17UqZns9d3mYw+SzyhMGLJzXnqezNR173aRNLYz4oKg0cHhtP7JoG91AnNT20\nQ9wnwaeJ+yDqZS6zr0xByHwzAwefJjsQGoqP46VHxrYOPDzzdyrsXOhn6aYi87NrOPut4RcKqui5\n3Sf/+/OH2OClrHt0Gqcoswa7X7R+pgYjHY0qkk5a0Zmx3JmksjqJ4cIaAkAIhVN1llBz5L83HyrB\n9fOd4HDJi/HTh25jbthV/HAuEo+Ny2dETl2Y+YALDv7cjM/+VvYDaa4TIixWgMLLyqcjOz+j58tB\ntYsOqE/gZko8OH5ooLHop8q9UCUq0nv+FIFprRbuRPYlfY7QRSPlSgOLzZK/Vpe4rbWtHK1t5Sgq\nl6YNgAF1K4tUGGRYlQXViIUSfDOfHI7VOcAeAaPcETTWE84B9hjiZw++Iw9cGw7EQgm62/rQUHgb\ntXktuLq3nJYDMxOIuk3jxNvbIcTWyf2KimuwI8KSvBE1JwD2bnw4egkg7Bahq6UPtXktqLrchGt/\nlaO7tc8k8tJBUXkAAM/hzhj72FB4R7vA2U96XN7T1oeKiw0ozqrF9f0VqoYyC/Q9PZuW/AFabpeC\nxWIj+/LXDEklJS7mcVy+9j2jY+pCzm8liL8/VG2bz6cZ5pj6TkZV9mVDwAIL03nkhGHZImXzE0V/\nAUXb/o92Sv8/Th+6rbI9lR+ArF6XyEuqZFHFc+v98Nx6Pzw+IR/fn4mUlz8xsYAkx9ywqxpll+HO\n8ddadmNRJSqCHzdcqSzedqrOUYqu951hQiwrJqBkVy5KdtGPbmVsLFphMHemTP0IxzLeNKs5Wys7\n0VrZiat7y+XtAVD2mTL1IyAcaGkpweWc/xpEXlmSttDZ4Zj9v7vhEeupV+K2qRmvKF1nTNUu42Fz\nWTuay9pxYYf0SJbFYWPK0ZcAWwDxgGM80L2Deky/Va+iauO/lcpCPt2E0pdXaiUDk8jm//utCyaT\ngWkSx72Ok+c+1qrPpdz/GUQWN1fzcKTXpCxYYRZVi/cMoXY+aAD0Sv5GlVVa1cJZ23JNdVTtBran\nMyed16rGoiufHUXYUHPhet8ZksJABxsW3wDSWDEktgLDO1sPzPzMJFaF4Q7nWMabcqVBVb0hUXR6\nLjmo/1Eq0yT9+SypjGtnA1EX+YTBxsfHGCJZLNOSP0B17UVwuQJ0dNaitDxDXl5ZdRoBfhNx8uwG\n9Pa1w811GMKCZ6CltRiB/klIz3oLAODjNQq2tkPg4yWN7FFTp94mX9ZuYPuR0Y/A3S0SrbfL0Nxa\njNLyDLBYbExJXIvKqjMI9J8kn3Na8gcAgNq6HHh7xSvJQjW2OTKYfHZMiT3LCeO5syht4qskxTol\nANOWbqIDJ0WG8VkarHBoRlE0FUKiFzyWslksGxxIoNr8d7KAHJe/TWJNpqkvyXM2yl9nHViltp5J\nhj85BsOfGqu2zUDTJJmjs7GwKgwGJjhkGoKCJiPz+DtK5ckpa1FXl4sbBdTh1xRPCgICJsHG1gl+\nfhOQlfmuTnO6u0ciIvI+dHTU4HKO+t3WiMiF8PCIJclhCPQ5TTAGXAeyb4NLQhAasvqdwkI+3UR6\nrXiq4JAwGh6PLAYAVK5ZB1HrbXnbstfeQPAnG0h9ZOMQIhHKXu3/0vJ9+UXYBktjdZe+8ipAaF4I\nKs6vOEfAO6vBdZOaVFR9shl9VVXyuWXtBJER8F76L/m13+uvQtjYCPsRsaTx6JBfqBztYlryB/IF\neGHxfvl1U3MhmpqlDoGB/kny9jV1lxA1fCHtxbmq9u5ukfJ5ZUxNWi8vu1lyAD7eo1FTmw0A8nJv\nr3idZTEUKS/GaGzz7zHmmd3eHNF1xz9PrDnDLxMIWA6whYCWo7MVKb1EF+PJyZjkWPcukj/FNLuH\ntE5WdrbnACPymMt9uZOQKQvdDR3obab32aY6STCkEmGRCsOVruMYYTcZExzn4Uy7eT8Iy0rTUVaa\nLl94CwSuSBjzArIy3wNAb0EePvRuHMt4E8VF9NK0D5wTABob83HyxHpacxbk70ZB/m4kJb+HE1lr\nac05WGk8UwL3CcrmHorKAtC/aFZlftR9o1BlG567G6nPwDay65At/8atDzdC2NCgdj518we8+xYq\n130AfmgoGn7ciZ7SUq3GsvH1QdXH/9bYjor0rLfku/WKi3VZmSJsNhdTEk37vxc5dJ5cYTBnxi8Z\nrrGNoZNO3qkQIJAm/MXo8ybz5v0zvwRpwl/1Hs/3mWUQhIapbSNub0fZB+/pPZcpaBbX6mT2Y0rU\nRYIcmPvByuBAnXMzXQxljgRYqMJQ01eMENsRcOK4IdV5iV7J2IzNqNHP4vz5z7TqQ9DYRdYEh2OD\n6JjFcHYO1nusO4krb+0l+UVoi7i9XWVdX00tZbniqYUcFgv+b72h1/xcV1cAgOcTj6Li3f4Fecvf\nzOxMaUKmKEwYswJnLmxWKlNkSuJakkmQsalvvGaSebUhdJKXxjY7l2QZQZI7j3Thr5BAf0WMyg+B\niiB2BIZx4pXKWGBjBu8h2mMMxPP+h+A4egytthxHR4Rt2AxhUyMqPvlQp/lMRa24zOIUBgAYYZtE\nmVzOme1BKkvrYi7Jqx3LEV2E6ufWYObU4XcwKvFFVJao/96kMlfShOMQf8RPWk5Zty/pc3lUpLaS\nJkiE5O+WrKfJ2cGNiUUqDAOTtqU6L6Hd19TKRUdHLeztvNDbozpjLp+v7BgjFuuf5dDZJRRXcr8D\nALU+C1bIaOs4zQSqdvuZcqAWNignl+J5kh9AAGDj483IfIB04V9WcRx+PmORnSuNViQ7dWi9XQa+\nrTP4fGe5ohASNBV2Ane0tSuHqcy5+i0mjlmBxuYbKCxmLvJPetZbmJq0HpVVp5T8JjQxccwKtLVX\n4VqB/ju92nL/F4ka21RcJCeXsqKadqKVstyRpfy9PI47C2dExlG0AaBcUoBySQEAstmULkpD2IbN\nOsnBc3NH2IbNKH5jhU79TUGTWHWmXHPhSNcOklmSNycYV0AvD446fwdtibOdgtM91HH/BzticR8u\nZOp2iq6J9tvUCX4B5RwMTqH0o68F+6eAy7FFUfkRcDm28PMei/Iqw+ROskiFwZKTtuVe/lZuEmRj\n46hUlzDmBVy8sA0TJmqvuWrCxSUMTY0FiIwkO0pZMW84Dg4Qd3Sg88pVBH34PspX63/kWLP1c/i9\n8RqqNnwCAHAYOwYNP5NNK1zn6pbPgQrZAry47ChluaYyGc0txTh9gf5iR5vxM05I/X5ulhyibDuw\nH12lwhDwnWw0tjn9dYERJBlcnBVRm35O4M6Gg4LS4MAaYiyRSJwU/YVErvJncxgnHoXiHFr9dVUW\nBo5hSUoDFVE245HXd9bUYqjFnj0EnZL+DUZHtguj41NlQnZgm+5/+05GF5OkYP9kHD8rNTcXiXsR\nGjDFqjAoYupTAroo+glQve7ra1cqv3hhG6ktAK38CFTNWXRTuhObn/8b8vN/U9lH13mtSHf/gzZ8\nAElnJyrX635kX/rySjjPmA7nGdPQVXAD9d9+BwDy3wHvvQ02n4/qz7ZCWEsvcREVVRv/jYB330Jv\neYXSyUXZytcRuG4NxJ0dUt8JKvMoKybnpROalbkTn183giR3BmdEB0k7+9N5DzDiQ6At3UQHCBBK\nm2dB7AhaCkPYR8x9ni1JaWiVNJBMefy5Q81KYUjv2klKxjaJP1fJCXkC/25SP32clNO7dpptArs7\nibRFO3BX2lIce2wnuqrbaPc7l7MN0ye9j+KKdPh5jUZxRTpCAiYDAEorjzMqo0UqDFasmCvlbyjv\nOA80IVK8Vmde1Ho0Da1H0yjrKtfSj4Kgbn4QBCrXkf0DCLEYFe+uoexjypwSVqyYmkaiGu4sX/k1\nC2zwYAMhjJ/I8bIoC/HcFO07spg9oWdxuSBEpkm8qQ3new6Z/cLYGGF56eLPHYpbopuaG1phhOm7\npP+b039V/T9KdQLR3dsid3QurTxmGOH+waowWLFixYqFsSp3ocY2+mbItkImR5RJOmWYzFuos9Ox\nPjQS1Vr34djZMy5H6PsfW8wpAxUz7R61mDCi4/izSWWZ3fp/zruJDlLY2Sib8WgUV6OH6NR7/MGE\nLs7OdNA1QpKPZzyihyo/D6yJ26woEffxArgmBKmsL/3+DEq/1+2odWBUoGMzPgMh1i4aiDxDsgK6\nOg8n7l4KGxc7UvnVd/9Cw0lmkr1pEwnJkE7QXHtbjPpsERxC3Ul1LZcrkbPid53GpZMBO/CBBIQv\nTSKVA8D1Dw6iLt0w9vDDX5kGv3tGqKxvvVqFG1vS0Vmmf1IiQ91fYxI7L9jUItzRHBXuZMTp2BT4\nLXvZ1CIoMeSeqXCeNx19lTVo/mEPeksqNXfSg4u9R5FgO4NUzpTSwAILBPSLani25wDG8+colcXb\nTkFO7zEMYZO/t3qJLr3mA4AT3X9Snr4kCxYwcl/YYDMSUWwwwLTCEeSXaNBQqorcMQrDUP5oAMDN\nHvOPq66KYS9Mhv+CeM0NAYQ8PgEhj08ACCBjmvGj/DCBpkV87DqpDXfWvV9C1N5jDJEMBsfOBil/\nL1PbxiUuQH5PmFRa/OfHYdjyKWrbRL81G9FvzcbVd/eh4WSx3nM6x/ph1GeLaLcd9+1j8uvcN/eg\n6VypVvOZ8v4yzZy1ozW2sZ4uDH482H5a9+G50Y++YmiCtksTVgprG2ET6AsWn5wkk2maxdRhrAH9\nlIZYm0T4cENwrHsXhIR+UQ2psjV7cPxVtG3Way5FsnvTMNp2Oql8pt2jyOz+Hb2E9okCPTj+iLeV\nPlss5RTHlHgkBGDClrmkcnWnD5eufUtK1mY9YdCTUH4cAMtUGPTKA8CS9j/72HfoutXCnFAGhO/p\niIm/PE27ffLe53D7ejWylxvf+ZAJdPn7Ts14Bc3ZFbj8mm4LQ//5cbj152Wt545dJ/0y03VBzbHl\nIuUgdRxqumirLJji/hoKOqZIVgyPOZwyxHGSjTaXoSh/Uvu8MvpypGsHpggWgcciKyiyXfY+ogfX\n+86gQawcBnMI2w2+3HAEcIcZVMYyYR6CeVEa253tYS6sdJO4Bqd69mESn7xgTRHcJ39dLLyCYmGu\nUj2fZQdvbgiG8UYxJs+dxtysZQALOLrwe3TXd8jLBd6OmHtiGc6/eQC1J8nPPkd7H+sJg5V+jqf+\nHyYfflGvMcb/8IRZ75rKYLFZWikLMoZE+yJiBXl3hC5nHv4WQ2L94DEpDENifClNoAyBPsqg6+hA\njP3fozj/tPY7N6FLJiH8Wd0XHEOfT8HNLzK17qevsqAtprq/hoCusvBx/B8GlsQKANRLKuHJDlAq\nC2QPQ4Wk0EQSWaHLse5dah2gbVh8+c64KSgUZpMUhqmCBw0+b6fkNkSEEFwWT2WbMN4IhPFUm5Ba\n0RGWCqfm2nY0XKzE2I/mUNbHRz9BKrOeMNzBSITKCVmuv38AdRk31PahWihNzXjF7JWGKWlkG9va\no/nI++gQRWvAIykcsWulpkm+d8fqPG93zW1019xG7ZE8Up2+mZ5VQTXurT9yULjtuMo+A/05HELd\nwXPiQ9imnUkW1045hn/BpqOo3k+d2ZjnxEfSnueUygLuG6WVwsC24WLyIWploejLLFT8pvrkz3Go\nJxK+XAwWm6XV/68u93dgH13vL5Noc6qwc0kWCIn+meGtaCZXfBIz2MqnDMM5o42iMAw83QDoZ4w2\nNTJTpIGvFU8bZOWixhZw3aV5B5p//gvtR09R9lWE7qnFka4d8OWGIcZmIn3hTcjARbyhIhhldEvz\n8Zh7RKk7iXOr9uPu9Gcp69JOvQ07vhsmjHoJlTVnUVhquGSSVoXBQrh9rRo5K38nKQ+qyJi6xWAL\nXUPhEh9AKpP0ilQqCwDQcKLIIt8rh0/ewan4LRtFX6pPR39y4Vek95q05zm9FEFNfYVtPcj76BCi\n3pylVJ6873lkzf2C1hyqlAU6crffrMex6Z/SmkcG1f3NmLYFmvwRqf6X9L2/A1FUAIQ9YjQU3kbr\nrU70dgghcLaBX5wbHD0FOo1tzepsXMok+QhmRyqVjeJOwSWRYcIbDuPEI4gdQSoXM5jl19DIFvRB\n2zeoXNwPLA/avgGui+9RUhhkVC5bC0mX9vb1AFAtKka9uIKR3ft6caXe/guKtEjq4ML2Ullv6PwR\nR7p2YIbdw2CBrdc4BAgc7fqRIanuTMZ/Qs69IcPVOQxuzkORfvpdcLl8uLkMRVOLYZRJs1YYUp2X\nyF8rJmtTLL9TyH5Re/v8sh/PIfiRcQaQxjDEb7qPVHZ89lZafUu+PY3QpyxjpwgAUg68oHRN59RI\nBtWidsQH9+LKW3u1luP0YnpJEGuP5mPY8ingOvTb/Sq+VofAz5lUVrUvFzc+zaAnpA5Q3V+6wUuY\nvL+a4PE58B3hCt8RrnqPNZgdnal21OliyJ33m+LLCGJHKCVQc2N5w4nlgjaCns+YPu9NRoZwl95j\nmDPt6WfgOG0CZZ2uyoIMESGUO+R6cQIx0pZebgsCEuT2nkC9uEKv+VVxoeeIyl3+PsI4J55Hu34C\nAHDAJSWUU0e5KA83+izPX1QbElPfB5uj2nRLEwOjJdVklWDuiWUgJATSHtiB7tp2eE0IwtgNd4HF\nZql0fI4Zdj+yzv9zIifqQfTQ+5B1/iOd5VKHWSsMVvSj5NvTFqMwcB35pLJjMz+j3b/sx3MWozC4\nTwojldFVFmQUbDqKiJX94QHdJ4TqJEtPLf2MkicXfIXJR7T3pZmw40lSmSGVBXO6v8ZiMCsL5k6a\n8BfSon8cd5bRTIQsxRRJG9h8WwR8sYbxJHOaqBNXmFU0H3ORRQyR0WRhep70LuY/H8lzNjI+5oW3\nDiJobjRGvjYZM357TKlOXZSkrPMbMH3S+7hVex6+nqOQcWYN47LJMGuF4XDrN4izn4bC7gsq6+ly\nJ55KWBLJe58jlREi7eI2d1e3QuBL3s02N0asV45CcW2t9pEuqvdfU1rQ6kImzdMbGRIRM2YPRV+d\nYGQcVZjL/TUWWyYyf/JhRTuyhHuQzJunVBbKjkaJ5LrB5jwjOoAO4rbBxjcVPG93+H70qpJZktvT\n98NhkuZwwgMJ3bQJAFCyUn2GevcFC+A0aRKprapyK3cuhlAWZJTvu47yfdp/Z8icnAuK9zEtkhJm\nrTAAwOXOdFOLYMVCuLb+AMZ8udjUYmhNfaZpoqqIe0UGnyPooTGksopfLxp8XkVMdX+NgfVkwTzo\nBdksJowzgnGFoY1oxgVRGiQ6+iy0ZmbAOWUqozIxjdfq5yBqUjbnshsVrfU4AW+8QXuR3/jHH2j8\n4w+5gqGp3IoVACi/mYbym0dNLYbRMHuFwYoVurTfqDO1CFYGEPr0JFOLMGgZrMqCoU1sxnz7OMp/\nPIf6jAJG56M7jilNiJoO/s24wtByLI3R8cSNLbAJVk5KxxaQTVY1wfPwYEokK1YAAK4ew+Wvc05t\nRfvtW2paa8eod2bg0nrtlY/xcS/g7OVt/dfxy3E2RzvrAbpYFQYLxj7EDUEPJMB7puYEL5ZGZzlz\nGSzNHUuL8KQNrAE2yHSjfDHJYLq/lRcb8PMS9ZG0rKhm+KszYR/khqi35sgVBiv60XyY2TCONeu2\nIWj7BlLIVVVhVLUhdNMm+amD4mt9mBUiHeNQqfUUYrATFn2v/DWTygIA+M8cplJhmPjpvXAf7U/p\ny0AQErXXTGKRCoM2vguDjag3UgelgjCQ9kLracFgpPlCmalFMDkbR+6Gk48dxj0xDKMeJDtoDyTn\n12KkbcyFRGzNr6AvNQeuwmd2jNHnnZy+Ai2XKpD72u9Gn3sgzYcPwDV1DiNjlbz1ms591eVLoKob\nWGaKLNFW7mz4AheTzFu4Ixvuo/0p687lfiF3evb3HmvQrM8WqTDogqUrGYNpl5QOvY0dmhtZsTg6\nK+iFmhzstNV04ehHl3H0o8umFuWOoi2vBsenbTbqnDyKCHCmpOVYGnhu7nBMGKvXOMVvrGBIIitM\n4iYIxBjv+/U68ZgVshIXan9HU3c5g5JZPu23b8HJOdDo8zoP91Rbb3V6tiJHUyjL5uxy1BzKQ0PW\nTZLJh6kUDTZXv2QvbBsOQ5JYMSc4fOtXjpU7i9H/edjUIpCo//0XsAUC2EfH6tT/1ufaJVK0YjwS\nvMn5jLSBxzYvBdecqLiZhpgxTxls/Bm7H8fRhd+TyqOeo85BYmysT28zR9WCn8nMs4aA7zNEr/4O\noXeOw5q5/y2ZxGUkOZu3obmT7q+xcBzujYhVqbALcEVHUT2q/sxB7ZE82v3ZPA5iP5wPpygfCNt6\n0HSqCDe3aZcd2XtWNIIfnwiODRd1Gfko+vy4lu9CexL++yjsAl1R9u1pVPxKHe57IHxv/b4LDUXt\nju0AgLAN9E9ceirLUfU5/fw45oa4o0Me8ainpERerhgFKXTTJlR88AFEzc0qy80ZxSSCujAtaBlD\nkgw+mhu0y+ejDfuSPsfcE8sw94T0/kv6xEobp+pyMRgLq8JgYRASAsemm//uzpAoH736O4+kttez\nYtnYh7iZWgQresBisZCSpryJ4TjMCxGrZiFi1SwAUGvy4zk1AlFvKdvPc/g8+M2Ph9/8eJX9J6ev\nUKqTXcvwXzAK/gtGUfb1mxeHocvJkYE0mSYpzpm4d5lSZvPQZ5IQ+kySyjEGygcALqMCKcuNbSI1\nEJlpkceCRXAaO56yTUtGGpqPMOvcbGioHJrL33uPdlt15epgsziI87wb7oJgNPfcwuX6vyCS9NHu\n78z3RaTrFDjauKO55xauNRxGj5ieiS6bZR4n8858X8R73gMem4/K9qvIb9I9UecwlyT4O8ZAQohR\n2Z6L4tZzDEqqO8lzNpKyNevLvqTPMf3XR2Hn6yRXFoQdvTg4+3+MzqMrVoXBjHEdE0QqM4WywOKw\nQYi187wPezpRvznZxs3wacUwtN+sh+NQ9faXViwDFpeNlMMvAwDq0guQ/2H/AjLokXEIeXISrq7+\nU2X/0V8shuNwb/n1hSXfo7OsCQDgvyAe4cum4ORc9btofE9HjN/5L0h6Rbjw9A/orm4F18EWsR/O\nR9UfOZR9qvZcRtUeqa8Ih89D0v7l9N7wP8gW+dfX/oWGrJsAgKQDL4Jjy8Xk9BU4cfdWiLuFSn1O\nLfhS/nrSH9KklK1XbuH6mr+0mpsJ4ia/BHsnH9SVX0BRLnUo3qHxi+DeNwJd+4tRlLsbnW21RpZy\ncCCLmCTDXRCM6UHS/zdNPgUpAf+CgOtE6j85cCkAIK8pHRVtZJ+ngXNqKqeSg6rtGBWmTereB9U4\nQU7xCHKK19hXsf+h0k1IDVlBOi0Z6pKIoS6JJo1IlXVgFeInLYfjEH8kz9mI+uocFFz+hbHx0x4w\nj+zeVFi0wqBL9mZLcn4OfWKiqUUAANj5O6OjpFGrPjxngYGkUY3v3brZ45qawEWjUbEr29RiGIS8\nDYcw7hvlNPcsFgsEYbyIP4P5/hqThK8fBQB0V7UqKQsAUP7jOZT/qHrnj8VmyZWFhqxCXF/7t1L9\nrT9ycEvFgl+R8Tv/hdvXqpHzUv8DWtTRi5wX6T2wxT1CzY0oGHgKcGLO/yFp/3KpAvL3clK98DY5\nkRshklCWG5LEez+WzQ7v4HGUCkN/G8DRNQhcG3sjSTe4kC12K9uvIK8xDQQIJHgvhLsgWF6vaqHr\nwHOTKwtiiRCnqnegS9gCd0EwErwXAgCi3KZRKgxFrWeUrsOdJ1CWq0Oxrax/dUceukT0M4nPCOr3\ntRRLhEiv+BwSQozhrskIGSJN4KnuHigyPWi5XFkoaM7E7d4aBDiOhK9DJK41HqEtky5om8nZ0zce\nnr7xWs/D9OmEMbBYhUEXZcHScAjXz44/jKGkWb5zYlC47TgjY6mi+WI5XBPIJyraELFiOkPSGJfw\nZ5MH7YK2s7SJVDb56EtGPSkbzPfXmNi4SheS3TX0FxEyUo72mzENVBa0RVFZMAaEiPp09cRdWylN\njMyF6AnSZ+TJva9rbEunjRXNZFR8gT5xv1J4sVaqoMmUCQ6LBzFBVloT/Z8AADR1V+BC7W/y8sbu\nMhwq3STvT7XgLmo5rXQtVxgGlKtDsa2sf1VHHu0oSc62vuCweQCAo2X/p/QebzRn4UZzlvw9uAkC\n0dRdoXY8LtsGVxoOorqj3y+qpacKVxosyyxusKFfKBsToagslPTk4nDrN7R/LImeuja9+gct1i9s\nngz/BdppzykHXtB6jsuv/0Eqi9+sX7QHc4XKCXewvlcA6ChqULo2tLnZnXZ/jcWZ+74CALgmBCFx\nn26Okfra6+e+avw8Buef2K6xTdDicUaQRDtcPIdrbmSFMZq6K5SUBSpmBJMjHqaG9CudisqCIuae\nFG6870MAgNPVP1IqRIBUcQCAMd73axzvbPVOJWXBinlgsScMAHCkdTsIGC6rnamp3n8N4UuTdOrr\nmTJU53mLvjpBmpfnxIewrYdWfw6fp/PcirjE0Y+oY2l5KoRtPeA59Yevc4kLgONwL7TfGHwJ684/\n8yPp7zM14xWDRi+iur/GZOXlRdgUt8vsxtIHiUiMzrIm2Ae7gWtvi8npK9Db2IEzD3xtNBlactTv\nTBoCOicqnlOHo/xn/Z0xFc2DZCju/ife+zHpNCAu5UU4OPvLyweOoXitTRtVMp36600QEjGpzcm9\nr5PaWuLJxSz3pbjcnoba3mJSXaggDiXd1LlTVC32ASC3fj9Get5FWSczvTlfQ+8zHuU2DXlN6bTa\nGpu2XtXPr9LbFzDcNZnWOK291UyJpDWWaCpkLCxaYRjMygIAVPx6kbRwQLqkQAAAIABJREFUj1g5\nAwWbqNOHy9B38Uw1b9Ke53D9/QOoy1AdVsw51g+jPluk87wZU7fotLBM/P0Znec0FSfmfUl6r2O+\nXAxRRy+y5n5BawzXMUGI27gAgPmHDu2uboXA11mpbGrGKyj97gxKfzhLawzfu2IQsXIGrfdKdX+n\nZrxitPtLtcCPvCsI3a29KDtFdihVpxSYg7Ig48ISaYzwxD3Pg+vIh627g9wsJ3Pmp1oHRxgs2AXr\nH/0r8d6PIeztwLlD6/QaZ6BSQLVo16SEyJhw9/vovF2DnONbNLZXN46l0dhHVkw5LN2XSzWdBRgJ\naoVBxlgfes9OP8dos1UYVDlaWxkcWLTCcCfie1cMvKdH4PjsraS64IfHInSJst+CsL1Hp0yjTWdL\n4TY+RKks+u05iFgxHacf/lbJec8jeShi19yt1LYu4wa8pjJzJD414xVI+kQ4Pkv5PQc/Mg6hTzHv\nGM73coJzrC/sQ9zhHOtHqh+5YT46SxvReq0anWVN6K5q1Wmekwu/QuLupUplXAdb+UL31p+XUXM4\nD6LOXtj5OWNItC+8U6PA93TUaT5TcuaR7ZSKbMgTExDyhNRmtuyn82g6Wwrh7W7YejrCZ2YkvGdG\n6TynLvc36OGxtEymuLYcPP57KlgsFv5+4wxqr0ljsy/5aw6cAxwAKC/0x/8rCpOWxSiNsSluF8Im\n+yL5pZEApErDwH6qyjbF7cJju2bCzpWPr2f9DYmCnf0jP8+AV5SL0jxMc3KeVOka/eXDcBzmBQBI\nOfIycl76FbevVTE+n7nT19zJyDg8W/NyOOZwbJSUBRnDRj2IwkvKviQVBeo3snRhlvtSHGr8CpOc\n74cj1xWHGr9CqCAObBYHRV3ZmOW+FGJCBA6Li3ZRM061qt7lVxwTAHolXbBl2+FQ41ekNqIBZjUJ\nTtJQwAKOE1x5vgCAi22msafnsJg5wbdiRVusCoOZQ7Xrzrbl0jpFkO2K6nLikLt6D2U/jp0Nkv58\nVm3fsp/Oo+SbUzopDBlTtyB573PgDlBy2Daa3zPVvdKEbNdaG9zGBsNtbDACH1Aviyb6WrrUyuw/\nPw7+8+O0ks2cyZi6BVPTX4GqvELBD49F8MPM+N0Ahr2/L51bSLkQ/+Ye6SJCttCXcfa/eZi0LAa7\nl2UpnTAUH69G8fFqlScMm+J2kcaSjS9rT+e1och+7icAQPCj4xH8xETEf/aAyfMKMI1TlA/a8mrU\ntrm1+5Le88hMehLv/RgSiQin/1qt95hMQGUm5Rkwiqww3GBeYZDhyHVFt6QdADDMfhwONX6FWe5L\ncbJlFzrELQCkikAAPwqVPZpt3xWVhGluTyC96TvKOhky5UCdSZK+mLufAh0Gw3uwohqLdHq+08i6\nh54JhSJMmKjoMoa4V4SSb07pNW/WvV+i6VypVn1kskr6RHrNbQoypm4xaphRU5IxbQsKNqUZd04D\n3d/kl0cwPiZdTm67arK5qSjbQc+sbOQnlud8PjDRHBWVv17U2IbF0fy4Pbn3dTTVXAObzUXivR/D\nM2CU5nFZhn2Mn9z7OuWPscnrOAFfW2XfPJmyAABVvYUYZq/9hgOPZau5kRUrVizzhOFw6zdIdV6C\nVOclONfxF1pF9aYWyaCIOnuRMXULAhbGY+iyySrbEWIJMudsg0QoHlABlbu6mpAtxCcffhFsnuos\nkje/yETl7/rvssnIfXMPACD6nTnwmqL6pGKgUnNpxe9I2PYgY3IYi2PTpGFGvWdGIeqNVI3tCYJA\n5qyt5L+1BVC9/yqq90sXvHRPhHobO3BuyQ6I2uk53g+E6furuIvf09aHz5P36CSXrtTlt1CWl52p\nlZ9IFBw0voOwKk7O+wKJe56Hy6hABD4wBhW/XjC1SLThew+hLE8+SI54ow662evzz/8AAPAOHo9h\nox5EfaX671X7Ib5ayWFJZLcdRJAgBnkdJ9HQVyk3J6LCneeHpj7TmcO58gPQ3FNJWTfCQ7PSOdZn\nEW3HZytWTIFZKwy+NuGU5X2SHmS27USK00MY53APAKBVVIdaYRmEhPoFRXVfEeNyGovK3Tmo3K05\nudFAMqbpf9pwPPX/tJ+XgVOO6+sP4Pp6+raibXk1Ws1bvf8aqvdf00U0g1B7JA+1R5gPJ8eUUzTT\nztXGdtZm+v6qMhmiQtQrhr2b9v5E2hA8wdtgZkgy5+acl37B7Wv9UUzcJoQi9v15avuK2nvQ19IF\nGxc7hD6ThNBnknBq/hfyyGvuieGIWTsXgP6hV9XBEehm/z05fQUKP01D9V9XAABJ+5eDbSN9fGbN\nUf/d2HiyCO6J0meZ+6RwNJ7qfwbZBbqiq6KZsl9t2VmEj1xAKvfwj0fDLe2fA7oyMmkZck+oz8Bt\nKBr6KjDJ+X4l34SGfxySS7py5D4OAGDLtsfldsOZRQFAAD9KpUnSWJ9FKk1yfB0iVY7Z2F0Gd0Ew\nXPnGjeSmCUeeO+08DDJmBr+MI2XGy7FjCmSJ3XSJpjRi3L/g7Bauc39TY9YKQ6xdCu22zlwvOHO9\nNLazZIXBihUr5sHKy4tQfaUJviPc0FHfHwBg6FQ/uIVLd6QTHhuOxuLbcp+FHQ8cwZN7ZiN2QSh8\nR7hh8yhlB83nMu4FCAJfTtsHAAgc6wn3f8aa9HwMqnIbKSMsUckGALXXm/HTw8ybf8V/pvoET91i\n//R9/1FKdDbpz+cZlYuK4a/OhM/sGMq6gUnXVMl+fNpmTE5fgWEvT8ewl5WTQ5b9cAaSXvVmkNfe\n2yefK2bdXMrxAamvQF3FRRTn/gEbviMSZrxJ/Z5GP4T25jJIxCKMnfUOutrrYOeo+dmnCzK/igl3\nrcPVU19jiFsIQmLuMapJkiPXVen6eoc0nn9h13nYcuzlpw4ZzT8YXBYBx1E+H5Wvg5Otl9rQolSL\n6Yu1u9UmZlPEzzEGVe30NrgCneIoM0PTJcJtMsra6CW8PFX1Ayb5PQY2i4ORHnOQqybBmoONOzr6\nGnWWy5Kpr74sVxgsEZY52k6zWCwCMEw2Z3NP3jYzYQ2OXFxDKh8Zdj+ulOwGQegXtnBi9PM4fV17\nnwgqpo16C+mXPtB7HFXv+U4jNWo1Dud9aLDxY/3uwdWqv2jNlxq1GkfyN+j9/8YE0yNeQ1rBJ6YW\nw+yZvDIOxzcpLxCWZc7D5ynMmkuFPZsCtwmhsPNzgbCtG2Xfn0HVXu0WJrYejoh9/17Yh7ijp64N\n9ekFKP2OfmZaYyBb5CsqEglfPQr7EDeUfncaFT+f13rMERsWYEiMH/pau1B/rAClA/y9wuPug6d/\nPETCbmSnfwKxqJc0hr2TD0YkPY/erhZcOmYcB/OgyFT4D52C9uYKXDnJzPNjsCBb7IsJoTyCEQEC\nveJO8DkOSm3VKQN0Q5JqcixOCfgXBFwn+XWPuAMcFgc8toBWfzaLg5nBL8uvxYQQQkmv/L2o6m/L\nsceUQPUBUQCpgtTYXUZZJ7sH5uw8rc8JA4vFRtLsjyj7zz2xDFc2ZaJsD1khnHtiGYSdfTg46786\nSCyFIAi9M6aa9QmDuS/ujUluseZwcXRwEHgyMg4ARpQFK8ZDUVmwJJhUFthcNjzjvTF962z8OF75\n+8Ul3BUsLhvNBZa5+zVsZoCSwsATcFF4lNqmWh+K/5OJ4v9k6jVGb0M7Li79kSGJjMfFpTsAALuL\n4rDwZ+37X3mDnNFekaLLv6Posvps1p1tNTiz/x3tJ1fBht3D8MbCQrVtyvMPozz/MGNzDkaOlv0f\nkgOehh13CFhgKSkLIkkv0sq3qe1/qHSTRqWhR9SuUY7Myv8iNfgVuTP8QKVFExJCjOuNaYh2l56m\ncVg8cDiaTfl6xZ04V/MrxvmoCR/4T7s7FU0bcFTKAgDc/PEShj6iOQCCwSEIwux+IHXTveN+grzG\nEzMT1hBBXuOJIK/x8nIHgQcxM2ENwbdxUmo/M2ENYcd3IyZGP0dMH/22vHxGwnvE1Pg3iJFh9xMz\nE9ZoHF/VT8rIV4kRofcRIT5JxIhQ5bG8XCKVrmXyRAXdTcSEzCdmJqwhuBy+vFxRdlk/mRxUMs1M\nWEPED11MjI96hpgQ9azSexs19GHSexsMP6lRq0llU4a9RAAgRvrPJ0YHPigvnxT2DMFisUn9k8Kf\nJVgsNsECS+P4qVGrCTaLQ9hw7CjrFMf3cx6pJAud9zLUM4WYGfUm4eUUQZLBSeAjfx0fcB8R4DJK\nrZyK137OIwkXuwCV94zOzyNnl5j8722In8mvxhEvnVtIPPrLDMI1xNHk8ljyz+T0FcTk9BWUdbuL\n4kwuny4/liq39cf6Yy4/yXM2EslzNjLef+6JZSr7uMR4q62n88PE2twaVtWMKK87K/8tew0AHd0N\nKvvEBM/D6etfIi37fXkZCyxk5GxAbvFvSqY+qsZXhS3PAVdKfsdQv2m4UqJ8wlHXkk/Zh2/jjGul\nf+LIxTVIjF2udnxFORRfe7lEoruvFTk3f8bZvK/haOet9N4u3fyJ9N4GI7F+9+BY4WcAgNxbf8Ld\nIVRe52DrTrlbcaMuHQQhAQGC1hwSQow+cZfGdjG+dynJMjFUs7lgUX0WWGChof2mvCy/9ggAoK27\nP659TuXviPKZJb++1aLeoTPG9y60dEl3zi+U/UhLFk3YedghaHooKfTlvN2LMPHdFDx47DEI3O3k\n5Y+cXYKEV8bjkbNLlMpNzfF/X8Zn43Zjx4NH0VyqeTfSiu58snc4dhfFYfP+CADSUwcZ9y3r9ykI\nihBgd1GcvF72endRHF77XDk5piJU7Vis/nJXL5687KcrI7C7KA7vfR8GAHhne5jSnADw89URSr8B\n4P1fhiq1SV3sDt+Q/jCjsronVvuRxrNixYp2sDWd1KgwGop8ZjzzwuiAWZskWdHMwIU8ABy5uAYJ\nwx+Hq2MIrpbsRk2z8WK255Xvk7+24eqWtXRE6P1gsdiYmbCGVHfk4hrMTHgPAMvo783YeDoOQ7hH\nkvy6uOGExj4NHcUGk0dRlvp29SYMAORKi6Ly0txJHXVDQkjDl04e9iKOF2qOyKWtLJroauhCeVoJ\nSWFw8HPEnoW7cHodsPjkk/g5cTseObtEbs50cctZpWsrdw6v3XsDALB+p3onxoXPeWFhuLKPh+xa\n0wJ8YLvfb8YplS0Mv4yfrozA4tgrSv3WP0n+HlgcewW7i+KU2r794E0lGQ7/3Cgfd9WXIfK5giMF\npPdgxYoV7UhMfV9lnUQoxtysZbjy7+Mo23tdXu45LhDu8X4488o+lX2NhVVhGKRcvPE9AKlDsakX\n1QQhAYulOofDQGqar6K7twXF1ccp649cXAvAPN6bISmoPYqq1iuaGxqJIhoKiyYivKfjYvlOUnla\nwSfgcviw5dKzt2VCFm1hc/uViUfOMh+QwYpl0lDVRyrj2/V/31UUdpPq9cHeSTr2Y6Ok332PxF3F\n5+mR8A6yVVImFg3PhVhM76RRkWO7pWFex87ozz/RUi+Uz9vZZnm5X6xYMSVcLh8TZ65V2+bvqf/B\n3BPLMOLVyRjx6mSlupa8OjRcZN4fTVssUmGQRU/Sxik61XkJuiUdyGr71VBimQ1BXuPVmhzxuHYQ\nijSboTDFzap0JMYsx9HsdUiMUW+mBADXSv/EzIQ1coUhzDcFxdVSJ0tN783SifKZBS7bFleq9qKq\n9QpSo1ajpasCfN4QCHhDdIqixOc5wUUgTRrlaOuJ9l5posOO3kZMGfYSWCw2RJL+RY+znbStt1MU\nWrsq0S28jcN5HyI1ajVq2/IxROCLrJu6xWV3sw9BQtBDcLUPRkN7f4hjgpAgKWwpekUd8jIO2waO\nfKmTvodDGDp6G0myeDtFGjSylCqsJwpWUua5InNPM1LmueL/Xq1A/sVOOLlw0dYiwvylnvjxk2rN\ng2iJWEygp0sCsYgAz0ZqvyARE1g2jWwiKhYTiJ3oiKuntTNN27aqAjZ8Nn75rD+Eb/K9LvhsJf2Y\n/O4ebJzMpg71GhFYQ1luzhRU+MhfW6L8VjTD9/RFT73yZ1YWEYkKdXWaKLhM3jQDgH1Jn4PFZiHp\nq/swZKg76s9V4OJ7hyHuUR+62ViYdVhVVeiqMGjbx4oVK4MLOy97OIe6YOqWVBxZ+jfqc6Ux053D\nXOAc6gIWm4WWoma0FkszKSuaGw18XZ9TC3sfB9h7O1gVCCsm4z+ZUdj4bCkkBLD57+FmYzoUFs7F\ntFQ+EsbaYPQYG9g7SBUcS1xwWxWGwQHP0VllnVPsaDSdTlcq00cpUMX1i9+hqZ7aB9SQMBFW1aow\nWLFixYoVKxaKzOdg4GtzQ7botsQFt1VhGBxErlaftyT/wxWU5Twbe0yY/q7e859JWwthn/GsOxQZ\n9HkYrKjHxscXTgljYRcRDa6LC4ieHvQ11KE9+yLaL54DITF90q2BCELC4Dg6AXaR0eDY2UPc2QlR\nSzM6C/LQkXMRwuZmU4s46OEHBsPWzx+CsHBwXd3AcXAARyAAQRCQdHdD3N6Gvtoa9FRWovtmgfVv\nYkUlczKX40DKVlOLcUejqCCYq7Jgxbyx8fGFrV8A+P4BsA0IBFtgB46DA1gcDsSdnZD0dKOvpgq9\n1dXoq6lGV2GBqUXWGVVKgcBfdcQyYV+nPNGaPonbdMUnJRRj3p+NfUm6mQIzxR2hMLhx/UwtAmP4\nLXsJ/IAgyjqWnR34QSHgB4XAY8H98vKeijJUfaE58oyhCF2/ESwedTgxjoMDOA4OsA0IhOuMWUp1\nlZs3oq++jjE5Nl6fpbnRP6yKPsTYvKbCZco0uKbeRbs9CwDbxhbcIc6w9Q+EY8I4ynbdpcWo/voL\nwAxPJ61oT8j9cSj9zbrQtGJlsGM3LAJuc+6BjbeP5sb/wHVyApycYOPpBYeRKpKHEQQa9+/F7ZNZ\nDElqGFQpCwDQfavUiJJoh1OIm6lFAGAhCoPMnIhuuSqudekeWSVsg/qjLE0Uv6H6H1UTLC4Xoe9/\nrHN/fmCwXP7GvX/g9pmTOo9FF+fkKXCbc49eYwSs6Nfgq7/5D7pv6hc+M3tvlfx1fXEnZq8YBgC4\neaYJnc19GJ7kDoETD9ufy9ZrHlPAxP2miyAkDGEfbVIq67x+FbU7thtlflOi7/fAQPT5XmACv9QI\nk86vicF2v6lg+j0aE0lPD0rXrDa1GFYo4Dg6IuClV8FxcDT8ZCwW3O+eB/e75ykV13z3P3QV5Bl+\nfgvFIdAZHRWtGtu5xtJX8AyJRSgMTFHVp3+8dmMTsu4jsG1sNTekifu9C+B+7wKDPjgN8QD0XfIs\nQBAofnOlzmPsWt0fgnXj9VkqTxHU1ZkT/JBQ+C19wdRiAADso2Plf/ey9e9A3NlpYokMQ+e1K7CP\nGaG5oYFQNAEKnBuDmJVT5NcsNgtTfnsCGQulipvvtGGIWTkFoq4+3Pj6NKqO3JCPw7bhYPT6OfAY\nHwwAiHyhP6/FQBMjvrs9JnxxP7j2Nrh1IB/5n5M3XjzGBiJh41zUnSrBpbcPMPqemaLjaq6pRbCi\nJTY2LFwq8AZXxUqlsUGCxNH0T6GvFnuDx1Ntyr3r5y68+8ZtbcWUYw6+Dn7PLQc/SLV5jTHxeeJp\nAAAhEqHk7ddNLI0yMn+GluyTqD38ByJXb1Z7AmEIpv70sNzMaO6JZUadWxcsQmFQdFQOsI1AlGAS\nrX4ECNT2leJq13HamW/NBbZAgJD3PjDY+GEbNoMQClHyDnN2eMHvrgfHTrdkbbRgsRC2YTNaMzPQ\ndPBvg03TUs1s3HSmMfcdyeB31stfF69+FTBDXxpdqf3xO0bvf+Drb6PiY9XJfNQRs3IKRJ198Jk6\nFDUZNzF28zxkPfYTAGB2+jKU/XkFR+Z8BUCqaIxcPRMHJkuVAUmfGBdW/YU5mcuRv+2ESpOkOZnS\nMMgHp30OQiRB9CuTKdvkfngUB6dsw9hN8xjza2D6/7zup+8ZHc+K4blS5K223t2DjYIKH42L86Mn\nPREQqDkXUGen7usEmbIgFgHRocZVFox5wqwLLC5X/nnuzLuO2h9MH3xGphx4py4AAHTfKqPVj0nf\nhYE+Cap8FMa8Pxs+KaGMzasrFqEwKFLZWyBXGAZrxCN+UAj8ntOcr0BfWDwe/J5/kRH/BmMuYp1T\npsJp/ESUvmeYo3AXX4FBxtUHjoMDgt9eZ2oxtCbsw38DME9TEHOA5+qqVfvSXZfhHOmF1nzprmre\n1izEvjYVNRk34RbvD1GnNJ/GwWnKD54DKVvli3/asjnYyvvKuL7lOKndjf+eQdVhqRPk+ZV7tJ7H\nGBBCoalFsKIjZSUizJrcQCpX3M3fsNkZb6ygNu1gsaCkLGzb0o5tWzpI7fLLfbBxfZtOMirKYkxl\nwfvRJ2EfHWu0+ZjAPioaYRs2Q9TSjPKNum2WGAKei3n4CVDRVtJkFgoDW3MTK8bGGMqCDH5gMAJX\nvqHXGEGr3mZIGvqwbfkkO3ptefSzeFLZ4n+P1GtMQxD8znqLVBYUCduw2ST/J4ZAdFuzzak2aGNj\nXPDlSQx9arz8+tbBfHDtbBiVR0bChnvQ00heWA2k+MeLjM89JDGZ0fFK3tXvO86KaYgIrKFUFmR1\nMubdp3qTJ79c2UyISlkAgMgg3Rb6pjBD4tjZI2zDZotTFhThurgibMNm2AYEmmT+yDcV1g8sNrj2\nRvD1UMPhe1X7ALYVNxlREtVY3AkDABT1XEI4X4W3vpniPnc+Gvf9qbaNvs7NusLz8ETYhs067QKb\n1DyGxULwW2tR9sF7WnddFX0IG6/Pooyc9EaMefgvhKz5EGw+39RiMIbsASFsqEfFpg2mFkdnyj9a\nx+j/ffDba2l/9ggJAY+x0gds06VbKtvJdvkL/3cWDRcq0FOnXbZfAHAMdUP9mTKt+zHBQOdJvbFG\n9BqUiMUAR42l0YxZ/d+fa9/S3TdBFcZWFky1RjAk/steBgCUvf8uxB2aNyiYIv+jlfCZswiOESPR\nVVlidP+FgfQ2q87PUJNZbPKQqoCFKgzFPTko7skxtRhaMWRikkaFwdRfBGwbG0j6+mi3dxpDHXbT\nmHAcHeE0bgLazp3Ruq85Ozabu5+CPuijoFqR4p0Uhuy39suvhwzzILXR14+gOr0QgXNjcHn9Yb3G\n0RYmgzxYGdzcyBciKoY6ZDcAbP3aRf565w5mE2YZW1mwjxkB70eeMPg8piL47XVo3Pcnbp/WPZql\nttQc2IWaA7uMNp+lY5EKw2DE1MoCAISs20B7Eed211w4J002rEA08Zh/v04KgzkymBWFgYRt2Izb\np0+icd8fphZFa4rfWMHo34rr4gJRSwvt9qPenyNXCMr3XEXMyim48fVple1V+RXUHLuJiGcnUTo9\nX9t0DIFzYzDizem48lEabdn0JWTdR4yOZ1VMBwd8AQtz5wswbqINvLw5CA7hwt3DNFbVxlYW7pTn\ngvvc+XCfO98on1lZlKT8D1cCOgbF4XBsMCl1vcZ21eVnUHR9j05zmBNWHwYzgB8QBJaquHFGhu4X\nk7koCzJ0Ubge3hRHaZY07dkwpsTSijvloaDIkImJevuiDAaCVr2jc9+8zzIxJMILxT8p5w+Zk7lc\n/nPqmV8p++asOQQWl63UVpFrm4/Df1akynorVgyJrS0LBRU+KKjwweUb3li3YQjumitAwlgbs1AW\nDA13iPMd+VwI27DZ4CeN+R+uQP6HKxC5ehMiV2+GR8psrfonzvqAlrIAAL5BE5A8ZyNYLNX/s+rC\nqnqODzKLsKvmsUq9Q3BOTEHryUxSud+yl0wgjWpYHA4IsVhlvTl+gbG4XNhHx6Lz+lXNjSHNtSAW\nEXh79FG8nz1DqW7m8qFI/0+xIcSkxH/ZyyZz/DIL/gmXa2k7weUfrkXQau39Z/RloKkRISFIZVTm\nSKpMlNSZLlXsvYqKvao/U9rMQwe2gNkIZWXrdVfErJiWr793RfKU/kXjn791451VrRCJ+ttknveE\nl7fmcKmGhE5YV10wx+esMZGdNBr6uZD/4Qq4TZwGz8l3oSHzIK0+yXM2UpYThBg9XS3g8gTg2ZBD\nzCfN/ggnD70FiURE0Vs19WfLtWpv7+yLztZqrfrQweIVBkeOCyY6LlAqM9dwq253zSUpDI4JY00k\njWpCP/hE5YdUED7UyNLQx/vRJ7X6clk90ri22VQ4jZt4ZysLCoRt2Izyj9YxHoXIUIjamHWi9F/2\nMm59/imjY1oaTOeeGawJBO8EFJUFUyVBo+Kh+U3Iye5D+FAu/k6X+g4xrTSErrfcoBBM4/vMMlR/\nbRiH36BHX4BdQChaL5+l7fSckKzc7vyxDejpVm9OqqhgJM76QOtcDkn/uU+r9gInb6vCMJBU5yVa\ntTO5IsEiZ5j0vO9BEwiiGYfYkZSZUX2ffs4E0gxO7vQdJCqC3nwXtd9/g87866YWxehYFUdmafjz\nN1OLYEVHfv/bXf5a3UJc0+lCby8BW1vVmZ11ISdbGhik6KYII8Jr5cnlNn7qjFUv67/ZYX0uKCMI\nDTPICbTPnEUo37FN6352Dl4AAIKQ4MTBN2n1yTqwCq4eEYgZ8yQAIDH1fZw8LA0zrmhqpM7s6NBd\nyuvXYRMeA0Cg8MwOTLj/36T2jRWXaMmmDRarMAxUFhqFt+DO86ds2y5ugSPHBcMF43Cj+5wxxKNF\nyNoPTS2CSrwefhwdAz6gghDT2PZrg/8Lr+DWti2mFkMjvs88b2oRzBbvx5eg4c/fLMKRvXbHdng/\n+qRJ5k6evRFZB5nLOqqJgNDJ8A9Jxpn0dUplIcNnMyKHz5P/0nsMRSzh/8cKNZHRqiMfaUNqcgOO\nn/MEAPz8hxsWL2A2nn1fX7+z7L0LBPhqawdKirUzN1HEqiyoJuCV11C55RPGxtMlOpKiDwJdZUFG\nc0OB/DWb0///LQuXOvfEMq1Cpxae+UH++vrxL9DWUCK/dvGJ1Eo2ulik0/OUIQ/LXx9u/QaHW79B\ndqdq85KLHVK7tGDbGIPLpg1sW8uKse+71PRON5qw9Q+g3faZ7WQUX7u8AAAgAElEQVRzsA9zU5kU\nhxKPhQ9AEBpu8HksGY/595taBFrQ9Zmhi3PyFNptCULC6NyaqCw5rqQsyMqYwm64YR5y5k7tj9+h\nPScbwuZmU4tiNmSf1xze+z/bNWdJr63p98UblWCYBIeKJyAHjpHDG9PFqiyox8bLBx4LFjE2nu89\nixG5ejO8U6Um7RGrNAdOCY/WLz/MtQvf6tVfFYrKAgCDmCMBFnrCYMOSLrTpmhj1Ed2GFEcntPly\n6K2uQs32ryFu/yf5EosFv2eWgR9i2FThdhFR6CrIAwD4Pa+9Y7aktxcNf/yGjtz+ozH7qGh4PfwE\nWOqy7eiJIGwouotvqm2zKvoQPrg0Ux4hSfZb2CPG6pFHDSabw4g4k+ev6C4uQkduDjrzrkHcQU7o\nxXFwhK2fPxxiR5rUxyZsw2ZUbt6Ivvo6k8lAh85rV2AfM4KRsdzm3IPWrGNKZcmzN+LcsQ8xbspq\npZ38lsZCneYICp8OYV8HHIb4o/Dq7wgKnw6BvQcqS45jWOx9yDm9FT4B4/6fvbOOb+p6//gnSdvU\nXai7USjD3aUdOjZmzMdgjAnfAcPdC4yNKYMxHxPYfoxZcS3uVuru7k1jvz+y3CaNJ+fmJm3er1df\nJPee85ynJXKe8xh4rXXwCx6C5sYyZD/8W7NgGX2leg6dsAEpR42feFx/1XQ8yZpouncHTffu6DyP\nzeXCoXsP2IaEwaF7D3CcmO1US5IXn66iqhEpyw94kOsLNhsoLxPC20f9d0lMUImcLABY/L9aHP5d\nsi+IiLLCG287YtI0O2q8rnRcQ1cZpEsJ6wqvsABND+6iOT0dvMJ8pWOs3NxhHxkN++gYxjpMOw8Y\nhLqUc2grMzxfpPrKGRT/uZ8yGPj1msPJfPwNaxhcXZGm8h7JxmxtLeSbFAJmajCYMx4Tp6Dqnz+1\nGlv40fvgFRcp3hCLUfSFJPbOxtcPgfMXkVSRwvfl16i4QdugYK3nVf55CHUpZ5Xea3pwH9kr3gNA\n34mK3+w3tIp3XNHnKC3rq4Jtw4XPzBeNuqZYIEDxF5+itUD7KgvCxgY0p6WiOS0V5Qd/br/BYiF0\n9UbilWzUEbhgiclXTyr94Ruir2W2rS1Era3Uc+nmOy9TvhfCvWtf6yXf3tEbqbfaZQVHjqfWcHKR\nhHWWFEg23NUVDzHi0SSdDIaKkvbcJ22NBdKGacVvysvImhrBkVxs+zUUabdasPoV9e/Rv7PjAAAv\nDUlHZSkfIh4PDTev4+ffWgE8oK4rhcWCQ2wcbENCdfJi6Yu60qPK7inbYN+41kZ5BZTNuXW9Dc9M\nr9KqzOnMx6uw/3cP6vm2D12x7UNXjfN0YeLoCsrDkJrni9hg7Ta1vi+9ZvRmhYWffABeYYFOcwQ1\n1ai/chH1V+RD/ThOTghZsY6kemoJfPc9It8JrWXyeythk+Yu0wIBDzYcMuFyhhI7/DWknvsSAOAb\nORwlGfQ3vLMYDEbGdcRojR/YurwZ2kqKiTeR6kjIyvWaBwFoenAPpd9p73LLWroA3V54hbHTCmNi\nGxQC/3nvGGWtpvt3Ufq9fptJtYjFyFm3gnpq7eGJoPeWk1+nA+ZYctUQQtduVvr7ikVkQpCaGlR7\nbKSGgyH5Eam39iM4cjyCI8ZpLYNk8QdRi+l5lFXx2ZEITArTLsF/Uth9ymjQ5rocYjGaHtxD04N7\nRjEYSDDz8So4O7Nx5Z6P3HU+X4ye4aU6ybpxrQ0xQSXo1dsav/zhqXTMvFk1OHmsVek9bcjOak+C\nZrG08zRYubjCPra73mtqC505YcKGBrnPK+dBQ+D1mG5VfXSFxHdC7LL3kbploeQJiw27gBCNcwpz\nziIsZqLea4bHTtZ7bkcc3bU/xCVFlzAYpCFMsiRGLlY7JzmDmc7L+dv0KytIl9HgMngYOI6OGseV\nfL0XzWmpOssv/f5ryam1vb0+6ulExwZt6lgSl0x0bWMYC2U//SAX/kU3/KpKZC1dABtvHwQuoDf5\n1tSNBkFdLaxcyJ5Y6kNg2EhUlj1AS1OF1nOyH/6NvsP+h4e3f0GvgXNw4bjktJDDscHgsav10iM4\nYpzWtcZJhyfKGrUWmCEmqAR704bh/vkafDhLtUG0N23Yf/+GoyK/FRum30RLY3vewftXh+CcjP1X\nX8nHP1/In4xrG/4jXetcC5SuJTsGkB8jXWNv2jDsTWsv/iHV58R3kpjxtjaxTuFIwcv0e39pS9mP\n3yqtdkgn9ZcuoP7SBbiPT4Tb2Am0rRPw1v9Q+In+ZagLfv2S6vbs1neYVmVVC7PPtBsMLBYg1q1D\ntH/ocJX3PHr5Yegn09XOlw1bun/qU7nqSCGPTJMbe/EA+cgTszYYXDheqBNq/mKUJklLk5+BdoMg\nMXKxnHHAZnEQ4EwmHllXDN0QZS1fhPDNiuW1DMFz2uMax9SdP6uXsSAlZ/1K4sYOx94Bwmb5GuzX\n/2h3QZZnNeHRBVEAgIyLVWiqbkP0cE/YOVvj6zfkO+YaCt3JbPnbN4FfRbb6hy60lZdJXrtsNvHX\nnyymbDTkbVlP9P+Z4+Co4CLPzzqhcV5BtmJjyI50lFOYcxaFOZIQQqmxIPUMnD+6UqM8VV6E80e0\n27iHbSJX+aQzED/YAXcuNmHic+54c4Ov1h4Ic2Ve/AUAQFR/Z3x0fTAAYHb0eaVjnNytseVEPzyz\nIkxhDOm16NaHzu+F3A2rGO9BUn0sGdXHkuE2ZhzcJ+h/Kq8KbkAQvB6bgYpDB/Wa35iVqnXvBWWM\neHQrUm/tR0WxdgaZbC+GC8fWKtwf+sl0FB5Nw40NxxXuKaO5vpQyCowVkmSWVZKuNkriaQc5TYWP\ndajasbLlV6sEmjPHRWIhor3Mw2WrgEikNImVbir/OmSwjJZM/RI4VeHznGKuwK/L71I/jy6IwpK4\nZCyJS8aXr13FT4tvY+3gE1gSl4xXPu9LTA/3BPIflLJkLV3AqLEgh0hksht6cyNklXZhgKaIrZ0b\n2nia44EtKOfORclG758fu0bVJD5PBD5PhPvna1VuuqVjqkt4eL17CgBgzeHetK5Fpz50GgtZSxcw\nbizIUnPyOG3fC86DhhCTZe2iueoWALl8rthHZmL4o1tgbaM6CiN+4Bw5Y0EsFkLAVx42qa2xwBRm\n6WGoFpTieuMR9HVMwCMOYxTuK2vopqqi0tWiXxTCk5gIRyL1hsrduMao5dlI6V385W6ietuF69+R\nuqaYXAy02+hxxGTJIqivQ95m4yWa6YL0NUHH69CUvQx05xKZC60tNbh0coNWY1nWZBMITfW1oS1s\nDgt/ZnTHV1vLcCvFYnSpo7VJqHmQEdFWHytnF1rWz1q+CCCU50QHWUsXIGTleq1CnHWB1HeCfWAo\n6uo0G+mF2WdRXf4Q/UZI8h9YLDYGj9O+Ety5f8nn/RnDuwCYqcEAAJWCQhS2PUSATYzGsUdrVSfi\nVjXnMZavIKX81/2Mrq8vYiHZD2xRc7NRchk04eZHpgpQ6PqtROR0pP7KRVT8bvpdbPN3bEHQIt2a\n22iDKRsNJPF7bS6Kv9zNtBq0EraO2XKSpsZv92I7fQiSobh6SyonJT2reylaOtBVn+Dla4jrUPDB\ndpM2FqTkblzN6KGKNGdBFXX3tAtHbm4sR+b9Qzr1Zaitysady1+oHTP2p+dw4tkftZZpbMzWYACA\n+80puN+cgn6Oj8LDyk/hfmbrDWS13mRAM91ouHGNqLzqI//QHgoDgCqPSoq8pI1G7X79wq7e+H6+\n/Otj5o5eRGSzOBywbehpFGQOxgIA8CsrkLtxtdZVtizIYxcRxbQK9MMmFxVbfuAnYrKYYt2sPPx8\nIwa/7anEy4vlqwP1HyU5mR0z3QVXTzciJ1VS0ad7X3ul182NqAEueO975RXzZJOR8x806pW/oO1a\ndOpDR/NTU8hX0AU6PLG6HCKpyltwjtOtx0Jx3kUU513EwDHLwLVVU/BCLMbZf5dqlHfm1V8w8qun\nMfXcm+BVN6OlQvH/9OxrunenJolZGwxSZJOZdWVs+DuwZstXUbpR/DvKmzINVYsxak4dp91gEDaS\nd5eLeGS/6GyDQ9Gal6P03pK4ZCTdT1RaOWlpD8MrJNGRyMkryEfhp/pXhWACYWMj418QxiR75WKE\nbSTnsXSIjUNTKjMnzsnZks7LiWGpWL8vEBveKAS/TbeqIOrwefYFYrIAoOH6VaLyjEFHb8KtC014\nps9DAMCB3ZVy966eblTqfXhwvdmsvRKym+8PXr2HBymKDbRkN+QstmTOb9tzkfxlIfG16NTHLjRc\n7X1dMcXPQG2g4zvBecBghR4RHVGX5Nycp9+e7/JJMl7SkV89TT3mutuD6858tEVHOoXBYAjWbFsk\nZ2zDmLC3cTL7Y1hz7OBqq+itoIuaE8ZtHkaK3I30loMjgcuQoSoNBoB86VS6MTdjQZaG61fh1Lc/\nUZkOPeL16pBLJ2KBdqVEtaXbS7MY2RQkZ8diSsxD/PlQEvK5elYBdv1fCOZPzyW2hmMv3ZNWLXQ+\npJtvZ09rvJ8yUONpvVgEJM28gyX743U2GLRZiy59fF+do5OumjBHA1kW0kaD1+NPajQY1CForCem\niz6Q7PRMF2ZZJYkOiuvvAQD4whb09tU+Ls1Qqo/Rs2kt+mwXLXLNCcdehrVx1xc6YjTN9SRJSvmB\nn1B75iRRmd2ef5moPFLo0rzQlOnoTXD3Nt3zJUPqsVswDeorJV2qZU/4VeHsYViyvDZrEdWHxYJ9\nlOZ8S22pu3i+U4Tgka6OaIFeTPcbQAPjXV8BWw97p2O1JJ5AElrzsPIUVS3pcqF5JiHL0pqfx7QK\nJk/C/CgMeTYItk6KbwN9vQ/20bGGqqVA4UfvE5fJBFX//gXXkYpVzQyBbWdncp19mx7cIyqPZWVF\n3HOhCYFAjLh+7S7xv9Ji8GQfcl/uDj3I9rrhFeYTlWeBGWZHn9e4QWexgTc+jkXuXcPCYrVZi5Q+\n4VvIfoZX/vE7UXlMQbo6Yuj6LchZTb7QhrEIGB+FuLeGqgxHYtoLYZYGg7KyqfpyKucz6rGxqyUZ\n0uyMSWpPa24gpS81J4/DbQw9pUhlkeYuPDhVjpZ6PjG5vq/MJiYLABpv3wCvuEjzQDOBdIx/6JpN\nZu990UTYxm1G/x0nRz2EtQ0LDbVCfHUqHJOjHxKVT9I7VHtOc7M6Q4if376hubNL9/8H6Xx95po7\nccPcFDbcmkJ8tj9/F3vThsmN6yjj1I8l2L8+y2D9lK3FpD7akLuRfJUlJslatpCYQcW24RKRwwRT\nz0kS4sVCEapuFcPjET805tXAMdgNdekVODNL+4RnroM7eE3k+7iYpcEgJb3lKnJ4hscwR3mMQJBr\nH9S2FuFakfEq0FT8n34dCpmmKvlvzYP0pOH6ZaMYDIB55DCU/fQD0yoQRSwQQCwUgsXhEJPp1Le/\nycXz1p4+AddRY5lWwyD4bWKiXgUKFououKq//yAqzwIZtKkcpGxM+tU66rqh1ZB0WYsufdwTJuk8\nRx1MNGelFTG5QgoA4Dd7Hor3fqZ5oIEMS9gINkf/0Liz/yxRuPbnyM8gFkn+HlPPvYmTz++nHvsM\nDkbZRe0iR+ydu9FiMJh1DgMJYyExcjHSq87ieNaHuFZ0AIMCX0C05yjDldMCQW2NUdYxJ0yma7Ee\nhG/eQVReczrZU11TgXQ5Xu8nnyUqjwSkjeqwDfT09FCFtEKSLNt/DiYim3R4hiYiD6xX+LHQdQnc\npd3/v8sk7Q1+dWPdRpM7OOis3tTGO7eIybILjyAmSxk2ts4YMTHJIGNBFVJjoSOHh3+Kgdsmy10b\n+PgWDHxcUqFp8JM75H5ihr1KXDfATD0M9cIqOHM8aJF9qeB7jA2fj7TK07TIt9CJIVhTHgBKvtpD\nVJ4F4yKoqYGVmxsRWSxrenp66EJsbzINDUnSmqu6CpoUXnYJ8pd8bgRtLJgDBfO1qPBH6LOcdGW4\nzkrZ/u/gGP8I02poxaAxK5hWAQBw+ff2XI20C9+iuugu9dwziJ4KdGZpMFxsOARnjieVy1DGz0Wt\noAxtYs11/Ivb5GvtNvAq5J4/4jsVp7I/Iacsg/CKi8D18ycu05xgsdkQK+mAuX7YSSTdT8TOaedR\nlml4TwnngUMMliELv6KcqDxTI2fdCoSu2URMnvv4RNoqjulLXtIGRrua6ovUu9DRy7D0ecMTiz0n\nk61AV7T7Y82D2GRDoCyoJnjPNrTcfoDGi9fgNfdF5M1ZDJcp42Ht44m23EI4DOyNkk0fIXjPNuTN\nkRQZCfpkE/LfWgGXKePBe5gFm2B/NJy6ALFQiOA92yAWCFC2/XNYd/NG40XlnXiD92xD4eJN8Fu/\nEIXvrqPm5s1ZjMAP1qLg3bVyY6VrA0DgRxtQvCIJPu/NRfHq/7zESr4zgvdsQ8n6D+C7+l1qvvSa\nS+Jo1P2tmNtH0vtZ9c+fxGR1dqxc3YwSwZGXcRx5GceIyQuaGIv8f9pzW4d89BguvHOIym9QRV15\nhtzz5roSYjrJYpYGgx3bCYOdplHPfaxD4GMdotVcqcEgrYjU8TEAdIuIoT0B2hidGetSzhIP1yj7\n6Xui8ujGLjwSzRlpCtdXn5dU61nwh/IKGLrmN3hNn6G7cmrIf9+4ISjGhnRlI7exE0zOYCBNt+df\nRukP39C+TmJYKpKzY5EYRr4og8uwEeSEaRn7bOXmpBCGlPGkcfrIePcz7zwWfSj/9Bu5565TxgMA\nHAa0n3pW7/8/AADHyQH5b61oH/ffWLcZk5A3V9IdN3/ecgAAL6dA7boB2yRygj7dhLy5S5E3Z7GC\ncaAMti0Xvqvmo3Cx6gOMwA/WAgB8V7/bfu2j9ZTshlMX1K5Bgtqzp2hfg0kKPtiGwHfV/19pS/DS\nVbSEbwWGj6IeK8tBMISOFZAOD/8UU8+9KTEWxMDhEaorJAn58oflzXWlRHWTYpYGwwjnpwyWYeyK\nSB1puHaZ9jVaMjM0D9IRczv5tvLwAJT8Gcwh4bmzk5e0AcFLVhGTx3FwhLCJfAdyQ8jbsh7By8hs\nTkmXIlUHHcYCabJXafeFnf1aEs2aKMc5tDu6DSWb8KqK7rHWOHHME74BiieLhXm+2JLUgE8/Y+69\n0XHT3nD6Imy7R8Lnf7Pl7mna3KuiNT0bZTt2y19ksVD51c/wfvtVlH+sujeKrLdA1fqCqhqUyHgp\nAEBY097oi+3sqDCHZBihuVZU1IW2Mno2uSTpFjjAqOsxXUa1I2ZpMEjp2FPBnKg9f5b2NQR1ii3t\n6WYCdyYA4ChvP9zZPrABF6Ui5mqkc33p79pNOtm55hR9ZWtNCUENWZdxyKr1JpcUSPo9aBcWjpZs\n45RvJI3X9CeJyqOrN4VsGVVd7qkj/UeynxEdeZCqvDS0oyMLAcH0hCdoi/SkX/Y5APj8bzZa7j1U\nOq5k/QdoK9Re75bbD+Tm8ksr4L91OQoXrUfrg3Sql4n/ZonXwm/9Iir8SDqPly1fgcZ1WgJcpyUg\nb85ilGzcheDdW6nchrw5i1G8Zgc1V5lBQrJQQcnXe4nJ6iqwuVyIeDyiMrlcZ6LySDHw8S1yOQ19\nJq3Ejb83El/HrA0Gc0bYwGwbcjroaz0aR3n7KaOhWlSG0TZPoLSNOYPBysWV/kUIJztXH6GvbK0F\n88ZvzptGMYpkQ5KkuQyGeh2cBw42WC8ppd9/rfXYyAPrjRaCpIzGwky0VhbrNKek0BeffNYIdzc2\nsnOE+PSzRnA4Em/Bth0NWLzICY89UYXLl9tUyhg/Tr4m/bHjZDdPylDlLVB2cq/NNW09DvXHzqL+\nmPwhXOEiSRiasL7ds1K0XHETr2oNBV3+C5HSRz8LxsfnuZeIFw5prC+GsxuZanEd0ZSnAKj2OHQM\nQeK30rO/NEuD4UjtPiS4zkIQtzvyeQ+YVsfCf3BZ8lVUWGChXky+FrAucJxdlF6XNm5TRWcMWUq6\nn2i034vF0i7EvPzX/fB+aiaxdU0x+Tl7xXsI27SdaTX04scLkZg9PgsFWW3YfykSMwfpF+Zo4+1D\nVK+m+3c1D/oPXn6ZTrJlG6xx3bwQ/aLunWMFLU0oOnUQdRm3dZ4rZe/eJpRXtCffFub5UiFHH3zY\niJJCX6UhSFKMYSBYUA7T1ZGGj9uAc8fJhXsaa01BfT2snMmc4ttHxRCRI8udK3sxLIH8yb0UfUOQ\nHN0DqcfWXEc4ugeRUkkOszQYACCXdxexdoMRa6fbqZU5hzGZOhfa/qG8C7YsB4ywmYajvP2M6sRx\ncFB5T7p5XnNhLNYNkYQB9XvMH09u6mkU3ZRRccg8m/l1RNtePA03rhE1GEgkP7tEeGD8t5Lwmfqc\nahx9XtJhM/blvkj9RnmVFnWIhUKD9FGAzVZaxYUOPLpZoSBLcopt56C/Jy1wAdkEQV2w9lB+aKAN\nvJoK8GorwHX1AmC8bs2+ASX443cPDBhgI2cUzH6t/fNs9drO56XuLJAsNkLqAMTaxhH8NsPzWEYm\nbMWZI4reFhJUH/0H3jOeoUU2CURC5aF/pLDzcUJLme6N+S4eWITBT+6Qe04HZtm4LcF1FkK4zG3q\nLKjmKG8/jvL2o1XcxLixAABsW1uNY2TLql47VISWeu0/FIIWkv3grL8kqbYx/s0ITFwQDUDeGzJj\nfQ84etgoXNf0OGF+lMa1pWM7/qvNmgNmtJ9waJIPACtPj9Y4nglmpMzF+G+fxOl5it2D42b3R+hk\n/U6tSr8ld1BBOmdGGYlhqfjjfjQVhrR6dwBeG28auRO6VhBjO9ga1Lgt6wAzZbanPV4F34ASpKV2\nAwC0topx6zYfe79son46K2NGb8aY0ZuZVsMkqDlxVOl1rq0LRozfhN4D54HF5lDXRyZsVWgqFhk7\nDUNGr8TIhK0YmbBVbqyyx24ekRgxYRPi+82irnXz74fh4zdSYzvOVdbILCrucfQftlDuWmjkBASG\njKBkydJw7YrS39WUqCiReA1HTEyClTW53jT8pjaMP/giVRlJ2Y86Lh5YRP3Qhdl6GCx0YsRiSUwL\nAVgczS/xh2cqYGXDhqBNcmqbfr5Sa/nWXt5666aOUbPCsKKP5Iuiua7dgOn/RAAOrr4HANg3+xpe\n29sfX86+Kjd33+xr1OMvXpZ8AB/ZlY4xc8J00qG1UaD1mk+si8OVg6rLHr66uy8+mJ5CPXfyao+v\nbnpwHw7d43TSjU4ODt2t8l7My32R85fuHbibUu8bohIjTItrL0e8fm4hg5rIo2ulNkPzFwTNup/4\nGUpJoS/1WOphCI0oRVZ6N9jbSz4bGxrEiIotxcrlTnhzniM174cfm/Hekjqj62zBuAwauYw66efa\nOoP3X9z6mSNL5TbzAJCR+gf8ggZr7Rmwc/DE2aMr4OQSiIjYqchMPYzSomsoLbqm1MOgbM2RCVtx\n/cIupN//XW5OUNgYpJxYh4Lcs7R6K+gi9eZ+cO3c4OwahCHj16K8+CYe3vrZYLnWDjZorWpGylu/\no6nQNN+/ZmkwkAwrSoxcjGZ+Dc7mWqoQGIo0HKkjunoaxAIBWNZk2q6zOByNY07vy5aL7+810Rf7\n39M/9pgEOyafw+bbCfhwegrsXZT/LfLv1iKkj2JSd/7d9so8hfe1/+BpbehQdUZJWJHsmh89dQFv\nfD8Qn7+guURw+EAPxAz3QsQgSYf2P5PaN91l+79F2EZmyxxri62baXQ79npshtmEr4Ws1O1EXx38\namZzooyFqtyE8CjF0pMbNzdg42bjGzUWlOMxaZrmQYThEU5yLc6/CABoqCtAn0FvIjP1sF5yGhsk\nr+PMh/JN5wQCsn14jIkN1wmtTVVwdpXkCXj79Ya3n+6dlZX1cTj6mPbFHGQZ/OQOXDywCJ5BvRE5\n8DkA9IQlmaXBQBJpPwYfxyj09n0MAhEPx7N2MayVaaIpFluZYRDO6aHXOqQMBlWeirRzFQrXNCVC\nayubBDXFLbh3rBTl2Y1yicpSLwgALDs2CjsmnVOYu+zYKKwZdBwAsODQMGydcMYgXVStWXS/HiF9\n3LRKpt4y7jRWnBqNZfFHFO6RLo/pNf1JVPzfAaIypVxP0v9vWXPqONxGjyOih/OgIbQaDAdvRsHR\nRd7YXju7AJdO6B4DzXFUrFGvL/nbdE84VBaCpKvXwVi5CxbMH9fhI4nJarhxTeW9M0eWIr7fLLh5\nROLssRUQi8jkSrHZVhg+fiMe3PoRjQ26VfdSRW01M+GMdpFRaMlIJypz0NiVROVJOfbkd1TYUUNO\nNYRtiv+fZ1/7VencsmyJgRc58DlcPLAIEQPINuyV0mkMhmBuHAJtYmDPcUaTsA6pLRdRLdC+jnNZ\nYzqOZX6A4SGvUZ2fmW7uZmq0lej+4RFqFYcs4T0atDGMr+bKJ6/qUz3IfVwCKXUAALWn5fsv9HrU\nF70elYQmLIs/ApFQjBW9j1KGzd1jZagtlXR47HhdiqOHDZLuJ6I8W/9kN1VrAsDva+/j8bXy4UQd\nDa8lcclorGpD8q506l5rowBrBh7XWyd1OA8cbJDBMCNlrkJYUuxLfQAA+Uf1b4ZYfeQfYgYD3Ti6\ncJAYlopfr0fhqb7pcHbjILa37t4V0u8RfehoHOiaw2DBAlOoyl+QcufaPrA51hg+dj3OHluhdqxY\nrJ1BMXTsWlw9vxPNTeSatEbETMHtq8aP4nCMiyduMNDF+AMvUo+dQt11musR+AhqS9NQV54JALDm\nqi72YghmbTCEcHsi2k6x854jxw39HSdSz0/UfQeBWHUiq9RAOJa5E6dzPpe7bjEa2uEVq49jVhaS\nZAqJz3ThNnYCUXlVye39Fzqe2q+9NBZrB0kMCmXGjaBNpPT6yr7HtF5f6pWgqkcNat/QqzKoLh8o\nwOUD8rkLqsae2ZeDM/tylN7jV1fD2l23D0k6ODh0N6KeiceMlLkAAOdQd+qxutwGbSH5e3o/+SzK\nD/xERJYqjv8uCWmrrxFi1ecBmBytW/6GG0GDofkhmRLadatx3ScAACAASURBVCd0r3RlQX+cnQPQ\nr+88lfdPnlqudr6bWzh6PzJL4bqmedFRU+HvP0jh+qnTKyEWy1cZGzN6M0QiIU6fWaVwXbLWCnSM\n0RwzejOqqtJw+863avUwBH6V6nw62ZwBaR5Az76vwt0zirrf0lyFK+ckJZ3PHl1BzZGOF4kEGJmw\nFU2N7YdM546tpMZVlCk/7JOVo2rNM0eXUeNKCq8qlUM3Tv0GEPfEKgslIoEhXZ3TL3yHbhFD8OCM\n5DvKtRv5krKAGRsMtmwHpcaCMsa6vKgy78FiFGgPv6pK7X1zMw4S5kdhyLNBsHVSfBuYQh+Glz/t\ngztHSvHUpp5Y/oj6kyZzp/bMCeKdgPUl/ec7SP/5Di2y87dtRPhW/boFd8Spb3/aDIaqMkmY2J5N\nZVTjtoVP5ambQjsl33yp1zwrj/a67ja+nnAZ2xfluxWrYFkgzyO9XoG7e6Te83284xEXp7zM5pjR\nm1UaDeoqLI0etRG373yLqqo0uetstup8t5joaXiYdoh63q2bJGY9TeaasVGWLHz3umLHaXVzzh1T\nHl6jLhG54z2Va4rFSuXIXqM74ZllZZ5b3BFfPgWXCA8UHc/AjU3HleYTylJXnoG68nbvN12Vkszy\nr2nLdsBIZ8mHSDk/DzebVIc2JLjOov5VZjSoMxYshoQ8/ErFuH9ZJnBnKhgNIZxYeLMDcYVvWhte\naWjMg1PlOpVRNRayBsuNw2TiSE2Z+ssXiRoMLGsbiPmqu+B2Frh+/uAVFxGX+9zg9i8ffTs8ezw6\nmZQ6BvWyEFTVyz0m0fU5fr56o6/k3GFU3Dht8DrmjtRYOJ+yGW1KegCwNOSBxcU9g8ysf5GfL5+r\nJTUIRo1ch9Nn1sjdi4l5nHrc0aCws3XD4MHvoVf8Sxo9FD7e8dRjP78BcgZD91jJZ1UrzzSr2Vgw\nP1hsFqacaffEidqECEiIRkCCpLy6IR4IUpilwSA1FtJariCXp77jp7QrNABE2Q1AeovmOr9Mex26\n+0xAfu0NNPIqkRizFGKIwRc042Tmx4zpBADCBs2VOKRhSVf4R1ErqkSkVS+ktP2N8dxncYxHb/iE\nrpiCF8ECPTj3H4C6C+eZVkM5BMsGB7yzEFlLySfkfn06Ar5BksIDDbVCrHi5AOl3dKts4jpyDDF9\nslcx1/hNluDJr8AlXHMPIN/hU+E7fKolWfo/lBkLACDWosNjR2MBAC5d3olBAxeAzVYsjuHn2w8A\ncOq0YtfhltYa8Hj14HKdMWzocpxPkRge1dUZCp6Q7t2fAgCUlFyHr29fjXoCADeQbIddUt5IC6bP\nlDPzIGoT4q+xiqGvU8+9idHfP4tTLzC7hzLLxm1SNBkLUqSehVCZZm8sFlvlD9MEuPZCI689dvHI\nwyTYWNGTxKILwkbNpdukjdsGWEvi+wuEGWgWN4AF+ioKWbDQEad+A/WaNyNlLpxD3FTe8xsWYoBW\nEkxl86uOV0ZlIjEsFYlhqZg1NgtvrfehQpMYwUidrdXh1r2/VsaCLJo8EV2Ffn3f0Gteaqry+PPm\nZuWx/RyZ5mGqknxTLkji6m1s2qt3SUOL3NzCqWssFhvNzRVyngVNOPXpp/VYCxY6osxYAIAbG4/D\nKYT5HD+z9DCQICFikcmGHGVXXUC4xxD4OndH8kPduprSibC5We39GpF8VQVXthdsWfZ0qtRpaLhO\nb1JYxGbJxqUlKwNF+z7XMNr84fr56z23PrdG5b1+K0fjcKJ+tbKlkC4jG/TeCuRv30RUZnJ2LC6d\naMTa2QWorxHincdydZpvSiejrpMGo/bvi9Rz7zlTUL7nTzUzFAmZ+hqcQ7tTzx/sWQ1Bi+rKY91n\nr4OVvRMAidHQVT0NaemHER01Fc7Ogf8lFgtw+oz2IWElpTd0Wi++p7TSjGbPhSwtrTX/zX8BZ86u\npa5fv7GbMjx69ngOd+/9SN178ECxxKXL4GE6rWvBgjZU39G+4iedMH+cbkGBzMoUeDlGoKmtPcm4\nY1UHJhDxeGrvX+UfxwTuTEzgzsR1/kn0tR4NL7Y/htlMhQhkakSTYt3QE0i6nwifCHI14g2hOT1N\n8yADKP3pO2QuXyBnLHCcnGDlotj4zYJqxAIy78PS7w0zOmSx9vAgJktKYlgqinLakJwdi+TsWIyc\n4qx5Ek3o03sBkCQ7W3k4g21vSz228feEy/j+OsuSNRbu7Fqg1lgAgAd716Ahr72ilM8gHXu8dBKK\nii7JVR5is60wZvRmtUnJhuDsLAkJatKzJCiHYwMA8PSUeNP4/PYwPC8vSfloachTadktvfW0YEEZ\nfqPClV4f9+sLRtZEOV3Ww2Dqyc6X8r6Te34kjXmdoEW8qWzS8wme8iYjTKGsMduCP5SfCGnKb2Cx\nydraTXcN//IJmPsOrN09kb9rG4RNkg2N70uvwSH6v83Osy8ic7nkpNNj/ES5ngDS6wDgOmQEPBIn\no/7GVVQckvQziNi8E5nLFyBkyWoIGxtQ8OkHButrqvR4fQDufaE81+n8wn+IrNF0X7twSibJz+RB\nJATYHGDZLn8MGeeELfPJJ1hrQt/uzoKqerCsrSBqbpVLfNY16Tlubrv3RhdPQc6hPYh67j3YevrC\nZ+AElF3qmjlTIpGQSjAOCBiCqEhJMnx7yVL1yce6IBTywOFYUxt/fYnvqXqDJptUbcECKf6ZsAcT\nj86hngt5AnC47Vt0S9KzgQRxY5HP01zBQ5r0nNV6k26ViDIk5BWUN2Ygs9JEkzdVMNLmMQDAmTbm\nSs4pg2SSs21oGDFZACA2MEY7YvNOZK5YCIjFiNj0vuQxgJJvJaUorVxcIairpcZXHZM0EctNWi93\n3T4qFmxbW2StXgyurz98npyJsgP729dYvgCOPXrBdfho1J47ZZDOpkj5tSLEvNgHEU/F49BYyd/O\nZ2Aghu+cBACoSVNfKUwXmu7dgUOPeM0DtcDj0cmo+vcvIrIAYMv3QfhySzkmRupeISloMblOqLK9\nSfRBzDc8/IvD1b1hnZT0H7db8hhkKCy8gMLCC/DzG4CYaMn3BIvFJuZBLy+/i4CAwbC1VZ6HpC8i\nkQBstllvlyzQQIhjb+Q2ktlXClr4ODz8U4w/+CLsfJwoY6E2rUJlh2djY5YhSdIk5li7IZQxoAwX\njpfc/cxWxXjIseHz0avbVDjaeCDQ5REkRi4G14rZMBU/5zg84v8YLuS2hy0kxtBbr5gELmxPDLRJ\nwJm2QzjTdggDrRPgxvZmWi1a4PoHMq2CIv95gDJXLETQu/q9Xvxeno3qk5ISuLySIjj1bk/iK/xC\nUqWr8d5teD46xUBlTZOz8//EwaG7wWKzMCNlLmakzMXwnZNQeDKLSOM2WUp/+IaYLJIViQBg2Qv5\nyHrQqnmgEkg24OvY/VwvGTL5CxZMg+LiKyguuQYAGDZ0GTG56Rmac1NsbZWHYRYWXpB7LhK1G5uX\nLluMPgvyDPN+DjEuw5Do/zb1Q4JjM77D4eGfUj+mYiwAZuxhuNl0HL0dJCEV6owGKaoat1mzubhd\nehgA0NhWhYK6WxgfsQDHMun7gNBUU7yH70QcTdtO2/p00c96jFwY0mX+EYzlPmVyoUkksPbyYloF\ntXAc9Td6vaa2u9zrLrV7twS1qpOBOxv/N3ov0yroTEcvEhO4DhvJ6PoWzAdp5Tw+X30xDX0JCR6F\n3LzTCteHDF4MQNFAyMj8BwEBQ2BjI0lWv//gF+pea6vkfWVv7wnANHIKLTCLo7X8wUhRs379aswJ\ns/QwAJKGbaqMAFnK+DlqxzXw5EMMHvGdihNZuwzWTy0i9QZDSs4+jIl8R+4aX6jfaZ8xuck/S5VT\nBYCBNgm4xj/JoEb0wfULYFoFlbgOG4nczWs0jhPU18O2Q91wflUlKg7/LvdjgT5qTqpuOqkrwcsM\nb0hmKB6TpxGTJQ2nM2cMCWfqDIwZvZnKWZAlKHAY1dvg0mWy+VDSnIiwsAmIjZ2hoI+U9Az5ED6p\nETBooCRPpaLivoLsfn3fBADcuGl+BwoW6OVujWGf5VPPvQk7b9MowqIKs/UwSJEaA2G2veBvEwU7\ntiOahHW433IetQLVlRISIxcrfQwA3SJiaE181hSv3tRWjfTy01QYUoTnMJMqr6qKalEpmtjBVPO2\nHOED1ImU18s2d9i2prURyFy+gCqdKua3ofb8GY1zcreupeZIk57z3t9MXQMAfnUV8naQLdlp6nj0\n8MHAdeNg381J4R7psKTqo//Abcw4zQPNALYNl6i85tQHROXpS0NuKpxC9OtBIZsw3VUJCBiCgIAh\nSu+1tWluBqoPN27uRZ/es+HbrQ98u/VRuK8u0drKSvnruK2tkerdUFeXR0ZRCxZkaClXX32Nacze\nYJCS3Xob2a23tR7PaCUkLUpEF9bdQWHdHfp1Icx9wWXcF1xmWg3aYXMNq8JBB7KVjjqiKlRF2Rxt\nrqlby5x54tzrYLEtTQb1IXQduVKZYj6fmCxDyfljL5W4rEtPhbDpc6nHRad+o0U3Uycv7wyCg5WH\nqZ06vUKrTs/6UFubg5OnliuUb83JOY6cXNVe7/bkZkW97t//Gb17v0ZaVQsWzIZOYzB0Jhxs3MEX\ntqJN2B7bmRiz1Cy8DB2ZwJ0pV2q1s8C2szSk64yw2CziXgRNZC1dQKzRWfjWnchaypAxxyJnaJla\nN+zcw18iZKpksxg/fyfEQgHSf9gOXq1i1aywx9+AY2Ak9ZzfVI+qOylG09WUyMo+gqzsIzrP06bU\nKqkxsqhrKldTm020BKyFzkMjX7/Szx2JXzgSd97XHB3AFF3eYBgb/g6s2bZy124U/47ypkyGNAJ6\nBzyB89mWGEmThuDmyIIFC6ZNfc4DNOQ9hFNwDACAxbFC9EvaVfdJ/XItjZpZsGCBaWw4tpoHaeDw\n8E+R+Ncs+I4Iw5Fp5Bp7kqTLGwzWbFskZ2zDqNC5OJ0jOVns1W0KowaDQNgKa46tWSQ6A6ByFroS\nopZmcBxMO0HJgp6woFXYIFFEIoBQM8CAdxai8KP3icjSFlIeEgDMeUg0kHNoDzhcO63zEnL/+hr1\nWabfoM+CBQuGYcM2POJg6rk3lT6WhenmbWZpMDhyXDHU6QmV1Y9crXww0FG+MoOmikqlDWnUYx/H\nKMOVNIBLed8jMWYpsqouoLQ+Fb39H0d+zXVGddKEqrCjzmpMiHg8i8HQCflz4jeYcX4uHnx1DQ/2\nXTPautmrlyJsI5m8Kq6fPxE5FhQR8lpwZ9cCOAZEIOyJNwAoehqLTh1E1Z0LipMtWLBgQQVMGwPa\nYJYGw1CnJwBIDINaQZncve52QxDIVaxokeA6S6nRcLtUUlrtYeUpqloSownR/yGbr3A2+wsGNdGM\nuhyFzpi/AADCxgZYu3swrYYFwkz552UAQPdX+6H7q/0U7tOV3yAWGN6RmCl8X53DtApGp7EwE3d2\nLWRaDQsWLDBEctHHcs3aIp0HIaP+EoMa0Y9ZGgxSOhoLAChjQSgW4HjdtwDaG7u5W3VDtaBUbnxJ\nQ3vpPlMwFCwYh6T7iagtacWWcaf1ms8vL4dtUAhRnSwwj7ETnmUp/e4rdHvxVSKy3MaMI9rjQR32\nUTHEZOVuYL6XhAVmcYjwgbW7I2qvZBl1XfehUYhaPR2XEpKMuq4q8rdtAr+6imk1LKihsOk+Ahzi\nAADhTv0tBoM5wWG1/zpSYwGQhCMluM5Cf8dJSr0Msn0YqppzcbWI+c7E0h4MsphDlSRlIUim6GVY\nEpeMd34dgqT7iQAAIV+ElX2PQSTULni9tSAfTv0G0KmihS5G04N7xGS5T5hoNIOBJMIm065DboF+\nmjLLACgeBtJNdUq60ddUh7WHp8VgMHHu1Z6Er300tfdM9H8byUUfM6wVfXQqg2Gcy0sAADG0b9ue\nGLlYzrMwKPAFRHuOQlrladLqac3I8Lk4k7UbLXzltfNNlX7WY3GSdwAjuI/hJO8AelgNwj2B6Vrc\nHz0liTO24rKx6cYEbLmTAAD47LlLyLul/m/Pr1DdFNAUKCr0hX9Aicr7LBbg58dBUZH6ruNdEZcI\nD4z/9kkAQH1ONY4+LzlAiH25L1K/Me1cIlnY9vYQNTdrHmgATv0GEpNVceggMVkWjMegI0sg4gvB\ntuZQ16Sn9AMOLwSbayV3bdCRJXKn+D0/eQnl/95B2d83MeiIpJzujec+Q1tle1M3z7FxiFgsyUus\nPp+G9A2HNOokXcPG04mSxfV2Ru/v35Abq86j0FHXjs/phOPiapR1LBjGseLPMdT7WThZewLo3EYD\nmbIcJsax2m/0nnup4HsEuPQip4wetAlbzc5YAAA3tjcE4KNFLDklvCe4hBE20xjWSjMCnghL4pKx\nJC4ZRffrMe/HQUi6n4iEdyJVzmnNzTaihvTQ0qLoTTlx3IsBTUyHnm8MpIyFjsTN7g8HX8XuzySp\nPaO6qZSuhK7eSEyWKrxnPE1MVv2lzpkoHDd3M+LmkmtqZ4pcmbwDgPzmm821Qv5Xp3EpIQmXEpIo\nY+Du29+i32//o8Y5RHZD2d83qfnKNuQRiydT91z7hcEu2FMvPXt//4bcGpo2/2KBCDae9L7nVcH1\n9WNkXQu6k1L+E86X/Ug9T/R/G4n+byPYkdm9JGk6jYdhpPMz1GOxFjURWSyJrXQq5zOEuQ1EXt1N\nuNr6or//04znMlQ2ZZtlSNIt/ll4swNwpe0YhttMQ7moALXiSqbV0ooXdvVGj3E+AIDmOj7WDTmB\nDdfGY8zr4Vg94Dh4TfJJqWKR9l4sbbCPikFz+kOiMtUhFgPV1Yq/Q0xMp/lI0Ivo53tTeQwzUuYq\n3B/x8VT8O+NHheukqPr3L7iOHEObfJKwOBzNgyyAwzW8Rrs50mf/W7j2xIcK15vSS2HlyKWeV51J\n1Uqe1OAAgPjdr+Lyo3p+T+tQNvnypO2UVyF80SSj5jfYRag+sKKToL3tf9f82YvVjNQNl8cS4DJp\nLETNLSicv4aYXHXQ9bsAwAS/eWCz1H8GxrqMQKzLCIPWMSVvRafZHdiyHQAAZ+p/0mp8QsQiuedR\nnu3t6zuGKRmbjIqzyKg4y9j6+lIhKqIeFwmz4Mb2xnU+uRNT0rBYwIZr42FtK3nTp52vxFevt5fS\nXNXvGBYnj8D6K+OwJC6ZVl3sIqOJGwyFBb64fKUNgwbaIDikBNJCPAkJthjQ3wbnz/Nw6jSPGr9p\no4vcvytW1hHVpzNg62ZH+xqCmhpYubnRvo6hhK4nd4DRcO0KMVkWTAN+tep8lJyPjgKQeA4yNh/W\nKCtt7W+ouahfbyTZkCSpp0PEF+LypB1azRcLJQcrXuN7IGvH33rpoA82Pt2MtpYxcJk0FgDAtqf/\nM9QYaDIWOiNmaTBcafwbAxwnUdWPZGkVKcbsulkpvvGY9iJ0drKF9wATDo+XJjvf/qcE+9+7rXLc\ntsSz1Fg6ce43AFV//0FUZkBgew6DbE7DkSOtOHKkFaNHceXGr1hZh5dftrcYCmq4nnSG9jXykjYQ\na4QWvnUnbY3QSHoYyg/+TESO/8whKNqvXWiTLmMt6M7t2V9i4L+LcfnRbWCx5ftVyOYrZG77S6Os\n6LVP4M7rX6E5twJOsf5oSC3SOMdtcCRqLmagx64XKM9A31/fRu7nx1F6SPtcpMsTtyP0rQmoPPlA\n82ATxHvBHJTv3MO0GhK3Nkuxb4kF88EsDYYaQSkEYj6sWNZy10/Ufa90/ADHSQCAfJ52b3imPQxA\ne5WkzMrzyKw8j8SYpSYfkqSMCdyZJlkl6f82PMCln/M1jrN1Ms5bhG3XOU5dTIWme3f0njsjZa5C\nedXYl/oAAPKPZhiklwVFRC0tROSwOJ0yJc+sufHMJ+j769toLa5RGs5TdyNX7rls2BEAuVyDsP8l\nwishHiUHLms0GC4lJKHnxy/BOzFebl0WiwXf6f3h2j8cTt39wLHn4lJCEnp//wa43s5yOsjO85nS\nW6twJFFLi0l9ltvGRMA2NoJpNQAA+XOWaB5kwaQxS4MBAE7UfafznNSWi9RjV1tf1LaWULkMpsSo\niDcp4yDCcxjD2mimh9Vg3BNcxBiu8mRRU0QbYwEAWhsEtIcjWSBP9bEjes07OHQ3op6Jp/IXnEPd\nqcfG7NHQkpEOu0gyHef9Zr+B4r2fE5ElJWTlOmKyctatANBegcb/2cEo+ukiHtk3G7dm7QXLigOx\nQIhee2bh9hxJWezAl0eg4Bv5sE1p6IgUrq8rfB7thfyvzlCynR8JhmufEOR/dQaBLw23eBgI0DGB\nWHZjza9rxvWnlMdgK9uAq9uUZ3+YjOwPtf8svvv2twrXrJxsce3Jj6jnUuPg5gvq3x81F7U7KKj6\n5zC8niBXCMBQvBd2vaaKxsKUcguMhdkaDLqgrPfCoMAXkJyxTSGXwRRoE9BbCpE09wQSQ8wK1gre\nBGV9GUyBpPuJaKppw/phpptjYSjSMKQ9e9ywZk291vNYLIn32JjYBocQlddWprqkrCbSf76D9J/1\n91CQoHjfbmJhSXbh5JMnOY7kK8eU/ysJDSz66SKcegTANsAdAGDlbIceu14A18uZGuv/7GB4je+B\nG899plJez49fgpWTLfyeHkRdi14zHVenSxJxi3+VL/kcP5/M39uC6SJoapPzYmhKnFbmbVBH/bUr\nJmUwWLBAki5hMChDNuSoY/iRbCM3JriQ+7VclaQIz2FmEY50m3+eaRW0ZklcMt7+ZbBcfsLGkafQ\nUMlTM0seYWMDLRsnEsj2YJgzp0bpGNmEZ2XzjInlS1YJIhHAJuMBtY+MRnNGGhFZdmHkQhx4hQXU\n4+wPk+EY5YvG9BLE7XgO9Xcl9wJfGo6bL3yO2K3trxHpBi54zmjk7TlFXZftBVBx5A6KD14Bv6aJ\nuladkgGOnQ2ELW1wHxKF/H3056RYMB2UVW1Sh85VkQiftDgPHIL6yzp6wVgsuEwcA5fHEqhLstWC\nZNGqchCLhaAvtsrlH2hb6ciQdaVzpWPtenWH11svy41pPHMJ1T/8rlGWtmtpq5sp4P5oX/g8MwJt\npTXIWvKNUdbssgaDFGW5CkznLwCmX0JVGWUixTAfU8xfkPLx0xLPCMeajc23JmDlmdEAgH93puP0\nPs19FqqPJsPrcXJhWI6P9EHjrRvE5JkTNt4+TKugEWW5DXSSvWoJwjZtJyLLd9brxJKf/ebMIyIH\nAAo/+UDueY+PX5Rs0lhAZpIkGdY7MR7eifG4M/crapzsKbGsweA/cwj8Zw7BpYQk5O09hYH/vEfl\nNlxKSELWjr+puQ9XWRrFWTBt3Cc8qpPBoGqDrjdstsRY6HjZ3g5Be7cZbXPt+frzsO8Xr3DdceQg\nOI4cZJAe5mgs9Dy8inrcVlojd/3u1A20rdvlDQYLFoR8EZWn8NLHffDogiitDIb6KxeJGgyeU6Z3\nWYPBgiJioQmXGaMJZXHwusS6d7x+eaKiwaXp1PjOLrJVpSyhTsrZmyafn5fyWxm+WS6fKzD7/WgM\nmCzfTHJ2tLwnO+l0fywZdVVOXlluC1YmtFdCiujrjCX72zecl/+swJeLFD1usjLEImBOrPxaO84P\nwKJhV+TGrZ54AyVZ9IQRcxwcdBrfcke+p4VdfKzS69oiNRb4peWo+HAfOK7O8HzjRXBcJJ51TUZD\n/uzFsAkOADciBG7PTNVLB7te3SljoeH4OdT/ewq2cdHweLXd4+j27GOo+Ul9929lBH7S3tyyeLnx\nemwYQsT7kuqgUsMgPOllo63d5Q0GU6iI1BFlTdtKGx7iVpHubwhjIE12FolFsGFJSnWKIQYLLKQL\nbiJXqN+HlTFJeCcSY14PZ1QHXb8cLCinZN8Xuk3QoZGTsSn9dh+6vaRYProzkLN6GdMqWGCIvWnD\nFDb+o571VRgDyBsIvcd7KMhy9+UqlSel/0RPzPkgRu7+Z7eH4JObg/FW7/ZCKHvThmH9tJsoeCgJ\nYes/yUtBrouXjcK1vWnDsP6xmyhIbQ99Y4qKj7+Wey49Pe94XRdkDQJBVQ2KFm2AbY9oeM+XfC5Z\neXtCUK66QWtbXiHa8gr1Nhi83noZEImQ/3r7vqjp4nU0XbxO/X5OY4bobDCYo2cBAOwi/VR6EcQi\ner/IurzBYIooC0dSZkSYCid5BwAAoZzuyBWmynXaDuHEMqWWVqw6NwaO7jYAgJZ6PtYOPsGwRl0P\np34DicrTNVZ/xvm5ars7M0lT6n1isoKXr0HeZsOqG3lOmU5IG0DUpn2+kNEwdra/BYrTP7XnT3Ht\nJLkoHY2Am8eqlM5VZSwAUDAWAGBerwtyXoKkU/2Rc7uBMhYA4OrfFZizMxqDpnrj0uFytWvN+yQW\ny8ZKmn62lZcRDbG09vAAv0r57003NT8p7w3Ueq/9M9b9+cdp7/MgayzIUrRgPfx3rtZZnrkaC5ro\n2O+ENF3eYLha9AvTKnQa/DhhyBM+pAwGFtgI4ESYpIdBmuyce7MGG4brXymp4vdf4fX4U6TU6pJ4\nz2A24bljXoKqPAVTMyZ0xcrZxWAZLkOHE9DEdKnPMc/mXOZGYw1fqQdByrJfFePVDaFj+FNH3P24\ncPfjKh334sYIOYNBGZ4BttTjgp1JxCqcAUDQeytoa76oiYaTKRrH2MYw55kXNqjuJq4KqbEgamlF\n4Tu6GxtMw69qUJqrwHGwVTGDHF3eYOjvr3yzwmSYkjJvwo3C3xjQRDdS2v5SKKNqqknPh7ekIuWH\nPIPl1F+5RNRgsHb3AL+amdMkC6ZJzakTcBs9logsU0msL/xUt2o1xoB07oIF1bw76DJ6DHfD/C/j\nsDdtGMRiYE5Mu+HgE2pPdL36Sj6RMRaUQHP35tYH5JplynoWzNFYAICHr3yInodXoefhVWgrqwXH\nnosevy0Hy5qDhhtZtK7d5Q0GU8tfAMyzQpIUUzUQOkLCWKCDoMXMnSYxgW1QCFF5YoHAoPnqqiCV\nX1PfXZYuqo/8Tcxg8Hnmeb0NBpKnprwC7RondgYsnBRsAQAAIABJREFUhohy7p2robwLe9OGyeUG\nHP+2CImvBRBba+HQyxrH/LIlG1f+qiCzoFhM+0a6q9CWT+Zzl3gFKTX42Iahl3si2CyOwj0SDd/u\nTt0AjpMdglc8DSsnO9ScvI2iT/82WK4mTK/NsQULFroM/vPeISqPzpPrs/P/pE22JgQ11YytTZq6\n82c1D7LQpbh1Qt6r+tv2XAAAi9AO5fUPY9TeP7g9F7PfjyazGEC8s7pjr95E5VkA/LevIC6zn8c0\nJPq/jd4ek5QaC5pwtPaQ+1GHsKEF2Uu/wf1nthnFWAAsHgalVZIGBDyLK4U/MaSRhMSYpbha8DNq\nmwsR5NYXhXV3IBBJkgTFYhGjunUGZBu2KUNaZlUbqv7+Ax6TphmqEoXb6LGoOWVJvtaHtpJiplWg\nhbykjcRO+K3c3HU2QNzGTiCyNgBU/mWa1d4sGA9prkBjDR+ObtYAgI9fl88feXfQZexJVcwpUJfg\nrIzZ0eexN20Y+j2qWtaRLwvxxMIQpTkMuq4HAC3ZmTrPUYfPsy+g8fZNojK7GtLkZradLQI+Wg+O\nqwuxXhJuNr4Y6DXDYDme3CDEuLS/BnX1Rjj1j0TDVXIhXB2xeBiU4Gbrz+j6A4OfR/LDrahqyoVQ\nLEBO9WWMjZwPsVhkMRYIsiQuGUviktFcx6ceH1hxV2c5tefIdot1T5hEVF6XgUCFmz6LRxBQxLQJ\nXrJS5znu49Ub2NoiqK8nIseCebN2yk1UFbXCwcUa5w+WYXb0edw5LW/ENtbwMTv6PM4fLINIKEZB\nahN2vnxPQZY2G/rZ0eex/YW7aKzho6Gaj6NfFSnMmxN7Hm/0SEFpdgv4rSLcPlmtMEbZWrOjzyu9\nbmh4ZEc49pay2yQQtbSi4pNvqOdsJ8P+rsGOvYgYCwCQ2yhvFMa46FZkImTVM0T0UEWX9zB0JMZz\nNHJqrjCqgw3HDtYcO/CFLYzq0VWoL2ulHl87VIQnN/VkUJuug8+zLxCVl7fFsJKhABA2rTtubDPR\nkJlOEBedt3kt0ypYMAGK0puwdMw1rcZ+uyID364w/NQ0/Uod3h2kPpdBwBdj1aPX1Y7RltyNqxG6\ndjMRWQAQsnpDl8pvo5OW2+3erICdawzyMsS60HfIFOL4CB7WnaNNvq50eYMhOWMbEiPbXyxZ1ReQ\nUaW7C5Ik57L3on/Qs/CwD6aumXMitKlz868SWNmwIWiTeG9u/1OiYYYiOauXIXT9FmI6Ofbq3eld\n0KTjcjv76XXWsoXEwpJcR4xG7dlTRGR1RfxGTYdnL+Wnf03FOcg++KnFG9zFEbW2ah5kJPw2LUbx\nCtMr8MIk+bMXI/DzLWBZcRC0dxsK56+BqFm3Q9pE/7cVrh0r/hxCsUDjOFVkNVxFuFN/uWs9D69C\n7bn7KNj+O3oeXqWTjiSxhCRBYjRIf5g2FqRczf8JyQ+3Uj8W6OP0vmxsutkeo91roq+a0coh3YSK\n9Om7qeHz9HNE5TVc01wFxUI7HhOnaD3W95XZZBbtBE3Rol9chvj5O1UaCwDg4BeKnu/sQPx8clWl\nLFgAgIB3Fuo1z8rbE0F7kmDl4wUrDzc4DOkHzzfo/47hODvCvk8PuEwZL3fd/fnH4TR6CGyC/MHi\n6J4cTIqCN9q7zQfs0s1DzeUolv5NLvpYwVjQlYz6S3LPWf9t0+nMTdCWLu9hMFX6BT4NT4dQZFae\nR2bleYyN/B9OZJhe7XIACr0XOmKKpVbTzimWz9OUCK2Jos8/gv8b5Kr+eD02AxWHDhKTZ0o49u5L\nVF75QTINGA8O3Y0ZKXOR+ds93NppGocHsmSveA9hm7YbdU37aDLd2rOW6bfZMRX0MQDi5+9E9v/t\nRmN+Og0aWTB1spYuIFqOmOvnDytnFwjq67Qanz97cXs5URYLfhvfI6aLJtSVMXUcOUjhGlMdl2X/\nRrokQY/uNkvuOYlyqcqIchms0KQtd/3PaLimaEDQ7X3o8gaDbJUkaWjS8axdVEUiJvBzjoNAxEPy\nw62I8JRkzFtz6O/ipy+yBsEE7kwc4/0EMcSYwJ1pksYCAHw1Vz5OVZeqSKpozcs1WIYszoOGdEqD\nwdrLm2kVVCLt5hzxRA9EPNFD4b66Pg3GQCwUGnU9Jk//TImOxkJLWQEyD3wMsVDxNNF3+BR49RlN\nPQ+bPtfSi8ECMYKXr9EplyF/9mKwOBx4zHoG9n17QtTSisbzV1H35zGV47WVa8h9Q+VrM47U78Ik\nHlz5fiT1l9PQdJ+ZPlJd3mCQIms4TIhYiKOZ7zOmS6zPeJP1JqhjDHeGnIFwlLcfY7hP4iTvAINa\nGRnCiamuw0cSr8LENEELFTuZG0LeZsOTnaUwbRAYk9A1m5CzTn0tclLejOwVxjvZJE3I5Feox7ya\nCqR9pz5XqeTcnyg59ydsnNwQ86rkxC9+/k6L0dBFIe1lAADPyY/pVJ5YLBSics+PRHWw0E5mA32F\nchyt5Psx5G36VeXYjp4I0lhyGAA42Mj/h7QKmE2evJT3HcZEyoe28IWmk0CliiJhNnpaDaGe97Aa\nhGJhDoMaqee59x9B0v1EhVCksXPD9ZZJOuyCZH8HUyB8C3lDXFv3fGehYGcSETlsOzsicrTB2J4R\nkjiHt1dN02QsyNLWUIP67Pt0qGShi+MybATAtmzfTIWq1gLaZItgOp+dXf4Vl5yxDU1tVXLN287m\n7mVQI6CprRonMz5CT9/JCHHvD3+XeLPwOKQJbuCe4CJG2TyB0TZP4L7gMh4KtCudZ2yS7icibpwP\nVvZVdMtOeDvSINmteWSNJNKnU0zB5nKJlwXtimUG28rLiMmycnElJsuCIrl/7mNaBQsmACkjX5bw\nzTuIy7SgH2xSLcmVUMuTr9rY8/AqBL7LzEFilzcYTJm7JX/hePoHKKq7w7QqWiOGGKfbfsOptt8g\nhmlXRVne6wj4reSt96LPySc/2QaFEJdpbELXkSs7SycuER6YkTIXM1LmYsIPT1HXY18mm6htCDUn\njxORE/TecpX3nAcoJibqQ/77lipvFro2JI18WTrLYZK542MXQZvsouZUuef8ynq4jo5Hz8OrEPP1\n/2hbVxkWgwFAd69xSIg0nRhbNosDWysn6vGEaNPRTRMjbaZTVZO6Ww0AG5akSRL4zyNXfYkJ6Phi\na7hB3nvV842BGP/tk0rvxc3uDwdfJ+Jr6kP10X+IyGFZqU5j83r8KZX3dIFfUU5EjoWujcPQPgjY\nJd+lPPjrrXKPpT/aejLl5sjgt2kBdd318faS29zIYOp60N5NcnKcJ46k7ll381RYK2v5Iq100hWL\n0cA8QQ7kmr127MFQ0iJfDenhq7twd+oGVB66BGsPJ/Q8vMpovRm6vMGQGLkYDyqOg4X2D5jBgczW\nwB8V8SZaBQ0AgAnR7+Fo2nYkxpBNFKWDvtajcabt/6jnDwRXMNLmMQY1Yg46QmXCt+6EjbcPcbl0\nE7yUng+z8l/JV+CKfr43Dg7drTL5ecTHU4mv2ZmpOX6E0fV7cAYaLCPz14/0nus/6nGD17cgoSnl\nBjjOjtRz95lT0HInDYBkw573ylLqJ/grzd7MwM/WonL3T9QcKcFfb0VZ0h7qOjeivYGqz6LXqOv5\ns1fIGRr1yeeoe35blBgHIvoa+XV1oyHwXeYPVWX3kIYQ6aydZ7fkq2O4O3UD7k7dgNx1PxnFcOjy\nBoMyHLleTKtAcbPo/zQPMhGc2R4K10wpYacjc74eoHBt8+0EYvLLfiFflSJwwRLiMukkaOFSWLm6\nEZfLVO6CrZvxEoU10ZJJXyMft7ETNA/SgmqGDQa+uM1gGc0ludRjB79QneZ69JKUxbZUSCJD9XeH\nKO+B0/ihKP/ga+qeKm+BKgrmrYXn3GclxkWHBOKAXSspWbax7UUwWDbWqtfRwiCg83OrKxoNwctW\nSw7SfHRvtmoolyrkqz8m+L9lsMyOHaFzG29pNa/heiZ4hZUGr6+JLl9WVSyWf5NPiFiIk9n0NODQ\nlpMZH1EeBXPq8nyKd5AKR7JlOWCEzTST7cOwJC4Zm25MoCokSf/ltwqxvJfy+tS60njzOvGOxoDk\ni6Hq7z9MvtwqXV9gYhpP6jRxPcl0/ubFX35O5G8ctnEbslfK1yF3H29YE0NtCGJHgQ0O/FihuCD8\nR+56hbgYgzgTkCG6jUJRFgDAkeWKgZzxSBfdQoFIYiwFsMMRxe6Ns4I/MMTqUdwSnkO9uAY+rEDE\nc4ZAAD7SRDfl1u3PGQt7lhMeCq+jTNxe3WSU1XTUi6txQ6j4f3xn1wJEPf8ewp+UfKGn/7ANrVWl\nSn8vjq09YmetAdvKmpprgQwNpy5R3oS23CK5e7JeAm2RzvF66wVUfPK9RlmNZ6+i6uvfdF5Hlpw1\ny2jL5wrfuhMt2Vko3vMpLfJNgbBN202iP0xtm+L7P9H/bb0buHU0FgDgYd05tXPCtrwEh7ggAEDp\ntydQ8dsFvdbWli5vMBzJ3EE1bEuMXIzbpX9BIDL8VMpQOhoK5mI4HOXtxwibxzDQeoLJGgtSVvQ5\nSvsaWcsW0lJK1GPSNPCKi9CSlUlcNgnoPO3KpikWWMqMlLkKIUmxL/UBAOQfpe9UXy9EIoPLK6rL\nYzCE5rRUtfej2b1xTPAL8pGG8VZP45hA0q07kBWBRnEdTgl+BxcSj044uwecWW44ITgAX1YIOOBA\nCCFi2f1wTPALNV/6b5m4AMcEv2C0lXxIkNw67AhI6zLIXh9hNRVnBYepOdZObvAbPhW2Hu2nmFHP\na9/oSdsO0RbDQnucJ45Eybr2jVnJmo/gt3khipdLPms95zyNyj3qu78H7FqJwv9tAsRiWPu3h3qW\nrPkIwV9vRcG8tRC1tMJhaB80pdwAADiO6I/Wh9loungTVt4e6LZsLgrf3aRqCaWIePQ2hbULC0f4\n1p2dqoKcbUgo/OcqbqiZJrnoY4WNfqL/2yhpycDtau2awY7u9iq4HAeF69W8QuUTWECPA8vAspF8\nbmcv/w5N94zTyI0lFpteJRsWi2VySpHcAIlaW5GzVnV1EpKQ1NtYH0ChazeDbUuuszXTH5wcR0eE\nrFxPm3ymfz9ZvJ+aCac+/WiTb4zfNeqZeMS/PUThuqk2dSPxHu/4d6VDZkfGWT2F4wJJEyLZDbvs\ndSnjrZ6Wey6GGMcFv2Ks1QycEBxUMBikjLZ6HKcEv1PP+3HGwI3lheOCX6kqbsOtpsAW9nLyZWVo\nu+E3FGMZDOb6XdbZMFYIkSl9P2iLXVgE/ObM02kOU7+nO9cfAzzJ5irlNN5AWl2K0ns9D69CzfFb\nKPzoT51kisVig5MsuqyHQepVUIVsXwYL2iMNSZJiyl6GhPlRGPJsEGydFN8GS+K0Ox3QBmFjIzFZ\nygjfuhMtGeko3sfshpbuL0BjhSKl/3wH6T+bTyljEnhMnoaqv/4AAPjMfNFgedo0alOVJCiEQOl1\n2U28FBF0e01cE54EIDEkOLDCccGvYIGFc4I/0YpmnWRZsGAIdHSAVoZ0jYJdO9BWUkz7evri+Egf\n+DzzPNNq6Ew1rwjnyn7AcB9yuqsyFgD6uzmro8saDEcyJU1PbDj2CHLpjZyaK3DiemJgwHMWY0FP\nhtpMxnHez9SXOBtsDLOZgvNtulnCxmDLnQSwOWSbiKmD7i8Hu8gohG/dyciXQtiGrWBZ29C+Dt2h\nSOZK6XdfoduLrxokw3XYSMpgcIx/xGCdclaRTc4XQQhXlidqxWQS+04Jfqe8FpcERzHCaqqCV0OK\nJVTIAl3kb9+sthcKSQLnSz4/G+/cQtn+74yypjpsA4Ml5cIJN/NkgiZBjdLwJF3Ja7yN1LqzhLQi\nT5c1GKTJzqND51EGQk1LEZIztmFs+Ds4kaV/Kb2uSokwV+7ETwwxioTZDGqkGjaHRdSLoA3GOFGS\nfikAkrKjdPQqAIDQdZvB5pILG9OEMd3N1o42mHZEfgNel1mFYy8dUDGDWZoe3GNaBQW08Qa1oRWh\n7O7wZYUo9R7IckJwENawwVirGWgU1+GyUH1hAtkQJtkwpVB2LELZ3VEnrqKutaEVxwW/YoTVVLDB\nxlnBnyZd3c1C54FfVYnGu7fh2LOX0dZ0jH9E7lBAxGtFyb4v0JpPPg7ePrY7PCdNg7Wn6VSepBNp\nwvM439dhxdb+EO1q5SFU8Qo0D/yP6C/ehI2vu8L1zIX70JJB34FhlzUYVDEo8HkU1ZveF7ApM4Yr\naXQlFAsQYRUPMcRUuMF1/kkmVTM5jOWGBiT5BN5PSULEqo/8jZpTJ/SWxfXzh89zL8HaQ7EhEd0Y\n01gYvGkC/EeFAQBaKprAq22Ba6Qn1f3ZVPMYSOHUT7HUMF2wwUGO6AFy8EDuumzOgSx8tOGE4KDS\nsdLNf8d/O5IjSkWOSHkytmyis7nCsraGTTdf2Pj4wi4kFDbduoEbEETbemxbW4XPM351NXh5OeCV\nlYKXlwteWQlEzZZwL1WU/fgtbOYvgo2vHyPrs7m28J83X+k9URsPvIJ8iFpbIWppBjhWYFtbg21n\nBysXV8n3QSfwEJDmeMkX1GMfu3AEO8TDwcodNhw7tAjqUdNWjPT6i+AJm3SW7fnYINj4uiuEJgUu\nmo6I92fRGrLU5Q2G5IxtiPQYjmDXvqhrLcGlgh+YVsnsOMkzzZNXUyVn7XKErt1s1DXdEybBPWGS\nUdckgbET2fxHheHgsN1U9RxZZqTMxZCtibiw1LieKW3If38rghYa1tzR49HJcB05xmBdzDHJkilY\nHA5suvnCNjhUstHv5gvboGDNE00Ya3d3WLu7w1HzUK0Q8XhozctBW1kp2kpL0JqXC35lBSHppkHB\nrh0IWbkeHEdSfzUysG24sAuPZFoNs6asJQtlLVnE5Pm+Oh7/z955hzV1vn38mxD23gKCgIggICoq\nuCdKXXXXqq3a1mqHba3W0ap1W2db7fK1trbOn7WuqhU3KiLiAEEZgizZe6+QvH+kWeScJCc7cD7X\nxWXOc55xE0POcz/3ejZdMi1v7q4zsArzU9k6RHR4hQEAXpTdwYsy6fluadoXGwZdx/ZnEdjz+l0U\npas3KLktnMZGjfqu6ittawNoDJIcbXX51XDu11mzsshJS0mx0nOoQlmgApklob3REQtqqRKmsTHM\nfP1g5iv/Zkgfldaszevg8cWXWrHi0ugXnGbixBDssmq1rtvhFQYn827o4zpFol2bgc/mRvYY4r1Q\nol3XazHwi7VFNZ8FA8BQo8m43XwOjVzqZjd1wC/OJsrn5wYT9lV3fENLWSmyt29Cl5XqLeWur7xc\nuwpcNvGXorYwd7XCxSmHZXfUEhXXr6isQrOiZG/doLG1en6yB0/3yt4YkvWTdzwNjabI2bkVznPm\naTSmgUa/4La0Iuj8WkLXI6K4BlXS4RWGPq5TdC4r0iCvBTqvHBAxyGi8WBrVK03HMNr4DVxrkh7Q\nqCk0HeQsC3ZFBTI3fAWvr6kV/mnvZKxeBmipPsy5sb9hevRiPNx2C1kXUgAADCYD4YdnoiqjHA3F\nuqH8ElF+9bLWFQZ2dZVW16eh0XeKjv6Bmu7+cFkgeWhIQ5M0bSuCzq9F0Pm1aCmpQlN+OSyCvQAA\nzcWVal1buRKhNGrhetp36Oc+S9tiUCaq6Qw8DfwF111ZPXGrqWO4HSgKp6FBL83n6iJj1edaUxYA\nCLIj9V09HNOjF2N69GJMu7MIVp62sO5qJ2jj/9AI4adlpULPT/bIfN32OmjJLtJ5GAYGvH+ZBoTr\nWbj7ksoS+AHvkIbJMkTnUW+Q9qOhUTf1qcn0c4GGlMRJm5C66Eewq+ph2tUFZRfjeG3v7ZM9WAk6\nvIWhqPYFYRE3bVodwrvzUmNG+IkHMeqq1aFtsTZfVm/B664GgTpdvE1X0GT2JF1FFx6Q+p4FqeFF\nGky7kW+K1Unl3SiVzVUcd430HoNBfs7FbW1FtzeXwdjWCUk/SdaC6DJ+Pp79Qhw7xPyvlkjgh9tp\nVyUanSBj1efoum03nYmIRoLmgnKkf/6rRtfs8ArDk4Iz2hZBAl1VDMigFQLV0JGVBl1QFtoD+Qd/\naRefIQ67RaFxsuISWmoqSO8l/rgCzmGScU7y4OswDN52YQCAy2nbFZqDhoaIjNXL4PX1FjBNTbUt\nCo2OYDsqGC4Lx8LAzFjiHp1WtYMS7DoJDubeSCu5hdzKeG2LQ6MBMlZ9DjAYvFOlDoCuKQq+bwYj\n7XgC4T1bfydUJCufjUjtcDgAU7PeprUJTxQey3cnen5gHWmfp/uWCfol/iAsTth2bGtjPYI+3on6\nwmxknPpBoh9fmej25jIAQPe3ViEn8igainPBbWXDuf8Y2rpAo3NkbvgKAJ1xS5cJd/0ABgzVb6n5\nxeD4BJ3nJUop+/cROPVNKl9PGrTCQEBEtxVaD4SO8FuF5KJreFkWAz/n0bA2cUFS4b9alUkW/AJu\nAMCCIQAgjf0EWa3EhZJoSOBy27+1gcvlBTfrGD0/HoCeHw3g1WIQwWVQFwza8ZpeuCy9XLsS3lt2\nanTNouOKZ48i2qAXx7Wp5MzlSvQjGvfs/9bINf+L4x1DIadpX2Ss+hy2I0fDbsw4bYuiU+Ts1p5X\nhrt5IAJsRmh0TXVaEaTRYRUGvlJAFL+gbcJ9PxdzS4rLOY4Iv1U6rzAQFXAbYDSOVhgUJGPV52AY\nGsF7k365qMlC16wKopwa9AtG/z4d06MX49qCU6hMKxUEN+uDsgDw/Pg1CadZs6dc6qLnJ3vErBI0\nNLpIxY1rqLhxDVb9QuE4reMG55ec+QvVsTFalcHeuLNWlAW/Q5+BXVGLuue54LapyVD4x3W1rd1h\nFYbonEOC122tCdpWIvKrn8PS2Ak1TXrg/iAFFgwFlgYaxeC2NCNj1edwX7oCRs6dtC2OUpRfuYSK\nG+TBrLrCtQWnwDI1xORr7wIAqtLLcHUeXc2cjMx1qxUeq0vuP7okCw2NLKrjYlEdF4suK9eCZWur\nbXE0Rs7OLWgpK9O2GACAfg6SNbzUTeDpL8FgGcDQzhKmXV0k7tMKgxrgb8bTSm9rWRJJnhVeRlf7\ngRjk9Y6gTR8CodtmS8ppTcWdZuqpFmkkyf32P6VWD+MbXn71hcZPvZUl4iTvs8zlcGHtYw8GkwEu\nR3vpXqnS7l3aaGhoAADZ23nuKUwzM3it26xlaVQPl81G1qZ14DQ1alsUMUa5SNbJqGNX4E7REbWu\ny2AZ0C5J2uJlxX2JNm3HLwBARtk9ZJTd07YYlKCzJWmA/+IbGCwWvDdr/3NKio7GKMiCyWJiatT7\nAIQuSFOuv4dpdxbhnwl/oKmiQep4737T4ejdX5D6M+3uIZS/SkLYrF24f4IXrCv62iN4PHISLgrG\ni95rLzAZBujv/iasjDuhtrkMycVXUdHwiuIcLAQ6R6CTpR+aW+vxJP8MqhoLKM/Rr/MbsDZxQXVj\nIZJLrlOeo4fTGLhY9UAzuw7JJddQWpcJAOByOZTmoaFRNZz6eoG7Z5cv14NlZaVliRSHy2bj1d7d\naC4u0rYopBgyTSTa1K0sALzCbYGnViNp+ja1r9WWDq8w6AsRfqt01srQ1rLQFlqRUD1cNlvwcDCw\nsIDnVxu0nqu76t4dlJ7XvTTFVJga9T5uLj6LssRCQduZUbxc19OjF0uNYwgY/TGeXfsBL+NOwdln\nIBy9+qL8VZLU9Vz9R4gpDKosWpezaxs8livuLiQP0uJRTA2tMMzrA7E2K2MnhLrPIexPlI60h1M4\nPGz6iLWZsCwxwONtqeNkzWFj6iaYg81pxrX0b6XOEeErXtPB0MgYfd1mAgAKap4jp/IJutoPlDoH\nDY2myN66XvDaetBQOEycrD1h5KD6wX2UnD6pbTGUom02I3UR+Devjgw/W1Jb1Gl9YHC1WFWVDAaD\noXtCqQm390bBeWooAODxuK2k/XRZYRBljPFsXG06Di64GGM8Wy3KgtfRLQCAzDlfqXxufcfA3Byu\niz6GkZOzRtareRiL4lP/08hauk7PiGV4epnnLmbv0QudA8ORcImXrYjMwtA1dBYYTCbSY47BPWgs\ncpOuaLXStSoR3WSLbur7uE6Dk4UPAOBl+X2klRIXfDNgsBDeTWilyq2KR3pZNMyN7NC/85tifcmU\nhgEe82BtIoz9SSy8hNL6TDiZd0WAs3jNBbI52ioLT/LPoLqpCF1sQuBp2w8AkFedBDerQKnz0NBo\nG6axMTrNfw+mXl21JwSXi/LrV1BxLVJ7MqiACLclgtf17CrcLvpTi9LIhsvlKn2iSFsYdIhwX97D\n0YCpn4HCYUYRYgrClaZjCDOKwP3my1qUqmPRWleH3D3CDQvL2gZ2Y16DZUg/peduLixA0YkjaC6k\n5sbRUXh6eTfCZu0SXMvjWpQRewJhs3YhPeYY3ALCkZuo3w9RPqO6fiJ43XYD/Tj/b4R5zIWNiRu8\n7cJIFQZRZUF0jiZ2LS6nbYeZoQ2Gei0CAAzweBsxOeIPbBOWpUBZqGkqRnT274J7uVUJyK1KwBDP\nhTA3sgMAMMAAF9KVNVE5UkpuIKXkBiJ8VwqUBXnpteE1dBreDU+3XEH+lRRKY2mUIyKK99m8PGyv\nliXRPJymJuTv/1GszbSrDxwnT4eho5NK1+Ky2ahNTEDFjatoKdHvBC6ySK+J1bYIGoFWGHSIq2m8\n00kia0KE3yq55vA6ukVrJ+8VnGIEsQYikc2LvQhkhaGSU6oVWWh4sKsqUfzXcRT/dVzbougN1j72\nCP+DV1OkOrMcV+byTOX+80OQfOiR1LGKxB/kPv0Xjl79wG6WHh+hTxga8KrSZpQTpz28n3NE4uRe\nlHCfpYLXZCf29S2VuJGxDyO7LoG1iWS2kOHeHwpeiyoLotzJOoDwbp/DgGGIsb4rJNYis5KIcjlt\nu9TfhYhOw7sBAHp+NYZWGGi0SkNGulbrGLQH6tjkFeTbE5otB0ojF0SuR/zgOmkwLbRbOj6V/RiW\nTBuMMZ6NMcazYc10QAr7oVZloqGhQtAHoQLXwmWvAAAgAElEQVRloS0BC/vB3MVS6viwWbsEP/1n\nCP+OG2tKBO0N1eKBfHnPr6Nr6Bt4eJrYJ1WfqW9W7EFqwDQCADSya6T2a26tlzmXrDmuvpCdTaq6\nSbXBl4U3XwAA7n+kP+l6+SfzNDQ04lgZqtY6o6vQFgY94WGubD/xLvslq5xqmnvNl7QtAg2NwnSf\n21sQ2Mwv2CbK0H2T8O/0o4Rj22Y4EnVPir8o3a+dw2FLva+vBDpHIK86UaLdmGUh1/i2bkbS6OXy\nOuILJNM4q2KOh6+kb+wrG/NgY+Im9zrx6/8F1ut2IU5RnIf5aFsEGhqdJcBmBHLrpCe4aA/ovcLg\ntXoKbAb5oT4tH5k7zqG5sFKucS5vDYXztDCwK+qQsvQQ2JV1co1jGBrAe/UUWPbxRl1KHjK/OSv3\n2M6LwuE4sS9qnmQife0JAACXLZmOj8wlSZeDnu3fngCLQb0AJgOl/3cadXHPNLa2ef8AOCycCgAo\nPXAadQ/kW9s8LAi2M8PBcrBBzdVYlB2+KHuQirEcFgK7uePAZbei7l6CSmTYlzwCm8bFojhT9ukr\n2fgl/jeVlqM9YmIrnxXPxtVf7jnD3tiJ+//7QlGRdJIHucfQ3302GAwmTA2t0NBSLXZ/hPdHcs3T\nxK6Ve017M0+1zdHcKv07vrqxiJLCoG/03jhO2yJojIVxb8vuJIUD/XQ7+JVGNVQ1F8HaSDPJRXQF\nvVIY+lzipZN6PG6r4DUfcz83BP72oeA+6RwXvwREYsWNnK3R89inAID4yTvAaSY/6Wu7pmXPLnKN\n9dn4Bqz6CrMSWIV4C+ZKW3EEnWYOIF1TFvyMQbLaAGFWIbPe3eG8/G1Unr2Fir+uCu67rFsIk+6e\nvL5z14hlayHLTES0ltNnvDSrTS9fIX/tzxR+G2oYebrCbYv4xsPpU97ar1Z8j5Y84kCrLvvXSLhv\nWUUMhFUELy0iWQyIPNmZpPURvWcVHgb7+RMJZVA2BkWezb4uKgW6KFNbHm0nDtAFxOMXKvOT5Y5n\noKosDBvLOziIipQvrkkblDfkIr7gHHq5vC6RWpVPc2sDbmSoMvBUFdmlFJujldMisw+RS0/+1VQ8\n3Sw90L1tkO7Ym0vAYAofYkV3MvBkjeyDBqL1S+Ny8HD5WdIxNj06od+3U6XOISobEd6zQ+C7aJBY\n2935R1GbKb1ar4mjBYafekei/fGXF1Ac/VLqWAAYfGgOLLzsBdfx6/8VuIK1FzYkTsTXQf8Q3nPx\nt8bik0NJ79MoR0zJSbFMSRFuSzSWWlVb6JXCwIe/2X659TQq7/ICxky9nOD/43uC+0RKQ+9/VgmU\nBdENfo/9i2Dibo9eZ1eQKhv8NVvKapD4lvBDIWuscScbgbJQeS8VLzf/DQBwe3cUnKeFwnfHXLH+\n/OBmeYOccxYLN+wev3wl0UZE/ZNUAIDN5OFiCgNfWQAA+3kTUXbovNR5uuwXbmxzPtyG1ireSZ7N\n1JGwnTYKxt6d4fL1IhRs2C/X70IVvrIgqtzwN+Wdd3xKuPFm2dsIlIXy45GounD7v3ZruO9dIZhD\nnYHjLHsb2M+fCG5zC/JW7UVLUTmYZiZw/mIeqiPVX6wvdHIn2Z06MET1Fvzn8fL451xpXxsOdVJY\nk4IUliX8HEdK3HtaeAH51bItgSYsKzSyq2X2A4Cy+my1zcFiGoPNaSIdZ2HsINf8yuAY2gUhO16X\naHce0hXhkR/i6tifCMeF/jAdtkGuhPcc+nkgIuoTwg2/KmIWyOYYfGgOsv73GCk/3aU0DgD6bJ0A\nQLqSQjS+1/rXkGxvLk1cnUaackBEQXIVrSyomesF/4dRLu8Lrt3NA9u1a5JeKgwAkDBjN1rrhF/g\nDZnFhJYHPp0XhYNhwIvxbruxf75oPyyDPdFt22xCZaPzonAAAKeZLaYs8Mfy13SeHoaiU+KVowP+\ns3o8e+8XNOWXC9rzDl5H3sHrEvJeTvkGAzznISbrD+lvwH+01ki6nRC1UcUqPFSqwmA9cSiYFmYA\nJE/TK0/fQOXpG/A6ugUmvh5KyyKNtmtnzvlKoDRYvzYIVf9Gi91338s7zc16ex24ra2CdnZZldhY\nsxB/1D9KVovM7nu/QM7iLWL/T5z6RkLFSvTUPXi0I97bFyh2Ci96f1/yCEE70Un9rodDYWxuIDaW\nrP/k5V0x6l3h/119VQtWhok/3EXHA8CN33NxZke62P3cZzXYMf2hxDj+elRk0gSnBv0C31k9BfEL\nVl52gtfSirbRSOLnOAKetv1RWpeJh3mKFWUa2GW+3FYIotgDeeZgiJicyeYIcZuO2Fzi2BUAcDSX\nnddedIOryGY8ZMfrqEotRsz7JwRthhbGGHVxEQxMWAj8YhSSdl6XGMdXFog22I6hXeD/6TC55aWS\nipQ/pj6vErdn/ylxz/ONPnAe6oOoWYckxpbG5YDbysGjlW2eQQwg4hZvXgaLSezSK/LeiskrMlZT\nbEgUWpEPzLmLV095SQAMDJlY93i8WHtbheDDv4fh/pFMPD6TI5iH/69oP35bfUUztg/lWasmruuJ\nvjO6EPZ9diUfAWNcxe7ZuJpiaeRoMdlpZUM2LZwm3Cv+HwY6vQGAF8sQYDMCiRXXkFevnv2DNtFb\nhUFUWZAHp9d5eegbMondVGoSsmSOjZ+8g/B++prj8Nn8JtzeGSmhMPARVRZkIa+yoA5qbsbBcoR4\nzn4jT8nTKbtZYwEApQfJzdmCvm9GoPy46msxZC1YT9jObWGDYciC1dgBYgqD4+Lpwj4iyoIoZX9e\ngP3bE+D8+Vy1WhkUUeoWfBuAysIm2HYyRkVhEwxNxJOcESkOoizve1vsvrQN+ah3PQT3DVgMfJc4\nHHauJijPbySdY1/yCDy/U4bUGPkz4/Bl4o/XBZektBNPkXbiqbbF0Hs8bfsDgELKQm1zGSyM7GFk\nID1mxJgl+8RY1hyju5FXq+Zja9pZZh91w+VwxZQFAGipbULR7Qw4D+2KzhMCCBUGaZTEZqNktup9\n7n3mhwpet1UWAN5GPiLqE5i6WBGOJ3WTEvEY67NpPB6tFt/UGpgIaxhJKDdcoKGwGqadiNdUB203\n6/zrtY/GC17z23eNvIqv4ydgQ68LAABnXys8PpMjmIfMwiA6D59/Nj7FPxufirXxuX8kEyeXPcKE\nNUGCtqWRoyXk6agE20XI7gSAw2WjtqUclc2FuF5wAKNcFgruBdmORpCtUAErb8pDC6cRHEgquLJI\nKNedOlZ6qTBwGmX7i5KRtVO6m40iVD+WnfKUDE4zG0wj3flvKD9ySUJhsJ/zGgCg/uFzif41N+JI\n56qJegTLYSGwnjBELQoDt5n4c9D0IgcmPbzBcrQVa7cY0psnlxSZqyNjYP/2BNUJSUDh1oMKjTNg\nMbB2xD0sPxmCXTMfYdqqbiqWTIjoxr2VzXtKf/RrMDaNExaoWTNM3H2Ky+Hi49966cSmn0Z36Nlp\nAp4WXqA05m7Wr4LaBiO8P8LNlz8S9hvh/THpHM+KIhHgzDvYIHNLMmFZwoDB+/7NrJAsvnQv+xAG\ndpkPAOhqN4CwrkSY+1yJNnUQOYLYP/rJ2os6l/LUZwFPYYgc+YPK5y66kwHnIV1h31fSej38rwW8\nFyShKFFvHFLre8XlyBcD89u8aIm2mpJGMA2E1q7aUmqHovKS84R3eHn7gHrdK6UFjyedSEbMbvLn\nsDZxMVX9c9XOWPGECAmgFQalKLum+Omf/0/vKTyWzN1JGSpuPoP92GCxNk+7/uByOciuELpyqDpL\nUktROQyd7QTXtjP/c7tqbEbp/52Gw/vCQDeTHt4AgKJvyU3yRFScvArLYSEqkJYaXK70L23RuA1t\n0PBMdsCeKEPndMbto68E112CeCdkg95wxf3Tmqu67ORlJnZdVSz+QFs/5j42XFM8gJ+mfXEn6wCG\neC6Eq1UAXK0CSPvJKohmzLJAhO9KvKpKwIuyuzAztEGo+xyZc+RWxcOYZQ4f+8EY7s0LvE4q+hcl\ndS/hYOaFoE7imX9SS25JzCFaf6Gbw1B0cxiKJ/lnUNVYCDfrQHSzHwIASCy8iKBO40l/R10gIuoT\nNBRUE7oAqQtuK/UTVVk0FvHqajCNDCTuGVqZAABiPzml8nXlIft2ruD1wHld0VTXgkenciT6VeYT\nW5h3j74KYwsW3js8GDtHXFGbnG3hWzDYzRxs7KP5bIE01Ag6T16zJ3HSJrWtq5cKg7RMRvoGu65R\noq2r/UBcf/GdWtctPXAaLmveg4GtFVorqmHz+nDBvZqoR3B4fyqMvd3Q9DJP4TVaK6UXTNIWrdXy\npcHVBVqaOJj8RVfUljcT3j+xPk3DEpFTnif5WabpuHR3GC5XvwjflaRKw+O8v9HHbRoAoLN1MDpb\nB0v0IRsLAOll0ahuLBLMEej8mkQfLriITCN2N+XPL1rJubfrFIk18qqTdFZh4Lv/AICpi5Xg9ZXR\nP4LTQuyaqSqUOc13nxCIgC8kA+bloeJpvsLrgguxTIpUKIwXujwPfb8bvhnEOx22cDCWa3x1USOh\nG5G6+fL+ax3aDUmf4CsL6lQMyNBLhUEZ4qfsBKdJMZcmaelaFcXYxVaiLafyMfydw5FcpL6T8MZk\nnhuV08dvoGDTAQBAU6a4cuC68QNeBiIFMXLXzRzFRu7OaM5VbeVWdfHNlDisvRSKBXsCcGqL0ITs\nEcirONzaovoTPEUJHG4vs4+BoWqLy0tLMdqpcz90D5gmuCbqwx9fVpKMpMfEsUP8Pm3hcltx+4p8\ncS78Oe5HbUNTYxUAwM6xO4L6LCDsr4qUqaJyv0z7F7mZ5ClhVQ1/gy1tM2/AMET4f/ED7ta9kFsV\nL9GnuC4dl9O2g8FgIsh5PFys/NHErkF8/jlUNsq3KRSdI9R9DqxNXFDZkIfUkptyz8H/PQKcI+Bi\n6Ycmdi2eF19DWX2WRB9dhO/P33vzeDgP4QVoj7nGyzKnTsUhYaNi7hSiisaLX2OQcVjovtJzzVi4\nhndXWjYycu6+gscQxWJWsm4JLQzfDLqMj84Mh7mdEXYMk99awOFw8e82yUw7Xwf9g3WPxyM3oQK/\nL5CeTU9U6diQOBHfjr1OatUAeM+Rzy6PQllWHdyDbWFswVJKgeizUFKxp1Ed2lAWgA6oMHReHI6c\n73WnGrFNmK9E24uS24jwW4UutkJ3nshU8hMwZTDx8xS8LtnXppo0Q3jMwi6WP2ibj/X4wYqKpVas\nxw1Gyf6/VT6voaujyucULb4WdYTnllTwog4z10p+buSlubEVRiaS5nyqiAZBA8D7PwZJ9HEPsBS7\nXvhDoNLrykv3gKmyO/1HWpLk5yG430LY2JFnv2EwDDBs7DeUNveOzkF4lX0Xg0dtgAFLvlNHRRBV\nFtKe/Y2CV5rzF+YrC/Ut0ototnKFBze+DsMIFQY+XC4HTwv/wdNCxTcxXC4H93MOKzweAJ4VXcaz\nIt3xKaYKv16D16w+6P4B7/t5zLWPKGU/okLBdeoW0JHnhMGjRHKJ1qAgw9jODE3limULLHparLDC\nUJMnblX/ccotwWvRDXh1USNhOwAwmQw8OJFFOH9bdyHRsWSvyfqLymBswcL2IcJ6IMpaOULe11+F\nQS9qKTAYYnWyNIVqj/t0GE4Dz6XDYWwvhcf2Pq+GQkkk332XU74R++Fy1XCSzOHNadbHDwDQUiQs\npNM2pWreV8RBh27bPyWd3mIIL3d9/nr11GGgyqvl3wIALIb2Ie0j7feRReednyk8lgpbJz1Al55W\nSL4rVOK6D7DFuI+98N5e3ob8o1+DMWWlD4LDJZWYnf+lOfUfbAemAQND3qQekHXtYA42XB+AJb/3\ngqExEx//1gsMJkMs4Dn+SgkAYPW5/jBgMTB1lQ/8B9mRTQkAWHYiBEwDBnoMlW2tEMXapgtBq/x+\nBc3N4tWA2yoLcXd3IypyleAnP1cYIEtmgSCis+dgDBv7jUBZeHjvO8Gct698CTa7Qe65yBCVJypy\nlUaVBVFic4/I3belVfnfm0Z+Mk88VpuSIIqBMfUzSSMbXlara+OI0xi7jJJ9WNJ7k+LuYaJWAk2y\nIXGi1jIUtTS0CtbfkDgRG4KpJSnQNmawwGjGdIQywjGaMV3s3mjGdHRn9FZoXld4SsynbZLn7kbQ\nOcU9P5ShwygM8dN2CV57Lp9E2s92iD/pWAaLKajlQBWigGn/H95VaC5Z2E4bJVe/ssO80wrbGaMl\n7lVf5W2IjDo7AeDVCRCFn3KUf18aTS8kg760QUtBqeC1aFC3KPzfJ+vtdaTz8BUsURT9XCjD0a9S\nBK8//q0XXvvIU6Ag+A2yw8j57gIFQpTCjHok3SzFhweC8X3ScMxcR91acW5XBr5/+wl8w2yxJ34Y\nug+wlciOdPDTJDy/XQZXX3N8lzgcI+a549PAW6RzJt0shWewFb5PGo4P9vekJI9393GyO8kNQ0xZ\niIpchfq6ErEeL56fEbMsyKs0GJvYAABKi5IQFbkKdTWFgntcLgfR1zco5Y4kKkdC3P8pPI8qcLWS\n35qUVKy/p/Y0kjRX8RTA8CsfKjwHu444bksaSduvAQBsAl0I79uHuMucozKrivK6quDroH+0Fkew\nbeBlwfpfB/0DjpzZnoiw85F0s1Y3oYzRSOMmIJZ7Fde44gHv17inkMp9onGZ1IXH6hkAeLEMRD/q\npEO5JPELu9mNDITdSOKHWeGJaFTckSy4kf7VcfhseZNXLVrK/GRrAsRKA1GxOSMDM4zsJh4s9rIs\nBmkl0n2Q89f+DNdNH8Bm6kjYTB2J8qOXwDQ1gXE3d5gGdZOoK1B95T7s502EkQfxlysg/cQ954Ot\n8Pj5S16xMy4XFadvABBXWPJWqz6tnjLwi7NZDguB5bAQ1N5+jOacQtjNeU3ggsWpbySs01B9+R6s\nIgbCedlbAICKv6/DwMocVuFhAICGZxkwDZBdwIkqRGlK27ZRTWW6/8NEpdYDgPS4Spnr/rxIMqMZ\n2RhpMpHR2FAOE1M7WBFaGHiUl6bBzsEXgX3micUpOHaSdKECgGFjtwley9q8FxckwMmFZ3738o1A\nZprsjW/as9MoePVAZj+qtLUsaIvCmhR0svRDd4fhKKpJJXRN6mo/UJBhCADK63XjUKG9ERH1CWIW\n/Q9VKZIxW/yMQlTnk8cycWPSAUEcQkTUJ7g65ie0NoknK+EHNZPNR7SWrCDqV5eeI3DlaNLx/fZM\nIRqmN3x7JwRLhzySu12da5Ix7bhmg7b5FgBfRjB8wfsu5isN/HvPuQ+RjyyxMQ2ogyl4dVxucM+A\nA94znwEGRjF4sW9PuMSVyLXJy9Xaq9PVoRQGgHiDzofL4SL/8G3Ce9VPMmWOpbomWRD1QK8FghSq\nlsaOqGkqQYTfKpkKQ9PLV2jKzIOxF8/FxG6Oik5dSXzlWqvrBJtoMBgSlo2cD7bqZEairPlfw/PQ\nBgCS7kn1D5+Tpo8tO3wRZv0DwLKzBiCuGLFLK1G49TdBpWgazZCa9DeC+y2UaLe29QIAtDTXIjXp\nFAYM/xL2juLWw67dla+3kfz0uEBh8PAaLpfCoG5l4cGdnSqfnwrxBecQYcmzwg31WiSzvy4HC6sK\nso2ua3h3iQBeVbsKDdj/htT7LdWys5uJZloi+l2IZBYdQ8XSIM9a0hQHaeM5La1gMBlasQjLS8Ag\na3z6kx/O/fQKM5Z5YN3rT5GTXIdeI2xh62yEXiN4J/jxN3kFMsnaD6UNQOylMrh4mcCtmxne7XEf\nh9IGIP1xDXz6WILLARhMYL5vDA6lDUBhZgOeXK/Aa++5YsusJLx4XEM6ty5xjXsKoxnTJZQC0XtE\nPOJGoRH1sIA1RjKmCJSMUYxpEgoHDQ+9UhjkyVKkqj6qHittXNt7TIYwINXJ0hc1TSVth5CSv+Yn\nME2N4bRkFkx7dgO7pAK1MU9RcZI445K0asbyVDouO3wRZYcvwv7tCbzCaFwuSn89g7oHz+SWmSqy\n5Crc+pvU+9wWNjLnfAXz/gGwm/0aDGytUHMtVuCiJY3cJTvANDGG02ezYRrgjcbUbBRs/lUu2dRZ\nObqjUlmeQdge0IuXp/9F8nk0N0kW7AIAYxOe4ldSKLRsODgL6wVUllOrl6EtBo38WvA65tZW0t9X\nk1xO246RXZfAyMCMtE9WxUOklFCrTKwqfLbtQfpq2RWe9Z34r/9Frw2SqWQF99f/i8Kb8hXwyruc\nDLcISZddaVwethdjby4hDVS+/+FfhO35V1LgOkbS9ZMsrqEtj1acQ8iO1yXar4z+USzgWxd5Fl2F\n94N5LsEX9+fhQGIoFgbFCjbrbTftZO2HN2Ti+lGey+OhNGF9nM2zknAobQCWDnmEXbeEB2b/25GN\nJ9cr8L8d2TiUNgDzfWNI524PNIIXFF8Lche0fGTCFV6aEknn0SuFoaNwM/0HBLu+joT8c+jmMATd\nHIbIHiQCp6EJhTs0a7Yq+/MCyv7Ur0CpugfPFFJsOI1NKPzmd8H1mJCvceXRBlWKJhVvl6F4WUBs\nCevI2Dl2R3lJKgDA0MgCAFBSKLvI4/MEoUXJq9tYwevsjGsqllD1iFoW7t3chJZm3bHo3cjQ3Wwj\nmlYWlLEayDOWrE/hrRe4PEw+hSBo6R4kfkv+viRuu4rEbeIHT7LGAJIVquUZ83TLFTzdQp6KVNZ7\nUhKbTdon88RjZJ54LHW8NvnyeCB8elng6ymJKMpugKGxYtYQE3MDjJnPczc+tjVL4n5lSTNaGoXJ\nVJ5cV14peOuadGuWvlHFLYcrQ/cUhu77P4KRi2QCkfRlB9HwQokaJDKgFQYdhMvlICH/HACotLoz\nDU17pqvveIHC0BYulwMGgwlv39fwMu1f0jlMTYXZmRrqy0j76QJDRovn4h44Yq1WYxd0DZ9tewSv\nuWw2MtaugO3wUbAfy8ugw1cabAYNhYmnNwqPHgIAuMxdgIasl6i8GwX7MeNgO4LnE5+1fRPYle3v\npFXTyFIWOjq+IZaY7xsDAPDrbyV2jyyTJlF7Z18z7F8un7IIAAMmOSDmfKlEO5XsnSbW6ksVrQ1c\nGZ7aFkECh8lhMHKxk6jF4L58Cnx2v6vWGg2668hHQ6MFBvb4ELYWHmAwmAj25mUj4LuIMRhMDA5c\nAoBnVWhLeB9hZiU3B+I0bnaWnmLjBwd8LLbGwB5CX19+HyMWuVsHDfAimadcm1nwMlw5u/LN7MIn\n3cNoXkpdd69hAIDOXYhdEppFTugNDXX7fWcaGAIQj1mgkuK1PeO9fivSV38uUAoy1q4AAFTcui5h\nXaiMvg2LQGFWLvOAIFTejYJl7xAYd3YXzOO5Ur0ZSHQBCw9feE4RxgTZ9RwAU+fO8JmzTNAWtHQP\nLLp0R9DSPURTiPWz8QtBp8ETJNrbXps4uqHHB1vatLkK+gYt3QNTZ3cELd0D++BB6Dx2NgDAY/zb\nsPYNlimLJsiNyZPdSQ7O7nuFQ2kDcChtAPLSxdMNL+geI7gnqz03tU7Q1rY/Ea9S6wV9+QqLtDV1\nHWOYwpvRAwDgxvCCO+RLSFKCfIxmTMcQxnhkc8nriES4LRH7USXS5nV5JxzPpm+TaM/ddQacZrZE\nuyqhLQw0NCIUVTxDRS0vY0tNAy+zCIfbip7e0+Fk3R1MJvmfDIPBEGzyuVwu8kolU7mV12QBAArK\nn8LGwgNmJrwTbUOWKfr4zIGFqbBuQmZhNACgma1YAaKOQn5ODLr5C/2Vu/WYDIAXEM2nbVrULj6j\nCNvLSpLh6h4KALBz6I7amgK1yKwK6uuKEXdXcqPUf/ByPLi7i2BEx6H6wX1K/ZsKhJu9ljLeKavD\nhCkwMDMTs1S0d2pz0lCbk4aubyxBxv/2ofwpb+OYfnS3oA+7rhq12alI/PZzqRt1DrsZlSmys+vw\nLQ7Pf/5Koq02W2gxbCji1UcoS4hG0IipeBV5DDkX/+TdVLzsgsooSpA/1lAaZ/fl4uw+YS0I0c07\n0TVZ+6UD+bh0IJ+wD//fD0KECRhyU+vlnlvXaJtKFQCa0ICX3Od4iecy+4teJ3DvSe2rC5ApBuwy\n9cav6ZWFYVn8TLF/aWhUDReS9tcxIV/j6ctTuPZEdgakK4824MqjDbj6eCNpH2tzVyRmnkH/7gtQ\nUZsNAPBxHYmY5P0oqxYG2rZyiPOQiwbF00hiYGAEACjMe0jah8XiFYd6HCPuX/3i+RnBay/fCDVI\npzpElYWoyFWC4o6m5g6wsKJejE8aZnau6LtgNxhM4kcGWbu2KL10HnYjxwCQL14hd+9uuLz9Lhxf\nn47sXbwkFA0vUlF8+qTAwtARgqT5GNk4AJC0BgBAY1mhRBsRDUXKn7hnniYp+slgwHPK+zC2k10H\nSBHy4+T7HUXJutWxUwOH7xyhbRE6BNyWVtJ6C0RxDapELy0Mv4w+L7uTmjGxdECP8I9haGKhwGgu\nUm8eRGVBiuyuNAAY8AqdDqeuoQqNrsxPxsuY/6GlqVZ2ZwJa2A0YE/K1wPIAAFFPd0u4JV15tEHQ\nFvP8F4GFoi2hfgsFQdKJmacB8FyYXO2DcT9ZdrEtb5eh8HYZqlCgtbGFPbzDZsLKSbF6EQXJt5Dz\nRHeD2/luOtLo5NZX8Lq1lXpxKFGsbT2Fc7GblJpLWW5f+VLgkhQyYIlK4xnqy9UXSKcuWsol/bGl\nYe7Py5BVco53olh44jB8tu1BdRzPWmEZ3Ac1CbobLKs6GMj8WzwbkcuwySiIOguA57YEAM6DpKft\nNndTPFjU//31SP6/9VL7GNs6ormC2v+xvBQmFMO1XydKYyoyJOuN6AuqsCB4DpddFI+GOm5m/sir\nF9YGS5q2VVCkraWkCk355bAI5v2tNRer9zPI4FKJaNEQDAaDUCgrFzO8+cco7B/zD4wtDNFU26Ix\nmXyHvQNbtx5qm7+qIA0pN7VbmVVeQmfL5+7QXFeJJ+c2K7RG92HvwEZt7zcXD0+u0foGTxNYu/jC\nb8T7al0j9thytc4vD/yNcm7Wbbh7DsSv8w8AACAASURBVAUgWbyMyL+faFNtbGKDsGGrpPYhmlMV\n/eSBPxfZPHKtxWCg7/xdqMh6ClvPnnj4O89Hve+C3ajOS4WlazeUv3yCzNvHBEP6LtiNR398AS7n\nP0uGjTMCpqxAWXocTO1c8fyc7rjutE2b6vHZF8j5Trv1KWj0B/vudph6hFqdlgP9/lSTNPrBwri3\n5e6bdCIZMbvj1CiN+mkbX3A5T3VZ4UTnrmwuxP0SyfTDRi528PhiKow62aIyKhH5+6XXAOJyucS5\njSmgVxaG6oJ67B/DK52uKWVB3s2xsli7+CJ09i5wuRw8OL5CI2uqGyNzG8pjNPN+M9B3Js+96OGp\ntWhtbpDRX//w6j8dTj5hGlmL/3/28K81aG2RXQRKHXBaW8A0MISzC3GwOQBkpFxAVz/Zm4Cmxkpw\nua1g/Of6FRSyAImPfpfoJ7oxF3Vl0jYP732PvgN5FdqHjdmGqCurJfr0nb9LoCSIUp2XirQrvIOL\nvgt2iykMbQmYskIwh1sf3Xbf4jS1/8MBGtVRllqubRH0im7jFbNY08jGjGVN2N5cUI70z38lvKcu\n9Eph0CT9Zm4Fk2Wk8XUZDCZCZ+9CY3UJEi60/wqofPxGLIS1S3fZHVVM3+m8FGS6cEquCqw7dYPf\nSNnVddVB3xk8a5I23su052fgFzQTRsaWAIC87GiJPq+y78qlMADA7StfCRQCO4fuMrMP5efGUpRY\nfdSJBmozGAjqswCJjyUVHiJyHyjm7lmYdEuhcWT8kjJU7HrjxEfIfyF/jYmSs6fEgpU7UvwBDY2m\nGb5+kLZFaLcYMk20LYIAvVIYPomZir0DTqt1DU1ZFGRhYuWI0Nm70FxfiSdnFXPr0QcsHT3RI/xj\nbYvBs+5wWvHgxEpti6IQNq5+6D78PW2LAUD4N6RJxaEo/zH8goTJENJT/pE5pvCVdJN4VOQqdPWb\nQJqCFQDuR21FU6P2Kyu3JSpylVDhceyOsGGrcD9KdspVK9duaKikHvBpauOC2uJMyuPURVXsPVTF\n3pPdsR0y5KsB8JvcTak52E2tiFx6XaHgX5qOQ/fXfRD2WV/ZHWkUpqZF/jidoPNr1VqHQW8UBqIM\nSbt7nVThCgyEztY9H1cjMxuEzt6ltyfgVs4+qC5KJ7xnbuumE8oCHwbTAP1mbkXcyS+1LQoldEXJ\nbUvo7F1Iuvw96spzZXdWAfLEBlCNH8hIuYCMlAuwd+oB3x5TYGhohpKiJLxIPgt2i/yubKoMQJZ3\nLmn9CuKvwr3fROTG/QNT205oqOBtDN1DJ6Po+R2Y2cvOslRblAm/8UuQcnEf/MZ/TOjiRCNEXh9v\nRXzhe80PQr+PyN3xqMIyNsD4n8YIro9N+Bt1ReqpIv5d8ih85n9do2OVWbOj4tLbGWFL+8LB3152\nZxkEzvJH4Cx/FUhFDX2IM2mbBbGgnrwWhKbRG4Vhd6+TarMw6OqGS5TQ2bvAbq7Ho1PrZHfWIfxG\nLCQ8tdfV95zJMtIbBc3SyRs9Rn8ou6MWCYzg+dLrw/spjbLi54gplsznra/kPREGyPGVBQCCTX99\nWZ6EAtD2OuXSD6T3aDQDlUBTZZh9YRoAgN3Ixu9DyONa+IhuyEVfLz7QC36DeRtOsg37p0dD8P2c\nRxJj5WXT3SE4vPwZ0u4L4xB2J47E/oXxYm0AwGAAI9/pgusHsymt0Z7xifBG2NK+MLXTHVeYjoKb\nmR+CbMPF2jJrHyPo/FpU3nmG3J2nSVOqagK9URgAdFhlgQ/LyAwBY5bg2RXVReOrGwZTsmaAV+gM\nLUhCDV1XGgwMTXReWRBF199PGhp9QhVuR4rAMmFhYdzbODH5DGryaiiNFVUEPj1G7sbi1UeYLOP+\n39TS+fIVjNdXdEN5fgNKcxrE2kQVBkMTJjZHD8XKkFuU1mhPOAY4YMDSvnAOVk89C32ns1kP2Jt4\nyNU32E6xxA9MMGFp6EAa3MynJu6FQvOrEr1SGGbsH4a/FkWpbD59Uhb4WDh00evNV9+ZW2DAMta2\nGHKhq+9z3xmbYWCof6c/uvp+0tDoDQxg4QPNWBWkMevsFADUXDye/FuMXhFO4HKB+MvENWoAoeVh\n6pe+OLEmmbQfEdHHXwEAzu14gT1JI/F54A2xNlF2PhnR4d2SJh+SXkujo2Nt5AwXU/kUc3n7UYGf\nqrVtXELWxhOoeSipQKjb+qBb5Tll4BHqrLK59FFZEEUf5XcLHK03ygIfReQ9mxEsdv3TdT9ViQNL\nRy+9VBb46OPnloZGk3iHexK2OwY46ISyIAoVl6jbR3LRf4orEiKLEfWn9Limr28MwtC3qBcCC53m\nCgAwtWTh9pFciTZRlva4jm+fjaS8Bg2NNqmOTUXdM+240OmVwqAq1LlpaawuQVn2ExS9uIfSrMcK\nZRyRl35vyM56okt07qmaXO31lQUoy0lAcfp9VLx6hrryPJXMSwS/XoMyGJuq5s/M0MQSPcI/Uslc\nbWlpqEZ57lMUZ8Si5GUcqgrS0Nygnuw/tNJAQ0NO6JIQwnZdPQ0mUhoSrhTju+RR+C55lFh7j6H2\n+C55FGZt4gW8LjnM+103RA3Gh78Jg7ZtXUzw6B/pz84vzvQHAKy+GAb3QCsAwP1T+fgueRS2PRiG\ns9+8kGgThcsFvn3zIZgGxPWsqnJ1L/sZjWZ5VnkTl/P2IbnqtkbXLW/KIy0El73lJDgNzYT31Jkh\nCdCzSs9gAMue/JcliQvs7k09S1K/N7aBaWCojHgAAA6HjbgTimc+6TlhBUytVOM3qGk3D6obvvTo\no/AZNIfyOg3VRXh6QbHMVeZ27oKAW2WhWkzvVEpPTPd7qpK1+Th694N32BtKz1OZ9xypUb8pPF5V\n72td+SskXf5O6Xlo2ifK1mHQRaicxou6+jgHOWLSb6+pQySVIss9STSAefCbnXH3P1chWX21Regn\nIej5VoBcfTktHBwceETNEqkeTQXN6wqqypJkZeiIgU6zVDIXADS11iGz9jGyauNVNmdbOlylZ3CV\nS6Xq0XuC0spCXtJVvHoaqdQcAPD0wg4AvJiEgDFLZPSWjrm9O+rKFEtdOfUtK5w+rN6TFKrKQmVB\nClJvKlfBsK48V6BIKXuizWBQsxCc/IHcP1dRlFUWsuJOo+iF8nnpBe8rg4HQNxVPQ2xu1xlGZjZo\nrq9UWiYamvaMPigLAPDuvblSN815KbUCi0NjLZtUYfgueRT2zn2kFhmpUBhfLLfCUBhfrGZpaHSJ\n6pYScMEBQ8RJh8wi0J7QK5ckCydTLIufCWNLQxgYURPdLTAcLv7DFV47+/F5xB5brhJlQZTa0mzE\nHluOx6fXKzxH4NhPYeWkWGn204ercTjSDdFZXvhgpZ3CMqiCyrzniD22XGlloS2893eDUnNQUTpU\nrTAoo/A8vcgLNFaFsiAGl4vYY8uVsm71nrxGhQLR0LQ/9OkEmGnIhIGRZFY8PjunxOIz/+v4zP86\nVvUjT17ymf91vHyk/YOE7DvyH8JlReWoURIaXeRh6TmtrBt0fi1cFo4lvadO9MrCsOjKROzudRLG\nloZobeZQGtu5J/EbLA9pUb+hIk+9OdhbGmvx4PgK9H9zh0Lj/Ud/oPDm7a2xvBiAN961RnSWF9KT\nmzHvNfXFBRARd2IVOBy22uZvaazBy9iT8A6dKbuzkhiZMHHkcSBu/F2OiNn2mNnjKZqbFHP98x+1\nWGE5Hv71FVpbmhQeLy+xx5YrnP2q+/B3kXrroBqkUh/D57hi3IceaKxtxZ63n6KyiPw97hJoiY/2\n804pj6x5gac3yzQlpsbo2tsKIeMc0XO4PWw6GaO1hYPc5FqkxFTi0s854LSqz+3VyISJuZt94d3L\nClYORqgobMLNw3m4dZRaOk5dw3eiD7pP8lFobFN1M64suyH3qXfQnB4qq9b7TvQcvSiOJRcUPrb6\namGI/V41lpzQT4njbsgofFKM7NuaKeipLsqayF3qtEVjtno/h3qlMIjCZDHBYcunNIRM36jwOpqM\nD+ByOYg9tlzhE+Vek75E/PmtCo21sTPAJ2t5FoZ5r+Xh9dmWeHepLSb1U//Jiabe45KMByh5Gaew\nKw3LyAzs5nqZ/Q7F9sDMHrwYhl/WvsKJxCDMCkpUaE0rZ8U2DZqOa3l48iv0mbIOhqZWlMbZuPrD\nwMgUrc3yV01WN2395xf78QLegobb4aNfAgXtVvbAN1GhYn34bIzsB6cupmJtH/7MUxzSH1Zh19wE\nSjIQrSEvqpwLAOxcjLH1ZijpfZahAXxCrOETYo0JH3cRu3fv70L8+RX1yqWlucLPh7OnKTZc7kfY\nz9nTFLPW+mDWWuHfzWd9o9FY20p5TW0ybN1ASv3vbIlBylnF8rQnHn2OxKO8A7GQRb3Q572eCs3D\n5/Xfx+HcgktKzaFvlKWWy+6kgzw98kwl81BVGEpTy1S2No0QEw9Htc6vVwrD7t4nsSyed0LMaeXi\n25C/5BrHMjJTaL2Hf32l0DhlUVRpMLag7lK0+1AnhA03RV0tB4M8MwXt547VYMVWB8rzUUXjefmV\nCPIPnrQaj07JNvnN7SP8Ihw+xRZvhSQptF7fGYplaNJWrYPHZzYq9LntO32TXtRnEFUW2vJLylDB\nJpzBgISyIIpPX2sMm+2KqGP6dwq+424YrByMFB4/cFonhRSG5kbe4dCeBwNhZkXtsfXdw0F6qTTI\ng7yVl+Xl0f54PNofr5QrlFOg+p8bmqLdWEto9J5O84QZx8z93cWuAcB6kD/v4aNG9CqGgR/0vLvX\nSbmVBUVP62OPLdeIO4e09RWB6u+7bH4hBnlmYkygZF5fUQVCHcSfU8waoiyKvrcsI/JNoCiiLhi3\nzlSgpZm6kmJu6wYDQ+ouPtreeCu6vlvgaBVLolqITunJ+vycLLvvm+sUsxxpi+FzXPFLylCllAUA\nuPqb4mb8H54Opqws8Pnu4SBM/txL4bV1kYNhh1WqLIhyoN+feH4qVS1z0wiZe/9dTP3nTW2LQaMg\nefXUCgsqQ+Ef19GUWwoAMPVxgeO0gWI/nKYWtadV1QsLw7y/xuKPGZH4JGYq9g44rW1xNIYy7knK\ncDKqM2YOU69/XnNDNZrqtGfGLc6IhVNXcrcKbRP42lLKY2KPf6EGSahTkZsEW3fy03giOveMQF7S\nNTVJpByjF3QWvOZbEdaeD4Gbr7lE342RQleZrVMfI+d5LYxMmNgbP1ii7+z13XBsvWJuJJpG1MWH\niKzEGlz8MRtlrxrBZDHQe4wjRi9wg7GpeBDs3zteKrR+6OvOYLVJdFFb0YJvZjxB6atGQZubrznW\nnid2j4h43x1n96j3EERTaOLkO3p7LMydzNBlKPUCarMvTMOxCX+rQSoaGt0hseIaEis099yquJEA\n6yE90JRfjoIDqk3AIw96YWGwcpV8MMuDoulKtX1Kqywh05TLCOTWRfk6FbJ4ckbxuBJVkBkrn4Wq\nLfaevWV3akPbys9qQ0dqqqTdOaRtEVTK9JXeAMT9/jdNIg4W5LsiLfa7jZzntQB47jQf+EvGDAyd\n5aJqUdUCmXWF08rFYr/bWOx3G9/MeILEW+XIT6/Hq5Q6/LM3C5/2jhbcL8lRLkZlwfbuYteL/W5j\n+YAYMWUBAPLS6rDY7zap25OaLfYa4X9TzmhsrSvLbio0ztxZsWc2DQ2NdAr/vKG1tfXCwrBv0Gks\nujoRhqYsQQwDILsmg4VDF6n3iVB1Sk9lUcTKwDKW/WUdnaU983xTrf5mivEZOAdlWU+k9lFWQeg5\ngbqlQNeU3OdXf0CP8I8pjXELGoO8xCtqkkg5Ys5Ipspd7HebcDNNlBVIR3Q5ypApC5/0uiuIK5CH\ntWPiVCLPw0sl+PVz2W4A9/4uROhEJ3QPsxFr/zl5qFIB39pGGz71B/r9qVBMA9OAodYMWe2G/74c\nwn8aB8eeznj0fSxS/1I8K+O0C2+i8FEBor++Bbvu9hi+MxynJ52Q6BfwVk/0+qAv8qJzceuLq1Ln\ndBvsgeHbR6HoSSFufBYpd8IZabg49kJBCa9QmYWZM6ytPJBXGIfRgzYDAGrqChEb/wMACNrq6osR\n82Qvb4x5J4T14j1jrkWvEetXU5uP2ISfCNftHTAP9jbdAABRsVvQwm4AwMDoQTx3nsamStx9uAtM\nhgFGDuQdvl6PXgsulbRZaqQxs0gr1gVATxQGANgf/g8ll6RuQxQL2qosSFFonDppaaimnH2m38yt\niDv5pdQ+ZDEK6lYm4s9vU+v8csPlqu3IcXJXYRYcqgqEqZWzqsXRODUlWZTHdNZhheGP1fL7c68Z\n/UCNkmifFYPvU1IWVIk8ygKfb+c/lSv2RF+I3h6rbREoMWbPSFz+VLvVmvWBqqxKzL3/ruC637IB\n6LdsAI6ECdNNz73/rtg1Ufvc++8i7e9kmDqYwWtsV8R+cxfj/phMOF50vc5DPAjnF+3Dp1NfV7gP\n90T2NcVcC0UpKImHh+sA5OTHIKz3ElyLXgOfLmNwI2Y9OBw2+gd/KOjbViEAgL5B7wna2/aTxpNn\nfwhejxywHjdi1mNE2BrB2GH9efumkQM3iK0rz9ztHb1wSeJDJX7Bzp16arhHf6+jPEYTPFbAfYfJ\nkh6cKC2g+d4N2alDFaUyX3cUsodyZDxSBFFlgehaGorUC9E160JHp7xAe8kSVMmM1cTFIKtLmzUs\nCY/z32dRHtNYp3xmJPt3ZsLA1lrpeZRFm0HIilg23Ae6UeofFrmS8hqqxH6on1ZkcOnvhiNhB8V+\nFKUyo0IwftbNeTgSdhCnJx4X6zP3/rsoTy0TW68ivZxQQQAgIZsqlAU+vl7jAQAFxTyrfedO/cFk\nssBimeDxs98AAK7OIQgJfEdibHbeXcI5B/b5DOZmTqRrjh60GbbWvENRJpN3Zn4rdgtGD9qM0YM2\n43bcN4r/Qhog8NRqdNu3iPCeugu36YXCMO8v3ibqk5ipal2H3aS+jbI+8cU7qq1ULErqLd1x+Wpt\naZTdScO4BYZrWwSV0dJQTXlMe/r99Z1R8yQ3fB8F3tGCJDwu/Uy9JowiY0Tx+HU7zAeGwG3nl/D4\ndbvYPfefNsPj1+0S7WAyBe0sZ9WkGD3/3mWVzENDTtntFNwfu112Rx0m/bykUllfIrmvuTTvrNj1\nxbm8uJiuE3zVIxgJdx/uhL2ND5694AXIxyb8iIBu08FmN4LN5j2fu3lG4FHSb3LPee/xdwgJJFZ+\n+FRUZcLORnggwuVy8CjpIK5FrwGXyxG0CdENdyQAYBixUHlTsbpOyqI3LklUsHXroW0RVE5hyh10\n8htCaUzwhJVIuED9CzA6y0vtKVXbM38l98QM/6faFkPrPD67iXKRvM49xyIvSbo/LY32aGXrzoNT\nHlLvVyo1Pue9lfD4dTvyvtiK1ooqQbvHr9uR8/5qgMMRXr/HO522mztZ8Fq0XRmKEvSzkjCNbBrK\nVFe0UjS2gEhRkEXIp/2RcYF6nRRFaWyqwuC+XwjcfRoaK5CQfESsT1SssB6RqFtQZu4t0nlvPyB3\ne+bPUV6ZIXg9uO9ypL68AAvzTugbtBC37m/C9XvrRMZQO7lnMJgY4jQHZiwbmX0TKiJRUE/tPS85\nfY+wnduqXldRvVAY/pgRSSno2XeYpPlKFgXPFcsGoSmyH5+jrDCYWKm36h9VMu5LBl61R5a9rrkv\n3LQo+U9eNI6+RvrSwMTcQKKtMEN7Fti22ZDkpaVJjQ9QDvHc1ZdU+yw5NOy47E4a4Mlviej9TpDa\n1/H/Zhase/MSlpTfSUXa5rMSfVhWpuj71yeC65yDUcg/eV+iX1jkStwfux2hl74Aw0DoUCFqSXAY\nFQCfFRMI74nOAwAPZ+wVW7elog6PZv1A2r8tRHNzObrzPdlUpVl3SgszZ+QWxGh0TSJMjG1QUs5z\nl65vKFVqrgg3atk5g23HIth2LJKrbiO7Vj73ZYfXQ1F6TjKmSfQzrg70QmEAqAc9UyUn/qJa5tVV\ntJElqfTlQ42vqQ32/ttdok2eOAZFAvUr8hTPpkFDQ8a4Dzwk2g4u11780fVDeVpbmyomfj6ovaua\nrFAA0FLforK5lOHhz0/UrjCERa5E2sYzSF51QnDN3/Tz6XfmMxiYGYu1hUWuhPO4YDyZv59wzgeT\n9oDTxHsf3eeJH7yVXn+G0uvPBH2l0fevTyTWDfnfEjx6Y59Y2/MvjqH6aS4AwDKgMwL2zFHa3YnB\nZIgpF70+6KuyuRhMXvKPW8s1a92trS9C6kvt771ELRcPEn5WaI7RrovAYihe2NLfeij8rYcipy4R\nzytvkfbL3XMW7p9PllAYehxVfyyjXsQw8OlIRduIqC2j7o/rHvwa6b1BnpmEPzTKMblrgsSPPCgS\nqE9Dow4ChtpJtOUm12pBEh55qdpbu/5xEpw+XSDWVrLvEDz+j+f2YDlavCif3fzpAAATP+KgcRpy\nOM1slEcLLbTp3/wj0cfAzBh5J8StCffHboexC7H7R9rmswJlAQBy/1A8Dqftpj99+z8wtDGT6MdX\nFgCg5plqiqDOuDxH7DpwnmLpuyvSyzHnnrgXBv+6Kks5F76OSoTbEqWUBVE8zINgamBJer/yViLY\nFbUIOr9W7MfA0hQZK35XiQxk6JXCYOFkimXxM2FsaQgDI2LRnX0HaVgqzfHizh+yO7XBNWAUYbu2\nsiTR0NDoPtaOqnn4qYq6KrbW1i796TBaikrh/pMwpWNDQjJeLdsM9/1bwTQxFotTeLV0Ixw+fAvW\nk8KVjl9Iv6y6jDT6wIst58SuS28SW1Bzf48ibG9rPQB4bk3qovSGZiy8tXk1MLIyxtz77wp+bixV\nLBc/P8BZdC4AODpQh91bdRhZLkjlTXlIKI/EveL/4U7RETwqO4+MGukWyGGd5oMB8pTvyfO+RerC\nfahPywenvgmVtxKROGkT6lNUo5ySoTcuSQCw6MpE7O51EsaWhmhtJvYf9ew7hfK8Ou0HLkJzfZXs\nTipAnVmSOgLfXeyOz8YLH1J7/+2OT15T/UMrN+GSyudUNbWl2ZQLKBqb26KprkJNEtHIg6GJbp0l\naTscpvTnIxJtnJo65C6SrHXDYLFQ+tNhlax7cy1x6sj2SkVsulLjXab3V8qCoCrCIlei+PJTcFs5\ncB7fCw25xMVKyVKotm0/O404XlO0H9lrea6pyEYjxMWUOKvU5bx9hO0AUMeuQEljNl5UC61kloYO\nGOT0pli/sW4fS52nuagSGcs1+3+kVwqDKEwWUyXVBoGO7QdOFsugatekxhrlAon0CYdOhmLX9m2u\nibBzp+4bXJyu+4WcGmvLKCsM1q5+KH6h/UC4jkxVcTOcuphqWwyaDoahtRlaKhW3cDfmaf+g4f7Y\n7QiLXAmbft7gtnKQuu4UKmIztC0WjRoIthOvm5RaFY3M2seU56lpKcXlvH0S1gozljXq2Zo5KJYH\nvVIYdvc6iSGf9ETwjK44POsKqvLqtC2SXmBoYomWxhrCe20VAwMWA4ay97eU0dUKvupgbkgSzmYE\n4/KxMkTMtpcrhqHrgNmU12E36f7nn91I3ffculM3WmHQMo8jSxHxvrtYm09fa6Q/1J2Hl64imn6V\nhhq+66fi2WdCa46BKbFrnImbLaFy8Hz5MbXJJi9hkSuRue8Kii480bYoNGqkr/0ksevG1lqFlAVR\n2ioNQ53fJrQyBJxaDaYR8fY9cdImpWSQhl4pDABwZ+9T3NlL57ingpNPKPKSrsnVt5XNxaUnXTA2\nKFulMpS/SlLpfLoOX0n4Za18PoVMFnUtLXT2Lspj9AFTa2dti9DhefRviYTCMP5DD3z/jnYKBnVE\nXlzseKfSlv7ixQL7nV1K2K/Xb++LBSAHH1wIAGDX6kYxTq8lY+C1ZAwAgNPSiszvL6Pkasd6BrZ3\nHEzELee3ClUTcBxXegb9HMhd6/0OfgKmEQsV1+LRlF8OQ0drMAyYsBvTG6nvS6b4VSV6pzDQUMfF\nfzipwkDkkjR7lOoDZzjsZpXPSdM+MTKx0rYIWqelkaPVOAKijEj+A221IEnH5d4u1aVm1Rf47jxt\n29peBx94T2Y/eWk7j+i1onOW301F2X/B1oY2Zui6fDy6Lh+v95WkaYhp5aouKUNZk/j+q4tFsFh9\nBkNHazyfvROt/ynHFr28URv/Enk/XEDQ+bW0haEjYGAAtLaqaW5DE9J7dBpV1bPxcFeseysDK3/y\nRF1VK57H1eHG6XJti6U3SPu8dhQqi5vg6KF8DEGnrpIpH2n0g+bajnXIwt9My7OpTlj4K6U51dmn\nbV2GhPd+lQhyLjz7SGaNBxr9RTSAWdV0NushUdCtVcSSZt7DHbXxvGxqVdHqjcfVrVQYHZTbD5wg\nJYOWGK0tmq3ESEOdLt15G97Q0Vb4YXUuPvqms5Yl0jMYcv4xtGNuHy+QaPMJsaY8z/qLihd3Or5B\nMmPNLylDFZ6PhqYj0PBK8nDIdUaoRmUwMDXEuKglGBdFreowjWKUNeXK7qQgFob2Em0Ok8MEr51m\nCb+TzXtIFtxUJbTCIMKFa474erM10nJdcDPGCctX84pn/HbUDr8dtcMfx+2w4zthcZjTlxzwPNMF\nSRmdkJbrImhPy3XBV+utEJvgDEcnpqDtzxP2WLbSUqzv1Bmm6ORigCnTzDB1huwTxYZq1aQ85bsi\naaPic3vn/WHJOJsRjKm+vFibm6e1n7mDRr+4+rukW+Dyo4oValKUqOP5Gl2PhkbfacguRdjlFXAY\n0QMAYGhrDt91U+Dx3nCwa3QjvoJG9UgrtKYsTa3i7qGVt5Pg8k64WFvQ+bXw/2MpWLYWapMDoBUG\nMXy7s7BhDS/DxYTwEry1wBwAMHioMd6ZU455b5Zj8jThpn7NiioM6FWEiWOEKUNfn2oKX/cCbFlf\njdDgIkQ/EgZwJiW2YPf2GoQPKRG0nf6rAQBw5u96wWtpNNfTlRh1naYGjlhmpB9Wqe/0gYaGjK03\n+qtlXtrKQENDTML7B9FSUQefQyDz9wAAIABJREFUVRMRFrkSISc+ht0gXyR++DseTv9e2+LpLL4b\n98AysBccX5sM674DlJ7PZebbMPPygZmXjwqkk427eaDa5i5pFE9Ak7vrjFicwvM3dwIAWLYWqE1Q\nr4s5HcNAQmMjF6am0l0jUlNa0MoGauuE9SC+2W2Dnd8Tl6jfvb0aAPDqleIBMi0NxOlRqTLUJwuR\nibwofyIrAx3bQEOjXXKTa+HuL35i9EvKUCz2uy1zrKo29Yv9bhPO9UvKUOQ+r8WWqfKlEXT2NMXX\nF/uCacCQS34aGn3l0Sz1Zqppj7TW1aImKR41SfGCNrth4SiPugqAp1AAALelBfVZ6TDv5o9Xh35G\n/csXhPOxqypRnynuUsmfo6kwH9k/7RJray4pQta+7WJtAJC27nPSNlEcTTzl/2Vl0LbC87PKm1L7\nt9Y1qjXQWRS9UBjCFvYgbL9/QPcKrl2+1IClH6nPCsBpbVHJPK1sLsYGZSM6y4tWDmhodJAtUx6T\nbtY5rVx8FHhHrAKymRULu2MHSoSAnP8+C5M+9VRYjiW97mJf/GCJdvceFgL5Hlwoxu3jBagsaoKZ\nFQt+A20ROskJbr7mCq9LQ0PTMSi98S98N+5B9g870VQsGb/F58WmlfDduAdp6z5Ht7Xb8WITcSC5\n7aDhsB00HIBwg/9i4wpw2Wx4LBZu+IkUAtF2PnWpz5F3VHqgva2RKyqalXfjHOv2sdJzqAu9UBgG\nfRSI3b2IS6NrgrN/N+DQMTtwAdy8Jj3oeOlHlUjLdUFcbDPYLVwMGGwMX3fyPwAAmD+7HMmZLvjj\nYB22rK+W2pfBVO1/Ga0s0NDoLmQn/EwDBn5Olm1F4J/mK6MwtDRysLTfPXwbN5C0T/8JTug/wUnh\nNWhoaDouVXExqIqLAZhMeC9bh5e7N8ocw5BSYbYi+hZKIs+L92cZgsEyxKtDPwMArPuEwjI4BK9+\n/0nmWnlHf4Xnp6vBMrdA+tavAEgWWQt1nEZYZI0KbSs9p1fHKjWfqtELhUFTygJ/Y9/23xWfEVsM\nWtnCf0WVAiIFQbSttY1H0r07TTKVCj5MAzWUYaahodFZHl4sQd/xjpTH7X1XdUXWGmrYpMoLDQ0N\njSowcfMQuBnZDhyO8qirsBsyUiVzd5o6G/nHDgquHcZORMa2NXKPz/p+m4Qloi0Rbktwr/h/qG4p\npixfW2UBANJrHlCeR53ohcJAI8TEUjLFljLcSvOEoZFkrAZtedB9itKitS0CjQb4dVkyfl2WjO23\nw2DtZCSz/7M75di3UD1VZfkWiw9/CkDPkdS+iw4uS0HcReoPUpr2TZcpPRHw2TDCe7kXniFx5w25\n5xpxcj5MncUz1tRmleP2vKNSx/HTj3JbOfh35I9ibQBwaZjw5NjAmIWxVz4gvCcLojSn6YfjkPYr\n9Tz+YyM/gIGJcAvXXN2IaxMPAABaG6S7LvPlyDz5BMk/3pVrPbL3Q5U05mahMDcLAP6fvbMOj+L6\n+vh3d5ONZ+Me4oGQECyCa3GXUrxUKAXa0h9a2mJFi720lHoLLVqKFQpFigZLgoaQQNyNuOvu+8d2\nZ3d2Zl2T7Od5eNi5c+bes8Mwe8+9R5C6lb+SXxp1DaVRwmdA4C5EF0sgQHx3AQDJWOD3LzQWRPuS\n1q/4OfFdBgDo4/QG8fneq+OoaKTPbGnEZKOL7TA4m/rSno9+dVKiHrqiVRkM806NhL2vsAqsLt2U\ndIWJpZ1a+zNmMwzGgQZY/5svuvWzwrTOcWhs4Mm+QAkyHpzWSL/tHUWCcjUlS8eqAfxJhbEpE2MW\neaH3RGdY2RujvKgR988U4tJP2Wiopa/+qO5A428XPSc+R4xzQvgYJ3iHWsHSxhh11c1Ie1yJZzdL\ncfOIcj696tI3L7nGEGStpzj39UHPLWOlyniODYbn2GCZE9SI3RPh0NOT9pyltx1G3/wQyfujkXxA\n+ootg8VPHCk+sR9980NcGLgXLDNjjLj4Pu05aUirh+A/Jxz+c8Lxz+BvwOPK/q2w9ndAv19mUNrZ\n1qYYffNDXJuyH/XF1ErtdPhM6y63wWCAnpjiU4hwmEx7rrfjNKX6zKlNUEs8hLppVQaDva91uzQS\nRDGxUK/BkPKiEZZWTFRXcWULG5CLrcf9sXpaCs6kdkVjAw+HH4dgVnfNrPgaaH801XNxZnc6zuzW\nD0M/5lwRYs5pd+fAz6YXUss1V13VgGYZcel9sEyp7rXVGfyiZ5be8v/OiU/GuU0teL7nJhgMBoKX\nDgKDyd9BD3grEl6TQ/HveOnBq4L+nmy8hG5rRhDto65/QPT1bPtVdFk5lHSNJKNBXL/iB9nIuZAA\nMxcr+M+NIHYJRl3/AJUpr3D7nWMSdev3ywxY+zsQx7wWLhL2RoHb2IyQ5UPAYDIw5ORbKIxKk/od\nm2saYWTB3610jPTCq+hMqfJsW9WrzrdVShtyaXcalCW2+IxGC8GpQqsyGARM+2kQjs+/oWs12gT+\nndhEelVRDLsOyuPoRnYbeZWnnsxWBgzoE33cZ8OUZYVrWfwgwpE+y3AxfRcGes5HbvVzpJTdxUif\nZQCAi+m7CJkHBSfRwbobzIw4yKiIRW41P9vdcO+P8bL0JjIrH0sc04cTDn+b3kgpv0e0jfRZhtu5\nvyHSdRquZvIDGEMchsPZwh83sn5CC68JI32WoaapDFE5v2K498e4nLEHANDPfR5MjMwJOQOaJ2T5\nYJKx8OL7O0g7Sp+el2HERKjIxFycyP+bRHzmNrXg4mvkANasc/yFGsGknc0xg9/Mnkg98lCqjoLJ\nf97VJIy+wb9WYCwIzmWfT5BZSVn0fNmzfNz74ATpfOrhhyQ5a3/psUqixsKjdf+g4IYwdWj2+QSi\nL+f+9G4uAi6P/oEYM3z7eJk7JK+deZf4fGXsj1JlWxumVg6oryqWLSiDi7l7MdxtEZgMlkp96DOt\nymAQ7C4kXsjE4psTsW/gGR1r1DqQVh3aYBion3f7JeDYsy4AgDOpXUlF3AyolyEDN9O2NzRU4s79\nL5Xut3+fz/D8xXGUltLn+dZ3JN2Xazc/U0v/I3yW4lI6NQCwm9M43Mz+iTi+mL6LMBoEFNdlIMxl\nCnEutzqBMDbsTOndSgQYM01xJfNrjPRZhvSKWKK9pqmUMBYAIL74MuKLLxP9AkBUzq8Y0mEhYSwA\nwO3cAwBAkjOgWTqMExa5yr38QqKxAAC8Zi6ebrki8bx9Dw/is7ixIMqFgXuJCXLHBX2kGgyxK0X8\n38U8hF58p1zcWENpLcVYEOWfwd9g1HV+Os2QpYMRv5uae9/cnUN8rs2rIBkLojxefxHd149USk95\naKqSnimytdF13CeIPrJcLX1dzuM/g4ruNtwo2I/6FvncyHRJqzIYBDw7nY5npw0TXXnJffavQvLH\nb3pg2sAcDWnTPpjeRX0ZagxoF8Fku1uXeWqbYLc1xIsLCXhSdE7pPsV3I+hIKosCACSXkSduPB7Z\npXKkzzJUNFAXSsR3LyTJGdAMbI7QtaWhrBZPN0s2BmQhunoft1X2b1z87usIWToYAD9g+NKI72jl\npLnnpB2Tr1AhfwxhrMPVSb9IkQQpdqHDhBBag2HQkbnE5xszfpfYV/71ZLkMhouvfYuR/y4CwN/Z\nqEx5RSvXZYUwS1H8TulFxAzw0fedAmVplQaDAcUoyXwiW0gEdy9D6lZVOJPaFavfSEHigxqNjsM2\n56CxtkKjY+g74hN6SSvr2sbRoTNauE0q7VCwjS3A4XjhVbHiBSr19b5IgstrIa38S4LFNEYLtwlu\nlp0lxjAM9/6Y5AIlCXnlDKiP/r/NJD5fnSh9Eq0IORcTZcpk/RVPGAyi2YU0BV2MhraoK6yiZIsS\nh9skTJDQ75fpEt2SPMcGE58FLl66xtTSHl3Hr6a0i+4U2HqEIHDAPInnI2fupP2srt2GtkirMBg+\nujsZX/c5hWVPyBHn6gqANjKxQHODZid3uoWaeUFQ4flOho8O9GnbCFyQJrzriLdWu+HLRRm4d0n6\nxD43/grcQ4YpNI5f75lIvEq/SmZAedSxq9AleJbKblH9+nyqNn3UzcX0XejjPue/GAbJriCCifhI\nn2V4WCg5q9fljD14zetD1DSV4V7eIYlyXtbd4cfphZs5P0mUuZyxB4M830N6xQM0ttRKlRvh/T+8\nKL0pVc6A+jCxNde1CjpBVqyDukncG4Uem0bLFuQBgs1CBosJXovk5CelcfqTtafr+NVSJ/ZunQfD\ns9sYkox/n1mInLmTaBP8LdpmQDqtwmD4us8pAEBpehX2T/pHqmxZTjxsPUKkyojj1X0cUu9LzkzQ\nFhGNXRCPYzAYEerhr59fYcYSF6z61ltmHEPOs8sKGwzWzn6qqKdVTG1NUV9Wr3I/M6/NxJEhR9Sg\nkeYwNmofGUXu5h4kHdO5Eom3CY7F/waAfzNlb+OnlccgrZycGpNu3BvZ/MDMzMpHJBnxXYlLGf9H\nkjNgoC1QkSRf1rJ/XtuHUVcXAwBG/rsI/wz+hnReNG7i/of6VReg55Qv8PDkWtpznt3GoLmBvAiQ\ncvcw7L27a0O1NkurMBgEyDIWACDp1gHS9pI8OPiGtQqDwaVjP4WvEfftFYcu6Dn6Vp3C4xgQsvmo\nP4IjLDCza7z8sQw8zdRq0DbWntaY+MdElLwowfm3zwMAOk3phF6rehEyByIOAABYbBamnZ+GlsYW\nnH/rPGqK+Lt882Lm4UDEAcy8NhMFDwtwbQW/aM/4g+PBtmRjXsw8Uj/6Rv++8lcPlYSZmXoLNBow\nYKD90Fgp3+IMr1k4PxBkgRJFNG5Cn4g+shyuQYOIuV5tWR6e/UNOwmBkYq7wXNCAdFqVwdDe8eo5\nUeFrMmIVL+61dG6BwtcYEPLZDPrsFZqBATqXM10x+eRkykT+xckX6LWqF6W9x8IeODrsKAChkSDg\n9XOv48iQI7D1tyXazs45q/c7DEymel6p4T0WqaUfdcHheCHAbzSsLN1QVp6OpOSzqK1TPRWhNHz2\n7EL6x8toj3327AK3vh7N5eVgu7iQ22vr0FxZQWoXnAMAbl0dmGZmpHMGDGgSTVVGloSxlYncsten\nHcDg4/MAAP33z0TUW9T3a3Nto7pUUxv5iTeQn3gDAN+tSNy1qOpVOhKu7NORdm2TVmUwLHsyTWOF\n28ysnaWmH22tFKXckylz+IoHvAPIAVqGdKvqQ97UqrnPLsO9y3CF+o6csR3RR1coq5pGGLJjCLEr\nII3Yr2IxbM8w2AdRV9P/HPcnAKAspUzt+oljZmaP3hFLac/JEz8gKaDYxMRaofSmkmQ1nSJVGgP6\nroGRkSmpzc7WD70i/gcAeFWcgGfPD2tk7OI//gQYDIDHg/vK5Si/ws+EYztyBGmybzd+HFw/XIz8\nvftoDQRRDEaCgfaA66AAuWXrCquIz1a+wnfxiMsLic+XR/2gHsU0RE7cJXiECovsZT3+Gx26S68i\nbkBxWpXBIC/JUb8hoP+bCl3TZfRSxBxbpSGNVIdlbCpbSAnuZPhg99oSnPy9EkZGDPx42hVvj9Of\n4Kb2RI4SBgMY9OktdcWBiAOw9rSm7BjQISoz6/oszSsngbq6Ejx++jM4HG842gfByspdoevF3f4Y\nDKbEc/L2o2wf6sTVpQfJWCh69QylZalwc+kJa2t+vQRHh85gMFjg8VokdaM0Vffuw3vXdmQsWwm2\nmytyt/PdCzhDBsFmJP3/E/OQYDi/+7badTGgHsqe5cO2iysAgGVihJaGZh1r1DYJmBehch8sE/2d\nHvJdjXgoz3sJM2tHmFjaozhDWFsjP/EG3LsMQ+TMneDxuOA2NYDF5seW0QU4R87ciYqCJJhaOuDJ\n2S1K6WTMNMFQ1/eUulYa+pSiVX+fCBp4XB6cOtmi6EUZZh8dhkMz6HM4l2YrngOfwVS+Op826D5x\njcLXVBbK5xpz8vdKAEBzMw9vj8vDhr1OWPehfEFTBqicSe2qaxV0SmV2JX7r9RupraGyAWb2Zqgr\noY+PMbaQLwUh25ItW0gJysrTUVaejozM6wqnIL1+i/x/U3C9olmSRPsR1UG8f20R1HEKAKClpRE3\nb28g2vPy+QXTBDoOHvCFxnY7GCzqe7khNw/5X9H/iDq/+zbJPcmAfnHvgxNExqARlxeq5KqT9dcz\ndJjAL5DZ/8BMRM2T7qrY/4AwpWvh7TSlx5WXwqg0ouIym2OGxgrtxQYaWSj2nrw6+VcMPcU3tAPe\njEDyb8LEAncX/qlW3dRBzLFVCB7+ATguAWisrUD0kRUQd819cPwzWDv7wydiKthm1sh6ch75CdQ6\nEtFHlsMnYiocfcNRnvdCKX0ULdTWWmHKFtEfdvf4E0Uv+C4KkoyFtgrLWH6fRAGJV79XSL5LT/5q\nYmiY4mMZEHLvYgUm+j0l/mia4OH687IatmcY5tyeg+BZwaT2o68dRe9PemPaeWFq5AvzL2D2rdnw\nG+WHf96TndAAAK4uvYq5d+ai14pesoUNKI2owSJqLIgiaiR0ClQ8vkoeio8dh9Nbb5JcifK/2guf\nPbvAdncDAHCGDqZcxzTVzI6sAfUy+oby76743TeIz1Y+0pMEuA4OIMk8/Oy80uPKy8PPhWO8dvZd\nmDpZqtSfqHElLU1r+JfjFO67oUSYVj7g7UhSdqTyBP2LaeRxWxB/8SvEHFv1344AfRxfZWEKnp7b\nhtjjn9IaCwLSY04g5tgqJN3ar7Au7cVYAFqZwaAI3GbFg3QCB7ylAU30mw1LhNUdvz/pijsZPpjU\nO1uHGrV+vlycQTpWxGhIvXdU4fEsHbwUvkZTXPn4Cg72O4j4g9QCP9dWXMPxMcIYpKKnRTg04BBS\n/0lF4RNh/JA0V6bs29n4ve/vuL+DvmiXAfUS+0hyjQVR3FzDNTJ+1f1oWHQNpbSnf7wMdhPGwXv3\nDkCkSm72F5vgvWs7rPv3Q/nFyxrRyYBq3Jwlko6XwZ/8Mo3pd/j93wyXOjkWTQM6+uaH4AQ6UmSs\n/R1IlY+vjJNcw0PdiFaNHvLnW/CbHSZRtu+PbyhUr2HU9Q8obeZuHDj28lZIRwHRS88QnyN3a2YB\noK3RnowFoJW5JAmCnk2sjNFQ1SRVNvb4pwqn1LL1CJYtpAOUSQ0mnoNYEpf/qiY+GwKd1YN4kPOK\nvV7Y8WGmlCuEFKc/hF/vGQqPaSg+Y0ATVFXl6nR8y549wK2nTxFZ8C01ELO5tAwZy1bSyhsCnvWD\nmpxyXBi4lzQ5HvmvclnBeFwebs45hIEHZwMA+v40Xaq8trMVxa48CyMLNoZfWAAA6Di/NzrO7610\nf6L3jcFkSDQwxO+vPJQ8FC4UmrlYAwD+nfizkppKx8pVtd0WfaAThz7N/bOyK8itVc61Sd9pVQaD\nNgh/Yxti//hE12oQGJtKL+8uCUkFTegQL9RmMBzUS68RHNlCIohnfDBgQFcoGs+hTlw/WgxTX1/D\nRL+NcmHgXoy6/gFt/n9FqMkqk2uCrG1jQUBzTSMuDNorn/uVHBmyZX1XVb5n4r4oBC3uTxw3lmkm\n7sIx2EEj/WoTb0tqEThtBij7H98IAEiZtgZmwT6oe675eVurMhgeHkzCR3cnI+VGLoJGe8lMsRp9\nZLnCq/NMlhGcA/uiMOmOKqqqjR6T1yl8TVN9tWyh/7iT4UMxEI5e88CMITkKj2sAGDiBXzdAEPhc\nXtyMKYFxCvWRG39FKYPBsMtgoC2R/7Uhh3pbR7yysCqoMlGWdq2y50jw1GuwyNOXMuOlH39CGAwJ\nX91S+Hp5MXcw01jfukKbxoL3DyuRMm0NYTRow1gAWpnBcGPXE9zY9QQAcOHTaI2N4x02SS8MBgcf\nyf6O0nh0ar1K41ZX6iaNo7bYFD8Gn4doJujt5l9lCBtijV1L5HNBkgSP26JU5q6I6V/qdXpgA60L\nbdR6MGDAgH7gNVkYL5RxSvMJOwwoB7dKzOX8v3o1mqbNBj0LSPhXuVUq/766ywsvwK+3dH9MdTC5\nTzYOX/GAnQMLzm5GOH3PE/Mn5oFlxADLSP05/ruNdYe1c9vOYKKqsQBA6Uk/g8lC17EGg8GAAQMG\nDChG8JKBSl3XXN++62kkVcoukKtOspZ/A6+vPgYAWIR1gv8fX2hl3Fa1w7DsyTTs7XsKjTXN6L8k\nFFFfyXb1qCpKR1NdJYzNrBUay96rOzgugXh4UnGXIFVhm3OUqrsA4L98xPJTmNeMWcOE7keCDEkt\nzeq3VjfFjyEdC1b5RVf8rZ1NsfLqUNK56pIGWNqbIPd5Bb574zY2xY/Buu7/YMPjUQCAH2bdQfbT\ncgDAp1HDYG7Lz0G9MfISGmr4L7Il5wbC0Ud7gVZ/JobCmC00uJRJrxp3fidCxyjuYmRq7YgeU9bj\n0cn1Cl+rCxz9IvAqNUa2oAGtExw0Dc8Tpbt+GjDQWuCE9YLThGm053J+2ou6LNmuHX6fbgbTjOxS\nk/nVVjQWv5JwBRCwcTcAIHnNUtKxaBvDmA3/tdso7VJ1WbMNTDa55kL6jg1orqyQea043pOF9YOS\nDyj2Pr69LRqD1vdV6JppJybi+NQzsgVbAa/qM7Q+ZuaSPcTnlGnaqdXT6nYYGv+bAMpjLAh4dFo5\n68vIxAJmNi5KXasKyhoLTfVVkCtqSkcIjIDtQ68q5BK0beC/+DzkPL574zbRtv7RKHwech6fh5zH\ngsP8FxWTyUDU/jSifU00Pw7A1t0Mjj6WRLum2XrcH68HxSE+uhpr56QqHMMgoK5C+fzXxiaWSmXX\n0hYMBhMR079E5MydMDZp/Rkz6DAxUWyRQpTGxio1aqI8zk7tuwihgTYCg4GAjbslGgsA4DH/Q1iF\n9pB43jK4KwI27qYYCwDgtWQ1OiyWb3FH1FgAAPe3FgIAyVgAAP8Nkt/fFh0783VhUwu0+axYRxlD\nHjovGUB8Tt6vmMt38vlUhcfjeCn/ftQ3TFna/w3z/mEl/I9vJP5og1a1w3B26R28/dcoJF/NRcTb\nnXD7m2dgMBi4/1OCzGszH/4Fr54TFB4zdDT/JaCNYNJOQxaA4xKg9PWPTtEXWGqLfDXuBqXtk1uv\nwdyGjRFLO5HaPzg5APvf1VzMizgW1vzYg5BIS3w+MxUnk0KVNhqUCdwXJXLmTlQWJCPxGjUFpbYx\nNrVSKoi/PfI0/iDCe/BTTYZ0no74hGNaHf/azc+IDElDBm6WGsvQO3I57kXrr3FqQH9Y8GA2fgg7\npNUxWRaW8P1EZNGQy0XOge9Rl54CAOBE9IHTuKkAgKq4R7R9BHyxi+8nDgA8HpLXrwC4/Fg/tznz\nYREYBBMXNwRs3C11ZyDgi114deE0yu9FEZN6c98AeC/7HDUvniPv8C/w+3wrmCYmYDDp13NN3Dzg\nNvtd/lepr0fq5k+Jc5bBoXCdPo8/lhRdQlcNRXliIVgmRgic3xssE+FUUJvZpOw72qHkZanWxtMU\nXWxfw7V8zaSgpcP7h5XIWLBda+MJaFUGQ/K1XCRf4+cFj/pasQlYwcsoePUcD0A5v/zImTsRfXSF\nxgJLuk9cA7a5Yuk3RVGmQqE+Im98Q2NdC6WttrwJW/pRK4DXVTXB3Ia6EqMplox+CQD47ct8nEnt\nivcGJqrUX8K/+9D5tcVKX2/tEoDImTvx9OxW1FeXqKSLophZOyNk5BIwjdR//42NzMDheMPSwhkc\njhcsLYS7gSYm1ujZfQFqagpRUZmF6ppC2poCDAYTFhbOsPnveg6HXASvb69VqKjMRHVNISoqMlFT\nU4jGphpKP6JE3d2C/n34P+JDBm5GYVEcSstSYGHhBFuOD6ys3GUGE4vq6uTYBUMGdkFSyjkADNjb\nBsDOPhDXb35Oe62Zqa3E+zKw31pUVGShulb4fWrr6J+J6NivEBm+hPgeAFBbVwIGgwEzUzup+hsw\noC+IGgt0E+iKmLuoiLkrvZP/jIXqxGfIP0L+rc07+BMYLBb81+8AABhZ26C5slxiP+X3ogAAqVs+\ng9+n/P9XxjZ2yNi1id++aTVhTNj0GYDyu+RsRR0W/vcduFySsQAA1c/jkPnVNngt4aeGt+raE1VP\nH1LU8BjdGR6jO1PaW7QcizD50Fj8FP67VsfUBGymdrM+ZSzYDv/jG8FtaARa+IZr2jzNp8BuVQaD\nqkQfWYGI6V8qlX0GACJn8F8IKXcOoSTziRo0YiByxnbhyoWSvLj+Iyryk9Sgj+ZJ+LcAc78LxzeT\no4i2S7sSETTEGYnXCvH+EcX8IEXZM/YGKR5i8MIAXP8uGTuHXcOm+DF4djEP9l4WKn8HWfD+SzJ1\n+scinP6xSOX+qorS0VBTChML1SZpXcevJj7nxF1CbjzVuFIFO89QeIdNVDheSFn696WfMAvgWHcA\nx7oDUYU46u5mNDWRs0uEdX8fVlbuEvswMbGGk2MXODl2IdpkTfabmmrwqjgBjg78H2Rnp1A4O1Gr\nFctCdJUfAAL9x8l1Xe9IybuhLJYJ7OwCYGcXAHj0I8aho6a2iKKDuZk9RU78nhowIMrovUNQkVmJ\nplrhZLT/6ggknkpB0JQARG3h7/52HO+HpL/TEDorCE8PyvYakAfBhBwAUjcqV19J1DVI3FgQwGsR\nLmD5rFgrcWW/5IrQJZZbJ7vGgU1kf5LB4PeZ8Pskr6P/f95YXMTf/WAy4TJ1Fq3BIE5dYRWuTzsg\nU04aP4X/jvmxcxW+bn7s3FZpNFzM3Uuq9NzXaQbuFB3Vyth+B9dqLW5BlFZlMAgqPS97Mg3PTqfj\n8oZYhfuIObZKZd9u/76z4d93NuqrivHsn93gNjcqdL1ntzFw6zxYJR1EaS3GAgAc+fghZuzugZXX\nhmL7kKsAgKj9aVj4Rz+M+zwEn4ecpwRHK8KaLufx0ZkBYFsY4dRnwkDj9T35QdK/L1L8mVGUM6ld\nUVnWjD+/KcS5A8U4k9oVyXG12DAvDdUV1J0ReXjy1xZEzNgOBkM9YUceoSOEtR54PBSl3kdewnU0\nVEvfHraw8wTHxR+OfpG680aKAAAgAElEQVQwtdJt8R11pPyMffSt3LIRTlMQU3RSLtlnzw8DAFyc\nuyPAfwyMWGyUlWcgLz8WRa+eyT3mtZufgc22QudOU2Br64+mxmrk5sUgI+uG1GvUCb8/BjoGjIOT\nYwgAoLqmEIkvT6K+XsJKqgED/+HZ2w0XPrwGAOj+Nv/56TwlEFFbYxC1JRqTD47GqTkX0G9lOF6e\nTVWbsQCAFG/AbVTsd1qAJNcgcXJ+2QePd6TvBFe/iFdobCOODemYacr/Pi010mstvbpwBo5jJ0s8\nr6sidpKYHzsXh0f9idpizRSK0xRF9elwMuUXvrUy1t7vYeqcL2AZ2RnV0er7vyIPrcpgEPD9a2dR\nU1yv9PWq+oULMLVyQPi0LSr3oyxcbjNij+lPVWp5ObqU6icqGtAsGphMF6Qs3iZ6zOMBX0+kFpxp\nbuBiXfd/JPapbuaGPScdr5iUjKNxXTAjVP7JojgxR1fCI3QE3EOGqaoeGQYDTv694eTfW739tjHk\nNRZEKSh8jILCxyqN29hYhSdxBxS+zjIgGG5jZ4LHbUHlswcovHaWVs7UxQMek94Ey8IK6ft3o7GE\nbleMh+z652jq3BFGFlYojyuUaiwYW9nAe97HaCgpRNaR7xTWXRyHvsNh32swarPTkH38J6myHWa8\nD3NPP6R+vwVNlWW0MgwmC15zP4Qxxw55Zw+hJl36oguTbQKft/irxnlnD6MuP0u8Q/i+swxsO0eU\nxt5C0fW/5f9yBgAAv/Q7hnfvzkDBk1f4e9G/au278pHqWdhKrl2Uer4uQxj46zJ1FgpOHKbINBYV\n0l7bUke/S8dg0XtDsCwslQps1jQtjS1gsZXz4Jj1z+sAgBdnkhG1WfU0pUwjJrrMDILfSF/YB/AL\nqqp7J+NRyd94zW0BjBh8l1vBjoM2irhp21gAWpnBUJ5dTewyqIq6jAadweO1SmOhPfD4Fj/DTd/R\nNigvEW7D11Ypt7sgSk7cJbiHvAZlY3EMtA+CVpMnE3aRg2AXOQiJW8muEv6L1sCYY0sc+73Hf6eI\ny4n3Z99rCOx7DaGVS9qzBv4frAUAGFlaI2j1boqcst/F0i8IQat34+XuT8FtqCfJlD26A9seQpdG\n/8Vr0FxdieS960n9mbp4EJN/AOgw/X0Akr9zVdIzWAUKXdK8531MkpX33rRX8h4Wos+yMNSWCFeP\nH/3yDPaBtug8JQCn5lwg2g+PPY26UuUXAyVR9Ux1F+K6dPkzAZn7d1Sob15Tk6Lq6CW/9j2slFuS\nKJ0mBqDTRGHyl6S/U1HyshTVBdVgmRjBzNYUFk7msO9kB1tvDswdzVVVWyX+zfsBPpY90JEjfPcI\nDIeUymhk1jxFE7dBV+qplVZlMPwy7oJsIQWI+3s7QseuVGuf2iL6qGL1Fgxojw1vpeFoXBcc2pmP\nOxfKMat7PM6kdsXUTsplShIn+sgKdB33ic5dgrTNSM8leFR8Dp1tByOp/A7yal8Q7a/q0mHCsoA1\n2wkXs78CAAxxmw82yxyVjUWkdl/rMPhYhaGoLg3uFkFEOwCYG9mgv+tc1DSV4XbBQQCAEdME9iae\n6O4whiQrGLuZ2wAGg4WX5beRVa0/1VHFJ6wm9s6kY9ue/WDMsUXi1mUg0jEzGAj6ZBcsfAJJq+6v\noi6i+PZlkasZCFq9C3Zh/VH6IIrUb+DHGykT6oCPNiD5a8UzZAkm46L9uY2dgY5Lt1C+n22Pvqh4\n9gB5fx8h9DCytAaTbQJuo/AH2+etpcg5uR9VSYLdPv53Mba2QRNNsKpVYBfyWGIxZynffIGmKtHr\nJN+b9si5BcJYqScH+Duvsd/x/59EbRWu/M88NwmXlt2Aub0Zph4do9ZsSi210l145EH0GZKFwHWo\nPVKWXgFbH+UTuIgTONYPGOuntv7Uib91JPytIqSft45UaQxt7FbIS6syGNRNXWVRq9tpKMl8jJQ7\n1K3O9sS4f+fj3GvS3RJ0jajrUU1li1KF26Tx9Nw2WNh5IGTkx2rtV98pqktDUV0ahnt8gLzaFwix\nG4qMqsd4Uc53Q3M1F67ssVnmxAR/pOcSoj2Q05doL67PRG/n6bhXyE9bam/qiUvZX5PGbOY2oLAu\nhaJLqP0IigGhXzAgWpeloYTsDuEyXODjLJL5jcdD9olf0GH6+6RJMtlYEF7jNHQ8ZVJcX0jORpXy\n3Wb4L1Q+riL7jx9Jx3l/HwWnSzjtzoXAWACApD1rELR6Nzou20rIie4aiH6XupwM+C9eS7srQGkT\ny5RHNhb4/QH098aAZKxcLVCaUg4rN0u1lxMy8/JBQ16ObEEpmLp5yt1HvRwF4FSh8PQxtbhZaYIT\n0/7C/Ji5bX4TXDTgWVv4H9+IlGlraOsuaCMIutUVbtME2qixoA6qijPavbEAQKKx0PPzoVrWRDJn\nUrviTGpXGLMZCI7QTGammtKcVvPsqgsO2xm9nafjeh7/GXC36Axvq+4Y6bkEIz2XoKv9SLn6EZXn\nsIUr76/q5P+hdzUPVEx5LRO0ehdcR0kuVAUAFc+pGVSqk5/TSNJDl3GuNJYcQ9RUrloq3+q0Fypd\nLw+VSerZ/RNF2Wx87ZUfwg6Bx+WhMqcKP4Srt1aD/WD53gvS4ETKn8GvPPq2bCEVsOkzUKP9q8pP\nEa0v61FrQNQoSJm2hvRHG7TrHQZRoo8sB8clAJ2GLNC1KrS0p4nhxNuLwGvhoqW+GUYWbJzpJ8xk\nEzCrO4IX9ia1AUD4huFwH+oPpjH/Rzp2nfiKqPY49CgEE/2e4kxqVzQ18rDxkB8mK1m4TR6ijyyH\niaU9uomkTW1NcFvk99+taCwkdgMAIK7kEgI4vXEr/zeFxlTHzkBC2Q2wmWZo5OpfZo/ErUvBMrdE\n4JIvYNOtF9EmTn2BfCumon76TeWlaCiWXIW8uapCQW21j3jcgSr4L/ocxhx+ymNuYwNqsxSvemtA\ns9BVZ1YUExc3qed9lgknbdXPNfe+BwATZ1eN9q8OlE2zakA2ukipChgMBhIVBcmIPrIcYa9vBsvY\nRNfqAAAyH/2Fghftb1v7r4Hf07YnH36M4IXUbD6x6y7Dfai/Tg0FAY9uVhKfWUYMnDtQrPExG6pL\nEH1kuUp1RrRNTUk24i8pNnEXuBbFFJ1EaUMO8muTEGo/AoPd5qOuuQI2Jq4yjYH40n8x0nMJSuqz\nYG/aQaa8pbE9kTLP0cwHxXUZ4IGH7OpnGOm5BE3cBrTwGmHKstIrF6WW2mq+4WBqhsD/baZ14TFz\n85JwtRBzT18AwMudn4DbJExNKWnSzbZzRE2Gfqd6VldAsrmnL4w5dqjNTkPmoW+IdnUaJAaUJ+/g\nT3CbMx8A4PfZFkqhM3lI3/EFfFaslSlnZGMrU0ZVsr7ZgQ4f8OMXXafPQ/6xAxofUxXastGgT7EF\n2sJgMNDw4E++v23nYYth5eijEx2eX/oa1SVZsgXbIJnnEjDx9iIU3svEvRWaT4Gqbnb/LwtzVrii\npYUHB1dj7N+Sp7WxY46tAgDNpF9VA/kJ15H1RPF/0winKYgu+hNlDfx7OdJzCTE5v5RN/+IWnbyL\nfs6peY6cGnq3m/oWanBkdVMJqptKkF/7UuoY+kpLfR0Sty6lncRaB3VD7hmy+4D7hNmk4w4zFwIA\nyViQhsuIKSh7dIc4tgvrr6jKZH3Gz0buWaqLiry7I0QlRQCNZSVg21KLzymL4N6IGgsG9IeapEQ0\nV5bDyNoGTFNTBGzcjZR1y8Hjcimyfp9vReom6i6taNXmgI27kfPzXtRlkl0XRVOcSirapg4aCvNR\nl5kOMy8fWAaHwmfFOqTv2ECRM/X0gud7S5C2dQ1aaqVXptc0P4X/jhlnp8DSVfNFU9sLglgGbWMw\nGKSQcGUfAKDr2FUwtXbUypgvb/yC8rxErYylrzz+8gYef3kDEZtHYuLtRRT3o9bAwR35OLgjX2fj\n58RdQk7cJdh5hiKgv25XeFqaGggjXBU8LIIJg0FTuIS5YeC2ofjjtYNEG9OICaduLih4oPzYs++/\ng0O9ftH6tQKMbahVwrOOfc9PKcpgCAN5GQxYd+6BvHPC4OGKuFjCrUlAh+nyu246D5uE5poq5RQH\nD9bBPUgGg9uYGQCA9P1UA8hr9gfE5D3w400AgJe7hc9e6vf8nRbvuUuQ8TvZ2DN1dqcEbMtCcG+M\nLKyI76jIvTGgedJ3fEGa0ItWbpaX5DVLiT483pUc7Fp09k/FFVSQnJ/3EroYWXP0sh6DOEfHn0S3\neSEIX9xD16oYUAGDwSAHT//+kvjs1XMiXDr2U1vfDTWlePKX7oq/KYO24iliPruIibcXyS1fnvRK\n4TE08V0GTbJFt75WyEsXpuE7vo++YI+mKc2OI31H7/DJcA7oo7HxuC1NiL/4FeoqJPu4K4N40TRN\nrezTGQXcZq5KxoIuoNtNePEl+VmvSU/Ci+0rEPTJLlJ7ZeITVMQ/II7z/zkOm269SH1WxEmumJ78\n9TrK+MqkVAWAxK3L4DJ8MqU/SS5FTLYJSTb1x22UdJiC3RbxPpXZJcj/5zg4oREI+Ei4ylsRF4vM\nw9/Ca5b87y4DmiV5zVIwWCz4r98hUUbWSnzymqVwmTYHVl26SzyvLeT5PgV/HtL57oIoTw7E48mB\neJhYszH36nStj598IU3rY2oC3wOfkf4GAKa5qVZ2HBg8nprzl6kBBoOhf0pJwMm/F7x6TADTyFim\nLI/HRW7cZeQlXAOPR90S1RQDRn2JW/+s0kp/A0YJjSs6GZ+Oo+DpO0iqjKiRkH3xJR5uukppFyC+\n+yCQ0eWuxMmXoZjSUbNBb+rC1MoB3mGTwHFVrNBQQ00pSrPiUJL5FDWl2RrSTn76bhgEnxF+SDqV\niJqCGjz//SkYTAZm3X0bj76JQY8PIohVetcId3SeE4qC2Dx0XxRGWb1/4985pB0GOqZemIm/Z59G\nfSk/4FnWLsDs++8AAB7vi0X3xeGE7Oz77yA/Ng+1BdXwGxdIak84/Awe/TrA2otD6TvgxBeUMfK3\nH0V1jG53J4NW70bm4W9Rm0VNQ6vpcQH1xSYYMGBA8/T/tBc6TdJMtrnMm9m4vPy6RvrWNX5H1yN1\nxnqFruHxeConujXsMKhIUcp9FKXc17UasHMKQmmR7l2ZBAaAqOEgSvrLf5D+8h+J5wHJk315jAB9\ncF/6fq1q+b4l4bN1K9JXqzcTUn1VMV5cV66mhbG9PVzeXwB7BgMVt26hIooanC9JZ49ly8B2E2Yd\nSVu2TCkdiHFG+FEm1bPuvk20JRx6hqFfj8TVjy4iPyYX+TF815PgOV0ofcnDidFHSEZCcXyRzGsE\nskw2CxEr+yJm+x2Szp6DhAHIcT8/QtzPj/FobwxhbBhQD0MGb8G164oHv6p6rSbGGzJ4C168PI28\nPMk7PvJgY+MNG443SkqTUVWlmFtWa8N9znvIPfgjpT1ww25k/bAb9SrWa1AEE2c3MFhM+cdkMgGa\n+IvWStSW+4ja8t/8iQH0W9ULHcf7g2ksf8b/wrhXiDv0HBnX20/MZ/F+9RYxlheDwdBGCOk5T627\nCNLQ1jitlcVbPLF4iyepTVrhNs6AAai4dUvieQAw4nDAYLPVop868N3Fd2PJ2rQJzWVlsO5LzVEu\nTeec/64X9KMqTdX0AbmdpgcTn3Pv8ndChv8wFk1VDXjyw0MwGMovutSX1wMAJvz5Ov56XX7f5Rd/\nPMfUCzMRs/0OZt9/B7m3sxCz8x5Jl4TD8UrrZUA62pzwaxp1fZfy8gyUl2fAyspdLf3pMxb+nWjb\nk9Zpf3eqoVB+V0cGiwXweOquaac/8IDb2+7j9jbdL8DqOxWXdVO0z2AwtHIsrd0Q3ONNALLdgWwd\nAhES9hZKihKQ8IjsciHqZtS992JYWLsh6dkJFOU9JslI61+dmJrZonvfj9BYX4mHt/+Pcl6gr7Wt\nF4J7vIn62hLEP9iPpqZajeolD4pWdbafMEGmwdBcUaHyKry6qc/IQHNZGQCg8s4dynl90PnFMWo2\nJKeuzsTKvrGl8kbYiZGHYd/ZEVae1gpd13lGCFLPCdOOXl9+haJL0PRgPNv/RGnd2jNmprbo3XsF\nHjz8FmE9F6GmtgjR0XsA8FfkAepEOzJiCSws+AX8amuLcT/6v6BSIxMM6M+Pv0hNuyTX+JERS2Bu\n7gAGg0UaS3y3QHA8ZPAWNDfXw8jIlND5xs214HKbAQCDB22k9CX6XWIf7CPtCkga39jYDP37kf2c\npRkcjo4hCOo0CbeihFVltb3DIovADbtRHnMbNhH90FRehqr4xyi+8jc85i6AmU8A6jJSYe4bQBgD\n1t3DSX9XPubvzBhZc+C7bB2SN5AzKAVu2I2yO9dh23cw0Ufght2oTU9GfU4W7PoPlWloBG7YjebK\nctSmJcOycyhSNq8mxjTr4IPqhDjKmDwuF02lxah4cBdl924R+jIYTPB4XELvwA27SXqJfuY1NaEu\nO4P0/QM37EZ9dgaM7R3Ba2lB2s71St55A+0Rg8HQyqmuzEP0ja0y4xQGjPoSL+OOI+rianQJf5dW\n3tzSGWH9l+LWP5+AwWCg15DPSQaDLHcjdTFg1JdoaWnEnctriOOq8iw8vrePJNfntXXITLmKe1e/\ngKtnJJqb60nnjyWHUfqeHvCA0qYMpr6+cH6Tb6gV7t+P+owMWjmbwYPBGTgQLdXVKDl7FnVJ5Pz0\n6igoJMB96VIYOzig+ORJVD+kVvAFAJuhQ2E7fDgaCwuRu1u17BpNrxQPMlcU6z59YBYYiMIDB8Bg\nsdBh3TpkrlsnzOojhUO9fsH062/CyIz/mjvSfz+4TVzE/fyYFFMgQNT1R9TdSNwlSNSNaNSv4xH1\nuXx+spPOvAELF0s01zXj2OD/Cs3xQKtLyLxu6Lqgp1z96hO6iiEQHdfW1g9RtzfB1aUHMSEXIH4s\nwMLCmTSxFzCg/zrSBNnPd4RMXUT7cnOlvoPouBX1BYYM3gIbjjeePPkV/ft9hpu3+IHU12/w34Ms\nljFpwi7PdxEdv3+/NUS7paULevaQns3p1at4dAmZSRwHB09HSYn+1dcoOn8KNhH9kPH1FgSs2Y7i\nK3/D3K8jMUm27TWAkK18HAuXiTOICbeA5kpqsUHXN94k+nh1+RxpQl4adRW1qUkouXlFLh3TdvFj\njgK7hZPGrIp/AgaT7H5TeutfFF8lu5wI9GUwmbQpYelI3kSdDxRdOEVUoQ7coP/ZlVoj/taR8DQP\nhglLPWlk9aneQ6syGEzMbRE2gry6kZt8Exnxf1Nk+07aIVNOVKaqNANxN/dRzt85vYIkV5gRjZTH\nJyjj9Ry+CqYWDhL70jXpSRdRmMufRD6L/Zl20s83FvgvGR6Ph3tXqYGVmiZyMP/fV2AsAMCDqN0I\n60+diJSVpCA3g//yy8+O1o6CELrRcOvrAR4Pbh/y0+yJr6aLutuwrKzgumABSUb0vOhnaf3Qrdiz\nnZ3hsXIlwOOBW18Pp5kzYTt8OLK3biX10ZCZCRMvLzS9egUTd3f47tql8A6AqC5W4eGwCg9XSmd5\nxsn/7jvYjR4NppkZ7MeNA2fQIP65nTspfUoKUiYm5iLw4wMeUdolBS3LSmma+a/s7BsS++5N3350\n4AGZfRqgp7qmEE1NtSivyNC1KqiqViy1cnlFBng8HlgsauHQFgUqoksa38jIFM3N9Qju/Aaysm7L\nvD4m9muYmFijoaESzk6hOt1dYLs5wLKP0MWw9MRNsgCPx08RLEZ1En3NFVlYdpIc31SX/l9Qf0uz\nUn1Lo+Kx5n7LnEZPhtPoyRrrv71iy3ZDpOMUXauhcVqVwRA24lPc/3sNWpr4K8lGbHO4+ZFTnHIc\nfBHSfyEK0u8h9cmp/1oZgJjnX99JOxB38xtUlWbyjyduR+8JW3Hvr9UUubtnVhFZjfpO2gHHDj1J\ncn0n7UBjfSXunF5B9CUwNvSF7FTZq6BZqde0oIl0TEw5AOTbxUh8fFjT6tAiPlllsFjw2b6d1CaY\nMEubLAvOyZq4i8rR4bFyJfL27iXtcvju2gX7ceNQcu4c0caysaEYLK4LFyL/u+8kji1Nl6rYWLw6\ndkwpneXB9f33kbZ8OXx37QJn0CC19KkuQt/tDr+xgTg98Q9dq2JADMG7Wt8yAPJ4LXLIaE7nqNub\n0bPHAkTHfIXoGPnSEldXFxC7GroOhvb6+iPSMcVgkIDz+GnIOSD/O05A4V+6+b/tPvs9ZHy9lfYc\nw5gNXkM97Tl5qE1LQs5v3yt9vQEqI90l1+Voa8gfiq4nCIwFAGhurEVW4mXS+ZD+/MqbQmMBEDcW\nug/lr1YLjAUAuHNmJZhMqv10/9znlBSodHKx/wj9PO+cWQkAcOrQulwKmhr1I2dzfV0ZSgoTKH/0\nFV4L/USg4NdftaYDnUuUYEVeQNbGjRQZMz8/DWmkOrUvqZWV9YW4nx/j9MQ/UFNArQxtoG0heN8P\n6L9WpX6Sks8jwH8MAGDQQPl3bz3c+UXzhgzegqwsaiYyeekV+TGKXim+2t7S0oQuXWYj9oF+7ZpL\no/LpAwSu2wmPue/D3CeAct5nyadwnSqsaG7i5AoAsArpDmMbW34fT2IRuGE3HEeM57sjrVc+Hstv\n5RdwmTgd3AZhTRATJ1dYdekOq5DuMHF2JdrZ9o4IWLsDnm9/QHEb8v90CxyGjiaOuQ318P90K5wn\nvIGm0mKZepj7BiLg823weHOhRlySLqYFIXyQpcp9XEwLUpNGmqW73WjZQiqgbyHurWqHAeCv5uen\n3UHa0zMSZRLuSZ+omVu7En3JoqWZXPSnsa4CbDMOcdx10EcS+/LrNgVFWfS+5AYkY2pmi5gb23St\nhkSse/eGw9SpMuVqnyu3Fa4OGnJyYOLhQW6kW71UIUuQpmmpUrY6sIH2jGAlXPC3uBsNnVuNaJuk\nz7ei5Jvki14juiqfmyvM/nLj5lqKPN24knSRt010fCMjM6Sn/0sc0wUw0+0i3Ly1jjZWQpuY+LrR\ntgtiCsT/Ljh1BAWnjki9RpSGonzadiKG4dJZ2uvljSdI3f7fv/cZ4Y5sQ1E+GoqoLmvSgqjFz6Vs\noXcRk9SHpjNBNdbzEHtD+4soF9OCMNJX+2nlnc3oF9zqWipRWJeKJi5//hhg3Ys4l1+XDAAwYZrD\nzoQ+K5msuAUje2s0l1Qqo7JKtCqD4c7pFegYPhuuvn3h6tsXhZkxSHlETWdYWZKuNZ0sbCSnoWOy\nZBdzUydmFo6oq9F8IKomuX35c/Qbvgkd/IciK+Uq0e7k1p0UgK1LHKZORfHJk6i8e5do0wc3GVGM\nOBzZQgYMGGg3RN3epNR1vXuvQF6+anUeVMVz87s6Hd+AfIzv/ELXKmiNPk5vUNriy68hp4a6UChq\nMDwtvUg5b2lkh37Os4jjQS5v4UbBfolje3+3Ao3ZRWAYsZC5hJ8Bzv8P/oJGyhuq7YRKo1UZDADw\nMvYQXsYegkfHofDqPBL2riGIPr+OJGNp446KV6ky+1JHjEFtZQEsOG46j1d4dOdrhA9YThyrO+2p\ni2cEAkOEQT10KVbF4w4Ex7cvfUakCJQkI+iD29KEB1G7ENZ/GbwDhpNk9cVgAEAyFsCk9+xzmDIF\nxSdPakkjMiwrK52Ma8CAAf1kQP+1KCh8Ah6PC1eXHsQ7WRIRER+huakOZqa2uPfitJa0pIdh3Oqm\nKgbaONbGTqTjRm4drbEgD9XNpbiYu5eIhzBlWaKX4+u4/0pyfZ+8Lb+DW98I28kDUXbqJmEouK6c\nhfztmonvbLX/C3NeXoWDeygsONStypB+70udwNfXFBMZjVTlyfU96Dtxu2xBDVNdmSvRSKBrF2+T\nZWAUZMegIFt6sRB5jBR5ZGqri2TK6VPxON8dVHe06kePYN2nD0rOngWvSfHsJgrrIBI4zTThZ1jR\ndQ0EAwYM6A+i7keJidRMf+LExHytSXXaDbooCKcqF9OCcO2vCgyZQL9TLe7+IxpzMH9YKrJT6Qtp\nCuQeRtWgZ39y2lHRPnlc0MYxiMqInxc91oV70rX8n1XuQ9RosGG7SJRrqapFcwk/FbDtpAGoOH8P\n3Ab+PTfvRo3ZURetymAwYpujuVFYmIvOWEh9chJ+3abAza8/8lLpA8QeXv4SfSftQPehy/D4qtCV\nJHLMBspuhUz+8wsXz4rkGzoBaXF/KdaXgVaDqAtS+urV8NlKzmpRdPgwjDgc+Gwjx2JImsRLSkMq\n7upEJ5e2bBl8d+0incv6QvspcQXIo7MkmYqoKJSckRyfZMCAAQMGNM+QCRyM9E3E6q/cMXCcNRaP\nS0fq83pcTAvCqj3u+PJjYbyLYIIuLVhZcE580t/cxMPYjmRXJgYTSHhUh6VTM0iyfUdY4c6lKtp+\ndGEkCKhtptbxUJb7r06glyM/RnKk+4e08QyZH+yG/3F+EpP8nUfhe3ANqm49QeE3J1F2Wr7sYcrA\n0LfUcwDAYDBolRIPLM5MuIicl1fpRCmydDsOfSZ+CQZD6E7yMvYwinOE1VXpUqOGj/wcbDMOpT0w\nbAYcPXsQxxWvUhB/+wda3QxoB00WbjNgQBYW4Z1g1a8LTAM8YWRvDW5tPZryS1B9PwFVd+PRXKz8\nj0zACapBmL/9KKpj6H80jeys4PjuWJh16gCmmQmaS6tQdespys7eAbeugfYadcNgMWE/YyjMuwfC\n2IEDsJjgVtWi5lESqqMTURsn241UWzCMjeC8aCLMgn3A4ligpbQStQkZKP7tEloqNZNNjsFigjMy\nEtZDeujl/ZH0PNcn5aDs77sqPc/S8Nj0Dsw6eVHak6dqzldbETjDwmE9qCvYHZzBa25BfXIOKq89\nQvV9/cnsxzA2gt2UAbAe0hNGtpZoLq6Q+jyLTu7ZpgycTehEMgoaG3gYH0SNV7iYFiRxh0GSwSBP\nm6C9poqLKV2p2fN0YTCIplN9UHIWxfWZcsnKU4hNUXl54PF4Kmc4aVU7DIrECcgje/eMdLcWuj5i\nL9IHjiU9OIqkB919z0EAACAASURBVEflU86AAQNtDgbbGP5H1kg8z7IyB8vKHKaBnnCYS64YnLV0\nHxqyClUav6VGLD87k4mA4+tpZY2dbWH3+iDYvT6IaEuds1ntxoPHpndh1qmDxPNMUzY4IyLAGRFB\ntDVmFSFz6Tdq04HOuJI02fT9eSVYNtS0kEaONrAe2A3WA7sRbVV34lHwf8dV0k2Z+wNoZ7LMYBvD\n95eVYJpRi8gB5OfZZmxv0jlVnmdjV3t4rH0TRo42UuXo/l1loa775rp8Oix7daY9Z9EjEBY9Aonj\n+tRcZK9S3+Khtp/nxnrq+i3bRDfZ9Sys9LMSQEOL5lLS27LdUNaYp7H+FaFVGQzK0m/iDuQkX0fG\n8wuyhQ0YMGBAAVyXvQHL3sGyBaXQYfdiAKpNaOpfZhGflZlM+R38TGUdAMDn+2UwclA+Sxe7gxOh\nv7ZWkX33fwKWlblC11j1DVHKYFD1/gDQ6P3R9vOszLOqK5TR1dTPvdU8z8WHLqP5VblGdBrln4h/\nUoLwd1In/H2wDGNm8etd6NKVSF3Ysl1R1SS7DoYyBFj3QkzxKVIb28sFHXYsBrdWuEiUNm+zRsYX\npV0YDO0dJouBIy/IReSkueZsPdMZPsHCl01OSh2Wj1K9pgDblIkPdvkgYritRJmUpzXYsyQVxbn0\nQVNtjelL3TFxoSvtudS4Gnw2RTMvU6t+XeD6P2otiZrHKcjddFAjY7ZF9Gmyw2vmFxBUVaeAE18o\nPbFR9/1QRRdFxtAW+n5/9Ol51idYNpbw/Xmlyv3o+/OsKWMB4Acyb/0oF5/scceEN+3w+G4NPp2b\nJfvCVoC7eRCyap5ppG9LYztKm+eWBUiZJnk3W1MYDIY2gLiv/sK+T1FW1ER7TvwaUcPBzJKF/Y+7\nU2Q9/M1wLDkMPC4wo6NiMQDvb/PGoCnyZ6Ty72qBb26EEseLB8ShJF+3xsPB+B4wNqFuhSobD/HF\nH50Q2EN2NUy/UAvi3yn9eS1WT1SPT2zgyQ0Szxk7SzbmDAhhezjCa8+HsgUVoPLaI5X7UNeET9mJ\nTXNpFYzs1JvSV5OTLFXuF69FvqJdoujr/dHX51kfMA3wgOfW99TWX1t6nhVl9dfubWJHQRwO21lu\nWS/Lrsisfiq3PItBnaanv7edX3RVyzHI7dZg6DdxB1KfnkZ++l3i+MGVLxE2jBzXcPvMCsp1otRU\n5uPxtd3EOYG8pY07ug36mDi2tvNG6IDFlP40waIdPtj8ZhJ+f9ZDpqyJGRMNdfwXBZ2xIApDAffB\nBVu9MXiq6qlr990KxaJ+cSgt1I3RcCihJ4yMqf6aG+dQA6/kQZIBJwufYHMcSw7DrKCHaGlW/iUh\naizkfPE7ap+SAykZLP30EdUnGEYsmZOrxtxi5K7fj+Yy+mrV9m8MIcUPAEDht6plh6KbLBT/fgll\nZ+/QyjNN2fA79LnE/qwHd0fldcVqn6S/t4NWj9zNB1H7OFnqtdImO5YRQRIDupWlw67FtO2pb24F\nt6aO0s52d4DXVx8Rx1nL9ik8pr7eH3mMhfT5OzTyPMuaPEv63lpx72EyJRsLPB5Spn8BXksL/XkG\nAwF/0i/OaMJo0MXzTAeLJT2+QTSTUkZSA/43OQN1taobK5/tc8fmxdRK5fpGEGeAQgZDRWMRpc13\nP7XCtzZ2HNqlwdBv4g5wW5oIY0FA2LBVpAl9v4k7YOfSGaUF/JXdkL4LAIgYEQwG+k2gr8HQuddb\nqCxJB4PBBI/HhW/oRADasQa79LEGwHcBksVvcT0wPeABug+Sz6f2WHKYXCvrDWp4AQj49nYoZgQ+\n0LYxjciRtrTGwvJRz5GTQn0By0JZY0GUw4k91ZbpSdxYALSzytTa8T8mOfVy7dMU5G78XWYfJX9c\nQ8kf1wDwJ3uuK2eoTT8BsiYk3PpGJE9dK3FC5rx4ksIGAwD+qheDgYasQmQtlX8Skjx1Lbz3/Y92\nl8t15Qy1TrBYlmYw8SKvCsrqvzG3mJBxWjAejTmvlBtcz+6PIHZF2riy0MbzrAskJQ0oPngZZX/d\nln4xj4fkqWvh8uEUWA3sSjltO7Efys7I6EMBdPU8i6dS/f6iL/H5zQEpKMzhezs4uRtTrvUONMHp\n+I5q2XXoP8oaF9P4cx9t7GIU1CXDxUxY88CW7Yqyxnxa2RcVUejE6U8ch9gMQXz5NVpZGzbZRTmz\n+glFRhfuSEA7Mhjqa0oA/LeTcHkr6mtLKTJ3z60mHeen30Wn8Nm4e45vzdk4+pN3CHg8PL/7M2ln\nIbDndCQ9PAa2KQcxFzchbPhqPLi8FZY27oi7pR4LXh52nOcHrT2NqsTWt5MAAF0HcLD6F2pRDzsX\nNlb9xG8vf9WE9/vwrd/t54LRoZOZUuMf2JiFkXOdKO0VxU3Y81EaEmOpK1VTP3LD1A+ptTUA4GiS\nfIaKujjyoieYNCsl8yOeoKpMeoVUOiQZCzweMLMj1RhiMIDNJ4Pg28WCco28Rps0qqLiVLq+veI0\nf6zEc8pO2KpjEtW+2qhIf9KMBqXGfl3BWjYiZCz+P6340fseEL7rs1Z8h4Z0+h96SRT9cFbpsVW9\nP04LxoMzTPXFB4D/PEvKgqRPz7MusJ3Un7Zd0e9WsPckmOYmsAjvRGp3mD1cbQaD6P8ZdTzP4hNu\n0WNp56Txe5Q/rezfLzvh+MNATOuZJLU/aePows3pSelFjHQXzqciHadKTIGaUf2EZDB4WATD3aIz\nLuWSs8GJplMVUFifpiaNVafd+B/UVhai38QdaKiroDUWAIDbQp4ItjQ3gMmiWsWilBUJXVMKMu7D\nyZMcXGxqLgxYqSzNUFBr5fEMNEPM5TLCWACAp7fo82R/G8WPGaipaCGMBQBYOY4+0LnPWGoQjjS4\nLTzM7fII0wMeYEHvp7TGAgCc+DpPL+okDJriQGsszO3ySK3GwvSABxJ3Tng84NPJiRLvh6q7FU3F\nlSpd314RT28pQJ8mSMrook/6py/YSdsuPuFSB4X7Tis8udI1kowVZe5Pa3iedYXDrGGUtpQ31ivV\nV96XR2jbZe3uKENre56NjBnIz2r7SU7y68guhwwwMNL9Q9IfcXg8/drxbzcGAz9+YCVMzDgwMZOe\n31lZUp6cBAC4+vbRi3/o3YupLifSJuTvhFHdD+iy9Hz0f76UNjqmBzzA9IAHmNnpIRrr5b8f0wMe\ngNtCnUWvP6r+CYM4R5PC8P42b0r7jMAHCn0HAbsvh1DaaipbFDKMJMk6uLEV0sXYSTPPvTKwLM3g\nvmYOAv9chw5fvgezztTCTPL04bNvCQL/XAfXZa9rPP6iw46FtO0VV3Rv5Aoo/E69VbJtJ/RTa3/y\n0FxCb8zaSVjxVQWlXK70FHXdH316nnWFy0dTaNtVcdlMm7eV0iZpd0dZ9N3Qu5gWBNcObNg6GGHo\nJA7hzrRkUoZuFVMS0R2FqMJDUmWfll4Elych3kUCl/LIXimC6s7+xzdS/miDduOSlJN8HQAPd899\nij7jtqgt+NjWmTqJ9e0yAS9jDxPHRsbKufXoA6lxmitIIo2ZnR5SVtE7hcnOLKQKo+c5g0ETr6XK\nroebjyml7Z2eik9S3ur+mBKU/s3NUJm6ScqIZDepH+wmUSeDSVOo7hKCPujOCXCYPYzoT1YfgSfW\nQ/RGm/q7w3Pj21LHEFyf/38nUHX7GeV7WfUJgVWfEIl9+P32CViWZjK/h/h4qW9uQ0s1P17FxIc+\n/a0q7inqpvKq8plpGtLyYeJL/o4WYR1l+2prCWNXe7X2p0//bupA0fvjtfsD2nZ57su4rwfBIdAW\n+0eeJrW/9c9EgMGgtLc2rAZQYw5UNaQE7xFNoe/P8/jOL3A2oRP23/Aj2irLWghXpNbKpbx9ci8Q\nX877lnYngY7bRYcpbaKxC4a0qlqA29KEhPu/kuIO5KUgM5p8HYOB4N7vUPphMJgozuP7iGe9uIyg\nXvOQGH1AHeob0BDS3IaUxdyKRWnLSKhVqq+6asVWJgTUPCS/jC168iuQNhWUojFXM4VmpCGYiDfm\nFqPgq5OAEQtuK6fD6L9qpIEnN0id0Lv+bypRP6Ixtxi5mw6CZWuFDlveJY0h3kfqm9uIsW3H90HZ\nWXLCAzodAdk/8qWnbkk935qouBwDp/cnkNpMvF10pA0VRQtRyaKtraQren/YHagxZvI8z+/dfB0H\nxpxBY3UTpf3HgX8qpIM4gSO9kXQxQ6U+NIWmJuQsG0u0lFer3I++P8+N9bw2mVJVUW+Si7l7Yct2\nRaQjtQ4SwM+KdO/VH1L7MAQ9a5HSgkQUZT9U2GhIeXwCLl6RpNSq9bVlJJni3KdwcBeuTmS9uIJ+\nnYbjWdR3qiuuAAnR9HECkoi/23592l9fQh9orWo8xS8PqGlqP5mgfC2FY7tyMX2ZO6nt7XUd8OsG\nycVvcreQVykEk+GqewkoPnRFaV1UIXPF92hIE/rZpr2zAywrc/gdWCXlKjKiBkFTUTmSpqyD78/L\nYWQrO8e945sjpBoMAvJ3ya7iW3LkX5kyrYWWSqoxq26XCQP6jejz3H9ZD4S8HoifBv6J5gb+gsX4\nfYPBtjTGezdfBwB805Pvmz/zzzFgWxrjg4czSe0eES4Ys2sAki5l4PqmGKLvrjM7wcLRDKHTAvB9\nX/7/s5CpARi0OhzDN/ch9aFtbCdq1w2PM7QnSk/e1OqYBnRLWWO+xABpfaZdGAx0RkHSw2NIenhM\nqkzG8wvIeH5BZl+ivIg9BMSSfdm0UXtBnLt/0wd2S+L6Ce2vNusDmthZEKBI3Qp5OPN9PsVgGD7b\nSarBoG8U/XKBZCwIaKkSTlY91r+JnPW/Se2DjrR3dxIGEV0fBfvOwGXxRKn6ddg2n/hcdVcY9G/q\n704nrlc0ZlHzdRugp+ZR63aDUBVZz/MHD2fim55HELXrEfqv6ImK7CrEHUvC2cXXiXOiHHn9PKXd\n2t0SxUll+KE/3yBYeG86vuvN/83tv6wHvul5BHe/Erpnxp9IxqDV4TozFAQ4zB6u1fGsBnQ1GAx6\nSlGucDHRyT1Ph5pQ8dy+CCbeQhdSQx0GA0qjaJ2A9OfKucq0ZjRpLBigp/xCtEwZs46eGumj8tpj\nwmCwnz4EJceoebBNAzxo+7Ps1VnmmLqmNl5/0u+Jw7Iyh9OC8XpzH2ufpOhaBRLavj/yjCPYLQD4\nme7ijilmZE3dPxy/Dj9FHLPYwhUUHlfLRXXUgKbS/Ro5WGukXwNtF6dFk1Fy+DJqn2r3PWYwGNoo\nRTmKpSkryW/7ac1E8epE7++rLmMhuBe9a4w6ire1dRhs6amMVemjqagMxk62sH99IK3BIKD4yFXS\nsXmonwRJ/aExW/92GLRRU0EZmtXgM64OdHV/5HmeVV3pl5ZRqKlW8fTUbRWmiWLZ7gwYsIwIQtG3\np2QLqhmDwdBGKStSzABoqNN8Gti1hzqic6RsH3NNs+xbf4QPo6YYVefOwvDZ1IBCA7onfeEewm3J\nql8XVN1+RpyzGdOL+Fx6khz8SVddV99oqdBNRjNxTAM94bllvmxBXdKsXBIBdaAP90ee51kQgMxi\nMwEe0NKk2G/E/lFn8PrvI/Dn3EuwcDCTa4ciO7oAA1aE4dYOwy6vAQOSSJu3GZ47FiN71XcAV3sp\n/A0GQxtFD8pAEOjbqjqdsQCop4KyAO8g9WZ00Xto0tHqKy3VdWBZmsH1f1NJBoPT26MAAPXJOZRr\n1LHr0R7w3f+J0tmMeM0taCoqQ2NWkd64Lqkbddyf5sIymHcPkH2BFGQ9z9/0PILuc4Kw8N4beHE+\nnRSwrAhROx7i/TvTkHQxE9c2ynYl/GvRNYzeNQBvXZzU6lOz6jtekZPh1LEvcRz7+zIdamNAEYh6\nDMeEGf0MMQwGWjX6ZigAsnU6lNATszs/VHkcJ4/2lV3GpIOzrlWQG9EUqwJEJ1BZn/xEuaapsAxs\nD0eN69aakeVek7PmF9QlZqqlr9aIz/fLpBoL2rw/8jzPjw8m4vFBahpMSa5KdO0Fz4qJLEiiSEu/\nemGZ/qUq5jU1I2VG23omM6NPITOa79YSPneXjrUxoAiGtKpqYlgv/n/qK/fXEp8B4MaDbWhqrkWf\nrh/BwsyBaL9yn74yIpPBwtBIaj74wtLniEuSniM3LPgd2FrRV66tri3Evbh9tOcAwNrSHZEhCySe\nl6SvviFrYl7+qglHduTg1ukSpfvQBEbGDHz2WyA2v6laFpWKkibYOJJX8a4ceYXje3JV6ldfseih\n2oqnrrAe1A2VN57A/9BqfoOE7d2G9HyDwSAFaRPh3A0HUPtMfwOytQHLyhxGDhzac7q4P4bnWTEY\nxm1uqqQzBJmHnNzzMH6sGX7+ge8ed/J0HRZ+UEaSAYCg0AKUlNC/lznWTNy95QRHR3JKwqIiLkK6\nF8ilz7df22LqFHJxXUUzIv3fThvMmkF+B37yWQV+PaA5N1FDliQ1MjRiLSqqc2Bl7gIm0wiDwj5B\nYelzWJg54EX6eXTyGQMA6Nn5LTxM2E+61tG2E7p15GeIaGyqRnruLViYOcLDORzOdsEY1usLiRN3\nUSOlurYImfl3YMrmwM9zCADA0lzySqz4tTmFMTA2MoeXax8YGVErBusrkib6G2a+RGKsYvUhNMX7\nfZ6i/FUTfLtYYMupINK5Ln2s4dXJHJkvlM8clRpXg55Dya5PHTqaoaqs9Qb7sazMSelPWzOF+/6C\n8+IJcPlwEipvPAGDxS+yl/Q6fWXs8vP3YNU/VJsqtip8939C2548tXUscGgafbs/hue57ePbbybs\nfLoj8/4JvEqW7Q4mDQaTheBxy2BqaY+qojS8vPKDWnQUGAsAMGWSGVZ/VoGkBHKxyMQ4F3TuWoDi\nYrLRIGpUiOPkxERRrhvu3mvExKmSU8ZL6qMo1w0NDbIzeQ0eZII/DtNXWN+2mYNtmzkaScfq9c1S\n/H975x0eRdX98e8mmxBCeu+FFBJKgCBSJEgxSlFESqgiQnxBEBBQigFEIAKW8KqAP1GKghQpFlRA\nXgQF6UVCJ4H0kEZ6IWUzvz/WnS0zszvZbDYbPJ/nuU9mztx77t3JJHvP3HPPSXsjweB6dfHYGgyQ\nSHD++iYAyom4u1MH5URfIkFYwBA42QVymiqMheMX30dd3SNWfivlIKtLm9EAcFcC7medAADYWOve\nDCvU1ty85UZTWDLyFpITTWNTpuo+hfvXKnB0Vz6ix6m/bVt7sD3GhV4Eo2f0v79+LuQYDO262ein\nzEQI2raQNwuz/8evN8NoGkfJ75fhPvNF3RX/4VHy47ky1JQ0RybxlkRz3h96noUpOXoR9tGm504r\nhu6TPkZ5Xgps3JTzmoBeMQjoFaP3HgVNdyU7z1B0n/Qxru5fhZoK+YpA17GrILVszduHor3mtbws\nL3YyrZi4K4wFTfn1Kx7w8OWfeM+cU4S9+9TDyCva9e4lPGdSNRaeHpiPW7eVmctzM73QqpX2jXk2\nNhLWWCgtq0dwmHJFw8wMyMnw4nxOQ1FfVW1QfWIxcGop0+HK7e1ar2fknOWVP91Nnm22sDRFzVhQ\ncPxCfKPGVV6pf+hDmcz0Q5/OXc8N15ebXm2SxoKCzcv4/YZ33dX/S6OhifNMGaZWuSpi/0w3tWsu\nE55BqwAPzSYtgtq8YgCA4wu99NZh0yNcd6XHHOeY/rzytDmfGnkkpklLuj/0PAP5X/3c3ENoFDZu\ngci78xcufDMfF76Zj6v7VwEAuo7Rbw/G1X0rWF2KAgCdRy5h61zZvUSoOQCguky7cXzmrHJu8+Vm\n5Vzh8hW53IxnpurmnQ0372yOsaC4puDN2dpf1PkEPlAzFgDA3Uf3BP/+Hbk7UGamTM1YAOSerU2Z\n6C3j7Q3w/XAm/41pQh5bg6GwhOsTWl6Zq7OdpUUbAOC4KSmok4mz7KIi3xJVz9Btm5sez3HD9c0Z\neI2npmkhFB3JFDduG5uksSvZY/fXhyF0/3tscRoRhbLT13lXHkydlNfXAQBcJw8CAL0+g+fb4ww6\nppaI/bPdm3sIJo2p3h++PAn0PAvnj2hJG/EVm5kBoKaiCPWyOkhbtdFLV01liah6DFOP7pM+UpOZ\nSeXBPxK/X82pf+So8oXsG28Wscdxy5T9bfqq8S8a35zFDeX+0wHlPtaaGn43ArET/sgeuueV2tyn\n9CXj7Q1GDakKPMYGAx8VVeKXgKN7rhAs2riT+isAwMrSDtE9VyAidIzoPjXb8m26JpoOIaPh68RI\ng/Ux8yOuC1xL4O7Id1F85AJHnr12Fx58LBzx5HFCaCJh3SXYyCMxLcysDRsRLHBTy31hwoeh749i\nv01jSZ3OHxnH1J5nWTMk2TN2Bt2mJjvxt0br8OjQD+2ip6utLKhycfsCaMbX7jb+fUF9f/2lXFXI\nyuLPi/KwsPETYmtrrmtRzx6Nc+9+sru49ocOc71UWjKP7x4GHuqZpk/Wk55zFuk5Z9G/+zuQmlux\nm6QB4F7m77ifeUJ0WzOJuei2jxt8rk3GYGzIRc6qQqvWZnrlaODTFfWiMza8ldLocepLY1YC8jb9\njLxN6sv1kbEJuHx+nlbdkbEJwKHGjU3suPX9fEnjV+mskzxmOe9bRu8lk/7Vm3srr95Dm+5hBtMn\ndbIzmC5TwND3J3iPYV4k1RXxB6Awtee57MwNOAzuYdQ+s1Z+w/u3HrxrWYsMr1pbWap3W8UehLRz\n+3Hn6P+pydSRv6nvOmYFruxRPj9CeyeS7yldXYVelIvZQ9gt0hKHDrrorsjDwV+47kxiWPu+MuJZ\nU6we6EKRh0EVipLUjDQ2fOnxC3LLulfETDYyUpDPADjZtcXFm1tEtfX37I1Q/0Fs2yCfAS0mrGpj\n4XNtMhZvPJ2I9X9wI4h4BVohO6XxbwzGzPXGnnX/nk2Hl7+SGxSRscaP6iAWprpWdyUAdQUlvOEx\nQ/atMKlJljEpOniad0Js6eWMmmzhsMl8hHy33ECjMh1M+f60hOe5cP8fRjcYAODBx3vgOV/dQ0Bi\nIYXvmmnIWGSYKEHGws6zcWGvr+xZhrpq3e5Bspoq1vWp0/CFWuvW1OoZUeQf9u9xRlSfxq3eZWTo\n9xI5JKR5p86axoHjS32N0u+/yiWpOTiTuAFHzy7DH5c+AAA42gXAzUlcFtO0B6dx9OwyNSNBbNvm\ngi/DtH9YwzKbNve+gYLsGhzdlc+RJ/zWEcOne/K0EOatwTc4spdmeGLHzW48tQljokjexsjEf2mk\nCLhxAPJJlu3TnfUai8fcmBblI61K1c1UXrn/p3MapCdk3wqjb+IzBqZ8f3Q9z4Ffvq2XXkM+z0Iu\nSU3991J+hvu/GwCsgr3lfUv0S2/vPHYAQvatMOrfu3Pbxn3fiDEWAODyP5ufA3qNhpWdG6rLmyb4\nx9VL7qyxcPKvanYDtGoRg4eHfu59OQ+UEx2+vvUdj74UfW+cZIeP339nA+HtZji/dUCezyG/6DYA\nIDzwhQa3b0xbY7J4+E2ObO1B8UZOcxsLCjYvS0NxPvet89j53g3Sk5lchbJibu4FqYVEr886IMYF\nu5Oe0Nk26NlYAED7kQvQafxy3jqKN/5t3AMQMXEl2g2bw7sxLvT5N9BhTBxaOwkbS35RMeg07l1Y\nu/qJ/CR8Y56KrlM+hFOw+pebYpzePYYhoN8EAEDbgZPRYfRivfvy/0gZCjYppmFf3JlLNgte85g1\nEiH7VsBtmva/U6tgb/ismMJOHGyf6tigMZgaqpG0VBEzKfKYO7rFGktiMeX7o20lQepoK8pwaK7n\nuamfG233JmTvewjZtwLWnbW7z7Zq64m2Xy1g743TqH4GHiUXVZehLqPlLmz3Tu7grSuR6J4GBkVN\nZI/DnpuhtS7D1MM1pCcAIPFA46JKCuH5z0T//IUajIxp2CqdKoOf0y+/1c7dzZuPqO22OGX5egmv\ni1JTQC5JGhy/EI/+3ePQvu1w5D68iTqZ4TatuDjIlwWLShvuw96YtsYk9Rb/H9LupCdQkF2DudHX\nUKsSlcBcKsHs/7bldUH6dVsuhkwWTnTX1EzvfZV3Yt7Q/Qyvdf9bcIKvKS/MqUFNNQNXH0uYm+v3\nBgsA7P3ay/cXfDUPEjMzRMYmoDw3BXcPfqZWL+LlVci58hsSdyyFS1gvyGqVPp3OoT3g33cMEncs\nRd2jCnSZvAZm5ha4vFndJ1Xez3xIzCToOuUj3n60YeMRiNDnZ+HarvdQW1GCwP4vI6DfBNaVCQC6\nTvkIV7a8hcjYBNh6heDazuWIjE2Ae8QA5Cb+rrMPxWqCJndHLRc9TgVVt9OQNGqZ1smKfXR32Eeb\nZnScpiB5nPAb04ZO6tLmrkdNRt5jZUQY8v7Iyqtwf/Jqg94fXc+zwnBoLpInrETwt/w+2mLHpa+L\nla574730Fb30NiUXv12oZjRc3P42GI3lf819CKrnqvsObh36DOGDZ8EpsCsAIP3CD7h9ZKPAPgZ5\nX0LXDM3zw/XLZfL31Vp06WyB1q31+45N+KQMixZwoy8Zi/uTm8YQ0wUZDBrUyapRVV2E1q0c0b/7\nO0jNPoWkdGWEgfC2w+DjJp/kae4nUGxQvnHve2TnX1G71r/7O5BI5FZxYtJ3vH1H91yBnIfXcU3j\neojfszrbmhK/bMnF0Cncib6LlyW23xC3NDoh7BJkMqZZDQaAf+My0HCjYWzIRey68wR0vcxx8jBc\ncj7FhJupr0f+zVNwbd+HU6csOwl51+XLmQW3z6hd8+87Rm3S/ve2RYiMTYCZuRT1MuUbU2U/DC5/\nNa/BexVCn5+F/Jt/obZCHk4v5fh2OAZ1hUNABIpTEwEAVYXKJV0La/mm2Nxrx+Ee0U+UwcBH/tdH\nxO2qE0DXROLfRtEPp+A4nPuMNQRZcTlqMvTPVWPKGOJ5kRWX437sBwYakTqm/Dwz1bUoP38LNk82\nT54IU743fDCyOp2J2sQmcivPT+Wtq6v9pZ36rwA3lmmvaQ8h++yQfJ2bleNXcPf28HHooAsGv/Dv\nSFJJBgMP1nktPQAAFIhJREFUp66sYyf/AV59EODVsC/BDkEvoUPQS7zXzl77XGtbD+eO8HDmX86t\nruWPamFqbF+dgW4D7OERoN9yX0OjETU1QkbDiJmeOLDhgWg949pdxMg3vDB6jvGjKmScPsBrMKQc\n+7rBuoIHT8PdnzcYYlgsGaf3q50/TLoA317DWYOhJJ3rT1xbUQKplbjs2U2VJyJp1DIE7VgCM6uW\nm4XdUBTs+A01Dwrg/vpwvdoX7juBh7uVxl/ltfuw7tTWUMMzCXI//8Gk748pP88PPtgF16lDm2UD\nNCC/N22/WgBzB3H/c3TB1DV91MbmIHTgawCA+rqmTzR7/YoHOnbN4chXLhc32Qf4MzH7eJvjtana\njY7Va8uweKEtukVa4s9jbug7kP9Fx8ZPHTFjdhHvNX3xfHs8Hny406A6xfDYGQx8UYSEIgtpizik\nuObtFokAryhYWtigoioP15P3o/IR/0YeRRsftyfg5doVNm3cIYEZisvTcfnWN5wlQb72DrZ+CPV7\nDjZt3GFmZoGi0hQkp/8PJeWZWtuaGm9GX4edsxSbznYR3ebS78X4cJp6/OvaGgYWlvq75hgKPqMh\n5k1v9BrihLeH8m+O42P/+mzsX5+NfiNdMH1NgF5jWTfrHs4dNuw/oIZg5diwjd9iCIqewpFVFiif\neVmNfuHvjMG9ifKQrG26hcJr8UQdtbk05VtjY1N67DJKj12Gd9zLsO4qLjJLyZHzyPuSm103671t\nLeqtrhhawv0x5ec5f/MvyN/8C7zfndwsxiT7uSQShOzld3PURvGvZ5G/5VcDj6r58YkcivK8+wju\n9yokZubIuXmiSfsbNLQAh39xgZubGe9KQfK9Okz5TyH+POYmqMPNO5tty6cjN08GdzfhTdHrPi3D\nlm0VSLrlgbAwqdYVC0MbDBYeTgbVJ5bHzmDQhf3QgSj55Zjo+ll5l5GVd7lBfWTmXURmnn5vyYvL\n0nH+xpcNaqNPfoCmrK+g9GEdxoZcRHBEG7y3JwzmUv6J/5dL03BsNzcqEQC83OGSXn0Dhl+pMKS+\nE/sLcGJ/ASRmwNofO8AvrLVg3dz0asS/chd5meKyjPMhZmObWB7eOWcwXQruH/saTH3LfuNWceku\n6ydtbt8GtlGdYdurPSy8XGDexgqy0kpUp+Wi7ORVlJ281qDoTJo0RcjL8vO3DKY3K347e+w08mnY\nRz8Bc0db1FdVoyY1B+XnbqL4kO7nyBDjMZXwoKoI3R/IZHh0N9Oo90cI1ecZABye7837PFfdTEXR\nD6ca9Tw3lKz3trHHzuOfQZvIUFh6u4CprUNdcTkqLtxGxeUkVN3Qb89fSZYvAMDeO4MjU8jZeyOR\nwK5vZzgM7Qmpsz3MrFtBVlaJ6vsPUHr8CsrPcQOBNAZTfJ49Ow4AMAAAkHvrT2RcPNik/V3+uwbH\nT1Sjfz9uWNXUtDr07ivOrVHVaFBl+YpSbPyiHPfveMLGRviFZUlpPTx8s5GTIWws/HjQ8C+70uev\nh4WrA2rziw2uWysMw5hcgTwDCAOA8d/0AWPh7cH4bXyflbUKDmD8Nr7PSKRSeZ0v1jJeK99mzG1t\n1Oo5TxrF+K5bzkgsLViZ/dCBDADGMeYFVuYSO47x/e97jGq/plgCd8abTL/NNZbHtbTy8mFCViUw\n7iPHM459+mmta2Zlxdi0j2BCViUI1omMTWD8+sSonUfGJnDqaOun0/jlTMTEFey5lYMbrw7VfsJf\nmi+oV0jeccwSrWOJjE1g3Dr25XwOt459dX4G/29W6/X7sH9xgM46qrr17cdYxdTHJ1QGhS82mK6n\n2sYKXuvs/WKzf1ZDFFsfOybmt4nM0B0vsTKfKD9m/KlX2fOJZ6Yyw74bxVg5tmbGnZzMyl0j3JmY\noxMZcwtzVhYW04EZ9+dkptPUrlr7fX7nCGb0kYlqsm6zn2RG/Tqe8e3nz8paOVgxw78fwwzeMoyV\njfp1PNN3zUC1tqMOjWdG/DSWPZdaSTmypiq//ejGkZVk+Wo911YsHa3VzqP+9xZvvS7rJzT789MS\nSsTBJYyFi12zj6M5S/B3KzlFVxuDzM2b2zgQYzBIzM3VPrjDiMHsNb6f3u8vYjR1KI7thwxg3GZN\nYazCghkAjNTVibdeSyk2T3Vu8j6MaRzYPNWZkZibNft9NXYJfncNY+nC/aLSVnQZDF2nfMhOsPkm\n1rom24o6unRo68elXU+ODr567UctErxuSIOhdWQ447d1FUfm89k7ajKFweA44XlRulWP3d6cxLjO\nnqh1XHzFY+l0NX0+n8gnyz6fLGZgZsZYtQ9ir/t8FsdYdQhSa68pk0iljN+m9xiJ1JwMBgPrMtWi\naigoSteZ3RkAzMSzU3l/Dj8Qw9h42zJdZzyhJgfAdJn+RIP6f3HvaAYAM+H0FKaVgxXnuqpuzfMJ\np6cwAJixJ17R2a4pi7+flCMryfLlFLH6ntw1Te1cyGCgIq6QwaBfMcTcvEW4JGkuddoP6g/7Qf0F\n60td5P5d/ps+QE2auu+/7dO9UFdcike35b7y3isXGD1ZkN8XcUifFo/AnfFImbgUqK+Hx+JXkbN6\nK1ymvgjbgU8CAKqTM5C9TJ6KPXCnPIxWyvg4Vo9C5jozRu2aY0w0HIb3AwBkzP4QdQXFbP36ykcw\ns7ZS0y2EQn99uTJUqsOwp+E49lneseS8vwUe70wRHItqfacJg2E/VL4JtybtAbIWrxf8PBILKQK+\nlvuLlvxyCoXfHtLaZ3MTskoZJSjji0/wKCMNISs/RtLS+XDo3RfmVq3x8PcjCFmVgKQl89j6/m8u\nAgAkLZnH6uE7FsuVLdpjp6tGQNK3jq7rBXfOouDOWZ393Ny3RlQfqsd51/9kIzyJwenlYSjeewTp\nry6B35aVSJ+ylJVlznqflQFAfdUj+H+zGmmTtEf68P9mNedc0UZMe1Us2/qwxznLN6ImOxfmdjYw\nt7OB54o3YOnrgbRX3oHf5pVIn7oUZtZWcBw7BEW7f+WV+W56V/559Eww1VA87drjQelNDApfjKtZ\nP+BB6S0MCl+Mw7dWY1D4YtTKHkFq3goSSHD4lvK+DQpfjOKqTDi09kFq4Tnczv0d7T2eZa8rjm/m\nyKPVOVn74Un/CSiszICTtS+O3FoDBozWsSl0aOoCAB+HzujoOYQzprr6akjNlC4PV7N+woPSG3r1\nbyx+mfg9R3ZlwwUAwN0Dt3nb2HjZ4sXvRkFiboYOk9QTD2afycDEs1Pxw4jvUJ4tHHRj4tmpeHir\nALa+8ghmEjMJqou5IcmvfiHsYioxkz+nu/t9jQmnp0AikWBHL3nOkx09N3NkTUWtQAZiVfekhtDK\nVTj8ZtT/3sLJZz7iHGueR6wbi8S5u1lZp49icO0t4YiJinoW9taoLalUk9l39kXJVflnkUjNwNTV\no8d3r+NcjDwgS0BsFFK/Oql1bAqcnusKz1cHouJaGlLj97LywHfHwjrcB9lfHkXRsaus3Hv6INQW\nlMJtbBSyPj+EomOJ2m8egLBNM2Bu3wbJczejOvuf/aP19QjfOht1xRVImqt8HtzHRsF1ZG+UXUpG\n2hr1QBphX86E1KENUld+h/LEVFYevnU26qtqcGeG9vkQATT7aoKYFQZoWErmdjYMXx3Vn34bV/Pq\nsB86kHF9fRLTOiKcAcA4jhpqdEtP8cbeZdoIxuU/LzFtekUwlv6eate0tWuITOhY7BjF9hu4M55p\n3TlUTSaxkDZ4LIE74zkrDNp0aPZpakWxCqD6U1OmOJbaOfC21TzWJlMUMasH/4aitgqwVfnsOE0e\nLigDwPj8dxHjsXyGeN3/HBvCTclpotJd0nXWBMb22d6M/zerWX1OryjdZxTj1ykzwgpDVNB/GED+\nJv+5sIUMACa63XxOPc03/R52YYI6+VYFNGViVw601RPSqfjpZd+RGRg6t1H9G6M4BDlyZBY2lgwA\nZvxJuVsS30pD5KwnGSun1oJ6tb3hV+jl061ZOr3aRVCvMVcRtBUvT3OO7GGaL7Pt/5wZAIylhYT5\n66iHaH2aKwqq50LHAJjA2L6ca4qf7Zdrd6FTbauqQ1FY2dH5vOPg1ONZFXEcGMGErJP/zmw6B7Ly\ngKVjGIlU/h0e8VOcWpvwr99kzG3lz5mVr4vOexdxcAkjMZMwABhzGytWFnFwCQOAsX8qnD0GwNhE\nBDAAGOfB3dTkqsd+C0bwylWPH8fyr1lh0ERiaQnfT1eg4vRFFO7+ibdO+ozF8Fkbh5Lf/oCsVD21\nfP7n36BNd3n0nqJ9v8Bx9POwG9gHuR9vwqOk+00+fgCwG9QbBV8cQODOeNg81QWpr7xrUP2Kt/XG\npOrqXbVzvw2LBMeStUh8Yi+1dgs/1dqnSWBmBt/YN2DhKhyhAQCyttIbDWOStSgBjuOGoGjXr7Ad\n0AOF237glQFA2fHzKD18Cr6bliPjP8vFd1KvEglN/vKjQShWLAp3yDcNWnfviPzPvoWlvxfqyyoA\nALYDe6Lw6x/hOH4osuM+0SmzjhSfab0xtLF0BgBkl1yHl708NPS5tG8BAH3axsKmlStvu7bOvdHF\n+yXczPkN6UXighwMCjdujPcaWSUszJVhoo3dv1jq6+oRc/RlVOZV4OcJBwAAzuEuGLDuOezss1Ww\n3eXPzsPGyxYTTk/BnX03cTFBvio4dMdLsHKwwre9twi23Rm1FRP+ehWXPj3Pynb03Ixuc3ogcHAw\nzq0+hYw/0njb7ui5GaMOjUd+Yh529JS/Kfbq6YP+H0fjwfls/D73CACgV1wU2g4JVpM1FdkPuJu3\nnf2Vqws1tQyeiuaG8hREj/8DACCr4oYlvbf+GCRSM9xc/mOD2zJ1MpwatE5NVpEqz5J8MlqZaO3c\n6I2oKdKdydj3zWFIfEEeUav8agorT125hz2+MU49gZuFkw1kZfJNwI8ytOcuaPf568jaeAhMvfz+\nycqVK1b3FsjDgZf8dUutjWLl4OGhS/CeMZiVyyqr0e6LGbgzbSPSP5D/XYSun4aMdcr54/13toPQ\njskbDGn/WcCR1RUUImP2Mk4dzZ+ZC+UT1bJjp9i6ighJFRf+ZmVFe39G0V5u2LqmQlZWCeeXh6D0\n8GkAcpcbQ5K99HNU32v+MKyyikrkrN3GOxZzRzsgvQH/dBXt7G2AjFxDDK9JcOzTD87RQ5H8rtwd\nSOFuVPa3fCJUlZIMiaU8xnnlPRM0dh4jFJNvhWtQXe5DVCXegd/WVayrkELm89k7HPchproGhVu4\nLh7aSJscB9c5L8uPX3lHbRxsnUmLeWUAUJuRg8Ltyi8xWaE8md3DLQcAWT1b12d9HB5u2ova7DxB\nWXrsMvhteg/przc8/KO+hLo+jWvZP8PDLgwAUPpI/jcukZizLj+ak+3TKVtYuUNrLyRm646wouo+\n1Bw0d/9ClKaV4Lto9YlPzoVsNWNBMTHX/FmeXcYxDPhcnPj49im5/tt7lCGmL31yDpc+UY/0dG3r\n39Bk32D1ePLZZzNZfQrOxJ/EmfiTosZialycshVR/3sLAHjdegAgImEsAKDHnum4sfQHlN/l/260\n8rBHn8PzUF8rw+XYrajKEh8lJ+UfNyPVcVx+bRt6/zQbp4cpX8Q9uXs6JOZmWserjYiDS1BbWIbM\n/x4EUydD+TV+Y1EXUkcbVD/gD0dak1/CkUnMJOj0YxwebD2G8r9T1K7dGPMhLD0dEXFwCYqOX0NG\nwo+wcLGFXY9QWIcqIxzpO9Z/Dc3tfqTLJelxLLZPd1NzSxLrNsR3zW/DQlH1dOnWVlesS5JmHU2X\nJDFj8duwkGkV7CtqLKYYqSkoLp6x7RzJnivchiQWFoxdZHdGamvHWLq6M/bde6m1M7RLEpWWWVrq\n5mRA7pqjcM9xtw1lApyeZK919ByiVo/3szt1Z/oGv87RydeP6rml1Fr0+MRe03RJcrFpy5E1tH8q\nVBpb2q9Qbmpv7s3TQi48qnLX4T1EteErzoMimY77uPMbzU3PCp2d9i9q0Pgcotoz7b7Q7nb6OJV/\nrUtSS6fsj0uwfkKe4r7giwMws+LGElbFY9FktI6QJ/kJ3BmP2txCZM6VL/Wlz1wL3/ULIJFIkD5z\nLQD55l/3BZPQKsgXD7/6ARUXxCcWU5AyPg4+CfNQX1aB4h9PsHJV96LAnfFaNxoztXVIGR8H388W\nQGJpgYw31oKprWP1e62YDqmzPXLWbEPNP6sG6TPXwm3OOFh3bYfUycvZus5ThqF1hyCT2dgsxL34\nOLg+PwKuQ4YjY5PS7YqprYX7iHHyjctlpfCfsxAlF85o1ZW0ZB6ClryPqtR7anVVN1WHrEpA6ser\nUFvEn0yQaDn4b41v0CZpU+NSxl508x0NAMgtu4tB4YuRWih3U6mrf4Rnwxbgj+QNSC44pdaud+Cr\nsLVyx5WM/fgz+XO1a38kf45n2s1DUWUmLmXIN3kevrUaQS690da5N6pqS3Dqvri8NYdvrcYz7eah\nRlbF9qO62qE41rV6oNp/QcV9XMk8IKp/gmgszr2DEHX0LUAC3FnbvAngEl9YhYiDS9TOAYCpq2fl\nCpk+PDx8GZBIePvg49rINWzdnO0n1K6p6rg7W/7/ovjkTdQ+LBOtnwAkjJ7+dU2JRCIxvUERBEEQ\nBEEQRAuDYZhGh8szbjxRgiAIgiAIgiBaFCa5wkAQBEEQBEEQhGlAKwwEQRAEQRAEQQhCBgNBEARB\nEARBEIKQwUAQBEEQBEEQhCBkMBAEQRAEQRAEIQgZDARBEARBEARBCEIGA0EQBEEQBEEQgpDBQBAE\nQRAEQRCEIGQwEARBEARBEAQhCBkMBEEQBEEQBEEIQgYDQRAEQRAEQRCCkMFAEARBEARBEIQgZDAQ\nBEEQBEEQBCEIGQwEQRAEQRAEQQhCBgNBEARBEARBEIKQwUAQBEEQBEEQhCBkMBAEQRAEQRAEIQgZ\nDARBEARBEARBCEIGA0EQBEEQBEEQgpDBQBAEQRAEQRCEIGQwEARBEARBEAQhCBkMBEEQBEEQBEEI\nQgYDQRAEQRAEQRCCkMFAEARBEARBEIQg/w+RLwDi3MgjoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + } + ] + }, + { + "metadata": { + "_uuid": "398461363c7a395e2a982e07e8ac6fccaee139c1", + "id": "D-qyZxyVGZIG", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Models" + ] + }, + { + "metadata": { + "trusted": true, + "_uuid": "eb29ec027df57f6597dbef976645dc8d151e1618", + "id": "AwnzDD_0GZIH", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.preprocessing.text import Tokenizer\n", + "from keras.preprocessing.sequence import pad_sequences\n", + "from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation, Conv1D, GRU, CuDNNGRU, CuDNNLSTM, BatchNormalization\n", + "from keras.layers import Bidirectional, GlobalMaxPool1D, MaxPooling1D, Add, Flatten, LeakyReLU\n", + "from keras.layers import GlobalAveragePooling1D, GlobalMaxPooling1D, concatenate, SpatialDropout1D\n", + "from keras.models import Model, load_model\n", + "from keras import initializers, regularizers, constraints, optimizers, layers, callbacks\n", + "from keras import backend as K\n", + "from keras.engine import InputSpec, Layer\n", + "from keras.optimizers import Adam\n", + "from keras.callbacks import ModelCheckpoint, TensorBoard, Callback, EarlyStopping\n", + "import pydot\n", + "from IPython.display import SVG\n", + "from keras.utils.vis_utils import model_to_dot" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "6IRBrjIkWDq8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Embedding & Word Vectorization" + ] + }, + { + "metadata": { + "trusted": true, + "_uuid": "a2881c29f82578b4a373b52d2c7b96a2e73bfd80", + "id": "TP2z0XJhGZIL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "tk = Tokenizer(lower = True, filters='')\n", + "full_text = list(train['Phrase'].values) + list(test['Phrase'].values)\n", + "tk.fit_on_texts(full_text)\n", + "train_tokenized = tk.texts_to_sequences(train['Phrase'])\n", + "test_tokenized = tk.texts_to_sequences(test['Phrase'])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "DbNFsH5cHoiw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Pre-trained word2vec: this model is trained on thecontext on each word so that similar words will havesimilar numerical representations. Sentences are firsttokenized to create a number of pairs of words, de-pending on the window size. Then the data it’s fedinto a neural network through an embedding layerinitialized with random weights. Once the model istrained to minimize the loss of predicting the targetwords using the context words, the weights in theembedding layer would represent the vocabulary ofword vectors" + ] + }, + { + "metadata": { + "trusted": true, + "_uuid": "9dfd0b8fa2c79bfa206d2fe8e35fbec444418f5c", + "id": "x2VpwGsgGZIS", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "embedding_path = \"/content/drive/My Drive/DeepLearning/crawl-300d-2M.vec\"\n", + "#embedding_path = \"/content/drive/My Drive/DeepLearning/glove.twitter.27B.25d.txt\"\n", + "#embed_size = 25\n", + "embed_size = 300\n", + "max_features = 30000\n", + "\n", + "def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32')\n", + "embedding_index = dict(get_coefs(*o.strip().split(\" \")) for o in open(embedding_path))\n", + "\n", + "word_index = tk.word_index\n", + "nb_words = min(max_features, len(word_index))\n", + "embedding_matrix = np.zeros((nb_words + 1, embed_size))\n", + "for word, i in word_index.items():\n", + " if i >= max_features: continue\n", + " embedding_vector = embedding_index.get(word)\n", + " if embedding_vector is not None: embedding_matrix[i] = embedding_vector" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "trusted": true, + "_uuid": "bcb80cf8a59ca779a0be1ab235a1e9da2f4b175b", + "id": "b6bErvirGZIP", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "max_len = 50\n", + "X_train = pad_sequences(train_tokenized, maxlen = max_len)\n", + "X_test = pad_sequences(test_tokenized, maxlen = max_len)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "trusted": true, + "_uuid": "365c0d607d55a78c5890268b9c168eb12a211855", + "id": "4AlRADppGZIa", + "colab_type": "code", + "outputId": "93c9145a-d1e0-4c30-d9bd-f1468b43ab0f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 228 + } + }, + "cell_type": "code", + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "ohe = OneHotEncoder(sparse=False)\n", + "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", + "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.\n", + "If you want the future behaviour and silence this warning, you can specify \"categories='auto'\".\n", + "In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.\n", + " warnings.warn(msg, FutureWarning)\n", + "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.\n", + "If you want the future behaviour and silence this warning, you can specify \"categories='auto'\".\n", + "In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.\n", + " warnings.warn(msg, FutureWarning)\n" + ], + "name": "stderr" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "OneHotEncoder(categorical_features=None, categories=None,\n", + " dtype=, handle_unknown='error',\n", + " n_values=None, sparse=False)" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 21 + } + ] + }, + { + "metadata": { + "id": "ynCM0G_xBJN1", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "NUM_FOLDS = 2\n", + "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", + "\n", + "def Train_And_Prediction(model): \n", + " test_preds = np.zeros((test.shape[0], 5))\n", + " for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + "\n", + " print(\"Training the model...\")\n", + " model.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 1, verbose = 1, callbacks = [early_stop]) \n", + " model.save_weights(file_path) \n", + " test_preds += model.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + "\n", + " print(\"Save model after cross-validation...\")\n", + " #model.save_weights(file_path) \n", + " model.save(file_path)\n", + " test_preds /= NUM_FOLDS\n", + "\n", + "\n", + " print(\"Make the submission ready...\")\n", + " sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + " pred = model.predict(X_test, batch_size = 1024, verbose = 1)\n", + " predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + " submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + " submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + " submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + " submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + " submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + " submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + " predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + " submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + " submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + " submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + " submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + " submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + " submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "x2cpGj5WcMsH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Model 1: Embedding + {LSTM/GRU} + CNN" + ] + }, + { + "metadata": { + "trusted": true, + "_uuid": "8187e167ce93f0eb69f59cb9d7fedc4637a77cfe", + "id": "jUBolZU1GZIl", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model1(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19479, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " \n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " \n", + " \n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " \n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " \n", + " \n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "wjh0IK94gE7e", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Print the Summary and Arch of the model" + ] + }, + { + "metadata": { + "id": "yrvsOTvmOPvZ", + "colab_type": "code", + "outputId": "28df70e8-e2ef-4f52-f0c7-fb1eca8c98be", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 2663 + } + }, + "cell_type": "code", + "source": [ + "model1 = build_model1(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "model1.summary()\n", + "SVG(model_to_dot(model1, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_3 (InputLayer) (None, 50) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_3 (Embedding) (None, 50, 300) 5843700 input_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "spatial_dropout1d_3 (SpatialDro (None, 50, 300) 0 embedding_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_5 (Bidirectional) (None, 50, 128) 140544 spatial_dropout1d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_6 (Bidirectional) (None, 50, 128) 187392 spatial_dropout1d_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_9 (Conv1D) (None, 48, 32) 12320 bidirectional_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_10 (Conv1D) (None, 48, 32) 12320 bidirectional_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_11 (Conv1D) (None, 48, 32) 12320 bidirectional_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_12 (Conv1D) (None, 48, 32) 12320 bidirectional_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_9 (Glo (None, 32) 0 conv1d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_9 (GlobalM (None, 32) 0 conv1d_9[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_10 (Gl (None, 32) 0 conv1d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_10 (Global (None, 32) 0 conv1d_10[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_11 (Gl (None, 32) 0 conv1d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_11 (Global (None, 32) 0 conv1d_11[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_12 (Gl (None, 32) 0 conv1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_12 (Global (None, 32) 0 conv1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_3 (Concatenate) (None, 256) 0 global_average_pooling1d_9[0][0] \n", + " global_max_pooling1d_9[0][0] \n", + " global_average_pooling1d_10[0][0]\n", + " global_max_pooling1d_10[0][0] \n", + " global_average_pooling1d_11[0][0]\n", + " global_max_pooling1d_11[0][0] \n", + " global_average_pooling1d_12[0][0]\n", + " global_max_pooling1d_12[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_5 (BatchNor (None, 256) 1024 concatenate_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_7 (Dense) (None, 64) 16448 batch_normalization_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_5 (Dropout) (None, 64) 0 dense_7[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_6 (BatchNor (None, 64) 256 dropout_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_8 (Dense) (None, 32) 2080 batch_normalization_6[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_6 (Dropout) (None, 32) 0 dense_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_9 (Dense) (None, 5) 165 dropout_6[0][0] \n", + "==================================================================================================\n", + "Total params: 6,240,889\n", + "Trainable params: 396,549\n", + "Non-trainable params: 5,844,340\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140068280049224\n\ninput_3: InputLayer\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50)\n\n\n\n140068280049448\n\nembedding_3: Embedding\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50, 300)\n\n\n\n140068280049224->140068280049448\n\n\n\n\n\n140068280049392\n\nspatial_dropout1d_3: SpatialDropout1D\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 300)\n\n\n\n140068280049448->140068280049392\n\n\n\n\n\n140068279531280\n\nbidirectional_5(cu_dnngru_3): Bidirectional(CuDNNGRU)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140068280049392->140068279531280\n\n\n\n\n\n140067975612624\n\nbidirectional_6(cu_dnnlstm_3): Bidirectional(CuDNNLSTM)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140068280049392->140067975612624\n\n\n\n\n\n140067975713400\n\nconv1d_9: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140068279531280->140067975713400\n\n\n\n\n\n140067973474288\n\nconv1d_10: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140068279531280->140067973474288\n\n\n\n\n\n140067973189984\n\nconv1d_11: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140067975612624->140067973189984\n\n\n\n\n\n140067972907360\n\nconv1d_12: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 48, 32)\n\n\n\n140067975612624->140067972907360\n\n\n\n\n\n140067973474232\n\nglobal_average_pooling1d_9: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067975713400->140067973474232\n\n\n\n\n\n140067973474344\n\nglobal_max_pooling1d_9: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067975713400->140067973474344\n\n\n\n\n\n140067973190376\n\nglobal_average_pooling1d_10: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973474288->140067973190376\n\n\n\n\n\n140067973190152\n\nglobal_max_pooling1d_10: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973474288->140067973190152\n\n\n\n\n\n140067973285760\n\nglobal_average_pooling1d_11: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973189984->140067973285760\n\n\n\n\n\n140067973287328\n\nglobal_max_pooling1d_11: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067973189984->140067973287328\n\n\n\n\n\n140067972996792\n\nglobal_average_pooling1d_12: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067972907360->140067972996792\n\n\n\n\n\n140067972996400\n\nglobal_max_pooling1d_12: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 48, 32)\n\n(None, 32)\n\n\n\n140067972907360->140067972996400\n\n\n\n\n\n140067972996232\n\nconcatenate_3: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32)]\n\n(None, 256)\n\n\n\n140067973474232->140067972996232\n\n\n\n\n\n140067973474344->140067972996232\n\n\n\n\n\n140067973190376->140067972996232\n\n\n\n\n\n140067973190152->140067972996232\n\n\n\n\n\n140067973285760->140067972996232\n\n\n\n\n\n140067973287328->140067972996232\n\n\n\n\n\n140067972996792->140067972996232\n\n\n\n\n\n140067972996400->140067972996232\n\n\n\n\n\n140067972599536\n\nbatch_normalization_5: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 256)\n\n\n\n140067972996232->140067972599536\n\n\n\n\n\n140067972686456\n\ndense_7: Dense\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 64)\n\n\n\n140067972599536->140067972686456\n\n\n\n\n\n140067972598808\n\ndropout_5: Dropout\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140067972686456->140067972598808\n\n\n\n\n\n140067972835144\n\nbatch_normalization_6: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140067972598808->140067972835144\n\n\n\n\n\n140067971606904\n\ndense_8: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 32)\n\n\n\n140067972835144->140067971606904\n\n\n\n\n\n140067971984296\n\ndropout_6: Dropout\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n140067971606904->140067971984296\n\n\n\n\n\n140067971384600\n\ndense_9: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 5)\n\n\n\n140067971984296->140067971384600\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "metadata": { + "id": "q7cn0Rl5R6KJ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "K folds Validation" + ] + }, + { + "metadata": { + "id": "O9OLbhyJTfMc", + "colab_type": "code", + "outputId": "58b88c23-3fbc-4483-ab99-0e98f8121c78", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 967 + } + }, + "cell_type": "code", + "source": [ + "NUM_FOLDS = 5\n", + "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", + "test_preds = np.zeros((test.shape[0], 5))\n", + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "\n", + "print(\"Building the model...\")\n", + "model1 = build_model1(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "\n", + "for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + " \n", + " print(\"Training the model...\")\n", + " model1.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 15, verbose = 1, callbacks = [early_stop]) \n", + " model1.save_weights(file_path) \n", + " test_preds += model1.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + " \n", + "print(\"Save model after cross-validation...\")\n", + "model1.save_weights(file_path) \n", + "test_preds /= NUM_FOLDS\n", + "\n", + "\n", + "print(\"Make the submission ready...\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model1.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 125230 samples, validate on 30830 samples\n", + "Epoch 1/15\n" + ], + "name": "stdout" + }, + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Training the model...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 20\u001b[0;31m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalidation_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mval_seq\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_val\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepochs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m15\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcallbacks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mearly_stop\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 21\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0mtest_preds\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mmodel1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1024\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)\u001b[0m\n\u001b[1;32m 1037\u001b[0m \u001b[0minitial_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1038\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1039\u001b[0;31m validation_steps=validation_steps)\n\u001b[0m\u001b[1;32m 1040\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1041\u001b[0m def evaluate(self, x=None, y=None,\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/engine/training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[0;34m(model, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0mouts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2713\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_legacy_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2714\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2715\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2716\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2717\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpy_any\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mis_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 2673\u001b[0m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_metadata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2675\u001b[0;31m \u001b[0mfetched\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_callable_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marray_vals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2676\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfetched\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1437\u001b[0m ret = tf_session.TF_SessionRunCallable(\n\u001b[1;32m 1438\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstatus\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1439\u001b[0;31m run_metadata_ptr)\n\u001b[0m\u001b[1;32m 1440\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_metadata\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0mproto_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTF_GetBuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrun_metadata_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ] + }, + { + "metadata": { + "id": "w_Qgo7qZjPbh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Model 2: Embedding + LSTM + multi CNN\n" + ] + }, + { + "metadata": { + "id": "Xby86sUKw4yg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model2(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " input_words = Input((max_len, ))\n", + " x_words = Embedding(19479, embed_size,weights=[embedding_matrix],trainable=False)(input_words)\n", + " x_words = SpatialDropout1D(0.3)(x_words)\n", + " x_words = Bidirectional(CuDNNLSTM(50, return_sequences=True))(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + " x_words = Conv1D(256, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = Conv1D(128, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = Conv1D(64, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = GlobalMaxPool1D()(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + "\n", + " x = Dense(50, activation=\"relu\")(x_words)\n", + " x = Dropout(0.2)(x)\n", + " predictions = Dense(5, activation=\"softmax\")(x)\n", + "\n", + " model = Model(inputs=[input_words], outputs=predictions)\n", + " model.compile(optimizer='nadam' ,loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "nZB9ZOYE47gN", + "colab_type": "code", + "outputId": "5120f18e-5dfc-4465-8007-06d6b18089e5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1275 + } + }, + "cell_type": "code", + "source": [ + "test_preds = np.zeros((test.shape[0], 5))\n", + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode=\"min\", patience = 3, verbose=1)\n", + "\n", + "print(\"Building the model...\")\n", + "model2 = build_model2(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "\n", + "for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + " \n", + " print(\"Training the model...\")\n", + " model2.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 15, verbose = 1, callbacks = [early_stop]) \n", + " model2.save_weights(file_path) \n", + " test_preds += model3.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + " \n", + "print(\"Save model after cross-validation...\")\n", + "model2.save_weights(file_path) \n", + "test_preds /= NUM_FOLDS\n", + "\n", + "\n", + "print(\"Make the submission ready...\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model2.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "sub['Sentiment'] = predictions\n", + "sub.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "sub['Sentiment'] = predictions\n", + "sub.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 125230 samples, validate on 30830 samples\n", + "Epoch 1/15\n", + "125230/125230 [==============================] - 46s 366us/step - loss: 0.9709 - acc: 0.5990 - val_loss: 0.8935 - val_acc: 0.6251\n", + "Epoch 2/15\n", + "125230/125230 [==============================] - 40s 322us/step - loss: 0.8800 - acc: 0.6357 - val_loss: 0.8489 - val_acc: 0.6488\n", + "Epoch 3/15\n", + "125230/125230 [==============================] - 40s 321us/step - loss: 0.8414 - acc: 0.6511 - val_loss: 0.8371 - val_acc: 0.6549\n", + "Epoch 4/15\n", + "125230/125230 [==============================] - 40s 321us/step - loss: 0.8159 - acc: 0.6616 - val_loss: 0.8279 - val_acc: 0.6561\n", + "Epoch 5/15\n", + "125230/125230 [==============================] - 40s 321us/step - loss: 0.7955 - acc: 0.6676 - val_loss: 0.8275 - val_acc: 0.6587\n", + "Epoch 6/15\n", + "125230/125230 [==============================] - 40s 322us/step - loss: 0.7816 - acc: 0.6741 - val_loss: 0.8235 - val_acc: 0.6600\n", + "Epoch 7/15\n", + "125230/125230 [==============================] - 40s 323us/step - loss: 0.7671 - acc: 0.6804 - val_loss: 0.8327 - val_acc: 0.6608\n", + "Epoch 8/15\n", + "125230/125230 [==============================] - 40s 322us/step - loss: 0.7576 - acc: 0.6847 - val_loss: 0.8334 - val_acc: 0.6623\n", + "66292/66292 [==============================] - 4s 54us/step\n", + "\n", + "FOLD 2\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124608 samples, validate on 31452 samples\n", + "Epoch 1/15\n", + "124608/124608 [==============================] - 41s 326us/step - loss: 0.7761 - acc: 0.6783 - val_loss: 0.7067 - val_acc: 0.7130\n", + "Epoch 2/15\n", + "124608/124608 [==============================] - 40s 322us/step - loss: 0.7584 - acc: 0.6843 - val_loss: 0.7185 - val_acc: 0.7009\n", + "Epoch 3/15\n", + "124608/124608 [==============================] - 40s 322us/step - loss: 0.7486 - acc: 0.6889 - val_loss: 0.7210 - val_acc: 0.7015\n", + "66292/66292 [==============================] - 3s 47us/step\n", + "\n", + "FOLD 3\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 125022 samples, validate on 31038 samples\n", + "Epoch 1/15\n", + "125022/125022 [==============================] - 41s 325us/step - loss: 0.7590 - acc: 0.6859 - val_loss: 0.6695 - val_acc: 0.7249\n", + "Epoch 2/15\n", + "125022/125022 [==============================] - 40s 321us/step - loss: 0.7492 - acc: 0.6886 - val_loss: 0.6859 - val_acc: 0.7142\n", + "Epoch 3/15\n", + "125022/125022 [==============================] - 40s 320us/step - loss: 0.7390 - acc: 0.6918 - val_loss: 0.6826 - val_acc: 0.7144\n", + "66292/66292 [==============================] - 3s 48us/step\n", + "\n", + "FOLD 4\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124609 samples, validate on 31451 samples\n", + "Epoch 1/15\n", + "124609/124609 [==============================] - 41s 327us/step - loss: 0.7406 - acc: 0.6922 - val_loss: 0.6621 - val_acc: 0.7266\n", + "Epoch 2/15\n", + "124609/124609 [==============================] - 40s 322us/step - loss: 0.7346 - acc: 0.6959 - val_loss: 0.6731 - val_acc: 0.7186\n", + "Epoch 3/15\n", + "124609/124609 [==============================] - 40s 321us/step - loss: 0.7292 - acc: 0.6982 - val_loss: 0.6777 - val_acc: 0.7146\n", + "66292/66292 [==============================] - 3s 47us/step\n", + "\n", + "FOLD 5\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 124771 samples, validate on 31289 samples\n", + "Epoch 1/15\n", + "124771/124771 [==============================] - 41s 326us/step - loss: 0.7309 - acc: 0.6980 - val_loss: 0.6523 - val_acc: 0.7281\n", + "Epoch 2/15\n", + "124771/124771 [==============================] - 40s 321us/step - loss: 0.7263 - acc: 0.6981 - val_loss: 0.6621 - val_acc: 0.7269\n", + "Epoch 3/15\n", + "124771/124771 [==============================] - 40s 321us/step - loss: 0.7205 - acc: 0.6998 - val_loss: 0.6625 - val_acc: 0.7189\n", + "66292/66292 [==============================] - 3s 48us/step\n", + "\n", + "Save model after cross-validation...\n", + "Make the submission ready...\n", + "66292/66292 [==============================] - 3s 47us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "9I07QVa8OYB4", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Model 3: Embedding + {LSTM/GRU} + multi CNN" + ] + }, + { + "metadata": { + "id": "rpqwTRtOn3Be", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model3(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19479, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(128, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_gru)\n", + " x_conv1 = Conv1D(64, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_conv1)\n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_conv1)\n", + "\n", + " \n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " \n", + " x_conv2 = Conv1D(128, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_gru)\n", + " x_conv2 = Conv1D(64, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_conv2)\n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_conv2) \n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " \n", + " \n", + " x_conv3 = Conv1D(128, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_lstm)\n", + " x_conv3 = Conv1D(64, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_conv3)\n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='causal', kernel_initializer='he_uniform')(x_conv3)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " \n", + " x_conv4 = Conv1D(128, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_lstm)\n", + " x_conv4 = Conv1D(64, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_conv4)\n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='causal', kernel_initializer='he_uniform')(x_conv4)\n", + "\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " \n", + " \n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "FZamFj3U7z5o", + "colab_type": "code", + "outputId": "2b0ec71d-a9d5-4d66-c75a-768d9ddcdcaa", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3134 + } + }, + "cell_type": "code", + "source": [ + "trained_model3 = build_model3(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "trained_model3.summary()\n", + "SVG(model_to_dot(trained_model3, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_2 (InputLayer) (None, 50) 0 \n", + "__________________________________________________________________________________________________\n", + "embedding_2 (Embedding) (None, 50, 300) 5843700 input_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "spatial_dropout1d_2 (SpatialDro (None, 50, 300) 0 embedding_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_3 (Bidirectional) (None, 50, 128) 140544 spatial_dropout1d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "bidirectional_4 (Bidirectional) (None, 50, 128) 187392 spatial_dropout1d_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_13 (Conv1D) (None, 50, 128) 49280 bidirectional_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_16 (Conv1D) (None, 50, 128) 49280 bidirectional_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_19 (Conv1D) (None, 50, 128) 49280 bidirectional_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_22 (Conv1D) (None, 50, 128) 49280 bidirectional_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_14 (Conv1D) (None, 50, 64) 24640 conv1d_13[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_17 (Conv1D) (None, 50, 64) 24640 conv1d_16[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_20 (Conv1D) (None, 50, 64) 24640 conv1d_19[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_23 (Conv1D) (None, 50, 64) 24640 conv1d_22[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_15 (Conv1D) (None, 50, 32) 6176 conv1d_14[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_18 (Conv1D) (None, 50, 32) 6176 conv1d_17[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_21 (Conv1D) (None, 50, 32) 6176 conv1d_20[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv1d_24 (Conv1D) (None, 50, 32) 6176 conv1d_23[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_5 (Glo (None, 32) 0 conv1d_15[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_5 (GlobalM (None, 32) 0 conv1d_15[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_6 (Glo (None, 32) 0 conv1d_18[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_6 (GlobalM (None, 32) 0 conv1d_18[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_7 (Glo (None, 32) 0 conv1d_21[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_7 (GlobalM (None, 32) 0 conv1d_21[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_average_pooling1d_8 (Glo (None, 32) 0 conv1d_24[0][0] \n", + "__________________________________________________________________________________________________\n", + "global_max_pooling1d_8 (GlobalM (None, 32) 0 conv1d_24[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_2 (Concatenate) (None, 256) 0 global_average_pooling1d_5[0][0] \n", + " global_max_pooling1d_5[0][0] \n", + " global_average_pooling1d_6[0][0] \n", + " global_max_pooling1d_6[0][0] \n", + " global_average_pooling1d_7[0][0] \n", + " global_max_pooling1d_7[0][0] \n", + " global_average_pooling1d_8[0][0] \n", + " global_max_pooling1d_8[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_3 (BatchNor (None, 256) 1024 concatenate_2[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_4 (Dense) (None, 64) 16448 batch_normalization_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_3 (Dropout) (None, 64) 0 dense_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "batch_normalization_4 (BatchNor (None, 64) 256 dropout_3[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_5 (Dense) (None, 32) 2080 batch_normalization_4[0][0] \n", + "__________________________________________________________________________________________________\n", + "dropout_4 (Dropout) (None, 32) 0 dense_5[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_6 (Dense) (None, 5) 165 dropout_4[0][0] \n", + "==================================================================================================\n", + "Total params: 6,511,993\n", + "Trainable params: 667,653\n", + "Non-trainable params: 5,844,340\n", + "__________________________________________________________________________________________________\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\nG\n\n\n\n140252887122888\n\ninput_2: InputLayer\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50)\n\n\n\n140252887303392\n\nembedding_2: Embedding\n\ninput:\n\noutput:\n\n(None, 50)\n\n(None, 50, 300)\n\n\n\n140252887122888->140252887303392\n\n\n\n\n\n140252887303728\n\nspatial_dropout1d_2: SpatialDropout1D\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 300)\n\n\n\n140252887303392->140252887303728\n\n\n\n\n\n140252886456976\n\nbidirectional_3(cu_dnngru_2): Bidirectional(CuDNNGRU)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140252887303728->140252886456976\n\n\n\n\n\n140252876423856\n\nbidirectional_4(cu_dnnlstm_2): Bidirectional(CuDNNLSTM)\n\ninput:\n\noutput:\n\n(None, 50, 300)\n\n(None, 50, 128)\n\n\n\n140252887303728->140252876423856\n\n\n\n\n\n140252876426264\n\nconv1d_13: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 128)\n\n\n\n140252886456976->140252876426264\n\n\n\n\n\n140252874037792\n\nconv1d_16: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 128)\n\n\n\n140252886456976->140252874037792\n\n\n\n\n\n140252873065528\n\nconv1d_19: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 128)\n\n\n\n140252876423856->140252873065528\n\n\n\n\n\n140252872716360\n\nconv1d_22: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 128)\n\n\n\n140252876423856->140252872716360\n\n\n\n\n\n140252876426488\n\nconv1d_14: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 64)\n\n\n\n140252876426264->140252876426488\n\n\n\n\n\n140252873658440\n\nconv1d_17: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 64)\n\n\n\n140252874037792->140252873658440\n\n\n\n\n\n140252873301800\n\nconv1d_20: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 64)\n\n\n\n140252873065528->140252873301800\n\n\n\n\n\n140252872318312\n\nconv1d_23: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 128)\n\n(None, 50, 64)\n\n\n\n140252872716360->140252872318312\n\n\n\n\n\n140252874209656\n\nconv1d_15: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 64)\n\n(None, 50, 32)\n\n\n\n140252876426488->140252874209656\n\n\n\n\n\n140252873759488\n\nconv1d_18: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 64)\n\n(None, 50, 32)\n\n\n\n140252873658440->140252873759488\n\n\n\n\n\n140252872917400\n\nconv1d_21: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 64)\n\n(None, 50, 32)\n\n\n\n140252873301800->140252872917400\n\n\n\n\n\n140252872427000\n\nconv1d_24: Conv1D\n\ninput:\n\noutput:\n\n(None, 50, 64)\n\n(None, 50, 32)\n\n\n\n140252872318312->140252872427000\n\n\n\n\n\n140252874312728\n\nglobal_average_pooling1d_5: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252874209656->140252874312728\n\n\n\n\n\n140252874035328\n\nglobal_max_pooling1d_5: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252874209656->140252874035328\n\n\n\n\n\n140252873362624\n\nglobal_average_pooling1d_6: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252873759488->140252873362624\n\n\n\n\n\n140252873065864\n\nglobal_max_pooling1d_6: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252873759488->140252873065864\n\n\n\n\n\n140252872996792\n\nglobal_average_pooling1d_7: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252872917400->140252872996792\n\n\n\n\n\n140252872718656\n\nglobal_max_pooling1d_7: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252872917400->140252872718656\n\n\n\n\n\n140252872027384\n\nglobal_average_pooling1d_8: GlobalAveragePooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252872427000->140252872027384\n\n\n\n\n\n140252872257888\n\nglobal_max_pooling1d_8: GlobalMaxPooling1D\n\ninput:\n\noutput:\n\n(None, 50, 32)\n\n(None, 32)\n\n\n\n140252872427000->140252872257888\n\n\n\n\n\n140252872260352\n\nconcatenate_2: Concatenate\n\ninput:\n\noutput:\n\n[(None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32), (None, 32)]\n\n(None, 256)\n\n\n\n140252874312728->140252872260352\n\n\n\n\n\n140252874035328->140252872260352\n\n\n\n\n\n140252873362624->140252872260352\n\n\n\n\n\n140252873065864->140252872260352\n\n\n\n\n\n140252872996792->140252872260352\n\n\n\n\n\n140252872718656->140252872260352\n\n\n\n\n\n140252872027384->140252872260352\n\n\n\n\n\n140252872257888->140252872260352\n\n\n\n\n\n140252871885096\n\nbatch_normalization_3: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 256)\n\n\n\n140252872260352->140252871885096\n\n\n\n\n\n140252871974360\n\ndense_4: Dense\n\ninput:\n\noutput:\n\n(None, 256)\n\n(None, 64)\n\n\n\n140252871885096->140252871974360\n\n\n\n\n\n140252871887504\n\ndropout_3: Dropout\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140252871974360->140252871887504\n\n\n\n\n\n140252871587880\n\nbatch_normalization_4: BatchNormalization\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 64)\n\n\n\n140252871887504->140252871587880\n\n\n\n\n\n140252870904408\n\ndense_5: Dense\n\ninput:\n\noutput:\n\n(None, 64)\n\n(None, 32)\n\n\n\n140252871587880->140252870904408\n\n\n\n\n\n140252870753864\n\ndropout_4: Dropout\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 32)\n\n\n\n140252870904408->140252870753864\n\n\n\n\n\n140252870690296\n\ndense_6: Dense\n\ninput:\n\noutput:\n\n(None, 32)\n\n(None, 5)\n\n\n\n140252870753864->140252870690296\n\n\n\n\n" + }, + "metadata": { + "tags": [] + }, + "execution_count": 15 + } + ] + }, + { + "metadata": { + "id": "bHYz1kXFLhIB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "test_preds = np.zeros((test.shape[0], 5))\n", + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "\n", + "print(\"Building the model...\")\n", + "model3 = build_model3(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32)\n", + "\n", + "for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + " \n", + " print(\"Training the model...\")\n", + " model3.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 15, verbose = 1, callbacks = [early_stop]) \n", + " model3.save_weights(file_path) \n", + " test_preds += model2.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + " \n", + "print(\"Save model after cross-validation...\")\n", + "model3.save_weights(file_path) \n", + "test_preds /= NUM_FOLDS\n", + "\n", + "\n", + "print(\"Make the submission ready...\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model3.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "sub['Sentiment'] = predictions\n", + "sub.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "sub['Sentiment'] = predictions\n", + "sub.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "5u0R1sLfthlo", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model4(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32, ktop=5):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19479, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " x_conv1 = LeakyReLU(0.2)(x_conv1)\n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " #dyn_pool1_gru = DynamicKMaxPoolLayer(x_conv1,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " x_conv2 = LeakyReLU(0.2)(x_conv2)\n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " #dyn_pool2_gru = DynamicKMaxPoolLayer(x_conv2,ktop,nroflayers=2,layernr=1)\n", + "\n", + " \n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " x_conv3 = LeakyReLU(0.2)(x_conv3)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " #dyn_pool1_lstm = DynamicKMaxPoolLayer(x_conv3,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " x_conv4 = LeakyReLU(0.2)(x_conv4)\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " #dyn_pool2_lstm = DynamicKMaxPoolLayer(x_conv4,ktop,nroflayers=2,layernr=1)\n", + " \n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "JnzQurfeg0Mo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "###Model 4: Embedding + LSTM/GRU + Multi-layer CNN" + ] + }, + { + "metadata": { + "id": "L3kxtJabtkYT", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=3, dense_units=64, dr=0.3, conv_size=32, ktop=5)\n", + "\n", + "model4.summary()\n", + "SVG(model_to_dot(model4, show_shapes=True, show_layer_names=True, rankdir='HB').create(prog='dot', format='svg'))" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sjHlbhfUtkci", + "colab_type": "code", + "outputId": "e04e3c21-4ae2-41a4-d908-220341c3b8a2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 3313 + } + }, + "cell_type": "code", + "source": [ + "NUM_FOLDS = 20\n", + "train[\"fold_id\"] = train[\"SentenceId\"].apply(lambda x: x%NUM_FOLDS)\n", + "test_preds = np.zeros((test.shape[0], 5))\n", + "file_path = \"/content/drive/My Drive/DeepLearning/best_model.hdf5\"\n", + "check_point = ModelCheckpoint(file_path, monitor = \"val_loss\", verbose = 1,\n", + " save_best_only = True, mode = \"min\")\n", + "early_stop = EarlyStopping(monitor = \"val_loss\", mode = \"min\", patience = 2)\n", + "\n", + "print(\"Building the model...\")\n", + "model4 = build_model4(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "\n", + "for i in range(NUM_FOLDS):\n", + " print(\"FOLD\", i+1) \n", + " print(\"Splitting the data into train and validation...\")\n", + " train_seq, val_seq = X_train[train[\"fold_id\"] != i], X_train[train[\"fold_id\"] == i]\n", + " y_train = ohe.transform(train[train[\"fold_id\"] != i][\"Sentiment\"].values.reshape(-1, 1))\n", + " y_val = ohe.transform(train[train[\"fold_id\"] == i][\"Sentiment\"].values.reshape(-1, 1)) \n", + " \n", + " print(\"Training the model...\")\n", + " model4.fit(train_seq, y_train, validation_data = (val_seq, y_val), batch_size = 128, epochs = 15, verbose = 1, callbacks = [early_stop]) \n", + " model4.save_weights(file_path) \n", + " test_preds += model4.predict([X_test], batch_size=1024, verbose=1) \n", + " print()\n", + " \n", + "print(\"Save model after cross-validation...\")\n", + "model4.save_weights(file_path) \n", + "test_preds /= NUM_FOLDS\n", + "\n", + "\n", + "print(\"Make the submission ready...\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "\n", + "pred = model4.predict(X_test, batch_size = 1024, verbose = 1)\n", + "predictions = np.round(np.argmax(pred, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/blend.csv\", index=False)\n", + "\n", + "predictions = np.round(np.argmax(test_preds, axis=1)).astype(int)\n", + "submission = pd.DataFrame({'PhraseId':test['PhraseId'],'Sentiment': predictions})\n", + "submission =pd.merge(submission, save_test, on='PhraseId', how='left')\n", + "submission[\"Sentiment\"] = submission.apply(get_sentiment, axis=1)\n", + "submission.drop(['Sentiment_x', 'Sentiment_y'], axis=1,inplace=True)\n", + "submission[\"Sentiment\"] = submission[\"Sentiment\"].astype(int)\n", + "submission.to_csv(\"/content/drive/My Drive/DeepLearning/avg_blend.csv\", index=False)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148193 samples, validate on 7867 samples\n", + "Epoch 1/15\n", + "148193/148193 [==============================] - 82s 553us/step - loss: 0.3688 - acc: 0.8348 - val_loss: 0.3077 - val_acc: 0.8578\n", + "Epoch 2/15\n", + "148193/148193 [==============================] - 72s 485us/step - loss: 0.3255 - acc: 0.8525 - val_loss: 0.3013 - val_acc: 0.8608\n", + "Epoch 3/15\n", + "148193/148193 [==============================] - 72s 485us/step - loss: 0.3152 - acc: 0.8566 - val_loss: 0.3010 - val_acc: 0.8609\n", + "Epoch 4/15\n", + "148193/148193 [==============================] - 72s 486us/step - loss: 0.3069 - acc: 0.8599 - val_loss: 0.3034 - val_acc: 0.8624\n", + "Epoch 5/15\n", + "148193/148193 [==============================] - 72s 487us/step - loss: 0.3018 - acc: 0.8617 - val_loss: 0.2919 - val_acc: 0.8679\n", + "Epoch 6/15\n", + "148193/148193 [==============================] - 71s 476us/step - loss: 0.2963 - acc: 0.8638 - val_loss: 0.2904 - val_acc: 0.8672\n", + "Epoch 7/15\n", + "148193/148193 [==============================] - 71s 479us/step - loss: 0.2922 - acc: 0.8662 - val_loss: 0.2911 - val_acc: 0.8676\n", + "Epoch 8/15\n", + "148193/148193 [==============================] - 73s 490us/step - loss: 0.2885 - acc: 0.8681 - val_loss: 0.2927 - val_acc: 0.8675\n", + "66292/66292 [==============================] - 4s 59us/step\n", + "\n", + "FOLD 2\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148316 samples, validate on 7744 samples\n", + "Epoch 1/15\n", + "148316/148316 [==============================] - 73s 494us/step - loss: 0.2862 - acc: 0.8692 - val_loss: 0.2620 - val_acc: 0.8816\n", + "Epoch 2/15\n", + "148316/148316 [==============================] - 72s 486us/step - loss: 0.2835 - acc: 0.8705 - val_loss: 0.2649 - val_acc: 0.8789\n", + "Epoch 3/15\n", + "148316/148316 [==============================] - 72s 483us/step - loss: 0.2817 - acc: 0.8716 - val_loss: 0.2667 - val_acc: 0.8789\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 3\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148487 samples, validate on 7573 samples\n", + "Epoch 1/15\n", + "148487/148487 [==============================] - 73s 494us/step - loss: 0.2793 - acc: 0.8726 - val_loss: 0.2469 - val_acc: 0.8883\n", + "Epoch 2/15\n", + "148487/148487 [==============================] - 72s 487us/step - loss: 0.2774 - acc: 0.8739 - val_loss: 0.2498 - val_acc: 0.8864\n", + "Epoch 3/15\n", + "148487/148487 [==============================] - 72s 488us/step - loss: 0.2761 - acc: 0.8748 - val_loss: 0.2508 - val_acc: 0.8862\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 4\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148073 samples, validate on 7987 samples\n", + "Epoch 1/15\n", + "148073/148073 [==============================] - 73s 494us/step - loss: 0.2748 - acc: 0.8758 - val_loss: 0.2422 - val_acc: 0.8906\n", + "Epoch 2/15\n", + "148073/148073 [==============================] - 72s 487us/step - loss: 0.2727 - acc: 0.8764 - val_loss: 0.2441 - val_acc: 0.8889\n", + "Epoch 3/15\n", + "148073/148073 [==============================] - 72s 487us/step - loss: 0.2710 - acc: 0.8777 - val_loss: 0.2463 - val_acc: 0.8875\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 5\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148054 samples, validate on 8006 samples\n", + "Epoch 1/15\n", + "148054/148054 [==============================] - 73s 496us/step - loss: 0.2698 - acc: 0.8782 - val_loss: 0.2416 - val_acc: 0.8935\n", + "Epoch 2/15\n", + "148054/148054 [==============================] - 72s 486us/step - loss: 0.2683 - acc: 0.8788 - val_loss: 0.2398 - val_acc: 0.8924\n", + "Epoch 3/15\n", + "148054/148054 [==============================] - 74s 502us/step - loss: 0.2668 - acc: 0.8794 - val_loss: 0.2445 - val_acc: 0.8901\n", + "Epoch 4/15\n", + "148054/148054 [==============================] - 73s 492us/step - loss: 0.2663 - acc: 0.8800 - val_loss: 0.2467 - val_acc: 0.8892\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 6\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148575 samples, validate on 7485 samples\n", + "Epoch 1/15\n", + "148575/148575 [==============================] - 74s 496us/step - loss: 0.2655 - acc: 0.8804 - val_loss: 0.2380 - val_acc: 0.8942\n", + "Epoch 2/15\n", + "148575/148575 [==============================] - 74s 499us/step - loss: 0.2644 - acc: 0.8812 - val_loss: 0.2420 - val_acc: 0.8915\n", + "Epoch 3/15\n", + "148575/148575 [==============================] - 72s 487us/step - loss: 0.2630 - acc: 0.8818 - val_loss: 0.2433 - val_acc: 0.8915\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 7\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148126 samples, validate on 7934 samples\n", + "Epoch 1/15\n", + "148126/148126 [==============================] - 74s 497us/step - loss: 0.2630 - acc: 0.8820 - val_loss: 0.2343 - val_acc: 0.8967\n", + "Epoch 2/15\n", + "148126/148126 [==============================] - 74s 500us/step - loss: 0.2615 - acc: 0.8823 - val_loss: 0.2370 - val_acc: 0.8955\n", + "Epoch 3/15\n", + "148126/148126 [==============================] - 72s 488us/step - loss: 0.2610 - acc: 0.8834 - val_loss: 0.2386 - val_acc: 0.8938\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 8\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148199 samples, validate on 7861 samples\n", + "Epoch 1/15\n", + "148199/148199 [==============================] - 73s 495us/step - loss: 0.2612 - acc: 0.8826 - val_loss: 0.2253 - val_acc: 0.9020\n", + "Epoch 2/15\n", + "148199/148199 [==============================] - 74s 499us/step - loss: 0.2593 - acc: 0.8839 - val_loss: 0.2315 - val_acc: 0.8985\n", + "Epoch 3/15\n", + "148199/148199 [==============================] - 74s 502us/step - loss: 0.2590 - acc: 0.8841 - val_loss: 0.2306 - val_acc: 0.8986\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 9\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148078 samples, validate on 7982 samples\n", + "Epoch 1/15\n", + "148078/148078 [==============================] - 74s 499us/step - loss: 0.2591 - acc: 0.8842 - val_loss: 0.2253 - val_acc: 0.9005\n", + "Epoch 2/15\n", + "148078/148078 [==============================] - 72s 487us/step - loss: 0.2579 - acc: 0.8844 - val_loss: 0.2246 - val_acc: 0.9013\n", + "Epoch 3/15\n", + "148078/148078 [==============================] - 72s 488us/step - loss: 0.2569 - acc: 0.8852 - val_loss: 0.2300 - val_acc: 0.8980\n", + "Epoch 4/15\n", + "148078/148078 [==============================] - 73s 494us/step - loss: 0.2569 - acc: 0.8850 - val_loss: 0.2293 - val_acc: 0.8986\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 10\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148142 samples, validate on 7918 samples\n", + "Epoch 1/15\n", + "148142/148142 [==============================] - 73s 492us/step - loss: 0.2570 - acc: 0.8853 - val_loss: 0.2174 - val_acc: 0.9064\n", + "Epoch 2/15\n", + "148142/148142 [==============================] - 72s 487us/step - loss: 0.2560 - acc: 0.8857 - val_loss: 0.2184 - val_acc: 0.9055\n", + "Epoch 3/15\n", + "148142/148142 [==============================] - 73s 492us/step - loss: 0.2556 - acc: 0.8860 - val_loss: 0.2177 - val_acc: 0.9063\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 11\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148164 samples, validate on 7896 samples\n", + "Epoch 1/15\n", + "148164/148164 [==============================] - 74s 496us/step - loss: 0.2551 - acc: 0.8861 - val_loss: 0.2121 - val_acc: 0.9096\n", + "Epoch 2/15\n", + "148164/148164 [==============================] - 73s 490us/step - loss: 0.2543 - acc: 0.8863 - val_loss: 0.2162 - val_acc: 0.9085\n", + "Epoch 3/15\n", + "148164/148164 [==============================] - 72s 485us/step - loss: 0.2536 - acc: 0.8868 - val_loss: 0.2170 - val_acc: 0.9074\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 12\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148072 samples, validate on 7988 samples\n", + "Epoch 1/15\n", + "148072/148072 [==============================] - 73s 494us/step - loss: 0.2537 - acc: 0.8865 - val_loss: 0.2132 - val_acc: 0.9088\n", + "Epoch 2/15\n", + "148072/148072 [==============================] - 72s 486us/step - loss: 0.2534 - acc: 0.8875 - val_loss: 0.2157 - val_acc: 0.9084\n", + "Epoch 3/15\n", + "148072/148072 [==============================] - 73s 496us/step - loss: 0.2522 - acc: 0.8877 - val_loss: 0.2175 - val_acc: 0.9065\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 13\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148135 samples, validate on 7925 samples\n", + "Epoch 1/15\n", + "148135/148135 [==============================] - 71s 480us/step - loss: 0.2536 - acc: 0.8876 - val_loss: 0.2040 - val_acc: 0.9124\n", + "Epoch 2/15\n", + "148135/148135 [==============================] - 70s 473us/step - loss: 0.2534 - acc: 0.8872 - val_loss: 0.2070 - val_acc: 0.9097\n", + "Epoch 3/15\n", + "148135/148135 [==============================] - 71s 479us/step - loss: 0.2521 - acc: 0.8878 - val_loss: 0.2117 - val_acc: 0.9092\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 14\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148300 samples, validate on 7760 samples\n", + "Epoch 1/15\n", + "148300/148300 [==============================] - 71s 476us/step - loss: 0.2510 - acc: 0.8883 - val_loss: 0.2099 - val_acc: 0.9081\n", + "Epoch 2/15\n", + "148300/148300 [==============================] - 71s 480us/step - loss: 0.2511 - acc: 0.8882 - val_loss: 0.2124 - val_acc: 0.9064\n", + "Epoch 3/15\n", + "148300/148300 [==============================] - 71s 476us/step - loss: 0.2505 - acc: 0.8886 - val_loss: 0.2164 - val_acc: 0.9053\n", + "66292/66292 [==============================] - 3s 50us/step\n", + "\n", + "FOLD 15\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 148443 samples, validate on 7617 samples\n", + "Epoch 1/15\n", + " 79744/148443 [===============>..............] - ETA: 31s - loss: 0.2501 - acc: 0.8893Buffered data was truncated after reaching the output size limit." + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "RnHdy1BuNbsE", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The following code is trying to use dynamic maximum pooling" + ] + }, + { + "metadata": { + "id": "dLPox7LMfnTo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Model5 Undersampling Embedding + {LSTM/GRU} + CNN" + ] + }, + { + "metadata": { + "id": "aYuVU-5bfmMO", + "colab_type": "code", + "outputId": "a58cec13-d203-4dce-a15d-dbf02e0f7efc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 620 + } + }, + "cell_type": "code", + "source": [ + "train = pd.read_csv('/content/drive/My Drive/DeepLearning/train.tsv', sep=\"\\t\")\n", + "test = pd.read_csv('/content/drive/My Drive/DeepLearning/test.tsv', sep=\"\\t\")\n", + "sub = pd.read_csv('/content/drive/My Drive/DeepLearning/sampleSubmission.csv', sep=\",\")\n", + "y = train['Sentiment']\n", + "class2 = train[train['Sentiment']==2]\n", + "class2Sample = class2.sample(frac=0.5) #, random_state=3\n", + "train = pd.concat([train[train['Sentiment']!=2], class2Sample])\n", + "\n", + "tk = Tokenizer(lower = True, filters='')\n", + "full_text = list(train['Phrase'].values) + list(test['Phrase'].values)\n", + "tk.fit_on_texts(full_text)\n", + "train_tokenized = tk.texts_to_sequences(train['Phrase'])\n", + "test_tokenized = tk.texts_to_sequences(test['Phrase'])\n", + "\n", + "embedding_path = \"/content/drive/My Drive/DeepLearning/crawl-300d-2M.vec\"\n", + "#embedding_path = \"/content/drive/My Drive/DeepLearning/glove.twitter.27B.25d.txt\"\n", + "#embed_size = 25\n", + "embed_size = 300\n", + "max_features = 30000\n", + "\n", + "def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32')\n", + "embedding_index = dict(get_coefs(*o.strip().split(\" \")) for o in open(embedding_path))\n", + "\n", + "word_index = tk.word_index\n", + "nb_words = min(max_features, len(word_index))\n", + "embedding_matrix = np.zeros((nb_words + 1, embed_size))\n", + "for word, i in word_index.items():\n", + " if i >= max_features: continue\n", + " embedding_vector = embedding_index.get(word)\n", + " if embedding_vector is not None: embedding_matrix[i] = embedding_vector\n", + " \n", + " \n", + "max_len = 50\n", + "X_train = pad_sequences(train_tokenized, maxlen = max_len)\n", + "X_test = pad_sequences(test_tokenized, maxlen = max_len)\n", + "\n", + "\n", + "from sklearn.preprocessing import OneHotEncoder\n", + "ohe = OneHotEncoder(sparse=False)\n", + "y_ohe = ohe.fit_transform(y.values.reshape(-1, 1))\n", + "ohe.fit(train[\"Sentiment\"].values.reshape(-1, 1))" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mword_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mword_index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mword_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mword_index\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_coefs\u001b[0;34m(word, *arr)\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0mmax_features\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m30000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mword\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'float32'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0membedding_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mget_coefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0membedding_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/numpy/core/numeric.py\u001b[0m in \u001b[0;36masarray\u001b[0;34m(a, dtype, order)\u001b[0m\n\u001b[1;32m 490\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 491\u001b[0m \"\"\"\n\u001b[0;32m--> 492\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morder\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 493\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 494\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ] + }, + { + "metadata": { + "id": "--QxBTEFBA6I", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def build_model5(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " inp = Input(shape = (max_len,))\n", + " x = Embedding(19452, embed_size, weights = [embedding_matrix], trainable = False)(inp)\n", + " x1 = SpatialDropout1D(spatial_dr)(x)\n", + "\n", + " x_gru = Bidirectional(CuDNNGRU(units, return_sequences = True))(x1)\n", + " x_lstm = Bidirectional(CuDNNLSTM(units, return_sequences = True))(x1)\n", + " \n", + " x_conv1 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool1_gru = GlobalAveragePooling1D()(x_conv1)\n", + " max_pool1_gru = GlobalMaxPooling1D()(x_conv1)\n", + " \n", + " x_conv2 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_gru)\n", + " avg_pool2_gru = GlobalAveragePooling1D()(x_conv2)\n", + " max_pool2_gru = GlobalMaxPooling1D()(x_conv2)\n", + " \n", + " \n", + " x_conv3 = Conv1D(conv_size, kernel_size=kernel_size1, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool1_lstm = GlobalAveragePooling1D()(x_conv3)\n", + " max_pool1_lstm = GlobalMaxPooling1D()(x_conv3)\n", + " \n", + " x_conv4 = Conv1D(conv_size, kernel_size=kernel_size2, padding='valid', kernel_initializer='he_uniform')(x_lstm)\n", + " avg_pool2_lstm = GlobalAveragePooling1D()(x_conv4)\n", + " max_pool2_lstm = GlobalMaxPooling1D()(x_conv4)\n", + " \n", + " \n", + " x = concatenate([avg_pool1_gru, max_pool1_gru, avg_pool2_gru, max_pool2_gru,\n", + " avg_pool1_lstm, max_pool1_lstm, avg_pool2_lstm, max_pool2_lstm])\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(dense_units, activation='relu') (x))\n", + " x = BatchNormalization()(x)\n", + " x = Dropout(dr)(Dense(int(dense_units / 2), activation='relu') (x))\n", + " x = Dense(5, activation = \"sigmoid\")(x)\n", + " model = Model(inputs = inp, outputs = x)\n", + " model.compile(loss = \"binary_crossentropy\", optimizer = Adam(lr = lr, decay = lr_d), metrics = [\"accuracy\"])\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "sBnmScRvB-bV", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 384 + }, + "outputId": "61f97769-196d-4a31-cc39-940f706d5401" + }, + "cell_type": "code", + "source": [ + "print(\"Building the model...\")\n", + "model5 = build_model5(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "Train_And_Prediction(model5)\n", + "#print(train)" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 58108 samples, validate on 58161 samples\n", + "Epoch 1/1\n", + "58108/58108 [==============================] - 43s 744us/step - loss: 0.4338 - acc: 0.7990 - val_loss: 0.3582 - val_acc: 0.8349\n", + "66292/66292 [==============================] - 4s 58us/step\n", + "\n", + "FOLD 2\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 58161 samples, validate on 58108 samples\n", + "Epoch 1/1\n", + "58161/58161 [==============================] - 37s 629us/step - loss: 0.3720 - acc: 0.8274 - val_loss: 0.3388 - val_acc: 0.8406\n", + "66292/66292 [==============================] - 3s 49us/step\n", + "\n", + "Save model after cross-validation...\n", + "Make the submission ready...\n", + "66292/66292 [==============================] - 3s 49us/step\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "4noaMsufYjd1", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional\n", + "\n", + "def build_model6(lr=0.0, lr_d=0.0, units=0, spatial_dr=0.0, kernel_size1=3, kernel_size2=2, dense_units=128, dr=0.1, conv_size=32):\n", + " input_words = Input((max_len, ))\n", + " x_words = Embedding(19453, embed_size,weights=[embedding_matrix],trainable=False)(input_words)\n", + " x_words = SpatialDropout1D(0.3)(x_words)\n", + " x_words = Bidirectional(CuDNNLSTM(50, return_sequences=True))(x_words)\n", + " x_words = LSTM(units = 64, return_sequences = True, recurrent_dropout = 0.2)(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + " x_words = Conv1D(256, 3, strides = 1, padding='causal', activation='relu', )(x_words)\n", + " x_words = GlobalMaxPool1D()(x_words)\n", + " x_words = Dropout(0.2)(x_words)\n", + "\n", + " x = Dense(50, activation=\"relu\")(x_words)\n", + " x = Dropout(0.2)(x)\n", + " predictions = Dense(5, activation=\"softmax\")(x)\n", + "\n", + " model = Model(inputs=[input_words], outputs=predictions)\n", + " model.compile(optimizer='nadam' ,loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + " return model" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "xze_K-cHb84-", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 121 + }, + "outputId": "6a147409-d739-4c9b-dc53-c951373c07ad" + }, + "cell_type": "code", + "source": [ + "print(\"Building the model...\")\n", + "model6 = build_model6(lr = 1e-3, lr_d = 0, units = 64, spatial_dr = 0.5, kernel_size1=3, kernel_size2=4, dense_units=64, dr=0.3, conv_size=32)\n", + "Train_And_Prediction(model6)\n", + "#print(train)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Building the model...\n", + "FOLD 1\n", + "Splitting the data into train and validation...\n", + "Training the model...\n", + "Train on 58045 samples, validate on 58224 samples\n", + "Epoch 1/1\n" + ], + "name": "stdout" + } + ] + } + ] +} \ No newline at end of file