|
| 1 | +# Copyright (c) 2024-2025, NVIDIA CORPORATION & AFFILIATES. ALL RIGHTS RESERVED. |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | + |
| 5 | +# ################################################################################ |
| 6 | +# |
| 7 | +# This demo illustrates how to use CUDA graphs to capture and execute |
| 8 | +# multiple kernel launches with minimal overhead. The graph performs a |
| 9 | +# sequence of vector operations: add, multiply, and subtract. |
| 10 | +# |
| 11 | +# ################################################################################ |
| 12 | + |
| 13 | +import time |
| 14 | + |
| 15 | +import cupy as cp |
| 16 | + |
| 17 | +from cuda.core.experimental import Device, LaunchConfig, Program, ProgramOptions, launch |
| 18 | + |
| 19 | + |
| 20 | +def main(): |
| 21 | + # CUDA kernels for vector operations |
| 22 | + code = """ |
| 23 | + template<typename T> |
| 24 | + __global__ void vector_add(const T* A, const T* B, T* C, size_t N) { |
| 25 | + const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; |
| 26 | + for (size_t i = tid; i < N; i += gridDim.x * blockDim.x) { |
| 27 | + C[i] = A[i] + B[i]; |
| 28 | + } |
| 29 | + } |
| 30 | +
|
| 31 | + template<typename T> |
| 32 | + __global__ void vector_multiply(const T* A, const T* B, T* C, size_t N) { |
| 33 | + const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; |
| 34 | + for (size_t i = tid; i < N; i += gridDim.x * blockDim.x) { |
| 35 | + C[i] = A[i] * B[i]; |
| 36 | + } |
| 37 | + } |
| 38 | +
|
| 39 | + template<typename T> |
| 40 | + __global__ void vector_subtract(const T* A, const T* B, T* C, size_t N) { |
| 41 | + const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x; |
| 42 | + for (size_t i = tid; i < N; i += gridDim.x * blockDim.x) { |
| 43 | + C[i] = A[i] - B[i]; |
| 44 | + } |
| 45 | + } |
| 46 | + """ |
| 47 | + |
| 48 | + # Initialize device and stream |
| 49 | + dev = Device() |
| 50 | + dev.set_current() |
| 51 | + stream = dev.create_stream() |
| 52 | + |
| 53 | + # Compile the program |
| 54 | + arch = "".join(f"{i}" for i in dev.compute_capability) |
| 55 | + program_options = ProgramOptions(std="c++17", arch=f"sm_{arch}") |
| 56 | + prog = Program(code, code_type="c++", options=program_options) |
| 57 | + mod = prog.compile( |
| 58 | + "cubin", name_expressions=("vector_add<float>", "vector_multiply<float>", "vector_subtract<float>") |
| 59 | + ) |
| 60 | + |
| 61 | + # Get kernel functions |
| 62 | + add_kernel = mod.get_kernel("vector_add<float>") |
| 63 | + multiply_kernel = mod.get_kernel("vector_multiply<float>") |
| 64 | + subtract_kernel = mod.get_kernel("vector_subtract<float>") |
| 65 | + |
| 66 | + # Prepare data |
| 67 | + size = 1000000 |
| 68 | + dtype = cp.float32 |
| 69 | + |
| 70 | + # Create input arrays |
| 71 | + rng = cp.random.default_rng(42) # Fixed seed for reproducibility |
| 72 | + a = rng.random(size, dtype=dtype) |
| 73 | + b = rng.random(size, dtype=dtype) |
| 74 | + c = rng.random(size, dtype=dtype) |
| 75 | + |
| 76 | + # Create output arrays |
| 77 | + result1 = cp.empty_like(a) |
| 78 | + result2 = cp.empty_like(a) |
| 79 | + result3 = cp.empty_like(a) |
| 80 | + |
| 81 | + # Prepare launch configuration |
| 82 | + block_size = 256 |
| 83 | + grid_size = (size + block_size - 1) // block_size |
| 84 | + config = LaunchConfig(grid=grid_size, block=block_size) |
| 85 | + |
| 86 | + # Sync before graph capture |
| 87 | + dev.sync() |
| 88 | + |
| 89 | + print("Building CUDA graph...") |
| 90 | + |
| 91 | + # Build the graph |
| 92 | + graph_builder = stream.create_graph_builder() |
| 93 | + graph_builder.begin_building() |
| 94 | + |
| 95 | + # Add multiple kernel launches to the graph |
| 96 | + # Kernel 1: result1 = a + b |
| 97 | + launch(graph_builder, config, add_kernel, a.data.ptr, b.data.ptr, result1.data.ptr, cp.uint64(size)) |
| 98 | + |
| 99 | + # Kernel 2: result2 = result1 * c |
| 100 | + launch(graph_builder, config, multiply_kernel, result1.data.ptr, c.data.ptr, result2.data.ptr, cp.uint64(size)) |
| 101 | + |
| 102 | + # Kernel 3: result3 = result2 - a |
| 103 | + launch(graph_builder, config, subtract_kernel, result2.data.ptr, a.data.ptr, result3.data.ptr, cp.uint64(size)) |
| 104 | + |
| 105 | + # Complete the graph |
| 106 | + graph = graph_builder.end_building().complete() |
| 107 | + |
| 108 | + print("Graph built successfully!") |
| 109 | + |
| 110 | + # Upload the graph to the stream |
| 111 | + graph.upload(stream) |
| 112 | + |
| 113 | + # Execute the entire graph with a single launch |
| 114 | + print("Executing graph...") |
| 115 | + start_time = time.time() |
| 116 | + graph.launch(stream) |
| 117 | + stream.sync() |
| 118 | + end_time = time.time() |
| 119 | + |
| 120 | + graph_execution_time = end_time - start_time |
| 121 | + print(f"Graph execution time: {graph_execution_time:.6f} seconds") |
| 122 | + |
| 123 | + # Verify results |
| 124 | + expected_result1 = a + b |
| 125 | + expected_result2 = expected_result1 * c |
| 126 | + expected_result3 = expected_result2 - a |
| 127 | + |
| 128 | + print("Verifying results...") |
| 129 | + assert cp.allclose(result1, expected_result1, rtol=1e-5, atol=1e-5), "Result 1 mismatch" |
| 130 | + assert cp.allclose(result2, expected_result2, rtol=1e-5, atol=1e-5), "Result 2 mismatch" |
| 131 | + assert cp.allclose(result3, expected_result3, rtol=1e-5, atol=1e-5), "Result 3 mismatch" |
| 132 | + print("All results verified successfully!") |
| 133 | + |
| 134 | + # Demonstrate performance benefit by running the same operations without graph |
| 135 | + print("\nRunning same operations without graph for comparison...") |
| 136 | + |
| 137 | + # Reset results |
| 138 | + result1.fill(0) |
| 139 | + result2.fill(0) |
| 140 | + result3.fill(0) |
| 141 | + |
| 142 | + start_time = time.time() |
| 143 | + |
| 144 | + # Individual kernel launches |
| 145 | + launch(stream, config, add_kernel, a.data.ptr, b.data.ptr, result1.data.ptr, cp.uint64(size)) |
| 146 | + launch(stream, config, multiply_kernel, result1.data.ptr, c.data.ptr, result2.data.ptr, cp.uint64(size)) |
| 147 | + launch(stream, config, subtract_kernel, result2.data.ptr, a.data.ptr, result3.data.ptr, cp.uint64(size)) |
| 148 | + |
| 149 | + stream.sync() |
| 150 | + end_time = time.time() |
| 151 | + |
| 152 | + individual_execution_time = end_time - start_time |
| 153 | + print(f"Individual kernel execution time: {individual_execution_time:.6f} seconds") |
| 154 | + |
| 155 | + # Calculate speedup |
| 156 | + speedup = individual_execution_time / graph_execution_time |
| 157 | + print(f"Graph provides {speedup:.2f}x speedup") |
| 158 | + |
| 159 | + # Verify results again |
| 160 | + assert cp.allclose(result1, expected_result1, rtol=1e-5, atol=1e-5), "Result 1 mismatch" |
| 161 | + assert cp.allclose(result2, expected_result2, rtol=1e-5, atol=1e-5), "Result 2 mismatch" |
| 162 | + assert cp.allclose(result3, expected_result3, rtol=1e-5, atol=1e-5), "Result 3 mismatch" |
| 163 | + |
| 164 | + print("\nExample completed successfully!") |
| 165 | + |
| 166 | + |
| 167 | +if __name__ == "__main__": |
| 168 | + main() |
0 commit comments