|
| 1 | +<p>Given an <code>n x n</code> <code>matrix</code> where each of the rows and columns is sorted in ascending order, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest element in the matrix</em>.</p> |
| 2 | + |
| 3 | +<p>Note that it is the <code>k<sup>th</sup></code> smallest element <strong>in the sorted order</strong>, not the <code>k<sup>th</sup></code> <strong>distinct</strong> element.</p> |
| 4 | + |
| 5 | +<p>You must find a solution with a memory complexity better than <code>O(n<sup>2</sup>)</code>.</p> |
| 6 | + |
| 7 | +<p> </p> |
| 8 | +<p><strong class="example">Example 1:</strong></p> |
| 9 | + |
| 10 | +<pre> |
| 11 | +<strong>Input:</strong> matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8 |
| 12 | +<strong>Output:</strong> 13 |
| 13 | +<strong>Explanation:</strong> The elements in the matrix are [1,5,9,10,11,12,13,<u><strong>13</strong></u>,15], and the 8<sup>th</sup> smallest number is 13 |
| 14 | +</pre> |
| 15 | + |
| 16 | +<p><strong class="example">Example 2:</strong></p> |
| 17 | + |
| 18 | +<pre> |
| 19 | +<strong>Input:</strong> matrix = [[-5]], k = 1 |
| 20 | +<strong>Output:</strong> -5 |
| 21 | +</pre> |
| 22 | + |
| 23 | +<p> </p> |
| 24 | +<p><strong>Constraints:</strong></p> |
| 25 | + |
| 26 | +<ul> |
| 27 | + <li><code>n == matrix.length == matrix[i].length</code></li> |
| 28 | + <li><code>1 <= n <= 300</code></li> |
| 29 | + <li><code>-10<sup>9</sup> <= matrix[i][j] <= 10<sup>9</sup></code></li> |
| 30 | + <li>All the rows and columns of <code>matrix</code> are <strong>guaranteed</strong> to be sorted in <strong>non-decreasing order</strong>.</li> |
| 31 | + <li><code>1 <= k <= n<sup>2</sup></code></li> |
| 32 | +</ul> |
| 33 | + |
| 34 | +<p> </p> |
| 35 | +<p><strong>Follow up:</strong></p> |
| 36 | + |
| 37 | +<ul> |
| 38 | + <li>Could you solve the problem with a constant memory (i.e., <code>O(1)</code> memory complexity)?</li> |
| 39 | + <li>Could you solve the problem in <code>O(n)</code> time complexity? The solution may be too advanced for an interview but you may find reading <a href="http://www.cse.yorku.ca/~andy/pubs/X+Y.pdf" target="_blank">this paper</a> fun.</li> |
| 40 | +</ul> |
0 commit comments