|
| 1 | +<p>There are <code>n</code> cities connected by some number of flights. You are given an array <code>flights</code> where <code>flights[i] = [from<sub>i</sub>, to<sub>i</sub>, price<sub>i</sub>]</code> indicates that there is a flight from city <code>from<sub>i</sub></code> to city <code>to<sub>i</sub></code> with cost <code>price<sub>i</sub></code>.</p> |
| 2 | + |
| 3 | +<p>You are also given three integers <code>src</code>, <code>dst</code>, and <code>k</code>, return <em><strong>the cheapest price</strong> from </em><code>src</code><em> to </em><code>dst</code><em> with at most </em><code>k</code><em> stops. </em>If there is no such route, return<em> </em><code>-1</code>.</p> |
| 4 | + |
| 5 | +<p> </p> |
| 6 | +<p><strong class="example">Example 1:</strong></p> |
| 7 | +<img alt="" src="https://assets.leetcode.com/uploads/2022/03/18/cheapest-flights-within-k-stops-3drawio.png" style="width: 332px; height: 392px;" /> |
| 8 | +<pre> |
| 9 | +<strong>Input:</strong> n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1 |
| 10 | +<strong>Output:</strong> 700 |
| 11 | +<strong>Explanation:</strong> |
| 12 | +The graph is shown above. |
| 13 | +The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700. |
| 14 | +Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops. |
| 15 | +</pre> |
| 16 | + |
| 17 | +<p><strong class="example">Example 2:</strong></p> |
| 18 | +<img alt="" src="https://assets.leetcode.com/uploads/2022/03/18/cheapest-flights-within-k-stops-1drawio.png" style="width: 332px; height: 242px;" /> |
| 19 | +<pre> |
| 20 | +<strong>Input:</strong> n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1 |
| 21 | +<strong>Output:</strong> 200 |
| 22 | +<strong>Explanation:</strong> |
| 23 | +The graph is shown above. |
| 24 | +The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200. |
| 25 | +</pre> |
| 26 | + |
| 27 | +<p><strong class="example">Example 3:</strong></p> |
| 28 | +<img alt="" src="https://assets.leetcode.com/uploads/2022/03/18/cheapest-flights-within-k-stops-2drawio.png" style="width: 332px; height: 242px;" /> |
| 29 | +<pre> |
| 30 | +<strong>Input:</strong> n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0 |
| 31 | +<strong>Output:</strong> 500 |
| 32 | +<strong>Explanation:</strong> |
| 33 | +The graph is shown above. |
| 34 | +The optimal path with no stops from city 0 to 2 is marked in red and has cost 500. |
| 35 | +</pre> |
| 36 | + |
| 37 | +<p> </p> |
| 38 | +<p><strong>Constraints:</strong></p> |
| 39 | + |
| 40 | +<ul> |
| 41 | + <li><code>1 <= n <= 100</code></li> |
| 42 | + <li><code>0 <= flights.length <= (n * (n - 1) / 2)</code></li> |
| 43 | + <li><code>flights[i].length == 3</code></li> |
| 44 | + <li><code>0 <= from<sub>i</sub>, to<sub>i</sub> < n</code></li> |
| 45 | + <li><code>from<sub>i</sub> != to<sub>i</sub></code></li> |
| 46 | + <li><code>1 <= price<sub>i</sub> <= 10<sup>4</sup></code></li> |
| 47 | + <li>There will not be any multiple flights between two cities.</li> |
| 48 | + <li><code>0 <= src, dst, k < n</code></li> |
| 49 | + <li><code>src != dst</code></li> |
| 50 | +</ul> |
0 commit comments