11[
22 {
3- "input " : " import numpy as np\n mp = MixedPrecision(loss_scale=1024.0)\n weights = np.array([0.5, -0.3], dtype=np.float32)\n inputs = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)\n targets = np.array([1.0, 0.0], dtype=np.float32)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.4f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([512.0, -256.0], dtype=np.float32)\n result = mp.backward(grads)\n print(f\" Gradients: {result}\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
4- "output " : " Loss: 665.0000\n Loss dtype: float\n Gradients: [0.5 -0.25]\n Grad dtype: float32"
3+ "test " : " import numpy as np\n mp = MixedPrecision(loss_scale=1024.0)\n weights = np.array([0.5, -0.3], dtype=np.float32)\n inputs = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)\n targets = np.array([1.0, 0.0], dtype=np.float32)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.4f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([512.0, -256.0], dtype=np.float32)\n result = mp.backward(grads)\n print(f\" Gradients: {result}\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
4+ "expected_output " : " Loss: 665.0000\n Loss dtype: float\n Gradients: [0.5 -0.25]\n Grad dtype: float32"
55 },
66 {
7- "input " : " import numpy as np\n mp = MixedPrecision(loss_scale=512.0)\n weights = np.array([1.0, 0.5], dtype=np.float64)\n inputs = np.array([[2.0, 1.0]], dtype=np.float64)\n targets = np.array([3.0], dtype=np.float64)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([1024.0, 512.0], dtype=np.float16)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f} {result[1]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
8- "output " : " Loss: 128.0\n Loss dtype: float\n Gradients: [2 1]\n Grad dtype: float32"
7+ "test " : " import numpy as np\n mp = MixedPrecision(loss_scale=512.0)\n weights = np.array([1.0, 0.5], dtype=np.float64)\n inputs = np.array([[2.0, 1.0]], dtype=np.float64)\n targets = np.array([3.0], dtype=np.float64)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([1024.0, 512.0], dtype=np.float16)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f} {result[1]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
8+ "expected_output " : " Loss: 128.0\n Loss dtype: float\n Gradients: [2 1]\n Grad dtype: float32"
99 },
1010 {
11- "input " : " import numpy as np\n mp = MixedPrecision(loss_scale=100.0)\n weights = np.array([0.1, 0.2], dtype=np.float32)\n inputs = np.array([[1.0, 1.0]], dtype=np.float32)\n targets = np.array([0.5], dtype=np.float32)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([200.0, 100.0], dtype=np.float64)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f} {result[1]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
12- "output " : " Loss: 4.0\n Loss dtype: float\n Gradients: [2 1]\n Grad dtype: float32"
11+ "test " : " import numpy as np\n mp = MixedPrecision(loss_scale=100.0)\n weights = np.array([0.1, 0.2], dtype=np.float32)\n inputs = np.array([[1.0, 1.0]], dtype=np.float32)\n targets = np.array([0.5], dtype=np.float32)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([200.0, 100.0], dtype=np.float64)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f} {result[1]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
12+ "expected_output " : " Loss: 4.0\n Loss dtype: float\n Gradients: [2 1]\n Grad dtype: float32"
1313 },
1414 {
15- "input " : " import numpy as np\n mp = MixedPrecision(loss_scale=2048.0)\n weights = np.array([0.25], dtype=np.float64)\n inputs = np.array([[4.0]], dtype=np.float64)\n targets = np.array([2.0], dtype=np.float64)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([np.nan], dtype=np.float16)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
16- "output " : " Loss: 2048.0\n Loss dtype: float\n Gradients: [0]\n Grad dtype: float32"
15+ "test " : " import numpy as np\n mp = MixedPrecision(loss_scale=2048.0)\n weights = np.array([0.25], dtype=np.float64)\n inputs = np.array([[4.0]], dtype=np.float64)\n targets = np.array([2.0], dtype=np.float64)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([np.nan], dtype=np.float16)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
16+ "expected_output " : " Loss: 2048.0\n Loss dtype: float\n Gradients: [0]\n Grad dtype: float32"
1717 },
1818 {
19- "input " : " import numpy as np\n mp = MixedPrecision(loss_scale=256.0)\n weights = np.array([1.0], dtype=np.float16)\n inputs = np.array([[2.0]], dtype=np.float16)\n targets = np.array([3.0], dtype=np.float16)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([np.inf], dtype=np.float64)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
20- "output " : " Loss: 256.0\n Loss dtype: float\n Gradients: [0]\n Grad dtype: float32"
19+ "test " : " import numpy as np\n mp = MixedPrecision(loss_scale=256.0)\n weights = np.array([1.0], dtype=np.float16)\n inputs = np.array([[2.0]], dtype=np.float16)\n targets = np.array([3.0], dtype=np.float16)\n loss = mp.forward(weights, inputs, targets)\n print(f\" Loss: {loss:.1f}\" )\n print(f\" Loss dtype: {type(loss).__name__}\" )\n grads = np.array([np.inf], dtype=np.float64)\n result = mp.backward(grads)\n print(f\" Gradients: [{result[0]:.0f}]\" )\n print(f\" Grad dtype: {result.dtype}\" )" ,
20+ "expected_output " : " Loss: 256.0\n Loss dtype: float\n Gradients: [0]\n Grad dtype: float32"
2121 }
2222]
0 commit comments