Skip to content

Commit 06adf26

Browse files
committed
fix dict key names
1 parent f8cd69b commit 06adf26

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed
Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,22 +1,22 @@
11
[
22
{
3-
"input": "import numpy as np\nmp = MixedPrecision(loss_scale=1024.0)\nweights = np.array([0.5, -0.3], dtype=np.float32)\ninputs = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)\ntargets = np.array([1.0, 0.0], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.4f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([512.0, -256.0], dtype=np.float32)\nresult = mp.backward(grads)\nprint(f\"Gradients: {result}\")\nprint(f\"Grad dtype: {result.dtype}\")",
4-
"output": "Loss: 665.0000\nLoss dtype: float\nGradients: [0.5 -0.25]\nGrad dtype: float32"
3+
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=1024.0)\nweights = np.array([0.5, -0.3], dtype=np.float32)\ninputs = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)\ntargets = np.array([1.0, 0.0], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.4f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([512.0, -256.0], dtype=np.float32)\nresult = mp.backward(grads)\nprint(f\"Gradients: {result}\")\nprint(f\"Grad dtype: {result.dtype}\")",
4+
"expected_output": "Loss: 665.0000\nLoss dtype: float\nGradients: [0.5 -0.25]\nGrad dtype: float32"
55
},
66
{
7-
"input": "import numpy as np\nmp = MixedPrecision(loss_scale=512.0)\nweights = np.array([1.0, 0.5], dtype=np.float64)\ninputs = np.array([[2.0, 1.0]], dtype=np.float64)\ntargets = np.array([3.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([1024.0, 512.0], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
8-
"output": "Loss: 128.0\nLoss dtype: float\nGradients: [2 1]\nGrad dtype: float32"
7+
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=512.0)\nweights = np.array([1.0, 0.5], dtype=np.float64)\ninputs = np.array([[2.0, 1.0]], dtype=np.float64)\ntargets = np.array([3.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([1024.0, 512.0], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
8+
"expected_output": "Loss: 128.0\nLoss dtype: float\nGradients: [2 1]\nGrad dtype: float32"
99
},
1010
{
11-
"input": "import numpy as np\nmp = MixedPrecision(loss_scale=100.0)\nweights = np.array([0.1, 0.2], dtype=np.float32)\ninputs = np.array([[1.0, 1.0]], dtype=np.float32)\ntargets = np.array([0.5], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([200.0, 100.0], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
12-
"output": "Loss: 4.0\nLoss dtype: float\nGradients: [2 1]\nGrad dtype: float32"
11+
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=100.0)\nweights = np.array([0.1, 0.2], dtype=np.float32)\ninputs = np.array([[1.0, 1.0]], dtype=np.float32)\ntargets = np.array([0.5], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([200.0, 100.0], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
12+
"expected_output": "Loss: 4.0\nLoss dtype: float\nGradients: [2 1]\nGrad dtype: float32"
1313
},
1414
{
15-
"input": "import numpy as np\nmp = MixedPrecision(loss_scale=2048.0)\nweights = np.array([0.25], dtype=np.float64)\ninputs = np.array([[4.0]], dtype=np.float64)\ntargets = np.array([2.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([np.nan], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
16-
"output": "Loss: 2048.0\nLoss dtype: float\nGradients: [0]\nGrad dtype: float32"
15+
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=2048.0)\nweights = np.array([0.25], dtype=np.float64)\ninputs = np.array([[4.0]], dtype=np.float64)\ntargets = np.array([2.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([np.nan], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
16+
"expected_output": "Loss: 2048.0\nLoss dtype: float\nGradients: [0]\nGrad dtype: float32"
1717
},
1818
{
19-
"input": "import numpy as np\nmp = MixedPrecision(loss_scale=256.0)\nweights = np.array([1.0], dtype=np.float16)\ninputs = np.array([[2.0]], dtype=np.float16)\ntargets = np.array([3.0], dtype=np.float16)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([np.inf], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
20-
"output": "Loss: 256.0\nLoss dtype: float\nGradients: [0]\nGrad dtype: float32"
19+
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=256.0)\nweights = np.array([1.0], dtype=np.float16)\ninputs = np.array([[2.0]], dtype=np.float16)\ntargets = np.array([3.0], dtype=np.float16)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")\ngrads = np.array([np.inf], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
20+
"expected_output": "Loss: 256.0\nLoss dtype: float\nGradients: [0]\nGrad dtype: float32"
2121
}
2222
]

0 commit comments

Comments
 (0)