Skip to content

Commit f13d2a3

Browse files
committed
fix expected loss dtypes
1 parent cdf5dd1 commit f13d2a3

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

questions/160_mixed_precision_training/tests.json

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,39 +1,39 @@
11
[
22
{
33
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=1024.0)\nweights = np.array([0.5, -0.3], dtype=np.float32)\ninputs = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)\ntargets = np.array([1.0, 0.0], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.4f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")",
4-
"expected_output": "Loss: 665.0000\nLoss dtype: float32"
4+
"expected_output": "Loss: 665.0000\nLoss dtype: float"
55
},
66
{
77
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=1024.0)\ngrads = np.array([512.0, -256.0], dtype=np.float32)\nresult = mp.backward(grads)\nprint(f\"Gradients: {result}\")\nprint(f\"Grad dtype: {result.dtype}\")",
88
"expected_output": "Gradients: [ 0.5 -0.25]\nGrad dtype: float32"
99
},
1010
{
1111
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=512.0)\nweights = np.array([1.0, 0.5], dtype=np.float64)\ninputs = np.array([[2.0, 1.0]], dtype=np.float64)\ntargets = np.array([3.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")",
12-
"expected_output": "Loss: 128.0\nLoss dtype: float32"
12+
"expected_output": "Loss: 128.0\nLoss dtype: float"
1313
},
1414
{
1515
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=512.0)\ngrads = np.array([1024.0, 512.0], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
1616
"expected_output": "Gradients: [2 1]\nGrad dtype: float32"
1717
},
1818
{
1919
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=100.0)\nweights = np.array([0.1, 0.2], dtype=np.float32)\ninputs = np.array([[1.0, 1.0]], dtype=np.float32)\ntargets = np.array([0.5], dtype=np.float32)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")",
20-
"expected_output": "Loss: 4.0\nLoss dtype: float32"
20+
"expected_output": "Loss: 4.0\nLoss dtype: float"
2121
},
2222
{
2323
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=100.0)\ngrads = np.array([200.0, 100.0], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f} {result[1]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
2424
"expected_output": "Gradients: [2 1]\nGrad dtype: float32"
2525
},
2626
{
2727
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=2048.0)\nweights = np.array([0.25], dtype=np.float64)\ninputs = np.array([[4.0]], dtype=np.float64)\ntargets = np.array([2.0], dtype=np.float64)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")",
28-
"expected_output": "Loss: 2048.0\nLoss dtype: float32"
28+
"expected_output": "Loss: 2048.0\nLoss dtype: float"
2929
},
3030
{
3131
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=2048.0)\ngrads = np.array([np.nan], dtype=np.float16)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",
3232
"expected_output": "Gradients: [0]\nGrad dtype: float32"
3333
},
3434
{
3535
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=256.0)\nweights = np.array([1.0], dtype=np.float16)\ninputs = np.array([[2.0]], dtype=np.float16)\ntargets = np.array([3.0], dtype=np.float16)\nloss = mp.forward(weights, inputs, targets)\nprint(f\"Loss: {loss:.1f}\")\nprint(f\"Loss dtype: {type(loss).__name__}\")",
36-
"expected_output": "Loss: 256.0\nLoss dtype: float32"
36+
"expected_output": "Loss: 256.0\nLoss dtype: float"
3737
},
3838
{
3939
"test": "import numpy as np\nmp = MixedPrecision(loss_scale=256.0)\ngrads = np.array([np.inf], dtype=np.float64)\nresult = mp.backward(grads)\nprint(f\"Gradients: [{result[0]:.0f}]\")\nprint(f\"Grad dtype: {result.dtype}\")",

0 commit comments

Comments
 (0)