|
| 1 | +from unsloth import FastLanguageModel |
| 2 | +import torch |
| 3 | +from unsloth import add_new_tokens |
| 4 | +from typing import Optional, List |
| 5 | +from transformers import TrainingArguments |
| 6 | +from unsloth import is_bfloat16_supported |
| 7 | +from unsloth import UnslothTrainer, UnslothTrainingArguments |
| 8 | +import fire |
| 9 | +import wandb |
| 10 | +from datasets import load_dataset |
| 11 | + |
| 12 | + |
| 13 | +def load_model(rank: int = 128, train_embeddings: bool = True, add_special_tokens: Optional[List[str]]=None): |
| 14 | + max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! |
| 15 | + dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ |
| 16 | + load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. |
| 17 | + |
| 18 | + model, tokenizer = FastLanguageModel.from_pretrained( |
| 19 | + model_name = "unsloth/llama-3-8b-bnb-4bit", |
| 20 | + max_seq_length = max_seq_length, |
| 21 | + dtype = dtype, |
| 22 | + load_in_4bit = load_in_4bit, |
| 23 | + ) |
| 24 | + |
| 25 | + add_new_tokens(model, tokenizer, new_tokens = add_special_tokens) |
| 26 | + |
| 27 | + target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", |
| 28 | + "gate_proj", "up_proj", "down_proj"] |
| 29 | + |
| 30 | + if train_embeddings: |
| 31 | + target_modules += ["embed_tokens", "lm_head"] |
| 32 | + model = FastLanguageModel.get_peft_model( |
| 33 | + model, |
| 34 | + r = rank, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 |
| 35 | + target_modules = target_modules, |
| 36 | + lora_alpha = rank/4, |
| 37 | + lora_dropout = 0, # Supports any, but = 0 is optimized |
| 38 | + bias = "none", # Supports any, but = "none" is optimized |
| 39 | + # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! |
| 40 | + use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context |
| 41 | + random_state = 3407, |
| 42 | + use_rslora = True, # We support rank stabilized LoRA |
| 43 | + loftq_config = None, # And LoftQ |
| 44 | + ) |
| 45 | + |
| 46 | + return model, tokenizer |
| 47 | + |
| 48 | + |
| 49 | +def train(model, tokenizer, dataset, run_name: str, batch_size:int =64, max_seq_length = 2048): |
| 50 | + wandb.init( |
| 51 | + project="chemnlp-ablations", |
| 52 | + name=run_name |
| 53 | + ) |
| 54 | + trainer = UnslothTrainer( |
| 55 | + model = model, |
| 56 | + tokenizer = tokenizer, |
| 57 | + train_dataset = dataset, |
| 58 | + dataset_text_field = "text", |
| 59 | + max_seq_length = max_seq_length, |
| 60 | + dataset_num_proc = 2, |
| 61 | + |
| 62 | + args = UnslothTrainingArguments( |
| 63 | + per_device_train_batch_size = batch_size, |
| 64 | + gradient_accumulation_steps = 1, |
| 65 | + warmup_ratio = 0.1, |
| 66 | + num_train_epochs = 1, |
| 67 | + learning_rate = 5e-5, |
| 68 | + embedding_learning_rate = 1e-5, |
| 69 | + fp16 = not is_bfloat16_supported(), |
| 70 | + bf16 = is_bfloat16_supported(), |
| 71 | + logging_steps = 1, |
| 72 | + optim = "adamw_8bit", |
| 73 | + weight_decay = 0.01, |
| 74 | + lr_scheduler_type = "linear", |
| 75 | + seed = 3407, |
| 76 | + output_dir = f"outputs_{run_name}", |
| 77 | + ), |
| 78 | + ) |
| 79 | + |
| 80 | + #@title Show current memory stats |
| 81 | + gpu_stats = torch.cuda.get_device_properties(0) |
| 82 | + start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) |
| 83 | + max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) |
| 84 | + print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") |
| 85 | + print(f"{start_gpu_memory} GB of memory reserved.") |
| 86 | + |
| 87 | + trainer_stats = trainer.train() |
| 88 | + |
| 89 | + model.save_pretrained(f"lora_model_{run_name}") # Local saving |
| 90 | + tokenizer.save_pretrained(f"lora_model_{run_name}") |
| 91 | + |
| 92 | + |
| 93 | +def create_dataset(tokenizer, datasets): |
| 94 | + EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN |
| 95 | + def formatting_prompts_func(examples): |
| 96 | + outputs = [] |
| 97 | + for t in examples['text']: |
| 98 | + outputs.append(t + EOS_TOKEN) |
| 99 | + return { "text" : outputs, } |
| 100 | + |
| 101 | + dataset = load_dataset("json", data_files=datasets) |
| 102 | + dataset = dataset["train"] |
| 103 | + |
| 104 | + dataset = dataset.map(formatting_prompts_func, batched = True) |
| 105 | + |
| 106 | + return dataset |
| 107 | + |
| 108 | +if __name__ == "__main__": |
| 109 | + model, tokenizer = load_model(train_embeddings=True, add_special_tokens=None) |
| 110 | + |
| 111 | + dataset = create_dataset(tokenizer, ["data/chemnlp_train.json", "data/chemnlp_val.json"]) |
| 112 | + |
| 113 | + train(model, tokenizer, dataset, "lora_128", batch_size=64) |
0 commit comments