+
+Chithrananda, Seyone, Gabriel Grand, and Bharath Ramsundar. 2020. “ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction.” arXiv Preprint arXiv: Arxiv-2010.09885.
+
+
+Dunn, Alexander, John Dagdelen, Nicholas Walker, Sanghoon Lee, Andrew S. Rosen, Gerbrand Ceder, Kristin Persson, and Anubhav Jain. 2022. “Structured Information Extraction from Complex Scientific Text with Fine-Tuned Large Language Models.” arXiv Preprint arXiv: Arxiv-2212.05238.
+
+
+Edwards, Carl, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. 2022.
“Translation Between Molecules and Natural Language.” arXiv.
https://doi.org/10.48550/ARXIV.2204.11817.
+
+
+Frey, Nathan, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay Gadepally. 2022.
“Neural Scaling of Deep Chemical Models,” May.
https://doi.org/10.26434/chemrxiv-2022-3s512.
+
+
+Hocky, Glen M., and Andrew D. White. 2022.
“Natural Language Processing Models That Automate Programming Will Transform Chemistry Research and Teaching.” Digital Discovery 1 (2): 79–83.
https://doi.org/10.1039/d1dd00009h.
+
+
+Honda, Shion, Shoi Shi, and Hiroki R. Ueda. 2019. “SMILES Transformer: Pre-Trained Molecular Fingerprint for Low Data Drug Discovery.” arXiv Preprint arXiv: Arxiv-1911.04738.
+
+
+Jablonka, Kevin Maik, Luc Patiny, and Berend Smit. 2022.
“Making the Collective Knowledge of Chemistry Open and Machine Actionable.” Nat. Chem. 14 (4): 365–76.
https://doi.org/10.1038/s41557-022-00910-7.
+
+
+Jablonka, Kevin Maik, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. 2023.
“Is GPT-3 All You Need for Low-Data Discovery in Chemistry?” February.
https://doi.org/10.26434/chemrxiv-2023-fw8n4.
+
+
+Krenn, Mario, Qianxiang Ai, Senja Barthel, Nessa Carson, Angelo Frei, Nathan C. Frey, Pascal Friederich, et al. 2022.
“SELFIES and the Future of Molecular String Representations.” Patterns 3 (10): 100588.
https://doi.org/10.1016/j.patter.2022.100588.
+
+
+Maziarka, Łukasz, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and Stanisław Jastrzębski. 2020. “Molecule Attention Transformer.” arXiv Preprint arXiv: Arxiv-2002.08264.
+
+
+Ross, Jerret, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das. 2022.
“Large-Scale Chemical Language Representations Capture Molecular Structure and Properties.” Nat Mach Intell 4 (12): 1256–64.
https://doi.org/10.1038/s42256-022-00580-7.
+
+
+Schwaller, Philippe, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas Bekas, and Alpha A. Lee. 2019.
“Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction.” ACS Cent. Sci. Central Science 5 (9): 1572–83.
https://doi.org/10.1021/acscentsci.9b00576.
+
+
+Tabor, Daniel P., Loïc M. Roch, Semion K. Saikin, Christoph Kreisbeck, Dennis Sheberla, Joseph H. Montoya, Shyam Dwaraknath, et al. 2018.
“Accelerating the Discovery of Materials for Clean Energy in the Era of Smart Automation.” Nat Rev Mater 3 (5): 5–20.
https://doi.org/10.1038/s41578-018-0005-z.
+
+
+Tshitoyan, Vahe, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova, Kristin A. Persson, Gerbrand Ceder, and Anubhav Jain. 2019.
“Unsupervised Word Embeddings Capture Latent Knowledge from Materials Science Literature.” Nature 571 (7763): 95–98.
https://doi.org/10.1038/s41586-019-1335-8.
+
+
+Walsh, Aron. 2015.
“The Quest for New Functionality.” Nature Chem 7 (4): 274–75.
https://doi.org/10.1038/nchem.2213.
+
+
+Wu, Zhenqin, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. 2018.
“MoleculeNet: A Benchmark for Molecular Machine Learning.” Chem. Sci. 9 (2): 513–30.
https://doi.org/10.1039/c7sc02664a.
+
+
+Yao, Zhenpeng, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza, Xin Zhou, Yonggang Wen, Alán Aspuru-Guzik, Edward H. Sargent, and Zhi Wei Seh. 2022.
“Machine Learning for a Sustainable Energy Future.” Nat Rev Mater, October.
https://doi.org/10.1038/s41578-022-00490-5.
+
+
+
+
+
Comment on the proposal
+If you want to get involved in shaping the project, you can comment on the proposal draft.
+