|
| 1 | +''' |
| 2 | +------------------------------------------------------------------------ |
| 3 | +This module contains the functions for probability density functions of |
| 4 | +continuous PDF's. |
| 5 | +
|
| 6 | +This Python module defines the following function(s): |
| 7 | + GA_pdf() |
| 8 | + GG_pdf() |
| 9 | + GB2_pdf() |
| 10 | +------------------------------------------------------------------------ |
| 11 | +''' |
| 12 | +# Import packages |
| 13 | +import numpy as np |
| 14 | +import scipy.special as spc |
| 15 | + |
| 16 | + |
| 17 | +''' |
| 18 | +------------------------------------------------------------------------ |
| 19 | + Functions |
| 20 | +------------------------------------------------------------------------ |
| 21 | +''' |
| 22 | + |
| 23 | + |
| 24 | +def LN_pdf(xvals, mu, sigma): |
| 25 | + ''' |
| 26 | + -------------------------------------------------------------------- |
| 27 | + This function gives the PDF of the lognormal distribution for xvals |
| 28 | + given mu and sigma |
| 29 | +
|
| 30 | + (LN): f(x; mu, sigma) = (1 / (x * sigma * sqrt(2 * pi))) * |
| 31 | + exp((-1 / 2) * (((log(x) - mu) / sigma) ** 2)) |
| 32 | + x in [0, infty), mu in (-infty, infty), sigma > 0 |
| 33 | + -------------------------------------------------------------------- |
| 34 | + INPUTS: |
| 35 | + xvals = (N,) vector, data |
| 36 | + mu = scalar, mean of the ln(x) |
| 37 | + sigma = scalar > 0, standard deviation of ln(x) |
| 38 | +
|
| 39 | + OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: None |
| 40 | +
|
| 41 | + OBJECTS CREATED WITHIN FUNCTION: |
| 42 | + pdf_vals = (N,) vector, probability of each observation given |
| 43 | + the parameter values |
| 44 | +
|
| 45 | + FILES CREATED BY THIS FUNCTION: None |
| 46 | +
|
| 47 | + RETURNS: pdf_vals |
| 48 | + -------------------------------------------------------------------- |
| 49 | + ''' |
| 50 | + pdf_vals = np.float64(((1 / (np.sqrt(2 * np.pi) * sigma * xvals)) * |
| 51 | + np.exp((-1.0 / 2.0) * |
| 52 | + (((np.log(xvals) - mu) / sigma) ** 2)))) |
| 53 | + |
| 54 | + return pdf_vals |
| 55 | + |
| 56 | + |
| 57 | +def GA_pdf(xvals, alpha, beta): |
| 58 | + ''' |
| 59 | + -------------------------------------------------------------------- |
| 60 | + Returns the PDF values from the two-parameter gamma (GA) |
| 61 | + distribution. See McDonald and Xu (1995). |
| 62 | +
|
| 63 | + (GA): f(x; alpha, beta) = (1 / ((beta ** alpha) * |
| 64 | + spc.gamma(alpha))) * (x ** (alpha - 1)) * (e ** (-x / beta)) |
| 65 | + x in [0, infty), alpha, beta > 0 |
| 66 | + -------------------------------------------------------------------- |
| 67 | + INPUTS: |
| 68 | + xvals = (N,) vector, values in the support of gamma distribution |
| 69 | + alpha = scalar > 0, gamma distribution parameter |
| 70 | + beta = scalar > 0, gamma distribution parameter |
| 71 | +
|
| 72 | + OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: |
| 73 | + spc.gamma() |
| 74 | +
|
| 75 | + OBJECTS CREATED WITHIN FUNCTION: |
| 76 | + pdf_vals = (N,) vector, pdf values from gamma distribution |
| 77 | + corresponding to xvals given parameters alpha and beta |
| 78 | +
|
| 79 | + FILES CREATED BY THIS FUNCTION: None |
| 80 | +
|
| 81 | + RETURNS: pdf_vals |
| 82 | + -------------------------------------------------------------------- |
| 83 | + ''' |
| 84 | + pdf_vals = \ |
| 85 | + np.float64((1 / ((beta ** alpha) * spc.gamma(alpha))) * |
| 86 | + (xvals ** (alpha - 1)) * np.exp(-xvals / beta)) |
| 87 | + |
| 88 | + return pdf_vals |
| 89 | + |
| 90 | + |
| 91 | +def GG_pdf(xvals, alpha, beta, mm): |
| 92 | + ''' |
| 93 | + -------------------------------------------------------------------- |
| 94 | + Returns the PDF values from the three-parameter generalized gamma |
| 95 | + (GG) distribution. See McDonald and Xu (1995). |
| 96 | +
|
| 97 | + (GG): f(x; alpha, beta, m) = |
| 98 | + (m / ((beta ** alpha) * spc.gamma(alpha/m))) * |
| 99 | + (x ** (alpha - 1)) * (e ** -((x / beta) ** m)) |
| 100 | + x in [0, infty), alpha, beta, m > 0 |
| 101 | + -------------------------------------------------------------------- |
| 102 | + INPUTS: |
| 103 | + xvals = (N,) vector, values in the support of generalized gamma (GG) |
| 104 | + distribution |
| 105 | + alpha = scalar > 0, generalized gamma (GG) distribution parameter |
| 106 | + beta = scalar > 0, generalized gamma (GG) distribution parameter |
| 107 | + mm = scalar > 0, generalized gamma (GG) distribution parameter |
| 108 | +
|
| 109 | + OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: |
| 110 | + spc.gamma() |
| 111 | +
|
| 112 | + OBJECTS CREATED WITHIN FUNCTION: |
| 113 | + pdf_vals = (N,) vector, pdf values from generalized gamma |
| 114 | + distribution corresponding to xvals given parameters |
| 115 | + alpha, beta, and mm |
| 116 | +
|
| 117 | + FILES CREATED BY THIS FUNCTION: None |
| 118 | +
|
| 119 | + RETURNS: pdf_vals |
| 120 | + -------------------------------------------------------------------- |
| 121 | + ''' |
| 122 | + pdf_vals = \ |
| 123 | + np.float64((mm / ((beta ** alpha) * spc.gamma(alpha / mm))) * |
| 124 | + (xvals ** (alpha - 1)) * |
| 125 | + np.exp(-((xvals / beta) ** mm))) |
| 126 | + |
| 127 | + return pdf_vals |
| 128 | + |
| 129 | + |
| 130 | +def GB2_pdf(xvals, aa, bb, pp, qq): |
| 131 | + ''' |
| 132 | + -------------------------------------------------------------------- |
| 133 | + Returns the PDF values from the four-parameter generalized beta 2 |
| 134 | + (GB2) distribution. See McDonald and Xu (1995). |
| 135 | +
|
| 136 | + (GB2): f(x; a, b, p, q) = (a * (x ** ((a*p) - 1))) / |
| 137 | + ((b ** (a * p)) * spc.beta(p, q) * |
| 138 | + ((1 + ((x / b) ** a)) ** (p + q))) |
| 139 | + x in [0, infty), alpha, beta, m > 0 |
| 140 | + -------------------------------------------------------------------- |
| 141 | + INPUTS: |
| 142 | + xvals = (N,) vector, values in the support of generalized beta 2 |
| 143 | + (GB2) distribution |
| 144 | + aa = scalar > 0, generalized beta 2 (GB2) distribution parameter |
| 145 | + bb = scalar > 0, generalized beta 2 (GB2) distribution parameter |
| 146 | + pp = scalar > 0, generalized beta 2 (GB2) distribution parameter |
| 147 | + qq = scalar > 0, generalized beta 2 (GB2) distribution parameter |
| 148 | +
|
| 149 | + OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: |
| 150 | + spc.beta() |
| 151 | +
|
| 152 | + OBJECTS CREATED WITHIN FUNCTION: |
| 153 | + pdf_vals = (N,) vector, pdf values from generalized beta 2 (GB2) |
| 154 | + distribution corresponding to xvals given parameters aa, |
| 155 | + bb, pp, and qq |
| 156 | +
|
| 157 | + FILES CREATED BY THIS FUNCTION: None |
| 158 | +
|
| 159 | + RETURNS: pdf_vals |
| 160 | + -------------------------------------------------------------------- |
| 161 | + ''' |
| 162 | + pdf_vals = \ |
| 163 | + np.float64((aa * (xvals ** (aa * pp - 1))) / ((bb ** (aa * pp)) * |
| 164 | + spc.beta(pp, qq) * |
| 165 | + ((1 + ((xvals / bb) ** aa)) ** (pp + qq)))) |
| 166 | + |
| 167 | + return pdf_vals |
0 commit comments