diff --git a/demonstrations_v2/tutorial_qpe/demo.py b/demonstrations_v2/tutorial_qpe/demo.py index a72acb027d..8ade58c910 100644 --- a/demonstrations_v2/tutorial_qpe/demo.py +++ b/demonstrations_v2/tutorial_qpe/demo.py @@ -81,7 +81,7 @@ "When in doubt, take the Fourier transform"; or in our case, "When in doubt, take the quantum Fourier transform (QFT)". .. math:: - \text{QFT}|\theta\rangle = \frac{1}{\sqrt{2^n}}\sum_{k=0} e^{2 \pi i\theta k} |k\rangle. + \text{QFT}|\theta\rangle = \frac{1}{\sqrt{2^n}}\sum^{2^n-1}_{k=0} e^{2 \pi i\theta k} |k\rangle. Note that this results in a uniform superposition, where each basis state has an additional phase. If we can prepare that state, then applying the *inverse* QFT would give diff --git a/demonstrations_v2/tutorial_qpe/metadata.json b/demonstrations_v2/tutorial_qpe/metadata.json index 2fb428705b..83b0ea29b3 100644 --- a/demonstrations_v2/tutorial_qpe/metadata.json +++ b/demonstrations_v2/tutorial_qpe/metadata.json @@ -11,7 +11,7 @@ "executable_stable": true, "executable_latest": true, "dateOfPublication": "2024-01-30T00:00:00+00:00", - "dateOfLastModification": "2025-09-22T15:48:14+00:00", + "dateOfLastModification": "2025-12-03T15:48:14+00:00", "categories": [ "Algorithms", "Quantum Computing" @@ -59,4 +59,4 @@ } ], "discussionForumUrl": "https://discuss.pennylane.ai/t/introduction-to-quantum-phase-estimation-demo/7337" -} \ No newline at end of file +}