|
| 1 | +import ecdsa |
| 2 | +import binascii |
| 3 | + |
| 4 | +from ecdsa import VerifyingKey |
| 5 | +from hashlib import sha256 |
| 6 | +from ecdsa import numbertheory as nt |
| 7 | + |
| 8 | + |
| 9 | +# On the geth console |
| 10 | +# > eth.getRawTransaction("0x83cc2086b2ca5636c865f910ce473c388ed9b92659e5e24b8ca7cb8cb918dd09") |
| 11 | +# "0xf86c8085065680769f83015f909412859112a1a5ae0b3cabf1acc9118c6a3d1e5e3d87038d7ea4c680008026a03906ea21a9252cc364b812a82df152d41d2220df4c80def228ce83b0275a411ca02fc8ba753750c3cc19873d125bc26f0d430426d90d05e757f2f8ff603c1d3e80" |
| 12 | +#> |
| 13 | + |
| 14 | +# Nodejs |
| 15 | +# > var Web3 = require('web3'); |
| 16 | +# > var web3 = new Web3(new Web3.providers.HttpProvider('http://127.0.0.1:8545')); |
| 17 | +# > var util = require('ethereumjs-util'); |
| 18 | +# > var tx = require('ethereumjs-tx'); |
| 19 | +# > var ec = require('secp256k1') |
| 20 | +# > txn = new tx("0xf86c8085065680769f83015f909412859112a1a5ae0b3cabf1acc9118c6a3d1e5e3d87038d7ea4c680008026a03906ea21a9252cc364b812a82df152d41d2220df4c80def228ce83b0275a411ca02fc8ba753750c3cc19873d125bc26f0d430426d90d05e757f2f8ff603c1d3e80"); |
| 21 | +# > t.getSenderPublicKey().toString('hex') |
| 22 | +# '638f5c8ff99a9366d63072abbbfa25a5eb2b48974f8f05908987581aceb8fc6673ad4558c48b176ad30c9a764e5093fb1a0c8d7ac1f7150a02fcf6fbed7d5d38' (pubkey_hex) |
| 23 | +# > txn.r.toString('hex') |
| 24 | +# '3906ea21a9252cc364b812a82df152d41d2220df4c80def228ce83b0275a411c' (r_hex) |
| 25 | +# > txn.s.toString('hex') |
| 26 | +# '2fc8ba753750c3cc19873d125bc26f0d430426d90d05e757f2f8ff603c1d3e80' (s_hex) |
| 27 | +# > t.hash(false).toString('hex') |
| 28 | +# 'd8a34a11c3abfd8d9ed664977754d1c2cba35881935e1b9cafa4f0e01911257c' (msghash_hex) |
| 29 | + |
| 30 | +pubkey_hex = b'638f5c8ff99a9366d63072abbbfa25a5eb2b48974f8f05908987581aceb8fc6673ad4558c48b176ad30c9a764e5093fb1a0c8d7ac1f7150a02fcf6fbed7d5d38' |
| 31 | +msghash_hex = b'd8a34a11c3abfd8d9ed664977754d1c2cba35881935e1b9cafa4f0e01911257c' |
| 32 | +r_hex = b'3906ea21a9252cc364b812a82df152d41d2220df4c80def228ce83b0275a411c' |
| 33 | +s_hex = b'2fc8ba753750c3cc19873d125bc26f0d430426d90d05e757f2f8ff603c1d3e80' |
| 34 | + |
| 35 | +pubkey_bytes = binascii.unhexlify(pubkey_hex) |
| 36 | +pubkey = VerifyingKey.from_string(pubkey_bytes, curve=ecdsa.SECP256k1) |
| 37 | +order = pubkey.curve.order |
| 38 | + |
| 39 | +r = int(r_hex, 16) |
| 40 | +s = int(s_hex, 16) |
| 41 | +z = int(msghash_hex, 16) |
| 42 | + |
| 43 | +print("r: %d, s: %d, z: %d" % (r, s, z)) |
| 44 | + |
| 45 | +privkey = None |
| 46 | +generator = pubkey.curve.generator |
| 47 | +pubkey_point = pubkey.pubkey.point |
| 48 | + |
| 49 | +k_bytes = b'\x00' * 28 + b'four' |
| 50 | +k = int.from_bytes(k_bytes, byteorder='big', signed=False) % order |
| 51 | +print("k is: 0x%x" % k) |
| 52 | + |
| 53 | +print("Checking that (G * k).x == r. %d == %d" % ((generator * k).x(), r)) |
| 54 | +assert((generator * k).x() == r) |
| 55 | + |
| 56 | +for i in range(2): |
| 57 | + privkey_maybe = ((-1**i * s) * k - z) * nt.inverse_mod(r, order) |
| 58 | + privkey_maybe %= order |
| 59 | + print("pubkey: %s, privkey: %x, G * privkey: %s" % (pubkey_point, |
| 60 | + privkey_maybe, (generator * privkey_maybe))) |
| 61 | + if pubkey_point == generator * privkey_maybe: |
| 62 | + privkey = privkey_maybe |
| 63 | + privkey_bytes = binascii.unhexlify('%x' % privkey) |
| 64 | + |
| 65 | + sk = ecdsa.SigningKey.from_string(privkey_bytes, curve=ecdsa.SECP256k1) |
| 66 | + print(sk.to_pem().decode()) |
| 67 | + hex_privkey = binascii.hexlify(privkey_bytes) |
| 68 | + print('hex private key: %s, hex sha256 private key: %s' % |
| 69 | + (hex_privkey, sha256(hex_privkey).hexdigest())) |
| 70 | + sig = sk.sign(b'message') |
| 71 | + pubkey.verify(sig, b'message') |
| 72 | + |
| 73 | + break |
| 74 | + |
| 75 | +# Alternative approach: Extract k, without reverse engineering the binary, |
| 76 | +# and without doing two signatures |
| 77 | +# If we use a known private key, k can be extract directly |
| 78 | +# Remember that s can be negative. Try both |
| 79 | + |
| 80 | +inv_s = nt.inverse_mod(s, order) |
| 81 | +inv_negative_s = nt.inverse_mod(-s, order) |
| 82 | +rda = r * privkey |
| 83 | +z_plus_rda = (z + rda) % order |
| 84 | + |
| 85 | +print(hex(inv_s * z_plus_rda)) |
| 86 | +print(hex((inv_negative_s * z_plus_rda) % order)) |
| 87 | + |
0 commit comments