@@ -112,7 +112,7 @@ def __set__variable(var_name=None, defalut=None):
112112 # Calculate objective function of startpoint
113113 if not self .restart :
114114 self .start_time = time .perf_counter ()
115- self .obj_func_values = self .fun (self .mean_state , ** self .epf )
115+ self .obj_func_values = self .fun (self .mean_state , epf = self .epf )
116116 self .nfev += 1
117117 self .optimize_result = ot .get_optimize_result (self )
118118 ot .save_optimize_results (self .optimize_result )
@@ -158,9 +158,9 @@ def calc_update(self):
158158 # Calculate gradient
159159 if self .nesterov :
160160 gradient = self .jac (self .mean_state + self .beta * self .state_step ,
161- shrink * (self .cov + self .beta * self .cov_step ), ** self .epf )
161+ shrink * (self .cov + self .beta * self .cov_step ), epf = self .epf )
162162 else :
163- gradient = self .jac (self .mean_state , shrink * self .cov , ** self .epf )
163+ gradient = self .jac (self .mean_state , shrink * self .cov , epf = self .epf )
164164 self .njev += 1
165165
166166 # Compute the hessian
@@ -184,7 +184,7 @@ def calc_update(self):
184184 new_state = ot .clip_state (new_state , self .bounds )
185185
186186 # Calculate new objective function
187- new_func_values = self .fun (new_state , ** self .epf )
187+ new_func_values = self .fun (new_state , epf = self .epf )
188188 self .nfev += 1
189189
190190 if np .mean (self .obj_func_values ) - np .mean (new_func_values ) > self .obj_func_tol :
0 commit comments