Skip to content

How to select meaningful CNVs? #46

@thedam

Description

@thedam

Hey,
After many pains I've successfully run DECoN on 208 WES samples. For each sample I've got like 300-1000 CNV. Most of them are them are rubbish. Is there any hint how should I filter the last cnv.calls_plot DF in order to refine the results?

     ID     sample correlation N.comp start.p end.p        type nexons     start       end chromosome                       id    BF reads.expected reads.observed reads.ratio     Gene start.b end.b  chr
1     1 s1   0.9927666     13       1     1    deletion      1     69037     70008          1         chr1:69037-70008  2.66            309            216       0.699    OR4F5       1     1 chr1
2     2 s1   0.9927666     13     380   380 duplication      1   1645126   1645262          1     chr1:1645126-1645262  3.25            193            263       1.360   CDK11B      11    11 chr1
3     3 s1   0.9927666     13     665   665 duplication      1   3469433   3469593          1     chr1:3469433-3469593  2.69            145            197       1.360 ARHGEF16       5     5 chr1
4     4 s1   0.9927666     13    1842  1843    deletion      2  12917693  12920413          1   chr1:12917693-12920413 28.60            936            584       0.624  PRAMEF7       1     2 chr1
5     5 s1   0.9927666     13    1846  1848    deletion      3  13049808  13053659          1   chr1:13049808-13053659 33.00           1679            995       0.593 PRAMEF27       1     3 chr1
6     6 s1   0.9927666     13    1851  1852 duplication      3  13175281  13198906          1   chr1:13175281-13198906 66.20           1019           2081       2.040  PRAMEF9       1     2 chr1
6.1   6 s1   0.9927666     13    1853  1853 duplication      3  13175281  13198906          1   chr1:13175281-13198906 66.20           1019           2081       2.040 PRAMEF13       1     1 chr1
7     7 s1   0.9927666     13    1856  1856    deletion      1  13260222  13260803          1   chr1:13260222-13260803 18.60            321            136       0.424  PRAMEF5       1     1 chr1
8     8 s1   0.9927666     13    2208  2208    deletion      1  16575157  16575229          1   chr1:16575157-16575229  4.29            440            300       0.682    NBPF1       4     4 chr1
9     9 s1   0.9927666     13    2217  2217    deletion      1  16587050  16587261          1   chr1:16587050-16587261 15.30            640            350       0.547    NBPF1      13    13 chr1
10   10 s1   0.9927666     13    2219  2221    deletion      3  16588849  16592021          1   chr1:16588849-16592021  8.34           1302            933       0.717    NBPF1      15    17 chr1
11   11 s1   0.9927666     13    2865  2865 duplication      1  21480051  21480223          1   chr1:21480051-21480223  8.55            225            354       1.570    NBPF3      10    10 chr1
12   12 s1   0.9927666     13    2865  2867    deletion      2  21480051  21481769          1   chr1:21480051-21481769  5.79            752            610       0.811    NBPF3      10    12 chr1
13   13 s1   0.9927666     13    3042  3042    deletion      1  22003003  22003088          1   chr1:22003003-22003088  5.81            169             98       0.580   CELA3A       2     2 chr1
14   14 s1   0.9927666     13    5325  5325 duplication      2  39763689  39763791          1   chr1:39763689-39763791  5.27            477            629       1.320     PPIE       2     2 chr1
14.1 14 s1   0.9927666     13    5326  5326 duplication      2  39763689  39763791          1   chr1:39763689-39763791  5.27            477            629       1.320    BMP8B       3     3 chr1
15   15 s1   0.9927666     13    5329  5329 duplication      1  39788152  39788485          1   chr1:39788152-39788485  2.93            442            574       1.300    BMP8B       1     1 chr1
16   16 s1   0.9927666     13    8814  8814    deletion      1  89010904  89011116          1   chr1:89010904-89011116  3.95            257            170       0.661     GBP3       4     4 chr1
17   17 s1   0.9927666     13    9677  9686 duplication     12 103571603 103618100          1 chr1:103571603-103618100 57.20           4654           6320       1.360    AMY2B       1    10 chr1
17.1 17 s1   0.9927666     13    9687  9688 duplication     12 103571603 103618100          1 chr1:103571603-103618100 57.20           4654           6320       1.360    AMY2A       1     2 chr1

I guess I don't need to provide 200 samples or more to get higher resolution, as DECoN takes only small subset of references? (like 13 on below picture)?

image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions