Skip to content

Commit c8f68e9

Browse files
Merge pull request #513 from vaerksted/master
fix typos
2 parents 0253c85 + a8adcb8 commit c8f68e9

File tree

8 files changed

+10
-10
lines changed

8 files changed

+10
-10
lines changed

lib/DataDrivenDMD/src/type.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ same world-age evaluation. However, this can cause Julia to segfault
1515
on sufficiently large basis functions. By default eval_expression=false.
1616
"""
1717
struct Koopman{T, B <: AbstractBasis, K, DISCRETE} <: AbstractKoopman
18-
"""The basis of observeables"""
18+
"""The basis of observables"""
1919
basis::B
2020
"""The operator/generator of the dynamics"""
2121
K::K

lib/DataDrivenLux/src/algorithms/reinforce.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ $(FIELDS)
4040
optim_options::Optim.Options = Optim.Options()
4141
"Observed model - if `nothing`is used, a normal distributed additive error with fixed variance is assumed."
4242
observed::Union{ObservedModel, Nothing} = nothing
43-
"AD Backendend"
43+
"AD Backend"
4444
ad_backend::AD.AbstractBackend = AD.ForwardDiffBackend()
4545
"Optimiser"
4646
optimiser::Optimisers.AbstractRule = ADAM()

lib/DataDrivenLux/src/algorithms/rewards.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ end
1919
"""
2020
$(TYPEDEF)
2121
22-
Scales the losses in such a way that the minimum loss is the most influencial reward.
22+
Scales the losses in such a way that the minimum loss is the most influential reward.
2323
"""
2424
struct AbsoluteReward{risk} <: AbstractRewardScale{risk} end
2525

lib/DataDrivenSparse/src/algorithms/ADMM.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ mutable struct ADMM{T, R <: Number} <: AbstractSparseRegressionAlgorithm
2222

2323
function ADMM(threshold::T = 1e-1, ρ::R = 1.0) where {T, R}
2424
@assert all(threshold .> zero(eltype(threshold))) "Threshold must be positive definite"
25-
@assert zero(R)<ρ "Augemented lagrangian parameter should be positive definite"
25+
@assert zero(R)<ρ "Augmented Lagrangian parameter should be positive definite"
2626
return new{T, R}(threshold, ρ)
2727
end
2828
end

lib/DataDrivenSparse/src/commonsolve.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ function __sparse_regression(ps::InternalDataDrivenProblem{<:ImplicitOptimizer},
7171
opt_iterations = []
7272

7373
foreach(enumerate(eachcol(candidate_matrix))) do (i, idx)
74-
# We enforce that one of the implicit variables is necessary for sucess
74+
# We enforce that one of the implicit variables is necessary for success
7575
coeff, thresholds, iters = alg(X[idx, :], Y, options = options,
7676
necessary_idx = implicit_idx[idx, i])
7777
opt_coefficients[i:i, idx] .= coeff

src/DataDrivenDiffEq.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ using RecipesBase
4444
@enum DDProbType begin
4545
Direct = 1 # Direct problem without further information
4646
Discrete = 2 # Time discrete problem
47-
Continuous = 3 # Time continous problem
47+
Continuous = 3 # Time continuous problem
4848
end
4949

5050
# We want to export the ReturnCodes

src/commonsolve.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -94,6 +94,6 @@ function CommonSolve.init(prob::AbstractDataDrivenProblem, basis::AbstractBasis,
9494
end
9595

9696
function CommonSolve.solve!(::InternalDataDrivenProblem{ZeroDataDrivenAlgorithm})
97-
@warn "No sufficient algorithm choosen! Return ErrorDataDrivenResult!"
97+
@warn "No sufficient algorithm chosen! Return ErrorDataDrivenResult!"
9898
return ErrorDataDrivenResult()
9999
end

src/problem/type.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ Three construction methods are available:
5858
5959
+ `DirectDataDrivenProblem` for direct mappings
6060
+ `DiscreteDataDrivenProblem` for time discrete systems
61-
+ `ContinousDataDrivenProblem` for systems continuous in time
61+
+ `ContinuousDataDrivenProblem` for systems continuous in time
6262
6363
where all are aliases for constructing a problem.
6464
@@ -123,7 +123,7 @@ function DataDrivenProblem(probType, X, t, DX, Y, U, p; name = gensym(:DDProblem
123123
if (isempty(DX) && !isempty(Y))
124124
probType = DDProbType(1) # Direct problem
125125
elseif !isempty(DX)
126-
probType = DDProbType(3) # Continouos
126+
probType = DDProbType(3) # Continuous
127127
end
128128
end
129129

@@ -206,7 +206,7 @@ function DiscreteDataDrivenProblem(X::AbstractMatrix, t::AbstractVector, U::Func
206206
return DataDrivenProblem(X; t = t, U = U, probtype = DDProbType(2), kwargs...)
207207
end
208208

209-
## Continouos Constructors
209+
## Continuous Constructors
210210
"""
211211
A time continuous `DataDrivenProblem` useable for problems of the form `f(x,p,t,u) ↦ dx/dt`.
212212

0 commit comments

Comments
 (0)