@@ -105,7 +105,7 @@ optprob.cons_h(H3, x0)
105
105
μ = randn (1 )
106
106
σ = rand ()
107
107
optprob. lag_h (H4, x0, σ, μ)
108
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
108
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
109
109
110
110
G2 = Array {Float64} (undef, 2 )
111
111
H2 = Array {Float64} (undef, 2 , 2 )
@@ -142,7 +142,7 @@ optprob.cons_h(H3, x0)
142
142
μ = randn (1 )
143
143
σ = rand ()
144
144
optprob. lag_h (H4, x0, σ, μ)
145
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
145
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
146
146
147
147
G2 = Array {Float64} (undef, 2 )
148
148
H2 = Array {Float64} (undef, 2 , 2 )
@@ -179,7 +179,7 @@ optprob.cons_h(H3, x0)
179
179
μ = randn (1 )
180
180
σ = rand ()
181
181
optprob. lag_h (H4, x0, σ, μ)
182
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
182
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
183
183
184
184
G2 = Array {Float64} (undef, 2 )
185
185
H2 = Array {Float64} (undef, 2 , 2 )
@@ -217,14 +217,15 @@ optprob.cons_h(H3, x0)
217
217
μ = randn (1 )
218
218
σ = rand ()
219
219
optprob. lag_h (H4, x0, σ, μ)
220
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
220
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
221
221
222
222
G2 = Array {Float64} (undef, 2 )
223
223
H2 = Array {Float64} (undef, 2 , 2 )
224
224
225
- optf = OptimizationFunction (rosenbrock, OptimizationBase. AutoZygote (), cons = cons)
225
+ optf = OptimizationFunction (
226
+ rosenbrock, SecondOrder (AutoForwardDiff (), AutoZygote ()), cons = cons)
226
227
optprob = OptimizationBase. instantiate_function (
227
- optf, x0, OptimizationBase . AutoZygote (),
228
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
228
229
nothing , 1 , g = true , h = true , hv = true ,
229
230
cons_j = true , cons_h = true , cons_vjp = true ,
230
231
cons_jvp = true , lag_h = true )
@@ -254,14 +255,19 @@ optprob.cons_h(H3, x0)
254
255
μ = randn (1 )
255
256
σ = rand ()
256
257
optprob. lag_h (H4, x0, σ, μ)
257
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
258
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
258
259
259
260
G2 = Array {Float64} (undef, 2 )
260
261
H2 = Array {Float64} (undef, 2 , 2 )
261
262
262
- optf = OptimizationFunction (rosenbrock, OptimizationBase. AutoFiniteDiff (), cons = cons)
263
+ optf = OptimizationFunction (rosenbrock,
264
+ DifferentiationInterface. SecondOrder (
265
+ ADTypes. AutoFiniteDiff (), ADTypes. AutoReverseDiff ()),
266
+ cons = cons)
263
267
optprob = OptimizationBase. instantiate_function (
264
- optf, x0, OptimizationBase. AutoFiniteDiff (),
268
+ optf, x0,
269
+ DifferentiationInterface. SecondOrder (
270
+ ADTypes. AutoFiniteDiff (), ADTypes. AutoReverseDiff ()),
265
271
nothing , 1 , g = true , h = true , hv = true ,
266
272
cons_j = true , cons_h = true , cons_vjp = true ,
267
273
cons_jvp = true , lag_h = true )
@@ -287,11 +293,12 @@ optprob.cons_h(H3, x0)
287
293
H3 = [Array {Float64} (undef, 2 , 2 )]
288
294
optprob. cons_h (H3, x0)
289
295
@test H3≈ [[2.0 0.0 ; 0.0 2.0 ]] rtol= 1e-5
296
+ Random. seed! (123 )
290
297
H4 = Array {Float64} (undef, 2 , 2 )
291
298
μ = randn (1 )
292
299
σ = rand ()
293
300
optprob. lag_h (H4, x0, σ, μ)
294
- @test H4≈ σ * H1 + μ[1 ] * H3[1 ] rtol= 1e-6
301
+ @test H4≈ σ * H2 + μ[1 ] * H3[1 ] rtol= 1e-6
295
302
end
296
303
297
304
@testset " two constraints tests" begin
448
455
G2 = Array {Float64} (undef, 2 )
449
456
H2 = Array {Float64} (undef, 2 , 2 )
450
457
451
- optf = OptimizationFunction (rosenbrock, OptimizationBase. AutoZygote (), cons = con2_c)
458
+ optf = OptimizationFunction (
459
+ rosenbrock, SecondOrder (AutoForwardDiff (), AutoZygote ()), cons = con2_c)
452
460
optprob = OptimizationBase. instantiate_function (
453
- optf, x0, OptimizationBase . AutoZygote (),
461
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
454
462
nothing , 2 , g = true , h = true , hv = true ,
455
463
cons_j = true , cons_h = true , cons_vjp = true ,
456
464
cons_jvp = true , lag_h = true )
486
494
H2 = Array {Float64} (undef, 2 , 2 )
487
495
488
496
optf = OptimizationFunction (
489
- rosenbrock, OptimizationBase. AutoFiniteDiff (), cons = con2_c)
497
+ rosenbrock, DifferentiationInterface. SecondOrder (
498
+ ADTypes. AutoFiniteDiff (), ADTypes. AutoReverseDiff ()),
499
+ cons = con2_c)
490
500
optprob = OptimizationBase. instantiate_function (
491
- optf, x0, OptimizationBase. AutoFiniteDiff (),
501
+ optf, x0,
502
+ DifferentiationInterface. SecondOrder (
503
+ ADTypes. AutoFiniteDiff (), ADTypes. AutoReverseDiff ()),
492
504
nothing , 2 , g = true , h = true , hv = true ,
493
505
cons_j = true , cons_h = true , cons_vjp = true ,
494
506
cons_jvp = true , lag_h = true )
@@ -734,12 +746,15 @@ end
734
746
@test lag_H ≈ lag_H_expected
735
747
@test nnz (lag_H) == 5
736
748
737
- optf = OptimizationFunction (sparse_objective, OptimizationBase. AutoSparseZygote (),
749
+ optf = OptimizationFunction (sparse_objective,
750
+ AutoSparse (DifferentiationInterface. SecondOrder (
751
+ ADTypes. AutoForwardDiff (), ADTypes. AutoZygote ())),
738
752
cons = sparse_constraints)
739
753
740
754
# Instantiate the optimization problem
741
755
optprob = OptimizationBase. instantiate_function (optf, x0,
742
- OptimizationBase. AutoSparseZygote (),
756
+ AutoSparse (DifferentiationInterface. SecondOrder (
757
+ ADTypes. AutoForwardDiff (), ADTypes. AutoZygote ())),
743
758
nothing , 2 , g = true , h = true , cons_j = true , cons_h = true , lag_h = true )
744
759
# Test gradient
745
760
G = zeros (3 )
@@ -1065,10 +1080,10 @@ end
1065
1080
1066
1081
cons = (x, p) -> [x[1 ]^ 2 + x[2 ]^ 2 ]
1067
1082
optf = OptimizationFunction {false} (rosenbrock,
1068
- OptimizationBase . AutoZygote (),
1083
+ SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1069
1084
cons = cons)
1070
1085
optprob = OptimizationBase. instantiate_function (
1071
- optf, x0, OptimizationBase . AutoZygote (),
1086
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1072
1087
nothing , 1 , g = true , h = true , cons_j = true , cons_h = true )
1073
1088
1074
1089
@test optprob. grad (x0) == G1
@@ -1081,10 +1096,10 @@ end
1081
1096
1082
1097
cons = (x, p) -> [x[1 ]^ 2 + x[2 ]^ 2 , x[2 ] * sin (x[1 ]) - x[1 ]]
1083
1098
optf = OptimizationFunction {false} (rosenbrock,
1084
- OptimizationBase . AutoZygote (),
1099
+ SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1085
1100
cons = cons)
1086
1101
optprob = OptimizationBase. instantiate_function (
1087
- optf, x0, OptimizationBase . AutoZygote (),
1102
+ optf, x0, SecondOrder ( AutoForwardDiff (), AutoZygote () ),
1088
1103
nothing , 2 , g = true , h = true , cons_j = true , cons_h = true )
1089
1104
1090
1105
@test optprob. grad (x0) == G1
0 commit comments