diff --git a/2020_Arabidopsis_seed_count/readme.md b/2020_Arabidopsis_seed_count/readme.md
index 8b13789..3ef7a47 100644
--- a/2020_Arabidopsis_seed_count/readme.md
+++ b/2020_Arabidopsis_seed_count/readme.md
@@ -1 +1,61 @@
+
Arabidopsis seeds count using Tensorflow Faster-RCNN model
+1 Tensorflow object detection API installation
+ tensorflow version lower than 2.0.
+ please see:
+ https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
+
+2 Seed annotation
+ we use LabelImg annotate our seeds, LabelImg generate a xml annotation file.
+ LabelImg please see: https://github.com/tzutalin/labelImg
+ For our project, we split one whole plate image into 4 quater images and annotate quater images mannually.
+ a. split image:
+python 00_split_scan_images.py
+b. seed annotation
+
+3 Xml file transform to csv file
+ pyhton 02_xml_to_csv.py
+
+ Results is a csv file, like this:
+
+ | filename | width | height | class | xmin | ymin | xmax | ymax |
+ | scan21_111918022.jpg | 2900 | 2900 | seed | 1325 | 813 | 1352 | 837 |
+ | scan21_111918022.jpg | 2900 | 2900 | seed | 664 | 1094 | 691 | 1116 |
+ | .. | .. | .. | .. | .. | .. | .. | .. |
+
+4. seed_labels.csv transform to tensorflow tfrecord file
+
+ python 02_generate_tfrecord.py --csv_input=annotation/seeds_labels.csv --output_path=train.record
+
+5 Download tensorflow object detection api pre-trained faster rcnn model to work directory.
+ wget http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
+ unzip faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
+
+6 pipeline configuration
+ a. input configuration
+ train_input_reader: {
+ tf_record_input_reader {
+ input_path: "train.record"
+ }
+
+ label_map_path: "mscoco_label_map.pb
+}
+ b. The label_map.pbtxt file like below:
+ item {
+ id: 1
+ name: "seed"
+ }
+ c. Another configurations please see:
+ https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md
+7 Model training
+ python3 03_train.py --logtostderr --pipeline_config_path=pipeline.config --train_dir=train_dir --num_clones=3
+8 Generate frozen model
+ python3 05_export_inference_graph.py --input_type image_tensor --pipeline_config_path pipeline.config --trained_checkpoint_prefix train_dir/model.ckpt- --output_directory graph_train
+9 Detect seeds using trained model
+ python 06_detect.py
+10 Accuracy measurement
+Measure accuracy, precision, recall and f1 at IOU 0.5 using 07_01_accuracy_measurement.py
+python 07_01_accuracy_measurement.py ground.csv detected.csv
+11 seed density
+Average seed number in a circle with a radius of 30 pixels.
+Rscript seed_density.r