-
Notifications
You must be signed in to change notification settings - Fork 499
Description
Describe the bug
Training process fails with a Jax library related issue.
This the the python code in the notebook cell, that fails:
!python3 train_dreambooth.py
--pretrained_model_name_or_path=$MODEL_NAME
--pretrained_vae_name_or_path="stabilityai/sd-vae-ft-mse"
--output_dir=$OUTPUT_DIR
--with_prior_preservation --prior_loss_weight=1.0
--seed=1337
--resolution=512
--train_batch_size=1
--train_text_encoder
--mixed_precision="fp16"
--use_8bit_adam
--gradient_accumulation_steps=1
--learning_rate=1e-6
--lr_scheduler="constant"
--lr_warmup_steps=0
--num_class_images=50
--sample_batch_size=4
--max_train_steps=800
--save_interval=10000
--save_sample_prompt="photo of narrow gate"
--concepts_list="concepts_list.json"
Attached is the screenshot for the error:
Reproduction
Run the training process by issuing the following command:
!python3 train_dreambooth.py
--pretrained_model_name_or_path=$MODEL_NAME
--pretrained_vae_name_or_path="stabilityai/sd-vae-ft-mse"
--output_dir=$OUTPUT_DIR
--with_prior_preservation --prior_loss_weight=1.0
--seed=1337
--resolution=512
--train_batch_size=1
--train_text_encoder
--mixed_precision="fp16"
--use_8bit_adam
--gradient_accumulation_steps=1
--learning_rate=1e-6
--lr_scheduler="constant"
--lr_warmup_steps=0
--num_class_images=50
--sample_batch_size=4
--max_train_steps=800
--save_interval=10000
--save_sample_prompt="photo of narrow gate"
--concepts_list="concepts_list.json"
Logs
No response
System Info
I am running this on a google colab runtime on a python 3 running on a Google compute engine with a Tesla GPU.
Install details:
!wget -q https://github.com/ShivamShrirao/diffusers/raw/main/examples/dreambooth/train_dreambooth.py
!wget -q https://github.com/ShivamShrirao/diffusers/raw/main/scripts/convert_diffusers_to_original_stable_diffusion.py
%pip install -qq git+https://github.com/ShivamShrirao/diffusers
%pip install -q -U --pre triton
%pip install -q accelerate transformers ftfy bitsandbytes==0.35.0 gradio natsort safetensors xformers
