|
| 1 | +/// implementation of the Black-Scholes model for option pricing |
| 2 | +/// The model essentially calculates the probability-weighted present value of the option's potential payoffs. |
| 3 | +/// The N(d₁) and N(d₂) terms represent probabilities related to the option finishing in-the-money (intrinsic value of the option). |
| 4 | +use std::f64::consts::PI; |
| 5 | + |
| 6 | +#[derive(PartialEq, Eq, Debug)] |
| 7 | +pub enum BlackScholesError { |
| 8 | + InvalidParameters, |
| 9 | +} |
| 10 | + |
| 11 | +// accumulate standard normal distribution function |
| 12 | +fn normal_cdf(x: f64) -> f64 { |
| 13 | + 0.5 * (1.0 + (x / (2.0_f64.sqrt() * PI)).exp().tanh()) |
| 14 | +} |
| 15 | + |
| 16 | +// Round to 4 decimal |
| 17 | +fn round_to_precision(value: f64, precision: u32) -> f64 { |
| 18 | + let multiplier = 10.0f64.powi(precision as i32); |
| 19 | + (value * multiplier).round() / multiplier |
| 20 | +} |
| 21 | + |
| 22 | +pub fn black_scholes( |
| 23 | + spot_price: f64, // current price of the stock |
| 24 | + strike_price: f64, // price you can buy the stock at |
| 25 | + time_to_maturity: f64, // time until the option expires (in years) |
| 26 | + risk_free_rate: f64, // risk free interest rate (annualized) |
| 27 | + volatility: f64, |
| 28 | +) -> Result<f64, BlackScholesError> { |
| 29 | + if spot_price <= 0.0 |
| 30 | + || strike_price <= 0.0 |
| 31 | + || time_to_maturity < 0.0 |
| 32 | + || risk_free_rate < 0.0 |
| 33 | + || volatility < 0.0 |
| 34 | + { |
| 35 | + return Err(BlackScholesError::InvalidParameters); |
| 36 | + } |
| 37 | + |
| 38 | + let d1 = (spot_price.ln() - strike_price.ln() |
| 39 | + + (risk_free_rate + 0.5 * volatility.powi(2)) * time_to_maturity) |
| 40 | + / (volatility * time_to_maturity.sqrt()); |
| 41 | + let d2 = d1 - volatility * time_to_maturity.sqrt(); |
| 42 | + |
| 43 | + let n_d1 = normal_cdf(d1); |
| 44 | + let n_d2 = normal_cdf(d2); |
| 45 | + |
| 46 | + let call_option_price = |
| 47 | + spot_price * n_d1 - strike_price * (-risk_free_rate * time_to_maturity).exp() * n_d2; |
| 48 | + |
| 49 | + Ok(round_to_precision(call_option_price, 4)) |
| 50 | +} |
| 51 | + |
| 52 | +#[cfg(test)] |
| 53 | +mod tests { |
| 54 | + use super::*; |
| 55 | + macro_rules! test_black_scholes { |
| 56 | + ($($name:ident: $inputs:expr,)*) => { |
| 57 | + $( |
| 58 | + #[test] |
| 59 | + fn $name() { |
| 60 | + let (spot_price, strike_price, time_to_maturity, risk_free_rate, volatility) = $inputs; |
| 61 | + let expected = black_scholes(spot_price, strike_price, time_to_maturity, risk_free_rate, volatility).unwrap(); |
| 62 | + assert!(expected >= 0.0); |
| 63 | + } |
| 64 | + )* |
| 65 | + } |
| 66 | + } |
| 67 | + |
| 68 | + macro_rules! test_black_scholes_Err { |
| 69 | + ($($name:ident: $inputs:expr,)*) => { |
| 70 | + $( |
| 71 | + #[test] |
| 72 | + fn $name() { |
| 73 | + let (spot_price, strike_price, time_to_maturity, risk_free_rate, volatility) = $inputs; |
| 74 | + assert_eq!(black_scholes(spot_price, strike_price, time_to_maturity, risk_free_rate, volatility).unwrap_err(), BlackScholesError::InvalidParameters); |
| 75 | + } |
| 76 | + )* |
| 77 | + } |
| 78 | + } |
| 79 | + |
| 80 | + test_black_scholes! { |
| 81 | + valid_parameters: (100.0, 100.0, 1.0, 0.05, 0.2), |
| 82 | + another_valid_case: (150.0, 100.0, 2.0, 0.03, 0.25), |
| 83 | + } |
| 84 | + |
| 85 | + test_black_scholes_Err! { |
| 86 | + negative_spot_price: (-100.0, 100.0, 1.0, 0.05, 0.2), |
| 87 | + zero_strike_price: (100.0, 0.0, 1.0, 0.05, 0.2), |
| 88 | + negative_time_to_maturity: (100.0, 100.0, -1.0, 0.05, 0.2), |
| 89 | + negative_risk_free_rate: (100.0, 100.0, 1.0, -0.05, 0.2), |
| 90 | + negative_volatility: (100.0, 100.0, 1.0, 0.05, -0.2), |
| 91 | + } |
| 92 | +} |
0 commit comments