From e5fee6f35803d506948e7349220a306ff1051fb1 Mon Sep 17 00:00:00 2001 From: Kenay5 55 Date: Thu, 8 May 2025 20:03:17 -0500 Subject: [PATCH 01/22] Enhanced extension: Complexify!.js A better extension for complex numbers, fixing all the issues with the original Complexity! --- .../Kenay-With-a-Y-At-The-End/Complexify!.js | 1012 +++++++++++++++++ 1 file changed, 1012 insertions(+) create mode 100644 extensions/Kenay-With-a-Y-At-The-End/Complexify!.js diff --git a/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js b/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js new file mode 100644 index 0000000000..2488cd1506 --- /dev/null +++ b/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js @@ -0,0 +1,1012 @@ +// Name: Complexify! +// ID: kenayComplexify +// Description: Complex Numbres in TurboWarp! Can you believe it? +// By: Kenay +// By: Clickertale_2 +// License: MIT AND MPL-2.0 + +/** +The first full version, Complexity!, can be downloaded from his Discord: +Thanks "rawify" for Complex.js v2.4.2 11/5/2024 +Copyright (c) 2024, Robert Eisele (https://raw.org/). Licensed under the MIT license. +Thanks "scratchfoundation" for the Timer +*/ + +(function (Scratch) { + 'use strict'; +//Just in case: +if (!Scratch.extensions.unsandboxed) { + alert("We don't like sand"); + throw new Error("Complexify! must run unsandboxed"); +} + +class Timer { /**From Scratch.vm*/ + constructor (nowObj = Timer.nowObj) { + /**Stores the time epicly */ + this.startTime = 0; + /**Wht is now?*/ + this.nowObj = nowObj; + } + /**Smth about performance*/ + static get USE_PERFORMANCE () { + return false; + } + /**Smth about compatibility*/ + static get legacyDateCode () { + return { + now: function () { + return new Date().getTime(); + } + }; + } + /**Route all timers with this*/ + static get nowObj () { + if (Timer.USE_PERFORMANCE && typeof self !== 'undefined' && self.performance && 'now' in self.performance) { + return self.performance; + } else if (Date.now) { + return Date; + } + return Timer.legacyDateCode; + } + /**Guess this is the time*/ + time () { + return this.nowObj.now(); + } + /**Start*/ + start () { + this.startTime = this.nowObj.now(); + } + timeElapsed () { + return this.nowObj.now() - this.startTime; + } + /**Guess we'll have to wait*/ + setTimeout (handler, timeout) { + return global.setTimeout(handler, timeout); + } + /**At least that's clear*/ + clearTimeout (timeoutId) { + global.clearTimeout(timeoutId); + } +} + +function jsCode() { /**Again, thanks Rawify*/ + 'use strict';(function(r){function l(a,b){if(void 0===a||null===a)f.re=f.im=0;else if(void 0!==b)f.re=a,f.im=b;else switch(typeof a){case "object":if("im"in a&&"re"in a)f.re=a.re,f.im=a.im;else if("abs"in a&&"arg"in a){if(!isFinite(a.abs)&&isFinite(a.arg))return c.INFINITY;f.re=a.abs*Math.cos(a.arg);f.im=a.abs*Math.sin(a.arg)}else if("r"in a&&"phi"in a){if(!isFinite(a.r)&&isFinite(a.phi))return c.INFINITY;f.re=a.r*Math.cos(a.phi);f.im=a.r*Math.sin(a.phi)}else 2===a.length?(f.re=a[0],f.im=a[1]):m(); +break;case "string":f.im=f.re=0;a=a.replace(/_/g,"").match(/\d+\.?\d*e[+-]?\d+|\d+\.?\d*|\.\d+|./g);b=1;let d=0;null===a&&m();for(let e=0;ea)return Math.sqrt(a*a+b*b);b/=a;return a*Math.sqrt(1+b*b)}function p(a,b){const d=Math.abs(a),e=Math.abs(b);if(0===a)return Math.log(e);if(0===b)return Math.log(d);if(3E3>d&&3E3>e)return.5*Math.log(a*a+b*b);a*=.5;b*=.5;return.5*Math.log(a*a+b*b)+Math.LN2}function c(a,b){if(!(this instanceof c))return new c(a,b);a=l(a, +b);this.re=a.re;this.im=a.im}const h=Math.cosh||function(a){return 1E-9>Math.abs(a)?1-a:.5*(Math.exp(a)+Math.exp(-a))},k=Math.sinh||function(a){return 1E-9>Math.abs(a)?a:.5*(Math.exp(a)-Math.exp(-a))},f={re:0,im:0};c.prototype={re:0,im:0,sign:function(){const a=n(this.re,this.im);return new c(this.re/a,this.im/a)},add:function(a,b){a=l(a,b);b=this.isInfinite();const d=!(isFinite(a.re)&&isFinite(a.im));return b||d?b&&d?c.NAN:c.INFINITY:new c(this.re+a.re,this.im+a.im)},sub:function(a,b){a=l(a,b);b= +this.isInfinite();const d=!(isFinite(a.re)&&isFinite(a.im));return b||d?b&&d?c.NAN:c.INFINITY:new c(this.re-a.re,this.im-a.im)},mul:function(a,b){a=l(a,b);b=this.isInfinite();const d=!(isFinite(a.re)&&isFinite(a.im)),e=0===this.re&&0===this.im,g=0===a.re&&0===a.im;return b&&g||d&&e?c.NAN:b||d?c.INFINITY:0===a.im&&0===this.im?new c(this.re*a.re,0):new c(this.re*a.re-this.im*a.im,this.re*a.im+this.im*a.re)},div:function(a,b){a=l(a,b);b=this.isInfinite();const d=!(isFinite(a.re)&&isFinite(a.im)),e=0=== +this.re&&0===this.im,g=0===a.re&&0===a.im;if(e&&g||b&&d)return c.NAN;if(g||b)return c.INFINITY;if(e||d)return c.ZERO;if(0===a.im)return new c(this.re/a.re,this.im/a.re);if(Math.abs(a.re)b?-e:e):new c(e,0>b?-d:d)},exp:function(){const a=Math.exp(this.re);return 0===this.im?new c(a,0):new c(a*Math.cos(this.im),a*Math.sin(this.im))},expm1:function(){const a=this.re,b=this.im;var d=Math.expm1(a)*Math.cos(b);var e=Math.PI/4;-e>b||b>e?e=Math.cos(b)-1:(e=b*b,e*=e*(e*(e*(e*(e*(e*(e/20922789888E3-1/87178291200)+1/479001600)-1/3628800)+1/40320)-1/720)+1/24)-.5);return new c(d+e,Math.exp(a)*Math.sin(b))}, +log:function(){const a=this.re,b=this.im;return 0===b&&0=a.im){var b=a.re;a.re=-a.im;a.im=b}else b=a.im,a.im=-a.re,a.re=b;return a},atanh:function(){var a=this.re,b=this.im;const d=1b?(b=-b,d+="-"):d+="+",d+=" "):0>b&&(b=-b,d+="-");1!== +b&&(d+=b);return d+"i"},toVector:function(){return[this.re,this.im]},valueOf:function(){return 0===this.im?this.re:null},isNaN:function(){return isNaN(this.re)||isNaN(this.im)},isZero:function(){return 0===this.im&&0===this.re},isFinite:function(){return isFinite(this.re)&&isFinite(this.im)},isInfinite:function(){return!this.isFinite()}};c.ZERO=new c(0,0);c.ONE=new c(1,0);c.I=new c(0,1);c.PI=new c(Math.PI,0);c.E=new c(Math.E,0);c.INFINITY=new c(Infinity,Infinity);c.NAN=new c(NaN,NaN);c.EPSILON=1E-15; +"function"===typeof define&&define.amd?define([],function(){return c}):"object"===typeof exports?(Object.defineProperty(c,"__esModule",{value:!0}),c["default"]=c,c.Complex=c,module.exports=c):r.Complex=c})(window); +} + +function coolCis(ANGLE) { //Cool e^ix trick + const angle = Complex(ANGLE); + const result = Complex({ arg: angle.re, abs: 1 }).mul(Math.exp(-angle.im)); + return result; +}; +const twoPi = Math.PI * 2 //Don't ask why + +function classicFac(x) { //Y'know, 1*2*3*4*...*x + if (x < 0) return Infinity; + if (x == 0 || x == 1) return 1; + return classicFac(x - 1) * x; +} + +function factorial(z, t) { //The extension for non-naturals numbers + if (z.im == 0 && Number.isInteger(z.re)) { + return classicFac(z.re); + } + var x = i = 1, y = 0; + for (i; i<=t; i++) { + const a = Complex(x, y).mul(Complex(1 + (1/i)).pow(z).div(z.div(i).add(1))); + x = a.re; y = a.im; + } + return Complex(x, y).toString(); +} + +/** + AND NOW, THE COMPLEXITY IN COMPLEXIFY! +*/ +class ComplexityExtension { + constructor() { //First, the trigonometry array: + this.trig = ['sin', 'cos', 'tan', 'cot', 'sec', 'csc', 'asin', 'acos', 'atan', 'acot', 'asec', 'acsc', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch']; // Used to make the menu look more clean. + this.terms = 100000; //Remember this.terms + try { + jsCode(); //Runs the code + if (typeof window.Complex !== 'undefined') { + this.Complex = window.Complex; + console.log("We've complexified!"); + } else { + console.log("This is out of our complex window"); + } + } catch (e) { + console.log("We've had a complex error!:", e); + } + if (!this) { + console.error("`this` isn't correctly bounded in the complex constructor"); + } else { + console.log(this); + } + } + + getInfo(){ + return { + id: 'kenayComplexify', + name: 'Complexify!', + color1: '#964b99', + menuIconURI: "", + blocks: [ + { + opcode: 'Complexity', //The protagonist + blockType: Scratch.BlockType.REPORTER, + text: 'Complexify [REAL] [IMAG]', + arguments: { + REAL: { type: Scratch.ArgumentType.NUMBER, defaultValue: '3' }, + IMAG: { type: Scratch.ArgumentType.NUMBER, defaultValue: '4' } + }, + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Rectangular Tools"), + }, + { + opcode: 'rectComplex', //For easier multiplication + blockType: Scratch.BlockType.REPORTER, + text: '[REAL] + [IMAG] 𝙞', + arguments: { + REAL: { type: Scratch.ArgumentType.STRING, defaultValue: '3' }, + IMAG: { type: Scratch.ArgumentType.STRING, defaultValue: '4' } + }, + }, + { + opcode: 'reComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Real Part of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + { + opcode: 'imComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Im. Part of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' }, + }, + }, + { + opcode: 'conjugateComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Conjugate of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Five basic operations"), //Wait- There's five? + }, + { + opcode: 'addComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] + [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + { + opcode: 'subtractComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] - [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + { + opcode: 'multiplyComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] × [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + { + opcode: 'divideComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] / [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + { + opcode: 'moduloComplex', //Oh well... Guess this is the fifth + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] % [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '1+2i' } + }, + }, + "---", //I don't know what to name this + { + opcode: 'negComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Negative [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + description: "Negates the Complex" + }, + { + opcode: 'inverseComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Inverse of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + description: "Inverses the Complex" + }, + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Polar Tools"), + }, + { + opcode: 'polarComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Polar [RADIUS] ∠ [ANGLE]', + arguments: { + RADIUS: { type: Scratch.ArgumentType.STRING, defaultValue: 5 }, + ANGLE: { type: Scratch.ArgumentType.STRING, defaultValue: '0.9272952180016123' } + }, + }, + { + opcode: 'absComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Magnitude of [COMPLEX]', //Abs + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + { + opcode: 'complexSign', + blockType: Scratch.BlockType.REPORTER, + text: 'Sign of [COMPLEX]', //Normalize + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + { + opcode: 'cisThingie', + blockType: Scratch.BlockType.REPORTER, + text: '∠ [ANGLE]', //cis(x) + arguments: { + ANGLE: { type: Scratch.ArgumentType.STRING, defaultValue: '0.9272952180016123' } + }, + }, + { + opcode: 'argComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Argument of [COMPLEX]', //-i*ln(sign) + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Exponents"), + }, + { + opcode: 'powComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] ^ [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '2+i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '3' } + }, + }, + { + opcode: 'expComplex', + blockType: Scratch.BlockType.REPORTER, + text: '𝑒 [COMPLEX]', //Natural exponent + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + description: "Raises 𝑒 to the Complex" + }, + { + opcode: 'rootComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX1] √ [COMPLEX2]', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '2+11i' } + }, + }, + { + opcode: 'sqrtComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'Square Root of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + description: "Finds the square root of the Complex" + }, + { + opcode: 'logComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'log [BASE] of [INPUT]', + arguments: { + BASE: { type: Scratch.ArgumentType.STRING, defaultValue: '2+i' }, + INPUT: { type: Scratch.ArgumentType.STRING, defaultValue: '2+11i' } + }, + }, + { + opcode: 'lnComplex', + blockType: Scratch.BlockType.REPORTER, + text: 'ln [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + }, + description: "Finds the natural logarithm of the Complex" + }, + "---", + { + filter: [Scratch.TargetType.SPRITE], //Just in case + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Motion"), + }, + + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'getPosition', + blockType: Scratch.BlockType.REPORTER, + text: 'Complex Position', + }, + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'goToComplex', + blockType: Scratch.BlockType.COMMAND, + text: 'Go to [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '30+40i' } + } + }, + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'goAddComplex', + blockType: Scratch.BlockType.COMMAND, + text: 'Move by [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '30+40i' } + } + }, + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'GoMulComplex', + blockType: Scratch.BlockType.COMMAND, + text: 'Mul position by [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: 5 } + }, + }, + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'goToPolar', //A block no one asked for, and I fear no one needs + blockType: Scratch.BlockType.COMMAND, + text: 'Go polar [RADII] ∠ [ANGLY]', + arguments: { + RADII: { type: Scratch.ArgumentType.STRING, defaultValue: 50 }, + ANGLY: { type: Scratch.ArgumentType.STRING, defaultValue: '0.9272952180016123' } + }, + }, + { + filter: [Scratch.TargetType.SPRITE], + opcode: 'glideComplex', //My favourite block [I love it] + blockType: Scratch.BlockType.COMMAND, + text: 'Glide [SECS] secs to [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '30+40i' }, + SECS: { type: Scratch.ArgumentType.NUMBER, defaultValue: 1 } + }, + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Trigonometry and decimals"), + }, + { + opcode: 'trigOfComplex', + blockType: Scratch.BlockType.REPORTER, + text: '[TRIG] of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + TRIG: { type: Scratch.ArgumentType.STRING, menu: 'trigs' } + }, + }, + { + opcode: 'convertComplex', //Nice for shorter calcs + blockType: Scratch.BlockType.REPORTER, + text: 'Find [ANGLE] [TOSMTH]', + arguments: { + ANGLE: { type: Scratch.ArgumentType.STRING, defaultValue: '30' }, + TOSMTH: { type: Scratch.ArgumentType.STRING, menu: 'angles' } + }, + }, + { + opcode: 'decimalComplex', //Same reason + blockType: Scratch.BlockType.REPORTER, + text: '[OPERATION] of [COMPLEX]', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '1+0i' }, + OPERATION: { type: Scratch.ArgumentType.STRING, menu: 'decTools' } + }, + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Booleans"), + }, + { + opcode: 'equalsComplex', + blockType: Scratch.BlockType.BOOLEAN, + text: '[COMPLEX1] = [COMPLEX2]?', + arguments: { + COMPLEX1: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' }, + COMPLEX2: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + { + opcode: 'isFiniteComplex', + blockType: Scratch.BlockType.BOOLEAN, + text: '[COMPLEX] is finite?', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + } + }, + { + opcode: 'isNaNComplex', //Just in case. Again. + blockType: Scratch.BlockType.BOOLEAN, + text: '[COMPLEX] is NaN?', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + } + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Strings"), //For others extensions to use + }, + { + opcode: 'complexArray', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX] to array', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + } + }, + { + opcode: 'complexJSON', + blockType: Scratch.BlockType.REPORTER, + text: '[COMPLEX] to JSON', + arguments: { + COMPLEX: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + } + }, + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Vectors"), //Why do we have this? + }, + { + opcode: 'mulVectorAroundPoint', + blockType: Scratch.BlockType.REPORTER, + text: 'mul [VECTOR] around [POINT] by [FACTOR]', + arguments: { + VECTOR: { type: Scratch.ArgumentType.STRING, defaultValue: '1+0i' }, + POINT: { type: Scratch.ArgumentType.STRING, defaultValue: '0+0i' }, + FACTOR: { type: Scratch.ArgumentType.STRING, defaultValue: 2 } + }, + }, + { + opcode: 'rotateVectorAroundPoint', + blockType: Scratch.BlockType.REPORTER, + text: 'rotate [VECTOR] around [POINT] by angle [ANGLE]', + arguments: { + VECTOR: { type: Scratch.ArgumentType.STRING, defaultValue: '1+0i' }, + POINT: { type: Scratch.ArgumentType.STRING, defaultValue: '0+0i' }, + ANGLE: { type: Scratch.ArgumentType.STRING, defaultValue: 3.1415 } + }, + }, + "---", + { + blockType: Scratch.BlockType.LABEL, + text: Scratch.translate("Factorials"), //'cause why not? + }, + { + opcode: 'facOf', + blockType: Scratch.BlockType.REPORTER, + text: '[ZED] !', + arguments: { + ZED: { type: Scratch.ArgumentType.STRING, defaultValue: '3+4i' } + }, + }, + { + opcode: 'Tfac', + blockType: Scratch.BlockType.REPORTER, + text: 'Terms of factorials', + }, + { + opcode: 'setTfac', + blockType: Scratch.BlockType.COMMAND, + text: 'Set terms of factorials to [ZED]', + arguments: { + ZED: { type: Scratch.ArgumentType.NUMBER, defaultValue: 100000 } + }, + }, + ], + menus: { + trigs: { acceptReporters: true, items: this.trig }, //For trigOfComplex + angles: { + acceptReporters: true, + items: ['degs to rads', '𝜋', 'rads to degs'] //For convertComplex + }, + decTools: { + acceptReporters: true, + items: ['round', 'ceil', 'floor'] //For decimalComplex + }, + } + }; + } + + + Complexity({ REAL, IMAG }) { //This is the constructor. Not like constructor(){}, it just builds a new Complex + try { + return Complex(REAL, IMAG).toString(); //Don't forget: toString() + } catch (e) { + console.log(e); + return NaN + } + } + +/** + We'll use toString() to return the Complex number with math notation. + If you wonder why, remember Complex is a class, and hence, returns objects. + So, we don't want "{re: -5, im: 1}", "[-5,1]" or "[object Object]". We want "-5+i" as is + Thus, no Scratch.Cast.toString() or anything like that, because toString() will always do. +*/ + + rectComplex({ REAL, IMAG }) { + try { //Simplifies multiplication, as shown: + return Complex(IMAG).mul("i").add(Complex(REAL)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + reComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).re; + } catch (e) { + console.log(e); + return NaN + } + } + + imComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).im; + } catch (e) { + console.log(e); + return NaN + } + } + + conjugateComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).conjugate().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + + + addComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).add(Complex(COMPLEX2)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + subtractComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).sub(Complex(COMPLEX2)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + multiplyComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).mul(Complex(COMPLEX2)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + divideComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).div(Complex(COMPLEX2)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + moduloComplex({ COMPLEX1, COMPLEX2 }) { + try { + const c1 = Complex(COMPLEX1), c2 = Complex(COMPLEX2) + return c1.sub(c2.mul(c1.div(c2).floor())).toString(); //Yea. Wierd. + } catch (e) { + console.log(e); + return NaN + } + } + + negComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).neg().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + inverseComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).inverse().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + polarComplex({ RADIUS, ANGLE }) { + try { //Introducing coolCis(): + return coolCis(Complex(ANGLE)).mul(Complex(RADIUS)).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + absComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).abs().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + complexSign({ COMPLEX }) { + try { + return Complex(COMPLEX).sign().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + cisThingie({ ANGLE }) { + try { + return coolCis(ANGLE).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + argComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).sign().log().mul('-i').toString(); + } catch (e) { //Fun fac: there's an .arg() method, but's an hidden direct Math.atan2() + console.log(e); //This workaround works better, although log() also uses atan2. + return NaN + } + } + + powComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).pow(Complex(COMPLEX2)).toString();; + } catch (e) { + console.log(e); + return NaN + } + } + + expComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).exp().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + rootComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX2).pow(Complex(COMPLEX1).inverse()).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + sqrtComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).sqrt().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + logComplex({ BASE, INPUT }) { + try { + return Complex(INPUT).log().div(Complex(BASE).log()).toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + lnComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).log().toString(); + } catch (e) { + console.log(e); + return NaN + } + } + + getPosition(args, util) { + try { + return Complex(util.target.x, util.target.y).toString(); + } catch (e) { + if (util.target.y < 0) { + let imPart = util.target.y + "i" + return util.target.x + imPart; + } + return util.target.x + "+" + util.target.y + "i"; + } + } + + goToComplex(args, util) { + const cInstance = Complex(args.COMPLEX); + util.target.setXY(cInstance.re, cInstance.im); + } + + goAddComplex(args, util) { + const cInstance = Complex(args.COMPLEX); + util.target.setXY(util.target.x + cInstance.re, util.target.y + cInstance.im); + } + + goToPolar(args, util) { + const cInstance = coolCis(args.ANGLY).mul(args.RADII); + util.target.setXY(cInstance.re, cInstance.im); + } + + GoMulComplex(args, util) { + const cIn = Complex(args.COMPLEX); + const cInstance = Complex(util.target.x, util.target.y).mul(cIn); + util.target.setXY(cInstance.re, cInstance.im); + } + + glideComplex (args, util) { //Do you recognize this? Answer at the end! + if (util.stackFrame.timer) { + const timeElapsed = util.stackFrame.timer.timeElapsed(); + if (timeElapsed < util.stackFrame.duration * 1000) { + // We've moving! And we'll move again. + const frac = timeElapsed / (util.stackFrame.duration * 1000); + const dx = frac * (util.stackFrame.endX - util.stackFrame.startX); + const dy = frac * (util.stackFrame.endY - util.stackFrame.startY); + util.target.setXY(util.stackFrame.startX + dx, util.stackFrame.startY + dy); + util.yield(); + } else { + // We're done! Now, lets end this + util.target.setXY(util.stackFrame.endX, util.stackFrame.endY); + } + } else { + // We're starting! So, new Timer! + util.stackFrame.timer = new Timer(); + util.stackFrame.timer.start(); + util.stackFrame.duration = args.SECS; + util.stackFrame.startX = util.target.x; + util.stackFrame.startY = util.target.y; + util.stackFrame.endX = Complex(args.COMPLEX).re; //A little edit + util.stackFrame.endY = Complex(args.COMPLEX).im; + if (util.stackFrame.duration <= 0) { + // We can't glide -1 seconds, can we? + util.target.setXY(util.stackFrame.endX, util.stackFrame.endY); + return; + } + util.yield(); + } + } + + trigOfComplex({ COMPLEX, TRIG }) { + try { + const cInstance = Complex(COMPLEX); + const trigMethod = TRIG.toLowerCase(); + const validTrigFunctions = this.trig; + if (validTrigFunctions.includes(trigMethod) && typeof cInstance[trigMethod] === 'function') { + const result = cInstance[trigMethod](); + return result.isNaN() ? 'Infinity' : result.toString(); + } else { + return "0"; + } + } catch (e) { + console.log(e); + return NaN; + } + } + + convertComplex({ ANGLE, TOSMTH }) { + try { + if (ANGLE == "") { + return 0; + } + const cInstance = Complex(ANGLE); + switch (TOSMTH) { + case 'degs to rads': if (cInstance.im == 0) return (cInstance.re * 0.017453292519943295) % twoPi; + return cInstance.mul(0.017453292519943295).toString(); break; + case '𝜋': return cInstance.mul(3.141592653589793).toString(); break; + case 'rads to degs': if (cInstance.im == 0) return (cInstance.re * 57.29577951308232) % 360; + return cInstance.mul(57.29577951308232).toString(); break; + default: return NaN + } + } catch (e) { + console.log(e); + return 0; + } + } + + decimalComplex({ COMPLEX, OPERATION }) { + const complex = Complex(COMPLEX); + OPERATION = OPERATION.toLowerCase(); + var result; + switch (OPERATION) { + case 'ceil': + result = complex.ceil().toString(); + break; + case 'floor': + result = complex.floor().toString(); + break; + case 'round': + result = complex.round().toString(); + break; + default: + result = 0; + } + return result; + } + + equalsComplex({ COMPLEX1, COMPLEX2 }) { + try { + return Complex(COMPLEX1).equals(Complex(COMPLEX2)); + } catch (e) { + console.log(e); + return false; + } + } + + isNaNComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).isNaN(); + } catch (e) { + console.log(e); + return false; + } + } + + isFiniteComplex({ COMPLEX }) { + try { + return Complex(COMPLEX).isFinite(); + } catch (e) { + console.log(e); + return false; + } + } + + complexArray({ COMPLEX }) { + try { + const z = Complex(COMPLEX); + return "[" + z.re + "," + z.im + "]"; + } catch (e) { + console.log(e); + return NaN; + } + } + + complexJSON({ COMPLEX }) { + try { + const z = Complex(COMPLEX); + return JSON.stringify({ re: z.re, im: z.im }); + } catch (e) { + console.log(e); + return NaN; + } + } + + mulVectorAroundPoint({ VECTOR, POINT, FACTOR }) { + try { //I kept these just because it says so in Complex-js + return Complex(VECTOR).sub(Complex(POINT)).mul(Complex(FACTOR)).add(Complex(POINT)).toString(); + } catch (e) { + console.log(e); + return NaN; + } + } + + rotateVectorAroundPoint({ VECTOR, POINT, ANGLE }) { + try { + const result = Complex(VECTOR).sub(Complex(POINT)).mul(coolCis(Complex(ANGLE))).add(Complex(POINT)); + return result.toString(); + } catch (e) { + console.log(e); + return NaN; + } + } + + facOf({ ZED }) { + try { + return factorial(Complex(ZED), this.terms).toString(); //I wanted to save the factorial code here + } catch (e) { //But it would be a mess + console.log(e); + return NaN; + } + } + + Tfac() { + try { + return this.terms; + } catch (e) { + console.log(e); + return NaN; + } + } + + setTfac({ ZED }) { + try { + if ( ZED>=0 && Number.isInteger(ZED)) this.terms = ZED; + } catch (e) { + console.log(e); + } + } +} +//The glideComplex function is a copy of the glide function used in Scratch-vm/src/motion +Scratch.extensions.register(new ComplexityExtension()); +})(Scratch); From bc341f3b76cd3d3f71e6789c303c2dce29102886 Mon Sep 17 00:00:00 2001 From: Kenay con Y al final Date: Fri, 9 May 2025 13:31:07 -0500 Subject: [PATCH 02/22] Erasing some comments on Complexify!.js I'll add a better glideComplex, more Scratch.Cast and the minified code later. For now, small changes first --- .../Kenay-With-a-Y-At-The-End/Complexify!.js | 108 ++++++++---------- 1 file changed, 49 insertions(+), 59 deletions(-) diff --git a/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js b/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js index 2488cd1506..cbf9665ff9 100644 --- a/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js +++ b/extensions/Kenay-With-a-Y-At-The-End/Complexify!.js @@ -1,8 +1,9 @@ // Name: Complexify! // ID: kenayComplexify -// Description: Complex Numbres in TurboWarp! Can you believe it? +// Description: Complex numbers and numerical operations in TurboWarp // By: Kenay // By: Clickertale_2 +// Original: Complexity! // License: MIT AND MPL-2.0 /** @@ -14,24 +15,19 @@ Thanks "scratchfoundation" for the Timer