Skip to content

Commit 29c67ba

Browse files
committed
rename 𝕂 to β„‚
1 parent 478dd88 commit 29c67ba

File tree

8 files changed

+11
-11
lines changed

8 files changed

+11
-11
lines changed

β€ŽREADME.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -352,7 +352,7 @@ The following table shows where each of the definitions, theorems, and proofs fr
352352
| Definition 4.8 | Non-empty Indexed Set | `empty` | [src/Data/IndexedSet.lagda.md](src/Data/IndexedSet.lagda.md) | The library definition is a predicate that ensures an indexed set to be non-empty. |
353353
| Definition 4.9 | Variant Map | `VMap` | [src/Framework/VariantMap.agda](src/Framework/VariantMap.agda) | This is the finite and non-empty indexed set definition mentioned above. |
354354
| Definition 4.10 | Semantic Domain | `VMap` | [src/Framework/VariantMap.agda](src/Framework/VariantMap.agda) | In contrast to a variant map, the semantic domain is the type of variant maps instead of its elements. |
355-
| Definition 4.11 | configuration language 𝐢 | `𝕂` | [src/Framework/Definitions.agda](src/Framework/Definitions.agda) | | -- TODO Use C instead of K if constructors are removed completely
355+
| Definition 4.11 | configuration language 𝐢 | `β„‚` | [src/Framework/Definitions.agda](src/Framework/Definitions.agda) | |
356356
| Definition 4.12 | variability language 𝐿 | `𝔼` | [src/Framework/Definitions.agda](src/Framework/Definitions.agda) | |
357357
| Definition 4.13 | ⟦.⟧ | `𝔼-Semantics` | [src/Framework/VariabilityLanguage.lagda.md](src/Framework/VariabilityLanguage.lagda.md) | |
358358
| | | `VariabilityLanguage` | [src/Framework/VariabilityLanguage.lagda.md](src/Framework/VariabilityLanguage.lagda.md) | VariabilityLanguage is a bundle of 𝔼, 𝕂 and 𝔼-Semantics. |

β€Žsrc/Framework/Compiler.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ record LanguageCompiler {V} (Γ₁ Ξ“β‚‚ : VariabilityLanguage V) : Set₁ where
3737
fnoc : βˆ€ {A} β†’ L₁ A β†’ Config Ξ“β‚‚ β†’ Config Γ₁
3838
fnoc e = from (config-compiler e)
3939

40-
_βŠ•αΆœαΆœ_ : βˆ€ {K₁ Kβ‚‚ K₃ : 𝕂}
40+
_βŠ•αΆœαΆœ_ : βˆ€ {K₁ Kβ‚‚ K₃ : β„‚}
4141
β†’ K₁ ⇔ Kβ‚‚
4242
β†’ Kβ‚‚ ⇔ K₃
4343
β†’ K₁ ⇔ K₃
@@ -47,7 +47,7 @@ _βŠ•αΆœαΆœ_ : βˆ€ {K₁ Kβ‚‚ K₃ : 𝕂}
4747
}
4848

4949
βŠ•αΆœαΆœ-stable :
50-
βˆ€ {K₁ Kβ‚‚ K₃ : 𝕂}
50+
βˆ€ {K₁ Kβ‚‚ K₃ : β„‚}
5151
(1β†’2 : K₁ ⇔ Kβ‚‚) (2β†’3 : Kβ‚‚ ⇔ K₃)
5252
β†’ to-is-Embedding 1β†’2
5353
β†’ to-is-Embedding 2β†’3

β€Žsrc/Framework/Definitions.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -61,8 +61,8 @@ selections language.
6161
π•Š = Set
6262

6363
-- Set of configuration languages
64-
𝕂 : Set₁
65-
𝕂 = Set
64+
β„‚ : Set₁
65+
β„‚ = Set
6666

6767
{-
6868
The set of expressions of a variability language.

β€Žsrc/Framework/VariabilityLanguage.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -11,14 +11,14 @@ We model this set in terms of a function (see IndexedSet).
1111
Hence, the semantics is a function that configures an expression
1212
`e : E A` to a variant `v : V A` for any domain `A : 𝔸`.
1313
```agda
14-
𝔼-Semantics : 𝕍 β†’ 𝕂 β†’ 𝔼 β†’ Set₁
14+
𝔼-Semantics : 𝕍 β†’ β„‚ β†’ 𝔼 β†’ Set₁
1515
𝔼-Semantics V K E = βˆ€ {A : 𝔸} β†’ E A β†’ K β†’ V A
1616
1717
record VariabilityLanguage (V : 𝕍) : Setβ‚‚ where
1818
constructor βŸͺ_,_,_⟫
1919
field
2020
Expression : 𝔼
21-
Config : 𝕂
21+
Config : β„‚
2222
Semantics : 𝔼-Semantics V Config Expression
2323
open VariabilityLanguage public
2424
```

β€Žsrc/Lang/2CC.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ We define `true` to mean choosing the left alternative and `false` to choose the
5252
Defining it the other way around is also possible but we have to pick one definition and stay consistent.
5353
We choose this order to follow the known _if c then a else b_ pattern where the evaluation of a condition _c_ to true means choosing the then-branch, which is the left one.
5454
```agda
55-
Configuration : (Dimension : 𝔽) β†’ 𝕂
55+
Configuration : (Dimension : 𝔽) β†’ β„‚
5656
Configuration Dimension = Dimension β†’ Bool
5757
5858
⟦_⟧ : βˆ€ {i : Size} {Dimension : 𝔽} β†’ 𝔼-Semantics (Rose ∞) (Configuration Dimension) (2CC Dimension i)

β€Žsrc/Lang/CCC.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ Thus, and for much simpler proofs, we choose the functional semantics.
5151

5252
First, we define configurations as functions that evaluate dimensions by tags:
5353
```agda
54-
Configuration : (Dimension : 𝔽) β†’ 𝕂
54+
Configuration : (Dimension : 𝔽) β†’ β„‚
5555
Configuration Dimension = Dimension β†’ β„•
5656
```
5757

β€Žsrc/Lang/NCC.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ data NCC (n : β„•β‰₯ 2) (Dimension : 𝔽) : Size β†’ 𝔼 where
4646
## Semantics
4747

4848
```agda
49-
Configuration : (n : β„•β‰₯ 2) β†’ (Dimension : 𝔽) β†’ 𝕂
49+
Configuration : (n : β„•β‰₯ 2) β†’ (Dimension : 𝔽) β†’ β„‚
5050
Configuration n Dimension = Dimension β†’ Fin (β„•β‰₯.toβ„• n)
5151
5252
⟦_⟧ : βˆ€ {i : Size} {Dimension : 𝔽} {n : β„•β‰₯ 2} β†’ 𝔼-Semantics (Rose ∞) (Configuration n Dimension) (NCC n Dimension i)

β€Žsrc/Lang/OC.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ children-wf (Root _ es) = es
7777

7878
Let's first define configurations. Configurations of option calculus tell us which options to in- or exclude. We define `true` to mean "include" and `false` to mean "exclude". Defining it the other way around would also be fine as long as we are consistent. Yet, our way of defining it is in line with if-semantics and how it is usually implemented in papers and tools.
7979
```agda
80-
Configuration : 𝔽 β†’ 𝕂
80+
Configuration : 𝔽 β†’ β„‚
8181
Configuration Option = Option β†’ Bool
8282
```
8383

0 commit comments

Comments
Β (0)