-
-
Notifications
You must be signed in to change notification settings - Fork 11
Performance Tuning
Haveapp1 edited this page Aug 22, 2025
·
1 revision
Optimization strategies for maximizing Agentwise performance and efficiency.
Performance tuning in Agentwise involves optimizing multiple layers: agent execution, task distribution, token usage, system resources, and user experience. This guide covers strategies for achieving optimal performance.
{
"core_metrics": {
"task_completion_time": {
"target": "< 5 minutes per task",
"measurement": "end-to-end task duration",
"optimization_impact": "5-10x improvement possible"
},
"token_efficiency": {
"target": "30-40% reduction",
"measurement": "tokens saved vs baseline",
"optimization_impact": "Direct cost reduction"
},
"agent_utilization": {
"target": "> 85% utilization",
"measurement": "active time / total time",
"optimization_impact": "Resource efficiency"
},
"system_throughput": {
"target": "10+ concurrent projects",
"measurement": "projects per hour",
"optimization_impact": "Scalability"
}
}
}// Real-time performance monitoring
class PerformanceMonitor {
constructor() {
this.metrics = new Map();
this.alerts = new AlertManager();
this.collectors = [
new TaskMetricsCollector(),
new TokenUsageCollector(),
new AgentPerformanceCollector(),
new SystemResourceCollector()
];
}
startMonitoring() {
this.collectors.forEach(collector => {
collector.on('metric', (metric) => {
this.recordMetric(metric);
this.checkThresholds(metric);
});
collector.start();
});
}
async getPerformanceReport() {
return {
current: await this.getCurrentMetrics(),
trends: await this.getTrends(),
recommendations: await this.getOptimizationRecommendations()
};
}
}// Optimal agent pool configuration
{
"agent_pool_optimization": {
"sizing": {
"concurrent_agents": "3-5 for optimal balance",
"agent_instances": {
"frontend": 2,
"backend": 2,
"database": 1,
"testing": 1,
"devops": 1
}
},
"load_balancing": {
"strategy": "weighted_round_robin",
"weights": {
"frontend": 0.3,
"backend": 0.3,
"database": 0.2,
"testing": 0.1,
"devops": 0.1
}
},
"scaling": {
"auto_scale": true,
"scale_up_threshold": "queue_depth > 5",
"scale_down_threshold": "utilization < 30%"
}
}
}// Specialized agent optimization
class OptimizedFrontendAgent extends FrontendSpecialist {
constructor() {
super();
this.templateCache = new Map();
this.componentPatterns = new PatternRecognizer();
this.codeGenerator = new OptimizedCodeGenerator();
}
async processTask(task, context) {
// Pre-processing optimization
const optimizedTask = await this.optimizeTask(task);
// Template reuse
const template = await this.findOptimalTemplate(optimizedTask);
if (template) {
return await this.generateFromTemplate(template, optimizedTask);
}
// Pattern-based generation
const pattern = this.componentPatterns.recognize(optimizedTask);
if (pattern) {
return await this.generateFromPattern(pattern, optimizedTask);
}
// Fallback to full generation
return await super.processTask(optimizedTask, context);
}
}{
"scheduling_optimization": {
"algorithms": {
"dependency_aware": "Schedule based on task dependencies",
"resource_optimal": "Consider agent capabilities and load",
"priority_weighted": "High-priority tasks get preference",
"predictive": "Use ML to predict optimal scheduling"
},
"optimizations": {
"parallel_execution": "Maximize concurrent task execution",
"batch_processing": "Group similar tasks for efficiency",
"pipeline_optimization": "Optimize task pipeline flow"
}
}
}class DynamicLoadBalancer {
constructor() {
this.agentMetrics = new Map();
this.taskQueue = new PriorityQueue();
this.predictor = new PerformancePredictor();
}
selectOptimalAgent(task) {
const candidates = this.getCapableAgents(task);
// Score each candidate
const scores = candidates.map(agent => ({
agent,
score: this.calculateAgentScore(agent, task)
}));
// Select best agent
const optimal = scores.reduce((best, current) =>
current.score > best.score ? current : best
);
return optimal.agent;
}
calculateAgentScore(agent, task) {
const metrics = this.agentMetrics.get(agent.id);
const capability = agent.getCapabilityScore(task);
const load = 1 - (metrics.currentLoad / metrics.maxCapacity);
const performance = metrics.averageTaskTime / task.estimatedTime;
return capability * 0.4 + load * 0.3 + performance * 0.3;
}
}class AdvancedContextCompressor {
constructor() {
this.semanticAnalyzer = new SemanticAnalyzer();
this.importanceRanker = new ImportanceRanker();
this.compressionAlgorithms = {
'lz4': new LZ4Compressor(),
'semantic': new SemanticCompressor(),
'template': new TemplateCompressor()
};
}
async compressContext(context, targetReduction = 0.4) {
// Analyze context structure
const analysis = await this.semanticAnalyzer.analyze(context);
// Rank information by importance
const importance = await this.importanceRanker.rank(analysis);
// Select optimal compression strategy
const strategy = this.selectCompressionStrategy(context, targetReduction);
// Apply compression
const compressed = await strategy.compress(context, importance);
// Verify quality preservation
const quality = await this.verifyQuality(context, compressed);
if (quality < 0.85) {
// Try less aggressive compression
return await this.compressContext(context, targetReduction * 0.8);
}
return compressed;
}
}{
"template_optimization": {
"template_types": {
"code_patterns": "Common code structures and patterns",
"component_templates": "UI component boilerplates",
"api_structures": "API endpoint templates",
"configuration_files": "Common config file patterns"
},
"optimization_techniques": {
"parameterization": "Make templates highly configurable",
"composition": "Combine multiple templates",
"inheritance": "Template hierarchies for reuse",
"caching": "Cache compiled templates"
},
"learning": {
"usage_tracking": "Track which templates are most effective",
"auto_generation": "Generate new templates from patterns",
"optimization": "Continuously improve template efficiency"
}
}
}class MemoryOptimizer {
constructor() {
this.memoryPools = new Map();
this.gcScheduler = new GCScheduler();
this.memoryMonitor = new MemoryMonitor();
}
optimizeMemoryUsage() {
// Monitor memory usage patterns
const usage = this.memoryMonitor.getUsagePatterns();
// Optimize garbage collection
this.gcScheduler.optimizeGCTiming(usage);
// Manage object pools
this.optimizeObjectPools(usage);
// Clean up unused resources
this.cleanupUnusedResources();
}
createMemoryPool(objectType, initialSize = 10) {
const pool = {
available: [],
inUse: new Set(),
factory: () => new objectType()
};
// Pre-populate pool
for (let i = 0; i < initialSize; i++) {
pool.available.push(pool.factory());
}
this.memoryPools.set(objectType.name, pool);
return pool;
}
}{
"cpu_optimization": {
"parallel_processing": {
"worker_threads": "Use Node.js worker threads for CPU-intensive tasks",
"cluster_mode": "Run multiple processes for better CPU utilization",
"async_operations": "Maximize async I/O operations"
},
"algorithm_optimization": {
"caching": "Cache expensive computations",
"memoization": "Memoize function results",
"lazy_loading": "Load resources only when needed",
"batching": "Batch similar operations"
},
"scheduling": {
"priority_queues": "Process high-priority tasks first",
"round_robin": "Fair scheduling across agents",
"preemptive": "Allow task interruption for urgent requests"
}
}
}class IOOptimizer {
constructor() {
this.connectionPools = new Map();
this.requestBatcher = new RequestBatcher();
this.cache = new DistributedCache();
}
optimizeFileOperations() {
// Batch file operations
this.requestBatcher.setBatchSize(50);
this.requestBatcher.setFlushInterval(100);
// Use streaming for large files
this.enableStreaming(['read', 'write']);
// Optimize file system caching
this.optimizeFileSystemCache();
}
optimizeNetworkOperations() {
// Connection pooling
this.createConnectionPool('anthropic-api', {
maxConnections: 20,
keepAlive: true,
timeout: 30000
});
// Request batching
this.enableRequestBatching(['api-calls', 'database-queries']);
// Response caching
this.cache.configure({
ttl: 3600,
maxSize: '500MB',
strategy: 'lru'
});
}
}{
"database_optimization": {
"indexing": {
"strategy": "Index frequently queried columns",
"composite_indexes": "Multi-column indexes for complex queries",
"partial_indexes": "Conditional indexes for filtered queries"
},
"query_patterns": {
"batching": "Batch multiple queries into single operations",
"pagination": "Use cursor-based pagination for large datasets",
"prepared_statements": "Cache query plans for repeated queries"
},
"connection_management": {
"pooling": "Connection pools for database connections",
"lazy_connections": "Connect only when needed",
"connection_reuse": "Reuse connections across requests"
}
}
}class MultiLayerCache {
constructor() {\n this.layers = {\n memory: new MemoryCache({ maxSize: '100MB', ttl: 300 }),\n redis: new RedisCache({ ttl: 3600 }),\n disk: new DiskCache({ maxSize: '1GB', ttl: 86400 })\n };\n }\n \n async get(key) {\n // Try memory cache first\n let value = await this.layers.memory.get(key);\n if (value) return value;\n \n // Try Redis cache\n value = await this.layers.redis.get(key);\n if (value) {\n // Populate memory cache\n await this.layers.memory.set(key, value);\n return value;\n }\n \n // Try disk cache\n value = await this.layers.disk.get(key);\n if (value) {\n // Populate higher-level caches\n await this.layers.redis.set(key, value);\n await this.layers.memory.set(key, value);\n return value;\n }\n \n return null;\n }\n}{
"api_optimization": {
"request_optimization": {
"compression": "Enable gzip/brotli compression",
"keep_alive": "Use HTTP keep-alive connections",
"multiplexing": "HTTP/2 multiplexing where available",
"batching": "Batch multiple API calls"
},
"response_optimization": {
"streaming": "Stream responses for large data",
"partial_responses": "Return only requested fields",
"caching": "Cache responses with appropriate headers",
"pagination": "Paginate large result sets"
},
"error_handling": {
"retry_logic": "Exponential backoff with jitter",
"circuit_breakers": "Prevent cascading failures",
"timeouts": "Appropriate timeout values",
"fallbacks": "Graceful degradation"
}
}
}{
"development": {
"agents": { "max_concurrent": 2 },
"tokens": { "budget": 50000 },
"caching": { "enabled": false },
"logging": { "level": "debug" }
},
"staging": {
"agents": { "max_concurrent": 3 },
"tokens": { "budget": 100000 },
"caching": { "enabled": true, "ttl": 1800 },
"logging": { "level": "info" }
},
"production": {
"agents": { "max_concurrent": 8 },
"tokens": { "budget": 500000 },
"caching": { "enabled": true, "ttl": 3600 },
"logging": { "level": "warn" },
"optimization": { "aggressive": true }
}
}const performanceProfiles = {
'speed-optimized': {
agents: { maxConcurrent: 8 },
tokens: { optimization: 'moderate' },
caching: { aggressive: true },
parallelism: 'maximum'
},
'cost-optimized': {
agents: { maxConcurrent: 3 },
tokens: { optimization: 'aggressive' },
caching: { selective: true },
parallelism: 'moderate'
},
'balanced': {
agents: { maxConcurrent: 5 },
tokens: { optimization: 'adaptive' },
caching: { smart: true },
parallelism: 'adaptive'
}
};class PerformanceDashboard {
constructor() {
this.metrics = new MetricsCollector();
this.alerts = new AlertSystem();
this.visualizations = new ChartGenerator();
}
generateDashboard() {
return {
overview: this.getOverviewMetrics(),
agents: this.getAgentMetrics(),
tasks: this.getTaskMetrics(),
resources: this.getResourceMetrics(),
optimization: this.getOptimizationMetrics()
};
}
getOptimizationRecommendations() {
const metrics = this.metrics.getCurrentMetrics();
const recommendations = [];
if (metrics.tokenEfficiency < 0.8) {
recommendations.push({
type: 'token_optimization',
priority: 'high',
action: 'Enable aggressive token compression',
impact: 'Reduce costs by 15-25%'
});
}
if (metrics.agentUtilization < 0.7) {
recommendations.push({
type: 'scaling',
priority: 'medium',
action: 'Reduce agent pool size',
impact: 'Improve resource utilization'
});
}
return recommendations;
}
}{
"performance_issues": {
"slow_task_completion": {
"symptoms": ["Tasks taking > 10 minutes", "User complaints about speed"],
"causes": ["Token budget exhaustion", "Agent overload", "Context bloat"],
"solutions": ["Increase token budget", "Scale agent pool", "Enable compression"]
},
"high_resource_usage": {
"symptoms": ["High CPU/memory usage", "System slowdown"],
"causes": ["Memory leaks", "Inefficient algorithms", "Too many concurrent tasks"],
"solutions": ["Profile memory usage", "Optimize algorithms", "Limit concurrency"]
},
"api_timeouts": {
"symptoms": ["Frequent timeout errors", "Failed requests"],
"causes": ["Network issues", "API rate limits", "Large request payloads"],
"solutions": ["Retry logic", "Request batching", "Payload optimization"]
}
}
}# Performance profiling commands
npm run profile:cpu # CPU profiling
npm run profile:memory # Memory profiling
npm run benchmark # Performance benchmarks
npm run analyze:tokens # Token usage analysis
npm run monitor:agents # Agent performance monitoringFor more information, see Configuration, Token Optimization, or Monitoring.
Support
- Discord: @vibecodingwithphil
- GitHub: @VibeCodingWithPhil