@@ -1198,41 +1198,6 @@ Arguments cvgr0_norm_le {_ _ _ F FF}.
1198
1198
#[global] Hint Extern 0 (is_true (`|?x| <= _)) => match goal with
1199
1199
H : x \is_near _ |- _ => near: x; exact: cvgr0_norm_le end : core.
1200
1200
1201
- Section nbhs_lt_le.
1202
- Context {R : numFieldType}.
1203
- Implicit Types x z : R.
1204
-
1205
- Lemma lt_nbhsl_lt x z : x < z -> \forall y \near x, x <= y -> y < z.
1206
- Proof .
1207
- move=> xz; near=> y.
1208
- rewrite le_eqVlt => /predU1P[<-//|].
1209
- near: y; exists (z - x) => /=; first by rewrite subr_gt0.
1210
- move=> y/= /[swap] xy; rewrite ltr0_norm ?subr_lt0//.
1211
- by rewrite opprD addrC ltrBlDr subrK opprK.
1212
- Unshelve. all: by end_near. Qed .
1213
-
1214
- Lemma lt_nbhsl_le x z : x < z -> \forall y \near x, x <= y -> y <= z.
1215
- Proof .
1216
- by move=> xz; apply: filterS (lt_nbhsl_lt xz) => y /[apply] /ltW.
1217
- Qed .
1218
-
1219
- End nbhs_lt_le.
1220
- (*#[deprecated(since="mathcomp-analysis 1.9.0", note="use `lt_nbhsl_lt` instead")]
1221
- Notation nbhs_lt := lt_nbhsl_lt (only parsing).
1222
- #[deprecated(since="mathcomp-analysis 1.9.0", note="use `lt_nbhsl_le` instead")]
1223
- Notation nbhs_le := lt_nbhsl_le (only parsing). *)
1224
-
1225
- Lemma lt_nbhsr {R : realFieldType} (a z : R) : a < z ->
1226
- \forall x \near z, a < x.
1227
- Proof .
1228
- rewrite -subr_gt0 => za0; exists (z - a) => //= u/=.
1229
- rewrite ltrBrDl addrC -ltrBrDl => /lt_le_trans; apply.
1230
- rewrite lerBlDl.
1231
- have [uz|uz] := leP u z.
1232
- by rewrite ger0_norm ?subr_ge0// subrK.
1233
- by rewrite ltr0_norm ?subr_lt0// opprB addrAC -lerBlDr opprK lerD// ?ltW.
1234
- Qed .
1235
-
1236
1201
Section open_closed_sets.
1237
1202
(* TODO: duplicate theory within the subspace topology of Num.real
1238
1203
in a numDomainType *)
0 commit comments