Skip to content

Commit 2545193

Browse files
committed
added more metrics to default pipeline
1 parent f70e84e commit 2545193

File tree

4 files changed

+7
-12
lines changed

4 files changed

+7
-12
lines changed

autoPyTorch/core/autonet_classes/autonet_feature_classification.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ def _apply_default_pipeline_settings(pipeline):
1818

1919
import torch.nn as nn
2020
from sklearn.model_selection import StratifiedKFold
21-
from autoPyTorch.components.metrics.standard_metrics import accuracy
21+
from autoPyTorch.components.metrics import accuracy, auc_metric, pac_metric, balanced_accuracy
2222
from autoPyTorch.components.preprocessing.loss_weight_strategies import LossWeightStrategyWeighted
2323

2424
AutoNetFeatureData._apply_default_pipeline_settings(pipeline)
@@ -33,6 +33,9 @@ def _apply_default_pipeline_settings(pipeline):
3333

3434
metric_selector = pipeline[MetricSelector.get_name()]
3535
metric_selector.add_metric('accuracy', accuracy)
36+
metric_selector.add_metric('auc_metric', auc_metric)
37+
metric_selector.add_metric('pac_metric', pac_metric)
38+
metric_selector.add_metric('balanced_accuracy', balanced_accuracy)
3639

3740
resample_selector = pipeline[ResamplingStrategySelector.get_name()]
3841
resample_selector.add_over_sampling_method('random', RandomOverSamplingWithReplacement)

autoPyTorch/core/autonet_classes/autonet_feature_multilabel.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ def _apply_default_pipeline_settings(pipeline):
1212
from autoPyTorch.pipeline.nodes.cross_validation import CrossValidation
1313

1414
import torch.nn as nn
15-
from autoPyTorch.components.metrics.standard_metrics import multilabel_accuracy
15+
from autoPyTorch.components.metrics import multilabel_accuracy, auc_metric, pac_metric
1616
from autoPyTorch.components.preprocessing.loss_weight_strategies import LossWeightStrategyWeightedBinary
1717

1818
AutoNetFeatureData._apply_default_pipeline_settings(pipeline)
@@ -26,6 +26,8 @@ def _apply_default_pipeline_settings(pipeline):
2626

2727
metric_selector = pipeline[MetricSelector.get_name()]
2828
metric_selector.add_metric('multilabel_accuracy', multilabel_accuracy)
29+
metric_selector.add_metric('auc_metric', auc_metric)
30+
metric_selector.add_metric('pac_metric', pac_metric)
2931

3032
train_node = pipeline[TrainNode.get_name()]
3133
train_node.default_minimize_value = False

autoPyTorch/utils/benchmarking/benchmark_pipeline/create_autonet.py

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -27,12 +27,6 @@ def fit(self, pipeline_config, data_manager):
2727
test_logger.__name__, test_logger(autonet, data_manager.X_test, data_manager.Y_test))
2828

2929
metrics = autonet.pipeline[autonet_nodes.MetricSelector.get_name()]
30-
metrics.add_metric('pac_metric', autonet_metrics.pac_metric)
31-
metrics.add_metric('balanced_accuracy', autonet_metrics.balanced_accuracy)
32-
metrics.add_metric('mean_distance', autonet_metrics.mean_distance)
33-
metrics.add_metric('multilabel_accuracy', autonet_metrics.multilabel_accuracy)
34-
metrics.add_metric('auc_metric', autonet_metrics.auc_metric)
35-
metrics.add_metric('accuracy', autonet_metrics.accuracy)
3630

3731
return { 'autonet': autonet }
3832

examples/real_data/advanced_classification.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -55,10 +55,6 @@
5555

5656
# add metrics and test_result to pipeline
5757
autonet.pipeline[autonet_nodes.LogFunctionsSelector.get_name()].add_log_function('test_result', test_result(autonet, dm.X_test, dm.Y_test))
58-
metrics = autonet.pipeline[autonet_nodes.MetricSelector.get_name()]
59-
metrics.add_metric('pac_metric', autonet_metrics.pac_metric)
60-
metrics.add_metric('auc_metric', autonet_metrics.auc_metric)
61-
metrics.add_metric('accuracy', autonet_metrics.accuracy)
6258

6359
# Fit autonet using train data
6460
res = autonet.fit(min_budget=300,

0 commit comments

Comments
 (0)