|
| 1 | +from collections import Counter |
| 2 | +import random |
| 3 | + |
| 4 | +import numpy as np |
| 5 | + |
| 6 | +from autoPyTorch.components.ensembles.abstract_ensemble import AbstractEnsemble |
| 7 | + |
| 8 | + |
| 9 | +class EnsembleSelection(AbstractEnsemble): |
| 10 | + def __init__(self, ensemble_size, metric, minimize, |
| 11 | + sorted_initialization_n_best=0, only_consider_n_best=0, |
| 12 | + bagging=False, mode='fast'): |
| 13 | + self.ensemble_size = ensemble_size |
| 14 | + self.metric = metric |
| 15 | + self.minimize = 1 if minimize else -1 |
| 16 | + self.sorted_initialization_n_best = sorted_initialization_n_best |
| 17 | + self.only_consider_n_best = only_consider_n_best |
| 18 | + self.bagging = bagging |
| 19 | + self.mode = mode |
| 20 | + |
| 21 | + def fit(self, predictions, labels, identifiers): |
| 22 | + self.ensemble_size = int(self.ensemble_size) |
| 23 | + if self.ensemble_size < 1: |
| 24 | + raise ValueError('Ensemble size cannot be less than one!') |
| 25 | + if self.mode not in ('fast', 'slow'): |
| 26 | + raise ValueError('Unknown mode %s' % self.mode) |
| 27 | + |
| 28 | + if self.bagging: |
| 29 | + self._bagging(predictions, labels) |
| 30 | + else: |
| 31 | + self._fit(predictions, labels) |
| 32 | + self._calculate_weights() |
| 33 | + self.identifiers_ = identifiers |
| 34 | + return self |
| 35 | + |
| 36 | + def _fit(self, predictions, labels): |
| 37 | + if self.mode == 'fast': |
| 38 | + self._fast(predictions, labels) |
| 39 | + else: |
| 40 | + self._slow(predictions, labels) |
| 41 | + return self |
| 42 | + |
| 43 | + def _fast(self, predictions, labels): |
| 44 | + """Fast version of Rich Caruana's ensemble selection method.""" |
| 45 | + self.num_input_models_ = len(predictions) |
| 46 | + |
| 47 | + ensemble = [] |
| 48 | + trajectory = [] |
| 49 | + order = [] |
| 50 | + |
| 51 | + ensemble_size = self.ensemble_size |
| 52 | + |
| 53 | + if self.sorted_initialization_n_best > 0: |
| 54 | + indices = self._sorted_initialization(predictions, labels, self.sorted_initialization_n_best) |
| 55 | + for idx in indices: |
| 56 | + ensemble.append(predictions[idx]) |
| 57 | + order.append(idx) |
| 58 | + ensemble_ = np.array(ensemble).mean(axis=0) |
| 59 | + ensemble_performance = self.metric(ensemble_, labels) * self.minimize |
| 60 | + trajectory.append(ensemble_performance) |
| 61 | + ensemble_size -= self.sorted_initialization_n_best |
| 62 | + |
| 63 | + only_consider_indices = None |
| 64 | + if self.only_consider_n_best > 0: |
| 65 | + only_consider_indices = set(self._sorted_initialization(predictions, labels, self.only_consider_n_best)) |
| 66 | + |
| 67 | + for i in range(ensemble_size): |
| 68 | + scores = np.zeros((len(predictions))) |
| 69 | + s = len(ensemble) |
| 70 | + if s == 0: |
| 71 | + weighted_ensemble_prediction = np.zeros(predictions[0].shape) |
| 72 | + else: |
| 73 | + ensemble_prediction = np.mean(np.array(ensemble), axis=0) |
| 74 | + weighted_ensemble_prediction = (s / float(s + 1)) * \ |
| 75 | + ensemble_prediction |
| 76 | + fant_ensemble_prediction = np.zeros(weighted_ensemble_prediction.shape) |
| 77 | + for j, pred in enumerate(predictions): |
| 78 | + # TODO: this could potentially be vectorized! - let's profile |
| 79 | + # the script first! |
| 80 | + if only_consider_indices and j not in only_consider_indices: |
| 81 | + scores[j] = float("inf") |
| 82 | + continue |
| 83 | + fant_ensemble_prediction[:,:] = weighted_ensemble_prediction + \ |
| 84 | + (1. / float(s + 1)) * pred |
| 85 | + scores[j] = self.metric(fant_ensemble_prediction, labels) * self.minimize |
| 86 | + all_best = np.argwhere(scores == np.nanmin(scores)).flatten() |
| 87 | + best = np.random.choice(all_best) |
| 88 | + ensemble.append(predictions[best]) |
| 89 | + trajectory.append(scores[best]) |
| 90 | + order.append(best) |
| 91 | + |
| 92 | + # Handle special case |
| 93 | + if len(predictions) == 1: |
| 94 | + break |
| 95 | + |
| 96 | + self.indices_ = order |
| 97 | + self.trajectory_ = trajectory |
| 98 | + self.train_score_ = trajectory[-1] |
| 99 | + |
| 100 | + def _slow(self, predictions, labels): |
| 101 | + """Rich Caruana's ensemble selection method.""" |
| 102 | + self.num_input_models_ = len(predictions) |
| 103 | + |
| 104 | + ensemble = [] |
| 105 | + trajectory = [] |
| 106 | + order = [] |
| 107 | + |
| 108 | + ensemble_size = self.ensemble_size |
| 109 | + |
| 110 | + if self.sorted_initialization_n_best > 0: |
| 111 | + indices = self._sorted_initialization(predictions, labels, self.sorted_initialization_n_best) |
| 112 | + for idx in indices: |
| 113 | + ensemble.append(predictions[idx]) |
| 114 | + order.append(idx) |
| 115 | + ensemble_ = np.array(ensemble).mean(axis=0) |
| 116 | + ensemble_performance = self.metric(ensemble_, labels) * self.minimize |
| 117 | + trajectory.append(ensemble_performance) |
| 118 | + ensemble_size -= self.sorted_initialization_n_best |
| 119 | + |
| 120 | + only_consider_indices = None |
| 121 | + if self.only_consider_n_best > 0: |
| 122 | + only_consider_indices = set(self._sorted_initialization(predictions, labels, self.only_consider_n_best)) |
| 123 | + |
| 124 | + for i in range(ensemble_size): |
| 125 | + scores = np.zeros([predictions.shape[0]]) |
| 126 | + for j, pred in enumerate(predictions): |
| 127 | + if only_consider_indices and j not in only_consider_indices: |
| 128 | + scores[j] = float("inf") |
| 129 | + continue |
| 130 | + ensemble.append(pred) |
| 131 | + ensemble_prediction = np.mean(np.array(ensemble), axis=0) |
| 132 | + scores[j] = self.metric(ensemble_prediction, labels) * self.minimize |
| 133 | + ensemble.pop() |
| 134 | + best = np.nanargmin(scores) |
| 135 | + ensemble.append(predictions[best]) |
| 136 | + trajectory.append(scores[best]) |
| 137 | + order.append(best) |
| 138 | + |
| 139 | + # Handle special case |
| 140 | + if len(predictions) == 1: |
| 141 | + break |
| 142 | + |
| 143 | + self.indices_ = np.array(order) |
| 144 | + self.trajectory_ = np.array(trajectory) |
| 145 | + self.train_score_ = trajectory[-1] |
| 146 | + |
| 147 | + def _calculate_weights(self): |
| 148 | + ensemble_members = Counter(self.indices_).most_common() |
| 149 | + weights = np.zeros((self.num_input_models_,), dtype=float) |
| 150 | + for ensemble_member in ensemble_members: |
| 151 | + weight = float(ensemble_member[1]) / self.ensemble_size |
| 152 | + weights[ensemble_member[0]] = weight |
| 153 | + |
| 154 | + if np.sum(weights) < 1: |
| 155 | + weights = weights / np.sum(weights) |
| 156 | + |
| 157 | + self.weights_ = weights |
| 158 | + |
| 159 | + def _sorted_initialization(self, predictions, labels, n_best): |
| 160 | + perf = np.zeros([predictions.shape[0]]) |
| 161 | + |
| 162 | + for idx, prediction in enumerate(predictions): |
| 163 | + perf[idx] = self.metric(prediction, labels) * self.minimize |
| 164 | + |
| 165 | + indices = np.argsort(perf)[:n_best] |
| 166 | + return indices |
| 167 | + |
| 168 | + def _bagging(self, predictions, labels, fraction=0.5, n_bags=20): |
| 169 | + """Rich Caruana's ensemble selection method with bagging.""" |
| 170 | + raise ValueError('Bagging might not work with class-based interface!') |
| 171 | + n_models = predictions.shape[0] |
| 172 | + bag_size = int(n_models * fraction) |
| 173 | + |
| 174 | + for j in range(n_bags): |
| 175 | + # Bagging a set of models |
| 176 | + indices = sorted(random.sample(range(0, n_models), bag_size)) |
| 177 | + bag = predictions[indices, :, :] |
| 178 | + self._fit(bag, labels) |
| 179 | + |
| 180 | + def predict(self, predictions): |
| 181 | + if len(predictions) < len(self.weights_): |
| 182 | + weights = (weight for weight in self.weights_ if weight > 0) |
| 183 | + else: |
| 184 | + weights = self.weights_ |
| 185 | + |
| 186 | + for i, weight in enumerate(weights): |
| 187 | + predictions[i] *= weight |
| 188 | + return np.sum(predictions, axis=0) |
| 189 | + |
| 190 | + def __str__(self): |
| 191 | + return 'Ensemble Selection:\n\tTrajectory: %s\n\tMembers: %s' \ |
| 192 | + '\n\tWeights: %s\n\tIdentifiers: %s' % \ |
| 193 | + (' '.join(['%d: %5f' % (idx, performance) |
| 194 | + for idx, performance in enumerate(self.trajectory_)]), |
| 195 | + self.indices_, self.weights_, |
| 196 | + ' '.join([str(identifier) for idx, identifier in |
| 197 | + enumerate(self.identifiers_) |
| 198 | + if self.weights_[idx] > 0])) |
| 199 | + |
| 200 | + def get_models_with_weights(self, models): |
| 201 | + output = [] |
| 202 | + |
| 203 | + for i, weight in enumerate(self.weights_): |
| 204 | + identifier = self.identifiers_[i] |
| 205 | + if weight > 0.0: |
| 206 | + model = models[identifier] |
| 207 | + output.append((weight, model)) |
| 208 | + |
| 209 | + output.sort(reverse=True, key=lambda t: t[0]) |
| 210 | + |
| 211 | + return output |
| 212 | + |
| 213 | + def get_selected_model_identifiers(self): |
| 214 | + output = [] |
| 215 | + |
| 216 | + for i, weight in enumerate(self.weights_): |
| 217 | + identifier = self.identifiers_[i] |
| 218 | + if weight > 0.0: |
| 219 | + output.append(identifier) |
| 220 | + |
| 221 | + output.sort(reverse=True, key=lambda t: t[0]) |
| 222 | + |
| 223 | + return output |
| 224 | + |
| 225 | + def get_validation_performance(self): |
| 226 | + return self.trajectory_[-1] |
0 commit comments