@@ -97,7 +97,7 @@ pval <- round(csq$p.value,2)
9797```
9898
9999Test statistic: ${\chi_1}^2$ = ` r pval `
100- df = ` degf `
100+ df = ` r degf`
101101P-value = ` r pval `
102102
103103*** Do not reject $H_0$ (No evidence of an association between treatment group and tumour shrinkage)***
@@ -176,6 +176,42 @@ exp <- round(chisq.test(df)$expected,1)
176176exp
177177```
178178
179+ ## CHi-square test for trend
180+
181+ ``` {r}
182+ df <- data.frame(Tumour.Did.Not.Shrink = c(18,15,11), Tumour.Did.Shrink = c(5,14,21))
183+ rownames(df) <- c("Grade 1","Grade 2", "Grade 3")
184+ obs.prop <- df$Tumour.Did.Shrink/ rowSums(df)
185+ plot(c(2,3,4),obs.prop,pch="x",col="blue",xlim=c(1,5),ylim=c(0,1),xlab="Tumour Grade",ylab="Proportion with tumour shrinkage ")
186+ lm.h0 <- lm(obs.prop ~ c(2,3,4))
187+ abline(lm.h0,col="blue")
188+ abline(h=0.5,col="red")
189+ points(c(2,3,4),rep(0.5,3),pch="x",col="red")
190+ legend("topright", col=c("blue","red"),legend=c("H0","H1"),lty=c(1,1))
191+ ```
192+
193+
194+ ## Chi-square test for trend - Results
195+
196+ Test statistic: $$ \chi_1^2 = 10.18 $$
197+ df = 1
198+ P-value = 0.001
199+
200+ Conclusion:- Reject $H`_ 0$ (evidence of a linear association between tumour grade and tumour shrinkage)
201+
202+ ``` {r fig.height=6,fig.width=6}
203+ degf <- 1
204+
205+ xmax <- max(4,csq$statistic)
206+ xs <- seq(0, xmax, length.out = 10000)
207+ df <- data.frame(X = xs, Y = dchisq(xs,degf))
208+
209+ title <- substitute(paste(chi^2, " with ", degf, " degrees of freedom"),list(degf=degf))
210+
211+ p <- ggplot(df, aes(x=X,y=Y)) + geom_line() + ggtitle(title)
212+ p
213+ ```
214+
179215
180216## Summary - Categorical variables
181217
185221- Fishers exact test
186222 + Use when we have two categorical variables, each with two levels, and our expected frequencies are small.
187223
224+ - *** Exercise***
225+ + Complete "Tests for categorical variables" section of practical
188226
189227
190228## Small group Exercise
0 commit comments