diff --git a/231_234_BraTa2020_Unet_segmentation/232_brats2020_get_data_ready.py b/231_234_BraTa2020_Unet_segmentation/232_brats2020_get_data_ready.py index 6f4047007..fb56b0d16 100644 --- a/231_234_BraTa2020_Unet_segmentation/232_brats2020_get_data_ready.py +++ b/231_234_BraTa2020_Unet_segmentation/232_brats2020_get_data_ready.py @@ -26,7 +26,7 @@ import glob from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt -from tifffile import imsave +from tifffile import imwrite from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() @@ -130,7 +130,7 @@ plt.show() -imsave('BraTS2020_TrainingData/combined255.tif', combined_x) +imwrite('BraTS2020_TrainingData/combined255.tif', combined_x) np.save('BraTS2020_TrainingData/combined255.npy', combined_x) #Verify image is being read properly #my_img=imread('BraTS2020_TrainingData/combined255.tif') @@ -215,3 +215,4 @@ # To only split into training and validation set, set a tuple to `ratio`, i.e, `(.8, .2)`. splitfolders.ratio(input_folder, output=output_folder, seed=42, ratio=(.75, .25), group_prefix=None) # default values ######################################## +