diff --git a/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_HPM-checkpoint.ipynb b/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_HPM-checkpoint.ipynb new file mode 100755 index 0000000..dc0f48e --- /dev/null +++ b/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_HPM-checkpoint.ipynb @@ -0,0 +1,1456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e90f9c12", + "metadata": {}, + "source": [ + "# Hidden Physics Model (HPM) in TorchPhysics\n", + "\n", + "HPM is deep learning approach, introduced in [1], for discovering nonlinear partial differential equations from scattered and potentially noisy observations in space and time. The approach uses two deep neural networks to approximate the unknown solution and nonlinear dynamics. \n", + "\n", + "\n", + "The general form of a nonlinear PDE considered is \n", + "$\\frac{\\partial}{\\partial t} u(x,t) = \\mathcal{N}(t,x,u,\\partial_x u(x,t), \\partial_x^2 u(x,t), ...)$\n", + "Where $\\mathcal{N}$ is a nonlinear function of time t, space x, solution u and its derivatives. The first network approximates u(x,t) and acts as a prior on the unknown solution and to access numerical differentiations using automatic diverentiation. The second network represents the nonlinear dynamics $\\mathcal{N}$ and helps to uncover that govern equation of a given spatiotemporal data-set. The two networks can be trained together or alternativly in a sequential manner, which improves the results and reduces training time. Once the HPM-Model of $\\mathcal{N}$ is trained, it can be used to e.g. extrapolate in time or to new initial conditions using e.g. the PINN methodology. \n", + "\n", + "Following the example of [1] for discovering the Burger Equation is introduced.\n", + "\n", + "The Burgers Equation used is in one space dimension with the given initial condition:\n", + "\n", + "$$\n", + "\\begin{cases}\n", + "\\frac{\\partial}{\\partial t} u(x,t) &= -u(x,t)\\partial_x u(x,t) + 0.1 \\partial_x^2 u(x,t) &&\\text{ on } [-8,8]\\times [0,10], \\\\\n", + "u(x, 0) &= -sin(\\pi x/8) &&\\text{ on } [-8,8]\\times \\{0\\}\\\\\n", + "\\end{cases}\n", + "$$\n", + "\n", + "A periodic boundary condition is used.\n", + "\n", + "\n", + "\n", + "[1] https://arxiv.org/pdf/1801.06637.pdf" + ] + }, + { + "cell_type": "markdown", + "id": "0f75aa20", + "metadata": {}, + "source": [ + "## Importing Libraries " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6ce46b77", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" \n", + "import torchphysics as tp\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "import scipy.io\n", + "import time\n", + "from matplotlib import pyplot as plt\n", + "from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "181dc808", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "import torch\n", + "import sys\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "RANDOM_SEED = 2308\n", + "np.random.seed(RANDOM_SEED)\n" + ] + }, + { + "cell_type": "markdown", + "id": "eea231db", + "metadata": {}, + "source": [ + "### Example-1 " + ] + }, + { + "cell_type": "markdown", + "id": "47d2ef9b", + "metadata": {}, + "source": [ + "### Data Generation " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c88bdd46", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from scipy.integrate import odeint\n", + "\n", + "\n", + "def solve_burgers_eqn(u_initial,xmin,xmax,tfinal,N_x=256,dt=0.01,v=0.01/np.pi):\n", + " dx = (xmax - xmin)/N_x\n", + " x = np.arange(xmin,xmax,dx) \n", + " kappa = 2.0*np.pi*np.fft.fftfreq(N_x,dx)\n", + " tf = 1.0\n", + " t = np.arange(0.0,tfinal + dt,dt)\n", + " \n", + " def solve_u_spectral(u,t,kappa,v):\n", + " uhat = np.fft.fft(u)\n", + " d_uhat = 1j*kappa*uhat\n", + " dd_uhat = -(np.power(kappa,2))*uhat\n", + " du = np.fft.ifft(d_uhat) \n", + " ddu = np.fft.ifft(dd_uhat) \n", + " du_dt = v*ddu - u*du \n", + " return du_dt.real\n", + " \n", + " u_sol = odeint(solve_u_spectral,u_initial,t,args=(kappa,v))\n", + " \n", + " return (u_sol,x,t)\n", + " \n", + "def sample_in_t(u,t,step):\n", + " u_step = []\n", + " t_step = []\n", + " for i in range(len(u)):\n", + " if i%step==0:\n", + " u_step.append(u[i])\n", + " t_step.append(t[i])\n", + " return np.array(u_step), np.array(t_step)\n", + " \n", + "#------------ u(x,0) = exp(-(x+2)^2)--------------\n", + "N_x = 256 \n", + "dt = 0.001 \n", + "v = 0.1 \n", + "tfinal = 10.0 \n", + "xmin = -8.0 \n", + "xmax = 8.0 \n", + "dx = (xmax - xmin)/N_x\n", + "x = np.arange(xmin,xmax,dx)\n", + "uini = np.exp(-(x + 2.0)**2) \n", + "\n", + "\n", + "u,x,t = solve_burgers_eqn(uini,xmin,xmax,tfinal,N_x,dt,v)\n", + "u_sample, t_sample = sample_in_t(u,t,100)\n", + "\n", + "data_dict = {'usol': u_sample.T,'x':x,'t':t_sample}\n", + "\n", + "savepath = r'burgers_data' \n", + "if not os.path.exists(savepath):\n", + " os.makedirs(savepath)\n", + " \n", + "filesave = savepath + '/burgers_exp.mat'\n", + "scipy.io.savemat(filesave,data_dict)\n", + "\n", + "\n", + "#------------ u(x,0) = -sin(pi x/8) --------------\n", + "N_x = 256 \n", + "dt = 0.001 \n", + "v = 0.1 \n", + "tfinal = 10.0 \n", + "xmin = -8.0 \n", + "xmax = 8.0 \n", + "dx = (xmax - xmin)/N_x\n", + "x = np.arange(xmin,xmax,dx)\n", + "uini = -np.sin(np.pi*x/8.0) \n", + "\n", + "\n", + "u,x,t = solve_burgers_eqn(uini,xmin,xmax,tfinal,N_x,dt,v)\n", + "u_sample, t_sample = sample_in_t(u,t,50)\n", + "\n", + "data_dict = {'usol': u_sample.T,'x':x,'t':t_sample}\n", + "\n", + "filesave = savepath + '/burgers_sine.mat'\n", + "scipy.io.savemat(filesave,data_dict)\n" + ] + }, + { + "cell_type": "markdown", + "id": "5858b0e8", + "metadata": {}, + "source": [ + "### Reference Data " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3c380e9d", + "metadata": {}, + "outputs": [], + "source": [ + "fileload = savepath + '/burgers_sine.mat'\n", + "data_sine = scipy.io.loadmat(fileload)\n", + "t = data_sine['t'].flatten()[:,None]\n", + "x = data_sine['x'].flatten()[:,None]\n", + "TT, XX = np.meshgrid(t,x)\n", + "X_star = np.hstack((TT.flatten()[:,None], XX.flatten()[:,None]))\n", + "u_soln = np.real(data_sine['usol'])\n", + "u_soln_v = u_soln.flatten()[:,None]\n", + "u_tensor = torch.tensor(u_soln_v,dtype=torch.float32)\n", + "X_tensor = torch.tensor(X_star,dtype=torch.float32)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cda6fadf", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x.flatten()\n", + "y_lbl = t.flatten()\n", + "xpoints = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints.append(len(x_lbl)-1)\n", + "ypoints = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints.append(len(y_lbl)-1)\n", + "x_label_list = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints]))\n", + "y_label_list = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fcaced98", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE3CAYAAADRx/TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW3UlEQVR4nO29eXwV1d0//r65N5tIYpVCoEYEH8si1iUom1urggvaxQVrG5cilqIioq2itaK2UluriAs8+EVRUaR9kGorpaAVXAAVCFYtoq0oiIkUfxhEIcnczO+P3JmcOfM529y5Nwk577zmdWfO+ZwzZ27uzHs+2zkJ13VdWFhYWFhY7OUoaOsBWFhYWFhY5AOW8CwsLCwsOgUs4VlYWFhYdApYwrOwsLCw6BSwhGdhYWFh0SlgCc/CwsLColPAEp6FhYWFRaeAJTwLCwsLi04BS3gWFhYWFp0ClvAsLCwsLDoFLOFZWFhYWHQKWMKzsLCwsOgUsIRnYWFhYdEpYAnPwiImXHvttUgkEli3bl2obvbs2UgkEnjiiSfaYGQWFhaAJTwLi9hQU1ODwsJCHHbYYaE6jwSPPPLIPI/KwsLCgyU8C4uYsH79egwcOBDFxcWhurVr16KkpAT9+/dvg5FZWFgAlvAsLGLBpk2bsGPHDhx99NGhuqamJrz11lsYNGgQkslkG4zOwsICsIRnYRELPJPlUUcdFap755130NDQYM2ZFhZtDEt4FhYxoKamBgBIDW/t2rUArP/OwqKtYQnPwiIGrF+/HolEAkcccUSo7u9//zsAS3gWFm2NhOu6blsPwsKio6Nfv37YuXMnamtrA+WbN2/GgAEDsHv3btTX16Nr165tNEILCwur4VlYxIDi4mJ89tln+O9//+uXffLJJzj33HPx1Vdf4ZBDDrFkZ2HRxrCEZ2ERA0499VQ0NTVhyJAhuOqqqzBmzBgMHDjQz8mz5kwLi7aHJTwLixhw6623Yty4cdi1axfmzp2LTz/9FI8//jguvPBCAJbwLCzaA6wPz8LCwsKiU8BqeBYWFhYWnQKW8CwsLCwsOgUs4VlYWFhYdAq0C8K777770KNHDySTSSQSCUyZMiVQ39zcjJNOOsmv32+//fDMM88o+/35z3+O4uJiJBIJFBcX4/rrr8/VJVhYWFjstXjppZdw1llnoVevXkgkEvjzn/+sbLNixQpUVVWhpKQEffv2xaxZs0IyCxcu9CdcHzhwIBYtWpSD0beiXRDejh07cOihh+Laa68l688880ysWLEC1157LZ5++mmUlZXhBz/4AT755BNhn7Nnz8Zdd92Fk046Cc899xxOOukk/O53v8OcOXNydRkWFhYWeyW+/PJLHHHEEbj//vu15Ddt2oQzzjgDxx9/PGpqanDjjTdi4sSJWLhwoS+zatUqjBkzBtXV1XjzzTdRXV2N888/H6+99lquLqP9RWkmEgnccMMNmDZtGoAW7a6wsBAjR47E3/72NwDAzp07UV5ejgsvvFC4oOZBBx2E3bt3BxKBu3Xrhi5duuCjjz7SGktzczM++eQTdO3aFYlEIssrs7CwsFDDdV188cUX6NWrFwoK5DrJnj170NjYGOkc/DOtuLiYXNqKRyKRwKJFi/C9731PKHP99dfj2WefxYYNG/yy8ePH480338SqVasAAGPGjMHOnTv95zoAnHbaafja176G+fPnG16RHlI56TVGvPTSS2hubsZFF13kl5WVlaGiogKrV68Wtvvkk08wevToQNlxxx2Hv/71r8I2O3fuxM6dO/3j2tpaHHvssVmM3sLCwiIatmzZggMPPFBYv2fPHny9tBS7IvS97777YteuYMtbbrkFU6dOjdBbGKtWrcLIkSMDZaNGjcKcOXPQ1NSEwsJCrFq1Ctdcc01IZvr06bGMgUK7J7yNGzcCaJmrkMV+++0X0N54pNNpfOMb3wiUfeMb30A6nRa2Ofvss7FixYpQ+cQtV2CfspavKol06DPFlRX4xw5T1xxqVwAHAELtk2hGMlNHnY+XSYXOm2bqxOf1yliZ1mvItM98X0nH+3SRbKlCKvNVJryv1AHA7oM5ZssdTqaZO5b1Qx3L+vFkdfqhxsSWeXdLQWa/GEBZZtsfQE9gzzeATV0Oxrvoh3dwGN7BQLyL/tj8//WG80EZsBXApwDqAXyZ2ajvhL0zU9xnUlDO1ovqqD50+o9bJpkxLKWCP6ZEKo1kZj+Z+aGlUpnfJ1NXkGy9x1q6lvyGA/dFM9cuHbhvqE9aRnZeXoY9b2ud6HzOzt14oPJe5VR0jY2N2AXg52j5KeqiAcDvd+3Cli1bUFZW5pfraHe6qKurQ48ePQJlPXr0gOM42L59O3r27CmUqauri20cPNo94XngVXsdS6xpm2effTag4X3xxRctDtWyYpQICc9BmLC8zwKiriCzX4AkWkwKqYwrNel/pplnRSJT1vrZ0j6JJNyMDDJ1kNS5zHkL/LIWGa8uETgPAKTSmWMngaSTuWl5wpMRFUU6orpi5pPqxwFQxNUVEf0UMp+i8YiIM8WUeeXsmq3eF1qc2YoyWxcAJUBRGbBvlwLsg0IUoxgFKEMS+yLRVAZ0KQP2AVCKlqfOnkzbgszmXQ9/LnZf9hmXTFz9SevEhJfw9x2/zPtsRgvxeYTnkVoBQzYugi99FLFQddS93TJceV3U9uLnRst9putG2RdAiZZkCwozn2VlZQHCixv8+L3nL1tOyeTSfdTuCc/T7DZs2BCYnqm+vh7l5eXCdslkElu2bAmUffLJJ9IVp/kfAEt+7R3JwFNav06rb0fcPsETCAueVCjoDI3qO5t+RNqdznk9UtSRZZB2uN+dw+2bnEsEHXnTPrOB7FxOooX0nFQr6WWQdpK+JpdPpJEU3iuyurYG+26hK59rVFRUhDS1bdu2IZVK4YADDpDK8FpfnGgXUZoynHDCCSgoKMDjjz/ul+3atQt1dXUYOnSosF2vXr2wcuXKQNmrr74aMnPmCkmtpzTVzoy4UlnehLL2KYn5V/o80rn0fMioCE3WJovzCv+HFLHpjk2kocpeNOKWkY1LBi2Z8Ito2ml5NDtUXVr84qqDtOSx32pf6RhIoUVr093yQXjDhg3DsmXLAmVLly7F4MGDUVhYKJUZPnx4zsbVLgivrq4OCxYswIIFCwC0aHMLFizAqlWrUFBQ4EdoXn/99Vi0aBEGDRqEgoIC/P73v/f7OOSQQzBs2DD/+KabbsJ///tfnH766Vi8eDFOP/10bN++Hb/61a/yfn1thahkKCPrZDQeb4XOw5Mato5WZvKAFpk6eTlvnyKrdLjM+36k2oCKZPhz6yAfLxD5IEcJQloyVMTVfgxYFIk6MRFrKsJmil27dmH9+vVYv349gJa0g/Xr12Pz5s0AgClTpgQCC8ePH4+PPvoIkydPxoYNG/Dwww9jzpw5uO6663yZq6++GkuXLsWdd96Jd999F3feeSeef/55TJo0KcII9dAufhFPPfVUIFrnmWeewTPPPINDDjkE//73v/Hcc8/hO9/5Du666y40NzejvLwc//d//4devXr5bT777LOA7fenP/0p3nvvPdx///1YsmQJioqK8POf/xxjx47N67XFgVyYUqg+pdql0yys80E1lxGUjgYWtznTFKKHO/usUlwH+eClSI0vSxH7KniyUnOigYzOuWKsa3aSKIhgznSQzNrawSONVOjlrz2aNj3NTRdRboU1a9bg29/+tn88efJkAMDFF1+MuXPnora21ic/AOjTpw8WL16Ma665Bg888AB69eqFGTNm4JxzzvFlhg8fjqeeegq//OUvcfPNN+OQQw7BggULMGTIkAgj1EO7y8NrT/Dy/X5ePxldDINWTJ3aYRmZU5vuXzYu/pxsBJpwXEyEJhWwEvLfUZGTouATUZ1XLgsyiXpe71N2XqqchxehWYKWYJVytERp9gKa+gD/Ke+Nf2EganAk1uMo/AsD8cHWQ4APS4APAWzPbLvQEriyR3Eu3c82D0SJUscEr3gRmF6UZiqNZMa/l2LK/LpQpKb4964KPBFHQ+vf37Jzm4zL2fkV7i7/Herr66VBJd7zaTZaYqF08RWAywFl/3sj2oVJc29C1Le/ON8ao/oPyb6IgJXI/ru4zJmmfcct442FMnPq9J1rk2UufW5RzZoRf5KeHy8OxOmba0/m0nyYNPcWWMLbi2BqpqRMQLx2F6iTPbTybc6UkaBMU1Npd9S508xGjYs51rbGsWTJa78yQhRpvjoEJDOjRiUp0/+fVF5MSKaBKzJyo+o6WqAKC5OAFVPz594GS3hZIA5NSkY69DnNSC1XffiI8W0+MkHGrdlQBCk6Zttm2mkFrKjKVT4+0/51ZUyJM+s+wzlXzRLikwWuxBUEwkPWb67OaQJLePqwhNeBYeqkj5wqQQSsJKKSWhwPSw86Jk6dB7ioH1X/mibNNJIt2oupSVNFjlG1O5GMzrlVMibkHGgXNrRR5GYK0yjOjqjpWZOmPizhtRFMycdUA4sjYi0W/11OtAJJXVxJ7pSJU1c704GoP10Tpmwc2ZqJTfuUIaqmyoDy48nIMI4UgGyIz7RttiTbHvPw2iss4eUB+QxjpojUOJk9Tv+dqbzMnEkh2wCLKL5E0fjTYc039DDT1cZUpJBLDS5Ov5wMZF9mfjwLq+GZoDNfe7tDrL41BUx9hyTi1Np05T3kIkiG6pvSuNgctij/HlOthz+nqm+T/DdZ33nrK9GanmCIdDrppydoyRN5dLo5fO0xBw9omZq11EBeI6N2r4XV8GJCe9TiYglwycZ/l29zpmlfqrw73evkvlJ2JvzWvlLm/cfpw9M9b776UsALXNH14+XKH6ebfqB7rlz4CK1JUx+W8PIMXcLR9cHFQbQkMcaZf8ci1+bMbAMxqLE4zCbr20RBFml5fD8mfq/2SmS68pKcO9aPJyNBXV9dPnx0+crVsyZNfVjC6yTQNVfKJowOQBTcISrLhWamOqesTndWFZFWJko8J/oJPCB1Ca29aXem8qZWgAjIRvuj5Tqmj9CmJejDEl4OEbeWFkU71A1Y0Z0wWmrO1H6Tj6EPqs6EDCjokqBJnzI5XZOmrp9PJEPVmX5HcZCoVI7Jx4shAT2bSM2ORnxWw9OHJbwOimyCTrSJWGfCaCArX42xOZOS19HuKHlTc6HmQ598yeATrGUmTZ2xUJ8yGdG5ZfI58s/pfu9x+PFy0SaOtnHC+vD0YQmvDaFLWirNLm4NUdt/Z2rOlEU/UvLsfq41ERkJmvjbVF+xjklTR2ttS81Zt98o5Kk5d2Y2SelRAkyymVEl17OxWJOmPjoz2UdGviIyszlPFBI09t/FLZdNv7nyNZloXCZyKm3OQevdye6L5Ch5qp2sTHYe3T6itCXlkqG3rLST8ldPkJ+iNc2gvaYSxImSJFAanqFNiCYX0dJp9gJYDa+DIcr0YFG0Rl8uiv9OV0430ITSEGV9yDRKk+nIRNeha35FywNX+Yavex4TX56qXa61u0hlZvNqAvGlLcSlwbWF/y+VMt86KzrxpecO2RCM2XkI02OE85DjzcZ/R9XrmPr4/uIw0ekQgGpsfH0SrZpKmpYLfaciP51oP6p2x9epEFUbjFImO78BHCfpr4/nwTQBPSrao8ZYmAQKDTS8wk68AqrV8NoAca5XZwoVIVL+OxIqbSsObZDqW5fUTFMXRNqdyfybmX2tlw4Z8cmO8+lPMy1T9afdJp6JpKNEana0CE3AangmsITXThDwpUWYIUWlVWbzVppSEVmUh5+pOVNXzvSBrZszKDqvbhtdGUpeh6Dag7lSZ7xGfZubM3MROdleojFFKEwChSmDLSKnP/jgg+jTpw9KSkpQVVWFl19+WSh7ySWXIJFIhLbDDjvMl5k7dy4ps2fPnmgD1IAlvE4MVcCKdMJoIDtti2qjez7Vw91UGxSdnydU/rwqLY2CqB+qTjXObAgo7jIKqu8mgqHDdOUEYT8Bv5v5tGTtShNMRtgMsWDBAkyaNAk33XQTampqcPzxx+P000/H5s2bSfl7770XtbW1/rZlyxbsv//+OO+88wJyZWVlAbna2lqUlJSYD1ATlvDaOVR+OtV8mZHSHFTzZ+oqi7oPZFXbOGZz0Q1gkcmLzqH4PtIQzKOp48sz0fLasiwKCZL9mAeu0Kdp20CSvJ4zYub5zp07A1tDQ4PwFHfffTfGjh2Lyy67DAMGDMD06dNRWVmJmTNnkvLl5eWoqKjwtzVr1mDHjh249NJLA3KJRCIgV1FRkdVXoYIlvDZGPh3gqrw/bf8dhWzNniqi0S2LS7uLOgYVMVFanMn3JdPysvHhmcqJyrLpJ1Av1+R0Z1wJ1LexaTJnJFgSYQNQWVmJ8vJyf5s2bRrZfWNjI9auXYuRI0cGykeOHImVK1dqDXHOnDk45ZRT0Lt370D5rl270Lt3bxx44IEYPXo0ampq9K45Itq3cXovQFsTWtZ9mhCQrvZj0qcugckeoFG1O6r/FCPDE1jmU/t/LtLyRPl0DsR3rCNpF5ecqF63LFJ9OB+PRdpJIimd1Vwf1DJBbFQmXZ/yXxpNIjjZdtS5jFCASGbKLVu2oKyszD8uLi4m5bZv3450Oo0ePXoEynv06IG6ujrleWpra/G3v/0NTz75ZKC8f//+mDt3Lg4//HDs3LkT9957L0aMGIE333wThx56qPkFacASXozIdkaUgLal0sYMzqUye8bmv1PVZ2kaNNYCo2g1lDy/b3DX+KY1mQlTdg4ZSVCEpSOvkhNfTLz9COvD6+M1O0kUZIhNlYCuIqG9LjE9BTPCy1iNy8rKAoSnbJYImptd1w2VUZg7dy72228/fO973wuUDx06FEOHDvWPR4wYgaOPPhr33XcfZsyYoT0uE1iTZpaIqlXFqY3FmeYQyX8XlzlTVKbbp+7YdH13Uc6d+WT/vwFTW1STpq7J1ERe59y6P61s/4dZ/oSzmWos1Fd7CkjRQUQfni66deuGZDIZ0ua2bdsW0vp4uK6Lhx9+GNXV1SgqKpLKFhQU4JhjjsH7779vNkADWMLrAIjzDdSkL6WlSPWQisucqeozmwe9ieZHRW2mJfIqUFqf7rXoaqdUWRSt2FRrjgOKeTUpP54IbUViefEb5jhKs6ioCFVVVVi2bFmgfNmyZRg+fLi07YoVK/Dvf/8bY8eOVZ7HdV2sX78ePXv2NBugAaxJswPDJEIz64CVbN/W4zJnisp0kspVcqI6fjYVxQODXi3B4Fhk8tP1uemW6Zpn4/TNReqr1Y+n8tmxM65QPreALGPOpHxqOu3aBSKaNE0wefJkVFdXY/DgwRg2bBhmz56NzZs3Y/z48QCAKVOmYOvWrXjssccC7ebMmYMhQ4Zg0KBBoT5vvfVWDB06FIceeih27tyJGTNmYP369XjggQfMB6gJS3gdDLkITOGh9N+xyFYLjMucSdVn4+uTmT/TCD6gRX1R56NMmiJZVcBKNj41qk22vjkTRPDjiWASuNKhiU2EJHL+JB8zZgw+++wz3HbbbaitrcWgQYOwePFiP+qytrY2lJNXX1+PhQsX4t577yX7/Pzzz3H55Zejrq4O5eXlOOqoo/DSSy/h2GOPzdl1WMLLEUyISTTLipH5Mer5mIAVI/9dtuZIk/Y6vjeTPqNomF47ihA4/50WHJgRID+GXJJYttpbnNodA5PAFRZxEJcJUeYdxTB7kke07k6YMAETJkwg6+bOnRsqKy8vx1dffSXs75577sE999wTbTARYX14eUY+bhpRhGas/jsTqC7ZlCj4PlXkGId2p9LgJNeoFVBBEaCO9hjFt5aN1hxHn0YEr/8kZ79nle9MNKemyaoJca22kDVyHLSyN8ESXgeBKCUhDgLNmf8uiqyoPlvtTtbGVBtlx8praI7gfyLT6HSITPVdUX2pvtN8EaPpuUhZhswUCegiiAJX4g5oyXuAjCU8bVjCywNEmlXc/gFRf7orqwNZ+O+imjNNZKNod6o+ZX2Lzi86B9GvUNMQkKUSUYidKotCjHG+2IhkA+X60RUB7S6dveYVnGuznacpeInnulsnfup34ktvv4hjlQMhoYnIN1v/nQhxPCSz0e5U55cRJq/JUecSlAsjNSkNT3UuXS0vm++BamNaH4dZk+yj9aWhOaDpRVNVskkViEqgOTV5Wg1PG5bw2glMTZOq5YR0QM2w0lIuaJDtw0+EOGXjSoyXnYcnLoqs2NM7SZoodQlQp07X5ClCVFOliWyufj8MRP5SHXNmW8+1GRmW8LRhCc8AbR2irENscQSsBCB68Jh0p2POlGlconGYmD5V2h3Vp84YiHaiFwklVCQrkslWI8uHqTIGMhOtjyfy4+WLwNqcKPOwPNDegg5BeI7j4Je//CX69OmD0tJS9O3bF7fddhuam8NmOBYrVqxAVVUVSkpK0LdvX8yaNSvnY9XR1PKRSyeDKOGc9d8lRJeherCZEJZpf6p+4/Ld6ZZ5/ev+O001uji0PKqNaX0+NHvh74P248U5lVjolBr+Ox2/Xt58f8UwWymBniO6U6BDKLd33nknZs2ahUcffRSHHXYY1qxZg0svvRTl5eW4+uqryTabNm3CGWecgXHjxmHevHl49dVXMWHCBHz961/HOeeck+crMIeORpY3cjUxccrKVfWq8+gQK1Wm0g51z88f83eP7mwv3rGIAB2mb2qfLYvSRrSv25cOsumDHFMKUOTdsQno7IwrARnIVz/IN2IZg6nW1ok1vA5BeKtWrcJ3v/tdnHnmmQCAgw8+GPPnz8eaNWuEbWbNmoWDDjoI06dPBwAMGDAAa9aswV133dWuCE/HF6ezSoJOqoJOwIpW/p1mhGJINiph6ZSrzkHV62hVfH+ih4XETBoyucmuTUQMKmJS9ac6R67ITNSvTh+CtqYJ6DqkopOcrpN8rtdPzDO4mPrl5IaxvRodwqR53HHH4YUXXsB7770HAHjzzTfxyiuv4IwzzhC2WbVqVWjBwlGjRmHNmjVoamoi2zQ0NIRWAdaBHgm1rymKtPxMpibJXJozcyUra0+14eUIDU2Y1ygyZ4rOaVqmUy87dzb9Rv1/5wA65s4297vFCRu0oo0OcenXX3896uvr0b9/fySTSaTTafzmN7/BD3/4Q2Gburo6csFCx3Gwfft2ckbuadOm4dZbb419/LmEeSCLQPtjirX8d6YEqGqnQ5aUFiWSpaYRi0oM/HV4x5Q2k0HrpMTJUJ1/rGPSVJXHaZ6MQ3Mz7U9rn5lXUzCRtOMkkSLME6YLtJrLt4P5Nq2Gp40OoeEtWLAA8+bNw5NPPol169bh0UcfxV133YVHH31U2o5asJAq9zBlyhTU19f725YtW+K5gIgwnWPTVKNUzrAC6M8xaSJjQlii/uOUlWl3lEbH982Wy74LEcFRfctMq9lqebnU3HS+B5O+A/Lqp3qUYJZ2FYASBTbxXBsdQsP7+c9/jhtuuAEXXHABAODwww/HRx99hGnTpuHiiy8m21RUVJALFqZSKRxwwAFkm+LiYuEy93EjX7OvKM8n8t+ZEpGJhiZrK0IutDuqf5NzOQhGvAke2mSCtEjD8/bZQBNK88mH5pbNvk6fImjIR51IGsheK2sPwS4BmGp47Wjo+UaH4PqvvvoKBQXBoSaTSWlawrBhw0ILFi5duhSDBw9GYWFh1mOKMoelOJgku75M1sADssgT86Az3KiaoalGkQvtTtaHCAzJUrPWBEjSRPuJQtQ67U21K5N2cckE5M0XcdOZYiyOSaRVbXLuLyyOsHVSdAjCO+uss/Cb3/wGzz33HD788EMsWrQId999N77//e/7MlOmTMFFF13kH48fPx4fffQRJk+ejA0bNuDhhx/GnDlzcN1117XFJURGnKsrGPvvTMnAlKB0ZEy1yLi1O76OP04L+qQQ1dwpGmO21xhlX1QWVUbWRvhdZD+RNIU4zZZ5NYHaoBVtdIhLv++++3DzzTdjwoQJ2LZtG3r16oWf/vSn+NWvfuXL8AsQ9unTB4sXL8Y111yDBx54AL169cKMGTPaVUqCCHGaO8WmzAhaXjYEaGoiNdVG4tTudEkzyZWZfKUik6ZXpzJpUvKi/WzMjnGZLOPqXxOBnDzDQJRQX+0hMEUG0wVg43uH7nDoEITXtWtXTJ8+3c+po0AtQHjiiSdi3bp1uRuYAPmy74sCWaLcnFr+OxFEUYyy9nFohjraYlTNRyRD1bHjyOyz/4PAXJq6Jk3RueLy5Zn2Ede+bDw6dYIEdNaPp7sCepRFXbMlz5zAVGvrEE/93KBDmDQ7MmQ3RL5uFpMVzpUw1bxYRE1q1x2DiSlUV7vj6why48GaiAOmLZV5lC0TffL7or5lsqZ9mMrIkJVlIOjHa45xerFsJ5HWbZMTU2ee5tJ88MEH0adPH5SUlKCqqgovv/yyUHb58uVIJBKh7d133w3ILVy4EAMHDkRxcTEGDhyIRYsWRRucJizhxQRd8hIGknDluikJJmvgqaDtv8vGFxOXOTOOtipZ0fkov52J5iYjPur8JuPMZl+EuP7f2YwhdD49P54ocEWXeNp1OoKHPPjwFixYgEmTJuGmm25CTU0Njj/+eJx++ukBNxKFjRs3ora21t8OPfRQv27VqlUYM2YMqqur8eabb6K6uhrnn38+XnvtNfMBasIS3l4EmXlGZ8JoAOKHj4g/oxBjHBqaroxqPCqzqayc18oE52j2TJqUBieCrgYWF9Hkel8XcfbVWRCR8PhZpRoaGoSnuPvuuzF27FhcdtllGDBgAKZPn47KykrMnDlTOrTu3bujoqLC35LJ1heI6dOn49RTT8WUKVPQv39/TJkyBSeffLLUdZUtLOF1QOj6HbS1Th1fGH+sQzyQlOdLuxOdV1drYuXZjeo300bpPmLPQW0iWZ2y9rgftY0ImgvCBlZBZ9QaXmsTaX58moGsrk1RBLOUhKKWZpWVlSgvL/e3adOmkd03NjZi7dq1oakaR44ciZUrV0qHdtRRR6Fnz544+eST8eKLLwbqRNM/qvrMBp3Yfdn+EDZXOsI6UTuZnMx/F8mcmW3QiClRRtUMRVqYqg+KHHlQJCWDrnkwzijNfOzrXI9JX0I5ZpoxCXQDV+IAH7zCHuclsCVi0MqWLVtQVlbmF4sm3di+fTvS6TQ5VSM/uYeHnj17Yvbs2aiqqkJDQwMef/xxnHzyyVi+fDlOOOEEAOLpH0V9xgFLeHmAzO8WNc9O10eXtygyXTKTyWXTl46mIJtCTHQeqt4joSRak3g5DS30f2WJkdLm2L69Y50IyvZCdtmSIgvd9oJ5NU0QJVKz3SHi8kBlZWUBwlOBmqpRNE1jv3790K9fP/942LBh2LJlC+666y6f8Ez7jAPWpLmXQDbDSiT/nUz7iltOJU8dU32pCEvUTzZpFHzkJoLachpJBFbqpsYT1VyYb7OkqDyKRq9zHtV5RWKagSs8ZJGa7Tp4JcdBK926dUMymSSnauQ1NBmGDh2K999/3z8WTf9o0qcpLOHlCFE1K75dlAhNE2i/FMf8UDIySfLHug9Stiwb7U6HbHXAny9bQlHVx0l2pi8CuSZFgR/PBPkmsbBPMCYDm5d4rrsZXnZRURGqqqpCUzUuW7YMw4cP1+6npqYmsEqNaPpHkz5NYU2aeylCxKmbfxfFfxeHXJxaRhzaHUV2nmwStEmPSleg+pOdJy6TJn/ubGSyNVfGLScBP5G0aMaVrM6BdpZ8nofE88mTJ6O6uhqDBw/GsGHDMHv2bGzevBnjx48H0DK149atW/HYY48BaInAPPjgg3HYYYehsbER8+bNw8KFC7Fw4UK/z6uvvhonnHAC7rzzTnz3u9/FM888g+effx6vvPKK+QA1YQkvRsTljzO5geJYZFa4/h2Qe3NmXKkIfJ2oTFe748Hn4XlvyTJNTRf8WHT9ZzokpUtkojJdssuXHADR+ngm4IlKtgKCCam1yUoKEX14JhgzZgw+++wz3HbbbaitrcWgQYOwePFi9O7dG0B4asfGxkZcd9112Lp1K0pLS3HYYYfhueeeCyzaPXz4cDz11FP45S9/iZtvvhmHHHIIFixYgCFDhpgPUBOW8PIEngyjmzz1n64hE2gU/50J2sLsqaMBiohRV7uT+Rz5oBUyKT0V7ldl0tR9+Kvko/Ypk8kn2cnGxIEPXIkeyJJ/rS2rc5ZkNl1EXAB2woQJmDBhAlnHT+34i1/8Ar/4xS+UfZ577rk499xzow0oAqwPLwvk603O5EaQBawooUsq+TJnyur4vnVITKUBylIT2D4cplxXw6M0S75Ph5BTfU+yazSRibIfVc4E0j7FfjyTwBWZLy2bfLu8+QjtArDa6MSX3r4hI6psSE244KsKusTG18nkTINVZH2zcnFod3x/JmSJ1v9R4IFpouHJxqVTr5LR6T9qex4m7XTPLQG54K5uWwVJtcvk8xxHae5NsISXQ8giLlWyqnqTSallC76G/He6RMYf62qBJg84Xe2O6k/Wl4oYZUTEkxVrwuS1P79dQl/Do8ZgSnY6+1EIDoK6OAhNdb7Q+ZlcLUWUpmjGlZZjWZqCGTPI5HO6CKwlPG1YwmtDqDQzE5OpkjBN5s/UJTIeuuTJk0K22p2oPx3NU0QEOqkJuUhLkBF4XGQnG1Ou5EzqTGUZpHlTZo5WVGhXyNNqCXsDLOG1I5g6rbNZeihkzoyDyFSycTxETf2HIu2OlecDTWRkx5d5ZMt+yiDSrlTn4Ouy3c+nHHUsqzMiRv18PNaPB4QJrEP46yhYDU8blvBihkoryyb6y1QjDEWGqta/i4vI4tICdc6n+2AVtTHJw5Npe7IxUNqcqN/OQHZxEaMCfOBKsCt9Xx1d345YI8eJ53sTLOG1M5jOpqIkQRP/HY9cEBl1LCMjHXJSaWiq9rKxUjKiPphj8v/mcHIm33+c+3HKUceyuriIEYDMjydbOYGCisBMNbi8anwmKyV4WyeFJTxDxJ2fY5rakK0GaeS/oxCXFhjHQ1KnT9mDW1e78z7ToM2dku/Ef5CqNE8ZEbZXLS9bWd1+dOQZdARyi5UQrUlTG5bwcgyKgLLV2oz7c4L1Sv+dKmJR9lAz6ctECzQNcslWu6PITnYOXf+d9ykiOBHZxrkfh1wuZXko+1IQmJIA5fXZph/kXNuzJk1tWMLLEvmYkcHczEmQrIn/zqSOqjchtjgekiItLhvtjt2nvu408ykbi6x/6pgtywXZyb6T9kJ2Rn0Fl5IxDVyJgnYXrWmjNLVhCa8dgCIoU9OlaTI66b9TaW66xEUd83U65OMdZ5vCEFW746GjmYnAt5Mdy/o2JfaoWp5Jna6sznhMXw4C9eEnuSxwBVBHaqrMn5T2l/eEdGvS1IYlvBwgF1ofRWCq+Tn5gBWl/w7IrTkzarCKTNbkYc9qbCLS4stFJlJWLs3JQvIbMNF++POI9kGUU3WmciZ1KlnTvmRtyf7CT3FV4EqUSM12p90BlvAMYAkvD4hCVqIy43Ob+u94mJKi6Vu6ro+PP87Wx8fKUWZJVlakiYl8fhSxiwiLAk9mcWtvunJxkV0Uzc2EPAmoEtApza1dpRqYwBKeNizhdSBQZk4d/x7vv5NOJ0YdU6SoeiDFSWS5fHiriJIiHf6cEpmQRqD63vg6U7LLh5aXjRbIIw6yM/Tj6UBHk2svBOkWAG7SYOvET/328R/r4NDRxHTSD3S0vCj+PoAwZ/LQISVZHypSpLQemW9NlxRl/ehqgap9vk/RArDUOSmovktWLhVxnz32zqWSU9VR49PtV/dcgP75yD7C6+M5ThIpdtmgdBLJZFBGZ3kePZngIrNUm7iXH2osadm05RtjO3WHQyfm+rZHrpYX0kprUGllOjI6pGjyth41QV1WZ0KcovPy5SLtT6TpOdwmGpsI2Wh5Jtp1rmT5MenIi8pkiODHA9SBK+0dTjIBJ1lgsCXUne6lsBpejhDVJ6dDVjp9UzOsaPnv+NNna87kj6OYxHRIij/W1QJ1tTvqmljtyRQmZBdVy+P3oTiOIpuL46gyOQS/knmcmlu2q6SnUymkU/oklk65AJoin68jw2p47RA6KQZaxOiEbyKl/44qM9XMdPqIK9k9qo/PJIWB1ego7SnNjCNTFvr/iLQ8HYi0I5nWlE/NLc7jyDLhB77Oygk62lx78dWJkE4mjbcoePDBB9GnTx+UlJSgqqoKL7/8slD26aefxqmnnoqvf/3rKCsrw7Bhw/D3v/89IDN37lwkEonQtmfPnkjj04ElvJigOzuKaRJ5tn0pE86BsAbklcmOqT7iNHNRqQn51O4osqPOpyD7NJLRtUCqX55s+XKqTiQnk1Ud6/SVC7LT6jepFbiiE6mpm4agm8KQC3NpM5JIG2zNEcawYMECTJo0CTfddBNqampw/PHH4/TTT8fmzZtJ+ZdeegmnnnoqFi9ejLVr1+Lb3/42zjrrLNTU1ATkysrKUFtbG9hKSgwckoZo368unRi6i8dqaYO65KV6MFPalMpMGrdfUKXd8doY1Q+fh0eVs+NiytzMfiJFjJsiaepaQg9tN/MpMUs5iGa21A0QUfUjklWNj2qfjYzS9JkCUuF/QlyBKyZy+YKDJBzZbyck76qFONx9990YO3YsLrvsMgDA9OnT8fe//x0zZ87EtGnTQvLTp08PHN9xxx145pln8Je//AVHHXWUX55IJFBRUWE8nqiwGl4OoXtTiOSiaoOR/XeAWsviZUTHMs2B6jdb7U5Gijr9aGiBrui70NHgtLQ8F1A9jHQ0OZWcrnaoe2zSPqcy9EPfdOUEX05TE2rrIJcWzS1lsLWMd+fOnYGtoaGB7L+xsRFr167FyJEjA+UjR47EypUrtcbY3NyML774Avvvv3+gfNeuXejduzcOPPBAjB49OqQBxg1LeG0A08mh1f1RpkxN/10uH0g6wSpxaXfU+XT6kWmBDDyy875Wl5XlNTfRd0PKuJwQWyboh+qTugYTMtIhQtmxqr+oMtSxrgz0/HiAfqRmNjOt5MoX2Igi4w0AKisrUV5e7m+UpgYA27dvRzqdRo8ePQLlPXr0QF1dndYY//CHP+DLL7/E+eef75f1798fc+fOxbPPPov58+ejpKQEI0aMwPvvvx/xm1DDmjRjRDaRVmItz9GU0/TfqYhJVKYiGJGMqg0vo0NkMiKV9WWar5eR4cnOSQOpZFCGR+i3IH3HYRlKcUt6ol6EaNxRl3wdNSzqWNRfNjI655Kg2UmiIGTaCCObKEk+7y6OPs3HkETaQHdJZ8yfW7ZsQVlZmV9eXCxfKC+RCGrQruuGyijMnz8fU6dOxTPPPIPu3bv75UOHDsXQoUP94xEjRuDoo4/GfffdhxkzZmhdiyk6jIa3detW/PjHP8YBBxyAffbZB0ceeSTWrl0rbbNixQpUVVWhpKQEffv2xaxZs2IZSxwaWnbk6AhSE8LjIhPORaQTp6kpm3y9KMe6AS28BiTz+SFMdn51mjNxpgX7/DhC1y4abETTpqxORytTncekv2xkRHIUQnIp6E4kbTLFWFubLkVIZ54IupunpZaVlQU2EeF169YNyWQypM1t27YtpPXxWLBgAcaOHYs//vGPOOWUU6SyBQUFOOaYY3Kq4XUIwtuxYwdGjBiBwsJC/O1vf8O//vUv/OEPf8B+++0nbLNp0yacccYZOP7441FTU4Mbb7wREydOxMKFC/M3cJiRo0hWN2BFBPIlV/vhEVGGL+dJEJBrYFQbEyKl+pYRATEGnuyanNaN7Je4RkcapemRWhOzsQMyMG16+zrXqJLVrZeNKxuZrOT0/HgAsl4qyMS8mctJp838dylj02pRURGqqqqwbNmyQPmyZcswfPhwYbv58+fjkksuwZNPPokzzzxTeR7XdbF+/Xr07NnTaHwm6BAmzTvvvBOVlZV45JFH/LKDDz5Y2mbWrFk46KCD/GihAQMGYM2aNbjrrrtwzjnnkG0aGhoCjtudO3dmPXZTmGp+OgnngMZyQCx0Alx0zJnUOUy1CFUfIiLVaasRqMKSHYsmhzFrUufhISQPPgG4CUAhWm15LoTRm6y5jzL9RUkU98aWj0RxkYzq/Cb9ocVvl+Te+qgyQByBKTJdUjCRjQNpFBiSrzkmT56M6upqDB48GMOGDcPs2bOxefNmjB8/HgAwZcoUbN26FY899hiAFrK76KKLcO+992Lo0KG+dlhaWory8nIAwK233oqhQ4fi0EMPxc6dOzFjxgysX78eDzzwQIQR6qFDaHjPPvssBg8ejPPOOw/du3fHUUcdhYceekjaZtWqVaGoolGjRmHNmjVoaqJnGZg2bVrAiVtZWWk8VpNwZSN/nEm/RMAKAPqhbEJUuuSlk9Onk74QVbvj6020u8wxa65kyc5xWjYgQ4bsuLxjmTbi8AVUBa/pCfqimqq0PF1ZHfmoMtS5TMs0NUAqH083cMUra+/LBJnk4ImuR4UxY8Zg+vTpuO2223DkkUfipZdewuLFi9G7d28AQG1tbSAn73//93/hOA6uuOIK9OzZ09+uvvpqX+bzzz/H5ZdfjgEDBmDkyJHYunUrXnrpJRx77LHZfykCdAgN74MPPsDMmTMxefJk3HjjjXj99dcxceJEFBcX46KLLiLb1NXVkVFFjuNg+/btpNo8ZcoUTJ482T/euXNnJNLjEcVfZ0J6ooAVbf8dYPawkRGRqK2O39BUQ8yFdgeJ344jvkIqmCKDwP9E5zr9CuqWFGh5Ms2MOo5by4sikw85v1w9kbQM+Qg8iUMb9Hxz+vLRMGHCBEyYMIGsmzt3buB4+fLlyv7uuece3HPPPRFHEw0dgvCam5sxePBg3HHHHQCAo446Cu+88w5mzpwpJDyAjiqiyj0UFxcrI5WiwoSsWuvCP03RzSH0/2XjvwP0CVLnTVyk/eQzfYHti23HyfGmTIcYd5MDFBYz7WTaHVnfRDTwnt68aVPRry55mRKjqj+dMbBlfFshWUWUA9DixwsnoKedFJJEUnpLN/GQWz5WR+DRhGI0GhBeU56iR9sjOoRJs2fPnhg4cGCgbMCAAcJpbQCgoqKCjCpKpVI44IADcjJOFeL60Yv6kfrvNE1ApIlT9CAXEZNKu6NMf1SbbLU7k/SFDChTpkd2VNCKLy8gZD9AIHRuNiBFFLTCHmsGsIiuUfUbEL2cyP5HIhmd34/sN6X7W9X5TWYgNGOmk0aRmi118efoZYN8mDT3FnQIwhsxYgQ2btwYKHvvvfd8+zGFYcOGhaKKli5disGDB6OwsDAn4/RgrrWJ5WURmroJ5z50iMeDqMwkWCVX2p3Og5o9lp2P2WdNmRTZsWhyGK2P/+Qh1AAd0EErbCO2XkJ6psRnSow6/8tsXpSyJUWq3wxEfjwTX17rKei6tkxZ8IJW9LcO8djPCTrElV9zzTVYvXo17rjjDvz73//Gk08+idmzZ+OKK67wZaZMmRIwb44fPx4fffQRJk+ejA0bNuDhhx/GnDlzcN1118Uyprht+zI7vpxAaf+dELKHsk50pidrojHyx6oHWxQZWYqD7IEtMGUCYbJz0q1bSJ7S9KSQsRAVtCL+fYS6kR2r5GXDlMnoEmK22ptJOQDdfDwPUbSfKNpgnDDJwTP19+1t6BCEd8wxx2DRokWYP38+Bg0ahNtvvx3Tp0/Hj370I1+GjxLq06cPFi9ejOXLl+PII4/E7bffjhkzZghTEvKJKHl1xlqj0+K/M0pHoOpkDxNdjVFXW1RpdzoysgevhBRFUZks2QVOy2iBIEgv9P8itRiRD8+r8441tTzRsQ4R6miBKhlqHFRbUZmprOh8AOAkoLMgrAlo02fbk0eu8/D2JnSYKx89ejRGjx4trOejhADgxBNPxLp163I4KjFU/jpZEIvuNGMsRP47APRDQTY8GUGZvKHrRnNmq93x45AFqvCynHZHBamwZOdRj2cUb3Iy+5689gtGE7Hv9eogGLjCymjk5nlibFdUHV9PHevKiOT488nOoSsbpR+Ic+9am9KBKx6pxR14Elcwi7c8kL68+WoJews6hIbXGSGOxpRoeib+O0D8li6SZ9vxxybRnLqmMx3tTtZGRYoZuA6kpkwPFEWR5wmcJtkqQ14736vKnCk5mUrL4+tkGpyujImczjhksjrjEEC1Pp4ocEVm/lORTL5MhzZoRR8dRsPbG6F6uzMNWAEi+u8As+hMT57qX9fMpRPNSY1B5LuT8YNI03T0TZkeDbG6mJMOaoIh06YSniCv4bHgtTxvX1PLozQ+9tgri5pjp5IzldXpRzc9wa8L5+N58AJX+LXxOhIaUIQk+dsRyXdePafzXnkeEMf0QqYBK4BgwmgPMm3Mqxe1MSVElRmS6sNEA6TOKZOXmDL9faKcJzt+P7RUEA/yvJQgfyaWECNoeXFocLovMLptdcpNfmei8fh1gomgJVGagFp7U9fnT5ewGp4+LOFlgTjs79n2kYQjXPCVzL/zoNL2RKAIU0Rm1HlE5Kmjuelqdyz5SCJPZdqdjOzAlDXx584g9LJD/i9YEyZbxn7yJ9DIzaOaqcaiKxO1THSeKPKqdj5x6k8kHajPg6kyTtKxhKcPa9LMMXTSF1SaoA4pKv13sgeDjimRqtftT1e7k/WrCoChAlVE53HEOXcB4uM+2S5CN06a+VR+by6CRMf37JkuReZMhWnTgZk5M6oML8eemy+j5KlzqepU5xb1h1Y/XpTAFRPkemYV6nwmJJyGxO2xl8MSXpbQIiMNGdVNpmMelfrvADG5eXVUvUgj0+1PR15Hc6P6VBGmwqwqM2XKyI49Lszk5RVSQvw4SQ2P6pknPUAcdim4hXkxwIzoZCSlQ0JRiCkLMpN9FS31Yj+eB9W8lq3RmnIZ1f0e9xydpqkG6U4cpWkJLwYk4WgQVlpLk5PJJTM/bWkfjvK+lmsgsnoR+Qkf6IbyuoSryv9TaIRsVCY7YwprygRoshOGlzjcpz806s2bv3hW22Pnz2Q1OYer52U1lxDyoDu3JhRyIlldrU2qNkvGo1sPAE54Xk0WssAVlkhkRObJye5PHcJskTPzNJkvD9RxA3SyhSW8PEMWYcnLicASo3L+TBMNzLRepq1F1e5k56a0O1nqAqERqqIyAdrYKPK0eW0LwYxFpekFClTr4bFlsn0D0yaIMl0ykhGMKaHJtLJsiC7wHSeAVFijYf14IhOnjraWqxw9E5j65awPzyIWxP2j1+1P6r8D5OTFEpQJgbF9i5Ar7U5FkDGaMnnwz9kmviIDcqYVH3ywCtUrr8mJTJt8OTHgqCkH+fbPqc7NIoo2CD0/HhC/Hy6Xfr1GFKEARQbynReW8NoI2mSmTXoajmhVQAWgT45UG5k2qTsemXanClyhZBjw2p2uKVMUL+kbG/kKauzCer6SuiVlpk2eADVnYKHK4jJnUuU6/cvaSU2WkrYBObUfr6U7PR+bLonlOojF3Idng1YsYoLJD1uf9FQslZFztO5nNenpyJgGv8g0RV3tjhqXiID583pV6WimTGrYTeBuIJ2XiVAPlBDrvzM1bUq65MeQT3Mm1S4bsyUroyQ6en08CroLsuZjcVhdWJOmPmweXg5gRnqaZKYRsOJB6b8DgoRiooHxfUSpl5FZnNqdIFAFCJsyPVDJ5Sz5UZlzAHduUZpH4ICaUky2NJAojYHf11xCiBxXBDmZxi9CNvWy84rkNJB2kkin9YjARJvKx/Ri+Voe6MEHH0SfPn1QUlKCqqoqvPzyy1L5FStWoKqqCiUlJejbty9mzZoVklm4cCEGDhyI4uJiDBw4EIsWLYo0Nl1YwmsHMHlT5ANWtP13qlPoaGCivlTkKSNOU+2Of76LythjBjLtjlqfgKIe79g7ld8Pcf0Okq1loe+AJz72TOyZecqlRqmxogJ7WtX3ZiKnqlORlEm9DJpyzZlZVtJOSjnjCo9ca0dR+s/H8kALFizApEmTcNNNN6GmpgbHH388Tj/9dOEi3Js2bcIZZ5yB448/HjU1NbjxxhsxceJELFy40JdZtWoVxowZg+rqarz55puorq7G+eefj9dee814fLqIRHjl5eV466234h7LXgXTacUCRGZoKtHy3wH6b7w6BKmjGYoeoNlod2z/sjJCu6MSzNlAFe90/D5fT162zsPYBzVVmMPVi0bDj4jflwxERxsz1dpU8jqamsl4s5EDQK2PJ0KrRtQyibQpGeVrerF8LA909913Y+zYsbjsssswYMAATJ8+HZWVlZg5cyYpP2vWLBx00EGYPn06BgwYgMsuuww/+clPcNddd/ky06dPx6mnnoopU6agf//+mDJlCk4++WRMnz496lehRCTC++KLL7B7926ybvPmzTkdcGeBbJkgUt7R9N8BeoTmyalkVfU62h3/wNUlRGp87LETDFQBYGTK5Pf5Yfq0RGio+i8tIuITaW9sHCmlBXptFNOO6WpupmSWLYnFrM21ytPr41FQrZKg10f+/GTNMDFnJtGcGdvOnTsDW0NDA9l/Y2Mj1q5di5EjRwbKR44ciZUrV5JtVq1aFZIfNWoU1qxZg6amJqmMqM84oE14L7/8Mv74xz/iP//5DwAgkaCjwWpra3HttdfGM7oOjjic2snMu6UuAv47FWFRsqo3cl3tzUS7Y+v5MlGKgY6m4u2mxVGZKlMm3zXvwwsYJNNQvxwEzsSSlyr7jye4UKfcFQAk6ZloeHFqeTptdbRBE8I0JUVA248n7SPPQSGNKEQjigy2lgCnyspKlJeX+9u0adPI/rdv3450Oo0ePXoEynv06IG6ujqyTV1dHSnvOA62b98ulRH1GQe0ddvly5fjlltuQSKRQCKRwIQJE3DcccehqqoKVVVV6N+/PxKJBD799FN06dIlZwNuC7QQTjTzBG+qNNXcPOgmrAthcuPrpC94fcap3bFtROSnKmP65ANVAHVUJrsvTTZHMHbSdYQJAQbfPZ9+IJtOLLBQEbPPjlTym3U4Ef6Yl6Nk+XJR36JzK4ao7CeqLNh8vJaGac38PB4UuUV90Y2avuAgiaQByXra65YtW1BWVuaXFxcXS9vxSo7rukLFRyTPl5v2mS20n+I333wzxowZgzVr1uDHP/4xEokE5s+fj3vvvReJRAL77LMP+vfvj//85z8YPHhwzga8tyAqefEBK0mnWb4cEA8VSVGyUTRFUb2sPQ+qP83+RTl3AEIJ5o5gH8SxzrD1wWtk3pkKiWOW1FgC5NMTgDA5CmZg8fbZJmyZqFw1u0k2SeMqOd1zCttkBDPE5s24kjImOvVUYvmCeR5ei2xZWVmA8ETo1q0bkslkSPPatm1bSEPzUFFRQcqnUikccMABUhlRn3HAyIf3zW9+ExdeeCGOPvpo/O///i/q6uqwefNmPP3007jmmmvwjW98A2effTbmzJmTq/HuVYhjvTwP/nJAuqBISocMdc1EKtOliXZH9Sfqgyc2nvgM/HYU+QktcwKzcOBB5JeLglZ06FbHw8jXCUybohcHE1lVG13zowz8uaK8aTiAaLkgU7S3PLaoPjxdFBUVoaqqCsuWLQuUL1u2DMOHDyfbDBs2LCS/dOlSDB48GIWFhVIZUZ9xIJKdbs2aNf7+gQceiAMPPBDf/e53YxtUZwJlqoxq9gRAa2WmDwhdeR3Tp4l2SPWt81AmtDs+587ElMnuy1ZL4PUqPfDkQ/UsSjyn9vnprGWrKwjAa24yjUym5enU68qYyPHyFAyfdDKNKRezpmSTyJ6PxPPJkyejuroagwcPxrBhwzB79mxs3rwZ48ePBwBMmTIFW7duxWOPPQYAGD9+PO6//35MnjwZ48aNw6pVqzBnzhzMnz/f7/Pqq6/GCSecgDvvvBPf/e538cwzz+D555/HK6+8Yjw+XdiZVjSR68lhqZQE04AVJXQ0OBa6xCkiWUpOp140DlWZI54cGoDUlAnJvug5GpppRQayE9mMnSzpAXqmTSDMWorJpakmUWdS0amn+teVE8GUGCWQrZzQXuEgiYIIPjwTjBkzBp999hluu+021NbWYtCgQVi8eDF69+4NoCVYkc3J69OnDxYvXoxrrrkGDzzwAHr16oUZM2bgnHPO8WWGDx+Op556Cr/85S9x880345BDDsGCBQswZMgQ4/HpwhJeBwCpBUbx33mgSMyEDGWkJTqPSb3IbyjT7phyKudOZzYVHYLzQE7kJWro8PWyWE8+aIUlMp2pxXiiixDAEhgrV+cQZTr9iWRUcqLxsDB5innTjAHkjJKmQSvtAV6uoIl8FEyYMAETJkwg6+bOnRsqO/HEE7Fu3Tppn+eeey7OPffcSOOJAkt4HQiiJYGM/XcyZEN+Ov4a08AVqk5wPtn0YQA9eZdoX2emFfbm8ZcIyjTQ18xVQSvsyGQrJeiaNjUCWNhm4Op0Ak50NDhTksv2SRWjFtje0IgiwGi1hI5H6nFhL/z35w5tueaVFkSmRVMSY/sz7UdHlq8XkZkoUIU4n2olBFGWm2ifl+PbprjLCI1JCIpe+acx779TmTNjNm3ywzSp06kXyfGIw3dn2lcOwJoQqWeI7oTVIjQb+vBMg1b2JljCiwlsHJSOXJtBRmIqLU3Wj66sTEZX+xP0pxOVSZGYboRmvKB6ZJlHRHqAmACBWEyblJhK29LVxqJobXERowHS6SQ8XqBJKkwavBy1wnlLrl28vyYHSSRy7MPbW2AJLwcQzYfJ3hAyGc90qVohwWg6MRNQPjQdk6SIRHk5GcnK6gTyOlGZJn47HbJzQBgeZc8xR3Qg6l1EeoCYANlRU0TH7ktMm9Sw4ghW4eV05EVtosIBWq49mI8HAA4zzybry9MhN0pO9GKbRsq/r+NYKy+NJAry4MPbG2AJzxDU25mIlHQmhDaWYRLOPYSmE/OgIh9diEgrziAXWb3ElMlClmDudaMiOBnZ8aElTQBKvXY6321Ipon79Hr2hFXpCSIyg6IOkJo2eVFVnU69SFZHXgWT3zV3ruYAycWvx4vg+Npf9m+sacMoTUt4FpERt3kiFkTVxKIQo8pEqiOvGh/flgG/EgIgN2WC2TdJRxAlEITKs35+UdOLicyZovw8EH3wI9bMzfNgouGJZESyumPItr+9FJbw9NHJfyrR0B6mE8o5dIjRtB8RVP5DQWALtRKCKMGcP46ajpA9dHpTRWrqpCeoojYB7QAWtpyqM5ERyVOwTyctWB+ePuxPKiLaPPgkA610hFwNU6bd6crLcvBE2h9blKZNmR4o7c7Eb0eRpGfOzO7m4c2ZFEGJIjVlpk1wMqKoTbZMAJGo6Ddn6p+L3TdnMpaMH68D5t3xaEIxXMgnfmbhtIPnVlvBEl47hRewQpGql3Du36sisyRLGirTY1QNTgQTE6mOdsexk2glBGrZH+9Y16ypY/IkE88jQ9S7bqSmyJwpS0j3ygQBLIBYy9ONwlTJyvo1MatT59ExuwKAkyQT0H1IIjXbC9IoMNLw0tGWQd0rYAmvncELTqHKvICVvCFOYoyi3RkEqsjmyjTx1anIjoXpM1l+Zr5ex2dHpSew/csS0tkywrRJDS+qlqfbr6lJNI9Q+b3akhBbTJTWpKmDdvaz2vtBrY3HHndI6BCjqq1OkEsGVKAKAOFcmV43Mr+dihTzD5WfTqT1AXqmTVEZ0ZQt8xA1mVzWVgRjc2WEc2SJONILop87hYRRWkLnfex3SN122rRpSCQSmDRpklRuxYoVqKqqQklJCfr27YtZs2blZ4ACxH1DkKube1ARkEpri9vsqUuGimsS5dzJEswpDQ6cDF/HlrPDUj7PI788U2fg6VY0Yl16b2KOeXnJEkKi3xa16UDWXqfPqDKhLd6FRtsq+jHXywPtTehwVP/GG29g9uzZ+Na3viWV27RpE8444wyMGzcO8+bNw6uvvooJEybg61//emDG7nwhTrKTJpxnk28XBTrEqBqPZpQmNX2YToK5t0/Rg0jT48kOxHE8fjxKh+Q1s0KINTtWlh2ZaJ86r8K0yXYNmPnwKLSnp05mAViZHy9pMEO7iPRyGdmdNjRp2rSEDoJdu3bhRz/6ER566CH8+te/lsrOmjULBx10EKZPnw4AGDBgANasWYO77ror74Rn+mNnA1ZkCefaYAlIVhdFC9SFrpaoqFeZMr0uKP0Ggn0TstMC9TwJ3Gk8VYr+MV5DHdJj+1WlKrADUjCZQ1TJvpQ40hHiQIxPNnZmlKhwcmjytISnjw5l0rziiitw5pln4pRTTlHKrlq1CiNHjgyUjRo1CmvWrEFTE+2ZaWhowM6dOwObKSj/nGn7WCAipaiEJTuPDmnq9CEaj2NuygSxrxOkkhXZMQ9Z8qGSAqLrhfwI+ZF7+yI9lvohUG0J06YnrqOtRzFR5gIxj8MxnKCZQq6IpgFFaECxwaa/ssLehg6j4T311FNYt24d3njjDS35uro69OjRI1DWo0cPOI6D7du3o2fPnqE206ZNw6233hp5jNm8wZnm9ZH+O50gkWygS2CqtjLSVdTzOXeAPAVBJx1BNFy2Pw+R6Er7LqPOxJosWTlKSxTNvEJpcwYJ6fwQstXwZP3EFQmqff6EUX/0vJr5YnEaVsPTR4fQ8LZs2YKrr74a8+bNQ0lJiXa7RCLoj3Bdlyz3MGXKFNTX1/vbli1bog9aAipC06h9NoTDP/1NzJmi/rLR7ti+BLKy6cNMUxDYfZF2JyI76thDyntocg9P/Yeh7EwimubLdb8B75jSgQXjjVPDU2jzyvPErUU6KcBJotlJIu0kkXZSgYmkVcjH4qsy2KAVfXQIwlu7di22bduGqqoqpFIppFIprFixAjNmzEAqlUI6HX5SVlRUoK6uLlC2bds2pFIpHHDAAeR5iouLUVZWFth0oaudmbwNUv47oxXORUTSVoEtEaI0VSshAGYpCNmQnTao519KUC6FjPSyMW3KXhO8MoFp06uOg2jYvuJGNmPKIJ0hQL3TtR2JOJm1VUy2XGLHjh2orq5GeXk5ysvLUV1djc8//1wo39TUhOuvvx6HH344unTpgl69euGiiy7CJ598EpA76aSTkEgkAtsFF1xgNLYOYdI8+eST8dZbbwXKLr30UvTv3x/XX389ksnwP3DYsGH4y1/+EihbunQpBg8ejMLCeOfJ0IUuKRrl5GWjWbGIO2WBPda5BoU5VrQSgugxD439uMjO/zWJ7qYUdaD7G+RnS5EFsUBz3+uXHYeG4db7grKN0mRBWVtN2ulA1rdGP+l0UitSs61y8dJIwjX4QnKt4V144YX4+OOPsWTJEgDA5Zdfjurq6tDz2MNXX32FdevW4eabb8YRRxyBHTt2YNKkSTj77LOxZs2agOy4ceNw2223+celpaVGY+sQhNe1a1cMGjQoUNalSxcccMABfvmUKVOwdetWPPbYYwCA8ePH4/7778fkyZMxbtw4rFq1CnPmzMH8+fPzPn4TGBGd6SwnulpW3NAhRhacdidbCcHr3iQFgd2niC2KZlfImTRDb9Ek6emC8tlRpAfNfXYMVLI6KyNZQohCvp4ocY2Dfw8QQDdSU4f04l4EtoXw2seK5xs2bMCSJUuwevVqDBkyBADw0EMPYdiwYdi4cSP69esXalNeXo5ly5YFyu677z4ce+yx2Lx5Mw466CC/fJ999kFFRUXk8XUIk6YOamtrsXnzZv+4T58+WLx4MZYvX44jjzwSt99+O2bMmJGTlAQdktKTUd8EqbTmhNGAuaaXC+1OdwwKrZCPyvS0O5HJEoJ9yoDnlfNt+DoKARpKoSV2IMUWpVuPU0CQQGTTlfBnlemhpleta9oEpKZNHjJTZ5xblLFIZRPg/Xh0l6wvTMyS+Q4KMfHfeRuAUER6Q0ND1mNZtWoVysvLfbIDgKFDh6K8vBwrV67U7qe+vh6JRAL77bdfoPyJJ55At27dcNhhh+G6667DF198YTS+DqHhUVi+fHngeO7cuSGZE088EevWrcvPgCSQkR0bwBJup+G/y9aUaCKfDXSIkQGr3akSzL3udf12bD9suSgkxNtnb5ZCBHksxQbKifLw/A7Y1rzmJTsrZcIUmTzB7MumHmPHRP0IJLl5GqJKeH3FZaIU9aV5aR7STmtlUhAlJlvE1SNEnVXPs0VjYxESjfqpBm5GtrKyMlB+yy23YOrUqVmNpa6uDt27dw+Vd+/ePRRTIcKePXtwww034MILLwzEUfzoRz9Cnz59UFFRgbfffhtTpkzBm2++GdIOZeiwhNdRQP2oVTl6WikKpqSmq3Xx/cah3cnkiHPrzJXpDS0uv13U/LvQDZQpCLzlRwpY4UfDE5wOGVIEyPYpWjuPlfHaGZo2dWHqw4u6+kIWcmkniWRSfD/KTJRpnxRz90aZdlJIOPo/MDcju2XLlgChFBeLlxiaOnWqMmXLSxmjouBd1xVGx7NoamrCBRdcgObmZjz44IOBunHjxvn7gwYNwqGHHorBgwdj3bp1OProo5V9A5bwsoboLU1EaKq3Oq23Pl2i03mB5EnItH22UGiZsgTzbP12IoXZFIUAEh6pceQWeHEJaHje527Ns1BaHUtoMn+eiuh4fx4r40Ey7ZhsyGz3onqZjKyNqp2uVucAqnw8VeCKSmOj6uOafSXtFCBhkEbhOi2eLJNI9CuvvFIZEXnwwQfjn//8Jz799NNQ3X//+99QXjSPpqYmnH/++di0aRP+8Y9/KMd29NFHo7CwEO+//74lvLZEriK1hP47HXNmtsEqudDuIpoyeV428WDFkX7Ax1kWeoWBmVZSwQaB+hSChEIRjgoq0uNlALVpUzTXJivLQNe0qGMC1fkt6poqRbK8PC/DzauZTAU7j9MMGSfSTtKQ8Mx9jN26dUO3bt2UcsOGDUN9fT1ef/11HHvssQCA1157DfX19Rg+fLiwnUd277//Pl588UVh6hiLd955B01NTeQkIiLsNUEr7QWyG0Jm1mjJjgm21fbfyaBDbDpklUswpkxyeJopCCq/nYrsdJ65hYJPf7ILynxJaH6tBSYpMqIRygyzut+aVy9KPneQVQBLHDDpT/d3L0GaMBOygStUnSniCHBxnCScJoMtAuHpYsCAATjttNMwbtw4rF69GqtXr8a4ceMwevToQIRm//79sWjRosz4HZx77rlYs2YNnnjiCaTTadTV1aGurg6NjY0AgP/85z+47bbbsGbNGnz44YdYvHgxzjvvPBx11FEYMWKE9vishpcF4rLLiwJWpFCdWuXjk2mDIvlcaHd8igGn3ZmkIECwL9KbovrtPPg8xj4/uChN/3/Lkp6TTR4oZdoUlfPmzCimTXCyxHAohLQngZwIuv430/OK6gXnc5ykMGiF0vhkaQm5mkDaTafgpg0e5SayEfDEE09g4sSJ/lzGZ599Nu6///6AzMaNG1FfXw8A+Pjjj/Hss88CAI488siA3IsvvoiTTjoJRUVFeOGFF3Dvvfdi165dqKysxJlnnolbbrmFzMMWwRJejJBrcOEfuijBXHpTUBqXylRJkQ8PFVmZwLSNIw5UAfRNmSKdhv2U6UJRUcj775KCoBWf8DzNjo3WZIV1VBOK9NhjVX6eJ+udE0Q9C1ZWw5enIhrT9rp9KQhMaNJ0AJEfLy0hPYrETBPQs87Lc5Itm4l8DrH//vtj3rx5UhlvmkegxffHHlOorKzEihUrsh6bJbw8gP/xqyI0KZD+Ox0tTtecqYKJ1iZqI+iDN2Wy2p2JKRMIExtVJiM7UdgGlZLgUxZPaAENzyHqeKITpQTIRiTT6GT+PLZPlcbHgtcUucmlReIyGRFMtTuZb09FjhI/HktyskhNiuDiTi6XoiHFzHygKd9J0XmvPEtQJJaNHBD2/yn9dyJQRKjS3FSmSF1EbC8KVGGHZ+LD82Sikh0FPnvO98JltDoUwzdpSjU8ny69z90IkpcIvDanS3pgygCa6KSqDwOFOTbqM94kgEWHTGUBM/y5BE9BLwE9lSG+dDoJJGk/PUVwpibPyDC9R/PEw+0RlvByCJOILipghYQOUcnkeVAmUtl5dbU70XkI7Y4lO1+c0e54MqNSEHSILRuyY8EGrBQi48MrQcvdVAIg2WLqAjK/gRDhJZjWXk+6I+Bz5nRID1wZeyUq7U4zN09Ho5JB9NtRRWbKTJcqsyZFilQwKmfSlCWch0+lR3BZRYBawtOGJbwcQTcHjzJvUm0T1I/a1JxpYn4U5efFFajihFdCAMKmTJEWB0E9GBkRhbBtdGiGNz56ZZ5+FsjBo4JWvLqSzBboge2JfRKrnkq6ASssQbJyIqKTqUaUrMK0aQIVuVFyJtodpRmGyhKthYp1uNLsSw3EpJXzSaUt4WnDEl4EmJgpRdANWEk6gvtOFbhClVPQCTCJYto0gCwqE4gWsCLS+EzJzgM/lVhAu2NNmhn+CuXhlbTWtfbobbsZQZORiUhPJisjOpG/UCMnj4WKpEzaUW1VGp5I26TaSTTTZkazkwWuBE+hO3l0jATI3xA68p0UlvByAFWagU7Aiue/C0GkmVEQEaVKcxPJgCuPQbuTrWCuo9GZRGRGJTsWbGyl778rRtCkyfjwAhoeuzmUdseOytPyVOZOkdlSJ4gFCBKdSDVSkZ9kdXS2XAWVCZKS06kTjUfDl9dCdI6/DyA044o+yeWIadIwy5XNobLZ3mEJL2YYpxlkwJpCpP47FqL7R0ZmKllZf7o3Ck92GhBFZXrdUX47th5MHThZkYwMrOmSKvOIr9QjOjZohY/65k2aKaAlF49PTZARiwympMdemczMSY1F45GRLw1PV7sTaYQU6QHg0xPSTsoPXAHUwSh5XxfPmjS1YQkvz4hCiFr+O5k5k4eIjETaGd9Opd3Jzkdod7IEc5EWB4RJUBa4QrXXBW/O9D59kyYbtOKbNJlJg3mTZsrrle85qt4JhCM42TKe9IAguYnMnB5UplZOy6Og+5DV0Q51fHQqs6bKpOmkpD48VeAKnaqQo6nJ9oBeoUMm30lhpxYzhOwHKwpKofa9Y1nAipb/TuSDk5EZJavSFqNqd4L2qgRzkZbH74PbF/E7LxcFhdyWSmYCVjKRmShGqx8vg0CUZgmIwBW+Vxam76M6WYhsGbXPf4Oi/whb7iA07Zgj2FTQaaMq133pkx0DYBO0RdNxsekn/DRhsmnD4pqaLNOZ+PumNmvStIiKqKYLlaan7b+j6tlyFclRsjIN0FS749qzkZmyBHPvdDLzJfsYph7HvLxgSKGbgDddphCkopD/jtfgmLSElgYukEoEic8/ExWtyV8F5cejRu614SMyqXqRD08WoGJo2qSg+ofEqeGpzJoiGaaMD1wBIF0qiEdeJpzWfZlg5TspLOHlECyBpQT7lGySsu9RpkVRPSWjE4jCgyc1HlkGqrBkx55SFbDCk2AUvx3/9encCCwlBfx3xcxnMeCWtEZptgStOEBJYdCHlwLglDK9eZGaOjl5Dvcpi/aQ+fNYGX4fxDgMTZsmD1YRifH1rExkcyVTTsk4AOvHYwNXAISWCmJJrU1WVLCEpw1LeDGBN02K18kL/9pEASvC6cTYfYq8ZOTItmNlo2h3IlBEqIDKlEmRncxvJyI73Xud1+74EBPff1fMbBkyc5i5NJNIo6CkEc0s4XnbLvYspWj90njTpo6e6o3au2KdIBYwZfw+2x9/ftFsK17fAtKTPW1k2pqoH5XmR8mJtECS+Fr9eKrAFVmkJlvH7sdGjpR5RCXfSWEJLwfQSST3yoM+vla50HRilFbngSIhEfHp9CsjLIkGJyNCmXYnSjdQaXmsPFuWDdmJHuWs0bEUQGkxkGDJiyE9fjL6ZCqNZt6HlwJaiKEUrWTnR7Qg/FTizZAildyE9MCVAWHS88qoMfHIctoxkQmSr5cRGFsu1N64vqT1SZ/0qBlXKJLL1aoIQti0BG1YwjOArhYnbi8OYAnI8f47WTqC6LnH7su0Nb6MgkjrE8lw+yqy88CHQbBdi/Lt4iA7/iaQaXeeETKV8dX5pkzGvJlOFQQ0vGTKQRObp0cGrnifUbU8Vk6X9IBgfh5bRp1XZXdk5QxMm7Judfxwor5kBMkSm4gYM8eyBHRROgIfpZnTVAVNK0pAvpPCRmnGDJ1ZWGRlrP9OmY4g0rx068GVZaPdUX064kVdeXGd+EB2nyLAbDQ7QE+784nPIznOf4cU0FBcFEhLSKXSYbLztTzWjycKXlGNkIfqmxC9PrBlIv1apeUJojZlkFkHHEG9Sl4kQ/VD7QNomWasBWkmSjPt6EVj6izuGjkyM9iJ+dZJYTW8GJDtmxu5Vp6MmMDsq/x4CkLyj020O4r4ROQHuXYne6yKnkUUwWVLdh5k2p3vbSvOpCPw/rsMAaa52yqZSocDVnw/nmfW/ApBDU+l5YnMmqysTNNj92VJ6ZCUURA8UnT+EaJLUpkkRXJS/xzCXwPZf4q4GcOBK365xowqsWt7e6C1RGFAvpPCang5BGXC5M2gVMAK6b+jjvlySiNj9ylCooJgVNqdDJx2J1r2RycFAVyZTnK5Kdmp3vhSCOtdKTYyk/XhMUsDsaslJD0Nj5X39v2zqFIUPOhqeYD4NYA9pr5JSpOTlfGvKZLcPNVwVVqeTFamvanqZfdcRqNLO8FfC/tiw7/ktJaL8/RiA//iqdqsSdPCFNRbnK6PjpanVCOI/Ww6N7+ojg9ykT08stTueLBpCPwj0oOojL801SPbBDyN8KngAU3P4yOP5FjyKw4/2IqSDRKTptc7a9rkz5yNIUamG1PHsv+E6D+mc26mSLTJZPg6SpaSkd0bsn3R8DlzJmWSFJFfzmBCdqKXihixY8cOVFdXo7y8HOXl5aiursbnn38ubXPJJZcgkUgEtqFDhwZkGhoacNVVV6Fbt27o0qULzj77bHz88cdGY7OElwd4WpxoAmkq4VyZjuCBuknThBwVyamrxaneDCMEqrCPTvY0soAVmd8uG7LzwOpZYD5Z3au0GCjkzZhslGaq5SHI5uGlkA6TXSB4hQ2J4bU8DxTx6T5YTUjPKxP9F9h69pMqA7RmYBHVidpRxxAcy+p0Xh4zfrxmzocX8OllSE/kj8s5ATZF2HKICy+8EOvXr8eSJUuwZMkSrF+/HtXV1cp2p512Gmpra/1t8eLFgfpJkyZh0aJFeOqpp/DKK69g165dGD16NNKiuYcJWB9eDqCK3hRpgl7ASkqk1QHBm5QKNqHkKJLjZUUpDDraHYIyMlMmBVUKAhB8LMdFdiyhseB9dh4R7oOMOZPR5mgfXjKg5ZFr4rHbHjBn4f141FNZJzmdh8NcMZWTV8jVsefk0xJEjw3RmLioTWporChVztY5gmOvzBHsi9qK5Dg/nioBPXhJcj+dLLrTGO0oLWHDhg1YsmQJVq9ejSFDhgAAHnroIQwbNgwbN25Ev379hG2Li4tRUVFB1tXX12POnDl4/PHHccoppwAA5s2bh8rKSjz//PMYNWqU1vishpclRL651nonICecfYV6SxGlI8jeYvlgFLZORnwUwfGaG1/Gk5/kRhJpdzq6hCpIRVam+1JLaXcptGbJpQCkkpnoTJ7ovH3fh9f61E5m6A8lTRIND8yZRFoeP0J2AjTdK1Zpeuw+ZcZk5UQaneh8XLFI09PRAKl+KBkT7U+1nwHvx/PLM0Ql8tk5fn0OdAzR9ynbAOzcuTOwNTQ0ZD2UVatWoby83Cc7ABg6dCjKy8uxcuVKadvly5eje/fu+OY3v4lx48Zh27Ztft3atWvR1NSEkSNH+mW9evXCoEGDlP2ysIQXM0SmyrAc7b9LUjcrS2KUOZPS7njtj5UTyYo0N1k7jvhMTJmixyiYfd0gFf7ZpCI5He2O3fZBy1RifnQma8pkPpuKgUYE0xJaVkxQmTW9lbZFI+Bn89QB9S3IXhVEpMfXeW1Upk22ncK0KSrjy6ljkYysLStD7Yf6oSeSzru/jkLEoJXKykrfz1ZeXo5p06ZlPZS6ujp07949VN69e3fU1dUJ251++ul44okn8I9//AN/+MMf8MYbb+A73/mOT8J1dXUoKirC1772tUC7Hj16SPvl0Q7+Wx0PpiHFvBYonHmF8t+J9tOCMkpeRWAqMhOVcdBNMOeh0vJ4shMdgyvXBZ+KwOtXnnYXWOw1iRDZtSSdI0NxSab/NApLGtFUUiImvD1A64wr3jfGa3m8N7OQkRP8U3x5PpmcN2V6Zfw+a8Zkv1n+VUHnW5eYNh1OjC/zyh2JjI6Zku1Hx/yZAuC0zKspSkD3zJfeVGFsakJe1sbbDYCYa16IjCK3ZcsWlJWV+cXFxcXCJlOnTsWtt94q7faNN94AACQS4f+x67pkuYcxY8b4+4MGDcLgwYPRu3dvPPfcc/jBD34gbKfql4clvBxB90dOJZz7UBGfitC8fbZMR7vj66m3X1kKgwAinYDSL/jjbMmO0o/4MBAyIhMt2l1hKhOswhIcoeE1lhQG3vpTnkcv5aBJ5sfzHqxSX57O7Csi/54O6bFyXt+q/DxwdWw/ojpBNzKiY8t5fpcRGl8Opk7E8dQ+4cdLO0nhygmqRWJbjzVuHBUi+vDKysoChCfDlVdeiQsuuEAqc/DBB+Of//wnPv3001Ddf//7X/To0UN7iD179kTv3r3x/vvvAwAqKirQ2NiIHTt2BLS8bdu2Yfjw4dr9WsLThNw86Qhl+B+9KnUhxRKQ9+kQ+zyheWUq041MuxMRmAbxRTFligxmlDENXD1/WWy5Dgq5fd53x2t3gZXNPU2PXeU8U+ckPa9d0I+XEpk0WQLcxY6mFGEtj7pCkwAWVjMEwqRHkaBOEAsF2fRkxLRjlJKqE5QiqjfR8FSkx4GdSNoLXPHIjApW4YlNR8YImi+cAXlDdOvWDd26dVPKDRs2DPX19Xj99ddx7LHHAgBee+011NfXGxHTZ599hi1btqBnz54AgKqqKhQWFmLZsmU4//zzAQC1tbV4++238bvf/U67X+vDywIiEqSnDgv+IqUJ5xRR8aTFy4lSFURaIKXdgZPVTVtgRQRkJ5SHPEhF5cODopxHSrAv85wVptC6MgKv4XGaXmiWFWTS0NnpxXgtj7VaCnPy+NhRXj+N+u4q06GpVxBeL+f7Evnz+P800ZTvkldweTm+Dgo5SgaCOlJOvSBscPg5SjQPn8h8yxEGDBiA0047DePGjcPq1auxevVqjBs3DqNHjw5EaPbv3x+LFi0CAOzatQvXXXcdVq1ahQ8//BDLly/HWWedhW7duuH73/8+AKC8vBxjx47FtddeixdeeAE1NTX48Y9/jMMPP9yP2tSB1fDyCCpSkyfChPFNyNWJglVYGdkDgooMpbRMgXYngkrL4x+H1BBF9aY+OxPtrjSj3SXYte/4lATGr8enJHgoKm4ESjILwVLaXcCXl62Wp9L6eDMmXy5SdXjNjxqH6jxef4ZankhOZu6UmTZ5DU/VXuLH4313lN8up+vkNcFsajHTG8YQTzzxBCZOnOhHVJ599tm4//77AzIbN25EfX09ACCZTOKtt97CY489hs8//xw9e/bEt7/9bSxYsABdu3b129xzzz1IpVI4//zzsXv3bpx88smYO3cukkn9FwtLeDmEzNTJl5MrnANysjPR6ngyU6UviLQ7bmxRozL5S+Rj+qh96lJ17l0qgJ/VkbS0O3ZGFY1pxVjSS2VKAwvBUmSXam3RGsAiystjIWMMEUQBK5QPj93n/XmA+L8gImivjntKO1w1X+aVi0iMP6bIDFx5BLMmn48nQ878dsGTtJs8PADYf//9MW/ePKmM67ZG7ZaWluLvf/+7st+SkhLcd999uO+++yKPrUOYNKdNm4ZjjjkGXbt2Rffu3fG9730PGzduVLZbsWIFqqqqUFJSgr59+2LWrFk5G2M4ElMvLw8gEs75T0pbo4hMFqziyYpIkCdEivh47Y6AajYVSOoovx2/n41mB4hnohRpd6lUJhWBJTeP9Fj/XSYlgZ1lBWjNw0sh3fIPTkFMdj7pJSCJFxVchckcmx50vllKBzf571KpCgQoywPF8bLfMn/MX5asnjpH6Jyt/1cvH8+bcYU3X+omkMeS1sB/VzpbJ0WHILwVK1bgiiuuwOrVq7Fs2TI4joORI0fiyy+/FLbZtGkTzjjjDBx//PGoqanBjTfeiIkTJ2LhwoVZjSXblAQeSv+dTMMTaXJUPU9svDxFZnx+D9feZEYVVXSmzG/HXz6gT3ZRtTsvMjOQaJ4EGZnpEVU6BTSiOGTW9EivsKRRHbgSmFC61BsJt3lXJvPl6RKgiPTYY9nrhw758X165RrTjlGEZkp2MtIUyQk/w368dFqel0eRX6wTSe9BS2qC7rYnvlN3NHQIk+aSJUsCx4888gi6d++OtWvX4oQTTiDbzJo1CwcddBCmT58OoMWZumbNGtx1110455xzsh4TpcnpmjBV+XhaZGcazUk9IETaIvWA4PqMGpVJPRJ1glSikB0PKg1Blnfn++5YUiJy77ytJSWBJrtAagJPePuiJUKT9eM5rJZH+fJEiPLtsNGbDlpNkfwxuH1VtGZKUe/JCBaLpcyaIn8be2zkm+M+Iakj/Hgs+EhN3m+Xs5XQ0zBTXXJs0mzP6BAaHg/P2bn//vsLZVatWhWYhgYARo0ahTVr1qCpib4BGxoaQtPtZAN60miCKNmEc1NzJvvJl6URbC/S3lQaH1+eQbYpCKZkx6crsMOiXh1Ek2/xgSoi7S7gu6OmEuM2LyUBCL/B+wvBUtodRYL+SEURmyLTJnvFVL3sG9P5D/D/DZFWpzJtCjQ9mVYnqqcuTaddJA0vaMr0P9tSdxBdt2zrpOhwhOe6LiZPnozjjjsOgwYNEsrV1dWFEh179OgBx3Gwfft2ss20adMCU+1UVlZqjUkn+kqo9YkmjGY/qTLTm1Vnn/LhESTpaXcURCQnq6MuUycdweS+5Q2ArHHQSLvjzJgsaaWRAh+wAmTIDt66eK6Y5EK+PHbk/BybItOmiS8vW9Jjj/ly1WuPxtB0yU5GYDrtqH3qkwPvxwMQeuFxiBeg2MnREp42OhzhXXnllfjnP/+J+fPnK2X5KWe8yCDRVDRTpkxBfX29v23ZssV4fElOq5OZPIX+O3afMk/yWppMG5Rpd1T/PPFxmp7p9GGyx50qIjMbshNpd2y9lnbHJpezqQnMckAoAdyUl5KQAhvA4JOdT3iO2HeX4j79kVJaHkt8FMnp+vKoJ6COYZl6bdEhNgMtL9dkB8m+TE6Qg2eadxcmxYhE6H2NulsnJrwO4cPzcNVVV+HZZ5/FSy+9hAMPPFAqW1FREZpUdNu2bUilUjjggAPINsXFxdL55GQwD2bJkB+fjiC6ESlzpuhGlT0MRPuagSpAdn479t6kCE0UsMJfpglEOhDpv+O1O56IWKLzjpMtz0BqdnwPSaSRTKZRUNKI5lShmOxYP57vd6JGyn4bTQjfyqa+PIfogy1nfXrg9r3jKOf1wJ2bHQ71O+d9cmwd/ynz0TmK+lBZ0I/neLl4zFJBsry8nMytmYZZHp714bVvuK6LK6+8Ek8//TT+8Y9/oE+fPso2w4YNw7JlywJlS5cuxeDBg1FYGCWEOwxVcAoVoSkyfwYmjOZFqBtZJxUhinbH7gsCVWQQvefLtDz20njIYghZ8MEofBm4el4/IvPu2GnEWHMmQXyNJQXwzJnUbCstn8SMK6x5kz8ORGz6+idxhSZanuwdl/2GKeISRWtSqoPs9Uckr7miAogylZZHtRH1o2xD+/FUyJmfj/+edLZOig5BeFdccQXmzZuHJ598El27dkVdXR3q6uqwe/duX2bKlCm46KKL/OPx48fjo48+wuTJk7FhwwY8/PDDmDNnDq677rqsxyOKrpT58qg5NMn8O9VNK/L1md7sKvJk5TL1OlGZPCgtj5fnNT1K84t6j1LaHavlsRwTyLtj/XacNhcgvsxxOtUaj8mCDVxKZSI1hYnnVDBLCmhdOojfWPMmQF+hKSjS47999j8k+8/qQBLDyz+cRQSYDdlBsi+ql0C1+nlOYNMStNEhCG/mzJmor6/HSSedhJ49e/rbggULfJna2lps3rzZP+7Tpw8WL16M5cuX48gjj8Ttt9+OGTNmxJKSYALR+nja/jv2U3bzyshSV7tjNyJQBZCTnejTg+i9HoiP7GTaHa8bUdpdKe+f47U5lugYcmqJ0BQFraR9P17KC1zhIzRlQSwAWv14npbHBrHwOXrsFev68ljISC+KP0/0SZEdp+V53am0L105UZ3JOQDA1+5af2l0Dl5GG+R+E7ESYjrC1knRIXx47DQ0IsydOzdUduKJJ2LdunWxjYPS4HhtT70CuiAdAZC/ZYo0MqqO/RS9EVPyfFlGjpor04Ts2Mcb2z4ustMJTOF1IJ4yQtodS3QsAfFLA6W8gBWf0gCEH36tuXiZwJVUoTDa0z/ew3wGtLxS5tvxNs/Pxp7X+/ZYhxd1TMHrEwj673Llz+OnLUu0DoMatkj7Yn1zbB3V1mHKZZ+erF9O+PGYpYJkc2ryiGWqMQfke4LkpJ0WHULDa+/Q8eUFNT3iBy4ya6ry5ahy9lOWd2fgw+NNmbrgyY5/n4/TjMlrb3wdlWjuz2XCa3e8r46fS5Px73kBK7IcPO+zhfAYP55q8+QABKM1ReZNWZqCqZlTV9PT1ePByfH9878OprnqxY26LyCRkZWJZALlQT9ea3VYc4s67Zg2+O9HZ+uksIQXETzJKQkN8HUAQJJ/xxKV7CY01e5kDwieDJnze9pdFFOmiOw8xEF2vHaX4vb5xz9lykyJfHcs8bEEyPn3GksKQE0aDQRfelKZSE1/ijE+QEU53VgCrXopewW8eZMHP8cM9c2JoEN63j5bzuv5IkKLaNpUPcxl5fynivSEckxunZMkpxgL5t8lSULk5YzB3mg2LUGKDmHS7CigAlMo0ybpv1PdXLwZE4SMqg1BaKRfL3PMmzKjkB07VIr4siE7FrweQ+k4lG6k9N2xWh4/00rGl5dOeWSXIonPz8PzavnVz0W+vD3Ep6+Xet8ib3NzECY99htlTYe6cJjzUOZNSPZNoWHadJhqap/9FJXz9ew+/8levl+e8MvYBWEB/dSD2FIU0jAzaQoWZukMsISXB3gPu0AZ778DwlGSlBbnfbIaGf/Jy/CyqrdhgSkT0Cc7DzLjli7ZefUqg5xKvyGNf17eHeW7Y0mPN2VmNrcEzCrn8rd0jxJbA1cSQYJjfXekHw9oXUmhlOl5N3eFHlg24Mu8cv4bF33bUUiP7U8HFBkz46DICIJ93penIjP+fpD68FrL+Xk12fkz2bkzc5J/58GBma3OEp6FLigtTlzvhOrYstByQGCOZW+lKi2P1+RE7TVMmUDQlKkL3noi2+cvBUQdBe/Hyz+aKVOmaI6S0pIW0gtpWbzGRZgyWxPOUwETFhWtx86yEwhcSQnOR2l4Dhgtj70K6i2G1f7Yb1KXiCjik5EeX++NQ/Sawmud1JgK0aK6EJNLU2TH14tIjhqqiggpWScFpNJIO0lh4ErLfnjx11gXhN0NS3iasD68LEGaLFWkyEZ98ETFwjuWBbTw9VSfDtFWRJQITx8GRPfbAWKCy4bseLDk5oFPQ/A2L/SjtLjFnJlgtTp+OjFeq0sGP9Op1oAVkYYXSDz3/kns2ngU6fEEGFDePC1PFMACrk6Wm6d65+X/E7z+zu87xL7M2A2ofznctGPeJ8XzsnpeTtQOXB1/HCiXB6no+OayTkhvhllKgiU8i2zgL/DJlbXuO+F66q3U22fJTERSshubMm+CK1NEbVJRmbpkx16KLEiFunxWTgb2sc4/LkRpCIEwj0ygSoozUZJEw/vtmLJ0qsB/qDlEUALly02m0ijgZ1wRzbzCl/sXy2t5oVAciLUrWR0FGemxx6LwJK9O5xcESTlTrboXoPkpk+f7D9UF5/MSBa60Hrf6eWUwDmCRkbuM9HOEHTt2oLq62p+Ev7q6Gp9//rm0TSKRILff//73vsxJJ50Uqr/ggguMxmZNmjGC1+YoEkyl0+LlgNhjQE5UVDnfhpVhPyU3Oj99GDUxtOg9XVTP74M4BlfOQ/V4FpkwgTBfeIEqAe2OnUZMpuFxxJdOUbPh0w8sP6Ql2WLWbBaZMnlzplfn/c92Aa1anlfomTBZVnQE3xxrrvTaOVyZrI3Xdwq0P48yUbLjkP2XqTrOtMn/blPEPivDmzLZcjDyIrMmL8O1b3aSocAVHjlbC88bi8lcmiYBLhFw4YUX4uOPP/bXMb388stRXV2Nv/zlL8I2tbW1geO//e1vGDt2bGiikHHjxuG2227zj0tLS2ECS3gRIJ9CzOGOaVlyOSD22CsTmSJFqQc65MZHbWY+RSuYS961Q+/iUcnOxIQp0+7A1ZG6D6vdUb45SsPjpxlLtiScO8mkr9nxvjwP7CKwPumlHDSlXCCVEJs29yBIgGy9412lR1i8L4/9pjzwvrwor/osoclID9w+C9F/jZdNceUpSP15fBlPfhShUXIiGVBtUtzN7Pl0WwPVZMnlsQSzNKHdEN6GDRuwZMkSrF69GkOGDAEAPPTQQxg2bBg2btyIfv36ke0qKioCx8888wy+/e1vo2/fvoHyffbZJyRrAmvSzAHCOXpMSDrvv+PJjCckEVGZaHeeDE+EGqZMU78d/+zJJdmB2ee1O/ZTqN3xuXXsPp9kTvjxWgNW6EAVCsFITSdIcFQeHlVXwvZYilavJGXmZMclS0bn5WSgvK/Uf5r6NcRk2qRe9sB9yjZehmpL9cPXA4CT9ANXdBLRZYg05ZiJ/87bgNBi1w0NDebn5rBq1SqUl5f7ZAcAQ4cORXl5OVauXKnVx6effornnnsOY8eODdU98cQT6NatGw477DBcd911+OKLL4zGZzW8iFC9lQUCFPg6R5GOANBkxZaLiFKk3Sk2WYK5d5ooQSpg9qOSncoTJTNlUtpdaQlQKDNV8p8sCQXMmcGoTP3glTQz40oh7acT5eHx9YE0Be+b5zU8mSYXRcsDzDQ9MLK6rzfUo4kwbYrMlfwnpd0BwfuAl2U1OxBlDsDm4yEgmsz8tX6//Gw8vJkzq2nGImht/ALXt9xyC6ZOnRrt/BnU1dWhe/fuofLu3buHlmsT4dFHH0XXrl3xgx/8IFD+ox/9CH369EFFRQXefvttTJkyBW+++WZoVRwZLOFpoOVHGf6qWlOM2YVheO2udQFQ1n8HgM67M30jlbXhCVBgygSgTDAHs89/gqgHsQ8ELzdKJCYgJkA+XIPXeUqTRBoCT3SimVV482eyJWAF0CM6fskoL3ClmSc6GdmxfrzAw96/QrSaOIHWb5t/arNgzYamZk5T0uPPJ4JoHCnmU5KQLiIvqg4If5/8Pkl07HEKzU4aaSeFtJNGOtW6Nh7Q+lJE5ee1JbZs2YKysjL/WLYW6NSpU3HrrbdK+3vjjTcA0Atsu64rXHibx8MPP4wf/ehHKCkJmDIwbtw4f3/QoEE49NBDMXjwYKxbtw5HH320Vt+W8DRh8ual+jGneKKjSMqDKKiFJTpeDgjf5JQpM1Pnelpd5lMWSM6THAhZEPtA8LJ0yY4nN157Yz/58pCG55kyeQKjiI2fO5MlJD8lITx/pmgezZZ95uWIClyRzbBCkaL/P2YDWPbJnM1LRgeC/wn+lhcFsOjOyKJDeuwYPMiSzEVkRxC4iPBkRAemTkZ0FOnJiI8DT3QytAUJlpWVBQhPhiuvvFIZEXnwwQfjn//8Jz799NNQ3X//+1/06NFDeZ6XX34ZGzduDKyEI8LRRx+NwsJCvP/++5bw2hrsvJlCsATGQ6S5gdnnyU2m3YHoI02bMj3oaHNUXdyaHRD8ofI/Wpkp05tlMpSGQPnveL8ZpX1l2rMBKyrSA+i5VpWBK5TWx5JdgPRYYT6AhSIdKuoyKlSkx55HFLnJ1/GgEuAlpk2K/Cizpg7psSC/1gRC82omY0wsV4J3KujIm6Fbt27o1q2bUm7YsGGor6/H66+/jmOPPRYA8Nprr6G+vh7Dhw9Xtp8zZw6qqqpwxBFHKGXfeecdNDU1oWfPnuoLyMAGrRggyhsYH7Di++/4KE1RVCUQJi1eltL6VNpd5lNmymSHZxqkAmRPdnw4hShQhT8mwzdY7Y5KJudTEJLEPtPGe755OhsfbEAFH7D5mEk44cAVEenywSu8PAB5Mjr/KsB+Yyxk37gKskAWb5/6tegEr/DtiXhh6oWQ3Ze9OJq05c/HlHmBKzxYxweF7FdPEF2kbMsNBgwYgNNOOw3jxo3D6tWrsXr1aowbNw6jR48ORGj2798fixYtCrTduXMn/vSnP+Gyyy4L9fuf//wHt912G9asWYMPP/wQixcvxnnnnYejjjoKI0aM0B6fJbyYEPTlaf6gVL8/ymwpu/F4OREBZjZ+UVcdUyb7mPIgClLhQZGd6e3HPrL5Y5EpU5hkTgWl8Fofn6qQIcCWgJWwgUQnyi7lxXaySwWZbjwZ+t8G9Q3wxCeKZwX0SE70wxWRHr/P/6pEJMe34V+zuBlYdJ/zqntI9qM0+MFSq2fwEb3xLBXUFGHLHZ544gkcfvjhGDlyJEaOHIlvfetbePzxxwMyGzduRH19faDsqaeeguu6+OEPfxjqs6ioCC+88AJGjRqFfv36YeLEiRg5ciSef/55JJP636E1aRqCIjN6Ydh04I3eC1hJ8dqWB0L7CsjwN5rMp8fe2BqBKjqzqVDgH1EyUybfB/8tOgj+GCldgzdriogO3LGWdscTicysidYZVrzcO2+1cwre7yC4akLLFy4MXOFNmSJfnrc5gDgZ3fuG2W+U+q+mODkHal8e/5+jzJvUPiAmV9H5WBNpivlkTJveafj7gCqj5FNcHb+liPYOoApc4WHi31PD9LUxdxoeAOy///6YN2+eVIZa1Pvyyy/H5ZdfTspXVlZixYoVWY/NEl4EBJOI1T9YqQylibFlrAwEsjraHVfOBqpESUHgiTAbsgPkP0RVzh0rE9JtqCRzSnNLclsxUcaQoxeworNKggjJlBe4QvjxKILjozS1fXleOZhjimz4ABZdyEiPPWbPHeWhy56Dvy6mWEV0rFwU0qOIT4HYF30NQPZaKpLvnLCEFyNSDBHyCPnveKISgbrZqHQDWT238YEqgNqEKSI7ivi8ckCP7HhQqdC8KdOTo8yYgSVSWe3OIzae5EQJ3wJNzyXuGlbbk5k1AzSZTLcErngXqNLyVGZOBwhreR5YguAJiQcr60CPAEWk55XHQXqsPK85cloetc+Ki14YRaQHrj5EfC2BK+zKCelky4wrnibXYspsNLxmHbARubrynROW8GKCeHYVwqfH3+ciklKZLUXyEoJkpw+TzaYCokxGdvw+EHxERn2nFJkyU9wxFaYhnEKMj9RkzZrEmnc88TlJBCI0dd/e+QnF/d8Fu1QQH40p2vf+t1Itz5tnkDdtsv8NkWlTVOfVU/9Rlii99irSk52HBU+6/GsRR3reJ0V4/L6I5HiFktLsdF9cM8iNpse/durId05YwosBWmZN1n8HyLUwk2RyUbngk50rkzVlqvx2sojMbMmO/RFS2p1XzpsyeaIrZcpKkwhPIcYnnLPaHmvm9GT5JYMymxewwkbe6Sz+2rrf+o2kvMAVFKq1O5bU2GP2cxfQ8uAvReubP2/aZJ/aMtOmJ+/J6T5UWWZQkR6Ychn41x4qBrgwWGRKeLJykWbHgvDjOUlvvpUkijJiae44exgwri/fOWEJL0sIE4sRnGHFh4jg+Dpd7Q6CcuImlSWY82QnIj+VlgeYkZ0MolhCkSkzUJ8iphDztDte22NnWBGYMVlFgg1YablGOelR6yOykZragSt8mSOQdwA6gAXMMZiLksHTDvNBeqr+qH2eCDnTpinhicydOpsCVMSmNwVZduZO08jL3EZptmdYwssCstXNQ7ION38mD/5+pm5MXe0O4XJqBXNPTKThyepA7APmZCfS7lTB8dqmTFZjSymOqdw7jkzcFD/DSirzSZOeiOy841Dgindxuhuv5QWsjazgPgC+Yo6B4H9IFhmpiugUQYf0ZOcWgfrVsOcT+POoMhFxychM2Cbsx+PfgWSaXXRzpybjBuQ7JyzhRQSv2QXrgv67JMsuMuJitTYPKjlNMlSZMgE9smOHxe9no9nJAlUo7Y6VLeQ3z5TJEhuv3VGkR5ULEs4BhEivtVx8W/mzrPD/aNaPl80mnHIMCGp8LBl52hsFr20ULc9rLyM9cPsqsETLt2N/EQgTGKu9yTQ5vg5EPXWZxI/eWyqI1eDi9+Oxr5668p0TlvAMIUtFEEVoAgivfycjKlkZuH5UgSrQN2UCYbLjocq7A/RvJ9GPT/ToDZktkYV2J5paLAXanOkRH+AHrADBh1dwP3h1QWsAo+F5kZoyP56I1GQyIS0PaP3P8mWiJziYuqhaHn8OGelR5xeNi5Jhx6wIYOEvmyI9UZ1IwwPg+fEohH8fcUVsWg1PF5bwsoSfWC4kOmaFBIq0eIiIy2un6wPktDuANmWy+9TQeI2PIjte3hS62h0rz5Icm3NHanci0uPJjDJnskgFZ1jhl3pRQWQV8FfKjqrNiQgwoOV5J+BTFtiLpLSlbANYPMhIz6tnwefxicbDyrO/aEbLYzU2IHz/yMp1yY7jHD5wpTVgJRea3m6YTZpl0xIsNKCbZM4GrHjw/Xc65kxKuwN3rKPdOeIEc5WPTuTTA+gITiBwv4fqeK2N4BJfjiI7KlAF3HFhSqHdUbOsUJocqwClgsfskkDspwfVQyzo02tNTSgQJaCbaHdkioL3rYIp5NMUQOxTYANYWq9I/J/n/+si0gO3z4Oq48/LE6FAy/M+KY1OV4vjESC+4ETSHkS/C17TSyMVgQbZ11dd+c4JS3hZILTGGfFD8hLOAYRvOJnpkiI0WQoD8cknmItMmSqyYyEKUhHJqcDPoiKS4WdWobS7VAooLSa0O95sSaUfUATC+e/YgBUqwVw8tRjl43Uy18EGrjgQ+vF0k89ZeWTa+N8Y+3rAa3gsGQHh/ygQ1KJkWl4T90kFlnj1UfPyKAJk67zzJPQIL5s6vh4IJaADjfACVkxfktRQMTIl3zlhCS8iwgu9Bn00gYeaaGYVEZlR+w3cMS+zB6Gb0EkDu/e0kN3utJjUVGQni84Egpek86hitTn22NunTJmUtiecUcVLM2DTDfioS1EOHpV4nmnLrpDQeu2tBCgDZR3wozVTzIwr3sWqtDsqB88RtHMAeZqCd1IPTdwxGNlCbp/S+njwxEeRHiuXgvqXxI/PIeq8zMxMNbWIrqNRp9rA74f9eDpLSEWHTUvQhSU8TVDh5fw+b8YM+e+AIFmBKVNpdyzpeTdoA1fPkKNnyqRmU9nN7LOPv1yRnSzFgCU/VoMTRWUaB6rws6pQM66IND+OONIpwEm2PrBUJBe+1jRDj0HrQItAukXD8y42ykYRn/9P4r85rwwI/yBFYAlSJCfS/lhy40nP65MPYhGdgyr3ZpbhDd5Ebt4ermlUsiOJr+V8rB8PybD5kk9Gjw5LeLqwhJcFWkPMgzcfS3yB/DtZYjl1A1HanEd0mqZMauowdp81PvFkFrdm1/LdtEBmykxxdSzxsfvSNARCQyPJTJBvB4AwZxaETJnejCssTKcaSybTSPkJ6BHy8XS0vZCW54HS8FJEPV/HmzZVWp4HnvS8PkXaHeW/k+UGsmPzfu0E6bH7sZAcX9aSjwdfpNWcGe8sK/xF6cp3TljCM4QsJaHls5UEQ/l3ohskjSBx6fjqvH3WlJnR+Ni5MqkgFTD7PInxdWwZL+Mh6vsi/4iVBaykRPs62p1Mg6NWS+DJkgA/hya7foYJWNN3yI/nfTEm2pxoC2l5QPgXAYRNjPwjgjJPUlD5+ER+PW+fJz12PKoUiRT3aWDajEp2ID6BQAI6lcLCm8ejESF1F6vkOycs4UUEH7AiKkuxGhwgjsQEt6+K5hQcU1GZlFZnEpHJ7rOXwpaJwD7WRNpdipCjTJl8nTQNgSUskakyyXTK3wlcH04SgSWBoiI4/Rzz22ETNXlNU4f8VGToBb2QaQrsSSjio8D+Cky1PK9/ry1bJktXkPVPvZ5pmDZj1+y8z6AfL5iO0Lrf0iRbjc80zcCmJVhkgRT7lp55iAn9dw7EpKdKM5AlpwuiMkWkBkF5nGQnA09yVFmA3Kj9lIF2J9pUJtDMQNLMneKZNU3Jj7IO+CksXuAKlYAO7pMv1yE/L8LTYTujntQU8VFgHx0OopGe1z+fiK6brgBGhk9LAIK/Wq//CKTHy6uOHYD346HYE6Nz8rIDOxBd+c4Jk2zFNseDDz6IPn36oKSkBFVVVXj55Zel8itWrEBVVRVKSkrQt29fzJo1K6vz8z47UaRmyH/HEhMg19hUBCgiRU+jc4KBKiINjx2KzH8HhMlO10Uu0u5SXLko566QaOfLZUyZSu2OIjHKpweifabMW//OSdIE52gQn2quVQ8FqTSQcunxmG7sGn8BLTZBXyiA8DfNv2aIXlUoyDREFrJkF5ERnq0Tean5jfkfxKnZUfUAWD9eOh02gccH0fWKttwS3m9+8xsMHz4c++yzD/bbbz+tNq7rYurUqejVqxdKS0tx0kkn4Z133gnINDQ04KqrrkK3bt3QpUsXnH322fj444+NxtZhCG/BggWYNGkSbrrpJtTU1OD444/H6aefjs2bN5PymzZtwhlnnIHjjz8eNTU1uPHGGzFx4kQsXLgw1nHxpik/+o7133mfsmRyFQHKyhrUpkww++ztwYMiPvYyomh17KMUzD716GTr2H3+8euZMpXanUzTkwWvgClDa8CKB9VCrzK0Rmu2TlDgBa60CDhmGpzpBqDVtMlv/H8rBTHp8f9BKtFEFzqkJ2pH/bL517zdmX23tWlU0hMSHL/f8j04Dkt0KZL4siPDqAPPDRobG3HeeefhZz/7mXab3/3ud7j77rtx//3344033kBFRQVOPfVUfPHFF77MpEmTsGjRIjz11FN45ZVXsGvXLowePRrpdNhyIkKUX2ab4O6778bYsWNx2WWXAQCmT5+Ov//975g5cyamTZsWkp81axYOOuggTJ8+HQAwYMAArFmzBnfddRfOOecc8hwNDQ1oaGjwj3fu3CkcD2+eCpo1Wz5TPKkBYeKiglX2QF+7E5gyvdubv935R4LonZnfB8zITvRuT/3gqMcnRXS8dpdKMnl3fPK4LCpTRgYE8bETZ/DanM6DKryqhthjk0yl0ex9KRTp8cdRNv95x3fM/8fZ/5bsvy8LYJEFr/BQmTd1wY+fva7daAliSehzA2sO1iE/5rjZ0/Cc4BRjQJxaXhOE0VVC+dzh1ltvBQDMnTtXS951XUyfPh033XQTfvCDHwAAHn30UfTo0QNPPvkkfvrTn6K+vh5z5szB448/jlNOOQUAMG/ePFRWVuL555/HqFGjtM7VIQivsbERa9euxQ033BAoHzlyJFauXEm2WbVqFUaOHBkoGzVqFObMmYOmpiYUFoYfydOmTfP/WSwadjZiD9IAGpHAHrgZenDRgGakM1szHDQjDQdu2oGzpxnpr9ASOfkVWhbmbATwZeZ4D3PcwMixn41oTUNoYMq8z8zmmTH3NAG7m1t+zl7w5h60EmAa4fdfhzsGUwauzATeI957ThRmygJKRgYuswFAM1pMD96n11chgERBRqtLAk6BV4hWhYW975szx81ofaFgv4SCzJZC0MrHDqQZaEoDu5sLsLuhAA1oxh404yuksRtp7IaD3ShCI5qwG034Ckk0oRF7kEQDCuCgAI1w0QigCQk0wcl81y4SmYEk0IQEGlDQ0AD3y1Jgzx7gy5LW//2XaP1/s/8s73oy4wx8iWC+lwJm8wjd52Dvy9iD1l+L9+vxTmjy6/HkgGi/ngYEmX0PwsEn7CsS/1qUzPRRyPS1O3PsTVXARG16XOF9P+xvxYOL1t8RW8++CXp1XsqQ9xUWN8Fp2o2iLrvRVNzyK2nEbiSxBwWZX88eNKIAu5HEbiTQhOTOlpdu12X/mTJ8CfPvOPxCX1xcjOLiYoN+4sGmTZtQV1cXeF4XFxfjxBNPxMqVK/HTn/4Ua9euRVNTU0CmV69eGDRoEFauXLl3Ed727duRTqfRo0ePQHmPHj1QV1dHtqmrqyPlHcfB9u3b0bNnz1CbKVOmYPLkyf7x1q1bMXDgQNxVOTuGq7CIBc1offjnFQ4A7wHxWb5PbpErpNHCF1/m7hRRfzlffPEFysvLhfVFRUWoqKhAXd09xmPad999UVlZGSi75ZZbMHXqVOO+soX3DKee1x999JEvU1RUhK997WshGREHUOgQhOchkUgEjl3XDZWp5KlyD/wbzr777ot//etfGDhwILZs2YKysrKoQ2/X2LlzJyorK+01dnDYa+z48F6yX3/9dfTq1UsqW1JSgk2bNqGx0fztj3p2yrS7qVOnktYvFm+88QYGDx5sPBYPps93XRkWHYLwunXrhmQyGWLybdu2hd4KPLS8+YTlU6kUDjjgAK3zFhQU4Bvf+AYAoKysbK+8wVjYa9w7YK+x48IzM/bs2RMFBeqYwpKSEpSUlCjlssWVV16JCy64QCpz8MEHR+q7oqICQIsWx1re2Od7RUUFGhsbsWPHjoCWt23bNgwfPlz7XB0iSrOoqAhVVVVYtmxZoHzZsmXCix02bFhIfunSpRg8eDDpv7OwsLCwoNGtWzf0799fukUl3j59+qCioiLwvG5sbMSKFSv853tVVRUKCwsDMrW1tXj77bf3PsIDgMmTJ+P//b//h4cffhgbNmzANddcg82bN2P8+PEAWvxvF110kS8/fvx4fPTRR5g8eTI2bNiAhx9+GHPmzMF1113XVpdgYWFhsddj8+bNWL9+PTZv3ox0Oo3169dj/fr12LVrly/Tv39/LFq0CECLKXPSpEm44447sGjRIrz99tu45JJLsM8+++DCCy8EAJSXl2Ps2LG49tpr8cILL6CmpgY//vGPcfjhh/tRm1pwOxAeeOABt3fv3m5RUZF79NFHuytWrPDrLr74YvfEE08MyC9fvtw96qij3KKiIvfggw92Z86caXzOPXv2uLfccou7Z8+ebIffbmGvce+AvcaOj/r6evfEE0906+vr23ookXHxxRezgdf+9uKLL/oyANxHHnnEP25ubnZvueUWt6Kiwi0uLnZPOOEE96233gr0u3v3bvfKK690999/f7e0tNQdPXq0u3nzZqOxJTInt7CwsLCw2KvRYUyaFhYWFhYW2cASnoWFhYVFp4AlPAsLCwuLTgFLeBYWFhYWnQKW8ADs2rULV155JQ488ECUlpZiwIABmDlzprLdwoULMXDgQBQXF2PgwIF+mG17wk9/+lMkEgl/Em0Zpk+fjn79+qG0tBSVlZW45pprsGfPHr/+pZdewllnnYVevXohkUjgz3/+c+4GrsDTTz+NUaNGoVu3bkgkEli/fr1Wu88//xxXXHEFevbsiZKSEgwYMACLFy/266dNm4ZjjjkGXbt2Rffu3fG9730PGzduzNFViGH6XS9fvhyJRCK0vfvuuwE51fW3FaZNm+aHp4twySWXkNd42GGH+TJz584lZdjfcb6QSqXIsRx++OHCNueffz6Ki4uRSCRQVFSEyy+/XCg7ceJEJBIJcppECxodYqaVXOOaa67Biy++iHnz5uHggw/G0qVLMWHCBPTq1Qvf/e53yTarVq3CmDFjcPvtt+P73/8+Fi1ahPPPPx+vvPIKhgwZkucroPHnP/8Zr732mnKKIgB44okncMMNN+Dhhx/G8OHD8d577+GSSy4BANxzT8tcfV9++SWOOOIIXHrppcIVJ/KFL7/8EiNGjMB5552HcePGabVpbGzEqaeeiu7du+P//u//cOCBB2LLli3o2rWrL7NixQpcccUVOOaYY+A4Dm666SaMHDkS//rXv9ClS5dcXU4IUb/rjRs3BmYg+frXv+7v61x/W+CNN97A7Nmz8a1vfUsqd++99+K3v/2tf+w4Do444gicd955AbmysrLQS0o+ZiPh8dZbb6GpqXVlgiVLluD666/H2LFjSfkf/vCH+NOf/oSJEyfi+9//Pp5++mncd9996NGjB26//faA7KuvvooHHnhgr5xtJqeInm2x9+Cwww5zb7vttkDZ0Ucf7f7yl78Utjn//PPd0047LVA2atQo94ILLsjJGE3x8ccfu9/4xjfct99+2+3du7d7zz33SOWvuOIK9zvf+U6gbPLkye5xxx1HygNwFy1aFNNoo2PTpk0uALempkYpO3PmTLdv375uY2Ojdv/btm1zAQRyPvMNne/6xRdfdAG4O3bsEMpEuf5c44svvnAPPfRQd9myZe6JJ57oXn311dptFy1a5CYSCffDDz/0yx555BG3vLw8/oHGgCOPPNJNpVJuOp0m6/fdd1938ODBoTZdu3YNlDU0NLhdu3Z1L774YveQQw5xKyoqcjbmvQ3WpAnguOOOw7PPPoutW7fCdV28+OKLeO+996RLToiWHxItV5RPNDc3o7q6Gj//+c8D5h4ZjjvuOKxduxavv/46AOCDDz7A4sWLceaZZ+ZyqHnFs88+i2HDhuGKK65Ajx49MGjQINxxxx3SBSTr6+sBAPvvv3++hpkVjjrqKPTs2RMnn3wyXnzxxUBdlOvPNa644gqceeaZZrNlZDBnzhyccsop6N27d6B8165d6N27Nw488ECMHj0aNTU1cQ03Mnbt2oU333wT3/72t4VzZKbT6ZAmWlJSgi+++AJfffWVX3bqqadi33331V5vzoJBWzNue0BDQ4N70UUXuQDcVCrlFhUVuY899pi0TWFhofvEE08Eyp544gm3qKgol0PVwh133OGeeuqpbnNzs+u6rpaG57quO2PGDLewsNBNpVIuAPdnP/uZUBYdUMPr16+fW1xc7P7kJz9x16xZ486fP9/df//93VtvvZWUb25uds866yyhlpsv6HzX7777rjt79mx37dq17sqVK92f/exnbiKRCGimptefa8yfP98dNGiQu3v3btd1XSMN75NPPnGTyaS7YMGCQPmqVavcxx9/3F2/fr370ksvueecc45bWlrqvvfee3EP3wiTJk1yAbhr164VygwbNswtKChwH3/8cTedTruPPvqom0gkAr/vBx980C0oKHDfffdd13Vdq+EZotMR3rx589wuXbr420svveT+/ve/d7/5zW+6zz77rPvmm2+69913n7vvvvu6y5YtE/ZTWFjoPvnkk6G+i4uLc30JoXOy17N8+XK3R48e7tatW30ZHcJ78cUX3R49ergPPfSQ+89//tN9+umn3crKypCp10M+CY/6n3kwIbxDDz3UraysdB3H8cv+8Ic/CB8YEyZMcHv37u1u2bIl62vIBlG/69GjR7tnnXWWf2x6/bnE5s2b3e7du7vr16/3y0wI74477nAPOOAAt6GhQSqXTqfdI444wr3qqquyGW7WOOCAA9zu3btLZT777DP30EMP9afiKigocI899lgXgPv222+7W7dudVOpVOAFxRKeGTod4e3cudN9//33/e2rr75yCwsL3b/+9a8BubFjx7qjRo0S9lNZWenefffdgbK7777bPeigg3IybhH467njjjvcRCLhJpNJf/Nunt69ewv7Oe6449zrrrsuUPb444+7paWlpM8hn4RH/c88mBDeCSec4J588smBssWLF7sAQg/OK6+80j3wwAPdDz74IJZryAZRv+tf//rXbv/+/f1jk+vPNRYtWuQCCP1Ovd8uS8o8mpub3f/5n/9xJ02apHWuyy67LORvzydeeeUVF4A7ZcoULfkvv/zSff31192Ghgb3ggsucAG4TU1N7lNPPUXOUeltL7zwQo6vpOOj00Vpdu3aNRCVtnPnTjQ1NYXs6slkEs3NzcJ+vOWHrrnmGr9s6dKlRktVxAH+ei6//HKcddZZAZlRo0ahuroal156qbCfr776ivwO3JaXongHbQj+GqNixIgRePLJJ9Hc3Oxf63vvvYeePXuiqKgIQMuCkldddRUWLVqE5cuXo0+fPlmft61QU1MTCFnXuf584eSTT8Zbb70VKLv00kvRv39/XH/99Ugmk8K2K1aswL///W9htCML13Wxfv16aSpArnHTTTehoKAAv/rVr7Tk99lnHxxzzDEAgL/97W/o3bs3UqkURo0ahaeffjogO2HCBDQ0NGDOnDk49thjYx/7Xoe25dv2gRNPPNE97LDD3BdffNH94IMP3EceecQtKSlxH3zwQV+murraveGGG/zjV1991U0mk+5vf/tbd8OGDe5vf/tbN5VKuatXr26LS5CCMmny13PLLbe4Xbt2defPn+9+8MEH7tKlS91DDjnEPf/8832ZL774wq2pqXFrampcAO7dd9/t1tTUuB999FG+LsXHZ5995tbU1LjPPfecC8B96qmn3JqaGre2ttaX4a9x8+bN7r777uteeeWV7saNG92//vWvbvfu3d1f//rXvszPfvYzt7y83F2+fLlbW1vrb6xWmQ+ovusbbrjBra6u9uXvueced9GiRe57773nvv322+4NN9zgAnAXLlzoy+hcf1uCN2ny1+jhxz/+sTtkyBCyj6lTp7pLlixx//Of/7g1NTXupZde6qZSKfe1117L1bClaGpqcpPJJDneoUOHun379vWPlyxZ4o4fP95dunSp+/DDD7uVlZVuIpFwX375ZWH/1qRpBkt4ruvW1ta6l1xyidurVy+3pKTE7devn/uHP/zBD/pw3Zab8eKLLw60+9Of/uT269fPLSwsdPv37x94uLQnUITHX09TU5M7depU95BDDnFLSkrcyspKd8KECYEwdy/0nd/47yUfeOSRR8ix3HLLLb4M9T9buXKlO2TIELe4uNjt27ev+5vf/CZgPqP6BLeUST6g+q755bDuvPNO/3/3ta99zT3uuOPc5557LtSv6vrbEjzhUUt+ff75525paak7e/Zsso9Jkya5Bx10kFtUVOR+/etfd0eOHOmuXLkyh6OW44477nABuEuWLAnVHXLIIYEUir/85S9uaWmp/7+uqKhwFy9eLO3fEp4Z7PJAFhYWFhadAjYPz8LCwsKiU8ASnoWFhYVFp4AlPAsLCwuLTgFLeBYWFhYWnQKW8CwsLCwsOgUs4VlYWFhYdApYwrOwsLCw6BSwhGdhYWFh0SlgCc/CwsLColPAEp6FhYWFRaeAJTwLCwsLi04BS3gWFjGhtrYW++67Ly644IJA+V//+lcUFhbipptuaqORWVhYAJbwLCxiQ8+ePfGLX/wCf/zjH7F27VoAwPLly3HeeefhZz/7GX7zm9+08QgtLDo37GoJFhYx4quvvsKhhx6KAQMGYNq0aTj55JNx7rnnYs6cOUgkEm09PAuLTg1LeBYWMeORRx7BT37yE3Tp0gVnnnkmnnzySekK3hYWFvmBNWlaWMSMb37zmwCARCKBuXPnWrKzsGgnsIRnYREj1q9fj9GjR2PEiBHYtWsXHn744bYekoWFRQbWpGlhERM2btyIE044AVVVVXjmmWdw3nnn4dVXX8W///1vlJeXt/XwLCw6PayGZ2ERAz788EOccsop6NevHxYuXIjCwkL89re/xY4dO3DHHXe09fAsLCxgNTwLi6xRW1uL448/HuXl5XjxxRdRVlbm111++eV47LHH8O677+Lggw9uu0FaWFhYwrOwsLCw6BywJk0LCwsLi04BS3gWFhYWFp0ClvAsLCwsLDoFLOFZWFhYWHQKWMKzsLCwsOgUsIRnYWFhYdEpYAnPwsLCwqJTwBKehYWFhUWngCU8CwsLC4tOAUt4FhYWFhadApbwLCwsLCw6Bf5/ybXdu8OeUnAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e61a7bbc", + "metadata": {}, + "source": [ + "### Training data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "eba06156", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = 10000" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6d6fbd73", + "metadata": {}, + "outputs": [], + "source": [ + "idx = np.random.choice(len(X_star), train_data, replace=False)\n", + "X_train_tensor = X_tensor[idx]\n", + "u_train_tensor = u_tensor[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6ba7274f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE0CAYAAABXU4ZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU5ffH38OOKCig4gJuiIo74i7ivu+KK7hrSuKWlrZpZW6ZuZSaKZpiBZagpZVpuWRWrpVLKuVubmwqIAqc3x8jyJ25M3MH8Vu/4vN6nRc85znPcu/M3HOf5zmLTkSEQhSiEIUoRCH+5bD5uydQiEIUohCFKMT/AoUKrxCFKEQhCvGfQKHCK0QhClGIQvwnUKjwClGIQhSiEP8JFCq8QhSiEIUoxH8ChQqvEIUoRCEK8Z9AocIrRCEKUYhC/CdQqPAKUYhCFKIQ/wkUKrxCFKIQhSjEfwKFCq8QFrF+/Xp0Oh0XLlx4Kv2fOnWK2bNnP5X+Z8+ejU6nsyj30UcfsWTJkgIfPwcVK1Zk+PDh+Wo7fPhwKlasWKDz+TvxJPfiaX9Ohfh3w+7vnkAhCnHq1Clee+01WrVq9bc92D/66CNOnDjB5MmTn0r/sbGxuLq65qvtK6+8wqRJkwp4Rn8fnuRePO3PqRD/bhQqvEIUwkpkZWWRmZmJo6Oj5jb169fP93hVqlTJd9t/Ip7kXhSiEE+Cwi3Nfylu3brF2LFj8fb2xtHRkZIlS9K8eXN27dqlkNu1axdt27bF1dWVIkWK0Lx5c3bv3q1pDK1tf//9dwYNGkTp0qVxdHTEx8eHoUOHkpGRwfr16wkJCQGgdevW6HQ6dDod69evt3qc7du3U69ePRwdHalUqRKLFi3SdB2tWrVi+/btXLx4MXf8nG3QCxcuoNPpWLhwIXPmzKFSpUo4Ojry3Xffcf/+fZ577jnq1auHm5sb7u7uNG3alK1btxqNYbiNt2fPHnQ6HR9//DEvvfQSZcuWxdXVlXbt2nHmzBlFW7UtTZ1Ox4QJE9i4cSM1atSgSJEi1K1bly+++MJo7K1bt1KnTh0cHR2pXLkyS5cu1bzV26pVK2rVqsX+/ftp0qQJzs7OlCtXjldeeYWsrCyFbGJiIuHh4ZQrVw4HBwcqV67MSy+9REZGRoHcC3OfE8DKlSupW7cuRYsWpVixYlSvXp0XX3zR4jUW4j8EKcS/Eh07dpSSJUvK6tWrZc+ePRIXFyevvvqqfPLJJ7kyGzduFJ1OJ7169ZItW7bI559/Lt26dRNbW1vZtWtXrty6desEkPPnz1vd9vjx41K0aFGpWLGirFq1Snbv3i1RUVHSv39/uXPnjty8eVPmzp0rgLz33nty8OBBOXjwoNy8edOqcXbt2iW2trbSokUL2bJli2zevFkaNmwoPj4+YulrfvLkSWnevLl4eXnljn/w4EERETl//rwAUq5cOWndurV8+umnsnPnTjl//rwkJyfL8OHDZePGjfLtt9/KV199JdOmTRMbGxv58MMPFWNUqFBBhg0bllv+7rvvBJCKFSvKkCFDZPv27fLxxx+Lj4+PVK1aVTIzM3Nlhw0bJhUqVFD0l9O2UaNGEhMTIzt27JBWrVqJnZ2d/PHHH7lyX375pdjY2EirVq0kNjZWNm/eLI0bN5aKFStavC8iIsHBweLh4SFly5aVZcuWyddffy0TJ04UQJ599tlcufT0dKlTp464uLjIokWLZOfOnfLKK6+InZ2ddOnSpUDuhbnP6eOPPxZAIiIiZOfOnbJr1y5ZtWqVTJw40eI1FuK/g0KF9y9F0aJFZfLkySbrU1NTxd3dXbp3767gZ2VlSd26daVRo0a5PEOFZ03bNm3aSPHixXMVmBo2b94sgHz33Xf5nmPjxo2lbNmykp6ensu7c+eOuLu7a3qwd+3a1UipiDxWeFWqVJEHDx6Y7SMzM1MePnwoo0aNkvr16yvqTD3kDZVBTEyMALkPchHTCq906dJy586dXN7169fFxsZG5s2bl8tr2LCheHt7S0ZGRi7v7t274uHhoVnhAbJ161YFf8yYMWJjYyMXL14UEZFVq1YJIDExMQq5BQsWCCA7d+4skHth6nOaMGGCFC9e3OL1FOK/jcItzX8pGjVqxPr165kzZw4//vgjDx8+VNT/8MMPJCYmMmzYMDIzM3MpOzubTp06cejQIVJTU1X71to2LS2NvXv30r9/f0qWLGn1NWgdJzU1lUOHDtGnTx+cnJxy2xcrVozu3btbPa4aevTogb29vRF/8+bNNG/enKJFi2JnZ4e9vT1r167l9OnTmvvNizp16gBw8eJFi21bt25NsWLFcsulS5emVKlSuW1TU1M5fPgwvXr1wsHBIVeuaNGiVt2XYsWKGc1z8ODBZGdns2/fPgC+/fZbXFxc6Nevn0IuZ+tSyzb5k9yLRo0akZyczKBBg9i6dSu3b9+22KYQ/z0UGq38SxEdHc2cOXNYs2YNr7zyCkWLFqV3794sXLgQLy8vbty4AWD0gMqLxMREXFxcjPha29rY2JCVlUX58uXzdQ1ax9HpdGRnZ+Pl5WVUr8bLD8qUKWPE27JlC/379yckJITp06fj5eWFnZ0dK1euJDIyUlO/Hh4einKOIUx6errVbXPa57RNSkpCRChdurSRnBrPFNRkc+5rQkJC7l8vLy+jc8FSpUphZ2eXK2cOT3IvwsLCyMzM5IMPPqBv375kZ2fTsGFD5syZQ/v27S22L8R/A4UK718KT09PlixZwpIlS7h06RLbtm1jxowZ3Lx5k6+++gpPT08Ali9fTpMmTVT7MPVQ1No2KysLW1tbrly5ku9r0DLOw4cP0el0XL9+3ahejZcfqBl4REVFUalSJaKjoxX1hkYafxdKlCiBTqfLfXHIC2vui7n2OUrKw8ODn376CRFR3IubN2+SmZmZ+1k+TYwYMYIRI0aQmprKvn37mDVrFt26dePs2bNUqFDhqY9fiH8+ChXefwA+Pj5MmDCB3bt3c+DAAQCaN29O8eLFOXXqFBMmTLCqP2vaBgcHs3nzZt58802TDz1Tb/Jax3FwcKBRo0Zs2bKFt956K3db8+7du3z++eearinvykgrdDodDg4Oigf89evXVa00/w64uLgQGBhIXFwcixYtyt3WvHfvnqo1pyncvXuXbdu2KbYcP/roI2xsbGjZsiUAbdu2JSYmhri4OHr37p0rt2HDhtz6goCWz8nFxYXOnTvz4MEDevXqxcmTJwsVXiGAQoX3r0RKSgqtW7dm8ODBVK9enWLFinHo0CG++uor+vTpA+jPcZYvX86wYcNITEykX79+lCpVilu3bvHLL79w69YtVq5cqdq/NW0XL15MixYtaNy4MTNmzMDX15cbN26wbds23n//fYoVK0atWrUAWL16NcWKFcPJyYlKlSrh4eGheZw33niDTp060b59e5577jmysrJYsGABLi4uJCYmWrxntWvXZsuWLaxcuZIGDRpgY2NDYGCg2TbdunVjy5YthIeH069fPy5fvswbb7xBmTJlOHfunObP62ni9ddfp2vXrnTs2JFJkyaRlZXFW2+9RdGiRTXdF9Cv3saPH8+lS5fw8/Njx44dfPDBB4wfPx4fHx8Ahg4dynvvvcewYcO4cOECtWvX5vvvv2fu3Ll06dKFdu3aFcj1mPqcxowZg7OzM82bN6dMmTJcv36defPm4ebmRsOGDQtk7EL8C/B3W80UouBx//59GTdunNSpU0dcXV3F2dlZqlWrJrNmzZLU1FSF7N69e6Vr167i7u4u9vb2Uq5cOenatats3rw5V0bNLUFrWxGRU6dOSUhIiHh4eIiDg4P4+PjI8OHD5f79+7kyS5YskUqVKomtra0Asm7dOqvH2bZtm9SpUyd3jPnz58usWbM0WSMmJiZKv379pHjx4qLT6XLb5FhpvvXWW6rt5s+fLxUrVhRHR0epUaOGfPDBB6pjmrJMNLyGnPHyXr8pK828bgGmxhERiY2Nldq1ayvuy8SJE6VEiRIW7oreSrNmzZqyZ88eCQwMFEdHRylTpoy8+OKL8vDhQ4VsQkKCjBs3TsqUKSN2dnZSoUIFmTlzpuJzftJ7Yepz+vDDD6V169ZSunRpcXBwkLJly0r//v3l119/tXiNhfjvQCci8veo2kIUohB/Bx4+fEi9evUoV64cO3fuNCvbqlUrbt++zYkTJ/5HsytEIZ4eCrc0C1GIfzlGjRpF+/btc7f6Vq1axenTp1m6dOnfPbVCFOJ/ikKFV4hC/Mtx9+5dpk2bxq1bt7C3tycgIIAdO3YU2LlaIQrx/wWFW5qFKEQhClGI/wT+EZFWli9fTunSpbG1tUWn0zFz5kxFfXZ2Nq1atcqtL168uCbT7+nTp+Po6IhOp8PR0ZEXXnjhaV1CIQpRiEL8a7Fv3z66d+9O2bJl0el0xMXFWWyzd+9eGjRogJOTE5UrV2bVqlVGMp999hn+/v44Ojri7+9PbGzsU5j9Y/wjFF5SUhJVq1blueeeU63v2rUre/fu5bnnnmPLli24urrSp08frl27ZrLP1atXs2jRotwI661atWLhwoWsXbv2aV1GIQpRiEL8K5GamkrdunV59913NcmfP3+eLl26EBQUxLFjx3jxxReZOHEin332Wa7MwYMHGTBgAGFhYfzyyy+EhYXRv39/fvrpp6d1Gf+8LU2dTseMGTOYN28eoF/d2dvb06FDB7788ksA7ty5g5ubG4MHD2bTpk2q/fj4+JCens6tW7dyeZ6enri4uGiKzZcz9rVr1yhWrJimVCqFKEQhCvGkEBHu3r1L2bJlsbExvya5f/8+Dx48yNcYhs80R0dHTTkedTodsbGx9OrVy6TMCy+8wLZt2xQxZceNG8cvv/zCwYMHARgwYAB37tzJfa4DdOrUiRIlSvDxxx9beUXa8I83Wtm3bx/Z2dkMHTo0l+fq6oqXlxc//vijyXbXrl2jW7duCl6LFi3MRpi4c+cOd+7cyS3/9ddfNGrU6AlmX4hCFKIQ+cPly5fNxqG9f/8+JZ2duZePvosWLcq9e8qWs2bNYvbs2fnozRgHDx6kQ4cOCl7Hjh1Zu3YtDx8+xN7enoMHDzJlyhQjmSVLlhTIHNTwj9jSNIecBJDVqlVT8IsXL05KSorJdllZWZQrV07BK1eunFHSyrzo0aMH3t7euWRJ2fX/qBOvpYzlzZRRvJkyivkpw5mfMpxhH7VSyI3+qDnvpvTj3ZR+rEzpzcqU3gxbUU8ps6IWG1PasTGlHavPB9GklycNupTAt0FRhVy/qerBkLsMK6Eo12zoyJSFxsGFARo0t2PGwqKqdeZQw19ZfmYYLHzN6m70bU3HgzZC/yBj3oqxkBIFK0Zr6+Oj4ZDyFqTMh/OvQENvbe2eCYBhtZW81pWU5dXPQP9WcH4X3LgG/Z8phkm0DFOW/cLU5bSgzjPm673qQ9mA/PdvCp0Mxq3TSll2N/iOevtaPYRu9hvQuLGCZ9O0IUVWLTDZpviK2XinHKJiyo9UTPkRV4MvWfFhXal+/jOcG9ZQ8CutmEjDlG00SYmlSUosviueVdSXe0b54DaFimHq8V61oGr/mka8vJkw1PDgwQPuAdOBl62g6ejDy12+fJmUlJRcMrSdeBJcv37dKBZv6dKlyczMzM1kYUqmoOLfquEfv8LLgeHSXstOrLVttm3bpljh3b17F39/f5Py6Qn3iXt2L32WNqOIuxO26JXp+YM3FXJnvrtB00E+3EvMYNOko/SdXZ2DH19WyBTzdKCIqz0/b73Bgl5HTY6ZmqKusHd8mKQonzyUwclD6kGMjxzI5MgB698LPd2V5YuX4f0Pre4GgIDq2mVj9hvzRrQBJxsY3grC11juIyMTXJ1h6zHoZcUx7sNM+PA3Je+788ry2PcfzXMPBLUAz6pmvmfpd5XlRrPh7EbtE8oLzwbm668fy1+/luBroETvG6SRSjR4YF2Ot3oImf2KES/74CHSDh4y2cZlRF9snOwQwJYsHA2+ZMkfbif5w+1G7TxGdMXOyS739+s1vD3x4e/l1hepVs6ojRoClg7mwkbTu07mcC7mpBFP6zFKUcDJotRj5CS5cnV1xdXV1YqW1sFw/jnP37x8NZmneXz0j1/h5azsDPOLpaSk4ObmZrKdra0tly8rlcq1a9ewtbU12cbV1ZXy5cvnkuEKsWgZZaqczyP2cCzqDK94rGNFq62kJt4HwL2ScvW0/4N4PnvxFyZ5bOFg1EWm+X7N2f3KdCn372UCcC9JmbfOEM+8VdFsfX4wbpojyzZY3rvv1VNZLmV9irtchHWFsb1N13cyCGM5vjMsG6On6Ocg9T6ELYe0DIgcC93qmR9v52n44y9YYJCWbY6Fl/fIX83XG2L/9xC7TuVlIudt/VCckh9VBXx6KXneBjdaDXXCocYQ7ROrOxgajoCeS2GICQXbbrIxr8MEiDCQD+wKM2Ig4lGs1bOmlZBFhKkEBW/UzOpuik4fDY4OCl6x0K5m25RdMA7fmNlkpd7nXNg87ifqFbeNkwP+MS/SJH41PtP7cG7qOk1z+HX2kwUNr9C2EmPiJ9J1fQ/Lwnlglw962vDy8jJaqd28eRM7O7vcDBumZKxJXWUt/vEKr2XLltjY2LBx4+Mf3b1797h+/brJlDEAZcuW5YcfflDwDhw4YKTErMG9v/Q/iB4r29E4vI6i7o+913jJYwNfvPgzcVN/Nmp7/pD5fGDNB+nn1XJAKZMyL0b54uJmw+wYX6LO1ab/lFJMX1HW2sswgl9NO/qFOvJulLNJmclTYdhQJW/xHOvHOhkHMQvByRbemWJarncLg7HGQkQ3PTnag+dwiNoPnqNg5Gr44rhxH1EjYOVg/f8fHwHfN+HgBaXM1CAIN9i57lAZzj0L4QW5G3j3rum6TAMF6aiSVcLHIGFrmVZg5wxdYmB0PNQPNz9+v7UwIBKCJkLgEGiuIp+Vaczb+S44FIUe0x/zhpcHOwe4dMr8mOuOqPPb9ICvz8GyaPCvZ1z/s/J3q5vxvPlxAHt/X6OVgY2zE6Wj3jTZptTEfugc7Djm2ZPbUbs47NGbhK0/kK2zo2RIEEWqlMHF3/Ted6lOdRXl+GXGSW6LVtWeFuni7vPcPnGTar2t2P5Ar8DsraD/hcJr2rQp33zzjYK3c+dOAgMDcxMpm5Jp1sz6Fx6t+EcovOvXrxMdHU10dDSgX81FR0dz8OBBbGxsci00X3jhBWJjY6lVqxY2Nja89dZbuX1UqVKFpk2b5pZfeuklbt26RefOndmxYwedO3fm9u3bvPrqq08838ORv9HqRfXzvbs31VOXBPRSP3wO6Faa8ZF1sHfUfxQOTjZMi67DmKW+tBvhRfvhpRk+ryI1WxQjsJMbNjY2tApxp7yvMxGLy+PorFyx9htfnFfXelG9voPacKpo2cGOiKHptO5kx5JIR9p0Ag+D1Vv16jqKFIHV70L3rrB0HkycCcvehJ6dYNV80/2vmg3xX0PMIqjhA20bwdBZkJ4BkS9BHZUjnrAOEPMSxK+DmBngmPMsy4IkM7uxfqXh8MsQ8wwMbgROJn7dtUpDEx+4mgiPFua52DoQfN1gkcaMNuHtYM4wbbKqqNBLWa6pcpbiZPCBHH8HMpLALwSKV4GWi4zbtHoDygZCl2Xw2Wi48yg7gk4HPVXky9cx5gEkXoHfv1fy7iWBTy1j2c4jIagnvBQJ1erB/BiIMDh3a9YeKvhClxDoPkh1SJuRo7E7dAz79ZHYRVhOX1Vk4OPVXFZiMjfDZvAwKY1ig7tQJvJVHOsrbQA8wvugc3QgM0n5InJlQTQPEx8fa5QaoHKA/AglO9Q2WZcD97qmFWa/wxFGvPtJ1qWogv/NCu/evXscP36c48ePA3q3g+PHj3Pp0iUAZs6cqTAsHDduHBcvXmTq1KmcPn2ayMhI1q5dy7Rp03JlJk2axM6dO1mwYAG///47CxYsYNeuXUyePDkfM9SIvydmtRLvvPOOAEZUpUoVERHJysqS4OBgsbGxEUDc3Nxky5Ytij7c3Nxy5XMwdepUcXBwEEAcHBxk+vTpVs0rJSVFdV45FDS9gUw5MUjBm3q4l6rsitR+Mjqqicm+JmysJ59JZ9mY0FqCQ8vIRwlB8rm0kVfjairkZmz0lT3SSPZII9kvAfJdWm1F/fyYsibHGDWtqOyK95LR04qYvS41+vMcErnGvMz0Z5AT36jXxS1F5Ddk4xzLY22cidzegoS2RRI+QWQ7Ilv1lPAhMrCF5T6C/ZCEt5G0ZdZdJyAbeiKhtZDbk5HpDY3rKxdXltPXIp+8aP04uRT0iTGvXHdludHb6m27xwnTRHguW2g0zfJYw+OERSK8ky0MixZ6zBMqBAqha4X3UrXPeUu68KkF+dkbhc6hwo4rxnULNwo9Q4VFG1Tb6rr1ELtz58XxfLzoQvqJw9K3jGSKrporDj07SLFlr4pTaE8pm/CzlIx7VyFTYuZI1f5rXN0m7qEdpN6Vzar1visjpFRoG/FbMd7sNRbzLyttDr8ujaLGarpvbTYOlsHxM6VTzBAZeesVKdvcR1E/Nf0lmZryvACSkpKi6fm0DOQDK2jZo7Es9Z8XORktDCkn68WwYcMkODhY0WbPnj1Sv359cXBwkIoVK8rKlSuN+t28ebNUq1ZN7O3tpXr16vLZZ59pnlN+8I/zw/snIcffzxT6rmtPw2F+fPXCAfa8ddyo3q9tGQJ6lqNYaSdqti3JJ5OO4N+2FOmJGXw87Tcj+T4zK7Nl3p+55VfjanIvKZPFI84o5ObEVSW4p/5MyFYy+fbTFPwDHPj96H0y7j3ktZHqVk6vLnfj158yqNvYntcizGyx5RMRI2DpbFj/CSxfD8fyHLuuewNKuEKvSabbvzoUvjsOYzrD0DyLgriXIag69JkPe00E7W/mCz+o2EbEjoGHWVC/DKw4ALfvwkYTO21qGFMHPjBxjreoK2z9HSLHQdga+DHPx9RicGnO/JbNrd8e+4FSvzVkOUJyElQfAvG7wacnpKXCzwZv+5VHwp+RlifYajlc/wnaLoUfZ8OR5eblS1aDiB/A1R1+2wprez2uGxcLPITSlWB1GIzfCPvWwa4Vxv28FAtNesK36yB6HlyzYJhStQ6cs/JA1AB2k8Kxq1AWSUvn4aYYsk8b5xx0iQgjdfnj4w/XUb24szbObL9e0weSeSOB2xu+MStnDs1iI5CHWbjXL88fK77FLzyYM+98w5kV+xRybTYM4srOs1To6Ms3YdG5/OBFnfhj6yl6xQ7EwR4Wuy0kJSXFrFFJzvNpNVDEirmmAWPBYv//Rvy/sdL8J8K3QwV0Oh2l/Uuo1jcOrUzQ8Er8GPUnkz1jAfhx0yWT/SXfVDqQ3kvKpOWAkkYK727S47OWO0lZfLs5me82CzNWleXILtOK7PUIvRtHXNR9kzJPgsre0Lo/7FUJlDCwMzz/tvn2r+uTY7Pf4Lm4/WfoZeG8MN2E721yOgxvAmTC4m6w+kfrFJ4pZQcw7ZHBX9XpxnXff3TDmHnsu8f/X3p0k/40Yejg1UabwtvzSFH+HgU1R1iWv3UGXvWAUXGQlqSsS0uGYiXgtUcJU19tCBHR6grvTjL8tA3eGWV5THhiZQdgW6M6Nh7FSAsxfZ32tfwUZY+3plhUeFnJ90j//bJZGUt4mJxGpeFB2JJF4OL+ZCSmkpGUZiT37VC9Q/XZKOWXcO+0rwB413MhPT4yY82lAmu3Kf/LD/1/xBne/1csKLeGo1FnOLtT/ccSOLASx7deJjLsB9V6Q9RqpbT7D+hQAgcnG16IUv6I2wz04E5iJhGtztLJ4yTfbk5h9+Y7tPf4nRWvKF0iTKFYcU1iJtGlA/z6nZI35XVjZbfgOf3ZXWo6/HDcdH8BVU3XfWA+ZRsAxx69R4w2MHZxcQDy2GKE1jXdR0sLvnkD/czXFwiKVITAtZCl7lICQND7MCgeqo9U8k+uU5bbLAIvE64LX8+Bk58reQ0HQpLBd/l+KnRX0ehBA/XneP9D2PXrhSSZ9r0F0BUvhmfMO5SN/5pSMW+TtuewxX5vffAFqT///mRzc3ls5fxn1I9s9pjChY8tj62G+8nWvZBaY7CSQ/9VFCq8J0R02Dcc+1i/ndPjrUa0nlKLaYd6UKmJJ+vD9vHb9iua+3r4IIte0yvmlkPL/ciP2xJoM7gkUyN9adazBM9HVuLnr5Lp6vErx/caW29cOmverSEHd5M1T0sViUlQ1gumjzMvF9oDHOzBMwiOnDYt52egbMZ2gfg10NmCq5khdhmMcS8DElMhbAMkpsHOs6bbVjLYve5QQVnuXRViukH8GBhqwr7jiZF2AQ6PgnMfmJbZ/wz8vhZ+t7AC/HYaXDexnL1yGH7douR98Rp8ZLC12nQQlDHwRe0YDvaO4GiwkVa7pfn5GKJOI+gz0rzMqDE4HDuM/fpIcHTEprdy9eP0otLaVFLTcQnphH0VH4qGdISU/MQhMY1qbw+j3FDj68y8p39BubL1GD+EKT8XV7+SdN49gdLNKxm1U4N9EetUUqHC045ChWcF2swxbbEFsG36z4gIixpu4/yPtzn26SX2f/CH5v4DOpXi9PfKt+Z7SZkc3JbI4pHx/LA1iYUjz/PTjuT8TF8V3UKMv/5Vq8OLs8y3+/EQeNaA+xbC+JULhu37zMsAfPKtsrxkHFQpA70aq8ufXAirhhvzLxh4f6z+Hjxegqij4PEqzPjK9BzaGTyPqhgowJtpsO0POHgNNuR3h67fPG1yiRYcmP+Iyd/4tcyEuLl7S1kuWVlvoXl0m5Lf9yVYMhQSDXYTPMqo9xvYRp3/68+wxYLSXvsBcuo0tr16QlIy6b0HKqrvz1Vut7oMehxOMCsxhXs78+cIrgbv8I5UmtIdz3bG1pl2RR3JSLzHqQVfGtXdOXuLL9u+y40D5wFoubIv7aMGmBznQap1sTH/iX54/1g8VZOY/+fIsYIK3TNYfILKy5TL4xQWSj2WB2m3ajNDAd1KSecIH9W6relBMm1d1Xz3Xauhg7yx1l1CRjup1p9ILG6y7bMRxrxmjZTl9+c/2bUP7YSE91Tywrsh2V/orTNTo9XbTer05Pc9h4bURGL6IWu7KPlvB2tr719Gg9ysd4RXYoTILGFwtBBswury76ShUZZlGvayvt/Atk82r7BhYr9po0U55wlhUi77jJRN+FkcgxsW+P2pF/OcBMS9oFrn1bWO5n5arxsgo26/KiX8S6nWT7wxVUC7lWYcyDdWUNyjcayx0vy3oHCFpwFRrT7i0v4rvOO9Cr8uj5cB2yL2U7WDxqCMKqjWUm/scvSLm3y5XGnM0mZoaV6M8cfeUUdAezejti6u2j66E4ce8MqoRJq3M3YqDxvvwE97TJ8XZGXBCAObhEF9leWu7SDyLahvHApQE4o6wyIDH+i3n9G7igE4O0J4J+N2S82s1KyFgx209YZvLij5z+3V1n6rZTcxcCkKwSGQbQO+7eDmMQheC74ajT5ModF8KBus5JUPVpc1h5YTINPMuWEOzmg7j1Yg2DojDCNs/JCsvZa3CdLf3Ujy1Llc82hExl7L0V+KtKxvxHNp5k+Ft8aoyt+/nsSfC2JV62wcta+b7FwcWOv5Okmn1M/bz+/6U5Vvsr980H8Wf7fG/SfDkh8eIFU7qq/MAOnzdqCM+aS5jItuJq+f6GzV2+Szq6vJlxIss+NqFMjb6bzI4tKyk70Rf1SEg8k2y99DbiYqefcuI9NUVn6GNLKPtnm9PxWJfUPJi31V6XuX9nHBvqlbopXtkPC6Bdzv73eEXSI8G6fkl+2qLu/RXFu/7WKMeeEJynJghLa+RkY/nXv6XarQU8VPreMAzX3YLVmsKDsumC32A3r8T78X1lLjFQOkeB2lX2z5Dn5Sc4L5z7bDCv2zQusKbzfIj1bQ7kfjFK7wCmE1inmph+Oq3LwUTYZVoeGAStRo58X2eacYukp7rKrWofp4cveSVMI95UH4gjK8FmU5XNp3X9ynRQfjELPVapn+CuzbCw/uQtQGOH0MPloPzs5Q00zw+9rVIHIuLHvJ4pQACOsIyQZ2BQtjIDGPd4WTA4xoZdy2cWWoaSaymq96sgiLcLKFRcH5a2uIFieX4BnzDti6QFIifGkQdUQtjBiAz1B1fl4ER8FDg5vnPxK+nQgdI+GZeOgVAyU0ZivISIUR0dBQQ4zO0AUwLRo6jTctM3gm1A2CjHSY/I5x/dXz8GYkTDOdASEHNgP6Y78+kiK//kSRTauxDw0Befo5KsuGd6NJ/GrKh3e2uq2dswPVw5VfpIp96+FRWz3jSQ6q961htt5oHP55ocX+sfi7Ne4/GVpWeNPPhSrK/ZYro6l0nqmMlNJxsq+iPD5Sufe/7GQzeSGmluzIbilfSrBsumL+LGJujLf8lF1T3ogyHWHFHL0frTzbe3aajSx+z0bBi/kEeZCM3I5HQkOQK8ct9xu7HIlZhJyIVfK/fx+pXhE5tAaJnIn0C0a6NVHvY+MUJDQYWflM/t6wE940XRfZ03TdoOrI7bFIdGdkWUtkRHVkXmOkRgnrxg8YX186ZX8qFeS0sDJWXc67n7Lc+oTQMEYIWGO+/+AoYchtocpA0zLewUI3y2dfufROuvCuCMvSLMu2GCRsTBCiNciCUD9YmGQcLUU/rvmVpc2EiWJ79k+x6R8iLpfOiNMnHyrq7do0s+pzqXhgjZSPek2TrN/aKVI6tJU0PbHU6u9fn6sLJegTZaSXNtFDZXTqPOV8ulWTOuMbyuhzEdIjJkSmJE8X0L7COwDyixV04NG4/8UV3n9a2T8JAkfXpEhxe96qGpXLazO9Dld/TVTIXTAIGu1dx5UJMY2pElCM80eTada3FE5F7fANKMqFo8kUL+3Alnm3aNDWlRP7U3i9l3HakLy4+mcGs4deYdqSUsyLLkvyDb2F14XTGUSvtBxNZd83yhVkzRrGb81vL4bUFBjxKA1a1Gbo1QnizJyjTX8L6leHla9A5GzY+i2UdIcWj/poqCGPXdg7j8bTeJYGML4FPNcWjl6E4s7QuRp8mcdvf2g96OYHdqJsNy0QqpSA8d/Ax7/rKa4bRNSGrX9CL2PjO4s4uvIYAR0PkdWzDtxJUlZWHQDnouHyp0p+6jmwcYBDKjfIqz00WgF3joHOHjblWR0Gr4SE3+BEHqvFy3v1pAWtpwGPfMlOfW1cX7U5lKkKtnbw3Rr4/mM91QyGSZFQMwi+fE8fpcVOBxdPw+crH7c/tldPajhskP+pe1/4/LPcYvZXX8K7ywBIjdmM3YhQhXjWSTO+Jo+gK+qM3NPHqbzQfDTesQupEDMHl/pVuL0iFo9BrflzyBwk4yEPLj0+Wzs7Sv8lvBG1x+IYhthS7nmK+SmDwaffuIedsz2dYoZwPyGNPeNjufCF/gvq3aw857/+g3INza8ADWGtq8F/2S2hUOHlEzdPJlKzZ0UF7+H9LA5+oPzx1Wjvxeldj0N91e7oRcwLJ6jT1p1abUvy3rBfGLW0OsXcHbhy4g5DPfcAsCfqBuWrmc5ekIP3Zuh/nF9GpfDGxrIMiiiBHVl8FXNPk8LbtEap8PoO0CEC4XlsKX76WU958ZsZnzqA+Et62qzBabwgsbgvOOn0yotM8DKInPTjZXinI2wzmH+F4rDBIGzZ77dh02m4cId842FOpGtnZWopzkUbCwM8TDbdWdA2cHQCd184t15Zd2otdI1TKjxr4FXzsaXQPZU5tJ8EzUJg33q9wsvByb16qhUMs7ZAMXf9U+X2VaXCMwc/A6fGPMoOgHhlCLHMdVGKsty4bXGIHGWXg9Rvj+C9bDK2ZFI0uB6nG5nZmn0C3D2rNEw5OHELziWcuPr1aUo39lHUbQ+LBeBUlHU+L4WRVrTjv3ztT4RLB//i0sG/FLwytd2N5La8cFxRnlRuBwAHoh5bZe6PusoLcQGkGeTCu3LGusjpr4RdQ0dpeoW6kJ6arbndiHA7np1qw69HBUdHYfs2y23/uGjV1J465vQAP09wtINHeTyJOgLrDIz1ziaAxwKINrA2jdhl3OcMCy5cqzpCW3949kvYaSJQR5mBLUgCuJeqLmCIC5HQ6GNjfuONYOMIGYlwYBIEGqSnuHUY1qtn5KB7FHjVhQ/MRPfPyobURIidBL1UUl+kXIeVYTDARFqME3shxAOe3wguxWBWL9NjGaKYm3bZR7Ab0Iesnw4jF0yH6jMHeZQKKSMxlRsLNuWrD4/2dUj4xnqHzG/DPgLgTNSxfI1riJwzPGvk/6soNFopQDi55X+z4F7SQ1oMsG4rQw0vh91geKtrWBMSfMpLDlSqYkPPEFt0Oh13E9QbjxkKQ/s/8RT1Y/aD0V2UvAqloGM+c9B5uUJIAOgeKbutxyFMRW/k4JXv8jdOXoz7Gk5ehwEmosHUHVmHzNT7JIZNg2YmMs0aGqck7YevDRRX1WlQfghc3QabPeB8FGwuD+U0GlJkZ4N7TQgws4qJGQUvecDhKHhZRXFumggHomBieahlJm/SwjA4YpwXzixSU2FJDMQe0kdf0YDM6C1Gyq7InGk4jTDjWJ8HTnX9SNm6j5MenUg9aHxsUP/kaqpFv0SN6JlUXaruppCZovEl5imjMNKKdhQqvALEw9QsRsa0YeaJPla3rdfBk2NfW96aAXg5qgJTlpVlytIyNGxnHCf98N77vDpKW18AdcqlsWNrFnZZem1RxEVd4S2ZCy6Wd1k14eApaGLgu3fxJnx91Hy7qHEQvwDGt1byR0fB1jwv25bSip1NNF+vFS/shFEmFgi/RP7Kt54jSIvaBq3KQ69pUMUgLJWdi3rjvMjM0G83phnEufTupW2S24fC3pfgqMYtRks4YUGhVVTJk2cOXQaBvQP0bqiPvpKDcZPh/Q/R/fgrNmvWozN0CjVAVvId7q/71KxMDoqHdSYrSX3Lv8y0/tiXLkHi5z9StEFVrn+s7gOY8rPlKEpdj8zQNJ8cuFUqTvv3VBxPzcDJFpzttJOTreU+/60oVHj5QEhUR6aeG0a1LhWUFSL8tu0irl7OjI4JZk58T4LHm4mKnAdjyn3HN2uuWpTrPtaDDoPd6R9REq8KjhzaZRyRPT9YtiCTxEQhMVFy7ANy8eZsiI7U/1jqWvksM4UfT8HotyzLnVgEUzrDucUQORq++hUQSFJ5ub6cpI+b2T8SPreQjNscJteBFRrDQp4xn8heCe+axib/TuWgqL+6fA7casO1rXDUIM6lQ3EIjoYmy6CaBSugNBUn58ZaPObzgbZhMC0SKqlsoY55XVnuPw4cHCElyVjWzx+69kdXsTI2wcHIaQsfamKy2Wq3yUOoeHgjzkH1yU67T7EB6qtuyXjAz54h3IrazSHfkdzNm/dJBTXmD6RKRHsjvv/0DrjXK09wzGhC4l/FP7y5or7mWOPVbMr5ZL551rqoCnZ21tN/Fn+3meg/GWpuCS2mB8qb2ZNkrkyWfpFtTJokPxPXWlZLqLybZsZs3IBaDytjUeabtLqyXwLkoNSV/hHuZmUXRnnIrngvGRLubLVJdV66cx3JTkDkBpJ63rL8lDAkfgcSvQDZMDv/4wISOw2Rj5C4qU/WjzmqV1JZjmyNrGtjvs2cxvkYKyZdWGBFktUc6pYmBK4z5jeJFIaLnlqq1Cv6MAgb1idK6LX26dzT/jPU+UHd1fnL4oTjKu4N8UnClXTRrVdJkKtCHom/mK13i1D+Fr1jF4pP1Cwjucqrp1p1vd3S10uf7A3i1UmZjLlaRBsZJitkmKyQUbJcRqYtVNR3iB5stl+tbgnXiyBpLtrpehFt/f8b8V/W9flCSX8PdI+s2eoN9OPTkd+qyqUlPSA1MYOPJx5ieGQjagR5sHvFH7iVsmPzTPU31RGL/fjuw8eGMGPfrohnOQdsdYJfg6L8cfQujk6PF+VVahk7kgOMecmNo/vu06KTE54eOl5c5MqmFdYZwABMnQw//wSpaVDUTc9zdoaYVRDgD0dOwIN0CHtO2a52VX3g5yplQB6CowPcuK1PEfTF93DAOPetSSQ/WsCa2H0qENgaeGIM8gPJBFNZ18L9YUpdeDlPKqQ5/eBlld20In5lcfpoBYl7H+gzDDgAtUfCbxpy3QHUi4KsNPhLxdy10qDH/5czWGH4j4VTqx+XH2TondDLBsD1o1ClDXxtsGLsuwoqtYBFFpbxbcbpt1h3m9giTbmlznctqc6/k6S3Pn0nGpJugAiULqlPjPt8OBIYaHY6jq9Mwb5mNXBzxS16Gfe37SJj0zYjOdvSykgE2cn38BjWCRt7GzJvJGFLNnalS+DRrRF/jl2sOlblWQMo5l8OW7Jxa1CZu0fjsXG052HSHR4YbDsUr62PipCRmMr3k2JotqQn7WKG41a5BAenxJJ+o2AyOdjZ6T1BNMtLgQz7/xN/t8b9J0NthTcgppvMlckyVybL/OxnZUhMJ5kZP1hCo1or5EIjlc6wE+Oay3rpL2vTeqm+zfWcVkFe2KJ0Qp8VW112SgvZLU1ljzSSPdJI9ktA7gpvb6rlsGMr4jzk8O2S0qCpjUVZcxTcDIn/EQntgyScQOSSnrL/QKLeUspe3Y3IsUd0SE8bZyllGlVHJvSyPG76ev0KL23tU1iJqJB/CeT2UCR7LBLTDonvj0QZBJG+Ogi5PRJpUgbp7ItE9kdSV1noe1mc8KkIo+K0zcV/pVAvRmhg4LBepJJQvL7QcK0wJFsIFaGNQZ/F/YVhl5W8Z64KNUOFSQlCiJk5VA4WBkUK/VaYlolMFyLMOIt/nKjO32GC/+1VoVuo8HW80DNU2H1OaNzSZP/2e3Yb8Vw+XCol5aKUlItSOu2kpnvsd3W7uIW0keIhrcU//hPxCG0vdeI3iXtIsBRrUl0qvDVGtV2djROlXGiQdEiIlJ7ykTSKU18RDkx7V1rHPaPg1ZvZzuycRp4Ml67r9SHTtK7wUkog4qGdUh4FULB2hffee+9JxYoVxdHRUQICAmTfvn0mZYcNG6b++/L3z5VZt059VyI9Pd2qeVmDwhWelbh7/fFbnE6no06IL3ZkUaqyC3YOtvgElODg+6eIGqkMspuapHcIt3eyYWJMIEe/uMH3Gx4bIWRmZJOWkqVsk5zFncSHrJr0BxOX+uDqrvy4nJxt6BfuzqcrTFtgzBqfxK2/zLsZTJhmQ78QHaOGZPFHvLrM3h/At4n+/6gt0CwQPl8N7sVhcA/45Qy89cg9q1xb2DgHvj4IS6fAju8h7DVlfz//rqe86BwAy8bAih36gNHH4sHxkUmZkz1M7wxv5cMBPAcj60FDLxhv5ojkVBJ4boC4jhBSUc8r7gDVXOHMI3+8cgbWn1/Gw9sHLAx+JwnKoj1pqo0TuLeFY92U/LTzkAYcGgWOHlCxJ/xlYESSfAo+9Ib606HuM/Db+/D+o/BzJ6PAt6vpcf/cq6dqxmdSuTj2Ffz+vTG/5RBo2gNc3GDmo9Xa+WPg4wc/7YDsLHgzBvzqwyeL4fY1KOMNbR7N7YtH/nVbo4z7Bmzeegedewl0depg074N2d883l1JHTYJW7ciOPbsAE6OuMcsxSGgJskRr3H/y/1GfRVp05Cz5R7fh+TN3wGQEPVNLu/uj+q+Jr+G6Q+5r0btp1HcVB6qHCj7T++ArZM9Dwyynt+7pPz8Xau44+jqSPX+tShSypkf531P8BvBquOahC3WWWPkIyJbdHQ0kydPZsWKFTRv3pz333+fzp07c+rUKXx8fIzkly5dyvz5j11YMjMzqVu3LiEhIQo5V1dXzpxRnpE6OanvXBUEChWeldgx8Tvs7XVcPHCNnkv16bW/mLSPPkubUC+kMrZk4eVf3Kido4v+Vut0Omq1LcnnC5TOtKUrOVOvvXLLxcnFln4e+n2zXVG3eXFjZTqHFseOLFISM1k66QoNW5s3m7Sk7ADupECrxlkW5fLih8PgEQDBjWHLcvA3CNcY9rL+b9R27X16lQDfsrB4BJAJviX1fxNTYFIUNNaWP9MkIo+Di/ndsVxcfqTctl6EXt+YlwU4acne6NvPoVwP8DOjSPLiSiScMLWp+ggPHj08i5nYgnT3h+JV9H/zooiJ+J15ccbMRSddAVGJ8TphjX779Z1hEL5Uz3vjM/h6nf7/biVhXhycPwmfWW8xmh3zMXYfRWNjY4Nd9y48+EZ5nJCTDV2SUkjb9h0OAf5k3VC3Kkr71nI2BS14mJSKbREHI34x/3LodDrKtK+u4MdvUibkvfOH/mX11rHHRxnWOp5jh3UK79Ej4c4dZUQFR0dHHB0dVRrA4sWLGTVqFKNH642jlixZwtdff83KlSuZN884x6Obmxtubm655bi4OJKSkhgxQvmd1ul0eHk9uTuWZjy1teO/AFpiaealKsFeMj8hVJakDTGqGxXZUN5N6CnVgz019dVvennpGeFlxJ8bV1kWxFW0al75pQ7tkGM/aJONXlwwY26chCR8iIQGIQmrn8xYZWUPZHygkvd+Z+3t49oj65o//fucSzWjhGortcuHpAsDRRhgwhBm+FWhWqjQ3sA4pasV8TVNURtlbkjajhFmmIgXmpdeXCf015i9wQTZvb9SHK5dNuK7XTosxTYuKdDPpHrU81L/0BJxKF1ctb7D1XelXqRxJoj+6auk2UZlHE3nsq5Wja15S7MiIpW1U0pF9fFmzZqlOk5GRobY2trKli1bFPyJEydKy5YtNT1Lu3XrJu3bt1fw1q1bJ7a2tuLj4yPlypWTrl27ytGjRzX1l18UuiUUIP7Ye50ZHlEc/fQCw6NaKOoci9oxwWMrv+/V5h/n4+9ClspL9JHdd/lh+xPEurICO3dB+CRYuwzO/QhjBpuWfWWZ6TpTWDvVmBe2FDyGQdR+8BgLHxjYBLWtAT3rwviW8IbKzty4PBnSx2+DVgarQmsO7JPSoL2ZbAwFinLjwXMwYGE7p/wQqDUfPIPg4aOtNEODFs+GUCsC1peDM1HwjYH/WvYD6LnxyeZbvp6yfPc23LpiuV3bgVDJCt+W0Gegn9KVI/OZ8WRt+xyH995BV/nxB5ziE8jdsMna+34EtyEdsSurXPV6juhIteiXyMwWjjWczIMbyaptd5aboFcXedA0ajTXvvqNH8KUhknp157S79YG/bamVnr01L98+TIpKSm5NHPmTNXub9++TVZWFqVLl1bwS5cuzfXr11Xb5MVff/3Fl19+mbs6zEH16tVZv34927Zt4+OPP8bJyYnmzZtz7tw5Ez0VAJ6qOv1/DmtXeHlpbGwrGRsTJPPiu8nwyEZSpal5FwJDei7SV6o1cjHil/czzl/n7Wsnmw6VlwHji0lQV/XM5jnUvqedKr+RiYwFOTRzorJc0kLmgE7NkPhYJHqOns59gozrjgT6IfNHI9EvIllfIlHTzPczrIXpuk9GKMvjVK5hTED+3+5jNGY8B6RhBWR8F+S3L/I5XlC60EqEIAvZBxoa5L9rESdUtXLFVD5ImHhbaDI93/cG3xb5a/fyBmGXFa4Zv98R5r+b/3kaUOmoN8VjwSTLchN6So242fkao/GGUeIXYTrLe4WeNTX1o3mF54dIDe2U4qet/xxcvXpVAPnhhx8U/Dlz5ki1atUstp87d654eHhIRkaGWbmsrCypW7euREREaJpXflC4wssHmkbUpeP85mZlkq+kERhSgasnUlg/8mf+OGhdaI+3R8Zz5mfjw/ArZx8Y8S7HZzKk4RWiV95l/3Z9BvOB49QjeHyzVT2/3s8W4kbGGFh530oyL9+nFVQpD/3bQf9WcPI8rPocDp+FGWv0xijJ9+DLw7DKTMQrNQfzHLz6hbK8SuUaPrAQuUUNQ30hphXcU7lV/q7GPIBDF2HlDog/D6tjijBwprexUNAIKGcidFbiV/AwEc6MhWqRUGmOst53DgTEQIaBKfuDJHCzMhrAlf2wzBMykk3L1LIQLShexWglB5UDYOxSfQaFIbOUdXOGws879cYrm06ot8/BkvXg6Ah9BpmX0wjXacMpNrgLxSMs95edlkFm0j2Lcmr4aehasjJN57G8uNV8BhSr8ZRTnnt6emJra2u0mrt586bRqs8QIkJkZCRhYWE4OBifdeaFjY0NDRs2fKorvEKFZwWCZzWlQlA5mk6sx1/Hlb5GgyKVoTliIn5m76ozfGoQPPp/hcyHUqD9/XHBOvnQzpCYCP1fhP6vwGWDQB+7j4NHCGzaA+NWwoSuEL8CpnVXym07pv+7ciisUmaF4awJdy9LGFfHfH2LknoLzQ6ljOs81M/0c3HlBqx7L4NP5l02rty/Dq7+bMwHOPcsHPCAm1FwZiQ4GVgBVZwKZUOg3EAlv2QHuK7uC2oRxz4wXRdips4S/jwKqyfByf2w6TXj+nvJ0DYEKvtD6DRl3ZAJ0LYnvLoMvv1GH4Fln0pkbzMofuQLVb5jTV90Oh06J0fcp4eZ7eNW5FfYFLHwYZuDwc/Pf3Ir1WgrBQJrtjNzyAo4ODjQoEEDvvlGacj0zTff0KxZM7Nt9+7dS3x8PKNGmQ8LB3rlePz4ccqUKWPdBK1AoZWmFdj72kEAFlf9MJfXd2VLXDycsFM5HNo0vmAswdTwyUlftn6QwMdL1JdaL7xVnE/X5j/s2MRwWJaPTDMrXwSPYvD1j9B7+mP+I6vvXNSuqCy/ux3a1YaaKgsjgFNXYHk+n+s5aFkeGpWGRUfMy4VWga2XoJfKePsNlOyRUGiQx4o+Yg7kpmt4BIdBvXmQ4QVbzFgmPrimLKccAP8YKB4Ad4+CrRNkov8bEKM3kb34Pmw3ke2+RC1IsrCCyovA8VClFZRtADeOgnNxCIuB1L9gyyTt/aih81j4Mo8TfNtHSlungyoGAVU3vav/u3ur/u+2TTD8WauGS49RNw3WPQoEq9PpcPSvbLGfrNT7+nO867dJPab317l/6SbJ3xpHTqgyqSN/LH2cR7BEfaWpvkedcrhWKUmTRT05tcKSD4uVsMM6JZYPt4SpU6cSFhZGYGAgTZs2ZfXq1Vy6dIlx48YBMHPmTK5evcqGDRsU7dauXUvjxo2pVct4F+K1116jSZMmVK1alTt37rBs2TKOHz/Oe++9Z/0ENaJwhacBo4+NpGF4PdU6Oydb6oZUIeWqdZHTPSsojRMq1Cmque2sKB8q1XCkah3lG+iA8cXYfNiLBkGOZGVlszjKzajtO5HKcb8/YccwgzCM61dDbYPnUA5WzYU61dXrAJwcIaQdJKtERhnZGeI3QuRU+PYX4/qkezDAxAtjbQvGI+ObwAaliw/dDcKY9vKFAwZ6xRDh1fTBdc0Fn65QBNqVgSalwMcZYvpD/CwY2U5d3uWDt2Di2+YHNoRjJUjYBroSen+8X4bCg0S9kigbAi5VwMnY/ykX1cdZN17Ll6FCO/h2Nvi2hWwbqBsCDsWs60cN45bAKzGwKR6ej4QFo/XLf4D2Ayy39zPxZQRs2rTC/vWXFTzdbfXjg+x7aTxITOV62Es4BSr79N44i3KLlLFFk745SvF29Sk/sRf+6ybjv24y5cJaqfZd1LcUjWMm0CV+Ic1jxlExtKmivlxH/Y/G1smeDjFDGRw/k1rhTRQydcMbMSZ+Il3X9zB5vaqwxbrtzHwEjx4wYABLlizh9ddfp169euzbt48dO3ZQoUIFQG+YcumSMntFSkoKn332mcnVXXJyMmPHjqVGjRp06NCBq1evsm/fPho10pYxI194aqeD/wLkHArX6F9dplwZr3qwXH+QrwzeaDqmZkFTneZF5Mvb/vKz1JIDadUUdQ2CHBXllbFusizaTWYvKyoz5ztJwxa2cuKWi6yJcZKf4otIZIy9bPpMGYGlalXk1FGkfx/luCe/RSYMtzy/q1/rI6tEz1GvnznIdNv0KCQ7GtkYruRvHImkvmt+3PQ5SPYcZLoZIxc1WhZk0E8oIsORtIHa+1jZBQn2NV1v27Kx8NVtYXy00PoNZX3AEeu+A/XjhG4iBMYZ1zWJEnrGC61ihMH31Ns3fV3bOP03CgGhQoiBS0Oft63/3r4aK+wS4TWDOS+M09+XekFCuJl5/XheWBUlfH9SeHeNos7l9iVxuXVRwSsWtUS1n1Ix6nMvOX2I1Mn+QSrFvqla7xZcW5olxEgb+VzqRE8zOc+mcZOlv6yXQbJWWsQ+a1QfvDFMhia8KX6hDWREwhsyLm2Oon7s1enyvMyWqSnPC1hhtNIckWDtlPLI1ea/GEuzUOGZwZNYaeYl3xamfe+ahBj72uVQw07FZcO5ehIyxUumrKigqAsILiK7b1eV+THl5KWVJVXbL1jnKscTPKRxsL2C/2Gck9yUopIgTrJira3Zua9ciMR8gMRaEdpr4+tI5MvqdV7uynLbOkjPRsiyUciQFkhCJJK9CYmZgMQvQmLCkdvvIC2rqvc3tAESMwTJno/Im8i6XtZ/PtPrIod7IkGlkNsDEQlFsocgMc2RWTWf/PPPpQ6TleVK04WWWUL1GKGimVBeecm1oVAmRKi5XMmvHC4MeBRqLFSE1hp84vJDzUar88v6C+2NH/KA0CNCr/CmG4SSqlBN+7hLI4U+g4QffhGaNBPbXXvEfn2kuNy9IY4fr1fIOk5QhrVyHtxdPKIXi/vyF1X79l73stSVg1Jh3Uyzc6ixcaq4NTU95wbrxkh/WS99EpaKR9MqFq+p3Yb+0mB6kILXO26g9QovGJG22inlkfXxf1HhFW5p/g8Q/71p37tx75verilT2ZFyvs48u9gHJ4OAKkf3ptHW8xyZGZnERar794hAPY8EftqrzKSekiS5//fpb35D38kR2jaFhVac54W9Ci4m3MmuG+w27f4Vtv4ME9fCpu/BYyRsOqA3VinhCA624DkF9pkw3CrqACF1Hid+LZKP7Jax5yFwK+y/CZ6fwNbLoMuGjCx4rSAN6nYuUZZd/MHGBoqHgI3GRIN3DsFfm+GkQeDnkq30252piXAgDFI1+MTlBz+sUedfOwXfmDh7qVRbf/7YymD78qL5tDsKTBoJWz6GZnXhxx/IatcKycggK8uOrL1Ki1FdlvIM1X3tXGwcHUiMmKvaddLn33O+1/MkfrbH7BROhy0m5aDpOXsPbMLVrUfZ4jGJhIOWc+XtGhrDzeN/KXgXd/9psZ0RnrKV5r8J/+FL/9+idmcvfvtSadZbt4MHLm52TI+pQ+UAV2IX/MHODx7/AKrU1T8E7yRmsj1SXWm+HHbD5JgzRqorwl4D7bBFbzbt5ARr1sFoE1GsXIqARz5y4KXeh6hXIfR1y7KGCHukXKMOQFeVlGp5cfgyJKaBuwMk3oElBy33v6wFTMzzjIw3uE0LTsLdDAiz4KrxxCg5ENIS4Y9J4DNfXabsNCAdrlk4yD/5CpABPz2yPjyvHo/yb0H9LvpM6A1NZH3PJzKf0fuz2PgrD5UzDp+gaORbONSpyt0pb5KdmkZ2kvFvwc7Xm8z4y9zbsueJ51JuaAuOjFmLZ2OlMYxzOTfSr6aYbHf5G2Xw2pK1VUyDLSHH8VwrLEcb/Pfi715i/pNhaUuzagdv6baoiaYtmeptjLcdy/gVkfUJbWVjQmsJDi0jkZebKup3pDWSOXFVC2w7atuBItIkyEZ+v11EEsRJ4hMcZcAQnVy8imz8EJk/VynfvBEyZoj5PgeaCNWVvhfJ3o+M7fZkcx4YqE2uZinz9VMMHNA7exfMPe1X0cLnHvW8uBz4SqitzJ5BgyihtoZtxzJPFobLKqrc4cn7mBAljNG4PVtA5PDhaosy7mvfeOrz0EI1J5nOAgFI9+h+1m9pdkakh3ZKefSbLdzSLIRV8KrryRfTtC0Dfv/W2Gnsr7NpDPfYTZjHd+yN+ouR3gfx8Xfm3cN1eTmmOg5ONtxNMu3Aag1atLWjR/M0ftyfTXXPNN548SG+HhlEbxIqlNP7906MgI/Ww8pF+jYHfoYPNpnvN/J1mGDgxzs9FBxt9DtsrwzTNr9O9aBnAIwzsHT85LC29idVEnoDrGgHkR3gR+XOEb0qauvXEnqaCWjdK6oHNi6OpDbvBL89yp7RYSW0igGvwZCgwc/C4QkjZlsDQ2dp3w4w2QrXhvFR0Hww2Grcni0opKXjtGENjnNeNimSOOqVfHVdootpi8GyI1tRumcg3iODFfySbWqYbONaxYNSjUz43gAPU40DS1hE4ZamZvyHL107uq/vSqUWZTn49k8cWvk4kvmVnyzHkbMWl06lMyHwF/ybFcMvwIlDXxtvhzRoXYT0u1mcOpyhud/vdysfZrduiqKcnKxXUP16QZTGMIsRQ+DrH+Bdg3Q5PqVh6Bzo2AjC3tDW11fHTdeFB8P4ZlDbOCi7RWz/U0+GCKsK55JgkZnn+bAK8OFF8/0n3oeYHhBQHY6kA2XAr68dGw9U5Osv43nQxMBP7te14FQJ/NoCGl5mLqoEHH1auGSggP37wm2NUS+8qsGRrdCgMzgWKfi55cU7K2HK4/A8ut79sCtqj83De2S8PMdMQ+tRvFMgmXdScSjpRkKsMuXXtcg9qm0qjQji1renVesOTow1O57/oNrw4KFZGSNY60xeuKX5z8bDhw/lpZdekooVK4qTk5NUqlRJXnvtNcnKyjLbbs+ePRIQECCOjo5SqVIlWblypVXj5mwZTE+ZKrPleXk1beLfviViDVWrbdoCMz5RGZMz6TbyIFlPa5aqt6ntZ8zr2vLpX0f6ciR7ORIzEjnxgnnZWQZuBhWKGctMr6tP8LrOzNynmLAKVaO4nogs0Gd3CO2MvP+hxmS7XuPU+a6d//bvDiC8mib0WG59u44TnnxsH4Ot/LZdhT2n9O4J1+4I76wQXeeuYvfuMnFMui1F790U55hITX2XOWwmeW0BUJUJpuNomqPA6S1kevYs67c0ByASpp1SBqCp/38j/l9saS5YsIBVq1bx7rvvcvr0aRYuXMhbb73F8uXLTbY5f/48Xbp0ISgoiGPHjvHiiy8yceJEPvvss3zP49zXF/LdtqBQuZb2cEeDnzE2lXxlgQORMfa4ucH6T2z59aSODZt05KTB2rYdRk9S7++3s8a8iwaO3N75OHM3xGSDlHFf/apffYbUAX8viA6FAQbhwea0gZh+MN3Acf2iigO8fwm9FeYAE8E2NjaETDNvwd4GtzXpPmw9qc/uEPUlPDNM4yt0kXrqfPuK2tobotbbUN5MSosclG1jWaZPFMR/DdsiLMsawtuMpdHot6BWC9P1ObhksLIsVxkq+kK3vuh27oAp4ciX28mcMJHsHfqswA+//UGlo8dwXzkLz5h3cKxfA9exfS3PIZ+QrPwtobLuZ6LT5SMMylMOLfZvwv8LhXfw4EF69uxJ165dqVixIv369aNDhw4cPmz6gGfVqlX4+PiwZMkSatSowejRoxk5ciSLFi3K9zzuJ2vfQjSHt35rQZ0Oxkk4O4+1HEOua2hxzeP0H+HIsihlEOkxE+3pGWKLjY0NwW10zJ0jBNQWQofCoGEQr6LU8qKUMkctdf2U5Zb1zbfv1xwCfSEsWL1+aHP43mAOyXminuiyoJ2fcXSk4fUgxB/uZ4Cfu/k5DKyi34ocuw9GGoSsDK8MncvAT+p5QwGYUNGgv+rmg1ybhHs3KBoEnpOVfOd64B0Jrt3UWqmjRHPwHgYNTbgN5EWHT9X53aIgPB76xEDtwXDHjGtDszEwYBn0VYkgExQGk2Pg3XiYGg3TouGDeHgxBvo+Bwt2GrcBCDSjiL0fnWUmJSLvvKWokuRkwNha0yZAaV58b8NWnNo2wcbGBs93DGJ4FiCKVi1NyaCqtD/0MtWntKP7by8p6t3rlqWot5tRO4/8WGhC4RmeFdCJiPzdk7CE+fPns2rVKnbu3Imfnx+//PILHTp0YMmSJQwapB75vGXLltSvX5+lS5fm8mJjY+nfvz9paWnY2xs7bGVkZJCR8Vip3blzB29vb6anTMXF1Y7s9Pu8XkR74jefgBI07O9NqYrO2OiESg1KcOloAs37lebh/WxCi3ypkN94pTFz+p0i414WdnbgF+jCjjXGxi6h0z3xKm/LoknGLgmLotwJaGLDyaOZdOtnhx1ZbP/0IXUD4Kd9D/n2y4fogK7dYKzWlYgZnIuDqr3yXMOrEJYPVwRzSH8H0tJgUix0rAphH6vLzWwB88wE8c/BJH9Yekq9LqYJ9LfSHSG2KyQ6wKhYDcLVBsONU5CRBukm3i7Kr4UrJoLt+syHSzMel6svg98nPi4HbAAHJ7h3CU7keajXnAY1x8Ff++DsGrihshrqugHiP9e/BlfvAbFmAiwPXgvnvoPus2DjSKjdBYq4QPHS0DgE7HWPH6x5H7J2QGoCzO4NY+dDRJ5gyt8mQhszbysjIyDSeFfH8fpV7Ivak52WRlqpiqbbP4JTcCClPltCxld7uRH6WBlVPRFF8pqtOFYuiy2CfSlXdDodRWt6c6zWWIv9qqHZxpFc2XqMtCvJVO5Xl5+nxZmUbb+2J1e/O0/wG8GsrLSclJQUXF1NpOdA/3xyc3MjZSS4mk9EoGz3ANwisdj/vxJ/956qFmRnZ8uMGTNEp9OJnZ2d6HQ6mTt3rtk2VatWlTfffFPBO3DggABy7do11TazZs1S3VufnjJVnk+IkLqhNSRgpHouK78O5eTls32lzRR/GbiisaJuYlxz2Sh9ZaP0lY+kp8RIN4nO7ipTo+vJ6GXVJHReVfH2L6Lab4texY14AyLcpf8EYz4gCzcUlz/ES/4QL7kgJeW3hOLSN9Relm90fqJziQFm3At8yyNtA5GmtZBlk5R1fYNMt2ujIYpJZ38kdoy2ObarqCy3LIcsC0bG1zbfLtwPOdwBCfJE5tVS1g0tbzAfT+P2EXWNeT3Gl5JRh4eLY9WyT3Tfjcj3Q8E/RmgcL9SOEWqonFsVq27Ma75OaBOX/3Ert7YsM3aj0ChEaBwirEkQPhHhUxHiHtEXIswymEPvCGHtYaFWE8G/obKuRSfLY3p5icOf58QpOUFc7t4Q2w7KMH/2nVuJ09Deqm29YhdLuZj5Uvnwh+LctJa49mstNRO+kgDZL41kjzSSPdJUdkv1WPXnQl5yrqge7ehJSPMZ3lhEJminlLHa+v834v/FlmZ0dDRRUVF89NFHHD16lA8//JBFixbx4Ycfmm1nuB8ujxazpvbJZ86cqcgAfPmyPsVLVPuPWOixnF+iTnM0Uj30RlEPR4p6ONNvcUPsnZV7BomX01gVdoh7iQ+4l/iAxf2PsGTAUeq086CkjzNRM89x+ZR6ZoNrfxpvo5arbIdvbfVQJs8PTWZwqwTuJj4kNuo+tT2S+SzqIRFhZqIha0C0esYVAOKvwO7DcPAETFyqrPvgOdPtVmuIb9y7rj5vnhaUMYi/HVoDIupBKws7xYHFIXAn7L8NMw2sNlsUV5bbqSxADAJ7AFCvtRtrA9eTcc5CtGprET8MxAGcq4BrW0hU2R68+7sxz8YFMpLyP+4DDR/C6jD4eTP8tBlGe8DhrXA3ERb2h7f66/+/azCH2OUwKhBO/AinDLKLtO1teczr13lQuSpZ23eg0+mw7dZFUe3YuyMOzRuoNpXku+gc7PkzcBjpB09w59PvOOnRieSt+xVyWcmW96s9g81EVH/ayGfG8/8k/m6NqwXly5eXd999V8F74403zGbbDQoKkokTJyp4W7ZsETs7O3nw4IGmcc05nvdY0VpaTKknfVYoY+FVDS4tc6/00/wWV6+9+UzodVsWVeXXb2E+s7kWWrIc6dYVCQtFAuohIb0K9g0VkC2vImNNOKdrobTFyJXZSl7UQOTcFKR9ZQttwxGZhES2zt/Y4T7IGpVV6LQKyHw/pJ4b0tgDGV5dWR/UEqnW0CBbvX8z02Ppils3t2JNhaobrWsTuEzw6fPkn2mflUKDodpkO6k4zb9ghYXk7ivC2zHC7JUWZW3HjpGi925KkZsXFHyPtN+lVOoJ1TZV0n8StzG9jPgeY7qLR2h7CUjYJk1ltzRN+1xRX3a8sRVt/Y3qweW1UoX2vkY8zSu8CYg8p51SJmjr/9+I/xe6Pi0tDRsb5VRtbW3JzjZ9BtW0aVOjhIU7d+4kMDBQ9fzOWjg629B9cQtunk5S8M/tvcGL5T+lw3R/XjncgdJ+5tOrHP/GfCb0lv2Kq/KPfX/fqvkaolM3mBwBX2yHjVFw9DhsjnuiLlXx3S/Qpp717eb3gpiR8PVpKD/7MX90Q/jyNLgXga0WDBI7x0HiPXCx4nwjL1p5wGiVBX1GNsw4C8dT9MYt6w0WVPv3wZlDBquClmYmK8mm6zxVHBnvHoRz5hOYGuHwRLi0xbxMzRFQY4h5mVNfwJEN5mVyUF7FWjP5BvSerK192/KwcSl8utaiaPbRo0hiElm79yiHazsESb+P08h+Cr5r+EBSvzpAygdxRn0lfPA5CVHfcNSjB4lbD2Dj5ECZiJ659ddWfmnURh5kERgzkforh2u6NENU7eufr3YAOOaD/qP4f6Hwunfvzptvvsn27du5cOECsbGxLF68mN69H295zJw5k6FDh+aWx40bx8WLF5k6dSqnT58mMjKStWvXMm1awVhnnd15ibTE+3jV8lCt/2XbZd4I3MmNsyp28VbAo5QtnYaaPsgfEF6Mrb95Wd2vp7GR6FNBVpbe4MQSBjRUlie1hZAA4+3MNYdg0y/g8SZ8Ha93RYgfD1EqKcT2XgOPtfBqPmJiRtWF6ybeKbLEur5sRo6GtsOtnwSAkx9UiIYSViq4/ODkOnAqYV7mgYat8VK+MHotNFVRnu9PhKsWTIHz4vgBOGE53I4cPkKqTzWjQNJZB49wyzOQ+5FKy1SHwJokL1xvsd+U3ce4tWk3fy3falbOrpgT5UKakJ2psr+tAf5D69ItZkD+8uEVWmlqxv8Lhbd8+XL69etHeHg4NWrUYNq0aTzzzDO88cbjt1/DBISVKlVix44d7Nmzh3r16vHGG2+wbNky+va13v+men/j/flfPj7Hax5rOLJRPXr6jTNKRVeliWmlVcbXmUGzKqrW/XYgla82mF4F1mzgyJoFdxgSoT2BLECg+rFGLqKWQZvm5mW0oG4VGBhsWS7a4Pjmq0cBbQaYcXO4cge2nYESTuBi5pt8xnTsXpOY9wdMVA+WQR0rA4lIcjIctLC6MoV734A4QpLG8DcAfvOgyhRodw4qh1s33rF3zdfX0nCudjMe1oyC33bCpGgIMlB895/sPNkcDF0TTOH2yFe4f/BXi3KZqemcDVtoWe7eff7aephfIqz4nICS9cvSLrIPdk72VAupRYkq7lTrbeV54P8gAey/Bf8v3BL+LuSY/U6+HsESL9NO7gD9VjQn4VwKqbfT+HmjcSyrmu1LcfIbEwEfzaDXeE/iVj7OlNCgdRGOfKdhyWQFunaGxa/BynXw7DA4dhzs7aG3imV84zrwk+XnRC7StsDXR6D3m9bNaV0oDA8EEfjoZwg14YqQg4gAWH7UujHyi7SW8Hky3MgG7OD0fVipYidSYHCPgETz3z8jBMZB+Z6gS4fYAgz1NfATuHQQflhqWXbsOmgzXL8qHJpnDmOXw+p8OLRrQJFbF8naup2M0doVveec8dx+eeUTjdstfT0nn/+Y88u/zlf7nnGD8e1ZA1uyyLyTxmK3hdrdEl4FVxPpuFTb3Qe31/+bbgn/L1Z4fze+mriTHpGdmBI/in5RnVVl7J3t6LO4MVVaqDuPupSwvI/QYaQXVeorHcWr1FV+k19aYxCb0QQ69tF+Ttm+DbzxFjw7Cl5bBAG1Ya4Jd8PQrpb7i+gF5zZAzEuQlgEL8xHcpkN1CIuCpDQYHADhTZT1QT7Kci2DLdpGpaBDeevHtYSBJWHM79DOAyJ8IKIqvN3EcrsnglM+8jM9fHS2nO0EgZFQtidUGmlavrHGGJQZaVCmrjHfrxW88puS12Sg/q+9E0yNgUWHwT8ImvZUyg150fyYxYqr84eOhYO/oBs+Ejp3we7dZeicnLAb0BcnFX89UyjaszXOQfWp+P1qzW1y4FLLm+JN/chIzcK1lvILV316R8393E96glXv/yjSyooVK6hUqRJOTk40aNCA/fv3m5Tds2cPOp3OiH7/Xflm+Nlnn+Hv74+joyP+/v7Exsbmb3Ja8XdbzfyTYWil2XdjZ+mzQd03aHH6MFkuo2TO5b5PbgmXh75JqytDplvv4zN3pdKKc+BwWxk32UaO/m4rqzdojPWoQmtmI0EByFuTlfxpA5H4aCRmNpK9C5GvkbhZ1ve/cjAywSDG5cZByEAVX7e8NKg6EtkBWanRInNERWRweSSwBDKuInK2FdKjtLHcoiqm+4hrgEgIEtvOimv0GyWUGyF4LzIt427gW1d6rWnZ+ieEEt2N+Z3ThQ4Jgkew6bbN3xcq9BRaRQrPpGqbf51BQvel6nUdZyjL1VoKqxL0Pnn+BvPoNkFo0lPo9QTpj+KTRLf+EwXPftNGKXrvprimX5Oin6wStzPfi9O0sfkfwwpqEJ3/a5mU/qo8J2/I8zLb+liabyLytnZKeRNN/efFJ598Ivb29vLBBx/IqVOnZNKkSeLi4iIXL15Ulf/uu+8EkDNnzshff/2VS5mZmbkyP/zwg9ja2srcuXPl9OnTMnfuXLGzs5Mff/xR87ysRaHCMwNL+fAA6bqgiQyPaSfzbg8R32Avo/qWoytJ6/GVzfYxfEFl6RaudFAeu6C8zI7xlX3Z9eXldd5P/GOct8xGEsRJUjLt5W66TjZs0snJX5GO1jyszdCYHkjCNiS0PRK/AQltiywfZ1p+5Uikcx1jfisrgjarUbXi2uQiDMbZWB9ZZzCf8HLIaC8zfXgj0htZ19yKOTZfJ3QSobKZXHieW4RiGgMwV40Vqq5T8rzDhVobzLcr015Zrj9D23jmqGSVAvkumaSeQ4XB44R23YSFq4XLacLctxUydu8tl6L3borb/b+k+M3fxGFIHym6/PV8jWfr6WaVfK3lw6Son/EzIIdK1C5jxCvVyFvaR/aRqdmvS3jCTPEPrSPjz+sVp2aFtwCRpdopZYF+7MuXL0tKSkou3b9/3+RYjRo1knHjxil41atXlxkzZqjK5yi8pKQkk332799fOnXqpOB17NhRBg4caPa6nwSFCs8MtCi8+eljZFSc6cSZo9Y1lNVp5v2fPksPlpnRNRS85yMryR5pJPslQL5Lq10gD4yNcfaSkmkv9+7byL37NpJ+D1mx5Ck+oMzQujHI+DZ/z9iANChuzAsqoSzHWIgEs7iqXuFdCbFi7OAYoZ0I3mayEBSzYqVQtKkQeEXJqxVj/T2pNupv+yw00yADX7fRxi8Fdusjpei9m+IUmY8sD0+ZAuf3MFnXaKZxYljNCu8dRFZpp5R31Ocwa9Ys1XEyMjLE1tZWtmzZouBPnDhRWrZsqdomR+FVrFhRvLy8pE2bNvLtt98qZLy9vWXx4sUK3uLFi8XHx8fCkzn/KDzDewIMjGqPnaMtyZdNR6FoPNAHeydb2oYrQ/M36Vca38BiTFjrj72jDfdTlebMC0ee54etemOVjLQsfKrl05ksD+4mPPZbtH2UDsDNijPrIRrO7wxRurg6v0NtqPsEZ2yRFubS1OAo1d8V1jaGlYH68pFk4zb7k/R/V/pBTC3Tbgk5mHoOXvwNym/WNGU9/toPN7fCZTNGG7Zmsg0Y4t5BOGxwI/8wnQjVJJIL0OqmeFnr5GdEQa0gy3K//qwsr1GxKE1NJfOLL7k/Unl/daWfrh9OiRZKy8o6C/rTcO0wXP0fh/k5PGObyfbXD5kJ1G0J+XRLuHz5siKy1MyZM1W7v337NllZWZQuXVrBL126NNevq+cELVOmDKtXr+azzz5jy5YtVKtWjbZt27Jv377H13z9ulV9FgQKFZ4VaD6tAf2ju/Fc/HCGxHSi3mA/jm46y2cRptOS/PbVX9jpshm8SJnP5sdPbxB/+C7vjjrF8y2O5IY9y4uD21P4OiqBTp6nuHQmH5mQDdCmPYwdlkli4uOx0qw4K9+03foxbySr88tNhOJWGA8OrgNTmsK5ZyGyB+w6D0PM+OoeNDCIPXUHRv0EpzS4KGy4DhkPYeIflmVvWptAo0RtSNit5BkqOC3voW4hputMBaU2hxsHrG9jCskmwqnV6wRD5it53cKhYSfI1PD9PnnEooht3z5IsvGHLDduq0hbB8cqpmPUJX2vfGFwqeTJoVEfcufUX5r69u31BI7n+TRacXV1VZCjo3mPdLVQjabCNFarVo0xY8YQEBBA06ZNWbFiBV27djXKVmNNnwWBQoVnBS4duEbZBqXYPftHfNuW59S283wU9q3ZNmnJD7mX+IC1Y4/Q3jCvzCP8/sMdlowyziz9+QcJzAlTT7nda0RRZi5z5401Jahcw7LZVZdeNlT3ySJ6k+BTVvj8C7DNhCJWWqx3bg6HN0CLujDCRPaa1nWgnkGuuWZ+xnI370JQVdj/vHFdWYMANYFl4EoKDN8KI7fBR6dgk0rGg2UtINzMs0OLX/DBOxCm7l5phLeqaZPLRekukPCVkpdlYN2YMhqKTgPX+aBTD2yAa08rBzaB4hpWk5U6Ql0zFp5acfwrKFVJyavTCvp6wu8/PXn/1aohaWlkObpYls0HMv5QKq8SrZXWsy5+XrQ+/DqNYyaQec/ym1Ct8CaExT9Pl5hB1BxeL/8Te8qO556entja2hqtvG7evGm0QjOHJk2acO7c4+ecl5fXE/dpLf7DPvfW4/LBv1jiGwnA8ajfaTjG8lvZvsjzrB1xyKKctWgQ5EQJdx0TehmnD1LD6d+UYdiuXoXBw+HCBfPtWjWGPXmeRWU8IfBRQJvvf1Fv852Kn166ygv8xE36v0EL9W4IO/O8JF8zCFAzVaN7ky4bEs08a+oVh2lVYJHB6q1VCejkATPitY1T2xkcbWHMrzChKrxr/L6ijm0a93ElA+7MMOZ7zgFnP5Ani+CTC52GR8B5lZtfqRWc32O+XYuR8H2kkpeRCuMj4chWvXtCqsbI4Fpw5gwPKlfFZuyYguvTDOp+9gJ73B9HwEk9e53vAl/FvVlVHN2Vb5KdDjzHvfMJfB+6Ppd3PykDAc5t/o34zb/SIbIXFVr6cO37C2wfbnr70wg5jufWyFsBBwcHGjRowDfffKOIbvXNN9/Qs6f2F69jx45RpszjVXJO+McpU6bk8nbu3EmzZs3UmhcMntrp4L8AWoxWCpJe2FhVxr1dQZPskfSKMnedh2pd7IFiMnay/d9+SA/I0GBtcqsGmK5rYyFItDUU3RhZF6BeN7qMshyqkgpIC7VqVgBztTeRGqdqmlBLhPIagjA7VxeqztU2XuMVgnu9gvvsg8YL794z5ocbuFz0maa9z4AW2uQaNFCUHcaFFdx1PSLX5jUk+NaHUidmupQdasb1I+/3InastIkZKS1WhpiU6R030Hq3hA8R2aydUj5EU/95keOWsHbtWjl16pRMnjxZXFxc5MKFCyIiMmPGDAkLC8uVf+eddyQ2NlbOnj0rJ06ckBkz9FbAn332Wa7MgQMHxNbWVubPny+nT5+W+fPnP3W3hMItzSeEbxsrD+gN0H6UF+OW+TIzugZthpSi35QyvBRV2WK7779Ko/MA9f3I3s3vatq6swYrX4Hw/ta3a1FDm9zQxhBuIpTZpybG9TYfl1sVqQ+giIk33DUGxy1R+Tz22WP6SFc7bExkv079GjKBVNNOv7lI/x3OWXDqzkHKaagxXvP0LKL/YnAsAs9EQ8vRj/krDLZG75oPnq6ArwkH/EZNleUjyrO+B6u0hftyG90btyGdjPjl5o/Ba3JfKi0Nx2u0vv7OgdPsLTkMGwc7SjTXFgrsYXI6lULqY+tkejl2cbdxlCaL+B84ng8YMIAlS5bw+uuvU69ePfbt28eOHTuoUKECYBza8cGDB0ybNo06deoQFBTE999/z/bt2+nTp0+uTLNmzfjkk09Yt24dderUYf369URHR9O4cWPrJ6gRhQrvCTHsU+3RFNRQuZ4rbYaU4qfPE7iblMndpEy+j0vEv6kLIZNLmmx3N1lwdNLx+qriqvWHfyhYjbdhG7xoIgm3Gk4uh5jnoXOAebk5PSByKAzdANdVdunGNgQ3R4juCwMNdpBfaGgsbwlfXIcbBRuZzSzKzx8LIybDonPQLRoaR0O9ePBaC/YtwP0wOKqcjxV9Rb3DhLlwtT84Wn4psgolaoN3F2O+r8Hbhm83qD3UWC4vhkaBnSNk6aBhf6hqJijrSKURA5EnoI8JC9bqJgKr9rGQ4cEARZ8frcrP+OUM2enG++ElwzqQeTuFUqFtcGuu/BKeX7AFzy4WvuSPUGmg3kS4ipkAsa6VimvqSwGnfFA+EB4ezoULF8jIyODIkSO0bNkyt279+vXs2bMnt/z8888THx9Peno6iYmJ7N+/ny5djL9f/fr14/fff+fBgwecPn1aoRCfBgpjaZpBTqy6HDSeUA933+Lc+OUm5ep54FzUlnPfXsE3yIvN475X7WPOyY78dSKJ37+7we5V6gYo+cHbMaVwdBDNZ3gFBe9ScNnAAjKgKhzNc4YVNQ0Gt4BtP0IvA6M8Q6wNhVFRpuuDfGBdL5j9HcwLBu88luiXx8D2P2BcHruh8dWfclxLYJw7rDJYmPSqAHEqH2+9q59yPL0PfK+DE0A8cGornO1legCnKXD/nQKcMeBcGdLNrB5aRsO+AcZ8v4FQoQNkJMI+C5lGpp2E2yehQT/Q6fRtNk+Cri/AK3mMY8augjrt4OJRCOoLP3wGfgFwah8c2qGXqdUY3pv+uM1Lq+DIHvjqE+WYS9ZDl+7gZ8K45xF0vpWQ+PPm568BNaJncnrAPCN+5ek98BnanD21X1BvN6UNDd/ui70uGxvJ5OKnx/CoX5YTS/fy27sHFbKdVnfhq7E7tMfS3AKuVtjp3EkFtz7/zViahQrPDAwV3qDYHvj3qkpGYiof9dnGn3sfm183He3HteO3qde3IkkX75B4MZW05AdM+bwFf3x/kyW9DqoNoRmGQaNfXO7Ojo/ucfzgk7srFBRWRoCHC/RrAkn3oNsbcNCEteP8PpBwF976Rr0+PzCldNRQxRkcbOG0is1EjxLQyRXCVfrqVBS+Umnj5WTGb29lLDj3guPABeDARLhlJtajbShkmXkLKGgUrQwO7pBoOQ2PKjrOB4/KUK0NfD4ZQpbCH/thdS/TbZ6Pg2Y99f/bAYe2wmsm5Jt3gQM7HpdDRkP12lCyNHTvDXZZsH0L1K2N7v2lyPW/0JUpjb2/H3L6JA8jNxl1aR8UyMP91l+vk1957p819pmruXwkKT+dwaO1P6TeJ/HHc1z+6HFeqmaRoVQd0YysxDv8OOlTgpb2xMm9CDbykP0TYvl1hbGVqmaFty0fCq/Hf1PhFVppWoE7V+6ytlU0F/Yaf+EPrtH7Pl08rHz1j/DcSvuIKk88dglP5e7z3Agrzj7+R8jMgpAg2HoAes01LzupHXySjzx15uBhRWLLP8z4H956AKY2hH830c6sk3pSMuTE8s4EnC0Eg/5fKjuAe38C+Tg7ykGTSfDn1zDrkXP34SgItpAN4bfd0KgnpCdC5CRwcjYtm1fZAdRvDn2Gg52ALhOy7KB5axg7ADmo32kRILNFMxz6duWhSpf5UXaAqrIDOBmht0a9EnWApnGTqTI6SKHwvDrW4atW73Bjr34rJD7qMJ3iRuDbszqNXmylqvA0w1pXg//wU/8/fOnWY3vEd/lqV76W5beoslUduXbOtD39rs36ZcWURR789edDPllxJ7cuYpYLP+zK4MiBzHzNr6AQsULvTL7PhLtCDqa0A0cdDAiEERqTZ2vBzHqwNh8+14Y4mKonNVzIz9Fo14FwCL2yA3BTOSvTApuq4NIP7hpvqVkNnzFQpAz8/vqT9dMwHB6kwlcGW3lZFr6L5WrDz1thYS/rx+w4EJIT4bVxYJMN7brDlOFGYtnf/8D97/NvQVRm8UQeXr3B7bejzcp5dKhLws7HX/ozC76gVIsqNI0JxyPAmz/f/44t5YydTX984Qsy76axK8x8/xZhrSHKfzgfXqFbghnkmP22W9z2iUyY16T1lPCogAIziV4UXarAzazzSzUrWt9mTJA+pl/2ciR6JLKoh7pc+8rIG2bcGsoUsTzWMJ+/9/64j+wqdA8VliQIE0SoH/e/G99zgFAtWqi28emN4ROkzu//vhAUbrrdwt+EstVM19dsrix3HSq06inMjhSWmgm8rUK6ij5m64uFD5AK8Z+LV/RCKRs9T6rGb5EKMXOkTvYPUmHdTIv9e3Sqp8ovGVxNusXPFfdAba5GOVRntL4/zW4JuxH5UTul7EZT//9GFFppasCRFcaZRRuONu903nhIBfrNr0XVFp4kXU3nly9vMGJZTRr2LEWbEU/mypCems3I6U+2996lvbJcPZ+7rvuXWN/mg/2w9bjerqF/HZjaGsJVfE37+Zu3RfhLg7Xlh5csy5jD+BIwwIz7w3gviK4H8X30lqQrDQwuEyO3w+dRMNkD/tz6OE+dSRRgEr/b0WDjCF5DwD8GvCxYV1qDmo/6umTCPSIwDHovUq8DeL42XDM44C3h9fj/kwahzrZvgD1bYfZI2G+wxWkBcsH8l8Dj7edxqOJNsf4dcOvfAdsSxUjedoCspDtItljs37G0myr/1t4zfOH7IomHrTNWa/VmG6vkCzOea0fhlqYGJMUbP6Qs/RASL6Xx0yb9F3161Z0AHNh0tUDm07xjEWx16uNXqabjjzOWf6R9e8Dw/pCQBOOfh98NIo+MHwiJSRBtJsJJ1Euw57gVE8+DpDzKSpcFi7rDCoPdp6/Pwa83jNt6FwUz8boLFIvLQLZA9Gn1+pfLg1NxmHQMmleD8eaS3aYlQckBwAgzQk8QRFgNybvBoyeUCoHsJLheQHvI5VvASZW+pp2EGyf1SV9PbbWuzySNQYM//UCd360PfLFF83ClT+4g6+QZdI4OZKHDlkzubt3DlV7PAZAS9aWmfrLSCs5wrGyz8jywtj/HR6QVaoea/xEUrvDyCSc389kLzu037y7QaXw5Rr7tm6+x25S7RJYJhWtK2b06S1nu2Aa2fQ1HTZy3LZ4BkW+YnsP7U2Fwa7iq4pxtEDheFQMNXJE+VQlHtuUMxCcb861VdlH14XsrohVVsIP5ZSC6vP6s0TkbYsrCYW8IcoJn87zQlzsMHrsg6jyM/8p0nwCU7wCnxkDx4dZdgDk4NgLn1qbrnfK4A3iGFty4N018cW6chboh+uX7vWRtfVXNR8r43iPATxmQnfkq2RNUYONTlmJr52FXowouIZ3Q6XRkJaZwPewlHl5WecOygBubn8wCOy+u/XCFVZW0XUcunnIszX8V/u491X8yzIUWCxyhzF/nVbO4Vfv0MeltZVt2a5keVd2kTMtexTT11aK95TBit5KQqA3I6WPItAmm5eZMQWLeQbJPIbFLlHW9DDKRzxyUv3OfqJH68ztZoqe44fnrRyvNMJO13BzF+SBSXU9xZZ5wHnV6PdVrNEkN04QWoqfgbMHDRMiygqJ+64RFoqeFadrajCyA3HVjpwqXUoV31yj4DmtWiMPc11TbeMStkApyWkrGvatpDN+omeI18X/3OWo+wzuKyDntlHJUW///RhSu8DSgYtsKRryubyujR4zd1k617dwTbek0xZe3z7ah65RKvHsuiOkxdbifmsXCASc5GHeLKZF+rI9vQI9wZZRwNw971T4NcSHetEXc7Lk6VrwPEeOgXj14Yx74mDkmmjoC2jaBoS/AFQMHcxcDy/Gbyab7Gd8B5g+E8iWU/DHNYXBD/QIAgExI0pCiqGNFaGgiiHpUEMT3hCgTq7jLBi4DI8tAN3djuT5uynJSzs5SFiRlG4lbB7MR/Gc9YedA8XCoHA/lo6H8Wn02hYqRYOP02DpUpwOP3ma7eWLUHfh4PHsnGBkDPReYb9NmJHQON10/6nV44xOYFw1x8dBfRbaqP9jYQM/B8M4KdO3aQ2Agtg0DyPrlV+yHDTRqknn5OrfDnifzsnIrtXh4Pyof/pAiLergs3YGNeM/wTdmNp6D2+Lsq+383Wekhvx+BYX/QWixfw3+bo37T4baCi9wdC0ZGN1F5mWFy4DIVlKrZwVpEeGv+oY29P0AaTbEW1YmdJePpKfESDf5TDrL5I21jGSf3+gnO9IaKXib481YsWmkpi20ya18A4lZisS+p73vVZNN1wVVU+dHj0bk3cerO1mEpM0xeJMuYX7cFUHIlNrIuRAkMggZUglJCEGyByIxzZETHfJ3rzq7Ksvpfo9WeFWRNINVYlRpJL4yMqmkkj8qyMpxdasEVIIsW0uV04XqIvjEKflFg4XAhMervMaXre+72SrBp4dQa7wQek5os0pdrsV0YeZtoX6o8HqCfpW3RITFBiu9VuOU5YgNQouB5ucwa6PQKVTYnSD8qLJy/P2OcOGBsDYf2d4NyH26Mth00eB6EpCwTXw3zlCV9+gWKP4rxyp4PVI/kGrTO6vKu9UoJd2/n2hxHppXeCcRuaSdUk5q6//fiEKFZwZqCq/vuvYyVybL0LguJr+o3vWLS5sJVRW88RsDJCi0nIxdqa4cAZmxoYrMjvGVNYeriXc1B0Vdq15FLP5A/Pxt8v0jr1YJSfgZWTdXya/ta10/lUubr48ciiQsQEIDkYTX9Qovez4SMxBZacI9wZDWtULkGWRjKyV/YxMkpDzS1ILC1ELTSyDZ1fTKTqoi2RWRmFJIfHn93+yKemUYWV7ZbkgTM/2W6yQEnBOK9DCoixWIFpgv0EDA8IXIXVl2GCK4fiKUiBa84oWSMUKVbMFXBK916mP7xQk14rTfg1IthUbLhJoG2QwamDHTbxShLA+P0yu85dlC++naxm0dJvgFCh1HmJYZPMmYt2iD0Huw8MZik+10vpXF+c2ZUnTZa+I8fohJuWJD1BWVxe/+9B4SfHiOuAdVkw7n3hKPplXMytedFix+Q+qZrNes8M4gck07pZzR1v+/EYUKzwzUFN5r6RNkrkyWkHVP5ptniryrOanyG7dztti2/3C7Jx5/rcFqa0FEwV7f9LbKctxQRBYg8iayrpe2PmLaIXHtC/7e56V1Xo+VnVR6RN5IQlkkxBkJKYIkVEaiK1jRb+PV+lWWh6FSWi5gha9csRjBS/RUNkFwCRW8E/QKr6yJtEGV1wlVTShDNWq4WggVobqBEivfznSbjgbKZsA6vcJbIkKoFWM/ZXKN+0CKrl1Y4P1WjLBOUbZeN0DGpc0xWa9Z4f2ByE3tlPKHtv7/jSg8w7MCnjVK8CBVb9Nbd0BVRV2L8dpShFjC5TPqMapa97IcLG/22/kMg54Ho15Wll8wCPm4air0bA6LNObY9DXIcnP0srKclE7umc8AlYhbE+oZ8+49hN1P4OEx2cuyzEAXSMyCsGv6v2TC1nTwuAab02FzGnj8CVNU5hE+CMbMUnEgrBSqv1YXwyDNEUCYsbwppL0DDxLh/la45gGpUXDZA+5thYcmQsR4DoQSKsGhTaFMFzgQBsUMMpSXNXDg7B4Fz8RDk+nw9VRlnWRDZH9Y3x+8A5V1Y6Pg7XioZdBfQaBxC7PVD3Yf4N4oZeSToiN64R2/A+c2jfI9rGSph+HxaFJJlX/q/YN8MzSa9pF9aDon//dBbEBsraD/8lP/79a4/2SYstKsFFxOXr09SlpNr/c/eSN9I6qs/HCvkkW50RNNr/CGmEiw2kPDSmlkNyQ+Gpk+UL2+fT3TbZcPUZbfDVGW0+foV3fyGhJr0P+0hshalfmd6IM0Njg7G1nJWG6WwXbsi95IjD8SqcFqs6a9stzcAfG11fZ5Rc5R4XtUFfrdFpqI4K4lUkiUwGDzMs4Gqy/35UJRg7OwaieFijFCg2yhygbL49ZcIPhp3H4EoWesMEOEjlZYWnacLqzLFtaLMMLEeaAlGjJZmDxfqBkozFqprFu61mxbh3FDVfl21Y1/YyWGdRHn+lU1zanWqjGq/MBVoRbbBjzX3IindYV38y/kfqp2uvmXtv7/jfgv6/p84/zeq7zuuZbM+08eu7KElz01mhRj8Ivq1l8+fvbUauxERNe/VOvzYs0y0/NpbsLVaZuGbAWRX8CoeeBjwkrym+PQy+DFeNEgCPKDYIMILj1rQ8xwiJ8BMUOU/rLJBpFT9pgIkFFrC/xk4OaY9hDWBsI8fwh0g7V1oLrBonjuZXDIhoEGaQbfLw/1DRx3Txo45x54APEa4mhObgMjX1apSDgHn3rCra2Q8a2KQF6sAr4CGpgX0xmsHBIj4N6j9DmlV4J3DNjVgOIhkLwN/jCItFI82LjPyhOhiI+F+eVBRjKciIKvLQSLzouy/vpceQD1umpvlxfpqbBkBpw8DK8ZJK49fki1ieOclymyaTViIkFM5u/njXhJH+4g/dg5FWlj2JdwISBmCjXmKy1CD4+Lwnd0C8p3Mx00PFUtGaRGZNrqyLS1sYJ0ljv9t+Lv1rj/ZJjzwwOk7/stNb35tRtfUep1Lil+TdykZViZ/L3RPiGdP4VUzac/mhYK9rdCtvIjg5UFSMJLSGgdJOEF5Mrkgp1TFSdjXjUnZEPlp3cfIlpZkCkVIRR/30T9LAErVlcgFJkuFFtpzPdap7farCVCPRG8Vc7QvJSWhXiPEzyCrRu/ez6sIudfFZqECmOfUozPsLGqfLv+vaTYtVPivGKepn6KBNe3atxakeHSTWKkW9r6ArkOrSu8y4n2kpLpoJkuJ9pr6v/fiEKFZwaWFN68tNHSdKxpx/EnofqtXAqkn0PHkCmTnsJDpQBoZqu/fw6W6IgFq1NDet/Etm8ulV8tlEo1I2OwTUkH8/0VXSe4qiizHDeFWo+oggljlieluobzVZMZIARPFl49J7TToNAbdn+yOc0370ju8vEKTf1US9hp1bgd0j+WbhIjPbI3ScOocVa1BaRueCMZEz9Ruq7XW/FqVXgXUpwkUZw104UUJ039G+K9996TihUriqOjowQEBMi+fftMyn722WfSrl078fT0lGLFikmTJk3kq6++UsisW6duyJSenm7VvKxB4Zamlei1qg3PxQ9nSEwnHqZlcv+O9XH0OoeXZ8GBALMyZSqohy6bNMdN8zhr1kFNX6hRw6rp5WJEd+iQjzP8sa20yZ373yZrtxpjXcBHoIU9zHeBZUVhvMHW51iDGN5hjWDtLPAPdMB/UA2KhRqkAioRCpIO+JkY1XDbq6/5SToOBHsDYxT3VXBjKFztr886DvDA+pBZqqjzorJ8Q0Met6wH0OEVcPcFL/NB1wG4oBJnDqCphu3PJeuhp/kQapKajmvMClwWzDSqc+rQlArntlEuZj62xV3xjplL1d+U+QldGvhSeaVyC7dW1BRsHO15kHiPo0NXUrpTHRpGjVMdv+XGMJot60PTRd0V/MYvBVOiijvVeltnAJeNLVlWUHY+PM+jo6OZPHkyL730EseOHSMoKIjOnTtz6ZL6ucO+ffto3749O3bs4MiRI7Ru3Zru3btz7NgxhZyrqyt//fWXgpycntz4ziSemir9FyDnDSpwYgPFG0jIxo5m/fAs0YS1pn3xcuibBHWn87c/8TDZ5uV5djJ+iq3sOmQnTVvo5OJVJP0ekvJXwbzNT+mrzo/ooiynrUFiwpHfZhXMuHlpUQNkUaCS16gE0rk0srYOsrGOtn56uFqWWVNMWY5zQ1INfPyuVEBiKiPxLZCYNkjsSGV9mQ2vC6/HCFPihfqRQhFLW4aDBJYJ9Hz014xDtsM0wS1b8MgWiscInvFCUZUVVHEzq40i1YWGh4WaUUp+UePgCGap9mhluXRdY5kqwcIbV5S8MRuFwW8/+XejVTdh/lrhXJZwPkNYGSX0DlGVLXEvXtwzr6i6JlRMPyJV5bjUkCNSS36W6gnfSPEhHcUncoZUWDlFIVt2Qg/x6NlYakZOkPbZsRIQ94KivknsJGkaEy7tD70srtW9pOuhFyQ4ZrQMuT1PfEMDZfjt16X+dOWxSO+4gTI15XkB7Su8symu8pe4aaazKa6a+s+LRo0aybhx4xS86tWry4wZMzT34e/vL6+99lpued26deLm5qa5fUGgUOGZQc4XqtMK422lZhF1FOWmI32lTk9vaTmuqgxaWl+aDDGfg8sUdRzqLi9GlpeOQ1zl1bVe0mmIMp7mm5HusiTaXabPKyrlKxo7mlevqSzHfIKse9/0eE0DlOUOTZFDUUiVcsayEb2QmJeQ+cOV/AkdleXYCYh8gGSvRjpbcbY3vj6yoKV63fxAvULJHoZkD0FigpCVgcZysQFIdG1kWXVktJn4l3UcTdctcEOmFzPmR7ogWSWQaQZng3GVEOmAyGhknVp80XrBQm9L51WWLfmMyHGdUFwEz0dUKkFwaJqv7x21Y4VKKsqy0mjBx7STdi5559MvNSJWWH5bqBYk9JmVvz7yUo4D+tJI1XqHscPFNf2aFN1ibMnpMn6gVMr+LVfhlY9TKuLSEX1MjlsvbqbUXvesgufe1FcabVSeJ9aa2VH5PYxopih3XtfTaoV3OqWEXBEPzXQ6pYQAcvnyZUlJScml+/fvq46TkZEhtra2smXLFgV/4sSJ0rJlS03P0qysLPH29pbly5fn8tatWye2trbi4+Mj5cqVk65du8rRo0c19ZdfFG5pakD1PtWMeF61lMEYD0bG8+vWy+xbdY4jW67Sf0EdozZaYGsHc0de4etNd3h91HVa9VAmY+s6qCgOjjremnmPKxeMAzz+flJZ3rMHRjxjerwh3ZTl0b2hYSj8oeJfVskLtv0IoQbpur422IH69ndITIUB78MNKzIbHL8B+01kx6nsCm1Lw4A90HsPbL4AmSpWk8mZ0L8MRJSF5sVNj1XNTDqVnzJgj4o75EAHyMoGf4MdoaQH6P3rMmGA2sd+fC/EWvKzy0cIe9sOcC/skU9eFNz0gAf5jNyffgUeqlz0rf1Qz0IsTICK+fQjO/ktRHjCmf2w5bX89ZEX04ZC7EcwaaRqta5FC3Q6HZKUYlTnsXgGukdBXjOxJXX3z4r6zHumg74+TLpHmQHK+LqJB+P5OWy1gpd6KVFRdq+ldAq9sPMP0hM1BJfNgwc4WE0A3t7euLm55dK8efNU+799+zZZWVmULq000y5dujTXr2tL6fT222+TmppK//79c3nVq1dn/fr1bNu2jY8//hgnJyeaN2/OuXParGLzg/9yogjNsHOyo09UV7aEbs/lVetagaExHfAJcGfP4uN8v+L33Lqze28ytfwXFvsduaASnmXtWBj2+APeEan8QWxcdJvZkaVo1NKRM0fTcXbM4vpl7e4QNWuar/c0CO48c5lp2amr9H+jdsOErvDzWfj5HJwz8JiIvw4ekzVPMRcHr5muW38W+htY82++bCyX1xOhvZkcuZvvmK7bou77T9sU8NSBoVX3QDf938QMmLQZxvWBVZrSsjUEckzo12tp8AhvAesgrZy+eCfKWMSxF2TEae8yPgLKjTfm3zsD28pD9elQ7RlIPqLnu1WGXb0h7dEbyv4ZVsw/D8rVVpbbj4dSFeDHzeDXELxrwLmf4btN+evfAJKqd8y3a6cM7uwetQgcHYBsshJTuDVpIc4ByhfdhHVf4jmmKw+v3CIrIYV7Pz9OYOvRoR42Tg4ExEzh/vnrnHrhY9Xxz29SukxUC6uPUwlnUi8lsn/al5z++ASnPz5h1TXpz+a0r12y0H+BL1++jKvr4x+Jo6P5pHo6nfKLLyJGPDV8/PHHzJ49m61bt1Kq1ONIFE2aNKFJk8f+Us2bNycgIIDly5ezbJmZB9GT4KmuHwsQV65ckSFDhoi7u7s4OztL3bp15fDhw2bb7NmzRwICAsTR0VEqVaokK1eutGrMnC2D6SlTpfcG4zO7wRvbSGCor7xxxULgWxO0NT1Ivs5uLtMjq0jznsWl7RB3k7LL4krLaakgK+KMz/Dei3KWvSeUocd2fadPB/TnKfNz8FNx2DakVvWRKmW1X1drE4Gjn4SGmXAlaO2hLDdxRRKCkLjapvsK03B+p4VWFkFiPJDsmkhcTQ1tPAy3xs2d5/V+8jna+QvFzMS+NKSqZpzA68wXyocIPiFCkIXt2drDLY/10klhTIywwCCY9bBlyvJzG4VgM7+vGoFW3ROX25ekyGaldaDL9DFS5vZPUiSkozg2r5fv+10i2F86JERKhyva0g3Vm95Kns2eL+03DlCt17qleSjFW05LBc10KMVbU/85eJItzU8++UScnZ3liy++0DTW6NGjpVOnTppk84P/FwovMTFRKlSoIMOHD5effvpJzp8/L7t27ZL4+HiTbf78808pUqSITJo0SU6dOiUffPCB2Nvby6effqp53JwvVJlGXha/vN4BppWVIS08ECAvxvjLjuyWMjuuhqY2c9aVlNNSQeavK6HgDxjpINeyXeVGtotMmG6rqJs+7QkfmPmk+X0Kvs+NJrI+JHZV53vZG/MWlEGmlyq4OUW6IFIWSaiKNFU581NQ+eaCXwEYZzxNqrpGqBUt1FgmVHuCuZZpItQ2iGbi4St0mSd0mS9UbqF3Uahqpc9fXuo63Jg3cpoQYhztxGbVB2J36JjYr48Ul7s3xHn1EmW9b4W/5X4Xr1bSpLID7Qrvx5RKckKqaKYfUypp6j8vGjVqJOPHj1fwatSoYdZo5aOPPhInJyeJjY3VNEZ2drYEBgbKiBEjNM/LWvy/UHgvvPCCtGjRwqo2zz//vFSvXl3Be+aZZ6RJkyYm29y/f19xiHv5svZUKnV7l7fqy/5qXE2JSWgm5atZDgoNyJH0inJaKsivaeWM6tbFFZEzCS5S38CIY/jQgv+RDm1jvr5HPWPehsFIdCiysre2MZoYKKWRvoifyqpsmi+S1RWJqY8s0LCq7OOKNFRxRs8vRbsgcQWQmUFPNS3Um/h+OZwUHKP15GA6ELFmqr5R8AoVWt8WKoRra1Olf4F+x/JNc9YJi1X8DZu2ENtDx8Smf4gU+fUnsQvp9ffPVQNpVXgHUqrIL+KnmQ6kVNHUf1588sknYm9vL2vXrpVTp07J5MmTxcXFRS5cuCAiIjNmzJCwsLBc+Y8++kjs7Ozkvffek7/++iuXkpOTc2Vmz54tX331lfzxxx9y7NgxGTFihNjZ2clPP/2keV7W4v+FwqtRo4ZMnjxZ+vXrJyVLlpR69erJ6tWrzbYJCgqSiRMnKnhbtmwROzs7efDggWqbWbMKwErMgFoMVX9QdR5jedWYl5bHesppqSDvxRqvJNt1VY+heeo37f1X17C1Ccji0ebrvQwUU1s/JPstfRqgdSHaxogP1SbX1B1J6IhIFyStrbY2BUlzHJCmdgXV3zAL9WqxKt8XdKGCQ7xgFyoUzUeuO3NUfak2uarD/+f3XpWOpAtz1a0z/z+SVoW3L8VPjkoNzbQvxU9T/4Z47733pEKFCuLg4CABAQGyd+/e3Lphw4ZJcHBwbjk4WH31PmzYsFyZyZMni4+Pjzg4OEjJkiWlQ4cO8sMPP1g1J2vx/0LhOTo6iqOjo8ycOVOOHj0qq1atEicnJ/nwww9Ntqlataq8+eabCt6BAwcEkGvXrqm2eZIVXl7yrle8wL/8c9d5yFkpb7SlCciA4bZW9ze0NzJlOLLiVW3yg1sj01S2Ko+8ablt3HB9GDHDRK/maHodJL4/0lnD2WFcAyS7PRKu4kphipoYuCUMcf7fPcjU6R0L9amiz5m37BFNU5dzmC44v2G+L9+TQvlowdNEH+aoqN///t60GSrMjBZejBY2xAsvRanLLY0Vjqskh30Ccm6j7Yyw/PhO0jL+Pak8TT1KTODKMGkRPVZaRo+S3ieU56q1I5SuJAHher9frQrv25Qa8rPU0kzfptTQ1P+/Ef8v3BKys7MJCAhg7ty51K9fn2eeeYYxY8awcuVKs+3UrIrU+DlwdHTE1dVVQQBtFrSm87K29N3YSSHfaKR6RASdgRlfh/AKvHsuiLodPE3OdeSccmavpXkHJ6aFJRLU3tiw9vW31aOymEN9f7iVqDez14L7D8HTwOrRrwz4eEDMBJjVw3TbpEdW1k7A+EDTcnnh7w5VXKFXBSV/oDcMKa/kLYiHpPvwooEswKKyMMbdmD9E6e3B7w+NZZ4UFdpYEYSZzuitNg18PtgDRAPOQH9gCPAzoHKxADY+YD9VvQ6gVBTY1oDi/cHRRB/mYOdmWWb4SeiiYjmaX1w5A3XaQcv+ULYKtBsMvcON5e4mQ3oaNAiC6fPg5YVmuy2yYRlFl71GsWWv4rpxkapMmdWvaJpitcUjsS/hQuKBM6r1tk52VOwfSKX+DSjhX4Z2McMZHD+TDjFD8aynDBzvWqG4pjFz8BBHHlhBDzFvjflvxv8Lt4QyZcrg768MSVSjRg0+++wzk228vLyMfERu3ryJnZ0dHh4qucrMoMG4+ri42mEjmTg42uAd4MHVo7eo2aUcP0c+dkcYsLQB0ZOOcOlIkqL90Lf9cXaCF+PqMqDI7lz+2LcrcnxXEveSsug0zJPIl42d36a85c6WD+4QXE5fty0qjbHTnCjrY4cN2ZQuLbgV17E22o7rF7N46XnRdE1T3tT/jdqm7R5s+V5PeXH2Lyg5DmZ2h3mfm277+QnoUR3cHaBVJVh5+HHdiFpQvyTYA+O/e8wfWBHIhNDK8Ewe17KMTPjLwG3gYAp47FfyRpeE9sUgpATE3IIPlN4ejHQGF09YdQd+fgBHnjzxhRH6fdqHt92XKJku4yD1a+C8gbSpcFKtgHXAAOAq8MMjvgmFcj8CbMpD0Uh4sBWceoBtUXBsAFlHoUgb+GsoFOsIV63IcOAzGi6tgWT1TASUagyt3oM7f4JbDfCoAfb2kP4opJm9HWxXUVJacPYnGOQBdYJh9hb9U+tukrGcCDR99FJ5ZD+8vxlWRUG1qtC6ca6Y0897sTl3Bsf+ndHpdNjaZvEgbofq0H/69sRzeijuwzpxttbjkGWlJ/SiSNWy2OqycSztyu2vjvJL7/kmL8GrQ00OhK2l8dJ+uLg7UTmkHrZk4ViiCN8/+6lCds8Lu030oo6ckGHa5f+7+H+h8Jo3b86ZM8o3p7Nnz1Khguk31KZNm/L558qn8M6dOwkMDMTe3t7qOaQlpvP1pF10XxqMLZmc2nYe7/olqBzkRd93GpP0ZzJ/7DNO4ePl50JGaibOTnY4ONnQbUI5vnhXr7xWP3chV66/9y+q474zPdGIdzcF+g6xY/akVN5Y6kRKcjbbPs2CbGHFKkhNA9tsuHwB3nlX2bZfF/jlFJy7YNRtvvHDWWNe/XJw7JH+3nJST8EVoa9BXM/6JeGzc7A3j8P59LrgaAtk6dc1Mc0hIQPGH4ZYy1mSANAB7Vxh6J/QyFlZN74Y7MyAkbe19QUwAr1v+cY8vHaAsx2Ud4SR3jD1JgxvAcED4HN7T77fc9G4o9RV2gdVjK6GkcBM4Flg52P2g28h81Hm3gdboXgc2FWBzINw4ZFCUPPdM4cbFvJI3fwJYgKhbDBUbAv27lC+HeyZBL4dYWsex3u/TtDpDfh4CNxS+fKYwq97oY/By2qj9vDzo7m9YuBsfnAPzFmkV4TvrICd27Fr/X/snXd4FcXXxz83nQQIJPTQQw29d4L0Jk16CCJNiISioGDDDioooFJUAkoQEhACNhQLCAhIF6RGkCY1FUhInfePScjdvbt7916CP33N93nmSXbm7OzctmfnlO9pR8b8RXi9/QbZWW64umWRHZ/InbeUCeLWcK9YlutzVlExYiZF2jck7eBJfDvW58LUD6i+8HG8/ApxevIyzXMrDG9JoXLF2BQwHYBzkXvpHDOOqn3rcG7TMbb0W2H+9esgCxcHFZ65h+L/l/hf21TN4NdffxVubm7i9ddfF2fOnBGrV68W3t7eIjIy8p6MOkooNy1h2rRp4vjx42L58uVOpyX0+6yPXRv+o6vaiirN9XkuJ6+qL+oE2/rfHkSLXis5NJ8Y/zf7WqzaqGbOn7uiPUKMymkjEGIYYsV9zKduqZUQK/wcO+eSC+J1k7LBDRBbYsuJgFa2EbX534IFqPgpPT5UHhddIfCP+Xu/A42m/j3X6WZAe/bGEsGf6YLl2iWMvNet0KQYM2pVY94Q1WOU0bBFWgeJKq9qr6Nf6nJRLbyzoi8ovL0YGfe6KN3KOB3CrA9vY1JL8Z1oa7ptTGppav7/j/hX+PCaNWvGxo0bWbNmDXXr1uXVV19lwYIFhISE3JO5cuWKgrm7SpUqfP3112zbto2GDRvy6quvsmjRIh55xA77vAbuJupQb1jhk9CdnPs1Tnd8Uehv/L49wfQ1qzdw3C+Xi23bwDUT6tkyov1tmN9Xf6yGH8zroD8+tGrOP5lAlmQwWX7WVu7VqrZ9ZrDuNnxrkr3pbQssd4Gt2fCcyfm3H4Hu1f7i8m4NfrZ8x3agPDADXGPBPRrwVYoIH0jRMJN56lQFNkLQm9DYxC710ALH53YG3xowsPTJKXiblKg5LBKSbCjGPPt1Vh43Vpqab/1wgMwEZbHWW78c59wLtutoFjmBzDtpxO/9Q9F/6dsTfOr/HNd2a1gAnEAWbg63/yr+FQoPoHfv3hw9epS7d+9y4sQJxo0bpxhfuXIl27ZtU/QFBwdz8OBB0tLSOHfuHBMmaJfrsActLs38ROcQf15aW5lZywOo2ViWxjhzxPGyQ7koUQpGjYeeTtIbjuzq9KX5/TlZ0Xy7gaXqdDxM36Y9NroGeIq8402XwH8D7NR4lkhy0hkxMg7WmlR4XkCvbFAzL1bREta94JvQRcuE2M2RWewgEbJfguxOkKlytqZtBTeNattpe/SnKzUOKr9h259+Ew468TtqoM1taYju4bDgDEyLgt5TlWPhi6CHxpwjp8PXsbAgGjxzysw8PFB7fh9vPAYrS/SkxXyvOPasV01xfPvnIyRs/gUzSDp2iS9LhBH/6zlFf/JpZV2s0i0qKI4rPlTJ1Py5+DvKA/1/wb9G4f0v4eblRv2RJup4aaBSo6KMW6pxs7FCWmo2mRmCOWMuc+qgcjfZK6QwXR5R1ocaMtZ49/fKK/BZNFSsD9PDYNGr8IpB4B5A5CuwfwUEVYZPvzOW1UOPOlC7DAxqCD9p7Miea2t/jojTsPki93Z3Pxhw08anObdOLTTR+SX0zwm4VW9Yc29hCz3gMXub8d6TwcVHY0CLMzFQdWwyrJWPQERClj/yzbNC+kcgipmcJwduvvDns7b9d/WtGIZITYSAltDhFfPn1OoIZapBm8FQRcXKffEMfBNhe05gHagYCN0HgcUCifHwdBjMWwrPKa+dfe06yb2MSb393pmufBlHYkncuENHWom7N8wxp/vVVxJIV++rVytRG44oO0cDXP6/oUDhmcDaXuv47dPjTp17/lAyH004RvkgH4bM1rbB7diQwGuh2uaNjn292fq5Ugm+tsibD6O9+emY1k1UiV2/QnFfePEdfZmwgeDjCU0fg+N/2p1SF2WLwMhPID4ZVCTwALy+07ZPCwlWiqyuAQH0vGr6Y47igEZ6xhPI4B8AV2AJMEAl83UGrLC3GX+xE9zWKgOhZfL8Q3WsV8zUwOqQrbF9zdwJxaLBbz+4mnjjMmyDpQAI0gjfrzgQmmqH9d/D6Q1weQ9se1HZ32oitByrfU5KYt7/bYcqx6qoSKdz0d1KbusmaFgGNq6F6RNgi5LQPe3J58n6WX+XWzJSFoEtFqazQ7SC/8PNaHl0gaKvztvD7Z4H4OKqvA1X7aZ+6DFGGh6k4elAc95d8m9HgcIzgUu7dGrWODLH8TtEvayx7THA3MiS3L2tfFofEeaFl5eFhwe5ExQEiyONc2p274fQycbX6dAEEm8Zy5hBxB6I3A/+L4KvTiBssNJ6QzsNxTjUKn1thEEq27ZEiA6C2MYQVQ2iqsAxkxvxY8VhWiE4XRQe1/n930VGe2bk/O0GNFHJmEpwOfkL7HIgBUCBqcAkQF06JzdqeQm2KQorbafJyoQsD4hvClmxyrFiUyFQtdssos4HzMHNbdBQdb0L68E7EIKjoNUiqBaieaom+rwDVdpoj3nmPNBlAi5eMCMaPoqFZ6Ohk+oan/0Oc6PBw+r3kKzymR+Q5X7c3pmH6xj7JlaLTyFcXFwoPW+aXdlSA1pTpE4lGkY/xUOxi2gcPQ03X2+qTVOarQN61aXRqz1VF1Lm7X5U27FI3oIdnnkUKDwnUH9oNfovakubicoY+3J1DLYjOeg8ugzDX9S20c9eVYGnFpVlxqLSvBlVml7DC9NzqHIXl5yQzfmzWUwKTSExAQYPh5VrXXn+PkqJ3U6FIUpfPbsWQru6sHwyxC6FqKcgaiq8OczcnCkZML6Zbf8GlW2wtLfyuJk/3MlAJgtlQiEB0c0htiOEqZTf5bsyzy7QHQb7yxbkDmEaiea5mFsYootDkBvMLwTV3OAtL23Zikhlh9XffiqZlwTmUXw0eO1y4IRc1AT0ihpmAt8AEcB+QMcc5tIQhE7QlHtVcAuCCtFQOxaqRkOmjr045TKU7A4+quukXoIqgyEwBLJNshn4VYP0O1B/iPb43dvSJPl+KFw9C79uhsLFof0g8CwEL0TD6liYFQGfvAHNOknlkVObkG5DNacV7t64vWbftJr4xkdkxSdh8fKkfNTrlFs0Db/HelJ+0RQqLlEqwVJD22OxWCg7qDU+gWUoN6gVLi4u+NZTfmkrPdKQGqOUwUIlGpa1uxYjFCg887AIIRz5yf6nkJycjK+vr03/rEuPUiLAm6zUNJ72zvMjvB7bl+eqbXLqWgMmlWD6onK4WXJd0Jm4kYWLyGTr+tskxmUze2KizXmtgy2sXueKj1smpaxu9C2bwp79NuKauPwFPP0+dGoM7evCsk3wdnTeeHBd2DAD/ApJIgvvUcrze9WFh+vChLV5famvQXYG+Fgp4qXd4bOj8LOJ4MWYdtDOD6YchIVB4OcKqVng/a1Krhb09eWeggRITQdvHQt0almpjKckwwJvKCogPQM2ZkG1LGilcn+1BBYDxXKmF8AWoDLwOjIvb4knLHDan9gPGVX5iYHMx0gv4nOAfr6YIVyHgvc8uFVee7xQMFTKKeJ3bQpUmAu/6cjqod4sOGpVRLRUc6j/OMSfgIMGJs8q7aHFKKjaHN6w8ncHtoI/NAraPh8DbfvKLOIfI+ENKz/cvBjonDPmKuCr1TBd6adzu3QNVx9XWBNJ5hdfkvWNMlBFjULBTai0YS6uZHFlyjsU6dac86GvKWTqbnyWcv2a45qT1p0Vn8TxKRHUnzuIr8tPuSfXPnoMPw9efu/Yt2ZJ/INKcXajqnIzkJSUpKhXp0bu/WlJUn8KFTWfW5yanMFE34125///iAKFZwA9hQfwWEx36vepwL6VJzm66Tx+FbzZ/v5JTVmzmL2qAjs3J2FB8MLSkvj7ce+ZbOPKZJ55TL9q6VMzYP7b5q7zwQsQ+6f03X24Ht62yqZeNRNei4RTGlbcVeHw7UF4qDbcSYXfzsPHVn65GR3h8eZw8CIMrA1kwvrjslr5yI1w3IF4h/Bq8J6V5S3YDz6vDyN+gy1W7qWaXvBLHfCzQPxdmHABhIAyrvB+Yp7ckuLS/OieBf2t3sb2rrDaE4pmwZeZEKIT+bkYGT7yInAdOGg1NtoNIjSYWooEFCajVWvurrcXBdQGMNr5NQGGAdNV/XXRDnwxgEsQFBoIdxwIHjGLwDHwx3Lb/mI1IdGKOKJoRUi+YCs3eiOQAUkX4HP1a7XCqLnwxwG4fh5OKauSM3sF9B8lFZ4bcOsmhPWDjj2hsBeULolb/z5YvvuCjBB7VejNo/aKKVQY9RAANzft5mA/7Srx1ca2JvZj7SjPolWK4VXMiwZjGrB10remFd77SYMcVniTfNcVKLwCKGGk8Cq1Kk27sCAiQ396YNdfFFOaLn29cCWLG5fTaFP+hq5s1apw1qSLcNwj8OFLEB8HvcNh91HH1xYTDgm34LGVeX2tKsGXY8DPUwauTPkCulWF0BjH52/hB3s14iYmloMlGpXRa3nASYPgkRXFYJQ3rLwFj2n4K9taoIpQMqlYox8QY3fVfzfeADQiKf9XCOgLl52zcAAw4D04tAbOmQv718ScaGjdCd6YANcvwyGruZq2wrIqCreSvoioT8l8wlm/qi3apW6ClDvETllGsRbVOBGuofgdhFmFtzBpCIWKmg9ESU1OZ4pvVIHCK4ASRgrPLIbNqUHc+VQOfHmVuEuOMRRPm1uc2GPptO/mwYxQ80nrZjBrNMzRiOo2ixWjoEtNKD9LY+72MOdn4/OblYR9+vpbF40Lw0Fz0d4KXC4N5YQ0Z/rk71sJwMTCUK0UPKX30NFyCZz3g6sCxAXg6Xy6cnng/oOqnL98KNz6HZIO2pdVw7cyJP1pTrZ2MJzYbl+u71jY9LGxTLMWuEasJKtebV0Rt8a18e7fmeQX3rN7Sd/uTQl4vAfH+79qf30OwKzCeydpuMMK70nfz/6TCq8gaOUBo0xgYb5betFhZQfw7swEvoi8k+/KDmCfg5awiPHKYyG0lR3A9Tv25ws1mVIQovLnO6Lspln9lgOuQWQqfOtAPn9/86Jcy5Ik1ouCoYnWa7N4ge9gcB0ChCF3Z1po58BVwbSyc1no4LxmL7/KOWUH5pUdmFN2YF/ZAezbq6vs3NrIONzMgydIfuE9vPvZRqv6tFPmBJYY0JasROWX3r+Tce5tfiIdj5zUBHMtvSAtoQDOIiRC/wYVFtmYEzvMO66q1vn7vojlSjkmf1iVJjjaIMaigwnKrzG1YKlONLo1ijrJgtTdEzJU/rjQWzApRdmnznqwzgjbqDP3U8BbwALy1NaGVFgfB5O3w4FYjZMqD4WseMgcDASjb4pUc7rkE7KPAfmYuFi0OZSzE9pfNQTqT4MB5hK17aKmCeaC+0TmrgOKY1f/YjYyxYYrQ5rdfH0o1qWxoi/uBwefKO8DBdRi5lGg8O4DIyIfwquYrbN42tdtqdmuBA26l6KiUea0Cj1C9c2no6d56445g0+VObjMHQ/Lp0P1ctryi77V7lejTUXYrnXDt0K7stDzG5hgJ0I/vBI0KGzuumoMKAz1NPz4f6kM+LmhE28hM9r0jFzBwGdAY6APMievCybLjTw0Hi5vgTP+wDrggIHwbzl/XwSMEpe1Eq+NuDE/AjQ+mELjbfsAXCuBz8PaYwDJv8JfdmzipdtD6WDY4MCutccr0Fg7nYBTJpkLctErBIY4RyeYi+JvP2XTd3miksXh2qdb2Vs+jyDAvcz9uUHqjW1sX8gKBWkJ5lGg8JxAv8XtGRndlSbDq3E3ydZU+W7PnZzacZPHS2zh/G/6kZVqfDBT26lVLciVilWUyakdu9t+dCOGwcK5sOgNWLsEJuqRdGjgq90wZh6c0QgIMYNFOfl1uy7Ax4eMZXdcge0GlGG5eO88FHPyYXTLHfME0SDz7LYCrXTGzyPVz0Gk8ssNVeptZvIRC+BuovnFADIJwugcrUgjA25MPRRaIBlYSqt2JFnn4Y5BkcNcFO+gP/ZHJNy+qD8e/Jpt3zcvQvXOtv1qdNVR1NaY8hbMMKAYsoMSkW+Ruk2n/p8VspKUZoOMq+Z36c1f606XSKWCb/+6TtK/3vVzygOZb87d9hcvXkyVKlXw8vKiSZMm7NhhvHPfvn07TZo0wcvLi6pVq7J0qW1C/eeff05QUBCenp4EBQWxcaOeXSV/UKDwnIB7IXcaDArEYrHQeIix/e7bD+6fET32eBYvTVb6CHoPsK3aHrkGKgZA+BgY0gfmv2gjoosdTkRqrhoJsc9DdCiccSIAxQxSsiDSARrTkTl5+hvuwgaD3LjtKkX6HLABaI00a8ao5P9UHScgVZIr+tXqAAqFhUiWkIo6ydW6eAPILUpqruq2Q/B4E7yjpW/RaxAQBH7RUEw7nF4XCdv0x67vgN0akZDl20PfKGihw2ASpUM1Zo0xC2BmNCxVKeohVnN2DYBd38K7UdCsvc0ULm+/g0vYBNzeeg33kUPxevdlvKaOwf/MD/hFL8R7eG9Isu80vrVT23wZ9OZQmkSFU2WCvgKr/2QwNYY3pGf0MMbETqN39BBcPR17ysvE1eHmKKKiopg6dSrPPfcchw4dol27dvTo0UNRocYa586do2fPnrRr145Dhw7x7LPPMnnyZEXR7t27dzNkyBBCQ0M5cuQIoaGhDB48mL179zq8PrNwSuH5+vpy9KgTd8j/J6jeNY8fy93LlfZhf08dnio1XNiy34ePo73o3EP7o3trEfxxDkLDISUVot+HN2fk3xoix8D+WdCyMmw6AsULwaAG2tyZZvCjnYf5YSVheAkYb3L+hibcoO+6QJlMaQD8FllL3BrVctrbSGIvLXRFettmAGMMrlX4uSck+4fwgsITNSQ62F8w3sBC5L7S2eATlfnRfTK4dYLkkZAeL9foPQh88i9U/x7KBCuPa4+A6oPBUgh62KHRCg6DN2JhYhSMXQ5N+kJYBHh4QdtBUClIUo19GgsvRUNVlan3ViL0GAx9bc3D2Z+tgr+u4Dl0EN4fvot3+Bh8XpjM7Wfnk7ruGzITbuM1pJfTL7vsiIe4sv5X0q5rW3l8a5QkMyUDi8VCjUH1KBboR81BddVMY3bxd/jw3nnnHcaMGcPYsWOpXbs2CxYsoEKFCixZskRTfunSpVSsWJEFCxZQu3Ztxo4dy+jRo5k3L4+AYMGCBXTp0oVZs2ZRq1YtZs2aRadOnViwYIHD6zMLpxTerVu3SE3VthdduHDhgS74n4A3AlZybJPky7dYLAyYZ8xoP2p+LZr3LUn3CToOMisMGFuEmQv96PCwLd/VudPZdG96h6OHsqhfQTvqc/c+qNYSIjdAiQaQlg57VcXU506yuwwApvaEMJVCOnYZms6BPX/C+iPg/xx0WAw9VTp/1cMQOw5WdTe+RkcDkosZlcHTRd6L3zWomPJEUejrA2MLw5MmAlqnZUuyrj1IX1yUajwDWUe8BVBa4/wQYCfQHtgMWIdSTK8P061cXzcCWsMvkbBvJPhqVdTbZn/BdEMaWxcifXfNga+A93XkXwLWIF9ZLFLZ/QAsAktfsERA2hZI9oeMSIj3h5sdpOLDC0pGQ8Uz4Gvyi2IPnTcoj2vk2NrPbIZvrHxsjUJhsCoTMvkqeBeHrHT4eAwc2ASLR8PuzZAQD2+NhEadoFwgdBgEnVX+vx45x201FNehQ2THbOJOxZpkfLGF9M3fEuffgLR1X5O6bgt/+Tcn9dudFJ0+SnGa/1PDqLjqed2XGzC6IxWe6M4PAY/z17q9/LVBUh41Xqjk5Us6fYOVJV7k7CZblhVH4Gx5oOTkZEVLS9M2iaSnp3PgwAG6dlXWDevatSu//KKdM7l7924b+W7durF//34yMjIMZfTmzA+YVvU7duzgypUrNGkiw3YtOo8hV65c4amnnmLq1Kn5ssB/KlIS0rgTf5eYKbsIbFPCUHblU+YZWBq08eaRUT4ULWph2xfahWdvXjefOhmqURZopsZ9cmA7WK8yyWdlw2KVQtqvLO0FwPazUGGOsq+wKxT3gi1/QkRnaF8GFhyC9x34bQcVAks2klPTFSKqwKZ48HeFCKuk9A/Mu0lNIdeA+AW2uz+Am+gnqFfygc9OqTo/zGX0iESypRQD4oD1gJ6PqyngA3REqtdcBvCYnL+9gBVIqrGGwGwkpyZIhdcaqY53ArnRlKslNxqbQKh2cpnb4bo/FIuBwoPko7BXJ0iy+rL4jQVSId6g6GouSnUCt8JQsS9kZEPpdtDmXUg5C5kp8PV4KNdCec6hVVA0QNW3QTY1jv4Ab/WT//8UCS/HQHBfuJ0CDdrB1Hfh2llw8YTvNsHkfnnntmgLe5UBMFmnYrm7ao3NZUTiLTzrKKNbvesG4tujJW7l/Mn8yzYKO/ViHPFbj9j0uxXxpF30eC58vp/zUXmpHH9+dYKz63+j48IeFPJzPDgtHXcsDqQapCO5TitUUDK5z549m5deeslG/ubNm2RlZVG6tPLxr3Tp0ly9qu2Mv3r1qqZ8ZmYmN2/epGzZsroyenPmB0wrvG3btjF79mwsFgsWi4WwsDDatm1LkyZNaNKkCbVq1cJisXDt2jV8fOyXrfm3w8PHjef8PwVgX6S6pIvzaNW1EDNDr/PUXP1IrzYdXFh9/0QOCpTXoP2vopG60K8hfK++oWvgxwvQP0b+v/okzGrsmLIDGGp1/c03YLSGsn3Q0CrUYhSwGq5B/ahEHWTtBf0dgkQuEep24BEdmXjkfjMBOKMa+wUoAYxTnySRVVm7/+5XkL4e/BeCSFSOpR4BD5P8mtdzKqz/tSkvlmZDU2gyC7YMlsfHNYri3jHpDD6l2gUkJcD2TTC7nzx+rCm8skpWTFiu8kv2H2qj8NKef13zMkJk4zO0Ozcey/u84pZt5OJjGgE3OdBSdgCVh7Xk2re/KZQdwPGPZGDMycjD9I0ZTuWHDEqEaCATV1wd8Mvl+vAuXryoSDz39DSuvKLe5AghdDc+evLqfkfnvF+YNmm+8MILnDx5klWrVt1b1Jo1axg5ciR169alaNGiNGvWjFGjRtG0qdmilf9ODI3swtkdV3TH63QpyZtHO9idp3hp5fNGh36F6RrwJ19G3uah8pepGOhCrQa2zyRrPzGXPT1SXbzNAAdU98t2NeHJT23lSphME/ha9QywSyP6s53Bxnh8uZzK5znM9wkOVjdfUgjW+sDrOg++LbS7bdAV4wT0yo4tC7lrS3TwnM91+tsj40Rro5lyAMh0BC08Ba4zwFWVD3j3I0iJhIv+kK3abaTug6ScKLqSY6HSHPCqbuYF5OHsZuPxriYJYc+qUjuadIXbKnv2i6EQ7A9HVE8hHXrB20uggn3FEj/6eW6v/w73oLzgtJQ9jj251Zs/jJZRYbh4upGekGIo++ubO7gb70B4Mc778IoWLapoegqvRIkSuLq62uy8rl+/brNDy0WZMmU05d3c3PD39zeU0ZszP+CQD69GjRoMHz6cxo0bs2zZMq5evcqFCxfYsGED06ZNIyAggD59+rB8eT5vP/4haDOjCZXblaNG94qUqatfg+b3rTf481AStdr5EfKG/g0h4ZqScfjyWaUiu/BHNieP2LIS/6wyM5bTqS7yqYYlSA87VL/hHTq7uJS7ED0KRqoLw+VgVE7MwB+qyOyfNawUO27qr+fFSsoyYUOK6ctqYWIqLL4Lg3UefM2U5nwaCEc/AR3yygaZx20wND9VQaa2G2EMMqymGXk7QSM8BuwDVF+U7LuQpcf4AiQvgFIRUHy27ZilEJyfBXfVO0s7SDBQFn41IDsLArso+6ubCNMPCQBPk+bAllVgxkS4qB1hqMbNkc+ScdyxWpblx3fmodhFNIwYT+Kh8xRvUok9Iz/Gr6mBMxq4svsiy6o4FpjkrA/PLDw8PGjSpAlbt25V9G/dupXWrVtrntOqVSsb+e+++46mTZvi7u5uKKM3Z75AFEAXSUlJAun1sGkj1nbWHXO29RhRNF/mGdoHMTEkf9eW25aHIAY1RDQJyP+5a/koj1dVR4gWsmU3QURUQPQtjFheBtHd+/6uNQ/E+yCe0XqNIEIewHsnW4qAeSbkBghon/P3Qa2lhvLYbaT5c0uGGY9XGu/8uppPUB4PWSoYFy14+ZjxebVbCbo48BrysfmHPKQ47pLymWgaM+O+5kxKSjJ1fxqb9LoIE/NNt7FJr5ua3xpr164V7u7uYvny5eL48eNi6tSpwsfHR/z5559CCCFmzpwpQkND78mfPXtWeHt7i2nTponjx4+L5cuXC3d3d7F+/fp7Mrt27RKurq5i7ty54sSJE2Lu3LnCzc1N7Nmzx8E7tXkU5OE5ifSUTNqEOZAgZgJtuhrb0M3iuUlw7LR5+akOkEaOWQ3rDsMBEzXtHMVJFQdn6BkZpEIWrL4Boy/Cptsw5ipUuU92pF5AKqCVdTYG451bT0Avm+IhI2tMoYmAJ5KrxR42AD/n/H1QUH1JMjVs2HpI3mrbV248tDsDjaOh3rvOL+uSylzZYiQ0GQTlgiAsCtrrZD6e2A1bHXgN+Yi41T9RLrwPxXs0wbdVTbJS0rj5N9GL/R15eEOGDGHBggW88sorNGzYkJ9//pmvv/6aSpUqATJY0Tonr0qVKnz99dds27aNhg0b8uqrr7Jo0SIeeSTPH926dWvWrl3LihUrqF+/PitXriQqKooWLcw6HBxHQbUEAxhVSwiN7kK93hUUBWD1MGFJLbIzsrjw2y22fKy07VVv6MXcdeU5cyiVu7fSeWlMntM+sJYLf5zUrh7dtBkE1YJP9cIFNVChNFy8Zts/qTe8/6Vt/z8BKypDcVfop/IJNnaHg47bE/keOImM1jIinZoMLNIZq43Mv9NikpzXBKYbMYexEaiPjKR04MPTxbNIxeWCVOEm2FEeJBrFQOm+svjq9fWQeRMOhTk314AlUNQfmgyU9u3cGnfb3oPIyfbOhoq14IJGhHTpALim/8Tm9e7L3J0223Bqn45NufOjsTm50sSunF+iXwux1aL+uHu48POEPB/to79P4vq+S3wzKsZ0tYTQpLfxKFrIcC3WSE9OZZXvjIJqCQUwj/TbGbh7uTI6uiMtRhqzrSydeJKSFb0IamOrPB8JK0GFal50GVSU7sOUX77HntSPdt2/zzFlB9rKDqB+Ze3+hxuam7e9Y0FlDmGoHyRoxOg4o+xGIj1kPbEfNrIIGApopYqfQFvZgT1lB/AjMkrTgbINhghAMoHOBQyqiuN8AjUA3ma8nkBagvxrsUDAIHA1fyO2gYsX1B0EWVbO3EObzCk70FZ2YKjsALJj/7Q7tT1lB1CkQSXD8aQzNxTKrsmMdvjXLkWN/rXszm2N9JwKCI60/yoKFJ6TOP7leVIS0mg0qApV29jG7xctrfxSff7meao3tQ1x7Dai2L3/76Zk06SdJ+v2l2FhtB/9QuzfLEbo8OyawbzHIepZCHlIe7xkEXPzhKjILcIbwFEH19WmGPzQENoVheWBENsAoquCZxYMKe7YXHp4AalqbiLVjhoNVMeVgEHISM38Q64ZXCvhwRrPYcOOQjMNuVvk8W7OBF5BVkJXo6TquIOtnGUUuLQFzzngHqIc87Sl5tKEX1c4HAop8bJdsVft3QANhso5IkPhTrxs3zhIfQZQ37EgCNeqjj/BVYuwDTQqP7I9jSP1d7dFqyhzgfyCSjkVkv+gg1b+P6HApGkAMwVgx8V0JqhLKab5fObUNZ5eUo6ju+7QupsPL4Tmxe6/vao4O79NpVAhwdqP8hgQKlWF86qAsX49IeZrHEZwfdjwrEwQX78TgspA3el54/Hvg58Jso2UGfBlLDQuAQevwMCqQCZM3gbvHzc+d2EtmKLxIB5cBDYEgh8gMmBlHCxOgP06/JjHisJvGZCRCZcFPGsV3LoamA+UAR5CmiPNYB0yndvOS2AOkpnFHJKQSefnc1ajRiiyaFF7wB2Zh1cbOIyssqD2nR1EJrrZMxteQhaLNQmv5XDXijSt2HJINCBR824CRVvC1Q/MX0MLTcOh1WS4tAMOr4RzdioJv30Mtn0MZapIYtMb58CvNCw38Ym88g68qMHMoIJrrSpknTxn018x8iWKtKxF2sGT+D/ShuT1P5J5LQ5SUrnx5T4axzxDIT9vLq/8gWub9hPQpyEWsri6+RCFKxTjxPvK19Z5+QAajG5EZvIdFvrONW3S7J+0BHcHTJoZyals9J34nzRpFig8A5hReMHhQdTsWIoP+2/THPev6EXcBW3GlPxClYpwThVh/cQIaFwTFnwKR+1Eji+ZAD/+BiIbetaH9jXg4Fl4pAFMWg1LrH6X9cqApyu4WeD9nnA2HgZWB0sWkMW9vLlNsdDPIEN7bi2oWgiu3oHJBgE2MTkP2/00IsjLusDmonA2E/rlUJBlZMpCr49ruz7toidSJZXElkAapPftNmD9zPEm8JEFYu39kty6Q+YK4HGkglqBLbEZyL1obkkddyRbijWBdD+ges4qe+asVCuR/REkY0sZYGCOXFNgGrDFzmLtwCsY7posygpQNQxqT4PT78Cdc3DrDBSrAdUGgkdhKNsErvwMf34Dd/6CS3ZqRw16Uyq51gPhbgKsnAITFsLJHfByP1v5vqMhOQ5KlYPRT8Kpg3BgO3yyWHN6S9VKeIeN4M507YR0gHKLZ3D3lyNUXjgJTz8fXMkiYdNOfu/3yj2ZKlN7cm6B+afR8sGV6bWyL8uqLDSt8PokfYh7UfMMLRnJKWz2Hf+fVHj/3UqA+YTszGzSE/Vp+R+0sgNbZQfwgQaJhR4mWvH3rt8DMVNhUDMgE+YPVCq8o1YxN00/hJghaJLdXrRDMl/VR2ajGSk7gGeuQgtbWlEArmRDs0T41Eeu4VoGDEuFnffxCGfv1vSbRt8zIAPJ7UFYyMuF2wz01RG8jXxycEPGi6rfzLpIpZeUc3W9vL0XgNeRlReykWbMZ5C0Y/ep8CwOmsUyEuDmHjhjRTZ86w+4+A10WQVbx8BlBxRo6xGwZip8uxBO5yjH7ZHwsA759SYr83D7btBzEFzXz8MTZ88bKjuAv8Jkknx85HdUWzWTpG/3Ubiu0hzqiLIDuLT9T4fz8LJwxcUBM+V/uR5egcK7TwiRRe0uOpnfVug0shQ/fHo9365bpw78fn+cs7q4eBPib8OU1dDVjv884Q7y3qza3YXbeUC/nQ6HEpV9FT3ggiqW41S6bEYYeQfmWuD4P91WIdQMGnqMGrkaPlfpqb2LXZBeyKdzjr/SmKMbkmMTpHH2ScCoNtyngCe4NgHLHsi0U0zRuz+kanlCgaKtIVlF/XVxjWxa2Bqq3a+HBv1gWoD2WKYtUYMNrlyErZvgtfwrIxIbOhcAR6pk+TergG+1kpxdc9C+sAEKFJ55FAStOIgmj9lqgGfK28+VKlRY+WzhV+b+njXuR9mN7WE8Hh4J/uEQuQdGrjSWjTgCaiakBIM6dLkYVg7qqmJ4nrb/3KALM8quO9LfZhZTnF2MLtRJenoBHdY7ul9Q8sIMQ4be2GPMVu8KjcJHpwMjgMGQFQjZ3ckLrtFA4UlQxKAKYKZj1FgO466B+cBMzMdr4bBbpaz79IXmze9rWfZQpJbyCx637+J9Kzv4e/Lw/r+gQOE5iEptlIXZKjTSYF3WgNpVGn9VPon2DDX2ET4I/KTBbdu+trlzm6serHdcBP/3YNMpuSsM/Q662KldtyQIxv0GPYsp+/sWg+kahNX5hceR3jAdVjQFHkHWy6uNsvwPSFIvp5Ct5a/TQnvyUt/V1bNLIu/q9qqCq+i5CDaQrYRM2ogHIiG7BIahOrffh796StqxSvuhUFsoZhXQknJI/9wmKtrBlnrZjgYorE/rR8WG5uYornr42LwJfv3V8bUARbuY4w6+dVKff9ca9cY2duj6GXiS7kDLIH8ILv6NKFB4DmLD2G20mVSX52OHMjq6I4WKmctpqdpQO6euQVvHKks884KFcFXkZK9O8Op0bXkt/KFB5FxHx0KkxjePavd/dQ78l0PkGSi/FmbUhdi+sEpFmlDTGyYeh8grUEHF6VvhCKQ9QLNkf6Txz26qHFLdDEPm3O1UjenRNN8/qiEz/9yR6QZvAerom0XIeg0uSP+cXnSm+qb2itX/jVRj4cjSRf7IKFETSP8Zro+G800hdSck2uHPLdoIGkVApVFQy8qUuGcyVOpnK9/SIMryQLR2f7cw6GDHFJuLhVZBPr73l/ciXO+P3b9suyqK4/JtHUuLyMLFobSErP/wbb/Ah+cEdr1/jFqdy9FoUBXWT1bfDm3xVGQQ7m7aYYM9Qn3xLW4hsLYLg+rp1UbLw5uvCiaqKEIe6QlDesMLRnnHwGtj4Hm9+5IdRbOkP/h7QjF3iB4IQcWg7sd54x+pTKxBvhBYREZielogLhUmHoFTxmTxZDpYFSEXLwCVLHBAgHYNZsdgNq+9L3I/1tEdPvGBKlUgoyZMX+vMVWNz2lXyKKu3aci9hqyC3h7pPNWKNJwFjEeq7RVIH10u/geRecmH4NBoKOQHhVXmUk+VlaRKD9jjiPE5B3U6wGEn8v6SEhw/xwrZaSb8hga4skOZ8pBxx4RPwArSROl4eaD/Iv67qt4BPPyhbepxSo6jqlxd46fD6i2K0ri7H2kpSoU3cW5p3oiugLeXoFUnTz55M57XIvzYeqY0wyd4Ua+JKzPnejFygu0zSR3V/WJYPyjkBZEGMQk1ysOjBtXH1aQQ1VR5ypnZMKgeuLjAoCAIKglhDfXnG1oRyJLpCoPKgpfJ31hDx+tfAvC4C7QRYNYo9QIw1mDcLBXpo0jfYFUXeLcMjKgCe/6ARs1VP62a88FjKpIf094TvNqMqSeTjNzlPQeM0pCpijRXqlMWepuYPxcP2xdRw6uh/lhqApRWmVubq0oCVVORu/rVgIdNPMak3IZbicq+HqOhfltYsR9mLtU87X7h282W+zHwtRBbuQYVbPq0UKmTMXOTGs6WB/ov4l+p8ObMmYPFYrFbVX379u00adIELy8vqlatytKlzn3h6wyuRaupKrt6ttwSNR9h/OU8szeZkBI7iT2odLQXL+XOD+uSGN32T4L9z/Jl5B2eHx3P+ogUPlt6l6MHspg78y5tHnK3mdPXFz5bCbF7IXopeLpJxTK8F0QvhP3roFZl5TmnL0GFQTBjICx5wnadI1tDdBgsyfmdxqrCzcI3QeQBCF0P8bcg4bZtsEouZtQFTxeIT4PBu2HwXln1xQjVPGB5efB1wqS51AJbs6W/TW2uHIg02KlTrr0wZlAxW9J3AHmsLZtugf8GWL8PDv0qH3BcG9eFKi2h3KPg3gG5K7NXlmak6ngaturZE0kXthWp9FZqzLMTySvjitz3foWsBKhFzrsYmKrRr8HN6TUNSsSCXxSUiIKKZ6D4NCibs9O8e1j+DVwC1dW/OQFfqT6NS9ugYzQMi4Xu0VBDpSziT8MXE8Hfjvf0pxVQX6VMv4mA33bKgrBzrUwjbbvD5qM2U7iEGTGsauMvlSKtML0/labZPigkHbFvwQFYXsux5P0CphXz+Nep+n379vHhhx9Sv359Q7lz587Rs2dPxo0bR2RkJLt27SIsLIySJUsqGLtNwWKhdH1ltdI1Y36msL8HDfuUo0NYDbYtNt4TfPG+0nH2xuhLmnJx15WaYe9OW3PJzaswZSxYMiGwPMTHwZQXYeGz4OEKTQfpryOoEtIKpsK3R2Xu3XgDLuzQnGDUSNV9onQhuGal/O5mwOYL0G9HXt86Db+hNWLTYcwl6GJyhzfODUIsMDMDOqKfP7dep38/cl/kKMohg1ms43Jz92NaRWqzDuYw5p8rAR46OWIKdEFmKIYBu4E7QGOgCFAYyarSOqffHr7MaYuRSi+XT1OLJswLqKfRDzLvz4r5X2SCW2BOQ7bS78CtlcrTbh+Ha+8p+w5psJCmXIb4vVCxE1QbJImnG02CQ+8r5eLseE9P7YDHy0O/GdDrcdj0DnypnVjOzi2Qlgp9hsNmK5akWvVwW7EclwvnyPgkEnH2T8VphUf2wadXG9K27SNxifa36/qG3aT+eY0Kk3py8X37eXgVetTi4jc6vJ8mkOWgSbMgLeFfgtu3bxMSEsJHH31E8eLGpsSlS5dSsWJFFixYQO3atRk7diyjR49m3jw7ji4dePrY7rQSLt7GYrEwcJ5jUVVGuHNLafqsorGBnPYMPPQw/HEOOgwE//oQGQP+zeGHPcbzf3cAumgsN/E2RO6Ej3bYjtnDNdVOr14xbcJnM9hqx8eXi/Yu0CFD3v5rCHjf7hlKOGY0ysNf2Bbs6Znzd4hd15gZX08oki5sMXAIaVwNRQaVLEC+4neQgStmkYx9M+lAZDV2vTVZwVIVEkIhPV62K6GQFg8+Q5Rynibf5V/DITYSVvrDmU1wfLWtsnME/hXhs5dg6LPGcvu2K5UdgI8PFg8P0me/ZqPsADwa1iLli58pHjZYd9q0s1e5uf4XU8oOuC9lBzgYsOL6n1Z4/6oCsCNHjhRTp04VQggRHBwspkyZoivbrl07MXnyZEXfhg0bhJubm0hPT9c85+7duyIpKeleu3jxogBEncE1RYPQ2ppFGh+PeUgsyw4R3WbUshmr39FPtB9eyqa/S0gxm75Zi/zuq1hkbmteX7t/YZjyeGpv5XH0xPwrhnmpDyJlgDnZl0vbl+nqjjhVBDHZA/GLN6KNC+Ili3NrawXiaRDf5NNrBcQcEEmeiOw6iOm1DWS9lwlYqeoPUB2HCZigcX49E2vpLaCjRv+PAnoZnBcqYKiAd+/vvSjzqaBQO0HV/YIS4ebOKdFWeexbM98+F0AwcIbg01hBn4mm5C1z3xY0auTYNYr5OCRffVKwKTmzBWBrJP0saouDpluNpJ9Nzf//Ef8ak+batWs5ePAg+/btMyV/9epVSpdW5tqULl2azMxMbt68SdmytlnOc+bM4eWXX7bp/z36lO51trz+G/tX/0HN9mo2eqhQx4fH3qzKz58pGVa2rk5UHDdo7YGLxUnyRxV+zeG+erw/LNuY139GVRGlfiWImAibfoW+jeC2RmBY1xrwncpS+1o7uJQES7U4tnJQfjNsbAVRzXJ2f9lQykX+vZYGh29BQy+4mAazdUoWWWNTMVk1oX0WtM7ZAdohctHF7pz2DTAJx3eGWpgFVMqCYRaoU8xA0CsUUlyRu63TwAeAulTN4pyVqWGGw8MTacK0xiCk0dcIuXWmnAotzcPVHN/jWXN5aQDcVEU5J+n/1kyhWkuItTJzVAyCcoHwxHzYbD/wRcy0ZV/xeed5XNxcSP/6J9K2aJhAEs2Yl6H+whEUKVuYzFsmzRgmUWDSNI9/hcK7ePEiU6ZM4bvvvsPLS4dYUQPqUhsiJ/lbrwTHrFmzePLJPPb05ORkKlQwjqw6vy+O8/viOLDONhChYr3CeHi5MHBGeda/rfTZVajhwSPji7Fg+nWO/JLOkV/yqz6axPeq54J6lZXHhQvB4Bzr7qYDEDVeOR45HK4l2Sq86sXgeRNmz0t3YG8cLMxJaJ9wFMiGpdVhchlkNYWzRjPA7yXh9zTwyJRRoj/k41t0NKf5IdOt7xdXXGDwecgysrSnrQc2AeeQZks9aJm4rmr0qaFlMl1nIP8S8CfKgJdqyPCf/3EhWWcRq7Lpf70M2vaB4sXh5ShIugYuAq6eg97DYVJfuKmfEO7x2BAKTR2LS0IcdyNjTC3B1deHrCRbJehepBABg1ryV7SSdq1YrVIUr1OKc587VyE920GF918OWvlXmDQ3btwoAOHq6nqvAcJisQhXV1eRmZlpc44zJk01ck0GWq1cA/smyIVHW4oOI0qLie9Vy1czzaRxiLdedOycS6sR7eog9s9HRE9HRKhMmBGjENHjEPufRrSrivh0qO0cU5shIrrb9rcphdjZw/xaVlVFjPBDzC9nO7bUD9G3ECLCF5FdEpHth0j3lW2Ru/6cn+bj+/u/b0EOyA4Q8L6AWkJ6M+3JNxawScA8AY8IOOTcGt3nClzaCjyf+Hvek76RgolHtceqmzARvhYj2CkEe4RgvxC8G2P62q51zLyv9lu/1OVisFgpWkY8akrerEmzQtI+UUmcMN0qJO0zNb+ziI+PFyNGjBBFixYVRYsWFSNGjBAJCQm68unp6eLpp58WdevWFd7e3qJs2bIiNDRUXL58WSEXHGz7OQ8ZMsShtf0rFF5ycrI4evSoojVt2lSMGDFCHD16VPOcp59+WtSuXVvRN2HCBNGyZUvT19VSeJXalv17fuAa7dmZiM9WIjZ8av6cN8cjZgxR9q2agmhXS9kXPQ4RM954rkWdEFG99Mdn1ELE9kCEVXHu9dV0VR63cUMMckecKIwY6oo47qYc76s6/zEQnVV99VTHg/Lx8ygFotv/6LuQ1/rkwxyTBLyYf2sqsdx4vGgbQZ3lghqvmZ+z16eCuiMEfSMEk1SK75VY++dPek/QZYTg6zip9Ga897d+TpXDOosB2Z+KwWKlGJryvqlzzCq8ckkHRXlxxnQrl3TQ1PzOonv37qJu3bril19+Eb/88ouoW7eu6N27t658YmKi6Ny5s4iKihInT54Uu3fvFi1atBBNmjRRyAUHB4tx48aJK1eu3GuJiYkOre1fofC0oA5amTlzpggNDb13fPbsWeHt7S2mTZsmjh8/LpYvXy7c3d3F+vXrTV9DS+H1X9ZBcVylZQlTX97AhvqO7ReW+ItB4805vtevRkS8Z/6HlvotYsVT9uUiRiJWjLAvF95Qf2xFC4QYhIhqZn59YcUQS0qal59kQewBEaYxFmJyjn73efP6Z7Uwjb5xAlo6MMcCAR/bkTEX9EGJSEHVLEG5aEGZRcayjaKce83tZ9r2dZkheP2MoMtUwbB5xuc/Ost4fIbG/DqtaEh3UX7VbLtyvVNXikfEKqnwsj8WwdFjRctFjxieY1bhlU46IsqKs6Zb6aQjpuZ3BsePHxeA2LNnz72+3bt3C0CcPHnS9Dy//vqrAMT58+fv9dkLVDSDf1VaghGuXLnChQt5frQqVarw9ddfs23bNho2bMirr77KokWLHM/BA/qt7MG02DEMi+5JrZ6VFGNhX9sj8ZUIbKDve/T0cmHWu+b4/JLjYagd8otVL0Pseoh4Gsa9Dc2q2593WDMYokptbFMBBqqKQ/xikE83NADIhDsavrbGPjC3IqxS0gYyv5S5YP1cVBNQGQjUGFP3qRkjc1EByY5ijS7Au8iMs/vB3GYGg94TkfUa6iFz4lohGVKcTZIIRrtC30Bk7Tuz2Ipx+E5Yzng0stytDgqFgedwyHYB70HIvEED/DEPAlRVFwLH2V/uMQ2/ZNkgKF0N+r4A5w/B48th9CIYuwg6q64RryrT1aSd8rhnfyytWuG11b4f06d9I/xCulExYiZFezTHraSvYrxIoyrUWfQYh8Z+RHq8JJ+wWCxUHtQY98Lm4xGM4GxaQnJysqKlpTlGaaaF3bt34+vrS4sWeeQGLVu2xNfXl19++cXgTCWSkpKwWCwUK1ZM0b969WpKlChBnTp1mD59Ordu3XJsgfelLv+fI/cJambSFPGqeEqMiHlY8QTWaUY98X5WqJgQ3UYMnFtXMTZyntLuvzGuie6T3LvRJcSp7ADxXnQx8d2x4oZPfSmXEdlXEVFLEYteRoT2tZXZ+CYiZo75J+YZXRA35yJCmiAiBiOW9Dd/7vQ6iNi+iOg2iOyBCNEfkdJTX35jVUR0ZURsdUREGUR7L1uZHm765/cC8RuI91T9I0DsUPU9pDPHOhAzVH3VQTQHsdDgtZYG0VtnbIk3IroaImscYobe+1ci2sR72lrINAHrvrEmzusoZDrDcwK+FbDF9Gdov10WIHJair6cb7SgvBBUFoJqQlDDQFavVRomaL5IULGvIGiiYNA+QdnW9s8LWW7ry3s6RjArxlZ2+hLT63Gf8oTwevdl3fHCAx4SFUzs8HJb81XjxTCxXIwQH4q2y4cbyprd4RW9cVr4pl0x3YreOK15vdmzZ9/3PfP1118X1atXt+mvXr26eOONN0zNkZqaKpo0aSJCQkIU/R9++KHYunWrOHr0qFizZo2oXLmy6Ny5s0Pr+1dEaf6vkRp/l2+e+JmKLZRpDsUrFubTR3dRv1sp1s9URljtWX+NSRFBNGpfmHMHkzmyXb9+WcrtbCwWC607efDq5ESGPOZK1Apb2o7qgXAnBQoVhcE9YdM3MHmT7XyJt+CgA7mshy9CiZny/9UHILyl+XPrFIVAbwgsx70CsF4CZlSCt89rrC0DRvnCpgQYrRN4+I3Blu+rnKbaKFIdyRXyOjLN+k3gp5yxcCRVWDzQDLgLrFadfybn769AD2QRnk9VMtewDfrPhacFBvkDHhCkDux9ZDZcrwPH7ZSBB2T9O+sn4e7IHWFNZF283cjirl8jd2a5+BFog9w1WpAVF2YjIy7fBfaauDZAH2Q1dmsEADFIqmwv5E6vMTJ9wqpyeupWSNsMfgsBP3D1Ap/ucMdOdfVKYVCsHhyZCOfXyJaL4yapwFePse2Luwg7P7PtnzfR3JyApWJ58NHfid3e8BO3N/ykO67Gr6Ef4lnEg6xbKfwyRmNtTiAr0w1LpvlbuciRvXjxIkWL5rEleHrqlw166aWXNFO2rJGbMqYVBS+E0I2Ot0ZGRgZDhw4lOzubxYuVLDnjxuXt/uvWrUv16tVp2rQpBw8epHFjk+QfDqnH/xiMojTNtnrBvmJFbBMR1Kqwrsz2ywFicYy/6TljIhBxvyFaNdYeT92OWPak82ue2Ny87OUBiLgBiBEVEbFdECMCEHGdEeEVtOWHFUPE1UKEF7u/91XddiF9e3tAzFKNqQNZ7LVAEMEOnjPMExHXHCGmIFI2aMgExwiqOrHjoYzqeJSQNNmLNWQnC4gS8JCA9QJ+ymkzHLjeSZ3+cMG9XV5OsyzTn6dUjKBCnMCzuf1r+rYUFGuWr9+H/Gzu00z6L022GuGdTMmZ3eF5XfxTFEqKN928Lv5pan5r3LhxQ5w4ccKwpaamiuXLlwtfX1+b8319fUVERIThNdLT00W/fv1E/fr1xc2bN+2uKTs7W7i7u4u1a9eafh0FCs8A+aHw9FrF6u6K40rVXJXHVfXPHRei3d+kFmL5s4jsHYg7W5xfW+OyiJr+9/f6JgbYGfc1N8/bFsQSA1aVCSBeBNEdxLdIs+bLD+gzM9NieiOyv0QMD1MFIbVZISi3USU/VcgoS7UJ02zrqTpWs5s8LaCLkErQul/N7pLbHhUyzWGRAHVgxzsCRgiIE9xTenf01+bRxWAsf9N0bFr/1wSdtYJ5nGsuD7XNt7kA0eidIabkzCo893MXhUdckunmfu6iqfmdQW7Qyt69e+/17dmzR4Bx0EqusqtTp464fv26qWsdPSqjdbdv3256fQUKzwAPUuGZbQvfQyxaYCwzso/yeNULiOyfEGF9Hty67LVmhY3Hl5qMzJwL4jiIyiav+waSOszsOgOQvrlBIFrmw+sOb4SIW4foNbSQcmxUqiBghUp+qpC7sQghFZOj15uQM8cCYT89YZiApxyY2yhqM0ZIxTdCYIkQeMQKXMcbz+caIHCvYv76lUMFwVGCh6IEQ88I6pukKgPB4hTBh87sprWbW8ggU3LFR3bXHSvZvaHoFjtPVJtkbncH5hWe5cxfwuXqbdPNcuYvU/M7i+7du4v69euL3bt3i927d4t69erZpCXUrFlTbNiwQQghREZGhujTp48oX768OHz4sCLtIC0tTQghRGxsrHj55ZfFvn37xLlz58RXX30latWqJRo1aqSZh62HAoVnAHsKr1bXB5+T181EQveHGknoMa8gLkWau8aU9g/2NWi1lIqI0T7Kvhe8EK1c7m/eZ0BsMRjvbjBWPR9e12N1lcf+S14QTIoQVB8hCLpkcO7jTlxvrIC2QiqnUXZk6wipHM3O/bqQqQ1auXIq5WNZJXAZ6vj6A57VH/NrIijfV1BlkGBUnGDMTYGfiYT8kGWCj7IF790U1GwnGKgRcFK9kW3gSsNWgin6wSn322q/O1I0j3nSUKZwpWKi3dyuovuKvgLMKzxOXhdcvmu+nbxuan5nERcXJ0JCQkSRIkVEkSJFREhIiE3iOSBWrFghhBDi3Llzuu/JTz/9JIQQ4sKFC6J9+/bCz89PeHh4iMDAQDF58mQRFxfn0NoKFJ4Bcr9Q/Vb2ENNix4jmE5UEvkOXtnhgP5DcNnCw8fjYgYgh3Wz7w1WRgp3rKY+XjkD0bYCICEFEDHuwr0GrTSnyYObthPEOrxrSDDrEQGYkiI4a/UEg2ji4nqLhIco+l34G8j2FNBv+/Z+HY82kudC1rn2ZclOdX0cVLaJsBN3s5NnlthEzBDNViq9SoKBmHd1zvCYOF8WjFohibzqyW5atSng3U3K9P5P5eaYV3rE4wfkM8+1YnKn5/z/i/00e3oNErf418AssRq/5wYr+liOr0SGshu55j74ZyIzIWrrjZrA+2nj84/UQpVEpJksV5Pn9UZjRG2LnwYzuMCESNh2B0avBR0Wt904XWNgFJjU0t8bFdWFaZTjTBiKD7IoDsFCVPlPXiW/iQxp9PwBvGZwTCywFjLJ3XJCMkmoEIOMSnwZWAEOB74BOBmv3rKfKsXPxN7hyADIKMj9R00H5b5H5fUYwSXSeZYIb0rs+lAszN58a537U7r91XbtfjYpB4Kl6v8//Aad+1z3F953n8RnckyLhI0wuMg9F66rLEEuUbl1ZcXw3Uaeysh7S3OCuAy3tvxucX6DwHICblysh0d2Ztv8RAtuVJvHyHe7E6ydr9plcns7D/ZkeUZUWPXyp3Vy7uunA0d48/aZtkm57e/cdA9SvbNtXsTi89Ln8a4076RAxAPrWhEXd4eBf0KsyXEuBlmVg/yCI6gTL20HfCjBaleGdBdxIBz8PGF4Cwso4vl4vYdv3PLJ2wHydc54xOfdIZMC+NYwSBIKA7zX6KyNTGn5FBv3fQFao+1injFyTsMYUCemp7PR+2+DK7ZBpBWYw3KScVrFXkLTZ1piKrLNXDNvaeeprNTR5bRPwGwaVHKxR2eY1aGSgJPsavcdW+PU7aNLFrpjnx0vw2bUFt7YtyMhhVbB4eVIycq656+SgfGhbWkRPot5r/RT9FfsoC+/WfMTkU2MuMp1o/1X8r7eY/2SoE8+fj5sgqgaXs2uS6DQmQEyPqie+zm4vXoqxraM3Y2Fpm763ltumLVy84rzZKWUzInK6OdmIgfZlptY1N1dMHURKS+2xSRqRmY976M91BsRZEKdAjFaNDQTRFcQUpJlRnRDeB8RSEE+CWJMjZz3e1Yn3VD2H4v3RCMKZmTpD1MreL3g6QlC9r6BmhKDYDSGJnq1lqwtJ3fWR0E48z23mAx7y2sdCkkTbk+skYK7O2AUh6/hty1mfTjqCZbrALUrgHSsoFKkc81RHlOa06hsFbbIFQVGCGosEtRYKKk8VBL2tv9YawwSP6/hDR0QK5twQVG0pqN1JUKaG4LV9gl7TnHjvEC5LPxRuqz9V9BWLWSrKi9Oi4s2dwrNVfeHTo7Uot/x5UWnV8wq5gGn9FMfNNk4Tj4hVYuAdrZSSvNZlmaxdaNqkuStJcESYb7uSTM3//xH/3b2tgzixKZbP+mlkeWugVls/GncuxryRJ6ndwnbndiHWdlf49JjbTJjuSfmKFtzIpHTJbHb8rG86KlMCGtaEKuVg2lB46h34wqpI3Ld7YXhb8AAaV4Twj+EbKxaq+uXgtxyasNHr7b+mBRrWqeo+cEZVBSUhDVI8oV1h6OANr1pZl77VsCMm67zEksAE5E7qKWyL6eQu+Tud9VYCSuS0TED9jl/UOc8IUQZjX6s2RSOn+5J+J50L3cfD9tzV631/zpCX+g4y8bw7kh7s+5y/F7B9FdbohEyZ/zOn5abIj0XSmNnDDznNGs8g97W3gQ/JS4jXoYgSdYDB0uIpjirH3AK1l5+RCFkW8BsMrvFwcoK0O9V+HopWAv/GkHQAsm/DmWVw41c4vUa25jOg7mDYHAoDV0HyOXB1h1mq2pTPN4Nu4SbeA6BxW6hSDerWh4ASuPTvAyuXKUSyE5JI3fQ9cf3kLjMNuPPNL1TaOJdq0S9RpHEgqQdPkbxDSft288fjlGlfg98mf0LLiEfJjE9m//SNNkvY+vhX5taaC0d3bf/hHV6BwjOJ1IS7pmUvHb/F8MfkD/7HSFt/gtq/losaddzo1QeenpCORWTTpKH+Na7ehC035f/dWsCAYKXCS7wDFgt0CoIJy+C66oacq+zuB2plB+DjAiVy7u87VHbDMxrKbY3Oj+8GebdfOzwdmsg1DOZO3wzpu8tFE+CEg3MaVaQ7reIPTUtz4Z0SCx28gjVKIBXkYMAHKAWkA5/oyA8BCgGlsb2jVXJyDf2AaYBZZpKu8k8mQKJyyF2HpTSnRiVxm+BEv7z+K+ugRQwUCoTbx2DnENtzM+5CRA556dJmEBoDyTqPMrEmmWZWbAUfT3DLBLcsxDcbyZqhNJ4XGvowt5+eY3NqduJtio7qhifp+ASWJitB+aPLup3KF/7yvTy/2izzjQlkAhkOyv9HUeDDM4l6Q7Sd/1Vbl7DpO3dQ+UXvM7E0UxeV58lF5Xg9qjy16rtrznX0QDo1/e+waV02MevhhefNre3iFchWKZOIrRD5I/iPhnV74YAGzZdCvo/964RUNh6fVhZuq354YcXgTaM4jQeEX5D+tdvIe0Eakly6HjCa/AsNGaDTH1iv0H3OHImkEZsGHAbuICuTq72RA5Dkzm7k3cnUdzRP5O7PGvY+lDLIx4Y9OuODNfoCILMDiHhwVSkoj1Aovsr2lPOj4cYmSEuwHUvP6UvVGAMoofR9ceYH2Kizk/vjV/m3y1joOlZbBmBUJxm4Mm0UJMSTHa+kBPScMBI8PXCvaxusVmyoJJLPiE/mVOibFO+pZBK/sOJn/eveD7KcaP9RFCg8k3DzcqPJaFtnsmdh203yxd+VW59GDxXmkfBSDAovSZfBxegVWkTzGived+QxLQ/h82GMyn++43cINbnBmNbKfr3kRsVh9Z/GMrtv5T2w56KDF4QXM7eO/MT7wE6kQW8mUiX8gaxyHkH+1PMeBTyi0pyLhkL0QugW4qscKN/UxIzdgfEa/TuQim8vsEs11hI4gFSIt4HXgI9VMmmAOqowzs5a7FVY1wsf3g5Z/pD2iupynZAuKg1kJUAJjR1cmaFSd1dUjfX4Bsq1A4vq9pWtupNXawvVVZUQju+Aqg101g4c+gU6VYeNn0G9AEQhZaCZ97wXyba449XTNhgoecseEjftYL9/f25E/sCvFUZSuLFWXQ9jBI2oZ1/IGgVBK6ZRYNI0iSOrT3Ag4rhN/43TtqTQCVeV9q27t/O2X7fj05k/5QazFvmx+7sUtn1pzlQ6bRy8+5GDizaJjCx4VM0XrMJfKfbn2XNbNmu8FQ+NXCDIDY4b/NAGo38LvV9c1ui75sQ8pVXnrQQKq3bWFlfo1A4GPnqZgFblEI/056/pH8Cl/SauUB34XKNfaz8aAvyFTJIAY3Loekhv7pPATWxpsR8ALDeU+i1rNyTs1pYtOhSyPKFaFHBNPoYXKg0uOWTGl1V5N9/k7Fb/2qHsL6Oqb/XEVjj4KZyxkrt8Cpaa9OcB3LwOTZvi6ueLxyO9wdOTu5Gfcyt0qo1oxqXrXFmo9PRm3tZPMSjdoTpZt9PwKV+U8zF5TvLjkUd1z9HEXew/sarl/6OwCKF+Ji9ALpKTk/H19eWRz3rz+XA9nnz7WHe5IR89c4E23QoxO1Tr9muMkYPh+EnYr1X6LB/wYW8Y7/zL+1tRF5kjF/M/XkculhWBxx0syZU/6IiskGAWTyD3t6OQRl01vMjfO2E8tqkPKlTcBeIy+A0Ed4t8/Bbx8OcUqLUQCvnJvqsrYf9jxnMBVGgL9QfDmW+kOXTCl3AsBiI1TJg9w6BcJfjYbHKLhOeUsaQtVO+gHwySkpIU1QzUyL0/sS4JvPXlbJCSDIN87c7//xEFJk0TSE20fyOo2NBXs79Rp6IMCjjMd5HxTik7gE+jzSm7IcHK4+kPw3S160YDRT3Mr2V4OfOyjqIKMkxDnUX1NDI3DuAYD0bZBQPjsPWQ2UMvH+jxt9wzVKY5zBUMzsMHwM9IZdcPaKsazw9lF4lM7Y8GfMESaSx+oQ1ke8gozbvxcLQt7PWHa5Gw3R+u5US1ltUwd2rh4k74ajKc/gb+3AMzS2grO4DqTaGIrf/9Hma+DSMet+nWUnYVf/+coqNNOMEfFApMmqZRoPBMIGiAPptKLi4cVifrShz6Qb8Onhl076Td30gjhiZqu/K4Tjmoo03uoEBKGnQ1GcgX7A8z1MXo8gnnkBXXPJFKLwYIRTKn2BqTteGowsrFYGQkp7o4fEMNWevU8PJXofL9xqdg4FO6hyHci4IEtE2fZhGArBLoDIbp9H+SMxYIDAJcQAwHlyhwWwQei8BdI9ozIwESNsExf7ij8k+mJcibc7YXtIiCyqOcXLMGFo6GdzVq6OVi7gxoqZe0r0Tiqq9JjrDjEzCJR38Pp8fKfo6dVKDwTKNA4ZmAm5cbQ6J7M/mY43RCajy3rCRfnynPo9OK8OXRUnbl+3fX7k80UUt0aCvoUlvZ16YK7FTdd4bVgQHqO70OQstCRf06kYZoZfLbloy8tZdHP6B+BpKBRR0S4Gi2xXSkiTQNGfahJpXSyLywYWlpoL25p9P8jtRY+yy88wFUaWSwit6qY9VWnZHICE11ZGU7pHJpiXxUUOWf3YP6MaAN8pU5s11/AViCjCAdBfTMOR6KDP/L9ZDEy3VndwbCwSUcvDU4cwoPlUErWvDLUfAWC5QdDL4mi3zmF5a/B/OWwEtvKPsrV1QcpqxTZoO6FFcGpZUa3p7ai8bQcO0UmkZNptux1zUv1yVyKP61S1Kjv4N0hBlOtP8oCnx4Bsi1kdcZXJM+SzpRuLg7J9cd5861O7iQjU9xVz4JVUfN2aLfhBLELL1573hRTGm69PXCXdwlatltnpuodVuViPoQhmgF7tnBjF7Quhr014nUDCoJnw6As9dhYDVIvQs+72nLTq8BEyrBwXhwz4T+RxxfjyPoBDyLfBB9C2U69Dwkj2UXZNqBs3gK+Ay4ojPeDhkbaQYpXWFDBoz4Ka9v6tIqbN1RiPTuvTkTasTuCbAImKzq64P0032FsrK5NcYgMwqPAMt0ZNQIQCrHxRpjnYEU5I5Tq9J4I2Q2Y0mk/9DaXBgF9Ec+rjwCWJkbXGLAoy+4CsheBy45gSnupaHIIHC9C2e1afeotQSSd0GpbnA4VP9lFQ6AJlNg+9O2Y4MXQbT6/dXAtEXwrobcijW4HNhN9vuL7M+hgTrRz1BxUHNcycKVTDxEGn+t34t/owDOLv6ROmGtSTh0keoDg/CyZJCZfIeFvnPN+/A+csKHN+6/6cMriNI0gd+jT/F79ClGxvSk4eBqOV/cLDzEXQp5QpVGRdm2+BTdJlbg+8V/UqayG/s3x3H4x0QAhbIDSE7IxpUsNq2+a6jsHguBBR8ar619ffhZw7+387RMPtfD8RvQdBkEV4RO5UGkQbuy8FJjGP8z/GEViLH9OsyqAoNKw0qdfL7uhcFTQB9vKAwcvwsv2wnmCAZ8AbUxSIvzYxzwNXJHBrY7MUdQH31+zlyYVXYA3yaBj8odtGDCOfnPajPG2AyksrBm3TiF3N/qKTuQyiVXVo1qSGV4HbDSxFxGW9lBHoOoDpMKh4AWOeerCRUuINev4W/LvphjRrOA22B518ltWcBdDfbzXJzMMUf8pfIHFqsHiVbRjLcvayu7kjVg1wrb/q4ToV4wpFyXyvfmBW1lB5BwC0tN50ng068lcDh0EfUWPkohPy/SE+5wefNhynWqSYt3BpARn8wf645wZvV+3D0sPPRWZ8cukIVjZsr/cB5ewQ7PAPeeoHLQfFwQQz4MvqfwPEnDlSxS41NYNWEfWelZeHrAE0trsH/zdd55TOtGBO9Gl8DTQxDWz14ulH18+BSMt3f3zifENISuvuC93VhuamFYYMLkCvAeznuTnEVNtFWEswivBjUqQ7gW47QpvIvMs3MG1ZFpBxs0xsKQ4T6TnJxbD22RWY5qdEeXF8eyBCy7wOslyHgJiiwEj5wozNSVEGciCtMajd6EQ45FWCrw7jFY/zJYgCeXwt7N8KbOGvoOhpdeg0b2ffn2UH1WH87MyXvEqzX1IU4u+ElT1vQO7/0kKOTATi01GSb9N3d4BT48B/DrR8c5tukcd+Lv8mnoNq7/cYs3O/zAJP9N7F33F/s3XWPXumsM99+Bp7f+W3vxbDofvWm8/emgDqJToWsLaFnn7/0AEzLgWxM62qyyA+kPe4f7j7wMUB33Qu5xtOL7DGLzdFEZaQIdqTGW5eKEsvOwzhkzq+zGY+vfO4O2sgM4iWQj7eDQ0uxDS9mB3OXpQEyE7EhIqQYZkRDvDzc7QHo8eJmMwrTG/Sg7gGl1Ydc62LkOBvjDF0ttZZ7PMWFuipbKrkYNXPs/bCNWaGBXmz49pF5Q/oD0lJ1DuOtE+4+iYIdnAPUOD6BteF12vme/zldATS/6P1GGQz8k0rJHYeZPuPSglukU6pWEozccOye6DuxIgPfygYczF72RGWLvIxkjnU0+r4KM8rSHMshgGHtp4A2RhF5qvAsUcYexVo7/ZW3gcXuu3MYd4OC2vGOPOpDuiGG2MzLQZCDSA2kGw5HKLh3jXd5kpPnUet53kWZLW85IfTyCU9GjHsHgWQ9uvW8s51kO0kx8+YpVBXdvuGGiHp8WylWBcc+DpwWe1cpZ/Htgeof3ZhJ4ObBTu5sMzxTs8ApgAtlZ5p4PLp+6y/uT/2TXpkTmT7hEq+62VRP+l3BU2QHczoJMO/b/biYjOF/M+fslkuXxK+6PacWMsgNJmGWG86S1Tv80wNcNIkpA32IQ0QB8deItFCihKhLokLID6V/bjVRKZbDlxtRCHaRzx+haXZCJFhWRgTK5mAacdXCNGj40M0jfbl/ZgTllB5B41nllB/DXOXh5DHhoFzp0adsCSjlPEOtTowxd979AtQnm0h7s4h+WlpCQkEBoaCi+vr74+voSGhpKYmKi4TmjRo3CYrEoWsuWLRUyaWlphIeHU6JECXx8fOjTpw+XLjm2kSgIWnEQ5eo790UvV0WbMFqN+W/BU07eN/ID1QvD6KpwIhE+VVmouhWDBDvFmL81qmCDND36oW+E+6egA3KdVbHlJXk+DU7lvA+bEmGcqhDAM3O9SStflQUjrG66363Nx9VdBb4xIfcc8DjGHsvbyJ1jYaCCamybyfU8gywa20JnvHfO3BORIUMPCH71IT4f6Yg2aVemyN5pS+PmE9oHr6a1yDp8gkINq5Fx4g9uLtXOzbtz+irfNX01/9aZgWPUYg84LWH48OFcunSJLVukP3f8+PGEhobyxRfGDLbdu3dnxYq8ACMPDyUjxtSpU/niiy9Yu3Yt/v7+PPXUU/Tu3ZsDBw7g6mruDSjY4TmI2O2XGRYRTN+5RnlVtqjR0D4//5RpEGvnoTq0p/G4PYTa4aU9cxtm/Qb9y0BUYwi1StUK2ANP2am6YA+XkQRX9/H8bRp6uzQz+A2ZHqGVtnBKxZ/5kerF/PhVBlnZFtsTG5rZlTmC5tgv/ZOCNsVXLnPBbmR6wX5kITtrqBlHn0DycaorJYzCNmV/LJCbE/MlMs3hMNKzqgOLRjJosYHgN9S231tjHkeUXZN+9mXS7DzdWeHOqs3cjvqW7NspFO3VmpTDsTYy5Uaq/a/aKN/ewXJO/6BqCSdOnGDLli18/PHHtGrVilatWvHRRx/x5ZdfcuqUcaiYp6cnZcqUudf8/PK+t0lJSSxfvpz58+fTuXNnGjVqRGRkJEePHuX778070AsUnoM4vOYP1ozeTokq2hUPtDAgzJ9eI+zL165toY5tQQYF2jU0fVlNdKgMUf0gRJWQ3lqVs/zjTenCWJWP/rr8wihkhpo93FQd1wZm5/y1h7tI80e6PUEN7NuRwXsjNQiA2/Z3YjYj/ArYewLxxNx++gjauXe5aI4MAeqPTHewxo9IcmprtEUGzFhjJJJ6zApuU8Er57riDDZIXA9+Gu9biq1CcQjeJiw1D+kVf9JG2i9HSF73A6eqDSJlj206SvE25lIbLv3s4FOlkybN5ORkRUtLs2OeMYHdu3fj6+tLixZ5u/2WLVvi6+vLL7/opbtIbNu2jVKlSlGjRg3GjRvH9et5qS8HDhwgIyODrl3zAoTKlStH3bp17c5rjQKF5yR+ePc4bUZXVfTV66xNljvquVLMfvQvajc2Jq0cOBhGDLTtnzgU9kdBy/qwxfxnq4kWZeCL0zBLWaqLDNXDfb3CMirzf4GaSFPiSLRDLdyxjb7UYjtTb2YnICsemOHLOYjcGxltqH/vCpFmU6YWrYDuISaF7xdtkIwoo9DmigFbvhh7rD+tydsaqCOMEzTm+wPbbEoNiEAQdqwfGXegZD4HjwxVM7bmoNFD0LYvPBcBfVVpCoHVsXz3I65hEyn8+y/4fOpYInq50GAaR0+jW+w8WkaF0WbtWCoPUT88OIHcPDyzLedjrFChwj0/m6+vL3PmOBKgpI2rV69SqpTtd6lUqVJcvapfcqpHjx6sXr2aH3/8kfnz57Nv3z46dux4TwlfvXoVDw8PihdXcsiWLl3acF41ChSeCYzaNoSKbZQ0TH/uucmuCKX9cdbmJjwTXZePzzRjwLRyRJ6px7AZpegTcIIf1t/mxEHt/cIbC11YudYVb1dBoUIQ+YFy/KEW0HQI7PkNNmxzbO21VDH4dT+CyONQV1UhZp8q3WDVRcg2cG4Pu88YnF4afbn5eKeQ4RKfAt4o+TxAcl6mIY1juc8HWkErp5Geo+rItII05D7mORPr+xHohiy68x62SjI8AOachu7VYapO7EGPZd3oHPsuAdFzcRvWHyypENjKVtBjGjK9YAKSzeR+kYqsft4IucPTgprIfLWdOTshnT+Z2O7cNmIbCfEqpiI2s8KRn7IVis1THl+dBzci9Oco7YCdf+BiGBcN7r7wmEYqwqGfYOcmeH00bN0Ar0ZAUA6l2R9nEF074tKmNVSqhsew/hSNXoz/Mfv+1CItanD00ffwbVyFEy9tpHTnIKoMaU7ZLs4ntN9DqhMNuHjxIklJSffarFmzdC/x0ksv2QSVqNv+/TIczGKxNecLITT7czFkyBB69epF3bp1efjhh/nmm284ffo0X331leFLtzevGgVBKyawskOUXZnukyqzZNwxJi6qRnE/F0KfL8fiKeeo08I+s3DhIhYG9hMkXIcZ02HRyxC9FBrXhIO/wW2DvLaO9eFHDdfF421g2S44qbbrmcSOBNn0sEZjTe1dIcACa+xEgQ1G7uKsv8p9sDWKgfSlqVOZN1mdqzZstUUyREYjfYXWeBrbjLROQFmkd0nLr5iC3Ce5ukGk1et6L0dfRC6BcPWkOfjm8W9pFVOb4oOGc/2zLyBEhxrLqx5k7AGhcQO2QQv0a99VRyrOgzltLFLNm0UN5GOCNUYio0Ktn43Vu8YDOc3M/H2xqYeReQe8osGzKtyZBLfWKMfTVOZBd3/IsHpCu/a1crzWaEiPg5p94NQ6OGv1Dbp2Ajosgr2RsGKC8XJna2VdgvhL2vmzs9zwHNQLF5GBz8Sh3FmiH5h0a+9pbu2Fq+tkTcALkbsImtWT43O+tpGtN7YRRz8+ZLw2azjql8uRLVq0qOm0hEmTJjF0qIYv1QqVK1fmt99+49o122qTN27coHTp0qaXWLZsWSpVqsSZM9LMXaZMGdLT00lISFDs8q5fv07r1g5460UBdJGUlCSQbLgOtX5TAxySP3bZQ7Rtp+xbtQAxoh8ibjciZZ/jaxjTwvFz7rct8UJ86mFf7hsQ21R9X4LYqCE7VqOvjcHcL4MoZTDeTnW8HMTHIMrpyJ8AcdMVkVRUf85lI/THfKqVFnXitgjPpYv03xOPdg68zysNxlqqjocLePs+P9fPBGwS8HVO+07Alnz+7gwTeCzJ5zlzWvHqyuM+7wrGx9z3vJ4ffyDchz0iip7aKbxG9BNlL+1weI6qY9pq9vdY2VcAIikpydz96fEkQbgw3x5PMjW/Mzh+/LgAxN69e+/17dmzRwDi5MmTpue5efOm8PT0FJ988okQQojExETh7u4uoqKi7sn89ddfwsXFRWzZssX0vAUKzwDOKjyt1n9sEdGik5dT525ciFjyjGPnLB3kmHzz4oiJVRCv1tCXGV4U0bcwYmlJ7fGkIogPXJV94SCaghikkh2pOn4aRAcQPVX9T2hcJ+Q+Pocg1XFXA9mxIC6ASPJEZBVHRJdCxNZGTC2vlIt6AhH5nPF1C61epuzrGSloMM/gnO0Cxqj6BgiYYnDOW6rjlwUsEBBicE5h1XFbAVUEDM65VoSA9gIiRZ7Sm+30++9Q8+yjPC5u9DocaC3HPZD1Fp0W6pB87z/maPZ3/qCnAAcU3pgkwURhvo15cApPCCG6d+8u6tevL3bv3i12794t6tWrJ3r37q2QqVmzptiwYYMQQohbt26Jp556Svzyyy/i3Llz4qeffhKtWrUSAQEBIjk5+d45EyZMEOXLlxfff/+9OHjwoOjYsaNo0KCByMzMNL22Ah+eCTSfbFuWxMvXXF5dLlwsFtJS1GHf5vD1Npj4Zt7x1EfsnzNhHUyzQ09mjV8TYMk5qG6QRP1ZMmy6DRNuwAQNuXV34UfVS3wPGfC+TiWrZih7C5n1pTbwpGNbqtSet8kIagPOd5pSEnHAUxZI9YBET9icCnjAXpU59042DO8NUUugzxDtfKCM95fBCwuhVV8IjQBvHzgyXVNW4jzS82iNVPJC/dXogDTkWpt3ZiMNtUZBIWrb9E6kRzQaad4cjSwcO4I8SrF9BvMBPESed/U+kKbKY7OYj4w2xJ6PzMu21KnPpQG3erXwDVOnbNiixov9KRpUji8DtX1m7j4OVGSGf1x5oNWrV1OvXj26du1K165dqV+/PqtWrVLInDp1iqQkWUPU1dWVo0eP0rdvX2rUqMGjjz5KjRo12L17N0WK5H3m7777Lv369WPw4MG0adMGb29vvvjiC9M5eAAFOzwD5D5BNXi0zt/zRGuyRTyJiJ6JOLbAWC68peNzL6qJaOeL2N8YEVUDMbHUg3kNbU3Kdcrn63Z8AK/lcgRiRA9E7B5EjwHu5s5rbG+XMSGf1jdcwCMmZe2Z4msKmPZAvg+mWtml+TdX9YfMyT27zPSc3sN6icqXvr3vtbV/s7MAB3Z4IUmCx4T5FvJgd3j/ZPwrdnhz5syhWbNmFClShFKlStGvXz+7SYwA27dvp0mTJnh5eVG1alWWLjUTFGCLI5/cTzGa/EfhQjCoFZzRK+aWg9uqoNA2Ze3PPfkU7EiCpgchPQuOGZQYuh/k7hXs5dOZCGynKvA85qqdO5NXp3vd4jDpIQgYDZHfQLWW8M0Gk4/PB1W7jJIGUYiAYcK2IfZgnt+yqp3xU0iOzfxEGHlEc3ZQpDd4qEv+aslVh777oIIBqfNgk7u8wsXMyQEpa77iz/Ld8JsRSvXYDVRY/gw+betRcc5oyjzWhZqLxuLfvaHdeX5+xkEm8n8Ytdg/Gf8Khbd9+3aeeOIJ9uzZw9atW8nMzKRr167cuaN/Nz537hw9e/akXbt2HDp0iGeffZbJkyfz+edOkNveB3o/VsyU3PMO0IndznnZiXbqza04qDyu7w/jamrLLgqCsPLKvtA/YEc+Kjwt41CdfJj3LJJsy4xKMJN0bvq6CfD+T/kwUbkw8CxmR2iQRl9XZKlaI6ipe2oBjyIfEdTlbpypgG4GC5G0YlroALxifwqv7nC6PKT/YV/21hnY1AxqjdEeD+oHr5v4tvSbCAb3GD14BlUl7dgfXBzzJnd2HuXCrAj8+7aiUnhvvKuYj1Q0jbs4lpLwH66W8K9IS8jlZMvFihUrKFWqFAcOHKB9e+0kqKVLl1KxYkUWLFgAQO3atdm/fz/z5s3jkUdMOMHsoP+cBmycpV36+9nIatRp6c0fB2+RcTuNL1ck2p1v+lSoVwua1IQDB4EsCPCHthqR7MOCIT4RvjDDgmyF6kXh8VrwkcbmuLArzAuExfdZ1CEImf01ClgOWAdq18M2xaAdMqsrEXlrvovckziKFKQ9yB4EMpn9L8zxjxwrAfPTYIWdhwstjNw1grOXChFHCW41bstfc9aT/Ucc1O0JH1iFxDeYD8c+Vp2tptnK/c5aJwePQ5JKO1KuthYyG/EIEIL08+WiFVAE6Tu8gCRoLAmsQaY7aOEh5CdYA1nO93WrsVVIZdcW7Ty9QGyT2B8Dt+7gXgdSrUhKvQfAXZ1ae3rIuAPdouDPzXDKyvNrhmUFYOI7sqrx6xpJ70OHwbWr8JPtE4/30J7cXavMH8tMuE0mrhRpUMmRV2AOWTi2dfkPF4D9V+zw1Mh1dlpzramxe/duBQ0NQLdu3di/fz8ZGdpmp7S0NBu6HT2UrunLiKVNFX2Nu/lRq2URarbw4aNZl9i6+iY7vtSfA+Dbn11YuhjCpkLn1hBYATq3gcWrtZXdjIGw5VfwfxQ2/JrX36i8rawaT/4Cn8dCdAfY1Uk5NqyU/Vp3E7TJ4xU4jgwqOYltlbeu2DKk7EcqwtM5Y+PsX4Jy2NYKOIHk+7fGU9iaTHcglZ6esnsZWAYc8oCownBG2Fd204bDmZ3Q/WFlAuynbSJx9XSn1OD2ZP1+muyIFbB9s1R2PWbAtFjoEg1xW+CiugyudameGshUeGtlNwiZsG1vh6dGDDLr8DBS2bUjj5UFoDGSe7MpMofvFfSVHcAUZJ2+U0iFORNoj/w0Q5GfcBNsiy0VR+bkqYNbVkC2J7gEQaEI8OgLRSNAOFHGpvIwqDIYuqjMl910WFZysfh3eDIC3h4Ld1JgbjQ8rQoWWrvGRtn5Ln6JUtHzsXh64DtEScFTvGtjfg+dT6le9plVGk9ubldGgQKTpmn8K3Z41hBC8OSTT9K2bVvq1q2rK3f16lWbRMfSpUuTmZnJzZs3KVvW1qE1Z84cXn75ZVPr2L7kNCe2KiltDn4bD8Cj1bV3frno1s+Nb2Pkt65b+7ywxs+iYdYTMOcDvTOhYglI1LCyHDK5Mxv5M8yqA4Ot3JIzqsCdNJhpx1q01Oq6vd3gGVd4Oh2GCMlb+ZqV7F9I3hBrTEfuF6zxMRCf8/9O5O4rDJkMvp282trWXo2/clppJMPjF8ChnGaN+diWSz2Fbe2AauQlsM8GlligTiFo6AMrTTwNVykPfiXg5k0L6n3m729uoXa7tpCQqDypQhAEBEJqcYi2Fwl4GtvSO2WR5boLIwmdKyIVUxZSuaj3yQ8jX+UJVf8OJAH1SaRitSB3bAcAPb9i3RyZFGRs7YKc/q0Gr2GV6ngS8tvQHpuE9+w34e4VyMoxg6ZvAm8tkjkdFGsMLi7wYyh0XAauAsq1gy7vwq2z4OoLw6OhQiP4fBzEbss7t+tEuHAa3snZ1X2/Gt6KgQsmuDuzsrmzeRuFOzUlu7gPlaJfo3DjaiQs28ieAMnVcy1yGyW6N+Dmlrx7hH/T8sTtz/sB+6npkewhE/mxOSL/H8W/boc3adIkfvvtN9asWWNXVk05I3Jq3epR0cyaNUtBtXPx4kXdudXKzhEUNtgpRX9pfG74Uvj9PisWrFAptruZUGJnXskbMyghoF0a7BYwFVvvzxxsFdARlIoL8pRdLhKRPCLrc8Z8kIYyLVxDKjsjnLMzDrY0ZxMFfJUFuIK3iYjnyW+Bfy3Yv9s27eTm7rPs8B+Om7cq1LxpVzixCZb6Q7y9MH8tLEKSR3sg1XoZoCVSEWkZhYOxZRfNRSRyJ/Yskp8mA6nM9HAM+emeIk/ZOYMIpOJWs7vszlN2uXC1F1BjhcSDEL8fLqyHlf6wvAT8tQM+aQrpaRDzKFTuBNd+Vyo7gMRrsP51ZV9yAlTTf7jORVL4K9yJ/IKz/sEkr/6GYoM64RkYQKEgpe2hbH9lGSVrZQdQ8xE7DPJqZOJYSkKBwvt3IDw8nM2bN/PTTz9RvryxDa9MmTI2pKLXr1/Hzc0Nf39tG76np+c9uh1HaHccxeer9b9xf5hQZlfUWsJBXFU5rW878QNQ73yuIb013yANVc4iErm3OIIkx5qBUzW07+GCfRHNzLZEN8AL7jhSZ8wAt7/fS6EZj+d1jA+AvQaRgq4dTMyaSp6Rxg2p7LQiEkKR5kkj02QuchVdPpAa28VJ86K3nsyfS34ZCr9Fwhv+cFojBvjXDRCrco53GQrdzFCO5+Gv0BdI2CRjkYurzJsBoe0IDO+ie+6f3ztYePcfVB7on45/hcITQjBp0iQ2bNjAjz/+SJUqWtz4SrRq1YqtW5Umlu+++46mTZvi7u5Y0vjfgdbN7MvkYrUjMQomsEInvWGcA3m+LyNvt6eQXJf/VIxDm7hajaGFAVcYqrbBAu0rwygHi+0lfLQZ7qq20IUM3mAfnQhDTdwF3kfGqmqUJeISkjI7d8+t7/uWPrxcjEV+svo3Z3PQezi9T1PF/aK4nfvI6DfhhWhw8ZS18ao6tvPKSpDO38Rvf1X0n5j1GX+8p2/+TUtyMIyywIdnGv8KhffEE08QGRnJZ599RpEiRbh69SpXr14lNTXvBjJr1ixGjswje50wYQLnz5/nySef5MSJE0RERLB8+XKmTzdit9BGjw86U775AwgntsJwg1Jp7fOhSHQxB3V8oDvcsJNSpn7mjQeMQ3Rk7ev3kKEOdqh77aIP0gPkCAqRV/pUD7UscMcC8W4w7gKMVLl7+9WHY07UCfSsq4q83GdQBT1TjyDaGm8iQ2yGIH1pU9E2Z6ojCfVMBB2s/rcgTaDe2FJ0O4phDsrnYzVwI3xltWtsp/Ft7D0ZGnWC8Iegcwk4a1vjzgi+Q+WDQvKPSuP++YXG1RUcNmkWpCWYx/848d0U0GEkWLFixT2ZRx99VAQHByvO27Ztm2jUqJHw8PAQlStXFkuWLHHoukZcmjU6lMo/1gcQaxZr9/ds9fewWERU0R9r7ob42Bux2gvxkiuiLogmIPaq5H4FsdPgGk+CWIcka24LYjGI8XbWVQpENYPx5g6+zql/w3up1yqkHBKeixcIOvcV9BptLO/Z4n+wxiEC5ue0N4Tk1MyPeV8VMNCk7AQBd7TH3P8mDs/cNnCmaVmPyUreU882DUXNm9+JOnFbhEdgOcNz20aOEp2iHhXDY2eJntHDxOREeV3TTCv1kwSNhPlW/7/LtGIRIieSowA2SE5OxtfXV3e8x/Qa+JZw5fsl57h5XvuxqVlHT/b9qCzR8lA3F0r6C6I/y3vrI+bDiVPw9ofGa+reELYc1h5rEQDnEuC6QbzBoHKwTmN3EuwD1T3hYwP/4HQ3mKcyh4xFZogdQ+bfTUcZgN4HuI6sYdceycL4ltX4JKTXyB7PyP2gB9K3eD+oURTGN4Lp223HOrSBhDQLHR8pyt5f4JcvkjTnKDpzDMlzl+tfpEQb8O8Pp7SsENaxpI4gCJksYgYvIgsv1QQ+c+JaepiJpB3ooDEWjIzHzcUaZA0/jWrjXmvB3QU8G0PaB3Dr3XxcowY6j4HvdT6vEqXhZl4ZHK9l7+JR3BOXuBskTpxt+hKtIsdSfXgjvCwZuJKFJ2mI5GQW+s4lKSnJMI7g3v0pKAlcHYg3yEqG47525///iH+FSfOfioy0bNbOPKGr7ADKVbYlgn34ERcWLVNGQwx7GO6aKF02wCCWYO9lY2UHsEwnUG/7HWNlB3BNg/u6GjIg3h3ojG221Wakke09pLJTmzxvo1+i1CzaIHlDOiIVqzXqIYPu7xenk7WVHcC2XXBkv+DdWUmUqWxA1HxDlejYeyKELIJmOSVub+6yVXYeuWZ6Z82KTTX61DbyXuQxnhzAMWVXH8ncYoSHkJ+yOrF0LDJdwhpJ6Jpcs1PAdRC4BYKrzhfZ12wJehMYZZCvZ6XsADyG9MNzUC/Sjttngqk0tRedY9+lVXQYlYa3dKiAqSYKfHimUaDw7gMB9fR3f7l4cp5tTs3gES6kJWfSvDn06AwRC8DTE+rqsB0tmwR9W0DERAjRqYAw3kRQXWRTyMqGlr7Qpbh9eTVe1LAFNEdmiKnrZ2vhOjL43RrNsOXrB/t+NmvcQnqaBmJbX6AFtjXEXwK+RAbUG3HbP1YOGhXTHx/aDSaq7uEV6+qXmyj99hRlR9g70CMcKjbQv4i32ZIX3XT6j2KraNTp/00wl8ChhXrALo3+HkiuneeRj0Px2CaqlAPU1co7IMvyasAyLO+G7alTjLSIyernPVbBgCiYHAvDo+DRKJixD8rWgtn7YGo0ePjCzGj4WKs0cA5q1IKmTck4f42kEdNwq2KfAaJI/cr4BJamwqDm95RdFvcRDlyQlmAaBSZNA+SaDLq+8xDfPfmTYmxsZEua9S/L4z4bFf0Vanlx8WTejm/hhlJkZWSReC0dd7IoUzoLb7cMQh5RbpdWvQMDOoGP1b1v53uwaTu8vT6vL7gWPNIEvj8KAYXhyXaw4wxE7IOdqrTBJ2pD+1LQpAgcvAnumdDfQToygIXu4CsgORMmW/V3RPJ/aKE6cse3xGDersgUhgxkuIUW+iG5QcygG/Ctqm8aSrrjEciAGW9kQvvjOI+UfUBx8LZ6UKnbrgjHdthSs9SKfBqXYQP46/N9pFRvRfrXv8FPP0Dt7vCeSiE1iQS3lnDtIFh6wTkTFDd20RW5F76IZDA9gsyB240MeMlvPIk0V7oj8wVf0pH7IGctdmz5AC4bwaOfrHbkKkCsB69GcPsdyL4MXpXg5nv655dqA60WQtpZqDkQClnkXG5A7CZY2S9PdloMtOkrxzwF7F0PcRfgPceD3tTomroG15Rb/D7lE5ouHEwRP3fcyCI7PpHdUz4n+NVgllVZaN6kWSkJXBwwTWYnw/n/pknzX8e08r+Am5ft05enjxsehdwYt7wBPy45R5mqnuyKvqFQdgC//nSX2YuK4oELbmThQTrrI2wfsUKfBDEXgqrC8Zw0nLbh0EvFMrT9pGy5KOYBc7Zpr/uDE9ClFAQWgsCysNLA2tLQAxq5w29pctu/z2qJCzNgukWp7EA/IRxkxtcZ5DP8JGTdOfUySyP9d2uRcXzVkNURfrGSUWdMtEDepi9hu1vU2imqeUUCkana7jryuejhD9/oUK29GQpVqoOXD4hiEBHtzuU4L16YeEtT2VWd1IW4b/ZRqkdHCg/qxt2o3fCcFZOHNbzLQbnukOoPWcXh1Chwbwlu70Nq7gdYEUkFplcxJJefxhoVkO9cSeQjRu6+t5hKrja275ozyP0dZCAzKvVwGRk6aALZb0F2Pbj9EhR+CVLXwe0FkJ7zjTH6QAGu74JNTaF0a5l4ngl8OQX6LITbCUrZL96EOu2ghB9YLGDxMK3sXMqUIPvqTc2xgLCe3NhyiEP9pSf7QuQuHop5HFey+b6fzMs8GXnY1HXuIRPHbHXOleX8f4EChWcCQuMLkpKYwZHNl/hojKQI+kNn51StXl4+QHJ8BrOnpPDkDG3ZkTNt+47ZsTRdt8PzmJB738mEIWXhsd+05Q6ny6aFs0CYhh2gKbDRtluBv5D8HVq4Qh7h1AFgOLZUwurg/HLIW3SMxnwDsTWuqRlg2iLvi7NR0iarEWdg9jl8AcaOAIsbZLpB70GeRKzU/ymdfV/mXN1Y/RMlY97Hkmwwecpf8EUJKFwHblvxv2U0BUswiLFIzkojTMNW4dVFmhiHIv1piTnH6qeg/FB2IB8rMpCKz6iU1xuYT1vYDek52+nESOeXdu0XyXCTi2OR0EpFXRa7G8b6w9Mx0KgdLDO/s9NTdgCFm1bjxtfKB4BLXx0j6ZgZp4AOUilQeGbxvw0S/WfDKC1haepgEfpeA7vhyodSKojTorz4MKboAwmdjn/OeDy6JUL0R8R1RgwshWhZFPFCeUTDQojqHogXSzp33TdAvKDq6w1iiQNzVHfyNddQHVcDMQ7EJCfmCvNAnCmOCC9iXza0mfJ4yauIYUMRx+OKiEMpFUxdr+SK10TRhLMP4LvQSMAqAa8I2CJgpoBxAkYL6K2SLWtyzmoafcYh9nmtm4DpJmVffADvRz61zjqFekuVVx7Xqik8X3suX69tOi2hWJKguDDfiv130xIKglacxLqZh1kVrk0SPTC8BKv2VaJxOy9SU7JxJZPbCcZ8PlNHGWvIVAAANN9JREFUmbtu9VLK47d0Igdz8fMN2HQJ/L+H9ddhTzK8egkOp8KZdHjlhrnr5qIP8DaSe0Mdj3gWSWVsUHZTAWfz6dXMiy2RwS9qw5j98AFYnA6/Ax1NuMlWqSgvJ74Aa9ZCkP8tdn6byqCpGrQsKnh1bc3dJ6bDu4th2psmVmgPuRUUDiGDU7yQNGL7kF7Unti+E3YqBxvKmd0elMO+jTEXhYF3kKwu/zB8r0P/NuYZ5fHJU1Cx8n1frvbIRnRbqZGSYYR/WJRmQkICoaGh+Pr64uvrS2hoKImJiYbnWCwWzfb223mRsh06dLAZHzpUJ3hJBwUKz0n8sFB925UYNK00Qc28CG12noM77tK6xGW2brrLw0Ns0xOskWmyUPaZ68rji4nG8tnZkGAn3SGsCJwpA11NsLE0QpJPvYCMurTGceQtV03zWxUZF9gAWYzm6Zw++3S85pBLmaxm+zJb2u+HTGngux98/NYt/EobewhKTxvIxYCOpH+2AaaFwc92mMJ1MQ2ZpvAZ2ET3HUCGAv2AfNcP4ngJoVxoFT81WxiwDeY9JvuRkZm/2xPMwVFgKrgONykPFK4PARr1tpyFr230tbiTgs+aJbi3VybHeNRUF67KQ4l2ytDsEo3KUr2/g2WK/2EKb/jw4Rw+fJgtW7awZcsWDh8+TGio8Xt/5coVRYuIiMBisdjULh03bpxCbtmyZY4t7n+9xfwnw8ikqdcGTCph0zdknJcYMMJDvL7IQ/R8GBHc3va8xwYojx9q4JwZZEhl5fGyeoiUTsbnXC6HEOUQd4rbn7/u/9rEpGpVQbwDYgWIKU7O8WFJREp9c7K9mjq/1qJdmmiPPbFEMDFK8GiUIPyMoN5EgW9d/bks7wkQQpow1eMzVMfTBMQIeFLACNXYYAEPPaDPZpKAsSZlBwpYYDA+VcBqIasTRgu4KbCMEHhcMr+eQtXz9/W9HCGYG6no8z79m/AIGSB83nnB9Dz+rW3Nxj0/GyTAAZOma5LATZhvrg/OpHn8+HEBiD179tzr2717twDEyZMnTc/Tt29f0bFjR0VfcHCwmDJlyn2tr0DhGcCewgvqZKvcJr0TkC8/qMinnTvv5YbK45SuiOwuiOnllf2lXJTHq4ogQtwRoS7OXTc/WxvV8RAQs0C0NjhnKogJTl4vpTYiuwkirJyy/7EgxPB6yr7hHR7Aa35yhWCtECwVgtAYk+dN1egL1uh7UsAmAesFdNWQD3Vy3ZXsjI8SsMzkXM8ISWumN/64kHRjV21fo6V7/n8eZlrXYYKvzwiathN8sUcweoKhfJEeLUSj2FWidtQsUT9quqi7RP9hoNNi6XM1rfBIEliE+YY87+LFiyIpKeleu3v37n3fM5cvXy58fX1t+n19fUVERISpOa5evSrc3NzE6tWrFf3BwcGiRIkSwt/fXwQFBYmnnnpKJCcnO7S+ApPmfaBMdVu2+/efvI9oKyukpUGYvbqgGph9OO//GYHgJcCSBXVUDrfrKldM6C1YnQGrNFw0L2OcoG0NvfRnR5CNjNickfO3GVAC6T/UwwkkMbSjCPMFLw+weME8lSVpxXHoW0fZ99k2Jy5iD92GSuufG3BOo2RN8e7gq/4yLNCYSMt09g7SZOiObVp+BWzLAKmT0vXQwM54rllPXXNeC97Yrs0aGcgaHGVQ0pABrhqs6yWWQLGJtv1q9DkK9adB+wUm1qjCd2ugZ3XYvwMebgkRSw3Fi/dvj3tgBfwHP0SZwW2xeOnzC9nUTjQDR9R1DipUqHDPz+br68ucOXPUszqMq1evUqpUKZv+UqVK2ZRr08Mnn3xCkSJFGDBA6csMCQlhzZo1bNu2jRdeeIHPP//cRsYeChTefaBsdWdusXkIbqk/NrwtzHOsBJcNgnyksiMLujhQ6qeN6tgVeMrOOcOQyeMVzK4N/YprfsiAFv+cv7nES17I7LOXkQwv1jiN/RCJEcCvqvvM/ACp7HCDFFeooXqfFuyG0Srn4GP9YdGr8PJr0LytC68uL87nZ6rTN1xVVkEDFSNnU/bMFrymjoPdR2B+NHh75im8chqezTLdICvB7tz6nJmpSIWnZjBpiXxMGIH0qA5DJpvYq300BJmvp4dROX8taHJi2uAOMsBGD7UBnaTIzG3gMlrZJ7zAb762fNHGEDQXWkdB8TrQ+h1w00i+HhEJL56BzlNhxAJ46DEYOQcCqtvKmkDSj4fIjJfEeqnxKdz89rCubMYdExyD+YCLFy8qCl7PmjVLV/all17SDSzJbfv3y9wsLao0IYRpCrWIiAhCQkLw8lI+pY8bN47OnTtTt25dhg4dyvr16/n+++85eNAoz9N2IQXQgTM+PL325U5PUa2Gsi/uiPJ46XRE39aIiKmI7BhEdhQiYiyiaSXb+UaZ8PGldkKIjoiYWvoyTV1t+46qjj8H0cjOtT4BsQrEMjtyPU2+X0NAzAUx36otRFZYePw+Pof2roiIIoj9pRDtCiHO1ESMKIlYVdexeerUVB6/GVNZrLvZXNRq5ycGva1MVwkc20bUWfSYqB01SzTK/llUitslPAb1EvTtJ9gTJ9gjBOviBG1HCOZcNL8O1/d0xtSVCb4V0qQZLGRG5RsCagpYlHNsLTtWwFydeZsJGCZsfYHqNkbA4py2TMB4O/Jtc9Y2SGf8tAAH3peAVEHlm4JC7QTV9wlKTRNUelsp0zpGMEIIxgpBtyjV2DTB29mC94Vgfpyg1QjBmCVOf+esW7mp/e3KTLj2jAAHTZoIB5rjPrwbN26IEydOGLbU1NT7Nmn+/PPPAhCHDx+2K5udnS3c3d3F2rVrTb+OAoVngPxUeNateWNExHxEViwi+l1E7NeIGaFKmeA6iFUT9ecIb2LbN68RYlp1xJkuiOhGiOyHECIYsaKqUm6gD2Ksj/7cH2G/bI+6VUPm4EWA6ODAeU1A1ARRWGNsMEpll6vwOhrM9zCI7g/gM6td3ni877jiumOtVowSfcVnIlh8I6rGvGErM2qW/twBGj6qImMF3kY5bvMFLBTwpYDXc5qebGfV8XAB8wSMFNBDNdZHSGXYR9WvDrAZnnN9a6VXWyVTT8hSQPbe+0cE/CHguIBAc5+Xt6qsTxmN97fRCsFQIRgWJyjdSjlWrqmg3iBBiFZQUE6bMFcwfJr04402m29o3NouGSi6R4eIJxKfFeCIwrspIN2BdtPU/M4gN2hl79699/r27NkjwFzQyqOPPiqaNGli6lpHjx4VgNi+fbvp9RUwrfwP8OtB2fwKw6DuwF3bSgnbf5dND1kaaX3TD8GqJvDycVhYAxIyYcpJeEaVHrb+DozT5zjmMpL90BHEAhORHJpjMc/OeMBgLBrwyZlzDdKQlo4sRaSHSUh+zy0mr28WJ+zkOGz6KEF3TORQ9biSye0fNCh5vlihP3GGRuUA10LgVkfysmniEaQnNBXp94rRn9+mQnou8VoDpO/MurDSZmS9i22qc3qg/FRyQ+0zkJ/YR9hmTx7FXKbk50ApjFlZVchUkcqmqxNogPJD4cIm+KWf7dhf+2U7uk7/Gv2nACmwaAo0amF+bQY4/el++nz5KBaLo3kDjuYaPLi8hNq1a9O9e3fGjRt3L2Vg/Pjx9O7dm5o18yjha9WqxZw5c+jfP88Hm5yczLp165g/39Yc/ccff7B69Wp69uxJiRIlOH78OE899RSNGjWiTRu1E8YAplXjfxAPaoeX28YNRozojYjdgGgeZP68VQ8jJjqZtvB3tVomZMwUb63twDUHgvgZxA6Nsekaptu/szVeFSbaxX0mfFqodzpOtHIfCkqrzHBUF/C9gNYCfhUwIOfvEQHmw+ShspAmz/lC7vSaqsbVx3q7rseE/bQEPaYi9Y5RvaN0sNWKVx7XiRT0yhY0XaHsr9rX/JzDzReHVbcibYJEsx9mi2LNq2qOd/5Qvl7zO7yLQpopzbaLpuZ3FnFxcSIkJEQUKVJEFClSRISEhIiEhASFDCgLeAshxLJly0ShQoVEYmKizZwXLlwQ7du3F35+fsLDw0MEBgaKyZMni7i4OIfWVqDwDKBWeOUb+Tv1BQ993M3pH0fkY4gzLyKmtUecmYaIHozInoWY1+4+bgAabRSIr5AVxq37y4Loh22OW0M78/UxGOsEohKIGSbW5UhF8ykg9oCYpzMe7oVo4JY/71fFivn7/ital2mC+gZh+vVSBGUiTM6nRY1lnxJPKqvHNPrN0oANEWDPXxWk0/+Vk+/d2wJLJ9v+0p8IfNoJau0XVIsQlAoRtIsVBAx1/jPqMca2b857wtKpS759D8wrvHMC4hxo50zN//8RBQrPAGqF12iY9hOZVmv+kOd9f+FHt0GENEfEvY6Im40YVBcxqDZiSZf8+UFZN3scmP3y+Xq5raWd8QYGY1U1+uaBeOUBrfVvazU72PYVqSbosF9QL1rQIlsQlGJyPj8n1zFc2ObGtRRy99fcxPmDTcho5Q32EbBRQHk755r/LTrUKnUX1DeRML8x3rbvsTDBcHsBPeabeYV3RsgcRbPtjKn5/z+iIC3BARxac9a07K8/GYcWm+HOjNgFq38F/+fA/2VYdwzWnYCJW5VyHW3TXu7h7VJQVqe2ZF8LzLHISmTqSuRq2GeJzIP94Hyl7FBkTWwtaLOVSmh9GinIGnrOoJs+A9Q91NYp0muN8g2L02JCHTrN03tVdnBqm23frVjY1hTcPMDdAu5eUHSkrZwN7JSx10VjZPKINXohM5mq2Dm3LdIDaw9ab/hmoD/2ieHuM2dHD3cTQNgJn+83Aw5us+3fthU+U1VxCDTxpbpvpDrR/psoUHgmEHYolJZhyvyo1iEVmLK2IdOj6rM8tjl9JxpoHQ2cPqfd311dntsE1htUi5lxHa7o8FZvEpI3vweyWWOl6vgj9PPmaqiODdILbeCJzPP7yYFzjNAbGeiyGFl4JtQNFhQyDtLJhTpNKFwjNexErErmtWI066Jknr50OIG9S3+neGBxukeH0D/2ZZpHPUHDqCdpEruSilGvUTrqTfzP/IDLxAnw7FzzLzA7QSYkpm6G5E/Nn2cXbyBpv18FxiODTGZbjbcnjxvzgsE8zZGBMlpQF2sqDExweKUwGnjFnKjnJPsy1ri2F47qEEbnokIQHNb4xp47Y9v3h/K98qii997kodFkR35BUFDy3DwKFJ4JFK/qS+95bRV9Q96qR5sh5WnQ2Z/PXjrHiOfUP2ZjlCqu3T+gmXa/HsZXhqx0aFccZqtZm1Vo5ArBqk88DvkTcEEmdLcHnkMmfatj6PRy18eqjpsh4wSNkstzkZbT8gNzkcruDvCTBXq4Q5YFQn1hgYrrd1dTqKZSgqVVL7BaeYh6BhZNhkXTYaJG2baQJ/14foX2U3z86XjObT6OZ3FvKg9uRtnBbSgUWI4Sg4MpOrgb7tUqU2jWNDh5BGboJEqrUTWHlUUkKPs9BoKlDbLGnVYc62QkLYAW88lk5K4tFPmpN8V2F3Deqs/opt0DWVFdCwGq4y1AJWQcrhlMRTLHGNEbqHa9ro2gWDSU3Q9e7aDscqhzBspMg+ZnoEEUNI2C+g5Urmg1FCo6R31euIV612wLv1q2xNTG+IexR/+T8b+2qf6TkWsjr9UvUNQdGCjahiud7P1mKSPURswoIb6IrSTeXGXfb7JYo47dpJ6IqHDH7Pwfa+TjOdJOgDgNYoEJ2TGq4/4gRiBz6YYh+Syr4pi/byiIV3XGSiM5NLuCCNYYD8+5VjsQL4PYC6KFzlwbyyCiKyNiGyBm6AScxE237YuZjRA7EXHbEC0bKsdGTfMR72wsY+p1tomZLDrFrRSlRnQUQbFrRZFBnYVH60aOfV61JgqGZAu6xglKDzOQVUcQGvFN9hOSXHq9gLVCElKvEPC+jnwljfkRMmdviIBXc9pQYVuHz2jNZlpDYZxTqFGT0DdVUCRG2VclRtBUCNoKQXCcIGCEoJdJIurxkYKPbgpqt73P15LXfBsq1+144vkuIaNxzbZdpub//4iCPDwTOBmjrgotkXxduTepGuRJhUAPAqsWxtszm0aNBWuW3uGDebZPVGGv2873/teQZtLtM7serPsTxuoksjXygkN3tcces0g63kPInV0GsNvENZerjjda/W+9DLVvrTqgYeyBnGu7ITkzE4GvrcauIau9hQNJGudeJi/DbAfGFcy/ToHUdOhUCoJUO7k3W0GVkrD9ou15PxwBfKDf07ZjP25OpVTVwgZXzcO1H44T228RANcjfzR1jg1OLoFL38Ntq3ez4hJIPgqJi60E1UUO/dFHIDL3Tv0d1UsCPY/cS7cDcim5CiOpyaxtwnWBL1TnHjJYhxkczml60PgAU9dBpurHlvAV+PaFK5HwR07ZmsuRENAPLsfoTx8cBp4+ME5jBzZoIox7Cj59GyK1S9a4165Mxok/bfqTDst1t14yhKL+brh66jjddfHPycP7p6PApHkfGPl2TcVxl6G+ALhZsnl4kDuBgVBLz7qjg49+Mif38lE4blCarKZBbbvrQiqab4GbyK9/oPklOgwjI04NZHhDbaQ5VQs/A1reKrOlSAE+SobIePD/FdTcvIfjoHEAvP2L7XlVysFrK7TnvPBHNm+FXzN1/atb1AneTuK26tEh/lMo/ayyz+Vt5TEaT1f3kFuu1x356JH7N93OQkoDrXJaPZTKLhdq06cTpMj3i/SRkH1K2Zf4Efz1bJ6yy0WGHTbWmxfgize0x6a+Az7FITlB93QtZWeNM5/+SvlO1UxzTuahwIdnFgUK7z7w+7Y4nomuy6rYRrwSXYX0Oxk8H3qFxHh5K06Iz+anb40rnTuD8eooEQ2sNVCGXyGfz2OQRNGbgF35sTAd6PPCyx3cIWRB2ZPYEleDtu8wAMm/4Qy23lQerzkN1ZbAbo0NwpOLYf8JJy9khdtnzClGABp1hMY9oJQdpyzA7d1wqjwUnwFlYqFINFi2qYS2Au8D3ZG7s/nIT/85ZLDKXOAuSqWnpudW4wSwGliLPuVLA9Xxb6pjs0z3Y1THL5o8zwBa7Cv+XYzP+f1L+HOf9thHL0Mbf9gso1MtQ4fgMdfW5lAirD8Nz3xKQLht7Y8bu8/xsf/LnP1Ku7i0Pgp8eGZRoPDuAylJWTTpVJRPXrpIVlomnUqc4cvI2zT3/4tXpt0iyP8WG9aKfL+uu8kpu7vDWCNtk4MXURZd0QsJcCwsJw8ZyCAWe0hHO1C9vkbfZWQ6hTP4WEOx5TeajnVwa2+NQz/CwW/geo5xuPko++eIRPAKBJ9B4KY2AI9Dkq5tAWYiKyT8idz5bUfuoYcAe5EVzd9HVko3wu9IpXcMqTRPIBXfOvIUoDsy6WQa2grU7EOABXgeiERGZ+qF3O7EVjnqoIRqF1xhGpx4xuR6NHBF+aUSa6PAvySurZoq+svOn0KhagEELpxA/ajp1F00koohyqjMtERH0wYK0hLMokDh3Qe8fFwZ7P8L30fe5OVQ5Rc+YoGOA80BvNAOavnBI6rcrw/0HGIqdPWA3514mNPTB5XtnDcImamlRhUk12Z/pD9ODwLJmWmNYtz/z3OCHwTdXyUnh7H/YwMiVEdx9XcIaAFVeurLJH4EGZvkBq2wvZp2S5HKQY1jwGM5Y9p+KH2cQiq+Izl/jyIVVVXgO7SLN5l98vg4Z65SSNuEWqHPQHJtBgJTVGOR4BoLblHgtRzce4BHK8jIggrRUHs/FG0HhXR20xV0dn2h7ymPv11tI5I+bhJZuyV3qt+S2QREz8XiKc26FouFMoPbUjm8N+X6NFac53g9vAKTplkUBK04ibDIxqTffrB1q17dIf+edDJ3+Mk7+mNDkc/0UUijlBo1kbcwa1RE+twqIPcK1sadxkjK4FWqcwKRgeQgb4UVkIHv/ZApEW45x3uxVXYgA1l0XGgK7ADCsKVCBljqbO51PqPS+I6c/9A2YMVtzAiy6rVAfPUdtOoFr6hy0y7omNHUiH8TiteF27OQn0asjuBv2JoXQT5yOAs1KfZd5KcRZXCOUT6fGoeQ/kKw9QWWRZYe/gplksx0YLjMTXE5BnetHgTOlwS/WXAxp7Rx8g7ty1boDhetmB46zoQTm2GVxqObXymI1zCVAhnH/8B/0XQspJKFMigl/Y7SX+p4PbyCoBWzKNjhmYBfDdukOZfsLNoONU4ifXW+C/VVboyGNeGxh/XPmdgOYp+GMFU+XhkvbXln0QR5m9DjzFAru9xzGiE5MNS34INIf5yaH0P9zl3MkXkf+cxeA+lhssf0Yo3eSO+TNZ4CBj7gmIjZz0H4k86fX6y5dmhQ9rHfEVPDYesXtsrOEaTuhr+qQdq6/2vvzOOiOLa+/xtgFhQkirIJASUIIsYo7hvGBZKoUR+DkgXFJYigBo1GjHkvmgiaTRNNNK83gjduYKKoMYbokxcwilHDM3jlum9BER8TRRHZhpnz/tEwTPf0bMiiTn0/n/poV5+urpoZ+nSdOnUO9JWdOSueDUtuKk4QOKXXWDgA+ARACfRni/8Lbo/efwvqK6B1ptGIOJOoBMqpVXd9mdx3Ad/x9cf/bxVQbCDRrgFlBwAaNbeuX6fs6v6tvluG24f4+ya9R1jqQmbJ7K6uWCdM4ZnB3Qv6fyxfTTmF9A/FtyvU8X/e1eDfgthY+eeBVKG3tg6rXwV8nYDPBFE+bjXmswOcUUgFIETk3DDBcR8AU8GtyNSAW+UxxUgAr4Hz5TPEdnDOKn9Af35gjP3gVqB0OQEg0ZRjIYAVQj8KEWa/AnwcrV+/PAmoVPHfzmM+9sDirWZ4EQE4NVM8gofm+KO665uD2MNYuNlaJPO3RYSDW6+LABc/x4irsChiv8Y60sClJZoM4Krg3MfgQpIJbRUBqJ+1iph5HQXreK6zxG8tM7atwzykPbpCLTCoFe89iYPO03Fjx++8+tSAtRa2zhSeuTCT5iPw4C++6WH0mw6whRr7tpledYp9FYh9CQiKra/7JoLzaLxbCryzH0gJBf56ACw2Z5OchfwOTpEpwLkxXAe3F284uNBg2Tqyk1Gv7FTgfO9+MNF+P9Q7t//UwD6GAZgEbl/faXCPtDpMRSgMbQ187QP8jwooswF+uAOUqIGpfsAHxgJ0AvjgTeBd4abDWvyDbAHUe95OmOcBtbwVNDIFPHq54FxeOZSZf+NEqqWedhbiMQy4md2AC18HN09vB2AUuLH8N7j4l8IHYXfwjcRe4F6HZODsAzng9vhVgLMJdASXjXA0uNkd/0HOOcsY+9uo2+pg6gdvro16JLiYm8sBLAOwCbB5yP0w7VyBGiegw07AsReg+R/A+RXgqkgosipL7A/iVGQfh/q14ahGFW7EfARJdSVqioT7JRsKM2mai4SIGt+N8CmhtLQUTk5O2uOek32gTL+mPY7d4If1s+s9SPIqfJC7rwRzJ4ttk+ZT8SMgVwOLU4BPdZ7kS4YBK7Prj9NHApN1LDV5A4Fgnf1iWzoCUAORt4zf7784MajA39zdHdxjYY1O3SsCmRmo30unAvfOnA/OaCbc9/4SOONTIDhjEoGLytgenBnTEoaAc0Fwru27SGhLg1Q8Dyjsgb1lwHiB/8iinsCs3sDvfwFv7amvfzEQKLwLXDbyWf5Z3grpabb4ea8ag8Y9gxFRHfFXiRRfvXMNr38ZjNO/lWL9+BzDDTQWUZeAzWZEstbjBrhvZS44X1dd4/RKAEt0jueD/8uoYxbqE8Tmw7xVVnNYBc5xZqspQRP0AKfUN4uc2wLYvcW96QlL+R7gygSRa2px6wN49gb6TgN2vgl08AHOHjIs/4jcv38fbdoYnnXXP5/Wg3uZMJcKALEm238aYTM8C9BVdgB4yg4AcjPLUP7Q+PvDp3MBZ3tg5ufA8nDgiGCP13WB9fTITf7xdwLHNlIbjnGpy2VwWwOEO5hOQ9/RQ6iu74IzP44G5xCuBqcoVdBXeDLwIynKwK3mELhoKm3BOa4/D/0VF19w5tIAcI7yv9WWD2DeLDHIDvCVA+OcAHntlrISkd3pge0B3w5ArmA/XpaBpZk6ZsbY4NdfCO9N54y6WXvLcfUiYdvKYgDA4a03MXyuv8HrHYI6oqygSHts49Qamvs6nkXDhgOJ64B/fQuMiwXS/i+Q/pl4Y5ufA3ouAuSdgN9jxWW0N+oDaOoUm7Es48UAXgC3heEaxD0rAc79SAnO9chg2nUzeQ7AWHDrcA/BfeO6vFDbD0MOOABnq9BV3KdgOM9GJFDjCNSM09+aprpnvKu3TnLlj9rs63/X/v3PWA/cuQi4uAIbE4y30SQ0ZBuDdcIUXiPy4B7hvyJkWDzdsMwiHW/mbdn657cK/k4zBQruS8HxlFvAc2Z8i8YeAUJCwd+IXhdCLA/Am+CiogCcYhJyEVw44F9rj8PAOaUQOJeI7bX1QmUHcEoZ0F9tWmFmvwtquLL3ISC1B15xBX4R8VVoLQf2XgamZOifM0bSZzbY8T2/7u5tvnnII8gJhtBVdgD4yg6AbMNaVC9dAbz3FaBoB/ia2MvXLtC85Rjp80CVOZ6edWtHM8HNkkTiqQGoN1WeABBlRrvGGAXODOoHLlODkHxw9gFj3LPwniXie7EdJ4PblmEhUnsgajXwhzkpkZoCZtI0lyfKaWX9+vXo1KkTFAoFgoOD8dtvBlyJa8nJyUFwcDAUCgU6d+6Mb775pkn7NzZCAbkCmBZr+XtEYhgQK7I396IZHiKXGuH3OwzcI24YjMekvIz6ZW87cI4puhmNzgJYB+BMbVkDzkj1H9THvazDdKKUhhN5GXDOBdJEzJO/3QSum+N5o8P8eKC00gZZv/A/7Fmf+vCO+0d2RtTOkXj5syFmt62Y/AoUC2NQ3TUI2L0D6O8MTB0EZO8yfmHXCKCLqT13AJyEocbM4RS41xtTnIN4Bga9Thio31B7L2Orwn8bOQcYjtRqiIjaGd1d4H4kUH0XqLoL3IgGPDcBHYT5P0zQLRQouQv8IGb+BeymT4HT+SNou6Uh34M5PF778JKSkjBw4EC0atUKzzzzjFnXEBGWLVsGDw8P2NvbY9iwYfjPf/hrEVVVVZg7dy7at2+P1q1b49VXX8WNG6byJvJ5YhReeno64uPjsXTpUiiVSgwZMgQvv/wyCgvF9/JcvXoVr7zyCoYMGQKlUon3338f8+bNw65dJh4iJlhe8BJent8ZX10cgiXpXZGY7ovdl/zwyU43yOSAVKLBwBC+J18vM4JuLP8FCPF+pK49EtngHjvZJuR037Ul4MyXDU1xOczIuXfAhRkTzjFMJ1cxzZk7wNwD+vWDAoBBBrK+lJQCfu2rsTeNm1LFf+aCHkNaQ63WYPHOIKy99CLm7OwHqcIWNVVq/LyQ/zLmFy0WNI2jMv0Aav4QzL9P5QK5+40P5PL3wOFoYEgKMPoSEGxg7avqR8AhBbAdB/0ZzFTj9zDJ7zDvAWp6Xds0LwiOTYU/E+IJbhO7HMBeoMoZUG0FbjsD152B0q3AjRkwmgA2aDowPg14QScO59yOwDRn4JzQSYdDsnARKj5cDcXLQ+Gy83P4XdoN3/REeLwzTlS+20xTSbWEPF6hxaqrqxEeHo7Zs2ebfc0nn3yC1atX46uvvsLJkyfh5uaGUaNG4cGD+jfT+Ph4ZGRkIC0tDUeOHEFZWRnGjBkDtdqC8I0tnK3BbPr27UsxMTG8uoCAAEpISBCVf++99yggIIBXN2vWLOrfv7/Be1RWVtL9+/e15fr16wSAQj8eQuPXDqYZ6UPpW00EbadxtIdC6WcKoWzqSycoiAqoM10mN7pB7Whdih0v3ce0iealCZnTu3HSjTRleR+gREF5vwHtRAG0VqQ+BqCJDezb28882tgqMkDpiZZft3RPd9pJY2gzTaLYPSGiMm+Wf0H+i15uuu8mZA9hoobQ3tJ7fCc4Fqb00S3zCPhEpF6Y9meu4LhXI41TeO9/NrCdDJE+WlD6LzFPbvnXhJj5vDrXPWspiE5QX8omt7njRK+L/l+uffPTA31AwAoLygdmtf+opKamkpOTk0k5jUZDbm5utGrVKm1dZWUlOTk50TfffENERPfu3SOpVEppaWlamaKiIrKxsaHMzEyz+/RErOFVV1cjLy8PCQn8BeHQ0FDk5oqEuAdw7NgxhIaG8urCwsKwadMmqFQqSKX6e4RWrlyJ5cuX69U//0ZXtG2jhgLlUD2oRHmtWYBQBQ3UtUWDGmigRg1eCiPe9YmxQKpgYjk8EEiaAAzQCWTv9wxfZpAzcPSO6PB4BNsAeQLnjOHgVkbq6A4uracawE3w19D6gYt0UkdvAAPBuTDUgHMl0IBLrqqGfpYCAvAqOPeF6xDftK7LG+De1W3B7bzS9Wm0gXkxO/8hAzxlQLSOX8VHzwIkA77VWQRcHgS4OwDR4i/fAIDjHwJn/wKqNMDfFpo6AeDvmyqUl6pQARXu3NTfMBmycRLU1TVo3cnSxJ46xG4EXJ4HlhnIhl15E8ADwCUM+PtnE43NBBAHbk5/T3DuBXA7HetYBC482EVwvwwVuIzoupFMe4Cb73uCi57SFtyevA7gnFG8IR6bU/jtG+IlcCZRNbgEr88CuFV7HAPO1elG7bFuyLTx4Bw0fhG0dwMm84O0nQl4xwFV+cCDI8ANnX0q9800o6klQEd+yLLqm3+jurQCtqiEva+73iWDN05CTRU3YyGzHegfwrJZG7edqrSUv91CLpdDLjcj+G4jc/XqVdy6dYv3vJbL5QgJCUFubi5mzZqFvLw8qFQqnoyHhweCgoKQm5uLsLAw825mtmpsQYqKiggAHT16lFeflJREXbp0Eb3Gz8+PkpKSeHVHj3KJD2/evCl6jXCGd+bMmUZ6M2WFFVZYsaxcv37d6HOxoqKC3NzMS0AsLA4ODnp1iYmJ5j+UzcDcGV7dc7moqIhX//bbb1NoaCgREW3bto1kMpnetaNGjaLo6Giz+/REzPDqEOaJIiKjuaPE5MXq6xC+4Tg4OODMmTMIDAzE9evXn9o9K6WlpfDy8mJjfMJhY3zyKSoqQmBgIE6cOAEPD+O2DoVCgatXr6K62owQQwLEnp3GZnfLli0TtX7pcvLkSfTu3duojDEsfb6bK6PLE6Hw2rdvD1tbW9y6xXe5u337NlxdxYNXubm5icrb2dnB2dm8UEE2Njbo2LEjAKBNmzZP5R+YLmyMTwdsjE8udWZGd3d32NiY9ilUKBRQKBo50K4Ic+bMQUREhFEZHx+fBrXt5sb5a9+6dQvu7vVmXt3nu5ubG6qrq1FSUoK2bdvyZAYOHGj2vZ4IL02ZTIbg4GAcOsSPanDo0CGDgx0wYICe/MGDB9G7d2/R9TsGg8FgiNO+fXsEBAQYLQ1VvJ06dYKbmxvveV1dXY2cnBzt8z04OBhSqZQnU1xcjIKCgqdP4QHAggUL8O233yIlJQVnz57F/PnzUVhYiJgYLrr8kiVLMGXKFK18TEwM/vzzTyxYsABnz55FSkoKNm3ahIULF7bUEBgMBuOpp7CwEPn5+SgsLIRarUZ+fj7y8/NRVlbvYRYQEICMjAwAnCkzPj4eycnJyMjIQEFBAaKiotCqVSu88cYbAAAnJyfMmDED7777Ln799VcolUq89dZb6N69O0aOtCDooNmrfY8BX3/9NXl7e5NMJqNevXpRTk6O9tzUqVMpJCSEJ5+dnU09e/YkmUxGPj4+tGHDBovvWVlZSYmJiVRZWfmo3X9sYWN8OmBjfPK5f/8+hYSENPmWgaZk6tSpoo4yWVlZWhkAlJqaqj3WaDSUmJhIbm5uJJfLaejQoXT69GleuxUVFTRnzhxq164d2dvb05gxY6iwsNCivrHg0QwGg8GwCp4YkyaDwWAwGI8CU3gMBoPBsAqYwmMwGAyGVcAUHoPBYDCsAqbwAJSVlWHOnDnw9PSEvb09unbtig0bNpi8bteuXQgMDIRcLkdgYKDWzfZxYtasWZBIJPjiiy9Myn7xxRfw9/eHvb09vLy8MH/+fFRW1seGPHz4MMaOHQsPDw9IJBLs2bOn6Tpugt27dyMsLAzt27eHRCJBfn6+Wdfdu3cPcXFxcHd3h0KhQNeuXXHgQH3qhJUrV6JPnz5wdHSEi4sLxo8fj/PnTUUHbXws/ayzs7MhkUj0yrlz53hypsbfUqxcuVLrnm6IqKgo0TF261afjmTz5s2iMrq/4+bCzs5OtC/du3c3eM2kSZMgl8shkUggk8kQHR1tUHbevHmQSCS8zdoM4zwRkVaamvnz5yMrKwtbt26Fj48PDh48iNjYWHh4eGDcuHGi1xw7dgyTJ0/GRx99hAkTJiAjIwOTJk3CkSNH0K9fv2YegTh79uzB8ePHTYYoAoBt27YhISEBKSkpGDhwIC5cuICoqCgAwJo1awAADx8+RI8ePTBt2jRMnDixKbtukocPH2LQoEEIDw/H22+/bdY11dXVGDVqFFxcXPDDDz/A09MT169fh6Njfc74nJwcxMXFoU+fPqipqcHSpUsRGhqKM2fOoHXr1k01HD0a+lmfP3+eF4GkQ4cO2v+bM/6W4OTJk9i4cSOef/55o3JffvklVq1apT2uqalBjx49EB4ezpNr06aN3ktKc0QjEXL69GmoVPUZejMzM7F48WLMmDFDVP7111/H999/j3nz5mHChAnYvXs31q1bB1dXV3z0ET857tGjR/H1118/ldFmmpSG77Z4eujWrRt9+OGHvLpevXrRBx98YPCaSZMm0UsvvcSrCwsLo4iIiCbpo6XcuHGDOnbsSAUFBeTt7U1r1qwxKh8XF0fDhw/n1S1YsIAGDx4sKg+AMjIyGqm3Defq1asEgJRKpUnZDRs2UOfOnam6utrs9m/fvk0AeHs+mxtzPuusrCwCQCUlJQZlGjL+pubBgwfk5+dHhw4dopCQEHrnnXfMvjYjI4MkEgldu3ZNW2duwOKW4IUXXiA7OztSq9Wi5x0cHKh379561zg6OvLqqqqqyNHRkaZOnUq+vr7k5ubWZH1+2mAmTQCDBw/Gvn37UFRUBCJCVlYWLly4YDTlhKH0Q4bSFTUnGo0GkZGRWLRoEc/cY4zBgwcjLy8PJ06cAABcuXIFBw4cwOjRo5uyq83Kvn37MGDAAMTFxcHV1RVBQUFITk42mkDy/n0ucWm7du2aq5uPRM+ePeHu7o4RI0YgKyuLd64h429q4uLiMHr0aMuiZdSyadMmjBw5Et7e3rz6srIyeHt7w9PTE2PGjIFSqWys7jaYsrIynDp1Ci+++KLBGJlqtVpvJqpQKPDgwQOUl5dr60aNGgUHBwds3ry5Kbv8dNLSGvdxoKqqiqZMmUIAyM7OjmQyGX333XdGr5FKpbRt2zZenaEUFs1NcnIyjRo1ijQaDRGRWTM8IqK1a9eSVColOzsuge3s2bMNyuIJnOH5+/uTXC6n6dOn0x9//EE7duygdu3a0fLly0XlNRoNjR071uAst7kw57M+d+4cbdy4kfLy8ig3N5dmz55NEomENzO1dPxNzY4dOygoKIgqKiqIiCya4d28eZNsbW0pPT2dV3/s2DHasmUL5efn0+HDh2nixIlkb29PFy5caOzuW0R8fDwBoLy8PIMyAwYMIBsbG9qyZQup1Wr617/+RRKJhPf7Xr9+PdnY2NC5c+eIiNgMz0KsTuFt3bqVWrdurS2HDx+mTz/9lLp06UL79u2jU6dO0bp168jBwYEOHTpksB2pVErbt2/Xa1sulzf1EPTuqTue7OxscnV15eWWMkfhZWVlkaurK/3zn/+kf//737R7927y8vLSM/XW0ZwKT+w7q8MShefn50deXl5UU1Ojrfv8888NPjBiY2PJ29vbZF6ypqahn/WYMWNo7Nix2mNLx9+UFBYWkouLC+Xn52vrLFF4ycnJ5OzsTFVVVUbl1Go19ejRg+bOnfso3X1knJ2dycXFxajMnTt3yM/PTxuKy8bGhvr27UsAqKCggIqKisjOzo73gsIUnmVYncIrLS2lixcvakt5eTlJpVLav38/T27GjBkUFhZmsB0vLy9avXo1r2716tX07LPPNkm/DSEcT3JyMkkkErK1tdWWuj8eb29vg+0MHjyYFi5cyKvbsmUL2dvbi645NKfCE/vO6rBE4Q0dOpRGjBjBqztw4AAB0Htwzpkzhzw9PenKlSuNMoZHoaGf9YoVKyggIEB7bMn4m5qMjAwCoPc7rfvt6iplIRqNhp577jmKj483614zZ87UW29vTo4cOUIAaMmSJWbJP3z4kE6cOEFVVVUUERFBAEilUlFaWprRpK6//vprE4/kycfqvDQdHR15XmmlpaVQqVR6dnVbW1toNBqD7dSlH5o/f7627uDBgxalqmgMhOOJjo7G2LFjeTJhYWGIjIzEtGnTDLZTXl4u+hkQ91LUuJ22EOEYG8qgQYOwfft2aDQa7VgvXLgAd3d3yGQyAFxCyblz5yIjIwPZ2dno1KnTI9+3pVAqlTyXdXPG31yMGDECp0+f5tVNmzYNAQEBWLx4MWxtbQ1em5OTg0uXLhn0dtSFiJCfn290K0BTs3TpUtjY2OAf//iHWfKtWrVCnz59AAA///wzvL29YWdnh7CwMOzevZsnGxsbi6qqKmzatAl9+/Zt9L4/dbSsvn08CAkJoW7dulFWVhZduXKFUlNTSaFQ0Pr167UykZGRlJCQoD0+evQo2dra0qpVq+js2bO0atUqsrOzo99//70lhmAUMZOmcDyJiYnk6OhIO3bsoCtXrtDBgwfJ19eXJk2apJV58OABKZVKUiqVBIBWr15NSqWS/vzzz+YaipY7d+6QUqmkn376iQBQWloaKZVKKi4u1soIx1hYWEgODg40Z84cOn/+PO3fv59cXFxoxYoVWpnZs2eTk5MTZWdnU3FxsbboziqbA1OfdUJCAkVGRmrl16xZQxkZGXThwgUqKCighIQEAkC7du3Sypgz/pZEaNIUjrGOt956i/r16yfaxrJlyygzM5MuX75MSqWSpk2bRnZ2dnT8+PGm6rZRVCoV2draiva3f//+1LlzZ+1xZmYmxcTE0MGDByklJYW8vLxIIpHQb7/9ZrB9ZtK0DKbwiKi4uJiioqLIw8ODFAoF+fv70+eff651+iDi/hinTp3Ku+77778nf39/kkqlFBAQwHu4PE6IKTzheFQqFS1btox8fX1JoVCQl5cXxcbG8tzc61zfhUX4uTQHqampon1JTEzUyoh9Z7m5udSvXz+Sy+XUuXNnSkpK4pnPxNqEIJVJc2Dqsxamw/r444+1313btm1p8ODB9NNPP+m1a2r8LYlQ4Yml/Lp37x7Z29vTxo0bRduIj4+nZ599lmQyGXXo0IFCQ0MpNze3CXttnOTkZAJAmZmZeud8fX15Wyh+/PFHsre3137Xbm5udODAAaPtM4VnGSw9EIPBYDCsArYPj8FgMBhWAVN4DAaDwbAKmMJjMBgMhlXAFB6DwWAwrAKm8BgMBoNhFTCFx2AwGAyrgCk8BoPBYFgFTOExGAwGwypgCo/BYDAYVgFTeAwGg8GwCpjCYzAYDIZVwBQeg9FIFBcXw8HBAREREbz6/fv3QyqVYunSpS3UMwaDATCFx2A0Gu7u7njvvfewc+dO5OXlAQCys7MRHh6O2bNnIykpqYV7yGBYNyxbAoPRiJSXl8PPzw9du3bFypUrMWLECLz22mvYtGkTJBJJS3ePwbBqmMJjMBqZ1NRUTJ8+Ha1bt8bo0aOxfft2oxm8GQxG88BMmgxGI9OlSxcAgEQiwebNm5myYzAeE5jCYzAakfz8fIwZMwaDBg1CWVkZUlJSWrpLDAajFmbSZDAaifPnz2Po0KEIDg7G3r17ER4ejqNHj+LSpUtwcnJq6e4xGFYPm+ExGI3AtWvXMHLkSPj7+2PXrl2QSqVYtWoVSkpKkJyc3NLdYzAYYDM8BuORKS4uxpAhQ+Dk5ISsrCy0adNGey46Ohrfffcdzp07Bx8fn5brJIPBYAqPwWAwGNYBM2kyGAwGwypgCo/BYDAYVgFTeAwGg8GwCpjCYzAYDIZVwBQeg8FgMKwCpvAYDAaDYRUwhcdgMBgMq4ApPAaDwWBYBUzhMRgMBsMqYAqPwWAwGFYBU3gMBoPBsAr+P1UeJFMGWsCpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('selected training points',fontsize=12)\n", + "ax1.scatter((X_train_tensor[:,1]+8.)/16.0*255,X_train_tensor[:,0]/10*200,c='k',marker='*',s=5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "74e03284", + "metadata": {}, + "source": [ + "### Defining input-output spaces " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6af0dba0-d481-4566-a8b7-244098eee713", + "metadata": {}, + "outputs": [], + "source": [ + "X = tp.spaces.R1('x')\n", + "T = tp.spaces.R1('t')\n", + "U = tp.spaces.R1('u')\n", + "I_phy = tp.spaces.Rn('I',3)\n", + "N_phy = tp.spaces.R1('N')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9a7cf509", + "metadata": {}, + "outputs": [], + "source": [ + "input_space_sol = T*X\n", + "output_space_sol = U\n", + "input_space_hid_phy = I_phy\n", + "output_space_hid_phy = N_phy" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b4b300a2", + "metadata": {}, + "outputs": [], + "source": [ + "Omega = tp.domains.Interval(space=X, lower_bound=x.min(), upper_bound=x.max())\n", + "I = tp.domains.Interval(space=T, lower_bound=t.min(), upper_bound=t.max())\n", + "domain = I*Omega" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b21e9f61", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll = 10000 # number of collocation points to constrain equation" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1efe92cb-daab-4d21-8a43-5008e3e9248a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9e0lEQVR4nO3deXwTZf4H8E+S5mh6pC2FJkBpy00pUApUEEGOghyyXj9XRbxwWQ/YFdzDW0BE8AQVRXHVdWWr7OqqoIhQQFEEWyhXLbctILTU0iNt0hxN5vdHSWnplWMyz8zk+369fO0SkpkvTyYz33nmeZ6vguM4DoQQQgghEqdkHQAhhBBCCB8oqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIAiU1hBBCCJGFMNYBCMntduPcuXOIioqCQqFgHQ4hhBBCvMBxHGpqatC1a1colW33x4RUUnPu3DkkJiayDoMQQgghfjhz5gy6d+/e5t+HVFITFRUFoKFRoqOjeduu0+nE5s2bMXnyZKjVat62S5qjdhYOtbUwqJ2FQe0sjGC2s9lsRmJiYuN1vC0hldR4HjlFR0fzntTo9XpER0fTDyaIqJ2FQ20tDGpnYVA7C0OIdu5o6AgNFCaEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIAiU1hBBCCJEFSmoIIYQQIguU1BBCCCFEFiipIYQQQogsSGZF4fr6eixatAj//ve/UVpaCpPJhLvvvhtPPvlku8WtCOByc8gtqkBZjQ1donQYlhSLvacqG/+cmRIHlbLlKo2Xf+7y93X093zGnJkSx8t2WQhmO/EhGG0t9n8zn8T+bxUqPrG2gycuAMgtqsDI3l2Cfp5i3Q5i/S6EIJmk5vnnn8dbb72FDz74AAMHDsSePXtwzz33wGAw4KGHHmIdHoCGA2nPyQuiOpA2FZRg8YZClFTbGl9TKgA3d+k9JoMOC2ekYkqaqd3PNX1fa38fF6HBdeld0T0mHHERGhgN4X4lTBsPluDJLwpQYXE02/fT0/vx0ia+xBKojtqRdZxtxedPW3vi2/xzCT7J/xU1Nlezbfrzbxa7ttrvqempiI3Q+PVd8fk9d3T88bUvPo9zPnniqqitwwuZwOwP8hAXGc5LXK39m2P0DaUBqqzOxtf4aoe2vqvLXy+vtWPh+p+bnT/jIjS4Pr0rJqUam33HfH3/jduptjT+mVUxCgXHcVzHb2Pv2muvRUJCAt59993G12666Sbo9Xp8+OGHXm3DbDbDYDCgurqat9pPLjeH3SfKUH54N5YVhKO0hv+D2V+bCkrwwNp8ePsFL8jqi3kTeuObghI8mL2vxd97DvU/jk3Bmh1FXm3XGK3Dot95nzDtO12Jt3cUtbotnYrD85kuTJs2jbe6IsE8GbfV/p52XD0ro8U+2jrJbCoowaL1P6PUbG98rzFai0W/G9hsG970ygENd5I5haV4d2dxq7FrVRxe8KGtNx48dzERdbb7vtmjk1ucWL3h78k3kM/tPnkBu34pB6DAqF6dMLJnp2YXg1XbTmBFzjGv4m/rmHI6ndi4cWNjO7eV0F/+WW/+XR0df38cm4L1B0pa3Jg8e10arkkzet1u/hznvnLUu/HhrmKcqrAiKU6PO0YlQxPWfg9907g8x/Pfc1WwuxoiW5DVB/Mm9PE7ifP23MpHO7T2+zIZdPjdEFOL77AjnuMJQItznzFah9syeyA5Xu/176XpOdTTzq8cicBj0wfyeu3z9votmaRm+fLleOutt7B582b07dsXBw4cwOTJk7Fy5UrcdtttrX7GbrfDbr90EfBU+SwvL+clqck5fB7Lvz6Cyto6LBnuxlN7lLC7Lx0Anv+34pZ0ZA1IaHUbLjeHvacqUV5rR3ykFsOSYnnpJXC5OVyzcgdKzd4f7ABg0KpgdrjQ3lFxeU+PN165eQgmDzQi5/B5LFi3v9UTYEeb1Co5LBnuxsSsLGg1mg732VHbthcL0P731nQfeUUVyCu+AECBESlxGJHckDi01/4KALF6Df5+TT/ER2kBDvju2G/48lAJKq2XLmjGaB2mpSXgvR9PtRnDyotxeo7HpvtUKNDsu4wJv3gnWdd+8uFpa0W3IZg6pFu7731l85F242uNMVqHR6f2R9aABK++p8v/XbF6Da4dZML4/l0a33/5dqqsTrzwTfPPNd1vW3IOn8eiLwpQZatv9npMuBqLfjcQALBs42Gcr7G39vE2KdDymHI6ndiyZQsmTZqE17efbLMdm362rfZ4anoqJg9s2La/v38PvVoFq/NST1uMTo3bRybhj2N7tngE3dFxnhCtwzfzx/p8XvN8n//6sQjfHS9v9jtVKoC7RyXh4cn92/xs07g8x/Pl5+hYvQaPTxuAThGaFsdfW8elv20bE67GS/83BBlJsdh/psrrc74/vy++tPd7cbk5rNnxC9749kTja552fvpiO3tzDvWW2WxGfHy8fJIajuPw+OOP4/nnn4dKpYLL5cLSpUvx2GOPtfmZRYsWYfHixS1ez87Ohl6vD2a4hBBCCOGJ1WrFzJkz5ZPUfPzxx/jb3/6GF198EQMHDsT+/fsxf/58vPLKK7jrrrta/Uywemq8vQu4nALA1X3iceeVKaiyOvCX/x7osJcg5/B5LFr/c4s7a89doycLbu3uTW6atnNsZHibdxA5h89j/rr9LV73tO09Vybhs/3nUGltv7cCAP4yqS9qbU5c3guzZsdJvPHtyQD+NfyKDVejsoPeF19cfkxHqJW4KSMR45r0jGz++Twe/u9+3vbZlALAyzcPwTNfFnbYqxSIpneijno3xizfCku9O2j7A4C543rhj2N7NfQCmK3A2YN4+WcNzltcHX42Vq/u8Lh95eYhqHdz+PunB/kKuQVP7+ALXx/Bv37quBfhhZsGY9qghkcRrZ2rjNE6/P2a/ojWhWHdntPYcrjM61he/L8hmJya0KxX5Xy1DY99fqjxPd6eo9vj+dQdVyR59W/2dbuX92q43BxGL9+GWkd96x8UiAJAhCYMHDhYHO0fo62183t3jeBl8oHsemoSExPx6KOPYu7cuY2vPfvss1i7di2OHDni1Tb4GlOz6+QF3PbO7sY/t/a8tiMdPcIxRmvx9LUD8WB2frvbeXPmUCiVCp/GzkhV68/FG8YBNR3rMOzZLc0G6vFJr1FBE6YM2vbFor1jOkoXhuFJsdh+9LegxhCpVaHW3vGFPhCex54T+nfGrpMXUOcMbkIDABqVEpG6MFRYHH6dOzoSq1fjwXG9sXTjYV6215qGwdADWh1715qnpg9AfJQWxeVWrMw5xvu5yhAehuq6Sxd/XZgStibJKV/trAAQG6HucOyYP9uNi9DgyekDGidYrNp2HCtyjvO6n2BrrZ1fvTUd16W3/wjbG95evyUz+8lqtbaYuq1SqeB2B/8kdLmymsB7Qzoak1Jqtnt1pzU3ex8M4WGyT2jasiLnGP75YxFuHNoNWalG7P7lQlATDqvDBWsHdytyV2OrD3pCAyDoCQ1waRzXtiPB//d4OFzuZgOB+VZpdQY1oQGAkmobnvyiwKv3KgAs+Sq48TRNaAA0S2j4xAG8JzSe7V6wOLDgPwcANPRcmYPYQymkLlE6QfcnmaRmxowZWLp0KXr06IGBAwdi3759eOWVVzB79mzBYxHqS6q1d9ztyAGoqmPbPclapdWJd3cW492dxeDnXpcQ0hFvL+6hesMVCDkMI1AAMBqEX2NMMknN66+/jqeeegoPPvggysrK0LVrV9x33314+umnBY8lMyUOJoMOpdU2+sGKDH0fhBAiDgtnpAq+VptkkpqoqCisXLkSK1euZB0KVEoFFs5IxQNr2x/vQgghhIQaY7SO93VqvEX1Bfw0Jc2EP45NgUKGzzu0HSxqRQghhLTlm/ljmS06S1cvP20qKGlYVVdGzzsitSpMS0uAPchTWgmRE52aTqNEHJLiwlmHAABMywPRr9EPLjeHxRsKZTd+o9buwsaC86zDIERSbAJMAyfEG6cq6pjtW4GGx06sUVLjh9yiCp9qbRBChBOrD8O9o5Px4exMhEhhYkKY8vzMHp3aetkKIUlmoLCY8LFODZEvnVpJd+8M3DUqCVPSTM2K8M0Zk9JmgVRCCD8SLhbXndgvHhsZ/9woqfGD0IsJEWmhhIaND3adQlyEtlll6cempcLNcfjH98WtPi42RmuRHB+B3b9UCB4vIXLx8u/TMbp3PJxO9gsGUlLjB1qnhhBxWpFzrPH/x0VokBSnx/Gymma/U41KifH9OuPOK5MxsmcnfHnwHCU1hARg6+HzGN07nnUYACip8YtnnZr7aZ0aQkSrwuJotRyBw+XGN4Xn8VNxBZbfOIh6XklQRWrD4HC54ZDxrNL3dhbDEK5BcpwWQMNkGjWjWGigMJEMnYoOV8KfKqsT96/NR6XFDpOBEhsSHLX2elknNB4rco411iu8ZuUObCooYRIHXSX84HJzWLS+kHUYIWHe+N6YPToZkdow2FzSOjEsyOoriimOpH1LvjqMJ6YOYB0GIbJx3mzDA2vzmSQ2lNT4IbeoQhYFx6SgtLoO7+0s9qq4p5jEhKsxb0Jv7Hx0AhZk9WEdDmlHSbUN54MwozFCq+J9m4RIgWcM2+INhXC5hR15SkmNH2hKt3A+yT/LOgS/3DM6GSqlAiqlAg9l9cWbM4fSmikiVnTBwvs2bxnWnfdtEiIVHBpuGHKLhB2ET0mNH2hgIWlPhEaF4Ulxze5QYiO0EPiGhfjgi/3neN/mP3ed4n2bhEiN0J0AlNT4ITMljsZKkDZZHC7c/u5PuOr5bdhUUAKXm8O/dhWzDou0o8bG/+NNSmIJEb4TgKZ0+0GlVGDR72hKty8itCpY7C7WYQiqtNqG+9fmwxAehuo6aY0JIsQjQqOCxRFav13CD5OhYRFMIVFS46cpaSa8NSsDj/7vEOrsLdfCIM2N6R2PTT+HVrFMz406JTTiFKtXo9LKfgVUsXvztgyEqZXYdfICOHAorapDzuEyVAehd4vIy8IZqYJX7KakJgBT0kyYlGrEj8fPo+LIT6zDETWxJDTRujA4692oC4F1I8glN2V0w7IbB2PvqcrGMgo/nPgNb2w/yTo00bv7gzzoL+utMUbrMPuqnkiO1+P4+Vqs2n6CYYREjBZk9cWUNJPg+6UxNQLThVGTs2S21VNCE4Ku6h0PTZgSo3p1wnXp3TCqVyfQZDTvcECLx0+lZhtW5ByDNkwJtYpakjSXEKXFvAm9meybemoCsKmgBIs3FKKitg4vZHr3GRtdUAkRXGvlEkb1jMcq6qkJyF/+c4DG25AWHps2QPDHTh6U1PhpU0EJHlibDw4ArbFFiLgZwtXYebwcO0/+hnNVNnSLDcfIlE4w6MLaHRsSqQ2T3MKPQqKEhjQVo1MDcCFrQAKzGCip8YPLzWHxhkKq0C0xCgBGgw4cx6HUbGcdDhHQk18UwOZs3kv6xvaTHT6CumZgAj6V6AKQhAjtpd8PYT6+lAZ4+CG3qAIl1bSqsNRwAG4d0QNp3aIF2V+4msYaiMXlCY1HWzcmMeFheGtWBsI11A0bqCHdoxHRRjtqJTweZ/ogI+sQmtGGsW3LWL0aI5KFnb7dGkpq/EBlEqRrRc4x5Bz+TZB91Tm968uL1Kqgp4un6ExKNdJgYh4c+NXc5mMqu0u6/d2TBxoxZ0wK6zAapXePYbp/sVQip6TGD1QmgfCp1u6ClcYmiEpVXT12/3IBQxNjWYdCeNQw5oMfZWY7xvXtwtv2AvVTcSXTJNzicGHNDvYD7ymp8UNmShyidDQciRA5e/KzQzDFhLMOg/DgjiuSADSM+eDL0o2HMfuDPN62xwfW/V7v/1AMAIJX5m6Kkho/qJQK3DIskXUYhJAgKrpgxaBuBpgM1DMrZbNHJ+ORqf0BAOY6J/icaWz345GLnB9pWusbepyvWbkDmwpKmMRASY0fXG4OXzH6wgghwlmwbh+mpjUMCJXzxUjODOHqxp6Dh/97gEmh0QitCvdcmYxYvZp5b0pH5k/sg1dvTQ9oG+fNNjywNp9JYkNJjR9o9hORO88F/PbMHm3OXJGCQBORLYfL8N7O4oZtUVYjSStyjuPK5VuZxmCxu/D+j8WirzV27WAT/jSxD64d3DWg2V3cxf8WbygU/FEUDQzxA81+InLW9NqtV6vgqJfuIGbP6VSjUsLhCmx2BsNhAiRAtEigd748WIIfTpQDAKp4SMBKqm3ILarAqF6dAt6Wt6inxg80+4k/E/vHsw6BXCZCq2qsUfbOziK0scSLpASa0BASKqqsTl4SGo9Ss7CdAJTU+CEzJQ4mg46esQcozRSNrUfKWYdBLlNrd1HRT55EUg0VEuIqaoVdvV1SSc3Zs2cxa9YsdOrUCXq9Hunp6di7d6/gcaiUCiyckRrwdmL1ahjC+Vs3QWqKKyysQyAkqGrt9NiDhLa4CI2g+5NMUlNZWYnRo0dDrVbj66+/RmFhIV5++WXExMQwiWdKmgmrZ2UgVu//sKSl16dh9mjxrEgpJJ1aSSd8wtzYPvT4k5BgMhqEXetJMgOFn3/+eSQmJuL9999vfC05OZldQBfZ6/0fPfj45wW8PruUkrZq8RDfxOjVqLY6RT9NVKx2HKfHn4QEi8mgQ2aKsPWgJJPUrF+/Htdccw1uvvlmfPfdd+jWrRsefPBBzJkzp83P2O122O2XnueZzWYAgNPphNMZWDKRc/g85q/bDwDQKrlm/+utOrsD9Mjde/62sxzdltkDkwYkYFhSLP7+yQF8U3ie1+1TWwuD2lkYYm1nhQLgxBVSQC5v56en94PbVQ83D53y3l6zFRwnjSbV6RpmHD388MO4+eabkZubi/nz5+Ptt9/GnXfe2epnFi1ahMWLF7d4PTs7G3q9PqjxEkIIIYQfVqsVM2fORHV1NaKjo9t8n2SSGo1Gg+HDh+PHH39sfO3Pf/4z8vLysGvXrlY/01pPTWJiIsrLy9ttlI7kFlU0q/mhVXJYMtyNp/YoYXfTnKhgoXa+5JWbh2DigARc/eJ2VNXx/wiT2loY1M7CoHYWRmvtvPKWdGQNSAh422azGfHx8R0mNZJ5/GQymZCa2nzG0YABA/Dpp5+2+RmtVgutVtvidbVaDbXa/1lH5dZ62F0tfxh2t6LV1wm/qJ2BZ78+hmi9Dudr6xHMBfxDpa3VSkCpUMDuYnOPF4x2ViiAq/vE49tjNG7II1SOZ9aatvMzXx3F5LRuUAVYdMvba7ZkZj+NHj0aR48ebfbasWPHkJSUJHgstPgeYa2k2ob/5f8atO2H2mnf6QazhCZYOA7oJPB0WhJc88b3wkdzRuLuK4W/7jXlS4LiWVVYKJJJahYsWIDdu3fjueeew4kTJ5CdnY01a9Zg7ty5gseSmRIHY3TLHiBChFRjrw/atgO9vCsApHSicWusfbrvHOsQCE9MBh3+PLEvACBCw/Yhi6/1nIQsLSSZx08jRozAZ599hsceewzPPPMMUlJSsHLlStx+++2Cx6JSKrDodwNx/9p8wfdNiEeCiBNrDkDRBSvrMAiRjWFJsbj6xe2SLKYs5NMNyfTUAMC1116LQ4cOwWaz4fDhw+1O5w62KWkmvDUrAxE0J5sITIGGu7ZhPYKz/oMvK4CG2mMqIjw6xzb48mCJJBOauAi1oGvVSCqpEZspaSY8d/0g1mGQEOJJIhbOSEWCITh3P3eOTIIxuv1tG8LD8MS0AbToHwm6e0N01XW5ePa6tIAHCfuCkpoAuNwcFn/5M+swiAx4+5OP1oXhpoxuqHO6UXjOHJRYUjpH4NGp/VuNS3Hxv+dvGowuIn78FSzzxvfCgqy+onn0J+cTuKdH8j97zrAOxSsqJTBjsJF1GKJy39gUTBvcVdB9yvk3EXS5RRWosIRmmQPCr7uvTPIqsam21eOT/LNYsG4/lm48HJRY4iO0iLw4EFGvad71HxuhxuzRyTCEaxAfIY4Lu5D6JETB6nDivFnYysNtkXuxkVtH9ECpSNq6Iy43sOFgKeswmLj8kXWcXoM3Z2bgsWmBF372lWQGCouRkCO6ibx1j9Xj7iuT8En+r6ixsSn0qQBg0KsxNzsfdQ4HXsgELA4XAAW0YUqoVUpUWJx4d2cx3t1ZjLgIDfQaFawO4ePtHqPDr1XC//7+ubMY+85UCb7f1oQpFaj3cRaKVMSEq7H8pkGw18s9betYpDYMtUGc6RgovUaFV29Jh1KpQLnZCpzZh+1/HQedls1yApTUBIDWqyF8UCqAJV8Fp9fFFxzQWGD18rGZ9np3iwtMhcUhUGTNGXQqJgkNANEkNABkm9AAwOu3DUWYSomdJ4K/cGCERok5Y3rigsWJD3efCvr+fHVbZiK+PFiC0mqbKMewWR0u3PFeLkwGHZ6e3g8O+LaODd8oqQlAZkocTAYdKmrrWIdCJEwM1yZjtBbmOiesEqieXs2oJ4sII1Ibhr/+9wDO1wjz2MnqcGPl1hPQa8Q5GuOd74tw39gUrNlRxDqUdpVU2zB/3X68kNkw3tT/NfsDI85vUSJUSgUWzkgNqWmt1w424c2ZQxGjZ3XIygfDm5lGk1K74KnpA/D8jYMlkdAQ+au11wuW0ACXFpq0OsR7/P9nz694Y+ZQmII045Fvk1d8h00FJUz2TUlNgKakmbDilnTWYQhm18kLsNe78fotQzFSwLUH5EgMPTRbCsuw5KvDmPsRLSRJvKcQQUIeSiqtThj0Gnz3t/HQhon/sn2+xo4H1uYzSWzo8RMPsgYkYKO4ewZ5c8HiwIL/HGAdBuFZrZ0e6RDvcSJIyIUUoVFdHDTPzq6TFwAOkho8vXhDISalGmmdGqnxtQ4GIbRKKiESIoIszs25sesX6VRc5yB8MUuAkhperNlxknUIRGJU1H1PiGRYRDDe7MPdp3GirJZ1GD4TeukTSmoCtKmgBG98S0lNMERopNmbYTLocO1gU4uF65oy0wweEqJi9WoYwmnkg69qbPXY9PN51mH4TOilTyipCYDLzWHxhkLWYcjW2L6dJTOzbEFWH7x6azoWZPUBx3H48mAJk0XphOLPQNFYvZpmzfnpzxN6I1YmbVdpdWLe+D6swyACMBl0ghazBCipCUhuUYUkq6ZKRb+ESBhEfiKPi9BgQVZfJMdHoLjcghU5xyWzrHsgOA4YkRzr9UyMuAgNXrt1KG4a2i3IkcnTv3afwtLr0yST5HckPlIjmenJxH8LZ6QKvhAf9QEGoNQsnYRGAYhyNcr2rNx6gnUIHXK53FiRc4x1GEzkFVd6/d5KiwN3vJcbxGjkrcrqhCFcg9WzMvDwfw5IvhfQaAjHU9NT8WA2LSUgV/dcmYQpaSbB90s9NQGoqJXOHbnUEhqpqLaJtyaLmNDxF7hdv5RjUqpREuuUtCdWr0alxY4lX9Gje76IsQcvK5VNxXLqqQnA5ZVJxUgBwBCuRlUdVRMnRMpOlFnwz51FqLQG/luO1aub1foSkqPejQez9wm+XzkT5U0Do6CknfIzZjSE87YtQzj/Y0c82fs9o5N533Yo8AzMFONdEAk9m34u5a3w6QNjezFJaAAwX8SOCGPbETYztSipCYCnoCUfbE7ff+iXL+B2+Xgso0GH1bMyMG9CH5gMOtFcnDOTYliH0K4IjQr//sMV2PPkJLw1KwPGy77jmCAkoE33TeRBAXHU92rN9yels4gbkaZ3dxZTmQSp8RS0fOijvQFvy5+lry0Xl7aPCVfjntEpeGBcL+w9VYmyGhu6RDVMpfOMPF84IxUPrM1nPmBYAWBg9xjknqpiGEX7Zo3sgdG94wE01PaalGrE7pMXLq7mqYAhXI2lG/m5Y/a458okTB5owrYj5/HO9yFSc0PmOIhiIdpWfX+ckppg06gUcLhEegAI5NFPDwpeJoGSmgBNSTNh7rhegJXdDJjqOidW5hxDP2Nkm6PNp6SZsHpWBhZvKGw2DV2pELawIgfg/Z3Fwu3QD+sPlODvUwY0/hC3FJa2aDe+fZp/FhwH/HPXqaDtg7RNqQCidWpU1zl5SfojNCrcPLw7/vkjfZ+hKtQTGgCoqqvHqm0n8FCWcOsSUVLDgz+O7YVvNrFLajw/nb/89wAi1GG4olenFj02AGAI1+Dv1/RDea0dFVYHSqpsKC6vxf5fzcxiF6OSahtWbDmK0b0740KNDfM+3h/0fZpt9ZTQMOTmwOtgeovDhfUHhO96lwK9RoU6h0ucg1sJ797/sQjzJvQWrLeGkhoeCL24UFssdhfueD+3xSMmzyqurAYGStGq7SexajuVvwg1OrUSNp7q/FRYHLxsR26kvsYO8U2V1YncogqM6tVJkP3RQGEeiK1K9+XRVFmdlNAQ4gW+EhqxiNKpcMfIJNZhtEAD4qWpvXp27RGyqCUlNTzYe8r7lVUJIUQoNTYXamziu6Ghad3SdMPQrn59TsiilpTU8ODbI2WsQyCEkFZ9vv8c6xCITJy6YPX5M0IXtaSkJkAuN4cNh+ikQYg3MpNjWYdACPHTDycu+PwZoYtaUlIToNyiCl6WLSeEhRmDjTBGawXZl8mgw/GyGkH2RQhh782ZGYIXtaSkJkBCDoAihE+xejWmpnWFUIUgbhmeiEorFQAlJBRow5S4Jk34opaU1ARIyAFQhPDp98O7Y252PkrNwiTmR87TekhE+jQqcSzhIXb2ejdWbTsu+H4pqQlQZkocjNGU2BDpUCqAVbemY/2BEkEXQPv26G8C7o2Q4HC4OOg1qsb1vzxMBh1i9Oo2+z0VuFQkVwr4SN3e31ks+JInkk1qli1bBoVCgfnz5zONQ6VUYFpaAq/bpPsAEkyrbstApyhdUMs+tEZua8CQ0GV1uFBldWJqmhHzxvfCv++9Aj88MgHLbxwEoOU53LMgqrhWNGsfH7FW1TUsvCckSSY1eXl5WLNmDQYPHsw6FLjcHDYW8Fdi3fNjmD5I+GeRRN5i9Wq8NSsD0wabaCwYITz4uqAUq7afxF/+ewCrtp2Avd6N+Vl9kXBZ771UV3UPVweeIgh9rpFcmYTa2lrcfvvteOedd/Dss8+yDge5RRW8jkkwGnR4anoqDHo1thwug8OP6t0dYV2pmwjv2kEJePW2YY1TK70dCxalDYPdSgulEdKeUrMNK3Iu1f8zRmuxIKsPkuMjEB+pxV/+s59dcAGo5+HRUXG5hYdIvCe5pGbu3LmYPn06srKyOkxq7HY77HZ745/N5oaBik6nE04nPxlzWbUFWmXDF+/5X3/cNyYFV/SMR5XVgee//hmlZhsUALQ8ryZ+35gUrNvzK6/F+4TCRzuHovF9O2PF74fA7aqH+2J+MrR7FJJitW0m5J42vm5IAtbmnhUq1JBDx7QwhG7nKosNq7cfw4pb0uGur0elxcb7uVwYnE9xt9bOn+45hfvGJAe8Vo2312wFx3GS+TV9/PHHWLp0KfLy8qDT6TBu3Dikp6dj5cqVrb5/0aJFWLx4cYvXs7OzodfrgxwtIYQQQvhgtVoxc+ZMVFdXIzo6us33SSapOXPmDIYPH47NmzdjyJAhANBhUtNaT01iYiLKy8vbbRRfuNwcZrz2Heb1teKpPUrY3b5no2N7x+PQ2WpUSrD3REhaJYclw91YuFcJKFSoC8KjORaUCqBpLy/fjwcVABKidfhm/thmd0urvz2JN7490epnPG3t7zFNvEPtLAxqZ2G01c4v3DQY0wYFtgif2WxGfHx8h0mNZB4/7d27F2VlZRg2bFjjay6XCzt27MCqVatgt9uhUjXvJ9NqtdBqW66WqlaroVbzM7VODeDhawbAUbQXDrcCdpfvP5gtRz1LT9OPrT36MBUAB167dTju/Fc+5NBeEVoVwpQKVNcFd1G6U5V27Pu1BpkpccgtqsDmn0vw/o+n0FEb2v08polvqJ2FQe0sjMvbuYshIuBrrrefl0xSM3HiRBw6dKjZa/fccw/69++PRx55pEVCI6SsAQnYWNRwN3yq0t7xB4hfnrtpEBxFe1EpwqrD/rLYhRuEu6WwFA//Z7/gU7lDRUKUBmP6dMYn+TQGiRCg4ZbJKHBBS8kkNVFRUUhLS2v2WkREBDp16tTidVa+mT8We8+YMedfe2B10IwRPjVd6Co+UphaRXLz3s5i1iHI1rCkGJyttFFC04qMRAOOnq+Fhc6JIYkKWkqYSqlAjc3pVUJDHaC+qbY6sWDdfgDAsKRYmAy0ijMRj72nqgQrNyE1+WeqBUloNCoFdGF0SRMLpQJ4Y+ZQwQtaSqanpjXffvst6xCacbk5LN5Q6NV7JTE6W0Qub6+FM1Jx/9p8JrEQQsTH4fJ9zd44vRoVQVgQTxemgK0+tM/ybg6IjRC+V53SWh7tPVVJ4xWCyHOK2HuqElPSTHhzZgYU1OVFCPFRr84RmD+xDzRh/I/FjNaF4Z7RKbxvV4pyCksF3yclNTwqq6FBwkIor21oZ6USkMaCBIQQMTn5mwUrtx4PyiPD/sYoKGiAAQDgs/1nqaCl1LjcXGPBrv1nKhlHExriI7U+PeojhPiHLs2+yy2uxJvfnWQdhihUWIQvaCnpMTWsbSooweINhaiorcMLmcDHeWdAp4Hg23b4PI6ct9CjPsKLSG0Yau3BXSdIqqgjlASKClpKxKaCEjywNh8c+K/PRNq3Nvc0LaBFAhahUUEdppRc5WShXd0nHt8dL2cdBpGoeIEHC9PjJz94Hn3QXQzpSFwEPytXB4uAy0eIjsXhooTGC5TQkIAIfI6hpMYPuUUV9OiDdMhk0GHWFUmsw2iXwGP4QsKk1C54aGIf1mEQIgqeiR1CocdPfhD6GSGRpuo6J17b1nrBSNK2u0YlYUqaCaXVdVjy1WFUWBysQ/LJiB5xeH9XMeswCBGFLlHCLpRKPTV+EPpLItJEpTL80yNOj7IaG7pE6XDnSHH3dLXm55Jq6sklIU+Bht5qIes+AdRT45fMlDjEhKtRVUfP4wnh25KvDrMOISBfHChhHQIhoiB03SeAemr8olIqcM/oZNZhEBKSdGo6bRF50qjkMXLfGK3D6lkZgtd9Aiip8du8CX2g19BcbkKEZnO6WYdACK9i9GrcNzZF0jNqFQDG9o4HAHwzfyyThAagpMZvKqUC943txToMQgghEldldeLtHUVwuqSZ1lzVqxOOPjsVb84aBgCCP3JqipKaAMyb0BsxenGvQ0IIIYQE031X94ImTBzphDiikCiVUoHlNw5iHQYhhEiKQh5DR8hFf/3vfryacwwbDzUMkhe6iGVTlNQEaEqaCStvSWcdBpGxYUkxmDeeHnUS+eCk+ZSFtOF8jQMrco7j758eBABcs3IHNhWwmQVISQ0PsgYkAADeu2sE7hwlvXU1iLjtO12FueP7ICacHnV2JFqnwtQ0I+swCAlp5802PLA2n0liQ0kNjzJT4nBNauieULUieaYqN24OyP7pFC0j4IVauwtfF5SyDoO0Qkfnh5Dh6YhbvKFQ8EdRdJTxLUSfFcfq1Vjx+yGsw5CtHcfL8cC43lDRL7ZdVMtKvLRqWgIjlHAASqptyC2qEHS/dIrkmdDFu8SCA3BNmglvzcqAMVqYUvOhlD/mFlVgxNItcNESLUSiqmkF9pAkdK1ESmp4JkRdqIzE6KDvw1dVVidyiyowJc2EnY9OFGRga4RWhVW3DkVchPzHmtQ5Xaiuq2cdBiGE+IQKWkpYblEFSs02RGqD282671dzULfvr1JzQ0auUiqgFuA5Sa3dhWc3FuKmjG5B3xchhEhJtC6M+ar3LApaUlLDg5zD5wEAsz/Iw4J1+1Fr77g6cyCDasU6HTL/VAUc9W68mnMMK3KOC7LPUrMd//i+GJNSuwiyP0KkKtg3W0RcFs4YiFcYj3OkgpYStKmgBAvW7ff5cyt+n475E3sj4rITTYxezTy7jovQ+PW5D3efRv+nvhYsoWmq4KwZr982FJFa/gvP62mAIxFQMK4B88b3xoGF1+DeEJxBFxGiNfqM0ToYwjVI725gsv8FWX2Z1H/i/woQQlxuDo/+75BPRchiwsNwy4hELPmqECXVlwZQ6TUqTB2YgOuHdke5xYG9xRVY+9Np/oP2QjeDFhUWh1+fZTH7xDPKPj5SiwMLJ2Ne9l58XXCet+1PTUvA//adC0qxuQiNChZHxz17JDQ8NX0ATAYdHszex+t2R/eOh0qpQFaqEe/uLOZ122JncbgQap1UEVoV/vLfA41DAoSWEKXFvAm9meybkpoArNp2HFVWp08/mKq6ery9o6jF61aHC5/uO4dP953jMUL/HDpXwzoEv3hG2es1/B7W1w/tjvgobavfW6AooZEuvUYFK8/f36kKK2rtLsTo1aiy8jdbqNLSMCszMyWO922T4FEAiNKpYLb5dpxZ7C5YvBgGwTdPJ+Nj0wYwK2pJSY2fXG4O74fYHY/YbSk8j6e/KOB9llC5xYF1e37ldZtypQBgCFejKgSm7/Kd0ADAv3ad4n2bALDkq8PISjVi9bcnKaGREA7wOaFhKSFaB8DSuMo+CzSmxk+5RRUhceKWki8PlgRl2nN5jZ0uBF7iANx9ZeiUCglXKySxXlJJtQ0ZSzZjRc4x1qEQmeoUocHGP49hHQYlNf4SekEhIjwFGqYkVlr9G18Uqj7OO+PTgO1JA6Q7c63OyQVlrFUweDMrkxB/XbA4sP9MFeswKKnxl9ALChE2Fs5IDcpsFDkrNdtRa/e+x2zL4bIgRkMIEcpPv5QDaHiSIXTNJw9KavyUmRIHk0Enia5n4p+s1C6YkmbCqJ7xrEMhhBDRe/v7hskUsz/Iw1XPb6Mq3VKiUiqwcEaqZLqeie+2FJZh48FzGNmrE2LC5V+KgZAoXYjNfSZBU1ptwwNr8wVPbCST1CxbtgwjRoxAVFQUunTpguuvvx5Hjx5lGtOkVCNi9HSxk7O/f3oQAHDP6BTGkRASfDU2F/U+E154bvgXbygU9FGUZJKa7777DnPnzsXu3buxZcsW1NfXY/LkybBYLMxiyi2qoFkxMldrd2Fe9l7Y62mQJQkN1PtM+OJZGDW3qEKwfUpmnZpNmzY1+/P777+PLl26YO/evRg7dmyrn7Hb7bDb7Y1/NpsbCkE6nU44nYEnI2XVFmhVHLTKhtOA53/FZkzvTvj+xAXWYQQs0Ha+qncn3H1lCsABecUXGp//dmTb4dKG/YZQz7zYj2m5oHYWBrWzMNpq57JqC5zO6IC27e01W8FxYi2P2L4TJ06gT58+OHToENLS0lp9z6JFi7B48eIWr2dnZ0Ov1wc7REIIIYTwwGq1YubMmaiurkZ0dNsJkiSTGo7jcN1116GyshLff/99m+9rracmMTER5eXl7TaKN1xuDmOe3wqz3QWtksOS4W48tUcJu5ueSAdKr1bB6mz5uCeQdo7RqfHS74dgRHJc4/LdXxeU4m+fHOAlZrmR0zG9/IZBWLn1OLM6OO2RUzuLWXvtPLFfZ0TpNNh+5DyqfViKIBj+mtUX52vs+PCn4KwsHQwRF8uFcGjZzgo0rDL8zfyxAZdNMJvNiI+P7zCpkczjp6bmzZuHgwcP4ocffmj3fVqtFlqttsXrarUaanVgA3xzj5fjN6sbaDKszu5WwO6iExMQWKFGu6t5u7b4ez/a+bylHne8vxcmgw4LZ6RiSpoJnaP1Qfu+YmRSKkAOx3SXmAhMGdQ1KLW7+CKHdhYLBdoeF9RaO28sbFhbRakA3By778Bk0GH21X2wpbAU//iRTTFjfyicgO2yNrW7FXBcfO2x6QOh02oC3o+312zJDBT2+NOf/oT169dj+/bt6N69O7M4dl1cZIi0FKkVb+XpptMMg7kq9J2jQqdUgJCGJ8X6/Jl5/96Lj/POBCEaIkZGgw6zRyf7/DlGa8U1qnO68E1BCRZvKGQbiI9s9e5WXzcadFg9KwNT0kyCxiOZnhqO4/CnP/0Jn332Gb799lukpLCeYkt3VW0R83LsHBq+ucUbCnHL8MSg7EMBYO1P0rnTkpI9pyp9/kxlEOqBEfExhKsxe3QyHhjXGx/uKmYdjs+qrU48mL2PdRi8mDuuN+ZO7MekUrdkemrmzp2LtWvXIjs7G1FRUSgtLUVpaSnq6uqYxDOqVycm+yWB80wz/McPwXkcwQGosFC9KOIbuk0KTHWdEytyjiPzuRws+eow63B8JrnBre34KPc0lUnoyOrVq1FdXY1x48bBZDI1/rdu3Tom8YxIjoOCzkKCCNZqvr7UJxITnVoyP1viAzld1FiitcPYq7A6MHJZDpMyCZJ6/CQme09VQmQhydYbMzMAANm7TgA4zzYYH0TpwlBj4z9xsjlbf4ZNCCFiUWFx4oG1+YKPq6FbPj8Fc5ApaaBAw4yA6jon5mbnI+eotAZnD0+KYR0CkaHIUFoFkkgelUmQiPjIllPFCf9+N8SEB7PzJTk9+sCZatYhEBm6IiWOdQiEeIVFmQRKavwlgUdPQxMDW2CQJaUC+MOYFHyx/xzrUPxWYXUiQkN31VKiC1NCL9LvLFavxvyJfbBbwAsEIXwQ8skGJTV+KrfYO34TY0UX6jBnTDLrMPzCccA73xeh1Cz+dm7P2L6dWYdAfGCrd8MqwjWWwtUqaFRKrNx6HBYRL5lASGu6ROkE2xclNX4S8kvyV5XViXe+L2Ydhl8k0BHmlVkjk6BR0TQ5Epg6pwvna6Sd4JPQZDLokCngI1NKavyUmRKHuIjgTDUm8tAlUg23mwto5p6aweJVhBDCl98NMQm6CB8lNX5SKRW4Ib0b6zCIiP1mceKO93IRyAxsJ+u12wkhJADrD5TQ7CepyEo1sg6BiBitY0QICXU0+0lCMlPiYDLwO7YmUhtGy6UTyaBjlRDSEZr9JBEqpQJPTR/A6zZr7fWyGSRL5O3awSYkRIt/wDwJLWldo/DEtAEwhItjwfzJqQkYEeILcdLsJwmJjaBF+Ah7Bl0YPpydiYQojWD7/PJgCQAOC7L6YN743oLtl5C2xISr8djUVMRHapDVvwvrcAAAmwvPI+9UVcDbidML89vu3VnP6/biIjQ0+0lKqFwCEYNqWz3yT1dh4YyBgu631GzHypzjqHNIszhoWyK1wTs1Tugfj3C1OBf4k7qqOiduf/cnLPjPAXy6T7oLd7bGbBNmVfUTv1l53d4VKbGCzn4SR/+chElhvRoSGlbkHEOMXvhlBjgA/9l7RvD9BlOYSgUgOIVDtx2RVg0ztUoBp4seirNWL9GZkL06Rwm6P+qpCVBmShyMNK6AiESVlU2NrBqbvFa5ZdWOYiTnhEanpktgU8EoETKqVyfet9ke+kYDpFIq8OjU/gBoJgghhEiJLZBFpGRGAWBINwOv24zVqzGyJyU1kpM1IAEAaCYIIUTW6MZNnuL0arx221AcLjXzut1lNw4SdDwNQEkNr76ZPxb/vvcKaMPop0/EbWyfeDwxbYCgs6XkShFCP/fJAxNYh0CC4Lr0rli4vgBVdfwM+I/RheGtWRmYkmbiZXu+oIHCAXK5ucbVEveeqgSUKtjr5fsMmghLE6aEo57/LvIdx8ux43g5IoLwDD3UhNLK0bMyk/BTUQWNOZKZ9388xev2Xvp9Osb0Y7PiPiU1AdhUUILFGwpRUVuHFzKB2R/kISyMmpTwJxgJTVMWh7wG+JLg2nu6AstvHIT71+a3+DsFQAuHEgBAhcXBbN/0+MlPmwpK8MDafJRUN1+nxmJnf5HQhikxNDGGdRiEEJlZufUEAOCtWRktSsQYDTq8OTODt2UF5oxJDqlHe3ISH8luUVrqVvCDy81h8YZC0d6V2Ovd2HeminUYhBAZWryhED88MgGTUo3ILapAWY0NXaJ0yEyJg0qpgFIJPLA23+/zo1IBrLptKJRKBd75vpjP0IlAhiXFMts39dT4IbeookUPDSHEO2qBZ0NInV6jQniYeE7VnqrLKqUCo3p1wnXp3TCqV6fGWS5T0kx4Y+ZQxEX412MTrlbhp6IK/O2Tg3yGTUKEeH4pEkKlEQjxn1OiK6OyYnW4UBfksVW+au8cuKmgBEu+OowKi3+DiS0OFz7YdQo1NnmV3ggl2T+dgovR75weP/mBSiMQQkLZ5edAzyzQLYWleG9nMZugiGg8/81RvLPzNBbOSBV8WjclNX7ITIlDXISG6QhvQghhwaALQ8HZapSabTBG61BpsWPJV4fpkTxpprTahgfW5mO1wOvVUFLjB5VSgWevS8OD2S2nNQbbjUO7YnPhedSKYJYVIST0VNvqsXTjYdZhEJHj0DDNf/GGQkxKNQq2sjCNqfHTtMEmTOjfWdB9RmhU+PHkBSYJDS3SRgghxBccLg0sFwolNQGYM6aXoPuzOFwoNdsF3WfTfRNCCCG+EnJyDSU1AchMiUNMOD8LTXUkGCXhCSGEkGATcnINJTUBUCkVuGd0siD7slJPCe+0KlovhRBCgslkaFiYUSiU1ARo3oQ+gvXW8Imu54DdxSFSy7YHLEpHY/UJ6QidrqTr1hE9BBskDEgwqXnzzTeRkpICnU6HYcOG4fvvv2caj0qpwNPXpjKNwR9KWtUVAJjPIrt5WHcoQCdtf43qGYs7RyXhjpE9WIdCgoiWa5Su5Hi9oPuTVFKzbt06zJ8/H0888QT27duHMWPGYOrUqTh9+jTTuGL0Gqb794fTRacJMZiUasQfx6awDiNodEFe3n/XL5VQKxWYkmZCtI7GnREiNkIvVutz33dOTg6ysrJa/bu3334b9913X8BBteWVV17Bvffeiz/84Q8AgJUrV+Kbb77B6tWrsWzZshbvt9vtsNsvzRYym80AAKfTCafTvyW8W7PjcClSAWiVwUsUwhRAfYjnIZ72DWY7C+3bw+fwwa5TENs4cL7amuNcCPYTvrW7i7B2dxEUQND3xTc5HtPemjuuNz7N/xWl5uDPjAnldhbS5e0cq1djaPcoXq633m5DwXGcT9+yVqvFvHnzsGzZMmg0DT0Uv/32G2bPno2dO3eioiI489EdDgf0ej3++9//4oYbbmh8/aGHHsL+/fvx3XfftfjMokWLsHjx4havZ2dnQ68XtkuMEEIIIf6xWq2YOXMmqqurER0d3eb7fO6p2bFjB+644w7k5OQgOzsbxcXFmD17NlJTU3HgwIGAgm5PeXk5XC4XEhISmr2ekJCA0tLSVj/z2GOP4eGHH278s9lsRmJiIiZPntxuo3jL5eZw9YvbUWd3YMlwN57ao4TdHZzREb8f3h3/2fNrULbNhwiNClaHK6jPvrVKLujt3Jq543ohO/c0Kq389e6JHau2DjWh3s5KBSBE3cNQb2ehXN7O941JwZ8m9uVl254nLR3xOam54oorsG/fPtx///0YNmwY3G43nn32Wfztb3+DQhH8g+XyfXAc1+Z+tVottFpti9fVajXU6sBnLOWeKMf52vrGqcF2twJ2V3DaIDk+Omjb5sOEXp2xqeC8IAP6gtnOl4vQqnD/+H64f3w/jFy2NeTqfQnZ1kIIUwIiK3gNQH7tLFbUzsLwtPMVvRJ4udYC8Ho7fo3iO3r0KPLy8tC9e3eEhYXhyJEjsFqt/mzKa/Hx8VCpVC16ZcrKylr03ghl18kLguwnQqNC786RiNWLd+p4Ro9YTBzQhXUYvLPYXRi5bCtyCs/juRvSaJaSxIkxoSEdk/vvTq9Rokuk9CactCdGr8bIXp0E36/PSc3y5csxatQoTJo0CQUFBcjLy8O+ffswePBg7Nq1KxgxAgA0Gg2GDRuGLVu2NHt9y5YtuPLKK4O23/a4OWHOkBaHC3f9M0/Ujz+WbjyCnMNlrMMIigqLAw9m5+Org+fwhzHJrMMhJOQYDTq8OXMo4iLkdeH3sDrcKKuVVy/w8hsHCbo+jYfPj59effVVfP7555g6dSoAYODAgcjNzcXjjz+OcePGNZttxLeHH34Yd9xxB4YPH45Ro0ZhzZo1OH36NO6///6g7bM9sfqWj7aIfG04WCr7O0ZCxMSgC8Obs4ZhZM9OUCkVcLuBeR/vYx0WaSJWH4ZKa32z11beko4paSYm8fic1Bw6dAjx8fHNXlOr1XjxxRdx7bXX8hZYa2655RZcuHABzzzzDEpKSpCWloaNGzciKSkpqPttS3wUJTWhRsgJoammKBSW1Ai4R0LEZfZVKRjdu+F6s6mgBEu/Psw4InK564d2x+RUI0qr61BZWwdUFiJap4bLzUmjp+byhKapq6++OqBgvPHggw/iwQcfDPp+vGGMFnZRIRJahiXFUlJDQlpyfASAhoTmgbX5tLKwCL2/sxgalQLrD5SgorYOL2QCsz/IQ1xkOBbOSBW8x0ZSKwqLTWZKnGyf8RL2PtzNdqVsQljrEqWDy81h8YZCSmhE7O0dRSipbr6IYmm1DQ+szcemghJBY6GkJgAqpQLPXpfGOgxCCJEVBS5Vd84tqmhxwSTi50lCF28ohEuIxYguoqQmQNMGmzD7SjZjegiRGr1GKfrB1nqx1awIUQtnpEKlVKCshhIaqeIAlFTbkFsUnEoDraGkhgcPT+4PAKJeR4YQMah3i7vi8nVDTIjW0e+YpRi9GqtnZTSOxRC6ICLhn5CJKSU1PPr2r+Px0ZyRSO8eeAkG4jsFgEmp8lsAUE4cIl/9TqFQCFJgkbRt7rhemJRqBNBwvBScrYZeTb1nUiZkYurz7CfSNpVSgcyUOJyqqGMdiqytvCUdz3x1tNlzdpNBh6emD8AzX9KUT+K/bjHhrEMIeUs3HsF7O4uR1i0aWw+XCVIbigSPZ2yUUCip4VluUYWoV/6VsoQoLQArxvbpjNmjHcgrroBeo8JNQ7vjyj7xeH3rcbrLJn6L0auhVlHntRiUVNtocLBMeMZGCYWSGh653Bx2nviNdRiyZb/46GL40i2oq7/0I1l/4BzSukXj4K/eVXGVIwXEPVZFCm7K6IaP886wDoMQ2ViQ1VfwdWooqeHRNSt34FRl8MpEhLqquoYesMu7o90cQjqhAYCpaUZsLCjt+I2kTe/+UMw6BCITERoVLA4X6zCYMkZrMW9Cb8H3S0lNgFxuDqu/PYkk4OKjD7FPWCVytOuXC4jRq1FtdVKPDajnirBldbjw0MTeSI6PxM7j5fgk/9cW75H7MbrodwOlUSaBXLKpoASL1v+MSosNL2SyjoaEsqbjuOR6smzr7tfz712Q1QfJ8RHoEqVDpcWBudm0rD7x3Z8n9Mbr204EdOxwAF7degIxejWq2hhjaQhX457Rycg/VYnvjpcHsDfxmTSgi3QKWpIGTWuRaCU02zBcrUSdU9zTaon/FAAMl51II7Uq1Nql3xVucbig1yhhdTQ/fg16NZbfOKjFSfQNZODJLwpQYXEIGaas6DUq/OGqlIAv8lJytqqOt39rWwkN0PA4fUXOcejC+B2cLoZHXz+eKMemghImiQ0N9feDlGuRUEIjbxwaTqQLsvrg1VvT8e97r8CE/vJZu+fyhAZo+PfmFVVg18kLcLk5uNwcXs05hsc/O9QsoYnSSejuQySsDhcM4WpJnuv8teGgsLWKbDyv3dQ1Rst8EITF6cb9DOo+AdRT4xeqRULE7uO8M3hqeir++smBkDhW391ZjHd3FiNGr4aj3g1rK3eqNTbp91ax8Et5LesQBCX2BSI7crzMyjqERo/+7xAmpRoFHVtDPTV+oFokROxKqm14MDs/JBKapqqszlYTGuK/MrP3MzoVaFjvR4oUoGkefKuyOrH75AVB90lJjR+oFgkbxuiGdqcTDyHCiYvU+PT+565PQ0y4tB4CeAabh9JjNqHs+kXYQdCU1PghMyUOJgMlNkKzOeoBAFMZjaonJBSty2s5Hbk1erUC87P6wqDXoKquPshR8cto0GFC/86sw5ApYW9DpZVOi4RKqcDCGam4f20+61BCSpWt4US5saAE1F9DiLhYnRxW5BxDTLj4Hz9lJsXgTxP7osLqQJcoHYYlxWLksq2sw5KlUb06Cbo/6qnx05Q0E96cORQM1hYihBDR8qz8LWa5p6ow76N8aMOUGNWrE/aeqqSp/0GgUAAjkoUrZglQUhOQaYO7YtVtGazDIIQQ4qPquvrGacc0+SM4OA7Ye6pS0H1SUhOgaYNNmH1lEuswfGIy6GCQ2EA+QgAgVq/Ggqy+mEjjHwKmABCppfPAo/87hPhILeswZEvohJGSmgC53Bw2Fpz36TMRGmEXAVMA6BShwYrfD8FHc0bih0cm4NYRiYLGQEggIjQqLMjqgz1PTkI/YyS2HfmNdUiS5nlq/sJNg4M6BVvD82q5wVBldcLt4gSf/GGQwNgjPgg9W1j8R5zI5RZVXCxk6Z3r07sK/kPnAFywONDl4pTo9QfO4b97vZvRQOTj8uFfUhoP9uwNg/BQVl8AwKL1P9PU2wBF6cLwxswMTBtswvIbBwVtP5HaMMyf2KfFBVxsh95PxRewcEaqoPsc1TNW0P2xYDLokJki7Jga6nsMkK9dayqlolnxQSHN/Xe+JAbxEd/o1UpYvSh/0TQRiItQ46aMbvjH98WSSBA8axSt2nYCpT4sBkdaZ7bVY8lXhQA4xEZoce/oZHy2/ywqLPyeHzyDb8PVSlTXXXpdfMeconHyx7yP9sEtQICbfi4L/k4YWzgjVfBK3ZTUBKi43LclqbceZncgU0IjPgpFw2C6QGjCVF4lNU1VWpz4x/fFyErtgi2F4j25KtCwhkhmShw2FZRgRc4x1iHJRsOq0/uavRalC0ONjd81ZlZuPc7r9oKB4zjsOnkB16SZsOo2BR7MpuU6AnVTRlcqaCk1LjeHj3JP+/QZSixIU4EmNEDbx1SERoWINkrIe1ZPZZlkd8Rzf+d5LLB4QyG7YDoQo1fjzZlD8e8/XCHpsRJ8JzRS8ca3J3HbO7tx1fPboFQCb83KoAVWA5Rz+DcmBS0pqQmAr+NpCBHSnDE9YbG3XwdJiG72Mb3j0MXHpfaBhh6a1bMyMCXNJPoism/cloFpg7tCqVCgmm5cJKuk2ob71+bjSIkZL9w4GPPG98LUNCNiJVrPiqXqOiceYFCpmx4/BYDWNuCHp+4K4dc/fviFdQgAgO9PVEDr4+D4eeN7YcGkfo3P41n81mL0aszMTMSb33bcjuWWhnE+cj4nKBXCJMFisHLriWZ/jtAooVYq4JRwA2hUAItar4s3FApaqZt6agLA91Q1Y7QWMXq16GYGBJt0TxPiVttBL42Q7PW+jfkZ3btzs5OgkNNCPdWal984CGP6dPHqM56xdXIudhuuFnYpCjGxONySTmgANgkNh4ber9yiCsH2SUlNADyFLflKQu69KgVLrkujizwJaTF6dYtpoEIWkTUadJif1Rf2ejd2e1lh+OO803C5OQxLioVCpnclFhZXRSILQvZg0uOnAHgKW87/aC8v21u68YhsT4iEeKu1n4AQRWSv7huPzpE6fH/8N59nWTW9G+Vj8DchciJkD6YkemqKi4tx7733IiUlBeHh4ejVqxcWLlwIh0McBciidfzlhsE4IUppkbXINmbrkNBRaXVi1bZL04Bd7obptvZ6Nx6a2Dtoif93x8rxSf6vOF/j3zo4WwpLZT2mhhBfKSD8AnyS6Kk5cuQI3G433n77bfTu3RsFBQWYM2cOLBYLXnrpJWZxbSoowf1r86FVifPWbEh3A/4+pT++PXoe73xfzDocr9w5KsmrgZlE3lbkHEc/YxTcbg5PflHQbFE4vUYFqwgfhby3sxjzJ/YJ2vafmj4AMeFq/PWTg/SImohe0yUZhFyATxJJzZQpUzBlypTGP/fs2RNHjx7F6tWr201q7HY77PZLd11msxkA4HQ64XQGNu3S5eaw8POD0Ko4aJUNpxjP/4rFkZIqPPzxXlTVOSGFDpCEKC1GJcfi3TaSRLG2sxyJoa0f+2Q/rM6G5KXp8ety1Yv2eH7r22M+xeZtO8fq1bg9szv2nqqERsCbqFi9mtkK6HwSw/EcCpq2szFah0en9sfEfvEBX28BeL0NBcdJ8wnwk08+iU2bNmHPnj1tvmfRokVYvHhxi9ezs7Oh1+uDGR4hhBBCeGK1WjFz5kxUV1cjOjq6zfdJMqk5efIkMjIy8PLLL+MPf/hDm+9rracmMTER5eXl7TaKN17fegxvf18EoCErXTLcjaf2KGF3S2gAi8gM7haNg2fNbf49tbNwqK2F4U073z0qCX+9pj8AYPcvF/CHf7V9IydmxmgdlvxuIOas5WdihS/oeBZGQmQY/pJqx6RJk6BW87tgodlsRnx8fIdJDdPHT231pDSVl5eH4cOHN/753LlzmDJlCm6++eZ2ExoA0Gq10Gq1LV5Xq9UBN7hbEQa7q/mPw+5WtHiNeC/vdA28qd9L7SwcPttaF6aEzcf1akJFe+38332lcHJKTEo1AlBJ9tjv2SUaf8zezzT+UD93/HlCb7y27UTHb/TT+dqGMht8XGMv5+32mCY18+bNw6233true5KTkxv//7lz5zB+/HiMGjUKa9asCXJ07bsiJQ6rtjMNgRBJoYTGPxUWB97bWYz3dhYjRoJ1pTwrhm8/+hvrUELa9EEJSImPYB1G0DFNauLj4xEfH+/Ve8+ePYvx48dj2LBheP/996FUsp2NrqQFZQghApNiQVzJjW+QIW2YEr27ROGZL8VbFJYvkpj9dO7cOYwbNw49evTASy+9hN9+u5TxG41GJjF5ar3wIZRqqhBCCBGWvd6NV7cG77GTR5xeA6Au6PtpjySSms2bN+PEiRM4ceIEunfv3uzvWI1z5nOFRDcHPDFtALpEa9ElSofyWjsWrv8ZFRZxLC5ICCGEdGRqmhFAEdMYJLGi8N133w2O41r9jxW+a9Gs2n4cxeUWlNXYEB+pxe7HJuKjOSNx7+hk3vZBCCGEBEvXmHDWIUijp0aM+K5FU11XjxU5l5aGjwlX4+4rkzChfwJO/laLb495V1iPeCdMCdC4VUII4U91nQOdGcdASU0AJqUaEakNg7Oe/8F7VXVOrNx6AkDwn4OGokidGs56FywOymzkKFoXBrOtnnUYhIQUMUyfkcTjJ7HKLapArZ1OnMEQF6EJ6varrE5KaGRs1sgerEMgJOSMSO7EOgRKagJBFXmDZ8X/DYExuuXCiYR4Q6mgUxshQlIrFUhPjGEdBiU1geBzBhRp7uO9p1FDjw98og2jn7PHqF6deB3IT4ivFGhYwffff7gCd45KYh1O0DndHEY8lwOgoeAzK3QWDEBmShyM0XTiDIavC87D4nCxDkNSMhJjEaMXx4qzd45KwkdzRuLNmUMFj8lk0GFkz054avoAQfdLSFMcgCidGuAaxniFAk8qM2rZVmwqKGESQ2i0dJColAos+l0qHvpI+AJthFxuV9EF1iE0mppmwqheDc/Xr0kzYdW243jru5OocwZ3HJMCwMIZqVApFYiNoMeXhK2lGw+zDoEJq9OF+9fm461ZGZiSZhJ039RTE6ApaSasvCWddRiEiIICDT0lmSlxABq6oXOLKpAcH4GbMrq3/2Ee/HFsCqakmeByc9h5gpZBIKQ1wZ6I4bF4Q6Hgj6Kop4YHWQMSsLEIeGfWMNy7dh+cLqp5QEKPZzqnp6dkU0EJFm8oREm1cAPq1x8owZDusVjylbD7JUQqYvVq7H5sIvaeqkROYSne3VkctH2VVNuQW1TR2GsrBEpqeJTZsxOuG9IVn+SfZR0KIUEXo1ejynppjaYoXRhuzOgGQ7gGGw6cw58+2id4TCXVNjyYzc+CmITIEYeGoROe3lQ3B3yUdxq2ID0aFnqWMCU1PLpm5Q6cquSv0CUhosZxiNKFNc5SM9vq8c8fT+GfP55iHBghpC1VVidWbTuBj/NOC9KbKfQsYUpqeJBz+DwAoNRsgzjWVCSBiNCoaOaVF6rqaMo9IVK0IueYIPvpFKFp7BESCg0UDpDLzWH510dYhyE7YUp2ySElNIQQErgl16VBJfC5nJKaAOUWVVzsoZEeBYA5Y1KggPj6l+oZLt4kVa/9Ph2xIlmnhvArSqdiHQIhPpmU2gXTBgs7nRugx08Bk3KphNlXJWNC/wS43Rw+238WFRb+C3MS4fxmseP6od3wfhBnMxA2amwuROnCcFNGN0waYAQUwLbD5/GfvWdQY6OeRSI+BWfNcLk5wXtqKKkJkJRLJbz7QzHe/aGYdRgtZtEQ/xRdsGDjoVLWYZAgqbk4EFsbpsTQHrF4b2cxqD+TiBWL6dwAJTUBy0yJQ4xODYDulnx17+hkRIersSLnOOtQZEEBoMLi6PB9GpUCDlpLSbLe3lGEmPAzgic0eo0SfRMisf+MWeA9k8tN7N8ZP5+rEf3QBxZPMmhMTYBUSgVuHyn/YmV8Mhl0eGtWBh6fnoqPcs+wDkcWFACGdI/x6r1KhdhGUBFfsZh5ZnW4KaERiSt7xeOmjG6sw+gQiycZ1FPDgz+O7YlvNh1lHYboXZ/eFTcPSwQUQHmtHf/cWST6O42mIrQqWOzi7JHjADzn5Sw8W31w6y/JRVyEGk9MS0WV1QFDuBqLvyykyvGEOaUCWPKV+GtKNS2XIiRKangg9EAoqYrVa/DXTw5Idvl6sSY0HpVePHoi3nvuhkGYkmZqLPdACQ0RA6lMDL11RA8m10ZKangUoVHBXkd3wW15/8di1iHImkTOdZKQHKdDwdlqHC6pwWtbj1PbSlS4Whn0yvBCUUBav/HqOjY3WTSmhgeeFYVp0TYiFnERzderiQmn9Wt8UVxhw6rtJ/EqJTSSdnlCo1VJ95InxHGoU/PXPl/sPyd4hW6AemoCtqmgBAvW7cfzmW2/J1KrQq3IH10QeXnq2oEwRutQVmNDlygd3ByH2//xE+uwCGHK7nJDfEuNigefRS0vWBxMpnRLN20VAZebw+INhe1m0J0iNHjt1gzBYiIEALpEaQEAbjeHwnPVKK22IVIrz3sYbRidxggRIxYTQeR5lhNIblEFSqpt0LazgvkFiwMnf6sRLigS8mL1avzlP/tRag6NivFxERr8fngiPvixGFV1tIgj8U5chBpTBxrxb1pWImgqaoU/B9EtTgC8XVgor7gyyJEQckml1RkyCQ3QsHJptC4MC383EHeM7ME6HCIRFRYnenaOZB2GrMVFaATfJ/XUBMDbhYU2F54PciSENIzdClMpQ7LkhBTW7SDiExephcmgk+wyE2JnNIQLvk/qqQlAZkocTAYdDTsTuaemD8Drtw1lctcgpHtGJ4dkQkP4FUrnM2O0DgtnpLIOQ5ZiwtVMFt+jpCYAKqWCfhBtmDuuFyLbG2zkpbgINe4Z7f8jBaUCuGNUMmYM6Yo7ZF7O4vVtJ1mHQFqh53GabDCZDDosyOoTElPYFbi04u2UNBPuHZ3MOiTZGd27E5PF96TxaxOxKWkmvHxzOuswRMVk0OHhyf0wZ0yvgLYTrlZh5yMT0T0mwu9tuDlg76lKbCoowatbqXAmEZ5V5Iu/3TkqCR/NGYkfHpmA5Hj/f2tSs3BGauNFNyvVyDgacdOplUiI8q2n+6tDpVi2sTBIEbWNkpoAbSoowQvfeFdzJ1R4lseeN6E3YvT+L/pW53Rh+NIt+O5YWUDxlFbXYfEG4X9chHgoFeJ9rDM1zYRRvRruqovLLazDCToFgD+OTcGkVCN2nbyAL/afxU+/XGAdlqjZnG7ce1VPzB3XC9cNMWFEUqxXn3t7RxE2HiwJcnTNSW6gsN1uxxVXXIEDBw5g3759SE9PZxbLpoISPLA2HxoVuw5bnVoJbZgK1V5MZY3RqzF3XC8s3RjcJMzpcsHl5qBSKnDL8O54e0eR39uy2F3YcTywE06FxUEDAQlTwVxYdWRyHHYXV/j1WYXiUs0wl5tD9k+n+AxNlDg0XGzX7j5Nq8D7wNuCuZd76osCXJNmFOxRlOR6av7+97+ja9eurMPwauE9Idic7g4TGsXF/5bfOAizr+oJkyG45eBXbT+Jq57fhmUbC7EmgISGLxsOnmMdAiFBcWN6VxRXWP3+PMcBc7PzsfHgOTzyyQGcrwmdoqiU0AjDs7KwUCSV1Hz99dfYvHkzXnrpJdahNC68JwkKYEL/zjCENzwTXTgjNehd4SXVNry9o4h50gcA+89Usw6BkKD43/5zAa/aygGYm70Pn+Sf5ScoQi7j7ZpufJDM46fz589jzpw5+Pzzz6HX6736jN1uh91+aREys9kMAHA6nXA6A5v6WlZtgfbiYyetsvn/itEPx8vww/EyGKN1eHRqf9w/pgfe+1FaXc1SaGe5CHZbx4arUUmr/9IxLRBqZ2G01c7x+rCAr7nefl7BcZzov2WO4zBt2jSMHj0aTz75JIqLi5GSktLhmJpFixZh8eLFLV7Pzs72OjEihBBCCFtWqxUzZ85EdXU1oqOj23wf06SmraSjqby8PPz4449Yt24dduzYAZVK5XVS01pPTWJiIsrLy9ttFG846t0YvnQL3FxDVrpkuBtP7VHC7hbrHAfpo3YWTii1tQJg9pg0lNrZHxFqFSzOwMe+UDsL4/J2VgBYcUs6sgYkBLxts9mM+Pj4DpMapo+f5s2bh1tvvbXd9yQnJ+PZZ5/F7t27odVqm/3d8OHDcfvtt+ODDz5o9bNarbbFZwBArVZDrfZ/qjEA7Dl9AXX1zX8cdrcCdhf9YIKN2lk4odLWCgARWhVq7WwGj4ZKO3trapoRMzN74G+fHESFjb/xGNTOwrC7FdBrNVh24yBMSTPxsk1vr9lMk5r4+HjEx8d3+L7XXnsNzz77bOOfz507h2uuuQbr1q3DFVdcEcwQ2yTkwCdCSHBxAGrtLkTpwlBjq2cdTsjbcew3ZPSIDXgQNGFDq1Lgp8ezoAkTfi6SJAYK9+jRfJn8yMiGyqq9evVC9+7dWYTkdTFLIn16jQov/d9gHD1fg1e3nmAdDgkiVgkN9R00Z3G4sHQjFSmVKruLw95TlRjVq5Pg+5bUlG4xoWKW7YsJD5NN27xz53AACry+jRIaEhyGcDWuHWySzW+GEFZPMyTRU3O55ORksJ605Slm+cDafKZxiEGEVoW3bh8GpUKBcosdxeUWrMiRR52lThEaVFudeDCbvmfCr2sHm5B78jcALlTVOfHlwRKEKYH6y0pFKRXBXZGYkGBg9TSDemoCMCXNhNWzMqBXB16NWspuHZ6IMX07Y3SfeFw7uCve/7GYdUi8WTxjIJZ8RXWjCH9MBh3uG5uCLw+WoNrWfO2NyxMaoGHVX0KkJCFKi8yUOCb7pqQmQJNSjVAqQvusE65RYdfJC3C5Oew+eQFVVnksqjZnTAo6RWmls3I0Eb2npg/Ad38bj3V7fvX6M6F9diFSNH2QcLWeLifJx09ikltUgVpHK7dXIWTV9pNYtf0kTAYd0hMNrMPhzZcHS+Cmfn/CE5NBhztGJeP9nUWySfwJac37P57CkKR43qZz+4KSmgDR1O5LSqtt+FpGvRql1Ta8u7OYdRhEJn43xITM53IooSEhYfGGQkxKFb7HhpKaAMl5ave88b3RJyESxeVWvP9jx3eXcuvTkNu/h7ATpgTeFkHFekKEwKGhqHFuUYXg07ppTE2AMlPiYIyWZ2Izunc8rkvvhnkTekPHYBEl4ptrBwvf1Uu809oAYELkjsWTDLpSBUilVGDKwMDrWohNXIS6cfR6blEFSs32Dj5BWLr7yiT8cKKcdRgkBIzrG4+4CA2tqUM6xOJJBiU1AVq2sRD/3HWKdRi8e/a6tMZnoTRuSPxqbfU0VoMI4uDZajx7XRoAWgmZtE6BhoHxLKZ1U1ITgI0Hz8nyOfl9Y1MwbXBXuNwcdp28gGOlNaxDIh3YeKiEyX5j9Gq6sIWYCosTn+8/i5syuqFLlIZ1OESkFs5IZTKtmwYK+8nl5vDkFwWswwgKp4vDqznH8VHuaSooJxFWp/CDNiK1KtwyvDvW7CiCAjSwOpRsLjwPoGG141EpcdhVVME4orbp1EpwbjbV10PVilvSmUznBiip8VtuUQUqLPLs7n+PpjETL9TaXVizowh/HJuC9QdKaJHCEOTmIOqEBgBsTje0ob3oe9DFRWjw1PQB6BKpRvnh3cgawG6cKT1+8hONMyGkwfoDJXjhxsGYN74Xbkjvyjoc0ga9RoVIbev3sRFaFQzhdI9L/FNhccBoCGdWGqEpOor9JOf1aQjxlmc9ijvez2UdCulAncPV5iNCi73h8cy1g02oc9Rj65HfhAuMyELDjX406zCop8ZfDevTaIOy7Sem9cfL/zcYUTrKOQkh/PBmzNOXB0twU0Yi5oxJpgHgxCdiudGnpMZPKqUCt2X2CMq2a2z1eGnLMdTY6oOyfb6p6OxHiGz85b/78c73xTTwm7HJqdJY/8wzfXtYUixyL46vyi2qgItR3TxKagKQHB8RlO2+tu2EpAZduujsRwKkaOP/E+HVMZhJR1q6QgTjUzrimfU4wBSFkcu2YvYHeQCA2R/k4arnt2FTgfBLTVBSEwCxdLcRYURoaApFsMTo1XhrVgbempUBo0GevysGS3YQiQpTKhATrkZchLjXAVJcPKa3HfkNFRZHs78rrbbhgbX5gic2NGgjAJkpcYiLUMNic3T8ZiJ5tnpa6yJYKi+uhjwlzYRJqcaG0hzVdVjy1WFUWhyyeBTCqDeeSFC9m8NfPjnIOowOtXdMc2joyRG6Wjf11ARApVTghvRurMMgAnFRr3zQeE5+TZ/DK5UK3DUqmVlMfFGESA+N55+ppkF25KKm1bqFQj01AcpKNWLtbvmVSiDiE6tX4/+Gdcc738vvePOc/FZtO46P8840G1OmVytR53RLrrdmapoRGT1isXTjYdahCMJo0OGW4YlYufU461CIyAi5rhv11ASo0kLVq0nwzbqiB356PAtfHmRT40koK3KOtxgkb5VgQnNTRldMSTOiuk6eq443NW98b3w0ZySemj4A7//oX8Idq2dzf/3QxD401kkAQo4/pZ6aALjcHJZ8FRp3YVLVKUKD36V3RVeDDr/V2vHjiQsAgCGJBiTG6LH8m6OMI/ROWY0dr209JqlZcaHs0/xz+DT/nNfvnzuuN976vhhWh/TGbfVJiER1nQNzs/f5lXzGRaiR0SMGOYeFXfBPqWh4ZEZjnYJHgYYePCFXGqakJgC5RRUoqbZRXRERu2Bx4P2LtaxMBh0WzkhtLLT22b6zDCPzzebC841FBMVMp1bCRlOCvebpJBiaGIO7r0zGm9+eZBqPP+Ijtfjrfw/43ZvWI04veEIDNCQz9KgseDzHttDVuimpCQDVf5IWzxTD1bMyMCXNBGO0PKcOszB7dDImpRpRUlWHh/97gHU4vApWBfKm2/3Dh3tgd0nvOUiUTgW3iwuoB3H/mWoeIyJiYbzsJlIoNKYmAMXlFtYhEB94LiCeWTaZKXEwyXRNFD7F6NUdvufjvDNwcxwSZNKeSgXw+m1DsSCrb9DKlXjTrmJXY3Nh3sf7WIdBREaBhjpiQic0APXU+G1TQQlW5FDXpdQ0nWI4qlcnLJyRigfW5vt8J64NU8JeHyKPWbiOW8fqcOH2f/wEY7QWMXo1qqzSHiB771XJeG7jYd7HMM0b3wt9EqIQH6nFw+v2w8rr1tkIhcHQxDccgHe+L4JSATw2LVXQfVNPjR9cbg6LNxSyDoMEwPPocEqaCatnZSAm3Le75pBJaABU1Xlfg+y82S7phEavUeK+sSn4x/fFQRmUPbp3Z1yX3g17iitwvoZmThJ5e+f7IjgEPldSUuMHzwBhIl1NpxhOSTPhjdszGEYjH1KfSBKmVOKL/eeC8u+ICVfDzXHYeJB6eUlocHPAh7uKBd0nPX7yAw0Qlq62phiO7NkJMeFqVFFXekgz2+phtnnfM+WLqjonbv/HT4KuMKxTK3F7Zg90jQmn5ScIE6cqhH3ISj01fqBCltLU2hRDl5vDrpMX8OXBc8ga0IVdcCRkeDFEiTc2pxvv7SxGqZluxAgbSXF6QfdHPTV+8BSyrLDQXb2UXD7FcFNBCRZvKKRHiUTWOADv/iC/0hrtUSiETR6b7fvi/2aldsGWwjI2QYiEUgHcIXD9Nkn11Hz11Ve44oorEB4ejvj4eNx4441M4lApFXj2ujQm+ya+6RShwYrfD8FHc0bih0cmNEtoHlibH5SERksF/YjIhMqquZ5fHquEBmi4eXpj5lAUnDWzC0Ik5oxJgSZM2DRDMj01n376KebMmYPnnnsOEyZMAMdxOHToELN4pg3uivt+rcLbO0LrDihYNGEKKKDweVZRhEYFSztLyy+9Ia3FWgme2WvBOu/ZXSFyBSFEZGL0YXDUc+2eE4JFG6bAP+4YAaVKgV0nL4R0D7ACwH1jUwSfzg1IJKmpr6/HQw89hBdffBH33ntv4+v9+vVjGFXD/PtwdRhWf3uMaRxy4KjnMDm1Mzb72F07a2QPDOkei79/ehC19uYDPNta3IxmrxG5iNGrUe/iWhz7oWZc3044eLYGFRYHsxgSY/X408f7aLIBgL1PTkJEuJbJviWR1OTn5+Ps2bNQKpUYOnQoSktLkZ6ejpdeegkDBw5s83N2ux12+6W1IMzmhu5Ap9MJp5OfA+/+scnYkF8MoA5aJd2hB6KkwgKtqu029LRv03b+YOcvGN+vM5z1zhY1uOrsDjz00V5cP6QbwrUq9IgNx83DErHr+Pl290Nab2vCv0Dbed7VyegcocPfPzvIZ1iSs+tkOQC0WYdPiOP5TEVtuzGEAk/7cu56OJ38Pnby9pqt4DiWTx+98/HHH+O2225Djx498MorryA5ORkvv/wyNm/ejGPHjiEurvUKoIsWLcLixYtbvJ6dnQ29XtgR2YQQQgjxj9VqxcyZM1FdXY3o6Og238c0qWkr6WgqLy8Px44dw+233463334bf/zjHwE09MJ0794dzz77LO67775WP9taT01iYiLKy8vbbRRv5Rw+jwXr9kOj5LBkuBtP7VHC7qZBooG4fkhXfH7gXKt/p6V2Fgy1tXcyk2KRe6rS788H2s5R2jDUhPijJ2/Q8SwMTzv/oumJByb047U6t9lsRnx8fIdJDdPHT/PmzcOtt97a7nuSk5NRU1MDAEhNvTToSKvVomfPnjh9+nSbn9VqtdBqWz7XU6vVUKsDKybncnN45qujsLkUjQNO7W6FJCvtism6/BJcmsPQOtbtHKlVodYu/EBEFli3tdh9/0sVOjpeveFPOysUQLnVxcv+QwUdz8J464dT+M/+Ml6rdHt7zWaa1MTHxyM+Pr7D9w0bNgxarRZHjx7FVVddBaDh+VpxcTGSkpKCHWaraLBpaNKrlRB4hiIhrZrQrzO2HvmNdRiEtKq02oYH1uZj9awMQat1S+L0HB0djfvvvx8LFy7E5s2bcfToUTzwwAMAgJtvvplJTFsKS5nsl7BldbpRVRcavTREnBSKhvU/BnePZR1K0Ewb2Jl1CM1ow6h3x1eeJxiLNxTCJeBCSZKY/QQAL774IsLCwnDHHXegrq4OV1xxBbZt24bYWOF/2C43h8/3tz7ugxBC+BauVqLO2bCGE8cB2bmnYQngEWhmcixyi/0fCxRsX//8G8KUCtQzXjVwaloC7hyVgmFJschcmkPTtX3EASiptiG3qAKjenUSZJ+SSWrUajVeeuklvPTSS6xDQW5RBdP1EMQkRq9GlZV+6IQEkyeh8QgkoQEg+tVuOYB5QhOrV2PVzGFQKRXYVFAiu6FL2jAl9BoVKgU4fwtZBFoSj5/Ehqp0N9CrFbh5WHe5/dYFo6XBOYQRq5MeobZHAWDZjYMaE5oH1ubL7ubNXu/Ga7cORVyEJuj7ErIINJ1V/UBVuhtYnRze+b4IWald2ly9l7QuUqvC/qcnIyac2i0Uhavp1CtWJoMOb8zMgCFcg8/yf8XjnxUEraQKaz8F+amDAg3tmZnS+lpywSCZx09ikpkSh4QoLc7X2Dt+cwjYUliGP0/ojde2nWAdimTU2l3Yf6YKy28ahPvX5rMOR3bi9GpowpQoNYvvN6oAEK4JQ52THmF7I7VrFArP1QR9PwoA/5qdiRqbE0u+KgyJ2a1ckNM1DsDCGam8rlfTEbpd8INKqcCYPuIanc/auz9QYU9f7TxRjkmpRrw1KwOGcLq/4FOF1SnaQZ0cgAqLA3ERanp064X4CC3enJkR9MckHID805WYm73P54SmX0JkcIIKsmD3FMfq1ZiUagzqPi5HSY2f9KFc4KMVLKriSt2q7ScwevlWHC4xQ3ajEEXA5vSt4rvQbkjvxjoESdhxvBxKJZD3RBb+/YcrgnohXrPjpF99FwqJ/nzPVdUhmJ0olVYncosqgreDVlBS46ekOKodJQS592CUmu14desJVPvYq6ChQcaSl5VqxIpb0lmHIQmLNxQCAEb3jsfymwYF7RbA4vAvET5SWstzJMJ4/8dTCPYkM6En1tCZ0U93jEoOaoZLgHuvSoZCqrdAQeaoF3cvBGmf0IMnpc6z1gkATEo1Yn5WH+jV1FsuBcXlFkH3R0mNnzRhSswZk8I6DFl794di2U2jJAQAnpo+ALt/uYBFX/zMOhTJKKuxYVNBCa56fhtW5BynaekS8VHuaVpRWCoem9ZQYPNfP/7COBJCSLAMT4rBnlNVvG0vQqPCM18eRqnZBq1KrpOF+Vf0mwWvbj0u2+nVclVqtgu6ojD11ATosWmpyH0sCwDQr0sU42gICZ64CDXG9wu9WX9hPD9ntjhcKDXLf7ow3/61+xQlNBJFKwpLyKaCEkx//QcAwNGy4K+lIBajBcq6vUGjboJPr1Zi5yMTcaQ0dI5xj91FHddIitGrserWoQJEE7qoNI100YrCErGpoAT3r83H+RAsm/B/w7ojSieOp5dGgw5vzsyAMVrLOhTZsjrdyP7plCgWJEtPNLAOoYXlNw7C5DRh1+MgROxYrChMSY2fXG4Oj/7vEOsweOPp7dB5OVV454lyPHt9WvAC6kBchBorbknHR3NG4odHJmDaYBNuy+zBLJ5QsOP4b6xDAACcrrAia4B4HoPNn9gHU9JM+HBXMetQSCsm9Pf/WImL0FBPcABYrCgsjlttCdr9ywVZzcwxGnRYOCMV9fUc/vTxvg6fXX+SfxY5R8owuHs0Dv4qbMVfBYDnbhiEKWmmZq8nx0cIGkeo+e5YOesQAAAVFidyDosjwQKAf/5YjL4Jkdj9ywXWochaTLjar1Wid530/3u5Pr0r3ttZ7PfnifCop8ZPgfxQxCJSG4YVvx/S2NsBwKuExqPK6sShX80Y1kPYxwErbklvkdAAVGiUsFFV58SD2fuw5XAZ61BkLWtAF78+VxfAytJROio4GwgFGhZOFHJKNyU1fhPXOHx/Ovdq7fU4XWFtnGq3eEOhz/8qDsDJ36x+7N174WolXv6/wXjvrhEAgKwBCa2+b1hSbNDrwxBC2Pgk/yz0GmEX3PvHD7RcRyA4NF84UQiU1PhpVM941iE042+K9faOX+Byc8gtqvB7EGiwCwfWOd1Y+vVhmG1t72dTQQmufnE7zZAgRMasAteYs9hpgT8+0JRuCRjZqxMiZVDU0upw4ZFPDuDrghLWobSrwuLEgnX7W/27TQUleGBtvihm5siNQUvD7gghgRFyaACdsfykUipwy/BEvCuDQWSf5J9lHYJPXG4Oyou9S6VmG5Z8+bPIHgbKh5IKnBFC/KRAwyQUIad0U1ITgKxUoyySGqnwJC4LvyjAdycqaVVWAVTWOUHLGxJC/MFiSjc9fgpAZkocTAaacSO0zw+co4SGEBJUCni/bhdp3d1XJrU6UzWY6BsLgEqpwMIZqazDYCozOZZ1CIQQwjsOwPgAFu4jQGKsXvB9UlIToClpJqy8JZ11GMzkFlfS3QyRFZ1aiXC1/I5puT5EDNa/a2qaESm0oGdAfq0M7nIfrZHfL5eBttZNCRW2ev8XtyJEbGxON2xONx6a2Acx4fJZfM1o0OGtWRl4a1YGDCKp2+arWL0aMXp1i9fmje/Fe3LzdUEp3vyW1qkJxBcHzgm68B5AA4UJCYheoxJ87QwSfByAD3cXB30NJiFcn94Vt4zogcyUuMYBm4dLavDq1uOMI/Pdg+N6wRStw9MbfkaFpeG7qbA6sWr7ScaRkdZUWJzILapoXOBVCNRTI2G6MCU+uHsEDOGUm7Ky9Po0zBvfi3UYJAg8F01vRWhUuHawsIMivWGK0aGspmFVV5ebw6aCErwmwYQGAJZuPIJ5H+/3+bsh7Ai58B5APTW8yDl8nsl+bfVuzP1oH26/IhFrdhTRWi0MGA3hMBrC6U6RAOCQEq+HAuIqorK6ySMUY7QWtnq3qOIj8hYfoRV0f9RTE6BNBSVtrnQrhFp7Pd7eUYRx/TtDIZKRgKEwcFgBwHRxUSnP1H6RND9hxOJw4/VtJ0WdMJSa7aiyUi8HEZDAJ0b5X32CyOXm/CoCGQzbj/wGTgyBAFCFwFHFAbhleHfsPnkBXx48h1tHJIKDfGeYSJkujL4VwlYoH4HltXZB90ePnwLgKQLZUQkosXVHB5vFId7ZUPPG94LF7sIn+b+ixlYf0LZWbj0B4ETjnz2zMpreCbf2GhHW1X07Y8vhMgg8CYOQRhyA/8vojk/yf2UdiuCErPsEUFITEG8HQE1OTcA3hWzG3bASE65GdZ1TdMmcWqXEpp/PBpzQtKb6YuKyIKsvkuP16BJ1qeZJblEFthSW4j0qqyE4pVIJnZpmqQWDAg2Je6XVGXI3bwAQqQ1Drd27c4nRoMO9o5Px8Z4zIVP92yRw3SdAQo+fjh07huuuuw7x8fGIjo7G6NGjsX37dqYxeZuBhlpCAwD3jE5mHUILsXo1VuQcD1o1b88J/eO807h2cFeM6tUJKqUCKqUCo3p1EvzHTRp8XVBKCU0QeB6pLLtxEN6alQHjZSVjPL2Ucn30ogAQpQvDTRndvHr/qu0n8O7O4pBJaBQQvu4TIKGemunTp6Nv377Ytm0bwsPDsXLlSlx77bU4efIkjEYjk5g8A0QrauuY7F+MPFVZ503og37GKDzyyUFUe9ErolEp4HAF9z5PiLtIDkBJta3F2gwuN4dHPj0oQARsdYnUICs1AV8eLIE5CL1hvlIoIJqxZnJjNOiwcEZqY22fSalG5BZVoKzG1thLuaWwFIs3FAbtRoIlz29925Ey1qGIjgLAGzOHCl73CZBIT015eTlOnDiBRx99FIMHD0afPn2wfPlyWK1W/Pzzz8ziotpPzXnycU92PiXNhDdvH+bVZyf6sCqzAkCsj2vzTE0zCjqu5fJHk7t/uYDqOvYX+WBTqZRYcv0gvPB/gwXZX0frwlBCExxPTR+AHx6Z0Oyi5emRvC69W2Mv5ZQ0E354ZAI+mjOS1/Wc/jyhN/597xWiWPG5ksbLtcABiBV4KreHJHpqOnXqhAEDBuBf//oXMjIyoNVq8fbbbyMhIQHDhrV90bTb7bDbL428NpvNAACn0wmnk58DcWK/eNydmQigGFplYGfQ8X3jsf1YOS9xsRCn1+DpGamY2C++sX2H9YhGUqy23araxmgdZo7ohm2HS9rdvqd9tUoOo3vFYsth7++Q+sTrsE3l+/ejVAD3j+2FN7/zbR2aeH1Ys2PspxNl0Pqxf1aatrUvKmrrsPtEGSb2i8fqmUPw+P8Ower0r7vdM0ZDr1a12EZsuBoLfzcQWQMSMD2tC5ZtPILzTRJJY7QOkwYk4MOfTvm1b6H4284sGaN1uD2zO9yueri9/GqH94jG0O5R2LD/V5w32wLqNY3RheHBq1OgUiqw7IZULFi3v8Pt+dPOsRfHChHvNW3nsmoLnM5o3rbt7TVbwXHSuJc5e/YsrrvuOuTn50OpVCIhIQFfffUV0tPT2/zMokWLsHjx4havZ2dnQ68XvnooIYQQQnxntVoxc+ZMVFdXIzq67WSJaVLTVtLRVF5eHoYNG4brr78eTqcTTzzxBMLDw/GPf/wD69evR15eHkym1rugW+upSUxMRHl5ebuN4iu7w4GtOTl4eo8SNrfvg6KM0Tp8M39s44CqrwtK8fTnh1DHoFCkMVqHv07qh79+esDnz75314g2B8PmHD6P5V8fadZjY4zW4dGp/RsLguYcPt+4kGFrB+W8q1PQo+4EJk2ahL1nzPjDv/Z4FdfKW9Ixvl8XXLNyh9d3ib7GBlx6/LbilvQWRU53n7yAP3zoXbzB4un5iNSEodbR9qOwGJ0aL940EJXH9/p1TDc9DlxuDtes3NFuTx0AvHJzOiYO6IK9pypRXmtHfKQWw5JiAxpk6Nm3Pz0DXSI1cNRzqLIFfqfe3kxArZLDkuFuPLVHCXsr7RyrV+ORKQPQJaple+QWVWD2B3kd7r/p99HW79DmdHU4W7Fp71ggcg6fb9Gz5o3Lf5NNudwc9p6qRFmNHbtPluPzA+ea/X1b7RyrV+OFGwaj0uZs9Zhr63fvecfLNw/BC98cDbj3KZgSorTYvOBquNwcJr7yHSqtjqDty9POq47pseHPV/M6SNhsNiM+Pr7DpIbp46d58+bh1ltvbfc9ycnJ2LZtG7788ktUVlY2/mPefPNNbNmyBR988AEeffTRVj+r1Wqh1bZ8rqdWq6FW8/8s1u5WwOFStDj4uVb+v+fPAPDY9IHQaTWNr/9uaCKmD+mO17cex0oBa7QoLsYyJc2EgtIavL2jyOvPGQ06jOzdpc2DeOrg7pic1q3FQMKm7586uDsUSlWLgYWmiwMSJ/aLx8aNJ6BWq3FlnwSEazXtjpNRKIA3bhuKqYO7Ahf/bQ+szQfQ8nvgACzI6oPk+AifYmvKdNnAyaau7NtxvJfHwzdPfADabAcAWHzDYIzqE4+Nx4HlNw/FY58Xeh335ceBGpfava1/031jUzA9vTsAYHRf/ireN9034H2bLsjqi3kTemNLYSnuv/jZttw3NgUA2vytKAAsvr5hfFF7x47drYDdpWj2OQBYdN3gNgdbjuzdBXGR4Sitbv2C2tr30dbvcEthabvtNH9iH/xpYh9eLlKeGFZtO44VOW2f3+aMScaE/sY2zxdNqXHp2LlhWA+MTzW12t6edm7avmNT2x6X1dE5aUqaCaqwsHbPK6w9fm1a4/Vl0XWDfP49+MLTrg9fM6DZNY0P3l6zJfH4acOGDbj++utRXV2NyMjIxtf79euHu+66C48//rhX2zGbzTAYDB1mer5yOp3YuHEjNCnD8MxXR1s9+IGWJ7X2LoIemwpKsGh9YbM7K5NBh1tH9EByvB7F5VZ8lHu6xd//bogJ6w+UtHkSvXxWSGuxbDxYgie/KECFpe3M3nMQr56VwdtId5ebazX58bTztGnToFarsamgpN2LzpszMzDtsoGkmwpK/PoeWostPlILcEC5xd7hSdez7/bindC/M+aM6YVKiwNzs9s+8dw7OhkTBiQ02/eFGluzysVAQ52f2zJ7tJqoddQOTdtaqQrDqm3H8f7OtqtWd3QctLa/uAg1nr0uDdMuJp3B0tq+W1sUsbXjYFNBCR7936EWSV2EVoUXbxrcGPvGg+cu/lba3p7n2Ck121BRa0dchAZdItUoP7wbrxyJwKlKe5ufbe/f1l6C6svvMtDfhj+CeVx42junsBRfHfwVj6XZ8PdcFewuhc//rrbOSe39Ozzn4TUXE15/LrQmgw5PTU/F8bJarMg55tNnY/RqLL9xUIt/Y2uxxurV4OD7IqGXX0eSYrV4uL+l8RzNJ2+v35JIasrLy9G/f39cffXVePrppxEeHo533nkHr776KvLy8jBkyBCvthPspMZzAWjr4O/oh9GWjj7X1t+3dwEelhR7sbu2/ViabqO43HIxgfL95MuHy5MaoO2kr72Y/P0e+NAQ78/N2jBWr8bS65ufxP25wPj672rv/a21tef9WwpL8fn+c82SXW+OA5bt3tq+AXgVj8vNYfcvF7Dr5AUAHEb1jMfIi7N7OtpHR/8+TztfM2Uq9v1a41fb8JmMsPiOhNinze7AN5u+BhKHooshIij7aOvf0db3c+uIHqiuc7T4LcVFqHFDejdkpRo7vBGJCVfj7iuTMaxHLHYXXcC5qjp0jQ3HlW0co+3FCjT/PVRa7Fjy1eFm+7v8Runy68jQ7lH4ZtPXlNR4Y8+ePXjiiSewZ88eOJ1ODBw4EE8//TSmTp3q9TaESGqC8VhLTFhemNpqZ5Yx+cPbeMXY1mKITU74OnfQ99E+1ufo9r4fX747ob9nX/cXzHb29votiSndADB8+HB88803rMMIeZ61KMREjDG1x9t4xfzvEnNsoYi+D3Fr7/vx5bsT+nuW4nElicX3CCGEEEI6QkkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbIgmRWF+eCpCGE2m3ndrtPphNVqhdlsln2ZBJaonYVDbS0MamdhUDsLI5jt7Llud1TZKaSSmpqaGgBAYmIi40gIIYQQ4quamhoYDIY2/14yBS354Ha7ce7cOURFRUGh4K8ImNlsRmJiIs6cOcNroUzSHLWzcKithUHtLAxqZ2EEs505jkNNTQ26du0KpbLtkTMh1VOjVCrRvXv3oG0/OjqafjACoHYWDrW1MKidhUHtLIxgtXN7PTQeNFCYEEIIIbJASQ0hhBBCZIGSGh5otVosXLgQWq2WdSiyRu0sHGprYVA7C4PaWRhiaOeQGihMCCGEEPminhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqeHBm2++iZSUFOh0OgwbNgzff/8965BkZdmyZRgxYgSioqLQpUsXXH/99Th69CjrsGRv2bJlUCgUmD9/PutQZOfs2bOYNWsWOnXqBL1ej/T0dOzdu5d1WLJTX1+PJ598EikpKQgPD0fPnj3xzDPPwO12sw5N0nbs2IEZM2aga9euUCgU+Pzzz5v9PcdxWLRoEbp27Yrw8HCMGzcOP//8syCxUVIToHXr1mH+/Pl44oknsG/fPowZMwZTp07F6dOnWYcmG9999x3mzp2L3bt3Y8uWLaivr8fkyZNhsVhYhyZbeXl5WLNmDQYPHsw6FNmprKzE6NGjoVar8fXXX6OwsBAvv/wyYmJiWIcmO88//zzeeustrFq1CocPH8YLL7yAF198Ea+//jrr0CTNYrFgyJAhWLVqVat//8ILL+CVV17BqlWrkJeXB6PRiEmTJjXWXwwqjgQkMzOTu//++5u91r9/f+7RRx9lFJH8lZWVcQC47777jnUoslRTU8P16dOH27JlC3f11VdzDz30EOuQZOWRRx7hrrrqKtZhhITp06dzs2fPbvbajTfeyM2aNYtRRPIDgPvss88a/+x2uzmj0cgtX7688TWbzcYZDAburbfeCno81FMTAIfDgb1792Ly5MnNXp88eTJ+/PFHRlHJX3V1NQAgLi6OcSTyNHfuXEyfPh1ZWVmsQ5Gl9evXY/jw4bj55pvRpUsXDB06FO+88w7rsGTpqquuwtatW3Hs2DEAwIEDB/DDDz9g2rRpjCOTr6KiIpSWlja7Lmq1Wlx99dWCXBdDqqAl38rLy+FyuZCQkNDs9YSEBJSWljKKSt44jsPDDz+Mq666CmlpaazDkZ2PP/4Y+fn5yMvLYx2KbP3yyy9YvXo1Hn74YTz++OPIzc3Fn//8Z2i1Wtx5552sw5OVRx55BNXV1ejfvz9UKhVcLheWLl2K2267jXVosuW59rV2XTx16lTQ909JDQ8UCkWzP3Mc1+I1wo958+bh4MGD+OGHH1iHIjtnzpzBQw89hM2bN0On07EOR7bcbjeGDx+O5557DgAwdOhQ/Pzzz1i9ejUlNTxbt24d1q5di+zsbAwcOBD79+/H/Pnz0bVrV9x1112sw5M1VtdFSmoCEB8fD5VK1aJXpqysrEWWSgL3pz/9CevXr8eOHTvQvXt31uHIzt69e1FWVoZhw4Y1vuZyubBjxw6sWrUKdrsdKpWKYYTyYDKZkJqa2uy1AQMG4NNPP2UUkXz97W9/w6OPPopbb70VADBo0CCcOnUKy5Yto6QmSIxGI4CGHhuTydT4ulDXRRpTEwCNRoNhw4Zhy5YtzV7fsmULrrzySkZRyQ/HcZg3bx7+97//Ydu2bUhJSWEdkixNnDgRhw4dwv79+xv/Gz58OG6//Xbs37+fEhqejB49usWSBMeOHUNSUhKjiOTLarVCqWx+mVOpVDSlO4hSUlJgNBqbXRcdDge+++47Qa6L1FMToIcffhh33HEHhg8fjlGjRmHNmjU4ffo07r//ftahycbcuXORnZ2NL774AlFRUY09YwaDAeHh4Yyjk4+oqKgW45QiIiLQqVMnGr/EowULFuDKK6/Ec889h9///vfIzc3FmjVrsGbNGtahyc6MGTOwdOlS9OjRAwMHDsS+ffvwyiuvYPbs2axDk7Ta2lqcOHGi8c9FRUXYv38/4uLi0KNHD8yfPx/PPfcc+vTpgz59+uC5556DXq/HzJkzgx9c0OdXhYA33niDS0pK4jQaDZeRkUFTjXkGoNX/3n//fdahyR5N6Q6ODRs2cGlpaZxWq+X69+/PrVmzhnVIsmQ2m7mHHnqI69GjB6fT6biePXtyTzzxBGe321mHJmnbt29v9Zx81113cRzXMK174cKFnNFo5LRaLTd27Fju0KFDgsSm4DiOC37qRAghhBASXDSmhhBCCCGyQEkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hRPLGjRuH+fPnsw6DEMIYJTWEEEIIkQWq/UQIkbS7774bH3zwQbPXioqKkJyczCYgQggzlNQQQiSturoaU6dORVpaGp555hkAQOfOnaFSqRhHRggRWhjrAAghJBAGgwEajQZ6vR5Go5F1OIQQhmhMDSGEEEJkgZIaQgghhMgCJTWEEMnTaDRwuVyswyCEMEZJDSFE8pKTk/HTTz+huLgY5eXlcLvdrEMihDBASQ0hRPL++te/QqVSITU1FZ07d8bp06dZh0QIYYCmdBNCCCFEFqinhhBCCCGyQEkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIwv8DHs84eSN4TGQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(domain,n_points=N_coll)\n", + "plot = tp.utils.scatter(T*X, domain_sampler)" + ] + }, + { + "cell_type": "markdown", + "id": "9500e8d0", + "metadata": {}, + "source": [ + "### Define solution Neural Network \n", + "At this point, let us define the model $u:\\overline{\\Omega\\times I}\\to \\mathbb{R}$.\n", + "A normalization layer is used and the scaled points will be passed through a fully connected network. The constructor requires to include the input space $T\\times X$, output space $U$. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "bdef3d80-90e6-47aa-95ce-6d735fd03f36", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(domain)\n", + "fcn_layer_sol = tp.models.FCN(input_space=input_space_sol,output_space=output_space_sol, hidden = (128,128,128))" + ] + }, + { + "cell_type": "markdown", + "id": "694d8666-170e-4c28-a87a-73aa329e2094", + "metadata": {}, + "source": [ + "Similar to Pytorch, the normalization layer and FCN can be concatenated by the class \"tp.models.Sequential\":" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9b838d6f-1b90-4667-8ecb-9f54b4ec627e", + "metadata": {}, + "outputs": [], + "source": [ + "model_sol = tp.models.Sequential(normalization_layer, fcn_layer_sol)" + ] + }, + { + "cell_type": "markdown", + "id": "28d166be", + "metadata": {}, + "source": [ + "### Data Condition\n", + "For training the first network, the DataCondition of torchphysics is used. The training data is converted into tp.spaces.Points and fed into a DataLoader. \n", + "The DataLoader as well as defined NN are then used in the DataCondition." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "394583c4", + "metadata": {}, + "outputs": [], + "source": [ + "input_train = tp.spaces.Points(torch.column_stack([X_train_tensor]), input_space_sol)\n", + "output_train = tp.spaces.Points(torch.column_stack([u_train_tensor]), output_space_sol)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4eff5c9f", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "008c09a7-81f8-41b5-8c10-3892812740ad", + "metadata": {}, + "outputs": [], + "source": [ + "batch_size_data = len(input_train)\n", + "\n", + "data_loader = tp.utils.PointsDataLoader((input_train, output_train),batch_size=batch_size_data,shuffle=False,pin_memory = True)\n", + "\n", + "data_condition = DataCondition(module=model_sol,\n", + " dataloader=data_loader, \n", + " norm=2,\n", + " use_full_dataset=False,\n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "98f1e13d", + "metadata": {}, + "source": [ + "### Hidden physics condition " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3a9f7d2a", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid_phy = tp.models.FCN(input_space=input_space_hid_phy,output_space=output_space_hid_phy,hidden = (128,128))\n", + "model_hidden_phy = tp.models.Sequential(fcn_layer_hid_phy)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4f9f6a81", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities(t,x):\n", + " \n", + " u = model_sol(tp.spaces.Points(torch.column_stack((t, x)), input_space_sol))\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def hiddenPhysics(u, grad_u_x, grad_u_xx):\n", + " \n", + " \n", + " input_model_hid = tp.spaces.Points(torch.column_stack((u,grad_u_x,grad_u_xx)),input_space_hid_phy) \n", + " output_model_hid = model_hidden_phy(input_model_hid)\n", + " \n", + " return output_model_hid.as_tensor\n", + "\n", + "\n", + "def residual_equation(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities(t,x)\n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx)\n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " return residual\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "bf22405d", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_condition = HPM_EquationLoss_at_Sampler(module=model_hidden_phy,\n", + " sampler=domain_sampler,\n", + " residual_fn= residual_equation)\n" + ] + }, + { + "cell_type": "markdown", + "id": "9691ab29", + "metadata": {}, + "source": [ + "### Training model " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "ea27b608-e319-4fac-85c1-5984f2d043c6", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hidden_phy_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "9ea9431a-9ea4-4312-8869-af4c8c4733a4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "Missing logger folder: /home/ibp5kor/torchphyics/examples/hidden_physics/lightning_logs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 50.7 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "50.7 K Trainable params\n", + "0 Non-trainable params\n", + "50.7 K Total params\n", + "0.203 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 25000/25001 [05:03<00:00, 82.43it/s, loss=2.85e-05, v_num=0]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $u$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $u$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln.T - u_pred.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_sol_pred.png',format='png')\n", + "plt.savefig('burgers_sol_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "18616a5b", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n", + "\n", + "def R2_SCORE(true_val,pred_val):\n", + " \n", + " mean_true = np.mean(true_val)\n", + " \n", + " return 1.0 - np.mean(np.square(true_val-pred_val))/np.mean(np.square(true_val-mean_true))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "5651303e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u : 0.01223288558430782\n", + "R2 Score u : 0.9998503565102812\n" + ] + } + ], + "source": [ + "l2_error_u = L2_ERROR(u_soln.flatten(),u_pred.flatten())\n", + "r2_score_u = R2_SCORE(u_soln.flatten(),u_pred.flatten())\n", + "print('L2 Error u : ', l2_error_u)\n", + "print('R2 Score u : ', r2_score_u)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "9ea3303f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAE6CAYAAADHteF6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5xcRZk+/ky6p7tnkkkCCSQEEggsSlZk0UQlIAJeglzUVXCRu3LR/KLLQrwRWSUgEEFkI9eABJFlQVbFBRVBFuUihF0CQf0Ki6sLJEJCSCDJJDPTM93Tvz9O1zl1qut+6pzunq4nn850n1O3c/r0W1VPPe9bXbVarQYPDw8PDw8PDw8PDw8PDw8PD48MMa7ZDfDw8PDw8PDw8PDw8PDw8PDw6Dx4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw0MbmzZtwpo1a5rdDA8PDw8Px/D23cPDw8PDw6MZ8KSUh4eHFh599FHMnj0b73znO3HhhRc2uzkeHh4eHo7g7buHh4eHh4dHs+BJKY+Wwq233oqurq7wlc/nsdtuu+FTn/oU/vd//9e63Lvuugtve9vb0NPTg66uLjz77LPuGj1G8NprrwnP1Wo1XHzxxbjzzjux22674dVXX82wZR4eHmMZPLu/xx574DOf+QxeeeWVTNqwdOlSdHV1NbTppZdeMirniSeewNKlS7Flyxa3DURjG03g7buHh0eWuPrqq9HV1YX999+fe/6ll15CV1cXrrzyykzblcSOPvfcc1i6dKlxv6ACuRei19KlS53W5+HRisg3uwEeHjx8//vfx3777YehoSE8/vjjuPTSS/Gb3/wG//M//4OddtrJqKzXX38dp556Kj784Q/j+uuvR7FYxFve8paUWt6+OPnkk3HzzTdjr732ajj35JNP4rjjjsOxxx6LF154AcViMfsGenh4jGkQuz84OIhHH30Uy5YtwyOPPII//OEPGD9+fKZtOeaYY7Bq1SrstttuRvmeeOIJXHTRRfj0pz+NyZMnp9M4C3j77uHhkSVuueUWAMAf//hH/Nd//Rfe8573NLlFyfHcc8/hoosuwuGHH861pUnxj//4jzjppJMaju+xxx7O6/LwaDV4pZRHS2L//ffHQQcdhMMPPxwXXHABzj//fGzcuBH/8R//YVzWn/70J4yMjOCUU07BYYcdhoMOOgi9vb2J2jcwMJAofyti9erVWLlyJffcPffcg4997GMAgL6+PhQKhSyb5uHh0QEgdv+II47AhRdeiK985St48cUXpXY/LVu8yy674KCDDhozBI237x4eHllh9erV+N3vfodjjjkGAIS2xyOOWbNm4aCDDmp4qUgpUT9YrVZRLpcTtWksznc8WhOelPJoC8ybNw9AowvC//7v/+Kkk07CrrvuimKxiDlz5uC6664Lz3/605/Ge9/7XgDACSecgK6uLhx++OHa+YFI6vvMM8/g+OOPx0477YR99tnHqAy6nD/+8Y848cQTMWnSJEybNg1nnHEGtm7dGkv7P//zPzjxxBMxbdo0FItFzJo1C6eddlqsc9GtVwf/93//h61bt+KWW25BpVJpOL9+/XrMmDHDqmwPDw8PGxx00EEAgJdffhmA3Bab2MNf/OIXOPDAA1EsFjF79myu+4jIfU9mm5cuXYovf/nLAIDZs2eHrhcPP/xwmF+3nTpt1IW37x4eHlmCkFDf+ta3cPDBB+OHP/yhkNwYHR3FpZdeilmzZqFUKmHevHl46KGHYmlef/11fPazn8XMmTNRLBaxyy674JBDDsF//ud/xtLdcsst+Lu/+zuUSiXsvPPO+PjHP47nn39e2V6Ri9xee+2FT3/60wCCPuGTn/wkAOCII44I7futt94apv/P//xPfOADH8DEiRPR29uLQw45pOFakuLwww/H/vvvj0cffRQHH3wwent7ccYZZ4QugFdccQUuueQSzJ49G8ViEb/5zW8AAPfeey/mz5+P3t5e9PX14UMf+hBWrVoVK1s13/HwSBPefc+jLfDiiy8CQMzt7rnnnsPBBx+MWbNm4Tvf+Q6mT5+OBx54AOeccw42bdqECy+8EF//+tfx7ne/G5///Odx2WWX4YgjjsDEiRO189P4xCc+gU996lNYuHAhduzYYVUGABx33HE44YQTcOaZZ+IPf/gDlixZAiCSOv/ud7/De9/7XkydOhUXX3wx9t13X6xfvx733nsvhoeHUSwWreqVYfXq1Zg9ezZefPFF3HPPPTjuuOPCcy+88ALe+ta3GpXn4eHhkRR//vOfAQSqJRqsLTaxhw899BA+9rGPYf78+fjhD3+IarWKK664QhpziUBlm8866yy88cYbuOaaa3D33XeHrn9/+7d/C0C/v0jSRh68fffw8MgKg4ODuPPOO/Gud70L+++/P8444wycddZZ+NGPfoTTTz+9If21116LPffcE8uXL8fo6CiuuOIKHHXUUXjkkUcwf/58AMCpp56KZ555Bpdeeine8pa3YMuWLXjmmWewefPmsJxly5bha1/7Gk488UQsW7YMmzdvxtKlSzF//nw89dRT2HfffRNd1zHHHIPLLrsMX/va13Ddddfhne98JwCEpM3tt9+O0047DR/72Mfwgx/8AN3d3bjxxhtx5JFH4oEHHsAHPvABZR2jo6PchYN8Pj5dX79+PU455RR85StfwWWXXYZx4yKNydVXX423vOUtuPLKKzFx4kTsu+++uOOOO3DyySdjwYIFuPPOO1Eul3HFFVfg8MMPx0MPPRQu3hPw5jseHqmj5uHRQvj+979fA1B78sknayMjI7X+/v7a/fffX5s+fXrtfe97X21kZCRMe+SRR9b22GOP2tatW2NlfOELX6iVSqXaG2+8UavVarXf/OY3NQC1H/3oR7F0uvkvvPDCGoDaN77xjYb26pZBl3PFFVfE0i5atKhWKpVqo6OjtVqtVnv/+99fmzx5cm3jxo3C+2RSrw7OO++82s9//vNad3d37bDDDoudu/zyy2v/7//9P6PyPDw8PHTBs/s///nPa7vsskutr6+vtmHDhlqtJrbFJvbwPe95T23GjBm1wcHB8Ni2bdtqO++8c40eEpE2vfjii+ExHdv87W9/uyGfaTt126gLb989PDyywm233VYDUFuxYkWtVqvV+vv7axMmTKgdeuihsXQvvvhiDYDQ1n3wgx8Mj02YMKF27rnnCut88803az09PbWjjz46dnzt2rW1YrFYO+mkk8JjpB+hAaB24YUXNpS755571k4//fTw849+9KMagNpvfvObWLodO3bUdt5559pHPvKR2PFqtVr7u7/7u9q73/1uYdtrteheiF6PPfZYmPawww6rAag99NBD3DL22Wef2vDwcKwNM2bMqL397W+vVavV8Hh/f39t1113rR188MEN94Y33/HwSBvefc+jJXHQQQehu7sbfX19+PCHP4yddtoJ99xzT7haMDQ0hIceeggf//jH0dvbi0qlEr6OPvpoDA0N4cknnxSWb5OfXl1O0oaPfvSjsc8HHHAAhoaGsHHjRgwMDOCRRx7BP/zDPzSoA5LWK8OaNWvw4Q9/GMcffzweeeQRPPPMM+G5559/Hm9729uMyvPw8PAwBW33jz32WEyfPh2//OUvMW3atFg62hab2MMdO3bgqaeewic+8QmUSqWwjL6+PnzkIx+Rtk3HNsug284kbRTB23cPD4+ssHLlSvT09OBTn/oUAGDChAn45Cc/iccee4y7i7bI1j366KOoVqsAgHe/+9249dZbcckll+DJJ5/EyMhIrIxVq1ZhcHAwdLUjmDlzJt7//vc7d6Fj8cQTT+CNN97A6aefHrPto6Oj+PCHP4ynnnpKS3H0T//0T3jqqacaXgceeGAs3U477YT3v//93DI++tGPoru7O/z8wgsv4NVXX8Wpp54aU1RNmDABxx13HJ588skG10p2vuPhkQU8KeXRkrjtttvw1FNP4de//jU+97nP4fnnn8eJJ54Ynt+8eTMqlQquueYadHd3x15HH300AGDTpk3C8m3ys7sw2bZhypQpsc8kkO7g4CDefPNNVKtVaVDDpNfO4o033sDOO++MXC6Hr3/96xg3bhwuuuiisJxdd91VuywPDw8PWxC7v2bNGrz66qv4/e9/j0MOOaQhHW2LTezhm2++idHRUUyfPr2hTN4xGjq2WQbddiZpIw/evnt4eGSFP//5z3j00UdxzDHHoFarYcuWLdiyZQuOP/54AFGYChoiWzc8PIzt27cDAO666y6cfvrpuPnmmzF//nzsvPPOOO2007BhwwYACN34eLulzpgxI+bmlwaIa/Xxxx/fYN8vv/xy1Go1vPHGG8py9thjD8ybN6/hNWHChFg62a6wvLmKKM+MGTMwOjqKN998U7t8D4+04GNKebQk5syZEwY3P+KII1CtVnHzzTfjxz/+cRh8L5fL4dRTT8XnP/95bhmzZ88Wlm+Tv6urK3EZKpDJw1//+lenbZfh7rvvDtVbc+bMwcknn4x//dd/xW9+8xusW7cOxx57rNE1eHh4eNiAtvsy0LbYxB7utNNO6OrqCicyNHjHaOjYZhl021kqlazbyIO37x4eHlnhlltuQa1Ww49//GP8+Mc/bjj/gx/8AJdccglyuVx4TGTrCoVCSMZMnToVy5cvx/Lly7F27Vrce++94a7c999/f7jYu379+oayXn31VUydOlXa7mKxyN2lTpfMIuVfc8014QYdLFjFbxKw8xHZOdW9GTduHHbaaSft8j080oInpTzaAldccQV+8pOf4Bvf+AY+8YlPoLe3F0cccQTWrFmDAw44wHgL66T5XZXBoqenB4cddhh+9KMf4dJLL+V2pK7r/elPf4of/ehH4efLL78c//Ef/4Gzzz4bhxxyCHdly8PDw6MVYGIPx48fj3e/+924++678e1vfzt0Genv78fPfvYzaT06thmIK19t22nbRh68fffw8MgC1WoVP/jBD7DPPvvg5ptvbjj/85//HN/5znfwy1/+MkaGi2zdoYceGiOvCGbNmoUvfOELeOihh/D4448DAObPn4+enh7cfvvt4Q55APDXv/4Vv/71r0Ollgh77bUXfv/738eO/frXvw6VWgQi+37IIYdg8uTJeO655/CFL3xBWlfWeOtb34rdd98dd9xxB770pS+FhNOOHTvwk5/8JNyRz8Oj2fCklEdbYKeddsKSJUvwla98BXfccQdOOeUUfPe738V73/teHHroofj//r//D3vttRf6+/vx5z//GT/72c/w61//Wlpm0vyuymBx1VVX4b3vfS/e85734Pzzz8ff/M3f4LXXXsO9996LG2+8EX19fYnq/fOf/4wPfvCD+P73v4/nnnsO8+bNi3VIu+22Gy699FKcc845wkGBh4eHR6vAxB5+85vfxIc//GF86EMfwhe/+EVUq1VcfvnlGD9+vNK9Qsc2v/3tbw/bdPrpp6O7uxtvfetbjex2kjZ6++7h4dEM/PKXv8Srr76Kyy+/HIcffnjD+f333x/XXnstVq5cGSOlcrkcPvShD2Hx4sUYHR3F5Zdfjm3btoVuxlu3bsURRxyBk046Cfvttx/6+vrw1FNP4f7778cnPvEJAMDkyZPx9a9/HV/72tdw2mmn4cQTT8TmzZtx0UUXoVQqKXekPvXUU/H1r38d3/jGN3DYYYfhueeew7XXXotJkyY1XAMA3HTTTejr60OpVMLs2bMxZcoUXHPNNTj99NPxxhtv4Pjjj8euu+6K119/Hb/73e/w+uuv44YbblDew7Vr13Jjwu6yyy7hLn+mGDduHK644gqcfPLJOPbYY/G5z30O5XIZ3/72t7FlyxZ861vfsirXw8M5mhxo3cMjBrLj0VNPPdVwbnBwsDZr1qzavvvuW6tUKrVaLdht4owzzqjtvvvute7u7touu+xSO/jgg2uXXHJJmE+0+55ufrIbxeuvv85ts04ZsnJ4uzw999xztU9+8pO1KVOm1AqFQm3WrFm1T3/607WhoSHjelmsXr063NHjkEMOqQ0MDDSkGR0drX3wgx+s/fSnP5WW5eHh4ZEUMrtPQ2aLTezhvffeWzvggANC2/qtb32rYUcmnl2u1fRs85IlS2ozZsyojRs3rmGnJt126rSRB2/fPTw8moG///u/rxUKBenupJ/61Kdq+Xy+tmHDhnC3uMsvv7x20UUX1fbYY49aoVCoveMd76g98MADYZ6hoaHawoULawcccEBt4sSJtZ6entpb3/rW2oUXXljbsWNHrPybb745tJuTJk2qfexjH6v98Y9/jKXh2dFyuVz7yle+Ups5c2atp6endthhh9WeffbZht33arVabfny5bXZs2fXcrlcDUDt+9//fnjukUceqR1zzDG1nXfeudbd3V3bfffda8cccwx3/kFDtfveySefHKY97LDDam9729uEZXz729/m1vEf//Eftfe85z21UqlUGz9+fO0DH/hA7fHHH+feG9F8x8MjTXTVarVaRvyXh4dHi+A3v/kNXnnlFRx//PGxXU9ovPnmm+jt7Q3lyh4eHh4erQ9v3z08PDw8PDzaCZ6U8vDw8PDw8PDw8PDw8PDw8PDIHOOa3QAPDw8PDw8PDw8PDw8PDw8Pj86DJ6U8PDw8PDw8PDw8PDw8PDw8PDJHS5BS11xzDaZNm4ZcLoeuri4sWbIkdn50dBSHH354eH7y5Mm45557lOV++ctfRrFYRFdXF4rFIr761a+mdQkeHh4eHh4eHh4eHh4eHh4eHgZoCVLqzTffxL777osvfvGL3PPHHHMMHnnkEXzxi1/E3XffjYkTJ+ITn/gEXn31VWGZN910E6688kocfvjh+MUvfoHDDz8cV1xxBVauXJnWZXh4eHh4eHh4eHh4eHh4eHh4aKLlAp13dXXh/PPPx7JlywAEKqnu7m4sWLAAv/zlLwEA27Ztw6RJk3DSSSfh3/7t37jlzJo1C4ODg3j99dfDY1OnTsX48ePx8ssvp38hHh4eHh4eHh4eHh4eHh4eHh5C5JvdABUeffRRjI6O4rTTTguPTZw4EdOnT8eTTz4pzPfqq6/i2GOPjR1773vfi5///OfCPNu2bcO2bdvCz6Ojo9ixYwdmzJiBrq6uBFfh4eHhYY5arYb+/n7MmDED48ZFwtahoSEMDw8bl1coFIRbxHc6RkdH8eqrr6Kvr8/bew8Pj0zh2tYD3t6L4G29h4dHM+HH9ny0PCn1wgsvAADe+ta3xo5Pnjw5poJiUa1Wsfvuu8eO7b777qhWq8I8H/3oR/HII48kaK2Hh4eHe6xbtw577LEHgKDT2qWnB9stypk+fTpefPHFMdF5ucarr76KmTNnNrsZHh4eHQxXth7w9l4Eb+s9PDxaAX5sH0fLk1IENJMIBCyj6zz33ntvTCm1bds2vO1tb8Pn1/0TihOLDemripBcVeSsz6vzyr86ednydlcS1g0AowmuXec8AFQ0QqIluU/sNdD3hZcvhyoKGEYvBlHCIPqwHTtjMyZjKyagHz0YQg8GUMAwcmgkR6ux8vPMOf616t0ndZpRje806Xemeu6AZM9e0mdOXXeS36vd+fK2Mq6eeR36+vrCY8PDw9gOYAkAk+5nCMCyDRswPDzc9h1XGiD3+Jx1nw/tvex5S9P+65cha5/977EV+gDddKp+oNGWxssj7WTtO0lXRS6Wpoo8cqggX7fh41BFDwaxO/6KydiK6diA3bABE7AdPRhADwZRQLDyOYxC2J4qxjW0hdRbRV7LXsqui0DH/hPI+gE3z7P92MPW9ie1+zpl2PQN7HGXth7w9l6G6B6vBNDrqNRuwXHRsyFKD5hPzSqa6UYMy6Uhay+BTrvZcmS/LZ6IgE1P0owguA8j9WMjAAbrxyr190MA+uvt7EHwq8oD2AnArvXXLvVz3cAMAJPqyfYFcASAvQF8tJ5tx7eBnb8M7AlgCoBZ9ddrAH4L4P8A7CBtGwTQB4Ao87YB+GP99Xq9wEr9b1/9Vaq3hZSB+jWQ6yTfO8lHQN53w+xZ0n2OZNCtT1YX7zm1bRuvPbxn2RUdwmsn73qGAHzVj+0ZtDwpRRRSzz//PA488MDw+NatWzFp0iRhvlwuh3Xr1sWOvfrqq8jlxAZw4sSJmDhxYviZEFTFiUUBKZVsoCK7+UkmBVXkFGZeXvY4B4SYqn7VcFvVhgpyyi6yinyiehrvU/S5i3MPcqigG3l0AygAKKCCIooooYAeFNCDKnrRjQJGkUejZDw+KZJPpHTP8coWl2NP4OmmSU4MJWuj7HyadSe9bp6LwQSYdVwtb+ybDHKPaXufjPRJ/luQ29G8tZ2X2egKcigkqFdVPoHKxpNyZDZc1Q/w+oBxMTtLl58L8+QBdNU/d9WJouj7CJ6JWp2YCiikLuTQhyLKdXvfjT4AvehCATkU6znLyAGo1UmnXMN3ROoh502QxLbFy2nuM++6XS76xzRsv6hOF7Ye8PZehuge9yJ9Ukr0TbQTKeWKkOKVJZ8J6dVDkzT03y5EhFBP/X2x/r5OPKEHwTMwHsBkADsHx/JdwUC+iKBrGFdPTrJXAKAEFCYGx0r1Ykr1NCRdGUClVm9DN3X9dFvI/DKHiCzrQUBM0ekr9WsiJJTs/nQzn+ljpDwWLkgptk4ZRPWJ8tu0rxVIKXHZfmwfR0vsvifD+973PowbNw7/+q//Gh7bvn07NmzYgIMOOkiYb8aMGXjiiSdixx5//PEGl752hM4qdTvDdDDOLyOZ8oc9JyOMWIgGmzmFQSUr77y0PGWVzjle2bbQqaed4eIeZYk8oiGOzmtsWw2PVoEL8lonjQnRYlJvkvQEIlvP2pisbGq+TnM1G83oQ8ZCv2Vq672998gWJk8bS4aYEA2iesgvhPzVqZfk4/26uoLDJSoJaWqFOZZXvEoAOIvQcXRz/rr+BesQi50MV4RccnTy2L4lSKkNGzbgrrvuwl133QUgUEXdddddWLVqFcaNGxfuvPfVr34VP/3pT7H//vtj3Lhx+Pa3vx2Wsc8++2D+/Pnh5wsuuACvv/46jjrqKNx333046qijsGnTJnzjG9/I/PpaCa2sVNGFzWQkjXa4KMfVgNlFOSrSzEU7VOdVEydVG8fCBEQXqrEQ7+WRDVzZlzTqT9I2Fwsirkgrl5ArdPQXJFyCZ8uIc5/onAo6xJTMxia17yrI2pekXUnhom9MAhtb7+29hxuoyAybJy0JMUVAT8tJO1h1kEyl1s18Zggt3o+JJqVoiH54JU7aEETNxWubq1+vrBwTkmqEermEjYpw7KOTbX1LXMsPf/hDnHfeeeHne+65B/fccw/22Wcf/PnPf8YvfvELvP/978eVV16J0dFRTJo0CT/+8Y8xY8aMMM/mzZtjMrjPfe5z+NOf/oRrr70W999/PwqFAr785S/jzDPPzOSakgyqk5AuzZ4MJYWb+A/JHmub1XSbQbFpnhyqib7fPKrK+5dDRXr/krah2UjSftW9SateEdhhlQqtsw7k0aq/oaSEvxuVqxt3ZJt6RL9vNt6UzHazxAqPaAlsSa7+XmwbyDmXpEvSfkBly5Ke7xTofA8EprYe8Pa+fdES07I60iQHRpjyeWyPLroRESZ5iMkT9lfB+2Xloz9E6USHbuIppej0WoxBjdNGQkbR7nem95913YPgswnYdpLPsjKTfJcyiFwWTcE+e62FTh7bt4T1O/fcc3HuuecKz48bNw4PP/ywtIwtW7Y0HPvOd76D73znO8ka10FotkqqFdz2eBDdF1cDa9Eg3ZQE0RnsmwyEbetJel7VxiTk0FiC6QqJv2PtAxeBxl0jC5WUS0IqSXuzIE10yRkRIcXLr1smIcpckHs2kLVTZv9tbX/SPidp+Ulhsxru7X2WaPYEV2ey7lrlQupNAh4xRcqVXQ/vftOxl7rRqESqUOnYXxTt/lcXN5TQqHTiKaV4BJSQlBqhro1uGznGqr94YIOci+DCAqTxzHio0Mlj+7F0LR2BVh9o29adRTBSF+1IezKoJmSSr0K7IH1aeTU8Sd0uSLuswIjNlfDDi86Arete2iqpZhNSSXeno8skZandjauxv8EGJ61jY2wJoFa0/2NZgWVq6wFv71sbzSaxdJCG2x4PPNWKbrBo2q+OoBuN+WUBtTnlikilBlIqH09Hk1jkc0PE6orgvY7ESudXbauSMtXbuFIbiQhIWv3WWejksX1LxJTqNKQ1cEpzQOZiZ7YkaAVCSgcyNwz6bxK4iOuRNHZTUiSNLZVm3a1Wrgid7HfebIzVya8Iadv/rBVSOq57/DT618l32xOrnuKf9eyvbWypVoCJC2Snw8bW29j766+/HrNnz0apVMLcuXPx2GOPCdP+9re/xSGHHIIpU6agp6cH++23H/7lX/7FolaP9oPr0UTSabWNrkSithIRTUCj+x6YdNIfIrHrtNKJUBBsjCsWNsool257tmlcI82RbGs4wnXy2H4sXcuYQLNWUNOMY5XmNtFB/vQIKVvXPdNJmqkLXysoppoZW6RZLnyt5DrocjNrj7EPW5VUVsHNZcjCZS8qo/0JRxPb2m5qqVaywTpwcR+ysPV33XUXzj33XFx//fU45JBDcOONN+Koo47Cc889h1mzZjWkHz9+PL7whS/ggAMOwPjx4/Hb3/4Wn/vc5zB+/Hh89rOfTbm1HumiGUoumfJG5/dOq6ZE6Yn7nMZudzTRRP7SPBKdjscQCBkDQkix7nukHd3MexPihw30rpM+KbEk+t5M4kqJ1FIukFZ8q/TQyWN7r5RqIzTLdS/NetPY9tt1G6J04vtguoLuYpU47Z2QgjKS7XaXpA1JVsubVW+WyGo1xa+eu0WaJHwzCJVmL0pE5Zg/4ep7LVdLsQHQeeDZIpmNMbU/MvWVrh1sls1zrZaSlZf2zq9pIgul1FVXXYUzzzwTZ511FubMmYPly5dj5syZuOGGG7jp3/GOd+DEE0/E2972Nuy111445ZRTcOSRR0r7h86D6bfQDpPnrNsoqk91nD3Pki8SxZSOUoqXVqmSYgkpXpt4v14VcaRSSbWrpqYd3Fzdo5OVUp6U8mjr3f7SdCsxvS9prd4mGQw3001OB0nIo2Zv091s0KJvnZfN00lWzy+44AKsWbMGhx56KI466iisXbuWm56snj/66KN4/vnn8c///M/453/+Z9x0000WtTcX7aTGSIJmxjfKipCqKsgjWX5eG3RUqCLoEic5VLgvU+iSU6I2y+rMYmGEX25n2X5TW0/b+23btsVe5XK5ofzh4WE8/fTTWLBgQez4ggUL8MQTT2i1cc2aNXjiiSdw2GGHWVxhO6MzJ87JUKFeNGxiJplCczTEm/nzmixjB6SMARsHS8eFTwe8Rsg+twpM2uXiGrJ0PTT7LrMY27cqPCk1RpBenKrWVUm5IKSaTaolhc6gP+0V4lZVS8nQLnFXZMhiNcWvnpujFW2KbZvS3nFVhixd9qKyRO7ajXXo7ZxXif11AduyWtXm+dhSaiRRSs2cOROTJk0KX8uWLWsof9OmTahWq5g2bVrs+LRp07BhwwZp2/bYYw8Ui0XMmzcPn//853HWWWcluFIPe2QxNVXVobt7nOxzEtgq05i/9EcR2QSAG4NKWy0laovq/onAI7RsnwlTwiZNgidr0rf5Cx6drJQaS9fiIUArBlbPIo5Ukjaw9fN2XiLvk6l9ongT9Hs2zkeS2B46SDu+lAzpxR4Zu7sxAeZDF5J227ZtsePFYhHFYrEhPVk9P//882PHbVbPL7nkEoOWeojg2nWvVVVSzSCk4uUmC3LOQ2BD07nfuraO3gWQB1E/0E6xpWT1tWufYDNNJenXrVuHiRMnhsd5tp6gq6sr9rlWqzUcY/HYY49h+/btePLJJ3H++efjb/7mb3DiiScattaj/cHb9U2XrKB94mx2dRPV1Q1gUJKH97cO0cxf5b7HlhFiBHG3PfKe52ZnArYxrYT2i+fUCrAd248F+KclBaSxJXdag++06mz2wC+LnfbosmzcI1yuXLfiFt2u6rcNxJsEaQT/df0dmA5f6JVzGhdeeCGWLl3akD7p6vnrr7+OSqWCpUuX+tXzNkSzVFKuiTLTTSxUZVWQ01LwiHbGixYh7EmqpHZPZotsiKkk9emczwqqxZlmIclUdeLEiTFSioepU6cil8s12PWNGzc22H8Ws2fPBgC8/e1vx2uvvYalS5d6Uqrj4GJarENg6NTTXS9LREZplkN+dCXBOTZdYgkLG+ScBx0Vj45KKq9ZVtYwaVerXkNy2I7txwLG0rVkilYYQBG0WnDbdnDbS1K/CmnGlkprIgKkr5ZqtRXsVpkIAXaToTzMhoLkmzNZOQf86nmWSGNCnMYznrTMpESRrR2UxZMyuaaKgUJWFUPK1fdjWlYz6zaBjW0ca/2Jqa0neXRRKBQwd+5cPPjgg/j4xz8eHn/wwQfxsY99TLucWq3GjVk1djGWNAoEpjvgye6B6e5uWShr6PIFbZe571WYhCIiiv3bEOCcjSlFu++RjDzSZYQ6z8vPgr7GNN3sbBRuuki6S6DouUqzzfawHduPBYyla/HgIA1lViu77SWNI8UPasuvM+0BPW8wntSNr9nElG3b0tq2vJ1hu5qis3IO+NXzNJDWLqiuXfeSEus2ixZpEFI294Xk0VlcCdoybFyHCjpEDM/uuSKmmuHGZ2OrbRZqkvVR6ShzVUjq1KODxYsX49RTT8W8efMwf/583HTTTVi7di0WLlwIAFiyZAleeeUV3HbbbQCA6667DrNmzcJ+++0HINh59corr8Q//uM/GtbsEaAdp2OmE3oRycKWwzvGurmpIHPdo8sQlMUqpSrMOV46ETEFIE5EsYVVeBkYmASBZwmudkIrqKWa63bolVIeHo6QZmDbZhBSNnUkgR6x1NrEVJK6PfTRU3/pwtRZ1K+etz+aoZJqhU03XO3qlxQ8Nz+inGpccIjbRjavbptVcaPSRFpueq3qVpcVTG09YG7vTzjhBGzevBkXX3wx1q9fj/333x/33Xcf9txzTwDA+vXrY7uujo6OYsmSJXjxxReRz+exzz774Fvf+hY+97nPGdbcaWhHoiANjDDvk9yXpAogiWJKqn7qFrvrCZkFQqLQbaa1Mab7qbFtlxFSPMWRrgpJxMp5xCEiyvTVXmmP7VsZ/slqc2QdvypNlZQ8b7qElG29dNm5+sC5IEkX7cakZ0bScl1ISkwlrd8mbzvEecoSWUh8/ep5dshy0t0M+y/L73JjC/EOem7VZLJyWfvuglSxUc6K2semc6WWSgqXaqmxRICl7b5HsGjRIixatIh77tZbb419/sd//McOt+uqb2SsT69ck2uEmOKpVExVUrpQXAOtghqSNEEWRyr8TIKby8gJ3ZhZbH5bC6GrMuLtmJjm881rW1oufK0H777n0XQ0I8i5a6Spkkpar+uV8yTXqgqAq1dGem50LuqX520PIqgZAdZNkMUOHX71vDWQJlHkEkliDYrzpeeux8aTksWcYo+Jgp0T+x79dedeYLtIAcjvjcv+px3UUu3SBxEk2X3Pw6O5MCETVIopmzGX5S+BJZlKiFdfqSfSVkpVwHff0wlMLupDdFRS5D292x/v+3DhCteMGE1J2916caX87nsemaBVBkHNIMCSuM2lGd9Ep37dcgK1VPIJiP723ukFHgeSufGlNehvdaIoaEc2E56s/M796nl7wrUytBm77bXC7xmIrq2CXNgmVhWrun5CYqmuyfUCBV1uUL9+2WmphsaqelWEpNeURUwpDxOMpWlgM5BmwG0aJK6UUL6kRgkB5zFEZeO57/FiSnHBI6bo9ib9pfMIqTSgqzxqH4VSHM1rt48p5THmkHUskTRWyIO8ydz2khBSrTIhSkLEpE1MyWA78UhjUjIWJzr5HNAt3wQvnr6GseV87mEFm99zWm578jxm9le3D3IZO7AZNiUpUSSyhVmqpWxheu1jxe6b2nrA23s9eHJJDzLiIy2wChZdAsQUkmth40k1kFKIE1FS7kvmvmfjfseST6rvKKn7W9ZIw4Wv2dBrfyeP7Vtj1u1hhbEw2EpCCqVJSLlEDlWuy5678ptHTLWKOikJ2nXiks8D+Q7tuFoV7RTjz6QedV63KimXhJQr2NSRpt2P12Nmh02IKVsSLEm/k5ZazAWa0eeZ2nrA2/v00MpElgsXrKzBBtAeod7zwLqj6UK1G58APDIqT51kVVLc21+r/3X13YiewW7FeTqd7v2TtbndVFCi9rp24Uv2O+zksX07PU1tAdeDY5vBT9aTnzQmYiqkvQMUey/o8njv2clHtU5FycC6U9ADcd5OTGmsjuuel5ftPsh41gHPRXDtvuKSAOs2XE3prqnTeIwN2MZWsinLtS12TUhlQ1i5HUrZLBS4IqZ067Ops5Vg28e4hG49prYe8PZeHyYTdN2Ja3v+JrJHEpKG/d54u9olrJeNKQXqc6XeBllMKWGdop3sRISJrIE8RRRbXoU6x+7618okZrPb1xzSrZPH9t5ytgBabacXFs0gpNKObdIObnsskiqWkhBTacWXaleVEtD8CZnVaopHR6OV+hpeW7IkpERBzk02zqgKyZpIHZuvv48WHCpa9pBe6NC1kXRMw1bYiCINtZQpQZZlH5Oa26KtUspDEzrElAslhaiM1hxzmoG+BlsiQUUC2HwHNq5xTHaaG4k1Md8YU4rLN1UQue8R0O9ttjJgGykKek7ep0XusN9Z2oHDRe6PJjsJNvP3prY1nTy2HwuWsCNhM/BpFyImbTcS0/sgKtP0uMiVw5UrhQtiSoast8pOQy1lU1erorsAdI8zSD+aXls80kEWrnvNUEllEdeKl96k3izdu3VUtabXTwgqG9duk74nTffxdrTLacDU1gPe3ptDNFlsZXe9ZqAV74cuIdFtkBZxwmmIOU6UUiVEhBQJii5smktiiGdzdXbyayXQz5KIqMlKLdU6LnydPLZvlye37ZHVwMq9+2C2KqmkcaRUSErMpf096gzC04zxlFZ8qVYJep7VJCeTevIATCYqY6jjaiZcf6+uyQ+XRJBNPbrnG9O7I+DS/O2ZxToSL0SYwtalW0VOtaMbn6sFkrYhvUxtPeDtvRXoeEW2E9ROnFbZXLMt0UBP9lkikaeg4b03rI4QTkB8Fz529z1R1RiB3fXqqPdYlZToOsl9a9Vg4a3ariagg8f2pt2cR4bIapDnOm5Vq8aRsiGkdAesJoN6QH9SIkqXl+TPKTo/Vd1JgvPK6paVa1On7B64RFb1GIONZaDz8mgK2mLiy8DWxqvOm7jt6cTm063bTp3l9kcjsiW2NtfENuVQEdpnXv0ug7Sn2efEy9G/PhWS9LHOYWPrvb1PgFZUA2UFF8SA6cNHu7ZVoG5Dhg83IZzoYOY89z3eb66BmDJR4slsjEgllWc+y9wC2d37sgavzqzcW03sdxq2XnG/O9jWe1KqDeHadc9lPUmQphtJVioBnUlM2hOAoLz0iKmsSRo7VYF5R5LVTlnO0MEdV6fD1Da72uWuXcFev+0iBJ2vWqd52NhUuuooG4LKhY1KSqiI252szzHN17KLBWnAk1IeYxYiAsrUTtGkFg1aTZSX1MdBnvrLElN0oHP6OBdskHNRG0Ww2WmQ9zkto+CSuNEhyNIi0VwrtRKq8zrQ1ntSagzBhkRqFZVUMwkp3QlKVrs8sYNw20F5s4ipVldLtR35JMI4ADmDl7f2bQXXttlVOa5VUrb1uMrDy0e3k6fW0ukbiB1M2964ImdcLJYkIbzGjF1OA6a23tv7JkFms8eq+spGFWVzjiVukpA4hsQUj5QiJ+nz0ojTLBllEpibbQwQJ9uarXpqR7TwroMdPLYfQ/xae6KVdkOi0S7uJmkRUu2CJLviBefbI6ZGq7azqTvw5QGjW2K4e5NH+mim/U+D9LIhpEw2l7CBfDFEvx6T7yoipOwGvqZx9ggxpdvGpHbLNqaTrR032YnP9NpatW+JwdTWA97ee4wBjMBsmurQLYtVSRF1FCGnAMRiSuUB5EnMJhZs3Ks0iCOT+0THbwplX4LzaUB1/TY77KnOtxE6eGw/hvi1sYWkMY5ouHTdaCWVVJqElO59Tjqp1J20JHGnS6KYame1lEsXvpZ0FelgiW8nw5Xrnqvyk+RzSUjp7rbX7IUIXbc9W1tIXirw7GMWaqm03RNdlu1SiZvo2rz7XhvA3/DsYErq0KoinvucBCKlVKV+Mua+V42TWcJHQpfwsXXb4xkCnXvm6hn2AcsjWNzTDrb1npQaI3C50pfl7lLtQkjRx2SuHiZgB+/0oNV0ctBuxJQNsgy82xYwdedocTFAu8OtDW6O614SmytD2oowXULKdZ0B/aOuR0xUqO1ykiDoKoJKl5gSlW9Sri5ckDqZByJPGza23tv7NsEYmlFmAhW5whIisvSi4ON1kK+mBKBUixNTAICe6HNpBOPyIhtFgrfrkjWqYO+su56uWyN7PkuiyhRZuCHy+okWINQysvXXX389Zs+ejVKphLlz5+Kxxx6Tpn/kkUcwd+5clEol7L333lixYkXs/K233oqurq6G19DQkHabPCnlEK0oAW+2SqrdCKl2RjsRU62slkobzgixIqJBks6r6KZaDzM0s19wZf9bwW2PxHbivXShc92kvUnVymmqK01tSNK2uN4F1uWiQLNUrJn2Laa23tv7jKGyK1nG+Wmn8S2PABiBezcsopKi69Qgo8j7PIBSGSiNRMqohkDnVeR4pFRqZoK+JkD+jLXTM6GLdo+dJWl/BmP7u+66C+eeey4uuOACrFmzBoceeiiOOuoorF27lpv+xRdfxNFHH41DDz0Ua9aswde+9jWcc845+MlPfhJLN3HiRKxfvz72KpVK3DJ58KSUBVxtUS1O7851zxRZBZd14TrHQ1JCSqWSMqlLFy636U5KTMnzut2Rz25XvfQnIK5c+FJvq185b2u43BE1bZVUGvl0yzElngA9tz3TjSxk5dN5TRWworSq4zbEFM+GpeXGp4LNwkTSNqRVburwSikPDw2IduAjyDPpNFBXQXWXhtE9YZBRSkXue92lYUVBFeavKp0NVCqodguIzrYxDXKt9Raus7D1V111Fc4880ycddZZmDNnDpYvX46ZM2fihhtu4KZfsWIFZs2aheXLl2POnDk466yzcMYZZ+DKK6+Mpevq6sL06dNjLxN4UqqJcEVqmJImWbmGpOE+kWRnJxtCyiZNEugMjtMkptIYnLuM7eQSrupwtWJuTOx1sN+5hz1cqqRsVau6bXBHeKXz8NOEGX2t5LfsUsXjiijSJaaSlKdbbprxpZpml9OAjynVwvA32g1YokhFMLFua6rfOx1biU2rIKnyVRRLZRRLZYaU6g1/a7l8Bbk8VW7sN6hDgtGxroirH8+NT0U20Z9NiKd2IKnaFYY2wtLWb9u2LfYql8vc4oeHh/H0009jwYIFseMLFizAE088wc2zatWqhvRHHnkkVq9ejZGR6Bndvn079txzT+yxxx449thjsWbNGqNL96SURwiXKqms3fbSIqRcBjyPr5gnC3DeLGIqSzc+0za0kwufE/hJypiEKwLFZFEgDQVWq+y2l2QxIomaSgbaJsmUVXplpUOamJBgzY4t2BLEUZrwpFQbw0/2swVtb+gA50D8uyCED00E1cH8jsblqyiUhlEoDQcufCUqYV0pVSwNIy+MKUXgOl4RTczRpBubhj7PvncFXTtvE6S+ldEN5220tPUzZ87EpEmTwteyZcu4xW/atAnVahXTpk2LHZ82bRo2bNjAzbNhwwZu+kqlgk2bNgEA9ttvP9x666249957ceedd6JUKuGQQw7B//7v/xpduoeHFC4nLO1ESMkgnnDxXU3IQFoUuNZmi27VVtaqbbtldZpuSa5bp0l5bbFVdzPhJx4dhTRd92yQxCYnLT/LsqvIoYJcg62sIGdECKVpz+h26NTBs9O6fZDr67Dta1oBNv22Fbytb1G005fSjZYI4tw0EAInD/F94BAreSCXr6KQC1Qn40rDGM1TJFcJQL7GjyclRFKinibaXCCPqE3kfac/LzrguUM6uGeW9n7dunWYOHFi+LlYlAeb6urqin2u1WoNx1Tp6eMHHXQQDjrooPD8IYccgne+85245pprcPXVV2tdQztZ1I6AaTypLFz3TOHaba9ZhJTpKnmVmqQkGUizA/Ekg/a0iCkbZDGAF12vad2ia7ch3VLDOJj5ko+m1RCPdoGJSimNnfh067ct31QllSZkKlcVIZSEqNclqHSIKZM+QGYbXdt+3Xbx6s1iEcQ5mWZq6wFv71OHnz61D7oBDDLHBAHVaeFR/X0uX0ERw8Gicr6K0TyVOA+gVEYuV0W14uI3n4TUaHVVUbNA7qno/lTQUr9ny7H9xIkTY6SUCFOnTkUul2tQRW3cuLFBDUUwffp0bvp8Po8pU6Zw84wbNw7vete7jJRS3n3PA4D5xCQrlVSrEFLNRpLYG2m48mUV9DztwLQtH+BWBu/O0fJIe5OEtMu3QTMXRHSg06fI2kpfX6SiEi8aiGAb9NwEImWuaRk6xwB7Nz4X1zqmXfi8+16bQkUSdOqXZKMUSqpAIeoiXkwpTlLqfbE0jALKKIKKKwUA6And+4oox9VSiX6DbDwp3XhZomOyAOc6RFYWz6nshnUz6UwwInifFKL75oAYTNnWFwoFzJ07Fw8++GDs+IMPPoiDDz6Ym2f+/PkN6X/1q19h3rx56O7mX3OtVsOzzz6L3XbbTbttnWoRm440Jw2tqJJKa7c9cZluCSn6WHxSEtRjEzeDDKJJefSqLm+lNU3FlA1s3PiaqZZKE5m5cdAowqz/80sQLY80d141eT7TcqXWKcuVO3WasauqyGvbfJJOdf91VT02KhwT5WdSNz5b+9vKbtxNV8ia2nrA2/tU4adOEXgqk2bH8RxBYxwp2n0PiMeSEiim6q9cvooiAmKqZ/wgtoeX2wXkgUKpHCwA5ETEuIoMIe3lpVPdS168LFruJcvfKi56DAtoFJ9K1n7eOfrZkOVLW3UmaXcGY/vFixfj1FNPxbx58zB//nzcdNNNWLt2LRYuXAgAWLJkCV555RXcdtttAICFCxfi2muvxeLFi3H22Wdj1apVWLlyJe68886wzIsuuggHHXQQ9t13X2zbtg1XX301nn32WVx33XVpXkr2qFQq+Od//mfMnj0bPT092HvvvXHxxRdjdFSuT37kkUcwd+5clEol7L333lixYkVGLY7QKnExbMpx5TJoU7fqnG0g9SR1tgLSUkylEfjctK601VIug63r15ni6r1fOffgwEWAc5v0SWyyqvxKXZEkeiUp2xbsNZHPeYk6iT2uo+5xteueSDWlsxtfq+1UGpRldy2ivC0Nr5RqIejeWO9KFUBX7ZPl/Rph/jJgvuJcrlpXSg2jCFophZiSKtU26TRUeEznHNA6z2yrGy/VfUp4HzOw9SeccAKWL1+Oiy++GAceeCAeffRR3Hfffdhzzz0BAOvXr8fatWvD9LNnz8Z9992Hhx9+GAceeCC++c1v4uqrr8Zxxx0XptmyZQs++9nPYs6cOViwYAFeeeUVPProo3j3u9+t3a62IKUuv/xyrFixAtdeey2ef/55XHHFFfj2t7+Na665RpjnxRdfxNFHH41DDz0Ua9aswde+9jWcc845+MlPfpJhy82Q5iq5KbJw22sXQkp83I3hFO8aZ07GtBIxlYUbX5pweV2pIAezTqu1+da2RivZaH7a5Cop1zZZN2af3WIHSxi56c/Y9CQAOl8V6o6w56e1s0Mu82XlxpeV/W/Gd6bVn5jaekt7f/3112P27NkolUqYO3cuHnvsMWHau+++Gx/60Iewyy67YOLEiZg/fz4eeOAB80rbCq0+Wfbgo5t5AY0kUP13zPktFeuEVA8GUMBwAymVy1frixGV2HH7x4V23ZNdUxLokFdZkFTN+E21gjpMgozG9osWLcJLL72EcrmMp59+Gu973/vCc7feeisefvjhWPrDDjsMzzzzDMrlMl588cVQVUXwL//yL3j55ZdRLpexceNGPPDAA5g/f75Rm9qClFq1ahU+9rGP4ZhjjsFee+2F448/HgsWLMDq1auFeVasWIFZs2Zh+fLlmDNnDs466yycccYZuPLKK1NpY6sobEzd51y122W9aRBSol3xdOrUrd8F9F1C5CSRbcynrIgpVyvmzao3KZxMsnIWLwv4iUpzkVbfYroDnQguCCmbsnWhU5eOG6HN95B27DsXMaMAfYWRqA26ZeqUbbqjYUfAxtYbPq533XUXzj33XFxwwQVYs2YNDj30UBx11FGx1XIajz76KD70oQ/hvvvuw9NPP40jjjgCH/nIR7BmzRq7a2x5mEyeWyVOjw1siIiK4L1r2JTNuoblEcWVol34ONmI+x6qKGA4UkrR3nEloJAr15cnVPZIx22Mhun1miqnkpadRj2i8kyfyxYnnmTIaGzfimgLUuq9730vHnroIfzpT38CAPzud7/Db3/7Wxx99NHCPKtWrcKCBQtix4488kisXr0aIyP8h7VcLmPbtm2xV6uiGW6BWez0lxYhZVun7n02vVZdtU1agXKzDEhrShA1Y7W8LSc3GUh8/UTFPdKM+acbW0mELBZXXO62xy8/2X3kx6JyO+CmbSJrH22Ic0JO0S9VelmbTPLJYNvPJKnbRd+apFzb8hWVp27vr7rqKpx55pk466yzMGfOHCxfvhwzZ87EDTfcwE2/fPlyfOUrX8G73vUu7Lvvvrjsssuw77774mc/+5ndNXpkgDSVLzTJkwS6xI0p6WCg/on9jmrIIQhk3ssqpepp8qgauu/Jfpw699Dme/RB9+UQ3fek5JgFMhjbtyra4lK++tWvYuvWrdhvv/2Qy+VQrVZx6aWX4sQTTxTm2bBhQ8PWhtOmTUOlUsGmTZu40eCXLVuGiy66yHn7WWQdMLOV3AJt621lQiptJAlwbhOMPMhnHri7WQFpXQfctW9HxsHOTTsjiy3C6YkKEExEHnjgAdxwww1YtmxZQ/rly5fHPl922WW455578LOf/QzveMc7zBvgwUXS31kzVVK6SNNtT3VOVUe1mguD2uqWQ+wDz16xtko36Lm8Pnn7dMpLM/i6vF7X5TVhIwqXsJl41O09u7haLBZRLBZjx4aHh/H000/j/PPPjx1fsGABnnjiCb3qRkfR39+PnXfe2bCh7QDXKql2RhZBoKFZh+6udCwhlUdwHYIg57GsJHIhUUuVG4olKqkYEW1sbthd4tJUnLEBwpsV8LyZNln2HDf5N5zB2L5V0RZKqbvuugu333477rjjDjzzzDP4wQ9+gCuvvBI/+MEPpPm6urpin2u1Gvc4wZIlS7B169bwtW7dOjcXkAAmA7M0XR1cqaRsJgnNIKRU7UgywOWtENOrsK5XkF0rprJw40tTLZVF3JZMYLmawqpBy2X+Ch+ZqLCK006eqLgic9IoI6n9T2IPG8vSt/+8Yy4IKXlaXQWsOJB6tZrTqrPZNsSk/iTx8rJw43MV9F2GZn9fXCRQSs2cOROTJk0KX7zFhE2bNqFarXIXcjds2KDVxO985zvYsWMH/uEf/sHmClsYaRBSbUyQGsE2LhJ7f9hybAkUsgMfWy8Tw4kmnerxogoo11/D9fO18HdWQFlLoRovXBdZk0XsveHt6pcV2vl3koDY8kqp1saXv/xlnH/++fjUpz4FAHj729+Ol19+GcuWLcPpp5/OzTN9+vSGznTjxo3I5/OYMmUKNw9vBSkrZO1ika77n/lj5ZqQsq1P9zwPFeSQU6482weZtVVEqWCjmLKpL03lkouVdZMymr5FOBAsKZg0ob4EMXPmzNjhCy+8EEuXLm1I7icq7Y/krmzuyKH0YmMlI8BMIFuEqSIXs++miwtpqKVU+bJSbblW5SapL163G0VW6kosU1tP8gBYt24dJk6cGB6WjXF5C7miRVwad955J5YuXYp77rkHu+66q2FDPTySQrbDH0uqdEvSomGyPy4fkE3FekypAr37HuW+x1VJGZsEtk0jzLk0bIxIJZXntKdV0MptcwDLsf1YQFuQUgMDAxg3Ln7Xc7kcRkfFmrX58+c3+Lb/6le/wrx589DdPdbltRHS3HXJdFKexY5+OmXaEFLiyUh8IiKDaGtq/mTBfCKQxM3PhmQxmejIyzEjvtqOPEoLJQAmHHp9bmEySQH8RCULZLko4YKscaWQtVFJ2U7+Vdfoyk7QK+bE5hObRds6lXsdyd8MYsq2HVm48dlff3LiqGn9iamtB0J7P3HixJi952Hq1KnI5XLchVx2UYLFXXfdhTPPPBM/+tGP8MEPftCwka2OsaiSkrlqpTU3kgQUT6V+WTm0tESyy10eQAnI5auhQqpQ34UvrqRCeK5h972GAkVI6rqX5ZyWRwjpPtPtPvfOqP2WY/uxgLbg1z7ykY/g0ksvxS9+8Qu89NJL+OlPf4qrrroKH//4x8M0S5YswWmnnRZ+XrhwIV5++WUsXrwYzz//PG655RasXLkSX/rSlzJrd5ZxP0wGSi4GjWlOSmzr0CnThUJKFbdE97tgySwXgWaTBEa32bHO1M0uzV3xzHZtys6FLzV3kJzFC9EkhbxEpJSLicq///u/j8GJSjZIav91J+BpL0aY1KtSxtpek2mfJyPuqtVkZcuQVpBu03yt5MaXpM5WKS8xbGy9wWNZKBQwd+5cPPjgg7HjDz74IA4++GBhvjvvvBOf/vSncccdd+CYY44xuKB2wFgkpLJEWm5nFeqvisAh7npEIdVNHee1r36sTkghD+TyFeRBAp0P1pVSVLp8YL/y0Nl9zwRp3b+84D3vMwH7fNPEXtrP9Fj8zSi+2xRtfaujLUipa665BscffzwWLVqEOXPm4Etf+hI+97nP4Zvf/GaYZv369bEdoWbPno377rsPDz/8MA488EB885vfxNVXX43jjjuuGZcQIsu4H2mppLJQSNkQUmTfIdN2qM4n/c7sJxDmMZ1U51V+71kQU+Jy+EqypGWbDBSSE1AZSopT9jv3ExX3aLZqLy33taDs9OJIJenL0nDVrlZywaua/vcp6wf045jE8+kc09kV0NWihKh8UVk61+x2gthkJIgppYvFixfj5ptvxi233ILnn38e5513HtauXYuFCxcCaFz4vfPOO3HaaafhO9/5Dg466CBs2LABGzZswNatWxNebLuhHdUfvDY36zq6ESeMeA8uOSdz02PBI1wIOUXO0Tv5VRqT5oFiaRgFDCMIdB4QU8hXg/QkTf18DlXF744mx2hXQhVUBJVrAkv2XdDQJbFcwdX9anGkbOtbGW1xKX19fVi+fHnDzk40br311oZjhx12GJ555pn0GtaGSDNQr6uYCnZBbtNRR7Ftoa/R1Qo57Y6gE8+D5JG1IY0YVK7iZpi6QJi0tVk7ADYFOZhZcAu+bPHixTj11FMxb948zJ8/HzfddFPDROWVV17BbbfdBiCaqHz3u98NJyoA0NPTg0mTJpk3oA2QXBGbbPFAVyVl4rbnyvbrlpMWIWUK2+tIUi9ry3n2UWV7eSSNqf136cYnO56WC5zr9mfVJs2CzEfrhvb+hBNOwObNm3HxxRdj/fr12H///XHfffdhzz33BNC48HvjjTeiUqng85//PD7/+c+Hx08//XTueLy9kMbUqNWmW7RayDWJkJQUoEkb3fsmq5OOI8WSYJwfCpno1933CCFFYkqNy1cxihyllArOx/Jz2yBrY7NjJGW9A1+r/R5aqD0ZjO1bFS30LXQu0tg6O62BfNpue65W4nXO6ZxPgizIEVUcKVk7bCYNruI/ieowIb6SxpZKSrI1PV6V6QqJxaX6iUpz0Exi1dQ2u3TZ1i1bt1zX99GkPUSpQ+wEHVcKKCjzulLomth/9piu3XQV+Nykf9GpM8l9TLPvMobNarhFUxYtWoRFixZxz7H2++GHHzavYMyh3d32dNpv2naW2DCZMcvqYgN9E3WTzIWPJrZIfroMCSFFCKdcFTlUQkIqjyoKpTKGUAiLCvZhZVSrpJoK0BhsXdRem3hSWSFr0qoV0KTfbQZj+1bFGLqUsYU0BthpqqRMymgXQkqmkkoK0/hHqlVyW1VUM4kpE2SplsoigK8T5GDmS27ZfD9RMUcaz4oLV2pbNCOOVLMJKWH/VYkfl90bE/c2tR23Iz2aabtkdTeF3GlXmNp6ksfDAq6fvbH4LI/AXF3litCwLSePqN0as/66UqpYJ6LIDnwFDCOfr0Zl5WvIoYLAfU9FKNFucbLroN0UTSUzSZ83QpoREkpGonUSMnRvzWhs34poi5hSrY6Wm6waIC2VlMt7ksYW46aElCq/jtuA/Hw0SeHFwjDJbwqb+B8u6nAR9LzlAtIaIHHbO9jv3EOMJK57abrtpaGQEsUR1K3Ltv8jxBRNULkeB9j0AyKYkmM27XAVW1AEnbamHQC+abCx9d7eW8DkprVjLKm04UIlpeuyZ0IA0QHO6c8ETLvrhFTkmhfFjCqijFy+GmtyTCVF//YqbKG89jUL3YL3unl00amGiH6mDPvtDrb1npQyRJKBZxqr2kld93hIy71CVrYr1xCd80kJqWYhCTFlGxzdlDgyHdxnGYTc5SQvLRgRgR3ccY0VtIMixLVtVpWddNdAWXqaxNJR8gbr34LrrCTrJ8jqevxYeuRIEtIoKTFlUq6obFdwseiReRB1T0q1KZrxJTRrTJNWsG1VnbzrpQkuurw8dZ4Nnk61n/x+SmRDiQqKKAeEFKoRKQUA+UrYs6jtAkuI2T4fJrGpXDwPdDtV30uzybZWh8bvpINt/Ri6lLGDrFw/XKikdOuSHXfhvqFTj+qcy7bI7pfOgNbWtcHGVc91W1y48SWNLdVcl5WM3E8KAIoG6UfTaoiHDnRtqK6tdh3gPGuXbVtCymZBwlTZKixbsNuebmwjF7GXCKmSpisfL51ufCZX9thVUPKmx/5zAVNbD3h7bwzXKqmxML2SXQPtwsebaFeYtLzjbD3sfRXVz5Yhi8XE7rZHK6gGBXkQTvZp971QNZWrxuoroMxdZOA2NWxThXrvmtAjbnymhBTbFlHbOjG+VIbo4LG9V0qlBH33AftV4XZSSbkkpGQTnywIKbqc+Hu7SQLvPWC/iqxSTNmsmKepmGpFtZTttukipKKA6ODVFI9s4MJl21XfpbLvorp0+jSjRRdGISUi5nV/82xak36AvEyga9t02t8KqiMbtZkLlVem8EqpFkKnEFI6GIF7coK9d+z9Jr9dm6DgIvc9puxQKTWCQj2OVAHluhsfZXPzAPKBQip04aN/e7HmkR3/aLUWfU4EWVB02WcecacLnec3qSKqtbwUIphcV0q/8w629Z6U6gCkoZJyEUvENSElyyM7T4b2tjC5l7LJhwlUkxHVpKhZxJTJxCTphKelJxkukLN4eYxZuFZJpRWA3JaQsqnLWhGlWsDQdN1r2JHJEirihiaodIgqW3uZVnwpk74la7tuuilJSo3w9j5VuJzVNXOG6PL5S3IdIpWUbj2iuFI0IUWXL1JfkRdNCHVTL7atVNYSMK40HLrs5VGtu/ANN9groqDiNpULkTJMuwAmTZLvXfU908oy0TnRZ1cwfRbb3IWwg229J6XGENJQSSUlpETIkpCyaYeoPSKVlG59PNiskkfp3ceZcklMmZSfVtySMYsOXk0ZC3CtkrVvR3J1rGuXQ7oMG0JKN58uuNdSyRnFlVLbcjcLFlEZ5hMVHdVR1sSUDUz7URvYlmn13XqlVIpw6bY3Vm56Wtchs0m8eyuLv1SBWi3ElkXvvKe4xjxQKAXqqGKokorc+Ehd4/LkWN19jy62Ak6wczroOnuO91n1XbAEnQoyN0f6L69eETFFk3xZw7Zek3y8tCn+1jvY1ntSqsWQdBXbtrykA/ikrhsuy9c5p9OOVglC3GrElEk70t6RSVWm60lVSxFiOZh1WmNoNaWVkcSW2it77FVSPKS1GGECfRf4RkIqDWTdH7ggVmSqKRP3QhZZ7sinU27a/VUSOCnT1NZ7e9+BaBV3qCQqKULaiAgaWX2iunRUUsy9q/+GiiWaiKrE/tIgSqqYW18D6IMugp2LwLsPSV0sXRFO7RSHqonzvw4e23tSKiOkEf8pbSRts/nuSGaTnqwJqawCZ9vELsqSmDKdHCWNL9Xqaqmm7erXwasprYIkJI8tmqWSSlpuGkSXWzVUvC3c9lZy2q57OmDthMqu2atzkrlYJ4mnZ4LMd7XTRNP7G6+USgkmv2WvkkoGW5UU2x7irke77YmCcYvKoBVLnFP1v7l8ta6SIsHOK3HyCUEaQlTlUQXytaisBqUUG1OKbVcS8oclA+mXLXTVUu2OrK5JFfC/jg629Z6UGiPIYqVcXLd+Pa62F2+2Qsr1ZM42nke8jOYTUy7iS5mUa1tPq05+jNDBfuedApcxkbJSSTWTkJL1O07JvIqawNKFjJhyabvSIKZ06nDRt9iopbJw4csMNrbe2/sM0exZoatFsKTXYbLjniuICCneMXoGL7nWerJCLnDbI7EB4zECK1Ryjm1pIKTYClTtVbQxVZi6UjYDrdAGHVg8+x1s6z0p1YZwvb1xkp0C04wj5ZqQ0pmYpOmi4mKXOd2At6blys65IqZ0y27WjnaZqJtcooNXUzwi2Cpuk7pWtwMhxdp8XlvoY42ugHllm6pVdZtVds7UZpPdnsxVq8lj/7Ht0KkjSzduEyRV4WZGdHmlVJPRyoGT22zcIgRRL+WZYzqQMUC0YooX/0igJMoDRUSBzukX3+6R3feodsSaxe78J4rFJFFxCUGuQfUsqM6bxE5yYWDGyrPrGB1s68fQpbQOmrG67bL8pKRXWoFzVWWrCCmbduiiipzRYDbJYJx0iLJryqEivKYcqsJ7JTonOp5HVft5kdWrl198TS7rUZVlW77LdgEACgCKBul9/58IabqK6ZZva5uTxblyO0xIQki5iF1IjpvYLm6dlTzy+ciOJ+03aftmYivoCZJOG3h2VLc+XjrefdS11SK4KtO5zW0WTG094O19ZrB5zjVIkczh0s4nVUnpkDKsCx85JlL05KnzPOKnEv2pT/QJ0RQPch6PKZXLV0ATVrGqhFxZN+cE75gOSINFn+njNFTPXTcnDXuMXGiW4LWLgG6PLF3aSFhvB4/tvVKqzaC76ux6IJbUPdDFanmzCCnTQLq2g3HT4K1J3PnSVkwldRVxrZZKEqy3ZdHBqymdAD2SRm2Xs1I0ud6QwyaNSb1i5a7CvlOue7L4Ug0TFeacCXTT66qnkmzsYLugkkbsQhd9ZhLXcH66FPoQr5QaAxApY1zFEUoCnYdFtcua6+de1iaTSb9MeSV34Yt23SOaW9q+Rm0gZFWQj7ITDbeEF1NK58cquueinfcqnJcMqvqTGJNWHFO7Uj6mdG0dbOs9KdUktEKQ8yQTk6QTBFeEFBn2i+qVTU6IA4QMSeNTqZAkDhSgnoSodl8ynSi4IKZ0y22noOdNiVfSwR1XO8G1u3UaaKbbnprkF9t4Xv607ne1mkO1TkJVHQY7pxELoGtIuNCwce0T1aFzLCtbndWiQSv0KTF4UqqJkE1gTcgc2zpEyGqyr9N+GqYqKdN7wyqjSJ0sUcWSUewufIrvLg8U6u57xTCuVFAfbR/y+XgA9HGElGrgg0h9srrp46r7ksYue2y9qthSgLmhYdvo4jluhnttir+/Drb1npRKiFZ0uWiGG6DoeNqElAhpBTNP2xXAdmU6DdVUVgFqVcdtkMUKvzqfutNKdM2igIeyl0dLwqYfcamS4rfJXh3rgpBSkVG8/K4IKbYcF+Xa7araSEy5innkOvB5Evufploq7YDnmSxI2Nh6b+9bACaTZZO0LifEsrGw68m+zO2KRxjJ6h9h/vLq4Lny0fWw5cfLyqESc93LC+wvsQExWxAjpUbClFEbWOUZ/deUZRAFmBfBhrySEWatyoq0ciw4CTrY1ntSqkVgS26lHeRWt/w0gubaHNepV0cdZfJ92E5YolUXN+RFKxBTuvWauKO4LM+2fFf1OUUHr6a0KlyR1lnGwXHZr4hgQkjp2l8dQioKB966Dz+ranJtf2SqKde7pSZxu26me1xS8ix1eKVUC8LW5apdkJQkY4kSUyJEVr9JfCSa+GFJIUH++u+nGCqlyuFvP3LVC/Lk8tFx+rPYc05HfSRruw5k91vnexCppUyUXDSSBmAXQVepKPusey4pDBSEHWzrPSk1xuBS3eN6pdykTJvjsnpJ3Unc9UxX7UVQDWxlRJALdz6benWPm0x+XMeXsi2/bZGDWac1hlZT2hlpESQuVVI65YuO2Si6VMdN0/Fsvey+89uo6Cscu/CJiClVf5CE4GfrYstXHdOx11m4cSdxdWwLmNp6b+8dwXaSmma+LFRSabgbJoEsptII570MrFufGPEg51GA80YbpxPonFVF8dgEm/sq23lvhPMSQdYWnXaZkmZpwXR81YKMTgeP7T0p1QTYuo7ZlKNbdhZxT5pNSKmQhJByDZtA5DRakZhyibTVUjZlZx5XqoNXU9KGKxvtCjpEjwpZxBDU6UdE5FYSQoqu15R8MkW1ksOoISGVPJaSeiEjiY1Koj7SqbfZsQDTduFLHV4p1WKQ3dx2V0glAY8gEbnX2TygSXb166q/SN2K+vOElApUUsRmNBDg+bjtzeWpdnGVUmy97A82DzsXPlJh2rBVS7ms1xSqIP1pwfL7yMjWX3/99Zg9ezZKpRLmzp2Lxx57TJr+kUcewdy5c1EqlbD33ntjxYoVwrQ//OEP0dXVhb//+783apMnpRwjrYlKksG+DbKIJyKuO1tCymRCpFOfDUwnBbqqKZv6XLjsuY4vkrVaKq2Auk4nYh3sd94usLXbpsiaNNets1GtlKyPcrGg0uqufAQqNRAPSfoFlzvyuXbjy2Kn1DSJs8Tl2Nh6b+/HILIgHZpJqtHxnlyWxxIpbBwnChSRRAKYE/c92oWP/S5oJVVYzpCoXeQaVdeZZ/6mraRLqpaSwcTlUgUTF8g2RAa2/q677sK5556LCy64AGvWrMGhhx6Ko446CmvXruWmf/HFF3H00Ufj0EMPxZo1a/C1r30N55xzDn7yk580pH355ZfxpS99CYceeqhxuzwp1QLIckLhUiWVVhwp07RJCakkdacJ3UmIDK6JqeRp3Q38W231PXMUAZQMXsXmNNPDDC6Cd+u48iVRSdm67dlCP86UXp10OrmyKk0XPXP7oR93KXtiSlVHUjc+0zxJ+kaTejKBqa339r5JaKeJMc/uZRXYnAfd/mKE855nW0xdEBvd2/KI3PcIGhYLcvGFgDw3phTJIyNTRCSVzn3h7WiXJoEpalOSPj+r3STThgPXxAzG9ldddRXOPPNMnHXWWZgzZw6WL1+OmTNn4oYbbuCmX7FiBWbNmoXly5djzpw5OOuss3DGGWfgyiuvjKWrVqs4+eSTcdFFF2Hvvfc2bpcnpdoUrtxLXLtv8NuRzG1PlLZSX5sQ1dnOhBSBK2JKNglxEezWtRufy9XylnS9cwG/ct6R0FEfuSjXpOy0lLwqMkrXbY9fdryP0OmTKo7jSPGgCnqu66qXNTGVthtfUhudJpmUhIDTgldKNQEiUsM2DpOHOUT3OokbH+0eR8oXj4GJAioKcE7ZElmXI+SFaFcyngLKpVrMhpwyjXPVrF0jCXhfQuuqobVgaeu3bdsWe5XLZW7xw8PDePrpp7FgwYLY8QULFuCJJ57g5lm1alVD+iOPPBKrV6/GyEj0e7z44ouxyy674MwzzzS86ACelEoZLla5XeWxXWnOahtwU0JKBFfuejZ1J4EJOcRLk4ZqKg1iKm03PhcTNnd5Ulz98TFG2g5ZuI7ZqKSSuFfr2H0T2x6FjJXbWfUuqzntsmxRrfDvWzxQuVyRqrLdMtucNNZU2sRUErc7myDqSQOeN1t9K4SPKdVBSEJG6Aa1dl0vDfIb0t3lTUTAqB5gV8GyK8KPOVRRxHAYVypoFbGp9d336gu7edbWavNBecF7QK2i4qnGeDAlp2TtcAnT77BDjJqlrZ85cyYmTZoUvpYtW8YtftOmTahWq5g2bVrs+LRp07BhwwZung0bNnDTVyoVbNq0CQDw+OOPY+XKlfje975ncdEBOuQbbh3YTEpsJhC2KimdcrJwBZEdtyWkXOzslHZA+Bwq3GsgnZ3qGlTp8qgKr0FWN1ueqB5eWl6dvLpE9aivmd9u03LYduqUqyojVZhOPLy1bzm4IF5Moft82sZ/siWkTK5F1SeKylcRDGRdXN2AHEaBaPtvB6BtlIkt0ukbZPZPZLN0bbSqLh2bKCpXpz4T2LStJWBDMnl7nyGyUEmpSAXeBH8E2Sm40txRDVBffwXia+3iHKOJnhGExA0TU6qAcp1w4hBPaPREyOWr0W+vIaYU+SFXEJFxg9Rx9vviXZPsh02+A9F9IPdQxziQdtqeF4Fce1J0o/GZ4x1rQ1iO7detW4eJEyeGh4tFuV9fV1f8d1Gr1RqOqdKT4/39/TjllFPwve99D1OnTjVofBxeKdVkZOUe5ioeR6sSUip3PV1lVLPd9VRw4bqhcuczKc91oFpXrnYtsbqdNjJaOTfZoWP9+vU46aST8Na3vhXjxo3Dueeea1dpGyKLgOWmLslZq2Nt+5AkhJRJWS6+I9Od90wQi02iUAXx8soVV+LzSRRTNjGnXLrx2QSET4rM+5eMlFLe1qvQqkxfWhNxV7I7G+UWm98l8sxffj1krNxo8yphdqEtCMmtWkO58XplwcTZ9ul+D6r7nUTBnybJ6dKzoFV/qxqwtPUTJ06MvUSk1NSpU5HL5RpUURs3bmxQQxFMnz6dmz6fz2PKlCn4y1/+gpdeegkf+chHkM/nkc/ncdttt+Hee+9FPp/HX/7yF61L96SUAbIgLFy47qWpktIppxmElAg6RJMuGZXViqpunKQsXTdIebrHXcaYso1Voioni2C6NtC9T7VxQC1n8LKw9qY7dJTLZeyyyy644IIL8Hd/93fmFY4htKICQ4dESqKOVeVLg5DSiQtl2oZW3aFPFgMwSqPuF3hwTUypynYZVF0G07al6nJtCWNbb2Hvva23hc4kPU2fShVho+tGx0KXEHH9e3GxwxxNOrHldTFpSHkj0duYWioYRxNyirwnRbDj7Bwb6FzYVpaMIp/znM+iZ0d1r5KSeSLyzLQdMrggHFuzv7ZF2mP7QqGAuXPn4sEHH4wdf/DBB3HwwQdz88yfP78h/a9+9SvMmzcP3d3d2G+//fCHP/wBzz77bPj66Ec/iiOOOALPPvssZs6cqdU2T0q1OFzsaJR2DBCXcE1I2dbnon4dmBJDjemSq6ZM6ndNwthOTHQmOTZtbYcJCkE1b/4yhekOHXvttRe++93v4rTTTsOkSZMSXuHYhqnrnspGqz6nTZKZtk90jAfRphamhFQzoWuPZGqpKE1y1RQPLokpHZttiyRqqaziCbqEja03tffe1tNwqQbhkTuuJtGt6qqkG+uIheq+sLGRko7PWHevSkOxdLDz4DN5Xwk/y5squ34T1zxbiOp3Mba1bW+rjKuzIrPMfqdZjO0XL16Mm2++Gbfccguef/55nHfeeVi7di0WLlwIAFiyZAlOO+20MP3ChQvx8ssvY/HixXj++edxyy23YOXKlfjSl74EACiVSth///1jr8mTJ6Ovrw/7778/CoWCVrvGFr3YZDRjUGyjknIF1yqpLAkpF+4iOnGMdGAS00NWTxYxRURl6R7TjS+VFtg2uY5ZYtMGW5h2RiTttm3bYseLxSJX5kt26Dj//PNjx2U7dHiI4WI3UJfI0m3PhpBSu+np18naYnIujd+/awJDZp8B+X2QXZ/oXNL+yAQuYwvK60nfzqcZn8pm4mFi772t14HNsy/Lk0fzJueqa2kVskFWnktCjhMcvsJXScWQR4N7Xy5HxZQKlVKyeFe0qovElCLXLYuRZEKcJoktxntOmxm7qZm/GxdQt912bG+CE044AZs3b8bFF1+M9evXY//998d9992HPffcE0Dgnk2rZGfPno377rsP5513Hq677jrMmDEDV199NY477jjzyiXwpFSGaMakJC2VVKcTUjK4VNeYTARUA+92IqZ0yrItJylUZWYVPLdc7Ea5KA5K2Jg+iG3AymgvvPBCLF26tCG9zQ4dnYJmq3LSUEml6bZnct7FjrW8zzyyqNnfowgmAblVfUSaxJSK5Lex2ao2i8pK0lfalJXlgoaprQ/y6Nt7b+ttIZvou5xeZTkJd9nuLIkL0u5u5jOLGpWOZo+oexxTSlVQwDBVC0VC5XViSumAEFL0Z8BtoHoXZbVaIHFVsPOsCSw398Z2bG+KRYsWYdGiRdxzt956a8Oxww47DM8884x2+bwyVPCkVAIkX+lN5r7hAq528tPN10xCyvQ6bHf5A+LuBbx6WeIqyaQjnlaummoVYkoHNhMTFzCdoKjJwGT5Rajmcqjm9Duuai7ouNLeoWMsotnkhWvb77K8pG6FBCa/Y5s+QERMqfKlDR2lK6DuI4Iy+Pel1YkpHegucMjSJ4FpeaodE03KMrX1QR5ze+9tvSvo2tckk+ZmkANpTvJZwoStJ63rZXfgQ4xQilRSxIm8Go3f84h/ZiF036PVULLjaZNArnbC83AJ27H9WIB/GtsYWa2Ws3AZk8oVIeVKHZWmwiVJ2XSnp+vSJ5uEBOUkd92wJaZs3fh0BvNJJ03tglHkUOVudSxKH6wQkp05VLDZocMjQFI7YkbQmNn9NN32bAippGQUXabL33Gz3XpFJAwgvmcyckpm902JKRVM1aSu3PhcEkGtBFNbH+TRt/fe1rtEK06rZCqZNHdTcwGKLHIOopYiLNQIgBpQ6QIq0UJGDpWYC19gh0fqpBQbz64SLzIst4dTP/2sEEKKPkbc/lwRDrZqKRfkKY90dKkIazW3Pvu22I7txwJ8oPMORlpue2kQUkE3YE5IkW5EBVEgXX6Z5oMOnTy6gWB1dmAK0nF84Jnzonbo7pYkKifNYOVpBtBtJ1SQM36ZwGaHjk6F6WRXVz2UtK6s3fZM68makGp1UkIVLJxAZfNk/YOoTFF/4WJTCb0NOfQ2vWAhuxcm/V8rb3JhY+tNflve1tPQ2YlOlC4rpKWKaEVCjQYn9lMM3cxf07IrAAYbXO9ol72YnSwBRQwr7PEI85d9T++0xyLPpJGlbXU0MwZVeyHtsX0ro/2+rTEK09XtpCopV257tuWYElK65eqcU9XXLtAJdBukk6+Qi86ZqJls3fZ0VuJtVrhdu5hkEavKFMHQSH9doYpR4zoWL16MU089FfPmzcP8+fNx0003NezQ8corr+C2224L8zz77LMAgO3bt+P111/Hs88+i0KhgL/92781rn+sIIm7nImrmloxareAYLMYoSKM9Agz+9iBsnyiwOdJ+wMx4SO2mzpliuwzYK+aMnHn49XVrPhSSd2lXcKkH0jSZ5ja+iCPmb33tt4FbIOhtw4Bmhw8EkYFl79Xk7IIyUNYqMHg7xCAocDeERIqCnge7cTHiymVBxvonH6j+p7Zto9AHGicTmMCVpVk68KXlmuhTnvG2m8mjizG9q0KT0plBJ3JQDNh42ah4wbSqoSU7eTD1WC3inw4aaBh4y5hQk65iCuShJjSiQtiMzHJKri4CM1oj3nHZR4bxHSHDgB4xzveEb5/+umncccdd2DPPffESy+9ZFx/J8LVc+NqISIpIaXTNlnZ/DT6/RVvFTtx/1vJA3k9habI1otgSvDrkFMuiClSVzOIKZO2y9ImJbhM3RJdwY6UMrP33tZ72MP1Tnh0nCcCUxJCpCpiy6FdyEYQKKUmMsHOIzKqiOGIiCoBBZQb7UKMlHJxbxpYLgpZBx9n62s2QZTF9bsMOK9GFmP7VoUnpdoQWaikWNjGJbEtX1SHqp4kkyEVslp9tY/jkd0W4UlWo22JKRVcT5haHVl1XKY7dNRqY8e/PQvI7ZmY/EniAmiTXqdNOp9tNrBIUn4FOWcuvnlNIkoHKtcyHjEFiL83GTmlUmqJVLQuiCkXcBGjSgfNXtwQIQtSCvC2Xh+6Ln4ejWDvnWqyT2Iykfc85BHfTY/9LmpA7PcgCqJeJ6bqwil6QSGHakhA5UiCkkn4CFotxXtW2B34AD4BxGt/q+2K12zoEGet+3vtZFKqbWJKvfLKKzjllFMwZcoU9Pb24sADD8TTTz8tzfPII49g7ty5KJVK2HvvvbFixYrU2qc78NZBFrvuxctPNrkR5XHpGqJqGxHYipDE71YWzyotiOI66UC1Ki+LNWUSw0Q3BojuMRV04624gssYI6YxWHQwjALKBq9hFBLX6ZEcWRCfpu7fomOu40i5JqRYiMrXuQ6SRqst+eatDKtsh6jfkMUiNO0PTKCy2ybxC2Xl2LanHWBq6729H8sYC/GkWBKJhSxulMo2yEgudpcy0g5S5yDipBRRWAaBzvPVavieZC/QyinU7UvssmhSzcalkaf4yqP1SBXSRlm7PHGmg04e27faU83Fm2++iUMOOQRHHHEEfvnLX2LXXXfFX/7yF0yePFmY58UXX8TRRx+Ns88+G7fffjsef/xxLFq0CLvssguOO+647BqvAZeTFNOYIjr5XbmBpElIyZCVq14ag12Va4a4LfaqqaSKKVfxpXTLVrXRtB26aLayKqAtO9PvvJWR1qJCUpdl07Jdu+2Z2Hqd9rHHVTbSpWIqC6hUrYBcNeXKnc9G2ZqGG18S22+jEBa1wwSu4luZ2vogj7f35rBVQCX9jlklh43yhc7fFlM7Dni7zxGkScaR+12PK1WPKUXsQrjzXqWKfI5a1C3RZL8uMSBzSWRjRdHPBe+ZUJ2XtcFFXCkdyNqVZr3ti04e27fF03D55Zdj5syZ+P73vx8e22uvvaR5VqxYgVmzZmH58uUAgDlz5mD16tW48sorm05KJZlAuIzdYZPfZRyptAkpGzIqC0VUFY2BdlWgJ1Mm16Uip5pJTLlw40s6oXDpwpc1SVXFOKP62mc63rnQ/W2b2D0bIskFIZV0gURVTrMI4XH5KkYr2dSttm/yjSoAc3e+tIgpFWw2vZCTTem48DXD7dvU1gd5PDoHtsrNpHFyKoL3LkHIIvKehUhRxF4b7WrKI3eIOqsSKqWIHQiDnVdGUSjGY0oVMRwrKaaUit0SUn6P5FpU4MXasiWmmoG04zLJ4lulHfvK3X3v5LF9W7jv3XvvvZg3bx4++clPYtddd8U73vEOfO9735PmWbVqFRYsWBA7duSRR2L16tUYGeE/POVyGdu2bYu9XMBkYJRkld00lpRt7A+TMkTHdAkpkVuejrueLoh7ngtCKtqhg28mXAxe81SL9dsl3yJc5GLHO+7SlU+HnFO5vum4g9giiQtf2qqMavgN6b88ksOFu7NOXhcubS43ZjBpg2lfxCtP9sza9FWydGnFEXLxm9OzkeI+R+bOZ1KWTl+g6mdU5em2UQRdm9tuLnw2tt7b+1ZBN/guWGmiFXcmM71+2TXwYi8R5CGui+yyx+Yl6QcRV0pF/VSxWkaxzLhBl6Ixfwyx7o0m1UgbdAgM2h2O7S/Z5ynPnLNBms+MTptamUzLFp1s69uClPq///s/3HDDDdh3333xwAMPYOHChTjnnHNiW9Oy2LBhA6ZNmxY7Nm3aNFQqFWzatImbZ9myZZg0aVL4mjlzptPrSAqXkyG7+s13EExKSOmWSZetu9V4lrGiqvWuyzVMCCpZTJHgvH5ckSTElCqNazLHlNRqlwlLJfxG9V8e7QldW2+qjNWxz6abWiQhpFQDLN550+ea/i2wv4u0+oOk5cpIJzYdD6I+wjTOlCkxZWprdfoVE3sta4tuGa0AG1vv7X1a4MX30U2bBjHVDAIqDQKBDmbOKqNUaikRdGNWESKr7r5HxZQKgp0HrntdlUAZFdipkdjuewQ5VATV8ggxk+sRkVM8NJsE4t0Ak2c/rWdaFAi/tdDJtr4tSKnR0VG8853vxGWXXYZ3vOMd+NznPoezzz4bN9xwgzRfV1c8Ij3ZKYQ9TrBkyRJs3bo1fK1bt87NBUiQFrHkWiVlEyi3GYSUClkSUaq4H65hQk6Jz6VPTOlMdlQr8KaTmyRBymVo5mRmNEZJql+jLd4Rj0WYEPk2rnsmKqm0CClZe3QJKZ3VPt32si8RdO93KxEWOuSUa9WUzjFZeS6IKZM2uFBLZa2QVeUxtfXe3rcCkhAGrYpmEGAyF8E88z7PeU+DF0CdVVaNhEopEkA6hwpylVGgzAQ2nxCQVFxbwm0C5SKopZgSxTjjKaN0CSu2PTRMv1+27lZ6tkVtaX272Mlj+7YgpXbbbTf87d/+bezYnDlzsHbtWmGe6dOnY8OGDbFjGzduRD6fx5QpU7h5isUiJk6cGHvZQDbYNZmUqFaUdcs1zZsVISWaNJi666mY4qxVUc2GjnrK1U5MvHpahZiSwSRvEhcV3Xw26GSJ71iALqHkQiWlU4Yrd21ReSbu2Tpp9AkvXTdIcbo8qsjlqsjl9W2M6e9NpWSNp41+1bI0PKRBTKlIFVNbbUoKZa2Wylpd6933soBtkHPdskzO03Ad7Fv3mnTbOCJ4n6RMXlm61y5z3WPfEze4PKJYT3Wl1FDQx5DfUbEcHCtWKWUUpZQix/Jgd99j2z8CPjlmej2uiCkWIkWXR1boZFvfFqTUIYccghdeeCF27E9/+hP23HNPYZ758+fjwQcfjB371a9+hXnz5qG7Ozmbm73rnH59ae3+JIKrFXhR3qRkVCdDPVngT4REEx7diY4tMeUSSVa7s1ZH2NTXyR1Xp8JWJSUrB0g/sLmpC6AqjXmMqvbpB0zJaxk5JTpn6s6XxiKC6lyS8tJQSzUTnpRqVTTbrrgiD9K+DtM5F+3Kx8Zk4pXdTb1XocL8JfmIAqkeU6oS9Rs5BK57qAK5CrGplTDQeYPNzNc0XfjIteleo8x1VERMqSDbGY93r+i6ZEj6THUuMdbJtr4tSKnzzjsPTz75JC677DL8+c9/xh133IGbbroJn//858M0S5YswWmnnRZ+XrhwIV5++WUsXrwYzz//PG655RasXLkSX/rSl5pxCamimSopG0JKt22iYzplNmsSIlvBbpbh0HHrc+2+ISpTRUw1Uy3VbiijG2UUDF6tJK0em7D17U8aE8BEJeWCkFLVoYrTJCewxAMt3kKECyWUSX+hUkuxdsXG7tuoKlXkFA8mqikXxJQsb1J7nLY9T8sFXAfmtt7b+3Sgc0/Hyn1PK+aQLBC5joJIdJ4mZVRqKV4ZhPQZCZVSwyigilxg1+rHCkOjkS1gAp3n6toq5CtRU2I74rFqKd1r47WTgNd3mQY+l9Vr69JnA9tnbqz85gJ08ti+LUipd73rXfjpT3+KO++8E/vvvz+++c1vYvny5Tj55JPDNOvXr4+5882ePRv33XcfHn74YRx44IH45je/iauvvhrHHXdcpm03ccFzkS+JSsrFVuKqMkVtckVINVMdJRu0kmupciZVWUHHpY9/3C7graxMWVlJJjqqNtm63snvW3NW201jjLSTWmQsQpecsHHdE+W3gU5+mWLLNNg6fdykbwvyNOmZrhNTubzcFiWx9bYkSKsRU7K0rhclRHmzcOETp9OrWwYbW+/tfauj3SeSuvbJRL3EHmOVRLakhcwFklZJ5aO0FWYRpC6Oiq1JTGh03wtIqSoT+qkbcUJMpEAyAY+YUpFVaUCm0NJpg+wedKZaqpNtfdtcybHHHotjjz1WeP7WW29tOHbYYYfhmWeeSbFVAVwoYJLGA9GBDamUpPxmEFK60L12/YGn2WCzipz2pEO3bN1ryqMqvI85VLj3MYdqQ/m8Y7yy2TJ5+ZKALc9V+bJyRPfJVfk6GFVM4hvT16zr6mSoVD3ic3YLCzp56PcuVVKmgc1Z2MQjVJXJK5dXtg6qyDfY3TQGdLIyg9+9Xp2kraZtJH0Gz2bzjov6BJ6d0+kL6PKS2n+2bTLba2NTZXlkfWWWMLX1QR5v7/XRCgQRRYi0HXjtVt1TmU0zvQ+8XdXY+mWEFrXzHgbDJsTszBCAMtA1RBHeJUWg84Y28eI1qVz3ZKBVWOT5oY/x0okwgtb4HbiEznXTaWWQ3R+3qsJOHtu3DSk1FuBioiybICQJlO7abS+JS4ipC6C++4b9RLAZrl6mddLpVddKOlXdiQgpX2eSY0NMqT6rJiYmEws6bxqElmvSTQRTX/LqGOq4xhJcTnqT2HydPEn6H5PFB1U7dRc3+G7UZkowEcYZBD1PCt4Chs51iGyR7oICqduGmJKVQadNaoNtSKWsbLQMJm2wiRvi7X0z0E6TetO2ylzf0qjPtB6dHeDo3e9oMoec60ZAStWASlfdfS8f9CNVAGUEcaUoUir4ZQaaqnz9/bh8FaN00Q1tyHOuj46jZQIZ8WJKdJoQU7J6eWSZLSpovJGy8tqZ3A3QyWP7tnDf6zSks3Jr8oCPLULKZkCnC547QfQKzlWYozTSWoWVxRehIXPd0HXf4B3XceVL6sohQxokYisFvgWACsaF8nK9lzf3rQ6R656dctR0EpteYHMbQkq0kYVJjCrXCxG5fLXBZS+X49uFtEkP9tctTsfvC0Qu2Lpu2KoyXcaXcuGG7UKZrFuv677C3NZ7e58+/Jq+W/Bc2lSue7zg36CO6RIsJA4VITQqDbvvhSKnIZJnpK6UKjfap5j7XneUnks8id7z2si+CFgXuqzjOtkGWdetv71JJlN08th+7FxJiyBJUG/TdGmopJpFSImII9H9VPnRikggW8jKIR2S7kCUtFvl4uECssDrBLJYU0l25kubmEqyG5PrGCM28UWSopP9ztsNLgkKMQEjjkWVpTI2KSElI6N4ZavurdmCDF8JSi8yAI0qKZENdd0PyaAiqHSJKUA/PmASYsplfCmbuH50njTiCbqEjynVDLD3TzXRz1olZTKWSKttpq5RqmdSpcZSBTnXvU66HDovUfiMhO57oe0eqr9iSqkaCnX3vXzd0udRX7hoIKXI9dFEGy/OFPmsc29pckpETNkQVS7c0VzHt3IRh6sZML+XnWzrPSnVAlDtVBSd0yWyxJMCE6VOloQUC9HEhFcmW1YzZPnxAa7aaDarjXaDd3fbhJPyZHlUn3XLslVa6d6jZu7GBMQnvLovj2RQkSmmZSRRStougDSTkJI9h6Y2PwnZZJJGqLzJV5E3dOFzFRNRBRkxxbOvItUUr1ydxYC0iCkZdEgm13Ecs4KNrff2Xhft5HLXKnAVoFtVh0m8JRXxVUGcCGLzEoKnO0w+XA5234u57w1FucZNGADZcY9ewMjHlFKsqolWftHuhEAjGWVKaJgqlug28M7p1ieqOy1iygTN+H0nmxt0sq0fO/RayrBzA0i2i5K87ORKqyQ79ekN8u0JKZ3yTNuTBciglx380lLLZoN0nrx7ZhprKgezoLeyNul+h2kEvjWpXwd0eWkFyzXtjOpRDjwygG0Q7ug9fyHBRiVFwzYQuW55srJkZJQMSQkpG0iJ6XwVVQkZRX6X4n4smz5AFiRdx24D+nGmVPZTvrmGfkwpE9uvA7ou/b4i+SYXprCZeHh73w4wCcTsArbPbdJ4UiYwJUhk10RiJKnaTauJophE1UoOlSLjvkcN7XP5ahjonEvuNyil2HbQ8Y+S3FtRHCWT54sXT0onxhSvDlF7RMfZuFFjMei6Pjp5bO9JqRaGzmQEcKO0Ml0tl7VBpzzRsXYipFQrxoTgUd2LCnLaKh6XMBn8R3ncEFOqgb1qomIyyRFdly6Z5Zqw0oEOkTWMInIGHfewF8Z2HExsvk5+mcrLxH1QVIZO+8TEXPR7FZ2XndMBL34UWSnnl5tHpT7EbHY/ZRus3JaYktlsE2LH1vaLFgZsSKVm78JnauuDPN7eZ4csJtBpEUJJp4EqVQhPQSOqk465JAoETpfLlm1zLYK89csKbUUFgVqqGtnUYqkcLkEAUV+Qa1BKkQDqTOEhRgTnSEB0sjsgT4Wks/seDyLyz4aYottks/NfO8P9tXXy2N6TUk1A0sFpGiopWT4T943gvDtCyhUZpUqbRK7PuiqICCbefUniAqZqs65CSJRWpJpKi5hSTWpkE7tWUEtlPfGsYpzhb6C1XFLaHUntsOnudyJCSDc4ulqRZGb34+fM7LRLdZSonTz7yCOmbH+zuXwlmHyQzy3++0qyi55uX2Brs9Oy/UnQLJUtD6a2PsjT2s9ja8Bksk2j1adOqva5INFM3btsIApwzoOK6OK5qrHxluKB0ysV6jdXRYNSqlCKx5MCwCGliPqKbg9LKAF6CiIC1m2Od49oVZJIocSDjUrJhVrKRTtEcEWMZaPg6uSx/dih19oUuiqnpPldTSjaiZCKBLX6aU2RDzuiCvd4VH48uDm5XpvvXBQDRJRON60IroLe8soyjS+lapdpPhtSsFXiSlVj33Bn+Z23K8TESnqu3kDzA5vL2sK2y9Xuejp5bO41uwOfziJEGt+p7JcuzmNntwmSxghMEl9K1Q5ePlHdonqTEos69dnAxtZ7e98qaHUCSwX22U0rnhRvZ7q0QNdBk0ZMX1bJx39HTNNyuUAlRdRSDXYpVErRBfBiZbExpVQqMRayoOai9zIkIXBkuyEStNpvorVcBTvZ1ntSqkUhGjhnrZKSnXNBSJls+03yq+5Bkh+pbj7Z4F7lImKjHGDrMIUOOSVL00xiSv+c+TbhsnQuJytpoJM7Lo8AuiopeRnpEVKqPoMux8Rdz2SxQXTc5B6R1XDZeV69af3uktjyViOmdOrknct6caCZixGelMoaribNtm5lLl2CXE24VW3iuW0RqOI+8UgYdjc6EXSuT+f3KiCmyO+Is/kbIaJI/0DIqVyurpQqAUAXWAVWvF2imFIuSDpXz7HroOfsuST18tBqpJcZOtnWt/c31wKgH4asA5u62O3JJg6IqhxRXpMJCv+4mftJlogUU5SEF5FrnIyQyhJ0m2RpeOd5cTV48Up4+dljSYKV059l5Yiuo7H8bN0/bNrIA1mjM0nvkQ6SKl55EJFMprFtTGy+rA2qupMQUrplio7JUIU4lpQpAntXCHfdy+XF5I9Jf2rWBvMd6Rrtsb4rHy+/qC/QdeWTxXii08nKkEFWBq+94jTNiwVGw9TWkzweWUBEirB2zcSFqlUgam/SoNy69YnqISQPTxkkKo/nCkjKoN33JGgQQlFEFEVO1U9Sl8pes+i+ioKV0+dF94+4qLl6ztJ242MhujZXLnPtE9uqk8f2XillAb0VWjWxohMXRL9N5vlt3fbSIqRkrhuqFW+XP0rR4JSFiIiSTVKqsa6LEFV67iou1TqqtorOiWJmmW4TTsoSlSFbaee1SQe6q/Wm+WXtNqnP9Putht+G/ssjW4jskgvbr6OSMt1h1XYhwoaQUqmjeGVmMfiKKyQrjbaNs/MeHeyctwhRYT6LoPp+XCpludcmsPu6fYGtYspW5WqqXkrDDmcBG1vv7X1aaPX7Kmqfi3bLXPlEbmIq4oiFLXHQDbEiSaW0EvRDFYocaDAv3aGtiMgpJpxHPkobfSDKMJYwY134yPERNBJqMrKO914FztaC0noIYswbU69LNz5TlZ4JkhBe6ZBcWdn666+/HrNnz0apVMLcuXPx2GOPSdM/8sgjmDt3LkqlEvbee2+sWLEidv7uu+/GvHnzMHnyZIwfPx4HHngg/vVf/9WoTZ6UanGYrpbrkkkyIsklIcWbSOi66+mQUc0Aj4QgqyXR+0alFO8eJ1FAuIItOdWYVj3BcUVM6bpy6JJbacUYSRM8Ca/qZQPXHVenIokijiCJjUgSR8qWkHLlnq0iy0T16OS3QRBXqlqPKaJy13azWYcL8AknfXc+nb6AJbtsiCnXtl/H7otg2mekARtbP5ZWz9sPrUxc6U7Cdd3nbMuX1UeTMDrECA8qdzhWaUUTLHkgz1+AACKbTv/aiigjthMrcd8rydooIqN47TcBrz5ZG2SfdeqQqbdk51XnXCOrAP/JkIWtv+uuu3DuuefiggsuwJo1a3DooYfiqKOOwtq1a7npX3zxRRx99NE49NBDsWbNGnzta1/DOeecg5/85Cdhmp133hkXXHABVq1ahd///vf4zGc+g8985jN44IEHtNvlSakxAFt3N1461URFVq9OXt7kxiSwreqcCGkSPvHBaaXhGF0/PXnKqk36ecxifeislPPyqogp3by6E4Ek6qVWBtmhQ/9lbu7T6Lg81DBR1OgsXGRBSLGDIxt1lMlxHhElI6dM+w0eyZ5HQEQBxHUvqDFYKY/S0zae3Jcs3PvptVMRkhBTouOqRQp9W62XJwkJJLo3On2Liz7Dpu3mtt7O3vsFCB5cBkFOewIuUq3opteBSXwnViXl4vrpslTlsqok0W5wdLnx9+JFhTzYhWg6vlTIceUBoBf8XfjoNtLv6RerlmKvgadWYpEFGSOLH0Wfl52TzVtckUHdkKvqdMCLg+YOWYztr7rqKpx55pk466yzMGfOHCxfvhwzZ87EDTfcwE2/YsUKzJo1C8uXL8ecOXNw1lln4YwzzsCVV14Zpjn88MPx8Y9/HHPmzME+++yDf/qnf8IBBxyA3/72t9rtsiKlJk2ahD/84Q82WTsa4kG3eoKhs1quWk1W1acqL8kkh83PK0PVJl1GmF45Z0kgnVV1GUgnxHPdI5MBESFUYVKRawr+5sM0tu2iX7xjuqvCJpMRQB24nJdXd7VbVi97Lqk7iM4qu6g+3fa6RBlF45cp0ui4xgJcEQkqW+xKJSUqU/XZNh6VK3WUqB9R3QvXhL/IhY/tBwDS7nxo72nQpFwaZJTqWNj+jIgpUR4dOyrLI6u72arXNOqxsfWm9t4vQBCYECeyCXY7g6eSMlXU2BJeOguqqqDaorJ55Qjc9wy8IOmYUjE7GgY7Z4kjVgVGE1Cy4Oc6YO+Nzfdgq5LjEVMuSV3btrQXbG39tm3bYq9yucwtf3h4GE8//TQWLFgQO75gwQI88cQT3DyrVq1qSH/kkUdi9erVGBlp/F5qtRoeeughvPDCC3jf+96nfe1WpFR/fz8GBwe559auXYvly5fbFNtRcDfBsI9dJcsjI6TUbbIjpEwnJ2z5pmRT0h3vyHF2YhLRTtWwHp5CQDU50Z20mKiidAkqETklOm5DTKnaKcqbdHIiSp8EWe/GBACj1DBI5zVaf55aqeMaC9Ah/NMgl3TrsI0d2JhWrxxTQkr3eJLFBFV9BNEig8I+5iLFFLEhrC2h7Tu9EKFql2zDBx5UNkwcB7DRlruOM6Vrx20WFFyppZK48JnUkwSmtp6297rwCxDtBl4gdd20WcJmd7ykrnukTPJiy2Nc9RoCnhP3PcbzIfaTCtIS282qpcIqSiQtex/YaxORfryYUrz8Js9DUug+aywxlVQtBbh1c2xN2I7tZ86ciUmTJoWvZcuWccvftGkTqtUqpk2bFjs+bdo0bNiwgZtnw4YN3PSVSgWbNm0Kj23duhUTJkxAoVDAMcccg2uuuQYf+tCHtK9dm5R67LHH8O///u/4y1/+AgDo6uriplu/fj2++MUvajdgrMPlaiiQ3oTGpE6TeFQ6+WVt0SWjmg1aMcUbxNPKKF3FV9rQJad0j5sSUzK1lCi/SRtt4JpcSnN13nSSQp65Vui4PMRQ2VCToJY6m1CIztnEIHQVL5CFjY134S7XSLJEK+Hx1fEoTYXzm2sFyMipxmPu4kwlJaaSKmXNFkPMXPiyWoywsfXk2dNZhPALELpoJ/WFTqDpLOHSdU/2HuCTFjz1kahNXQEvxYsplSd9SLTQTPoFrkoqDwA9iJNedNtodZjIdY+A58KXlg1KUm7S71qn7nRd6OyR/PuwtfXr1q3D1q1bw9eSJUuk9bA8Tq1WE3I7ovTs8b6+Pjz77LN46qmncOmll2Lx4sV4+OGHta9d+8l5+OGHceGFF6KrqwtdXV1YtGgR3vve92Lu3LmYO3cu9ttvP3R1deG1117D+PHjtRswVuBiS3DRQF88eLePKyJbITdZLdchjWT5RWWYlmuLCnLaq5ms6x45FnVI8QE6SR9c83CDASG5SJ4qAh91mzYlQbydvPOkfbmG4+yxPOJbhfO2HpeVweYXpWXz0Z/pMkTbfovS69THu24diNplC+J3bpIeCDquiRMnhseLRbmbRxodVzvCNcFg4rqnao+KGOKVJ7P5aRNSOu2TlasLkS2tUnZXhEaSnLYBJI5U/EXbdvI3sPHRZ1uimpfXRonDs3c8m8azUbZ9AVuWjg3Vsd2m0OknbKFqV5I6TG09yQMEixA0LrzwQixdujR2LI0FiN12282ovWMDzSKtXNYrc93TJQFkihhRfbplsy5p7LWPUPXKFFeK2EL1YmM76eUB0c+Q9ZAI84Tue6p7wd7rfP1YnjrnmlTMglTvRvSdjHCOe7CwHdtPnDgxNrYXYerUqcjlcg22fePGjQ02nWD69Onc9Pl8HlOmTAmPjRs3Dn/zN38DADjwwAPx/PPPY9myZTj88MO1rkXbkn3961/HCSecgNWrV+OUU05BV1cX7rzzTnz3u99FV1cXent7sd9+++Evf/kL5s2bp1tsx8P1tr02gzUXkxP2s84ExXRyIiq3GeCtEPNWzuMuHPR6Sg6Fej56sN1M6JBTvMlIkEdMLLHlygglNr9sMmMzOUkyoeFBRqKlDXqyq5seaI2Oq13gmohK7n4mJ3ls3fZo6O5iJ7P3rjavkLeFtgvuBte8svKohvU1LkrEV8ijeFK58HM11ieI+72s+oAkxJQ4rRkxxcuna091FhhEpJZt2WlAt3xTW0/yAGaLEH4Bgn0+m6ks0oHO/CENoszU3uq2wTSWkez7oQkpUZBwUgZN/NSRR+Pue7HL6A7H9EDwWy5gOBr/x9z3uhAdYMkYkeqpUk9P7xaoS07ZED68skkbRiCvkz5Hu0iKAsvrPD+k7iTQrau1YDu210WhUMDcuXPx4IMP4uMf/3h4/MEHH8THPvYxbp758+fjZz/7WezYr371K8ybNw/d3eJno1arCUOE8GAUU+otb3kLTjrpJLzzne/EjTfeiA0bNmDt2rW4++67cd5552H33XfHRz/6UaxcudKk2I6Azkq2CqbByk1jnejm5+VLm5BqlpsemSTwVFLkcw7xIOeEnCJp6aNssHNRnClyrWkOiEWQufWJJk06K/i6W36z+W1ijOjkN02vQpZbhAOgniP9lwnojovGgw8+iIMPPpibZ/78+Q3pdTqusQZdG6uTlm9PTVUT4jp0yaU0CCl6UE9DZO9Fz7Ls2bZx46PjBLI2Jkedo39ddDq6N4jraPW+NxeqHZFrHUESVz5x2sY6TYOQu3DDk0FUl0m+rGFj68kzRBYhyItHSvkFCBuIdpqzBe93Zjuh1ulree21DXDNKzfJzmY8yAJ45znHZGXR+Uje7oZTDaRUDoz7Xi5U49KWPlZ8iW6z6J7QxJnIfY91SeTFmXIB0zLZa6I/s8+CLC2dnqD9CCUXSHtsDwCLFy/GzTffjFtuuQXPP/88zjvvPKxduxYLFy4EACxZsgSnnXZamH7hwoV4+eWXsXjxYjz//PO45ZZbsHLlSnzpS18K0yxbtgwPPvgg/u///g//8z//g6uuugq33XYbTjnlFO12WVnR1atXh+/32GMP7LHHHkJ2zUMPogG/mYRPvWKuu1pt477B5uPlFbUhqeuG6kdpFgxcPvjMMR0Q/cqjiiKGG+prnL7ES9Gp23QlXZVWx32CtJ1XrmqlnAz4Re58toop2epyVqvmaa+g64AEQzRJb4rFixfj1FNPxbx58zB//nzcdNNNDR3XK6+8gttuuw1A0HFde+21WLx4Mc4++2ysWrUKK1euxJ133mlc91iGyl7xbaSdSipNQkrVRpvFB51yRWmSKKZkRDmx1EE9gR0uoMwlf8iRMorowSCqlL2k3bXpslxCdh08JRPA2uhG++6iL7B1qdZJ78Lum6RVKcBc9w+mtp7k0UWWK+cezYLtd8K617lUSblw3eNdlygOExtPikeKVEKuKpej4vDlqRcAoAcV1MLffhHl2MJ0mJbElar0IE6Cia5ZRE52U+d45E0SUpQXRF10X0k7ZPXR10fUSrxjOkh6bc1US6mC2fORxdj+hBNOwObNm3HxxRdj/fr12H///XHfffdhzz33BBDEB6d3Xp09ezbuu+8+nHfeebjuuuswY8YMXH311TjuuOPCNDt27MCiRYvw17/+FT09Pdhvv/1w++2344QTTtBuV7McoMcETFbA+ef1b78NyaSC7sq3Th5ePh1CKgkZZXL/ZBMW3RhOPJUU0Oi2R8gpdsA+jEIsFXHhqyIfK1t3cmWqZpKlUw3WSbt4+WXEEiCPM8WWISecWjPGiMrlRD0Zsmu/ifKCpDdFGh3XWIKLWIJRfjcqqaSLELIyZDZfh5CStScJIUWn5dlFkzh9LHjkORD87gsox102EP0uq8hhGIUGW8LrA+m80Xtzkk1nQYXXBhN3PtI2VbmtSEzx2pbUfqvgwsXb1NaTPCbwCxAqO9Mu0yWeUkUHzVZJyernkUe68ap4gcHp+0KILupY/W2D/c0DCIWG3ahiFMP1QBzBQsVwnMQqUa/tdPwqdvd6tp00+UPIHNI+muRhy9CBqWufLSkkqoe+Hpasct0GWzT3t57F2B4AFi1ahEWLFnHP3XrrrQ3HDjvsMDzzzDPC8i655BJccsklVm0haBcr2zZQDaBVg5OsVFK6hJTN5ITNx0svOsYrS1auCUSDfNFkhXXdI8foVfOIgKpAtHpOrrMSyx3lzDWQNtHqNYlGkrbrgA5BpRtfhDdBUQVA15lcsPnSXDUXXZ/JajsPLmNQlVFADfIg5TSGMWpVj+uOq5OgIvt17aKJSkqnLbpqpywIKRdklCvQAcyDz3FXvXha1mU76BNESxQ02LJsbLwtyUbabktMBcf1+wJXxJQLJLXfaS0wqGBq6wFze+8XIJKg3aZSuu01VTLZ1kMgq4fnAsZz2SNgx/q8mFIkP4coylPhOarVwHUvR1fXjeFyDdViZLdoix9TVpUAbKeJL5qI4amUyF8egcMjcnTiPdnEmEqqeLQhoERIQkw1Uy1ljqzG9q2IdrOkbYmkiqp42uQqKd18WRNSaZFRbDk2Lh6i+BvxaUcFNEEVrzdIFbh0DIQ5yIvn7qdqJy+NC/JKtJoenBOvlDeuqst31pNNAGwmJrYTAttJULMmKARZraZ4xJHVfdQlsdKMHSjKbxtvUFZ3PI/7xQdT0IsSQZmNpBSx/UUMx+ovoxhSVZGNJwsM/LbF05jbcdM8ImIKULvzBcf1+gJdYkrd3mzVUiYufGkjC6UU0MkLELxnUDewcytB1C5Ve01cqUSwtdkqkkKk/GLVTqKyRbGXJPeEuO+xNjV2iT0oD1VQKUY2RhhTKh+kj5No9K507H2lA4yTz+wudqb3m1yvbd+oQ1KRNtF1sMQU75guWZW1YsoUboivTh7bGwU698gOJqvgpiopV3l5bXNNSNkGcbNF48SDr5Liue7lY3/jK+fx1fN4WEQguE5eMNzG+5ud8aHVXo3nGo0vLy17rFFtoBf83DT4bZK8vLStiLgaQ+/loUYabniq8nWVS7p1yNLq2HxZHS4IKVUgcx6q1VzDyxVUdk7UDxQwHLrvETtDzg6jGOsNyL0gtl5n8w7d78QWouvWDYIeHOf3BXR6WT9Aq4556U0DpauQBuGXdl9hY+u9ve90pEUSqUCIC7Z+W3czWR006Pp0g8bTboAUORS67zFj4JiXXx7DQ0UMU4oWeoOMmEoq3IGPJaZYiHblG0Gjskrn/jXL5Y1xh7Quhwfb56aVyaw4OtnWe1LKEKYKH3E55hMNFVHkym1PNimTEybmhJTN5CQLiAbFbJq4695w+JeENAeiayExpchf2oWPB1exw5JCRE7xdulzTUyJ8ulMTnS+Q920qgmQjSuNLrEnwijMOi2bYIgebpDEdU+33CSLELJ0ugsXJoQUv045GSU6Z1KWDlh7x+7EF9j4eFBbNk9ETJE4gnnuPQLsxg+m1yKzK6LzMnVw4/HGvoCk572XlS9Krwtbux8dk/dHuu2ybT8Pprbe23vXaIcJra56KyvXPRpJlVo0cZRn3puopHSupTFNrkLFiQp/Vt0YrUQ2nV6sCNOSv5TLX9RmUbvZ+Fc8oor9bkyCppvANrg9AS/GmGgnviyg8+w3/7feyWP75t/9DoLN4NNEJaWCaKIRTyMmlpIQUiaDca2dlhSr5LmceEBoG0CWdDi04x0QBbwNVs7J3+EwACKAMOAtcd8ro4BC3eVDNFkxHdSq0qsG6KpnLQe9+CKkHXRaNq9NrChePl75onaq6lKl1YVNHhtUkEOXwe8/K1eTTkRSNRMLmwDnvHQ6Nj84p17EMCHAXNh7XSVUtZqT2nsRWHtJK2DZz7xNLsjiA9ltldiSKoKd92jKitj/oNy43QMa4weSv4C4v1IFb2+8PnncQJ4t1LG38eNyNzmdfLz0SYKeq+pQXWsaUPU7LExtPcnjoYOkfbXrvt4FCaTj2kbQKq57PIJFx3VPBzS5I3J9o+oN3ff4ZHvYtu3doas2mQeEMQkblFKkYJag4ZU/Qp0n7Re58PFc2lw8QyIkiTXFi+1kE29qbMeX6uSxvVdKpQSbCYT8mL5qxlRhI54sZEtIqdRRJm4bLlw7ZMQVIaho141AyDscm6QACCcnw/WJCu3WMYxCzLWDBxcGR3d3QVrhxYNspZyXVvZZVzElItv0dihMRy2lapttOhNECgzd19jpuNoVLl33VOpWXZvikpDiEewyN7WkhJRtehqq32aO80uLFFOB/adjShF7XqZ6BNbuh+2m+jzXAb1tzosUU0lVUyJ7buJabeuGnVQtpdumNGFu672914NovJmVisMVeeBKJZVUGcNz3eO1LWvXPRNwfvuVeiDpHFPVEGK779GBORpIqTxpe556qcDuyCdz4UuTiEoCmVoqCZJ8z6J7n4Rgdkd0dfLY3iulHEJXHeFqVZ03aXDltpcWISUio0RIMtkwXUEng0520CxSSbGue5H7XjAdIddFJiQAJC584pXTKKCsXSBcm4EznUe0Uk7a1NjOuGrKtWIqyao5yWu7E5/oOnjXIoKrFfkqchhnUM5Y6rhaAUm+Q9lihKlKKo3YgbaEFIu0yag0wNp6coz9W0QZRZSpHVcD+0fb+mEUUEYhRuAE9icXK4+GjZ23Ib15Nlx2nBcEXV6O+Q6rPLusk1a3Dhu1lGn/IEtvq6I1tfUkj0caaNUg5wQmKikVsiA6dF33ADvXPVGgc1E+xMQ0eVSRqwCoInTdC+3tEEJVLDkenmNJqRKA7T2I4koR9RNRPMnaSKu7RLvwqcrQBatCopVRtiopWp1Ev0+yGx+QXDGVJtjr0ietOnls75VSKcP0YZERQKLyTCZHWRFSohVzNr9NHBETqMoQx4viGxCaoCJ0EnHZy6FSn6gMxyYpZOV8OJzGBHLfMgrgBcLlwdbV0cVKrkw9pbPKzK6ou1BM2a6ay9opym9bvk16E9B0qe7Lww66987UPuuQTTx7rOob0liEMCGkTGMFSuNGVXKxlws0qjjjJBRJQ9su+nNARgW0U7Fu2elA57StJ0qpMhNfiqQlxwA9O+/6dyxWPPFtl4lyilVNmdpzVVpVuUlUUCqltEn6pP2wja339t4VWmXt3nZnPQLedegqbXRc93RVUjr1sXlpAoq9jqTfD1EgEZKoEflq/RT9My4B2B5XStEL1jFBFCGnwuvooU7oKojo9qliSbHXZwodAkXi1hh7sed4711/p+2NTrb1nf3NZ4hkMULEkxNeOlHaJJMT3bp4n03UUc1aKWdXwgG+SoqkYRVTxFGjBwN1xVQl7KyqyKOMAor1OFNkKlPFIFNKemopFzBZKVepptg8MvWQixV2UT5eHfT16hC+vLxZxJUaRhGj1M4vKlQyfl46GSr7rJPetsxWIKR02hmek5BRsuO5fPLnWUQuxEmSxjhThTrtVAhfww2DxMjWR2qpcr28uDq0MXaUqZ130R/w7RhfBQXI402xeVj7TLdZZs9FNlxUrux3lJYKKotYVKa2HvD23h4mSpBmT6HYtrpQSbkMcK4LXZLFtUqNR/Tkw1PEtnTRySp1G5YHsJ0QCJENCkN3kK8i5r7XhbjKa5C6LhEpxsaXopVVbHwkUzdGNr8sj60qiY1/xdZLq6VslFNJ1FKtiU4e24+tb7JFoEvmyNLrDnJMVsxVZcvypT1BMSGj2MmK6eTEdvtmmqAifwvM1IPEkypiGIPU4Ju4dBSoqQzJFSitcoxbh3kbbSYmbHqdAbqMnFKRM2waHZKJTSeaSNgE2VXlMU2XJaowC4Y4llZTWgmm5KPse+C5YYvSqMoUEUyiNKJ26dp7V656umqoaiUXs/267to8NQ85zlNF0baYVsFGKqnhGNFSrtv6Moqx/iEgs+KTmDwaiXpRAHOatDK5PvZaZc+WiIQSHRf1BSSPiJgSpbNZMHBt912QVzb5ZN+bqa0neTxcIy3XPZsxaSu4Ecr6PrZ9vDhINq575H033E1hRxAQRHX3NLZYHl+UR+i+B0Sq0NB20wqpUCnFtp2QUSNUBlI5j5yhyR3ahY9uKA82z5eM7EkS7DwpCcVDs4kpt4HTO3ls70kpS6TxENishMvSqfLolu+KkLJVR6kmKaqVc9PJChs7SqSSIo53tKNGgZqk0AN5QkwNoopeDITuHT0YQKSSIlOUqvBembgBqAKW6xy3WXlm86VBTMnaIEqr03ad8mVl6yq+TNvLQxXjDDsu762dFKbfka3rHptGZvN1iCVePhlUMQrZzy7UsK5c83TBqmJ573mqKbLoQKukiiiHkxNyXwgdRVRTZPGB9AdsfRGJEh/gulFBVbjvRd+RmPg3jzclU0zxiCNe/CdeeSrb7MKey0i8LBclTG09yeMx1iAjAmQqKZXrngw66USudbYQue6x55KAuO0Rkoe48NFKqfpvrgqgjPB9DpXQfY+15+HYn9wKmpgK208TU6xqStZempBid+FLQhSpICtbp16VWor3uXPRyWN7T0o1CTqr5ar0SVVSOnEq0iSkZGSUzQSFXTlXgSaaVBCppAgBFSmlyujFQKxcsnpO8pZjk5XAqS8ojw2CyzfQZJIS/dVbQde9VlF63jNiMxnhn9cPZmuaPk21lCx92giuWb/OsbRt7FiCyXOj+x2KCCOb2IG8NsrS2yw+pE1I6cYO5KmmyGcAKNaDmtMqKRJfKiLyiOq1FwUMYwC9YR5e2WwdBC7IKN418s6JbCxpB++cbn9gQ0yxaZO68Znac9vFBZM0JjC19VEeDzPokDljEayKKal6RUVSjHDe69SZxvdBCCmilOoJD4e/YVopNVS3c3WlFLvAENpsmpSiXxUS6JxWSg1S78WxreKEFOvCxyOm0nDBdEF+sQopV4qpsYFOHtuPHXqtSdBZCU+6Wq5KrxtXpFkxRUwIqaTBbJNObhpXxmUqqSo1QSmjF4Mxdw060PkwChhEb/iX7NsUlRIvGQjuG3svm2l8RJMpQB18Nvgs3iac/awTyFyUXpXWpM1JQE9wVWlsEG0Hq//ycIMkO+SpymQVUElUUi5sfpqElI69l503tfe0ex4BbcvjaSqMnaeDm8edsElaEuB9ONTNxl/xniOy/RXO59h1Cp4NV/0BG5Ccd894x3X7g0aST27TdW2zSjlsavf5ZKHajkdjhHRW+m1svbf3aaOV7q+sLUnaqRPgPI2ys8IIgAEEpBAhpyL3vdC+VgDsQKCWqtZtQZ2U4m1SFJ4nKin6FZJRrFKKZa9kyiTSKN5fEclnQ/qpviOT71A3UL+t6q4VnicRzNrWyba+LUmpZcuWoaurC+eee6403SOPPIK5c+eiVCph7733xooVK1Jrk85DYRroVjQpAOziivDa4ZKQYndc4v1YRLssudxZyaYcHkFCD1RZlVQOVcptrxwqpXoxELp1RG4ZeSokbpGZ2hTDLWUJSUVPUIL80WQlvEaLyYgrwkU0GeHtysSbjMh2s3NBTKl2y5NNPHjpTCcxOi6WSXdjAoDRhsmt/DXqaALrIYecnMpx/+pAd3HDtc2n08rSixYfbAKZs7vtuewfCHi/eVY9S349ZHc9YsF7MIBeDKIXA7EdVwGEhFQZRQyECxCRg3cZBe5Ehoes1ZcickpGQJn2B3RdvON0flE6E7uvQzjxoGOjXS5iyGBq6729TwNZxHByoRbJOtaUDonAiyelWy4pm3XhS+KSSNKS1yAiYopWStXrIO57OwBsp0in7fHF42h+UIliSLFcE7oQJ566mfey9rLvkxBQNnBB/OQF73mfWRCXy1aCLDi9HTp5bN929NpTTz2Fm266CQcccIA03Ysvvoijjz4aZ599Nm6//XY8/vjjWLRoEXbZZRccd9xxRnVWMc7pjZINNE1VVboxp0xc/Wx25rNVR2UfR0Ss1hGppCJKKPpboNz2ggnKQKiU6q3vqkfcNaLd9oIgqkWUMYBB9KE/FnMkhyro2FJAdB9zzGc6Dgl9DeznNJGj2kBDJ26HaDcmNq3INY9Ow5bNphW1QbetqnKbhaCN+r+frCe4nQ4TFUtSlVR0rtGOC9VLBjZfZu9NlbAi6PQFpi7aAJ9oos81LjpUGdsfHY/opiimVE/dXbsQ7raawwB663VFMQcDG1+p79RH7lkh7CdEbTe16XR6+009xG7TpA7dc6yNjdtu+a6puvGleO2W2fFWc89TwdTWR3k89OHKdY/eJY2FKWmiAxuVFF12K7juicBTDOl8L+y9Y4Nr025whJTaVv+7c2N4oyEEhBQAlCm7ur1RxdrQTHr3vTBJT72uHkQug5RSi/v9kPd55j3vHtJtET1HSV3mWDc+nWDjsiDnJu0RuRA2O+C5G3Ty2L6tvr3t27fj5JNPxve+9z1ccskl0rQrVqzArFmzsHz5cgDAnDlzsHr1alx55ZXGpJQJTB4O+Yq6+KuREUw84khnBZxXtitCyoaM0iWrdCYovCDnbPDaWHrEVVLB33gsqeBvOZygEGKqD/3oxUB9C/DIfY+EwyVEVh/6MYBe9GAQ5XoQXDL9iXbiI4P0SoyACe8RNfngxZUS7eLUcH80JzxioqZxMmIaW4Q9b0pM0fXqbCuuS2TxyhXB9WQmj2oYW5OHMrqRq0+EdVCVTH497JBUIasLGcHEs/2q3fZsCSkbWw+4dcGzIaZYqFRSNCEVxQ1k7f0gejGIYv13RXZbJapYUhZx5CP9yjCG64HPSVsaSXEC2oZHdks/hmASJIk3xZ5j+4MkxBTPnuvGFdQtl263Ko0ubDflAMxtPeDtvRlM1UUim25SThqKD5cqqTRd91iw5IQIOtcnuq+83QAJKbUNESnVE15etZoLuIEygK31bDuCXVhBxZSi7U2oEKWVUjH3PdIWlpBi3fhE18EGCheRMyaQEUK8eFW82FWi74Zl+HjHdAgpnhqsFXagdI9OHtu3lfve5z//eRxzzDH44Ac/qEy7atUqLFiwIHbsyCOPxOrVqzEywn/4y+Uytm3bFnvZwoac0iGbdGJ+iI/J3b+SElKsCwfPdUPmhsG6bOggidKKp5Lir5Q3xpIiQW6JC0cvBkNiikxYyEA82HUvSNWPvjAFyRWFzC1wagrey2KOJGHJTVbg6RbIztNgXTjYNHLlmtqVT5WWd549xiubp6owSaNTf1J0st95FnC9+sTacpndV9UvU1KZbGbhipCycctOwyWPQCc+kkwlxdp9QkbFCanI3vdgICybtffE5kcu3JHWirh2k5oBgLbz4b2S9PEVybMgQr5abXjJ7qXKrU9kX3n9AX2eroM9rmN7RWXz6pAds0nDphW5Krqw/T6mVLPRqpNf17GkTIky1nWPd5+SKsYIXD/PrOseCXQ+MSKlKvWF3x0ISKn6K/xNb6ftdWTDc6jGlVINLny0ux4honqYY7Rbn6j9QJxcU31/LhYz2DLYzyrlFg2RG6ZuXKlmu/Lp3E/ze97Jtr5truSHP/whnnnmGTz11FNa6Tds2IBp06bFjk2bNg2VSgWbNm3Cbrvt1pBn2bJluOiii5y0l0DkliGD7eq7bCKhIpmS7tCURB2VdGKiu3JOBrQylVQ8PTtJITvuxbcCpwOdkwkLgNAto4pg973BHT3AeKC3PmHpQ38YY6pQd9+L6svFJhuqnfiC98EKOn1Mfj/sB8uqlXKZgolNw67ImyimVGlVq/Ci9vGgk4ZNm6a7X3ANbpSZHsmgSzTJy+D3ESo3PF4eNr2NzddRUwHmSliVva8w5/MJVFGs617wnr8AQdLJ3PZ4hBRx16ZtIq2WCmIN9qKI4XAI2YvBUBUb5OG7awN8tVQSiAgo+nglx/+ObNRTrL2N23E9xZTMzZpnz03tvo0SSpRWZfNt6jK19VEeDzV4k36bPtuWuHKletStX+a6x0vDwnY8o0NeiJCEFOQpdUj9rOteXcHEXuIQAkKqGvwtEA37UJSk4feWrwHoiiulyPvtJK4UTy1FjonUUqwLHxDdH1Z9BCada9iolVSqKNH3pYtmu/Alv9edPLZvC6XUunXr8E//9E+4/fbbUSqV1Bnq6Orqin2u1Wrc4wRLlizB1q1bw9e6devsG62AHjmlnujorpjz6rWZyPDKVU1SRCviaa6Um0CukoreFykXDHor8GByEimmessDscC3VeQwuKMHA9t7g78UfUXiTZGYU1XkqPe0Qkq9Q1MzYLtKTtLEP6ezy55MWeVKCSWrPy10cjDEdoFOPCfzMvmKK8CtzeeVmXTxQXSuUsmFL945FzBdgCgi2o4isvnDFCFF3PeiLSwABAsQoXNfD0VhRUHP6T38WJ0WoFZL2RLdMkUUm05HPcU/12j72WM6iin2vE7gc5WillenKg1bb5Y2nsAHOk8LNmSH7m8vbXWVa5WUKWyuT0Sy8Mqm3dl0YEKk0coieve9HrCkVA7VyH1vKyL3PSAkpaqhRaSUUqVyVDV5EWIKQKMyilVP8QKf0zvtsbGmeO5trgODq+KBmXwH7GdVoHedNqkgu7etg04e27eFUurpp5/Gxo0bMXfu3PBYtVrFo48+imuvvRblchk5ZmVv+vTp2LBhQ+zYxo0bkc/nMWXKFG49xWIRxWJR2I402EiWcEoao0Q16eCl01VT0WlFZfMIqYa6W4KI4pMpQNytAwAzMYlvBd5LOeP1oR+95QEUhkbRmx9ALhcY6DKKKA8VMTpUwACAnvGDsXX2QDEVV0uV6/GniPIpWOkVq6XINTULNqvkvPM6wcxlKigapkHMTdRS7Gq3yaq3CrplVZDDOIM6x1LH1W4QLR6oApybKG1Vrt02Nt+EkLJVwuqQTpVKTqmY4sUOBOxUUqxail6ACBRTEdVUqMeIom0g2VE1h2rYV5DdWUmo9OB3HoQyj+xYDrRNC8oLPvPUUuS9bvxAUxBiylY5JesPVIopmR00jf8ns9Mu40alBVNbD3h77w46k9dmT3Bd1G9LXshc93iQERdp3kdWgTOCuOseAPQhdN/LA7l8fR6wA4GYqq6Y6q1vbiFTSo3LVzFKquUGO2fVUnScKdq2yZRDdHwp+lgaro46rnS235+OOippYHZRmUih3GTo5LF9W5BSH/jAB/CHP/whduwzn/kM9ttvP3z1q19tIKQAYP78+fjZz34WO/arX/0K8+bNQ3e3W8Nn4pqnX6a5koqGrqrKdle+4Fw8pkjsnAUZpTM5EU1MRC58ZKLCc90jx9lJSnA8WiWNr2NHKikyIemt76TXgwH07hhF1xBQzY+gOD5y3xsZKgDbuzFayaO/VEbfpH4M1pVSA+it78g0GGtJuT7RITswyQbh4X1A3IVPNFmRqwbU0llRW3jkFHtMFvSW1K8ipmRpVenodukSSmmQTibugDxUkUPNwISPpY6rmWgFhaLM9usuQojOqwipLMkoEWQu2y7ctCOdUhWsqzbrvse6CAY2vSdmlwooow/F0NaTnfhyoQ0IAp9XQ5tkt7kFfV6Uxga25JSoPzAlpng2U7YwIHOfbuZCgi1MbT3g7b09mjUtMpkYu1BJ2bjumcL1ZF8UY8lk50CikiKue/2IdsKbGPylHHKKKEcxpYYAbItCcxBSqhL2FsTmV1AolTGE8Y3xpMirAsR3AqTJKZ2A57zrp8u0fY51CCK2fPaziKAiZct24YPiOA86hJgqgL7ps5reZiOdPLZvC1Kqr68P+++/f+zY+PHjMWXKlPD4kiVL8Morr+C2224DACxcuBDXXnstFi9ejLPPPhurVq3CypUrceeddyZuD2/QzjsffbYnrUyUVLLJhIqQUq2sx+txp44ynZiQ9EnijMgmKCxBVajHAaFVUtHqdzkeW2THELq2AigDpTyQG08NyLeXgC0ASl0YKvWif1JfuAPfBPSHa+n0hKiKfHgsLAd8FzZyPolaymTyQqe1WSUHxBMSWVmyyQkvjyoOFQsXq+Yi0klUlm1dQcfVmaspWUJEACWNFZaGSsomNpTK5rtcfHDlimcDG5UUca6O4klFqljiiM0uZJRRxHC1iOGhAqqlHHK5KnoxgH70hW5+RCkV2fIyol1X1QsQPLUUjaR9gQiquFMycsqUmGLT6pD5sgUJWdkqBayuQjbpQoMIprYe8PY+HfB+l2m7HLlE0om0qSrKVb2yOlXKK5HLIHmRWFIT66/uUN2UywVjfWxH6LoXU0rVq6Z7DSCwA+EchaeUCnkf8oG0k3Xjq0SVNKi8CHiuiTxiSnSfksZwUhFCMoIsad0u4UI1xeYVXduI5Fxnj+3bgpTSwfr167F27drw8+zZs3HffffhvPPOw3XXXYcZM2bg6quvxnHHHZdZm3S35bYLhp7j/o2nEZcnc8tg8yRx4XBFRrlA4y5wYpVUtBV4QBJFq+WBCwcJbE4IqT70o0R8zisAxiMWYwRDCDq2IQClEvonTMDApChsbi8GYxMVehV9GEWQSUtOMuiVraCnCdtVcqBxQkLSy4Kf8/Oqt/Vm20ZPKkzUUqYufGkFO+/kjquVoGvPZbbaRX28NDQSu/dZ2npA395XK3nk8nzbpePCx0JEzPBsP6uSou0/vfMeIaT60B/GDqRtbhU5DGzvwdD2XnSXhpGbUqWctQNbTy9AkHYSNz6ilgIaFyBYW8mes3Hhy1XEeap58fcmU0/x+gS2P6A/84gpHRc9U7tPtyVNZZNr925PSmUFXpwbV3A1JpO1MespnS1JJVLGkL95zl8WosDp7HEZMUVc9/rqr57gVJ0rKpJYgTuA2lbgja3AlM1AH/qDdJT7HgnqQWxOoTQcKytGTpVI3i40uu3RKikeVGRTt+RcEpB6aRKKR0jZqrTYPLRroul1NDvYeTJ08ti+bb+1hx9+OPb51ltvbUhz2GGH4ZlnnsmmQSnA1Yq5qDw2ne7KOtB8Mko2QSFuHazrXvBeFJQ7PkmhV82jUORRLCmyaj6BbPq9dQh4A9EOHRPi7hzYjkApVe9rhib0oX9SH/rr+XvqRBdvO3LeZEV0PbwVdDJZka2euyCxdMkpE3c+lXueC3cOup0y0qnVMDxcQNdwQTt9zSCtDd58802cc845uPfeewEAH/3oR3HNNddg8uTJwjx33303brzxRjz99NPYvHkz1qxZgwMPPDDVdrYyTIktXaIpSTogbu9dklHVCqefoo6JCCoRRK57rH2Pjjfae6KKJWQUiSNFNrIIbX6MlMqFwW/LKGBoey+wpYSRUhH9+QqKk6L8PRjAAHqp+ipBH1FvE1FL8RYg4grVXMMxclxXJSUjpNjzIoLKhpziLVTIiCkdm26SJt5GM7VUM2Bq64H07b0HkJy0apZKhCVwRIROGnU2G6zrXj24OSYC6AMmICSOgrH+ILAN2PgGsBnAlDeACYSUCpVSgTWn7VchV46q5CmluGopVilFu/CZkDMy9ZKr70FEjskIKxo6LnwmSBLTikYasatoqMtutbF9lmiL3ffGAlSr5DYufqoVelkaVTppWgtCSrSzUpQnz325gmySQs7zVs2jWCJRXBF6chHEk9qO7m2IdufYCmB7tG1sBbmIlApf3di+oy/UWg3Wd2YiziJV5MJdmhrX8HOx54V0hlXB95X43tV3YmJfIoh2ZmInSuxnnR2Z6AklP5945zzRLkombi7086KTLk2IfjOyV5o46aST8Oyzz+L+++/H/fffj2effRannnqqNM+OHTtwyCGH4Fvf+laqbWs12KhjZTBdhEiTkJLtpBfkSf48svGkeEHOdRcgCAFF7D1t63uouIE99diBfejHZGxBH7ajr9qP3mqggooWIYqRu/amLgxt2gn95b6QytqOPgygJ9yzj96FL/gbtG64/p636yr7vNg8PypCipeevHiQ9Q1sn0CTg+QzwO8DTOy1LE0Su69TTpo238bWp2nv33zzTZx66qmYNGkSJk2ahFNPPRVbtmyR5rn77rtx5JFHYurUqejq6sKzzz6bWvvsoLpfWa7hy1ytaJiopFy77qnq4xFdojaYkAmyHfxU10hc9siOe4MIrqMeSwoTI/KohHC8j+0BIbURALYCO1W3xKoj9jrYOTu4L3lU+QopmpQCEKmlaHKKJqYA/v2hdxBk/9L3xCV4sbt0dvijvxf2uZE9R83aQCCtevW+k1ay9Vlj7FxJi0JEDshcL3jnZbGhxHWL07ogpHQnKNy2af6ISDrVirkq6G3wvpEUIZMR+nO0Wj4cO1YIJykRMdWHfvTtqPdYWxHs0AHEto0drhYDUmp7/VwewBZg+5Y+9I/vw2T0YqBOckXugtEK/DCKdaVT8D9pazxeUXwFnVVLNdxXwXEaqu3D2fPsSrmpCwegDnxLHxcppui6dF0nRKviKrVUs2KMAEC1Mg5dBsrDWiW9NYjnn38e999/P5588km85z3vAQB873vfw/z58/HCCy/grW99KzcfIa1eeuml1NrWDCRx3TNVSdksQrDpVfY+ia0P0tsNNWTufADf7usuQATnI/dsYu+J2x7trk3iSNGv3h1DKNYXwwd2Hg7tXZlVxqILW0uT0bd7fxhHcBC9KIbxCiuxdvHiCJJrabg/lH0E4i58JoopU6gUVCL1FKtUjdt4c8WUTkBzHTc+XbVUUtj2B6a2HkjX3p900kn461//ivvvvx8A8NnPfhannnpqw+ZCNMgCxCc/+UmcffbZqbXNHZIETgbMSIEsVURsXUlVUkkn8N2C9zqgr0UnODf9nnymlVI9MVKKjPexI9BUbQOArUDf1vg9pBeNAYRj+NAk0YSUMLYUq5SiSSpTVzaiGjJRD9kG+xa5VrKufmMduvGk1GilsX3W8KSUI8gmA1nUq7PyniQYLmBGSCUlo3j5TFw56JVz0SQl+CyPLRJXSZFJyiAKGA4nJ2EsKeK+BwC7UoRLhVJKEUwAMLWE/ql96C8GQc/JRGWY2Z2JdumocL6vHKrgEz9RnBPTeCMqQkqWR5ec4rlwAMmJKZ0JStaueWlMcqqVnGHHFaTdtm1b7HixWESxWEzUllWrVmHSpEkhIQUABx10ECZNmoQnnnhCSEqNNZjYfZ2FBtE5WRwp00WIpIRUGmSUDXTdtKP3cre9Qmj740HOezGIvq1D6N4BoAwgDxR2LlNkUD6+CAEAEyJb34NBDKC3vgjRy7QvaCMdR5BcG58U5+/MRyPtGIOEoNIlp2TxAl0SSbzyktp9HVIpjYUIU1sPRPbeNcbmAkSWKilbAsq1LW2VANMsWLUQD7YEACGjSDypnsYXRR4FyweDQDkgpLYBwA6gawdiXweJ/VpGMbQrRZSjNLRiqkEpBQRqKR4xRWceoT63IujvRLRDIk/pJ4svZkvGieozgYykS/e3Yzu2HwsYO/RaG8N09yWdFfOobPWqOo20CCkXEkOd/GLFFF8lRb+PgpvHVVLsBIXeda+3OhD0VLTr3o7gRcovDxWiQOdb4q+B7dFUJ15DsS4FDloRvY+7cwCIvQ/vlWBQrDMQtyGk2PwiF474Z7E7n44rnywf62IRa58gDftXlc4mqLBLVCo5VEYMXvXf5cyZM0O3i0mTJmHZsmWJ27JhwwbsuuuuDcd33XVXbNiwIXH5rQYb5SqBbMIqs+W8epIuQpgQUtVKzmjxQWWvSXm8cm1h66ado44XOYsQxF17AvrRV+4P3LWJ3d8B9O4YCuuoVnOBvd8Sf/Vv6cMAetGPCaHL9nDd1tO7N9G2PmpVo90HEDsfu7eWpEiuMip9yfNWhe59vD5BRCI22t/G2JC8fHQaHYWYqd2X1SNL4wLGtp6y99u2bYu9yuWyojY5VAsQ7QeenUqqksoCWQY4N3XdY5FECWbilkjvqieqm7i5Edc9Emg8D6Ar4oAmIBzrYyjKMVAf30e1B/aXhN0ghHkO1TgpxYspFbs0Vh0F2KnIRAHg2fe2ELnwqdqhgoqIbHfo33vbsf1YgCelEkIndo+KTHLfJvVEiR3Ysu3RIaTYyQQvjkgz/V15JIhMJdW4Ws5XSZEJSg8GAhkvcdujSakhoFgNBn/VCrVyviX+GtnSVy+pp15yL7UJeURQVRHFmOJNVgDEJi40slAC8SCaiOjEFgHUxJQoHwvZxMEFksQYSUJs1ap5jBq8atXgd7hu3Tps3bo1fC1ZskRYx9KlS9HV1SV9rV69GgDQ1dXV2MZajXu8EyCy+7I0OvllqlidRQilkkpASNGQ2XqZvZeRULbkFBtPSqaSogkpnkqqMXZg5K7dh370YhDjt47GFyG2AsVyVO/wUCGy95ui1+iW8eiv9oV2fiCMI1ig7H1RQpfR32WeO34geWygIp1IGhOCioUrYor9jnl2VEU2mcK2/3BBWJnaetreu16EGFsLEFmNjZqtShIFNE/Ldc+G/LAhI1hCim0DfX00YTVI1dlT/1tXrTJKqQKGgXJEZVUqCGw7RSoRuxvbfY+nlJKSUqQ9NPHXzRxToRnB5HnPjoiw0o2VJsJYJazisB3bm+L666/H7NmzUSqVMHfuXDz22GPS9I888gjmzp2LUqmEvffeGytWrIid/973vodDDz0UO+20E3baaSd88IMfxH//938btalVdYAdB1cqKZ0Vc1eEVKwOzgRFBJ2Jh0jxZAp6lTwsmzomWjWPk1GROoqeoPRhO7qYyUm4+96OultDrn69ZOWcbCG7hby6goDn46O4UgPoRaFOjA3X444UUQ5blwv/0vE2IjcPAt6xJNAJjGviwqGKLQKoXfl0XDVi1yBIw7qE6KZrKiq54GWSHsDEiRMxceJErSxf+MIX8KlPfUqaZq+99sLvf/97vPbaaw3nXn/9dUybNk2/jS0OnQm/3kKFxD5adsu6ixAEXOJKQUiJVLDSdhkSTdVKjh8rig1unqdJDPECBI/gCGIEDsfsPU1QFUKqaBixTS12bI/b+gqAKtA1FJEPFZ69nwBgE9A/tQ99U/pD971CuONqfDc+8j5ycdNbyGLvA7FVKugQUrI81Tx/fZPn2sf2Bzy3bPp9ZIPt40s1tEth92XQcS10DlNbT/IgWISg7b3IVXvp0qW46KKLpEU+9dRTADptASKtaZLJuKxdp2q618gSMaLztEuWjJAStYV23wMiQooopahmTAB6MRAuLpNaRioI3bYJiMKVqF6DIiillCzQeeiZRn/HvPtAzusST7Qrm+ud7UQxo1gXQ54LnY2CyjQ+myvyKu2d+ASwHNub4K677sK5556L66+/HocccghuvPFGHHXUUXjuuecwa9ashvQvvvgijj76aJx99tm4/fbb8fjjj2PRokXYZZddcNxxxwEAHn74YZx44ok4+OCDUSqVcMUVV2DBggX44x//iN13312rXe1q6doCSScnjWn1HzybVXW2PTqElMkkxWRyIpqY8EDShX9zVekkJfhMq6QaV83J5ICemAgnKJvrrzcQqKSqAMr1QXsRGCWTFLJ6DkQr6FuigOdBuUFcqUH0Io8qyiiggDLKKNYHvMFUpYo8ygiCqccH9HGiJ7yfFMnDDsK17rHmTk2q+CKmsUVIm5MSU2lNFpoVYwRAJh3X1KlTMXXqVGW6+fPnY+vWrfjv//5vvPvd7wYA/Nd//Re2bt2Kgw8+2LjesYq4rRUrZ00XIehn21pJZUhIJV14sIWoX+AtQAB8lRT5S3RKZCOLQj2weTC9oNy065tahPEDNyOy9UB9YwuOMnY7gjF4CcDUQBnbP7kP/bm+ej1B3cTWE0KMKGMBoACAbHBB20oZaHtJ8uVQQSWXS+yezYOKoBKRU7rEVFiOITElOq+CTv9h2rck6oMSkFK6ixB+AYKg2a57OpP2LF33WGRRn8yNS+aeJkpP70hHdt0jRBT52x0ni0oIFi7qtiumVyKkVB71sXgxXDimbRdKiHgZnkKq4VbS6igwGXSuM43vhr53qu9Eppyz+d2EjF2LQxXjzJDYshzbm8SLveqqq3DmmWfirLPOAgAsX74cDzzwAG644QaumnbFihWYNWsWli9fDgCYM2cOVq9ejSuvvDIkpf7t3/4tlud73/sefvzjH+Ohhx7CaaedpnUpnpSyhCzQrE4QWp38IvWT7gTFJNZUrByH6qgkkxMTYooHNn4I/RmIVFJk1ZzEEmFVUvTkhN59qUSCm5MXcd0D6kqp+vuhYuS6R09SQmIqCILbUxwIyS/6RdRSLNFGJiusWoqHJGop063D2TyyVXLSNnayRRNmZDIBILZiTuflDfh1Jyi2aqnY9WooqXTyG6HcBXQbrEyX01vFnjNnDj784Q/j7LPPxo033ggg2JHp2GOPjQW+3W+//bBs2TJ8/OMfBwC88cYbWLt2LV599VUAwAsvvAAAmD59OqZPn55ae13CxO4H781UUo323y0hpbL3umRUmkSUCKzrHqCOJcUuQJDFB9ppmjhU99A2v9wft/c7EI09qRiCMWXsFgTvQ3vfFZBSU4LNLcguq3Tb6E0uRBtcEJJKeF8U502Qo7oOHS8BGUHFklN0f0AvUrA2kr+7qtxmurL78TLFxJJoIcUJTG09yWMAvwABiNUpovMukLYSI6nrHrkH7LW7VKPQ9fDqFkF0Dbx8tPteBVFwc0IE5eMcUF0pVRgaBfJByj4A3YQnqbv4EetdpmYQQEBooURVr1RKsb9XmqAahPp+ZzGd5wUS5xFOKpKKBqtGoq+DPc5+z3QgdB5ooq6NdgK0HNvPnDkzdvjCCy/E0qVLG5IPDw/j6aefxvnnnx87vmDBAmFcwFWrVmHBggWxY0ceeSRWrlyJkZERdHc33tuBgQGMjIxg55131r4UT0q1AHRWz0xXzE2JMRNCKm0yii3HhJjiTVJi5xsIqsboHYSM6gmjPQ2Ek5OQmCr3B3GkNjMvovQdAsJmV7rigc5jkxSEQXD7pvWjH331yCLErYONKlINW5uj/ooUUixMd+GzIaREZahcOAB91ZSMmDIhjZK45zXdhY/e1Vg3fYr4t3/7N5xzzjlhx/XRj34U1157bSzNCy+8gK1bt4af7733XnzmM58JP5OVelFn2izwvmfZd887p7uQwSObRPl555MSUmnY+lFJmnEWCw+s655sASJu28sNCxBF6nNvGPFpMHTR7kM/JmMLxm8ejdt6sgCRR6CMrdvVUXq31S0I7H0ewGQEaqnJE9E/pS+09XGX8WLM1scR7cZHPwuqBQea4De6x5xiecdkRBUhqHTIKVY1JbbVIvWUvhrKREnLI790XQXV5zX7EFNbT/KkgE5egEgOGwIqC2Isa4iugQS7VkEVp4h17SM/IKKSGkHkuidoSz3QOQCgCOyMYMg/cRKiMXwJYU+SQzVcxgbqdpkopURkFPdSyQk2yHnSH7QrVzTRDnd0+3Rc/ViYuifSsFWJ0XlE9zfpfbPIazm213XV3rRpE6rVaoOyddq0acK4gBs2bOCmr1Qq2LRpE3bbbbeGPOeffz523313fPCDH9S+FE9KGSLJ5ESmYNJVSem0jUs2pUBImUxQZJMSGqYTFNZ1D5BPUgCEyih6tZy4cciDmw/Gg91uRqCOolfPiW0sA13EqFQQJ6XqKyyEkMImYHTqePRP7kOhSLq1aBfA4F+0eh5cYxXEja+KYHW9gMg9T3i/EFci2UxYdOOPqCYigHl8EcCMmIq7/pm78onIKxo6MaxkZeumb0CLkVI777wzbr/9dmmaWq0W+/zpT38an/70p1NsVbbQUTqJj6kVrbqqWNeEFGvrVUSUrr0naXXtfszOKxYggEY3bZakot32iCqWVcZOQH/gqk3UsLRSCgjs+Q6KHKLdtbcgmmOQRYipwJbNk9E3pR9FlEHc98j7QLlVaLD1w/XJjsxlm38P4i58OuCRT7ppeSSVSD2Vq1QTEVOuFxvk/YeeLU9lsaKFSClgrC5AZKmScvXl2E7hdCfKbPki1VRSqO61KD4Sbyc4XttGAAwg+iGxhBRVPymyVLe1eaB7EjCN1DIJweJzCcAEhD1HDhUM1HdUJbYDJURxBXnuew0gqigCQk6NgE+g6D6j9G5+pvGZRMfZWFJJ1FIqZBFXqoVcBS3H9ibxYoHG2ICquIC89LzjAHDFFVfgzjvvxMMPP4xSqdRwXgRPSqUE22C1/LL0JyC8NmRBSPEmKSYTEzqPzgSFDXoLiCcpOqvmIjcOEtycTFR6MBCopEhskTcQkVMk8O14BJ0Wj5TaXj82ASEhRW8Z3jNtoB4EdxAFlMOg52QFnUxaiESYgA6Ezl47C55aSnfCYhIQVzYRCY7FyaksiKlY+xJMYEzPpRJXig6VoJveIzF0bbuKeNJVSbl00+amcURI2dh7Oq/M7vPsPaBWSYnc9mi1VGTvh2Nuez0UMVVi7T1RSuUR2Pv6xCO8vzQpBUSk1Jbg78jUwIUv6F+CBZHA1je6bBNbH9h4ElOQfJ/iXedo0IsPqrhSJoSUKr+MoCJ9QrOIKVu1lIkiK8qf0LXP1NaTPClh7C1AtIr6yPWXpnLVMw1EngZ0iS5R3B7erns0icEGOKfjSZFXJUpKmlSq/27z44BJo9h1ZwT2f2dEtn8CMIwCBtBTX0COdlCNXRrQSEopyak89ZdFnkkrKiNNkPvMqpTIfbdRS/HAkkUigspFTC0XxJSD33DKY/upU6cil8s1qKI2btwojAs4ffp0bvp8Po8pU6bEjl955ZW47LLL8J//+Z844IADjNrG3zLFwxoyF434sUZCKclOeqYr6rE0ghVzOqaIaJLC28Z7tJJLPEExgUolxT8ndtujVVJRcPPB+gRle7QlOFk5rwe+rW0FajsQxRqhx/2EmEJ9oLYFsUkKtgRbhg+WSVjdoMbhBposaJls7b/CPFPstIzAdDXXZocmOi+bn902nJ4oEdfF4H2kcqMnXOx24SQffYxWx5mcj7VTkoY9x8sXP+Zw0Fm1eHkYQfc3wiOWROf59egprHTK1SGt2KDmPEKqWslr2/ok9t4UOu7ctO1nLSW96x5t70ngcTqweR/60bd1KHLVJnZ/GyLbvwMIdv+ut6uSj5NS9CtchOhC/9YJ6Ecf4yQe0WG0YyHf1sffE9C2vsKcyxq5SvRqPDdKvY/6gny1GvYFanvNt9squ65jt3lpTGy6iZu8Eja23tt7h0gywZf1+aZMY6uQZzKYXJNIicU7R0NESLFtILN78iKue7R7XCX+l/BX+WCsPlDsBXYGumYA03YFsCsipVQJ9d4i2hKDKKUARO579CXJLlkIoupi3fp4hajUU2k9Q8RNkoYNm04gca10AtGNbwGtTsq2vlAoYO7cuXjwwQdjxx988EFhXMD58+c3pP/Vr36FefPmxeJJffvb38Y3v/lN3H///Zg3b55Zw9ASd789oLvqrYIuacWeM5mgmOz659qFo1mTEx2VlHrVvExNVOidlwZClVRveSCYiJBJyeb6+21Af92dYyKtkgIiQmoIAPqDY9snNiilsD2ulooHPCdtGw53aQIa3fh4K+gqtRS9ip42cpVRrlsfL/AtwF+hVimmRDDbMtxOLaUbsDzxyjnQcu57nQjVM8fvNxoXIlTnZcHNZeeTEFJh+iR2npfOJEZgniKAGXvfSDSog5vTbtFEHRUQVVGAc3rHvR4MoHsHIjtPFiKIUmp8/e8Q4qDVsWQBl7b1W4ChLX0YmLQdBfSFiyCD9d1XWZdtWhlLbD4Qfa+0G5/MltOK2Go+px0zUPcrkz0WhJii1VNsf8BTTZnEmNJ1z2s87mYnvVRc94CWc98bW1BN8puJJO0QqaJMA5yzn5MQBbQSRaT2UZWvug623YQYoX9EAgUSnaTe9wygB5i2HZiBgGSahsim10mpAfSiglxdNdVLNaUGVLqi9EqFFAtCQg0iUhqR9rOw+V5M3OJYdg0Qq6Xoc3R+XbWUSLHEHtdRNrlQUNnGlbIk5DIY2y9evBinnnoq5s2bh/nz5+Omm27C2rVrsXDhQgDAkiVL8Morr+C2224DACxcuBDXXnstFi9ejLPPPhurVq3CypUrceedd4ZlXnHFFfj617+OO+64A3vttVeorJowYQImTJig1a5WsbxjEipViq6CikB3gsKWL1RRWRJSRpMUnclLgh32aIhUUjqr5tG24LQ2aTh06YippHYgWiWvr6APbAW2lQPTNXEIjUYl/Ey27OwBtnQ3rKSPTu7F9gl96B0/GBJjpEX0tuFkwhJNXKKg5znE42CIXNec3HMNY8i6cPCC3+oEvg3eq4kpXTc8lTsHL63ujkwmEyUetPJ4UqplYbKIIYsDxSvTRhUbliEgpHRtvZSMMiWqEgY4B+LEExCpKnl6oiK16MASVPSLuO/1YiBSSW1FTBWLrYhctIfAqGK7okUI8pvbgtjGFsGrG/2TJ6A4qYx+avGhjEL9X+SyTa6tijzjzhffeZV9T8N28cHka2LT8h4JlpzSceeziRlo6sYXayOn75DFE6TzNFyv5iKIFJ6USgm6u4OJYOLuo5qgmn5hutO3pMGts4ofpXM9OsQafYzebY+8J6574KSjsueD3/MgegN11AwEixAz6ufrwcsH0IN+9KEXuXD5OrQL+UpwfSJ+hQt6t71B6hgbYJxXEEscylz7VDvbyUATPTzyia3bxG0vSWBxFwRUCyCDsf0JJ5yAzZs34+KLL8b69eux//7747777sOee+4JAFi/fj3Wrl0bpp89ezbuu+8+nHfeebjuuuswY8YMXH311TjuuOPCNNdffz2Gh4dx/PHHx+oyiRs4Br691oNqAMI7b7qduO0ExTUhxZ2kmKqlKjmjkS8dX0TmykG76qlWzaN4UvFAt2TFfAL6A5UUIaQ2x//27wgW0XsATOPJKUOjQXb/6Aa2TIu78E0FsKULAxN60T++D0WUMYDBkBzL1UmzKNZIQFSRv6xaKs+854GeqJgEwgX0Y4+IYoyIyKk0iSmTCYqM1FJNUHhwHlfKk1KZQuWiJ7L7onymKilemTobYrA234aQSrToIIKm3WfjSclUUvR72t4TpWlcDTsc2npWJdWHfvRV+9FNu+1tRqSYIqQUpZSKEQuhu3bdZaQyMU5M1e390JY+9JeGUSgS98FySI4NU26GOUQLErKdV2UB0On2qeJKhfc+4doFnZ99VHjkFI+Y0oGu3ZeXIVZL6QY8Z9uje1wJT0plCJ1pEUsE+I7YDiaEl4yQEpEeNBlFkyUsYUL9wKhiyyhgCyYDM14GZiMY5BNSqv61b9/Rh/7xfagih370YRC9oc1GvgpUuimXQOoFaM7ASQbZveIpzdIOzM8SQCIyClQ6E7UUDZoA04VN/Cq6PldkMwvGXVSUJAOTsmjRIixatIh77tZbb204dthhh+GZZ54RlvfSSy/ZNYSCJ6VShskkREclxUNahJTMXc8JGcXmVYyAVa4cooDmAEJCh7dqTiI1kYkJrZDqoYiphlhS9b8j26K5CgDUhqid92KoISCktiH46e0cqKVoYmoyMDphPAYnDGBgfG+9PZFiagA9DdcVTFiK4YQFKKCA4dgzI3p+eC58OhMW22C4IheO4Bh/pZy0KS1iittOTbWUirBKzZ0DCCbFJkWX02lGp0P021IpWIP3cpWUTBVrs9OeDiGlXHjI0EWbgLf4IFJJ0ccJ+URUsOxue8Te0zusElVs39aR+IYWtOveG0CtAnQBwe+KtwgxBIS+3RgBNk3hq6VKfShMi+IZ0osQ0fVUwmsmf0U7r8rUUoD54oMrkK+QR07xVFOkHzB145MpZV2qpVQqKqcwtfUkj4chVPF4eGmygg2Bw8K16x5NNpiCLostn+eCBzS2nyYEWNc2dpe+wfpfWilFZv9kdz7ECIFhFANSaiaAvRHsvLcbgt9WHsAQsH3DVGzeZwqG6wRWP/rqY/ZBjMtXMUo31xjsbnz0cfZ6Rc+l6F4mUSTRZfFIJh21FI804pFBLtopq7MF0cFje09KWcBk5ZtNo5vPRCUlO2dCSFmvmEtdOjiPWF5goSliSmcXvly+yo0lxa6aF8MBfiUkn8iqOXHV66kTT1GgWybY7Y7tjYRUfXLy2tbgYz/q3tVVjtmrkP8GEcaVwmvApj1iK+fYBGACsH1CHwqlYRRyAWE2gMFwkjJIzYDocLblMO5IGTnk6luIl0GvmrNuAjS5Ir3XsaC04nS8r0zHhYOug0xIgvdx1VQYD0Uw6TAlpsi1J1VLqVz4TPJpwyulWg5iIipuB3V33OOdV/UzpoSUtq1XkVE8W0+DZ/c5ixGEgMox6Ym9j9t3dkGCFwY87qZNx5OK2/tAITWhbu+7iDKK3nFvY/B521ZgpAJMqU9MUKFsKPldDgGRva8AlZ2BTV2Bjd+AwN5PAEZL49FfKqM4iZBS5fqiSbTZQ3gPEC1CEBA3vjKK4Q59JC2PKKFtvUlcKQL+ggsfNV73z1FPiVRTrogpoDGmoAlpRedvuB7muCgPa+uNiCyvlGpxsJNpnUk0S5qkAV0SSgSV66JJOSPMZ91y2LbzCCkabJBzEtycF4+JBD0fjNIP1ZVNQ0X0ow+vYRo2zJiE6ftuDXbe2xXBIkQewF8BbOjCa/vsigH0YgsmYwsmoy8c4yP67bKXIbxs9rpIzCa6gArkpJ6MqGKf1aSkD62YMlFL0ed4kKVxSVTJ6hf9bkzVkQSaeTp4bO9JqZSgMzkxXfWmj5mcE01O6PdWhBSXoNJ4pEgaETkFCAkp3tbgrEoqONa4at4Y3Jzdba8cBjTvQ39ETFX7UWJXyslq+eZoEZ14q4tBOsj6igzeACq7RxOVulIqIKZK6C/1oXfKQOjCF59wxSdg5NrooOcAYu/pFfTo3sXvp2gVPZggiHffk/GHsjgjquC3JtuFB+13s3LOO0ful0wtJZq46Ll8GK620+Ms3fQeWtAhCnWUUDKXP15fwOsT6OO2qlgTQkqbjNKx9Wx6ic3ngWfvCchvnuemXUA5VEXFY0fx7T2x+eRVohVShJiqv7ZtBl6rr0z27AB6q6iTUtS1hYNKoowdBLAR2DQt7sI3IXgNlSI3viLV5jy3D6vUrz8eSzCoNnpP230eaEUsz77zbr0JIcVLz5JUrHqKVU25IKaARrutQ1rRaCSUMg50bmrrSR4PA7SaSkpWl+xcUpWUCCZEkio/rxz2PNtO2gWPdy28NpE8g4I0NFFV/5ERd7uhLmzBZLyGXbEOMzFlv63o3gigBIxMrGd7CcAG4FXMwE7YgjcxGdt39KEynrEBdHxBthnat1KVUIeQossixBZLFtoaDlqFJCIgXSiVVIQQ61YoOmYKnXsjI6YNfncdPLb3pJQDiCYSNFTxSOjjfGWVeoIiO2dKSKVCRvHyKCYpvFXzXL4aWzUH4gFueavmdAwRerc9+j3tykGC3fahHz3bR+KxpKgtwd/YGk05wo1nKxyzG94eQkxVAPQFhW2ZEt8yfELwfmRCD/on9KGnSGKNENVUT3hteeY6aZAVdN5zQpM4sfuNuAufzkq6adwRnhuHLPgtrZqSEVOk/Tx3DJOVc/ocDZlqij5P19dw7QIyywqmW8Fms8HimIbIvrPHVeSS6DOA8JfNnk+LkBLaeld2ns2vQUzJ7L1oM4vGOFLD4THW3hMyKlJLcYKb04QUWYjYCmwuB6e7AQwOAb2ihXwAkVIqHxQwNC1u6yfX/5a6MTChFz3FYOfVHkoZGy20xBch6FiCZQBFDINehIgIGrGLsglMCSlVGTRBla/yVVO2xBQNMXklJq14+aLy9Fz4nLr3mdp6ksdDEzrfjc33JyNRsoJpnSpXOlcwJaTY9zzDS6txRpi/PNc9usx6vNeh3nCjii2YjI2YhnWYicmTtmBG6VXkKqN4aXwQDJqQUhtemYHBqb0Y2N6LkS19wHSgOH446E8rVHXaaikWxEWOQKQ8431n7L0VMRg66h+eigtovPci8k+Whi2XrUuknJK1u03c9Vh08Njek1IpQrYyTqDrisGWZxLollu+DSHVxEmKDHQQb35w80rsL3Hfo+OL0K57UbDzQfRWB4Jgt1v5r23VYMqxjWpPdx6SYIZk1WYQwMQgJ01K0a8JwURlsNiLXgyijCIG6kEUh6kJVwHDzDSNHwiXrKDnmcFyonufwBjqklOsakpFTNFQHVftpqcuXx3wPLXV87pCwyi9hzFcf3fs80aTSyq3PtG5VAmppDaehcTmyzau4EHltkfsPe22Fyej4htahMHNRfZ+a2DvCc00jfoNsosCAWhl7MTg/abexkWICcDIhD5sL5XRO34w7IeIoyGrlGLd+AoIlFGR/Y8rZsXts3Pha4DMy0EAQlARckqkmjIlpgCaUFLvxCpTyTZejplC1hlMbT3J42EJUeykdkJa8oms7wXrjkfem+Tl3Qv6GFkortRVUgC2AJswBa9iBl7FDEzGFqAITC5uwZ+xT5CNKF5fKmHr9ukhmbU9Pxk94weBoWLcfc9quE0IKZXiSIeQIseI22KFOUbXqdNYWbtEaikbZOGu10Lo4LF9O1ratoKOi4doJZ2eaGQxQaHPAQpCSjRRqXTxjxPka/Lzsqz1FXMCk1VzdvW8wLhxkKC3wUugktqB2Pbgta2RaIpeDOE3HmjczpUsx+8FbOkKJinb668tACYDI9vjaqkgLlY5JKcCgqoQTlTI9dNufNHzEaTnkTAELsgq1Yq6yoUD4LtxBO+jiUmQJ70AuABRG/BXxvW2A08x0HkH+503EzwbzR5XnaNtOnvetSrWiJByZedpaNh8nrs2sfc2Kinirsd30x7m2vteDAT2niaiiL2vG/rN5cjmTwQ1TGZvU+wzcR2p2/stvXF37S2oE1PBzqsD44PW8IKdF+obWtDkFG8RglZLkXvEtUM5CF346HBfQpuusim888y94pFTtsRUULzYjS9qgp5Klkd0Be/lyieV3TcmsWwmtN7ea6IZ0yDTeFK6k/q0XPdsISI3VMQJAa/drPqMF2BblJenkiLH674OxNVuC7CxPA2vFmdgHWaiD/31eUMZ6zGjXsTmYAOLvyIYt5OiS93onzwBGOqKSC7ahY9XvdFXI4vRJTumU5YpCBGlUkuR4+Ckt2mfy1hYIhh/MZK6DJN36Njek1IGEE0cALvJiei4ishKY4JCnzMmo0wmKJUuY2JKFPA2doyjjGp01+MFu412PCrGVs8ZlRQhpqj3b9RXzYnuiQiD8zkA5AVykL0qkqsfDS58W0BNViK1FJlkRWqpAneiMhwGPI9AduOj1VIEcdcE823Daei4eMhcOIJ6621hiCkAsYlJkCe9ALgsdCYotu4cVivtHdxxtSpk6ljZggJgp4pNSkgZqaNM7DybT2TzeTECddz7OPaeddMmn+PnysyCxHCjSoq29dRrYGukih2EZEgcu3V0TJMeBJTWHo2q2MkAtgOj23uxfUIfescPUm0tIEcpZFk3vqDK+CIErZaKK2PV9jwggZTJ7O0Jb46IoF/gqaZ0iSmAFzuKp55Su/EF7/U2pGh074t/dqKi8qRUSuBNgVpdJaXTHlsSSuS6l0TpQk/s2babEFK8mFLkPc9FjfxoZAHRCTHRHU9bXxje+tdpeHWf3UKlVB/6sRO24NWQlHqjkZTKAygBQ5P7IiKKJqWMvhKeSgr1QmQxumTxv0heVi1FYEP2sAopEVFo+hzZkkK6hFeLooPH9m38rbUvbFVS7HFZHiADQiqNSQoFWhXFC3irDm5eQeOkpXHVnHbh6KHf0yophpAirnvUht/hN9lV75TCAyEpRd6Q6FPbotf2KRz3PYRqqYHJvSjkop0D6RdvohJNTOQr6OG9ZiYrdMBzXfcOm5gj7Co5II4vEnwedUZMkeum09AwVUu5gra6qoM7rmZDtkDRSEzFbbRN/ClRHKnYubQIKVs7nwCsvdfbzILvpl2kFh7YHVYb7D1PJVW3+/074srY2KYWUqUUsfeE0toGbJ/It/d1tVT/+L4whiAJdl6myKl8/brK9QUJejc+cm9UaqmYQtbUhc+VLWHmqiLVlA4xBUBo94NzeruwBs0Rq6WCZovuacLYUbL75EkpDymy+MJtn+2kvwleTCndfOTHk+ccp937KNJrCIGS9a9dWDd1JmZMWo/JeBNTsQmbMBWvYRpFSiGILTUZISGFEoDJ3QFRRRNT1i58LHhkjQ4hRecVxW1iSSST+82qpdj2EPDUVSZg26lDXpG62iDOVAeP7T0p5RDygLbiW23ixkEfdzFBoc85maSI7KQDiAOc81fNG3fbK8cmKr0YiCmlejAYBrzlxhbZFv0d2RappGj70U2uOU8RLfkakO8C0IXIGJJcRC1Vi1z4yGsyQrVU/4Q+FKZEwc6Hw83Do4lKEcNh/BFyb1g3PlHQc/Z51VlR14bGM6EbXyR4n5yYItdYbThm587BftbdJjwRyggeKZP0HplAFDeK/myikqKP06rYxISUjZ1XDYC4qn31QgQbT4q29+ExDXtPFKVxN+0yeG7aUntP7cBX2xrEOScqqdj6ex6Ifb1CZWw3Alu/uZGU2oQwttTohPEYnDCAgfFxFz5yjcN1G0/OlevKWHo3PqKWDTa7IGR6nFgJn7Oc2IXPCCZdBmv+JOSULjEVFCsjncRKWBu1lI7aVdS3ypRVXJjaepLHwxBpqqRMZo5pTM2SqqZ0oUtk6KqkeO9VoEkm0S5otPKKUVVtB7ABwJ+BoQk7Y93cmZiKTZiGjZiMLdiMKQHJhDeCdBPqeUrUazJVLCGneMSU8VdNq5xkkJ0XqddcuPGx7wH5JMDEjY+uy6ZdbYIOHtt7UioBVAMJ1Yq5zrksJihAgkmKDjkNcBSk4kkKHV8kl69IVVL0e3aywnPfK2I4DHRLVs7jwW4H0Ift6NvKUUmR3fe2Atu2RzonEjGkm1xmMXiFtzJfAUq0HJq8J9uFk1gjU/gTlcmBWmp7qQ/F8fFJCj1RGUAvdT/ibnyRQ0d8giJz7agirz1h4aqkRM+GpH+SkVOiXZmCY2ZbhpPro9METbNz55Cfk086tJVRLEbQOLlTpfewAo9EVO2oKnPx5uVjFyF03LSBFAgp1s7bKjQ0Rxcqe0/b9aBYub2Pu/FFwc1pIoq2+6G9p0io2M57dVdtopLqBzNdq5NQ4XcZLkKEKRAtQJA4gtOi2FJ1MipSSwHbJ/ShUBoOF2BYm59DFQOUVovsxhfcL7IYEalkAYAop3TUUlIXPt7xJDvD0T8LDjmlS0whJ1ZDBVXq77gXNCFy7yP5ETZPvZmF7jEtmNp6ksejBcB+EabxpGzr47m6yaAioVxOF23iSPGClotUOKo6yW579GeKxNreHbjk1ZVP6/aaiZlT1uE17AogCIAekFLbgP8J0oSk1GQEdnxDPT9NSNGklKnQJ5ZQFmeJpONdN7lW+pysHFmjRMyaqVqKzcNrW1pxpXRAfzm69SX8jXfw2N6TUgkhI54AOflk4saR+gQFiCYpKjLK1sUXUJD39OREvGrOqqRocoboh4pU/KgCh5hqJKL6o7/lAXSxhBSZpNRX09+oRkopYlrzqLt01EkpouxBvhqQUnkAlZC6QtQx9gcVVKbEtwknE5UtCGJLlXrDiQrPjY+9H+G9QyXcPnwYhXCnpuBr4at+yDEC7QlLUKgZOH2bipwiE5OgPXZbhqviSwFoOE7ui2iColpNt1olF6GDt41tRfCJKdb+5xuOseSWSBXL2vsq8skJKZdkFAsDZb5KJcWzbyp7H7nnEZc93gJEP/p2bEeXYLe9cEOLarTrXsOUqO45F7o85ytAnth7+gYQUqpe0hb+LnzBq4T+UqCOjci3SgNBRQc8J/cp2viCpIjbevJM0QsSoBYfjJHUrvAIKmq8wCOmAugTU0HRkft2UC2PuMqH95LtL0gZ5FzwuZGwouuKH0vg2mdq60keDwPoqKRs1RpJoKPyGCv+O7I4UvR5HRAii703vHhTTB1bugOXvCEAJWBkv4nYPGUK1mMGNmIaNmJaPYbUNqDyV+ClPYDpQVoMIXh0JiAiq3jEFBdk0XqQc46NAyVSJbF5VOWQemnwVo5Vg37aNU5FRoFJT5fh0clje/8EGEK1Yg6oJyKySUhM8cQph83jdIIC2E9SUnDbU62a67hxRH9p5VQU7JbefYm8xm8d5bvt7QCwHRjYEemb6MvuRp2UqseTIjvGjctXMUokvdt70ChrJaUNANt7oxXzLYjFGxktjcdAqYzCpPhEJYgtUqgHxI0mKsHXUA0JqTKKdXeORpIzRz1r8SDo+WQTFhpsETwuRuLGATROTGy2DDdZOaePB+/j6Uk5onOy1XTeJMVo4sKutumk99CGyP7KjtG/LdUxlnzS6QdSIaR07LzOs8N7bGXjzAYiqhLbYZXecQ9otP18t70yJ24g7aodqaYmoB991X6U6AWIbY3v+3fEVbHEEa8bQE8Rje56+WpASpUQrLjHJg+EmNoMYNfIZTu2AIGYOjY/Pu6KTuJJETc+cjy4R41/I7sf2focKjEiHUDoAgdEhD/Zga+WF6hhRd2Crq1hnw1SHk1OMcQUaVfQB+gRU0FR+u7b9HlyPGieWC1FINvtzxqmtp7k8dCEKSFFPstIkjS+ANXYQKTK0m2LywDnqjpYqAKbuyCk6HOie1OJ3Pe2I1gk3gBswWS8ihl4DdMClep2ILDnfwA27RFknVAvroTIrW8IfPc9o8eDJYVY9c7/396Xh1lSVXn+Xr7I915mbXSBxdLsioDaY/cgaikt06OC7dp8NMj4Tbm0wiAgA3zOCOPMgHYLzjc2Mi6I2gW0gsv0CD1AMzR8M4ALi7K17cjSjiiLlDY0RVVW5lsz5o+IE3HuiXNv3HhLVlXm/X3fyxcv4kbEvTdunrjnd5Yry5ZBhgC6+nYUbySXF5YGrVNshJirT+hauynFsYLn9rvpE9v14KNIlnlJ2cLzfFdlAsZESI1DSfHxjFKgLQ1us5pzBYUIKFJWzDCODlttryvCN/LvJIyjrYft0b5tiZJCygnn/Gdgekp1mo2s/ostpHHna5Cv00cvRrYSX3vWWI3JTIILtLeuwUKri6gpSbdcYeGeUrRNCXF50vPkOI2hXPHTLMOEoXKO2BQXF0nlIKdGWTLc13KeHDf3J9UqD+cYyfupCgao9jJaRtaUnQUfb6hkX9EjSntHyMTnNs9bq7esh7x3esNyWa/MzSvBV+b7rK7HvWY95b2WRyonoXjYXv7JkptbVtzDDmBbx/SKJcwAmGkhkff1/FlNRQMspmEfiRGCWCu+Et92GCHbnJTaI/1uSe/YpM18BVbeB0lf9VN5nxBWiWesufIq5RlMHlVR3hG8V+HjGIOXbFpJpJUyiClA85oqJ6aSy9vDt/nx5LbuHICax2vepHKvqfyYpxGiqqyncwLGhN0sJ03lwVIqtIetiEAZIaX9loTUKGQDEVI86Yal2BYkMnx/AFuBrTv2AFYBT/3fwzC1145ERqMP4B8AHAE8e0hOOtF8f4/0N+2fg05MFZpT5i1FJ03AG6BwHd+xpHlL2epj85byhU9on7yfVqedRVyVkKwreG4fSKkJwTYJqZKHxGZJV8M7BvXxh3CMqqTQORVlQEJC5VZzHrbHreZFZYVCOjrp5J3nFcnD9khZIet5Fs7Rmcc0KSc7xCfd19uRW8y5HYa8pGaBLNEhPZtmq4MeeUphNi1JLx3+ktwGYAMwV8sJqT2Qu//OIVFU5mZRjwbZanzzmE3b2mSJcXNPKamoDKCH8dWZspL0cT55pyFXukKTHCPDuqAqYRyA3WJelZgy21y0nNNxvj+phltBsSkZrpC/odFHtbjzZWRN2ZmoQjhqJJP0kpLlXESVzBsIeBJSLuPDOOS8PN9zZjGVyfjR5X3uDds1ZD95SzW5rOfynhkcDCPEjtwrVsp7CrKI6ijklMqMEBHATBUpuBFiG4A9TSKKPqkRYnFuFvOtDurrBqlxpYN5zGTesXw1Ph6mTfLGtvKq9JbKwH5WNj6MY9wQaPwMkBNT6X49nK+4+AWX+8ml7OHbdJzvT7Z18qnM45WXH4uBoqqsp3MCPFCmEFdVmDVls4plt6paNu4HPQ4vqSreNbb8O30Ur6G11RYixs/38Xzj58YpiZQvPjT37B6Yn5sFHgIWX7KKeUrNAPglgLXJKtpATkoR+Ap8zhC+mqWust4aMSXP8xnXnNjhcOXlGsZrSjZ22LHlk+vKBzsz+blH/63guX0gpYaAbQIiJx/a8t/yfB8FRTum5ZECJkRIjeoV5aOkKB5SGjSrOe0zreW5MsI9piRRNctC92Z3LKpEFP8stHOVQhJSM0jDOVYhySnFlJRsRY68JHJLCFnPUwv63FqTiNoKZj1Pwjq6rQ7mV82w1fiSv/OYyfqEQvZ4f5mrMpneF9xbKtlnhndweFnRXY+0bMxYwjiAXCkB4L0yU/mqevrKTFUUFI1o4rlK+HljUVR6AKYqlg8YC8rC8Vxl+X5b7kB5TVveQJ9FLLwJqWE8YoGJziKGkffFsL18ddWZ1BChyvs5tr0Nhryfh+kpRTK/Rp5SJI+QEGw98pTKAv00I0R65blZ3QAxB2BrDe3WLKJogOaqTvbemmdklAzjI5lPfaWtvCq9pVygEL6h4DtZlmOIzxmImGL7JTEFmLI/qbdr0YrcS9YWci3fFUlVzIq6jAtj9ZitKuvpnIAhMEm1aJIPZdgE54SdoaRrhJQklKqGINraza/Dc7sCzMyQ/ib5PJPI5zaArdNYnJsGfpIW28rP/TWA9ck15tYmOQJb7DB5RVEon/SUUkFeRBokMeUDzbPKtV/eDx7lpLcU4CaAtPKuOqwQobaC5/aBlBozbOEdLuIJKLeO28L2qigoXoTUKEqKzRXfBRbKYQ3ds1rNtRwj5ipM3GMqT3g7Lz4LmN3RTpKbax5STFnZ1smVE/5KiJAoKWtSQirxlBKk1GoA4OF79DKQYXxri4SUoagkYR31aIBms5spXdTeBZjeBAPUhaJiWtCTPs1T4xbzHNlD+CopLL7jSYZxKF5ToxJTyaXd+aWSW/opKD4Wda2c2eyK3lMrOBniUsGlVLrC8bTQPRtxZSvLr5ntF3mkgBJ57yPrhyWjeFkXqaDBIjRGkfda2F6jIO8XTHnvyB0Yt4Ftg5xK0owQWIVEttfz5xSVGiGI5tqefPqzprzfCsMIga0tzEcDNFrdzDu2kWURJLluEnZEUfEVWBN0DPmfPCrxLOq5R6zT+MBPG8cYIkRiX8TuRV5TUdFrVluVleR+Ut1yL9nkdnrScw7bfnm+C5XkfUh0PiGM20tq3Ci7v88/WVmZUouxxz2GgaZJV8mJVdY3tpxSRIBIkkOGdKRZY9spKbUl/fwM+Zw8m/n/E5LM6KlX7Na1WW7ZjJwq85TKuCFJmNnImKokDb2UfcaM7NthySzbRMDmoVUVsg6+7Rv1Pr6Q53g+rxU8tw+k1JBwKyt+FvNhwjhceUWAIQgpX++oqv+PpUpJrO6WoRxZcUay8KSvfPWlfBUm05JOeaPoN7eaz2Aes4P5JNltiZdUr5PTRgtZvRKxujb91FYhUVRWMUKjzpWUWlpSJjznIR3rkwS50ltqNbJlZxe3rkoUlSa1u1NIfguYYS8D1I1lwzvpnSmMj3tLURmAjcnMIl2UgNZEuIRhFBRuKWf350oJ3bsqMUXt0yznvM1SwdBIJZd3lauc7zErOgD0fyMd3WqXDyhH2XtAUzpz+sDuJSX32fJIVSKkNFlfxSPWBd+QPWGEGFbeU9ieDNXTDBCZZxR9SN5rYdpsv5Y7EGAGCCDLH8jb3mh185WXDCME7yzmKUVLkG+FmUuQy/vWbLbIBXnH5jkE+6gngePsN38HmLkEuayXMpCQhcCxEL5MxtP8vA77ZHjUsQSY5JT0mvIgpgBkcp/aJ71ajRB1yHeCKcfNBUDq6n55zIbK8r6qrAeCvB8KVVWiMmJgd3NhoPZXIQuq/LPb+kML26vqIcWvrykwnFiQz5l7tALmkhbISalHkHBPe2jVImKqB2B/YMvaZPdqdjsXIVUKjRhxjT/N+8h1Pi87SuJzm7cUh3wflnlLlbV9mXlRreC5fVWH4AAG16TCZgHTrOhVwjjoGgAKeaS8CKl+VFRSuBlYupTaXEy93E9FeRs8rOYAhXL0xXdRackt5QtGDin6La3mM3O9PHxDJjanUI42sG3OJKQA02q+BsgIKTTBCKB+vtR3hLS0Rkyx3FLk5ksKCreip/t7czNY2FFsVW5Lb2JB/O6iAbKga0ExfTbW5G+JgetFWsV7qmyM8WsOiseInIoGyYcs+6RQEYlGKwjKJdTlylW0bf7uG7/lUuzyWhIyibB5zN5ZrmPZvK3KZ4J4/vnnsWnTJqxbtw7r1q3Dpk2bsHXrVnv1ez187GMfw+/8zu9g1apV2G+//fDe974Xv/rVryZb0TGjTLnUZD4/V/OKHVne2wgpKevlPoh9ro+E77tgDPKeh+3RanQyb2DuKbVghGmveaE8uXnMvGI1L6m1MPMHUg7BOga5EWI1YBoheG4pIqa2w5D3W2GR9zW052ax0DFlvZTxifzP6bnESzZ/K8oepfcAkI/FASJjJT4ARgRoKbRxMPD8yOtoY5S/A2AaQ7js53LfHFPp/hL5nh8bqHLYtt9WTntneGMYWb+MdLSdg0l6SQ3D2vowF3Rd34c/DAnlg6oePHQOEVLaMZu3EFAkOfi33E/kE297xD6yPBIZ/AskpNRTSLyl8By7//q0fr8A8HT6vS0hsraiMHcvrMRnNIFM3b7PZBzPzja2qC782+c8DttY14jHquO2yr1dhOUuhhUs64On1IiwhWsA1UI2aJ+moMh7AX4KSiXvqDKLua8XjEaA2+BhNZchG5ExwePKiPmdWMo7zEq+kOUYMazmnXlMU9gGT3TLlZa5RElZGOgJb0lJWVtHTj6x8L0muuZqHM+uT8/4J5iCkvthxcly4XTOVuSW863pjdnqTBTWISfd0oqe9Kk5KaaQPZ5npM7GHV+hiQ9b7xA+33eAzXokx5cllAMwreYJcku/9JgC9JCOZH9uOadj/LdPWB7vZy05elavYcXwLubi+573vAdPPfUUbrnlFgDAaaedhk2bNuHGG29Uy8/Pz+OBBx7Af/pP/wmvfOUr8fzzz+Occ87BO9/5Ttx3332TrWwF+ITYmF5NbgJKe2e49gFjkvcaGWU2tBpsRmcNwjN2nPKeyKc8hxQZIBK6fg22F8O0ZchemkMqyx3YKfgyATANEOvXITNApPaHrA2GEaJPb4jt7Eo8ZDv1jiV5vxW6vI9a2B6tQX2vARr1ToFcTx7FwFiZL2L7XeF8pqcnhe7RvsWM7KnsETtqyBnJeCA3lkeiXFonPgzJYyrZLq7Il9zKDN9ObqcdMwe4tvqqBt9yXgjhe0uAXUEdqlIHTeF2lRkGZfXRrj8KIQXld9n1XOFh0vumh6LnKieB6CPaRXL4ESREE4Bk/g4kMnw9zDA+ElQHA8/Omtk6uDzLFsTg4Kufy7pYSDOrp5BPriYJfg+fnFYuyPtrbdGekavOWtilvK7PuB+mb/j9fe/D7+eJXWxuv5TYLTylLrnkEhx99NFYs2YNNmzYgD/6oz/Co48+WnrenXfeiaOOOgqtVguHHnoorrjiiqHu7zupKPOckkpHmYKilQPcCgrllvJSUMos5lW9ofi1bCgQ7YoFkq3AVFxpKVdI5KpLeejGvBrGwZcGJ6v5qhcW7SF79LuTh3JwsUJW8zXpZ+1qJLpH6i1lTHRbSMil1UgL0Vk2b6kF03queEphaxrGN6e1LPcFowA/7kXVRSOzmOe92Sx4UA0QMR8FhUitajipOpZsYxIo9ZoCipbzen+QeUwBuRIiPaZsnlH8PJvlW5aV8LWUl5bz8WYp824ZEx5++GHccsst+Iu/+Ats3LgRGzduxFe/+lXcdNNNVlm9bt063HbbbTj55JNx+OGH47WvfS0+//nP4/7778cTTzwxucoOAS6jXSQV9zqxLXRhlreH7blWVk22Swipfi39oDgGbP9Tcp/P+CkzaBAi/eCo8p78gnLJl/uOzrDvNZ3taNk8YedgyH+S93KqGyEP1Z5mXrG0sEVCnDEjRCbvic7SQrZTjynpHcs/6f7FuVnMz81gO9YIeT9jyPjktwxs12R88t1Fk427MXhLAe7QPl8ZJb1jIcoN8m0u+6t6TNWhH0t+m156EvJd4PKYHRrDyPoJyvvl7xU7CS+pXc2dwTZ5W4o8WnyA8n4hsr6MkKriSSQJKo0kkfKZhYX1kcjgX6Qf9FJi6tcwiQm6xj8hcad6Oi0znxSRYXvavgxElLkgPbts5au40tiuoXlLaV5qBG1CYSPNtHPKPONsddwZmMB9dyFZv9TYLUipO++8E2eeeSbuuece3Hbbbej3+zjuuOOwY8cO6zmPP/443vrWt+L3f//38eCDD+I//If/gLPPPhvf+c53JlpXTcnQyvicqxEB2kp7yXYuGCpZzEdVUrR/Bm2fQzeTVnMAXmEcMo+UXH1JD+PI6Zo1L7SLqy7xTyf97AB6fXPtJGrSDJIwjrUAphkhhSbQkeF7WUgHZaGahWm14e7LaZAgufnOoRjOl35kWMeCoZiYZFQn7SVSRDoVwviS7URZGUT1LG+HCm2Ia+NimFAOfi1FaXERUwSpoGT7xY3LwvhcZYvHhwzdsIEUMt9Peutt27YZn06nU7x2Rdx9991Yt24dXvOa12T7Xvva12LdunW46667vK/zwgsvoFarYY899hi5TpPAgP0fVDFWaF5Smlesj7zv9+t+hBRQlO9S5mty3zXBqToBUowQw8p7nkdKynsyPvCFLPjqqomXlGKA4MQUyx3IveL7yFUZ8nkyQrVXIU9mm9Y/I6T2QFqaE1NckWFGCKC4+p4kqUQYH8lzIqh4CB83SNA39Sg3ShQD4ZnsT+V8ZeODBt+xo41DxQAxDDEFmKHUpmzXDQ8aZN6uiaOqrGfyfhJ4z3veg4ceegi33HILbrnlFjz00EPYtGmTtTz3in3ggQdw3XXX4bHHHsM73/nOyVWyEnwG9LB5lobVGF33c028q5JfwyrVWh187i3JB9oniQjbtaSXk7y/FgYor8XJJ05UKdfrI1lN7ykA7R4SoukpJJ6vdA16S5DJ4jdpOfp+DslLhj7zAGLz/9XgmGwhhRp8iCmqp+wH1/OSYY62e2q/y6B5xg2DcRFCuxirM+TcfjlgV/BXLQWFgxCuuuoqbNiwAffffz/e8IY3qOdcccUVOPDAA3HZZZcBAI488kjcd999+MxnPoMTTzyxch2qumBLRV+7ns2Sbg3tsKy0N7YQDo2I8gGV8x1NUWy1mgPIQjl4D5IiwsM4itb0jthOwjjkinuU3Hw6JZxsic2NBOcDU6TTq4I8pdYCiXKyGoXV9wqW8whAn1SbedF6rqT0ignP55JrZ98tAHOtJIyv2WUqRfJZyDwLGgWLLpBMvCmkwxXGR+Fptkl4v540yxnaweEjRHkZ+nfgY41vD2BNgCsToAN+IR3Jbz2Mj2BLfpucY3ZGlZX1tHDAAqq+x9PyBxxwgLH7wgsvxEUXXVTxYia2bNmCDRs2FPZv2LABW7ZsUc4oot1u4/zzz8d73vMerF27dqT6LBVsHoS+0N4BI8v7KrJ+2LkYTaJ9YFnUgqDJe1vYnk3e89BsWszCoOk78/rqqmSUYKsiLbSLuaSAnE6aQRqqTWF7LWSeUkD6f294Ss2imPA8Qj4x7yN5D8wnKz1p8j6T9QBaubxPvMeSEdNg70ha8KKRZkDNCb9+1teU8zBBB3I1vgEioG4ubOEt57nsLivrmj9IGZ80Ih9/fXEssic/z9tgD99OLp8fI4wiy8eCYXS2CTnmkFfsPffckxkhvvrVr2Ljxo149NFHcfjhhxfOIa9Yjs9//vN49atfjSeeeAIHHnjgZCo7Nkyz713N42mY+vgIb1eZcRNSssyk+thF8siwtbQObSQGgWeBhGD6NZI6pqvzAUjeGDPi8xskmgEXVHwcAcCs5V0qd5SNuyqhZD5967pe1QTjWgif7Otpy7FhYav/sCF7S4wh5/bLAbsFKSXxwgsvAADWr19vLXP33XfjuOOOM/Ydf/zx2Lx5M3q9HqaniwOz0+kYXgPbtm0zjo8yESnLL6WRVGpox7CEVBkJNQ7DTlUoVnOe7LZov6XJd8dQVPJlwc2QDrKkzzJFJbOeU3Jz7hXFPaaYotLr2+0s5CW1hggp5ilVCN/j1vNnicraDrvw7AH96aKnVIGUAnqtGSy0Omiu6mQtpdwiDXTRTRU6s0/7BiHVSRWZZMw1slX5AN6WYm4pnnNkYuAKCWC+u6RikqKG4Ykpgm01vrxa/nmkxo4Bqvm6plV78sknDdKn2WxaTgAuuugifOITn3Be9kc/+hEAoFarFY7Fcazul+j1ejjllFOwuLiIyy+/vLT8rgbpASV/FzyglN9jkfdlhNQoRgg5W9D+B63n9ivJe5LrJsneBw/n4/KePpoBooGO6SVl84xN3wMLHd0AAeReUmuFrEeU/79HUt5nZ65FosjwpTJ4bqkFoO8gpVbnv7m8N1fh66OBZkZQcflORFSEATpoFowQXNZTHsE6+mpuqQx1VLfS2saZtl8bX8IA4UtMATnBJomp5DRN/uvGCHmcw/aucF2nFFVlPZ2D4jy22Ww6ZX4ZyrxiNVJKw67rFSt1A+33JLRApwAd4npVJmV0/Ukq7C5CSobtyXOqtN9Gammhe9wjideNjAW9nJTaCiSE1D8hzwXI70eEx5p0+5/Sz0xahha64OTUTK6fUTWyLqD68veFD8Y9PuWYkJZhnmOJjrssDDaCqiphJC3TVcY73XcXJamGnNsvB+x2pFQcxzjvvPNwzDHH4BWveIW13JYtW7D33nsb+/bee2/0+308++yz2HfffQvnXHLJJaUKmO7ZVM1aXhbip4Z2sLwiALI8UoAZxudFSFUho1z/5y4lxae8As1qzr2lcmt5JyOoZNieTkSJ5Oa2cL0dSF5CFLo3SCzn3GrObR3kKTUrQzmawvLKFYvVSJIfZhYV/kKjjuwjeRnNGlZ8zMFQTnKCKk96nih5g0wp4QSVDNhI6pcTUnki3E6qkuThSmXeUt7QTvcdZ9JaTsctXlM2YgpIFJRs6XPky3/z9hnEIopkAmGYpLY5AVi8llfy8zaqvYzSecratWu9PZHOOussnHLKKc4yBx98MH784x/j17/+deHYP/7jPxbkcKFavR5OPvlkPP744/g//+f/7DZeUlUh8wfaFsnwkfcjEVLDGiCq6AeeMwsfed/MjBB5Xikp78lzSjNAZMnN29C9pEjud/LQPdktpLpQ+N40l/WpvAdYCK80QmyVK/DJh0CfGGjXTEOEIKSS39PotJuJzK/n7V1QCCou3+uMkOJGCCnrXd5SxjP29YKy/S6DS8Zr9VGIKYBC+RYxiKYMYgrQZXuZMYKgyWnXu4ISztvOsaKqrAcm5hm7Ur1ixweff4KqoXvDYhiFvKqXlCyvEVKu47510iQ3h41403JMsXx/REphHjnRRMaFHitPBA0nv7YhDfZOyxAhRQxUOscvoMbKTlvaxevtSrxt65PIo4xGcHESqey6LnCdZ1zeUqMQcuPy0hoDhpzbLwfsIk/AH2eddRZ+/OMf4/vf/35pWWmhj+NY3U+44IILcN5552W/t23bVnihA+WeTb6raWmWdQ5tn5bYHFCWAZ+kxVyWqzKKKHTPy2peDOPgPgicoJIhHQUiKksHO49GW7Ga0zcpLp1kO24D/UExwTnACCnAtJqvAuJWPmGNMEj6aDUU6/k2mK6wBHrBCiVFKifMa2pxdQPzczOorzND+DhBZfpw9Nn+QbannpUww/jKvKWStqZrh1QdQ75luLWc6iAVF4WYyg7X7QqKHrbBlLPsOsNbwHkYCA8V1MJISjGsglcBe+21F/baa6/Schs3bsQLL7yAH/7wh3j1q18NALj33nvxwgsv4HWve531PCKk/uEf/gG333479txzz+qV3AVRJedUUp79Z4o8Upq8B1Au78dhhLAZPH09pASGlfeadxRfXZWWeZByvznooGXziuKGiFTeL7SLNntphMhCtdmHy/sGOkUjxNY1yAO95ZXpjvNIlKDZ3FPXIfN7rRnMR3001lEIXx7GR96xC0xW8QUYuOynY0k4n7kaH9FV3FsKqBiqTRjF6OVhgDD2pdu0Kp+U+wAML1lgOGPEMNAWweCeuiqG4SHSc3w9Y1euV6xLgFUlbXaWdmgjeDSMovZVIaR8Bm2PfffhR0i5ch25zoFyjiSqSBYT6ZR6KW0FTEJqe34sqzsnncgAsR35Kn2crKKk6rPIQvh4lfq8Tryemq5AvzViytWPVYWKrQ5ExlUZ+2WTiLKJhU8IYVXvqV0ISzC331WxW5FSH/nIR3DDDTfgu9/9Lvbff39n2X322adgtfnNb36DKIqsis+obs0crjAOHy8pI+F5ajWfOCFlG9gaKSCPjziSaAWm5Bb2MI6iUlIM26PV9zgRlSe7beteUhZFxUZIcav5+nUAaHnwlJjqFML3ekBr2iSm5tajGM6hEFPtadNTqgWVlMLcNNrRLJqtLrpN8pCaQR7yOFsYjXLFOer/fAzmYXzcWyo5Z0RJOMx4k0QoKSV0zEJMuRQUjZjKb1dsa5m3lAuuMJDKis8A5urBPuUnhCOPPBJvectbcOqpp+LLX/4yAOC0007D29/+diOc44gjjsAll1yCE044Af1+H3/8x3+MBx54ADfddBMGg0Ems9evX49GQy5fv2tAk+e2HIKuMq68gyPL+1Flvna8qodUhIIRgjC8vO8Y+/IE5x3VAJGFac/BzBvIw7VJtnaSUG2tyZyQWkNyfjUyed+vC6+aVgysrjEjRA15uPYCdMGWfvpwE1LMO7YdzWKh1UXUTPqPe0nJ0EfpHZuXraODJproFIwR9GT48OT5mYyOqqL/DGuMKDFAZMeYrCOfA/qX0cK3Ad0rymZgdBFIvkbJSqgq6+kc+HvGBq/YccOVaFti2DEzCglWlXDzJaRc/9wa6SQ9nHyZatc9SJ7yNsr28gBtTiylq6FiG4D1yMkeTkhtU64l20Er8S0gD+OjetA101C//rTStIh9bGQURxlRo2kyLpCQ5YSdPCbL+YxHm4eU/D0GxdLrOrtgCN8uNLdfauwWpFQcx/jIRz6C66+/HnfccQcOOeSQ0nM2btyIG2+80dh366234lWvepWaT2qp4VJQjDKMkMr2D0tI+Sgm41ZSLOVsXlIUquETxtHICKhi2F5uNV/IP535xGpOKy2RUiIJKaakLLTNZkfsu7A0OCOnuq1pg5SaanWxuHraDOmYm06vQKSUJjwXAEznCopGTNHvrQCiFrZHa1Dfa5CF8SUW81lEGBTC+Ah8FNKqgQnyML466syaPihXVqrkG/EhqAiatZzuJ8fnEMRUcik9d5RLGVny5Le7mDXl2muvxdlnn53l8nvnO9+JL3zhC0aZRx99NMsJ+NRTT+GGG24AAPzu7/6uUe7222/Hv/gX/2KyFXZAC8kuMyhUu747bK8SIVVmfCgjpqDsH7OHFADrintV5H0T3dzAwFZXlZ/MAMFW1TM+cmGLDhD3TSMEb541VDsN4eu2poQRogOsbiVyfg8oRggK/ZAT8gUAa4vhe/KzNa1glCQ9z73OcjKvi25qlMhlO4HTqjY0APSR+HDSOUAe/px5xQLVJsXa2NPO5/8ecly6DBDyGv2cmALseQXzqpTLepcBwWacGMnbagRPKV8Er1jAXzkdd94eVx00l8Ey2MppQlt6C/FruNjmKoRUTynTQ5G4k2SVi1TS7uEiTvg16F4zrDzJZCKd6DfNzzkhRXmiZLsk8UPeUkR4kYcXtW17vr/wTq3BDN+zTYb5/bV2y3pB+e0L7i0lt6sQU0BxQgF2/rTY76qP1m5ZXw66vjaJGRcRpt2zAnaxuf1SomrqxJ2CM888E9dccw2+8Y1vYM2aNdiyZQu2bNmChYXcw+SCCy7Ae9/73uz36aefjl/+8pc477zz8PDDD+PKK6/E5s2b8dGPfnTJ669Z1V3gYRwyr4iXgmL7wHPbF2VKjsNqDsAgpICcGDEXse4KrygzlwgP15jJCKn54mcwnye71cgoHrq3w+wPErncMZcS3q5Zlf7gnlKrEnKDT24brU4ezrFH+mmBroJ8yXDulswEWR+5ksK9ppTP4twstm9dg+2DNdiONUZPkPcUqXW574HZ47aeLwYFRhmRM4iS4RhHKD57iSpEqHauNm4HyJUbPu5pf/q7lg9B1Pu5glLvDxANBgWlgtPHLvCQyDKFbyxw/a+7ZMCEsH79elxzzTXYtm0btm3bhmuuuaaQxDaOY7z//e8HkFjd4zhWPzuXkMpfi7a8T+7zq3lS2eQ9YCGk+pGbkKoq/7XxYRszProO//8XXlKZASLKCShOPPnIe26AmOFGB2mAIOLpBeQkFPeO6pjflOBcNosCMdYgXXWPe8a2ku9Os2HI++lW1zRA7AGwZTHYVemtwsNXeqUynn96W9dgfm5Ge+uhi2ZK381k8r/ob9Ys+FNJP6sB6sk7LapjEE1lxJRzHGiQ44fLbImB+ND5tg8vg+I+kvuJzE/kPs+VJZPt2/bbfpdhpPfBMLJ+QvKee8Xec889uOeee3DqqaeqXrHXX399Uv3UK/a+++7Dtddem3nFbtmyBd1udzIVHRk733hdDZMgyXwJKdeAKyOkJGkiySWfOmr3IJCMdQknIo2IdCJSiq5NhBQRGjyom9dB3ptkOxki6Dr8PtsAxCa3Uqh74YDltw+JN6yA0K6t1W/aUpbuLTHucbu7/d8qWCJZf/nll+OQQw5Bq9XCUUcdhe9973vO8nfeeSeOOuootFotHHroobjiiiuM4//3//5fnHjiiTj44INRq9Vw2WWXVa7TbuEp9aUvfQkACorKVVddlSk4zzzzDJ544ons2CGHHIKbb74Z5557Lr74xS9iv/32w+c+9zmceOKJY69fEQkcQQAAbJ1JREFUWYjGqOeQ1XxJLOY+g3vEUTPFiSjmJSXzidjzipjLgfNQjkL4BgvjUJcE54oJKSsDZJbzHuuPQm6Remo1X42i5RzNTPmso49mq4s2KSn80yZFhb+spfU8zSvVRzGMT/OcimroRXm+EW4tp4lxVBh9xfAOLb8UfVMiXGpfljBcC+2ogirjj7/E+bbwjsq+RZ4pl8dUVcs5L2dWtfo53ugDiCuUX0YuvrsKysLwNIwk720LWIwi88tA/z9VEeWDk7yksm0m78kjykfe+xogVr1QYoBQ5H+/bw9wIAppPTc+0HaTkoPncqLZ6qDHc0qtTvuwvx65ssMFF7fgp+EccoELzWMqlfftaE1C+K3qp2RfnmeK6qStvsrlfeHxCVnPPWPr/UX068JbCqg2tnwWvODjjnvEUtkIxa7k5/bNczRP2ezW9fx/l/eHr4w2z9H/Yei9WhlVZX1SiYlhOXnFjge2gT/JCbVP/iUbRlHcNUKqSjkbgWQjLHzrqmnntr4lEok8nubZ/Yg4Io8mTij1Ya6ip9VXWmiImKJ2L7ByFCmRJjwnWZbJrmm2g3skST9e7d5afw6j8NE9uA9xX+zjIYnynaZBe678vKohdaN6LpaFDU6C4Xdccwnm9t/+9rdxzjnn4PLLL8frX/96fPnLX8Yf/uEf4qc//SkOPPDAQvnHH38cb33rW3HqqafimmuuwQ9+8AOcccYZeNGLXpTxKvPz8zj00ENx0kkn4dxzz61eKewmpBQlKHfh6quvLuw79thj8cADD0ygRjl8Jyy+XlJZeRHGQUuBAx6EVFXFZBQlpUxhIXlq8ZIC7GEc0muKfvM8UjyUg37zsL0mumh2uuV5pNppWzr5Nl9wSNoFZgDMpFZySUihidSrKErPGaDR7JqJb+nzLGCuyqS5UqcvAK6kuBSVCEBrGt12Ewut2SzfSBLSQcnOZ7O6aYpKB3k+H05Q5URVroDxFZoqh3YMMw55uTLvXQ0lxBSAQkhHctvy//WoojIztJKS3GCy5QNUcO+RsjK+pJUm70cipMYh8+X8tuzVpR3XvKSGlPck47Xf0gCRGRm4V5TNGDGwGyBom4wQNS7r00UtEiNELu/r6CdGF57sfI/0eysZIShMRENaESnvucxfzbZTeT8/l4TxNZvdLEyb8kzNsxWeip4+ecJzkucD6GHcyWMepHJyMfM4LYCHbmtjUZ7nq9OTcYHuob0LeBn5TohMYgoQhhRHfikX5LyOe9XK/3nbCnwlN6iOCcp78op1gc/bySt2ZWAUBdYVujcqVAFd8Ro+hJQrrK/HvvuW7SrwOY+IHRfJQcQUeUstIF81DzBX2iuri3xZ2kIFtqf3pNxVs8p7lusDRKRphBRta7mnfEjDqmGrnJgC25bEVBm0iQURRJPM9eQK4bPVawmxBHP7Sy+9FB/84AfxoQ99CABw2WWX4W//9m/xpS99CZdcckmh/BVXXIEDDzww83468sgjcd999+Ezn/lMRkodffTROProowEA559/fvVKYTchpXZV+EwsbLlJXF5SWhgHgHwpcC2HFDAei7lNllQZKSVlC15SKK66RGEc8rcZtreghHV0s1wjRtgeKSFSIaFv+lAfKoQUNW0awNqmkluEEVP8uWehX3JFJvrMzaLIrCgvUaqbpqwoystiNIv5tI8b9VxRkVZzGbBBE3GaPPMVmrREuEkbE28pp6dUlXdVcnEdtlwjWhdqXlPsGjbLeb7aFBX3VU6K1vYy0mkoJSW5cPCUWmKUPaeyUD+XvNdkviHvATchNazMt2GYeZk0QiD3khpV3vPfpvFhPnsXGAtZkEyX5BTJyAHbZlDlPYC1q2F6SBEx1TT/x61GiD2QruJERghbB6fKgkveEyHFvkneN5pdRug10+Tx9rAz7i3VycipfsEIQeM6y7uXektNa8TRMAaGKuVd5JQ87iCmABihiLb8UmXQVm7Nb1dcwa+Ovve1AVSX9ckNA3Z5VBGwk/qn8sWohJRWxrbtA43okqF/Gqmh5bKSXlHSA4hSxZRZaoicobrxbVmOE2ALSP7Ba6I45ZWixTFsfaSRRPwYtRPKNv/tQwJp5JP0nuJeCz6wEVBViamqSobrXpP6P/LAkHP7bdvMBPy2xdu63S7uv//+AnF03HHH4a677lJvcffdd2eesYTjjz8emzdvRq/XG1uu7kBKDQlN0fQN3bNdz7YcOFnNnUnNqxBS8n/N53+Pyx767eUhRb/7mdVcJjeXqy7xZOdmwlszbE/+piTnZDlvoItGW4Tt2YgpZjXXJnM8Snqm7vaSQhNpQnDeHYNcSZHKyhyQKCklLwb+nF2KStb3NfRaDXTbDcyvmkETnTSnlJns3FyVL1dUyFLOV2jKPXsaWSJcIA/tSAjHhNjJlBUebmGDy4ouwY/La3NCqoyYSsu7Qjqk5TzZVVQyXNCs7ZplvXIoXxvVsgKOGFkZYIfmBTVMaF+pvB+WkKoi86t4SJW84jQvKS1Mr4q8nyECiq2y2kAHs4N5NImEmoPuFcWNEOQdO0DmFUsqhCHvAcw00wUtiJgieZ/KfMrLBPgYIdIVlwDkoXyyM+PkeZNs12Q+J6YiAK0aeu0GFnbMoLmqky1uwVfji7J+bhq/k3r301oM0EWzYITQZH29v4g4KgnhkzLXJt995iFS1ymT77Y6CGJKM0b4GCKkzHYZIhIvtCG9YqvKeiDI+2WNUUKVhlEex0FI+YTtaWTKsLDlYpIgggjICSJ+fh96EvYyaLmxeBKQBeUziyLINMI9iPi1IvbNiSlbXbXf08qxUbyneKgfoL/jwI5JxVLWSaufT518UNX6No4cWCUvuyHn9gcccICx+8ILL8RFF11UKP7ss89iMBgUVkvde++9sxWwJbZs2aKW7/f7ePbZZ7HvvvtWqLAdgZSqCJvnk0vhcHpFaddTwjgWDWt5CSHlYym3/U9oE0ofOBUXM7cIfcswDhm20UyJqoZYfYm2eRiHzDHSRDdfbY+TTpyY4jmkWCJsow8hLOcpITUtCSmmqPSaRU+pBrpAqwe0potKSgtAm4JEAOvD4YRUi22TckI5pgzFpZVYz1tdzNdzMkquypSE9ZlW9KTu/YxgM8P6OjDD+BK7OveWypSVUQ0OrjEpCSqXYsLPdxBTgB7SkVfHL8dUUj1dLmiWdV/PKnbxataUoKSMBBfpxOEK7XN5SVUmpFwElEv2lzc0gWYEtkWAGJ88VJt7SQHmYhZR+k1yxyXvuWeUbZXVzADBSScu6/l+hwFCBkdkRggK1xMhfHGr+Myb6JpGCE5OzdWQe0oBuRIkO3vaboSQnlK0L2qh0+pivjWLRr2bvScXYHrHdpkRKH8HJEQUGR+4EcJceTWX9YNIGCCqYJSxCRTluJZHUNNxB+bvPATRlPk+RkX5DpBhfxppZYa+T0jWA0Hej4RJhQ0B5gB13dNn8k0DvExRHlbVq+r5ZCvXE9+07Vv/MvgKELqnrW7cS4pb1fuiHP22ebpq40cjkTgh1c9vFcnziJiSpI+ErA8PU9PqKbenLcclbESURkxp9eJ1s/221XWSmFTIYMWcV0PO7Z988kmsXbs22615SXHUaoY5CXEcF/aVldf2j4JASlVA1RCbsrwjVMamoBSQrbw0BCE1jMWcH/f1kNJg85JCMYyDvKZIYeGrMvEwPb4cON/Hk5w32otmHpE5FBUTrrzIdxWA6cjcjqI0bK+JbOUlvgoTmsny4GSbBkgRS/oArWndgt4GcisJfwFWDOEjqzn7LLYamJ+bQX0dKYEJObWAPGxDC+OjY/RNxJVMeg4ge3pkQS94SxXGRLGv0wuZbdVgI6mkgmnzmtLu7wjpAIZf5rsy0QRkHgql6CN4Si0RNOKpWMYkqFyeszZCqgAfQmpcMt825IaR+Sh6STXqHYucz5OZ2+Q994xSk5yTAcKWL7CDXP6TAYLJfMonJTN0RPUkbM9qhFgFdNIcgpysrmNQYoTgIduA9aGUyXtF5vdaM+i2OphfNZO9e0yZrnvHUt2pDP8GEqItf1OUeEvJNrggj5dx/TbvWA3aMfYeqCFdLZYu7TBGaCh6vJpEU5n8zz2PS1BV1gNB3u9UTIokWkqMi5DSjmmEiPaiKusn7o2k3TMSZfk5nCigOvFrcH9Z6eXluqcsb6sPeUvRSn+Ux0qTpDyEj0gffj1J7khvI67AuQiSKp5SPsSUvKYP6Ln7EkRlVmgbJkVAjQFDzu3Xrl1rkFI27LXXXqjX6wWvqN/85jcFbyjCPvvso5aPogh77rlnhcq6sTtIxl0aphKiKyAuLynntaXVvEoIh8tSXqbsl3lY2lCwmMPpJSXD9shKnodxdCG9o3IruRnGMcO8pQq5RbSPJKaktxQ1KSWigISUmpbW8tUw84usouXBzc6KkCwT3mu1ikoKkVJzQEJM2SwwrH6aosKt5oY1fRrtaBbNVhcLzYT44qsyLWSj0lRUqN70nXhNUaJ0It3yMD6nt5REmeJRZYxKazgP55CoQEzZVmbiKPOWkpZzvo/OHzqkI5BSS4IyQkp6ymqes75hfF7yvoyQcsl+F0Y1QDi8pMYh73keQasBgntGSXmvGSCIjIqQ5ZHHICGjpqPUK5ZkPs8ltRqZYaLbmgalFAdyI8RUq4tFMkJo8t5IpGsJqSA5zz1jHQYIkvfzrSTpOS1yQfKHe0Yl3rIDQ4ZxcsodxpfI/UE0GM1bisM3B5LLO1aT/yU6Cy14AbjzSyW3lp5P+YWlB63MM5aPj4H1mBWBlNpF4crTUwXDeEmNCs2rxoVhCSnpYcTLSXKnJIWF9f4aSWRTZGz14/WZQS5UNe8q7Xlxzyp+L+klNsPKkHfWAvJE67Oiipx40vp8WnzTdWV+JC4oIY5p9/MhbcqIKVe9ZR04EVWVmPK9T9n9UfGeE8KE5/aNRgNHHXUUbrvtNpxwwgnZ/ttuuw3vete71HM2btyIG2+80dh366234lWvetXY8kkBgZTyhp5DyrSKa5CTmLLk5tYwjnFbzMsMGYRRRghTUMhLqtnqZl5SMmxPt5J30rwhCyJMb8FQTGi1PUpunlnNOfEk80fxvCLKu4rnuo7qQC1CljMKq5Bkv1XC9yg5uLH6HrrJMuEaIbUHq0cbyN11LSxhGTHF34/Z71amqKCekyRSCZk3XpjmcWlNT5CH8Q2QhnjUO4a3VISE7Bka2rk2wknu9w3pY+BKipZfqgxlpFOek0pXUpJ9Hjmmegik1IQh5brmCaUdt5FQQ8l7l+GhiszXfhPkXHoYA0R2TPeKHae8n+FyXxog5qDLfW6A6ChNYsaHKLIYIdahEL7XqTdTeW8SDY1WB+3WKru8n6shIaYimLmlgGxSLGW9FqKtyP/FVr7IRRImLz2gBplBgteZoHlPmUjkfr9ez2R9NCjJLaWByviuxsfBDQxVId4HmsyXi10AdiPEAPWs/2whfEPlDSRUlfVAkPcTRRXldxyhR/wfwuWlY5sYEYZVHrX7l93bRthp5JTruho0oqssXIwIIun1pNWR0mlwbx9+L8oBqyVA1+7Ly3DSQ8stJfNKkXSK2Hmyr6WPr9zHX9JlwpXX14ckdBFTYPuAYh/7oApRWRX8WfgQU0sURrgEc/vzzjsPmzZtwqte9Sps3LgRX/nKV/DEE0/g9NNPBwBccMEFePrpp/G1r30NAHD66afjC1/4As477zyceuqpuPvuu7F582Z885vfzK7Z7Xbx05/+NNt++umn8dBDD2H16tV4yUte4lWvQEoNCekJJY/x0D1b7qjs2LgIqWHJKBtRTsdclnNtBHH5lykoAyOMQ1NMeNgeKSgzaX4ouRS45i1FoR0zc71i2J5mMe+j2HfMi4ZeBTVqDxFSq5Fby7mSkiW9bWQqGJAnvm20uvbkt6tZHdpAvupGuiKHfFay7mUW9CgJ65iP+qivGxhKCfeSMilT04JOigqtxqchCfGIMCCvOAqHsL0Pyww38pjUCfi/FH+X+pJg0qMq/V2FmNJCOPgx+TsvlyspQ63At4hqcecrZUXuMUGT665j9CxVEoq/D0YhpMYl84uNTSBlvQ9BReelRggp73lyczMsu5q8LxogFvSwPZ7snJNRXFYChizh/MN0xIwQtrA9Ct9m8j7vijQ0MRrohNQccnnfpvxS/CEosBkhrB5TNfQiCuPjC1sUvaRIthO4L3fyO/+Wq/FxWd/vL5oGCJteWAZf2c3vU0ZOebwTxiHz+2nv2AwTtC3lvS083KhOVfkd5P1uiqpq2aQV5XERUn1lv42Qquqt4kO08PvJa2uE1CyKyhDSfVxmu0LhpJcUvwddq4/cS4pyWsn6EXkFdp6Eto/3vSaYtedUhaTh9dMiPDSvKRvoftJbSqurC5IcGxayzfJavi+qIbAEc/t3v/vdeO655/DJT34SzzzzDF7xilfg5ptvxkEHHQQAeOaZZ/DEE09k5Q855BDcfPPNOPfcc/HFL34R++23Hz73uc/hxBNPzMr86le/wu/93u9lvz/zmc/gM5/5DI499ljccccdXvUKpNQQkKEafFtLhsu3bRZ0Z6Jb84J2BUVuQ+yX++wNTOAiozg0i7ltSXChoPBvnkOEKyWkqORkVNfuLUVWc74cOPeQkhb0AfsoMrsWIZmUEinF80hxkird7qX5RbTwvXqd5RnhxBRt82dHipMW/CaftVRSIpgKS5YINwnji6IB6quKRJRcmc+ou6Ko8JAOHtpBFnQAWWhHpqzIceQai/yYTenQSCpJTkmlRSooGjHFf/YB14p8mkJhs47LBOcjh+9VyS8YlJSxwCXzc0NEXS2X5WAbNyFVJudd/2e+XlJl+1OvWACZvG80pRdU10vea55RmlHCyBuoJTWXsl/rJ6p+PSenapTYXEtuTkaJNMm5Fo6fGSEi6LKey/s+T3xOE1/W2S4DBJf3RE5lCdCnMT+XeMfON3l+qdnUuNBVPWOlYaKT5hLsKMaIOgYFWT/N5w1VUZVM5bKc5Lyvd6wS4l1GTNlkPveK5oYIHtI3lDcsoaqsB4K8HwnDhvAMM+h30bw2APyVBY6ysDpJEMkyvmopXcMnNIyXdRFSdP8Z5J5S0rtqhpXhRE5Zkm5eVvYRJ6RsY4+IGq3OvAzHLBLCS/OUcpFp/H5ViSnA7TVVBT5WsVHJIZu3FB0bBVUs5AxLNLc/44wzcMYZZ6jHrr766sK+Y489Fg888ID1egcffHCW/HxYBFJqTNDCOGwKCsAmsqnV3AqppPgSUj5klPa/4quguFDwktLDOLhiQqswmcltTWt5nleEKSXMuj7bSZcEp6S23GoulRStLwFzokqPRRJS3FuK/24lOSmkZ0SdKWHWZOekYKxmdWmjCC7bbcpKJLa5stJuYn5ukOUbyVfhM1fmy7vDXKGJKyp5Gd2CjjqM0A4vi7YGn9AO6hcqq+WU4vevYDm3/XvKUA5pHU+qWs+25fGRlJTk4oGUmhA0eS33y23uGUvnFJKfC3nvNEAkF/EjpVzfZaiiCygemMn+ZHAVvKSEvOer67nkPYXxyUTnRkifZoAgo4PL+KAsiFATvw2DAzdEcK/YVpLkvIsmk3v1/KnXB0ArBlo1U97TN8n7OaTEFIVtW55Rmbzn5FRKTC1GeRhft56vwjdf8IztF7a5B5UZ2pcvdkGEFcn6LOk5nzuUyXw6XpWQ4uV85v7aO6ECMTWom16vQJGkSk0y2X7uEcUJq8qGiEBK7cKwDbxhlOUyIexSkssm9FUhr1fVU0TzfrJdU/7zu+o9DqJA3pNAXlIz0OsQsTILsCccJ68mF2knJ/M8hG8G5j981ecow/moHpQsXRJMtnpqHktl97URU3xfGVxE0agY9/U0jOiltYLn9oGU8kAy0ci3IbYLqyoZZYrHCgSWr9XcRzkpI6N8DB++yom2L0LBS0oL42gyxYT/bhQUElM5abDflPQ2299eTJYEl95RffbNwzgkIaW1jTylpOWcf7NPkvS2+IypnUayc66ozKHoLQXxW+tzTVHheUek11RUw2LUQKfdQD2aRb0+yBSVDhpopEqGr6IyQD0jqGjS3Wf/MYNUUenX00S4dVZv2ec+7yqf+R8nnzRFRIOFMPO1nCe7imF6MsGtdkwL75DXU9HGin1xLSU0BVLKdYKNvLJ5SRlwyftJyXybTPGdGWQyvw9bcnMu35voVpL33BhBn4IBgjykZP4oLve5IcLVfukVyz2lVsNb3ieX6gOtDtBqFUO2pbzPvLhK/qFd8l71kK2h126g224UwvioRzWjg5T/HTRB3rEUvk2yqqslPef6Fpf5PkSVfEZl8lt6S9F9tAUvbMSUB1xJzYE8VFuG8LmMDd4EVVVZDwR5742lUFJt8PGS0v4BaF8VxXeUcDhfQkqrTx9FzyC+bxjyjl+Xf7vKANW8pIiYkiQSeVDxcaMZFHh9XAQQz1fFP7Zk6mVeUq56yAlE2fiRxJQttJBfi/+uSkzxPpXEFDD6/6lr3E6KBNNQcv0VPLcPpNQYYQvdkyEempfURAgpl2Limpzz/0nX/6dqMafv3EuqLqzmzZSM4suBFxUVc7tZIKI6WQ6SzGquJTKXnz50aznVnU+iAZOQarEPWctXwyCn+nUzU0dyCZYsPOqjx6+zWly3JZ4N95aSfcwhFRVpPTc+02jPJWF8pKiQwrcATTmxKyrUroGhuORtVxPhkteUrL+GgaOMbQzz95ckp/j7UCooFYmpYSzndGzokD2JZfQy2tWRjWmLXOeescl3ZG4PK++Hkfm+8/wyWe+aIaheUkWv2GHlvZbknIftZQYI8pDS5L6tH9V2pN8aIUUyXxBTXN73jf/xpL1T0QCL5KUq5b7mGet6bto44PJeyvrMY6qVeUtRGF9ifmjCrH1xm+R/0qZ+9l1PjREJCZNKOSnrpbz1NTzI9koQ2STL2a7vQ0wJuGR+cqviaqok17UQPnov1rPeKnrKliLI+iWAT9iepsgvUQLkJUHZP6kPIeUTtieP+/R9GWHA66AJfDNcuZhLij4zbHtBHOdKz4w4rtWHE1acjJNEFeWVmkeyAIatL7Sk4QROkhEpNMPKR2JfGfnI2+AiprR62RKgA/4vA82jSyqrw6BsHPkcr4qK3lMrVN4HUqoCNC8pm2XcpqAY5ViyWwCjE1JlZJTPhNeHjLIhm9zbk93KsI18OXB3GMdMqpiQskIfw2oureU8lEPrSxsxxbe51ZyH63HPqVTRiFtJKIc22aTJfrPVRZtCOjghpSkpBKqv7XnYFFkbKTUHIMrD+Mx8I5xS81NUuOWcKypAOu5ZItzMW6qqTPcZx5Jg0sgpiSGJqUFUr2w5T/aZHlGakjKUwhIwEdjIQ7u8z6lbOqbnDqxASA1DSsltDb6yXhofpBGCeUmNKu/zEL0FmGF8zEOWwvY0IorLen5MCxHjjzZi+zghJb1jWUgfyfuOkPlchmYr8GmElHwvAUViykbea3Kee8gash5YbDey/FI8jI9CtzVI+d9lRgj6Tjyt+vmbgct6kqXSWOCCi4hy/eZynHtLDauzoLrM18inpDo5SWWbG/B3RMCugjKSpCwnT1WUTbhdnkXavmHUO+06Pu1xEVK2sL2+KE/bPsQUv4arfvwYf3HZ+mtGfKZRFMiUBF27jk3oaB5akfjNSbs+CoscZXUpE2q21ff4bwrj415J4wInX8qIKaDYHjkh8Qk1HAfKCLCApUDo8TFAs4zTb8AkrriXFAAjbC/ZMWGLedm7q+r/YUFZiaGFcfAkt6So2JYDb6BbSGDOyalmpsx0MTuYz63mtvxRLuu5kl/EaJcM3ZOJbw2refKMiZgyFZV+MjqiQaLEybxScxDJb8UzcRExmoLCP4qSgrkkjI8rKt3UU0pTVLQwPtpP30RI5avz5cuGA0kiXMOCztvgCx+l2zYvICWpCinG3ps1IFNk6/104KTPPELRY0pazpPigXza1ZE8M7kvyo7Z9vMVN21eUkbY3jgIKR8yykZyjDLnEvKee8Xy5OZV5T0P4yNySl1tT1vEwiXnAbusl23iXrGroa+810zySZl+pPkFqb1RNCgSUlLeS0jvWI2YkvKebxc8YwHMTaMXDTA/N5OtvtpIQyltodqcuOLt6jI5T2RVPZV4nXoTTXRMWU915u0o4194v5TlFHQZHWzwPIcTUy6ZLz2kXCF8tH+oFVcDJgRfYThu5b0MronKUnhnlYXtaXmjeDlJPvWVfeOAJKfkfYhMsq2mxnNJrYWeU4qInWm2La3Yrm2NhIKyr4c8rxTVt2rsbpmXD38x8txYVA8JX28pAveachFTYPtlHV3ElAat3q57af/zNgLMRWaWtSWgCsIbcQhoCooM4+BElE1BGfistpdcfHhSSm7brg+UW85t1nJ+buYllXgFyTCOPFTDDNmw5RGh0A1OTvEVmWbmernVfE58u4go2Sda10uruVRMeBhfC+i2ppCsvFeHqaD0QaErjXoHU60uFvkKfPRtI5/ayj6XosIVFm49zwgp+i4qKpxwSuqeLyHOf/NQjqQ6A+Obh/F10QTqHdSjQW5BpzprbeHHbPtcY1oq4aO8I+jcdHxEWdfwkA5JSOWhGwNmOU9+58pMUFJ2bchnwWU4YBobbPv7qDvkvQch5ZLzNplf9X+Df7tg8ZJyJTfPianq8p6TVbOYx+xgHrM7Fk1CSgvhow8P09aIOd5maYTgsl4SU+n7oNuaZvK++AKJMEhW4KMVV0nWS89Y+Zx5fTV9ho5r5BSRUnNQnlcL3WiAhWz11Xw1Pg4Zts33y20qS15UTXSzML6Ct9TAuImJstVVq4xpH4KqAiFLxoh6P5H5/brp1USerkkxewhfUr0g43ctuBRwbVuiykTbhUmPCS0/kYSvokAYJyHl8w8pn4W8nlZPOoeTSfzedD0igLiX1Kyokwzr68Mevif7RnoqaSQaUFyFL0IigXgsVwR9LEoQkVXWr5riMS6ykEihcRFTdM1xwYeYonLDIhBVVRDejp6QCofcn/8uD+PwCtuzhZzB8RvKt9zWUEZGuc4zPrmXFCkojXrHSGoureSzWMi+TWVkwaqsZEuGUx4pntxcrsREfaNZzrU+kG0jQkrmBOG5RjLLeQNJou+ikkJKWqKoiJAOUlCIRLIpKZpiBaUMV1Loe075DQBRK9nFFBWqLyejklsmqzZp4EoKeU0RmuiCQjsyCzrgzhflAi+7xBEPPiEdMp9UnckEbj0H7EqKn/JCExdfLKe8F0sHmQ8QKOaP0owQWnJzgMt7T0LKJfe1b7ktUfWtrxkghLxvtjpotLqGvNe8onzkfSbfmbcsGSBqbeSyna+2J1fZ0/rP1aY626cQUIa8X52E7vXr9Sx8jxNTRrhzfQBjxdXVKIbvrVbqphkiJGyyXnpMMWPEYjSLDr2jmwPDiJDL/NliO5CXNVfi6xsEDZ1nyPph5iSATkjtpLl9lI2VxcT7jb3eeWh2BFqZsGiIoP10jgzzc6OqrKdzAvxhmwDbiKuya7lQVbFeitA92z3Ljmnkio2QkufIf26fOY88T9tP95Sr6Wl5fUjwy9A9m1LAP7Y8UjbIZOScAOEkG5FT0/AfKzIkkEAru1aFRjpq3lKSxJEkjC8xpUFaZ7R6jQpfYqoqtPb55pVauXP7QEoNCZlThH/bFBdr2J5mNSeMg5SCsi8S+4cho/h2uuKekdyc5RUprrbUtSgvXSN3lE5OLaA56BTzSPHfAxS9pDQCgx4j7wOymBMpxcP3FDIKLSCOkufbRYPZmaP0cvlkvo6EsEMklgqX3lKa0UAjpnzJKe4xxd+pcwCiJjrtrqGocDIq6SbuSVUM4SM1nEI6qL18NT5uQY9gCe2oonS4wjoiUWaYPFYEoTP4hHRoYRwyf5QZ3lFVSQHsGrerfEAVSBlu7osKZQqyX4TtGfIemBwpxX9rXjYu7yg577btt8h7kgc8bK+KvKdyRFg10UWz080NEJKQInJHeklR+weiDVp7gaKs57mkWuaxfj3JJ8UlonnJ/Ei24qo0bEh5T/UlQsol611jQ5JShjGihl40g07UR6PZzEL4FgrEUuJBJT1jk2MDVsYkthLP2EbucYYemkBCJmrGr1HFF5fvvIzUi0aR/0jeVWUyn8twmyGCxoSU8TL8u4iqsp7OCSiHpoBWUUptBM2ocD2/Kvfx8ZKqUpdRCCm5XeX+GnGgXY/vJ3KJSCcCeTcRsSS9pGgf987ps/0y1xSvE0+ODlZeCnAOSbrwNmjPi9eNvsuea1l+NNv5VcZaJL4Bk4AaNvm5bTIzLkyKmBoWK3duH0ipESBziCTfeoLzocM4UOE3YI5N1ziV/+NligpBklHZdp9ZzbuFvCKJl1Q3IzOkUsLziJi5ozoFS3oDndxqznOKSOWEk1Fym6OubEtCilvO+Sc93mkCXTSgeUkll81JnSSkgy0VrikrBKmocLmtKZu2j1RO+KddQ28uV1RI6eAhHDzXFFdEZDkK5eCr83FEctlwmQiX9tmgKZraOB+XjLbUh4ipgTWkwyTmJBHF9w+/Gt/KtaZMGlquLy1cm3tESXJqgCiT9wCGC9tzyXlfmS/JDdqnbWvQDMSKV2xTNTroycxd8p6TU0bYni1voM1LSpP1vA/4bx6qzeUw94olmR8lodpFPyI9hK8e9dGLoMt6LXS7D9NjVqszhybrpRGCvKUiGKuv5mF8RYODyzhB21z2k3cs5ZdSw/i0cecjq3kZ7f0wSY/ZtI6uMD7ykM3/Fg0RxVVYq+QUDJ5SS4MyYQjYvXxcZUdBVRLHZwI/al3kdhk55CoDVFP+6Tqu6/GwPU40Udlpdr7mJcU9pXg7iVziChCvByevXHARQCTI+bYPqKxPrid5T5LzC+KYT1vKIAmoYTymeH3KxvCwk38bMQXY+8C33r4vOn7dlTm3D6RUBWhWc8BUUJLvKNtfIK20MI6kcHWFRColVYipYRUSiG+moEylYRxaXpF8GfAOTI+pPNGtYRlnic3Jkk5hHwWruaacaH3o6gNORkklhSsq3GLOjg+iKUM5lZNNsjQ30UG9ni4VblNSbHXX2mLzluLlNXKq4C01jW67yfKNcOWjn3o8dAuKik2hIUIqn6Inn069WVw2nOpKcts33widp23LPuLKnW+y87IyEVDvAzKkg5QQSTpxIkrzitI8qNxoo9qEwScmKECCh1FK8slmhACKXlJDhe1VJaW034C/vLedV/jOvaQobI/LgGHkvVx1j4432sIAoRkiymQ9YM8baJP5PHRbeEsNonqaT0ono3hfJMnOe0A0bZf3q9nJUlZrz4PDJueJmMrIKP6deMc2Wl0s1A3TWbbdSBOYS6MDzyfYQCfzjk3kVp5fSg3j0wwQmnFF2wb8kp7zciN6SMl7aGF8uWyvZ31kS3hO0Lxk3agq6+mcAD/4ekuNQ/mbZIJz+c8kw6p8oXlAacclGeQioWzn+MJ2nlYHICebuKeSbIvmJcW9p3j5iB0D+5ZeThD7OenD99O1XYQHkTdViBuX1xO/H70sZthvQCemRkUZMSXLucCf77hhmyBJYlLu4+BtqPLcOFbu3D6QUkNCTiK00D2DnBpwi3mF1fZsiolLOfGRIdoE0QcFQgqZgtIgQkqE7RExJcM4tG2ujPBV97Ljgw4a7cUiESWVlAH79Nl3WZsA3Wpu8ZBCKzkvySdleknxSaf53U/ySkWrknv6klKat5QG1xjSSKlUUVlsN9CJEk+uqK5bzU3lxFRUNKWFKyhkM+40G0lCXJ70nCsovu9A3/FedlzekxSZkv8JCukYRHlIx6DOk5xzMkoP4ctv6UtEcaxca8pSQPtfzn+bi1cAQE7D515SAJQwbYyXlAL8/geqyHtphHB5SbGwPZ4/sKq8bxjGiPnEU6ozn4RpS0JK85SiPuFGCQn+GHn7JCGlecWmn14T6NSbBYKSfyeXZZ6xlFfKR95zUqnsnSWfpU3Wc4JqDkBUQ6/dQLfdQH1VboDQvWN1L6okXD3xiqXvpIvzML56vW/3luqjGmnkk4PQ91pV7svGjC7zebt1QwSA7D0wXLLz4Ck1GfBBIHPm0D7XeZrn0BhZ0Eplx0VI2SDDxZaSkJKga/Jr8/2ciNJeZhC/ifiRCc5t9dRWaCO42ibD1bTr8fA9n2tKAkR51oV5tZbIW5JT2j1GgSSmZH2GJSnHjTLSaynk6sqd2wdSqiI0qzkP3dMSnEsvKWO1vXEku9WUc9f/q2tC6xoRUjkBigoKC+MwialBIYyjuK2vyES/ZzCPRruXeEm1xYeHb2gWdA2SA+BWc/rYyCjaridKCi0Jzqkas+tMEieznlMCXKmkcKWEnosM6eDPRYNNQdH2tQG0i6vx5aM5CdvrpiSjTVGRYXxJtybLh1M/FJKecyWF2uPyjhr2WFWreVnZehLSUa8DtBpfPXGdyogn7hWV5xnhIXymkiIVlrqzQa7BPUyDAiRkknPpBanJeUB6SaXyHkjkfXLi6KSU9q2hjIzSSGp5LNs2cwc2WrnRIfeO0sP2fOS9zCvVaC/mXlLaSqr84yKjeD/w31zm+3jFthJCYiAkYNK9ZIQQ8rE+SPJKRZZwbd93va0dsqyN5BJGCLTzXIL1pts7Vjc6FL1jZRhfF80sZLvgLUUyv4ohgtqqbUvYjA1VIN9FQubTQhe5PNcNEfQ2KF7el6CqKuvpnIByaIKxbDIsy46zLhy+RNekVDlJIpURUny/i7SqAu6xxokoF9kliSbNu0USUVQuYt/82jI3lJa0HGKfhiqeclwBcJWj+/M6i/vI5jhXC5wUuFC2eUtJaATWUqCKDJBwtdM3wfvKnNtP7ewK7A6weUXJfVqCc+4lVQzj8LSat8V3VSVGjm9NuXHBZmyIAJnslsI4TGJKKiF5qIa2wp5KRqXJbtXk5rKfuIcUb7NsD5BMVOvIcoV4KygWJSW5le7xYigrEa3KpNyD5zPhH14//lu2SbZXG09tsd1GYkFvN5Mwvh0z2WLs3L9B/u6ima2HyNPZ0zYlf6cVqmgJ9X69noQ8klJYh9kW/tsFaidf/l1rMy8jwzvlPuqbDjuuKb/pdzRIwvjq/UVEg6ICp3nKuckmZOXKG9+r8Jnsi+v555/Hpk2bsG7dOqxbtw6bNm3C1q1bnedcdNFFOOKII7Bq1Sr81m/9Ft70pjfh3nvvnWg9q8Im76Wcz/dHurxvT1eX4+OS91WhEVUk71tdNFodNFtd1OuUK7DP5HxR3uvb3WyFvdwzNpcsxuqqczANEDaCKn9AOVzGBpKlXK6Tl5T8Tst1W9OCktdD+JJuTEtFfaAV2+W99rE+A8szs8l56yfNJdhuoDswZfcCZtFFA/OYyVLTd1P5v4BZy7sgf7KJp1Qq8+tNU9arxi3o4ZXUrrJtLttt/cHlPJ8raLKdtmW5gswfpDLf/AAoyH6TxPN7B5iNqSLrJy/vlxeor8rC1mxlNUzC80Ne0yYQbF5S0+Ljcw+NkOJjrA9zvGnbfVTrDy1s0peQ0nJJae2VBBQvXzb55KSXvA6/T1moF6+HvKf8X+6LYxx9SzlR3cJtZOiillerbLzY4BprMgSSb/MKav1WxYtoHB55O0OO7lpz+6XEpOj1ZQc56eyLKYYsV/CiKlttT5tQlikf2rYLdNxX3spJozzW6oF7STWauXeUVFAoHMNcVSnPE6WRU7SPh+3ViJDSQjn4JJJPJF3tlG2mibO2EpP8pOW7relM1ZLEJKFggW52c+s5KUZllnNY9rmgjauIfWdW83R7robFqJEtG55Y0PMlwrXkt0n3UXifOdnmk/IOGsY3eUsB6euIKwRkodYMmGXtrbLfB1QfyzW1lZkG9TzHiJZnBOCeBkVrugzvs1esSsMm++J6z3veg6eeegq33HILAOC0007Dpk2bcOONN1rPeelLX4ovfOELOPTQQ7GwsIDPfvazOO644/Czn/0ML3rRiyZaXxsGCiNq+gKaoXs2I0Rp2F5VcgqObw1c3vfFtw1W4wNg94qVK+qZoXp8FVW5TWF7hRVXKWzPltScCCmZ4Nym59vC9kjm22T9KhhGiDgC+vV6JutdhFTBMzbqA5ESwjeMvK9CTnG5z2X+HIAoSXoOIDGE1BmRlnrHFlfmK4Z082Pmd9JLnWYDQBfAYq6G8DHJf8u22NoI+CU9Jw+psrFvg3weYGF8/dxDlntLcYnu4w2l+1HJSlSV38tHUZkcJAkVwfTMsfWhy2NoGGjnDatQa8q9jVBweW1oJIhGQJXt579d4MSOqz62e/HrSJKIBA2tjMd/SwJmBok/ZMzuBRRJpzKSxofEcZWhe/P7lREQ5JFDn1p+iL/3jPfKNIC1JfUYB1weQ/xF4Av+3CftPeWrPHMM0yZ+v11nbr+UCKRUBbiUxGJ2HWY9L4TtpYSU5gHlo6hA2ebfLrgUFG2ia7XWJgrKdKuLZquDRksP1chXWuoWVlWyKSsylGN2MI+ZuR6mKbE5J6QGyBUU+i37Q05StTaWJbzVPKaaQNxKlBSmfuREJCMYktskR5voJJP5qI9eKwZatWpKCikY8pg2oZeTfo2YAkylZW4aPQDzdJ2muUS4DVKB0Za5jlhfUD832j0ztIOeIf27aW3klx6IclXlMyU+p3NdUtHSfLkaX71eXI+JPJ94aIcG/9X4dp2484cffhi33HIL7rnnHrzmNa8BAHz1q1/Fxo0b8eijj+Lwww9Xz3vPe95j/L700kuxefNm/PjHP8Yb3/jGidXXB+VqYtFbxvSSGmG1PXoPAOb/uSYPXPAhoqiclYxC6uXTMeR9o17MEyUTmXPvJ5e8p32UR2p2h8UAwb08uaeUq122tsrQPc1TVbwDklVWm0zWc/+Y/GZmCF9C4E21uliU4dqroT9/gvbe5+1yyXybvI+Qr8bXBhA10SWiUeSXmk9lvib3aT/JfF6G55fKwpi1ML6B8s1B7dPGvE+OKQ3y/4HXpQz1/JuH8UXRwMgtJQ0R9A4g2c/L+cn7qrKezgkohyShJDGlldd+ayTOOOBL7Li8o0a5p0Y8aSF5chvw64cq4WzSY0q7lvSS4kSSDLFzrbpXVmcaJ7w8J7DoHj4TU+lR1EvrQu2ke2nQwttI+FtC+DicxFSEhMSbEfcZlhDSQvY4OTVsYnDfc8pIZoKtTT6TKQ5JwPkSVbvO3H6pEUipiuBhG8lvk4ji+waIDKt5aR6pYcLztG8NfHI3jMWc74sA2+pLPDyjoRBTPLGtlmfETHJOeUXSPFKapVxTUFweUnWYHjj0KDVCSiGhJEnVUfNJFe2e0r0/zyvVAVotf1KqzcpQvV3EFEEba5HynX2S/FKdNCyTVmhyJTvnCgwnpHji8zz/SJp3xJUIF+JZuca39j9QJTqCylfNNV6ipHDlzKakdLNLJH3jv0x4mUaulQe2bdtm7G02m2g2mxWuU8Tdd9+NdevWZYQUALz2ta/FunXrcNddd1lJKY5ut4uvfOUrWLduHV75yleOVJ9xQTM0DMR/QFKu6CWlynvNEFEm+6FsQ9nmkPJebvNy0jDB9yvynhazIJmdyP1u5vWqyfRZtqqeDM3mMn92MJ/nkaIPGSM0j1gZfkWwkcyaASKC3VNKvAN46F6VkO1GM8ndtCiNEH3oMp8g93N57yPrXXI+85bSvGPzFtpWW+WesfTfkVSrGMLGjRD1fk9Peg7l2wfDnMPPtRF7Lcd56Tm0Gl+9P1C9pWyEU/Vk51VlPZ0zGTz//PM4++yzccMNNwAA3vnOd+Lzn/889thjD+s5F110Eb71rW/hySefRKPRwFFHHYVPfepTxjtj6UGTBK4Uc2LKBV8FdxhUvYZGSLkSnfvUXYYGucLntO0qIOLIVU9XKCAngfi1eD4pCU5Y8QTnzLuo1DOJE0D8N3lj8XbY6uEjB3yJDE6UFSMajFuS3M0MYJKYIkLK9/7DEKFE1kjPRBt546PsVIUtRBDQ21GVmBoGw83tlwMCKTUkbG77Li+pkVZf8iGl5DbgVkhscFnMIwCtnppXRK6wJD2m+JLf/Ld2jOcVaXIiiisrpKBouX+k9wzvBxnKYbOa25QUds4gmkpzJ+lklASf7DdaXUxFAywafQv78ya4jvE2UVlpObcpLIVP0YKuhXPwtsnQvrqhoBQT5XbRTPqVQjuovpr3k6+RAXBb0X2t4i5wMpN9SyVF85bSCMvhVmSqOgFMOuKAAw4w9l544YW46KKLKt7bxJYtW7Bhw4bC/g0bNmDLli3Oc2+66SaccsopmJ+fx7777ovbbrsNe+2110j1mSScRggp78vySI3iGSu3CT5GB4jjNlkfATxsr9nqotHMQ69zQ4Q0MohVU0UeQdNQwWS+ZoAYoGiIKEtqrrUR0D1iSeaXrLxHoXvCBwqSkIoKcq4PyivVkyF83MigyfR2xfZpkPJek/8wvWOjphnCV8yP17e+C2wyv44B+vU6uq0BsjA+eldHyjdgl9Mu79gq7wjX65qeDYHL/PRYrQ1ErcRDlgwRxbDt/Dsn7xqeleSNmkSOouGwXEK1E3BhSQpymQDlRI322wWXF5a8hs8zdIXr2drgmkzRWCsjpMZBRmn9oO3j99MIA07EcbKJE13Su4cTUlo+KHkOvxcvKyfcWt15GR+hzesh28v7gPc/f6bcM6dmDmd5e3oPGcQUhTkSyFuqyiTcBlcYn60slPuOg6AqG7M2cqqqQl1GsGnHqs/tlwMCKTUipNXcsJ4XrOYRKntJ8f1Qtvm3Bk7K9MW3Bim4JEHVMvOKkIJC1nKZT8SW5NydBLeThXE0OzCt5rbk5i6CBsgnsbLdGiFF+7ilnB9noXuDSCqodnJKTtbr9UHRei4JIq6wcEXGB/w9yKERU3w7+yQW9Hkgs6A30nxQRb8RXYHRLOhUhpYRN1bjawE1W26pAaurBtovFRZbORekx5YN4n+Q5xrh3lKkqGhKyvBYQLW1KpJJxpNPPom1a3OLmMtL6qKLLsInPvEJ51V/9KMfAQBqtVrhWBzH6n6OP/iDP8BDDz2EZ599Fl/96ldx8skn495771VJrqWE5hUliUPDg0qV97DL9FE9Y+0VL8p5OZa1bZsxgoXt1aOktXx1VSnHbavqlb4LaCELzQBB/aCRUWV5pDj5IOU8l+lc1ivh2rlXbEYzGYSUzSMmC9tuddGOBshWXLURUtrc2+cd5zpHk/n8fRIhW321E/XRaDaZnG4U5NQC+4+QMp9v01YXzewaxmp8TRT1Kf7ts2Je2f/FKPN1TkxJvZPJ/HrdbYjIw7fzlQn5iqzlqCrr6ZzxY3mFakuFN4JJTNE+XsZ27lKjindUWcJtSTS5SCgfMspGLGlliOCxTbbkveW5/HqcMPLJ+UREi60Osn0yMbetP/nzkP+HZeNFElIaqcavI79pDJPAV/qhlJjSoMkTn2fPb6aRZhq5NCwBPylKw+U5xaGRifyYb7uGm9svBwRSqgJsOaOSY/K3YjX3CeMoU1bg+LahquXcppxEAIVxUF4R6g2NXJrFQsF7ihLbap5VxbC9xST3hLbakkxwm3e8vT+09muEFFdQ+Op8nJyK0kdarxtKCgf/zSf1hkqjWc/lM+fhejRJ9iWmzAoVFVWNnDIUl2ksAui0G0YYn6aAcAVGt64XySw1jI+eyUDUs87qX8bl+P5v2M6VY4XGFbecM4t5BhbGx5WUOnJPKKmMSOWFh/SVV7RKA5Oya9euNUgpF8466yyccsopzjIHH3wwfvzjH+PXv/514dg//uM/Yu+993aev2rVKrzkJS/BS17yErz2ta/FYYcdhs2bN+OCCy7wquO4Mcj+6fVjmhGiVN5XJaFGIaU0ee/adn7iwuqq5mp7RTlOIXwzwhtKljNCtWkhC80AIWV//jDsfcLnulq4nouc4p96fs4gmmLPnOcOzLfNKohAv2hgesYOa4TQiHnbu91GSGkEVYRk9dVogIVogPqqXE4T+IjX5HmRqCoaITr1phnGpxkeuAHCZojoW7ZH9YKV4O9c/i5modtRpBsiJPK+yJHnmXIRVFVlPZ0z/nDt5ReqXZZTSuv3sjxSmqJtu6d2XQ1l4V8+Cc6rKMZlxJSs7zC5q4gMsl1DuzcnjyQJx72jONkk2yzJq1nkCc61+9tApBP3rtPqBnYdVz/ZwsX4MZ+wUk76TBfn/mDbfB5bSkxVlUFy7NuEuS3n1zAyz/UyHBWarLDB9b9WVpfh5vbLAYGU8oQtLMtGTlmt5mWKSdlxOL4lOPmgbWtlXYRU6iXVIIu5JWzPFsJHlnNjlSWR9JZbzael1ZzIKK1Pylbas1nNgZx8ksQUKQXMWs6VlUEkk95G0MgpGcahWs+j6XzCq1nQef4RfpwrGUC5nKQyfLKvKS3UPxGAKEK33SwkwuVwKSpmGZPMSvolD+Or99umtxTVQ+YfsVnQbWF745LZnISS/3/ssetKSm4/T4rbLeV+HlQ0SfNF9U7Ya6+9vELpNm7ciBdeeAE//OEP8epXvxoAcO+99+KFF17A6173ukr3jOMYnU6ncl0nCS7nZX6pUi8pH8ODVgbKNv+W8JHxGiHFtwsyv2OE7ZF3lJYP0MwjleeQ4qF6WgL00ryB9BmIb1c/aBNwzQDBySgu64Xsj6PEK7YjQrVtIbfy/5c8YxutDtrRbOIZa/OUonsDblmvtZvDJuM1Mir71LDYbqDf6qA7aCKqax6x+TZ5zmresWVGiG5rgGiwaPeWon22JOgSoyY+d3nHav977H9H85ayhfABvvJdVmA474Fxh2svr1BtSa7YckppCiYfDK6QO59JmbyGdh0JST65yCjXPSXp00NCtMj9tI/XtSxM0NYGWV9JTmnX6TnKyheZTBxO0EL4uLeUvGdZ/aVXnUTEjrtIJZ/n5RpjGulG941RJNtYMcDUK5zElC2MT2u/bUzQua7k36MkP+eKw7AY5hq2UFRbG8vuH8L3AizQJp58QjqU1VxTSHws6RDbYPsIkdg3KiGVTdT7mG51jbC9MgWlmEfEVFjMc9JrpVbzrE/aMHNHkZeUS3GT7ePEgWynjZDi1nLRJ3FLT3rrkxdIWs+nW130Wk2gXcv7mysn1D754gBMy63WbgmpqPDtLIxDfDsS4XIyKmlbEsZXrIrbgk790m1NJxZ0MuRyRYwrKFKJkW3UtgFTceHElu+8keokvKPSRmbfvkpKFzCUFY5o7Nbzyb24jjzySLzlLW/Bqaeeii9/+csAkjwjb3/72w3L+RFHHIFLLrkEJ5xwAnbs2IFPfepTeOc734l9990Xzz33HC6//HI89dRTOOmkkyZW1yrQjA70PZS89yGjNHmvfXNoRIwLGjlVkPu9zCu2HuW5o2xhe7ZtnlNQlfe2sD2S9Vq/aDo9tYnnJCL4EFLcK7bJtutJ6F6n3jRkfXKrfFuCy/nkdz9f3KLdMj2lXOSUj6y3gY8J1zgzSKqiEcLmHauF8Zl9YDdCRNEAneYiWvRu48+Nk0R18S3bp7VZ266qF/CmkMxn3lEGYWj1ljK9YKn9SXV0ua+jqqync/zDtVduqDafKNtC93wIKdfz0YTzMDmYCHQtSQoNSxJRfTRCagEmOUX3kfeU16J6aIRDpGxr15DKOc//JDHNvl3X1cpNQ/eS4h8b6UChU5LIlOB9Mgo4MWgjp6jfGAHE3ysEvl2JmBoVkpiS9ypT5GA5j6NMXmrPyvaC4R1VlhNuHNh15vZLjUBKVYQkHmhCWim3iEZCVQntANz/O9r/kfZO5MYBGyGVfWJMtbrZans+uaO07Xx1JiKnzIS4mdV8B0yLuaakcMs5YFdUbILYRki1YCou0kuqiSx0j9uDCeQxxcE9pJLfg8x6noXwtab15011IFQJ4fMhpjTlRH7DXI3PZUG3KTA2Czr1TxcN04IuiShXrimtjRy+VnRfxV4qKXyfp5ICkaulmpICmAkvfctPDtdeey3OPvtsHHfccQCSFZm+8IUvGGUeffRRvPDCCwCAer2ORx55BH/5l3+JZ599FnvuuSeOPvpofO9738PLX/7yida1DJqcl3mlrPK+PV3MhaRt+8p8wByzUtGmfb7ElEvWZ95BplesubqqPfxahmJzY4T2LjBW29sBcwELLvOll5TWJtovOSJqr8sj1mg7+0SUOzAP3csWMVHISolcziXyXw3h4zKN7wOKnlJae7XxwMGvz2W8JKO4EQKzqhHC7NaBuj9pt05aUZ8AyHIq9prpAhfcECE9Y12GCD4H0PrE9n7w/X8h0kz2Px1LH70tbJuH7OVyP/nm/SEJPRNVZT2d4x+uvRJDtU3CgQaD9JpynUvwUQp9JxcEOdjluTInkyzjym/D66R5Q/HtBRTJKBf5JckGfn+NkJIheJJ4oPpIEkkiYsf5tu2FEUEluYxTJCkmPa1sz5TXM0JO5Ghjyofg8BmHvC4sdI/6zsZzDEVMcQEqx9Yw80zXc/Ill0YlisahGGiw/S+4sGvN7ZcSgZSqAD7xLC4R7lqBqWZXUtrwV1IAXbDYCCnXxMtG0tg+PIyjbioYUimRIXkyPC8P3yiG8TU7XbQ4IcUVE9rWlgF3yTOt7VqeEU5IKUQU749BVEx667KaE0xCpp9bzymETyqIso1aWIfsC60fJHyJKX7+XCtbja9AyGTt0z2lePtlrqnCcW5B15QTzYJObZJtBPTE51xR4/ukks/vx7dtpCC7R5mSIoPApJJSjl3rxbV+/Xpcc801zjJxHGfbrVYL11133UTrNCokCUXfhtzn8r7dLP4vuWS9S+ZDbIPtA+zyHiiObSrj/emnyc1ptT1ONpkeTzZZz/NKWUO1yQDBCSmS9dw7tkzG8TZq+0jOa8SUlPV1FAwQnSYP24sMec/HBYGTMBH/f0+JnsVWLyEvpZynDzdC0DiR5ar0AZd3mpyXcwDU0JubyYwQXNbr3rEDJsf0cnx/drzZL4ZsS1mvfVObZBv5tzREyP8J7ogq3zWROJ/3P0EhqqY7SJK4q4aIfBwk/TZJAwSd44+VGapNz0ALf7Ipu1XCqEZVlG2EBz9W5rVE+2W9aUz1kay7KUkoTlBJksV2HxmqpJEWZWQaXYcLumnkYWO8vfwFyK/pys3E60HE1EyxuFF3G5HE7+tLNtD5PfZN9eiJurj6WdZV1pPqTyF3NV0OUvXlYwMcxBTVmZNt9Mx8QxHphrwPtHL8+mXXnKQHE++4snvZXlIEW3v58V1nbr+UCKSUJ8pDOBxW8ypKitwGzPOB4jjnEzmw7WEJqYLFuJetvkQKCreYS6VEU0KaBhllElc8j9TsjkVTMeG5RTgZVWY5r8MexsHbyxWVltgvk5unSkqvyUP3eMLbonJi3tqcjGbKCoXw9etAX4yXltimyTGQjxUOl8FBooyYkudGwOLcbLZsuMwvRZZx2taUkXnl5a95j2WJcGVhmwWd6inn+TJZunZMwkZWaUqKRkwxxXdYJcVv2XAfLV2WDyiDi4Si7y6aRXnfbiAL22vDLetH9ZIahpCS39onlfdTbLU9vnBFkxFTFJqtGSLksYZGXu1omwYIHrqnGSFcOrxtJkP7pZzn8p4TUsxDCi0K057CAJHIJ1X0hkV2K/l/rHnGDkzPWM0IQZCE1CgesmXElEFQTaM9lxoYViPzjpVttRkXykirzJu2NTBDtqmuUtb3YYbwae86SUjJ/x3tf8MnStol63kd60CzAwyioiGCe8fqnlOu6XhVWU/njB/LL1SbDygXOaWdQ7AphVJ5LXvONkhvItonySjbP778zUkfvr3APlT3GZikkKwP4OcJIoklW335dTghJgkpeT7PIxWJYzZCisrXlOpQP9j+j3yJKPKO4uF7tC3D7WZYGVvflIWLam1dADBrzi1s3SjJ9+ydo41BXncq4+NBKHMtaaSTvMc029buBQxPTGn1tIUVasqBrW9c9xmnvF8+c/tASlUAzy9C6iQAeFnNbZ5SfNvXU0qD3O9LSGlKibFPC9vTLeacjOKeUzLxLV+VKVN25OpLfehWcs1LSoJNENVj9O1SUFrsmCCnBhGyVfc06zlQzEPGiRf6nZ0dMUVFW4VPviQ4IWKbLNv6RYKPK9vHUFjM/FIUckGEE7VpAbmiIi3mthwkRsifLYyPkuJqFvTkInZFBbCTVvy3XOVPjiOupMhnQ/1E2x5KCvUJV1LyPnFp4nwy4IPl8+KaNHhSc4ATVdxLJpf3vXYD1sUsfAwRw8p7GyFlMzyAHdeMEFExbK+YK9AMzdZyRfFjxcTmljxSUubbPGLlv4TNAEHHXAYIKe+Fx1S/niQ41zykkurYPWQLhBRyz9gkhC8GoloxhI8THfw3yZVxeEzZ5DydlxFBdSO/VN62pE2JzM/ltmy/JufNPkmJutYAQBrGR22m+srwbY2Q5ahiiODX0zxiqS5lsp7tq/WBRnsRA2GIkAaIah5TVWU9nTMZLJ9Qbc0jgUiDsvA9Ot/nHsN6cNjIKPptyynF781ZXU5ocI8o+mxD3mZJRrnyNNG9OCRZoRFLWoghJ8kkeSQJAO36ZaBrkIdUZB6iqhdyWtlCEG3Q+ss2XjRPLbVSYrsntum+nOihMmnCcy7zXfohyWCa//fp2rygy4NJ8wbibdCIKXk+v6cm9H08qGx18z2m1WMY6kSSia6xs3Ln9oGU8oCccMpcEpnC4rKaV1FQMpdJmAIEKB97UjnRjtG2TUnJJsMx0Oqg0eqIsD1OQs0bJJUkp3KFheeR0hKbp6svDWDmE5EeUZpSYusHOYHk3zKUgxQUrsBwki4lp5JVmKYUEkrzpIvSW4pcGuibk9P6oKioSIVEKpHcom0jprT2u+BDTPUBtPP8UgCMnCMLhj+JbhnXj3G/w1TJScP4mhChHVwRl/8nQPHZy74Yh/zWCMEIpvLSgVVJoQTnmnJifrtM+FUTTo4jQeXKgfzfLhDQqbzvtinJXK0o212yf1R5byOkZBn69jFCtDpiMQuZtNzMHTUj5LsM4XYtZFHjfcRD9TSP2LK+IGKK/+btthFSUt6LDxkgci+pvIN9FrWIhKwjz9h6NMBi1IcRsi0NEQRORpUZILgMdJWxyXb+OwIQTWMxGqDTbmZGCCmnF6CTUQtGuVnjWCHvIA/jozrSM+Kynggj+i7rByjlqkTNAeVesX3khow2snyCjXYP/VV1YYjQjRHlGEZ2T07eL59Qbd8wGd/8TISyf0DXcamslpFRvDxta6F6fJs+LkIqgplzSSNZ6HpE5Mn7gZ0nryVBHj1Uf55Hyha6Z8stxcHby8twzyrlNIPQ0Z6XD2lJF+b9YyNB+bMZZZLKwwLpNwutk/KezxFkU+V7yCCmAFPGyAm5NhYlwSaJKV4Goiztl+UnmUuKw4dctv1fa8ShSwas3Ln91M6uQBVcfvnlOOSQQ9BqtXDUUUfhe9/7nrP8nXfeiaOOOgqtVguHHnoorrjiiqHvzS3lybeSstnHai4VEb7tUmJc15JKjA9xpSkrLGxBX21PT2AuvaNycir/zcP4pGJT7w8SqzlvMykpvM0+CopGvPEP93zixBPPMyJXY2KKm2k5z8cAoCc4l6CEt8l2bj0nRQVR33wO/Nm0lH3yuE351PqHQ1OKtXGajdUmuu0mOu0GugO+uHuzkD2G76dy8hg/PxtZ9Sa6rWn06Zlp5KEcxy7I8eMi4Gi8yTBSPj7b7Jod8VtcKxqkuaWyEaMnfI/EtxuuRriERIAvbPKevKQ67Wa+mIXNA8omx0eV9/xxavqQ9r/hIqfYanvSK5b+Q4urpubklAzh5v/VhYUs6P+J/l9kW/n/EWAnEvj/fJ19pMyXxFNZXikWpt1Fvupe0tV2j9i8KsUKm3mlUqHQiu3PxCbnXTLeV94nDXGPtYw0bKLXbqDTbmAwqBtyuluyPY9Zj3Lp6GhNo8Ofh62dfAU8VxtpHMm2yo8chzJ9AO0fiH38fE6oDtLVV/tANCgmeZBEpR+GkfVB3peD95MWUsWPaQSWra+r9r0gSADkA16GpMlt7VxNedaIKElIEXk0A2At26aPvJ+NYOqjmItKklvaBJXO7Svl5P2koON9UObBJK+tVYXaID2m5PV9SRFbOWqvRna6BLgrZJITW33kzzk2bymHrnVugFwmZ22RZKH2fHlZbWwD5vOU/aqNMZ/Qz2Hhk7fKt6ytHJFqLaUsYeXK+kk81Yng29/+Ns455xxcfvnleP3rX48vf/nL+MM//EP89Kc/xYEHHlgo//jjj+Otb30rTj31VFxzzTX4wQ9+gDPOOAMvetGLcOKJJw5VBy1cT4ZyDPopcyGXBK9iObeNN9e4i5C/U1zwUVAiwBW251p5SYbulW53urnVnE/uNDKqrB/Kwjh4myUhJb2m+MQ43Z94SYGF7kUFjylf8AlqxBSVJIQvgre3lI/1XMI1iadxxPtbs6QjCePrAl5Lh3OLuV85JYyPW80jpb70/Mr4nDJFV/aHBq3v6+I31XNQ9JbihJSppJgr8pVXcGW6+E4SfCQDFnmfecWyxSy43FoKec/L2MapS94b5LdP2J5tpdViOe4xy4krI2yPkwCawq/lBQJMOW/7H41YWUk+2RKei4+U9UDRay6pXh7Wb1bBDFPm4Wq5Z2wfiKZNGS+3payRcof6oQq0fuNy3tiuAVEexocWnKuvyu1GKtPc5Qb6anz8mz9vLZTP1Vb+XaVPZP/Qs+GgsZR6xtq9pXKDFMEMbyxjEHed8L3lg7J+9fWGsV2bnqnLy8LmGcWPcWWf9tuUc62+8gUjSSlJSPHQPZuHlLbNiTtOKEhPJ+l5FsH09uBeUho54QrbkjmANHAipWYpQ31jg4/6TONH9hHE70gpx68hvYMI2m9eLzovguEtJW8lT5NN4+/G7Dybx5QGOkl6T9EFeRv5OTbCU5Yft6zTrifrJvu5jJykTuf/V66yK3Nuv9uQUpdeeik++MEP4kMf+hAA4LLLLsPf/u3f4ktf+hIuueSSQvkrrrgCBx54IC677DIASXLG++67D5/5zGeGJqUAM1yPQKEcVi+pKpZzm3IyKiEVoSh0bAqKV9jegqqEyPANXVnJwzjq/cU8bE9YGw1CiuZyfE6n6e6uMA761izmmqIiQj0SLyktdE9XP8xqFZUTw2NKU1RshCEpJbxNLvCxo5XlY0cSPbSP7kfKUASgbYZ28DA+WzsjDNBhSopNcTNW6GsC9X47D+Oz5Zai+tIzdP3P2BReV58MxH6bkkIEmaKk0Ep8lGeEg+cc8UOZYNDKB1SBNjK5V2zmJSXluybvbR5Sw8p72pbH6NtFSBXkvjtsj3vFNsQ7wDREmB6yRpJ0boDoo2iEkDIfKB+yNtnH5b6NkNLkfbqthWlz6Ubgcr7MSzavWp+F8LE8gpyQIiMql/OSmJLjJq+ICVsfaWNPI6ZI1gPoRKksdxghzLYWw/vMqjnC+LicJ/kr5bCWS5Daw29b9j8l5b2U9QRphMgbYvZZB6hFQL0ORANpiMj7zi90z6cBtnMC3ND6lRR4TnyMGiIkr0+Q3iNyf6Rsa3l9CJK8IOWWe0jNo0hKRSh6RtnC9qRwpv7ix12hd1oIngw1o+vyjzyP9wHBRmL0lTLsBamSLj3lXIlhVGhZR5kXykVM+UB7IdAnfS58bsLbbSOm6N1EyOSgi5hykUecnNJINHkNF7RzhkFZ/1IHuQgomyIux/U0/DylfLF8ZP1uQUp1u13cf//9OP/88439xx13HO666y71nLvvvjtLwkg4/vjjsXnzZvR6PUxPFwdVp9Mxlqfdtm1bti1JBnNqEaHbbpheUpJoasOunGgEFWCOS5/JuY18cJFRBUIK0JYD5zmh8uW+zZWWaD9PfJuvwqSHcWRWc9+wFYI2j+CkhGx7xI5Ru5vimxQVJdcIeUmZS4NX95CSMKzGqadCu18HWlEyjqSSAuQvknF6S9mIKfrNX2C0DQBREz0gWzqcW9Al5lMvqTLiRVrQAZgrNFF9IuWbK7RcaeHtcCXCldD6hVDGHxEhxZQU8pZq1Lvoo27QHdXRgzvnlFY+wAcyNJfvJ6/YLJdUW6y4p8l7jZCScg4oH5Pa5JEfg3LMJfMjeIXtyYUp+Ip60hBRDOfOF7LIwvbKkpvz/2Ot/fRYNAMEb7PNAKHJe7bdaZph2tJbyuYdqxsjTO8g7hk7iOrFPILas7J5SfnCNdOT8lT1jAUQRYnRDVCNELLdcvELb8/Z1gBADy1er2G9peT/l3wf8L6xEVHyPNn/EdtH26lRgntLFcP2q8j8qrKezglwgyu0klwhVCEEqHzVfZJg4r99yCgOTkTJcL15ANtRDNlbC2ANEgJpFvbk5vIfjRM3gvgwEonbPK64oOH34ITWtOVcCW1Sawu3EiFlhUvHyBPBa+GcEeweVj510yDzSvlCJtDWjtPYXkDWbvnYfOYU2jspG4fa/SXp6EtODQvXdXyJG17OleTcpnDzl5L8/6BrzcBNSq3cuf1uQUo9++yzGAwG2HvvvY39e++9N7Zs2aKes2XLFrV8v9/Hs88+i3333bdwziWXXIJPfOIThf0L27oYYAELiNFBHR1MoYMauqihjQj9wTx6c4vo7YiBdgzsqCUT7TkAO5D889K3nIyThZgrKL7hakAua0hYLKafqfR7gFx28ndGPS3TSOtBXqYLMWr1eTS6C4g6C2h1FlBHB3W00cB21LGAGuZRxw5EWADQQYwFxFjAFOYAzGOANoDt6KOLHhYwjQVEmMci2uhQD3Y6qO8AuqSgdNP+6sJcIryf7qO68/wPZd4uHDFyORGnbe+lfdMV31S+jkSGTyVFu4MaFgZ1dDGFBUxhHsljm896YDFtcR1tRGiD8m/U0MUUuqihB2ARA8ToI84EVnJ0atBFvd1AbaGDuN0A2tP5+KA+6qb1jlF8F5EXUU30z6LSH112Dj9XKgBN5O9Iun8TwGrkCnYzRmehg/p8B7VVXSxiEYPUEyhGDzH6WbsHaWv7rAe66f9SB7VspK1BFwuoYxbTmMYiZtHATLeP2fkYtS6rk+ybDjvGxxAfR1XGjyQzuQdUg/cBciW3kf7upN9tAKsALADxLNCZ72F+1RTamEYXbSykY6WNqfS/o5b3ybZECeRJY3PsKKm8RKe8yAoG9THJ+2TkJhKugxrmEaGHBfQHQG9uEYs7YmDHAGgvJI9iDqbc5znIaBxKAp4eiSRMbaBxGKefRZgy30fe0/9MBKAXo9abx/RUB9PdNqJBBxHaiDCPCAuppEs+wAJqqWITo40pbEeMBdQwhxjz6KONPubRwwK66ageYAfaaGNqRw+YBxY6QCY4u6yfOmyfRk5Jkkob9nI+GrOPr7yfAuIaMF+rYWHQMGR9N/v0sYA+FtDDAnqYQxNtdNFBBx1MZ7J+EQP0UikYpw+ilr4FauiiPt/BVKeBxYU20Jk23290s0Xk8l7OCQbiQ3LeJe9pTtBBIqu4NxKRfSTrV7Nyq5DJ+v7qebTnO5ha3cVUPanoAIuYTf9jkpbG6KGGAWIMMrlexywiLKCOBUxjBtPooIM2mliNLmYxjXn00MQMZgYxZjp9TJOs196DXNbzedQiivOEsjEkDXc2ArOBnHii/GMN5IRmG4lOT9/zQG8WWOj2sVDvo4MF0IxqBxrpmKlhAXX0tiUPbjyyHgjy3o68j+eQT3YUD5pSAkgDL1sX+1ILFaaRDGJ5fMB+k/vfNEzGlJMMHJIYaiOZwLaREFDbkbR3e/oBcuKIW6abSATjVPotwxPon5KuTd/8urSCMK8rCWPpGdUX15mDufxmlN4zFufIf2A6Ti9EKkvXJbKMv5jnkzaS/KcqogfghbQ9ZPmdR/6iJ0KPSL45pT/4fbm3gfS06YvjlBhxCvnzBzuXytIE2EVK0bimCchsWn4G6Nfy7plCPn+QrMCAHZ9i/WREpdALikJBJblGBbUxy8HL83bx80j50RRk2/W04/x82YfyOiRLuVwgopTGKBF+HNQfPESW2jBOeb98ZP1uQUoRajWTmY7juLCvrLy2n3DBBRfgvPPOy34//fTTeNnLXoZvH/Cfh63ybokYyb/EDgDP7eS67FrgPfP8Tq7LrgXeMwE+IE3cbxz96le/wrp16wAAjUYD++yzD7Zs+Wzlu+6zzz5oNBrlBVcgnnsukXYrUd7TaAwgBFlvAx8voWd80UeiyG4D8BtnyXHJeiDIexu2byfy5OM7tR4BuwhW6guQ2v3Czq7IykWY25vYLUipvfbaC/V6veAV9Zvf/KbgDUVIHmyxfBRF2HPPPdVzms0mms1m9nv16tX46U9/ipe97GV48sknsXbt2hFbsmti27ZtOOCAA5Z1G4HQzuWEldBGAHjqqafw8pe/HKtWrcr2tVotPP744+h2/TOSEBqNBlotl9vwysX69esBAE888UQ2SViOWCn/OyuhnSuhjcDKaOe4ZT0Q5L0N++23X5jbLyOEdi4frIQ2AmFub8NuQUo1Gg0cddRRuO2223DCCSdk+2+77Ta8613vUs/ZuHEjbrzxRmPfrbfeile96lVqPikNU1NT+O3f/m0AwNq1a5f1PwiwMtoIhHYuJyz3NlLbpqamjP2tVmtZvIB2JVAfr1u3blmPKcJy/98hrIR2roQ2Asu7nUHWLx3C3H55IrRz+WC5tzHIex1T5UV2DZx33nn4i7/4C1x55ZV4+OGHce655+KJJ57A6aefDiAJvXvve9+blT/99NPxy1/+Eueddx4efvhhXHnlldi8eTM++tGP7qwmBAQEBAQEBAQEBAQEBAQEBASk2C08pQDg3e9+N5577jl88pOfxDPPPINXvOIVuPnmm3HQQQcBAJ555hk88cQTWflDDjkEN998M84991x88YtfxH777YfPfe5zOPHEE3dWEwICAgICAgICAgICAgICAgICUuw2pBQAnHHGGTjjjDPUY1dffXVh37HHHosHHnhgpHs2m01ceOGFRq6p5YaV0EYgtHM5YSW0EUhcfI899thl7ca8q2CljKnQzuWDldBGYGW0M8j6pcVKGFMroY1AaOdywkpoIxDkvQ21WF+PMCAgICAgICAgICAgICAgICAgYGLYbXJKBQQEBAQEBAQEBAQEBAQEBAQsHwRSKiAgICAgICAgICAgICAgICBgyRFIqYCAgICAgICAgICAgICAgICAJUcgpQICAgICAgICAgICAgICAgIClhyBlAIwNzeHs846C/vvvz9mZmZw5JFH4ktf+lLped/5znfwspe9DM1mEy972ctw/fXXL0Ftq+Pf/Jt/g1qthssuu6y07GWXXYbDDz8cMzMzOOCAA3Duueei3W5nx7/73e/iHe94B/bbbz/UajX89V//9eQq7oHrrrsOxx9/PPbaay/UajU89NBDXudt3boVZ555Jvbdd1+0Wi0ceeSRuPnmm7Pjl1xyCY4++misWbMGGzZswB/90R/h0UcfnVAr7Kja33fccQdqtVrh88gjjxjlytq/s3DJJZegVqvhnHPOsZZ5//vfr7bx5S9/eVbm6quvVsvwsbyUiKJIrc/v/M7vWM85+eST0Ww2UavV0Gg0cNppp1nLnn322ajVath3330nUf1lg+Uu64HlK++DrDexu8t6IMh7jiDvx4/lLu+Xq6wHgryX2N3lfZD1OYKstyPa2RXYFXDuuefi9ttvxzXXXIODDz4Yt956K8444wzst99+eNe73qWec/fdd+Pd7343/vRP/xQnnHACrr/+epx88sn4/ve/j9e85jVL3AI7/vqv/xr33nsv9ttvv9Ky1157Lc4//3xceeWVeN3rXofHHnsM73//+wEAn/3sZwEAO3bswCtf+Up84AMfwIknnjjJqnthx44deP3rX4+TTjoJp556qtc53W4Xb37zm7Fhwwb8j//xP7D//vvjySefxJo1a7Iyd955J84880wcffTR6Pf7+PjHP47jjjsOP/3pT7Fq1apJNaeAYfv70UcfNZYafdGLXpRt+7R/Z+BHP/oRvvKVr+Cf/bN/5iz33/7bf8OnP/3p7He/38crX/lKnHTSSUa5tWvXFiYbrVZrfBWugL//+79Hr9fLft9yyy342Mc+hg9+8INq+X/1r/4V/uqv/gpnn302TjjhBFx33XX4/Oc/j7333ht/+qd/apT9wQ9+gC9+8YthaVkPLGdZDyxveR9kvY7dUdYDQd5zBHk/GSxneb+cZT3VJ8j7InZHeR9kfY4g60sQB8Qvf/nL409+8pPGvn/+z/95/B//43+0nnPyySfHb3nLW4x9xx9/fHzKKadMpI7D4Kmnnop/+7d/O/7JT34SH3TQQfFnP/tZZ/kzzzwz/pf/8l8a+84777z4mGOOUcsDiK+//vox1XY0PP744zGA+MEHHywt+6UvfSk+9NBD426363393/zmNzGA+M477xyhlqPBp79vv/32GED8/PPPW8sM0/5JY/v27fFhhx0W33bbbfGxxx4b/9t/+2+9z73++uvjWq0W/+IXv8j2XXXVVfG6devGX9Ex4Xd/93fjKIriwWCgHl+9enX8qle9qnDOmjVrjH2dTides2ZN/L73vS9+8YtfHO+zzz4Tq/NywHKV9XG8cuR9kPUJdldZH8dB3ksEeT8ZLFd5v1JkfRwHeU/YXeV9kPUmgqx3I4TvATjmmGNwww034Omnn0Ycx7j99tvx2GOP4fjjj7eec/fdd+O4444z9h1//PG46667Jl1dLywuLmLTpk34d//u3xmujy4cc8wxuP/++/HDH/4QAPDzn/8cN998M972trdNsqpLjhtuuAEbN27EmWeeib333huveMUrcPHFF2MwGFjPeeGFFwAA69evX6pqjoTf+73fw7777os3vvGNuP32241jw7R/0jjzzDPxtre9DW9605sqn7t582a86U1vwkEHHWTsn5ubw0EHHYT9998fb3/72/Hggw+Oq7ojYW5uDn/3d3+HP/iDP8DUlC6CB4NBwfLTarWwfft2zM/PZ/ve/OY3Y/Xq1bj66qsnWeVlg+Uo64Eg720Isn7Xk/VAkPcSQd5PBstR3gdZb0eQ97uevA+y3kSQ9SXYyaTYLoFOpxO/973vjQHEURTFjUYj/trXvuY8Z3p6Or722muNfddee23caDQmWVVvXHzxxfGb3/zmeHFxMY7j2MuaEsdx/LnPfS6enp6OoyiKAcQf/vCHrWWxm1pTDj/88LjZbMZ/8id/Et93333xN7/5zXj9+vXxJz7xCbX84uJi/I53vMNqVVoq+PT3I488En/lK1+J77///viuu+6KP/zhD8e1Ws2wAlVt/6TxzW9+M37FK14RLywsxHEcV7Km/OpXv4rr9Xr87W9/29h/9913x1//+tfjhx56KP7ud78bn3jiifHMzEz82GOPjbv6lXHOOefEAOL777/fWmbjxo3x1NRU/PWvfz0eDAbxX/7lX8a1Ws0Y45dffnk8NTUVP/LII3EcxyvKmjIslqOsj+OVJe+DrE+wO8r6OA7yXkOQ95PBcpT3K0nWx3GQ94TdUd4HWV9EkPVurDhS6pprrolXrVqVfb773e/G//W//tf4pS99aXzDDTfEf/d3fxd//vOfj1evXh3fdttt1utMT0/H3/jGNwrXbjabk25CAbJNd9xxR7z33nvHTz/9dFbG58V1++23x3vvvXf81a9+Nf7xj38cX3fddfEBBxxQcH8mLPWLS3t2hCovrsMOOyw+4IAD4n6/n+378z//c+s//RlnnBEfdNBB8ZNPPjlyG0bBsP399re/PX7HO96R/a7a/kniiSeeiDds2BA/9NBD2b4qL66LL7443nPPPeNOp+MsNxgM4le+8pXxRz7ykVGqOxbsueee8YYNG5xlnnvuufiwww6LAcQA4qmpqfjVr351DCD+yU9+Ej/99NNxFEXGZGMlvbh8sBxlPd17ucv7IOuXn6yP4yDvbQjyfnQsR3m/EmR9HAd5vxzlfZD1OoKsd2PFkVLbtm2L/+Ef/iH7zM/Px9PT0/FNN91klPvgBz8YH3/88dbrHHDAAfGll15q7Lv00kvjAw88cCL1dkG26eKLL45rtVpcr9ezDw3+gw46yHqdY445Jv7oRz9q7Pv6178ez8zMqPGxS/3i0p4docqL6w1veEP8xje+0dh38803xwAKAvCss86K999///jnP//5WNowCobt7z/7sz+LjzjiiOx3lfZPGtdff30MoDBWafzyl6vE4uJi/JKXvCQ+55xzvO71oQ99qJArYqnx/e9/PwYQX3DBBV7ld+zYEf/whz+MO51OfMopp8QA4l6vF3/rW9/KXmra53//7/894Zbs+liOsj6OV4a8D7J++cn6OA7yvgxB3g+P5SjvV4Ksj+Mg75ejvA+y3o0g63WsuNX31qxZY6xEsG3bNvR6vUL8Z71ex+LiovU6GzduxG233YZzzz0323frrbfida973fgrXQLZptNOOw3veMc7jDLHH388Nm3ahA984APW68zPz6v9ECfk5XgrPQRkO4fF61//enzjG9/A4uJi1t7HHnsM++67LxqNBgAgjmN85CMfwfXXX4877rgDhxxyyMj33Vl48MEHjeVEfdq/VHjjG9+Iv//7vzf2feADH8ARRxyBj33sY6jX69Zz77zzTvzsZz+zrnLBEccxHnroIecyrUuBj3/845iamsJ//s//2av87Owsjj76aADA//pf/wsHHXQQoijC8ccfj+uuu84oe8YZZ6DT6WDz5s149atfPfa6725YjrIeWBnyPsj64bAry3ogyPsyBHk/PJajvF8Jsh4I8n5Y7MryPsh6N4Kst2DncGG7Fo499tj45S9/eXz77bfHP//5z+OrrroqbrVa8eWXX56V2bRpU3z++ednv3/wgx/E9Xo9/vSnPx0//PDD8ac//ek4iqL4nnvu2RlNKIXm4ivbdOGFF8Zr1qyJv/nNb8Y///nP41tvvTV+8YtfHJ988slZme3bt8cPPvhg/OCDD8YA4ksvvTR+8MEH41/+8pdL1RQDzz33XPzggw/Gf/M3fxMDiL/1rW/FDz74YPzMM89kZWQ7n3jiiXj16tXxWWedFT/66KPxTTfdFG/YsCH+sz/7s6zMhz/84XjdunXxHXfcET/zzDPZh1twlgJl/X3++efHmzZtysp/9rOfja+//vr4sccei3/yk5/E559/fgwg/s53vpOV8Wn/zoR08ZVtJPzrf/2v49e85jXqNS666KL4lltuif/f//t/8YMPPhh/4AMfiKMoiu+9995JVbsUvV4vrtfrap1f+9rXxoceemj2+5ZbbolPP/30+NZbb42vvPLK+IADDohrtVr8ve99z3r9leTiOyxWgqyP4+Up74OsX36yPo6DvI/jIO8nhZUg75ejrI/jIO+Xo7wPsj7I+jIEUiqO42eeeSZ+//vfH++3335xq9WKDz/88PjP//zPs0SCcZz8M73vfe8zzvurv/qr+PDDD4+np6fjI444whAOuxq0F5dsU6/Xiy+66KL4xS9+cdxqteIDDjggPuOMM4wlSGlZUvmRfbNUuOqqq9T6XHjhhVkZ7dnddddd8Wte85q42WzGhx56aPypT33KcCfVrgkgvuqqq5amYSnK+vt973tffOyxx2bl/8t/+S/Z8/ut3/qt+Jhjjon/5m/+pnDdsvbvTMgXl2xjHMfx1q1b45mZmfgrX/mKeo1zzjknPvDAA+NGoxG/6EUvio877rj4rrvummCty3HxxRfHAOJbbrmlcOzFL36xscztjTfeGM/MzGTPe5999olvvvlm5/VX0otrWKwEWR/Hy1PeB1m//GR9HAd5H8dB3k8KK0HeL0dZH8dB3i9HeR9kfZD1ZajF8S7guxkQEBAQEBAQEBAQEBAQEBAQsKIwVV4kICAgICAgICAgICAgICAgICBgvAikVEBAQEBAQEBAQEBAQEBAQEDAkiOQUgEBAQEBAQEBAQEBAQEBAQEBS45ASgUEBAQEBAQEBAQEBAQEBAQELDkCKRUQEBAQEBAQEBAQEBAQEBAQsOQIpFRAQEBAQEBAQEBAQEBAQEBAwJIjkFIBAQEBAQEBAQEBAQEBAQEBAUuOQEoFBAQEBAQEBAQEBAQEBAQEBCw5AikVEBAQEBAQEBAQEBAQEBAQELDkCKRUQEBAQEBAQEBAQEBAQEBAQMCSI5BSAQEBAQEBAQEBAQEBAQEBAQFLjkBKBQSMEc888wxWr16NU045xdh/0003YXp6Gh//+Md3Us0CAgICAsaJIO8DAgIClj+CrA8ImDwCKRUQMEbsu++++Pf//t/jv//3/477778fAHDHHXfgpJNOwoc//GF86lOf2sk1DAgICAgYB4K8DwgICFj+CLI+IGDyqMVxHO/sSgQELCfMz8/jsMMOw5FHHolLLrkEb3zjG/HHf/zH2Lx5M2q12s6uXkBAQEDAmBDkfUBAQMDyR5D1AQGTRSClAgImgKuuugp/8id/glWrVuFtb3sbvvGNb6Ber+/sagUEBAQEjBlB3gcEBAQsfwRZHxAwOYTwvYCACeClL30pAKBWq+Hqq68OL62AgICAZYog7wMCAgKWP4KsDwiYHAIpFRAwZjz00EN4+9vfjte//vWYm5vDlVdeubOrFBAQEBAwAQR5HxAQELD8EWR9QMBkEcL3AgLGiEcffRRveMMbcNRRR+F//s//iZNOOgk/+MEP8LOf/Qzr1q3b2dULCAgICBgTgrwPCAgIWP4Isj4gYPIInlIBAWPCL37xC7zpTW/C4Ycfju985zuYnp7Gpz/9aTz//PO4+OKLd3b1AgICAgLGhCDvAwICApY/gqwPCFgaBE+pgIAx4JlnnsHv//7vY926dbj99tuxdu3a7Nhpp52Gr33ta3jkkUdw8MEH77xKBgQEBASMjCDvAwICApY/gqwPCFg6BFIqICAgICAgICAgICAgICAgIGDJEcL3AgICAgICAgICAgICAgICAgKWHIGUCggICAgICAgICAgICAgICAhYcgRSKiAgICAgICAgICAgICAgICBgyRFIqYCAgICAgICAgICAgICAgICAJUcgpQICAgICAgICAgICAgICAgIClhyBlAoICAgICAgICAgICAgICAgIWHIEUiogICAgICAgICAgICAgICAgYMkRSKmAgICAgICAgICAgICAgICAgCVHIKUCAgICAgICAgICAgICAgICApYcgZQKCAgICAgICAgICAgICAgICFhyBFIqICAgICAgICAgICAgICAgIGDJ8f8B+iWCIFJ2JgoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(eqn_true,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(eqn_pred,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(eqn_true - eqn_pred),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_hidden_phy_pred.png',format='png')\n", + "plt.savefig('burgers_hidden_phy_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "65381926", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error eqn : 0.07746229419954428\n", + "R2 Score eqn : 0.9939995929773432\n" + ] + } + ], + "source": [ + "l2_error_eqn = L2_ERROR(eqn_true.flatten(),eqn_pred.flatten())\n", + "r2_score_eqn = R2_SCORE(eqn_true.flatten(),eqn_pred.flatten())\n", + "print('L2 Error eqn : ', l2_error_eqn)\n", + "print('R2 Score eqn : ', r2_score_eqn)" + ] + }, + { + "cell_type": "markdown", + "id": "8900bd2d", + "metadata": {}, + "source": [ + "## Prediction with New initial condition \n", + "$u(x,0) = e^{-(x+2)^2}$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a7e263c1", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "X_new = tp.spaces.R1('x')\n", + "T_new = tp.spaces.R1('t')\n", + "U_new = tp.spaces.R1('u')\n", + "\n", + "Omega_new = tp.domains.Interval(space=X_new, lower_bound=x.min(), upper_bound=x.max())\n", + "I_new = tp.domains.Interval(space=T_new, lower_bound=t.min(), upper_bound=t.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "be94c05e", + "metadata": {}, + "outputs": [], + "source": [ + "fileload = savepath + '/burgers_exp.mat'\n", + "data_new = scipy.io.loadmat(fileload)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "23ce7897", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "t_new = data_new['t'].flatten()[:,None]\n", + "x_new = data_new['x'].flatten()[:,None]\n", + "u_soln_new = np.real(data_new['usol'])\n", + "\n", + "TT_new, XX_new = np.meshgrid(t_new,x_new)\n", + "X_star_new = np.hstack((TT_new.flatten()[:,None], XX_new.flatten()[:,None]))\n", + "\n", + "u_soln_new_v = u_soln_new.flatten()[:,None]\n", + "u_tensor_new = torch.tensor(u_soln_new_v,dtype=torch.float32)\n", + "X_tensor_new = torch.tensor(X_star_new,dtype=torch.float32)\n", + "\n", + "input_data_new = tp.spaces.Points(torch.column_stack([X_tensor_new]), T_new*X_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "9d429daa", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x_new.flatten()\n", + "y_lbl = t_new.flatten()\n", + "xpoints_n = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints_n.append(len(x_lbl)-1)\n", + "ypoints_n = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints_n.append(len(y_lbl)-1)\n", + "\n", + "x_label_list_n = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints_n]))\n", + "y_label_list_n = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints_n]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "e88854b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAECCAYAAAD91dPPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB000lEQVR4nO2de3hU1bn/v5OZzEwCSdAggUhAsF5QWqXBtgiopyoctf7aHuultl7BlopyIOpP0NNqrRVtLUWrQmkBH+uNX1WqtlThOUfwArYFQ29ytCoIQgImmhvJzGQm+/fHnrX32muvtS+TnWQmeT/Ps5+ZWXvtywwk8837ft93hTRN00AQBEEQBDFEKRroGyAIgiAIghhISAwRBEEQBDGkITFEEARBEMSQhsQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExRBAEQRDEkIbEEEEQBEEQQxoSQwRBEARBDGlIDBEEQRAEMaQhMUQQBEEQxJCGxBBBEARBEEMaEkMEQRAEQQxpSAwRBNGv3HTTTQiFQnjrrbds+1atWoVQKIQnnnhiAO6MIIihCokhgiD6lfr6ehQXF+Pkk0+27WMC6dRTT+3nuyIIYihDYoggiH5l586dOOmkkxCLxWz7duzYgXg8jhNPPHEA7owgiKEKiSGCIPqN3bt349NPP8XnP/95277u7m78/e9/x+TJkxEOhwfg7giCGKqQGCIIot9gabApU6bY9v3zn/9EMpmkFBlBEP0OiSGCIPqN+vp6AJBGhnbs2AGA/EIEQfQ/JIYIgug3du7ciVAohFNOOcW27+WXXwZAYoggiP4npGmaNtA3QRDE0OCEE05AW1sbGhoaLON79+7FpEmT0NXVhdbWVpSVlQ3QHRIEMRShyBBBEP1GLBZDc3MzPv74Y2PswIED+MY3voHOzk4ce+yxJIQIguh3SAwRBNFvnHvuueju7sYXv/hF3Hjjjbj00ktx0kknGT2HKEVGEMRAQGKIIIh+44c//CGuu+46dHR04NFHH8XBgwfxm9/8BpdffjkAEkMEQQwM5BkiCIIgCGJIQ5EhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIvODVV1/FhRdeiOrqaoRCIfzud79zPWbLli2ora1FPB7HxIkTsXLlSt/XzQsx9Itf/AJVVVUIh8MIhUJYsmSJZX9PTw/OOussY/+IESPw/PPPu573lltuQSwWQygUQiwWw6233tpXb4EgCIIgiF5y+PBhnHLKKXjooYc8zd+9ezfOP/98zJw5E/X19bjtttuwYMECPPvss76umxdi6NNPP8Vxxx2Hm266Sbr/ggsuwJYtW3DTTTfhueeeQ3l5Of7jP/4DBw4cUJ5z1apVuP/++3HWWWfhD3/4A8466yz85Cc/werVq/vqbRAEQRAE0QvOO+883H333fiP//gPT/NXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff7+v6+ZdaX0oFMLixYuxdOlSAHpUqLi4GLNmzcIf//hHAEBbWxsqKipw+eWX44knnpCeZ9y4cejq6rJ0uh05ciSGDRuGDz/80NO99PT04MCBAygrK0MoFOrlOyMIgiCI/kXTNLS3t6O6uhpFRc7xj0QigVQqFfj1xe/PWCyGWCzmemwoFML69evxta99TTnnjDPOwJQpU/DAAw8YY+vXr8cll1yCzs5OFBcXe7rPiKdZA8irr76Knp4eXHnllcZYeXk5Ro8ejTfffFN53IEDB/CVr3zFMjZjxgz8/ve/Vx7T1taGtrY243VDQwO+8IUv9OLuCYIgCGLg2bdvH8aOHavcn0gkcFRJCToCvu7w4cPR0WE96x133IE777wzkPM3NjaiqqrKMlZVVYV0Oo2mpiaMGTPG03nyXgy98847APQFHnlGjBhhifqIZDIZHH300Zaxo48+GplMRnnM//k//wdbtmyR7FkEwF3F5gd+/0m9zFcpa9Wx4rhsnnjOiIfnxYrnYclYxMM81ZxixTzxUdzvED0MK04Tloyp9nsZ5/fLzikbd9qnuo54jGrMab6XewtnA9eRNBDRf3ZDkQzC2efhcBqRSI/5OvtYFM4gjHT2VD3Z05s/++x5UXaOPk/9uwEA0saHAfQggkz2tX6lImQQQU8mjFQiinS6CKlkDFo6DByOA2kACQCHoT9v5V4nAXRknyey+/jnbD8/L8nupBtAV3ZyN4B2mBfrFp6z12wDNwbJY7ftE1B9MkQ+kwTwc9c1/1KpFDoALAEQD+jKCQBLOzqwb98+lJeXG+NeokJ+ECNPLOHlJ6OT92KIIYb3vGT3/B7zwgsvWCJD7e3tOOmkk6ALoUIRQ95CgiZ9IYachI6XOTJRI467CR8vY26vvc7zIIZC3G7+kf0XLeJOwz8PC8/FMZmwcNrndV5Q+3p9Xk0XQgAQyaCIF0KRNCJSgWQVOkXIGOLHKoi8CyF9Pi+IItCyzzWEUYQwNESQTkYRioYRSocRSsSgJaJAqFj/VmAkAESh/zunAGRgCs9wdpz//6JltxSAnux8YwcvRMIwRU9P9kRF2QOKoYumKEwBxMROcfY5+9DT3PnAjal+3kXRROQjXoXBCAAlAV2zK/tYXl5uEUNBMnr0aDQ2NlrGDh06hEgkgsrKSs/nyXsxxCJCu3btsqxb1NraioqKCuVx4XAY+/bts4wdOHAA4XBYcYT9H4wXRoMXp19yhXSNPEb21r0G1Zz2q577vZdcjhOv7XQvTvsd99mFECMcSXPPufEwEz0sKpSxCCBjnosQYsdkoP594UQmHUFPOnssH3BJK1773YwTdAuPImKURxRCqvleISE02BB/JHt7rr5m2rRpePHFFy1jGzduxNSpUz37hYA8qSZz4owzzkBRURF+85vfGGMdHR1obGzEl770JeVx1dXV2Lp1q2XsjTfesKXOiN5A4XGTXhjscxVG4hyvQikXYeLlfpzO5TRXeiwXxbWIoIwhhCKWKJE94iOKHDM6JBdC4axwkqXT3Mi4fTgqAeS0z2mu7cSAPRXmV6iI5yKGIiUBb37p6OjAzp07sXPnTgB66fzOnTuxd+9eAMCSJUssHuJ58+bhww8/RF1dHXbt2oU1a9Zg9erVuPnmm31dNy/EUGNjI9atW4d169YB0KNA69atw7Zt21BUVGRUkt16661Yv349Jk+ejKKiIvz0pz81znHsscdi2rRpxuvbb78dH3/8Mc477zxs2LAB5513HpqamvCDH/yg399f4UO/GO2IKTIXIsKj03On431c0vMxbvu8iie/853SYwB4nxCfHgNgpMcAWNJjohAS02P8fn6Ok+jh9zml0zKZMDLpMNJGRCgMpCPOAifBPSa412nJc/YagJ4i64LcC8R+XtPCfjF6pPIGefUK0e+FwUgE+m+3ILZcIkPbt2/HlClTMGXKFABAXV0dpkyZYnx3NzQ0GMIIACZMmIANGzZg8+bNOPXUU/GjH/0IDz74IC666CLf73vAefrpp7Fo0SLj9fPPP4/nn38exx57LN577z384Q9/wJe//GXcf//96OnpQUVFBZ555hlUV1cbxzQ3N1tyot/97nfx7rvv4qGHHsJLL72EaDSKW265BXPmzOnX90bkC4UU+PVALuJIPN6PyPF6bBDzPSJLj1n2K4RQTtdCRpoyU6XRMmmX9JpTtEeWSoNirkXw8DgJlW7Fc4LIPaIjI5e+PWeddZajv/fRRx+1jZ155pl46623criaSd71GconWD8jYDEKx0AN+DdRA+7fUEGbqPvbQC07j2qOk4FadYwiTSZGhMRIiGyst897sy/IY3M+v9w0zafHAJYyc44KySJCDDEaJIsO8WKHPU8jnI0rhbOVZNnX2UqyZCKGTDqMno5SIB3SK8BYZIc9b+Fes002Js5PA6Zxug16dIhtrLIsDXvUiI8Kic8Bq8riBRJFhQqfJIB70dra6mhiZt93TwMoDejKnQAuA1yvnQ/kyZ+5BDFE8fIT6CWq4icN5jcK5OfYXkeNrF4h3jTNk4sQshyfgy/IDxbzdBCGactbcDJMu+EmYkjkDHXiCC4y1BPQefoDEkME4QmnaFtA3cn9ppLcUl2qc/fmvKrXftNqjiLL9AoBsHmFvKbH7LchK693FkKq9JiIzS8E6FEh43kvN0AhiPhNZZxWCRxZVEi8htNxxGDE7cfZ77kKhUK6V8Iz3cgtVZYLaQyO/0b98B6CigLlej0nQSK7ltt8NzHmJoKc0mOAsqeQ/tpaPSYzTDulxtzK7fnqMK+CyDg2HdbN04C7yBFN06Jxmh8D4G6c7pY8B6wiSXzOIJFDBOsZosgQQRQMomjsJxGZSxSIf+4mQlTn9hPBcbuPPjuHc08hWXqMRxXtUY/LzpG2lct7EUWZNHeMzAStSn35SpHxjzLzdF9CgmmwE0FwvwULSWAU0r0SRAB4/TH3Ujrv8cfHi8/HryDygx/xJI559QV5PYfqvCwq5KGnEGBNj0Us/iC5YdqtA7UMmSCSkUEEmXTYqCDrUZXUqyI+qnH+0UCWFgPsaTK3cnoRr+X0xGAnyMhQ8G68voPEENFP5Fs6bYDupa9SZX6Ny07X9HJ+2XG57o9YC1rdegrxXabl3aN7L4S8khYiRbaSevEyuXiEjHNosAsgSF7LcKsgc7pp/hzEYIc8Q8QQJ9/EyiAjKKHiFpFRHSfb5yXi4/Ve/J7XNmaNComExciQx/SYFyEkCipR4KgQU2bWZouh3hmmxWhR9s50nLxB4j4vkMghTEoQXGk9RYaIQUh/mrJ5eJE2UPcg4vEeepP6GoiUmJfzqa7hN3VmjNlN0wxmmhbTY7J1x/j0mJeIkFMn6QgyhiDykipjlWSAQ4rMq5FaZqYGIK8cA6wiSBbREUURRYUIZygyRAwy8kU4qMj3++PpxX36+QnzanYeiJSYlzSZbMzzMXKvED/mhhcPkFd4QSTixUdkwWtaTDZfugOwGqf5id3CIyRzeEjkEFbiMaAkoG4h3Rr0no8FAIkhgvCM7MfFx2+N3kaK/ERw/EZpconueDVIR2A/P/MKuaw/Jqsec+sw7bQMh2rxVgaf+rJGiKyVZOw5E0bpdFivJHNKkalK6BOSzRIVAuTGaZlZGrBGjcgrRPijOAwUBySGigtofQsSQwShJFdDToCXCfK8vUm99fUYh9hTCJA3V7Sf1nmO01Ic/LhyvTHRI8QEUdr66GqK9jMOwGqcdiult7muCcIXJTGgJKAl3Lt7oK/JUQCQGCJ8UEiprQHGbyrKa1THj4Fadh85e3uCHpM3WFT1FAKsER4xKuTUdFG/BXWzRRGZIFIKpAwTQtk3aDy6bGJUSCmgmBCSdZmWvYbkkUeWUhPHoZhDDAnCAAISQ0E15+8PSAwNavyKF96sTMgZgKaMfubm6vdR7fcjdrym3VzWH1OZpt3WHVN1l3YSQvyYly7TMh+R1TztUEUm9g5ySqEZb4tPdTktveHmFfKzqj0xpIkjODFUQC2o6ZuPCACZiCrkKFLA990bs7PqfH4jQl7252qSdtsnFVCmVwgwTdOqnkIyvPiEVEJIJYw8rUNmyDHzTdlSZPxzL2kx1Zixw62HEJsnm+/mFXI7LzGkiIDEEEHkB70VUnn437qvU2J+TNJ+j3MbczNQW+Y7N1gE5OkxUfA4rzumFkJeF2b1LIyyi7P2sPXI/KTFZMZpS8dpr+uQQfIoPuehbtOEA1HAx1J8zhRQo6E8/NYgCMITXiJEquN6M5ZLBMkiytK29JhbTyEZblVlbJ9xvl5EgzwhrkvmZVPNt544++i0FAf/6OumFeMUFRqyRBCcGCLPEJE/kG8oGGSfictPulex4ifi48X701fm51znG49W0zSg7ikkW3vMyTDNxtl8fp8XQQR48wyxeWmEjWaLtpJ6J0O0FwO1gSoqxCMTLU7l9F5EDgmhIU0MFBkiiIGjP0WY6joBeYVUp3cSNX58Rbl6hnoritzmy96D9D4yrj2FAPnaYyrDdK5CSIYqWpSW+ITSbIFWvoqMPaqM025iCYC8nJ4XNmKUyGkJDkqDET4IY0gqgyH4lomhS54Zuv2YkL2cy4uoUZ07iJSY431kvUI2f5C8p5BM9Jinkwuc3gohPykzaRdqr6kxT6kzp8iOaukNEbcKMhJJhIQYglMGQUWY+gESQ0RA5BLZGeiKM3btPP0x6K/0l2wsVwO1bJ8xpn/5OvUU8pIe8xMR8rpSvev6Y9xvdb7ZYiYdsZfU85EfVVRIZZ4GoP9cdMFMk7FHMU0mRoXMO3RPdZFXiFCQqxexwBmCb5noHX4EzECLnSCQ3b+HHxsvqTLxda7pr97glhJTzfdqlgYsXiG3nkKAe3pMRa5CyA/GMhwZ7k9esYoMiudOkSDl7Ynih425eYVkx7tBQoiAXk0W1K/toEr0+wESQ0Q/MlDm7L64ps81yfx4gpyOVZ0v1zG3fblEiyznszZYBJx7Csm6TIv9hLysUC9rysjOweAbKLLV6Z2X44hYHi1+IdEjpFprTOYZspTTA9aokKqkHtxrL14hL92mCQLBRoYKaG2yAtJtRO7QX3zB0EdRLqdoUV9ew6/vx2mfo2hKW4QQj2ia1g/PQOYTcov0uC3QKkabZGMimeyVbeN8igzw7geSpdBsxmmG2Hka3EQvTRhVr70cQwxZYgFvOfDII49gwoQJiMfjqK2txWuvveY4/4knnsApp5yC0tJSjBkzBtdccw2am5t9XbMgxFA6ncZ//dd/YcKECSgpKcHEiRNx1113oafHub3lli1bUFtbi3g8jokTJ2LlypX9dMdEflBAjRvdBFFvvUBO13VL6flKifHntTdYBJxN06I5WjWmXyLDRY+8r1SfC4ZPKFtSb+5wWYLDiygyxJBsHTJwE7wsvZHryvQEkUX0AvZ288m6deuwcOFC3H777aivr8fMmTNx3nnnYe/evdL5r7/+Oq688krMmTMH//znP/Hb3/4Wf/nLXzB37lxf1y0IMXTfffdh5cqVeOihh7Br1y785Cc/wU9/+lP84he/UB6ze/dunH/++Zg5cybq6+tx2223YcGCBXj22Wf78c4LlaH8CzNHj5BsqlN6LFd/kJ8xL6Zmt31uESHZsZb3qUeFeCHE4E3TqvSYrLGifglZ52l740W7kMo4nssJo79Q2txsKTK3dJnYV8hinE7DniLjhY9M7MgM1H6hqBDBEUVwUaGo/8svW7YMc+bMwdy5czFp0iQsX74cNTU1WLFihXT+m2++iWOOOQYLFizAhAkTMGPGDHz3u9/F9u3bfV23IDxD27Ztw1e/+lVccMEFAIBjjjkGTz31lOObXblyJcaNG4fly5cDACZNmoTt27fj/vvvx0UXXSQ9JplMIplMGq/b2tqCexMDzmAwM/clXj+bPvyR6U2u3s3U7OdaXva5RYYAyBosApD2FNIPtafHALsRWt55Wt6BWjxePG+u3aeNJTgAd2O0lzEAdl+PGBHi9/GPTpBXiPBJkJ6hbPJG/C6NxWKIxew5tFQqhR07dmDx4sWW8VmzZmHr1q3SS5x++um4/fbbsWHDBpx33nk4dOgQnnnmGUMveKUgIkMzZszAf//3f+Pdd98FAPz1r3/F66+/jvPPP195zLZt2zBr1izL2OzZs7F9+3Z0d8v/Elq6dCkqKiqMraamJrg3MagYKn9J5ige3dJSXuey/X78PqpreBU3Tvs8R4Y08H2F+FJ6p/SYWDKvKqM3X7svzuplLTLzuXl+IwpkbBHzke86nQi5R4OcokQWrxCLDHULm8w8LUaM+DEvviLGUPlZJjwTD3gDUFNTY/luXbp0qfTSTU1NyGQyqKqqsoxXVVWhsbFReszpp5+OJ554Apdeeimi0ShGjx6NESNGOGaOZBREZOjWW29Fa2srTjzxRITDYWQyGfz4xz/GN7/5TeUxjY2N0g80nU6jqakJY8aMsR2zZMkS1NXVGa/b2tpIEPlioKrFCowg02O5+IO8RIS8Ch/VfQqr0vPIegoZ+7LixKmxoqyZot9V6sWIUAQZS3WZDLY/bUSEImxH7zbjJLyYcYriOAkY8goRvaQIwTVLzIZb9u3bh/LycmNYFhXiCYWs1bqaptnGGG+//TYWLFiAH/zgB5g9ezYaGhpwyy23YN68eVi9erXnWy2Ib65169bh8ccfx5NPPomTTz4ZO3fuxMKFC1FdXY2rrrpKeZzsA5WNM1Shu6FJXwkbr+ctwLRerv4gr6LGTyrMj/BRnc/rORzmiA0WVT2FZIutqsro2T7+HPrteO887SdFxiJEgNlfKCMzTqtK5j1VkImVY7KIkGiq5kURVZARARFHzlVgNrJfteXl5RYxpGLkyJEIh8O2KNChQ4dswQ3G0qVLMX36dNxyyy0AgM997nMYNmwYZs6cibvvvlsa+JBREGmyW265BYsXL8Zll12Gz372s7jiiiuwaNEiZagNAEaPHi39QCORCCorK/v6lgnCnVwiRKp9blEdr4KmN/MigNFgUbH+GGDvKSTzBKnG7JtcCHlJkangRZL1eUToOg3nztKycXEOAKvo6YJdBImVZHyUx0vERzaHhBChIBzw5oNoNIra2lps2rTJMr5p0yacfvrp0mM6OztRVGSVMuGwfmEWAPFCQUSGVG/WqbR+2rRpePHFFy1jGzduxNSpU1FcXGARh4Im3yM8Xn8EAn4PfivA3I71us+LOdKrgdJJgHHwXiGZaRqwe4KcxsznaiFkPcZ6DtY0UYwOiUtyWBZl5eelw7B1nfadFmOwqJDMDyRO5l87eYUIohfEYHh9BoK6ujpcccUVmDp1KqZNm4ZVq1Zh7969mDdvHgDdzrJ//3489thjAIALL7wQ1113HVasWGGkyRYuXIgvfOELqK6u9nzdghBDF154IX784x9j3LhxOPnkk1FfX49ly5bh2muvNeaIH9C8efPw0EMPoa6uDtdddx22bduG1atX46mnnhqot5EHBClM+kLk5IvnyO0ePHafFkWFn2ovt3PxY7manz1Fehw28T1IokKy9JhompZ5gpxK672tSaYWBqzbtAwmetLcYwYR/TGjl9P3iCX1qnSYm5E6ewV75ZgsKiSrKuMRhZJsnCA84PWPIa/n8smll16K5uZm3HXXXWhoaMDkyZOxYcMGjB8/HgDQ0NBg6Tl09dVXo729HQ899BBuuukmjBgxAl/+8pdx3333+bpuSPMTRxog2tvb8f3vfx/r16/HoUOHUF1djW9+85v4wQ9+gGhUb2Rw9dVXY8+ePdi8ebNx3JYtW7Bo0SL885//RHV1NW699VZDXXqhra0NFRUVABYjuCTqQONHwLj9T/bak0ecF/G5TzbGHxcRxvy8FvfJxiLCc4UYEsWH7LW4TzWWy3hv9onz4n7ns+oxuxjiS+mZadqe+vJaUSYXQk7dqVXm6Ax3BwCQRMx4nUQUGUTQiRKkEEMSUXQlS5FMRJFoKQMSxUALgI7sxp43ScbEeYnscwBAJ8zeQm0wK8pki7TKeg25VZBRioxIArgXra2tjr4d9n3X+mOgPKDIUFsCqLgdrtfOB/Lhz3BXysrKsHz5cqNnkIxHH33UNnbmmWfirbfe6rsbIwgZXlJVbmNO53H6y83LPrfUlpOgc5wvF0KAEBmSCCEeJyFkXtI9JRaRzBdFkfNaZGHw65GZJfURe0BH1lHaacV6AGY5vSwiBKijPYBcCIlQVIjIgQGODA0UBXSrRDD4SW/lS9oqX8jxs/BzmFeh5HWfSsh4iTx5nc+lxwD5+mOAOj0mRnjkS3A4R4S8Lr+hEkU8vAgyXmfC3MKsIavgceslJDNUS5feECvIAKs3KC28FvGSHqOoEOEC60AdBM4rZuUV9E1HEI4EJIC8iJxcfxq9Rm68XsNvZIhDXH+MF0IyZGX05j51RZhq3KnztN9u06YEM4/r6Y1x2maglkWDxPEgISFEeIAiQwQRBH6jSV4iVX0RocrV/O3BL6TC61twSqV5jdw4Xd/NU+Tl/JKokLj+WFiIFLn5hORz7H2GZBEhVdqMxyklxi/EaukrlI0SpRJRpBIxs4rMT0RI2nGa9wXxSqkru19loFZVkJHQIQIih5J4x3MVCCSGCMJAJZD6sDWAm7/I7zH8HJ9RHakg8nkOfv0x9lrVU8hynCQ9Zu5LC/P8CyEviEJJmkpzWpjVV1SIFzFiab2TV0h2Dq/jBOGBIEvrKU1G5Df53vtnkODVLD3QhuhcU2eKUnqvPYXcyuhFn1Bvu05nELZEh9xK7PmS+nQ6jJ5EVPcLuTVSdGq6CMAUPnyDRd4r1Jtu0+QVInoJpckIQoZTisqrqCpE8TVA95uLKOKP8/qLzCkK5MVUzS3EKsPJNG2vFLNHflS9h/j5qnXKVLg1WdTHTBHE5kiryFQdp1XGauMtqpbeEAUQI6147gcSQoQPYgjOQN27YG2/QmKIGAAGcZWan7eVi4HaazSnN1Egt+saz/UvZ1lPIQCe02P6ae0iSOUpYvNl55Fdy8k4rVp6g71mjRala5F5Ka+3pcjEUnpb/gxWscS/BsgrRPQ5FBkiiKDoD7HTV9Emv6VXkmleU2OqS/g1S/sxP4vHed0sx2kWIQT4W3JDFSVyb7hojwipluDgESNCYVibMLIu0+Zz/XUGuggyU2RwN0h3ZDepcVqDaZqWRYREszQgT4+phJAsckRiifBJkKX1BWRfIzFEEJ7w+aOiEjmqub0xS/Pz3B5zRfp+JA0VPfYUUqHqM2Tehl0Iyc9j9QM5VZIxrBVk2aoyp0aLOZumZRPE8np+vhcK6FuHyG8oMkQMLYJqvlhofiDZ++jn+/fi/ZGNezFLy87Vm4iQLTJkb7Co6ikk8wWpoj+ybtROJmr7o10MsDGVSZrHFEIRS3TI0mjRaZ0xT+X0zDTdCXlUCJB7h/hIkR/RQ1EhIgeC9AwVkEYnMUTkAbygKlA/kSoV5scXlEsUKEhfkJdrchRJzNN8TyFjTIgKqdJj5qWcq8m8CCHLPTlUjQGmWOL7C5kLs0bkjRZlosgxMsR3nIYwQeYNkr2GsI9B6TEiQMII7ncI9RkiCJFCiyD1MW6psSCjQLLxnMbkDRbFhVjdyuZlOAkkWcpM1WtIhPcGyVJlstSZsR6ZERVy6DotrlQvqzbL3om9kaK4j38tfzc6JHSIPiTIyFAB/VclMTSkGQoChf0Xl71P/r+/l89B0X3ayy24eYK87M81CiSb25uxLOFIRmqadur9I0Z63MrtVYu1uokg/l5U65CJHiF+FftUJoYMM04niu0maa/rkAEw02OsrxB7lJmoVRVkbgKJp4C+gYj8gzxDBEHo9EIg5vKLRCY+vMz3Ypb2MuYUGbLsM6NCzCsE2E3TgFX8iOJI1TeIITNbuwkhWcTJzTAtm29JlaWzx/sxS4vpMgBWc7QodsS0mEguDRYJohcEWU2WCug8/QCJIYJwpBiOPyYq8eM0lmsUyInepMPc7k9osCgKIbf0mPq1+6r14lynSjMneN8QiwIBfCk9Z5pGGKlEVK8iE6NCshJ6/jm/ATDL6dOSR6du07kKHYoKEb2EIkME0Z8MpFF6AFODuUaB2HMvabJcxJkqIsRHhWA1TUckBmq/iKvWO3WjVkWQxOfmchvO5fT8Pn6hVmsVGeSmaVUkiJ+XPbNd+ADu3abBzSWvENGPxBHc2mQF9F+WxBDhEb/ipUCrwoKkN14h1XzZsVLx4mNMdg3Lta1CSGywmGtUSDZHvw179EhlwpZFhtgYEzvOvqEI+IiQ2XU6kvULwS6CnNYfs1WQqRorMpy8QoA6QkReIaJv0IoALaAqMK0omPP0B0P824oIxkTdV0bsAjJ4u4WW3fb5FUd+8SOmLJs9RcZgQkg/Re+EkHlr3oSQVRBZhYGXZou8P4g9phADa7TYnYgC6Yj/nkKWqBAzTXfD2nmaF0XiI8OvV4iEEBEMqbi+BXIu8gwRBGHgN/qjit749fyIAs1rms12X/IGi7KeQrkiW36DH7eOqYWQF1RRIsBcmBX8WmRO/YQco0Kik5pPd8k6TvNzCGJgSIdDSIdzrJy1nUuD/rOQ/5AYInyQD6mvoKNFqnOJ79PjLwe31FhvjdGyMa8iye14WVTIshhrMKZpL+uTAXYhpPIOsTlM5DCzNB8V4svm9ddmKX0KMSQRRRJRpJJRJBMx53J6lWHa5hXio0F8hEiWFvO6GCtFhYi+JRWLIRULRgylYhq4H4q8ZqC/2Qgij3ERXbmmxfj9uURq3FAJJy+RIWPc2mCRRYFE07TYVdp87k8I8agqyvTnadu1xddphA1B5AafQmNRIZtx2msZvc0rBPjvESTuI6FD9C89CCOTa08127kKIyoEkBgiAPSdNycfIkl+yOFee+MVEufkmiZzMks73YPb9bLwQkiMCgHqhVRVZfSiYVpsqugmhNwaLbrBm6X119koUcbnCvWuUaFOmFEfFhHy6xXioagQ0fckEUUUwTifk+gBcDiQc/U1BeP13r9/P7797W+jsrISpaWlOPXUU7Fjxw7HY7Zs2YLa2lrE43FMnDgRK1eu7Ke7HYp4+aXcm1W5CxAvlVpez+GUJvNyXSfRJB6rWHaD4ZYeA2Rl8GnDqmxeKmMTPapoEhu375MLLhX8IqzszEnEkEIUqUQUqUTMNE6r+gupOk6nAbvwYc/ZPievEKXHiIHH+SfM/5YLjzzyCCZMmIB4PI7a2lq89tprjvOTySRuv/12jB8/HrFYDMceeyzWrFnj65oF8Wf7p59+iunTp+Pf/u3f8Mc//hGjRo3C+++/jxEjRiiP2b17N84//3xcd911ePzxx/HGG2/g+uuvx1FHHYWLLrqo/26e8Eh/eYH66jh4i8A4zevtNd3M0k735RDhEr1C8lM5+4TYHECVUrOnzMRy+1zhewjxMFHE5qTTYX1R1kTIe1qM3wfAvsQGG7Pk0SCPChHEwJNCFKmA4iQp9Pg+Zt26dVi4cCEeeeQRTJ8+Hb/85S9x3nnn4e2338a4ceOkx1xyySU4ePAgVq9ejc985jM4dOgQ0ml/f2wXhBi67777UFNTg7Vr1xpjxxxzjOMxK1euxLhx47B8+XIAwKRJk7B9+3bcf//9JIak5HsZexAptwD/u6u8Nl6Pc0tvOY35SYn5vZ7EK+Slp5A6FebfVA3IfUOMsEIYZRCGUym9/hix3LX+iz+KDCJ6VCgRs5qk+U0c518DsFaQuXWbFnsJUVSIyA/0n41gxFAu3qNly5Zhzpw5mDt3LgBg+fLlePnll7FixQosXbrUNv+ll17Cli1b8MEHH+DII48E4K4PZBREmuyFF17A1KlTcfHFF2PUqFGYMmUKfvWrXzkes23bNsyaNcsyNnv2bGzfvh3d3fJfJMlkEm1tbZaNEOmP1Fa+pc98/EC7eYjcjvUy5na8l1QY4HivqvXHGLLSd/ZanCOb71QdxkeErMdmlEJIvJ4MWTUZkE2dZbJRobQiKiSLDNnK6XnRA9gjQ/wccRzIv//3xFBE/wMhFtAWBQDb92oymZRfO5XCjh07bN/ds2bNwtatW6XHMH3wk5/8BEcffTSOP/543Hzzzejq6vL1vgtCDH3wwQdYsWIFjjvuOLz88suYN28eFixYgMcee0x5TGNjI6qqqixjVVVVSKfTaGpqkh6zdOlSVFRUGFtNTU2g74MoRHJUNkGmxFQRIK8eIHG+8lxmVIhHVkoPgHPeqCNA4pjM82P3Aln9Qexa7FHlFfIKvx5ZEjGkMjGkElG9t5DbOmQqv5BRQdYF6wr1fDpMJpTE5+JrigoR/UtfeIZqamos362yCA8ANDU1IZPJSL+7Gxsbpcd88MEHeP311/GPf/wD69evx/Lly/HMM89g/vz5vt53QaTJenp6MHXqVNxzzz0AgClTpuCf//wnVqxYgSuvvFJ5XChk/Yte0zTpOGPJkiWoq6szXre1tZEg8oWXVFu+p+MAzz8WbtPcIjVOpmgxauPFjO0lMuQqnqyr0keE5oqy9Jh8n5gys1eesePYuCwiJIoh8TgW3ZGlx0QJxpunLQu0psPy3kKyZTekpmnA2m1atgArYI0OQbHPDRJCRN+i990KZj2OVPbndt++fSgvLzfGY7GY43Gy727V93ZPTw9CoRCeeOIJVFRUANBTbd/4xjfw8MMPo6SkxNO9FoQYGjNmDE466STL2KRJk/Dss88qjxk9erRNSR46dAiRSASVlZXSY2KxmOs/EuGX3np98lw8+U2LOYkeJ5HkdJ5cU2KWfWaDRQB2IRS2G5tlfh5xv9pALY8ksXmqFJuI135CDKkgYr2FvK4/Jo5lzyzfxIiQ+B78RoUIom/hIzq9P5dOeXm5RQypGDlyJMLhsPS7W4wWMcaMGYOjjz7aEEKArg80TcNHH32E4447ztO9FkSabPr06XjnnXcsY++++y7Gjx+vPGbatGnYtGmTZWzjxo2YOnUqiovz+Mt1QPH6V+dg+yVdjED+LuirPy1yFT5u6TXjtT/TtH6YH4O09+aLMaQkgfa0RSjxG6D2KTFkCTnmi0gihmQiZl2UVWaWFlNl7DkA+9pjYmTI62KslB4jBp4Uio3Cgt5v/r5ro9Eoamtrbd/dmzZtwumnny49Zvr06Thw4AA6OoxKBrz77rsoKirC2LFjPV+7IMTQokWL8Oabb+Kee+7Be++9hyeffBKrVq2y5ASXLFliSZnNmzcPH374Ierq6rBr1y6sWbMGq1evxs033zwQb4HIOwJWLl6iOX7O45QmE+d7EUiqfcKYuBCrZZ80lWUvkbfOV5fQOxuo7ddyK6+XCSFWVp8WzgpkRVImGxVKR+wRIFWwx5IeU61Mz0eGZOZpgMQNkY+wjmBBbX6pq6vDr3/9a6xZswa7du3CokWLsHfvXsybNw+A/bv+8ssvR2VlJa655hq8/fbbePXVV3HLLbfg2muv9ZwiAwokTXbaaadh/fr1WLJkCe666y5MmDABy5cvx7e+9S1jTkNDA/bu3Wu8njBhAjZs2IBFixbh4YcfRnV1NR588EEqq3dlINNS+ZYSy+HHQ5XyUqXD3EzQMr+P+Fx2bTeztWW/GRUC9BSZev0xN0O0eq5TRAiQiyCx7xBPBmFEkFH+wrWIHu6qSRYRgm6c7ukoBTpC1oiQKjLER4gA2Feml0WIAHvUh0rpifykGzGkApIG3TmIoUsvvRTNzc2466670NDQgMmTJ2PDhg1GJkj8rh8+fDg2bdqEG2+8EVOnTkVlZSUuueQS3H333b6uG9KYq5iw0dbWls1DLgYwlLxEXgSJ6odFdqw4t9jDvojDWLHLeESxT/Vcto8fkxj34tzp+3qL57hPtd8ypqfIiuIp6ar00XDSJl7MVJYpbKJIOabHokgBQNaaaRU8sew+q2Fa7UniYYInnRU8es8g/S/SLpQiiRi6UIIkYuhECTpQhk6Uoh1laM+Uob2lDN1N5brAaQTQAqApu/FjbOvI7ksAelSoHboAauMeWX8hfpFWMUpEYojoL5IA7kVra6ujb4d93z3V+mWUlgcjhjrb0vhmxf+4XjsfKIjIEJGPqIzRfqM7qvME0WSxj+jL21JFd2TzvKbOlGP2Unpx/TFAtWaYfKV5c768n5A4V2aqFsf58zLcDJ7MIM3P503TyezyGxlVOb1bJRkA9yiQapFWEkJE/pJEFOGAIvTJwnDiAMjbbxticBG0sMmTdJpTesvtOPF4p/M4CSTH9JfbmP7Fy5fS89VjftNjZoTHnh6LIZndZwojMSIkiwapokJOwkgUQems+NGN0zGjt1AyEdNTZE6dpcVxQwhpsPYUknWclj2ad6lDQojIL4KtJvO/HMdAQWKIGADyRMz01T3IhI1TJMfpPLLnstdOxzqOWaNCQLaCTDA5A069gOyNGGXzVSkw2TnF+SJu5fRWyRbhxoRy+nTIubO0bByAVcy4rT5PpmmicEgFGBlK5bAcx0BBYoiQkC9iRaSvU2ey9+zxh1kW1fE6Jo6rokRukR9fmwaxwSJgltKrS+Pdy+i9GKadq8vsIoiJJxb1kfUXMg3TVvFjltFHs8bpKJKGcRreNkuKzKnTdBpAJ+zRIDJNE4UBa0ERzLkKx5JMYojoA/JVTHmhH38kvEZ7ZFElz5EfSASVusEiS49ZT6GKEIlRIHvJvFchxJ+bHcuuLd6LU7mutYLMLO0VI0WpRMy6Dpmbb8iSIlOtSs+PAfJO014hIUQMDCkUI5xdU6z35yocSAwReUCuEZ8BEF1B/MTIoj2yOSoR5NkT5HwdvsEiM00z5JEeecdoVXQn15Xq9du1CyQmdJgg0qND1mgQP4+NJxEzrphEFKlkVN5k0ZMQUnmFnBos8o9eo0IEMTAE6xkK5jz9AYkhQoEXoeFHxHid298CJ8dreUl9ifv8mKTFfR7EjXKOLT2mV5DJ0mPqlJg8ysNK5vl9Uc4s7UUIeS2n50WRKkLEN1lkpmldBOnpMd04HdXXIVMZplWLswKQp8XcBJF5d3YoPUbkFynEUBRYZIg8QwRRwLgIJDdTtEyUeMFrKszJR+R0X8Z+s8EiYO00rVoXjD1nr62Rm7Tjfn6fLCLEztH7cnprSsx8zrxDepPFVCLmvNaYuEaZpdu0KHbchItMFJHYIfIXigz5oKKiAq+//jo++9nPBn0/RMHRHymugfIg+firxsks7TTXTdz4SHvJI0H8lm2wKFmVnkWF+FJ4byZpM0IklthHITZsVEeYAHk5Pb86vZMw4tNlaU78sIhQJ0qzxumYs3G6BfIokaXBIp8eY5Eh0TRNpfREYZJEMUIBRYaSBWSgzqkjUnt7O7q6uqT79u7di+XLl/fmnghi8OE1TeZlzC0yJL1u9peSrMGiZCFW6ynUhmeZYVp/7rZUh9Wozc9j55KtgeaE1dZtjQhlEEYqE0N3ImqW0/tqsMhHgmSNFvl5PKrGiySEiPzEuhRy77dCwfOdvvbaa2hoaEBtbS0AIBSS/9Xc0NCAm266CQsXLgzkBomBpJCrwnpLQD/Ejukq2AWSKJZUAsqTP0g8Pm1rsMhSZKKo8Wqg5n1CuZTY69ezXpvdD49pmLZ/oGnuigDAjNJJxJBCNPtc7ziNRMy+Bpm4HpkojgBYfUF8VEhlmqb0GFGYdCMamGeou4AiQ55/42/evBl33HEHQqEQQqEQrr/+esyYMQO1tbWora3FiSeeiFAohIMHD2LYsGF9ec9EQdCfQipPlu7wa5b2ch7VuSF57eRVEkzTqvSY167TMcEk7dZ7SPXaPIdcBJlvRW6YFtNlpmk6YgikFNdxGh0h+WKsKkEEwIwAdcIqisRNlh7jz8GgqBCRv2RQZPu56s25CgXP3yDf//73cemll2L79u349re/jVAohKeeegoPPPAAQqEQSktLceKJJ+L999/H1KlT+/KeCaIX8AuwiuMecPMG9cYsrRI/qut42Wd4hZxN0/xz95SW1TDtVGJvHuNdCMlSdeyXM19OL+5XNVvMIIxUIppNkcE9RWYxTmuwVo6JlWRe1x9zgoQQkT8kEUNQC5MXkmfI15/Txx9/PI4//ngsW7YMv/zlLzFlyhR89NFH2LFjB3bs2IG//e1vOPnkk3HHHXf01f0S/U6QER4xguN27jyJ+DC8prBUx3jx+zilyqSpL7fNbpqOsRXqJVEhp0gPvzJ9VFi5XtwHyAzUcoEl6z7Nk0HYGLeuO8bM0nLTtGGezpSis6MU6IhbDdLic/61IYaYWboT9r5CQa0/RhD5Qw+CqybrCeg8/UFO3zTbt283no8dOxZjx47FV7/61cBuiig0VKKlUDxHfSy4vJql/Yzz+7ykydhQxF7OLkuP8X4fp3J7fp+/povehJAXZPKNvU4hhkw6jB7Z6vRiab24AbBHhAB/a5HxUHqMyH+SiEILrM8QLdRKED7JsyhQLjhFgWRzxDGnY71Eh2xz7Q0Ww5xXyGtzRVm5vRj1EfcBTk0XVWuRqaNC4l+qshiWGRGKIsWV0xtRIdVq9LINgGmW5r1CqgaLgFUgyaJCBJH/8CnnIM5VKBT4tw/RPxRKhCcIevk+3aI4qjEv4kd2DZWQMs7LFmNNm6vSC+kxlUnaS7RItQ+we4hkr9k8/dEaOWG9hZx+oVqjQfrV2aKsqWzH6e5E1N0obasgE4WQqqyeegoRg4sUokBgkaHcor0DAYkhIiC8Rna8zBso8eXjx8GradpNBMnGvQgqJ98QYPMKMcIRu8gBYBM1+mmtAsY4h2Cmlgkj1T6ZEFL1EOJL6XlRJD4CgFjIz7xDRjm9KHhUQshWQSbLn3mpGOMhIUQUDuQZIoiChxdRvRFUDj8WbmZn2T7VmCryI9vn2TDNNmt6jDdNe0mP8WkvNm43UOvdplWRJFkpPjNXy6rIRFhvIUDWcTqSLZtn/YTMTtNs6zpcoqfIWkJyk3SH5LUlKsS2buG50zpklB4jCpskougJqJqsmyJDBMEYJCk2Pz8pTl4ht+PcIkOexvRyVr6UniGLwlijNOpokUzs8Od1K8uXRYNU5fQZyBdj5SvH+LlW07TeayidDltXp3frOG18NOLaY7IGil6hqBBRWGQQRlFAER3yDBGDkP4QNbIUGhtj1xdf99V9STqsq6JA/H4/ESIn8eM5AiTb1A0WzShPkovqpC3PxVJ5e4QoCadokWweEzvMXO1UoeZkmubnWMvoo+hECTpRgiRi6EQpEi1lQEuxvIxe9hyAu2laFR0C7FEhEkJE4aFHhoLqQF04rSRIDBEBkktFWH+IrD4+v9e37MUPpPIFOZ3Hcqy1waKq07T1dDJjtLqqzMlkrTZjW1ezd6ogczJNszOLlu1UNlWWQgydKEEqGQUSxc7dpnnfkNFgUVyIVbYOmVfTNEEUHj0Ibk2xngKSGIVzp8QQo0DSa7JokSzio/Iaifuc5qtEkOIcllJ6l55CADwLHlVVmdvaZPo1nCvIAIA3TfPrjZn7zaux5Tf4x1QmpnuFVIZpmXnaaLDIp8b4Ncj8rjdGUSGiMEmhOLDIULqA/s8XzsIhHEuXLkUoFHJdDHbLli2ora1FPB7HxIkTsXLlyv65wUFLUP+x8yF0GkAJvSz95TbPSczkbJZmm1lBFo0npekxUdiw9Jg1paVagNWaAuNN1uJzmbFaHGPj/AaYokxElFtJPhKUTY11oRSdHSXo7igxDdMtUBuoDdO0GBXijdNBmKYL50uBGNqkjZ/OYLZceOSRRzBhwgTE43HU1tbitdde83TcG2+8gUgkglNPPdX3NQtODP3lL3/BqlWr8LnPfc5x3u7du3H++edj5syZqK+vx2233YYFCxbg2Wef7ac7JUzy9YsgB0HkFkv14ifyKqK8XsM4r+kVAqzrj9nL2a39gMxxVfl7xjbOH+MUEbJHjNKC+JGvk8ZgUaEM9wvWmoCLZNchyzqhEjEzRea22TpNy3oHif9/ackNYvDSzaWce7t151CVtm7dOixcuBC333476uvrMXPmTJx33nnYu3ev43Gtra248sorcfbZZ+f0vgtKDHV0dOBb3/oWfvWrX+GII45wnLty5UqMGzcOy5cvx6RJkzB37lxce+21uP/++/vpbgnvDKRY8pApdhMvXo3Tsv2BRYZMrxBvmo6G+QiO1SgdNZYyNSM5Yjl8zJAYSdt86/OkLSLEv44iaRFBZuQpZZE1+tuWCyLeH2SapkuzxmmznL6nZZg1KsRvYlQoAej//9qyG+8XYkZqWTRI1WuI0mNEYZOx/bHRu80vy5Ytw5w5czB37lxMmjQJy5cvR01NDVasWOF43He/+11cfvnlmDZtWk7vu6DE0Pz583HBBRfgnHPOcZ27bds2zJo1yzI2e/ZsbN++Hd3d8l9OyWQSbW1tlo3wS2//KnY63ulLRfbXuh9cRJGbuFGdyqshWnU9mUAS9wPgGyzy6TEGXwovlsXrY/YIDxtXlcmrPUaiF0ls4iiPMPGPPPKIkCmrLOJI9Aq5+oQAebWYLBrk1zdEEIVHEsXGz1PvNz36Ln6vJpNJ6bVTqRR27Nhh++6eNWsWtm7dqrzntWvX4v333+/VIvEFI4aefvppvPXWW1i6dKmn+Y2NjaiqqrKMVVVVIZ1Oo6mpSXrM0qVLUVFRYWw1NTW9vu/BR66/+AvlC8Oj4nEyTrud1msUSHYOh6iQuP6YfohVrMjWFFOV0bNxMeVln2+VKTFL6b09YiTbAJUQiliesyNYWqwTpUghii6UoitZqvcVYlGfFpjRIHFdMumyG6pO0169QBQVIgofq4uv9xsA1NTUWL5bVd/jTU1NyGQy0u/uxsZG6TH/+te/sHjxYjzxxBOIRLz+xWon9yP7kX379uE///M/sXHjRsTjcc/HhULWXjGapknHGUuWLEFdXZ3xuq2tjQRRTngpsfdThi/O7etFXeX/P2z4SYM5HeMUBXId55fdsPYUYumxqKKbNJ8+YyKHiSWxw7SqL5HT4q1+l98QQ+q8VyiFGJhpmm26YTqbIsuUop31FWqBvZcQ/9pIjzHTNOsppFqDzMk0DcVrgIQQUYh0I4pMQNVkrCpt3759KC8vN8ZjMWcvkey7W/a9nclkcPnll+OHP/whjj/++F7da0GIoR07duDQoUOora01xjKZDF599VU89NBDSCaTCIetv0hHjx5tU5KHDh1CJBJBZWWl9DqxWMz1H4kY4jiJGdUcpxSXn0iS8vrqTtPWVFRaIkxU5fF2IcPO4XXxVlmfIb7ztFhpEoa9vxC7CnvOR4VSiCKNbDl9Iurebdq2/hgvcpyeA/I0LFWPEYOPNILrQM3WJisvL7eIIRUjR45EOByWfneL0SIAaG9vx/bt21FfX48bbrhBv2ZPDzRNQyQSwcaNG/HlL3/Z070WhBg6++yz8fe//90yds011+DEE0/ErbfeahNCADBt2jS8+OKLlrGNGzdi6tSpKC4ugP41eU2B9ADyTLHw6IJK+DiJIpWY8WOSjsvGkhavUDSeQjRsRnf46JA8VZY2IkWiBygqRH/4qJE5Zk+x8dEiXgTJqtd48WNNifECKJL1H8SM1Bjb2lGGdpShg0WFmqBHgZpgPmebq2maeYd40zQvalTPqXqMGDykEEVRQGuT9WTXIvRKNBpFbW0tNm3ahK9//evG+KZNm/DVr37VNr+8vNymDR555BH8z//8D5555hlMmDDB87ULQgyVlZVh8uTJlrFhw4ahsrLSGF+yZAn279+Pxx57DAAwb948PPTQQ6irq8N1112Hbdu2YfXq1Xjqqaf6/f6JXMkz0eXnp0VmmlaZn53O4Sie9LQv7xViiP4bVbrKqRGj2iStWq/MHi3iI0EyT5AsGsSwd5nWBZE1OhRDV7IU6IhbvUGuUSGxoSJfJcYe+aiQ0xIbIhQVIgqXDMLQAo4M+aGurg5XXHEFpk6dimnTpmHVqlXYu3cv5s2bB8D6XV9UVGTTBqNGjUI8HreNu1EQYsgLDQ0Nlj4EEyZMwIYNG7Bo0SI8/PDDqK6uxoMPPoiLLrpoAO9yMBGEUOG9P7mcz+sxvbxXJ1Gimu9ljD+P783JK2SP6PDiRCyj5yNFYsQn5uAjcjJmi0IJkBukAXNRVjEyxC+7kcpWp9giQ5kyvYKM9wfxj+IGwL7+GF9K7zc9JoojEkJEYZNKRRFKBeMZ0nI4z6WXXorm5mbcddddaGhowOTJk7FhwwaMHz8egP27PihCGnMVEzba2tpQUVEBYDEQUNhwcOEmMGQKQDwmItnnNCZ7zY+Jz/l5EeFRNhaBzUAtTU9Jnvsdkz16HusGIhkUx1OIxZN6T6GYLlZK0aUQMtbqMX2eVTTJDNOq/aoFXdlirLFsiFxlmmbihx1pdiyKoh1lSCFmpMHaUYZmVKIdZTiIUWjBCDRjJA62jkKi6QhgT0hPizUC+Ai6GNoDXQA1wkyVGUKoGaYQaoeZNlN1mubvnxZiJQqJJIB70dra6ujbYd93wxo+QKi8LJAra23tODxmouu184FBExkiBhN9XS3WC1TmaL/HieNeo0nGfLPBIgDL+mP6NLtR2kxhyVNiKiO1H6M128euqz+aqTIRcUFIq4fIGmfi2z6y3kKJjlIgEbKnyGSpMgDWCjHRLM3ItacQCSGi8EklihGKBhQZSuSRzcGFPP3GIQYveeYDckMlSLykybyYpVXjskiUERnqtpmm2fpjYsm8U3RHFj2Sm6Tl+8WUGV+iD8hN0wyWGmPPrY9ml2kzJVairzvGm6YPlwEtcbtpmjdOs5SZYZpuhzU9Jq5D5mVFeooIEYOXdDqMUHcwniEtHcx5+gMSQ0QvcBM2QUR4CkA8qQSOuE91nOpcsjkRM6vNm6bFjs/2Und5dEe/RBARIWu0iT8vuydGBmGlcVpWrG8u/CH4hphXiG+o6Lj+mNg3SNZpmsdpfTKCGJxoyRi0aEC2kGTh2EtIDBF5BC98+rvRIkPScNEtEiSbrxrPJSpk2fTFWPlV6VkpvbWs3ZQVqjG+nJ49FyM+5jxn75Cqugww02QivBgSpVfSiEOZa5C1owwdzEPUOtxcg0wsoWcbE0hpQI8GtcMeERJN0166TouQUCIGEemwvgV1rgKBxBDRS3obufErcmTX48f6OJLk1TPkNSUmjsnObew3F2Plq8dkQsjeIZqlxPh+QtaxGGeG9poaE6vJAFjSZPqjGBVK27xC/H69fD6CJGL6MhvZTtNGmixZpnuFWuBePdYBWNcc46vHRPGjWp2eqseIIUQyBBR77MLv5VwFAokhokAJOlLkQ0A5pcKcbsnNJO0hKlTErTvGTNPWKIxbesxeWi+ORZFyTY2JESHVYq7629If04r0mOwMKUSNCBG//IaZHourxQ+fLgNgCh7Zchv8fsAeFaLmisQQg+8sEcS5CgQSQ0QfIxMtQUZv+jAS5FfY8Pt6Y5aWbtbFWHnTtJj2EtNa1lSXNf1l9nW2Gqdlpfiqdcr4qBFgLalXwUeGmJwzl3Q102JdKEU7hqMFI9COMrRkRqC7qVxulmYbixQZC7G2w95pWmWaprXHiCFOApDY+XI/V4FAYojIA3rbfDEoJD8OYuTGwyGeT680SUMiooQGi2FrqTygWjdM1k3abo527j6tigilOeGTtogf0TjtZJpm+80S+pjxXF+VngmkEqTY+mN89EcWETIWYpUtugrJcx4yTRNDmEx2C+pcBQKJISIA+lrAsPMPYP8hMTUmjgUVBZI2eOw2okJGKb3E2yP6emSNE3mfEIv6qBoxihGhUnQakoU3UwMw5gD2/kI89hRZxGKa7kQJUtmmi2xrwQh8ihFoaR2BREuZNSqkMk+nAdMwLUaFZM0U/aTHSCQRgxiKDBFEXxG0iPGzDIfbdT2cRxbRcTutqxlaMS7OiQB8g0XmF5JFdKKweoH4aA6f3hIrx0TfkFhVJi7iKi7EKvMLRTLCn4Rhe4NFfqmNdPZMqaw3yOwxVILOrIlaN00Xq03TLEqUBvSoEFtyg/mFxJJ6p55CqtcEMcghzxBB9Aa/0aG+iCYNQORIld5SvRbnQjLfcn5zMVa+gszJIC1fgd6e3vISQbL6gpI2gWUrq8+KoHCaqyCL6H9mhrMW6jTsXaZTxp3om7WCrASdmVK9wSITQS2wr0fGBBEA97XHRLz2FKKoEDHISSK4yFAyoPP0AySGiH4iF6Hi55h+8BqpbkUqYhT7vaTRWLfpuL4Ya3E8ZUSF9IVYk7bFVcXyeDEVxpfJx6SP9j5DYgpN1luIpckimQzC6QzC6R7lx5cOh400GRNAacM4HTUiQB1CiqwFR+CTxkp7ekzWbVrZU0gWDZL1FKL0GDHEocgQQfSW3giSgVyPzMd1Zd4g2X7xORTjTtEjAGBpMRYVgthp2osZWp1Ck0WLeO+RvZGitakiHwliQijM/QLMRIBwuseIDgHW5TfMLtOmNLOU0aMUXYdLgETMbpqWdZs20mOqRoqycnqA0mMEkSUBoCjAcxUIJIaIAUQlnryKKi8CymmOy7FOIkWc4yZ8/Jqo4xoQT6IokjFXpQ/z6SzzUWaGlkWAIsigBJ02QzR75KNErgbqjB4RiiZ0cRFOG7rNRkb47PSGirpPqCvrCepECRcJ4rbkCHQ0jgQaQ2YkqBHWyBBLkQGQl9GnYXqHRJ8QpccIwkIGwf0tQNVkBDGI8PNT4uQREh+dIkSA0WCRbeqyeeujNYUmb6bIV4M5mauZkOL9SbFM0ogEMREUkvzy1CSfWxrWxVjTWQN1F0q5HkMlhnG6vaUM6AjZfUKiaRqAtW+Q2GTRzwr0FBUihjAJSFclyvlcBQKJISJggvbusMhOkOcN4DyySFCuKTFpdChpNFi0mqbt5meV8OEFDy9y7KvR2w3UynXIst6gaKLHKoIk+iEkfCSyLtMpLiXWjuGcV+gItGRG6OuP8b4g9lw0TqMbekSIN02L6TGn5oq0Ij1BACDPEEH0PW5pLS/NF72kxryU1OeAKh0me+0mgviUmE0IdRul9LFsp2lTpFjTY/au0WlpukzsRi0zUNu7WAtrlyVTCKd7EEtmRVAaZhic/6UniL1MxDRPsxSZKYDKbD2FWjACLZkRaGka4dxTiAkiAPIO007pMf6mSQgRhEESwUWGqJqMGNr0RxfpoK/hwT+UyyncokC2MWspPWB2d+Y7TavSZBHBVM0vqsqnu8SGjewYVWk9E0LhtCCEVJGhCKS6VbRtp7LSjKXKWEVZZ0cJethirGJqjN8AWNceE9cfA+TpsQL6k5Ug+pNuBFdaX0B/S5AYIvoZ8RvSj6iRzWVfarJxv/+9uT+HVMZo1f7eGKYtWxpF2VL6qBEVciqJ5yM7+mvWRboUncZ+Zn5mBmpZREi6Xlkmg2iiG+E0UJyEVQTxkSEZ3C9UFhFiXaaZYZpFg5owEk2oRDMq0YSRSDQeqRul+U0WGTLSY7LIkKzbtMo3RFEhggBAkSGCyA9kImYgy+45nMQRJOOqqJBszNgy0qiQqiSeFzTW8aQkMpSyHK9KqxlRo6wQMtJi7BdbAvL0mOwzAJCJFHGRID1p18WVzndyDRbbUYb21uHqpoq2qJBM+Mj6Azmlx2SQECKGKFRNRhADhd+Ul5M46kfh5NcfZPMGiWOa4RWKxlNGKb3M78MLIFHQWB+tq9HzpfWO5fi8P4iJH/bI64009z4ZYXMsHdY7UPNXMirFhLXHmlCJlsMjkGg6wu4TUjZX5CNC3ZJH/re6qoyeUmYEYdAFQN071R8UGSIIJ4HjVbAM5Ar2Aqqoj2zMb/osDt0rFE8iGk8aq9LztVdRyA3RZrVX2iaUWOqM7xHER5JK0Alb76FMp1EtZqTFxEemHVR/9cXMp8w8ze6oK+sJkpqmcQQ6mkYATSHnLtMJwBQ8MiHkVD0mQukxgrBAq9YTBOGKLE0mS38BdiHkND+SRhG//phgjrZ3jM6A9wnxZfay8nhZ2byZKuMM1jIhxIsg0TjNI5gutQhLkZldps3UWAm6ON9QF0qz6bFiuy/Ilh5jXabFPkKyhoo8lB4jCFeS0H/EgiAV0Hn6gaCabvcpS5cuxWmnnYaysjKMGjUKX/va1/DOO++4HrdlyxbU1tYiHo9j4sSJWLlyZT/cLWGS6xeL17SFuKZUgF9kquiObL9sviwVFle8jmtZ07QuhKIxq8iRp7/MNBhvoC5BJ6JZw3SJtT6LX/YUZWg3ej+XoR2lmU6UHk5gWGsPig8D4DcWjTkM/RdlAmqRxH0+6TCQjEVtZukWjEAzRuIgqtCMShxEFQ5mqpD46EjgI+ibaJxm0aEEYHaZboN1DTIxGuQmkGTeIoIY4nQHvBUIBSGGtmzZgvnz5+PNN9/Epk2bkE6nMWvWLBw+fFh5zO7du3H++edj5syZqK+vx2233YYFCxbg2Wef7cc7J9R4/SJyqvbJE5yM0hCe8/u5CjJLg0UhGmTd0tLoDu8PUvUcYq9F8zVvlDZEDS92MrCmysRqMjEUHgEQ1lNkrNM0S/KljB5DZkVZJ0qynaahNk0nstezrT0mNlYU02LUZZogfJEMeMuBRx55BBMmTEA8HkdtbS1ee+015dznnnsO5557Lo466iiUl5dj2rRpePnll31fsyDSZC+99JLl9dq1azFq1Cjs2LEDZ5xxhvSYlStXYty4cVi+fDkAYNKkSdi+fTvuv/9+XHTRRX19y4RB0L4fP+dLK+a6nMOLH0j2XDbPddOyFWR6g0XeNC2LApWiy+ILKkGXxR/Ee4tYREhch4xFk0rQiVgyZabFWNQnA12AMNHDV5GpPi/eBpZ9b53D4obo6UAZPs0apZtRiWaMzG6VOHSwCj2Nw6wRIZlx2vAFiavSi9Egty7TMgroT1iC6EsGuJps3bp1WLhwIR555BFMnz4dv/zlL3Heeefh7bffxrhx42zzX331VZx77rm45557MGLECKxduxYXXngh/vSnP2HKlCmer1sQYkiktbUVAHDkkUcq52zbtg2zZs2yjM2ePRurV69Gd3c3iovtX4bJZBLJpCll29raArpjQk5vqsL6uWqMf1Q9V6XOxH1CVIj3CvHRILsgMpfbECvMrCkzmaAy97E+RIYQOgyzWoxPg6W5ccBqnBabsoWzWzYq1B2DUULPDNMd2WU2+HTZpxiBnqZhzoZpo3pMZph2M0lT9RhB+IJvndFbcvgbY9myZZgzZw7mzp0LAFi+fDlefvllrFixAkuXLrXNZwEPxj333IPnn38eL774oi8xVBBpMh5N01BXV4cZM2Zg8uTJynmNjY2oqqqyjFVVVSGdTqOpqUl6zNKlS1FRUWFsNTU1gd474YbbT46q8kccD/DLLtcokY+oUDSeNBosWkvm5ekxZnpmj9bIkDVCJEaNDEGU7LRHhEQ/EHudFsZU6THuvWci4Josmv2ErOuPjUBL6wirYboF9jRZAjDTY+LaY1Q9RhCBkg54gx5Y4Dc+6MCTSqWwY8cOWyBj1qxZ2Lp1q6fb7+npQXt7u2OwREbBiaEbbrgBf/vb3/DUU0+5zg2FrG00NU2TjjOWLFmC1tZWY9u3b1/vb5hA779svK42rsLpy9EBVfRHfHTb4qotieJ4yiiljyFpiJfSrBE6hqTFBG2ao/m6LOtjWTYOY9/XhbJMO0oPJ1B6uAfFbTBN0q3ZRzbWAauJWjRNGx4e7nOIA4gBiWFA+7DhRiSoOdtZ+iCqcAhVOIBqHEA1DjZ7ME13IPtv9wnshmmx0SKlxwii1yQgb+aey5aNKtfU1FgCDbIIDwA0NTUhk8lIAxmNjY2ebv9nP/sZDh8+jEsuucT7e0aBpcluvPFGvPDCC3j11VcxduxYx7mjR4+2fXiHDh1CJBJBZWWl9JhYLIZYLCbdR/QWr16f3nqM2PHioxse+s/LjNCqObLUGnudHSuSmKZVUSA+dcZ3lrYu1pri1h9LSyNCRkfpBMxwOJ8WE8vnVaX0YpqME3+peLFhlO7iGiyapfTD0YkSdLeUOUeDDI+SaJLmmx3x425QeowgXMkguOU4stHjffv2oby83Bh2+56VBTJUQQyep556CnfeeSeef/55jBo1ytetFoQY0jQNN954I9avX4/NmzdjwoQJrsdMmzYNL774omVs48aNmDp1qtQvRAwUvfENBYXk/4OTP8hrSiwOe2TI2NeNaDypm6ZjfGoraUtzsaaIrDye9wDx0SL2vAztVpM0UihLtiOc7kGcRXrSsJfKi14hWck8L4L4zyCmb9owoD1sXXOMRYX0x1E4hCo07q8G9mSbK34E/ZFFhVqyr9OAaZZmUSGnLtN+yujF/QRBANB/DwT1azf7Y1deXm4RQypGjhyJcDgsDWSI0SKRdevWYc6cOfjtb3+Lc845x/etFkSabP78+Xj88cfx5JNPoqysDI2NjWhsbERXV5cxZ8mSJbjyyiuN1/PmzcOHH36Iuro67Nq1C2vWrMHq1atx8803D8RbIPqEtPC8D77cVBEe2T4no7VFJHUDnGmaFze874dFhpipmvcAiVVlfBUZL4RK0YXSjO4PMoRQEtb0l5gGc+slJKbHYuZj57Aiy1Ib7RiOT40O03qX6ZbDI4CmuHyZDYthWvQJiREiwC6AvEJCiCCkiJ0qerP5/LGMRqOora3Fpk2bLOObNm3C6aefrjzuqaeewtVXX40nn3wSF1xwgb+LZimIyNCKFSsAAGeddZZlfO3atbj66qsBAA0NDdi7d6+xb8KECdiwYQMWLVqEhx9+GNXV1XjwwQeprH5AUaWsvESAgi7Rd0B1KyqztGyf45ZBMWuyGLZ3luZTZjLBw3uLxMiRmBqLZfTUmFExloRZNi9GhVTrj4mI0aGsEOoeBnTGSoUGi0dwQmgEmpOV6GgcaUaCVNVjhhBia4+x36wqUQSof/tSeowgPJOEPQ2eKzlUpdXV1eGKK67A1KlTMW3aNKxatQp79+7FvHnzAOiBj/379+Oxxx4DoAuhK6+8Eg888AC+9KUvGVGlkpISVFRUeL5uQYghZnx24tFHH7WNnXnmmXjrrbf64I6IvoUXPqJQYq9zFUfd8Pzf3inSw567maZt6TItK4TS2fSYLnJEQcNMz9YxZqI2+wvpKTHrfGMs2YnSwz26P4iPCCW452nukYkhPjXGf/x8mj8MIzWGYQAqgPaKONoxPNthmhmmRxmm6WZUonXPaF0E7YFdDLHnacBulFZ1mQbkUUEyTRNETqQR3HIcOYihSy+9FM3NzbjrrrvQ0NCAyZMnY8OGDRg/fjwAe+Djl7/8JdLpNObPn4/58+cb41dddZVUF6goCDFEDCaCjvCwL0RVc0WZkMoBlU9IfM2PS/eljQaLfEdoWWRI9A7x5mlrT2d700U9IpQVQnzqKyE857tLsxJ6wB4ZiggfHxcRQkTvK8T3FBJXpW9HGdqTEsM0e85M07b0GIsGibF7WXqMegoRRK9JIjgDTU9uh11//fW4/vrrpftEgbN58+bcLiJAYojIE0ShIhNNbMxN1PiI/qhwqgYTH50iQ5aoUDeK4inDNF2aje6USEzQ4nMWPWJeIaup2lp6X3a4Q68Y431BrTA7S7OUGYsIicZpQK4hWOiciaA4gOEAjgRaKoajKdtZ+hBGoQkjcQBj0JAtoz/QOkYvo98De2SoEaY4MozRbdyjmB4TI0FkmiaIwEhjwMXQQEBiiBgA/EaH/ER0vAomHzgJIre0mWU8YyzGqkd/zDXIzJJ40yckGqL5DtKiKDKeJ1O6UZqlwTpgjQwdFl7zDRVlPqEITIE0DFYhlE2RJYbB0kzRapjWt0TTEerGionsIwD5avSyNccgeU0QRK/pAokhghhY/AoYXlSxL0Xx+LRiXIEXfxAUzx0jRN0oimQQiye59cfsKS6rT4iVz5sRJBYB4n1EhkA6nNAXW2WCp4N73gp5OX0a9nJ68f3znwNbciMrhLrL9QaLzCjN1h1jJfQHUYWDzVXARyFrU0VWQs+2BGBWjbGokFhC39v0GAkngnClB8F5hoI6Tz9AYogYILxEh4L0F6W9n8vtp8KriZoXRNyyG3xPIZm4cRI+5nrv2Y7S2Z5CpYcTiLfCFD5iZIhPk4mLsgqt86WfAS/sKrJbpZ4ea0YlDmEUGlCNg1mz9CGM0rtMt45C90fl1l5CTbB2mFYutyFLjwFW8UNCiCACJYHgmi6SGCKIXFFFh8Qqsn5qyOia+vKyaeZirFwpPd9FOmykykxTtayc3owcdZmC6nDCmhqTRYbE3kFi12nVOmOAZQFWvoJME9Jj/AKs7ShDe6ZMT4/xpfMtsBqmOwBTCMkqxiA8Fx+9QEKIIDzTDRJDBNG/BBEdkqXHeMGUY2RJ9AOJ455SYwCGa0A8idLhnSgZxkd6rCkxVg5fhg6jZL4M7SjJRn/YHD4iVJrpRFlrt2mUZuKHjwzxjRUz3GuxcoyJIV748K9jsESEukcBzRUV2ZL5kdiHGuxDDQ6gGntwDJpQiU/+92hz3bE90IUQ32HaVkbPp8dkXaa9rD1G1WME0SuCWrG+wCAxRBQQXnoM9WHESFZJxh6VWzq7Bpm1mWLMWFMsaekuzVeX8Qu1steGRyjTiWgiK4RYmTwfBRK9QbKIEC+GRFhPIYlhGsNYTyEzEvRpdjNM0+Jq9LxhmkWFpGX0Tt0ec4GiQgRBuENiiMhDvAoafp7Yb0hVms/meowcydJj4qPNHwQjMlQUT+leoZi5xAYTNzJfEB/5YREh2xgfEWKrzbPnCegBlgQ3nobpGRLTY7L3yr+OQS+fHwagUt8So2AzSTegGvtQozdYPFiNnqZhZlToI1gjQkwYQYMeFeJ9QiwSxMRRb0zTJIQIgvAGiSFigPGyREdvjNTsC1HVs8gHbpEgW8dpTV97LG6KIGtPIashmnWPjsHsM2SmybJiKNmud5VmIkgUQ8wsLYohliZjYghwNkyzSFAcuhA6EkAloI0CDg47yhBCB1CNg1mz9CFU4UCmGj2Nw8yKMeVyG4C9y7RsQaPe9BQiCMI/4jI3vT1XYUBiiMgD+mPdsV42YszJOJ1GLJ5EOGKapK3GaLOsngkgtsBqSVYI8aKpNJNdXoOJHNmWEB7FJTdYVAiw+oT4R3b/XFoMwwCUA+0Vxejg0mNs/bFmVKIJlWhpGmGtFmuBPEVm/MIV02MybxAkrwmC6Bu6ENzv4y73KXkCiSGiQBCryPjXgL3fUDFyFkB+Ksik648BGN6N4uFdKBnWZUSFStFp1F5Fs1EgMSU2Ai2WeaXo0seSnRjW3GMKnE+gC4s2mOZplh5jESJ+UdbD2feQkLxX/pFVi5VDN0sfCaBaf/y4ejgOYRR24xjswQQcQDXew7FoxkjsRQ0aP6wBPio2u0t/BIcy+jbYDdN8dIh6ChHEwBCkb69wIrYkhog8QRYd6o0Z2k+0ycNcVWUZe7RtGYQjaaNUnpmkI9lH1lDR7DekR4JYtIh1mS5Fp7HgqiUdxirHDgvPeSO1WErv1FRRVg2XXYCVbS2GSVqPBFlWpW8dAbQU29NhfDTIEGKsh5DT0hpe/T8khAgiWLoQnDSgyBBB9AGq6BDbB9j/S/MdqNnzEvUlvIoeMRLEP8+uTB+Lm00U+fJ45hNipfJl2W49RhQIXRiBT1GGDj0idKjHFEHMI9QMtWeIX5mepcWYEMnATIfFs8/ZxgugIwGM0rdEDdA87EjsQw0OYhT24Jjs8yrsQw2ak5VIvHek1TDdArtfKA2YZmnRNJ2G1TQNeCulFyEhRBC9gyJDBDHABB0dEs/DCycP53RKkYljfG+heFJfdiOW4krlk4YPiFWHmVViHZaUmTF2uEPvKs0LIPb8E+gC5xNYF2MVy+ply2wApiBi74MXQuXQhVAVgGpdCB1EFVc9NgoHUYVDGIXmZCVaGyut3aVbYI8QWcronRosyvxCKgrnFy1BFA4JBCcNxLx8/kJiiChQ+OgQYP2v3A175Eh2fDcco0QM8afExThdHE9ll92wGqTN0nrTGM0iRWzMEENMCLXBFEDsdQeslWNMDPEl9bxZWtVEjTdKM7M08wplo0OHK4uyq9FXGmX0h7JCqAkjdSHUWGxfa6wF1jQZAHskSOUH4l9TVIgg+heqJiOIPMAtOuRUis9gKTFeLKkM1T6jRNJIUHYbDmB4AqXDO1Ea7rQYo8vQjhFoMR6ZWZq9HoFPUYoujMw0o6SjG8WfwEyFHYIZGWrjnie5R+YdYmbpNKClgTQnhCJhIBTPvmBLa7BoUBVMs3QVgInAJzVxNKAa7+MzaEYl9uAYIzW2FzVobh4J7Ck2y+h5w3QLTEFkSY/JBFEn929BPYUIYmBJwBo67u25CgMSQ8QQgYkej6mViIfn7LWxaUa3aX69MdZMkV9njFWXmZseJSrp6EYxiwbxUaDDsEeJFEtudGcrx7rTQDoNRCJAsfgexIgQE0WVAMqBxJG6YboJI41H9pwZprubyuWl87xh2vhdyJulxYoxQP7v4sc0TRBEMJBniCDyBK/RIdXyHG4dpj10nga8+YPY6+FA0fBOIyrEokG8F4hFgirRjFJ0ohLN2fFPMTLTrHeVPgRd6DRD9wO1whoZOgxrZCgrirQE0H44K4Ay1nhYJK3fY4QZpZkAqoQugFg0aAyACfq6Y+8Pm2hEgd7jIkPNqMS+wzVI7DlSjwbtgbnmmNhbyEiPdUJXcmytMVVPIVmPIUqPEUT/0gWgKMBzFQYkhog8xauZWhxjx/GPgBkVEk3UJXD968XJI8SJomg8iWicLanRaVluowwdtp5CTAiNQAvKm7utJulPuOdMBPFiKGug1g4DXUmgKwF0ZUwpIQaCiiNASDRKcwuvMsN09yjgUIVpmD6IUWhGJQ5ilBEh6mgc6bwSvSUixC+2yqfGxA1QixrqNE0Q/UeQDU4L5+eVxBBRoIhiSVVaz2BCSDRNs3ENQMj5kjIhZAgiDbF4CtFwMttFukswRbNIUYchiFj5/BGfJKxRIA+RIa1VF0Hth+2reLFbLeY+oYjoEWLl80wIVevbgYqjjHXHGlCNhuxyG/pYFZoPVgJNIbs3qAX2NBk07q7ESJB4x7J0mcxQLUJRIYIIli64/i70da7CgMQQkcfkukwH/wUp+y/u8AUqft+6RYSG649FwztREjNTY6bgYamxJqNF4SgcRBnaUZU8pHeVPgRTBB2AKYBYl2kmhj7R/UBdCaA5qd9qG+x/xzGpVwygJAyUxIEQE0DZ3kGoBDAu+/w4QBsHHDyyAnswIZsSm4BDGIV9qNF7CWEkPv5wDNBUbC68yneWboEkPdYF60KsfApMFELimmOUHiOIgYGqyQgiD5H5gVTeIXE/ew1YU2biPgWynw6pMOpGNJ40yuf1RVfNhVlLsmky1lyRRYiGNfeY0R9WKcZe89Vk2V5Cna1mJIhf4lT8lFisi6XHSsQ1xiqhR4W4yFDTkcPRnC2hZ92lP+U6TrdnyswO02IESJoeY3fi5gkS/00K55cnQQxOEgguMlQ41WRBuaT6hUceeQQTJkxAPB5HbW0tXnvtNcf5W7ZsQW1tLeLxOCZOnIiVK1f2050SfQsvYnijrZPYUflOPPwV5BIZKh7ehdLhpkn6CLQYsmIkmrOdeQ5mk04HUNPaiKP2dQC7AXwA4F/ctkt4/S+g+QNg9wFg12F96D3ovuWPoOslpqO6uNstAVAeBsorgRCXBsNEABMAHAdgEoATgQ+rj8L7OBbv4TPYg2OwGxOwJ7v+2D7U4EDrGHyyp9qMCMlWpLf0FNIg7zAt9hfyY5qmUnqC6B/SAW+FQcGIoXXr1mHhwoW4/fbbUV9fj5kzZ+K8887D3r17pfN3796N888/HzNnzkR9fT1uu+02LFiwAM8++2w/3znRe/x+8YmRBzEdw8Y9GHNl1WQWQaQhFk8aFWRsjTExTcZ6CY3MNOs9hA7CTI8d4Db2+iDQeQg4eAjYnzGzZmzjlzhNC7dYnt2OZN2keZM026r0x7aqYjRjpNFYsQkjzRXoMQLtKEOipQxoCVlL6BOKLc0+yzR0QSQzSXv59yQhRBADg9gPrLebfwYi8FEwYmjZsmWYM2cO5s6di0mTJmH58uWoqanBihUrpPNXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff38/3znRN6j+4vBSkSQ+99F7yNZwMYmSYfrSGsM5Y3S2Gw8q0ZStyTqIquQhlB/oBvYC2Ac9KrQ7+5y9/gDQ9gIf7QPey0aC9mS3/dA11CfQ02QsVcbeTUl2Y0IoVAljSQ1jq4ERHWqsrsC+cA0OYEw2ZlWNAxhjGKabUak3VmwslhumWyAxTQNWmSaap1VRIYYX0zRBEH2HquIzl83/z+9ABT4KwjOUSqWwY8cOLF682DI+a9YsbN26VXrMtm3bMGvWLMvY7NmzsXr1anR3d6O42G7MTSaTSCaTxuu2trYA7p4IBicztazvkGoeYA/hsh/cCJCW5MplFWRZ43R8uGmazq7fbsRWRqIZ1WjACHyKcZ98jBCL/PwLem5rd/YxGw3SWoE9n+gi5yD06E871CbpYpgCiNmAygFUjcq+qIIufiqhp8ZGZR/HAZ+MimeN0ZXYhxrLUhstGKGX0reOQHdjuTcRJC2ld/rFKL4jMk0TRH7QBT3VHQT+PUN84AMAli9fjpdffhkrVqzA0qVLbfP5wAcATJo0Cdu3b8f999+Piy66yPN1C0IMNTU1IZPJoKqqyjJeVVWFxsZG6TGNjY3S+el0Gk1NTRgzZoztmKVLl+KHP/yh5GxJyRjR/yQhbwEN6D90xdxrJox4gaRl5/Rkt0x2i3NzQvpDCuYCp+x1EvrviWj2ebeGaKoZkbZmhNGKEFoRxicIoQURfIoifIoQWgG0o/0j6J6bj6GHeD6F7rv5WN86DwKfdgIN0MXPx9CFUALWVBh7x/xdl8BchgxRoG04TJVUAmuDyDBwOBTCobZy7MdwtCKOjxFDE4rRjAjaoKEdGjqTGSSa08DBNmvPI6bQOrIXTYk32JndyR7ZO0jA2mtILLMH5GLIKWpEEIQ7+veXpnkVOGxxw+CuLQYWYrEYYrGYbXZ/BT5kFIQYYoRC1r/aNU2zjbnNl40zlixZgrq6OuP1/v37cdJJJwH4eY53TBQkrLHhIfepbdkNAP7Sd3fknRT0dJsjGkzDEkEQQ4H29nZUVFQo90ejUYwePRqNjcF+3w0fPhw1NTWWsTvuuAN33nmnbW5/BT5kFIQYGjlyJMLhsO3DOHTokO1DYOj/qPb5kUgElZWV0mNEtTp8+HC8/fbbOOmkk7Bv3z6Ul5f38p0QjLa2NtTU1NDn2gfQZ9s30OfaN9Dn2newP+j//Oc/o7q62nFuPB7H7t27kUqlAr0HWdBCFhXi6evAh4yCEEPRaBS1tbXYtGkTvv71rxvjmzZtwle/+lXpMdOmTcOLL75oGdu4cSOmTp3qOWxWVFSEo48+GgBQXl5OP6h9AH2ufQd9tn0Dfa59A32uwcPSU2PGjEFRkXu9VDweRzwe7+vbUtJfgQ8ZBVNNVldXh1//+tdYs2YNdu3ahUWLFmHv3r2YN28eAD3FdeWVVxrz582bhw8//BB1dXXYtWsX1qxZg9WrV+Pmm28eqLdAEARBEIQCPvDBs2nTJpx++unSY6ZNm2ab7zfwARRIZAgALr30UjQ3N+Ouu+5CQ0MDJk+ejA0bNmD8+PEAgIaGBkvp3YQJE7BhwwYsWrQIDz/8MKqrq/Hggw/6cpcTBEEQBNF/1NXV4YorrsDUqVMxbdo0rFq1yhb42L9/Px577DEAeuDjoYceQl1dHa677jps27YNq1evxlNPPeXvwhrhSCKR0O644w4tkUgM9K0MKuhz7Tvos+0b6HPtG+hz7TtaW1u1M888U2ttbR3oW/HFww8/rI0fP16LRqPa5z//eW3Lli3Gvquuuko788wzLfM3b96sTZkyRYtGo9oxxxyjrVixwvc1Q5rmud6OIAiCIAhi0FEwniGCIAiCIIi+gMQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExBKCjowM33HADxo4di5KSEkyaNAkrVqxwPe7ZZ5/FSSedhFgshpNOOgnr16/vh7stDL773e8iFAoZi+c5sXz5cpxwwgkoKSlBTU0NFi1ahETCXODv1VdfxYUXXojq6mqEQiH87ne/67sbz0Oee+45zJ49GyNHjkQoFMLOnTs9HdfS0oL58+djzJgxiMfjmDRpEjZs2GDsX7p0KU477TSUlZVh1KhR+NrXvoZ33nmnj95FfuH3/9TmzZsRCoVs2//+7/9a5rl95kONpUuXIhQKYeHChco5V199tfSzPfnkk405jz76qHQO/3tiMBOJRKTv/7Of/azymEsuuQSxWAyhUAjRaBTf+c53lHMXLFiAUCjkeemKwUjB9BnqSxYtWoRXXnkFjz/+OI455hhs3LgR119/Paqrq5Udrrdt24ZLL70UP/rRj/D1r38d69evxyWXXILXX38dX/ziF/v5HeQXv/vd7/CnP/3Jtf07ADzxxBNYvHgx1qxZg9NPPx3vvvsurr76agDAz3+ur5Fz+PBhnHLKKbjmmmuGZJ+ow4cPY/r06bj44otx3XXXeTomlUrh3HPPxahRo/DMM89g7Nix2LdvH8rKyow5W7Zswfz583HaaachnU7j9ttvx6xZs/D2229j2LBhffV28oJc/0+98847li7JRx11lPHcy2c+lPjLX/6CVatW4XOf+5zjvAceeAD33nuv8TqdTuOUU07BxRdfbJlXXl5uE+sD2S25P/n73/+O7m5zAeOXXnoJt956K+bMmSOd/81vfhO//e1vsWDBAnz961/Hc889h1/84heoqqrCj370I8vcN954Aw8//DB1/+5dN4DBwcknn6zdddddlrHPf/7z2n/9138pj7nkkku0f//3f7eMzZ49W7vsssv65B4LhY8++kg7+uijtX/84x/a+PHjtZ///OeO8+fPn699+ctftozV1dVpM2bMkM4HoK1fvz6guy0sdu/erQHQ6uvrXeeuWLFCmzhxopZKpTyf/9ChQxoAS0+PoYCX/1OvvPKKBkD79NNPlXNy+cwHK+3t7dpxxx2nbdq0STvzzDO1//zP//R87Pr167VQKKTt2bPHGFu7dq1WUVER/I0WKKeeeqoWiUS0TCYj3T98+HBt6tSptmPKysosY8lkUisrK9Ouuuoq7dhjj9VGjx7dZ/ec71CaDMCMGTPwwgsvYP/+/dA0Da+88greffddzJ49W3nMtm3bMGvWLMvY7NmzsXXr1r6+3bylp6cHV1xxBW655RZLiNuJGTNmYMeOHfjzn/8MAPjggw+wYcMGXHDBBX15q4OeF154AdOmTcP8+fNRVVWFyZMn45577kEmk1Ee09raCgA48sgj++s2C44pU6ZgzJgxOPvss/HKK69Y9uXymQ9W5s+fjwsuuADnnHOO72NXr16Nc845x1hdgNHR0YHx48dj7Nix+MpXvoL6+vqgbreg6OjowF//+lf827/9m3K9sUwmY4uaxeNxtLe3o7Oz0xg799xzMXz4cDz66KN9ecsFAaXJADz44IO47rrrMHbsWEQiERQVFeHXv/41ZsyYoTymsbHRtnBcVVWVbcG4ocR9992HSCSCBQsWeD7msssuw8cff4wZM2ZA0zSk02l873vfw+LFi/vwTgc/H3zwAf7nf/4H3/rWt7Bhwwb861//wvz585FOp/GDH/zANl/TNNTV1WHGjBmYPHnyANxxfjNmzBisWrUKtbW1SCaT+M1vfoOzzz4bmzdvxhlnnAHA/2c+WHn66afx1ltv4S9/+YvvYxsaGvDHP/4RTz75pGX8xBNPxKOPPorPfvazaGtrwwMPPIDp06fjr3/9K4477rigbr0g+P73vw9N0yypRZFTTz0VW7duxeOPP47LL78cjz/+OP70pz8BAN59912ceuqpWLFiBV5//XW8/fbb/XXr+c3ABqb6n8cff1wbNmyYsb366qvaT3/6U+3444/XXnjhBe2vf/2r9otf/EIbPny4tmnTJuV5iouLtSeffNJ27lgs1tdvIS8QP8fNmzdrVVVV2v79+405XtJkr7zyilZVVaX96le/0v72t79pzz33nFZTU2NLWzIwyNNksv+fDD9psuOOO06rqanR0um0Mfazn/1MGQa//vrrtfHjx2v79u3r9XsoNHL9P/WVr3xFu/DCC43Xfj/zwcjevXu1UaNGaTt37jTG/KTJ7rnnHq2yslJLJpOO8zKZjHbKKadoN954Y29utyCprKzURo0a5TinublZO+644zQAGgCtqKhI+8IXvqAB0P7xj39o+/fv1yKRiPbDH/7QOGaop8mGnBhqa2vT/vWvfxlbZ2enVlxcrP3+97+3zJszZ442e/Zs5Xlqamq0ZcuWWcaWLVumjRs3rk/uO98QP8d77rlHC4VCWjgcNjb2Qzh+/HjleWbMmKHdfPPNlrHf/OY3WklJiTQfPtjFkOz/J8OPGDrjjDO0s88+2zK2YcMGDYDti+aGG27Qxo4dq33wwQeBvIdCI9f/U3fffbd24oknGq/9fOaDlfXr12sAbL8H2O8GXiiK9PT0aJ/5zGe0hQsXerrW3Llzbb7Nwc7rr7+uAdCWLFniaf7hw4e1P//5z1oymdQuu+wyDYDW3d2tPf3004ZQkm3//d//3cfvJP8YcmmysrIyS3VHW1sburu7bbnXcDiMnp4e5XmmTZuGTZs2YdGiRcbYxo0bcfrppwd/03mI+Dl+5zvfwYUXXmiZM3v2bFxxxRW45pprlOfp7OyUfvaaLtSDvekCQPxcc2X69Ol48skn0dPTY3y+7777LsaMGYNoNApAT43deOONWL9+PTZv3owJEyb0+rpDifr6ekspspfPfLBz9tln4+9//7tl7JprrsGJJ56IW2+9FeFwWHnsli1b8N577ykrpHg0TcPOnTsdS8sHI7fffjuKioo8p11LS0tx2mmnAQD++Mc/Yvz48YhEIpg9ezaee+45y9zrr78eyWQSq1evxhe+8IXA7z3vGVgtlh+ceeaZ2sknn6y98sor2gcffKCtXbtWi8fj2iOPPGLMueKKK7TFixcbr9944w0tHA5r9957r7Zr1y7t3nvv1SKRiPbmm28OxFvIS2RpMvFzvOOOO7SysjLtqaee0j744ANt48aN2rHHHqtdcsklxpz29natvr5eq6+v1wBoy5Yt0+rr67UPP/ywv97KgNLc3KzV19drf/jDHzQA2tNPP63V19drDQ0Nxhzxc927d682fPhw7YYbbtDeeecd7fe//702atQo7e677zbmfO9739MqKiq0zZs3aw0NDcbGR6MGK27/pxYvXqxdccUVxvyf//zn2vr167V3331X+8c//qEtXrxYA6A9++yzxhwvn/lQREyTiZ8t49vf/rb2xS9+UXqOO++8U3vppZe0999/X6uvr9euueYaLRKJaH/605/66rbzju7ubi0cDks/oy996UvaxIkTjdcvvfSSNm/ePG3jxo3amjVrtJqaGi0UCmmvvfaa8vyUJiO0hoYG7eqrr9aqq6u1eDyunXDCCdrPfvYzraenx5hz5plnaldddZXluN/+9rfaCSecoBUXF2snnnii5RcjIRdD4ufY3d2t3Xnnndqxxx6rxeNxraamRrv++ustJcysrFncxH+PwcratWul7/+OO+4w5sj+f27dulX74he/qMViMW3ixInaj3/8Y0uaQnZOANratWv7540NIG7/p6666irtzDPPNObfd999xv/RI444QpsxY4b2hz/8wXZet898KCKKIfGz1TRNa2lp0UpKSrRVq1ZJz7Fw4UJt3LhxWjQa1Y466iht1qxZ2tatW/vwrvOPe+65RwOgvfTSS7Z9xx57rKX1wIsvvqiVlJQY/69Hjx6tbdiwwfH8Q10MhTRtCOYiCIIgCIIgslCfIYIgCIIghjQkhgiCIAiCGNKQGCIIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCCIfqWhoQHDhw/HZZddZhn//e9/j+LiYtx+++0DdGcEQQxVSAwRBNGvjBkzBv/3//5f/L//9/+wY8cOAMDmzZtx8cUX43vf+x5+/OMfD/AdEgQx1KBV6wmC6Hc6Oztx3HHHYdKkSVi6dCnOPvtsfOMb38Dq1asRCoUG+vYIghhikBgiCGJAWLt2La699loMGzYMF1xwAZ588kmEw+GBvi2CIIYglCYjCGJAOP744wEAoVAIjz76KAkhgiAGDBJDBEH0Ozt37sRXvvIVTJ8+HR0dHVizZs1A3xJBEEMYSpMRBNGvvPPOOzjjjDNQW1uL559/HhdffDHeeOMNvPfee6ioqBjo2yMIYghCkSGCIPqNPXv24JxzzsEJJ5yAZ599FsXFxbj33nvx6aef4p577hno2yMIYohCkSGCIPqFhoYGzJw5ExUVFXjllVdQXl5u7PvOd76Dxx57DP/7v/+LY445ZuBukiCIIQmJIYIgCIIghjSUJiMIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIIQ2JIYIgCIIghjT/H/P7mjzSRbPMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(6,8))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln_new.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "8a151326", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer_new = tp.models.NormalizationLayer(I_new*Omega_new)\n", + "fcn_layer_new = tp.models.FCN(input_space=T_new*X_new, output_space=U_new, hidden = (128,128,128))\n", + "model_sol_new = tp.models.Sequential(normalization_layer_new, fcn_layer_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b62ecf69", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll_new = 5000" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "9132e130", + "metadata": {}, + "outputs": [], + "source": [ + "domain_sampler_new = tp.samplers.RandomUniformSampler(I_new*Omega_new, n_points=N_coll_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "15dc322e", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities_new(t, x):\n", + " \n", + " model_input = tp.spaces.Points(torch.column_stack((t, x)), T_new*X_new)\n", + " u = model_sol_new(model_input)\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def residual_equation_new(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities_new(t,x)\n", + " \n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx) \n", + " \n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " \n", + " return residual " + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "3611a53d", + "metadata": {}, + "outputs": [], + "source": [ + "pde_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = domain_sampler_new,\n", + " residual_fn = residual_equation_new, \n", + " name='PDE Condition',\n", + " weight=1.0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "80d9740a", + "metadata": {}, + "outputs": [], + "source": [ + "N_ic = 500\n", + "initial_sampler_new = tp.samplers.RandomUniformSampler(I_new.boundary_left*Omega_new, n_points=N_ic)\n", + "\n", + "def residual_IC(u,t,x):\n", + " \n", + " return -torch.exp(-(x + 2)**2) + u\n", + "\n", + "\n", + "initial_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = initial_sampler_new,\n", + " residual_fn = residual_IC, \n", + " name='Initial Condition',\n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "d75d7987", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def residual_BC(u_left,u_right,x_left,x_right):\n", + " \n", + " u_x_left = tp.utils.grad(u_left, x_left)\n", + " u_x_right = tp.utils.grad(u_right, x_right)\n", + " \n", + " error_u_neumann = u_left - u_right\n", + " error_u_x_neumann = u_x_left - u_x_right\n", + " \n", + " return error_u_neumann + error_u_x_neumann\n", + "\n", + "N_bc = 250\n", + "boundary_sampler_new = tp.samplers.RandomUniformSampler(I_new, n_points=N_bc)\n", + "\n", + "bound_condition_new = tp.conditions.PeriodicCondition(module=model_sol_new,\n", + " periodic_interval=Omega_new,\n", + " non_periodic_sampler=boundary_sampler_new,\n", + " residual_fn=residual_BC,\n", + " name='Boundary Condition', \n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "bc500357", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions_new = [initial_condition_new,pde_condition_new,bound_condition_new]\n", + "optim_new = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.0001)\n", + "solver_new = tp.solver.Solver(train_conditions=training_conditions_new, optimizer_setting=optim_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "ae35a441", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=0)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=0)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/setup.py:179: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.\n", + " category=PossibleUserWarning,\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 33.5 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "33.5 K Trainable params\n", + "0 Non-trainable params\n", + "33.5 K Total params\n", + "0.134 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 25000/25001 [20:00<00:00, 20.83it/s, loss=3.51e-05, v_num=1]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(15,6))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$: True',fontsize=14)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints_n)\n", + "ax2.set_xticklabels(x_label_list_n)\n", + "ax2.set_yticks(ypoints_n)\n", + "ax2.set_yticklabels(y_label_list_n)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('$u$: Pred',fontsize=14)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln_new.T - u_pred_new.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints_n)\n", + "ax3.set_xticklabels(x_label_list_n)\n", + "ax3.set_yticks(ypoints_n)\n", + "ax3.set_yticklabels(y_label_list_n)\n", + "ax3.set_title('Abs. Error',fontsize=14)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "54efcae8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u: 0.15133772266569284\n", + "R2 Score u: 0.9685556669473732\n" + ] + } + ], + "source": [ + "l2_error_u_new = L2_ERROR(u_soln_new.flatten(),u_pred_new.flatten())\n", + "r2_score_u_new = R2_SCORE(u_soln_new.flatten(),u_pred_new.flatten())\n", + "print('L2 Error u: ', l2_error_u_new)\n", + "print('R2 Score u: ', r2_score_u_new)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + }, + "vscode": { + "interpreter": { + "hash": "da0fbe8389eabce767ecf652ec31e8710a923604e2f1fdffa4a2f324d0133cdc" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_Hidden_Physics-checkpoint.ipynb b/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_Hidden_Physics-checkpoint.ipynb new file mode 100755 index 0000000..a88902c --- /dev/null +++ b/examples/hidden_physics/.ipynb_checkpoints/Burgers_Equation_Hidden_Physics-checkpoint.ipynb @@ -0,0 +1,1361 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e90f9c12", + "metadata": {}, + "source": [ + "# Hidden Physics Model (HPM) in TorchPhysics\n", + "\n", + "HPM is deep learning approach, introduced in [1], for discovering nonlinear partial differential equations from scattered and potentially noisy observations in space and time. The approach uses two deep neural networks to approximate the unknown solution and nonlinear dynamics. \n", + "\n", + "\n", + "The general form of a nonlinear PDE considered is \n", + "$\\frac{\\partial}{\\partial t} u(x,t) = \\mathcal{N}(t,x,u,\\partial_x u(x,t), \\partial_x^2 u(x,t), ...)$\n", + "Where $\\mathcal{N}$ is a nonlinear function of time t, space x, solution u and its derivatives. The first network approximates u(x,t) and acts as a prior on the unknown solution and to access numerical differentiations using automatic diverentiation. The second network represents the nonlinear dynamics $\\mathcal{N}$ and helps to uncover that govern equation of a given spatiotemporal data-set. The two networks can be trained together or alternativly in a sequential manner, which improves the results and reduces training time. Once the HPM-Model of $\\mathcal{N}$ is trained, it can be used to e.g. extrapolate in time or to new initial conditions using e.g. the PINN methodology. \n", + "\n", + "Following the example of [1] for discovering the Burger Equation is introduced.\n", + "\n", + "The Burgers Equation used is in one space dimension with the given initial condition:\n", + "\n", + "$$\n", + "\\begin{cases}\n", + "\\frac{\\partial}{\\partial t} u(x,t) &= -u(x,t)\\partial_x u(x,t) + 0.1 \\partial_x^2 u(x,t) &&\\text{ on } [-8,8]\\times [0,10], \\\\\n", + "u(x, 0) &= -sin(\\pi x/8) &&\\text{ on } [-8,8]\\times \\{0\\}\\\\\n", + "\\end{cases}\n", + "$$\n", + "\n", + "A periodic boundary condition is used.\n", + "\n", + "\n", + "\n", + "[1] https://arxiv.org/pdf/1801.06637.pdf" + ] + }, + { + "cell_type": "markdown", + "id": "0f75aa20", + "metadata": {}, + "source": [ + "## Importing Libraries " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6ce46b77", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" \n", + "import torchphysics as tp\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "import scipy.io\n", + "import time\n", + "from matplotlib import pyplot as plt\n", + "from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "181dc808", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "import torch\n", + "import sys\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "RANDOM_SEED = 2308\n", + "np.random.seed(RANDOM_SEED)\n" + ] + }, + { + "cell_type": "markdown", + "id": "eea231db", + "metadata": {}, + "source": [ + "### Example-1 " + ] + }, + { + "cell_type": "markdown", + "id": "5858b0e8", + "metadata": {}, + "source": [ + "### Reference Data " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3c380e9d", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "data_sine = scipy.io.loadmat('burgers_sine.mat')\n", + "t = data_sine['t'].flatten()[:,None]\n", + "x = data_sine['x'].flatten()[:,None]\n", + "TT, XX = np.meshgrid(t,x)\n", + "X_star = np.hstack((TT.flatten()[:,None], XX.flatten()[:,None]))\n", + "u_soln = np.real(data_sine['usol'])\n", + "u_soln_v = u_soln.flatten()[:,None]\n", + "u_tensor = torch.tensor(u_soln_v,dtype=torch.float32)\n", + "X_tensor = torch.tensor(X_star,dtype=torch.float32)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "cda6fadf", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x.flatten()\n", + "y_lbl = t.flatten()\n", + "xpoints = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints.append(len(x_lbl)-1)\n", + "ypoints = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints.append(len(y_lbl)-1)\n", + "x_label_list = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints]))\n", + "y_label_list = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fcaced98", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAE3CAYAAAAgzK9JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHq0lEQVR4nO29e7gcVZU2/vbpPjknQBI/g7lBCAkDJBAVTLwEuTiiidzGC4MwjoAIaAyIJKIQmRHwQtSJmEGQfPELIFeZGYiiREyeGRIUgpKQKCoXlUgykGMMP0wIJOec6lO/P7p3n12r1tqX6uo+p4/7fZ5+umrvVXvv6ku99a619q5CHMcxAgICAgICWhhtAz2AgICAgICAehHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgICCg5RHILCAgJ3z2s59FoVDAE088kapbtmwZCoUC7rzzzgEYWUDA0Ecgs4CAnLBx40a0t7fjyCOPTNUpgjvqqKOaPKqAgL8NBDILCMgJmzZtwhFHHIGOjo5U3YYNG9DZ2YmpU6cOwMgCAoY+ApkFBOSAzZs34+WXX8Zb3vKWVF1vby+efPJJTJ8+HcVicQBGFxAw9BHILCAgByg34tFHH52q++1vf4vu7u7gYgwIaCACmQUE5ICNGzcCAKvMNmzYACDEywICGolAZgEBOWDTpk0oFAp485vfnKr76U9/CiCQWUBAI1GI4zge6EEEBLQ6Dj/8cOzatQvbtm1LlG/ZsgXTpk3Dnj17sHPnTowYMWKARhgQMLQRlFlAQA7o6OjASy+9hL/85S+1shdffBH/+I//iNdeew2HHHJIILKAgAYikFlAQA5473vfi97eXrz97W/Hpz/9aZx55pk44ogjanPOgosxIKCxCGQWEJADrrnmGlx44YXYvXs3br31Vvz5z3/G7bffjo985CMAApkFBDQaIWYWEBAQENDyCMosICAgIKDlEcgsICAgIKDlEcgsICAgIKDlMSjI7Nvf/jbGjh2LYrGIQqGAhQsXJur7+vrwrne9q1b/ute9Dj/84Q+t7X7uc59DR0cHCoUCOjo6cPnllzfqFAICAgKGLB5++GGcdtppmDBhAgqFAn7wgx9Yj1m7di1mzJiBzs5OTJkyBUuXLm3oGAcFmb388ss49NBD8dnPfpatP+WUU7B27Vp89rOfxX333YeRI0fiQx/6EF588UWxzWXLlmHx4sV417vehQceeADvete78I1vfAPLly9v1GkEBAQEDEm8+uqrePOb34wbbrjByX7z5s04+eSTcdxxx2Hjxo34whe+gEsuuQT33ntvw8Y46LIZC4UCrrjiCixatAhARZW1t7dj9uzZ+MlPfgIA2LVrF0aNGoWPfOQj4sMODzroIOzZsycxiXX//ffHvvvui+eff95pLH19fXjxxRcxYsQIFAqFOs8sICAgwI44jvHKK69gwoQJaGsz6429e/eip6cnUx/0mtbR0cE+voiiUChgxYoV+MAHPiDaXH755bj//vvx1FNP1crmzp2LX/3qV1i3bp33eF1QakirOeLhhx9GX18fzjnnnFrZyJEjMW7cODz22GPicS+++CJOPfXURNmxxx6LH//4x+Ixu3btwq5du2r727Ztw9ve9rY6Rh8QEBCQDVu3bsWBBx4o1u/duxdvGD4cuzO0vd9++2H37uSRV111Fa6++uoMraWxbt06zJ49O1E2Z84cLF++HL29vWhvb8+lHx2DnsyeeeYZAJW173S87nWvS6guinK5jAMOOCBRdsABB6BcLovH/MM//APWrl2bKr9k60XYZ2TloyqinHovkbK22n6k1fWljmtDBACp44voQ7Fax/VHbUqpfstandyvKtNt+s+henz18ypG6j1GsVKFUvWjLKiPNAKgb0Pb18sjYtNH9k3tcPumdpStSzvcmPQy9W9pq253ABhZfb0ewHhg7wHA5n0PxtM4HL/FkfgtjsDTmIot/98kRM+NBF4A8GcAOwG8Wn1xn4n+zyyR96JQrtdLdVwbLu3nbVOsOoRKyR9ToVRGsbpdrP7QSqXq71Orayv2/8cqTRt+w4n/RR85rpz433DvvI2pX2qj99tfJ/UX7dqDGyf+u3X5s56eHuwG8DlUfoqu6Abwb7t3Y+vWrRg5cmSt3EWVuaKrqwtjx45NlI0dOxZRFGHHjh0YP358bn0pDHoyU6By28U76nvM/fffn1Bmr7zySuXJwSM70CmSWYQ0Gan3NqaurbrdhiIqMr9UDV0Wa+9l7TpQqJb1v1eOL6KIuGqDah0MdbHWb1utrGKj6gqJfgCgVK7uRwUUo+ofkpKZiYQ4QpHqOrR3rp0IwDBSN4xpp117l8YjkWJJK1Pl+vM01QfaUX0Nq772BdAJDBsJ7LdvG/ZBOzrQgTaMRBH7odA7Eth3JLAPgOGoXFH2Vo9tq77U+dC+9G3Te142ebVnrJPJrFDbjmpl6r0PFVJTZKYIq00jkhjJGzqONLg67r9dGa65Luvx8nWj8j9zDW3sB6DTybICpYlGjhyZILO8Qcevrr+NCtkMejJTiuypp55KLAm0c+dOjBo1SjyuWCxi69atibIXX3zR+KRf+uXqxDbYUUxcgd3rnNqO5OMLlBx0UMLg4DI0ru162pFUmUu/ivBcbDWUI/K7i8i2T18SXOx926wHpr6iQoXQolI/oVVRjoo1BdZMlFEU/yumuoGGft/gat9ojBs3Dl1dXYmy7du3o1QqYfTo0Q3pc1BkM5pw/PHHo62tDbfffnutbPfu3ejq6sI73vEO8bgJEybg0UcfTZQ98sgjKddjo1B0ugJzx/mRUqnOP5jp+JLBJWu81ricejNsbGRlOqaOfsXvkCMt17FJytJ0E5G3jWlcJjjZpG8yy1HlshtxdWX5ptQFZcMlvd8v0hoooaK2XF/NILNZs2Zh9erVibJVq1Zh5syZDYmXAYOEzLq6unDPPffgnnvuAVBRYffccw/WrVuHtra2Wibj5ZdfjhUrVmD69Oloa2vDv/3bv9XaOOSQQzBr1qza/pVXXom//OUvOOmkk7By5UqcdNJJ2LFjB774xS82/fwGClmJzkTExWwc3Q+XCyM3bBc15XPxldyP1E5tc0RUTpepz8d4F28jENq3C5pxc9AM4jMgpW5hI6XB43jiCDLKiTRLGV6+2L17NzZt2oRNmzYBqKTeb9q0CVu2bAEALFy4MJGkN3fuXDz//PNYsGABnnrqKdx8881Yvnw5Lrvssoxnaceg+La///3vY/78+bX9H/7wh/jhD3+IQw45BH/4wx/wwAMP4N3vfjcWL16Mvr4+jBo1Cv/1X/+FCRMm1I556aWXEr7YT37yk3j22Wdxww034MEHH8SwYcPwuc99Dueff35Tzy0PNMK9wbVpVIVRn1hXA3e4iXxclFPeLkZfSBdu/TpkOQ/2osoRFi0rMds2KFuji8/DxqWvHOv6oiLaMrgYIxTr9lJQlFFK3dgNRnejUlyuyPJXWL9+Pf7+7/++tr9gwQIAwLnnnotbb70V27ZtqxEbAEyePBkrV67E/PnzceONN2LChAm4/vrrcfrpp2fo3Q2Dbp7ZYIKaz/a5nQuwr2cCiG+AOG1jChDz7ZvGRfvUM7XEcWmZjFzyRypexmUYSokcUp0qNyVsZO1XvZv65copVCZjJyqJH6NQyWacAPROBv44ahJ+hyOwEUdhE47G73AEnnvhEOBPncCfAOyovnajkgSy19KX6/uAJ3VkqdMSQVSmospmLJVRrMbTSlpZrS6V0Sj/3m1JHHLWsPv/29S3z7iiXa/hulHfwM6dO40JGur6tAyVvCJXvAbgE4C1/VbDoHAzDiVkvWvL824va7yObYtJ/sgcL8vLxejbdt42aiyc69Gl7Ua7ERsZ48rqasz4k1RxszyQZyxsMLkwm+FmbAUEMhtC8HUdcm4ZqsoSdaYLUrNdjCaCMyksmyrj+i5rL25c2r6zh0wnQqpaTWQnKVYXcjG5NrMSkO/3Z7SXycY3CcREXFxdqyV96PBJ/vB1SbYSApnVgTwUkIlQ+D79CKtRbdSQ4114ZvLLW5Fw5Cft68dWj3NK/rCV22Jqvu272viSYt1tpucc9RlIzZQEkldCBYWp3Ub16YNAZhUEMmth+Aa8M08XYJI/ClkJK48LoYKL29Hl4iy1Y2vf0c1YRrGiOnzdjDbiy6rKJBuXvm02PsSbOC7t/OKIyxe+2Y6tqNCCm7GCQGYDBF9i8VVOeWR25RIva8jdvKEurwnanNvRVVW5QGrP1a1oGke9rlvfNk3IqjA1cHEzE9HlkQZfD6n5HlsvgQ7GeWYDgUBmTUAzU3k5kvSeiJ1nvMzX3uRi5FBvskKW2J00/nJasaYuVK4qynbBb6TyyjMOZgLbll/cLCAoM4Whel4tiVxjWRb4xupY5Km2XO0VGpFwwrXNKSV9jlaWr8dXrdA+bW37zO8ytd20tgr9KfqeKJeLtRR9J3tmnpjrHLXBOMcMqCz1OdzD3mHGaEsiKLOcMBjVVy7JIvXEy5rtYvRtyzavzPU8yUeqr4je31bJv/08Y2au/TarLQtUEohr3KxR8S/XFHzXvhoRkwtuxgoCmTUZrmTiGvPKg0RZ0stzfpmORrsY601q4MYSaS9T2z7CVlJntB2fONNgJSlXe8OcMj1uZiI419hYM2JizZqLFtyMFQQy+xuBqwvRtLhwAlKihFTWCEVl69NU57rah6SmpEnTTDuJi58rWQ02VeZr76veM6Ae1cbbtWZMLqTmVxDIrIHIW11lUXWuyR+uiwsbXYzOd+A5tMHV+VzoObgSnE+bJjtXN6NrXE2y4ep8P6M8CNJop803y2HydD0Zja1GakGZVRDIrEVRTwKHM8m6LC4M1BUb8XYxcvYuqoyz93XhOV7Q2RsIOjnY5GZ0GQv3brKR+jbZNyge5vq55xE3a8QxeRybJ0LMrIJAZgMIV0KyKbK8lZ1zvMzXxWjKEuTs9e1GKwgTwfnEt2wfsYub0UVtDqTidW03CzE6rsVYz4TqLMka9az00ehVQoKbsYKhStINRbMyF+vpJwvBecfL8rarp91GxXZ8lJKPnU2FRej/d+rbkh1nzx1nKjP149pGlmNZu2LqDqoclWqr6Ju76E+1H6zp9HmiswgMT68KJqI3RrYpJYMcQZm1GLIsSZVF7dXsssTLXO1ckzY4ZWdqw6QEfZbAks7D1SWKysXUemfu2o9P7Mx2XKNVWaYyv3UagfxS9/NSXgMRbyuV/F9DEUP0tAYW9ZCHXz+MOzBDP+x464mXcfUu7jfaXh5uM5eLu21stL6IfoVR5u1Sn6kUF5O2s6oyWmdDVhWXpczUvweiqFh7vpmC7+TprBiMSq+9CLR7KLP2IfoEy6DMBgB5Pm/MFzay4+JlLGwqKQ8Vx7XtSli+6fuSKvNZz7G67XRDYSI1034z41e+Zbb2nI/JZ9HhLBmNrZbJCARlphDIbJAgEbvKsHKHTQ3WczdZspFUlgubr4vR1c73Yuw6J07q1/UYVxvO3oV8BoML0WW8Xm37uxgbkWE4WLIWJbQXgfaSx6v1+NoJgcz+hmFL/jAuLgzUp5K4Y1z7s124fVWc1D8lS9qvTV1xkNrh6mzjrIdc8i7jYPtsMjgofFfQF9tJxLn8l8IaVAqumOE1BBHIbJDDFhezrb+YKdXfth6jq8hzvdjajs1jlRHXZBCTvdSH5fMoQ1iX0SV25qPOBrIsC8Gx7fgngfDdDGxSRlP7DLOmAQQyG3A0M5hsm9fmHC/jUK8r0kYirmV5qbKsY7CRDqe+fD4vkzqrJ2bmayeV1dNOot6swFxXAknUD/BVvGEE15nhNQQRyKzBGGiyqrtNH3JxVS0+bbqSk+nimFWVSe5AZUPJqfru/J2bXI56/77qLG83ZCPVm7U+n9R8F3DJIbb0fZ0gfcgq11X+2+DnYhyiV/0heloDg3pX6kioJJuK8ujL5orMLV5mq6/TXeet3rKoEc4+izutZl7sP87Ujk9/jVZnEvJuR6w3uxq5uJkOG8EMtAsydwQ3I4BAZnUjqxrKU0XlmeqfKV6Wl4tRKnNt03VsrrGyLH1X3/XvN+H+yupmzFOd+fTt+tNqhCrzQJ4KreUILpAZgEBmLYE8XZU+bRmfXwbYL0B5uRhtbdZzEfdRbFx2Y9lgb4Ovm9FljC5lWdRbXqrMBxYFxsXNJAwUQTUlTheyGQEEMmtp+GQy1p38UXfsw1KfhThtxOdrJ9WVkVJeJvCr5nvsS4RQD4H59JNHO1ncpmK97mK0xNA0FewzQdqHdAadcgvKDEAgs5ZDI5I8KKzxMh31qre8XIxcfT2xNZNL0jRZ2+YG5NyMkq2t3XrU0oCrLlu9+/pMPi7GliYtCUX4EVmLnJYvApk1CD6kI63+4eUSzNqflvzhFS+r10Xoc7xLrMunzSzKkOuLqjWf+4wIfuRGx9BIgqpXdeWpyjT4JIHoyIOUBjqt34iODK8hiEBmTUYz1mWUMhlzjZf5IEtszdaWD/Hlocpsystwjk7KgSO3RqmzetRuHm16kbcHaUXubkPJBemzen5eq+7XjeBmBBDIrGUgpeXnQY4Ni5fleVdfryozHeOrIvWxUmUVCd+JSYm5kJTts+LaaoRSykJ6vn2xtnzcLI8kkLzdiU13TwYyAxDIrCmQFFHeE6ql9lyfaA3UES/L6mL0sc2iymxtmtqW+pf6YNoVFYJAhFZkIW2uLAvp5XnTItkmyrPFzXySQMT2WmkuWpg0DWDInlZrI4/V7kWykoi13niZhDwugPWoMlv/JjKkCozrSygXMxo5ZWbry1Wd1fM5cMf41ufhamTb6L8hyBo301FP/CsrOTbUDRmUGYBAZoMGvu5C2yNjXMCt/FEpFw6o98ImIU/bvCZ1m/qhpMQRkd59VORJ0JXcXOpc3ZASsroPfWwb9fvRIMUnXVyMgzrJw4RAZgACmXlhoJ8w60JaeSR/JCBdVHyac3ExmpSSNA4fd6RNlXFtuoyBOU66SbDCRqCSTb1KqhnuwxyISlqnUYqbNYucBpwEw6RpAC1CZlEU4V/+5V8wefJkDB8+HFOmTMGXvvQl9PWlXWM61q5dixkzZqCzsxNTpkzB0qVLGz5WF4XVjLliJkiTpfV4WUE6DdtFy4eMfNuztZtXrMy1TLXv+nX6KrE81Bl3jG99MxS5+Pvg42Z5Ll+V6tIhXuYSR2tarK0DfivmD9HU/JYQnF//+texdOlSfO9738ORRx6J9evX47zzzsOoUaPwmc98hj1m8+bNOPnkk3HhhRfijjvuwCOPPIJ58+bhDW94A04//fQmn4E/XJRU04jTx+1oKrfV2/pxIU2uzKbqXPun+/Tf47oKidqXyC3S2ua29bIsx0jbrm25oJ422DGVgJL5h1WOiihWfeTlchHFYvoLKaNY+29FKA74jWUuY/BVW0NUmbUEma1btw7vf//7ccoppwAADj74YNx9991Yv369eMzSpUtx0EEHYcmSJQCAadOmYf369Vi8ePGgIjOX2JfLavku6fouyR9O88scM/lStlnJyKXc1gdX76KGaHvShcDguky5wUznJl30baRja8/WR6OISmrXpQ3h2L6oiDZFWlEJRQvJuRCGTnKyTcl6A+nWjt3GC75xMLNDq2XREm7GY489Fv/93/+NZ599FgDwq1/9Cj//+c9x8skni8esW7cOs2fPTpTNmTMH69evR29vL3tMd3c3du3alXi5wI1gBvYOkMIpruPrJmyki7FRtqbjuWOoHaOsxHl7kotR6tO3zKXe1Hc97Wb9vhsAFxfkgMe58kRIAAHQIqd1+eWXY+fOnZg6dSqKxSLK5TK++tWv4p/+6Z/EY7q6ujB27NhE2dixYxFFEXbs2IHx48enjlm0aBGuueaa3MffSPgnhQiqTSt2ipf5kpvtOBci5NSPZMstXZX1ok/PQ+1zKqQK9ZnX4iZZ3Yy28jxdhnkoLt/2nLYLQCmubhdr7gPdrRhFRZQYt4KupnzV14CorCwIygxAiyize+65B3fccQfuuusuPPHEE/je976HxYsX43vf+57xuEIhGTyO45gtV1i4cCF27txZe23dujWfE8gI3zUbfZWgdeUPwH/NQhcbHzKS2s/T1qTKOCVG29bLTZ+FRF5c2yZ3Z73qrJGKy+Vz8Gk7YW+/YmdJDBlUyRxZECZNA2gRZfa5z30OV1xxBc466ywAwBvf+EY8//zzWLRoEc4991z2mHHjxqGrqytRtn37dpRKJYwePZo9pqOjAx0dzUn1adaqINb+pHiZL8n4KCvTsRIaocq49n36ipDMDBMuyOzkXkmZqW09aYNTLM1QXPVsu7QpwcHeN26mo141NRgSRxLwVWaDaOh5oiU4+rXXXkNbW3KoxWLRmJo/a9YsrF69OlG2atUqzJw5E+3t7XWPKcuaiHJiRn1t+TzDDKhjHpSCy3CzKjpfJdAIVWZqQ4JGoNxqKgkC9FEtWUjY5XhfVeRzXF42CXv3pa0UXJa1ymPBYdsxDY/PhVXzAbQImZ122mn46le/igceeAB/+tOfsGLFClx33XX44Ac/WLNZuHAhzjnnnNr+3Llz8fzzz2PBggV46qmncPPNN2P58uW47LLLBuIUMiPPVfa942W+F3pf8nGx8VV/easyWkf3y0KbHLK6IKUx1nuOWbalsqw2pmPEz6L+RYc55OlKbKpbMiSAAGiR0/r2t7+Nf/3Xf8W8efOwfft2TJgwAZ/85CfxxS9+sWazbds2bNmypbY/efJkrFy5EvPnz8eNN96ICRMm4Prrrx9UafkS8nRByu7FDOqsHnLzdVv6qog8VZkrIRZJmc9HKrkZVZ3NzcjZS9v1uALzciPm1b4jEnPOPJM6Um0NhiQPE9TDOV2R3/3xoEJLkNmIESOwZMmS2pwxDrfeemuq7IQTTsATTzzRuIEJaJY/XUoKyfLHc4qXSZCy/UzH56HoXFReVsUi2XB1+jiq2/p3kFib0dXNKPWVV+zMt428tk3jcakTJk/rcTOdyExwmTdmOmbQkJyv2mqJq74/WsLN2Mow/dib9UfwebK0Fb6KSUfWCdmuY/BxT7qqMlrHEBeF7rZNuJtsLku9THqn21LbJlvfNnxtTKhL0SfjZn05LmlV74LDrsc0xP3YpLUZv/Od72Dy5Mno7OzEjBkz8LOf/Uy0XbNmDQqFQur19NNPZ+vcAYHMcoIrMYlJGaTcNS3f5xlmNjjHy+qJfeTlYszjWJut1B8XJ/NRXCZS4/r3GWc92xLy+r7rGUOqP7e4mZQE4koqgzolX6EJMbN77rkHl156Ka688kps3LgRxx13HE466aREaIfDM888g23bttVehx56qH/njghkNoRgcpm4LC4MQL6wSNyYhfTyUFauNrbx2FyZpnKqpoQ++pSbkVNeElyVU14k0uhtV+TZ1t8KMpIZXe2ou7tb7OK6667D+eefjwsuuADTpk3DkiVLMHHiRNx0003GoY0ZMwbjxo2rvYrFxt0cBDJrQbj6+Z3Vokvsie67kAoM5c1SZVK/rmpHt9dfXLvVY6zhGr0P7iXZupQNxu2sx0hwfFhn4unTmhyhaktSbDTV3lQ3oBgGv7T8YZXDJk6ciFGjRtVeixYtYpvv6enBhg0bUssDzp49G48++qhxaEcffTTGjx+PE088EQ899FDmU3TBEA0FtibSLsRIrJOOM9mZ4mWZXIz1JmD4kmBWRSepJ1sbHPFRcARkgqvLLs9sxmZsu5yPT1uinba0lQGuSSB5gCaC6PtNSRLJmACydetWjBw5slYsLRixY8cOlMtldnlAujCFwvjx47Fs2TLMmDED3d3duP3223HiiSdizZo1OP744z0G645AZk2AKc6VdR6Za0ysadlWrkRlsqunLZc7fNOyVVI/XL0imCL6J6ASZZX6XnXS41SY3rbad8k0HCxEVi/h6XA9Xlin0QdZMhoHHTI+AmbkyJEJMrOBWx5QWhrw8MMPx+GHH17bnzVrFrZu3YrFixc3jMyCm3GIwLTyR6Z4mUk15W1ns+f2ubZsZCS1U89UAprhiKTKLaOIxBOSufFkdeE121UolWdR4i792PqVzByTQChMGY2DOhGkwQkg+++/P4rFIrs8IFVrJrzjHe/A73//e7/OPRDIrEHIqojocVkyGX3gfDOb8wXHy01I910vknpZParMhUhdQPurlyxs9XkSmS/JN5rwhLiZD5pNUOkYXE6OMTVp2vXledrDhg3DjBkzUssDrl69Gsccc4xzOxs3bmSfVpIXgptxiCJFiq7zy7LEy/Kwy1Md5KHKOCJTtkXwbjYuZZ9rz9RPXm5G2nc9NvW6EPO2M4AuOiytBFJXHxhkE6ebMGl6wYIFOPvsszFz5kzMmjULy5Ytw5YtWzB37lwAleUEX3jhBdx2220AgCVLluDggw/GkUceiZ6eHtxxxx249957ce+99/p37ohAZjkir/iXz58jjweAis8vAxrvYswrHZ/WSWWuqoyCzjNTd7cmheUKOhbXeJULAbmSlFTmSmTNsgMgPd/MB5SETCvh+xDWgKyonzFm5oMzzzwTL730Er70pS9h27ZtmD59OlauXIlJkyYBSC8n2NPTg8suuwwvvPAChg8fjiOPPBIPPPCA8YHK9SKQWZNAiS67G9L9yplyS2aJl/lgIFyRLspNIj1XVWaK8dEEEHZCdSndrs3N6Hpht9lnbdNk00wiM42JgCaBZE8Kab7aqqvPzurLFRkfzjlv3jzMmzePraPLCX7+85/H5z//+WwdZUSImdWBZt2B+fzITckfVrgSRrNcjKY62rYLQdmUmyk9X28j0spdlRmnCGmbEWNn+5xM5+hjk2U7q50PjG3KcTOfJBBT7Kqe+WRNi8mFh3MCGLKn1fowkVA9hCU+jNMGV9KidSY738QPU9u6XR6qjLbnQ4To/44SF0MfZWYal0u9zcal/azHU/gc59q3AezDUF2PtRDQoJw43eBsxlZBILMGwpSZaLO11fssYGx6GGcqXuZKUnTfVb35XLxcVRnXnqktG+mZSIYSke5WpKqtdlzBXZlxY/AlMpftLOQFoS4PsrL1l+pfm99kyWaUVgKp7JtS9f2u+ib7hj6gM5AZgEBmAwqbovJxY1rJ0Gc9RleSonAlRnrBr1eVSe25KEbpIu+Snt+I1HwTOedFZKYxNcrOp87XVkOZuhcbtLL+oEKTVs0f7AhkNojgGwCu5/EyKRdjHiRls83jAukbr5NUmW5PkzZMREbLFJHq7yZIqsjWB62rd7uZdty+qc6L9Nznm+lxMyBNTi0RH+MQlBmAQGa5w6am6smS8lVyqQxK2/PL8iKpvNSbS3+uF03pGJ95ZiaVZhoDp8Kkdv8WiCwv0rOAJoEkm3KPjfH1g4gRGjxpulUQyGyQwXeVDyvB+cTLKBpBUty+iWhciMemrGzHm8bK2UhtaPvs9xYRO5/PP8/tPO24fVNdXqQHwBQ3M62gz8FGTr7Kq6lKzWfFfPUagghk5om855/4pvfXq/y84mUc8lJveVwAXdo0XZRdVZl6L4N3QRo+k9pF0qYYTSQ3WNVZvbau7bjYa2gF4sqV7IKbEUAgs4aDI5d61ZZ3e1Gy3hovs2X2mS5YPm35qDffhJF6VRlHZKY+XONl6l0iL4lI89zOw66RthTWtizkZCU3c329KfgNV2nBzQggkFndaMZKAf6uR4ZAfeJlPnVcvQ9p5XEBlNRXPapM3+Y+7rL2bhqLqX1uXy9rBJGZPpPBQmRebSUfQeKbBJIFgy6rMWQzAghkNijAkY+vO9F3IjUbL7MpLldS4vZpnQuxqP160/izqjIKF0UlgR5n2je17UvaWdWZT52rrct4fIk/UZ++SpuSQAB7RqPNJcmptqZPpg5uRgCBzBqCRqg1jpxs6z3S5A9rvAxorIsxa+KHydbnQq4rLYmQaLnkttTtysQWht+Aj2qh/UjbYMq5Ol87nzqbrW9bpmPZ9tJXaFsSSJaMxkGnyoBAZlUEMmsCshCRVObdt2+8jMKX8Hzvrl1janS/3piabse5CnVbSUFJMTaOtCUy4kCJKm/V5WqXF5FlUVw+xMjANnmaU1yDKt3eB4HMAAQyaylwrkeXeBqNlxmXsOL2OcKzXWzyJKlGXphtJMgRCu3TYJO6k7d9brTOl8iaoc7qUW8UeRCZZ9zMBS4KbLCQX9wGxEWP1xC96g+Ob6PF4aKgXFLwXdRZlvgawLgYKVwIx9SGjfA4tWKKZbkSnqkdV/Vm26ZtSg/n5PrkYPssdbtSxm19X/Vls7PVceNzbde1L8C9P7aN9PPNoqiIkv5omHIRxWLSxuURLG42yQeAcsfk/YiZns7Ky9m+J7euBxWGKEe3Bhr1CBmn1H6bmnKxcSE8n7vsrJOrTXU+pCj1S8sl1SYptIi8pLFJqEed+ajiRtnSMbnYS2UmZIibAfYkkMGOqFhAVGzzeBXsjbYggjJrELLGwFyIyKVtbuUPp3gZ7b5eFyPdz+KmciEguu+q3lxVGXdOuurxhQ+RZVVndBuW/Sy2jdjPatNA0CdI56m46n06dblUQrnkTlDlUgygN3N/gxVBmQ1CuKTZO5FelP6DWONlXJmvonJpI6+J2lljaj5p/LoS41RPWRtHtSz1/UjqzAWSqjGpnWYqrjz3M9ukL+YuK+i7qLDBEhuTUC4WvV9DEYHMcoLrqh2+E6Drbcs6WRpIKxdVZtrn2sjT9cSl5zdTlXFExvVnIfIyitnVG9cuJVJaztVJdiZb275LW40gMqd2i05JIC4Zja6p+K5p/I1wYfahiLLHq6/F3KiuCGQ2SOH6YE8nFedKTLaLLqeCbK7LvONwNlVGVRTXDp1nxpXr49LK4qjyYsfNETB3LqkLclx9WY512fZRZz7tmNry7aseG1O/AKSlrejkaW4lkHqIayARoej9GooIZNZAuKouyS6risscLwPs6ojaSPumi5ttUnQWVWYiPJd2HNRbLH0WLsrLSZ3lRGo2Ox+iqve7zvL7yWzDx418V9Cv2Tle9AeaHCqKq+TxGppkNridwUMUvgsJ29vj3IuO8bJGXmxcEj/yUmVcfy7tmNSbBkVkURkoFSv7BaDyOA2quKTPhrWJtcqSVsZcmHUTta3a4ZI1uDpTSr7Ujsu+rb2sNty+qw0qxFXU0/LJfq2cJG9ISRn1pNXTtP280INh6PHQJT1wCD20IIIyyxH1ZCTJ6ixytHOMl9lIRyqzkYdkYzuG2riQlIkkTW35zker2uhEpr+n2tGQ+i0Yr2GRi1G/CWduI+ysttywfNVZVhuXvgxwnTxd3xOmBbdmE9WPT7xMvYYiWobMXnjhBXz0ox/F6NGjsc8+++Coo47Chg0bjMesXbsWM2bMQGdnJ6ZMmYKlS5fmMpY87q7qI75ISM9Pj4udLC0RSp7un3rmo2XZd00OoWRgirEhTWS16jJxO5aFbTqO1LlLg83objTV2T532/dtI0VpLFkJyuW3xtqV4LrosM+yVgPtTpRQ9oyXBTIbQLz88st45zvfifb2dvzkJz/B7373O3zzm9/E6173OvGYzZs34+STT8Zxxx2HjRs34gtf+AIuueQS3Hvvvc0bOPyIT7J1Tf6QwHhVPC4MGW1oOSU4wKycuGN8SJJr23SRZ8ZAiaw36n+x7TLnGBmzGRVh9WovfUACofkoMG7bZutabxpXPTZ12bnFzQA+CcQHPqTQSALxi5eVRLJudbTEWX3961/HxIkTccstt9TKDj74YOMxS5cuxUEHHYQlS5YAAKZNm4b169dj8eLFOP3009ljuru70d3dXdvftWtX3WP3ha9ic5ksDTg88kWHS7KIi4uR68P37t/WhkSSLsc6JH3oRKajN6rEzsR+KERioJNXewG0V41KEONn0Ezotk8dZwsP+0bY2Pr3aQ98nMw1dtZf7h7valRsTO6vzZNYhyZaQpndf//9mDlzJs444wyMGTMGRx99NL773e8aj1m3bh1mz56dKJszZw7Wr1+P3l5+9vuiRYswatSo2mvixIneY/UJDnvFv3zaZZI/APAXXB8SciUmlzlrLin8WVUZrfdRZdV93YWoE1kUVV5Alej0cal9k4qIaAFXQRWa0BZ3qE2dudq62Ge14fryLXNUblzcTMpmlOaKDfZHwYSYWQUtQWbPPfccbrrpJhx66KH46U9/irlz5+KSSy7BbbfdJh7T1dWFsWPHJsrGjh2LKIqwY8cO9piFCxdi586dtdfWrVtzGX+W+JgPoUnJH87xMsDvQmIiGelYlzidr7JrhCqDIU4W8dtcG4nvxOU8jRWO7kZfonJtS7LPYtMMu1q5/8M6k802/qKfh8svzDOroCXcjH19fZg5cyauvfZaAMDRRx+N3/72t7jppptwzjnniMcVCkn3TBzHbLlCR0cHOjo6chp1Ej5E1F+X/pdK7gsx3lZPvAxwJz+XO2jpYtTMFH69Lf04Ykfdiynyqta1q9R8aeymcaKXOSBC5W9J3Y2WdvNMuW9kOj09Vjo9l/bEfgqVwlLysy1HJRRL/BdU7/qItT4YN2Xeq+RT9KIDPR4E1TtEHY0toczGjx+PI444IlE2bdo0bNmyRTxm3Lhx6OrqSpRt374dpVIJo0ePbsg4bcjrBy21Y4yXObplWLejz52zTwq/STnY0vxdVJlPCn8VnHtRERmXACKuBlIrLvFjT6gtKQFE38+ozqQ6l2Nd1J3LDYtrmcs4beWCrehaLBe9Mhorde5uymYguBkraAkye+c734lnnnkmUfbss89i0qRJ4jGzZs3C6tWrE2WrVq3CzJkz0d7e3pBxKvirLdnelMnoOlm6BhdSUZDKfBI/GqXKXC7C+r6pP21bdy9yRKajN9LUGn2nEJVbBD4BRD9IrzcQmi+p+ZKey3dZz01QvYTHtVuFFDfziZ31d8HXDaTrTiWAuL9a4rLvjZY4q/nz5+Oxxx7Dtddeiz/84Q+46667sGzZMlx00UU1m4ULFyZcjnPnzsXzzz+PBQsW4KmnnsLNN9+M5cuX47LLLstlTHk/i8yU/WQmRz5eJsJ0wXXJYlS2PkqP7tsuWllsbBOkpYux4F4E0kQWlftfKXtOoRlhYhguAUT+faSaMe3b7E3DNNm4kl29qsunHIBv3CyLasmi4vJEiJlV0BJk9ta3vhUrVqzA3XffjenTp+PLX/4ylixZgn/+53+u2Wzbti3hdpw8eTJWrlyJNWvW4KijjsKXv/xlXH/99WJafjORZd6Yt9qLKvEyr5R8rs50oXBVeq4qz6bKXGxMF1UD4UnZizqRJbrV1BsYQkt9X6z6kGJmqk7tO6ozad+F5FzUm82GGwd3rFTmayv1BwBRAS4P6/QB744ceGII88wqaJmzOvXUU3HqqaeK9bfeemuq7IQTTsATTzzRwFHJsMXHTAkhrktb6ZDiZQD4P7xpeCby8bmzds16rFeV0XGYkj6oLVFlXMKHTmSKVpSjujeqbit755uHXmZbtRohmQSi2zjMPVNmelNcHa3n9l1tJDvan6kPV9ss7UCeW9Z/qLweI5BfzFtvN4821SNg3O0tq8u0KFpCmf0tQs5aNCg0n3gZIN9dS/b6cXTfJ+vR1Z3lospMx9gIr4o4gtG9qMDRD9tPoptivw177rRVm4vR0JlNndE6k/JytfGxcxmHydZlHAJs6zRKSSAml5yNQJrlzgsJIBW0jDIbirDdlfkmfwAZ42WAXxajsufad3U9uWQ9cmOQYmWma7+kECN396KiGF1DReWkgku5G61QhlSZ6aDqTG07qjNOqen7qsymqCQbm52vrUs7rin6tbqiMEelP8uxWGzddPVuDEOR/e1I9kNTwwzNsxokyGNJG9/kD0BYXFjBpKJUvXSML9nZXINcGz7KjevTZG9wL9a2mXJKZHQ71tu2jT3iCmmrXEZjBnWWh/JyvTlxPdal3Od3Jo2nVic/rNP0XDOberHXN08nBGVWQSCzOpCHv7veNoqIxIdxsvPLFGwqTQJHhhJRcf1IxOiiuFxVmU4shgxNkyozERm0sl7adxWpGxn2u9DdinqZ/k47cJh7xh1mG4urTdYyqZ8s9rbjaqTovuhwor4J7sM8CSWQWQXBzdhguKTw2xScC+FZ42WmP72Le4+rd23PVZWZ2rUlk3BJH1I/kTynLEFq5F1vIvXHKWvv1s8tRpLEaMvKnSi5GC3uxgh+LsasNtRO75uWcfZcX7Y6W99Se+iPm2VJAvFBo1f84PrzIdjyEH04ZyCzOuFENA42tj+Qi8vSGC8DZOJSdVy9pKRc23Oxd1FcXJs2MrS4Ok3uRROR6fvt1Xln7ZwRHSerzLiWKaEBcnqi8BemZoAfiZkIyIVgspBOHURl+igq9XLcTMG22n1/VqPZxvZ/z2vprP4+/dLty0M0mzGQWQ4oInIgo7KTAjPZFas/W2MbkfU/a1YOpnqJ2MSLtae9K5na5rdZlJyevaiv5KG7FwGeyMRUjYi814bG3THTk9dVmr4eo67AIlJPbR0fE6PgulYjLHaSravaMspdw3hc6wEgSq/TqMOUBKKThImklJ3p/+lChhU7v+iP/yNgWjfZxYRAZk2GKROR2knQSc+6HqOPcvKtN6msrKrM1Denykzp+4ySs2UvArwDUIpsqWPboY3FptASBbbnmellpm0PdyOYMleiMZGHL1mZ1FQ9JJb4jAtAKa1E9LiZ5HZ0UVmNmoPmA984WIiZBViR9w/atT1jvAwwE5NOPj7kpLctoVGqzEZ+OboXKeg1tJdWVMGuAFIDTfzgWqUKTHI30nJmwFnT7psdD7P1rSOLioNb3AzIP+7VyDhaD4ahDcM87IcmApkNEJyJypnQHIK6tuQEwJ34uGNMKtB1PCZVZksC4Ww0UFXm6l6U8gprDkBawY1drKeV3F/S5G6k5Oa4MghXlpeLkSt3ad90nNGNaDg2YWePm1Wac4tpuRJUoxNC/GNmIQEkwAE+P1p3QrMxUNUucvqv2gnNxcY3kcSk8FxVGTcuiVxpv6qqnM29yA27F+QP5HKjkGqBM9LjZb7uRkOTdAzNdDFyx9XjStRtrCTGP9+Mgy0JpL/bfJM46kFwM1YQ5pk1AH6E5khUDskfCtZ4GZAkCx/lRNvIUm8iqjxVmZD0AaTdiwrcxGid2LiZYQDpW5rqkNjhlrEyPf5FSuWn246PiWHHlcHOpNQl1FNv6leyc0A5KqJcdrvI+6ig5jytujmPgPnOd76DyZMno7OzEzNmzMDPfvYzo/3atWsxY8YMdHZ2YsqUKVi6dGmmfl0RyGwQwOcOjyZ/OMfLbF24KCepLRsxmkjRV5XRa7dUpu9rMKkybp16jlbUvuqq1g5z/hGK/WWpz4CSmt6T3jOlU26UDivr693aPjcfO1udjYB86k1wtOurrv5RjkrWlUAoGq1qsrTfjEfA3HPPPbj00ktx5ZVXYuPGjTjuuONw0kkniQ9I3rx5M04++WQcd9xx2LhxI77whS/gkksuwb333uvdtysykdmoUaPw5JNP5j2WIQXfpawSJOXpvnCKlwHud6ou5Oei6KSLYz2qTG/fVMaoMm5ytJ70obqj27SePW2XC20N3PJUEamXRkNHRLcNA3FRUb5qy2bvorB8xluPHQDu+WYS+pVMZcFhX6Jp1pJWzXgEzHXXXYfzzz8fF1xwAaZNm4YlS5Zg4sSJuOmmm1j7pUuX4qCDDsKSJUswbdo0XHDBBfj4xz+OxYsX13u6IjKR2SuvvII9e/awdVu2bMGSJUvqGVMAzI+CYe0jx3gZ4EZWys5ma6t3UWX0YupKdtz49P0omfQBwMu9SLfpMGuUwyhL9xsSidQk1aXnW3LqTR1jWerKVXH5ElW9BJWzCuu3559vxsG2Wr5bG82LS/XBx8VYRF91bLt27Uq8uru72fZ7enqwYcMGzJ49O1E+e/ZsPProo+wx69atS9nPmTMH69evR2+vlCtcH5zJ7Gc/+xn+4z/+A3/84x8BAIUCnzW1bds2fPazn81ndC2OPALExeo9oSsS8TIbGXG2tjtpV9Xlo8r0elompdm7KAy1WZazF23uRdo0jZkl/pZl2Ik/0ZNOTLbZbZS8Uo2SMwBYQvNRZnmqM5djXVScDxn6Eh7gHDczttHkBIsetKMHwzxelWShiRMnYtSoUbXXokWL2PZ37NiBcrmMsWPHJsrHjh2Lrq4u9piuri7WPooi7NixI4ezTsNZb65ZswZXXXUVCoUCCoUC5s2bh2OPPRYzZszAjBkzMHXqVBQKBfz5z3/Gvvvu25DBDhQqZJLNZUDdh76KS8F1srUInz+1Swq/ajNPVaYfIxGbrUxrkyZ9APbsRX3bOFEayRzDOBKT4j0+e5qCb1rCKvEwGm1bH6nhNxsRE7pP7ThbWi61LfVtGaK1nay20OebVQ4sO84/o+CIK+tNbNYU/ghFFD0IVKnOrVu3YuTIkbXyjo4O43FUwMRxLIoayZ4rzwvOV+h//dd/xZlnnon169fjox/9KAqFAu6++278+7//OwqFAvbZZx9MnToVf/zjHzFz5syGDHYoISsx0eSPYtRnfuQLhY2AONssCk+qNx1PwbXn2L40pwxAanJ0JGyD2XcZtjuoklI9tTP7OmHp5EZT9IE08Qkrg6ht/RC9TCq3rbpRz4Rnm51rn+IxVcMqaamVQEreJGZfvqpZ8J9nVrEdOXJkgswk7L///igWiykVtn379pT6Uhg3bhxrXyqVMHr0aOex+sArZnbYYYfhIx/5CN7ylrfg//7f/4uuri5s2bIF9913H+bPn48DDjgA//AP/4Dly5c3ZLBDDXk870yh9sgXV3AE5EJ0rq4bmzvRR5Vx7UltUNKipOYRJ+OITfSWCa7axEWmVi4lgLhQqUtEj9YJ7kbppsDH1naMq0vQBNpXlruICJAeCeOLwTZPK2vMzBXDhg3DjBkzsHr16kT56tWrccwxx7DHzJo1K2W/atUqzJw5E+3t7g8S9UEm39n69etr2wceeCAOPPBAvP/9789tUH9L4NyHWV2RAHg15fvnd7V3cUf6qDqubZcLLqPK6JwyH/eivm1aNZ/qITdQYuFaliZNc9t06WPTKvsCqOIyKSmTOnOpd7XxsaP2HDyvdCal04jVPOqZhN2MSdMLFizA2WefjZkzZ2LWrFlYtmwZtmzZgrlz5wIAFi5ciBdeeAG33XYbAGDu3Lm44YYbsGDBAlx44YVYt24dli9fjrvvvtu7b1eEFUAc0eiFRLm0fN/kDytclJcOV1KUCJSzc6mXxmEri+SFhAEY3YswbEvXyNQKICawjZhWgNQJDXBzNwJpRrIsRMwdknWFD5d6rn1XOwm+pGeAaQX9wYoIRbRliJn54Mwzz8RLL72EL33pS9i2bRumT5+OlStXYtKkSQAqiX/6nLPJkydj5cqVmD9/Pm688UZMmDAB119/PU4//XTvvl0RyKwFwKq3LPEyBY6gfIjOREhSPz71UpzOpMq0cm5OmcsqHy7kpcA6SqQDI1pvyomkCSA6SbksZ0VJLEMySGKspC5iylzak2xsdtJ4dPhcxdTSVgC7QqFvAshggJoL52OfBfPmzcO8efPYultvvTVVdsIJJ+CJJ57I1FcWBDJrIUiPffGOl5lQD7G5xEd8k0C4OqE/05JVAL9glLTtsgKI/uepPQameoC7orYlgOgjM62Y7+pudEgG0Q8DqXNJ3nBRXr4EVu+VKkf1NtjQg2GA16r5rUfYLhiCX23jMJDPLHKC5O7zJSi9Pd92XGxpvURUUtIH059tRXxpFpe0Te3osSVyGqkxieCok15pabzM5mLM2d1Ih+lT51Iv2VHkESvzbasB0N163DXEdXFjCX2eMTPfBJBWQSCznKDnC7nYDRhMBGVTV6Z2XG1NNq6qTWjPJXuRIyjXTMZ8wbWos4pEaIBMbkAu7kbOzKaSXFVUFrWVF+l5oFwuQl3zeQJKEwK1454sXZlLlu+vKUIRhQbHzFoBgcwaAGl9Rf3HbrJR7kTbSvleS1j5gItZubgJJYKkdiYCNdUJ9i7Ziz5xMhcii8A4A03XqEjakVqXCA2QyU0fNUdi+rbB3cgNK4/ED2rnYi8dkxURUDn35HwzAIi0dRv12JkLcXF20k1rGaXa/zqPZ52VUURbE2Jmgx2BzDzB3VVJhOOyeLC3jTZZWiG1hJWCjVhcIRFSngkjpnqDe1GHaXK0asZGXiYio2kavQCGq+NcPtuUTS95Vy0rY1uKvkRUsNQBRncjNbXVudRLti72Nvj8rklffQkCy19/S4hqqq3+u9GyZzZjILMAFnm7DHJBVgWVhfRsbksXe9v46LEa6Ir4gNm9CG3bJyVfSqJPldd9beKWtJJcjNL8MzBt0BE7zj1T8FFmko1k6zqGetsboghkVsHf+M8gGwbDEjYNhwvp+bYjwRavE5JEuBXxpcnRdD9rSn79cGnNltHokqJvy24EnJNB9HKuzsdGsucQrk5OCDGzCsLPJSMGPJGjCqeU/EYN06TKXO1Nc8wk1aYXlXn3ogKnynziZBwBKhdjfX8e6mLkyEfKaDS5G0FspOxGvUyAZCr95nzjYbnHwnzGUo2bteC8MopedCCGeZFgHdEguG41AoHMBilU8gdHmGqydO1/KLkKdUKwuQOzKi8JPm5LF1VGmEdaEZ97tIvad3U1urgh811dTmrdNaNRcjGaJlOrMiEZBJDVmWu2os3W1K6Pq5vrx8UVCgBRkZ08XYMho3GwoIw2L2VWzvYYy0GPQGaDDCrRgytTyR9NQ56kl0WVeSR9mNZe9ImN2YhMh+/11twzrXeJkXEp+nr7psnUehnjbuSGl1Wdubbr66ZsImxxpoEku4rbMLgZB9lPZuiDe7aZvt+ScCE927EuCSNVcEkfAMS1F1UzpjiZjfCaD1tcTFJrgJu7USpjDtXLFLJOhDYdK8HbhZihjzqRR4p99r5LKHil5g/Ny35L6s1FixahUCjg0ksvNdqtXbsWM2bMQGdnJ6ZMmYKlS5c2Z4AC8v6xs0+VVrCRi01t5e2KdCU6yzlJc8pMk6M55QViQ+v0cn1Y1mt15ptergdKpdKIXam7V9un9obHxEi/Le7lAtPxLm1mtUm98n1I5EBlCTb6ETCtgpaj6McffxzLli3Dm970JqPd5s2bcfLJJ+PCCy/EHXfcgUceeQTz5s3DG97whoau3CwhTyIzTpauZz5ZFriQnm08jtmM3JJVLpOj1TZ36ZcUGiUyMPv5xM047UcVVTtkRabb6iOTtrl+Le5GvWnAL2bGYTBddaoP5zTFzYoeq3lLhNbIDOiyp5sxpOYPAuzevRv//M//jO9+97v4yle+YrRdunQpDjroICxZsgQAMG3aNKxfvx6LFy9uOpn5/pD15A/TZGln6ORiqsui3lzhqu4s9Tb3omqC0yUQtn2IzAnctSLxT6M0KH0x6kAXQtPbtaXr6wOysFTEVJk+lDxS8vNAjlc2fcWOrIga6IYMZFZBS7kZL7roIpxyyil4z3veY7Vdt24dZs+enSibM2cO1q9fj95ePhLS3d2NXbt2JV6+4OJhvsfnAolwspKRqR8XQnRpQxpP5O9eBLPtkvBRF5FpF1D2glECsus5OkI6crUt6U/uh8Ady7gblbmLys7iNmwEch5H5LmYL4dGkUg3hqEbHR4v9xX2Wwkto8y+//3v44knnsDjjz/uZN/V1YWxY8cmysaOHYsoirBjxw6MHz8+dcyiRYtwzTXXZB5jPXdevvPW2HiZS8JFPXAlJ9uxJkK11NM5ZYA5Dd8lJV8art6eQiYqcv6XcT3pbkTdjlN30oognArzmExNh1CvMjO1k1fGpHP/Ba/2+HUam8XQPIIyq6AllNnWrVvxmc98BnfccQc6OzudjysUkv7/OI7ZcoWFCxdi586dtdfWrVuzD9oALpPR6/h6yIRe2X1cjFJ79agyvS3B1rRklW8avr4tqTKJyLh9hZK6IJILo/uFztSTRMG03PUTUPucdhXGm6cys6hwaz95q7+oBERF9EVFlKMiylEpseiwDc14MKYJIQGkgpZQZhs2bMD27dsxY8aMWlm5XMbDDz+MG264Ad3d3SgWk1/QuHHj0NXVlSjbvn07SqUSRo8ezfbT0dGBjg73mfQ6XFWVz10cFy/zerK0RBIDlSSSIZvRtiI+4JeGXw+ROYP7V5WEciPopGeX+Jk6Dlo53QZpV9/X+3JIBqHImnaf95VIH2PGtstVQisW7f/tRsbEXPr2WZsxkNkA4sQTT8STTz6ZKDvvvPMwdepUXH755SkiA4BZs2bhRz/6UaJs1apVmDlzJtrb812/wRWuP3avOWf1KCIdeaftC25C8RwsLlJpRXzJvQiH7byIrPZrkv5NJW7H9TfoQ2hw3Fbt6uNwcKa6EI/vTRLnAfU5zgV1km+5XHTKaByouWZlFBF7fCCBzAYQI0aMwPTp0xNl++67L0aPHl0rX7hwIV544QXcdtttAIC5c+fihhtuwIIFC3DhhRdi3bp1WL58Oe6+++6mj98HXiTmu/qGqzrKG76uSKLKTCviq+Z90vD1bY60siiyduJmTK2ywBKaK7gYGUdocNzWx8BNtNZtDI+J4dCsK0pe46AcL8A1o9GF0PJ+QGeFzIIyawkyc8G2bduwZcuW2v7kyZOxcuVKzJ8/HzfeeCMmTJiA66+/viFp+S4E5GZj/4GXyo6LCwP+Cq0Rqsx1DBY1R7MXlSqT3IgQtqmN3j09Rq+T/igJiimhEocv6UXl/v0SkCQH2zIaVElRFUYJDcI2dSW6uhsB49wzadiNRj1LZrG2/Q/rVBNfuGeb0RsUidwa8TRpEwKZVdCyZLZmzZrE/q233pqyOeGEE/DEE080Z0AGmIhMTwZJH+cQL6vXvedjXw9cSE+Drspsk6NV865xMr0dvVxKr1Db+p+lHUmOKukJZdI8s1oD+tFUMZl6NRGabk/jZKblrvQxcT8Cw9wzB1MrXFyXrv2bxuF4agrlqL+yKGRcmR6wqZJCXJ42XS96eoah0OOebh972LYSWpbMWgXcD9Y2B80pTd+XsFzVEm03D1WWg3sRgJi9aKICuu0yW8uH11N/oGpBImstU/IHHQ0lLxei48hNb1N69pluo47zdDe6wjdm5qPKbLaOduWoaEwCMSmxco3wGne3WI5KKETuP7DYw7aVMDTPqomQ7q4ksrLdjTndrbmSmMuNHyUY3+Prhad7EUi7F/UybhtkW1JqUpkN7QAKirAIcSVuShLKTL3vceyFU2M6WZniZzYSo/Ez3UbBw92oD1lvXqo32ZiOsR3nqsYiwDbfzJYEYlNaXH1eGZDlqA0Fj6kEcdQSM7K8EcisAWhURpMYL3NxMdab+NEIVZbRvUg51ydOlkcKPs1HbFeFiRVASskDEvUlJMmCIxMbbIRGbQC7u1Fau1G31eDq7nNxS7r8Fl3dh5Ittac2ZJ1GGjfL0zWYJ8pR0ZPMQswswAGmH7vJ1VBElCJB53iZCS6k5UJEjYTmXmSH55iGb4uT2YjM5XraLrzXFmHgXIqMYusvUATkAupapOWmNH7ATmL6OFJXehjnnnFD0pHHlcZHybm4EKWPs4pyVEKplFZTCvT/nEVp5ZHOH0VFFHoDmQUyqwN5+cGl5A8jbF3bYmomFSfZN0KV0TR7osp80vAhbEtUkTVOplDjKP3aQLIZa9+tTmhRPfMcOXejVE5djFncjSC2zHA4cFzoA1ey8u1Xqhf6i6KimADCKTUTOTVqYnVcLiEue1zKfWxbCEPzrAYIZuWV/hFLk6ONP3hOKdnchxyxUNiIyAe+x0Ry0gfg7l7kyCvvhA8O7TReVhQSQGpkphSZntWoG7tIaY7Q9H3b/DNlq/oEU69Dt3VQZ/UqM9NH4BIn83UzRoAUNysbCI0jKF+1VXcqf1SsvHzshyACmTUB9Idty2TkwMbLXNSXq4vRBh+1JR0jtEHdi7oq83EvAmnS4spMRCalQHBp+TU6omSVUGYRU0dJTEqLN43IpMRc5p/pZ2VyN4KxJYTGDb0eZearykyxNF83oxY30wnMlNHIkVdT55p1l7RZ+472QxBD86yaAI6g6rED0vE2a7xMAkdyNsVlcw+6IuPxUtKHPjyfmJmyyUpkHOjssFrUq6rG0IGam9GozGpUqN73IElMEqgKcyU0aGUAT2JGyaLB4iLNev32SQZxIUpT8gntS7gKqrUZVdysXC4CRT4uzpGXrxsyM3z/o03i2GYjkFkD4ZP5xCV/sHAhIZM9Bee2NPXrqsqkfhhVphNZzVxTZZSouDR8F9Kqh8h06Mkf7ajGzDpR+Td1AihW3E9A9TeQIrOCdrRqyXUEdE6YC6GBlOlnYlNljnPPXJSQCdJvx5bBaHIn2lyNHOExx9C4mWmydLorN/KqK1MykBmAQGYNg+scM87lyB1b4H6wvi5GH5egNP8sr6SPKL0iPpB2L0rqC0I9NBuJHvRjXCiEOgRVmdJViTlmXAKIquusvhIt6C3pV1nbFcc1+UMnP91OIjGTpOFsLe5GH9iIi7PzUWWcokuV9S9tZXvWUlm/YYFMSA1fgDiQGYBAZpng4zqU4Jr8UYyE/5QtCYQr5+CSrJHF3egBU/YikC35Q1JqvkSmQJevSqgy3c1Y5abUPLPO/rr+FtVrj2boMzKJ0Ey2JhKT4nMOc8502AjI5zjuWJsyk1Qid5xBUfZpisyUBJLswnWh4RzJjf4hXOyHIAKZNQC2VHuX5A8VL0tBUlQcJBK0KS7JBqQ8B1VmenK0ixLzyVzMSmQ69BzEWrysA0k3oxYzSygz/RVxqozO84pgd0Ga5pbRfSkJxKbKbMRmeCq1Xm6DzS3I2bnUSeNxiJ1VSCyqbQNIrQTiTmANYpEy/OaCNlAkDiQCmeUM71T7KnT3hDFepkP6b5iIymZras/1T0CJzAFS9qJqjouT6fXQ6kBsJRsTdHciV6ZIbbgiMT0BhGY+UzdjCajMNaPp+SbSMMGX0PQzM7keubE4XDKapcxcVZmk5DhCA0BT9OnkaVtiR9OfaxbcjAACmTUdWcjOKV5mcjFSSEQjqSp6nE2VmfpjVJlpcrSkvoA0wZmSQLjjXUFdjOq95mbUE0BqbkZtgVnqZiypVmnLWfUikM501MsooQFJ4pJcjwo29ydRZxxcL6Auqs4lJmZzNdrcjFHJGDOzJYHw6foNWg5rL/gnNZjshyCG5oqTDYTpxygleHDbat+U/OEUL5NiXiai4mxtKi+rKhOOt02OltQZ3QbZlrib2mVBO3mVitXkj2oGIzrQHzerIpHN2AkmCYS2qsP3XtNllp1exm3TT1D6RvTyCJWFiDVEwssGl2Ns5a43dKZ9APrk4kiYaKxPwSgTRqH7trrUA11dQW9Aba/gZgzgkNWdYFNozvEyrl4vtxEYZ2tSbr6qjByvZzCaJker7kwuRf0Sy11qqb0wpNSfgLoTS0jSTCpeRpWXlppfOSAGSoUkqdV64rIa6VlwcTNu5OoYmrnI1UsxM1Oyh6e7kYPtC8lTmdlcjZKNVkaTQAAYHwdD0ZTFiV1vFHT7IYhAZg2ETk4lYZuzLXI+N87dJ9VzNi5JHRSUsCjqTPrQiUzv0pb8QQkuS5yMfnwufwSdbhLxsg7tvQOIO/uzGSsJIBHQ2Z6MmZUARMO11lRGo8ucs4i8mzInTPEz3YZugxmHp7vR56IpERSt120yuxC1cs4mAvS4mZ4EAiD1OBidsAZkZf1AZgACmeUG6i6Un3OW/iVJyR/iElb6NkdMJuLTj9Nts6gyCRzJWWBzL3JEZoqTSUTm+j+mqoyma9TiZR3aq0pUkbY2YxFltHX2oE8nM/XarfcyHP0fGnU3uuhLNWp1xi4JIdDK6LbeHu1fWgVEtS0QmulqY1JZUjs2xcbZSeqNJbX+uJktCcSU0ajX6du5ER/n1rDZD0EEMmsAXCZBq/JkTK3fLrWEFafGFDiCkUjNpV0TGRmUl4nkTKpMSrm3qTPdXi+rh8iky7TuCBwOYHgHUNCJSSM0uih5sVRGH42ZlYDKRX84+omslh2C9BWHugYlKe1DaCBlQJrQVBk3Joo6l7qS3IK03kROermoukhbxvpijdC4lUA4AmvU6vgiQmo+gEBmXnBVX/LxcjJIwo7Gy0wp+dI1Td82qSxaxkFSa5IN2bYRmQJNKdCbluaT5UFk9E9gUmXKMViqxsZq7kXN5VgutSWUWbEUoVefh8Ymgaj3rOpMt3MlNCA5/0wv4/q1+QJ1Ow93o6lZl7iX1JaJ/HTSkkivum+aPC2l5NNsxoam6zt6PxL2QxAhmzFnuKwOYirT42XWlHxJMbnWg5TVo8q4NiP5gZvU3CWPTt/myK0eRQa4qbIaqSkCI/EylIDujmGJ1PxSqZwmspo60+NmUiKIbYQUtk9CujXQyyRdbFNnQnajCSZVHwn1NnvJhmuH2wZQWdqqgrKWzViO3LIWTdmM/V3m8DgW+hm5vIYggjLLAfXecbHPOjORDrRtW9zMQja1fR9VxpGaRGwwqzLTJVO6znDkVS+RKZhUWS261VFNyafxsiq5lcnfqlgqp5M/anEz5Wp8DUllZlNnkqtRtzUpNH3bNKEahjIOwiXF5YuQTsnmJpTsjPEwpD8Gtv0S82dMJ4HUyh1W+shdpe2F8wPAa/ZDEEGZNRCcW5G6JrnkDzZexu3Tck5J6dsc2XAJJTZVZgJRZdKjXVzS8EHKXCZG+xKZ7W6uhLReKukZjHrMTHv8i75qflEpM91ebdd6saXpK7iqM0CmeH2f+yQ5BWYqo7cghrlntuHa1JnJ1qS6bPWm/1xViZWj5K9Fv2mhNzD95fI8tNxAbyptr+BmDNDB3X25xsR4e07SQI5rufyxpTqaMGK6MNSpyij0VHx6+VOQyuip2S7HPqAUQacxJxSa4hpFYDqxdaQvWsOK3QY3o2pddzfSnutxoJg0Lbdv+iakb8ylb61IeplsaB1ny9mY/humbWn4xMXIuQklYmsYfIhMumHIES+//DLOPvtsjBo1CqNGjcLZZ5+Nv/71r8ZjPvaxj6FQKCRe73jHO7z6DW7GJkCpL2mxYW6ytDUlX4H7A5YZOy7j0VV92e7oMiR96JdFvRtT8ocpTlYPkSno+gjau66ZhncA7dS1qGczlioXOH2eWQnlNJHpr716ekkvkupMT6GnZ2dzNSpE2tlIc86ojf4JqD5csxoV2lFRZ45PpaZ1LpmK3PFO7kPSlmhXmW9mmjyt3IZSFmPD5571wm85qwan5n/kIx/B//7v/+LBBx8EAHziE5/A2WefjR/96EfG4973vvfhlltuqe0PGzbMq99AZg2A7YcrKTiV/FGS1Bi0bZ1cOGUk3Zn6pvG7qDIkbUzuRQ62NHwgrQ30U8xKZDpZ6aAxMkVy+6DqYtRUGB8zKybUGftMswSZQeuFxs30L1Ifoe8VyYXQQLYlEpMuG46Tqbmh6aZcuV4nEZMqo0RlO1ayI3Ez2+Tp5CmZ42KmLEhvDKLU/KeeegoPPvggHnvsMbz97W8HAHz3u9/FrFmz8Mwzz+Dwww8Xj+3o6MC4ceMy9x3cjHVCioX110cJO3FVEG6lfCkl3+QmoYkdep2J1DjyooqLllFiM/xJJFXmkoZvS/gwlfUi2YYETpWV0D8LrASgVKxmMVISU9u1mFn/FblYpTZ09srKDNB6qvWmvbgR6otuuZ6xdHug9vVtzrWo23Hvpv5IMfeS6uhxXDucje1Yn+0qaNysVl4lISlGFtXqG6AfpM/T9AKwa9euxKu7u7vuoaxbtw6jRo2qERkAvOMd78CoUaPw6KOPGo9ds2YNxowZg8MOOwwXXnghtm/f7tV3ILOcIbkP03Z8vKzI/RF1guJcjJwqo6pNt5NsJcVlOo6Qmo97UbpEQtt2Tfig1x0bgbmoMv21DyrLV9WyGHX3ovbe2wH0IJmaX1k53+JqhHrCsTQCujqkC7hPwXQbIBEarVPHcN8o/SYNySA2IuNsuX3JxnSsbsNtp9rhFx1uenyMQ8YEkIkTJ9biWqNGjcKiRYvqHkpXVxfGjBmTKh8zZgy6urrE40466STceeed+J//+R9885vfxOOPP453v/vdXgQ7CL6J1oNvWi1Vb+KKIFy8TNouC2WcvY2cbEQllRG4To6msKkzSmTSPki5K2g6PtVFSpUlHsRZRIrIKhOmUaWvotZ+Ge2dPejt7DTEzYD+lUDUJ0bVGY0etmt2wpdSs6cToal7UZXRbd21qH+y9DbA5VM3uBsjYkbLVHlksHFxHertuLgkS4AUN1PbyqWoYmN6en5Tnm22BwCzLrmIKj9s3boVI0eOrBV3dHSIh1x99dW45pprjM0+/vjjAIBCIf0dx3HMliuceeaZte3p06dj5syZmDRpEh544AF86EMfMvarEMisQXD9AXOTpWuwkZqNrNS2Xuaiymg9d9dqSuMXIN3Lc7qA7tdLZJyuoXmCbOYiKqqsvVRN/NDJi1FmPZ3tibv1koqglSL0muJm6qJpjJ25rAoixdNcCE23U23b5p+B1OntSHVCM7ZEEI54TPUucTIpWSRlm46blaOiuIK+7QGe/fsOfxwbMsbMRo4cmSAzEy6++GKcddZZRpuDDz4Yv/71r/HnP/85VfeXv/wFY8eOdR7i+PHjMWnSJPz+9793PiaQmSPMLsNItKE/aFv6fkknF/UeMduUrFSZzZ1iUmUSOTmQWhb3ouTE4hxcIPX0tPRyF7STbRoro6os8URppdD0p0tX66KiipIl42Ylyc2ok9tufTSmzEZ6Jq5nzmVG6oTGEZxLQggH05JYTHYjJy5dEjykeh9lZiM0An3RYZUEYspopKTlYuMFx5vJhL0n9t9/f+y///5Wu1mzZmHnzp345S9/ibe97W0AgF/84hfYuXMnjjnmGOf+XnrpJWzduhXjx493PibEzOqARHD8clXJX5txsjRHQpSQqJ2Uri+pN06Vgdi6pu7rJgKRifYwJ3zYYmawlFOUhG1TpKq9hP4V8qkyIwottfoHqlOo9SWtqDrTPYninDOaY0l1Zdb7UpP25W4vqJ6mbUnxM/pNM4fSJqkwpXa0DhY7zgZCHWtnf1hncvgNmiSd7sj/1SBMmzYN73vf+3DhhRfisccew2OPPYYLL7wQp556aiKTcerUqVixYgUAYPfu3bjsssuwbt06/OlPf8KaNWtw2mmnYf/998cHP/hB574DmTURXEYjJbmC9x+M1EmJH7qN6c/PZVBy6lBQZRJs6oxe6rghSvW+MTIfVTa8qsoK+rPLaFq+FkejafkKwzp6gM44SWScyzExKimz0XRG3D6F7ZZA+vFxWtpEVFKGo5AMom+byI1um+pMNvTddHx1ncY+Zo1GdQPDZTTWbBvpBOvN8Gog7rzzTrzxjW/E7NmzMXv2bLzpTW/C7bffnrB55plnsHPnTgBAsVjEk08+ife///047LDDcO655+Kwww7DunXrMGLECOd+g5uxgTC5H2k5+2RpwExkPmqMEpUthV9SZWRsWbMX6SnS3DdumztVl/8ll8ROkz6sqkxf6cNhKSv9glaqliYe0skRWan/iP5kEGnemY5IO871tltK/uBiZvo2jZ8B8rcguUZVHUkIiEg1LVPlEVPvmuQBUp7B1Ujnm5nQsDhZspNBM88MAF7/+tfjjjvuMNrEcf8NzfDhw/HTn/607n5bQpktWrQIb33rWzFixAiMGTMGH/jAB/DMM89Yj1u7di1mzJiBzs5OTJkyBUuXLm3YGNMZi27zzgBmsjR951QWR1KmxA9lKxEcJTuO1BzmlNlW+YChjouT0e16FBkgaxZJlZVK1XR8nbgUoenxsmpavr76B9A/z6yEcuULlpJAdBckCjDkVQpn4bNmo4LLJ8tpZ59vl/4aBEhKiyun9dI+PS2bMqN9pPrs/17VfDOlzqhL0XXycy6KjX5WLq8hiJYgs7Vr1+Kiiy7CY489htWrVyOKIsyePRuvvvqqeMzmzZtx8skn47jjjsPGjRvxhS98AZdccgnuvffeusZSb1o+hTVeZlJmkgLj6ilpUXuOqLh5Z5qtz0oftixGU5yMnj7gTmRZVZnKYExMki6CzWBUJFQuAT3oSLkaFaG1d/bYk0ASiw8PVyMhL3VmptiZK7lJhKbvm24tXIiNtqnKLXPPJLLyJTITIUp24ns6blYum+ed8W7HHONpe1FJz3d97c2v68GElnAzqjW+FG655RaMGTMGGzZswPHHH88es3TpUhx00EFYsmQJgEpgcv369Vi8eDFOP/30usfEKTBXt6JtvpkTkflmPXJ/fknlcX9+0mbW7EXucueS8JGFyCi4VHzTvLJarEwnHGZumXpV0vJ5Ikuk51My2w+VTEZ9zlmkqzMus1FClk9Hz3KMIGc4gmzbshpLlnplI6zd6JLNyNVJLka6bXM1pt7T88100IxGmp7fsCdQl+EnSxrsZhwotIQyo1CBw9e//vWizbp16zB79uxE2Zw5c7B+/Xr09vJ/ru7u7tQSL/WAX2CYIUF9srSvi1F/p2VlJI+XVJdNqdHyKupNw/clMi52TW/KdUgLPtGkD0mVJWJl3PJV5KXS8oH0nXftIZ2cKjMmgkiZjZK7UT9jrt70ibl8A/TbkNSYzd0oKDSTGpPquVNzOS6TMku6F2kSyIBAOm/Tawii5cgsjmMsWLAAxx57LKZPny7adXV1pSbpjR07FlEUYceOHewxixYtSizvMnHiRKcxuayILao1aXFh/Z0r8/0jumxzMTOGAJUq4yARmKmOO03pskrbcwV1yukOOy9VRlyLOiGVUQJN/gCqRAb1XLNYJrBU7EwfOc1slNyNPrGzeglN36fltlsah6G5EpmJnFyO47a5dwIaNwPSGY0Rc3OTO/EFMgPQgmR28cUX49e//jXuvvtuqy1dPkVl0EjLqixcuBA7d+6svbZu3eo9viJRYyY3pBgv07c5lyFVVyYVZ1JlXPuU1IhC812yynQps2Uu1kNkkirT651UmT4xWk/P1x75gk4gLqm0/BL0ZIAakdXILJJjZSXyXhspp850UuMIzDV2xl3dXJy93C2JC2l5qLNGExkM2yY7YY6Z77yyNOFlJDn1Mbq+hiiZtUTMTOHTn/407r//fjz88MM48MADjbbjxo1LLWy5fft2lEoljB49mj2mo6PDuD6ZCf6JIVVioyn50p+MczFKf0LTH13adkz6AOqLk+n/O46spOQPepo+kLQLGy+jqoySjE5iar9Yub5xq6QrFFFGsVhGW2cP+krtMpHpcbNanIcbqf5p9CL9V/aNnUVMG3q5HkMD2Vb7WfpVIH3rw+F+5zQGptfRd1NMLLLUp8qScbOo+q4/Doau0Sg97iU3lGF8wg5rPwTREsosjmNcfPHFuO+++/A///M/mDx5svWYWbNmYfXq1YmyVatWYebMmWhvz5LGnIYt0YPLZJRckonFhakJ9yd1ScfPosr0bSHpwwTp/tykzvRTozDl2umgiR20DKSe6hp2Xpm+dJXuYmRIraezDcrFyK0CUnlnVgLRXY50P5HZWNONzBn6qDPT/av+CXOkJGU1crf8plsbyd5xZX0wZTZ1xh0jtWM9ho+b2dCwuBr9nFxeQxAtQWYXXXQR7rjjDtx1110YMWIEurq60NXVhT179tRsFi5ciHPOOae2P3fuXDz//PNYsGABnnrqKdx8881Yvnw5LrvssrrHI2UhmmJn3JqM7Pwy2x9Siq35/pFtxKjbVetdshcpOHVG7alC4xRb1v8fp8p0dabzR2JemR4nIyosQWrV/XKpP29Rh54EVKpmNIqTprnEkBLQ/3gY+tJdjgB/hr7gCI1++vo3ZPpmXWDIdaUXXonc6iEyGLalegOo67ApCKn5AFqEzG666Sbs3LkT73rXuzB+/Pja65577qnZbNu2DVu2bKntT548GStXrsSaNWtw1FFH4ctf/jKuv/76XNLyfSA938w5Xqa/m/6YJiJ0VWX6i0n6AMxEJr0rSPfjQH5EZlJlVNNwqmw4jYdRFaaTmEY8lUxGKQGkXIublVQSCM1kNCWEAOiPmyl1pieE0Dlo+hm7xs50mAgtS/xMeueIjKgz1ZxNNbnaSXU+fQBATZX1/9L4OWZVFUd+E7mSXTnDawiiJWJm+tInEm699dZU2QknnIAnnngit3FwyouqNPuTp4WUfMB8dygpKa5Of5fuZDl7Wla149Ze9CEy/dKlH58XkbkkeVDtQukgpcp0EtPJhT7+paSSP2p0BSB9Yeufa1ZNAim1i1mRtf292ntCnQ3XPh31UnEtvV/16ekBJm6fg2oTSMbLGhU/o0tlFfqHwQ1bUk16LEyv446NtHLTu7KtlTNxM+1xMFysTEIuy1tFYO8BDJ0OSbSEMhvscImdJRUa8+OVXI22+WBcuf5umlfmETOj7kVXUCKj9+F5uhap6qJ13CTp2hobVJXR2Bhdm1GLp6nkD9McM/VeITMtbmZ7KTsAyaxGyeVoStX3dT26KjRX/Q1iR9unvw7tcNtNGfe/gMHGVCbZJMqTcbP+6rTiyrrUlTPo5+PyGoIIZJYRlMCsZAXU7t0Bw/wynYRMfzBfVWb681Oi0/pXqiyLe1EiMoU8iIyqshLZppd2zr1YkmJlOqnp5EbiaT2dbeAWGAaSNzSlakZjbVkrmuxhXeKqgH49qZ8BdTlS0LVPuE9OgguhqW29nOpziawyuhttF2pTOX23EZpol1xBn1vWKjm/LPkEch11EZz+Rwup+QF5gEvy4NyNbLzM9sehrkUwNrZjGLJi42jVfepezEJk+lA5UquHyHRQ/cFpE07TWGNlujqjK4BUY2flkiKyEktqtXlmqpY+dVqKne1l3mt6Un2K1A8WIU1o+iequ/NcEWn9cC5HGLZ94eBujLRqblt/l8ppvb5N3/XTr5UXamX6wzoB9/T73NL0y/BzMwoP6Gh1BDJrAtSFLFFG42VAOpuQU1/qXVdS9J3aUFvbXazgXgTciUzB5HByJTJVb3OS2XQJ65BT88q4WJlOaNS9WH3FndCeLm2+u1Z0158EUkiSlx4rY+NmQP+K+sO1lveQM1TQr/S0TJXTT1z6tLMQmt6eCzii1cbBEQ2EbRo7sxEV/T8YY2b95XSdRn09Rn0txobML1OI4OdjC2QWAPDqS66PUnV6WeqRL9D2TXeTNnVGFZh0vIN7EUi6F11BPRqmbXoqYOo4qB8vvexy7kVp7YzhnRVCS6kjqpQY92L/ZOlSwq3EZbXpq78kkkBKQn+cMougqTP9LLg7FF216Z+kK8lwpGYiNFqvxiHdglC1yI2pHRXJwSxEzBEZrZcIjBuqjeQ426gElMooR0UxCaSynVxwWCrLjD0IZIYQM6sbrBvRRnh6BgUlIR1q35QcQuu5NiPmWIkEkV6yCsgeJwNk8qqHyCh04lKgqfjqpdIohndUXIwFXY3RJayoGism38ul/uQPSZklJk2rL0l/thlHaJTcEqJLqTMpGQSkzjT3zHY/S78JqrvpdsRsmxzQgP2XQ5a6Uu8ch5vqqZ10HEgd3U+UmxM+XGJhdU+m7oNfWv4QJbOgzHJA7eGLpKx/O0rXc3eTalsnKomATH9azuUIUmbJbuSyF12JTD8VU8IHd/q6nQn6JZv+iKVU/ETKRDXpo0TchiyJ0DiZVlYutdUuWBET4Odip8VSGW2lMvokwuJcjHpdBFIgqTOA/zR9XYBKhSnoUkXf51L2TePgQNP89XKtO0B2NZpUGafApHqQetDtQuJjKEdFlEvpZa1q9bUrRTrsoMM7GSSC33JWPvG1FkIgsxxBf6AcwZXKZfmRL/o+YCYhrpweo9vo74a7UrpkFbeIsHR/LdXTbTD7IOUUtniZ5FYE0lylkj4SqkxfusqkzAiplUvcquj8xaiWHlKsuBr7JPciR2TKzRih8uyzmjpThcqtqKuzSPjkdBeiOi4iZaZjVNuUwPR9/Rj9OFoOYsPVEXcj/d1ypMYRGz2WIyxKdA6k1hcVU0kgFA17lpkaSyCzQGZZYF62KiL7vC37yBd9X5VJ7kEp/d6FuGh2Y/VdenK0lNwBUs4lZLsSmY9b0aTKQOo4VVbSVRkXC+OUGV3aqliZLB0VizVFRmNnCvoDOmuEVorQW4qBUkF2N+5FktxS6kwnI6rO9E9KgcbOOAVkg05WJkID2dYhfWvUlirIEozxM1pGic2myqRjTcRXjZvpoOrLNDE6l8SQXgQyQyCzhiA9B01Ly6bxMkpUlGwkEvJRZcqGkpyDe9E3TkavK40kMmjbVJXp76Iqo3PH9G06QZqJm/Unf/BJHxySGY0RwK2gzyV/6Mqsps6A5GogujpTZQCfzJFFnenH+hCaPhZXWNyNHIFxZAXh3eZm5GxE1VZkk0AqXfmRVaZlrsoIZIZAZplh+4Emgv20LrKk5AM8EenlEglKqszyMk2OVt1kSfiAtp2VyCQXo0Rg7aSeS8VvN7kP6bueOp9wMSazF90TQcraSiDt6XgZVWZc7CyxzJVK1VefPFVmJiLJos4AP0KDZut668Jdmhh3o+RCpO8mojOpMn0YrEorsEOtkFhSkdFVYijR1bW01RAlKB8EMnNA5QeX/qj6p8fqD/+gqqz/4Yx6vAwAP69MIhwI+6ZjKLkJ7kUA1snR0LbpO5h6MNtA8nSzZCwCMrnR/D2qzIYXmVR8SmLSih/UJVmsJH8AbiRGHwuUSAJxJTKqzmoX8toZol9lAf2fNr0i69Bdeb6uR19Co/1JkMZR0t4Nk6klYuLqgPTnaVJl1B4AohL6ojLKUQnlqJxIAgH6b3i4+WcB+SGk5jvC547J9kMtURLjCEhBShDRSYzaAek/MOderNbFSo1V303J1JTAwNiC2QaSp+WT28btc6qMlqeUmXIvUnLiSIuuxaiTTS0tP70eo7QuY2Vbu/EplvufbUbdjCXmnSO8Gkfpqfr7gF9Rn/uEqLMWmp0t5UaBm2DBfePcr0mKxkq6n/n1ud78mV5w2Kb21I6Bj/u5qY+MGaIIyqxB0NdhFKGTE4WkuKBtU+IyqTIwbZR596KCiwrj6vJWZEDyh0p/tCb3orqsp1LxuXiZC4lUj9eTP2yEBvBrd1qTQDi1prYjJJVawpgmg3DuRi47MStsCk3vR8pwpHUU3NQAg7uRU2ecq9GmyuiPjf1YC0it01jMcVK0FdTR72I/9BCUmQeyuAZo8kctXkazGaXsQyBNSNSWU2s2VVZ9N7kX9eH5JnwA9ROZSStQbWFyLxpT8RVB0TT8IrOtHaOuXUpr0Ttr7k5bn29YRKQlgSBNXNI7R7IAzBOpKc3rn5iOrOoMMCs0tc39WmypRdzxTF6tj7KS6lyOpf1pZSoJhEIPRnCofxV96SRNr6GHoMxyQjJ25vhjsf22OFei6U9F7SRyq77oAzdd3Iv6JUhBSvig4IhM2br+EKlzjLs8U/eiOEGaS/Cgao2m61fJrZL8kR61i7uopHIg9SQQmzLjCC+CozpTdajuSySl6my3HPo3rH8GkkID2QaSqo3CNCdNJ1rD3DP6m9eHlFJWjL1er8NUlzKVkkBKAHpq+/XHz4IyA4Iy8wZHVPxDO8uJO3GV/FGiKkmBUU0JG0piphgaVWVc++hXZS6rfHCg988m9yJtg+NkHZxGoK5GicRA9p1UGVVFJlcj+lf+UHPL1FOmOajfQXL1/MoH3iYtayWpNOkFQFZn3D4H+gmrT9cE+s1xCo3btqX+c79E/VhVRpa6clFdWRSZ7SYyKtUmT9PHwXDwiafZ4aPITHfPrY2gzDIgOQHWfldltOEUlF6m20Cw1X+fkioj5XrSR5Y0fHo58iUyCtMP0TanTLehqoydIM0priJ5dTBlGvGp5A+X1fIlFEtqJRAmbsZNlKbZjM7qTJVD2+dISo+j+dy9U6miKzR9X+87ywVV74Oel1as/29KTJluFzF2Jaaes6f9GZD7AzkTsN0ccPZDD4HMckRJIzmKVLzM9SaJ+yNxKfemevKiSR+Aexq+LbsxC5FRUFWmtrnMRk5/JB5fqasyRVqUwKRMQkGhxcy/RldpJldjggKL5UoSiDpBkzqjxMa9IiC9zJWCfvGnZEOh20Zwdz1yhKbK8yA03V5nkxIS7kZKWCDvElnpx1AbkPoUqVWSQPTJ0+ViZSUQlZavuxfzhXoEkI/90EMgs5wgr/rBxNDof1giIJsrUbI3kJ++ZJVplQ8wZSYio9tA8vKX9V5Qci+WyD6X8iAuW0UzGnVXI/PMMkpqURGJTEbXu266+HTtd0FXAqHPM+O21XdrVGdqdZBe7ROjV2eOpEqGOlXPfaM6CarjbYRm6kcHJVR6y0MITb1zZEa3JQKjQpBTZK43pVU0RqHRW0oX+6GHQGY5wMnVqMfLALN68pkILZUL7/rai7p70RYnM2Uu1ktk+o+QU2WqnLoXKYkN18qGF5FetopOltZVmu56VLb0sTDVl0r+0DPUXB7M2b/d/4mUVBIIhCQQicT0ff19N1C5qA9H/x07dTfqV2STu1HZKzvXC6Z+1bcRGrRyE+gtDZcr254s8iUzU7mkyHQwk6ejokoBKWJY1axM9uuHB5vW7IceApnVCXFSLJIrf9QgkRetc1VlEMqZP6BpcjQlMonYbOoM8CMyEzgC45QYJTblXkwtW6VUGVVp+sofgmtRFwB68kflHM2Exj3fTs9oFFcCMbkZFYE5uxv1b0knNhuUqmsGodna47YpyRF3oy+ZSS5Il5cF9PfRv6RVMsPRHyGbEQhkVhdMT5VO2UZkPUYK+l/l/nSuqgzpcu7J0crMNtvH5obUh+9LZJIqs+XQObsXdaVVsuxzc8sIUcQluvJHqfrOE5pEZGo/lQSiTs71RdVZwgOoG+4D4DVtH0h+Q9IFTiIwydWow4XQTH1L4H41en9C/Iwrk0jJRFTiMem4Gb2/MSmy7C5IRzZN2A89BDLLCKrIknXJeFlRZw4TKelqS8Fm50h0Nvci4EZk+rDodj2KzJT0waky3badvpR7USctqso4QuPKhcnSAFKE1l8u/61qq3/QL1qPm9XzSsTOdHUGJJWaTjRKdXFQx2ZRZ+p4E6GBbNugkyg9Tv9FIE1OuuoyKTBaB6aeO03mR68eB0PnluUL/bbS1X7oIZCZJ0zp+FImI4D088tMJGQqA2nHlvQBd/cikCYyCs4WyEZk0o9PuqymXImoQ5VJy1mVwLsYFakBteQPIHlhSm4nzy6p4jVlpjIaTXEzibBMNil1BvR/s7RMujpDq8uqzmgfJkLj+pfGxdnoY7Ykg9DT5ghNqpOUGQAVN+OQ/n3kldkYlBkQyKxu1CZFiySmrZTPERKFRErqONeYG1FlAO9e1Le5oVGlxhEZtfeFqyrT7XUC0+eUsapMIjRKVJyLUUcpufIHfZyHDZKarz2hOKsKk8gtoc5UB9LKIACvcupNBlEwEZqq10HnqUnj0e31X7SmznSlBaT/P6ZyVyIjfEKTQPqTPxqh0PbAb/2LkJr/Nw/XCdJ68odCLV7m4mLkVBnIvosqi+TJ0baYmBRDA/hMRyDxX07VUbXF8ETNjiMyaQ2LBKmVLKqMW/2DU2C6cCkl9/XHvujvCrYLVDKG1p+e3yZNnvZRZWyavvpUoRXSVH0w2xz0ZJD+M5K/efqtS4QGsk3B1dF+KckJ6ky9c0rMVX1RJEgtueiwgvS7oAqtjFIGitNvTV3thx4CmdWB1DOqmB+JmiwNIP1nMrkTObIypfEz73RytORetBGZDinhQ7Kzga7uIdnQFT84VVYqAcM7GFVGXYlcCj5HDiRepid/cJOj5eWsuJhqVD0PPQkkghg3c504rdujekztE9OpnyoznWiA9DcKJNWPSZ31kncuSUPVZ513xpGbXqf6KbiRWT11tB5ITZ4GeqCSP3xvgOywsS1nP/QQyCwj0g/hTMZEEhcsacUPiai47W6yT232IvUHi8rAnr0VIttTlgnLRmSmLEYgeUoulyFdhen7aptzL3IqTVzpQ6Xa6yn3NDtRmmPGTZquHquvlN9/7v3kZgKn6mtZjSVtJRB1sjZVxs0xi4TjIsCcqq86Vegl+9Bs28k2p9YoKKlxhKbblWD/JdHxRUydmnlYreYecBo51NleoNvpuJnLY4KyI6TmA4HMnMGlWNNt6lpMxcuAJBFBK7OpMp3Q1J+vm9RrxKfci9wqH3u0bf3S1igiM6XZ68SmKy8pe9E76YOu9sGtBCIpNkIK5RIQFfsvRr4LxeoLDevp+f0G5YoyUyeb5cWRWu1Lop+cKgPSP0gJOvlJdpJq04mLEppqkyaESH1w5WrFE+qEZuae7SWHZiUyltQq/elxMxTTLkU6kTo7ApkBgczqQn+adfKPpZNaYn6ZaVI09+fgVJgiMUf3Irdclb6tO4QoUeWtyCqfTQUm92KJ1Omkpm8bU/EZZcUSlTCfDADjYmxLuRfVSiA6fJe3KhbLKNUmT2eYb+ai0lLqTIFTZiWmntZRd6NNnSlQQlNtSqqMi5eZ5r7pY1O/dobQ9O1cCIyWVeaboWbS72LMd/UPelKu9kMPgcw8YUrLr7z3E1xqfpn04y8jSUousTG1rbsXq0pNX3uRS/iAtk0JitbpZdRGIet9Hr18mpI/StK2iyozKS9u1XxKhAzomoz6cxR8oLujU3Ez9cH4qDDplVJnQPoXAaTdfvQSwbkMOdhialIcTW1TQtPHY5smUCLvHu7GrEQG5h1ITJ7mpnFQl3U2kuP+xTb7oYdAZhlBkz+kspKuvAA5YxFk25b1KOxz2YucGvPJXNS39VPRyyTolyxJlZUYO869SOuMqfg6GUnuw6LWKP0nkDaiIhKPfcmK5JJn2m9Hn4hIFaILsdmITiWQsKn6eiccqXHQfwW+6ky1r47Vy0wp+6b2uVsvB3dj7opMvSfjZsmU/P7tyiH1KjXfVPuQmh8goKTfXVcvUGK8LIJMaLZUe9PEaiF7USIsCOV5EpkJlMC4sgRxcdslD1UmvWxuyepAyto/RbkafYmNU/W1aRwqCYSbPA3yTstdiE1lQkZ6Y9xVmCM1DvqlI0I2QlPt00nUrin70Gxoaj6Q/NWq9jMQGrW37UcAjZuhQ5nxc87qgz4QV/uhh5Z60vR3vvMdTJ48GZ2dnZgxYwZ+9rOfGe3Xrl2LGTNmoLOzE1OmTMHSpUvr6p/GyKSMxlS8TCcdwKy0bOQmEZ5SYlEy6UNSZvpQTPEyIE1kruFmSZWVSLk0p6ydOa5mV3UvWlUZR1BcDA3M8dUy9fyyqMiTV+RAara1OxUqT56O+fH4vvRntCXUZ4E/UQDpT5reQki3IRxMyk6HacKH5BjX66SoMH1p30GeioyrB6DHzcrltFs6P0jnK70aS2Zf/epXccwxx2CfffbB6173Oqdj4jjG1VdfjQkTJmD48OF417vehd/+9rde/bYMmd1zzz249NJLceWVV2Ljxo047rjjcNJJJ2HLli2s/ebNm3HyySfjuOOOw8aNG/GFL3wBl1xyCe69995cx0XdRbUsNT1ept5NE6Ft5GYq67a7F6Ft6z99Co7U9NPIosb0yyS0be6yqNfp2/TSqtyLVlVmUmimRBBoZehP/lCwPYTThP6sxv7J9SoJpGIQ+Skv3xeAfncjfdFvqwSZ0Og3yE22cIULoUnHcb9segu3p7od9x+aldBE8qLblc8hinQSK7GkVh/RZR14Y9DT04MzzjgDn/rUp5yP+cY3voHrrrsON9xwAx5//HGMGzcO733ve/HKK684t9EyZHbdddfh/PPPxwUXXIBp06ZhyZIlmDhxIm666SbWfunSpTjooIOwZMkSTJs2DRdccAE+/vGPY/HixWIf3d3d2LVrV+IlgbqMkq7GynuJEhaQJiUu8WMv3FWZ4F5Uf136V6Z/d+lel24DfkQm3ZNzlznu0siRGFVlpaI2r4xOfDZlL5ou9Ayp6Qs6UBXmchHyeroCXdpK386L4GrQCzlnrl5ugsnGVZ0BdkKT3k3KjJbvQY3QXK/7zBxOI7Fp+31KmUXpJc/yU2c+qszVr5Id11xzDebPn483vvGNTvZxHGPJkiW48sor8aEPfQjTp0/H9773Pbz22mu46667nPvNcgvVdPT09GDDhg244oorEuWzZ8/Go48+yh6zbt06zJ49O1E2Z84cLF++HL29vWhvT//JFi1ahGuuuSZV3r2rB3tRBtCDAvYirv45YnSjD+Xqqw8R+lBGhLgcIdrbh/JrqGQYvobKQxN7ALxa3d+r7Xdrdvp7D/pT8bu1MvVefSnX4t5eYE9f5aeq/n970U9uZaTvW+lfHVoZSJkP1OW7VD22vVqWup6icmlRLwDoQ+UuS72rttoBFNqqaqwIRG2qEP1CQ78+9FX3+9B/s6B/CG3VVwlJz5s+kD6gtwzs6WvDnu42dKMPe9GH11DGHpSxBxH2YBh60Is96MVrKKIXPdiLIrrRhght6EGMHgC9KKAXUfWzjlGoDqSAXhTQjbbubsSvDgf27gVe7ez/7l9F//etf1nqfKrjTHyI0D6XNu2lyLrGr+rD2Iv+X4v69agOfX49yg7I9uvpRpK19yKdyKGTLL3lKVbbaNfa2lPdV9PstezG3uoh6vPRfysKMfp/R3q9zrmqTk2bUR9hRy+i3j0Ytu8e9HZUfiU92IMi9qKt+uvZix60YQ+K2IMCelHc1V3pNta/TBNehf9njNTNekdHBzo6OjzayQebN29GV1dX4nrd0dGBE044AY8++ig++clPOrXTEmS2Y8cOlMtljB07NlE+duxYdHV1scd0dXWx9lEUYceOHRg/fnzqmIULF2LBggW1/RdeeAFHHHEEFk9clsNZBOSCPvRf2JuKCID687/U7M4DGoUyKlzwauO6yPrLeeWVVzBq1CixftiwYRg3bhy6ur7lPab99tsPEydOTJRdddVVuPrqq73bqhfqGs5dr59//nnndlqCzBQKhUJiP47jVJnNnitXoHcm++23H373u9/hiCOOwNatWzFy5MisQx/U2LVrFyZOnBjOscURzrH1oW6gf/nLX2LChAlG287OTmzevBk9Pf53dty106TKrr76atZrpePxxx/HzJkzvcei4Ht9p2gJMtt///1RLBZTKmz79u0pNleo3LGk7UulEkaPHu3Ub1tbGw444AAAwMiRI4fkn0dHOMehgXCOrQvl+hs/fjza2uwpDZ2dnejs7LTa1YuLL74YZ511ltHm4IMPztT2uHHjAFQUmu4xM13fObQEmQ0bNgwzZszA6tWr8cEPfrBWvnr1arz//e9nj5k1axZ+9KMfJcpWrVqFmTNnsvGygICAgAAe+++/P/bff/+GtD158mSMGzcOq1evxtFHHw2gkiexdu1afP3rX3dup2WyGRcsWID/9//+H26++WY89dRTmD9/PrZs2YK5c+cCqMS7zjnnnJr93Llz8fzzz2PBggV46qmncPPNN2P58uW47LLLBuoUAgICAoY8tmzZgk2bNmHLli0ol8vYtGkTNm3ahN27d9dspk6dihUrVgCouBcvvfRSXHvttVixYgV+85vf4GMf+xj22WcffOQjH3HvOG4h3HjjjfGkSZPiYcOGxW95y1vitWvX1urOPffc+IQTTkjYr1mzJj766KPjYcOGxQcffHB80003efe5d+/e+Kqrror37t1b7/AHLcI5Dg2Ec2x97Ny5Mz7hhBPinTt3DvRQMuPcc8/VE5Rrr4ceeqhmAyC+5ZZbavt9fX3xVVddFY8bNy7u6OiIjz/++PjJJ5/06rdQbTggICAgIKBl0TJuxoCAgICAAAmBzAICAgICWh6BzAICAgICWh6BzAICAgICWh6BzADs3r0bF198MQ488EAMHz4c06ZNExcw1nHvvffiiCOOQEdHB4444ohaqulgwic/+UkUCgUsWbLEartkyRIcfvjhGD58OCZOnIj58+dj7969tfqHH34Yp512GiZMmIBCoYAf/OAHjRu4Bffddx/mzJmD/fffH4VCAZs2bXI67q9//SsuuugijB8/Hp2dnZg2bRpWrlxZq1+0aBHe+ta3YsSIERgzZgw+8IEP4JlnnmnQWcjw/azXrFmDQqGQej399NMJO9v5DxQWLVpUS9GW8LGPfYw9xyOPPLJmc+utt7I2+u+4WSiVSuxYTAvwfvjDH0ZHRwcKhQKGDRuGT3ziE6LtJZdcgkKhwC7N97eIlpg03WjMnz8fDz30EO644w4cfPDBWLVqFebNm4cJEyaIk7LXrVuHM888E1/+8pfxwQ9+ECtWrMCHP/xh/PznP8fb3/72Jp8Bjx/84Af4xS9+YV0WBwDuvPNOXHHFFbj55ptxzDHH4Nlnn8XHPvYxAMC3vlVZ++3VV1/Fm9/8Zpx33nk4/fTTGzl0K1599VW8853vxBlnnIELL7zQ6Zienh68973vxZgxY/Bf//VfOPDAA7F161aMGDGiZrN27VpcdNFFeOtb34ooinDllVdi9uzZ+N3vfod99923UaeTQtbP+plnnkmsjPGGN7yhtu1y/gOBxx9/HMuWLcOb3vQmo92///u/42tf+1ptP4oivPnNb8YZZ5yRsBs5cmTqBqQZq2RQPPnkk+jt7V+h/sEHH8Tll1+O888/n7X/p3/6J/znf/4nLrnkEnzwgx/Efffdh29/+9sYO3YsvvzlLydsH3nkEdx4441DchWUzMhlYkGL48gjj4y/9KUvJcre8pa3xP/yL/8iHvPhD384ft/73pcomzNnTnzWWWc1ZIy++N///d/4gAMOiH/zm9/EkyZNir/1rW8Z7S+66KL43e9+d6JswYIF8bHHHsvaA4hXrFiR02izY/PmzTGAeOPGjVbbm266KZ4yZUrc09Pj3P727dtjAIk5jc2Gy2f90EMPxQDil19+WbTJcv6NxiuvvBIfeuih8erVq+MTTjgh/sxnPuN87IoVK+JCoRD/6U9/qpXdcsst8ahRo/IfaA446qij4lKpFJfLZbZ+v/32i2fOnJk6ZsSIEYmy7u7ueMSIEfG5554bH3LIIfG4ceMaNuZWQnAzAjj22GNx//3344UXXkAcx3jooYfw7LPPYs6cOeIx0iNmpEfSNBN9fX04++yz8bnPfS7hgjHh2GOPxYYNG/DLX/4SAPDcc89h5cqVOOWUUxo51Kbi/vvvx6xZs3DRRRdh7NixmD59Oq699lqUy2XxmJ07dwIAXv/61zdrmHXh6KOPxvjx43HiiSfioYceStRlOf9G46KLLsIpp5yC97znPd7HLl++HO95z3swadKkRPnu3bsxadIkHHjggTj11FOxcePGvIabGbt378avfvUr/P3f/7245mK5XE4pyM7OTrzyyit47bXXamXvfe97sd9+++HWW29t5JBbDwPNpoMB3d3d8TnnnBMDiEulUjxs2LD4tttuMx7T3t4e33nnnYmyO++8Mx42bFgjh+qEa6+9Nn7ve98b9/X1xXEcOymzOI7j66+/Pm5vb49LpVIMIP7Upz4l2qIFldnhhx8ed3R0xB//+Mfj9evXx3fffXf8+te/Pr7mmmtY+76+vvi0004T1Wmz4PJZP/300/GyZcviDRs2xI8++mj8qU99Ki4UCglF6Xv+jcbdd98dT58+Pd6zZ08cx7GXMnvxxRfjYrEY33PPPYnydevWxbfffnu8adOm+OGHH45PP/30ePjw4fGzzz6b9/C9cOmll8YA4g0bNog2s2bNitva2uLbb789LpfL8fe+9724UCgkft/f+c534ra2tvjpp5+O4zgOykzD3xyZ3XHHHfG+++5bez388MPxv/3bv8WHHXZYfP/998e/+tWv4m9/+9vxfvvtF69evVpsp729Pb7rrrtSbXd0dDT6FFJ96uezZs2aeOzYsfELL7xQs3Ehs4ceeigeO3Zs/N3vfjf+9a9/Hd93333xxIkTU+5XhWaSGfedKfiQ2aGHHhpPnDgxjqKoVvbNb35TvBjMmzcvnjRpUrx169a6z6EeZP2sTz311Pi0006r7fuefyOxZcuWeMyYMfGmTZtqZT5kdu2118ajR4+Ou7u7jXblcjl+85vfHH/605+uZ7h1Y/To0fGYMWOMNi+99FJ86KGH1pZ/amtri9/2trfFAOLf/OY38QsvvBCXSqXEzUcgs378zZHZrl274t///ve112uvvRa3t7fHP/7xjxN2559/fjxnzhyxnYkTJ8bXXXddouy6666LDzrooIaMWwI9n2uvvTYuFApxsVisvdQfY9KkSWI7xx57bHzZZZclym6//fZ4+PDhrI+/mWTGfWcKPmR2/PHHxyeeeGKibOXKlTGA1EXx4osvjg888MD4ueeey+Uc6kHWz/orX/lKPHXq1Nq+z/k3GitWrIgBpH6n6rerEy5FX19f/Hd/93fxpZde6tTXBRdckIpvNxM///nPYwDxwoULnexfffXV+Je//GXc3d0dn3XWWTGAuLe3N/7+97/PrnmoXv/93//d4DMZ3Piby2YcMWJEIntr165d6O3tTfmxi8Ui+vr6xHZmzZqF1atXY/78+bWyVatW4Zhjjsl/0AbQ8/nEJz6B0047LWEzZ84cnH322TjvvPPEdl577TX2M4grNzz5DtoT9Byz4p3vfCfuuusu9PX11c712Wefxfjx4zFs2DAAlQcCfvrTn8aKFSuwZs0aTJ48ue5+BwobN25MpG27nH+zcOKJJ+LJJ59MlJ133nmYOnUqLr/8chSLRfHYtWvX4g9/+IOYFagjjmNs2rTJmA7faFx55ZVoa2vDF7/4RSf7ffbZB29961sBAD/5yU8wadIklEolzJkzB/fdd1/Cdt68eeju7sby5cvxtre9LfextxQGlksHB0444YT4yCOPjB966KH4ueeei2+55Za4s7Mz/s53vlOzOfvss+Mrrriitv/II4/ExWIx/trXvhY/9dRT8de+9rW4VCrFjz322ECcghGcm5Gez1VXXRWPGDEivvvuu+PnnnsuXrVqVXzIIYfEH/7wh2s2r7zySrxx48Z448aNMYD4uuuuizdu3Bg///zzzTqVGl566aV448aN8QMPPBADiL///e/HGzdujLdt21azoee4ZcuWeL/99osvvvji+Jlnnol//OMfx2PGjIm/8pWv1Gw+9alPxaNGjYrXrFkTb9u2rfbS1WAzYPusr7jiivjss8+u2X/rW9+KV6xYET/77LPxb37zm/iKK66IAcT33ntvzcbl/AcS1M1Iz1Hhox/9aPz2t7+dbePqq6+OH3zwwfiPf/xjvHHjxvi8886LS6VS/Itf/KJRwzait7c3LhaL7Hjf8Y53xFOmTKntP/jgg/HcuXPjVatWxTfffHM8ceLEuFAoxD/72c/E9oObsR+BzOI43rZtW/yxj30snjBhQtzZ2Rkffvjh8Te/+c1aAkUcV/5o5557buK4//zP/4wPP/zwuL29PZ46dWriwjGYwJEZPZ/e3t746quvjg855JC4s7MznjhxYjxv3rxEqrdK/6Yv+rk0A7fccgs7lquuuqpmw31njz76aPz2t7897ujoiKdMmRJ/9atfTbi0uDZBHlfRDNg+a/rIo69//eu17+7//J//Ex977LHxAw88kGrXdv4DCUpm3GOd/vrXv8bDhw+Ply1bxrZx6aWXxgcddFA8bNiw+A1veEM8e/bs+NFHH23gqM249tprYwDxgw8+mKo75JBDEtMIfvSjH8XDhw+vfdfjxo2LV65caWw/kFk/wiNgAgICAgJaHmGeWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBAQEBAyyOQWUBATti2bRv2228/nHXWWYnyH//4x2hvb8eVV145QCMLCBj6CGQWEJATxo8fj89//vP4j//4D2zYsAEAsGbNGpxxxhn41Kc+ha9+9asDPMKAgKGLsGp+QECOeO2113DooYdi2rRpWLRoEU488UT84z/+I5YvX45CoTDQwwsIGLIIZBYQkDNuueUWfPzjH8e+++6LU045BXfddZfxyckBAQH1I7gZAwJyxmGHHQYAKBQKuPXWWwORBQQ0AYHMAgJyxKZNm3Dqqafine98J3bv3o2bb755oIcUEPA3geBmDAjICc888wyOP/54zJgxAz/84Q9xxhln4JFHHsEf/vAHjBo1aqCHFxAwpBGUWUBADvjTn/6E97znPTj88MNx7733or29HV/72tfw8ssv49prrx3o4QUEDHkEZRYQUCe2bduG4447DqNGjcJDDz2EkSNH1uo+8YlP4LbbbsPTTz+Ngw8+eOAGGRAwxBHILCAgICCg5RHcjAEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY9AZgEBAQEBLY//H2BHxnIRAhxTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e61a7bbc", + "metadata": {}, + "source": [ + "### Training data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eba06156", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = 2500" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6d6fbd73", + "metadata": {}, + "outputs": [], + "source": [ + "idx = np.random.choice(len(X_star), train_data, replace=False)\n", + "X_train_tensor = X_tensor[idx]\n", + "u_train_tensor = u_tensor[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6ba7274f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAE0CAYAAACmWN3nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXgTZff+P9OkTShQoCn7WsIuIJRFEFkE2ZEWJbSiUcANUUBU3Bf0dQNBwQVwQ16NKEGxg6LIIpsIKhRUFpUoq+yke0vbpPn98WSZmUxK4dXv++ov93XNlcwzzzwzk2XOPOfc5z6Sz+fzEUUUUUQRRRR/Y8T8t08giiiiiCKKKP5TRI1ZFFFEEUUUf3tEjVkUUUQRRRR/e0SNWRRRRBFFFH97RI1ZFFFEEUUUf3tEjVkUUUQRRRR/e0SNWRRRRBFFFH97RI1ZFFFEEUUUf3tEjVkUUUQRRRR/e0SNWRTnxeLFi5EkiYMHD/4l4+/du5cZM2b8JePPmDEDSZLO22/JkiXMnTv3Tz9+AM2aNWPcuHEXte+4ceNo1qzZn3o+/038J5/FX/09RfH3hfG/fQJRRLF3716efPJJ+vXr91+7aS9ZsoTdu3dz9913/yXjf/LJJyQkJFzUvo899hhTp079k8/ov4f/5LP4q7+nKP6+iBqzKKK4QHi9XjweDyaTqdL7dO7c+aKPZ7VaL3rf/0X8J59FFFFEQtTN+A/F6dOnue2222jcuDEmk4natWvTq1cv1q5dq+q3du1aBgwYQEJCAvHx8fTq1Yt169ZV6hiV3ffnn3/muuuuo27duphMJpo0acKNN95ISUkJixcvxmazAXDllVciSRKSJLF48eILPs7KlSvp1KkTJpOJ5ORkZs+eXanr6NevHytXruTQoUPB4wdckwcPHkSSJGbNmsXTTz9NcnIyJpOJ9evXc+7cOe699146depEjRo1SExMpGfPnsiyHHYMrWttw4YNSJLEBx98wCOPPEKDBg1ISEjgqquu4pdfflHtq+dmlCSJu+66i/fee4+2bdsSHx/PpZdeymeffRZ2bFmW6dixIyaTiebNmzNv3rxKu1/79etH+/bt2bx5Mz169KBKlSo0bNiQxx57DK/Xq+rrdruZNGkSDRs2JC4ujubNm/PII49QUlLyp3wWFX1PAAsWLODSSy+lWrVqVK9enTZt2vDwww+f9xqj+IfAF8U/EoMHD/bVrl3b98Ybb/g2bNjgy8zM9D3++OO+Dz/8MNjnvffe80mS5EtLS/MtX77c9+mnn/pGjBjhMxgMvrVr1wb7vfPOOz7Ad+DAgQved9euXb5q1ar5mjVr5lu4cKFv3bp1PofD4RszZowvLy/Pd+rUKd+zzz7rA3yvvfaab+vWrb6tW7f6Tp06dUHHWbt2rc9gMPiuuOIK3/Lly33Lli3zdevWzdekSRPf+X7me/bs8fXq1ctXr1694PG3bt3q8/l8vgMHDvgAX8OGDX1XXnml76OPPvKtXr3ad+DAAV9OTo5v3Lhxvvfee8/31Vdf+VatWuW77777fDExMb5///vfqmM0bdrUd9NNNwXX169f7wN8zZo1811//fW+lStX+j744ANfkyZNfC1btvR5PJ5g35tuusnXtGlT1XiBfbt37+5zOp2+zz//3NevXz+f0Wj0/fbbb8F+X3zxhS8mJsbXr18/3yeffOJbtmyZ77LLLvM1a9bsvJ+Lz+fz9e3b12exWHwNGjTwvfzyy74vv/zSN2XKFB/gu/POO4P9iouLfR07dvRVrVrVN3v2bN/q1at9jz32mM9oNPqGDRv2p3wWFX1PH3zwgQ/wTZ482bd69Wrf2rVrfQsXLvRNmTLlvNcYxT8DUWP2D0W1atV8d999d8TthYWFvsTERN/VV1+tavd6vb5LL73U171792Cb1phdyL79+/f31axZM2ic9LBs2TIf4Fu/fv1Fn+Nll13ma9Cgga+4uDjYlpeX50tMTKzUTXv48OFhBsPnCxkzq9XqKy0trXAMj8fjKysr8918882+zp07q7ZFuoFrb/ROp9MHBG/SPl9kY1a3bl1fXl5esO3EiRO+mJgY33PPPRds69atm69x48a+kpKSYFt+fr7PYrFU2pgBPlmWVe233nqrLyYmxnfo0CGfz+fzLVy40Af4nE6nqt/MmTN9gG/16tV/ymcR6Xu66667fDVr1jzv9UTxz0XUzfgPRffu3Vm8eDFPP/0027Zto6ysTLX9m2++we12c9NNN+HxeIJLeXk5Q4YM4fvvv6ewsFB37MruW1RUxMaNGxkzZgy1a9e+4Guo7HEKCwv5/vvvueaaazCbzcH9q1evztVXX33Bx9XDyJEjiY2NDWtftmwZvXr1olq1ahiNRmJjY3n77bfZt29fpcdVomPHjgAcOnTovPteeeWVVK9ePbhet25d6tSpE9y3sLCQ7du3k5aWRlxcXLBftWrVLuhzqV69eth5jh07lvLycjZt2gTAV199RdWqVRk9erSqX8CdWBnX9X/yWXTv3p2cnByuu+46ZFnmzJkz590nin8WogSQfyiWLl3K008/zVtvvcVjjz1GtWrVGDVqFLNmzaJevXqcPHkSIOzmo4Tb7aZq1aph7ZXdNyYmBq/XS6NGjS7qGip7HEmSKC8vp169emHb9douBvXr1w9rW758OWPGjMFmszF9+nTq1auH0WhkwYIFLFq0qFLjWiwW1XqAVFJcXHzB+wb2D+ybnZ2Nz+ejbt26Yf302iJBr2/gcz179mzwtV69emFxuDp16mA0GoP9KsJ/8lnY7XY8Hg9vvvkm1157LeXl5XTr1o2nn36agQMHnnf/KP7+iBqzfyiSkpKYO3cuc+fO5fDhw6xYsYIHH3yQU6dOsWrVKpKSkgB45ZVX6NGjh+4YkW54ld3X6/ViMBg4evToRV9DZY5TVlaGJEmcOHEibLte28VAjyzhcDhITk5m6dKlqu1awsN/C7Vq1UKSpOBDgRIX8rlUtH/AAFksFr799lt8Pp/qszh16hQejyf4Xf6VGD9+POPHj6ewsJBNmzbxxBNPMGLECH799VeaNm36lx8/iv8uosbs/wM0adKEu+66i3Xr1rFlyxYAevXqRc2aNdm7dy933XXXBY13Ifv27duXZcuW8cwzz0S8oUV6Aq/sceLi4ujevTvLly/nhRdeCLoa8/Pz+fTTTyt1TcoZTWUhSRJxcXGqm/eJEyd02Yz/DVStWpWuXbuSmZnJ7Nmzg67GgoICXdZjJOTn57NixQqVG3DJkiXExMTQp08fAAYMGIDT6SQzM5NRo0YF+7377rvB7X8GKvM9Va1alaFDh1JaWkpaWhp79uyJGrP/DxA1Zv9A5ObmcuWVVzJ27FjatGlD9erV+f7771m1ahXXXHMNIOImr7zyCjfddBNut5vRo0dTp04dTp8+zQ8//MDp06dZsGCB7vgXsu+LL77IFVdcwWWXXcaDDz5IixYtOHnyJCtWrOD111+nevXqtG/fHoA33niD6tWrYzabSU5OxmKxVPo4//rXvxgyZAgDBw7k3nvvxev1MnPmTKpWrYrb7T7vZ9ahQweWL1/OggUL6NKlCzExMXTt2rXCfUaMGMHy5cuZNGkSo0eP5siRI/zrX/+ifv367N+/v9Lf11+Jp556iuHDhzN48GCmTp2K1+vlhRdeoFq1apX6XEDMuu644w4OHz5Mq1at+Pzzz3nzzTe54447aNKkCQA33ngjr732GjfddBMHDx6kQ4cOfP311zz77LMMGzaMq6666k+5nkjf06233kqVKlXo1asX9evX58SJEzz33HPUqFGDbt26/SnHjuJ/HP9tBkoUfz7OnTvnmzhxoq9jx46+hIQEX5UqVXytW7f2PfHEE77CwkJV340bN/qGDx/uS0xM9MXGxvoaNmzoGz58uG/ZsmXBPnrU/Mru6/P5fHv37vXZbDafxWLxxcXF+Zo0aeIbN26c79y5c8E+c+fO9SUnJ/sMBoMP8L3zzjsXfJwVK1b4OnbsGDzG888/73viiScqxdpzu92+0aNH+2rWrOmTJCm4T4DN+MILL+ju9/zzz/uaNWvmM5lMvrZt2/refPNN3WNGYvBpryFwPOX1R2IzKqnxkY7j8/l8n3zyia9Dhw6qz2XKlCm+WrVqnedTEWzGSy65xLdhwwZf165dfSaTyVe/fn3fww8/7CsrK1P1PXv2rG/ixIm++vXr+4xGo69p06a+hx56SPU9/6efRaTv6d///rfvyiuv9NWtW9cXFxfna9CggW/MmDG+H3/88bzXGMU/A5LP5/P9d8xoFFFE8d9AWVkZnTp1omHDhqxevbrCvv369ePMmTPs3r37/+jsooji4hB1M0YRxT8cN998MwMHDgy63xYuXMi+ffuYN2/ef/vUoojiT0PUmEURxT8c+fn53HfffZw+fZrY2FhSUlL4/PPP/7Q4VhRR/C8g6maMIooooojib4//CQWQV155hbp162IwGJAkiYceeki1vby8nH79+gW316xZs1L05+nTp2MymZAkCZPJxAMPPPBXXUIUUUQRxT8WmzZt4uqrr6ZBgwZIkkRmZuZ599m4cSNdunTBbDbTvHlzFi5c+Jee4/+EMcvOzqZly5bce++9utuHDx/Oxo0buffee1m+fDkJCQlcc801HDt2LOKYb7zxBrNnzw4qbffr149Zs2bx9ttv/1WXEUUUUUTxj0RhYSGXXnopr776aqX6HzhwgGHDhtG7d2927tzJww8/zJQpU/j444//snP8n3MzSpLEgw8+yHPPPQeIWVlsbCyDBg3iiy++ACAvL48aNWowduxY3n//fd1xmjRpQnFxMadPnw62JSUlUbVq1UppvQWOfezYMapXr16pchlRRBFFFP8pfD4f+fn5NGjQgJiYiucb586do7S09KKOob2nmUymStXokySJTz75hLS0tIh9HnjgAVasWKHSKJ04cSI//PADW7duveDzrQz+5wkgmzZtory8nBtvvDHYlpCQQL169di2bVvE/Y4dO8aIESNUbVdccUWFygd5eXnk5eUF148fP0737t3/g7OPIoooorg4HDlypEJd03PnzlG7ShUKLmLsatWqUVCg3vOJJ55gxowZFzFaOLZu3cqgQYNUbYMHD+btt9+mrKxMV7T7P8X/vDELFOdr3bq1qr1mzZqqWZcWXq+Xhg0bqtoaNmwYVlBQiZEjR7Jx48ZKn9uYJUO4ZHgTjIgxDf7XfSsP8u+xG4L9blnSi07D66v6GPASgwcgbH8D5Rj827JWnmLm2J+DYz28pAU9htdS9THiJdftYcEDx7hrZl0MlPPKAye5e2YSiYlEPG6gzUh5cD3f7eGpB0qYMdNAzUQJo//zMngCrz4MYneM/o9SCnykHsAL72fCpEfCP6/5j8P1Q/39CL2u3AxjHw/1W/IoDO+u7oO3gnUPrNwJY18LjXHPIHhRkUK1ZBwMv+Q84yhfy0P7rvwZxipCtG9cDemdABOQAG4DPLAMZj4K8e3gQNVm7HA359UHjtFw5h38ntiFw+6meH5PgA/fhzcnhQbrOx+s16uP/9v78K2izxXzodX1oX+rwf9qjPBqqGCbEdizEt4bGxr/1iXQcXioz7fvw2LF8a+6Hda+HlqfvgR6DA+Nt+59eFnRP+12yFT0b9wCjrg4Lzp1gTffxZiUINbXfoHn1tuCm6v8ez7mq68EIMYQ+D0H/gOh33Dgd+2+fzZ5r38U3L/mTcOpN2MCJx5YQMOZt2NMrI4RLzFh/z/1a/bKb/lp7IvBcTovmUL94R3Djnv4/a/ZMSncU9Rz/hhaX5+iGtP1/vdsnJQZ7DNg/gjaXy+UcDx5xbzWeJ6qIoIeSktLKQCmI36KlUUJ8EJBAUeOHCEhISHYfiGV08+HEydOhGm71q1bF4/Hw5kzZ3SFu/9T/E/EzCoD7XS7Mt7RC91nxYoVHDlyJLjs3bu3wv7eEi/mhLiwxVOiNpieknKqJMTi9ZTz7p1Z4PFQJSGW+IiLMbiUlajPuazER0KCRNUEQ3DZsb6Aa5N/Zq0zj7Tk/Vyd/BurnQUMSz7Id+uLqZYQQ7WEGGok+KiWEEP1sEWiZkI5W9Z76JJchOz00jm5lK/Xl5OQIAWXWvE+EhIIX6qLxeOBOx+FkRFEysePhIRq4UuJxktyNh8SqmqWeEiI87+aNOvxUOJRj5GrqV5T4oGEKpBgrmAx+l9j/ccwgacUXtmuHuu2T2HFPtF3/V5IvhOcGyD5Kti4Cb5bX8ydyV+xz/kza5OnUrz+e6TqCVA1AfqNUw/WdjzEJYglxv/aUtOnxXj1dkMCmHReA4s5AYwRXs0J4NEIIeedhSoJEJsgXi/XHN/aRb1eViKOU9W/DNb0b6npXxlDBrBrB3S7BN/mzeLzKtWcZ0kp5fE1kRKqE5NQHTxe8u6cAR4vMQnVgosvoQYxCdUwpbRR7Z7z75X8nHwtOc617Em2kb8+C0NCVaSEBIwJVXWWeIwJ8ZSXqMsnlZd4iE2I9y9VgkvzcVfoXlbT1A58fedHlHu8lHvK2XzncpJHtlP1aT8+BVOC2b8Io1LZ0EY1oPoFLNX8+yUkJKiWP9OY6Z1/4P77V4Vs/ueNWWBGpq0PlZubS40aNSLuZzAYOHLkiKrt2LFjGAyGCHuIL7dRo0bBRTuzaz5ILVbaMUM9WwwgJb25ar1bRjN2ykeZalnOVsch7rB8yg45MnlFiT7p6jpg/TPCxXrzsyPPNt+emUO+u3I+9dxsteHM8a8HZmV6kPxGRF4Jlvbg+AQadYfpt8H+NTBtHOxfBc6XwBSnM4AX4quomybPA3mLokFjqPSQrvEGv2BTr2d0IXz2pZ2VaSDvBctLsPWP8G32j0DeDdlF6vacHMjLLle1lWfn4fX4f3dxZpjghCkuuNoJBlNwdhmEwQz9nHCNC/r7+wCcc8Mau3jVQyU+JzxA53R129LJsNM/9Sxww6Jb4dZFMNcFdzuh9/Xq/p0V7qM8N8y8Cdr1gNe3w1NOGKzpXxFedMCDz6qayt3C1W+4ZpSq3TiwL0Xj76LcnU2JvJqzlks558jklKULxfLasKGr3zC8wkN7s/PV6+jfG+qlq41Ug4zLdft5ikpIaKeecTRO68iHDR/D5djOu5ZHeMfyGL86drC40bN0md6bca57GeFMx2C6eCeZ8SKWvxr16tULq8xw6tQpjEajbumiPwP/88asT58+xMTE8N577wXbCgoKOHHiRMSyIAANGjTgm2++UbVt2bIlzEBdCNpe24p05wimuW7mOucwjCb9H3+s2cAtzr486RrFbc7eGE0xFGarDYp2PQADasMRZ47hYWc7Fru68LizFbEm9VONES8D0mtGPOcftpbQ03KUdXKR7naj4ngj09V+7DE2bW/Ffhr7lp2jXm/XAlo0hRcfFq+2IaB6IFPceAt1Ti07n8rfnAFzLDjvAtdMcE6CGlXAeSu4/gXOCVDpe4XiurLPVdw1uxjSNVrEttEwPN2saquWMSR0rl4JUmyQaIXWNrGuhSRBMxskWKG5Taz/JsNiC/zigLcs8Kusun4VtEZb2yfWDL0mqdvys4VBu8sC296HNyfAod3QwwaGKjByeqjvTQ1hmwxbZbjGApuWwd5tcHtXiI0DUxV4xgnvaySwnnfAyv0wbhp8uR9eXgpXXwfj7lT3SxP167zGasQuXkTczu3ETr2T/OTOlH3wMTl1OlCyVk0iKM/OQ4uYKmbqOp7R+YAEamXoK/lrjVqMOY6Ozun0cb1GinMaMabweM8fchafJN1N3t7jqvaygsjlgBLb1aGm1UJrW/v/aLZiBGIvYPm/MGY9e/ZkzZo1qrbVq1fTtWvXvyReBv8jxuzEiRMsXbqUpUuXAmIWtnTpUrZu3UpMTEyQyfjAAw/wySef0L59e2JiYnjhhReCY1itVnr27Blcf+SRRzh9+jRDhw7l888/Z+jQoZw5c4bHH3887PiVRavhVnYv+5XVD23GOqBJxB+gJEmk2JpR25pAV1tTJEmie3oTVZ8eGY0pcJcy376DggpmTpIk0WlATd6bcZjOAxJ0j2kySzzrbMxyV0ueW9qA55c2YOpM9dOPdragRLa7nLvsRRQX+Zi7yMTQ1BheXmREz+tgiGBg0tVFgsm4Gtw5YL9PvAah2d+dC2u+Cx8vo7+m4TyzKUmCAa1hRiYMaAUxMWDrAtbaYEtRGFLNOO48sC+D306C/WNwF4f6pbfVv9bgOXYAswTOKeB6B5yzId4gvo97nZ2Y5JpIinMaknZKGsnIlLhhox0K3eF9S7I1fTXrgX7Fbsi0Q5FbLMv875V9JAlSZ6v375YBRZoxC7NDrz9/rd5WkC0MoBbHj8DTN0LXAdC8HTzvhEwXzHLC4LHQtAU8+KJ4HeY31CYzvLYEvt6D9Ma7BH54kiRhSEslJjmZmLZqL4jhklaq9fiM8FlYuRRL9bHDaOh8Hqsrk0ZLn6HR0mdp41pGU+fT4d9LBEiSRD1bL6pa69HA1lP3P1iarV+VvcFVkX9E1ozOlTr++fB/MTMrKChg165d7Nq1CxDU+127dnH48GEAHnroIRVJb+LEiRw6dIh77rmHffv2sWjRIt5++23uu+++i7zK8+N/gpo/d+5cpk2bFtZutVpxuVyUl5fTv39/Nm/eTHl5OTVq1OCdd95R1U2qWbMmSUlJuFwh//y9997Lq6++SmlpKXFxcUydOpVZs2ZV+rwCKQC37JzA3iW7+eYF9V33hsyr6ZDaFCNeitznkKduZtS8y0lIjFWRMwBifB62f3SE5ik1OJx1FkOsxLxRITbm9Myu9EitrQg+i/2/l0/yVNqeYL+nMlvTJ7VGsE84eUS8lhWX0iP+t+B+u4qbEG8uD+4X6LdOLubmNH0+1JLlBoaPjMHg8WLwlON2w/T74MWZUMcfNw64GX1l8NEKSGkPWT9CrBFGTQyNlTkPUvujupHL6yHt/lCfW4ZDRyvUrQEDOsPdr8G8WyGxOpGNmZ90Iu+AtLmK490JqR0UfXRcjPIeSHs3/Loz0yHVCj4ffLQHUurCjpPgK4dTpYAP6tYUxlKqBtQA6oilLBl+q9GUvbRjJ53YRWf20o6DJ5tR7qoKR4ETwBmgADjnXw7L8FVa6CT6ZkJyquKsimFxfGh1YjH467YF706/y7BcMYYS9ky4JFVBEvHBDx9B0xQ4lgUpo8F3DiYpjrGoGPZ+CbN1xlxeLD6ga+PDtwUw4z349ku4bx5YEtXnagSM/luPUcEoynbDk/difO45pFqJxOSfpuyBhzA//ShFrS4NDl0zfz/lX6zBmNIez6ZvKP1qK4nzHiE2UZAmlP+jSP8R7bYydx6Hpr5K83l3YE6sWuH+2v+3r7iY5fEhsooeOt53JXW7NaJ2l0a4sw5jHd2BWKk87Lw8eUW8WGMWubm5KoKGFoH708tAlYi9wlEMTIHzjq/Ehg0buPLKK8Pab7rpJhYvXsy4ceM4ePAgGzZsCG7buHEj06ZNY8+ePTRo0IAHHniAiRMnho3xZ+F/gs149913c/fdd0fcHhMTo/qQ9JCTkxPWNmfOHObMmfOfnRxQq3lNarcL9/MW+/1Qu+UDvJO2CoDtDhe3Zl5F51S1O7Mwu5QfVhyl/YAkLhlQhzkjtmi2q4PMIP4oBdnqx/f87AATsWIfnMksMcdZh7YpJn7JKqaKyQtIYftp42RKzH7WS88rJGonwKefwZgM0b7ECZ+8B2mB0IlHPGDb/JkQtarBiAnqsVReII9OG9CrPYwbCvImSBJl13Csg8xHIbVb+P7KS9E+GAfDIXofk1d/H+1Ykhdsfg6BtZaigxFBH4vgNg2g2F3MzqmvYJz3POWBmJlyBrVqKvSYJ+hlP85U71yaLWZoO6bCZfMgvpaIn9VNgTNZoVibkdDrOZ2ZUgCFmm2SBJ1sYr/aVv+1mGGiE+o1hyXToKQQ8jT73TgT6iZDrH/a/vBSyFoDq94KP+YMu3j9wgEvZcKVqertHkkYNI9RGLQvP4Wbx4hNH31IzNR7KJsnWIRFzmXE3n0npltvoHzXT0hmMybbcErk1eRNeBCAYw4ZS+Z8qqWqb7oeDCp3ut42t7yFX9KE1+a0Yx2XZD5OUqrw9JS58/l56lu0mzeeuER9hqHBHEtP5yQSOzfit/lf0WpSX355aQ2/zN8U7FPrkno0uqoVW6Zm0mfeiD+NCGHmwozZxcxe+vXrVyGBbvHixWFtffv2JSsr6yKOdnH4n3Az/h3QPr1NWFuAAFKUrfaLa9d3yUeC5I+7LDJ3WD7FtVUdxO88KFH3uOcjgOS6PTxpP0yuO3Q3NeBBkiQG26rRxBrLEFvViH+cq9Mju1qytkNyHQ+ffepD+6ygjZEFIH8BlhTYukvdnqGk5PuRrtG5zegPeBWGyI8jp2DMLEh7GsbMBrdiIukuAPtCGKjx5mTo1WPUHr+DTh8go51+uwpewokbCnwnn2SOZS5/ODZzyNJL3KgDfXfJMMcCPztEHOwDC5zRJJIaq8IyC/zuENs/uxIaDIAaVrDaNAFIP1qmh7cF4Fot3I0VPQNJEhjiYEZX+HUz3JEEJs3Ma8gU6OWP9UkS9BkD7XpVMKgfORUY2gC+3qBaLd+lvhHGtGmNwdqM2GuvDv6efdm56n10YmcBRCJ4eNx5/DHzQ3VbtviRnZa3sd5i57hjI+ss4zgpf+cfSz0PkCSJxrbuJLSoS9cXx4jX2deo+hirxgUJIG9ZnuR3eQ9/Bv4XCSD/DUSNWSVhNBsZvfRqhr/cn+EvX0nG0hABpHN6C1XfLhlqNmNRBLKHErc2XM938kkA8t1lzLHvId9dRpw5hkedbXQJIJvlHIZY9rDKkc1Ay89slnPCxtUSSlTXhBezGV5cZGZwqpG5b8cx/o7wm+SLs32Ua0JuVatqOgVmO+p7CzPvFbGkwmIYc79Y3Lmiv9kEzqfAtRScM0Jsx3SNN2PyG7BsC8jfw7JvwDIB5G0gbwfLbeDYAo3ugelDwfWMIH6YAjMWUN/AveAuAvsHUFQKzjGwfwpM6wH77wTnKDAZwvcJLtrx/OvufHFt198EOW4vBdqZdm5O6H1xBTf2jjPhcieUaVy/JzeCwwJyP8Fm1CN5GM2Q5oTbXXDNUhj+NjTw0zx//ACessAeDXEk1w3/totXCI+bnSsUjMa5LrjHGZqRKa6dvhoj+s4eeMyhbhuUoT6uFjlu2KnOgZCGquNgxtFpqnWv14Ap/WpVWyB2FslwabflyJvJsoykYKs6DadORl9xutnq76FMs66HEnchW+xv4ykqpa/zFmyux+nvnICnQH0fKMkuDr4vdhfxmX05xW59olZFuBDyR2D5J+KfaqT/dEiSRPsxbXX95qVFZTTvXZ9RL/Ug+/dcv5ELGZGu6U1ZPP78Ei4F2WV8K5/iubRdAGxwnOTxzEvoYxOzscbWOJVxOnVE/efIq4CiD5DjLufZqTnMmFeVmoniOWb1ijLumSDcpV/K8PZSI+8sUN9xvvtWLEq8tACuutwfz1IgfQSMV8TBptjhy42Q1DvUtmwN9E2B5c+BzU/0qFUFbnwG5t0p3jsfgZRkeHE5zP88/Fr0XITt6oK1Dlj1mL+BFAJFnMyxC967BlpY4MVBok+LGoQbMjTrBkEUmboC5tlg82+Q9ori+ixHuWepJoVipE3EyzxAp3RYOl7nJIHWU8BTBDvu0t9+fKOYzQ3OhJYat50kQQu/69C9G1bqzNSKs0NuyZ9keDtNtH/vgImZgrb/juLcel4n0gmMQD2/OzKwfwBxZnjYCW1S4PcsaNYWWrQVzMZ2KfBLFsTpGEEjwtW4PhPuUNPwAaSxNxBTuzaGlPb4fvgRTCa8HgmDkkprNpHgnE9cShs8WXv8T0SRyU5aaOn5TWfeTJXk+kh+xmKd9N7sGx+q+1Y/Q03T17owj8o72Zwm9AsPOL7lyszbSbDWJsFaG19xMRsnfBDs2zJDxABd8j7ktCUA7HX8yMgl4Z9FRbhQA/VPNWbRmdl/iD3y7zyetJjfNx9nTtdPMMTFhLn0Ys0GJjp7Mcs1jCvvaB5hJLgio37YE702ZhbAZjmHuZOPqtoGZ0QO5q6Vi+luOUam4xydLGdZLQtXqDZmVljo4+2lRmbNjWHMdZF9+tu+B0sbkL9Ut5tN4JwHrrWh3DI9z8/GLLAMBnkzyBvAMhIca8EyClZsBVsfsNaH2eP0j5/RMzy3LKM7uAthzJsw5nXxXjsTUDwMA2BfLvLJdBHh2UDeD5YXhDG0PALr9oX3OVfo4RpnGle6XibJ+RIY4hXn4p9B2V3QdylcsRSGu8SM7Ngq+MQChz8IH1SJkuzIrEgIj5EFcKl/hlTkhrWaOF1RNpQWQcve8Oh2mKQzE1NCyY7sY4MGVrjC7wLNzoYtK6B6LRgQwS0agDYuN+1h6NKN8jsnIfXpS0xyMoa0VF1XuS87l5IVa4ipVQOzbVhYn4A70OvO5Q/7Y3jcuapttdLV9Px6U0aTZOsTHMdbVEKN3u3osX02nZz3qmj5pe4CdtjnU6rwe2tZjaWKRESDOZZBzhsZ63qIIc7rg7ll5zQ/ynM558kJ0SDqZhSIGrP/EK51aoMiP/A9hW51zEySJLrZmlDHWo3r5nRSbZvs6MTLriu519mJWFMMV6TXU23vm1EHCHcX7linfqLsObQacQoXpDbgraXmHz8i1rUxs2uvM5I2xsjtdxl4bX7Y5TJaMxlQxc4CRJChYG3izy3zQvqQ8HECWLcjPEaWXUAofywO7ktTb2/bAApLNLllt8Oq3WC5G5btgGU7wfIAyD8pdvRC+qWEQXUv0bImle0B4ormXtO+HmHofV0D2tnaUtVaj6raJLvADKqqFZLHQLMxUN0KTWxQkhM+mB5aZIS3KY1bW82sbNIeyHACJuFqfNwCh3TidPclwf7N8HRXMMaF8uAqk/MHIol6aj8YaYEvHTDYApv8rs2zbnjELl6VGK4515eehR3fw6ef4GmZTNkKzRMT4PUYKF3xJWctl1Li+IRTli6ck0Vek9bFWCCv51dLf/Icn/OzZSB5ckiyzlt0jmq9O3LJ9tdp5Xw8OCPzYuCMvJWvk64nd/NetnW9j5g4Y9DInZC/5wvLbRx1fM2nljv4QxbxvSaaJ6zkjFAioiRJWG2XUsOaRKMBLVh741LOuYtomd5JtU+ba8+TE6LB/2Ke2X8DUWNWCXx26+cUuYt1t9VrryZunPollwctDn6QDwfblIYo1mzgLudlvOS6iinOrlwxtiH1rFW53FYfSZKIM8fwgLM9b7h68LCzXTBGlucu4zn7fvLcHvLcHvZ+q34C7DdK5KDpsRwNeBmWrg7kPzG5gC/lUqqavbzhjOdbVzxvOc2YTAT1GM1meOsd9Viva8ihGanoz2DUniDuu1GnD9ChOaRrcsoy+oXeSxJc0ki9fd8xSLodVmT5c8nqgK0r5OglXxcRvBG7i+C2j2GhNieuvYh52Vco8syU0BJHWqrXh3eEtppz3LlK6IaGxW7Ol+TcuAISR29HSBXEZwrfV4lA/GySC65xQrW6sG+FcDPqxewGTIcSTTwoMLsrcMPLY2DuGBHbinT+W/xJ1D9o9E3zsmGDDAMssNIBfS3wlRzaz2QWCdQb98ENt4eP7483ejzqz1JL/iiY+TrlqqRGAS0pJOBazJU38VPSCAo2/8ierrfjLSnFdePzlPkVSCqKl5WFzcDEuqeohNq9WzJ0+8P0dd5CjE62/gF5N29ZnuQXx04WWp7m4Je/MsKZzq2uKYx02jBEEGOIhOjMTCBqzCqBfc6fmWV5hZ/l/WHbOt+gL2kVifQhSRKX2RpR11qVHraGKreIAS+SJHGFrQ71rfH0ttXGKJXzjXyWUZbtrHWcYaQli5GWLPZ9p75zD70hsrQXiPvF9ZPUBN7cbFEG4mpbLMnWGEbZ1LppkiSRniHheBf27YQli6FGDVi6CFzfgnMh4YnVOjdrSYJLrPrndUN/+FKTNL3qe/VY6RHIctq4WbzOvzRD6Lsi/wiWJ8GxEyaugOm9wDUVnKNhlUvIVjl2g+UVkH+p4Ho8YDaCcyS47oLpfaDR/bBPPUGnMKeCqYxH533gNcYMPZwwxAWXL4Wefhdkbyc0GatWBalobEmCNn6lEUMczEqCHxzwrAVidXLDSs9BF81sr2sGZMkw0QLfLYNty+AWC3wn6xvlrHX65zQwI5zNqHQtemNEAnVTKzwangcqjbpWd9i4MWryh2frTo5ZuodJW1VLH6xar5EhxEO18bLf7M9zxrGWby2jOSt/Q+30PqrtAVIIQIN0taRVk4zLgiogpzfv54uuzxITZ9B1jR5dp76PHP3qd1rb2lPLmkgb2yUXTNmvchHLPxH/VCP9l6BYR98otoqRG52DqN8ugZntPwq2d81I/tOOGyluBjBpZn0aJRuJN/tQJz6pZ4SSJPHw7ATenx+aeozMEMHybHc5j089x/PzDNRK1MhleX1ce41Q/rAmQ4wXxvhJZlbNbCQMiht1+iAY/0Ro0573YM8BMWvL0UwIcjQxNnMcOKdBu0bQXlG/NcOvZubOhakfwmVq6Uzu6BVSE9fGytrVBmsNsSzWpMIEv+YIH7sk+fPPzIJ0ooe+GXX4UdngMYqE4LemQv95QKL++JIEjfw6YtWs4HVD1lToPi9kwLT5ZVpChraPNv8s7yQktgC3K9RWv4OQuZrghOQU+CMLjCb92JuyTXnsJu3V/SY8Dc1aCfLHVenwtIJYMlTHTQriqWvBe3D6tPix1anrf2LSmf6bzVT7cCG+QwcpfOD5YHN5dh5edw5npj5L0rwHia0VTz3nLKqmtOJc1s9+5Y9yaqYP4Mj4p3VPw5NdQIw5jnbOh0lIaUZR1n5/vEy452PMsXR1TqFmSjL5Wb/hM5krjJcF4MVAYnv1jyaxQ4QfUSURcDNeSP9/Iv4nFED+VxHIsA/gkeJ7MJvFDUWrAhDj8/DDRwdoklKLo1ln6TK6EZIkYVSUpDCo3qsVBLTbAu2F7nO8eudvbPjwjO45bi5uh8kcozuuVlkgxlfGlx8V0z7FyL6sUoaPjmXtihLGp4X+dO9lxjJyhLLki181xBPSY5S0swkv4TMMTZvPBx99CSktIesXGN1HxMqmvgTP3wyNFPe24k+EAQuoe6jG2CJYjlm/wegUWLFTzSRUovgFITcFUHwO4h9VbHsUzH6/RHExxL+g2DZVJKIGoTQ6gTuBCTBDcZx63AAe/ORSjGnD2EFX9tKOQwt/VjP2rs6EGr1hy1RoPQP2zoD28yBOoZRxTIZv0kL7KFVBlEoa2ldtm68YZlag1AEwqyik+Kzcv7wYbtPs+24xxJvDj+MpgjRFzsaqIqjmH9Pgg40fCcbjr1kwcDTESqF9C87Cv+6GJ2dDkvjPxfh/cIbgqwejoi3QHlNayJn4kIek5tvPknPzw8H1+pkvUS31SiS3mxNTZ9Ng3jSMiTWI8XnI/2gt8SmtKN72E7/fENJxvLz4M2LNBsrc+fw2dT4tZ6Tz24wPg4nTlVEBueaPWVRvUC1MQaS8qJi3qj4U7Hdn0QzMVQwXrQCyhZASfmVQAPTiwhRA/g74pxrpPxW37JxA7v4zfsq9Pu1XkiQ62ZpjwEttawJSpSPmauS7y3h76l4mzbOye3OuSsrq7gXJ1EiMIQYvrbtUxZVVoCJ9VASDn50x3CbmKom1jEy9sZAul6k9zflny6mU9zkSUUKnzZ0LU2fCjFthxhswbxqs+BrS/P9nxxqYPgZuHwpZLjDFEszdmvomzJsAiVX8ihw9xPjWJNFH+/A7qTfc0x+yDvlzzfz5YWYjODMgpQFkHYXgx6ZwG6bUhazj/jyzCnLKCIzr8c8ab4UDRfDA+6FuhTkeAo9BXgzhjL0j6+DTNPH+gD8n67ADLsuE+qniOKWafUqzL3xWZkTEz3pMh20vEIbhMyExWczKtGMVuOHDqTD+bfD6Zx216oYYjtr+piohiv7+LDHLCkCS4Cr/jLOZwufsATbKcKf/s5Ad8LYTBqtdiHrwegxIeWcomPYY1Ra9gLlPF4pe/0BlyAA82YUUyOs5niYk8/Icn9Mk8wVqpV5BLZtIaoyrWYXqvTvS7KU7KPv9DyRTLGfkLexJewqAk44NABx3bCQl8wEapGrK3CDYim2mD+HnF4Qa0PKG91O3b0sGLr8ZU2LIyBurxDLEeT21UxpyNusIRrOY8RW7i1g3dRV9/9U3bOyKEKXmC0RjZpVAreY1ucTWJsyXXeQ+x4f2NRS59am0kSR0tAg8kX0rn8JuWc8Gx0nGWL5h1zr1zcxkhivHWOg/JpGGVhMDbDV1/evK4+olTa+WS+hgyWG5o5RHJqvP/dp0MZ7b7eOW8UKPUSkuLFVko3W2yWvA0g8cX0CLa8CxSlDy1+1Q92tSB6wNwHa5uO/J34LlBnBsBMtN0G+GWvkjgPQU9fqca4T0lK2TomgoftdgB+FWtF0STi4c0BRmfA0DmmiKjSrgPgf2NeJVNe6lMHmoum/vDA3FUcvYS4wgP6I0YPU1+zSK4Jo754Yv7eK1wA0rx8CnY4RkFghGYu0IsiY9psClmhicB6FScrcFtjngnZuhZhMYNBm6jQmP1+lR9Pv6x9SLD2qRqzHa7sgqHkoSSNmnq8ip04HS9zMpmDAdz+5fMbZrEbZP1YyhEUkgIBKndyalkr/5R37qege+uDgkSQojgARwdl3IgVzqLuB7+0JK3QVIkkQNTQmYkxv347A8yCE5tI8kSbSwdaSG1UIrWwckScIl7+MVyyz2On5kQXIEV0MERAkgAlFjVkkUuYtZbv8syGrcK//Gk5a32On4hccs7/CTfPA/PoY2x6xpe7XMRv+MUDawnqHUMhlz3F7us7vJcatnkwWa5Orxk4xsd8WxyBmLyQQrV5TTpIGPDz+Ahk1gxUr1cdzZYJ8sXt05YJ+iUcaHEI1dQ7sPoL0mpDj5VZAVFXu095GNe4XahxwgiwSo+7HnKfWiZ5g0bfI+Qfxw7APLfJB/IwyyCyxvg+NXsLwO/ZaqmY9mya9msgVecyYQa9L8tQxV4EEn/MsFNie0jFDzq57CYKnIIE6I0WEwHpJFEvV+hygN85YF9i+DX5bBaxb42U+Lb6cxjJP3wFiniItpxwTIVtcCDIudVcTKPB+0xxqmOberhT5jQM/Sq2ExBqBlM3qzC5A0xfESpt2IZIqLTALBGEYE8fjXtQSQAKp1EMHZP+SdfGG5jcOOLUF6vpaaH0CJTvwM4Jy7iFV2J3lHcnW3VwZRar5A1JhVAh8MczLL8go/OvbynGU++2RXGBlEq8eohwJ3CQvt3wdLvmgNkjbH7McNOdy7qCULtnegQ+/qnCvUn+npzb6+kgvpaTnKCkcR3S3HWCOfC/bT5pY9OcdEsjWGVJtgX+WdURu/nJxQvEz+QiRLO5aLYpyWjuDIFHqM8lrCXIzpg9CF/SqYpM1ZCxgwD2jqIYb6KGPsgbw2ZamXSO7BSG3AukOa9SOhvu5zYF8NR7TG9ahgQMq7xbok+RO9G8Nwmyl8xixJIqG4lr+OmbGKKMA5eD9Yp0G//ZDiN1jKmU49myCCNNDMdAKv2lIwWgTJH2ZB0Z/iN6Z12kI7zYys0A0OO3znEAU7lTBVFbT8BXYx+wvgfKkGFfULwGCGuU5Y569xVomKx16PgVibOsfClHE15ZrieHEdWiJJEpLZRD3nLKyuTBo6n1eVf6k+UC3kmeSvP+QzV6Gd82G6/6SeKTW4QRg5PXq+wRxLL+dERux+QrWteUa4W/J3eQ8LLU/zs2MX6yevDNteWUTlrASixqwSOLpFzbsuyS6iY7qakp+SEYF77sdO+Sh3WWS2OA5zh+VTtsvHw/rEmWOYsqgNLbsLjaiNH5xmzoT93NH1J37anE9q0k6+lish2Eo4A/L4ES/T7Hkc+s3DA7cVMmdRVba6qgVzyyCUX3atTT3WGAUzWqu9qMSRE5oGj18R5DnYvxymZYhJw6KH4NYX4OEb1N2VSkHmOHDeB7tna/r04MJnBee54bZPUm/q4J8Ay7/7Z2P7YfIW/aGzi89z7Ejn4fWzFqu3gA4vQrUWIYOl7Rs0XG7YahevATSpIC8NoI1/pidJwnglWOESxXGK3PC+HXY44BELbHfAu/bwcX7ZJAp3bnEIev52OfK1VYRIDM4hfmp+oMaZzmzM69HMKfxsxhq/fE2Ccz6YTMRnqGNtpsF9OGV/kPLsPKrbBhFnbUyCbWDwYSNX3sTuRiFB4AbTxwQTpyVJouaAThx8/iPaLJrCFa4FdHLei8EsDKEePV+SJJrYulGjXQN6O29jlOtJ+jpv0a0kXaKh2Haa1I1bXVMYvnhkWN+KYDZAFWPlF/OFpbH9bfBPnXH+peiY0RqjycD1ziE0TKnNiayTEatOBxBeaTq85Mt3K07z8oSfL2icSBiaHs/D488G15+cLFwnnzjEDHK5o5R3MuMZaQv/CZjN8O77El06+Pghy/+gXC7iZempMH6q/jEnPwWN60CqIn4tSWC7Srx/8W5Rw2zCc2L9/bUwPR1uH6IgfgT2KxfxM1+ZKH4ZYDCaYv2EkiUwLx0SzUK2auqHMG80JJrQJ6do2tzFMHUNzLsSamgmAjX8H4mWzj+pHUy6BNovC7VlBNjoXhHqmToV7nurHBIDzaJ6XIWIZAiUBAsls/GQI8RsNJhFEnVSCrh3AD4oPSUeU6vU1S8VExh7vwzv+8fc6aj4HBt0VK8XKMgo+W5YMFEc886FUEshJJDnhlemwrR5kKho1yWuSARrnPlR7jEEWY1aBIp3GoxeDK0ai0aziZrOVzCntKXw9SX80VD8GAscn1E/8yVqpoZch14MYS7GKu2aBg3dWfkb9qXNAODU+xvplPkQ9W0hA6al58eYYvEiBfNFm9q6YsBDgrU2ko73pGX6pawbH/ox9XykN9UbJFC9tpmV41boXrMejEYwXkBqmtFHRKm2vzOixuwCMGnPeM7uOY3RJNxxHW0i2FzXWk31Y9VT4eiZ3lCt35rRMKxPmNK6DgZk1FIcJ/wXGXBdmswSLzmT6JBi5J0Xc1X5ZQEEdBm15ytJErZU4WpsqS6QjdkskqVTOsCOXbDhG1igYPGF6TBqjIg2htauiSB+WOto+vvfS5KfwYhgMCqLcDq2wkOD4Tm/2pHje8i8GVLbqsfQQt4LaR/599kNd3VSby/0fw3pVhi/IdQ+p7tgOjqvgpR6kJUTYkWqzuuTszySeRxJ6UZVut4iud/0UgACN/2IzEZJyGAZEQnSyn2NaFMP1ahIvT+AbtdDykjoOALeUxSfvNw/4/tOhllpofavl8ETmdAzFb6V4Qn/tjUOmJUJfbQ1zbjgu5DHYwhS9APweg0YDMKImG3DMOIlTkMG0SsPo801S1KUONdTAPESotBLkkRD/4+zhjVJ12BVBIPZSJfpvdnxwmYAFjR8kVGZGSRf2eQ8e6oRaxBZDpXu/w9Nxoq6GSuBGzaMpUnvRlSrW5X2ttYXVVQv1mxgkrMns12DmeLsSqwphgJ3Ka/Yd5Lvj6FpY2Zv7knhkaWteWxpS95zdWaGs4UuFT/X7eUx+x/kutVJ0kNsVWliNfLwbP1cktSMcO957ilPkMWoB0kC29UiNjTmapjziHp7xjD/mwizDY2uKxn6MfZwRDCGp7S6joGQSQUpA9rc9+Ya8ZTrWiFcpAZw9gfXGPFqMviv3+pnRbb2e+s84WokFSW6g9iHQjdst0OpTp0x5XqpG46vVm/XYzZeaPyqg8ZFOdYB9+1Wt934FnQeA3FVhPDwLBdMdoLkn87qJVXnB2SwNNsqU9MMRIK5BpFIIBXBnD5CtV4tY0jYLFkym0h2PsUlrg9p4ZxBuSKdICldTZGvl9H7gs9BD+fcRayxf0hJdjGJ7eqot2ndAZWA0Xjhyz8RUWNWCTj6LeHw5qPMSnqVfbLrosaQJInutsbUtVajh60hO1acYIJlNZsdfzDOso7t8vGgLuPbru487GxHk7ZV6DumNv3GJNHYGks/W2KYId0o59Hf8iufO/Loa/mdr+TQXTXwBFlcVE733kZWfF+DW6eZ2bw/gTec8WFxdi2L8dPPRHveGbhxomAvam+Yeir5ERHIy5oBrvfA+TgUngP7LJFTFoSee9APLVnsIQ0lPkPjDdMbY2Az9fo9CinB6Z3B5H9ylSSwNQdrgngNfvQ6hjK9q3q9T0ad8E7K8zgkC3X8ow5YbYGTsn7/EzJ8boE//Cr6nRdEZjbqHSeAYjd8ahcuwWBbETTtDXdsF8zG1kPgq+fhukXwqAuuXwTv3SqMbmE2ZK0QFa8vU8TcLtOJ2V3hN7T9NNsGRKhpluuG++wh3cccN0wbB2cqZvh5TuVROPY28jMmUu4WhlJVNNNsIsn5Eo1dn1PHOUdF+ghAkiRq2a7EZG1Ioq2f6v8VUADp7nqb9s4HVIr5F4uD8k+8Y3mMXxw7ecvyJLHx6nNqG/RbVx6xBog1XsASjZlFAfqSVhcDbcysILssqMtoxEsDa5VKuS3yNTT7t2fm0KW3ORiekB2FTLeLP/rIbrm8nVmN5BZGWrSQVG5Ko9cbLp93VtDyR/tZ5I5l8N7L8OUGmDcDEquFVPIBrA3Rv5EG4lR5MHWeqFmWWBV2H4AkP9nEsQ4yH4bUyyq4WI+g4k8fDC/4XYstHoO7+sARN6S2VyRKEzoXdxFM/QLmDYbNB0IuRoChzeCLg6H1drUiGK3AdSndfwqXoTnWX4PtKlh7ulo4NR/NfloWYll2+DEC7UoYzH6iCBUnTCvf/yKHErT3OMCWKd4v87ct6Ar9HoIlghJPlgP63g0b54r17xTxtG0OmJIJ3f3uwlgzTFsK+aKwLBZFUnWMGR5TJFHr1TTbLMM0/3l85oCJD8JCvzTVJ0tEAvXwYcFdvB4jBqMHz2dfcC7jpmB7zkefkZD5JqbUEH1WkiSq2oZgwEustYlKyEDpLvRiDHO1ezFgkLzUtonZWDVrHdX/Ubn/haDgSI5qvaywlGHO66ifUo/TWUcxmIx4S88fblDBwIVNSy7csfS3QHRmdoFwrT4YMUn6QtAzXR0zC0uy9aOiuBjA4PRqqm0/bC2hl+UQ6+Qi1srFQUMWQG62L+Kf8Jox6l/5mGsFLV8J+xQ/Lb+jSIiuEIr7g7wJLMPA8aWoXSZvCWdGqkIUenlh+El56rxUXt0kKPITPoQVe9Tb5N1gmQmOH0UNsnUH1dsHavQcBzUA+1f+Wmg65+IuhDHrYIwyedqroOY3hRG2uOATfpk7n2z7feFlT7QsxNpKPS83/Oh3P9bR9Gt8ge5FCNdmPJcd3lZwSr0eMGR6cB8JHUOSoNcYGDIZRkyG3oqkakkSydMNrdBPJ4kawpVRTp9Wr+fmBPPNlPDlhM/alHlnHgyUu3M4Y7+fUnd+WN+/GnqVrg/KP/HN5I9Vba2v60grWwdqXqTIMBDNmvYjaswqgasXD2f4ApFk+dMHv/C0ZSF7NZm1he5zOOxfhdUyU0KZZxZrjuGORR3pllqHSYvaR36SPw9MZonnnQ2ZOlNdXjkvuzyshhkExIVDUD6RVjV6efd9iS2boNflUFgEtmu0I4SgMkZefwL1Q+A+q9M3R7OeD5qQBKt3apKvI9yk07vptAfGLQz1g3BGYvva6vV7NsL0FHDdANM7QUOHoOJbHCAfUp+DfBgsH8CyA7Dsd5E8Lf+qOVdF/1/kX1lvsVPi+ESUPdkmh2ZmBn9C9JUu6KBwG56SYaMFjjngKwuc/lLkn13pgm5OKL9A96IHaK0xiK0zwpOoB+tIXUWCYzLsULhF9c6hMucFMFhzHpddqV6PD+lCek7n4rnjNnzZ2ZAa/sOMGdAv+P6cvIZjlu4UOj7lqKUnhfJXahek3im58/jN/kywBMyfDa1Xp/2kHrqU/QuG+SKWfyCixqwSaDOqNUaz+ken/GHulg/wiOVdtjtcEWuZZcl/BPPMbrN8wdJH9rFgwo98L59i/oTdfLdC80RaAXLdHp60HybX7UGSJAbaErhuck1Vn2EZVcNqmL3iqFphPqokScTFQa8+sOUbqN8crr4W3n5ZlHxxvKzun3E1IRWNdWDpCY7PhHyVvN7fyT+rCiN+9PfHzx6EBZNE2webhXSVrKwZqXUZFsJt78IiO7ieAIemTlqGpvhmuiYEYW8Dkzqp29pZBKGjXU11e3YRuEvAvkkcVy82n11I2A088J3nHdHcFJWEiEBCtMkKdRWzFq370ZMDdWyikGddRaxKi4oMisEMw5xwiwuudgq6vlGTRG2qAekaer7tdeiQCmPfhj53qLflZYvk6VcVSdTnmyHqbTeYYZYTPnfBHCeUaR4G88SH7lv1Gb62TfAtW0pJcgs88griXnsJqXlISia3SVdKZEGUKddM+/WYjErkyJvJsozkrGMN2y2jcMsisfCcu5B99hcoc+dT7C7ihzEvsHPM7OBsT2kgtbOxEnchm+2LKfFP85trtNeumDNCNRPTm81VCjEIV2Nll3/oXf8fOuH8c/HZrZ8z9EX1E2PHjFDStFb9Q6+WmTY/7FvnH6r1guwy1SxJzxVY6D7HI9f8zq6Nwh+3ypHNnMxG9EutjsksMcdZh7YpJn7JKqaKSez/irMmHVNi2J3lYeToUH0lA16y3T4enVrKrBdjSEyUcLt9vDRbzdvd9I1YMhfD2GsgLg6aN4ZpM8TMzSzyu8Mo+dqZmDkOFt0v3IuplwtKuySBrTcs1rgrtczAAOTtkPaaeO/4FjJvg7GdIS7GT5X/AwpL4cYPRZ+Fw6FWFVGzLKU2ZJ0QosKzr4T5u0LjDmogXrVU/KpGMRMDcPwOS68IP6eMCEWBt8mn+XLyT+rG7hkQ8OZFYi/WSYdfFDkctSO4FY06r2jeB+CVoJU/OFnTKmImXkQSdYDSHwO0HytqnzVJgW2vwzJ/ocyfZGihYfJtWgRv+8/zawfcnxmKo52Pbq/cLkkwyH8eTazgKYZHbg71HSlmbj7NbMk7cZKus9yXnYsXI1XSR5A3/oFge5VBofwwD4agqz4Q+8rXiIXmrssihvJQnpnjK9X2E8u20jVzOvVS9d0ER+WdbE57FYDfHd9xVeatNBnZgauc46iTUp8zWX/4Z2X6wuUXBCNckB2Mxsz+/8U+58+82GgBl0/vxjTXzVznHBZMkjbipXO6Op9Fr5bZZemNVesnf1PL7kSKmQXwtZzNcMuPQUMWQF62SMuVJInBtmo0scYyxFZVSPhIEsNsZmrUkli7ooSc7JCh+kL20NpSyDJHOcl1PDz5qJcmDXx8+63+8bNzxX0nzghdh8Pm7yGpS0jCKl3LKlTKWHmESv6EWcKYTXgBVmwVhBD7bBioYSBmXI7uE73WyM1cI2ZPtk4iBy1OgqSnYNlusVhmwop9YGvnFx9uKa7BLMF0Bfuw4b+F9qKKit8PCjQGp9AD92mM16rf/W+86tfsI5pp3OhJghihzTNDsx5jhnZOuEzjftRz32lxPnff+faRJOhoEwavrkaY2CVyoeg7Ubzu36zeHoh95bvhJT9rsrKuRuV7k0La6rUlIWmrq0ef50L8uwcUQMwmqk2/Jdh+uGF/CuWvIuwF5R61afR5yyMKDQeglbNSQlvbrCS7CEmSaG7rRA1rElbbpRcXH9NDNGYGRI3ZBaF2uyQSrTXpYGul+iEazQbGOa/icZeNCc7+GHXiX7FmA3c5LyN9ptrvdcPMVtzr7FRhzMyAl/wIeUs9B1XlEfsJVY6ZEmvkc3SynOUTh1DKXyML92hutnoGdvqkev3JR9XjZKSJ1zDShv+B2WwC52xwrQDnLD9FX3FK2vywdbvAYgPHemg0AaaPAtd8UYQzyIDW6jxqHoK3HgDLI2KWBvpuwCO5YP9ELQosSYK1qLqOEgUVPx5szWCQhl1/XRO4pKa6LUcpZ+V/XSWXMX+yJoVj2pyQi/CcG7bYhZSUByhzwz67IH54JeFWrGIVH5AeaUJxrAq3nXPDOr+afmUNS+C1UwSZrLIITLvLM2CjA+wW8XqdP0Z4oVBKWw3OCH1mZjO8+lbE3apmbaDah6HS55IkEVuJpOkAqlxq1aw3D8sz0yJpkF4eiIBWcFhPm/FPw4W4GAPLPxDR4pwVIFJxTr0impEKb2oLc5YWe7k5PjM45gfFg4gzG8KK/Wn3KykuZ3D89uB+H+5pwcrFbt57IcSSezmzLgNTzYr9PHy0uIgHxof+xHPfqUL6uDhKiz00jQ89PR45Do0VLMHc47DqC0jpCDt3wuih4r5SXAjxrUL9in8SrjtdhQtFvKu4EOIVwuVvTIXb5oXW37kLxvXXjKOMl3n8xTm/hwNn4IFPUCHzRhjUSr9QZrDPKEht7j/vcxD/muI6bg4V8sQjyB5pigf56W1gZic454V4hZxV8VQwJwJ1gfpAK3hlm4kp40OuZ9PEGym5aTH8JsEXCgkpgKYPwaHnQuttM8GSWnHxzcBrRW1/yLBGcZxhmdAqVX9fvXEMPvjxIyg8DssV+mX974av5obW7a9AzboQFwtzRqHC3e/AkHGVP6bqvf+2ZPT/IIxeJIMHPv0EQ+cOsFuUB4/r0h5++gHjNSMwxvoLyRrEb99XfI6T8ZcET6dZ8Q5izSGPCoT+X96iYnZXDal/dC/6nFizgbMfbSYhJZnCHb/g8/nIWbuLY2+F/OJdM6fTMLVz2Hg+n48/PvqOxJQm5GQdxDq6o5DfilCEV/l/v9DinLmdIeECDFSeF2rs/OcV54zOzCqBW3ZOwOYceV79xQAK3SUstm/WZTbGmmO4bVEnuqbW5Y5FHYk1xZDvLuUl+0/ku8vId5fxgn0feW71E3CcWeIpZzLLXG142tmU5LYmmrdTsznyssvJcXu5334mWPZlRLq6JEZA9cNshkXOWLa74lj8oYEaNYQe454fYclisd2WCtZksI1U6NIWQ+9uQmfWOc9fyLIiBPKwlMnSj8D1/dXdlCLDkWYRAYX8yTpCDNnFwqguzYDnr4KuDWB8J00fBZnMbADnYMFidF6luI4ILMh2NfwuSgM4e8H2EdC7HhQWh/Zz54N9OvQdqP5Q4mc/HpphaVUxyjSUeE+2+rormoEVueE7/wwPTT8tkSSMWKLzXpUOIYk6Z3HV1fsVa6bm5qoiibowJ/z8+ujE+/Lc8C87ESVmct1wvx3OhKuFSJKENPIapOTmGEelYRyVRkzzZGJS0/RddmYTic55NHB9SZLzJSRTXERGY0wVM8nOp+joep8WzhnEmOMol4wk2fpQxdqAumN6Uy+9D7V6tVHtF8nVKEkS9Qa05ccZn1J/wMWpBlUaBi7MxfgPnZlFjVklsOW5b0ge0JTi7HN8ZP+cs7/l4LSv4uxvOSyxr1Plnf0oH2K65UO+c/zONMsydspHVWN98/4R3piwi+3ySRZM+JElj/zKOMs6NjqOM9aymbGWzXzlOMVoy7dsk0MMR0mS6DKgOm/POEnXAdWQJIlB6eqnqipVJXpajvKpozBY9sVkFvW1Pt9ene69jRQVlgeFUFNtBlo28zFqdAwxMTHYUn00bw79+8L424Xih7IYp/wFJF0q4mVdU8XDuOo/GiE3TJy/IHtYG8CATnD7XFg0FVwLwXl/qLq07v6amZ45Vp/FKHmFUXpwLWw/Bu/s0vQJzCg9wq244gDUMgl5KkkTh0/X5J9lNBX7SZIgnHT9DDafgKQ3hNaj/KO/mOhncGkjdTw0b9j14iYN0F7jvkvWUOL1CB9KBD6Lo35lkMMOWGER68rPT5vH1ngQfOF3OeqNF6nNqK6pR2sNLbXbdeL1cs3xpjlCMcIANsow0gJfOmCYBTbJIv/uMbv4fNbI0MsCKxzQwyLWFVDmm4Up6OtAkiTibUOJsSZT1TakQoMSUAIx6yiBQIi1WE9TmyiSq/GovJNllmkccHzLh5bpquKcWpxzF/G5/SOK3fo1z84L00Us/0BEjVklsM/5M7MsrzDL8go/OPYxp8Vidjl+ZlYLBzscv6qKc2qZjUoW4w75GAvt36u255yKrIKvjJMFCCCrHNkMsexho5wXzDH71NWUOc46FBWo78i52eUYpXJi42BY13y+2+zhkqQCvpAjswI+/QzqJcMSJyS1EAYsgEjxsvNCaRC3hGJlE+bB1l9gxbfhxTiVcBeC/W1/IrPfoIztDM5x4HoQnNeHinJqH5RbJcL2G8E5MjT7kn8TOWKOX0WJl2BdVcUMJTADc40Qryb/R+sugpl7NZ9DceQipADeTd/CYAtkyYISP9BfcLOTEww1oI0TOrmgpRO8psizMuXXplUGUSZBe4A/vlRvX9wQfnHAQotQBAmg2A2ZGpmrAIrcsOkldZunBG51wrMumOgUBqvADa/fBhMXwasuuMcJfcaK2Z0S2lnp9nXic/nCIfLwvlun3p6XTVCnMdsNUybgy44wo0Ot33jenLII05PzVTiIMcfRdHpacH1dw4kccXwdtp8eASSAc+4i1tmXcM5dxG/yXhZanmaf4wfmW55jv1xx1QxdRAkgQNSY/WkIGLG4ePUvxVQ1tL5nncalBNz4QuuwtgD6ZyQF32up/fnZXr+YcDwJtQysX1FEh+7qR67eg8S6luyhXTcomFxaxY/sXII30fSr1dsyhvvfRCIX6NhMrUG0vwSOjf78su/FPu4CsC8UCdRyFljuBsc2sNwrZkDgn+m1FyxGW8dQUU5tXtmvbuj6LsQZFKLAGu+vHnFEKgdbE7BWB1sDsa/8B1hk2KpJCh/UFFb/Ej5GGPKzxQ2+qb/gZj0bxMRATRuYFYQPqNiQeYAGEZRBAv1KcyKfR8Dw/SzDPAvsdsAci1gP7L9HhsctcHibet8uY6GLDepYoasNtr4PEy2iztnCCXBwN1yukw/nIVyrsVkH9bpV8+WN8F/T6hXQoSEs/wBf2yZ4Pgs9YXkuQIDYiwGvO5cT9kfwusUP0ePO5aD9Kc79dpSD9n/hOU/CtCe7gJyv96nasuzzOS6H4tleDBEJIAFtxl8dO3jL8iSH16nFFy5GaDhqzASixuxPQqA4Z95JtavgXEFZMLhbO1ntshl4WyOq1jAy3dmRBa4ruH/pJTy0tC1vu7rzqLMNsQqFfHO8+uZgriq+uvVyAX0tv/OZo4C09urctcsbnma1XEJauvrXm5YRrkUXQLqmQkdGmnA32ieLeJnzVXCt14mXVeBiVLbFV+DiyC4UuWSW28CxBSyTYZ1Gniq7qIJjeUTczDkaZg7Q2S9wjc0119gcfaOhWdeT5UxLhoavwAeCj8CCh+HtpUYeWtqW23bfou7cXeFCDBBlit3gsoPHLVyAgfeREDifU5qZ1+Yh6qKdkjphXoWmg+AzO5zVzAKUCvhaNfwRM2GcE4yKVIGdMrxhV/cr0MT8lO/j/FqN77vgKScMul5zDLtInP7cJej5MX6pitwcdT/tExeaWZlXvA/IWZX7ZWWK5HUcsvQi37GS3y19OfXwq/xsGUiu4wt+aWHD7VjNj5bhZMtfqxKYA+9Py9tYb7GTuzX8yUUbO/MUlVCndwuGbn+EyxfdwOZbllDiLlTN0ABOfndEtX4xQsPRpGmBf6iN/nNxy84J5Px6BvDRKKU238/fSfc7OvD9gh+5YlJbju08i9Fk4DvHr3w8RZ2o1eO6ZoBQAFlyj9pv3mGAhZiYGHrZRI5ZI2tckMnY2F8fKah8X6h2IRYX+FUmdCSrlMjN9mE2w0JnNS5NgT1ZHl0VEINHjGM2CwJIt/aCxbjqKxjlz411LIfM14WgsLUhlSvwp7mpFVYga5nRHT7cqm5r30DTp4twN050Aj5YOAoSFQpdkiTyyoqL4QGF1yqjTehczAZ/TbIkyDrlN8pef5HP7TCvc6jIp7sUpmbBvI6Q3gjGZ6nPx6IRYjebYOQYIzuwsNGXRDvnwxy+5GoKPj4CaPLMTsnwY5p4f8YRGuSMA1plQmJqKCna54Z9U6HNPDAmQkmO+sBnNgoV/tp9od9y8ETIgUpOg7f8uqBaj9YlGcK1uGoqDHleva3vFCEq7J/dYgSKdEq6XK6J+QX6Qkir0YjQazT44BkntE4BV5bIMRvg3948QJX3wdDrQJEzRprIOQuIDuuhRF5NXtqtABxzZFI789Uwar7nlP5DgyeCz7iivLOGGT2D7/+Qs9iSJuRyvuj6TLD99/e3M2DpTar9Tnyrjqn/vspF8/6agO35cKGzrX8of/0faqP/XNRqXpP2Y9rQfkxbLC1qMfzFvtRumcjVL15B7RY1udRmZfeKQ7xn36ja7/IJ1mDOmV6F6HOFIWtgwBORyQhwVUaian3odYJlphUa1uLqDBOSJDHCFkczq4GRNmMwuG30hlsjSRIyVQEWY45W2UOr73oBLkaAjH7qdcfd4Ho5lF+W3lO93d4TnLeC61/gnACrfhK5Zct+gGU/guVJQcAIIkASMYJzFLhuBecINVtRVZOsuXBRyofBsgwcB8CyXOgyBtyKjiNgWQkf/QF3q9OR6Kc1tooZoSRJQnW9qRX6aFxvHsIZhkqUKmY4Z2XYYoGTDr9uowz1I+SBnd4IyyzhxI0AzBb99o4TwLUKZlngRwfMagR9psN0F9idUFQIDrsoBwPidY+mxtodOqQPJbTtAePWyApX2YQL4BE/GUTZ12QWCdRf74GFDirSZAvM0HyaH6onu4B4TWZ/nRemogeLokCnqn+6mkbb7vXbuNL1Ml2dU1TlYbTxMiWKTuZRt2dTanXQF0koybkIEfOomxGIGrMLQkUlH7TED4BvFv3GrhXC9dd+YN2w7VWqhX5V2+TTKibj3b1+4I/finnG/ht5bg9xZomnnU1Z5mrDs87GwSKdARmrR+cnho1/2/QqmEyQ7S5nqj2fbHflpXPc2WC/Ewb2UrcHBBYuqPqFoq85RugxuhbCojvhiyyoVQ1s3fzU9xhw3gWumeC8XTAXbV38Ch4p/iRlDY4o4npAyGC19O/XOhRTC2zXnldYHK1MLErcuAM8mo+w1CvIJa77wTlFJIvrPSQAwgB8ag+5Aw0VuAITlS5JLc3+iHDBdXJCn936+3sKobcTus9Tt9fvp9//x0VwSKOQkdQOLFYhcfVEEmx3wAMWWPEw3GuB7/xaXzctEIU7Lx8bbrDP9z6ADTIMsMBKh2A0fqUgqUgSDB8NjVrCiGvDmIbKuFm5O5uCm6YQO1BteOIzhiOZTdRxzqGx63PqOWcRU6M6DZ3P03L/xyRNy6D1fidNFj3IgVtn68bOYsxxNJkeEjjee/sb5O8+Qj3bFZRlF/K9fSEl7gIap0euY7R1yiec3HqI7J9O6G6/KDdjNGka+JsYM4/Hw6OPPkpycjJVqlShefPmPPXUU5SXV3xz3rhxI126dMFsNtO8eXMWLlz4l51j53SrbnthdilZ8h9Ma/RZ2LbiAk8wx+zMEfXddO83+dzYYhdrHGcZacliypX76TqgGo2sJq6y1Qj+oQMyVuYq4b/Qlu2MrFlRSgdLDh87ymhnyecL2aPWgFSQPwz+ZvlzwWR0fASNusL0O8C1ScTLTDF+dfz7Qwr37rNgfxTcuagMhNsN9meEbFXgkAGK/u7DMOE1eH8TWCaIWFlwexew1gFbVx3KfOfwz3jyZyD/TIWxOkD/Jhogt6jVxshoDHqmJlmdtsfY5n6jaYEB7eHGJ8Dt1vHjfC0LA7DHAR9YRNFNrSsw8Q5o64Lm/krOgfOtpZmF/TIZjq8QBJIq7YSqfn+NUWt8nSCaGDV5Yt5S6Dxd58qARM2NtIPfoGpZiPkaIlOMGbpXoFYSCcq+YcX0AjNTfTq9XuXpsk9Xkd+gHaXvL8fd6DKqTL+dJNdXJDrngUmU5almG0ystQnVbYOIiYkhwTYQU4vGNHxxKiV7DnB4wvOcdawhyzISt7xFFTuTJImq7dQ/lOIjZzkhf88Xlts47NiCbLmLE1/+RC/nRC6dOVrVt37/VkRC7+cHMsKZfnEq+iYuTDE/Ss3/72HmzJksXLiQV199lX379jFr1ixeeOEFXnnllYj7HDhwgGHDhtG7d2927tzJww8/zJQpU/j4448j7vOfINZsYIKzP4/uHqlqvyyjqa6LEcTMLJBj9vrkX3X7BLBrYwFDLHvYJIfcJ0qjNCQ93K10dYaJAk3xTi2TUQ9fbVKvnzsH1mZgGwYr1oGlOzg+FSr5D88TKvmOlWC5StQtwwPyZlG3zLEGLKNA/kYxoCecip9dSOTZnpIyHwtLb4DrO2n2187YzjcT0BxLRcXvIYx2oc5+9+6F6VZwDfRT9gN0/z1+4soXkFzHwzeyhvKYq0Olt2jiS41eFCr6CRpWo2SGepM01+cfT5JEsc4q7USJmCEuUVomoOnYRHOMlmOhhkZ3MYD2dqGkP8kllPSNfoN6qcaYpmly47prjhE47/O9V+IqzTGGamNv57/Je8+qY13Gdi0xWpsSbxsafPhTGictnd6riZXpxc60rsY9kxdxZp36QaIsp4gmtm60mqxmIQ34aELEc0+Z2pPWtvYXl1wdnZkBfxNjtnXrVlJTUxk+fDjNmjVj9OjRDBo0iO3bt0fcZ+HChTRp0oS5c+fStm1bbrnlFiZMmMDs2bP/knOUJInOtmTqt6vJLc6+PO1K5TZnb4ymmDCR4Tl7+jDNmcI5jZLt0Ns0VSd1oKxQnev2BnUZ483lvLjUwmMv1+Txl6vz8tIamExwdbqaoZCWEX5TMHjKcbth3G1wyAXfaUgOHRTZA9rcslOae3Zgu/Y+MNMpXJcBaGNjGZr1SDc9yQtXtYJyjU0OemfOx6rUu7EG3JJNwFoFbI3FcTIa6+wPtKsOteJgxR8h96Q2TFKgyBH0eAzhtPT6GeAtgmq9odV2aObPMdM7T0mCJprfbd2M8D4N/ZT/RopZksEM/ZxwjQv6O8FnghY68bZOk0QOXDubUNG/RGFQjWYRN3vQJRiNsTVgghP+5RI5Z0qGoxaViZ95EHGx552Q6RIlYeL8hjTHDffeKF4Bst2UT7o1mG+mTJ42Xqum4gZEh8+XOwbCyNXU1ClK0sTOvBiJMcfRYIK6X/X26h9KkwzhZjSYY+ntvI1Rrifp67yF2BpVGLD0Jro9N4LaXRtxycTu3LB/OsOc1/1ndc2iMTPgb3JZV1xxBQsXLuTXX3+lVatW/PDDD3z99dfMnTs34j5bt25l0KBBqrbBgwfz9ttvU1ZWRmxsbNg+JSUllJSE3H15eZXLClbG0iRJIsXWDCNe6luFoyogMtwspSaHs87SqG11GrdLwFNcymsTQk91t8+10mlATXJPlhBDOcd/P8fwm5OY0CHUZ2CG0IrcIOdzb5pgQq105PNqZm2Gjqmm0niU8EZkMirjOp9+BmP8D8JLnOHXd8MoQu64YTD+wdC2F6bC2wqdxIyB/n59Yfyzofat+8REJPNRSO3ml7eaBinJkOXyK4CUE9kYBVyguyFtcah5wUiwmEVJGRCCwlO/hHkD1CzHyqYOKPuay8HZBdpVg/YKbk9VgyCEADgOQuYIiNfwcMxVNTfQOLMwBCXNYfVd8G1/yPNTN3/tCg3fg6M3Qv154l/5x1RoOE8IP55zw5Gp0HIRJPSB4ixRpFNBaqHcDbumQsd5EJ8YYhFKkjBuRoSRAmHgBjpgzQ2h8+s3R8wWMyeKR9yrF4pxAmNc4h8jySq2p/hLytS2qhmOaN4rEakd/zGusgnyx8YV0GsA7NgMU9LEdtkBk+6H+bMA8C3/gPJ3lxAzbHhoDLOZ+PffIKZTB/jpBz9RRH+67yU8PUUym0h2PkV8SitKsn5GMoXfI86s+JZji9TJ3bWHd6arcwoWvw5jjP/HHJC0+m7iewA0HtACg8nI9w+JkMPp7UdpOqQNrWwdkC4oCK3BhRqoP6HqzP8i/hbG7IEHHiA3N5c2bdpgMBjwer0888wzXHfddRH3OXHiBHXrqkkXdevWxePxcObMGerXD58FPffcczz55JN/+vlLksRltkYANLCagz/cOHMM050daZ6SwMGsHOLMMfQZU0clRhrj8/CUM5lWKfG4sgqCxI88jfvwxBH9R+CAbBWA1UrYHxh003YAmPkwJDcRdH28CDefCZwvQUpryNoLNarDohkgfwWpvYV7DvzG6nE4cBweeDM0ZmDmJklg88/Gapnhxvkw7wZINFOhi0rrTjTHgO0ScX7yXkj7SLQ79kJmKqQ2izyW8tVdoqDlxyjOsQH4PODsDCkJkJUHBRqvcXYJ+DQU/ZKCUsrdxeydOhvfv14Hb6JQz/igK7r4w5+vlaug6Gc7oN5DcMIvRHzWIYSI69rU13FWhp1pYv2oQ9Dzey4X39nWqYIEYtQYuOZjYUgc1EuBU1lwYBXIo0Lj7lsGGZnQPlXfCFVkmPT6VOb9VzLc77+OlQ64frJ6vDPqArbl7ryga8njMWA0ejFeK2ZjhtaNkSSvymgFapfpnqo7l5NT59Bg3t2YEqtS1VqPcsJJX3r0/K8a3UH3zHuoZq1LNWvd4P9bWdMM4NCyLC7RCIuWXEyStBZRYwb8TdyMS5cuxeFwsGTJErKysvj3v//N7Nmz+fe//13hflr/c6BAQCS/9EMPPURubm5wOXJEJDR+duvnFLmLKXIX85H9c5UWI4iimQ77V7rCwloUuEt5xb6TAncpkiTRy1aP+tZ4rrDVQZIk8t1lzLT/Qp67LKiheKWtFjVrwdcr8vz1y7xhuoxPT85mvRz6oxnwkuMuZ4q9gAO/ebnLXkS2hpgQIH+Mvlb/XG+4FlZ8qabjSxLYhoC1MdgGw6cbYcIMESub8IyoWxbs1xcmj1KPmdGb4MOyuwD6PaFIkr5DKH4AEYkb6Z0047UP9dUWdg4mOZ9vtndI0PEdh/1U/MOKfbz+a6kPVhPYakOGlo7fHDI0Yagq1QzMsczltGMdJckt4J2HBbX9QlGqI0SsMcRh0lanNwq9xk8scMghqPoHFOxAD+KiWtjAWAt+XwG56nwnAL6eKYSBi9yw1C7e66GChwRVfbPz7ZenuY4WGkLKA2pXq6/fADx33IYvO7SfHjHkfHA7vuRny0CyHavYYxlCjrw5rE8g1qaNmQWgJzisR9Gv1V5NyW+pLY1+MYgmTQN/k8uaPn06Dz74IBkZGXTo0AG73c60adN47rnnIu5Tr149TpxQ019PnTqF0WjEYtHPtTGZTCQkJKgWCGkzPmeZzw+OfTxtWcheWcjQ7JYP8IjlXbY7XDxocfCDfDjiOW1xHOY2yxdsdvzBBMtqHuu3jXxFTtlW+QxjLN+wznGaUZbtfC2LP+lmOYchlj2scmQz0PIzG+R8TGaJMZNqqMZXJlCvlkvoZDnLckcpl7co4GNHGa0thXwuq580DZ5yiorgip6wZjm0aQXffykYjA27gOMTsHQEOVD1QmMMjpxUX2N2vprFaI4RKvmutxSCwoC8VbAYN+7T7K+jteouBPu7QhfRLAktRtc94BwT0mSU98JkTdpTRgv1uarG2yRmYwBafo59B8gnxLW6S8G+S10PzVwuZmqugeDsLUggZqNIJXAtFdUH3Cc1g+aES5kBYN0DtabpbwNooCFb1NLIVgHUjpBzpoQyby2A/TK8ZYGfHbBhcvg+R7eKvLNnLbDTAU9ZYLccboQK3fCWPRTXCmC7DOMtoTpn2zT7atF9oHq9z3ChCLLaBS8vheo1RL7Z51ugZRvo1BLfsqWUJLfAu/Lz838GfihJIPnyBo7ZH1Nvr0BoM8YcR3vnA/TcrU55UCZNl7gL2Gp/k3oDL9HuTkt7N65yjmOs6yGGOK//z2JlAURjZsDfxJgVFRURE6M+VYPBUCE1v2fPnqxZs0bVtnr1arp27aobL7tQBGRptPllRRGYi3oiw3s3ZmO3rOd7+TigJg1ASGg4X+NSzMv2YpS83DM7SdU+PCM+6FKJxFrMyfaFxcsaNYWvt8LAa+DnX6HbYDinmWQeOa5YCcxo1sPkmep+Vc1qFuOKrWDrA9b6YOsV4hREyitV1TD0+NXoHwFHFlgeh/d3woo9UKuKcC8GqPtaqalJl/qZhppZmXwILB+A43eRJC0fgvQm4eeRXQbySbCsBccxsKwH2W+PgjO1amBrKtalcpFKYK0LZoOPVycfUg847oXwgzR9D8xtwaTRKKxxBzR3QWMnlNcQ5JD2Csq+Eh5COWe9IuScATTLCDdC2qTtS++A/i9DO43MlBK/KuJFHuA7h0g52OaAuy1CTDlwHC2lX7me7Ybn7fDHb/CkXSjpj2yk7j+gEcTGQRMrDBojdCxj42BYL9ivli/x6UlceSMzFwMo03EbVh/UHZf9Wd1cM0mSqDXgUg489zHtF02ij+s1UpzTiDHF4sHAMXkHsuUuDjq2ITe6j7b3DaTryxmkPJdK3d5WPEWlwWrTLWwd/5zSMFHVfOBvYsyuvvpqnnnmGVauXMnBgwf55JNPePHFFxk1KuTDeuihh7jxxlBdkIkTJ3Lo0CHuuece9u3bx6JFi3j77be57777/pRzujSjJQCd01uo2rtmJOv2j0TPh5AR65NeW9XeP8OCAQ/dBqpzhQZniBljIGH6S1cDXnImEaf4kV6drv+LvSZD/aeOFC9rr0mJmTwDHLK6TfsA26oxnNA8nGcXoOvmS79c3W/P0+Cc5J9pKZOZNcewLwXHLrA8488tQ4yf3lbdb84VivxdxfHXabxp605CUYnI01Uio2540vQRrS6kh2AsUYmjaolMYibcAlVrwNil0Otl6PgytF0KSdeLk0zQ0NDrvghxVqihECI2WiFRk8sVfM2GEysgrp7IObvSBV2XwmVLBVX/cqcgjKDZT8tq7P0ipEyGoW8SEYEHIQ/wkwzvalynSk3H7prxA1JXW2WwWWCtA65vAWscosaZHrSuR61OYwDx8WGiw+XubPLsdwe1GfVQLX2waj3xjlHsbjgKt2N1MNdMidPyNjZbxnLi/U3snjCfgt2HaWDrGTRKWtdizUsaUrVJIlkPyZzc/BvvJT3KQfmniOdzUYjOzIC/yWW98sorPPbYY0yaNIlTp07RoEEDbr/9dh5//PFgn+PHj3P4cMjFl5yczOeff860adN47bXXaNCgAS+//DLXXhshQFQBhDbjaWLw0bBLXU5kHQ8W6jSaDYxzXkWjlCSOZZ0Kyldp0SO9MW+O36G7rU9GHUAQQh51tqFh81jmTzvIuUIvO77M5eG034N9b5ieFCSBBBKmDXhpYo1VMaJMfhZjx84+Fs8v4+ZJBvbs9LMZy9Xxstsmhp+TfTQ4P4N1XyvapkP1KpDaF2FABsH4J0Lbfz0CU+aqxwnIV7mzYepbMG88JFYR+WLOKZDSBLIOQtsG0E7J1wmwJzvD+A90PzYVGeTL/eptqw5CWjNFQ+AerIn/u/IgaUVofUEHsBgFkSW9NoxX9J38KzQ2QWrgmUN57/QbNvlruOdR9TFinnqG8l0x0HEMJAAngDNAwNB7zVDPCaYUKMkSFP0YQuQILWECN/w2FZrPg5zNsDtNbDvhgM6ZUNUKNfzMRSOCrq807IGxDP5yNPVS4HQWGPwGz6URMVaigT/GU+SGdTPDt3dVGOZYM9zthBYp8HuWkLqC8Jy7ijA0Q33OvQfodvMVqo3IuU/WUGQT394pxyfUzFxItdT+YSQQyWyiofN54lNakf36cs684FCN48nO55y7kENTX6XlvNspOXJGtV07s6s7UB3na5bRjYMfqj0yWrHh/xgGLuxOXpGr92+Mv4Uxq169OnPnzq2Qir948eKwtr59+5KVlRXe+QJRq3lNGnVKCqnfW6sjBejvkkQnm5Bhr2utikSoFLoSseYYpji7kpxSk0M7zhKDD2sXwWKM9RtASZIwxknc0VU8uaUm7eTayerZWvN2ppC2ouI4Bu17vx6jAS9PvmjEgJcWLcJdjwFh4a6XwPxFcOdNsHMXfLlRbcgCWLfNb8zwMxufgwNH4YHXQn0mjYR7bJD1s6DMy1sh7WmxzbEBMqdDamew9QC8Qj1DFx6/0bNDSn3Ydhhu+DC0WUm6yNG4RXMCE2HNTOpSjepXHc0E1mwQLkQQ8b5JjWC+YjaXrb0RBGZnge0a7cp6k67mpCFePZvSjiFJUM3PUIzVV5IJ7psvw29pYv20A+prYl1litjY+RiIXgms/uPWUFDstSLGSphrwg8yvJcWvm2CQ51zZpSgh3/8egqD2jsd5o4P3/8xB3S8DD6ZD7ZJsH8nKnfDGhnuGBW+HyClhWaBXo8hTJuxPExU1E/Plzwk2AZiwIupXfOwPjFVq7DdIo552rEubHt9RYn04/J2vkt7MbjeZvpgYkxGmqZ3Zev4xcF2a0aK7jVcNC50tvW3uOtfOP4Wbsa/MwJGpjC7jKwVJ6haK5bLxzSk15j6NLSa6WWrp/Kba+Nmye3NqvVAntnFnAOo88sMnnIkSVSWfmoWPHovtEgG29WQE/7fB6CD4l4recF2FUy2qfvMuUNUlLb1EW7GmR+pt1egw6pfofpSYfDGdgJnBrim+skfiphYurqavSjrArjPgX2deAWwawTJX9SQyTICs0OPOPZsjW1RlJjTTWFKv1K9XpZdGJJq0roo9dbDXIiaV69mVhOvYfzV14mNlbphq11dIkbv6TzQ1roCQsm5QijWnEPqTJE83U2jzahFvhtesENJETzshLf3w7XTwLEfZjhh0Fho3AKmvCheB9nUBT6zc9Tj3Xgb0rYfiZn3Kt5pk1WsxlibWomnSlBUVB9eDNRIv0rV1tzxCN6CyNT5BhMG8NMt8yl1F+DFGMZorNrEgiRJGMyx9HXegs31OP2dE/4c0ocS/0cKIPPnzyc5ORmz2UyXLl3YvDmc9RnAhg0bkCQpbPn554soPlpJRI1ZJVDsLma5/TOK3JF/2BWJEGfJf3CH5VO+dhzlNssXfC+Hi4wGZll909WkjsH2RJXAcJVAyePzHFdvdqiHQGVpxzJ1Zen0Efr9bxhB2I3QbALnU4LJ55zhZyx6hISVJQO2an6/GYF4WSTdxAjvJS/YOoA1EWxt1DExs1Go47tuAucwYehkF1j+DQ4XWBxCGb+KUS1bVTMWnN3B1V8kSJtiUBkQcww424OrOzjb+ZOzdeJkAUNkjhMz3WkLhNU8+8FX+No2gW811HgAj1vkl5W4weuG03bxGsmQASRoDE0du6hUfZkLOujExo7LgqZ/yCGo+kd02IhaGM1wtRNud0Gq2u1Gx+vC5a36TYFLNRJcBW5YoGA4ficLRuNGB4xNgpISeP9JuP5RqNcC+ukU9ASRRP2gf5xhmuM+PhN+3kv51LvwLXNSktyCEtnvIjWbqfbhQmr88jUJzvlgisODIVjjrNQdzliUzCaaOp+mjWsZyc6nsIy9isSMq8L6BXBs0TqOv7+Z1ZYJnJC/p6FG1mbH5CUckXchSRLNbCkkWGuTbOtMSXao0vSfgv+DmNnSpUu5++67eeSRR9i5cye9e/dm6NChqtCOHn755ReOHz8eXFq2bHnhB68kosasEng1eQE/OvbynGU++2SXbp9Cdwnv2jfo5pppyR9nj0Q2inHmGB53tuJ9V0dmOFtgMscwwFYzTGBYiRy3l/vsbvLdkUkmkcSFN2qE0tf5dRnNJnDOh/1fwbRxsH+VSJY2a3klgTys/oLJZ+unYCxqZndPjPGXelFegg45JNDuLgT7ElDddyIZunIY0ARmfAsD6otz0KsoHZStqi5kq3LOwYrjUCsWbHXD76eSJLgK1ioix0zSnrtmhiV5YXSa+B5VyMtW9z0tw88WyHfAEYtYCv3viyJQ2D0IncbmfnZjSyeUmyHJBlWs6krVRW7YaYeiI+oxArOqEjd8ZRfqItrP1StBaxvUskLTIdC4N9y2PaTXaDTDWL+8VcYicNwSKg3jQRTtvMsiqk9PtAiKvrbY5xw7fOWAayywRcfQA6yVoa8FPnNADwt8/aWg6G/cJyj6JhO+Y2q2TYDVKEkScaNHYLA2w2QbjiRJnJPXcMzSnULHpxy19KRQFj9+rzuXP+yP4c3Oo6ZtACZrI6oP6MLvNz6Lt+gcrZyP08W1mEb3RY63l2UXEmOOpfkkdUyvVBMfOyT/yLuWR4KVpn+XQ9Vni91FfGZfTnEFD826uEhjlpeXp1qU6kdavPjii9x8883ccssttG3blrlz59K4cWMWLFhQ4anVqVOHevXqBReD4SKnhZVA1JhdIIp1yg3/JB/kQYuD7x2/Md3yIbtk9Q1Eq824aPIevpM1CVp+SJJEX5uFhlYz/WyJusZLaZjWyUX0tBxlhaOILpZTrJHPKfqdf3Z2iSbZN6DDGEiObtEMXnwYWjQVLkU9hmAkg5TeRz32k06IM/rHOM+sTP5JQcl/UlD09Y4R7O8Cy3xw/AyWt8W6tpBBRjOxr7sE7FvAcUjIUjmOgOVLQcUPd+sp1pWL9qNVzNaMXuifrgkE/rBaGJjAWKUaI6MaS3Hj156PJAkhYrOf7aicDQVwTIavLPCHA37SxNSaZojZ2QcW+N0BDgv8FsGY/CzDy0lwZDO80VWUgpEkYew62uDEbvhwAux4X5SGyfKPoy3aeeYIXFaB61KvOjVAvlZJPweG2aBha1ESZvVn8PC9qi6Ga0MlWlTVpzGGxc3Ks/MokNfzq6U/eY7PReK0/DW58iZ+tAznrGMNO5NSkeKMVLE2oMol+kxlgAYZlyNJEh1nj1W1N8voplrXkj8CCiAueR/zLc+x1/EjC5JfiXgcXcRxYbR8v1pN48aNqVGjRnCJlLdbWlrKjh07wuQBBw0axDfffKO7TwCdO3emfv36DBgwgPXr11/YdV0gosbsAtEho01YW84RNaNJm2sWazYwYJI6uHzmSDEv2X9SJU0b8JLnLuM5+37y3JpSLREMk7bStDYnTQltvAyghlpIRKxrZ0g5/pIvuUQ0XO688HIv5jiYpK6HyDPLYcw8of4RcVZGePJ09jkqNKDaZ4zsElHtwtkfXNf4k5tjQD4aUvuwf6fZJ/BV6BmySNAjdABxZolrnGkkL7hbNHz9gUhAPiCLCtNHdJKUAzBrEqPP5xZUthW74ZCGZdhkAgx0hdT08zWGtCRCTO+cxpgUZ6v7aPPIAkasm8ZwLZ4M2z6Ce5zwqgvu1rgur8wIvy4PMFAzzvAMVCVhNDT9mAm3BAt3elU1znLIs9+NaeAVqv5VM4aGVZ/2ZudHVM9PSu+ram/vmEbP7bOo1bstnkIxq4kxx3KZ8y6GuWbRyzkRn6aQaMOB6vtHQAHk3H8ia3WRM7MjR46oFI8eeugh3eHPnDmD1+vVlQfUClMEUL9+fd544w0+/vhjli9fTuvWrRkwYACbNm3S7f9nIGrMKoGrFw9niutW0p0jgpT8AHbLB/h4svrppFtGM9W6USpn7OyOqra3J+9jo+M4dst6tslCc+4b+SyjLd+y1nGGkZYsvnScVe2T6/bwmP0Pct3eYExsaLq66tbVGeo/z/lmZ0Wa/1ChZl1eqyj5coVIlNZC3gyWYZpyLwEChYa09v1vsOxbhXSV4ibmLgT7v4XR1NYtywjkFUeSuWqh6W8VBm3FYahl8ic3l4erfaj2URJH9QyZlqBRAYHDKHlpZ2tLjFmToF+aDWc1rDjTEKixFJJckOgETOc3ZHrbT8qiInXuVvX4hxdB3m4hOHxkBWRpDGlzHdIIhBNB2mao+2hjZ1382yUz9NOUrJl/IxjjBKux71h40AlvugQRJFb9mw0eP6Ck/6lLKIHEafppYmgxTz0T5skoXfElZy2XUuL4hNONelFt+i3Uc60lyfkS5YXFFHy5TdW/RsZApHg16Sqmqlj3Fp2jRu/2dN3+Eu2dD2CoamJr1/vJ3ryPNUk3c1zejiRJNLJdRjVrHZrYuqnO55D8Ix82CqmNdJ7eJ0gGaZ2uSZy/EFwkAUSrdmSqoII36MsDRkr6bt26NbfeeispKSn07NmT+fPnM3z48L+sagn8Y0mafy7ajGpN1QQjta0JYdu0CiB9JrXWzTULUPNbpFRn5Yu/8eX8UOA0wGDUMhmftgsViW9W5HDmWCk/bhGW5nNHHi9n1qV/alVMZol5zkQ6pMQEVfG15I+KinHGaypQVguURfPvoi35kp1P2I1Pm9h85DTYZ8O8m0UVaed9fsHh9zVjKWZf8i5I89dOdXwPn9wUouRnHa5AtMB/OWYDOAdDSm3IOgGrDsGotf7xXJDZF1IbQHpDde7Ywg5wVaIQEFaRP7TQ3uwD/xwvYbNKyd+32F1M9mpNgmyjDDijsahx10CVMf6VCDlheu+1bdqK1EqU+mdVpZo+rSeJsjB614afCNJAk4cW6BMoDdMwBU5kEax/ZpRgzGzYMF99rEACtOSn7BuBxlbx+endiQJK+kYg2d+vwA3PTYUnZ0ONWrDQgdSpI/y4K6iSHxAdBsIo+lKThuTNeJkqg3txOCk0U6u34CEMlhpIpjjKNU903oJiTsvb+CVN5LVu7zqNDpmP4NH8OfT0GZXQuhgT29UNpdmYjYxwplM/pS7Hvj7IynEr9IbQx19MzU9KSsJgMOjKA2pnaxWhR48eOByO83e8SERnZpVARWxGrQLItXPE05h2RiRJEj1sDalnrcpNs9WuhkDStJbJCMKgfbUsN2jIAsjLLg8KEfccYOblGQVcPiDuguRx3NnwymvqthMnwT41VEU6fZh6e4ZaMEH00eSxTp4PjvVguQFWfAe2y+F6HX1Wf9kn4SbUuBWP5oKtvaDk2zqE4mzuYrAvV2slBmaBthZQywArDsFRzX0l4IY0x8B0xVc28Se4+ScYUFMRD9TOynQMnLsM7LuFdqMeNss5zLHMxf2BfxZ28wJI87v56t6g7lxFs67nctN974bfFSSOpAriUidXC4p+Y02flDn6cTcPoj1ABGmlwzYMlIZJskInDY1eMsMtmhvX5Rr3qfa93rZcNzxih7NuoarfwyLKwXSqB2s+hRHX4mvUEmnkNbq//bgxakp+/uQnKXKs4Kz9AfWlmONIsA1EkiSqD+qu2lb7ugFhhTo92QXUS1e7LRuGFeVTo0m6On7WXKHdJkkSrW3tqWVNpPWo8FBGhQgkTVd2uUAORlxcHF26dAmTB1yzZg2XX355hL3CsXPnTt1qJX8WosasEqiIzRhQAHncZWOCsz9GUwyF7hLetG+lIIKKfkmRh7a9azF7ew8ecLYPJk3HmWN4yNFCdx8thmaIKdQ6uYjulmNkOs7RxXKK1bI4ptaYGr1e3G4ft4wvJ/dUeZCSv227etwpj/vFhVNAXhUq+eL6HJyzwBQodaIY3hwDi+6H1F4wQWPssvNA/g4aKVRGxnSH3q1AKdqgVcOfnCmqNytvbvIvYHkBHLvB8hLIftUP9zmwfwGOX/xU/P0wWeNpy2hK0Oi100ywN7r92ot+/Ul3Gdj3wm/FYP8Z3B6x2PcL8ojsBst34DgltBvlo4RIIf7zDYtdGszQxn/D91URuosNXVDTKW78em7LwKvXDSc1eWJuGXZbwO2AXRaxXm4O0fTbLxVLOz/b7NgH8LkFNg6BrotguAt6KypSX4iBUb4vcsMSe4jNGIAkwWVjYZITZrlgso47UQvtcTfJMMAiysH0tcC3GvesjrSVV1OR2musSrUPF5Lo2oR5UgTJLCDB/5SWJ29kX6NQkc960zOQTLFYNAmEdTL6EGOOo6NzukqfsdRdwPf2hZS4C4KCwyVu8UM3mGPp75xAhutRBjlvDLoYz7mL+Nz+EcUXS9X/P6Dm33PPPbz11lssWrSIffv2MW3aNA4fPszEieKPrZUTnDt3LpmZmezfv589e/bw0EMP8fHHH3PXXXdd3DVWAlE34wVCy2YMKIAY8FLPGs8P8mFeTxOBpW2Og0zJ7EW31FDZh+/lE7yQJizIfV238UhmB2L9armSJDFgbBKmOGiZEs/SWX+w4g113My5J5mDe4r9kla+MNdkJIHhlSvKGXuNuMF++AFM0khYzXwMDh2C+e+G2rLz/AK6QwCPEAvWu7Gt2AITZul/XhlXwIeamK/TT7xImiZqQaZ2Ekofk3rBfIUUXjAm7tGsB7YXCdZimp9E5/hV/xwAVh2DNP/5x0d4Ms32CEZjmp8t7fCXz1KGLh1umFxHs184wZUB6bV4bvyhUEOPDAicnyQJJmIBgpUYyYXpAcpkOJsm1vMd0DATqqeGJ0+XZotxk/xuuSpW8Xpssbqfe5NYrsj0V6TWnLjKzahzPsr3+2V4339uWQ64ORM6K+qfSZIo4mkEGigURipynSqPq9Vl9GisXXxV8BgEfTQCghR9g5dqsx/l3Pz3wvrUmDQGr6kKMZSHkT+qtGtKuWQkxgxtnI+SkJJMQdZvxJhikaRy6tl6YcBLgrU2J+RtQQWQw47QD/mgYxtXZt5Ok9RLSbZ1xoCXWtZaAPwu7+HzNPGn2+f4gVGZGSRfqaN8XREuNBH6Itjx6enpnD17lqeeeorjx4/Tvn17Pv/8c5o2FfmUWjnB0tJS7rvvPv744w+qVKnCJZdcwsqVKxk2bFikQ/zHiM7MLhB6bEYltEzGQI5ZIG5VqFGv1VPK37Iim+q1jEx+qZFq278c9WnZ1sAgW/WgS6XXQHWwuvegWKbYC8h2CzdkttvHhDGlPPeU+g/fvrX6vKeMg9mPq9syhhMR7lyw/0uwF7Uxs0nDwLUwVPJFKyqsRMC9KEkwW131ngxlBQ0vpGsqamS00S8Zo4ccxcdeGME1mFFHR65KB+2raPZrjJqy7wmxGTu63he5UbEaUkeJG07ZRYVoLTyI9hw7eDTMw4BcVQ2NuzBRQ84AKHPD2Qg6izk/h1RBlNd8zg3r/K7L883INmlYk0XZkffRG+N8/a7SXGPrTprjqVnE2lpmYbXNzCZqOl+h7u6VquakOfciSRJedy4Fq9WEEEtGf0AYxSRbH6pYG1Db1htJkihz5/OT/aVgAnZFMTNtvlkA2uKcF8VqNF/EchGYNGkSBw8epKSkhB07dtCnTyj3ZvHixWzYsCG4fv/99+NyuSguLsbtdrN58+a/1JBB1JhVCg17NuDW7TeGsRn1VDa6pDdTrV+WoX7K6jhQHRcLxMtAsBlHWbazxnGWkZYsvludx9POpix3teRZZ2OGjlUnTa+Ti+jd6HhwfVBaHD0aulnuKKWdJZ9nHi6htaUQeVk5P+1Sn+fQwfDGq5A6FBbNFbFzc6xIlHatB+c8hUtRc7OR14NlMDi+FCzGtzWlpObc6i/50kMYKXMs3D0k7KMCIKOb3zD+G4pKBenD9aCoWWYKkBz8MAPOUeC6Vah9mAyQrlH3d/QD1xhwaGJ0q4+JemgAGQ3V2/ZcLlQ+TD4hLnw+2BPA2RxcKf79/NkR7iKwzxOxyPxsL7+u2I+xVnWRGxWIJ3kQLsH9FihywCkLFMtqNmSJLNrPOSBXwzysliHcjkdvg3ovi1la40WiNIzSVXlGho0WOOkXs2wzTz3O7gdDhTuP+Ke2v8si72y/I1TnLHDOxW741C4kqX6RRZrBEY0vt6OOQQVB2pg7Bl4ZI95XBnlueO5WeGQRZLpgxiL4TkOlHRYqVVOuMVweFTU/m9wbpuHLzsVsGwbtWpPonEcD15fUcc6h3BQfzDfL/UAUxas/ezLJzqfwmjRPLkCZO5+sfg+x3mLnuGMj6yzjdBVAlDBUjdNtb5mu1lNrm9E+4hgRES3OCUTdjJXCH1uP8WbXdxmbmRqRYFHoLmH51G8YPbcbtzl7k5xSg0NZ2f54mLjbbZeP82JaKLmpUbuqnCv0Em8WfzztLK0gp5yR42piwEsjqymoih8wotocs5oW9a/0zCl9lyNAsiJZWv4CEhMg9SqwjUC4FDU3fOXNaZ0mzva1n7C3YDJYqoYrfEgSdNR4Tp6/BppbYNUeGKVgMb53HVhriUWb7yVJYPOr4VgTxPYgi7EWZJ2C0clChaN5c5EberYY7tgOHxwRS2Y3GFlXFNdMSYCsbGhrgnZ1xHHM5eBsDZ1NMP8ETKoNWf4JQJd4yCoWMUJbImAAa00RY7tGho1+spejPYA/y9sxEhZ8AlXSQteTrYn9lK2DWMW0VMtKrDoJqt8D3iwoWgUnRon2PL+xyZfBmAiW1OBnHlarDAniW0GRji82wHQs1MwC19ohrrq4AX6aJtr2OKDzrep+Q2ZCYnJIZFiJnTK8lhZa/3YZ3JcJPRTnGrgL5blh/lToPhie9ce3vnwfxj0EixUJvTMWQGKin6of/kDp9RgxGMWHXfbpqqB6/tn3l5Pw3hzib0gj3jYUA17M/h+6Nt/s+H2v0Dzz2bD/+yn5W/alzQg7ZkABpKtzCpaUJuyfs5LfF4SMr6dAP35uMBsZ5ryOOikNOJN1FIPJiLe0TLdvRPzFbMa/C/6hNvqvgZ76B8D3jl950OLgO8fv3J+0FGNcDHWs1elha6j6M5zT0PiP7i3k+qSv2SqfwYCXlIFqEeEBGcKvnuv2MMN+mFy3glaPNyzH7OEXqqrWH39B/2lQD0ENV4XRcp9VJEsrtiXXQxfmOLD1Dlf4cOeAlqE+9SqwdYEctacI+wfQ73V18rX2vJRjS17BYrTWAFtzsR5sbyqMneo6y/xxwPpgNYGtnvp8JQlsNaFFFXixiXgdU0sstXyw7CykHwgJF8snhYpIwJDpIjtH7WKson367qCeVcVp3GvV5oDRClVtUJajf4yAAQyMoWU2/jxF35CBSBc4IsO3OoncJdnhydM7NfXOLpsiFEH0WJFndJRO9BQ/tspC2mqtI2TIAjip0f+LM4tincHjRQ4Caan5efZ7OSeHWHmBqtPaumYAZTquQY9OMU8QCiDlUiwNbT2oZq1LpznXqbY3vU5/1iZJEk0GWNk2Yx1NBjS/uGKd/wcEkL8DosbsAqAXL9stH+B9+wZVW6Rq05enN9BtL8j28I18lrGNQlOea+5KIt5UziY5l4GWn/nckUd/y6+sl0N/pkCO2VeuJF5zJrBtg9pYfrPBw4Q7KvcVZyjjVR5/snTP8GRpeT3c87L+GKu3h+soyt+D5Tb40O+Rmp0OzttDs7d0nWoYG39XFN+srBixXj9veBXpjAaaPtpxlMxFhYGR3WD5GZblw7I8sOwWbMbKxNgYrqGkW25Qbzcq1j1AeREYekON7VBdkUTtAcwD9Y+RvzpE0Qc1s7GBJoG59fNgnQaD94dUQbT5ZwG0zKhYRb/bJPWMTPl5ZMmwVMdAXq6j+FFRjbMvNAmKgzP0+xEeJ4tRFPANoGDm62EFOyWziQaOf6naampEhs+5C8n+Uu2WuHzPy3Ry3ounsISd9lco+O0k39sX4i0qoadzEiNcz9HbeRsxEZTyf5f3sNDyND87djHf8hz7gxVnLwAXmTT9T0PUmFUCt+ycQOqiIci3rg7LNdMmTUO4AkgAseYYpjlTmPCy2ih+ueg4p4+ox1n+6hk2r8jj1BG1YVS6Fo1SeTDHrNeAWPJz1U91+bkSvfqpv+Ipd8G+nfDh22JxfQvOhf74lAK6ydI67YO6Cs8QwAcbhUq+/K1YdxfAzEx1//uWKvQZPSKe5tDc24PH1LAZAV2j5T4H9g1CQUTbz+zzq+IP9Kvi+8L3V1LqZTdYdgjWomUXyH4JLz2VMPsBiNd4cvfMgqXz4V9LmzDJNZFk51Nq5QoPUF4FajuhlgvMCmo+gEeG/CTwbobcrkBcKN5WLMMfClJQ/Eio46fe53wgqPrZcihHLMkm6qNZZ6tPsvlU6PAiVGnhZzRK0FBjsK7ZIwp3GkzgM8NVi6BFKly1UN2vODskXhxGEtEYqB7Xw11L9RU/emuOP+I29froSUIJZJZGCURBxdfGzQAwmzG/oiaqeLbu5JilOwUKORtJkogfO4KGzudp6VpOU+fTSKaQZ8Mtb2G7ZRRnPtwAgHX2BNo7H6Bq28bExBlZk3Qzfzg2s67FNA47tiAnTSYmzkh1ax2a2rpGnHH9KQSQ6MwMiBqzSmHVXV8iT1jFD459PGeZz175t+A2bdL0zY5eQQWQAncJr9u/pcCfWStJElfY6lKlmvrXtGdzHq9N/j3suNvX5TNn8jFV25CMasH3a+XiYI5ZJ8tZqsWrY2jXZkCRhmB1ySVgTYYxaWKxNoMBV8CNd4P7TKif1uuS4U+M1pR8Qv6XKKuiRCC3zDIBtmoqQIO6npnkhbFdBPFj9zTNMf3eOHcx2DMVidKKm6aqzMsHIB9QjyFJYGsIVjPYGoSMaBAa46g1WoFJdnqEMnKF5SL+5roGnKOhbg34dDW06VKFTTM2U31AF2GMlMeUJDDZwGAFo4Ycoo2Xlf4M+Xbw/AY56kRfjE0hRkNNU86wAseMMUM7J1zugk7+mZjW8BjMIu8s1QX9nFCrLTQcAKtvhF/eh7UTwCXD2onQfToM8hvR3R/Asxb4SQ4/borGQE14C3qMEddb4IaX7ZDtn03GmYW01SIXPOaEturEZbr2g/pWUePsPK44X7ab0tsmUnY6D+/KVZyb/IBuP22cTJIkUaizVnVyVmzBq9iuTZr+7b5FSHFGwWqM4HosPY8iCPxJBJC/OGn674KoMasEjm5Rl5lQxs6USdO3OPvSfWwzJElip3yUuywyWx2HuMPyKdsDGblArwx9d+Pw29QJTNYOaiZV6oTqPHXrqWDsTEsAOXOynMt6G1m1vSpvOc2YTGDTFM4co1iXPIL8YWmvSJT2hxPMJnDO1iRLexW1y94P1S7T6K+ScUX4DE61vYt6XfKKApzt6vqLb97jL74pgbxXJEg79oLlFWG8gFDumbbMSymRBYIr4bJMr6k5V78RM3thaX2Yo2E7Dq7pj7/FQ0kpJN0OjkywtfiF3Y49/GgZLpQrAsdRxsb0XJQGjQEoeRBKHHCmBXh/UW8zdYB4Tf9aOiobXgnq2CDeKmZrxdmiPEypgn4vSdDQBtWt0MwGv74Pi/3MxrWaGFbZOSFlpYS2YCdArBkmOOFfLpjoDKUn7JDhFgtscsB4i6j1JklwuU3koxnj4IVb1GMV6BgMpeiwf1bmW/UZnpbJlDuXUZLcAs+GzeH7+RGvyD3x+qcr+fIGfrYMJNfxBXssQ8iRxf61tE9xhOJn9dN76Y7fJChxExkBAsg4170MWpTGF7esuPASMKaLWP6BiBqzi0DHjFCSViBpurY1gRRbs6A7QVvDTJlfFmeOYbqzI6/uVj993jm3GfcvSqZXak0eXNSEQdfXVG2XF+Wz0pFPL8sh1slFDNMQQB6bUsy3mz0M6VrIotdKyckGsxkWf2jgxz0SjndDCcPubLDfCUeOqq8tUKxXksA2GKyNwTZQUaMsWyRJ16oeInuY48D5YOVyy6YPDqfcg6C137gUBlj9ZI5L/DXJtGr4ypi8J0KZF9R98AjZKfsujQyW16/28WuI0GGWwNkMXG3B2dgf2/MzMsdUg2k1YHpiaIiG24UCf7/VYI8kpxeoZaYHpWHzAJjBMClCZw3MNwgXZQMnNHcJVZEARV87fuD9KTlUHuZzCxxxhPf71QGbI6tlkNQB2mqMaIcIRjTFBrWt0FUxA92jYXP+uE5D5dcxjAPVhArOuuF+e6j4ZwD+emYBxLRTu/SNl3UiduiVJCx6XpF7ojhlHRV9EHJXLRxqVfmzq7Moc+fjM1ehk/Ne+u2fR/NpQxm0/wUuc95FjEkjMq0c1z89kiSJVrYOnN19ktUTMtn3/k8XXgIm6mYEQPL5fJH52/+fIy8vjxo1Qv6lu/bcxNk9p2k/uiVGKaRcb8DrXzzBNm9xCXfELwvuu7h4BPHmUF+AGF8Z2z46iTWlGgey8oiNLeeJUSHG2fOfNKW8rJw2KWaWvHiaj+bnBLc9+46Fa28ys/qjQjqmxPDmi0U45oezLZcsNzBymPiKDZ5yDB5Y+SmMinCvKv5JVG0GwmYR8npIuz/UN/MpSL1M09c/+/GVwUdb4MBJeGBpaJ93xsG4Huqx5V2Qtlgx7nWQ6qfgFxdD/AuK87tTkfPpAZ8HPjoAKTUh6zSMbqhxJXqE3FTa94rxO0BqbbXaB0CmFVIDKQHa2ZNiVrc4D8brl6PTx45i2GqGXcBB4CiQg1AAUR4rAEMxlGgUoJWouwfK9kD10RDrNxDKm1RF708thr3j1eNdlgmNU8X2ozJ8nVbx9UwtEk9Jv3wUEiHuOFp88HrH1q5vegMW3R4a7/Y3YOitoe3eYhiuuP7HHTB0rLhWI7BehmmKc1zwCQwdDkYvUlkBvuTQ9Dn+9CHKv1gDuWfD3I2WzPlUSxUyVYH/b0xxIb/Eh2ZanYrXEmM2YcRLjM9Dzkcb8J7NYf8dr4b6ZD5E/dSuYfcA5X9duU2vbc/iHawZ/7Hq/HJzc0lICBc3DyBwf8rNgoTqEbuF75cPNVLOP/7fDdGZWSVwy84J2JwjqdPWQgdbK1UwN1KJlVizgUnOnsx2DeYu52VB/UUlCrI9bFtxhuq1jPSxJVGQ8//Ye/M4J6qs//9dnXQn3c3a1exrE3ZBocENRVAWFZRulNCtEEbbDRkBUXFfcB9cARfQUXQ0qARHO7ixCLKoqEC7gSg0oKDImt73pPP741YlVTeVBpx5nu+jP87rVa+kbt26dSvLPXXO+ZzPMY9VXlzPcHdTOrnszHjCzE49KjeVkqIwHy2p4rE7yrnhTuvFr1h7yNXrl4EBhq/JlElaovSz4mHVVL8Moi69OKAQKwYHRRFJ01PN9fxiXIwELWiqDLExpx18Y6DwKvCNEonSxmtGKkenaGVeJEVGEOTC3kWa0pWRiEUGIIjpvqSvOKcRR5XxU9OYsuM6OvkeivIfGseMtw8QdIJdAlokTYVmOwSXI70gRYsdWc03GICdHvEqX0O1QCbqcbbKAGybHXu857UwfDF4CmGUT7gYQ4rgmkxzCbJhI8nw0e7xdAnxc460n+AUcbNFhTDLByMuN8P+ZZorw37Ynory4mvYN35N4qsLUZxO7JeMQbEobyLHzECgGuOBQHQWEJxmF2u8mJkuNYFyPvO8HOFotJIeOSfHPXZUOYFmBE5YZg2K/uQzs+QmUpvYpSet+E9Z0X3r/jZCfOk/yKPZ30SuNSu/F6eNbMyolGhS9ZqqvqQ4w9gIEQ6Hef/VAGv95QzLctK8Ofx9rNnFMnmmk5y/2Tm3T/TPdaDcTk1piNtuCvPEY9CiCdSVQ6oBFFe1XbPGggKSn23wcuU/BVmDgRBUVUDKMMN5H4kEYpN1ETLvh4Pw9heQ2QkKdsG4floumEHhVFVDyt2Gce+WxjXGwIyKSm636CdbZQBVQ4R1V1UDKQb2oqpMkTQd1yrT7ykMb1dDZgo8Ww5zDkbHmDcBWp8GnaaexHvKGN5jDN9+ewas4dgsMztQ74f67Ghb4kxImR3fCjO2Vfphj+HcRkOg5zvg1Hyj9Udg6xgoMdTgu7gKDi6HLw3nGSX3V9h8OwyZK8aJZ3E1ZBka22xhKHgbOmfC3gI4y8LClM+vCMDT02HmXEhNhjMMD29bKyFVO8EeIsEewmYPRRKn7fYQCXXllDY3F8htV/U9itNh8qyISzb83w1V1bAhJcrGP6zKR5LTZjnG7/5NrM+OWnFDXvfw2/JtDJo7ltQ0Z2TscDjMtlc3ssu/jYyRGaz8+7Jjt8y2/gHL7KS/nmX2F/We/r+TikANi6dv5LK5mTRNi/14ywK1vDL9B7qfbv4RlRcFSXImMMvXlZ6ZDgoLyiNkwgDrl5YwK0+smp/4K/FMTZWHpmdvhR69E3jJ56RfZj1bNoX4eHk9Ey4VY7z5Fry9CBIkS2PZWsjWlJRstRlBXM4kAfrI7AYFP0lMHxBLxhASD9TDesH0RTBXBqJpi7jTLoAfmW2h4NdonMoogXKYvhbmngWmj1VSBoFKmP41zO0LaQmG6tGaTGmnwfNDQmH6ukJmKhSUgSNELHjEAkyiKOBOBpLgZCns0sgB7guhQDGDc+R7tt4PQHA6IFEohYuhYhKkzIWktOg5euzR6BaW88XK18ImFbrniyfybdnRY73ng1OFegcclOJYLc+BzuOgYg+8pT357PDCqHzobsHeIe/Lx4xtigIDNALidq5YAmJZ1vvhDm3ey7zw1LuiWGevTNheIKD6h4vg4WnwwOPQoinhogA1t8wAwtieeQxaNCbZ+wLK4YMkJNRja9Wc2ooaKq65i7S5d2BLi9UGIWwxnpcQtphcs8PLCmibbS7voouMaFzreR2AQu8mLsi/kq5ZIqa3a+k2VuTli2N+CehzNDneONhfdNU/4WY8Bnn/mg8ta5nJ8q1/DzPUJXzh/Znp6jsU+AUKUn9a2+jfzxXqKtZ6f+efU80/2GG5aSiKwlB3Gu1cDoa5m2E3LIgycrF7n9jgclZuIoqiMMZtJ8OVwNhxCZQdMRve+/bC41J8udjgbcm50Hws12CJKQq4h4KrNbiHWMDcIUa5+L8CdSp4vwD1Zq26tFE0hefuawZ+RMZCQzK+AN4fQX0Z/D9jqTj9v4LqF4AM9QPw74ccs3eWJ7tEx1dC4FbBlQjuJrHXtaxrJlmhuQYwCMBlAy3mJp+nvw8HAA8QALyAqr1KDBvBf0LQC6WqyDUzjiu/T4gTawsWEQP7T3AKlGNdERR/ZT7WaSJ0nwrNJHZnnSarIaV8lN9Eg+eWBeAxA2Qfor7ySJ9iGOaGji64wA0fL4WB6fDuG9C3HfWPzCLYLYOwP5+w309Fxx7U+leSNG4MzhuuJHnqFYQdyRxKH0ildym/qmdS4V8dQTSGAiXs9dxHMOJnN0uo2KyggsXx3Ycdc06Le8xYrPMP5ZfpcgIAApxQZsck23w/8pj6DC8PXUxlIBZkoUs8xnxdtqw6bNofcGEaLxeext2+niTGmDlmOV8K1GR5Upi3uCmz5jVi1rxGzF+cisMRG8O7VILmT7sdNkhut1wDmXVlFZx5Clx4NiycFYXkx0hDixPRc2RGoKJKi/5Gy6ocPO9GUYf+n0StMtMYNbHngQXysU6zvk6GwjM0UuCj5JnFtMsuR0mcIcHlWDhCi+lJC4WOWou5Rp0fanTlpSKU2jFIfZwEZV3q4iys6bnQXIqXtcgVqMYVKhR9aT7WSYtjZUjnZFiwdxyrorIS4/E1XrhMhdVe8ZTxmZYAfp40h+ESA4jsTjho/p8BhIvNiim093fTfnCv4COLEA57PxIQfb9UvwhIl3JRWucOjulTGyjnS88LBCtrOMs3mazChzjbe4WpT9fc/pH3/0nMLJwAYdtxbH/RVf8velv/M/Lz2l95SF1gSpqGqAJpiDHfTogOfcyujDPGtqCtK5lz3OmW1amNYzucCk/6WrK8sC1P+9JxOBVGj0/miqnJXD01iYvHOyLAlKJAmMmeWgKBME4neF8TrB/XXWUeu38fWPi4prC0eFn6INjwLXz0KeTNgnMna0AQ+ekawZ/oeUKjsIqj8OQH0wgAxBjj0vb9P2rFN7+PFt+0osM0we8N4+R0kPq10qy+1hpARLWwvo7lfQNKTlHAna4lZXcTvI8AJYEQ+Z6l4um+RCtgqRfXDBJrJcWIFyiEBK+5OSk3/nxrAlC1wty/x1bo7IOQQ8D4e/pgQKFIoj6yDL6XlOhJswXFlU0DOYSdcNZC6JQFQxcKRhDjtY9XkcXr/5Uf5khzObQX/uGB6kp4wAeLC+FhAwNISQBu8cAgieJr0DnIYh+XHXlf9e7HVEw11zs6MvUR9g29guBeM0zVWN8shI26QCmF186hx8IZnFb4Mn18t5kg+CHs/O7fxHvq9fzi3cC76TdGmEC6XH4q5/nycBfey3DfFZHinCDyzS7y5XBN4TRGvzom9nNrQGqdx7/9FeWEMvsDEo9wONFp41rfYB4tvIjJvrNiEIyDJ5qp6EdMPIZ6I5ooisL57kZ0dCVygTs1Lj3OR/4gPdQKlnjryWgZ5IP34dJLBOvHOWeb+369BfJmwiLNcyU/4AKsLRDlXobeoJH/aou5/3NQ3eD9RFAN+r/CUuE5FVj4N8g6BRZOiLVcjP1lwoSiSsiR6q4tGAzXrIedAfCsE5Wf9XGcCRp11XkadZUGIgnUgWereLVSTIGgoKYKyO5FWULSq6zsdNDJCjhP3c4W71Z+VEeIaskFXlFu5ZD2Ydsb4DvEC1wOuEC5HBJ8kFQoqK+CDlHrrExLetalzA97VSjXSr60mi/yzuy9oJkWrFQU8T7ZJdyLweLYS3eZFqW4CgK/LoXP8uAXP6zJg5+Xmu9Zl2PZb0jxyQhFgGenCuLhrHRITBLxtYHD4N5Jovr0WSq874Wh7eHqW2DVDnjuDagze0SUCZeLGkcI7kaZfFiX6rWbODT1H6Y2Iz9jkf9TNqljOeRdxU95T1Ox5Rdaus+O+S/Kdc30uJmiKGS4+9PE1YIu7n6m8xRFoYe7D81dafQYG8sB25AEbQpBW8JxbH+AzPhPICeU2THIFV9MMu0bk6aNoigKA92dLBnzAZKT4WZfP+YXns1tvj4kOWM/fpvl46zcJ0RxoJ6bPcX8sjPINE85pQGBdJArTRvDDdVmRp6IeG4SVpkcLzPK2m9AHQP+z4AgfCCFWFZ9Z9gxKIOl30Lev8D/LeQtgqXfEHfhsyq+6USUeCmcCDNPhsnrwbsTur4D3l2gLhGxMtBiYO2geSIs/V24Gf0HQf0EvAdA/Rz8R8zX9x/RSINLBJGwX043iKfg4rGM0DD7CWUa0CLoBHxAIbBY2wq1tsuJlIAOKaAMg+AsCA+D0FIRO6vxQkCFas0VVy8pA8UpWPaNkPbqABR6RNHOIIAUX8uYEaW60u9rvwQM+W3VH1NkR9s/WbKuLpC4GYuLBBDkfBU+8sJdkhXXrTd0csHocTBmvOlQeNEbhD5YFtlPGn8xDUnTKeNxFebTwfdIBJofxBZDaSUz6OsuZbmuWaejMIEE/0OsfMhuP+7tryh/zbv6L0t6TxW3bwztM1uwv+B3rUBnvMf3+KIoCoPcbbT6ZEmR+mSyyEU/ZQX3sb+KKdlHAMj3CivxHW8tr+SnkJVjZ9qVUY6ncYb/de4lcNU067kVlQqqqsVPwIFDUFcHNz9l0a9MWGX/lOJYfeVK79qUrawtwFI5OO2i+GZmOhQcEDlleokXgtBbAltExjQYykYovncfTJVcj0WScorJNbOyHqwUl44k1EtqGVISci6AK++xnitJfUU/RQH0gKaRxkSiNMEPoWzxtsYL9qnmw7q7MiUHigzJ0CmGuFIQqPDDbm2cw17olQ/10pfTuK9QnsZVoXEfc5+mfaXrEx/ReKz73/rh6exoW/ZMmDgLlr0YbTsvF9a+RVy5wMAQ4nTCFdfAq1EgTbi4hFDQhs0eAqeTxoufI7x/PzX+VdSt/tw0VPqTN5PktJPsaotCiBB2bARRc85j95XRPLyWuRKPmyYJzkRO992AmtmRooKfNcb8OOjW/4KEbDZCx2FthWxh4Dhrpv0J5IRldgyiKAonuXuS5moWkzSty7FYVKKfrKiOrhRLAiHu8uyPy8moS1lRCKcTFvoS+fonO68tUkixRS01pxN8/4SNy6G7OeWG3As0yqbzYWouzMgF36OwRaq+kXseWOWITjwLyyfuHAmxnJtpPm48RwmBu5cozDmsPUz6MEozBSCFJKNjdoiOI0Px+0jGh1YiDhBjr5Cs1ZHJ5nkF6sBTJOiw5HsDLJ9pnDZ4zNeaKYWTafP6A+aDzSda30RckSyucIZ536HF0IJOSPNBu0LByK84zPOs2SvNvwhaSkCKVhJlVJAoEESXrhOjx44GBDlWC61Cusdtn0JtlZl4OMkBwyTX7CNe+LBQwPSNTPohO9wlMeWv+oRwQFxHURSc4y8iedrVJHuyTP0aT8kxJUobATyKM4nuvnsZUPgqPX13o5hiZaJfbaCcgknzaTnsJJJdbejgPs20XvynVpiV1JuyWo++1f9Fs6ZPKLPjkMpAFT7PsgYRjf8t0ZXcGn8ZQ9RdDXIy6pKSCnYlRJbbRheXwiWXKigK2AxghaREOPV82K6R9M9/CHxzoyAQXRQF3MOhtQqDT4FNL4DvXoEGlImFvTdCZS14njewhmjiTADfNVB4H/iuiMNxKgNBdoD6vAbFfyFKLuy0gW8o7BgLM3rCjtGwcCBcs0lTNsFYKL6nFfh6Q2GmyClzKOJ6unvxzWJz/3Y/g18zWLyloO4HbxWoh8FfI5LAw0EI1IPnMASMVptmnSkKjHQ3Js3VnKYTRgnwwoxCONUn6ozFLPRh9HzCWJEW8NBNYJsJKYWQosXQQPty3aC4ou5F/RpFXtgnWXTNc8VcdDb9vr4oU4lxfvZkGGRg07c7Y5WSfk5VAPI9Al4vH2tIsZ0h3eNPG+DydEhIEsTDQ7T7SXCKz/LtQviHT1BctXXB+UZ3qmb2OZ0oL75GwhPCvRBa8i4VHXtQ955wN4ZCYkFPzrnIdGn1yVvNyidQwh7P/QQDpSiKguoeQpKrA+nuc2Ieag/4v2KFmsev3k95T72eff7NFh8U1AQqWO3xUh2ILf75RySI7bi3v6KcUGbHKD/6d/Co+jzfeH/kIXUBW/2xJVtkORarq6F+NkKUSjVJSovqcTjhGV8zbvuHWalVlIsF0R6KHa/0MEyaDHvNFWVEdegLrVF+/k8g/QJY/y0MvC5ah8yZYCAWvkWQL6RfBd5PQb3eAAZBU4qngKsFDOsGk97U0I8NLG4xcP4aovlonaFrKjw1ELaWQt4mc15ZBIp/toDiOwF3C2huh6VF0ZIuDRXVLAqCvwo8kmLWASL+WqHcvFWg7tLicHFEURQ4zw1NXYKVvsHyJVZKzQlIxMNKb0hwQUKc6s7G/TI//CbFl1pMEZabokCaG5Jc0EobqzIAm8fDV+MFwCSkQEcDm35Iib1OEFEeZq4KW7zwpAo/+q3nZdWmOGGqDy6TqLSMhMO6a/Y8NzRuDmuXCrZs07iGuSkKyphLUBxm6F64qMRcwNPpIM03l7aFy0n3PW2yyor96/lRHUGRdxnfqaMp8n9qcTNRa0umtbIqAbPH/y1e9XYKvZt4Rb2HXf6tMX2OV4TFZT+O7YQy+/+1yAjGKouinCAYQP7p2UB5wPo4HLtLEmBkjpkpZFSuQDKOcju5cppZmY29LOr2sAWjCm3pB5DeFbxLYOqd5vFzLzx2Lsa9B8HzmHAzus8EVxtwD4LV0v9x1TbxGigFzyuiaKb/a1DvAm8BqPfD0JfM6EgQSs7zPozoJH0G7bXjFQYEY8gir6zGAMVPAndLse8/AOpX4D2iFdw8AjnNiSsrqkCqiSo+qyQIhkDC2AgFGTRvOjQ/FCgxg0lqAlDiIcKbGFFext+E3hZAWGb7zRe05ZrHjOfeCyISomVpNNSa13GfXzDq/74E9i2BpSqsGSrm3NB1AKql61TEqRRgNYaiwOluuFCyHs+xYOI3gkCGqYJ0WO4DUBSg/oarCZ093NSccMklpn1FUUhxX0iCK4NU9wURayuILYZBP1hU1qAikEvBdMg9w7Qfwk6t9KQmF+f8I1JL0nFvf0U5ocyOUfrkmOGy3UZ2iOmzybsjwgByg+rn4aFrI4U5jyaydVYSCHKP5zfqKmt5zNeaDws78LQvnWRHtJ/DCQt8jdhQ2ChSv8w0pkYuLFXFAGD+I4JYeNk6UE8D73ugni2sMQBCsYU4pz4L3lWimrR3DXieEgooKBmCoVCU8cP7Jai3wart5j5rd4M6G4b+S4zh3y7qlXl/gPYvQrYBB9HOC3duFMU3jQjGmLyyNpgXNc3tZwXycIZgYVvIagQvt4TFrWC+BjB5swqmSor8RgfYtPu8VFrP9JpnuvjXwhB1F1u8W9mungefaojD/X7YoUKdniits3kEpVe0YyqwBHhHa5sPGFyLDSkX/X0jixSAunLrvla5b4fXwruqYNOX+xv3u0rXOSk3to/VNY2iOOFGH8zeBL0HQ3VFbD+ZDcQK0r9iKfRtB2+/Bf27k3DDNJK+3oTztZeI+ZMQG8cKBUrY77mL1BFmZaTmnhdzbnWgiq2eJ6kLlJHgTCLTN4PhhU8z0DeNBEciNYFyNnj+GSEZ7pwzwHR+t9xTYsY8XjmeeJm+/RXlT6PMfvvtNyZOnIiqqqSkpNCvXz82b7b2Seuydu1aBgwYgNPppEuXLixYsKDB/g2J3Wnn7JkDI/uPtHuVzd6f8HpWUxGo4Vv/HhZ6zKioH9cejinMGRmvARfkOn8JI9Qf+dBbytD03SQmKab8MuH1DqEoChe5k+jssjHGbceuhCgKhLn2b0ECAb3sCwyL/Q/idMCwQfDYS+Z2I/q4siIaL5si5XF6ngbvWlD/BtWSvg7Xg+dlc1ufNtb3uvYXkSC9SvLaqtLD40EZFVkt5ZX11/LKIGYBlK2wkclw7m7I2wf+crjqoOBrbCiX9CQl6tFzAm+kwI6m4FOjcbjI3Iqlk8u0BVfmP2SVNNkAMFF7leJOkSs3wJYPIgftsEe8AoSc0EpKvE4zAD2qA/CTBte3YtTXpXKvWSFVB0TRznLtOjYnXOyDqwsh2xdNrj5WIIhuodmT4LaB8MN6ETf7QlKiMhvIBRaMJHIF6R49ScjIgDFjY+JcIQnQXeFfzS51CGXeDyhsfyHpMyfSs3AJGb4HCDnMnJkHvKv5XB3PAe8aPlE9fHnuvaQP60ti81T2Ly1gz6LP8as38LP3C5aoM9jr/4ZgZS2tBrsYu+lmRvommRKn/6iEjjNedkKZ/T+UoqIizjrrLBITE/noo4/44YcfePLJJ2nWrFncc3bv3s2oUaMYPHgwX3/9NXfeeSfTpk3j3//+93Ff//1rPqSqqJoWvVVT+xue1WzyFnK76uWnVbEKS5cKGWInSWmgjoc9O6nQgCVlUpysIk6AR1aIH/pDdFVrWLwoTMe2Yd57X7gYM3rFnpvqEJWlN3xtbte5GP3rIH10NF42pIEHyFfWmPf7xRqtePqBbwJsmWE9Rp908/7jUnHPx2VUZIdoXpkrVVR71tn4A3Uw/nsYv0W8dyrg6yIKbs5sCe22w1o5LlcPORK/r1FykqAuCAfq4G8VcJ4NXDZwO4Sb0bNNuEGtLFqGaFZKoz7yXWuvdcC7QGvgDSCdmBwwcdfiJZ4iq/LDQRWqvbBPhRIvHJ4EyRdAy4XQKAvaLowW8DzkFyTEh7zwmQoH34Y+i6HXPOjxpPnSBVOj1tkeP3hVKPSKatS7/EIRudzQzCVKw8gKV5fSAHg9cGgnvOIRLB5GkQtz6vv6WEkSCCRBsrSCCow2Kzxl7KWEgrFKQweBGEUuC+Po3QWHqz3N3eeaFOER/+f86Hnc1Ldo7Q+sUPP4SL2WX72fssljfnjev+pHFqffyoH1O3l34JNsee6z/4qb8fjiZfYYBf5XkT/FXc2ePZsOHTrwyiuvRNo6d+7c4DkLFiygY8eOzJkzB4BevXqxadMmnnjiCS699FLLc2pqaqipica6SkvFD3ub70e2+X4kZ/Foy/MA2vRpFvfYmbnt4h773H+EWdkiyLTSe4TZ+Z05dUQjU58Lc2MZ8nUxuieL5YTp4liG/P59YOrfoFyydGbPgIw2US5GOV5WUQ2+u+BIEVz/fOw8pgyDm0ZCwS8wujdcZzAGvBPBmQjuk0XRTl8u9Fahz3PRPp6ToHkSZKpQsB+aJoFvOGSmQcFBaJoIvsGQ2RQKDmtWmJ7bZbhH737w/BDdX3IE8rvBsCYw/Rc4PU7J+NSwpvSaQ6YCm4MQDsEpCnxdD8V1cHkNfKplRbxVBu82AiUM2RqoxrsEhmyGf58CT/pasjPzEt4p6ML+RE15tJ0IPxiKUrIcGAWkEQPBR+YEvIUYLGgQM0u9nDhdpAE/KgxfRrkf7GmQlgUhqf9Pk6BPPrSbKsq0VO+EXwxfdqUG7/9NsjB/XQVtB8On02HYXGisMfvXBWDldLhoLjRJE/lkr2eLczZpc/rSC3/Ph1M1iPxpObDAkC93Tq75PnUQiB1o74rklps+D4dTMIGccgpsXEtw+nTs/3gUWjQhHCii8rY7cT75IIktY8ufOHNGw5V3R/ab5opkbj3XLHKpo9Qws5Jmfdua9vet3clL6v2Myp9E96zjY/0wSoiE47K2jj9D9s8hfwrLbOnSpQwcOBC3203Lli3p378///znPxs8Z8OGDYwcaa4Mef7557Np0ybq6qwtpUcffZSmTZtGtg4dzCbGz5/uszwP4HSPK0pltXgQV748gMysNly7sJ9lYU4Qiqhcsrqeu+13stpvi+z/bWYzkhzWvI2yjM0x/6Dd48BtjndHKKxSpQf/aRPAPUIoMc8sGGF27XPZOQLs4YwTO37ycnC1BHd/SLaZ4fiXn2JgqldELlnvNPCNg8LrRfFNpwLuHuBqJpKkE+oFctHVRLwm1IO7Pbgag7uDKODp2WTI/wqC/3ezItNlVbEAfniLYOr+2OMA66oFr6I7EVx2cNthvENYX7YQdKyKKjJdfrGIx63dJRCgiUkKaa7mNHaPjN58OBmazDT0fgfogIiPZUszkpKTOQnTym0FAElqiCLLILoSa2LRP6ApKkWB7k+YjxVMhZ/90FSyMIMheEmFH73wnIZk3O4XqMbvvPCICt/7oSoOH+U2nRUFSJTiZvJTl94viLDq7tGsO+P3oCiCCeSnrTBjCvz7LYLdMqi7/0EBz3/z35S17U3t0uXmjwUbitNBS9+TdCp8j3a+f1DvSLZWFCkNmPEGOd17LRcVPspZvsl0nmDNBPKfWmcnYmZC/hTKbNeuXcyfP59u3bqxfPlyJk+ezLRp03jttdfinrN//35atTInHbVq1YpgMMjhw4ctz7njjjsoKSmJbHv3mhNNW/U1+8IGTTmJuwtzyfOdR6LTFqGysjtsvHLVZgr8v/Ni3jd8szS+EhySYx5zz09mFGSX3lEC4YYg/CCSol99y8Z3WxW8r0GKTbQtXgiTzAw/fLpR5JcVLgffE8LS8X8C6nDwLoP2Y2FmLhQu0vLLNKBkjuT+2/oY+G6IHgczHN/dT1vLpakrCri7a8qpZ5xyMli0BcH/m4Die/eCulygFSE+3L6vtO5MaQYPSWwixrpkYW0cHdiyJs5zxI3VkBIHaW96SDHGhBJ7W/QuRsTDXgW+B14HpARm3cVolBgAiFPknjUvhEbe2P66NNWsHcUJ6RJtVKO+0fkmOKGTlBZQWwQZE81tquSDri6KRTdWFcEpcZRtm77Re5HjZpMMcTOj4jaiGocYUI1GCZjdC+FDh8z7FhyNiqLQyH0+Sa4OpBjQjbKEKsxQ2vbXX8A5hc+RufhG+i++keGFT3O67wY6Xn4mjV0t6eg+FXtyEkN8VzN2yx2mc/9TEMiJPDMhfwo3Y319PQMHDuSRRx4BoH///mzdupX58+czadKkuOfJP0S9qHa8H6jD4cBhgXa6+us8SnYcpufoTiy9dmWkfcyTg3A6FVq5UlEMK0tgrzkgU1FUF1cRJTvD3Ovrzv7dlbx4268xxy/IbYQx9ygerN9GEBSFseMSsAXDdOsURgmCPQTuLCg+Aq/5ov379hD5ZYTA1RaB+is2j9m7k6hd5motjgfKYPp8WPh3OKcHFOyGXu2gt4wi1OVocG5dQkfpI7kSYyD51aJPTku4MmrU8lRHaGeDixqBccl+UoX6MNxtCNdMdJivqyuyuiD0aiA1rKIefC2hdyvo8320fVRuKm/LnYOAMwe4UjpwHsLqGgLcDjyB+Gu+AfQHviNOunl0XDuasnSLn4uji1AKtt5wxGBJtfQKBv0ErX+bp+GwgTZKNSgqRYHeT5hdje1yxVwG+6BFJhQXQMZoWG9wn/bMFeW4jffZVzvvch+07gVPGSzP0yXlaBU3M7oaIQqq0cWIagwqovPFbph5dfR27nsYvFFKm6ScKKopiM0Ugw4FSjg0/THazL0ZW5rZ7Q+Qnnsuu/KiMbMeT+WR5LSR6mqNXnG6qStdo8OyRQBbnd2Z2MJBhvuuoGVmGw4X/KaBQP443VUdDmqPQ0HV/UUdjX8KZdamTRt69zY/0fbq1atBMEfr1q3Zv9/sUzp48CB2ux1VVeOcZS3NuzSjfb90EsJBLvONokOmym8FhzSORvOP8Gv/r7wx1YyyHJQrfOWyQisN1LFg+k7+PrczKclNTMrMtzWDn7dWUVVRz4PXHOKGWU14flYx981thJpmzRZhlSwNoARhYjZcZ/BwTbw4tl/OCLjSwL4UQSIHwb8esh8Su961kD8T3HJxXV3pGJRCoBKmvwtzx0Cabv0YeAwj/cqlStLSOJHxERanUVK1fWdYsH1kOqGgFMY1FetxuA58HSAzEQqqo+hDX0vItIk2p+4JNFyzTnvvBuJQWpKbCMmpEE4C3xmQeToUNI+yK9UGKkSxye5zEbExJ4JUeCWgQ0l7AtOBudq+TjycBSQSy9cofSbGuBlEFZvdLWJfaT5IyoRQATQeZ060tiVDFx+kZEJNgbDGjGPZnJDpE2ih4gIBuFAU6KTxSjZxAWEY4YPWmXCoAMIOMYdsH7TNhP0FgHbeydqcPD7olAn7CoRr0Xg/QWlhT7SIGQ/LgUcMyvICAzhG/zwcTljgRel3Mnz3DTRtSuKrC0nMPAm+/xYcDkIhBWzmh8QK/2oOZItvvMz7AR3zH6d51tmR4yFsJDiT6Om7myaZGVQWbCfBkUiIYwsHKIpCF3c/bIQ0hRfHpXCMcryuw7+mKvuTuBnPOussfvrJXJl5+/btdOrUKc4ZcOaZZ7Jy5UpT24oVKxg4cCCJibFVmo9FFEWhr7s7qqspJ7u7Wlp4ckHO4VM6m2Jm+p9mg/8w49Qv+dh7mLHqJv71gNkq27O9lsQkhaHpu3nfW84FXfex1FvJAPUgK/w1lAXqmO4poyhg/uPbpKSvQBF4/g5V1eB7HjZ9AINPFUU4ZaXidIDvYShcDL5ZGhhEEznevVdnvQhpSdcvamg+XYLg/wbUe8H7tZYo/U+h3EwSEnRVMZWkDePIlluFlArw1G6BWiwKwtJD0Fwx1C4Lai7NploidWq0GorbIeJjwxwwKQBHtHGDoagiCwYhWYGXlNjymdcqcE2FSOJWFIGodKWJatyKovCTfzu/qGeJYpMLVDjg1xg0xgOSv5bd0r7+ARvju8Zkag8R+H5DFrBOc2XXaK5CSuzxJm5wuqDpMAECqTKYrIoCzYbBD7OgxbAoSlGOUbncYGsOu5eKatSKAl3dQtn1lphPQgqc4oZ0F2RKc/rcCy9dZf4oqqQfn+4CNaIakxyxDz+KAhddSrh9N5Qxl5CQkIAtO4uELhkkZGVTHxJarz5QTLHnZuoDxWJ4mQ3fkK+iu+gURSHdfQ7Jrra0dJ9NSPl/ZxfoAJBj3/4Uy/5xy5/irmbMmMEXX3zBI488QmFhIW+88QYvvvgif//73yN97rjjDpPLcfLkyfzyyy/cdNNNbNu2jYULF/Lyyy9zyy23/FfmJMPiKwI1vOz5jJNGtDa1T3yyj6XSk4EfJYfMoJSy4vq4hMKfraqlr1rMv7119FbL+MhvHktPlo4wf7wN6X3h660wcDSs3wjpp4PfCEoLagCIYeBqpy3IhsvnSPUOpy4E/ybwbwZ1Kng3gHqjUGC6yHHttT+LRGm/BtIIVIHnQ/hJCmEWVRE/FwmQwaFflIG6XpR48R4CdTP4D5vPDdSAZ5/GpWgYy1+u8S/WQHoxvGNwYQYNsbPsBJAwMbwYhkW1oO4zUFppP4viQIjPZ38h3YPRNSYjapdK+5cSq6EgmkwtJ17TsFIDQU91yAMhCyVYpMH0D3vhSxUOa+PqrCC/eeFDFfZaxKaCwE6/gOn/pCnun+L0i2NtA/C1H16UHxmAcy6LPd9IbbXGgtoqMn6sxRI0tNUuXc4R9RSqvfnsU0+j3P8JKVItJB3RGE8agrrHs5iqAxWs8rwR4WesDlTyoedtqv4AX+OJmJmQP4UyO/XUU3n33Xd588036dOnDw8++CBz5sxhwoQJkT6///47e/bsiexnZGTw4YcfsmbNGvr168eDDz7IvHnz4sLy/xP5zv8LM9W3+NK7m1va+7lwZg8eKxzFDb7TLZGMdkKck2MuzDnlcfMK/cWKcs4cYY2Y6tHX/OcptUA+2IIipccocjV5y7pbFotNoAiufQbyhpkPzV4Ke6VrFJVHx8jpZzV7EePyb9MYP7bBbZ+Zj+fqjP6aVRaoAc+XUTJhZ4JIkp7dzXp8gCKD0vKXgrpDIw7eFSUSDtTBbOmhvzgctcrAYKGFhNMv7vWMCnIdnKn+ym8bfjN3am5M8HUSGzvTJY/oXzOI2TqTk6mlPCxdZKVW7he5ZxVe2K1CwAv7NFqtIALYYZQaLU4ls+3XFgml+LkHKgwowhrpfCMAJJ4Sk9sqLRTSNG80L04WHQSyTKK2AhE3s8otk9pkEEhw736OXHMP6QsfjCAadb5GK6V1NPdebaCcLz0vUBOI/tB+8X/Ha+pdbPdu5hX1Hjbc+REL1IfY5v2WZ9THKPxgR4Njxs7hRJ4Z/EmUGcBFF13E999/T3V1Ndu2beOaa64xHX/11VdZs2aNqW3IkCEUFBRQU1PD7t27mTx58n88j8pANW95VpqY84v2mlfEtr2b0MaVzOnu9nHBJsnOMHf7evJ6YX9m+brSqGkCD/k6Me0JgcBc/mYZI9v/zJUzm3Lv881M5zaW0mMuybVZxstyxpr3z5U8W6nx0MWGhSNCX/UJLJTSizYUwlQJUJqrmy9BLW9rAmyRKPdye8eCOHTJ6y7YOHTx/wrqO2YyYaVekAdPlWuoGa9h+Iwkz2+ESFjdDxukLI2xejjJAgziRBBKrQeela/XWChbzzuw95B0cNJsuMBQlkWMCkjlYSJyLwIQYpycXiZbRgTqKMcAhDyGwpuGy0BsDtpBD5R64UcVSv3QXBq3Ra6wzn6Svjx7quBs3OMVNFe7NNRkF+n8HrnWCosG2vpLY9zghTMvj0/ObEVtFe+aYCYY1kQu1Fky9QEqF73P4bx7qN1SSBP3COqVKDlvMFDKTs/D1AWsngTNss+/mffU6/nFu4F31Ons8gpLvUbiZzywUQoxrP3lqGMb5UQJGCF/GmX2f0G2+Qt5SF3A196fuEd9hS3+3Xzv/5m3p5rdSafnNrDKaqIoCue402nrcjLUnUZCQgKJSQrzbjlg6ufqnYQz2fzjq6q05mSU42V6/bLCz0S8rEZa1Mt1K8rqzx8SVaU9j5mbp4yE2TJqXJOZI8DIzqMoMKwzPLoOFmZB4Q2i+KYjDBLVZUQWboele4lYZTGKyLC+O+sFM37habC4OyzuCoV9BNuHwwD1l7iayU2JhfE/4hAUVQ6iiqxO6hMELgKaIoio5inwfTL4msCyMpEm4N0CU5+RbuqiaVHG+ciYAWAGArm4Drhae52PNgvpyrrYMVeldhBxPYa9EFIh5I89LbGBHLRQkaC96uyDPoXQTVO8srXVYQrUSKbs5x7Y7YewE87zwWWFAgwSjoO+bMhC22rO+8Keaq3I9HNkaqvhFukLxQGYlkf9oVgYPgBOJ018z5NWuI7kKRNMh4JFFSaXXIl/Hd+pozniXckmdSy/e1fzk2c2dYEyeVQAqiU/++eehezxf0uXnExTe0a2ucR6em+JDucociLPTMgJZXaMUhmoYv3sr8xtRTVUSuz5Q6d0jbgWywO1PO/ZHJdsWEY+yTRWINg/LpTql11yWSJZbluEk9Fo/dkMSLCiYli6HJo3BfdFcJlEYHKZMTRggR60SMPhyUkw9XzL26F3qyilFIB/K6gPw6JvIc8PWw6JhGlF0ay2UbBjEsiczcaPNEeKj+W2io6vaEAPVyKMbw7jVXA5wd3EXNKmsg4GO2FTW41LMRRLXXWDA7KU6HlG9yJEbaQPgZMR5FPTwvB9HbidUCyFNzt3t3PVpitI9z0NifLC7kckS7+NYPbYBtwJZCDUZTEimeAq4KDhvDqExTYMmKW9KsSwhwT3QqUHwka2eyc080F6ITSXctBSczWghw4E0RRvUylW5LpLg+ZLUqsBPrq4IdUlwCBGJRTE+qFJ3q8qNu9XSvvyGEZqq4elAp0AK/3QrzW88yb0bUd42fsxU68P2bFfMgabqxNNnjCXlEjNNcfOjEAQgJ2ef3DIu4rP1fEc8kvxUaBdzpkxbbVFlfy6fJupLTnd/P/ulWNWbkeTGpKowXEc2wnW/P/fyo4PCnlMfYa9G8z8i/1zu9I/xwybzn0yE0VR2Ozfx/Xqe3zq/ZU8dQVf+c0Wl5UMy2lm2v+HtwXJjnocToW5vjRWF6bznK9J1BKLl0QdNIM/1D7gXwHLJYakZZ9anGxYLGKKcE4VydHLv7Wef8TFCBCKZcpftTP6XlHA3Q26NoZ8M1ELRsPWRCY8ID6ZsH5N+T78ZZC+G9ZXw8B9kKQpLGdQWFQ7mkYtMrB2L+qKrA6Q9XsxAs6fI6HHf94e5OWBr6IkJZprgAUhlrpKH7UOQXHVCwEI8QPdtFd9YksR3I1GAIhkoYSnQr0XKlQIalZaSIPq212gSJMtXxadm36ZgB82tTf3W9MODi6HfpIy7BzHpdiQm9Gq3S7R0jhSG+6vg0Bau2CYRa04mVHfUD4iGLTFuh0bqG0G0CxHChobJAYBiZ0EZyKnes2hjYzcgdQWmy223z8zuxV/XiUjWxuWE5aZkL9mJPC/LNXF5gDPhbMH0SKjkaZUbOT5zqNTZlN+KziM3ZFAeaCK92ebUwnK45ANGxWSw6nwiK8DvTOT2F5QwYXjklE0SOGF7hTKArV8vLSGUzIdPD2rikfmJpGeFrIuxikDM0qISTAptvaOCNBFKUx/BhZOh3N6QUEhjDtVWF7Fkqdp9ljIaK65GA3X6GMGdtK3BRH3oXFxctrAdx50SYEZG6GiTmOwD0bJhAkKq8u0qFnkq5n2g9blX0gS69447dffiVjQh5UiA2E33WoYb4xmkTkVURR0d3O4bW30eH1RKTSW5yknTutxm2LAgvgyouyCgITiYS9wDbAQOAd4yjxG2CLhOFhsHiL4a2wfGRCiS00xdPobJCaJ3LPD6+Dza+C0uYLzUZ8mWK8u+nUqA/DRdBg7F1K082ok6qrq8th5yWNZXUdvPz8XbsuLtmePAwQIxGaP1Y56bTOAVFdHFOkPozgdZPgeICWzO1VffM+uiQ9HjrXMleC+2ngdLh+EPSkBNbMDJQW7SXDY6ZKTyforo8nbal/zH6WmJH4tRCs5/jyzP56g/X9ZTlhmxyA9L+lh2j9r2smc4nahKAqKotDfnUELVxN6DWvN4+eu5gbVT+EGszY5OzdODRSiuWeKojDc3ZQOriRGuhubaKw+9lcxQD3Iu94azu5ayr+9dfRQK7h4aA2BQDgmXiaDP0YOghXrzW25IxBoxYDgY9Rj2v7PQB0L3tWQNxe27BG8jPqDb465zBPf/ArDehhcjNpUJkosPRP7SDeuLfCKAkk2GPg+rD8A6W8L4Iepn+H2AlXg2SLQiBGR3aRBAcNfIa2PucnimJGyyphTdrAOrq8XttNBRCrzoeiQ2BCpzX7gNKBSA6so9aIo6FTpnlNzR8XeMw7gZaJQkgTg30AmUECsJBNVp+OkY1OBRQgE5AZi0Y65wt1Y4REoxCCQLFlyB6eKitT6/IJAWjzqqVxBTbVvKRzaAJvy4BcvLFEFm35Dlph+7Ee/4Gv82gv3qrBFu/YAyYXZ+3yY74mWmbEaqzQADxr4GY3Xdzhh3mJYuw0WeAnbUixBIOapxj+uKArN3eficLUjIdVcMOjIsihRglGxKIpCy2G92TLLT+thvUQJJ2ci5/nyyC28m5G+SfSY0N80Vs9LLcpcNCAnSsAIOWGZHYPYnXbcvjG0z2zB/oLfTcwf1YFK/j19A73Pb8O/PLF+uwmze9I6w0miI4GyQA0vTN6KQj3TF7iwEeL56bu5cW470tLiILY0KYtj2X2+NkxGyyBvLVHIujAKA9TBH5m94YXXoZ3BfT//PlAbi6Ro/2rI1lLvvMsg/wFzTTPQIPxGSyoRfFPgSAlcvwje3Ci2/KsgS/8fBkWysW88ZLaEgt80a8vKMxoCCeAVoagySVCQCWdrtFHegzCkMbzTHSIfn8G9mG1Axs9vLpxyjiARvl6j/g8G4YMQXK49tC4xXPYdhK0zXDs1kShMv3sY3q7WssaC4LSD73ZIvzqdZwvOZpMjySJmpGgj7AFWAFWAkYBYljKEer0b+AeCu3EgQq0ay4wYc7TmQ4IKoWVQoz3Z1HmhcT6kjIHkKVBlsODqJAsu5BTMIMkZsMsDvV6Hut2wfxl8r433m+RuNBIJ6/daHTCz6YOoQm11nuKEPB9kZMKnL8AMLWD6mRduyYczsswr1md+uC9bvF/uhVmvw0UTo8cVBQYNg4enwX1PxUdF6rcsMePHHhdKwEaQ2l/NkNVQcUWkj9Hbss+/mQ3ZcwD42fsF5+ZfR8esU8hw98dGiOau5iSE6xi+8BJ2+3+gW1YPbI7jUzbHC7cPGejx/kpywjI7BlEUhZPcPUlzNaOvu3vEYvre/zO3q142endaKjKAlhkpDHK3YfPS/XjUT/h0yUHWLxHsH2PVTaz0HmG0+h3r/CUGj3bsH+qihoptEUUp24KCj1FRwD0GXJ2ht5SP5bSD+3zRR84123sIlm80t+Werb3RLCQlJKisnBKRijFsEKiESe/AsE6C+X5YZ5j0gbCqjIt7oBo8a2CEuToGuTooRHJLxrDUl2lJ0keifazci84wuJM1eiujGzEYjZMdaYDnZz8CqnGIWNunOBy9thIC92Do5LLT292LektmiCDwPsISW0rDigwgFRE7W4wAidiAjsDsBs5xQoIb6oulSxeJ+FmTJ8ztjQx0UEEEwvHgc7D1VKj6EQpOFZxdIWk8o3TOhZoArPYIJbbbH8umHwR6S1ZfH534WIEew+D9WZAmIYJlvkartlkeWKNZeSUB8AyFgenw7hsCCLL8Pctph4I2y9pmIBSFbM0U+9ezZ+o8U7/03PMsrbraIrNroLoo1oW4e+kPfJz3Djv9P7Isz89W37aYPg3JCQYQIX/Nu/ofFGOemYxktJLq8iBlgVremd1wUFdGMsoMIw4nPOdrwvodTbh2RhJrvze7OcZprPiBIpg0GYoOQeAQeG6AEYPN18q9kMiilSMB1qY+A2+tEe/nXw++W82M+BEJgoQwJrcfAtL/nUAxer8D9XG4c42oJu39AdTnwa8BQfw/g/ov8BZC+yXmsZbFci5DEEY0t2jHoLy015xG0twk9yLExsmyG3hwfwChds5COP2MouemRb6yeA/3JuusOP7FeByYA3yCgOrLwU393BLgbERemiy6gpAUR5KutDR0Y+tCUBfC/quFIgKRd7ZFhfK15nPrimKrUZ+yANpmwakLYe8yeFPLPfOqsXXP9ERquxOyFkKPLBi7EOwa/OZ7P9ymihpnb0r5bYO0eZcF4EkPFAXgbAtXaFkRfOyHs1TYKM2/pDjyNhS0W4NADBLPHVe2arNpv9mFp6JY/kmgg+ST75wbJTTVWUDK95phRSuujUVdNiQnACBCTrgZj0GqAlUs//taup3fiX97PgLga+9P/G1xLLpp7EN9effu7yP7zkZ2rlBXxfSTZXhuM5DMf6O7QlEURrsd2Alx/1PJJISDLPQl0v+UMN9vCuFwwHt+GK/9570G5eB9V5CHX5cLBd9HC3CC5hZ7ADJd8NRieN7AquRMBPcZRK2ocpj+L5ibC2lOzd2YB5kdRFFOnfxbTog+KMWtiirFeA09CxRHLASirsNDURejLLmNDTshcIbMRMINuRd1sdcL1dEH+EZr64WAVrxhGL4cAbM4GdiBhoTUxglUw/Sn4Zaz6wSvcORCxtnWIYpy3mhoewTBkL8NGAkR+HQn7eSbDX0vRUTtLtf2Za+Alwg+M+SEBB/YMyGhAIIO8TnYFXC6oc4PRzSQxO5F0C4/tminLmquIBru64PmmfDrC/Cthtbb54c2Uu5HUNLqnUfCex7IOB/e1675kx8apcEpWdYMIACjZ4q8ty/88ES2aPvEC/e+C7d74R8G1+J5ubD6Letxxrip15SXzd6AGU6su9Aozj4Zpn117FlxyRESnImc6ZtCapeWfDtjEXUVNSQ5nfzi/46Ps0VNxu3ezZbnHqvUkkTCccDtrROF/vxyQpkdgzybMR+A77zmyo+1FUEmeYfw2sToE+DIm3rSpnsjumQ2YU/BEarLzT+dcye0pNfpjUhrmYCiKPQckMzOgjKSHAqyMoP48HtFUchyC+aPbp0UbMF6I/I4Rnp3FZyLLnOJN+GOPA8IwhOTzcos12DR+TdB9lPivfczyP87ZPUFd6Y419WYiILM6QtX/jt67uPnwMsGOH+u5vbM6Ryf0Cm3PeaPIxibQD2lBdzUCgrKDUnSIcN9aeu5S7PKjtTCjZXwhAMa12NKjg6GxBp/EULVaABKQKgRozK7EKEqkoEegA4m9R+G7Be0z0g9gjt/uwiNmYApAeDviLyyRxAxs3MRyq0UYY2dDhjpzmwINdsfUQ4mAWvLbj4iMjiOaCFPRXM3Agmu2MrMdZICqSuCZjmw3+KbCSyD1tmgapWeU6TabA4p2VftF2XT/+EFWKDFwLZKsbYKLV53cg68aXHdmmrxhcaUhimGCzVkZc9M2Fkgcs1G5MD9hnE+2gK7vgNbCsdSakUuByNL2sTz2Xtd1E3bcuIw6gJl/Dj9eXrPvQpbWjTFQFEUSEri44GzAHg7/SbOfv1v/PS8XEn8j8vxx8z+mmjGE8rsP5DMy1w4HJCUBJ0zm/FrwWGcTug9rCVvTv+av809iZRkmJ/3XeScG1/qQbIzHDH4ATq67CiEKAkEmT35NxTCzFqgkqY92ccLShcFwtw1Lcjjj0OLJpCTBdfGYezKNT40x3GDOZPAdxdkZkDBds29qP3ui2TrKh6sPyiAHr5xkNlaAD9C9TC4HTw9GHYVgcOGsJ5s4BsKmU1hsxZPH9AUCo6Ao167tmGuOS3gSkPGw5MdBAuIS3IpWsH3/TWQrXlzvLWw2AEXILkaLYaoQyiux4H22muV1laH+Q8kW5rVsola7CdaUdpoPaxBgEFe1vbfA54BzieKyrhIO9YZoZEuBqTCmQQRBWssmu0IVGPldEieC6SJtuQcKDUs/I1yhRXU1geh3XDgtuix2mIzSKRNDmwxnNvjbvj5X9H9DA84k0X/1AZYcbqOhMUeyJ4DV/jg8HZ4/+7o8XZ9xeugHFhguN7QXBH/G6Ip106asnY44TEf9MmE7QXQuTd06y1qIR1FjgYCAUhIdtBx4e2U+tejZg2iaPkmfhx7PwAHvGvIzL+NtlnRpEs5bvap5180JH2vzuT7l6xQrfHmfLzQ/L+mm/FEzOwPyNj5Q5jkG4ndYUNRFDLdnWnpasyp7o58vXQfN6h+PvPu4Vr1I754ex83+/oxv/BsbvP1IdEhHo1LA3U87NlJhcbxuM5fwgj1Rz5eUsbKJeWcpf7CKn8U4mfTnr90+cgfpKtaw+JFYTq2DfPe+9Gq0oVfwuIFsPg5KFwHvmfN5VwAswtPBy8oMKwfzFoEw07WWPP1GJREZpB7qvlcoygKuHsL4EcS0OI5WP8bDHwLakIwaaUoF6OEwN1ZWHXjO8H4dhqDRzsJeKbN1ZkAvh5QeIqBskq+nzj7AWmeRrCH0e0osyGiDZOIqP1cgCih+Yl80yGQioZzUq7BcgkSy49oksPSfkmc2eiDOYEXMctUIN96+KAfatRoMnWdDsU3xM5a+EThzpAiysKoUtwq3QCdDwL1Tujng3MLoetMWG5AGvWeKWqhgQCCrJPGutgLUwph0Ex4rJ2A6d+XDrYkGDzD3HeQ5kZMdMKNPni2EGbKXJcGKS2CT5ZCanMYbpFMbSENgUBkKVq6gT15/6DY/xk78x6nZPW3puN1BiRUEFtM3MwoZ8wezQivOSXhnIfPi9PbWv63ACDPP/88GRkZOJ1OBgwYwPr16xvsv3btWgYMGIDT6aRLly4sWLCgwf7/qZywzP6A2J12kWdm4YqQ65k9O+lbbsvPpI0rhfauJBRCfO4/wqxsgVha6T3C7PzOllRWViVg9J+jzJRfXKwpkSzxAOpqT0RZuVpz9Ip8IcH2ni0eMPF+Avm3Q5bmRnQmCDh+Zjso+FlKkLZQjLqsMpMb4PlYG38H5J8HWW0t5ibFynRRQuBuJt67Eg3XC0rnyvtAThLkGR6QL02ItcrqDKfUmU+P4ewoMlxKH8dZD77hkHkJLE9vwj6HVm5DH8SyyrQu0zCVc0GnRdFnYje8T0R8QGOBr4gW+dRnFsbsT7S4g6AOxddiZwAOyQ1ZLHElFi0DNTs6HUWB1ppV1FhyOTbtHVUiv0ox44wLofflkKhAC+m88iJISo5C9H8rELXLgoh7OkO7XntX7C0GEUz6d2hz/MgL8/JhpLneQb0F6ONoMTRdQthiaK1S+pjrKraJwH+F6HEzNbMDgS928PnEhZFjfacNJskBiUkKbTJbc6Bgn1Z5+tjleMu6/JESMIsXL+bGG2/k+eef56yzzuKFF17gwgsv5IcffqBjx1ire/fu3YwaNYprrrkGr9fLZ599xpQpU2jRosX/SOUS+IOWWdOmTfn++ziR+P8fyCm53eIeOz2nQ0ybkf2jLFDH4tlmqN6BvbWMzGksn8aoXIsKu5oMHWH+6tzjokjGeKWd4llSusgFOI37iiLg+K6WMKwnTFoIATMIKyoGxdanAc5Uk1su3txki8s4vkVbIASeI+aE6nBQpCu87hDEwK/aIUE7Pxiydi8a39cBckUrIwNXUVhcsygEbpd4eBjtdphBAUFEHlWMa/AaoB8iLH8vgsXjXoRNazUbfUYgVvP7pPHkpGpdJOSfXYLiGy+jbzKsv86wXxeALR5RyDMItJbGb2+guGrWx3ys69go6XIn6ZPtp/FEZrqhuQv6GSyr8gA86xGIRqMY76HMgknf1Pf43HEhzSdSEyhnj2cWwUBJDK1VS89wevvu5IzCFznZN5MEDdmox7EURaGD+zQau1qScfnpDPFdjbvwXob7rsDmENyq3d19aeZKo4e7z7EYktI8/+dLwDz11FNcddVVXH311fTq1Ys5c+bQoUMH5s+fb9l/wYIFdOzYkTlz5tCrVy+uvvpq8vLyeOKJJyz7/zfkDymzsrIyqqqqLI/t2bOHOXPm/Cdz+j8rPS7uwiULh2tJ09aS6LQx2XuqqU1n//jCf4jx6uds22B+sntq6j6+WF7GPxa35bZ56dwxT+WpxSrJDrGKFwfqmeEpjVSV/sgfpG/7qAU4Yzp8vAxaZwgUo9oT/IaH6kAxeG6FnXvBczcEjmBpqclcjLlnaOc+J5CMoFWPvhm8G0G9SyvGqY0VqATPv7VcMk0mmslTzON3xKSYArXg+cqQi2YUK2VnRDwi6pSpe8BbKcq7+CuiUHxFgUvs0LEextq0gslHcS8a3zuAhxHUwA8j/jh1wMdAt3pR3FPdrFXJDsamVkQmgfxn/icCO3khIgFgnfb6seEmrWakl4RxImJtXyOSqXXGfRlM5AR8YCsU6Magw1qJGaWJpKDSNAV40A+fqbDfC2tVUUE7wQmn+mBEIZzhE6hHXbpONI/TXdvf7od57aPtZ94g5m81l8+9MFmFT71wpQqf+637DZPmfKGutBWs6ptZiZ5bpkuFfzW71CGUej/kR3UEpcu/JMP3ACcXLqLLwlvYcc3TNBvWjxRXG1q7BbKxKlDJ155nqA2YnxAVRaGzOxNH8xR+XrqFGrmC7R+QP1oCprS01LTV1FjDi2tra9m8eTMjR5pJVEeOHMnnn39uec6GDRti+p9//vls2rSJujprAoj/VI5Zma1fvx6fz8fOnSJJKB4U9ffff+fmm2+2PPZnl5/e28U7eR/zw9L4OWOKojDo8g5M8w1kXuG5zPBlUl0R5GnP9xzeGx+LXl5cz4jxTblsanMmTG3KheMboSgKq/3lERqrvmoxy/x1lBSZF6pevaBEspKKND+Yfxmop4H3Peg6CrwfgDpcuBQDAfDcr1lyQaisgMG9YdOT4LsFln0D6rUCvaheLxCNq7aar7NKqyMo55b5twmldO1KWDgcCifC4uGw+FwovEQAP4x1S/1avTLvb6B+DP6DWLsb47gzCVrwMGpe2oN1MKlcvEIs96LRpXgIuB04Yh6aEIKjvhXCjrofEdWKKZVpWJuqAlUUe26O0jEFIRrr+oj4VhSI3DKremZI7SEEZLILIufsb4ZZGX8nCuCGkEugG/X/b0OWWYnkZgws045J1k5NUZTiKrE5tHcLbsf1HlHAs6YKWg2GSzaJum52LZZWLY2z4Vn4Qa64DWzyx1aglllEdCmvhFMGwyub4B+aUm3AGxEuKqL66inUa+4Mq7hZvcQsUF9cTnP3uVRt2c2uvCc4vGg1n6vj+d37Cd97nmavdz2r1Cv4zbuej9Rr2ec3Q+/3+L/Fq95OoXcTr6j3sMsv/amOU2pJpJak49iE5dihQweaNm0a2R599FHL8Q8fPkwoFKJVKzMUulWrVuzfv9/ynP3791v2DwaDHD4sx4f/O3LMymzNmjXk5ubSvbtgwJgyZQozZszA6/Wybds2wmHxxzlw4ACpqfHdY38FqTpKsrSiKJzhbkdrVypJSXBl+mrWen/nhanb454zIrepZXuJFDfbt7eeZIlcPCUF3JeY23IvFq+W1aSBVZtAHQXelYKH8c6FkH4ZrP8BBt4s2OV/lcmKK6CPxNTRV/u9ysC9Vb+IStKLfoS8j2HLERjvguHtYNY3MKyFGWCySipouUr+vVu5G6U2mSQlxw7vVEPrMngrBBm14DfoAdm9+DEiKfo9hLNvpXS5OgSb4mhgGUK5yQnUIzX0+XJ/LU+qc6j25sMNKnwyFOoDCKUyBsHgcSPxxQgCiOf81O/gEMKyy0CgJFsjSLisJBC/iKe86IeLzfu1vwpqq0aSazBcD6tVQW/1oQrf3ikKd+qcjW+lw4H18M5ASEgSiuh9D3SQnbfEUmIFsc4/O0vicQwCa/2QlQ7frocrB4I9KS74oz5oI/j+R9RkdCX41tuUte1N9bvyNy4kNecC036z3OHiklLsbJvnKX73rmWLZ46pXUYz1krcbQWz11AdqPzDKMPj4WU0xtf27t1LSUlJZLvjjjsavI5swITD4bhGTbz+Vu3/LTlmZXbPPffw448/8vrrr0du4s0332TSpEn06dOHJk2acOqpp3LFFVcwcODA/5HJ/l+RhmJmsshs+RdPac3rhf25b7GL+xa7eGlTD04ZnEpVRXRVLgmEuNVzmOJAfQyN1V1Tq1m70qxMq0qhsgoGnwmbVoBvAZEyMTkSz60uX0kPgweLzfurtsDUhea23AEw8XRz2+pC2HkAVpiLBPCVuVoOe0thqB9UL3h3gbrEQCYchD6NzP37pnJ0VnypzVkPvuZQmAaLGwmHW7HkbSsJm+NkRntHtrLKiLWF5IyETdJ+uzfBv5EY65kja2GfihnkYUOAOIwyGeHI1OGnDcFSQNBi9QJkd08xse5GPzFFPBty3zoll92+qRDwwnftoc1MGFAIHWbCtqvM/WoOElf2rIpSXL3QPvb4SRblZAZaVKCuroCnNCYQva+ch3Zwr3m/OADT8+BwCRQFCD/7lHnaTzwXsdCMojgdtPY9hqswnw6+R1AcSYSwkzri9Ji+VtIhV2IByRlg2t+/YQ8L1IfY6TfnsR6r/NGYWZMmTUybw+GwHD89PR2bzRZjhR08eDDG+tKldevWlv3tdjuqqv6h+zyaHFfMrHv37lx++eVkZmbywgsvsH//fvbs2cM777zDjBkzaNeuHWPGjOHll18++mB/IrmuYBJnzBjIdRsvp/PgttRWHLvP96wcM1v+dU92oa3LybnjVRyOMFcP/Ilv11cwMv0n1vjL+MQvYPnveSs4Td3HMw/EJnR5XzLvN2oEbbrA+g0wcKTIe9MffpwO8D0NOz6AGRNh/u2i/UtJmT0ugez6SjiWKUMFgjE5AXxXwHzNEnzrO+j6FLy5RexP7q+NLymzqZ/BWskjYbTmJrYzH5so/0dkd6OFC1JRwJ0ILju4k0R+m0xRdbFhbZedeOZSjFHbyKhCpLAiVo81RaVwcU48RoYioipUQSRQG2Ucwi7Us8CNMyhGpHD/AtyEsMg+i3Mdo5IMI1S1xOUoM33ISkRxQmsfdCqEZhJwxdEbEl3glNCIAH0ejzMnoL4B1GBad6itiG1XnHCNDx4phCk+UYE6Lx3WecGjCmYQgKGS0ntsKnyiHVvhFzyNfq/gaezbDjaZi+2GvtxEccu+1PhXmC+vKDR2jyTJ1YGm7uHUK3ZK/OvY0j7qDmk60qyg2l87nHML59Fv4bVsvuZlagyxM501/7TZF5nOkStTH6v80ZjZsUpSUhIDBgxg5Uqz5bpy5UoGDRpkec6ZZ54Z03/FihUMHDiQxERr6q//VP4QAGTTpk307y9Wrfbt25OVlcUDDzxAfn4+r776KhkZGUcZ4c8lzV3N6TykAy+c+gY/r9/HA+kvs8V/bAX0kpwJzPSdzIuFZ3Cnr3ckzwxi+RhLi0IxcPwjhxrO1r/2GiiXE5oNuHGlHtzDoWtbeOpmkRhtlPsmiUTppqmwcCpknQYLr4cJUl7Zk+M1YuJKWPINLDSvAxFZeWwfC6CRCWvzTAZ8/aHwbPD1idYzO2YgiOGj1ImEA/Xw92p41g4bE+DlhGiysy6HEQTCxQg76XFEppZuG+l9Awi+jmoEftCr9bFyqOeeKXL+BkzJtDgq8wkmGEa8j+hfUrbCPiHqBB2hzTITa3KiqzCUGyVikbHB3C2cqiVSa25HEK7QIo8oFxPSYPuJLmgpAVd0MEi6dD8ne4GmAgxyQSF0vd58/JBsyxoksB0eTYeteg6ctikKDHBDSxec5o6tQF1epHE2XgsX5JmPFWspCDKqsQEJF5VEQCDxEI0yPF+95CzTfq85eZRt2cs3eS+y1/s5fvUGVg19jJpABYqikOHuT5+p5hpoPXJPPuY5GuV/g5vxpptu4qWXXmLhwoVs27aNGTNmsGfPHiZPFiwNd9xxB5MmTYr0nzx5Mr/88gs33XQT27ZtY+HChbz88svccsstf+gej0VOJE0fo9RIfu5jIRkG8VR3lrs1bVwpDHa3QFGUSML0qSPMcPxRuSmMltyKN9xh3p+z0KyNZj8K4+PEy2IkCDlSPub9r0GSHd5YA3nPgP8ryJsPK74D3w1QOBt814kEZX8BqLcJZbbRiggY2Fkc59oG2ToKfGdARRA8mwSKUVHA3QJcSeBuKYU6GoDigwbHLxLjHKkVYI83akSsbHE93BCEjWEYXW+2dZYhapLpBMJrEMRS7RHxML3vGgTEYiWCv8OOoLs6B5DtiOu7C+YURVHoNETKv0mZQVTJ6LNQgKHaiEOJtchKgHuAfdYfJla1rx7RPiBdIcZZyMPrzYnUFXdCQIUaLxxUocrgEg05BStIt0LorCUsBxGJ090WgpoFvRZCm8shIQHaucHpgr5Pmq95yOIp6KRJ5v01s2OryxrlDEmBBsPgVmG1F5ZJvvGRmtK9IE59Nguxu7Nj2mREY0KK2SXXatIIui+cgZp1OictvAGbM4k6KVZ2cO1PLFFnsMcvkqxtzkRG+ibhKbyVC3wTjju/TJc/GjM7HsnJyWHOnDk88MAD9OvXj3Xr1vHhhx/SqZPIsfv999/Zs2dPpH9GRgYffvgha9asoV+/fjz44IPMmzfvfyzHDE4kTR+zJKWYP6qkVPN+RaCGxdM3MnHuKTRNi/+xygnTE2a24NLrmrG9oJIkh4Idhad96fTNtLP4hVKGdI0uRFNmJpH7NztNGoUZeFKQ7zaHSbEBNsH8MeAkKPhai5cZ2S9KYPqjMHcGNE+FKWPh+Xejx1cVwDPvmedZXAlXnA0EwZUmxttrsSb+YyQcKINWyXD76gY+QOCzC+H2zdDKATsSIF0Drnn3Qv4AyNJd6cZYmcTqEaiB6Qdgbrrg8fWXQbYGFvEavDQS+x9TwpCCUFL6Ei9jY/Tbk/WmlH7HGwiS4TRiASCnpkcVcYXMsEwGQlnp4I1SBDv+dUATrY/uggkiLKk7tf2PsJZLgKba7BOAlpifUesQxMR5safS17wblmJdeo0zEMnVTQzJ1SHE6lG0FHZoYx/xgzMNWmlJynZgv4SItJK2Z8HW16L7ezfAAypckQ/9tLGMX4rNCVN94MqE1S/As1b3BkyYKbgaQVBczfFB+y7wyDQoiMYYlXUbSHjrNZKuuwJly7faH8jsEZERjaGKajJ8D9A400V1wU8ULd/E9ryntY/hSxxpqbTNGcS3V8ZWDtcBIIqi4HKfgo0gTV2qJQnDsYhuOR5P/z8iU6ZMYcoUOU9SyKuvvhrTNmTIEAoKjp2W6z+VE8rsGKW2wrzE1ZZHnVXf+vfwQrYgOPrC+zM35p/JaVktLccpl/DjGb2dtHc56OSyoxBEQeECdyo2QnTtbf56evZWSEyo59JLwBZU6NYpjBIUCcHjNe7FCPOHJv5VkH2DeO/9APIfgyduMCuzvmYCAwByTzPv+7+BqUti+00/TbCDVFU1rMwubAtnaetx+rswtav5uGUxTl00xeYvhWzt4c9bCvnpUfj9scgRzM67UQgYvi4jMdtEej85LL4NYanpbkej5H0OaWdAUUo1y6dK6LjKaUAH4BSEvae7XFYCs4BB2pV1hSbHS8choPeLEYz5PyKcozrxZqK26QoTxF/ciVDBAxFkxFMQeWmjgWujwyc8TpQfEkiW6Kv04YxiBdM3ijHROp709gjqqdLdsNrABVleZH1dRYHTNSaQDhYxO10yDCwkIUUgKccZwGmPPoOiNsXWqxf2Rx7CZg9h69ERRYlVKqk5F3Doyrsj+80vG0GiUxASp7pac/hV88NGXVE5Cc5EBvqm0ax3Gz7uE0UKZuT+dwFytSTBcbHm/zGl+X9dTrgZj1H65pqzf3ucH0VIVEoUVkf2VvK8ZzPlgdh4xhCJwE+UfrEWGcmYnXuUZw8jKEJ7XyStLUWlGqHwLCh8XcTLJpxr7uOdopEMa+MESmG29IA9oR8sztVordBKyYwRD+kz+sP3EnJ6rKQwZfTiCp21Q7bKDApOZs0vqoecOPR8VjJGe9WHTEDEyN5E5I7pqkOOVllAEgDhALRi0Zu9VKRQWIuewSYrKmOioD4DGW4yFWiDKObZDkFEbHRL6udawT/HAV2BJ7VXN8KuXAhkQcJCoCk4fdC4EFIMidXx4pZBBMO+UVrlmo+3acC9d/pskXeGE7q6ob/E33hKruVpJhnUwPjr34PbxsMRvU6b9GdwOGDwUEJTriNcVEQ4UETllTdYIhrrK6txDs6k86bXI4hGo6RLjANtcs9GURTauc8gpXdHTvfdwKjCxxjsu5YEyZ34Rxg5THP7HwaA/FlECevg/xMSI6WlpTRt2pTbS6aT0tjGytvWsv7xaALkVfkj6ZfVgVBVNTemLLIc47b8TM7MSsdGEDshEsM1fPr2YbplprCzoIzh4xpjV/Sfo+gToQMN1/HOq5Ws8ldzQZadC8co3HNjNY89lUCLJvXYgvXRytKyAtDeV5VDioGQpGqVYKs39gvXwdufQmZHKCiEcadHc8D8myD7udj7qpoFTgWzwjFcP1wHb2+HzDQoOAijW0Hq4uj5lRfD+/vgSDVcb0BW5p8EWc0s7iUIvlLIMYSOfM1gXDK8XQH9FdhYK4AfvRLgVIPJtBb4AWF5hRBgjwcRVtlGYquKDdYuWQrMQ8ApLidWliOcg58RtbGOLqUI2MkeRIwscudEn67thte1iLjYdgTwQ7faEg195Pfyvt1wjh2hAAMI5n0DpD8hH5KyRJeEANRMh6ZzISlNAENKpkPLueDQGPftgC0MpW9DaiZUF0CrcYJz0Xj8wNugZkLRF/D5xOj1rq4SSBlj3x1vQ/tM2LsOdq+CS+ZBiuF68mYLw1dLoOwAJITh0G5o2R5ekL6Rp/Nh8EgYaEjSnL8Irp+AlTR652WSxw5HCRym5JLJ1KzdGDmWMiSTju/MxpHWKPKfTQgHKX17NU0yO1O27jsCq76l97yrSE5LiflfJ1Fj2q8OVPL59Hc4d+5oUtMcBEsrmNv0H5SUlNCkSRPL+UF0fRpbMp/EJg1XojdKXWkV7za9/qjj/9nkhGV2DPLeNcuoKqqmZe80U7sOAkl02pjsO4vHCkcxbEoXUx9jnpmNEIqiMNSdRkeXnRHuJiiKQkkgyD2e3ygJGJ+fgqxeWsWteWUs99cxI6+KnumVLPHWk9EyyPvvhbEFofQw5OTB+GusORmdDvA9BoXvgu9hM3t+oBQ8T8Cu/bB0IzRvJIpxRpKZg7GlXmZfCL4JUYssIpLyiTDip4jXqhCcocKFrWFhJjjD4G6loRYNsrcSPD+K2JhsFUieXsrD4jrj7KKE5bgkuDQRtkuZE9uJ2jAfI0Af7yFAHxK+L5Jb9inClbgKocguRdD5jkI463ogSsEoCOV3VgLcZ/55MGBKJk03vgete8IZG6GxD2Hn3UgUF/kycAdRBaR/mPrrUATvyLnSB9IQAVdDzCFBhOJUic1N035AQT+UGoAgRXeKHLkKL+xWRSmbyAOTAk01sEe6xixitMxCGhlxsgs6XA6DfXBJIZznA5sjept63+5u+H0LvJsH3yyCe1XY4ieuKAqcNR4umgpjpsHJQ2MVGQirzOGEJ32wohDmLYYv4qU1CERjjX8FB9UBJkUGULm2gB/VEZT41xmmoZDmHkrZll/Zmvcsvy8SLCD7/RvloU2W2E7/D7yi3sNP3q9ZoD5EoX9b/HuNI3rM7Ni3v6ZldkKZHYNs9f3Eo+rzJKaY8yMyc10AJCr1nOruSEtXI3oNMbsRU1KVyJOZlXzqL2KE+iMfeksZou4ylX2JSbw1SOmRMG8shvSusMQPS5aC2gf8Rte9rlTOBVcbcA+JhhD8n4kai95PoOtk8K4FNU9YYkbJkdz7084S5V2UEEdn4tfEvxvS34YvjsBH+yGvAJYe0MZvbe47dTd4j4D6Dfg1z1ugBjy/wUiJ+eQyKUxQF4RgEEqk3DI9dB8kNjHaJe0P1V5lDuWOwC7gQ0Si9E8IZON8RCnNz+rhfmnwTkM7UnLqxbD/R/jiVKj9GuEmXIqopqYAjRAqdS/wGFH3o1X0Dotj+vtDCCVZbHFMdj3GQTfW6y5C6XhIAoZYlbIxKrB4oijQyQ225vDz0mhRzuoALNNIiyGW5qrK4nrlAZjvEa/Ga5fEubfhWu2z893Q0QWj3NCjT9ypJuWMIVwk/wrMIsPzAYISW7eMaIz00x5ZZZT0H8k1+9+A5v8Z5IQyOw6prahlgu8Cbi30ROqZGQv5lQdq+OjpHaZzqsob+ndb5ZpFYy0XNxAQ2vYjXHFdbHtRCbEoQKPosbQ4/9MiI+0F4EwEXx4U3g0+TxyLzMIlaHQ/yrEu0BjzgxprRx8oPA2mSIqtqBb8RaDuAG8ZtP8ZZjaGwjaC6cNBNKfMWM7lYilcNcpwS3JitPy3/gqx9MvRqkHEohohtgrZlK5Q+AS86EuhVqoyTr3MjPE1Iu9sDYL5Y422r9uLDVlhxt/VSoSduRSRe/ah4Zj8+9PRjbJ4iUBdbFIcynmntC/Fxax+4vJxffvZLyiudnnBq8KXd0YZQZ5TYdFQyJBorvpI19vkFxRhn3nhahXWG7Crg+PE0D5fFts21uw8tr+4gJTvviRl0YvUV1RSs3xd7DkG0WmtjNIix5w71jbXOqk4cs0U8xNZYuqxAzl0OaHMhJxQZschp1zWk5PdXWnlaiTqmRmSob72/8oNqp+dX5ifDM+5rI08DKWBIA96fqYkEGR4jpmT0Vj2xeGEBb5GbChsxBXXm7VI4AiWYswxC5TA+Fth/O2x5VpkhvzI+TrzjqaQlBC4TwZXM3D30Swy7VigCjxLzSz5MRKEnPYW19E+FkURKUKuRHhCYh3JbSrKqhildyK4NKYPWWEHg0Kp6VS+6xGWk5EYyoHAA+ryoDSvr7XXJITz72XgVoQT8GyL25OByk9mgqsVXOxONBfnBEg4Veod74kjnkUQT7nJSQYlNOxudCI4HOdpm46O1F2ETrDNjJ5a7ALnTEgvhLQGimLKyq0uAN9pCdi61EqWU4Wk4PeuFUz6Z8yEazdBp8GCFaQyAF6NuPjHVeZznvPAV5orMskJd/rgaontpLw4dr7OZFjgRfniO2wvv4rNPY6ELhmQlEhJq5OpfUvkjjR9fhaNZ/yNdts/oNmMiXTZ8W4MCKQuUMpPntmEKmvo47uNswvn0893c6QcjCw1gQrWeF6j6qDZuquTH4COQf438sz+DHICmn8Mct3Xf+PA17/z7jUfkzX3bJqkJUaecXSRi3JOmN2T1hlOEh0JGBetz/wB7s0WRIYrvAEee7cD//C146RMO9sLqiJpMSD88Be5k7AR4v4nHbw6P/oIfOut8K/Xo32fvBfat9ZiYiEzJB9gySrIfxSyNGaP5ZI78fmrID1VQzEeg/vQ/xNka4AO7xbIvwgGt4Lp62Du6ZBmCIY5bbD4dDhQBdRDKzs46rXrhASKcfoOmNNBVJDOdEBBOThCkNMErjTQYOU6BLPH9BK4zwH3VcHsRGhimHOoXiAX6xCYv8PAQ8BtCKde5wbuS09zDiEQjvOBXEQ22CQEiZS+/LTUxnsKODcJdqSbKwHYnXaSZ15H1eMviIaaydLVumAtg4lC9INEC3Ma9zG8Pw9RA00Xo/1phOjr54DIT9PBIJIoCiApYntvsLvEFjKcFgrA3unQYa7IMdPlsB+2ZIv3+7wwMB/aZ0G7HEwFSk97HLZb0N+FquFFzcf9oMF1v8kL51wf279Uh/ErMMgNShW8ZID5j8yVLEgFSISLLkWxh0jo2glFER1k92JCspNmT92OjRApT92CnRApXdtF8sKK/J+yI/tuAA55V9Hr9ZtIcbWhsasldYESvp2+kP5zJ5CcJkAae/3fsDZb5J/t9Jpjap3Ol3JWjkHqcBCOSSCJL8ET0Pz//8rhbUfIz1vBN94fuV99yZLK6rQcM9vDhdMyGORuY7LeSgN1vDX7N1O/8uJ6Rrib0MGVxPnuRpH+ekjXRoiiQD03X1vNvIV2vv7Jzowb4SRDvuvM62HGVTD+gmgsS4bkAxQVE3H/FUsP88l2UXzTZHlVgOdf4jVmLMkaW7UX1JdFBWnVC/5dmKy78R1hQgf4qggGNIVJW4QS8x8G9XPwHoL0AsHW73KAu6lYU5314GupuRZVWFYtapV5a6BbKbxRBx0q4YOQdWmXlZhZPj4httCmUXTmjw3EOgDzEMv/+cBFCFdkgrbfRQF3EzNziaIo2Hs3REo9AmH3PaON+AxCXepP87JLMZ670YFIMngfYWvehYidGfsHpX29zSIuGwTCkrvOYUEAXO6HHSqUeGGLCkUGYEhMvpm2n+CEQT7IKoShPkhqKsAg7i3m/qqU0G2UNqfEtg2SYPwJTrjHB4sK4QGpvprpXm3UB22EgjZCQTvBoI2EsWby56RckdQRCpSw33MXIcnNYcWef9D/JQf8X7FCzeNX76e8p17Pb36RQCyz5ne4oGfk/YvtHmfnB+ZQxdEkRMJxuhn/msv+CcvsGKSq2Jwaa0Vllei0McV3Jl0ym7Cn4IhmkUWDNxv8h3kgO7ZukSj9El1QdCSjLsv8dVyZLX78b3vhrSUKvXqax+jdLbbSRc4FcOU95rZcQ1JUigQjTJX+6/5vIHuBeO/dCPmTIKsHEQWV08P0fE1fiQhb/oj8eyD7S208TZ97f4epUkmZolpMcTdFAXeq2Hcp8GpszB2AIyEij2bGJVvW6UVEC226EECOENAdkYKs/83jOfqMer3haKgQR87FlF1pRNctRIBANmpXO0ub8RXa8TbayEaFFs8i04+FEGjHTxHUVyDU9wtEVbesII1tYWItNKco4mnPhIQCCDpiAZd10qdrdCGm58AOwy+kraZsFAXaagnPjV3iL9LFLSD2F/igdSYcKYBuo2HZtVjK6ZOgcXOoOCA+wuatIFH6ASsKDNGu08llaYDGFaeTlEUvkjiwN+FvvwNHEuX+FRzJFk7lMu8HtM9/kmZZgwFomjMCrjS7NeuKykmQWET0UjCdcgay4cpXI+1dLunD3mU/Rvari48PBCLchsfuOvyruhn/mir6vyy9L+lu2u+fG+sKqCiq5eul+0htnkSfYS2Yk1PAE+O/piwgFg+Z+WPK7NY84utAsqPelIcC5srSMqKxuAjGSfH73KzYOTsdsHg2zLsF5t0Ei+83w/IrJOqKcmlfeniMscT0JOnCq8A3Ci6U4mKmKtJBKJKNAk36SEo1t3n0fSAEnn0aTD8k3IvL41BijlWwLO0iV8DRc83OIcqveC7CZahz1ddhHR8DoXoakkANeBYQqQqO0yEY388pFInIjEc4M8+l4RW2Ieg9WFtrVqrbeJ4VGMRKJQcgNAmUYZDgArsF5B4gVbLemucKZOJ2D9RWQk8fnF4IfX1Qb0jArg3ABg/UGGJpiiISp5u5oIcbEpPhEh9MK4RxiyFnMcwsBI8PEp0wcDwMmwpnToCv3xMoxmNBVFpJUYD6G64mXBTQpqKQeOnF2FydcbhHoyhKLJ1VUSnBQAl7PPcTqqymi/cu0/HWuYNpk2P+tXTMFSVjbM5Ehviuxl14L8N9V9Btgplxv8elDbCaWMgfLQHzV5M/5V09+uij3HnnnUyfPp05c+bE7bd27Vpuuukmtm7dStu2bbn11lsjLM/HI3annRzfRbTPTGd/wX7sDhtGq+sb/16ez14LwAbvL6ZzNyzZz135fXGkmJ8b2mY4GO5uHMPH9rG/iinZAt3xrreGFxabkyHHjRcxqDdehdN6aVyMdmL+xEoIxp+HNaNGEHIHQd6caP/LTo8eC5TCCsmIzD3JPIYSArfmQdtyADoYqPVm9tFiR4YH05zWZktOF08aNE+ATGc0TkZIwPKztTIy3gq4IxUeNZhFzzjgpxDkKfB1CGyGaxmXaJ3loxewBfPTm6wOjGtgEsLhl4FIjh6GKLzSkPrxl0H2O9qc1TLc+dtRshTB+L4XSHJBZWWcs41X1/+WRmorvY9V/Ey/gxGIGti6jDaMm0ism1G29BQEw362aA55IZyPyLgjNuxmc0ILH6RkQl0BFC2DvZqLLuCFXvkiv6yxwTL63Q9fauP/4oUh+ZBh8TSGlnNWF4Dt78FFc6FJGrQyxOy+8cMCbazPvNBrCNz6DjRPO0aFpsDqpXDtOHFbb7+Fsuh17FnnR3rUB4opm34fzf9xk+nMhNRkflSF1VvkXUbXdx+ku+9emmV2orJgOwmORBJIINM3g7TMjpQV7NTAIPUoikJndyZ2QjR3pZEQDnKBbwKtM1tzuODX4yYc1ikXjqf/X1H+dMps48aNvPjii5x8csPlEnbv3s2oUaO45ppr8Hq9fPbZZ0yZMoUWLVocP3OzotDH3QMbIVq6GsUoIJnOSpbyoiD2sHkhqSq3DsLKJWC+/NT8r1y5IsylIwVqUQkKLsbAEZh+L8y9E9Iac0x/ZGcS+G6Jsn7owA//N2bGj/mXgJqsKUyrKQdjrbjejc2J1wQFf6OvP/RPgef3CBj+16Wi3d0MAtWwtAiGOQWBr8y5eFC6dmIYHraJOFlHJRoRkm0YBWGN1QHphvZ4isy4r4OqJ2qvbaS+Mk5NRl5Wy+W3LcXKZNWVSxnwCoI/sTFHB4TYgH8AfRAMkophPHnGB4G7gScQSdkg3I1xrDsrXasokKq58pJdUPaq+dSaotjfopxDJqMbjbLdD+9ki/ffecGTD6cYFJ9cgXrbWrhShTvy4SwLBVkSgMcmiyeaWQtATYspxV4fKCMYtBEOFFE+4QpC60WaxO/efJrMzKPpdeOoK9hCqNycqBEqLqfFFSOxESLZ1ZYQgme1+bBT2Db9ZTLnXh63wrKiKHR1n0wwUMbOpT/S7tTWlv3iSeg43YwnoPn/B6S8vJwJEybwz3/+k+bNmzfYd8GCBXTs2JE5c+bQq1cvrr76avLy8njiiSf+6/MamGPB1GuQ83LTGZrbwtQ24jLr+Y/KMWcGn9TX/AeY86SZ6cO/HNSTwZsP6mkCxRgjRqtME0UB9yBwpUeBH4ESmC2RszttUpK0bOUBI2RIfefYKSj1osRLVwc81QW6JgklptSD9zCoW8BbAuqPMPRnGCFpiscbmffdhsewQyEBkTey3tdZvCfOe1mRybCJY5UciRnIBM03PTbKatDqKl8gbNl1CHX6JdYzLgUeQHA+KsBwoDVChSvE3nEdAijSDQHJ7wC8axhTykyvT42dXjDOJrsd0y24FdtKfdpb5Kzp227px7xjlfm4XZqrLgf3wpMeUeNMl/V+OF+FVUtg5RI4S4VVfhhtno8y9lJCH3xIRcceEUWmS2LvriS6OtLYPZKmueebjqnGgLQ+Df+XrFKv4DfvehMAxEp2+beyQH2Ibd5veSFjbtx+VnIiz0zIn0qZ/f3vf2f06NEMHx6brCjLhg0bGDlypKnt/PPPZ9OmTdTVWQdwampqKC0tNW1GqQxU85ZnJZUB8xN3otPG+TPNqIzhV7fn6nk9uXXxSSQ6FJKcCdzr686iwpN5wJdBksP6KS3FGeQ5XxM+LWzKi74ULp1gNp6//BJaZ4Bfy4stKjafH3nQtFBgkXaLY/4CUG+EDbvM3XMtgGNG8W+H9v+K7s/sDY4w5kWnASSwvwg8P5vb1lZD+1+1BOmW4GsCTYLwRgpsawSvO8AWFFbZ+yHhQnwHUZYllygHhvHWg4jl/kHMLCD/LUUGWoL5YCh8WuQH2hzSomGHWEUGIh17DvA00dRsOUW7BGGp6SwhQQQdVRYCszkaWI24y3sQCQnGuzPeTbE0dpGhj3xdbb8uYC7iaSWKVPOspgJ+1Jg9gojXb66BkxfCiEI4Q0MZ1gRgnUfE24yS3se830pCONbEoYB+eSp84hUJjOs1hGWxhQVYolFcPfcGfLoV5cXXCFdWEpwzz3JYpyGJU3E66OB7hJ6FS8jwPRBDPAwCBGKUhtg9av5glWmAGpKowXEc2/EnZv8Z5E+jzN566y0KCgp49NFHj6n//v37adWqlamtVatWBINBDh8+bHnOo48+StOmTSNbhw7C5KgKVPPy0MU8pC7ga+9P3KO+wvf+n6kI1PCqZz2VRbW07W1Ofu5xVnMumtqRweNboSgKiqIwxK3SzuXkXHfzGJeD/sykKAqj3Q46u2xc7E4kOVlhoS+R+x81f1XFASBogUpM4vhXYWJdhbMvtmD8sFBOMmqxd9NYZGXMuYb3DXloe9sE4tDtFPUexyVCx7DIIdOvUSyd8xUCir9S29eX6HWI5X4FYvmfTmyqsTzdyD0iQPMNOMRAm5O7k0iavsidFP2OG3TmfwVcjbDEvjS8l93oDoSFtoYoS4iseDYjEgU+QkT5riLK0q/fVR2xsBgjFF22pi6DoB9CarSIZ7Xf/LAS+T4VUfPM4QIlCb5Nh8Ne+FKFXXfCWhV+XwTf5UHpFsHZuGuRmRFkt4GHsftE81ROmmj+YgZIc/3HVhghpbGXad/aeRbMIOfnQigBRo+Dzl0gKYlQ9wzCG825X823rqSZ7xlwJBHhQVTsNHKfj93ViebucwkVlbHD8yh1geivqnXO2aZxOkQYCaJJ09Va3ku3nKM8NTYgJywzIX8KZbZ3716mT5+O1+vF6ZSpaeOLrDD0AgHxfNd33HEHJSUlkW3v3r0AzM14gZ/X/mrqu33Vb9yuevnKu4sZ6hL2bTWDuZ2psT8YvcJ0RaDGRCgcj7dRn2uW28Z1N5i/qtxs4W6c85K5f3mlcBd67pVYP4yLjrFNUy45meZxpg2KZfwwiTZWToa5ObeDdC3tvEAdeLZqZV4MktOAtzhXw75YUVbpOWXysqxLKVErqwT4l3T8O0RRlNuIWmpWQJAvgOsRzPjXa/uW17OBZ69AYBrFFvfJohQBTTlicWwrZm6Ri4mtnFZOLLays7S/CYHRXI3Z5nQi0sG/QHCcOBB3fQChTF8GCgGfdkxS4+EG1Lr+vcuxsBqJ6aO6SIBBNnrM7aV7YblHcC7ak+FiH1xXKJCNiU7zNRQn5PngwUKY7INWveAyKYwwVFN4SU64fzHcNA9mzoPHFkcLdwbtELQRDpgfbxL69SH1pSex9epG0rBBFE2aSShQHHPLAf/nFKhjOOz9mC/VcRz2C/dkgjOJfr6bObdwHgN900hwJBLCxl7/N7ylzmSndyOvqXex27+FX5b/FP8zPYqcKAEj5E8BANm8eTMHDx5kwIAohDUUCrFu3TqeffZZampqsNnMX1Dr1q3Zv3+/qe3gwYPY7XZUVUqK0sThcOBwHFsmfZu+EoN+wGyiVEucjHKF6cfzO3JeVioNSUTZhUIk2UN4X4MBfeG7r2HZahhrAQ9slALqUPHe+xHkPxRl/YiIhfvRmQi+ayCzLRT8ollkx1D40mkD33mQ2QwKDmkoRmlB9++D7G+0OR2A/G6Q1VTMwRkCXwfITITNleLcAXYoqAZHEMIhIonQQISyKnJ94FkE6nC04ZrDtNfViLTkePI9wt65FWHRGT+WOmJrmVk5tlYDUzXL1vsm5LeHgZdJnewY/m0fE1VWn1iM2F7abwecARirFg8iSrrVA6F8zkLUK5NFVyxGhXYWItb2IOKuVxAtdPMmIo7m1vYl1g5kNg2D6PfYNAd+M5zT+XE4YGD6aJsLP1p8MxumitcdXrg4X8D07UALi1wxRYFM7Xgb7bjdCTf6oGsm/FIQpd5SFBg23lw+xjhecQDWfmwavv6bLVRcfTP1O3dR9ahARVV6l9Li9UepXv4pbebejC2tUQzhsE42rCgKbdyDsBGiiSs9AhyTk6bL9xZT+Mbm2M/iGCWIjYQTaMY/h2U2bNgwvv/+e7755pvINnDgQCZMmMA333wTo8gAzjzzTFauXGlqW7FiBQMHDiQx0Zov7Vhk5ENnMMk3kgETzLlmuU+Y3UJnX2bOBpbzzA7srY2UfZHFmHMGEAiEuSYvzLlDwZUB7qxYBo/ZN4PvCZBAVjElXOKJUg/uU8DVXLPIjGjEOPB+gtp5HbVSL+2jllygEjybBW+jnGNmRP3pSdEuG4xPhvFOcNnBnWx2V+qM+LroOWVBhHXWFUEr9T7C3tG9rQek+7wizv1XEF2fyxFuxXIELtAouqOoTLtOKbEKLoYo3S7vyA7OEYBH2/5OrMU1CBFruxGYjYgSVmszHkw0S86BKCvzmnT+mZi1z0qEG/NtbawPibUQjZaVE2GlFYpEaiN1Un0Aij3iFQy/Eyd08EGvQui8EHbcAF0XmvPOGkmfbkuJMLRSyh0zbkauRqMoCpzhhtYuOMsiP07eAFb6oV9r8PvEEDnmJ5G6r74z7R/y3EGZ9wO2q+dR6l9Ls5xhpuMtc+MQn2rSSSpF8enUd9m/YU+D5zQkJ0rACPlTKLPGjRvTp08f05aamoqqqvTpI/4Qd9xxB5MmTYqcM3nyZH755Rduuukmtm3bxsKFC3n55Ze55ZZb4l3mmGTwTadwittFUrKdPN953F84lmt9g0lumsgNvtN5unA4M3yZGgNIVOQK009M3R8p+7LaH139bJJZ86E/REbLIG+9Ce06wtIPRHvOaFM3pnnAfT5IICvB+iG7/aze/xfFvw/U5eDdB+onMfg4cptZzMko2rwaci8aRR/mfAQ271xtiHXE2imXImwZOcSvq49NCEeb7lacbugzCqFSNiHslE8Q1qDs+M4dJJ6WTWJSaGOkMzwI9OFIhLr8Xjq+Gc3sQDhGt2nnyAjHIKKITXvAuCCP0Garx8xkN2EAUXXaKMlEr3U+1wAAnhNJREFUmWkUhJXmgnq3iI0FEbGzgArVXlHvrMwQ71IUUeesegv8nAeBN6AwDyq2QCtNybSTYmLnvGPe7xan0vQ2v6hztskLt6lQYBHDO1YJElOBWjntdPN+hgTXNUioqAzF6SDD9wAnFy6iu+9elDjkwhFxOiNJ072nmB9cBs8ewYWvZh/HDZyImenyp3AzHov8/vvv7NkTfbrJyMjgww8/ZMaMGTz33HO0bduWefPmHX+OGZD96oVknN2W/QW/k+gU/jdFUejvzsBGkPYuJwmEON3dHhtB2rmcMbloyc4ws3xd6ZnpwPfUft55PvokrOeWWcVXiiUGkNKAyC9zOsH3PGT2gnUbwHOrWB/m3w6+RyGzGxRsAYdNxNamPw9zr4K0OGhm4OgKLwSBcpj8MRCGBYMgzR7bTwaFHKiGwU3g6c6wqxIsgZzy9eTDQWvuRX15RnoPsUv2xYintzPE9LmVaJ0yfUrxaKxAOPsUYmEXVQik5WldoKA1OAx6wU7IXDgahSihVjtE9E7PF9NFvkKldmdWCEcwJ1fr7ztLfX8D7tS2EYg627pkIwp2GkW/lhXVlX7Ign9R/u5iYmdan7oAbJ8ukI2tzoGyAkhoJop3tsiE4gIIO2LHqwrAOokRX843g9jzGlrpTjejnusvmUCi2oTEzJPg+2+pLzlimQ0I0DR3BIqi0Nx9LnZCpLpaU4+exyKkNlDODwayYWPS9BlPZPHD859F+mZOOxNqa/noigbmK0kIG+ETbkaUsI6KOCExopclv71kOqlN7CbAhhHA4aA2BtDR0PG1vsPcnRNVvE/70hntdiKKM0QJhpOooa48SOvG0X9m5W+CFFhf+P3vQ7YE4Mp/DLIGiT7+dZBtIFTPvx2yMrXza4hVWA0oM/9PkO3HJPnnQVZbc7+qGkj5EEvJd0FWY6yvhcagXwRzkqFJOOpe1K0z3b0oKzBZqR1BAN2NUZB8hPtRhuEHDfu1CAyglbysnR9GMOjrsg3okQZKNwTV/ij4ZUwLXuJqXuVKfl3UTfg/vwB+BvgV4QANIFRhFUL1ehFowlrgZosry7N7A/El/gthRzYmumrXIwqAWsk87S5OQjBSjkF8EUY0zxHDeBbKzA7YqqDG8HTUqkqANIxxqQof7DUgCXv6wJ4UZdQHwajfOct8nr4FA/DpdBg2F35fH02iNsrjVVBfCe9Mh8vmQnqa9Vjy5gTW+WGaYczJM1DuewB7Yj02exC7PYS9vpjiJmZKu3Zb8wlt3U6zcefhUOrEg2igiD3T5+GaOxlnWio2ghT7P6UgO6p8z8qfRsesU7ARwkENCeEgv7z9Na0yW/P7ukJ+W72Tcx4cygsZcykpKaFJEyl50SD6+tTk0HaUJo3j9pMlXFpGaYvuRx3/zyZ/Gcvs/6pYIRVrKsyPjZXlwjIrDtTz0PRSHp6bRHqaeMZwOuG1RQoD+ob5tgAcDiKlUwjGEBgA5ja5CGdRKZauvUAFTF8Cc0dDmjENxaB0ZPg+aJyNkjJ0hsF3MmSmwFN74Pl9hv4SkbBR/OWQrT1ke2tgsQMuMvxCjdyL+tTkDKogwr1ohBZMA1KJEjqVIeqdXUnUuaaPm4iAZnRC0zsIG+cXorZPojZ+b2A/mLN2tPmaXDkm8IeVbEIwcYBwcBpFr0itX/kGRITwZ0T1tce1Y2sQ+WVnahdLQsTPeiFql+UbxixGOFwrEOp+EIIf5UWgPwJNacNcPkZSaEEgtNzcVrEMGmWb2+qkAGJtuXBTmvpYWHQAv/hhpTbej17oP9V8fNh90PYk2LYMFmrpBV96YVo+nJYlrLhXp8PkuYLiSpYjAXhJsvLadYxBO9cnNqLx4ufgwAFhA7VqTlIvF/benVEIEcJGmf8TdmWLIqaHvR9zUv69tMo6NaaSdK0UUFUUBZf7FH7xf8vHecLNus37rcWHEV9CQTtK8NiX8vBx9P0zyZ8iZvZ/WeLB6o3s96WBOh717KA0IKy2EbnNTH1HX9aIj/1VDFAP8q63ht5qGR/5xbmKonDJpQpdusC4bA0UYfjj51hg03NHEFEWchHOmMK3IS1h+jbwbgL1fvD/IM4PlIvimzuLwPMhjOhIjFiyfSjgbi1AIU9IJbuMRMKAWVlKC1pRONa9CLGWmLENYt2LSQiYRBARZZqIUHhXItSIUULAqQhIxWnaloJQGxUI59tzCPhEWwTfRhKgyE/9mphioJH2ROlVdh8aRXduBrXX0wEV4SyV0T16YvWjCKtvKIKq6gap3wUIDOZpCCWXiUAzXoiIOl5ErDVm4cBRiqUGab8mAOUrzG3plwlGfaMcXCHIh2UCYrmMjJxEvep+sCVBlXTdiiLY7BfUVmu9cJkKn/rNCnOdH4ap8J2Z5YN7ZhBe9r75NhWFxEuzSJ36NxpN9dBo/IUxCq9OUlo6olHONdPJhgEqAtWs9nipDlTy66pC/qiEgglaCZtj3f6ay/5f867+H0h5oIYFno2UB2pNC9gG/2HGqV/ysfcwY9QC1vlLcDgV/uFrx3uFnXhwYTq3TTrE/IfNJpbMlg9gD4l4mVGcDlj8OMy7VTDkL37IXCDSmQS+26HwefDN0OJVkmsvhiG/Gvw/gvq4KLzZ9Z/g3QbtXzb3u6FbHLYPw/vlh83nLCuy6KdJjoSkGIsE/sDaEpOVmhlbJhjwjTlnRimXzpelAJiKSFG+Xts+RSjETxC2UDnEKDETM3mMkrNjZgIZ3MAMTo/TXkeUPVKXMAJG/wkii26t1p6AgOG/jeBuVBDsIUZZbzG+le1rkHpJKdlyhUI67BE1zvaqUP6WONZmvmAFCTmg3incjd3mi2O/vwkfqrBUFeTDS7Tk6Y7S+L090F/yqZcXwclSv4G5QqEZ5fBeeMwDAY2NxIoRRJNwoJTgoRJqr51M2MAd1xDbvBWisS5QxtZrnqPPwimcWziP0303RCpP67lmhd5NvKLeQ33wGPJg4sjxKTKx/RXlr2lv/i/L1/5feTZbLAafefcw7fWTOW+iIAuVIfllRYLlY4S7Cev8xdyTdzhmPIDl79Vx8egEWjSpxxasx2a1ngQFNH78BcQFUCghcJ8p2l3pWK5LOSdLWUS94Nblsf1keXYHDG8NWRIvaqAOpv8Ac11QLF2v2Oo/q83ZEYTFjYTVs6lOKMoggnvxLgQtbjPtlIaUWoLWtyuiXlmi4fgghGWlS29gAUI5yajEcgRoPZ7oXDQfAfm1kGXD2qVoYbGJnUoEjZUHAbtvD+zUjrdAuAeriSq+oLbv1WbcTDuvM8LSesbiDnRAyLlaW3uEMusq9e2OWa3LNxEk1t0o1TyrWwYlmruv2ms+vehlcGRAs2GQmAbpbjj0KnFl/yroPEYU7myVCUUF4nrnPAFfG/LtTskFuwOu8EGnTNhXIPYH5sCLhl/1As1FudoLD+XDsBx4xCJREyAlhXCvjoSBCt8SUpa8gm3sCO1TiCoCI2BLRzQ2y8ygquAnjizbxA9jHxS3smgdA/Nn0sl9etxcs/RT2vBHJRi0odQdu4IK/0WV2QnL7D8Q/ccc2Gv+Yc7zfMeXfsF4cE6OmWD4tJGNuM+zl5JAKIYh3ygfvFNPRssg778XB58T52E5InFQgabztT7OREFdVXgr+HJFwnSflkcZX5MiPd1JB6RocHzvAVFBOkWafm4qMdabLooCY21RyqpgyMy9mAksw7zkHkYoLt3i0p1x5yBchbp7UZckxPI/BwG1n0YUhm+kgdUtsp0cm+wNagwntVi7GU0KLRGhfEYjrKg87UArhOvPjrCktmsz1GdWgJmP5EuEu7E1otaALDpFkk5GbCTuHCn1vdjwvg44hEhSOEh821URUP16F+CGUHGcfkD1JihZAt+ocMArppBmQTGlS7O+4gfRxQ1NXdB+GCyfBHWVkO2DKYXg1nLeQgr0cUNzlyi3oygCiDLVB3MK4XwLiqskJzzsg/xCmPUyDDgb8jcKnsYKc1wrLAeeNTFaajqiMdHVgXT3OYSKzWPUFVWYFKGca9ZjUiajfJdxVeGM44bmh0N26o9jC4f+mjbMCWX2H8o3/r28MTU2e79cyxROciZwt68niwpP5rKZLRnTbhsfeUs4T92Of2HxUcc3ekMCReC5XpR8ibQVg+d2rS1e3pgFOjFQAZ5XxKuiiERpV1Nw9xLW3sResXO5pge8LsfgpBQcOUG6oh58XaCwl2D6iAfLt8opg1juReNyvBLhUlyGyDFbox2zYsbXX0OI5V/VNqNUxnkPIsvq74i8s2cBOVtxarGmwJ8B/4Y4AJCIMrMTm2pdbui8TTqm78uzqtDubBPwKrHiAV7CTEY8GaH6nQiX4/uIdHOd0qoOUcGtF7AEgXB8n6gt3AD42S4pp5QZ1v12eyDghwQn9PbBoELo+7q5T4eJ0d/sTj+8pAoQyPPpkJAEaS44yR1LBKqfoyhwupY8PekJc5/+I4UCHOaGwi0w6yrY/Clknwq1NbBulal7wiWXxL1lq6rNIWy0yDnH1NZWClbLBTrtzkS6u/vSzJVG97Fm0vKjStB2/NtfUP6aKvp/UeLVMhuc2xoIoygK57qbYyNE597mxNSC9SIha/zVKfQ82Uaz5mFu8pjBAOPGi9cP3oOxHvHe+w7kvwDUQbYW2/d+YIDk62Kl2BCAj2zNI+X9EvKvgCxJeSUnwuujBPBDl7lniCXQUQ+ZTaHgsHhvRFfmpJtdlpc1B6fGJuKysso0RWYUI+hjFMKS0mWk4ZZk+IMx/mUc0gqCvxmQlk9ON/TtLx27AGHVJSIQkN2A5to5i+3wT8MFjR4kG0ELZZaIsD2NuV7GL04GFenRwtMQMH1ddD6ShrLjiqX9bxCq/zEEfCURAfoIEnVnysz4RnYQC3ejfu9hJzh9kJiJsCIbALbUFgmFkqbRUbXsAv0c0DwTqgpE4U9dZCCIzgyii9UqFjQcS3JC9kzI15Cfue2Eq3FoVpSIWJcZ0V9vwhNPYUtvBg4HoWA9Nps12CuELYbsIOxMpo/vNppldqa8oFCLlUX7yAU6FeKUUD8WqbFD4nEs5TV/zWX/r3lX/8NSGahm6fR1XDTrZLYu32c69uTWc9i3tVRjABH5YqWBOuZO3kV9yPrPkHmWA/cVDpLCNaQmJXPkQIgE6mmTFiTFFsYWhL2/mc8pKiKGOzECybdyMRqUh0xxVVQlqktPfw/mng9piSLWNqGneF7PTIOC/eC0azG4TmIsV3LsdZxh8PXQKkeXRStHH010qywe92JPRHpxkjZcHSIKdL9hDB1GYVRaVooMYu2i8zCnBxsh+josPxGREbYAmIFQCWnAEynwTwN+J/d82HlUy6wOkZQ2GZG2nWy4M5lxwrhvnJU+2zOAf2ItkxBIRVn0HA39bo1f5EWYkxvGSH3jiKIxhYQBu0vkoZFn3beJxO9oVwSLvh3hVgwRvb2OEjdkT4kZxMqdbjceU6Bdb/NxXYmdmwP3W8fOwvYUuOhSFEUomlDIBjZrBLNQaIYYmqKguofioIbGrpaRWJmV4qsOVLB68lsohBmx4OLj0kuRezxa2EHu/xeUE8rsOGWrfxevZQtzZaM3GlG5Yn5/mqg22vdqTOfeqSha8rORYFiXmXNb8fj0KGvg6NwUbNSiKApjxieJhMpQDbZgAkqwnqUfwLTbTUOQO1pYNFfeGW0bOQA898PcKQamDwvFlnMqXPlqdD/VDurD4r33O8gfB1ldNPdjN3G+y0nEPTl9I8w9BdISiEEmKgq4NaCJy7hGSv2sKKsO1sHtQXgIaFwfdWzplaLbEHWEHUE4x6YjnGxnYF6S5Xw0uW0g5uX/UsTaWYGAXeQiHG1vIOh3FczZYGsQcbdLgUY28HUWbCwFaYIBRHc/2QkJHsGPpkOzuWBPA5YiWDdAKLN7iHKLvIK5JAtELTAFoQBBRAT1u9PzzzoDe7X2tgjXY702y39LYxpBJcb9OsSy8Cwi5raNKBejbA5ZWGemFcUJzXzgzITgZpG65nTBoRkQqsAEuYm3wNoRVpoRCGJkBom3ggWlY4Ny4DmD0hqiKcQvG0A6ZY8TQwVt2OxRBaR/t7JSsp5GrPIyyi/+7/g4O/pL3LFkCxe9cZwsRSeUGXBCmR23VMlcTZqEgvUULD1Ev2FpNE2zURmoYt70n+h1eqOYvsmNFWYtbMlafzkjshwkO8y/LpnWqrg49npLPoLla2HhLDjnFHjhbWinrYHelZB/N2SdKp2k/eidCeDLizLkl0t1AYsqiGUFAfx7IHu1do2fIf9UyGpBjIIKVMP03TC3rQZLCApgxPQDMLdptE1XZADvByFH89guRkR6MoFZCIBHKlFFtoZozEpfij5D5IOdiXWhTflj0C2vtsAeBI/GXATkAgS0QpcNCFenVRGWRKDYBktLYVgyuPtjMl4q/KuFi0t8aqDmE5sJV4Vwyz1iuJsLELbnTqytISOFVYgohL8V8C2CwxGEZSYReYqZSWPICdIjtfediVqM8fpqErNIKmB3i7dOF9T64RcN+LA1HTLyQc2Kdg8H4PvJIpLff4FQ/Lpl1dFgtRnDZEe1yjSxOWGmD7pnwu4CSNQUYlmx+dzLpsDVM+DHjRpDQT3hoiIq77yN1LmzsLWIMmaEjA8sCEBIfKtNQzEGytk8/V+cOjeHlDRHTFI1QHXxcRbqPKHMgBMAkOOWU3K6Wba/PvVbPvX+Sp66gkV3/sTl6npWew/y3NRdMX1TGiUwK+8gn/gruTOviAnnBigO6PyMIYoCYa79W5BAQLgYL8uKGYJJt8KiDyBvFmzZCb07mY9HitwaFY0migLuTAHVd/eB3D7mc3Nl8IfunpSVXp1QUp7vo3XK/EdA3QzeAKhbwF8K/jJQd4G3AtR94JfGqQvCEWkN+AyhzJZiLrYJ8HvsxwGYY2bx3Iv6vm7jpCLwhDcRVWRWUk1sNlgWsCIB1MPa/b4D/m2APYp0k8uDCEUmo/iGEhtfaoewvgYSlxsxbl1seSzpxwFEs/GMSQ6HEe7FQ9p+McL2PUj0UeIYVsKgxQYQkpR40LB/xC+Kdx5YAr8vEXlne/3Wl5PHjXfcKDogpIULBhmAI+dK38XtT0InF4weJ1CCH35ATUZX6t78N8Ut+1Ljt3LZGi8dC66oC5TxtecZ9nrX8556PT97v2CJOoM9/m/pIhcSBHpc2jum7SgXjfrUj2U7ocxOCIDdaeMK33Du2TGO82b05sEdYxic19nUp/Sg+Rl+zPWtuHFee26a15aHF7enRqp19uXaOvqpR1jpr+Yjf5Cuag2LF4Xp2DbMG4sFpZX3OeJKUTFIOZvkDsE6VqVbTyXgeU2UanHawTcONl0Jg9tDRZXWpxw8K4SlBZAjrYmpCqgfg/d3UNeD/0Bs5eiiWgtmD8m9GAzCJdIvUc6C0ottrsa6YhdEIRRHU2R62zeI2NeOOOPJY+vVw7wIHGAKUC7Nu0jz0ulP7Wk555o71KyAhEoE/MSPUKlBonlgunyLqF92NGCAlUKTTfKzgJnANQi35l2Y4fr6JzsM+EDrPwrxOPEOIvNvmeF6RsUmoRuNH3I4ABUeUR4mCDglxdE4N6p4ZJAHREmKrRSj8XpHO2YlenuSE+5aCOdkwYMLowU7NamXCnaGjsgPJ9YKTJdD/i/4RPXwm3c9BZ75pmO1RZXYnIn0vcX83f/8cewDcIMS+gPbX1BOuBmPU6qKatiy9Gd6DjuDcU+dyhb/z6xf+LOpz98e787HL0eBIX9/qgMpzvoIgXB9VRX35UmVd4F9e+t59w2zNrjiOmiaApdfCkmKiMt8sRkmGrDhuSME64dvFmS6oGCrBoHX15mQgPBPXwRz3bD+J8h+URzyFkD+ZVAThIGviLb0+XDHQHh0k9ZnB+QPgTFtwHcGdHHCjO9gv+R3KwpCimREpAIXNYIrDYXFcp3E/KGWSz7BxtJnMwyx/shUlAMQGVe6M+5YFRnEAt11uQ9hiwC4ECyIiURpsRoDfbX9CSkwxQj+OAOMa5vidMBjPvjiCLxzPZS/iSh+eSsCUQgifna31laM4EjUPnw2Ihyi/eLMVo/yTQQaYY6hddVmn4RwQ+puwk1EC2+u1K4tS6G0f4TYQFQcCQL1fqjPFvsBLyQOgfR/QwsfpGRCnaFwJgiKq10SEKN1rvUlG4qXWR2TQ33G9g1L4WENpLLOD03TYGRWtF/WpXDj5MgpSTljLN2JRlei8X2wSLaSo5KROxBFUUg7ycw6UPGbBeFqQ3LCzQicsMyOS37w7+R+9SU2eQu5XfXyrX9PDDT//CkdqA+FOWlwU+ZuyuRuX0+SDMlVNkI4nAoPLkxn6EVmzom7plazaUNsInVxQEMRXgSuTpAqlZ5a9oV2fDC4WorXCIdjEPybQZ0K3i9AvRlWSWlMq3aBJ9/ctnG/ef+2AuFmTArDwDWwPgDTpHFym4PEocxTRVBZCz4VCluCrwkkSVZZXVDwMBqlgmixzX8QJfMdKn029yDiXmdgxpqAcOgtwOx0M+pM2Zs6C7hWG0/nZWyFoMPS1YDd8JqIBv5oC5sGweC24v4D5XCv5zeqAlXYlRCMckOKzC9yRNqvRlhEVvGxeGr3G4Rt+SUixVtPrpY5HPWFV797eYF9KM51jTKGWKusodwzuTzMWvg9HeqTQHFBijtaFy2IKObZdTF0nQfd58EpiyFBU3bxrK8gUBaAdz3iFelYQy5KXWRaK722mU7G63Rie/lVUr77kpRFL2pxNGGNWdUFCwZK2el5mOqAwMu2zDE7p0/1TmZU4WMM9l1LgkNcw5VjTgRZc+vHFhNvQKr/wPYXlBPK7Dikqsj8KyjaW8FAyffWZ6jK31qsZev6EqYPLCApKRwhJdWf1tYsreCevMOseV+Md9cTqXTpHv+ryM3WEqanCwurWEor+nW/xUmGB8e90v+8j8Sc09dMUgJAF8k0+qkMVD+sOmRun9IOCk8TcHyHArlNzce/qIH0vZBUr1WQdgpFKydHy2HB84kW2xxOFIKgc8G/irAnjNYYRNepTZi5MgoM/SoQXPO3Gc4biUBLDkSojheJXfITpc1ug4RE4Zka+Dms3wfp00DNhGXeIp5U51DmXys032lynMyq2nQisXyLEOs21EVWcmXarJ83zN7KNj3TYqxqhNtxkdTuR0Bj5N/nURSazNsYaY/Diaj8f+2deZgTVdbGf9VJOml2SLPvNAoibg2ICAgjCIogiwRax1bcFUHE0XEdt1HRccUZxXEUGY0LYQSCG+ICqIiyNKigCK2oiCBCeqH3Trq+P05Vquom3TQu4+CX93nyJFV169aSqnvuOec952iQOQnaTId206HlJEvYqTAF0pdheNQPm4PwgB82hROFVVEEHs+FH76EhyfBA5NE8JltTlbO8zQb7T/qQtM00saOp6ZTdzxnjklIMGwXaAXh9/nEfzr7gm+yzj+ePeGP2PdGnqO9q6GXRlmt6BDob40LPg9HTk32v9cTKlnrQJ+UmTGFoyf34KXzLSpCaPoaWnZIZ2poAN2ym7Az70fKS5ya2n7VYQQJaazuukaNehL840Fo2QyWLofxU2RdcBHMf9DZbvpD0CwDzhlCwsscXgPTn3G2b6Zodk3SSUBtorV3I+fyTR2hnQuaN4Jz8+HhtjC3Hfx9H2ywuXt22Kj4e6rhqgqY5YLGMdHSXAgZ/EiseDL7UGkihmhn1Qg9IhlzsYTEUpPmsL8RGepVtEP0Gfv21Qhr8kisimEZWOFiHjfgTdQq7YgW7Ae3Dhk+OCUEX+2DLy9HsmuAaEVuo+cKxDA7E9FsYojpMElAH1FE9M6zrUtHNDTz7K9CDLF2mFOCmUjFNxNDES+gjhQOPRLxJmYhOqxG3bkbVRh5G129oLq37RRzkguourq1t6+MwIYZMGh2YlHOcttycQSemQD5K2X5w6C1bfUCuHkxDBoLXh/cEYJe2ZCfZ2mDBmpstHwzQW+twdMK2SdaUEKNEgxaXZioZWuaxon3n8Hmx9Tkz/VEyswIpDSzg4Lb5+LEqUc61pUVVnN8oCOtsxoxINCOQTntHNtPzsmUfW3TodMnqyXqk8PnhcBYMTPaUVoKUyc51+XeDWH7u2A84Er5JKYONAge9muohEuOdq47LhNCQ2HTaOU47eHartZy+w/hxq8sBmPmZrjge6cgA5heDIvLYGEFtNkPL8aga5XkXqxGhspRCIfPromZsAs1VcDZdY91SEZB1eNjcsZqM9j1q2X7JiRcdwXCQVyNpZll+AA3TFYSLdvRKmcouKOQoUn6Ja9qbsxASq+YM/50xNx4KqIvHk8im9G8eg252jsRA6lKFjEHV1U7iwJDEDrLU1g6btTocxiSkPgPWP+EescPZG408zb2Ak8IGuRDgxBEvcm1Bful1bb9u7Bk1M8Pwjw/uG2FQQGOMATl5jDc4rcEWTIUGYIvpsFJAeiQBcMNlmMUiFr3XM0yH4spy4YEbjp5uGN9y5yhCWmtOuacQDK4fG5ODf3xJ+VmPCit7GAF3yGElDA7CGiaxhn3O80B/XPEzGjGhqX70rg2dDRP5R/PzaGeeJRkhC6ieH0aD4UyeSu/DQ8GFbucDWePk5Ivk89wrh95omTsUFFQQoIZQclnSkE5jFCogmcdCQ8pORdPbw9LvoU2PggNhPxTINRHwlw7OSev7Knny7GjBu5XxttC49s+LNqhamf23xGE2bjftk5N7BRAIq2eQcyLxyrbr0FoEuZpKbcrgdRehuUvc7sAL/gyRPDn/xnmXw/PPQ3P5h/HhNA43N400nxVcuN8QNtTlB7PxNLMyhEDaIX9KEr7UkQbK0UETzYSuXcsiebI/tROhYki/rS2iGnTvl4VXqrgqg1JzI0xDfSAJCNOT5JL0b5rXYNtFCjZ4VxXUQqnhmBKPowJgct4MNXyL8kwOCfxEhOUX+vex6Ju9EgBZedPoyZSkFAOJooLzeelw9wbaTZ2IFlzr0XzekjzpdM7dB0n5T9KdmgmNbbJjJqouHvg6J+Wm/FgaPnm53eIlJmxHnj54qWcMWcYjVukx6n5nbKb833eHtzeNOx5pTRN46RAJm5iNG2ucc+5+cyc3Q5vC83R5tRAQ9KpJKubhwbpjTgmGz5bX4Grpobso3U2rdXjVaV9Pgj9A7J7wj+fh/bDEs8RIGeQbcEQaj4PhC6FfYVw+Xx4IU8+1w6CS/tA3rdGTTIPhEZBdhP452bo8KJ0E/wKFp8IWY0kC0h4B0zf4jzufe3hKcWXlgxXJlGLTscaJguBvyIk8gYkDp3VWKSOY7GMZO8iQukYEhM7NUf8XyA0iUsQXaYjUpfsfmPb1YhBrTmSgKkX8B0i3P5p6+80ROxkeEEzBJSWAYGOQDvIOgoq+sPSShdbl2yj4bD9uNwxatzA12F4e5xyB1YhPqw3sbJQLkeYjdmI0fQZJA/J51hG0DXApViZ8UFEbXdgEhIzZo8edht37zlgCs5iOhXGXb0CIY2oo7oH+XfuQSg3mSTHAUgkB5r02Eej8gh8PQOyboOvb4NWI2HjdGf7rmdBI5/sl2lLgXWEkv7qL5tgyQ3w8cvWurylMGicdWtM7IvAgzPgL7MhszlEXeCOUfPaq5SeezYAhS+8RJPF/8I19mRHdo/9S97luwsk8L0wvIr0Fg1pNbY/rQKD8FJFk6yWaL+GWnSwdPuUz+z/LzaHvmBz6AvOXTyKY8Z25thAN1zE6JDljedcU7E6vJc7xm0G4K3gXu5d3IXhYy3zovkSaJrG6ICksDo8y407FiO9opqe7YWhCJLFPjAKiEIvRauaOhaungh5W8DMZRophBlzYfYfoYVbslJc+YJzv4pqyZKfdYT0GymFJfkwbAB0UvxiO0qQMS6WmBUfYEWRZMTP9sD6UqAG+rhhfbnsk50Gd5XBPNu+vZEh1TQNvIUQ0AFeRkjrpoEminD/7kD8aSDDvR2mRqZhZS/8ksQYsq3IUF9KoinyS+N7HSIcByEvyA2IB+kboCmGvuRGHH2G3wyf9Tv8ukZOYJ10FpyI57lnwX+OFTflwH6jR5VuUoHQVkz6/mokg6Qd9tnBx1hi927jLkSxBMy7WGL+fURwfYr41MxpwXIkpuyvWCVlojhzrryMCNRTk1yLCVNwGpT26OMkL1Fja24eCqAgDF+Ok98/GL6u74POfdqdJpqYKhvcgNsHOSHokg2786BVLzhmglOY7S+0BJnZxwdh+LNx3FeDMGcRnHa6+M2KCh2HMcvC2Gn41QoN307LT5aT0URFpJQPZyzk+NuGsf62Nzjpr0OTtqsVJgHkYNr/DpEyMx4EinbUHjNSEqni77kbKDMijJMV5TSR7KE217mi1jYtieljsmKlemAqZLWDwIki/MKrwX8BBN8H/+VCx899OjFlVcxUJqMQ/BT8/4TgVvD/G6YrleSnfwLh3dJ2cpJJeVEUAk0hKx0mNYFJPsjSYFI6BDywKeYUZCC+qGsQIRYlMU+7GcobReolT8QSZMlgUvM1xNjWHNGq2ivt2iHD/rXA9jr6M/9pDfEcdUbYlfHM+aYA82IJNK9MCh5QCDpp+wukTb9kDL+VxtHUyLqGJKZD7qgs242iqtprLlcjQvFfyvZHEQH3kLL+E4RbugJLL1YDhe027gKEGmP+gz8gZBI/QnJZIL9rFGFkh2peVDOFJEPH8WLCTNaXWd+sWZZ8a5oU67RjYI6wGu/NFbIIJNL0CwrjP2tGBxybvDlj4r9NRmOTyc4acS1yajGh2PBVeBPP+G9ia3A9we5/4/Pgx/yz6+wD7udAymcGpITZQSE8/V02hbdTGqngmdwVlEbE07IxvINL/K/zXnAnuf7lfBj+MaEo5/CcZhRFYtyUu5vCiFOYFUeqmZpbQUHE8je4VXlnmg29EPobrHsaBh9j1BG0PZxqjGbuU1Lm5ek1zvXHtJL9wtsg9/UDX7uZkvINNTwKGGGS7WqZIaqpqhz9IkPmacr6obauaptCHI7w7qbhpEjY5abK5TuexGG/Q5K+T8KZKf8uLH9Zhhc0mwAzNbPwZvCPhLWrnX4jb84YEXxaGbQZDFn3QNOLjK0vIGzBh5UzKE9y9icihlKT8GE3rKht7bFLiVkrDgzTAVtNYnYSsxDPazjrnv0FEbjvJnZXkyu5GQ80wEYBvUHi/irajbLaJ/V3Gd9lEZiXC2VlcFkI/pYvRTvXL4VcPywPwgQ/TBsIq1529nF6TtxvppeXoQ0YQMZ7y2jw3BPEVPIJEiDfMXQ3R+a/SPfQbWje5GZXO51frTj9k5CKMwNSwuygse3t77jJ/wxrg18y07+ADeHvKFUCp0sKokIEmZvFwLHNuH5uJ9YsLeRk/1ZeDe5ngP87wsFS/pRbSDhYRi//fv4TlDRWr7ws+RgdsC1rGqSnQd/z4b2PIXMCDL0WIvuBGExOTpZKwNJ8mLQQdqiMiVqQYyQULkxiZmy/VfIvmucaqYZJe2FSgdDwx9WWWhArBa4L8cj8BxEcZrRANcLts8MsKrIVSczkxhJmasxZOuIju9349pAYLP1dkvPaYHyvQfSUpYiAW4JhYjQ1MsNvFonBva86+zj53qEcHboWV0O3mLCuz4Td78GX14NLZbSqemIjnOVTRhlnP4DkORurEH/ZdcaV2u1nKq1FxZVIiLodZrBvMTALudOLEYKK+e+oGtQP1Akzxsye5soOUyjFkoeqkDnK+r2oA2wPJ9/fxKcGq3FdUO49RlHP/gEoLXTuu+kDWLlQft8wR7K2mKmtXnsVenVGX72a8sEjIN2DpmkOAkcMN5qm0TQwHG9We1oEhhptXLY2iUHWbU9JUgX3YJGKMwNSwuyg0eYov2O5tKCK3qe0dqw7KacVa5b8yH0XfMmqcCH3XPAt695xvqDX5hawOFjBjFzneoelQ33wjIexoNixCys/AX8ODP2L0OxDV0L+vRC80NkumANzDGbkoi9gwRaY/o6zzbODYP4g2HYqzOwO2/4AoeMkXRbA5ObJ70uBcW7hcvDvhgVVsKBaaPhvRWGeG9amiVfnMcQ7MxsZjs13bDiiJZ2Ek5qfjtAhHkeIGmpYnEpAN28VWHy/lsb3J4Ctak6tqMTSyuy4CnhdxzItuiC8U0rorFYcdMdf2Y82gYF43VWJDLuEGYsdf0SEkx3tscrEPIXTBPkxcofygXuRO/Fvo43pNxuq9DcMob9chQjIjsjdfRzxEnoQE+jpSG2Cu5Dpg52uP0rp8zZl+S5lOUe0s1I/VAch4ofSJIHOTXJIir2vOZerCpJrZuZyuWo23GFtP7GWoG6AV56B/sPEXFkYgcfvd2w2/WXSVaKAUpmOteGr4If8p4P1NHY54wgu2HbVIU/NLygoIDc3l6ZNm9K0aVNyc3MpTFb6w4YpU6agaZrjc8IJ9ZyZG0gJs3pg3LzTmJl/IX8MnUqfPzqz5nsbupnRwXrJRk3rwN8v3sKPO5wc9KzeanxRckyeICYqTX3gbELtlFom2is3Q+aForlltYKz+0qpl/ybIfRHOLu3lH9RMbU35OcIvfyPnWFSR+jeGB48Cro3gmHN4NxPJOGwLw1C3WGTM9xO8i1GE5MKA0RqYLQOHWtk+DsVZzwZCIHjZqwMgCaiyPx/DSI7TiQxR4ZZIboUGebrUjbra9QZjMgr1cAGsN+g5JtamRIDz/X3NuTa0NFUlVaxKfdB0iL7YIwyeDY5to6jd0d8ZnY0QITWdISXORPxPEKihvRv5I5da+wTQ7yOdkxGknX1QYRkDLmzbbFSYKkGXnMWZXoz05ApyXJgjnHOTyF67bPAn5CCPvlACPBCzdvOLitty1EkKPq7S6DdXOi1iTrR4QD0+iOUez5/OmwwtDnNB1eFYHaSY3y6Gob44eEboW8m5H3o2Jw2YYIj9szUuJJnzC9mU+5DVEecpt7vwhv4IHeuY13Z98X4WmQc8tT8s88+m40bN7J06VKWLl3Kxo0byc3NPeB+p556Krt27Yp/XnvttQPuY0eKzVgP9Bx/OA2buGmTlYFLjzIlNJyu2Y3ZmbeXihKn0HrtH2K0WqH4u0/LbUrz5jX0zvbw2YelXHOOSnmAq66W1G9u+6RceUHDb8O4a9Q9nSgwJuSaBoGj5XeW8T35CDh/sbP9A/3Bp0HztnDuBzD7aKvwZvh7GLde2gV/gMWHQaAZ6NUWgzGvzEhsDEz2OEjRAJxRA2gy5N6ECK1Gtu1vYnHlliJcOjNCarWxDBan7mjET9YRYRjqWDnmQYZ6lbRuog8yzJq4EBGsLyIC7Cjge0R0eBDz518Rb5CJnEZY5A8vTD4azrfVeDz3ykb8+w0392Uajvzg8fCPRXB1CFzZsD4Pak6HLy9NcoYg2tASZV0lifahAuPKQ7X0AyK+S4025yKexm+xzJBuEmuVmb+VSPq4J9McNjTE2+lGBHDMOHc30M1YHm8sZxn79HZ2mXaU9XyXh2HfOPldHIT0RdAtBNXbYcd1zv36BJ25G024EWLHihkw6mE47FTYttTavvltOG6sVLY+IQAuHa6bD8U/wNaP4G1bOq9Na53HDJyN5/Th8TpnsZgLVy0adhQXReF3+WLcLQDsCb5D9uLr6DhWnsoKtZ4SsGfdTh7zzzr44pz/Q9T8zz//nKVLl/Lhhx/Sv7/U2PvXv/7FgAED+OKLL+jRo0et+3q9Xtq0qSMDwQGQEmYHCU3TODbQjXQqaZvVEMrLmHfBmqRtz5jamrOvziQ/r4QGPp0RgcZ4qSKrWwbe9Gbs2l7J3ddZD3XPnhqaZiMPJCGBqCbGqaNg6qnQ+0prXU4/q719X6JS7mX+OPihWPpv7QWvC8L5tsKb22FxfxjrByUdpVDzo0Zi44bSR5aNAOIDXmwIu2LCmMysAW+NZPqYYvSxEPg7Yk6sxgqcNlFUy28QXUHDojuYKa3q4vKZMAkdZpzZTkRY3WFs34oY6wZihStnIMNxc6B/GnzVwBjLbMQPX0MITYXsgSLYXV43JWoMQ/k+OPlCUVLKs2C7Dl1CsHc7lNgH6nMRUXoqQvQwcRJyk+2sxBdIpOsPQKYAJryIhgZWBv6+WOZHu0DD9vsjrGKhIJpcOnVP61XCQzTJunOQqYaBtHOs51TN21hdCC2nQHq5U5gdG4QOZ4sZ0HQbmiPZ1jC8Nk5+bw7C8Zc7+2x/lHVqbmTGN2CSPLixi5zCbOg4+PAta/n4ATD6TDQtsSyPUO+jzkKcSvqd6oKSeMb9jpP7s/b8pxL6gf9ecc7iYudg4vV68Xq9SXaoP1avXk3Tpk3jggzghBNOoGnTpnzwwQd1CrMVK1bQqlUrmjVrxpAhQ7jrrrto1apVre1VpMyMPwGlkQrm5b5HaaQSj8/FtFB/Hsn/A1cGnTPZKx7oSPssL32HNeKWc79nx5dV/Dl3L0UFOoOHudi80SmtJk6yuVLsD2cMIvsg9+ZEE+MDF0Ov9hCaCfkPQWiaUeQ+ZvUT2Q+5CySbuxaDSYfD9ONg+rEwqavEsakFtM1lNVVTjj38KAaRSsj9wSjOaawbmgYfVUtui9G6CDWVBFmAhPXejDAM7RiKxaPrr2xTc1yY5kXVWHQMyYdd04dmJhVWPVMm2es+RCB6kCF8ItArAyY1sIKlTe1My4DAIMjKgnEBqNa8DJjcwdnx+DOtfXxIeqs2AWihBAJzh3HERojP6XGgB0Klr8QqqmminbI8AZk2/MX4VskU+7EMsqYZ0XzY7Jk/1GlERxIduNXK94+IsPwR6+7/gAgw8wnIQLTEfMndGPNZh0xXzIL7l0E0Im0OC0GffDgqBK3PTkxCbA7oar7Glop+3scmPNX9031wWwjm58NdIThjinPfieLLizpMjDYSSKSInbl/IRqRe+ef7JxotLVlNXD5PAwOXcIZm25GxUEX5/yJBJCOHTvG/VpNmzZl1qxZB3fcJNi9e3dSAdSqVSt2795d636nnXYazz33HO+88w4PPPAAa9eu5eSTT6ay8kD1/CykNLODxKbwdp4eJ2aLNcGv6DGkJVctPAF/C5123bxkpNdweHYDtucVk+7VeC9cyI3jpNjea0GZCb0cdA4w989xk9lcp4ErBjHFXxY1TIvTZDH4Klx7Flw6ygiU1oSOv2QdZLeHJethWHdo4ZMCnBOegpVGrb/gRlg8EcZ2JoEOnVCHzGBm+Gog1MswJ+4Hr82kES6BcbuMvstgUSMRXBMNtejFmCReGoYYo/5k6z8Da1heisz7xwBbcKa0TUdCb9ciZHNTlwCrwKY9cfBZWERD07gGEijdjEQcjwzrJt4CHjF+v4lokKcjqavMxML4EJXOHmtmfMfcYmLSfB4mhMZRnD2Ez/Mq+aGpRtQuzOJCzSc5C8uyEcLFn7FyJXqJBx7zBZItZAZg9zudgGhy7YEdxn4mLT8Ti5dpYhfibwOrdEw2TvNhFPGfPWrbbyiJeq4db2AlOV6I/PNpiKYJ8DywCKndZsRspWVZmlUU0H3QLARp+yByORS/AJtegK6LwR+Q+9XYyPThse1nwg10nwwrbIbu3udCejp8EYbeY42ZiO1yo7Z9YxocPQz+OQOung2eBvBACI7Khm1rwN0wfg9itgTEUVxUhpfxo/GSbg6+RrfFd+M/YwCHh26hWXZnit/9mE0Xz6HHbRP55Lb5HDf7LDoH+vL1s6scdzH7mkG4vAc5LJeDks+4bhjyYceOHTRp0iS+ui6t7LbbbuP222+vs9u1a8Usq1YWANB1Pel6E5MnWxOZ3r1707dvXzp37syrr77KhAkT6jyuiZQwOwiURSp4517n4PDFyh+53P8y1y7uywljWzIo0Ao3MbpkudCIOYKla4PXBxPH6YmkD2NZNS326iSB0lktILwKxhnWoOB7xvdquGEEzFqWeCyH5cM2SytVVJQSQ9hpNRBoLr+zPIjaYuz3qhK+9E41HKPo+oXmNSJUgcMRLUqNfOqCmAzteSJMY9fjxvJ6RAhmY2lkChseDRnKPwWetK3fiOVHMx960yc2zbisJ4HPlP5KMfxnbvCowksRZPigyuchEtGYMyOP/rMn8nWLTJpn9WBfUUxClmx0/riG1iQAFWGoMemnIUREJ6OrVCMMxA7AV8ZVmGbDlrY2JtSZbTJNTe3fgwiiq5F/7CucYQDJbFqqJrcvybEVrUntxq1B+jAoHK20K3C2twshc9nc7vJJvsY22VCYB1++AYuMEIfPwtC4heEzI1F+rw3D7eNk+Y0g3L9Ykg/7gG7dQKs0hJgcPBZ1xTPo1ygvaXVBGZqm4Q8MoTi8ki0XyBTp+6DE4H0bXEWvG0bx2SwnycF/ZOta01fWip/oM2vSpIlDmNWFadOmkZNTC8vUQJcuXfjkk0/44YfEEI0ff/yR1q1bJ9krOdq2bUvnzp3Ztk3N4VM7UmbGeuKL8FZu9z/JN6uTx9KUFlRTFqnggdzN7I9Yg8mIyQd+WCbkiNkiEoELLpbaZfGHM5aY9SPnZGoVdCb21ELpyzmcBK2MKOQoGXXPslsKTKFnJ6IUwb8UslsvLTGm7HRkeIwh7MV2CENQ9fQMxqlxmXdQ5dOVYWlkMxECiB09EIJHshwSdtFgTuw1JG1VbXPSsYhWZmbId6Swctm+jW1LXoGT/Vt5P/gdD/gf5pvgKlzEcLtjiVqZ2acP8KhnXI4VhWfHIIREsQiJmEtSv8eBbGV5jLLcj+T1uTVEO8tEvIhmEIVdUNrNjMpDSgMSgyCiQC6OfC/2Z7E8DHv8UKWkoGmck/SZTegjivjAuhjZP9oPgw/+5uyrRBGM9n6KlP9gf/JMJDF7AmIjg75vslMA71/2EVEjG3htgdEVexJf3h45KummHvgvxJllZmbSs2fPOj8+n48BAwZQVFTEmjUWj+Cjjz6iqKiIE09Ueci1Y9++fezYsYO2bdseuLGBlDCrJ9TCnGPuPNax/M7cb8n1L2dF8Acm+T/gzeCPAHh9GneHOrJkWyeGnpGYNeDkU9No6I7xyss67TtBcAH4e0rdMvNF83khNAvy/wOhO4SwAbJ9shpRbOA+tdolMPVY0cBy3xD/mV1g+nQIHQ/5J0PoaCFtJGT0sL0MKh0d4GyPVDt5Kg0+RMjaaUoXJryIdyiIZVQDpyCLkugj+wTRLZIND0cghTvXAS8l2d4XpynCjQjLf5CYP2Mhokk2RLQydzKzouI7wwcFBc5Xal3u4+wPLxeTlCm4VO3MDfjUuKczEb/Z3xANaTpwPaJzXoSYHKcjoealypWVIiK9FLmzU7B8aBk4w8hNmHe9ENGFC0g+vbD7yOzwIp7G1407l2yWdQnyj/uRop82RLE0MBPN7oVWc+G7i6EiYmuH87f6jIIQQR71w/eKYDzWRucvjMCcXKvG0mDlP+g7wtmnzVcWVcrC4PPSKvQALefcJF2/8CZ5/jOIhFeROVkpSWGeyn3OOk5tBnamWjWR1AcHI8jU+/UL44gjjuDUU0/l4osv5sMPP+TDDz/k4osvZvTo0Q7yR8+ePVm0aBEAJSUlXHPNNaxevZqvv/6aFStWMGbMGDIzMxk/fny9j50SZvXE0ZOdLJwTpnTnstBAzp0jM98t7zlfxHty83k/XICmaQwPNKVTdy8jxifWMRs9QQIEVyx3pkDKnQHht+S3FoPAcMjqAIGTjCoapqBLg6nDnX1OHQxN3RIkbcfQTpA5B4JbJAdj+BurHy0GgdaSGT/QxlapQ9XKjN+TFVVmXga4YrLfWE3MhqNxZuawD4NRRBtrRWKQtHlYkKF4KpbnZS2ikSV7H9U57YmISJiAUPDN4b4SyaS/Cskq+D6SayOAUPRvAeYa59fA0Mo0U+jYBZrCasQFo9UbgxRtTPdWyYzBLsjsv3lD2etd40zfQzS0SYg4Xqi0+8K4IxuN5Y8RjWid8b0JMbxmGt9pSACCGUZuV6XXIgLSvDPvIWm2koWlJ/tHRwCdEA+pqgGqsL0v5u5uRZikdYU9FwhNf4sf9oUPrJ2Zv1UiyEm3SPJhUwfPC8NVflgVhIv8kqGltAw62cgXY9rDW4bQNeqb1djJH8ZvM/tHRmAUaT6nphwt2E+aL51eoRsZuO0xus48nWHbHmRAaCqephkMCV3EiXPkunev+oZ/Zt7Fl6/W37QG/M/FmT333HMcddRRjBgxghEjRnD00Ufz7LPPOtp88cUXFBWJ+cjlcvHpp58yduxYDj/8cM477zwOP/xwVq9eTePGjet93JQwqwfKIxUsvPhN+l1kPeg3dfgP0coYq55RDV0WzDRXJlX3tMmJmtmkc+SF6J0kTrKgmOSzTptg0TS4/xznfg+cAWlpEiQdmgT50yB0BighccStH7VoX+b6SBRytwtz0YRPg1ATWNsYBrnEbBiLQXUUojHrnYkm+S5CYreKbYc03y/7nN80T/Yj8UG1h/GdgOgcqnY1ARGUw41tHmTIn46Q1x9X2ndDIrDuAF5BhvplmqGVmZqZ2/Zt18oMU6PH5yJwlTMvp7thutS7c0eTCzIf4C5UzuYDRDy/jFBlnkQ4lV+QHGbmyNqCFFQkmzqobR9FRP35iIAz91OnEvZ/eB9C9dmP0GfuQP4JFUkycER94AtB43whgkQV9luVYiKsjkBeruRftF9KFCGC2PHuHeBKt4pvqsLu07fh3Ez4VvGa7i+Aogj82dLg1GKddjSaPNKx3DxnOJqm0TIwmIbd29HzwQto1L0NHQPHk5aWRpdANjW25OIA+7+rK+w/CWI/4fMrokWLFgSDQYqLiykuLiYYDNKsWTNHG13XmTJlCgAZGRm88cYb7Nmzh6qqKr755hvmzZtHx44dD+q4h4QwmzVrFv369aNx48a0atWKcePG8cUXtb3UFlauXEmfPn3w+Xx069aNxx9Xh6/6YXbXf/Lxc1+w9knng/5k7od8uVolnVsYltM8/rsoEuOWS/Yx66nG3PZII+58xMe/5nvx+TRc0RhnJfGt5pxq/LDbuW2Ue/PblyZxTvl/lYwfXre0KyiHJZ9Dcw8EekJOd2f/I1pD7vsQqVKOYfYfhfBe8G+EYBH4t4mvzCSGpGvQbz+8H4NO5TC/DkFm4l0k+/wyxB/1nm2bOu+3/64rg117ROdIx2lQMzWxUqxylnURfU8hkR5RnGYkFbYLLlOg2f1lPqj2Qkxz0/Xoho4+9JJSqTRumhpVQeYDmtaRXgmQWmZ2qA/M58bZqyI9G6fZ0Q5VoClxHw6YdQzM/ZL9uyuQ6cPLSFCFC6Hl36P09SgJXsoowiZ0B8CVBbF0KL7S2aZpjpgb83OlJMxKv3wv88MOJS2W7oPeU537r7zXypDfXfHxbU0eK4qvIQz0w5IgHNsG3ngZsPxmpmAzs39oPi/tQ/dwWP5COs29nu0X30+1Ukm3KlLCR7n/pDJSwtfhTXw4/T/O0/zzW8nPpTb8D5kZf0scEmzGlStXcsUVV9CvXz+i0Sg33XQTI0aM4LPPPqNhw4ZJ99m+fTujRo3i4osvJhgMsmrVKqZOnUrLli0588yDjLCvB86593DadPHiIUqPPg34Oq+IdK+Giygrwvv50zjJDPJyEJ5Y3IQxY724iOGJyfDayAMvPgV7vgdqoHVT8KbjHH1VzcxuIjwOCWBuLOvDm2HcM7I9+CksHgtndIbQcMhuAf/8DNobFqvg17C4jwRJq4JTyaEs6aoMJlhEeSkuiYlAUSOhwBr2VJd6Cck9MvbL3IiTfn8yYE8p+RIS1HwUTlI6CDvRrPK1BjGeJcNkxD82CvEmmTi3IU7BlYTBaGpaMTdU4WVoTiv+dsHX8T7anDWUncTw+Kqo9vmSk0AyfNAiBBXZUJZHYmTeMOMKTExA6DRFSHDBR8bncqyw8O2IkDODD9YZ246y9WOyF0FMjpcgpsJvscqagpVEzN5eHRULleWI0caHGIvNf/EKJJXWBBxmTvtAq5aBaTIVCpfC94YPZW/Quf2Ht6GtnaWowQn3wybbk/PdarjbD0NvgBVKTNWXHzmXn9wM32+GEoWCZBNMUYOeb88EUqN5aBI4hdLwO3x7gQjxfcE3OXLxLbQfm80P4TXkjbsXgG+Cq+kxXaVC/QRUcHDa1q9sZvytcEgIs6VLlzqWn376aVq1asX69es56aSTku7z+OOP06lTJx5++GFAHJPr1q3j/vvv/0WE2XlzT+DfF3wYXz79yi408kVxEyOdKrpktYhXlS1W6PklBTHALaYnA5oGk8aBVoEIsChE9sBltwM6PH41tGiAZforhMseB2LweC60sAdgxRQKPmJS1GIQyJL+eymmaDOzh4MZhSQWPn+H1S6nAVAFehTOdDnzuoMMwbWZF6uBIUgOdhMnUrcgqybR+NUa4dfZI3RqM6ap66MIFX8fkj/DRDdkiPYhhJD+abDNJ1W+HWZBQ4BFamDGfJh9ObQwhF2VzyMZIHweLgsNJC37KD7Nq0HzpuEihssdpTqZVtYIKNGgRUDkQVUWRMtwit4zkdKgXRA/WEPkbqrxF+VYYejNEAGn3pFSxPc2wejHvOsepIa3G/GpTUWmBfORaUc6zmwhdtoOSCzanbZjDUQSkN2Glc7KxF4MqUOCQANwTcaRGK3ZA1D2JLWiwVHW/qZA8xo0/f3bYZUtg0jJntr7OfdeaNcVOh8B3XsB5XCX7SkfM4maqIu0/T9SddOfcd86k/K776fZIzcRa9EYFzGiuIgVOEMeogUlRHElFPBs2lsNev8JiHFwNrZf2cz4W+GQMDOqMB2HLVq0qLXN6tWrGTHCWSxv5MiRrFu3jurq5FOTysrKuJ3X/AB0GNCOy9fmMGjmsdy0bTIXhE5mwHnduCw0kPvzR3JlqC8ebxr7I9Xcl/s5xQY1vzRSya25Oxh4itOkckZOuqNApysq1EDNphWFl4F/ECx4Exa8Bf5REH7X2LYK/OfBgtWwYA34p0N4o9GZKYQUu1yckm/0ryaoyDHdPFFJKJy7zUgsHINQO8jvAHObw0V7ZSCX84YnFPfBKJwCbC9WAmGQ4fBmRFf4s22/2gQZyPBqRx8k9NYO08gGllGtikTiuhcht49W1p+KM9vH4R5Jnpy0btlO8D8EwbVSCDX8oWyLulzEcKFpGtmBrrTIak7nQF80TTT0pPR8u9nRHYGyXPBGsDJlvIeV+Pc0RJgNw0rOpdKd++GMpDtO2e7CSRD51LbN/g9oyJT/DsRPNxXhqNr/HfNfLkZSX1UgjMuTEF33D0iOyWwkHN4O+1OiO1dHkRvSIATNDf9ZyVLYO51a0XIUrDX8Z3G/r0HTP07Zb+R9tfeT2RUGBazCny4f3BOCl/Ph4RC4GsIbLxM9rCs1oQWUHHkiVc8tZI+/D+UmYwtoOtnJymqVI4zGtgr9uFvuCZwcuoDJ227i2JmDOG/b1Yd81vzfCoeEZmaHrutcffXVDBo0iN69e9fabvfu3QlBeq1btyYajbJ3796k8QuzZs1KGuX+3ervmdPvRc5dPIqW3ZvSpnsj0qikX6AT6VTRKcvD2vD33DsuD4B3gnv44w1teW6WpMd4PVjEBdc24exLG/BFXhn2QHuzsrSjGGc0efzYvS/C4MMTC3AC3PsGDO4IxGDGQnh4BITGQ3Ym5O0ErzleGA+zzyVU/OxGkFdgUPFrILwPxhnjTjACi9tLDsZwEVxgWH6eq4D/NIDTNJjkklytR9ZIrok0LBrAVUiNY7ASCB+BaFQ9kXm76nVRBVkUi1zeEclxYWb36AYciXhoNhifU5DMHSDDtUqKNifuPqTQSQ/EoNYA0T1uBe5Lkwwqml3g2BiMalhCgcGMj+GWWbmSPd2FaOxCz9fFBGb2SQTWXwZFO6H4A2OPIKQthppKrLpi/RFCxQCckb4NEep+JyTxo5ko04R69w5EEDHNiOsRTqcdpThzOIIQRMwcjm9SO9TE2tMQ7a8W6rXpP9MBdxbE5jm3+y+HJkOhRR/Y809YaczOdgah37PwwxKjTPjj0LA5jApBx2z4MQ9cTeHsEHTKhvcfgPfnWP1WlDi1O7cGQ43A6cOyQNOhqDDpKdcUFMdzNNb4GtA5dCeNsrtTnfcZNV4fUEWaL53s0ExaZrenJC8fl89D18BxuIgx6MExuInRrFU6r0+p41aqMOceB9P+d4hDTjObNm0an3zyCS+88MIB26rpU3RdT7rexA033EBRUVH8s2PHDsf28oLKhCrTJj592+nj2LLWKXHy3q+gefMaTg94cWsyGrpjIsGS5WNUA6UBVn8mdcsaqJmEgNXbwX8T+G+RtFWZf4N0F2Q1gcBhYmKM51J8X8ghgfYGFb+lRfdXfWQ7qiD3e/m2Y28UolEhfJxeIySMkcg79Q4yN89z7sIHiNazHKEFrMIpvJIJMvPbTi7fhGTf/woRZHao+SxUPpSpx6QjekNnhFC+DBGui4HDauDVGKLEGCzGSA3kfix+wslKDEDOWNDdkmzWFGgm4oLMFGYle+CeXGHifR6Gx/2wY4FNkBlIexsJMLbDjBvzYKl06YjIboMIPPPZNoVNunL31CBqo5yCA8mMu+CM+jM1qyQzq6S4Psk6u1F6H/GA6mRahJq3sfWD4J8EnizwKbkM1+bCtwvgmwUwzw/5S+DwgKTCOjwgVN9eAcjMggkPOPc9aiQ8lAsFtrg2+yUDjEpO1knPOSP+W9M0mgWG4c1qjz8wJD7maJpGu8AAGmW1pn3gBDRNiz8v9a2DlgDzr6jvJyXMfntMnz6dJUuWsHz5cjp06FBn2zZt2iQkttyzZw9utxu/3590H6/XG0/xkizVS3pDd0KV6ZJIFX/P3UDrrk5T4uBxTR3LG1dX0ce/h0XBCgoiNVyRW0YkosdNjHEYD5rPC/Pvhkeuhj8qgq20AuZfCY/8EU46rPZ78OpWyH3VCJAGwl+B/wUhfPjDEP7OdkzT/NjM2cf0HyFYCtMLnevHIzT8H2NWalnznUqeN0HCae0wlc9kLMba3rcoiQLLjjOU5ROQ87sf0RQzsDw9pkh4HxGOdhTafFvhIvC/B8FvwR+EN3YYdeIeMYLYMyDqclYSVmtbuYgRfeV1YcQtDcL5fvjy7dovxHNUkpVjsYSYXahhW2d+1wY3ErV3g/Ft1/LsUFmR5wBPI049+790ZB3Hug2rOrUP+RfsOAPYg5hNM3EEVEcjUJUrVamjQNQn5sb2+dAmBJrXEnaZB2CCbrwXShT6vvmt+eDiENydD6dfC5e3h5VBOMsP74WT7KOJL+7xIK41ebimXk6jzR/Q6MXHDcaWJZRicSFli00zfluMRpVh+hPwP0bN/61wSJgZdV1n+vTpLFq0iBUrVtC1a9cD7jNgwABeftk5b1+2bBl9+/bF46nrZU/EpRvOo3jbj1SWVDjWb3l7F/8YJ+Ty9xRy1ajzW9Cqlcau7RX8/bof4+tn5lpD8YJgDaEXYdypSnJhI35s0iny+6KR8JzNgnPWAIm/JQqffwvvbkt+3v/6RL6DW2DxKbVkxre/2FEjfqyjJBZ+cB88Zgt5udwLV3pgXbWYLZfoVjDzQoSrNhBhG96S/JQcUMkfyZAsGuo4hJJg4myEXpAP/AcZdtsjLMcqLC9SB0Rvses1HpLrIDmNiNPuCxRFvrAapgwAWkHW8dJJlS8tbmJUZ9hx/2hBxNlRxyRm8l6bIbJZ6p2VX2Lb8ARC6NiPNYqbZIwKJN/KOTgp76atzIOTtGFmks/ECbNPEyYrchVWZN9qZFrQBwnQtguoCYgh+QhgG/IkpCN3vgaZWvRFgie+R8ySNpJHHG8D42SX0iCkDYFGC6FBQP7ARlnGoByBPTOg68PQMwRNs2H/W/DZZc7uflgNT/phzGLoYWM8VkUgNAMmzwZ/C2ijaHj7C5y32vyOeWD0mejuGOl33wnuGOk9OiUtDWOHWf5ld3gt68aJ3+6b4Gr+sPhSDhtbV/DJAXCwmlZKM/vtcMUVVxAMBnn++edp3Lgxu3fvZvfu3ZSXl8fb3HDDDZx77rnx5csuu4xvvvmGq6++ms8//5y5c+fy1FNPcc011xz08X3NfHy+5Cs69nP64Doc1TRp+5xr2+DLcDE80JSc6bWTVAAKC23+MoNJGCmE3Osl6z1R8KVD6CbIfxJC14DXxow+pm4FNY63d8BkxeaW05YEKr4Wg2EN4YYfYZdiWrzXC510mU9HYxYRxIQ5VHuR4iUvkpid72qELXiVbZ35bhXirBRtF2TFSN71MkRAdUPyXpyLGM52IezEPGTYvRcRblcjQ65dZ7HrLm4Sazr31KBUI+4nm6wQznL6YvnSDDNkzG0KMpl5l0YqWZy7hJhB5XYRpfHk05wdDc2Fc+bDyY/A8Y/AcfOh+RGQGQBPhhAgXPkIEeRsnGLYvIqPELLFCkT4fIgEWNe/dIYT5r+hYWUKURPEmhMyNbi3AzKdaYUwG+2zgOUI9WYdomF6kuxvQtFKa1ZCsR9KbbFkhWHJChIJwvpMqEmH0k1OQeZXyDFmoHQU2BKGO/yQF4TrjEwgnypZWAbZYvnqKQDqqjptolqhGteWu7HeqEBIrPX9VCTv5lDHISHM5syZQ1FREUOHDqVt27bxz/z51vx8165dfPvtt/Hlrl278tprr7FixQqOPfZY/vrXv/LII4/8JFr+7K7/ZGNwCw8dZfnpRlzbiwF/7Jy0fedeGXEbeQNfjNyZtScbzhln/DBelvBb4B8gpV78wyH8npG5/iTIagmBEw3/l9E+V4lzfXY85F8Olyh+na6NZfwNnQD5p0DoOCithNzNECknPkiEI+DfAgv2wyJjrjCnEcxvJEIqGrWyfIxSrmUEVtaOk5AhcAhO9uIA5DzWIR4gc4xYiwinj5BSknZ/20ZkLr/e+L4F8Zc9hMgSjdqp+WCxHE3DHDgNdWo2vC06ZO6A8H5p6MuA0GDIPwdCE8XKFI85M4SaMBnFX/ZOcDfX+l9kU3AzQf/1/Bj+UPxmPje+Z56Et7fBHSFo4IO+k+DE6XD0dMiaJFn0fVjZ9D1ZSKKtBsbZmt8ZJM/48ShW3sZPcTIb7SjDmh6oiGJxQgtJNDn2N9qcoKw3ySqmwdn+rRqfIyQ+QRsRnfuPSc4JHNnz1UKe0QKoVNbtU/yQh+VYD1yp0vbpXFjzonPd+qWJ7L+4JcMwIdqTDicxdMVwE40UsyX3b1RHZBLQbrJTyHbN6Zuw30EhZWYEDiEz44Ewb968hHVDhgwhL0+lIfwyaNerKekZLi6ZeyzrXvqevFet2JWTc/y4Db1C0zQOP8pJEJ9yuZsZV8Hmj6J4vaCZo2k0kcVYUGhti3/bNKmMdAjlQnZbyPsaJvYArRIeGgJPfGL1c/Va6OaDgKGNbUqDzBWyLfgDLM6CsY1hR5JZ22fV8IBPhJiJamQ8n41V1sVMGWkfxjQsc2JTJOzXzGP+PjLkHkXtHLtokm1qOzdieny+ljaDSfQs2cXBWMSDpKJAwyq+2UYuIKuFsaMtG8i+/XDZn6L8aTasfG8/j+Q67b7VBaU0IIZbq8E76XQqdvuhYXfYjZMtaVe6fMgM2oeRZHcGEqGXYXxASBPrDnB3zKu2j8ifYxXIWY+Y+uwmz02Ifwyj/26ICfMwpD63+T5qCCuxO/A1orE9isTHNcepW/8BZzj6acgTNAf597YY/fRCkoklgdbQugyfGoeWI0xR1WzZfSoceTXszwPd5mc7fHJiWxXFhdZvh7lR2Kg1RtB0NOrCZSsHYzIaqyIl7JzwJ0pXStmovcG3OHbxDbQ/41j6hq6kVXYHivK+Is1rj937CYjiiG44IFLCLAU70hu62bDke564YGN83bQ5h9HCr5HuFa3M9JWMzsngL7a4y7sedNHIU0PP9jZfmUnAGAnn24hfOUOxXiSbRmau02IQ6C2/s44kbl3K0GBqb3hsk9VXQYXVj1IEgIIq0cqmJ4kn7e0ytDGbVgYylJ2GvIbtSP462olWkJhL3TRYHausz7Zdquojs8OMovJgeXi+Qx7sLljlKu0fu8wwRcM8N/RpAEfZTjCnLc7sH/ZUVoY/LfwujLtUrvQ/we+YMF01yUHHnOPZh5gahZ4fA7cneUkY8xM1vovCWFF1QURknwy8hlRoMzHTOCm7D+tErGAJ8y4lYyoeaPkr43Mp8k9pWBT+PsZN+Q4rhH4FokPbNTUfktaqN7DV6COGRPx5EEEWM/pVafxmNzbafMwHLUPQOBuq8yDmlW7aXQXfP2ztkzlUWIzNDT+bmVzA64MJIeicDT98CM+fk3i8wTlOIYbtd9QN7pijvplsduEiRkl4ObvGzUzosrqghBrNTfvACXipommWH+0nm4Rt55QSZilh9lNRVVJJTHM+Qem+NIYEWuBWHk6vT+PvoWYcl62zJa8Sr1fHVRUjEoHr/gSz/2pl9/C5IPQ3yO4GeZsM/5jZXTLtTF1nfGsxuL+/U5jltAV0MSu+YXFSZFtjeLGWMSTHBdGq5EmEf0SijK7GyiWhamd2kofq5u6HRVGYghUNZYfJv2uPDJkg3pmdxiU/i1APso22bbGEVmfETfAEkkSpMYnCzeOCgBcyvBBqBdl+yKsxzImGxhQBZrwMs3Oghak5eRNj/jr1diaT/kPwHNK8HoMWEsPlsqW1smth6sfUytyqec7URVVKvA/xU3mMO5WPPDjPIv42L87pgV2PVQOra5s+mFMPO/nENF+q/q8i2/E8yB1cgfzjfRFd+C8kH4ICOMvTGNDOspn9NPAGRFY3zLLMZ17Fvl6y2zoNB4lDE3q+G2jVDaakQ6fjYPVjMHwq7NogjEkTyYggURf6/h+puvVPuO6/E1e7hvG0VlE1BY+BzJyhSdfHDCH4kxDl4CpNH0zbQwiaXh8b3v9TFBcX07RpU0Y8+AeWXb3cse3x8kmk6VEuaWCV5Hil/EQyfDrpVOKlChcxvFTiIhZfl04V3lglry+KkhOwbv3if8LYPyDjTwXxlFZ1fhuaVqTAGGiHGWmtjDZ6BfznSyMwei9MzIQlu2Dc+sRrXdQRRqZDgy+tdZuawCdRIXzEYlBe6RRkbyBmQhN3Iz4xuyDDtvwhUlDExAjExKfh1Orq6Wt3GMNA9IY+OEkeeVhmTYzfJ2NpZA0QIda4oVixaIikl2oINIGIByashpW7rD4WXwtjTwf8UJ4BDbpb24aelcnhp3Sg1Uk9+SyvAv/EIUS0TPaSyT787MVPYVEzKrYAf5kBZ8+G0haSKqUQ+S4xfhcCxeXwlV1AliHT8D2AndW7EhmlypG7uUq58qlYpsQqxD/VFpkSHI2TrKEjleNaI7R6E/djeRkXAGcZN8pjHPtCW9vnbdvWIDT9ZHgMyb9SgmQbuQ8hnSxBhN4c49w3gGsieLTkplnzd1o55CnVKfo9C1nnJO6nBsUn265ONuzr330JLpkYP0yjhU/RaPxQ3MTQdn7Hjg5W3sVjNj9F5ebttJ14PD6tmnQq46nvzN81kUJWz3iJIX8dwj+7zqaoqKjOStDm+ETnIkirvV0Caorhm6YH7P9QQ0ozqwfcPicz6aSpPXB703AhPrMN4e8ZMLYFHq9GMn3f5LnZUbzP2a6giMRimMm0L/PbJGx8Ykso/AkM6QALT4cWGCbIDkAlZLWVb9W8aKKw2tAK/ZDtgrwKOMIFXWOWeRGcgkrVGYps203Yl9W5amtkaJ6PlSUwmSCzG8nsUI1hlUnaqMe0hx17IF5FWrPbHg3TYngPjFNTGyIB52ZbbzOYG/Kwc5+Pv1y+nxUv7GXFC3u5cHEregX6sMcmJEztjKWvQM55svLNIFyxGDqOdfrKzN8lZZA+GFwPQflXWDbI5oi+eRiS+6SBbUdIpKxVYqkVGokpmU0UIaHoExBxb+rEO439P8Xyt61BBM2xxvF6IOSNCM68jbWxFkF07aVGPyDBFc9jMR4fNNa3gNi54J4N0RaQFoG9M6DFbHC3sB4crw9aT4UfbAmG1+aKBnfYORCNwMoZMMy2n3lb7O+XXQPDtt2+XskEohcUEcNNZXAhBbnXxte3uvYs0o/oRuNeHWs1KX4T/oS3xv0LgC3BjXXcrySIcnBUvt+pZnZIsBl/a/SacLhj+cwH+qFpGh8v+Y4nLtjI2vAeHrlgC6uXRJw5F5WhuThSHQ+WnqiQKnPG2BZiEInApDtg0l8hYoYWgdPESGJC4ZXfgf+fMDRs1B9TBOJkdewyj99QYtsCXonZmuiGmPHQ282LdoxUlu35v9VkA9Ukzpx2IczFdQiFf6Oy3W6iTMa9UzlgZn4KUytzk5jO6nScxPYMnwi0hBm+u/bg75xhxGn5MTeMDnjx+JxXV1ZQSXmknDcnzePDSX+nJiK9uYihFSs9L71XYp70CKzMBS1i+cvyM6HqPSjvC550RBCZZz8B8TWNRuK57F7BQcpZ91fuTjJsQrSjDYgJ8GMkJi3T+I6ROIXYi2hsVyI5HG8xjmH6v0C4rbXhbiR2zY59WE+OjlSl9gNBqPRD+Y0Q8UNFEL73Q7GNsl9ZANVJ/rmPcmHDjRD0w7agZF7JN4Kio0hOx2dyoTSSKNjsr7F9/WlnOQ7hOnM8leFlDkEG4O2VlZB1SGU+Vv4cev7B0PLNz+8QKc2sHnD73JwVGkWbbhksmfk+laXVNPKlxYtvmigpkCfd7RBo8ntZuJJLxonPYUGwhvkvwPy50KcH5H0M3jTiHPHwuzDOloV3wfswpBcsnG74ayAu1CYfBee/lHjOK3dLto/FJ8LY1sS1Pl8ahHrAcV54bDdMbQobSsFro+zqhvD6oRquqZA86D4S/WFpSDxZFla1LdVPhq29OidVM3kUIAJrHM7hdjPi+QEn9870s3VF9AaTnWjCHNZvNtp/jWFWNLZleMHjVpIJ21JYqWnDZp0BWV0k44dJAIm5xd8xcnIjrj/fGkR1XecB/8Px5Z0Lzqbb4rtxjT0DT+AMyi+5yur4y9Vwiy0rzbYg9F8MmjIop5nLZui3OdKaUwXzU43ouX/GytnowylgTJiqBkjBHDu+RDJ82G/E0Tj9bSESYWpidmeVmQnzK8SEudjWvpuyv5mv0TxXxZmrKyylaiO4uTwMO8clOR8DZcp+pcZ++WF40dgvLwiXLYaeg2HBDLhoNvhaJNfMvD549Hm0Pr1xb1kHXi96QaIW2ixneO3nBJRFKvnujS11tqkTNRwcAeR36lhKaWb1gabhSnfxUN+X+PK9H/hz5nw2hL/jBCUKeWg89TwJGlqJUgZmfwQCY2VwDJwqWlGkCHJvhB27SMDKzyS3angjjtmiD0kovKkWlnGBXT2KGjFrmdA9HR5sB91dkkjYzN1otl1UAR3LYH6N5Cp8g0Rihz2e7CiEq2Yfdux+M0jMCjhWWV6MFUu22bZenUiaFAgNKXbSFtHSzLmvKcTM38MQZuNpWPpLhgvcbkUrU7SzUiXzxw1LIN0Lmoc4ASTmTiOGC69P46xrW8XbvnjBu6gwy4K4GnnQnngGZt6b0CYOvQBaneJc58uxSWv7CSdQWozPUCRn4wk4fWLJtLNNJJaLqUKMwLux9GKTjvMXJEA6Gfrh/Oc14xxaIRrj2Ur7UYg58S3ER+bC+aSpsaH3ORfTjeBmVSNrfYlz+ShlvyyDrajGnH3+NlxlBFKf74dVSdJaAcTS4PSJaF264Ro3lpqYG/dE51PdLvhXtHiaqzgNKL79u/AGFvhnsv1FcWSfPGcsI+dN4KAQ/Qmf3yFSwqweKI9UsPLetY51kR1leHxpzAxlMyd/EDeGeuHzOo3Rdg1tzGRnrNmkM5OXfAm+DtMfqv1cChSTo1YDw7rArNUwdzjMVpIeNAQHyzHpQ237NrWyAmX2ZhdSKsHjfZInEK5G3PqPIZrTs8b22xGNyvTI3EBiIRO7ADtG2aZy7yB5hg8PEgowC/GVOYZ+t6KVGUItkmYkFMYom6OgoNJI1nyjmH9jbhmYajQ3rTupBWecaJkzFCL7KDv/Slx/GAznTa+9sbchrOhgLTe7VhJ2+swVpnaWLODALqyS3Rn7XcNYn8zMtQ4xOd6Hc5pxDJJaa5zS/jrE7Gn669QnBSTd9CRlv3eRKUcnxBx6BZIO6yKE6OJDhGo+EIKappAWggb5kiWlphT25IJHEf6dHoZeITgpH7JDQFM4MQRj8+HkELgMtuLhSm7Hdkc5l0sKEoWA7XdN1GUFT/t8NAv9nXb5b9Aq9ABNzj7NkUxYRZXiJ3D53Bw2/iBTW6WEGZAyM9YLs7v+M2Hd89PX06pjOicG2hnFOF1oVCX4yUwNzeeDJ0M++hwTZfNHURoaboVIIcy4GforjOLLR8MR7aG6Ev40z1qfY4zkkf0wYxGM7AK5S2Tdc1tgupJerqSKRMEVU34b36Ygq47KMGXPcGfGk9mvrhhhJ6pjfrHRdj0We9H0inyECDSTkm8KqtOQYc6EXYCZuoBJQzDHc7sGpkLl0C1DhOoYRBuLa2Vm7JgPwiUwbp20Dy6ARafDzH7wkG0e89l3cL6RuCL4Mjy7GAaPdfFmuJyHpztV6jOeHU2kwE0ZGdS0bkvx0g/5avytxs6LYM5CuCsErbIhb73Ik6Z9ID8P9pc4L8jXS8yMlTPANRtiLbDixkwhZf7R+4AHkKrRdmafXajYzYtQdzSfHXbjcDliIhyP+NdMTfNKhOd6PIlmzWRkEPNa7fxYkyW8wDiv8cY5Z8nqtIBBZNgEPxqO4LKgCP0Wl0JNHqT5pOBpOtAqS6bu7QLyAJlxZ1GsmLPW3eD1mXC4knZsgJLWym5uNOLNTGiahjtwBmlU0iirPRqV8SDqZGg/eQCcb3Fye+QcDVVqTpoDwMxOUF/8Ts2MKWH2M6D6zEy4iFEUifHgjD3cMrsJrVpI9ofxAfBWGsHSlRB+FcYZcabBJc4+HrwUfDVCr+/YBLLbQ14+eN0QXg/j5hn7feLcr0sj5/JZbZCH1ya0IhUwYwfM9kMLY1ukCmaUwCw3NIkZhTeRuLA8ErN7vIOVd/FN5fpNLWtTLfctiAy9vZHxeyGWKXA0ohXZH0wNS7i1Mb5V/ULVPdzI8GrHRwhlIq6VmWQPQ6Cp2uh3ZXCUkpdxn0K4KSgQM2NhEs5BeqN0jjpnIIU0o5BmbJ33obNBSQRGXigcisZZFh2/QRZ8t1PqcprwNoRvTL9aEDHKjsXKBmL+O+9iCYRliDi3h5abUAOpfUgJlv1YWl8yf9gxRvsvsAIjHiCR5GGaEOxOXpDgDdX0cDJ111vYp5yvrTt1H60TpGchNdCwHlyUbzuD0a2BKx3mGJSi2zvCsGth2KXwXZ4zQ78bYWf9fQbcPBt8zSHqIhZ1xTOBaEX72HfZ9aQRo/XjN9GgRQa1weXzMDh0CW2y21CU9zW614t2sMLMvM764ncqzFJmxp+BE3I6Jl2/MlzMyf6tvBIs4Xj/9ywLO6kPrqiYGOOpqgxMnQj58yF0C3iNBAmaBoF+kkYp0Ed8W7XEYwLwpzVwbU/IPw1CfYyimzbzQngf+DdBsAj8X0n+wXAp+PdCsEr8ZOFqYTKehmhDp2FRB8whU51fj8SZQDhq7FsbyhBh9xfEkHU/QtD4B1a+RRO1ce+SCTCPrX2W0v4ILCq+x2ZaNAWaWn17+nJoqIxD909zLo/J8RLDzYjJifE6lYXO/73VZGXAH39mYryUG/gyDEHbyXS6FlyKphYPpjYFj0lrUR+OcpymSPXbhIZQ7Acjfq3jEN/WNcbyNcayuY9K32mjLJt+M9XMqCEc1ssQOv4tWBLnZJLjDJzsRgNRwKWYCAumSxLiA5jTEz6q36xVL2iRBccHjGJ/RruVYRjlh9eDMNAPbzhnodUvL2Wf/xjKF7xO6YJlfOUfQnF4JWD6zFzx31GjKnnnQF+aZLWkSyC71lqLB4R+EJ/fKVLCrB6YMG8kf8qfQu78Uzh//h+4M38sU0MD8HlrjMfTKv5RGqnk6buc6TVKCgzXbyzmqF82ebTzOA9Mh6zWEBhoSyasvoxRmHykc79LFNNir8ZG0c3WCrEjBgWKtaMgCjuUxAORGie13p7Bw1w3SLlH5yEE7j7G4UoQzlptOI7a65LVxhy2kzpMlACPG9/qkH26sv8ftSRUfJPF6JaEwlO7O/cprYHQxZD/EMy9CqY/AnPvhPxV8MxzGl6vDExun5vrgk6D65E58seYz0aaL53OoTtpl/8GjV58HK2hO9HV5QZiysDavBe0znGu8yYjg2SQWNHtFBLFvB12P5oq3I5G/tXRxrc9uFr1ZPZATI7X4MzeoXJgNeTpOc3odxDWVMmF0IheQ7yq7+AkhJh92AWaD1xTccBkN6rCqzwiMWdlkUT/12GKUMzOSRR4+yMwXyHtFBVA1B33m8X2JT7VlTt+ZHvuXUSNCgp1ZdRP4acjlQGkDpgR9jcVTaNJE6iKlLJkxrucPTub5i00W1YP+V4T/oGbx21L6GfdzqY09kW55coyHpyl07YhaBXio/rPYsg+TOj5EwcZSYfNHIqVJGb8qAS9Gv6zEbKbQ95OOL0DNHzCOl75BPBVK/sav8uroIGNgT3YDe8pAm4bMnzYhyDz28wvUYQYsC5A/FimDyyKmCX/rtyDkxFNrYPR/gij7V+S3PdjEAOamR/ehDrsfqoc50ashE6mwrMCEZzbgLPSoUGGaGURt5hVZ3eCFk0RpkxDKPdCgxetPs/Khn+cD+99C+NsZLjF8+AP53jY72rMfhpTSDOK9UYs/U85rbLb8XleFR0nZlOkNaeQ5hTSjP00Zj+N2BdJY9dld1NV5YEbngJaWCbGQuDHcviLzdc1phyKvbDjP0A2FOaBNlHolvHY6Grj3ylDKrllIYbWIUgjc7v6j6rRgCRZTgbd+AfaIzUPVti2XYTFXbX/axXAc0imELM0kn36kUFy7dGueZpC2xSqEYQwYvvT2pcbsxYsrbc4CFtzrTYnLoZuY63MHi4dvvkPdMqGPXnQZ6IkODX72BSG+8cl3ob15dDUC75KPL4q0vVCSlt2rvWuHbH4NtqO7eMYN9INX7u5juJi/tH0rvpnAKEIOJhMHsXA7y8DSEozqyc2h7/iL/6n41WmZw1dTklEbNv7I9Xcm/sFP+5Ibuvu276IHv5S5j+n074ThF+T9VoMAiMgqyMEhgtTMXeWESSdjHkYte13OGQ1gcBh8mqHhkL+WCnx4q0hkcGIfPtiEGoDc5rLKlWQTcEq75hs2AMhagQQXtufkIfI3k0yjetLhCiSieRFN0N/7YYssyDIx0jorp2e71Z+lyLzdzvKbds9iN9/LKIvBFzg8YhWFq4G//cQLBaTa7hQdorUwMVrhRU6x1DrXsgD/3R4e7PzWJH98GNRGtNzS4kYVM8azc2AQDv8Wc04JuAMlDUJAIXh9/jGP5CqBa9CeDGc4If3w0pogA8CIZiSL6y7dK8MrK0C4k9rEXCmdYpftXnlYxFhdprtTqvMRxMeZKYzj0QTZW0oQ/xp3ZFg5swk21V9/gMkm/77SKTgqiT91iZoq5EsoCa7cQ/i3wsax3/R2U3JUuc7UxB2CjKA8gJnG02D7gFokgW9A5K70XyoSyIQVjSyy++Fe4z/JqphloTB5yMj+E+8FymatHk31GSevwiqf8Ln94eUMKsnypUyzV+s/JFL/K/z3I1fcLb/Pd4O/sjs6d/Uq6+/zYbIPtuKKISXg38UBN8Cfw6E7UkRFIEUL+JZArmvQ0EZBLpAVgMp8aLV0p6oEWeWYVSqToKbcMjNeBd1+cvM17MQMfklIxZ/g2hhG23r7IasriQKJ3NqoJoXNyI54r9U2g8jOVFdpeIXKFaeghoI/wj+MDz3JVzwFny219mmq+ISymgM3f2VLApWMtD/DcvDIsJLIlU8lbuK4kjigOEimjSoltIC5wlnaHBMANpkweEBp4ag+tficqkuqr5dn1Up+3nG3VyD6LafknjH7diMlSXEnHKoJkeTmmveg43Av5Q2Jue1LgFmPoVvIk/VAuRJaYMIMkVAmYgVOp//qiTEkg5JzIgk+Z0Xhml+2KZkKRl3JQw1hJ552KiLWMxN+sQzcB+j2P4NpDX0JqyL/WyzY7JZ74E+vz+khFk9cczkw5KuL9zj1MbOvLw51z2SyTX3115hevU68B8N4aWIUNoH9z7jbFNQilM7w7kc3iZpq4JbwR+E8PYk7eryuynj1PuaeCdMLSuZv2wfErOlROHQDxkKpyOMweuA4QhzsI/SVvWHxd0ZCXcpeTyZm9prKG8geRixGiA9ualzv5xO8LYy3kUVYX/1XLj2LMh/DUKPw7sKMXH92/tZHd7LBf5lfBTczu3+J/kivJWKSBmrcp+iKiIi3z85CclhdE5y31ldHzXpbfzuJLsDpcg/Z95lu/kuWQ7HuqD+U0VYOva1SBCFG6epMpmufqLRJoIkRC4gMfjD3L82lmMtcCmCqrHiDzsyCDVJMuInG+/LlGOfey/caGhktaD65aWUTr8l6baK3YVsyn2I0i93sT73Mcojv0RuqZRmBilqfr3h9rmYEhpOh14NuLO3xWA6774evPPUd/Hlqx5sS2NfNel6JZ071XBcts7m9VWk11SyM7+Gm21OooJCCL8D42YkHi/neCyBBAkTKjWV244SyP0KZvcy6PY4949UwozdMLuxeCt8wPMN4Cgd1lRCVo1VLiXZHPl9LP/WciTP+alIGKtGYgWqVkj4azkSb2bCnMOrQ9aRSIpZE2fiVDzsxrHjkcrVKspw6iCqVlaQBjOK4FYvDG4ID2XBVzVSZqd3c2dfx7aHqUPgsZXWul5ZkNUVmneCG+93to/GoKjAGTT/9dtfs3ac5BrbHvyIYxffgO+MYXSYfzelP5RSHs2gomFHaOBNzEhlF1oVtu/ahFsUkqe5Uqn6f0Y8i+aAdgJOramv7Q5Gsaj7Jo7B+U8tQcqumtqYH8ufVYzkVVQzWpiZOdZh1V9bYZybGdFoxynA9RwYj4EnE/A63xeXD7qEoFE2VLwLP74OrU8DT5JEw/bfUeDoyTiKeI6+Epr4krgB3NREY8SibvQkJBAT31z5KAB7gu8A8F3wfQYvnka3sck1ufrhYLWtlGb2/xqapnFsoBttezXjstBA7s8fycxQNo2batwY6sWz+cdxR6hrvDCnpmmMCvjokuVi/CQXEwIupl7m7DNnVCI9/95zITTTyNWomAojZZD7H/HXTO7u3G/6egjuAP8bEN6FU4uLgH8bBPeLryhsaH1jNehUA6fXJGphqkBTjWNLESp9f0Qjek7ZbhbXVDPObSX5q+TDGan0EmIAexYxN5YiAqwS8RFehZVP3YSZ/9dhbDO0sldjRvhBKRy2Hd4rhb6fQKULzv0YRilxBLkD4H4lUUXOqYY5uDfk5zu3ZR3TgMGTWznWtTyqpWO5uqAETdNoNmk4TaafQ4Mrp+A5c1yiVbAiAvNzJfmwKtiSlSKpUztbo9ylvxnrzIM2QKpF34sIGbspMhncyHTCDtXXVo0VeLEOMV8OR3K/XIII0BiJT9XfkFI2EYSyb8aXJaYGk/IzKjJAt/m74pYKDRoFoHQT5F8Ae56Dd/zwXdjZLtlvzQcXhODmddBjMJSUJtrglQfadbKa3hq6bg6ROXV8wnpIzAJy8DDf1Pp+fp/CLKWZHSQ0TaNfoBPpVNEpy0MaVQwOtCSdKrpnNcFNFW5iFEZi3DujkL/O9tG6BbiiMXxuCP0LsntA3gYRWJNPhvNvtfq/cozhzzKtPcbLElwrggwg+CksOhVCJ0N2Y3hwMzxmG1wLzKwfhkBTY7sjUaPbKElLu0CiQBuIs4YxyBAWxUnUAKfPTHV31/baaog2Z4eZznadbd1HiCA7ARnDzfS132JVz7Jz4kytrLCWshe5RmR1cAdc2wcuPR7yioWmT4ZMLLKPhrwd4G2QWIzTxPDc1lT60pkW6k/L7HZszSun/elH8tolS+Nt2uQMNvJBGB9XDJc7KvfclD/rwzBrnOywNghjn4Uv3oDjZoO7Rd2mx6Ta2ZFJzrYEp8AahPzLrXAOdpXItGKcrb2GaE92IXkUllpjQtVOWiF1ylpiaXx9SfSl5eHM2/I3kj81/YAXlHU5dQsn1XdWoZBAKiKwfAYMnw3NTa1Ng8pKuNPQWC/IhBsWw5Cxzks2SCDRV16neopF/sg4ZyyNxwzGe0Q3Gt1/JXsfW5RwJZ1z+vPz6rKYNYkOpv3vDynN7BeCPbHwO+FSBvi/Y3GwgqP8hbxhBE1rGgTOgKwOEDhNln1eCN0B+c9C6HqbRmYTRuFPLEFmorACAp2E9HG/kgorpwWOl3RyQ+f2iS4RYvbSLrX5ycx1Gs5CnGCFxSpJMjgSq+CmOsevK3uhSiOoDaa1TQP+gJhHR+BUcOxamdsFSWKaE9ArE7LaQOA4SSaseSAwGLI6CetUy4DJ45z7LN7cnjtDnUn3paFpGv0DHWiZ1YSjA93xZHg4NfRHxuffTv/QNDxe63WT2ERjpHVHrROvVAbccC5sCcILftgdTiSC1KmdZZCYBxGcsWfJ4EYy6N9I8tTPKvVmm/Ftlx7qv5lN4pPlwZk0DSR4w44C5F+24yES80IGifNwa/OBNVR8Zy1twm97WMrDfBGER/3wWVjabA7DcwrRpKQgef8AhYWOpuXBMJo3HU3T0Hxeuoduo9+2J+k08wyGbptN/9A00rw/V6dIaWaQ0sx+ESQU3lR8J4UFOq5ojaRwi5s+5LdWA4GTkAKaTeQ7zlYsghnzob8qLYCcLsRfIl8NhI6D7IaQFzHKudQYaat2wsPNINQcsjVYUwFphhAzBZn5MQkeVxldP4xUb25gLJ+IxJ91QAp56IhA6YMMJSb6YA1barDC+0iW+3eQoOYGWA+hG5iMDJu9SJ5MCcSANQgrDs0+dNtJH/a0VT4PhNrBcc3hsQKY2hU+KoNzNtju6TG2zsy8jfayMC7wNYDgM3DYiQ1Yk5dO5yMyaN2rIfuTvEqaptE9cDT7aYwnqzP7DV+SPU+f2x1DHgyPHHfYZHjw/IS+AMmk78PSCMzfPsQkyQxgNuIVzUBm4I2RrJRfIrkPxxvbzIcxmUCrJjHxsP2fVEkj6rJ5gmcjcWg/KH2bmiOIydKNJDP7DtHWbIU1GYrMue9BEqBtRQLD3UjCtX7IExEg7qurTTNz+aBjCJpmQ2WekEDMNuXKJKLMEFhqZhCwcjUWR+C+GfDn2UaZGDf66ZPgKqeAjhaUEMVFuqbRIjBUrDgPXkwDyvF3b4GW8JYcLFI+M0hpZj8b9oHJzAZy+mSfo82kgHxHCiB3GkT2IsJqH+TeKusBp59rPfivg2AeTH/FeczgH8Bry6l47loY1gyy0iHQXARkeB/4t4ifLHMHpNdIvNVYDWIxQzPDmqe9ifisXkdSU51urJuICCCwBJcfSXxkJiHSkPi0GxAumx29leXvkHn1x0hZxs9t2z5DUspuQgTZcKSW2uWIV+cio937SLLiNTh9ZKUIhaAEEWLl6XBBhXhgNA8EWkH3RvBgT+jeFM7OgtBgyM+B0GjwmkmH7ZqO/WP0M25SGp2yPIwMNHJkRC+MxHg8dy2lEScjMFl9Oy0SoTh3JlrxXtLcMesYeW9QKw7LSX5+FWEpVhkNIv9OGMvcmI6I/QeMO/tX4EPbznYqv/27v3LwHgg1voxErUvlt4I8zEcb52NGFprvil1DiyJPVUPEoFyF/ItPIZXoPMa+QxFK/jCj772I57YRVrorJdWV+olp0DAA7ixoqvjW2itaW3dDaztCWX9JUHI1rgrDBD+8EYRhfnjT0OR8PtLmPOHYpWHOKOOOOCn4ztxBP0evSLEZIaWZ/SzUVlXa69P4e6gZx2XrbMmrxOuN8moIJv5RtgcXwQ0XwawnjeU3YPHNMNZMmhBN9M1MzYarj4O872BiByNR8Tcwzkg1H9wJi4+EsY1k+W3Ft/52BYwyZKxpXjQOdUDyc5GtXTIzpIY1nNlZ7+b8PAcRKMuS9G0f9tX5aVvE09Le6EcNszXzXTyM5Lkw+W6LgWticL/htgl+D4vbw9imODQvzQOBLKChmBLjGpn5bU97ZXx0t5R9sXLsySv0friAO8aJKW5V8FvOXTyKTmOPSSrI9odXsm3czcbJLSFtzj/hlIvFP1NS6LzIgVPh+Kvhs3fh/YvguEecvjMfJP575rLZSPVfleLUjiBxgPMg04eOCCnjDmP9eiS+62ykkt0uah9G7E4lu0bmti2DZBAxtbH3EWGWiTwB5nTJDjtDcyFiM3gO60mxaWh2zSzZOvPj8kl5mDZGhhXda63PCUH3bPghDwZMFCGoVgsvLhC/mduNPu4sPBluvP2OwL15HXjTMZ/uKK5aTe0/Pd4spZlBSjM7aJRGKvlX7mrKI5YZRjUzurUaxgQ8ZGXB+AC4YzWqKZ09e53L9y6QcjBmV5OVSpYPDIWsRhIcbeZbLFDGnx1lRq2tL6Gr8l700gwhZvOT2TWzU+q45g3I8Gh/BZL9tp9OMTKPL0e0swG19G3O8T0kxpWdgFNXGKxsb4Boka+TSNzOU+LE3q7EMh3aBFokCrlvw5f7IXeR3D+HEFOEWtR2X+0CbaMSqJb/9ndJr9dFlGiBU7jUXH4pvPxvuDkXTlD+iYkPwN5N8MYFkP8cLPDDHiVjSAtFe3CZBARTOwsoZ3G68W33m6naWTpiAmxJYhLhciytqzd1p2xPJjDtT0yURJNmXQHVkCi8P0CCqRc5j5fMp1WbMItpUh6mQRZ0s2ltMU0ygqQ3h41LJBcjwInKPR+eE+9X0zRc48biyuqCJ3AGNZrboXklE1qVkVJW5D5DRUS9F/VBymcGKWF2UPg0/DXX+l/kw+DXXOJ/nTXhHxzbzTqyJgoiNVyWW0UkonPWWGdf901zLq/+AvwXQHgNEAOfBqE/Qv4MqSRdWi7ZPiI298Tkts4+pm8H/0YIFsDVPzq3BTTi7EX7Ix1FDDa3IMSNf5AYFWQmIsrD+Sqov+P3CTEh2k2JpoY2E5lHX4UzBzvG7ykIgfsiZVsJ4iG5Ckm8dCuJuoQd45Xp71Gmc84UUD4Ify8B58Et0H0OBDeC/yYIb8YhLCKlkHsdGHliibpccdOiOTB17u1k2bRSaPn2CU/LyYnUbWaeD68EYXwHmHQtzMmH6SFhCKksPF3JGOLxQbsQtMmHxiFw2wN63Ygpbh5iXvwHlqdSzQziUdaD6M5blZM9HDEI19fXcyCBdqzS/hMkn0wygRal9uz6JpX/AObGZIpMXdvWB+EWv7BLr/LDmrDUSrs2BHPz4TZbELWRdDgZ7ELMLtx2hvNY4J/Jl8G1POm/na9eVe/3gVDXRdbn4n8fSAmzg0CZktKqpKA6Lrzcina2LFxJL/9+FgRr6NRO5413IPQY5L8FofuhaWNhMd57kWO3eCVpLQaBXpDVVObImXOMbB//trJ9+Gpgaofaz3dqA8hvIcHRPlMzU8yLyxEvxDsI8WIatT/q+23bapvfRUkk/pYjc/feyFx+FM4c7Hbd4HDgVUSwpiND68eIcFuJmBR3IP60U5XjPK7BhnS53rFOtyXntMIpoKJw76bk17mjAHIfkbi+8HvgHyr15vy9YfFSayCyl/M46RznzOLYc3om9GuaotN86XQK3pqwPY6uvaBjFgwMSA7GPooWkJVjmRj1COw8F5oMA1+W+IQ8mm0moCF3MoDkUhxrLCdwP5WTcCPTkpk4gyNApihmOqvPqR/qEmhVxrlNNJY/wPrHHyKxzrkLIYQsVo5h+s4U7Qx+2ngfBbaEYZHCZtxfIBpb/wBkNIdVS8TxbTtsLOomuqeYonNmUhWxNPFkGpoaZ1ZZeLDU+fKf8Pn9ISXMDgJ9J3dxLA/KaZvQxiSBlBQ4hVtRAQRGQ1Z7CAyDNF1YjNOVih32zB+RYshdCDsU/1eBkVVfq4EbO9V+vg80dJI+kpkXk/nKapOP5rxS1YjUoUmlAyTL1Zhs6FyLkMHXIEPox8gwq756ZqYPLxI4vRzR2nI8cLgHMtKgk+3Crm0FvnTizMTwD+BfAKv3JL/O6f+G4Arwj4e385zbIsViUospmpk3w8XMUDaz8kdzQehkPL7kfiQ3MQmcPnskbUJ/IzP/HbxPPuZsNEJJb1VTBp0Hw3nrYPhcWH0xxCLwYxhW+WFvELb4odpG3Xcc3qN8aiN/qMsqSzEZakt/ZT4VZVjEkWQCbSPiI8vHmVkEpCbCCoTu8x5O7Ww4woB8EHiLxFIx9dTOajM7mp9kbMbjcyT58C1D4Sw/vBmEkX5YHsaMN6t57VVKO/Wg6rmF7PH3YX94RdK7FMONq4EzNZa7QV0BLMmQMjNCigBSb5RFKghfupJuJ2SS+49jKfiqEJ9XXhjThGQngYyZnM7V51szrpxxJL40MfClQegao5L0NqMoZ1Riy8Y9J82DyrnktBfT14Q1sLIW5sbUBlBSBReWSca826qt0MrbkHG9GonguV3ZdyAyd/8eJz2+kuRGIvsyxjEmIu77Xci8+xUsKr4dplb2aZLrNO/eEOBR23p7po/RCNH8KJdkxc/wQqEibXs1ErKHOYarFaXvGQ4/VMDUk+Gh9+Gxd6xtvbs7244/22Kf2etSSTB9R8ppQKOs1nEaPiT6VF3EcGsxGgdGUE4Dqtr3JKo1INa9P6z7VNJblRrn+3EYHhonO/67r9XJl0Horkb+2cyPpmYal0cOuyTWP2YOAVGcw0GUxFRXyZAsOtD8Az5FzJEgU5M/IlGBrwNjkKehvj6iDTg9r+b5m09DN2NdIfKEz0boQ5rzvTO/axNoZRHImwHH3Qabb4NB9zhP45wgfLwUHk+SzaPQ0s5qTJu0gZqCYkzyh+ozqyp1mmurSw+UH1PFwZoOf5/CLKWZ1QPPjlrI7f4n2fifr/nqw73c3vct9MqoUuLDyVpr6IsxN+Thk80a8+eC10XiM2eaE4+HrEwjWNckdyhJD6YeAfkTIDQQFnwjaatqE2QADXVoWQTPV8Nx1ULWXoZkpj8eod1HkQfgJiR09WJEI0pDyNLDlD6PtU7bQfA1yR5m4Y8oYiZsgcyV7yPRfwZOj00yL8FgLCrCzYiwu4O6M31o7sQA6ZzWOIgck7Oc22cMggcnQvd2cL8SW5B7BoRmSzHO5+cRL8ZpojZqdVmkgsW5S+IOfVWgyXUbJmpPDZ4zx0DnLBgZkBine3OlmKQa/2RHs97OZb+h0aVFoDwXXBHF3JhM+6rN3OhGhM1FCKPRjoFYgRhuap8Tq5rdlzhNlJtJDN5QA6RNtMfpP0vmS3sNsQPMR0grC63do1h1ApN9KpCg9GV++DYI4e6QH4R5HaDPtTA1X1iNx5wNn9tmO3acbBBvzHgzG3w5Y4BEjR6gU46THnX4RPWeHAgHo5XZ39zfF1KaWT3w7arvE9b9PXcjjRofyx9MLjwyOMXjiDSNMydAeoVO7zagmcLJ0MhUoeZYH4XJR8D5i60mD/SRWmSbdJhkz9xbC/Ymjp0OFCKPdAwZmpINDx4kk157YDvysJjbTXyKlZfxYyTo2e4tUocz1WRoPoDtk5zjJuPcPEgMXAbiWVF1DHumD9xWgHR2U8irlkTCcdOb18i6MsrQhgvAa9+WIZlYso+CvK/B1xACY4CG0P4YKHNb/rLaYoM+CX/Dv8a9JdcQ3MyIxRfSamz/+PNhJwo5hJw7BitfgyvGyfKbQTjjmqTHAKB7LribQ3o27M0DjxeqwvC9sX9lEDyLET+Zebftd87+D6gPJIjB98kkBx5v7J9J8oHRY6w/EplGmchU2pm2grMRjW0XidlFTPiUYyXTLlTBvxcrtJ9E4aV2r2ZfMdGsl9Q5a5UlL0wrRdjk3gldDjdqmyGmxoY+XE/Nw9vvCNI+2wDedGJUYyfNmJpams/DwNBltMtuRVHe17i8B0vRP1gB9fsUZinN7GfAJIS4lBfLLtRcUdDMzfZM2zHbNyTMFH1IIG/+OZKD0avLejVbPkBOklRN99ReoQIQXlsE67GOIOQK++scRbSxZghtPkbicKIKJ3WMOFJZNun3HkSTexZ5vdXUtWBFQ9Xl3SkBrtBhf5poZfH4sRaQ1RACrcWsmPuxFN/E0N4CR0BWSwgcZexnfDQPBP5g+DZHWOZJiS9LSzAvxox/2459O5x/UqXtT6uK7Ofz3PuIRopxESMWKaR0ynRcZvB0iVJ/oExZ7ns5XJQPp4ZECncJQIssoZVnaMJ0tCOtoBbtzMyXUorovfa7XZvPbAIyvcmwrVOFoh2mwXm68a16U4/ECq5uamxP9EMLzCfUvB/q1KuaxACT8ca2fUhsXKRuv1lzhWhjoqtSUua4c5zbR18tZB17Qc+YG/30iaR160r6xNHENGsSFMVFdaSYzbkPUBWR5NOdAv1oktWSrMAxDotP/VAfp2Aym+rvCylhdhAYc08fx/JxI5rHf6t+MxdRXAZ1MPIj5F5pK8ipPleGadH+W4tJQG9WQ8nBqNXI9smtnecU7ABPKevmZUCDKDyVJuGl5yNxWGOxqjm/ZSy/h1X7932Egr+GRDex+viby+rwpBpI3FiU/BysIW8TVk71axEz4yXKvkNxGr/U329jGJVqoM1+qSAdp94b3+FC8L8nQeX+MIR3Km18tuVkgdK1TJJNHcu57GZ9+HsWTv/A0TYrR4IGvw+v523/FPYE3yHPfwa7b3yU7/wDqAwuorRTD7RlS2Dsmc4DXXi/c/n0ByEzC3oGrKKd9k9LZUD2GaZHIsiAXmx8rkC0puOBlxGj8vvGTuZdHqRc9alIuikNp0kyGTxGO9PgfCTy1LRH9Ovxtv3tT1dt5IdncT6pqiAD+bNMStAcJNz/ZEQjDAJ+iIZrNzfuTZJ9pde1VgC1+dEyYEoI7s6X8Ik0n/MybJcTjbqIRS3TYixSxNah0/nIP5EfgitY5r+A5YPuoDJSQmmkgrdzn6fioGuc2U2vKQJICnVg6oZcSrb9QJ8z21O1r5Q37pPCJlPaf8Adi3vwh7ENAbtAi1EQ0bl5Wg2jToJzL5d+goth8d9gcE+Y8RDMngIt7L54+6TJLtzsGlsNzO0BC3ZL0PSpPlimJHjwxaBGk9IuZYh3oxzxk6lGqyKwG7qA2in4ycgeOk6yhzr2p2MJOFPmmlqZHVVYxJOeSBZ8kyyiGsVM3WK/hoO0VqCRMLgraTIl0FwVVMncPopAi7qszB91ZWooU0oUHD21Py4jkaxKwS4OveXcuahQtK2HQ9AlGzbmQcOmcHUIMrMhP09spLHE67SkvVG7K83IZKF5oTKMlZg3aDvgfJywV4SrRryTfwY6IWxDH3LwUiRj/TiESmSaFU1DtIlyJOXUqUitcfvx8pF/2z4dcprhBGORp3SF/UaRaCozj9sXqe8wFAn0UFFLkuAoUF2Y2LxRL2faqyjg1uDYgNyOdlmJleABs76ZiRhuysKv8824aQmHiKzaxkL/jPjy1mA9/AgO/BQq/+8PKc2sHmjerSnHBLJIS0ujXa+mjm37C6KGocnUyGIsDVfT3V/Jiy9YgszE22vAfwYEl4P/PAi+S1KfGVGIlEDuOxLvZG5fshsu+AJeL4IPyyAzH14rcR4jUmMFR+8F/mR8Fya5NjeJWfhMU2A1Mod/HqvylH2oqiZx7p3MQGInZ5voq7TpjwyJgxDXvekrq42u4AECHmcfOY0N/WMnRHT5vKFY3XJ6kKh5qQLB0NAiJZB7tdSPi9mEnWlqTCbY+k7u7Fg+6YFRcbNR58n9HNuqvtzpWHYHxoKnBk4NQJcsGB6A9DQ4MSCDZrYthszO03AIMw0yA5LJoonZvq5kZXaMxnmnPcg/0QZhNmpI6PxMRH+/ESvOTDU3fo6Ub/nE+FZiHABRkUz6kMn+U3X9/iQWEtqAZSQvQPi4NyCc2ZOQgqFX13KNJkkjyUetSA3QPkn7Ay1HEb8ZEm9mamY1BU6G4y+HlJkRDjFh9thjj9G1a1d8Ph99+vThvffeq7P9ypUr6dOnDz6fj27duvH444//rOO7iHL8ZGdg18k5mbbtRu69AlXXsdBVcQnkPg5D/yYZ8u0CLWwESAe/Av9CCH8n69XaZAD/Ut71M2ogGrOYi6YRyZO4a5z+PhVJ6muWZ6xGIoD+gmTjuwMhe0D93c0eZEgzs4HcgQxt5nB5kXHMqcgkt7aIJ2y/46ZGFzRyS4B0fgsI+WFppVGEtAD868H/Aby4W/afczyEhhvJhFVzoqqhuY1g6QGiTft7wsuvQNSVXCuL2oSax6hI/qf8KUwIjYtrZS6iuHweskMz6XbvFMf+jW+dRqMXHwev10g6rENRBO7MFZ9ZbVpYbR8isDMXPBG5sWrpEwceR4zN/yB5MPWBYs/KbP+SHersXw3KwOjvb1hc10+xCCE3INrVjVhB22b51g8Qc+M8hHK0AjEt3lbHda5DpmV1lImJ+aDzfOj8CHR/BI6Z78ysX6vgSrIdwG5ijLnwTR5dx/n9HPxvmRnvuusuTjzxRBo0aECzZs3qtY+u69x22220a9eOjIwMhg4dyubNmw/quIeMMJs/fz5XXXUVN910Exs2bGDw4MGcdtppfPvtt0nbb9++nVGjRjF48GA2bNjAjTfeyJVXXslLL730s87D43NxZagvj+afxI2hXvi8NQ5GmpsYGcp7e8Zw6/fVf0/sc+U2I43SJtECcl+GHcokbkcp4jNrnri/HRemgavGmrPaUQpcp6wbiMy3+yFROcdiPeqqKbCcg+dBqUPa88iQZWb+a28c267R1SXE4h83pHsgxwdZPgg0Sa55mvB5INDDGW9WVw5GJX0ikWJNyd7gJIKYMCuS+7Oa0StwhMOZr2kamcOOomxDvmOf/bf/gzSfC4/HsIm+sxCG+GFpUDKzrwvXX5BFwrDODwVB2OaXjPpun6S5apAPafMRc18+8m/kID6ld3AKpmSGXTeJGTLter19H1XDGpFwr8SYbEcR8CLiU2uKZZg2oU4SlWwCCbgfK6S+Mxar00CCMNOg8SRoOR3aTIeWkywTY2kE3siF/ZE6hBcQicBfcmFfBKJyL6Nmeiufl1ahBzgsfyFZ82+l54vX0/ORi+j9yLmc8OLlnDT/Qs7Ov4FT5k08wHWp+N/SzKqqqggEAlx++eUHbmzgb3/7Gw8++CD/+Mc/WLt2LW3atOGUU05h//79B97ZwCHjM3vwwQe58MILueiiiwB4+OGHeeONN5gzZw6zZs1KaP/444/TqVMnHn74YQCOOOII1q1bx/3338+ZZ56Z0B6gsrKSykorYLG4ONEsoGkaJwTa04ByumW1RDOGa7upsaLU+dJlNnP2cckIeCJJCvm382HcC/I7qGyb/hl01OCMhjC/M/xQDkSheQxybe/07bKacoTbZU/AexIiNHQsLwhY8zrz21zXG6eXI1kmj9pgDmtH4Yj2ARKFZFzbsu2XTIjZtTKTiq+5idcdm5wB5+9Ofj45h1G7WTGJiXHyKGcF8ImTpBZwlETiR7LfdpiTnZ3hPFaNeyRpG71A/kSXO0ZNUaFzY5ktGJoDnH9Nkgz6Hk3SXFUANVk25aobYuIzNbeFSPb6gbYDmTCfDA+S9KwjQqN3Y01F7IOkGxGUbZEEZN8kuepWyvIrxvfHCFlFfQLH4aydcDYihO24CTGU5yO+unREOJo2/HKEjanVf9zfHoaPxkn324IwYTEcPTax3YdhuNNo93oQ5iyiZowkXYtFXcS8bhoFRuKljAZZLUinigaUkUEZXqrIoIwGlNO0pYc3pyS5XbWimlqZSrW2//Vw++2ShmHevHn1aq/rOg8//DA33XQTEyZIZth///vftG7dmueff55LL720Xv0cEsKsqqqK9evXc/31ztzoI0aM4IMPPki6z+rVqxkxwjkbHDlyJE899RTV1dV4PIlGt1mzZsX/CDsqi6uoIAZUoVGBbgz9OpXUEDM+NUSpIUaUU0c6U0zccjnM/Y+1fMdkOLEr9GwJJ9xpre/udMdxUia8u9da/r4c9qfDqQ2QZ7cS9Ap4MgOO1GF9JRTVyHtVgTyyf0HyiX+OvMamkIoiVaZKcIadgiXUdOBMZH68E8sKWh+Y7VwIodsu0I7B+Trptg+I0EizfZt9eQAtTYQYLoimmSvlo6fDvO5wTFPYWAG44dg28HGpZC+pMlmjprUlzfiY47EpEHTQG8K8++CYbFi/FcpiaVQUp1FJDRXUUEaMcmKUE6WcdKqoppxqynBRTRUVuKgkjShpVKFTBZR/X7vvyjfqJCrLCtFLM2DYcOfG40dBVbFwI+x/lnk9NcZHB9qcJlRRE01HQXWxda2mBhr/I9WcXnux6H7mAcuVG5dtbD+WxKfHHsDR3fb9SZKr7mGcTBvEB7fBtq3Q6DOACM7vjeVzkanYbmP5MuQpdiGe2z6ISbMform5jfM3wxHcWGEJWHLAvD81WPfVRKkSZ1r8PZQWW5dcbez3o9Ju1y4oKCVaXU56w3KqvfKUVFGOiwrSjKengirSKMdFORrVuIplQq3rSqqaWmGYbeoN6V+drHu9XrzeA8T0/ArYvn07u3fvdozXXq+XIUOG8MEHH9RbmKEfAti5c6cO6KtWrXKsv+uuu/TDDz886T6HHXaYftdddznWrVq1Sgf077//Puk+FRUVelFRUfzz2Wef2cfZ1Cf1SX1Sn//aZ8eOHXWOi+Xl5XqbNm1+Ut+NGjVKWHfrrbfWf1CuB55++mm9adOmB2xnjss7d+50rL/44ov1ESNG1Pt4h4RmZkINJtR1vc4Aw2Ttk603oc5MGjVqxGeffUavXr3YsWMHTZokiU7+HaC4uJiOHTumrvEQR+oaD33s3LmTXr16sWbNGtq1a1dnW5/Px/bt26mqqm8pHgvJxs66tLLbbrstqdXKjrVr19K3b9+DPhcTBzu+qzgkhFlmZiYul4vdu50OkT179tC6teokFrRp0yZpe7fbjd/vr9dx09LSaN9eEi01adLkd/ny2JG6xt8HUtd46MI0/bVt25a0tAPz83w+Hz6f74Dtfi6mTZtGTk5OnW26dOnyk/pu00aKv+7evZu2bS26d13jezIcEsIsPT2dPn368OabbzJ+vJWt+s0332Ts2LFJ9xkwYAAvv/yyY92yZcvo27dvUn9ZCimkkEIKyZGZmUlmZuaBG/4EdO3alTZt2vDmm29y3HES5VpVVcXKlSu59957693PIUPNv/rqq3nyySeZO3cun3/+OTNnzuTbb7/lsssuA+CGG27g3HOtlOeXXXYZ33zzDVdffTWff/45c+fO5amnnuKaa675rS4hhRRSSOF3j2+//ZaNGzfy7bffEovF2LhxIxs3bqSkxAqI7dmzJ4sWLQLEvHjVVVdx9913s2jRIjZt2sSUKVNo0KABZ599dv0PfDAOvd8ajz76qN65c2c9PT1dz87O1leuXBnfdt555+lDhgxxtF+xYoV+3HHH6enp6XqXLl30OXPmHPQxKyoq9FtvvVWvqKj4uaf/P4vUNf4+kLrGQx9FRUX6kCFD9KKiot/6VH4yzjvvvKSkk+XLl8fbAPrTTz8dX66pqdFvvfVWvU2bNrrX69VPOukk/dNPPz2o42pGxymkkEIKKaRwyOKQMTOmkEIKKaSQQm1ICbMUUkghhRQOeaSEWQoppJBCCoc8UsIshRRSSCGFQx4pYQaUlJQwbdo0OnToQEZGBkcccQRz5sw54H4vvfQSvXr1wuv10qtXrzjV9H8Jl156KZqmxRMu14WHH36YHj16kJGRQceOHZk5cyYVFVbJj3fffZcxY8bQrl07NE1j8eLFv96JHwALFy5k5MiRZGZmomkaGzdurNd+hYWFXHHFFbRt2xafz8cRRxzBa6+9Ft8+a9Ys+vXrR+PGjWnVqhXjxo3jiy+++JWuonYc7L1esWIFmqYlfLZs2eJod6Dr/60wa9asOEW7NkyZMiXpNR555JHxNvPmzUvaxv4c/7fgdruTnstRR6kVBSxMmjQJr9eLpmmkp6dzySVq/XULV155JZqmOQKN/z/jkAia/rUxc+ZMli9fTjAYpEuXLixbtoypU6fSrl27WoOyV69ezeTJk/nrX//K+PHjWbRoEZMmTeL999+nf3+13OVvg8WLF/PRRx8dMC0OwHPPPcf111/P3LlzOfHEE9m6dStTpkwB4KGHHgKgtLSUY445hvPPP7/WygP/LZSWljJw4EACgQAXX3xxvfapqqrilFNOoVWrVvznP/+hQ4cO7Nixg8aNG8fbrFy5kiuuuIJ+/foRjUa56aabGDFiBJ999hkNGzb8tS4nAT/1Xn/xxReOzBgtW7aM/67P9f8WWLt2LU888QRHH310ne1mz57NPffcE1+ORqMcc8wxBAIBR7smTZokTED+G1kyVHz66adUV1sptZcuXcp1113HhRdemLT9WWedxYIFC7jyyisZP348Cxcu5O9//zutW7fmr3/9q6PtqlWrePTRR3+XWVB+Mn6RwIJDHEceeaR+xx13ONZlZ2frN998c637TJo0ST/11FMd60aOHKnn5OT8Kud4sPjuu+/09u3b65s2bdI7d+6sP/TQQ3W2v+KKK/STTz7Zse7qq6/WBw0alLQ9oC9atOgXOtufju3bt+uAvmHDhgO2nTNnjt6tWze9qqqq3v3v2bNHBxwxjf9t1OdeL1++XAf0goKCWtv8lOv/tbF//379sMMO09988019yJAh+owZM+q976JFi3RN0/Svv/46vq6+yW1/Cxx77LG62+3WY7FY0u2NGjXS+/btm7BP48aNHesqKyv1xo0b6+edd56elZWlt2nT5lc750MJKTMjMGjQIJYsWcLOnTvRdZ3ly5ezdetWRo4cWes+tZWYqa0kzX8TNTU15Obmcu211zpMMHVh0KBBrF+/njVr1gDw1Vdf8dprr3H66af/mqf6X8WSJUsYMGAAV1xxBa1bt6Z3797cfffdxGK1F7YpKpI6Yy1atPhvnebPwnHHHUfbtm0ZNmwYy5cvd2z7Kdf/a+OKK67g9NNPZ/jw4QdurOCpp55i+PDhdO7c2bG+pKSEzp0706FDB0aPHs2GDRt+qdP9ySgpKeHjjz/mD3/4Q605F2OxWIIG6fP52L9/P2VlVhXAU045hUaNGtW7Xtj/G/zW0vR/AZWVlfq5556rA7rb7dbT09P1Z555ps59PB6P/txzzznWPffcc3p6evqvear1wt13362fcsopek1Nja7rer00M13X9UceeUT3eDy62+3WAf3yyy+vtS2HoGbWo0cP3ev16hdccIG+bt06/YUXXtBbtGih33777Unb19TU6GPGjKlVO/1voT73esuWLfoTTzyhr1+/Xv/ggw/0yy+/XNc0zaFRHuz1/9p44YUX9N69e+vl5eW6rusHpZl9//33usvl0ufPn+9Yv3r1av3ZZ5/VN27cqL/77rv6mWeeqWdkZOhbt279pU//oHDVVVfpgL5+/fpa2wwYMEBPS0vTn332WT0Wi+n//ve/dU3THM/3Y489pqelpelbtmzRdV1PaWY2/L8TZsFgUG/YsGH88+677+r33Xeffvjhh+tLlizRP/74Y/3vf/+73qhRI/3NN9+stR+Px6M///zzCX17vd5f+xISjmm/nhUrVuitW7d21AaqjzBbvny53rp1a/1f//qX/sknn+gLFy7UO3bsmGB+NfHfFGbJ/jMTByPMDjvsML1jx456NBqNr3vggQdqHQymTp2qd+7c+YB1pX5t/NR7PXr0aH3MmDHx5YO9/l8T3377rd6qVSt948aN8XUHI8zuvvtu3e/365WVlXW2i8Vi+jHHHKNPnz7955zuz4bf79dbtWpVZ5t9+/bphx12WDz9U1pamn788cfrgL5p0yZ9586dutvtdkw+UsLMwv87YVZcXKxv27Yt/ikrK9M9Ho/+yiuvONpdeOGF+siRI2vtp2PHjvqDDz7oWPfggw/qnTp1+lXOuzao13P33XfrmqbpLpcr/jFfjM6dO9faz6BBg/RrrrnGse7ZZ5/VMzIyktr4/5vCLNl/ZuJghNlJJ52kDxs2zLHutdde04GEQXHatGl6hw4d9K+++uoXuYafg596r++88069Z8+e8eWDuf5fG4sWLdKBhOfUfHbtAldFTU2N3r17d/2qq66q17EuuuiiBP/2fxPvv/++Dug33HBDvdqXlpbqa9as0SsrK/WcnBwd0Kurq/UXX3yxzoKbb7/99q98Jf/b+H/HZmzcuLGDvVVcXEx1dXWCHdvlclFTU1NrPwMGDODNN99k5syZ8XXLli3jxBNP/OVPug6o13PJJZcwZswYR5uRI0eSm5vL+eefX2s/ZWVlSe+BLhOeX/akDxLqNf5UDBw4kOeff56ampr4tW7dupW2bduSnp4OSEHA6dOns2jRIlasWEHXrl1/9nF/K2zYsMFB267P9f+3MGzYMD799FPHuvPPP5+ePXty3XXX4XK5at135cqV5Ofn18oKtEPXdTZu3FgnHf7Xxk033URaWhq33HJLvdo3aNCAfv36AfD666/TuXNn3G43I0eOZOHChY62U6dOpbKykqeeeorjjz/+Fz/3Qwq/rSz938CQIUP0I488Ul++fLn+1Vdf6U8//bTu8/n0xx57LN4mNzdXv/766+PLq1at0l0ul37PPffon3/+uX7PPffobrdb//DDD3+LS6gTycyM6vXceuuteuPGjfUXXnhB/+qrr/Rly5bpWVlZ+qRJk+Jt9u/fr2/YsEHfsGGDDugPPvigvmHDBv2bb775b11KHPv27dM3bNigv/rqqzqgv/jii/qGDRv0Xbt2xduo1/jtt9/qjRo10qdNm6Z/8cUX+iuvvKK3atVKv/POO+NtLr/8cr1p06b6ihUr9F27dsU/dm3wv4ED3evrr79ez83Njbd/6KGH9EWLFulbt27VN23apF9//fU6oL/00kvxNvW5/t8SqplRvUYT55xzjt6/f/+kfdx222360qVL9S+//FLfsGGDfv755+tut1v/6KOPfq3TrhPV1dW6y+VKer4nnHCC3q1bt/jy0qVL9csuu0xftmyZPnfuXL1jx466pmn6e++9V2v/KTOjhZQw03V9165d+pQpU/R27drpPp9P79Gjh/7AAw/ECRS6Li/aeeed59hvwYIFeo8ePXSPx6P37NnTMXD8LyGZMFOvp7q6Wr/tttv0rKws3efz6R07dtSnTp3qoHqb9G/1o96X/waefvrppOdy6623xtsk+88++OADvX///rrX69W7deum33XXXQ6TVrI+UcpV/DdwoHutljy699574/9d8+bN9UGDBumvvvpqQr8Huv7fEqowS1bWqbCwUM/IyNCfeOKJpH1cddVVeqdOnfT09HS9ZcuW+ogRI/QPPvjgVzzrunH33XfrgL506dKEbVlZWY4wgpdfflnPyMiI/9dt2rTRX3vttTr7TwkzC6kSMCmkkEIKKRzySMWZpZBCCimkcMgjJcxSSCGFFFI45JESZimkkEIKKRzySAmzFFJIIYUUDnmkhFkKKaSQQgqHPFLCLIUUUkghhUMeKWGWQgoppJDCIY+UMEshhRRSSOGQR0qYpZBCCimkcMgjJcxSSCGFFFI45JESZimkkEIKKRzySAmzFFL4hbBr1y4aNWpETk6OY/0rr7yCx+Phpptu+o3OLIUUfv9ICbMUUviF0LZtW/785z8TCoVYv349ACtWrCAQCHD55Zdz1113/cZnmEIKv1+ksuankMIviLKyMg477DCOOOIIZs2axbBhw5g4cSJPPfUUmqb91qeXQgq/W6SEWQop/MJ4+umnueCCC2jYsCGnn346zz//fJ2Vk1NIIYWfj5SZMYUUfmEcfvjhAGiaxrx581KCLIUU/gtICbMUUvgFsXHjRkaPHs3AgQMpKSlh7ty5v/UppZDC/wukzIwppPAL4YsvvuCkk06iT58+hMNhAoEAq1atIj8/n6ZNm/7Wp5dCCr9rpDSzFFL4BfD1118zfPhwevTowUsvvYTH4+Gee+6hoKCAu++++7c+vRRS+N0jpZmlkMLPxK5duxg8eDBNmzZl+fLlNGnSJL7tkksu4ZlnnmHLli106dLltzvJFFL4nSMlzFJIIYUUUjjkkTIzppBCCimkcMgjJcxSSCGFFFI45JESZimkkEIKKRzySAmzFFJIIYUUDnmkhFkKKaSQQgqHPFLCLIUUUkghhUMeKWGWQgoppJDCIY+UMEshhRRSSOGQR0qYpZBCCimkcMgjJcxSSCGFFFI45JESZimkkEIKKRzy+D/NPCG9O4UHfwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('selected training points',fontsize=12)\n", + "ax1.scatter((X_train_tensor[:,1]+8.)/16.0*255,X_train_tensor[:,0]/10*200,c='k',marker='*',s=5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "74e03284", + "metadata": {}, + "source": [ + "### Defining input-output spaces " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6af0dba0-d481-4566-a8b7-244098eee713", + "metadata": {}, + "outputs": [], + "source": [ + "X = tp.spaces.R1('x')\n", + "T = tp.spaces.R1('t')\n", + "U = tp.spaces.R1('u')\n", + "I_phy = tp.spaces.Rn('I',3)\n", + "N_phy = tp.spaces.R1('N')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9a7cf509", + "metadata": {}, + "outputs": [], + "source": [ + "input_space_sol = T*X\n", + "output_space_sol = U\n", + "input_space_hid_phy = I_phy\n", + "output_space_hid_phy = N_phy" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b4b300a2", + "metadata": {}, + "outputs": [], + "source": [ + "Omega = tp.domains.Interval(space=X, lower_bound=x.min(), upper_bound=x.max())\n", + "I = tp.domains.Interval(space=T, lower_bound=t.min(), upper_bound=t.max())\n", + "domain = I*Omega" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b21e9f61", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll = 10000 # number of collocation points to constrain equation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1efe92cb-daab-4d21-8a43-5008e3e9248a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB520lEQVR4nO3deVwTd/oH8M8k5CABwhGBeAHeIiKKZ7XW1qOea7fdbq212629tNqtdrfbe9Ve1l52d22tPddfXVq3t67WerW19VhQREU8qgVsFaQYJEAghGR+f2AQ5ArJZL4zk+f9evW1CyaZh2+SmWe+x/PleJ7nQQghhBAicyrWARBCCCGECIGSGkIIIYQoAiU1hBBCCFEESmoIIYQQogiU1BBCCCFEESipIYQQQogiUFJDCCGEEEUIYR2AmNxuN86dO4fw8HBwHMc6HEIIIYR4ged5VFRUoHPnzlCpWu+PCaqk5ty5c+jWrRvrMAghhBDig59//hldu3Zt9d+DKqkJDw8HUN8oERERgr2u0+nE1q1bMWnSJGg0GsFelzRF7SweamtxUDuLg9pZHIFsZ5vNhm7dujVcx1sTVEmNZ8gpIiJC8KTGYDAgIiKCvjABRO0sHmprcVA7i4PaWRxitHN7U0doojAhhBBCFIGSGkIIIYQoAiU1hBBCCFEESmoIIYQQogiU1BBCCCFEESipIYQQQogiUFJDCCGEEEWgpIYQQgghikBJDSGEEEIUQTYVhevq6rB06VL8+9//RnFxMSwWC/74xz/iySefbHNzKylyuXlk5ltRUlGD2HA9hidFQ63q2AabQrxGIF9PqoLl72yNt3+/y80DADYfKUKsySh4O3niKLbVwFrpQLRRi3hTaLvH6Uj8+366gL2nLwDgMaqHGSN7xjQ8tr3XEepz4u/riPV59fU4jZ9nDtMBPFBa5WD+3bry70ntHAYA+O+hc7BWuxAdpkN8RPB9/4OBbJKaFStW4M0338TatWsxYMAA7N+/H3feeSdMJhMefPBB1uEBADLzrSi11zX7Qjf+ghWU2vFh5hkU22oanmcx6bFkRjImp1jaPYbLzWPVzh/x/u4CXKx2tvgaV36h0xOicKCwrMUTVv3rncL7u/ObvF60UYsb0jpjYnJ8m8+/8u/z/LunPTp6kqytc+ODvQUotNqREG3A7aMSoQ3xLmlt7cTs+f32vGJ8nnMW1qqW283b17vy38xGHcABpZWBOZkLdWHbkluEZRvzUFTe9mdvS24Rlm86iof6AX/99DAcLq5Dn9HW4vZ8jrblFeOLnHOwVtU2e47FpMdT05IRZdQ2+3tbij8yVIM7Rydi4XW9G9pkS24RHv3sCC7aL7/Pq745jUiDBi/cOBAA2mwHb9upPR19nSvbq6yqFs9sav78p6b1R5RRJ1ii4+vf29LzGouP0OHW4d2RaDa2+f0R+jvTUlyhITxeGAY8+vkROFyXjxMfob8UoyGgya2vWB9fjjie53nWQXhj+vTpiIuLw7vvvtvwu5tuugkGgwEffPCBV69hs9lgMplQXl4u6N5PXx3+BbX5B/DXTHXDF8aoVePuq3ugb1x4sxPTlTwf0ddnD2nxZO7R0sn6yte4d2wSNhwqanI8FQe4G73LnhMWgFZfr7Ernx9t1OLZmSmYmtryBSDSUL/nR+PXbe0k2fhLuy3vPDYfKWpyLBUH3HN1Eh6bmgyn04nNmzfj+slTcOBnG/aevgCe5xERGoKDP1/E9z+WosrhanLM3wyy4MucoiZJZEsWT+jd7MLY2one7ebx5Je5TZKjxny5ALZm8+GiS8e6nADER+ix9DfeJ8GehO7d3QXN/t3zuVk9Z0jDBX3+umxo1TxeHO5q+Exf+bj2tNR+HAf4craxmPSYnmrB29/nt/qYxgnLvHXZHT5G4+/PW7vycWWYHAAewNzRiZiYHN/ixaXxZzn/1yq8tuPHVo/jaUfPZ1qblI6nN51o8zzRmsY3IB296Hne79beljdmD8bU1M4dfl5LTKEazB2dhN6xYS0ma0J8Z1qLS3fF57k1via3HelB9DZJESq5bimGfacvYO9PpQA4jLh0E/q/fCta6tXsCM/neerUqQHZ0NKb67dskpoXXngBb775JrZu3Yo+ffrg0KFDmDRpEl577TXceuutLT7H4XDA4XA0/OzZ5bO0tFSwpGb7sfN45OODeGaoG0/tV8Hh9j2LvjJ5iI/Q49Ep/TChfxy2HzuPxetzOnQSaY3nBO2v6/p2wjcnfvXqtTytsvKWNEzoHwegvu1e+Op4uwkHAEwZEIdnZyZjx/btePmoDiVVdb4H3oq4cD0em9oPAPxq68Z/67V9Y3GgsAyllQ6Yw3RIT4jy+mTx6tbjeG9PYav//lqjtmyJt+3LAYiL0GPzn67G1H98j2JbDXQqvsXPdGSoBi//bhCGtXEyFvKz2lFGjRpVTlf7D2yFt4lX4+8m0LHPsqe9v140FnV1TuzYvt3vc0drcbXE5eYv9bw6sGLLMZS1cVOj4oCXf5eGSQPimjz/+td2efW3equl80NHtRVXa5/n1uK486oEvL+nsMXk9so4W3rvW3ofWnvcX6/vi4hQDbIuJRXDEmNgq6nDnz9u/h3y59zicvN4a9dpvL+7APZ2viORoRos/c2Adt8Lz2fJE8OgLmHYsX07Jk6cGJCkxmw2Kyep4Xkejz/+OFasWAG1Wg2Xy4XnnnsOjz32WKvPWbp0KZYtW9bs9xkZGTAYDIEMlxBCCCECsdvtmD17tnKSmo8++ggPP/wwXnrpJQwYMAA5OTlYtGgRXn31Vdxxxx0tPifQPTW3v7sPB38u9/ouwFdRBk2bd1Ny884fhuLJL3I7fKcX6HYWQ+M7LQBe39235vrkOLzy+7Qmv9t69Dz+8klOk14/b8wa1h0fZZ0B4H1bX9lblJlvxdy1WR07sIxFGTTQqDiUVDafH+SNQHymG/cENb5zF6IHLcqgRVy4DsfPV/gdZ2veu2NYw7y8ljTuHSi8UIV1+wpRXtN2z20g2vntOel4asNRQXus/NFab5c/73tUqAaPTOmP2PCmPUGtvaZexePpoW5oEtIwcUDzYUt/eNtTI5uJwg8//DAeffRRzJo1CwAwcOBAFBYWYvny5a0mNTqdDjqdrtnvNRqN311j1bUu7Cuw4fJHCXC4uTbHa31VXFHX5Dhyl5F1FoVlDvj6NwWqncXCAXjsizyU252XTgq+/y0bjpTg5VvUDZOpt+QWYcFHh3x6zfUHfmnWru219Z8/OYIjS7s0TMjem18m6/emo+q/m4C/30+hP9OFZQ4c/KUCo3rGAKhPBJ7edAI1fh6juMKJ4gonAnk+KrXXtXp+bn1ysnfxCNnO8z86dGkOn3Q+7xyApzedwKSU+u9kbZ0bT3x5zOf3vbiyDos/PgKgfqjslmHdUOdy4197C9p8zRVf/4jrU7sLOqnZ22u2bJIau93ebOm2Wq2G2+1mEs/zm/OYHFcJdp38lXUITPFAu5OzO2LtngLcM7YHXG4eyzb6/rmscXb8Xs5e68bv1+zBPVf3aHMlDBFfScXl9yIz3yqb96a0woEvc842W7lZUGrHa9tPMpmr1ZLGixKkggdQVF6DzHwryqtr8dhnRwTr5S+21eDvLUx+b+2xmfnWhqRaTLJJambMmIHnnnsO3bt3x4ABA3Dw4EG8+uqrmDt3LpN4Ci7YmRxXCapqpXcykLPM/Au4Z2wPZheuA4UXcaCw4yuOSGCZjZd7qRsnOFL3zKZjDf//ysUTxDutrXYUOwYWSY1sqtb985//xO9+9zvcf//96N+/P/7yl7/gvvvuwzPPPMMknsQYmmjsD4NWzToExbBfShLldOEiImjU8x8brmcXhx8oofHNR/t/Zh0CPso601DEU0yySWrCw8Px2muvobCwENXV1Th9+jSeffZZaLVaJvE8PjWZyXGVYmpKPOsQFCO1mwmAfC9cjd0+qjuotpgwSisvL5K4UOFo45FESSL0IZIYGquqdWPfTxdEP65skhqpCdWqMaF/J9ZhyFK0UYNr+saCC+DFq0+cMXAvLjFjetV/DocnRcNi0kto2mLHfbL/F7o7F4gnyXW5efxt41HG0VwWbRS2fglpytbOSjAx1W9TIi5Kavzwzh3DkdpVuMrEwcKk1+CBDw/6VF3WW7bqOrwxezAsJvn3XrSn3F6/nFit4hoqRcs1sal2spn435IeZnkPMZddqkKdmW9tcUsKFhaN742npg9gHQYRDQ0/yc7n94/BvWOSWIchK/kiTLIutjkQZdThqWnSHiaMNvo/fPr4F7kNY9cTk+OxaEJvmELpbthfP5XaEWWQbzs+sykPLjcvqblWr+34EWdokUXQGNXDLPoxZbP6SYo8NROsldV4cTjraMiVisursWLLCdZhtCraqMG+x8Zj9bensXL7SZ9f56LdiVU7T6FvfFizZdWmUA1s1U7JLIOVGzkXvSwqr8G/duejzC6NXhqPj7LOwKhVoapWOr1yRHiRBg1G0pJu+Wi8cZqOFvJIkrWqNuDVPlUAfD01/zatvkCWp4qvP9bsOo3qWlez5KW8Wr4XZTnRhajgqJPeRbrx8mipKCqvQd9YI06UVLEOhQTQCzcOZLKjOA0/+cBT5Ewud78GbXC9zRzqd7ONDmteTVpo/lzGJiTHC1Zbxt5CQkPEI8WERsoooVG2125J83vHdV9RT40P5FSdE6iv+hpslsxIxoniwO1P4w8OQLxJj+FJ0fjv4XOswyES1cWkx1kZnWdI8HpwfC/06BQGsyEEpcf2+bzTuhCC6xZeIFKaeEea4gDcO7Z+4vbK7d6V9BYbj/o6PZn51iZVXwlpjBIaIhdr9xZCF6JqcyNSsVBPjQ+UUORMqXgAa3blI9LwC+tQWuQp+/7u7gK8u7sA0UYtwnQhqHRIp7aEnP3pul7IPVeOnceVsb+YigN4nsXCWBJI+hAVahQ0ZHnR7sS8ddlYPXsQ61Cop8YXniJnRLqE3DCyLd7Mg1s0vjfmjk4E0Lzsu7WqVpCERq51aYTGcZxiEhqg/vNCCY3yhGqUeeldtqG+yGNmvpXJFgkAJTU+aVzkjAS36/q1XVV6YnIsHhjfG1/lFgc0Drrw1Xvn+59Yh0BIu8qqldkzW3ZpteXctVkYs2IntuQWiR4DJTU+mpxiwRuzh9AdcpDLPlPe5r/nnrVh308XZDWxXM5oB3hCpKG4vAbz12WLnthQUuOHqakWPDi+F+swCEPtlZ8vKq/Bun2FIkVDCCHS4Ok9XrYxT9ShKEpq/PTA+D4I09J8a9K6QA89EUKIFPGov7HLzLeKdkxKavykVnH47eAurMOQHINWTUNzhPjI2x3sHxzf26vJ6oFm1FJZddI6McugUFIjgGv7xbIOQXKowi0hvrlpSBevdrCPMmgwPCm62Yo6Frydy6RRSyADI6ITswwKJTUCSE+IYh0CIUQhdhwv8epxVY46bM+T19Cm08UjPoLKYQQLz5Y1Yhblo6RGAJ5Nu+gehCgB3Uyz5W2NpVoXj/f3yG8SerRRwzoEIgLPaWTJjGRRN7akpEZAK29Jo6J8RPZcEhjOCHaRoRrF3iTlFUlzTzYirHiTHqvnDBF9Y0tatiOgCf3jMCmlCzLzrdh6tBjv7ylgHRIhRIYm9I/FJ9lnWYdBSIfcMKgLgDN4745hGNkrVtQeGg9KagSUmW9Fqb0OZqOOlvESQnz2SfZZGLRq2KmYIEH9ajhvJo+zFq4PAfj6rYRYJDQAJTWC2H7sPID60tAOl1I7jQkhYqKEhnjIIaEBgA/+V4gXh7ONgebU+GlLbhEWr89hHQYhhBAFMsioBpDnlp7VZpYAJTV+cbl5LNuYR/VYCCGEBISceuw818IDhWXMYqCkxg+Z+VbaqJAQQkhAGbXyulSXVjqYHVteLSUxYpZ+JoQ1KoVPCBtatby+e+YwHbNjU1LjBzFLPxPCmi6ETheE+MuXOTJl1d4VZGTNM6eGZZV9Okv5YXhSNCwmveBFsiwmPeIj2GW6hLTEancGNLFJ7RpBxSuJYplCNVg8oTfW3JbOOpSAY7WcG6Ckxi9qFYclM5IFf90pKfG4dXh3wV+XJY28ek+bGNMrBk9N649Vs9KaJZvBtoDfUecO2Gsf/sWGqQPjAvb6hLBUXu3Eyu0/Yt6/D7AOJSBUHPDKzYNYh0F1avw1OcWCO69KAOp+8vu1VBzg5oH3dhf4H5jEOL2cwC/FIlM/nLqAH05dgMWkx9+mD8CPJZV4f3c+LlY7aeWbwN77QX57GRHSEd7uaC43bh44b6tBDOM4qKfGT1tyi3zaVC7KoEFkaNOckuHSfslonNBwEusGKS6vwf0Z2Vi5/SQuymSMW27oK0CIfK34+gQAYPW3p5nVqpFVUnP27FnMmTMHMTExMBgMSEtLw4ED7Lry/KlTU2Z34mJ1neAxKYnUemwkFg4hQScylHb4loPXvz2FIc9sxZbcItGPLZukpqysDKNHj4ZGo8FXX32FvLw8vPLKK4iMjGQWE9WpIUQ+GM5dJALpGWtkHQLxUnl1HeatyxY9sZHNnJoVK1agW7dueP/99xt+l5iYyC4gAOfK7EyPT/zDgXpfgsnUFAv+e0T8O0cinINnLrIOgXTQo58dwcTkeNFWRMkmqdmwYQOuv/563Hzzzfjuu+/QpUsX3H///bjnnntafY7D4YDDcbmyoc1mAwA4nU44nf7PiTj8ixU6NQ+dqv7S6PlfOZg1rDsm9I/FxkPn8OWhc6zD8YrQ7RwfoUdat0hsOUo7ql9Jjp/p9mzLOwedxFbhKbGdpYjaWTgmvQblNS1fP1tq52pHLfacPI+RPf2bQuztNZvjeanNXGiZXl9fv+Khhx7CzTffjMzMTCxatAhr1qzBH/7whxafs3TpUixbtqzZ7zMyMmAwGAIaLyGEEEKEYbfbMXv2bJSXlyMiIqLVx8kmqdFqtRg6dCj27NnT8Ls//elPyMrKwt69e1t8Tks9Nd26dUNpaWmbjeKtJz8/gi8OnYNOxeOZoW48tV8Fh1seA/fXJ8fhld+nAQBe3Xoc7/mwgktsQrfzI9f3bZitT5qS42dajqidxSGldjZq1Ypd1t1aO993dQ88ML63X69ts9lgNpvbTWpkM/xksViQnNy00F3//v3x6aeftvocnU4Hna55ZV6NRgONxr9Z9C43j+9OlcHhuvzGOdxck5+lbMORElzT7zziTXp8uP+cbOIGhGvn0xdqZPV3B0KYTo1KR+snWDl9puWM2lkcrNs5TBcCa3UdlF6288p2HtEr1u9rrrfPl01SM3r0aJw40fSu+uTJk0hISGAST2a+FcU2ea98+vPHh1iHwFSJzN8/IVzd24yvcs+zDoOQoFDpELeMh1bNodbFdjDGqFVjZA/xSvLJZkn34sWLsW/fPjz//PM4deoUMjIy8NZbb2HBggVM4qEduoVlMenxxuzBuGGQRbRj1nhb5lihogwapHWLZB0GISRAWCc0AHDv2B6i7gUlm56aYcOG4fPPP8djjz2Gp59+GklJSXjttddw2223MYlHSjt0LxrfC8MSY1Ba5YA5TIc3vzuF73+8wDqsNkWGarDg2l6INmhwsdqJ6DAdoow6iNkte+iXctGOJUVldieWf0VziggJJCXPoWlPlEGDhdf5N5emo2ST1ADA9OnTMX36dNZhALi8Q3cx4+J7HID1+3/BA+P7NGTDQ7pHof/ftjCNqy0cgBduGggAWLYxr0kBQ6NWvDW3thqq6EykzahTQ6tWocxO23LI1R9HJ+L1b06zDoOJ3w/tKvqO3bIZfpIazw7drDv3eABF5TXIzLcCqN+LatQLO9gG1YZoowavzx4MAJi/LrtZReZgvaMh8nVt304Be+2XbkrF32YMCNjrk8CKDNXgqp5m1mEw89aufKooTHxTUlGDLblFmLcum3UobbJWOfHkl0dR46wTNCHUhXBw1LFOMUmwMenVOFZUEbDXV6k4xBubr+Ak8jChfywGdY0U5LVUnDw3PV62MU/UisLUU+Mjz2aWUmE26rB0g3TiaYu1qhb2Wregr0kJDWGhvMYVsFWQHOovCOkJUTCIOCxLhPNJ9lkMXPa1IK8lx4TmypEEMVBS4yMpbWZpMekBDrJfYk4IucxzQVj97SnYaVhWcjgvOx6EKG+bEC3vCvhirhampMZHUkogZg3rjtJKR/sPJISxMJ0aceE0nNIR7+8uYB1CUGkvV+Eu/ff6rYOxeEJvRIb6V1TOG4VWeW+ebBZxCJWSGh9ZJZREJJoNklpiTkhrKh0uTEyOYx2GrFysppVPYuAARBo0iIto+1zKccC9Y5MwNbUzHpzQBweemoinpvUXJ0i5EnEBFE0U9lG0USv4a2pUHJw+DJzGhuuRnhAl24lkJLis+98Z1iEQ0gwP4KLdicem9MSxIhvySytx6Bdbs8e5eWDNrnw4XTwmJsdjeFI0zNT72CYxRxIoqfFRvClU8NfsaELDAYg36TE8KRqZ+VZKaAghxE/Lvzru1ePe212A93YXwGLSY9aw7gGOSt7EHEmg4ScfDU+KRnw73ZSBxgNYMiMZahVH2zYQQggDReU1WLn9JEyh1EfQEsulG2+xUFLjI7WKw63D2Wbnc0cnYnJK/V5JBaVVTGMhhHhH5AKrLbrzqgT86bpeCt8rWlxUobw5DpdvvMVCSY0fEs1sl9mZQuvn9dTWufGvPQVMYyGEtCwuXIvFE3rjrtGJANjPe5s2MB4TkuPh5sG8IrqSCLF0W0ksJj1WzxnScOMtFuov8wPrFUcrt5+EvdaJjw+cpb1hCJGoSocLLhePT7J/YR0KAGDTkWJsOlLMOgzF4kDJ4ju3D8VVfeJE3/cJoKTGL55NLa2V1cxiWLMrn9mx2xKqUaHaKWzVYELkqKrWhX98c4p1GEQkwZ7QAPXbe7BIaAAafvKLZ1PLjuhpNgYoGmm5rl8s6xAI8VlcuBZPTKXaI4T4gmUxWEpq/DQ5xYIF43p6/fiULhEBjEY6vj35K+sQZCc9IZJ1COSSqlo3isrZ9cASImeFF9gtXKGkRgD3jvUuqbGY9PjdkG4BjkYaqhzC7lWjD1HuR9Vi0uO+sUnILrzIOpQOmdBfub1xlY46vEfbEwRc//gw1iGQAFi3rxAuRjPilXulEJG3Y4dPTUvGVb3NiDQEfq8QpRncLZJ1CIKanmrB32el4cN7RuK7h6/FhkNFoo7FX9Onk99VsX84WSJQNNIl9rSAYFtifay4knUIJADKa+qwaiebeWSU1AjotVvS2kxYnvzyCL7OLcILNw4UJR4lnSD3irh1faCN7BGNVbOHYHpqZwDAP3acFH3H93nX9MTTM5K93mm4JTVBsHG0WDebkaEavDF7SLv7DhHCgi895e/vyWfSW0NJjYAm9I9D5uMTcNPgzi3+u7XKifszDuLgmTLcNzbJr2OF6dS45+qkhh1jG2vYRXb2ENpoLQA0fn5rIvQaLNuQi7Snv8atb+/Dqm9OCxOYl6KNGlyocGDhRzlUW8MLKZ0DPw9u6W8GQKUCaO0MkaKauo6vZL1odyKTwc0oLekW0BvfnMJbPxSgqrbtD8CaXfnQqv3rR6l0uPDfw0W4d2wSNhwqanKnH2/SY8mMZExOseDLnLN+HYc05+9K9a1554UJxEfWKif+tP4g0xjkJPdc800NhVK/1Ur9pMr567IppSGKwmL7HkpqBLD9WP1F6o3vTsPh8i5ZqXX5f/oqKq/Bml35eOC6XhjZIwallQ7Ehtfvs+GZ58O6QKCSmEJDwHEcLiqg0CHrqrbBbuG1vTC6lxmDu4bj6y1fYfnmY5TQEMUpKLWLfkwafvLTltwiLFqfwzSGf+48hQX/PgBdiKphx+4vc85i7+kLSE+IgsVEiY0/Ig0aLJ7QB2/clq6IhIaw1zsuDKN6xjT8fL6CXV0PQjoiMtT7hS6vbT+JLblFAYymOeqp8YPLzWPphjzWYQAALlbXYd66bEQaNE0uvBaTHr8ZZJFs5WEpW3htT4zu1amh54uG8ohQzGE6bMktwpLPD+PxVNbREOK9Bdf2wsEzVuw4XgJHXfv9i8s25mFicrxoFYYpqfFDZr4VxbYa6NSsI7nsyp6E4vIavLUrHzNS47HxMO330jEcSipqkJlvxfCkaJjDdKwDIgpx79osVDnd0Klp0InIB8cBz20+5vXjedRPk8jMtzbpmQwkSmr8wGISVEfxqF8JlVVQhmiDFlZ7LeuQZGNVo/16Ig0aOJxBsIaZiKIqQPuicRztFk0Cx9fPlpjXSppT4wcWk6B8wQMotjmQEGNgHYpsXbQ7aYNOInmU0MhPjFGLuaMT0SdOudWVxVywQj01PnK5eXyYeYZ1GB3yY0kF6xAIISTozUiNx4Tk+IbVql8dPqfIbTk41JcYGZ4ULdoxqafGR575NHJSKfB+TIQESiC3+lJSpW0iT/sLL2J6aueGeSaPfXGEcUTC83zPlsxIFm2SMEBJjc/kMJ+GkEDoG2sM+DF8KGDqlbG9zX7Xg7GY9BjSPVKIcEiQ8kyedbl5/Gt3PioUuOdIvEmP1XOGYHKKRdTj0vCTj6ioHQlGHIATJVVMY/B1JZ8pNAS7fiz16ZgaNYcVN6bCEhmKsioHFmRQReZgEKZTI9FsRO5Z4atK/2tPPhavP4him/JqFD1yfV/cMaaXqD00HtRT46PhSdGwmPTUlU2CihTmoWYVlPm0wzjnx+6dThePZzbloayqFs9souq/wULNISAJDQB8ffS8IhMaAIgyaJkkNICMk5rly5eD4zgsWrSIyfHVKg5LZiQzOTYhYvNnN2+hFdscGJ4Y6fXjIw0aPDi+l9/VoMvsTtyfkS36juqEnXIJDwvdPrI76xBateLrE6JXEvaQZVKTlZWFt956C6mpbEtxTk6xYPWcIYilomxEYXTqpqcGqS0V/v7UBa8ed9Pgznj+hoFYu6cwwBERIh6LSY+npg+Q7GjBRXst5q/LZpLYyC6pqaysxG233Ya3334bUVFRrMMB4F+3NiFS5HBJuyZPlZcr+T49eA73Z2TjYjXt2UWUY8mMZGhDVA2jBVK7AnnugZZtzINL5N1zZTdReMGCBZg2bRomTJiAZ599ts3HOhwOOByXxyxttvqxUafTCafT/5Pc9mPnsXh9DrSq+jdNp5LY7azC6KidRUNtLQ5qZ3EoqZ0XjOuJ8X3NcDqdGN/XjDdmD8ILXx2XRImRK9vZWlmNfadKBKlT4+01m+N5qXUst+6jjz7Cc889h6ysLOj1eowbNw5paWl47bXXWnz80qVLsWzZsma/z8jIgMFA1XUJIYQQObDb7Zg9ezbKy8sRERHR6uNkk9T8/PPPGDp0KLZu3YpBgwYBQLtJTUs9Nd26dUNpaWmbjeKNzHwr5q7NAlCflT4z1I2n9qvgcEutI7BefIQef72+L178+gTO22pkuXpDDu0cSByAuAg95ozojpe3nQzosYK9rdsSbdBi6sB4rPuf/xXFqZ2FF23QYtpACyJCNXj92/r92zrazpGhGgCQ7LBlfIQej07phwn94wDUV7h/a9dpvP7taaZxtdTO790xTJCeGpvNBrPZ3G5SI5vhpwMHDqCkpATp6ekNv3O5XNi1axdWrVoFh8MBtbrpdtk6nQ46XfNJvBqNBhqNxq94Su11cLiafjkcbq7Z76TC4QLUISF4bNoAzF+XDUAay3N9IeV2DhTPX/vYtAHYc/qCaH9/MLZ1e4oqnHh3z88QciYDtbP/1BwQERqCogon3tnjSTg7do42aNRI7WbCvp+sLT5fKs6UOXB/xiGsnjMEALB0Q96l4SdpxOtwc6h1cYg36TGyV6wgy7u9vWbLJqkZP348jhxpWkr6zjvvRL9+/fDII480S2gCTW7F987bHJi/Lhur5wzB6jlDsGxjnmBLU0M1KtrsMcDiTXosmZGMySkWnC2rZh0OIZLj4oEye51fr2F3uholNNLFoz59+cvHh1Hp8O9vDgRWWyQAMkpqwsPDkZKS0uR3RqMRMTExzX4vhuFJ0Yg2amGtqhX92L7wfAmWbczDD49cB7cbuD8jW5DXdsm1y0eiwnRq3D4yEdFGDcxhOsSbQjE8Kbrh5HD7qEQ8t/kYRF5UQAiREB6QZEID1A+TPzZtgOhbJAAySmqkRq3icENaZ1ntrMqjfs+Rfacv4JlNeX6/HnfpNWsDtVFPkKp0uLD6u/qxcculHhq1ioPLzSMz34qSihoM7h6JA4UX2QZKCCEt+HrRWOh1Ha/6LQRZJzXffvst0+NPTI6XVVLjsfenUkGGnqijwDthuhCf76iKy2swf1027h2bhA2HiqiaLSFE8r45UYIpqV2ZHFt2xfekxLP/k/xIYzJZsAjTqfHvu0dgfL9OHX4uf+m/NbvyKaEhhMjC4vU5tE2CHKlVHH4zSPwxQ19xqB/OGNUzhnUoQaXY5kDu2YvYefxX1qEQQohPhiVEdujxLKoJA5TU+MXl5rF+/y+sw/BK49noI3vEIFwv65FH2Vn+1QkariOEyFZWB+bweeZvZuaLv5KMkho/7Dt9we+df8USb9Jj9ZwhmJxigVrF4XdDurAOiRBCghYHwKTwm8uSCvGHzJXdogG296dS1iG0igMQbdTiyWn9my0JBoAJ/ePxPu1cTCQixqjFBZmURyDEI9Kg8fnGlgdQJ4+C/j5jUc+Nemr8Iu0Jt8/9NgW/HdIVo3rGNElotuQW4d4P9jOMjJB6/eON+PCekXh8Sj/WoRDSIXNHJyLz8Qm4fWR3n1/D293m5cYzf1OI7RE6ipIaP0h5wu29Y5NaLHy0+XAR5q3LRlWtMr9MRF6OFVehtNKB5746zjoUQjrEFKrFNS99gw/2+b8HmBKxqCYMUFLjl5E9YhCmk+YI3oZDRc1mnm8+fA4LPxSminBLpN1vRaTqgQ8PyqYyt1JNSYljHYLsrNx+ksostGLlLWlMqgkDlNT4Ra3i8PuhbAoMtcdTOdhjS24R7s84GJDS+p5kZkgHl/wREmije8ZgUNfWd/TtCAY3naL54dSF9h9ESAs41M+JW/n7QXjvjmEA0LB7OAuU1PhpfD/p3uEsyMjGltz6HptlG/3fFqE1oVo19BpVm2X77xqThGijfzujE9IRFpMe/3fXCMwf1wv6EP9Odb8b0gV3jEoQKDLpqaiR5h5CSqPEvJgHcKGqtmFBCmvSHDuRiS25RVi6IXDJQmt0ISo4vNhv6WK1E/PXZWPRhD4B7Sa1tzM/hwPwxcGzsFZ5v0rAn1UFRBo8e4MJKVTDwRSqQ7Gt/c/zkhnJ2JZXjHnr/BtyNYWG4JPssw0/X/l3RYWGoKyakgLSviijBiMSo/DV0RLWoQjuq9wiuF3svwfUU+OjLblFmL8u26uTq9C8SWg8eADv7f4pcMF4GUNHlutGGahHRwkCMUmQ41RI6dL+cFKkQYNr+sTisc+O+H3M8isSlsYJjV6jooSGtClUo8Ido7oj2qiFtcqpyIQGAP5vbyHmrs0CAGw9WswsDkpqfOAZzpFLhYErT8pSV2Z3Ui+NAtQFYAKXvdaF7cfavyhctDsx/PltKAvw56jGSTvUy43Oz6HIjqp2urF275mgmgz/0MeHsHyz+KMYAA0/+SQz30qz3n1g1KppKTkRTUUNfdZIc3ePScKY3p1QUlEDc5gOf/5PDoptDtZhKc6aXfkY1DUKU1PFXQVFPTU+YFH6We4iDRrMHZPEOgxCSJC7qpcZo3rGYGZaF4zuZcbS3wxgHZJiPfVlruibWlJS4wMWpZ/l7s6rkjCyB5tihf6ufCGBFxkagn/fPQJ3jk6EXkPvFwkMnVrV7Dw0OcWCO0b5XhWYtO5CVa3om1rS2cMHw5OiEWWgkTtvhelCsPC6XiitFL+L16hVg2O0jjI+QocZqfEwaNVsApCRF25KRUWNE1tyi2meipfoc9VxDpcb2/KaT2KdlMymUFwwEHtkg5IaH6hVHEYx6nWQo98P7Qq1imPSw1VV60K1yBfJif074alp/fHk1GT893Bxu0veg92UlHgAwPx12TRXzQueHF1LPZA+WbrhaJMhkS25Rfjzx4cYRiSOa/t2YlJAUuzzPnU3+KhHp3AA51mHIQsTk+svWsOTohEfoVP8pLxtx37FtmO/sg6DuSiDxqvVR71jjbJaTchavEmPWcO6YeX2H1mHIkvFNgcy860Y1TOmoTRHMHz2vjnh2znJoFWjutblUxux2NSSUn0fSXkzSymJNmqQnhAFANiWV4yaDtTYCTZKqzbaLSrUq8f9Y+dpn3tobh0uzW1KAmXxhD744ZHrkGg2sg5F1koqauBy81i6QVrJNIf6RRVSct/YHj63EYtNLSmp8dHIHjE0pu0Fa5UT17z0DZZvzsP8ddmyqD/zxNR++PfdIzB5gLhbYESEhmC6yMsfA2VcnxgcPmsL+HFqat2K3pOpMQ7AR1n1O0LTYgX/xIbrsWrnj0yKp7aFBxChl84AikYF7D5V6tNz545OZLKpJSU1PlKrOIzv14l1GJIQZdC0eXdRVF6DNbvyJXVH1JbYCH39pNWj4g4vVtTUoVOYVtRjBsr/8stEOc7nOecCskmrFPGo/y5l5luRnhClqGROzBVv8RE6lFXVSnb47oy1mnUIDZxuILPAt++yZ9qB2KSTEsrMltwibDzMrhQ0a9FGDW4d1h0cB4zqYcaQhCiMXrFTEVUzzWE6/IXBxEE3D7y/p1D04wqJAxBt1HZoWwwpC1EBUhsxLamowepvTykqmatxujGkeySyz1wM+LFmDOqMZzaxqXYbLOIjxJ9L40FJjQ/qx2KPsg6DKWuVE69/exoAsOqb05f2NZH/hUzFAZn5F2gVzhVMoRqUV7c9dOjpOJiZ1hnv7S4IeExikFpCAwAFpXbJ9jL4Q4yEBgDe/j5flOMEs0en9BN9Lo0HDT/5IDPfqtgVPL7OE1JCQgPU95b8fccprx4bGSqtCX2BVOdqf1l6pEGD1XOGMOt2DgaRoSH4MPMM6zAIaZFnM+IIvUb0SsIelNT4QMnbJFTXujAjlS5K3rhzdPBs+1BV236XhS5EhYnJ8SircihqvoeUXKyuk9zk1iuxKnZJ2Jk8IA7RRm1DCYe5a7MwZsVObMktEj0WSmp8oPSVBzuOt78LMqmvr/K7IV1YhyEZxTYHHvnkMO7POKio+R6kY3h674OKLkSFr4+eb9ZbX1xeg/nrskVPbCip8YGniJwS8QDsXtyVs3TlnWCEPgTXJ8eKHsczm45hWGKU6MeVsk+yf2Edgl/CdDTNUAjj+3VCtDF4hmelJEwXgt8NEa9+k6PO3eLKVs/vlm3ME3UoipIaH6hVHO3sylDjO8FooxYv3JiKN+YMhcWkF7WAXVF5DZZupFUUcvfUtP74+6w0/PvuEQjTUe0pIew4/ivmjEig9hRZCFdfW0YqNxeNyxCIhZIaH01OseDNOUMkV/0x2FiranF/RjZW7TyFp6YlAxC3Mq/Y+0opDesKqioOsJhCMTOtC1Qcp9gFACz8Y+cpVDpo3zMx1fFAWXUd6zCaEXMeKvW1+mFyigUTk+Ox5+R5WE/8D/dd3QMuqBqWOouBA2RT1C6QVm4/iSiDBndfnYiPD5yVReXiYOf57Na52H2C3TywICMbq1VD4JDi+m2B0HmCsGQOE2+6hmx6apYvX45hw4YhPDwcsbGxuOGGG3DixAnWYUGt4jDy0j5QD4zvjTG9xakybNSqMXNQZzpRNVJmd+Lt7wsooZGJeJMeiyf0RqWD/Z3lE5/n4mRxBeswAkbo80Rq1wiBX5EomogXKtkkNd999x0WLFiAffv2Ydu2bairq8OkSZNQVVXFOrQmhidFw2IK/OqoqloXvjx0LuDHIdKhtLo4PM/D1k5BP1HiAHChqlbUHla5O/xL4Pf1IspRWiXesK5shp+2bNnS5Of3338fsbGxOHDgAMaOHcsoqubUKg6/GWTBml1UtZII487RiegaGQqrwi68520OvKuQysMkeKg4MClZMKBzOI6ek2dvophlUGST1FypvLwcABAd3fr+Eg6HAw7H5QzRZqu/u3A6nXA6hbtD9LyW0+nE9mPnsXb3T6BJ/97z9iShU/FN/jdYZOy7nCCL9bkSs62Deb5HsH6mxSZkO7968yBEGrTYe7oUb/8g3s1rUVkVFl3XA59ln8V5iRaAbamd48J1GNw13O9rrrfP53hefqWSeJ7HzJkzUVZWhu+//77Vxy1duhTLli1r9vuMjAwYDIZAhkgIIYQQgdjtdsyePRvl5eWIiGh9Tpcsk5oFCxZg06ZN+OGHH9C1a+tFhlrqqenWrRtKS0vbbJSOcjqd2LZtG6L7DMXd6w4K9rrB4r6re2DN9z+1+zidisczQ914ar8KDjfVYg8kamtxUDuLQ6h2nntVAh6a1A9A/R6Ac9dmCRWiIrTUzi/elIqpAy1+v7bNZoPZbG43qZHd8NMDDzyADRs2YNeuXW0mNACg0+mg0zVfSqbRaKDRCD/p0lrtgsNFJ6aOcnGqDrWbw81RO4uE2loc1M7i8Led1/xwBouvHwBtiAoje8UiyqhnVtuI1dwebzRu51iTUZDrrbevIZvVTzzPY+HChfjss8+wc+dOJCVJbzPBwgt21iHIToxRi7NWajdCpIZSrObcPPDB3gIA9YtCZg3rzjQWQLrvEwfAYtJjeFLr814DQTY9NQsWLEBGRga+/PJLhIeHo7i4GABgMpkQGhrKOLp6b3x7CtL9iEnThapafHFI/J1cCSHNGbUq/PGqJFzV04zy6lrcn0HD6VcqtNrhcvNYtfPHS+d8du4anYjNucUoKpfmxOElM5KhVol7TZRNT83q1atRXl6OcePGwWKxNPy3fv161qE1bNYl0Z5AQoiIJvYXf3NVoVTVuqENUWN0bzOuT7HQNjAtKCitQvqz27By+4+oZVgNGwAmJMfjh0euw8JrezGNoyWLJvTB5BT/59J0lGx6aqQ8n/lAYRnrEAghEsAB2HashHUYflm5/ST6xofBFKql6twt2PVjKesQAADRBg3cPI//Hj6HKAkmn4lmNiuMZZPUSFlpJW2CJ6YogxaTB3bGp9lnUVHDvsQ+IR7SvfXqmGUb8zB5QBzrMEgb3Dxw2zv/a/hZahOHzUbx9ntqTDbDT1JWeEFaWzUoVd/YcADAt38Zh+sHWCihISRAispr8En2L6zDIG24eMUWI1JKaAAgq8DK5LiU1PhpS26RokrXS9kNgzsDqF91sD2vmHE07ITr5d3BaqRy27JQUeNiHQKRsX/tKWiYbyomSmr84HLzWLYxj3UYQYEDcMul5ZMuN4/Pc86yDYihm9Pbrs8kdVUOulgSonQXq51YtfNH0Y9LSY0fMvOtfi2lo8Xf3uMBfHviVwD1E7OtVcE7gdGksN26CSHKtHL7j9iSK27JDkpq/FDi56ZiEhsClbyHPs4BAOw9LY3VBy3hAES2kHQYtSpMHhAnyNDLml003Ek6xmLSY/GEPvjjVQng6G6KiGjZxjxRh6EoqfGDmNupk8vE3Bm3o3g0n8AH1Nf/2HL0vCBDL/Zat9+vIYTrB8Qh2qhlHQZpx9SU+lomfePD8K89hZBwdQyiQEXlNcjMF2/SMCU1fiiroqXcUmfUqnHP1dLbUkMJeseGwVpVyzoM0o7NucW49/+yfJ7/J8UaKERe/B3V6Ah5L6NgyOXm8cymY6zDAHBpyOPSiaeMimU1UVXrwr//dwb3jU3Cun1nUFVLk1SFQ+MYcrHj+K8+P/cfswYjRK1CSUUNzEYd/vxxDrNNHIk8iTmqQUmNj/ydJCwUz2Vl+Y0DUe10Y/H6HJbhSJK91oU1u/KxatZgPPLZ4aBNbMJ0alQKtPJIxQEjkqKx6htBXo5ImNVei5lpXQDUl7CoqZPG8KcU3D4yAZMHxANcfRHWgtIqrNwu/oqfQAjXqVDpcPs99zPSoBF1U0safvKRmN1pbYk2arF6zhBMTrEgNlz4Co5atXLuxp/dnIcVNw5kHQYzQiU0QH2hLxXHIdpIQxNK57nL3pJbhPnrsr3eOsGzS3N8hE6xfXrmMB1G9zZjdC8zpqd2xkdZP7MOSTAVAiQ0gPj9uZTU+Egqk4SfnNb/8qZhAZgAyHrDNiEV2xz428ajrMNQjNIqB56dmcI6DBJAkaH1d9memlwdPRssmZGMpb8ZAECZg5WvbT/ZsGRZKr33UlNmd9JEYTkYnhQNi0nP/ItqraptWC5XShOX2xXM9W2EFhuux9TUzhjfrxPrUEiA3Dk6EWoV1+ELdphO3dCDPDnFgtVzhsCk0AnHniXLUum9lyIx24aSGh+pVRyWzEhmHQae2XQMo1/Ygb9vP4m1u6W71Jkoh2dYwTNOfvfVPdkGRAIiTBeC7tEG7D19AcXl1R16bqXDhcx8K/aevgCXm8fE5HjoQ5S3PQaP+iXLK7edQGkF3VS2hiYKy4TnDmTJ54cBsJt8WmxzKGZyGpGHJTOSoVZxcLl5uN08IkM1LdbnkSohJ00rVaWjDov/cwgAfKpH9N7uAry3uwDRRg1uH5mAYpv0ezI4Dj7V8Vn1TX1BTA5UVPVKjW+AxEA9NX6anGLB7BHdWYcR9ELokyyaEUlRuK5fHLbkFmHMip247d3/ySqhAYCbhsh7/yyxlflRj8ha5cTfd5wSMJrAeeDaXn5NbKaEprmnptXfAImFemr8tCW3CKu/O40Vw1lHEtxolal49uWXoc+TX7EOwy8ZmWdYhyArwXKx/sfOU4g0aMBD+r0uKq5+FaLUib1XHd3f+sHXFQGEELacClrVJzYh9i+TMs+Sdan/nXJIaABg70/i7tVHSY0faAkfISTYCLF/mRxUOlwI06mR1s3EOhSZE3eNMCU1fqAlfIQQolyVDhdyfi5nHYasjeoZI+rxKKnxg1QK8BHiqzCdGqldwlmHQQi5wpVza0WcaysYo1aNkT3ETWpoorAfPAX4yio7VsNBbCEqDnVyGYAlovCcH0f1jMG2vBKmsRBCmvvHLYNxvqIGhVY7eJ7HB/vkN7ldy2BZKiU1fvAU4Fv04QHWobSJEhppMIWGwFZdJ/rEcoNWDfsVm3jqNCr0i4+ghIYQiQnVqPCHUQl47qtjsp+z6dkiQcwhKBp+8tPkFAtW3pLGOgwiAxwnbv9x5KWy9FcmNABQ43Qj5+eLosZDCGlfjdONNbvyZZ/QeIg995SSGgFM6B8HAHjvjmFYeG0vxtEok0kv/07Fi3YnFk3oA6NWnKWitU5prlKxmPR4Y/YQfHjPSExJiWMdDvFBW+l5lEL3eBKL0vrVxZ57SkmNgIYnRWPxxD6S2OhSaaRUVkSr9v3dTTQb8OacdAGjaZ3dKa2KhH8YlYB/3zUCL988CE63G243jz2nL7AOi3RAfUI6GPGmpheqaKMGd41OxAdzh0N5l2Xiiyv3iBOL/G9/JcYzz2b+umzJV6SUk0pHHaRSC6vWxSPaqEVZVW2H39+dx84D4KBRcXAG2VynGKMOf/nkkGK61YPRkhnJmJxiwfUpFmTmW1FSUYPY8PoL17a8Yjy4Pgdl9jrWYRIJ4HF5jzgxUVIjoA/2FqCgzIFuUQYsvK4nPth7RnZ74hDvjEiKwle55zv8vC8PFQUgGumLNGjw2vaTlOTLlD5EhdkjusMUqoXLzUOt4ppM/tySW4T567Lp/SUNIg0aTEyOF/24lNQI4NWtx9EPwIqvT8DhooGnYNCzUzgWjY/Aaztod3Rv0QVPvmrq3A27bsdH6HDr8O5INBsRG65HekIUbRdDmrnIYOUTQEmN35ZvzsO/9hTiRdrQMqiEqIB/7SlgHYbkRRo0uPOqRKzcTsmfUhTbHE3ez2ijBtYq+fZIRxk0KLPLN34pY1F1nyYK+6G2zo23v89nHQYRWYgKeG3HKRpa9MLzNwxEotnIOgwSQHJOaDgAQxOjWIehWCyq7lNS44cP9hbIZqdUIpw6aS0qkiwOwDOb8mAO0wXsGKEajlYaEp9EhobgH7cOxvZjVIBSaKxWPgEyTGreeOMNJCUlQa/XIz09Hd9//z2zWAqtdmbHvlKYVJYGyVSnMC3rEBSHB+pXOvH1E00DodrJ01wO4hOVSoWMfYXg6QMkOFYrnwCZJTXr16/HokWL8MQTT+DgwYO4+uqrMWXKFJw5w2ZPjIRoA5PjtmTu6CTWIciS547i1d+nsQ5FsbYfPw+1rM40JBhYq2qxN9/KOgzFOnimjMlxOzxRePv27ZgwYUKL/7ZmzRrcd999fgfVmldffRV33XUX7r77bgDAa6+9hq+//hqrV6/G8uXLmz3e4XDA4XA0/Gyz2QAATqcTTqf/48CzhnbBy1/nQcPVp/o6FbuU/4vsM0jvFo7cczZmMQSap32FamdPHaFbh3ZGaUU1okNVqGphS4FgJGRbZ+yrn3dGnYnNCf2ZZs2oVUvyO6S0dpaqxu38r90/IbVzBCYNEKZquLfXbI7nO9b5ptPpsHDhQixfvhxabX2X/a+//oq5c+di9+7dsFoDk/nW1tbCYDDg448/xm9/+9uG3z/44IPIycnBd9991+w5S5cuxbJly5r9PiMjAwaDdHpZCCGEENI6u92O2bNno7y8HBEREa0+rsM9Nbt27cLtt9+O7du3IyMjAwUFBZg7dy6Sk5Nx6NAhv4JuS2lpKVwuF+LimmZ9cXFxKC4ubvE5jz32GB566KGGn202G7p164ZJkya12SgdtfjD/ZhoKsFT+1VwuGnaYqDoVDyeGeoWpJ0n9o/F9mMlNB+jFUK2NWkdtbM4qJ2bWjCuJ9749rTg57+W2vm9O4YJMmHYM9LSng4nNSNGjMDBgwcxb948pKenw+1249lnn8XDDz8syi7EVx6D5/lWj6vT6aDTNV95odFooNEIs+may83jSFEVJpoAh5uj4nsiEKKd9+SXo4beq3bRZ1oc1M6XGbTqFneWFwK1c/0cwoysswE9/zVu51J7nSDXW29fw6fpeydOnEBWVha6du2KkJAQHD9+HHZ7YFcCmc1mqNXqZr0yJSUlzXpvxJSZb0WxjfaykZP6YmG1rMMghFzBoFVhSor4pfWDyeieMSi2Odp/oEAkv0v3Cy+8gFGjRmHixInIzc1FVlYWDh48iNTUVOzduzcQMQIAtFot0tPTsW3btia/37ZtG6666qqAHbc9LComEv+kdjGxDoGIJLjvyeXHXuvGp9lnIUKnf9Ay6MTbSIBFrZoOJzV///vf8cUXX+Cf//wn9Ho9BgwYgMzMTNx4440YN25cAEK87KGHHsI777yD9957D8eOHcPixYtx5swZzJs3L6DHbUsgs9DI0BCM7W0O2OsHq29PlrIOgYjkget6sQ6B+IBqxwSOWKVIOMhkl+4jR47AbG56odVoNHjppZcwffp0wQJryS233IILFy7g6aefRlFREVJSUrB582YkJCQE9LhtGZ4UjfgIPYAqwV/7YnUddv1IF2BCfMEB+PjAL4iP0OG8zUGTwmVIxYGqtgsoLlyL20cl4p0f8lFcXhOw70R8hB6PTRuAySmWAB2hdR3uqbkyoWnsmmuu8SsYb9x///0oKCiAw+HAgQMHMHbs2IAfsy1qFYdHp/RjGgORNg71m+YRcXkqGt86vDsAGoqSIzdfPweECKPS4cLO4+exZEYygMB9J/56fT8mCQ0gs4rCUjW2dyfWIRAJ4wEsv3EgFk/oI/qxdQHankBOEs1GrJ4zBPEm8TfXI/7bffoC6xAUo6rWhXnrsgEA945NCtjcpYc+zsHmw0WBefF20BlPAOuz2GzTQOQhMrS+lybRLH7BR0eAd9/0bDMxbaB0V6zEhusxOcWCHx65DgvG9Qz48bS0JwSRuMc+O4I1u/IDOrS3ICMbmw+fC9wBWkHfPgGcKatmHYIkTElht7Reyi5WOzF/XTYKSqWzAaoQPDd5j0/tj69yWy6AyZqKA9ITogAA2/KKsXZvQcCPWeuibdyJtJXZ/d8mqD08gPszDmJLrrg9NpTUCKB7VCjrEJiLj9BhzohE1mFIFg/gjW9PsQ7DZ0at+tKE+MviTXqsnjMExeU1Pt/xGbWB3RDKzQMHCsuwJbcI89Zlo9IhvX2JpI4DMD2VzfwIIn/LNubBJeJsb/EWrCvYLcO6Y/vWPNZhMHXr8ARY7VTQri2BHgoKpHuu7oEHxvdGZr4VJRU1iA2vrz+xLa8YK7ed9Pl1xdj8cGteMbZItCdJDhZN6IMHJ/SGxZSHd37Ip+XWpEOKymuQmW/FKJEmfFNSIwAtTcbEyu0nIWQ5As8O2p7/JWzVXbrTanxi2pJbhPnrsiX//ry/u4B1CExMHhCPffkXcNHPoYbu0aFYmJGN/zKa+EnY+N2QLvgk+6wgryVmkVq6Ggto7lUJQb1sVMgextdnD8abIqxYiTFqsfL3g7Dg2sBPIJWzVd+cwpgVOxvGx11uHss25kk+oQlm3//4q98JDQD8+T+HKKFRGKO29Uu/Z/J/eKhwZSjE3CqBemoElNotCnERJbQXlB8iQzV44aaBDTUO3G7gyS9z/d6r6coeH0/y+dxvUwAAH2bSCrb2FJfXYP66bKyeMwSmUC2KyulzLmVCDe3Jd9CUtEQbokJVbevvKg9g8oA4fHLgF7+PxaF+7p2YWyVQT42AFq/PoYTGT/+8dXBDQrMltwgLMrL9Tmimp1qa9fh4JrkCwPx12bBWBX41gNx5ksJlG/NQXE4r/giRo1ov5va9v6cQFTV1fh+Lh/hbJVBPjQA8M7upK95/f/ooGzcO7orr+sVh6QZhhjf2nC7F7kfGI+fniygur4a1qhbRYTqE6zX4839y6H3rAE+V3h9O0fYdhJC2RRk0mJgsbg0rSmoEcKCwjHUIilFmr8O7uwvwroCTO61VToxesRM3p3fBhkNFNGwigE8FmkBICFGuMrtT1JVPAA0/CaK00sE6BNIOa1Ut1uzKD3hCYzHpcd/YJFioJD8hhIi68gmgnhpBmMN0oM744KVVq7D8tynoHGXA8KRoqFUc/jq5PzLzrdieV4zPc87SnB0vhYZwqHMDTtqamRBFEHPlE0BJjSDSE6Lw9THaBThY3T6yO24a2q3J79QqDqN6xmBUzxg8Pi0Z+05fwN6fSnHyfCW25p1nFKn01dTxNMeJBJWUzhHIPWdjHUZARIZqRF35BFBSIwgxZ3YT6ZmQHA+Xm29WbdfzudiWV4xlG/MkMZdH6sUMpRwbIUIL1agxuneMYpOaCf1jRb8+UlIjoDuvSsDq79nWO4k0aKAPUUtiaXl8hA41dW5BCoBJVYxRi9JKB8as2NkkaYk2anFDWmeYQjVYuf1HhhFeNqhrBA79osyTJyFyVO10Yd0+5dbIGt3LLPoxKakR0McH2K8IeeHGgZiYHI9Xt53A69+cFv34Kg546abUhvklL245hjW78kWPQywXqmrxwIcHm/3eWlWL9yRWnp8SGkKkp0rBm6zGm8Tf7JlWPwng1a3HAQAVDv+LFfljakocTKFaAEC0QcskBjcPdI4yNCzh23CIyqt7K9IgXFlyQghhyahViz6fBqCeGr8t35yHf+0pxIvDWUcCbM49j82552Ex6TF5QByzODxL+DLzrZKYRyJ1V/c2Y1yfTrhY7cQ/d55iHQ4hQWnR+N4YlhiNLUeL8cG+QtbhyF5VrQsuN09zauSkts6Nt7/Ph0Zi/V1F5TV4fw+7L6VnCZ/Y9Qnk6vsfS/H9j1QUgBCW/rW3AL06GfFFjv97HvlK6hP5O+qDvQW46+oeoh5TYpdjeflgb4GgO1MLTexFWZ7dXT1djmajzufXiaKhGEKIiC7anVj4UQ4qatjNcfFcTsb364Roo/zPgbt+/FX0Y1JS44dCq511CG0SM+Hy5E9NNi/zManiAQxNjBIiLEIIkRUOQF5RBZ6eMYB1KH47eOZiw96IYqGkxg8J0QbWIbTrD6O6i1IU0LPrtWeHbcC/7SO25ZUIERYhhMiKZ9PYRz8/zDoUv9lq6pCZbxX1mJTU+OH2UYmiD/F01GfZ5wI6RnvX6ER8eM9IfPfwtTCFavFlzlnsPX0BLjePgtKqAB6ZEEKUq9LhZh2CIGjvJxnRhqgwvn8sdp2Qbtn7ygAtM48M1eCFmwZicooFW3KLcM1L3zRZ6RQfoUO1U7n1FwghhLSP9n6SkS25RdieVwKtmnUk4nv9tiEY2SMGf99+ssWKucU22rmcELkL06lRqeDicCRwONRPS6C9n2TC5eaxbGOeopbfeUsXosL/7S3AwoxslCl4CwQlClEBdcro1SYiuGlIV3yUdQaOumA80xFftbhwRCQ0p8ZHwVxYzlHnxtdHz1NCI0OU0JCOWLu3EJOSO1bIc2pKHH6b1jlAERExxBi1+Oetg/HhPSMxd3Rih58fF9F84YhYqKfGR1RYjhASDLIKyjo0DLU5V7pzDAPJqFWjqlb+Q3VPTO2PuWOSAAD7froAgzYEwxKjkFVQ5vVrPDszBVf3iw9UiG2ipMZHYk9+IoTIm1wvesU2B4YnRiGzAxc1pYo0aLBgXE/8XFaNblEG9IsPh9VeC3OYDp8d+AWfHmS/qbG/yqtrsS2vGI9+dgQXfeyNt9prBY7Ke5TU+Cg9IQoqTtwCd4QAAMcBPH3uZEcbwuHNOcNx9//th0Nm44CRjDbIlZqLdiee23y84ef4CD1mplnwZc45xSyO2H3qAlZ9c9qv1zCH+VZNXgiymFNTUFCAu+66C0lJSQgNDUXPnj2xZMkS1NayywYPFJZRQkNEF2XQ4MiS6xGup/sRuSmz1+F4cYXXCY1JQu/xsETxd1uWg2JbDdbsyldMQgMAB3++6PdrpCewqwgvi6Tm+PHjcLvdWLNmDY4ePYqVK1fizTffxOOPP84sJppTQ1goszuxPusMKmoCU3+IBNZ/D3s3PDE8MQpvzEkPcDTesZj0uOOqRETSfmzES2KveGpMOrcCbZg8eTImT57c8HOPHj1w4sQJrF69Gi+//HKrz3M4HHA4LmfQNpsNAOB0OuF0+rdyx2wIgU5d31WjUzX9XxIY1M719p463/DZCxRq68Ao+LWiyXvXWjuPTDQhvVsEYkI5VNayHaq6ITUWHO/C8huSsWh9DtNYfEWfZ3F42tff62tLvH1NjuflOTr/5JNPYsuWLdi/f3+rj1m6dCmWLVvW7PcZGRkwGKS/bxMhhBBCALvdjtmzZ6O8vBwRERGtPk6WSc3p06cxZMgQvPLKK7j77rtbfVxLPTXdunVDaWlpm43ire3HzmPx+hxoVTyeGerGU/tVcLglvhmUjOmonTtMzQEuH77h1NbikEs7v/OHofjThwdhl+nWJ3JpZ7nztHN0n6EY2StW0Ne22Wwwm83tJjVMh59a60lpLCsrC0OHDm34+dy5c5g8eTJuvvnmNhMaANDpdNDpms/C1mg00Gj8Hx+ektoVnEqNpV8cBlADh5uDw0VfmECjdhYPtbU4pN7O/876BWU1blyuFStPUm9npbBWuwS5xjbm7esxTWoWLlyIWbNmtfmYxMTEhv9/7tw5XHvttRg1ahTeeuutAEfnnckpFlQ7nMAvB1mHQgghAbHjWAnrEIiMRIWym1TONKkxm80wm81ePfbs2bO49tprkZ6ejvfffx8qlXQWbsUYNPCmLFWYLiRgu2YTQkigOH0ZwyRB62RJJcb2Z3Ns6WQGbTh37hzGjRuHbt264eWXX8avv/6K4uJiFBcXsw4NW3KL8PAnOV49dvXsIfhg7nAYdUG4rTchhJCg8MvFambHlsWS7q1bt+LUqVM4deoUunbt2uTfWM5z3pJbhHnrsr1eXmutrsXMtC546aZU3J9Bw1WEEEKUp3tUKLNjy6Kn5o9//CN4nm/xP1Zcbh6PfnakQ8/x7BcVZWRXQpoQQggJpFuGdWd2bFn01EjRvtMXvN7siwMQb9JjeFJ9qfFteeyHzeROr1Hhxd8ORCdTKLYeLcL7ewpZh0QIIQSANoRdf4ksemqkaO9PpR16/JIZyVCrOLjcPL7IORegqIJHjdONpZuOYefx85TQEEKIhGw9ep7ZsSmp8Zl3tQ60ag5zRyfCFKqFy80jM98KaxW7jTiVxFpVi7e/z2cdBiGEkEYe+jgHyzfnMTk2JTU+GtUzxqvH1bp4vLu7ALe+vQ9jVuzEdhp6YiraSJvyEUJIoK3ZlY/Nh8UflaCkxkcje8R0eNfa4vIavLu7IDABkTYZtGr8+64ReGr6AL9eh2qREkKUJq2bKSCv++SXuXC5xV3QQ0mNj9QqDi/cOLBDz/G8tZwAV0Y1vXMdYq914XixDbHh/q0806qFT2v6xYUL/pqEEOKtE8WVAXlda5UTmfnWgLx2a+jS6IfJKRbcNTqxw88TYiU6RwU+O+yZTcfw5//kINKg8bnHxdGByqrX9u3k1eOOn6/wMRpCAifGh6Ha+AgdpqdaAhANCaTqAG5UWlJRE7DXbgklNX6akBzP5Lh1lNT45LzNgYt2J8Rovm9O/CrCUQgJjAtV3pWsAIAF43pi8YQ+ADj893BR4IIismMOE7cuGyU1fiqrckBFEy1kw5PMBGAUqQEHYYYYWQjTUekq0nEhag6vbT+JYpu4d+VEOEZtgNIBkW/AKanxw5bcIizIOAiR50ERAQRqfz4O9d9hhsWuffLy71KxeELvgCZ7RLnW7ikU+9pFBBao96+0yhGgV24Z3Zb5yOXmsWxjHpMvssWkB8/zOG9z0IlEYjhOfgkNADz1ZS6qnW7WYRCZuljt/VAVkSZ7bWC+/2aRtwWinhofZeZbUVTOpqt1dM8YPDm1fl93urGWBs2lMUgxeu2iDBqY9MLu9E4JDfEVnYNIm0T+gFBPjY/EntHd2CfZZ/HZwbOYkByL3LM2ZskVucwp4hhkmZd7jhEiBhl2TBIRlVaKO/xEPTU+8uy4zYqbB7bllWDqwHg8MbU/DJqO3bnrGG44RogcUA8EIf4T+1pJPTU+Sk+IgooTZ7ihLe/+UNChx4fp1Lh7TBJe23EqMAERohDaEBUcdTQsR4ivLCY9hidFi3pMul330YHCMuYJjS8qHS5U1NSxDoMQyaOEhhD/TE+1QC1yzRNKanzEck6Nv/5z4GfWIRBCCFG4T7N/ob2f5IL1nBp/VNQEriS20sh97tHdoxNpZ3JCiCA6ej6kvZ9kZHhSNCwmPU0mVCgOwD1XJ2KARd6bTb67pwDWDpS7J4Qoi1bAGzNfhmRp7yeZUKs4LJmRzDoMEiA8gLe/L0D2z+WsQ/GL0IUANWoOJj2tLyBE6iINGrwxezAMWmFrWnWU2KMalNT4YXKKBfeOTaLeGhI0nC4ed1yViA/vGen1LuSEEHH0NBsxNCEKj03pi8zHJyDKqMNFhnWtogwa0Vc/0S2XH7bkFmHNrnzo2CbChIjqnztPocJRG9S7kHv2+CLBQa9RQReiQnm1NFeOerZnOV1aBZRWYX9hGf6x8xSGJUQxjavM7sS2vGJMTrGIdkzqqfGRZ+8nQoIND+D93WdYhyE6vUbV0JVPCU1wuX1kArKfmoTFE/pIcvi1pWHmKocL354sFT+YRjgAyzbmiboCSnrvjkyw3PuJECKuEUlR+F9+GeswCCNvf5+PMF0IFl7XGwuv64XMfCuKbTWwVjrw3ckS7PrxAusQJYkHUFReg8x8K0b1jBHlmJTU+EjOdWoIIR1zoriSdQiEsZXbf8SHmT9j6W+Smwyn9LNEUFLTDjGvlzT85CM516khhHTMxWpaFk+AYlsN5q3LxubDRQDq51X++T85bIOSATGvl9RT46PhSdGINmphraplHQohhBARLfwwG3f9nIh3vi+g+VVt4ADEi7z/E/XU+Eit4vDszBTWYRBCCBGZm6+vY0UJTdt4AEtmJIu6/xMlNX6YmmrBfWOTWIdBCCGEEFBS47fHpiZjzvDurMMgRBCm0BAqJkkIEYzYS7opqRHAuH6xrEMgRBAcx1GXOiFBKNqowfh+nQTfANezpFsssktqHA4H0tLSwHEccnJyWIdTj64CRCFYllQnhLBTVuXEzuO/4tmZA/HhPSNx51UJgr12cXm1YK/VHtklNX/961/RuXNn1mE0YbUHZgVUmE52bw8hpBU0rEekzHNv/symPKQnRKFrlEGw1xZzlbCsrppfffUVtm7dipdffpl1KE2Yw3QBed1Kx+Vt3sP1IUjpHBGQ4wQrusgQMXCX/nt99mAsntAbplB5VtLQqekbo3SeCsAjl+/AM5uOCfa60QG6RrZENt+u8+fP45577sEXX3wBg8G7DNLhcMDhcDT8bLPZAABOpxNOp3Dd7IO6hGHHMUCnCtw4VK3TiR/Pl8tm80wOwLxremLtngLYnS5BXtPTvkK0c5hWDZ4HqgSKTWmEbOtgF6YNwdMzB8CkVyMxWo9VswYBPPDdyV/xn6wCAHJpZ142558rsfw8q7j6JeByUlXj8Om9bq2dY40hfl9zvX0+x/MtbYUlLTzPY+rUqRg9ejSefPJJFBQUICkpCQcPHkRaWlqrz1u6dCmWLVvW7PcZGRleJ0aEEEIIYctut2P27NkoLy9HRETroxZMk5rWko7GsrKysGfPHqxfvx67du2CWq32OqlpqaemW7duKC0tbbNROmL7sfN49OODeHqoG0/tV8Hhpi7aQNGpeDxD7SwKauvA8rToqzcPhLMwh9o5wFh9njkocx2JpwVX3pIGAFi8PgcAoG3UzrWX2nnlLWmY0D/O72PabDaYzeZ2kxqmw08LFy7ErFmz2nxMYmIinn32Wezbtw86XdNxuaFDh+K2227D2rVrW3yuTqdr9hwA0Gg00Gj8X7bmcvN4etMJ1Fx68xxuDg4XnZgCjdpZPNTWgbXi6x/xUD9qZ7FIvZ0jDRqU252ST4QsJj2WzLi8sSenUmPZxjxYK+tXOTncHKLDQps8xl/eXrOZJjVmsxlms7ndx/3jH//As88+2/DzuXPncP3112P9+vUYMWJEIENsU2a+FUXlNbIdZybBRR+iQk2du/0HEtEU2+p3L46P0KOwzNHOo4mcDO5mwsGfyzvw+EjEm3T4Kve8pHt45ozojojQEOSetSFcr8HIHjGYnGLBxOR47DtVgtJj+/DeHcMwslesqNsjeMhionD37k0r9oaFhQEAevbsia5du7IICYC426kT4q/2EpownRqVDpo43VFCXIAGdTWhsKxEiHAU63dDuuCr3GJU1crjM9qRhKb+8ReBny/9INGshgOw7n9nGn5e9c0pRBo0eOHGgZicYsHwpGhsPla/4TOLhAaQ2ZJuqRFzO3VCAiXKoMHiCX0ESWhMocJWI5W6xRP64PXZQ/wuD/B13nlB4lGqMF0IPs0+K5uExl+ema5SGyhrKc+6aHdi3rpsbD5cJHo8LZFlUpOYmAie59ucJCyG4UnRsJj0kvvgEdIRZXYnDv1SJshrTU+NF+R1pE7FAW/MHowHJ/TG1FQLXp89BHqNLE+nslDpqJNix0XAyelvXvhhNrYeLWYdhjyTGqlQqzgsmZHMOgwSJPQhgfu67jz+qyCv80uZMoZkjZcmyrV2w7Lq1iG4PsWCvacv4JmNR/HXTw+hxknzlaSOirQHjpsHHvr4EOsw5DGnRsomp1iw8pY01OYfaPJ7vUZFJzkiKDlM8j14RpgeH9aevWEgQjUqLNuYh6Lyy4lajFGLmWmdcfJ8BZ78MlfU8u/Ef7Vy6vqQMZebB6uBaMpbBXBt3/pduif2j224m6aEhgQjW00d6xAEER+hx+QUC757+Fo8Na0/xvUxI1yvxoWqWry3uwCv7fiREhqBTE+1wGISZ36i9EvNKsOBQnY3N9RT46ctuUVYvukoHuoHbDtWIukaCISQ9llMegxPisaW3KJmPTVEeJ3CtHj55vqtI9buLcBWmjQte6WV7MoTUFLjhy25RZi/LhtaNaX/pF4IB9TRx0G2OABLZiRjW14x5q/LltVETbl6f08h3t9TCItJj7RukazDacBx1LPjq8ILdmbHpuEnH7ncPJZtzKOTngIZtWrEhfu2qywlNPIVZdBg9ZwhuK5fHB7//Ah9t0VWXF6Dr3LZr57xoITGd59m/wIXo108KanxkaeaMFGeqloX5o5JYh2GpEQZlF9/ZtWtQwAAI5fvgLXKvx2FScd5LoFckI3gK/HvLbbVIDPfyuTYNPzkI6omrGzb8qRzx8gaxwHuK+66VFz9Ek4l2XH8PN7fXUA9NIwFWw+JUv9eVtdI6qnxEVUTVrb9hRdZhyAZPA+UX7GqSWkJDQB8kXOOEhpCBMLqGklJjY881YQJIfJn1KlpiTYhAomPqF9ByAIlNT6iasKEKEcVbeRJiGBuGsJuo2lKavwwOcWCu0Ynsg5DciL0aiwa3wuRQba5ISGN/SZI9sEi5Eqvf3sKY1bsxJZc8Te5pKTGT2F6mmt9JaeLx2s7TuFiNa0gkQJ9iAKXV8hA9xgj6xCIjMl9VVRReQ3mr8sWPbGhpMYPW3KL8Pcdp1iHEVAqDrh7dCLCdN4nb9W0RYSk1Ei0eE4gN+iUglE9zIiPoHl3pOOijRrMFXkUIFyvDsjrLtuYJ2rNGmWfVQLI5eaxdMNR1mEEHM8D7+wuQKVDGXv6EOmQwwadvuBQv9XCyJ4xuHV4d9bhEBm6aUgXvPdDgajHNGjUiDRoWt2Z3hc86ntsxKxZQ2MnPsrMt6LYxm5/C7FI8x6fEOniATw1rT8y8624UKX8cwQR3rs/iF8vqaSiNmDHFLNmDSU1Piour2YdApGQZEsY8ooqWYdBJGB6qgXPbDpGFceJz1jUgQrkIcWsWUNJjY9KK6mmBbns9K/sNnAj0vLfw+Kv+CBEqjy73ouF5tT46GI1JTWshekCM7HNFw6Fzg8hxFehGrq8kPpd79Uq8ZZy0afORzJfbSd7FpMeL940CBzovSBEiqqdbugUvsJN6iJD2d34cQDemD0Ek1Msoh6XPnE+GtXDzDqEoDY91YIooxZ3jk5ElFHLOhxCBDUlJY51CIKgHszAaa8nbHqqBXoNuwKo/5w1GFNTxU1oAEpqfDayZwwiDVQxl5W3v8/HrW/vw3u7C2CtqkWUQUPd3UQxdCG+32HfMKizgJEQqap2urF4Qp9mexBaTHrcNzYJmw4XodjGbrJ6VBibm02aKOwjtYrDCzcOxLx12axDIQAu2p20/NwLd4xKwNq9hazDIO2w1/peF0rulWiJ95wuN757+FocKCxDSUUNYsP1SE+IwjUvfcP8fLj39AWM7iX+iAbd2vphcooFb84ZAhNtlcAc6y+wXGw4dI51CMQLwxJjmt2Be6tzZCiijdSLHAxWfXMK17z0DcqrazEzrQuGJ0Xjg70FEiknwOasTEmNnyYmx0Ovkc4qHELaUman/bhY6GjnyZyRCXhqWrJPx7qqpxm/Tevi03OJ/BSV12Deumws35yHMSt24plNx1iHBIDdvFNKavyUmW/F+QqqGkoIaV1H71mve+VbbPZhI0C1CnC7ecQF8Z5T8RE63Dc2CfEROtahiGrNrnyJ9NDUb7kwsmcMk2PTuImftuUVsw6BkKASZQhBmV3Ze5EVldf4VMTP5QZufz8zABHJx11jeqCovBq1LhqUZoXlUn7qqfGDy83jixyao0CImEb1YHMHGMw8w2dyqDvz3OZjDasiCRtl1U5RN7FsTPqfUAnLzLfSF4cQkfESKLdoMelx1+hE1mGIJt6kx/RUC9WdIV4TcxPLxiip8QOrN42QYPZVLtsh3ykp8fjhketwXX9lFMhry8Jre+LDe0biu4evxfc/lrIORzJuTLNIILWWtoLSKibHpaTGD2LuPEoIkYavcovr59IFwZSNs2XVKC6vxuOfHUF5Na2c4wBEGjT4PKcoGN5+v3yYeQYuBtuNyyqp2bRpE0aMGIHQ0FCYzWbceOONTOMZnhQNi0lPGTshQWbZxjyUVCp/1ePnOeew+D+H8En2L6xDkQT+iv8lrSu2OZjMq5FNUvPpp5/i9ttvx5133olDhw5h9+7dmD17NtOY1CoOS2Yk0wecBBWNmtL4ovIaWIMgqZGKq3tLY6+9MF0ILlKtJ6+98/1p0Y8piyXddXV1ePDBB/HSSy/hrrvuavh93759GUZFSHBy0lJZAEC0UQuLSY/i8hq6sQmwcX06SWJOT6VD2aUEvBWmC/GqLXYc/xWbD5/D1FTx9iOTRVKTnZ2Ns2fPQqVSYfDgwSguLkZaWhpefvllDBgwoNXnORwOOByX76ZsNhsAwOl0wun0P9t2uXks33QUOlX9Kc3zv1Kn4oCh3aORWchmyZ2v5NbOckZt3T6zIQR/m9YXi9fnAPBtSILauX0qDrBV1SBKx8Hu4+oramdhOeuciNSpUH3F+9FSOz+98Qiu62uGWuVfD6+312yO53nJv8sfffQRbr31VnTv3h2vvvoqEhMT8corr2Dr1q04efIkoqOjW3ze0qVLsWzZsma/z8jIgMFgCHTYhBBCCBGA3W7H7NmzUV5ejoiIiFYfxzSpaS3paCwrKwsnT57EbbfdhjVr1uDee+8FUN8L07VrVzz77LO47777WnxuSz013bp1Q2lpaZuN4q3NR4rw108PQ6fi8cxQN57ar4LDLcx8A32ICjUC14RYMK4n7hrTA+uzzmB/QRl2nCgR9PUDLRDtTFpGbd0xceF6dI7U4eDP5R16XrC0Mwe2k2uDpZ1Za62dX7wpFVMHWvx6bZvNBrPZ3G5Sw3T4aeHChZg1a1abj0lMTERFRQUAIDn58gZvOp0OPXr0wJkzZ1p9rk6ng07XfP8PjUYDjcb/XWxjTUY4XJffOIeba/JzR4XpQjAiKQrZZy5e2nhQ2C/fwV8qkPL0dlxOY+X55fa3nYn3qK29c+aiA2cuOuDrd4raWRzUzvUCnWRe2c6xJqPf11xvn880qTGbzTCb25/Vnp6eDp1OhxMnTmDMmDEA6sfXCgoKkJCQEOgwW+VZ0m2trO7wcy0mPX4/tBtcbjcADqN6xqDcXosFGQcD9mH75sSvAXplohQGrRr2WhfrMAghAaINUSFMFyJaNfxoowbDk1qeIhIIspgoHBERgXnz5mHJkiXo1q0bEhIS8NJLLwEAbr75ZmZxqVUcnpqWjMXrD3j9nMhQDV6/bQhG9oiBWsXB5eaRmW/FuTI7lv43j1ZREGY4AKZQDf54VQLeZbAUkxASeLV1bljrahGuV6OiJvA3MM/OTPF7knBHyCKpAYCXXnoJISEhuP3221FdXY0RI0Zg586diIqKYhpXlFHbocdfrHZCxXFQqzhsyS3Cso15ktkungQ3HvX1V2KMzYdsvcVxgPSXHhBCxEho7hubJOpybkBGxfc0Gg1efvllnD9/HjabDdu2bWtzObdYfNn/qaSiBltyizB/XTYlNERyosN0iI/wfguQCH0I5ozsjrG9zZTQENLI9IFxMGjUrMNgYtH43nhsanL7DxSYbJIaqfJl/yezUYdlG+U71ETT7JQtPkKPv17vfWFLW00d1u07g10Mi6NFGzW4a0wis+MT0pIDZ8qx5vZ0QV4rRMQhHCEkdTIyOa5shp+kKj0hCt5+1jgA8SY9wEGWPTS6EBXmXdMTC67thQOFZSipqIE5TIeH1h/E+QpxJp2RwIoxajE8KRr7TtWBff1W71mrnLiubxzSu0fhyS9zYa26XKjLYtJjaEIkNh5mu7s3CT5F5TVQcZwglafrGGwO6Q9zmO/D2P6gpMZPBwrL0JHP2pIZySiV6Z4xjjo3/r7jR/S3hGNySn3NgS25Rah00GoZpZiZ1hlqFSfLz+iCjGy8cNNAZD0xEZn5VpRU1CA2XN+w8uL7U9to3x4iutIqB5bMSMb8ddmsQxEXoxyMhp/8tC3Pu7u/yFANVs8ZgskpFp+GrKRk6YajcLn5hnlBVbQEWDEmJscDYHeX5Y+L1U7MX5eNbXnFGNUzBjPTumB4UjQy8614blMequlzShiIDddjcooFd1+dxDoUUe04fp7JcSmp8YPLzeOLnHNePfaftw5u6N3w1LeRq2KbA+/98BMe/fSIbOcFiSm9eySmpMSxDqNdFtPlXo30BLarCv2xbGNeQ9I9ZsVO3Pr2Pry3uwAOgSt0E9Iez3fK5ebxafZZ1uGI6succ3AxGDKjpMYPmflWrwsYqbimE29mDesWiJBE89zm47hYTV353jhw5iJiw6Xf85HSJaKhnoSYdSWE5FmWvmrnj7S6kDC3ZEb96p9/7c4XrdidVFyoqkVmvvibJtOcGj90ZDn3zuPnMbq3mWrTBKm1e1vfzkMqdhwrQW2dG9qQy/c6GhUHOU6Zen93AfUiEqbuGp0IABizYmfQnu99KXniL0pq/FBQWuX1Y9/dXYAQNYe3duXTyZZIkpsHPthbgLuu7oGXvz6OZABONw85LuKnXkTCWkSoBvPXZQf1+Z7F/FEafvKRy83jw8yO3X1TQkOkrtBqx3Ob8vCvvYWsQ/EJByDS4P9mtYT4w2LS48PMM0F7vufQdI6emCip8VFmvhXFto4tew3WDziRjypHHd7+Pp91GD7jAUzoF/hJ2SoOCNXI5/SpC+Fk2N8mX2X22g5fH5SER/18IhZz8+TzrZQYFmOFYlt75zAM6mpiHQZpgTpA54qdx0sC88Ii+iT7l4BfwN08UO2Uz2oqRx1PN1UiqpHRZ0NpKKnxUUGpPSCve0OauJt/tUYfokKVw4WfywLzdxL/uAJ0hSpTSHE6sS7g1PtBSHMcLpdWEBslNT7wZT5NezxjkDenC7/UOy5ci3/fPQIrfz8IUV7ON6ipc+P+jOwm5eYJIU1R7wchzXlKK9CSbpmon08j/PDTrGHdcd5Wg3C9WpBt4T13kctmpmB0LzMAIFSrxrxgK9dNCCFEdCymaVBPjQ+EfqOMWjVMBg1Wbj+Jhz4+JEhCAwBRRg1en325kjEATE6x4I3ZgxGmUwtyDBJ4qV0iZDUplQRemI7uR4n0sVjSTd8MHwj9RlXVugCB9qXRa1QNk9SsVU48+eVRHC+ugJuvrzcSouLwUdYZ2oRSRg6ftbEOoYmF1/bCsaJy7Dj+K+tQgtbto7pj9bc/sQ6DBDEVgLamQ8dH6Jgs6aakxgeevZv83UqeA8Bx6NAu3+25cta9taoW/9h5SrgDkKBXUFqFvKIK1mEEtQ/2FrAOgQS59tZ31dS5sS2vuMlIgRioT9sHahWHJTOS/U5oeAib0BAihv8eKQrasu9SUemgJcNE2i7anZi/LhtbcotEPS4lNT6amBzvV+XSSIMGcy/tDUIIIYQoDQ/xl3ZTUuOjzHwrLvpR06PM7oQplMq5E0KkbXC3SNYhEBkTe2k3JTU+EmIFVMb/ChEfoacCXoQQyTr480XWIRCZE3NpNyU1PhJiBdT5ilqM6RVDBbwIIYQolphLuymp8ZFnBZS/vSyfZJ8VJB5CCCHypwnUxm6MxBi1oi7tpqTGR54VUADt/0IIIUQYzkBt7MbIMzNTRN2tm5IaP0xOsWD1nCHNutYsJj1MeioBRAghpN74fp1Yh8CESuQsg5IaQTTNrN1uHnEm8ctDE0IIkZYYoxZvzB6Cu6/uyToU0bHYrZuSGj9syS3C/HXZOF/haPL78xUOnDxfySgqQgghUmDQqjE91YIooxZpQbg0nsVu3TRG4iOXm8eyjXm0cokQQkiL7LUurN1biLV7CxGuD95NhGlJtwxk5lupVDwhhBCvVNQE7ybCtKRbBsTMPJUihD5thBASVCwmPS3plgMxM09CiDQZtcE7pEBIezgAS2Yk05Lulpw8eRIzZ86E2WxGREQERo8ejW+++YZZPEIV3wsmdbSxMFGYqloXFo3vDY5OBIQ0EWXQYPWcIZicYhH1uLJJaqZNm4a6ujrs3LkTBw4cQFpaGqZPn47i4mIm8VDxPSJFfxjVHcMTo1iHEVSSOhnx+q2DWYdBiGQsGNcT+5+cKHpCA8gkqSktLcWpU6fw6KOPIjU1Fb1798YLL7wAu92Oo0ePMovLU3wv0qBlFoPSGLVqPDK5L+swmpBL0nrf2CQ8PXMghifFsA4lqMSG6zE1tTPenDMEFqpPRQRy/7ge+PusNDw1rT/rULx2w6DOAID543qJOuTUmCyWdMfExKB///74v//7PwwZMgQ6nQ5r1qxBXFwc0tPTW32ew+GAw3G5hozNZgMAOJ1OOJ1OQWIb39eM6om9gKIj0Knku8DboFEjTBeCkkpH+w8OoJd/l4LaOjd06uZt6WlfMdp5wbheSIgxwBymw0W7E3/+OEeyy/ejDVo8OS0ZkwbEwel0YkSiCW+30H4dIWZbS8UfRyXAqNPg9W9PefV4DkBchB6Du4bD6XRifF8zxvW+GgcKy1Ba6YA5TAdrZS3++tkhtFZ7TKh21oeoUCPT8V2OA67pZca3P5YG7Bie9n10Ui9EhxtQeKEKnxz4pVmNMSkZ3SMaw5Oi4XLzeHvXKZTZa/16vdtHJGDbsfMotjVf5BIZqkFtnRt2p38rtK7qEQWc/Vmw62tj3r4mx/O8LM5aZ8+excyZM5GdnQ2VSoW4uDhs2rQJaWlprT5n6dKlWLZsWbPfZ2RkwGAwBDBaQgghhAjFbrdj9uzZKC8vR0RERKuPY5rUtJZ0NJaVlYX09HTccMMNcDqdeOKJJxAaGop33nkHGzZsQFZWFiyWlsftWuqp6datG0pLS9tslI5y1NZix/bteGq/Cg63XAYrLosK1eDbh69t0l24/dh5vPDV8Raz+kCIj9Dj60VjoVZxcLl5XP/aLpy31TTpHdGpeDwz1O1XO6s4tHjXHBmqwW0jEnDv2B6tdpvW1rkx/tVvUWb3/i7E80pCfsk8PQSe9mrJ9mPnsWh9TquvMfeqBGzObfmuDfCurR+5vi/iIvR48esTon1OvBUfocdfr++LiFAN/vyfHJTX1LX62Eh9CL7763UNbbn92HksvtR2rb1v8RF6PDqlHyb0j/Mqnq1Hz+Mvn+Q0++z585n2PHrlLWmY0D8Or249jvf2FLb6+DBtCCprW28HjxsGdcaymSn45kRJi+3gOe4rNw/Ci1+faPY9bc/cqxLw0KR+TX7X2ne+IxaM64k3vj3dYrw6FY+nh7oxceJEaDSaFp/vcvN4a9dpvH7pNYSiVXHQhqi9avsr39PG2nt/23rN9s4XLenINcBzjE0LR2HH9u1ttrOvbDYbzGZzu0kN0+GnhQsXYtasWW0+JjExETt37sR///tflJWVNfwxb7zxBrZt24a1a9fi0UcfbfG5Op0OOp2u2e81Go3gDQ4AtW4ODhf7pKa1C3dLOABLb0iFXtd0XtCU1K6YlNIFmflWbM8rxru7C3yKhQNgMmhwsZ1E4LFpAxpi0Fz6ef66bADNLywONwe1OgT2Wu+7Sj3vyuuzByPKqENxeTWsVbWIDtMhPqK+jkJ7X3iNBlg6M7XVuFo75r1jk7BmV77XsXrzmo3bqyVTUruCU6mxdENek5OSxaTHkhnJmJxiwV+mpCAz34qSihrEhutRVuXAM5uONSkq6WjhM80BiDfpcceY+nHzyaldkZlvxba8Yry3uwAcWm6bxRP6oKfZgL9tPAprVeufB8/zI6/43Hjzub7zqgRMGmBp8n4+/dtBmL8uu9X3a9lvBzVpS0/bLduY16QtYoxazEzrjInJ8V59XhqbltYVnEqF+zMOtvjvLbXzla5s18bvJQA8Mm0gBnYz48kvc2GtujxUEWnQ4M6rkjB/XE9c89I3KC5vPXGINGjw/O8GQ63iWm2HxsdVh4R4/X2IMWrxzMwUTE1tfhPa3ne+LZ7P44Lx/dDHEtlivH+b1he1+QfaPPdrAPxpYv9WX+M3gyzYcKioye8jDZeGba44F+k1KlzbtxPmjEjEyJ71c9wy861NzjtnLlThw8wzKLY5mhyn8XvaWP37G3Pp/b38vYg0aDCmlxmbDhcBaDkBbe980ZLG14CSihoUlNrx2vaTbR5Dp710Dg/ANdbb15PF8NPGjRtxww03oLy8HGFhYQ2/79u3L+644w48/vjjXr2OzWaDyWRqN9PrKKfTic2bN0OblI6nN51o8qGPNmpw05Au+O/h4g5XIPb25G4KDcHE/nEY3cuMeFMoyqocWHDp5NnWm9vWF+hKW3KLmn3RW7t4Nf53AFg9ZwgA4NHPjjRLbqIMGiy/cWCLMVx5TJ2ax4vDXdAmpYNTqds8ARq06iYnmo78re1pqS0iDfVfuMZ/X+NjbsktwtINR5ucwBo/LqVLBHYcK2nyvnKX/o4qP/4Ol5tvkri0dzH2PH7H0XMYyP+ERzLVqGl0sW38nnrznrUUc+OYCkrtl07szR8/MTm+WdK1IONgq5+5+8Ym4bGpyS3+mzdxtdYW3radN1r7TP81U91i8sgDmDs6EROT45GeEIUDhWXtxtNW3J796oCWvzdvtvC+ttcOrbXtU9OSEWXUdqj9Wnut3wyy4K1LNwYtXVAbfx5bitftqsPmzZsxdepUry6Orf3NLf0eAPadvoC9P5UC4DCqZwxG9ojx6rPiy2estef48hnvqPaO4bkWetvOHeHt9VsWSU1paSn69euHa665Bn/7298QGhqKt99+G3//+9+RlZWFQYMGefU6gU5qpk6dCpU6pN0vQ0sn8rYuilee3L05ubX24Zs1rDsSzQafTtJXfpkax1FQ2v5dh8vNd/jL3/iYZkMISo/ta/jCtPUFu7LNhLggtdUWnpNbW8f0PKe1XqLaOjc+2FuAQqsdCdEG3D4qEWoVF9C/ozWez/Srx40oLPPuTvLKv7OjiZQ3j2/pPY82avDszBRMTe3c5t8UiCTFF43jiNarYT3xPxzheuCzQ8VNeliEviB5BOLiJ2TbBuKiHciLrZSI8Rlv6xiU1HTA/v378cQTT2D//v1wOp0YMGAA/va3v2HKlClev4YYSY23b6QvF8WOEvskHujjtdTOUrlQKY2nra+fPAUHf6mQVPsq6T335oYoEOTahr7GHSxJDWtSSGpksaQbAIYOHYqvv/6adRiCUavqeyqu1NLvhD5GoIh9PFbHDCZSbF8pxiQEMf8uubahXOMm4pFF8T1CCCGEkPZQUkMIIYQQRaCkhhBCCCGKQEkNIYQQQhSBkhpCCCGEKAIlNYQQQghRBEpqCCGEEKIIlNQQQgghRBEoqSGEEEKIIsimorAQPDtC2Gw2QV/X6XTCbrfDZrNRCe4AonYWD7W1OKidxUHtLI5AtrPnut3ezk5BldRUVFQAALp168Y4EkIIIYR0VEVFBUwmU6v/LpsNLYXgdrtx7tw5hIeHg+OE27zNZrOhW7du+PnnnwXdKJM0Re0sHmprcVA7i4PaWRyBbGee51FRUYHOnTtDpWp95kxQ9dSoVCp07do1YK8fERFBXxgRUDuLh9paHNTO4qB2Fkeg2rmtHhoPmihMCCGEEEWgpIYQQgghikBJjQB0Oh2WLFkCnU7HOhRFo3YWD7W1OKidxUHtLA4ptHNQTRQmhBBCiHJRTw0hhBBCFIGSGkIIIYQoAiU1hBBCCFEESmoIIYQQogiU1AjgjTfeQFJSEvR6PdLT0/H999+zDklRli9fjmHDhiE8PByxsbG44YYbcOLECdZhKd7y5cvBcRwWLVrEOhTFOXv2LObMmYOYmBgYDAakpaXhwIEDrMNSnLq6Ojz55JNISkpCaGgoevTogaeffhput5t1aLK2a9cuzJgxA507dwbHcfjiiy+a/DvP81i6dCk6d+6M0NBQjBs3DkePHhUlNkpq/LR+/XosWrQITzzxBA4ePIirr74aU6ZMwZkzZ1iHphjfffcdFixYgH379mHbtm2oq6vDpEmTUFVVxTo0xcrKysJbb72F1NRU1qEoTllZGUaPHg2NRoOvvvoKeXl5eOWVVxAZGck6NMVZsWIF3nzzTaxatQrHjh3Diy++iJdeegn//Oc/WYcma1VVVRg0aBBWrVrV4r+/+OKLePXVV7Fq1SpkZWUhPj4eEydObNh/MaB44pfhw4fz8+bNa/K7fv368Y8++iijiJSvpKSEB8B/9913rENRpIqKCr537978tm3b+GuuuYZ/8MEHWYekKI888gg/ZswY1mEEhWnTpvFz585t8rsbb7yRnzNnDqOIlAcA//nnnzf87Ha7+fj4eP6FF15o+F1NTQ1vMpn4N998M+DxUE+NH2pra3HgwAFMmjSpye8nTZqEPXv2MIpK+crLywEA0dHRjCNRpgULFmDatGmYMGEC61AUacOGDRg6dChuvvlmxMbGYvDgwXj77bdZh6VIY8aMwY4dO3Dy5EkAwKFDh/DDDz9g6tSpjCNTrvz8fBQXFze5Lup0OlxzzTWiXBeDakNLoZWWlsLlciEuLq7J7+Pi4lBcXMwoKmXjeR4PPfQQxowZg5SUFNbhKM5HH32E7OxsZGVlsQ5FsX766SesXr0aDz30EB5//HFkZmbiT3/6E3Q6Hf7whz+wDk9RHnnkEZSXl6Nfv35Qq9VwuVx47rnncOutt7IOTbE8176WrouFhYUBPz4lNQLgOK7JzzzPN/sdEcbChQtx+PBh/PDDD6xDUZyff/4ZDz74ILZu3Qq9Xs86HMVyu90YOnQonn/+eQDA4MGDcfToUaxevZqSGoGtX78e69atQ0ZGBgYMGICcnBwsWrQInTt3xh133ME6PEVjdV2kpMYPZrMZarW6Wa9MSUlJsyyV+O+BBx7Ahg0bsGvXLnTt2pV1OIpz4MABlJSUID09veF3LpcLu3btwqpVq+BwOKBWqxlGqAwWiwXJyclNfte/f398+umnjCJSrocffhiPPvooZs2aBQAYOHAgCgsLsXz5ckpqAiQ+Ph5AfY+NxWJp+L1Y10WaU+MHrVaL9PR0bNu2rcnvt23bhquuuopRVMrD8zwWLlyIzz77DDt37kRSUhLrkBRp/PjxOHLkCHJychr+Gzp0KG677Tbk5ORQQiOQ0aNHNytJcPLkSSQkJDCKSLnsdjtUqqaXObVaTUu6AygpKQnx8fFNrou1tbX47rvvRLkuUk+Nnx566CHcfvvtGDp0KEaNGoW33noLZ86cwbx581iHphgLFixARkYGvvzyS4SHhzf0jJlMJoSGhjKOTjnCw8ObzVMyGo2IiYmh+UsCWrx4Ma666io8//zz+P3vf4/MzEy89dZbeOutt1iHpjgzZszAc889h+7du2PAgAE4ePAgXn31VcydO5d1aLJWWVmJU6dONfycn5+PnJwcREdHo3v37li0aBGef/559O7dG71798bzzz8Pg8GA2bNnBz64gK+vCgKvv/46n5CQwGu1Wn7IkCG01FhgAFr87/3332cdmuLRku7A2LhxI5+SksLrdDq+X79+/FtvvcU6JEWy2Wz8gw8+yHfv3p3X6/V8jx49+CeeeIJ3OBysQ5O1b775psVz8h133MHzfP2y7iVLlvDx8fG8Tqfjx44dyx85ckSU2Die5/nAp06EEEIIIYFFc2oIIYQQogiU1BBCCCFEESipIYQQQogiUFJDCCGEEEWgpIYQQgghikBJDSGEEEIUgZIaQgghhCgCJTWEEEIIUQRKagghhBCiCJTUEEJkb9y4cVi0aBHrMAghjFFSQwghhBBFoL2fCCGy9sc//hFr165t8rv8/HwkJiayCYgQwgwlNYQQWSsvL8eUKVOQkpKCp59+GgDQqVMnqNVqxpERQsQWwjoAQgjxh8lkglarhcFgQHx8POtwCCEM0ZwaQgghhCgCJTWEEEIIUQRKagghsqfVauFyuViHQQhhjJIaQojsJSYm4n//+x8KCgpQWloKt9vNOiRCCAOU1BBCZO8vf/kL1Go1kpOT0alTJ5w5c4Z1SIQQBmhJNyGEEEIUgXpqCCGEEKIIlNQQQgghRBEoqSGEEEKIIlBSQwghhBBFoKSGEEIIIYpASQ0hhBBCFIGSGkIIIYQoAiU1hBBCCFEESmoIIYQQogiU1BBCCCFEESipIYQQQogi/D8x/+pqpv2JsQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(domain,n_points=N_coll)\n", + "plot = tp.utils.scatter(T*X, domain_sampler)" + ] + }, + { + "cell_type": "markdown", + "id": "9500e8d0", + "metadata": {}, + "source": [ + "### Define solution Neural Network \n", + "At this point, let us define the model $u:\\overline{\\Omega\\times I}\\to \\mathbb{R}$.\n", + "A normalization layer is used and the scaled points will be passed through a fully connected network. The constructor requires to include the input space $T\\times X$, output space $U$. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bdef3d80-90e6-47aa-95ce-6d735fd03f36", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(domain)\n", + "fcn_layer_sol = tp.models.FCN(input_space=input_space_sol,output_space=output_space_sol, hidden = (128,128,128))" + ] + }, + { + "cell_type": "markdown", + "id": "694d8666-170e-4c28-a87a-73aa329e2094", + "metadata": {}, + "source": [ + "Similar to Pytorch, the normalization layer and FCN can be concatenated by the class \"tp.models.Sequential\":" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "9b838d6f-1b90-4667-8ecb-9f54b4ec627e", + "metadata": {}, + "outputs": [], + "source": [ + "model_sol = tp.models.Sequential(normalization_layer, fcn_layer_sol)" + ] + }, + { + "cell_type": "markdown", + "id": "28d166be", + "metadata": {}, + "source": [ + "### Data Condition\n", + "For training the first network, the DataCondition of torchphysics is used. The training data is converted into tp.spaces.Points and fed into a DataLoader. \n", + "The DataLoader as well as defined NN are then used in the DataCondition." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "394583c4", + "metadata": {}, + "outputs": [], + "source": [ + "input_train = tp.spaces.Points(torch.column_stack([X_train_tensor]), input_space_sol)\n", + "output_train = tp.spaces.Points(torch.column_stack([u_train_tensor]), output_space_sol)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "4eff5c9f", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "008c09a7-81f8-41b5-8c10-3892812740ad", + "metadata": {}, + "outputs": [], + "source": [ + "batch_size_data = len(input_train)\n", + "\n", + "data_loader = tp.utils.PointsDataLoader((input_train, output_train),batch_size=batch_size_data,shuffle=False,pin_memory = True)\n", + "\n", + "data_condition = DataCondition(module=model_sol,\n", + " dataloader=data_loader, \n", + " norm=2,\n", + " use_full_dataset=False,\n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "98f1e13d", + "metadata": {}, + "source": [ + "### Hidden physics condition " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3a9f7d2a", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid_phy = tp.models.FCN(input_space=input_space_hid_phy,output_space=output_space_hid_phy,hidden = (128,128))\n", + "model_hidden_phy = tp.models.Sequential(fcn_layer_hid_phy)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "4f9f6a81", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities(t,x):\n", + " \n", + " u = model_sol(tp.spaces.Points(torch.column_stack((t, x)), input_space_sol))\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def hiddenPhysics(u, grad_u_x, grad_u_xx):\n", + " \n", + " \n", + " input_model_hid = tp.spaces.Points(torch.column_stack((u,grad_u_x,grad_u_xx)),input_space_hid_phy) \n", + " output_model_hid = model_hidden_phy(input_model_hid)\n", + " \n", + " return output_model_hid.as_tensor\n", + "\n", + "\n", + "def residual_equation(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities(t,x)\n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx)\n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " return residual\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "bf22405d", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_condition = HPM_EquationLoss_at_Sampler(module=model_hidden_phy,\n", + " sampler=domain_sampler,\n", + " residual_fn= residual_equation)\n" + ] + }, + { + "cell_type": "markdown", + "id": "9691ab29", + "metadata": {}, + "source": [ + "### Training model " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ea27b608-e319-4fac-85c1-5984f2d043c6", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hidden_phy_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "9ea9431a-9ea4-4312-8869-af4c8c4733a4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "Missing logger folder: /home/ibp5kor/torchphyics_rtc_in/examples/hidden_physics/lightning_logs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 50.7 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "50.7 K Trainable params\n", + "0 Non-trainable params\n", + "50.7 K Total params\n", + "0.203 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 25000/25001 [04:57<00:00, 84.02it/s, loss=1.02e-05, v_num=0]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $u$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $u$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln.T - u_pred.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_sol_pred.png',format='png')\n", + "plt.savefig('burgers_sol_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "18616a5b", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n", + "\n", + "def R2_SCORE(true_val,pred_val):\n", + " \n", + " mean_true = np.mean(true_val)\n", + " \n", + " return 1.0 - np.mean(np.square(true_val-pred_val))/np.mean(np.square(true_val-mean_true))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "5651303e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u : 0.0027075328113528945\n", + "R2 Score u : 0.9999926692660754\n" + ] + } + ], + "source": [ + "l2_error_u = L2_ERROR(u_soln.flatten(),u_pred.flatten())\n", + "r2_score_u = R2_SCORE(u_soln.flatten(),u_pred.flatten())\n", + "print('L2 Error u : ', l2_error_u)\n", + "print('R2 Score u : ', r2_score_u)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9ea3303f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABK4AAAE6CAYAAAA/VRqNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5wcRb02/mxmdmZ3s5sNuRNIIKBIDpcTTqIQkBNQCHJRXgUPFw0okGPe6EGIqER+SkQkgpE3cg0gCIggR8UjauRyEAJCOIdAor6SF+EYTYCEkECyu9nd2Z3Z+f3RUz3VNVXVVdXVPT279eTT2ZnuunXPzLe7nu/z/VZTuVwuw8HBwcHBwcHBwcHBwcHBwcHBIWUYVe8BODg4ODg4ODg4ODg4ODg4ODg48OCIKwcHBwcHBwcHBwcHBwcHBweHVMIRVw4ODg4ODg4ODg4ODg4ODg4OqYQjrhwcHBwcHBwcHBwcHBwcHBwcUglHXDk4ODg4ODg4ODg4ODg4ODg4pBKOuHJwcHBwcHBwcHBwcHBwcHBwSCUcceXg4ODg4ODg4ODg4ODg4ODgkEo44srBwcHBwcHBwcHBwcHBwcHBIZVwxJWDg4ODg4ODg4ODg4ODg4ODQyrhiCsHBwcHBwcHBwcHBwcHBwcHh1TCEVcODg7K2LFjB9avX1/vYTg4ODg4WIaz7w4ODg4ODg5phSOuHBwclPD0009jxowZ+Kd/+idceeWV9R6Og4ODg4MlOPvu4ODg4ODgkGY44sohVbj77rvR1NTkb9lsFnvvvTfOPvtsvPrqq8btPvjggzjkkEPQ2tqKpqYmbNiwwd6ghwneeust4bFyuYyrrroKDzzwAPbee2+8+eabCY7MwcFhOINn9/fdd1989rOfxRtvvJHIGJYtW4ampqaaMf3tb3/Taue5557DsmXLsGvXLrsDRO0YdeDsu4ODQ5K44YYb0NTUhEMPPZR7/G9/+xuampqwYsWKRMcVxY6+/PLLWLZsmfZ9IQzkWoi2ZcuWWe3PwaFRka33ABwcePjhD3+Igw8+GP39/Xj22Wfx7W9/G08++ST+3//7f9hrr7202nr77bexYMECfOQjH8Ett9yCfD6Pgw46KKaRNy4+9alP4Qc/+AH233//mmPPP/88zjjjDJx22ml45ZVXkM/nkx+gg4PDsAax+319fXj66aexfPlyrFmzBn/6058wevToRMdy6qmnYu3atdh777216j333HP45je/ic985jMYO3ZsPIMzgLPvDg4OSeKuu+4CAPz5z3/Gf/3Xf+HII4+s84ii4+WXX8Y3v/lNHHfccVxbGhX/9m//hnPPPbdm/7777mu9LweHRoRTXDmkEoceeiiOOuooHHfccbjiiitw+eWXY/v27fiP//gP7bb+8pe/YHBwEJ/+9Kcxb948HHXUUWhra4s0vt7e3kj104h169bhzjvv5B775S9/idNPPx0A0NHRgVwul+TQHBwcRgCI3T/++ONx5ZVX4itf+Qo2bdoktftx2eKJEyfiqKOOGjYkjrPvDg4OSWHdunX4wx/+gFNPPRUAhLbHIYjp06fjqKOOqtnCiCvRfbBUKqFQKEQa03Cc7zg0Lhxx5dAQmDNnDoDacIdXX30V5557LiZNmoR8Po+ZM2fi5ptv9o9/5jOfwQc/+EEAwFlnnYWmpiYcd9xxyvWBqqz4pZdewplnnom99toLBx54oFYbdDt//vOfcc4556CzsxOTJ0/GBRdcgN27dwfK/r//9/9wzjnnYPLkycjn85g+fTrOO++8wA1ItV8V/PWvf8Xu3btx1113oVgs1hzfunUrpk6datS2g4ODgwmOOuooAMDf//53AHJbrGMPf/Ob32DWrFnI5/OYMWMGN1RFFCoos83Lli3Dl7/8ZQDAjBkz/DCPp556yq+vOk6VMarC2XcHB4ckQYiq73znOzj66KPxk5/8REiADA0N4dvf/jamT5+OlpYWzJkzB0888USgzNtvv41//dd/xbRp05DP5zFx4kQcc8wx+M///M9Aubvuugv/+I//iJaWFowbNw4f//jHsXHjxtDxisLx9t9/f3zmM58B4N0TPvnJTwIAjj/+eN++33333X75//zP/8SHP/xhjBkzBm1tbTjmmGNqziUqjjvuOBx66KF4+umncfTRR6OtrQ0XXHCBH2543XXX4eqrr8aMGTOQz+fx5JNPAgAefvhhzJ07F21tbejo6MCJJ56ItWvXBtoOm+84ONQbLlTQoSGwadMmAAiE+L388ss4+uijMX36dHzve9/DlClT8Oijj+Liiy/Gjh07cOWVV+LrX/86PvCBD+Dzn/88rrnmGhx//PEYM2aMcn0an/jEJ3D22Wdj0aJF2LNnj1EbAHDGGWfgrLPOwoUXXog//elPWLp0KYCqrPoPf/gDPvjBD2LChAm46qqr8N73vhdbt27Fww8/jIGBAeTzeaN+ZVi3bh1mzJiBTZs24Ze//CXOOOMM/9grr7yC973vfVrtOTg4OETFa6+9BsBTP9FgbbGOPXziiSdw+umnY+7cufjJT36CUqmE6667TpoDiiDMNl900UV45513cOONN+Khhx7ywwz/4R/+AYD6/SLKGHlw9t3BwSEp9PX14YEHHsD73/9+HHroobjgggtw0UUX4ac//SnOP//8mvI33XQT9ttvP6xcuRJDQ0O47rrrcPLJJ2PNmjWYO3cuAGDBggV46aWX8O1vfxsHHXQQdu3ahZdeegk7d+7021m+fDm+9rWv4ZxzzsHy5cuxc+dOLFu2DHPnzsULL7yA9773vZHO69RTT8U111yDr33ta7j55pvxT//0TwDgEzv33XcfzjvvPJx++um455570NzcjNtuuw0nnXQSHn30UXz4wx8O7WNoaIjrXMhmg9P1rVu34tOf/jS+8pWv4JprrsGoUVUdyg033ICDDjoIK1aswJgxY/De974X999/Pz71qU9h/vz5eOCBB1AoFHDdddfhuOOOwxNPPOE7+Al48x0Hh1Sg7OCQIvzwhz8sAyg///zz5cHBwXJ3d3f5kUceKU+ZMqX8z//8z+XBwUG/7EknnVTed999y7t37w608YUvfKHc0tJSfuedd8rlcrn85JNPlgGUf/rTnwbKqda/8sorywDK3/jGN2rGq9oG3c51110XKLt48eJyS0tLeWhoqFwul8sf+tCHymPHji1v375deJ10+lXBpZdeWv71r39dbm5uLs+bNy9w7Nprry3/3//7f7Xac3BwcFAFz+7/+te/Lk+cOLHc0dFR3rZtW7lcFttiHXt45JFHlqdOnVru6+vz93V1dZXHjRtXph+JyJg2bdrk71Oxzd/97ndr6umOU3WMqnD23cHBISnce++9ZQDlVatWlcvlcrm7u7vc3t5ePvbYYwPlNm3aVAYgtHUnnHCCv6+9vb18ySWXCPt89913y62treVTTjklsH/z5s3lfD5fPvfcc/195D5CA0D5yiuvrGl3v/32K59//vn++5/+9KdlAOUnn3wyUG7Pnj3lcePGlT/60Y8G9pdKpfI//uM/lj/wgQ8Ix14uV6+FaHvmmWf8svPmzSsDKD/xxBPcNg488MDywMBAYAxTp04tH3bYYeVSqeTv7+7uLk+aNKl89NFH11wb3nzHwSENcKGCDqnEUUcdhebmZnR0dOAjH/kI9tprL/zyl7/0vQ79/f144okn8PGPfxxtbW0oFov+dsopp6C/vx/PP/+8sH2T+rSXOsoYPvaxjwXeH3744ejv78f27dvR29uLNWvW4F/+5V9qVAZR+5Vh/fr1+MhHPoIzzzwTa9aswUsvveQf27hxIw455BCt9hwcHBx0Qdv90047DVOmTMFvf/tbTJ48OVCOtsU69nDPnj144YUX8IlPfAItLS1+Gx0dHfjoRz8qHZuKbZZBdZxRxiiCs+8ODg5J4c4770RrayvOPvtsAEB7ezs++clP4plnnuGuDi6ydU8//TRKpRIA4AMf+ADuvvtuXH311Xj++ecxODgYaGPt2rXo6+vzw/oIpk2bhg996EPWw/VYPPfcc3jnnXdw/vnnB2z70NAQPvKRj+CFF15QUi598YtfxAsvvFCzzZo1K1Bur732woc+9CFuGx/72MfQ3Nzsv3/llVfw5ptvYsGCBQFlVnt7O8444ww8//zzNWGc7HzHwSEtcMSVQypx77334oUXXsDvfvc7fO5zn8PGjRtxzjnn+Md37tyJYrGIG2+8Ec3NzYHtlFNOAQDs2LFD2L5JfXZ1KdMxjB8/PvCeJP/t6+vDu+++i1KpJE3EGPXcWbzzzjsYN24cMpkMvv71r2PUqFH45je/6bczadIk5bYcHBwcTEHs/vr16/Hmm2/ij3/8I4455piacrQt1rGH7777LoaGhjBlypSaNnn7aKjYZhlUxxlljDw4++7g4JAUXnvtNTz99NM49dRTUS6XsWvXLuzatQtnnnkmgGpKDBoiWzcwMICenh4AwIMPPojzzz8fP/jBDzB37lyMGzcO5513HrZt2wYAfsggbxXYqVOnBkIK4wAJ4z7zzDNr7Pu1116LcrmMd955J7SdfffdF3PmzKnZ2tvbA+Vkq93y5iqiOlOnTsXQ0BDeffdd5fYdHOoJl+PKIZWYOXOmn5D9+OOPR6lUwg9+8AP87Gc/8xMGZjIZLFiwAJ///Oe5bcyYMUPYvkn9pqamyG2EgUwwXn/9datjl+Ghhx7yVWAzZ87Epz71KfzoRz/Ck08+iS1btuC0007TOgcHBwcHE9B2XwbaFuvYw7322gtNTU3+ZIcGbx8NFdssg+o4W1pajMfIg7PvDg4OSeGuu+5CuVzGz372M/zsZz+rOX7PPffg6quvRiaT8feJbF0ul/MJmwkTJmDlypVYuXIlNm/ejIcffthfbfyRRx7xHcJbt26taevNN9/EhAkTpOPO5/Pc1fdUCS/S/o033ugvKsKCVQ5HATsfkR0LuzajRo3CXnvtpdy+g0M94Ygrh4bAddddh5///Of4xje+gU984hNoa2vD8ccfj/Xr1+Pwww/XXr47an1bbbBobW3FvHnz8NOf/hTf/va3uTdb2/3+4he/wE9/+lP//bXXXov/+I//wMKFC3HMMcdwPWQODg4OaYCOPRw9ejQ+8IEP4KGHHsJ3v/tdPzylu7sbv/rVr6T9qNhmIKigNR2n6Rh5cPbdwcEhCZRKJdxzzz048MAD8YMf/KDm+K9//Wt873vfw29/+9sAYS6ydccee2yA4CKYPn06vvCFL+CJJ57As88+CwCYO3cuWltbcd999/kr/wHA66+/jt/97ne+4kuE/fffH3/84x8D+373u9/5ii8CkX0/5phjMHbsWLz88sv4whe+IO0rabzvfe/DPvvsg/vvvx+XXXaZT0rt2bMHP//5z/2VBh0cGgGOuHJoCOy1115YunQpvvKVr+D+++/Hpz/9aXz/+9/HBz/4QRx77LH43//7f2P//fdHd3c3XnvtNfzqV7/C7373O2mbUevbaoPF9ddfjw9+8IM48sgjcfnll+M973kP3nrrLTz88MO47bbb0NHREanf1157DSeccAJ++MMf4uWXX8acOXMCN629994b3/72t3HxxRcLHxwcHBwc0gIde/itb30LH/nIR3DiiSfiS1/6EkqlEq699lqMHj06NJRDxTYfdthh/pjOP/98NDc3433ve5+W3Y4yRmffHRwc6oHf/va3ePPNN3HttdfiuOOOqzl+6KGH4qabbsKdd94ZIK4ymQxOPPFELFmyBENDQ7j22mvR1dXlhzTv3r0bxx9/PM4991wcfPDB6OjowAsvvIBHHnkEn/jEJwAAY8eOxde//nV87Wtfw3nnnYdzzjkHO3fuxDe/+U20tLSErrS9YMECfP3rX8c3vvENzJs3Dy+//DJuuukmdHZ21pwDANx+++3o6OhAS0sLZsyYgfHjx+PGG2/E+eefj3feeQdnnnkmJk2ahLfffht/+MMf8Pbbb+PWW28NvYabN2/m5qidOHGiv3qhLkaNGoXrrrsOn/rUp3Daaafhc5/7HAqFAr773e9i165d+M53vmPUroNDXVDn5PAODgGQlZxeeOGFmmN9fX3l6dOnl9/73veWi8ViuVz2VtG44IILyvvss0+5ubm5PHHixPLRRx9dvvrqq/16olUFVeuTVTbefvtt7phV2pC1w1u96uWXXy5/8pOfLI8fP76cy+XK06dPL3/mM58p9/f3a/fLYt26df5KJcccc0y5t7e3pszQ0FD5hBNOKP/iF7+QtuXg4OAQFTK7T0Nmi3Xs4cMPP1w+/PDDfdv6ne98p2alKZ5dLpfVbPPSpUvLU6dOLY8aNapmBSrVcaqMkQdn3x0cHOqB//W//lc5l8tJV109++yzy9lstrxt2zZ/Fbxrr722/M1vfrO87777lnO5XPmII44oP/roo36d/v7+8qJFi8qHH354ecyYMeXW1tby+973vvKVV15Z3rNnT6D9H/zgB77d7OzsLJ9++unlP//5z4EyPDtaKBTKX/nKV8rTpk0rt7a2lufNm1fesGFDzaqC5XK5vHLlyvKMGTPKmUymDKD8wx/+0D+2Zs2a8qmnnloeN25cubm5ubzPPvuUTz31VO78g0bYqoKf+tSn/LLz5s0rH3LIIcI2vvvd73L7+I//+I/ykUceWW5paSmPHj26/OEPf7j87LPPcq+NaL7j4FBvNJXL5XJCHJmDg0NK8OSTT+KNN97AmWeeGVjNhca7776LtrY2Xxrt4ODg4JB+OPvu4ODg4ODgMNzgiCsHBwcHBwcHBwcHBwcHBwcHh1RiVL0H4ODg4ODg4ODg4ODg4ODg4ODgwIMjrhwcHBwcHBwcHBwcHBwcHBwcUolUEFc33ngjJk+ejEwmg6amJixdujRwfGhoCMcdd5x/fOzYsfjlL38Z2u6Xv/xl5PN5NDU1IZ/P46tf/Wpcp+Dg4ODg4ODg4ODg4ODg4ODgYBmpIK7effddvPe978WXvvQl7vFTTz0Va9aswZe+9CU89NBDGDNmDD7xiU/gzTffFLZ5++23Y8WKFTjuuOPwm9/8Bscddxyuu+463HnnnXGdhoODg4ODg4ODg4ODg4ODg4ODRaQuOXtTUxMuv/xyLF++HICntmpubsb8+fPx29/+FgDQ1dWFzs5OnHvuufjxj3/MbWf69Ono6+vD22+/7e+bMGECRo8ejb///e/xn4iDg4ODg4ODg4ODg4ODg4ODQyRk6z2AMDz99NMYGhrCeeed5+8bM2YMpkyZgueff15Y780338Rpp50W2PfBD34Qv/71r4V1urq60NXV5b8fGhrCnj17MHXqVDQ1NUU4CwcHBwd9lMtldHd3Y+rUqRg1qiqQ7e/vx8DAgHZ7uVwOLS0tNoc4bDA0NIQ333wTHR0dzt47ODgkCtu2HnD2XgRn6x0cHOoJ92xvjtQTV6+88goA4H3ve19g/9ixYwNqKhalUgn77LNPYN8+++yDUqkkrPOxj30Ma9asiTBaBwcHB/vYsmUL9t13XwDejW1iayt6DNqZMmUKNm3aNGJucDp48803MW3atHoPw8HBYQTDlq0HnL0Xwdl6BweHNMA92+sj9cQVAc1IAh5babvOww8/HFBcdXV14ZBDDsHnt3wR+TH5mvKlkBRhJWSMj4fXlX908rbl4y5G7BsAhiKcu8pxACgqpGiLcp3Yc6CvC69eBiXkMIA29KEFfehAD8ZhJ8ZiN9rRjVb0oxW9yGEAGdQSqKVA+1nmGP9c1a5TeJkhhc806mcW9r0Don33on7nwvuO8ns1O17oKuCGaTejo6PD3zcwMIAeAEsB6Nyi+gEs37YNAwMDI+LmpgtyjXn2Pk5bH3Y8ig3zjpvb+yi/t2A75uevYue9NtQeZ3h98c6FXJeS4C/g2fwMSmhHDyZhO9rRg3b0YAq2ohO7kccAchgIlBeNJ8zms+NWses0VGy8aGyi994+81Sput+9qDY+rE/VNuJ4trNp6wFn72WoXuPvA2jVrG0ybYoy1WqOUBcABjn7igqvZchy/pJxNgOB7zjZT8ZRqrwerPTH6zNLtcme/yCAPkHdLLxfSlvlLxlfEd4vogtAd+U1AHQA2KvyFwDeAfDXyvEsgFkATgROAnAsgJkAdgL410HgsGbgdABX/xzAfgDaK3X/Wnn9NoCDAEyv9NFcabevMoa+yrWgz2sQQE/leHdl3C3UuWbhfV/JedLXtkht5D25Js2V8q3UdWlm6g9S46P/0p8FfT3Zz4+0T4+R/Z7QoOvy2iN/B5k6BGybzZz9otei35Tsd2qbLukG8EX3bG+A1BNXRGm1ceNGzJo1y9+/e/dudHZ2CutlMhls2bIlsO/NN99EJiN+oBgzZgzGjBnjvyckVn5MXkBcRXt4kV38KBP4EjLS2mHjHmWBNAvrP+xRN2wMRWRCb+clZCP1U3udqu+bONcggyKakUUzgByAHIrII48W5NCKHFpRQhuakcMQsqiVpweJMXYSY06asG2L24k2QVYpE508ijqJl02Q4ySLo503L5yhHXo3t9Qb+zqDXGOevY+TmCqG2st4v/M5w75V7AEpZ2qHVey810e4rSfj5ZWjz4X8FsmZE1vfVNnfRJUlxFUzhpBDK/IoYjT60Yoc2tCMNhT9O30WJfB+hTp2P4qtVyX2dPtX/R7wYEKaNsK9MMp9xoatB5y9l6F6jVuhT1yZEEn1JK6AWvKKJXxE5IAI5HxosoAmrtjjdB+EpBikXtP90iSJiLhqRpW8YsfVCo+4osc0qrKxZBcpO7ryvqdSb2yl7hhva4L3A8xUmkEvMNgG7EKlfifVVrlStx1VAo18x/IABip/yXjIuIteu/7coFw5R0IADVbaaUaVGGpm6vdV6pVRSyq2Mhv72RAijSbJ8lRdup9s5WKQz48eE2mbJbtoFOHNkujPnrTNfk8yTD0yDhr0ufC+e7LyLGS/VRu/RQLvXNyzvT5SsaqgDP/8z/+MUaNG4Uc/+pG/r6enB9u2bcNRRx0lrDd16lQ899xzgX3PPvtsTfhgI8LkAbSREOVBuNpGNAWRzLsd1rbowTQT8kCQpbwvbFmep17lGK9tU6j008iwcY2SBP1Yp7INb6uRXtiwZ/WALdLKFLqKIlH/ZJOVUWlHZX8abGScdox3flHOudFsbr2ga+udvXeQox7fDp1JP01q8RRjsvZo9Q5dl7wW1RukNpp4oZr1ea+iJ3PZBgR/nQR9CJJDpN0+8Ik6GegxkfLM2LgEIH3uWWqLEybEDvs5kX088M5BRlCJIPpOyfoOq6cL8Vjds70cqSCutm3bhgcffBAPPvggAE9d9eCDD2Lt2rUYNWqUv6LgV7/6VfziF7/AoYceilGjRuG73/2u38aBBx6IuXPn+u+vuOIKvP322zj55JOxevVqnHzyydixYwe+8Y1vJH5+aUKaFS+qsDWhsYGo7dia6NhoJ4xYszGOsONhE5mwMaZh4pgUsgabw/BCEvbWFEmQW159fWWOCKphZGFts3Ys6JRQt1E27ZmJfVftPy12NyknThSY9G9i6529jwM2FRdJIk3jpqflLAED8IkDEWHAfst5ZBcdNkfAU3HRaiyOWogcJlGG/QB2sG2ROoS4YtumQ/l4CPucRAo0MsBBZh+vH13LQJenSTG6P9riiD5XFqpklQyiPtL0fdeHs/VypOJ8f/KTn+DSSy/13//yl7/EL3/5Sxx44IF47bXX8Jvf/AYf+tCHsGLFCgwNDaGzsxM/+9nPMHXqVL/Ozp07A5K7z33uc/jLX/6Cm266CY888ghyuRy+/OUv48ILL0zknOrlaW5U7z5BVGLNayPa11r3GnqhkfoPo7p1MihF+nyzKIVevwyK0usXdQz1RpTxh12buPoVgfcII0N0WtKBhzh/D3Gqa03vMzZChm0hSfUxL2xOV4EUleBRtSMiWx/FhoWBnJvuZ6871ka/B5lA19YDzt476KAZQRIirm8P3Y8MYUQTD7Qqibw3Afm1seF0CHJbvuKKEDW0EqqI4K9WpCBjw9roY81UHboPHnjklQlo1ZkqdBVPspxqpv2q9s32JVPtya51vMSYe7aXIxXE1SWXXIJLLrlEeHzUqFF46qmnpG3s2rWrZt/3vvc9fO9734s2uBGEequt0hAiyIM4Z4idh2fRg7juJEPlgV6FvIraT9TjYWOMc/LVSND1tLgrlj7YUI/GgaR+XyI7ENVBYUvtFSfJo2rzbRM1dB9EhWXzPE0JLJv9J3EfTBImXnVn7x2CYEmjOAmqKOARAzqEBpvHSlWVw6qHKhv5IRG1VbFStiZUkLRJkm23UhXZhOlh48syx8NUavT4RWADzNi6vPqifliCTES1hBFt7GtVyEgr3ZBUE/IqXrhnezlG2vk2PKI8YKY5bMTOakDRSat6TWQIwkmbaKSQWh/hxJCNccSFKH030oRGRYxNw2Z0vkP9UY8wQZtqK5Px2bS/pqv0hY2bEDdZ5q9IbaVrc2zY1tociuoElmr/cRJYcd9/0uYc0bX1gLP39lGv8KP4FR61kJFacf4uRCFuOrmLaIKOfq3yi6ATjTNkDC9UsJ/0kaXqEcKKJCsn7bLklQjNCCZlp/sgr2mYhiCKPmO6LZXvHfvZyD4rldUsWVKPPaeoSisW9fh9yeGe7eVIz515BCGuCX09Q1biJinSQFqpQNRGJmTyooO0kFdREFV1FWffaWtXBOeVGd6oV5hgvZ0jUVfFsx3KaHJOrJ3Xy2ul5jgIG5uJDY1D8RWFwEobgUSQdltP6jg4pBO8vEk8iEIGVfJiAbVTepUpPp3fKls71EBXO6nypA4hrmjii0dasXm0whRPvDTcIlKOR/iIrAgdZhhGqolIJJZU49EuvKTxKsorGYXDno8pASUir0Sqq3jJLvdsL8dIO9/Uo15qjzjzakU9Xk/SyjRMUPehVjdcMA3kVdwhgzLUa0KTpolUW2VzSC+GUy4emzZPP4+gHdLK9PNQTcrOwnTBC9bOiO8PVULMXuh6dMWtbh0zki3ekPQ0wdn6eiNdigxzyMIFkwol5PUDVPNC0WQML6RNN+k33b7q+Mhf0aqCBG8hSN60ovpLpZOz0/2bkB50/izyniWCeKsm8tad4xFgOp8zm5SdJa/YsrzvkSzPlSpskVYE6VFeOXsvRypWFXRQQ7084XH2ayMZe9xjqJaLnlMF8B6YZR541VWHoq7gp9ZHtFX86rVU+khYoj1rsJnglltuwYwZM9DS0oLZs2fjmWeeEZb9/e9/j2OOOQbjx49Ha2srDj74YPyf//N/DHt2MIU5QWP2LbFFWsVFJHgWV69f84UYxDaTtku2V+JLy8p+DvY/CxNbb/LtdbbeIT6EfSNFyhaeWkk1wTu7WqDqmFg1FNOsP4btVFk6VLAN/F+hblAXS1iJxkyTjyKopPyWJWeXhezJ2hV9bqYBbrzrGnZequQYb0zJ54FL6tm+UTHSzteBg0ZexTDOEEbd61JCNhbSI87V7OrtdW5E1VVaoBsHb3KlHnzwQVxyySW45ZZbcMwxx+C2227DySefjJdffhnTp0+vKT969Gh84QtfwOGHH47Ro0fj97//PT73uc9h9OjR+Nd//VeDEQxf1MvumvRry87Hmdeq3veiMIQ5K9jPRVV1VS/YVl3FMYa0XTNT6Np6UkcHztY7pAdhq7qFgVbPsHmvaLUQDzRp1SwIFSR5qHYCGEe1RZKzE/VVH1WRN27Zr5Rd6VGklAojVlSth2x8slULs4LXIvDGq0pi8dpXtYyk3/TPGZJ4tm9kOMXVMEF8ebPSq7ayQVo1+kOtimc3rEwY2daoqisZhoM6IQmvzPXXX48LL7wQF110EWbOnImVK1di2rRpuPXWW7nljzjiCJxzzjk45JBDsP/+++PTn/40TjrpJKnn3qEWjUTI2krGHheRZ9Iv7/rT7egmU5e9twm2bVP7WZu8vX720jTcslH75SEJxZWz9SKkI3zIHuKaEpuoiWQqIDoUTjWxOa8ePTZZfYXxB3giorgCgvmtyBamcJLlg1JVM9FjCVvVT0R+0Qor+gTD+mXDBHVCOFU+D15/LEx+m7p5vJKHU1zJ4YirEYA0JoNPIq9VlDGw/dP90fWir+7EDx1hJxyq4SemiJu8iqtuPdpNC9jFjVU2AOjq6gpshUKB2/7AwABefPFFzJ8/P7B//vz5eO6555TGuH79ejz33HOYN2+e7uk5GMI0FC9OsizehUPMSSt+Hfl1CFv1lWdLbdmitNm0TEjYu6gOD+YkW7quSRwwsfU69t7Z+jgxnKaVUc+FViaptGtKHpvkUOLlhmJyXNX00YVgOB8dLtjKVjAAvWKhiHAKI1oEIY810LnWJsSabh8EImomCqGsO45knRimtn6kwBFXMcD0Qboek4o0ry4VBUkuFa/aVi0ZZe+BO4l8V1EQl+oqLq+4aZ+y80xD3hMAmDZtGjo7O/1t+fLl3PZ37NiBUqmEyZMnB/ZPnjwZ27Ztk45t3333RT6fx5w5c/D5z38eF110kelpOjBI2rZGJYZUypisJBiWt0oFUVReYQSW7u+dT3hFt29J5OyL+/4S5TrYyCep265tRFFcqdh7Z+tFaLQpYVqmsia/V9mYVVRXvPoqK+aJ+uXce/xmsgB6UauuIvmtWiHXwogIvJD+lVRQbPkwZRugrmSThQmKIFrZkbfKIGlTpiWy9f1Oj6KWhVNcyTHSztca6k3M0KjHWKJMZtIQIhil/zDERTJGzekUNd9VnKsM1iMXSZryn5jkGlMRZ7PlAWDLli0YM2aMvz+fz0vrNTU1Bd6Xy+WafSyeeeYZ9PT04Pnnn8fll1+O97znPTjnnHM0RutggqSTsoe3a//3ZSM0UZUoizp+mhghRAfdJmuDVOwArx32OHssjKBRsT0q9p0g7Lolneuq0aFr60kdQM/eO1vfyGC/IXSOJBmyEK8syB7XBR3CJstbRffF9s+rx46HN0ZSj15tT5ZgnLcvK+ia5Lgah2oidrK/gyrcLWlfdC3YFRdp8onUp8voEHI81RZNIIm+L3Qf7HhkEI3T9Ptkm5AVfSdVV6+MhyA2fbYfKRhp5zviEIfCK80hglEVADqrS9lbfpz/0K2SsFelHZ0ycZNXpmOTjSvqNWlU6HpaSNkxY8YEJjIiTJgwAZlMpsbjvn379hrPPIsZM2YAAA477DC89dZbWLZsWcNOZkxJ+kZS14oQp4OCQEdtFSdppYLaEPLwvFc8ZY6OrRPZtzACSwe695owmNpdUzs/3GHiVdex987W81Bv1ZINqJJXYbD1u+MRFipjZOuZJOSW9UGIKIIw6oAQZZPhqatocret8rcP4usmalv1sypSG2mP7YsOYeQRXyqr/YWt5CgisXjkI2+/6vnG+VtUIVSThemz/UiBCxV0sIo4V7uqB2ll0kcUqCVbj5bvKu5k7VH6dlBHq8Gmg1wuh9mzZ+Pxxx8P7H/88cdx9NFHK7dTLpeFebQc9BCPgql+jz1Jr2hqQhjqhiSKiKq4YKttlbA5nb6StvWmYdr1CEXXhYmt17H3ztbHhaRsa6OSbLyQOdWcTDKw6iFTtU9lXPRwioBHVA3CU1y1Vsu0kEL0L1D02dD7RaGMshxXBGGEXBgJZ5pUn0eU8aCTIJ9FGsJek0fcz/aNjpFG1A07JO3xj1NtJa8bL2ll2i/ddqbiLc5JypEHYdWHepMQsiSUV1H7N6kbh+qqkRVZSciJlyxZggULFmDOnDmYO3cubr/9dmzevBmLFi0CACxduhRvvPEG7r33XgDAzTffjOnTp+Pggw8GAPz+97/HihUr8G//9m8GvTvowLbKKG61le49KKraql6J6VmwNkcU2qe7cmFYm/WAie11qqtaRAkVVIWz9TTSNFlO01hUYBpCJVJFkfZMVFdsqKJufQaBJvrgKa4qv7SW6kv0N4FPuhDCR+XXKQr1k6mgSB4q0jdtOcKUUbI8YHS4pQ6irOKomnvMhnMhXaorFyooh1NcpQRpeaiOgjjVVlH7tb0Ue5RzteGRj3OVPxv9y+s2huoq7Z74JFYeOeuss7By5UpcddVVmDVrFp5++mmsXr0a++23HwBg69at2Lx5s19+aGgIS5cuxaxZszBnzhzceOON+M53voOrrroqwpk6NBLqRZjIlFFJK7v4Nj6KzUzG3thWXY1k2LxOJrZe1947W28bjfHcHh9E4WG2oLKinko5WvUl+dXU8E1FAGPghwkSxZWvuqJJKhEVQTfISzzPUzcNMn9lA6bHIoPu/YU3Ll6OMQIdtZXocxARfsPvd5bEsz0A3HLLLZgxYwZaWlowe/ZsPPPMM9Lya9aswezZs9HS0oIDDjgAq1atChx/6KGHMGfOHIwdOxajR4/GrFmz8KMf/ShQZtmyZWhqagpsU6ZM0Rr38PvEU4w0eECB+pBkUdQAUcdki7RSURnYmGCoesvjTJYORMt3FZfHvxG88UmpHZKKg1+8eDEWL17MPXb33XcH3v/bv/3bMPG4pw9pyacVdZVBkzHFuUqs6jWgx1xC1sh5QNso2k6oqWSTt2+y/Fqq19zEHjZKTsO02npSRxfO1ttCkr/TRlNkycBTVgF81ZXuNeYpwbLMX1JOpf1B+InYCWHVjur7fgj646medMk9lfBA9jWvDRWVFduuyvctjLQSjV9VZTW8kcSz/YMPPohLLrkEt9xyC4455hjcdtttOPnkk/Hyyy9j+vTpNeU3bdqEU045BQsXLsR9992HZ599FosXL8bEiRNxxhlnAADGjRuHK664AgcffDByuRx+/etf47Of/SwmTZqEk046yW/rkEMOwX/+53/67zMZ3ecDh2GJpFdzsjGZ4deNFiIYhbRKAwkCRCNr4iavZDAN0YtjMpCW0BmbyGaAZvmCT8HyZcCJJeqPRrA5ot+Kjd+QTfVTHCGJYW2HrTxIE1YZXwcW7tCISl4lHS5oo33TNkxIvCT7sg1dWw84e2+OqERQOmx4umBjBTZZG6oOY0srwWUBFIsA2qosA6226q9sAKqJ31kFFBv2J+uMjFmU9Jy8ps+PJq3YNth+TcgzAjZXF9uuSTsEI/O3lMSz/fXXX48LL7wQF110EQBg5cqVePTRR3Hrrbdi+fLlNeVXrVqF6dOnY+XKlQCAmTNnYt26dVixYoVPXB133HGBOl/84hdxzz334Pe//32AuMpms9oqKxouVLCBMRwm4lEmcXGSVjZBJi/xtR8tbDBKsvY0hMxFRaOGvmSz+puDA4HtyXhUEslrQ31MUe9/0ZW88f6gRHY3g6Ky3aXvPVUSrSS9J7H9hi0GYmNBEJVxqCLJvpKCia139r4ecBc9OlSvoYoN5CmKRGSKxmeXpdohua1amC0LBEkk8pfXDyGd2E5kJJvs/FnVFQ+qIYfseFRVV7qrE/L6s4FBZks/TG19V1dXYBMtlDEwMIAXX3wR8+fPD+yfP38+nnvuOW6dtWvX1pQ/6aSTsG7dOgwO1l7XcrmMJ554Aq+88gr++Z//OXDs1VdfxdSpUzFjxgycffbZ+Otf/6p6aQA44so6bJNJtkM54kjKHkcISxjiDB3x6ou96uxrXl8qK1GxD/2i10D0B+uo5JW8rtkqh0mvApWGCY3VvCcZ/c0hGdi/DyRnY03UVnGSViL7qgJRnzYW+7AB1h7ordqn7jQQtWvLHtWD/G9kp4nufcXE1jt7b4IoahxHWskVQYOScixEBA9RC9HhZ6YEFt0XrzyDLPt60AsNpEmr9srmE1dZamsWNMZeo6hJ5On+wjIgqRI5usRSmkgrlX3pgqmtnzZtGjo7O/2Np5wCgB07dqBUKmHy5MmB/ZMnT8a2bdu4dbZt28YtXywWsWPHDn/f7t270d7ejlwuh1NPPRU33ngjTjzxRP/4kUceiXvvvRePPvoo7rjjDmzbtg1HH300du7cqXx9nKVNAZJOHKuLepBWUVY2jDN8pJ6Imt8pSthgXPmuGjmEr94hJNkskNWVEzs41AFx5zHU6TPavSVYl6wiK7erRZ+oIGOyZfdYG2TSrq38WoS8stl/lFD14QRdWw84e68PR1rpgQ0RY/NE8a6nTdLAUtgfgGA4X5+4GM1DoRjMaUWIqyyq5FU/IY5o8kZ0Xdj8XaxqikcGsWQgq/ASqa5UVxMkdXXUVlFIK5PfkWqOLpV20vE7Nn2237JlC8aMGePvz+fz0npNTcFOyuVyzb6w8uz+jo4ObNiwAT09PXjiiSewZMkSHHDAAX4Y4cknn+yXPeywwzB37lwceOCBuOeee7BkyRLpeAnS8Sk5aMPkobdRyJooY0lyGXbd/TKvN6+O7jLpNsgrGZKeRJhOaJLMf1JPNOeAZg3NbPNQfGNxiI40qGvjUFvZdlLElbcwjt+/SDkrI5vo9/Uibnj9RiXqTW2sia3XuadGRRL3Dl1bDzh7nxzq+exsg7iJW7kYByHAa1Om9lIZC3stmfo+YYVKLqvBak4rWm1FFFhZthLpgyX4VNRn9JjCVmukVzPkKdeK1N+wz14nWbqq2k4HMsJNhvSrqmQwfbYfM2ZMgLgSYcKECchkMjXqqu3bt9eoqgimTJnCLZ/NZjF+/Hh/36hRo/Ce97wHADBr1ixs3LgRy5cvr8l/RTB69GgcdthhePXVV0PH7fehXNIhEpKaFKclRCWuVa6inl9U8i7uz1El5CLOnFNx5buKI2TQBEmFtCTST9Zgc2g4pJlQjTOPYBpIK51rX10tsAidPFRRwfZjYntU66gmmY+r/ziR6lyOJrbe2XsNmBJA7iJHg8nvilUZ2UosLuiD5bpYxRWb26omx5WKUomcg2mYIL0SokhlRZfjXS9R3yICjG7ThLSSqa3CQhyHOWK29blcDrNnz8bjjz8e2P/444/j6KOP5taZO3duTfnHHnsMc+bMQXOz+LMql8vCXFsAUCgUsHHjRuy9997K43dWN8VISgWV5JLo9cxrZVOBwCunQzqpTxT43tx6rjQoQ5Ihg0mpEVIbrpKFnuvBeeCtwrbqNSnYVFvJoHKuNu9xabi2OqBtXiOFy0VR9sahuhoR0LX1gLP3scNNn+SgQ9eiqK7YMDkCW0ouduYvIFpEiqt+8BVXLXQldmJPn5OIvJOdmyzsTpcso0mvYkgdFTLJBmkVBaYkZop+zwk82y9ZsgQLFizAnDlzMHfuXNx+++3YvHkzFi1aBABYunQp3njjDdx7770AgEWLFuGmm27CkiVLsHDhQqxduxZ33nknHnjgAb/N5cuXY86cOTjwwAMxMDCA1atX495778Wtt97ql7nsssvw0Y9+FNOnT8f27dtx9dVXo6urC+eff77y2FP0STmoIqkJU9Ke/jjzWtl+6JUvlT4grcsjrWyHG8RJXqUpZFBcZwSECzriatggyTBBW4hzVT9dtVWcORNV2ifg2fYsqotwRAnTlo3DRq4rXp82w7HDYDrmNIQLimCtL0dcxQiTiXIjT53qFUbFEk1RVIyi/FZR2gwjelCrcKHDAgl5RZdDE7WDB5JonpffCqgSUKrnRYcJ0vto6Hz+PLWV7LtvEh4YhbRq3AU6pEjg2f6ss87Czp07cdVVV2Hr1q049NBDsXr1auy3334AgK1bt2Lz5s1++RkzZmD16tW49NJLcfPNN2Pq1Km44YYbcMYZZ/hl9uzZg8WLF+P1119Ha2srDj74YNx3330466yz/DKvv/46zjnnHOzYsQMTJ07EUUcdheeff97vVwWNbH0dGJg8IKVFbVVP0kpVgaAyDhshD7KcJzSiJEyXtaty3HRSkwbVVcMRVCKMAobDaTiIYT/0Ox1qK5u5puLuS0SiqZBReqsEhtulMAJLp2+2L127aHp/Mb0HjGjVlbP1KYKbNqmDJZh4RIOM4AgjbaKorlTqDVa7rwnNKtYqrloqQ/JDBYFqcnb2PExXExRdLzZMMGp+K7ZuGKlkI6dVVDR2bisfCdn7xYsXY/Hixdxjd999d82+efPm4aWXXhK2d/XVV+Pqq6+W9vmTn/xEa4w8OAtcZ6T1QaxRJvZxJgZuBMRNXqUFaR1nXVcWzELv5qa5KpWDgwhJq59E++MMPa8tnzWqxwOxG6aqoLSESdd7ZVXbSFplpgxdWw84e68E3c8z6c+/EfP82FztT6UfG6obsqogUFVBCUDUVXRydkJataPKpQWIq0EEvzt0gvUw4o78lZVjwwR54OW34l07VgGlorbSIa3o8dkMERxGcM/2Urjk7ClF1JxLNEyWBRchTWqrpFezMukjDKpJX2Xec1lSWZU+TJOjJ52oXXccJgl1Rf2HXeO6IOYEjg5mSIJgNbG1Sait0qa0inIfjar05dmMTGVUNsC2o2vvbCVEt2lnw47p2vphsxiHia139t4y0nZBVSb6aVCgyMZQ7/HRRE9ISB0bIohiMJ9VO7UFFFck3E4U2shTP7Hhgiqgk6mr5LfiQUQkydoyVVpFJa2GaZgg4Gx9CBxxNUxgc7Jke+I1HEgreh973JS8kq0GJcqDJUKjkVcmsDk5SMMqVpGRMdgcUodGU6yY3h9Mz9N2CLzdeyW/nyxjy1Xta73tkihHl+n9xfR84r4O9b7O2jCx9c7eW0Rj2ej4oUs08AgNdnVAkz7C2mWRZf6K2qTsGR0qSK8aSBRXPNJKaWVBdpwqpA9bhm6bJqxUyDgVBVeWea0zNlm7YftMUG8S1CKcrZfCWWOLSGMoU73VVo1GWjUy4gwbtJ3vKqlcV2kMZbEW9piHngUfxg6qRoAuwZ2EulZXbRWHqtakv3rlS1SpFyStitRrNndh9DBu1u7p2jsdW2Q7PNE0x2LcYZKpzKWla+sBZ+8dUgZdYkFU3tZqgjRE0pWivBh5TRNXPUy5YivEYY3syn6A2qqAvHxYrKqLPheajBPlt5Kt9BcWIsh+VjTbxwPZL+tzBBsw92wvhVNcGUA/N4ZZLo2o7ZjAzLudHo94VNJKZzUrWw+3Ot7qME9xVOWVvK654ku3PZt1bPWhe46xj9V5ZUYkGslBAiRHWslCA2XtqR4PKxPlcxHZCjMbGe0p1rbC1nZouK3+G0p15RRXdUS6HF/qUFEjxTXj1SGpSFnTsaiqiAhYNZLi50uTUS2An5ydVl2xaqssqcj2RYgkXlJ2EcLC+1jVlU4bbHsiYomGaNyi/WHXm90v+1x4BGAUsH2pqsBiUnk5Wy9Fo1rkYQFbxIfJA76tPmSIw2sZV1LgsLZ1ykSBigc8auJe01X/TGGiekoiGbutPmypurQ9/SMwtt1BDFv23vYKgyZ9iRCXEibKucmUo/RfGjq/dbY+2x+vLRGJo6p+jWNFWRPUS3UlHk+dFLzO1tcJ7qLXwmYSbZOJP+8zUSHkeDmVeG0V+W9rcgoN8hVXLWw5kjmbJGmXgSaMiOpKthqhSugjAS85u6h/MgaVtsOSvYsgUoep9BMFaUkCL7lWzt5L4RRXDj5sqq2SDhGMi7SymaQ9mMskWlL2OJVXSea7sqm6spmkvSHgEjg2PBpNXctDPcLBdfqx3ZcOahOol4zuA2wbprBlC22qTxtK+VQvmNh6Z+8d6oowooFHeNQrTxEbZicYB1FbZZn3bH6rmt8gTwklUl3p/nCbORsNNkyQB9ZghJFWvHZU7i08JZdOHyMEztZL4Ygrh1DY9MA3Emklg1jdkOG2R3vf+SGA9icwaSOvdNtzE5oQuJvbiEPchFYack3ZVhBHIa1Mrzdru3Tsu4rdY8vo2F3eWGyGpSe5ymDUvhtmFVlHXNUB7gLGBxlBVRS8tgGiYgL1V7Z6HjVO+nfVUinLElftCP72/K8Q2y7JM6Wyuh8pT/8lJBh7Pmw9URilKESRJr50VFBhn1OcKifbYYIpgLP1UjjiKmWwlUTXZpigLmxL+OtFWrHHdCY5NvOdRHmoj4u8MkESyidbk6mGmNCMgl4MvLP2dUPcYU22krJHLRsVaSKtdPpRQZSVXeuFJFdy1e1Lj6yrX25EK33r2npn74cBokz2dVfbU4XJaoJhq+fVQ1nDI60UqgRyV1X+EqVVO4CWQYniSiXROo84Urn3sGopGYEVloOK1x4N1c9LNG7dEEEWUb4vpr8p2ThNflchddyzvRQj7HQdRLC5upS4D30PfFpIq3ojbeRVvVVXtiYiaZwsKsN5ZRwswma+Kdu2XrePsPZ0+mLPk1bVhq2KJwOxk6aEfhKqK9l+WZ82Q8Oj1Bs2cIqrhJH2i5eWPD2q4K2exyvDex0XWAKFfOaSvmnyCllGcTWIUS0DtQKoLFDNc0WDVT3xlF8qn7MoRJCA7oN3bixZluXs57Wtq7Zif1M6v7EkQ0jj/m0pnIuz9VKMsNNND+L0wKdRbRXXKoLiNu1Oauh99DmSfkwmH+Shn7RHJ37VTZgbNWG7CUwS+CaR3LYeiXvrkrQ3D717rHNTWEOcCczjVtfGrbaybet551cPpwRPgZthbDgLj+IyC50zGWdcts/mYhlR7mMsRInpdWyxbgL4hrD1gLP3DiHQtUtxTOhlicfjgoiwCkENUUCFCo4Fmtv7kG8poCc7urZskTRAICLxaGUW+SvKT8Ubt84qgFlmn0xlZQv1JFx5fduy44OC9nnlFOCe7aVoiNMtFov4//6//w8zZsxAa2srDjjgAFx11VUYGhqS1luzZg1mz56NlpYWHHDAAVi1alVCI64iTuWOrbZtqa1MHpjjyGs1nJRWLOJSXsWR70q3r7hVV7ZVAGp9xqgUcF6ZhkZdVicTwJbaKom8VmF92AsPjO9eoJrHit1U2smiFNjE7aurrujx8PpTbV+1nzjQ0Kotp7hKEI1+4eqV4FwXYUqgOBK289REGlVbqI0oriq5rdrae5EjiitWdVUD3rmFVuKAhAWK6pA8WrJcWiKVFQ/suGXJ3kl79Hv2eFSk6bsepibUGKuz9VI0xOlee+21WLVqFe655x4ccsghWLduHT772c+is7MTX/ziF7l1Nm3ahFNOOQULFy7Efffdh2effRaLFy/GxIkTccYZZyR8Bmqo5wpTqn3a9MA3Cmkl3m/n5yP27PI9wXEpr2SeZJM+Tbz/JuccF9K2FHsNMtCz4HKe32EEwAZxk5SDQrefuBKth7Uhst00UUJsBiFzSDu6tsTEDrLK3rj6sGXrbZSviyoqTujaesDZewdDNKN2kh1G8uh+OWWkVVjidpu/azrMrgjpeRKCwA8VbK4SV2PLaM33VsvR5WuGy1NQsUSPyrgHqdeiPmiIErLTbcYJnaTvou+HqSIvTrUVDUtEmnu2l6IhFFdr167F6aefjlNPPRX7778/zjzzTMyfPx/r1q0T1lm1ahWmT5+OlStXYubMmbjoootwwQUXYMWKFbGMMS1KnTjDRpLqNw7SypYnPm7CQjWsxMQzTpCk8srmylNp6jcqrHj/MwabAW655RbMmDEDLS0tmD17Np555hlh2YceeggnnngiJk6ciDFjxmDu3Ll49NFHzToeJrBhM+JchMOecteerbd9H1M9R1rflCSIXTJZUVDVlvBsookK1eYqfzbUtDaStKd+MQ4TW2/wFXa2vtHJTtHEOcqEOqnwLt5qgjzSImw1PBqicDyZTIUO1WPabClTVauKq1HtvWhDH/IYCDYf6IJui6dYYvtlQwt54wwjvIjSJ4ywYnNcsYPn5R8zVVslDZ3vb0pyxyX0bN+oaAji6oMf/CCeeOIJ/OUvfwEA/OEPf8Dvf/97nHLKKcI6a9euxfz58wP7TjrpJKxbtw6Dg3wjXigU0NXVFdjSinqEICaxgmFcpJVpn+oTHr1zVX0gjjKBSJq80u3LVsigDTRkGEkCcuIHH3wQl1xyCa644gqsX78exx57LE4++WRs3ryZW/7pp5/GiSeeiNWrV+PFF1/E8ccfj49+9KNYv369wQmOPKQltLyetr4ezhcbZBWpT9uSDOTheraQBvLKtrNANTSyHkjcAZJAqKCz9WlCvSfQYQm/oyAsRDCsDgteUnNVkB9KSD3/N1WsVVy1AB1ju9GG3lr7JP0dhpFRssHw3usSNOznGyfBVC8SS3RN6k2mhcCFCkrREKf71a9+Fbt378bBBx+MTCaDUqmEb3/72zjnnHOEdbZt24bJkycH9k2ePBnFYhE7duzA3nvvXVNn+fLl+OY3v2l9/CySDjNKUwiiab9pJq3iRpTQQJME6l49/VCLeoTzyfpNOqQv8fAU3RuWgZz4+uuvx4UXXoiLLroIALBy5Uo8+uijuPXWW7F8+fKa8itXrgy8v+aaa/DLX/4Sv/rVr3DEEUfoD2CYwsb3JGm1le0QQZ0+otzD4rTxURKJR7GXuot3mMJWm6Zh6HH12XAwmZxo2ntn64fJd0UJ6VCeV8FTWMWdv4glNUSEEPU2WwKyzTWKq9Z8L9rQ69mxLFO95mvFU0DRuaq4lTigCTdeeZ3rJ+ovC73viq7aiheWaitMUJfErDdZTCGBZ/tGRkMorh588EHcd999uP/++/HSSy/hnnvuwYoVK3DPPfdI6zU1BZcgLZfL3P0ES5cuxe7du/1ty5Ytdk4gAuKeWKj2l4R33CTXSVykVdg4ojwQ87y1tLda15ubtPIqiZDBOFVXOtc3LR5+Lgy9MqyqtFAocJsfGBjAiy++WKNcnT9/Pp577jmlIQ4NDaG7uxvjxo3TPj0HD3GuVGijP9vh4Or9mpNWtsMB2WuQQTF5VQ7U7JWO6krWpo7qKm7EGS6og9juFxEUVyr23tn64YA0JaoWQcUmRl1pUCWEjl25j0BOXjW3DFCKq1afuGpDH3IYECuuuLdI0XmpEChh849B6m8R4u8GPbgwlV3U/FLsmOtFFDUAQe0UV1I0BHH15S9/GZdffjnOPvtsHHbYYViwYAEuvfRSrheIYMqUKdi2bVtg3/bt25HNZjF+/HhunXw+jzFjxgS2pJB0TpJ4Q1L0f0W2SSvT/lSP81BUmAyZPthGIafCYJu8MuknKpKedKQi98ko6MXAV6z9tGnT0NnZ6W8iO7pjxw6USiWucpW1rSJ873vfw549e/Av//Iv2qfnEC9sOEXqFSIYlbRSBRkTXUd2TzLJUcjaEjbUUGdFQbqOLmyFiNtcZTBquKAN8rAhbb2mvXe2fjjP/NJKaEUZF/ld2yA/eOF5HAInC2R4oYLt/WhDrzhUsAYskUSYh7A8XaLrxdYJK88bHNuGyXXVUVsllQi+QWH4bD9S0BCn29vbi1GjgkPNZDIYGhLr4+bOnYvHH388sO+xxx7DnDlz0Nzc4F9qDdggxOJe9cnmSoUqbZqQVuJJlfrYdZYf112qPOx4WF2Th3Nbnus4VVepmHTEhRaDDcCWLVsCytKlS5dKu+EpV0WqVRoPPPAAli1bhgcffBCTJk3SOrVGRJJhZ7ZJHpOyJu0kQVrJ1FRR7jUseVUltcT3Ir4dF9m7IvW6lnzSt6tiAktGLunYY1u23qStKEi1kpYHE1tvYO+drW9UpJWcoiH67cvCBFXzYZlIT9jyPPVVc6BoNluiqnnEVUt7LzrQXVFcFYPVa4YkI5/ocEERGcXWCTtf3jUPO28ZwhKzs+CRWKr9mXynw/Kyia5XyjgBQ1uvC53FOABgzZo1mD17NlpaWnDAAQdg1apVgeMPPfQQ5syZg7Fjx2L06NGYNWsWfvSjH0Xul0VDEFcf/ehH8e1vfxu/+c1v8Le//Q2/+MUvcP311+PjH/+4X2bp0qU477zz/PeLFi3C3//+dyxZsgQbN27EXXfdhTvvvBOXXXZZYuNOw0Qmaru6/emGjZgkY0+atArrn62js+w4DRWSpR7klS1PuWkfqojLEx91khPbJEnXA1/5WrKq0nw+z21+woQJyGQyXOUq65ln8eCDD+LCCy/Ev//7v+OEE04wPsV6I6qtjBq+HZcyNk61Vb1IqyRWA4z6eUYl0k3ILJMV86IqbU0X/1DtMw1hiomGgprYeg1772x9mpCySXQoklCrqaqIgCrxozouEdnBtJEFci0DQAsZQyvQArS196G1orjKouRxOrRp4JJX9Hmw+a1Mx8v2wXvNEki81QRpqNo43dxWIoSRmyyamU2GBiGtAGNbrwPdxTg2bdqEU045BcceeyzWr1+Pr33ta7j44ovx85//3C8zbtw4XHHFFVi7di3++Mc/4rOf/Sw++9nPBlab1e2Xh4Ygrm688UaceeaZWLx4MWbOnInLLrsMn/vc5/Ctb33LL7N169bAic+YMQOrV6/GU089hVmzZuFb3/oWbrjhBpxxxhn1OAUfSU5k4lJbJaG0MiGtwiYupqRV1M/MPDzQbPIQRl6Z5LyySV6J29FRpCW7XLp6/QQnMzHHwedyOcyePbtGufr444/j6KOPFtZ74IEH8JnPfAb3338/Tj31VL1ORwDiShgdh9oqCQeFTvvi8ioOh3hJLRbE7shsrllInz3ySl5HP+yRRlIh6GGw4aSwTThqtxkhx5UKRratb/QwQV1lStoSs9Mocl6z5yc73zASgpcUnX7NEjlBxVUmU8KoloHKVyYLZIGOTDeluKJ+09zfINs/j0iix6Tz2Q4iSIqprMRomiApK3hNv1dRWyWlFGyw33jMz/ZAcDGOmTNnYuXKlZg2bRpuvfVWbvlVq1Zh+vTpWLlyJWbOnImLLroIF1xwAVasWOGXOe644/Dxj38cM2fOxIEHHogvfvGLOPzww/H73//euF8eGuLT7OjowMqVK2tWMaFx99131+ybN28eXnrppfgG1oCoR5JeXdhevSqKyoodC32OtiZC9KpKtStP8VdGIjfIOFYbFNexs0qT7mp/OmOt18qGdUEGehbc4Hl1yZIlWLBgAebMmYO5c+fi9ttvx+bNm7Fo0SIAntL1jTfewL333gvAm8icd955+P73v4+jjjrK9+C3trais7NTfwAjBEkuwsHrq155E3nnEjcppooo19mU6DC1saZ2j4xTZ3VZnRUNTVauVW2ft0/n3tJQ9wpdWw9o23tn64cj0hpCGMe4RAnXw5Kgi2b+FSVUtlosjwJyLQX0Z0fDV1yhFx3oQR6F2u4CTcsSpMuUSqLxywyCiPRDSF88yMbNa1cEk5BEG5CdZwrVVoDxs31XV1dgdz6f5ypsyWIcl19+eWC/bDGOtWvX1izecdJJJ+HOO+/E4OBgTQqmcrmM3/3ud3jllVdw7bXXGvfLQ0MoroY7opIBOg///P7THzZi0kfYMZXjUZDEQ3EUdVUSnvI4Qwajqq6iqqPqnj8rAa/MWWedhZUrV+Kqq67CrFmz8PTTT2P16tXYb7/9ANQqXW+77TYUi0V8/vOfx9577+1vX/ziF6Oc6YhEXOpaVdhKyG5DyRqVtJKNQbSpIKyc3JaKE7SHQRQ+ZxoqbqN/k7aTUqjWY4VHq4hZcQWMVFuvazdVw5Lihk7oXKNBFObGQrZaXtTPh3zGTYHfUwalap6rSo6rDnSjDb3IYSDYhPA3yFN96YQ2snVF7auSVux3Oso4ZGqrMMRhoxuQtAKMbX2cCy9t27aNW75YLGLHjh3+vt27d6O9vR25XA6nnnoqbrzxRpx44onG/fLQEIqrkYg4vOJJJ+ltdNJKpraKCt18TPIEwObqqrg95SrjU0GSqisdRUFdoRvbbjj8xYsXY/HixdxjrNL1qaeeMuukgZC674EAqvcQGwRZPfJa2SCtTFBCtoYIEdk9E4hIFtX7j4m9B8Q2X1UFZtK2SVth5aKqroaFrSd1NOFsvQy8ldfqSRw1Emllg5QgbWThnTuPeMhSZWmbxQtBFNVl3lPkQA4FL89VFgBagSzQij60oRdAxeazOa4CYD8zmuCRkVD0mNhzE5UVgSWXVKDz+dlOvm763WlgesPw2X7Lli0YM2aMv1uUv5ZAdzEOXnl2f0dHBzZs2ICenh488cQTWLJkCQ444AAcd9xxxv2yaOBPNj1I3UOOBtKwklUYTEir8Db1SKuw+iVkpF7dMI+vLFyQ1I9CXqn2TUN3sqGLqBMlr2wKJxmKiDx2Xa+6s/aJIo7fTlR1bZR+RND9DttQckXNaWXzs+ERH2EwCQlk65gSVLbIK13SJ05irF5QvS6RYaKYdfbeIkSTcdvkVYpVIHVFGHnBKpZoAguQ/xiI2qiPsw8B4iqLEnKZQrXNSqhgK/owgFxtl4FueeQZW6iZU4aFCmklU1uxr6NCpK4SnVcSCDN+Kf+dGT7bkwU4wmCyGMeUKVO45bPZLMaPH+/vGzVqFN7znvcAAGbNmoWNGzdi+fLlOO644yItAkLDhQpqIsoDSaNMZOIMUbHhgZe1o3I8KmlVL6iQXybHZMd1Q/pshQzqtKGKOMIFbSP2hL0OdYUqyR+HujYutZXOGHTb1h0zWaDDNnFQghc+SMZZQjbUkSDal1SIcVJhg0m2rYphFxqeQKiggwgpn+QK0UiKLB2EJR2nPy+Rkold2Y8uT71uQW2oIEioYJtPXAVCBUUiKf/gIHWAHrPoBzvIaVQGnbxWUUNfeSpEXj9hoM8v6vc2DtIq4XlCzLbeZDGOuXPn1pR/7LHHMGfOnJr8VjTK5TIKhYJxvzy4W1sKEYdXMeqkJc58JLZyqYT1E3bM5lhk10vlAdjUO23qabc5Fhshg1FVV/X0zttKYh+KHAC5EjiIobgG4pA2JUgUxJkwPep9JIptNxtDco9IKgpXHdVV2HFddZSOukjX/kZRdI2I0HBdWw84e28FKpPceocMDkdEJQpEyqVBqE17syChgFXyquyFCvq5rIKhggXkPJshVFzR35EsquGOPNLKJIdZWFk2RNCEwKG/6yxBKKvDIq7fS5xKK1GIZgxI4NledzGORYsW4aabbsKSJUuwcOFCrF27FnfeeSceeOABv83ly5djzpw5OPDAAzEwMIDVq1fj3nvvDawYGNavChxxFRPU82+ofQS89hpJbWWTtDLNeWKLtKLb8UIES1Q5JkFjCOgHZPZhOS7yij0HlXq2yCudtnmIOqGIMiGLkk8lFeEjzto3NKLY+yRzJsaV1ypqrivZGGSw+buNi3gBxONMG3kVdwi6rJ/EnAq24UIFHawgXQpzNeiOWRSyxpIlYe02eaSVT1wVkUXJWz0wC5BVBTvQjVb0ohsd/GYCOa/oMRDCSqYKC4MuAaRCWqmEZdJgCbF6GZ4kwgOj/H40rksCz/ZnnXUWdu7ciauuugpbt27FoYceKl2MY8aMGVi9ejUuvfRS3HzzzZg6dSpuuOEGnHHGGX6ZPXv2YPHixXj99dfR2tqKgw8+GPfddx/OOuss5X5jOl2HRkMcaisboR1JkVZxhwbS5FUY6HJRQt9I2IPoWplOZuImr3QmM42sukoEGSSSnN0hPiSlrlVFXCvU2lbVhvWn1watYAp/MJXZ+yxj33VtPKvGteUsMHVmxGGXddpNSnWVeujaelLHIQJ0JrpOdaWHsOsViK+jQFRKotxVLAnEliegV94bBNDKGR+qpFULgGwJOQx49jJbKdNCVhXsqw0VrDGRvPOhw/RsEys0oURfFx7BFFcCdBVCzkaYoK7iqx5QybdWQULP9jqLcQDAvHnz8NJLLwnbu/rqq3H11VdH6lcFLsfVMEIckwAbYSM8NAppFaa20u2PBxmZFRZWGEfeK5McJTr5Q3TyXfHajZrratjA5TwZlrCtrlW1U2lxUMSRn0s0jlr7Xs1dpXJ9wxwHUZGtjEgVceQ5jKvfJHJGRbmnqDujElCxmNh6Z+8bDDYn2Gkj0Wx8GU3URTxVE8kzFdIeIawq5FVzy0AlVLBQLdMyWCGueivEuyxUkNeBSKVUpP7yQvN4ULFDqqoo9tqoElRJG52wi5wW0oqGwufkbL0UjrhKGaJMMqK0l2TYiM1wjSRJq3ohbeSVzjhsth/ev9rkI4nJTCLIQO/G5jzwiSGp1f9q+4j/Q7atcgprO8r9qoiMv9kcH9t/CWYJ4Yk9CbMrrM2Sr2Brl7yy4VCIQgKp2uEkbHPdErTr2npn7yMijRPetMI2cRt27WlSRdQ3TVqJko8XqY1D1GQBtFe2FiDjhwoO+L+x5vY+PzG7bxtE4q5AknV6TOy9hoxF57rKrgN7DWw8h6iwJbpqK5Mx6PafFoSct3u2l8IRVwmhXhOZKIgrbERcXk/JlTRplVQogurkIVgnOfJK9+FdZ0LRiKqruq1W6LwyDiGIQ22l2o9uu+p5IcXlaKLKtmNCpL4NG3dctioKeaV7P4jLLjfCSq+pgFNcNQDSPFFuFJh+aXm5o8hrXtt0qCAPzVW1VUVxlW8ZCIYKtgD5lgJaK6sKeq1mqjm8a04lbBVDU/Dspahd+rrofl+zzF8CUxWX7nF6HI1MWinA2XopHHE1TGB7mfW4Vn+yETYi2x92TDaGsLHo9KELlQf+RiCvRGOI6iFXncxEUV01HDIGm0NqEMUW14tYt2HrVduV7Y/aXxSoElU6tlAFuiSPiroqDkVsUm2OKIWtia139t4hMcSpnDGdlROlET2zJ7m1yFZEUAnFVKfIq0y2hAyK1VDBrLeP5LeqsRWkS+6laWY2FqJQRras7LrTOa1EZJ4peRVWX6Vd1e8MTZipfBcanLQCnK0PgSOuGhC2H9CjrIAYZ14r26RVFC+8jUmhjVwlKuSV7TASW+SVatuq18n2pKLhPP3OKzPsEDf5FEVtFXcOQ5X+bJBkOuMg/dm457JEEWtvTO1ZFPJKVkYl36IuOReFWGokWCe8nOIqQdRj4jsMJtuhCCM9wq6B7jViw+TY+jSBBdQkNmeIq1ymgDwGqqGCLUAuP4A29CKPArwFIrJ+dR9FACijlqihC5GxCUg0Y6gSTTzorC6oq7Zi2w5TW6kas0b6HUmur7P1Uoyw000GppOPOHJPmbRvY5U99bLJkVYm41CFzsqCQLQHW/KgLzsn2cpPJqtP2VjaPPqy72qrWdlcYcrmClbWV77KAchrlG/suWBqkYbVzOK+d+j0m3QydhukEt22im0Os/cqOav4KwZW6+nYW1N7r1NG1L/JKocmiLLCYNTVEW0g0vXQtfWAs/cjFvVKzE5i5GxCZbXGQU6/tNqIl8OqyGw0eVVpqyW4ZUEyGZb8423oRWslx1WgaVSaKbI7B6mD5C/vmvHK6yqUCNhVBW1A1haPIIwbjURYKcA920vhFFcNhnqFjUQNRbSR66RepBUvEW+U9kRgJzu6CXtr26uf8ipqyKBt1dWw9PQ7r0zDwNQm2MyNaFttFZeDIu7wQBV7TydbD1tJNiqSULqG5bUS9RfVbsbRZr1RlzBzp7hqEKR9Ah33lyJOtZBqX1nOXzZkcBD8kEGC5qriqpKcPQdvVcE8ClXFFQroQE9FcUWNh+6qSPdXaTvwlz2uSvTQ58/WkZFVqsaBlAlTxsna4p2LrtoqDCbhjik3kM7WS+GIqzohDYnZ6xk2You0kq3mFBYaSC99Li4jP8+o3v4oeakAIGy5dFnooEmOExvklWq7jZSovWEmMw6pRRqUummw9aplbZFWuteK9KuzkqB5GKDdMG2TxOyqiGrvTevZzE1l2lbsJJsjrhJC2omnRodIGZVlyuiQI6J+wkIFidqqD0AvaggUQlpVtjy8UMEcFSqYx4C/qiBA3Uto0qqfvKDBI6945VSgEmYXdUVB0TXUJa1sQ+X3KjOKKTWSztZL4YiriFB5cDUlN9IwkVFtX7Q/btJKhLgSsMcdfmP64ByH+iou8iqO5L0qbdmePIbXC38IiXTOYckaeZtDJNiy96btxK22st2eDVuvG44o2+JGHDYmjhyDOk4LHUVsFMdC3KqrRlJ11cDE1jt73yAYbmRZlN9UXHmuyEbq04QVGzJYqcMQV0Rx5SdnryiuPOKqULUvdHekWW7uKvZ+xCqoyHuVc6aJKZawE/UXFSaklU21Vdh10VWWpQjO1kvhiKuUIK0TGd0ktmHt6dQ32a/Sr2qoSBhIP6YTQPLQbIvgSAN5pdqv7clMUit1Re3PKpxXZsTDlFy3HSIYl623kUPLZCxhoMcgzzVoJ++hCXkVxY4lQV6lVXWVSjjFlcOwgYrqii6rm8Rd1Bcv91IftTEkSkVVRUIFvSTsA57doxRXrZX9bP4rABRxRYcisj9OvxBqCS4V4km2sh9NZPFAhyfqJIZvBNKqgeFsvRSOuBpmqEfYSNTJRVKkVdTQwPDcVnbCRmSTCRuhgyb9qu6PYzJjGoY37CczGejd2EaYV6aREKeSU6XttNr6KH3pgs1txY5L596QQdHIbtkkr8g4ooajy8rZVl6lwVFhw0lkHbq23tl7A9hSPqVdQZXELNeGkjEsLC3sPMhxWnnEqq6I8oqQWFRydpq4qiiuMihVQwWz3r58RYkV6DZLddEP8Eka20nMWbWVKnQ/Kxvfn7hIq2HC4rhneykccVUHmIapmbSj2raNlZnC+60vaRWGKKSVbUTNQ5JG8som4p7MmLSd+GTGeWUaArZC1GzdN4aDrQ/rS62e3N4HSSuvD5VrJ84pqDZBsE1ekb517X7cjgXb7cXpqKi7w8MprhyGFWRfTp5CKAoZSH4MNIHFJmcnpBWVQD2LaqhgyyDylTDBPBUqmEcBrehFtkQ5lVniyu9Pdj70qoY8mJw/q7bi5agyadMEtkKyw0irYQJn66VwxJVlxEVwmOZNSYvaSmdykTRppZNkV6U/E+jm2lBVX5n0ZyM8MIrnPA2Tmbhyn1idALk4+IZEknmy6qG2iou0shkqrzoOXr86JFYYdFbjCzumRsDLF+swRdxKqaQdFTZQd1vv7H0DIO3qrDhB2+6wcEHeaxXQSdDZukRtxYYLNle7qiiumtv7fHVVBqWg4qowgFy/RzxlUBQQV3Q4YBhpRYcU8sqLVgoU5bYS1VFBlGtPYCtEcISQVoCz9SEYZp92YyJJNY9NtVVcuU50y0YlraL0HScyKIX2HVYmi5Lw+mRQFF4flb7Nytb2qVM/rrZMkGRfXORRzaWggiQWeRlhqOvnb4C4bX1cDgrbpJWtz023Hc9m2SC8+LZHZu9rx1F7/dh2ef3o9K1io3ntqZ5H2Phl49VtJ7yO+H4aGbq2HnD2vq5oRro/gCzsqWDiBO86mpBXRQQTtRMQ8qpIvae6qRBXbe29vuKKDhXMoIhc/xAAz2b4+a9IF/0AUOacA0GY0soUrNqKhU5/UWyazbxWIgxDGsM920sxDD/xkYE4w0ZsLBlu2p6OaizO0ECdMnHCFnkF8K8X8WSrTGJkfdmcfOi0pzJZULmGUcZaN+h6Whrs9EYKbIWFs+3YVFupQGcFwajhgfJxxP9FLyELW6pMVRJJ9bjM3qv0q9JPPUj7OB0VsZJONmDiVXf2XgMjWfkUF6h8UULQBBpNUtF5qEg5wHyGzhsHaYusLkj6rzBPFHHVmu9FK/oqiquifyyPATQXgHKWUoXWKK5otRWvf3Y1QXbcrFKLvSbkmIraapB5HfUeRodexgnR7zPFNjsK3LO9FC5UMGaYTIZNHsSGa9hIHKSVamigSd9RECWEI67QQZ1QO9UQv7hDBlWvly7M6sTo1XRx8KmDKKwsShs8mNwjbIabq56nDdJK574S9d7pBdIFNxsIT5Autr+m+Q7JQh26dt92viuVPuIOD7fVtu02NDpz9n7Yod5kWVq+IOw42PfNgtcsOKqpmlA30cqC3agqr2pDBdvQR+W4ohVXJWAP0NTv2YMcBrw6LaASs/dRfYnGPCg4Lhq3CCorCbKQ9S3rJ2xMcYcIpuX7GwOcrZfCEVcJw8ZEJskkvUmQVqIJh23SSoewSpq0IjCdwKiWs0lexT2ZEe1TacukHXacJqRT6iczDg2HJNVWYe0C6jYwadIqrVBPyi7POxjXarP1Iq9M2jIdqw1HRRwJ2pXvF464akDUm5iKA2xSc9tgSSqWeKLLqF5fmvhp5rwm5BXJcUX12QKgfRBt6EUreqsrCFZ+XzkUgAKAEmWH6d+ev6KgLFRQtOKgjBxiz0FEbvH2RXGmqiZ4jztEcJgbN2frpXDEVZ2R1AN30hOZKMot2X7ZcuhhpFUYTD32SUKHwBJBdxIjay8J8kqlLZN2Gh4J3dxuueUWzJgxAy0tLZg9ezaeeeYZYdmtW7fi3HPPxfve9z6MGjUKl1xyiVmnwxQmBJONNmypuOpt6+2HsQfVVvwywT5LpYxwLHEjjMAKg8j2J0FeqdRTgS0Vqw1HRWJwxNUwQ1pILZ0vCY98sEVgyVRXPFLG5PqJkpqTPFddlb+U4irrJWZvQy/a0OeTV8iWK0VKHjlVJLa56JFdpFlfccUjcmiFmCx5OxsGyBJ47DGR2iosTJB+zyP4VK+5CmlVRO158yD6zNIElsy18Htwtl4KR1xpIJncGW4iY0JaiaBCRqkSVknlQFL1Toc9+Juqr5Ikr1QQl+qq0b3w5VFAOaOxGVj7Bx98EJdccgmuuOIKrF+/HsceeyxOPvlkbN68mVu+UChg4sSJuOKKK/CP//iP+h2mCPUgsW2EGpo4KVTsc71tfT1zENXcY0sZ6pjauGyuZhpFfQWYq6JEfdtSS5k6PeJSXdmG6Ri0bb2hvXdOCttQVcGkHWGTcdFxkyTgstBAHsFFl5GRMbz+CMlDVFdMXq4WLzF7K/r8MEFPceXlucqg5HMvGRQ9UqulzBBXhMwQkVeyEEHRvUWFsVBRW4V9rirfVVkbsvDIsH08pI2hiSe3VxLP9oCevQeANWvWYPbs2WhpacEBBxyAVatWBY7fcccdOPbYY7HXXnthr732wgknnID//u//DpRZtmwZmpqaAtuUKVO0xu2Iq5QjjomMyqRAZ/JhE7ZJK9P+bPSvAl3yqLZcdPWVTv+2H/5NPf2mk5kwNJIXvpTV33Rx/fXX48ILL8RFF12EmTNnYuXKlZg2bRpuvfVWbvn9998f3//+93Heeeehs7Mz4hk62EBceRbTQFpFcUqI92cDm2pfSSMs95VJzkNVG1rvsO60IMzJYOtcTGy9rr0fuU6KuImkZuirVtIE1cl5nOFgNEGV5RxnIbIzLNlD2iWqKyDwOWWBXH7AV1zlUPB+81nqd13ytiyxuRVSqyomYlVFNIk1yPylxyUCT5Glq7YSHYuKMPuu8zyt+1thf2dx/9Z0CTt1JPFsr2vvN23ahFNOOQXHHnss1q9fj6997Wu4+OKL8fOf/9wv89RTT+Gcc87Bk08+ibVr12L69OmYP38+3njjjUBbhxxyCLZu3epvf/rTn7TG7ogri6jHg62N0BNT2PbAJ0la6YQFmpJWqg+tNsgrFfWVrf7rkf/EFtLgha/nZAYAurq6AluhUOC2PzAwgBdffBHz588P7J8/fz6ee+45K+cwnKGySIR+mzZCDcOdFCxsJ4y3kUNQRkix9p3ex7P9pmraKCrcqHbfKxtNdRulD1MHg2r7Ye2YqK7C2g1rM/x6x3MvS4K4ck6K4YJGIMdE5EKY6oolr2yMoRVBYozqLwu0obeitiKKqwGMypaqiqtKqGAOA8ijUCW1apKzsyBqKxFpxSOkeOF7JiF8PDtlW83EnldU26irLmtcpNEpvWrVKkyfPh0rV67EzJkzcdFFF+GCCy7AihUr/DI//vGPsXjxYsyaNQsHH3ww7rjjDgwNDeGJJ54ItJXNZjFlyhR/mzhxotbYHXGVIOKYyIT3GY/aqtFJK1WYTExsPrzansSIkDbyqp6qqzCYKBniQCHfjEI+p7F5N/dp06ahs7PT35YvX85tf8eOHSiVSpg8eXJg/+TJk7Ft27bYzy/t0LXX+uXjUdfaaEOV/IrL1uuqqFQRfo9OJlSBtmNkfUNxWfOwcZu5B0UwUbHG5VBoJDUXDX1bX7X3Ko4K56Rw4ENXOWKiNJGRDqw6SmcMvFUGee1n4ZFXZMtWq2W9BOye2mqgshWQYRVXxaqNbW4ZYBRXLDklIqwAtcTzorxPojoitVU8YW78tuNyTocRd41JaJk+28fplF67dm1N+ZNOOgnr1q3D4CD/u9Tb24vBwUGMGzcusP/VV1/F1KlTMWPGDJx99tn461//qnRdCBxxFQFhD8lhkwbd+nE8NNtaoVC1Xj1JK93k66arFwLBh3Ven+zDu8lqf/yy8klMWsgrFdhK1K4L3YlWVC+86fUpZTLaGwBs2bIFu3fv9relS5dK+2lqagq8L5fLNfscoufA071fxKG2srWIh6itNJNWIsSpYg6z+zwCK0oYt23yylbIYJodFWmAia0n9l7FUeGcFGFotDC/NI81LO+XiupKdWVBlRxORHVFtmCbeZBQwV7kK6GCmSxld6gcVzkMVI/10wXIWGgybbBamTtOQqrxwgBptZWM3GNJPPa1qE/RJoOo3ThJKxtIXzqQOG09YGbvt23bxi1fLBaxY8cObp3LL78c++yzD0444QR/35FHHol7770Xjz76KO644w5s27YNRx99NHbu3Kl8fZJxHzrEgrBJh4n33VZC9qRJK1sqqzgTsEdpm35AV5k4ZlASnjN5uOcdz6LEHWcGRW6/vH5U9vH6EfUR1nbYWNk6Ye8bBUPIoAR1AmkI3ko4Y8aMwZgxY0LLT5gwAZlMpuZGtn379pob2EhA2r8jYfbexPGh0kaStj4O0kruoJAcK2WQyUR/6BXZXBlk9hiQj5tn71TtsU17rzIuFibthL0PazMN9wddW+/V8ez9li1bAvY+n88L6zgnBQ8saRKnUsUmVMdK5EEskj5P0XjJ+MjnwK6+J8rpRJMtKsRQEVXF1WBAcZXDAFrR66uu8i0D6Kc5KD/HVRFZOlQQZVQJKnosdGJ22SqC5Dzo8dOfF4/ko6+B7L0JRN8V2/2EJeUf3jB9ttex9YC+veeV5+0HgOuuuw4PPPAAnnrqKbS0tPj7Tz75ZP/1YYcdhrlz5+LAAw/EPffcgyVLlkjHS+AUVyMYcYUIxjGRYRPlqrRDjqmScaqTB7MQnvA6quqhsNCRajkz9ZXOkumiduL0oJvkURmOqOov1Dcd5HI5zJ49G48//nhg/+OPP46jjz7a5qmMOIQT7fp5qKKOwZajIy5bHzdpxSZit3nN4wlZNg8fjKq8Usn9FGanbYUM2s4rpdteEvcfE1tPvtvEUUE23mTGOSlEaPRVAesx1ihhYiwZxSOndJ6/Zav20e21Mhv8YRPFVfUvEypYEU15Oa4Gqsf8/FZsYnbyl11VkFY2sYoyNscVTcqF5f3iqa2ikEt0P2HtpEFt1Ui/Vw9x2nrAzN5PmTKFWz6bzWL8+PGB/StWrMA111yDxx57DIcffrj0XEePHo3DDjsMr776qrQcDUdcpQS63vKoaitbIYKm7ehOZETthiXoDYPJhD4tsEFgyY7FQV6p9GHSTm0dvSS7upOsNISkeJ9cVmPT/54vWbIEP/jBD3DXXXdh48aNuPTSS7F582YsWrQIALB06VKcd955gTobNmzAhg0b0NPTg7fffhsbNmzAyy+/bOWchyt0bVBUe28jRDAKaSWyu7rOCdm4TYlclXMoFe3eM0zJjyj5r6KQV7z6cdhp3j4Th4euvZehHrZf39br2XvnpNBFI02GTcYqIySKzGYbIvKKPcaSN2FzEVFOKTZcsNIHRUjlKqQVUV/lMgWgSN0XisQWlzjEFU1SUQ2HkmqsIgzUe9XE7CpEFW81Phur89n6brCfa1p+e/GNI+5nexN7P3fu3Jryjz32GObMmYPm5uq1+O53v4tvfetbeOSRRzBnzpzQsRQKBWzcuBF777238vhHlv6ujkjCgx4FKhMZk7CROEkrEUzDHVVgK89YCVnuhMA0bERlbGHhg6qhg1HCBlXCVFRCVExCUeJEPcbj3dzUfQ+6oSYAcNZZZ2Hnzp246qqrsHXrVhx66KFYvXo19ttvPwDA1q1ba5bPPeKII/zXL774Iu6//37st99++Nvf/qbdf6MiSXuvq95SgS7xpbPPVhi4buihDXi2KV33biA8zFpk33XCBgH9e0w9QwajQCVsPY66Iujaeq+Onr1fsmQJFixYgDlz5mDu3Lm4/fbba5wUb7zxBu69916/zoYNGwAg4KTI5XL4h3/4B62+04m0TJDTAlkOI15uJdvXjw4ZlBExpG/eeHn72NxR2UDRDIrIVwirfCU5exalalMl+KGCeRSQyZQoTo9VXJHx0X/p47y8VfQxEjrItsmW56m8ohBJYdfchpKrESG6LtG++0k82+va+0WLFuGmm27CkiVLsHDhQqxduxZ33nknHnjgAb/N6667Dl//+tdx//33Y//99/cVWu3t7WhvbwcAXHbZZfjoRz+K6dOnY/v27bj66qvR1dWF888/X3nsjrhqQCShtmJhmuvEtH1RH2H9hI0hysNuUitKmT6Uq0wu4iav1MZpRl6FIayN4ZbrKombGwAsXrwYixcv5h67++67a/aRuHcHM0RVR0VN8m5LndtIpFWUVWp12tKFSAkkykMo6z8qeUX6kNlU3r4w8srEUaHSjk17HqUtG+NIgrgamU6KKBPM4ZjvyhQ88ioKWJJGRtqogFY80WBD84jiquiTT1mU/NUEcxjw39cqrkicB52cXRQ2SY9H9B1k96tcBxFJxiOydKHzHZLlTBtuhLD931YandIzZszA6tWrcemll+Lmm2/G1KlTccMNN+CMM87wy9xyyy0YGBjAmWeeGejryiuvxLJlywAAr7/+Os455xzs2LEDEydOxFFHHYXnn3/e71cFDUNcvfHGG/jqV7+K3/72t+jr68NBBx2EO++8E7NnzxbWWbNmDZYsWYI///nPmDp1Kr7yla/4bKJtmOQHESGJ1QSD7euHjYS1obMv7pARUR+qSIqwokEmLKYEVhh5BfCvWVTyyjR5rwqSJppskGmiujbG7j1Kqd/cBjAUqT+HeBCnciSelWjNVLVpJa1U2rYF2efB2htZ+JrMuSGzU0mRV2Ewsa1RbWYjOyp0bb1XR9/eOyeFA38SrkIW2SavCHgkDSE/RMouQu7w9osILPovPOKpQkjlUUAeA8iXCshlBjxyqggUUM0hFAjL9hVXvHBA0RjoMEjeObHXgX6vk1yfJVqirsyogkHmtaxP3gqTvGNpgt1xJfVsr2vv582bh5deeknYnorD4ic/+Ynq8IRoCOLq3XffxTHHHIPjjz8ev/3tbzFp0iT8z//8D8aOHSuss2nTJpxyyilYuHAh7rvvPjz77LNYvHgxJk6cGGAI0wCbD09Rw0ZMQwRV2mk00kp30hdH7gtTAiuK+iop8iqsfdW2w8aoOw5V1Hvi48W263hlHHEVF3R+nzrfmXB7rucwiaq2Go6klU21VZIII68A/rklQV7ZIIls3DN0+tVROicdGq5r6706zt6bQ3UiOhJUV3El2CagrzVLqPDe04QN+znxCCteGBsbnkf+UisMUim8Mih5iqv+QWRGF5HnKq6KHOJKRFoNUsdaqeNsEnoRwTUYUkZ0rnQbqmik7/jwgHu2l6MhiKtrr70W06ZNww9/+EN/3/777y+ts2rVKkyfPh0rV64EAMycORPr1q3DihUr6k5cRXkYjjtsJKy+zbxWSSTn1UUS6qoSMtokF+191zkvm+EjZBy2yCsbIYNhExPd+vUOCdFBCaM0SRAHW7BJPsXVry6i3itEZdJKWpk4cUyha/NVk4WHE/Xq+QhF+1WdJ7rkla2QQR3otBdHripT6Np6r46DgwriIqZM8lyJSBKdEEESUqcTikcIK6J26vMVV4BnJ7IoIVP0VhnMwMtjNYCc30IgTBCohArK8oLJFGocBVigrgimKzqKxkFfwzDySpRLS4X0SoedTQvcs70cDbGq4MMPP4w5c+bgk5/8JCZNmoQjjjgCd9xxh7TO2rVrMX/+/MC+k046CevWrcPgIP+HVCgU0NXVFdhsQOfhJ0qYoG3vucly6LZJKxI1rrpf1r4I9OoMUeHf4ASmxMZkiF5LQn1c+itPifbrLJsetk9lMqe7YpTN5clNlnCPYxw8lPxPSH1zSBfSZO9r29cjdnTsvI6tF7Utap/tR7TJ+qjXb0XXrqvU0VkJluxXsfs6tlAEkzbD7H1cK8DWsx0TW+/sfVJIa/gSD7pj1f2Ny4gaVfBWEWTfh90n6ZX8eK+BWkKFXkGvorjq995lUEQOA2guVEMH0V+5/2Tg58LywV1wkdcvj1zT+YxEuatUVnzMUpusDI16ftcb6XcWDc7Wy9EQxNVf//pX3HrrrXjve9+LRx99FIsWLcLFF18cWN2ExbZt2zB58uTAvsmTJ6NYLGLHjh3cOsuXL0dnZ6e/TZs2zep5RIXuxMN+//orZUUlrVTbpNtWI9zskVUqKFUoLdvQIbFUlk5X3R+FvAorY5vwibpUelpR9D9R9c0hfthbedSevdd1UuiSXnEpamXHZEquOO16JlOqLnnO7d+z9bXXNJpSSEQoEZiSV1Hsfhy2NS7iSaW9uJ0NpjCx9c7eO+hDRR0ziCABFAWqicmBcLIqTN0kyi0laLsfPnHlJWQvAAX4SdrRD/ShzS9OnNaBLpVCBUX5pnSImrDQQBosWdUs2OjypnAhhiZwtl6OhiCuhoaG8E//9E+45pprcMQRR+Bzn/scFi5ciFtvvVVar6kpmGmfJJJk9xMsXboUu3fv9rctW7bYOQEJ4iKfbKutTJZDrwdpFYYkySrygJwUwahDYImPxU9eqSixok6Q4lAH8FBPkmsoRFHCbkNOjl13yAma+NRWMqSVtBJ5EmUPaqa2Pc0eS56tE9kd2T1A5rioJ3mlds+Kz97LbLjJvVK3fxXo2npn76PARNkxHNUgKgm/eQSW7WctXdUVSw7pEG0kVHAQ6AGluKrY1X4vVDBXUVwVkPeHEbAHNYInlgyiyTRTsLm7VFVWojGFqauS/o7bsl+NR565Z3s5GuJs9957b/zDP/xDYN/MmTPx85//XFhnypQp2LZtW2Df9u3bkc1mMX78eG6dfD6PfD7PPaYDefiCOvGikzRWLx42HaSVzkQmCmGVljwVSUElH5bN5L1sP6a5SnRzoETJf6JTVyfvVpI5U3QlwunUEgxv2AtnNr9vxHmviMM5ITtmm7DS6TvuujzIyRF1mxWsJ857BdSeg8juR7HNuraefx7m9j4OyK95tP5NwkGcvXewCxkBIFvdz5TwMEkKTueNEhFv9H56VT6GWKqECpLfXQYloERCBYniqhVogUdyQWSveQnkeQSgCUR5pXgg10VGVtHvyTWJmnMs7UjfubhnezkaYkZ/zDHH4JVXXgns+8tf/oL99ttPWGfu3Ln41a9+Fdj32GOPYc6cOWhujs4cJx+mp95fFO+7CepFWjnCKhwqyXuB2mulM4nh9ZNEot0wmEyGqmWTTbRu0p+7uQ1f2PruRXVS6I6pHoraeqmsMhnvF2WirqEnOFFDCE3JK69vNQKLty/qin5RHRUsbDkY4iSgdPsjcMRVI2A4r75W7/PirSgIznsCQpixRJaobCtVpkIsVUIFyW8zA09x5eW7KgA9QC/awP1ZBroSEWm8FRDpsYggUrjxcnaxY+Cp1XjEGov0kTvDGe7ZXo6GCBW89NJL8fzzz+Oaa67Ba6+9hvvvvx+33347Pv/5z/tlli5divPOO89/v2jRIvz973/HkiVLsHHjRtx111248847cdlll9XjFGJFPdVWph54lbGJ9qm0WS/SSpaLpF7hKCohhDohJKrhcSZhg7ZDBuXja2xzX0AzCpWMC2rbcAxnqD9s5Bewpa6NYvd0cxiG3TtE40mStCoFLHL0ZKYqYW3VPrKRSamo5UztvqjdKCF6JvY2KXsfR7igTejbemfvHURQ+V6knaSQnYMohI7OKUW/ZnNOVeowPFemsi9fGPAVVwXkqFBB3jVjw/Ho8bCvCUTJ42m1GJuzS0Ysikgr3thE5ZKCTs6z4Qv3bC9HQxBX73//+/GLX/wCDzzwAA499FB861vfwsqVK/GpT33KL7N161Zs3rzZfz9jxgysXr0aTz31FGbNmoVvfetbuOGGG3DGGWckOnZTD7ZpvXrmOlFpUzQmW6RVkjmsWMgecMm5lFC/RHo2V5+KkvMqrC2b+UtsTazk160+yX51c544BWJ9EQdxrROWrkI02WzLBmllms8qCjmlA/L7ltmAJH53YTYozO7H4bjglbWR70qGuIm0esHE1jt7b4KoE8B6r7omSrCtAhH5oaq20kkQHjdoQoddVZBXRpBzqp+x3yUgUxzy1Vd9aAPy4Oe5AlBNhN6MaKolWT2Vz4cmo5qZ97zVBUcWEZK24DNn6+VomLM97bTTcNpppwmP33333TX75s2bh5deeinGUXmw8YBsmhdLB1FynZi0Xw/SShU6uTFslqP7VyVgVNtWPSfT/CcmuU94bdoOt4grBDHufFVRxzmkOTkfQtm4r5EO1eus+p0wtff1UFvVk7RSGatqeypQqZtBkR8eYogk7BXAz0cYrC8OG48Somc735VufRPYaMNmTkNdW+/VcfZ+5ECmVKl3mB8LOu9VlBxYYSDP1zLCiFZbkd8qeV8G+puCv7sikCmiGipYahPPov399LnSIJ8NTarRiqosask0tmzYZ5tlXocltlcJxbT9nUoLDZGecEj3bC9HWr4xIwI2Hk5lk4go+UpshwiqTGZ0JjI2CCuT60/q1MM7q9unTt4U2SRGl7xi+zMhr2xPZthzFdWNg/RKKj+Wfhz8yLq51Rs2yC6T8DmVdui6OiGCSTgnRO2K2lZpzwZUf9e832UJWegoRUW2XzdvFA8qBJZufsIo+QRFY4yS7yo4drG9D5ZTc1Qknf8QMM1x5ex9fZA0WRRG/EQZD68eS2yogs43FQdEOZ54yiqWNOqr7CN/K+WKzf5vL1sqAUUgW4IfKti9q8NLzs7LcZ4FvHxVfdQ4slS/os+NjI++zmxSedF5NzN/yWseaSVKpk8InLi+x2lWc/G+n8mTWe7ZXg5HXKUQccj+9H4Ew4u0ivMhk5eDo7p5x4rMXhpFZCKHR/DHxU+uzkLkWdb1vqt4vW2TVzLUK4lukihilNZ4ihiKcTQjB0lPWlX61VFMRQkvDEMUOx8+tvqRVjwQGymy38Te23B60G2okFekfxnCnBdeG+ZKJx0HQVR7bXqvsH2fiOseoWvrvTrO3tcPSZFXcZAAsok6e4wlo3iETBKqKh5Urj9RLWXhEUytCIQX9jcH7UMJaOqvKK5QxmBPKzAagTxX/v0gC8hDNgmJxSqoyBiaESSseGXDcluxfYv2kT5ESfD9Ewrpk0UaFX+6SJ7Mcs/2cjjiyjKiJCLXLReH2qpepFWawkVE7YkmIORGpUpAeWMfgMwLb0vhpaLC0lVfiSZGSZNXcamuZOckgno5e+EjurHtI80rkyaY2HtTtVUUJ4WsHZ37hmgc9SKsoqqUZHVpkJxc7Ofo9WHvcUuFnLJFYNkK00s6ZFB0Hqqfd73ILx5M8pg4e6+LNCtB0gBZuF29p5Kq+bXYcn0Ijr0VVeKo6DcVsANEcYVuYNcYYG/Uho77KizSHsC/RrQqTJSHS0ReqYLOsSUKFSTveddORlipEFN0GdXfWL2/T2GQXa/ocM/2cjREcvbhjrAJQPWY6kN6Mt73OEmrtCflZRH0iIcbs3qN0SSRuCh5r0riXpWE7boJfFXbMk38q3qNdEJ/4gCt4lPdHOoPVXtPQ0dtJaun6qRIO2ml8n1W/d7r/C4ylUfKMBum225YnybH6DJhth8QJ3HXtdcyG6lr63VXlZXVFUF2z1CpkwRMbL2z9/VG3ESYTvsmY0lTsnUWIrJEZ5xEsdRHbbWJ3IsVq1/MZPwIwhwGAOwEdgH9lOIqS+xsFh555RNGMtKKTiBPzoENDeSFCoquAU1SyUgrURJ/NsxQFbL8WSLlWdwEVdxqr3jG72y9HGmnNVMDky8G/dAdhwIoarkoKxCq9B+FtFJpT3c8SYA8WLMP2ISIS0OomcwTb6K+MlFe8cak+hnq5FOxrZhSBd1eXOEjujes0giTEycBm5+r6mdpqraylRA+7JxtkFZRbH1S94Isqo+Nwf6z/nkVYSdUUAYd22WqwI2ivIo7vyF7fjbtvew8dEH3qXu/MZmcOHtvE/TnnjYSJwp4oX+m7bC/DVUlVtRQQprwYfeJQIfp9VF16dfgX44ieb7vBnYBvaNb0JLv9w/nUPBIqxbAU1u1oZozioAmedhx864jOcaGCNIJ6FUgym/FCxFMOll5oyoe7V8n92wvhyOuUgyZB5yGDcWWboigbAwq7Yn2NRJpFeb9JROAsGsRV56rMOiE1lXr2CGvwiYBNkNSROelOgFKIhSEhQrZNYA8Mho3+wEnsE0MUb8vqrbfhr2X2fow0ipNdt428azbNi9skK4fpx1RDQvk1RHViytUT6WuLhkX1d6rtqcLW6Hhurbeq+PsvR3ohFUlBduTfBnRU6/zZFfTY6GSrFwEOvk5IatIniuKGKp81L49qFTxQgW7gB7vt4msR1wRRS5fcSWzA0Vmo8cnSszOW+2PBk91xStnChnJlTTpVW/YPV/3bC+HI67qAJuTGtNycYYI2pzM2CKswspG8YrTdUXhFt4Yaq9LlHCzsDHrTLZ01FdxkVdRJjNpUF0lTXCVMErzN5A8OTqSIAtr0ykvQxxqK9M2RgppxdtXVVtVl94Ijifr/y1xjscFEwKL1LNBXtmqq9uWyrnIytm0/XEobHVtvVfH2fvokNlolclqoyanjnvMrMqK954HWZ4ttp5o9UPyubGfLQkXDPZR8zxfIna2orhCK5DdDS9nbcXW+4orIBgmR58j6Z8my4jqiVX4sWor0XVgwwJ5x9n+2cTs7Ou4MNzoB3vklXu2l2Nk0XQphEm+E5P6trz2jURaVQM51MvqgtzUWAKKvdnRExmger4mn7lKvhK6nGpZEVTynojaiJqzxDSHiWo9E+IwLXmuSoFP2MXBNwLEpI3+Z6NqH2U2Wn5fUGtD1E4SpFWS32tiU2S2hWTAIq/rBR3bz9ZhEWaz2TZs1dVpqx72PikyEjCz9c7eO9QHpoTHIPM3CsJCILPwwviaK39pEqmv8ro5wK349twPFaQUV3nvUAbFSqjgIFWXEEk88oodIy/skcD0utBqK3pMvNc6bYbtH27ElArsnLOz9XI44iqloL+Ioteq9VnElevEZDIjyvtkIymvCdTDE8TEjeiBtjqhUZ/QifrQhcokRlamnuSV+jH1SZFKOdHrtMDd3OJDPa+VbXsfLKdGEOk4OnjODR07b2Lr4/o+q9jI2n21i1fIbH3YuG3bHZ4lUO2fQIc0CrP3srI6jgsZol63tNl7R1zFDdPE0fWYnMtCiMJC0nSRtGOOR86w+0QhhDLSh91PiCSy6t+Yynuifqogy7cFdKhgL9oCydnzGMColgFmZcGwML0i85qoqkSrCqqAJaxkydN1IEvmzkLUF7u/UfNbxYOkbP0tt9yCGTNmoKWlBbNnz8YzzzwjLb9mzRrMnj0bLS0tOOCAA7Bq1arA8TvuuAPHHnss9tprL+y111444YQT8N///d+R+2XhiKuIkHmleWVswiT8Q8f7rkN+mZJW/PHqhdzQx+v1sFZVXlX/ktf0uOr9MGk6cQHE5JUK8RSXJ97UC6/adxSI+rfltS/5V19tq/d3zyEaROpamd1WdVKo2nqTXIgmdj4qYRX2W4gKYkd5NpF9mCwi2sNlHAgjsWyTV6J6KnVt2HsV1VTayCoaurbe2fuRiKgqGgKZsoddAS9JqBBSMrDkEVFddaBKLtHn1gq0cOxCkex7p0JctfpNZ1BCDgNoa++liCu2fxHocEA2LFDnmvMUVklARM7RZKoKsWpr7FG/o82STYbo40/i2f7BBx/EJZdcgiuuuALr16/Hsccei5NPPhmbN2/mlt+0aRNOOeUUHHvssVi/fj2+9rWv4eKLL8bPf/5zv8xTTz2Fc845B08++STWrl2L6dOnY/78+XjjjTeM++XBEVcGUPmSqJAvqhMRtTHp1zcNEYyLtBJ531UmMjYf0nhtyR7kWbJKpriqbvKQEtUxmEJl4iI6Z5Ml03n7bE2ETJY9N0mGL6qvMnlS6U/38y35n4b65hA/VAghkb0WvbaRoypqiKAt0srEzoeNme5P5VqplFFRKGWoXxdbLuy+lRaIztEmeVWPEHGb90tRn0kRXya23tn7KNC5dmm4zrwx6I4rjACSKZ9s9RHWp2k7LFqZrQOe6qqVKpMFWiqrBNLd+qGCfZxQwRLyKCAXUFw1oUp4kM+EVU6xBBWtuKJBK6941ybu76Is5JCGqYIxDVAhp+JViCVh66+//npceOGFuOiiizBz5kysXLkS06ZNw6233sotv2rVKkyfPh0rV67EzJkzcdFFF+GCCy7AihUr/DI//vGPsXjxYsyaNQsHH3ww7rjjDgwNDeGJJ54w7pcHR1ylHLoTGVXCSTYJsUla8R7eVUMDbXje4wDvYd0bTZF6Xau44l1jk8mpbZgSWLVlaycjYRMS04mQrB0TAqxRvfCNKCceLtD9vdr6fasSUCb5D03UWqJx6IaAy/oKO09bSioCFdsjUmrSXtBihdqq5jTUDwOtHVutz9UGRPbals1mnR465JWqvWcRxd6r1BXBdh5EE1ufJnJ0+CPqpHwQamqmJAmBuMMEw4gvXqJ1nZUGecfpVf5IqGBbZSMkFlnVrwlo8cICM6hdaAgY5yuuBiniKocB5DIFRnFF98kmT6df02QVnfMrToUb79ryIAsR5IUhqpI7aQkTVCGs2PLxwNTWd3V1BbZCocBtf2BgAC+++CLmz58f2D9//nw899xz3Dpr166tKX/SSSdh3bp1GBzkf3d6e3sxODiIcePGGffLgyOuhgFMQ+t45VQmJKJ+TSYzMu+7ynhVEScpFHwILtbso/unJ1hJjUm9jnouEoCvvlLJexU2EVKtq0oqRVFBpRlk5RH1Td/cxyEnbmSoKKhs92MjJFxUTpVI0Qkp55FIUdS0IkQlq2pXSw0Loa6SRERpxXdSZLnXi3cuugSDyK7rBBaE9xGvWjZu8mo42nt9W29m752Toh6Ik5RQuS+p9J90aKBufyKSioAljej8VnS4IEPAtFcVV7W2aAzQ7ymuSlnPlhMbm0WJufS04ooOSyQogk/KhZF3OqBzgNGbrCyB7HskO1Yv5ZLuNTIdh6hetOdB02f7adOmobOz09+WL1/ObX/Hjh0olUqYPHlyYP/kyZOxbds2bp1t27ZxyxeLRezYsYNb5/LLL8c+++yDE044wbhfHoyubmdnJ37/+9/jsMMOM6k+YqEy6VGZVJjk0jIJS+RNSHht8MqqklYq/aqMVdaPaL9ZuFgxUDdD/a2GjIg98XQpgNzsSvCW0i2iiEykcYXtC5tg0xMw3jHefpWlytm6PA8WaYOtL+pXNg7eGMLao+vQZUSvRcueq443KgrIo4lo1JXK64OW9QLAypUr8eijj+LWW2/l3hRpOTEAzJw5E+vWrcOKFStwxhlnGIyg/rD9WarYe926tuuY5NNi6/Hqy+qqjrFeylQeqtqqoDKp5B/JAhgI1DG18bZA3xd0bKTMZofVl9lEHXtvYlt17b2orux8o44lDLq23qujB+KkuOWWW3DMMcfgtttuw8knn4yXX34Z06dPrylPnBQLFy7Efffdh2effRaLFy/GxIkTG9bWezCddGZhLxRuEGqT6SgTZJsr15mCd57sGGQrBJqowljFFemfSaLeDqCdKK4q/ZS8zbP1rUARKCCHUnYU1bqnuqrtk82T1IdaDFLjI9dG5zMhajFdhCW2Z8EbF9nH/g5E55AmpVXU+nZ/N6bP9lu2bMGYMWP8/fm8vI2mpqbA+3K5XLMvrDxvPwBcd911eOCBB/DUU0+hpaUlUr8sjBRX3d3d6Ovj/eiAzZs3+5MWBzHiCBsJ7lcLERTVUZmQqLQjqq/jfVfxSpuEi6iWFYcMePtZEovNeUITVjTI+6hEnY66StXzzk7EwvabKK/Cximqm0YvfFwJ3mUYCkyZw7chpFNOPFxhopqy3VfUEEGdPIhRQ8DjVlipouqM4CuV6JSodHmC6m8uG3hNziFNkN0LdJVXOuqpKItzqPQfxd6r3KdUk8Lbgq6tp+29KuLIedIYSMsEOimo3IfDQu5sgg6Fk5FWpuPgqa1o0qqVek2+C81eqF8L0Ipegd3wiCtPcVW9d4ntAa22IsQUq7QiiKKu4iV5j6rWEkFVcaSa4NyGcl3nHNP52zd9th8zZkxgExFXEyZMQCaTqVE5bd++vUYNRTBlyhRu+Ww2i/Hjxwf2r1ixAtdccw0ee+wxHH744ZH65UGZuHrmmWfw7//+7/if//kfAHyGDQC2bt2KL33pS8oDGO6w7a23+eBrqmDSyY+lUl82FlXCqt6gJzE8codWWKkQcUlAlcBS3a9LXskmQaL6OmM0gW0CKs5Jje5Ehnzn0iYndghChUTSVWrJ6qgSbLqODVt2Pi02ngWhprzXtbaU/ObofFcEaTufKOSVrB1T8kpWT9WmJkEoJdWnia0nvykVR4VzUjQCeKu1DSfofGdEZcOSh7O5pmgiiS7rrShYVVx5Fjxo3jziqoQMipkwe04StGfh5dPiESZF5q9tsInd2ZxqMmVbGHgrCqb9+6mqaOR9P0zaUoeprVdFLpfD7Nmz8fjjjwf2P/744zj66KO5debOnVtT/rHHHsOcOXPQ3Fw9/+9+97v41re+hUceeQRz5syJ3C8Pyt+sp556CldeeSWamprQ1NSExYsX44Mf/CBmz56N2bNn4+CDD0ZTUxPeeustjB49WnkAwwWqXmoZVCYWwfLhExmTkA/Zj0BlBUEapqSVbrum0AnbYMMEyb7g9KTWA0zCRVgjQ2qROibhgjaIluA4ecf54YMZ1IY9qIQNytpQDT9h69HvRSGDovoqIX+yvlWhGsqoChIHr1MeSJeceCTDhHwKQz1WqlUhreT3FL22+W2EhUDr2UleeWKTaftMbD9tr0UPk8FwOJMchPGqOkX3AZ69k9lPndA/nXBDlf5FdjXK/cHU3tuErq0ndQDPUUHjyiuvxLJlywL74nBS7L333lrjHR7QCRdME7ln07bYmsTz1FYq4ySfAU2msGorlryiy1XaqIQK5lBABiVkS+wzeZW4ohfgEJ5CIKcW6Z+nMLNJgtDtN1MDYm2kjrJN5zuuWzYqbP2mRGMh++O9F5s+2+tgyZIlWLBgAebMmYO5c+fi9ttvx+bNm7Fo0SIAwNKlS/HGG2/g3nvvBQAsWrQIN910E5YsWYKFCxdi7dq1uPPOO/HAAw/4bV533XX4+te/jvvvvx/777+/f+9ob29He3u7Ur8qUP6mfP3rX8dZZ52FdevW4dOf/jSamprwwAMP4Pvf/z6amprQ1taGgw8+GP/zP/9Tw7I5iBFnUl+TOjJPuk5eqyiTGRsTmbjBU1Xx8p3Q4YC0B76IDHKVevQDcj2hQmDxJjBeHTH5xLYrI53Y+rJJkMmEwvYkxEbeE1N4pKd632ScREYchrjlxMMRYd8tHXtvU20VHIM9J0dcalqV35TOtSROARFoxSwNmqxi91WzWAVDxkn56t0gW7E6wbbrnetKBJUchew+HfJquNj7MOeDzXuDrq0ndQA9R4VzUog+z7A8TA52EZUY4JFWtNqKJbPYOq2BHFc5FJAplph85q1AFgg+9VPpP2pOgaitaAJLluOMHpMIbI4wUVJ1Mphm5r2oXxUQ4o3NbcUScirkVdLqLBk5qDIWk3x26jB9ttfBWWedhZ07d+Kqq67C1q1bceihh2L16tXYb7/9AHjRc/QiTDNmzMDq1atx6aWX4uabb8bUqVNxww03BPIZ3nLLLRgYGMCZZ54Z6It2loT1qwKtb8tBBx2Egw46CNdffz1uu+02HHHEEXj99dfx4osv4sUXX8Qf//hHHHLIIbjyyit1mh0RCCN1VKDrTY868UkTaVUvcqA6oalVW5H3ZGpCErPTExp2L5ugvYQs460Pqq5KqCqykoKMwBJNBFSUU7JkuDqTGVG/cXjhdaCS7NcmRCu1ycrrgJb1fvzjH/f3P/744zj99NO5debOnYtf/epXgX08OfFwQth1DbNdtpRXuva+XqRVFMLKpqMnjDSij9eGtfFXFQSCOQ1pPS77IBqHgkrnXiH7HETkFVuPtaEAhHbUNnlVb3svapt/XI0MFEHX1pM6gJqjwjkpZODdt6ImZI5KfPG+C2ScUUPubOW3smWrVcbAfh40GcWSVGy4IFu3Qiq1AGgp+zmuMsUhBM2r1wf9LF9CxkvWToirgIlvAl91RcapCpFSiz5v9t7SLNhHg7eCoSl45JWo7SS/J2HQGQtLXtlL0h73sz3B4sWLsXjxYu6xu+++u2bfvHnz8NJLLwnb+9vf/ha5XxUYne26dev81/vuuy/23Xdf4UTGQQ0qkwudNkxCRlTqh43P9mSmHqEiYQ//Qe1UcPKSRSm4Cgk1viBhFWxFpW9dEiusbNh3SxY6wqvPm4wAYM4vOnkVNYREZ8KQ5vARksBRp7wu4pATDwfokFEmx3VJKNF4VL4fJsnYk7bztpXJMqjkexLdAwjIngHkkccAiBuDbYenurJt51Xq8Z0RaqGDthRUcTkrhoO917X1pI4qnJNCBNl52F9NzBzNzGvTpN5pgIg4C3uG5+UAYxVXvHBBFq0AxgDtwKj23oriagAZiojyf4stZGTE3ucwgDx6S21B4srnOFqr7eMdeCsLisL3VO95tOqKXC8eUcW2Lfq8ZcSlSF3FW1FQRKTavpfHHR5oG+HjTeLZvpGRtD5vWCHq5MR22IgudCdBsjq8eiqTmSiEla1QEdWQDZ7aCqgNEaS98V7f3rkMVDwx9JQnVxkbT3UVBp2EumHlwrzFZFy8+rJJDCAPI2HbkJNS4flIdGHDCx8WEhLujTcbP/ke6ZTXRRxyYgc+bE2MRd9bXYeI6v1BRU2bZsKKFyYYzGMYtDXe36quil5hkIyZtvMF5JCp2IgsWNLH3LNtU4krckZ4x8LVQnGTV7aII9v2PqqSShW6tp7U0cHIdFLIkkmrkG88kijeMCL+GOoB037p/FO8Y2EIC0MThQnSaiseaUWYpgq51A7kWgqVHFdFZEtgiKus3xWx8wXk0Ys2DPTngH5qaC2V1/3N8EgrWnnVR42FHjsL2feKDi0UkVfkGG8/YO87G58SqRYm7dr8vej+1gcFr4NI4tm+keGIK8uoV9iIrtrKZFIShbSyNZmJMpEREUIi0ooNEyT7CO1E3tOTF5LIkfbAk/MsBmpXa5JJDdtvkuGCKiSWSggG3ZZoQsJrS8WLztaLEkJiwwvPL5tc3pMCcihDnlidxgCGjPqxLSceqdDJ/8Sro2Kz4wgRTJq0SlJdFQaa1KLvBzQ1xSOv6BBBOpSEbZeUTUuuK7GaNl3kVVrsfVLQtfWAvr13ToqkEHWybcM+6hJEYYg6Jt54VNVWorBJkdKKzmtF99VX+VsNFcy3DIBEUTT1ww8V9GxMEWiv2pkSsuhFK/rQip5dHR5xRYZHtn5U2/fHIQud0wn/5JWRKa9s5btiVVeAffKKpyqzCdH3tz657ZJ6tm9UpOcJcRgjqjIrWDa62kq1XtKkVVyEFduOiZebN7GoVVgVwZvEeP16pQrIoxW91GQmUyGmakMLw8bJK2OD4ArzvpO+2Tq1kx153ivVcBBVssd0kmHSl0p/cU96nFcmXVC1aWGfgw6xqaZMDSeOkiStbNj5UklArmfU7J/YWRF0UvCOVy03cVYM+HYfCNp6L3BkwFddkTZUnRGickk4MnjklTcmPgHFe28j8brtlf+StPeq7WdRQkFyPAnFFeCcFFU0SqijaJw6REG9VxQMI61M+pfltuL1VaT+VhRRWSCTpZzQAcVVpZ0W8r4aJtiNDqCnpVbUlK2U7yekVSuCY1IJS2UJIRVFFdtOkSpL76ehcv15aqMw8kq1bR6SDmU1yW0nO64+fvdsL4cjrlIK2YRBtawKyRWlLm9sticzSXvf2QmBSG3FCxMMpmis1iPnxtJcZOpDwgV542C98Umor9gxiAgs2+SVbBKk60m34YW3kbQ3Trib2/AB306qOQ7CytvoR9fOx0FYicgqtowqeQWEhwkGy9B2n+QzrCpsWTtNNkJasXawRNmketp5EcS2VUxA8d6bkFdRlKk27H0YKZb0arJJEVcOJkhTrquoUCWxwggqnmrIpB9eWVEidrpvHmlFvyYYpP7Siqsmn5TyiSsSSVgkv61BoL16vyBhgr1oA3qoYRPCyieuCGlFxtPHORdeKGMYaEKKJq9k309yLaJ+f+k+ZOQVOW6jT1sQKfZEMFk1UQ/u2V6O9M7KUgrdB3JxO/bCRnjjsBUyIhujDdIqLYQVC9lEhi4TDBMc8P+yOauAao4r8pcNF2RBK6rqOZGRhY94+8WTGN4+HfKKhq0QEtE5ysrGMZGJmh/FJXBMFmGkj41ypmqrqCHhOrBJWoXZeRWyildHh7ziQUZokYkMsfcZFJGj9DIsaZXDgP86jwEA3vVg7XmcIYOidsO+B6qhg1HIK7Y/HYdDXPZeB0k4OOJOzu6Q1PNmvSfrajl29GD72qmuIigah4i0ynLKEsKBkFaARyoFi2dQ9IpWzLz3WyShgiX/ub4PregudQC7ECSuaMVVzU5Zfiua5AlT84Qprdg8WHT5sM9QFPZHkzai8YmInbQRWASmue3swT3by+GIqwRh8nAUdfUqUVkVr72sTpweeBved9nExSRckFVb+V4YeA++JIFj9e8ABpDz6w8ghwyKfqggmdB44+EbKV2iKqx82KRIZRKj6oEHgp+5KXkVVo/XvqlnPaysKpJSahWRQZMh0eGQHthQW+n0ESVEMCk7b0JYqUIlTNB7X6o5ViWsiqBdD/RiHIB3ziRUkNh+z9bUqqro+5FN8kp3wRHdBSZskVdRlbZJ2nsdx4LNNnRtPanjYII0hwmGKZlMYWMSbmM87DhUn9NVSCv6LxtuR1b3awXQxp8ZF6rVvN9WHzDW+z179j6HXrShe1eHWHFF8l6hDUHCiiWQ2DxcPKKE1Blk/srCAXnkFajytqCjSqLPM24Si6fOSx/cs70co+o9gOEK1QcTFVWSt08tdE+3LCCbWCRLWpEpgAilUsbfwmBj4iMjt6qe9gF/8pKv5DPJ+xObKoFThLc0esn/m/W9NCTYUAQbRkl1EkM2EWjCLri/9lrVhl3yV2XktRGcNKpNNEXjFfWnW5Z/3vorONpCKTBtVtlG1s2t3jDJb2XStinJZZO04pHvhNrh9Suy86r23QbUwgSLAdKK2P18RVWbQ4FSXlXt/YC/iHoOVZtfvR7k/EvMeyC6vQ+z4WH1ZArjWpteS/bJbHdwtUZxPjFVxbNsn017z+sr7D5Zu888nETf1jt7nyyikDZJrkBoA2GJ4uMi13igVUsqpBUNEvvXh2CYYLVoqVgl0P3iAAaQByGuciighCwGKqGCg4S4Iu3QYYLkNVdtxSqv6HIiEKKHGhwGUc3XBer1IPOerg/ofQ9F3wGeWoxXTtZuPYljnb51yuoRcu7ZXo500o0NCuXEspxyJl883gTDVohgXKSVaCIjQpRJjK18JyK1FRsmWA0VLCCPgcDkZKCyQoQ4XFCenJa0Q7y1OkSI6SSGQKRwImOqHaeZF560EeZVtxFCEnWp9Sjhgrbyo5SQwSiNdkbazS3NUCfz5USUjRBBG6QViyTtvKg92vbrkAYs+UKHCOZQ8O8BOd9RUQioZz37UlVckftCNddVyS9H98kqgXXtPD3WqCDthKlbvfdyu2+qvOJBZWXbMHVYHCpb3jhsQtfWkzoONsD7Ltgim4rU36SmY6Lk3jTqEb6lq7ZiQ+tY0qqVc4zuiw4T7IKfmJ3iikrFDEr5THU4FfNaQA5ALzABIPkKC5VQQexq8kIFSbc0eUVe97DkGkEz9ZcX2kgGAsF7WrnFqqvoPmTKK7Y/FYhCBk3zQdUjb5woGTuBbDyq56UG92wvhyOuYobuF0pnkiErp9u+bdJKZZxJTGTCyCvVsJHq/iqJRSgnEh7oeeILFcVVyW+DKKoGKkfZcEF6siOaqIhCSMLCHm1MZHQmMd4+eehgUuRVGNQTzJuTXHFNZAB3c6sXdJVUqjkDZeXD7gsq7fPsfRSHBu99HIQV8XrzkMmaETusk4KvGA0mY6/ae0JWFSjFVdW5AJCJjeeo6EWrf7/IY8C39SVk/farTgnPntP2nj0Wdm42IbL9IseFjLyiy+s6H0xDBsNya4WTWOE5G0Vt88ZgCkdcJQVVlYjJRDWMmNEhr3RVKbZIgDCljemUMgppxYbX0aQVSwyRvogCiaituivHxlTzUBWBQn8epdGV5/KaVQX7gAnwn+HJ8z164IUEsiorevNfkDHSn30z85e9PiwRxR7ngbRNk0vkPUte0fvp+mFJ8kXHeOQVPZa0gv3eJJeTyz3by+GIq4QQJWwkbJLBlhOVjUJaqfbFe68zmUkqTISFqtqKlGGVVyREsBW9/kSG5LgqIesn5h3wffB5lNDHtBKf6soGdCcx3j79iQwL08mMSj1eH/T5qkw4dCcytjCAPIYqSj4VFBP+voxEyG2m+JjJ/UHHboctvpE0aRVm52VkFa+cLoHFA5u7kIB1VhCFFbH5VYUt0VN551wAkEMeGZQwUClLq64AUPaLtln6ORjjhsz2y+y+THEbB3kV1g/vOHltQnLZUs+GQdfWA87eqyPO+7TN3FE2x8kbV5jN0SXLVMsnQVrRxAtLWnVVtlYAHZWV/7xig/256u+bGpb3bN8NTCkjj4LvnC4h45VjiStChgk/QprEos+LjFuWeJ0HUbJ2lnyh82GxUCFSZSsIysgrXvmkITu3+ua5c8/2cjjiKgboet+jqKhMwkt0c1qxdeKYzOgQVuykRnfSYjopYCcwJMdVdSNqKy8HSh9FzpBQwRzlqye1PMVWVXVlOkYTMostr0Kmqk5ivH3qCXxlE4cwzzqvjko9E9WVrFySKEEvgeNI88rYgOk1k9lvniOhekxfbSWy2zrODV77Sdt5VbJKBSoh4ipqqwy1EZKKhAzmKAIrh4Jv40mNDDIYqNwPcv6/qsKWtnsih4SqTddVW8nalH3nebZfV6UaB3nFa9uWQ8HUztu8P+jaelLHIQrCvidRJt5xT9h5xJRsRTpd8NRWJtDtm1UlkdeqKwn2VV7TpBVJzN4MoDUoCOrPB+1FJVzQ+231oWXCu74tDRBXRQRJq5qvkiiXEy9UkFZkya4X/Z3iqajocrzvtqg83aYKqaiysqFp+bigm9tKRshFh3u2l8MRV4aI44tiMpGRlQuro9q+rclMXN73MK+7aq4reiKjorYiOa6qAYAD/kSG9tyTVgaQRx9KaEOvLytuRS+qaisyhSkJr5XOBEU3eSxvf9gkJmoICftelbySjUFUVmXsKu3L2lZVjumOl4cSRmne3NxaHDahMgFWKWMSEq5j702cG7KxmNj5pAgrHggxxYYJ0hAl56bvCcFQQTq/VaFSv4BetAEACsj7hBVRXA1gACX0Uaorj5QiYYEsScULF4x+LdTvg6RfHmrDu+V23yZ5JRpzXPbepD/b0LX1pI6DDuJUWdQjZxRgjyBTuTa6ZJau6ou9r4iIKla9RPqic1rRpFV3ZT+1oiBRTfU3+flo6aEVKsnZOzp7Ks6Iqs3ywYYJcvkiMv5B6iB7HXn5qWg1leg6ikLy2BBEne99lJDBsLJRYZqfi4VtO6B/vu7ZXg5HXNUJsoeeKLmtdNRWYd53nfJpmMyUihkt9ZVsIsNCpLYiJFVVcVVAG3oD7ZaQ8ScyGZR8tRUhs6peeSiprljvvE5oSRRFFu87ohNCYoO8Mikfp+pKVj5ueOes3mcSIS0OdqFDKpmQXSKCixeeznsfxc7bJKx0bT8Bu7Id66gg+4mTIpjfKuiogB8aXm2pr1K3gBza4C3KQWyF76GvIItam1lznhVbr0tkmZJePEKKQIUMskle8fpNk8qWlI/jXqBr66t1HMwQ59QoKplkawVD2ThYVQkNW2orFqrXJWz1QFFuK9IHWXWPkFZ98EirVvjnRlRT/czvqET+ZABkMRbvIo9C5fm+4uggRFULgHYohAmSc6JBj18ltxLv2rH5rFjoklYyqIYM8hA1ZDBKrjhTRCHgws/VPdvL4YiriFAJCVEpowoTVVZYHVHZepBWUSczphMYgtpJi0xt5W1kMtOGPn8yQ+oC3vXwYuJzyKKEPrShreJ5b/NbqS5pyqquRF74pGFzEsM/bieEhNeeDTWVLlQmMlFyYZWQRZNG3bhzbo1UqHxfqr/t4N9gGT5ZBOgRUKr2XsXWi/pQrhPRztPlbOSxqiqoalcNZMuxzgoSEkjIqjb0BhRX9P2e5DesOjUGKIVttdUMam0SDToHVtRzjgKR7VcJHVQlr4L9yUkj3v3Blr23qbK1BV1bT+o4xA3beXpMJt1x5QoKIzXCErXLYCNEkD3OU1wBwWtDlFd91EbXbw4qroqc31GR2MFW7IVdvm337hEFj6zKokpa0YqrwDh4YEMI6Yoqea5EZCOLKOROHCGDphD1YbrQQZK5rcTX0D3by9GQ+rLly5ejqakJl1xyibTcmjVrMHv2bLS0tOCAAw7AqlWrYhtT1LCRKBMZeRu1k5O4SKsiMjX12HMulTLcyUypmLHmgTdph324D4aJ1KqtyE2KbERx1YZeP/9JNcwjS61BlQ/46kkLniorF+iFnmAScss/R4MHZRsTGPp6sMhWPnFZWbL6omhMogmlqA6vvKx98T5enptSzTjYY6phRyZlwjDETK/DtqGYJ1cO+tB1aoTZAB17zxuD6r0hlEgztPPkOK+cyT2CDRPkHfNe16qt6Pe0e4G2963o9UPEq+ROlgkep7c8ZePZLFrZgO2vuXfW0ebT7anYPJ7dDxtTbRvFmvIqhKPaPrG9DysnK68L1TZ0bb2z96rgXaM0q61MoLsCnQxxXRud6yJSVrGvWRDSqhe1IYKM4ooMqR++E4L+qXr3vzEYi13I+6uKl9CObo+wojc6x5WUvGIJFDp0UIVcGZS8LjJ/VSD7rHnHZKRPGCFk8r1K4reUpTYbUBuze7aXo+FouhdeeAG33347Dj/8cGm5TZs24ZRTTsHChQtx33334dlnn8XixYsxceJEnHHGGVp9ljDK6oWSPYBGmcjIyumEFZqsOGiqsoo7vwkL9kGUfbjmqa3oSQv5SyYqucpKgm3o9RVXbZXVAonyip6wkIlPL/rQgW4qZLC62hTJdQVUr2OGeS/KfcK+jxMyL7xuCAndTphnnS3D84ZHWRVK5l1PYrVAVXhjVP/92FKSOfBBK26893Y8ZrYW4ODVMSGtZOM2UVjp3gOiq2pV1VZF39YTZRVZNZbYe8/mFyr1WkHC+AaQo+xWyffKEwcFnaSd7reELHdMYXbdVIkbdq8Q28Fa2x+mvhLZfJG9Z/tL0t6b5ioUIaoqS9fWV+s4qEF10l2vXFVREZaYXWVCLVJVRVVb6awiyO6XhQiyyh5aadVdOTYG3DBB8rfI/I78fVkA4zAeO/zn/Db0ogPdGDVhD4baR1dVV7xINh+8ZOU02HPIcurIEGfYXJjyKinVVVxgr1tcysZauGd7OdIxA1NET08PPvWpT+GOO+7A1VdfLS27atUqTJ8+HStXrgQAzJw5E+vWrcOKFSu0iSsd6HyBZGVNJzI6kxPeOOIgrUwIK9XJjMoEhpeYnc1hEiiPoNrK+xvMbeX9JRqqKnnVgW60obeSgLcaKkgCTMgkpgPd6EUbWishgzkU/IlMdYVBkseqGHho968RNZnh5blSncyoEl02JzHee7WVA6PmP+G1qzr54bUrgsqERmfS4+XGEaOAZmSIN1ABpcoDloM+ojwYsLaZZ5dFZW2FCKqWk5W1beejOC1k5JVoIQ6ZAointspS++mE7G2+o6K3orD1SKh85fflkVN531PvOSpaK/cF7x5A8hp6KPj1MgI7Q9tx0zxXsuuhWqbWZvJtvwp5RR9j7T1A8j3KnRW27b2snMx2qy4SYpoHS9fWA87e2wFLlphMuG1M0GXkjag/GWMSZQKeJGnFgiap6PdsiCA7Fja3VR+qpBVLdlFVKsPLoBQgtLzf7jiMxWuVkHHvvjABOzFp8lvYNuGAKnHVzztNdkdW8Joto/NdipLDSpUaYMkcnUTtUaDyvZGRdrqKMbpe/CuJumd7ORoqVPDzn/88Tj31VJxwwgmhZdeuXYv58+cH9p100klYt24dBgf5P55CoYCurq7AZgoTAst0IsOfiKhPTgiiklZsaCAvXEQW7iEKEZEhyuSHp7ZiJzE8tVUGJWoS0+d73wl51Vp5Tx7AvdUEvVLd6PBLkFrVKVGO05P3mg0hKUo+E9NroFKWJvVEx2mw4YNsGbkCLjxsMKws7zi7j9c2S1wG64WXUek/Kkr+1VXfHKLBRE0VBt0wc5mTApCPMaycCmkVxc6b2HhT8MIEWTshcloQRwVxTJDXRGFLb4TAokmcAeR8TVYv2jCAvH93IGHjtK2X2XcCclz9/MU2x9Qeiey/it2vvuaHi7Ntq4Z+27T3Ye2G9SNrLwpMbL2z9yZQuWaqZEAYSTPIKWOCpEKmVPbpQEflJUteLnpNwBJWJK8VS1oJuqaHWwRQIuGD49CB7ooKt4B2dGMS3sJkbAcmABiLar4rug0lsGRaHNffFnRDCglMSbV6fd9ZcMhOS0jK1t9yyy2YMWMGWlpaMHv2bDzzzDPS8mHpl/785z/jjDPOwP7774+mpiZfOERj2bJlaGpqCmxTpkzRGnfDEFc/+clP8NJLL2H58uVK5bdt24bJkycH9k2ePBnFYhE7duzg1lm+fDk6Ozv9bdq0aZHHzU4OVB48TfNl8SY0qpMT23lOdLzvUScyyuqskIlMbfngJIa3qlSe+lslr/r840DVA9+3p5WZzFRzXlW1Wzmqt+oIhOeuSGSKzs8UYQQWC14OlOprcd6rMPIqrKxoghQ2Ph50QnF4/dsGTbOqbg7phY4iS7RPVY1rI98hoG7nVWx8sZjhbiLo3DN4Tgr6WLijolBxLxQoh0Wfb/NJzivAu160C4O8roaMew+atK1n810BCIxGJRTf5FpEaUNE+tGQK5vDbb6sbFz2XoXwi8MRIYOJrXf2PirinFiL8hHZ7stGfisVVVUcCdl54+CprdjXLEiIIB0qmBXUocZIpTbKoVAlrorVHFcd6EbH7n60oQ97YRcmYzsm4y1gQjlIXNFCHf8jM1HA0SGRtiHKD9bMbKrt6CItRJxNmH3nk7D1Dz74IC655BJcccUVWL9+PY499licfPLJ2Lx5M7c8Sb907LHHYv369fja176Giy++GD//+c/9Mr29vTjggAPwne98R0pGHXLIIdi6dau//elPf9Iae0N8U7Zs2YIvfvGLeOyxx9DS0hJeoYKmpqbA+3K5zN1PsHTpUixZssR/39XVZYW84kGNwNIPLaFhkhsljpARGWGVBsjVVkVq8jLgl8lTpJU3Lakqr9oKvSjl6TC+jEda9bQBAHpHVykuL89VHgOV/z1vfR5elisSIpERTlRsJPmOAvocw/bLQki89/GsHigLCZGVl5URQadsVHgJGdX7GmkJHJOA6LMOI5F1lFthyim2zbD+beQ7BOzYeRkxxZbJGuS1Ug0Jp4/Ti28QQoqkVqepKDpUkO6LkFIDyANAxanRW5OsnfTjlRngXmseQUJsEvtaJTRcTsrIVzmStRe040EbGAznk4eLsxCFiYv6CmtTxd7z+q93bkNdW1+t4xAOk4l2WnP08MIEw/JbyWArrxULHYcer30VwopNSk6SsvcBGIcqAUSXoVAhnIhbgTadJMdVG3rRvAdo6/RUV+OxE3vjTbRMeBcD/XkMtYz2krP3a5xuzSB0nZ8281rJrj2be0s0TvpY2n43Jt/d+HNdJfFsf/311+PCCy/ERRddBABYuXIlHn30Udx6661cgZBK+qX3v//9eP/73w8AuPzyy4V9Z7NZbZUVjYZQXL344ovYvn07Zs+ejWw2i2w2izVr1uCGG25ANptFqVT7MDZlyhRs27YtsG/79u3IZrMYP348t598Po8xY8YENhpxTEhZUsp0IsO2F1behved17bKZCapUBEZZIohmsQC4CuqqpOZ6kSG9qt3oBtthV7k+ofQVur1JwIF5FHoz2OoP4fenraAF76qvKqqrohCi/W8i5AG76roeso88LzjNlcPVA0hkZUXlTEJF1SFaltE9aizOcQDmXOBPi4muqKrrar7xPY+jNyySVrJ7HyYmkoXJN8VyW8lImFYtRW7j0xSchV7TzspiNqqteJ2IBtR2+YwgCxKvpKWqGurr1updWiJ8qqqthpAnroX81VXcdn5MGUobUX4x+WkoCxcnNeGqK6srKycTdVVlLKmMLH1zt7rIioZI4MKkcSDrXGYqHtU8gOZhE3y+ueFTbJ5n1i1kWgVPrZddkU9uh0OaUWaqawISJ710Q+PvPKLtqEVvUAX0FHqxl6lXZhcCRUc27kLHWO7a0MFI0HlWrOyLg4hJ4XOZxtlFcE0Iw4HhR7RZWrr2VRHhQI/S+7AwABefPHFmnRK8+fPx3PPPcetY5J+SYRXX30VU6dOxYwZM3D22Wfjr3/9q1b9hlBcffjDH66Rkn32s5/FwQcfjK9+9avIZGpv0HPnzsWvfvWrwL7HHnsMc+bMQXOz3R+VboiWWpv6iiwauiEjor5VSSvViYwMKhMZkdddlKyXnciIJi202srbX30YDgbtVScyxNveVlkhsBW9aNszhKZ+oJQdRH50NVRwsD8H9DRjqJhFd0sBHZ3d6KuQVr1oqyT47QuMpFBZaTBb8QSrqK7YxL0iL7yp553uh1+X74Gn97GJ202UV7KyNlRXvPOy9fsmbakkfJehhAzKGibceeAbD7oh4WHl2HZ1Sauodj4KWVUsZoxUVyKSpFZdW7X1dIhgBiVKJ1XwiSqyVe8Z1cU4BpBD355WlFoyaM30VhK0twUUV7TqinYeiVaUZcHaehOYhDKTOjx76u3nq69EilsdpW3Y4hz0GG2prkSQKctsQ9fWA87epwP1VJdECRPkhYux+23No6KEL7KEFT0mEttHyBsSLphl6tAkT7N3qAUe6dQO31ntk1alio1r95Sy2Al0TBpEUxEoTNqJyXgLe2EXkAd2t1DdkS6VfsZF2CV/BlU7riANSiTe9yIupVO6iDbTZ3s2QuzKK6/EsmXLasrv2LEDpVKJm06JFfwQhKVf2nvvvZXGeuSRR+Lee+/FQQcdhLfeegtXX301jj76aPz5z38WiopYNARx1dHRgUMPPTSwb/To0Rg/fry/f+nSpXjjjTdw7733AgAWLVqEm266CUuWLMHChQuxdu1a3HnnnXjggQcij0fVu159b05s6SiyVLzqYZMT0UQm2I+Z950H3YlMlLARgjDVDT2JIV50Wm1VncgUgtqpPf1o2g2gALRkgcxo6kG+pwXYBaClCf0tbeju7PBXFmxHd81Exnsozvr7/HYg9hRHmcB410X9pkCX5X0n+ZMD9RASUT0e6SMjpcJWnWLBTpBMCCsRMSVqy7Qv7+amXt5NZNIBs7yHEjJI096rKnDZsknaeRsQ5bHioaprKlE2ns5jWCWsaIVtB7r9NqqrCmY9lVVPG4rFDHKdHchjAO0Ve09TV34YCgCgALKirNdOcEVZ3phZ0I4K9n5gWxkkI7DiIK/ofkXOCpm9l4UC8s8v2KaqnY4Sai6Crq0HnL03R5yT2DiJLJ0wQRlEpFXYPhFkaquw8YUlZef1RYej0WGCg9RxMhaO0isLn7RC+6CftxZ7qsMvIQOMhae42gn/uX8iejBp0naMxS4UkcE2qeKKHKDH3IwgaZVEIvIw8Eg+grSF/rGwGTaZHEyf7bds2RKIFMvn89J6vHRKolRKovK8/TKcfPLJ/uvDDjsMc+fOxYEHHoh77rknkKpJhsb7RAXYunVrIKnYjBkzsHr1alx66aW4+eabMXXqVNxwww1+LGYSUA0biTKR0fWq88ZmOpEBwiczjTCR4amtMihWcloVmUnMQGX5W+J190irDnSjZTeA3fBs5WjPUwN4oYLoB9AD729LC7rb29HbWU3W3oY+f6l0WuXlee/zIJMa2jvPourxzsLEk24KUw88UEtekfJsm2GTDpU8JezY6EmFjupKNJEJI6ZswxFX6YSIPAr7fqncD1TsPQ+ycHAbpJWpnS8VBaqYrLn9CgshlqmtiKOC2HqyL0/lt+pAj09atZV6kSmWAjkNidpqqKcN/cUM+loG0JvvQw88Z0Uben3qKo+Cb/eJ2kqU25B3LlFUV7J7RJaTfgEAihx1O8/+s7afJa+AWsVtGHkV5qzwxx7R3ttU14aNSxWOuIoLMhKknrBJnvHCBEVkg4y04oXoRYGM8BCFCfLGxWuXVlix71upcn3U/grJQdRWE4D2Cbs8W7+npxoqiIrtmlCxZe8A2A7veBGYPOktjMUu9KLNa4s9lZrzk51HlGvNkjYyFZfo2rLjJO/p71Tayat6INr8y/TZnpfiiIcJEyYgk8lw0ymxqioCk/RLKhg9ejQOO+wwvPrqq8p10matlfHUU08F3t999901ZebNm4eXXnopmQHFABNiS8WrLpycpGAiowpZ2Igs34l4IiNeVYpMXKrJequTmPbKBKZjd793A9sN7+bWXu1rADmPtNoFXzLc396B7s4OdFfqk1wptOKKjIFMZkqcB2r2fOgJDHlNvPCyyY0NokuVwNIJHQwLBVT1sKsk2TX1sNcLAwM5NA3klMuXNcqa4N1338XFF1+Mhx9+GADwsY99DDfeeCPGjh0rrPPQQw/htttuw4svvoidO3di/fr1mDVrVqzjTANMVLgyB4TMjpuEjYtsvarKSr4aoEIex0oZGYHFhoYTew+oOSnY90GiqlBR1PahmpWwL2j3C90YvXsIAFCY1OsrtUrIoNCfB3qagP4WdGc7kJvsOTz6Kv/TiitvjMHzzAEBe58V2KAw1ZUuRIQV7zhLYokILJF6iqe4pdtQJa9s23uVMiaOjyjQtfVA/PZ+ZECmNpGBpzJKUm2lGybI+43ICAxRXZmiSlcJJlJ6icZCiBpaScWSU+x4yDHSV5O3GmAWwARg7Ohd6EAPWt5BVXFFTmOKl/8Kb8LL9V4AUALGY6fvoAisKkiQJedB+iTET7byt5V6bxu8dkUxjGGfOe/3QO+nCS3bYYRxQUbcJkfOxf1sn8vlMHv2bDz++OP4+Mc/7u9//PHHcfrpp3PrxJV+qVAoYOPGjTj22GOV6zREcvbhgDCve5SJjIjgkpUJKycta0BahS9tnuVutiCbyJDj9CSG9sDTCdnzfnhgny8h7kAPmrvgkVZk60FgeXSfuPK3ZvTs6fA1WySJ70Bl5akSMv4qVEVmVITWAuC/ZhP32lT4ZEsl7iaCKIkvO8li34tWAOMRj/TxLKesrJysTBjo74tKuTgh+s3Itjhx7rnnYsOGDXjkkUfwyCOPYMOGDViwYIG0zp49e3DMMcfgO9/5TqxjswmRokpFTRGmwlVxUkS197ZIK17ydZGdN/0OqpTn5TYEwn+DQWvq/c1TqwjSr8lCHLTaavTuIc/W7wHa9vT7oYIF5DHY0+rb+qFdo9G923dx+GndvWTtOd/u1959au9IMqVdVOIkjLTilefVYe1/0JaXILbdYjtOv47D3ovK6iKuVX5NbH2c9v7dd9/FggUL0NnZic7OTixYsAC7du2S1nnooYdw0kknYcKECWhqasKGDRtiG585ZBOwJPz8NvuIMtFWWUGQZWRUIRoXT/1Gq61U+qIVVoSYYsMBacKKVmBlq2GCEwBM8UioCdgB7AQTKpgFJlSiKt4EsBWe43onMBbvogPdHqnFnop/ycgLNicXoEYyqhIFnOTzNc/mIgIqDKLvxXBBHAsjqCEJW79kyRL84Ac/wF133YWNGzfi0ksvxebNm7Fo0SIAXvql8847zy+/aNEi/P3vf8eSJUuwceNG3HXXXbjzzjtx2WWX+WUGBgawYcMGbNiwAQMDA3jjjTewYcMGvPbaa36Zyy67DGvWrMGmTZvwX//1XzjzzDPR1dWF888/X3nsDau4ahSICISwyU7YREblIVU1rMTmRIaFiKxS/aGpeN694+FKIh5xUhsiGJzE0PtyKKAVvVRuq76qjHgnvElMV6XxPdWcJwOlvEdc9VSOZQHsAnp2daB7dAfGVrzwrej1pyjEG1+CFyroedyriXuJkop3njzVVc11FeynoeN9B9Q98KR/3ntR3isd5RXdl6o3nC2rqroKCxeMNWFvcRSaNBSM5WJ8foqNGzfikUcewfPPP48jjzwSAHDHHXdg7ty5eOWVV/C+972PW48QW3/7299iG1s9wNpUGQFlYstVVFRRcl/pOiei2nlbYAlzmdqKPu7Z+0KNupaEhrOrx3bs7q86KbJAy2gEcxr2N1ftPYD+lg50t/ehO9NRUdcSYozkUCwGiBVaZeu1Sds+niqIHx6uYucBfdKKV5dn/9kE8zz1VZjND1NeVfszt/cqZXUgV3rph47r2nogXnt/7rnn4vXXX8cjjzwCAPjXf/1XLFiwoMYjT4M4KT75yU9i4cKFsY3NHkxsV9T8UibjkKmtdMIECVRJqzCErSQYNgad68/2RcgqWiLFlumCR1oR4qrZI63GVt5OAcZjB8Zil0dK7ansJ8OaUFFcbQYwHkAeQAboQE/l+b1YDRWsUVw1Cc6RznMVds2a4ZFvLAaZMvT+LOc122bYvpEaFmhLQRYeAprEs/1ZZ52FnTt34qqrrsLWrVtx6KGHYvXq1dhvv/0AmKVfevPNN3HEEUf471esWIEVK1Zg3rx5fpTc66+/jnPOOQc7duzAxIkTcdRRR+H555/3+1WBI64swcT7brNfFU+9zTwnSU9kSsWsVt4TlbAR7z1/VangZIae0Az4S58Tz7uf24qECgLAJOphvUgprgjaAUxoQfeEDnTnvdwnfWhDHgOVf8FE7R6JEkzcS58TnxyqTmZ0w0dMJjKyCQwZT3DM7DnYIa9MQj7iRiwJe4sZzZubV7arqyuwP5/PhyZxDMPatWvR2dnpk1YAcNRRR6GzsxPPPfeckLhqJNiy6aJJq4mTQkVto31PSMjOs22JnA8qENn7mnIce0+UVVWVbYFR2hZQzUboEVi+wrYLQAZAJ/wVCAvIVXMakltWezO62zvQO76toq7tRgE59KLVHwshsKq2v9beVx0XckcFz97T5VRDwzNF8bUsZYOfH8/+s7aYR0IBeuSV358le69aVje3IXsuUaBr64GqvbeN4eekSGIalPRkf1DwOgy2SCsaKmSeKNcYrbZi//LaJ30Q4ocmsAgI2dMMgM4H1FolrrIAJpSxF3ZhPHZ6tr6f6WZCJapiO6rhgp1AvlRAJlPkn06AxGqlzoV3XVTCBWnySsWm665WKCKyZAROXGGBjRBqqAr5b9L02V4XixcvxuLFi7nHTNIv7b///n7CdhF+8pOfaI2RBxcqmAKEhZ6EJfvVyWvFI61oxEVa2ZCu2wwboUMW2EkMq7aqhoxUNz/vSanXm7zQYYJ7vI20X+inJjK7gltvTzWDSrCHYPhI9XU1LJD+HrCfpehhWeUhOor3ndQXhZAE34tDB1XCBmX1ZCEfYSEkbEiKqFxcYSGqKBYzKA5qbJXf5bRp0/wQj87OTixfvjzyWLZt24ZJkybV7J80aZJwed20olS5LZpMOFUSpJsiir2nz0V6T4jRzpPQQl6IIa99XbDqWp7aKnhMlMuwGiLYhj7KYVHJbbW737PxXfBs+h4AhaDDwFfY7qpug7tIqKBHXvWhLRAaThbiENl7IPiZ2QoP59rqYklKWsnKsPZfZvdVbD67z9Tey9qxAVl7UfvStvWUve/q6gpshUIh0ljCnBSNCxVyJgppo7JfF6pqK11EJa2ihimG9SPL5UUTVjyQ/URtRdikDo+0qoQKtkx4F2PhJWdHZdVAAPBN7lh4qw2+CeAt+ORWpki0soJz8Hez50mvhMh+rrLPUpaHib4ebBnb6sDhGC4YBSIyMhymz/YjBY64igiVh8Uwwsn+mFQ89eKJjLcvfDLDTkB4+U2SyK0jgixshBznJWQnnnOR2orkt2pFLzp2D1Y97zRx1e95XoAK4caZyJDJTDXnSXAyQ5NYJVRzXpWYUcsmM97++hg1HoHFy3+iO5GR5T/hIa6Jimg8Ov1FIb/KpSyGNLZyyfsdbtmyBbt37/a3pUuXCvtYtmwZmpqapNu6desA8JfEDVtetxGg8vtRTYAuOqbqpJCNz4TYChyLQFqpEFYq4BNate36C3AwjgoVtZX3ulZdS9RWxFlBVo9tDYQK9gXzGXbBs/c9TDgccVQEbH4Tune3+y2JHBVh9j7MUZG0vZcRWH4Zjt3nvebZ/LAchzXjEZSROT1EZeO8d+i0qWvraXtv21ExnJwU9qCjcFIhI3T7DNuv0hdP9aRDWvH6sKW2koFOxM7muGLD5miVUweqCq4KidUOX3XV0dmDsdiFsXt2V4mrylBKyADtQAe60bUdwVBCoPY5nFwGwpG1oNpnIFE7/d1gvydRyaWwsFH2eskQRYEnQhyKqsYMKjN9th8pGFlnm2LYUluphIPYIq0CfXAmMiKoTGKihI3QoBOw+21T+2jPPP03SFhVVVbkr+c770ETrbQiWwme4qpYAjKV8+2HN3khcuNd8CczPXs60De6mueqF23+BGqgkgMlj4I/uoz/l15GvBpaQcDbFwVhHnigNnwESC6ERBTyETgHQRk27EO1XF1RzHibTnmoL5kLAF/4whdw9tlnS8vsv//++OMf/4i33nqr5tjbb78tXF53OED3OxB10QSzcEKxw8Rvx9DOe2XEhJUJSsVMtLBByqaL1VZVdS2rtiJ23gsRJI4K72/Hnp5adW0eQKG6GEcNcVWEv8R6/y5vNVkSdpiv2Hc6zxWxLbX2vvr5eWXUwsOJvQpcY/BzYgFqdl5Wj74HZEslod3Xsfk6tlyljMh+h+UkVGknlryGurae1IHnqKDtvSgsfNmyZfjmN78pbfKFF14AMHydFB7inBbFQVbJ1FaqqwuG5TYyzTcVBrZfEVHFqopIHihR3+wY6Bg9iqjy26mEDY6FT161oRdjsctbUXB3pRjdTIW4eqsAjNkOYCqAkmf/BpBHL1r5qar8NghpxuaqIuc3SJWJAnItmjmvs9RfXdDtRSmTFHjfNd5+0b4EYfhsP1LgiKsYoabGUv8IdCZJJiEj7HhUJjNxTWR0Ji+s9z2TKdU8lMvVVtXXwb9FakWpPv+vv5ogmcTsrGzE61KCFzpSHALywFCRmcgAwI7KtquapN1r18tz1Yc2ZOHlS8mhgALy/mSFJO4twEsAL0rcS09W6EkBS9AoXWPFyQxv8kLAm8R4Y9OfyJD6quRVXESTyiQltgTtCdzcJkyYgAkTJoSWmzt3Lnbv3o3//u//xgc+8AEAwH/9139h9+7dOProo7X7TTtU1awEMkWWrpNCpR8VYisqacWz81HD/XgIXZiDY+9rykjUtezKscEQQdpRQeUz3IkqcTUaQKGqFirSxNUueK+zqISgNKNnQgc6RnejGx1+f2SrJbCq9p5O1E5e155nMNeVLWSKQ9z9pWytaJ+9B7COi6jklS17L3JWVI/rtxXcp5aEXeneFIG4UnVUOCeFTZjmmKJhMnk2UVvxCCoZaaVKRuiEoumqrUTtifpkFU1sfqkOAONqiKsOdPuh4AD8MMEMSkA7MH73brwG4D07gaY93vFCxrub9KHNs/0seUUUVz1sqCIdwkfIJJsqJB5pRUg7ldxXsvHEldeq0WCJpHPElRSOuDKEykSEd0ylTJiKSnXCoxsykraJTFTPO28lKZ73vepxJxOXoNqKTF7oCYw/iXmH2shEBqgoriqv+/PVSQztgffJKy9Je2u+1yfI6G2AmtDQyAGVSU1QdcVDFNWViQeersN64AGx+oo38SITE4BWG4jJK78vwWTGluoqcL4KiiyV+looNAHNGh7uQnze8JkzZ+IjH/kIFi5ciNtuuw2At9LUaaedFkjWe/DBB2P58uX4+Mc/DgB45513sHnzZrz55psAgFdeeQUAMGXKFEyZMiW28SYFPmEUbhNVCCe2rAppVVPGwDmha+eHQu4BoxRtfJZ1UHDCBFXsPQkFF6lrydbqB3FXbH+h2wsNJE6Kd1CdmARCBbNVhe0uVFeWagewA+iZ4DkqiBPEG08xQFjx7D2AgPKWnBMN2i4CtaqrMEKLtfUiwop3nCWxMsWSUH1FOy1Ym88jr/w2DcgrFWUWDZGjgW3HBMZ1dW09qaOBkemk4BE1pqjHxF1HbcWDDmnVzLxWnaSrhgjSydfZvkTgJWZn9/PaIqTRIDy1UzOAJs9GV3ikXEV9ix5UwwRHU8NtAZq3ereB7e8Ak/u9fd1oRw868C7GevcBEXmFJmocfagSVs3U30AFTdCfkYy0YhVeQFVexoIlqNjvAdu+KdKi0rIJjXNK0bN9GuFyXKUAJhMZVdJKpY1AO4oTmWLgWG1+E528JjLotkGvLsU9XjOpYfOclPwJDD1xaa2QVj55RU9i6I145PsBf15VbAp64Hcw2y6ge1cH+tBWSd7bSmXRIvlQgsnaa0fNz2/FQveh2TRshG2DbYeXwFcnB0rweHg+ElGZsATs0vNSKBMrigZbjPjxj3+Mww47DPPnz8f8+fNx+OGH40c/+lGgzCuvvILdu3f77x9++GEcccQROPXUUwEAZ599No444gisWrUq3sEaQjbhDVv4gndcJdRbVk7nfhAHaSWy80PFjL+FgVdG1e6b2nuSVYomrIL2vhIaiB50oBtjsQujdw5VSStWZVtg7AGx97Sd30Zet2DX7rGVYHPPDVKb21Dd3qclt2GmOORv1X1B2y9L3M4SjICaveeOxdDeh5WT9SEuZ+E+YWLrY7L3tJPi+eefx/PPP4+FCxdynRS/+MUv/PfvvPMONmzYgJdffhmAdy/YsGFDyvJi2fTlsx+A6geiSqKxBJVuAm4ZacWG1oWNiR2LqsqLJa1o8D4L9gs+yGx032TcrZyNJmgqxFU7KrmnvMMk4sJXW+Xhlcl4DgRkAfzVmwZ0AV6kRR7orpBWu3aP9e4BPPLKPzU6ZJE9T3o1RN0ftCgMTrTiIqv2kqHR9S6i8afovFJi69OKFH1SjQFdDzp9TKaE0p3IyPriElIWSavqfnXPu8oEBlD3vhPwvO+st51+D8BXWAVDRgZqQkZqE7L3VcirPozePVQlqmjVFXFUFIAm+p5DE1dEKlwhrbADGJowGt1jO5DLE69/dXVD7x9ZIr36gE2HkAwghxyqoYDC64Va77bug3WYF56A54H39osVWDphJDLlFc87bhI2qOKtV8mxImtbtXwNdG9YMd/cxo0bh/vuu09ahl0q9zOf+Qw+85nPxDiq+BFGBuuSxaZOijAlVqCNiq1XVdSq2npVO8+rp2P7de19UMmkYu97gypb1lFBFLYFeOEjBUpFVMoEQ8Nple02ABOA/rEd6O7soVS+A/49iVZcsaR9NXRQXWVLVFe6ULXzsrrkHsALH1S1+bS9B0CdezR7H+V+EHbMeni4yeQkRnv/4x//GBdffDHmz58PAPjYxz6Gm266KVCG56T47Gc/678nYYlXXnklli1bFt9gY4VI8aMCFaKG9MEeU1EaicCSGTzSSlRWF7zrIco1RF7TJBavf5Vz5V1LXo6nQXjEUUdVGVshmvz7aRYeaTW6sgFoRa/3YpP3x89QNRrYhb2wC2PR//q4apQFTV6RNlsA9NMhi2TMrOqKVl8NMo3Q9ehwQ95508do4o7tgz4Gar9IhTXSYaIOE+VoqyBlz/Zpg/sWxoSoSXiDbalNZERjSIK0sjWJUZ3AZDllRN53dlJDh4yQyQs5lmP83iRRLwkXbCUhI0RZRbzv5H0Rfs4T8Iirnsq+dlTVV7vgq65aJ3vJ2VvRhxwKfqL2XCXHFZnQDCAXOEc2hIQ+dxa8iYwsWW/gGmtMZkRhJGFJfOMkrwLjE5BSsnA/tq7qsXgS9kLvnjnCbm5xI8yJEXZcZ2GNqOMK9FPijEtTZcXClLASQRQiHiCsJGor1t7ToeAq9r6NUtgGHBV0WDhxVIxGRWFb8nOg+BOVXaj+7mj11YRmdI9tR1und08h95g8ChUnRakSJk4cFt4qg965EctX/VxEzgfaMRHFWeH3I7EhvIWNMsWhGtsfhbwKtB3R3ouOR3VWiBBGkEk/E11bT+rEhJHqpNBHHCFPIhWViuopDtJKV21F993MvJb1ybYfRoqR9niha4QAImGCYzwiiTyr98N3JyAPoBPVUEEAbejzym1iguVGA7swFjsxoaqwJc/9XNUVrQLrQ+25qX5/RKQVfS0IecWGCRLyi71ONFnG5gjjtR01PNA20kBvGF4P92wvRRo+2WEFWYhecF/tZCXKCoG63vlAGQ5ppTqRiWMSY9v7zj8mDhGkve/VhOx9lclMjzeJIRMXKllvueJcbNoDz5DQp0BuiCgDaAqSVpW/Q7tGo29sG3rzZMWpQkVx5f3P5kAho6dXnWJzRYke0IHgpEbpOlv0wHv75F54b4zhOVB0yCuT/CeyMvKJlaVcViKUEPyOqZR3iB0yey8+nuH+ZetHVWPp2PrIhFXYfUDDxvMcFYBYbVV7LGjvq8F4Ynvfil60E7UVm5Sd/AWCyXsJaEcFWUm2BdRqspUVBtv70Jbp9ZVenqNiIEBaDSAfsPf0e0CuspWproizopjJBML3RJCRVuxxmsSSqa9oxa2O8sq2vVdRXWmpYf06fHuvfR/QtfWkjoMCbKuKdMkqlf55Pz5ZiCCvrM558lRRuuclI5ZkpBVPbcUjrXjJ1+n2aCUSj7QaBNANLzF7a7X5XV4VkqIDnQDGwXNKVFRZbej17PqbwBjSewZAu0dc7SqMDRJXwnBBkueKt7ogfd70dZGB/ZxY9RT9mj5GiCzesbTQBGkixmIeh3u2lyIt38jUw2QywoMqscUeU2lfloy9tt06TGQsQ8X7zgsToV8HE7MXUFViFQLhIkRt1Vbo9SYsXahOYCpB7t2VxOxjaLUVEPDieDdKAD1jahRX6AmqroJJ2snYBlCoeOSB2pDB6velNi8UDXoiE8UDrwvWA+/tK2mtQBVGXomg4yU3VV2ZrCRlrMZycuLEECT85fcCUT0eZN8VW06KOGy90M7rroQTQl7xVhQMW7CD2Hj6NWvvs6CTsvPVtSREfPTuoarSqov6uxvV0BJ2mLTKlhBX7QiqrsY2o3dsK7o7vdUFSaL2XrSCdlKQ8yB/Syj56qscBgLfMZ5qlqe60kUYaSUqzxJYYeor1mGhQl7V9C0gp5TGLSC4eGVE+0wIrlCkLFRweELlOyJS+4RdbNsfRlj/Kv2J1FaixOi8ZN/seFTUUPR1pgks0Rh4+ZfYkDmamKOTvLNkB2mDJGUfRIDk6oFnm7NAd6kD3ZkODI4DmicFh91KiKu3PNorS4YxxiOudm8bD7yO6vM9fR8gwwhcFzrsj5dQnVRiv6OEbGKTHYmSu/NygfFCDmWqqzCokpxJJmC3sfiCKiz81t2zvRSOuIoROmEj1X3maitR+7YnMlqElcpEJsLKgTREaiveazpUhPwlk5oc5X0nE4qA2moPqh74St6T3t1AV6EiOuatIuK/76rsaAV2NQc88NgFDI1tQ097B9pG9/mTKTKiLEo+aVX1xldDSYjqKgM6z4c4LMLKNVcwmGwIiYn6Soe8Ug35i6K64h0T7TPz1CvUcTe3ukNETIXZe5XFM1QQN2mlbOsTcFiwjgo2sbeK2oq29ySPYI6jtvLzW+3pCaqtWMVVC/yw8EzRCxUsFTNVR0UPqr9TOq9hZevf1YHe9j60ZnrRhjZ/HOQfGbvM3gdtI1/dA9THWZEphquvZDZfFnYtsvfCsYTYezkZJg4XTASOuGowhF18W1OvsITsZL9qiKAoqbcIpl8ymlyi37N9h5FW5BhNumQRnvC8D54TmapL1FaVpnftGIvuyR3Y2dmJKVN3e8UqKts8BryyXcDkSm8kefsujAV2NFcVV7tQTRHCBZ2gnRBRvM81JC+SEljykZBUPNUVDZYcpGGDgLJtrBqc2nDP9lK4VQVjQJh3j3dcdSJTb+87z/NeM5EpZqqbCjQnPXTYiMz7Tk9cRAl6q3+Lvvc9X6O26kM7uj21FSGtmAlM956qIx48madvWPrgu+93oSZcELua0NvT5q80RY+iQAW0kJCREvWX1ZR5Q8lIv4+875YqVL3wmWJ1C+4fqgk/ZFeg8vczk1T6L1BVlVWPFbllw1aVotVpvH5442HHIIJJgmQpWEebyuYQG8QOBL4y10ZIuHw8Cdp6U+iuGsvYezoJO1CrsGLtPRsiSEKy6dxWfi7DUjda2BBBKqdheQ+qYYI8e+8rsQaBYrlmJVlva/ZXlKW1vcGU8Wr2nrX9NKIogHh2PlsSb7z6PNtffS23+UnYe9n9hXdPCJwLp65KPS2Y2Hpn7xNGlAk8j7QJ60c3p5SoL1PSih2PqtpKlbQioM+PDvPjhQvSGyGxaNUQUVqRjTpO1FavA9gGDO0Yje2YhDcxFZgOYBK8HFfZyu95lzeUfUYD40bDU9RWclxhG2oVV3ToeOAj410Tct7s+dJgV4CkVVM80Md4qwvSm0jBl6RKyhRpJ60Ufl/O1kuR9k+44aHqZfdeh09keIiLtJKFi1j3umuGjfC876Ik7AB8zzrZn2fCAsmkxkuUW1VatVLkVU1uq8rfwa5qxCAAlPupFQUDKMO7WXbB++mN81RXNHk1FhhqH42+9l70jm7zE/cS5ZUXRlIbClOoJG/3PutcTQiJ6PvD88Cr5DzRDR1h6+l44cmYbCmvVEJIVFVXYeGCsYSNEJAVzXTKO1iBymcqCi/k7Y/DSQHIbb1qaKCWreesPhgAJ/QvDGx+K1ZtBYgUVtXXhKjihQgSe99WyWtF7H3H7sFqaOA7ALbDT9A+2AV09QBjSkAzNRT/8yPEFcqVylmgfzwTKgigHRhs70B3e6+/omwbetGHNmQZOso7z1p7n2E+d57KllZdkTLeeIN5rkrZTIBI4n4eIRwMfZz+mrC2nw4dVFVe0SGPpvZepsSVH5Pb9diUtYC+rSd1HGKE6WyRtpGmJJGILGJJnrA+TEgrXcKMR1rRx1jChu2HvCakE903PX5abdWKoJqIVlp1wU/ZQZfrgUc4keZfB946ZDL+hv0xftIO7Fd823/Iz6Dklc0DbVPh2frRwOAY4F2MDRBggQU6gOrqhYFrQCdop8MFedeEDQFkyTtWsUWDDRkk73kMCPs5EXVaPckrNvSTd5wFL2TSNlR+Cxp54tyzvRSOuDKAyoSEhq2wEVmIoA3SSsXzrk1Y8SYyoskLRV6pJGjPZEvc3FZsyAhRVpHXJF8U7dNurUxW8hUvvD95Qbe3kZARmrSqTGLe2u297UbFvJc4t+Ei+Y9IlAHgLWDHvtRKU5W/7UBPewdyLQPIZTxSrRd9/qSlj/HqkslZwV9psIAMPM88KufKJm2vDivD3V9zTQMecnE53kfG+3qEEVii0EFeDpQo5BU5d9VjgXMwnMhYI7acnDh2qHw2slyHImJUpoqx5aQgtp63SqyOyio4AJ7913iMKGZDySvilGAdFSK1VVBvVCWwaIcEGyJI236eunbsnt1oosMDK7Ye7wDlnZ7N7wPQ3A80MzkNS8UM9dskEyUAaAZ2jPEmMxPgEVdjAexoQnd7B3KTq0qwqqOFd86svfdCV6o2pfoZ0QQV/d7bF3+4IPnIRASWyObzHBa0rawlpdTtfc0YoRcizrvfsAiONdiuUYihiVfd2XsFJJWYnUy4TadcspBAGWnFGwfAz2MVdi14bYaprXh5rch+lrSiSRRQr2nSiiZleMndadKKDnsrAuiF9+xNk1akTJd3/PW2qtPhNWDLSdPwGg7EWOxCx9RujHuzHyhUHAGvw1Nija5UHwd0d7ZUFVdkQ5kaR3M115V/Sejxs0na2R8xj/xg81wRcomUE5E5bJ4wUq6VKsPrR/QdTkqVxSOvdH9XSea8EvUrGbN7tpfCEVcxwUbYCNeDLpioyI6xpJXpRMbaJIaUkUxgRKQVb3UpVm3l7RMHU1QTsrOrShWqYSLUUugdpW600MugUxOZ8s6qQ34QVZPPB7n59lbevwMU9wF2NAW98DsAtLegu6UDbeN70Yu+gFqMpyoj50YnagcQeO09QNeSKzSIB56FN7EQryoo4xjZYzIvvLcvGU+8qB3RMXK9ok5kRNBeaYqnHg8r72AM1c9GbPtZUqvWAcH2FcVJAajb+tgJK7aeovJKpLYS5TIMCwnn2XtaXUscFS20nd+OqtpqJ7D9naq9H1MAxvg2jL1mQJW4qhTqH8NVXQ3tGI3ulgLaOnt9la2nCq5Vj4ns/QByyAFce0/beVVnBffzEFShFcZlnq9KQGCpqq9skFdeHX1HhoiEkpFT1qFr60kdB0WofHaiibnqrJFH3sj6Juoa2aqBUUgrmjQSTahF58aSSzzwQhFpkoanwCJgQ+RY0orth1ZaEUKKlCVhgd2oRjuQJ3XS9jsA3gCKk7332yYDfwP+Vtgf/5N/DyZgJ6ZhC8a1vw60VHJcvQ7gZACvwpsXTKqsKIi9qoordCGYBJ4aX+Cy0aF+dK4roPb68kgXuj6pwyO46LxWQPD7w6rYRNeaLccbY9xQtbVhBJUOgZWgQXXP9lI44soCeJMKFmGrUtH7ZRMZ+jh3omKJtIqFsOLVieB9p0NG6Id7XshIPhAeEgwTIa9JmCC9HHoHutHaMxjMbUWtKvXO7uCtaRDAYJFjDv3LQ9+EO7zGdo2v5jypKK6wCxhsb0V3ewda871+7i1PfVVddSrLnCeNPAr+USD4PaGJnsD1RjBc0EboiKh8WBiJ977WEy9L4CvysPPKypLzypKwi5VU4ROZsDBDLfByqYWVd7AGmU03VeXadFKohoFbs/XFJv7+bJm/X4IwtVWgecbes3a+av+r+4iDIucrrvp8Z0XH7n5/pVjfWVFR2Q6+EwwLZ58XS8hU76c+cUU2ANgJ7GDs/VgA7UB/ewe62/vQlun1sxmyNp5n7z31VV5q7wPXFmrOChXwQuLZfTSRxdp+mfpKRl554+aFA4oTtquEDKomeqdRe6/RW4lWCbq2ntRxqCN0Z5M6ia9FxJFI8cS+Z8PA2H0iqJBovDZ1SCu2TTbcj22XJoQIaUWrjgZRNehFAONQJW+IY4HUo57mX9sXu1+bgtcOORDTsAU7MR7vHfM6kAVyKHjE1DHwwrR2A5iMituj3bPrxTKAt1C1/a3UeFoBtDHnyubmIudPyKJmZh84+2SqK/rzYckpNmyQLsODjUTxjQ7Z7zsik+Se7aVwxFWMqPWw115uk4kMvV+WF0s6NhPSyqbXna5vkPeEBp0ElZ+QvYjgxKbgTwLIZIYOE6wmaO9DW6kXzWTpc87WVar6cQiaWedH4BKRm2UfgDFeTZq4orf2ZvS2t6Ev34Y29KGAPHrRhgxKGKjkayETNVaHxV91qvoATz+oR7r2EQymKoHFeuJVV5/yjsv3h60SGN5++GpTkQkqEUrQe3YYYTe3OCD7HGX2XuTciNNJwSIyacWz9SKy6v9v79vD7aiqPH8np87j3rzoBBKIhKcKiI7dA4hBlOlRQ2v7GD4Uab9Jq604GNSGfD0tjN0DvsD+xkbGB6JOhLbxNT1Ct9pMhJ4BFIjavFptAXVEeZiAQUJyc+953po/qlbV2qvW3rXr3HuTm5v9+746px67qvbeVbWq1m89tizjSV65CCp/bytzFEEzzXluoNDCBMegyHtyqX0qMVTsRjJJVYBkkgmeDBjJgSZWKh62SOT9QWPYvXxplncreVeNi/Yl3mM0wmwXTbTSnIYk77mMtw0KIb2xfHIbcuh5HO3lyggsKfM1g4Urz6GNvOJlRzVWyO2+75tZG3mwqqynfQLmCPJi9B3bNIwSqlQWludSliNlnogSud11bjp/WV04ykgrTr7Ic3CvKy08jHspcdKKH4e+0KeQGIvJ24rLZQIRXAB+eXgSLnjiWvwaa7ATB2HPykWYbCWjv2I78Nsz2ljxcCexZqwi4mpp8v2OJ5EQV0QkTSEn15al5xtDTkpxpYHaR23nHmQRTPKK+nAgjmHzUJOQ11ISWBLa+eWx5gNk/fYjuiN82zsRRhWcY/iEjdgUGSNfSTavKTrl1ncA1pxWw0FUnbQaRHZFxjXNAJGwvFcNGaEQQTNBbz6SIIWLWL2t9iDztMIzQPxM7nzFI8z1ygO5IKWSZNKPc7JqIp3S+f7EGHZ3l7JajaVJ2mmUwVw1o2WzxWYvJGevG+s5tHVVURu4p0LXDIsEGM+jpY1AFQ2HmZJVPmKUu5xtm2vEKX58ud5ox1y+UQYjTAGziirPis0IMRMjxSiyPjuHS9Yby4qsryrPS8pqoeFS3kvYvGvLQwTzZT5l3lYk78UUP2M63NoeKZno3rTs7wLQ1w0VE0Bn51JMDsczOT+F8YK8J9+xISKrvKfeSM5uynvulZXVmX+DyJDHWYIm//nl9ZH5gF0e22B7L2hl+PHNdcXtrvWueoyEUWR9kPeziFE604ec8n1/lOW18iEMtLxWVeBLSthGEJSkFSfOtPNohJX06hqHmdeKyCsqS3J3Kl2/DDlxxYmeKSQk0+NICKdfAr9EQlw9sxZPYhWexkHY0VqJJ7EqeZY7Me7CacAJAI4BsCYJFZzCePINn33f87cGn3bDjNWgNmn9wkk8F6EkvbZkLisJfh5+T/G+5/Xjx+orE9gxgH1HZM12DqsqBKAPSp77IOudCMRVBdjIJsCudLi2lSkytvPPJETQR5Exhj2vosT4Wt8roi48srSk7JoSUwwN1BL05goMKTVkfTe8rbgyk86T9Z3bbSIAUR0ATdlK2Soed/9bVYmh4dInJ8az4dJ7qddVkbDiw6bztMREZpmqHYdUdAi6B4EbPlZ4G4klCSypyJAyow2fPip5ZZYpbuOYqSLj2mbzinAivNz2CopKvtvryicsXG5zyXRtH+1dNGNZD8w+YVUGLWehRd775TIcwBUiyGU+edeSx9UYJtGQpBULFSR5P4lc3cjbkVyHoncNffiXyHuaJhqYnBjL5P1kJvdzeZ8QVkV5L2W8nLfB+r0Rjfh5WCJvpOyfKXmVLM/cWGHuP7qxwn97BQIuEFfzBL6hci5oSrVL0R6VtNK8qSK2fi69rbRjStJKA924WoigJK3ow5qIq3G2HjCNBQOYBBdtH0MSOjjGygOZjP4l0PnlCuzAwdiJg/AkVuPXWJOWeRLfxcuw53cXAc8B4jXATvwOdneXpsQVueqSxxeRVXJZPqicgPK5L2xJ7iUppZ1Hbnf1/UApq0FbvzeJLFsOMNd2CVc994Jg3Uuy/uqrr8bRRx+NdruNk046Cd/97ned5W+//XacdNJJaLfbOOaYY3DNNdcY2//1X/8VZ599No466ijUajVcddVVs3JeiUBc7QOM6m0l17v2AUZXZPIDloSKjKrEeO7Dre1aUnYfJUZa4zXrO1cRxvg897YSpBWFCTIbeibqahHMIW8z4opmZNz9LkZUoUBg9SfGUiu8rOG4oOCSFtlbrw8Yr49wVt0C7xs6Ivcps8JrysxskFdaGY6qXlezBW/LfFBk5gxVQjt9w/1ofZmRwpfQGrBn11fWDwd1u6yXpBWHTdZXud9K5H6ZvM/KQZJYpnznIeG6h20uMbl37fiejuFRa4wgm8p7UkMM+3LaVfZ7hogrprB0YCWvuNfVJMYyqq1M3nN6Tsp7qp/0uhrVWFGQ9dZrblmPInlFl5zLfB/yajaMFXK7ts4ll+V7QJadaUh+IK7mK6p2sueoYlaM4mlF59WUd5dCz9smz2M7v/TqkiSMJFhUqy5MLx5JWtE+3NtqDOaxyFBA3lZAEibItwOJB9YKNtHyAMDDwM8BPAY8hZUZafUo1qKHJoAncBdOw32t38WuExr49YoV2ImDsHvnUuZxRV5XGmGVjmSY5byltmnEio1EkrB5XfHjSGgEl9b3ktAC3ELHNweUrNNMyK25GC1wrnJZOeq6F2T91772NVx44YV4//vfj/vuuw8vfelL8apXvQqPPPKIWv7hhx/Gq1/9arz0pS/Ffffdh//yX/4L3vve9+LrX/96VmZychLHHHMMPvrRj+LQQw+dlfNq2I+CPuc/RhkWXZb1IbW8RpyaTdJKU2JscJH6M4Q9Kbs7ZCQfRbCb5bfKR5TKPa4SO3eqyAx3F3Od7Mr/+7tybysuNxrU5ojl9IhiIKoBqCEXVrQXKTQxsLNmKjEHIct1tXvJUjRX5gnauQWecqDwvCfUN3zUKe4NIhO1y/t1VkPcPO4JmQfFNwdK2ehT9C/zn1Abh4V17twn2v4E2z5l20ZGF8ktVaV8wKzAxwvL5l1r21ZlxFnDq6sCaUWYkayv8pE0QKV3gGsQDpLnAAx5n4cGkmzPPWi5hy0fRXA8lfU8t1XbkscQzyTynoI9Ct5WAAqX3zBWAPlHPykyk8DOcZ28OqiB3TsTeR+l7YlSKc7lPaefkirk8j4ZYbDHZJ4p7zXwJO18UI4kcbrjovmC62YpNLkvZb4rz6GvvHflu+LrkuqZebDk9mTZvm1OUFXW0z4BswBJ0lR5GChUy5Vvp4q3VdXzS+FrI85sdbB5W5WdUwsR5Os1SMJEkiS8rjw0kE/8OEQWDWAmbidSi5NVZEgesGP/HPjl0cAvgSdS0mopduNpHJSe57e464nTcNvq38/k/xNYhemdixlxxc0cWlid9H7jfSj7yXbdbZ51fB+eK8v2UpbkoO2e0xKza6GN2r5zBdczNKoSOlfeYR712Qvf9ldeeSXe/va34x3veAcA4KqrrsK3v/1tfOYzn8EVV1xRKH/NNdfgiCOOyLyoTjjhBNx999342Mc+hrPPPhsAcMopp+CUU04BAFx88cWzcl4NgbiaAco+VorkVTVFxmf9TK3vBCM0MDvhLCgxysdqdixLwl6e76QeDZzeVnxeElhaqGArHfo8z2sigzImsRQTWPqM4m1Fowo+A+yayG0nZLvJXsmtZMq6MhoAbRn3D5iuzGJ0wZ3Ik/YelHhdTbSXorW4lxFznKCjPCh5fwxSq1Daj9lnPH1s5x/pnIjhGCIC6rmFOyGLpqFB9bay3RsOIstFYMkRqMoS+LqUGWofL5NUza6wjKrIlCk2Iys+fRQV5rLyAbMGLeS2WEY3RNi2cQ8ZQ6YzeW9441aU9SMTVnP47SnzW9m8rXKZZxon8iTmcvTYbibfzVFjpbzfnY8kKI0UIkyQ5D13pkUdaahg2cNIyhTJ+/E8QftOGHK/v2QMU0vG0Wr10hD3orzny9Q/9M8TtQ9hehrZ6jmysaLqvcHLpx1ZG9hlvm3EwdkwVlDfydEKXYnYXdsy4s9S3rXOiaqynvYJmCFsN7crZFBitkgrW2ii9pGteT65liWk54xGYmiEko204vP8nNKrh+Zl7qcBzGOPI89XRSGCDbYPk7OIkHhbye/uZwFYjTxMkPYnguuXicfVz4Hf/Oow/PzIY5F4trbS4+zC9JbF+OZbXotxTGIlnsKTWJ2n+sjeFBFME7fmIjMmlrm+4Ju/rM/KSzKLk4Ia8SShbZd1JLjqqHlgzaZgKvOwchG3c+GdNUsY8dt+165dxupWq4VWq1Uo3uv1cM899xTIpfXr1+Ouu+5ST7F161asX7/eWHfmmWdi8+bN6Pf7aDTK+3OU82oIxNUM4SKnADdB5aPI0HqfvFZAddJKVWTmQomxEVgcBmElXO0d3laaEsOt7U2FvNKUl+y/O4maluvkKWQKzW+HZmpFep2OARlxRR5CiIYJcRUBGPCXNw8h+S0wWFkcaWon8hEG2+Notnuo1/OREYuTOVR60k8D9NDKFJ4mkCkzrlGS+DEqWeBnSZEB5k6ZSdrnHjIdQGE99UsVRcbl3TYja/0wnaqUDxgJvknYNWVUGhxmaqSQ9ZlV0spX1ruecd+vCiHvy7ytAEAaJ3iIoCbnZYggD7gewySWYLeZy5Dy6D6Vz1NS9qeQ2+rpE74BJGHh7WTZuE8iKkGKAnnY8iTtDTaqIJt2NrC7vRT1g/M+cMl76hv+TyRVFy20UpPsQMgmCWmsGBm23eXjwb4LbN5XLoMFP+4oxooyo4RcnxyjuC1pgntUwhmhqqynfQJmCaN4W2nwJa1c57d5s0hPGk1pl+f0Ic74sou00s5FZBPPLeXy7uKkFZ2Lt1F6WC2D6Z3EZexv0+MsRS6x6fg8PJDvT1/xDQD3AoMngAdXAz9u4EdH/htMIBnxdTeWAvgVcAfwg6POwMoznsJxeAi/xFGJPM+IK54snuomPa4k2cT7kI966CJ8OHEnj8NNLX1LGZ9zzIQu8CG2ys7P4fPszAW9od3/ZR9DioJTRh6O+G2/du1aY/Wll16Kyy67rFB8x44dGA6HWL16tbF+9erV2L59u3qK7du3q+UHgwF27NiBww47rLSao5xXQyCuKqJMMQH0MEGXUiK3aaEhdBy5z6xY32eqxGjbZuHO0rytpOLiO6qU6YGVJ+jlowjStPiZaT1EcA+ACWByj5nykUCvZ8pvReENi6Ihpkm5meAvMuo4OtokMJGGj3DSKl2ebi/GZLuL5vIua/sALXTRRRPN1ApP65PLMMxIK1JgNCK0zu41nq9j1hSZ5GAmtO95QXBWVWZ8yaukOuUhJHx9Mu+nyHAPLu04srxrnRWa4a6sfMDIKPOoytdFhfVVjBSu9dKz1j1SbH6sWZH1vvePLRKBPGwj+4G0kQS1EWITuUfynYcIFskrChHko8aOs2npM/2ctFK8ruQgHNwm3wASOVZnRoBogH6mC2mW89RQgV1FL1s22eR9MUNh7mkl5T2ALGQQAExZV7xIBa9bh5ctgOI9Ufaa4Nv5I8LuGS7zbQYLLXRwVPIqOX3R8OBrrNC229Zp673IraqynvYJmAFG8UqxweX5ocEnRNDn/FoydBuBpJ3Tlpxbg/S24v8u0oqHBnLPJH5OIpTI24qH/tE/zx1LHle8HJDL3iORhwkS6FxEcj0LidfVauDHwG8OPgK7j1+C1cufxK8ePwrAz4H7k92+ffyZ2L16KZ7AKmA7khyGhomDvLpkG219ArbNRV5xzzUtZJDaJa+pDFWU0BQ63/uNw+YlqJ3DF1W9rHz3m2vIejm+80f8tn/00UexbFl+T2veVhy1mvndF8dxYV1ZeW19GaqeVyIQV7MEH2WzzNvKZmX3HSYdmCXSajaUGB8PKwXasOjc+g7kISOaEkMf9XJUKa7UyPwm9J+ECFqGQ6d1u4Dde0wlhpqZRdmnHlfdVjOr/3QbCRk1QdYfUmTIApR6XnXG8/xWEzCIKyxJEvdOtXuIWpKYS/rDlrC+ixZkCEmyne6h3GovP8g5ShUZDTZlxkVkOQgsVx4UX/KK2kbkVVKdohWer0+qVfTGSqppV3LmDENUe7kFC3wl+BNV+rWu4o3rMl7YPGt98hdW9rKaCWEl9/GQ/YsUogqAl3dtHbnnqSSqTCOFOWosEVlLsRtL90ygpgy8kS3vyQfh4Cl0gVRlasHwuALSUMdMV5NKI5f3uwCsTOQ8l/U0OeR9L81zOMnCN3j/VJH3EmSsADD7ea7ME1HFEygyXzNYuLxty8grarPmaZu1HaYRg6/n2+hYyfZy0spW1ruvqvZ/kPcVIAWWFuLkIm5c+YGqklbaseW5XTeD7fhaqJ7rnFoScK3tNrJKkmb8/JyYonk5cYFAZgLpccXD14gUItJqNxJyqsGOR2TSSuShhvLaIV2/GsDPgJ+fmhBUS4DOYAV+ddQ4cFsq8H+eTNMnL8bd//Gk5N2bOY4MRJsBk4SidwBvA9WV5nl5glZffl37MPuZtBPtGLZ7Wd4ftvuNG2R43V11th1vNkII9zVppbVrhOd/xG/7ZcuWGcSVDQcffDDq9XrBy+nJJ58seEMRDj30ULV8FEVYuXKlVzVHOa+GMKrgHMH2cVI2VLrPaFQaAeajyFhJKz7suVRipMFnpl4eHvtS2AhZ320hI0UCi8IFu5lSk4eM5KEief6Tyex/HJMY77Lh0PeIKV3X32Mm6OU2E4q2J0WGrk2r3WXKDVmLuPswKTO7AMSmIjMhpwYmJ8azUQZptCmi57qQATI0hHo9G0p9iGQIdTnKIJDfZwNxjw3qdb/RBata4GVZ6SIr7jcisOQoVMm/OeKga/QpmRfGtl2WsY0+mM/rN7gkAGdlNMLBCFPAjKF53frIeyrn420llzXPWsAt661h4FzWu0gr7Z6Zo3tLynuCLZehlPdy8A0uAfNBOLqGZ+34cBJtRcZnU+pdSzSTNFREAKIImceVgYy4khZ/wAwRn9Rl/U5alyRqt8n7XMa3nPK+aOopynt5b1aGTaSV3SMOmc9HnZXyPpkvynzXaIMyrJJvp/VyP16u7F0gj11W1hujyPog70dElY5zeR9xTyPAHqrn8nzScmm5SAQ+P4qyLs9J57Wd09YeG4klwdskPZE4qC+ltxUdWxqBd7H96PgU2bAUubeVrZ8aaZnfAngM+DHY1AZuS8vsBLDzYeDvgc6WFejfvywlriZhEki8b3jYJJFsNLqgRlTJCA1YlrV7kbdPIxPLID3uJIk6EMu2iddXI0P3Nmk16rPBMZu5upRTzaGsbzabOOmkk3DLLbcY62+55Racdtpp6j7r1q0rlL/55ptx8skne+W3GvW8GoLH1QiweVdpFnWtrFRWfBQWuU3LawWMSFplJ7MoMWUPhbCUqtvL7jTH8Occ+ic4hQby4c9z6zr3vJJkFo0oNYZJjO+ZVskqPk118teLJK3GkFrgFyPJcUVW2WjIiCtuKaKXFL20U2VmYllRiTko/W8D/Ykx9NpdTC4eY6MMJr+TGMv6hMJFeH9RwnYtZFBa4blnkoSXBd51ScvuGc0a72mJ9/G8Sk7ttsLz9cl8McQjqWrxeIQyi/2M0Ec108McvmcPNGhyfcCeNJ+y+Xbd20puk561PoNujORlNYKxISvn+0VRIu/t3lamdy3Je5PI4p5Xppdti82PTfR171om90neS9UtU0HI4yrKQ4/r5HHVppKkdEnLP/OylR5XByGT/9Pt8SxkkOT9FMYVyqlozOEDdMhRBl1eVxzcy3ZQ935V6/eNXMfvFw+Z7xMqTm2q6mmbnLLoNesrw+UxZhVVZT3tE1ABLi+QgWXZFxrB4wtOJmlEhetY3FvJ5W1lI6s04sx2Dv7vIq04AULzvt5W5D3Eva24TCVyardlOxFSS1mdNFKmgTyh+y+BBw8HDkWewuMOpMd/CsAPgH86GjgKwLMBPAbkoxmCHY+/IMkrjwwYnMDUPKo4bEKUvJ+k15XtOPJc2nnkfj73vU+dy85tg+1e39eeVlURAdAHJwOwV77tN23ahA0bNuDkk0/GunXr8LnPfQ6PPPIIzj//fADAJZdcgscffxxf/OIXAQDnn38+PvWpT2HTpk0477zzsHXrVmzevBlf+cpXsmP2ej385Cc/yeYff/xx3H///ViyZAme/exne53XB4G4mmXYQkl8wkZ8vK2obLae5bWaFdKqjLByyS2+zVuByXeyhglava20HFd5Liv6iOfKi5aYfRxTGN/TSRKya55WE/nyrm4xvSK9pscALE1Jq8TjShBXS4A8USTtxV/cpMwsK5JWBpGVJGqvR8Ns1Ck+8tQUTDt7Yn1vsX6iXzOERBs6PdlmDxecdUWGOjQ7GdRQkpmSV8mh3fmuklOOpshIUstWzmx2xZGmRkzgGOAP1/VwkY+avHcRWkUvRzNEUPOsBUpkfVkY+GwRVlUg5H2Zd62U8zxEUM9dWCSsWqkvqiHzXd616RSnYYLSDk5q2BiAWhtZaDghk/cRYCpeBC7vJ5F42daK3rU7kbwz2jV02uOYavcMeU8TJ7B0MsuU93xgDk3e5w1J/2QidCSyVx1JllCF7ATcMl8hrwC7zE+2uY0VGpGVN9turLCVT6qtywOXzPfOaVhV1tM+AfMAVUgrm7cVrYOyXh7bdT+5zs2/RaUiYAsR1M6teVxpkN+9vt5WmseQ9Lbi+aX48ZciCRPUoh4kebUMwCoATwCDp4Cfr0zk8c8BPBinx3gine4AtpwOvBjAL4Fs8A2jftRHYPOal1jZNaQ6U99oQlSG7fnccz7bObnGyTjevjLhP9uMelXSaqbeVmWhwi54nnsvfNu/6U1vwlNPPYUPfvCD2LZtG57//OfjpptuwpFHHgkA2LZtGx555JGs/NFHH42bbroJF110ET796U9jzZo1+MQnPoGzzz47K/PrX/8av/d7v5ctf+xjH8PHPvYxnHHGGbjtttu8zuuDQFyNiCpKC6EsbETuq5FZrrxWwAikla+XVVUlpsz6Hulss1RksuKMiOFKDB9FMFdmTA8symNFy0lS9il7yIhFoel3zbARIH+FLkun2mIkHleLGelR5x5XNeSx9VyI8ZfXCmCioSsxE8lxpncuxmQ0RLNF7U4mPkw6YIZUDlFHL9Ww6him40whG2VQDp1eIF/2hiLDy9L9Y7HEa3mvfMkrap/LCp9UQc99wuFSfFzlfLdZ0YXTaFNAr9rhA8rhumaax62LoEqWzfIuz1pneOBMPGqrGiykMb3sq8Kb6TbDvWwDcBQDo3OZn4cHTrHBOFLv2l0wPa5oOZ14LkOuunGbPxaDeVylMqIg77mHAB2Fv0mYl+1OmHkNd6bHabeTUWWZvJeJ2vk7soVeJu8jJtvJiJF43Ory3oY5yXNFcMn8EQwWGeqAZqyQnrbJfLmxgo5BKDM2zJp3bVVZDwR5P2OUeVv5KKuSqKgKSaZUUZA1bysNrrxEZQ+89KzSPK408BgnGVLm421F56DyTJYaQ2jQ8aW31Xi6LxkPpF8tETMrATwA4JfAYylxtR0Abk+P/9v0mA8Ajz0H+N7qRGbjt6ItNi+pMeThgpKQk6ZxjciUBBb3uuLn4bB56vncW64yWh194XLFHQVzRVrNBK5rIrCXvu03btyIjRs3qtuuu+66wrozzjgD9957r/V4Rx11VJawfdTz+iDkuJoBypQWfZ9iKImLoKJlTbmRea28SCstnxWXf9LoYTOCDBzbNDgVH0uuCGeC3uIHex4mQvlMOGGVLxueVjxkZALFZOx7kLxTOsCuCd36Tq/SpUBGWqEFRhIN8mHOIyAfxteW+2RXMioJJ624UpOu70+MYWpPsVWkvnXRwpRYptxWWo4r/g+gsCwxdMnfKl5YZfcYP+awuE3mvfLJecUVYlu+K3N5YCxzzwa+T5W8J3y/UbY5UwqUpRqYAzz99NPYsGEDli9fjuXLl2PDhg3YuXOnvfr9Pt73vvfhBS94ARYvXow1a9bgj//4j/HrX/96bitaEWUeEVJea9u1Y2petFReGimkZ60cPdBJWvFcVlVlvY+M94oeMD9mpHetr7eVOWJgMSG7NFIUvWynsPSZTpKQneQ9kVVieYoZKvinviHvKTSc3SJ1DHIP20zea54CfeSKFvQcVzQp8j4fF3EszXuVU3fmsvnvI++pxwk0ip8VMkeVxMAxaeUcx3XlvSrLeUXyVOa70mQ7QZPB8v1Q3D5wbqfzeGMUWR9CBWeAUUgqDullOWpooFanUeEKEZTeVmVkmfSokoSVbLv0bpJhgZzEAjsOyU6Z24ofjxt9iYQiEJkFJN5TK5HntgJMA4KMpQASKd8H8CQw6Cc5rnY8DODO9Djk2bUMCbn1FDAxiYS44h5VvL2ybUSw0buAv3E08Dry/rNdM0kiuublteMoI3Bdgl3bXuXjnyD7Rfs2m0vSyuYFWfVcJWRykPVOBOJqhrDlNQFy5UTfVh5SqCk3VUiraVJmssmiyNC/nNeUGtfHpo/lnqMkbASAU4nhXlXyn0JEyOJOyzQsuhEyQkOg86HQOXk1kYSNTA2LdhmyAS0DsKyOnKBioYIt9HJF5iAgTwzJkzTyF/AUgNgkqujfILDMRO28ZZywMpeLyoyk/yQlCCDfliZp54rMwK6z502Ty2X3ke3eSypjElgoKjP1AU3T6eRPXkmlRSZqtyky2jobmcXDekbGcIRpDvHmN78Z999/P7Zs2YItW7bg/vvvx4YNG6zlJycnce+99+Iv//Ivce+99+KGG27AT3/6U7zuda+b24qOAB+vCS35Nd+/7D1gy4+lhYMny9HseNSWPW+zhcg8IJf32TpD3hfJKj5qbDEssGikaGXyPx1FsLs7DxGU8p55XPW7ph0eMEMEM3mfGil4TsMWetk7IPG6Ilkv5T19caYKl0ZaGcsNTLBE7dJYQfKffM8mMVaQ95q5R67j9642KIch730iWnyITxeJ6mGwAGZGXsltyXK5sUKudxkvOMpIrQJGkfVzKO8XqpEigUsLLCOyXKRNpEyu83Iyoi/Wy4dKI5FcJIR2Hu1ckqSgNsnzckIpEtv4cTSiSpJY/Njcy0oOdEHfzJPIwwN59lk+at9qJKTVUpghhJQPi+/H+4DaNokkBvBnSLyt/m16LCLJnoUkZPAHSGIJKVSQvKn4OXgbyQRC3kq8HfJ+0Dyk5LUD3AJXC+HkpKMNZWSVxqCUkVM+qLrfTEirKgrsKEQ24O1JNo9k/XzETP3x9gquuOIK3HDDDXjwwQcxNjaG0047DX/1V3+F4447zrnf7bffjk2bNuFf//VfsWbNGvz5n/95pQRghMS93K+cDRrBlX/u2AkqWQ5wk1beioymxFQlnvSGloQIymVFqWfWd5cSQyNIUZ4TrsBoea0oZIQnZF/8zLQ9PJCWu3nYCBdXJO6XptOyJUh0lNTrioehoY2EtFoCYMcytpd8WZOFZspM2nsQWNhIOu0EpqPFRuJeTobID3RuYab/OpLRpzgodJAwEB/zHIXwEfJYtqHKPSWPy9dFSIS1JZTENnx6dui6DBHMw0S4UuEKGeSQ4SO8rIRv+EipcjNANdPDbBMRDA888AC2bNmC733vezj11FMBAJ///Oexbt06PPTQQ6qsXr58eWF0kU9+8pN40YtehEceeQRHHHHE3FV4BEh5XXYNXd61vvLelsNwxrLeNe9aJ8GfS+12V+S9y9sKyAkE6RfUhDlmqjZyYNFIoch7HiLIyasJFJKy809urkYtQyrvF8NIzk71zwwVSwBMLEUeTC4VJGawGIwXcxruRCbrKWRw986laK4shgomdRymA3SYVFRSr0HmBUzLQLMg77l84vI+MVZM6+GCdczOxzPvbLlMxyeZHzHyCkV5L0PFYQkbzNonZDsPGaTyZpP19RKaHK8cPlhV1tM+c4Q3v/nNeOyxx7BlyxYAwDvf+U5s2LAB3/zmN9Xy3Ejxwhe+EE8//TQuvPBCvO51r8Pdd989dxWtBJs3RZn3VR/lI5f5qlqSrCoT0j6wnbuMoHNt58SYLURQ9omQd8ZIevJjj4cIStKKh6Rxr1WN8FmGxFBM07J0PQ8tJLKIzk2g49BASg+k8ysAvAC5R9UgnZ8C8Djyb3g6T59tpxelJOAoZJBCGuU1a7B9JbHIP7q1fpftkqD690vKSfD7np9/Ntx/eBvKlErf4/hgNskqWx086jSPvu3nI/YL4ur222/HBRdcgFNOOQWDwQDvf//7sX79evzkJz/B4sWL1X0efvhhvPrVr8Z5552H66+/HnfeeSc2btyIQw45xEgmNtsoCxuhMj77asqRNoJgMp9fSm9FZraUGHkXaXLGcadJbysAXiGCMq9VC2b4CLe48zASHjKShYjsUaZuOu0B+gN7rpNxJK/DBiOt0AK6MlQwS9DeSPcYhxl8yD9YppLtHZhhg1yZSafORJ64lyssXIGRfRdhaOS7ovwnlMRXy/ORzEfgt6QkhPINKCoy2j3kUnb4ra8pNA5lxpX3CkBBkeEEFX8GpXLiSsRbpsiUJfGtjCGqvbDSvtq1a5exutVqodVqKTv4Y+vWrVi+fHlGWgHAi1/8Yixfvhx33XVXqZGB8Mwzz6BWq+Gggw6aUX32Fnzlvc3byhUimK1XSCtCIQwcgOplNduEVRUo+Qxt8p77rJFcJ4NFJMirlmHEoJDBXkZgkRGDD8BRCAmXsr8DxJ0kTFCqbqROkNmhQbKevK6obRiYxBXGkVv6KSyEriFZqVMv207NlPNLUCCv+u0xTLSXIlo8TMeS5aPJjqOOIXrMO80m75Plrre8l7kNK+c1LCO2fOQ9HUcxWBQ/MeyjDSbzZlvzaurGirya/nLc10gh61BAVVlP+8wBFqaRYlTSCpg90soGSWC5YPO2suUzkh47Ng8v6Z3jChGU5In0DJIhgrw+/JjSi0u2QYb50Xc0lSMTA5FW3OOVvK2ItOIklWzrMiSE1ONIPLdegcTDardoF/XDLnYsIB+dkM5D4YU8b5cku3gdJIhkInBhqVl7JbT1nLzSYCOS+mL7bJGrkgz2Ia9GIIjmFPL8kZh35IIa8dv+QMF+QVyRVYdw7bXXYtWqVbjnnnvwspe9TN3nmmuuwRFHHIGrrroKAHDCCSfg7rvvxsc+9rGRiKuqyqYrbISOpyXv5fsSfKzvtL4yaeVSYnwfHPmRWYYoLoSNcFCYoE2JoVCRoheWDB9JQkbkSIKUkL2RklK2ZOxGUvah6QjLre9kT8diJIpGC/ZQwSXpjgNSfyZF65nHFfrFJO0TybGz/zaAiTxxr0lUJSMMJh5pTcMCz8PkaMh0UlQoUXuyTvdMkhjUk2Y5FRkOH0HLy9DjoL2jpfeVh+fVTK3wBFvS3mQfszOqjBjopfBUNQCl5deuXWusvvTSS3HZZZdVPJiJ7du3Y9WqVYX1q1atwvbt272O0el0cPHFF+PNb34zli1bVr7DPEIxX5yftxXft7BOGUHQKutn6lFre27leh8jhYZo4PS2Sg5dDOPiIYI5eZWTWCTvycNKy2tVGIBDJGGXRorBMJHKXF2UqlAm72lUwSh/viMMRWg4YHpc7YL5oc+MFeRlK40UhtxvoLukhe7iFiZToopkfYQhumhmBJZN3udjyLrlfTJv3gSU27BCjv25kfdUziHzOXkFIBugIzmd6Wmbn1o3VhCkHHcRTl4jBvpgFGN/us9sGyoWlpFCSxBjI620fQG3wmwjIKTXjEYclXk9yXNq95q2ztYu7Vxa220hia5z0bG4vNPCAwkyGTs/PjfucjJImpT513k2nAbbj7yt6Px0HjJHE2m1AnnI4bMBHJ7KI16f3ew4A7avbAsPBZQkGXld8b7isHkzSa8ruQ+HJKf4diKvRoHtWfCFRrjZjmnzcJxLuMJnZ8PDzHG6uSi/n2O/IK4knnnmGQDAihUrrGW2bt2K9evXG+vOPPNMbN68Gf1+H41G8cbvdrvodrvZsnzhVxqqXqAs35VGZFWxvpcn580awRtUPj+XSBWZwpDo9aJ3kAwZ0ZQaOcIUWeRJoaHJSMjOFRdufZ9A5u3UH9ijzcnbaimRVswCbw0dOQjADnqh8hceR/pSHzSKHlcF4iqxwk+1u2gt7mYtJaWmmVrliyMzDgzSqpuSW8k9Z4aQ5G0h8zuvqyV8ZDbBFRXAVJil91WKGkYnrwi2UQbzatmVmJnICy8MUc2dOK3ao48+ahBDLiXmsssuwwc+8AHnYf/5n/8ZAFCr1Qrb4jhW10v0+32ce+65mJ6extVXX11afn9BmXdtWYggYIaD07IXaTWqrPfxoin7cnBsXPiA5gAAgNRJREFUt+W2Sv7t3rW5nC+OIpjLdtPL1pD3ZJyQXlb8HTBIwgQ1tYEHriyjpOxEXrUFyc3l/RIkowZiKcxh0qXSwLxs2ftHk/v9iUTe1xdTuKBMq04EVb7M+zcfbbBeIu8reNnOJjR5D4xksCgjr5JD+RsrCL6hgj5welslJ6keKpgecrYNFQvbSOFi9zXl1QWX10wVSAVZelLNRI2T5JFGlkkPJJqvEiJo87aS55NkGD++rLMkrwhEQNE3Nnm7ckKEe1txokkLTXwWa9MJwKHpLjsa7HiT7FicJKP6jCM3UvO2Q+k/ehfIdlP/lL20fTyVXOTQTD7mZ8KgaGGHdEweKlnlWLOB2WCFbM+QBSN+2x8o2O+IqziOsWnTJpx++ul4/vOfby23fft2rF692li3evVqDAYD7NixA4cddlhhnyuuuKJUSdM9pHRCyn6M8lGo+PFs1vdsO8+W6kNazZYSU9X67nG3ad5W3OuKW9t53hM5wlSRrBIJ2W2KSxouklngh0VFpsH+yaYzzsNGUis8H3I7I5lIkdnBR0mhl7C0wotwQVJilqBAXKHdSLyu2r2U+Btm1nVOYkmFMKlfTloRkSVDSHhIXelHdhm03X3vM2lpp+0WZcZGXgFwhpDkpzNDSWYzDDAnCYvH8rLUd1DthZW+f5ctW+atLLz73e/Gueee6yxz1FFH4Yc//CGeeOKJwrbf/OY3BTlcqFa/j3POOQcPP/ww/u///b/zTJEpgvs0+pa3edfy4xXWW0YQzOBDWrnk+0yMFT7fkCXb9VyG+gAcRF5JowUPCbd62drkfQe53Cf52s0NFdK7tgEW9EeeVmyia9hEVyGuSIn6LYpeBlyZS8MFLYRV/p/L+149MUxw79omWqlRx5T3JOcTz6w8dDD51+V9ss1xg9iM/YTZkve0n2aw8CSvACAaDo0ch8lp7MYKvs5s1ux8PnvJ+6qyHshuYF9DRTBS2EgquexSZOkbrkw5tYVlaV5XZefkx9Q8oGTYHj8PX6+9IDTihJMsGlEljymJqrKR87iHkjw/7cPDAyVpQ/uSlyvPJ0WeVuRtReF5dC6ej5COx0YBj8YT4moHWPt5ffqsPJ2TRjGUSeGpXzTSj/eZ7ANJOklIIrDs5S4FeJlAryr3fI+lhR3ua4rCJQdmAldYJkb+tj9QsK/visp497vfjR/+8Ie44447SsvKl2gcx+p6wiWXXIJNmzZly7t27SpYq4ByDynfDxotvIRDW+dMxs5JqzJFxlehccHX+s5BYYJe3lZFJYYH4mghI9wCL8deogS9zc606VnF/4UyE3eAwbD4KgAYaQWYuU4WAzGzwEcYJn3EFRkAyQuNW+DlB4aiyEjSiikz00uamJwYQ325GS7ISSwzkGnA1ps5rrQQkjKvq6StCVlU+R7yLUP3movAUsirbHMFK3xy+GKeE23UKF/vKiPZMfKwRFvYihOjkA0VcfDBB+Pggw8uLbdu3To888wz+MEPfoAXvehFAIDvf//7eOaZZ3DaaadZ9yPS6mc/+xluvfVWrFy5snol9yJsMloLE6ziXWscKzVSOEcQrEJaVSWsbPeJj5wvfGPb5T1Betfy0QM1osoVEs4NFyTvx/co8l562qaGiniQyHsJbqQYA8tvxUIFDe8dbqg4CMD2GnKFiCuNnIVh4YI2QwX7n26PY7LdNeR9MyWwcvluynuqH5UfoI4e87bS5X3R68qQ91Xkyl6Q9xp5BZR72hKksSKpkl0mm4aOSGxzE14yp6IVozhBpPv4GioObCOFRlpJ0qhMO3SRVvw5t53fh4iwocpHuGyrjbDjx3R5VtmIF34+IucnASt5pnlb0UTl6aEnAoyT/pywI1lLEhtsP/K22o2caOJk14r8ez0C0GkAnZWJ3D0UuTw22kfEVYQ8DoPyGVKOK41003JqccKPtmkED0rWEVzeR7xefH4m1MBMXgjUfqrPgK1zLc8FXKRVlTaWkdgK9sK3/f6M/Yq4es973oNvfOMb+M53voPDDz/cWfbQQw8tuC0/+eSTiKLIqhzNRpJigk2R8fW2MpL2MkVmTkkr1zuVoN0xsyA7tFwnUonhVndbyAgfYYorLzTa1Piejm591zyvunbSynjNLQewHGZi9kKoYB9oN4QVnmLnp5QzANkLrNMwFZk2VOIKEw10onG02j30WuRpNcYUwPHC3ShDSKj/tRCSSlZ4H4xyv0mylBQW2laizPiSV/npim0t87pywRV2UjnkZIiclfMtP0c44YQT8Ad/8Ac477zz8NnPfhZAMtLUa17zGiPnyfHHH48rrrgCZ511FgaDAd7whjfg3nvvxbe+9S0Mh8NMZq9YsQLNZlM911xjiDpqiuweJfRzFHnPoY4gOCppNVNjxSx9I2ZGCsXbyuZdy4mqcUwVRo2VZBWX9zUu2135rdKk7FyV42pUFiZYRy7rVQ/bIdCOgSU1xetqKfIQF0A3VsCU9VzmG+tq6LTHk/4UIYNkvJmCKe+pfr7yHrDneqqMGZAvVgLL4RzAvW0Bd5g4QQsZlOslXJ5ZNo9abV8nqsp62qcCgpECGJ20ciES85Kw0Tyf+ko5G2TooMsDis9rnl2242uEkubdxc/DCSvuHaW1S3pyaSGCYMfQxnyl49CXOSetqF5EWv0WZq5BIptWAFENOBiJwaHNmgIIwzOdj/vn8hHDqZ08dLCB3OvrtzC9wSK2nU46QPF6ah50LvBoDhvovizxBCqF7T7yvY/59bSRVXsDvn1QVk6SVvyZcYTcz6Nv+/mI/YK4iuMY73nPe3DjjTfitttuw9FHH126z7p16wpD89588804+eST1fxWexs+VvpK1negnLTyUWLKPi7LSCwNSjmbtxWFhWhKjAwZaWYkVTFEMFFuaCTBdOqmCXpJeZHWdyVsZKpjNpvbP8imk1nfGYHVazcM4mpRu4fpJQ0zz9VEA3nCXjqL9qJu5JZ3jbyi5Z0AojZ2R0tRP3iYhQwmYSTjSEYaHC8oLkkd87uQQkgS5CGDddTZSFQeuU/q8BeoPiQWgSsrRFDR+eT9OQJ5lRyq3ApfrOoc57QqnnBuy1fEl770Jbz3ve/Ncgu+7nWvw6c+9SmjzEMPPZTlKHzsscfwjW98AwDwu7/7u0a5W2+9Ff/u3/27ua3wXsQo8t6LtJorwkoKPL5ek/tSN8sE5aDgbUWQ3rUk12VidmmYIPKK57NKpild3rsmCgtPXfMHA7tKlQWfLEE+EEdqqOi3ZI6rLrCkncv6gwBMjANYiaK8VxQRGR5Osn4nBJnVxmTat1Eruaukt5WUWZG4C13yPqkl8zoVXldGgvYq8p6aXwbpqCINFny9YrCoyd0s5BXBJucrGxVmGzMh/WYZC8lIkUCSVC7SyiYYIdZL7yvbefk5XBdMCl5O7gBF8kjWw+blxKGtb7B/SSjJc3LSg84jySpJmMlzyETsHHzUPe5txY8hSSuq0wB5iKAME6TzrgAwnpBWhyP5J5KqA+XSy5ctvSWoDtR+WqZzyRENeXupXznpxc+h6a5lnkCue1UrP1PyisMWDivrwcuWeVrBsc2l2/N+cD1rZR5tvoJV9nsFumWefdvPN+wXxNUFF1yAL3/5y/iHf/gHLF26NHvhLV++HGNjyYN9ySWX4PHHH8cXv/hFAMD555+PT33qU9i0aRPOO+88bN26FZs3b8ZXvvKVvV5/6W1VFkooQ0ay9TZFBshJqzJFZlTCSq+o+WHpek4jgIeNADBIKyAnT+SQ56Z3lZnLiocEFodAZ9OQhYxohBUpMTTPiD5y2JU2naVIk7Ivg+lxtTghQPhHcLPdRae92FRkdgDoLEWetJFepFKQp3XhCozNIt8GpqNx7I6GyTnq3MKeTJOGFSrfHilKjkQLvYLCjTrli8prb4QLau/Hmdx72nFdBJZAjXa1kFe+VniJmYQQjoR59nJbsWIFrr/+emcZCtcGkrATvrw/QSOgbN61VeU9J60II5FWMyWv+LZRvhQi89oaRopIDwUnL1vNq1bLY2iSVYq8fwb5xGX/BIo5DQdAn/UFfRLL4JMGk/M09dqLDHnfaPfQb7dNj6s2UnlPSozWuanCQl620khB8n5nOh8l8n7SCLXP+5KTVHUxX0XeJ+3KQ8Rzol+R9z7wLSsNES55byGvuMECKCevktMWw8V9MWsjCXLMI+IKWEhGigGSWN8y0koTmpK0kfP8i9FFBPBzDlAkdsouJD+Pr1Hex9uKt0N6Q0kii45J9aXjDpCTTAM2aW3g5+Ft4QQVJ8D4cbiU5onVCUQUPYXE00kjrVYn38yHsumgtNhOmANmdKhe/NpS/eX5uc+uJK6eZNtkX1BbeT8PYPYLHb+MaPIhkHwhz89hI8Nc55NC3kaglimcs4EqpJWrz12yga6lw+Nqnn3bzzfsF8TVZz7zGQAovNyuvfZavPWtbwUAbNu2DY888ki27eijj8ZNN92Eiy66CJ/+9KexZs0afOITn8DZZ5896/WzKS4+CXl99nFa34HqpNWoSgxhhnfNIk5WKSEjtrxWJnlVnOfKy5icJvpmyIj0sOJKzBBZvhOpyNA/hYyMc8s7Cx3poZV9/NYxQKvdQ4crMTR1yEWZf7xIC3ya52qAohVeU26iGvrRGCajAZrLu2m4oGl9l1Z3LWG7lu+K/skKT+3LkpzPdMSpKvefi8AqUWZ8yCuCj7cVL2dWtfo+3hgAqML7HGDuxHOBAmlbcT8r2TXUj5mNIOgirVxyfaaynpct+2aMlPXM2wqwJ2Tn8p0MFuYogrqRooUuCyH0kPea3E9Jq1jpD2pONri6QlqhDXRbTSYnBmi1u+hzOX8QhLwHzBBxpUM70D2v+H8EoJ3Le5nvqszjylfeA2bIoFPeVzVUuO5DzUhuI7BcKCGvCJqMr0pEuUIqR5b3VWV9crI5w8I0UmikVRUh6fJ4spELGmHmS1oRoWE7t3YOTgJpZQhaaBNXuvm5OThpxb2ipIcUJ13kORTDrVFPnpCde1pJ0qjByhNZRN5WlH+KyK4VSfmDYRJXS0TTyPNqAJiesxoKlnuYoeIUssgN1pIYkcfmZajtnMyS4KTaTCHPoXgKW+FL+BCkRxWUeaCoL/mgyjM9G55WtnUOhG97J/YL4srnhXfdddcV1p1xxhm4995756BGOXw/RHyt71l5H+s7oJNWVQmrUdhdX+I7M6To3lZAMWSE/3PvK1rmISNZLpM0r1XudTWV5z/p9srzWtELqZvP8yS98jU+hnRkKUWJQQvoopld6whDNFu94khTS5COTsJj4OUHD3Vyw67IyCkC0G6g12lhqj2ehZC00GMJ2sezupkW+KTfu8hd97lSkys3xcS9qtcV4Baqo9yH0kCjKTQulJBXAEqt8DaY3lnl5alvR0LVl9UB9nKbbfgPuuHvbWXsp4QIGrIemBtZ70sc+ILL+xQ2eS/le+51la+XuQul/Cevq0zuyzyG0stKEFY0cXnP7f8AG1cqHXzDkPeL81DQZN8hmm2XvCflBTAVOLB1jbxumqFiCQSBleQ3pHxXLXQxlRosmmwkQZL9VeU9AMiQwZHkvUSZvJaynq+rYrBIy9jIKwBOT1sfzKm8H0V2B3nvib4yz0kDG6mjffxqnldl53V5dUlwosfnPDaSgBNM2jnAzsP/5bm1FwQnyOS8JB7ksV31t9WZezrRvySteIgg93yi2IkViXHhYOQREQchT8/BZU/mcVXlw5O20yAdu5D78P6WHYeX5fv69LncVqaczSZ8wwt9PMM4QQXYCSugqIhyLzj5XJRdI1k3F2lla0eZPPAk2cK3vRP7BXE1X+GjlGgWeh/ruzHsOe0nFRme0wrwU2RGVWKq3CklZQvWd2hDoOfJefmyGSI4pYSQ5MOjGyEjpLBIaztXYrgio5BW1LQGgGWt1NvKYoHn152urjHSFJ8mxlF8CSoWLa7IlE0TZghJs94z8luZAU3FEJKkJgkp1UuVGlp2WeGdHle+xBLBJoz5o2FTYrjSoiXyTY+h5bwCTCt8UtzvzcCfddqnTFGJWH9WQrDK7DVo19AWJlgs5yfvnaTVKAYKl6yvQhK7jBQlt63qbaXIe5nXikIGuXx3yX+S961hN89rRUSVNpGcVOQ9gatWY0hIqxqX8638v4emcY/U68MSeS+t7CXyXsp9brQgva3dQrfTQ7Pdw2R93JqgPUqJqiryHshHQR2mlFapl21Vz6sySN3MV94L8gqAmrAdgOpp64s5lfdVZT0Q5H0lECkCuEkrWudSQH2urRTS0ivKB9w7SXoraeezeVvJYwJF0kqew+VtxUmqSTbvOndD/NPxOOR1oboQEaWFCPaRE1a70v35SH5kkhg3CauDkId3y3cuyd8sxcdYeg5mBTF2oHrwtpKXFx+giYcL2oQjkTJzqbrbrlPZfc/rVlW4a+e3eVsBxZdAVa8r2zm1ZV/Sygbto6mB0lDB8G1vRSCuRoSvIlPleDJkxEuRSXaupsiMosRoH41enla0PEAeNmImZJejB/IE7WZSdjNEUC5TYvYmepnnVbMjQkZs5BXND2FVYjKn5Lrb2ypRZMzRKbMh0ullaCgyQPLS0qzvDPw6W8gqQ5GJaui3m+h1mphcPIYWuulIg2aCds0Cn1jhkzaQ3b2LFrMYJ6NPFazw0RAkkBuCJHLeZ3xbmRCWCYH5/lxZKSOv0vI28oofXyOkfBUbzXKvDZteOYykA2BRhfIzjOI8UKEZHmYjd5n3+8FGWvkQVT6yXltX1VBhTPZchrZRBClE0BUSLkMGzcTsibwfm+jn5JT0tiL5TwaKIVR5Lz+XIyRh4WqYYAtAO39/A8jaoJJWmbznyXpl2EwKkvPkaeWS+R0AE+Uh4nzUwWryPrlfXV5XleS9hM+Ht3ZcKe9tYOSVNtpg8VRlId72B8RX3ifrPeVIVVkPBHnvhT7MjtW8rzSFuQw2RVojcDRix3UzS4KqqhpnI5G0sEMZHsghvXs4YSU9rjRwcoyfHyjmj7IRiVQ/Hh5I5cjTisLySFDQtzYjkCLkZBV9o3NdR35zD4A8/JGfk7ebryPjNJWVxBWFDPpcS1+SZl+q9zMlrwA9VJDWw7KuzOvKdh7b8kxIqxG9rYDwbV+CQFxVhM2DqmzI87JEvkZ5m/WdUEZajaLQyO0E3zvESWLl1LFhfbeMKsVDSLhSI0eY4iEkMjF7C718VClOTHHyiuZJeRmg2J8QHlcpaaUl6CXyKhlhyvS4aqIHtPtAu1FUZNpIkvEWRhAR4C/QNpvn1veCYpOMOkVWeFJSuFITYZiGEJohg0ndBxkJZ4aUJKNP5W3MrfBkwY6jEZL22trNwe81SWL5KjEO8gqwW+GT6vjlvEqqp8sFTXHxtdizg1ezyhxgL7fZgCbry8r7yPuMDCjztqpKWmmyXs5ryxLcMCGNFBW+Gri8B3LiRHrX5l61XVXe5zmtiiGDLQoR7E6aIYJd9i+9arl3rdIfXE0bRyLza0RELYYpu1NDhelhOwTaMdCuFT2vDHnP81xxxABqutI0ASVUMJ1YiHir1UtHlC161Cbyfx/K+yqGCq0cJ7F8vG3B1qFIXkljRRmpbMtjVUXeJ+sZEehCVVkPBHlfCdwbaQCdtKJlrhwTbF5Iro8R6QHFyR9eRobraed0KcU+H/uStJLntHlbcYKGE1ZE6tjaJckxSYJFKBJAUPaRE1h5ntuK6kPeVny0v2Vu0opkLv8HYJfd8v7pI/HOWgrzei1jE5FsvL1lRIcrFE4jA33gG8rnqpMklsq8sOTxJHls87biZX09KmaCqp5WgN3bKoJTQIdveycCcVUBVd27NVJKK2MLGSmAKzJANdLKRlj5KDDAzOSCzdsK9lGlZJ4TGRLILe58HU/Q2+xMm3msJmCGitjCRhgakTkfRWmIYGppl7lO0EpGmKLByAFS1pI+QLuhh5B0AKR5p8wXX8VwQa7EpNN0u4nJiTHUlw9TYjAhsKYyK7weMkjb6J/ILVviXqfXVeGeKPZ1eiCzrRpsRJZUgGzeV9r5o2L+E46qikq+X0UyCoB3KMkAwSozhyi7Bj5hghq8QwRHJa18ySu5XjZ3JFkf2+V9nZNVXct/TmLJEHAu7+VAHE1085Bw8q4i0orkvrSYK0YKoGgnHXOFhS/WDBWDlLjqAnJkQUPelxgqwDZLuc9Jq7a5fjoaR7fdxWRr3JDtRFA1U0+qHvNy9pX3PbTQRHdu5D1vr+0Ycj9JTGnyfkTyygWbPC+T90l/Fre5ErqnBwweV3sFGulAaLD1kngh+DL8Ujm3hSRq4OSRnHedT5JHNmghgtqxJakkPa5k/xEkOSbrSUSF5v1G+9E/n3jZAczR+wbIPbOozAokZNKyctKKJiNMkMiwCKYsJ8KMyDcipdKQxAzkdbWLtY8Sz880FNWnvItM0tbTcWYzZFA7jvSi0sgrWSdZL1+vK19vK+0+tpFpQPEroiKBGL7tnQjE1QzBP0JsYYIu67vz2L6KTNk8xHxVBYa2ld0tmgHE4W0lQwTJuyoPEexBelnlIYFdjKU5TsZFuEgLvWKCXjlJ8kp6XVGTUrIKSIirhkzOuwSFnCfJCFNmZ0WwDJHOFZkJIHmxkdC3XAcbeaUoMYlykyTubbV7mGolL87cwj5kFnkzZJDqTf+JNZ6SuxMxl4cMOq3wEmVW9ir3qHx/SGUFynaad5BX/G0wqLsVFRvoGbclbbcpMl4IL7e9ClPW24VhFe9a/QCepJUPYaU9A6PIfwlV1uebC7mt6mYIOHnV0n8TPHfVZKm8zxOzT2YJ2WtStpfJepL3DGSooKaMtdOE7C0Ay1EME0wNFV2R46qFbiLvl7T1kME0tC+X91IxU4xT3saKGjrtPFE7GU7MATn85T1HC11QyCAlbR/SdR5Mjy7vqa1VtnNZbpP3ULYr5JWENjgHf3ZtidvL5L0LzndJIK7mCEPoYW0a6WIxJhZQpijbhLrmYWTz6orgpwxrD4VP6J4MEdS8rfixOGHF+1L2oySttDb0xb+LIND2laTV7nT9MuRkxhTUMME2OyWRVTsA7EwnWpeRU0Qy0cdkX0xUlwbyhOyceOM5ruhYPASRv1hlWKVDT8hgI1g1r6gycCXQNwxPHt91Ls4YyrIu8krbXxJadDwo67VlF2nlQ/7y+vBlGwmsnCJ821sRiCtP6DmtyhUZ+dEycoLemSgyLsVGb2yOmdwhivW91e5l3lYyRFD3rqKhzqdESKBpcadRBCkhe5aglyssMp8VG0FQElYAwPNzR3WgFiFTVrAYyTtICRWkBLfGqILoFYdIp+kgVo8OYL4IlYtQRl5xJSZbbmOyPZ4ok/X8w5pb2CmEhINvl1b5BHkIyRD1JMyk3jWs8BESQmhk+CrfmoHHN3yQgUYbTOBvhSeUEVMyPITnkcnLeOS86iO83OYI8npIQ4Tcxn0W8/UjJmQH/GS9L2FVlaiyGSlKv5Edua0YWWXK+96M5L0REi4nKesHysSrXzcNFQBLyE6k1XIUCCxpqMi8ytpd9G15rlR5b+l8m7wvEFZsarezgTloVFnA9K6tIu/lKIMUTthCD4N6vTjCYFV5L8v76icSZQQWPwYjr6S8l4NzJId2k1VUZhR5X4qqsh4I8r4SNNJKY0p9IctqIYCcsHYpyjbCShJMgE4MuIgCLm/KwgIleN2JbJEhgvJ8dB7X8fi+kmDhRJFiMSmQVr9FHiLIvaJYqB4RVlyuTKT/OwFsh0ledQAz/FC2iZNVRHBR+5cBWMnKktcVtXcX9I9VjYCS/WgjhVxeTVRfG7T+p/q4yCvN68r1ER4p83SdqB7a+Wzt5eSXq6y2baaklY+3VQNOa074tnei6qswIIWvIqMtF8rOFmlVNkHMw7K/3KbNE2wKDq3PSKthpsQ061J5yZUYChEkJWYszVclh0V3WuEn+sUQQW591wgrahsfOjtKlJlGK81vIr2slsBUYrJ8J82MlgPyUQWzIdJtygy9QAEkn9P0ghYjR9K/S6FRpv7EGCYnxtBFC5MYRw8tTGEM3TRhO63j9OEkxsAHpidSTqqa9J+pRFEdw4iJlwg68aPdP657bigmuZ/sH1v+sgHbX1mupfp3fZB4EtQHQ0TDYq4YTZnh27XlvFzeuKpDrwNIXlayP1zTAfZymy1w+a4RU7JsmTetl7zPD1guz7VyEPO2MnI9X+eLEnnPQwRlSLhMuF70sLXL+4zYopBwLueltxURWLb3XFr/RpRMFB5ojCKoTcJQwcmJejTM5b0m87myhBpyma/4LLnkvcULa7rTRLfTxORwnFF91eQ993suynkm2VJ5n4VYV5H3Wjt9ymj3MH8vaM+BfBeky/tC3peGB3JUlfVB3ntCejsOUPR8shExMzmnVI41okyiqreV65yEMtLK5iUiST6bl5VU/G1hjfyh5CQYf3htxMOAladpN5soRJB7Cy1Flhydy2KSrTuRkFVEWu1A7nE1AEyPK2oPtY1GUqR+ISJtN3IijffHMlaflWyZj5IoiUQZJhnBvH7aNo3s0641QSNA5bMgnx8No9yvtJ8kO+V9RtDuPZ/6ac+/bf1Mnv8K3lbAXvu2v/rqq3H00Uej3W7jpJNOwne/+11n+dtvvx0nnXQS2u02jjnmGFxzzTWFMl//+tfxvOc9D61WC8973vNw4403Gtsvu+wy1Go1Yzr00EMr1Tt4XI2AqooMn9cS9AJwjyBoHtCtoNgUkCpKCZfFtOy6UzR5SNZ30DDoA6cSQ3lONMWFyKtcgenZrfAUIshHlpL5TbgHlhY2wtpaow9w8rbiBBZ5Xy3J5/stZASP2UXDdIj0fp7niiswS2BeuywBpEWJoX9NiYlgklgUPpiGDOYhJOPGR7YccdCoO7t7AbIs53mu6J9CSCi0bhgJryvte8UGvs3G68j1tpwnvJw0/EgrvXjsykYa1BQQvs20yA/E9hmGCqpxORZUTe4bUJDvyX+RmKribQU45D03UrhkvUZcoWQeynpfbyuC7fvXIu+bLRvFLUPCc/KK5L0cKTbxsOqanlg8JFzzqJVJ2TXCO0UtgpHTMJP3XObLyWWoaPWSBO1LasXRZCfSf4ApQyUoI664BxYLEY+iISYXF/Nd+cp7Gl3QR97XB9MY1CvKe1fbbXKfJ2fPK67LexvEe8DH05aC5IvVHE3ee8v/qrIeCPLeG1LplcovoIcqSW8KHw8lfmyNgZWkBj82X2fztuLwVbSlh4iNyJB15P3lIqvkeWwvGI0Uof3KXky0D/e2Iu8l3g4iklYjIYdqRdLKRl5lcjpGTlzRfSHvDY082ZWecxeKXlecBANy8kuD1o+uEDwf0sj3Q5w8raCs8/EA4+Qh/Wv78TJ0ceh4Pl5lfF++7CLmNIK0KlmlPZ9amRLqZS9823/ta1/DhRdeiKuvvhoveclL8NnPfhavetWr8JOf/ARHHHFEofzDDz+MV7/61TjvvPNw/fXX484778TGjRtxyCGH4OyzzwYAbN26FW9605vwoQ99CGeddRZuvPFGnHPOObjjjjtw6qmnZsc68cQT8U//9E/Zct2SisWGQFzNElyKjOZtJUNGrPBVZLR5/i/ntWWg6HU7yh1SsL4XQ0bon5SY4lDoxWTsXLnJl3OvrPHuJFqkpJD1XRtZypWcl5MYdFkkaUVk1WKx3AaGUdHDjhSDFrqwJmgn5YOUGYCRV0rfaveDRlxFyBWaNoBOC5MTeQhJPrqgOeJg3h1Fi3MdfLQpM5SEq0ZgiXujIfwVCgnNs8rWL66cJ/z8krxSQIqM7fGU1nepkCRVrWfzcvtI4YEcgbiaE+TZe3zKmiSWy9tKk/fepJWPjK9KXvFtM/kSqCDvZcigS97zkWJbTNZnZUje85BwzVCh9aVGeMtlTlhpHrftEkMFBnmCdlueKym/fWAjsFSDRS7vJ1tjKVnYnJG8z8sOZ1fe8/u0bD+XwYJA59eMGdCXbeTVsB6lxe25CpMmlMv7kYwVgbiaI/SBNEunTixJuEKjNEjhzBV2H28uSVDZyCSf8DvXPi7Sjcs2jbTibZLtLSNNXOGBkiTUIF90fCTB3ci9luSH81IAy/LvYtpEMngCJmm1k85BpBWdi9dNnqPB5qlNy9K6rUD+QJPXFe+LiO3HyR2NtOLETpVwQQ7NwqAdiwtSTubayCtZhzLvLEmiAmbIoYu84pAEmySwOGyEo/ZMagRYGSp6W9Gp5/jb/sorr8Tb3/52vOMd7wAAXHXVVfj2t7+Nz3zmM7jiiisK5a+55hocccQRuOqqqwAAJ5xwAu6++2587GMfy4irq666Cq985StxySWXAAAuueQS3H777bjqqqvwla98JTtWFEWVvaw4AnHlAa7I2Czw+bqiIiO3FUiu2bS+z0SJoe0+d4VWJrPCm9Z3fVSpnKziyzJ8xJzvZWRVboFn6zvTxQS93IIygJ7rxNU28rhKwwCz/Fb8n029dkO9xtROI0E7J6/IAi/rxJe1PtfIK/Kw0pSZqIbpKAkhqUfjqNeT5OxRqpw005GkpNWdKzQ8ke8Q9UypodHwZOJessI3BtAt5dS2sntT209bzxWmEXKecJRZ4TXlJVmfKzo8fEjbxhUZOe9EB4G4mkNosp6Uz9nyrjUPUJG0mqmsNytvl/uu9Yq8p3/Nu9YWEl4m78d4TisyWpC858YKzZuW5n3kPW8Xl/fCyyoLC28vshoqIiRE3jQpR3Li8l67llrdtHtDk/VC3k9OJPkNe/XejOU9GSm66b5aovbBYDr3urK1y3Z/+hgqZN9IeS+PX0ZelYB7WXECKj+9v7wvHtsj51VVWQ8Eee8N6R0DmGQDMFqok3Z8OramLNuUcc2jSnpb2c6lrZNtkeSYy9sKKJJWsq9csH3EUj0leaV5ucn9+L5EWvG8Ug1WnkiQcQBjLDVHupm8qnbCDBFEDLO9PL+VmScwJ1Z4W6k+RKjtRkJWEcbEcgP5yIQuzzuJgWVbmZCTHw6agLZdE34O1z0sr6Mkico8t7Q6uT5yNHJNwoe0sj1TPkSvhCeBNeK3/a5du4zVrVYLrVarULzX6+Gee+7BxRdfbKxfv3497rrrLvUUW7duxfr16411Z555JjZv3ox+v49Go4GtW7fioosuKpQhsovws5/9DGvWrEGr1cKpp56Kyy+/HMccc4xPSwEE4mpWYVNkpOKieVvNCWnlUmJcH8j8GS9TaPjEj8Os73VhfafRpXiekyJ5Zc63CmRVN8uBlYWMlIWKlIWLkFzkl5GTVlzpICv8EhgE1qDOvY7MD9wk78kgSdjLlRep0PBrw63wso85pCITQVdmOgA6DXQmzBASCschpUazumshJNSuIXhISd72Qb1uWOFrSPteU8g0DB1lbPcwV1BcCo0ktSqSV8N6VCCXZPhgGkgjCK6KnlUuBOVkziGVTUloaWGCHN7yPt/BT95r/655G6Ss12S+lPUOea95W5lyPpfrJHtmTd5LYwX3arLJfLlMoeGcqLKQV8OoeP0B5DK13UWnvVgnrcjIMBDzUibZyCu5vyrrAXQa6EdD9DrNWZH3SbUSEoaPOkiJ2oEkRNzwuvKV9xKuchr5JK+xTd47iDOXsWKIOjSvK195T/NeZJVEkPVzgAGSKy69hTiBZfPeGOVcvnlzbB42vp4bvg+YjbTi2+VxNdLKh8CyCQGNLHQRGTI8j44zhSTEjnJcRSjmthqk69IcUiRfSYbS/04w0oqOqfWBbJvNg46TajSloYoA8jxc/HgRiiGENpQRqzYvPe16yQ9pCS2E0/f54CQiP55P/TkZKD3RZN14XTh5ZUMV0opvc3lg2p4pXsaBEeT92rVrjeVLL70Ul112WaHcjh07MBwOsXr1amP96tWrsX37dvXY27dvV8sPBgPs2LEDhx12mLUMP+app56KL37xi3juc5+LJ554Ah/+8Idx2mmn4V//9V+xcuVK+CAQVxVQZoHn24ZiveZtxRP0Apg5aTUTJYZ/0NFy1bsjU2IG1gS9MiSQKzVayEgeIjKVhYzQMOiFEEFufecKjW+4CG8DzZPlnYeKMIs7J7TiNtBDS/0gJQWu1e6h046Bdq3odSVDBQlUX9v10NrmUmYmAETFEBLTyl60ukvlJmlXPmQ6hZSQFR5I73tmhc+8rny/q3gbtXlbGa6YWAiptNIjkVfDyMx1YrPC52GUZvgIEXyaIjOSUhMw5yh4yhYIrdzbtkzeO40UgJ+8B+zPRZXnaxRZD3jJezJIkJyX8j8PAzTlPd82xsIGrfKevK2GMD2uZN/ZUEdusGinbeOyeTFbZt623bqZrDw5VC4zI1uC9gm2TCCZ7YK8B0jGU3014moW5T21LzdakHQrhgyOJO9thgrX/poH1Sgh6QwaeTWo53J8VHlvVjv3wBppcI6AWcAAuVIrCRleRlp2q+QN4uQO2LzNu4sgvWv4siu3lQ/K9tXWV3mp+Hr42MIzbeFuRF7Qdq6wTCIhrMgbaimKHlp9JGF6YwDGTWPBBPvfkU4ZySRDxCgkkeoi7w95D9H13o0kQXuaGB7jrAwnrhpsmmLHGBU+L3h5DWSbbOU5fPKR8bJV2mQjrzj4efk9YgvxG4WwctWvbDt/7rojnMONRx99FMuW5Z57mrcVR61munXFcVxYV1Zeri875qte9aps/gUveAHWrVuHY489Fn/zN3+DTZs2OetLCMTVLEAqK/n6pHul5xVZ3wEYIYLJCgdpVUWR0RQbbRmwe1v5oGCJjwFSXlhCdlJOOHlVzHNiKi086TonsFqZktPD+HDSDBnR8llpXlc28op7EpD1nZNU0vrO1g9SiyyRV5x8qGOQ3B3REIgGxTxXE9BDR6AsQ9mmKTI0FZQYABPFEJJeaoGnnFccWggJrad/Iq1yK3wXMlF7NFSS9lZVsl3LgN2aTgpNFUWKfRfVgEy5rQ/SG0exwgOm5V2GjwSCav5Dk93aetqmede65H2y4DBSQPz7yHifZ0NiFOOE4XFVlPcyITv3pnWFhBuDbLCchpmsx6Qu712h4TbvWttjxw0VXNZzw0VqcOinidmT8GjpcZXI+2Qk2b4p77mhQspuH68r7b6wGSpGkPe2kMFkW57vKjFatDL5JkMGM3kP2AkpG6qQsGUGC+lp5ZnnkJNXwwiIhsNSrytN3idlTFJr1jxuA2YB0mPIRiQB/gJTEjA2YW5T/uX5bKGBLriUen6eshBBqdDLfpIkTRk00kojr2RdtXAxTgbyEQW13Fbc44qH5UH3tsIkgCdghh3yY9lIDxum0nbwcEH+nV1DkbziLmElAqtAoHFoubGIgOXHnWR1cN2j8rwuaPW2XUdZf+n9xcmusnxXmieYrayNtLL1t+9zWPWZnRmWLVtmEFc2HHzwwajX6wXvqieffLLgMUU49NBD1fJRFGWeUrYytmMCwOLFi/GCF7wAP/vZz0rrTQjE1QjIRoZiHx8uRaZgiWfDoZeOIpgcfHTiSs7bjg+Ue1sVSCqxDWDW98S7SIYImgNs50qMHP6c57GSBNY487gam+gno0rRRzr/d5FVsk+0rueklSVUhFvie+1FzPoescOkSgx6aNa7WNTuYZqPLEj/NoJKs8LL66ORnKQIFZQY+k9CSCYnxlBfzi3vpnU9Qp7Alys01LakOkPjn4cM9tAC6t3cCi/fRdq9pvWD7z1tU2RGAe2b3h9R1jU8ZFCSVhFTWHLPqmQ5V3qkNd6WAyVgfmFoyPai0cJf3juMFPQhDbEejn85ry0D5W997dtRk/cRDHnvChHk8n4cU4WQcO5RJWU/l/fNjiLvNePE0NKHHCTzI7HOJvOFsaLXXpS1NDlF/hLJ/O3qQ2QDcnBZLw0VVA9JZmnXAyi2ixssuKyX8h7AZDQoyHtOUk0xGe6S90Ra8RBCIA8ZJHkfQeS68pX3cn2ZHJ+prFdAxor6oOh1BZCBwkzMLuV9cgiT1JIetwH7CvzG9Al3I2Wfo0ygujytbOAEEhe+Lm8rn+MSbKSVRBlpVRV8f59jcu8aWR8+z5Oya95WdPw0KTsniDhpNYGEuBrESEgrIq4a6b7y3HRceS6NUCHvKe51tRQ6eSVzXNG8RiZxUscG7X7h95eNuOHH19rD17k8sKpAC8HjSkNDzLvIq6rnJfgozTYlWSOZZ+ohObtoNps46aSTcMstt+Css87K1t9yyy14/etfr+6zbt06fPOb3zTW3XzzzTj55JPRaDSyMrfccouR5+rmm2/GaaedZq1Lt9vFAw88gJe+9KXe9Q9akic0Sztfny+byotqifcJEbSFt8GxDOVfzmsoI6xc+xlTbn0nJaZZz63sJnnVNZQYTlBxpUUjsDKrPOU54VZ3mki5ob6R5JWtD2TbSIGROUq4JT5VZLqt3PouP0az0BEMi3lPliBXwLjFXV5DSchISMU3Yv8TyjIARO1kVTREffGAKSgmYZWccohJ4YnF25e30xyFqoUeKGRwRlZ4rexejrDwCRmU+U7qTCZIa7uNrPIjsaq+sGfj5X7gQIZ78+eaGy9c3laAS947PGvL5L32L+dt4ITIQPyDbbOSVVDlfbPdM+S95k3LySvTINFTPa64vG91e2hLz1rubUVyj3tbafKev+/qYj2X+dyjli9TmGAraZlmqEj+k/ddNiAHDxUkmS/DBYHcUGF7JxFs9wyX/dxYAQBRnt+Q5L3Nwzb3xioK2aLHrRky2EMr6Sv0gE5qrOC5rqrcp1r5slEFZ4vEikxjRRQNjXuG901utDHlPWCSWqNhFOUsyPtycFKJEycaEcHX91FMyq0dWxIcfNnHu4uUYFqeDUjSStsmIQkmvr5sf046aUSVrQ9s/TIG88VFx6B8UET8cGEzxfZN81vRJpK3E8jDBfFkOv02Pf44Ox6RJZw04V5KUvjIPt4F4Cnk4YJjMDNx11j9iTTj59LOUQYXccKPRefUoD0ftufEVocy8kt+iGgfJqOQV1HJdn4+gq28bHMZYaiRha7j07a5/bbftGkTNmzYgJNPPhnr1q3D5z73OTzyyCM4//zzASQjAj7++OP44he/CAA4//zz8alPfQqbNm3Ceeedh61bt2Lz5s3GaIF/+qd/ipe97GX4q7/6K7z+9a/HP/zDP+Cf/umfcMcdd2Rl/uzP/gyvfe1rccQRR+DJJ5/Ehz/8YezatQtvectbvOseiKsRYYYEFhUcbb01RNCW5wSYHeIKyjqXbCgD/4A2lJiBmZCd5bUqhoj0LAqOmdtEJ7Cm0Bp2i3lO+DLPdUL94woZ4X0QIU/QK/NZKYQV2kAcJdeXQke4MsO9kepIlDxEaZ4rGT5iI9e09VKR0cqSEsM9r7jyOQEgaqHbSbzjolaRsEq6Sc+FQtuIpu2haVjleQiJlxW+yrvYNfpUJMqMkleLIHQNTl7ZQga10BCZz4orMqNZ4G0srKt8wCjQvGv1d4BIae2U97ATD6MSV9qyRNW3fkV5T/KAh4STbKe8hDKv1TjPYSUIrRZ6aA27GN8zrYeDayMJVu0DLvO5oWIJiqRVms+wGEzHySvmadzuot+2yHt5rQlVHm2XvOfGCiHvm+0eptJrlteZ5P+4IeNpO/2b+yQhgxyqsWJUec/L2AwVc2HASHWkmcr75FA8fND+HrCjqqynfQLc4DclV8qlh4f0LKkiROnYnMCxXRsZrsfJhlFzW3GiRZ5HzktI0kmuHwWcrCKSxEZ4lYWBSeIKMEME5fkohDA9H8lMbvDAU+n023SigpKEkHUFKysJPrnfbuT5s9J8WwXU0vV0vxGJNelRB3le7Z4CWx5YtmnHp+siPbYaYrs8R9k9w4/pIoSqkFfaeaXyq9XDt542yHul6kfX3H/bv+lNb8JTTz2FD37wg9i2bRue//zn46abbsKRRx4JANi2bRseeeSRrPzRRx+Nm266CRdddBE+/elPY82aNfjEJz6Bs88+Oytz2mmn4atf/Sr+4i/+An/5l3+JY489Fl/72tdw6qmnZmUee+wx/NEf/RF27NiBQw45BC9+8Yvxve99LzuvDwJxNQPYLPDmP/u4HSVkBBWWAfP+dd3LUk5xEt91V0gFJpsfZNb3Vrtn5Dkxk/TSvAwN5AoMz2XVVTywuhib6KNGISLyxcPnibCS8xx1ZV6SVtIC3zK3d9N8J5q3VXLYnPhJ8p50AbLCy2kJ25Hqyq3wtneMTRHmCo2aA6uG/sQYutEAzVYrU1D4CFM8FwpXXGQ5VwgJAESpIgNAt8LTOhuo7WXeWrP1zW6pDykzQ2sIiUneSSWFrx89XCR4XM0F8kw9pketOc+9sKJsnm8bSd675L82D2UeYr0mJ3xkPWCX9wAMb6uW9K4yQ8KlsYJ7YeVetpMGgcVHEWx2UnlPnrRaPitt4s+ura10sdvIQwW5vOfvACHvZSqA/JAsPT/lNYwaRdJqCcxrSiA5LddrxgqXvOcElpD3FDLYTN/LMkSQjBAyXFAOzsEJrSHsxoqGvH80AqsOP3LKdr/bDBY2BwVbH4tzuEIGuZetJu+T6uTet7a8hppnW47gcTU3GMAcvkvL88RvkDLSSiMwpOeVjQyS0EIFfc7rOpZr3nZM+aLpi+2A/QGTbSWvqCm2TZJokiAr88bipBVdO05qUL0aKHhj0Xd1lo6DyKTfsnnCFIqeVTQv60bt5XXhoGPvRhK6aCtH9aZ28UTtvM85kSMRiXmbtxSRYxqI9OPXzXYOvs/ekEHy3hvlnHKfshcMldHa7bqOVeoz99/2GzduxMaNG9Vt1113XWHdGWecgXvvvdd5zDe84Q14wxveYN3+1a9+tVIdNQTiqgIkKUVwJfAtEFtayEhSuLryIhWYKgqN9vFoK8cniP/M+p4Mh95qdz2GQteTsY8JpUWOJkghJq1uLw8RtOU30frQ1QecsCLru/CqMibhiTWMKN+JGSJKoA/bFrqo15O+mtZIKxkqKK+ljyIjy2sKDZ8mAEQN9DotTGUhJEXlhEhI7o1lG4nKNupUt95KFDlYrPD8WhB8iCw5L/uIk32+CdrLykRAfQDIEBKypktiqiy/STULPJBczCovQy1ZWoAGzZuK5jUjBZ/nZNZIIYIomdf+5Tws622yQlvvlPe5t1Wz3TPkPcl5m7znOa54mKBGaBmjCNoG2ygbPVCTmSRneNukzJcetoq8H4hrnxzK9EaqR8M8r2EEt8ynPqZ1ZZD6k4+87yCT9712j40ymNzJk6Dl3EghPWxzuRalBBcflIO6NJF31hBx+nfpgFDKlvVHXgH93WHTsUu2RWkdeaL2ZBfT64rL+2S9OWosMEpew6qynvYJKAcnGSRpxT1AJHzCBbUPuDLCCjCJHO262+6FsgfExwNHkkK0ruzYNk8Waq9su83rSyMibP2leTbJj2LalzybhMdVtjsnrcgjintxufqA9xP/p/ZEKHoU0TkoH1cEM2SQg8IH+TFd9ZDl+L2tXXdJaMn7TpKYRGBp9yFdP05CyhBDeVzZhjKCSJ6Dtmv9L/ezbdMISAInQuW15MeW18jmzVj2/IdvexcCcTUipGKphQkaBFZqfQdQbRRBm0Ljo9S4ID8Wfe+EghKDTIlpEmklQgT5UOhFq7s5z63sfDTBbPuwi2Znuqi8SCv8kE0D9l/WJsBUYITCIj2taOj0JL+V6W3Fw8DM/0GS5yparCsyNuJK87rS4LqHNEUmVWamO01001w1UV0GwZBCw30M+HzRMs9DSJIP9+QTvttqJgl8pRWevK987l9qJ/8vK2eDPCe30jtQG6TVjvIQkmGdJ2bnhJUeLpifcpT8J8Hjam+hmNtQM1KwpOypvK8UIugr77V/WJYB/RvQ9i3oMlJkZQbg3rVaSLgMEZTz44ZBojhYBxFaTXTNUQQHMHNaDdg6m7yXxLXWLzZDhSb3DXlvN1RkW+tJX03bSCsu8wmu71DNWFFF3qfrpjtNdDtN1KNhFjJI9e6lRgoaKbZubCt6YhFplZPv9WxfNUSciEO6D0cJ9XPJ9SrvEX7pHPtk8n7AB+bg3lWmvE8OVwwJ18gqt7cVEDyu5gp0wblirxEwLiWSFGj5US1Dq8q8rWxhgrTNFdJXBt+wJRtppW0vA28/tZeTP7y/y5R02Xf8AScSgcIA5X5TYjtrf/a8T8IkrSaRe4dRQXlN+Tn4eXlZTgZxr7A+iqMLRjDyXak8oI1spHpoSp2NXHKF+tnA+0O7f20oI5Rs+5TljxqFvCo7p2u9fM5tkPXW2jGbHrYHlqwPxFVFyNARaYHXkrJL67sxiqAvaVWFuJLzEjbCqux5VBWbYkJ2HiKYk1dDNbeJ9LDSRhbkeU+anX7ibdURE1dcZKigrS8kT0AWeD7ZCCuarwP9Ft0LJp1jdp1J9ETRUB8mnZSYDoqWeE3BoeuiwabAaOs6ADrFUQbzu3k8U2hsXlZayGDSrbk1XrXCy++QMkVm1G1V81yVla0nnxj1OkCjDNYTF6yMnOLeVXnSXm5tNxUZqdS4FRrXzT1KgwI4NLJKG0VODQ8fcEPFCCGCvsSVnNcbkqDq2141UiTyvtHuGd61MiTcLuM1ed+1hIT3cu9aLueJmOJGC63vtLYAOUEuvWw1wkp62FrkvQ2519Ugz3NF53MRVyhpjwtl8j7754nac48qmeOKE1q8XZonVlfIeSKvSN4DLEQcyAlGH9lsI2t9E7WPSpCxY3B5zwfmkKPpal62mmz3N1aMeiMEuNFHEirIiSFNyfTtS1mOexpJ8sMFF0HhCxth4XN8SVpp7fdJNM2Pw4kgImmqtJMr89IbhislWpggkJNWvN4x8pH+yOOKlnen5cm7iK6lRgJKQpISyPP68foC+SiIK5AQZVQ3dnz+Ds6a45OTTLNKyXuc9wW/DlPQz6F5nNnO55MLbDbgQ14R2eSDMsXZRqZV9Yb1qUf4trchEFce4DlPaFkroyky3NuKrO/TVa3v/MMcJfMcNoKDvzt8yGPNCp9NZoLeZt0cPTAhr4qKSkJE6SMHqoRVqsSoCdllP2kJeuWHLK2ri3WSsLKFCLL5YWSGC9lzWDDCJ2LDpGvE1RJWR6o7t8JLi7K0wvPrqt1Pwvqej0DVQi8aYioaJiEyyJWURAnh4SNFZaYu1nPSqo6haoV3el35KjOuRO382D7weSbomEAWQsJDBnOSKs9rIkmsMqWl7tX4Kh8Cc/tye/rpp/He974X3/jGNwAAr3vd6/DJT34SBx10kHWfyy67DF/96lfx6KOPZkP0fuQjHzGSOe5L2IgJjawCkMl7AIq89yCtNMJ9psSVzVDhKq/KehTkfb1OuQsHTM4X5b0+3yvkuOKjDxoJ2X28a8v6hOSKDBEEikYJNnogJ63QBnrtRSk112TSzm6oaKGXDsgxgJHnykZcDZDnpnJdIwnbfVMwULD5qIXJieR9VG9xg0QxZNBsW9F4wY0TPFS8h2bWd81OPzdW8Gthuzdd9/beTNTO6kHynidqNzNYFeW9DAnn6/xyHFaV9aLSARbQw0YPiKaw083pUialQiu9jMq8rTh8ySV+Lh/I49rgQ1pJ8LAwah/9E2HFSR2ea0p6/rjqL/vO5qXG+x4oklac2NiNJBn7buRkEpFVREDxa88JrDIPHV5PWk9t52QZrWMhg3Tb8XcVvfNQgz1M1ed+kPd6DQmJR+unRFnXefqijFZe66sqHlsu+JBXVWCrl1SqynKKlXkTlnm2zZ9v+/mGRfu6AvsL5IeFmdGjGB5W8MYqG0VQU2A0z6Eqk4TrvcshlRWI/8xi3IdM0EteVlKJoXwlXFHhOU80AovW8RDBLGSkg2LOE/K2onaWjS4l2ykVFy1UhE8RgDrQazcydUwbcQyQw4YnfdVo98xzV5m0a6TBphh3lPkOgIlaGkLSQq+btGkyvRpTGEcPTTFo/Vimgk5iLLviyXw+buQQSegIWeETr6s6hlHiwZC1QyMSuSdcGcrufX5vyNw4Wm40fo9pZVMlLBom+a7qgyGiYTEfDLfIE0wJUiQB/Rs7E6Ewe3jzm9+M+++/H1u2bMGWLVtw//33Y8OGDc59nvvc5+JTn/oUfvSjH+GOO+7AUUcdhfXr1+M3v/nNnNa1Kszx8kwZb6r7USEhu5eRYiayHo71QPGy224DJ2EFSO/aPCG7HBm2KO9zaVGc1zxsjQE4XN61vK1l4eBc1vJlLQE7/xeJ2YdRcs1pSk6dfweYsj6V9+0eFrV71eR7mby3yURfeT8BoJPI+8mJcUx1x7NgzUmMZ75xPWM5v9rFAFDzf4A6emjlEq5eT3KDaZ7NXPa7wK+11l5t0mQ9l+HSm097FzBPv1zeT2fklZTx0rDDST4OPznv08i9K++ffvppbNiwAcuXL8fy5cuxYcMG7Ny507nPZZddhuOPPx6LFy/G7/zO7+AVr3gFvv/9789ZHf0wQHLzSSLFlgvIB5y0kdejTBmV5+QeMb7EkwZtXxdTrNVzFAKA2s2JINtE4XycVKF/2/WRZWVbuPcQhePxbUQeSY8rvh/vJ1tOJn59tWst+5raxM/Lzx3nh6bi/J0AICevtP5wQW6vsX/KpbU0nZalk5wfS+c50aX1DRfw/PrK6+gbymqDRvbK4wJFIlmbJGyk86jeY/wesWH+yPr5iFHukAMWNk8aoBgmaHhgFUIEU9KKf0jKD01fRQXKvwvcukn/fJsmXx1KDIWMNNt6WAgfJUoqKjaFJh9ZMF03nMTYRB+NPTA/MjvIQ0YGbFn2h/w21NrIP6a1JL2a51UrGRZ9UDeCAHOyUigytLWFbmLN5uEjmvXdpoSSxVxuk+3i1xkw77GI/YPNRwAmGuiDDbrbIiVs3PmhXUc+MhW1VyJifaFa4SOY4SNUb9lGfmiZuLeqDKdk7bSvSypami9HGazXi/Z3c+Qpe5iI/yiD8ycO/oEHHsCWLVvwve99L/OW+vznP49169bhoYcewnHHHafu9+Y3v9lYvvLKK7F582b88Ic/xMtf/vI5q28ZtHBfDjnwhu5d6wgRrCLz4fh3gX/0uu5rKfdV8ioG2l1D3udeVjw3lS7vebJ1OaLsmPYu2NNJQgS1ifcZJxs0yMcoEtskecVJK1q3BJm877eAbj1phZT35ml5MOEgz3OlyfslsF9r8rriclxrC4HLfJu859MEgCgJEe9GA9SjcaCeyCjKaegCJ2z4Ou0fQNKP6AGYzlUK7XukCp+jzRO0fisDvX/aYn09/+chg9zLNm9z7nVVDBfM//1DBavKetpnbvDmN78Zjz32GLZs2QIAeOc734kNGzbgm9/8pnUfMlIcc8wxmJqawsc//nGsX78eP//5z3HIIYfMWV3d4AouJ0GA/IaU/chvKO5pJZVbbXKRV5ryzZd9wG94KSCqklajKMPUPj56oI20kmTcKPerjbySoX2ax9UAxREEyeuqz8oPxDFduaCo/RGb5+Qjz5U0BuAJ5DmuJNEyXryU/PJ2ALfnVRkiuJPBUyJ7IvHkfUiVov6SH+oujyS6Lq5r7kPASXKQjmuD7Xw++0hPP9dxyqiVMnk+f77t5yMCcVURMnREklV83RARGxLdI2SkisUdjn8N8l1cpqBLyy5fFwFyVCkzRJAS7haVGZ58Xct7YiZmp+S8fV2JsSkwLst7HXk4Gi3ztmmJ2TXPq3R9V81vVQwvqouteZ6rLtBu+xNXHVaG6u0irwjavRYp/9nElZk8ea8rQbvMi5K3fZD903bKhVKvD8yQQbp2XIHh964N2jNQNWSEE1i+cCgzw3rRCs9HnqojyYHSyw6R9I2LIDfh0tht5YFdu3YZa1utFlqtVoXjFLF161YsX77cCPF78YtfjOXLl+Ouu+6yElccvV4Pn/vc57B8+XK88IUvnFF9ZgIzj6H0idMy/5i5rYwQwU4LViOFr8wHipfa57L7vN01w4U6FUPCea4qc6TAorw3DRbcQCFkPQ8JlyMJclnPPWKk5xVvFyfAZbu5wUKT8TJUsG2GhbvkvXmq5E5ptbvoR2PF8PABTJnOFRP+PtAPrqNM3kvyCu2MI6P8hmSIsOU0JGMGgXua0T+FEBIZb81vKOW8ZrQglBkqaLtv3ixbH1L/E8T3kAwZJHk/VAgrf2OEq6JViYRRiIdyLCwjBX8QXJ47Zf0vySzN24qTVpL8kOecSY4rbR+XYi7rLte5jqGFf1FbNdJqGUwSiR/TRWTYyDhX/9A+3CuJ15nCAiVpRaQb9w4qu/4auamFNMq6jyEPFaR5fj829KaTXOrQsYksmwGBwXW+rLlEYMmCjbSuHLTM+1leX+2kZXLKdT/La8ob4HO+Ks9XX8xLAs7nWPz5CPlrR0UgrkYEDxnhcHlbVR5VqipxJeeBImHlA5WoYlO7j0XtHprtbjaqlC1wgHtekdLSEsvatkwJ2tMpKjEyZIQn7JUyQQp9qchIBSaCO0ywbe4zjBZluU7KFBjAJLCa7R4W0WhTWd/Cfr0Jrm28TVQ2UvYpU2YigPJd8eS90qtKtm1SWH9oH5o3Rx1ME7hzKzxXZKj+sh0+kKEkHBGqk1oSWkgjTGXG5nWlkZr+w6JzyI8jn/LA2rVrjbWXXnopLrvssornNrF9+3asWrWqsH7VqlXYvn27c99vfetbOPfcczE5OYnDDjsMt9xyCw4++OAZ1WcuwYlFzdvKDBFUjBQ2EkuugzIPZV4DN05osl8aJpxGitiQ98WQ8HJ578p5JfNaNTvTZoigTMjuo0fydlJ/SZLORlrJcD32Xui1G96EVYHmpLyGMs8VJ65ontBh8zb5x6+fhoryfioaor4497CVNK1tXvO0ykcdzIlxL2MF/ZfJ/AErKzEbua44eSWeQznKIMl77nUlRxr0Dw2UqCrr84rOtqFiIRkpzFAl+nbhD5OPkKnidQW4yZrZVslsyjvVkWMmnlYaYUV5kjTSioftVT2PFAqSFOKebSTcOAkFVj8eKsiTsPeRhMTJfE/8upbVk8pyQpTW8dDI3Uj6hkir3TDuS+pW7T0NpO8IzetK+2CwkCz8PcCPT++NzCPMdc3I047qI1+4NlT1ttPu6SoE1qi5tOj4/DkZ5ViusETCaN/2BwoCcTVDSAu8NiR67m0V6YqMTYnxVWR8PuzKFBmwcrb/CEBbz3OSeFuZHlQ2RcXMZ6IpNIkSM96dRKuLohKjJWR3kThA/hGrKXCStKJ1Uomh7SxMkPKd5F4XdoVGftyr4SNSqeAKDS13CofWYVNoNPKKz2dTDdNRE5NAlry3ieLw6Nz6rikzPESOPy09tDLCJrPCt4EaJyBJseH/tvtdKjFl5VyQypQNDmWGe12ZVvj8f3RFBkg+EqqkKUw+Kh599FEsW7YsW+tSYi677DJ84AMfcB71n//5nwEAtVrR7TyOY3U9x+///u/j/vvvx44dO/D5z38e55xzDr7//e+rRNjehFO2w+VtxUME4Tdp8h/KPJR5Do2w1mSenLcZKSIA6eiBctRYX3kv81xpidlLvWt5/wzFP81rfcHff9RWmWOJE1g2g0ULiCNgUK9nuQy5hEu63EzATf/ZlIbW96O2Kd+lZxVXUuR6F7RrPxDrbfcek/fdKDGqRPXcW6pesLoX5bnuaWW+8wbCWBENp/UQcf5fxdAwF9/vdEy6Th5etlLeD417IzdikNftEGXuvlVlPe0z+4aKhWWkkMIOMBVpXxVJemMQccE9eOjYdNwyIe6rFGuKf1ni6LkgrbhCTgQGkUZaiKBPX9jqZLsuPKxrCgkhxL2tOLkm80rJcDcCkVeuc/I22EIJZd/zPiCvKyKtdiEjtgYO8iqrEuWmooI20oPXVRAv8jGgqpKxY9BA0p+87jYFYwo5mVbmdWWrJ0eVZ4EfYy4oDs3L0Oc8/P6iPrJhtG/7AwWBuKoAWw6rZJtcjhRvK0Za+VrdbcqM9m9DGVnFy8n/wpSEjPA8JzJEUAsf4YpNUdHhYYU8RDD9qNVGEJQJevOOL/8e4NBIK05Y1WGSWKwvksua3wsyxEtTZJJ5lto3GqBPo01pisqArQPyj2df8sqskF2R4QSWocw0MA2g22kaIYM26ztXVlwJap0hg3RNhqKeVRQZ32fDtq+8V7S8J/RC5+uYMsO9rurIPapIYcl3KSoyPfjAR5uV5YFly5YZxJUL7373u3Huuec6yxx11FH44Q9/iCeeeKKw7Te/+Q1Wr17t3H/x4sV49rOfjWc/+9l48YtfjOc85znYvHkzLrnkEq86zgVs4ZqSyKKyXiHhHWW+LFQQyr9Z0eKHJlDtze6S++1+aUh4mbyXoYCUx6qQ4luGCPJ+0LytbIQVUAwJp3WyfVo+Q+ldm/4P6jwsPJm0wTikvMvm68M0r2E/DxfUSCt+nW1y3nadNWMFl/sF+c7WdwAKEZ+cGEN9eTIiML/j+Txt0zyuIqMPiqMOkrGi25pGm5OQVPehqHOV0EGtXJlu7Atex/Rf87IleZ+3P5fvo5+4agOS8r6GigPTSEEKuAw94uSDS5hysoKTP6SYciJBhv/Jm9KWg0rmgtLgo9hXJa1sYYxyO81zoo7OJ72ttNxWZceW/V+Wa4g/K5KQBHKSintd8eTirufMdj/wfbig5feH5vkzxsrzMMEIxmiD/D1Bp+eeoB2IfTlRp9XV0u+SvOLvjgmk5NUKfd8Mu5Df8/LghJl4Pfmi6jm0F6cGImc1pk+7P7TnxEaS8nNX/7Y/UBCIK0/YQgJsBJbubYVyRWUURaaMqJFkhXbVfUir1NuqmVrgbSGCtvARCgPkeU9kYnauxDQ0i7umvCQd735266ycDPMigkqSV6S0aJb4epLvRCbp1Qgs0xI9MFSfVruHDg8foXtAKjM8pIRv54QTYL++HJoiIxUa6p8IQBSh12kZIYMSxQxfpjKTlzEJr6Rfcit8fdAxva6oHpoi41JiILbPllx3hI7wyx5FmtdVHjSYFLcrMn6eWNrHQVn5ajj44IO9LOLr1q3DM888gx/84Ad40YteBAD4/ve/j2eeeQannXZapXPGcYxut1u5rnMJOXosIVPlUyNFUlh4W2mEle8E5b9YuRyatdQG/s2lGikA8q7VQsLLwgVp3uahpY4aS561JOsdo3k628XJDtk3NtIqe8+J9anhotdeZEi4vJvLwsNzQ0XEwwW5oYITSVxB8TFSlOnVmpyX8t7omyRksNfuYbI1ZshyPp/kOyzKc/4uGKKeedaSvJPGijiyeF3RMn+/cWJLtpP/a/0wEzAvK8N41HZ52ZphggS57Ieqsp728TdUHJhGCqnsS48NG1zkjxYi6JuIfDbDmoCicPAhrXzuM+7ZRMKEE3Uu0koLyZTnrRo+Jo9DfU5TxLYBRY+rMiIBlu0u5UuGg/E6ULgg9dPudJ4SoXPPq9TrqoNkIA86FH9HDAAMbF5XmvcSJ14E2SzfB0D+DuoA6NSQkFcaGUfn5V6GUMrNJ+rBRQZr9yAnnviLx0EIZmWAoleirWwIFbRhPt098xZa7hlucZehJKXeVjayykepgZgHW0eQhpWZklZZuNwAjXavZCh0bdQoOVrglGUfU4nJ+qQD0+LOk/PK/tCeX/7hSx/EvJ020oorLqJP4rae78QnT5EaPtJuJS8ETXHh5JX0uOLeWFq7JaQiw+dlDhQlhIRCBqX1Pbe2+4aVmCGD1C+9dgP1QR8NMgpzYk4qMvy6yjZq84Cp8HDyq0zJ51C8rNJGZv+1ge51JcMFe7ArMpHBsmrQBIELc/dyO+GEE/AHf/AHOO+88/DZz34WQDLS1Gte8xoj58nxxx+PK664AmeddRb27NmDj3zkI3jd616Hww47DE899RSuvvpqPPbYY3jjG984Z3UtgyQltGXjnxkp+p1mQlp1Zlne838b5HMxU9Iq9bZqpYYKW0i4Ju95iKA9JNwSIjhELvdJ3lftF9t7jst7Oe+S91ESFq7Je+55ReB+uNxQUY+GeV5DHhquGSqAopHCBdv1tpFXBTlP86m89/Cy7aUEZsG7TJBcXbSM7RQyGPl4XXHZ74JL7rv6hZ+r7Dzy2yol2WxetkTeJbvOhMCqKut5Jf1wYBopiEiRBAcpoUTIaOBlCFxp59eMk1b0X0ZeyQe6ileVrb68nnK9K7xMI/S4lxX3YAJ00koLE6TjRGJ5VMgPOk5K8jI8ETv3tgLKyQfbi4eTZUDeF5K8kufi5Xl+K/K4SsksLgsh/rNvYdlmukel1w9viwgX5Ifh69tIR6EFMFFDcm1lZWiecofxPtJCB+WJyzCTe0M7t895tTx08vnRCDzqf7o40ivR9UKfP9/28xGBuKoISU7w/Bal3lYuxaWKJR4o3qf8/SjflbRdXm2NWbcpMWmCXgoZ8c1tIufHDaVmyq7E7IGe40QbPZAnc5XQlDjeVo20aqNogRdhJBQmKPOcJNXQFJlcgUmW070ofCQaJOEj2vWmOhCqhAv6kFcuZSbzwDJHGYzqpmLC513Je7V56p8emqjXB+i1h8XcJ/QvFRmbouEirFwy3pfAkvlO+LpUmXF5XSXeCc2s/UBVRQbwSxIqy88dvvSlL+G9730v1q9fDwB43eteh0996lNGmYceegjPPPMMAKBer+PBBx/E3/zN32DHjh1YuXIlTjnlFHz3u9/FiSeeOKd19YF8pvN8Vp5GCk6+8Hkf8gpiHnDft76klfZBapBVNOXetRQiWJTl9lyFfCRBV44r5yiCMoeVNFbY2se3y7ZK0opke1tMDnmvhQeWgRsqkryGfaDTKBJWmtyXRoqy+0CDvKds8p6OETW8vGz5SLJ8ve5ZO8i203+33kI9GqLfmi6qM1zOpzK19Pucb6/CCbnekwTqJ24s8vSy5d619axPmtlycnhXhavKetpn9rGQjBS5gm8jVHg5DURWaGGCUyiSGVJA8ePzc5SRVDNR3aqQVto+tGwjrZZCJ61kmKDr+Bxc6XeBCznyaKJz8jJTACaRk1dzBVlnWQ8C1ZP6kAZTiGCMONhpmO9qsHmn15XtGjOCS/J9UP5pG70rJgAMKGm77X4l8opOIK9HVW+nmcL2jNleAFo9qC2U90xODbYfXQv5vNC8DfPr236+IRBXFeCyvDsVmU7Nrbj4WuAh5sHWAUXSyqXI2Igc20RWd0WJkSGCMvxPhgLmSk0xZLDV7aHNSStOWNE8V2hcioyr7ZrVnZNWivLC+yMZFj3/RNcILA0maWMJHym8jFgbNUu87AutHyR8ySu+/0Q7G2WwQNpk7dM9rnj7Ze6rwnabFd6myNjyn9CyLQeKvDf4Ms3z8/F5G3HIzuGywkeQRF5RkSnH/Hq5rVixAtdff72zTBzH2Xy73cYNN9wwp3UaFdKbNpmvZ6S0t5FCyvUq8n4uSCv6L50S71qS9y1GSPnI+5aFwOKEV+kognzeRkhIAkESVhHbTvNclttkvchpmIQJRlloOJf3+f1hdnzEnvOkCml4fbubeOZxQ4UWKgiMltPQ9VXnK+8jYHpivNTLlkIGCXXHjcr7gZettwZJiPgQdmOFvLfLRKRrgA7XM+KCJK04Ij8vW0lg+WP+EFfAQjJStFEMXysjSCRk3hoZIkghYVreLI3A4pCE2qgqmyQvNDLDJyE235+TVrvTeSKr5H+EImlBx9P6whbmZruneXt4v3NShRMGRFrxDz26drb28vrK68bDQSOxnqMBk7Cg8py4ouvNErRjDMBKPdcVf28P5AoJ6e01ABADqOm3Pb0Dwc7ZZv8TACYaAFaxessQTe7dRvAZdbDqs8jLasfTiCpXaG6fleUvIX4+bdLyXHG54ONxNb++7ecbAnHlCZnHiv4LKqhUZDrCi8Zmhbd5XwHm/kDxWZbP1ExJK2l9bvdTJaabhgiaHldSaSHPKq7QSCWGb+OW9/E900XLOx8OfSDmbbmttOS8tJ63l6zu9M/Xy4TsqULTb/EwwYgpuW5LvPxw5+EjjXYP/UEdxggiRJDweR6mRvcKh03Wj0JeyX1TZWaS2iMs8XUMMcWVNPFhHgklh6/n+9TrCTFWH/SLn06aIsPve6kLyATv2jYJG6HFy7sUSrqfIqDRRTJaomqFLyq2BE5k2aE1qqx8gC+kNy2tK/W24iSMlPU2DyyNsLLJew4f0op/w5aRV6m8XyTkPfeUssn7IplVlPWFRO5yFEGNsLIZKoasLZKwImjy3kVa8fde+g7ot5IwwR6ajK6RMj9ipxwYBE7BWJGFC8ZAJMLDuawncGWFk0tl94UNLnlPBFYEIKqhPzGWyXuInN7cSCG9hWxh4bwsre+hhag9BNBHCyy/Ib+n+bt8ALf3lSStXP3Enxmuw2qDcQC6vKc+K/Gypbb32L+fnKfKVZXfcyfvF46RQpINmneODbaky0SIaKQVncOlaFJ9XGFNPmGDLhLGRgy59uf7Ut9wz7JlSLytlqHobUXkTNl5JDFA2zVSSTsOPScaeUPHoLxWLPm5cb6IHUuCP4eu+hBxQ+fk9xld/z5b5uTVbnEc1o+DcUteQjYZXlc8lFUj26L0nON2EcPPxbuX3kttADtrwGClaCe/93eh6OHmM+qgFqantYO2Sdi8qjQvSFt5nhNsKq03X9Y+pCQBxmUDTfLlwhG+7V0IxFUF0KdnMp9b4g1bJFdkOi2dsLIRVb4eVxrkel/SSlNcjHVaiCC3nJtEViHJemZ5nwK3wvNwkXFM2ZPzyj7QlBgJarvGH3Fhr5FWUoFRCKxhhGw0Qf5Zbiq4Zsfzj3VaNsNHBuhrSXs5eUXgpEkVa7yNvKJ/22SEk5j5rkiZIVKK2jSFXJGROVA0ZSbpGxZeYgsZbCG/DyLxnxykeF/wZRuxxZfpGBFblsfj/c+PT/1E83Wg1QWGUdEKz5UWmyLjtsr7fMzJ8gFlGGJRgYTmvnFAKvM1bytNhpeRVjQPsR/gvmQ+pJUsT/8FsiqdIjNEsBjybU+yTrI/fy901XdElshdG0WQhwhqhgrZJ/w71ibvI7adZLwksqj9LbGOyXtJYJYlZU9OmT/r3FDRbHfRGdSBQdsud/n1IZnC3wscXOeCMi/LuGQ977fIHSKee8+Op+11h4hTn8iyFDI4GEzn+Q2pzjZjhYu8k/eKTc7z8trz01HW83PyZO1dt5dtPrqg5mlc9gBXlfWyogE62tDDl8r6jhRXSQbxpNRciZUECof0UuF5sOT+LjLL9TC4SCvXh7Q8tkZaATpptRR28o6fX85THX3CAyVoPy1vGScOuDcTnZNfT40w8QUnRGxebAOxPIa83dS/PM/VGIDx5H+iVuTlDOKKr+AkGYHfn8zrSuZh5pDkFb2TOIm2E0CH8l7J684JLOlxps27iN4qYYTaMfn1cZFXvMG8LJFXtE2bNE89/szsAhyRKeHb3o1AXHlAetCYuU+Y9ZUrMp0mjFwnUonR5meqyADFZ03bRvM2RSb7YI6BdhfNdleECHKiatIgsiSBxZWYYmJ2Hi6SWt4plwn1gU2JKYP8qI3EPyetqL02hYaWW5Skd5FCVGkeeVF6Sv2DndbV60l4XMEKzwksqWjyD2obeaW13wUf8moAoJMrMwCMMJIpRWEhmOvlNqkI5SGDBSu8prjwZ0RTaAaW+VGhkYYRTDKrm6yrDYBmZxpDZoUnqzsn9PR/l3JcNT/DXOZzWHgYiOfYDBGzhIRrZJVL/mvPGpR/CV/SSso9m6zPZEvXCBEsGh9MIqtITOXvAi0xO/eurWyoAOyy39V+7nVlCxPk7wG2LvG2WqRSMfIdIMEJCsPLyCXveR0IZQaKsne9rbyPvI8AGmWQ57vihJXNs6ogzxX5xrd3W00APdNYwd9/mrGC/m3tBNtue5bKxCwHl/GS+ErvoWioe12R3Ke2a562dowiu4O8L4ckNwD9RuEKqMEQsPWStJKj6PH9ZTgh7SMJKo20cgm7sg8fTmLwNnFIcoWXoTbKROyctKIcV7z9LtKK14MTVpzIkSSW7AO+3Rayx8nFqbSuVFbLRyb7gI7jEq7aNRrA3X4ij+ie2Z0u70rXcfIqDb8k+Uz6CZ0yO22NrZTnpfNNsTJpHflxbeQVrefGW6rHTgATlPeKk4e8/Zy8GkNRTmnehC4PwzIiq4ywsj1XUpnWni2qv+b1RX2tkb30zNgQvu1dWLSvK1AFV199NY4++mi0222cdNJJ+O53v+ssf/vtt+Okk05Cu93GMcccg2uuuWbkc3PlJflX7ImpIpONLOVSTmweVzYlx3UsqfD4kFuaItNm/22gOIqgnnRdelnlBJapxIwXFJ9EkakPhonlnbd5CDOvFVdiAHsbNXKOT9yDipNT3BrPt4sQwkHdHF1Keln5DI1uhkrk4SP1aAhEA/M68GvTVtbJ7TaFVOsfDo0o1e7T7F5toddpodtpojfMM9h00SpkNuPrqZzcxvfP7qx6C712AwO6ZhrBqL60LZD3j0tpo/tNhqzy+7PDjtkVy+JY0TC1wmd3jO6NIMNp3HA1wiUkAnxhhgiyeVdIuMvrqkzmy20uOc//NfiQVobMz0cRbLaS0eK0pOs84bp1lEDLPBkq6oNpf0MFQbaVE1Ky3VzeczJKyhC5vW7uP4xyeZ9Xo5zlkDI+nx8W5b3tmmjXyCbf50LeZ+tqmO400e200OuactqU27ls76X/Zrm8zBD1grwfIsIwqqOrGZD4PP8H3KSTFjaoTXS/2WQ9lZEyX7lnax2gPjDlfVLNosHGT867Kh7k/cxAN5dUrss+JgDTc4n3Nz8eeZ3w89jqwJclmSZDzTQPLa1uvH6cFJpCkSQasPJyon2kpxUp4DIJu5aQXftI4yQaTZJcq+J5NUBOAMm+4aQVD8GToD62nZPqZAO1sWEpywkReU7pBbabTUT4xMV0MnQIo4slYUOQ1536JNbfA/LYpGssYdNBAA5Op4PonCsBrEaS/2pVOr8C+WiE5HnEw00lbC847Rkom/i+dI/I/Guu+1h4vhn703Xmed9sE9L9lijtJQRZ74KPdJ4X+NrXvoYLL7wQV199NV7ykpfgs5/9LF71qlfhJz/5CY444ohC+YcffhivfvWrcd555+H666/HnXfeiY0bN+KQQw7B2WefPVIdtNBAaYEfDlJ2Q7pdjmp915QVDfTslF1RG2lVmOwhgi7lRIYJls5zy7vMcyI/Ksv6wZbXirbxNkvSSnpfcUUhXR9HMkwwQpnV3QYtfCQPF4zg7XXlssTb4FJm6D7i/d0R6zsAkIQM9gCLJd42P+5ZTgkZbMHsB1lfun5lugC1y6ecra+0vq+LZarnsOh1JUOIeOignwWeKhjciWcb8nk259Pn3RUSLuW9JvNHJaUisd5H3tO/bWoDMkSwjkHqIVWU3T4jBhbDCnPaomCokDKey33AJJzL2kkoy21F/5LQYgQWeddKeV/0L9LlP3+OuYcNgGJ4OMl4mqQSIv9nA2XynntddfxCBmV7e2ga5WhbxLa30E3yXGEI1JGPMkj1K/O6Krs3bN/1cp1N3nNZLz0RqJ9o3uJ15ZL3fqgq62mfADc0jyugvK/pZpFEkEZYVakHr4/279pf1pmTPqRMAyYR5HNPafm7AJO0cnlbUf3k+WxEmSSwyu5jScxxsoyfixMLnHSg7VOwXy/uOeO6Drw8kTNUR4jz8bK0jU+cVNqFpG/J+2qZ+V3Oka2je4aIOv5hQfcunYu8gJgBTpOb8pbmuois/gRE6KAkhrWk7RwyXHBUUIWll5X2bPGynDzlCocmK7gnIt+Hlmk7yYhlCKGCo2O/Ia6uvPJKvP3tb8c73vEOAMBVV12Fb3/72/jMZz6DK664olD+mmuuwRFHHIGrrroKQDKE7913342PfexjIxNXgBkaSKB8J1ZvK82ibrO+2xSZmZJWmsDRSJo2PEMEpxTlpGcQWHx0KU2JKVjeuQVTWt65EgNlnlAX66VVXiox3HorPa9E7qvE20oLEyxXZIpbzdAJM3xkgMIIgxpp5avMlCm6/N6Rygyt48oMHafTwHQ0RLfTco48JUNHuik5o5XTQgbRAuqDTh4yaMt1RfWla+h6ZsrCR7Q+GYr1miJD5evIQgXRQZa4l3KfUPgIB0/U7ocywaCVD/AF96CUIWLOkHCXx5VN9gPFZ06C39M+hFUZaWV4bOYhgvX6MJPVtrxW5rweOi6NHXUMc0PFAHk+K5u3la0feF/Y7AU2eS8nKe/Ztm6LvK3MUQSrgHvY8mUi/K3hgm12EEmccHJcyilbP8h5ub9L3mfklTtkMG+j3VBBfcCJnC5aqLP3QrfVTEYZbIsQcZnrij8LksDi3wwEl2iV4YI2Wa8ZiegdwBTJWsfMdcXDBEdDVVlP+wS4QUJwFEjiRRJWMkRO8y4Cih5JLvLKVQ9+Ho204svafrROChQtXE8jraRXiots0/qCk0+SJOO5p7Tj8PryfuTluNfLMqUMHZ+TbH0Uj1OmaPFjUdifBi1Ek98XnLSiEELWxx2hI8jTowaTvOLg5wArEyUpD+gdJG9VeT46lOYlvBMidFCGvzYA/BYmqapB62/tutmInjLCipNVfJl7vvF7koNfW05eyeeoz9YtTaffsdSX9gnf9jbsF8RVr9fDPffcg4svvthYv379etx1113qPlu3bs2G6iWceeaZ2Lx5M/r9PhqNokDtdrvodrvZ8q5du7J5+cFqqtgRep2m6W0llRhNcZmpIsMhFXXbB6tLgSEXUD4UuggRHEst6y02TyNI0Xpuec9Hl1I8tjr9PDmv1gfaRJD9wdtfF+v5v83yzskrJVSBvK26LT6yVHVFRkKGj2RJe9tRch/Ry0MqMpzAmg2vKxt5RcviwzwnsFroA6olXmIyVWLKyBmZSQYAovYwGWWQCCteR/7PFRha5m3kCo3Pu0HrF0IZx8QVvy5Qi3Kvq2a9hwHqiEQ7q6EP/+QsVD6gKgretUOe2yrSSSsp7zXZb5NvPrJelqsi7wsy3wwRzGW9Fgqo5bgyt1m9a9MBOLJRBKkfbN5Wvv1ha7f0upIyX3pcOb2tzEkjslzvgoK3TX2YhQtOt7vAoG1eG5I1mlIy219tsp+lvM+MJPnAHABQX2w3VPB5bqigvtC8bPN+GqLXThSRNtXF5nUllSp5r5R9N0hIwoqvB3QvWyJQqa/SeT6ibL0uva3MfipHVVlP+wS4oZEXPt5WHOTRwgkr6fVju/G4At1ATvjQOu4VZAsJ5De+JJkm2bJGBGmQZBA/psi1ZPwTkUWhVID5IGl1lBORNZzIknVzhUbKEEHqG+7Jxdsg2yvrzKEpZhr4dedhjxq4lx5dS06YACZ5xaeV+fe/rH52S/D7Up6Xt4vfw+P5twrXMeTx+XlIRmvTTgA7G8BgtdiRzkdhkLsd/cTbYoP2ApDPjo28shFZMmRVC8/l5Tk5yglQepYpF9xKuD2uwre9C/sFcbVjxw4Mh0OsXr3aWL969Wps375d3Wf79u1q+cFggB07duCwww4r7HPFFVfgAx/4QGH91K4ehpjCFGJ0UUcXi9BFDT3U0EGEwXAS/Ylp9PfEQCcG9tSSD/MJAHuQPPj0z0kanheHKzK+oXFAcgW5x+d0Oi1K/4fI8/Txd0E9LdNM60Fk/1SMWn0Szd4Uou4U2t0p1NFFHR00sRt1TKGGSdSxBxGmAHQRYwoxprAIEwAmMUQHwG4M0EMfU2hgChEmMY0OutSD3S7qe4AeKTG9tL96yEMGSbnpsbqTlV4SEGWIkcu1OG17P+2bnvin8nUk8mdRUrQ3rGFqWEcPizCFRZhEctkmsx6YTltcRwcROqA8HjX0sAg91NAHMI0hYgwQZy/TZOuiYQ/1ThO1qS7iTjOxqND9QX3US+sdo2g4I2+kmuifaaU/emwfvi8pdQM2T+9eOn8LSXg2vdxaMbpTXdQnu6gt7mEa0ximHkUx+ogxyNo9TFs7YD3QS5+lLmrZnbYUPUyhjnE00MA0xtHEWG+A8ckYtR6rk+ybLtvG7yF+H1W5fyThyT2pmrwPkBOfzXS5m/53ACwGMAXE40B3so/JxYvQQQM9dDCV3isdLEqfjlreJ7uSUBI+tHiOPSWVl+iWFzmAQX3c2TXAEL30+V3Ent1acgt1gcGeGNMTMdAdJnKL5D2X+zxPDs+VZiNsADsZWocZbTCqvF+ERNbTPdyPUetPorGoi0avg8ZwCk1MooUO6pjEIkwhwm400EGESdQxhTqmsAhTqGEKQ0yhlsr9AfoYYBINTKGfSsIukvdHjD7iPX3EXaA2CTOPUI/1F70Lp0Uf+TyznHCI04nPazKf+orCfNN+7NSAXm0Rel0p74fYjRhTQNrCPiZRRwfD7O02TJ/dPmqIMczkfS0VTMmWLhYNW1g02UGt20I8NZ4YKkaV9bTOBSnr6R4guUX9J+X94rTs4qSP+lMdxO0eFk0OsahFhRJpTjKd5HrS8kXoYhE6qGM87YUeFmESDUxigCWIMIYI49nXwgBNxBjrDtDsxmj0kOuyMudgj9WV1tG9wr8bOBHq6ieS83xek/VTMGU9TeNpmfFkud8Feu0BploDTKKPDvqYQg970MIUBphK76E+ptDZ1QIwW7IeCPLejryPJUHSQXJxky+7XKHmVgeej4L2ryFXVOl4JHg4aTIlzrGUapROXSRCaJj+d9LjEkPKMWTHpo8h8qzqsG0dts6HuOKgenOyoQEjFCETpDRR20nx58KL+pX3ge1fCj3qc5kPhPp1gKQ/SSDQC5KO+TRyryUuVIkw4wKVPiA1i3oNZl8SaD2RH3QMIp6I2aZpN8xRHriw77NjDgH8Jl3upW1K6zgYTw7fYtXg7z7EyHNkTSC/D6jfIiSypY2ccFkKDBqZ7oMG60L+HUGXm26JAXKdkhuGiMt8CsCeBpI8V/Qc1VmbJwBsS86PJemObRTvOcA/dJArOg3kzxVEA/jHgqZ403Z6BgYwP/TbrB1jyJ8DpOWoI9pp25pZG8K3fXXsF8QVoVarGctxHBfWlZXX1hMuueQSbNq0KVt+/PHH8bznPQ9fW/tfR63yfokYyWOzB4msCSDwnnl6H9dlfoH3TIAPSMvyu49+/etfY/ny5QCAZrOJQw89FNu3f7zyWQ899FA0m755VQ4sPPVUIu1uXPu+fVyTvQtSl/zvxgMFpLAEeS8xQKKK7SorGICqX1SzJeuBIO9t2L2bvDtesk/rERAwY8zVhzcd98k5OHZAhvBtXx37BXF18MEHo16vF7yrnnzyyYJXFSG5+MXyURRh5cqV6j6tVgutVk5dL1myBD/5yU/wvOc9D48++iiWLVs2w5bMT+zatQtr165d0G0EQjsXEg6ENgLAY489hhNPPBGLFy/O1rXbbTz88MPo9apnTWk2m2i3pW95AACsWLECAPDII49kHxILEQfKs3MgtPNAaCNwYLRztmU9EOS9DWvWrAnf9gsIoZ0LBwdCG4HwbT8T7BfEVbPZxEknnYRbbrkFZ511Vrb+lltuwetf/3p1n3Xr1uGb3/ymse7mm2/GySefrOa30rBo0SI861nPAgAsW7ZsQT9EwIHRRiC0cyFhobeR2rZo0SJjfbvdPmBeUnsL1MfLly9f0PcUYaE/O4QDoZ0HQhuBhd3OIOv3HsK3/cJEaOfCwUJvY5D3o2NReZH5gU2bNuF//I//gS984Qt44IEHcNFFF+GRRx7B+eefDyAJ8/vjP/7jrPz555+PX/3qV9i0aRMeeOABfOELX8DmzZvxZ3/2Z/uqCQEBAQEBAQEBAQEBAQEBAQEBFbBfeFwBwJve9CY89dRT+OAHP4ht27bh+c9/Pm666SYceeSRAIBt27bhkUceycofffTRuOmmm3DRRRfh05/+NNasWYNPfOITOPvss/dVEwICAgICAgICAgICAgICAgICKmC/Ia4AYOPGjdi4caO67brrriusO+OMM3DvvffO6JytVguXXnqpkftqoeFAaCMQ2rmQcCC0EUjcic8444wF7TI9X3Cg3FOhnQsHB0IbgQOjnUHW710cCPfUgdBGILRzIeFAaCMQ5P1MUIv1sRgDAgICAgICAgICAgICAgICAgL2KfabHFcBAQEBAQEBAQEBAQEBAQEBAQcWAnEVEBAQEBAQEBAQEBAQEBAQEDAvEYirgICAgICAgICAgICAgICAgIB5iUBcBQQEBAQEBAQEBAQEBAQEBATMSwTiCsDExATe/e534/DDD8fY2BhOOOEEfOYznynd7+tf/zqe97znodVq4XnPex5uvPHGvVDb6vhP/+k/oVar4aqrriote9VVV+G4447D2NgY1q5di4suugidTifb/p3vfAevfe1rsWbNGtRqNfz93//93FXcAzfccAPOPPNMHHzwwajVarj//vu99tu5cycuuOACHHbYYWi32zjhhBNw0003ZduvuOIKnHLKKVi6dClWrVqF//Af/gMeeuihOWqFHVX7+7bbbkOtVitMDz74oFGurP37CldccQVqtRouvPBCa5m3vvWtahtPPPHErMx1112nluH38t5EFEVqfV7wghdY9znnnHPQarVQq9XQbDbxzne+01r2ve99L2q1Gg477LC5qP6CwUKX9cDClfdB1pvY32U9EOQ9R5D3s4+FLu8XqqwHgryX2N/lfZD1OYKsnxmifV2B+YCLLroIt956K66//nocddRRuPnmm7Fx40asWbMGr3/969V9tm7dije96U340Ic+hLPOOgs33ngjzjnnHNxxxx049dRT93IL7Pj7v/97fP/738eaNWtKy37pS1/CxRdfjC984Qs47bTT8NOf/hRvfetbAQAf//jHAQB79uzBC1/4QrztbW/D2WefPZdV98KePXvwkpe8BG984xtx3nnnee3T6/Xwyle+EqtWrcL/+l//C4cffjgeffRRLF26NCtz++2344ILLsApp5yCwWCA97///Vi/fj1+8pOfYPHixXPVnAJG7e+HHnrIGGb1kEMOyeZ92r8v8M///M/43Oc+h3/zb/6Ns9x//+//HR/96Eez5cFggBe+8IV44xvfaJRbtmxZ4YOk3W7PXoUr4Ec/+hH6/X62vGXLFrzvfe/D29/+drX8H/3RH+Hv/u7v8N73vhdnnXUWbrjhBnzyk5/E6tWr8aEPfcgoe+edd+LTn/50GFbXAwtZ1gMLW94HWa9jf5T1QJD3HEHezw0WsrxfyLKe6hPkfRH7o7wPsj5HkPWzgDggPvHEE+MPfvCDxrp/+2//bfwXf/EX1n3OOeec+A/+4A+MdWeeeWZ87rnnzkkdR8Fjjz0WP+tZz4p//OMfx0ceeWT88Y9/3Fn+ggsuiP/9v//3xrpNmzbFp59+uloeQHzjjTfOUm1nhocffjgGEN93332lZT/zmc/ExxxzTNzr9byP/+STT8YA4ttvv30GtZwZfPr71ltvjQHETz/9tLXMKO2fa+zevTt+znOeE99yyy3xGWecEf/pn/6p97433nhjXKvV4l/+8pfZumuvvTZevnz57Fd0lvC7v/u7cRRF8XA4VLcvWbIkPvnkkwv7LF261FjX7XbjpUuXxm95y1viY489Nj700EPnrM4LAQtV1sfxgSPvg6xPsL/K+jgO8l4iyPu5wUKV9weKrI/jIO8J+6u8D7LeRJD1M0cIFQRw+umn4xvf+AYef/xxxHGMW2+9FT/96U9x5plnWvfZunUr1q9fb6w788wzcdddd811db0wPT2NDRs24D//5/9suFm6cPrpp+Oee+7BD37wAwDAL37xC9x00034wz/8w7ms6l7HN77xDaxbtw4XXHABVq9ejec///m4/PLLMRwOrfs888wzAIAVK1bsrWrOCL/3e7+Hww47DC9/+ctx6623GttGaf9c44ILLsAf/uEf4hWveEXlfTdv3oxXvOIVOPLII431ExMTOPLII3H44YfjNa95De67777Zqu6MMDExgX/5l3/B7//+72PRIl0ED4fDggWp3W5j9+7dmJyczNa98pWvxJIlS3DdddfNZZUXDBairAeCvLchyPr5J+uBIO8lgryfGyxEeR9kvR1B3s8/eR9kvYkg62cB+5g4mxfodrvxH//xH8cA4iiK4mazGX/xi1907tNoNOIvfelLxrovfelLcbPZnMuqeuPyyy+PX/nKV8bT09NxHMdeVpk4juNPfOITcaPRiKMoigHE73rXu6xlsZ9aZY477ri41WrFf/InfxLffffd8Ve+8pV4xYoV8Qc+8AG1/PT0dPza177Wap3aW/Dp7wcffDD+3Oc+F99zzz3xXXfdFb/rXe+Ka7WaYU2q2v65xle+8pX4+c9/fjw1NRXHcVzJKvPrX/86rtfr8de+9jVj/datW+O//du/je+///74O9/5Tnz22WfHY2Nj8U9/+tPZrn5lXHjhhTGA+J577rGWWbduXbxo0aL4b//2b+PhcBj/zd/8TVyr1Yx7/Oqrr44XLVoUP/jgg3Ecx8Eq44GFKOvj+MCS90HWJ9gfZX0cB3mvIcj7ucFClPcHkqyP4yDvCfujvA+yvogg62eOA464uv766+PFixdn03e+8534v/23/xY/97nPjb/xjW/E//Iv/xJ/8pOfjJcsWRLfcsst1uM0Go34y1/+cuHYrVZrrptQgGzTbbfdFq9evTp+/PHHszI+L7dbb701Xr16dfz5z38+/uEPfxjfcMMN8dq1awuu1oS9/XLTrh2hysvtOc95Trx27dp4MBhk6/76r//aKhg2btwYH3nkkfGjjz464zbMBKP292te85r4ta99bbZctf1ziUceeSRetWpVfP/992frqrzcLr/88njlypVxt9t1lhsOh/ELX/jC+D3vec9MqjsrWLlyZbxq1Spnmaeeeip+znOeEwOIAcSLFi2KX/SiF8UA4h//+Mfx448/HkdRZHyQhJebiYUo6+ncC13eB1m/8GR9HAd5b0OQ9zPHQpT3B4Ksj+Mg7xeivA+yXkeQ9TPHAUdc7dq1K/7Zz36WTZOTk3Gj0Yi/9a1vGeXe/va3x2eeeab1OGvXro2vvPJKY92VV14ZH3HEEXNSbxdkmy6//PK4VqvF9Xo9m+gBOfLII63HOf300+M/+7M/M9b97d/+bTw2NqbG6+7tl5t27QhVXm4ve9nL4pe//OXGuptuuikGUBCS7373u+PDDz88/sUvfjErbZgJRu3vD3/4w/Hxxx+fLVdp/1zjxhtvjAEU7lW6f/kLWGJ6ejp+9rOfHV944YVe53rHO95RyF2xt3HHHXfEAOJLLrnEq/yePXviH/zgB3G3243PPffcGEDc7/fjr371q9mLT5v+z//5P3PckvmPhSjr4/jAkPdB1i88WR/HQd6XIcj70bEQ5f2BIOvjOMj7hSjvg6x3I8j60XHAjSq4dOlSY4SFXbt2od/vF+JR6/U6pqenrcdZt24dbrnlFlx00UXZuptvvhmnnXba7Fe6BLJN73znO/Ha177WKHPmmWdiw4YNeNvb3mY9zuTkpNoPcUJwzm6lR4Bs56h4yUtegi9/+cuYnp7O2vvTn/4Uhx12GJrNJgAgjmO85z3vwY033ojbbrsNRx999IzPu69w3333GUOp+rR/b+HlL385fvSjHxnr3va2t+H444/H+973PtTrdeu+t99+O37+859bR+/giOMY999/v3OI2r2B97///Vi0aBH+63/9r17lx8fHccoppwAA/vf//t848sgjEUURzjzzTNxwww1G2Y0bN6Lb7WLz5s140YteNOt139+wEGU9cGDI+yDrR8N8lvVAkPdlCPJ+dCxEeX8gyHogyPtRMZ/lfZD1bgRZPwPsG75sfuGMM86ITzzxxPjWW2+Nf/GLX8TXXntt3G6346uvvjors2HDhvjiiy/Olu+88864Xq/HH/3oR+MHHngg/uhHPxpHURR/73vf2xdNKIXmTizbdOmll8ZLly6Nv/KVr8S/+MUv4ptvvjk+9thj43POOScrs3v37vi+++6L77vvvhhAfOWVV8b33Xdf/Ktf/WpvNcXAU089Fd93333xP/7jP8YA4q9+9avxfffdF2/bti0rI9v5yCOPxEuWLInf/e53xw899FD8rW99K161alX84Q9/OCvzrne9K16+fHl82223xdu2bcsmbgnaGyjr74svvjjesGFDVv7jH/94fOONN8Y//elP4x//+MfxxRdfHAOIv/71r2dlfNq/LyHdiWUbCf/xP/7H+NRTT1WPcdlll8VbtmyJ/9//+3/xfffdF7/tbW+LoyiKv//9789VtUvR7/fjer2u1vnFL35xfMwxx2TLW7Zsic8///z45ptvjr/whS/Ea9eujWu1Wvzd737XevzgTlyOA0HWx/HClPdB1i88WR/HQd7HcZD3c4UDQd4vRFkfx0HeL0R5H2R9kPWzgUBcxXG8bdu2+K1vfWu8Zs2auN1ux8cdd1z813/911nywzhOHri3vOUtxn5/93d/Fx933HFxo9GIjz/+eEOAzDdoLzfZpn6/H1922WXxscceG7fb7Xjt2rXxxo0bjeFXaUhWOcm+2Vu49tpr1fpceumlWRnt2t11113xqaeeGrdarfiYY46JP/KRjxiuq9oxAcTXXnvt3mlYirL+fstb3hKfccYZWfm/+qu/yq7f7/zO78Snn356/I//+I+F45a1f19CvtxkG+M4jnfu3BmPjY3Fn/vc59RjXHjhhfERRxwRN5vN+JBDDonXr18f33XXXXNY63JcfvnlMYB4y5YthW3HHnusMcTvN7/5zXhsbCy73oceemh80003OY8fXm7lOBBkfRwvTHkfZP3Ck/VxHOR9HAd5P1c4EOT9QpT1cRzk/UKU90HWB1k/G6jF8TzwEw0ICAgICAgICAgICAgICAgICBBYVF4kICAgICAgICAgICAgICAgICBg7yMQVwEBAQEBAQEBAQEBAQEBAQEB8xKBuAoICAgICAgICAgICAgICAgImJcIxFVAQEBAQEBAQEBAQEBAQEBAwLxEIK4CAgICAgICAgICAgICAgICAuYlAnEVEBAQEBAQEBAQEBAQEBAQEDAvEYirgICAgICAgICAgICAgICAgIB5iUBcBQQEBAQEBAQEBAQEBAQEBATMSwTiKiAgICAgICAgICAgICAgICBgXiIQVwEBAQEBAQEBAQEBAQEBAQEB8xKBuAoICAgICAgICAgICAgICAgImJcIxFVAwCxi27ZtWLJkCc4991xj/be+9S00Gg28//3v30c1CwgICAiYTQR5HxAQELDwEWR9QMD8QCCuAgJmEYcddhj+/M//HP/zf/5P3HPPPQCA2267DW984xvxrne9Cx/5yEf2cQ0DAgICAmYDQd4HBAQELHwEWR8QMD9Qi+M43teVCAhYSJicnMRznvMcnHDCCbjiiivw8pe/HG94wxuwefNm1Gq1fV29gICAgIBZQpD3AQEBAQsfQdYHBOx7BOIqIGAOcO211+JP/uRPsHjxYvzhH/4hvvzlL6Ner+/ragUEBAQEzDKCvA8ICAhY+AiyPiBg3yKECgYEzAGe+9znAgBqtRquu+668GILCAgIWKAI8j4gICBg4SPI+oCAfYtAXAUEzDLuv/9+vOY1r8FLXvISTExM4Atf+MK+rlJAQEBAwBwgyPuAgICAhY8g6wMC9j1CqGBAwCzioYcewste9jKcdNJJ+Id/+Ae88Y1vxJ133omf//znWL58+b6uXkBAQEDALCHI+4CAgICFjyDrAwLmB4LHVUDALOGXv/wlXvGKV+C4447D17/+dTQaDXz0ox/F008/jcsvv3xfVy8gICAgYJYQ5H1AQEDAwkeQ9QEB8wfB4yogYBawbds2vPSlL8Xy5ctx6623YtmyZdm2d77znfjiF7+IBx98EEcdddS+q2RAQEBAwIwR5H1AQEDAwkeQ9QEB8wuBuAoICAgICAgICAgICAgICAgImJcIoYIBAQEBAQEBAQEBAQEBAQEBAfMSgbgKCAgICAgICAgICAgICAgICJiXCMRVQEBAQEBAQEBAQEBAQEBAQMC8RCCuAgICAgICAgICAgICAgICAgLmJQJxFRAQEBAQEBAQEBAQEBAQEBAwLxGIq4CAgICAgICAgICAgICAgICAeYlAXAUEBAQEBAQEBAQEBAQEBAQEzEsE4iogICAgICAgICAgICAgICAgYF4iEFcBAQEBAQEBAQEBAQEBAQEBAfMSgbgKCAgICAgICAgICAgICAgICJiXCMRVQEBAQEBAQEBAQEBAQEBAQMC8xP8HcFekqMImjSIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(eqn_true,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(eqn_pred,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(eqn_true - eqn_pred),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_hidden_phy_pred.png',format='png')\n", + "plt.savefig('burgers_hidden_phy_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "65381926", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error eqn : 0.04794734926562053\n", + "R2 Score eqn : 0.9977010516984006\n" + ] + } + ], + "source": [ + "l2_error_eqn = L2_ERROR(eqn_true.flatten(),eqn_pred.flatten())\n", + "r2_score_eqn = R2_SCORE(eqn_true.flatten(),eqn_pred.flatten())\n", + "print('L2 Error eqn : ', l2_error_eqn)\n", + "print('R2 Score eqn : ', r2_score_eqn)" + ] + }, + { + "cell_type": "markdown", + "id": "8900bd2d", + "metadata": {}, + "source": [ + "## Prediction with New initial condition \n", + "$u(x,0) = e^{-(x+2)^2}$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "a7e263c1", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "X_new = tp.spaces.R1('x')\n", + "T_new = tp.spaces.R1('t')\n", + "U_new = tp.spaces.R1('u')\n", + "\n", + "Omega_new = tp.domains.Interval(space=X_new, lower_bound=x.min(), upper_bound=x.max())\n", + "I_new = tp.domains.Interval(space=T_new, lower_bound=t.min(), upper_bound=t.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "be94c05e", + "metadata": {}, + "outputs": [], + "source": [ + "data_new = scipy.io.loadmat('burgers_exp.mat')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "23ce7897", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "t_new = data_new['t'].flatten()[:,None]\n", + "x_new = data_new['x'].flatten()[:,None]\n", + "u_soln_new = np.real(data_new['usol'])\n", + "\n", + "TT_new, XX_new = np.meshgrid(t_new,x_new)\n", + "X_star_new = np.hstack((TT_new.flatten()[:,None], XX_new.flatten()[:,None]))\n", + "\n", + "u_soln_new_v = u_soln_new.flatten()[:,None]\n", + "u_tensor_new = torch.tensor(u_soln_new_v,dtype=torch.float32)\n", + "X_tensor_new = torch.tensor(X_star_new,dtype=torch.float32)\n", + "\n", + "input_data_new = tp.spaces.Points(torch.column_stack([X_tensor_new]), T_new*X_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "9d429daa", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x_new.flatten()\n", + "y_lbl = t_new.flatten()\n", + "xpoints_n = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints_n.append(len(x_lbl)-1)\n", + "ypoints_n = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints_n.append(len(y_lbl)-1)\n", + "\n", + "x_label_list_n = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints_n]))\n", + "y_label_list_n = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints_n]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "e88854b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAECCAYAAAD91dPPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB000lEQVR4nO2de3hU1bn/v5OZzEwCSdAggUhAsF5QWqXBtgiopyoctf7aHuultl7BlopyIOpP0NNqrRVtLUWrQmkBH+uNX1WqtlThOUfwArYFQ29ytCoIQgImmhvJzGQm+/fHnrX32muvtS+TnWQmeT/Ps5+ZWXvtywwk8837ft93hTRN00AQBEEQBDFEKRroGyAIgiAIghhISAwRBEEQBDGkITFEEARBEMSQhsQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExRBAEQRDEkIbEEEEQBEEQQxoSQwRBEARBDGlIDBEEQRAEMaQhMUQQBEEQxJCGxBBBEARBEEMaEkMEQRAEQQxpSAwRBNGv3HTTTQiFQnjrrbds+1atWoVQKIQnnnhiAO6MIIihCokhgiD6lfr6ehQXF+Pkk0+27WMC6dRTT+3nuyIIYihDYoggiH5l586dOOmkkxCLxWz7duzYgXg8jhNPPHEA7owgiKEKiSGCIPqN3bt349NPP8XnP/95277u7m78/e9/x+TJkxEOhwfg7giCGKqQGCIIot9gabApU6bY9v3zn/9EMpmkFBlBEP0OiSGCIPqN+vp6AJBGhnbs2AGA/EIEQfQ/JIYIgug3du7ciVAohFNOOcW27+WXXwZAYoggiP4npGmaNtA3QRDE0OCEE05AW1sbGhoaLON79+7FpEmT0NXVhdbWVpSVlQ3QHRIEMRShyBBBEP1GLBZDc3MzPv74Y2PswIED+MY3voHOzk4ce+yxJIQIguh3SAwRBNFvnHvuueju7sYXv/hF3Hjjjbj00ktx0kknGT2HKEVGEMRAQGKIIIh+44c//CGuu+46dHR04NFHH8XBgwfxm9/8BpdffjkAEkMEQQwM5BkiCIIgCGJIQ5EhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIvODVV1/FhRdeiOrqaoRCIfzud79zPWbLli2ora1FPB7HxIkTsXLlSt/XzQsx9Itf/AJVVVUIh8MIhUJYsmSJZX9PTw/OOussY/+IESPw/PPPu573lltuQSwWQygUQiwWw6233tpXb4EgCIIgiF5y+PBhnHLKKXjooYc8zd+9ezfOP/98zJw5E/X19bjtttuwYMECPPvss76umxdi6NNPP8Vxxx2Hm266Sbr/ggsuwJYtW3DTTTfhueeeQ3l5Of7jP/4DBw4cUJ5z1apVuP/++3HWWWfhD3/4A8466yz85Cc/werVq/vqbRAEQRAE0QvOO+883H333fiP//gPT/NXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff7+v6+ZdaX0oFMLixYuxdOlSAHpUqLi4GLNmzcIf//hHAEBbWxsqKipw+eWX44knnpCeZ9y4cejq6rJ0uh05ciSGDRuGDz/80NO99PT04MCBAygrK0MoFOrlOyMIgiCI/kXTNLS3t6O6uhpFRc7xj0QigVQqFfj1xe/PWCyGWCzmemwoFML69evxta99TTnnjDPOwJQpU/DAAw8YY+vXr8cll1yCzs5OFBcXe7rPiKdZA8irr76Knp4eXHnllcZYeXk5Ro8ejTfffFN53IEDB/CVr3zFMjZjxgz8/ve/Vx7T1taGtrY243VDQwO+8IUv9OLuCYIgCGLg2bdvH8aOHavcn0gkcFRJCToCvu7w4cPR0WE96x133IE777wzkPM3NjaiqqrKMlZVVYV0Oo2mpiaMGTPG03nyXgy98847APQFHnlGjBhhifqIZDIZHH300Zaxo48+GplMRnnM//k//wdbtmyR7FkEwF3F5gd+/0m9zFcpa9Wx4rhsnnjOiIfnxYrnYclYxMM81ZxixTzxUdzvED0MK04Tloyp9nsZ5/fLzikbd9qnuo54jGrMab6XewtnA9eRNBDRf3ZDkQzC2efhcBqRSI/5OvtYFM4gjHT2VD3Z05s/++x5UXaOPk/9uwEA0saHAfQggkz2tX6lImQQQU8mjFQiinS6CKlkDFo6DByOA2kACQCHoT9v5V4nAXRknyey+/jnbD8/L8nupBtAV3ZyN4B2mBfrFp6z12wDNwbJY7ftE1B9MkQ+kwTwc9c1/1KpFDoALAEQD+jKCQBLOzqwb98+lJeXG+NeokJ+ECNPLOHlJ6OT92KIIYb3vGT3/B7zwgsvWCJD7e3tOOmkk6ALoUIRQ95CgiZ9IYachI6XOTJRI467CR8vY26vvc7zIIZC3G7+kf0XLeJOwz8PC8/FMZmwcNrndV5Q+3p9Xk0XQgAQyaCIF0KRNCJSgWQVOkXIGOLHKoi8CyF9Pi+IItCyzzWEUYQwNESQTkYRioYRSocRSsSgJaJAqFj/VmAkAESh/zunAGRgCs9wdpz//6JltxSAnux8YwcvRMIwRU9P9kRF2QOKoYumKEwBxMROcfY5+9DT3PnAjal+3kXRROQjXoXBCAAlAV2zK/tYXl5uEUNBMnr0aDQ2NlrGDh06hEgkgsrKSs/nyXsxxCJCu3btsqxb1NraioqKCuVx4XAY+/bts4wdOHAA4XBYcYT9H4wXRoMXp19yhXSNPEb21r0G1Zz2q577vZdcjhOv7XQvTvsd99mFECMcSXPPufEwEz0sKpSxCCBjnosQYsdkoP594UQmHUFPOnssH3BJK1773YwTdAuPImKURxRCqvleISE02BB/JHt7rr5m2rRpePHFFy1jGzduxNSpUz37hYA8qSZz4owzzkBRURF+85vfGGMdHR1obGzEl770JeVx1dXV2Lp1q2XsjTfesKXOiN5A4XGTXhjscxVG4hyvQikXYeLlfpzO5TRXeiwXxbWIoIwhhCKWKJE94iOKHDM6JBdC4axwkqXT3Mi4fTgqAeS0z2mu7cSAPRXmV6iI5yKGIiUBb37p6OjAzp07sXPnTgB66fzOnTuxd+9eAMCSJUssHuJ58+bhww8/RF1dHXbt2oU1a9Zg9erVuPnmm31dNy/EUGNjI9atW4d169YB0KNA69atw7Zt21BUVGRUkt16661Yv349Jk+ejKKiIvz0pz81znHsscdi2rRpxuvbb78dH3/8Mc477zxs2LAB5513HpqamvCDH/yg399f4UO/GO2IKTIXIsKj03On431c0vMxbvu8iie/853SYwB4nxCfHgNgpMcAWNJjohAS02P8fn6Ok+jh9zml0zKZMDLpMNJGRCgMpCPOAifBPSa412nJc/YagJ4i64LcC8R+XtPCfjF6pPIGefUK0e+FwUgE+m+3ILZcIkPbt2/HlClTMGXKFABAXV0dpkyZYnx3NzQ0GMIIACZMmIANGzZg8+bNOPXUU/GjH/0IDz74IC666CLf73vAefrpp7Fo0SLj9fPPP4/nn38exx57LN577z384Q9/wJe//GXcf//96OnpQUVFBZ555hlUV1cbxzQ3N1tyot/97nfx7rvv4qGHHsJLL72EaDSKW265BXPmzOnX90bkC4UU+PVALuJIPN6PyPF6bBDzPSJLj1n2K4RQTtdCRpoyU6XRMmmX9JpTtEeWSoNirkXw8DgJlW7Fc4LIPaIjI5e+PWeddZajv/fRRx+1jZ155pl46623criaSd71GconWD8jYDEKx0AN+DdRA+7fUEGbqPvbQC07j2qOk4FadYwiTSZGhMRIiGyst897sy/IY3M+v9w0zafHAJYyc44KySJCDDEaJIsO8WKHPU8jnI0rhbOVZNnX2UqyZCKGTDqMno5SIB3SK8BYZIc9b+Fes002Js5PA6Zxug16dIhtrLIsDXvUiI8Kic8Bq8riBRJFhQqfJIB70dra6mhiZt93TwMoDejKnQAuA1yvnQ/kyZ+5BDFE8fIT6CWq4icN5jcK5OfYXkeNrF4h3jTNk4sQshyfgy/IDxbzdBCGactbcDJMu+EmYkjkDHXiCC4y1BPQefoDEkME4QmnaFtA3cn9ppLcUl2qc/fmvKrXftNqjiLL9AoBsHmFvKbH7LchK693FkKq9JiIzS8E6FEh43kvN0AhiPhNZZxWCRxZVEi8htNxxGDE7cfZ77kKhUK6V8Iz3cgtVZYLaQyO/0b98B6CigLlej0nQSK7ltt8NzHmJoKc0mOAsqeQ/tpaPSYzTDulxtzK7fnqMK+CyDg2HdbN04C7yBFN06Jxmh8D4G6c7pY8B6wiSXzOIJFDBOsZosgQQRQMomjsJxGZSxSIf+4mQlTn9hPBcbuPPjuHc08hWXqMRxXtUY/LzpG2lct7EUWZNHeMzAStSn35SpHxjzLzdF9CgmmwE0FwvwULSWAU0r0SRAB4/TH3Ujrv8cfHi8/HryDygx/xJI559QV5PYfqvCwq5KGnEGBNj0Us/iC5YdqtA7UMmSCSkUEEmXTYqCDrUZXUqyI+qnH+0UCWFgPsaTK3cnoRr+X0xGAnyMhQ8G68voPEENFP5Fs6bYDupa9SZX6Ny07X9HJ+2XG57o9YC1rdegrxXabl3aN7L4S8khYiRbaSevEyuXiEjHNosAsgSF7LcKsgc7pp/hzEYIc8Q8QQJ9/EyiAjKKHiFpFRHSfb5yXi4/Ve/J7XNmaNComExciQx/SYFyEkCipR4KgQU2bWZouh3hmmxWhR9s50nLxB4j4vkMghTEoQXGk9RYaIQUh/mrJ5eJE2UPcg4vEeepP6GoiUmJfzqa7hN3VmjNlN0wxmmhbTY7J1x/j0mJeIkFMn6QgyhiDykipjlWSAQ4rMq5FaZqYGIK8cA6wiSBbREUURRYUIZygyRAwy8kU4qMj3++PpxX36+QnzanYeiJSYlzSZbMzzMXKvED/mhhcPkFd4QSTixUdkwWtaTDZfugOwGqf5id3CIyRzeEjkEFbiMaAkoG4h3Rr0no8FAIkhgvCM7MfFx2+N3kaK/ERw/EZpconueDVIR2A/P/MKuaw/Jqsec+sw7bQMh2rxVgaf+rJGiKyVZOw5E0bpdFivJHNKkalK6BOSzRIVAuTGaZlZGrBGjcgrRPijOAwUBySGigtofQsSQwShJFdDToCXCfK8vUm99fUYh9hTCJA3V7Sf1nmO01Ic/LhyvTHRI8QEUdr66GqK9jMOwGqcdiult7muCcIXJTGgJKAl3Lt7oK/JUQCQGCJ8UEiprQHGbyrKa1THj4Fadh85e3uCHpM3WFT1FAKsER4xKuTUdFG/BXWzRRGZIFIKpAwTQtk3aDy6bGJUSCmgmBCSdZmWvYbkkUeWUhPHoZhDDAnCAAISQ0E15+8PSAwNavyKF96sTMgZgKaMfubm6vdR7fcjdrym3VzWH1OZpt3WHVN1l3YSQvyYly7TMh+R1TztUEUm9g5ySqEZb4tPdTktveHmFfKzqj0xpIkjODFUQC2o6ZuPCACZiCrkKFLA990bs7PqfH4jQl7252qSdtsnFVCmVwgwTdOqnkIyvPiEVEJIJYw8rUNmyDHzTdlSZPxzL2kx1Zixw62HEJsnm+/mFXI7LzGkiIDEEEHkB70VUnn437qvU2J+TNJ+j3MbczNQW+Y7N1gE5OkxUfA4rzumFkJeF2b1LIyyi7P2sPXI/KTFZMZpS8dpr+uQQfIoPuehbtOEA1HAx1J8zhRQo6E8/NYgCMITXiJEquN6M5ZLBMkiytK29JhbTyEZblVlbJ9xvl5EgzwhrkvmZVPNt544++i0FAf/6OumFeMUFRqyRBCcGCLPEJE/kG8oGGSfictPulex4ifi48X701fm51znG49W0zSg7ikkW3vMyTDNxtl8fp8XQQR48wyxeWmEjWaLtpJ6J0O0FwO1gSoqxCMTLU7l9F5EDgmhIU0MFBkiiIGjP0WY6joBeYVUp3cSNX58Rbl6hnoritzmy96D9D4yrj2FAPnaYyrDdK5CSIYqWpSW+ITSbIFWvoqMPaqM025iCYC8nJ4XNmKUyGkJDkqDET4IY0gqgyH4lomhS54Zuv2YkL2cy4uoUZ07iJSY431kvUI2f5C8p5BM9Jinkwuc3gohPykzaRdqr6kxT6kzp8iOaukNEbcKMhJJhIQYglMGQUWY+gESQ0RA5BLZGeiKM3btPP0x6K/0l2wsVwO1bJ8xpn/5OvUU8pIe8xMR8rpSvev6Y9xvdb7ZYiYdsZfU85EfVVRIZZ4GoP9cdMFMk7FHMU0mRoXMO3RPdZFXiFCQqxexwBmCb5noHX4EzECLnSCQ3b+HHxsvqTLxda7pr97glhJTzfdqlgYsXiG3nkKAe3pMRa5CyA/GMhwZ7k9esYoMiudOkSDl7Ynih425eYVkx7tBQoiAXk0W1K/toEr0+wESQ0Q/MlDm7L64ps81yfx4gpyOVZ0v1zG3fblEiyznszZYBJx7Csm6TIv9hLysUC9rysjOweAbKLLV6Z2X44hYHi1+IdEjpFprTOYZspTTA9aokKqkHtxrL14hL92mCQLBRoYKaG2yAtJtRO7QX3zB0EdRLqdoUV9ew6/vx2mfo2hKW4QQj2ia1g/PQOYTcov0uC3QKkabZGMimeyVbeN8igzw7geSpdBsxmmG2Hka3EQvTRhVr70cQwxZYgFvOfDII49gwoQJiMfjqK2txWuvveY4/4knnsApp5yC0tJSjBkzBtdccw2am5t9XbMgxFA6ncZ//dd/YcKECSgpKcHEiRNx1113oafHub3lli1bUFtbi3g8jokTJ2LlypX9dMdEflBAjRvdBFFvvUBO13VL6flKifHntTdYBJxN06I5WjWmXyLDRY+8r1SfC4ZPKFtSb+5wWYLDiygyxJBsHTJwE7wsvZHryvQEkUX0AvZ288m6deuwcOFC3H777aivr8fMmTNx3nnnYe/evdL5r7/+Oq688krMmTMH//znP/Hb3/4Wf/nLXzB37lxf1y0IMXTfffdh5cqVeOihh7Br1y785Cc/wU9/+lP84he/UB6ze/dunH/++Zg5cybq6+tx2223YcGCBXj22Wf78c4LlaH8CzNHj5BsqlN6LFd/kJ8xL6Zmt31uESHZsZb3qUeFeCHE4E3TqvSYrLGifglZ52l740W7kMo4nssJo79Q2txsKTK3dJnYV8hinE7DniLjhY9M7MgM1H6hqBDBEUVwUaGo/8svW7YMc+bMwdy5czFp0iQsX74cNTU1WLFihXT+m2++iWOOOQYLFizAhAkTMGPGDHz3u9/F9u3bfV23IDxD27Ztw1e/+lVccMEFAIBjjjkGTz31lOObXblyJcaNG4fly5cDACZNmoTt27fj/vvvx0UXXSQ9JplMIplMGq/b2tqCexMDzmAwM/clXj+bPvyR6U2u3s3U7OdaXva5RYYAyBosApD2FNIPtafHALsRWt55Wt6BWjxePG+u3aeNJTgAd2O0lzEAdl+PGBHi9/GPTpBXiPBJkJ6hbPJG/C6NxWKIxew5tFQqhR07dmDx4sWW8VmzZmHr1q3SS5x++um4/fbbsWHDBpx33nk4dOgQnnnmGUMveKUgIkMzZszAf//3f+Pdd98FAPz1r3/F66+/jvPPP195zLZt2zBr1izL2OzZs7F9+3Z0d8v/Elq6dCkqKiqMraamJrg3MagYKn9J5ige3dJSXuey/X78PqpreBU3Tvs8R4Y08H2F+FJ6p/SYWDKvKqM3X7svzuplLTLzuXl+IwpkbBHzke86nQi5R4OcokQWrxCLDHULm8w8LUaM+DEvviLGUPlZJjwTD3gDUFNTY/luXbp0qfTSTU1NyGQyqKqqsoxXVVWhsbFReszpp5+OJ554Apdeeimi0ShGjx6NESNGOGaOZBREZOjWW29Fa2srTjzxRITDYWQyGfz4xz/GN7/5TeUxjY2N0g80nU6jqakJY8aMsR2zZMkS1NXVGa/b2tpIEPlioKrFCowg02O5+IO8RIS8Ch/VfQqr0vPIegoZ+7LixKmxoqyZot9V6sWIUAQZS3WZDLY/bUSEImxH7zbjJLyYcYriOAkY8goRvaQIwTVLzIZb9u3bh/LycmNYFhXiCYWs1bqaptnGGG+//TYWLFiAH/zgB5g9ezYaGhpwyy23YN68eVi9erXnWy2Ib65169bh8ccfx5NPPomTTz4ZO3fuxMKFC1FdXY2rrrpKeZzsA5WNM1Shu6FJXwkbr+ctwLRerv4gr6LGTyrMj/BRnc/rORzmiA0WVT2FZIutqsro2T7+HPrteO887SdFxiJEgNlfKCMzTqtK5j1VkImVY7KIkGiq5kURVZARARFHzlVgNrJfteXl5RYxpGLkyJEIh8O2KNChQ4dswQ3G0qVLMX36dNxyyy0AgM997nMYNmwYZs6cibvvvlsa+JBREGmyW265BYsXL8Zll12Gz372s7jiiiuwaNEiZagNAEaPHi39QCORCCorK/v6lgnCnVwiRKp9blEdr4KmN/MigNFgUbH+GGDvKSTzBKnG7JtcCHlJkangRZL1eUToOg3nztKycXEOAKvo6YJdBImVZHyUx0vERzaHhBChIBzw5oNoNIra2lps2rTJMr5p0yacfvrp0mM6OztRVGSVMuGwfmEWAPFCQUSGVG/WqbR+2rRpePHFFy1jGzduxNSpU1FcXGARh4Im3yM8Xn8EAn4PfivA3I71us+LOdKrgdJJgHHwXiGZaRqwe4KcxsznaiFkPcZ6DtY0UYwOiUtyWBZl5eelw7B1nfadFmOwqJDMDyRO5l87eYUIohfEYHh9BoK6ujpcccUVmDp1KqZNm4ZVq1Zh7969mDdvHgDdzrJ//3489thjAIALL7wQ1113HVasWGGkyRYuXIgvfOELqK6u9nzdghBDF154IX784x9j3LhxOPnkk1FfX49ly5bh2muvNeaIH9C8efPw0EMPoa6uDtdddx22bduG1atX46mnnhqot5EHBClM+kLk5IvnyO0ePHafFkWFn2ovt3PxY7manz1Fehw28T1IokKy9JhompZ5gpxK672tSaYWBqzbtAwmetLcYwYR/TGjl9P3iCX1qnSYm5E6ewV75ZgsKiSrKuMRhZJsnCA84PWPIa/n8smll16K5uZm3HXXXWhoaMDkyZOxYcMGjB8/HgDQ0NBg6Tl09dVXo729HQ899BBuuukmjBgxAl/+8pdx3333+bpuSPMTRxog2tvb8f3vfx/r16/HoUOHUF1djW9+85v4wQ9+gGhUb2Rw9dVXY8+ePdi8ebNx3JYtW7Bo0SL885//RHV1NW699VZDXXqhra0NFRUVABYjuCTqQONHwLj9T/bak0ecF/G5TzbGHxcRxvy8FvfJxiLCc4UYEsWH7LW4TzWWy3hv9onz4n7ns+oxuxjiS+mZadqe+vJaUSYXQk7dqVXm6Ax3BwCQRMx4nUQUGUTQiRKkEEMSUXQlS5FMRJFoKQMSxUALgI7sxp43ScbEeYnscwBAJ8zeQm0wK8pki7TKeg25VZBRioxIArgXra2tjr4d9n3X+mOgPKDIUFsCqLgdrtfOB/Lhz3BXysrKsHz5cqNnkIxHH33UNnbmmWfirbfe6rsbIwgZXlJVbmNO53H6y83LPrfUlpOgc5wvF0KAEBmSCCEeJyFkXtI9JRaRzBdFkfNaZGHw65GZJfURe0BH1lHaacV6AGY5vSwiBKijPYBcCIlQVIjIgQGODA0UBXSrRDD4SW/lS9oqX8jxs/BzmFeh5HWfSsh4iTx5nc+lxwD5+mOAOj0mRnjkS3A4R4S8Lr+hEkU8vAgyXmfC3MKsIavgceslJDNUS5feECvIAKs3KC28FvGSHqOoEOEC60AdBM4rZuUV9E1HEI4EJIC8iJxcfxq9Rm68XsNvZIhDXH+MF0IyZGX05j51RZhq3KnztN9u06YEM4/r6Y1x2maglkWDxPEgISFEeIAiQwQRBH6jSV4iVX0RocrV/O3BL6TC61twSqV5jdw4Xd/NU+Tl/JKokLj+WFiIFLn5hORz7H2GZBEhVdqMxyklxi/EaukrlI0SpRJRpBIxs4rMT0RI2nGa9wXxSqkru19loFZVkJHQIQIih5J4x3MVCCSGCMJAJZD6sDWAm7/I7zH8HJ9RHakg8nkOfv0x9lrVU8hynCQ9Zu5LC/P8CyEviEJJmkpzWpjVV1SIFzFiab2TV0h2Dq/jBOGBIEvrKU1G5Df53vtnkODVLD3QhuhcU2eKUnqvPYXcyuhFn1Bvu05nELZEh9xK7PmS+nQ6jJ5EVPcLuTVSdGq6CMAUPnyDRd4r1Jtu0+QVInoJpckIQoZTisqrqCpE8TVA95uLKOKP8/qLzCkK5MVUzS3EKsPJNG2vFLNHflS9h/j5qnXKVLg1WdTHTBHE5kiryFQdp1XGauMtqpbeEAUQI6147gcSQoQPYgjOQN27YG2/QmKIGAAGcZWan7eVi4HaazSnN1Egt+saz/UvZ1lPIQCe02P6ae0iSOUpYvNl55Fdy8k4rVp6g71mjRala5F5Ka+3pcjEUnpb/gxWscS/BsgrRPQ5FBkiiKDoD7HTV9Emv6VXkmleU2OqS/g1S/sxP4vHed0sx2kWIQT4W3JDFSVyb7hojwipluDgESNCYVibMLIu0+Zz/XUGuggyU2RwN0h3ZDepcVqDaZqWRYREszQgT4+phJAsckRiifBJkKX1BWRfIzFEEJ7w+aOiEjmqub0xS/Pz3B5zRfp+JA0VPfYUUqHqM2Tehl0Iyc9j9QM5VZIxrBVk2aoyp0aLOZumZRPE8np+vhcK6FuHyG8oMkQMLYJqvlhofiDZ++jn+/fi/ZGNezFLy87Vm4iQLTJkb7Co6ikk8wWpoj+ybtROJmr7o10MsDGVSZrHFEIRS3TI0mjRaZ0xT+X0zDTdCXlUCJB7h/hIkR/RQ1EhIgeC9AwVkEYnMUTkAbygKlA/kSoV5scXlEsUKEhfkJdrchRJzNN8TyFjTIgKqdJj5qWcq8m8CCHLPTlUjQGmWOL7C5kLs0bkjRZlosgxMsR3nIYwQeYNkr2GsI9B6TEiQMII7ncI9RkiCJFCiyD1MW6psSCjQLLxnMbkDRbFhVjdyuZlOAkkWcpM1WtIhPcGyVJlstSZsR6ZERVy6DotrlQvqzbL3om9kaK4j38tfzc6JHSIPiTIyFAB/VclMTSkGQoChf0Xl71P/r+/l89B0X3ayy24eYK87M81CiSb25uxLOFIRmqadur9I0Z63MrtVYu1uokg/l5U65CJHiF+FftUJoYMM04niu0maa/rkAEw02OsrxB7lJmoVRVkbgKJp4C+gYj8gzxDBEHo9EIg5vKLRCY+vMz3Ypb2MuYUGbLsM6NCzCsE2E3TgFX8iOJI1TeIITNbuwkhWcTJzTAtm29JlaWzx/sxS4vpMgBWc7QodsS0mEguDRYJohcEWU2WCug8/QCJIYJwpBiOPyYq8eM0lmsUyInepMPc7k9osCgKIbf0mPq1+6r14lynSjMneN8QiwIBfCk9Z5pGGKlEVK8iE6NCshJ6/jm/ATDL6dOSR6du07kKHYoKEb2EIkME0Z8MpFF6AFODuUaB2HMvabJcxJkqIsRHhWA1TUckBmq/iKvWO3WjVkWQxOfmchvO5fT8Pn6hVmsVGeSmaVUkiJ+XPbNd+ADu3abBzSWvENGPxBHc2mQF9F+WxBDhEb/ipUCrwoKkN14h1XzZsVLx4mNMdg3Lta1CSGywmGtUSDZHvw179EhlwpZFhtgYEzvOvqEI+IiQ2XU6kvULwS6CnNYfs1WQqRorMpy8QoA6QkReIaJv0IoALaAqMK0omPP0B0P824oIxkTdV0bsAjJ4u4WW3fb5FUd+8SOmLJs9RcZgQkg/Re+EkHlr3oSQVRBZhYGXZou8P4g9phADa7TYnYgC6Yj/nkKWqBAzTXfD2nmaF0XiI8OvV4iEEBEMqbi+BXIu8gwRBGHgN/qjit749fyIAs1rms12X/IGi7KeQrkiW36DH7eOqYWQF1RRIsBcmBX8WmRO/YQco0Kik5pPd8k6TvNzCGJgSIdDSIdzrJy1nUuD/rOQ/5AYInyQD6mvoKNFqnOJ79PjLwe31FhvjdGyMa8iye14WVTIshhrMKZpL+uTAXYhpPIOsTlM5DCzNB8V4svm9ddmKX0KMSQRRRJRpJJRJBMx53J6lWHa5hXio0F8hEiWFvO6GCtFhYi+JRWLIRULRgylYhq4H4q8ZqC/2Qgij3ERXbmmxfj9uURq3FAJJy+RIWPc2mCRRYFE07TYVdp87k8I8agqyvTnadu1xddphA1B5AafQmNRIZtx2msZvc0rBPjvESTuI6FD9C89CCOTa08127kKIyoEkBgiAPSdNycfIkl+yOFee+MVEufkmiZzMks73YPb9bLwQkiMCgHqhVRVZfSiYVpsqugmhNwaLbrBm6X119koUcbnCvWuUaFOmFEfFhHy6xXioagQ0fckEUUUwTifk+gBcDiQc/U1BeP13r9/P7797W+jsrISpaWlOPXUU7Fjxw7HY7Zs2YLa2lrE43FMnDgRK1eu7Ke7HYp4+aXcm1W5CxAvlVpez+GUJvNyXSfRJB6rWHaD4ZYeA2Rl8GnDqmxeKmMTPapoEhu375MLLhX8IqzszEnEkEIUqUQUqUTMNE6r+gupOk6nAbvwYc/ZPievEKXHiIHH+SfM/5YLjzzyCCZMmIB4PI7a2lq89tprjvOTySRuv/12jB8/HrFYDMceeyzWrFnj65oF8Wf7p59+iunTp+Pf/u3f8Mc//hGjRo3C+++/jxEjRiiP2b17N84//3xcd911ePzxx/HGG2/g+uuvx1FHHYWLLrqo/26e8Eh/eYH66jh4i8A4zevtNd3M0k735RDhEr1C8lM5+4TYHECVUrOnzMRy+1zhewjxMFHE5qTTYX1R1kTIe1qM3wfAvsQGG7Pk0SCPChHEwJNCFKmA4iQp9Pg+Zt26dVi4cCEeeeQRTJ8+Hb/85S9x3nnn4e2338a4ceOkx1xyySU4ePAgVq9ejc985jM4dOgQ0ml/f2wXhBi67777UFNTg7Vr1xpjxxxzjOMxK1euxLhx47B8+XIAwKRJk7B9+3bcf//9JIak5HsZexAptwD/u6u8Nl6Pc0tvOY35SYn5vZ7EK+Slp5A6FebfVA3IfUOMsEIYZRCGUym9/hix3LX+iz+KDCJ6VCgRs5qk+U0c518DsFaQuXWbFnsJUVSIyA/0n41gxFAu3qNly5Zhzpw5mDt3LgBg+fLlePnll7FixQosXbrUNv+ll17Cli1b8MEHH+DII48E4K4PZBREmuyFF17A1KlTcfHFF2PUqFGYMmUKfvWrXzkes23bNsyaNcsyNnv2bGzfvh3d3fJfJMlkEm1tbZaNEOmP1Fa+pc98/EC7eYjcjvUy5na8l1QY4HivqvXHGLLSd/ZanCOb71QdxkeErMdmlEJIvJ4MWTUZkE2dZbJRobQiKiSLDNnK6XnRA9gjQ/wccRzIv//3xFBE/wMhFtAWBQDb92oymZRfO5XCjh07bN/ds2bNwtatW6XHMH3wk5/8BEcffTSOP/543Hzzzejq6vL1vgtCDH3wwQdYsWIFjjvuOLz88suYN28eFixYgMcee0x5TGNjI6qqqixjVVVVSKfTaGpqkh6zdOlSVFRUGFtNTU2g74MoRHJUNkGmxFQRIK8eIHG+8lxmVIhHVkoPgHPeqCNA4pjM82P3Aln9Qexa7FHlFfIKvx5ZEjGkMjGkElG9t5DbOmQqv5BRQdYF6wr1fDpMJpTE5+JrigoR/UtfeIZqamos362yCA8ANDU1IZPJSL+7Gxsbpcd88MEHeP311/GPf/wD69evx/Lly/HMM89g/vz5vt53QaTJenp6MHXqVNxzzz0AgClTpuCf//wnVqxYgSuvvFJ5XChk/Yte0zTpOGPJkiWoq6szXre1tZEg8oWXVFu+p+MAzz8WbtPcIjVOpmgxauPFjO0lMuQqnqyr0keE5oqy9Jh8n5gys1eesePYuCwiJIoh8TgW3ZGlx0QJxpunLQu0psPy3kKyZTekpmnA2m1atgArYI0OQbHPDRJCRN+i990KZj2OVPbndt++fSgvLzfGY7GY43Gy727V93ZPTw9CoRCeeOIJVFRUANBTbd/4xjfw8MMPo6SkxNO9FoQYGjNmDE466STL2KRJk/Dss88qjxk9erRNSR46dAiRSASVlZXSY2KxmOs/EuGX3np98lw8+U2LOYkeJ5HkdJ5cU2KWfWaDRQB2IRS2G5tlfh5xv9pALY8ksXmqFJuI135CDKkgYr2FvK4/Jo5lzyzfxIiQ+B78RoUIom/hIzq9P5dOeXm5RQypGDlyJMLhsPS7W4wWMcaMGYOjjz7aEEKArg80TcNHH32E4447ztO9FkSabPr06XjnnXcsY++++y7Gjx+vPGbatGnYtGmTZWzjxo2YOnUqiovz+Mt1QPH6V+dg+yVdjED+LuirPy1yFT5u6TXjtT/TtH6YH4O09+aLMaQkgfa0RSjxG6D2KTFkCTnmi0gihmQiZl2UVWaWFlNl7DkA+9pjYmTI62KslB4jBp4Uio3Cgt5v/r5ro9Eoamtrbd/dmzZtwumnny49Zvr06Thw4AA6OoxKBrz77rsoKirC2LFjPV+7IMTQokWL8Oabb+Kee+7Be++9hyeffBKrVq2y5ASXLFliSZnNmzcPH374Ierq6rBr1y6sWbMGq1evxs033zwQb4HIOwJWLl6iOX7O45QmE+d7EUiqfcKYuBCrZZ80lWUvkbfOV5fQOxuo7ddyK6+XCSFWVp8WzgpkRVImGxVKR+wRIFWwx5IeU61Mz0eGZOZpgMQNkY+wjmBBbX6pq6vDr3/9a6xZswa7du3CokWLsHfvXsybNw+A/bv+8ssvR2VlJa655hq8/fbbePXVV3HLLbfg2muv9ZwiAwokTXbaaadh/fr1WLJkCe666y5MmDABy5cvx7e+9S1jTkNDA/bu3Wu8njBhAjZs2IBFixbh4YcfRnV1NR588EEqq3dlINNS+ZYSy+HHQ5XyUqXD3EzQMr+P+Fx2bTeztWW/GRUC9BSZev0xN0O0eq5TRAiQiyCx7xBPBmFEkFH+wrWIHu6qSRYRgm6c7ukoBTpC1oiQKjLER4gA2Feml0WIAHvUh0rpifykGzGkApIG3TmIoUsvvRTNzc2466670NDQgMmTJ2PDhg1GJkj8rh8+fDg2bdqEG2+8EVOnTkVlZSUuueQS3H333b6uG9KYq5iw0dbWls1DLgYwlLxEXgSJ6odFdqw4t9jDvojDWLHLeESxT/Vcto8fkxj34tzp+3qL57hPtd8ypqfIiuIp6ar00XDSJl7MVJYpbKJIOabHokgBQNaaaRU8sew+q2Fa7UniYYInnRU8es8g/S/SLpQiiRi6UIIkYuhECTpQhk6Uoh1laM+Uob2lDN1N5brAaQTQAqApu/FjbOvI7ksAelSoHboAauMeWX8hfpFWMUpEYojoL5IA7kVra6ujb4d93z3V+mWUlgcjhjrb0vhmxf+4XjsfKIjIEJGPqIzRfqM7qvME0WSxj+jL21JFd2TzvKbOlGP2Unpx/TFAtWaYfKV5c768n5A4V2aqFsf58zLcDJ7MIM3P503TyezyGxlVOb1bJRkA9yiQapFWEkJE/pJEFOGAIvTJwnDiAMjbbxticBG0sMmTdJpTesvtOPF4p/M4CSTH9JfbmP7Fy5fS89VjftNjZoTHnh6LIZndZwojMSIkiwapokJOwkgUQems+NGN0zGjt1AyEdNTZE6dpcVxQwhpsPYUknWclj2ad6lDQojIL4KtJvO/HMdAQWKIGADyRMz01T3IhI1TJMfpPLLnstdOxzqOWaNCQLaCTDA5A069gOyNGGXzVSkw2TnF+SJu5fRWyRbhxoRy+nTIubO0bByAVcy4rT5PpmmicEgFGBlK5bAcx0BBYoiQkC9iRaSvU2ey9+zxh1kW1fE6Jo6rokRukR9fmwaxwSJgltKrS+Pdy+i9GKadq8vsIoiJJxb1kfUXMg3TVvFjltFHs8bpKJKGcRreNkuKzKnTdBpAJ+zRIDJNE4UBa0ERzLkKx5JMYojoA/JVTHmhH38kvEZ7ZFElz5EfSASVusEiS49ZT6GKEIlRIHvJvFchxJ+bHcuuLd6LU7mutYLMLO0VI0WpRMy6Dpmbb8iSIlOtSs+PAfJO014hIUQMDCkUI5xdU6z35yocSAwReUCuEZ8BEF1B/MTIoj2yOSoR5NkT5HwdvsEiM00z5JEeecdoVXQn15Xq9du1CyQmdJgg0qND1mgQP4+NJxEzrphEFKlkVN5k0ZMQUnmFnBos8o9eo0IEMTAE6xkK5jz9AYkhQoEXoeFHxHid298CJ8dreUl9ifv8mKTFfR7EjXKOLT2mV5DJ0mPqlJg8ysNK5vl9Uc4s7UUIeS2n50WRKkLEN1lkpmldBOnpMd04HdXXIVMZplWLswKQp8XcBJF5d3YoPUbkFynEUBRYZIg8QwRRwLgIJDdTtEyUeMFrKszJR+R0X8Z+s8EiYO00rVoXjD1nr62Rm7Tjfn6fLCLEztH7cnprSsx8zrxDepPFVCLmvNaYuEaZpdu0KHbchItMFJHYIfIXigz5oKKiAq+//jo++9nPBn0/RMHRHymugfIg+firxsks7TTXTdz4SHvJI0H8lm2wKFmVnkWF+FJ4byZpM0IklthHITZsVEeYAHk5Pb86vZMw4tNlaU78sIhQJ0qzxumYs3G6BfIokaXBIp8eY5Eh0TRNpfREYZJEMUIBRYaSBWSgzqkjUnt7O7q6uqT79u7di+XLl/fmnghi8OE1TeZlzC0yJL1u9peSrMGiZCFW6ynUhmeZYVp/7rZUh9Wozc9j55KtgeaE1dZtjQhlEEYqE0N3ImqW0/tqsMhHgmSNFvl5PKrGiySEiPzEuhRy77dCwfOdvvbaa2hoaEBtbS0AIBSS/9Xc0NCAm266CQsXLgzkBomBpJCrwnpLQD/Ejukq2AWSKJZUAsqTP0g8Pm1rsMhSZKKo8Wqg5n1CuZTY69ezXpvdD49pmLZ/oGnuigDAjNJJxJBCNPtc7ziNRMy+Bpm4HpkojgBYfUF8VEhlmqb0GFGYdCMamGeou4AiQ55/42/evBl33HEHQqEQQqEQrr/+esyYMQO1tbWora3FiSeeiFAohIMHD2LYsGF9ec9EQdCfQipPlu7wa5b2ch7VuSF57eRVEkzTqvSY167TMcEk7dZ7SPXaPIdcBJlvRW6YFtNlpmk6YgikFNdxGh0h+WKsKkEEwIwAdcIqisRNlh7jz8GgqBCRv2RQZPu56s25CgXP3yDf//73cemll2L79u349re/jVAohKeeegoPPPAAQqEQSktLceKJJ+L999/H1KlT+/KeCaIX8AuwiuMecPMG9cYsrRI/qut42Wd4hZxN0/xz95SW1TDtVGJvHuNdCMlSdeyXM19OL+5XNVvMIIxUIppNkcE9RWYxTmuwVo6JlWRe1x9zgoQQkT8kEUNQC5MXkmfI15/Txx9/PI4//ngsW7YMv/zlLzFlyhR89NFH2LFjB3bs2IG//e1vOPnkk3HHHXf01f0S/U6QER4xguN27jyJ+DC8prBUx3jx+zilyqSpL7fNbpqOsRXqJVEhp0gPvzJ9VFi5XtwHyAzUcoEl6z7Nk0HYGLeuO8bM0nLTtGGezpSis6MU6IhbDdLic/61IYaYWboT9r5CQa0/RhD5Qw+CqybrCeg8/UFO3zTbt283no8dOxZjx47FV7/61cBuiig0VKKlUDxHfSy4vJql/Yzz+7ykydhQxF7OLkuP8X4fp3J7fp+/povehJAXZPKNvU4hhkw6jB7Z6vRiab24AbBHhAB/a5HxUHqMyH+SiEILrM8QLdRKED7JsyhQLjhFgWRzxDGnY71Eh2xz7Q0Ww5xXyGtzRVm5vRj1EfcBTk0XVWuRqaNC4l+qshiWGRGKIsWV0xtRIdVq9LINgGmW5r1CqgaLgFUgyaJCBJH/8CnnIM5VKBT4tw/RPxRKhCcIevk+3aI4qjEv4kd2DZWQMs7LFmNNm6vSC+kxlUnaS7RItQ+we4hkr9k8/dEaOWG9hZx+oVqjQfrV2aKsqWzH6e5E1N0obasgE4WQqqyeegoRg4sUokBgkaHcor0DAYkhIiC8Rna8zBso8eXjx8GradpNBMnGvQgqJ98QYPMKMcIRu8gBYBM1+mmtAsY4h2Cmlgkj1T6ZEFL1EOJL6XlRJD4CgFjIz7xDRjm9KHhUQshWQSbLn3mpGOMhIUQUDuQZIoiChxdRvRFUDj8WbmZn2T7VmCryI9vn2TDNNmt6jDdNe0mP8WkvNm43UOvdplWRJFkpPjNXy6rIRFhvIUDWcTqSLZtn/YTMTtNs6zpcoqfIWkJyk3SH5LUlKsS2buG50zpklB4jCpskougJqJqsmyJDBMEYJCk2Pz8pTl4ht+PcIkOexvRyVr6UniGLwlijNOpokUzs8Od1K8uXRYNU5fQZyBdj5SvH+LlW07TeayidDltXp3frOG18NOLaY7IGil6hqBBRWGQQRlFAER3yDBGDkP4QNbIUGhtj1xdf99V9STqsq6JA/H4/ESIn8eM5AiTb1A0WzShPkovqpC3PxVJ5e4QoCadokWweEzvMXO1UoeZkmubnWMvoo+hECTpRgiRi6EQpEi1lQEuxvIxe9hyAu2laFR0C7FEhEkJE4aFHhoLqQF04rSRIDBEBkktFWH+IrD4+v9e37MUPpPIFOZ3Hcqy1waKq07T1dDJjtLqqzMlkrTZjW1ezd6ogczJNszOLlu1UNlWWQgydKEEqGQUSxc7dpnnfkNFgUVyIVbYOmVfTNEEUHj0Ibk2xngKSGIVzp8QQo0DSa7JokSzio/Iaifuc5qtEkOIcllJ6l55CADwLHlVVmdvaZPo1nCvIAIA3TfPrjZn7zaux5Tf4x1QmpnuFVIZpmXnaaLDIp8b4Ncj8rjdGUSGiMEmhOLDIULqA/s8XzsIhHEuXLkUoFHJdDHbLli2ora1FPB7HxIkTsXLlyv65wUFLUP+x8yF0GkAJvSz95TbPSczkbJZmm1lBFo0npekxUdiw9Jg1paVagNWaAuNN1uJzmbFaHGPj/AaYokxElFtJPhKUTY11oRSdHSXo7igxDdMtUBuoDdO0GBXijdNBmKYL50uBGNqkjZ/OYLZceOSRRzBhwgTE43HU1tbitdde83TcG2+8gUgkglNPPdX3NQtODP3lL3/BqlWr8LnPfc5x3u7du3H++edj5syZqK+vx2233YYFCxbg2Wef7ac7JUzy9YsgB0HkFkv14ifyKqK8XsM4r+kVAqzrj9nL2a39gMxxVfl7xjbOH+MUEbJHjNKC+JGvk8ZgUaEM9wvWmoCLZNchyzqhEjEzRea22TpNy3oHif9/ackNYvDSzaWce7t151CVtm7dOixcuBC333476uvrMXPmTJx33nnYu3ev43Gtra248sorcfbZZ+f0vgtKDHV0dOBb3/oWfvWrX+GII45wnLty5UqMGzcOy5cvx6RJkzB37lxce+21uP/++/vpbgnvDKRY8pApdhMvXo3Tsv2BRYZMrxBvmo6G+QiO1SgdNZYyNSM5Yjl8zJAYSdt86/OkLSLEv44iaRFBZuQpZZE1+tuWCyLeH2SapkuzxmmznL6nZZg1KsRvYlQoAej//9qyG+8XYkZqWTRI1WuI0mNEYZOx/bHRu80vy5Ytw5w5czB37lxMmjQJy5cvR01NDVasWOF43He/+11cfvnlmDZtWk7vu6DE0Pz583HBBRfgnHPOcZ27bds2zJo1yzI2e/ZsbN++Hd3d8l9OyWQSbW1tlo3wS2//KnY63ulLRfbXuh9cRJGbuFGdyqshWnU9mUAS9wPgGyzy6TEGXwovlsXrY/YIDxtXlcmrPUaiF0ls4iiPMPGPPPKIkCmrLOJI9Aq5+oQAebWYLBrk1zdEEIVHEsXGz1PvNz36Ln6vJpNJ6bVTqRR27Nhh++6eNWsWtm7dqrzntWvX4v333+/VIvEFI4aefvppvPXWW1i6dKmn+Y2NjaiqqrKMVVVVIZ1Oo6mpSXrM0qVLUVFRYWw1NTW9vu/BR66/+AvlC8Oj4nEyTrud1msUSHYOh6iQuP6YfohVrMjWFFOV0bNxMeVln2+VKTFL6b09YiTbAJUQiliesyNYWqwTpUghii6UoitZqvcVYlGfFpjRIHFdMumyG6pO0169QBQVIgofq4uv9xsA1NTUWL5bVd/jTU1NyGQy0u/uxsZG6TH/+te/sHjxYjzxxBOIRLz+xWon9yP7kX379uE///M/sXHjRsTjcc/HhULWXjGapknHGUuWLEFdXZ3xuq2tjQRRTngpsfdThi/O7etFXeX/P2z4SYM5HeMUBXId55fdsPYUYumxqKKbNJ8+YyKHiSWxw7SqL5HT4q1+l98QQ+q8VyiFGJhpmm26YTqbIsuUop31FWqBvZcQ/9pIjzHTNOsppFqDzMk0DcVrgIQQUYh0I4pMQNVkrCpt3759KC8vN8ZjMWcvkey7W/a9nclkcPnll+OHP/whjj/++F7da0GIoR07duDQoUOora01xjKZDF599VU89NBDSCaTCIetv0hHjx5tU5KHDh1CJBJBZWWl9DqxWMz1H4kY4jiJGdUcpxSXn0iS8vrqTtPWVFRaIkxU5fF2IcPO4XXxVlmfIb7ztFhpEoa9vxC7CnvOR4VSiCKNbDl9Iurebdq2/hgvcpyeA/I0LFWPEYOPNILrQM3WJisvL7eIIRUjR45EOByWfneL0SIAaG9vx/bt21FfX48bbrhBv2ZPDzRNQyQSwcaNG/HlL3/Z070WhBg6++yz8fe//90yds011+DEE0/ErbfeahNCADBt2jS8+OKLlrGNGzdi6tSpKC4ugP41eU2B9ADyTLHw6IJK+DiJIpWY8WOSjsvGkhavUDSeQjRsRnf46JA8VZY2IkWiBygqRH/4qJE5Zk+x8dEiXgTJqtd48WNNifECKJL1H8SM1Bjb2lGGdpShg0WFmqBHgZpgPmebq2maeYd40zQvalTPqXqMGDykEEVRQGuT9WTXIvRKNBpFbW0tNm3ahK9//evG+KZNm/DVr37VNr+8vNymDR555BH8z//8D5555hlMmDDB87ULQgyVlZVh8uTJlrFhw4ahsrLSGF+yZAn279+Pxx57DAAwb948PPTQQ6irq8N1112Hbdu2YfXq1Xjqqaf6/f6JXMkz0eXnp0VmmlaZn53O4Sie9LQv7xViiP4bVbrKqRGj2iStWq/MHi3iI0EyT5AsGsSwd5nWBZE1OhRDV7IU6IhbvUGuUSGxoSJfJcYe+aiQ0xIbIhQVIgqXDMLQAo4M+aGurg5XXHEFpk6dimnTpmHVqlXYu3cv5s2bB8D6XV9UVGTTBqNGjUI8HreNu1EQYsgLDQ0Nlj4EEyZMwIYNG7Bo0SI8/PDDqK6uxoMPPoiLLrpoAO9yMBGEUOG9P7mcz+sxvbxXJ1Gimu9ljD+P783JK2SP6PDiRCyj5yNFYsQn5uAjcjJmi0IJkBukAXNRVjEyxC+7kcpWp9giQ5kyvYKM9wfxj+IGwL7+GF9K7zc9JoojEkJEYZNKRRFKBeMZ0nI4z6WXXorm5mbcddddaGhowOTJk7FhwwaMHz8egP27PihCGnMVEzba2tpQUVEBYDEQUNhwcOEmMGQKQDwmItnnNCZ7zY+Jz/l5EeFRNhaBzUAtTU9Jnvsdkz16HusGIhkUx1OIxZN6T6GYLlZK0aUQMtbqMX2eVTTJDNOq/aoFXdlirLFsiFxlmmbihx1pdiyKoh1lSCFmpMHaUYZmVKIdZTiIUWjBCDRjJA62jkKi6QhgT0hPizUC+Ai6GNoDXQA1wkyVGUKoGaYQaoeZNlN1mubvnxZiJQqJJIB70dra6ujbYd93wxo+QKi8LJAra23tODxmouu184FBExkiBhN9XS3WC1TmaL/HieNeo0nGfLPBIgDL+mP6NLtR2kxhyVNiKiO1H6M128euqz+aqTIRcUFIq4fIGmfi2z6y3kKJjlIgEbKnyGSpMgDWCjHRLM3ItacQCSGi8EklihGKBhQZSuSRzcGFPP3GIQYveeYDckMlSLykybyYpVXjskiUERnqtpmm2fpjYsm8U3RHFj2Sm6Tl+8WUGV+iD8hN0wyWGmPPrY9ml2kzJVairzvGm6YPlwEtcbtpmjdOs5SZYZpuhzU9Jq5D5mVFeooIEYOXdDqMUHcwniEtHcx5+gMSQ0QvcBM2QUR4CkA8qQSOuE91nOpcsjkRM6vNm6bFjs/2Und5dEe/RBARIWu0iT8vuydGBmGlcVpWrG8u/CH4hphXiG+o6Lj+mNg3SNZpmsdpfTKCGJxoyRi0aEC2kGTh2EtIDBF5BC98+rvRIkPScNEtEiSbrxrPJSpk2fTFWPlV6VkpvbWs3ZQVqjG+nJ49FyM+5jxn75Cqugww02QivBgSpVfSiEOZa5C1owwdzEPUOtxcg0wsoWcbE0hpQI8GtcMeERJN0166TouQUCIGEemwvgV1rgKBxBDRS3obufErcmTX48f6OJLk1TPkNSUmjsnObew3F2Plq8dkQsjeIZqlxPh+QtaxGGeG9poaE6vJAFjSZPqjGBVK27xC/H69fD6CJGL6MhvZTtNGmixZpnuFWuBePdYBWNcc46vHRPGjWp2eqseIIUQyBBR77MLv5VwFAokhokAJOlLkQ0A5pcKcbsnNJO0hKlTErTvGTNPWKIxbesxeWi+ORZFyTY2JESHVYq7629If04r0mOwMKUSNCBG//IaZHourxQ+fLgNgCh7Zchv8fsAeFaLmisQQg+8sEcS5CgQSQ0QfIxMtQUZv+jAS5FfY8Pt6Y5aWbtbFWHnTtJj2EtNa1lSXNf1l9nW2Gqdlpfiqdcr4qBFgLalXwUeGmJwzl3Q102JdKEU7hqMFI9COMrRkRqC7qVxulmYbixQZC7G2w95pWmWaprXHiCFOApDY+XI/V4FAYojIA3rbfDEoJD8OYuTGwyGeT680SUMiooQGi2FrqTygWjdM1k3abo527j6tigilOeGTtogf0TjtZJpm+80S+pjxXF+VngmkEqTY+mN89EcWETIWYpUtugrJcx4yTRNDmEx2C+pcBQKJISIA+lrAsPMPYP8hMTUmjgUVBZI2eOw2okJGKb3E2yP6emSNE3mfEIv6qBoxihGhUnQakoU3UwMw5gD2/kI89hRZxGKa7kQJUtmmi2xrwQh8ihFoaR2BREuZNSqkMk+nAdMwLUaFZM0U/aTHSCQRgxiKDBFEXxG0iPGzDIfbdT2cRxbRcTutqxlaMS7OiQB8g0XmF5JFdKKweoH4aA6f3hIrx0TfkFhVJi7iKi7EKvMLRTLCn4Rhe4NFfqmNdPZMqaw3yOwxVILOrIlaN00Xq03TLEqUBvSoEFtyg/mFxJJ6p55CqtcEMcghzxBB9Aa/0aG+iCYNQORIld5SvRbnQjLfcn5zMVa+gszJIC1fgd6e3vISQbL6gpI2gWUrq8+KoHCaqyCL6H9mhrMW6jTsXaZTxp3om7WCrASdmVK9wSITQS2wr0fGBBEA97XHRLz2FKKoEDHISSK4yFAyoPP0AySGiH4iF6Hi55h+8BqpbkUqYhT7vaTRWLfpuL4Ya3E8ZUSF9IVYk7bFVcXyeDEVxpfJx6SP9j5DYgpN1luIpckimQzC6QzC6R7lx5cOh400GRNAacM4HTUiQB1CiqwFR+CTxkp7ekzWbVrZU0gWDZL1FKL0GDHEocgQQfSW3giSgVyPzMd1Zd4g2X7xORTjTtEjAGBpMRYVgthp2osZWp1Ck0WLeO+RvZGitakiHwliQijM/QLMRIBwuseIDgHW5TfMLtOmNLOU0aMUXYdLgETMbpqWdZs20mOqRoqycnqA0mMEkSUBoCjAcxUIJIaIAUQlnryKKi8CymmOy7FOIkWc4yZ8/Jqo4xoQT6IokjFXpQ/z6SzzUWaGlkWAIsigBJ02QzR75KNErgbqjB4RiiZ0cRFOG7rNRkb47PSGirpPqCvrCepECRcJ4rbkCHQ0jgQaQ2YkqBHWyBBLkQGQl9GnYXqHRJ8QpccIwkIGwf0tQNVkBDGI8PNT4uQREh+dIkSA0WCRbeqyeeujNYUmb6bIV4M5mauZkOL9SbFM0ogEMREUkvzy1CSfWxrWxVjTWQN1F0q5HkMlhnG6vaUM6AjZfUKiaRqAtW+Q2GTRzwr0FBUihjAJSFclyvlcBQKJISJggvbusMhOkOcN4DyySFCuKTFpdChpNFi0mqbt5meV8OEFDy9y7KvR2w3UynXIst6gaKLHKoIk+iEkfCSyLtMpLiXWjuGcV+gItGRG6OuP8b4g9lw0TqMbekSIN02L6TGn5oq0Ij1BACDPEEH0PW5pLS/NF72kxryU1OeAKh0me+0mgviUmE0IdRul9LFsp2lTpFjTY/au0WlpukzsRi0zUNu7WAtrlyVTCKd7EEtmRVAaZhic/6UniL1MxDRPsxSZKYDKbD2FWjACLZkRaGka4dxTiAkiAPIO007pMf6mSQgRhEESwUWGqJqMGNr0RxfpoK/hwT+UyyncokC2MWspPWB2d+Y7TavSZBHBVM0vqsqnu8SGjewYVWk9E0LhtCCEVJGhCKS6VbRtp7LSjKXKWEVZZ0cJethirGJqjN8AWNceE9cfA+TpsQL6k5Ug+pNuBFdaX0B/S5AYIvoZ8RvSj6iRzWVfarJxv/+9uT+HVMZo1f7eGKYtWxpF2VL6qBEVciqJ5yM7+mvWRboUncZ+Zn5mBmpZREi6Xlkmg2iiG+E0UJyEVQTxkSEZ3C9UFhFiXaaZYZpFg5owEk2oRDMq0YSRSDQeqRul+U0WGTLSY7LIkKzbtMo3RFEhggBAkSGCyA9kImYgy+45nMQRJOOqqJBszNgy0qiQqiSeFzTW8aQkMpSyHK9KqxlRo6wQMtJi7BdbAvL0mOwzAJCJFHGRID1p18WVzndyDRbbUYb21uHqpoq2qJBM+Mj6Azmlx2SQECKGKFRNRhADhd+Ul5M46kfh5NcfZPMGiWOa4RWKxlNGKb3M78MLIFHQWB+tq9HzpfWO5fi8P4iJH/bI64009z4ZYXMsHdY7UPNXMirFhLXHmlCJlsMjkGg6wu4TUjZX5CNC3ZJH/re6qoyeUmYEYdAFQN071R8UGSIIJ4HjVbAM5Ar2Aqqoj2zMb/osDt0rFE8iGk8aq9LztVdRyA3RZrVX2iaUWOqM7xHER5JK0Alb76FMp1EtZqTFxEemHVR/9cXMp8w8ze6oK+sJkpqmcQQ6mkYATSHnLtMJwBQ8MiHkVD0mQukxgrBAq9YTBOGKLE0mS38BdiHkND+SRhG//phgjrZ3jM6A9wnxZfay8nhZ2byZKuMM1jIhxIsg0TjNI5gutQhLkZldps3UWAm6ON9QF0qz6bFiuy/Ilh5jXabFPkKyhoo8lB4jCFeS0H/EgiAV0Hn6gaCabvcpS5cuxWmnnYaysjKMGjUKX/va1/DOO++4HrdlyxbU1tYiHo9j4sSJWLlyZT/cLWGS6xeL17SFuKZUgF9kquiObL9sviwVFle8jmtZ07QuhKIxq8iRp7/MNBhvoC5BJ6JZw3SJtT6LX/YUZWg3ej+XoR2lmU6UHk5gWGsPig8D4DcWjTkM/RdlAmqRxH0+6TCQjEVtZukWjEAzRuIgqtCMShxEFQ5mqpD46EjgI+ibaJxm0aEEYHaZboN1DTIxGuQmkGTeIoIY4nQHvBUIBSGGtmzZgvnz5+PNN9/Epk2bkE6nMWvWLBw+fFh5zO7du3H++edj5syZqK+vx2233YYFCxbg2Wef7cc7J9R4/SJyqvbJE5yM0hCe8/u5CjJLg0UhGmTd0tLoDu8PUvUcYq9F8zVvlDZEDS92MrCmysRqMjEUHgEQ1lNkrNM0S/KljB5DZkVZJ0qynaahNk0nstezrT0mNlYU02LUZZogfJEMeMuBRx55BBMmTEA8HkdtbS1ee+015dznnnsO5557Lo466iiUl5dj2rRpePnll31fsyDSZC+99JLl9dq1azFq1Cjs2LEDZ5xxhvSYlStXYty4cVi+fDkAYNKkSdi+fTvuv/9+XHTRRX19y4RB0L4fP+dLK+a6nMOLH0j2XDbPddOyFWR6g0XeNC2LApWiy+ILKkGXxR/Ee4tYREhch4xFk0rQiVgyZabFWNQnA12AMNHDV5GpPi/eBpZ9b53D4obo6UAZPs0apZtRiWaMzG6VOHSwCj2Nw6wRIZlx2vAFiavSi9Egty7TMgroT1iC6EsGuJps3bp1WLhwIR555BFMnz4dv/zlL3Heeefh7bffxrhx42zzX331VZx77rm45557MGLECKxduxYXXngh/vSnP2HKlCmer1sQYkiktbUVAHDkkUcq52zbtg2zZs2yjM2ePRurV69Gd3c3iovtX4bJZBLJpCll29raArpjQk5vqsL6uWqMf1Q9V6XOxH1CVIj3CvHRILsgMpfbECvMrCkzmaAy97E+RIYQOgyzWoxPg6W5ccBqnBabsoWzWzYq1B2DUULPDNMd2WU2+HTZpxiBnqZhzoZpo3pMZph2M0lT9RhB+IJvndFbcvgbY9myZZgzZw7mzp0LAFi+fDlefvllrFixAkuXLrXNZwEPxj333IPnn38eL774oi8xVBBpMh5N01BXV4cZM2Zg8uTJynmNjY2oqqqyjFVVVSGdTqOpqUl6zNKlS1FRUWFsNTU1gd474YbbT46q8kccD/DLLtcokY+oUDSeNBosWkvm5ekxZnpmj9bIkDVCJEaNDEGU7LRHhEQ/EHudFsZU6THuvWci4Josmv2ErOuPjUBL6wirYboF9jRZAjDTY+LaY1Q9RhCBkg54gx5Y4Dc+6MCTSqWwY8cOWyBj1qxZ2Lp1q6fb7+npQXt7u2OwREbBiaEbbrgBf/vb3/DUU0+5zg2FrG00NU2TjjOWLFmC1tZWY9u3b1/vb5hA779svK42rsLpy9EBVfRHfHTb4qotieJ4yiiljyFpiJfSrBE6hqTFBG2ao/m6LOtjWTYOY9/XhbJMO0oPJ1B6uAfFbTBN0q3ZRzbWAauJWjRNGx4e7nOIA4gBiWFA+7DhRiSoOdtZ+iCqcAhVOIBqHEA1DjZ7ME13IPtv9wnshmmx0SKlxwii1yQgb+aey5aNKtfU1FgCDbIIDwA0NTUhk8lIAxmNjY2ebv9nP/sZDh8+jEsuucT7e0aBpcluvPFGvPDCC3j11VcxduxYx7mjR4+2fXiHDh1CJBJBZWWl9JhYLIZYLCbdR/QWr16f3nqM2PHioxse+s/LjNCqObLUGnudHSuSmKZVUSA+dcZ3lrYu1pri1h9LSyNCRkfpBMxwOJ8WE8vnVaX0YpqME3+peLFhlO7iGiyapfTD0YkSdLeUOUeDDI+SaJLmmx3x425QeowgXMkguOU4stHjffv2oby83Bh2+56VBTJUQQyep556CnfeeSeef/55jBo1ytetFoQY0jQNN954I9avX4/NmzdjwoQJrsdMmzYNL774omVs48aNmDp1qtQvRAwUvfENBYXk/4OTP8hrSiwOe2TI2NeNaDypm6ZjfGoraUtzsaaIrDye9wDx0SL2vAztVpM0UihLtiOc7kGcRXrSsJfKi14hWck8L4L4zyCmb9owoD1sXXOMRYX0x1E4hCo07q8G9mSbK34E/ZFFhVqyr9OAaZZmUSGnLtN+yujF/QRBANB/DwT1azf7Y1deXm4RQypGjhyJcDgsDWSI0SKRdevWYc6cOfjtb3+Lc845x/etFkSabP78+Xj88cfx5JNPoqysDI2NjWhsbERXV5cxZ8mSJbjyyiuN1/PmzcOHH36Iuro67Nq1C2vWrMHq1atx8803D8RbIPqEtPC8D77cVBEe2T4no7VFJHUDnGmaFze874dFhpipmvcAiVVlfBUZL4RK0YXSjO4PMoRQEtb0l5gGc+slJKbHYuZj57Aiy1Ib7RiOT40O03qX6ZbDI4CmuHyZDYthWvQJiREiwC6AvEJCiCCkiJ0qerP5/LGMRqOora3Fpk2bLOObNm3C6aefrjzuqaeewtVXX40nn3wSF1xwgb+LZimIyNCKFSsAAGeddZZlfO3atbj66qsBAA0NDdi7d6+xb8KECdiwYQMWLVqEhx9+GNXV1XjwwQeprH5AUaWsvESAgi7Rd0B1KyqztGyf45ZBMWuyGLZ3luZTZjLBw3uLxMiRmBqLZfTUmFExloRZNi9GhVTrj4mI0aGsEOoeBnTGSoUGi0dwQmgEmpOV6GgcaUaCVNVjhhBia4+x36wqUQSof/tSeowgPJOEPQ2eKzlUpdXV1eGKK67A1KlTMW3aNKxatQp79+7FvHnzAOiBj/379+Oxxx4DoAuhK6+8Eg888AC+9KUvGVGlkpISVFRUeL5uQYghZnx24tFHH7WNnXnmmXjrrbf64I6IvoUXPqJQYq9zFUfd8Pzf3inSw567maZt6TItK4TS2fSYLnJEQcNMz9YxZqI2+wvpKTHrfGMs2YnSwz26P4iPCCW452nukYkhPjXGf/x8mj8MIzWGYQAqgPaKONoxPNthmhmmRxmm6WZUonXPaF0E7YFdDLHnacBulFZ1mQbkUUEyTRNETqQR3HIcOYihSy+9FM3NzbjrrrvQ0NCAyZMnY8OGDRg/fjwAe+Djl7/8JdLpNObPn4/58+cb41dddZVUF6goCDFEDCaCjvCwL0RVc0WZkMoBlU9IfM2PS/eljQaLfEdoWWRI9A7x5mlrT2d700U9IpQVQnzqKyE857tLsxJ6wB4ZiggfHxcRQkTvK8T3FBJXpW9HGdqTEsM0e85M07b0GIsGibF7WXqMegoRRK9JIjgDTU9uh11//fW4/vrrpftEgbN58+bcLiJAYojIE0ShIhNNbMxN1PiI/qhwqgYTH50iQ5aoUDeK4inDNF2aje6USEzQ4nMWPWJeIaup2lp6X3a4Q68Y431BrTA7S7OUGYsIicZpQK4hWOiciaA4gOEAjgRaKoajKdtZ+hBGoQkjcQBj0JAtoz/QOkYvo98De2SoEaY4MozRbdyjmB4TI0FkmiaIwEhjwMXQQEBiiBgA/EaH/ER0vAomHzgJIre0mWU8YyzGqkd/zDXIzJJ40yckGqL5DtKiKDKeJ1O6UZqlwTpgjQwdFl7zDRVlPqEITIE0DFYhlE2RJYbB0kzRapjWt0TTEerGionsIwD5avSyNccgeU0QRK/pAokhghhY/AoYXlSxL0Xx+LRiXIEXfxAUzx0jRN0oimQQiye59cfsKS6rT4iVz5sRJBYB4n1EhkA6nNAXW2WCp4N73gp5OX0a9nJ68f3znwNbciMrhLrL9QaLzCjN1h1jJfQHUYWDzVXARyFrU0VWQs+2BGBWjbGokFhC39v0GAkngnClB8F5hoI6Tz9AYogYILxEh4L0F6W9n8vtp8KriZoXRNyyG3xPIZm4cRI+5nrv2Y7S2Z5CpYcTiLfCFD5iZIhPk4mLsgqt86WfAS/sKrJbpZ4ea0YlDmEUGlCNg1mz9CGM0rtMt45C90fl1l5CTbB2mFYutyFLjwFW8UNCiCACJYHgmi6SGCKIXFFFh8Qqsn5qyOia+vKyaeZirFwpPd9FOmykykxTtayc3owcdZmC6nDCmhqTRYbE3kFi12nVOmOAZQFWvoJME9Jj/AKs7ShDe6ZMT4/xpfMtsBqmOwBTCMkqxiA8Fx+9QEKIIDzTDRJDBNG/BBEdkqXHeMGUY2RJ9AOJ455SYwCGa0A8idLhnSgZxkd6rCkxVg5fhg6jZL4M7SjJRn/YHD4iVJrpRFlrt2mUZuKHjwzxjRUz3GuxcoyJIV748K9jsESEukcBzRUV2ZL5kdiHGuxDDQ6gGntwDJpQiU/+92hz3bE90IUQ32HaVkbPp8dkXaa9rD1G1WME0SuCWrG+wCAxRBQQXnoM9WHESFZJxh6VWzq7Bpm1mWLMWFMsaekuzVeX8Qu1steGRyjTiWgiK4RYmTwfBRK9QbKIEC+GRFhPIYlhGsNYTyEzEvRpdjNM0+Jq9LxhmkWFpGX0Tt0ec4GiQgRBuENiiMhDvAoafp7Yb0hVms/meowcydJj4qPNHwQjMlQUT+leoZi5xAYTNzJfEB/5YREh2xgfEWKrzbPnCegBlgQ3nobpGRLTY7L3yr+OQS+fHwagUt8So2AzSTegGvtQozdYPFiNnqZhZlToI1gjQkwYQYMeFeJ9QiwSxMRRb0zTJIQIgvAGiSFigPGyREdvjNTsC1HVs8gHbpEgW8dpTV97LG6KIGtPIashmnWPjsHsM2SmybJiKNmud5VmIkgUQ8wsLYohliZjYghwNkyzSFAcuhA6EkAloI0CDg47yhBCB1CNg1mz9CFU4UCmGj2Nw8yKMeVyG4C9y7RsQaPe9BQiCMI/4jI3vT1XYUBiiMgD+mPdsV42YszJOJ1GLJ5EOGKapK3GaLOsngkgtsBqSVYI8aKpNJNdXoOJHNmWEB7FJTdYVAiw+oT4R3b/XFoMwwCUA+0Vxejg0mNs/bFmVKIJlWhpGmGtFmuBPEVm/MIV02MybxAkrwmC6Bu6ENzv4y73KXkCiSGiQBCryPjXgL3fUDFyFkB+Ksik648BGN6N4uFdKBnWZUSFStFp1F5Fs1EgMSU2Ai2WeaXo0seSnRjW3GMKnE+gC4s2mOZplh5jESJ+UdbD2feQkLxX/pFVi5VDN0sfCaBaf/y4ejgOYRR24xjswQQcQDXew7FoxkjsRQ0aP6wBPio2u0t/BIcy+jbYDdN8dIh6ChHEwBCkb69wIrYkhog8QRYd6o0Z2k+0ycNcVWUZe7RtGYQjaaNUnpmkI9lH1lDR7DekR4JYtIh1mS5Fp7HgqiUdxirHDgvPeSO1WErv1FRRVg2XXYCVbS2GSVqPBFlWpW8dAbQU29NhfDTIEGKsh5DT0hpe/T8khAgiWLoQnDSgyBBB9AGq6BDbB9j/S/MdqNnzEvUlvIoeMRLEP8+uTB+Lm00U+fJ45hNipfJl2W49RhQIXRiBT1GGDj0idKjHFEHMI9QMtWeIX5mepcWYEMnATIfFs8/ZxgugIwGM0rdEDdA87EjsQw0OYhT24Jjs8yrsQw2ak5VIvHek1TDdArtfKA2YZmnRNJ2G1TQNeCulFyEhRBC9gyJDBDHABB0dEs/DCycP53RKkYljfG+heFJfdiOW4krlk4YPiFWHmVViHZaUmTF2uEPvKs0LIPb8E+gC5xNYF2MVy+ply2wApiBi74MXQuXQhVAVgGpdCB1EFVc9NgoHUYVDGIXmZCVaGyut3aVbYI8QWcronRosyvxCKgrnFy1BFA4JBCcNxLx8/kJiiChQ+OgQYP2v3A175Eh2fDcco0QM8afExThdHE9ll92wGqTN0nrTGM0iRWzMEENMCLXBFEDsdQeslWNMDPEl9bxZWtVEjTdKM7M08wplo0OHK4uyq9FXGmX0h7JCqAkjdSHUWGxfa6wF1jQZAHskSOUH4l9TVIgg+heqJiOIPMAtOuRUis9gKTFeLKkM1T6jRNJIUHYbDmB4AqXDO1Ea7rQYo8vQjhFoMR6ZWZq9HoFPUYoujMw0o6SjG8WfwEyFHYIZGWrjnie5R+YdYmbpNKClgTQnhCJhIBTPvmBLa7BoUBVMs3QVgInAJzVxNKAa7+MzaEYl9uAYIzW2FzVobh4J7Ck2y+h5w3QLTEFkSY/JBFEn929BPYUIYmBJwBo67u25CgMSQ8QQgYkej6mViIfn7LWxaUa3aX69MdZMkV9njFWXmZseJSrp6EYxiwbxUaDDsEeJFEtudGcrx7rTQDoNRCJAsfgexIgQE0WVAMqBxJG6YboJI41H9pwZprubyuWl87xh2vhdyJulxYoxQP7v4sc0TRBEMJBniCDyBK/RIdXyHG4dpj10nga8+YPY6+FA0fBOIyrEokG8F4hFgirRjFJ0ohLN2fFPMTLTrHeVPgRd6DRD9wO1whoZOgxrZCgrirQE0H44K4Ay1nhYJK3fY4QZpZkAqoQugFg0aAyACfq6Y+8Pm2hEgd7jIkPNqMS+wzVI7DlSjwbtgbnmmNhbyEiPdUJXcmytMVVPIVmPIUqPEUT/0gWgKMBzFQYkhog8xauZWhxjx/GPgBkVEk3UJXD968XJI8SJomg8iWicLanRaVluowwdtp5CTAiNQAvKm7utJulPuOdMBPFiKGug1g4DXUmgKwF0ZUwpIQaCiiNASDRKcwuvMsN09yjgUIVpmD6IUWhGJQ5ilBEh6mgc6bwSvSUixC+2yqfGxA1QixrqNE0Q/UeQDU4L5+eVxBBRoIhiSVVaz2BCSDRNs3ENQMj5kjIhZAgiDbF4CtFwMttFukswRbNIUYchiFj5/BGfJKxRIA+RIa1VF0Hth+2reLFbLeY+oYjoEWLl80wIVevbgYqjjHXHGlCNhuxyG/pYFZoPVgJNIbs3qAX2NBk07q7ESJB4x7J0mcxQLUJRIYIIli64/i70da7CgMQQkcfkukwH/wUp+y/u8AUqft+6RYSG649FwztREjNTY6bgYamxJqNF4SgcRBnaUZU8pHeVPgRTBB2AKYBYl2kmhj7R/UBdCaA5qd9qG+x/xzGpVwygJAyUxIEQE0DZ3kGoBDAu+/w4QBsHHDyyAnswIZsSm4BDGIV9qNF7CWEkPv5wDNBUbC68yneWboEkPdYF60KsfApMFELimmOUHiOIgYGqyQgiD5H5gVTeIXE/ew1YU2biPgWynw6pMOpGNJ40yuf1RVfNhVlLsmky1lyRRYiGNfeY0R9WKcZe89Vk2V5Cna1mJIhf4lT8lFisi6XHSsQ1xiqhR4W4yFDTkcPRnC2hZ92lP+U6TrdnyswO02IESJoeY3fi5gkS/00K55cnQQxOEgguMlQ41WRBuaT6hUceeQQTJkxAPB5HbW0tXnvtNcf5W7ZsQW1tLeLxOCZOnIiVK1f2050SfQsvYnijrZPYUflOPPwV5BIZKh7ehdLhpkn6CLQYsmIkmrOdeQ5mk04HUNPaiKP2dQC7AXwA4F/ctkt4/S+g+QNg9wFg12F96D3ovuWPoOslpqO6uNstAVAeBsorgRCXBsNEABMAHAdgEoATgQ+rj8L7OBbv4TPYg2OwGxOwJ7v+2D7U4EDrGHyyp9qMCMlWpLf0FNIg7zAt9hfyY5qmUnqC6B/SAW+FQcGIoXXr1mHhwoW4/fbbUV9fj5kzZ+K8887D3r17pfN3796N888/HzNnzkR9fT1uu+02LFiwAM8++2w/3znRe/x+8YmRBzEdw8Y9GHNl1WQWQaQhFk8aFWRsjTExTcZ6CY3MNOs9hA7CTI8d4Db2+iDQeQg4eAjYnzGzZmzjlzhNC7dYnt2OZN2keZM026r0x7aqYjRjpNFYsQkjzRXoMQLtKEOipQxoCVlL6BOKLc0+yzR0QSQzSXv59yQhRBADg9gPrLebfwYi8FEwYmjZsmWYM2cO5s6di0mTJmH58uWoqanBihUrpPNXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff38/3znRN6j+4vBSkSQ+99F7yNZwMYmSYfrSGsM5Y3S2Gw8q0ZStyTqIquQhlB/oBvYC2Ac9KrQ7+5y9/gDQ9gIf7QPey0aC9mS3/dA11CfQ02QsVcbeTUl2Y0IoVAljSQ1jq4ERHWqsrsC+cA0OYEw2ZlWNAxhjGKabUak3VmwslhumWyAxTQNWmSaap1VRIYYX0zRBEH2HquIzl83/z+9ABT4KwjOUSqWwY8cOLF682DI+a9YsbN26VXrMtm3bMGvWLMvY7NmzsXr1anR3d6O42G7MTSaTSCaTxuu2trYA7p4IBicztazvkGoeYA/hsh/cCJCW5MplFWRZ43R8uGmazq7fbsRWRqIZ1WjACHyKcZ98jBCL/PwLem5rd/YxGw3SWoE9n+gi5yD06E871CbpYpgCiNmAygFUjcq+qIIufiqhp8ZGZR/HAZ+MimeN0ZXYhxrLUhstGKGX0reOQHdjuTcRJC2ld/rFKL4jMk0TRH7QBT3VHQT+PUN84AMAli9fjpdffhkrVqzA0qVLbfP5wAcATJo0Cdu3b8f999+Piy66yPN1C0IMNTU1IZPJoKqqyjJeVVWFxsZG6TGNjY3S+el0Gk1NTRgzZoztmKVLl+KHP/yh5GxJyRjR/yQhbwEN6D90xdxrJox4gaRl5/Rkt0x2i3NzQvpDCuYCp+x1EvrviWj2ebeGaKoZkbZmhNGKEFoRxicIoQURfIoifIoQWgG0o/0j6J6bj6GHeD6F7rv5WN86DwKfdgIN0MXPx9CFUALWVBh7x/xdl8BchgxRoG04TJVUAmuDyDBwOBTCobZy7MdwtCKOjxFDE4rRjAjaoKEdGjqTGSSa08DBNmvPI6bQOrIXTYk32JndyR7ZO0jA2mtILLMH5GLIKWpEEIQ7+veXpnkVOGxxw+CuLQYWYrEYYrGYbXZ/BT5kFIQYYoRC1r/aNU2zjbnNl40zlixZgrq6OuP1/v37cdJJJwH4eY53TBQkrLHhIfepbdkNAP7Sd3fknRT0dJsjGkzDEkEQQ4H29nZUVFQo90ejUYwePRqNjcF+3w0fPhw1NTWWsTvuuAN33nmnbW5/BT5kFIQYGjlyJMLhsO3DOHTokO1DYOj/qPb5kUgElZWV0mNEtTp8+HC8/fbbOOmkk7Bv3z6Ul5f38p0QjLa2NtTU1NDn2gfQZ9s30OfaN9Dn2newP+j//Oc/o7q62nFuPB7H7t27kUqlAr0HWdBCFhXi6evAh4yCEEPRaBS1tbXYtGkTvv71rxvjmzZtwle/+lXpMdOmTcOLL75oGdu4cSOmTp3qOWxWVFSEo48+GgBQXl5OP6h9AH2ufQd9tn0Dfa59A32uwcPSU2PGjEFRkXu9VDweRzwe7+vbUtJfgQ8ZBVNNVldXh1//+tdYs2YNdu3ahUWLFmHv3r2YN28eAD3FdeWVVxrz582bhw8//BB1dXXYtWsX1qxZg9WrV+Pmm28eqLdAEARBEIQCPvDBs2nTJpx++unSY6ZNm2ab7zfwARRIZAgALr30UjQ3N+Ouu+5CQ0MDJk+ejA0bNmD8+PEAgIaGBkvp3YQJE7BhwwYsWrQIDz/8MKqrq/Hggw/6cpcTBEEQBNF/1NXV4YorrsDUqVMxbdo0rFq1yhb42L9/Px577DEAeuDjoYceQl1dHa677jps27YNq1evxlNPPeXvwhrhSCKR0O644w4tkUgM9K0MKuhz7Tvos+0b6HPtG+hz7TtaW1u1M888U2ttbR3oW/HFww8/rI0fP16LRqPa5z//eW3Lli3Gvquuuko788wzLfM3b96sTZkyRYtGo9oxxxyjrVixwvc1Q5rmud6OIAiCIAhi0FEwniGCIAiCIIi+gMQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExBKCjowM33HADxo4di5KSEkyaNAkrVqxwPe7ZZ5/FSSedhFgshpNOOgnr16/vh7stDL773e8iFAoZi+c5sXz5cpxwwgkoKSlBTU0NFi1ahETCXODv1VdfxYUXXojq6mqEQiH87ne/67sbz0Oee+45zJ49GyNHjkQoFMLOnTs9HdfS0oL58+djzJgxiMfjmDRpEjZs2GDsX7p0KU477TSUlZVh1KhR+NrXvoZ33nmnj95FfuH3/9TmzZsRCoVs2//+7/9a5rl95kONpUuXIhQKYeHChco5V199tfSzPfnkk405jz76qHQO/3tiMBOJRKTv/7Of/azymEsuuQSxWAyhUAjRaBTf+c53lHMXLFiAUCjkeemKwUjB9BnqSxYtWoRXXnkFjz/+OI455hhs3LgR119/Paqrq5Udrrdt24ZLL70UP/rRj/D1r38d69evxyWXXILXX38dX/ziF/v5HeQXv/vd7/CnP/3Jtf07ADzxxBNYvHgx1qxZg9NPPx3vvvsurr76agDAz3+ur5Fz+PBhnHLKKbjmmmuGZJ+ow4cPY/r06bj44otx3XXXeTomlUrh3HPPxahRo/DMM89g7Nix2LdvH8rKyow5W7Zswfz583HaaachnU7j9ttvx6xZs/D2229j2LBhffV28oJc/0+98847li7JRx11lPHcy2c+lPjLX/6CVatW4XOf+5zjvAceeAD33nuv8TqdTuOUU07BxRdfbJlXXl5uE+sD2S25P/n73/+O7m5zAeOXXnoJt956K+bMmSOd/81vfhO//e1vsWDBAnz961/Hc889h1/84heoqqrCj370I8vcN954Aw8//DB1/+5dN4DBwcknn6zdddddlrHPf/7z2n/9138pj7nkkku0f//3f7eMzZ49W7vsssv65B4LhY8++kg7+uijtX/84x/a+PHjtZ///OeO8+fPn699+ctftozV1dVpM2bMkM4HoK1fvz6guy0sdu/erQHQ6uvrXeeuWLFCmzhxopZKpTyf/9ChQxoAS0+PoYCX/1OvvPKKBkD79NNPlXNy+cwHK+3t7dpxxx2nbdq0STvzzDO1//zP//R87Pr167VQKKTt2bPHGFu7dq1WUVER/I0WKKeeeqoWiUS0TCYj3T98+HBt6tSptmPKysosY8lkUisrK9Ouuuoq7dhjj9VGjx7dZ/ec71CaDMCMGTPwwgsvYP/+/dA0Da+88greffddzJ49W3nMtm3bMGvWLMvY7NmzsXXr1r6+3bylp6cHV1xxBW655RZLiNuJGTNmYMeOHfjzn/8MAPjggw+wYcMGXHDBBX15q4OeF154AdOmTcP8+fNRVVWFyZMn45577kEmk1Ee09raCgA48sgj++s2C44pU6ZgzJgxOPvss/HKK69Y9uXymQ9W5s+fjwsuuADnnHOO72NXr16Nc845x1hdgNHR0YHx48dj7Nix+MpXvoL6+vqgbreg6OjowF//+lf827/9m3K9sUwmY4uaxeNxtLe3o7Oz0xg799xzMXz4cDz66KN9ecsFAaXJADz44IO47rrrMHbsWEQiERQVFeHXv/41ZsyYoTymsbHRtnBcVVWVbcG4ocR9992HSCSCBQsWeD7msssuw8cff4wZM2ZA0zSk02l873vfw+LFi/vwTgc/H3zwAf7nf/4H3/rWt7Bhwwb861//wvz585FOp/GDH/zANl/TNNTV1WHGjBmYPHnyANxxfjNmzBisWrUKtbW1SCaT+M1vfoOzzz4bmzdvxhlnnAHA/2c+WHn66afx1ltv4S9/+YvvYxsaGvDHP/4RTz75pGX8xBNPxKOPPorPfvazaGtrwwMPPIDp06fjr3/9K4477rigbr0g+P73vw9N0yypRZFTTz0VW7duxeOPP47LL78cjz/+OP70pz8BAN59912ceuqpWLFiBV5//XW8/fbb/XXr+c3ABqb6n8cff1wbNmyYsb366qvaT3/6U+3444/XXnjhBe2vf/2r9otf/EIbPny4tmnTJuV5iouLtSeffNJ27lgs1tdvIS8QP8fNmzdrVVVV2v79+405XtJkr7zyilZVVaX96le/0v72t79pzz33nFZTU2NLWzIwyNNksv+fDD9psuOOO06rqanR0um0Mfazn/1MGQa//vrrtfHjx2v79u3r9XsoNHL9P/WVr3xFu/DCC43Xfj/zwcjevXu1UaNGaTt37jTG/KTJ7rnnHq2yslJLJpOO8zKZjHbKKadoN954Y29utyCprKzURo0a5TinublZO+644zQAGgCtqKhI+8IXvqAB0P7xj39o+/fv1yKRiPbDH/7QOGaop8mGnBhqa2vT/vWvfxlbZ2enVlxcrP3+97+3zJszZ442e/Zs5Xlqamq0ZcuWWcaWLVumjRs3rk/uO98QP8d77rlHC4VCWjgcNjb2Qzh+/HjleWbMmKHdfPPNlrHf/OY3WklJiTQfPtjFkOz/J8OPGDrjjDO0s88+2zK2YcMGDYDti+aGG27Qxo4dq33wwQeBvIdCI9f/U3fffbd24oknGq/9fOaDlfXr12sAbL8H2O8GXiiK9PT0aJ/5zGe0hQsXerrW3Llzbb7Nwc7rr7+uAdCWLFniaf7hw4e1P//5z1oymdQuu+wyDYDW3d2tPf3004ZQkm3//d//3cfvJP8YcmmysrIyS3VHW1sburu7bbnXcDiMnp4e5XmmTZuGTZs2YdGiRcbYxo0bcfrppwd/03mI+Dl+5zvfwYUXXmiZM3v2bFxxxRW45pprlOfp7OyUfvaaLtSDvekCQPxcc2X69Ol48skn0dPTY3y+7777LsaMGYNoNApAT43deOONWL9+PTZv3owJEyb0+rpDifr6ekspspfPfLBz9tln4+9//7tl7JprrsGJJ56IW2+9FeFwWHnsli1b8N577ykrpHg0TcPOnTsdS8sHI7fffjuKioo8p11LS0tx2mmnAQD++Mc/Yvz48YhEIpg9ezaee+45y9zrr78eyWQSq1evxhe+8IXA7z3vGVgtlh+ceeaZ2sknn6y98sor2gcffKCtXbtWi8fj2iOPPGLMueKKK7TFixcbr9944w0tHA5r9957r7Zr1y7t3nvv1SKRiPbmm28OxFvIS2RpMvFzvOOOO7SysjLtqaee0j744ANt48aN2rHHHqtdcsklxpz29natvr5eq6+v1wBoy5Yt0+rr67UPP/ywv97KgNLc3KzV19drf/jDHzQA2tNPP63V19drDQ0Nxhzxc927d682fPhw7YYbbtDeeecd7fe//702atQo7e677zbmfO9739MqKiq0zZs3aw0NDcbGR6MGK27/pxYvXqxdccUVxvyf//zn2vr167V3331X+8c//qEtXrxYA6A9++yzxhwvn/lQREyTiZ8t49vf/rb2xS9+UXqOO++8U3vppZe0999/X6uvr9euueYaLRKJaH/605/66rbzju7ubi0cDks/oy996UvaxIkTjdcvvfSSNm/ePG3jxo3amjVrtJqaGi0UCmmvvfaa8vyUJiO0hoYG7eqrr9aqq6u1eDyunXDCCdrPfvYzraenx5hz5plnaldddZXluN/+9rfaCSecoBUXF2snnnii5RcjIRdD4ufY3d2t3Xnnndqxxx6rxeNxraamRrv++ustJcysrFncxH+PwcratWul7/+OO+4w5sj+f27dulX74he/qMViMW3ixInaj3/8Y0uaQnZOANratWv7540NIG7/p6666irtzDPPNObfd999xv/RI444QpsxY4b2hz/8wXZet898KCKKIfGz1TRNa2lp0UpKSrRVq1ZJz7Fw4UJt3LhxWjQa1Y466iht1qxZ2tatW/vwrvOPe+65RwOgvfTSS7Z9xx57rKX1wIsvvqiVlJQY/69Hjx6tbdiwwfH8Q10MhTRtCOYiCIIgCIIgslCfIYIgCIIghjQkhgiCIAiCGNKQGCIIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCCIfqWhoQHDhw/HZZddZhn//e9/j+LiYtx+++0DdGcEQQxVSAwRBNGvjBkzBv/3//5f/L//9/+wY8cOAMDmzZtx8cUX43vf+x5+/OMfD/AdEgQx1KBV6wmC6Hc6Oztx3HHHYdKkSVi6dCnOPvtsfOMb38Dq1asRCoUG+vYIghhikBgiCGJAWLt2La699loMGzYMF1xwAZ588kmEw+GBvi2CIIYglCYjCGJAOP744wEAoVAIjz76KAkhgiAGDBJDBEH0Ozt37sRXvvIVTJ8+HR0dHVizZs1A3xJBEEMYSpMRBNGvvPPOOzjjjDNQW1uL559/HhdffDHeeOMNvPfee6ioqBjo2yMIYghCkSGCIPqNPXv24JxzzsEJJ5yAZ599FsXFxbj33nvx6aef4p577hno2yMIYohCkSGCIPqFhoYGzJw5ExUVFXjllVdQXl5u7PvOd76Dxx57DP/7v/+LY445ZuBukiCIIQmJIYIgCIIghjSUJiMIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIIQ2JIYIgCIIghjT/H/P7mjzSRbPMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(6,8))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln_new.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "8a151326", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer_new = tp.models.NormalizationLayer(I_new*Omega_new)\n", + "fcn_layer_new = tp.models.FCN(input_space=T_new*X_new, output_space=U_new, hidden = (128,128,128))\n", + "model_sol_new = tp.models.Sequential(normalization_layer_new, fcn_layer_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b62ecf69", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll_new = 10000" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "9132e130", + "metadata": {}, + "outputs": [], + "source": [ + "domain_sampler_new = tp.samplers.RandomUniformSampler(I_new*Omega_new, n_points=N_coll_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "15dc322e", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities_new(t, x):\n", + " \n", + " model_input = tp.spaces.Points(torch.column_stack((t, x)), T_new*X_new)\n", + " u = model_sol_new(model_input)\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def residual_equation_new(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities_new(t,x)\n", + " \n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx) \n", + " \n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " \n", + " return residual " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "3611a53d", + "metadata": {}, + "outputs": [], + "source": [ + "pde_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = domain_sampler_new,\n", + " residual_fn = residual_equation_new, \n", + " name='PDE Condition',\n", + " weight=1.0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "80d9740a", + "metadata": {}, + "outputs": [], + "source": [ + "N_ic = 250\n", + "initial_sampler_new = tp.samplers.RandomUniformSampler(I_new.boundary_left*Omega_new, n_points=N_ic)\n", + "\n", + "def residual_IC(u,t,x):\n", + " \n", + " return -torch.exp(-(x + 2)**2) + u\n", + "\n", + "\n", + "initial_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = initial_sampler_new,\n", + " residual_fn = residual_IC, \n", + " name='Initial Condition',\n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "d75d7987", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def residual_BC(u_left,u_right,x_left,x_right):\n", + " \n", + " u_x_left = tp.utils.grad(u_left, x_left)\n", + " u_x_right = tp.utils.grad(u_right, x_right)\n", + " \n", + " error_u_neumann = u_left - u_right\n", + " error_u_x_neumann = u_x_left - u_x_right\n", + " \n", + " return error_u_neumann + error_u_x_neumann\n", + "\n", + "N_bc = 500\n", + "boundary_sampler_new = tp.samplers.RandomUniformSampler(I_new, n_points=N_bc)\n", + "\n", + "bound_condition_new = tp.conditions.PeriodicCondition(module=model_sol_new,\n", + " periodic_interval=Omega_new,\n", + " non_periodic_sampler=boundary_sampler_new,\n", + " residual_fn=residual_BC,\n", + " name='Boundary Condition', \n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "bc500357", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions_new = [initial_condition_new,pde_condition_new,bound_condition_new]\n", + "optim_new = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver_new = tp.solver.Solver(train_conditions=training_conditions_new, optimizer_setting=optim_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "ae35a441", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=0)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=0)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/setup.py:179: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.\n", + " category=PossibleUserWarning,\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 33.5 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "33.5 K Trainable params\n", + "0 Non-trainable params\n", + "33.5 K Total params\n", + "0.134 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 2500/2501 [03:12<00:00, 13.01it/s, loss=0.000477, v_num=1]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(15,6))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$: True',fontsize=14)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints_n)\n", + "ax2.set_xticklabels(x_label_list_n)\n", + "ax2.set_yticks(ypoints_n)\n", + "ax2.set_yticklabels(y_label_list_n)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('$u$: Pred',fontsize=14)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln_new.T - u_pred_new.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints_n)\n", + "ax3.set_xticklabels(x_label_list_n)\n", + "ax3.set_yticks(ypoints_n)\n", + "ax3.set_yticklabels(y_label_list_n)\n", + "ax3.set_title('Abs. Error',fontsize=14)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "54efcae8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u: 0.13872807530454387\n", + "R2 Score u: 0.9735773288509157\n" + ] + } + ], + "source": [ + "l2_error_u_new = L2_ERROR(u_soln_new.flatten(),u_pred_new.flatten())\n", + "r2_score_u_new = R2_SCORE(u_soln_new.flatten(),u_pred_new.flatten())\n", + "print('L2 Error u: ', l2_error_u_new)\n", + "print('R2 Score u: ', r2_score_u_new)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + }, + "vscode": { + "interpreter": { + "hash": "da0fbe8389eabce767ecf652ec31e8710a923604e2f1fdffa4a2f324d0133cdc" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/.ipynb_checkpoints/Duffing_Hidden_Physics-checkpoint.ipynb b/examples/hidden_physics/.ipynb_checkpoints/Duffing_Hidden_Physics-checkpoint.ipynb new file mode 100755 index 0000000..c50c419 --- /dev/null +++ b/examples/hidden_physics/.ipynb_checkpoints/Duffing_Hidden_Physics-checkpoint.ipynb @@ -0,0 +1,853 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7671ba59", + "metadata": {}, + "source": [ + "# Deep Hidden Physics Model " + ] + }, + { + "cell_type": "markdown", + "id": "dd5108eb", + "metadata": {}, + "source": [ + "### Example-2 " + ] + }, + { + "cell_type": "markdown", + "id": "98991643", + "metadata": {}, + "source": [ + "## Duffing oscillator " + ] + }, + { + "cell_type": "markdown", + "id": "e9766cbf", + "metadata": {}, + "source": [ + "$\\normalsize{Governing \\ Equation}$ " + ] + }, + { + "cell_type": "markdown", + "id": "2decc272", + "metadata": {}, + "source": [ + "$ \\large{\\frac{d^2x}{dt^2} + \\delta \\frac{dx}{dt} + \\alpha x + \\beta x^3 = \\gamma cos(\\omega t)}; \\ \\normalsize{for \\ t \\in [0,T]} $" + ] + }, + { + "cell_type": "markdown", + "id": "cb959d7a", + "metadata": {}, + "source": [ + "$\\delta$ $\\rightarrow$ controls the amount of damping, \n", + "$\\alpha$ $\\rightarrow$ controls the linear stiffness, \n", + "$\\beta$ $\\rightarrow$ controls the amount of non-linearity in the restoring force, \n", + "$\\gamma$ $\\rightarrow$ amplitude of the periodic driving force \n", + "$\\omega$ $\\rightarrow$ the angular frequency of driving force." + ] + }, + { + "cell_type": "markdown", + "id": "6e776690", + "metadata": {}, + "source": [ + "The equation of motion can be written in terms of displacement $(x)$ and velocity $(v)$ as," + ] + }, + { + "cell_type": "markdown", + "id": "740c8186", + "metadata": {}, + "source": [ + "$ \\large{\\frac{dx}{dt} = v}; \\\\ \\large{\\frac{dv}{dt} = - \\delta v - \\alpha x - \\beta x^3 + \\gamma cos(\\omega t)}; $" + ] + }, + { + "cell_type": "markdown", + "id": "c9ed1337", + "metadata": {}, + "source": [ + "We consider the governing equation of system is partially known, Our objective is to identify the remaining terms in equation using ${Deep \\ Hidden \\ Physics \\ Model}$. \n", + "We approximate the solution $(x, v)$ by a neural network and the remaining unknown terms in equation by a second neural network $\\mathcal{N}$." + ] + }, + { + "cell_type": "markdown", + "id": "c444f64e", + "metadata": {}, + "source": [ + "We can rewrite equations in the form," + ] + }, + { + "cell_type": "markdown", + "id": "cce00332", + "metadata": {}, + "source": [ + "$ \\large{\\frac{dx}{dt} = v}; \\\\ \\large{\\frac{dv}{dt} = \\mathcal{N}(t,x,v) + \\gamma cos(\\omega t)}; $" + ] + }, + { + "cell_type": "markdown", + "id": "d3466754", + "metadata": {}, + "source": [ + "## Importing Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "33625585", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76867067", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import torchphysics as tp\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "from scipy.integrate import odeint\n", + "from matplotlib import pyplot as plt\n", + "import sys\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "006416e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "\n", + "RANDOM_SEED = 2308\n", + "np.random.seed(RANDOM_SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "bb92d41d", + "metadata": {}, + "source": [ + "## Data Generation" + ] + }, + { + "cell_type": "markdown", + "id": "f8a45a82", + "metadata": {}, + "source": [ + "### Defining equations to solver" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0e352416", + "metadata": {}, + "outputs": [], + "source": [ + "def equation_of_motion(s, t, delta, alpha, beta, gamma, Omega):\n", + "\n", + " x, v = s # position, velocity\n", + " \n", + " ds_dt = [v, -delta*v - alpha*x - beta*x**3 + gamma*np.cos(Omega*t)] # governing equations\n", + "\n", + " return ds_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "0e441233", + "metadata": {}, + "outputs": [], + "source": [ + "# ---- control parameters -----\n", + "\n", + "delta = 0.3\n", + "Omega = 1.2\n", + "alpha = -1.0\n", + "beta = 1.0\n", + "gamma = 0.2\n", + "\n", + "# ---- initial condition ----\n", + "\n", + "s_initial = [1.0, 0.] # [x initial, v initial]\n", + "\n", + "# ------ solver -------\n", + "\n", + "t_final = 10*np.pi/Omega # simulation time\n", + "dt = 0.01 # time step for solver\n", + "t = np.arange(0.0,t_final + dt,dt) " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "29970716", + "metadata": {}, + "outputs": [], + "source": [ + "soln = odeint(equation_of_motion,s_initial,t, args=(delta, alpha, beta, gamma, Omega)) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e727e920", + "metadata": {}, + "outputs": [], + "source": [ + "x_soln = soln[:,0]\n", + "v_soln = soln[:,1]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8efe62e0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAAGUCAYAAAB3B+YDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTdRfA8W/SllJGS6HsvUH2BgEB2XsIomwEEQQERPYG2Sp7CbJEFJAhW/YesvcoewqU0QKFNm3y/nHeUpFhaZvctD2f5+ljmqa5J5Wb3Hvu+Z1jstlsNpRSSimllFJKKaWUUnZnNjoApZRSSimllFJKKaXiCk3GKaWUUkoppZRSSinlIJqMU0oppZRSSimllFLKQTQZp5RSSimllFJKKaWUg2gyTimllFJKKaWUUkopB9FknFJKKaWUUkoppZRSDqLJOKWUUkoppZRSSimlHESTcUoppZRSSimllFJKOYgm45RSSimllFJKKaWUchBNximllFJKKQDKly+PyWSy6zbmzp2LyWRi7ty5dt2OUkoppZSz0mScUkoppVQMEhgYyIgRIyhcuDCJEiUifvz4pEuXjrJly9KnTx8uXrxoaHxXrlzBZDLRqlUrQ+NQSimllHJWrkYHoJRSSimlIubx48eUKVOG48ePky1bNpo1a0aSJEm4fv06p06dYtSoUWTNmpWsWbMaHeob1a9fn5IlS5I6dWqjQ1FKKaWUMoQm45RSSimlYojx48dz/Phx2rRpw8yZM19ZUnr58mWCgoIMii5ivLy88PLyMjoMpZRSSinD6DJVpZRSSqkYYu/evQB06tTptb3dMmfOTK5cuV6679SpUzRu3JgUKVLg7u5O5syZ6datGw8ePIjQNgcPHozJZGLbtm2v/Ozf/d/mzp1L5syZAZg3bx4mk+nFV9jvv61n3J49e6hZsyZJkyYlfvz45MqVi8GDBxMYGPjKY00mE+XLl+fevXt89tlnpEiRAg8PD0qWLPnaWJVSSimlnIVWximllFJKxRBJkyYF4MKFCxQsWPA/H79nzx6qVKlCUFAQDRs2JFOmTOzbt4/x48ezZs0a9u7dS7JkyaItvoIFC9KlSxcmTJhAgQIFqFev3oufZcqU6a2/u3TpUj755BPixYv3Inm4adMmhgwZwoYNG9i6dSvu7u4v/c6jR48oXbo0np6eNG3alLt377Jo0SKqVq3KoUOHyJs3b7S9NqWUUkqp6KLJOKWUUkqpGKJRo0b88ssvtGnThoMHD1KlShUKFSqEt7f3K4+1Wq20atWKp0+fsn79eqpWrfriZ3379mXkyJH06tWLWbNmRVt8BQsWpGvXrkyYMIGCBQsyePDgCP3e48ePadu2LS4uLuzdu5f8+fMDYLPZaNasGQsXLmTs2LH079//pd87duwYX375JZMmTcJslgUfH374IW3btmXy5MlMnz492l6bUkoppVR00WWqSimllFIxRN26dRkzZgxWq5XRo0dTsWJFkiZNSrZs2ejUqRO+vr4vHrt79258fX2pXr36S4k4gH79+pEsWTIWLlxIcHCwo1/GK1asWMGjR4/47LPPXiTiQJaijho1CldX19cua02YMCGjR49+kYgDaNmyJa6urhw4cMARoSullFJKvTNNximllFJKxSA9evTg1q1bLF68mK5du1KmTBmuXbvGlClTyJ8/PytXrgTgyJEjAJQvX/6V50iYMCFFixbl2bNnnD9/3pHhv9bbYk2fPj1Zs2bl4sWLPH78+KWfZc+enUSJEr10n6urKylTpuTRo0f2ClcppZRSKko0GaeUUkopFcMkTpyYRo0aMW7cOHbu3Mm9e/f48ssvef78OW3atCE4OJiAgAAAUqZM+drnSJUqFQD+/v4Oi/tNIhpr2OPCvGkqq6urK6GhodEYoVJKKaVU9NFknFJKKaVUDOfl5cXkyZPJmDEjfn5+nDhxAk9PTwDu3Lnz2t8Juz/scW8StgQ0JCTklZ9FVyIvumJVSimllIoJNBmnlFJKKRULmEwmEiRI8OL7QoUKAbBt27ZXHhsYGMjBgwfx8PAgZ86cb33esOEQN2/efOVnYctL/8nFxQXgnSrT3hbrzZs3uXjxIlmyZCFx4sQRfk6llFJKKWelyTillFJKqRhixowZbxxMsGzZMs6ePUuSJEnImzcvpUuXJmvWrKxbt45Nmza99NiRI0fi5+fHp59+Srx48d66zaJFiwIwf/58rFbri/v37t3LL7/88srjvb29MZlM3LhxI8Kvq27dunh5eTFnzhxOnTr14n6bzUafPn2wWCy0atUqws+nlFJKKeXMXI0OQCmllFJKRcy6deto37492bJlo3Tp0qRJk4YnT55w9OhRdu7cidlsZurUqbi7uwMwd+5cqlatSo0aNWjUqBEZM2Zk//79bNmyhaxZszJq1Kj/3GbJkiUpVaoUW7ZsoVSpUnzwwQdcvXqVlStXUrt2bZYvX/7S4xMlSkSxYsXYsWMHrVu3Jnv27JjNZpo0aUKGDBleuw1PT09mzpzJp59+SokSJWjcuDHJkydn8+bNHDx4kOLFi9OjR4+o/wGVUkoppZyAJuOUUkoppWKI0aNHU7p0aTZu3MiOHTu4ffs2AGnTpqVly5Z07tyZIkWKvHh8mTJl2LdvH0OHDmXDhg34+/uTJk0avvrqKwYMGICPj89/btNkMrFy5Uq+/vpr1qxZw4kTJyhQoAArV67k1q1bryTjAH7++We6devGihUr8Pf3x2azUbJkyTcm4wAaNWpEqlSpGDlyJMuWLSMwMJBMmTIxYMAAevXqRfz48SPxF1NKKaWUcj4mm81mMzoIpZRSSimllFJKKaXiAu0Zp5RSSimllFJKKaWUg2gyTimllFJKKaWUUkopB9FknFJKKaWUUkoppZRSDqLJOKWUUkoppZRSSimlHESTcUoppZRSSimllFJKOYgm45RSSimllFJKKaWUchBXowOIqaxWK7du3SJx4sSYTCajw1FKKaWUUkoppZRSBrLZbDx+/Jg0adJgNr+5/k2TcZF069Yt0qdPb3QYSimllFJKKaWUUsqJXL9+nXTp0r3x55qMi6TEiRMDcPnyZZImTWpwNErFDRaLhQ0bNlClShXc3NyMDkepOEH3O6UcT/c7pRxP9zulHC827ncBAQGkT5/+Rc7oTTQZF0lhS1MTJ06Mp6enwdEoFTdYLBYSJEiAp6dnrHmzVsrZ6X6nlOPpfqeU4+l+p5Tjxeb97r/amekAB6WUUkoppZRSSimlHESTcUoppZRSSimllFJKOYgm45RSSimllFJKKaWUchBNximllFJKKaWUUkop5SCajFNKKaWUUkoppZRSykF0mqpSSimllFJKKaVULGaxWAgNDTU6jJdYLBZcXV15/vy508UWxsXFxS6TXjUZp5RSSimllFJKKRULBQQE4OfnR1BQkNGhvMJms5EqVSquX7+OyWQyOpw3cnd3x8fHB09Pz2h7Tk3GKaWUUkoppZRSSsUyAQEB3Lx5k0SJEuHj44Obm5tTJb2sVitPnjwhUaJEmM3O10XNZrNhsVjw9/fn5s2bANGWkNNknFJKKaWUUkoppVQs4+fnR6JEiUiXLp1TJeHCWK1WgoODiR8/vlMm4wA8PDxInDgxN27cwM/PT5NxSimllFJKKfVfgoPhzBm4dw8CA8HbG9Knh4wZwQnPTZVS78Bmg2vX4MYNePoUPD1l/06TRvdvi8VCUFAQPj4+TpmIi0lMJhNeXl7cvHkTi8USLT3kNBmnlFJKKaWUilX8/OC332DxYti3DyyWVx+TMiV8+CG0aAGVK4OLi+PjVEq9u9BQ2LABFiyQ//r5vfqYdOlkv27dGsqUiZuJubCBCPYYPhAXhf0dQ0NDo+Vv6px1gEoppZRSSin1ju7dg+7dpeqtc2fYuVMScUmSQL58ULw4ZMsG8eLBnTvw669QvTrkzAk//ywn+Uop52SzwZIlsi/XqAELF0oiztUVsmSB/PkhQwZJrN+4AXPmwAcfQOHCkrSLq7QqLnpE999Rk3FKKaWUUkqpGM1mkxPvXLnghx9kOWrBgjBuHFy4AA8ewPHjsH8/+PqCvz/s2AFffQVJk8LFi1IhV6oUnDhh9KtRSv3btWtQrRp8/LEsO/f2loT7rl3w+LHsw8eOwdWrEBAgybe2bcHDA44ehapVoW5dScIr5Qw0GaeUUkoppZSKsfz9oWFD+OwzSbrlzw/r1sHhw9C1K2TN+uoStfjxoWxZmDBBTt5HjgQvLzhwAIoUgfHjJcGnlDLe6tVSDbdhg+y7gwbB5cswcSKULi33/VOCBLJEdeZMuH5d3gfc3GDlSnmeP/805GUo9RJNximllFJK/d+JE/Ddd3L1PFcuOaB3cZED/cyZoUoVGDhQrsRbrUZHq5S6cAGKFoVly+Rke/RoOHhQKmgiuqIoUSLo3RtOn5Z932KBbt3g00/h2TP7xq+UejObTfbpOnWk2q1kSalyGzxYkucRkSyZVMgeOiSJuHv3ZInrpEmacFfG0mScUkoppeK04GCYMQMKFZKKmh495Or5uXNyIm61QlAQXLkCGzfCsGFSUZMxIwwd+vrG0Uop+zt0CN5/XxJyGTPC7t3Qs6ck5SIjTRpYvlxO0l1dYdEiScA/ehStYSulIsBmg759JVFus0GHDrB9u/R3jIx8+eCvv6BVK/lc/+or6NNHE3LKOJqMU0oppVScZLVKj6ns2aF9e7naHi8e1KwJ338PmzdLD5pbt2Q5zO7dMG0aNGkCnp7SHHrQoPCkXGCg0a9Iqbhj924oX16qXAoVkl5wxYpF/XlNJujUSfZ/Ly+pgi1XTvtMKeVINpsMYhk1Sr7//nuYOlU+o6MifnyYPTv8eUePlgS+JuSUETQZp5RSSqk45/x5qFBBekxduwapU8syltu3pTfN11/Dhx/KdLbUqSFTJqnAad8efvkF7t6VKW6FC0sSbtAgyJ1b+lQppezr8GFZZvbkieyn27ZBypTRu40PPpAqnFSpZPBDlSrw8GH0bkMp9XrDh8tnMsCUKfKZHF1MJujVCyZPlu+/+04q8JRyNE3GKaWUUipOmTULChSQSYoJE8LYsVIB17WrTFWMCHd36Sd18KAsZcuQQZJ6NWrI0hftM6WUfZw5I1MRAwIkYbZqlVSq2kOBArBzZ3hCLiwBqJSyn7lzYcAAuT1pEnz5pX2207GjVLuDVMqF3VbKUTQZp5RSSqk44flzaNsWPv9cbleuDCdPwjffgIdH5J7TZIKPP5YEQZcuct+kSTLd7caN6ItdKQX370OtWtKnsWhRScQlSGDfbWbLJr0ivb1h3z5o1AhCQuy7TaXiqm3b5DMapHqtUyf7bq99e+kDC7KtVavsuz1ljFKlSmEymThw4MBL9z98+JA8efIQP358tm/f7vC4HJ6MW7BgAV988QVFixbF3d0dk8nE3Llz3+k5du3aRffu3SlSpAjJkiUjfvz45MqVi169evHoDR1WM2XKhMlkeu1X+/bto/7ClFJKKeW0Hj2SZWY//QRmM4wYAevXy/LT6JAgAYwfD2vXgo8PHDkCxYvDv477lFKRZLFI4vvSJdlv1661X0Xcv+XNK+8XHh7y3x49HLNdpeKSmzehcWNJdn/yiXxOO0K/fnKhzmqVivczZxyzXaPZbPD0qfN/RUc/v1H/bxI4cODAF/c9f/6cOnXqcPbsWX755RfKlSsX9Q29I1dHb7B///5cvXoVHx8fUqdOzdWrV9/5ORo2bIifnx9lypShRYsWmEwmtm3bxpgxY1i6dCl79uwhRYoUr/yel5cXXbt2feX+okWLRualKKWUUioGuHULqlWDEyekIfuSJVIVZw/Vq0sCrlYtOHVKGsz/8QdUqmSf7SkVV3TvDlu2QKJEMu04eXLHbr94cZg/Xyrjxo+XHpHt2jk2BqViq+Bg2bfu3pWp5mEXzhzBZJLhEBcvwtatUL++TF11VLLfKIGB8n5qPDOQ5I0/ffJEWopERbly5ahevTrr1q1jz549lCxZkqZNm7Jr1y6mTp3KRx99FLUNRJLDk3GzZs0ie/bsZMyYkVGjRtGnT593fo5u3brRokULUqdO/eI+m81Gx44dmTZtGkOGDGHKlCmv/F6SJEkYPHhwVMJXSimlVAxy+7ZMQrxwQfo+rV8vfaDsKVMm2LNHTiw2bJDE3NKlMqVVKfXuFi6U5d8ACxZAvnzGxNGwoSxpGzBAlrQVLizLZZVSUdOvH+zdKxfMli61//Lzf3Nzg99+k3363DkZ7rRkiSTqVOwwcuRI1q9fz8CBA8mVKxfLli1j4MCBdOjQwbCYHJ6MqxQNl4Z79er1yn0mk4kBAwYwbdo0Q9b7KqVURFitctXv/n14/FhGtHt4QNq0sf8KnFKOdu+eVKRduCAJss2bZTqqI3h6SvXOJ5/AihVQr55UyNWo4ZjtKxVbXLwofZ0ABg6EunWNjadfP5nmuny5LJs9fBiSJDE2JqVisu3b4fvv5facOdKn0QgpUsDvv8tgmKVLYebM2F39miCBcwyksVqtBAQE4Onpifk15ZDRlZgtUKAATZo04ZdffmHz5s20a9eOIUOGRM+TR5LDk3H25ObmBoCr6+tfVlBQEPPmzePmzZt4e3vz/vvvU8Del8eVUnHa48eyrGbDBpm6eOqU9D94HR8fqdgpWxYqVoT333dcib5Ssc3Dh7IU9fRpSXY7MhEXxt0dFi+G5s1l4mrDhvJeUKaMY+NQKqYKDpaE9uPH8tkYNmHRSCYTzJ4NR4/C5ctSQbN0qVbQKBUZ/v7QooX0BWvTRpaIGqlkSZms2r07dOsmrSZy5DA2JnsxmaK+/DM6WK0QGiqx2Pu8x8fHB5D2ZZPCyq0NFKuScbNnzwagSpUqr/3533//TatWrV66r1q1avz8888v/se8SVBQEEFBQS++DwgIAMBisWCxWKIQtVIqosL2NWff56xW2LTJxPz5Zv74w0RQ0MtH6GazDW9vqZwJDpbk3KNHJvz8JGGweTMMHgxp0tho1MjK559bY+2BgHJ+MWW/+6fgYKhf34Vjx8ykTGlj/foQ0qeXBvBGmD0bHj92Ye1aM7Vq2di4MYSCBY2JRcUMMXG/s4c+fcwcPOiCt7eNuXNDsNmM24//KWFCWLjQxAcfuLB8uYmJE0P58kur0WGpKNL9zvE6d3bh2jUzmTPbGDMmxCn2744dYc0aF7ZsMdOkiZUdO0L5f81PjGOxWLDZbFitVqxW53yPsv1/QkNYnPYyceJEJkyYQMqUKblz5w7z58/ns88+e6fnsFqt2Gw2LBYLLi4ub3xcRN9DTDZbdMyniJywnnFz5sx5JUn2ro4ePUrp0qVJlCgRp06deiW5NnToUMqVK0eePHlwd3fn9OnTDBkyhHXr1lGqVCl2796N6S2XtAYPHvzaMsaFCxeSwNGL2pVSTik01MSuXWn5/ffsXL8evuY0VaonFCp0jzx5/MiUKYDUqZ/i4vLyW29goCu3byfk/HlvTp9OxqFDKQkMDP/kL1r0bz7++Dw5cjx02OtRKiay2WDixEJs3ZoBDw8LI0fuIlOmAKPDIijIhSFDSnL6tA/e3s8ZM2Y7yZM/NzospZzW2bPe9OlTFpvNRO/ef1Gy5G2jQ3rF6tVZmDUrH/HihTBu3DbSpn1D6btS6hUHD6bk229LYjLZGD58F++998DokF7w84tP164VePIkHo0anaNp07NGhxQprq6upEqVivTp0xMvXjyjwzHM0qVL+fzzzylXrhxTp06lRIkSeHp6cvDgQeLHjx/h5wkODub69ev8/fffhISEvPFxgYGBNGnSBH9/fzzf0ocoViTjLl++TNmyZfHz82PdunVUqFAhQr9ntVopV64cu3btYvXq1dR8S2fl11XGpU+fntu3b5MsWbJIx66UijiLxcLGjRupXLnyi2XpzmLtWhM9erjg6ytJfU9PG82aWWnZ0krBgu++fCUoCDZuNDFrlpm1a8Nrths0sDJsWCjZs0dj8Eq9hTPvd68zapSZgQNdcHGxsWJFKFWrGnaY8wp/f6hQwZWTJ00UKGBj69YQJ5lkppxNTNvvotuzZ1CsmCvnz5to0cLKrFmhRof0WjYb1KzpwqZNZkqUsLJ1ayhv6JajYoC4vt850tOnULCgK1evmujWLZTRo52vauv33000aeKKq6uNvXtD7D78yR6eP3/O9evXyZQp0zslnRzJZrPx+PFjEidO/NbiqMjatGkTtWvXJk+ePGzdupXEiRMzcOBAhg8fztixY/n6668j/FzPnz/nypUrpE+f/q1/z4CAAHx8fP4zGRfjPy6uXr1KhQoVuHfvHkuXLo1wIg7AbDbTunVrdu3axe7du9+ajHN3d8fd3f2V+93c3PTNWikHc6b97uJF6NIF1qyR75Mlkx4THTuaSJLEBXhzCfPbuLlJ34z69eH8eRg5EubNg2XLzKxaZaZfP+jTRwZAKOUIzrTfvcmqVdLgHWDSJBO1ajnXYY6PD6xeDcWLw7FjJj77zI2lS7U3pHqzmLDf2cOAAfLZlyoVjB9vxs3NeXeS2bMhb17Yv9/M+PFm+vQxOiIVVXF1v3OkkSPh6lXIkAGGDXPBzS1yx8v29Omn0g9y6VITHTq4sW8fvGVlolMKDQ3FZDJhNptfOxzBGYQtTQ2LMzodPnyYhg0bki5dOtatW4eXlxcAPXr0YOrUqYwaNYp27dq9NWH2T2azGZPJ9J/vERF9/3DO/yMRdOXKFcqXL8+tW7dYvHgxtWrVeufnCFvOGhgYGN3hKaViMZsNpk+H/PklEefmBj17SjPnfv2id7JajhwyXerYMahWTfrlDB4MRYrIUAilFFy6JIMSADp1AgMn1b9VxowyhTFePJmyOmiQ0REp5VwOHICxY+X29Ong7W1sPP8lfXqYOFFuDxoEx48bG49Szu7ECfjhB7k9ebJzDBF4k0mTwMtLjrfD9nMVM1y8eJEaNWoQP358/vzzT1KmTPniZ15eXnzzzTfcv3+fsWEfOAaIscm4sETczZs3WbRoEXUjOed8//79AGTKlCkao1NKxWZ37kDNmnKyHxgok5ZOnIDRoyFxYvttN18+WLsWfvsNkieHkydl4ur48ZIcVCquevYMPvpIloGWKgXff290RG/3/vswa5bc/vZbWLfO2HiUchYWi0xUtFqlKiWSh/cO16KFxGqxQOvW8JZWQkrFaVYrfPGF7CP160Pt2kZH9HapU4dfHOjfXy66q5gha9as/P3339y9e5ds2bK98vO+fftis9kYNmyYAdEJp07G+fn5cfbsWfz8/F66/5+JuN9++436/zED+fTp0zx69OiV+3ft2sUPP/yAu7s7DRo0iM7QlVKx1P79UpG2bh24u8O4cTL9NGdOx2zfZILGjeH0aWjYUA78u3WDBg3gNW9zSsV6Nht8+SUcPSpJ6sWLY8by7ebNJW6AZs1kuY5Scd3EiXJxK1kymDDB6GgizmSSKr4kSeDwYZgyxeiIlHJOc+fC3r2QKFHMqTRr0wbKlZML8B066AVwFX0c3kxl1qxZ7Nq1C4ATJ068uG/btm0A1KtXj3r16gEwefJkhgwZwqBBgxg8ePCL5yhfvjxXr16lZMmSHD9+nOOvqQf/5+MXL17MmDFjqFixIpkyZcLd3Z2TJ0+yYcMGzGYz06dPJ0OGDHZ5vUqp2OPHH6FzZwgOhly54PffIU8eY2Lx8ZGkw9Sp8PXXstzt7FnpR5U1qzExKWWEBQvk4N5slqrRdOmMjijifvgB/vpLlr80agQ7d0qSX6m46NYtacEAMGaMJNdjklSppEL+iy+kgqZBA1nCqpQSjx9D375ye9CgmPN5bTbLOUC+fPDnn/DHH/D/dIVSUeLwZNyuXbuYN2/eS/ft3r2b3bt3A7JctN5//Ou++v/Lx/v27WPfvn2vfcw/k3EVKlTgzJkzHD58mO3bt/P8+XNSpkxJ48aN6datG8WLF4/8C1JKxXqhodC1q/S1ACmrnzsXItjr025MJujYEUqWlIOCs2ehRAlJzJUpY2xsSjnCpUuyD4CcxH/4oaHhvDN3d1iyBAoXlj5ZPXrEnEoBpaLbN9/AkyfymdaqldHRRE7btjJsac8e+Oor6Q+plBKjRkmrl2zZZP+ISXLkkPeoESNkRUrVquDhYXRUKqZz+DLVuXPnYrPZ3vj1zyTa4MGDX7kPeOvvh339U7ly5Vi0aBG+vr4EBAQQHBzM9evX+fXXXzURp5R6q2fPpGJl8mRJfo0YIZOVjE7E/VORIlJdU6QI3L8PFStKhZBSsVlIiCzvfPxYks9hV9tjmkyZ4Oef5fakSdIXUqm4ZutW+PVXqUCZMiXmThg2m2HGDHB1lQtjK1YYHZFSzuHKlfB+rmPHxox2Ev/Wty+kTSuvxcCe/yoWiaEfdUopZX/370OlSnJl290dFi2CPn0kKedsUqeG7dulai84GJo0gZkzjY5KKfsZMUL6znh6SjLLxcXoiCKvZs3wKoHWreHuXWPjUcqRLJbwCtcOHaRSNCbLm1eqXEFaWzx+bGw8SjmD3r0hKAgqVIg5g1n+LWFC+O47uT1ypPZ6VVGnyTillHqNO3ekWeuePdKQeeNGqZBzZgkTSh+79u2luWy7duGj45WKTfbuhaFD5fbUqVJdFtONHi0n8XfvwmefaYNoFXdMnAhnzkiPOAOH2kWrAQMgSxa4cQOGDzc6GqWMtWePXNA2mWTwmTNe1I6oxo3l/OD5c1m2qlRUaDJOKaX+5dYtKF8eTp2CNGlg924oW9boqCLGbJbkRM+e8n337rHn5EYpkGlmLVpIL8cmTaBpU6Mjih7x48PChVKFu2aNTGZUKrbz8wv/jBo1Cry9jY0nunh4wPjxcnvcOPD1NTQcpQxjs0GvXnL7s8+gQAFj44kqk0kuIJjNcgF8yxajI1IxmSbjlFLqH65flyteZ8/KFLQdO+C994yO6t2YTHJSE3Y1fuBAqbpRKjYYMAAuXJC+LVOmGB1N9MqXL3xf/fprOHfO2HiUsrdhw8DfHwoWhJYtjY4metWqBdWqSeuIr782OhqljLFuHezaJRechgwxOprokT+/LKkHqY6zWo2NR8VcmoxTSqn/u3JFEnEXLsiyt+3bIWtWo6OKHJNJGs2OHCnf9+4NEyYYG5NSUbV3r1SZAPz4oywhj206d4YqVWQJTOvWUgGoVGx0/rxUcoP0YYrJfR9fJ2xJnqsrrF4N69cbHZFSjmW1hg9X6tRJLqLFFoMHS8/aI0fgl1+MjkbFVJqMU0opZGlqxYpw+bIk4LZvh8yZjY4q6nr3lso4gK5dZcqbUjHR8+fhvdRatIAaNYyOyD7MZpg1CxInluRj2FI3pWKbXr1kKnLNmvL5GxvlyhU+nKVrV6mSUyquWLQIjh2TpFXv3kZHE718fGSoG0C/fvDsmbHxqJhJk3FKqTjv/n2pRLl0SRoub98OGTIYHVX0GTw4vIdc+/bSl0qpmGbIEFk+nipVeHVcbJU+ffjwlf79dbmqin22b4cVK6QabuxYo6Oxr4EDIUUK2Y8nTTI6GqUcw2KRthIg04WTJTM2Hnvo0kU+r69flz5ySr0rTcYppeK0gADp6RI2rGHTpthVRg/hPeQ6dZLvW7WCzZsNDUmpd3LwYPgJ+7RpkDSpsfE4Qps2ULlyeEWgLldVsYXVKsOFQKZ+585tbDz25uUV3jJiyBCZ1q5UbDd7Nly8KInorl2NjsY+PDzg22/l9ogRMpBGqXehyTilVJz17BnUqSMn+smSwcaNsWNp6uuYTNIz7uOP5Wpl/frS50IpZxccHJ6MatwY6tUzOiLHMJnCl6vu2aM9H1XssXAhHDok/7YHDzY6Gsdo1QqKFoXHj+POa1ZxV2Bg+LCGfv0gUSJj47GnZs1kAE1AQPhkaKUiSpNxSqk4yWKBRo1kqYynJ/z5Z8ybmvquzGaYPx/Kl5cTgurVpUeeUs7s++/hxAnpzxLXlnhlyCCvH+SE5vx5Y+NRKqqePw9v6N6nj1TNxAVmswypAJg5E06fNjYepexp2jS4fRsyZoQvvjA6Gvsym8Mr96dOBV9fY+NRMYsm45RScY7NJpU2a9ZIifnq1VCkiNFROYa7u/TpyZ9flspUrapl9cp5XboEQ4fK7XHjIHlyY+MxQtu2UKmSJDHatpUlfkrFVNOmSX+ldOli79K1NylXDurWlSrfXr2MjkYp+3j2LDw5NWCAHHfGdpUqScubkJDwoWlKRYQm45RScU7//rBggTSOXroUypY1OiLH8vKCdeuk6sbXFxo0gKAgo6NS6mU2m/Q5fP4cKlSApk2NjsgYJpNU0iRIADt3wk8/GR2RUpHz+LH0VQIYNEguhsU1o0fLscfq1bB1q9HRKBX9fvpJLvZmyADNmxsdjeOE9YX87TeZIKtURGgyTikVp0yfHn4yMHOmLNWMi9KkkYScp6ec4H/xhSQ/lHIWy5bJv9F48aSaxmQyOiLjZMoU3iS6Rw9Z/qNUTDNunFRi58ghPdTiopw5Zao5wDffaKWril2CgiThDNC7t3x+xxUFC8Inn8jt/v0NDUXFIJqMU28UGioH/AcPyrK2GTOk7HjgQOjWDb76SpYYfP019OwpCY5p02DRItixA27c0IMM5VxWrYKOHeX2kCHQurWx8Rjtvfdg8WLpdzFvHowZY3RESonHj+UzBmQ5V86cxsbjDDp3luX0/v5xb3mfivn8/MJ7pg0bBq6uxsZjpEGDZHjF4cMyzEKp2GL+fDn/S506bh5jDxkSXvm6Z4/R0agwffv2xWQy8fvvv7/257Nnz8ZkMjEyrLzRgeLwR6EKExoKZ89Kg+xTp6Sp7KlTMo46JCRqzx0vnkynLFBATiIKF5ZpUkmSREvoSkXYX3/JFSurFdq0kT4WSnrGTZggJ/p9+kjFQv36Rkel4rqBA+HWLciaVf5dKklezJwJxYpJEr15c6hVy+iolIqYUaMkyV6wIDRsaHQ0xkqeXIZY9Okj//3oo7i5ZFfFLhZL+FLNnj0hfnxj4zFCjhyShJw1S/btrVudu6rfZrMRaAk0OgysVitPLU9xCXbBbH61ViyBWwJMUfhD5s+fH4BTp07R8F8fQM+ePWPQoEGkS5eOrgZc6dRkXBzk5wd798K+ffJ14IAcIL2O2SxXN9Klg1SppNdU4sTy5eoqiQ2rFYKD4dEjePgQ7t+Hmzfh6lW5/9w5+Vq8OPw5CxeGihXl64MP4kZzT2WcixflpDUwUBqsxvUlb//WqZMk5KdMkRHtO3fKPqqUEY4cgYkT5faUKXqS+k+FCkll+nffwZdfymTkRImMjkqpt7txAyZPltsjRshxYFzXpYtMXrx+XS6I9e5tdERKRc2vv8Lly5JsbtfO6GiMM3Ag/PwzbN8OGzdClSpGR/RmgZZAEo10/oOIJ32ekDBewkj/fr58+QBJxv3bhAkTuHHjBnPnzsXDgANOTcbFASEhUhW0fr18HTz4am+ohAmlei1PHlm6liePLAtKkybySwlCQuQA7Px5Obk6dEi+Ll2SGA4elL4CiRNLoqRhQ0mUJEgQ9desVBg/P+kLd++eJJiWLAE3N6Ojcj7jx8swhw0boHZt2T9TpzY6KhXXhIZK/0KrFRo3lspN9bLBg+H33+HKFanwHTfO6IiUerthw6SXVNmycpyn5CLDiBFS4TpypFTsx8Vp0Sp2CA2F4cPldvfucftcLn16uVg2bpxUx1WurAUARsuZMyfu7u6vJOMePHjAqFGjyJ8/P80NmjaiybhY6uZN+PNPSb5t3ChVa//03ntQsqR8lSghyTcXl+iNwdVVmk5nyvTyVYGbN2HzZvnauFH60v36q3wlSiQnYG3bSlz65qWiIjBQEku+vvLvcM0arSJ5E1dXqV4tVQrOnJFlM1u3atWqcqwff5RqbU9P+OEHo6NxTgkTSnVv9epSQdikiSxdVcoZ+fqGTwAeMUKP6/6pSRM5YT98GIYOhUmTjI5Iqcj5/XcpvvD2lkRUXNenj7SVOHQIli+HBg2Mjuj1Ergl4EmfJ0aHgdVqJeBxAJ6JPd+4TDUqXF1dyZUrF6dPn8ZiseD2/6qMb7/9Fn9/f8aOHfva7TqCJuNiiaAg2L07vPrtxImXf+7tLQmxatWk0sDIipe0aaFFC/myWmWp7LJlsHSpXOn/6Sf5eu89+Pxz+OwzOTFT6l2EhkLTpvLvy9tbpjKmSmV0VM7NywtWrpQT+717Zfnqjz/qyZNyjL//Du8PN3y4VGar16tWTU7kFy6Uz8kDB7TiVzmnQYPk87hGDShTxuhonIvZLEvOP/xQJr1/9RVkz250VEq9G6s1fNp3166y4imuS55cWkoMGyaTVevWjf6il+hgMpmitPwzulitVkLdQkkYL6HdkmL58+fn2LFjnD9/njx58nDlyhWmTp1KlSpVqGLgWmLt2hCDXbok/Sbq1IFkyaT/2tixkogzmaSybNAgOam+dw9++01GyTvT0jOzGd5/Xw5GLl2S9fUtWkj5/unT8kaWPj306CF9NZSKCJtNDghWrJDKrpUrIVcuo6OKGbJlkypVk0ka0M6YYXREKq7o3l0mhRYpAh06GB2N8xs3Ti40HDsmy8yVcjbHjsnnCYQvYVMvq1BBEpUhIbKkTamYZuVKOHlSknCdOxsdjfPo3h2SJpXVJr/8YnQ0Kqxv3OnTpwHo378/FouFMWPGGBmWJuNiksBAqe756iuZ1pI1K3TsCKtWwdOnkDIltGwpBz737klF0ODBshTVGbPx/2YyyTCHefNk6erUqZA7NwQESLIuSxbprXHunNGRKmc3bpw0izaZpImqXo1/N9WqhU/E6txZBjooZU+bNkmVl9ksCeCY8JlltBQp5LMR5MLb5cvGxqPUv/XrJ/9t3FimqKrXGz1a3vt+/12O3ZWKKWy28Kq4zp3lApESXl7hg1kGDZKhhso4/5yoeuTIERYuXEjz5s0pUKCAoXE5PBm3YMECvvjiC4oWLYq7uzsmk4m5c+e+8/NYrVYmT55M/vz58fDwIHny5Hz88cf4+vq+8XcOHDhAjRo18Pb2JmHChBQvXpyFCxdG4dXYl9UKR4/CmDFQqZJk12vUkJ4Svr7S46lcOTlpPnIEbt2CuXPhk0+kUi4m8/KSyoiTJ2H1arlyGBICCxbI8tVWraSSTql/W7JErkaBnKg2amRsPDFVz57w8cey3zVsKMNYlLKH58/De8x07CiVcSpiWreWi1jPnsnf8N/DmZQyyu7d0qfVxUWWaqk3y5tXjmtBPnt1P1Yxxfr10hctQQJZkaJe1rGjrEi7ckVWmyjj/HOias+ePYkfPz7DnODDyeHJuP79+/Pjjz9y9epVUkdhvWT79u3p3LkzoaGhdO7cmRo1arBy5UqKFSv2ovzwn7Zt20aZMmXYuXMnDRs2pEOHDvj5+dG0aVNGjBgRlZcUbWw22VnnzYNmzWTnLVQIevWSYQdBQZAhg0yaW74c7t+Hbdsk616wYOwcFW82Q82asGWLTHesXVuSlPPmybTXdu00SaDC7d4t1ZMgV+i6dTM2npjMZILZsyF/frh7F+rXl6SJUtFt9Gi5wJQ6tZ60vyuTSSoJ48WTk6LFi42OSCk5ng1bcvnZZ9oHLSKGDJEWLTt3yooXpZydzRb+md2+vU4Dfp0ECaRnHMjfKjDQ2HjisjRp0pAsWTLWrl3Lpk2b6Nq1K+nTpzc6LMcn42bNmsWVK1e4d+8e7du3j9RzbN26lZkzZ1K2bFkOHz7MmDFjmDdvHmvWrCEgIIAO/2o2ExISQtu2bTGZTOzYsYOZM2fy3XffcezYMfLkycOgQYPeWlFnLyEhUvk2ebJUs6VPD5kzy9WxX36RE+CECaFWLZmYduaMJOumT4d69eLeUIMiRaQvwf79sowuJEQm1eTIIctxnz41OkJlpPPnpX9iUJA0Sh03TgcPRFXChNJ3L1kySYa3b69X7FX08vUNXxI9frxURat3kytX+OCLLl1enZ6ulKNt3Ag7dkiSeMAAo6OJGdKlC7+A2KuXHOMq5cy2bpW+5O7u8M03RkfjvNq2hUyZZEjVlClGRxO35cuXj8DAQHx8fOgdtobYYA5PxlWqVImMGTNG6TlmzpwJyDhad3f3F/dXrFiRqlWrsmPHDs6fP//i/i1btnDx4kWaNGlCoUKFXtyfOHFiBgwYQEhICHPmzIlSTG9js8kOuGsXTJsm1VzFi0ujy0KFpIJn0SK4eVOWnpYoIVcUt22DBw/kClnnznLArckF+dutWyd/zzJlZHnOkCFSKffzz1I5p+KWu3ehenXZX4oXl95T2nMqemTOLO9PLi5SkTppktERqdjCZpMlHEFBMuVbl5RHXp8+cmHqzp3wHjVKGcFmC68E6dBBLjSriOnZE3x84OxZqUxXypmF9Ypr29a5hgM6m3jxpGccwKhR0gtdGWPr1q3YbDbu3buHp5NUNcXIhY3btm0jYcKElC5d+pWfVa1aFYDt27e/9HjgtWNrw+775+Pfxf79JrZsgbVrpVfV1KmSGOrUCRo0gAIFJOmWOjWULSs9XWbOhAMHZMlX4sRyEjJsmFxh8PeX5q3Dh0s/uHjxIhVWnFC6tFx5XbJErjjcvCmTWEuUkOo5FTcEBsry5UuXZMjHqlVSFq6iT8WK4Y3iv/5a3quUiqpFi6SCxt1drhbrxabIc3cPn3w8Ywbs2WNsPCruWrlSjnETJAiv2FQR4+UVXkk4aBA8eWJsPEq9ye7dcizo5iZJZPV2zZpJ0ciDB7JyR6kwrkYH8K6ePn3K7du3yZs3Ly6vKX3J/v/GFP9cdhp2O/trmlZ4e3vj4+Pzn8tUg4KCCAoKevF9wP/T2jVrRuxPaDLZSJ8e3nvPRv78NgoWtFGggI2sWV/t9WaxROgp1f/VrSsJzUmTzIwaZebgQROlStlo187KsGFWkiQxOkIVXSz/3znC/hsaCp984sJff5lJmtTGypUheHvrPmQPX34JBw+68MsvZj7+2MbevSFEschZxRD/3u+iw6NH0LWrK2CiT59QMmSw6n4bRaVLQ8uWLsybZ+bzz2389VeIXtCLweyx39mb1Qr9+8t+3alTKEmT6n79rtq0gQkTXLl0ycTYsaH076/LPRwpJu53Rhg2zAUw07y5ldSpQ3U/j4CBA000berK99/b+OKLEIcNW7RYLNhsNqxWK1YnXT5m+38PnLA4nZnVasVms2GxWF6biwoT0feQGJeM8/f3B8DrDY1lwkoOwx4X0d+58R9TAEaOHMmQIUNeuT9lyie4u4Obm5V48ULx8grC0zMYL68gkiQJImXKp6ROHUiKFIG4ub38j8vXV75U9MiTByZNcmfevPfYujUDM2a4sGiRhdatT/LBBze16iIW2bhxIzYbzJyZj7Vrs+DmFkqPHnu4cOEBFy4YHV3sVaeOmX37ynLxYhKqVn3KyJG7cHcPNTos5SAbN26MtueaMSM/d+5kJm3ax+TJs421a5374CumqFjRjeXLK3L6tDvt2/vSsKEeZMR00bnf2duOHWk5ebIoCRJYyJ9/I2vX6hl6ZDRokIbvvivGmDE2smTZTJIkQf/9SypaxaT9ztEuXEjCn3+Ww2y2Urz4Ztau1akEEeHhAZkylefKFS++/PIKLVu+OnDSHlxdXUmVKhVPnjwhODjYIduMrMePHxsdwn8KDg7m2bNn7Nixg5C3NPcMjOC0jhiXjDNKnz59+Prrr198HxAQQPr06Tl61EyyZB4GRqb+rUkT2LYthE6dXDh/Pj7jxhXl+PHCTJwYqhO9YjiLxcLGjRupXLkyEye6s3atCyaTjfnzbXz0UUmjw4sTihSBUqVsXLqUhOXLazBvXqgmumO5f+53bm5uUX6+AwdMrF8vVxPnzPGgfPlqUX5OFS4kxMRnn8Hvv+emX7/sZM1qdEQqMqJ7v7O3kBD45hs5rejZ08zHH1c2OKKYq3p12LbNysGDruzdW5lJk/RihaPEtP3OCB99JJ/fn34Kn31W3thgYhiTyUT9+rB+fTbGj8/kkF57z58/5/r16yRKlIj48ePbf4ORYLPZePz4MYkTJ8bk5CcVz58/x8PDgw8++OCtf8+ACDYHjHHJuLDqtn9Wvv1T2Av/ZxVcRH7nTVVzYdzd3V8aFhHGzc1N36ydUOXKcPy49Ln69lvYvNlMkSJmvv0WunbV5v4x3a+/xqNPH/mf+N13Jj75JMa9lcVYWbNKn8aKFeG338wUK2bmH9cpVCwWHZ93ISEytMFmg+bNoXJl3XejW9hE9s2bTXz1lRt//qn9+GKymHKc+fPPcOGCDCD4+msX3Nz0QCsqvvsOypeHWbNc6NbNhZw5jY4obokp+52jHT8uvZlNJujf34ybW4xsP2+YunWhZEnYt8/E2LFuDhmKFhoaislkwmw2Y/53bywnEbY0NSxOZ2Y2mzGZTP/5HhHR9w/nfrWvkTBhQlKnTs3ly5cJDX11edTr+sO9ro9cmIcPH+Ln5/fafnIqZnN3h3794ORJqFRJBmZ884301TntmMpgZQd//ZWKL76Qg/wePdBEkAHKlQtvQNujB2zebGw8KuaYPBmOHgVv7/ChICp6mUwyud3dXQZkLFxodEQqtgsKkuFlINN8Eyc2Np7YoFw5GU4VGqqDMJTzGD5c/tuoEeTKZWwsMZHJFP43nDEDrl41Nh5lvBiXjAMoV64cT58+Zffu3a/87M8//3zxmH8+HmDDhg2vPD7svn8+XsUuWbPChg0yxdbTUyatFioEI0dKlYaKOXbtMvHdd0UJDTXRqhWMHm10RHFXp07QsqU07G7cGC5fNjoi5exu3AifFDh6NKRIYWw8sVn27NC/v9zu1k0muCllLzNnwrVrkCaNDPtR0WPUKBnytny5TK9Uykhnz8rKCJBiBxU5H34oXxYLDB3quO2GDUlQURPdf0enTsb5+flx9uxZ/Pz8Xrq/Xbt2APTv3/+lRoSbN2/mzz//5IMPPiBHjhwv7q9YsSJZsmRh4cKFHD169MX9jx8/ZtiwYbi6utKqVSu7vhZlLJMJ2raFU6egRg0IDoa+faVU+Phxo6NTEXHsGNSv70JwsAs1a1qZOVOXXhnJZILp06FYMbh/H+rXhwj2KlVxVJcu8OQJvP++TAxU9tWzJ+TODffuyW2l7CEwMLzSo39/aVKuosd774W/V/boIcv7lTLKiBHyb7BuXcif3+hoYraw98x58+D8eftuK2zip04Ijh5hf8e3TVJ9Fw5Pxs2aNYtWrVrRqlUrlvw/vf7P+1asWPHisZMnTyZ37txMnjz5peeoUKECbdu2ZefOnRQqVIiePXvSsmVLatasiaenJ9OmTXvp8a6ursyaNQur1UrZsmVp164d33zzDQUKFODUqVMMHjz4peSdir3SpYPVq2H+fFkmdegQFC0qyyv0Pcp5XboE1aqBv7+J3Lnvs3BhKK7aaspw8ePDsmVS4XTsmJw06MmCep3Vq+XfiouLJHGdvCVIrBAvHvz4o9z+6SfYscPYeFTsNHky/P03ZMqkSXZ7GDwYEiSAvXulQk4pI1y8GN7yIKzqWkVeyZJQq5YsQx80yL7bcnNzw93dHX9/f62OiyKbzYa/vz/u7u7R1lPS4aezu3btYt68eS/dt3v37hdLTjNlykS9evX+83lmzJhB/vz5mTFjBhMnTiRRokTUrl2b4cOHvzaxVqFCBXbt2sWgQYNYvHgxwcHB5MmTh2HDhtG0adNoeW0qZjCZpHF4pUqynGLFCjnYWbEC5s6FAgWMjU+97MYNGcjx99+QL5+NXr324eFRxeiw1P+lSwe//y4l97/9JtNWv/nG6KiUM3n6VJY1g/R4zJfP2HjikjJl4PPPZRnhF19Iv77XzKJSKlL8/cPbRQweLAlgFb3SpIHu3WHYMOnHV7s26FwB5WijR0viqFo1KWJQUTdsmFyo/O036Qtpz2pDHx8fbt68yY0bN/Dy8sLNzc2pppZarVaCg4N5/vy5Uw5wsNlsWCwW/P39efLkCWnTpo225zbZNEUaKWETWP38/EiWLJnR4ahIstlg8WKZ7nf/Pri6Sk+jPn30YMcZ3L4tTYx9fSFLFti61cKRI2upUaOGTrlyMlOnyn5kNsP69ZJAVbGDxWJh7drI73e9e8uBfIYMMjwnYUI7BKne6OFDabR99670pwnr26ecW1T3O0cYMkSScDlzyrAsrVi3j8ePpf/xvXswZYr25bOnmLDfOdq1a5Atm6wg2rVLBuGp6NG4sZyH1qkDf/xh320FBATg5+dHUFCQfTcUCTabjWfPnuHh4eFUScJ/c3d3x8fHB09Pz/98bFiuyN/f/62P149NFaeZTPJGWL48dOggSwAGDQqvktOeCMa5excqVpREXMaMsHUrpE4NR44YHZl6nQ4dZNn37NmyTx08KAlUFbedPAnffy+3J0/WRJwRvL1h/Hho0kT61DRuDNqZQ0XV/fvh+/bQoZqIs6fEiSXp2bGj/Ld5c51Yqxxn7FhJxFWooIm46DZkiKwuWblSBgyWKGG/bXl6euLp6YnFYiE0NNR+G4oEi8XCjh07+OCDD5w2Ce7i4mKX2PSjUykgZUpYuhQWLZKDnSNHpAx7wACp6nDS94VYy89PlhGfOSPLILdskaoa7evnvEwmuWJ/8iT89RfUqyc9bjT5EneFhsoSyZAQ+fdQu7bREcVdn3wijaL//BPat4fNm3UAjoqaMWOkYqtAAWjY0OhoYr/PP5ekuq+vJEccOYVRxV23b0ubA9BecfaQKxe0aCEFIP37w8aN9t+mm5ub0yW8XFxcCAkJIX78+E4Xm70536JcpQxiMskJy+nTMhnSYoGBA6XJ5okTRkcXdzx4IEscT5yQSrgtW7TCKqYIG+iQMqX8//vsMx3oEJdNngz79kkFx6RJRkcTt5lMspTcw0OqjOfPNzoiFZPdvh2+T3/7rQ5kcQQ3Nxg1Sm5//z3cumVsPCpu+P57CAqSKegVKhgdTew0aJDs35s2wbZtRkejHE0/PpX6l7AquV9+gaRJ4fBhaUr/7bdamWVvd+7IkuGjR2VC5+bNkD270VGpd5E2rew/bm7SB2PMGKMjUka4cgX69pXbY8dKhasyVpYs4VPbuneXCmSlImPIEHj2DEqVgpo1jY4m7qhfX/7mgYGyXFUpe/Lzg2nT5Hb//lpNbS+ZMknlK0C/fnoRO67RZJxSr2EySX+dU6egbl1Jwg0YoFVy9nT9Onzwgfx9U6WSirjcuY2OSkVG6dIwcaLc7tNHlsapuMNmg3bt5ITxgw/CDzKV8cKm2d6/r1OPVeScOwezZsnt0aP1BN2RTCa5uAHw00+ykkMpe/nhB/kcL1JEpqgq++nXT1aX7NkD69YZHY1yJE3GKfUWqVLJUIcFC6QJdliV3PDh0gdJRY+LF6FsWTh/XnrD7dwJefIYHZWKii++kCSMzSbLv8+fNzoi5Sjz5knfk/jxpdeMLmFzHm5uMGOGnNTPmydLVpV6F/36ST/IWrXkc1s5VunS0oPTapWexkrZw4MH4UvRBw7UpLu9pUkDnTrJ7f79Zf9WcYMeIiv1H0wmaNpUquTq1JEquf79pUru5Emjo4v5TpyQ6pmrV2V0+s6d8l8Vs5lMciBXqhQ8eiQnbg8eGB2Vsre//5bqK5ClbDq10/mUKiVDHECS5s+fGxuPijn275c2BCYTjBxpdDRx18iR4OICq1bB9u1GR6Nio/Hj4ckTGdCiw5cco1cv6bF75Ij0X1ZxgybjlIqg1KlhxQr4+Wepkjt0CAoX1iq5qNiyBcqUkUbEefLAjh1SGadiB3d3qSzNmFEmwH30EQQHGx2VsqfOneHhQ3lvDEvKKeczcqR8pvn6Sj9Upf6LzSYniwAtW0LevMbGE5flyhW+/L9HD+0xpaLXo0cwYYLcHjBAq+IcxccHunWT2wMHSgWyiv00GafUOzCZoFkzqZKrXTu8Sq5UKblPRdyCBdKDIiBAlrrs2CEnhyp2SZkSVq+Wq33btkGHDnriEFstWwa//y4VGz/9BK6uRkek3sTLS6bdgkxoPHzY2HiU81u/Xqqw3N2l6lUZa9AgSJgQDhyAJUuMjkbFJpMmybF5njwyNEQ5ztdfS8HHmTMySFDFfpqMUyoSUqeGP/6A+fMhSRI4eDC8Sk4rf97OZpNKjObNJZn58cewYYNMrlWxU968sGiR9A6bPRu++87oiFR0u3s3fOljr15QsKCh4agIaNBA3n9DQ6FVK/3sUm/2z/5knTppBbszSJVKquJABiXp/quiQ0AAjBsnt/v3156vjublFV6BPHiw7tdxge5iSkWSySQJpVOnpB9WcLB8cBUsKBVA6lVPnsjJ34AB8v0338Cvv0qjdxW7Va8uPUhADjRWrDAyGhWdwqan3rsH+fPL8goVM0yeLEtjTpzQ5arqzRYuhOPH5USxTx+jo1FhuneX6vNLl2D6dKOjUbHBlCnSaiJnTmjUyOho4qZOnWS/vnxZLmCr2E2TcUpFUZo0sHKlVMklTy6lxRUqyHLWv/82OjrncfGiLOf9/ffwiX5jx+pVt7ikUyf48ktJ3jRtqkvjYov586VS2M1Nemq6uxsdkYqo5Mlh6lS5PWKE7pPqVUFBcqERpDouWTJj41HhEiUKXzI8dCj4+xsbj4rZnjyBH36Q2/37S8sJ5XgJE8rUaoBhw+DZM2PjUfalp8FKRYOwKrlz56Qnlskka/1z5pTKg7jehHPVKihWTKbPpkollYPt2hkdlXI0k0maAlepAoGB0nfx5k2jo1JRce0afPWV3B46VCrjVMzSqBE0bCifU61b67IY9bIpU2TaeZo04fu6ch5t2six5v370v9RqciaPh38/CBrVvjkE6OjidvatZN2ALduhfd3VbGTJuOUikbe3lJlsH8/FC0qvRc6d4YiRWDTJqOjc7xnz6Qaqk4dKXsvUUL6673/vtGRKaO4usLixfDee3KQUb26TO5SMY/VKsmbgACpeg3rX6RinilTZLnq8eNSIacUyIn50KFye+hQSJDA2HjUq1xdYfRouT1unCxtU+pdBQbKahWQqiwdwGSsfw7KGT5cku0qdtJknFJ2UKwY7NsnibkkSeDYMahcGWrUkOqwuODUKSheXE7yQHqbbN8OadMaG5cynpcXrF0rg1BOnIB69eD5c6OjUu9qyhTYskVO0OfN0yUtMVmKFOHv1cOHw9GjhoajnMTgwbL0sWBBGfKhnFOdOtIeJShIjrWUelc//iiDmDJlkjY7ynjNm8tqA39/7ekam2kyTik7cXGRJasXLkCXLnKVad06KFBAyo9v3zY6QvsIDpYeB4ULS+IxZUpYv14maGovKRUmY0bZHzw9JUnbvLku545JTpwIr4QbOxayZzc2HhV1jRrBRx9BSAi0bCkn9iruOnMmfCjADz9ost2ZmUwwcaL8P1q+HDZuNDoiFZMEBsKYMXK7Tx/p/6qM5+ISXq04ZYr03laxjybjlLKzZMlkiuTp03KiY7XCzJmQJQt07Rq7knL798uS3IEDJSlXq5Yse6pa1ejIlDMqUEBOHNzcZLBHt24y3EE5t6dPoXFjSdbUqCEXHVTMZzJJNXfy5PK+HTb1WsVN33wjF0jq1pWqK+Xc8uaFjh3ldpcuYLEYG4+KOaZNk3ORjBm1AtbZVKki51AWi06yjq00GaeUg2TPLgmHXbukZ9rz59LMPnNmOXC6dcvoCCPvxg1o0QJKlpRqOB8fWLhQpsymSGF0dMqZffihTOAEmDQp/Oqscl5du0rVTOrUMHeuJHFU7JAiBcyaJbe/+w62bjU2HmWMDRuklYCbW3hlhnJ+gwfL8deZM+HLzpV6mydPwgd/DBwI8eIZG4961Zgxcpy1ZIm0QFKxiybjlHKw0qUlIbdxo9wOCpLlBZkzyxWpI0eMjjDiHj2CQYMgR47whErLlnIg+OmnepKuIqZxY2k8DdC7tyR4lHNatEiSNWETo5MnNzoiFd3q1IHPP5cq1ZYtdcBKXBMSAl9/Lbc7ddIl6DGJt3f4AJZBg6QHmFJvM3GiDGrJlk0uqivnkz9/eMXiN9/oCpLYRpNxShnAZIJKlWDnTpmyWrasLOucN096rZUrB8uWOe8ygwcP5ApapkwyYe3ZM0ks7t8viRQfH6MjVDFN165ykAHQpo1UkSrncvmy9LsE6NtXl67FZj/8ICdn16+HL31TccOsWTKAKVkyXaocE332mRxHBgTosjb1do8ehVe+Dh6sE1Sd2bBh4OEBu3dLexcVe2gyTikDmUxQsSLs2CGlx59+Kh+GO3ZIf7m0aaWP1rFjRkcqjh+X/lAZMsgHg78/vPceLF4sicXixY2OUMVko0dLIs5qlX1hzRqjI1JhLBYzTZu6EBAgiffBg42OSNlTokRS7eziIi0Hfv3V6IiUIzx4EJ6AGzxYKq1UzOLiIi0fAGbPhr/+MjYe5bzGjZOE3HvvwSefGB2Nepu0acMnJffu7bzFGurdGZaMO3DgADVq1MDb25uECRNSvHhxFi5cGOHfL1++PCaT6a1fP4etm/u/TJkyvfGx7du3j+6XqNQ7KVFCTnouX5Y32pQp4d49Gf5QsKA0ux88GA4fdmyJ8p070ty1TBmJYfp0aeBeoIBUL504IVP4dEmqiiqzGWbMkERcSIgkpDdvNjoqBTBzZj4OHjTj7S3LU/UKeuxXsiT07y+3O3SAa9eMjUfZX//+smQtTx744gujo1GR9f77MqEc4Kuv5AKXUv90/354e5ChQ3VackzQs6f0dfX1DZ90rWI+Qw6nt23bRtWqVYkXLx6ffPIJXl5eLFu2jKZNm3LlyhX69u37n8/RqlUrypcv/8r9FouFkSNHYjabqVix4is/9/LyomvXrq/cX7Ro0ci8FKWiXbp0MHKkVJ79+acs+1y5UqrSjh+HIUMgfXqZsPPBB/KVKVP0bT80VPrWbdkC69ZJlV7YgZyrK9SvLydm5ctrAk5FPxcXWa4dGAh//CH9qzZskGosZYw5c0xs2JAJk8nGr7+ayJjR6IiUo/TrB+vXSwuC5s0lOa6J2Njp0KHwE7wpU2R4g4q5Ro2S5Wz790uFXNu2RkeknMnYsfD4sVzsr1/f6GhURCROLOeAHTpIcUbTppA0qdFRqagy2WyObQMYEhJCrly5uHHjBnv37qVQoUIAPH78mFKlSnHu3DlOnz5N9kh2jF26dCkNGzakdu3arFy58qWfZfp/xuLKlStReQkABAQE4OXlhZ+fH8mSJYvy8yn1Ng8eSELujz8kMREY+PLP06aVSrU8eWS8fdaskCaNTDuMH//1zxkUJBNcb9yAixcl0XfsmByQ+/u//NhixaT6rWlTeV6jWCwW1q5dS40aNXDTM4VYLSgoPBHn6Sm9FYsVMzqquOfAAShb1kZQkIkhQ0IZOFAvn8c1Fy5AoUIydW/AAKmiUPbnyM87qxVKlZIljU2bwoIFdt2ccpAffpClbd7ecO6cDtyJiLhwnHnnDmTJIucSq1ZBrVpGR6QiKiREekKeOCH9XCdPNjqi6BEb97uwXJG/vz+enp5vfJzDl6lu2bKFixcv0qRJkxeJOIDEiRMzYMAAQkJCmDNnTqSff9asWQC0adMmyrEq5SySJpVJOsuXyxKS1auhRw9Z2urqCjdvwtq1cqWrZUtZUpolizT7TJhQBiqkSycVdT4+cl/8+PKYDz6A1q2lXH3LFknEeXpKImT8eLh0SQ7Qe/QwNhGn4hZ3d/n3/sEH0oi6UiUd6e5o9+7JUuGgIBPFi9+mVy9d6xQXZcsmy8cBvv1Wl47HRmG9xRInDm/ormK+r76SC7UPH4YPSFJq1ChJxJUoATVrGh2NeheurjBhgtyeNk2Scipmc/hig23btgFQpUqVV34Wdt/27dsj9dw3btxgw4YNpEqVippveHcJCgpi3rx53Lx5E29vb95//30KFCjwn88dFBREUFDQi+8DAgIAyeRatIuiciBXV1miGrYLPX0KR46YOH3axKlTcOqUievXTdy6JSfRgYGvVtKFcXe3/T9JZyNvXhv589soUMBGvnwvL0Vyln/iYfua7nNxg5ubJOTq1HFh924zlSvbWLUqlNKlda67vQUFQb16Lly/biZ7ditduhwmNLSC07wXKMdq1Ag2b3Zh9mwzTZvaOHAghFSpjI4qdnPU592DB9C7tytgYuDAUHx8rLqfxyJTppgoW9aF+fNNNGsWQvny+vn5NrH9OPPKFZg6Vfb3QYNCCAnRfw8xTZkyUL++C8uXm+nc2cqGDaExvm1QbNzvIvpaHJ6M8/X1BXjtMlRvb298fHxePOZdzZkzB6vVSqtWrXB9Q1OTv//+m1atWr10X7Vq1fj555/x8fF543OPHDmSIUOGvHL/1q1bSZAgQaTiVSo6pUsnX1Wryvc2Gzx54kZgoBvBwS4EBZkBE/HihRIvXigJEoSQOHHwK2/gt2/LlzPbuHGj0SEoB+rc2YWAgBKcOJGcatWgf/+/yJfPz+iwYi2bDcaPL8yePelJkMDCV1/tIGHCEN3v4riqVV3YtOkDrl3zpFatRwwatEebfjuAvfe7adPyc/9+ZjJkCCBz5m2sXasn57FN1ar5Wb8+M61bP2P8+G24uWmV83+JrZ9348YVJjg4PQUK3CU4eC9r1xodkYqMatU8WLOmItu3uzBgwEHef9/JT9wiKDbtd4FvqoT5F4f3jKtSpQobN27E19eXbNmyvfLzrFmzcuPGjZeq0CLCZrORNWtWLl++/MbnHjp0KOXKlSNPnjy4u7tz+vRphgwZwrp16yhVqhS7d+/G9IbU8usq49KnT8/t27e1Z5xSDmKxWNi4cSOVK1eONT0FVMQEBkKjRi5s3GgmfnwbS5eGUrmynjTaw7ffmhk61AVXVxurV4dStmyw7ncKgDNnoFQpVwIDTQweHErfvnpSby+O+Lzbs8dE+fJy8Xrz5hDKltX31Njo0SPIl8+VO3dMDBoUSr9+ut++SWw+zjxyBEqUkNe0f7+Ff3SLUjHQkCFmhg93IWNGG8ePh+DhYXREkRcb97uAgAB8fHz+s2dcrJmJtWXLFi5fvky5cuVem4gDGDhw4EvflyhRgtWrV1OuXDl27drF2rVr37i81d3dHXd391fud3NzizX/aJSKKXS/i3u8vGSIScOGsGaNifr1XVmwQJbPqejz66/hDfqnTjVRtaorFoucoOt+p/Lnh6lTpYfp0KEulCnjwmsG16toZK/9LigI2reX223awIcfxppTAvUvyZNLX+AmTWDUKBeaNXPhDadK6v9i4+dd//7y3yZNoHjx2PXa4qK+fWH+fLh61cT48W78K80RI8Wm/S6ir8PhAxy8vLwA8P/3uMb/C5s88a7CBje0fcfZ3WazmdatWwOwe/fud96uUkopx4gfH5Ytk6ECwcHQuHHsmSTlDDZulCQLSLPvzz83NBzlpFq2lH8nVqvsg1evGh2RiowRI+DsWUiZUoc2xAWffAKVK0sStl07aUeg4o6NG+UrXjwZxKNivgQJ4Lvv5PaoUdIPUMU8Dk/GhfWKe11fuIcPH+Ln5/fafnJv8/DhQ5YvX06SJEn46KOP3jmmsF5xEV3bq5RSyhjx4sGiRdChg5xMdO4sV3v1xCJq9u2D+vUlydmwoRzYKfUmU6dC4cJw/z40aADPnhkdkXoXp07ByJFye9Ik8PY2Nh5lfyaTTF/08ICtW2HmTKMjUo5itUKvXnL7yy8hc2Zj41HRp1EjKF9ePoM7d9Zj4ZjI4cm4cuXKAbBhw4ZXfhZ2X9hjImrBggUEBQXRtGlTPCKxYHr//v0AZMqU6Z1/VymllGO5uMCUKTBsmHw/fDi0bQshIcbGFVOdPAk1ashk5sqVYcECtDG/eisPD6lS9fGBw4fDk+PK+YWGyvulxQJ16kjyXcUNWbNKRSRI9fP168bGoxzj11+lX5ynJ/TrZ3Q0KjqZTHJxzM0NVq+GFSuMjki9K4cn4ypWrEiWLFlYuHAhR48efXH/48ePGTZsGK6uri9NO/Xz8+Ps2bP4+b15ct5PP/0EQJs2bd74mNOnT/Po0aNX7t+1axc//PAD7u7uNGjQ4J1fj1JKKcczmaQibuZMMJth9mxJKD18aHRkMculS1ClivzdSpaUBMtr2qMq9YqMGaVK1WyGefPkhEA5v0mTpBI2cWK5qPGGuWUqlurcGUqVgsePdblqXBAYKL3FAHr3lgsoKnbJnRt69pTbnTvLvq1iDocn41xdXZk1axZWq5WyZcvSrl07vvnmGwoUKMCpU6cYPHgwOXLkePH4yZMnkzt3bia/oTHQoUOHOHbsGIULF6bQW8bCLF68mDRp0lC7dm06d+7MN998Q7Vq1fjggw+wWCxMnjyZDBkyRPvrVUopZT9t28Ly5dI7Y+NGKFECzp0zOqqYwdcXypWD27chb15YswYSJTI6KhWTfPghjBkjt7t2hZ07DQ1H/YezZ6FPH7k9ejSkS2dsPMrxXFzk4pW7O6xfLw3gVez13Xdw7RpkyCDv0Sp26tcPsmSBmzeJFYMc4hKHJ+MAKlSowK5duyhTpgyLFy9m6tSpJEuWjAULFtDvHetnw6ri/mtwQ4UKFahduzZnz55l3rx5TJw4kVOnTtG4cWP27NnzzoMflFJKOYc6dWD3bkifXhJMJUrAazohqH84d04ScTduQK5c8vdKmtToqFRM9PXX0hw+JET6x126ZHRE6nUsFmjeHJ4/h6pVwyepqrgnVy4YMkRud+0Kt24ZGo6yk+vXw/u/jh0r7QVU7OThEV6dPnGiLEtWMYPJZtMC5cgIm/rq5+dHsmTJjA5HqTjBYrGwdu1aatSoEWtGX6voc+eOJAP27JGlcyNHSl8csyGXnZzX6dNS0XTnjlTEbdokExXfRPc79V+ePpXk7qFDcqK/dy8kSWJ0VDFbdO93Q4fCoEHy/+XkSUibNuoxqpgrJERaExw6JBe0VqzQJcsQuz7vmjSRfnFly8L27fr/Ny745BNpH1GsmHwOx5T+v7FpvwsTlivy9/fH09PzjY/TUxSllFKxQsqUsGULtGwZPj2sXj148MDoyJzHrl1Qpowk4vLnl7/X2xJxSkVEwoSwcqUsezx7Via8WSxGR6XCHDoUPvBmyhRNxClwdYU5c6Tx+8qV0vdRxR67d0sizmSCCRM0ERdXjBsngzoOHJDpycr5aTJOKaVUrOHuLicY06dDvHiwahUULgx//WV0ZMZbtgwqVZJhDaVKSSIueXKjo1KxRZo0sr8lTCjVlp06aXN4ZxAYKMtTQ0IkSfrpp0ZHpJxFvnwweLDc/uoruHzZ0HBUNLFaoUsXud22LbylpbqKZVKnllUhIAM7rlwxNBwVAZqMU0opFauYTPDFF1KinyULXL0q1WCjR0NoqNHROZ7NBuPHQ8OGEBQkS5I2bQLtsKCiW8GC8NtvsjT8xx+lT5Ey1ldfwZkzkCqV9BTSChn1T716QenSMoGxefO4+RkZ28ybJ9Wwnp7w7bdGR6McrX17WZr89KkkY/WimHPTZJxSSqlYqXBhOHxY+shZLHKVsFw5uHDB6Mgc59kzWbbbrZsckLVvD0uXyvRZpeyhVi344Qe53auXLn8z0i+/wE8/SQJu4ULw8TE6IuVsXFzg558hcWJZ2jh6tNERqah48EDedwEGDIAUKaL+nBceXGDW4Vm0X92eur/VpdbCWrRY3oIxu8dw9O+jaPt552I2y/t+/PiweTPMnGl0ROptNBmnlFIq1vLygt9/h1mzIFEiOdkoUEB6acT248erV6Xi4eef5YRr3DipjHF1NToyFdt16SLDUwDatIHVq42NJy7y9Q2fmDpwIFSoYGw8ynllzgyTJsntQYOkqkrFTH36wL178N57UhUbWSHWEOYfm8/7P71P9knZ+XzV58w4NIOV51ayxncNPx//mV6belFoRiHyTcvHz8d+xmqzRt8LUVGSPTuMGCG3v/kGrl0zNh71ZpqMU0opFauZTJIQOHECypeXHkpffilVcidPGh2dfSxeLEsGjxyRapiNG6FrV12iphxn9GipygwNlV5lu3YZHVHc8fw5fPwxPHki73MDBhgdkXJ2LVrARx9Jb8FmzWSJm4pZ9uyR9gAgFxzjxYvc86w6t4q8U/PSckVL9t7Yi4vJhQ8yfkDv0r2ZUWsGP9X5iW8rfEvdnHXxcPXg1L1TtFjRgjKzy3DW72z0vSAVJV99Jf2BHz+Gdu1i/wXomEqvjyullIoTMmWSkv1Jk6BvX9i5Uxobd+smlSOJEhkdYdQFBMgBWNjSwGLFYMkSyJjR2LhU3GM2y/IYPz9YswZq14YdO6RpvLKvLl3g6FFJxP/yi1TGKvU2JhPMmCG9Vs+elQEsc+YYHZWKKIslvBK2dWv44IN3f477gffpuLYji04tAiCZRzK6l+pO60KtSZUo1Wt/x/+5P1MPTGXErhHsvbGXYjOLMb/efOrnrh/Zl6KiiYsLzJ4tF2b//FNut2ljdFTq37QyTimlVJxhNsuJ6unTUK+eVAGMHQs5c0qPjZAQoyOMvNWrIX9+ScSZzdCvnyzL1UScMoqbm1Rpvv8+PHoEFSvKvqfsZ8YMqY4xmWSJetq0RkekYopkyaS3oNkMc+dqv8eYZOJEqf5PmhTGjHn33z946yCFfyzMolOLcDG50PP9nlzqcok+Zfu8MREH4BXfiz5l+3Cm4xnKZSzHk+AnNFzSkHlH9R+PM8iVC4YNk9tdu8atnskxhSbjlFJKxTkZM8Ly5bBqlVTM3bolU6cKFICVK2NWOf/16zKkonZt6ROXKRNs3y5T1NzcjI5OxXUJEkiiuFAh6WX04YdSeaOi3+7d0Lmz3B4xAqpVMzYeFfOUKweDB8vtL7/U5HlMcO2a9PoDubj4roNa5h2dR+nZpbnmf43sSbOzv+1+Rlcejae7Z4SfI51nOja12MTnhT/HarPS+o/WmpBzEl9/LZWST57IEnSLxeiI1D9pMk4ppVScVasWnDkD338vV5RPn4a6daF4cZk6GhpqdIRv9vChNGvOmVMSi66uMkXt5EkoU8bo6JQK5+0tfQsLFIA7dyQh5+trdFSxy82b0vPLYpEefWETFZV6V337QqVK0l/144/lv8o52WzSD+zpU/ncb9Xq3X5/7O6xtPqjFcGhwdTNWZcDnx+gSJoikYrF1ezKjFoz6FSsEzZstF3Vlm1XtkXquVT0CZuY7OUF+/fLhVrlPDQZp5RSKk6LH1+uHF68CL17g4cHHDwIDRvKRLKZM52rmfXDh1L1kiULjBoFz57JQfjhw/J9woRGR6jUq5Ilg02bpGfc7dsy3VOXzESPJ0+kMvbOHfn7zpnjuGEtj4Mes+TUEtr80YbiM4uTfGxyvEZ5kWFcBirNr8Sw7cO0qXsM4+ICCxZAqlRw6lR4taVyPnPmSD+w+PFlarw5gmf2NpuNXht70XNTTwB6vN+DZY2X4RXfK0rxmEwmJlafyCd5PyHEGsJHiz/i0sNLUXpOFXUZMkgLA5Bk3O7dxsajwmkyTimllAKSJIGRI2Wp54AB8v3583LVOXVqaY58+LBx8Z0/L02106WTfnCPHkHevLKsVhvjq5jAx0cScu+9J5VcZctKnyMVeSEhUr105AgkTw5//OGYhPw1/2t0WdeFtD+k5ePfP2b20dkcuHUAv0A/AoICuB5wnc2XNzNw20ByT8lN1QVVOXL7iP0DU9EiZcrw/nGzZ4dP6VTO48YNGUAF0hcsZ86I/Z7NZqPbn90Ys0eay42pNIYxlcdgNkVPWsBkMjG7zmyKpSnGg2cPaLK0CSHWGNyQN5Zo3BiaNwerVZar+vsbHZECTcYppZRSL0meHIYOlT4s338P2bLJaPgZM6BIEUkkDBwIx47Zv7ecnx9MnQqlS8uB9pQpsmQoXz5ZdnD0qFTEOKoKRqmoSpECtmyRYSN//y09qvbtMzqqmMlmk75e69ZJRe/q1ZA5s323GWgJpN/mfuScnJOJf03kcfBjsiXNRvdS3Vn28TKOfnGUc53OseezPUyrOY2a2WtiNpnZcHEDRX4sQo8NPQgKCbJvkCpaVKgQvqStUyfYs8fYeFQ4mw2++EImqJcsGZ6Ui4iBWwcyYf8EAGbWnkmP0j2iPT4PNw+WfrwUL3cv9t/cz4idI6J9G+rdTZ4snxFXrsi/n5jUHzm20mScUkop9RqJE8vy1XPnYPNm+OQTiBdPeswNGybj4jNkgJYtZerchQtyxTEqnj2T5QNDhkgCLlUq6NhRToJMJqhZUyqLjh2TK5suLtHyUpVyqJQpYds2mbL68KFMWd240eioYp7hw2UZvckEv/4qvS7t6a+bf1FoRiFG7BrB85DnlMtYjg3NNnC+03m+q/Id9XPXp0CqAuRIloNS6UvRvmh7VjdZzYXOF2iSrwk2bHy39zsqzKuAX6CffYNV0aJ3b2nZYLFIT8Jbt4yOSAHMnw9r14K7u1QuRvRYYPSu0Xy7UzKsU2pMoW3htnaLMb1XeqbWnArA0O1DtTLWCXh6wi+/SI/hRYvkYq8ylqvRASillFLOzGyWhvMffihLQ1evht9/h/XrZZnI/PnyBZAokTSpf+89SdRlyCCJh4QJ5cvNDZ4/ly9/f1mqd+MGXLokVW5nz746NKJwYWjaVJKBadI4+tUrZR/e3rBhg0wC3rBBEs0LFsiSS/XfJkyQ5fRht+vWtd+2bDYb3+/9nt6behNqCyVN4jRMqTGFujnrYopAWW5m78z80uAXGudpTKsVrdh7Yy/v//Q+G5tvJGOSjPYLXEWZySR9yc6eleFADRrItG53d6Mji7uuXIGvvpLbQ4ZA7twR+70FxxfQe3NvAEZVHMWXxb60T4D/8GneT1lxdgVLTi+h49qO7PpsV7Qth1WRU6oUjBkjF5u7dYNixex/IUe9mSbjlFJKqQhKkkQq0po1k+Wie/bIkrstWySZ9uSJVLZFpTlu8uSyPKhyZfnKqOeqKpZKmFB6HjZvDkuWSE8bX1+Z5qhLr99s1izo2lVuDxpk3wb7z0Oe88XqL5h/TK44NM7TmKk1p5LUI+k7P1ednHXY/dluqv1SDd8HvlT+uTK7PttFioQpojtsFY0SJYIVK+Skff9+WRo9a5buo0YICZGLcwEBklTp3j1iv7fz6k7arGwDyLCGXmUcM27ZZDIxruo41l1Yx94be5l3dB6tC7V2yLbVm3XtCrt2wbJlMn378GEZsqQcT5NxSimlVCQkSACVKskXyEHyuXPSSP3iRek5d+0a3Lsn01gDA2WpT/z48pUwoQxjSJdOKujy54dChWRYhJ7kqLjC3V2WWKZLB+PGQf/+Mqzkxx+1+uZ1fvlFhsoAfPONJOPsxf+5P7V+rcWua7twMbkwodoEviz2ZYSq4d4kd/Lc7PlsD6Vnl8b3gS81fqnBtlbbSBQvUTRGrqJb1qzw229Qvbosi8yVC3pEf6sx9R+GD5eLgP9cbvhffO/7Um9RPYJDg/ko90eMqjTK/oH+Q1rPtAwqN4geG3vQa1MvPnrvIzzdPR0ag3qZyST78fHj0mKleXNZ9RHRabwq+mgyTimllIoGrq6QJ498KaUizsUFfvgBsmeXKq/58+HyZblq7+NjdHTOY9YsScSFDW4YM8Z+ifv7gfepuqAqh24fIkn8JPze6HcqZqkYLc+d1jMtG5pvoPTs0hy6fYj2q9vzc/2fo5TkU/ZXpYrsp127Qs+ekCmTVNUox9i9W4ZLAUybFrFhLQ+fPaTmwpo8ePaA4mmLM7/+fEOWiXYp0YWZh2dy/v55xu0dx6DydryKoCLEywuWLoUSJWQI0LBh9r24o15P859KKaWUUspwHTrAmjVS9bFzp0wvPnDA6Kicww8/wOefSyKufXuYNMl+ibg7T+5Qfl55Dt0+RPIEydnWclu0JeLC5EiWg2UfL8PF5MIvJ37hx0M/RuvzK/vo0iW8X1nz5jph1VEePZLlqVartMlo0uS/f8dqs9JseTN8H/iSwSsDf3zyBwncEtg91tdxc3Hj2woyOOL7vd/rABcnkT8/TJ8utwcPluSccixNximllFJKKadQtaqc4GfLJsu8y5SRKhCbzejIjGGzwcCB4b2hevaUCXj2Wk706Pkjqiyowsm7J0mTOA3bW22nQKoCdtlW2YxlGVFxBABd1nfhrN9Zu2xHRa8ffoA6dSAoSP574YLREcVuNhu0bg1Xr0o13JQpEfu9YduHsdZ3LfFd47Oi8QpSJUpl30D/w0fvfUShVIV4HPyYkTtHGhqLCteyZXgP0ubNpdWKchzDknEHDhygRo0aeHt7kzBhQooXL87ChQsj/Pvbtm3DZDK98Wvfvn122a5SSimllLKfPHng4EGoVw+Cg2VJZrNm0rQ8LgkONtOqlQvDhsn3w4fDqFH2q4gLtARSa2Etjt85TqpEqdjeaju5k0dwVGMk9Xi/B1WzViUoNIi2K9titVntuj0VdS4usHAhFC0K9+9LH7k7d4yOKvYaM0YGaMSLJ337PCPQbm2t71qGbB8CwLSa0yiUupB9g4wAs8nM8A+HAzDt4DStjnMiY8dCtWrw7Jkk2G/fNjqiuMOQnnHbtm2jatWqxIsXj08++QQvLy+WLVtG06ZNuXLlCn379o3wc5UrV47y5cu/cn+6dOnsul2llFJKKWUfXl7SM+7776F3bzn5370bfv4ZypY1Ojr7u3sXBg58n7Nnzbi4SDVc2OAGe7CEWmi0pBG7r+/Gy92LP5v9Sbak2ey3wf8zmUz8WPtH8kzNw+7ru5ny1xQ6l7DjeFgVLRImhFWrZKLnhQvST27bNvD2Njqy2GXLFpkuDTBxIhQv/t+/c+nhJZoua4oNG+2LtKdVwVZ2jfFdVMtWjcKpC3P49mEm/zWZweUHGx2SQnoe//YblCwJZ89C/fqwdSt4eBgdWcw1f34EH2hzMIvFYsuaNavN3d3ddvjw4Rf3BwQE2PLkyWNzdXW1nT9//j+fZ+vWrTbANmjQIIduN4y/v78NsPn5+UX4d5RSURMcHGxbsWKFLTg42OhQlIozdL9TRtu502bLlMlmA5vNZLLZevWy2Z4/Nzoq+9m/32bLmNFqA5vNy8tq27jRvtuzWq22Vita2RiMzeNbD9uuq7vsu8HXmPLXFBuDsSUekdj29+O/Hb59FTm+vjZbqlSyb5YsabM9fmx0RFHjTJ9316/bbMmTy9+2VSubzWr97995bnluKzyjsI3B2ErMLGF7bnG+N8rFJxfbGIwt6eiktsdBMfwfTCxz/rzN5u0t/+bq1LHZLBbHbNeZ9rvosHKlzQaSK/L393/rYx2+THXLli1cvHiRJk2aUKhQeMls4sSJGTBgACEhIcyZMyfWbFcppZRS4f5+8jfzj82n89rOVFtQjeIzi1NyVklq/FKDHht6sOzMMp4GPzU6TOVEypSBY8ekb5LNBqNHQ+HCMuQhNrHZYPx4eb1Xr5pIleoJO3eGUKmSfbf73Z7vmHt0LmaTmSWNllA6Q2n7bvA12hdtT5HURXgc/JiBWwc6fPsqcrJlgw0bpCJu3z6oWxeePzc6qpjv6VNZLnjvHhQsKJWxEVme3mdzHw7fPkxSj6QsabQEd1d3u8f6rhrkbkC2pNl48OwBsw7PMjoc9Q/Zs8Mff4C7O6xcKS0i4mq/1sg6fVqGrUSUw5Nx27ZtA6BKlSqv/Czsvu3bt0f4+Xx9fZk4cSKjRo3i119/xc/v9evPo3u7SimllIqYEGsIi08tpvzc8qT5Pg0tV7Rk8oHJ/HnxTw7cOsD+m/tZd2Ed3+39jo8Wf0Sq71PRdmVbLj64aHToykl4esLs2bJ0NXlyOeD94ANo2xYePDA6uqi7c0d65HXrBhYL1K9v5bvvtpMrl323u+rcKnpt6gXAhGoTqJmjpn03+AZmk5nx1cYDMOvILI79fcyQONS7y5cP1q+HRIlkWeXHH0uvRxU5YRNTjxyR97plyyK2XHCt71rG7RsHwJy6c0jvld7OkUaOi9mFb0p9A8DkvyZrn0gnU7Ys/PqrDAmaOVOmrKqIefBALkg8fgylI3hNy+E943x9fQHInj37Kz/z9vbGx8fnxWMiYuHChS8NYPDw8GDIkCH06NEjWrcbFBREUFDQi+8D/t9F2GKxYLFYIhyvUirywvY13eeUcpyo7Hc2m43fz/xO/239ufzo8ov7i6YuSun0pcmTPA8+CXyw2qzce3qPI38fYfOVzVx8eJGfjvzEvGPz+LLIlwwtP5QEbgmi7TWpmKtWLThxAvr2dWH2bDM//QR//GFjwAArbdtacXMzOsJ3Y7PBL7+Y+OYbFx48MBEvno2xY620aRPEpk0hdv28O3H3BE2WNcGGjXaF2tGuYDtDP19LpC5Bw9wN+f3M7/Ta2ItVn6wyLBb1bgoVguXLTdSq5cKqVSbq17fy22+hxI9vdGTvxhmOM/v2NbNihQvx4tn4/fdQ0qWz8V/h3H5ym5bLWwLQsWhHqmep7tTHyo1zN6bXpl5cfHiRtefWUjVrVaNDUv9QqxZMmmSmY0cXhg4FH59Q2re3X9LUGfa7qHr+HOrVc+HCBTMZM9r46SdLhC6mmWw2xxYfVqlShY0bN+Lr60u2bK82hs2aNSs3btx4KfH1OqdOnWLdunXUqlWLDBky8OjRI7Zu3UqvXr24efMm06dP54svvoi27Q4ePJghQ4a8cv/ChQtJkEBPEJRSSql/uv78OlOvT+XM0zMAeLp4Ut2nOpWSVSJ5vORv/D2bzcaZp2dYcmcJRx4fASCdezq+zvg1WRJkcUjsKmY4fTop06cX4No1GS+YJs0TmjU7TalSt+02cTQ63byZkJ9+ysfhwykByJz5EZ07HyFLFvuPjQ0ICaD7ue7cs9wjX6J8DMo6CFeTIXPdXnI76DYdz3TEipVR2UeRK6GdSwNVtDpyJDkjR5YgONiFggXv0qfPftzdtfIpojZuzMCUKdJOqVu3Q5Qrd+M/f8dqszL44mCOPzlOpviZGJNjDPHM8ewdapTNujGL1X6rKeZZjH5Z+hkdjnqNX3/NyaJF8h7cseMRKle+ZnBEzslqhe+/L8ru3WlJkMDCiBE7SZHiDk2aNMHf3x/Pt4xAjrHJuDc5efIkRYoUwdvbm1u3bmE2m6Nlu6+rjEufPj23b98mWbJkkYpVKfVuLBYLGzdupHLlyrjFtPIHpWKod93vrDYrkw9Mpt/WfgSFBpHALQHflPyGr0t+/c7VbesvrueLNV9w+8ltErglYGH9hdTIViOyL0XFQhYLzJ5tZtgwM3fvSgauUCEbPXuGUq+eDRcXgwN8DT8/GD7czIwZZkJCpBquf38r3buHV/bZ8/Mu1BpKnUV12Hh5I9m8s7Gr1S6SeiSN1m1ERbs17Zh7bC6VM1dmzadrjA5HvaOtW03Ur+9CYKCJ8uWtLF8eSsKERkcVMUYeZy5fbuLTT12wWk307RvK4MERS2KO2TOG/tv6k8AtAfta7yOXT8xIYJ+7f458M/JhwsS5L8+RKUkmo0NS/2KzQY8eZiZOdMFksvHjj6G0bBn9qaOYfn7Xu7eZH35wwc3NxurVoVSoYCMgIAAfH5//TMY5/BKYl5cXAP7+/q/9eUBAwIvHREbevHkpUaIEO3fu5MKFC+TIkSNatuvu7o67+6tNMN3c3GLkPxqlYjLd75RyvIjsd4+eP6Lpsqas9V0LQPVs1ZlRa0ake9fUzlWbUhlK0WRpEzZe2kiDJQ2YU3cOLQq0iNTzqdjHzQ06dYKWLeH772HsWDhyxMSnn7qSIwf06AFNmoAzLGK4excmTZKvsMPRmjXhu+9M5MrlAryaObTH5923W79l4+WNJHBLwPJPlpPSM2W0Pn9UDSw3kAUnFrDx8kb+uv2XIQMlVORVqSI95GrUgG3bzFSvbmbVKvDxMTqyiHP0ceamTdC8uVTYtGkD337rgsn031cS9t3Yx6DtgwCYVH0S+VLns3eo0SZvqrxUylKJTZc28dOxnxhVaZTRIanXGD9eknKTJplo186VePGghZ0OwWLi+d24cfDDD3J79mwTVapIei2ir8PhAxzCera9rj/bw4cP8fPze21ft3fh8/93+8DAQIduVymllIqrzvqdpcSsEqz1XUt81/hMqzmNNU3WRLmJtE8CH9Y0WUOrgq2w2qy0/qM1S08vjaaoVWyROLE0mr56FQYOlOmO58/D559DmjTQuTMcP25MbCdPSsIwY0b49ltJxBUoICfgq1dj9yEN/7TOdx3DdgwDYEatGeRNkddxG4+gzN6ZaVWgFQBj94w1NhgVKWXLwsaN4VNWS5eGy5f/+/fior/+kuEtwcHw0UcwY0bEJqc+CX5Cs2XNCLWF8kneT2hdsLXdY41uHYt1BGDO0TlYQmNuv7DYzGSCCROgQwdJyrVqJYMdlEw5/vpruT18uAxeeVcOT8aVK1cOgA0bNrzys7D7wh4TGSEhIRw+fBiTyUSGDBkctl2llFIqrtpyeQslZpXg/P3zpPdMz+7PdtO+aHtM0dS4y83Fjdl1ZtOmUBusNiufLv2UrZe3Rstzq9jFxweGDIFr16RSLnNmSX5NniwJsLx5JWl38qScWNjL7dswZQoUKybTJqdMkQbPxYrB0qVw6BBUrGi/7b/O1UdXaba8GTZstC/Snmb5I3Hm4CDd3+8OwMpzKzl//7zB0ajIKFkSdu+GDBkkMf7++zIhVIXbtw8qV4anT6FSJfjlFyK8tL7nxp5cfHiR9J7pmVZzWrR93jpSzew1SZEwBXef3mX9hfVGh6PewGSSz9D27eVzs107GDXKvp+hzm72bOgouWR694Y+fSL3PA5PxlWsWJEsWbKwcOFCjh49+uL+x48fM2zYMFxdXWnVqtWL+/38/Dh79ix+fn4vPc/evXv5d7u7kJAQevTowdWrV6latSpJk4b3v3jX7SqllFLqvy07s4zqv1QnICiAshnKcrDdQQqnLhzt2zGZTMyoNYOP83yMxWqh0ZJGXH6opRbq9RIlkivWFy7Ahg3QsKEsaT11SpJ1+fJB+vSy3GbuXDh9GkJCIr+9Bw+kEmjAAChSRKrxOnWCgwfB1VUqX7Zsgf37oUGDiJ9wR5egkCAaLmnIg2cPKJqmKOOrjXdsAO8ol08uaueojQ0b4/aOMzocFUm5c8PevZA/P/z9N3zwAfzxh9FROYddu2RJb0CAVBIuXw6v6Yj0Wn9e+JNpB6cBMKfuHJLET2K/QO3IzcWNZvnkosC8Y/MMjka9jdkslWBhSac+feCbb2RpdVwzbx60bSu3u3aFESMiVs36Og7vGefq6sqsWbOoWrUqZcuW5dNPP8XT05Nly5Zx+fJlvv322xd93gAmT57MkCFDGDRoEIMHD35x/6efforJZOL9998nbdq0PHr0iB07dnDu3DkyZMjA9OnTo7RdpZRSSr3d7COz+XzV51htVhrkbsDCBgtxd43g2UQkuJhdmFt3LpceXuLgrYPUW1SPfW324eHmYbdtqpjNbJbKk8qV4eFDWLVKKtP+/BNu3oSff5YvgPjxpXIue3ZIl06SdUmTgoeHfFmtEBgoVSz37smS2KtX4cwZuHjx1W0XKyb96po2heRvHiDsEP239OfgrYMk9UjK741+t+t+Gl26l+rOqvOrmHtsLkMrDCV5QoP/iCpS0qSBHTskCb1liySmhw6Ffv1k/4yLtm2DWrXkvaRCBXlfiuiQi4fPHvLZys8A6Fy8MxWzOLjENpq1LNiSH/b9wMpzK7kfeJ9kCXQworMymSTx5OMD3btLr7Q7d2DWLPn8jAsmTJAEHEil4A8/RD4RBwYk4wAqVKjArl27GDRoEIsXLyY4OJg8efIwbNgwmjZtGqHn6NChA+vXr2fbtm34+fnh6upKtmzZ6NevH927d8fb29su21VKKaUU/HT4J9qukkuDbQu1ZXqt6biY7V/u4+HmwbKPl1F0ZlGO3zlOr029mFh9ot23q2I+b2+phGvRAp49gz17JDmwfTscPSonxgcPyldkZMsmCbhq1aBqVUjpJHMRNl/azHd7vwNgdp3ZZEyS0eCIIuaDjB9QNE1RDt46yLSD0xhYbqDRIalI8vKSoQ7du8sAk4ED4dgxqUpNlMjo6Bxr0SJ5DwoOlsq45cvfbcBMp3WduPX4FjmS5YgVQw/yp8xP4dSFOXz7ML+e/JVOxTsZHZL6D19/LQm5zz6TpdWXLsGyZZAqldGR2Y/NJlX1Q4bI9127SiuMqK4ON9n+vdZTRUjY9FU/Pz+SJdMMvlKOYLFYWLt2LTVq1Ihx03aUiqlet9/NPzafVitaYcNG1xJd+aHqDw7vV/PnhT+p9ks1ANY1XUe1bNUcun0Vu1itUt12/DhcuQI3bsD169Jv7tkzqYgzm6V6JWFCSexlzAiZMkHWrFC4sNwXXaLr8+5+4H0KTC/Azcc3aVe4HTNqz4i+IB1g4YmFNF3WlLSJ03Kl6xVczYbUEaho9NNP0gzeYpHhJYsWyTJWZ2DP40ybDb77Dnr2lO/r14eFC9+tomjJqSV8/PvHmE1m9ny2hxLpSkRrjEaZuH8iXdZ3oUjqIhxsF8mrIcrhNm2CRo3g0SOpJP/jDyhU6N2fx9nP7ywW+OorCFt4OWyYVPa+7bA3LFfk7++Pp6fnGx+nn2hKKaWUirBfT/xK6z9aY8NGx2IdDUnEAVTNVpXOxTsz6a9JfPbHZ5zpeAav+F4Oj0PFDmazLE/Nnt3oSKKPzWbji9VfcPPxTXIky8EPVX8wOqR39lHuj+iSoAs3H99kre9a6uSsY3RIKoratIH33pM+jmfPQvHiUmHy5ZdRrzJxVsHB0KVL+Ml8ly7ymt+ld+Ttx7fpsKYDAH3L9I01iTiAJvma0H1Ddw7dPsRZv7Pk8nHgiGkVaZUqSR/UOnXg3DkZ0jJxovRTiy378v37knDculVe06RJ4YMbokMcXamvlFJKqXe11nctzZc3x2qz0q5wOyZWn2joBLfRlUaTI1kObj+5Tf8t/Q2LQylnNPfoXJaeWYqr2ZWFDRaSMF4Em1I5EXdXd1oXbA3A9IPT/+PRKqYoVUqWqdaqBUFBMuykfn3pPxXbXL8O5cpJIs5kgnHjYPz4d0vE2Ww2Pl/1Ofef3adQqkIMKDfAbvEawSeBD1WyVgFg0clFBkej3kWOHDIVuEYNmRjerp30SX382OjIou7UKblYsHWrLKf/44/oTcSBJuOUUkopFQEHbh2g0ZJGhNpCaZ6/OdNqTcNsMvYwwsPNg6k1pgIw5cAUDt7S5S1KAVx4cIHO6zoDMKzCMIqkKWJwRJHXrkg7ANZfWM+VR1eMDUZFGx8fWLlSGqLHiycnuu+9BwsWyJLO2GDTJlnCvm8fJEkirzes+fu7mH1kNmt81xDPJR7z688nnku86A7VcI3zNAZg0alFaBetmCVJEhlCMmqUJJl//VWWq+7caXRkkWOzyXL64sWlH17mzDIVunbt6N+WJuOUUkop9VY3n9+k7qK6BFoCqZq1Kj/V+cnwRFyYilkq0jRfU2zIkrxQa6jRISllKEuohabLmvLU8pRyGcvR4/0eRocUJdmSZqNSlkrYsDHz0Eyjw1HRyGSSXkz790PBgvDgATRvDjVrwrVrRkcXeYGBknSrXBn8/CQxceiQVAK+q8sPL9P1z64ADP9wOHlT5I3WWJ1F3Zx1iecSjzN+Zzh596TR4ah3ZDZDr14yECl9eunBWq6cLMl++tTo6CLu0SOZgt62rezHlSrBX3/JpHV7cI4jaaWUUko5pb+f/M3QS0Pxe+ZH0TRF+f3j33Fzca4Gu99X+R4vdy8O3z7MvGPzjA5HKUMN2zGMv27+RZL4Sfi5/s8OmXJsb+2LtAdgztE5mnCPhQoWlBPeESPA3R3WrZPhDgMHwpMnRkf3bvbtk+TbhAnyfbt2sHs3ZMny7s9ltVlp9UcrngQ/oWyGsnQr2S16g3UiXvG9qJ6tOiDVcSpmKl1aBiF99plUmE2cCPnySeWrsxc8LlsGuXPDb7+Bq6tU+v35p1TxvqsTd05E6HGajFNKKaXUaz2zPKPBkgbcCb5DVu+srGmyhkTxEhkd1itSJkpJ/w+kZ9zArQMJtAQaHJFSxth1bRfDdw4HYHrN6aT3Sm9wRNGjds7aJPVIyu0nt9l8ebPR4Sg7cHODPn3g6FGpqHn2TKYW5sgBc+dCqJPnYO/dk8Tb++/D+fOQJg2sXQszZoCHR+Sec/y+8ey4uoOEbgmZW29urEisv40uVY0dkiSRZZ7r10uV3OXLUK8eVKkifdiczaVL0KABfPQR/P035MwpS2x79ZKKv3d1zf8a1RZUi9BjNRmnlFJKqVfYbDY+W/kZB28fJLFLYlY1XkWKhCmMDuuNOhXvRAavDNx8fJOJ+ycaHY5SDuf/3J9my5phtVlpUaAFjfM2NjqkaBPPJR6f5v0UQKtfY7lcuaRh+tKl0qvp9m1o3Vr6yc2fDyEhRkf4ssBAmYyaIwfMnCnVPy1bwsmTUL165J/31N1T9N3cF4BxVceRxTsSpXUxTO2ctfFw9eDCgwsc+fuI0eGoKKpaFU6fhr59pS/kpk2QPz80ayaTlI328CF8841Uwy1fLtVw/frJBYGSJSP3nDabjTYr2/AkOGIlvZqMU0oppdQrvt3xLb+d/A1Xsyu9MvciW9JsRof0VvFd4/NthW8BGLlrJH6BfgZHpJRjdVrXiav+V8mcJDOTqk8yOpxo16JACwCWn1lOQFCAwdEoezKZpFLlzBkYMwa8vaXarGVLqVqZMEF6Oxnp6VNZgpc1q5zQP3oky1N37ZJKPm/vyD+3JdRCixUtCAoNokb2GrQt3Da6wnZqieIlokb2GoDs5yrmS5QIhg+Xfbl+fbBa4ZdfJLn+6aeyrNvRRZC3b0PPnpAxoyTSg4Olv+Phw/DttxA/fuSf+8dDP7Lp0ibcXd0j9HhNximllFLqJUtOLWHgtoEATKk2hbyJYkbD6Kb5m1IgZQECggL4fs/3RoejlMMsPLGQBccXYDaZWdBgAZ7unkaHFO2KpSlGzmQ5eRbyjKWnlxodjnIAd3fo0QOuXpX+TT4+sqSsa1dImxa++MLxJ/OXLklM6dJJc/q//4ZMmWRZ3oED0jMrqr7d8S2Hbx8mqUdSZtWehclkivqTxhD1ctUDYMW5FYbGoaJXlizSk+3gQahbV/bZ336DUqWgeHFX/vwzIw8e2G/7Vits2SLDGTJlgrFj4fFjqdRbtw42bJDedlFx+eFlum/oDsDg8oMj9DuajFNKxSpWm5UHzx5wI+AGtx/fJigkyOiQlIpRDt06RMsVLQHoVrIbrQu2NjiiiDObzAytMBSAyQcm8+CZHY/slHISVx9dpcOaDgAM+GAA76d/3+CI7MNkMr2ojpt/fL7B0ShHSpxY+jdduQJTp0KePLI89Mcf5WQ+c2bo3VsGJVgs0b/9mzdh8mRJtGXNCt99J5VwWbJIT7hz56RhvUs0tHQ7cPPAi76P02pOI3Xi1FF/0hikZvaauJhcOHn3JBceXDA6HBXNihSBFSvgyBGpdI0fH44dMzFtWkHSpnWlcmWYPl2msUY1yR4cLAm4Ll1kX61YEX79Ve5//31YtUqWpFaLWHu3t7LarHy28jOeWp5SNkNZ2hdtH6Hfc436ppVSyjh3ntxh46WNbLq0iaN/H8X3ge8rzdvTJE5D/pT5KZ+xPLVy1CJPijwGRauUc/v7yd/U/a0uz0KeUT1bdcZWHos11Gp0WO+kdo7aFEhZgGN3jjFh3wSGVBhidEhK2U2oNZTmy5sTEBRAyXQlXwwyia2a5W9Gvy392HZlG9f9r8eaARUqYhImhA4doH172LFDerStWCGVc6NHy1fixFChgiTOChWSr3eZhmi1gq+vTITcvx82bny56bzJJEvavvpKesJFpsH7mzyzPKP58uaE2kL5NO+nfJzn4+h78hjC28Ob8pnKs/nyZv44+wfd3+9udEjKDgoWlOXcP/wAs2eHMmXKE65c8WLTJuktBzIEpXRpyJtXEvCZM0PKlJAihQx8AUnYPX4s/d+uXpV998wZqZg9eBCC/lGT4ekpS2PbtIGiRWVfji5TD0xl25VtJHBLwOy6szGbIvbGoMk4pVSMYwm1sPz8cuYcncOGixuw2l5NFriaXQm1hmLDxq3Ht7j1+BbrL6yn9+beFEtTjI7FOtI0f1Nczfo2qBTIfvXxko+5+fgmuX1y8+tHv+JidolxyTiTyUT/D/rTaEkjJuyfwNelvsYrvpfRYSllF6N3j2bntZ0kipeIXxr8Eus/0zJ4ZaBMhjLsuraL30//TrdS3YwOSRnAZJKJq+XKSYXc2rXw+++SOHvwAFaulK8wyZLJVMf06SF5cpluGjbh9MkT+fLzgytXXLl0qSbBwa6vbK94cfjkE/j4Y0kS2EOfzX04d/8cqROlZnKNyfbZSAxQL1c9Nl/ezIpzKzQZF8slTQpduljJnn0bOXLUYNUqN1atgr/+glu3YMkS+fo3k0kqUa1W+XqTFCmgZk1ZGlu5MiRIEP2v4cKDC/Ta1AuA0ZVGky1pNgICItbXNHZ/YiulYpXnIc9Z67eWLtO7cNX/6ov7C6UqROUslSmToQw5fXKS0Ssj7q7uWG1WHj1/xPn75zlw8wDrL65n48WNHLh1gFZ/tGL4zuGMrDiSBrkbxKl+HEq9Ts+NPdl5bSee7p4sb7w8RiewGuRuwHvJ3+P0vdNMOTCFvmX7Gh2SUtHur5t/MWjbIAAmV58cJ6YtAjTO05hd13ax6NQiTcYpEiSAhg3ly2qV5W+bN0tVzJEjcOEC3L8vX0eP/tezmQBX3N1tFChgokgRqbL78ENJ6NnT1stbmbB/AgA/1fmJpB5J7btBJ1Y3Z106r+vM7mu7ufv0rlNPclfRJ1s2GazQsyc8eyaVqQcOyETWU6fgxg24exdCQ6Ui7p+TlePFkz6S2bPLZOOiRWUJe/bs0VsB929Wm5XP/viMQEsgFTJV4MtiX77T72syTinl9Gw2GyvOrqD7hu5cfnQZgBQJU9CucDtaFmz5ximPZpOZpB5JKZmuJCXTlaRzic7cfXqX2Udm8/3e7/F94EvDJQ2pm7MuU2tOJU1iO13qVMrJLTyxkPH7xwMwv958cvrkNDagKDKbzPQt05dmy5sx6a9JdC/VPcKTrZSKCZ4EP6HpsqaEWEP4OM/HL3qpxQUf5f6Ir9Z9xf6b+7ny6AqZkmQyOiTlJMxm6UlVpEj4fY8fw+XLcP06XLsmy9mePZMvm02WtSZODEmSQLp0IVy+vI0WLcqRIIGbw+L2f+5Pqz9aAfBFkS+onr26w7btjNJ7padI6iIcun2IVedW0aZwG6NDUg7m4QHly8vXP1mtsg9bLJKUM5tl340f375JtzeZsG8CO6/tJKFbQn6q81OEl6eG0WScUsqpXXxwkfZr2rPpkjQQSOqWlIEVBtKuaDs83Dze+flSJExB7zK96VisI6N3j2bM7jH8ce4P9t7Yy6KGiyifqXw0vwKlnNvxO8dpu7ItAP3K9qNurroGRxQ9Ps7zMb029eLm45ssOrUoTiUrVOzXbX03Ljy4QDrPdEyvOT1OVXenTpyaDzJ+wPar2/n99O988/43RoeknFjixDIxMX/+/36sxWJj7dqnL/pROUrXP7tyzf8aWbyz8F2V7xy7cSdVN2ddDt0+xIpzKzQZp14wm+1fpRpR5/zO0XeLrLz4vsr3ZPbO/M7PodNUlVJOyWazMf3gdApML8CmS5twd3Gn9/u9mZJrCl8W/TJSibh/SuyemG8//JbDXxwmf8r83H16l0rzKzF+3/joeQFKxQAPnz2kwaIGPAt5RtWsVRlSPvYMO3BzcaNT8U4AjNs3DltUx3Ip5SSWnVnGrCOzMGHi5/o/4+3hbXRIDtc4T2MAFp1aZHAkSkXNH2f/YO7RuZgwMb/efBLFS2R0SE6hXq56AGy8uPGVwWxKGS3EGkLLFS15HvKcKlmr0K5Iu0g9jybjlFJOxy/QjxoLa9BhTQeeWp5SLmM5Tn15iqHlh+LhErUk3L/lTZGXvW320jy/TK/q9mc3em/qrSfuKtaz2qw0W96Miw8vkilJJhZ+tBAXs4vRYUWrdkXakcAtAUf/Psr2q9uNDkepKLsZcJPPV30OQM/SPeNsNXeD3A0wm8wcvHWQSw8vGR2OUpFy9+ndF/tzj/d7UDpDaYMjch55U+QlvWd6gkKD2HZlm9HhKPWS7/d8z/6b+/F092RW7VmRrk7XZJxSyqn8dfMvCs8ozPoL64nvGp/xVcezpeUWsibNardtJnBLwLx68xhdaTQg0+k6rOnw2imtSsUWQ7cPZa3vWuK7xmfZx8tiZbPopB5JaVmgJSDVcUrFZFablVZ/tOLBswcUTl2YoRWGGh2SYVImSvkiEbnk1GtG7Snl5Gw2G+1Xt+de4D3ypsgbp/fn1zGZTNTIXgOAtb5rDY5GqXAn755k4LaBAIyvOp70Xukj/VyajFNKOY3pB6dTZnYZrgdcJ3vS7PzV9i+6lOzyzs0wI8NkMtGzdE9+rPUjJkzMODSDr//8WivkVKy0+vxqhmyXJak/1vqRQqkLGRyR/XQp0QWAVedWceHBBYOjUSryxu8bz6ZLm/Bw9WBhg4XEc4lndEiG+vi9jwFYclqTcSrm+fn4zyw/uxw3sxs/1/9Zhwy9Rlgybo3vGj0eV07BEmqh5YqWBIcGUytHLVoVbBWl59NknFLKcKHWULqu70qHNR2wWC3Uz1WfA58fIF/KfA6P5fMinzOv3jwAJuyfwPCdwx0eg1L2dPHBRZotawZAx2IdaV6gucER2VdOn5xUz1YdGzZmHJxhdDhKRcqxv4/RZ3MfAMZVHRfjJx5Hh7q56mLCxKHbh7gRcMPocJSKsOv+1+m8rjMAg8sPpmCqgsYG5KQ+zPwh8VziceXRFc7dP2d0OEoxctdIDt8+jHd8byngiOLwJE3GKaUMFWgJpOGShkzYPwGA4R8OZ+nHS/GK72VYTM0LNGdCNYlnwNYBzDkyx7BYlIpOzyzP+GjxR/gH+fN++vf5oeoPRofkEB2KdgBgztE5BIUEGRyNUu/mmeUZTZY1ITg0mDo560S6UXRskypRKkqlLwXAynMrDY5GqYix2qy0/qM1AUEBlExXkp6lexodktNKFC8R5TKWA2Cd7zqDo1Fx3ZHbRxi2YxgAk2tMJnXi1FF+TsOScQcOHKBGjRp4e3uTMGFCihcvzsKFCyP8+7t27aJ79+4UKVKEZMmSET9+fHLlykWvXr149OjRa38nU6ZMmEym1361b98+ml6ZUiqi7jy5Q/m55VlxdgXuLu789tFv9C3bN8pXGaLDVyW+ol/ZfgC0X9Oevdf3GhyRUlFjs9n4cu2XHLtzjBQJU7C44eI4s8ytevbqpPNMx/1n91l6ZqnR4Sj1Tr7Z8A2n750mVaJUUWoUHRvVzVkXgBVnVxgbiFIRNOWvKWy+vBkPVw/m15uPq9nV6JCc2ou+cRe0b5wyTnBoMC1XtCTEGkKD3A34NO+n0fK8huz927Zto2rVqsSLF49PPvkELy8vli1bRtOmTbly5Qp9+/b9z+do2LAhfn5+lClThhYtWmAymdi2bRtjxoxh6dKl7NmzhxQpUrzye15eXnTt2vWV+4sWLRodL00pFUHX/K9RaX4lfB/4ktQjKX988gdlMpQxOqyXDK0wlNP3TrP87HIaLG7Awc8PktYzrdFhKRUpPx35iblH52I2mfnto9/i1L9lV7MrbQu1ZfD2wcw4NIMm+ZoYHZJSEbLadzVTD04FYF69eSRPmNzgiJxLvVz16LWpF1uvbOXR80ckiZ/E6JCUeqNzfufotakXAGMrjyV7suwGR+T8qmerTrc/u7H9ynaeBD8hUbxERoek4qCh24dy4u4JfBL4MK3mtGi7KObwZFxISAht27bFZDKxY8cOChWSptGDBg2iVKlSDBo0iEaNGpE9+9vfnLp160aLFi1InTq8PNBms9GxY0emTZvGkCFDmDJlyiu/lyRJEgYPHhytr0kp9W4uPLhAxfkVueZ/jYxeGdnQfAM5kuUwOqxXmE1m5tWbh+9sX07ePcknSz9hW8ttuJhdjA5NqXdy+PZhOq3tBMhS8AqZKxgckeO1LdyWYTuGsePqDs7cO0Pu5LmNDkmpt3pgeUDP1bKE7euSX1MlaxWDI3I+OZLlILdPbs74nWGd7zo+zRc91QpKRbcQawgtVrTgWcgzKmepTIdiHYwOKUbIkSwHWbyzcOnhJTZf2kzdXHWNDknFMQduHmDUrlEATK85nRQJXy34iiyHL1PdsmULFy9epEmTJi8ScQCJEydmwIABhISEMGfOf/dn6tWr10uJOJBpiAMGDABg+/bt0Ru4UipanLx7krJzynLN/xo5kuVgZ+udTpmIC5PYPTHLGy8ncbzE7Lq2Swc6qBjnwbMHfLT4I4JCg6iTs06c7U+T1jMttXLUAmDGIR3koJyb1WZlwrUJ+D3zo2CqgoyoOMLokJzWi6Wq51YYG4hSbzFs+zD+uvkXXu5e/FTnJ8wmbd0eESaTiRrZ/r9U1VeXqirHeh7ynJYrWhJqC+WTvJ/w0XsfRevzO/xdYNu2bQBUqfLq1b2w+6KSSHNzcwPA1fX1RX9BQUHMmzePESNGMG3aNI4dOxbpbSml3s3h24cpP7c8fz/5m/wp87Oj1Q7Se6U3Oqz/lC1pNqbWlGVCQ7YPYfe13QZHpFTEWG1WWixvwZVHV8jinYV59ebF6ROAL4p8AcD8Y/N5HvLc4GiUerOJf03k2ONjeLh6sLDBQtxd3Y0OyWnVy1UPkAbvOqBFOaM91/fw7c5vAZhea3qMOPZ1Jv/sG2ez2QyORsUlA7YM4IzfGVIlSsXk6pOj/fkdvkzV19cX4LXLUL29vfHx8XnxmMiYPXs28PpkH8Dff/9Nq1atXrrvf+3dZ1hUV9fG8f8MHQREsWAXe++9YEexF1TsNWqMSUwxakzUmERNHjWJJdYYu4hdUQEVCzbsIjYsWBCsCAhS57wfeOGJjxpRYQ4zrN91+YHDcM49CZszs2bvtdu2bcuqVatwdHR843kTEhJISPjvDT46OhqApKQkkpKS3juvEDnFuQfncF3jSmR8JHUK1WFHrx3kscjzTuMn7bFqjLleFXqxO2Q3ay+upc+mPpwedlrVHV+FyIjpR6bjHeKNpakl67utx8bE5p3Hj5rjLrM1L9acIrZFuBdzjy2XttCjQg+1IwnxirMRZ/nWP3UDoRnNZ1A6d2mjGH9ZpXr+6jjlciL8eTh+1/1wLeWqdiRhoLLifhedEE3fTX3RKTr6Vu5L93LdZTy/o0aFG2Fpasm96HtcCL9AxXwV1Y4kMlF2fZ157N4xZh2bBcCCdguwM7PLcMaMPk7vxbioqCggdSOF17Gzs+PevXvvde5z584xdepU8ufPz7hxry7DGTJkCC4uLlSqVAkLCwsuXbrE1KlT2b17N506deLIkSNvbMY3ffp0pk6d+spxf39/rK2t3yuvEDnF7Re3+e76d0SnRFPOuhxj847luP/x9z6fn59fJqbLuA6aDuwz38ed6Dv0XdGXj4t+rEoOITLiXMw5pt5IvW8NdxrO/dP3uc/99z6fWuMus9W3rs/GmI3M3jcb61ty/xbZS4IugS+vfkmSLom6dnUp9rAYu3bJ0qy3qWpRlfDn4czfO5+UqylqxxEGLjPvd7/d/o3QqFDym+envaa9jOf3VM6yHOefn2furrl0zNdR7TgiC2Sn15kJugTGXh2LgkJzh+ZoQ7TvtEw6Li4uQ48zmr2Ub926RYcOHUhJSWH9+vWvneX2/fffv/R1vXr12LlzJy4uLgQEBLBr1y7at2//2vNPmDCBL774Iv3r6OhoihYtSvPmzcmbN2/mPhkhjMjVJ1cZsXoE0SnR1HKqxW6P3e+921lSUhJ+fn60bt06fUm6vhWoVoCWq1vi+8SXr1y/olmJZqrkEOLf3I2+y7Blw1BQGFJ9CLPcZr33ubLDuMtMpZ+UZuOijZyNOUuNpjVwyuX09h8SQk9G7x7NvYR7FLQpyCfFPqFNmzZGMe6ymvaGFh9PHy4kXKBdu3aZttOdyFky+37nGezJgXMH0Gq0bOi1gYZFG2ZCypzp0rFLnPc/T7hVOG5ubmrHEZkoO77O/MznM+4n3KewbWE8B3u+83vXtFWUb6P3YlzajLi0GXL/Kzo6+o2z5t7k9u3bNG/enEePHrFp0yaaN8/4LnFarZbBgwcTEBDAkSNH3liMs7CwwMLi1X4dZmZm2eaXRojs5vrT67iudeVB7AOqF6yOb39f8ljl+eDzqjnuWpRqwajao/jz1J+M3D2SoFFBWJvJ7BqRfSSmJNJ3a18ev3hMTaeazG8/HzPTDx8vxnK/q1SwEg2KNODYvWNsuLyBrxp+pXYkIQDYcnkLS84uAWB5p+UkXE4wmnGX1VqXbo21mTX3n9/n0tNLVC9YXe1IwoBlxri7E3WHT/ak7mI+qckkXJxdMiNajtWubDsm+k/k4O2DKFoFcxNztSOJTJZd7nd7ru/hz9N/ArC883Ly2eZ753Nk9HnovYtzWq+41/WFi4yM5PHjx6/tJ/cmoaGhNGvWjPv377NhwwY6dOjwzpnSZtFldDqhEOLtQp+F0mJFC+7H3KdSvkr49ffLlEJcdjCj1QyK2BXhZuRNvtv/ndpxhHjJV75fcfzecXJb5maj+0YsTS3VjpTtDKo+CIAV51dIM2iRLdyLvsewHcMA+Lrh17Qs2VLlRIbF0tQy/b+Z7Lgo1JaiS6H/lv5EJURRv0h9vnOR14ofqmqBquSzzkdsUizH771/qxsh/s2TuCcM2TYEgE/rfkrrUq2z9Hp6L8a5uKR+KuDr6/vK99KOpT3mbdIKcWFhYXh6etK5c+f3ynTixAkASpQo8V4/L4R4WXhMOC1WtOBu9F3KO5Zn34B9OFq/eYMUQ2NnYceiDosA+P3E7wQ9CFI5kRCp1gWtY27gXABWd11NSYeSKifKnnpW6omlqSUXH17kTPgZteOIHC5Zl4zHJg+evnhKTaea/NjiR7UjGaS0HRe9Q7xVTiJyul+O/MKh24fIZZ6L1V1XY6o1ms5QqtFqtLRybgWA741X6whCfChFURjlPYrw5+GUdyzPjFYzsvyaei/GtWzZEmdnZ9auXcu5c+fSj8fExDBt2jRMTU1f2u308ePHXLlyhcePH790nn8W4tavX0/Xrl3/9bqXLl3i2bNnrxwPCAhg9uzZWFhY0K1btw95akII4Fn8M1xXu3Lr2S1KOZRi34B9FMhVQO1Ymc6tjBvdKnQjRUlhzO4xMrtGqO7So0vpM2u+bfIt7cu+vu2CgNyWuelaPvV1w9/n/lY3jMjxJvtPJuBOALbmtnj28JTlV+8prRh3/N5xnsQ9UTmNyKlO3T/F9wdS+5TPbTeXUnlKqZzIeLR2Tp2l5Hcz+zT6F8ZjbdBavC55Yao1ZVXXVViZWWX5NfVejDM1NWXp0qXodDqaNGnCRx99xFdffUW1atUIDg5mypQplC1bNv3x8+bNo0KFCsybN++l8zRr1ozbt29Tu3ZtLly4wJQpU175908bNmygUKFCdOzYkTFjxvDVV1/Rtm1bmjZtSlJSEvPmzaNYsWL6+E8ghNGKS4qj47qOBD0MomCugvj296WQbSG1Y2WZWW1mYWlqycHbB9kQvEHtOCIHi0mIofuG7sQlxdGyZEumNnt192/xsoHVBgKw9uJaElMSVU4jcirfG75MD5gOwJKOSyidp7TKiQxXMftiVMlfBZ2iw+eGj9pxRA4UnRCNxyYPknXJuFd0T7/PiMyRtmTw1P1TRL6IVDmNMCZ3ou4wetdoACa7TKZ2odp6ua4qc2abN29OQEAAkydPZsOGDSQmJlKpUiWmTZtG3759M3SO27dvA3D8+HGOH3/9uvF/FuSaN2/O5cuXOXPmDAcPHiQ+Pp4CBQrQq1cvxo4dS926dT/4eQmRkyWlJNFrYy8C7gRgb2GPTz8fnB2c1Y6VpUrkLsH4RuOZcnAKX/l9RYeyHbAxt1E7lshhFEVh6PahXHl8hSJ2RVjXfR0mWhO1Y2V7rZxb4ZTLifDn4fhc96FjuY5qRxI5THhMOP0290NBYUStEfSq3EvtSAbPrYwbQQ+D2BWyiz5V+qgdR+QgiqIwcudIrj+9TlG7oizssFB29c1kReyKUN6xPFceX2H/rf10r9hd7UjCCOgUHYO2Dkrv8Ti+8Xi9XVvvM+PS1K1bl927d/Ps2TPi4uI4efLkawtxU6ZMQVGUV2a6KYry1n//5OLigqenJyEhIURHR5OYmMjdu3dZt26dFOKE+EA6RcewHcPYeW0nlqaW7PDYQdUCVdWOpRfjGo2jRO4S3Iu+lz67QQh9+vXor3hd8sJMa8aGHhvIZ/Puuz7lRCZaE3pVSi1+rLu4TuU0IqdJ0aXQd3NfHsU9omqBqsxxnaN2JKPQvkzq8vw91/eQoktROY3ISf46+xfrLq7DRGPC+h7rjWbTsuxGlqqKzPb78d/xD/XH2syaVV1X6bXHo2rFOCGEcVAUhXF+41h5fiUmGhM29NhAk+JN1I6lN1ZmVsxuMxtILYqEPgtVN5DIUXxv+DJh3wQgtTdNg6INVE5kWNJmzmy7uo3YxFiV04icZNqhafiH+mNjZsOGHhv00psmJ2hQtAG5LXPz5MUTAsMC1Y4jcojgh8GM2T0GgJ9a/ETDog1VTmS82pRqA0gxTmSOiw8vpr+OnuM6R++tIqQYJ4T4IL8e/ZVZx2YBsKzTshy51KtL+S60KNmCxJREvvOX7euFftyMvEnvjb1TZ6bWGMZHtT5SO5LBqV2oNqUcShGXFMf2q9vVjiNyiP239vPDwR8AWNRhEeUcy6mcyHiYak1xLeUKyK6qQj/ikuLoubEnL5Jf4FrKla8bfa12JKPmUtwFU60pNyNvcjPyptpxhAFLSE6g3+Z+JKQk0L5Me4bXHK73DFKME0K8t7/O/sU3e78B4D+t/8PA6jmzUa1Go+GXVr8AsObCGs5FnFM3kDB6sYmxdPXsSmR8JPUK12Oe2zzpTfMeNBpN+uy4tRfXqpxG5AQPnj+g7+a+KCgMrTGUvlUz1itZZFzarqpSjBP68OnuT7n06BIFcxVkZdeVaDXy9jor2VrY0qBI6ioAvxsyO068vykHpnD+wXnyWuVlaaelqryOlr8WQoj3svXKVobvSP0EYVzDcXzZ8EuVE6mrVqFa9K7cGwUlvUApRFZQFIXhO4Zz4cEFCtgUYFPPTViYWqgdy2B5VPYAUntMPYl7onIaYcySdcn02tiLiOcRVM5fmT/a/aF2JKPUrnQ7NGg4F3GOsOgwteMII7Y2aC3Lzi5Dg4a13daS3ya/2pFyBOkbJz6U/y1/Zh6ZCcDijospmKugKjmkGCeEeGcHQw+mL48bUn0IM1rNUDtStvBTi58w05rhe8NXPq0TWWbO8Tmsu7gOU60pXu5eFLYrrHYkg1YhXwWqFahGsi6ZTZc3qR1HGLEJeydw8PZBcpnnwsvdC2sza7UjGaV8NvmoWzh1c7Y91/eonEYYq5AnIYzYOQKA75p+R/OSzVVOlHO0dG4JwIHQA+gUncpphKF5EveE/lv6o6AwrMYwulXoploWKcYJId7J2fCzdFrfiYSUBDqX68yijotkedz/c3Zw5uM6HwMwbu84eYEgMt3+W/v52i+1H81vrr/lqM1SslLaUlXZVVVklY2XNvKfY/8B4O/Of1PesbzKiYxb29JtAfC54aNyEmGMXiS9oOfGnjxPfI5LcRe+d/le7Ug5Sp1CdbAxs+HJiycEPQhSO44wIGmrS8Jiwiibtyy/tf1N1TxSjBNCZNiNpzdot6Yd0QnRNC3elHXd1+l1+2dDMKnpJOws7DgXcY6NlzaqHUcYkdvPbtPTqyc6Rceg6oPSC7/iw/Wu3BtInfUry9pEZrvy+AqDtw0G4OuGX9O9YneVExm/tE0c9t7cS4ouReU0wtiM2T2GcxHncLR2ZE23NZhoTdSOlKOYmZjRtHhTIPVDSiEyasmZJWy5sgUzrRnruq/DxtxG1TxSjBNCZEjE8wjarG7Dg9gHVCtQje29t2NlZqV2rGzH0dqRL+p/AaQ2BpU3ASIzxCbG0sWzC09ePKF2odr82f5PmZGaiYrZF6NxscYoKHgGe6odRxiRmIQYunl243nic5qVaMbPLX9WO1KOUKdwHXJb5iYyPpKT90+qHUcYkWVnlrHs7DK0Gi3ru6+XVhEqaVGyBQD7bu1TOYkwFJcfXebzPZ8DML3ldGo61VQ3EFKME0JkQFR8FG1Xt+Vm5E2cHZzZ028P9pb2asfKtj6v/zkOlg5cfnxZ3tiLD6ZTdAzYOoBzEefIZ52PTT03YWlqqXYso5O2kcPaINlVVWQORVEYun0olx9fprBtYdZ3Xy+zyfXEVGtKK+dWgPSNE5nnTPgZRu8aDcC05tPSe5cJ/Usrxh28fZCklCSV04jsLj45Ho9NHrxIfkGbUm0Y22Cs2pEAKcYJId4iPjmezus7c/7BeQrYFMC3n69qO84YCntLe75q+BWQOjsuWZesciJhyCb7T2bz5c2Ym5iztfdWitkXUzuSUXKv6I6JxoTT4ae5/vS62nGEEZhzfA5el7ww05rh5e5FgVwF1I6Uo6QtVZW+cSIzPH3xlO4bupOQkkDHsh0Z33i82pFytOoFq+Ng6cDzxOecDj+tdhyRzU3YO4HzD86TzzofK7qsQKvJHmWw7JFCCJEtpehS6LOpDwdvH8TW3JbdfXdTKk8ptWMZhDF1x5DXKi8hT0NYc2GN2nGEgVoXtI4fD/8IwJKOS2hYtKHKiYxXPpt86Z+0ewV7qZxGGLp9N/cxzm8cAHNc59CgaAOVE+U8acW4wLBAIl9EqpxGGDKdomPAlgGEPgvF2cE5W72Zz6m0Gm36DrbSN078m90hu/ntxG8ALO+8PFtNKpG/IgZMp+iIT44nWZeMoihqxxFGRlEURnmPYsuVLZibmLOt9zZqONVQO5bBsLWwZVyj1DdiPxz6QabQi3cWGBaY3vR9XMNxDKg2QOVExq9npZ4AeF2SYpx4fzee3sDdy50UJYX+VfvLZisqKWpflAqOFdApOvbe3Kt2HGHAfj78M94h3liaWrKp5yYcrBzUjiSAFiVSP0CTYpx4kwfPHzBo2yAgdaJE+7Lt1Q30P6RxRTYXnRDNqfunOBl2kqtPrnIz8ia3o24T+SKS6IRoFP5bhLO3sMfJ1gmnXE6UdyxP5fyVqVagGrUL1cbC1ELFZyEM0ff+37PkzBK0Gi3ruq9L//RJZNzoOqOZdWwWNyNvsuL8CobVHKZ2JGEg7kXfo/P6zunLYaTpu350Kd+FkTtHcjbiLNefXqd0ntJqRxIGJjohmo7rOhIZH0ndwnVZ3HGxbLaiItdSrlx+fBmfGz64V3JXO44wQH43/Pje/3sAFrgtoHrB6uoGEunSZrMfuXuE+OR46acrXqJTdAzaNoiHsQ+pnL8yv7T+Re1Ir5BiXDaTmJJIwJ0AdofsZs+NPQQ/DH6p4PZvohKiiEqI4srjK/iH+qcftzS1pGHRhriWcqVHxR44OzhnVXxhJOaemJu+NO7P9n/SrUI3lRMZJhtzG8Y3Gs8Xvl8w7dA0BlQbgLmJudqxRDYXmxhL5/WdiXgeQZX8VVjTbQ0mWhO1Y+UIjtaOtHRuie8NX7yCvZjQZILakYQBSWvtcPnxZQrZFmJLry3y5lBlrqVd+e3Eb/jc8EFRFCmMindyM/ImvTf1RkFheM3hDK4xWO1I4h/KO5anYK6CRDyP4Pi94zQr0UztSCIb+fXIr+y5vgdLU0vWdV+XLe/HUozLBnSKjoOhB1l1YRWbLm8iOiH6pe8Xty9O3cJ1qZK/CqXylKJE7hLktcqLvaU9VqZWpCgpJKUkERkfSXhMOPei73Hp0SWCHgZx8v5JHsY+ZP+t/ey/tZ9v9n5DTaea9Knch0HVB5HXOq9Kz1pkV+uC1vHpnk+B1J2iPqr1kcqJDNvI2iP55egv3Im6w8rzK2V2nPhXOkXHwK0DORN+hnzW+djusR1bC1u1Y+Uo7hXd8b3hy4ZLG6QYJ97JpP2T0peybe21lUK2hdSOlOM1Ld4UCxML7kXf4/Ljy1TMV1HtSMJAPE98Tuf1nXn64il1C9flj3Z/qB1J/A+NRkOLki1YG7SW/bf2SzFOpDty5wjf7v8WgD/a/kHl/JVVTvR6UoxT0aPYRyw+vZhFpxdxN/pu+vH8NvlpV7odbmXccCnukuHdtwrkKkB5x/IvHVMUhSuPr7Dv1j62XtmKf6g/Z8LPcCb8DN/u/5belXvzSd1PqF2odqY+N2GYfG/4MnDrQAA+qfMJ3zb5VuVEhs/KzIqvG37Nl75fMiNgBoOqD8JUK396xeuN3zueTZc3YaY1Y3OvzZTIXULtSDlO1/JdGblzJOcizhHyJIQyecuoHUkYgLVBa5lxZAYAyzoto07hOionEgDWZta4lHDB94YvPtd9pBgnMiTtg7GLDy9SMFdBNvfcnC1n1QhoWbIla4PWsu/WPn5o/oPacUQ28CTuCb039SZFScGjske2ngghGzioIOhBEEO3DaXonKJM8p/E3ei72FvYM6zGMA4OOkj4l+H83eVvelbqmeFC3JtoNBoq5KvAJ3U/Ye+AvUR8GcGf7f+kRsEaJKQksOL8CuosqUPb1W05dvdYJj1DYYiO3T1GN89uJOmS6FWpF7+3+12Wc2SSEbVGkNcqLzcib+B50VPtOCKb+vPkn/x69Fcg9c1842KNVU6UM+W1zktL55aAbOQgMuZk2EmGbh8KwPhG4+lTpY/KicQ/pe2q6nPDR+UkwlBMPzKdzZc3Y25izuaemylsV1jtSOIN0vrGBYYFEpMQo3Iaoba0Qvq96HuUyVOGRR0WZev3s1KM06MLDy7QfUN3qi6syl/n/iIhJYHahWqzsstKIr6KYEmnJTQt3jRLt8rOZ5OPkbVHcvqj0xwbeoy+VfpiojHB54YPDf9qSJtVbTgfcT7Lri+yp3MR52i3ph2xSbG0dm4tW7ZnMhtzG75o8AUAPx3+CZ2iUzmRyG52XtvJJ7s/AVKXh/ev1l/lRDlbz4qyq6rImLtRd+m8vjPxyfF0KNuBH1v8qHYk8T/SinEHbx/kRdILldOI7O5E1AmmHpoKpPZNblC0gcqJxL8pkbsEJXOXJFmXTMCdALXjCJXNPjYb7xBvLEws8HL3yvatXuTdth4EPwzG3cudagursfnyZjRo6FGxB0eGHCFwWCD9q/XX+9RnjUZD/SL1Wd1tNdfGXGNojaGYak3xu+lHzcU1GbFjBA9jH+o1k1DHlcdXaLOqDVEJUTQu1pgtvbbI7rtZYHSd0dhb2HP58WW2XN6idhyRjZy6f4peG3uhU3QMrTFUlodnA13Kd8FEY5K+VFWI14lOiKb92vaEPw+nUr5KstlKNlUxX0UK2xYmPjmeQ7cPqR1HZGPBj4KZc3sOkNquZUiNISonEhmRNjtu/639KicRajp+7zgT9qX2+v2t7W9UK1hN5URvJ8W4LPTg+QNG7BhB1YVV2XhpIwA9K/UkaFQQXu5eNCzaMFtMm3R2cGZpp6Vc++QavSqlviFcfGYxZeaW4bfjv5GiS1E7osgityJv0WplKx7FPaKmU012euzExtxG7VhGyd7Snk/rpW6M8ePhH1GUjO2SLIxb6LNQOqztQFxSHK6lXPmz/Z/Z4r6Q0+W1zksr51aAzI4Tr5eUkoS7lztBD4MomKsg3n28sbOwUzuWeA2NRiNLVcVbRb6IxH2jO/G6eFyKuTDbdbbakUQGpRfjQqUYl1M9ffGUXht7kaxLplelXoyoNULtSBmiWjHu5MmTuLm54eDggI2NDXXr1mXt2rXvdA6dTse8efOoWrUqVlZW5MuXj549exIS8uZPsTPjum8TnxzPzICZlJlbhsVnFqNTdHSr0I2gUUF49vCkUv5KmXq9zFLSoSTre6zn8ODD1HKqRXRCNGN9xtLor0ZcfHhR7Xgik92PuU+rVa0IiwmjYr6K+PTzwd7SXu1YRu2zep9hY2bDuYhz7ArZpXYcobLIF5G4rXHjQewDqhWoxgb3DZiZmKkdS/w/94ruAGwI3qByEpHdKIrC6F2j8b3hi7WZNTs9dlI8d3G1Y4l/4VpainHizZJSkujh1YPrkdfJZ5aPtV3Xyv3YgDQv0RyAs+FnefriqcpphL4pisLgbYO5E3WH0nlKs7jjYoP5YFuVYtyBAwdo3Lgxhw8fpkePHowaNYrHjx/Tt29ffv755wyfZ+TIkYwZM4aUlBTGjBmDm5sb27dvp06dOly6dCnLrvtvtl/dTsX5FRm/bzwxiTHULlSbQ4MOsannpmy7pe7/alysMYHDA1nUYRF2FnacCDtBzUU1mew/mcSURLXjiUzwOO4xrVa24mbkTZwdnPHr74ejtaPasYxeXuu8jKo9CpDZcTldfHI8XTy7cPnxZYrYFZFZNdlQl/JdMNWacv7Bea49uaZ2HJGN/HLkF5acWYJWo2V99/XUKlRL7UjiLVo5t0Kr0XLp0SXuRt1VO47IRhRF4WPvj9l/az82ZjZMdJ5IPpt8ascS78DJ1omK+SqioHAw9KDacYSe/Xb8N7Zf3Y65iTkbemwwqNfTei/GJScnM2zYMDQaDYcOHWLJkiX85z//4fz581SqVInJkyf/68y2NP7+/ixZsoQmTZpw5swZfvnlF1asWIG3tzfR0dGMGjUqS677Jnej7tLVsyud13fm1rNbFLYtzMouKzkx7ARNijd57/OqRavR8lGtj7j08SU6l+tMki6JHw79QINlDbj6+Kra8cQHeBb/DNfVrlx+fJnCtoXZN2AfhWwLqR0rx/iy4ZdYmFhw/N5x/EP91Y4jVJCsS6b3xt4cun0IOws7vPt4y05t2VBe67y0LPn/u6oGy1JVkcrzoifj940H4DfX3+hYrqPKiURG5LHKQ51CdQDwveGrchqRncw6NoulZ5ei1WhZ3WU1Ja1Kqh1JvIcWJVKXqu67tU/lJEKfjt09xjd7vwFgjuscajjVUDnRu9F7MW7//v3cuHGDPn36UKPGf/9j2dra8t1335GcnMzy5cvfep4lS5YA8OOPP2Jh8d9m8y1btsTV1ZVDhw5x7dp/P8nOrOv+r2RdMnOOzaHC/ApsvbIVU60p4xuN5+onV+lfrb/B70hZ2K4wW3ptYUOPDeSxysOZ8DPUWFSDRacWyaweA/Qs/hltVrXhTPgZ8lnnY++AvZTIXULtWDlKwVwFGV5zOAA/HpJd93IaRVEYsWME265uw8LEgu29t1O1QFW1Y4k36FlJdlUV/3XkzhEGbh0IpLYdGFNvjMqJxLuQvnHif229spVxfuMAmN1mNu3LtFc5kXhfsolDzvMw9iHuXu4k6ZLoWaln+uojQ6L3StGBAwcAaNOmzSvfSzt28ODbp5ceOHAAGxsbGjVq9Mr3XF1dXzlPZl33f7Va3YovfL8gNimWRkUbcXbEWaa3mm5UTfA1Gg3uldwJGhVEK+dWvEh+wUjvkXTx7MKTuCdqxxMZlFaIO3n/JHmt8uLX34/yjuXVjpUjfd3oa8y0ZviH+nPkzhG14wg9Gr93PH+d+wutRotnD09cSrioHUn8C1mqKtIEPwym47qOJKQk0LlcZ2a1maV2JPGO0vrG7b25VzYnE5wJP0PfzX1RUBhVe1T6JlvCMLmUcEGDhsuPLxMeE652HJHF0laZhMWEUd6xPEs7LjWYPnH/ZKrvC6YtBS1Tpswr33NwcMDR0fGty0VjY2MJDw+ncuXKmJi8uoV82rn/eZ4PvW5CQgIJCQnpX0dHRwNw8eFFHHI7ML3FdAZVG4RWoyUpKelf8xuqfJb52NlrJ3NPzuVb/2/ZfnU7NRfVZF23delT/0X29Cz+Ge3Xt08vxO3ps4eKeSsa3O9qWl5Dy/2/nKyd6F+1P3+d+4tpB6exo/cOtSMJPZh9fDa/HP0FgIVuC3Er5WYQv8vGMu7eh62pLS1LtMTnpg/rg9YzodEEtSMJFdyJuoPralci4yOpV7gef3f8G12KDl2KLsuumZPHXVapkb8GuS1zExkfydHbR6lfpL7akYRK7kXfo+PajsQlxdG6ZGtmtZpFcnKyjDsDZmtqS/WC1TkbcRa/G354VPJQO5LIoPcZd9/6f4t/qD82ZjZ4dvPEUmuZrcZtRrPovRgXFRUFgL3963dttLOz4969ex98jn8+LjOuO336dKZOnfrK8cYOjRnmPIzc93Oz5/6ef81tLMpQhhmlZvBr6K/cib6DywoXBhcajJujm0FWpI1dbEosU25MISQuBFsTWyYVm0TY6TDCCFM72nvz8/NTO8IHq5NQh7/5G5+bPvyx8Q9KW5dWO5LIQvuf7uePO38AMMBpAPnD8rMrzLB21DWGcfc+yiSVwQcflp9YTrWoamrHEXoWnRzNxJCJhCWEUcSiCKMdRnNwr/4ahOfUcZdVKlpU5Gj8Ueb7zOepk+y6mBO9SHnBxOsTuf/iPsUsizEo1yB897zcR1DGnWEqnlKcs5xl1eFV2N9+/Xt+kX1ldNydiDrBr7d+BWBUoVHcCrzFLW5lZbR3FhcXl6HH6b0YZ6gmTJjAF198kf51dHQ0RYsWxWuAF3nz5lUxmXr6x/fnI++P2HJ1C0vClvDM7hkL3RZia2GrdjTx/6Lio3Bb70ZIXAh5rPLg08eHagUM981kUlISfn5+tG7dGjMzw99y/rDJYdZeXMshDvGpmyyPMFY7ru1g/qb5AHxR7wtmtJyhcqJ3Y2zj7l3Vf1Gfhb8vJDQ+lNL1SlM2b1m1Iwk9iU2MxXWtK/cS7lHEtggHBx6kqF1RvVw7p4+7rPLg3AOO7jrKLZNbuLm5qR1H6FmyLpkeG3tw68Ut8lvnZ++gl3sny7gzbCY3TNjquZXrKddlfBuQdxl3159eZ8DyAQCMqTOGn1v/rI+I7yxtFeXb6L0YlzYz7Z+z1v4pOjr6jbPX3uUc/3xcZlzXwsLipY0i0piZmeXYP9aOZo5s6rWJ30/8ztd+X+N12YsLDy+wpdcWKuSroHa8HO9x3GParmvL6fDT5LHKw74B+6hesLrasTKFsYy7SU0nse7iOrZf286Vp1eoUqCK2pFEJvO57oPHFg9SlBQGVhvIr66/GuzGPsYy7t5VAbMCtHJuxZ7re9hybQuTmk5SO5LQg6SUJDy2ehB4P5A8Vnnw7e+Lc15nvefIqeMuq7iVc4NdcCr8FNFJ0eS1zpkfqOdEiqIweudodl3fhaWpJds8tlEm36vti0DGnaFq5twMU60poVGh3H1+F2cH/f/NFu/vbeMuLimO3lt6E50QTaOijZjlOgszk+w5TjP690Pv7whe188tTWRkJI8fP35tX7d/srGxwcnJiVu3bpGS8moD1tf1h8uM64pXaTQaPq//OQcHHaSwbWGuPrlKvaX12HFVemCp6X7MfVz+duF0+GkcrR2NqhBnTCrkq0CPij0A+Dkge36yI97fgdADdPHsQmJKIt0rdGdpp6UGW4jL6XpWTN1VdUPwBpWTCH3QKToGbxvMnut7sDazxruPt3zIaCSK2BWhUr5K6BQde2/uVTuO0KMfD/3IkjNL0Gq0rOu+TnoGGqFc5rnS/7/uu7lP5TQiMymKwijvUVx4cIH8Nvnx7OGZbQtx70Lv7wpcXFJ3jvP19X3le2nH0h7ztvPExsZy5MirOxH6+Pi8cp7Muq54vYZFG3JmxBmaFm9KTGIMndZ3YtrBaeiUrGtuLF7vVuQtmixvwqVHlyhsW5hDgw5JIS4b+7bJtwB4XvTk6uOrKqcRmeXo3aN0WNuB+OR4OpTtwNruazHVSmcIQ9WlfBfMtGYEPQzi8qPLascRWUhRFD7b/RlrgtZgqjVlo/tGedNuZNqWbgvAnhs5o9ezgL/O/sX3B74HYL7bfLqU76JuIJFlWpZsCcC+W1KMMyaLTy9m5fmVaDVa1ndfT2G7wmpHyhR6L8a1bNkSZ2dn1q5dy7lz59KPx8TEMG3aNExNTRk0aFD68cePH3PlyhUeP3780nk++ugjACZNmkRiYmL68X379uHj40PTpk0pW/a/fV3e9bri3eW3yc/e/nsZXWc0AN8f+J4eG3oQkxCjcrKc4/KjyzRe3pibkTdxdnDm8ODD8ml+NletYDU6lu2IgsL0gOlqxxGZ4NT9U7Rb047YpFhaO7fGy90LcxNztWOJD+Bg5UCbUm0A8Az2VDmNyCqKojBh3wTmnZwHwPLOy2lXpp3KqURmSyvG+Vz3QVEUldOIrLYrZBcf7Uh93/htk28ZWXukyolEVkorxu2/tV8mhRiJk2En+XRPam/t6S2n07xkc5UTZR69F+NMTU1ZunQpOp2OJk2a8NFHH/HVV19RrVo1goODmTJlyktFtHnz5lGhQgXmzZv30nmaN2/OsGHDOHz4MDVq1GDcuHEMHDiQ9u3bY2dnx59//vlB1xXvx8zEjHlu81jWaRnmJuZsubKF+svqc/3pdbWjGb3T90/T9O+m3I+5T8V8FTk8+DAlHUqqHUtkQFoPqtUXVnMrMnvtBiTezYUHF2izqg3RCdE0Ld6Urb23YmlqqXYskQl6VeoFpC5VlTfwxunHQz8y88hMAP5s/yf9qvZTOZHICo2LNcbK1Irw5+EEPQxSO47IQifDTuLu5Z7et3Va82lqRxJZrF6RelibWfMo7hFBD2R8G7oHzx/QbUM3ElMS6VK+C183/FrtSJlKleY1zZs3JyAggMaNG7NhwwYWLFhA3rx5Wb16Nd9++22Gz7No0SL++OMPNBoNf/zxB97e3nTs2JHAwEAqVqyYZdcVbzekxhAODTpEIdtCXHp0iTpL6rDnuiwHyCq7Qnbh8rcLj+MeU8upFgcHHaSQbSG1Y4kMqlu4Lm1KtSFFSUl/IygMz6VHl2i1shWR8ZHUL1KfnR47sTazVjuWyCSdy3fGwsSCy48vc/HhRbXjiEw2+9js9GVss9rMktkzRszS1DJ9ZoW8NjVe159ep/3a9sQlxeFaypUlHZeg0WjUjiWymLmJOS7FU1tPyVJVw5aYkkgPrx7ci75Hubzl+Lvz30Y3hlXrJF23bl12797Ns2fPiIuL4+TJk/Tt2/eVx02ZMgVFUZgyZcor39NqtYwZM4aLFy8SHx/P48eP8fLy+tcZbhm9rvhw9YrU49TwUzQo0oBn8c9wW+PGzICZMqMgky09s5RO6zoRmxRLK+dW7B+4H0drR7VjiXc0qUnq7Ljl55ZzL/qeymnEu7r48CLN/m7Go7hH1HSqye6+u7G1sFU7lshEdhZ26UsWZamqcVl0ahFf+n4JwA/NfuCLBl+onEhktbal/n+p6g0flZOIrPAw9iFtV7dNvyd7uXsZRbN3kTHSN844jN0zloA7Adia27K191bsLe3VjpTpZFs3kaWcbJ3wH+jP8JrDUVAYv288vTf15nnic7WjGTxFUZjsP5nhO4aToqQwoNoAvPt4Y2dhp3Y08R6aFG+CS3EXElMS+fXIr2rHEe/gfMR5mq9onv6i36+/H7ktc6sdS2SBtKWqnsGe8sGSkVh1fhWjvEcB8E2jb9LbBgjj5lraFYDDtw/La1IjExUfhetqV25E3qBk7pJ49/GWD8dymJbOqcW4Q7cPkZSSpHIa8T6WnVnGglMLAFjTbQ3lHcurnChrSDFOZDkLUwsWd1zMwvYLMdWasiF4A/WX1ifkSYja0QxWQnICg7cN5odDPwDwXdPv+Lvz39Ik3sClvQlcfGYxD54/UDmNyIiz4WdpsbIFj+MeU6dQHfb230seqzxqxxJZpEPZDliZWnH96XXORpxVO474QF7BXgzaNggFhTF1xzC95XSjWwIjXq9MnjKUzF2SJF0S/rf81Y4jMklcUhwd13XkXMQ58tvkx6efDwVzFVQ7ltCzqgWq4mjtyPPE5wSGBaodR7yj4/eO8/Guj4HU2eody3VUOVHWkWKc0JsRtUdwYOABnHI5EfwomNpLarP96na1Yxmc8Jhwmq1oxorzKzDRmLC4w2J+aP6DvIEwAi1LtqRe4XrEJ8cz69gsteOItzh1/xQtVrbg6Yun1C9SH7/+fjhYOagdS2ShXOa5aF+2PQCeF2WpqiHzCvbCY5MHOkXHkOpD+K3tb3IfzUE0Gk36rqrSN844JKYk4u7lzuE7h7G3sMennw9l8pZRO5ZQgVajpXmJ1L6QslTVsITHhNPN878bNnzb1Lj7+ksxTuhVo2KNOP3RaRoXa0x0QjSd13fmu/3fkaJLUTuaQTgZdpI6S+pw/N5xclvmZlffXQyvNVztWCKTaDSa9NlxC04u4EncE5UTiTcJDAuk1cpWPIt/RsOiDfHp52OUvSzEq9J3Vb0ku6oaqg3BG/DY5JHe4mFxx8VoNfKSOKdJK8ZJ3zjDl6JLYeDWgewK2YWVqRXefbypXrC62rGEiqRvnOFJSE6g+4buhD8Pp2K+iqzsstLo783G/exEtuRk68T+Afv5tO6nAPx4+Efar23P0xdPVU6Wva2+sJomy5sQFhNGBccKBA4LpE2pNmrHEpmsfZn2VC9YndikWH4/8bvaccRrHL17lNarWhOVEEWTYk3Y03eP9GrMQdzKuGFjZkPos1BZ/mKANgRvoM+mPqQoKQysNpC/Ov2FidZE7VhCBc1LNMdUa8qNyBtcf3pd7TjiPSmKwpjdY1h/cT1mWjM299pMo2KN1I4lVJbWN+7Y3WPEJsaqnEZkxFjfsRy7dwx7C3u29tqaI3o9SjFOqMLMxIzf2/3O6q6rsTK1wueGD7UW1+JM+Bm1o2U7CckJjNk1hv5b+pOQkkCHsh04Puy4TL03UhqNJn1n1T9O/EFUfJTKicQ/+d3wo/Wq1kQnRNOsRDPZNTUHsjazplO5ToDsqmpoPC96phfiBlUfxLJOy6QQl4PZWtjSuFhjQJaqGrLv/L/jz1N/okHDqq6r0mc8ipytlEMpitkXI0mXxOE7h9WOI97C57EPS88tRYOGdd3X5Zj3uVKME6rqW7Uvx4cdp5RDKUKfhdJgWQN+O/6bLP35fzee3qDRX42Yd3IeABMaT2Brr60yC8fIda3QlYr5KhKVECWz47KRTZc20X5te+KS4mhbui3efbyxMbdRO5ZQQfpS1eAN6BSdymlERnhe9KTv5r7phbilHZdKIU7QtpQsVTVks47O4qfDPwHwZ/s/6VW5l8qJRHah0Wj+u1T1pixVzc6O3j3KkrAlAPzU4ifalWmnciL9kWKcUF3VAlU5OfwkXcp3ITElkbE+Y+mwrgOPYh+pHU1VGy9tpObimpwOP00eqzzs9NjJzy1/ljcPOYBWo+W7pt8BMOvYLFnCnQ0sP7ucnht7kqRLwr2iO9t6b8PazFrtWEIlbUu3xc7CjrCYMI7ePap2HPEW6y+up8/m1Blxg6sPlkKcSOda2hWA/bf2k5CcoHIa8S7+OvsXX/l9BcD0ltMZUXuEyolEdiN947K/sOgwem3uRbKSTLfy3RjfeLzakfRKinEiW3CwcmBzz83Md5uPhYkFu0J2UW1htRz5SUZUfBRDtg3B3cud6IRoGhVtxLkR59J38BM5Q89KPamSvwrRCdHMOio7q6ppzrE5DNk+BJ2iY1iNYazrvg5zE3O1YwkVWZha0KV8FyB1dpzIvtYFraPv5r7oFF1qIa6TFOLEf1UrUI2CuQoSlxRHwJ0AteOIDFpzYQ3Dtg8D4OuGX/NNo29UTiSyoxYlWwBwLuKcbIqWDcUlxdHFswsPYh9Q3LI4SzsszXG7mksxTmQbGo2Gj+t8TODwQCo4ViD8eTitV7XmK9+veJH0Qu14erH35l6q/FmF5eeWo0HD+Ebj8R/oT1H7ompHE3qm1WiZ1nwaAL+f+J2HsQ9VTpTzKIrC9/7f84XvFwB81eArFndcLG/kBfDfpapel7xkR/Bs6q+zf71SiDP2ndnEu9FoNLiWSp0dJ33jDMOG4A0M2DoABYURtUYws9XMHPcGXmSMk60TFfNVREHBP9Rf7TjiHxRFYci2IZy6f4q8VnmZUHICucxzqR1L7+QVich20patDq85HAWFWcdmUX1RdY7cOaJ2tCwTkxDDJ7s+ofWq1tyNvouzgzOHBh9ieqvpmJmYqR1PqKRTuU7UKVSH2KRYZgTMUDtOjpKiS+HT3Z8y7VBqQfSnFj/xS+tf5AW/SNfKuRV5rPIQ8TyC/bf2qx1H/I95gfMYun0oCgof1fxICnHijdKLcTekGJfdbbm8hT6b+qBTdAypPoQF7RfIfVn8q1YlWwHSNy67+enwT3gGe2KqNcWzmycFLQqqHUkV8qpEZEs25jYs7riYHR47KGRbiGtPrtFkeRM+3/O5UW1PrSgKXsFelJ9fnvkn5wPwce2POT/yfPoOXyLn0mg0/NjiRwAWnFzAveh7KifKGV4kvaDnxp7pG6fMazePiU0mygt+8RJzE/P02XGrg1arnEb808yAmYzZPQaAz+t9zsIOC6UQJ96oTak2aDVaLj68yJ2oO2rHEW+w4+oOem3sRYqSQv+q/VnccbGMa/FWLZ2lb1x2s/nyZr7zT+2NvcBtAU2LN1U5kXrkL5jI1jqU7UDwx8EMrj4YBYXfT/xOhfkV8Ar2MvgdV0OehNBuTTt6buzJ/Zj7ODs449vPl/nt5+fIabri9Vo7t6ZJsSYkpCTw06Gf1I5j9J6+eEqb1W3YfHkz5ibmrO++ntF1R6sdS2RT/ar2A1JfWBrTB0WGSlEUvtv/HeP3pTaAntRkErNdZ0shXfyrvNZ5aVCkAQA7r+1UOY14nT3X99DDqwdJuiQ8KnuwvPNyaRkhMsSluAtajZaQpyFSbM8Gzoafpf+W/gB8WvdThtcarnIidUkxTmR7uS1z81fnv9jddzfF7YtzN/ouPTf2pNWqVgQ/DFY73jt78PwBn+z6hIoLKuJzwwcLEwsmu0zm4qiLtC7VWu14Ipv55+y4pWeXcjPypsqJjNedqDs0/qsxAXcCsLewx6efD70q91I7lsjGGhRpgLODM88Tn7Pt6ja14+RoiqLwpe+X/Hg49e/l9JbTmdZimhTiRIZ0LNsRkGJcdrT35l66rO9CYkoi3St0Z2XXlVKIExlmb2lPvcL1APC57qNympwt4nkEndd3Ji4pjtbOrZnlKhvUSTFOGIy2pdtyefRlJrtMxtLUkv239lN1YVWGbBtC6LNQteO9VVR8FFMOTKHUH6WYf3I+ybpk3Mq4ETQqiCnNpmBlZqV2RJFNNS3elDal2pCsS2bS/klqxzFK5yPO02BZAy4/vkxh28IcHnyYZiWaqR1LZHMajYZ+VVJnx62+IEtV1aJTdIzyHsWc43MA+KPtH4xvPF7lVMKQdCjbAYD9t/bLLNds5EDoATqt60RCSgKdy3VmXfd1mGpN1Y4lDEzb0m0B8LkhxTi1xCfH09WzK3ej71I2b1k8e3jKWEaKccLAWJlZMaXZFC59fImu5buiU3QsP7ecsnPLMtp7dLbsqRUeE874veMp9lsxph6cSmxSLHUK1WH/gP149/GmTN4yakcUBmBGyxlo0LDu4joCwwLVjmNU9t/aT5PlTbgfc59K+SpxbOgxqhSoonYsYSDSlqr63vDlwfMHKqfJeZJ1yQzaOohFpxehQcOyTssYU2+M2rGEgamYryIlcpcgISVBektlEwF3AuiwtgMvkl/gVsYNzx6esqmZeC9pm7TsvbmXZF2yymlyHkVRGLFzBMfvHSe3ZW52eOzAwcpB7VjZghTjhEEq6VCSzb02c2zoMVo5tyJJl8SCUwso+XtJ+mzqw8mwk6rmUxSFU/dPMWz7MEr+XpKZR2YSnRBNxXwV8ezhyYlhJ2hesrmqGYVhqeFUgwHVBgDwpe+XBt8zMbtYfWE1bVe3JSYxhqbFmxIwJICi9kXVjiUMSJm8ZahXuB4pSgrrL65XO06OkpiSSO+NvVl1YRUmGhPWdl/LkBpD1I4lDJBGo6FDmdTZcTuu7lA5jTh+7zjt1rQjNimWNqXasKnnJixMLdSOJQxU7UK1yWOVh6iEKE7cO6F2nBznP0f/w8rzKzHRmLChxwbK5i2rdqRsQ4pxwqDVL1Ifv/5++A/0p1mJZiTrkll3cR11l9al7pK6zA+cz5O4J3rLE/E8gvmB86m1uBZ1ltRh2dllJKQk0KBIA7b33k7QqCB6VuopPWzEe/mxxY9YmVoRcCeALVe2qB3HoOkUHZP2T6L/lv4k6ZJwr+iOTz8fclvmVjuaMEBps+NWXVilcpKc40XSC7p6dmXT5U2Ym5izqecmelfurXYsYcA6lkvtG+cd4o1O0amcJuc6df8UrqtdeZ74nBYlW7C111YsTS3VjiUMmInWhDal2gCpm4EI/dl5bSff7P0GgN/a/ib90f+HFOOEUWhWohn+A/0589EZ+lftj5nWjJP3T/LJ7k9wmuVE+7XtWXByQab3ltMpOoIeBDHn2ByaLm9KoVmF+GT3J5yNOIuFiQV9q/Tl8ODDHBlyhI7lOsoW7OKDFLErwpcNvgTgm73fkJiSqHIiw/Qi6QUemzz46XDq7rTjG41nfY/18mJfvLdelXphqjXldPhpLj+6rHYco/cs/hmuq13ZFbILK1MrdnjsoHP5zmrHEgbOpbgLNmY2hD8P52z4WbXj5Ehnw8/SelVrohOiaVq8Kdt7b5eeyiJTpC1V3XNDinH6cvHhRTw2eaCgMKLWCEbXGa12pGxHuuYJo1LDqQYru67kP23+w7qgday8sJIz4WfYFbKLXSG7ACiTpwz1itSjbqG61HCqQSmHUhTMVfCts9WSUpIIiwkj6EEQFx5c4EzEGQ7dPsTjuMcvPa5+kfr0rtSb/tX6k8cqT5Y9V5EzjWs0jiVnlnD96XUWnFzA5/U/VzuSQUnbySkwLBAzrRmLOixicI3BascSBi6fTT7alm7Lzms7WXVhFT+3/FntSEbrwfMHuK525fyD89hZ2LHTYydNijdRO5YwAhamFrQp1YYtV7aw89pOahWqpXakHCXoQRCtV7XmWfwzGhZtyE6PndiY26gdSxiJtGLc6funeRT7iHw2+VROZNwexz2m07pOPE98TrMSzZjbbq6sDHsNKcYJo5TfJj+f1f+Mz+p/xqVHl9h+dTu7QnZx9O5RQp6GEPI05KWd7yxNLSliVwQ7CzvsLOywMrUiMSWRhJQE4pLiuB9znwfPH6Dwap8uazNrmhRrQtvSbeleobv0mxJZytbClmnNp/HRzo/44eAP9K3SV15QZNCFBxfosLYDd6PvkscqD5t7bsalhIvasYSRGFB1ADuv7WTF+RX80PwH2SUsC4Q+C6X1qtZcf3qdAjYF2NNvD9ULVlc7ljAiHct2ZMuVLey4toPJzSarHSfHuPToEi1XtuTJiyfULVyXXX12YWthq3YsYUScbJ2oWqAqFx5cwO+mH32q9FE7ktFKTEmk+4bu3Hp2C2cHZza6b5TNV95A768UIyIimDRpEt7e3kRGRlKsWDH69evH+PHjMTc3z9A5QkJC8PLyYs+ePVy/fp3Hjx9ToEABmjdvzsSJEylfvvwrPzNo0CBWrFjx2vOVK1eOK1eufNDzEtlXxXwVqZivIuMbjyfyRSQnwk4QGBbIibATXHp0iTtRd4hPjuf60+tvPZeZ1ozyjuWpWqAqVQtUpVHRRtQpXAdzk4z97gqRGYbUGML8k/M5/+A84/eOZ1nnZWpHyva8r3nTe1Nvnic+p2zesuz02Ck7GYtM1alcJ/Ja5eV+zH18rvvQvmx7tSMZlYsPL+K62pX7MfcpkbsEfv39KJ2ntNqxhJFxK+MGwOnw09yPuU8h20IqJzJ+Vx9fpcWKFjyKe0RNp5rs6bsHe0t7tWMJI9S2VFsuPLiAzw0fKcZlEUVRGO09mkO3D2Frbsv23tvJa51X7VjZll6LcREREdSrV4+7d+/SpUsXypYtS0BAAJMnT+bYsWN4e3uj1b69p9Z3332Hp6cnlStXpnPnztjZ2REUFMSqVavYuHEjPj4+NGny+iULn332Gblz537pmKOjY2Y8PWEAHKwcaFu6LW1Lt00/lpSSxN3ou4RFhxGTGENMQgxxSXGYm5hjaWqJlZkVBXMVpLBtYfLZ5JO+b0J1JloTFrRfQKO/GvHXub8YUmMIjYo1UjtWtqQoCr8c+YUJ+yagoNC8RHM29twoS8hFprMwtWBAtQHMOT6HpWeXSjEuEx2/dxy3NW5ExkdSKV8lfPv7SpFEZIkCuQpQt3BdAsMC8b7mzfBaw9WOZNSuP71Oi5UteBD7gGoFquHbzxcHKwe1Ywkj1bZ0W345+gs+133QKTp5T5cF5gbOZenZpWjQsK77Oirlr6R2pGxNr8W4b775hjt37rBgwQJGjRoFpL5RGjx4MCtWrGDFihUMHvz23j1t27ZlwoQJVKtW7aXj69evx8PDg5EjRxIcHPzan/38888pUaLEBz8XYTzMTMxwdnDG2cFZ7ShCZFjDog0ZVmMYS88uZZT3KE5/dFqmgP+P2MRYhmwfwobgDQAMrzmc+W7z5b+TyDJDawxlzvE57Li6g4jnERTMVVDtSAbP74YfXT27EpsUS/0i9fHu4y3FdJGlOpXtRGBYIFuubJFiXBa6FXmLFitacD/mPpXyVcKvv5/MoBFZqlGxRtiY2fAg9gEXHlyQNgeZzPeGL2N9xgLwa+tf5UPJDNBbOTgmJgZPT0+cnZ0ZOXJk+nGNRsP06dPRarUsWbIkQ+caNGjQK4U4gN69e1O2bFkuXbrE48ePX/OTQghhPGa0mkFeq7wEPQxibuBcteNkK7cib9Hwr4ZsCN6AqdaUP9v/yaIOi6QQJ7JUpfyVqF+kPilKCivPr1Q7jsHzCvai/dr2xCbF0qZUG/b23yuFOJHlulXoBsDem3uJio9SOY1xuhN1hxYrW3A3+i7lHcuzb8A+6X8rspy5iTktSrYAYM912VU1M115fIWeXj3RKToGVR/EFw2+UDuSQdBbMe7YsWMkJCTQunXrV3bScHJyokqVKpw4cYL4+PgPuo6ZWeobLVPT10/68/b2ZsaMGcyZM4d9+/aRkpLyQdcTQgi15LXOy8xWMwGYfGAyt5/dVjlR9rDv5j5qL6nNhQcXyG+Tn/0D9jOy9kjZxUnoxbAawwBYdnYZivLqpj8iYxafXkyvjb1I0iXhXtGd7b23y86KQi8q5KtAecfyJOmS8A7xVjuO0QmLDqPFihaEPguldJ7S7BuwjwK5CqgdS+QQaa2KdoXsUjmJ8XgS94QOazsQlRBFw6INWdh+obzmziC9LVMNCQkBoEyZ1zfMLlOmDOfPn+fmzZtUrFjxva4RGBhIcHAwderUeaUvXJpPPvnkpa/Lli3LunXrqFmz5r+eOyEhgYSEhPSvo6OjAUhKSiIpKem98goh3k3aWJMx91/9Kvdj+dnlHLl3hCHbhrDLY1eO7YGhKAp/nPyDb/Z9g07RUcupFhu6b6CoXVH5nfkAMu7eTbdy3fjc53OuPbnGgZsHaFyssdqRDIqiKPxy7Be+O/AdAMNrDOcP1z/QKtoc9Tso405dXcp2YcbjGWwM3oh7eXe14xiNiOcRtFzdkhuRNyiZuyQ+fXzIZ5kv2/yey7gzfm1KtgHgyN0jRERFyNLoD5SYkkg3z27ciLxBCfsSbOi24Z3v18Y47jL6XPRWjIuKSp3mbW//+t1x7OzsXnrc+5x/4MCBaLVafvnll1e+7+LiQqdOnahbty6Ojo6EhoayaNEi5s6dS5s2bbhw4QKFCr25GfD06dOZOnXqK8f9/f2xtrZ+r8xCiPfj5+endoRspZ9tP05qTrI/dD+frfqMdo7t1I6kd3Epccy/O58jz44A0NyhOSPzjSQoIIggglROZxxk3GVc/Vz12ft0L1O9pzK2+Fi14xgMRVH4+/7fbHu0DYAeBXrgpnPDZ4+PysnUI+NOHfniUpdM7grZxZadW7DQWqicyPA9S3rGpOuTuJdwj3xm+ZhQaEK2vUfLuDNuJSxLEBofyozNM2iep7nacQyWoijMuzuPQ08PYaW1YmzBsZw6eOq9z2dM4y4uLi5Dj3vnYpyjoyNPnjzJ8OP9/f1p1qzZu17mncTHx9OtWzeuXLnCTz/99Nrr/e/GEOXLl2fOnDlYW1vz888/M2fOHH799dc3XmPChAl88cV/1z5HR0dTtGhRmjdvTt68UlEXQh+SkpLw8/OjdevW6UvSRar4k/GM9RvL6gerGdtxbI7akOTCwwv03tyb68+uY6o1ZWaLmXxS5xOZIp9JZNy9u3z387H3770ciz7GGpc15LfJr3akbC9Zl8yoXaPSC3G/tPyFz+t9rm4oFcm4U5eiKMxdMJfQqFA0ZTS4lXNTO5JBexz3mDZr2nAv4R6FbQuzr9++bPk6RcZdznDC5gTTj0znnvU93NxkbL+v2cdns+/8PrQaLZ7unrQt1fa9zmOM4y5tFeXbvHMxzsPDg5iYmAw/vmDB1J3E0mbEvWnmW1rgN82ce5OEhAS6du3K/v37mTBhAhMnTnynnx86dCg///wzR44c+dfHWVhYYGHx6qdiZmZmRvNLI4ShkHH3qk8bfMrWa1s5ePsgw7yH4T/QH1OtXjfMVsXys8v5eNfHxCfHU8SuCBt6bKBB0QZqxzJKMu4yrmHxhtQpVIeT90+yImgFE5u822uTnCY+OZ4+W/uw9cpWtBotSzsuZXCNwW//wRxAxp16ulXoxuzjs9kesh33yrJU9X09ffEUt/VuXHx0EadcTvgP9KdM3te3LcouZNwZty4VujD9yHR8b/qiaBXMTczVjmRwtl/dzoT9EwCY3WY2Hct3/OBzGtO4y+jzeOd3anPnvt+OfWm94tJ6x/2vkJAQtFotzs4Z/5QkPj6eLl264OPjw7hx4/j555/fOZejoyOQ8amEQgiRHWk1WpZ3Xk61hdUIuBPAZP/J/NTyJ7VjZZm4pDhG7xrN3+f+BlIb8q7qugpHa0d1gwnx/8bUHcOArQP489SfjGs0LkcUx99HdEI0XdZ3wT/UHwsTC9b3WE+X8l3UjiVEejFux9UdJKYkyhv29/As/hmuq105F3EudUOlgfuzfSFOGL/ahWpTMFdBIp5HcDD0IK1LtVY7kkE5F3GOPpv6oKAwstZIPq33qdqRDJbeunzXr18fCwsL/Pz8XtldLDw8nKCgIOrVq4elpWWGzvfPQtxXX33FzJkz3yvXiRMnAChRosR7/bwQQmQXJR1KsrTTUgB+DvgZn+vG2Wfp4sOL1Ftaj7/P/Y1Wo+XH5j/i3cdbCnEiW+lZqSf5rPNxL/oe265sUztOtvQo9hEtVrTAP9QfW3NbdvfdLYU4kW00KNqAgrkKEpUQxf5b+9WOY3CiE6Jpt6Ydp+6fwtHakX0D9lHesbzasYRAq9HSsWzqTK7tV7ernMawRDyPoNO6TsQmxdKyZEv+aPeHtIX5AHorxtnZ2dGrVy9u3rzJwoUL048risKECRPQ6XQMHz78pZ+Ji4vjypUr3Llz56Xj8fHxdO7cGR8fH7744ot/7fUGEBERwY0bN145HhYWxqefplZyPTw83vepCSFEttGzUk9G1hoJQL8t/QiLDlM5UeZRFIV5gfOovbg2Fx9epIBNAfb238u3Tb/NsTvIiuzLwtSCj2p9BMDcwPdbVWDM7kbdpcnyJpwOP42jtSP+A/1pXlIaaYvsQ6vR0qVcFwA2XtqobhgD8zzxOe3Xtuf4veM4WDqwt/9eKuevrHYsIdKlF+OubX9lopB4vRdJL+i8vjN3o+9SLm85vNy9MDMxjmWlatHrmokZM2bg7+/P6NGj2bt3L2XLluXw4cMcOXIEV1dXBg4c+NLjAwMDad68OS4uLhw4cCD9+MiRI/H19aVgwYLY2toyZcqUV641aNCg9NluV65coUWLFjRu3Jjy5cuTJ08eQkND2blzJ7GxsQwcOJCePXtm4TMXQgj9mdN2DsfuHeP8g/N0Xt+Zg4MOYmNuo3asD/Lg+QOGbB/CrpBdALQr3Y7lnZdTIFcBlZMJ8WYjao1gRsAMDt4+yIUHF6haoKrakbKF4IfBtF3TlnvR9yhqVxTf/r4yY0ZkS70q92Lh6YVsuryJ+W7zsTCVXVXfJi4pjo7rOhJwJwB7C3v8+vtRrWA1tWMJ8ZKWzi2xMrXiTtQdgh4Gyf35LRRFYfC2wQSGBZLHKg87++zEwcpB7VgGT6/FOCcnJ06cOMGkSZPw9vZm586dFCtWjKlTp/LNN9+g1WZsZkNoaCiQOuNt6tSpr31Ms2bN0otxpUqVYujQoQQGBrJx40ZiYmKwt7enYcOGDB06lF69emXG0xNCiGzB0tSSzb02U3dJXU6Hn2bA1gF4uXsZ7OyxXSG7GLxtMA9jH2JhYsGvrX/lk7qyW6rI/oraF6Vrha5svLSRWcdmsaLLCrUjqe7o3aN0WNuByPhIKjhWYE+/PRSzL6Z2LCFeq0mxJhS2LUxYTBh7ru+hc/nOakfK1tJmzhwIPYCtuS0+/XyoVaiW2rGEeIW1mTWtnFux49oOtl/dLsW4t5h6cCqewZ6Yak3Z1HMTpfOUVjuSUdD7OzMnJyeWLVtGREQECQkJhISE8P333792p9JmzZqhKMpLs+IADhw4gKIo//qvWbNm6Y8vWrQoS5Ys4fz58zx9+pSkpCQeP36Mr6+vFOKEEEbJ2cGZrb23Ym5izubLm5m4z/B2c4x8EcngbYNpv7Y9D2MfUjl/ZU59dIox9cZIIU4YjK8bfg3A2qC13Im685ZHG7cdV3fQcmVLIuMjqV+kPocHH5ZCnMjWTLQm9K7cG4C1F9eqnCZ7i0+Op9uGbuy9uZdc5rnY028P9YrUUzuWEG/UqVwnALZdlb6u/2Zd0DqmHkydALWw/UKalWimbiAjYpjTJIQQQrxV42KNWdZpGQAzj8zkP0f/o3KijNt+dTuVFlTi73N/o0HD5/U+5+Twk9JzRhicuoXr0qJkC5J1ycw+NlvtOKpZfnY5XT27Ep8cT/sy7dk3YB95rfOqHUuIt/KonNpXevvV7cQkxKicJntKTEnE3cudPdf3YG1mjXcfbxoWbah2LCH+VadyndBqtJy6f4rQZ6Fqx8mWjt87zuBtgwH4qsFXDK05VOVExkWKcUIIYcT6Ve3Hj81/BOBrv6+ZFzhP5UT/7mHsQ/pu7kvn9Z0Jfx5O2bxlOTz4MHPazsHSNGO7bQuR3XzT6BsAlpxZwpO4Jyqn0S9FUZh+eDpDtg8hRUlhYLWBbOm1BWsza7WjCZEhNZ1qUjZvWeKT49l6ZavacbKdpJQkem/szc5rO7E0tWSHxw6aFm+qdiwh3iq/TX5cirsAsknL69yJukOX9V1ISEmgU7lOzGg1Q+1IRkeKcUIIYeS+bfot3zb5FoAxu8dky9k5ybpk5gXOo9y8cqwNWotWo2Vcw3GcG3GORsUaqR1PiA/S2rk1NQrWIC4pLtsXxDOTTtHx+Z7Pmbg/dZn8N42+YXnn5bL7mjAoGo2GPpX7ALDu4jqV02Qvybpk+m7uy5YrW7AwsWBb7220KNlC7VhCZJh7RXcANgRvUDlJ9hKTEEPHdR15EPuAagWqsabbGky0JmrHMjpSjBNCiBxgWvNp6b2rvvT9kq98v0Kn6FROlerInSPUXlybMbvH8Cz+GTUK1uDY0GPMbD0TKzMrteMJ8cE0Gk367Li5gXNzxFK3xJRE+m7uyx+BfwAwx3UOM1rNkH6PwiB5VEldqup7w5dHsY9UTpM9pOhSGLh1IF6XvFL70/baTJtSbdSOJcQ76VahG1qNlpP3T8pS1f+Xokuh7+a+XHhwgQI2BdjusZ1c5rnUjmWUpBgnhBA5gEajYWarmcxsNROAWcdm0c2zG8/in6mW6erjq/T06knj5Y05/+A8DpYOLHBbwMnhJ6lbuK5quYTICj0q9qBs3rI8efGE30/8rnacLBWTEEP7te1Zf3E9Zloz1nRbw+f1P1c7lhDvrWzestQpVIcUJYU1QWvUjqO6FF0KQ7YPYW3QWky1pni5e+FWxk3tWEK8swK5CqQvq5alqqm+2fsNO67twNLUkm29t8lGS1lIinFCCJFDaDQaxjUax8ouKzE3MWfb1W3UWlyL0/dP6zXHveh7fLTjIyotqITXJS80aBhaYyhXP7nKqDqjZBq8MEomWhOmNkvdjew/R/9D5ItIlRNljYexD2m+ojl7b+7FxsyGnX120qdKH7VjCfHBBldPbWK+9MxSFEVROY16dIqOETtHsPL8Skw0Jqzvvj59V0ohDFHaUlWvS14qJ1HfsjPLmHVsFgB/d/5bdkTOYlKME0KIHKZ/tf4cGXKE4vbFuRl5k3pL6zHObxxxSXFZet3gh8EM3jYY59+dWXJmCSlKCh3LduT8yPMs7bSUfDb5svT6QqitZ6WeVMlfhaiEKH49+qvacTLdtSfXaLisIafDT+No7Yj/QH9ZtiaMhkcVDyxNLQl+FExgWKDacVShKAqjvUez7OwytBota7qtoXvF7mrHEuKDdKvQDQ0aAsMCuf3sttpxVHMg9AAjvUcCMMVlCr0q91I5kfGTYpwQQuRAtQvV5syIM7hXdCdFSeHXo79Sfl55lpxeQlJKUqZdJzElkU2XNuG2xo3Kf1bm73N/k6RLwqW4CwGDA9jusZ0qBapk2vWEyM60Gi3Tmk8D4PcTvxPxPELlRJnnyJ0jNFjWgBuRNyiZuyRHhhyhTuE6ascSItPktsydPoNm6ZmlKqfRP0VR+GzPZyw8vRANGlZ0WSFv1oVRKJirYPpS1Zy6kUPIkxC6eXYjWZeMR2UPvnf5Xu1IOYIU44QQIofKY5WHDe4b2N57O0XsinA3+i4f7fyIsvPK8vPhnwmPCX+v8yamJLLv5j4+3f0phWcXpodXD3Zf340GDd0qdOPY0GMcGHRAdkkVOVKncp2oW7gucUlxfLvvW7XjZAqvYC9armzJ0xdPqVOoDseGHqNs3rJqxxIi0w2tMRSA9cHreZ74XOU0+qMoCl/5fsXcwLkA/NX5L/pV7adyKiEyj0fl1E1aVl1YpXIS/Yt8EUmHdR2IjI+kXuF6LOu0TDZb0hMpxgkhRA7XsVxHrn1yjdltZpPfJj+hz0L5dv+3FJlThPpL6/O9//dsv7qdG09vkJCc8NLPvkh6wdXHV/G+5s3UA1Npv7Y9jr840mpVK+YGzuVx3GMK2RZifKPxXBtzjU09N1G/SH2VnqkQ6tNoNPzm+hsAy88t59T9U+oG+gCKovCfo/+h58aeJKQk0LlcZ/wH+lMgVwG1owmRJZoWb0rpPKV5nvgcr+Cc0V9KURQm7JvA7OOzAVjcYTGDqg9SN5QQmaxnpZ6Ym5gT9DCI8xHn1Y6jN0kpSbh7uXPtyTWK2hVla++tWJlZqR0rxzBVO4AQQgj1WZlZMbbBWEbUHoFXsBdLzy4l4E4AJ8JOcCLsxEuPtTS1xNzEnPjkeBJTEl97vgI2BWhfpj3dK3anTak2mGrldiNEmgZFG9Cvaj9WX1jNZ3s+I2BwgMF9Cp2iS+GzPZ8x/+R8AMbUHcMc1zmyAYswahqNhiHVhzBx/0SWnFnC4BqD1Y6U5SYfmMzMI6k7sc93m8/wWsNVTiRE5nOwcqBj2Y5suryJledXMqvgLLUjZTlFURjlPYp9t/alb7hUMFdBtWPlKDIzTgghRDprM2sGVh/I4cGHuTv2Ln91Sl2KUr1gdSxMLACIT44nOiE6vRCXyzwXlfNXpn/V/vzR9g9ODj/J/S/vs6zzMtzKuEkhTojXmNFyBjZmNhy9e9TglsXEJMTQxbML80/OR4OG2W1m83vb36UQJ3KEQdUHYao15di9Y5wJP6N2nCw17eA0ph1K7XP5m+tvfFznY5UTCZF1BlQbAMDai2tJ1iWrnCbrzTwyM30zlg3uG6haoKrakXIceYckhBDitYrYFWFwjcHpn/zrFB0xCTFExkeSmJKIlakVtha22FvYG9ysHiHUVtiuMJOaTmLCvgl8vudz2pRqYxCfSN+MvEmndZ0IfhSMhYkFq7utpkfFHmrHEkJvnGydcK/ozrqL6/j9xO+s6LJC7UhZYmbATL4/kNrE/dfWv/JZ/c9UTiRE1mpbui15rfIS8TyCvTf30rZ0W7UjZRnPi55M2DcBgLnt5uJWxk3lRDmTzIwTQgiRIVqNFntLe0rkLkHZvGUpal+U3Ja5pRAnxHv6ssGX1ChYg8j4SD72/hhFUdSO9K8OhB6g7pK6BD8KximXE4cGH5JCnMiRPquXWphaf3E9D54/UDlN5pt9bDbj940H4KcWP/FVw69UTiRE1jM3MU/fyOHvc3+rGyYLHb17lIFbBwIwtv5YmfGqIinGCSGEEEKowMzEjOWdl2OqNWXLlS1sCN6gdqQ3+vPkn7Re1ZonL55Qu1BtTg4/Sd3CddWOJYQq6hWpR73C9UhMSWTR6UVqx8lUc0/M5UvfLwGY4jKFiU0mqpxICP1JWw2y+fJmHsY+VDlN5rvx9Aad13dO33Tp19a/qh0pR5NinBBCCCGESqoVrMbExqlvdj/a+RE3nt5QOdHL4pPjGblzJB/v+phkXTJ9qvTh0KBDFLYrrHY0IVSVNjvuz1N/vrLTuKGaFziPT/d8CsDExhP53uV7lRMJoV81nWpSp1AdknRJRjc77umLp7Rf257HcY+p5VSLNd3WSK9XlUkxTgghhBBCRZOaTqJh0YZEJ0Tj7uVOfHK82pGA1E/QG/3ViEWnF6FBw4yWM1jddTVWZlZqRxNCdT0q9qCwbWEinkew4rzh943748QfjNk9BoBxDcfxY4sfpQ2FyJFG1h4JwKLTi9ApOpXTZI7ElES6eXbj6pOrFLUryg6PHdiY26gdK8eTYpwQQgghhIrMTMzw7OGJo7UjZyPOMmbXGNX7x22+vJmai2tyJvwMjtaO7O67m28afyNvzoX4f2YmZnzd8GsApgdMJyklSeVE7++347/x2Z7UmX7jG41nRqsZMtZFjtWrUi/sLey5GXmTfTf3qR3ngymKwvAdwzl4+yC25rZ49/HGydZJ7VgCKcYJIYQQQqiuiF0R1nRbgwYNS88uZUbADFVyxCXF8enuT+m+oTvRCdE0KtqIsyPO4lraVZU8QmRnw2sNJ79NfkKfhbI2aK3acd7LnGNzGOszFoAJjSfwc8ufpRAncjQbcxv6V+0PpC5DN3RTD05l5fmVmGhM8HL3okqBKmpHEv9PinFCCCGEENlAm1Jt+K3tbwBM3D+RZWeW6fX6J+6doOaimswNnAvA1w2/xn+gP0Xsiug1hxCGwtrMmi8bpG528HPAz6ToUlRO9G5mH5vNF75fAPBtk2/5qcVPUogTgv8uVd12dRs3I2+qnOb9LT69mKkHpwKwoP0C+WAtm9F7MS4iIoJhw4bh5OSEpaUlZcuW5YcffiAxMfGdzqPRaN74b8aM13+anFnXFkIIIYTICp/W+zR96duwHcNYdCrrd2qMS4pj4r6JNPyrIVefXMUplxO7+uzil9a/YGZiluXXF8KQjao9ijxWebj25BprgtaoHSfD/nP0P+m7pn7X9DumNZ8mhTgh/l+l/JVoU6oNOkXHnGNz1I7zXrZd2cYo71FA6hj/qNZHKicS/8tUnxeLiIigXr163L17ly5dulC2bFkCAgKYPHkyx44dw9vbG6024/XB4sWLM2jQoFeON27cOMuvLYQQQgiRFWa2mkl8cjxzA+cy0nskEc8j+M7lO7SazH2doigK269u57M9n3E76jYAfar0YW67ueSxypOp1xLCWNla2DKu4TjG7xvPt/u/xb2ie7be5ERRFH4+/DOT/CcBMNllMlOaTVE3lBDZ0NcNv8b3hi9/nfuLKc2mkNc6r9qRMuzInSP03tQbnaJjaI2hTG02Ve1I4jX0Woz75ptvuHPnDgsWLGDUqNQqraIoDB48mBUrVrBixQoGDx6c4fOVKFGCKVOmqHJtIYQQQoisoNFo+L3t71ibWTPzyEymHJzC+QfnWdppaaYVyc6En+Hb/d+y5/oeAIraFeX3tr/TtULXTDm/EDnJp/U+ZcGpBdyJusOc43OY2GSi2pFeS1EUxvmN4z/H/gPA1GZT+d7le5VTCZE9tSzZkuoFq3Mu4hwLTi7gO5fv1I6UIZcfXabjuo7EJ8fToWwHFnZYKLNesym9TQWLiYnB09MTZ2dnRo4cmX5co9Ewffp0tFotS5YsMbprCyGEEEK8K41Gw4xWM1jWaRnmJuZsubKFivMrsiF4w3vvtKooCoFhgXT17EqtxbXYc30PZlozJjSewOXRl6UQJ8R7sjKz4ucWPwOpO6s+eP5A5USvStGlMGLniPRC3BzXOVKIE+JfaDSa9LYRcwPnEpcUp3KitwuLDsN1tSuR8ZHUL1Ifzx6emGr1Ov9KvAO9FeOOHTtGQkICrVu3fqUy6+TkRJUqVThx4gTx8fEZPuezZ89YunQpP//8M0uWLCEkJERv1xZCCCGEyGpDagwhYHAAFRwr8CD2Ab029qLOkjpsCN5AfHLGXrdEPI9g4amF1FlSh3pL67H1ylY0aOhXtR/BHwfzc8ufsTG3yeJnIoRx86jiQe1CtXme+JwJ+yaoHeclSSlJ9N3clyVnlqDVaFnWaRmf1/9c7VhCZHvuFd0pkbsEj+IeseDkArXj/KsncU9wXe3K3ei7lMtbjp0eO7E2s1Y7lvgXeiuTphXKypQp89rvlylThvPnz3Pz5k0qVqyYoXOeP3+e4cOHp3+t0Wjo27cvixYtwtr6v794mXHthIQEEhIS0r+Ojo4GICkpiaSkpAzlFUJ8mLSxJmNOCP2Rcae+6vmrc2LICX45+gu/Bf7G6fDT9NrYi9yWuWlRogUNizSklEMp8lnnQ6vR8izhGWHRYZyNOEvg/UBOh59GIXU2nYWJBe4V3fm6wddUcKwAyP/b7EjGnWGa1WoWzVY2Y/m55fSq0IsWJVuoHYmYhBj6bOmDz00fzLRmrOi8gh4Vesjv1mvIuBOvM6nxJIbtHMb0gOkMrjoYOws7tSO9Iio+Cte1rgQ/CqZQrkLs6LUDOzM7g/hdNsZxl9HnordiXFRUFAD29vav/b6dnd1Lj3ubr776Cnd3d8qUKYNGo+Hs2bNMnDiR1atXk5yczLp16zL12tOnT2fq1FcbH/r7+79U+BNCZD0/Pz+1IwiR48i4U19tajO/7Hx2PtrJ/qf7eRL/hM1XNrP5yua3/mxZ67I0zN2QFnlaYGdix63AW9zilh5Siw8h487wtHVsy+7Huxm4aSB/lP8DC62FalmeJj1l2s1p3HpxC3ONOeNLjMf6ljW7bu1SLZMhkHEn/slBcaCIRRHuvbjH6NWj8XDyUDvSS+JT4pl6cyqXYy9jb2rPxCITuXT0Epe4pHa0d2JM4y4uLmNLmt+5GOfo6MiTJ08y/Hh/f3+aNWv2rpd5q19//fWlr5s3b86+ffuoVq0a69evZ9KkSVSqVCnTrjdhwgS++OKL9K+jo6MpWrQozZs3J29ew9lZRQhDlpSUhJ+fH61bt8bMzEztOELkCDLush8PPEjRpXAi7AQH7xzkTPgZbkfd5ln8M3SKDlsLW5xyOVEpXyVqOdWiSbEmFLYtrHZs8Q5k3BmuxgmNqba4GmExYewz2ce8dvNUyRH0MIhPPD/h3ot75LfOz9aeW6ldqLYqWQyFjDvxJonOiXhs8cA70pvZvWeTzyaf2pEAiE+Op+uGrlyOvUxuy9z49vWleoHqasd6J8Y47tJWUb7NOxfjPDw8iImJyfDjCxYsCPx3VtqbZp+lBX7T7LWMsLa2xsPDg2nTpnHkyJH0YlxmXNvCwgILi1c/2TIzMzOaXxohDIWMOyH0T8Zd9mKGGS7OLrg4u6gdRWQhGXeGJ69ZXpZ3Xk6b1W1YfHYxrUu3pkfFHnrN4H3Nmz6b+xCdEE15x/Ls6rOLkg4l9ZrBkMm4E/+rZ5We/Hr8V86En2HK4Sks7rhY7UjEJ8fjscWDfaH7yGWei919d1OnSB21Y703Yxp3GX0e71yMmzt37juHgf/2a3vTJgshISFotVqcnZ3f6/xpHB0dgZenBurr2kIIIYQQQoicrXWp1oxvNJ4ZR2YwbPswKuevTHnH8ll+XZ2iY9rBaUw5OAWApsWbsqXXFvJY5cnyawthzLQaLb+5/kbTv5uy9MxShtYYSr0i9VTLE5cUR1fPrvje8MXS1JIdHjuoX6S+annE+9Hbbqr169fHwsICPz8/FEV56Xvh4eEEBQVRr149LC0tP+g6J06cAKBEiRJ6v7YQQgghhBBC/ND8BxoVbURUQhRua9x4FPsoS68X+SKSLuu7pBfiRtcZjV9/PynECZFJmhRvwoBqA1BQ+HjXxyTrklXJ8TzxOe3Xtsf3hi82Zjbs6rOLZiWaqZJFfBi9FePs7Ozo1asXN2/eZOHChenHFUVhwoQJ6HS6l3ZGhdTZbVeuXOHOnTsvHT979uxrm+J5eXmxbt06HB0dadWq1QddWwghhBBCCCHeh5mJGVt6bcHZwZlbz27httaNyBeRWXKt/bf2U+XPKuy4tgMLEwuWd17OPLd5mJuYZ8n1hMipfmn1C/YW9pwJP8OMgBl6v35UfBSuq105EHoAW3NbfPr50Lxkc73nEJlDb7upAsyYMQN/f39Gjx7N3r17KVu2LIcPH+bIkSO4uroycODAlx4fGBhI8+bNcXFx4cCBA+nHf//9d7Zu3UrLli0pVqwYiqJw5swZDh8+jKWlJStWrCBXrlwfdG0hhBBCCCGEeF/5bPKxq88uGv3ViFP3T9FiZQt8+/lmWvP354nP+d7/e+YcnwNAmTxlWNd9HbUK1cqU8wshXlYgVwHmtpvLgK0DmHpwKm1Lt9Xbxih3ou7gtsaN4EfB5LbMjU8/H+oWrquXa4usobeZcQBOTk6cOHGCwYMHc+TIEWbPns2DBw+YOnUq27ZtQ6vNWJzOnTvTrFkzzpw5w+LFi/nzzz+5d+8eQ4cO5ezZs7i5uWXZtYUQQgghhBAiI8o5luPAoAPkt8nPuYhz1F1alzPhZz7onIqisCF4A+XnlU8vxI2oNYKzI85KIU6ILNavaj/cK7qTrEvGY5NHls14/aez4Wepv7Q+wY+CKWRbiAMDD0ghzgjodWYcpBbFli1blqHHNmvW7JUebwBdu3ala9euWXptIYQQQgghhPhQlfNX5uCgg7Rf256bkTdpuKwhU5pN4YsGX7zTUlJFUfC94csPh37g6N2jAJTMXZJ5bvNwK/PqZAQhRObTaDT82f5PToSd4PrT63hs8mBnn52YarOmtLLtyjb6bu5LbFIslfNXZlefXRS1L5ol1xL6JdPBhBBCCCGEECILlXcsz6nhp+hQtgMJKQlM2DeBSgsqsfDUQmITY//1Zx/FPuKPE39QY1EN2q5py9G7R7E0tWSKyxSCPw6WQpwQepbXOi/bem/D2swanxs+fLLrk9dOIvoQybpkxvmNo4tnF2KTYmnl3IqAwQFSiDMiep8ZJ4QQQgghhBA5jYOVA9t7b2f1hdV87fc1159eZ5T3KD7f8zlNizelRsEaFLMvhlajJSYxhhtPbxB4P5DzEedRSH2jb2VqxcjaI/m64dc42Tqp/IyEyLmqF6zOii4r6OnVk0WnF2GmNeOPdn+g0Wg++Ny3Im8xcOtADt85DMDY+mOZ2WomZiZmH3xukX1IMU4IIYQQQggh9ECj0dC/Wn86l+/M8rPLmXdyHtefXsfvph9+N/3e+HO1C9VmYLWBeFT2IK91Xj0mFkK8SY+KPVjWaRlDtw9l3sl5PHnxhKWdlmJtZv1e50vRpfDnqT8Zv3c8sUmx2JrbsrzzcrpX7J7JyUV2IMU4IYQQQgghhNAjOws7Pqv/GZ/W+5Qrj6+w79Y+Qp6EcC/mHpA6A87ZwZmK+SrSrEQzCuYqqHJiIcTrDK4xGI1Gw/Adw1l3cR2XHl1ieefl1HCqkeFzKIqCzw0fxvmNI+hhEABNizflr05/USpPqayKLlQmxTghhBBCCCGEUIFGo6FCvgpUyFdB7ShCiPc0qPogSuYuibuXO+cfnKf2ktoMrzmcsfXHUs6x3Bt/7nnic7Zd2cYfgX8QGBYIQG7L3PzY/EdG1RmFViMt/o2ZFOOEEEIIIYQQQggh3pNLCRfOjzzPWJ+xeAZ7suj0IhadXkSdQnVoVqIZzg7O5LbMTWxiLLee3eLU/VMcCD1AQkoCABYmFnxS9xMmNplIHqs8Kj8boQ9SjBNCCCGEEEIIIYT4AE62TqzvsZ5RtUcx69gsdl7bycn7Jzl5/+Qbf6aUQykGVhvIiNojyG+TX49phdqkGCeEEEIIIYQQQgiRCVxKuOBSwoWw6DD239rPsXvHCIsJIyo+ClsLWwraFKR6weo0Ld6UyvkrZ8oOrMLwSDFOCCGEEEIIIYQQIhMVtitM/2r96V+tv9pRRDYkHQGFEEIIIYQQQgghhNATKcYJIYQQQgghhBBCCKEnUowTQgghhBBCCCGEEEJPpBgnhBBCCCGEEEIIIYSeSDFOCCGEEEIIIYQQQgg9kWKcEEIIIYQQQgghhBB6IsU4IYQQQgghhBBCCCH0RIpxQgghhBBCCCGEEELoiRTjhBBCCCGEEEIIIYTQEynGCSGEEEIIIYQQQgihJ1KME0IIIYQQQgghhBBCT0zVDmCoFEUBICYmBjMzM5XTCJEzJCUlERcXR3R0tIw7IfRExp0Q+ifjTgj9k3EnhP4Z47iLjo4G/lszehMpxr2nJ0+eAFCyZEmVkwghhBBCCCGEEEKI7CImJgZ7e/s3fl+Kce8pT548ANy5c+df/wMLITJPdHQ0RYsW5e7du9jZ2akdR4gcQcadEPon404I/ZNxJ4T+GeO4UxSFmJgYChUq9K+Pk2Lce9JqU9vt2dvbG80vjRCGws7OTsadEHom404I/ZNxJ4T+ybgTQv+MbdxlZMKWbOAghBBCCCGEEEIIIYSeSDFOCCGEEEIIIYQQQgg9kWLce7KwsGDy5MlYWFioHUWIHEPGnRD6J+NOCP2TcSeE/sm4E0L/cvK40yhv229VCCGEEEIIIYQQQgiRKWRmnBBCCCGEEEIIIYQQeiLFOCGEEEIIIYQQQggh9ESKcUIIIYQQQgghhBBC6IkU44QQQgghhBBCCCGE0BMpxr2jkydP4ubmhoODAzY2NtStW5e1a9eqHUsIo1aiRAk0Gs1r/40cOVLteEIYrNWrVzNixAhq166NhYUFGo2Gv//++42Pj46O5osvvqB48eJYWFhQvHhxvvjiC6Kjo/UXWggD9y7jbsqUKW+8/1laWuo3uBAGKiwsjN9++402bdpQrFgxzM3NKViwIN27d+fEiROv/Rm53wnxYd513OXE+52p2gEMyYEDB3B1dcXc3JzevXtjb2/P5s2b6du3L6GhoUycOFHtiEIYLXt7ez7//PNXjteuXVv/YYQwEpMmTeL27ds4Ojri5OTE7du33/jY2NhYXFxcOHfuHK1bt8bDw4Pz588zZ84c/P39CQgIwMbGRo/phTBM7zLu0gwcOJASJUq8dMzUVF7GC5ERc+fOZebMmZQqVYrWrVuTP39+QkJC2Lp1K1u3bmXdunX07Nkz/fFyvxPiw73ruEuTo+53isiQpKQkpVSpUoqFhYVy5syZ9OPR0dFKpUqVFFNTU+XatWsqJhTCeBUvXlwpXry42jGEMDp+fn5KaGiooiiKMn36dAVQli9f/trHfv/99wqgjBs37rXHv//++6yOK4RReJdxN3nyZAVQ/P399RdQCCOzadMm5dChQ68cP3TokGJmZqbkyZNHiY+PTz8u9zshPty7jruceL+TZaoZtH//fm7cuEGfPn2oUaNG+nFbW1u+++47kpOTWb58uYoJhRBCiHfTqlUrihcv/tbHKYrC0qVLyZUrF99///1L35swYQIODg4sW7YMRVGyKqoQRiOj404IkTm6detGkyZNXjnepEkTmjdvztOnTwkKCgLkfidEZnmXcZdTGel8v8x34MABANq0afPK99KOHTx4UJ+RhMhREhISWLFiBWFhYTg4ONCwYUOqVaumdiwhcoSQkBDu37+Pq6vrK0tzLC0tadq0Kdu2beP69euUKVNGpZRCGK/Dhw8TGBiIiYkJ5cuXp1WrVlhYWKgdSwiDZ2ZmBvx3GZzc74TIev877v4pJ93vpBiXQSEhIQCv/aPr4OCAo6Nj+mOEEJkvIiKCQYMGvXSsbdu2rFq1CkdHR3VCCZFD/Ns98J/HQ0JC5M2JEFngf2foODk5sWLFClq3bq1SIiEM3507d9i7dy8FCxakSpUqgNzvhMhqrxt3/5ST7neyTDWDoqKigNQm8q9jZ2eX/hghROYaMmQIBw4c4NGjR0RHR3P8+HHatWvHnj176NSpkywVECKLZeQe+M/HCSEyR/Xq1VmxYgWhoaG8ePGCkJAQpk2bxrNnz+jUqRPnz59XO6IQBikpKYn+/fuTkJDAL7/8gomJCSD3OyGy0pvGHeTM+53MjBNCZHv/+wlJvXr12LlzJy4uLgQEBLBr1y7at2+vUjohhBAia3Tp0uWlr0uXLs2kSZMoUKAAH330ET/++CNeXl7qhBPCQOl0OoYMGcKhQ4cYPnw4/fv3VzuSEEbvbeMuJ97vZGZcBqV9OvKmT0Gio6Pf+AmKECLzabVaBg8eDMCRI0dUTiOEccvIPfCfjxNCZK2BAwdiamoq9z8h3pGiKAwfPpzVq1fTr18/Fi5c+NL35X4nROZ727j7N8Z8v5NiXAb9sz/A/4qMjOTx48fSN0AIPUvrFRcXF6dyEiGM27/dA/95XO6DQuiHubk5tra2cv8T4h3odDqGDh3KX3/9hYeHB3///Tda7ctvh+V+J0Tmysi4+zfGfL+TYlwGubi4AODr6/vK99KOpT1GCKEfJ06cAKBEiRLqBhHCyJUpU4ZChQpx5MgRYmNjX/pefHw8hw4dolChQpQuXVqlhELkLCEhIURGRsr9T4gM0ul0DBs2jOXLl9OrVy9WrVr1Ur+qNHK/EyLzZHTc/Rtjvt9JMS6DWrZsibOzM2vXruXcuXPpx2NiYpg2bRqmpqav7PQohPhwly5d4tmzZ68cDwgIYPbs2VhYWNCtWzf9BxMiB9FoNAwbNoznz5/zww8/vPS96dOnExkZybBhw9BoNColFML4xMTEcOHChVeOR0ZGMnToUAA8PDz0HUsIg5M2M2f58uW4u7uzevXqNxYE5H4nROZ4l3GXU+93GkW2Icwwf39/XF1dsbCwwMPDAzs7OzZv3sytW7f48ccf+fbbb9WOKITRmTJlCr/88gstW7akRIkSWFhYcPHiRXx9fdFqtSxcuJBhw4apHVMIg7R06VICAgIACAoK4syZMzRq1Cj9E/8uXbqkN9SNjY2lcePGnDt3jtatW1OrVi3Onz/P7t27qV69OgEBAdjY2Kj1VIQwGBkdd6GhoZQsWZLatWtTpUoV8ufPT1hYGLt37+bJkye0bt2anTt3Ym5urubTESLbmzJlClOnTiVXrlx89tlnmJq+uodhly5dqF69OiD3OyEyw7uMuxx7v1PEOzlx4oTStm1bxd7eXrGyslJq166trF69Wu1YQhitAwcOKD179lRKly6t2NraKmZmZkqRIkWU3r17KydOnFA7nhAGbeDAgQrwxn+TJ09+6fHPnj1Txo4dqxQtWlQxMzNTihYtqowdO1Z59uyZOk9ACAOU0XEXFRWljB49WqlVq5bi6OiomJqaKvb29krjxo2VhQsXKsnJyeo+ESEMxNvGHKAsX778pZ+R+50QH+Zdxl1Ovd/JzDghhBBCCCGEEEIIIfREesYJIYQQQgghhBBCCKEnUowTQgghhBBCCCGEEEJPVSrnfwAAAwZJREFUpBgnhBBCCCGEEEIIIYSeSDFOCCGEEEIIIYQQQgg9kWKcEEIIIYQQQgghhBB6IsU4IYQQQgghhBBCCCH0RIpxQgghhBBCCCGEEELoiRTjhBBCCCGEEEIIIYTQEynGCSGEEEIIIYQQQgihJ1KME0IIIYQQQgghhBBCT6QYJ4QQQggh3tu4cePQaDQEBgaqHUUIIYQQwiBIMU4IIYQQQry3M2fOYGJiQpUqVdSOIoQQQghhEDSKoihqhxBCCCGEEIYpT548FCpUiIsXL6odRQghhBDCIMjMOCGEEEII8c7GjBmDRqMhMjKS4OBgNBpN+r/Q0FC14wkhhBBCZFumagcQQgghhBCGp0GDBjx48AAvLy/c3NyoU6cOAFqtluLFi6ucTgghhBAi+5JlqkIIIYQQ4r1Mnz6diRMn4uPjQ5s2bdSOI4QQQghhEGSZqhBCCCGEeC/nzp0DoHr16qrmEEIIIYQwJDIzTgghhBBCvJeyZcsSGxtLWFiY2lGEEEIIIQyGzIwTQgghhBDv7Pnz51y/fp0aNWqoHUUIIYQQwqBIMU4IIYQQQryz8+fPoyiKFOOEEEIIId6RFOOEEEIIIcQ7u3DhAgDVqlVTOYkQQgghhGGRYpwQQgghhHhnT548ASBXrlwqJxFCCCGEMCymagcQQgghhBCGJ2156pgxY+jRowcWFha0bNmSJk2aqJxMCCGEECJ7k91UhRBCCCHEe5kxYwaLFy/m7t27JCcns2HDBtzd3dWOJYQQQgiRrUkxTgghhBBCCCGEEEIIPZGecUIIIYQQQgghhBBC6IkU44QQQgghhBBCCCGE0BMpxgkhhBBCCCGEEEIIoSdSjBNCCCGEEEIIIYQQQk+kGCeEEEIIIYQQQgghhJ5IMU4IIYQQQgghhBBCCD2RYpwQQgghhBBCCCGEEHoixTghhBBCCCGEEEIIIfREinFCCCGEEEIIIYQQQuiJFOOEEEIIIYQQQgghhNATKcYJIYQQQgghhBBCCKEnUowTQgghhBBCCCGEEEJP/g+ELX1L5toecQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t, x_soln, 'b', label='$x$')\n", + "plt.plot(t, v_soln, 'g', label='$v$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Solution',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6e05515c", + "metadata": {}, + "source": [ + "### Training data " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "1fbfc12c", + "metadata": {}, + "outputs": [], + "source": [ + "t_tensor = torch.tensor(t,dtype=torch.float32).reshape(-1,1)\n", + "x_tensor = torch.tensor(x_soln,dtype=torch.float32).reshape(-1,1)\n", + "v_tensor = torch.tensor(v_soln,dtype=torch.float32).reshape(-1,1)\n", + "\n", + "data_tensor = torch.cat((t_tensor,x_tensor, v_tensor),axis=1) # Reference values for t , x, v\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3e845ad2", + "metadata": {}, + "outputs": [], + "source": [ + "# ------ Training data -----------\n", + "\n", + "train_points = 100 # no of training data points\n", + "coll_points = 1000 # no of collocation points to constrain ODE/PDE residual " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4c8b20e4", + "metadata": {}, + "outputs": [], + "source": [ + "idx = np.random.choice(len(t), train_points, replace=False)\n", + "data_train_tensor = data_tensor[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c6870301", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAAGUCAYAAAB3B+YDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhU5RfA8e+dYXUBFdxBcSk1U7NcMkUlTU0zC5dSK82stLKs1DI3zMyyxSUzKzUt01LDflruC25paeaSW+YuUoobKgLDzP398TasAwzbLHA+z8PDcOfOnXeAO3Pvuec9R9N1XUcIIYQQQgghhBBCCFHoDM4egBBCCCGEEEIIIYQQxYUE44QQQgghhBBCCCGEcBAJxgkhhBBCCCGEEEII4SASjBNCCCGEEEIIIYQQwkEkGCeEEEIIIYQQQgghhINIME4IIYQQQgghhBBCCAeRYJwQQgghhBBCCCGEEA4iwTghhBBCCCGEEEIIIRxEgnFCCCGEEEIIIYQQQjiIBOOEEEIIIfJB0zTatm2br21ERUWhaRoREREFMqbCVhCvuaho27YtmqY5exhCCCGEcCMSjBNCCCGE29M0LVdfwvlCQkIICQlx9jBcwqlTp9A0jf79+zt7KEIIIYRwAA9nD0AIIYQQIr/GjRuXadn48ePx9/dn6NChhfrchw8fpkSJEvnaRrNmzTh8+DCBgYEFNCrhKF9//TXx8fHOHoYQQggh3Iim67ru7EEIIYQQQhQ0TdOoXr06p06dcvZQihxN02jTpg1RUVF53oY1K07+Pup3UKNGDfr168e8efOcPRwhhBBCFDKZpiqEEEKIYiPtdMAjR44QHh5OYGAgmqalBIWWLVtG7969qV27NiVKlMDf35/Q0FB++OEHm9u0VT+tf//+KducOXMm9erVw8fHh+rVqzN+/HgsFku69bOqGWedynnz5k1ee+01qlatire3Nw0bNmTp0qVZvsbHHnuMcuXKUapUKdq0acOWLVuIiIhA07RcBdBmz57NnXfeiY+PD8HBwYwYMYKEhASb6/7++++89NJL3Hnnnfj7++Pr60uDBg147733MJlM6canaRqnT5/m9OnT6aYPW19/UlISn3zyCR07diQ4OBhvb28qVKhAeHg4f/zxh93jT/t73bJlC23atKFUqVKUK1eOPn36cO7cOZuPO3jwII899hgVKlTA29ubGjVq8Oqrr3L58uVM69qqGTdv3jw0TWPevHls2LCBVq1aUbJkSQICAujXrx+XLl1Kt26NGjUAmD9/frrfh/VvlZCQwEcffUSjRo3w9/enVKlS1KpVi969e3PgwAG7fx9CCCGEcA0yTVUIIYQQxc7ff//NvffeS/369enXrx+XL1/Gy8sLgJEjR+Ll5UWrVq2oXLkyFy9eZPny5fTo0YPp06czZMgQu59n+PDhREVF8dBDD9GhQwd+/PFHIiIiSEpKYuLEiXZtw2Qy0aFDBy5fvkx4eDjx8fF899139OrVi9WrV9OhQ4eUdaOjo7nvvvuIiYmhc+fONGrUiKNHj9KhQwfCwsJy9TuaMGECY8eOpWLFijz77LN4enry/fffc/jwYZvrf/nll6xYsYLWrVvTuXNn4uPjiYqKYuTIkezatSslmFmmTBnGjRvH1KlTAdJNI7YGNS9fvszQoUMJDQ2lc+fOlC1blhMnTrB8+XJWrVrFli1baNq0qd2vZefOnUyaNIkuXbrw8ssvs2fPHhYtWsS2bdvYtWsXFStWTFn3l19+oUOHDiQmJtKjRw9CQkLYuXMnU6dO5eeff2bHjh0EBATY9bwrVqzgp59+omvXrgwePJgtW7bw9ddfc/z4cbZt2wbAXXfdxSuvvMK0adNo1KgRjzzySMrjrdmD/fr1Y/HixTRs2JCnn34ab29vzpw5w6ZNm+jYsSMNGjSw+3chhBBCCBegCyGEEEIUQYBevXr1dMtOnjypAzqgjxkzxubjjh8/nmnZ9evX9QYNGuj+/v76zZs3Mz1PmzZt0i3r16+fDug1atTQz58/n7L84sWLepkyZfTSpUvriYmJKcs3bdqkA/q4cePSbad69eo6oHfr1i3d+uvXr9cBvWPHjunWf+KJJ3RA/+CDD9It/+qrr1Je96ZNm2y+7rSOHTume3h46FWrVtX//ffflOXXrl3T69SpY/M1nzp1Sk9OTk63zGKx6AMGDNABfdu2bZleW8a/j1VCQoJ+7ty5TMv//PNPvVSpUnr79u1zfA26nvp7BfTZs2enu2/8+PE6oA8YMCBlmdls1m+77TYd0FevXp1u/ZEjR+qA/swzz6Rb3qZNGz3jIbX19+3h4ZHudScnJ+tt27bVAX3Hjh0py63/l/369cv0Gq5evaprmqY3adIk0+83OTlZv3Llil2/CyGEEEK4DpmmKoQQQohip1KlSowePdrmfTVr1sy0rFSpUvTv359r166xa9cuu59nzJgxVK5cOeXnwMBAunXrxvXr1zl69Kjd25kyZUpK5h5Au3btqF69erqxJCYmsmTJEipWrMjLL7+c7vH9+vWjbt26dj/fwoULSU5O5rXXXqNChQopy/38/LL8vVWvXh2j0ZhumaZpvPjiiwCsX7/e7uf39vamatWqmZbXr1+fsLAwtmzZkm7qa07q1KnDgAED0i0bPnw45cuXZ9GiRSQlJQGwfft2jh07xoMPPkjHjh3TrT9q1CgCAgJYuHBhyvo56dOnDy1btkz52Wg00q9fPwC7/480TUPXdby9vTP9fo1GI2XKlLFrO0IIIYRwHRKME0IIIUSx06hRo3TBrbQuXLjAa6+9Rr169ShRokRK/a7XX38dgPPnz9v9PHfffXemZUFBQQBcvXrVrm2UKVMmpaZYxu2k3cbRo0dJTEykSZMmmV6bpmm0aNHC7nHv27cPgNDQ0Ez32VoGqs7bxx9/TLNmzfDz88NgMKBpGvfccw+Qu98bwN69e+nTpw/VqlXDy8sr5e+wYsUKkpKSiI2NtXtbLVu2zFTXzdfXl3vuuYdbt27x119/AaTUo8tYAxCgZMmSNGnSJN36OSmIv7+fnx+dOnVi+/bt3H333bz77rts3brV7oCgEEIIIVyP1IwTQgghRLGTtkZYWpcvX6Zp06acOXOGli1b0r59e8qUKYPRaGTv3r3873//IzEx0e7n8ff3z7TMw0MdfpnN5jxvw7qdtI0g4uLiAChfvrzN9bN6zbZcu3YNIF1WXE7b6dGjBytWrOD2229PaX7g6enJ1atXmTZtWq5+b7/88gv3338/AB06dOC2226jVKlSaJrGjz/+yL59+3K1PVuvI+1rsb5e6+8wq9dYqVKldOvnpCD+/gBLly7l3XffZdGiRYwaNQqA0qVLM2DAAN59911KlChh97aEEEII4XwSjBNCCCFEsZMxS8pqzpw5nDlzhnfeeScl6GH13nvv8b///c8Rw8sTPz8/AC5evGjz/n///dfubVmDSBcuXKB69eo5bmfXrl2sWLGCjh078vPPP6ebTrlz506mTZtm93MDTJw4kcTERLZt25Zumqd1e9bMPXtduHDB5nLra7G+XuvvMKvflXW5dT1HKVmyJBMnTmTixImcPHmSTZs2MWvWLKZNm8atW7f4/PPPHToeIYQQQuSPTFMVQgghhPjP8ePHAXj44Ycz3bd161ZHDydX6tSpg7e3N7///numKYy6rrNz5067t9WoUSPA9mu2tcz6e+vSpUumumZZ/d6MRmOW2WHHjx+nXLlymQJx8fHx7NmzJ+cXkMH27dvRdT3dslu3bvH777/j6+vL7bffDkDjxo0BiIqKyrSN+Ph4du/eja+vL3Xq1Mn1GLJj/Z3Zky1Xo0YNBgwYwObNmylVqhTLly8v0LEIIYQQovBJME4IIYQQ4j/WLLBt27alW75w4UJWrlzpjCHZzdvbmx49evDPP/8wffr0dPd9/fXXHD582O5t9enTB6PRyMcff5wuqywuLo533nkn0/pZ/d4OHjzIpEmTbD5HuXLliI2NJSEhweb2rly5wsGDB1OWmc1mhg0blmXmX3aOHj3K3Llz0y374IMPuHjxIr17906psdeyZUtq1arFqlWrMjWcmDRpErGxsenWLyhly5ZF0zTOnTuX6b6LFy/y22+/ZVp+5coVEhMT8fX1LdCxCCGEEKLwyTRVIYQQQoj/PPnkk7z//vsMGTKETZs2Ub16dfbv38/69esJDw8nMjLS2UPM1qRJk1i/fj3Dhw9n06ZN3HXXXRw9epSffvqJTp06sXr1agyGnK/F1q5dm7FjxzJu3DgaNmxIr1698PDw4IcffqBBgwaZOsE2a9aMZs2asXjxYmJiYrj33ns5c+YMy5cvp0uXLixdujTTc9x///3s3r2brl27EhoaipeXF61ataJVq1YMGTKEtWvX0qpVK3r16oWPjw9RUVFER0fTtm1bm5lr2enQoQMvvPACP//8M3Xr1mXPnj2sWbOG4OBg3n333ZT1DAYD8+bNo2PHjnTu3JmePXtSvXp1fv31VzZu3EitWrV47733cvXc9ihVqhRNmzZly5YtPP3009x2220YDAb69OnD5cuXad68OfXr1+fuu++matWqXLp0if/973+YTCZGjBhR4OMRQgghROGSzDghhBBCiP8EBQWxefNm2rVrx/r16/n8889JTExk7dq1dO3a1dnDy1FwcDA7duygZ8+ebN++nalTp3LhwgXWrl1L7dq1AfvrnY0dO5Yvv/ySgIAAPv/8c5YsWUKvXr1YsmRJpnWNRiM//fQTAwYM4Pjx43zyySccOnSIDz/8kMmTJ9vc/pgxY3j22Wc5ePAg48ePZ+TIkSnZaA899BBLly6lZs2aLFiwgIULF1K3bl1+++23TDXs7NGiRQvWrVtHbGws06ZN49dff+Xxxx9n+/btmZo1tGrVip07d9KtWzfWrl3Lhx9+yPHjx3n55ZfZuXNnlg0y8uubb76hU6dO/Pjjj4wePZqRI0dy4sQJQkJCiIiIICAggPXr1/Pxxx/z888/c/fdd7NmzRoGDRpUKOMRQgghROHR9IwFNIQQQgghRJHTqlUrduzYwbVr1yhVqpSzh+MQUVFRhIWFMW7cOCIiIpw9HCGEEEIIQDLjhBBCCCGKlJiYmEzLvv32W7Zv30779u2LTSBOCCGEEMJVSc04IYQQQogi5M4776Rx48bccccdGI1G9u7dS1RUFKVLl+bDDz909vCEEEIIIYo9CcYJIYQQQhQhgwYNYsWKFezevZubN29Svnx5+vTpw5gxY6hbt66zhyeEEEIIUexJzTghhBBCCCGEEEIIIRxEasYJIYQQQgghhBBCCOEgEowTQgghhBBCCCGEEMJBpGZcHlksFs6fP0/p0qXRNM3ZwxFCCCGEEEIIIYQQTqTrOtevX6dKlSoYDFnnv0kwLo/Onz9PcHCws4chhBBCCCGEEEIIIVzI2bNnCQoKyvJ+CcblUenSpQE4efIk5cqVc/JohCgeTCYTa9eupUOHDnh6ejp7OEIUC7LfCeF4st8J4Xiy3wnheEVxv4uLiyM4ODglZpQVCcblkXVqaunSpfHz83PyaIQoHkwmEyVKlMDPz6/IvFkL4epkvxPC8WS/E8LxZL8TwvGK8n6XUzkzaeAghBBCCCGEEEIIIYSDSDBOCCGEEEIIIYQQQggHkWCcEEIIIYQQQgghhBAOIsE4IYQQQgghhBBCCCEcRIJxQgghhBBCCCGEEEI4iHRTFUIIIYQQQgghhChkJpMJs9ns7GG4DJPJhIeHBwkJCS77ezEajYXS6VWCcUIIIYQQQohiwWyGrVshJgYqV4bQUDAanT0qIURRFxcXR2xsLImJic4eikvRdZ1KlSpx9uxZNE1z9nCy5O3tTWBgIH5+fgW2TQnGCSGEEEIIIYq8yEh45RU4dy51WVAQfPwxlC8vATohROGIi4sjOjqaUqVKERgYiKenp0sHnhzJYrFw48YNSpUqhcHgelXUdF3HZDJx7do1oqOjAQosICfBOCGEEEIIIUSRFhkJPXqArqdffu4c9OqVfln58jBzplpfCOEa3DmrNTY2llKlShEUFCRBuAwsFgtJSUn4+Pi4ZDAOwNfXl9KlS3Pu3DliY2MLLBjnmq9WCCGEEEIIIQrArVsweHDmQFxWLl6Enj1hxIjCHZcQwj6RkRASAmFh0KeP+h4SopbrOpw+Ddu3w9q1sHMnREfbv78XNpPJRGJiIv7+/hKIc2OapuHv709iYiImk6lAtimZcUIIIYQQOXDnK/JCFEexsfDdd7B4MezYAcnJud/GBx9A06YqMCeEcI7sslq7dwc/P4iLy/y4oCB44AF4+mlo1QqcFQezNiUojAYAwrGsf0Oz2Vwgf08JxgkhhBBCZCOrOlPPPgu33SbBOSFcycWL8N57MGsWxMfnf3svvgjh4bJ/C+EMZrP6/M0uyy0uDjw8oFo1KFUKrl5VmXHnzsFXX6mvu+6C99+HDh0cNfLMJCvO/RX031CmqQohhBBCZMF6RT5tIA7Uz+PGZZ4uI4RwDl1XJ91166qGDPHx6gR8yhRYsCDv2714UWXFCiEcb+vWzJ+/tvz8Mxw/Dvv2qSmrcXFqyurAgeDrC3v3QseO0K0b/PtvoQ9bCLtIME4IIYQQwgZ7rshbRUeroJ0E5IRwvGvX1P43YABcvgwNG8KqVbBnDwwdCo8/rrJZ85rUEBNToMMVQmTDbIaoKFi0CDZssO8xly6l/7lECTVF9csv4exZ9T7g6QnLl0ODBrBmTUGPWojck2CcEEIIIcR/DhyADz9UV89r1LDvijykBuyGDlUnEkIIx/j7b2jSRAXCPT3VVLTdu6FTp9Tgm9EI06ap23kJyFWokBociIqSfVyIwpKxUcM779j3uMqVs74vIEBlyP7+uwrEXbwInTvDJ5+oz+60wT/Zv4UjSc04IYQQQhQbthoxmM1qetusWWoqS17puroCv3UrtG1bUCMWQmTl99/hwQfVyXX16rBkiWq4YEt4OCxdmrn+Y048PODJJ9NnxwUFqeBeeHj+xi+ESJVVo4bsaJraH0NDc163QQP47TfVWXnePHj5Zdi4EXbtUtntVrJ/C0eRYJwQQgghigVbjRjKllVZM7Gx6mcvLzW15f771c+vv57755EpbUIUvu3bVfbbjRvQuLGallqxYvaPCQ9XWa9pA/I//6yyYbOSnJx5n7ZOS1+6VE7YhSgIuSkLYWXNcp061f4GKz4+MHeuqi355pvw44+Z15H9WziKTFMVQgghRJFmNsPbb0P37pkzYq5cUYG4smXVNJaYGPjpJ3jtNXVikJc6U9lNlxFC5N+ePWqa2Y0bKnAeFZVzIM7KaFSZq717q+8ffACLF0NgYPr1goLA39/2NmRauhAFy95GDWkFBeUtYKZpMGwYlClj+37Zv4WjSGacEEIIIYosW9lwtpQoAUOGpL+6bq0z1aOHOni394r9Dz9A8+aqg5sQomAdPqy6IsbFQevWsGKF2n/zo2dPdUKfNmPObIb27bN+jExLF6Lg2JtRPno03HFHapkJezPiMtq6Fa5ezfp+2b+FI0hmnBBCCCGKJGv9GXuutkdHq4PujKx1pqpWtf95Z8yAli3V80phaCEKzqVL8NBDKpu1SZOCCcRZZcyYu3DBvsfJtHQh8s/ejPJ27VL30bwG4sD+/Vb274LVokULNE1j165d6ZZfvXqVBg0a4OPjw+bNm500OsdzeDBuwYIFPP/88zRp0gRvb280TWPevHm52sa2bdt4/fXXueeeewgICMDHx4e6devyxhtvcDWLEHdISAiaptn8GjRoUP5fmBBCZCGnk3E5WRei4OWl/kxWB93h4XDqFGzaBAsXwvjxmYNzwcEqI27lSjXd7Y8/oGFDqFIltStcWJjqEhcZmddXJUTxZTJBr15w4oTaj1auBD+/wns+e4MDMi1diPwLDc1+X9I09TlrT6MGe7jK/q3rcPOm63/l5lgqO++99x4AY8eOTVmWkJBA7969OXLkCN9++y1t2rQpmCdzAw6fpjp69GhOnz5NYGAglStX5vTp07neRo8ePYiNjaVVq1Y89dRTaJpGVFQUkydP5ocffuCXX36hQoUKmR7n7+/P0KFDMy1v0qRJXl6KEELkyNYUubRdmrK6/9ln4bbb8p+GL0RxlZf6M9kddFuzZqxGjcrcldW6n+7apabPnT2beTtSGFqIvHn9ddX5sFQpWL4cypcv3OcLDVWfx9HRWZ+IFmRwQIjizGxWwXVbF8Xy0qghJ66yf8fHq/c0V3fjBpQsmf/ttGnThgcffJBVq1bxyy+/cO+99/LEE0+wc+dOZsyYQffu3fP/JG7E4cG42bNnc9ttt1G9enXee+89Ro4cmettvPrqqzz11FNUTnPUrOs6L774Ip999hnjx4/n008/zfS4MmXKEBERkZ/hCyFEtszm1BP0Y8dg3LjM61hPxocNUx3cMh4EnDuX/nHSYl2I3DGbYcMG+9fXNLWf5eagO2NwLq3g4KwzXK37+6BBarqdl5f9zylEcbVwIXzyibq9YAE0aFD4z2lPzciXXpKLZUIUhFGj4OhRNe3czw/++Sf1vqAgFYgryONge/bvKVNk/y4MkyZNYvXq1YwdO5a6deuybNkyRowYweDBg509NIdzeDCufXaVUO30xhtvZFqmaRpjxozhs88+K1bzjIUQrsPeQvHWD/yPPrIv7VsyaYSwn737YUYFecV961Y4fz77dS5eVCcYs2bJfi1Edo4fV8FrgLFjoVs3xz23tWZkxvcUX1+4dUvtv889l3VXRiFEzjZvVsfEoILtDz+cdeZ5Qcpq/7a6dKngnzOjEiVU1pmrK6janACNGjWiT58+fPvtt2zYsIFnn302TwlaRUGR6qbq6ekJgIeH7ZeVmJjI/PnziY6OpmzZstx33300atTIkUMUQhRR1kLxuampYLHYt56uq6t2Q4eqTJpffin8AxQh3FFe9sPCyDy1t+DzxYsSaBciO0lJ8PjjcP26+rwbM8bxYwgPVwHAtMGBBg2gaVM4eRIGDFD1Iq1T6YQQ9rt2DZ56Sn1uP/MMPPqoWu6oDqa29u/du2H4cHj1VTWO228vvOfXtIKZ/uluAgMDAVVGbPr06SQkJDh5RM5RpIJxc+fOBaBDhw427//nn3/o379/umWdOnXim2++SfmHyEpiYiKJiYkpP8fFxQFgMpkwmUz5GLUQwl7Wfc3V9jmzGd54A3x81M+6DhaLhtlswGzWgIxH6CpSkD4t3tZRvI7RaMHDw4LBoLrH1a6tvltVrQrvvw9duxbsaxLCylX3u4zS7oe6DklJRiwWA6Dj7Z2MwUbLqrfeUtPFjUZVHL6gVKqkMmesshuPpsGbb0LnzhJYF6ncZb8rbCNHGti920jZsjrz5iWj6wW7r+ZGy5bpf164UKN1ayPLlmlMn27mhRfsvMImXJbsd443ZIiRM2cM1KihM3lyskvs3y1awKpVRjZuNNCnj4UtW8z8l/OTJyaTCV3XsVgsWOy9El+ETZ8+nWnTplGxYkX+/fdfFixYQI8ePVJ+R67MYrGg6zomkwljNgdt9r6HaLpeUL0xcs9aM+6rr77KFCTLrb1799KyZUtKlSrFwYMHMwXX3n77bdq0aUP9+vXx9vbm0KFDjB8/nlWrVtGiRQu2b9+Ols0lrYiICMaPH59p+cKFCylRkHmbQgi3ZTZrbNtWlaVLb+Ps2dQWb5Uq3aBx44vUrx9LSEgclSvfxGhM/9YbH+9BTExJ/vqrLIcOBfD77xWJj0/95G/S5B969fqL22+/4rDXI4Q70nWYPr0xmzZVw9fXxKRJ2wgJiXP2sEhMNDJ+/L0cOhRI2bIJTJ68mfLli+eVYCHsceRIWUaODEXXNd588zfuvdfOlFMH+umnmsye3QAvr2SmTImiatWbzh6SEG5j9+6KvPPOvWiazsSJ27jjjsvOHlKK2Fgfhg4N48YNL3r2PErfvkfyvC0PDw8qVapEcHAwXsW8UOwPP/zAs88+S5s2bZg5cybNmzfHz8+P3bt342PNanBhSUlJnD17ln/++Yfk5OQs14uPj6dPnz5cu3YNv2zafheJYNzJkycJDQ0lNjaWVatWERYWZtfjLBYLbdq0Ydu2bfz000906dIly3VtZcYFBwcTExNDQEBAnscuhLCfyWRi3bp1PPDAAynT0p3BbIYdO1Rx2UqVVG2oAQM0TCYjum4N6qdmtWla5ukrmgYGQ/ZF3i0WjeRkw3/ZNIrBYMHT05wuy0fTVIbc/v2SWSMKnqvsdzlZulRNcTGZDCQnGwEdLy9zpsD38OEwcmTh7ysrVsCTT6afMqvrkJjoga5raJrKkLO+N8yZo6asCgHus98Vllu3oGlTD/76S+OppyzMnp3Fh6WT6Tp06WJk/XoDzZtb2LTJTBbVcoQbKO77nSPdvAl33eXB6dMar75q5v33XS8jaulSjT59PPDw0NmxI5m8VrdKSEjg7NmzhISEuEXAqbCsX7+erl27Ur9+fTZt2kTp0qUZO3YsEydOZMKECYwcOTLb5ChXkJCQwKlTpwgODs72bxkXF0dgYGCOwTi3/7g4ffo0YWFhXLx4kR9++MHuQByAwWDg6aefZtu2bWzfvj3bYJy3tzfe3t6Zlnt6esqbtRAO5sz9zlZxeC8vVdcmPQ2z2YjZnPmM3/o5Y+2mCvbXuLJYDCQmZp5vd+wY7NzpuBobovhx9c+7ypXVCXwqjaSkzIc5YWGpU8oLk7UG3PPPp59abqXrGgkJqb/PQ4dg+3apAynSc/X9rrCMGQN//aUueE2dasDT08Y8cxcxdy7ceSf8+quBqVMNFNM65EVKcd3vHGnSJDh9GqpVgwkTjHh6ut4HX+/eqh7kDz9oDB7syc6deft8NpvNaJqGwWDAYKtmRjGwZ88eevToQVBQEKtWrcLf3x+A4cOHM3PmTKZMmcJLL71EGRfvhmMwGNA0Lcf3CHvfP9z6v+HUqVO0bduW8+fPs3jxYh566KFcb8M6nTU+Pr6ghyeEKGKsxeEzdlzKHIjLXlCQyuKZPFl9r1q1YMZnb9F4IYqiqlWzL6CuaRAcrIJdjhIerrohly+f87rvvKMChSEh6r1GiOJq1y744AN1e9YsKFvWuePJSXAwTJ+ubo8bp7LUhRBZO3AAPv5Y3Z4xw7UbGHzyCfj7q6YO1v1c5M7x48fp3LkzPj4+rFmzhooVK6bc5+/vz+uvv87ly5f50JqhUIy4bTDOGoiLjo7m+++/p1se+5z/+uuvAISEhBTg6IQQRY3ZrDLicjux3zpFdfx4WLgQNm1S3desWTPh4XDqlFq+cKFaL2Nwzp4TeVCZQUIUR7duQa9eWe+f1iDd1KmOzzrz8lIBBVvT1W2JjlZBfwnIieLIZFLTzS0WlZWSx8N7h3vqKTVWkwmefhqyKSUkRLFmsaiM8eRk1TnV1RuQVa6cenFg9Gh1DC9yp1atWvzzzz9cuHCB2rVrZ7p/5MiRXLlyhbffftsJo3Mulw7GxcbGcuTIEWIzzO9IG4j77rvveNTaAzkLhw4d4urVq5mWb9u2jY8//hhvb2/CrWfGQghhw9atmTPibMnYmNmaBTd2rDqxaNs2czDAaFTLe/dW650+nRqc27RJPW9QUPYn8r6+0KBBbl+VEO5P1+GFF2DvXhW4/uILtb+kZd0PnfVRHx5ufxasNaA4dGjWNSWFKKqmT1dZMwEBMG2as0djP01TQfcyZWDPHvj0U2ePSAjXNG+eqrtcqpT7ZJo98wy0aQPx8TB4cO4vzAuRFYfXjJs9ezbbtm0D4MCBAynLoqKiAHjkkUd45JFHAJgxYwbjx49n3LhxREREpGyjbdu2nD59mnvvvZf9+/ez30Y+eNr1Fy9ezOTJk2nXrh0hISF4e3vz559/snbtWgwGA7NmzaJatWqF8nqFEEWDvVNAp05VJ9wxMepqWl7qP1mDc2lNm6ayZTTN9kHArVvQqhX89JOa5rZ1a/7GIIS7WLBAHdwbDPDdd3D//TBggOvtA+HhKnNm61bYsEFNS82KrsPZs2pdqQMpiovz58F6+D55sv1Z4a6iUiV4/32V9TN6tNrng4OdPSohnM9sVp9nJ06oesmgpnRnvHDmqgwGdaGvQQNYswb+9z/4L1whRL44PBi3bds25s+fn27Z9u3b2b59O6Cmiz6Sw3/36dOnAdi5cyc7d+60uU7aYFxYWBiHDx9mz549bN68mYSEBCpWrMhjjz3Gq6++SrNmzfL+goQQRY71oMF6In/ffbBkiX2PrVq1cE6erZk1GZtHBAfDkCHq6uKRI9C4sSpOf/Fi6jpBQSqYJwnAoqg5cQJefFHdjohQgTiwHdB2BdZx2RvclzqQojgZNgxu3IB774X+/Z09mrwZOBDmz4dffoGXX4Zly5w9IiGcy1bjMw8P9wtU3367eo9691149VXo2FHNShEiPxwejJs3bx7z5s2za92IiIh0QTUrPZe5oW3atKFNmza5eowQoniyddDg4wMJCdk/TtNU0Kswi8OnzazJmPHzxBPq9vHjcP16+sdZa1A5c5qeEAUtOVn931+/rrJC33rL2SOyn731HaUOpCguNm2CRYtUBsqnn6rv7shggM8/VxfGfvxRfUkGjSiurI3PMp66Jyer0iyenu51XPrWWyrYfuqUqiM3dqyzRyTcnZt+1AkhRMHLqluqNRD38MO2i7A7sjh82vpyaevPVaigpqraIjWoRFH07ruq7oyfH3zzjfOnoeZGaGjOdSAd3flVCGcxmVIzXAcPhrvvdu548uvOO2H4cHV7yJDMF8iEKA7saXzmbselJUuCteHnpEmqxrMQ+SHBOCGEwL6Dhj/+gMWLMxdhd3ZxeFDZcufPZ32/tQZVRARERbnXwY8QGe3YAdamWzNnqjqJ7sRoTC1On1VAbsoU9wowCpFX06fD4cOqRtyECc4eTcEYMwZq1lQX9yZOdPZohHC8nBqfpa2N6k4ee0w1c0hISK1/J0ReSTBOCCGwr1vq2bOqW+qpU+m7nZ486fw0e3trS73zDoSFqeBFZGShDkmIQhEfD089pQLKffpA377OHlHe5NRh9cIFx45HCGeIjU0NwL33HpQt69zxFBRfX5UtDyqwfuyYU4cjhMMV1dqomqYuIBgM6jN840Znj0i4MwnGCSEEuTtoyGqqqDPltraUtY6cBOSEuxkzBv7+WwWxPv3U2aPJn/DwzMH9jz9W9732Ghw96tThCVHoJkyAa9fgrrugXz9nj6ZgPfQQdOoESUlqfxaiOCnKtVEbNlRT6kFlx1kszh2PcF8SjBNCCNz/oMGeGlRpSR054S7MZjW1etEiFXybMkUt/+ILKFPGmSMrGBmD+6+8Ah06qCkwTz8t+6couv76S00zB1WHyRUubBUkTVPvVx4e8NNPsHq1s0ckhOOEhmad+Q1q/3Dn2qgREapm7R9/qLq11uMUKQUjckOCcUIIAdSqlf2JgKsfNNhTgyojd63XIYqPyEg1pTosTE1Jfekl9X/bti107uzs0RUOgwFmz4bSpVVtPOtUNyGKmjfeUF0Vu3SBdu2cPZrCUbcuvPyyuj10KKxbJyfsongwGqFnT9v3ObLxWWEJDISRI9XtZ55JPU6RUjAiNyQYJ4Qo9i5dggcfzPrA2F0OGnKqQZUVd6vXIYqHrLobgzqRLcoHusHBqdNVR4+W6aqi6Nm8GX78UX2mfvCBs0dTuMaOBX9/tR936CAn7KJ4MJlgxQp1288v/X2u0PisIFSvrr5nPH84dw66d5f9W+RMgnFCiGItLk7VdDl4EKpUUVNmgoLSr+NOBw1pa1CNHm3fY1x16q0ovsxmlU2SVXdjTSv6U6yfeQYeeEBNVx0woGi/VlG8WCzw+uvq9nPPQb16zh1PYduwQdXFy0hqt4qibO5cOH4cKlSAM2dcr/FZfpnNMGRI9us895x8dovsSTBOCFFs3boFDz8Mu3dDQICaPjJ4sGt2S80Naw2qiIic68i58tRbUXxNnKhOVLNSHKZYa1rqdNVffkmdhi6Eu1u4EH7/Xf1vR0Q4ezSFy2xWdSBtkdqtoqiKj4fx49XtUaNUZqirNT7Lr6goNbMmO5cuqfWEyIoE40SupS2mLTUvhLsymVQti82bVfr8mjVwxx3qPlfslpoX9tSRGznSfV+fKJoiI2HcOPvWLepTrKtVg48+UrdHjVIF74VwZwkJ8NZb6vbIkSprpijbutX2VHur4nBhQRQ/n32mPp+rV4fnn3f2aAqHvUE2CcaJ7Hg4ewDCvURGqit8aQ8sgoJUbZvy5dUbr/XA6sIFNf0tNFRO9oVr0XU17evnn8HXV3U5u+ceZ4+qcFjryGXcbz09VUByyhQVlAwMdN4YhbDKLovEluIwxXrgQFi8GNavV7ejolSTByHchdmsgk0xMbBtmwo+BQWpjLCizt4LBkX9woIoPm7dSq0DOWYMeHs7dzxCuDIJxgm7WYtpZ6zhc+4c9OqV9eOCglR2jjtN8xNF2+jRsGCBChL/8EPRn6YZHg7duqWeDFWurLrHtmoFx46p+1evht9+S71fgujCGXLKIkmruEyx1jT48kuoX1/9fr78EurUkX1VuAdbF3EBunZVF8OKOnsvGBSHCwuieJgzB/79V2V2P/mks0dTeNq2hXfesW89IbIiwThhF2u2QlbFtLNjLVDrLgXwRdE2axa8+666/eWXqotqcWCdepvWqlXQooU6wS9fXtX4sJIgunCG3GSHuHp344IUEqIO+l97TdW1TPtZLPuqcFVZXcQFNY2tffui/38bGqr20ejorI+hi8uFBVH0JSbC+++r22++CV5ezh1PYWrbVtWbzq5uXECAWs9kctSohLuRiQ4iS2azOjHavRsmTbI/WyEjKVArXMWKFfDii+r2+PHw9NPOHY+z3XGH6lgJ6QNxIF3ehHPYmx0yfnzRP4nPyNrlOeMJveyrwhXldBG3OHREBvtqtxanCwuiaPv6a3W+WLly0T/GNhrhiy+yX+eLL2TfTuutt95C0zSWLl1q8/65c+eiaRqTJk1y8MicRzLjBGYzHDkCBw7AwYNw6JD6fvw4JCcXzHNYC9ROnQrPPANlyhTMdoWw12+/weOPg8Wi/gfHjHH2iJzPbIZ582zfp+upJ0vdusnBhHAMaxZJdhd/goJUM4PixGxWWXG2yL4qXFFuGhcU9WlcWdVuBVWvtbhk6IuizWRSyRsAI0aAj49zx+MI4eGq3M3LL2fuAF+/Pjz6aM7b0HWdeFN8zis6WQnPEmhZXVGwU8OGDQE4ePAgPXr0SHffrVu3GD9+PEFBQQwtDgVF/yPBODeWtiBuburGxMbCjh2wc6f62rULrl+3va7BoLbt5weHD+d/zMOGqTfou++Gdu3UV+vWUtxTFK7jx+Ghh1T2V6dOanpMPj9PigQ5WRKuxmhUJ6zDh2e+z7rPTptW/AJOsq8KdyONC9LLWLu1XDl49lm1306ZAvfdJ3UghXtbtAhOnlRlT557ztmjcZyM+7bRCE89pRJb1q2DDh2yf3y8KZ5Sk0o5ZrD5cGPkDUp6lczXNho0aACoYFxGs2bN4ty5c8ybNw/f4lBQ9D8SjHMz1gDc//4H334LFy+m3pdV3ZjkZJUVtHq1+tq9O/O0gZIloVEjFcW/4w71vU4dqFIFPDzU84aEZF/zwh5VqsD582oMu3erugKlS6tASY8eKlBSokTety9ERrGx6qrzxYsqCLxkieokKuRkSbges1l1DgVV3P3WrdT7goJUdnVxm54Ksq8K93PsmH3rFafGBRlrt777ripwP3p0+mPrqlVh+vTi+V4n3JPZDBMnqtuvv178zuUy7ts7d6og+1tvwQMPOG1YLqdOnTp4e3tnCsZdvnyZqVOn0rBhQ54syl0/bJBgnBvJqiOVVdpGCc2bw5o1Kvi2bh1cvZp+3TvugHvvVV/Nm6vgW3ZX4aw1L3r0UNkJuQ3IaZo6kTp5Ev75BzZsUF/r1qmTh0WL1FepUvDYYzBwoBqXZC+J/IiPVx3bjh1TweSff1b/Y0KRLm/CFaTN8v7tN5Wt7ecHf/6pslolW0T2VeFeIiNh3Ljs17EeFxbnxgXWaXy26kB2766mv0lATriDpUvhr7+gbFl44QVnj8b5Ro5UTeJ+/x2WLYPOnbNet4RnCW6MvOG4weVRCc/8R1g9PDyoW7cuhw4dwmQy4flfdsTEiROJi4vj/fffx2AoXi0NJBjnJrLrSGVlve/xxzN3bSlbVqXJduoEHTvm7YA9u5oX2bEG1KwFaqtWVem7Tz2l6nft3Kle3w8/wKlTqiX2nDkqYPjsszBggDoxEyI3zGbo21f9f5UtqzqHVqrk7FG5Fnu6vBX3kyVRuLK6yNSzp+owGBzsnHG5GunIKNyFtXGDPYpz4wKzGQYNyn6d556TOpDC9Vksqts3qNqlpUs7dTguoXx5ePVVmDBBZb527Jj1upqm5Xv6pztp2LAh+/bt46+//qJ+/fqcOnWKzz77jPvvv58OOc3pLYKKV+jRTeXUkSojk0kFwJo3V1cmd+xQU/S++w7698/flfPwcBUw27QJFi5U35csSe3yZktQkAri2bq6ZzCoOhkffggnTsDmzSpI5+urGkm8+qo6wRg+XNXVEMIeuq4OCH78UdUjXL4c6tZ19qhcjz1d3jp3lhMBUTisF5lsXdyZM0e6g6YlHRmFu8ipvqFVRETxzvqKioJLl7Jf59IltZ4Qrmz5cpXJXro0DBni7NG4jtdfV7UhDx+GFSucPRrXYa0bd+jQIQBGjx6NyWQiIiLCiaNyHgnGuQF7D2zSmjVLZQRFRKipqAV5gG6dF9+7t/reo0f6AN369erLGqw7edK+Ay5NU80c5s9X05JmzoR69SAuTgXratZUtTWOHk3/OLNZHawsWqS+m80F91qFe5oyBWbMUP9T33wDrVo5e0Suy5rxWrVq+uX+/ur73LnqPUiIgpTTRSZrd1B5P0+V1b4K4OUFjRs7fkxCZGRv3cLbbivccbg6e4NsEowTrkzXU7PihgxRM1GE4u8Pb76pbn/ySf5qrhclaTuq/vHHHyxcuJAnnngiJUhX3Dg8GLdgwQKef/55mjRpgre3N5qmMW/evFxvx2KxMGPGDBo2bIivry/ly5enV69eHMumYuyuXbvo3LkzZcuWpWTJkjRr1oyFCxfm49UULosF9u6FL77I/WNvv73Ah5OttAE6a5dUa7AuL4FAf38YPFhdafnpJwgLU40oFixQ01f791eZdJGRqhZYWBj06aO+h4RIRkVxtmSJuhoFKojbs6dzx+MObGW8xsZCr15qv8sqe0mIvMpNd1CRKuO+unGjmpqalKTq9MjBvnA2qW8oRPGxerWqi1aihLqAJtJ78UX1XhcdDTdcvyycQ6TtqDpixAh8fHx4++23nTwq53F4MG706NF88cUXnD59msr5+CQeNGgQQ4YMwWw2M2TIEDp37szy5ctp2rRpStpjWlFRUbRq1YqtW7fSo0cPBg8eTGxsLH379uXdd9/Nz0sqMLquDrLnz4cnnlA7b+PGKuPLXppWtOrGGAzQpYs64di9WxXjt1jU7+j221WB24wndOfOqeWvviqZcsXN9u0qexLUFbpXX3XueNxJxoxXDw+VFdewIVy4AI8+CgkJzh6lKCqio+1bT7qDZpZ2Xw0LUxfsvLzUSZG1E60QzhIaajt706qoHafmVdrOiwWxnhCOpuuqJhqo+oflyzt3PK6oRAlVMw7g2jU5JwWoUqUKAQEBrFy5kvXr1zN06FCCi3GBYIcH42bPns2pU6e4ePEig3KqXJqFTZs28eWXXxIaGsqePXuYPHky8+fP5+effyYuLo7BgwenWz85OZmBAweiaRpbtmzhyy+/5MMPP2Tfvn3Ur1+fcePGZZtRV1iSk1Xm24wZqulCcDDUqKGyvr79Vp0AlyypglFlyuS8vYyNEoqae+5RdQl+/VUVwszpDW3qVMmUK07++gsefhgSE1XB4ylTpBtvfpUsqeruBQSoYPigQZJ5I/IvMtL+QLlkz+Ssbl3VuQ3U1N+M3dOFcCSjUTXesqWoH6fmRtu26rM1OwEBEowTrmvTJlWX3Nsbhg1z9mhc18CB6gKF2QyXLzt7NK6hQYMGxMfHExgYyJvWubzFlMODce3bt6d69er52saXX34JwDvvvIO3t3fK8nbt2tGxY0e2bNnCX3/9lbJ848aNHD9+nD59+tA4TVGV0qVLM2bMGJKTk/nqq6/yNabs6Dr88w9s2waffaa6IzVrpgpdNm6sMni+/15lCnh4qMYLb72lsrouX1bTNOfMUQcx2QUXsmuUUJQ0a5Y6B98e0dFqmp0E5IquCxfgwQfV/tKsmZq+VdwP9AtKjRrq/cloVBmpn3zi7BEJd2Zt2nDxYvbrSfZM7owcqbLF//03d5+PQhQ0XVdZmgClSqW/r7gcp9rDaMy5DM0XX8ixjHBd1lpxAwfKhbPseHnBSy+p27Gx6oLZpUtw/XrxvcC9adMmdF3n4sWL+Pn5OXs4TuXh7AHkRVRUFCVLlqRly5aZ7uvYsSOrV69m8+bN3P5f4bSo/6qf2mqXa122efPmPI3l1181fHzU9K2bN9UJhvXr/Hk4flx93bxp+/GlS6tuoq1aqa9mzVRKa0bWws2vvJJ+Wmb58tC3r8oECg0tPh/auZm6pOupxcClRXzREx+vpi+fOKGafKxYYXsfEnnXrp2qv/fqq/Daa9Cggco6FSI3ctsZXLJn7OftDZ9/rvbLzz9XXcnvu8/ZoxLF0fLlsGuX+hw+elRlrcfEqJP14nScao/wcPjhh8zH9qBmxNg4bRHCJWzfrjLjPD1hxAhnj8b1de2qsgjNZvj779TlXl7qwqM0vii+3C4Yd/PmTWJiYrjzzjsx2vhEv+2/9kxpp51ab99mo3VT2bJlCQwMzHGaamJiIomJiSk/x8XFAdCli32/Qk3TCQ6GO+7QadhQ5667dBo10qlVS9VFS8tksr2Nrl2hc2e1M//zD1SqBC1apB7YWCzqqzioVAl8fVN/1nVITjaQnGwANEDHaLTg6WlJySaMjYUtW6Szpjsz/bdzWL+bzfD440Z++81AuXI6y5cnU7Zs1vuQyLsXXoDdu418+62BXr10duxIJp9JzsJNZNzv8mrbNnU12NdXvWcnJHgAGh4eZjw9Uz+8AgNVIK5rV9mXc6NlS+jXz8j8+QaefVbnt9+S8fJy9qhEXhXUfudIFguMHq3265deMlO+vCVdHanidJxqr4zH9gEBMGiQBydPanzwgZnRo+UX5kjuuN85w4QJRsDAk09aqFzZLJ/VOdi40YSXl/VKpI6m6WiaKll18qRa6u/vtOE5nf7fVVpd17G4+IeExWJB13VMJpPNWJSVve8hbheMu3btGgD+WfzHWlMdrevZ+5hzObQKnDRpEuPHj8+0vGLFG3h7g6enBS8vM/7+ifj5JeHvn0iZMolUrHiTypXjqVAhPt3JBsCxY+orL0qUgLg4WLMmb48vCmw1trh61Zv58+9g06ZqmM1GSpc28fTTf9K6dTSapn5nK1c6fqyiYK1btw5dhy+/bMDKlTXx9DQzfPgv/P335XRXnETBevhhAzt3hnL8eBk6drzJpEnb8PaWarTFxbp16/K9Dev79uefN2TVqhpUrXqdqVOjMn0+grxX50W7dp4sW9aOQ4e8GTToGD16OL4erihYBbHfOcqWLVX5888mlChhomHDdaxcKWfouVGiBNy6Bd27V+HDD5syebJOzZobKFMmMecHiwLlTvudo/39dxnWrGmDwWChWbMNrFwZ7+whuTwPDw/Kl6+Eh0cyJpMP/v6JBAam74r2X55PsXb9+nVnDyFHSUlJ3Lp1iy1btpCcnJzlevHx9u0XbheMc5aRI0fy2muvpfwcFxdHcHAwe/caCAjwzeaRorCsWJHaOTPjtCcvr2RMJiNXr/owZUoTpk27G09PM6tWSWacOzOZTKxbt44HHniA6dO9WbnSiKbpfP21Tvfu9zp7eMXCPfdAixY6J06UYdmyzsyfb5ZGGUVc2v3O09Mzz9vZtk01JLJYNBIT1dXEixd9eeqpTunW+/lneZ/Oj+RkjQEDYOnSeowadRu1ajl7RCIvCmq/c5TkZBg2TJ1WjBhhoFevB5w8Ivf14IMQFWVh924Pdux4gE8+ce1MkaLE3fY7Z+jeXX1+9+4NAwa0de5g3MC2bTB4cALTpp0lMFD97q5e9ebaNa90x8+1a2eus1lc6LrO9evXKV26NJqLn1QkJCTg6+tL69at8fHxyXK9ODujq24XjLNmt6XNfEvL+sLTZsHZ85issuasvL290zWLsPL09JQ3ayexFgC2VWsjI4vFQFKSgd27oXVrqVni7hYt8mLkSPVH/PBDjccfd7u3MrdVqxYsWaLqyH33nYGmTQ2kuU4hirD8ft61bg3lyqmmOlZJSan7rqapAu/yHp0/1o7sGzZovPyyJ2vWSGdpd+Yux5nffKNqIQUGwmuvGfH0lJ04Pz78UHVSnT3byKuvGqlTx9kjKl7cZb9ztP37VTKEpsHo0QY8PR3eC9Lt/PMPJCSY0XUNXbd+GGv//Zy6nsmUuXRVcWGdmqppGgYX/yUYDAY0TcvxPcLe9w/XfrU2lCxZksqVK3Py5EnM5szTo2zVh7NVR87qypUrxMbG2qwnJ1xfeDicOqWKiA4dqpZlddKh66rIaMuWcOiQo0YoCtpvv1Xi+efVQf7w4UggyAnatIEpU9Tt4cNhwwbnjke4B6Mx64Lk1vdtadqQf5qmOrd7e8O6daq7tBCFKTERrJVc3nxTNScT+dOmjaonZzarbslCuIKJE9X3nj2hbl3njsVd2NtpVmq8Fk9uF4wDaNOmDTdv3mT79u2Z7lvzXxG1Nm3apFsfYO3atZnWty5Lu75wL0ajuno4ZYrqSlW1avr7g4NVJ9ovvwQ/P/j1V2jcGCZNUtMqhOsymyEqStWZioqCzZs1PvywCWazRv/+8P77Th5gMfbSS9CvnyrG/dhjqQVohcjKuXMqqxJUp8C0goLU+7Q141nkz223wejR6varr8Lly84djyjavvwSzpyBKlVUsx9RMN57T2XKLFumulcK4UxHjqR+ho8a5dyxuJPQUNV4MDteXsV3impx59LBuNjYWI4cOUJsbGy65c899xwAo0ePJikpKWX5hg0bWLNmDa1bt+b2229PWd6uXTtq1qzJwoUL2bt3b8ry69evM2HCBDw8POjfv3+hvhbhGGkz5RYuVN9PnoTu3WHgQDh4UHWtSkqCt96Ce+9VKdfC9URGQkgIhIVBnz7qe8eORpKSjHTpYuHLL2XqlTNpGsyaBU2bqg6Zjz4KdtYqFcXUK6/AjRtw331w4ULm92kJxBWsESOgXj24eFHdFqIwxMenZsuMHp2+073InzvugGeeUbeHD89cH1kIR3r3XfU/2K0bNGzo7NG4D6NRnXNmJzhYzmmKK4cH42bPnk3//v3p378/S/4Lr6dd9uOPP6asO2PGDOrVq8eMGTPSbSMsLIyBAweydetWGjduzIgRI+jXrx9dunTBz8+Pzz77LN36Hh4ezJ49G4vFQmhoKM899xzDhg2jUaNGHDx4kIiIiHTBO+HerJlyvXur72mnPAUFwU8/wddfQ9my8Pvv0KSJml4hbbldR2Qk9OiRuRagxaJRr94l+vY14yFl4pzOx0f9rSpUgH371EmDnCwIW376Sf2vGI0qiOvpmfX7tCgYXl7wxRfq9pw5sGWLc8cjiqYZM1RNpJCQ1MCRKDgREarL6o4dKkNOCGc4fjy15IE161rYr0MHKF9eHftkVKqUOicVxZPDg3Hbtm1j/vz5zJ8/nz179gCwffv2lGVpM9ey8/nnnzN9+nQ0TWP69On8/PPPdO3ald9++4077rgj0/phYWFs27aNVq1asXjxYmbOnElAQAALFixglOTaFiuaprqwHjwIjzyignAREdCsmQooCOcym1UGja2gjqbpjBq1k3Hj1HrC+azTCz084Lvv4KOPnD0i4Wpu3lTTmkHVeGzQwLnjKU5atYJnn1W3n39e1fYSoqBcu5ZaLiIiQmoeFYYqVeD119XtN9+UC8fCOd5/Xx13d+qkkhhE7pUoAbffDnXqQI0aUL26Wn7jhswsKc40XZc8hrywdmCNjY0lICDA2cMReaTrsHgxvPiimmrn4QFjxqhiudJEyTmiotSUVFt8fEx8991KevfuzMqVnrRt68iRiezMnKn2I4MBVq+GBx5w9ohEQTGZTKxcuZLOnTvnqbvcm2+qA/lq1VTznJIlC2GQIktXrqhC2xcuwNtvq8844fryu985wvjxKghXpw78+SeSsV5Irl9XncwvXoRPP5W6fIXJHfY7RztzBmrXVoHgbdtUIzyROwkJCZw8eZIaNWrg4+OTsvz4cfUZXaaM+h0XVxaLhbi4OPz8/Fy+m2pWf8uMrLGia9eu4efnl+V6rv1qhShkmqaKzx88qGpeJSfDuHHQvLnUknOWmJis70tbTyG79YTjDR4MAwakNnQ4ccLZIxKu4M8/U7MlZ8yQQJwzlC2rutSCqu31119OHY4oIi5dSt23335bAnGFqXRpFfQE9f36dWeORhQ3H3ygAnFhYRKIK2hVqqjvV6+qDDlR/EgwTgigYkXViXXRIihXDv74Q6VhT5ggUwIczd4W4PauJxxD09QV+2bN1FW+Rx6BuLj03XBlanHxYjarKZLJyer/oWtXZ4+o+Hr8cejYUU1THTRIajuK/Js8WQWFGjVSNV5F4Xr2WdUl+eJFlWksn63CEWJiVLdkkFpxhcHXF6wT7M6fd+5YhHNIME6I/2iaOmE5dEhlyZlMMHas6rh64ICzR1d81K+f8xThoCDVKly4FmtDh4oV1T5TqVL6briVKsF/fXtEMTBjBuzcqbI6PvnE2aMp3jRNTSX39VXda7/+2tkjEu4sJiZ1n37nHVWeQBQuT0947z11+91303+2hoSoz14hCtpHH6mLOPfdl3UJGZE/Vaqoz+i4OMl6LY7k41OIDKxZct9+q7Lk9uyBe+5RB5ySJVe4/v0X2rXL+vdsnab63nvSfdFVVa0KL7+sbt+6lf6+2Fjo1QtGjHD8uIRjnToFb72lbn/wgQqgC+eqWVOVYQBVED421rnjEe5r/Hj1/t6iBXTp4uzRFB/WjNaMma3R0So7UQJyoiDFxsJnn6nbo0enLxUjCo63NwQGqtvR0ZK5XtxIME4IGzRNXXE8eBC6dVPBoTFjJEuuMJ09C61bp2ZUTZmS+QS+alX1Xaa7uS6zOfXgLSsffKA6sIqiSdfhuedUd7DWrVO7eQrns3azvXQJhg1z9miEOzp6FGbPVrfff19O0B3FbIahQ23fp+vqa+hQmbIqCs7HH6vP8XvuUV1UReGpXFm9l964oTLkRPEhwTghslGpEixbBgsWqCLY1iy5iRNVHSRRMI4fV9NO//pLdVzculUdVJ46paZULVyovktTDde3dSucO5fzei+8ICcNRdX8+bBunZq2/OWXMoXNlXh6wuefq4P++fPV+6oQuTFqlHrvfughKRfhSPZ8tp49q9YTIr8uX06dij52rATdC5uXF1SooG4X9ey4Fi1aoGkau3btSrf86tWrNGjQAB8fHzZv3uyk0TmeHCILkQNNg759VZbcww+rLLnRo1WW3J9/Ont07u/AAZU9c/q0auu9dWtqe2+jEdq2hd691XeZmur67O1ye/GinDQURf/8o7KvQE1lu/12545HZNaihWriAPD885CQ4NzxCPfx66+qjIemwaRJzh5N8WLvZ+v//le44xDFw9SpKkurUSOZjeIolSqpi5fx8aoRWl6Zza7d4OW9/4pfjh07NmVZQkICvXv35siRI3z77be0adPGWcNzOAnGCWGnypXhxx/hm29Ultzvv8Pdd0uWXH5s3AitWqkOQvXrw5YtKjNOuK/cdLm19+RCuI8hQ9RB5N13pwblhOuZNEntq8eOqXqoQuRE1+GNN9Ttfv3gzjudO57ixt7P1m+/db2Tb+Ferl6FadPU7TFjJCvOUTw9Vd1yUOdFecmOi4xUDV1cucFLmzZtePDBB1m9ejW//PILFouFJ554gp07dzJ9+nS6d+/u7CE6lATjhMgFTYMnnlBZcl27pmbJtWihlgn7LVigalDExampLlu25C6QI1xTaGhqIdqcyN+7aImMVLUAjUaYMwc8PJw9IpEVf3/V7RZUQ5w9e5w7HuH6Vq+GzZtVsfHx4509muLH3s9WyToX+fXJJ+rYvH59ePRRZ4+meKlYUR1DJSSo2q65ERmpGrlknM7uig1eJk2ahKZpjB07lpdffplly5YxYsQIBg8eXKjP27dvX1566aVCfY7ckmCcEHlQubKaCvD111CmDOzenZoll5Tk7NG5Nl1XmRhPPqmCmb16wdq1qnOtcH9GI8ycmfN6wcFSb6gouXAhderjG2/AXXc5dTjCDuHh6v3XbIb+/eWzS2TNYoE331S3X3pJMtidwWhUF4PtIVnnIq/i4lQDNVDJBlLz1bE8PNR0VVD7scVi3+PMZnjlFdvZdNZlrtTgpVGjRvTp04cNGzbw6aef8uyzzzJy5Eib6w4cOJBnnnmmQJ53+vTpTJ48uUC2VVBkFxMijzRNBZQOHlSFjJOS1AfXXXepOfoisxs31MnfmDHq52HDVE0DHx/njksUrJ49Yfjw7Nfp3VtqABYV1u6pFy9Cw4aq2LNwDzNmqGybAwfg7bddu86McJ6FC1UDJX9/yOJ8SThAt272rSdZ5yKvPv1UlZqoU0cdywnHq1BBTVlNTITYWPsek1ODF113vQYvgf+l+vr7+zN9+vQs19u1axdNmjTJ8n5d1zHbecASEBBAiRIlcjfQQibBOCHyqUoVWL5cZcmVLw+HD6s5+k88oYqZW7l6Qc3Cdvy4ms67dGlqR78PPpCrbkXV5MmwZInaJ9IqVUp9nzFDpsYVFV9/rTKFPT1VTU1vb2ePSNirfPnUTNaJE127zoxwjsREdaERVHZcQIBzx1OchYZCUFD2Nbwk61zk1Y0b8PHH6vbo0XLB1FmMxtxnx9mbDesqWbPTpk1j2rRpVKxYkWvXrrFgwYJM6yQkJGA0Gtm/fz8vvPACmqbx2GOPceTIETRN48cff6Rp06Z4eXmxb98+Ro4cSb169ShRogRVq1ZlfIZ6CtbHXb16FYA///wTg8HAmjVraNmyJb6+vtxzzz2cOHHCEb+CFHIaLEQBsGbJHT0Kgwern7/9Vl1ZmjFDBSVcvaBmYVqxApo2Vd1nK1VSwcjnnnP2qERh69FDffBv2qQyKzZtUlf5OnRQ3aK6dlW1LIT7OnMGXn5Z3X77bZUZJ9xLVidcrlhnRjjep5+qbudVqqTu68I5jMbUwvpZBeSmTpUgisibWbPUMVqtWvD4484eTfFWvjx4ealyPhcu5Ly+vdmwrpA1+9133/Hqq6/Svn179uzZQ+nSpXn77bdJyNDa3cvLi/Xr16NpGn///TcxMTHMnj2b/fv3YzQamTx5Mh999BEHDhygfv36eHt7M2/ePA4fPsyUKVN4//332bhxY8r29u/fT7Vq1ShTpkzKz56enkyZMoUPP/yQ3bt3k5yc7PBprBKME6IAlS2rsgx+/RWaNFG1F4YMUVMz3aGgZkG7dUvVl3n4YZX23ry5qq93333OHplwFKMR2rZV01LbtlVZU4sXwx13qG5RDz6oOncJ92OxwNNPq/e5Fi1ynposXI+1zowtrlhnRjhWbKwKsoP67mKze4ql8HA1w6Bq1cz3eXpC48aOH5Nwf/HxarYKwKhR0oDJ2QwGdQEE1EXtq1dVQ4fr123Xhcspa1bTXCNrdv369fTr14+77rqLyMhIqlSpwiuvvMLZs2eZPXt2unUNBgMxMTGEhIRQq1YtKlWqROnSpdm3bx9+fn4sW7aM1q1bU7duXby9vYmIiKB58+ZUr16dXr160bhxY44ePZqyvX379tEwzRXj/fv3ExgYyJIlS2jRogX169enffv2xNo7N7iASDBOiELQtCns3Kmy4rJ6Y0x7opOUVPSmsB48CM2aqavqAK+/rjqx2TqAFMWLvz+sXKmu0B04AI88ojpHCdeWcar9J5/Axo3qBH3+fMnGcEfuWGdGOE5EBFy7pmrh9u/v5MGIFOHhcOpUatb5xo3qYpfJpI61hMitL75QGVghIfY3ChGFKyBAZceZzfD333DypJqBdeCASnBIK7usWevPzs6a3bNnD+Hh4QQFBbFq1SpKly4NwLBhwyhbtixTpkwhLi4u3WP2799Po0aNMi3r2bMnFStWTFl24sQJnn/+ee644w7KlClDqVKl2LlzJ5XTpAJm3Nb+/fvp3r17yjgATp06Ra1atQr0dedEgnFCFBKjUbUFt3UFw8p6olO1atGZwpqUBBMmqO6yf/6p2nSvXg0ffii1pESq6tVh1Srw81NB2iefVAccxb22oitr0CD9+9TQoWr5Bx/Abbc5dWgij9ytzoxwnMOH1bQ1UHWkJNjuWtJmnYeFqYsjRiMsWwbr1jl7dMKdxMerOr+gGrR4ejp3PEK5etV2l/OkJFWHO2NALqus2aAgtTw8vNCGmqPjx4/TuXNnfHx8WLNmTbpAmr+/P6+//jqXL1/mww8/TPe4jNls1mWtW7dO+fnChQs0a9aMhIQEPvnkE3bs2MGKFSuwWCzpHmsrM6558+bptr13795Mwb/CJkmoQhQie09gMmbEWqewOvvNM7d+/RUGDlRBOFBdZufMUZ2BhMioUSN14tCpk/pff/hh2LcvfR25oCB1tc+d9oOiZsUKdZKXVX2/NMdUws24U50Z4VjDhqmLId26qWCPcG133gkvvgjTp6up5/v2SVBF2Oezz9T5SvXqkgHrKqzJGtk5exbKlEmfCRcert6zt25Vf9PKldXUVGdfTKlVqxb/pO1qmMHIkSN58cUX8fPzS7f8wIEDPPPMMyk/X716lbNnz3LXXXelLFuxYgVeXl7Mnz8/Zdm8efPw8/OjRo0a6R5nDbRduXKF6OjodNuJi4vj5MmTmYJ/hU0y44QoRHk9gXG3KaznzsFTT8G996pAXGCgmjqxfLkE4kT27r9fdeAENXU1Y8CnONRWdGVmM7zxRvbrvPqqa74viZxJd0Zhy9q16v3Y0zO1jpRwfRER6vjr8OHUEiFCZOfGDXjvPXV77Fg1LVI4340btrPi0kpKUutllLFWs7MDcflhMpnYu3cvMTExXL9+nX379uHj40PdunVT1gkICODSpUusXr2ao0ePMm7cOD7//HMaNmyI9t/Bzb59+/D19eW2/6Zx2NrOvn378PLySrfMESQYJ0QhsudEJyvWqyJBQc6dwprdtMGrV2HcOLj99tSASr9+6kCwd++8vW5R/PTooerI2SJF5J1r69acO95KTTH3ZU93xokT3ftgXuROcjK89pq6/dJLMgXdnZQtC+++q26PG2dfF0ZRvE2frmbn1K6tLqoL15BTIC6367mriRMnMmfOHKpUqcKsWbPYv38/d955J8Y0ByUPP/wwTz75JD179qRdu3YYjUbat2+fLutt//791K9fH4NBhb4OHDiQaTv79u2jXr16eDi4e4mm69lVtBJZiYuLw9/fn9jYWAICApw9HOHCIiNVsAGyrx9nL01T2xk/Xh0kF1QKstmcOa35f/9T0x3SFvgOCoJ33lH1CqZPV8WdAVq2VHVlmjXL3ziyYzKZWLlyJZ07d8ZT5l8UGVFR9k2D2rRJXeUTjvPtt/DssyYWLVrJY491JjHR9n63cKEKwAv3FBmZ+b3ew0MFZvr0Uf8HwrGc9Xk3axYMHqyKhx87pgI8wn2Yzeo4bM8eGDBAlQoR9itOx5lXr0KNGur7ggXQt6+zR1R0JSQkcPLkSWrUqIGPj0+O61+/rpo15KROHUjTf8BtWSwW4uLi8PPzSwmYuSp7/5bWWNG1a9cyTb9NS2rGCVHIrAU1M57olC8PFy/mfnvWgN64canLgoJgyhQ1PSEvNQJsnYgFBKg22hmdO5e+psQdd6ipET16SCacyBspIu+aIiNTmzSYTAaSkrJ+Q5GaYu7NVp0ZT09o00YFWh96SIKtxcHlyzBmjLodESGBOHdkNKpmDi1bwty58PzzhXuRVLivKVNUIO6OO+Dxx509GpFWqVJqynB2mW9eXmo94d6cFnrctWsXnTt3pmzZspQsWZJmzZqxcOFCux/ftm1bNE3L9usb67y5/4SEhGS57qBBgwr6JQqRImMb+k2bVFArr1NYMzp3Dnr2zNt0VmvmXtpAHNgOxKXl6QmLF6sW2z17SiBO5J0UkXc91vcFa3OZL79sgK5nPmTQNKkpVlRkrDPTsiWMHq3uGzwYzpxx5uiEI4werfb5+vVVEEe4p/vuUx3KAV5+GSwW545HuJ5Ll1QwDuDtt6UUgauxHltlJzhYzr2KAqdkxkVFRdGxY0e8vLx4/PHH8ff3JzIykr59+3Lq1CneeuutHLfRv39/2tqYr2QymZg0aRIGg4F27dplut/f35+h1kv9aTRp0iQvL0UIu1lPdNKaNi01o6ygJ4zb05HVbFYZcXl5bpNJZfe5eDaxcAPW2orR0Vn/L0rAx3Eyvi8kJ2usXRsC6EDqkZ/1IHDqVDmQL6pGjYLVq1Wn7CefhA0b1PRVUfT8/ruaogqq+H8Rn6FX5L33nupW/uuvMHu2qu3rSt0VhXN98IGaCnnXXfDoo84ejbClbFmoVUvV5c2YIWcwFI3pqcIJwbjk5GQGDhyIpmls2bKFxo0bAzBu3DhatGjBuHHj6NmzZ0q3i6z0z6L38g8//ICu63Tu3JkqVapkur9MmTJERETk92UIUSAKegprWmkL33frlvnAKzFRZb9kzIjLDZk2KAqCtYh8doHpl16SkwdH2bo1/fuCyaR+8R4eFpKTU/8IgYHq5D2rYL9wf56eqpZQ48awZYvKoHj7bWePShQ0iwVeeEG99/btq6YnC/dWpYqqLfz66zBoUPrP1aAg9Zkr793F07//qqnMABMmyEV1V1a2LJQpk9pd1dNTBedu3YLz56FaNWePUOSXw3e/jRs3cvz4cfr06ZMSiAMoXbo0Y8aMITk5ma+++irP2589ezYAzzzzTL7HKoQjFPYU1rNnoVw5tb3gYHUCXbIk+PioKa35IdMGRUGxBqarVk2/3NtbfZ84EXbudPy4iqPMQXaNZs1i8PBIP9dpyhQ5mSsOateGzz9Xt995R2XHCfeXtlP6G2/Ab7+pTIsPPnD2yERBsU5zy3iByzpzwp5SJqLoee89iI+H5s2hSxdnj0bkRNPUe3NAAPj5pe7XFy6ov6Nwbw7PjIuKigKgQ4cOme6zLtu8eXOetn3u3DnWrl1LpUqV6JLFu0tiYiLz588nOjqasmXLct9999GoUaMct52YmEhiYmLKz3FxcYCaFmsymfI0XiHSatky/c/TpqXW/MhuGqmug8WioesaFgvouvbfF1inlMXFqa+MPD11kpNB03Q0TcdgUF+aln0gUNNU0OTee9V0VUex7muyzxVNXbtC586wYwf88w9UqgR33gmPPmpk+3YDDzygs2KFmZYtpQl4YapUSQXrk5KMWCwGDAYLr7yyhyFDwtK9L1Sp4tj9XzhPz56wYYORuXMN9O2rs2tXMpUqOXtURVthft6tWKECcNbSAAkJHoBG9+5mAgMtsl8XAWYzvPUWeHtrJCYaAQ0vr2SMRvX5qWnw5pvqM1eyzlMV9ePMU6dg5ky1v48bl0xyshxPOYLJZELXdSwWC5Z8FnEsVQrKlNG4elXj7Fmd225z/7+h/t+JrvV35MosFgu6rmMymTBm8+Zp73uIpusFXakqez179mTp0qXs3r2be+65J9P95cuXR9M0Lly4kOttT5gwgbFjx/Lmm28yadKkTPeHhIRw+vTpTMs7derEN998Q2BgYJbbjoiIYPz48ZmWL1y4kBIlSuR6rEIUNl2HGzc8iY/3JCnJSGKiAXUwZsbLy0yJEsmULp0kxT+Fy0tIMDJxYnMOHCiPt3cyo0f/SoMGsc4eVpGl6zB16t1s3hxMiRIm3n9/C8HBN5w9LOFkiYlGhg9vzZkzfjRseJFx436Rk/gi4LPPGrJmTQ2qVYvj44+j8PBw/xM7kd6sWQ1ZvboGVateZ+rUKDw9XftkVxSeKVPUZ3ujRhcYP36Hs4dTbHh4eFCpUiWCg4Px8vLK9/ZMJo0zZ/zQdY1KlW5SqlTRDB67oqSkJM6ePcs///xDcnJyluvFx8fTp08frl27hp+fX5brOTwY16FDB9atW8exY8eoXbt2pvtr1arFuXPn0mWh2UPXdWrVqsXJkyez3Pbbb79NmzZtqF+/Pt7e3hw6dIjx48ezatUqWrRowfbt29GyiEzYyowLDg4mJiaGgICAXI1ViNwwm1MzhY4fB2uc2Z4915rBtn9/1lc+V6ywnYFnrd1Vrhxcvpy6PChIpbh37Zq315MfJpOJdevW8cADD+Ap1aWLlfh46NnTyLp1Bnx8dH74wcwDD8hJY2F45x0Db79tBHS8vc2ULJnE3LnrGDDgARIS1H73zTfOeQ8QznX4MLRo4UF8vEZEhJm33pKT+sJSGJ93ZjM0aKAy4tTPGklJapKMl1cyHh56jscMwj0sXQrWij1psx89PMzpgnFz5qgpq0IpyseZf/wBzZur1/TrrybSVIsShSwhIYGzZ88SEhKCj49PgWwzJkYjJkbDy0unfn3drZMrdF3n+vXrlC5dOstYjKtISEjg1KlTBAcHZ/u3jIuLIzAwMMdgXJHpibVx40ZOnjxJmzZtbAbiAMaOHZvu5+bNm/PTTz/Rpk0btm3bxsqVK7Oc3urt7Y23tXhRGp6enkXuzVq4Fk9PCAtL/fmOOzI3fLDF+l723ntqyllWrDWfMm4zOFh1SezWTRV0d6UuXLLfFT/+/rB8uTpp+PlnjUcf9WDBAjV9ThScRYtSC/QPGqTx008eXLqkgp63bnkSGOjJ1KlSK664atgQZs6E/v3h7beNtGplxEbjelGACvLzbssW+Ptv2/clJXmQlATHjqn6nBm7vwv3UrmyKvKeUXKyMV0jnsqVpXOuLUXxOHP0aPW9Tx9o1qxovTZXZzab0TQNg8GAoYA6ZlSqBJcuQVKSxr//atjoW+k2rFNTrb8jV2YwGNA0Lcf3CHvfPxz+av39/QG4du2azfvj4uJS1skNa+OGgQMH5upxBoOBp59+GoDt27fn+nmFcDRbDR8WL1YZa2kFBakro/acNNva5smTarnRqA7Ke/dW350diBPFl4+PKjjdvbvqKvXYYzBjhrNHVXSsW6eCLADDhsFnn6n3hZ9/Vst+/jn1fUEUX/36qf8Ti0XtgzaqfwgXFBkJvXrZt650Snd/oaE5NwILDlbriaJv3Tr15eWlGvEI92c0pp77/fMP5HJSoXARDg/G3XbbbQAcO3Ys031XrlwhNjY2ZR17XblyhWXLllGmTBm6d++e6zFZa8XFS0sS4SYyBsh69sw6mJbXbUrQTbgiLy/4/nsYPFhNvRkyRF3tdWzBhaJn50549FEV5OzRQ2XUgnofaNVK3W7VSt4XhDJzJtx9t7oqHx5uOwNHuI7ISLVfpy05kR3plO7+jEbVCAyyDshNnSrv6cWBxaIatgC88ALUqOHc8YiCU7as6rRqscCZM3Is7I4cHoxr06YNAGvXrs10n3WZdR17LViwgMTERPr27Yuvr2+ux/Trr78CqsGDEO5KgmmiuDAa4dNPYcIE9fPEiTBwIGRTR1WkYTZDVJSakhoVBfv2qY56N2/CAw/AggXy/iGy5+urAjyBgbBnT2pwXLges1mVobC3zqxkSxUd4eFqhkTVqpnv8/VVAfW0nwVms6NHKBxh0SJVL87PD0aNcvZoREHSNKhWTX2/dg2uXnX2iERuOTwY165dO2rWrMnChQvZu3dvyvLr168zYcIEPDw86G+dJwPExsZy5MgRYmOz7pw3Z84cAJ6xViq14dChQ1y18R+6bds2Pv74Y7y9vQmXuTdCCOEWNE1lxH35JRgMMHeuCihdueLskbm2pUtV1ktYmKobExamTsiuXIF771UBFhvlUYXIpHp1laVqMMD8+SpbTrierVtzrjGblmRLFS0Zy5CsX6/e62/dgrp1038WhISozwBRdMTHw1tvqdtvvqkuoIiixddX1Y8DlR0nQXX34vBgnIeHB7Nnz8ZisRAaGspzzz3HsGHDaNSoEQcPHiQiIoLbb789Zf0ZM2ZQr149ZmRRGOj3339n37593H333TTOpi3M4sWLqVKlCl27dmXIkCEMGzaMTp060bp1a0wmEzNmzKBatWoF/nqFEEIUnoEDYdkyKFFC1UNp3hyOHnX2qFzTiBFqSvvFi+mX/1c3l0GDoFQpx49LuK/774fJk9XtoUNV4Ee4Fnvrv5UrZ3+dWeFe0s6caNdOfYfMNaaio9V0ZgnIFR0ffqgCNNWqqfdoUTRVrqwupJpMcP68s0cjcsMp7SrCwsLYtm0brVq1YvHixcycOZOAgAAWLFjAqFzmz1qz4nJq3BAWFkbXrl05cuQI8+fPZ/r06Rw8eJDHHnuMX375JdeNH4QQQriGhx+G7dvV9Kpjx1RAzkYlhGJtyRL44IPs1xkzRq6oitx77TV4/HE1TTw8HE6ccPaIRFr21n9bvFgCccWB2Zz1Z4F1KvPQofJZUBScPZta//WDD1QGlSiaDAYVcAX491+VESncg9N6xzZr1oxVq1Zx9epV4uPj2bVrF3379s20XkREBLquExERYXM7M2fORNd1Bg8enO3ztWnThu+//55jx44RFxdHUlISZ8+eZdGiRTRr1qwgXpIQQggnuesu2LUL7rtP1c148EGVsWPN+iquzGbYsAGyqeKQ4uxZyWwSuadpMHs23HMPxMZCly5St8aVWLtqZsVaJ65tW4cNSThRTtOWdV19FkRFOWxIopC88YaajhwaqrLiRdHm768aOoDqcu6KdVzfeustNE1j6dKlNu+fO3cumqYxadIkB4/MeZwWjBNCCCEKUsWKsHEj9OuX2j3skUfs7yBY1ERGqhpA7dvD9ev2PcbeKW1CpFWyJCxfroI+R46oEz+TydmjEqCmKL78su37rF02pU5c8WHve3yvXjJd1Z1t364aN2ia6qqbVUddUbQEBwMGM1vORPH59kWsPBTFhYtmrl93jeBcw4YNATh48GCm+27dusX48eMJCgpiaDGaUy3BOCGEEEWGtzd89RXMmgVeXrBihWpQ8Ntvzh6ZY0VGqto/uSncDvZPaRMioypV1P5WsqQqEv/SS65x8F/cxcer90TIPE0tKEjqxBU39r7HX74s9ePclcWiOiiDqqubTUl1UcT8dDyShzeGMGhnGIM39KHLkjAazA3hs6hIDhxwfpOzBg0aALaDcbNmzeLcuXO88847+BajOdUSjBNCCFGkaBo8/zzs2AE1a6p0/Vat4P33i0cdHLNZHYjnNhBSvryaziJEXt11F3z3napf88UXOdcpFIXv5Zfh8GHVbe/kydSumps2qZ8lEFe8WKct25spJfXj3M/8+fD77+DnB++84+zRCEeJPBxJj8U9iLmZ/irshYRo3tjTg9WnIzl+3LkBuTp16uDt7Z0pGHf58mWmTp1Kw4YNefLJJwvlufv27ctLL71UKNvODw9nD0AIIYQoDHffDXv2wIAB6ur+m2+qzJ1586B2bWePrvDkVBMoKzNnylQ1kX8PPQQff6xO4t94Q00f79fP2aMqnr79FubMUYGXhQvV36JiRWePSjiT0aimLfbokfO61vpxW7dKTUF3cfmyet8F1ZSpQoX8b/Pvy38TdSqK3ed3E3MjBrPFTDnfctxZ4U461OpAo4qN0GQerFOZLWZeWf0KOrauwuqAxseHhtKmUjfOnjVSpoxzpi57eHhQt25dDh06hMlkwtPTE4CJEycSFxfH+++/j8GQmis2cOBAdF1PadiZH9OnT3fJjDvJjBNCCFFk+furaVizZ0OpUqqOSqNG8NlnRXcKXV7qvg0fbt/JmRD2eOUVGDZM3X7mGfjpJ+eOpzg6dgwGDVK3x46FsDDnjke4jvBw9blYrpx960stUfcxciRcvAh33JF1rUh7JFuS+Xrf19w35z5u++Q2nl3xLJ///jnLjy7n52M/883+b3hj/Rs0/rwxDT5rwDf7vsGiF/OOWU609cxWzsVldxVW59+Es+y9vJWkJPvrCBeGhg0bYjKZ+OuvvwA4deoUn332Gffffz8dOnRIt+6uXbto0qRJltvSdR2znam7AQEBlChRIu8DLyQSjBNCCFGkaZoKCBw4oK7ux8fDCy9Amzbw55/OHl3By03dt/LlYfFi1XlWiIL0/vsqI85sVg0dtm1z9oiKj4QEVYD/xg31PjdmjLNHJFxNeLh677eH1BJ1D7/8osoDgLrg6OWVt+2sOLqCO2feSb8f+7Hj3A6MmpHW1VvzZss3+fyhz5nz8BzeCXuHbnW64evhy8GLB3nqx6doNbcVR2KPFNwLEnaLuW5fxDw2Qa134oTzpqta68YdOnQIgNGjR2MymYiIiEhZJyEhAaPRyP79+3nhhRfQNI3HHnuMI0eOoGkaP/74I02bNsXLy4t9+/YBMHLkSOrVq0eJEiWoWrUq48ePT9me9XFX/2v1/ueff2IwGFizZg0tW7bE19eXe+65hxMnTjjml5CGTFMVQghRLISEwIYN8Mkn8NZbaupN48bw6qsqc6RUKWePMP/i4lKLtWcnIAC+/14FJ2VqqigMBgN8+SXExsLPP0PXrrBlC/x3HC4K0SuvwN69EBiopqrKPi5sadtW1Y+LjradKa5p6n6pJeqazGZ1HBMToy6svfaaWv7009C6de63dyn+Ei+ufJHvD34PQIBvAK+3eJ2nGz9NpVKVbD7mWsI1Zu6aybvb3mXHuR00/bIpXz/yNY/WezSvL0vkQeXS9kXMA33UesnJcPw41KoFZcsW5sgyS9tRtXbt2ixcuJAnn3wyJUgH4OXlxfr162nXrh3Hjh2jZMmSlCxZklWrVmE0Gpk8eTIfffQRFSpUoGbNmphMJry9vZk3bx6VKlXi119/pX///oSGhnL//fezf/9+qlWrRpkyZQDYv38/np6eTJkyhQ8//BA/Pz/69OnD5MmTmTVrlkN/H5IZJ4QQotgwGNSJ6qFD8Mgj6oDkgw+gTh1VWyk52dkjzLuffoKGDeHrr9XrtEXT1NcXX0C7dnKSLgqXp6fKvrnvPrh6Vf3P/XcxXBSSzz9X+7emwTffQNWqzhuL2WIm6lQUiw4sIupUFGaLdAJwJdb6cWC7fpSuw9Sp8jnhiiIj1QXGsDDo0wceeEBl/5cqlbdM993nd3P3F3fz/cHvMWpGRtw3ghOvnGBk6MgsA3EA/j7+jAwdyeEXD9OmehtuJN2gx5IezN87P+8vTuRaaLVQgvyC0MiqEJxGRZ9g7iqXPrJ+9qzjS7ak7ag6YsQIfHx8ePvtt9OtYzAYiImJISQkhFq1alGpUiVKly7Nvn378PPzY9myZbRu3Zq6devi5eWFp6cnERERNG/enOrVq9OrVy8aN27M0aNHAdi3b19KEBBUMC4wMJAlS5bQokUL6tevT/v27YmNjXXcL8L6Wh3+jEIIIYSTVa8Oy5aphg4hIXD+PAwcqOrJLV/uevXkzGaIioJFi9T3tCUyzp5VU466dlWdY0NCYPNm+OEHldWQVlCQqhUkHRSFo5QooQLFjRurWkb33w9HZCZTodi+HYYMUbfffRc6dXLeWCIPRxIyLYSw+WH0iexD2PwwKnxYgbc3vy1BORdirR9nK2jr7Q116zp+TCJ7kZGqxqutRk03bqgM5NyYv3c+Lee25My1M9xW7jZ+Hfgr7z/wPn7efnZvI8gviPVPrefZu5/Folt4+n9PS0DOgYwGI9M6qch65oCc+vm1O6Zi1NJH1pOS1P+MI1WpUoWAgABWrlzJ+vXrGTp0KMHBwZnW279/P40aNcq0rGfPnlTM0InoxIkTPP/889xxxx2UKVOGUqVKsXPnTir/N8c+47b2799P9+7dKV26dMqyU6dOUatWrYJ8qXaRYJwQQohi66GH4PBh+OgjVcz60CHo1g2aNVPBLDvrwhaqjFfAw8LUz19/rYo116mjAoseHqqL2p9/QqtW6iTr1CnYtEl1Uty0CU6elECccLyyZWHdOhXs/vdfFZA7dszZoypaoqOhe3cwmVSNPmtHRWeIPBxJj8U9MhUUv3zrMuOixlHxw4pEHo500uhERhk/K9avV1msiYmq9mB8vLNHKKzMZpXdn90Fw6FD7T92+WD7B/T/X3+SzEl0q9ONXc/u4p4q9+RpbB4GDz5/6HNeavoSOjoDVwwk6lRUnrYlci+8XjhLey2lql/6yHpFnyDev3sp91e2ffCXlOSI0aXXoEED4uPjCQwM5M0337S5TsZsNuuy1hnmYF+4cIFmzZqRkJDAJ598wo4dO1ixYgUWiyXl8bYy45o3b55uO3v37s0U/HMEqRknhBCiWPPxUbVWBgxQReenTYPdu9WV59tvV10h+/SBkiUdPzbrFfCMB97nzqni+FatWsHMmZnrcRmNqi6QEM4WEKBO8u+/X02nCgtTWZ61azt7ZO7vxg2VGfvvv+o94KuvbE87LAzXE6+z+u/VrP57NQcuHODk1ZNcir+ETtbRgku3LtFjcQ+W9lpKeD25OuAKMn5W3Hkn3HUXHDyosi3nzHHWyERaW7fazohL6+xZtV52n/26rvPm+jeZ/Iua0zr8vuG81/49DFr+8nQ0TWP6g9OJvRXLd39+R/fF3dn17C5qlq2Zr+0K+4TXC6dbnW5sPbOVExdiMF2pzF3lQjNlxKWV10Yf+bFp06Z0P1ssmTvxHjhwgGeeeSbl56tXr3L27FnuuuuudOutWLECLy8v5s9PzcScN28efn5+1KhRI+Vx1kDblStXiI6OTreduLg4Tp48mSn45wiSGSeEEEIAZcrApElqqueYMernv/6C555T3eQGDYI9e/L3HNlNN7W1bk5XwD09VVacFMYX7iAwUAXk7rhDZXKFhqrAnMi75GSVvfTHH6qI+//+55gLB2euneGVVa9Q9eOq9Frai7l757Lr/C5i42OzDcRZ6egMXT1Upqy6qIoVVZacwQBz56Z26RTOFWNf08xs19N1nVfXvJoSiJvcfjKTH5ic70CclaZpzH14Lk2rNOXyrcv0+aEPicmJUj/SQYwGI21D2vJ00960qNw2x0CcqzYvM5lM7N27l5iYGK5fv86+ffvw8fGhboa58wEBAVy6dInVq1dz9OhRxo0bx+eff07Dhg3RNI19+/bh6+vLbbfdBmBzO/v27cPLyyvTth1BgnFCCCFEGuXLw9tvw5kzavpq7dpw/boqjH7PPSqQMHYs7NuXu9pyWU03jcxitpY9V8BNJhU0dFQWjBD5VaECbNyomo388w+0aQM7dzp7VO4jbUB/0yYYPBhWrQJfX1Wbr0aNwn3+eFM8ozaMos6MOkz/bTrXk65Tu1xtXm/xOpG9Ipl0/yS7t3U27ixbz2wtxNGK/AgLg3feUbdfegl++cW54xHqwmB+1xu7aSzTflX1xb7s+iXDWw4vgJGl5+vpyw+9fsDf259fo3+lwocV0tWPDJkWIlPVC5mmgY1SbOkEB7vu8ePEiROZM2cOVapUYdasWezfv58777wTY4aOMg8//DBPPvkkPXv2pF27dhiNRtq3b5+S+bZ//37q16+P4b/OZgcOHMi0nX379lGvXj08PBw/aVTTdVcrU+0e4uLi8Pf3JzY2loCAAGcPR4hiwWQysXLlSjp37oynp6ezhyOKCYtFnfx++aUKnKWtrxEUpKbd3X8/tGwJNWva7mSa1XRT60GQtanCrVsq+279epWV8NdfOY9v4ULo3TvPLy9Hst+JwnDliqrZ+MsvqsnDjz+qjoBCsbXfLV0KL7ygGmGkpWkqQ7Zbt8Id02/Rv/Hksif565J6Y2pTvQ2jQkfRvmZ7tP/ezKJORRE2P8zubS4MX0jvBoX4BibyRddV5uXSpVCpEvz+O1Sp4uxRFR5X/7wzm9VFvKwu1GmaOi45edJ2F9z3t73PmxtUja5PO3/KC01fKLzBAq+ufpWpv07NPM7/mgoUl6nqCQkJnDx5kho1auDj4+PQ575yRU1dtlUbrlo1dYHM2SwWC3Fxcfj5+aUEzVyVvX9La6zo2rVr+Pll3QxFasYJIYQQ2TAYUgNuV6+q7JOlS2H1anVA/PXX6gtUun+jRip7rlo19RUYqKa42rr0ZV325JMq2+7Ikdw3jbD3SrkQrqRsWVi7VgWh166FLl1gwQJ14i/SM5uhb1/4/nvb9+t64Tab0XWdj3Z8xJvr38Ssm6lSugqfdv6UbnW6pQThrEKrhRLkF5SpeUNWKpeWNzBXpmmqBuGRI6o5UHi46tbt7e3skRVPRiOMGqUyYjOy7opTp9oOxC3YvyAlEPdeu/cKPRBntphZcmiJzft0dDQ0hq4eSrc63TAasp5KKfKnbFk1g+LGDRWQ8/KCmzfV8evZs6qsgTNqIgvFtUOPQgghhAspUwaeeEJl8Vy+rDpEjhwJzZurk5MbN2D7dpVFN2aMarLQpUvmTJaM4uNVoWyzWU2T7dVLTYutVCnrKQTWKQihoQX9KoVwjJIlYfly1f3TZILHHoOJE3M3/buoW7FCZS5kFYizyk0HxdxISE6g///6M3zdcMy6mcfqP8aBwQd4pO4jmQJxoOoVTes0za5texg8qBNQp6CHLApYqVLqM69sWfj1V5WdKfuocyQnwzffqNsZC+8HBaVm2We09fRWnlmuiuEPv284b7Qq/HbLW89sJfp6dJb36+gyVd1BNA1Kl1aNlEqXVjUhy5RR+/Hx4+r/SjiHZMYJIYQQeVCiBLRvr75AHcwcPaoKqR8/rmrOnTkDx46pphA5GT5cnVBXrpwagAsMVNNbNS39yU9OV8CFcBfe3qr+WVAQTJkCo0er6dlffCHZN6CyZuPjc17Png6KuXUt4RoPLXqIbWe2YdRUkO2Fpi/YDMKlFV4vnB96/cBzK57j0q1LWa6XbEmm66KuRPWPopSXi1YRFwDUqgXffQcPPqgaOtStqz6zROEzm9W+HROjsoh/+QX8/NSU4XPn1PLKldWFOVvHA8cuHeOR7x8hyZxE93rdea/9ew4Zd8x1+7pN2LueKDiapqY7Hz4MiYlqWnPt2q5bP64ok8w4IYQQogB4eED9+ipzbtw4mDNHZc7Nm2ff4zt3VrV40h4MhYerK91Vq6ZfN7sr4EK4G6MRPv4YZs5Ut7/+WtWPi4119sicx5rllpsMJHs7LdrjUvwl2n3djm1ntlHGpwxrnljDi81ezDEQZxVeL5x/h/3L+LbjKedbLt19wX7BfPLgJwSWCOT3mN8Z9NMgpIS16+vQQe2nACNGwBLbMxBFATGbVTOpChVSGz9ZjycGDFDBk7ZtVc3Ytm1tB+Ku3LpCl4VduHzrMs2qNuPrR78usK6pObF3CrpMVXcODw8VZNc0uHatYD8/hP0kM04IIYQoRKGhKngWHW37xNpacDmr6abh4aowu/XKeHZXwIVwZ4MHqyYovXqp//d77lFB56ZNnT0yx9uxI/ePKaj6kf/e+Jf237Tnzwt/Ur5EedY9uY5GlRrlejtGg5GxbcYyKnQUW89sJeZ6DJVLVya0WihGg5FGFRsRNj+Mbw98S2i1UJ5v8nzBvABRaF55BU6cgOnTVdZm1apw333OHlXRExkJzz0Hl7JILJ02TR0HZHdBzqJbeGLZExy7fIxq/tX43+P/o4RnicIZsA3W+pHRcdHoZD740dAI8gsitJrU2nCWEiWgenU4dQrOn1dducuWdfaoihfJjBNCCCEKkdGoDpwh8xQAe6ebGo05XwF3J2aLmahTUSw6sIgNJzaw4cQGFh1YRNSpKMyWQqxEL1xex45qGlbt2mqad6tW8Nlnxa9G1T//qO/2vu7y5QumfuTVhKt0WNCBPy/8SZXSVdjcf3OeAnFpGQ1G2oa0pXeD3rQNaZtSrD20eijvtnsXgFdWv8KR2CP5Hr8ofB9/DA8/rKa3Pfww/P23s0dUtERGQvfuWQfirHKqEzlh8wRWHluJj4cPPz72I5VKVSrQceYkbf1Ia/fUjKZ2mlqsmje4YgZwYKCqIQdquqo9ZRGKs4L+GzotGLdr1y46d+5M2bJlKVmyJM2aNWPhwoV2Pz4qKgpN07L82rlzZ6E8rxBCCJFbMt00VeThSEKmhRA2P4w+kX1o/0172n/Tnj6RfQibH0bItBAiD0c6e5jCierXh9274ZFHVPe3F15Q07/j4pw9MsepVAmSkgyYTPadqFqn+OZHvCmehxY+xP5/91OpVCU2999MvfL18rfRHAy/bzgda3Uk0ZzIwOUDseiWQn0+kX9GIyxcCE2aqIDRgw/Cv/86e1RFg9mssg9zouupdSJtWXlsJeM3jwfgsy6f0bhy4wIcpf3C64WztNdSqvqlP/jR0JjbbS7h9YrHwY/xvzdnk8nk5JHYFhSk6hBaLCq4npTk7BG5Luvf0FhAV8WdMk01KiqKjh074uXlxeOPP46/vz+RkZH07duXU6dO8dZbb9m9rTZt2tDWRrXaoKCgQn1eIYQQIjdkuqkKxPVY3MPmlBWr6LhoeizuwdJeS4vNgbrIzN9fZYh89BG8+aY6+d++XXUSLA4dhGvVghdeuA+zOefr5sOHq0Yv+WEym+i5pCfbz27H39ufNU+soXa52vnbqB00TeOLrl9Qf2Z9tp/dzqe/fcqQ5kMK/XlF/pQsqTr9tmihTt47dICoKJnill9bt6qmDPayVefrxJUT9I3si47OoHsG0f+u/gU2vrwIrxdOtzrd2HpmK+fjzhOxOYJjl49x6uopp47LkTw9PfH29ubatWuULl3a7tqbjqJpqkTEkSOQkKCakNWpAwaZQ5mOrutcu3YNb29vPD09s13366/t26amOzhfMjk5mbp163Lu3Dl27NhB48YqUn/9+nVatGjB0aNHOXToELfddlu224mKiiIsLIxx48YRERHhsOe1iouLw9/fn9jYWAICAux6jBAif0wmEytXrqRz5845vgkKIQpGQe13ZouZkGkhnIvL+UxDQ6Nq6arMe2QeF25eSFdnShQ/27ap+lSnTqmThhEjYPz4ottt9bffoFcvndOnNUCHLKZ4+fnB7NnQs2fun8NsMafUcatUqhLz981n/r75+Hr4su7JdbSs1jJfryG3Zu6ayYsrX6S0V2mODTlGxVIVHfr8Im/+/lsFx//5B+69VzUtKuXGjXGdfZy5aJFq1GCvTZvSd1BOTE7kvrn3sSdmD82rNmdz/814e7jWG+WSg0votbQX5XzLcXro6WLTSTkuLo7o6GhKlSqFv78/np6eLheUS0xUgTiLBUqXhmrVHNNh1WKxcOPGDUqVKoXBBSOAuq5jMpm4du0aN27coGrVqvj5+WW5/ooV8PDDcYA/165dy3Zdh2fGbdy4kePHj/P000+nBMQASpcuzZgxY3j88cf56quvePfdd4vE8wohhBACtp7ZalcgDkBH59z1c7T/pn3KsnK+5Xil+SuMCh0lQbliplUr2LdP1Uj66it4/311sDtrVmqWnNns/lmnuq7qS44YASaTRqVKNxg50psPPvBMly0TEAAvvwyjRuXtNUYejuSV1a9k2h8NmoElPZc4PBAHMKjJIOb+MZffY35n7KaxfN71c4ePQeRe7dqwdi20aQM7d6rs759/Bh8fZ4/M/SQlqexfewUHZ84SHrlhJHti9lDOtxxLei5xuUAcqEy52uVq8/flv5m9ZzZD7x3q7CE5hDUgExsbS3R0tJNHkzVNU9PPY2Ph4kX1eVPYdF3n1q1b+Pr6ulyAMi1vb+8cA3GHDkHfvvZv0+HBuKioKAA6dOiQ6T7rss2bN9u9vWPHjjF9+nTi4+OpXr06DzzwAIGBgYX+vEIIIYSwT7IlmWWHl+VrG5dvXWZc1Dim/zqdL7p+IVNYixk/P5g7F7p2heefVwe8rVvDM8+oE9LRo9NP7woKUoEtd6nH+O+/qnvi8uXq50cftdC9+2Z69erAiy8WXKAxu6niFt1CojkxH68i7wyagamdphL6VSiz/5jNC01fyHfjCOEYDRrA6tXQrh1s3Ki6IS9dCl5ezh6Z+xgxQjXGyK4hQ1qaBh9NMbP1bGqX4uuJ15mycwoAX3X7imD/4EIccd4ZDUaGtRjGoJ8HMeO3Gbzc/GUMmutlQxUGPz8//Pz8MJlMmO39YzvBuXOqdqHFAi++CEMKuXKAyWRiy5YttG7d2mVnPhmNxhzHdvmyuiBx/Tq0bGlfcN3hwbhjx44B2JwOWrZsWQIDA1PWscfChQvTNWDw9fVl/PjxDB8+vECfNzExkcTE1AOUuP+qCJtMJpctxihEUWPd12SfE8Jx8rPf6brO0sNLGR01mpNXT6Ys19AwYMCgGVK6rOnoWHQLFizpAgVGjHhqqdM54hPjeWLpEyx4dAFd63TNz0sTbuihh+DAAXjrLSNz5xqYMwfmzNHx9LTg42NJmVJz+bKa2goqgOeqdB2+/VZj2DAjly9reHnpfPCBhWeeSWT9+mRMJhOenurA3spiUV+5ZbaYeWPNG/gYVNqSRbeQqKtjWyNGvDQv3lzzJp1rdnZK9mnzys3pUa8HSw8v5Y11b7Di8RUOH4PIm8aNYdkyjYceMrJihcajj1r47juz22XIOeM4c+xYmDEjNXhpMhlITjYCOl5eZozG9IHzcuXgyQkreOvsG0QfUhlWuq6ThKq6/2KTF3mw5oMufaz8WL3HeGP9Gxy/cpyVR1fSsVZHZw/J4QqqAUBh6NQJhg0z8OKLRkaMAB8fM4MGFV5zHYvFQnJyMkaj0aV/L9ntUwkJ8MgjRv7+20D16jpz5pioWzfnbTq8ZlyHDh1Yt24dx44do3btzIVha9Wqxblz59IFvmw5ePAgq1at4qGHHqJatWpcvXqVTZs28cYbbxAdHc2sWbN4/vnnC+x5IyIiGD9+fKblCxcupESJEjm9bCGEEKJYOZtwlplnZ3L45mEA/Ix+PBj4IO0D2lPeq3yWj9N1ncM3D7Pk3yX8cf0PAIK8g3it+mvULFHTIWMX7uHQoXLMmtWIM2fUlJEqVW7wxBOHaNEixiF1bvIrOrokc+Y0YM8eVR+tRo2rDBnyBzVrFn7b2LjkOF4/+joXTRdpUKoB42qNw0NzSl+3dGISY3jx8ItYsPDebe9Rt6QdZzPCZfzxR3kmTWpOUpKRu+66wMiRv+LtLR1y7bVuXTU+/VSVU3r11d9p0ybn0g4W3ULE8Qj239hPiE8Ik2+fjJfB9dMSZ5+bzU+xP9HUrymjao5y9nCEDYsW1eH779V78Isv/sEDD5xx8ohck8UCH33UhO3bq1KihIl3391KhQr/0qdPnxxrxrltMC4rf/75J/fccw9ly5bl/PnzKUUA8/u8tjLjgoODiYmJkQYOQjiIyWRi3bp1PPDAAy6bxixEUZPb/c6iW5ixawajNo0i0ZxICc8SDLt3GK/d+xobTmzgyWUqXSm7jqpWZt1Mkp6U8rOX5oVRS71q+nOfn2lVrVUeXpUoCrZtg86dwWw2YDIZsDY60DQdT08zBoOOpqkaVq1c6N8kNhYmTjTw+ecGkpNVNtzo0RZef92CdRcr6M+7FUdXMGT1EK7cuqKyaPQkLFjQ0PDWvNPV6Znz8Bx63JHP9qz58NzPzzFv3zweqPEAP/f+2WnjEHmzaZPGo48aiY/XaNvWwrJlKkNuxw7V6KFSJdWF1RUTYBx9nDlzJowcqW6bzRpJSUZAw8PDjKdnahDz2WdVrUw0Mw0+a0D09dSaYybdRLKeDICP5kOwXzD7B+93+dqqRy8dpcHnDdDQOPrCUULKhDh7SCIDXYfhww1Mn25E03S++MJMv34FHzpy9/O7N9808PHHRjw9dX76yUxYmE5cXByBgYGu18DB398fgGvXrtm839qlNK/uvPNOmjdvztatW/n777+5/fbbC+R5vb298bbRtsvT09Mt/2mEcGey3wnhePbsd1cTrtI3si8rj60E4MHaD/L5Q5+n1K4JvzMcjNgsHm+PJD2JtDG8f+L/kfeCYuyff9TUkIx0XSMpKfUQ9/RpCAvLflvWBhDR0apodfnyULWq/fXZ7GkgceECfPKJ+rIejnbpAh9+qFG3rhHI/EQF8XkXeTiSHj/YrhOno5OgJ6Tbryr7V3bqfjW2zVgWHFjAupPr+C3mN6c0lBB516GDqiHXuTNERRlo3tzA9etq37By9ZqOhX2caX2/WLkSbt3KfH9ysvG/qaqKxaKaYkSd2s7f1/7OcrsJegLHrh1jZ8xO2oa0LYSRF5w7K91J+5rtWX9iPXP2zeG99u85e0jChqlTVVDuk080nnvOAy8veOqpwnkudzy/mzJF1XsEmDtXo0MHdexh7+tweDDOWrPt2LFj3HPPPenuu3LlCrGxsdx33335eg5rA4f4+HiHPq8QQghRXB2JPUK377rx16W/8PHwYUrHKTx/z/OZOmOF1wunW51ubD2jCk9XKFkBgAs3L1ChZAX6/9ifc9ftC9RVLl25wF+HcB+V7fzzv/QS/P67yi5p2DDz/ZGRqlj1ORv/duXLQ58+EBKSdYDO1uPTBhv+/FN1fp0zJzV42KgRfPSRKnpfmMwWM6+sfsWuTFQNjSC/IEKrhea4bmGqUbYG/Rv1Z/Yfs/nglw8kGOeGQkNh3Tp44AH466/M90dHQ48eqtGDqwbkCkt27zdZqVVLfY+5HpP9iuRuPWd7semLrD+xnq/2fsWEsAl4Gt0rEFMcaJr6LEtOhs8+g/79ITFRfZ4WdzNnwmuvqdsTJ8ITT+R+Gw5vXdKmTRsA1q5dm+k+6zLrOnmRnJzMnj170DSNatWqOex5hRBCiOJq48mNNJ/dnL8u/UWwXzDbB2xnUJNBWbaoNxqMtA1pS+8GvWlXsx3tarZLuT3twWkpTR2yU75EeacHDYRzhYaqoFd29eGMRrh5UxVIb9QI7rwTIiJUgEzX1Ylxjx5ZnxhfvKhORF59VR1oh4WpwFxkpLo/q8efOwfdu0Pt2qrb5KefqkBc06bwww8qOFjYgTiArWe25ioLdWqnqS4xve31+14HYPnR5fx1yUY0R7i8pk2hZEnb91mLJA0dan8H0aIgp/cbW4xGeOEFddveC1DucqGqy21dqFCyAhduXmD136udPRyRBU1Tn6GDBql997nn4L33Uvfj4mjuXNVpFuDNN1Onm+eWw4Nx7dq1o2bNmixcuJC9e/emLL9+/ToTJkzAw8OD/v37pyyPjY3lyJEjxMbGptvOjh07yFjuLjk5meHDh3P69Gk6duxIuXLl8vy8QgghhMhZ5OFIHvz2QeIS4witFsru53Zzd+W787y98HrhLO21lADf7OuxJiQncOaaFBMuzoxGFSiDzAE5TVNf330Ha9eqE2BPTzh4EMaPVwGy4GDVcTW3JxTnzqntLVmiMlyye/zx4+DhAY88Ahs3wq+/qkwgR9XLsjdDppxvOZb2Wkp4PddIU6obWJeut3dFR2fKjinOHo7Ig61b4d9/s75f1+HsWbVecZCUlBrMyI3XXkvttBpaLZQgv6As19XQCPYLdpsLVZ5GT55ooNKJ5u+b7+TRiOwYDOlrHI4cCcOG5a2zt7ubPx8GDlS3hw6Fd9/N/qJgdhwejPPw8GD27NlYLBZCQ0N57rnnGDZsGI0aNeLgwYNERESk1HkDmDFjBvXq1WPGjBnpttO7d29q1qxJ3759GTFiBM899xx33nknU6dOpVq1asyaNStfzyuEEEKIVGaLmahTUSw6sIioU1GYLWbm/jGXnkt6kmROIrxeOOueXJcy7TQ/wuuF8++wfxnfdjzlfMulu69q6arUKluL60nXeeT7R7hlslFwRxQb4eFqqlvVqumXBwWp5T16qKlyS5aowMD8+fDww+DtrabKpalokiu6rurm2JPhsmQJLFumsuoc3eXV3gyZxT0Wu0wgzur1Fio7bt6+eVy8edHJoxG5FWPnTEl713NnkZHqPepiLv6NjUYYPhwmT06zzGBk4v0Tba5vzSh3lexWe/W7qx+gsmAvxV9y8mhEdjRNBZ4++kj9/PHH6nMwIUFluEZFwaJF6ntRzXidNk1N1dV1FVz/+OP8fa47pYd5WFgY27ZtY9y4cSxevJikpCTq16/PhAkT6Nu3r13bGDx4MKtXryYqKorY2Fg8PDyoXbs2o0aN4vXXX6ds2bKF8rxCCCFEcdTgswbpCkeX9SnLlYQrAAxsPJBZD80q0BMAo8HI2DZjGRU6KqW+XOXSlQmtFsr56+dp8mUT9v+7nzfWv8H0B6cX2PMK9xMeDt265dxAoWxZdeLw1FOqaPo776gTi7yy1TzCFlsF2h0ltFoogSUCiY2PtXm/tU6cKxZ7b129NU2qNGH3+d18tvszxrYZ6+whiVywt6ajveu5K+vUVHsz4jp0gAcfVFNTrRlxaa05vgYAD4MHyZbklOVBfkFM7TTV5YLqOWlYsSF3V76bPTF7WPTnIl5q9pKzhyRy8NprEBgIAwbAt9/C7t0QF+deTVqyY6shk8GgsurHj1frDB2qgpL5vcCm6Rnnegq7WLuvxsbGEhCQ/VQaIUTBMJlMrFy5ks6dO7tdtx0h3FXkn5EYjxvpvb83tyyZowoP3fYQy3svz7I+XGFZ8/caOn3bCYBVfVfRqXYnhz6/cH9RUTl3WS0ImzZB27a5e0xBfd5dir/E7TNu5/Kty5nus2bSuNL01IwWHlhI38i+VC1dlVNDT+FhcEoegcgDs1nVV4yOzjoQ5eEBv/0GjRs7dGhZKujjTOvvIDc14jK+X5gt5pQLUkcvHWX85vEYNANbn95Kkjkp3YUqd8qIS2v6r9N5ZfUr3FP5HnY/t9vZwxF2Wr9elWC4eTPzfdZDQnuatLjS+Z2tBitVq0L9+qrkBcCECTBqVPaBOGus6Nq1a/j5+WW5nsOnqQohhBDCPZgtZt5Y/0a26+z9Zy8W3fFFQzrW7siQZkMAGPC/AVxLuObwMQj3Zm0AkR/ly2d9QK5pqi5dqJPKN+m6zvM/Pc/lW5epUroKVUpXSXd/kF+QSwfiALrX605giUCir0ez8thKZw9H5EJ2NR2tkpOhRQvV4KQopods3Wp/IM7W+0Xk4UhCpoUQNj+MPpF9GL9ZpeWE1w3nvuD7UhohtQ1p67aBOIA+DfrgYfDg95jfORJ7xNnDEXYKC4NSpWzf545NWrJqsBIdrQJx1kYWo0cXXMkJCcYJIYQQwqatZ7YSfT0623XOXT/H1jPOqcD9fvv3uT3gdmJuxDB642injEG4L2uwIK8H1cHBqqA12G4gATB1quOaNWQ0b+88fjj8Ax4GD5Y/vpwzQ8+wqd8mFoYvZFO/TZx85aRLB+IAvD28efqupwGYtXtWDmsLV5NVTcfgYPjqK3joIUhMhJdegkcfzb7hgzvIWDcrOvuPz0zSvl8sPbiU7ou72+yGvPTwUiIPR+Z3uC4jsEQgHWp1AOD7P7938miEvYpSkxazOeeGTAEBqk5cQZJgnBBCCCFsio5LPZPILvvN3o6NBc3X05eZnVU05NNdn7L7vExvEbljDRbkNkNO09SJc48e2TeQcFa9nL8v/82QVSpzdELYBO6pcg9Gg9EtM2meu+c5AFb/vZpTV085dzAi18LD4dQpNf1y4UL1/eRJVQR9+XIVEPfygv/9D+64AxYscM8suchINSU1LAz69FHfX3zRvseWL5/+/WLJwSU8/sPjWa6voTF09VDMFjdJObLDY/UfA+D7g98jVbTcQ1Fq0mJPFmtsbMEHFiUYJ4QQQohMIg9HMnTNUACiE6JJ1BOzXNfejo2FoV3NdvRt0BcdNSWvKJ2cCMdIGyxYsACmTFFXyAMDba8fHJz+xDmrYIOzAnEms4m+kX25abpJm+ptGH7fcOcMpIDULleb9jXbo6Pz5e9fOns4Ig+MRlUHrXdv9d2a/aVp8PLL8OuvcNddcPkyPPkkdOkCZ844ccC5lNX0tmt2VE8oX149zvp+EXk4kl5Le2HWs/4s09E5G3fWaVnphaFbnW54Gb04HHuYPy/86ezhCDvY23ylTJn0P7ti51VnBRYlGCeEEEKIdCIPR9JjcQ9i42PRdZ23T7xtcz0NjWC/YEKrOako1n8+6vAR/t7+7InZw/x98506FuGerMGCvn1VjZupU+Gff9IH6BYsyDrQllWwwRkmbJnAb9G/UcanDN88+o3bZMBlZ9A9am7QV3u/koB7EXTXXaqRw7vvgrc3rFoFdevC2LFw44azR5c9e6a32aJp6mvWrNSuqWaLmVdWv2L3NpyVlV4Y/H38ebD2g4DKjhOuz1p3NadSDy++qDJfdd12BmmDBg4ZbrYKuvvzgX8P2LWeBOOEEEIIkcJ6MqCjziwS9UT+Tfo3pfOilfXnqZ2mOv1kv2KpioxurWrGjd00lnhTvFPHI4qGjAG6vn2dH2jLybYz25i4dSIAs7rMItg/2MkjKhhd63SlnG85Ym7EsOHkBmcPRxQCT08YORL27oU2beDWLdW18PbbYd4818iescXeJg0ZM21tTWXfemarzRpxWXFmVnphkKmq7iW7Ji3WnwMD1QWsRx5RQffu3TPvL+fPq+89eqgLYUlJhThoG06cSH0dWclNQ6Yz187QaUEnu55bgnFCCCGESJHxZEBHp7SxNF6aV7r1AksEulQnxpeavUQ1/2pEX49m6s6pRJ2KYtGBRUSdipJMGlEsXEu4xhORT2DRLTzV6Ckeu/MxZw+pwHgZveh9Z28AyX4t4urWVRmoP/wANWqoaWFPP63qyX39terA6kpOnbJvvalTc57KnptMN1fISi9oXet0xdfDl78v/80f//zh7OEIO2TVpCUoSO3DJ0/CW2+p7M/9+21vwxp3XbcOXn0VSpSAESMKd9wAV67AsGFQrx78+GPWF9py05BJ13WeWf4MN5LsS+mVYJwQQgghUtg6GXijxhsYtPSHDFM6TnGZQByAj4cP74S9A8DojaMJmx9Gn8g+hM0PI2RaSJHqPCeELS+teonT105To0wNPnnwE2cPp8A91egpAJYdXkZcYpyTRyMKk6apk/zDh2HyZChbFv76C/r1gzp1VBbL1auFO4ac6lrdvAnTp8Prr9u3vapVc57KnptMN1fISi9opbxK0fm2zoDaz4V7yK5uaqlSMHGi6p6clYxJkGYzfPBB9gG5/NSdi4lR265eHT76SGXiPfAA/PGHCiBmbOiUm4ZMX/z+BetPrMfbw9uusUgwTgghhBApMp4MeGqe3FnqzkzrVfWrmmmZs/l6+gKkTLG1io6LpsfiHhKQE0XWwgMLWbB/AQbNwILwBfh5+zl7SAWuaZWm1Amow63kW/xw6AdnD0c4gLc3DB8Op0/De++pKW8nTqhp41WrwvPPw86dBd99dcWKzHWtQkJUvasTJ9SYgoJUrbjLl7PPlrF3eltSchK/n/+dkp4ls13PqBlZ0mOJS10MK0iP1H0EgB+P/ujUcYjcyaluanZ15RITPVizpnqm/fjjj21PWbVVd866f2bFYoGNG9X6ISEq2Hf9OjRsqGpUrl2ratflpyHTySsneX2tis5HtI3I+QFIME4IUcRYdAuXb13mXNw5Yq7HkJicdQdIIURmJTxLpKsP56F5pLvfVZo2ZGS2mHl1zas277MG54auHipTVkWRc/rqaQb/PBiAMa3HcF/wfU4eUeHQNC0lO+7r/V87eTTCkUqXhjfeUCfJM2dC/foQHw9ffAEtWqjprG++Cdu3g8mU/+d78snMda3OnVP1rmrVgg8/VJl5NWvC55/Dt9+mNmRIy97pbSPWjaDEuyUYtm4YN003sx3bou6L6FG/R65fk7voclsXjJqRPy/8yZQdU6TURBGRXeMDXdf47LO7SEhIf7xpNqv9Pa2sOhdHR6vlaQNySUkqAPfKK2pfbddOZdIlJcF996mg+9690ClDebe8NGSy6BYGLB/ATdNNQquFMqjJoJwfBHjkvIoQQriuf2/8y7oT61h/Yj17/9nLscvHMhVvr1K6Cg0rNqRt9bY8dPtD1K9Q30mjFcK1/XPjH8K/D8+UWWblSk0bMsqp8LWOztm4s2w9s5W2IW0dNzAhCpHZYubJZU8SlxjHvUH3pjQyKaqeaPgEozaOIupUFGevnS0yDSqEfUqWhMGDYdAg2LIFvvxS1Xo6fRref199lS6tMmVatoTGjdVXxuYJWTGbVQZNTlPeHnhAneA/+CAY/ktt8fRUy9IGCYKCVCAuu6yaEetG8MEvH+Q4tmC/YKZ2mlpkM+KsNp3ahIfBA7PZzGtrXwMgyC+IaZ2mFfnXXpRZO69GR2fOZPX0NFO16g1OnfLP9LhPP4W4OBWAr1YNXnrJdiasddnAgbBtm+rOvHs3JKbJyfDzUwG2Z56BJk1y7gKbGzN3zSTqVBQlPEswt9vcTKVdsiLBOCGEyzJbzGw9s5WY6zFULl2ZeyvfC4DJbGLZX8v4au9XrD2+FotuyfRYD4MHZosZHZ3z189z/vp5Vv+9mjc3vEnTKk15semL9G3YFw+DvA0KAWq/6rWkF9HXo6kXWI+RrUby1sa3uHTjUso6QX5BLnsyYG/h69wUyBbC1b2//X22ntlKKa9SfBv+bZH/TKvmX41W1Vqx7cw2lh5ayqstbGfDiqJN01TH1TZtVIbcypWqptO6dWra6PLl6ssqIEBNFQ0OhvLlwddXfQHcuKG+YmPh8GEPYmK6kJSU/X701lsqYyat8HDo1k11V42JUZlAoaHZZ9UkJSfx8Y6Ps30uAwZW9V1Fu5rtXO4iWEGLPBxJj8U9siw14UpNo0TuWDuv9uih9t+0ATUPDwtTp0bx2GOdSUz0TPe4v/+GcePsf54rV2DKlNSfK1SALl3UvvnAA6o5REH7+/LfvLH+DQDeb/8+tcvVJi7OvrqmRfsTWwjhtiIPR/LK6lfSZbrU9KtJe7/2vDLrFU5fO52yvHGlxjxQ8wFaVWtFncA6VPevjreHNxbdwtWEq/x16S92Re9i9fHVrDu+jl3nd9H/f/2ZuHUik9pNIrxeOFpBXh4Rwg2NWDeCrWe24uftx7LHllEnsA59GvRhy8ktxP0Zx899fqZ1jdYuezJgb+Hr3BTIFsLVpL1IdTXhKuOi1FnKjAdnULNsTSePzjEeq/8Y285s4/uD30swTlCihDrB79FDZbX98Qds2KCyYv74Q53MX7qkvvbuzWlrGur0WP/vtm0xWVzTsU5vs9fM3TMx/7+9+w6L4mrbAH7PLrAUARUsKCD23mI3oiAq2BURRWOLmpiYBPU1MRpNNJpoTFETkxhrLAEFxK5gAwVji72gYiEogl1BkbY73x98S0TagrCz5f69V67vY+bszLPKcWaeOec5YuHD8FRQ4fLDy+hRp4fmB9ZDSpUS/mH++Y7MFyFCgIBJYZPQv35/nb0PocKpV159fQSpmkyW9+d587IXb7l0CYiN1Wzhlh49smvDdegA1K1buiPgXqcSVXh327tIzUyFu4s7PmzzYbE+z2QcEemcgt6M3Uq+heXJywEAla0q47233sOoFqNQp2KdfI8jE2SoaFER7R3bo71je3zc7mPcf3Efq8+sxo9Hf0Ts41j4BPugf/3++K33b6hmXa3MvxuRLgq4EIDFxxcDANYNWIf69vUBAHKZHJ2cO2H3xd3o5NxJp2+AXZ1d4WjjiITkhHxv5gUIcLRx1Llad0Sayu8lFQB0dOqYU0vNGAxqOAif7PkExxOOI+5pHFzKu0gdEukImQxo1Sr7P7WUlOwC7LdvA/Hx2SNnXr7M/k8Us6e1WlsD5csDT59mwcoqEpMnd0FammmB5yms/lVx3Hh8o1Tb6TOWmjAOr44g/fFHYOfOgtv+73/A9On//RwZmT0FvSjTpxcvKf4mlhxbgqj4KFiZWmFVv1UaT09VYzKOiHRKUW/GKppWhFwux42Pb6Ccolyxj1/ZqjI+7/Q5JraZiO+OfIeFRxZi29VtOHrnKDb5bIKbi1ue6bGuzq46nYQgKo7Xf79tFbYYt30cAOAL1y/Qv0F/iSMsGblMjiVeS+AT5AMBQr7/huhirTsiTRT0kgoA/r79N7Zc2WI007ccrB3QuUZnHPr3EEIuh2Bqx6lSh0Q6zNo6e8XEZs2KbpuWJiI8/EWeETpqgpBd96qolVE1Vbti7VJtp89YasJ4qEeQurkBn30G/P573v1TpgALF+beXljdOaD0+2dRrj68ihkHZwAAfuzxI2pWqFnsY3A1VSLSKYW9GTOBCX5t8CueZzzHP4n/vNF5rBXWmNd1Hk6/fxrNqjTD/Rf30W1dN7y77V24LHGB+1p3DAsdBve17nBZ4oLQmELWyybSE6ExoXl+v9usaIOXWS/hWdsTc9zmSB3iG/Fu6I0Q3xBUt6mea7upzBTBg4ONJllBhkWpUuK9He8VurCKsa0UPKTxEADApkubJI6EDMmr9d1KujKqJpQqJSLjImFnYZdr9fJ8YxLk+LB18aa+6SOWmjBOCxcCSUnZ//9772XXe0tNzZuIA/6rOweUbf/URJYqC6O2jkJaVhp61O6B91q9V6LjMBlHRDqlsDdepjJTWMgtimxXHE0qN8HRsUcxotkIKEUl1pxdkycZqC4cy4Qc6TP1yJrXf7/V9Wr8mvgZxKgx74beiPOPQ8SoCCzvsxzmJubIVGXidvJtBF4IRGRcpFElLUj/zT00F49ePipw/6vTt4yFd0NvyAQZ/rn7D24+uSl1OGRg1q8Hqud+pwNHx+x6V4WtjKqJV1+Kjdw6ssAku9qUDlNgZmL2ZifVA+pSEwUlJwUIcLJxYqkJA2T2/7/e338PTJr038/5UdedK6v+qakf//4RxxOOw0Zhg5V9V5a49jiTcUSkU56mPdWoXWm+GbM0tcTqfqthq8i7pDaAnBslYxt5QIajqJE1ADArYpbB/H7LZXK4ubhhfKvx6FKjCwBgcvhkjnYlvbPtyjZ8ffhrjdoa0/StKuWq5NSNCr4ULG0wZHD69gXi4oCICCAgIPv/3rpVOom4/F6K5UcuyPFpx0+xsHs+Q4QMkLrUBIACE3IsNUFAdj8si/6pqYv3L+LLyC8BAIs9F8PJ1qnEx2Iyjoh0xrJ/lsE/zL/Ido7WpV+EPfp2NJ6lPytwvzGOPCDD8U3UN4WOrAFgkL/foTGhCL8Rnmc7R7uSvtBk5IyasU3f8m3kCwAIvsxkHJU+dV0rP7/s/1saU1MLqomsZquwxYetP8Qiz0VInZFqNIk4tYJKTcgFOUtNUC6l3T81lanMxKito5ChzECfen0wusXoNzoek3FEJDmlSolJYZPwwa4PkKnKRLvq7QDkfTOm/nlBtwWl/maMhWPJUClVSiw5vkSjtob0+61+8MkPR7uSrivu76WdhZ3RTd/q36A/BAg4lXhKo5FGRFIqarVQAHiW/gyDGw/GpPaTjGJqan5eLTWxut9qmMpMoRSVaFy5sdShEWF+9HycTjyNCuYVsLzP8hJPT1VjMo6IJJWamQqfYJ+cZME3Xb/B0bFHsdl3c543Y9Wts3/uW79vqcfBwrFkqKLio/D45WON2hrS73dRDz4c7Uq67Oido8Vq/0m7T4xu+lbVclXRwakDAGD71e0SR0NUuITkBI3aGdJLsZJSl5oY03JMznT0PbF7pA2KjN6ZxDOYe3guAGBpr6Wlcs8sWTLu5MmT6NWrFypUqAArKyu0bdsWAQEBGn8+Ojoa//vf/9CqVSvY2dnB3NwcDRo0wLRp0/D06dN8P+Pi4gJBEPL9b8KECaX0zYhIU/ee34Pbn27YemUrFHIFNg7aiBmuMyAIQq43YwHeAYgYFYHzH5wvs1iKKhwLgIVjSe8oVUocuHlAo7aGNrKGo11JnyU9T9K4rZ2FHb5w/aIMo9Fd/ev3BwBsvbJV2kCIChEaE4pJ4ZM0amtIL8VKQ6+6vQAAu6/vljgSMmYZygyM2joKWaoseDf0hl8Tv1I5rkmpHKWYIiMj4enpCTMzMwwdOhS2trYIDQ3F8OHDERcXhxkzZhR5DB8fHzx8+BCdOnXCyJEjIQgCIiMjsXDhQmzevBl///03KleunOdztra2mDRpUp7trVu3Lo2vRkQain8Wj27ruiH2cSwqWlTEtqHb0Mm5U6426jdjapmZmWUWj7pwrE+QDwQI+db0mNV5ltGNPCD9FRoTCv8wf42nbxnayBqOdiV9VrVcVSQjOWe148Is77vcoPpucQxoMADT9k9DRFwEnqY9RXnz8lKHRJSLetGGomo/ChDgaFP6NZH1Xc86PTE5fDIOxR3C84znKGdWTuqQyAh9fehrXLh/AfaW9vi99+9vPD1VTevJuKysLIwbNw6CIODw4cNo2bIlAOCrr75Chw4d8NVXX2Hw4MGoW7duoceZPHkyRo4cCQeH/26iRVHExIkT8fvvv2POnDn49ddf83yufPnymD17dql+JyIqnuuPr8NjnQfin8Wjhm0N7B2xF/Xs6kkdVk7h2NcTGKYyU2SqMrHu/Dq82/Jdo33oIf2h6c2/miGOrFGPdk1ITijwz6GSZSV0dOyo5ciIitbBsQMCzwQiQ8wosI1ckCNwUKBRFzWvZ1cPDe0bIuZhDPbE7oFf09IZrUBUGjRZtAH4ryYyVwvNq55dPdSqUAs3n9zEgZsH0L9Bf6lDIiNzMuEkFkQvAAAs670Mla3yDvgqKa1PUz148CBu3LiBYcOG5STiAMDa2hqzZs1CVlYW1qxZU+Rxpk2blisRBwCCIGDWrFkAgEOHDpVu4ERUKi7evwjXNa6IfxaPenb1EDUmSicScWr5TY+98MEFWJtZIzo+Gt9EfQOlSonIuEgEXghEZFwkC8CTTtH05v9VhjiyRj3aFci7GIzag9QHqP1Lba6qSjpHEAQsiS984ZWNgzZicOPBWopId+VMVb26VdpAiF6jyaINAGBvaY8Q3xCjTqwXRBAE9Krz/1NVYzlVlcreq895e2/sxaito6AUlRjaZCgGNRpUqufS+si4yMhIAECPHj3y7FNve5NEmqmpKQDAxCT/r5aeno61a9ciISEBFSpUQMeOHdG8efMSn4+INHc68TR6rO+BRy8foVmVZtj7zl5UKVdF6rDyeH16LAD81vs3jNgyAnMOzcHSE0vxIPVBzj5HG0cs8VrCmyjSCZre/APZdRAXey022N/dgka7viohOQE+QT58ECKd8vOJn3Eu5RzM5GaoYF4B917cy9ln6P22uAY0GIAFRxZgT+wepGelQ2GikDokIgCa1yRd5LmI/bkQver2wtKTS7H7+m6IolhqUwSJXldQiZfy5uWxtOfSUj+f1pNxsbGxAJDvNNQKFSrA3t4+p01JrF69GkD+yT4ASEpKwujRo3Nt8/Lywvr162Fvb1/gcdPT05Genp7zc3JyMoDsGlZlWceKyFCcvXcWnn954knaE7Sp1gY7huxARUXFYvUfdVsp+tyQhkOw4tQKHI4/jIepD2EumOfcDDx+/hgjQkYAA8tmpVei4kh8lggLmQUAIFPMRJaYBQBQCArIhP8GxH/a8VNM7zQdcpm80D4lZb8rDX3r9IXnBE80+K0BHr54iHQxHSJEmAlmkAvZowEFCPg8/HP0qtXL4EYIkv45k3QGX0RkTxv/vuv3eK/Vezh65yiSnidlryDq2KHIfmtMWlRuAYdyDkh8noh91/fBs7an1CGRnirt611Vy6owF8xzrjtyyGEmM8vTrppVNfbnQrxd/W2Ym5jjTvIdnE88j0aVGkkdEpUiXbnP3HF1B0ZsGQERIixkFlCKypxSEanpqTh085DGz3mafhdBFEXN57GUgh49emDfvn2IjY1FnTp18uyvXbs27ty5kyvxpamzZ8/i7bffRrly5XDp0qU8ybWvv/4aXbp0QePGjaFQKHD58mXMmTMHe/bsQYcOHXDkyJECM+2zZ8/GnDlz8mwPCAiApaVlsWMlMib/vvwXs67PQrIyGfUt6+Or2l/BUq5//SZVmYrJVyfjXsY99LDrgQ+dPpQ6JKICnU05izk35kCEiI+dPoaHnYfUIemEDYkbEHIvBK1tWmNmrZlSh0OUS7oqHf+7+j/cSb+DtjZtMb3mdI4C0cDvt39H+KNweNl5YYLTBKnDIcqx+N/FiHwSicpmlbG4/mK9vP/VBV9d/wrnnp/D2Opj0bcSX3xT2UpXpWPy1cm4m34X7hXc4V/Dv1ifT01NxbBhw/Ds2TPY2NgU2M5gknG3bt2Cq6srHj58iD179sDd3V2jz6lUKnTp0gXR0dHYuXMnevfunW+7/EbGOTk5ITExEXZ2dsWKlciYXH10Fd02dMO9F/fQyqEV9vjtKfFqZ5mZmdi3bx+6d++eMyVdW6Ljo9E7oHeutySvjqxR2zVsV55VYYm0SalSosGvDfBvyr8AkOdNvAAB1a2r4/wH5zUaBSZlvystIZdDMHb7WACASlQhXcy+nr86whUAVvVbBZ9GPpLESAQAE/dMxIozK1DVqioW1lyIQT0H6W2/06awG2Hot6kfqpWrhlsf32ICk0qktK93my5twohtIwDkHZ2urmW6fuB6zqrQwA9Hf8CMiBnoVacXtvpulTocKkW6cJ+pfs5Ty1BlQInsmuCv3itq+pyXnJwMe3v7IpNxWp+mamtrCwB49uxZvvuTk5Nz2mjq33//hbu7Ox48eIDNmzdrnIgDAJlMhjFjxiA6OhpHjhwpMBmnUCigUOStQWFqasqbJKICXH98HZ4Bnrj34h5aVG2BvSP2oqJFxTc+rhT9Lik1CS9VL3NtyxAz8HqN/KTUJP6bQJISlSIUZv9dr5RQ5vzuqm/+F3gugLnCvFjH1efrnYOtQ57+CwBpYlquPuxg66C335H035aYLVhxZgUAYE2/NUiPSdfrfqdN3et0h6WpJe4+v4vLjy+jRdUWUodEeqyk/U6pUiIqPgqJKYmQCTJ8FPYRAGBwo8E4eudorjpUrP1YPD3r9cSMiBk4GHcQGy9vhJOtE1ydXVlawoBIeb3L7zlP7dV7RU2f8zT9HlpPxqlrxcXGxqJVq1a59j158gQPHz5Ex44dNT5eXFwc3N3dcffuXQQHB6NPnz7Fjkk9nTU1NbXYnyWi/MU9jUPXtV1xN+UuGldqjH0j9pVKIk4qDtYORTcqRjuisjJ171Rce3QNVqZWsFZYI+l5Us4+RxtHo7z5d3V2haONIxKSE/JdZVaAAEcbR7g6u0oQHRFwJ/kOxu0YByC7nqNHTQ/sjuHKgZoyNzGHR00P7Li2A7tjdzMZR1pXUOH3enb1EDAoAAKEnESdg7UDE0nFdP3xdcgEGdKy0jBy60gAXECNSo9Uz3myopuUri5dugAA9u7dm2efepu6TVHi4uLg5uaGhIQEbNq0Cf379y9RTMePHwcAuLi4lOjzRJRbYkoiuq7titvJt9HAvgEOjDwAe8uCF0jRB+qHefXIotcJEOBk48SHeZJU4IVA/HLiFwDAJp9NuDP5DiJGRSDAOwARoyJwy/+WUd60ymVyLPFaAgAF9uHFXov5YESSyFJlwW+zHx6/fIy3HN7CvK7zpA5JL/Wq2wsAsCt2l8SRkLEJjQmFT5BPvqt2X3t0DduvbodcJoebixv8mvrBzcWN15tiCI0JhW+wL1SiKtd29WrooTGhEkVGhsLV2RXVrasXuL+snvO0nozz8PBArVq1EBAQgLNnz+ZsT0lJwdy5c2FiYpJrtdOHDx/iypUrePjwYa7jvJqI27hxIwYOHFjoeS9fvoynT5/m2R4dHY2ffvoJCoUC3t7G94BCVNqepj2F5wZP3Hp6C7Ur1MaBkQdQpVwVqcN6Y0U9zIsQ+TBPkrr84HLOyJovXL9A73q9efP/Cu+G3gjxDUF1m9w3W+VMyyHEN8Qok5SkG76K+ArR8dGwNrPGJp9NMJPnXW2RiqZOxh27cwyPUh9JHA0ZC6VKCf8w/3xHXQPZ94yTwiZBqVJqOTLDUNifr3ob/3zpTcll8gJrBquf+8riOU/r01RNTEywcuVKeHp6wtXVFX5+frCxsUFoaChu3bqFefPmoV69ejntly5dijlz5uCrr77C7Nmzc7a7ubnh33//Rfv27XH+/HmcP38+z7lebR8UFISFCxfCw8MDLi4uUCgUuHjxIvbu3QuZTIZly5bB2dm5LL86kcFLzUxF38C+uHD/AqqWq4q9I/aimnU1qcMqNeqH+fymIUxpP4UP8ySZlPQUDAoahNTMVHjU9MAct7yrf1N2H+5fvz+i4qMQdj0M3x35DmYmZuhTr/glLohKw94bezE/ej4AYEXfFahTMe/iZqQZZ1tnNK3cFBfuX0D4jXAMazpM6pDICETFR+U7Ik5NhIjbybcRFR8FNxc37QVmIPjnS9oQ/ywef579EwBgo7BBcnpyzr6yLPGi9WQcALi7uyM6OhpfffUVgoKCkJGRgcaNG2Pu3LkYPny4Rsf499/sVeKOHTuGY8eO5dvm1WScu7s7YmJicPr0aRw6dAhpaWmoUqUKhgwZgsmTJ6Nt27Zv/L2IjFmmMhNDQoYgOj4atgpbhL8TjloVakkdVql79WE+MSURe2/sxZ/n/kTQ5SB87f41rMyspA6RjIwoihi7fSyuPLwCRxtHBA4KNOoRcEVRjxZ0dXbFunPrkPg8EeHXw7maHWldYkoi3gl9ByJEvN/qfQxpMkTqkPRer7q9cOH+BeyO3c1kHGlFYkpiqbaj3PjnS2VNJaoweutoPEt/hvaO7RE5KhJH7xzVSn1HSZJxANC2bVvs2bOnyHazZ8/OlVRTE8X8hwIXpEuXLhrXoiOi4lGJKozbMQ47r+2EuYk5dvjtQLMqzaQOq8yoH+YBYECDAYj8NxJxT+MwP3o+a/2Q1n3/9/cIvhwMU5kpgnyCUMmqktQh6QW5TI4hjYdg8fHFCLwYyGQcaZVSpcTw0OF4kPoAzao0wyLPRVKHZBB61+2N7458h7DrYVCqlHwxQWWOC3yVLf75UllbcmwJIuIiYGlqifUD10NhotDaKEut14wjIsMiiiI+2/cZ1p1bB7kgR5BPEFxrGM8iBhamFvipx08AspMicU/jpA2IjMreG3sx/cB0AMAvPX9BB6cOEkekX9QjZ7Zd3YYXGS8kjoaMydzDcxERFwErUysE+QTBwtRC6pAMQgenDihvXh6PXj7CiYQTUodDRsDV2RVVrAqujcwFvt4MF1CjsnTx/sWc++hFnou0XiqCyTgieiPf//09fjz6IwBgVb9VRjm6ZECDAehasysylBmYeXAmIuMiEXghEJFxkSwoS2Xm5pObGBoyNHtkastxeK/Ve1KHpHdaV2uN2hVqIzUzFduvbpc6HDISB28dxNeHvgYA/NHnD9S3ry9xRIbDRGYCz9qeALiqKmlHujIdpnLTfPeVZeF3Y8HV0KmspGel453Qd5CuTEfvur0x/q3xWo+ByTgiKrHVZ1Zj2v5pAIAfuv+AUS1GSRyRNARBwMJuCwEAf134C+5r3TEsdBjc17rDZYkLl1ynUvci4wUGbhqIJ2lP0K56OyzttRSCkP9NKhVMEISc0XEBFwMkjoaMwb3n9zA8dDhEiBjbciyGN9OsVjJpTr2qKpNxpA2f7PkEd5LvoLx5eTiUyz1V0tHGkat1l4KCVkOvYF6Bf75UYrMjZ+PcvXOws7DDyn4rJbmPlqxmHBHpt61XtmL8juw3CJ91/Az/6/g/iSOS1r/P/s13e0JyAnyCfHizQG9EqVLmLBpStVxVLD+1HOfvnUcVqyrY7LsZChOF1CHqLb8mfph7eC7CrofhUeoj2FnaSR0SGagsVRaGhAxB0vMkNKncBD/3/FnqkAxSzzo9IUDA2aSzSEhOyPMAT1RaAi4EYNWZVRAgINQ3FJ1rdM65Vpd14Xdj8+oCar+e+BUhMSFwd3HnvTWVSMStCHx35DsAwPK+y1G1XFVJ4mAyjoiK7VDcoZzpce+2eBcLui2QOiRJKVVK+If557tPhAgBAiaFTUL/+v15U0bFFhoTCv8wf9xJvpNru1yQI3hwMB8031DDSg3RvEpznLt3DptjNnO6L5WZ6fun49C/h1DOrByCBwfD0tRS6pAMUiWrSmhbvS2OJxxH2PUwjH1rrNQhkQGKfRSL93e+DwCY1XkW3Gu6A4DWCr8bI/UCamZyM4TEhODQv4egElWQCZzsR5p7lPoII7aMgAgR41qOkzShy99cIiqWM4ln0G9jP6Qr09G/fn/80fcPo58eFxUflSdR8ioRIm4n30ZUfJQWoyJDEBoTCp8gn3x/v5SiEg9SH0gQleFRT1UNvBgocSRkqEIuh+CHoz8AAP7s/yca2DeQOCLD5lXHCwAQfiNc4kjIEL3MfAnfEF88z3iOLjW64MsuX0odklFpU60NrEyt8OjlI1y4d0HqcEiPiKKI8TvGIyElAfXs6mGx12JJ42EyjogKpVQpcxYk+Ov8X+j5V08kpyejc43OCBwUCBMZB9gmpiSWajsi4L8RlyLEAttMCpvERUJKwdAmQwFkj/pNSE6QOBoyNFceXsGYbWMAAJ92/BSDGg2SOCLDp17EYf/N/fw3kkrdx3s+xtmks7C3tMdf3n9x1oOWmcpN0blGZwDZC+IQaWrF6RXYcmULTGWmCBwUCCszK0njYTKOiAoUGhMKlyUuOQsSvLPlHdx7cQ8u5V2wfeh2WJhaSB2iTnCwdii6UTHaEQFFj7gEwBGXpcTZ1hmdnDtBhIhNlzZJHQ4ZkJT0FHhv8sbzjOdwc3HDtx7fSh2SUWhTvQ3Km5fHk7QnOHn3pNThkAFZdXoVVp1ZBZkgw8ZBG1kqQiJda3YFABy4dUDiSEhfxDyIwaSwSQCA+R7z8ZbDW9IGBCbj9M6ro5QO3DyAAzcPIPBCICLjIvnmj0pVYdPj4p7G8eL3CldnVzjaOBa45LoAAU42TnB1dtVyZKTPOOJSu/ya+AHILshNVBpEUcTY7WMR8zAG1a2rY+OgjRxNriUmMhN0q9UNABB2PUziaMhQnE48jYm7JwIA5rrPhUctD4kjMl7qZNyhfw8hU5kpcTSk69Ky0uC32Q8vs16iR+0emNxhstQhAWAyTq+8Pkqp2/pu6La+G4aFDoP7Wne4LHFBaEyo1GGSAShqepx6QQImgLPJZXIs8VoCAPkm5ESIWOy1mNMYqFg44lK7BjcaDLkgx6nEU7j++LrU4ZABWHRsEYIvB8NUZorgwcGoUq6K1CEZFfVUVdaNo9Lw+OVjDAoahHRlOvrW64vPO30udUhGrUXVFqhgXgHPM57jVOIpqcMhHTd9/3Scu3cOlSwrYe2AtTqz6IduREFFKmyUklpCcgJ8gnyYkKM3xgUJis+7oTdCfEPyna4wsfVEVLSoyFGsVCyuzq6oaFGxwP0ccVm6KllVynnTHnwpWOJoSN8duHkAn+37DACwyHMROjh1kDgi46NOxp1IOIEnL59IHA3pM5WowsgtIxH3NA61KtTSqYd5YyUTZDkr2LJuHBVmT+weLD6+GACwpv8aVC1XVdqAXsF/RfSAJkW8AeTs54glelOcHlcy3g29Eecfh4hREQjwDsB7rd4DACw7tSxnRCtHsZKmTiWeQkp6Sr771CMwOeKydPk29gUABF9mMo6K5/XFjgYHD4ZSVGJEsxH4sM2HUodnlJxsndDQviFUogr7b+6XOhzSM6/26fHbx2NX7C6Ym5hjs+9mVLCoIHV4BKCrS/YLNCbjqCD3nt/D6G2jAQAft/0Yvev1ljag17BwhY5LTk/GytMriyziraYeseQd5A3P2p5oXqU5WldrDYWJoowjJX2nVCkRFR+FxJRE3HtxT6PPcHpcXnKZHG4ubgCy++PyU8uhFHMnx9WjWEN8Q+Dd0FuCKEnX3Um+g/4b+yNTlYnW1VojMSURCSn/rfLpaOOIxV6L+ftTygY0GIAJOyfgTNIZXH98HXUq1pE6JNIDoTGh8A/zz3OvVrdiXSzvuxyCkH89USp7nrU9EfMwBuE3wjG48WCpwyE9sePqDvjvy9unx7YcixZVW0gTFOWhHs1+5PYRpGWlwdzEXOKISJeoRBVGbxuN+y/uo0nlJljYfaHUIeXBZJyOyVBmIDo+Gnti9yDsRhgu3b9U5Ii4/Gy/uh3br24HAJibmKOjU0d41vaETyMf1KpQq7TDJj1X0INEQQQIcLRx5PS4QihVSkzbPy3ffSLEnLp7/ev358gmyuVFxgv039gfSc+T0LRyUxwceRCWppY5yXIHawe4Orvy96YM2Fvaw6OWB/be2IvgS8GY7jpd6pBIx6nLiOR3rxb7OBa7Y3czaS4hzzqeWHx8McJvhEMURSZGSSMjtoxAqio1z/bfTv6GrjW7sk/riAb2DVC1XFUkPU/CsTvHcl6GEwHA90e+R9j1MJibmCNwUKBOJms5TVUHqEQVIm5F4N1t76LS95Xgsc4DPxz9ARfvX4QIEVWsil/wd1iTYehdtzcqW1VGWlYaDt46iGn7p6H2z7XRankr/Pj3j3iU+qgMvg3pG03qEb6K0+M0w7p7VBIqUYVRW0fhdOJpVLKshO1+22GtsM4ZcenX1A9uLm7se2VocKPs0TNBl4MkjoR0HRc70n2da3SGQq7AneQ7iHkYI3U4pOPUfbWwgRDs07pDEISc0XGcqkqvOhJ/BF8c/AIA8LPXz2hSuYnEEeWPyTgJPXjxAN8c/gYui13QdV1XrDm7BsnpyahsVRmjmo/CJp9NSPpfEhKmJMDRxjHfVRpfpy7ovW7gOuwcthNJ/0vC5Q8v45eev8CjpgdkggynE09j6r6pqP5TdYzeOhr/3P1HC9+WdJEm9QjlQu6HfkcbR06v1ADr7lFJfL7/c2yO2QxTmSlCh4TCpbyL1CEZnYENBkIuyHE26SxiH8VKHQ7pML500X2Wppbo4tIFABB+nauqUuGO3jkKABDF/O+L2ad1j0dNDwDAgVsHJI6EdMWj1EcYunkolKISfk38MO6tcVKHVCBOU5XAhXsXsPjYYvx14S+kK9MBALYKWwxuNBgjmo9AJ+dOeVboWeK1BD5BPhAgFPoGFsg9YkkQBDSs1BANKzXER20/woMXD7A5ZjOWn1qOM0lnsPbcWqw9txaetT3xVZevuNqXkSnqQQIAlKISizwXoYpVFU6PKwZN6+mx7h6p/X7yd3z/9/cAgFX9VqGTcyeJIzJOdpZ2/01VvRyMGa4zpA6JdBRfuugHz9qe2HtjL8JvhGNyh8lSh0M6LOl5EixhiSxkFdqOfVp3qEfGnUg4gZT0FFgrrCWOiKSknmFyJ/kO6lasiz/6/KHT5Qk4Mk6Lzt87j0FBg9BsWTOsPrsa6cp0tK7WGusGrEPS1CSs6LcCnWt0znepbO+G3gjxDUF1m+oFHl+TEUuVrCphQusJOPXeKRwdexTDmw6HXJAj/EY4Oq7uiB7re+Bc0rlS+b6k+zS9mahiVYXT44rJ1dm10BGt6lGsrLtHALDz2k58tOcjAMBc97kY0XyExBEZN99GXFWVisaXLvrBs7YnAODQv4fwMvOlxNGQLqtariqOPzuOLLHwZBz7tO5wKe+CmuVrIkuVhej4aKnDIYn9dPQn7IrdBYVcgeDBwTqfnGUyTgsu3b+EwcGD0XxZc4TGhEKAAJ9GPjjy7hGcGHcCI5qP0KigoHdDb8T5xyFiVAQCvAOwf8R+7B+xHwHeAYgYFYFb/rc0njooCALaO7bHBu8NuPbxNYxtORYmMhPsu7kPby1/C+/veB/3X9x/069OOo4PEmVHLpNjidcSACgwIce6ewQA/9z9B0NChkAlqjC25Vh84fqF1CEZvQENBnCqKhWpeZXmMJWZFrifL110Q6NKjVDdujrSstJw+N/DUodDOsxWYYtF/y4qcD/7tG5i3TgCgGN3jmH6geyFtxZ7LUbzqs0ljqhoTMaVoXvP7+H9He+j2bJmCLkcAgDwbeyLCx9cQPDgYHR06ljsYZOvFvH2qOUBj1oebzxiqVaFWljZbyWufXQNQxpnPxAuP70cdX+pi8XHFrNIqQFztHbMUxPuVbzpeDMFjWg1lZkieHAw6+4ZIaVKici4SAReCERkXCRuPL6BPgF9kJqZCs/anvi99+86PZzeWNhZ2qFbrW4AODqO8pepzMTQzUORqcrMdz8XO9IdgiDkjI4Lv8G6cZS/Jy+fYEjoEKSp0iDL5xGZfVp35STj4piMM1aPXz7GkJAhyFJlYUjjIXi/1ftSh6QRyZJxJ0+eRK9evVChQgVYWVmhbdu2CAgIKNYxVCoVli5dimbNmsHCwgKVKlWCr68vYmMLfotdGuctSlpWGr6L/g51f6mL5aeXQyWq4N3QGxc+uIBNPpvQuHLjUj1faalZoSY2+mxE1JgotHJoheT0ZEwOn4y3V7+Ni/cv5rR7/WGSyTr9dDflLjz/8oRSzP/vjzcdpePVEa1/9P4D5ibmyFRl6uTy2lS2QmNC4bLEBe5r3TEsdBjc17qjwa8NcO/FPTSv0hxBg4NgKi94lA1pV86qqpe4qirlJooiJu6eiL039sLS1BILuy2Eo41jrjZc7Ei3eNZhMo4KlqnMhE+wD64/uY5KppWwss9K9mk94u7iDgA4k3gGj18+ljga0oZX8xERtyIweutoxD+LR52KdbC873K9ebEtyQIOkZGR8PT0hJmZGYYOHQpbW1uEhoZi+PDhiIuLw4wZmhVLnjBhAlasWIFGjRrh448/xr1797Bp0ybs3bsXf//9Nxo1alQm5y3M9qvbMSlsEm49vQUAaF2tNX7q8RNca+jPyKJOzp1wYvwJrDy9Ep/u+xTHE47jrT/ewvRO09GoUiNM3Tc1V9F/RxtHLPFawouTHnmY+hDd1nXDzSc3UatCLUzvNB1zDs3J8/e62Gsx/15LgXpEq5uLG2Ifx+KHoz9gXtQ89KrbS28uFvRmQmNC4RPkk2cBnixVdl2aiW0mwkZhI0VoVIABDQZgwq4JOHfvHK49uoZ6dvWkDokkolQpERUfhcSURDhYO+Do7aNYcXoFZIIMGwdtRN/6fTGlw5RcbbjYkW7pVqsbZIIMlx9cxu1nt+Fk6yR1SKQjRFHEh7s+xMFbB2FlaoUZtWbgnWbvYGTLkezTesLB2gGNKjXC5QeXcSjuEAY2HCh1SFSGQmNC4R/mn2cRQhOZCYJ8gvTqfloQC1q7uYxkZWWhQYMGuHPnDo4ePYqWLVsCAFJSUtChQwdcvXoVly9fRt26dQs9TkREBLp27QpXV1fs27cPCoUCAHDgwAF0794drq6uOHToUKmfVy05ORm2trZ4+PAh7OzscPvZbXwS9gm2XtkKAKhuXR3zPeZjeLPh+S7IoC8SkhMwcfdEbLu6rcA26hFUfFukH56mPYXHOg+cTjyN6tbVEf1uNFzKu+R52NDFm47MzEzs3r0bvXr1gqmpfo4gSnqeBJfFLkhXpuPAyAM5Q+vJcClVSrgscSl05WInGyfc8r+lc30OMIx+V1JeG7wQfiMc89zn4YvOrOVnjAq66QeAn71+xsftPi6T8xpzvysr7Ve2x/GE41jZdyXGvjVW6nBIR/zw9w/4dN+nkAkybPbZDCFWYL/TQx/v/hhLTy7FxDYTsbTXUqnDoWIozvWuoJfbapt9N+tEPkKdK3r27BlsbApODmo9S3Tw4EHcuHEDw4YNy0mIAYC1tTVmzZqFrKwsrFmzpsjjrFixAgAwb968nEQcAHh4eMDT0xOHDx/GtWvXSv28r8tSZWHR0UVo+GtDbL2yFSYyE3z+9ue4+tFVjGg+Qq8TcQBQ3aY6tgzZgo2DNhb4XdSdYVLYJE5Z1XFP056ix/oeOJ14GpUsK2H/yP1wKe8CIHc9Qq6aWnaqlquK8W+NBwDMOzxP4mhIG6LiowpNxAHA7eTbiIqP0lJEpCnfxlxV1ZgFXwrGoKBBBfbfwla4J93DunH0uq1XtuKzfZ8BAH7q8RN61+0tcURUUlzEwfApVUr4h/kXmIgD9C8fofVMUWRkJACgR48eefapt706oq2w41hZWeHtt9/Os8/T0zPPcUrrvK/rtqEbpuydgheZL/C209s48/4ZzO82H1ZmVsU+lq4SBAFVylWBSlQV2EaEiNvJtzE7cjbryOkodSLu5N2TsLOww74R+9DAvoHUYRmlT9/+FKYyU0TEReBI/BGpw6EylpiSWKrtSHsGNBgAE5lJzlRVMh4hl0Lgt9mv0Db6dtNv7NR14/bf3M+/N8LpxNMYHjocIkR80PoDfNLuE6lDojfQxaULBAiIeRjD+ykDZYgvt7VeM069uEJ+00ErVKgAe3v7QhdgAIAXL14gMTERTZo0gVyed/SO+tivHudNz5ueno709PScn5OTkwEAF+9fRIXyFTC/63yMbj4aMkGGzMz8V9bSZ4nPEmEhs4AoilBCiUwx+zsKEGAmmOWMmvvxyI/48ciPqG5dHd91+w596/eVMmz6f0/TnqL3xt45ibiwYWFoZNdI735X1fHqW9yvc7B0wIhmI7D67GrMPTQXO4bukDokKkNVLavCQmaBTDETWWJ2jThTwRQmgkmedrr4u20o/a4krE2s4eHigfCb4dh4YSOmvz1d6pBIC3Zc3YGRW0bCTDADBEAlqpAuZt8DChCgEBQQBAEPnz/E4VuH0cm5U6nHYMz9rqy0rNwS5c3L40naE/z9799o79he6pBIIneS76BvQF+kZqaie83u+LHbj8jKymK/02PWJtZoUbUFziSdwb4b++DXuPCXKaQ7NO136nwEAGSqMpGF7HtqhaDINYMv8Vmi5H1Y0/NrPRn37NkzAICtrW2++21sbHDnTuEZT02O8Wq70jjv/PnzMWfOnDzbO1XohHG1xqH83fIIuxtWaNz6zBKWCGwWmPPzzdSb+D7ueyRmJEIJJUY6jEQv+9eK0d8Adt/YLUG09KoXyheYfWM2YlNjYS23xkznmUg4lYAEJEgdWont27dP6hDeWJv0NvgTfyL8Zjh+DvkZdSzrSB0SlaHxjuPxc/zPAICRDiPhXSVvPYvki8nYfVF3/800hH5XEnUz6yIc4VhzfA2aP2sudTikBXLIc+55krOSMSN2Bu6k34GjwhHf1v0WNib/1X8p635rrP2urDRSNMLfaX/j1/Bf8diBqy4ao5fKl5hxfQbuvrwLZ3NnjC43GnvD9uZqw36nn2ooa+AMzmB91HrY/pv/Mz/prqL6nTofcfzZccy/NR8AMLXGVHSq8NoLsThgd5y099OpqakatZNkNVV9NH36dEyZMiXn5+TkZDg5OSF4ZDDs7OwkjEw7lColmv7eFHdT7ubM0xZFETLIkCVmYUXCCqxOWA1TwTRXQs7e0h4xH8bAzMRMqtCN2rO0Z+i1sRdiU2NR0aIiwoeFo3kV/X2YzMzMxL59+9C9e3eDKKwbJY9CwMUAHBIP4a0mbyHpeRKqlquKDo4dWLPPgOy4tgNLN2cXEzaBCYLvBSP4XnYNMvUCOOsHrtfZkcSG1u+Kq/3L9li2ZBni0uJQp10drqpq4A7FHUK/jf0AZN/npIvpECFCgIAHGQ/w/uX3c7XfNWxXmY2MM+Z+V1bunb2Hv3f/jfPK8+jv0p/XXCOTpcqCT4gPbr28hcqWlbF/9H+1kwH2O30nvyHH1k1bcV15Hb169ZI6HNKQpv1OqVKi/tL6iH8eDyD7xdmvt3/Fr7d/BZB9T13dujrOf3Be8n/T1bMoi6L1ZJx6ZNqro9ZepV554k2P8Wq70jivQqHItVCEmqmpqVH8Y20KU3zn+R18gnwAIN/CiUoooRSVeHXX7ee3UXNpTSzrs0wnVjYxZK+vhtrQviF6B/bGqcRTqGhREQdGHkCLqi2kDrNUGEq/m9l5JgIvBmJH7A7siP1vqqqjjSOWeC1hnzEA4dfD4bfFDypRBTcXN8Q+ikVCyn+jUp1snLDYa7Fe/F0bSr8rriqmVdCtVjeEXQ/DlmtbMLPzTKlDojISGhOK8TvG46XqZZ59IrITc6/e4zjZOKFzzc5letNvrP2urAiy7BcgMQ9jMGzrMAC85hoLURQxcedE7L6+G+Ym5tjmtw11K+UtXwSw3+krt1puMJGZIO5ZHG4/v41aFWpJHRIVQ1H9LjMzE4L8v0E/Sihzrtfql9sLPBfAXGFetoFqQNN/P7S+gEN+9dzUnjx5gocPH+Zb1+1VVlZWcHBwwK1bt6BU5i3Aml99uNI4r7HzbuiNEN+QYq8e9iD1AXyCfBAaE1pGkVFoTChclrjAfa07hoUOg/tadzgucsSpxFOwt7Q3qEScIYl5GJNvYjshOYF9xgBExkViwKYByFBmYFDDQdg3Yh/+nfQvIkZFIMA7ABGjInDL/xYfAPWAb6PsVVWDLgVJHAmVlZBLIRgUNAiPX2o+dXGx12LJ376T5kJjQvH+zvfzbOc11zjMOzwPK06vgEyQIXBQIGsGGqByZuVy/l4P3DwgcTRUmkRRxAe7PsC/z/6FrcIWDuUccu13tHFEiG+I3t1Taz0Z16VLFwDA3r178+xTb1O3Keo4L168wJEjeVciDA8Pz3Oc0jqvsfNu6I04/zhEjIrATNfijQ7gqmNlIzQmFD5BPnlWl8lSZRe1nNV5FhNxOki9PHd+1Ak69hn99fftv9EnoA/SstLQp14fBAwKgInMBHKZHG4ubvBr6gc3Fzc+yOuJAQ0GwFRmigv3L+CHIz9w1XADE3wpGEM3D9W4vVyQI8gnSO9u+o2Z+pqb3wswXnMN3+ozq/Fl5JcAgF97/YoBDQZIGxCVGY+aHgCAA7eYjDMky08tx7pz6yATZNgyZAtuT75tEC+3tZ6M8/DwQK1atRAQEICzZ8/mbE9JScHcuXNhYmKC0aNH52x/+PAhrly5gocPH+Y6znvvvQcAmDlzJjIyMnK2HzhwAOHh4ejcuTPq1fuvrktxz0sFUz9MznabDUcbx5xhoYURIerdUsP6oLCbS7Uf/v6BN5c6qKjludln9Nc/d/9Bz7964kXmC3Sv1R3Bg4NhJmfdTH0WEReRkzj9dP+ncF/rDpclLhxJYwBCY0LhG+KbXWZDQxsHbcTgxoPLMCoqbbzmGq/dsbvx3o7s58YvXL/AhNYTJI6IypI6GXfw1kGoRJXE0VBpOJlwEp+EfQIAmO8xH+413Q3m5bbWk3EmJiZYuXIlVCoVXF1d8d5772Hq1Klo3rw5Ll26hNmzZ+dKoi1duhQNGzbE0qVLcx3H3d0d48aNQ1RUFFq2bInPPvsMo0aNQu/evWFjY4Pff//9jc5LRZPL5FjitaRYn0lMSSyjaIxTUTeXAHhzqaM07QvsM/rl/L3z6LG+B5LTk9G5RmdsHboV5ibS166gklOPPk7LSsu1nVPb9F9hI5TzU9GiIjb7boZPY58yjIrKAq+5xulkwkkMDh4MpajEqOajMNd9rtQhURlr59gOlqaWeJD6ABfuXZA6HHpD957fg3eQNzKUGRjQYAA+7fip1CGVKq0n44DsRFp0dDQ6deqEoKAg/Pbbb7Czs8OGDRvwxRdfaHycP/74Az///DMEQcDPP/+MXbt2oW/fvjhx4gQaNWpUZuel/6jryNlb2mvU3sHaoehGVCSlSonIuEhsvrxZo/a8udQ9mvYF9hn9cfnBZXRb1w1P0p6gvWN77PTbCUtTS6nDojfAqW2GTZMXWq/i1FT9xWuu8bn++Dp6B/RGamYqPGt7YkXfFRCEomfzkH4zk5uhS43s0lOcqqrfMpQZ8AnOLsVU364+/uz/p8H1Ya2vpqrWtm1b7Nmzp8h2s2fPxuzZs/PdJ5PJ8PHHH+Pjjz8u9fOS5rwbeqNP3T5wXOSIB6kPCm179PZRdKnRxeA6kjaFxoTCP8y/WA8QvLnUPa7OrnC0cURCckK+D/oCBDjaOMLV2VWC6Ki4Lt6/iK5ru+JB6gO85fAW9gzfA2uFtdRh0RsqztQ2Nxc37QVGpaI4L6qcbJz4d6zHeM01Lvdf3IfXBq+ca3Lw4GCYyrk6qrHwqOmBPdf34MCtA5jSYYrU4VAJTQ6bjOj4aFibWWPr0K2wNbeVOqRSJ8nIODI8ZiZmWNZnGYT//19BZhycgaGbh+J5xnMtRmc4ClqsoSACBDjZOPHmUge9Os27oD7Dlfr0w7mkc3Bf655z079vxD6UNy8vdVhUCji1zbAV50UV/z3Wb7zmGo9nac/gucETN57cQM3yNbFr2C6+HDMyHrWy68Yd/vcwMpWZEkdDJbHq9Cr89s9vAIC/vP9CA/sGEkdUNpiMo1KjnrJa3aZ6ru1ONk7Y7LsZy3ovg4nMBEGXgtB+ZXvEPoqVKFL9pMliDa9S32zy5lJ3FdRnAGBqx6lIz0rnqo067kziGXRd1xUPUx+iTbU22D9iPypaVJQ6LColnNpm2O49v1dkG7kgR7BPMKenGoCCrrn2FvYI8Q3h37EBSM1MRd/AvjibdBaVrSoj/J1wVC1XVeqwSMuaVWkGe0t7PM94jhMJJ6QOh4qgfs4JuRyCyLhIHIk/gg93fwgA+Nrta/St31fK8MqUZNNUyTB5N/RG//r9ERUfhcSURDhYO8DV2TUnGdSkchMMDh6MSw8uofWK1lg/cD361e8ncdS6TalSIio+CgduHijW1FRHG0cs9lrMm0sd92qfuZt8F9P2T8OdlDv4/u/vc9o42jhiidcS/l3qmH/u/oPu67vjadpTtHdsj7DhYQY5hN6YcWqb4Qq+FIzhocOLbBc4KJALNhiQV6+53xz+Bvtv7cfgxoN5fTUAGcoMDA4ejKj4KNgqbBH+Tjjq2tWVOiySgEyQwd3FHcGXg3Hg1gG87fy21CFRAUJjQjEtbBp+qPUDxm4fi5eql5AJMqhEFQY0GIAvOht2XX+OjKNSV9hSw287v41T751CJ+dOSE5PRv+N/THr4CyO/ClAaEwoXJa4wH2tO+ZFzdPoMx+1+QgRoyJwy/8Wby71hLrPmJua405K3oQrV23UPScSTqDbum54mvYUHZ06IvydcCbiDFBRU9tEiBx9rIeCLgXBb7MflKISI5uPRJBPEBxtHHO1UY/qH9x4sERRUllRX3M/bpddc3rvjb0SR0RvSqlSYtTWUdgduxsWJhbYNWwXWlRtIXVYJCGPmtlTVbmIg+4KjQnFoKBBSHieAAAQxeyXnipRBQDwaegDmWDY6SrD/nakkxysHXBw5EF80vYTAMC8qHnoHdAbj18+ljgy3VLc+nBqgxoNypMEJd2nnoacH67aqFv+vv03uq/vjmfpz+Dq7Iqw4WGwUdhIHRaVkcKmk49/azynk+uZoEtBGLZ5GJSiEqOaj8LqfqsxuPFgxPnHIWJUBAK8A/hCy0i4u7jDRGaCG09u4Prj61KHQyUkiiI+3vMxNl7cCFOZKUKHhHIkFOXUjTt6+yheZLyQOBp6nVKlxHs73su1LVPMXd/PP8zf4O+tmIwjSZjKTbGk5xJsGLgBFiYWCL8RjlbLW+F04mmpQ9MJxa0PB3CxBn1XnFUbSTr7buxD9/XdkZyeDDcXN66aaiS8G3rnStY0rdwUALDi9AoMCx0G97XucFniwtGrOm7TxU05ibjRLUZjVb9VOS+uChvVT4bJWmGNTs6dAABh18MkjoZKalbELPz+z+8QIGD9wPXwquMldUikA2pXqA1nW2dkqjJ576yDIuMi8ejlo5yfwx+GQ4ncibdHLx8hMi5Sy5FpF5NxJKnhzYbj2LhjqF2hNuKexqHDqg5YfGxxzjBVY6FUKREZF4nAC4GIjItEZFxksUbEcbEG/cdVG3Xf5sub0TugN1IzU+FVxwu7hu2ClZmV1GGRlqiTNQoTBS7cv5BnP6eT67ZNFzdheOjwnETcyr4reb0keNXOTtyE3wiXOBIqiR///hHfRH0DAPi99+8Y0mSIxBGRrhAE4b+pqjc5VVWXKFVK/Hn2z/9+FpVYkbAi37ZMxhGVsWZVmuHk+JMY0GAAMpQZmBw+GX0C++DBiwdSh6YVr9aFU4+w8A3xLdYxHG0cuRKYnuOqjbptzZk18A3xRaYqE4MbDca2odtgaWopdVikZZxOrp82XtyIYaHZI+LGtBjDRBzl8KzjCQA4eOsg0rPSJY6GimP1mdWYum8qAGC+x3y83/p9iSMiXcO6cbpH/dy74cKGnG0ZYgayxCzIjDA1ZXzfmHRSBYsKCPUNxa+9foVCrsDu2N1ovqy5wb/JKKgunKb182a6zmRtGwOhXrUxvyLxAKchS2nR0UV4d/u7UIkqjGs5DoGDAmEmN5M6LJIAp5Prn8ALgRgeOhwqUZWdiOvHRBz9p3mV5qharipSM1MRHR8tdTikob/O/4Vx28cBAD7t+CmmvT1N4ohIF3Wt2RUAcDbpLB6lPiqiNZW1wuqh1zCvATMh7721m4ubFiKTDpNxpDMEQcCHbT7EifEn0NC+IRKfJ6L7+u6YuncqXma+lDq8UleSunBq6sTMbLfZrG1jILhqo+4RRRFfRnyJKXunAACmdpiK5X2X8+/AiHE6uX5ZfWZ1nkScoa/MRsUjCAI8a2ePjltxekVOuRCObtVdQZeCMHLrSIgQ8X6r9/Fdt+8gCPm/yCTj5mDtgEaVGkGEiIi4CKnDMWpFPfdOrzk9Tz+2s7BjMo5I29TTVse/NR4iRPx49Ee0+KMFjsQfkTq0N/KmdeHUWB/OcBW2amOfen04+lGLlColPtnzCeYengsA+KbrN1jYfSFv+I0cp5PrrtevsT8f/xljt4+FCBHvvfUeE3FUoAoWFQAAmy5t4oIsOm5LzBYM2zwMKlGFd1u8i996/8brMhWqW81uAFg3TmqFzSwwE8xQVVE1z3ZjeAFuInUARPmxMrPC8r7L0a9+P7y/831ce3QNrmtc8Um7T/BN129yFU1XqpSIio9CYkoiHKwd4OrsqnMdNzQmFP5h/rn+EapoUVGjz1a0qJhr2qqjjSMWey1mYsZAeTf0Rv/6/XN+p+8k38Fn+z/Dvhv7cCf5DhxtHKUO0eC9zHyJd7a8k/MgtrTnUkxsO1HiqEgXqKeTJyQn5Pt2V4AARxtHTifXsvyusWqT2k3CT54/8YGd8hUaE4rFxxbn2a5ekIX1eHXHjqs7MCRkCJSiEiOajcDyvsuZYKciedTywM8nfmbdOIkVNmNALuR+bne0dsSSnkuM4t9eJuNIp/Wp1weXPryEKeFTsObsGiw5vgShMaH4sceP8Gnkgy1XtuS5AXe0ccQSL93pwOr58a8/uGlaFy7IJwhymVynk41UutSrNgLZUyV3XNuBqPgofHP4G/ze53dpgzNwj18+Rv+N/REdHw0zuRnWDVjH1dkoh3o6uU+QDwQI+SbkOGpZuwq6xqp1cu7ERBzlq6gFWQQImBQ2Cf3r92eflljY9TD4BPsgU5UJvyZ+WNN/Df9OSCNdanSBTJAh9nEs4p/Fw9nWWeqQjJKmMwYWeS7Cx20/Npr+zdcJpPPKm5fH6v6rsWf4HtSwrYHbybfhG+KL5suaY1DQoDxvwu8k38GgoEGYHD5Z8rofpVEXzs3FDW4ubvBr6sf6cEZIEATM6zoPALDyzErcfHJT4ogMV/yzeHRa3QnR8dGwVdgi/J1wJuIoj4Kmk1e0qMhRNFpW1DVWgIDJ4ZNZ/4vyxQVZ9MP+m/sxYOMAZCgzMKjhIKwbuI73wqQxW3NbtKveDgAQfj1c4miMl6uzKxzKFZ6Qc7R2NKpEHMBkHOkRrzpeiJkYg6+6fAVzE3NcuH+h0PaLjy2WvO5HUTd6BWFdOHpV5xqd0aN2D2SpsvDFgS9y1UXiQ2bpOJd0Dh1WdUDMwxhUt66OqDFRBl80lkrOu6E34vzjEDEqAt4NspNvbau3ZSJOy5hMoTeh6UIr265uK+NIqCCRcZHoF9gP6cp09K/fH4GDAmEi48QuKh6vOl4AgPAbTMZJJVOVCWuFdb771M+9C7otMLrnXibjSK9YmFpgtttsrO63WuPPqOt+SJGQ0/RG7/X6cY42jhxhQbks8FgAAQI2XtoI97XuLDJdig7eOgjXNa64m3IXjSs1xtGxR9G0SlOpwyIdp55OvqDbAgDAvhv7cO/5PYmjMi5c3ZbehKbTpv46/xdffEkgOj4afQL64GXWS/Sq2wubfDbBVG4qdVikh9QrJu+/uR9ZqiyJozE+oijm1IC3MrVCFasqufZXt86eadC3fl8pwpMUk3Fk8NTTVyaFTdLazZQoivjn7j/YcGGDRu2DfIIQMSoCAd4BiBgVgVv+t5iIo1xuPb2V71QsKZPNhmDD+Q3w2uCFlIwUdK7RGdHvRsPJ1knqsEiP1LWri3bV20EpKrHx4kapwzEq9pb2GrXj6raUH1dnV1SyrFRkuwepDzi6UsuO3TmGnn/1xIvMF+hRuwc2+26GwkQhdVikp1pXa42KFhXxLP0Zjt85LnU4RueHv3/AunPrIBfk2DJkCxKmJOR67j3/wXmpQ5QMk3Gkl4p7Y62tqSpJz5Pw64lf0Wp5K7RZ0Qa7Y3cX2p514UgTRRWZBrSbbDYEKlGFmQdnYsSWEchUZWJwo8EIfycc5c3LSx0a6aF3mr0DAFh/fr3EkRiPl5kvsejYokLbqK+xXN2W8iOXyTG86XCN2nJ0pfb8c/cfeG7wxPOM5+hasyu2DtkKcxNzqcMiPSaXydGjdg8A2YuBkPbsvLYT0/ZPA5Bdfql77e45Mwv43MtkHOkpV2dXONo45swx19T5pNLNvKtEFS7cu4BFRxeh85rOqPZjNXy05yOcSToDhVyB4U2HY557dvH912NlXTjSFOsila6XmS/ht9kP30R9AwD4/O3PsdFnI2/2qcSGNB4CE5kJTiWeQsyDGKnDMXhP057Cc4Mn9lzfAzO5GQBeY6lk+jfor1E7jq7UjjOJZ9B9fXckpyejc43O2D50OyxMLaQOiwyAeqpq2A0m47Tl4v2L8NvsBxEi3m/1Pia2mSh1SDqHFTBJL8llcizxWgKfIB8IEDRerdQ/3B9LTy5FO8d2aFutLVo6tETtCrVRtVxVCELhib1MZSYSUhJw4d4FnL93HqeTTuPwv4fxMPVhrnbtHdtjaOOhGNF8RE4tuIaVGsI/zD9XQsXRxhGLvRZzOioViXWRSk/S8yT039gfJxJOwFRmij/6/IExLcdIHRbpuUpWleBVxws7r+3E+vPr8a3Ht1KHZLDuPb8Hzw2eOHfvHGwUNtjptxMPUh/wGkslon65W9ALLwECHG0cObpSCy7cu4Du67vjadpTdHTqiJ1+O2FlZiV1WGQg1Mm4U3dP4cGLB6hkVfQUdSq5h6kP0S+wH55nPIebixt+6flLkc/axojJONJb3g29EeIbkucGvCAKuQJZqizEPo5F7ONYbDj/Xz03cxNzONo4wkZhAxuFDSxMLJChzEC6Mh2pmam4m3IX957fyzfpZ2lqCVdnV3jV8cKghoPyrTfl3dAb/ev3R1R8FBJTEuFg7QBXZ1e+rSeNaPpGnm/uC3f+3nn0CeiD28m3UdGiIkJ9Q9HFpYvUYZGBGNlsJHZe24m159bia/evueJfGYh7Gofu67vj+uPrqGJVBWHvhKFF1RYAwGsslcirL3cB5LrP4+hK7bn84DI81nng0ctHaFu9LXYP213gyotEJeFg7YBmVZrh/L3z2HdzH4Y1HSZ1SAZFqVLmXIPtLe0x9/Bc3Hp6C7Uq1ELI4BAuvlIArd8pJiUlYebMmdi1axeePHkCZ2dnvPPOO/j8889hZmam0TFiY2MRHByMsLAwXL9+HQ8fPkSVKlXg7u6OGTNmoEGDBnk+M3r0aKxduzbf49WvXx9Xrlx5o+9F0ng1ybXtyjYsPr44z0g59c1UwKAAuLu443jCcZxIOIHjCcdx+cFlxD+LR1pWGq4/vl7k+Uxlpmhg3wDNqjRDsyrN8LbT22hTvU3ONJnCqOfHExWX+s19QnJCvglhvrkv2q5ruzB081A8z3iOenb1sNNvJ+ra1ZU6LDIg/er3g52FHe6m3EX49XD0rtdb6pAMysX7F+G5wRN3U+7CpbwL9o3YhzoV6+Ts5zWWSqqgl7sO5RzwS69fOLqyjF19eBVd13bFg9QHeMvhLYQND4Otua3UYZEB8qrthfP3ziP8RjiTcaUoNCY038ExFiYW2D50O+ws7SSKTPdpNRmXlJSEdu3a4fbt2xgwYADq1auH6OhofPXVVzh69Ch27doFmazoMnazZs3Cpk2b0KRJE/Tv3x82Nja4cOEC1q9fj5CQEISHh8PVNf+HUn9/f5QvXz7XNnt7zVbjIt2kvgF3c3GDaw3XIqeqeNXxglcdr5z9mcpM3E6+jYTkBKRkpCAlPQWpmakwk5vB3MQcFqYWqFquKqpbV0clq0qQCSy1SNpV1LRsESLf3BdAFEUsPLIQ0w9MhwgR7i7uCPENyZlCTlRaFCYKjGw+EouOLcLKMyuZjCtFx+4cQ6+/euFJ2hM0rtQYe0fsRTXralKHRQbk1Ze747aPw40nN/Blly+ZiCtj1x9fR9d1XXHvxT00r9Ice9/ZiwoWFaQOiwyUVx0vLPx7IcKvh0MlqvhMVwpCY0LhE+ST72CBl1kvcfXRVTSu3FiCyPSDVpNx06ZNQ3x8PH777Td88MEHALIflMaMGYO1a9di7dq1GDOm6No9Xl5emD59Opo3b55r+8aNG+Hn54cJEybg0qVL+X520qRJcHFxeePvQrqpJNNBTeWmqFWhFmpVqKXFSImKp7Bp2c62zuhbr69EkemuFxkv8O72dxF0KQgAMP6t8fi1168cKk9lZmzLsVh0bBF2XN2BpOdJqFquqtQh6b19N/Zh4KaBeJH5Au0d22PXsF1MplOZUL/cHdNiDGZGzMS2q9vwfuv3pQ7LYN16cgtd13bF3ZS7aFypMfaN2McRNFSm3nZ+G1amVrj34h7O3zufU+aASkapUsI/zL/A2u0CBEwKm4T+9ftzwEABtJYOTklJwaZNm1CrVi1MmDAhZ7sgCJg/fz5kMhlWrFih0bFGjx6dJxEHAEOHDkW9evVw+fJlPHz4MJ9PkjHgcslkqLwbeiPOPw4RoyIQ4B2ArUO2ws7CDvHP4vHLiV+kDk+n3HpyCx1Xd0TQpSCYyEzwe+/f8UefP5iIozLVuHJjtHdsD6WoxLpz66QOR+8FXwpG74DeeJH5Aj1q98D+EfuZiKMypx4Nt//mfjxLeyZxNIZBqVIiMi4SgRcCERkXmZ2IW9cVt5Nvo4F9AxwYeYAF9anMmcnN0LVmVwBA2HWuqvqmouKjCq3bLkLE7eTbiIqP0mJU+kVrI+OOHj2K9PR0dO/ePc9KGg4ODmjatCmOHz+OtLQ0mJubl/g8pqbZD1omJvl/tV27diElJQUKhQLNmjWDm5sb5HIma4hIP7xeF+lh6kOM2zEOX0V+hUENB6FG+RrSBacjDtw8AN8QXzx++RiVrSojZHAIXGuwnh5px7iW43DszjGsOrMKn3b8lKuHldDyU8sxYecEiBAxuNFgrB+4HgoThdRhkRFoWKkhGtg3wJWHV7ArdhdrS72h/OpJyQU5lKISdSrWwYGRB1ClXBUJIyRj4lXHCzuu7cDu2N34vNPnUoej1xJTEku1nTHSWjIuNjYWAFC3bv4Fs+vWrYtz587h5s2baNSoUYnOceLECVy6dAlt2rTJUxdO7aOPPsr1c7169RAYGIi33nqr0GOnp6cjPT095+fk5GQAQGZmJjIzM0sULxEVj7qvsc/9550m72DNmTU4cucI3t32Lnb77TbaGhiiKOLnkz9j2oFpUIkqtHJohaBBQXCyceLvzBtgvyse7/remBQ+CdceXUPkzUh0cu4kdUh6RRRFLDy6ELMiZwEAxrccj589f4ZMlBnV7yD7nbQG1BuABQ8XIORSCAY3GCx1OHprx9UdGLFlBESIsJBZQBRFpIvpUIpKCBDwabtPUcm8ks78nrPfGb4eNXsAAI7cPoKkZ0mcGv0GqlpWhblgjgwxAyqoIECAQlDkeQlZ1bJqoX3KEPudpt9Fa8m4Z8+yh3nb2ua/Oo6NjU2udiU5/qhRoyCTybBw4cI8+7t06YJ+/fqhbdu2sLe3R1xcHP744w/88ssv6NGjB86fP49q1QouBjx//nzMmTMnz/aIiAhYWlqWKGYiKpl9+/ZJHYJOecf6HZwUTuJg3EH4r/dHT/ueUoekdanKVPx6+1cceXoEAOBewR0TKk3AhegLuIALEkdnGNjvNNe+XHvsf7wfc3bNweQak6UOR2+Ioog/7/6JbQ+2AQB8qvigl6oXwsPCJY5MOux30qiUmj1lcnfsbmzZuQUKGUdlloQccgQ0CwAAPM18ipnXZ+JO+h1UMq2Eb+p+g8qJlbE7cbfEUebFfmfYXMxdEJcWhwWhC+Be0V3qcPSWKIp4u8LbOPD4ACxkFlhQdwFqWOSdoZN8MRm7Lxbdzw2p36WmpmrUrtjJOHt7ezx69Ejj9hEREXBzcyvuaYolLS0N3t7euHLlCr755pt8z/f6whANGjTAokWLYGlpiW+//RaLFi3C999/X+A5pk+fjilTpuT8nJycDCcnJ7i7u8POjhl1Im3IzMzEvn370L1795wp6ZQt7WQaJu+bjA33NsC/jz+SniflFJDv4NjBoGsnnr9/HkNDh+L60+swkZngu67f4aM2H3F6YClhvyu+SncrYf+f+3E0+Sj+6vIXKltVljoknZelysIHuz/IScQt9FiISe0mSRuUhNjvpCWKIn757RfEPYuDUFdAr/q9pA5J70THR6N3QPaq0uoRcepC78lZyfC/4g8A2DVsl86MIGa/Mw7HrY5j/pH5uGN5B716sW+X1E/HfsKBcwcAACpRhc9j/5v2KyD7Hnz9wPXoW7/wReYMsd+pZ1EWpdjJOD8/P6SkpGjcvmrV7JXE1CPiChr5pg64oJFzBUlPT8fAgQNx8OBBTJ8+HTNmzCjW58eOHYtvv/0WR44cKbSdQqGAQpH3rZipqanB/NIQ6Qv2u7w+6fAJtl7bikP/HkKLFS2QoczI2edo44glXktyilIbkjVn1uDD3R8iLSsNjjaOCPIJQgenDlKHZZDY7zTXsUZHtKnWBifvnsTaC2sxw7V49ybGJi0rDcO2DsPWK1shE2RY2XclxrQcU/QHjQD7nXS8G3rjp2M/YXvsdgxuwqmqxZWUmoSXqpf57ksX06FegDEpNUnnfsfZ7wzbgIYDMP/IfOy9uReiTISZ3EzqkPTO9qvbMf3gdADAmBZjsO/mvlx1IZ1snLDYa3Gxnj0Mqd9p+j2KnYz75ZeSrdinrhWnrh33utjYWMhkMtSqVUvjY6alpWHAgAEIDw/HZ599hm+//bbYcdnb2wPQfCghEZEukgkyDGk8BIf+PZQrEQcACckJ8AnyQYhviMEk5FIzUzFx90T8efZPANkFedcPXA97S3tpAyP6fx+3/Rgjt47E7//8js/e/gwmMq1VBtEryenJGLBxACLiIqCQK7DRZyMGNBggdVhEOcm4HVd3IEOZwQf2YnKwdijVdkSlpXW11qhariqSnifhUNwhdK/dXeqQ9MrZpLMYtnkYRIiY0GoCfuv9G1SiClHxUUhMSYSDtQNcnV0NelZOadFale/27dtDoVBg3759EEUx177ExERcuHAB7dq103gl1VcTcVOnTsV3331XoriOHz8OAHBxcSnR54mIdIFSpcS30fm/kFBPC5kUNglKlVKbYZWJi/cvot3Kdvjz7J+QCTLMc5+HXcN2MRFHOsW3sS8qWVbCneQ7+CbqGwReCERkXKRB9MHS8uDFA3Rd2xURcRGwNrPGnuF7mIgjndHBqQOqlquKZ+nPcPDWQanD0TvNqzQvNIEpQICTjRNcnbnaOWmXTJChb73sqZPbr26XOBr9kvQ8Cf0C++FF5gt41PTAzz1/hiAIkMvkcHNxg19TP7i5uDERpyGtJeNsbGwwZMgQ3Lx5E8uWLcvZLooipk+fDpVKhfHjx+f6TGpqKq5cuYL4+Phc29PS0tC/f3+Eh4djypQphdZ6A4CkpCTcuHEjz/aEhAR88sknALKn3xIR6auo+Khcw8NfJ0LE7eTbiIqP0mJUpUsURSw9sRStl7fGxfsXUcWqCvaP2I8vOn9htCvIku5SmCjQuUZnAMDsyNkYFjoM7mvd4bLEBaExoRJHJ73bz27DdY0rTiWegr2lPSJGRcC9Jgtpk+6QCTIMqD8AABByOUTaYPTM84zn6LexX56R+mrqelKLvRbzoZ0kkZOMu7Y9z0Ahyt/LzJfov7E/biffRn27+ggeHAxTuWFMK5WKVudMLFiwABEREZg4cSL279+PevXqISoqCkeOHIGnpydGjRqVq/2JEyfg7u6OLl26IDIyMmf7hAkTsHfvXlStWhXW1taYPXt2nnONHj06Z7TblStX0LVrV3Tq1AkNGjRAxYoVERcXh507d+LFixcYNWoUfH19y/CbExGVrcSURI3abb68GQD0bvj4vef38O72d7E7Nns1pp51emJN/zWoUq6KxJER5S80JhSbYzbn2W6I08aL69L9S/D6ywt3ku/AycYJe0fsRQP7BlKHRZTHkCZDsOzUMmyO2Yxfe/0KhQlXVS1KamYq+gb2RXR8NGwVtvjC9Qv8fOLnXC8MHW0ci11Piqg0edTygIWJBeKfxePC/QtoVqWZ1CHpNFEUMWbbGJxIOIGKFhWxc9hOVLCoIHVYek+ryTgHBwccP34cM2fOxK5du7Bz5044Oztjzpw5mDZtGmQyzUY2xMXFAcge8TZnzpx827i5ueUk42rXro2xY8fixIkTCAkJQUpKCmxtbdGxY0eMHTsWQ4YMKY2vR0QkGU1rriw9uRRLTy7V2UUdlCplnpoT4TfCMWbbGNx/cR8KuQLfd/8eH7Xlaqmku5QqJfzD/PPdJ0KEAAGTwiahf/3+epUULw1/3/4bfQL64EnaEzS0b4iwd8LgbOssdVhE+XJ1dkV16+pISEnA939/j9oVarMeUiHUI2ci4yJhbWaN8HfC0c6xHaZ0mMJ6UqRTLE0t0a1WN+y4tgPbr25nMq4Icw7NwaZLm2AiM8Fm382oU7GO1CEZBK1XE3ZwcMCqVas0auvm5pbvsNFXR8lpwsnJCStWrCjWZ4iI9ImrsyscbRyRkJyQUyOuMLo4Oic0JhT+Yf653p5bmloiNTN7gZ0mlZsgcFAgmlRuIlWIRBopzrRxNxc37QUmsR1Xd8A3xBdpWWlo79geO/12ws7STuqwiAokl8nRyqEVElISMCtiVs52XX2hJaW0rDR4B3lj/839KGdWDmHvhKGdYzsAyKknRaRL+tXvhx3XdmDb1W2Y2Xmm1OHorMALgZhzKHsA1LLey9iXSxGL7BARGQC5TI4lXksA/FeLpTC6tqhDaEwofIJ88iQw1Im4PnX74OT4k0zEkV7QdNq4pu0MwZozazBw00CkZaWhd93eODDyABNxpPNCY0Kx/VreAu/qF1qs/5gtQ5mBwcGDEXY9DJamltg1bBc6OnWUOiyiQvWr3w8yQYZ/7v6DjRc3cqGlfBy7cwxjto0BAEztMBVj3xorcUSGhck4IiID4d3QGyG+IahuU12j9rqyqIN6Sl9hI/rO3TsHUxmLxJJ+0HTaeGWrymUcifREUcT8qPl4d/u7UIpKjGo+CluGbIGlqaXUoREVqqjp5oDuvNCSUqYyE0NDhmLntZ0wNzHHDr8dOYvXEOmyylaV0ahSIwCA32Y/LrT0mvhn8RiwcQDSlenoV78fFnRbIHVIBofJOCIiA+Ld0Btx/nGIGBWBj9p8pNFnpB6dU9SUPgA6kTQk0pR62nhRo1RHbx1t0Df8KlGFSWGTMOPgDADAtLenYU3/NVx9jfSCMaxS/qayVFkYHjocW65sgUKuwLah29C1ZlepwyLSSGhMKC7ev5hnO0e+AinpKegb2Bf3XtxD8yrN8Zf3X6zzWAaYjCMiMjDq2iyDGg3SqL2mo3jKSmRcpEbtpE4aEmlK02njCSmGe8OfoczA8NDh+PnEzwCARZ6LsKDbAi68QnqD080Lp1QpMWrrKARfDoaZ3AyhQ0LRo3YPqcMi0ghHvhZMqVJieOhwnL93HlWsqmC733aUMysndVgGick4IiIDpcnonOrW1eHq7AqlSonIuMhSrZehVClx4OYBzDo4C7MOzsKBmwdyHffqw6vwDfbNKQpbFKmThkTFoZ42Xs26WoFtDPWGPyU9Bb0DemPjxY0wlZniL++/MKn9JKnDIioWTa85xnhtUqqUeHf7uwi4EAATmQmCBwejV91eUodFpDGOfC3YtP3TsOPaDpibmGPb0G1c8bwMaX01VSIi0g716ByfIB8IEPKtyZalysJPR3/Czyd+znVT8qYrxYXGhOK9He/h0ctHOdvmRc2DnYUd5nvMx8m7J7H6zGooRSUECLAwtchZrOF1AgQ42jjC1dm1RLEQScW7oTdsFbbotr5bgW0MbWXV+y/uo9dfvXAq8RSsTK04Wob0VlGrlBvrtUklqvD+zvex7tw6yAU5Ng7aiH71+0kdFlGxcORr/ladXoUfj/4IAPiz/585KyJT2eDIOCIiA1bQog5VrKqgkmUl3HtxD5/t/yzP28E3qZcRGhOKQUGDciXi1B69fIT3dr6HFadXQCkq0bdeX5ybcA7rB66H8P//e5X658Vei1mrgvTS/Rf3NWpnCDf81x5dQ8dVHXEq8RTsLe0RMSqCiTjSW5pMNze2a5Moipi4ayJWnVkFmSDDX95/aVwSg0iXcORrXpFxkZiwawIAYHaX2RjSZIjEERk+JuOIiAzcq4s6BHgHIGJUBBKmJODSh5dgYWKR72dKOn1OqVLikz2fFNnOTG6GQ6MPYbvfdjSt0rTApKGjjSNCfENKPEKPSGrGcsN/JP4IOqzqgBtPbqBm+Zo48u4RtKneRuqwiN5IQdcmK1Mro7s2iaII/zB/LDu1DAIErB2wlg/rpLeKKuUiQICTjZPRjHyNfRQL703eyFJlwa+JH77s8qXUIRkFTlMlIjIC6kUdXnXpwSW8zHpZ4GdKMn0uKj4KCSkJRbbLUGZAJapybfNu6I3+9fsjKj4KiSmJcLB2gKuzq1GNOiDDYwxT3YIvBWPElhFIV6ajTbU22OG3A1XKVZE6LKJS8eq16eDNg5gbNReCIBjVqE9RFDF171T8cuIXAMDq/qvxTrN3JI6KqOQKK+VibLMynrx8gj6BffAk7QnaVW+HVf1WcbElLeHIOCIiI6XptLifj/+M7Ve348bjG0jPSs+172XmS1x9eBW7ru3CnMg5mBw2+Y3Or04a+jX1g5uLm1HcBJFhK2qqmwhRb2/4RVHED3//AN8QX6Qr09G/fn9EjIpgIo4MjvraNMd9DupUrIPnGc8RfClY6rC0QhRFTD8wHT8d+wkAsLzPcoxuMVraoIhKQUEjXytbVTaaka+ZykwMDh6Ma4+uwcnGCVuHboWFaf6zZqj0cWQcEZGR0nRa3JYrW7Dlypacn81NzGEmN0NaVhoylBllfn4ifae+4fcP889Tn7G+XX1UMK+AwAuBejUaVKlSwj/MH7+e/BUA8HHbj7HIc5FexE5UUoIg4N0W72LGwRlYcXoFxrQcI3VIZe6ryK/w3ZHvAAC/9voV41uNlzgiotLz6sjXafum4cTdE/Br6mcUiThRFPHBrg9w4NYBWJlaYeewnaharqrUYRkVjowjIjJSRdXLAIAK5hUwvOlwtKjaAgq5AgCQlpWG5PTknERcObNyaFK5CUY0G4HFnotRybJSkefW92l5RMX1eu3GIJ8gKOQKXH10FV3XdcWw0GFwX+sOlyUuJVo4RZtS0lMwYNMA/HryVwgQ8FOPn7DEawkTcWQURrcYDROZCY7eOYrTiaelDqdMzT00F3MPzwUALPZcjA/bfChxRESlTz3y9YvOXwAANl7ciCxVlsRRlb3vjnyXsxhL0OAgNKvSTOqQjA5HxhERGSlN6mWs7Lcy5+2gSlQhJT0FT9KeIEOZAQsTC1grrGGrsM1VW8LJ1gmDggpfXY0P7mSMXq3dGBoTinRlep426pWMdXWKzM0nN9EvsB8uPbgEhVyBDd4b4NPIR+qwiLTGwdoBgxsNRuDFQCw5vgRrB6yVOqQy8V30d/gyMruI+/fdv4d/e3+JIyIqW151vGBnYYek50nYf3M/vOp4SR1Smdl0cROmH5gOAPil5y/oVbeXxBEZJ46MIyIyYsVZxVQmyGBrbguX8i6oZ1cPTrZOKG9ePk+RV++G3tjsuxl2FnZ5zmdnYYfNvpt1MslApC3qKZ75KelKxtoQGReJtiva4tKDS3Ao54DDYw4zEUdGyb9ddv/deHEj7j2/J3E0b06pUiIyLhKBFwIRGReJH/7+AZ8f+BwA8E3XbzC141SJIyQqe2ZyM/g18QMA/Hn2T2mDKUWv9++of6MwausoAMDk9pM54lVCHBlHRGTkymIVU/UxI+MiERkXCQBwc3HjogxEyF51+PXaca8qyUrGZe33k7/jk7BPkKXKQutqrbF1yNY8SXwiY9HOsR3aVW+H4wnH8cepP/Blly+lDqnEQmNC861nCQCzu8zGDNcZEkRFJI0xLcdg6cmlCI0Jxf0X91HZqrLUIb2R/Pq3TJBBJarQv35/fN/9ewmjIybjiIgo1/S50jymRy0PeNTyKNXjEuk7TVcy1rRdWUrLSsOksEn449QfAIBhTYdhZd+VXG2NjJ5/O38MCx2G3//5HdPengaFiULqkIotNCYUPkE+ucpUvKpJ5SZajohIWm85vIU21drg5N2T+PPsn/js7c+kDqnECurfKlEFAPBt7MsX5BLjNFUiIiIiLdJ0JWFtrjj8+jQWpUqJG49v4O3Vb+OPU39AgIAFHguwYeAGJuKIAPg08kF16+pIep6Etef0r25cRlYGJuycUGAiDgAmh0/WuenyRGVtQusJAIA/Tv2Rk7jSN+pyGIX178/3f87+LTEm44iIiIi0SJOVjB2ttbficGhMKFyWuMB9rXvOqq5VfqiCZsua4XTiadhb2mPP8D2Y1mlanhqRRMbKVG6KTzt+CgCYHz0fmcpMiSPSXGhMKKovqo4HqQ8KbaeeLk9kTIY0HgJbhS1uPrmJAzcPSB1OiUTGRRZaDgNg/9YFTMYRERERaZF6JWMABSbkurh00cr0EfU0ltdv2h+9fITUzFQ0sG+AM++fgWcdzzKPhUjfjG81HpWtKiPuaRwCLgRIHY5G1H3+YepDjdrrwnR5Im2yMrPCiGYjAAC///O7xNEUX2hMKHxDfDVqy/4tLSbjiIiIiLSsoJWMyyvKAwD+uvAXVp1eVaYxaDKN5Xn6cziU0950WSJ9Ymlqif91+B8A4Nvob3V+ypcmff512pwuT6Qr1FNVt13dhptPbkocjebUyfbHLx9r1J79W1paT8YlJSVh3LhxcHBwgLm5OerVq4evv/4aGRkZxTqOIAgF/rdgwYIyPTcRERHRm/Ju6I04/zhEjIpAgHcAIkZF4OFnD3Omvo3bMQ5//PNHrs/kV9utpIpa1RUA7qTc4TQWokJ80PoDVLSoiGuPruGvC39JHU6hNOnzagIEONk4aW26PJEuaVy5MXrU7gGVqMKio4ukDkcjxUm2s3/rBq2uppqUlIR27drh9u3bGDBgAOrVq4fo6Gh89dVXOHr0KHbt2gWZTPP8YI0aNTB69Og82zt16lTm5yYiIiJ6U/mtZPxdt++QlpWGX078ggm7JiDpeRJmdZmFrVe2wj/MP9fDtKONI5Z4LYF3Q+9in/tu8l2N2nEaC1HBrBXW+KzjZ/j8wOf44uAXGNxosE4tcqJUKREVH4XElERcfnC5WJ9d7LWYqy2S0fq046fYe2MvVp9djdlus2FnaSd1SIUqTrIdYP/WBVpNxk2bNg3x8fH47bff8MEHHwAARFHEmDFjsHbtWqxduxZjxozR+HguLi6YPXu2JOcmIiIiKguCIGCJ1xJYmlriuyPfYfah2dhzfQ+OJxzP0zYhOQE+QT4I8Q0pVkLudOJpLDmxRKO2nMZCVLhP2n2C3/75DfHP4rHo2CLMcJ0hdUgAsqesvZ7A10Qly0pY1mdZiZL8RIbCo6YHWlRtgbNJZ/Hbyd8wq8ssqUMqlKYvzuws7LC873L2bx2gtaFgKSkp2LRpE2rVqoUJEybkbBcEAfPnz4dMJsOKFSsM7txERERExSUIAhZ0W4BV/VbBTG6WbyIOQM50lElhk4qcsiqKIk4knMDATQPRankrnEg4UXgMnMZCpBELUwt82/VbANkrq957fk/iiApenKUolSwr4c7kO3xQJ6MnCEJO2YhfTvyC1MxUiSMqnKYvzjb5bGL/1hFaS8YdPXoU6enp6N69OwQh98phDg4OaNq0KY4fP460tDSNj/n06VOsXLkS3377LVasWIHY2FitnZuIiIiorL3b8t2clVcLIkLE7eTbBdZ2S3qehGX/LEObFW3QbmU7bL2yFQIEvNPsHfzS8xcI//+/V6l/5jQWIs34NfVD62qt8TzjOaYfmC5pLCVZqEH978CyPstgZmJWhtER6Y/BjQbDpbwLHqQ+wG8nf5M6nEI1sm8EE1nBEx/VL9heL41B0tHaNFV1oqxu3br57q9bty7OnTuHmzdvolGjRhod89y5cxg/fnzOz4IgYPjw4fjjjz9gaWlZqudOT09Henp6zs/JyckAgMzMTGRmZmoULxG9GXVfY58j0h72O+nZmtrCXDBHlpiFLGTl2ieDDHJBDgECom5FQSEo8DT9KRKSE3Am6QxO3D2BU4mnch7KFXIFBjcajE87fIqG9g0BANUsq2Ha/mlISEnIOa6jtSMWdFuAvnX68u9eAux3+unHbj/CbZ0b1pxdgyENh6Brza6SxBEdH41Hzx/BQmYBURSRIWZABRUAwEwwg1zIm2Bnn2e/o/zN7DQT43aOw/zo+RjTbAxsFDZSh5THs7Rn6BnQE1mqLAgQoBAUuQYh5bxg674YKqUKKqVKqlDzMMR+p+l30Voy7tmzZwAAW1vbfPfb2NjkaleUqVOnYvDgwahbty4EQcCZM2cwY8YMbNiwAVlZWQgMDCzVc8+fPx9z5szJsz0iIiJX4o+Iyt6+ffukDoHI6LDfSccSltjYfCMA4FnWM+x8sBMHHx/Eo8xHUEEFlZh9U/3l4S/x5eEv8z1GPct66Fi+I7pW7AobuQ1unbiFW7gFAJBDjh9q/pD3QzeA3Td2l82XIo2w3+kfL3sv7Hm4B6M2j8LPDX6GQqaQJI7AZoF4nPkYc2/Oxa2Xt2AmmOHzmp/jLZu3Cv4Q+zwA9jvKrYJYAY4KR9x5eQcTN0yEn4Of1CHlkqZMw5ybcxDzIga2Jrb4ps43cDR3zL+xDvdxQ+p3qamaTWkudjLO3t4ejx490rh9REQE3NzcinuaIn3//fe5fnZ3d8eBAwfQvHlzbNy4ETNnzkTjxo1L7XzTp0/HlClTcn5OTk6Gk5MT3N3dYWen2yurEBmKzMxM7Nu3D927d4epqanU4RAZBfY76SlVSjT9vSnuptzNGeEmiiLMBDOooIIoijCRmaCqdVWIoghrhTUcyjmgcaXGaOXQCq7OrqhuXV3ib0HFwX6nvzqld0Lz5c2RkJKAA/IDWNpzqdZjiI6PRs+/eiJDzMj5N0OAgO/jcj8/7Rq2C52cO2k9Pl3FfkcFyaiVAb8tftj1ZBd+GvoTKllVkjokAEBaVhoGBg1EzIsYlDcvj73D96JFlRZQqpQ4eucokp4noWq5qujg2EFnS04YYr9Tz6IsSrGTcX5+fkhJSdG4BGLjgQAAFQxJREFUfdWqVQH8NyqtoNFn6oALGr2mCUtLS/j5+WHu3Lk4cuRITjKuNM6tUCigUOR9s2VqamowvzRE+oL9jkj72O+kYwpTfOf5HXyCfAAgVx0o9dSTAJ8AFmQ2QOx3+sfO1A5r+q9Bjw09sPzMcnSv0x0+jXy0GkNKVkquRBwApIvpUP8oQICjjSM61+yssw/oUmK/o9f5NvXF98e+x+nE05gdNRvL+y6XOiSkZaXBb4sfDsQdQDmzctgzfA/aOLYBkH3f4F7bXeIIi8eQ+p2m36PYybhffvml2MEA/9VrK2iRhdjYWMhkMtSqVatEx1ezt7cHkHtooLbOTURERFQWvBt6I8Q3BP5h/rlWR3S0ccRir8VMxBHpkO61u+Pztz/HgiMLMG77ODSp3AR1K9ZFVHwUElMS4WDtAFdn11JPhKlEFeYemovZh2YX2IaLsxAVn0yQYbHnYnT+szNWnl6JsS3Hop1jO8niSc1MxcBNA7H3xl6Ym5hjh98OtHdsL1k8VDJaqxnXvn17KBQK7Nu3D6Io5ioomJiYiAsXLqBdu3YwNzd/o/McP34cAODi4qL1cxMRERGVFe+G3uhfv3+ZP9AT0Zv72v1rRMVH4cjtI+jyZxfIBTkSnyfm7He0ccQSryXFTqQrVUpExkUiMi4SAODm4gY3Fzckpydj1NZR2HFtBwBgYpuJcHV2xdR9U5nAJyoFrjVcMbL5SKw7tw4f7v4Qx8cdL3T10rLyPOM5+gb2RWRcJKxMrbDDbwdXSNVTWvvtsbGxwZAhQ7Bu3TosW7YMH3zwAYDsmifTp0+HSqXKtTIqkD26LT4+HpaWlnB2ds7ZfubMGdSvXz/PwgnBwcEIDAyEvb09unXr9kbnJiIiItI1cpmcN91EesBUbootQ7ag6e9Nce/FvTz7E5IT4BPkgxDfEI0TY6ExoXhvx3t49PK/+t3zoubBxswGJnITPH75GAq5Asv6LMPoFqMBAD6NfJjAJyolC7stxLYr23A68TQWRC/AzM4zy/R8SpUyV/9tVrkZ+m7si79v/w1rM2vsGb4Hbzu/XaYxUNnRaip3wYIFiIiIwMSJE7F//37Uq1cPUVFROHLkCDw9PTFq1Khc7U+cOAF3d3d06dIFkZGROduXLFmCrVu3wsPDA87OzhBFEadPn0ZUVBTMzc2xdu1alCtX7o3OTUREREREVFIVLSoWuE+ECAECPtnzCW49uYW4p3GoXbE2Pmz9IcxMzPK0D40JxaCgQfkeKzkju/61QzkH7PDbgVbVWuXsYwKfqPRUKVcFv/T8BSO3jsScQ3PgVccLLau2LJOEd2hMaJ7SFCYyE2SpslDevDzC3wlH2+pt3/g8JB2tJuMcHBxw/PhxzJw5E7t27cLOnTvh7OyMOXPmYNq0aZDJZBodp3///nj69ClOnz6NsLAwZGVloXr16hg7diymTp2KBg0alNm5iYiIiIiIihIVH5XvqDg1ESISUhIwdd/UnG1T907FlA5TsLD7wpxtSpUSn+z5pMjzCYKAFlVbvFHMRFS4d5q9gx3XdiD4cjD6BvaFDDLcfX43Z7+jtSOW9Cz+FPRXhcaEwifIJ9ciLACQpcoCAMzqPIuJOAOg9UnODg4OWLVqlUZt3dzcIIpinu0DBw7EwIEDy/TcREREREREJZWYklh0o9coRSW+//t7AMhJyEXFRyEhJaHIz95NuYuo+CiOhCMqQ4Ig4PfevyMiLgJJz5Py7L+TcgeDggZhs+/mEiXklCol/MP88yTiXrX42GL4t/PnlHM9x+FgREREREREpczB2qHEn/3p6E/IyMoAAFx9eFXjz5UkAUhExVPevDwylZmFtnlvx3tQqpTFPnZUfFSuqan5uZ18G1HxUcU+NukW7S//QUREREREZOBcnV3haOOIhOSEQke55EcpKuG21g0vs17iXNI5jT/3JglAItJMZFwknqU/K7TNo5ePEBkXCY9aHsU6tqYJdSbe9R9HxhEREREREZUyuUyOJV5LAAAChGJ//uidozibdBYiRJjKTIts72jjCFdn12Kfh4iKJzIustjtlColIuMiEXghEJFxkfmOmlOqlDh255hGx2biXf8xGUdERERERFQGvBt6I8Q3BNVtqhf7sz1q9UDgoEAk/i8RG302Ftl+idcS1pAi0kGhMaFwWeIC97XuGBY6DO5r3eGyxAWhMaEAAFEUEXY9DC3/aImfT/xc6LEECHCycWLi3QBwmioREREREVEZ8W7ojf71+yMqPgqJKYmws7BDz4CeUImqAj8jF+TY4bcDZiZmOcfY7LsZ7+14D49ePsrV1s7CDsv7Ln+j1RuJSHNuLm6YFzWvyHa1K9QucGXUhOQEDAoaBP92/jh65yhOJJwAkF2PzqehD1aeWQkBQq7PqUfYLvZazMS7AWAyjoiIiIiIqAzJZfJcq5z+r8P/clZNzc+UDlNyEnFq6qReZFxkzvQ3Nxc3uLm48cGcSIvcXNxgZ2GXJzH+ujHbx8BUZppvzUj1tiXHs6eyK+QKfNT2I8xwnYGKFhXRs25P+If551rMwdHGEYu9FjPxbiCYjCMiIiIiItKihd0XAsheNVUp/lc7Si7IMaXDlJz9r5PL5PCo5VHsovBEVHrkMjmW912OQUGDCmzTulprnLp7CpmqwlddBYAxLcZgQbcFqGxVOWfb6yNqHawd4OrsysS7AWEyjoiIiIiISMsWdl+Iee7z8Ns/v+HG4xuoXbE2Pmz9YZ4RcUSke9RTxz/Z8wkSUhJytjtaO2JJzyXwbuiNX0/8io/2fFTksbrX6p4rEaf2+ohaMixMxhEREREREUnAzMQMk9pPkjoMIiqBokavNa7cWKPjcGVU48RkHBERERERERFRMRU2es3V2RWONo5ISE7It26cAAGONo5cGdVIyaQOgIiIiIiIiIjIkMhlcizxyl6gQb0SqhpXRiUm44iIiIiIiIiISpl3Q2+E+Iaguk31XNsdbRwR4hvClVGNGKepEhERERERERGVAa6MSvlhMo6IiIiIiIiIqIxwZVR6HaepEhERERERERERaQmTcURERERERERERFrCZBwREREREREREZGWMBlHRERERERERESkJUzGERERERERERERaQmTcURERERERERERFpiInUA+koURQBASkoKTE1NJY6GyDhkZmYiNTUVycnJ7HdEWsJ+R6R97HdE2sd+R6R9htjvkpOTAfyXMyoIk3El9OjRIwBAzZo1JY6EiIiIiIiIiIh0RUpKCmxtbQvcz2RcCVWsWBEAEB8fX+gfMBGVnuTkZDg5OeH27duwsbGROhwio8B+R6R97HdE2sd+R6R9htjvRFFESkoKqlWrVmg7JuNKSCbLLrdna2trML80RPrCxsaG/Y5Iy9jviLSP/Y5I+9jviLTP0PqdJgO2uIADERERERERERGRljAZR0REREREREREpCVMxpWQQqHAV199BYVCIXUoREaD/Y5I+9jviLSP/Y5I+9jviLTPmPudIBa13ioRERERERERERGVCo6MIyIiIiIiIiIi0hIm44iIiIiIiIiIiLSEyTgiIiIiIiIiIiItYTKOiIiIiIiIiIhIS5iMK6aTJ0+iV69eqFChAqysrNC2bVsEBARIHRaRQXNxcYEgCPn+N2HCBKnDI9JbGzZswPvvv4/WrVtDoVBAEAT8+eefBbZPTk7GlClTUKNGDSgUCtSoUQNTpkxBcnKy9oIm0nPF6XezZ88u8Ppnbm6u3cCJ9FRCQgIWL16MHj16wNnZGWZmZqhatSoGDRqE48eP5/sZXu+I3kxx+50xXu9MpA5An0RGRsLT0xNmZmYYOnQobG1tERoaiuHDhyMuLg4zZsyQOkQig2Vra4tJkybl2d66dWvtB0NkIGbOnIl///0X9vb2cHBwwL///ltg2xcvXqBLly44e/YsunfvDj8/P5w7dw6LFi1CREQEoqOjYWVlpcXoifRTcfqd2qhRo+Di4pJrm4kJb+OJNPHLL7/gu+++Q+3atdG9e3dUrlwZsbGx2Lp1K7Zu3YrAwED4+vrmtOf1jujNFbffqRnV9U4kjWRmZoq1a9cWFQqFePr06ZztycnJYuPGjUUTExPx2rVrEkZIZLhq1Kgh1qhRQ+owiAzOvn37xLi4OFEURXH+/PkiAHHNmjX5tv3yyy9FAOJnn32W7/Yvv/yyrMMlMgjF6XdfffWVCECMiIjQXoBEBmbz5s3i4cOH82w/fPiwaGpqKlasWFFMS0vL2c7rHdGbK26/M8brHaepaujgwYO4ceMGhg0bhpYtW+Zst7a2xqxZs5CVlYU1a9ZIGCEREVHxdOvWDTVq1CiynSiKWLlyJcqVK4cvv/wy177p06ejQoUKWLVqFURRLKtQiQyGpv2OiEqHt7c3XF1d82x3dXWFu7s7Hj9+jAsXLgDg9Y6otBSn3xkrAx3vV/oiIyMBAD169MizT73t0KFD2gyJyKikp6dj7dq1SEhIQIUKFdCxY0c0b95c6rCIjEJsbCzu3r0LT0/PPFNzzM3N0blzZ2zbtg3Xr19H3bp1JYqSyHBFRUXhxIkTkMvlaNCgAbp16waFQiF1WER6z9TUFMB/0+B4vSMqe6/3u1cZ0/WOyTgNxcbGAkC+/+hWqFAB9vb2OW2IqPQlJSVh9OjRubZ5eXlh/fr1sLe3lyYoIiNR2DXw1e2xsbF8OCEqA6+P0HFwcMDatWvRvXt3iSIi0n/x8fHYv38/qlatiqZNmwLg9Y6orOXX715lTNc7TlPV0LNnzwBkF5HPj42NTU4bIipd7777LiIjI/HgwQMkJyfj2LFj6NmzJ8LCwtCvXz9OFSAqY5pcA19tR0Slo0WLFli7di3i4uLw8uVLxMbGYu7cuXj69Cn69euHc+fOSR0ikV7KzMzEiBEjkJ6ejoULF0IulwPg9Y6oLBXU7wDjvN5xZBwR6bzX35C0a9cOO3fuRJcuXRAdHY3du3ejd+/eEkVHRERUNgYMGJDr5zp16mDmzJmoUqUK3nvvPcybNw/BwcHSBEekp1QqFd59910cPnwY48ePx4gRI6QOicjgFdXvjPF6x5FxGlK/HSnoLUhycnKBb1CIqPTJZDKMGTMGAHDkyBGJoyEybJpcA19tR0Rla9SoUTAxMeH1j6iYRFHE+PHjsWHDBrzzzjtYtmxZrv283hGVvqL6XWEM+XrHZJyGXq0P8LonT57g4cOHrBtApGXqWnGpqakSR0Jk2Aq7Br66nddBIu0wMzODtbU1r39ExaBSqTB27FisXr0afn5++PPPPyGT5X4c5vWOqHRp0u8KY8jXOybjNNSlSxcAwN69e/PsU29TtyEi7Th+/DgAwMXFRdpAiAxc3bp1Ua1aNRw5cgQvXrzItS8tLQ2HDx9GtWrVUKdOHYkiJDIusbGxePLkCa9/RBpSqVQYN24c1qxZgyFDhmD9+vW56lWp8XpHVHo07XeFMeTrHZNxGvLw8ECtWrUQEBCAs2fP5mxPSUnB3LlzYWJikmelRyJ6c5cvX8bTp0/zbI+OjsZPP/0EhUIBb29v7QdGZEQEQcC4cePw/PlzfP3117n2zZ8/H0+ePMG4ceMgCIJEERIZnpSUFJw/fz7P9idPnmDs2LEAAD8/P22HRaR31CNz1qxZg8GDB2PDhg0FJgR4vSMqHcXpd8Z6vRNELkOosYiICHh6ekKhUMDPzw82NjYIDQ3FrVu3MG/ePHzxxRdSh0hkcGbPno2FCxfCw8MDLi4uUCgUuHjxIvbu3QuZTIZly5Zh3LhxUodJpJdWrlyJ6OhoAMCFCxdw+vRpvP322zlv/AcMGJBTUPfFixfo1KkTzp49i+7du6NVq1Y4d+4c9uzZgxYtWiA6OhpWVlZSfRUivaFpv4uLi0PNmjXRunVrNG3aFJUrV0ZCQgL27NmDR48eoXv37ti5cyfMzMyk/DpEOm/27NmYM2cOypUrB39/f5iY5F3DcMCAAWjRogUAXu+ISkNx+p3RXu9EKpbjx4+LXl5eoq2trWhhYSG2bt1a3LBhg9RhERmsyMhI0dfXV6xTp45obW0tmpqaio6OjuLQoUPF48ePSx0ekV4bNWqUCKDA/7766qtc7Z8+fSpOnjxZdHJyEk1NTUUnJydx8uTJ4tOnT6X5AkR6SNN+9+zZM3HixIliq1atRHt7e9HExES0tbUVO3XqJC5btkzMysqS9osQ6Ymi+hwAcc2aNbk+w+sd0ZspTr8z1usdR8YRERERERERERFpCWvGERERERERERERaQmTcURERERERERERFrCZBwREREREREREZGWMBlHRERERERERESkJUzGERERERERERERaQmTcURERERERERERFrCZBwREREREREREZGWMBlHRERERERERESkJUzGERERERERERERaQmTcURERERERERERFrCZBwRERERldhnn30GQRBw4sQJqUMhIiIi0gtMxhERERFRiZ0+fRpyuRxNmzaVOhQiIiIivSCIoihKHQQRERER6aeKFSuiWrVquHjxotShEBEREekFjowjIiIiomL7+OOPIQgCnjx5gkuXLkEQhJz/4uLipA6PiIiISGeZSB0AEREREemfDh064N69ewgODkavXr3Qpk0bAIBMJkONGjUkjo6IiIhId3GaKhERERGVyPz58zFjxgyEh4ejR48eUodDREREpBc4TZWIiIiISuTs2bMAgBYtWkgaBxEREZE+4cg4IiIiIiqRevXq4cWLF0hISJA6FCIiIiK9wZFxRERERFRsz58/x/Xr19GyZUupQyEiIiLSK0zGEREREVGxnTt3DqIoMhlHREREVExMxhERERFRsZ0/fx4A0Lx5c4kjISIiItIvTMYRERERUbE9evQIAFCuXDmJIyEiIiLSLyZSB0BERERE+kc9PfXjjz+Gj48PFAoFPDw84OrqKnFkRERERLqNq6kSERERUYksWLAAy5cvx+3bt5GVlYWgoCAMHjxY6rCIiIiIdBqTcURERERERERERFrCmnFERERERERERERawmQcERERERERERGRljAZR0REREREREREpCVMxhEREREREREREWkJk3FERERERERERERawmQcERERERERERGRljAZR0REREREREREpCVMxhEREREREREREWkJk3FERERERERERERawmQcERERERERERGRljAZR0REREREREREpCVMxhEREREREREREWnJ/wF3BCRxn4I+rQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t, x_soln, 'b', label='$x$')\n", + "plt.plot(t, v_soln, 'g', label='$v$')\n", + "plt.scatter(data_train_tensor[:,0],data_train_tensor[:,1],c='b',label='$x_{train}$')\n", + "plt.scatter(data_train_tensor[:,0],data_train_tensor[:,2],c='g',label='$v_{train}$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Training data points',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1c63a65e", + "metadata": {}, + "source": [ + "### Defining input-output spaces " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "35701405", + "metadata": {}, + "outputs": [], + "source": [ + "T = tp.spaces.R1('t') # input space (t)\n", + "X = tp.spaces.R1('x') # x space\n", + "V = tp.spaces.R1('v') # v space\n", + "S = tp.spaces.R2('s')# output space (x,v)\n", + "N_phy = tp.spaces.R1('N') # hidden physics output space" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6b49f983", + "metadata": {}, + "outputs": [], + "source": [ + "# --------- neural net solution -----------\n", + "input_space_sol = T\n", + "output_space_sol = S\n", + "# ---------- neural net hidden physics ---------\n", + "input_space_hid_phy = T*X*V # input to hidden network are (t, x, v)\n", + "output_space_hid_phy = N_phy\n" + ] + }, + { + "cell_type": "markdown", + "id": "b7c49026", + "metadata": {}, + "source": [ + "### Sampling collocation points " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "41176a8c", + "metadata": {}, + "outputs": [], + "source": [ + "T_domain = tp.domains.Interval(space = T, lower_bound=t.min(), upper_bound=t.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2c7d8636", + "metadata": {}, + "outputs": [], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(T_domain, n_points=coll_points)\n", + "#plot = tp.utils.scatter(T, domain_sampler)" + ] + }, + { + "cell_type": "markdown", + "id": "7883da3c", + "metadata": {}, + "source": [ + "### neural net solution " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f8b84f42", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(T_domain)\n", + "fcn_layer_sol = tp.models.FCN(input_space=input_space_sol,output_space=output_space_sol, hidden = (64,64,64))\n", + "model_sol = tp.models.Sequential(normalization_layer, fcn_layer_sol)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3716d750", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "markdown", + "id": "ac90af8a", + "metadata": {}, + "source": [ + "### data condition " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "aafe7747", + "metadata": {}, + "outputs": [], + "source": [ + "input_train = tp.spaces.Points(torch.column_stack([data_train_tensor[:,0:1]]),input_space_sol)\n", + "output_train = tp.spaces.Points(torch.column_stack([data_train_tensor[:,1:3]]),output_space_sol)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "d74ffd89", + "metadata": {}, + "outputs": [], + "source": [ + "batch_size_data = len(input_train)\n", + "\n", + "data_loader = tp.utils.PointsDataLoader((input_train, output_train), batch_size = batch_size_data,shuffle = False, pin_memory = True)\n", + "\n", + "data_condition = DataCondition(module=model_sol,\n", + " dataloader=data_loader, \n", + " norm=2,\n", + " use_full_dataset=False, \n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "f9755dde", + "metadata": {}, + "source": [ + "### neural net hidden physics " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "53af4961", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid_phy = tp.models.FCN(input_space=input_space_hid_phy,output_space=output_space_hid_phy,hidden = (128,128))\n", + "model_hidden_phy = tp.models.Sequential(fcn_layer_hid_phy)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5c5fd3b0", + "metadata": {}, + "outputs": [], + "source": [ + "def hiddenPhysics(t,s):\n", + " \n", + " x, v = s[:,0:1], s[:,1:2]\n", + " input_model_hid = tp.spaces.Points(torch.column_stack((t,x,v)), input_space_hid_phy) \n", + " output_model_hid = model_hidden_phy(input_model_hid)\n", + " \n", + " return output_model_hid.as_tensor\n", + "\n", + "\n", + "def residual_equation(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " output_hid_phy = hiddenPhysics(t,s)\n", + " x = s[:,0:1]\n", + " v = s[:,1:2]\n", + " grad_x_t = tp.utils.grad(x, t) \n", + " grad_v_t = tp.utils.grad(v, t) \n", + " residual_x = grad_x_t - v\n", + " residual_v = grad_v_t - output_hid_phy - gamma*torch.cos(Omega*t) \n", + "\n", + " return torch.column_stack((residual_x,residual_v))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "641bfe5b", + "metadata": {}, + "source": [ + "### hidden physics condition " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "d2dbe9d4", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_condition = HPM_EquationLoss_at_Sampler(module=model_hidden_phy,\n", + " sampler=domain_sampler,\n", + " residual_fn= residual_equation)" + ] + }, + { + "cell_type": "markdown", + "id": "cd4cfc7c", + "metadata": {}, + "source": [ + "### Training model" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "0b1e3e71", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hidden_phy_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f81b5a0c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 25.7 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "25.7 K Trainable params\n", + "0 Non-trainable params\n", + "25.7 K Total params\n", + "0.103 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 90%|████████▉ | 8958/10001 [01:22<00:09, 107.96it/s, loss=0.0015, v_num=3] " + ] + } + ], + "source": [ + "epochs = 10000\n", + "trainer = pl.Trainer(gpus=1, max_steps=epochs, logger=True,benchmark=True)\n", + "trainer.fit(solver)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb6bb2c2", + "metadata": {}, + "outputs": [], + "source": [ + "def output_hidden_physics(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " output_hid_phy = hiddenPhysics(t,s)\n", + " \n", + " return output_hid_phy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bdf138c", + "metadata": {}, + "outputs": [], + "source": [ + "def output_solution(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " x = s[:,0:1]\n", + " v = s[:,1:2]\n", + " \n", + " return x, v" + ] + }, + { + "cell_type": "markdown", + "id": "dd65cb7a", + "metadata": {}, + "source": [ + "### Predictions " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e196e53b", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_pred = output_hidden_physics(t_tensor)\n", + "x_pred, v_pred = output_solution(t_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7032315d", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_pred = hidden_phy_pred.detach().numpy()\n", + "x_pred = x_pred.detach().numpy()\n", + "v_pred = v_pred.detach().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c83fece", + "metadata": {}, + "outputs": [], + "source": [ + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4ea0601", + "metadata": {}, + "outputs": [], + "source": [ + "l2_error_x = L2_ERROR(x_soln.flatten(),x_pred.flatten())\n", + "l2_error_v = L2_ERROR(v_soln.flatten(),v_pred.flatten())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00c18379", + "metadata": {}, + "outputs": [], + "source": [ + "print('L2 error x : ',l2_error_x)\n", + "print('L2 error v : ',l2_error_v)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b73267ee", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,x_soln.flatten(),label='$x: True$')\n", + "plt.plot(t,x_pred.flatten(),label='$x: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Position Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "252f8cab", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,v_soln.flatten(),label='$v: True$')\n", + "plt.plot(t,v_pred.flatten(),label='$v: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Velocity Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cae4e743", + "metadata": {}, + "outputs": [], + "source": [ + "actual_phy = -delta*v_soln - alpha*x_soln - beta*x_soln**3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b12e411e", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,actual_phy.flatten(),label='$\\mathcal{N}: True$')\n", + "plt.plot(t,hidden_phy_pred.flatten(),label='$\\mathcal{N}: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Hidden Physics Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d720ece7", + "metadata": {}, + "source": [ + "$\\large{ \\mathcal{N}(t,x,v) \\approx \\ - \\delta v - \\alpha x - \\beta x^3 }$" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_single_freq_input-checkpoint.ipynb b/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_single_freq_input-checkpoint.ipynb new file mode 100755 index 0000000..0704165 --- /dev/null +++ b/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_single_freq_input-checkpoint.ipynb @@ -0,0 +1,680 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "33625585", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" # select GPUs to use" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76867067", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import torchphysics as tp\n", + "#import copy\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "import scipy.io\n", + "from scipy.interpolate import griddata\n", + "import time\n", + "import matplotlib.gridspec as gridspec\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "006416e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "import torch\n", + "import sys\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "np.random.seed(1234)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "29970716", + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.integrate import odeint\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "86bc542c", + "metadata": {}, + "outputs": [], + "source": [ + "def oscillator_state(state, t, delta, alpha, beta, gamma, omega):\n", + "\n", + " x,vx = state\n", + " \n", + " state_dt = [vx, -delta*vx - alpha*x - beta*x**3 + gamma*np.cos(omega*t)]\n", + "\n", + " return state_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2267eaa7", + "metadata": {}, + "outputs": [], + "source": [ + "delta = 0.3\n", + "omega = 1.2\n", + "alpha = -1.0\n", + "beta = 1.0\n", + "gamma = 0.2\n", + "state0 = [1.0, 0.]\n", + "Tp= 2*np.pi/omega\n", + "tfinal = 5*Tp #10.0\n", + "dt = 0.01\n", + "t_sol = np.arange(0.0,tfinal+dt,dt) \n", + "sol_state = odeint(oscillator_state, state0, t_sol, args=(delta, alpha, beta, gamma, omega))\n", + "x_state = sol_state[:,0]\n", + "vx_state = sol_state[:,1]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8efe62e0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAEmCAYAAABWP+b2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2m0lEQVR4nOzddXyV9fvH8ddZM2J0d5d0d3ejlHSDgIiiIggSCqKEiICUdEl3d3d31wYMWLDezvn9cf0A+Yow4Gz3OWfX8/HYw22M7Q24nXNf9/W5LpPFYrGglFJKKaWUUkoppZSyGiejAyillFJKKaWUUkop5Wi06KaUUkoppZRSSimllJVp0U0ppZRSSimllFJKKSvToptSSimllFJKKaWUUlamRTellFJKKaWUUkoppaxMi25KKaWUUkoppZRSSlmZFt2UUkoppZRSSimllLIyLboppZRSSimllFJKKWVlLkYHsHVms5n79++TMGFCTCaT0XGUUkoppZRSSimllIEsFguBgYGkTZsWJ6f/7mfTottb3L9/nwwZMhgdQymllFJKKaWUUkrZkDt37pA+ffr//HUtur1FwoQJAfmLTJQokcFplFJKKaWUUkoppZSRAgICyJAhw4ua0X/RottbPD9SmihRIi26KaWUUkoppZRSSimAt44h00UKSimllFJKKaWUUkpZmRbdlFJKKaWUUkoppZSyMi26KaWUUkoppZRSSillZTrTTSmllFJKKaWUUkq9YLFYiIyMJCoqyugohnB2dsbFxeWtM9veRotuSimllFJKKaWUUgqA8PBwvL29CQ4ONjqKoTw9PUmTJg1ubm7v/Tm06KaUUkoppZRSSimlMJvN3LhxA2dnZ9KmTYubm9sHd3vZG4vFQnh4OI8ePeLGjRvkyJEDJ6f3m86mRTellFJKKaWUYcLDYfdu2LcPTp8GHx8IDob48SFtWsifHypVgtKlwdXV6LRKOabAQNi8GQ4dgosXwdcXTCbw8oLcuaFYMahVC5ImNTqpimnh4eGYzWYyZMiAp6en0XEMEy9ePFxdXbl16xbh4eF4eHi81+fRoptSSimllFIq1l27Br/9BnPmgL//f3/c33/Lf5MmhQ4doEcPyJYtdjIq5eiOHIExY2DlSggLe/3HbNgg/3V2htq14fPPoWpVKcopx/W+nV2OxBp/B1p0U0oppZRSSsWaBw9gwACYNQssFnlfypRQowYULQoZMkiXW1AQ3LwJx47Bli3SeTNmDIwbB507w9ChkDq1kX8SpezXjRvQr58U257Lnh2qVYOCBeV70mSS77uzZ2H7dvnv2rXyUrEijB0LRYoY9kdQyi5o0U0ppZRS6h9CQuQi/+JFueAPCYGoKEieHNKlg8KF5bibiz6LUuqdWCwwdSp8/TUEBMj7ateGvn2la8bZ+b9/b1SUdNtMnAibNsnnWbBALvo7d9aOG6Wiy2KB8ePhu+8gNFS+7z79VLrXChd+8/fSxYvwxx8wfTrs2iVHTvv1gx9/BHf3WPsjKGVXTBbL8/tL6nUCAgLw8vLC39+fRIkSGR1HKaWUUjEgKAiWLIFFi2S2VGjomz8+fnwpFjRvDg0awAcstVIqTnjyRIpjK1bI28WKwe+/Q6lS7/659uyBr76Cw4fl7bp1YfZsSJbMenmVckRPnkC7dtKpBlClCkyYAPnyvdvnuX0bvv0WFi6UtwsWlGPgOXJYN68yRmhoKDdu3CBLlizvPcfMUbzp7yK6tSItur2FFt2UUkopx+XrC7/8AlOmvOy8AUiTBgoUkKM2CRLInf9Hj6Tz7ciRVz82bVro0wd69oSECWP9j6CUzbtyBerUgatXZRHCyJHwxRfwIaNyoqKkW2fgQJlDlSWLHJMrUMBaqZVyLDduyCKEy5elK23sWJmP+CFdoqtXQ6dO8liaJAksWwaVK1svszKGFt1e0qJbLNCim1JKKeV4IiJkLtTw4fDsmbwva1a5eGjUCPLk+e8LEbMZjh+Xzrh588DbW96fKhWMGCGD3t90TE6puGTvXmjYUDpsMmWC5cutOwPqzBn5nr1+HTw95fPXrGm9z6+UIzh+XLqzHz6EjBlh1SooVMg6n9vbG5o0gYMHZezCrFlyXFXZLy26vWSNopuuo1BKKaVUnHLkCBQvDt98IwW3QoXkAuTKFZlxkzfvm+/8OznJ0bjRo6XzbdYs6Yh78AC6dIEKFaSjR6m4bssWqF5dCm7Fi8OhQ9Yfuv7RR/I9Xa0aBAdD/fqwdKl1v4ZS9uzUKfn+ePhQHu8OHLBewQ2kM3zHDmjVCiIjoU0beVxUjsVikVEcsf3yLi1ijx49InXq1Pz0008v3nfo0CHc3NzYvHlzDPytRI92ur2FdroppZRSjsFikeM033wjR9OSJpVNiG3bftgxN4DwcBkuPWQIBAZKx82YMdCtmw54V3HT1q1SAAsNhXr1YPFi+b6IKeHhcrG/ZIl8P8+cKbOrlIrLzp6V456+vjI/cdMmiKlLWrMZPvtMxjWALDvp0iVmvpaKWa/r7goKknEbse3ZM5mjG13r16+nUaNG7N+/n9y5c1O4cGHq1q3L+PHj3+vra6ebUkoppVQ0+PtD48YyfD0qCpo1ky1s7dt/eMENZJHCF1/IUbfKlaXjpkcP+fwhIR/++ZWyJ7t2vSy4NWggc55isuAG8j24YIFc5JvN0LGjDHZXKq66dUs63Hx9pTt7w4aYK7iBPJZOmgS9e8vb3bpp16mKfXXq1KFLly58+umndO/eHQ8PD0aNGmVoJu10ewvtdFNK2YNnz2STVFCQXOS4uUkXT4oUkDix0emUMtadOzLE/exZ+d747beY7UAzm2Ve3POOuiJF5Phq+vQx8/WUsiXnzkHZslLorldPCm6xud3XYoGuXWH6dFnasHKlfP8rFZf4+8v34blzcgR75055XhgbLBZZLDRlinzvb9oElSrFztdW1vG67i6LRW4oxjZPz3d/vhYSEkL+/Pm5c+cOR48epcAHbNixRqeby3t/daWUUoaIjIR9+6STYO9eOH1aZkn9l9SpIX9+KF0aatSAkiXlQkSpuODMGRkefe+ezJ1ZvVru+MckJyf48ksoXFg66o4fl4ufzZshV66Y/dpKGcnbWwpczy/4//47dgtuIBdnU6bIMe/Fi6FpU9i9W2bKKRUXREbKY8+5c/K4t3597BXcQL4HJ06UGXLLl8silf37IV++2MugrM9kerdjnka6fv069+/fx2w2c+vWrQ8qulmDdrq9hXa6KaVsgcUig2/nzJGuAV/ff3+Ml5ccG/DwkNk2T57IRcf/SpwYmjeXWTelSum8KeW4DhyQgpu/v2wj3bBBtifGpps3ZZPi5cuQPLlc/OjFv3JEz57JEpETJyBnTrnITpbMuDwREXKxv2GD3Hw6dEi2Nirl6L78UuaXenpKwbloUWNyhIbKzd49eyBbNll4kiSJMVnUu7Hn7aXh4eGUKFGCQoUKkTt3bsaOHcuZM2dIlSrVe30+a3S6adHtLbToppQyUmQkLFwI48dLt8xzyZLJRrjy5eUCPkeO1x8jffYMzp+XzVXbt8smucePX/56oULw9dfwySey5l0pR3HggBS7AgOhXDk53hmbd/r/6dEj6f45elTuEm/YIN+7SjkKiwVatpTOshQp4OBByJrV6FTy/V+2rHS8Figg3eEJExqdSqmYs3y5dHeC3KRt0sTYPL6+8jz15k0pwK1fD87OxmZSb2fPRbf+/fuzdOlSTp06RYIECahcuTIJEyZk7dq17/X5dJGCUko5KLNZLl7y5ZPNisePSwdb+/ZSOPPxkWJcz57yZOa/5rYlSAAlSshg6YUL5Rjqtm3yOT094eRJWfGeO7cMu9XbMMoRHDz4suBWqRJs3GhcwQ2kCLF9O1StKnMX69SRLiClHMVvv8ljlosLrFhhGwU3kALb2rWQKpWMYmjVSh5flXJEV69Chw7y+ldfGV9wA+nwXrlSnnNu3gwDBhidSDmynTt3Mn78eObOnUuiRIlwcnJi7ty57N27l8mTJxuWSzvd3kI73ZRSse3wYdl6+LyzLVkyOSrQpYs8ebGWx4/hjz/g999fHlctW1YGwOvxN2WvTp6EihUhIEAKbmvX2s4MkpAQ2ei4bZscBd+yRYriStmzPXtkY29UFEyY8HJzoS05ckSOvoaGwvDhMGiQ0YmUsq6QEJnde+qUdHdv325b83uXLJHRJiDdeI0bG5tHvZk9d7pZm3a6KaWUA/Hzk861UqWk4JYoEQwdCtevy51BaxbcQIp5gwfDjRvw/fcQL54saChVSop8RmwoUupD3LghM9wCAuT4pi0V3EC+x1avflkUrFlTNqoqZa+8vWVge1SUdJH16mV0otcrXhyeNzkMHiwFb6UcyYABUnBLmVK6Tm2p4Abyc+Krr+T1Tp3g9m1j8ygVm7ToppRSNmDbNtkwOnmyHPFs0wauXJGLg5husk2QAIYNk6/3/OjN2LEv598oZQ8ePZIilo8PfPSRFLdsqeD2nKenFAPLlJFCe61acOeO0amUendmszxW+fjI49fUqba9mKd9e+kYfz5/Ti/6laPYtk2OeAPMmgVp0xoa5z/9+KN0dz99Kt+DkZFGJ1IqdmjRTSmlDBQaKl1l1arBvXuyEGH7dtlSmjJl7GZJlw7mz5eCQLp0cO2adOT8+KN0MShlq4KCoF49KRxnzCgz3P5rzqEtSJAA1qyRjar37knh7elTo1Mp9W7GjpWLfU9PmQlqi0Xu/zVhAhQpIuMVPvlENn0rZc+ePpWCMkD37tLtbavc3GS+cKJEMtd0yBCjEykVO7ToppRSBrl6FUqWlAsXkCdLJ07IbBwj1a0L585JB4PZLLNvatWSbgalbI3ZLBcchw/LsoRNm2z3Lv8/JU0qxcG0aWXDcMOGUoRXyh6cOAHffSev//Yb5MplbJ7o8vCQAmGSJPIz4/vvjU6k1Ifp1Qvu3oXs2eHXX41O83ZZs8K0afL6yJFyo1kpR6dFN6WUMsC6dVCsmGxTS5FCul4mT7adTgEvL+m2mzVLuhi2bpXugMOHjU6m1KuGD5eLaFdXWLVKNvHai+ddeV5eMoz++dE3pWxZcLCMIoiIkGHonToZnejdZMkCM2bI67/8It16Stmjv/+GBQvAyQnmzrWd55Bv06zZy8e7Dh3A39/oRErFLC26KaVULDKbZTlCvXryJKNMGdm2WK+e0cler107OHoU8uaVgdkVK8rRAKVswbJl8MMP8vqUKbKxzd589JFscnN2hnnzYPRooxMp9WZffQUXL0qX5rRptj3H7b80bgxdu8pFf9u2Lzd4K2Uvnjx5ubhkwABZgmVPxo6VAvjt29Cvn9FplIpZWnRTSqlYEhQETZu+LBL07Ak7dtj+Ubg8eeDAASkMhoZKh8P330sBUSmjnDwpF8sAn38OHTsaGueDVKkis6ZALp7WrDE2j1L/ZfPml1tAZ8+WLdj2auxY6Yy9fx86d9YuU2Vf+veHhw/l/2F7PCadIIH8DDGZYOZMmSeslKPSoptSSsUCHx+oVAlWrgR3dzm2+ccfMlTWHiRKJNm//lreHjFCim9hYYbGUnHUw4cyAy04GKpXt485Nm/Tsyf06CEX/q1awdmzRidS6lVBQdCtm7zeu7csALJn8ePL0bznR9P//NPoREpFz/btUqgC6TZ1dzc2z/sqX/5ll1uXLrLgRClHpEU3pZSKYefOSdv/0aPSFbBtmxzbtDfOzvDzz1IwdHWFxYul+y0w0OhkKi6JioJPP5UjKTlyyP+HLi5Gp7KO336TRSrPnkH9+nrkTdmWIUPg5k3IkEG2WjuCwoVh1Ch5/csvZcGRUrYsJESORoPcqLHHsQr/NGKEnKjw8ZGbT0o5Ii26KaVUDNq2DcqWhVu3pEBw8KC8bc/atZNFEPHjy4KFypWl80ip2DBypPx/Fy8erFghWwgdhaurDMbOlk2KGy1bSpFRKaMdPQrjxsnrkydDwoTG5rGmvn3lcSw4WIa66/ecsmXDhsG1azKaZORIo9N8OA8PWdzl7AxLlsipCqUcjRbdlFIqhixeDLVry8KEcuVkLlr27Eanso7q1WUeXfLkcOyYFBJv3DA6lXJ0O3ZItw3ApEmQL5+xeWJCsmRy0fF8a/DzP69SRomIkKNfZrMUguvWNTqRdTk5yVG9BAlg717pOFXKFp06JRt3QUaUeHkZm8daihV7Ob6kZ0/w8zM0jlJWp0U3pZSKAdOmycVJRAQ0bw5bttj3wOnXKV4c9u2DTJnkSE6FCnDlitGplKN68EBmnZnN0L69vDiq/PnlZwjIMT5drKCMNHasLC5JmhTGjzc6TczInBnGjJHXv/sOLlwwNI5S/2I2y3HSqCho0gQaNTI6kXUNHgw5c4K398sCnFLv6s8//yRdunSY/2fbW4MGDWjXrh3VqlWjVq1aWP5/c46fnx8ZM2Zk4MCBMZrLZLHorp43CQgIwMvLC39/fxIlSmR0HKWUHRg9Gr75Rl7v3h0mTpS2eUd1/z5UrQoXL0KaNDLgN3duo1MpRxIVBbVqSedX3rxw+LAcb3Z0vXvLzw8vL+kozZbN6EQqrrl6FT76SDZXz5pln/NIo8tike70TZvkptL+/Y4zL1LZv1mz5Phz/PjyfCt9eqMTWd/u3VCxory+Y4csIFPGCA0N5caNG2TJkgUPDw8ALBYLwRHBsZ7F09UTk8kUrY998uQJadKkYf369VStWhWAp0+fkjp1atasWUO+fPn46KOPGDJkCJ9//jktWrTg2rVr7N+/H1dX19d+ztf9XTwX3VqRPpQouxQRAXfuyMybmzdlntTjx/DkibwEB8tF2vMXFxc5NvD8JVUqebBKlw4yZpQ7K//zPaTUO7NY5A7586HMAwZIl0o0HyfsVtq0sHOnbLI7e1aeJG3b5phH/5QxfvpJCm6enjLzLC4U3EA6b44dk6PpTZtKEcDT0+hUKq6wWGRge2io/Hxv29boRDHLZILp06XT9MgRuYH23XdGp1JKjls+7/4aPNgxC24gJya6dZNNwl26wOnTMr9V2YbgiGASjEwQ61/32YBnxHeL3hO/pEmTUqtWLRYsWPCi6Pb333+TNGlSqlatirOzM3/++Sdt2rThwYMHrFmzhhMnTvxnwc1atNPtLbTTzVghIdLif/YsnDkj/z1/Hu7elTZra3Fykg6CvHmhUCEoUwZKlnScWQkq5pnN8NlnMGWKvP3zz3GvPd7XV2a9nTwps962boWCBY1Opezdjh1ywW82O36nzevcvQtFisCjR/Jn/+svxy/kK9swcyZ06iQXvWfOxJ1Oyzlz5HvN1VWKb/o4poz2+ecwYYKcIjh1CtzcjE4Uc/z95Xrs/n05NfL8RraKXa/r7goKD7L5ohvAkiVL6Nq1Kw8ePMDd3Z2KFStSpEgRxj3fBgS0atWKhQsXMnnyZLp37/7Gz2eNTjctur2FFt1ij9ks86AOHpSXQ4fkDsd/bZFyd5cZHJkzy5G2ZMlk3kjSpNIJ4OIiR/qcnSEyEp49kxd/f1lLfe+evNy4AU+f/vvzm0xyt7NaNTluUKGCfE2l/ldEhDxBX7hQ/r+ZMuXlOve45skTqFFDunOSJpXCW+HCRqdS9urBA7kR4uMjx2pmzjQ6kTG2b5eCttksP1+6dTM6kXJ0Pj5y4fv0qXR89e9vdKLYY7FA48awapX8/Dl8WApwShnh9Gl5HmU2y3zgatWMThTzVq2SmXXOzvL9V6SI0YniHns9XgoQEhJCqlSpmDVrFsWLFydTpkwcOXKEokWLAhAcHEzhwoW5du0an3/+OWOeD/T8D1p0iwVadIs5QUFSXNu7V47OHDr0+m01SZPKPJHnL/nyyd3WlCmlQ+1DWSxyYXf+vHTSHTkiR3iuX3/14+LHhypV5IhPo0baBadESAh88gmsWyeF3nnzZHFCXObnJ/O3Dh2S79+dO+V7V6l3ERUFNWu+PKp8+HDcPlr588/w7bfS4bB/P/z/c0elYkTz5rBkiVzsHz4c92ab+fjIz50nT2DoUDnSp1Rss1jkpv/evfDxxzJeIa5o1kz+vHH1Z5DR3lRosgft27cnMDCQkiVLMnPmTC5evPji13r06MHOnTuZMGECderUYdOmTVSpUuU/P5cW3WKBFt2s58kT2XS4ezfs2SOdMJGRr36Mh4dcSJQqJS8lS8rcAiOO0vj4SNaNG2HDBnn7OXd3qFNHtlPWr6/z4OKqgAD599+9W47fLFsmXZFK/m6qV5cnSilSwK5dkCeP0amUPRk2DIYMkULbkSPSdROXmc3SfbN6tXR4Hz8OSZIYnUo5ojVroEED7TJZsAA+/VQu9o8e1WOmKvbNmwdt2sjj4MWLkCGD0Ylij4+PPG/084Nff4UvvzQ6Udxi70W3LVu2UL9+fTJnzkzr1q0ZNGgQAOvWraNJkyYcOHCAIkWK8P333zNr1ixOnz5Nkv94UqVFt1igRbf3d++eFNeev5w58++PSZ9e7uCUKSNFtgIFbLOF32KROVVr1sCiRa+ukk+aFNq3l+OEuXIZlVDFNl9f6eY6dgwSJYK1a6F8eaNT2ZanT+UYxPHjkDq1FN5y5jQ6lbIH27fL/zsWC8ye7fgD3KPr6VO5MXXjhhT8V660Tse3Us8FBEiH1927cqR09GijExnHYoEmTeT7rHBh6d62xeeoyjEFBMh1hY+PLBMaMMDoRLFvxgzo3FmKjmfPQpYsRieKO+y96BYVFUWGDBnw9vbm2rVrZM2alUePHvHRRx/x+eefM+D/v6EiIyMpW7YsmTNnZvHixa/9XHGu6LZ7925++eUXjh07hre3NytWrKBRo0Zv/D27du2iX79+nDt3jrRp0/L111+/dVjeP2nRLXoiIqSoduiQvOzZ8+/jmSAPHhUqSHGifHnIlMn+BkJbLDJfYeFCmD9fnpg+V7ky9Ogh3QjaBu247t2TLq4LF2RhwKZNcbcT4G0eP5Zj2adPy7bg3bsha1ajUylb5uMjc5QePICOHeVJt3rp+HG5URUWFjcXtqiY1bs3TJwoP6fPnInbR7rh1dl2w4bB998bnUjFFf36wbhxkCOHfC/GxbnSFotcW+3aJeMmNmywv+tGe2XvRTdrskbRza7ujwYFBVGwYEEmTpwYrY+/ceMGderUoXz58pw4cYLvvvuOPn36sGzZshhO6tgiImT+2aJF8oBQtqx0+hQtCj17SlfC9ety971IEdm4s2yZXEBdvAhTp0qrdObM9vmD02SSIwajRsHNm9L9Vq+e/Hl37JAZBDlzypPWoCCj0ypru3YNypWTglv69FJg1oLbf0uWTAb/5s0rxcoqVeDWLaNTKVsVFSXHuR48kG6b3383OpHtKVJEttgBfPedXIwoZQ0HDsAff8jrf/6pBTeQLu3nP4eGD5cbSErFtPPnX/6c//33uFlwA7nm+vNPmWW6aZM0PChlj+yq0+2fTCbTWzvdvvnmG1avXs2Ff5wF7N69O6dOneLAgQPR+jpxtdPt+XKBGzdevpw/L3daLl6Uwtv/SpwYSpSQl7Jl5U58HPor4/ZtmDYNJk+W7h6Qo6effSZ3jlOkMDaf+nBnz0qHm48PZM8umzkzZTI6lX3w9oZKleDyZemg2LVLipZK/dPQofDDD3Kxf/SozgH8LxaLbEyeO1eKAidOyH+Vel/h4XKE8vx5GZnx119GJ7Id/9xmWqSILAHTY6Yqplgs8lxz2zZo2FCON8d1w4fLMpMUKeSmd7JkRidyfNrp9lKcO176T9EpulWoUIHChQvz22+/vXjfihUraNasGcHBwbhG4xHT0YpuDx7IE6mwMHmCFRYmL/7+MqPK1xcePZKPCwn578+TMKF0IRQrJkW2kiWl/dkeO9esLTgYZs2CMWNeHrH19JTC21dfyXFEZX8OH5YlCU+eyCbOzZv1Ivdd3bsnx8uvX5du0J07IU0ao1MpW/HPOW5z5khHtPpvQUHy2HvunBS0t2zRsQbq/T1fXJIypRTe9KL2Vd7e8rz36VMpAPz/TG6lrG7FCpkl6O4u34s6kuPVmwIdOsDMmUYncnxadHvJGkU3h3565uPjQ6pUqV55X6pUqYiMjMTX15c0r7naCwsLIyws7MXbAQEBMZ4zNj18GP1BnCaTdKJkziyDK3PnlmJD/vz2OYsttnh6yjHbbt1g+XKZuXPsmPz3jz+gTx/ZwJM0qdFJVXTt2CGb3J49k4Uf69bpv9/7SJdOCisVK0rHW9WqUnhLmdLoZMpoPj7QqpUU3Dp10oJbdMSPL6MbihWT76PBg2XYtlLv6sIF+PFHef2337Tg9jpp0shxvzZtpEDZsKE8J1bKmkJDX27p/OorLbg95+Ymp4nKlpXmkdatZVyJUvbCoYtuIB1x//S8se9/3//cyJEjGTp0aIznMkry5HKHwN1dXtzc5L+JEsmvPX9JmVLWUru5GZ3Yfjk7wyefwMcfy2bLIUPkCNBPP8l8hr59ZSZe4sRGJ1VvsmaN/DuGhckD/KpVkCCB0ansV6ZMLwtvFy5IZ9OOHXqRF5dFRUnB7cEDuanzfI6NertcuWD6dGjRAkaOlLEO9eoZnUrZE7MZunSRTpK6daF5c6MT2a5PP4W//4bVq+UIrh4zVdY2ZoyM9EmXLm5uK32TMmVkWd3kydLYcPo0xItndCqloseuFim8q9SpU+Pj4/PK+x4+fIiLiwvJ/uMKb8CAAfj7+794uXPnTmxEjTVp0khL7uTJMH68rIIfPlzWwnfoAPXrQ+nSkC2bFtysxWSSv9djx6RlvGBBCAyUv/ds2eTf4R/NlcqGzJkjLf5hYXJXe906LbhZQ9asUnhLnVrmRFavLkd2VNw0fLgUXuPHlwtaHd7+bpo3l/EFIF04N24Ym0fZl6lTYd8+eWybNElPMbyJyQRTpkCSJLJFePRooxMpR3L37stu5dGj5TFRvWrkSEibFq5ehREjjE4TN9jpJDKrssbfgUMX3UqXLs2WLVteed/mzZspVqzYf85zc3d3J1GiRK+8KGUNJhM0aiRP1JYulQHhT57AF1/I6wsXyh1nZTyLRR7Y27WDyEhpY//7b4jjIw2sKkcOKbylSCEdoLVqgYOd5lfRsGWLHNUCuZjNndvYPPbq119lvpuf38vOXKXe5t49+Ppref2nnyBjRmPz2IPnx0xBFr+cPWtsHuU4vv5a5kKXLQstWxqdxjZ5ecHEifL66NFy41bFjOe1kuDgYIOTGO/530F09gH8F7tapPDs2TOuXr0KQOHChRk7diyVK1cmadKkZMyYkQEDBnDv3j3mzJkDwI0bN8ifPz/dunWjS5cuHDhwgO7du7Nw4UKaNm0ara/paIsUlO2IjJSFC4MHy4BegKJF5UFE5xQYJyoKPv9c5u+BdIGOGgVODn2LwjhnzkDlyrLxt0wZWQmv3YRxw717Mhj50SM53jZ1qtGJ7Nvt2/L3+eSJHMGZNMnoRMqW/XMjZ8mS0u3m7Gx0KvtgsUj3+5o18rztwAE9Zqo+zN69UL683KA/elS25Kr/1rixbHXVn10xy9vbGz8/P1KmTImnp+d/judyVBaLheDgYB4+fEjixIlfuw/AIbeX7ty5k8qVK//r/e3atWPWrFm0b9+emzdvsnPnzhe/tmvXLr744gvOnTtH2rRp+eabb+jevXu0v6YW3VRMCwqSI6Y//yzHTkG6fn7+GQoUMDRanBMSIl1ty5fLE59x46QAp2LWiRNSaPbzk1lv69frEUNHFxEh/+Z790KhQrB/v85msYaNG6FOHSkKzJsnM6iUep1ly2TmrIuL/AzOn9/oRPbl/n3ZZurnJ0sovvvO6ETKXkVFyUKckyf1BlR03b0LefPKddPEifDZZ0YnckwWiwUfHx/8/PyMjmKoxIkTkzp16tcWHR2y6GYELbqp2PLokcw2mjxZuuBMJhnUO3y4DFRVMcvXV+6c7d0r8wznzoVmzYxOFXccPixLFQID5b9r1uhxXkf2zTfS1ZswoRy5z57d6ESOY/Bgedzw9IQjR+TCRKl/evpU/r/w8YHvv395xFu9m7lzoW1b6XI7flwLl+r9TJ0qiwG8vODKFRm7od7ujz+gVy95HnH+PKRPb3QixxUVFUVERITRMQzh6uqK8xtaKbXoZiVadFOx7epVuWP699/ydrx4suX0m2/kgUVZ37lzsuzixg150rNqlXRcqdi1fz/UqCHdn7Vry+IRd3ejUylrW7MGGjSQ15cuhWhOe1DRFBUFNWvCtm0yI+/IET2yrV7VtStMmybbb0+e1Bsc78tikZ9la9dKp9KBA9I5qFR0PX0KOXPKjd9x46BvX6MT2Q+zGcqVk++7Bg3kuGkcO/2obEB0a0U6pUgpG5M9OyxZIg8iZcvKkccff5RNp5MmybEsZT3r1snG3hs3ZKvm/v1acDNKmTJytDRePNiwQToNw8ONTqWs6eZNWVACcnRbC27W5+wMCxbIhreLF6XAordX1XM7dkjBDeS/WnB7fyYT/PknJE4sc7h++cXoRMreDB0qBbc8efSI5LtycpIuQRcXWL1abtQqZau06KaUjSpVCvbskfliOXLI8dPPPoOPPpK7OXoR9WEsFtn4V7++HGmsWBEOHdKjWEarUEGePLm7y39btZLj1sr+hYVJIfXpUxl+PHq00YkcV8qUcvPG2Vk2Y0+ZYnQiZQuCg2VmFMiyjfLljc3jCNKmhd9+k9d/+EE655WKjnPnXm7i/O03XcbxPvLnl5NAIEdN/f2NzaPUf9Gim1I2zGSSOWPPH5iTJ4dLl+R9z4tE6t09ewZt2shmUotFLkI2b5a/X2W8atWksOzmJsO+27aVI3PKvn3+uRx1TJpUCkJubkYncmxly74sbPbtK3/3Km4bMgSuXZPZR6NGGZ3GcbRpA3XrSmd2+/Z6o0i9ncUiP5ejomQTbvXqRieyX4MGSXOCtzd8+63RaZR6PS26KWUHXF2ly+3aNZn35uEhXXClSkHz5nD9utEJ7ceFC1CiBMyfL10g48bJ8RAtANiWWrVk3peLi3TqdOyohTd7Nm2afJ+ZTLJVM2NGoxPFDV98ITdpwsPhk0/gyROjEymjHDkCY8fK61OmgI4pth6TSY65PT9m+uuvRidStm7VKti6VZ57jhljdBr75uHxcuPrlCmyEE0pW6NFN6XsSKJEMt/tyhW5m2oyScdI7tyybOHxY6MT2rYFC6B4cSm8pUkD27fLnUYdvGqb6teHRYukODpnjnS8aQeB/Tl4UI59AIwYIUsyVOwwmeCvv2Qm6K1b8j1kNhudSsW28HDo1En+7T/9VLqylHWlTQvjx8vrQ4bINkWlXic0VJ6zA3z1lfx8Vh+mUiW5OQsyxzQszNA4Sv2LFt2UskPp08uF1IkTsu0xIkI6trJnl0G+oaFGJ7QtgYHQubNcbAQFQZUq8ndXoYLRydTbNG0qhTcXFymatmypy0Tsibc3NGkiF/1Nm8KAAUYninu8vKRr1MNDFsf8/LPRiVRs+/lnOHNGRig8Lwwp62vbVo+Zqrf79VdZ3pU2rT4mWtMvv8g80wsXdGassj1adFPKjhUsCJs2yUuBAuDnB19/LZ1vs2bpEz6QY7gFCsCMGdL1MWiQzG9LlcroZCq6Pv5YZru5uUnx4OOP9S6mPQgPl38rb2/Il09+JmlXqTEKFYI//pDXBw2SDZYqbjh/HoYPl9d//11nl8ak59tMvbzkOK8eG1T/68YNObECUiRKkMDYPI4kadKXS01GjJAZ2ErZCi26KeUAatSA48el+y1dOjlG1KFD3C6+hYRIAbJiRbh5EzJlkgvN4cPluKKyLw0ayAwUDw/ZatqokfwbK9tksUDv3rB/v1yArlihFxdG69hRHhfMZmjRAu7fNzqRimlRUXKsNCJCjus3b250IseXLt3LbsLBg/WYqXrV55/LaZTKlaVzX1lX8+YywiI8XI6Z6jgFZSu06KaUg3B2luMMly9LW3WKFLJ4IS4W3zZskM6aX36Ri/+OHeH0aSnAKftVqxasXQuenrBxI9SrJ8eFle0ZP14GG5tMciw4Rw6jEymQLdgFCsDDh9CsmXaMOroxY2SmYqJEMGmSdprGlnbtoE4dufDv0CHuPPdSb7Zmjby4uMjPYv1+tD6TSX7WeXrC7t0wc6bRiZQSWnRTysF4ekL//tLC/ssvrxbfcuWSI0aOWqi4d0829NWpI3/+9OmlO2rGDN3U5iiqVpWCW4IEsgijVi05Vq1sx6pV8OWX8vqYMfL9qGyDp6cc0fbygn37oHt3uTGhHM+ZM/D99/L6uHHyeKhix/Ntpl5ecPjwy62xKu4KCYE+feT1fv0gb15j8ziyzJlfHqnv3x98fAyNoxSgRTelHFb8+LIV6Z/Ft+vXZYtgxowy18dRHogCAuTPkyOHXFA6O8uTmvPn5Viicizly8OWLXJBs3evdDB6exudSoEcc2/VSgo53bvLdmBlW3LkkK3Xzs7SAa1zpxxPeDi0aSP/rV9fbrqp2JUunRQ7QY6ZXrhgbB5lrJEjZdRJ+vQvi+Eq5vTpA0WLyk1ZfR6ibIHJYtF7nG8SEBCAl5cX/v7+JNJWGWXHgoLkAmvsWCm+gQymb9VKLo5LlLC/VvfgYJg2TQam+vrK+8qUkW6+QoUMjaZiwalT0unm4yN3Njdv1mOMRrp7F0qWlFlhNWrIUWBXV6NTqf/y++9yYWIyyZzEevWMTqSsZdAgGdaeLBmcPQupUxudKG6yWGSb6YYNUKyYdJe6uRmdSsW2K1cgf34pgi9dKpu8Vcw7cQKKF5fZlmvXyveiUtYW3VqRdropFUfEjw+ffSYz35Ytg9Kl5QnArFlQqpRsQp040T6O6vn5yQVF5sxyB8vXV47OLl8unU9acIsbChaUi5js2eUOctmycPSo0aniJj8/eUJ7/77MU1yyRAtutq5XLxk0bbHIQO+zZ41OpKzh4EHpqgGYMkULbkZ6fsw0SRJ5bNIOp7jn+VKh8HCoWROaNDE6UdxRuDB88YW83q0bPH1qbB4Vt2mn21top5tyZAcOyJPyJUtkmxLIdsjnW87q1IF48YzN+E8nTsgT2Hnz4NkzeV+WLPDtt7IswcXF2HzKGA8fyraq48dl1tvy5VC9utGp4o6QELmY2LMHUqWSi/7MmY1OpaIjIkK6EnfulJ+lhw9D8uRGp1LvKzhYLjQvX5Yu9vnzjU6kQB6Tnnc3bd6sj09xybJl8PHH0uF49qx248e2oCC5EX/1KrRuDXPnGp1IOZro1oq06PYWWnRTccHTp1LImjr11W6HBAmgYUMpwlWvDkmTxn62O3fkCev8+XDkyMv3588vxbbmzbXYpmSuX5MmsG2bdFhNmyYb5FTMioyUi8nVq2VZye7d0oGo7Mfjx3Is+No1OZ6/datt3WxR0ffZZ7K5L21aeSxPksToROq5Hj1edh6ePi1zdpVj8/eXhQn370uX47BhRieKmw4elJMQZjP8/bcUQZWyFi26WYkW3VRcYrHAsWOweLF0v92+/fLXnJxk7lvNmlChgsxJSJjQ+hnCw6XbYscOWLcODh16+WuurlJY6dYNKlWyvxl0KmaFhUmhbfFiefvbb+UYspMOUogRFot0mM6aJR2ymzbJzwZlfy5ckIKbnx80biwXJs7ORqdS72LFipdH1zZtkg5GZTuCg+V50/nzcopg7Vp9DuPoevaEyZNlBMbp03ozw0j/nHN55gykSWN0IuUotOhmJVp0U3GV2SwFr2XLYONGOHfu1V83meQOXvHikDu3zFTLlUs2o8aPH73P//ChFPbOnZOh+KdOScEtOPjVr1O2rNyZatVK7w6rNzObZVPcjz/K202awJw50ft/UkWfxSLzFCdMkOLM8uW6Kdje7d4tHc3h4TLvbcIELQrYi9u35QjV06eytfyXX4xOpF7nzBl5zhQWBuPHw+efG51IxZS9e2XTOsD27VC5srF54rrwcOnoPnlS5s+uWaOPb8o6tOhmJVp0U0rcuSOzSLZskVbtW7f++2Pjx4eUKSFxYnB3l1kWTk5STAsKkqOA3t5yNO11UqSQTraqVeVCXu9IqXc1dy507ixPtIoUkeOP6dIZncoxWCwynPi33+Ttv/6C9u0NjaSsZMkSObIPMHo09O9vbB71dpGRckG/d68UdPbu1Q2ZtuyPP6So7eYmNzZ18ZPjCQuTf9eLF+V5yLRpRidSIEfuixaV54XTpsm/jVIfSotuVqJFN6Vez8dHnjCePAmXLsnL5csvFxxEh5OTzDfJnRsKFJBZUMWKyfZDvQOlPtS+fdCokWy3TZsWli6Vrb3q/Vks0K+fdGkATJ8OnToZGklZ2bhx8m8MsGCBbDZVtmvIEJkVlTChLBvKls3oROpNLBZ5XFq9Wo4dHj0KXl5Gp1LW9Px7MlUqObqvsxVtx6+/ys2kBAnkdE3WrEYnUvZOi25WokU3paLPYpGi24MHcnTU31/uKIWHy7E/T095SZBAiiCpU8ucNqViyvXrsgjk/Hn5f23sWBk2rkXdd2exwJdfSlEGZPFKly7GZlIx44svpLDq6irFgVq1jE6kXmfXLqhSRR5ftUBqPx4/lg7s27dlhuKyZfqY5CjOnpV/24gIHdpvi6KipDN4zx4oVUrGKuh1iPoQWnSzEi26KaWUfQsMlG6sv/+Wt1u1koKRznmLvshI6N4dZsyQt//8E7p2NTaTijlms3yfLF4sw783btQlGbbm/n25uH/wADp0gJkzjU6k3sWRI1CunNyU/OUXmcWn7FtUlPybHjwIDRvKchMtptqemzflZE1AAAwYAD/9ZHQiZc+iWyvSnW5KKaUcWsKEUjwYO1aG/i9YIAN1L140Opl9CA2FZs2k4ObkJEdKteDm2JycZAFJ3boQEgL16kmRQNmG8HD45BMpuOXPD7//bnQi9a6KF385F/Pbb6XjRtm3ceOk4JYwoczu04KbbcqcWZ7HAIwaBVu3GhpHxRFadFNKKeXwTCY5MrdjhxxrPndOBupOmybHJtXr+ftDnTpyx97NTboFdYZb3PD837tSJekWrVVLjk4p4335JezfL7PAVqzQrl171a0btG4tHVLNm8uCKWWfzp2DgQPl9XHjdHGTrfvkE7l5aLFAmzZyA0OpmKRFN6WUUnFG+fJw/Lhsxg0OliddTZrIsgX1qmvXZPHEjh1y537jRvm7UnFHvHgy061ECXjyBKpXhytXjE4Vt82bBxMnvnw9e3Zj86j3ZzLBlCmyPMrHB1q0kFlgyr5EREDbttKBWrcudOxodCIVHePHS6ewjw+0aydjFZSKKVp0U0opFaekSQObN8sWK1dXWLlStudu3Gh0Mtuxa5cUWi5ckDv2O3fK8GEV9yRMCBs2wEcfycVJxYqyrVrFvuPHXx7t/v57Ofar7Fv8+LB8uXyf7d4Nn39udCL1rkaMkO/NpEmle16PldqHePFg0SL576ZNMGaM0YmUI9Oim1JKqTjHyUmOaB06BLlzy7Ge2rXlbufjx0anM47FApMmSUfTkycyd+jIERnYruKupElhyxbpCvD2lsLb+fNGp4pb7t6VTcwhIfKzasgQoxMpa8mZE+bPl2LN5MnyouzD0aPw44/y+qRJclNP2Y98+WDCBHn9u+9kq6lSMUGLbkoppeKswoXh2DHpLjCZZHh83rywZEncm/UWECDHmz77TI7LNG8uHW96EaEAUqWC7dulK/TBA5n1pjPeYsezZ1Jwu39fLhIXLpSlMMpx1K//cotinz7SXaxsW0iIHCuNipJlQ82bG51IvY9OnWRbd2SkzHq7f9/oRMoRadFNKaVUnObpKbM99u+XgtvDh/LkuV49uHzZ6HSx49gx6WZbsgRcXGTT68KFcuxCqedSpJDCW+HC8OiRHDk+edLoVI4tKkouCE+ehJQpYe1aWaCgHM8337y8+G/aFK5fNzqRepN+/WQEQ+rU0uWm7JPJBFOnygiFBw+k8BYebnQq5Wi06KaUUkoBpUrJXJYhQ2TW2/r1cpzuq69ki6cjCg+HwYOhZElZnJAxI+zdK5tedS6Nep1kyWDbNjl67OsrR021KydmWCxyDH7NGnB3h1WrIHNmo1OpmGIywfTp8r315Il0v/n5GZ1Kvc6yZbIEA2D2bPm5+L6CI4I5fO8wKy6sYO6puay5tIbTD04TZY6yTlj1Vs9nK3p5yQ3Yfv2MTqQcjcliiWsHaN5NQEAAXl5e+Pv7kyhRIqPjKKWUigWXL8uTrnXr5O2UKWHYMOjQAdzcjM1mLceOyZ/nzBl5++OP4c8/ZX6XUm/j7w8NG8oRZDc3mUn18cdGp3IsI0fKnCGQgd96fC1uuHdPCm/e3tJNunGj4zzuOIJbt6BQISmIfvMNjBr17p/DL9SPOafmsPT8Uvbd2YfZ8u/VmV7uXtTLWY/uxbpTNkNZTHonLMatW/dyQc2sWTLnV6k3iW6tSItub6FFN6WUirs2bIC+fV8eM82SRTrDWreWY5j26NEj2Xw4bRqYzXJk8I8/5EiFUu8iNBQ+/VQ6BEwmOWLVvbvRqRzDlCnQo4e8PmaMdl7ENSdOQIUKMs/v009l3qiTnk8yXGSkdPfu3y8d4nv2SGd8dD0KesSPe35k+vHpBEUEvXh/yvgpyZYkG/Hd4uMX6scl30sEhge++PXqWaszvtZ48qbIa80/jnqNH36AoUPBw0O6uEuWNDqRsmVadLMSLboppVTcFh4uF8A//STzPkC2zfXvL8U3Dw9j80VXaKhsxRs69OVx2ZYt4bffpPCm1PuIipLlG3/+KW8PGAAjRmiB4EMsXizfmxYLDBwof58q7tm8GerWlULPt99K56My1sCB8lwgUSKZs5glS/R+X6Q5kgmHJjB011ACwgIAyJciH12KdKFh7oZk8sr0SidbpDmSI/eOMOPEDOaenkt4VDhuzm6MqzmOHsV6aNdbDDKboVEjOdafKpVsuc+UyehUylZp0c1KtOimlFIKIDhYOsJ+/hkeP5b3pUwpBYcePWy3cBUSIl1tP//8citX4cJSbCtf3thsyjFYLNIdMGyYvN24sXTmJEhgaCy7tGKFbEKMjJSuwUmTdL5iXDZrlowBAHn86dnT0Dhx2qpVUowBKYw3axa933f1yVXarGjDwbsHASicujAjq46kRrYa0SqeXX96nd4berP+ynoAOhbqyJ/1/8TFyU7b7e1AYCCUKwenT8ts3337pNCq1P/SopuVaNFNKaXUPwUESBHrt9/gzh15n5ubzLfq2BGqVwdnZ2MzghTYpk+X7jYfH3lf+vSyKKJDB9vIqBzLnDnQpYt0hxYqBKtXQ4YMRqeyH0uXQosWLzeWzpkT89+nIREhXHp8icfBj4kwR7w45ubloStSbcXw4TLWwGSCBQvk/xEVuy5dkjl7gYHQp488/kfH3FNz6bGuB0ERQXi5e/FrjV/pUKgDzk7v9o1tsVgYf3A8/bf0J8oSRdM8TVnQdAFuzjrsL6bcuQMlSsjzp1q1pPPNXseKqJijRTcr0aKbUkqp14mIkIvksWPh6NGX70+fXu6AN24MpUvHbnErLAy2bJHuiJUr5eIdZCvpd99B+/ayBVGpmLJ/v/y///ChHM1ZtgzKljU6le1bvFhmd0VFybH1v/6KuQu8a0+usfjcYlZeXMkx72P/GuJuwkTB1AX5JO8ndCjUgTQJ08RMEBUtFot0uE2ZIv9PLFsGDRoYnSruCAyUuV4XLsicva1b3z7HLcocxTdbv2HMgTEAVMxUkTmN55DRK+MHZVl5cSXNlzYnPCqcNgXaMLvRbD1qGoOOHpV/85AQOdXw++/aeaxepUU3K9Gim1JKqbc5eRJmzoR58+Dp05fvT5lSNmFVqQKVKkG6dNb/2g8fyrDf1avlTmxAwMtfK1dOjr5+/LFuv1Ox59YtKQqcPi1FglGjZBGAXqy83syZ0iFoNkthfPr0mCnWH7l3hJF7R7Ly4kosvHz6nzReUtIkSIOLkwsPgh7g88znxa+5ObvRp0QfBlYYSGKPxNYPpaLFbJZNivPmyc/ydeugWjWjUzk+i0UeP5cvh7Rp4fhxuZnwJv6h/rRa3urFcdBB5QfxQ6Uf3rm77b+sv7KeBgsbEGWJYlD5QQyvMtwqn1e93vLl0LSpvD5ypMxXVOo5LbpZiRbdlFJKRVdoKKxfL3OZ1q4FP79Xfz1bNihSBAoWlJccOeT4nafn2z+32SybRy9cgLNn4cwZ2LsXzp9/9ePSppWLhM6d4aOPrPZHU+qdPHsGXbvCwoXydsOG0r2VJImxuWyJxSJHB4cMkbc7d5aFFNZeQnE34C7fbv2W+Wfmv3hf9azV+STvJ9TOUZt0CdO90i3jHejNxqsbmXZ8GgfuHgAgfaL0zG8ynwqZKlg3nIq2yEjpol6xQh4zNm2SGysq5gwbJt+frq6wezeUKvXmj38U9Iia82pywucEHi4ezGo4i+b5m1s918wTM+m0uhMAq1qsokEubX2MSWPHwpdfyutTp8pNEqVAi25Wo0U3pZRS7yMiAnbtkgujnTvlDrnZ/PqPTZ5cFjEkTCjD593c5PeHh8sChwcPZK5IZOTrf3+BAtL10LSpXBTo5khlCywWKSJ9/rn8v5w5MyxaJEe14rrISDkyOG2avD1woBTgrNkNaLFYmHNqDr039CYwPBATJtoUbMM3Zb8hb4q80fr9G65uoO/Gvlx5cgUnkxPjao6jT8k+1gup3klYmAzz37hRHi82bNDj2zFl/nw56g3yfdq585s//m7AXarPrc5F34uk8EzB+k/XUyxtsRjL98XGLxh/aDyJPRJzotsJMifOHGNfS8lm7lGj5PnVkiUvu99U3KZFNyvRoptSSilr8PeHgwfh1Cl5OXMGbtyQjqB3kTWrbNPKnx+KFZN5I8mSxUxmpazh+HHpvrxxQy5YvvsOvv8+7h55fvwYWraU+YtOTjBxohwDt6anIU/pvKYzyy8sB6BU+lJMrD2RommLvvPnehb+jF7rezH71GwABpQbwI9VftRZUgYJDoa6deVmTvz40lVdqZLRqRzLnj1yIys8HPr3h9Gj3/zx159ep8rsKtzyv0WGRBnY0mYLuZLnitGM4VHhlP+rPIfvHaZS5kpsa7sNJ5PecYspFot0b0+frke81UtadLMSLboppZSKKRaLFONu3YInT6QAFxgoT/Td3OTFw0NmyKRJIzPi4mqhQtk3Pz/p7Hp+3LRwYdnOmT+/obFi3alTsmjixg05Ijh/vnQuWdOFRxdosKgBV59cxcXJhWGVhvF12a8/aKaUxWJh5N6RDNw+EIChlYYyuOJga0VW7yg4WP6/2bJFHiNWroSaNY1O5RiuXJGO8SdPpJtpyZI3d4/f8b9DhVkVuOl3kxxJc7C17dYPXpgQXdefXuejyR8RHBHM5LqT6V6se6x83bgqKkqOeC9fDvHiyTgRLXjHbVp0sxItuimllFJKWcfff0P37nJB6+YmQ6kHDJDCgaObN086JUJCpGN1xQo5Gm5Nay+vpdWyVgSGB5LJKxPLmi17r+62/zLh0AQ+3/g5AFPqTqFbsW5W+9zq3YSGwiefSKebm5t8b+lW0w9z757Mybt5U47B79ghxZX/4h3oTYVZFbj65CrZk2Znd/vdsb7t9/n3ZAK3BFz87CLpEsXAxib1wj+PeGvhTUW3VqQ9qEoppZRSKlZ88oksAqlXTzo6hw2ThR9bthidLOY8fQqtWkGbNlJwq1kTjhyxfsFtytEpNFjYgMDwQCpmqsiRLkesWnAD6FOyD0MqyuaHXht6sff2Xqt+fhV9Hh6wbJl0Y4WHy39nzTI6lf3y9YXq1aXglj07rFr15oLbo6BHVJtbjatPrpI5cWa2t90e6wU3gF4lelE6fWmehT/j2226WjOmubvLDZNateTneZ06ctRbqTexu6LbpEmTyJIlCx4eHhQtWpQ9e/b858fu3LkTk8n0r5eLFy/GYmKllFJKKfVcmjSwerUc20qTBq5ehRo15NjOtWtGp7OuHTtkU/HCheDsDEOHyiygpEmt9zUsFgs/7fmJHut6YMFC1yJd2dJmCynip7DeF/mHIRWH0DxfcyLNkXzy9yf4PPOJka+j3s7NTZaTtGkjyzk6dIARI2R0gYo+f38poly4AOnTw9atMtbhPz8+1J8a82pw/tF50iVMx/a228nglSH2Av+Dk8mJCbUnADDv9DwO3j1oSI64xMPj34U3R75xZA1BQVC/vsw2jovsqui2ePFi+vbty8CBAzlx4gTly5endu3a3L59+42/79KlS3h7e794yZEjRywlVkoppdTbBIYFcuTeEeafns+kI5OYeHgii84u4si9I4RFhhkdT8UAk0m63i5elO2mTk5yPC5PHujbV5YN2DNfX+jYEapUgTt3pHNm3z4YPFiKb9ZisVj4avNXL2atDSo/iCn1puDq7Gq9L/I/TCYTMxrMIH/K/Pg886HLmi7otBrjuLhIh9u3/9/k9P330K3bf2+7Vq8KDJTO22PHZIv4li2QKdN/f3x4VDhNlzTlpM9JUsVPxfZ228mSJEvsBX6NYmmL0b5QewD6buyL2fIfq9KV1TwvvNWuLYW3unVh8WKjU9mm4GApuK1dK4/7YXHwad17z3Tz8/Nj6dKlXLt2jf79+5M0aVKOHz9OqlSpSJcuZs6SlyxZkiJFijB58uQX78uTJw+NGjVi5MiR//r4nTt3UrlyZZ4+fUrixInf62vqTDellFLK+u4F3GPOqTmsu7KOA3cP/OdFgruzO9WzVefTjz6laZ6mMVpMUMY5fRq+/ho2bZK3vbykGNenj31t542MhJkzZU7dkyfyvu7d4ZdfIEEC634ti8VC7w29+ePIHwCMrTGWL0p/Yd0v8gZnHpyh2LRihEeFM7PBTDoU7hBrX1u93qRJ0Ls3mM3ShbNwIbznJVCc4OcnRZODB+Vnzo4dsuTlv5gtZtquaMv8M/NJ4JaAXe13USRNkVjL+ybegd7knJiTZ+HPWPrJUprmbWp0pDghLAzatpXObZMJfvtNvgeVePZMZk3u2AEJE0pRu2RJo1NZT4zOdDt9+jQ5c+bk559/5tdff8XPzw+AFStWMGDAgPcK/Dbh4eEcO3aMGjVqvPL+GjVqsH///jf+3sKFC5MmTRqqVq3Kjh073vixYWFhBAQEvPKilFJKKes4dv8YjRc3JtP4THy3/Tv23dmH2WImdYLUVMxUkaZ5mtI0T1MqZKpA0nhJCYsKY+3ltbRc1pKcE3My++Rs7apxQAUKyGDqzZuhUCE57jVsmHScfPUVeHsbnfDNLBbZaJc/v3QZPXkif6b9+2Hy5JgpuH25+Uv+OPIHJqTzLDYLbgAfpfqIYZWGAfD5xs+5438nVr+++reePV9uVty4EUqUkCOT6t8eP4aqVaXgliQJbNv25oIbwICtA5h/Zj4uTi4sa7bMZgpuAGkSpuGLUvIz4IddP2i3Wyxxd4cFC+Czz+RxoE8fGDRIj3iDFLVr1HhZcNuwwbEKbu/ivYpu/fr1o3379ly5cgWPf6ybql27Nrt377ZauH/y9fUlKiqKVP9zwD5VqlT4+Lx+lkSaNGmYOnUqy5YtY/ny5eTKlYuqVau+MePIkSPx8vJ68ZIhgzHn85VSSilHcsn3Ek2XNKXYtGKsvLiSKEsUFTJVYHLdydzqewvvL73Z2X4nS5stZWmzpexqvwvf/r6c6XGGQeUHkTJ+Sm763aT9qvZUml2J60+vG/1HUjGgenU55rVkiRTfgoJgzBgpvrVsCbt22dbFTGSkdBMVKSKD7C9dks688ePlz1G6tPW/psViYcC2AYw7OA6AqfWn0rFwR+t/oWj4qsxXlE5fmsDwQL7c/KUhGdSrGjaUo8wZM8KVK3KRu3q10alsy/37cvT7+HE5UrpjBxR9y86RCYcmMHr/aABmNJhBjWw13vwbDPBFqS/wcvfi7MOzLD2/1Og4cYazM/z+u9woAvjxR2jeXB6/4ipfXylqHzjwsqhdtqzRqYzzXsdLvby8OH78ONmyZSNhwoScOnWKrFmzcuvWLXLlykVoaKjVg96/f5906dKxf/9+Sv/jGcyPP/7I3Llzo70coX79+phMJlb/x6NPWFgYYf84aBwQEECGDBn0eKlSSin1HsIiwxi1dxQ/7f2J8KhwTJhoXaA135b7lrwp8kb78wRHBDPx8ESG7hpKcEQwXu5ezGk8hwa5GsRgemUki0XujP/0kxQRnsudW+alffIJZM5sTLZ792DOHPjzT7h1S97n6QlffimdeTH5lPGHnT8wdNdQAP6o8wc9i/eMuS8WDacfnKbwn4UxW8xsa7uNKlmqGJpHiYcP5Xvkea/Bd9/BDz+Aaxw/oX/mjAy+v3sXUqeWYkDetzwUrbiwgqZLmmLBwo9VfuS78t/FTtj3MHTnUH7Y9QN5U+TldPfTODtZcYikequZM2WkQESEdE6uXCkF8Ljk2jWZcXfpEqRMKUdKrb2t21bE6PFSDw+P1x67vHTpEilSxMympOTJk+Ps7PyvrraHDx/+q/vtTUqVKsWVK1f+89fd3d1JlCjRKy9KKaWUenenH5ymyNQi/LDrB8KjwqmVvRZnepxhTuM571RwA/B09eTrsl9zvud5SqcvjX+YP40WNWLi4YkxlF4ZzWSSi+O9e6UjpWtXiB9fli98/TVkySJdPL/+CufOxXwH3KNH8NdfcjGRMaMUMW7dkk6Z4cPh9m3pdIjJp45Tjk55UXAbV3Oc4QU3gAKpCtCzmOTos6EPEVERBidSIBe7W7fKsTeQ4nXFii+LxHHR1q1QrpwU3HLlkuPfbyu4nfA+QesVrbFgoXvR7gwoFzOjlKylb6m+JPZIzPlH51l5caXRceKcjh1h+3Z5XDhxAooXl8ewuGL/fihVSgpuGTJId7qjFtzexXsV3Ro2bMiwYcOIiJAHVZPJxO3bt/n2229p2jRmhja6ublRtGhRtvzPPt4tW7ZQpkyZaH+eEydOkCZNGmvHU0oppdT/s1gsTD4ymRLTSnD+0XlSxk/JwqYLWd9qPflS5vugz50pcSZ2tt9Jj2I9sCCD5H/c/aOVkitbVbiwdJXduycz0ipXlo2nhw9D//4ySy1tWmjTRn798GH40IMXjx/D+vWyFKFsWemK6dhR3mc2y8X7zJlSxBg0KOYXPmy4soHP1ksFZWilofQt1Tdmv+A7GFZ5GMk9k3Pu0TmmHZ9mdBz1/1xdYeJE2aqYKJEc9SpUCJbGsZOHFgv88YcsTQgIgAoVpDiQ5S1LR32e+dBgUQOCI4Kpka0Gv9f5HZPJFDuh35OXhxe9ivcCYMyBMQaniZvKlYMjR6BgQek4rVRJit5mBx+zt2iRHNv29ZXj2ocOSWe6es/jpQEBAdSpU4dz584RGBhI2rRp8fHxoXTp0qxfv5748ePHRFYWL15MmzZtmDJlCqVLl2bq1KlMmzaNc+fOkSlTJgYMGMC9e/eYM2cOAOPHjydz5szky5eP8PBw5s2bx6hRo1i2bBlNmjSJ9p9Vt5cqpZRS0RMUHkSHVR34+/zfANTNUZdZjWaR3DO5Vb+OxWJhxO4RDN45GIDfa/9OrxK9rPo1lG3z8ZGh8atWyRG6/y2yubhA9uxyYZ01K6RPLxsKEyeWxQZmM0RFyTEgX1+5OHrwAC5fhvPn5fX/VaSIzMxq3lw6ZWLLSZ+TlP+rPM/Cn9G+UHtmNphpcxf/fxz+g14bepEmQRqu9rmKp6un0ZHUP9y4IXMRDx2St1u0gAkTpCPHkQUFyXKT+fPl7ZYtpWPV3f3Nvy80MpRKsypx6N4hciXLxcHOB0nskTjG81rDg2cPyDg+I+FR4ezruI8yGaLfoKKsJyhIjprOmydvV6sGc+fKDRxHEhEB33wD42TMKA0byvdbDJWEbEp0a0XvVXR7bvv27Rw/fhyz2UyRIkWoVq3a+36qaJs0aRKjR4/G29ub/PnzM27cOCpUqABA+/btuXnzJjt37gRg9OjRTJ06lXv37hEvXjzy5cvHgAEDqFOnTrS/nhbdlFJKqei543+HBosacNLnJK5OroyqNoovSn0Ro8WBf863Wth0IS3yt4ixr6VsV2iodK5s3w5Hj8oSA1/fD/+82bND+fLyUrWqMbN57gbcpeT0ktwPvE+VLFXY8OkG3JzdYj/IW4RHhZNrYi5u+t1kdLXR9C/b3+hI6n9ERMCQIfDzz1J0Tp5cOuGaNZPj3I7m4kWZa3f2rAy7Hz0avvji7X9Wi8VCmxVtmH9mPkk8knCo8yFyJMsRO6GtpMvqLkw/MZ3GuRuzvPlyo+PEWRYLzJ4tx7yDgx3ve+7uXbkJtX+/vP3119LV5xxHRgnGaNFtzpw5NG/eHPf/uUUQHh7OokWLaNu27bsntlFadFNKKaXe7vC9wzRc1BCfZz6k8EzBiuYrKJsx5ldVWSwWPt/4Ob8f/h0PFw/2d9xP4TSFY/zrKttmscCdO7K98fp16fLx9gZ/f/Dzg2fP5KLA2Vk64pIlg1SppOsnWzaZ85Q7t3TEGSkgLIDyf5Xn9IPT5E2Rl30d99l0t82sk7PosKoDSeMl5cbnN0jkrs+dbdHRo9ChgxSjQOYUjhsHOeyrrvSfzGYpbHzzjRTkU6eWjcjly0fv9/+05ycGbh+Is8mZzW022+VykAuPLpB3Ul5MmLjc+zLZk2Y3OlKcduGCdFmeOiVvN24MkybZb9ebxSKbu3v1gqdPpYt89mzpcotLYrTo5uzsjLe3NylTpnzl/Y8fPyZlypRERUW9e2IbpUU3pZRS6s3WXFpDs6XNCI0MJX/K/KxpuYbMiTPH2tc3W8zUX1if9VfWkzlxZo52OUoyzxgesKVUDIuIiqD+wvpsuraJ1AlSc7DTQTIlzmR0rDeKNEfy0eSPuOh70ea3PMZ14eHSkfLjjxAZKfPfvvhC5hMmTGh0uvd37ZosXdm+Xd6uUQNmzYLojvRecWEFTZbIGKLJdSfTvVj3mAkaC+rMr8OGqxv4svSX/FrjV6PjxHnh4TByJIwYId9zSZLI8p3u3eXmj714+BB69oRly+TtYsVkbmTWrMbmMkKMbi+1WCyvPSpy9+5dvLy83udTKqWUUsoOzTk1h8aLGxMaGUqdHHXY33F/rBbcAJxMTsxrPI9sSbJx0+8mbVe25QOmZyhlOIvFwmfrP2PTtU14unqypuUamy+4Abg4uTCw/EAAfjv0GyERIQYnUv/FzQ1++AHOnIFateTo6ejRkDOndImFhRmd8N2EhMifJ18+Kbh5ekon0caN0S+4nfQ5SesVrQHoVbyXXRfcAHoU6wHAXyf/IjTyAzfLqA/m5ibHu48elfmgT59C796yKOh5kdiWRUbKz4ZcuaTg5uIiRcP9++Nmwe1dvFPRrXDhwhQpUgSTyUTVqlUpUqTIi5eCBQtSvnz5WJnrppRSSinjjT84nnYr2xFliaJtwbasarGKhO7GtEgkiZeEFc1X4O7szvor65l6bKohOZSyhtH7RjPt+DRMmFjYdCHF0hYzOlK0Nc/XnIxeGXkY9JBZJ2cZHUe9Re7cspF3zRo5Wu3jI4WA7NlhyhTpzrFlZrMcc8ufH4YOlWJhtWpw8iT06BH9uVk+z3xosFA2lVbPWp1xtcbFaO7YUCdHHTJ6ZeRJyBP+Pve30XHU/ytYUDZsT54sow3OnpWZoTVqvJyNZkssFti8WTraeveWEQ2FCslSlu+/ly7Z6Hgc/DgmY9q0dyq6NWrUiIYNG2KxWKhZsyYNGzZ88dKiRQv+/PNP5j1fz6GUUkoph/XDzh/4YtMXAPQt2Ze/Gv6Fi5Ox5yM+SvURI6uOBKDf5n5cfXLV0DxKvY/FZxfz7bZvAfit1m80yNXA4ETvxtXZla9KfwXArwd+JdIcaXAi9TYmE9SrB+fOSXdYunQyIL1HD+lgGTkSHtvY9bLZDCtXysV/q1YyuzFtWjnmtnnzu82nC40MpfHixtwJuEPOZDlZ/PFiwx/PrMHZyZmuRboCMPnoZIPTqH9ydpZjpZcvSyHLxQW2bIGyZaFmTdi2TYpdRrJYYOdOqFBBMp06JUdiJ0162a0XXZd8L5H99+yM2D0iTp5EeK+ZbrNnz6Z58+Z4eHjERCabojPdlFJKqVc9HzINMLzycAaWHxijG0rfhdliptqcauy4uYPyGcuzs/1OnEzvNU1DqVi37/Y+qs6pSlhUGH1L9rXbbpug8CAyjc/E45DHLGq6iOb5mxsdSb2D0FCYNk2Kbd7e8j4PD/j0U+jYEUqXNm7zYlAQzJkjix+uXJH3eXlB//7w+efvvvzEETaVvonPMx8yjMtApDmSk91OUjB1QaMjqde4eVPmK86aJcc4AfLkkUUFrVtDbJYhwsKkeD1hgmwCB3B3lyL8d9/JwqF34RfqR8npJbn8+DLlMpZjW9ttNrmB+33E6Ey3du3axYmCm1JKKaVeNeHQhBcFt9HVRjOowiCbKbiBzHf7q+FfeLp6suf2HmafnG10JKWi5crjKzRc1JCwqDAa5mpo14PP47vFp0/JPgD8sv+XONnZYM88PKT75sYNKQIULiyFuBkzpBMnRw6Zn3bqVOx045jNsGsXdOok89l69pSCm5cXDBggXW4DB77ftuFRe0cx/8x8nE3OLG221KEKbgCpE6Smce7GAPx57E+D06j/kjmzFLovX5b/v+PHl42nn30mm7WbNpUNvMHBMfP1zWbYvVsKa+nSQbt2UnB7Xmy7dk0K3e9acIsyR9FqWSsuP75MhkQZWPrJUocpuL2L9+p0i4qKYty4cSxZsoTbt28T/j+H/Z88eWK1gEbTTjel1P8yW8z4BvviF+oHgIeLB2kSpMHVOZpDDZSyUzOOz6Dzms4ADKk4hB8q/WBsoDf4df+v9N/Sn2TxknGx10WSeyY3OpJS/8k32JfSM0pz9clViqctzo52O4jvFt/oWB/EN9iX9GPTExYVxoFOByiVvpTRkdR7slhg716YOROWLoVnz17+Wvr0cjS1ShXpgEuf3jpf8+FDKQKsXy8vDx68/LVs2aSrrUOH9yu0Pbfy4koaL5aC1KQ6k+hRvMcHprZN265vo9rcaiT2SIz3l954uGjzjK3z95eOzsmTpfj2nLs7lCkjM+AqV5b5cPHf46HCbJZi9b59cqx169ZXv8fSp5fiX5cukPwDnj59s+UbRu8fTTyXeOztuJciad7hTKodiG6t6L2KboMHD2b69On069eP77//noEDB3Lz5k1WrlzJ4MGD6dOnzweFtyVadFNKeQd6s+7KOg7cOcDh+4e55HuJCHPEKx/jZHIio1dGSqUvRYWMFWicpzGpE6Q2KLFS1rfwzEI+Xf4pFix8WfpLfqn+i011uP2viKgIik4typmHZ+hUuBPTG0w3OpJSrxUaGUrVOVXZf0c2/x7sdJBUCVIZHcsqOqzqwKyTs2hdoDVzG881Oo6ygqAgmaW2eLFcqIf8z4LaDBlk1lPu3LLlMGtW6Y5JkULmQTk7y9FUs1kKC0+egK+vdNVdviwFhkOH5O1/SpQImjWDtm2l287pA6cGnPI5RdmZZQmKCOKz4p8xsc7ED/uENsxsMZN5fGbuBNxh8ceLaZavmdGRVDRZLNJRunixvPzv94XJJEtP8uaV770MGWQ5g6cnxIsnR1VDQqRQfu8e3LkjxbZTpyAw8NXPlSgRNGkiMxIrV5Y5cx9i/un5L7YBO+qYgRgtumXLlo0JEyZQt25dEiZMyMmTJ1+87+DBgyxYsOCDwtsSLbopFTc9C3/G/NPzmXN6DgfuHMDCqz8qTZhI5J4Ik8lEUHjQa4twVbNUpV/pftTMVtOmixNKvc2qi6touqQpUZYouhftzqS6k+zi/+l9t/dR7q9ymDBxsvtJCqQqYHQkpV5htphpuawlS84twcvdi/2d9pM3RV6jY1nN0ftHKT6tOG7Obtzue9thiolKhITAjh2wYYN0zJw6JcU0azCZpJBQowbUrQvly4OblU6lPXj2gOLTinMn4A7VslZjw6cbHGJxwpsM2j6IH/f8SO3stVn/6Xqj46j3YLFIYXrbNnnZv1+2Db8vd3dZRFK1KlSvLp2q7u7WyXr0/lHK/1We0MhQBpQbwE9Vf7LOJ7YxMVp0ix8/PhcuXCBjxoykSZOGdevWUaRIEa5fv07hwoXx9/f/oPC2RItuSsUtPs98GL1vNDNOzCAgLODF+0umK0nVLFUpmb4kBVMVJG3CtC+Ok5otZh4FPeLco3Psv7OfdVfWcfDuwRe/t1DqQoytMZbKWSrH+p9HqQ+1+dpm6i+sT3hUOG0KtGFWo1l2tZig+dLmLDm3hBrZarCp9Saj4yj1igFbBzBq3yhcnVzZ2HojVbJUMTqS1ZWaXopD9w4xovIIBlYYaHQcFYOePYMjR2QL6sWL8nL7tnSyPX36+t8TP7505mTMCDlzykuRIlCihMxss7bQyFCqzK7CgbsHyJksJwc7HSRJvCTW/0I25srjK+ScmBMnkxN3v7hLmoRpjI6krODhQzh5Eq5elS62O3fAz09mv4WESLeap6e8pEkjnXCZMkGBAtKN+qHdbK/jHehN8WnFuRd4j3o567GqxSq7et74LmK06JYrVy7mzJlDyZIlKV++PHXr1uXbb79l8eLF9O7dm4cPH35QeFuiRTel4gbfYF9G7xvNxMMTCYmUsxI5kuage7HuNM/XnHSJ0r3T57vx9AYTD0/kz2N/EhQRBEDzfM35vfbvpIj/jlNIlTLInlt7qDmvJiGRITTN05RFHy+yu26A60+vk3tibiLMEWz8dCM1s9c0OpJSAEw9NpVua7sBMLvRbNoWbGtwopgx7/Q82qxoQ7qE6bjZ96bd/QxR1hEZCQEB0gn3vBvOy8t6nTXRYbFYaLeyHXNPzyWxR2IOdT5EzmQ5Yy+AwcrOLMv+O/sZXW00/cv2NzqOckBhkWFUml2Jg3cPkid5Hg52Pkgid8etocTo9tLGjRuzbds2AD7//HO+//57cuTIQdu2benYseP7JVZKKQNEmaOYfGQyOX7PwS/7fyEkMoRS6UuxvtV6Lva6SL/S/d654AaQJUkWxtQcw62+t/is+Gc4mZxYfG4xBaYUYMu1LTHwJ1HKuo7cO0LdBXUJiQyhdvbaLGi6wC4vlrMmyUrvEr0B6L+lP1HmKIMTKQUbr26k57qeAPxQ8QeHLbgBfJL3E1J4puBe4D3WXl5rdBxlEBcXSJpUhrKnTCkvsVlwAxi9bzRzT8/F2eTM35/8HacKbgDtC7YHYPap2bpRWFmdxWKh+7ruHLx7kCQeSVjdcrVDF9zexXt1uv2vQ4cOsW/fPrJnz06DBg2skctmaKebUo7r2P1j9FjXgyP3jwBQMFVBfqr6E7Wz17b6vKoT3idovaI15x+dB+DHKj8yoNwAu5iLpeKe0w9OU2lWJZ6GPqVS5kqsb7WeeK7xjI713p6EPCH7hOw8DX3KvMbz+LTAp0ZHUnHYKZ9TlPurHM/Cn9G2YFtmNZzl8I8F/Tf359cDv1I/Z31Wt1xtdBwVB62+tJpGixphwcLE2hP5rMRnRkeKdf6h/qQek5rQyFCOdz1O4TSFjY6kHMi4A+Pot7kfTiYnNn66kerZqhsdKcbFaKfb7t27iYyMfPF2yZIl6devH3Xq1GH37t3v8ymVUirWRERF8P327ykxvQRH7h8hkXsifq/9O8e6HqNOjjoxcvFTOE1hjnY5Svei3QEYuH0g7Va2Izwq3OpfS6kPccn3EtXnVudp6FNKpS/F6har7brgBpA0XlK+KvMVAMN2DyPSHPmW36FUzLgXcI+6C+ryLPwZlTNXZlr9aQ5fcAPoVKQTAOuvrMc70NvgNCquOf3gNK2WtcKChR7FesTJghuAl4cXdXPUBWDR2UUGp1GOZPO1zXy1RZ5nja0xNk4U3N7FexXdKleuzJMnT/71fn9/fypX1kHhSinbddH3IqVnlGbEnhGYLWaa52vOxc8u0qtEL5ydnGP0a8dzjcfkepOZVGcSziZn5p6eS5PFTQiNDI3Rr6tUdN14eoOqc6ryMOghhVIXYn2r9SR0T2h0LKvoXaI3yeIl4/Ljyyw8s9DoOCoOCgwLpO6CutwLvEee5HlY1mwZbs5WWsdo43Inz02ZDGWIskQx59Qco+OoOORh0EMaLGxAUEQQVbNU5bdavxkdyVAt87cEYNG5RZgtVlo1q+K0K4+v0Hxpc8wWMx0KdaBPyT5GR7I571V0s1gsr70r9/jxY+LHj//BoZRSKibMPDGTIn8W4Zj3MZJ4JGHxx4tZ9PGiWN/g1KN4D9a1WoeHiwfrrqyj0aJGhESExGoGpf7XvYB7VJtb7UVBYHPrzQ610S2he0LtdlOGiTRH0mxpM049OEXK+ClZ/+l6h/r+io6OhWTu88yTM3WelIoVYZFhNFnchFv+t8ieNDtLPlnyYvN8XFUnRx0SuiXktv9tDt49aHQcZef8Q/1psKgBfqF+lE5fmsl1J8eJ7u139U5FtyZNmtCkSRNMJhPt27d/8XaTJk1o2LAhNWvWpEyZMjGVVSml3ktoZCidV3em0+pOhESGUD1rdc70OEOzfM0My1Qze03Wt1qPp6snm65tovHixkRERRiWR8Vtj4IeUW1uNa4/vU7WJFnZ2narQ27Z7VWiF8k9k3P1yVXmn55vdBwVR1gsFnqt78XGqxuJ5xKPtS3XkjlxZqNjxbpm+ZoR3zU+lx9fZu/tvUbHUQ7u+VD3fXf24eXuxZqWa0gaL6nRsQwXzzUejXI3AtCub/VBosxRtFreiou+F0mfKD3Lmy/H3SWWt6PYiXcqunl5eeHl5YXFYiFhwoQv3vby8iJ16tR07dqVefPmxVRWpZR6Zzee3qDszLLMODEDJ5MTP1b5kY2tN77XRlJrq5ylMhs/3fii8NZ5TWe9+69i3dOQp9SYV+PFk6ZtbbeRNmFao2PFiARuCfiqtHS7jdo3So/WqFjx876f+fPYn5gwsaDpAoqnK250JEMkdE9I83zNAel2UyomjTkwhlknZ+FkcmLJJ0vInTy30ZFsxvMjpkvOL9Gub/Xevtv2HeuvrMfDxYOVzVeSOkFqoyPZrPfaXvr111/zww8/4OnpCcDNmzdZuXIlefLkoWbNmlYPaSTdXqqU/dp8bTPNlzbHL9SP5J7JWdh0IdWyVjM61r9suLKB+gvrE2WJ4tuy3zKy2kijI6k4IjAskBrzanDw7kFSxU/F7g67yZksp9GxYlRAWAAZx2XEP8yfVS1W0SCXY21dV7ZlwZkFfLpctuWOrzmez0t9bnAiY+2/s5+yM8vi6eqJz5c+DjMzUtmWZeeX8cnfn2DBwm+1ftMZU/8jIiqCNGPS8DjkMVvabLHJ58bKts0/PZ/WK1oDsLDpQlrkb2FwImPE6PbSEydOMGeODEH18/OjVKlSjBkzhkaNGjF58uT3S6yUUlb0x+E/qDO/Dn6hfpRKX4rjXY/b7JOK2jlqM73BdEC6b2adnGVsIBUnhESE0GBRAw7ePUjSeEnZ0maLwxfcABK5J6JHsR6AdCApFVN23txJ+5XtAfii1BdxvuAGUDp9aXIkzUFwRDArL640Oo5yQIfuHqL1itZYsNCzWE96l+htdCSb4+rsysd5Pwb0iKl6d0fuHaHTatlIPaDcgDhbcHsX7110K1++PABLly4lVapU3Lp1izlz5jBhwgSrBlRKqXcRaY6k9/re9NrQiyhLFO0KtmNnu51k8MpgdLQ3al+oPYMrDAag+9ruHLl3xOBEypGFRYbRZEkTdt7cSUK3hGxqvYmPUn1kdKxY06dkH9yc3dh/Zz/7bu8zOo5yQOcenqPRokZEmCP4OO/H/FrjV6Mj2QSTyUTrAtIdMe+MjqRR1nX96XXqL6xPaGQodXPU5bfav+lQ9//w/Ijp8ovLCY8KNziNshfegd40WtyIsKgw6uesz4gqI4yOZBfeq+gWHBxMwoTSDr5582aaNGmCk5MTpUqV4tatW1YNqJRS0eUf6k+9BfWYeGQiAKOqjuKvhn/ZzVDPIZWG0CBXA8KipCDy4NkDoyMpBxRpjqTV8lYvhrqv/3Q9xdIWMzpWrEqTMA3tCrYDtNtNWd/9wPvUWVAH/zB/ymYoy9zGc3EyvddTbof06Udy3Hbr9a34PPMxOI1yFE9DnlJ3QV0eBT+icOrCLPp4ES5OLkbHslnlMpYjVfxU+IX6sePGDqPjKDsQHBFMw0UNuR94n7wp8jKvyTx9bIum9/pbyp49OytXruTOnTts2rSJGjVqAPDw4UOde6aUMsQtv1uUmVmGTdc2Ec8lHsuaLeObct/Y1R1OJ5MTcxrNIVeyXNwNuMunyz/VQe/KqswWMx1WdWD5heW4ObuxqsUqymUsZ3QsQ3xV5itMmFhzeQ3nHp4zOo5yEIFhgdRbUI/b/rfJmSwnq1qswsPFw+hYNiVb0myUSl8Ks8XMorOLjI6jHEB4VDhNljR5sRBobau1JHBLYHQsm+bs5Ezj3I0BWHZhmcFplK0zW8y0W9mOI/ePkCxeMla3WE0id637RNd7Fd0GDx7MV199RebMmSlZsiSlS5cGpOutcOHCVg2olFJvc/rBaUrPKM35R+dJmzAtezrsoUmeJkbHei9eHl6saL4CT1dPtt3Yxi/7fjE6knIQFouFnut6Mu/0PJxNzvz9yd9Uz1bd6FiGyZksJ41yNwLgt0O/GRtGOYSIqAiaLW3GCZ8TpPBMwYZPN5DMM5nRsWxS64/+/4jpaT1iqj6MxWKh8+rOL8YlrG+13mE3cFtb07xNAVh5cSVR5iiD0yhbNnjHYJaeX4qrkysrmq8gW9JsRkeyK+9VdPv444+5ffs2R48eZePGjS/eX7VqVcaNG2e1cEop9TY7b+6k/F/l8X7mTf6U+TnU+RBF0xY1OtYHyZMiDxNqyXzMQTsGcfjeYYMTKXtnsVj4avNX/HnsT0yYmNdknm7tRIbbg1z4Pwl5YnAaZc8sFgs91vV4cWx7bau1ZE2S1ehYNqtZvma4OLlwzPsYFx5dMDqOsmPDdg1j7um5OJucWdpsaZyaT/qhKmaqSNJ4SXkU/Ig9t/cYHUfZqDmn5vDjnh8BmN5gOuUzlTc4kf1570O4qVOnpnDhwjg5vfwUJUqUIHfu3FYJppRSb/P3ub+pOa8mAWEBlM9Ynt3td5M+UXqjY1lFx8Id+STvJzJ/a1krAsICjI6k7NiQnUMYe3AsIE+YdNOUKJexHIVSFyIkMoQZx2cYHUfZsYHbBzLjxAycTE4s+ngRJdKVMDqSTUsRPwU1s9UEYP6Z+QanUfbqrxN/8cOuHwCYXHcyNbLVMDaQnXF1dqVhroYALDuvR0zVv+25tYfOqzsD8F2572hbsK3BieyTTr5TStml3w/9TvOlzWWOR54mbG6zmSTxkhgdy2pMJhNT608lk1cmrj29xpebvjQ6krJTP+35ieG7hwMwodYEOhbuaHAi22EymehTog8AE49MJNIcaXAiZY/GHhjLyL0jAfiz3p/aRRpNz7eYzj8zH4vFYnAaZW/WXFpDlzVdABhQbgBdinYxOJF9appHjpguv7hc5wirV1x7co3Gixu/2MI9vMpwoyPZLS26KaXsisVi4btt39FnYx8sWOhZrCdLPl7ikIOqE3skZm7juZgwMf3EdDZf22x0JGVnxh4Yy8DtAwEYXW00vUv2NjiR7Wn5UUuSeybntv9t1lxaY3QcZWfmnJrDl5vlpsjIqiPpXKSzwYnsR4NcDUjgloCbfjfZf2e/0XGUHdl/Zz/NljYjyhJFh0Id+LHKj0ZHslvVslYjkXsi7gfe59DdQ0bHUTbCL9SPegvr8TjkMcXSFmN2o9m6qfQD6N+cUspuRERF0GFVhxcdBSMqj2BinYk4OzkbnCzmlM9Unl4legHQZU0XPWaqou2Pw3+8KAYMqzSM/mX7G5zINnm4eNC1SFcAJhyeYHAaZU/WXFpDx1XSOfpl6S/5puw3BieyL56uni+2Jy4+t9jgNMpenHt4jnoL6hEaGUrdHHWZWn+qXW2qtzXuLu7Uy1kP0C2mSkRERdDs72YvtgGvbrEaT1dPo2PZNS26KaXsQlB4EA0XNWT2qdk4m5yZ0WAGAysMjBNPtEZWHUnWJFm57X+br7d8bXQcZQdmHJ9Brw1SrB1QbgCDKgwyOJFt61G8B84mZ3be3MnpB6eNjqPswO5bu1902rQr2I5fqv8SJx6PrK1ZvmYA/H3+b92eqN7qjv8das2vxdPQp5RKX4olnyzBxcnF6Fh27/kR02UXlulR7zjOYrHQZ0MftlzfQnzX+KxpuYY0CdMYHcvuadFNKWXzHgU9ovLsymy4uoF4LvFY1WJVnJpLFd8tPjMayJD3P4/9ybbr2wxOpGzZ/NPzX8y5+aLUF/xY5UctBrxF+kTpaZpXLjp+P/S7wWmUrTvpc5L6C+sTGhlKg1wNmN5gun6Pvaca2WqQ2CMxPs982Ht7r9FxlA17EvKEmvNqcjfgLnmS52Fty7XafWMltbLXwtPVk5t+Nznhc8LoOMpAv+7/lSnHpmDCxMKmCymUupDRkRyCFt2UUjbtxtMblJ1ZliP3j5AsXjK2t9tO3Zx1jY4V6yplrkTPYj0B6La2GyERIQYnUrbo73N/03ZlWyxY6FGsB2NqjNFiQDQ9X6gw78w8noQ8MTiNslUXfS++2JpdIVMFFjVdpJ02H8DN2U2PmKq3Co4Ipt6CelzwvUC6hOnY1HoTyTyTGR3LYXi6elI7e21At5jGZYvOLuLrrXKiZmzNsdTPVd/gRI5Di25KKZt1yucUZWaW4cqTK2TyysTejnsplb6U0bEMM6raKNIlTMe1p9dezLVT6rkVF1bQankrzBYzHQt1ZGKdiVpwewdlMpShUOpChEaGMvvkbKPjKBt09clVqsyuwsOghxROXZjVLVYTzzWe0bHsXvN8zQFYen6pbhBW/xIWGUbjxY05cPcAiT0Ss6n1JjJ4ZTA6lsN5fsR0xcUVBidRRth1cxftVrYDoG/JvvQt1dfYQA5Gi25KKZu06+YuKsyqgM8zHz5K+RH7O+0nd/LcRscyVEL3hPxW6zcARu0dxUXfiwYnUrZi2fllNFvajEhzJJ9+9ClT60/VLVPvyGQy0b1odwCmHJuic23UK2763aTK7Cp4P/Mmf8r8bG6zGS8PL6NjOYQqWaqQLF4yHgU/YtfNXUbHUTYkIiqCFstasPnaZjxdPVnXah35UuYzOpZDqpOjDq5OrlzwvaDPL+OY84/O02hxI8Kjwmmapyljao4xOpLD0WfkSimbs/zC8hfHd8pnLM/uDrtJmzCt0bFsQpM8TaiTow4R5gh6ruuphQHFknNLaL60OZHmSFoXaM2sRrMceqNvTGr1USsSuCXg8uPL7Ly50+g4ykbcDbhLldlVuBNwh9zJc7O1zVaSeyY3OpbDcHV2pUmeJoAeMVUvRZmjaL+qPSsvrsTd2Z3VLVZTJkMZo2M5LC8PL6plrQZI57yKG+4H3qf2/Nr4hfpRNkNZ5jaeqzdtY4DJoldsbxQQEICXlxf+/v4kSpTI6Dh2ISIqgsuPL3PT7yb3Au/hHehNYHggoZGhhEeF4+7sjqerJ4ncE5EuUToyemUka5KsZPLKpEehFFOOTpFiEhYa5W7EgiYL9PjO/7jx9AZ5J+UlNDKUuY3n0rpAa6MjKYMsPLOQ1itaY7aYaVewHTMazNCC2wfqsbYHU45NoVm+Ziz+WAsAcZ13oDcVZ1XkypMrZEuSTW8CxZBt17dRbW41ksZLis+XPrg6uxodSRnIYrHQbW03ph2fhouTCyuar6BeznpGx3J4045No+varhRLW4wjXY4YHUfFsMCwQCrMqsBJn5PkSpaLfR336azEdxTdWpEW3d5Ci25vZrFYuOF3gx03drDn9h5O+pzkgu8FwqPC3/lzJXJPRKHUhSiRtgRVslShfKbyJHBLEAOplS2yWCwM3TWUobuGAtC1SFcm1Z2kBYT/MHLPSL7b/h0pPFNwqdclksRLYnQkFcvmnZ5Hu5XtXsxwm1p/qn6/WMEpn1MU+rMQLk4u3P3iLqkSpDI6kjLIo6BHVJpdifOPzpPJKxO7O+wmo1dGo2M5pEhzJGnHpOVR8CM2frqRmtlrGh1JGcRisfDl5i8Zd3AcTiYnFjRZQPP8zY2OFSc8DHpI6l9TY8HCrb639OedA4uIiqDewnpsvraZlPFTcrDTQbIkyWJ0LLujRTcr0aLbv0WaI9l1cxfLLyxn7ZW13Pa//a+PSeiWkOxJs5MuUTrSJkiLl4cX8Vzi4ebsRmhkKMERwfiF+nE38C63/W9z/en1fxXqXJ1cqZi5Is3yNqNxnsZ6lMOBRZmj6LmuJ1OPTwVgSMUhDKk4RDsf3yA8KpxCUwpxwfcCvYr34vc6vxsdScWi2Sdn02FVByxY6FKkC1PqTdHjAFZUZkYZDtw9wE9VfmJA+QFGx1EG8HnmQ7U51Tj36BzpEqZjd4fdZE2S1ehYDq3nup5MPjqZDoU6MLPhTKPjKIMM2TGEYbuHATCzwUw6FO5gcKK4pcJfFdhzew+/1fqNPiX7GB1HxQCLxUKn1Z346+RfeLp6sqv9LoqlLWZ0LLukRTcr0aKbsFgsHLh7gJknZrLi4gqehDx58WsuTi6UTFeSSpkrUSJdCQqkKvDOR0UjoiK44HuBE94n2HN7D1uvb+WW/60Xv+5scqZGthp0L9adujnqajeHAwmNDKXVslasuLgCEyYm1Z1E92LdjY5lF54fx3EyOXGy20k+SvWR0ZFULJh2bBrd1nbDgoXuRbvzR90/tOBmZXNOzaHdynZkTpyZq72v6mNOHHM/8D5VZlfh0uNLpE2Ylh3tdpAzWU6jYzm8XTd3UWl2JRJ7JObBVw9wc3YzOpKKZc+7+AF+r/07vUr0MjhR3DP+4Hi+2PQFlTJXYke7HUbHUTFg0PZB/LjnR5xMTqxusZq6OesaHcluadHNSuJ60e1x8GPmnJrD9BPTOf/o/Iv3J4uXjEa5G9E4d2MqZa5EfLf4Vv26FouFq0+usuzCMpacW8IJnxMvfi1Dogx0K9qNHsV7kDReUqt+XRW7fIN9abioIfvv7MfN2Y0FTRbQNG9To2PZlY+XfMyyC8uolLkS29tu1+5ABzd632i+2foNAL2K92JC7Qn6bx4DQiJCSDc2HU9Dn7K+1Xpq56htdCQVS+7436HKnCpcfXKVjF4Z2d52O9mSZjM6VpwQZY4iw7gMeD/zZm3LtXohGMf8uPtHBu0YBMCoqqP4ptw3BieKm2763STLb1lwMjnh86UPKeKnMDqSsqLfDv5G3019AZhabypdinYxNpCdi26tSG+Nq9e65HuJbmu6kW5sOvpt7sf5R+eJ5xKPdgXbsa3tNny+8mF6g+nUzVnX6gU3AJPJRI5kOfi23Lcc73acS70u0b9Mf5LFS8adgDsM2jGITOMz8e3Wb3kY9NDqX1/FvCuPr1B6Rmn239lPYo/EbG69WQtu72FMjTF4uHiw8+ZOlp5fanQcFUMsFgsDtg54UXAbUG6AFtxiUDzXeLQv1B6AyUcnGxtGxZqbfjepMKsCV59cJUviLOxqv0sLbrHI2cmZj/N+DOgW07hmxO4RLwpuI6uO1IKbgTInzkyRNEUwW8ysubzG6DjKiuadnvei4Dai8ggtuMUiLbqpFywWC3tu7aHhoobk/iM3U49PJSwqjMKpCzOpziS8v/RmVqNZVMlSBRcnl1jNljNZTkZXH83dfneZ02gOBVIV4Fn4M37e9zOZx2em36Z+PA5+HKuZ1Pvbe3svpWaU4uqTq2ROnJn9HfdTMXNFo2PZpUyJM/Ft2W8B+HLzlwRHBBucSFmb2WKm57qejNo3CoDR1UbzU9WftOAWw7oV7QbAuivrXju7VDmWq0+uUuGvCtz0u0n2pNnZ1X4XmRNnNjpWnNM8nwzMX3lxJaGRoQanUbFh+K7hfL/je0AKbt+W+9bgRKpx7sYArLi4wuAkylrWX1lPh1UyH/Hzkp/zXfnvDE4Ut9hd0W3SpElkyZIFDw8PihYtyp49e9748bt27aJo0aJ4eHiQNWtWpkyZEktJ7cuOGzuoMKsCFWZVYPWl1Zgw0TBXQ/Z02MOxrsfoUbwHXh5eRsfEw8WDNgXbcLLbSVa3WE2JdCUIiQxh3MFxZJuQjV/2/aJP0mzcorOLqDqnKk9CnlA8bXEOdjpInhR5jI5l174u+zWZvDJxJ+AOP+/92eg4yooioiJovbw1U45NwYSJqfWm0r9sf6NjxQm5kueiSpYqmC1mph+fbnQcFYPOPzpPxVkVuRNwh9zJc7Or/S4yeGUwOlacVDpDadInSk9geCAbr240Oo6KYcN2DWPwzsGAHCnVgptteF5023xtM4FhgQanUR9q3+19fLzkYyLNkbQu0JqxNcfqjdtYZldFt8WLF9O3b18GDhzIiRMnKF++PLVr1+b27dffgb5x4wZ16tShfPnynDhxgu+++44+ffqwbNmyWE5uu/bc2kOV2VWoMqcKe2/vxd3Zna5FunLhswusbLGSchnL2eQ3pclkon6u+hzsdJCNn26kQKoC+If58/XWr8k9MTcLzyxExxXaFovFwqi9o2i5rCXhUeE0yt2Ine13kipBKqOj2b14rvEYU2MMAD/v+5kbT28YnEhZQ0hECI0XN2bh2YW4OLmwsOlCPQoQy7oXlaUu049PJyIqwuA0KiYcunuI8n+V537gffKlyMfOdjtJmzCt0bHiLCeTE83yNgP0iKmjG7ZrGEN2DgHg52o/65FSG5I3RV5yJstJeFQ4G65uMDqO+gBnHpyh3sJ6hESGUCdHHWY2mKnLtwxgV4sUSpYsSZEiRZg8+eV8lTx58tCoUSNGjhz5r4//5ptvWL16NRcuXHjxvu7du3Pq1CkOHDgQra/pqIsUDtw5wJCdQ9hyfQsAbs5udC3SlQHlB9jlk80ocxRzT89l0PZB3Au8B0CVLFX4o84f5E6e2+B0KiwyjO7rujPr5CwA+pbsy681ftWNgFZksVioNrca229sp0meJixrpjcX7JlvsC8NFjbgwN0DeLh4sKzZMurkqGN0rDgnPCqcjOMy8iDoAUs/WapzJx3MlmtbaLy4MUERQZRMV5J1rdaRzDOZ0bHivMP3DlNyekniu8bnYf+HeLp6Gh1JWZHFYmHwjsGM2DMCkJEJ2sFte77d+i0/7/uZ5vmas+jjRUbHUe/hxtMblJ1ZFu9n3pTJUIYtbbboz1Mrc7hFCuHh4Rw7dowaNWq88v4aNWqwf//+1/6eAwcO/Ovja9asydGjR4mIeP0d67CwMAICAl55cSTnH52nzvw6lJlZhi3Xt+Dq5Er3ot252vsqv9f53S4LbiDDd9sXas/l3pcZXnk4Hi4ebL+xnQKTCzBw20Cdc2Ug70BvKs2uxKyTs3AyOTGh1gTG1RqnBTcrM5lM/FbrN5xNziy/sJyt17caHUm9p+tPr1N2ZlkO3D3wYsmIFtyM4ebsRqfCnQCYckzHUziSv8/9Td0FdQmKCKJ61upsbbtVC242onja4mROnJmgiCDWX1lvdBxlRWaLmb4b+74ouP1S/RctuNmoJnmaADLXVEf32J8Hzx5QY14NvJ95kz9lfta2XKsFNwPZTdHN19eXqKgoUqV69ShaqlSp8PHxee3v8fHxee3HR0ZG4uvr+9rfM3LkSLy8vF68ZMjgWDM9wiLD2HB1A84mZzoV7sTl3peZXG+yw8wu8XT1ZFCFQZzveZ66OeoSYY7gp70/kW9SPp0NYoAj945QfFpxDt49SGKPxGz4dAO9S/Y2OpbDyp8yP58V/wyAPhv66HE4O3T0/lFKzyjN5ceXyeiVkX0d91E+U3mjY8VpXYt2xYSJrde3cuXxFaPjKCuYcnQKzZc2J8IcQbN8zVjTcg0J3BIYHUv9P5PJpEdMHVCUOYrOqzsz4fAEACbVmcRXZb4yOJX6L8XSFiNdwnQ8C3/GtuvbjI6j3sHTkKfUnFfzxcK6Ta03kSReEqNjxWl2U3R77n/ni1ksljfOHHvdx7/u/c8NGDAAf3//Fy937tz5wMS2pXCawvxe+3cu9brE9AbTHXYzV5YkWVjTcg0rmq8gQ6IM3PS7Se35temwqgNPQ54aHS9OWHBmARVmVeBe4D3yJM/D4c6HqZGtxtt/o/ogP1T6geSeybnge4GJhycaHUe9g/VX1lNxVkUeBj2kUOpCHOh0gLwp8hodK87LlDgTdXPWBaRYo+yXxWJhxO4R9FjXAwsWuhftzoImC3B3cTc6mvofzfPLFtN1l9fxLPyZwWnUhwqPCqflspb8dfIvnE3OzGk0hx7FexgdS72Bk8lJt5jaocCwQGrPr82pB6dIFT8Vm1tvttuTbI7EbopuyZMnx9nZ+V9dbQ8fPvxXN9tzqVOnfu3Hu7i4kCzZ648QuLu7kyhRoldeHE2vEr3IljSb0TFinMlkolHuRlz47AJ9S/bFhIlZJ2eRd1JeVl5caXQ8hxURFUH/zf35dPmnhEaGUi9nPQ52PkiOZDmMjhYnJImXhJFVZcblD7t+4MGzBwYnUtEx7dg0GixsQHBEMDWy1WB3+936JMmG9CgmF4d/nfyLkIgQg9Oo9xERFUHXNV35fsf3AAwqP4hJdSfpqAMbVTh1YbInzU5IZAhrLq0xOo76ACERITRa1Ii/z/+Nq5Mrf3/yN20KtjE6loqGxnmk6Lbq0ioizZEGp1FvExwRTL2F9Th07xBJ4yVla9utev1lI+ym6Obm5kbRokXZsmXLK+/fsmULZcqUee3vKV269L8+fvPmzRQrVgxXV9cYy6psS3y3+IyrNY69HfeSK1kufJ750HhxY1osbcGjoEdGx3Mo9wLuUWVOFX498CsAA8oNYGXzlSRyd7zitS3rWLgjxdIWIyAsgG+3fWt0HPUGZouZAVsH0HVtV6IsUbQv1J61LdeS0D2h0dHUP9TMVpNMXpl4GvqUJeeWGB1HvaPAsEDqL6zP9BPTcTI5MbH2RIZXGW6T29mVMJlMNM8n3W56xNR+BYQFUHt+bTZc3UA8l3isabnmRSFH2b4KmSqQNF5SfIN92Xd7n9Fx1BuERYbReHFjdt/aTSL3RGxuvZn8KfMbHUv9P7spugH069eP6dOnM3PmTC5cuMAXX3zB7du36d69OyBHQ9u2bfvi47t3786tW7fo168fFy5cYObMmcyYMYOvvtL5AXFRmQxlONn9JN+W/RZnkzOLzy0mzx95WHhmIXa0xNdmbb2+lcJ/Fmbv7b0kck/E0k+W8lPVn7SLwADPLyoBZp2cxcG7Bw1OpF7nWfgzmixuwqh9owD4vsL3zGwwE1dnvSlka5ydnOlWtBsAk49OfstHK1tyL+AeFWZVYNO1TcRziceK5iv4rMRnRsdS0fC86Lbh6gYCwhxrsVlc8CjoEVXnVGXXrV1SBGizmZrZaxodS70DFycXGuRqAMDyC8sNTqP+S0RUBM2XNmfztc14unqyvtV6iqYtanQs9Q92VXRr3rw548ePZ9iwYRQqVIjdu3ezfv16MmXKBIC3tze3b99+8fFZsmRh/fr17Ny5k0KFCjF8+HAmTJhA06ZNjfojKIN5uHgwstpIDnU+RIFUBXgc8phWy1vRaHEj7gfeNzqeXYoyRzF051BqzK3Bo+BHFExVkGNdj9E0r36fGalk+pK0L9QegN4bemO2mI0NpF5xy+8WZWeWZdWlVbg7uzOv8TyGVR6mnTc2rFORTrg6uXLo3iFOeJ8wOo6KhjMPzlBqRilO+pwkZfyU7Gq/68UFpLJ9+VPmJ3fy3IRHhbPq4iqj46h3cP3pdcrMLMPR+0dJFi8Z29tup1zGckbHUu+hSW7ZYrri4gptUrBBUeYo2q5s++L55OoWqymbsazRsdT/MFn0u+eNAgIC8PLywt/f3yHnu8Vl4VHhjNo7ihG7RxBhjsDL3YtxNcfRvlB7vfCNpjv+d2i3sh07bu4AoHPhzkyoPYF4rvEMTqZA1oXnnJiTgLAAptWfRucinY2OpIB9t/fReHFjHgU/IlX8VKxssZJS6UsZHUtFQ8tlLVl0dhFdi3Tlz/p/Gh1HvcGWa1touqQpgeGB5E6em/Wt1pMlSRajY6l39MPOHxi6ayh1c9Rlbau1RsdR0XDC+wS159fmQdADMifOzMZPN5IreS6jY6n3FBoZSvLRyQmKCOJIlyMUS1vM6Ejq/5ktZrqs7sLMkzNxdXJlRfMVLxY/qdgR3VqRXXW6KWVNbs5uDK44mOPdjlM8bXH8w/zpuLojtebX4pbfLaPj2bxFZxdRYEoBdtzcgaerJ7MazmJag2lacLMhqRKkYmiloQAM2DZAN/fagNknZ1NlThUeBT+iUOpCHOlyRAtuduT5QoX5Z+brcTcbNvXYVOosqENgeCAVM1Vkf8f9WnCzU8+PmG6+tlkfw+zA1utbqTirIg+CHlAwVUH2d9yvBTc75+HiQZ0cdQBYcUG3mNoKi8VC3419mXlyJk4mJxY0XaAFNxumRTcV5+VPmZ/9nfYzutpo3J3d2XxtM/kn52fykcl6JO81/EP9ab28NS2XtcQv1I8S6UpwsttJ2hVqZ3Q09RqfFf+MvCny4hvsy+Adg42OE2dFmiP5ctOXtF/VnvCocBrnbszeDnvJ4JXB6GjqHZTPWJ68KfISFBHE3FNzjY6j/kekOZLe63vTbW03Is2RtPqoFZtabyJJvCRGR1PvKU+KPHyU8iMizBGsuKgX/LZs0dlF1Jkvxe7KmSuzq/0u0iRMY3QsZQWNc8vyi+UXda6bLbBYLAzYNoDfD/8OwKyGs/g478cGp1JvokU3pZBBof3L9udU91OUzVCWZ+HP6Lm+J1VmV+Hqk6tGx7MZG65s4KPJHzH/zHycTE4MqTiEvR326jpqG+bq7MrvteVBedLRSZx+cNrgRHHPg2cPqDanGmMPjgVgYPmBLG22lPhu8Q1Opt6VyWSie1FZ3jT56GSdb2NDnoQ8oda8Wkw8IktkRlQewbzG83B3cTc4mfpQusXU9o0/OJ6Wy1oSYY6gWb5mbPh0A14eXkbHUlZSN2dd3JzduOh7kQuPLhgdJ06zWCwM3D6Qn/f9DMDkupNpU7CNwanU22jRTal/yJU8F7s77GZCrQl4unqy69YuCkwuwNgDY4kyRxkdzzC+wb60Xt6aOgvqcCfgDlmTZGVvh738UOkH3bRoB6pkqcLHeT/GbDHTe0NvLRTEooN3D1J0alF23dpFArcELGu2jBFVRuBk0odfe9W2YFs8XT059+gce2/vNTqOAi76XqTk9JJsu7GN+K7xWd5sOQMrDNT5rA6iWb5mAGy7vg3fYF+D06h/MlvMfL3la77Y9AUAfUr0YWHThVrsdjCJ3BNRNUtVAO04NZDFYmHQ9kGM3DsSgAm1JtC9WHeDU6no0Gf9Sv0PJ5MTvUv25kyPM1TJUoWQyBC+3PwlJaaX4ODdg0bHi1UWi4X5p+eT5488L7rb+pXqx+nupymdobTR8dQ7GFNjDPFc4rH71m7tFogFFouFKUenUOGvCtwLvEfu5Lk53PkwTfI0MTqa+kBeHl60yt8KgCnHphicRm24soGS00ty9clVMnllYn+n/TTO09joWMqKciTLQeHUhYmyRLH8gh5vsxUhESG0XNaSX/b/AsCoqqMYX2u83lRyUM+PmGrRzRgWi4XBOwbz096fABhfczy9S/Y2OJWKLv2pqNR/yJokK1vbbGVqval4uXtx3Ps4pWeUpuOqjjwMemh0vBh3wvsEFWdVpPWK1vgG+/JRyo840OkAY2qO0WNxdiijV0YGlBsAQL9N/fAP9Tc4keMKiQih4+qO9FjXgwhzBE3zNOVw58PkSZHH6GjKSp7fWV56fimPgh4ZnCZuslgsjD0wlnoL6xEQFkD5jOU53OUwBVIVMDqaigF6xNS2PAp6RNU5VVlybgmuTq7MaTSHb8p9o92lDqxh7oaYMHH0/lFu+982Ok6cM3TXUEbsGQHAuJrj+LzU5wYnUu9Ci25KvYHJZKJL0S5c6nWJ9oXaA/DXyb/INTEXEw9PJNIcaWzAGPAo6BHd1nSj6NSi7Lm9h3gu8RhReQRHux6lRLoSRsdTH6B/2f7kSJoD72fefLftO6PjOKSrT65SdmZZZp2chZPJiZ+r/czfn/xNQveERkdTVlQ0bVGKpy1OeFQ4M0/MNDpOnBMSEUL7Ve35cvOXmC1mOhfuzNa2W0kZP6XR0VQMeX7EdOfNnTx49sDgNHHbRd+LlJpRigN3D5DYIzGb22zWmVJxQMr4KSmXsRwAKy+uNDZMHDN051CG7hoKwNgaY+lbqq+xgdQ706KbUtGQKkEq/mr4F/s67qNQ6kL4hfrRe0Nv8k/Kz/ILyx1iRlZgWCDDdw0n++/ZmXp8KhYstMjfgku9LjGwwkDcnN2Mjqg+kIeLB1PqyXG4yUcnc+DOAYMTOZZFZxdR5M8inPA5QXLP5GxuvZmvy36td/4dVI9iPQD5XnLEGzC26sbTG5SZWYY5p+bgZHJifM3xTK0/VR+jHFyWJFkoka4EZouZpeeXGh0nztp5cyelZ5Tm+tPrZE2SlQOdDlApcyWjY6lY8nxEhh4xjT3Ddw3nh10/APBr9V/5ovQXxgZS70WLbkq9gzIZynC0y1H+qPMHyeIl49LjSzRd0pTSM0qz8+ZOo+O9l5CIEMbsH0PWCVkZvHMwAWEBFEpdiN3td7Ow6UIyeGUwOqKyoipZqtC+UHssWOi6tisRURFGR7J7wRHBdFndhZbLWhIYHkiFTBU40e0EVbNWNTqaikEt8rcguWdybvnf0rv+sWTj1Y0UnVqUkz4nSeGZgq1ttvJ5qc+1sB1H6BFTY80+OZsac2vgF+pH6fSlOdjpILmT5zY6lopFjXI3AmD3rd06WiEW/Lj7RwbvHAzA6Gqj+bLMlwYnUu9Li25KvSNnJ2d6Fu/JtT7XGFR+EJ6unhy6d4jKsytTaVYlNl7daBedb77BvgzbNYxM4zPx1Zav8A32JUfSHCxsupBjXY9RPlN5oyOqGPJr9V9J7pmcsw/P8uv+X42OY9fOPzpPiWklmH5iOiZMDK4wmG1tt5E+UXqjo6kYFs81Ht2Lymy38QfHGxvGwZktZkbsHkGd+XV4GvqUEulKcKzrMSpnqWx0NBWLPsn7CQB7bu/RmVKx6PkA9/ar2hNhjqBZvmZsb7edFPFTGB1NxbLMiTNTJE0RzBYzay6vMTqOQxu5ZySDdgwCZElJ/7L9DU6kPoQW3ZR6T14eXgyvMpxrfa7Rs1hPXJ1c2XVrF7Xn16bI1CIsOLOAsMgwo2P+y9mHZ+m1vhcZx2VkyM4hPAp+RCavTMxoMIPzn52nRf4WunnKwSXzTMa4muMAGcx65fEVgxPZH4vFwl8n/qLY1GKce3SO1AlSs6XNFoZWHoqLk4vR8VQs6Vlcfvbvu7OPI/eOGB3HIfmF+tFoUSO+3/E9Fix0K9qN3e13axd2HJTBK8OLo4zzT883NkwcERoZSusVrRm+ezgAA8oNYGHThXi4eBicTBnl+RZT3SQcc37e+zPfbZfZyz9V+Ylvyn1jcCL1oUwWe2jJMVBAQABeXl74+/uTKFEio+MoG3Y34C7jDozjz2N/EhQRBEByz+S0L9ieLkW7kDNZTsOyBYYFsvjcYqYfn86he4devL9w6sL0L9OfT/J9ooWCOMZisVBzXk22XN9C2Qxl2dV+F85OzkbHsgt+oX58tv4zFpxZAED1rNWZ23guqRKkMjiZMkLbFW2Ze3ourT5qxfwmWgiwprMPz9J4cWOuPrmKu7M7k+pOomPhjkbHUgaaeWImnVZ3Ik/yPJzreU6PFscg32BfGi9uzN7be3FxcuHPen/q95/i/KPz5JuUDzdnN3z7++qiKCv7Zd8vfL31awBGVB7BwAoDDU6k3iS6tSItur2FFt3Uu3oc/Jg/jvzB1GNTuRd478X7S6Yrycd5P6ZpnqZkSZIlxnM8DXnKmstrWH5hOZuubSI0MhQAFycX6uesz2fFP6NKlir6hDUOu+l3kwKTCxAYHsjoaqO1dT0adt7cSdsVbbkTcAdnkzPDKw/nm3LfaHdoHHbc+zhFpxbFxcmFm5/fJF2idEZHcgiLzy6m4+qOBEcEk9ErI8uaLaNY2mJGx1IGCwgLINWvqQiNDOVol6MUTVvU6EgO6cKjC9RbWI/rT6+TyD0Ry5oto1rWakbHUjbAYrGQ+4/cXH58mUVNF9E8f3OjIzmMX/f/Sv8t8lx8WKVhfF/xe4MTqbfRopuVaNFNva9IcyQbrmxg6vGprL+yHrPF/OLX8qfMT+XMlamcuTIVMlUgmWeyD/56T0KecOz+MXbc3MH2G9s5ev8oUZaoF7+eM1lOOhfuTNuCbbUjR70w4/gMOq/pjJuzG8e6HiN/yvxGR7JJYZFhfL/je37d/ysWLGRLko25jedSOkNpo6MpG1BxVkV239rNgHID+KnqT0bHsWsRURF8u/Vbxh4cC0C1rNVY2HQhyT2TG5xM2YoWS1uw+Nxi+pTow2+1fzM6jsPZfG0zzf5uhn+YP1kSZ2FNyzXkS5nP6FjKhgzYOoBR+0bRPF9zFn28yOg4DmHU3lEM2DYAgCEVh/BDpR+MDaSiRYtuVqJFN2UN3oHerLi4gqXnl7Lr1q5XCnAA6RKmo0CqAuRPmZ8MiTKQLlE60iRIQwK3BLi7uOPu7E6kOZJn4c8IigjiUdAjbvvf5pb/La4+ucoJnxOvHSqcL0U+muZpSpM8TSiQqoB2tal/sVgs1F9Yn3VX1lE4dWEOdj6Im7Ob0bFsytmHZ2m9vDWnHpwCoHPhzoyrNY4EbgkMTqZsxYoLK2iypAlJ4yXlzhd38HT1NDqSXboXcI8Wy1qw9/ZeAL4t+y0jqozQo+/qFeuvrKfugrqk8EzBvX73cHV2NTqSw5h4eCJ9N/YlyhJF2QxlWdF8hS5MUP9y+N5hSk4vSQK3BDzq/0hn/H2g4buGv9hSOrTSUAZXHGxwIhVdWnSzEi26KWvzDfZlx40d7LgpLxd9L1rtc2dJnIXymcpTJXMVKmepTEavjFb73MpxeQd6k39yfp6EPGFg+YGMqDLC6Eg2wWwxM+HQBL7d+i1hUWEk90zOtPrTaJS7kdHRlI2JMkeR4/cc3PC7wR91/qBn8Z5GR7I7W65todXyVvgG+5LIPRF/NfyLJnmaGB1L2aBIcyTpxqbjYdBD1rZcS92cdY2OZPcizZH03diXP478AUDbgm2ZWm8q7i7uBidTtshsMZNpfCbuBtxlZfOVNMzd0OhIdslisfDDzh8YtnsYIEsTBpQfYHAq9S606GYlWnRTMe3/2rvv6Kiqhf3j30lCKkloCUnoID2AQKjSSwQuaADpRHoTeQXkFcv1iqKgYn8pF5CqVOkqRSIl0nsVlBJ6KAFSCSkz5/cHy/wWgiTokDNJns9aWYvMnMl5Zi02m3myz9nxKfEcu36MI9eOcOLGCS4nXOZywmWiE6K5k3aHFGsKKekpuDi5kN81P16uXhTyKEQp31KU9C1JmQJlqBFQg+pFq1PAvYDZb0dyqKXHl9JtWTcsWNjQewOty7U2O5Kpom5HMfD7gWyK2gRAu/LtmPXcLALyB5icTBzV5D2TGbFuBKULlOb3l3/X6pssstqsjI8cz3tb38PAoEbRGizruoynCj1ldjRxYCPXj+TL3V/StWpXlrywxOw4OVrs3Vi6LevGT2d+AmBiy4mMfWasro6QR3p1w6t8tuszjcG/yTAM3t78Nh/88gGA7q2cQ6l0sxOVbiKSVwz+fjAzD8zEz9OPQ0MPEeQdZHakbGczbEzdO5XXI14nKS0JDxcPPg39lKEhQ/UBRB4pOS2Z0l+W5nrSdeaHzSe8RrjZkRze9aTr9FrRi4izEQAMqjWIL9t8iUc+D5OTiaPbf2U/ITNDcHN249qYa/i6+5odKUc6c+sM7Re152TMSTzzefJtx2/pWLmj2bEkB/hjEyF3F3eujbmGj5s+J2eVYRi88fMbfLT9IwA+C/2MUQ1GmZxK/o6sdkXabk1ERAD4ss2XVC9anRt3btBzeU/SbelmR8pWp2+dpvm85oxYN4KktCSalGrCkWFHGFZnmAo3yZRHPg9G1b/3n+aJ2yY+cO9Oud+2C9uoOb0mEWcj8Mznyfyw+czoMEOFm2RJrcBaVPWrSoo1hUXHFpkdJ0eKPB9Jva/rcTLmJMW8i7Gt3zYVbpJlNQNqUrFwRe6m32XVyVVmx8kxDMNgzE9jMgq3r9p8pcItD1DpJiIiwL3SYOkLS8nvmp+t57fy1s9vmR0pW1htVr7Y9QXVp1Un8nwkXvm8mNx2Mpv7bNYlbvJYhoUMw9fNlxMxJ1h9crXZcRySYRh8suMTms1txpWEK1QqUok9A/doZaA8FovFwoCaAwCYeWCmyWlynjkH59BqfituJt8kJCiEPYP2UDOwptmxJAexWCz0qtYLgAVHF5icJmcwDIOR60dm7M49td1URtQbYXIqyQ4q3UREJEPFIhWZ2eHeB5iPd3zMvEPzTE70ZB2/fpwmc5swasMoktOTaVGmBUeHHWV43eE4WTRFyuPxdffl5bovAzBh2wR0B4/73U6+TdiSMP534/9iNaz0CO7B3kF7qepf1exokgOF1wjH1dmVA9EHOBB9wOw4OYLVZuW1ja/Rf01/0mxpdKnSha19t+bJ20nIP9ezWk8AIs5GcDXxqslpHJvNsPHy2pf5as9XAMxoP4NhdYaZnEqyiz5RiIjIfboHd+etxvdWuQ3+YTDbL2w3OZH93Um7wxsRb/D09KfZcXEH3q7eTG8/nYjwCMoULGN2PMnBXqn3Cp75PNl3ZR/rTq8zO47D2H9lP7Vn1GbNb2twdXZl2r+msaDTAvK75jc7muRQRTyLZOxwO3O/VrtlJjE1kU5LOzFpxyQA3m7yNotfWIxnPk+Tk0lOVa5QOeoVq4fNsLHkmDZT+Cs2w8awH4Yxdd9ULFiY9dwsBtUeZHYsyUYq3URE5AHvNX+PTpU7kWpNpeOSjpy5dcbsSHaz7tQ6gqcG8+H2D0m3pRNWKYzjLx1ncO3Buneb/GN+Xn68FPISAG9teivP39vNMAym7Z1Gw9kNiYqNokyBMuzov0Obk4hdDKw5ELh3eVtSapLJaRzXxbiLNJrdiDW/rcHN2Y1vO37Le83f04pu+cf+uMR04bGFJidxTDbDxqA1g5hxYAZOFifmhs2lf83+ZseSbKZ/aUVE5AFOFifmh82nZkBNbty5QatvWnE5/rLZsf6Ry/GX6fJdF9otbEdUbBQlfEqwuvtqVnZbSQnfEmbHk1zk9Uav4+3qzaGrh1j26zKz45gmMTWRXit68dLal0i1pvJ8xefZP3g/tYNqmx1NconmZZpTtmBZElIT+O7X78yO45D2XN5D3a/rcvjaYfy9/NncZzO9qvcyO5bkEt2Cu+FscWbP5T2cjDlpdhyHYrVZ6b+6P7MPzcbJ4sQ3Hb/hxRovmh1LTKDSTUREHsrL1Ysfe/7IU4We4lzsOVp/05obSTfMjvXYktOS+SDyAypOrsiyX5fhbHHm1Qav8uvwX3mu4nNmx5NcqLBnYcY0HAPA25vfznM7AQMcu36MOjPrsOjYIpwtznzS+hNWdltJQY+CZkeTXMTJ4pSx2k0bKjxo8bHFNJ3blKuJV6nmX409A/fQoEQDs2NJLuLv5U+78u0AmHVglslpHEe6LZ0+q/ow7/A8nC3OLOy0MOMeeJL3qHQTEZG/FOgdSER4BMV9inMi5gQt57ckOiHa7FhZYhgGy35dRuUplfn35n+TlJZEg+IN2D94P5+EfqJ7SckTNar+KIp4FuH3m7/n+g1J/mz+4fnUnVmXkzEnKeZdjK19t/Jqw1d1Oak8EX2f7ouLkws7Lu7g0NVDZsdxCIZhMG7LOHos78Hd9Lu0r9Ce7f23U6pAKbOjSS70x07C84/MJ82aZnIa86Xb0glfGc6CowtwcXJhyQtL6BbczexYYiKVbiIi8kilCpQiIjyCwPyBHL1+lMZzGhN1O8rsWI+078o+ms1rRpfvunA+7jzFfYqzoNMCtvffTo2AGmbHkzzA282bNxu9CcC4reO4k3bH5ERPXlJqEgNWD6DPqj4kpyfTumxrDg45yDMlnzE7muRigd6BdK7cGYCvdn9lchrzJacl03NFT97d+i4ArzZ4lVXdVuHt5m1yMsmt2pVvR1GvolxPus4Pv/9gdhxTpVnT6LG8B4uPLSafUz6+6/Idnat0NjuWmEylm4iIZKpikYps67+NsgXLcub2GZ6Z/Qy7L+02O9YDjl8/Tuelnakzsw6R5yPxcPHgnabvcHL4SXpW66mVNpKthtUZRknfklyKv8Sk7ZPMjvNEHb9+nLpf12X2odlYsDCu6TjW9VqHn5ef2dEkD3il3isALDy6MEfeBsFeriZepfm85iw+thgXJxdmdpjJJ6Gf4OzkbHY0ycXyOeej79N9AZh1MO9eYppqTaXbsm4s+3UZrs6urOi2grBKYWbHEgeg0k1ERLKkbMGybOu3jWr+1YhOjKbJ3CYOc/+OM7fOEL4ynGrTqrHixAosWAivHs7Jl08yrtk4vFy9zI4oeZC7izufhn4KwIfbP+Rc7DlzAz0BhmEw68As6sysw683fiUgfwARL0bwTrN39EFfsk394vUJCQohxZrCjP0zzI5jisNXD1N3Zl12X95NQfeC/NT7JwbWGmh2LMkj/tiRc93pdTl+462/IyU9hReWvsDKkytxc3ZjZbeVtK/Q3uxY4iBUuomISJYFegeyrf82wiqFkWpNZeD3A3lx5YvcTr5tSp6D0QfpubwnFSdX5Nsj32Jg0KlyJ44OO8r8jvMp6VvSlFwif+hcuTPNSzfnbvpdxvw0xuw4dpWQkkDvlb0Z+P1AktOTCS0XyuGhh2lRpoXZ0SSPsVgsGavdpu6bmufuK7XmtzU8M/sZLsZfpELhCuweuJvmZZqbHUvykAqFK9C4ZGNsho25h+aaHSdb3U2/S6elnfj+9+9xd3FndffVGZtLiIBKNxEReUw+bj4s77qc8c3HY8HCN0e+oerUqqw+uRrDMJ74+a02K+tOrePZb5+l1oxaLDq2CKthpc1Tbdg7aC/Luy6nqn/VJ55DJCssFgtftvkSZ4szy08sZ+OZjWZHsouD0QepNaMWC48uxNnizMSWE1nXax3+Xv5mR5M8qmvVrgTkD+BKwhW++/U7s+NkC8MwmLR9EmGLw0hKS6JlmZbsGrCL8oXLmx1N8qA/NlSYdXAWVpvV5DTZIzktmbDFYaw9tRYPFw9+6PEDzz71rNmxxMGodBMRkcfmZHHi303+zfb+26lQuALRidGELQmj2bxm7Lq064mc81L8Jd6PfJ9yX5Wj3cJ2/HTmJ5wsTvQI7sGBwQdY12sdIUEhT+TcIv9EtaLVGF5nOACDfxhMYmqiyYn+PsMwmLJnCvVn1ef0rdOU8ClBZL9IXm/0Ok4W/bdSzOPq7MpLIS8B8OG2D7EZNpMTPVmp1lQGrBnAaxGvYWAwtPZQ1vVaR0GPgmZHkzyqS9UuFHQvSFRsFD+e+tHsOE/cnbQ7PLf4OTac2YBnPk/W9lpLy7ItzY4lDshiZMeyhBwsPj4eX19f4uLi8PHxMTuOiIjDSU5L5r2t7/H5rs9JsaYA0LRUU4bXGU6Hih1wd3H/2z/7XOw5Vp5YybITy9hxcUfG4wXdC/JijRd5pd4rlClY5h+/B5EnLTE1keCpwZyPO8/wOsOZ3G6y2ZEe263kWwz6fhArTqwA4LmKzzHn+TkU8ihkcjKRe24n36bUF6VISE1gTfc1dKjYwexIT0TMnRg6L+1M5PlInCxOfP7s54yoO0KbBYnpXtv4GpN2TKJlmZZEvBhhdpwnJjE1kQ6LOrDl3Ba88nmxrtc6GpdqbHYsyWZZ7YpUumVCpZuISNZcjLvIuC3jmHd4Hlbj3mUF+V3z0658O5qWakr94vWp4lflL0u4+JR4Ttw4wfEbx9lxcQebz23m7O2z9x3TuGRjBtceTOfKnfHI5/HE35OIPf189mdafdMKgM19NtOsdDNzAz2GTVGbeHHli1xOuEw+p3xMaj2J/6n3P/qQLw7n9YjX+Wj7R9QrVo+dA3bmur+jJ26coP2i9py9fRZvV2+WvLCEtuXbmh1LBIDzsecp+1VZbIaNY8OO5crbfcTdjaPtgrbsvLQTb1dv1vVaxzMlnzE7lphApZudqHQTEXk8l+MvM33/dOYcmsOl+EsPPO/n6UfR/EXJ55QPJ4sT8SnxxNyJ4fbdBzdjcLY407BEQ7pU6UKnyp0o5lMsO96CyBMz5PshzDgwg1K+pTg45KDDXwqWkp7CW5ve4tOd93ZhLV+oPAs7L9Sl3OKwriVeo/SXpbmbfpeI8IhcdbnXT2d+out3XYlLiaNMgTJ83+P7XFlqSM7WeWlnVpxYweBag5neYbrZcezq5p2bPPvts+yP3k9B94Js6L2BOsXqmB1LTKLSzU5UuomI/D02w8a+K/tYe2otuy7tYvfl3cTejX3kawLzB1LVvyo1A2rSvHRznin5DD5u+rdXco/4lHie/u/TRMVG8VzF51jVbZXDrsQ5fv04vVb04vC1wwAMrjWYz579DC9XL5OTiTzaiLUjmLx3Ms1KN2PTi5scdow9jsl7JjNy/UishpVGJRuxousK/Lz8zI4l8oCt57bSbF4zPFw8uDT6Uq65BcH1pOu0mt+Ko9ePUsSzCBHhEdQIqGF2LDGRSjc7UekmImIfhmFwK/kWl+IvcePODdJt6VhtVnzcfCjiWYRA70AKuBcwO6bIE7f/yn4azm5IqjWVSa0nMabhGLMj3cdm2Ji8ZzJjI8ZyN/0uRTyL8HWHr3m+0vNmRxPJkgtxFyj/f+VJtaayofcGQsuFmh3pb0u3pfPKuleYum8qAH1q9GF6++m4ubiZnEzk4QzDoOb0mhy+dpjxzcfz7yb/NjvSP3Y5/jKtvmnFyZiTBOYPJOLFCKr4VTE7lphMpZudqHQTERERe5u2dxovrX0JJ4sTq7qtcpgbvv9+83cGrBnAtgvbAGjzVBvmPD+HgPwBJicTeTyj1o/ii91fUDOgJvsG78uRu+vG3o2l63dd2Xh2IxYsTGw5kdeeeS1XrNyT3G3h0YX0WtGLwh6FOTfyHPld85sd6W87H3ueFvNbcPb2WUr4lODnF3+mfOHyZscSB5DVrijnzT4iIiIiOdzQkKEMqDkAm2Gj+/Lu7Luyz9Q86bZ0Pt7+MdWnVWfbhW145fNictvJrO25VoWb5EhvNXkLb1dvDl49yNLjS82O89hO3zpNg1kN2Hh2I575PFnRbQVjG41V4SY5QteqXXmq0FPcTL7JjP0zzI7zt52+dZrGcxpz9vZZyhYsS2S/SBVu8thUuomIiIhkM4vFwrR/TSO0XCh30u7QdkFbjlw7YkqWA9EHaDCrAWMjxpJiTaF12dYce+kYw+sO1wd8ybGKeBbhtWdeA+DNn98kOS3Z5ERZt/XcVup9XY+TMScp7lOcbf22EVYpzOxYIlnm4uTC68+8DsAnOz7hbvpdkxM9vl9v/EqTOU24GH+RioUrEtk3ktIFSpsdS3IglW4iIiIiJsjnnI/vunxH7cDaxNyJocW8Fhy6eijbzh9zJ4Yh3w8hZEYI+67so4B7AWY/N5sNvTfog4XkCqPqj6KYdzGiYqP4cNuHZsfJlGEYTNkzhVbftOJW8i3qBNVhz8A91AysaXY0kccWXiOcEj4liE6MznGr3fZd2UfTuU2JToymmn81tvbdSjGfYmbHkhxKpZuIiIiISXzcfNgYvpE6QXW4mXyTpnOb8uPvPz7Rc6akp/DV7q8o/3/lmXFgBgYGPav15PhLx+lXs59Wt0mu4eXqxefPfg7AR9s/4vSt0yYn+mt30+8ycM1AXl73Mum2dLoHd2dr360EegeaHU3kb3F1ds3YRGF85HjiU+JNTpQ1m6I20Xxec2LuxBASFMLmPpspmr+o2bEkB8sxpdvt27cJDw/H19cXX19fwsPDiY2NfeRr+vbti8Viue+rfv362RNYREREJAsKehRkY/hGmpRqQnxKPB0WdWD81vGk29Ltep40axoz98+kwuQKvLL+FWLvxlKjaA0i+0ayoNMCgryD7Ho+EUfwQpUXaF22NSnWFIavHY4j7iF3Of4yzeY2Y/ah2ThZnJjUehILOy3EI5+H2dFE/pH+NftToXAFYu7E8MmOT8yOk6kVJ1bQdkFbElMTaVGmBZte3ERhz8Jmx5IcLseUbj179uTQoUOsX7+e9evXc+jQIcLDwzN9XZs2bYiOjs74Wrt2bTakFREREck6X3dfNoZvZGjtoRgY/GfLf6j/dX27XG4adzeOL3Z9QcXJFRn8w2AuxF0gyDuIaf+axv7B+2lcqvE/fwMiDspisTC53WTcnN346cxPDneZ2/YL2wmZGcLuy7sp6F6Qdb3WMabhGK04lVzBxcmFiS0nAvDpzk+JTog2OdFfm3VgFl2+60KqNZVOlTuxtudavN28zY4luYDFcMRf9/zJiRMnqFKlCrt27aJevXoA7Nq1iwYNGnDy5EkqVqz40Nf17duX2NhYVq1a9bfPndVtYEVERETsYf7h+Rkr0QC6VOnC641ep2ZAzSx/EE+3pRN5PpLFxxaz8OhCktKSAPD38ueNRm8wpPYQraKRPOXznZ8z+qfReObz5NCQQ6bvQGgYBl/s+oKxEWNJs6UR7B/Mqm6rKFeonKm5ROzNMAwazm7Irku76FWtF992+tbsSPcxDINJOyYxNmIsAANrDuS/7f+Ls5OzycnE0WW1K8oRpdvs2bMZPXr0A5eTFihQgM8//5x+/fo99HV9+/Zl1apVuLq6UqBAAZo2bcoHH3yAv79/ls+t0k1ERESy29XEq4zaMIrFxxZnPFbFrwodK3WkQfEGBPsHUzR/Udxd3Em3pXMj6QZRsVEciD7ALxd+YXPUZm7cuZHx2qp+VRlRdwS9q/fGy9XLjLckYiqbYaPV/FZsPreZusXqEtk3EjcXN1Oy3Eq+Rb/V/Vjz2xrgXrE++/nZ5HfNb0oekSdt35V91J1ZFwODiPAIWpZtaXYk4N4vqEauH8mUvVMAeP2Z15nQcoJWmkqW5KrSbcKECcydO5fff//9vscrVKhAv379eOONNx76uiVLlpA/f35KlSpFVFQUb7/9Nunp6ezfvx83t4dPsikpKaSkpGR8Hx8fT4kSJVS6iYiISLY7eu0oE7ZNYOWJlaRYUx543snihM2wPfS1hTwK0bFSR3pX703TUk31IULyvAtxF3j6v09z++5t+j3dj1nPzcr2cbHz4k66L+/OhbgLuDq78lnoZ7xU5yWNT8n1RqwdweS9kylfqDxHhh3B3cXd1DwJKQl0X96dtafWYsHCp6GfMqrBKFMzSc6S1dLNJRszPWDcuHG8++67jzxm7969AA+diAzDeOQE1a1bt4w/BwcHExISQqlSpfjxxx/p1KnTQ18zceLETDOJiIiIZIdqRauxqPMi4u7GsfLkSrac28Luy7s5c+sMaba0jMLNyeJECZ8SVParTKMSjWhUshENSzQkn3M+k9+BiOMo6VuSxS8spu2Ctsw5NIfqRaszsv7IbDl3mjWND375gA9++YB0WzrlCpZjaZel1AqslS3nFzHb+y3eZ9mJZZy6dYq3N73NpNBJpmW5FH+J9gvbc/jaYTxcPFjQaQEdK3c0LY/kbqaudIuJiSEmJuaRx5QuXZqFCxf+rctLH6Z8+fIMHDiQsWPHPvR5rXQTERERR2cYBrF3Y7mbfhc3Fze8Xb1VsIlk0R/3d7NgYX7H+fSu3vuJnu/otaP0WdWHg1cPAtA9uDvT20/Hx02fLSRvWX1yNWFLwgDYGL6RVmVbZXuG3Zd202lpJ64kXMHfy5/ve3xP3WJ1sz2H5Hw5YqVbkSJFKFKkSKbHNWjQgLi4OPbs2UPduvcGxO7du4mLi6Nhw4ZZPt/Nmze5ePEigYGBf3mMm5vbX156KiIiIuIILBYLBT0Kmh1DJEcaWX8kZ26fYcreKfRZ1QfgiRRvd9Lu8OG2D/lo+0ekWlMp5FGIqe2m0i24W+YvFsmFnq/0PENrD+W/+/9L+MpwDg89jL9X1u+3/k/N2D+DEetGkGpNpYpfFX7s+SOlC5TOtvNL3uRkdoCsqFy5Mm3atGHQoEHs2rWLXbt2MWjQINq3b3/fzqWVKlVi5cqVACQmJjJmzBh27tzJuXPn2LJlCx06dKBIkSJ07KiloyIiIiIieZHFYuGrtl8xoOYAbIaN8JXhTPhlAva6AMgwDFadXEWVKVUYHzmeVGsqHSp04PhLx1W4SZ736bOfUsWvClcTr9JpSSdS0h+8X6m93U2/y6A1gxjywxBSral0rNSRnQN2qnCTbJEjSjeABQsWUK1aNUJDQwkNDaV69ep888039x3z22+/ERcXB4CzszNHjx7l+eefp0KFCvTp04cKFSqwc+dOvL29zXgLIiIiIiLiAJwsTszoMIMxDcYA8Namt2i/qD3XEq/97Z9pGAYRZyNoOLshHZd05HzceUr4lGB51+Ws7r6agPwB9oovkmN55vNkedfl+Lr5sv3idgasGfCXGwLZw5FrRwiZEcLXB7/GgoUJLSawvOtyXd4t2SZH7F5qpqxepysiIiIiIjnP9H3TeWX9K6RYU/B18+XtJm8zNGQoXq5eWXr9nbQ7LDm2hKn7prLvyj4APFw8GFV/FG82fjPLP0ckL4k4G0Gbb9tgNawMqDmAGR1m4GSx35ogq83Kl7u/5I2f3yDVmkpRr6LM7zif0HKhdjuH5G1Z7YpUumVCpZuIiIiISO72580OCrgXoHe13vyrwr+oW6wuhTwKZRxrtVk5GXOSvVf2svbUWtafXk9CagIAbs5uDKk9hDcav6GVbSKZWHR0Eb1X9sZm2OgR3INZz83CI5/HP/65B6IPMOSHIRkleIcKHfj6ua+z9f5xkvupdLMTlW4iIiIiIrmf1WZl3uF5fPDLB5y9ffa+5wq4F8Db1Zvk9GRuJd964HK40gVKM7T2UPrX7I+fl192xhbJ0RYeXUifVX1It6VTt1hdFnRawFOFnvpbP+ti3EXGR45n1sFZ2AwbPm4+TGo9iUG1BmGxWOycXPI6lW52otJNRERERCTvsNqsbDizgZUnVhIRFcG52HMPHJPfNT81A2rSuGRjnq/0PCFBIXa9NE4kL9kctZkXvnuBW8m38HDx4D9N/8OIuiOyfGn2iRsnmLJ3CjMPzCTVmgpAj+AefPbsZ1pxKk+MSjc7UekmIiIiIpJ3JaQkcCn+EompiXjk86CwR2H8vfxxdnI2O5pIrnEu9hwD1gxgU9QmAPw8/QivHk7nKp2pFVgLdxf3jGNT0lM4EXOCjWc2svq31Wy/uD3juaalmvJ+i/dpVLJRtr8HyVtUutmJSjcRERERERGRJ8swDL458g3vbn33vku8XZxcKOpVFG83b5JSk7iScAWrYc143sniRIcKHRhRdwQtyrTQpaSSLVS62YlKNxEREREREZHskWZNY+2ptSw8tpDNUZu5cefGA8cUcC9AvWL1aF+hPWGVwijuU9yEpJKXqXSzE5VuIiIiIiIiItnPMAwuJ1wmOiGapLQkPPN5Usy7GEHeQVrRJqbKalfkko2ZRERERERERESyxGKxUNynuFaySY6lLXZERERERERERETsTKWbiIiIiIiIiIiInal0ExERERERERERsTOVbiIiIiIiIiIiInam0k1ERERERERERMTOVLqJiIiIiIiIiIjYmUo3ERERERERERERO3MxO4CjMwwDgPj4eJOTiIiIiIiIiIiI2f7oiP7ojP6KSrdMJCQkAFCiRAmTk4iIiIiIiIiIiKNISEjA19f3L5+3GJnVcnmczWbjypUreHt7Y7FYzI5jF/Hx8ZQoUYKLFy/i4+NjdhwRh6RxIpI5jRORR9MYEcmcxolI5jROHI9hGCQkJBAUFIST01/fuU0r3TLh5ORE8eLFzY7xRPj4+GjAimRC40QkcxonIo+mMSKSOY0TkcxpnDiWR61w+4M2UhAREREREREREbEzlW4iIiIiIiIiIiJ2ptItD3Jzc+Odd97Bzc3N7CgiDkvjRCRzGicij6YxIpI5jRORzGmc5FzaSEFERERERERERMTOtNJNRERERERERETEzlS6iYiIiIiIiIiI2JlKNxERERERERERETtT6SYiIiIiIiIiImJnKt3ymKlTp1KmTBnc3d2pXbs2v/zyi9mRRBzGuHHjsFgs930FBASYHUvEVJGRkXTo0IGgoCAsFgurVq2673nDMBg3bhxBQUF4eHjQrFkzjh8/bk5YEZNkNk769u37wPxSv359c8KKmGDixInUqVMHb29v/P39CQsL47fffrvvGM0nktdlZZxoPsl5VLrlIUuWLGHkyJG89dZbHDx4kMaNG9O2bVsuXLhgdjQRh1G1alWio6Mzvo4ePWp2JBFTJSUlUaNGDSZPnvzQ5z/++GM+++wzJk+ezN69ewkICKB169YkJCRkc1IR82Q2TgDatGlz3/yydu3abEwoYq6tW7cyfPhwdu3axcaNG0lPTyc0NJSkpKSMYzSfSF6XlXECmk9yGothGIbZISR71KtXj1q1ajFt2rSMxypXrkxYWBgTJ040MZmIYxg3bhyrVq3i0KFDZkcRcUgWi4WVK1cSFhYG3FuVEBQUxMiRIxk7diwAKSkpFC1alI8++oghQ4aYmFbEHH8eJ3BvZUJsbOwDK+BE8qobN27g7+/P1q1badKkieYTkYf48zgBzSc5kVa65RGpqans37+f0NDQ+x4PDQ1lx44dJqUScTynTp0iKCiIMmXK0L17d86ePWt2JBGHFRUVxdWrV++bW9zc3GjatKnmFpE/2bJlC/7+/lSoUIFBgwZx/fp1syOJmCYuLg6AQoUKAZpPRB7mz+PkD5pPchaVbnlETEwMVquVokWL3vd40aJFuXr1qkmpRBxLvXr1mD9/Phs2bGDmzJlcvXqVhg0bcvPmTbOjiTikP+YPzS0ij9a2bVsWLFjApk2b+PTTT9m7dy8tWrQgJSXF7Ggi2c4wDEaPHk2jRo0IDg4GNJ+I/NnDxgloPsmJXMwOINnLYrHc971hGA88JpJXtW3bNuPP1apVo0GDBpQrV4558+YxevRoE5OJODbNLSKP1q1bt4w/BwcHExISQqlSpfjxxx/p1KmTiclEst/LL7/MkSNH2LZt2wPPaT4Rueevxonmk5xHK93yiCJFiuDs7PzAb4quX7/+wG+UROQeLy8vqlWrxqlTp8yOIuKQ/tjdV3OLyOMJDAykVKlSml8kzxkxYgRr1qxh8+bNFC9ePONxzSci/99fjZOH0Xzi+FS65RGurq7Url2bjRs33vf4xo0badiwoUmpRBxbSkoKJ06cIDAw0OwoIg6pTJkyBAQE3De3pKamsnXrVs0tIo9w8+ZNLl68qPlF8gzDMHj55ZdZsWIFmzZtokyZMvc9r/lEJPNx8jCaTxyfLi/NQ0aPHk14eDghISE0aNCAGTNmcOHCBYYOHWp2NBGHMGbMGDp06EDJkiW5fv0677//PvHx8fTp08fsaCKmSUxM5PTp0xnfR0VFcejQIQoVKkTJkiUZOXIkEyZMoHz58pQvX54JEybg6elJz549TUwtkr0eNU4KFSrEuHHj6Ny5M4GBgZw7d44333yTIkWK0LFjRxNTi2Sf4cOHs3DhQlavXo23t3fGijZfX188PDywWCyaTyTPy2ycJCYmaj7JgSyGYRhmh5DsM3XqVD7++GOio6MJDg7m888/z9h+WCSv6969O5GRkcTExODn50f9+vUZP348VapUMTuaiGm2bNlC8+bNH3i8T58+zJ07F8MwePfdd5k+fTq3b9+mXr16TJky5b6b/orkdo8aJ9OmTSMsLIyDBw8SGxtLYGAgzZs3Z/z48ZQoUcKEtCLZ76/uyzZnzhz69u0LoPlE8rzMxklycrLmkxxIpZuIiIiIiIiIiIid6Z5uIiIiIiIiIiIidqbSTURERERERERExM5UuomIiIiIiIiIiNiZSjcRERERERERERE7U+kmIiIiIiIiIiJiZyrdRERERERERERE7Eylm4iIiIiIiIiIiJ2pdBMREREREREREbEzlW4iIiIikqlmzZoxcuRIs2OIiIiI5Bgq3UREREREREREROzMYhiGYXYIEREREXFcffv2Zd68efc9FhUVRenSpc0JJCIiIpIDqHQTERERkUeKi4ujbdu2BAcH89577wHg5+eHs7OzyclEREREHJeL2QFERERExLH5+vri6uqKp6cnAQEBZscRERERyRF0TzcRERERERERERE7U+kmIiIiIiIiIiJiZyrdRERERCRTrq6uWK1Ws2OIiIiI5Bgq3UREREQkU6VLl2b37t2cO3eOmJgYbDab2ZFEREREHJpKNxERERHJ1JgxY3B2dqZKlSr4+flx4cIFsyOJiIiIODSLYRiG2SFERERERERERERyE610ExERERERERERsTOVbiIiIiIiIiIiInam0k1ERERERERERMTOVLqJiIiIiIiIiIjYmUo3ERERERERERERO1PpJiIiIiIiIiIiYmcq3UREREREREREROxMpZuIiIiIiIiIiIidqXQTERERERERERGxM5VuIiIiIiIiIiIidqbSTURERERERERExM5UuomIiIiIiIiIiNjZ/wPSsCBD62IMjAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,3))\n", + "plt.plot(t_sol, x_state, 'b', label='x')\n", + "plt.plot(t_sol, vx_state, 'g', label='vx')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('state')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d2c9d05b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHFCAYAAADmGm0KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1aElEQVR4nOydd3gUZdfG7ySkASH00HuX3nsTkI4U6UVA1BcFFBULSlGKBUVBaSIoVRRQQZoISO+99w4hBEICIaTt+f64v2F2SSBtd2d28/yua66ZnW1ny8zcz3lO8RARgUKhUCgUCoXCBk+jDVAoFAqFQqEwI0okKRQKhUKhUCSCEkkKhUKhUCgUiaBEkkKhUCgUCkUiKJGkUCgUCoVCkQhKJCkUCoVCoVAkghJJCoVCoVAoFImgRJJCoVAoFApFIiiRpFAoFAqFQpEISiQpFAqHUqRIEbRt29ZoMxQKhSLFKJGkUCgUCoVCkQhKJCkUCoVCoVAkghJJCoUixYwZMwYeHh44ePAgOnXqhCxZsiAwMBC9e/fG7du3E33O2rVrUbVqVfj7+6NMmTKYM2eOzf23b9/G4MGDUa5cOWTOnBm5c+dG06ZNsXXr1gSvNX36dFSqVAmZM2dGQEAAypQpg48++sjmMcHBwXjttddQoEAB+Pj4oGjRohg7dizi4uKS/HwbN25E48aNkSNHDvj7+6NQoULo3LkzHj58CAC4dOkSPDw88OWXX2L8+PEoVKgQ/Pz8UL16dWzYsMHmtc6dO4f+/fujZMmSyJgxI/Lnz4927drh6NGjCd733r17eOedd1CsWDH4+void+7caN26NU6dOvX4MTExMRg3bhzKlCkDX19f5MqVC/3793/q965QKFJPBqMNUCgUrkvHjh3RtWtXvP766zh+/Dg++eQTnDhxArt374a3t/fjxx0+fBjvvPMOPvjgAwQFBWH27NkYOHAgSpQogYYNGwIA7t69CwAYPXo08uTJgwcPHuCPP/5A48aNsWHDBjRu3BgA8Ouvv2Lw4MEYMmQIJk2aBE9PT5w7dw4nTpx4/H7BwcGoWbMmPD09MWrUKBQvXhw7d+7EuHHjcOnSJcydO/epn+nSpUto06YNGjRogDlz5iBr1qy4fv061q5di5iYGGTMmPHxY7///nsULlwY3377LSwWC7788ku0atUKmzdvRp06dQAAN27cQI4cOfD5558jV65cuHv3Ln755RfUqlULBw8eROnSpQEA9+/fR/369XHp0iW8//77qFWrFh48eIAtW7bg5s2bKFOmDCwWCzp06ICtW7dixIgRqFu3Li5fvozRo0ejcePG2LdvH/z9/e3z4yoUCkAUCoUihYwePVoAyNtvv22zf+HChQJAFixY8Hhf4cKFxc/PTy5fvvx4X1RUlGTPnl1ee+21p75HXFycxMbGyvPPPy8dO3Z8vP/NN9+UrFmzPtO+1157TTJnzmzzniIikyZNEgBy/Pjxpz536dKlAkAOHTr01MdcvHhRAEi+fPkkKirq8f6IiAjJnj27NGvW7JmfKyYmRkqWLGnz/X366acCQNavX//U5y5evFgAyLJly2z27927VwDItGnTnvpchUKRctR0m0KhSDW9evWyud21a1dkyJABmzZtstlfuXJlFCpU6PFtPz8/lCpVCpcvX7Z53IwZM1C1alX4+fkhQ4YM8Pb2xoYNG3Dy5MnHj6lZsybu3buHHj164K+//kJoaGgCu/7++280adIE+fLlQ1xc3OOlVatWAIDNmzc/9TNVrlwZPj4+ePXVV/HLL7/gwoULT31sp06d4Ofn9/h2QEAA2rVrhy1btiA+Ph4AEBcXhwkTJqBcuXLw8fFBhgwZ4OPjg7Nnz9p8rjVr1qBUqVJo1qzZU9/v77//RtasWdGuXTubz1W5cmXkyZMH//3331Ofq1AoUo4SSQqFItXkyZPH5naGDBmQI0cO3Llzx2Z/jhw5EjzX19cXUVFRj29/8803+N///odatWph2bJl2LVrF/bu3YuWLVvaPK5Pnz6YM2cOLl++jM6dOyN37tyoVasW1q9f//gxt27dwsqVK+Ht7W2zPPfccwCQqLDSKF68OP7991/kzp0bb7zxBooXL47ixYvju+++S/Lza/tiYmLw4MEDAMDw4cPxySef4MUXX8TKlSuxe/du7N27F5UqVbL5XLdv30aBAgWeapf2ue7duwcfH58Eny04OPiZn0uhUKQcFZOkUChSTXBwMPLnz//4dlxcHO7cuZOoKEqKBQsWoHHjxpg+fbrN/vv37yd4bP/+/dG/f39ERkZiy5YtGD16NNq2bYszZ86gcOHCyJkzJypWrIjx48cn+l758uV7pi0NGjRAgwYNEB8fj3379mHq1Kl46623EBQUhO7duz9+XHBwcILnBgcHw8fHB5kzZ378ufr27YsJEybYPC40NBRZs2Z9fDtXrly4du3aM+3KmTMncuTIgbVr1yZ6f0BAwDOfr1AoUobyJCkUilSzcOFCm9u//fYb4uLiHgdZpwQPDw/4+vra7Dty5Ah27tz51OdkypQJrVq1wsiRIxETE4Pjx48DANq2bYtjx46hePHiqF69eoIlKZGk4eXlhVq1auGHH34AABw4cMDm/uXLl+PRo0ePb9+/fx8rV65EgwYN4OXl9dTPtWrVKly/ft1mX6tWrXDmzBls3Ljxqfa0bdsWd+7cQXx8fKKfSwsCVygU9kF5khQKRapZvnw5MmTIgObNmz/ObqtUqRK6du2a4tdq27YtPvvsM4wePRqNGjXC6dOn8emnn6Jo0aI2afuDBg2Cv78/6tWrh7x58yI4OBgTJ05EYGAgatSoAQD49NNPsX79etStWxdDhw5F6dKl8ejRI1y6dAmrV6/GjBkznjq1NWPGDGzcuBFt2rRBoUKF8OjRo8flCp6MF/Ly8kLz5s0xfPhwWCwWfPHFF4iIiMDYsWNtPtfPP/+MMmXKoGLFiti/fz+++uqrBO//1ltvYcmSJejQoQM++OAD1KxZE1FRUdi8eTPatm2LJk2aoHv37li4cCFat26NYcOGoWbNmvD29sa1a9ewadMmdOjQAR07dkzxd69QKJ6C0ZHjCoXC9dCy2/bv3y/t2rWTzJkzS0BAgPTo0UNu3bpl89jChQtLmzZtErxGo0aNpFGjRo9vR0dHy7vvviv58+cXPz8/qVq1qvz555/Sr18/KVy48OPH/fLLL9KkSRMJCgoSHx8fyZcvn3Tt2lWOHDli8/q3b9+WoUOHStGiRcXb21uyZ88u1apVk5EjR8qDBw+e+tl27twpHTt2lMKFC4uvr6/kyJFDGjVqJCtWrHj8GC277YsvvpCxY8dKgQIFxMfHR6pUqSLr1q2zeb2wsDAZOHCg5M6dWzJmzCj169eXrVu3Jvj82mOHDRsmhQoVEm9vb8mdO7e0adNGTp069fgxsbGxMmnSJKlUqZL4+flJ5syZpUyZMvLaa6/J2bNnn/q5FApFyvEQETFaqCkUCtdizJgxGDt2LG7fvo2cOXMabY7TuXTpEooWLYqvvvoK7777rtHmKBQKB6FikhQKhUKhUCgSQYkkhUKhUCgUikRQ020KhUKhUCgUiaA8SQqFQqFQKBSJoESSQqFQKBQKRSIokaRQKBQKhUKRCKqYZBJYLBbcuHEDAQEB8PDwMNochUKhUCgUyUBEcP/+feTLlw+enqnzCSmRlAQ3btxAwYIFjTZDoVAoFApFKrh69WqSzaOfhhJJSaA1jLx69SqyZMlisDUKhUKhUCiSQ0REBAoWLJimxs9KJCWBNsWWJUsWJZIUCoVCoXAx0hIqowK3FQqFQqFQKBJBiSSFQqFQKBSKRFAiSaFQKBQKhSIRlEhSKBQKhUKhSAQlkhQKhUKhUCgSQYkkhUKhUCgUikRQIkmhUCgUCoUiEZRIUigUCoVCoUgEJZIUCoVCoVAoEkGJJIVCoVAoFIpEUCJJoVAoFAqFIhGUSFIoFAqFQqFIBNXgVqFQKFyMuDjg4UMgOjrpx3p6An5+XLy8HG+bQuFOKJGkUCgUTiQ+HggJAW7fBu7eBe7c4frJ7bt3gchIiqGoKNt1XFzq3tvbWxdMmTIBgYFAlixca0vOnEDu3AmX7NmBNDRTVyhcEiWSFAqFwk7ExQFXrgCXLgHXr9suN25wffMmhZIRxMZyuX+fIi0l+PkBBQoABQsChQrp6xIlgJIlgXz56LVSKNwJJZIUCoUiBURGAhcuAOfPJ1wuX06el8fTkx6bHDnoodHW1tvZsgEBAYC/P5eMGROufX2T9u7ExXFa7tEjfYmKAh48AMLDgYgIrrUlNJSeLuslLIzPO3eOS2L4+wPFi1MwlS4NlC8PVKjAbV/flH/PCoUZUCJJoVAoEuHBA+DkSeDECeD4cS4nTtBL9Cx8fYGiRel1yZ+fHpb8+fUlXz4gKAjI4KSzb4YMXDJlSv1rREfTC3b1qu1y6RJw9ixw8SKF17FjXJ58/1KlKJqqVAFq1ACqV+fUnkJhdjxERIw2wsxEREQgMDAQ4eHhyJIli9HmKBQKOyPCi/3+/cCBA8CRIxREzxJD2bPTa5LYkjdv+pt2io2lF+3sWS4nT1IsHT1K71RilCpFwVSjBlCvHlC5svOEoyJ9YI/rtxJJSaBEkkLhPlgsnC46cEAXRQcOAPfuJf743LmB557jUq6cvs6Z06lmuywi9EAdPUrxeeAAsHcvPU9PkjkzUKcO0KAB0LAhULMmp/AUitSiRJITUCJJoXBd7t0Ddu8GduwAdu7kdkREwsf5+DB+pmpVejTKl1diyJGEhlKk7t0L7NoFbN+eUKj6+lIstWjBpUIFlV2nSBlKJDkBJZIUCtdABDh9WhdEO3Zw2ufJM5yfH1CpElCtGkVR1ar0EPn4GGO3gh6+Y8eArVuBLVu4vnnT9jFBQRRLrVsDrVqpmCZF0iiR5ASUSFIozIkIcOoU8N9/wKZNXCeW1l68OFC3Lqdy6tShl0jFvpgb7bf95x8u//3H+lAa3t5AkyZAhw5A+/YMklconkSJJCegRJJCYQ5EgDNnbEXRrVu2j/HzYyCwtSjKndsIaxX2JDqansG1a4EVKyigrKlRA+jWjYsSTAoNJZKcgBJJCoVx3L0L/PsvsG4dl+vXbe/386MgatyYnoUaNVRNnvTA6dPAX39x2blTn1L18GDgd48eQJcuKqYsvWOP67fLJapOmzYNRYsWhZ+fH6pVq4atW7c+8/HR0dEYOXIkChcuDF9fXxQvXhxz5sxxkrUKhSIlxMXxojd6NFC7NpArF70Dc+ZQIPn6UhCNHQts3sxg3w0bgE8+AerXVwIpvVC6NDBiBAO+b9wAfviBv78IY5r+9z+WYmjfnp6n1LZxUShcypO0ZMkS9OnTB9OmTUO9evUwc+ZMzJ49GydOnEChQoUSfU6HDh1w69YtjBs3DiVKlEBISAji4uJQt27dZL2n8iQpFI7lzh1gzRpezNavT5jl9NxzwAsvcGnQQKWFJ0VcHAthPnjA9iPW25GRrGlksbA1ypOLxcJ4H19feul8ffVFu50lC5A1KwOnM2UyV8bZlSvAkiXA4sXAwYP6/jx5gH79gAEDWJ9JkT5Id9NttWrVQtWqVTF9+vTH+8qWLYsXX3wREydOTPD4tWvXonv37rhw4QKyZ8+eqvdUIkmhsD9nz1IUrVgBbNvGi7NGtmxAs2ZAy5bMZkrvMSYiLMh4+TJw7ZreHDexdWgoK187Cy8vCqbs2Zl9Zr3kycP+boULc0lLxe/UcPIkPZC//GIb0N+wITBkCPDiiyqA391JVyIpJiYGGTNmxO+//46OHTs+3j9s2DAcOnQImzdvTvCcwYMH48yZM6hevTrmz5+PTJkyoX379vjss8/g/5ThaHR0NKKjox/fjoiIQMGCBZVIUijSgMXCaTRNGD0ZeFuxItCuHdCmDYsIenkZY6dR3LvHOJtz5+gNuXyZa225fz/lr5khA3u/BQSwUGNAAIWKtzcrgnt56Yt229OTnqboaL3fm7at3b5/n/amdAorRw42xC1enN6c0qX1dbZsKf98ySUmBvj7b+Cnnxj4rQnyAgWAwYOBQYNU7JK7Yg+R5DI6OjQ0FPHx8QgKCrLZHxQUhODg4ESfc+HCBWzbtg1+fn74448/EBoaisGDB+Pu3btPjUuaOHEixo4da3f7FYr0Rnw8vURLlwLLltnWvcmQgbFF7dtTHBUpYpSVziM+nk1wT52iIDpzhuvTp+kFSoqcOXlhz5OHGXu5ctmuc+fmY7JkoShyZHyWCFPy793jcucOMw2Dg7m+dYu/tyb4IiL4mDt3bKfBNHLnplCuWJE1rCpVAsqUsc9n8PEBOnXicu0aMHMml2vXgI8+Ynxbr17A8OGc2lUorHEZT9KNGzeQP39+7NixA3Xq1Hm8f/z48Zg/fz5OPTk0BdCiRQts3boVwcHBCPz/ymPLly9Hly5dEBkZmag3SXmSFIrUExfHgOqlS4Hly20v/oGB9BR16MD4IncuBhgWxjYchw9zOXKExRIfPXr6c/LmpWelSBF6XLSlcGFOW2XM6DTz7Y42XXj5Mr1l1iLxxo3En+PtTdFUq5a+lCxpn754jx4Bv/0GfPcdW6VodOgAfPABkwYUrk+68iTlzJkTXl5eCbxGISEhCbxLGnnz5kX+/PkfCySAMUwigmvXrqFkyZIJnuPr6wtflSKjUCQbi4UZRYsWAX/8wbgYjWzZGPvRpQvw/PPumX0WFgbs2cNl717g0CHg6tXEH5sxo+00k7aULEkPkLsSGKh7ip7k/n3GD2miUluHh7N1yf79wLRpfGy2bHrJh8aNU98U188P6NsX6NOH08Bff83/rlZWoHFj4MMPgebNzRWYrnA+LiOSfHx8UK1aNaxfv94mJmn9+vXo0KFDos+pV68efv/9dzx48ACZM2cGAJw5cwaenp4okN6jQRWKNCBCMbBoETOJrOsX5cgBdOxIYdS0KT0C7kJMDC/gu3dz2bOHHpHEKFxYnzrSppGKF7ePJ8SdCAhgHFrNmvo+EeDSJX6/2nd94AAF6apVXLTnNmjA/1mrVkDZsikTNR4eFF1163Ia9MsvgfnzWaj0v/9o07hxTCRQYil94jLTbYBeAmDGjBmoU6cOZs2ahR9//BHHjx9H4cKF8eGHH+L69euYN28eAODBgwcoW7YsateujbFjxyI0NBSvvPIKGjVqhB9//DFZ76my2xQKnfPnKYoWLeLoXyMwkKKoe3eOwt0laygykp6GLVu47NrFAOYnKV6c00E1awJVqlAUZc3qdHPdmthYCtQtWyhgtmyht8maQoWYFdmqFT2XAQEpf5+rV4FvvgFmzdJboTRsCIwfz1pMCtchXWW3aUybNg1ffvklbt68ifLly2Py5Mlo2LAhAODll1/GpUuX8N9//z1+/KlTpzBkyBBs374dOXLkQNeuXTFu3LinZrc9iRJJivROeDjjN37+ma0hNHx9GXTdqxcvSu4wlRYerjdZ3bKFUz1PZnFlz64LIm2dI4cx9qZn4uMpmjZtYn+3zZttBayPD6fLOndmgkBKf6Nbt4DPPwemT9dft2VLiqWqVe33ORSOI12KJGejRJIiPRIfz4vP3LkMwNYCjj09OfXQsyen1Fz9kIiN5ZTOP/+wkOXu3bY1mwAGTTdqRG9CgwaMIVJTL+YjMpIeprVrWZz0/Hn9Pi8vejg7dwZeeillKf9Xr3LKbc4cCmYPD8YzjR8P5M9v70+hsCdKJDkBJZIU6Ylz5+gxmjfPNvi4XDmgf396jfLmNcy8NCPCz6iJoo0bE9YgKlGCokgTRoULG2OrIvWIACdOUOAvW0aPk0aGDPR89u5NT2hyK7ifP892OQsX8nbGjGyN8u67zi+UqUgeSiQ5ASWSFO5OdDQze2bO5EhcI2tWeoxefhmoXt11vScxMazXtHIliwqeO2d7f/bs9I61aMHpmad0OFK4MOfPUzAtWcIpVI2AAHqWXnmFaf/J+Y/v2cOaStu383b+/JyW69XLdY8Rd0WJJCegRJLCXTl/nsGpc+fqbRs8PSkW+vdnHIefn7E2ppY7d4DVqymK1q5lMUMNb2+gXj1dFFWpkv4qfKdnTpygN2jhQtZt0qhQAXj1VXqYkgq6F2EtsBEjmIUHcDpv+nQWwVSYAyWSnIASSQp3IjaWbUFmzuR0k0a+fBxNv/IKY3BckStX9OmVHTtsY4ty52Yhy7ZtKYxSk/WkcC8sFnoY586lh0nreefvD3TrBgwdSgH9LB49AiZPBj77jM/39gbef5+VvFUjZuNRIskJKJGkcAcuXwZ+/JH9q7R6rB4erHz92msUD66Ytn/+PEXRsmWcBrGmUiV+rnbtgBo1VH0ixdO5dw9YsICDh2PH9P2NG3NqrU2bZ/9/Ll0C3nxTr99UrBgLYL7wggONViSJEklOQIkkhasiwhij776j90g70oOCgAED2NizaFFDTUwV585x5L9smW0fMA8P1rHp0oVVvlVskSKliLAu1vffs+xFfDz3lywJvPUWp6Gf5iESAf78kx6oa9e4b8AA1lxy5xY8ZkaJJCegRJLC1YiKYrHHKVPY4kHj+efpNerQgTVkXIngYF60Fi609RhZp3Z37MjmrwqFPbh6lWJp1ix6mgAOMN57D3j99adntN2/D3zyCY8/ETYl/uknxsApnIsSSU5AiSSFq3DjBl38M2fq/dMyZgT69ePo1tUCSiMimHW3cCGwYYMeY+TpScHXrRsFX0pq3igUKeXBA8YtTZrEuDeA/7nhw4E33nh6rbCtW+l50uo1vfIKe8Spy4jzUCLJCSiRpDA7u3dzSu333/Xq0IULM0Zi4EA2BXUV4uMZUP7zz2w0qhWxBFjdulcvoGtXjugVCmcSE8O4pQkTdOGTPTsb4b7xRuLTcJGRDOKeMoW3ixShl7dOHaeZna5RIskJKJGkMCMWC0XEl1+yn5hGw4bAsGFM33elQOwzZ/QiltbNcsuUoTDq0YP90RQKo4mLA379lRW3T53ivgIFgDFj6LVN7LjbvJn1xi5d4hTxZ5+xfIAqPeFYlEhyAkokKcxEdDS7lH/1ld593seHImLYsKRTls3E/fuMM5o7Vy/MB3B0rhWxrFpVFehTmJP4eB6Lo0bp1enLlGFhyfbtE/5vw8MZy/Trr7zdtCmfny+fc+1OTyiR5ASUSFKYgfBwYMYM4Ntv9RT+rFnp5h8yxLWmnw4dYtG9hQs5HQEwzqhlS8ZwtGvnHs1yFemDR48YCzh+PHD3Lvc1a8Yp8HLlbB8rAvzyC4/bhw/ZdHf+fLZJUdgfJZKcgBJJCiO5eZPCaMYMvWp0gQIMGn3lFdcpihgVRa/R9OmModIoVYpp0n36qBG1wrUJD6cX6ZtvGL/k5cUBzOjRCSt4nz4NdO/OAYOHBzB2LDBypKrlZW+USHICSiQpjODcOeCLLxijExPDfeXKMY6hRw/XSeE/fZrZdj//DISFcZ+3N9CpE6ceGjVS02kK9+L8eeCddxgzCAC5cnF6vG9f2/96dDSnyGfO5O127Xi8J9USRZF8lEhyAkokKZzJ6dN02y9cqKe816vHVgdJVf01C3FxLKo3fTqwcaO+v3Bh1mkaMMC1pgcVitTwzz8sQHnyJG8//zwF0ZMJCHPmAIMHUzSVKMGyF+XLO91ct0SJJCegRJLCGZw8CYwbx6BOTRy1bs304Xr1jLUtudy7B8yeDUydqteT8fCguPvf/9iiQWXzGIMIp2uDg7mEhnJ6KDyc+7Xt8HBOjcbGcomJ0bdjY/l7entzyZBB3/b2BjJnZmVpbcmaVV/nycPp1KAgPja9EBvL6bcxYxi75OfH7eHDbb+HfftYEPXKFRapXLiQNcAUaUOJJCegRJLCkRw7RnH0229625D27ZkxU62asbYll/PnGaQ6Z44eiJ0rFzuqDxpED5LCsUREABcv2i5Xr+qiKDjYtuaUUXh4sNlw3rwUTfnzs+VHyZKMTytWjELC3Th/nl7UDRt4u3JlBnBXrKg/JjSUcUobNvB7mjQJePttNR2dFpRIcgJKJCkcwZEjrJWydKm+r1Mn4OOPXSONXwTYsoUd0K37wpUvzymGXr3c82JnJLGxjFU7eVJfTp2iINKyqpIiSxZ6dXLmpIcnSxZb709gIKu0a94hHx9bb5GI7lWKi7P1OD14QE/UvXu2nqmwMCYgBAfrxU6fhocHe+6VKsV0+ipVuJQr5zpxeE9DhDFHw4fz9/Lx4TngnXd0D2tsLIO9tTil116jZzY9ed/siRJJTkCJJIU9OXmSfZ2WLeNtDw82ZP34Y9tRpVmJjeWU4OTJts1lW7fmqPf559XI1x7cusXv98ABro8fB86efbbIyJmTDYuLFmVl58KF6a3Jk4fTXEFBFEBGYbHQW3Ljhr5cucLPdfYs637dv5/4c318KMA10VS7NlCpkmsVTNW4dYse1pUrebt+fXqVihXjbRFmtL7zDrdbtKCnWTXJTTlKJDkBJZIU9uDSJcYizJ/Pi4WHB3uPffwx8NxzRluXNFFRbNL51Vd6vJG/PysMDxvmen3hzERoKDvP79tHUXTgAAVEYmTKBJQtS89K2bJcihenIHKVchBPQwQICdEF07FjFIgHD9Ij9SQBAYzXa9iQS/XqrlNfS4RFVIcNowcuc2Y20+3XT3/MihXMZH34EKhQAVi3jtOUiuSjRJITUCJJkRZu3mS22qxZ9MIA7Fb/2WeuIY7Cw1ko79tveQED6JEYOpRTATlyGGqeyxEfD5w4QVG0YwfXWuV0azw8gNKldc9JxYoURgUKpD9PnQgHGZpX7cABfndPCic/P3qYWrRgccZKlcz/XV28SGG0dStv9+sH/PADxTDAz9qmDacqixZlX0PVnif5KJHkBJRIUqSGu3fZV23KFHphAKB5cwqmGjWMtS05hIRQGP3wg17EskgR1ml6+eXEm3kqEmKxMP5s40Zg0ybGcWnfpzVlyvACX60aRVGlSvQuKBInPp6epi1b9EUT8Rp587KKe7t2zKw0cqrxWcTHAxMnsuikxUIx/PvverXuCxd47rhwgQOUdev4/1AkjRJJTkCJJEVKePCAmV5ffaWPdGvXZufwJk2MtS05XLlC22fP1rOhypVjp/Nu3VQAaVKIsNbVhg0URv/9lzCoOlMmoFYtdoKvW5f/j+zZDTHXbRChR27DBmDtWq4fPtTv9/end6lTJ6BtW3PG92zezOm1mzcp6KZN06ffgoMp+A4fpu0rVwINGhhrryugRJITUCJJkRzi4xlj8Mknem+1ihXpOWrTxvxu/6tXaeucOfq0YM2arNPUrp1rFLE0ishICqI1a7hcumR7f+bMvKA1bUqh7KoBx65EdDSnsFatYmFT69/Ex4f/6d69KZzMFMcUEkK71q/n7TffZJ0lb29mDbZrB2zbxqnFFSvoYVI8HSWSnIASSYpnIcKR64gRdP8DzFL57DPWPDG7uLh+na7+H3/U2580bUpx1LSp+cWdUVy4wIvU6tX0AGjfHcCLcP36zPRr0oQBxcoDZxwi7JG2fDmzSrUK2ACQLRvQtSswcCB/JzP83y0W1k4bPZq3Gzfm9FvOnPSOvfQS/3d+fmx90qKFoeaaGiWSnIASSYqncegQ8N57wL//8na2bPQkDR5srtFpYgQHsxnnjBkcdQM8GY8dy0whhS0inOr44w96Jo4csb2/SBF6JVq3pjDSAm8V5kKEv93ChVysswgrV2YB1J49zTEd99df9Co9eMD/159/0gsZHU2htHIlzzMrViih9DTscv0WxTMJDw8XABIeHm60KQqTcPWqSL9+Ih4eIoCIj4/IO++I3L1rtGVJc+uWyPDhIv7+tB0QqV9fZONGoy0zH/HxItu2ibz1lkiRIvr3BYh4eYk0aSLyzTciJ0+KWCxGW6tIKXFxIhs2iPTuLeLrq/+2GTOKvPqqyIkTRlsocuyYSIkSul1//cX9jx6JtGvH/b6+ImvXGmunWbHH9VuJpCRQIkmh8eCByMcfi/j56SfU7t1FLlww2rKkuXdP5KOPeKLVbK9TR2T9enWBt8ZiEdm/X+S990QKFbIVRv7+Ii++KPLzzyKhoUZbqrAnd+6IfPutSLlytr/5Cy9QgBh5jNy9K9KiBe3x9BT54Qfuj44W6dBBF0rr1xtno1lRIskJKJGksFhEFi0SyZ/f1vuya5fRliXNo0f0dmTPrttes6bxJ36zcfKkyCefiJQsaXuRDAigp2H5copkhXtjsYj8959Ix466pxgQKV+e54C4OGPsio0VeeUV3Z4RI+jptBZKmTK5xjnJmSiR5ASUSErfHDhAQaSdnIoUEVm2zPwCIy5OZN48kcKFddvLlhX580/z2+4swsJEpk8XqVUrocfopZf4Oz98aLSVCqM4f55TrQEB+n+jZEmROXNEYmKcb4/FIjJunG5Lt24iUVEcCDVrxn3ZsokcPep828yKEklOQImk9ElICOMStNFkxowin31m/oumxSKyZo1IxYr6yTRfPpHZszkaTe/ExYmsW8dpUus4FC8vkbZtRRYuFImIMNpKhZm4e1fk009tvbFFioj88osxnqV580QyZKAdzZrRw3n/vkjt2tyXNy8FnkKJJKegRFL6IiZG5LvvRLJmtY07unLFaMuSZu9eBhNrdgcGikycKBIZabRlxnP2LGOyChSw9RqVLy/y9dciwcFGW6gwO/fvi3z1lUhQkP7/ee45kT/+cL53dv16Tq8BIvXqMebwzh3+nwGRYsVEbtxwrk1mRIkkJ6BEUvph82ae9LQTYKVK3Gd2rl8Xefll3W4t2y69BxfHxvICpk1FaEu2bCJvvCGyb5+aelSknMhIkc8/tx1I1akjsnu3c+3YsYMDIUCkalWR27cpjIoV475q1VQcnRJJTkCJJPcnJMRWZOTIITJjhnFBmsnl4UOR8eP1ESUg0quXyKVLRltmLDdvcmrU2mvk4SHSqpXIb78xhkOhSCthYQkzRvv25aDFWRw8KJIrF9+7XDmKpHPnRHLm5L727c1/HnMkSiQ5ASWS3Jf4eJFZs+hZ0E5ygwbRbW1mLBZe7K2DsmvVEtm502jLjMNiodevWzc9XgPgxeKDD0QuXjTaQoW7cv0666Zp/7lMmUQmTGDmmTM4eVLPvC1ThlPH27frMXdvveUcO8yIEklOQIkk9+TwYbrIrafWduww2qqkOXBApEED3e78+UUWLKDgS488eiQyd65IhQq2U2p16/J7UV4jhbPYvdv2nFKunMjWrc557/PnRQoW1OPsbt8WWbJEt2XqVOfYYTaUSHICSiS5FxERrDjt5cWTR+bMrCNk9syv0FB6ubRsO39/kdGj02/MwZ07HK3nyZOwUvLBg0Zbp0ivWCzMPtOmwAD+J51Rjf/sWWa2ASKVK/MYmThRL0K5erXjbTAbSiQ5ASWS3IdVq/TRFiDSuTNbjJiZ+HiRH39knJRmd8+erpFt5wjOnxcZMsQ2DiRfPpEvvmCMiEJhBu7csS3+mDevyN9/O/59T54UyZ2b71m9OrPeBg7k7axZKaTSE0okOQElklyfkBAKC+2EVbSoa4yqDh7Ua58AnFJylvvebOzdK9KlC0fE2vdRsSJH7c6K/VAoUsrmzSKlS+v/2YEDRRx9KTl6VA/cbtyY76dNA5Yvz1IG6QV7XL89U9cWV6EwPyLAokVAuXJce3oC77wDHDvGju1mJTwcGDoUqFYN2LULyJwZ+OYbYP9+oH59o61zLtu3Ay1bAjVqAEuXAhYL8MILwPr1wKFDQJ8+gI+P0VYqFInTsCFw8CAwfDjg4QH89BNQoQLw33+Oe8/y5YF//gECAvg+AwcCv/0G5MnDc9+AATw3KpKJHUWbW6I8Sa7JlSsibdrYemH27DHaqmdjsTDY2LpYXbduIteuGW2Zc7FYRDZutC2M6eUl0qePyJEjRlunUKSOLVv0GkYeHiKjRjk2FnLDBtZMA1gXbNs2EW9v3v7iC8e9r5lQniSF4gksFmD6dOC554BVq+hl+PRTYN8+eiPMysWL9JD07g3cugWULk1vya+/AvnzG22dcxAB1q0DGjQAmjYFNm0CvL2BV14BTp8G5s3jKFyhcEUaNAAOH9Y9OZ9+yv/51auOeb+mTYH58+nB+uEHHk9TpvC+Dz/kbUXSuJxImjZtGooWLQo/Pz9Uq1YNW7duTdbztm/fjgwZMqBy5cqONVBhGJcuAc8/DwweDNy/D9SpQ1f3J5+Yd0omLo5TaeXLUxT5+gLjxvFk2qyZ0dY5BxF+9tq1ObW2fTu/h8GDgXPngB9/BIoXN9pKhSLtZM7MKbdFizgdtnUrULkysHatY96va1fgu++4/cknQJYsQP/+HEz26gXcvu2Y93Ur7OjZcji//vqreHt7y48//ignTpyQYcOGSaZMmeTy5cvPfN69e/ekWLFi0qJFC6lUqVKK3lNNt5kfi4UZYJkz66ng331n/kqzhw4xA0WbUmrcWOTMGaOtci47d/Jza9+Bvz+L3zmzarFCYQTnzunHv4cHq+c7qk3OiBF8H19fTsOVLcvbrVq5d421dJfdVrNmTXn99ddt9pUpU0Y++OCDZz6vW7du8vHHH8vo0aOVSHIzrl/nga5dZOvXN3+a68OHIh9+qNdqCgykyEtPfcSOHGHLBOt+c2+9pRrNKtIXjx6JvPaafhx07MhabvYmPl6kQwe+R1AQy6H4+fH2pEn2fz+zkK5ikmJiYrB//360aNHCZn+LFi2wY8eOpz5v7ty5OH/+PEaPHp2s94mOjkZERITNojAfWuZa+fLAmjWcnpk0idkcJUoYbd3T2boVqFQJmDgRiI8HOncGTp5k3I2Hh9HWOZ7z5+nmr1QJWLGCGYcDBwJnzwKTJwNBQUZbqFA4D19fYMYMTin7+AB//AHUqgVcuGDf9/H0BBYs4HF36xbw0Uec1geADz4A9u617/u5Ey4jkkJDQxEfH4+gJ86iQUFBCA4OTvQ5Z8+exQcffICFCxciQ4YMyXqfiRMnIjAw8PFSsGDBNNuusB/nzgGvvw506cKLbVgYU+UPHGB6v5eX0RYmTlQU04AbNaIgyJePJ8SlS4G8eY22zvHcucOyBmXKUNyKAC+9BJw4AcyeDRQqZLSFCoVxvPIKsGULkzROnmR83s6d9n2PzJk5MMmdmzGP27fzPBoXB/ToATx4YN/3cxdcRiRpeDwx3BaRBPsAID4+Hj179sTYsWNRqlSpZL/+hx9+iPDw8MfLVUelHihShAgwdy5QsiQwcyawfDmQIQMzRHbuZC0ks7J7N1ClCj0lIsxuOXECePFFoy1zPDExDEwvUQKYOpUn5JYtWfPpt9+YxadQKOhB2rOH54rbt4EmTXiM2JNChYC//tK9VqVLc9/588D779v3vdwG+83+OZbo6Gjx8vKS5cuX2+wfOnSoNGzYMMHjw8LCBIB4eXk9Xjw8PB7v27BhQ7LeV8UkGc+dOyJt29o2MA0IYLNXM/PoETvQa1WindWawAxYLCLLlokUL25bIfvff422TKEwN/fvi7Rrpx83jogZmj5drz82apT+Xv/8Y//3MpJ0FZPk4+ODatWqYf369Tb7169fj7p16yZ4fJYsWXD06FEcOnTo8fL666+jdOnSOHToEGrVquUs0xVpYPNmIEcO4O+/9X3/+x/n1atUMc6upNi/n9OAn3/OdNvevVnttk0boy1zPPv3A40bM97q/HlW+p09m1Oizz9vtHUKhbnJnJlenmHDePvdd1nXyJ5Vsl97jdXq4+Ppme/cmfsHDADu3bPf+7gFdhRtDkcrAfDTTz/JiRMn5K233pJMmTLJpUuXRETkgw8+kD59+jz1+Sq7zXWIi2OXe2vvEWB+T0xcnMhnn4lkyEB7c+cWecL56bbcvm3b1NPPT+Tjjx2TraNQpAc+/1w/ngYNsm9Zk8hIdiIARKpWFSlShNv9+tnvPYzGHtfv5EUzm4Ru3brhzp07+PTTT3Hz5k2UL18eq1evRuHChQEAN2/exJUrVwy2UpFWrl8HWrRg3I5GgwZ6/yGzcvkyPUbbtvF2ly7AtGlArlzG2uVo4uOZnfPRRwykBxhUP3EioPIeFIrU8/77QPbsTFb58Ud6eRYuZCX6tJIxI7BsGVC9uu7lvXIF+OUXnrvatk37e7gDHiKq1d2ziIiIQGBgIMLDw5ElSxajzXF7Vq1KeHB+9x3w5ptMYzUrixfzRBYRwUq606ZRKLh7Wv+ePayMvX8/b1eqxBYI9eoZa5dC4U4sXcrzSUwMp8YWL7aPUAI4+OzWjefXGjWYaFKoEHD8OKf+XBl7XL9NfNlRpCdiYoC337YVSF5eTFUdOtS8Aik8nHP7PXtSINWpw+70vXu7t0AKDQVefZWpyvv3s93BlCnskacEkkJhX7p0YZySjw+9Pz16ALGx9nntrl2Bfv0YO3n+PJA1Kz1KY8bY5/VdHZNeehTpiStXWD/n22/1fd260bVcsaJRViXNjh3su7RgAUXc6NGsdVKsmNGWOQ4RNs0sU4bufxGgb182oB0yhGUZFAqF/Wnd2lYode9uP6E0dSrPW6GheoD4t9+y92V6R023JYGabnMs//wDvPCC7b65c4GXXzbEnGRhsQBffMGGkfHxQJEijBNIJMnSrbh4kVkxWoJphQqcWmvQwFi7FM4nPh54+JBFUh8+5BITo9+veVF9fBj7kikTFz8/9/awOoM1a1hjLSaGU3Dz5tnH0757N73A8fH6vurVgV27zFukNynscf1WIikJlEhyDBYLMH48MGqUvs/fn+Xxn3vOOLuS4vZtek60rt09ezL+KDDQWLscSVwcp9I++YQXQ19fes3efdd+cREKc/DgARMQrlzhcvUql9BQ2yW13Zo8PBiInDs3Expy52YrmkKFgKJFuRQrBmTLpsTUs1i1ikIpLo7xmlOm2Of7+uwz23MywNceMiTtr20ESiQ5ASWS7E9YGNChA/uYaXTtCsyZw9GmWdm2jS7u69c5Iv7+e9YVceeT+eHDbJmwbx9vN2oEzJoFpKCIvcKE3L7N2LnjxzlVevo0cOoUcPNmyl8rY0Yu3t48FrQrigi9HZGRQHR0yl4za1YOlipU0JeKFd17MJJSFi+mJ0mEwmbs2LS/Zmws4wwPHND3Zc3KVko5c6b99Z2NEklOQIkk+3LoUMIikD/9RLFhViwW4MsvgY8/piu6VCng99/NHS+VVmJi6OkbP56fOTCQDYQHDDBvEL0icUJDGT+3Zw9jTA4dAm7cePrjs2WjZ6dgQX2dOzcvkjlzsrhr9uwc0Pj7J2+QEBdHL2RkJPv43b4NhIRwuXULuHSJ07kXLgBPacUJDw+2H6pTR1/KlHHvQUpSTJ/O7FKAg7Y33kj7ax45wkK4cXH6vsGDObXuaiiR5ASUSLIfixZx5GPNvn08IM3KnTvMXluzhrd79mTX7oAAY+1yJMeOcUpRC9rs1Ikn4PTQiNfVEQHOnGHzUm05fTrh4zw82AexQgX277JesmZ1utk2REWxkfXRo7ZLYiXwgoKA5s0Z19i8OW+nN8aN41S4pyf7stmjvtGYMbaeKU9PiusKFdL+2s5EiSQnoERS2omPBz74gJ4IjapVgXXrzO3CPXCAAuHyZU6vTZ0KDBzoviPX+Hj+RqNG0ZOUPTvjrbp1M9oyxbMIDWUw/bp1TIRIbMqsTBkmFlSrxozMihVdrwZOSAibWWvLnj3Ao0e2j6lcGejYkSnzZm56bU9EWI5j9mx697ZuTXvLppgY1kw6ckTf17Qp8O+/rnX+UyLJCSiRlDYiIjjK27VL3/fuu6zGbOZ08XnzmMn16BFQvDhTbitVMtoqx3H2LGul7NzJ223bMsXfzBXO0ysWCwXCqlUURvv22fb18vXlBa5ePS5163KKzN2IjuY04j//cLGOowGAsmUplrp1M3cyiD2IjWVfyPXrgXz5eL5Na7X7/fuBmjX5f9P44w8GjLsKSiQ5ASWSUs+5c3TpW7N0qd5M0YzExADDh+vz761bsw5StmzG2uUoRDh9+M47nOYICGCF85dfdq0Ro7sTF0cPwbJlvFA9GVNUsSIHIy+8QGHk52eMnUYSEgKsXs3v6J9/bEsS1KzJeLru3d03+Ds8nL/98eP0GG7dypixtPDmm7axSCVL8vVdJavVLtfvVHd9SyeoBrep499/EzanPX7caKuezY0bIvXq6faOHi0SH2+0VY4jNFTkxRf1z9u0qcj/94pWmIC4OJH169k0OGdO22MpSxaR7t1Ffv6Z/1uFLffuiSxYINK+vd5sGhDx9xfp00dkzx6jLXQMFy+K5MjBz9q3r4jFkrbXCwtjk27r/96sWfaw1DnY4/qtRFISKJGUcmbMsD2oypThBdnM7NwpkjevfgFascJoixzLpk0i+fPz83p7i3z9tXsLQlfixAmRDz7Qfx9tyZ5dZMAAkVWrRB49MtpK1yE4WGTSJJGyZW2/z/r1RZYvpxh1JzZsEPH05GecMiXtrzdvnu33lj+/yMOHaX9dZ6BEkhNQIin5xMeLDB1qe0C9/LJITIzRlj2bBQtEfH1p73PPiZw5Y7RFjiMmRuSjj0Q8PPh5S5US2b/faKsUd++KfP+9SI0atsdPtmwir71Gz2xsrNFWujYWCwdDffpwYKB9x8WKifzwg3sJz6+/5mfz8hLZvDltr2WxiDRsaPu/nDTJPnY6GiWSnIASSckjKkqkcWPbA2nq1LS7ex1JfDwFg2Zvhw4i9+8bbZXjuHRJpHZt/fMOGODen9cV2L+fv4O/v/67ZMgg0q6dyNKl7nXhNhPXr/PYz55d/94LFhSZOVMkOtpo69KOxSLSsyc/V758IiEhaXu9I0d075Tm1bx3zz62OhIlkpyAEklJc/u2SK5ctgLpn3+MturZPHgg0rGjbu8HH7j3dNOqVfRKACKBgSJLlhhtUfolKopTGNaCFRCpWFFk8mSRW7eMtjD9EBnJwVy+fPrvUKSIyJw5rj8N9+ABQx0AkVat0n5+GzTI9v86apR97HQkSiQ5ASWSns2ZMwkDtE+eNNqqZ3PlikjlyrTVx4cXLHclLk5k5Ej9t6lRg8GdCucTGioyZoztgMLbmyP+bdvM7XV1d6KiRL77TiQoSP9tqlQR2bLFaMvSxuHDeijBV1+l7bVu3hTJlEn/fgIDze9NUiLJCSiR9HT27LEVR5kzM0jSzOzbJ5InD+3NlUtk+3ajLXIct24xY037fd54Q03fGMGlSyJDhohkzKj/FgUKiIwbZ/7jJb0RGUkxERio/1bduolcvmy0ZalHS6TJkCHtWX2ffmp7zh8/3j42OgolkpyAEkmJs3697cFSqxbdu2Zm9Wp9JFShgnunu2/bpk8hZMoksmiR0RalP44cEenVi8Gz1t6JX39VQdhmJySEAfNagoOfn8iXX7rm72axiLz0kp5pnJbMtMhI26zLnDnNfd63x/VbtapUpJjffmOfJI2XX2aPqEyZDDMpSWbPBtq1Y4PN5s2BbduAwoWNtsoxzJgBNG7MgoNly7I6c48eRluVfjh5klWeK1YEFi5ku5dmzVgNef9+3mfmavMKIFcuHkcHDwKNGrHy/ogRbKpr3arDFfDw4GfJmxc4dQr46KPUv1bGjMBnn+m3Q0OBWbPSbqOpsaNoc0uUJ8mWqVNtPUgTJpg7lsJiEfnkE93efv3MX5IgtURHc/RrPU2gstecx9mzIr1722YBdenCKV6F62KxMJA7a1Z92uqTT1wvC27VKv1/uWlT6l8nNlakZEn9tfLlY0yXGVHTbU5AiSRisdimywPmD3iOjqYoss7GMLOgSwu3bok0aMDP6eEhMnGi+35Ws3HtmsjAgbbTai++yKBZhftw44ZtRmyNGiLnzhltVcrQMtQKF07bAGrBAttrwcyZdjPRriiR5ASUSOLF9pVXbA+KVauMturZREYy7VUrqDZ7ttEWOY4DB0QKFeJnzZJF5O+/jbYofXD/PoW3dY2j1q2V58idsVhEfvtNL6cRECCycKHRViWfiAiWOABE3n479a8TF2dbwbxsWXMOypRIcgLpXSRZLCJdu9oKpG3bjLbq2YSF6T3YMmZkwLa7sny5fpEuWZItLRSOJS5O5Kef9DY2AP9vO3YYbZnCWVy+zLYm2u//8sscmLkCa9bQZk9Pkb17U/86S5bYXhfWrrWfjfZCBW4rHIrFArRty0BtjcOH2WnarNy6xaDl7duBrFmBf/8FWrUy2ir7IwJMngx07gxERbH7++7dDNRWOI5t29hhfeBA4OZNoFgxYOlSdlyvU8do6xTOolAhYNMmYNQowNMT+PlnoEED4OpVoy1LmpYtmchhsQCDBgFxcal7nS5dgPLl9duTJ9vHPrOhRJIiUbSMnNWr9X3nzzNjx6xcugTUr08hFxQEbN7snheuuDhgyBBg+HCKpddfB/7+G8iWzWjL3Jfbt4EBA3ghPHwYCAwEJk0CTpygUPXwMNpChbPJkAEYO5YDsRw5gAMHgBo1gB07jLYsaSZP5iDy0CHgu+9S9xqensD77+u3163j8eBuKJGkSEB8PMXGpk36vmvXOGo2KydP0uZz54AiRTjiN7OgSy0PHgAdOwI//MDbX30FTJumUsodhcUC/PgjULo0MHcu9w0axP/ZO+8Avr7G2qcwniZNgH37eL7RPNlz5hht1bMJCuK5A6DQCw5O3et062ZbSiW1gsvMKJGksMFiAWrXBnbt0vfdvAnkz2+cTUlx7BhPTNevA+XKUSCVKGG0VfYnOJg1W/7+G/DzA37/HXj3XeXFcBTHj1N4v/oqEBYGVKpEL8GsWUDOnEZbpzATRYpwir9zZyA2ltOx48bR02tWBgwAqlcH7t9Pfe0kb28OFjR+/hm4d88e1pkHJZIUjxHhRWHfPn3frVtAnjzG2ZQUR45wJBcSAlSpAmzZYm5Bl1ouXOBvc+AAC91t2sSYAIX9iYsDJkwAqlYFdu4EMmfm9MS+fe45fauwD5kzM35TExyffAIMHcqBpxnx9ASmTOH23LnA3r2pe50BAzjdCAAxMSyg6k4okaQAQIH0wgu8KGiEhgK5cxtnU1IcPEiBFBrKEdGGDfrB6k4cOcJg+fPngaJF6c2oXdtoq9yTo0f53Y4cyRN+27asUvzWW2pKU5E0np7A+PG6+Pj+e6BXL/6XzEidOkCfPtweNix1nq9MmRgjqTFrlrk9aClFiSQFRICXXmLbBI27d80tOPbvB55/nnbWrEnb3TFweds2oGFDTrVVqECXvjtOJRpNXBwvbtWq8b+VLRswfz6wYoV7eiYVjmXIEGDRIk5H/forp+HMKpQ+/5xCZ+dOYPny1L3G//6nbx85knqvlBlRIkmBgQOBZcv023fumFtw7N/PzLuwMI6E/vmHmRruxurVQIsWQHg4PUmbN7P/ksK+XL5Mj+THHzOepH17xiP17q3ivRSpp0cPYOVKxg/+/TeDnGNjjbYqIfny6XFFI0emriRA7tw8XjTcqZ+bEknpnA8+0LN2AMb2ZM9unD1JcewYhcO9exQO69YxHdvdWLYM6NCBNZDatKEQNLNwdVV+/50B2du2AQEBwC+/AH/+qcSowj688AK9kb6+/F/17Jn6ukSO5J13mIxw+rTt9SAlWE+5/fQTEBFhH9uMRomkdMzUqcAXX+i3b9xgULBZOXOGHqS7d4FatYA1a3hhczeWLOGoMy6Oo9E//mD3bYX9iIykB7VrV3rqatVizZi+fZX3SGFfmjfnMezjw8KjffqYL5g7SxZ6kQBgzBjg4cOUv0bNmowN1fj9d7uYZjhKJKVT/vyTmRcaly+be/R86RJjkG7d4sjfXQXSggUcbcbH84I9fz7jGhT24/RpntDnzKEgGjmSFbPNXAdM4dq0akXvsBaj9O67RluUkP/9jzWPbtwAZsxI3WtYe5PmzbOPXUajRFI6ZM8eFiTUOHOGZfbNyvXrFEjXrgFlyrjv1NPPP1MYWSz0csydC3h5GW2Ve7FsGasinzjBQcHGjaxno4SowtG0basLh8mTgW+/NdScBPj6Mi4PYKHJqKiUv0bXrvr2li08Z7s6SiSlMy5c4NSCxq5dQMmSxtmTFHfvMgbpwgWO9P/919xlCVLLzz+z3ojWZmTWLKYTK+xDXBwwYgRrS92/z4zBAwdYhFShcBbdu+shDsOH2ybMmIG+fTlgDg5mXFFK8fMD3nxTv714sf1sMwp1Gk5HhIcDxYvrt//4w1YwmY2oKGYanTjBDIwNG9wzHXvJEnqORIA33mCbESWQ7Mfduwyg1dowvPMOxbaZi6Qq3Jf33uNxLsIaSnv2GG2Rjo+P3o/t88+B6OiUv8aAAfq2Vi/KlVGn4nRCXJxtmvx33wEvvmiUNUmjBS1v387stbVrWfrf3Vi5kqmzWkfuqVNV4LA9OXOGxSE3bmRF5N9/Z2NaNb2mMAoPD55/27enCOncmVnFZmHAAA5Kr19ntmdKqVJF7+d27RoLtLoySiSlE6ynqAYNsg3aNhuaR+WvvzhP/tdfLKTobvz7L6d/4uI4opw+XQkke7JpEwXS2bM8ae/YoVq5KMyBlxeTMkqXppDo3t08pQH8/PTA8smTU5eJZ93P7ddf7WOXUSiRlA7o1YuFFwHGH5m90Ndnn9FGDw/2AWrUyGiL7M/27ayDFBMDdOrEmCQVpG0/fvqJsWxhYRRKu3e7p9BWuC5ZsrDCdebMFPQffmi0RToDB9K+U6foxU8pPXvq2xMm2M8uI1Aiyc2ZNYvl8TVOnTLOluSwaBEwejS3v/+ermh348QJZro8fMjU4MWLVV8weyECfPop8Mor+pTtpk1AUJDRlikUCSlXjgMkgNPAf/5ppDU6WbJwxgEAvvkm5c/PkYPJERpmv+48CyWS3JjDh4HXXtNvR0aaOyB41y496O/dd4HBg421xxFcuwa0bMmK4XXqsLicj4/RVrkH8fGs06KJ7E8+oSfSz89YuxSKZ9G5sz499corwM2bxtqjMWQIvdsbNvBaklKsrz2p7QlnBkx8yUycadOmoWjRovDz80O1atWwdevWpz52+fLlaN68OXLlyoUsWbKgTp06WLdunROtNY7ISKByZf32xYvmrtp85QoDyaOjGdD4+edGW2R/7t2j5+jqVdZ7WrnS3L+JKxEdTRf/Dz9wmvb77+lRUjFeCldg/Hier+/c0UuBGE3hwnoM3/ffp/z57drp26NG2ccmI3ApkbRkyRK89dZbGDlyJA4ePIgGDRqgVatWuHLlSqKP37JlC5o3b47Vq1dj//79aNKkCdq1a4eDBw862XLnkzmzvr1ihbkzw+7f5wGlVdNeuND94nMePaIIPHaMRQzXrqVLWpF2Hj6ksP7tN2atLV7MwH+FwlXw9dW9nmvXsgyIGdCOo8WLWUImJQQEAA0acDs+ngNhl0RciJo1a8rrr79us69MmTLywQcfJPs1ypUrJ2PHjk3248PDwwWAhIeHJ/s5RtOqlQjHIiIDBxptzbOJjxd58UXaGhQkcvmy0RbZH4tFpHdvfsaAAJGDB422yH148ECkaVN+t5kyifzzj9EWKRSpZ8oU/pf9/ETOnDHaGp67ypalTT/8kPLn//67fi2aMsX+9iWFPa7fLuNJiomJwf79+9GiRQub/S1atMCOHTuS9RoWiwX3799H9me0uY+OjkZERITN4kosXMi+ZhqzZxtnS3L4/HMGK2qp/mZuj5JavviCPdm8vFhh13oaVJF6HjwA2rTRayCtW8dmogqFq/Lmm/wPP3rEXmpGT7t5eOixRTNmpNye1q31betm6q6Ey4ik0NBQxMfHI+iJNJWgoCAEBwcn6zW+/vprREZGoqt1g5knmDhxIgIDAx8vBQsWTJPdzuTGDRYm1IiJMc6W5PDPP3qvoB9+MHf179Ty11/ARx9xe8oUdRG3F/fv8wS8eTPd+v/8A9SrZ7RVCkXa8PCgGPHzY8D0woVGW8RWJX5+LAq5e3fKnpsxox7qcf166ip4G43LiCQNjyciMUUkwb7EWLx4McaMGYMlS5Yg9zOaf3344YcIDw9/vFy9ejXNNjsDEduWHadOmbuq8OXLDLQVYUbHwIFGW2R/jhxhjSoRZuq5Y7aeETx6xBpTW7cyVXn9emYKKhTuQLFieobm228zmNtIsmUDXnqJ26mpwD1ypL69bZt9bHImLiOScubMCS8vrwReo5CQkATepSdZsmQJBg4ciN9++w3NmjV75mN9fX2RJUsWm8UVaNlS3/78c1ZyNSuPHjFr4s4doHp1tuJwN+7e5YU8MhJ4/nnzdfx2VeLigG7dWPsoIIACyR09kIr0zTvvAOXLA6Ghei81I+nbl+slS1LuDbLOcktN01yjcRmR5OPjg2rVqmH9+vU2+9evX4+6des+9XmLFy/Gyy+/jEWLFqFNmzaONtMQ1qzhdAPAooRmOKiexfvvA/v2Mbtr6VL3q2NjsXDa89IlNhT+/Xdze/VcBYuF6dErVjCGbcUKoGZNo61SKOyPtzen3QBgzhzg0CFDzUGTJuznFhYGrFqVsuda+zAWL7avXc7AZUQSAAwfPhyzZ8/GnDlzcPLkSbz99tu4cuUKXn/9dQCcKuurSV5QIPXt2xdff/01ateujeDgYAQHByM8pbmMJkaLzbC+bWZWrtQ7Q8+frzdCdCcmTKBw9fNjoHa2bEZb5B4MH87/jJcXhWfjxkZbpFA4jnr16DUVAd57z9ggbi8vPd51/vyUP9+6l9u1a/axyWnYL9nOOfzwww9SuHBh8fHxkapVq8rmzZsf39evXz9p1KjR49uNGjUSAAmWfv36Jfv9zF4CQEuvBES2bTPammdz/bpIjhy0dfhwo61xDP/8I+Lhwc84d67R1rgP332n/88XLDDaGoXCOVy4IOLjw//9mjXG2nL0KO3w9hYJC0vZcw8e1I/fn392hHWJY4/rt4eI0UmG5iYiIgKBgYEIDw83XXzSjBlMEwU477tihbH2PIv4eDYc3bgRqFIF2LmTUybuxI0bLIYZGspg9B9/NNoi92DFChbiFAG+/JKjaoUivfDOO+yf9txznHYzss9j+fLA8ePAvHlAnz7Jf57FohcILleOr+EM7HH9dqnpNoVOaKgukADgjz+MsyU5fPMNBVKmTMCvv7qfQLJYgH79+LtUruyewehGsH8/m9SKAK++yp5+CkV6YuRITtkfP258TI/WcHzZspQ9z9MT8Pfn9okT9rXJ0SiR5KLkyqVv79tn7jYeJ0+y2SgAfPcdUKqUsfY4gm+/Bf79lyeCX391v2B0IwgOZruRhw/phfz+e9WLTZH+yJ5d955OmMABmVFoImndOhZzTQljx+rbt27ZzyZHo0SSCzJzpr7dvj1QrZpxtiRFXBzw8stMG23dmtlJ7sahQ8CHH3L722/NXX7BVYiNBbp25RRmuXJ6XzaFIj3yxhtA1qysf5dSL449qVABKFGCZVxWr07Zc61rOKc0Q85IlEhyMe7eBf4/mQ8AU+jNzNdfA3v2AIGBwKxZ7ucJiIpiUcyYGNZFGjTIaIvcg/fe04tF/vEH/z8KRXolSxZg6FBujxtnXKabh4fuTfrrr5Q91zqTedw4+9nkaJRIcjFatdK3160z9+j65Elg1Chuf/utbUVwd2HsWH7OPHnYJ8/dRKARLF7MaVmAAaLuOD2rUKSUYcPYo/DIEeDvv42zQys3uG4dE3JSQqZMXF+8aF+bHIkSSS7Ejh30ygBA3ryM0zArIvR4xcRwmq1fP6Mtsj/79wOTJnF75kwgZ05j7XEHzp7VvXEffUTvnEKhYGySlqyjDSKMoE4denbv3AH27k3Zc99+W992lT5uSiS5CLGxtg08NbFkVhYsALZsYYPDadPcz8MSG8v4qvh4oHt3xoYp0kZMDKcuIyNZKPLTT422SKEwF2+8wUyxDRvowTaCDBn0AfqaNSl7bs+e+nZKBZZRKJHkInz1lb79zjtAgQLG2ZIUYWF6qvaoUe5ZVfvLL+n2zpHD2FGdOzF6NDM1s2XTK2srFAqdwoX1AdkPPxhnh9blIaXB29ZJLbNm2c8eR6KKSSaBGYpJhobapvxHRZk7xfyNN+g9KluWmV8+PkZbZF8uXGDGVXQ0PWa9ehltkevz339A06acpl26VA8OVSgUtmzYADRrxvik69cZ1O1sbt5kLzcPD067paT1kvWsgqPVhyommU6w7nsze7a5BdKRI8D06dyeNs39BBLAHmLR0byoW7uPFakjMhIYOJAnzIEDlUBSKJ5F06ZAmTKsU7RggTE25M1Lr5AIwypSQv36jrHJUSiRZHLOnGGGj4bZA6BHjOCB89JL7tmAdO1apr5myMCq2u4Wa2UEo0bRO1ewICuzKxSKp+PhwerzQOqazdqLJk24/u+/lD3PuoRNSgtSGoESSSbn5Zf17eXLje3bkxTr1+tlCT7/3Ghr7E9MDNNwAWDIEE65KdLG7t0sDwGwF6HJ2iMqFKakRw8GcO/axYxQI9AGwSkVSS+8oG/v3GkvaxyHEkkmZs8e/U8UEMAmn2YlPl4vnf/GG0CxYsba4wimT6dnLyiIQcaKtBEXx3R/iwXo3VsPBlUoFM8mTx49w8yoKTdNJB0+zCLHycW6VIpRtqcEJZJMzPDh+vb8+eae2lm8mAdLYCDw8cdGW2N/7t8Hxo/n9tixqgK0PZgxAzh6lBmCkycbbY1C4Vr06cP1ggXGVOAOCgJKluR7796dutewDiUxK0okmZQ9e4Dt27nt4wO0a2esPc8iPh747DNuv/8+L3ruxuTJwO3b7Fvkjv3nnM2dO3o19nHjVCFOhSKldOjADLcLF4yrOVSrFtcpFUmuVBZGiSSTojVMBVhPwtPEv9Rvv3EaKnt24M03jbbG/oSG6pW1x40zdysYV+GTT1hPq1Il1e9OoUgNmTLpbapWrDDGhtSKpL597W+LozDxpTf9cvAgsHGjfrtHD+NsSQprL9Lw4YydcjcmTeJ0W5UqzNpTpI1Tp9jGBQCmTFFFIxWK1KIVlly50pj310TSnj0pm/Lr0kXfDgmxr032RokkE2Idn/Hll+auNbR8OcvjZ83qnl6k8HC97tPo0eb26LkKo0czWLtDB6BhQ6OtUShcl9atOcg4cgS4dMn571+pEuDry8Dtc+eS/7znntO316+3v132RJ3yTcbNm7a1L/r3N86W5KAJuiFD3DOYefp0ICKC6f5mjgtzFQ4f5vSsh4fugVQoFKkje3a9OKMR3iQfH6BCBW4fPpz851l7j43ygiUXJZJMxrRp+nbPnuYOaN27lyUKvL2BwYONtsb+REXpNXzef195keyBFqzdrZt+clUoFKlHG7yltI+avahYkeujR1P3/L//tp8tjkCd9k1EdDSn1zSsK5OaEa2xa/furNvhbixaBNy6xUrQZo4LcxWOHWOAqacnMGaM0dYoFO5Bs2Zcb9vG2mPORhNJR46k7Hn+/lxHRtrXHntj4vrN6Y8VK1jVGQBKlTJ3j5vgYE6bAHoVandDi0UaMkRltNkDreVIp0623cAVrkt8PEuV7NgB7NsHXLvGbFBPT6anFyzIi2jduuw55utrtMXuR4UKbDAbFgYcOADUrOnc90+tSGrdGli2zP722BslkkzEzz/r2337mrt45Lx5QGwsULs2UK2a0dbYn337gP37Oedu9rgwV+DmTb267rvvGmuLIu1cvMip6CVL6G19GgcP6unpAQHMDn3vPTZoVdgHT08mQPz1F1uEGCWSLlxgFnByM5ybN3cNkaSm20zCjRu2c8rduhlnS1KIAL/8wm13Law4YwbXL71k7rgwV+GHHyiq69fX04YVrsetWxw0lCzJ8g23brF4bNeuwFdfAX/8AWzdymXVKj6mf392jb9/H5gzh0kQPXvSG62wD6nto2YPcuTQz5Ep6SPXtKm+HRZmX5vsifIkmQTrHjbVq7Oys1nZvx84cQLw8+PJ0d2IjGSbFcD8cWGuQFwcL44A8NZbhpqiSAPz5vH30y5oLVpwqr1586Snoy0WTst98w3w5588vtas4ZR29+6Ottz9adSI6+3b+V07O8mkVClOs549C1StmrznWF/jdu3SC2OaDeVJMglafA9gbi8SoHuROnZ0z7T/FSuAhw+B4sWBevWMtsb1WbOG0225cqkyCq5ITAzwv/8B/fpRIFWpwqzWdesYV5KceD1PT6BBA3qa9u/nhfTePSZEfPABY5sUqad8ecZ7RURw2svZlCzJdUo8SdbhJFoLLjOiRJIJuHKFJw6NTp2MsyUpLBZg6VJuaw0W3Q3Ni9Sjh7njwlyF2bO57tfP3IVRFQl5+BBo25bTzx4ewKefsrpy7dqpf82qVdnGQmu99MUXbE1jsdjH5vSIt7ceG3TggPPfPzUiyRolkhTP5M8/9e2SJYFixQwzJUn27GEsQZYswPPPG22N/bl7F1i7ltsq7T/thIYyNgUABg401hZFyoiKYlX09evZJ2zlSvbcy2CHII0MGYAJE1g419MTmDuXU3dGdLN3F7RpLlcUSbt22c8We6NEkgn44w99+4UXjLMjOWiCrnVr9/QK/P03A4zLl2eAqSJt/PUXp1KqVFEZTa6ECL07//7LVP61a4E2bez/Pr17c/rewwP4/nuKJUXqMFIkFSnC9dWrqXv+o0d2M8XuKJFkMPfvMxNEo2VL42xJDn/9xXWHDsba4SjWrOHaXT+fs9FSfDt3NtYORcqYPBlYuJDtI/7807E123r3BsaP5/Ybb6S83o6CaCLp0CHnv3eBAlzfuJGygpZlyzrGHnuiRJLBbN+uBy1myKCncpqRK1fYwd3Ly7yZCGkhPh745x9uu+Pnczb37tETASiR5EocP67HC02e7Jxp9fffp3f60SPg1VdVfFJq0Aq03r7NxtzOJCiI1y+LJWWlHVyhNZESSQazaZO+XakS5/7NyubNXFer5p5ZbXv3MiYpa1ZVy8cebNzIqcvSpdVUm6tgsbD2WUwMp9fefNM57+vpCfz4I6f2du+2LayrSB4BARQrQOpjg1KLlxeQLx+3r11L/vNcIaRBiSSDsRZJZr8wayLJzN6utLBxI9fNmtknODW9s2ED182bG2uHIvksXszkjCxZgJkznZvdmS+f3tPvk0/Yy1KRMrQA6nPnnP/eBQtynVqRZNagfSWSDCQqyjbIztnl5FOKVs1VK1zmbuzcybWZe+a5EppIcscsSHckJgYYNYrb778P5M/vfBvefJNi6cYNxkQpUoZWoNHZniQAyJ2b69u3k/8caw/zw4f2tcdeKJFkIMeO2RZRM7Mn6e5d4Px5bteta6wtjkBET0NNSw0YBQkOBk6fpifCXUW1u7FsGQsR5s5tXNNqX1/g7be5/c035vUumBUjPUlaa5LQ0OQ/R/M+Ac/uAWgkKRZJn3zyCeITKY8aHh6OHqqwTIqwzkLw9dX/4Gbk8GGuixZlzI67ceECD24fH6ByZaOtcX327eO6bFl2KFeYn2nTuB482NjYyEGD2PLo+HH9vKNIHpr37+ZN5793akSSdWzrpUt2NcdupFgkzZs3D/Xq1cN5za0A4L///kOFChVwyayf0qRYi6QSJRj8Zla0k5W7Cgjtt6hYkYJVkTa0CvLVqhlrhyJ5nD4NbNvGWLxBg4y1JTBQr8mkVb9XJI88ebg2wiuTIwfXKRFJ1jFvV67Y1x57kWKRdOTIERQpUgSVK1fGjz/+iPfeew8tWrTAyy+/jG3btjnCRrfl2DF9u1Qp4+xIDppIqlTJWDscxalTXLtCtoUroMXaKZHkGmhFYps107OUjERreqvVZVMkDy27LSVp+PYiNZ4ka4ywOTmkOIcnMDAQv/76K0aOHInXXnsNGTJkwJo1a/C8is5MMdaON7OLJC0Q0BWKf6UGTSSpVHX7cOIE11o/KYW50cTIiy8aasZjnn+eXobTp3nx1DwkimejfU+hoYx3debsREAA1w8epO75ZhVJqQrcnjp1KiZPnowePXqgWLFiGDp0KA6ryeMUERtrmypZtKhxtiSHy5e5LlzYWDschRJJ9iM+Xh8AaNk2CvPy8CHT/gHzFFHNlk0X2Fu2GGuLK5EzJ8WlxZKyLDN7kDkz15GRqXu+2wRut2rVCmPGjMG8efOwcOFCHDx4EA0bNkTt2rXx5ZdfOsJGt+TaNduqslr6pBmJjWVKLuC+IkkTrO76+ZzJtWtsTeDtbY6pG8Wz2b+fwjZfPttsI6OpU4drI9psuCoZMugenYgI5763FuyfWk/SvXt2M8WupFgkxcXF4ejRo+jSpQsAwN/fH9OnT8fSpUsxefJkuxvorly/bns7Vy5j7EgO169T0Pn6mlvMpZb4eCAkhNvKrZ92NC9S4cLmTkZQEC3IvmZN5xaPTArNq3vmjLF2uBqaWEmtR8eo93V2K5XkkmKRlD9/fpw8eRLyRAGLNm3a4OjRo3Yz7GlMmzYNRYsWhZ+fH6pVq4at1t1hE2Hz5s2oVq0a/Pz8UKxYMcyYMcPhNiaHJ1WzmUXS3btc58zJ9gHuxp07ulfPzL+Dq3DnDtfuKKjdjvh4XNhCN2pp/yu2hdsMRovTPH3aWDtcDU2sOLs4Y1pFUliY/WyxJym+5IWFhaFNmzYoUKAA3nnnHRyy8oXm1MLbHcSSJUvw1ltvYeTIkTh48CAaNGiAVq1a4cpTcgcvXryI1q1bo0GDBjh48CA++ugjDB06FMu01uQG8qRq1tInzYjmts2SxVg7HIU2d589O6eIFGlDE9WqPpLJWb4cKFIEl/5gKmKRxROAIkW43wQUKsS1ETV/XJmMGbl2tidJO3fGxaXu+VFR9rPFnqRYJP31118IDg7G6NGjsX//flSrVg3lypXDhAkTHF4n6ZtvvsHAgQPxyiuvoGzZsvj2229RsGBBTJ8+PdHHz5gxA4UKFcK3336LsmXL4pVXXsGAAQMwadIkh9qZHJ4USX5+xtiRHNxdJD16xLV2clGkDW1EmD27sXYonsHy5UCXLsC1awgBXX55cZNz6126mEIoaYUGw8NV5e2UYJQnSZtat461TQlm7dWXqsmTrFmz4tVXX8V///2Hy5cvo3///pg/fz5KODCVJSYmBvv370eLFi1s9rdo0QI7duxI9Dk7d+5M8PgXXngB+/btQ2xsrMNsTQ5P/oHN3FBVC8QzsgqvI9EOTh8fY+1wFzTR6e9vrB2KpxAfz74j/688IsEDOxMidTXy1luGT71pIikuzrxeBjOieXScfYnTQjFS+7eJibGfLfYkTREmsbGx2LdvH3bv3o1Lly4hSKtk5QBCQ0MRHx+f4D2CgoIQ/JQCC8HBwYk+Pi4uDqFPqXgVHR2NiIgIm8URPBnbo6Z5jEM7OFWlbftipiBghRVbt9rUH7ERSQCF0tWrfJyBWB+PZvUymBHNk+PspAnt/VIrksx6vkiVSNq0aRMGDRqEoKAg9OvXDwEBAVi5ciWuXr1qb/sS4PHENykiCfYl9fjE9mtMnDgRgYGBj5eCDsqJfVIkmTkgOq1/frOjXPmKdMUTQT5VcBDVsRfZcfeZj3M21p4FNYBJPppIcvY1RbtOiKTunGrWa2CKJ3kKFCiAO3fu4IUXXsDMmTPRrl07+DkhoCZnzpzw8vJK4DUKCQl5qgcrT548iT4+Q4YMyPGUSOkPP/wQw4cPf3w7IiLCIULpyT9ETIx5TwTaVKC7iiQtFsnZc/juinayTG0Ap8LB5M1rc3MZuiTrcc7GWiSpqfDko52nnS06tOPdyyt1XiGzepJSLJJGjRqFl156CdmcnLri4+ODatWqYf369ejYsePj/evXr0eHDh0SfU6dOnWwcuVKm33//PMPqlevDu+nzG/5+vrC1wlq5Uldef++eUWSZpe7xgUYFejormixJGYtDpfuadAAKFCAQdqJDfk9PHh/gwbOt80KLdLBx0fV20oJRnmSNFGbWkFr1t84xV/jq6++6nSBpDF8+HDMnj0bc+bMwcmTJ/H222/jypUreP311wHQC9S3b9/Hj3/99ddx+fJlDB8+HCdPnsScOXPw008/4d133zXEfmuedGTdv2+MHckhrY0LzU5aK8UqbNFOD2ate5Lu8fICvvuO208O37Xb335r+FVLK7ibL595vQxmRBMrzo5zTatIMmt2sYlzqhLSrVs33LlzB59++ilu3ryJ8uXLY/Xq1Sj8/70kbt68aVMzqWjRoli9ejXefvtt/PDDD8iXLx+mTJmCzp07G/URHuNKIkkrsOiuIkkrehgVxdGru5Y6cBZa6r9WVFJhQjp1ApYuZZabdRPJAgUokDp1Msw0DU0k5c9vrB2uhlZeRvPoOou0iiSzZk+7lEgCgMGDB2Pw4MGJ3vfzzz8n2NeoUSMcOHDAwValnCfrbjq7GWFK0GyNjOSUlFkVf2rJlInej7AwXi/KlTPaItdGKwJ48SJnc5QXwKR06gR06MAstps3GYPUoIHhHiQNram2mfrJuQJGiSQtAzG1Hiyz1lVzOZHkLjw5OnpK0XBTkCULl4gI9uVyRxFRoABF0tWr7vn5nEnRolxHRLD6tpmryad7vLyAxo2NtiJRDh/mukIFY+1wJUT0WK6sWZ373tpsiNZgN6WYVSSZNOnO/cmWzfbiYWaR5OGh91Fy12aT/z9ji3PnjLXDHfD3ZxwJAJw9a6wtCtdF63hVubKRVrgWkZF6dpuzPUlp7cygRJIiAdYFys0skgCgZEmu3VUkaaNVJ/RoTheUL8/1wYPG2qFwTSIjgVOnuF2pkrG2uBJasoS3t/Mr3qd1ms+sHmclkgxEEx6A+T0YpUtzffy4sXY4iooVuT5yxFg73IUaNbjeu9dYOxSuydat9IgULqx7JRVJo8XgG5ERmFaRZHBZrqeiRJKBWLuRDx82d+Vn7aK3e7exdjgKa5GkiiCmHe3/smePsXYoXJN//+W6WTMV+J8SNJFUoIDz3zs1Isn6mmeEzclBiSQDqVVL3w4P17M5zIhm6+nT7ln/pnRpHtyRkXoshCL11KnD9fHjwFNaKyoUT2X9eq6bNTPWDlfDSJEUEsL1k5nbz0Jrhg3Yhp+YCSWSDKRqVdtsWzNfnHPk0KcHd+0y1hZH4OUFNGzI7f/+M9QUtyB3bv6/AeCff4y1ReFanD1Lj66XlxJJKUUTSUaUTbh1i+s8eZL/nBs39O0iRexqjt1QIslAMmbUp3kAYN8+42xJDlqXAs0V7m40asT1pk3G2uEuvPAC12vXGmuHwrVYvJjrZs1S5pVQ6AlARhTg1ETSU1qpJsr58/q2WYv4KpFkMM2b69tm92C0asX16tXG2uEonn+e602bOO2mSBtt23K9cqXqi6dIHiLAokXc7tnTWFtcES0j0DopyFmkRiRZJyyZNfZMiSSDadlS3961y9z9w5o3BzJk4IF44YLR1tifSpXo8o2KAtatM9oa16dOHX6fDx5QKCkUSbFzJ+Me/fyAF1802hrXIi5OL9FiREFcLfYwJSJJE3VmRokkg6lXD8icmdvx8cD27cba8ywCA4H69bn9xx/G2uIIPDwAra3f8uXG2uIOeHjo3oD58421ReEaaH13e/Y07/SLWbl4kf3T/P314rjO4sEDVtcHUhYPpVVVNzNKJBmMj48euwGYP96nWzeuFy401g5HofX1/Osvc3v1XIW+fblevdo9vY8K+3H1KrBsGbeHDTPWFlfk5Emuy5QBPJ18Zdcys7NlS1kJAFeoo6ZEkgno0UPfXr7c3PWSXnqJ1VwPHnTPwpJ16jAV9cEDYMkSo61xfUqX5iBABPj+e6OtUZiZKVPoTW/c2DahRZE8tPNx2bLOf+9Ll7hOaYZaVJS9LbE/SiSZgNatdeV/4YK5qz7nyKEHcP/yi7G2OAIPD+CVV7j944/G2uIuaF6Bn34C7t0z1BSFSbl5E/jhB26/+66xtrgqWna0Eb3uUiuSNMwsipVIMgH+/vq0BKC7nM1K//5c//STe2YtvfwyA9R371a9x+zBCy8Azz3HBpjffGO0NQozMn48vQp16nDQqEg5WnV76yLFzkKbSk9tLJRWod+MKJFkEgYM0LdnzTL3lFu7dhwx3L2rp+u6E0FBQJcu3P7yS2NtcQc8PYGxY7k9eTIQGmqsPQpzcfEiz3kAMGGCeVPBzcyNGywk6empF3F1JlqWmtbjM6XUrGk/W+yNEkkmoX593VV565a5e6R5eQFvvsnt774zt6BLLSNGcP3bbyrg2B507MhpgAcPgM8+M9oahVkQAYYMAWJjWWKkcWOjLXJNtOtF+fJ6trQz0YLGUxIPZd3eSivka0aUSDIJHh7AyJH67ZkzjbMlOQwYAGTKBBw75p41cKpU4TSRxQJ89ZXR1rg+np66V+77710j9VfheP78E1i1iskgU6YYbY3rookkI6baoqL0mKSUiKQNG/TtUqXsapJdUSLJRFhXmP35Z8ZwmJVs2TgCBIDRo93Tm/TRR1zPns1+Uoq00bw5pzEtFnoiLRajLVIYyYMHwNCh3B4xgqnritSxcSPXdes6/71Pn+b5P1s2IFeu5D/PumCvmadYlUgyERkzAp9+qt9esMA4W5LDu+/StXvoEEeE7kbDhszki4sDPv7YaGvcg2++4f982zZg2jSjrVEYyVtvMY6mWDFbL7oiZYSF6Zlt1m2unIV16YGUiB1XaXytRJLJ0EZWAPDGG6wbYlZy5NDtHTmScQXuxuef88D/7Tc9e0SRegoW1KfdRozgKFSR/li2jNmxHh7AnDnM8FWkjk2b6MkpW9aYxrZaBnCVKil7ntaM1+wokWQyAgNt64SYvT3Gu+9SLJ08CcyYYbQ19qdiRb08w+DB5hatrsL//scRb1QU0KsXEB1ttEUKZ3L1KjBoELc/+MDcQbuugNaloVkzY97/wAGuU5tVV7u2/WxxBEokmRBr13PXruaO98mWDRg3jtujRrlnevfnn1O87t8PTJ9utDWuj6cnvQfZsvE7VS0o0g+PHrFqf1gYa+NopSEUqUNEn7YyQiSJpF0ktW9vP3scgRJJJiRrVuCTT/TbK1YYZkqyGDSIHpd799wztiBPHmDiRG5/9BFrkijSRoECrLHl4cFMzrlzjbZI4WhEgFdfZSZWtmzA4sXMalOknhMngPPn2QPUiPIJFy8C4eF8/3Llkv88rdcbQEeAmVEiyaRYi6QXXzS3N8nLC5g6lduzZgH//WeoOQ7h1VdZ8Oz+fbYtMfPv4Sq0bKl7El57jbEVCvfl66+B+fN5vvj9d6B4caMtcn207gwtWgBZsjj//bU4zQoVKJSSy++/69vFitnXJnujRJJJ8fZm6rmG5skwKw0bUkgAFBHu1q7Ey4tTRL6+wJo15q9j5SqMHMmyALGxLDh59KjRFikcwZIleoHWb78Fnn/eUHPcBk0kde5szPtv3851SksPLF6sb5s5/R9QIsnUDByob7tC9tiXXzK74vx590yZf+45Xay+846qnWQPPD3pXahfn277Vq34/1G4D6tWAb170/s6eDCzdhVp59w5NkP38mKrKCPQRFK9eil7nhbH5AookWRyjh3Tt42oppoSAgN1D8vkycD69cba4wiGDQOaNKGnrGtXZmgp0oafH/DXX4xpuH6d369qBeMebN5MT2FcHDMZp041v+fAVdC8SE2aMMPY2dy/r1fOT6lI0mja1H72OAolkkzOc8/pc7YHD5pfgbdpA7z+Orf79gVCQoy1x954egLz5rGy7KFDetVxRdrInp1tCsqUYYp4kybKo+TqrF8PtG7NjLb27Rmc76muOHZBhF0ZAKBbN2Ns2L2bVfMLF2YiRnKxDsXo08f+dtkb9Zd1Aay9SdWqmX/a7ZtvKO6Cg4H+/d2v/YR1ZtZPPzFWSZF28uRhe4VSpVhorm5d8w8KFImzbBkHTA8fsgfikiUqk82e7N4NnDrFIpxGZYdpiRb166fsedYzDC++aDdzHIYSSS6Avz/w44/67S5djLMlOfj7A7/+ymmU1auB8eONtsj+NGumt5D53//YZkORdvLm5RRN5cr0QjZq5J7Ttu7MnDm8cMfGsibSihU8Fyjsh1Yy46WXjMlqA/TjMqWtUKzbEWXNajdzHIaHiEpmfhYREREIDAxEeHg4shj1b/x/rOfyN20ypi5GSpg7FxgwgHavWAG0bWu0RfbFYuFJavlyxgTs2gWUKGG0Ve5BRASz3TZu5BTNpEns9aXiWcxLfDzw4YfAV1/x9sCBjFH08jLWLnfj4UN6Xe/fN+46EBbGc54I+++lpB2K9THsaPVhj+u38iS5ENa9bpo0AW7eNM6W5NC/P7NZRBi0eeaM0RbZFy0zq0YN4M4dxl/cuWO0Ve5Bliz0QvbrRzE6fDjjF9yttIS7EB7ODCtNII0cSe+3Ekj257ffKJCKFmXpFSPYuDHt/eKMyshLKUokuRAFC9rWS6pe3fzxSZMnc846IoKeJHdrW5IxI71khQqxJECnTgxUVaQdX196I6dM4cV24UJm0Zw8abRlCmuOHmX/rTVr9Kn2ceOU188RiLDOFMC6dEYFwmtTbSlthWLdrUBL8DE7SiS5GCNG6Mr9xg3bZrhmxMcHWLqUGRBnz3L04G7egDx5WAsmSxZgyxbGjMXEGG2Ve+DhwQzCf//VMwqrVgV++EFVPTcaEeD77+lJPXWKCQ1btxqXbZUe+O8/pt1nzKgX73U2IsDff3O7ZcuUPde6iGSDBvazyZEokeRieHraBglPmQL88otx9iSHoCCOMrNlY9xOr16MX3AnypcHVq7kSHrVKn7GuDijrXIfGjemQHrhBXrq3nyT05vXrxttWfokJIQDniFDgOho/hb79zP7VuE4NC9Sv34sm2EEBw7wuMuUKeV1jrRkFwAICLCvXY5CiSQXpEgRYMYM/fbLL5u/X1rZspyW8vUF/vyTRRndzRPQsCE/m+Y9GzDA/cofGEm+fBTbU6cyW2rtWtZV+u47JUidhQgHZeXKcTDg68uB2t9/A7lzG22de3PuHAdiAM+fRqE1XH/hhZRnLUZEcO1KCS5KJLkor75qG/jWvDlw+rRx9iSH+vUZ6OzhwemSUaOMtsj+tGjBwEovL37WQYPcz2tmJB4e9CLt3w/UqQM8eMCstxo1WDtG4TjOnmUMyssvM0GhQgU2OB0yRMUfOYMvvqBIbdMGKF3aODs0kdS+fcqed+2avv3RR/azx9EokeSieHiw4mquXLwdF8eDx+wVrl96iSNPgMGdn31mrD2OoEMHYMECTo3OmcOpNxWjZF/KleO086xZnMY9dIjBwz17qpYm9iY8nNlqFSowq8nPD/j8cwrVihWNti59cPGiXmHbSIFx8SKPNU9PXm9SwvLl+nbr1nY1y7GI4pmEh4cLAAkPDzfalETZsUOE4wsulSuLhIUZbVXSfPWVbvMXXxhtjWNYulTE25ufsU0bkYcPjbbIPbl1S6RfP/3/5O0t8uab3K9IPdHRIlOniuTMqX+3zZuLnDtntGXpjwED+P23aGGsHRMm0I5mzVL+3OzZ9f+Rs7DH9VuJpCQwu0gSociwFkr16olERhptVdKMG6fbPHmy0dY4hjVrRPz9+RkbNxaJiDDaIvfl4EGRli31/1TGjCLDholcvmy0Za5FdLTInDkiJUro32Xp0iJ//ilisRhtXfrj3DkRLy/+Djt3GmtLxYq0Y/bslD0vPl7/LxUr5hjbEkOJJCfgCiIpPl6kY0dbodSyJU92ZmfUKN3mCROMtsYxbNkiEhCge/quXTPaIvdm40aRmjX1/1WGDCJ9+4ocPWq0ZeYmMlLku+9EChbUv7vcuUWmTxeJjTXauvSL5iVt2dJYO44f1z21d+6k7Ll79uj/qfnzHWNfYiiR5ARcQSSJiNy/L1K+vK1Qeukl85/cLBaRTz7RbX7/ffccre7bxwsOIJI/v8ihQ0Zb5N5YLCLr14s8/7ztMdGwocjChSKPHhltoXm4cEHkgw9sp9Xy5BH58kvl+TSafftEPDz4m+zebawt2nm6bduUP/eVV/T/VkoFVlpIVyLp7t270rt3b8mSJYtkyZJFevfuLWHPCL6JiYmRESNGSPny5SVjxoySN29e6dOnj1y/fj1F7+sqIklE5Px523lfQKRbN5GYGKMtSxrrGKXXXhOJizPaIvtz8aJI2bL8jJkzi6xebbRF6YM9e0Q6dxbx9NT/YzlzirzzDqfo3FGUJ0VMDKfPWrbUL8KASNGi9BxFRRltocJiEWnQgL9Lr17G2hIfL1K4MG1ZuDDlz7e+JjmTdCWSWrZsKeXLl5cdO3bIjh07pHz58tL2GZL23r170qxZM1myZImcOnVKdu7cKbVq1ZJq1aql6H1dSSSJiPz7rz5/rS2dOrnG1NusWfoJu3t317A5pYSFiTRtys/o5cXA2PR4kTaCq1dFxowRKVDA9vgoXVpk9GiRkyeNttCxxMVxKvLVV0Vy5LD9Dlq0EFm+3Pye5/TE77/zt/H3F7lyxVhb1q+nLYGBKU9ACQ7W/2eDBjnEvKeSbkTSiRMnBIDs2rXr8b6dO3cKADl16lSyX2fPnj0CQC6nIJLT1USSiMjMmbYnQECkXTvXmGL49VfGkAAiTZqI3L1rtEX2Jzpa5OWX9d+mXz+V+eZMYmNF/vqL3iVf34SC6e23eVFwheMlKe7fF1mxQuR//+MUmvVnzZ2b09sqW818REWJFCnC32nUKKOtEenRg7YMHpzy506frv/ntm+3v23PIt2IpJ9++kkCAwMT7A8MDJQ5c+Yk+3XWr18vHh4ez/zCHj16JOHh4Y+Xq1evupxIEhEZOTKhUGrZ0jUuxmvXcjoK4PTUxYtGW2R/LBaRSZP0KaCqVUUuXTLaqvRHeDgDSdu00cW5tmTKxP2ffy6ybZtriKaoKF6IvviCHkutBIW2ZMvG+JD165XXyMxo8T/58ok8eGCsLXfv6oOJfftS/vyMGfX/n7P/c+lGJI0fP15KliyZYH/JkiVlQjJToqKioqRatWrSK4nJ3dGjRwuABIuriSSLhRk9Twqlhg1do47SoUMMcNZGvHv2GG2RY9iwQQ+YzZGDFy+FMdy7x9pWAwaI5M2b8Njx9WV5jaFDmQK9d6+xg45Hj0QOHxZZtIjer9q1RXx8EtpdrJjIG2+IrFrlnlPY7saRI7pg//13o60R+fZb2lKpUspDA27f1v+HtWo5xLxnYg+RlMFpVSsTYcyYMRg7duwzH7N3714AgEcide9FJNH9TxIbG4vu3bvDYrFg2rRpz3zshx9+iOHDhz++HRERgYIFCyb5HmbDwwP48Ufgxg12UNfYsoXdl9euBfLnN86+pKhUiW0m2rZlhddGjVjFulMnoy2zL02bsnJxp05cv/AC8PHHwCefABkMPTrTH4GBQOfOXETYbf2//1jZe+tWVrPfvp2Lhqcn+1AVLw4UK6Yv+fKxGn7u3GwEmhpiY4GwMDYTvXJFXy5cAI4fZy+vxFre5M7Nli3PPw+0auVafbLSO/HxbGUUF8fK/Z07G2uPxQJ8/z23X3895e1n/vxT337vPbuZ5VQ8RESMevPQ0FCEhoY+8zFFihTBokWLMHz4cNy7d8/mvqxZs2Ly5Mno37//U58fGxuLrl274sKFC9i4cSNy5MiRIhsjIiIQGBiI8PBwZMmSJUXPNQMREey39P9a8zEFCwLr1rHxrJm5fx/o1o2NTQGKhzFjeHFyJ7TO9j/9xNv16wOLFvF3UhiPCHD+PLBjB8WTtiRx+gIA+PsDOXNSLPn7c/HzYyPk+HiKobg4LpGRFEb37rEvXVJkzQo89xwHFXXqAHXrAkWLql5qrsqUKWxemyULcOKE8QPZNWvYQiQwkL3XMmdO2fMLFKDIB3guT+nz04o9rt+GiqTkcvLkSZQrVw67d+9GzZo1AQC7d+9G7dq1cerUKZR+Src/TSCdPXsWmzZtQi6t0VkKcHWRBAB37wKNGwNHj/J2xozAw4dA9uzs3l2njqHmJUlcHPDuu+z2DtC7tGABD1x3Y/Fi4LXXeELJlo2iqWNHo61SJIYIcPMmcOoUvTvWy82bwO3bQHR02t8nKAgoVMh2KVeO4ihfPiWI3IWzZ4EqVSiUp0+n58ZoWrXirMPbbwPffJOy596+Ta8mwIa8p07Z376kSDciCQBatWqFGzduYObMmQCAV199FYULF8bKlSsfP6ZMmTKYOHEiOnbsiLi4OHTu3BkHDhzA33//jaCgoMePy549O3x8fJL1vu4gkgDg1i1Os509S3EUEABcvsxR7bx5QJcuRluYNPPn0xUdHQ2UKkVXrtk9Yanh/HmgRw/d+/f668BXXzl/FKZIGyL0Bt2+TY/Tw4f0GEZFcR0TwylV68Xfn+JYWwID1bRreiAmBqhXD9i3jwPaDRuM95afPg2UKUMRfvYsp5RTguYVA9jo+xkTPg7DLtdvewRHOYM7d+5Ir169JCAgQAICAqRXr14JikkCkLlz54qIyMWLFxMNwAYgmzZtSvb7umIJgKdx+bJIoUJ61ecqVfSguk8/dY16PXv36nVuAgIYaOuOREeLvPeebfDtli1GW6VQKBzBBx/o2YdXrxptDRk4UC8fkxq0VkyASEiIfW1LLva4fruMJ8ko3MWTpHHhAtCkCQNAixQBqlUDli3jfd27U/H7+xtqYpKEhAAvvcQgdAAYMoSeFl9fY+1yBBs2AAMG8Pfy8ADeegsYP978v5FCoUgemzYxyF4EWLrU+GBtgHFERYsyXm77dsa6pYTjx4Hy5bldowawZ4/9bUwO9rh+u1n4qyIpihWjuChaFLh0iRlVI0fSpf/rr8wiu3nTaCufTe7czNgbMYK3p06lq/rCBWPtcgTPP89YsoEDeRKdPJlxC7t2GW2ZQqFIK7duAb1789h+5RVzCCSA8UexsUDDhikXSADwyy/6tjbl5qooT1ISuJsnSePqVaafnzvHDKpRo4D332eQd/78wPLlwP/HyJuaVauAvn1pd5Ys9ISZ5URjb1atYkzWzZv0Kr35JjBuHD+3QqFwLWJiOAjato2xP/v2pb5chD25e5fJAZGRwOrVDN5OCXFxgLe3ftuIrDYN5UlSpJqCBYHNm5l1cPUqvUkzZ/JgvX6dQd4zZ3KEY2batGEdpbp1We6gSxdg8GAGybobbdoAx44Bffrwd5k6lVlO1rVIFAqFa/DOOxRIAQE8hs0gkADg668pkCpVAlq2TPnzrXKp0Lmz6yecKJGUjsmXj0KpcmXG+QwcCHz5JVPOY2KYVdW/P7NxzEzBgiz6p02/TZ8OVK3KqUR3I3t2ZiP+8w+zTa5f5+/VsSPrmCgUCvPz8896kcYFCzhYNQMhIXqplbFjU1deYsoUfduIjDZ7o0RSOicoiAKjUSN6Yl56idNXX3zBFNRffqGXxuzxPt7etHn9eoq/06eB2rWBiRMTr0rs6jRvzlilDz9kPJlWDmHSJApchUJhTrZv12sgjRkDtG9vqDk2fPEFvUjVq6fOrjNneD3RaNHCbqYZhhJJCgQGsmBYhw6sQdS5M5AjBwVHrlyczqpWzdaNalaaNaN46NKFc+MffcS6I5cuGW2Z/fH3ByZMAA4coCB88ICl/ytWZDV1hUJhLk6dAtq143m2Qwd2EDALN24AWteuceNS50WaMUPfHjHCNjbJVVEiSQGAbRKWLqV71GJhpsW//zKYsFYttklo354p6PaoIuxIsmcHfvuNXrCAAM77V6jAA9hiMdo6+1OhAkenc+Yw8+/0acYSdOhgfg+gQpFeuHmTx2VYGM+pixYZXzDSmjFjWOS0Xr3UeYAePmT2rcYrr9jNNEMx0U+kMJoMGdgGY9Qo3p44kZ6Jdev0NM7vvmMbkzNnjLMzOXh4cNrw8GH2QXvwAPjf/+hpckfh4OlJgXvmDFsIZMgArFjBwO6PPgLCw422UKFIv9y/z8SLy5eBkiXplc+Y0WirdI4c0ftGfvll6rxI8+bp240a8XO6A0okKWzw8GDA3i+/0FX6228c/Xz0EQ/sHDmAgwcZGG19UJiVokU5R/7tt5ye2rSJnpepU93TqxQYyBonhw9TEEZHU+yWKMHPrOKVFArnEhnJfpMHD9LTu3YtwxjMgggz7SwWxqSmpi5SfDzFlYYZ+s7ZCyWSFInSty8zqLJlY+HC2rWZTXX4MGN8IiOBfv2Yjh4RYbS1z8bLi56wo0c5wnn4EBg6lNtm94illnLl+Pv9+SczZ0JD+Zmfe47TqmYv7aBQuAMPHzIGacsW1jNbvZoFfc3EmjUMrfDxAT7/PHWvsWIFcPEit/383KsptxJJiqfSuDGwcycP6osXOcI4cYIH1GefcYpnwQLW09BahJiZ4sWBjRsZnJg5M2OVKlViS5PYWKOtsz8eHoxLOnaMZRFy52bxUG206Aq/mULhqjx6BLz4Ir3XAQEMW6hWzWirbImO5vQ8wIFkagXcV1/p28OGuVmLKDv1kXNb3KnBbWoJCRGpW5eNCj09Rb78ks1wt24VKVKE+z08RN59V+TRI6OtTR6XLok0b643YKxYUWTHDqOtciwRESKjR4tkzKh/7mbN3P9zKxTO5uFDkZYteYxlyiSybZvRFiXOp5/Sxjx5RO7dS91rbNumn08A8zToFbHP9VuJpCRQIolERYkMGKAfCN27izx4IBIebru/fHmRQ4eMtjZ5WCwic+aIZM+u2//qqyJ37hhtmWO5cUPk9ddFvL31z92ypcju3UZbplC4PmFhIvXr87jy9xf57z+jLUqcc+dEfH1p56JFqX+dVq1srwtmQokkJ6BEko7FIvLDDyIZMujelwsXeN+ff4rkysX93t4iEyeKxMUZa29yuX1bpH9//UDPlUvkl1/4ed2ZixdFBg4U8fLSP3vbtiIHDhhtmULhmty8yfMiIBIYKLJli9EWJY7Fonu6nn8+9ee6XbtsvUhmG2gpkeQElEhKyJYtIrlz86DInl3kn3+4/9YtkRdf1A+YWrVEjh0z1taUsGWLSLlyuv2NGomcOGG0VY7n3DmRfv04lap99hdfFNmzx2jLFArX4fx5kWLFePwEBZnbo75wIe308RE5fTr1r6MJLYAhGWbDHtdvFbitSDENGrAvWo0a7BjdsiWzInLmBJYvB+bOZSbH7t1AlSrAp5+6Rup5gwZM0/38c5YL2LyZgd0jRpg/gy8tFC/OXlInTgA9ezLg+88/gZo1WUbg339VNpxC8Sy2b2cG8IULDH7evp3nDjMSHAwMGcLtjz8GSpVK3evs2sVyBhrDh6fdNlNiR9HmlihP0tOJirKdpmrVilNXIiLXrom0a6ffV6GCa3kmLl7k1JNmf1AQ45fi4422zPEcPy7Sp4/tNFz16iJLl7rOFKpC4SzmztXj+6pUYcyfWbFYdG9/5coiMTGpf60XXtDPD2XKmPPcoKbbnIASSc/GYhGZNUvEz48HS/78zHrT7lu8WCRnTj0z7t13RSIjjbU5uVgsIn//LVKypH4yqFZNZPt2oy1zDpcuiQwZwuBT7fOXKiUye7brZDEqFI4iLo7nM+3Y6NKFySxmZvFi2pohQ9qmA//7zzYWad48+9loT5RIcgJKJCWPw4dFSpfmAePlxcBtzety+7ZIz576AVWihMimTYaamyKio0UmTRLJkkX/DD17mivV1ZGEhIh8/LFI1qz658+bl+nDt24ZbZ1C4XxCQkRatNCPh1GjzO9lvnJFP4bHjEn968TH07OsffZixURiY+1npz1RIskJKJGUfO7fF+nd2zatXJt+ExFZuZKeJu3+/v1t7zc7wcEir7zCmlAA6w19+qnreMbSSkQExWK+fPpv6OMj8vLLKiNOkX7YvFk/Bvz9RX791WiLkiYuTqRhQ9pco0baptk0b5S2/Pij/ey0N0okOQElklKGxSLy00+2028bNuj337sn8tpr+gGWPTsPMrOPwqzZv1+vg6J9xp9+MuecvCOIjhZZsIAnW+uTZYMGjFsy66hSoUgL8fEi48frWaBly7pO9u64cbQ5c2Zms6aWR4/0AsKASMGCPB+YFSWSnIASSanjyBEG8z2tGvf27Xo9EUCkTh1zp8w+iRZvVbiwbSHNv/92//pK1uzcyQJyWu0sQKRQIZEvvlBTcQr34fJl1hPS/uN9+5o//khj+3Y9CSOtsUNff207MJo50z42OgolkpyAEkmp58EDW69RxYq2I6/YWJFvvuHoRotlevttTuu4ClFRPHFky6Z/zsaNXSuTzx5cuyby0UciOXLo34O3t0i3bvQkpifhqHAfNM94QIA+vTZnjuv8n2/d0kMcevZMm93BwbZxmaVKmd9rrESSE1AiKe389Zee4ebrK/Ldd7bTa1evirz0kn7w5csn8ttvrnMiEhG5e1dkxAi9zD9AgZAW17Yr8vAhs9+enIorWZI9/0JCjLZQoUgeN26ItGlj6+1OS+FFZxMbK9KkiZ6in9bBZ9++tsf0b7/Zx05HokSSE1AiyT7cvCnSurV+gLVoIXL9uu1j1qwRKV5cf0yzZq4z569x+TKrV2vB3d7eIm+8Ye7aKY5i/372iNNG4dr30bUrf+v0EsOlcC3i4kS+/55tRbTkhC+/dL3/64gRehxSWjsHbN1qK5CqVXONQawSSU5AiST7ofV+04K6s2dnXI/1wfbwITvV+/joU3Bvvul6TWcPH7Yt2e/nJ/LOO+nTk3L/PoPzrdOGtTIC773nekJY4b7s2UMBoP1Ha9Rwzf/nr7/qn+H339P2WrGxtvGjgMj69fax09EokeQElEiyPydOiFStqh9wnTpxvtua8+e53zoL7vvvzT8H/iQbN7KnkfY5MmUS+fBD1xN99mL/fhaotI5dAiigpk4VCQ012kJFeiQkhF5PzQMcGCgybZrreY9E2GRWG4i++27aX+/bb22P1RYt0v6azkKJJCegRJJjiI5mQTMtKyp7dpFFixK6cDdsYNaYdoA+95zIv/8aY3NqsVg4vWQ9Qs2ShZ8/vf6toqNFli8X6dDBNjPO25vtYBYscK0AfoVrEhkpMmGCbUBynz4JB22uwpUrbKEE8DhKq8i7cIEDO+27yZDBtZp+K5HkBJRIciyHDrGHkHYQvvgi45esiY3lqC57dtvHuVpQtMUi8uef7GNn7SGbOJFTUumVkBAG81t7F7Upyi5dWHvp4UOjrVS4E3FxzFqzLm5btSrbbbgqERH6ubRChbQPMiwWxoVaH5Nvv20fW52FEklOQIkkxxMTw8rVWpPIbNnoSXjSq3TnDqdqtJofPj50J9+9a4zdqSU+njEDWhsXgNNP48ax2GZ65vhxtngoVcr25Jw5s0ivXsyUVIJJkVpiY0Xmz9druAGsdbZwoWsVtH2S6Ghd0OTOzb6LaWX2bNtjMFcukbCwtL+uM1EiyQkokeQ8Dh+29Sa0aZP4wX7smEjz5vrjsmVjrSJXa7oaGyvyyy+2GX2BgeyTlt5jcywWkYMHRd5/37ZgJ8B2MJ068WLnagJZYQwxMfQcWR9r2bKxzU5UlNHWpY34eBZ01WIe7VGj7fp1PbtPW2bPTvvrOhslkpyAEknOJSaGHhXNq5QpEwXQkwHbFovI6tW28UpFirjmiDA2lnaXK2cb4P3eewmnHtMjFgsrew8bxmre1ifuDBk4gv7+exa0VCisuXePBWuthXbOnIxDcodTusXC40KL51u3zj6vaZ2Zq2X5udp5VUSJJKegRJIxnDjBXmDW8QL79iV8nBZbYN10tVo1ZpW5GvHxIsuWiVSpYhuXM2QIC24qeALfv5/eNmuBrC1VqrDy97ZtrpcJqbAfZ87wuNGq+QMMaJ40yXXaiSSHTz7RP9+iRfZ5zSlTbI8pLy/XahlljRJJTkCJJOOIj2d9naxZebB6eoq89VbiQc6RkWw+aV24sHVrkaNHnW93WrFY2AOuVi3brK9XXhE5edJo68zFmTMs9Fenjp6+rS1Zs7Jw5dy5yiOXHoiJYcZk69a2/4Vy5dhjzN1i2T79VP+MU6bY5zWPHrXtGgBwyttVUSLJCSiRZDzBwew7pB20BQuKrFiR+GNDQjiC1NLKPT1FXn5Z5OJFp5psFywWljto3Nj2pNW+PSvgukLFW2cSHMwYr+7dbXvpWXsjR4wQWbvWvbwJ6Z2TJ5nAkTu37e/durXIP/+453Hy+ef655w0yT6vGRWVsGhk8eKuLS6VSHICSiSZh7VrRYoW1Q/gDh1YxyMxzp5l+ri1J8aV24Ns28bPaz1Crl2b03OuWPDO0cTGsvv5xx/b1qeyjmWqV4/3b9zo+sG76Y0rVxirWLOm7e8aFEQh7Eo91lLKxIn6550wwX6vq8U2WS+uVpPuSZRIcgJKJJmLyEi6fzVPkZ8fizI+bbSza5dtrQ8/P446b992rt324tQpkUGDbF3iJUuKTJ/u2iM+RxMcLDJvnkj//gmDvwF+n02asPzA2rWul+qcHrh6lfW0rCvYazEz7duzBllMjNFWOg6LhfF22uceO9Z+r/3bbwmPiQED7Pf6RmGP67eHiAgUTyUiIgKBgYEIDw9HlixZjDZH8f+cOAEMGQJs3MjbRYsC334LtGsHeHgkfPx//wEjRwI7dvB2QAAwfDgXV/xZg4OBqVOBadOAe/e4L1cu4M03gcGDgZw5DTXP1IgAFy8Cmzbx/7NxI79Pazw8gOeeA+rWBerU4bpkycT/WwrHEB8P7NkD/P03sGoVcPiwfp+HB1C/PtCtG9ClCxAUZJydzsBiAd5+G5gyhbe//BJ47z37vPbp00D16sCDB/q+IkX4fbviudEae1y/lUhKAiWSzIsIsHQphc61a9zXqhXw3Xe8oCX2+DVrgI8/Bg4e5L7s2YH336e4yJjRebbbiwcPgJ9+AiZPBi5f5j5fX6BnT2DoUKByZUPNcwlEeKHYtAnYuZNC+vz5hI/LmROoWROoWhWoUoXrwoWVcLIXIsDZs/wdNm0CNmwAQkP1+z08KFhfeolL/vzG2epMYmKAQYOAefP4HUybBrz+un1eOzISqFULOH5c3+fhwUFlw4b2eQ8jUSLJCSiRZH4ePAAmTAAmTQJiYwEfH+Ddd4GPPgIyZUr4eIsFWL4c+OQT4NQp7gsKAj78EHj1VcDf37n224O4OOD334Gvvwb279f3N2xIsdShA5Ahg3H2uRq3bumCaccOYN8+IDo64eOyZaNY0pbKlYESJdR3nRzi4oCjR4Hdu4Ht2ymMrl+3fUxgINCyJdC2LdfpzUMaEQF07gz8+y/g5QXMnQv06WOf1xYB+vYFFiwAPD15XgToofryS/u8h9EokeQElEhyHc6cAYYNA9au5e38+YGJE4FevXgSeJL4eGDhQmDMGE6/ABRLI0YAr72WuMAyOyK8uE+ZQi9bfDz3FyoEvPEG8Mor9J4pUkZ0NHDoEAXogQNcjh2jKH8SHx+gVCmgXDnbpWRJ3pceiY2lt+7oUX6Hu3dzHRVl+zgfH3qLGjcGmjbltre3ISYbzvXrQOvWwJEjPBf9/js95fZi0iQKIg8PDgwfPgQqVAD27qU32h1QIskJKJHkWogAK1YAb70FXLrEfdWrA998AzRokPhzYmKAn3+mN0qbssqVi96owYOBzJmdYLgDuHYNmD4dmDkTuHOH+/z9ORIdMgQoX95Y+1yd6GhOUxw8qAunI0d4sUkMT0+gYEGgePGES5EiQNasrj91FxkJnDvHabOzZxk7ePQo14kJysBATmHWrk1hVKeOa3py7c2BA/T+XrvGgduqVUC1avZ7/b//Btq35/kyTx7G5Pn7MwbMnc4L6UokhYWFYejQoVixYgUAoH379pg6dSqyZs2arOe/9tprmDVrFiZPnoy33nor2e+rRJJr8ugRY5PGjwfu3+e+zp3pRi5WLPHnxMQA8+fzOZpnKUcO4J136IVx1Z8/Kgr49Vd+H9bBr40aMbahY0f3GTkajcUCXLlCUfDkov0Pn0bGjPR+FijARdvOk4f/w5w5ueTI4XzvigjF361b9HBYLzducH3+PHDz5tNfIyAAqFiRS61aXEqVStzLm55ZvBgYMIDnsDJlgNWrmZhiL44eZSLCgwdA2bL08FksjG0cMMB+72MG0pVIatWqFa5du4ZZs2YBAF599VUUKVIEK1euTPK5f/75J8aMGYPbt2/jvffeUyIpHRESAowaBfz4I08EPj6M0fn4Y45iEyM2Fli0CBg3jqNigLEnw4fTA/O055kdEWDbNk7FLV+uxyDkzAn07894rBIljLXRXRHhaP38+cQX6wDl5JAlC3+3wEB6OjNlsl1nzsz/uqcnY1m0RbsdH89BQXQ019p2dDQvnvfuAWFhtuvEPEGJkSMHpxZLlgRKl6YoqlBBBbknRXw8z0uff87brVrxPJRMP0CyuH2bnrtLl5i9eesW/3t9+9Kb7m6/T7oRSSdPnkS5cuWwa9cu1KpVCwCwa9cu1KlTB6dOnULp0qWf+tzr16+jVq1aWLduHdq0aYO33npLiaR0yLFj9Aj98w9v58wJjB1LYfC0INu4OHpgxo3jaAvgRWnYMIolVw4ivXqVI8fZs22DZZ9/nt6lDh3SbyyIEURF8Xe4di3hOiSE06WhoVwbecb286OHK7GlcGEKo2zZjLPPVbl9G+jdWz8/jRjB6X8vL/u9x4MHjPPau5fTuzlyMC6sbFnuc8UYzKRINyJpzpw5GD58OO5pBWH+n6xZs2Ly5Mno379/os+zWCxo1qwZOnTogGHDhqFIkSJJiqTo6GhEW6WxREREoGDBgkokuQEiDOp+5x3g5EnuK1WKJ6NOnZ4+ioqPZ9DkZ59x2gTg1MigQfQuFSrkHPsdQVwc4x1mzuR3o50NgoLoeh80yL6ufkXaiI+nVyc0lEtEBOOAHjxIuI6JobcwPp6L9baXFz1Nvr62ax8feqGyZaMHQ1tr25kyuZ+3wWi2bQO6d6co9ven17tXL/u+R2wsa8itW0dxVKcO45L8/SmQnnvOvu9nFuzi5Eh1GUonMn78eClZsmSC/SVLlpQJz6jLPmHCBGnevLlY/r95T+HChWXy5MnPfK/Ro0cLgASLqrjtPsTEiPzwg0jOnHp12Zo12Z7iWcTHszJtlSq27S369hU5dsw5tjuSixdZ0TdPHv3zeXiItGzJz/3okdEWKhTuQ3y8yBdfsGI4IFKmjGMacsfHi/Tpw/fw9xcZPFg/vpcssf/7mQl7VNw2NGRuzJgx8PDweOayb98+AIBHIsMXEUl0PwDs378f3333HX7++eenPiYxPvzwQ4SHhz9erl69mroPpzAt3t7MWjt/nvFKmTIxq6NpU9Zi0QpNPomnJ4vY7d9Pt3jTpvTEzJvHjJAOHZh+76oUKcKg9StXWD6geXPd+9a1K5AvH6cZDxwwdspHoXB1rl4FmjVjIdv4eBZ/3bvX/pllIsAHHzAhxcuL03g//cT7Ro7kca1IAvtptpRz+/ZtOXny5DOXqKgo+emnnyQwMDDB8wMDA2XOnDmJvvbkyZPFw8NDvLy8Hi8AxNPTUwoXLpxsG1XvNvcnOFjkzTfZBFcbYfXoIXLuXNLP3b1bpFMn28azDRuKrF7tHt3Hz54V+fBDkfz5bfs6VawoMnmySEiI0RYqFK7F4sUiWbPyOMqYUWTWLMedK8aOtW2Gmzcvt9u3p4fJ3Uk3DW5PnDghAGT37t2P9+3atUsAyKlTpxJ9TmhoqBw9etRmyZcvn7z//vtPfU5iKJGUfjh3juLIeirtjTdEbt5M+rknT7IhpLXQqlhRZMEC92i6GRcnsmaNSLduts11vb1FOnYUWbHCPT6nQuEobt3i8WM9xX/mjOPeb+JE22a4Vatyu1w5kfRyOUs3IklEpGXLllKxYkXZuXOn7Ny5UypUqCBt27a1eUzp0qVl+fLlT32N5MQkPYkSSemPAwdEXnhBP8H4+4u8+27yvCZXr4q8845Ipkz68/Pn5wnrzh3H2+4M7txhTFf16rbepZw5Ge+wfbt7eNEUCntgsXCwlCMHjxMvL5HRox07qPj6a/24/PRT/XyWK1fyPOTuQroSSXfu3JFevXpJQECABAQESK9evSQsLMzmMQBk7ty5T30NJZIUKWHjRpFatfSTTaZMnHoKDU36uXfuiHz2mUhQkP78jBnpmXLk6NHZHD0qMny4SO7ctoKpaFGRkSNFTpww2kKFwjguXhRp3Vo/LipVEtm3z7Hv+d13+vuNGSPSv79+/rGajEkX2OP67RIlAIxE1UlK34gAa9YwwFtrHBsQwLYnw4cnXegtOpq1lr75hi0rAKZQt2sHvP02q167Q0p1XBy7ti9cCPzxB1PQNSpXZkpzjx7pp3O7In3z6BHw1VcsL/LoEUssjBrFXmmOrD82cSIbewMMzPbyAj79lEknf/3FRsHpiXRTJ8lIlEhSABRLK1fyRKe19ggMZM2lYcOSblkiwi7n33zDukQaVapQLHXr5j7NTx8+5He1cCEFZlwc93t4AA0bMkOwc2e221Ao3I1Vq3hOOH+etxs3Zg/FMmUc954iFEdate5Ro4DcuYE33+TtGTPYtDu9oUSSE1AiSWGNxUJPyejRbG4KANmzUyy9+Wby+rudOsU+ar/8ondBz5uXzx80iM113YXQUBbiXLgQ2L5d3+/hwYbDL73EQp758hlno0JhDw4fpqdo/XrezpcP+PprDoAc6S22WNhq6YcfePurr1gwUuvD9vHHLISbHlEiyQkokaRIDIuFF/8xYyh6AE69DRnCUWSOHEm/xp07rHT9/fd6Y1BfX55U33wTqFHDUdYbw6VLrL/0+++sS6Xh4QHUq6d7mNSUnMKVuHYN+OQTDnpEOJ321lvcFxDg2PeOjqYYWrSIx9GMGRyo9exJW956i95rd5jSTw1KJDkBJZIUzyI+njFH48frrU4yZQL+9z/GLOXNm/RrxMQAS5aw8ez/104FwEaUb7zBgm9+fo6x3yguXwaWLaNg2rXL9r66dYGOHYH27dk2RqEwI7duAV98wam0R4+4r1s3xiEVK+b49w8L43GyeTP7T/78M1vKdO7M89Krr1I0pVeBBCiR5BSUSFIkB20abtw44NAh7vP1BQYOZJXbwoWT9zp79tCztGQJxRPARrqDBrHxrCv3iXsaV6/qgmnHDtv7ypShWGrfHqhd274NPxWK1HD7Nqe0vv9eny6vXx+YNAn4//7rDufyZaB1a/aSDAjg8fPoEdClC88bffpQNHka2lPDeJRIcgJKJClSgpYNN368fsHPkIEnrQ8+SL5nJCQEmD2bo9Rr17jP05Ni4Y032BLFHU+A168Dy5cDK1YA//2nB30DFItt27L9S/Pm7tm1XGFerl7l1NWsWUxOAOjt/fRToEUL53ls9u1jdmxwMKemV68GTp/mFFtcHKetFy3ieSe9k24a3BqJqpOkSA0Wi8imTSLPP6/XLPH0FOnaVWTv3uS/TmysyPLlIk2b2tYhKlGCzTFv3XLYRzCce/dEfv1VpGdPvY2Dtvj6irRpw6KW6ak4nsL5HDvGJtYZMuj/v6pVRf7+2/lFU+fPF/Hzow0VKrB47bx5PLcAIr168ZyhIOmqmKRRKJGkSCs7d4q0a2d7kW/cWGTVqpT1Tzp+nBWtAwJs24J07SqyYYN792KKiWFxz2HDWKjS+rsERIoXZ6HOFStE7t832lqFqxMTI7J0qUiTJrb/syZNRNatc744io1lJX/NjrZtOYiYOVPvG/nKK2wfpNBRIskJKJGksBeHD4v06WM7Ii1XTmTOHJFHj5L/Ovfvi8yezd5PT3qXvvzSvb1LIrxAHT3Khp2NGtl+n5pwbNxY5PPPRQ4eVC1SFMnnxg1Wqc6Xz9YD3LmzyJ49xth0545I8+a6PSNHUgxNmKDve/NN9x4kpRZVcdsJqJgkhb25epV1kmbNAu7f5768eVnr5PXXk67ibc2hQ3ydBQv01/L2ZtbLa6+xkJ07xi5ZExHBQp3r1gFr1wIXL9reHxQENGsGNGnC76NYsfSd8aOwJTaWtY1+/pnJF1ocXO7cTJh49VXjEiZ27gS6dweuXAEyZqSNnTrxXDFtGh/z/vustK3+0wlRgdtOQIkkhaMID6fA+fZb4MYN7sucGXjlFdY3SW5GHMA2IEuW8PWsaxAVLQr068elSBE7Gm9SRIBz53TBtGmTHmSrUbCgLpiaNEkf34vCFhEGQC9YACxezIw1jXr1mBzRqRMzVI3AYmEhyo8+omgrXpwZbKVKMUD7zz8pir79loJJkThKJDkBJZIUjiYmhifqSZOAY8e4z8uL3qChQ5lenJJRouZdWriQXhaNJk2A/v1ZRyVjRrt+BNMSHc1K35s2cdm92zZjDqBIatSIF8d69Vh2wN29b+mV06dZamLBAm5r5MrF3oIDBgCVKhlnH8Ais/366e2LunXj8RwTw8zOHTso3hYsYMq/4ukokeQElEhSOAsRekC++grYuFHfX7kyxVKPHikrKvnwIacP5s7l62lHekAAT7z9+wN16qQvN31kJC8ymmjau5eF96zJlo3fS926FE01aqhyA65KfDyF8V9/cbEWRv7+wIsvAr17s6SEIxvPJpc1a1hb7eZNCqHvvuN039GjFEiXLnE6/q+/2AdR8WyUSHICSiQpjODoUWDqVGD+fL2ab86cPGH+739AgQIpe73Ll4F58xjTcOGCvr9UKeDll1nHKaWv6Q48eABs2wZs3UrxtHu3XiBQw8uLQrVWLaB6daBaNaBcOVWHxqzcu8caW3//zUbLISH6fd7erDHWowen0xzdNiS5PHjAvm8zZvB26dKs5F+5MqfWevemwC9enDXEypUz0lrXQYkkJ6BEksJI7twBfvqJzSuvXOE+Ly9OmQ0dSm9HSjxBFgsFwdy5nHbQ4nU8PBij06sXXzslwePuRGwsG5Xu2MFpuu3bWeDySfz9eQHTRFP16pymUxXBnU9UFH+nDRu47N/P/7lGYCDQpg09MS1bJq8JtTPZsQPo2xc4f563hw4FPv+cXuNx44BRo7j/+eeB335jQ21F8lAiyQkokaQwA3FxHEFOmcJeTRpVq7IZbrduKY8zun+fDWfnzqVw0vD15UWlVy+2PnC3vnEp5epVXsj27eNy4IBtrJeGvz/w3HNAhQr6Ur48s+vS05SmowkJocdv1y7+Ljt3MvbMmtKlOYXWoQOnpXx8jLH1Wdy/z8DsH37gVHiBAvT0Pv88vWEDBnC6HGDj7K+/NseUoCuhRJITUCJJYTYOH+ZU3MKF+lRcYCBHo6+9xgt1Srl0icHjCxcCx4/r+wMDGRzaqxeDm1VAM70U587pokkTTpGRiT8+Z05dNJUrB5QsySV/fvV9JsW9e0xm2L+fomj37oQlHgB+l88/z6VpU/NPHa9YwQw6reVQv37MVMualf+ll17itLi3N0XUoEFGWuu6KJHkBJRIUpiV0FD2d5s1y/bCUa8exVKXLvRupAQR4MgRiqVFi2ynmvLnZyxHjx5AlSrKO2JNfDyF07FjjCfTlnPn9ID5J/H3B0qU0EVTqVJcFy3KulnpaeruwQN+V0eP6t/hsWP04j2JhwdQtixjxGrV4jRxqVKu8X+8do3lPZYt4+1ixYCZM1nHS4Tbw4Yxk61wYU6J16hhqMkujRJJTkCJJIXZsVhYDG/mTI5QtWytbNk4Qn3tNcbLpOZ1t2yhYPr9d9Z10ihWjKPdl17ilJ8rXKCM4OFDdmrXRNPp08DZs/QSPJlVZ42XF0VpwYJcChWy3c6Thx4qV5l+iYxkxtaNG/Ranj/P70Bb37r19OcWLMi0/Nq1KYpq1KCH05V49IjTZRMm8D/h5QW8+y7jjTJmpMfsf/9jsDbARtY//8xjWJF6lEhyAkokKVyJGzeAOXOAH3/UA70BTpW99lrqC+RFR7Pb+MKFXFtngBUrRq/VSy8xiFkJpqSJjaVYOHtWX86c4fratYS1nJ5GtmysDJ07N2v95MrFKZvAwIRLQADjy55cfH2f/ZtZLPz9Hz3S148e8T9w757tEhbG9e3bFEXaolWDT+qzlC+vx3Jpa1dOIhBhuv7w4bq3t25dTqFVrszbGzdyMHPtGsXTF1/w8eo4SjtKJDkBJZIUrkh8PGsuzZzJVGgt2yd7dsYX9e/PKbPU8OABhdLvv7PgnbVgKlJE9zBVr65O9KkhPh4IDuZUk7ZcuWJ7OyTENoMrrVjHRmm/mYcHL/LP8nilhIwZOY1YuDBT2YsV09fFirmf12TvXuCDD/SaZ/nysQZajx78bh89YuD25Mm8v0QJlvyoXds4m90NJZKcgBJJClfn6lWWEZg92zbGqFIliqVevTh1kxoiI20Fk3ULkMKFWU7gxRc5ek5PMTaOxmIB7t6lxyYkRF9u3+a0aGLL/fu2nqDUnPk9PXXvk78/vTyJLTlyUBBZLwEB6UM0nzkDjBzJzFGAmXXvvgt8+CHbDgEMRO/XT0+SeP11VtxXRUvtixJJTkCJJIW7EB8P/PMPU/7/+ovBoQDjWtq1o2Bq2TL1RRIjI1kx+Pff6b2yFkw5c/I9OnRganZ6aYtiVkQ45adNm1l7payvCCIURJowypAhfQid1HD1KjB+PAcj8fH8nvr0AcaO1fsDPnwIjB4NfPMNv/OgIA5g2rQx1HS3RYkkJ6BEksIduXuX2Ws//8xRrUaePDyx9+4NVKyY+td/+JCC6c8/6WEKC9Pv8/enUHrxRaBtW8bRKBSuysWLwMSJPJZiY7mvbVsGaVeooD9u/XrGBWqxST16sO2I+v87DiWSnIASSQp358gRnuAXLLDthl6+PKfievZkRlVqiY1l648//6QH6/Jl/T5PT/ZJa9MGaNWKU4DKU6FwBc6coTiaP1+P22rShJ6jBg30x926BYwYwbZAALP1pk9X3iNnoESSE1AiSZFeiIlhfNH8+Zwu06bjAFYt7tWLWWxpaYug1WHSGo4eOGB7f758FEutWrF2jKuleivcGxFWp//6a/aF066eL7wAfPIJa5RpxMYC338PjBnDCu0eHqyOP368eXrGuTtKJDkBJZIU6ZF791jwbsECtkHRzhLe3mxV0qsXR8JpjS26coXCbPVq9t2yjmPKkIEXndatKZrKl1deJoUxxMYyEPvrr22np9u1Az7+GKhZ0/bx69ezKOTJk7xdrRoFk8pccy5KJDkBJZIU6Z1r19iyZMECeoE0MmVi7MVLL1HEpFUwPXrEUbomms6csb0/b156l5o1Y/uJ/PnT9n4KRVJcvsyaYz/9xLIMAIPYX36ZlbNLl7Z9/IkTzGJbsYK3c+XilFz//qoFjREokeQElEhSKHSOHWNBycWLbWOL7C2YAFZjXrOGy8aNep86jTJldNHUuLGamlPYh7g4/udmzqRY166QefKw39rrrycsmXH1KqfVfv6ZWWteXpxaGzPGtYthujpKJDkBJZIUioSIsFje779zcbRgevSIHd83bAD+/ZdNZa3T1j09OeXRtCnjp+rWVXEfiuQjwsbR8+Yx69O6TUqzZsxK69AhYRuYO3dYIXvqVF3Ed+zIuKOyZZ1nvyJxlEhyAkokKRTP5lmCyd8faNGCFxh7pvuHhQH//UfB9O+/CafmPD3ZU65BA4qm+vVTXzBT4b5cvMj/7IIF7K2nkTOn3vewZMmEzwsJYa2jH35gBXqA/7MvvlBxR2ZCiSQnoESSQpF8niWYPD0ZiN2hA5cSJez3vlevUixt3symvFotGmvKleOFrEED2lGokAoET4+cP88g7KVL6ZHU8PHh/7JPHxZVTax58M2brIw9fbrejqdyZXqOWrVS/yezoUSSE1AiSaFIHdoUhlYf6dAh2/vLlWNByQ4d2OfNnoGtV68yCHzrVoqmEycSPiYoiF3ltaVGDUAd4u5HfDyF+6pVLG1h/T/09GTz527dgK5dn94/7tQp9libN0+fVqtRg2n/bdsqcWRWlEhyAkokKRT24fJlZv38+Sc9PtaNU4OCWGumVStW486Rw77vHRrKgpZbtlA4HTrEAF1rPDwYR2ItnJ57LnGPgsLchIQw2H/NGgZfh4bq93l5sehjly6MH8qdO/HXEOGU7tdfU2Bp1KkDjBrF/6sSR+ZGiSQnoESSQmF/wsJ48frrL17ItLgOQA/C1opKVqtm//TpqCgWsty9W1+spwY1fH1Zn6lyZX2pWFF5nMxGRAQF8IYNXKzjiwD+Xi1bsrZX69bPjk978IDZm9Om6V4nDw+gfXtg+HBO1ypx5BookeQElEhSKBxLTAy9PGvWAGvXssyANTlz6l6mZs3odXIEt27Ziqa9e3nxTYxixWyFU/nyQOHCqhaOMxABLl1ituP27VyOHrVtzAuwxU2zZpwOq1cvaY/gkSNM+58/H7h/n/v8/VnjaNgwoFQph3wchQNRIskJKJGkUDiXq1cpltasYTC2dsHSKF+e0yVNmzKe5GlxJGnFYuHF+NAh4OBBrg8dYnHNxPD3Z+2msmW5lCvHdYkSasoutVgswLlz+vd/8CCXkJCEjy1enEVGn3+e/4/kZFKGhTHBYO5cYNcufX/JksCrr1Ig2XvqV+E8lEhyAkokKRTGERtLj4HmZTp82PZ+Dw+m+jdtyqV+fSBzZsfaFBpKOzTRdOgQSxBY97qzxsuLXqYSJXghL15c3y5WzD51pFwdi4Xi88wZLidO8Hs9fNh2KlbD25u/e9269BLVrcuK7MkhJob/pXnz2H9N+90yZGCM0uuvszip8gq6PkokOQElkhQK8xAaymDajRuBTZuYdWRNhgwMuG7UiBfPOnUc52myJi4OuHCBvbpOnuRFXtuOjHz2c4OC2Bn+aUvu3IyNcmVEOHV5/TrF0LVr9BBpoujs2YQV1TX8/BgHVqUKpzarVOFtf//kv39sLP8zS5cCf/zBIpAaFSsy7b93b1bVVrgPSiQ5ASWSFArzcuMGxdLGjQzYTSz4ulw5CibN41CihPMCby0W2nj+vO1y7hzX9+4l73WyZqVY0pagIK5z5uR9gYG2S9asrDju5eWYzyVC8RcWBty9m/gSHKyLouvXE/cIWePtTe9aqVJctHiv0qUpflNKVBSna5ctY4KA9XedJw+bNPfpw9glhXuiRJITUCJJoXAdLl6kYNq2jQG9Z88mfEzu3Po0TZ069EwYNeV19y6F3dWrCZcrVygunixVkBIyZqQXys+Py5Pbnp56wPOTa4uF3p2oqIRLdHTq7MmWjY2J8+e3FUSlSnFKMjViyJpLl5g1uWpVwn5/QUFAp05A5870NKb1vRTmR4kkJ6BEkkLhuty+rWdB7djBjLUnY4c8PVkPqXp1LjVqcArGDFNcFgs9ICEhzL4LCbFdbt8GwsNtl3v3Ui9iUoq3N5A9u77kyKFv58oFFChAQaSt7S1G791j6v+mTcA//yQsGlqwIOOMunShMHaUZ01hTtKVSAoLC8PQoUOxYsUKAED79u0xdepUZE2ixfLJkyfx/vvvY/PmzbBYLHjuuefw22+/oVChQsl6XyWSFAr3IToa2L9fTx3fvZvTQk/i7Q1UqMDg4IoV9cUZ8U32IDqagikyktuPHnHRtrW19dlfm4K0Xvv5MfbnycXPj42MM2Vybs2gO3eYhbZ5M4XRgQO2jY69vOghbN2aNZGee07VNErPpCuR1KpVK1y7dg2zZs0CALz66qsoUqQIVq5c+dTnnD9/HjVr1sTAgQPRo0cPBAYG4uTJk6hRowZyP63M6hMokaRQuDc3btDDtG8fl717bQN7rSlY0FY0lS/PGCc/P+fanB6IjWXg+86d+vJkI2OAU3VadmPz5ozHUiiAdCSSTp48iXLlymHXrl2oVasWAGDXrl2oU6cOTp06hdKlSyf6vO7du8Pb2xvz589P9XsrkaRQpC9EGA+0dy9T0A8fZqHBxILCAXoqihZljaQyZRhorG3nyqU8Gcnh/n3g+HG9DtLBgywQmdi0YalS9BY1bcp6SPnzO99ehWtgj+u3S4Su7dy5E4GBgY8FEgDUrl0bgYGB2LFjR6IiyWKxYNWqVRgxYgReeOEFHDx4EEWLFsWHH36IF1980YnWKxQKV8LDg0HEhQszlkXj3j1WAz9yhMvhw/R0hIcz/f/CBQYNWxMQQAGlLcWK6dtFinC6Kr0QH89A9PPn6RGyLpXwtAKdAQGMEatTh0vt2qq4o8K5uIRICg4OTnR6LHfu3AhOLKAAQEhICB48eIDPP/8c48aNwxdffIG1a9eiU6dO2LRpExo1apTo86KjoxFtNXyJeFpfAoVCka7ImpXFKuvX1/eJMKD69GnWbNKW06eZaXX/vi6qEiNHDiBfPn3Jn9/2dlAQH5Mxo7k9UvHxDCK/cQO4eZPLjRtcLl2igLx0iVNoTyNPHr0OkrYUK6aKOiqMxVCRNGbMGIwdO/aZj9m7dy8AwCORM4SIJLofoCcJADp06IC3334bAFC5cmXs2LEDM2bMeKpImjhxYpI2KRQKBUDhkicPlydPKVFRFAYXL9ouFy5wHR7O2Kc7dxI2ZH0SX189e8x6CQzUA6gTW/z9Gczs6cn1k9seHsz2e9ry6BGLQN67Z5s9p22HhTHw/dYt2wDqp+HtTQ9aiRK2rVvKlnWdoHhF+sJQkfTmm2+ie/fuz3xMkSJFcOTIEdy6dSvBfbdv30bQU7pd5syZExkyZEC5cuVs9pctWxbbtm176vt9+OGHGD58+OPbERERKFiw4DNtVCgUiifx99cFQGKEhf1fe/cfU1X9x3H8dfFywV+XVRSCOIymXZ2CBlLglxylVJottyZbLa1pi1Vz1qKxbJFby80Wc5Y/2iLbHBITs1Ujw1qgZDNhV+ekYRMziaywBTd/RMLn+8cdKnJU7pV7L/fyfGxn7B7Oma/7PsjnfT987rnePz+1tV36evn266/e2ZmuLu/anN4ZmqEqKsp7D6qkJO9HhPRuEyd6Z4RSU70zZbwNH+EkpE1SfHy84uPjr3tcdna2Ojo69MMPPygrK0uStH//fnV0dCgnJ8fyHIfDoVmzZqm5ubnP/qNHjyolJeWq/1ZMTIxihsINUgBEtJtu8m7Tpl39mN47W/fOOF25dXZ6v3+17fx57wxPd/el7fLHxkgOx9W3mBjJ6bx0V+8rv8bFeWfREhO9DRINECJNWKxJmjJlih588EE988wzev/99yV5bwHw8MMP91m07XK5tGbNGi1atEiSVFRUpIKCAt17773Ky8vTrl279Pnnn6u2tjYUTwMAfGKzeT+wd8wY70JyAMEVNkviysvLNX36dOXn5ys/P19paWn93trf3Nysjo6Oi48XLVqkzZs3a+3atZo+fbo++OAD7dixQ/+7fOUlAACAhbC4T1IocZ8kAADCz2CM32EzkwQAABBMNEkAAAAWaJIAAAAs0CQBAABYoEkCAACwQJMEAABggSYJAADAAk0SAACABZokAAAACzRJAAAAFmiSAAAALNAkAQAAWLCHOsBQ1/v5v52dnSFOAgAABqp33O4dx/1Bk3QdHo9HkjRhwoQQJwEAAL7yeDyKi4vz61ybuZEWaxjo6elRW1ubxo4dK5vNFuo4A9LZ2akJEybo5MmTcjqdoY4Tsahz4FHjwKPGgUeNg+PKOhtj5PF4lJSUpKgo/1YXMZN0HVFRUUpOTg51DL84nU7+QwYBdQ48ahx41DjwqHFwXF5nf2eQerFwGwAAwAJNEgAAgAWapAgUExOjkpISxcTEhDpKRKPOgUeNA48aBx41Do5A1JmF2wAAABaYSQIAALBAkwQAAGCBJgkAAMACTRIAAIAFmqQwtXHjRt1+++2KjY1VRkaG9u7dO6DzvvvuO9ntds2YMSOwASOEr3X+999/tWrVKqWkpCgmJkZ33HGHPvzwwyClDU++1ri8vFzp6ekaNWqUEhMT9fTTT+v06dNBSht+9uzZo4ULFyopKUk2m02ffvrpdc+pq6tTRkaGYmNjlZqaqs2bNwc+aBjztcaffPKJ5s2bp1tvvVVOp1PZ2dn66quvghM2TPnzc9zrRsY9mqQwVFlZqZUrV2rVqlVyu93Kzc3VQw89pF9++eWa53V0dGjJkiW6//77g5Q0vPlT58WLF+ubb75RWVmZmpubVVFRIZfLFcTU4cXXGtfX12vJkiVatmyZjhw5ou3bt+vAgQNavnx5kJOHjzNnzig9PV3vvffegI4/fvy45s+fr9zcXLndbr366qtasWKFduzYEeCk4cvXGu/Zs0fz5s1TdXW1GhsblZeXp4ULF8rtdgc4afjytca9bnjcMwg7WVlZprCwsM8+l8tliouLr3leQUGBee2110xJSYlJT08PYMLI4Gudv/zySxMXF2dOnz4djHgRwdcav/322yY1NbXPvvXr15vk5OSAZYwkkszOnTuvecwrr7xiXC5Xn33PPvusueeeewKYLHIMpMZWpk6dalavXj34gSKQLzW+0XGPmaQw09XVpcbGRuXn5/fZn5+fr3379l31vC1btujYsWMqKSkJdMSI4E+dP/vsM2VmZmrt2rUaP368Jk+erJdfflnnzp0LRuSw40+Nc3Jy1Nraqurqahlj9Pvvv6uqqkoLFiwIRuRh4fvvv+93TR544AE1NDTov//+C1GqyNbT0yOPx6Obb7451FEiymCMe3zAbZhpb29Xd3e3EhIS+uxPSEjQqVOnLM/56aefVFxcrL1798pu55IPhD91bmlpUX19vWJjY7Vz5061t7frueee019//cW6JAv+1DgnJ0fl5eUqKCjQ+fPndeHCBT3yyCN69913gxF5WDh16pTlNblw4YLa29uVmJgYomSR65133tGZM2e0ePHiUEeJGIM17jGTFKZsNlufx8aYfvskqbu7W48//rhWr16tyZMnBytexBhonSXvq0Gbzaby8nJlZWVp/vz5Ki0t1UcffcRs0jX4UuOmpiatWLFCr7/+uhobG7Vr1y4dP35chYWFwYg6bFhdE6v9uHEVFRV64403VFlZqdtuuy3UcSLCYI57TCuEmfj4eI0YMaLfK+0//vij36s/SfJ4PGpoaJDb7dYLL7wgyTuYG2Nkt9tVU1Oj++67LyjZw4mvdZakxMREjR8/XnFxcRf3TZkyRcYYtba2atKkSQHNHG78qfGaNWs0e/ZsFRUVSZLS0tI0evRo5ebm6s0332SWYxCMGzfO8prY7XbdcsstIUoVmSorK7Vs2TJt375dc+fODXWciDGY4x4zSWHG4XAoIyNDu3fv7rN/9+7dysnJ6Xe80+nU4cOHdfDgwYtbYWGh7rzzTh08eFB33313sKKHFV/rLEmzZ89WW1ub/vnnn4v7jh49qqioKCUnJwc0bzjyp8Znz55VVFTfX1sjRoyQdGm2AzcmOzu73zWpqalRZmamoqOjQ5Qq8lRUVOipp57Stm3bWFM3yAZ13PN5qTdC7uOPPzbR0dGmrKzMNDU1mZUrV5rRo0ebn3/+2RhjTHFxsXnyySevej7vbhsYX+vs8XhMcnKyeeyxx8yRI0dMXV2dmTRpklm+fHmonsKQ52uNt2zZYux2u9m4caM5duyYqa+vN5mZmSYrKytUT2HI83g8xu12G7fbbSSZ0tJS43a7zYkTJ4wx/Wvc0tJiRo0aZV588UXT1NRkysrKTHR0tKmqqgrVUxjyfK3xtm3bjN1uNxs2bDC//fbbxe3vv/8O1VMY8nyt8ZX8HfdoksLUhg0bTEpKinE4HOauu+4ydXV1F7+3dOlSM2fOnKueS5M0cL7W+ccffzRz5841I0eONMnJyeall14yZ8+eDXLq8OJrjdevX2+mTp1qRo4caRITE80TTzxhWltbg5w6fHz77bdGUr9t6dKlxhjrGtfW1pqZM2cah8NhJk6caDZt2hT84GHE1xrPmTPnmsejP39+ji/n77hnM4Y5agAAgCuxJgkAAMACTRIAAIAFmiQAAAALNEkAAAAWaJIAAAAs0CQBAABYoEkCAACwQJMEAABggSYJAADAAk0SAACABZokAMPKn3/+qXHjxumtt966uG///v1yOByqqakJYTIAQw2f3QZg2Kmurtajjz6qffv2yeVyaebMmVqwYIHWrVsX6mgAhhCaJADD0vPPP6+vv/5as2bN0qFDh3TgwAHFxsaGOhaAIYQmCcCwdO7cOU2bNk0nT55UQ0OD0tLSQh0JwBDDmiQAw1JLS4va2trU09OjEydOhDoOgCGImSQAw05XV5eysrI0Y8YMuVwulZaW6vDhw0pISAh1NABDCE0SgGGnqKhIVVVVOnTokMaMGaO8vDyNHTtWX3zxRaijARhC+HMbgGGltrZW69at09atW+V0OhUVFaWtW7eqvr5emzZtCnU8AEMIM0kAAAAWmEkCAACwQJMEAABggSYJAADAAk0SAACABZokAAAACzRJAAAAFmiSAAAALNAkAQAAWKBJAgAAsECTBAAAYIEmCQAAwAJNEgAAgIX/A9MHwXp2OdB8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(x_state,vx_state,c='b')\n", + "plt.scatter(x_state[0],vx_state[0],c='r')\n", + "plt.xlabel('x')\n", + "plt.ylabel('vx')\n", + "plt.title('phase space')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "5404e006", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = 50\n", + "filter_data = np.random.choice(len(t_sol), train_data, replace=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2e04ebd3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "training data percentage: 1.9091256204658267 %\n" + ] + } + ], + "source": [ + "print('training data percentage: ',train_data*100/len(t_sol),'%')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a86dfcc1", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "t_tensor = torch.tensor(t_sol,dtype=torch.float32)\n", + "x_tensor = torch.tensor(x_state,dtype=torch.float32)\n", + "vx_tensor = torch.tensor(vx_state,dtype=torch.float32)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b1c87afc", + "metadata": {}, + "outputs": [], + "source": [ + "t_tensor_train = t_tensor[filter_data]\n", + "x_tensor_train = x_tensor[filter_data]\n", + "vx_tensor_train = vx_tensor[filter_data]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ab2a0403", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAF2CAYAAAASktnAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADl/UlEQVR4nOy9eZhcZZn3/6mlu3rf9yXpzh7IBmELEEwEgoiIBoQBFVFA/amDiDqvjDOK6Mi8M6OG0Rd0RGRUQBRbcEEkaELYIRtk33rf9727upbz++Oc59TpTnenl6o651Q9n+vqC1L1VPfJSXWd832+9/29HYqiKEgkEolEIpFIJBKJRCIxHafZByCRSCQSiUQikUgkEolERYp0iUQikUgkEolEIpFILIIU6RKJRCKRSCQSiUQikVgEKdIlEolEIpFIJBKJRCKxCFKkSyQSiUQikUgkEolEYhGkSJdIJBKJRCKRSCQSicQiSJEukUgkEolEIpFIJBKJRZAiXSKRSCQSiUQikUgkEosgRbpEIpFIJBKJRCKRSCQWQYp0iUQikUgkEolEIpFILIKpIn3Xrl1ce+21lJSU4HA4eOaZZ2b82ldffRW32826desidnwSiUQikUgkEolEIpFEE7eZP3xoaIi1a9fyyU9+kuuvv37Gr+vr6+PWW2/l8ssvp62tbVY/MxgM0tzcTHp6Og6HY7aHLJFIJBJJ2FEUhYGBAUpKSnA6ZZFbOJDXe4lEIpFYidlc600V6VdffTVXX331rF/3mc98hltuuQWXyzUr9x2gubmZ8vLyWf9MiUQikUgiTUNDA2VlZWYfRkwgr/cSiUQisSIzudabKtLnws9//nNOnTrFr371K77zne+ccb3X68Xr9ep/VhQFUE9ORkZGxI5TIpFIJJKZ0t/fT3l5Oenp6WYfSswgzqW83kskEonECszmWm8rkX7ixAm+9rWv8fLLL+N2z+zQH3jgAb71rW+d9nhGRoa8aEskEonEUsiy7PAhzqW83kskEonESszkWm+bxrdAIMAtt9zCt771LZYtWzbj191777309fXpXw0NDRE8SolEIpFIJBKJRCKRSOaObZz0gYEBdu/ezb59+/jCF74AqKEwiqLgdrt54YUXeO9733va6zweDx6PJ9qHK5FIJBKJRCKRSCQSyayxjUjPyMjgwIED4x576KGH+Pvf/87TTz9NZWWlSUcmkUgkEolEIpFIJBJJeDBVpA8ODnLy5En9zzU1Nezfv5+cnBwWLFjAvffeS1NTE7/4xS9wOp2sWrVq3OsLCgpISko67XGJRCKRSCQSiUQikUjsiKkifffu3WzevFn/8z333APAJz7xCR577DFaWlqor6836/AkEolEIpFIJBKJRCKJKg5FzCSLE/r7+8nMzKSvr0+mvUokEonEEshrU/iR51QikUgkVmI21yXb9KRLJBJJ1AgE4OWXoaUFioth40Zwucw+KolEIpFIJJLIIu+BLIEU6RKJRGKkqgq++EVobAw9VlYGDz4IW7ead1wSiUQikUgkkeTpp+Fzn4OOjtBj8h7IFGwzJ10ikUgiTlUV3HDDeIEO0NSkPl5VZc5xxQKBAOzcCU8+qf43EDD7iCQSiUQikQj+6Z/gIx8ZL9BBvSeS90BRR4p0iUQiAVU0fvGLYIjpqM8s5M2yswngUB+4+24pLudA11NVHF57CcrmzXDLLbB5MyxcKC/4EolEIpFYgd/+Fv7zP/U/1mSX8FbZ2QQcmlRUFHkPFGWkSJdIJBJQ+68MDvofV2xk86f/h5s++n/55A3fxI8DGhrUdZIZ89pjv+eStxTe/4F/5XMfupeg2PBoaoLrr5dCXSKRSCQSMwkE1BJ3jd+svpL33vljbvzo/+WO6/81JNTlPVBUkSJdIpFIQA1I0ehNSuPe9/0jAacalLJr0XqeXPe+09ZJpsfr9XHPnkFGE5IA+MvyS6hatXn8ok9/Wu7MSyQSiURiFi+/DJ2dADRkFPAvWz6HognzHYvP53erLg+tlfdAUUOKdIlEIgE1wVTjqTVbGPSksKK9hm+8+D8A/PjCG1QX2LBOMj1/+s0OWlNzKO7v4K5XnwDgfy64nnFzP7u61B51iUQikUgk0ccgvH9y4fWMuRPYUPcO9+54VHtsa+i6Le+BooYU6RKJRALqiJGyMnA4eGrNFgA+tfsP3LL/L6R7h2jKLGDPue9R10lmxDOH1fCZW/Y/zx1vPYPH5+V4/kKO5S0cv1CKdIlEIpFIzEET3iNuD78/W612+8fXfs0t+/9Con+MU7nl6nU7P1/eA0URKdIlklhFpmnPDpcLHnyQ6uwSqnPLSAj4uPrYKyQFfFx54g0A/vyxu+Ws0Bky6PXzppIBwNXHXiVjbJiNtfsBeGHZhvGLjx6N8tFJJBKJRCIBdJNix+LzGPKkUNrXxob6A6SPjXBZzV5Au24/9JC8B4oiUqRLJLFIVRVUVKgp2iJNu6JChnSdia1b+fu3/x8AFzYcJH1sBICruk8AsCuYadqh2Y3XTnYyhpOK7mYWd6uBfFeeVDc7diw6b/zil16Sm0gSiUQikZiBZlL8ecWlAHzgyMsi4pXLavYB8Pal71fHsEmihhTpEkmsIWd9z4u30koBuOyqC+GJJ2DHDi564bc4HFDdMURb/6jJR2gP9tT1ALCh5Yh+sd9Q9y4AB4sWM+pODC3u6JCJsRKJRCKRmETgQx/mlbNVkb5Fqx4EOH+oGYC9nnz8gaApxxavSJEukcQSk8z61hGPyTmXU6IoCnvrVXG5/r3r4eabYdMmMtOSOLtELd1+o7rLzEO0DfvqewE4d1mR/lh5XxsFA134XAm8U7R0/AtkYqxEIpFIJKZwuLmfvoCDNI+Ltb98SDcplh98i4wkN0NjAY62Dph9mHGFFOkSSSyhzfpWgO9t/BiXfuYR/r8P3UtPUrr6vKLIOZfT0NA9QufgGAkuB2eXjC9tP29hDgDvNPSZcWi2whcI8m5TLwDnbA6VtjuA85sOA7CndOX4F8nE2JjnoYceorKykqSkJNavX8/LZ/gc8nq9fP3rX2fhwoV4PB4WL17Mo48+GqWjlUgkkvjh1VPqCLaLFuXifu9m3aRwJrhZXabeDx1u7jfzEOMOt9kHIJFIwojmRv7kguv54cX/AEBjVhH9nlR+9dS/6GXH0rWcHOGin12SSVLC+HCU1aXqReqAJj4lU3OsdYBRX5CMJDeLrrpMTc1vagJFYXXLSf68YiOHCxepix0O9XmZGBvTPPXUU9x999089NBDXHLJJfzkJz/h6quv5vDhwyxYsGDS19x44420tbXxs5/9jCVLltDe3o7f74/ykUskEkns8/optUrw4sV5pz23oiiDV092caRVivRoIp10iSSWKC6mJymdH118EwCf2PNHPD4vr1as42+LLxi3TnI6h1vUC9DastMD4tZojx1q7icQnKSdQKISCHB051sAnJUSxOl0wIMPqs85HJzVXg3A4YJKVaADbNsmE2NjnO9///vcfvvt3HHHHaxcuZJt27ZRXl7Oww8/POn6559/npdeeonnnnuOK664goqKCi644AIuvvjiKB+5RCKxCyNjAf7tz4e58xe7eU1zhiVnRlEU9mkmxfkVOac9v7JYbfc72iLL3aOJFOkSSSyxcSNPXfYRBj0prGyr5psv/g+37f0TAP+7/gOqKCovl67lFIh+q+VFGac9tyg/jZREF8NjAao7BqN9aPZAmypw/JEnAVi+/Vl1qgDA009DaSkr22sAqMkpZXjhIvXxrVtNOmBJNBgbG2PPnj1s2bJl3ONbtmzhtddem/Q1f/jDHzjvvPP4j//4D0pLS1m2bBlf+cpXGBkZmfLneL1e+vv7x31JJJL4QFEU/vHJffz05Rq2H27jE4++JcuzZ0ht1zD9o348bicritNPe35FkfrYUemkRxUp0iWSWMLl4o+XfAiAj+9/DicKH9v3HA4lyMuV59KSlgN33GHuMVqYY9oFaHnR6Rcpl9Oh7yYLx11iwDBV4HjeQgCWdtaHpgoA1NaS/+ffU+AOojicHP37m1KgxwGdnZ0EAgEKCwvHPV5YWEhra+ukr6muruaVV17h4MGD/P73v2fbtm08/fTTfP7zn5/y5zzwwANkZmbqX+Xl5WH9e0gkEuuy41g7Lx5pI9HlZHlhOr6Awve3Hzf7sGzB/gbVRV9VmkmC63RpuDg/DYCeYR+9w2NRPbZ4Rop0iSSGqO4Y5NCwE7dD4X0DqmNZ3tfGuU1HAXhxyYXwzW/KmemT0Ds8Rlu/F5hcpAMsK1QvVCfbpZM+jglTBU7kqT3Gyzvqxk8VANi0iRWLVLF2rGMo2kcqMRGHwzHuz4qinPaYIBgM4nA4ePzxx7ngggt4//vfz/e//30ee+yxKd30e++9l76+Pv2roaEh7H8HiURiTX7+ai0At11SwUMfOxeAvx1to6l36uobiYoIxF1bljXp88mJLooykgCo6ZTX7WghRbpEEkO8dLwDgIsW55Nz7BB861sAXHniTQBeWHqRulDOTB9PIMDR59Wk6bJkB2nuyYXDkgJVvJ9okyJ9HNpUAYCBxGSaMgsAWNZZpz4/YarA4vxUANk2ECfk5eXhcrlOc83b29tPc9cFxcXFlJaWkpkZyodYuXIliqLQqL3XJuLxeMjIyBj3JZFIYp/6rmFePtGJwwEfv2ghi/PTuKAiB0WB7Ycmr9aRhNjf0AvA2vLT83gEC3NTAKjrGo7GIUmQIl0iiSle09I5L1mipXP+9KcAbK7eDcDbZWcx5nTLmelGRB/1d34AwPIDb05ZabC0QHPSpbgcj2FawMlctcS4YKCLTO/QpOsWaaVz1dJJjwsSExNZv34927dvH/f49u3bpwyCu+SSS2hubmZwMPS7dvz4cZxOJ2VlZRE9XolEYi/+fEC9tlyyOI/yHFVMbjlb3QD829F2047LDoz5g3rv/rryrCnXVeapm+u1XfK6HS2kSJdIYoRAUOGNajFCI3ecu7m0s57s4T5GE5I4WLRYfYGcmT6uj7o6pxSAJV0NU1YaLNXK3Ws7hxjzB6N+uJbFMC2gNrsEgEXdTVOuW6xd7Ktl2VzccM899/DII4/w6KOPcuTIEb70pS9RX1/PZz/7WUAtVb/11lv19bfccgu5ubl88pOf5PDhw+zatYuvfvWrfOpTnyI5Odmsv4ZEIrEgOzQhLoQ5hMyKvXU9+APyej0VpzoGGQuoI1MXaBsck7EwVxPp8rodNaRIl0hihKOt/QyM+kn3uDm7JGOcu+lE4fzGwwC8VbZq/AvjdWb6hD7qumxVQC7saZ6y0qAoI4k0jxt/UKFO7iaH2LhRnXXucITOY6/hfTVhqoBw0uu7h+VmR5xw0003sW3bNu6//37WrVvHrl27eO6551i4UA0ZbGlpob6+Xl+flpbG9u3b6e3t5bzzzuOjH/0o1157Lf/93/9t1l9BIpFYkL5hH3u08WGblxfojy8rTCfd42ZoLKBPbpGcjkhsX1GcMWVGCECFVu5eI8vdo4YU6RJJjHCgUQ3+WF2WidvlPG0W+gUNBwHYXXbW+BfG68x0Q6UBQF2Weh4qejRxOUmlgcPhYHGBDI87DZcLbr4ZFIV67Twu6J3QB2iYhV6Y4SE10UUgqFDfLTc74oXPfe5z1NbW4vV62bNnD5dddpn+3GOPPcbOnTvHrV+xYgXbt29neHiYhoYGvve970kXXSKRjOOVk50EggpLC9L0UndQJ7KcuzAbgD11PWYdnuURs89XThGYKxDntqlHBvFFCynSJZIY4UBTSKQD49xNgHUt6iiSA0VL1OfjfWa6oYLA73DSkKWWyVX0NE+5DqBS202ulbvJIaqq4L/+C4C6rCJggpP+la+MG7XmcDh0N/2U7EuXSCQSyRx5u7YbMGTxGFij3Q8dkWNTp+SIVmWwvGj6oM2SLHWDtHPQi9cf51lGUUKKdIkkRjgoRHqpJtJdLnjwQfX/HQ5WttfgUIK0pefSnqbuLhvdzbjDUEHQnJGPz5VAon+MooGuKdcBLND6sqQDrDGxbSBLtA0YRPqvf31aQKFIiq2Xmx0SiUQimSO761SRvl5zzY2Icaqy3H1qjraIcvfpnfTslAQ8blU2tvV5I35cEinSJZKYYMwf5IhWsqSLdFDdy6efhtJSUn2jLO5Sy7sPnXWh+rjB3Yw7DJUGIuxsYW8LTrR+9CkqDRbmyDEk4zC0DQwlJNGpbQCNK3efJKBQlM419sjzKJFIJJJZEggw9OIOjmgGxXmTjA9boYn0420DBINKVA/PDnQPjdE+oAru5YXTi3SHw0FxpjorvblPlrxHAynSJZIY4HjbwNTpnFu3Qm0t7NjBqiVqKfLBf3swvgU6jKs0qBMiXbi/IjxlkkqDijwp0sdhaAeo10rds0b6pxy/JijPVs9jg+xvk0gkEsls0EanvnP73QRwUNrXTvHaFadNZKnITSXR7WR4LECD3BA+DREatzA3hVSP+4zrizPVkvcWKdKjghTpEkkMcFgrVzq7JHPydE6XCzZtYtUlawE4KPuzVLRKg9rypYAhNK6sbMpKgwU5arl7c9+I7MuCce0AoVL31mnXAZTnqBf7hm554ySRSCSSGWIYnSqCcM9tOjLp6FS3y8kSLf/kmCx5Pw0RGrfiDKFxguIszUnvHY3YMUlCSJEukcQAIml8+Rk+aFcWq8EgJ9pkMrnO1q3UffhmABZ++H2wYwfU1ExZaZCXlkhKogtFgUbpAo9rG2jQnPQF04xfEwgnvbFnBEWRZYgSiUQiOQMTMlD2lSwHYH3TkSlHp4qJLLVybOppCCf9TKFxghLppEcVKdIlkhhAiHRxMZqKpYaLlXSBQzT0qLvCC656D2zaNG2YnsPh0FsKZOgZ49oGmjPUdN2S/g71uWnaBkqyknE4YMQXoHNwLFpHK5FIJBK7MmF06qGCRQCsbj2pPjDJ6NQKOZFlSsS947LC6e8dBcJJb5FOelSQIl0iiQHEB+3SM4j0/HQPGUluggrUdMpdZQBFUWjqVXeFS7NmNoO5Qkt4lzvzGlrbQEtBOQAlA53q49O0DSS6nRRnqBd82SsokUgkkjNiyDbpSMmiPT0XhxJkZUfNlOvkpvrUiPvARXkzE+nCSW/ukyI9Gpw5JUAiMZm/HWnjh38/SSCocOelFXyw76T6AVxcrJbQxusIMY1RXygQZckZRLrD4WBpYTp76no40TbIihmWOMUy/aN+Br1+YOYiXfRTy3J3A1u30tJUAE19FN95K6z48hl/P8tyUmjuG6Whe5hzF5w+PkcikUgkEh1DtsmhQtVFX9TdRIrPO+W6hdqmep0cmzqOnqExeoZ9QCgQ90wUahvr7f1SpEcDKdIllubvR9u44xe79Vaju556B9+fvs/1h/6uPlBWppbaxnFS+amOQRQFslISyE1NPOP6pQVpqkhvl33pAM2ai56Tmkhy4sw2fEo0MS9eK1Fp1i7cJddugdLTx+FMpDw7hbdquuVmh0QiiW8CAbVEWxoQ0yMyUJqaOKyVup/VVh163uFQnzdkoCzUyt2bekYY8wdJdMsiYoAarRKwODOJlMSZycH8dA8A3cNj+ANB3C55LiOJPLsSyzLk9fPV376LosB1uQE+uu85AO678jN0JWsO8CRpnvGGsdR90mT3CQi3/WS7TDqFkNAu0XqtZkKpFOmnMeYP0jmouhliluqZKM1Wz2OTPI8SiSRe0caJsXkz3HKL+t+Kiri+r5kSQwbKoaLFAJwtRPoUGSgF6R6SEpwEFXmtMVLToYr0yrzUGb8mJzURp0Nt/e8eklkykUaKdIlleey1WrqGxqjITeE/f3QX337hYVa1nmTAk8rDF31EXTRFmmc8IUT6mUrdBUvz1V3l48ebYOfOuD1vAl2kZ86s1B1CTnqTDE/RaesfRVHA43aSM4OKDoASTcy3yv42iUQSjxjGiQGMuD28W7SE0baOuDcgpkTLQDlSoo5OPbv9lPr4FBkoDofDME1E9qULRKbObES6y+kgN01109sHvGdYLZkvUqRLLIkvEOTnr9YCcHdpgMT6OpwofPnlXwHwmzVXMuJWPygmS/OMJ6q13dDF+TMQ6VVVLP7QVQDUDwUJvPfyuN+xF0K7ZIb96BBy0jsHvYz64nuTQyA2O4ozk2ZU0QFQlClmrkp3QyKRxBkTxokdKqhk06f/hw9+YhvvveNharKL49qAmJJAgKGMbGoyCgE4676vnnF0arF2zZap5CGqO2cv0gHyNZHeMShFeqSRIl1iSXYe66Bz0EteWiLX0KE//p7qPZT3ttKflMafVlw6/kWGNM94QuyGisTxKdF27IuPHyTR72PMnUBLem7ctwzMNtkd1P7/5AS1nK5FusBA6DwUz6EioVWG0EgkknjDME5s1J3IZz78ddrScwFozijgnvffQ7ChMW4NiEnRWgOO3vY5FBwUDXSS+y//B7q7p+3hF1Vb8nodQpS7L8qfnUjP0/rSO6WTHnGkSJdYkt/vUy9cHz6nlISSUEqnE4Ub390OwHMTRbohzTNeUBRFHysiwlEmxbBj71KClPe1AlCXXRL3LQPCxRX90TPB4XDo66ULrNLcpznps+jtF05677CPkbH4e+9JJJI4xmAs/PKca2jMKqKkv50XfvY5Ur3D7Ctdwa7Kc+LWgDgNQ2vA8byFACzvqJ2R0SA2j1v65PUa1HvHGt1Jn1mrpEA66dFDinSJ5fD6A7x0THXPP7CmJJTmqZXQXn38VQBeqVhHf2KK+nh5+bg0z3ihd9jHgDY+rDxnGpFu2LEHqOhRL/q1WdrGRhy3DISC42Yu0o3rZRCNiigjnE1vf7rHTWqiqEiQ51EikcQRmrEQcDh59LwPAvDFV59kWWc9Nx5QzYgn174vLg2I05jQGlCdUwrA4q7GGRkNIsxUzvdWaev3MuIL4HY6KJuFQQGhhPcO6aRHHCnSJZbjzepuhsYC5Kd7WF2aOS7NE4eDJV2NLOmsx+dKYOfi89THJ6R5xgt13aqLXpjhISlhmr//hJ34hT3N6uuzi6ddF+v4AkHaxNiwWTjAAKVZsp/aSMscnHSHw6H3CsrwOIlEEldoBsQrFetoycgnc2SA6w7tBOCGAy8C8NLi8xi58GITD9IiTDAaTuWUAeqMdOCMRoO4LrXKzWAAqjvVwOHynBQSZjlGTYj0zkGZ7h5ppEiXWI6/HWkD4PIVBTidWgCVluZJqbp7url6NwCvnnXJpGme8UKd1o++MOcMPUUTduIX9qrl7rXZJdOui3Xa+kcJKpDocpKX6pnVa4Vj3CRnfAPQPAcnHUIOh+wVlEgkcYVmQDxz9mYAPnR4J0kBHwBnddRS2tfGqDuRV2p6zDxKazDBQKjWRXrjtOsEerm7DI4DMJS6z64fHSAvTZ3e0jEgz2WkkSJdYjlePdUFwKblBeOf2LoVamthxw4uuUlNKH/lvMtRPvzhKB+hdWjQnPQF0/Wjw2ktA6c56XHaMiCEZXFWUmhDaIboPelyZx4Ihb8VzXBGuqAoQ4h0eR4lEkl8EfjQh9mxZhMAHzgScoEdZWVsXpoHwGunOs04NGtRELof9LrcNGSpye5LuhqnXGdEbAYPeP0MjPoic4w2Yi4z0gWy3D16SJEusRSdg1597veFlTmnL3C5YNMmLvjkVhJcDpp6R6nvjt+5l3VaaNyC6frR4bSWAdGTXpdVRNChfQzEYcuALiwzZicsIdST3ix35hnzB+keUkvfCmd5LvXRONJJl0gkcca++h56Aw4ykxM45xc/giee0MeJXXC52s63u1Y66Ubqs4oJOF2keYfJH5rZuUn1uMlIcgPyWgPzc9JFcJwsd488UqRLLMXu2m4Alhemk52aOOW6lEQ355RnA/C65rzHI6Infdpkd4GhZaC0vx1XMMBoQhLtS8+K25aBdk2kz1ZYQmhkW1PvCIoIrolTOrWU1wSXg+yUhFm9Vpa7SySSeOXvR9sBuGxZPu73boabb4ZNm8Dl4vwK9R7nUHMfg1pAbNzS3q7/7ylDqftp9W+GdRMRJe8y/yQk0hfNQaSLe/P+UR/+QDCsxyUZj6kifdeuXVx77bWUlJTgcDh45plnpl1fVVXFlVdeSX5+PhkZGWzYsIG//vWv0TlYSVR4s0YV6RdM5qJP4DztAra3Pn53mcX4tWmT3Y1oLQMJf3uRsiT18lb757/HpUAH9NC4wozZ9aMDFGivGfMH6R2O7/K5dq3sLT/Ng8Mxu7aBIinSJRJJnLJTm2Tz3hX5pz1XnJlMcWYSQQUONfVF+9CshSEvZ1yy+zTrJhIKPIvvMm1fIKhXoFbOckY6QFayuhGvKNA3Et/3PpHGVJE+NDTE2rVr+dGPfjSj9bt27eLKK6/kueeeY8+ePWzevJlrr72Wffv2RfhIJdHizeqZi/RzF6gifV99byQPybKM+gJ6ufbCmYp00FsGFixUe7fq4jj4rK1fvVjPxUn3uF26a9z21O9h5864nDMPoYqE/Lm0DejuRvy+DyUSSfzRN+LjSGs/AJcsyZt0zdklGQAcaemP2nFZEkOuzqncCcnuMKNcHdlLrdLYM4I/qJCc4KIwffbXbLfLSaYm1HuGZcl7JHGb+cOvvvpqrr766hmv37Zt27g/f/e73+XZZ5/lj3/8I+ecc06Yj04SbQa9fv2CNRORfs6CLABOtA/SN+LTPzTihcYedSc0zeMmZ5rWgKkQ7ns8p5MLJ71gDuKSqioKmzroyS6j9Tv/wYqavepNxIMPxl1lgtFJny3CSe8Z9jHqC0w/SlAikUhihL11PSgKVOSmUDCFWFpZnMGLR9o50jIQ5aOzGCJX54YbTk92F9VbZ8jVkSJdpUYbv1aRlzrrwFxBTmoifSM+uoekkx5JbN2THgwGGRgYICfnzIJOYn0ONfWhKFCSmTQjZzM3zaP3Yu9v6I3w0VmPhm5VXJdlJ8+6xBhCPdWNcTznW4jLwvRZisuqKrjhBoq61VF2bem56uNNTXDDDerzcYQ4jwVzaBvISHLjcauXoni/eZJIJPHD21oGz3kVU9/DrizWnPTWOHfSAbZuRfnt01TnlQOGcveyshnl6ojRYfFe7l7dMfd+dIGoIhSBsZLIYGuR/r3vfY+hoSFuvPHGKdd4vV76+/vHfUmsyQGt52pVaeaMXxMqeY+/vnTRwyvE9mwpy47vOd+Kohh60mfhpAcC8MUvgqJQNKiGFral5Ypvqv737rvjqvRdzEstmO1mB+BwOHRx3y7nrkokkjhBiPQLphHpZ2ki/WjrgAzpArquuoY+TyoOoGLbA3oS/kyq13QnPc5F+nyS3QWielOWu0cW24r0J598kvvuu4+nnnqKginmIgI88MADZGZm6l/l5eVRPErJbHi3URXpa8pmLtLF2kPN8bf5Inp4C2c5l1ogRHpjnIr0Qa+f4TFVSM/KAX75ZWhUd/ALNJHeKkQ6qEK9oUFdFye0a739U5VsngnxOvF9JBKJJJYZ9QV4p0G95xEhuJOxICcFj9vJmD9IUxxXvQmEC1yanUzSR0NJ+DMhP029zsR7xVY4Rbp00iOLLUX6U089xe23385vfvMbrrjiimnX3nvvvfT19elfDQ0NUTpKyWw5qDnpq8uyZvwasct8OB5FuuYCF8+lnxooy07Rv0887tCL0Lj0JDcpibOI52hp0f+3aEBz0tNzp10X6+jl7nNw0o2va4/zmyeJRBIfHGruZywQJDc1cVqx5HQ6qMhVn6/WxFU8U92h9lMvyk+b9Wvz0kW5e3wLS12kzyHZXSDGsPVIkR5RbCfSn3zySW677TaeeOIJrrnmmjOu93g8ZGRkjPuSWI/+UZ9+AVo9i3L3lVryaVPvCL1xVnYjyt2L5uik56d5SHQ5CQQVXfDHE3OekW4Y8aKL9LRJyhWnGQUTa4gy9bn0pINRpMff+1AikcQfwpRYU5Z5xkwZIeJrpUjX7xMXz0FgimDT7qExfHFoTAAMj/n1e8f59KTnpGhOepzdd0cbU0X64OAg+/fvZ//+/QDU1NSwf/9+6uvrAdUFv/XWW/X1Tz75JLfeeivf+973uOiii2htbaW1tZW+vjifHxkDiAtWaVbyrJLKM5ISWKCllB+OsxElrfMU6U6ng5Is9bXx2JfeNjDHGemGUTCFk5W7z2AUTCwRDCq6MzHncvcMWe4ukUjiB5HBMxNTQjieNVKkc6p97k56dkoiLi3NvCtO3fTaTnUqUHZKAlkps58KJMiW5e5RwVSRvnv3bs455xx9fNo999zDOeecwze+8Q0AWlpadMEO8JOf/AS/38/nP/95iouL9a8vfvGLphy/JHwcnMUFayLxWvKul7vPUaSD2tcF8dmXrs9In62wFKNggMIhNbCwKzUTn9M141EwsUT38BiBoILDEUrPnS0i0KdNlrtLJJI44EDjzNv7KnOlSBfoTvocXGCn00FuanwnvIejHx1CTrosd48sps5J37RpE4pIQ56Exx57bNyfd+7cGdkDkpjGUW0G6Nkls29HOKskg+cPtcaVSB/0+hkY9QNQlDm3dHeAsqwUoCsuA2nmNSN961Z4+mlyvng3CQEfPlcCHanZlGQlqwI9juakC/c7NzURt2tu+756uXsctl1IJJL4YmQswIl29Z5HOukzZ8wfpL5bdYIXF8zeSQd1Q7h9wBu34XFiRnpl3tzOnyA7WTUhutt7YOdOtXIwToyJaGK7nnRJbHKsTb1gLStKn/VrhbCPp3J3Ueqe5nGT5pn7XlvISR8Oy3HZCSEuZ13uLti6FWdtDQXaznzrL34941EwsYToI8+fY6k7hMrk4/XGSSKRxA+HW/oJKqpgnMn1R7ieTb0jjPriZ7TnROq7hwgEFVITXXMOKdXHsMXptUZUIiyaR2gcVVXkXHMVAD0Do7B5M1RUQFVVGI5QYkSKdInp+ANBTmh9RivmINLP0kT6ifZBvP74uIAJF3iu/egCfVZ6HDvpsw6OM+JyUVSYpX6/xWfF5U7yfJPdIRQ41xXHgT7xwEMPPURlZSVJSUmsX7+el2c4pvDVV1/F7Xazbt26yB6gRBIFDjT2AqqLfqbQOFCrlFITXSgKNMfhtVpwqkMIzLQZnbfJyE0NXWvikXmXu1dVwQ03kFN9DIBBTwpelxuamuCGG6RQDzNSpEtMp657mDF/kOQEF+XaWLDZUJSRRHqSm0BQ0UMxYh2RzjmffnRQg/pABsfNB/H6eEzIh5AjMR+RnpOSiFsL9InXXsFY56mnnuLuu+/m61//Ovv27WPjxo1cffXV43JnJqOvr49bb72Vyy+/PEpHKpFElgNNatXfTDN4HA6H2koFNPfG53UGQjPS55LsLshJTQCgJ05Tyecl0gMB+OIXQVFI9w7jDKqmWF9SOojW5bvvVtdJwoIU6RLTOdaqlboXpuF0zn531OFwsFTrTxJ9XrFOa58qquflAgNlWjJ+c+8oweDU+RCxhqIoenDcXBPJBeLfoC1Ok8lFH3n+PES60+kgL030pcfneYx1vv/973P77bdzxx13sHLlSrZt20Z5eTkPP/zwtK/7zGc+wy233MKGDRuidKQSSWSZS1BuqV71Fh9GxGScmseMdEE8p5L3DI3RO+wDoCJ3DiL95ZehsREAJwoZXlXw9yVp/x6KAg0N6jpJWJAiXWI6IZE++1J3wdIC9bUn2gbDckxWJxzJ7gCF6R5cTgdjgaBethwP9I34GPOrZdVzne0tKNJFenw6HB2D83fS1derN0/tf96uBtHI3fiYYWxsjD179rBly5Zxj2/ZsoXXXnttytf9/Oc/59SpU3zzm9+M9CFKJFHB6w9wUhObZ5fOPCi3JI6r3gTVukif/3zveEwlr+lSRXVJZhLJiXNozWtpGffHzFH130MX6VOsk8wdKdIlpiNE+vI59KMLlhaqHxIn2+NEpM9zRrrA7XLqIrOlL34u/sL1zkpJwOOeXx95YZyLdDEjPTdtHiK9qoqCN9Xd9/YfPyqDaGKMzs5OAoEAhYWF4x4vLCyktbV10tecOHGCr33tazz++OO43TMLx/R6vfT394/7kkisRE2nGn6W7nHr196ZoLemxWm5u6IooZ70eSST6056HJa712jnr3KumxzFxeP+KER6b1L6tOtigc5BL34T8nKkSJeYjkh2n49IXxJv5e4iOG6e5e4QEvqizz0eEH3P+fMRlhoFcZ4WK8oGc+c4I10E0eR3NgPQnpajPi6DaGKOiWFPiqJMGgAVCAS45ZZb+Na3vsWyZctm/P0feOABMjMz9a/y8vJ5H7NEEk6Oa9V+SwtnF34WEunxWe7ePTRG34gPh2N+M75zUuPYSZ9vaNzGjVBWBtr79jQn3eGA8nJ1XYzxqcfeZsW/Ps9Lxzui+nOlSJeYyqgvQK1WgjM/J119bU3nUFykQ4fLSYdQyXw8ivS8MIh00YsdT+0CRroGxZz0OZxLQxBNwWAPAO1p2epzMogmZsjLy8Plcp3mmre3t5/mrgMMDAywe/duvvCFL+B2u3G73dx///288847uN1u/v73v0/6c+699176+vr0r4aGhoj8fSSSuXKibW7tfaVxPIkFQqPDSjKT51aqrZGdEr896SGRPsdKBJcLHnxQ/X+HY7xIFxtO27bF3JQbRVGo6RzCH1TCYozNBinSJaZyom0QRYHslIR5uZolmUmkJrrwBRTqNNEfq3j9Ab3EuDgzed7fTxfpcXTxF6533jz7qCEk0vtGfHEzAlAQCCr0jqhBNMKhmBWGIJqCwW4AOlJzQs/LIJqYIDExkfXr17N9+/Zxj2/fvp2LL774tPUZGRkcOHCA/fv361+f/exnWb58Ofv37+fCCy+c9Od4PB4yMjLGfUkkVuK4JtKXzlKki5701r5RAnEU8ioIRz86hK5T/aP+uDB0jOgz0udRicDWrfD001BaOl6kl5Wpj2/dGo5DtRQ9wz4GRv0ALMyd/QSq+SBFusRUjhl2lec69xLUMkq95D3Gw+NE+nWi20l2SsK8v58Q+i1x1FPdoTvpcyzRNpCZnECiS/0oFZsn8ULP8BiKom6iz+m9aAiYKdREuu6kT7FOYk/uueceHnnkER599FGOHDnCl770Jerr6/nsZz8LqC74rbfeCoDT6WTVqlXjvgoKCkhKSmLVqlWkps7vRl0iMQtxf7KscHZupgh59QWUuGytOqWPX5t7PzpAZqITcafZ++JLcVOlFQwq1M633F2wdSvU1pJ5/XUA9H30VqipiUmBDujVvsWZSSQlRLdKQIp0iamIkRpLZ3nBmowlIuE9xsPjjP3o89nYEMSjk945oIrpcJS7OxyOUMl7HG10AHRpmxJZyQm4XXO4nBgCZgqGhEjPmXadxJ7cdNNNbNu2jfvvv59169axa9cunnvuORYuXAhAS0vLGWemSyR2xtjeN9tyd2PIazz2pQsnfT4z0qmqwrWokqxhdQRez8dui5uA0raBUUZ8AdxOB2XZ86/AxOUic/liAPpyCmOuxN2I2NyY09i6eSJFusRUasKQ1ikQQj/WRbroHQ9Xb0yxoYwuXghncByEyubjzeHoGlL/vnMqdYdxQTR5Q70AdKZkERReRwwH0cQjn/vc56itrcXr9bJnzx4uu+wy/bnHHnuMnTt3Tvna++67j/3790f+ICWSSBAIUP2XnQQVyHBDQcrMJhYYERk0YjpJPFEt7hXn6qRrAaU0NpI9ok596E7OiJuAUnGvvSAnZW4b6pOQpVXP9Wktb7FKbZe6KVaRF91Sd5AiXWIy1Z2qoJ7zSAgDS/LjYwxbWxhD4yDkpLcNeOOm100Pjkuff7k7GBLeB+Pr5imU7D7HzQ5DEE3uiOpu+F3umA+ikUhikkAAdu6EJ59U/xsnpcRnpKoKKio48bVvA7Cs9hCOyspZC0NxnYm3cZ++QJD6blUozanc3RBQCpCjifSe5Iy4CSitDlepu4HM5DgR6dJJl8QjgaCi71AtDoOTLgJFatv7UZ6I3ZsE4aQXh0mk56V5cDsdBILx0+sWctLDcw5D5e7xcf4Eotw9d65OOuhBNJ6iQjK0IJrO1KyYDqKRSGIOTYiyeTPccgs9V3+QP77nevb/4vdmH5m5GBzc43kLAFjaWT8nB7dQq56Lt0kidV3D+IMKqYkuCjPmsCFsCCgFyB42OOkQFwGl8x6/NgkZcSLSRRj1QinSJfFEc+8IY/4giS6nPl5kPpS/9AKuYICRALR95h/Vm4UY7Ddq7Vd7xwvDVO7ucjr079XcF/t96cGgoovLcDnpomw+3pz0rvnOSBdoQTR5uWqfZudPfh7TQTQSSUxhEKIAe0pX8J7P/JR/vPROPnQ4kW9+/w8oSnxUaY1jgoMrRPqyzvo5Obj5ceqki370yvzUueXwTAge1Z30lIxp18USukgPQ9WqIFMbhdfX3R+zphiEyt3DucExU6RIl5iGCI1bmJuCyznPALSqKhJuvIHy3jYAqnNK1MdjsN+oNcxOuvF7xUNfet+ID79W1j+n2d6TUJARpz3pg6InPQzn0eUir0BNdu9cslKWuEskdmCCEO1KzuDTH/4X+pPSKBzowqEE+d92F799Ow5DASc4uCfy1JDEZZ3auZilgys20+PtOhMaHTbHissJwaPjetKnWRdLhN1Jr6oi88pNAPSNBlBi1BTrGRrTKwUW5MiedEkcEQoCmeeHhuEmobKnCYDabE2kx2C/UWuYe9KN36s5DhLeRal7ZnICie7wfAQKJz3eyhD1nvT5lLsbEOexM84qEiQS2zJBiP77pk/SlZrFivYadv7Pp/nKrl8C8B9/OoTXHxvX4BljcGZH3YnUZRcBsLSzbsp101EQp21Vp9pFsvscRbohoBQm9KRDzAeUGnv6wxHSLCpnsmpOADDmTmDU7YlJU8w4fi05MfrGgRTpEtMQO3tzTusUGG4SKrtVkV6TUxp6Pob6jQJBhTZNCIZTpJfEUcJ7OGekC0QZYmecifSwlbtriH8TKdIlEptgEJgNGQVUrXovAN/9649I9nu5863fUzTQSeeYwh/2N5t1lOZgcGZP5pShOJxkjfSTr02ymGzddAgnvW0g9q/TRnQnfa6GjiGgFIdD70nvSsmMi4DShu5hAkGF5IQ59vQbMZhiqWMjuILqxltfUlpMmmK1ej969F10kCJdYiIi2X3RfMtvDDcJlT3qTUBNdum06+xK16CawO50hG98GITGubXEg0gfECI9fOevwFCGGE+9l6Fy93CJdLHZMRaW7yeRSCKMQWD+/LwPEnC62Fizl3ObjwGQGPTz8b1/BuDpPY2TfouYxeDgnjD0o+vNfbN0cIXA6h32xVVVguhJn1fVpRZQSmkpWaMDAPQlpcdFQKmx1H1OPf1GDKaYA8jUwl77kjSzLYZMMYDaTm38mgmhcSBFusREwlbubrhJCDnpJdOusytCRBekJ4Vt1iVASZYQ6fFQ7i5C48In0oUDPBYIxnzSqZFQuXt4581LJ10isQmaEPW53Dx71iYAPrX7D6HnHQ4+1KMK9rdqu+Orn9rg4B7PV/vRl4p+9Dk4uMYWrXgpee8eGqNnWL2mzrtUWwsozfy/3wWgb8nyuAgoDWto3ASzS4j03qS0adfZFeGkV5gQGgdSpEtMYnjMrwvOeX/wGnarK7tVJ70+qwi/Q3t7x1C/UauW6loYxlJ3gKJMtdw9Hpz00Pi18Il0j9ulzwyNl5tQfyBIr7YhEb5ydynSJRJboQnRXZXn0pWaRd5gDxtr9qrPaUK09LvfZG15FooCfz3UauLBmoDm4J4oWwYYQuPm4OA6HI5QX3qcXGeEi16alRyenmCXi6xLLgCgD3fMlrgbCQXvhUFoTjC7MvWqhLRp19mSQIDaGvXzqqKlxpQSfinSJaYgdvayUxLInm+prGG3uniwC4/Pi8+VQFNmQcz1G+nJ7mEavyYQ6e7tA178gWBYv7fV6BwIf086hEJ94kWk9wz7UBT1Vyw7JTznMlfvSZfl7hKJbdi6lao7vw7AdUdewq1o1xCDEN1yViEAL5/oMOsozWPrVo6vuQiApZ/9OOzYMWcHNxQeF/sb6hDGiksDmYb53sFg7Len1XSEMdl9QgjfaeXusWKKVVVBRQV1rb0AVPzjHaak10uRLjGF6nB+aIC+W+0sLaGiVy2zqckuibl+o5YIJLuD6mC6nQ4CQSXmZ33rTnoYy92N3y9eHA5R6p6dkjj/EYoaxnnz8dTbL5HYGa8/wM5BdYPtg3f9AzzxxGlCdMPiXADeqO6OC2FkZGQsQEOP2kq27ObrYNOmOZsGIjwuXq4zYlTvnJPdJ0GI9KACg2P+sH1fqxLW8WsTQvjGifRYMcW09Prezl56tQkAC3tbTUmvlyJdYgqh3dHwffCKfqPKVYsBqPnGv8dcv1Fbf2REusvp0C/+sV7yrvekh7HcHUIiPV6c9HCHxkHo32TMH2TAG/s3TxJJLPB2TQ9DYwHy0z2svva9cPPNpwnRNaWZpHnc9I34ONzSb97BmsDJ9kEURf2snO91RzjpbXHipJ+KgJOelODCo/X29w3HdobMkNevt0mG2xSjtFQX6f1JabFhihnS68Uo56KBTpL9XlPS66VItxAn2wf52u/e5b3f28l7/nMHd/96Hweb+sw+rIhQ0xmGtM7JcLmoWFGh/ozsYnvv5k2CCHYrDrNIN37Plt7Yvvh3DoY/3R0MZYhxMh5HjF8Lp0hPTnSRqvUddsmSd4nEFvztaBsAm5fn45yiqsbtcnJ+RTYAb9V0R+3YrMDxNrVvd2nB/E0JMUkkXnI7QlOAwmjoML7kPZYRwWc5qYlkhaktDQiF8N3wYQD6b/54bJhihvR6IdIX9hhC8KKcXi9FugVQFIVHXq7m6gd38eu3G6juGKKua5hn9jdz3f97lZ+9UmP2IYadsAZZTEB8T1HiE0uInvSiMPekQ8idj+WEd0VRdPEXznR3iD8nXZS7h7u3Xya8SyT2QVEU/n60HYD3riicdu05C1SR/m5jb6QPy1Icb1dF+rLC9Hl/r1xtUzQeNjF9gSD1XeoIrHAbOkKk98e4SA9rqftEXC7Sl6uVq/25hbFhihlS6Wuz1fA7Mdp5qnWRxB2VnyKZEkVReOAvR/mfXdUAXL6igI9tWEiiy8mv3qjjLwdb+fafDuMAPnVppbkHGyYURYlMubuGGDMRayJdURS9bCnc5e4AJVlqwntrDJe794/4GdOC8XLD6ACDQaTHibiMRLk7qBUOdV3DesCfRCKxLnVdw9R1DZPgcnDp0rxp164pywTg3cbYrBCcihNtqhu8rHD+9zu5YgLGUOyL9PruYfxBhZREV9iNCSHSe2NdpIc7/2kC6UnaZsdojLSnGVLpQ076JCI9Sun1UqSbzM9eqdEF+r9cs5I7Ni7Sn7t4cS4P/u0E2148wXf+fJjVxemc33BQ3cEpLlbTE224c9Ux6GXQ68fhgIW5KWH//hW56odRU+8IXn8Aj9t+52gy+kZ8jPpUgVkYASdd70mP4V43IaDTk9wkJYT3fVGQrgX6xMn82lC5e3grEvL0hPf4OI8SiZ15o7oLgHPKs0nzTH9LuaYsC1Ar6fpGfLpQinX0cvcwOOk5upMe+5+PxoDhqdoo5kpWSnyUu0fUSUe9lwIYGI2R8yjS65uadCe9wlju7nCoz0cpvV6Wu5vIa6c6+bfnjgDwz+9fMU6ggzoT84uXL2XruaUEFbj7B88xeuVVcMstsHmzKeMAwoH44C3LTo6IgM5LSyQl0YWiQGNP7JRui0C3nNTEsAtMCPWkx7KTLkrRwzkjXRBvTnrEyt31hPfYd4okErvzptZffuGinDOuzUlNpDxHrdiK1bydiQx5/fp9SDjK3cXnbTyUu4sZ6ZGouMyIk570SLaWglGkx4iTbkivF056hXDSTUivlyLdJHqHx7jnqXdQFPjI+jLunCDQBQ6Hg/sd1ZT0d9CUlstPLjCEMpgwDiAc6KXuYQ4CETgcDhbkqA696GeKBUSpeyRcdAiV0MeySI9UaByEhH/vsA+vPzrJn2YibhIjUe4O0kmXSKyOoii6k37RotwZvWZNaRYAB+JEpIsRYnlpiWH5rBTl7iO+AMMxPj4sNH4t/AIz3oLjKiNwDiFU7j7gjaHzuHUrPU8+rY9f0510E9LrpUg3iX999hCt/aNU5qVy3wfPxuGYopQnECDtni9y745HAXj4ohvoSMlSnzNhHEA4iFiyuwFRRl/XFTt96UI8RyLZ3fh92/pHY3aOrS7S08MrLEEtn0twObSfE/suR9eQei5zw13uLoLjZE+6RGJp6ruHaekbJcHl4FwtFO5MrChS3WRRAh7rHNf60ZcWzN9FB0hNDI0Pi3U3PZLZRXpPegyPYOsZGtP/fqINNNxkxJqTrlGzYTMAxUkOkn/xc9ixw5T0einSo0UgADt3wpNPsuvpF/njO804HbDtpnWkTtfHpY0D+MDRl1nbfIzRhCQePe+60PNRHgcQDkJOeiRFuvq967pjx0kX5e6RCI0D1Ql2OsAfVOgcik2BJER6JMrdHQ6H/n3bY7ivXyDK3XPDXO6eL3vSJRJb8Ga1Wuq+rjyL5MSZlX+Kvux4Eekn2kSye3iEpsPh0KuNumI8PC6SpdpZcZDuLsbXlWQmRaRFEkJtAwOjfhQldsydWu29V1GSAzffDJs2mZIBJkV6NKiqUvvHN29m9OOf4BsvqCPVbi3ws7Y8a/rXajH/DuALrz8FwK/OfT/9iSmTrrMD+gdvBHZHBbFY7t4WwfFroM6xFX3VsVry3jkg+qjDL9Ih1Jce6066PxCkR9uhj1y5e2yfQ4nE7sy21B1gueakn2wfJBCjFVtGwhkaJ8hNi/3wuJ6hMX0jOBJVl5lxEBwXyUoEgehJDwQVhsfsU9F7JnSRHkEzcSZIkR5pqqrUvvHGRgB+cuH11OaUUDDYxZfvveXM/eSGmP/LT77Nso46BjypPLX2qinXWZkxf5D67sjMvTSil7vHkpMewfFrgqJMNdSnJVZFul7uHlmRHuuz0oVAdzggOyW8Ij1X9qRLJLZgT30PAOdVnDk0TrAgJwWP28moL0hDDF2fp+K4Pn4tjCI9DmalG13glMTwD6KKh5706ggnuwMkJ7hwacn7sVTyXqMZfJV54Z9ANRukSI8kgQB88Yt673h9ZiH/b8ONAPzL339G+tjImfvJxTgAhwMnCp/a/SwAT669CgXUu+Ty8qiNA5gvDT3DBIIKyQnhn3tpZGGO+qFU3z0cM/3VkXbSAYozYjs8LpLBcRA/Il30o2enJOoX6HAh0ouHx2I/GEkisStdg17qtBvZdWeqCDTgcjpYUqA6e7Fe8j7k9dPUK5Ldw+dmhmalx+515lSEXeDQnPTY3eio0c9h5ES6w+GIvTFshLKzItXLP1OkSI8kWj+54NvvvYMxdyKX1O7n2iO7ZtZPbhgHgMPBtUd2keodpjq3jDcXrFYfj+I4gPlinHs5ZVheGCjJSsLtdDDmD9I2EBuCs6VPvdhHKjgODAnvMdpTLUqowz02TJCvjw+LzfMn6I5QsjtAmscdN8FIEold2d/QC8CSgrRZzztfHid96Sfa1Rv9/HQPWWGsOMqNgzFspzoiGzCcmayew74YDo4T1QiRdNIhVPLeHyNOuqIo1HZGvuJ3JkiRHkmamvT/fbliHduXbcAVDHDfiz9hnDw9Uz/51q1q7H9pKam+UT545CUAntzw4aiPA5gv1RH+4BW4XU5Ks9XS7boY6EsfHvPrH4CRLHeP5VnpiqLoM8ylkz4/RGBRbgREujEYKV5mzkskdmNffS8A58zCRRcs0Vzlk5qIjVWOhzk0TpCnTdSI5Z50YegsjrCTPuD1x0y1pZFAUKFWu/eN1DkUpHtEeFxsbHh0Do4x6PXjdEB5jix3j02qqtRSdsDndPGtyz8NwMf3/pmlXQ3j186kn3zrVqithR07uPkjamn780suYvCaD4bxoCNPTRRC4wSxFB4nRHNqokufSxkJxAaAcO1jif5RP2P+IBAS0+EmbkS6dnMY7mR3gRzDJpFYm30Naj/6ugVZs35tpVZCWhMD1+bpEMnu4Rq/JtCd9BhOd4+0oSNEuqLEVi+1oLl3hDF/kES3k5Ks5Ij+rPQYG8MmZsuXZCXjcZtbpSxFeiQQYXGdnQD88pxrOJm3gJzhPr70yuOhdbPtJ3e5YNMmVn/qRhblpeL1B3nxcFsE/gKRIxrj1wSh8Dj7z0pvjfD4NUFRDPeki370NI87YuNIdJEeww4HGMavhXlGuiA0hi12b0IlErsSCCq809AHwDnlM5uPbkQkJosE5VglEqFxYAzXjM3PR18gqFdARsrQSXQ7SdHGBsZiX7oIjavITQl7bsxEjGPYYoGaKATuzRQp0sPNhLC4ruQMfnDpLQB8ZdcvyPRqFyXRjz2HfnKHw8EH1pYA8Kd3m8Ny2NFC9MhEo89DhMfFQrm7SFsvzozsjmixId09lmZeQsiVjVQ/OkB+mrrJ0THgjbnzZ0Q4OJHoSQfjGLbY3uyQSOzIqY5BBr1+UhJdcyrlFhvofSM+eodjTyAJwj0jXRBKd4/Nz8eG7mH8WsBwcQSDcmM54V1UIkRDaMZacFyNvsEhRXrsMSEs7j/e8wkGktI4u/UkN727PbQuL29e/eTXrlFL5F863mGb4Iu+EZ++8xuND44F2o1AfQyMeRFBboURvGABFGSo4sjrD8bchUu89yJV6g6Ql67ePI36ggx6Y2NXeTJEYFHEyt2lSJdILMs+bfTamrJM3K7Z30amJLop1K41NbHopgcCDLy4g2Ztc31pmMc4ic/H7qGxmNwMPmVIJXdG0AWOZZEezdbSDK0Fsz9GRLpVZqSDFOnhxxAC99qCNfo882+9+BNcSjC07gc/mFfg29LCdFYUpeMLKPz1UOucv080ER8a+emeiPZVC/Ry9xhw0lt1Jz2yIj0pwaXv0sfarPRIj18D9eYzzaPuKsdyX3qky93z9HL32D2HEoktCQTY9+YRAM5RBqYfITsNwqUS/Z8xQ1UVVFRw4hP/HwCFA11krlyqPh4mslPV+yd/UKF/JPY2g0Wye6QDz0SZdq9NjK7ZYJykFGlirSc9VO5ubmgcSJEefrQQuBG3h3vf9wUAPrb3z5zXdGT8utLSef+o969Wf9YLuw7Bk0/Czp1zvmBGAz0IJEq7UyI4rm/EZ5tqg6loiVJPOoTc+ljrS4+GSIf4CI8T83kjVu6uB8fFbimsRGI7NAG6f+8JANZ+7z6oqJiTABXioabT/pvoOiKPqLGRE3kLAFjWWadO+rnhhrAJdY/bRarWT90Tg+0Cp9qjI9IzY6yX2ki1vtEhRfpsUBRFN/Yq8yJfhXAmpEgPNxs3QlkZ/3fTbdRll1A00Mk/vfS/oednGxY3DVe0HATgleYhRm+9DTZvnvMFMxrooXFRKL8B1dUUgsnu4XFtWrl7UYTL3SHk1ksnfW7kx8H4MN1Jj1C5u3DoxWaARCIxGU2Ajra26wJ0TeuJOQvQhbkiM8be12adCXlEx/MWArC0s15/jLvvDpuRkq1tkHbHokgXArMgWvO97W3iTGRkLKC3WkRDaIrK2FjoSW/r9zLiC+ByOijLjmwG1EyQIj3cuFw8/80f8tj6awF44PkfkTGm7RTPIyzuNKqqWHnr9ZT0tzOakMSrC9eqj4d5xzac6D0yUezzWJgTGyXv0XTSi/RZ6bE1hq1Dc2VF33ikiHUn3R8I6uWBkZiTDpCv/RvJEWwSiQUwCNCj+RUEnC5yh3opHuicswAVpaQxk/A+IY/ouO6k16sPKAo0NKjrwkB2ivoZGWvBe4qi6D3pES93jyFxaUTca2elJESs2s1IaLPD/k66CLcuz04mYQ55G+HG1CPYtWsX1157LSUlJTgcDp555pkzvuall15i/fr1JCUlsWjRIn784x9H/kBnwaHmPr7aoO6+fPrwC2yu3h16sqxsXmFxOtoF06EoXHHiLQBeXHKh+pyiqF9h3LENF6ciPPdyMmIhPG7MH9Rd4Ej3pBt/hgirixVkuXt4EM6NwwFZKZENjusf9eP1W+tzTCKJOwwC9GDhYgDObjuFHuk1BwGqj2Gz+Qa6jiGPCNCrDZYKkT7FurmSlaIKzJ6h2BKYXUNj9I34cDgi30+dIcRljPX1R3uEWGizw/7nsVZrv7FCaByYLNKHhoZYu3YtP/rRj2a0vqamhve///1s3LiRffv28c///M/cdddd/O53v4vwkc6MIy39fOLRtxnw+rmwMoevPv1fsGMHPPGE+t+amvkLdBh3wbz8lCrS/7b4fIIYUjDDuGMbDoJBRQ+IiVa5OxjHsNl3t759QBXLiS5nVHZFRU+6LHefG0Kkx2romSh1z0lJjNj81czkBBJc6vfuitFZwPHIQw89RGVlJUlJSaxfv56Xp7lGVVVVceWVV5Kfn09GRgYbNmzgr3/9axSPVqJjEJYHi5YAsKrt1LTrzkRZdigzJiacTC2PCKDPk0preh4wiUg3rJsP4l4g1nrSRT96WXYySQnzrDg9A6H53jHw/jMQyn+Kzr12LI1gEzrFCuPXwGSRfvXVV/Od73yHrTMUrj/+8Y9ZsGAB27ZtY+XKldxxxx186lOf4r/+678ifKTT4wsE+fVb9dzw8Gt0Dno5qziDn37iPBISE2DTJrj5ZvW/8y1xFxguhBfVv0uqd5j29FwOFi0ev+7ZZ8Pz88JAc98Io74gCS4H5VHs84iFhHcR4FaY6cHhiNw4EoGYlR5LwXGKouiiOT9aPemx6qQPRnZGOoDD4Qj1pcfoZke88dRTT3H33Xfz9a9/nX379rFx40auvvpq6uvrJ12/a9currzySp577jn27NnD5s2bufbaa9m3b1+Uj1xiFJbCSV/denLadWcizeMmW3ODm3pjoLVKyyPC4eBkXjkARQOd49sdw5RHBKFy95gT6VEqdYfYKtM2Ehq/Fh2hKXrS+2NglF20qxDOhPkF97Pg9ddfZ8uWLeMeu+qqq9i9ezc+3+RvDq/XS39//7ivcPGHd5q5/uHXOP/fXuRrVQcYGguwYVEuT9x5oV7+EREMF0JPwM/GWvWmZcei88ave/xxy5S8i9C4BTkpc5qrOldiodxdlJ0XZ0RncyPUkx47In1oLMCoTx2BGLWe9BgVl51DkRfpEAqlkyI9Nvj+97/P7bffzh133MHKlSvZtm0b5eXlPPzww5Ou37ZtG//0T//E+eefz9KlS/nud7/L0qVL+eMf/xjlI5cIATrmSuBYvhqINs5Jn6MALdU27Bu7Y0Cku1zw4IPAhNA4CG8ekYYQ6d0xVu4u2iKXRHG+dyw4wEZORTn/SbQNDHr9KCKjwqZYaUY62Eykt7a2UlhYOO6xwsJC/H4/nZ2dk77mgQceIDMzU/8qLy8P2/H0jfjYU9dD77CPvLRE/uWalfzi9gsi1qeps3Ej5OXpf7ysZi8Ar1ScM35dR4c1St4DAapf3w/AYsdoVDcORHBca/8ooz5rbFjMlpCTHvl+dAiJ9AGvn0FvbOwwiwCylEQXKYnuiP6smO9Jj1LbgPj+nbLc3faMjY2xZ8+e0zbZt2zZwmuvvTaj7xEMBhkYGCAnJ2fKNZHclI9rNAF6PH8hPlcCmSMDlPW1qc/NQ4CWZanX58Ye+26ij2PrVnj6aY5XnAUYQuPClUdkQMxKj7XguFCye/RSyWOpJ11RFGq0c1gZZSc9qKiGiF0JBBXqNEMvmgHX02ErkQ6cVu4rdm2mKgO+99576evr078aGhrCdizvWZrP/7vlXJ75/CW8ce/l3LFxUXTSAF0u+NjH9D9urN0PwN7SFQwkTnBbwxRSMme0uarVv1LT5hf94ddRHROXk5pImseNotj0RiAQoOWgOpO2uK8jKhscaR63XgYWK256lzbKK1Ijw4yEetLHCAbtvas8GV1RctJDIj02Nzviic7OTgKBwKSb7K2trTP6Ht/73vcYGhrixhtvnHJNJDfl456tWzn4zf8EVBddv+OahwAVI44ae2LASRds3cqJa9T36LIPXxXePCIDWTFb7h6dGekAGcmx00st6Boao3/Uj8MRvb7qpAQnbi2fxs7nsrl3hDF/kESXk5Is88evgc1EelFR0WkX9Pb2dtxuN7m5uZO+xuPxkJGRMe4rXCzITeGaNcWsK8+Kagk3ANddp/9veV8bFd3NBJwu3liwevy6MIWUzAltriqNjZzKLQNgUXdTVMfEORwOFth1DJu2wdH6/N8BKHrk/0Vtg0PMY48Vka6PX4uw+wuqeHU41F3ZWLuBgpBIj/SGR54+hi32zmG8Mtkm+0xyNp588knuu+8+nnrqKQoKCqZcF8lNeQkc0PrRV20+PyyBuEKkx0RPuoHjWvjZ0g9eHt48IgM5QqTHULn7qC+gb9gsjoILrDvpMdSTLnqqSzIjH7wncDgchvA4+55LERpXnpMcsVDc2WIrkb5hwwa2b98+7rEXXniB8847j4SECPaAWxFDSAnAxlq15P3linPV58McUjJrDHNVAapzSgFY3N0457mqc8WW4XGGDQ6REls02BW1DQ5R8t4SI7PSo5XsDpDgcuo3UDHXlx4I0F3bBEBuc11Ef3/zpZMeM+Tl5eFyuSbdZJ/ork/kqaee4vbbb+c3v/kNV1xxxbRrI7kpL4GDzWr7wNkXrQpLIK5IeI8lJ713eIx2rdVpaQRLtvURbDG0EVzTOYSiRH++96DXTyBGqt6qTRh1DLGRlF9rsdA4MFmkDw4Osn//fvbv3w+oI9b279+vp73ee++93Hrrrfr6z372s9TV1XHPPfdw5MgRHn30UX72s5/xla98xYzDNxdDSAkOB5dqJe+vVKyLSEjJrDGMiRtO8NCSkQ/Aoi71Bn8uc1Xniu3C4yZscOgifaAzahscxTEWHhdNkQ4x2peuVXZ07X4XgJzvfiuilR2y3D12SExMZP369adtsm/fvp2LL754ytc9+eST3HbbbTzxxBNcc801kT5MyTT4AkGOtKgifXVpZli+Z1mOKHe3ybV5BhxvU0VSaVay7tRGgmzDCDa7h3UJjKXu0ZhkI0Q6wKCNHWAj1VEOjROkx8DM+RoxI90i49fAZJG+e/duzjnnHM45Rw08u+eeezjnnHP4xje+AUBLS8u48SyVlZU899xz7Ny5k3Xr1vHtb3+b//7v/+b666835fhNRwspobSUDXXv4goGqM4to3HZmrCHlMwaQy98dbbqomcP95E9OjDlukghfuFsMyvdsMERxEFbmhqUVDyghSNGYYOjSBvD1tIfayI98rvzEIMi3VDZ0ZWiupO5w30RrewQ5fRyTnpscM899/DII4/w6KOPcuTIEb70pS9RX1/PZz/7WeD0Tfknn3ySW2+9le9973tcdNFFtLa20traSl9fn1l/hbjmZPsgY/4gaR63Hsg6X0q1vs+eYR9DMRJSeqxNvcdZVhjZnmpRreULKLYO6zJysl2I9OiIJI/bhcetyqB+GzvARsSc+WgE7xlJ92hOuo1/j/UZ6RZy0iMbc3wGNm3aNO0O4GOPPXbaY+95z3vYu3dvBI/KZmzdCtddR8bLL7NuVx97huGVx57hHy6qMPe4DL3w1Vo/+uLuxmnXRYqFdutJN2xcdKZm4ne5cQYD5A/2TLku3AgnvS1GnHQh9KLlpOfF0qz0CZUd3Smqi5Y73Kc+5nColR3XXRfWyh3ppMcWN910E11dXdx///20tLSwatUqnnvuORYuVMdVTdyU/8lPfoLf7+fzn/88n//85/XHP/GJT0x6byCJLAeb1M2Rs0oycIapXzM9KYHM5AT6Rnw09Y6wrDA9LN/XTE4IkV4U2b9LcqIqML3+ID1DY6R5TL2dDwvRnJEuyEhOoGPAa3+RHgjAyy9z8lQ/4GJJbng20mZKWpL9Q/isNiMdbNaTLpkClws2bWLjxSsBePlUt8kHxLieedGPvqi7KfR8FHvmRbl7Q8+wPfqODBsXotQ9f6gXtxKccl24EcFxLTEi0mW5+zwwVHb4nC56k1UnPWdYczQjVNkh/q26h8fwB4JnWC2xA5/73Oeora3F6/WyZ88eLrvsMv25xx57jJ07d+p/3rlzJ4qinPYlBbo5HGoOb6m7IJTwbpNN9DNwrFUT6QWR33DISY2thHfdBY6iSI+FwDPRijZ6xRbqtVu2JddsjtoUJTD099v0PPoDQRq0llgp0iUR4dIlqqB7vbrL/NFPhp756hwt2V30o0e5Z744M5kElwNfQLFHEJphg6M1TZ1aUDTQFXo+ChscIjiuNWbK3YWTHqVyd+Gkx4ILbKjY6ElWbzydwQBZo4NTrgsHOamJOB3qHkB3jNyESiR25YDmpK8qDW8Ynyh5b4qB8DhFUTiuOenLI+ykg3EMm33dS0EwqFDdGf1S7Qx9VrpNz6GhFa0mp5Sg00XG6CD5p45EbYoShM6jXTc7GnpG8AcVkhKcukllBaRIjyHWlGWRnOCie2iM4+0DZ35BpNF65qsLKwBYJMrd5zFXdS64nA7K7VTybtjgaM0whMZB1DY4RLl799AYoz7797t1ao52Xrp00meNoWKjKyULgOyRAVwRruxwOR26UyTHsEkk5hEIKhyOkJMu5hHHQtVW5+AYPcM+HI7ouMHZIuF9yP6fj819I4z6giS4HJRnR29Gta2d9AmtaCdzywFY0tWAI8pTlES7hV3L3UUVR2VeWtjaecKBFOkxRKLbyXkV2QC8carrDKujg/LhD1NTvAiARf/8pXnPVZ0rtutL1zY4WkoqAUNoXJQ2ODKTE0hKUD8e2mzupo/6AnqYSV6qFOmzxlDZMa4fXRDByo5c7d+raygGzqNEYlNqOgcZ8QVITnBRmRde8VkUQ5NEhIu+MCeF5MTIVwlmx1C5u+hHr8hNxe2KnjQRo8Ns2ZNuaEWD8SIdiOoUJX2zw6bBcaKKI9qj686EFOkxxkWL1PLo16utIdLb+r0MjQVwOR0s+PhH5j1Xda4sFAnv3TZJeAfYupW2j34KgMJrt0R1g8PhcFCsJbzb/eapS3MZEl1OMpKjE66ji/RYKHc3VHZ0aSJd70ePcGVHXrrmpMfCeZRIbMoBQ2icK8wuk6jaarZDK9oZECJ9aZQC8GLJSReBe0uinEqeYWcnfUKL2UktpFkX6VOsiwRpdj6PQLUILbRQPzpIkR5zbFisivQ3a7rN70sHqrW5lwtzUkh0m/d2WyhmpdvFSddo6VfFSfFlF0V9g6MwQxWadu9LF6XuuWmJUZm9CqGe9N5hH16//dsFRGVHV4maxJ07oon0CFd26AnvstxdIjGNg02RKXUHYmYzGEIifXmURHpODPWkn9Dmy0drg0Ng6570CS1mp4ST3tkw7bpIkK73pNvwPGIQ6VHeJDoTUqTHGKtLM0lNdNE77OPIY7+BnTuj0o8yFae0kQZml5AIkV5rM5EuSs1FSWA0ETdPdu8VjHayO6jtAgkudUMgZuZ8b91K91f+GYDcSy6MSmWHHMMmkZiPcfxauBFOekvf6LQjee2AnuwehdA4MAbH2f8aI3KUIj1ffiK27kk3tKL5HU59kpLupEdxipKe7m7TcvdTmqG4KMztPPNFivQYI+HZZziv9h0A3nj4Cdi8GSoqojqKwYgIY1gUxZEak7EgR90kqO8ass2NgKIoukA2I20yVnoFhcDLjVKyO4DT6YitWekaXZrbkHPO2VGp7MiLpZR8icSGBCMYGgdQoFVsef1BWzvCiqLobnC0hGZ2qlbubnORPv7cRdlJt3NPuqEVrSG7iDF3Ikm+UUr7O6I+RSndY9/Njr5hn94WWSl70iURQxvFsOHY2wC8vmCN+nhTU1RHMRgRu1OLTX7jl+ck43DA0FhA/2W0Ov0jfka0ZHVznHThcNi7VzA0fi16TjrEWHicRpfY8EiNzoaH2FjpjJVqBInEZjT0DDPg9ZPodkakX9jjdumjMe18rWnpG2XA68ftdETNjcsWTvqQDQWmgea+UQa1c1eRG917RVs76aC3op1cug6ARd1N6uSVKE9RSrfxCLZTWmhcYYZHT6m3ClKkxwqGUQwb6t8F4M3yVQQcTn08Q7RGMRiJdpDKVHjcLkq08u26LnuEx4le8OyUBJISoh+2J9z71n57i0wzyt0hxmala3RrG1y5UTqX4hx2xdA5lEjshOhHX1GUTkKEUrdjoS9d3OtU5KVGLX8nO0bK3cW5q4ziuRPoPel2dNIF113HyTvuAmBJUSa8+GLUpyjp5e42FOl6P7rJFb+TIUV6rGAYxXB22ynSvUMMJKVxuEAd4RXNUQyCvhEfbZrAW2qBMIYFNhvDJlyFQhNK3cFY7m5fdwOMTnr0yt0hVp109VzmRMlJlz3pEom5HGxW+9HPLgl/qbugyNCXbleiHRoHsSPSRbJ7tEvdwd4OMKBWyFZUcPL3zwOwZNfzcNtt8OyzUT0Mke4+Fggy6rNXWK7ej26xUneQIj12MIxYcCtBzm84BMAbouR9knWR5qQWBFKcmaR/EJqJCI+zi0gXrkKxCaXuELpxah/w4gsETTmGcCDS3YVojhYxKdKHorvhIUawdQ2OWWJahUQSbxzS+tHPjkBonCAWWquOtUa/pzpL60kf9dlPGBk5rie7R9/MEQ6wLdPdtRZXGhvHz0g3ocU1LdGtt8HbLTyu2qKhcSBFeuwwYcTChvoDALy+YPW06yLJcZNGakzFAjGGrdsmIt3EZHeAvFQPbqcDRbG30NSD41KlSJ8PvkCQPhEcF6VzKf7N/EFF/9kSiSQ6KIrCIS3ZfVUEQuMEseCknzAhnTzd48atza23s5tuppMuguMGRv22CRUGxrW4KhjGr3U1mNLi6nQ6SEu0Z3+/KHeXTrokchhGMQB6X/pb5avwO7R/5rKyqIxiEIjyr2UWKHUH9ECSWpv0pLf0Cic92ZSf73Q69FJ7O9886e5vepTL3WOsJ71HO49OB2QlR6cyJtHtJENzOmTJu8QWBALq6NMnnzR9BOp8aev30jU0hsvpYEUEx4qV2LwnPRhUQvc7URq/BuBwOMhK0RLebRoeFwwqnGiPbiq+kXRDmbbXb6OKQUOLa2t6LoOeFFzBABXdzerzJrS4pukhfPZ5L/oDQb26VvakSyKHYRQDDgcr22vIGB1k0JPCwaIl6uMjI1HtUzlhYgnTZIie9HqblLu3mOykQ6gMUcxrtxv+QFB3GGS6+/zoGlDfAzmuIM5dL0VNfOSli750+zpFkjggEID774eCAnX06S23mD4Cdb6I+ehL8tMiGl5q93GfDT3DjPqCJLqcLNTuM6KFmJXea1Mnval3hOGxgHruopzsDuPLtG0VHmdoXRWl7gt7mkkM+qdcF2nsGB7X2DPCWCCIx+2kNMscQ2w6pEiPJbRRDOTk4FKCXNBwEDCUvHd3R7VPRZR/WaXcXfSkdw2N2WKnr6VX7c8rMclJByi0eRli99AYiqK6vyJkJ1oYRbqtyugmo6qK7utuACCnpSGq4kOGx0ksT1UVFBbCN7+pXmeNmDgCdb7ooXGlketHh9BmcHPfiC0/K0Vr3+KCNNwRSsCfimzNSe+1aTuQuE9clJ8asekB0+F0OvSxW/0j9hGXxtbVUD9647TrIo1+Hm0k0qu18WuVeak4tdYRKyFFeqxx3XWQpF7wLq5TS971eelR7FMxJrtHYrbqXEhPStDnO9shPE64CqY66Rn2TngXpeY5qR5cUf4AFuJyxBdgaMy+Ja8inKZzWOtHH1Zv3KMlPvKlSJdYmaoquP566Oqa/HkTR6DOl1BoXOT60SE0wWTUF7Rl9sTRFvU8LTehajAz2d4J71bILsrQE95t9N4ztLiOC40TOBxQXh7VFtd0G55HK/ejgxTpscfLL6s3z8DFde8A8HbZ2Yw51R2uaPWpiCCQ4swk/QPQCizIUV3p+j+8YOl+wYFRHwNaQqZZ6e5g/0CfLpPGrwGketykJqolorYteTeE03SnqDfqucO96nNREh/i306KdInlEL8fGu2pWdx71Re48HP/y0Wfe4x/3vJ52lOzTOkPDQd6aFwEk90BkhJc+ga6Ha81R1pVkb6yOLLnaTJ0J33YPsLIiBWyi/SEdxs5wMYW1xN5CwBY2lmvPifq97dtU9dFCb3c3Ubp7qcsPCMdpEiPPQz9J8s668kZ7mMkMYl3i5dOuS4SiCAQq5S6A1BVxcJdLwBQ979PWbpfULjoGUluUrUSIjMQoXV27UkXwi7a/egC2/elG8JpunSR3h96PgriQy93H7CnUySJYQy/H0fzFnL1J3/Ek+veR1t6Lq3peTxxztV88BPbOJlbpq6PYn/ofOkeGqNZuw6dFWGRDsYNYftVbR1pUYWmKSJd29wQwZ5244QVnPRk+znAAGzdivLbpzlWUAnA8o469fGyMrX1devWqB5OepL90t2rLTwjHaRIjz0M/SdOFD3l/bWFa6dcFwnE7uhSi5S6i5LdBc2nAKjP0v7+Fu0XbOkzN9ldYHcnPSTSo++kQwyIdIOo6JropE+xLtzkaiK9a8im51ASu2jv+9a0XD72D9+hKzWLFe01/OrXX+cXT/0ri7saaE3P47Yb7qM3KS2q/aHz5ZDWj16Rm6KXsUaSIr21yl6/58Njfn1ijBkiXU93t6GTHgwqnDQx2V2QkWTDnnSN9ivfT58nFZcDFv3g32DHDqipibpAB3uWuwsn3Yoz0kGK9Nhjwii2i/S+dC08Lkp9Ksdaoz8zdEoMJbsVPepNVW22drNk0X5B4SYUZ5lX6g4hkd7WP0owaL9An85Bc5LdBSGRbs9NDqOo6E5WRbrekz7FunAjNlg6ZLq7xGoUFxPEwd0f+DKdqdmsaK/hqSe+xqV173BZ7T5++/j/YUFPC41ZRXzzunui2h86Xw42af3oEZyPbkSElLbarGrrWOsAiqJeY8TnfTTJtnG6e2PPCCO+AIluc5LdBRlateLAG29bug1yMsS9dkVeKkkfvRk2bYpqibuRdI+9yt37R326kSOddEl0mDCK7WLNSd9TupLRBO0CEuE+FUVROKIFqZxVHJ0L/LQYShIX9qoiXXfSwZL9giEn3VyRXpDuweEAX0DR543biU7Nwc41S6TbfVa6YdOvK1Vz0kcM5e5R2PTTR7DZtRpBErts3EjVxut5Y+EaUsZGeOiZB8j0DulP54z088M//AcOJcizFRfwRl2vecc6S4STfnYUSt3BviGloVJ3c8q17ZzufkyruFycnxb1YFedqirSn3ocgP7fPWvpNsjJECJ9eZH5raVpNuvtF6FxBemeqFQLzQUp0mMRMYqttJRF3U0UDnQx5k5k79qNUelTae0fpWfYh8vpsMaMdEMp7oKeVgCaM/LwutxTrjObll5rlLsnuJy60LTjDNvOIfOC4yAGyt0Nm34iOE530qMUTmNMd7fjeCZJ7DLoV/i/7/kEAF987UkW9TSftmatr5tbCtX37X88f9Q272GR7L4qwsnugpCTbq/PyqMmhsZBaE66HdPdRSr+SrMEptYGmdHVBkB/kuamWrQNcjLERsfyQnPef0ZC5e52EenW7kcHKdJjl61bobYWx44dbChXPwBf//YPo9KnIlz0xfmpJCWYU3YzDkMpbt5wL6neYRSHk4bMoinXmU1Lv/nj1wTFNi1DhJD7mmdCGSLEgEgHfdOvMzUbgLyhXvXxKIXT5GobLF5/0DZldJL44PE36ujwOVjoUbitZe/4J3Ny4FvfgrY2vnjnFhLdTvbW9/JGdffk38xCDIz6qOlUXaZoOemiJ73NZpvB4n7HLCc9y8bp7mam4hvbINO16pcBjybWLNoGORki/2l5kfmGmJ7ubpOe9FO6SDf/3E2FFOmxjMsFmzZx8eXnAfBaTXRuDg43m7uzfBqGkl0HsKBXddPrszSRbsI8yTPR0qv1pFtApBfatAwRQsFx+Wb3pNu13F1j7IMfol+7gcnd9p9RDadJSXSToo2y65R96RKLMOoL8MgrNQB8/tq1eKpPqr8XTzyh/re9Hb7xDXC5KEhP4qbz1FnGD790yszDnhGihLs4MylqrUJ23AxWFIWjJia7w/iedLvlxohzt8KMDQ5DG2S6dxgwiHSwZBvkRIJBJTTCzgKTlERPun2cdBEaJ510iYlsWJwLwDsNvQxFwYkSF/izrCLSJ/Tpi770uuxi0+ZJnolWi6S7q8dgz4T3YDDUR29acFyaeu5s7aQTKqV0OR1kfvSmqIfTiH+/Lptvdkhih6q9TXQMeCnOTOJD60r1TXFunjy86c6Ni3A4YNfxDhq6h0055plysEn0o0cvU0aUu/eN+BgZs7Z7KWjsGWHA6yfB5TAtHVo46UHFPuII1FT8GhNT8Y3tjRmjqqM64EmZdp3VaOgZZtQXND14TyDK3e1S8SYmCyy2yhSqSZAiPQ4oz0mhLDsZf1Dh7ceqIp5eebjFYk46jOvTX6g56XVZxabNk5yOgVEfA9qHnBWc9CJto8BuPel9Iz4CmrOQk2puT3rnoP1cDiOiIiEnNRGnCQE/IlOgU4p0iQVQFIVHX1Vd9Ds2LiLRfeZbqQW5KVy6JA+AX79dH9Hjmy96P3pp9K7h6Z5QxYxd3HRR6r6kIH1G74FI4HG79PNmm770QIDjz72kpuInOshLdp/5NeHG0N4onPR+zyRC10JtkBM52hoadWxa8J6BNBvNSfcFgvroRCtUIUyFFOnxQFUVF7/9IgCv//r5iKZXDnnNnRk6LVqf/sJP3QxA3dUfNm2e5HQIMZyR5CbVY8LFawJ2ddKFoMtMTjDtBkr0UweCin1uoCahSyszzzVpsyNPT8m37zmUxA6763o42T5IcoKLG88rm/Hrbr5gAQC/3d2IPxCM1OHNm1Cye/ScdIfDYZiVbo9rjdnJ7gK95N0OCe9VVVBRwZH7/hOAlcf2mJOmbmiDzJjYkw6WbIOcyHELJbuDoSfd69cNEqtS1zWML6CQkuiixAJm2FRIkR7raOmVG468DhjmpUcovfKoNjM0P92cmaFnxOVi4YZzAKgjyVIl7oIWC5W6w/hZ6XZC9IGblewOajq+cPHt3JferbUN5Jp0LuUYtvDwr//6rwQmqaLq6+vj5ptvNuGI7MmTb6lO+LVri2c1uueKlYXkpCbSPuDltVNdkTq8uRMIMPziDo5rgV6roxxGVaT3pdsj/yQ0atZcQ0KUvFt+I1i7H6WxkaP5FQCsbK8xJ03d0AaZPiacdK3c3aJtkBMJJbtbS6QDDI1Z200/2a6euyUFaTgc5lchTIUU6bGMIb1yQ/0BAA4WLqbPkxqx9EpLlrpPYEGO+kHc2D1iyd2+Fi2gzQrJ7hBK3W3pG7XN+CAIhYyZ1Y8u0Gel21hgiqqE3FRzzmVeqix3Dwe/+MUvuOSSSzh1KhRetnPnTlavXk1tba15B2Yj+oZ9/PldtU/1HzRnfKYkup1cvUoNLP3Tu6ePazMVzeE8dNsXCOKgYKCLorUroiqcQk66PX7PRTr5iiJriPReK4t0w/0owJGCSkAT6WalqWttkOnZ6r/foCeFIA5LtkFOhh4aZxEn3eN2kehSZaXVS95FP/oSCye7gxTpsY0hvbJosItFXY0EnS7eKj9bfT4C6ZXvNvQCsKY0emVys6UkK5kEl4OxQFAXxFZCOOklWRYR6dpmwYgvQP+ItT94jQhRbHZFRyyMYeuyiJPeJcvd58W7775LRUUF69at46c//Slf/epX2bJlC7fddhuvvPKK2YdnC559pwmvP8iKonTOKc+a9euvWaP2uP71UBtjfouUvBsczneKlwKwpvVE1B3OQhtVbQ15/dR1qQ6s2eXu+qz0IQuXuxvuRxXgiOakr+ioVZ83K01961YyDuxTD8HhZPCFv1myDXIcgQBjf99BtXDS8yYJvDOJdL0v3cLvReCEEOmFMSbSX3zxxSmf+8lPfjKvg5GEmQmplBvq3wXg1YXrpl03H95p7AVg7RxuXqKFy+mgXHPTazutl7Lb0qvNSM+wRrl7UoKLbG2nvsUmZYgA7QPqeZQiff506U66uT3p0kmfH5mZmfz617/mrrvu4jOf+QwPPvggf/nLX7j//vtxWbis00o8u191wD9yXvmcyiQvrMwlL81D34iPV092hvvwZs8Eh/NAkSrS17aciLrDqY9hs0FPugjtKkj3RG1M3VRk28FJN9xnNmXkM5CURkLAx+KuxinXRYukpETdAe4/70JLl7iLipfqmz6JHwfpo4MUr1sZ/Z7+KQjNSre2oXOiTRXpSwusUYUwFbMW6ddccw1f/vKXGRsLfRh0dHRw7bXXcu+994b14CTzZEIq5cYadbdwV+W5066bK4Nev747tbbMuk46hOYi1nQOmnwkp9OiuQjFFnHSIZTwbqfwOCGKC9LNPY+xINJDPekmlbtLkR42fvjDH/KDH/yAm2++mUWLFnHXXXfxzjvvmH1YtqCxZ5g9dT04HPCBNXO7brqcDt6/Wi15f+6ABcY7GRxOgHeNTjpE1eEsFK1VNnDSD2vhelZo7RPBcT3DFnYvDfeZR/PVUvfFXY0kBv1TrosmGck2SCY3VLwcy18IwPLOOhxm9PRPgR0S3gNBhVMdmpNu4fFrMAeRvmvXLv74xz9y/vnnc+jQIf785z+zatUqBgcH5YXeahjSKwEurnsHd8BPdW4Z9ZmF6pqysrClVx5s6kNR1N3wggzrCMzJWKT1oVR3Dpl8JKfTqpXgW2H8mkAcS5sNRbrpTrqeTG5fgdlperq76Em3sFNkA66++mruu+8+fvGLX/D444+zb98+LrvsMi666CL+4z/+w+zDszx/0nrRL6rM1QXlXLjqbFWk7zjWbv5oRoNz2edJpSanFIA1LSemXBcpRE+6Ha4zB5u0cD0LtPZl2SHd3XA/KvrRz2qvCT1vcpq6CIC0rLicUPFyPE8V6cs66s3r6Z+EdI96HvstXO7e1DOC16/Oly/PtkbF6lTMWqRfeOGF7Nu3jzVr1rB+/Xo+/OEP8+Uvf5m///3vlJeXR+IYJXPFkF6Jw0HG2DDnNh0B4KVF69XHR0bg2WfD8uPe0frR15ZlheX7RZJKzUmv7rCeSBfl7lZJdweDw2GDmydByEm3Rrm7nV3griGt3N0kJ1383EGvn1GfuTchdsbv93PgwAFuuOEGAJKTk3n44Yd5+umn+cEPfhDxn//QQw9RWVlJUlIS69ev5+UzuLMvvfQS69evJykpiUWLFvHjH/844sc4HX/QSt2vXVsyr+9zfkUOaR43nYNjvNvUF45DmzsG5/JA0RIAFvS0kD06MOW6iB2KthncMei19Ig6gIOakx7NWfJTYYtyd8P96FFNpK/o0ES6BdLUMzQHuN+qGx0TKl6OaT39yzvr1AfM6umfQJphDJtVOdmhfrYtykvF7bJ2NNucju7YsWO8/fbblJWV4Xa7OXr0KMPD1uvtlaCnV5KTA8Cm6j0AvFSpifTu7rCVydihH11QqZe7W0uk94/6GNA+3KzopNuhV1DQbhUnPRbK3U120jOS3HrPoJ03O8ymtLSUI0eOnDal4ZprruHAgQMR/dlPPfUUd999N1//+tfZt28fGzdu5Oqrr6a+vn7S9TU1Nbz//e9n48aN7Nu3j3/+53/mrrvu4ne/+11Ej3MqTrYPcrilH7fToSe0z5VEt5PLluUB8PcjbeE4vLljcDjfKV4GwOpWg4seRYczN82Dy+kgEFQsXTXj9Qf0ZO1VFnDSQ+Xu1j1ngH4/eqRE3QxaKZx0C6Sp606616IifUIly5GCCgCWi+C9KdZFm3QblLuLfnSrl7rDHET6v//7v7NhwwauvPJKDh48yNtvv60766+//nokjlEyX667DpJUkfWeGlWkv7ZwDV6XOzxlMoEA7NzJO0dVl2FtqbWDGAAW5asivbFnGK/fOs5cU49a6p6dkkCqx32G1dFDJLzboVcQwBcI6n3UVnHS7SrSR8YCDI2pvyNmpbs7HA5Z8h4Genp6uOaaaygrK+PLX/4y+/fv15/Ly8uL6M/+/ve/z+23384dd9zBypUr2bZtG+Xl5Tz88MOTrv/xj3/MggUL2LZtGytXruSOO+7gU5/6FP/1X/8V0eOcij++o17fNi7NIzsMm1WXr1Bbzv52tH3e32teGBxOPTROiPQoO5wup0P/vG618LXmeOsgvoBCVkoCpVnmV7xlijnpVk531xj+wAepyVQ3uVZ86//Ajh2WSFNP1510i4pLQyVLnyeVJq1ldaWxZWDCOjPI0NsGrPteFNlZVg+NgzmI9AcffJBnnnmGH/7whyQlJXH22Wfz1ltvsXXrVjZt2hSBQ5TMm5dfVkepoPYA5Q92M5yYzO6yMIxi05Im2669niafE4cSZPWWSywRYDEd+Wke0jxuggrUd1mnCqRRE+mlFuuTCTnp9kh3F26r2+nQXQazEKFnPcM+64xcmgWi1D3R7STNxI0jMYat06abHVbg2WefpbW1lW9+85vs2bOH9evXc9ZZZ/Hd7343onPSx8bG2LNnD1u2bBn3+JYtW3jttdcmfc3rr79+2vqrrrqK3bt34/NF9wZQURT+qM01/+C6+ZW6CzYtz8fhgEPN/eZXKGkO57tlKwBDP7oJDmdhhvWrtkSp++rSzDkl/IcbcY2zdLm7xpGWARRF3bzOv/UfYNMmS6SpW15cGipeDhcsAqCst5VMr1YNanJPv0DcI1g53V3MSF9q8fFrMAeRfuDAAa6++upxjyUkJPCf//mfvPDCC2E7MEkYMZS/OIDLavYC8NLElPfZlskYkibf0gT/WW3VpNedskzS5FQ4HA4WabMlq3//POzcaXrgBkBTj7phUJZlnbmXYL9yd+Fa56V5cDrNvYnKSk7ArR2DELx2ostQ6m7mDalMeA8PWVlZfPrTn2bnzp3U1dXxyU9+kl/+8pcsWbIkYj+zs7OTQCBAYWHhuMcLCwtpbW2d9DWtra2Trvf7/XR2Tj66zOv10t/fP+4rHBxq7qe6YwiP28mVZ82v1F2Qm+bR56zvOGaymw50XHkNzak5OIBV3/1n0xxOO2wIH9ByBM4uMb/UHUI96UNjActvBB8ybHBYCcuXaRsqXo4Uqj39uotugZ5+gdXPo6IoukiPyXL36Uri3vOe98zrYCQRYkL5i+hL37novGnXTcuEpMm3ylWRfkHjIUslTU5JVRWVr7wIQM3Pn4LNm6GiwvSNhaZeazrpwt3oH/UzZOFAEEF7vzX60QGcTocuMO1Y8h4av2Z2RYIod7ffObQiPp+P3bt38+abb1JbW3uaII4EEzd5FEWZduNnsvWTPS544IEHyMzM1L/CFWabnZrIZ9+zmFsuXBDWapLLluUD8MoJ8+elv6tlyiwpSCPtYzeb5nDqTnq/dX/PDzVZJzQOVBdY7EX3jljbTT/QqJ27EmucO0FGsvVTyUXFy+GKVYAhHd8CPf0C0dvfb1GR3to/yqDXj8vpoCI31ezDOSPWjrWThIcJo9guq9mLKxjgeP5CarOK51YmMyFp8q1y9UPjwoaD6gMWSZqcFK0CoLJJLemrzlVHztDYaHoFgC7SLdDnZiQ9KUG/ObVyr6BAjDszux9dYOe+dCGKc1PNPZe5upNu7ZtQq7Njxw7uvPNOCgsL+cQnPkF6ejp//OMfaWhoiNjPzMvLw+Vyneaat7e3T7k5UFRUNOl6t9tNbm7upK+599576evr07/C9XcqzUrma1ev4JvXnh2W7yfYuFQ1PV491UnA5FFs72jiaY3J01lE/kmbRa8zvkCQI61qaJxV3GCn00Fmskh4t7DIBA42q9UtZ1vk3An0nnSLikudrVs5cun7ADjrYx+yTE+/IJTubs33oXDRK3JTSHRbXwJb/wgl82fCKLZM7xAb6t8F4K/LN6iPz7ZMxlAa35OUro+DOL/h0JTrLIGhAmBRt9qnX5NdGnpeUUytALBqTzqEbp7sUPJuJScd7C3SuyzjpMty9/lSVlbG+9//fjo6OvjJT35CW1sbP//5z7niiitwOiN3O5CYmMj69evZvn37uMe3b9/OxRdfPOlrNmzYcNr6F154gfPOO4+EhIRJX+PxeMjIyBj3ZWXWlmWR7nHTO+zjoMmj2PaLEarl5oonq7dWnWgbZMwfJD3JzYIc67Sl6QnvQ9bdxBz1BTjRZq0NDoHuAFt1BJvGmD+oB5+ddeM1lunpF1i93N1Oye4gRXr8IEaxlaqC9KrjahL/X89+z9zKZAyl8W+XnQXAks56ckf6p1xnCQwVALpIz5kQBGRiBYBIdy+zoEgXN092mJXeMageo2WcdBuXu3fpTrrZIl2Wu8+Xb3zjGzQ3N/PMM8/wkY98hKSk6I15vOeee3jkkUd49NFHOXLkCF/60peor6/ns5/9LKC64Lfeequ+/rOf/Sx1dXXcc889HDlyhEcffZSf/exnfOUrX4naMUcat8vJhsVqVcArJ00qeQ8ECO7Ywb6Tal/8uWXmiqdQubs1rzMiNO7skgxLhMYJ9IR3Czvpx9sG8AcVclITLTViFkJz0q0qLgWnOgYZCwRJ97gteZ+YYfE56XZKdgcp0uOLrVuhthZ27ODKuz8OwN78xbRd8f7Zfy9DCf3rC9cAcH6jwUW3SNLkaWgp9wCVmkjvTM2mz5M65bpoMTIW0F1LqwXHARRlWLsM0YhlnXQbCsyQk27yKDtZ7j5vPv3pT5OdnW3Kz77pppvYtm0b999/P+vWrWPXrl0899xzLFy4EICWlpZxM9MrKyt57rnn2LlzJ+vWrePb3/42//3f/831119vyvFHClHy/vKJjuj/cG06y8kbb2Mg6CBlbIQVl6wzteWryJDuLjIIrIToR7eaE5wtyt13vmKZINyJHGzSSt0ttsEBhjnpVu5JB460qOdwZbH1ziFAmkecR2uK9FM2Co0DC4j0hx56iMrKSpKSkli/fj0vn8HBfPzxx1m7di0pKSkUFxfzyU9+kq6urigdbQzgcsGmTRTd+g+csyALgBcOt83t+2gl9C9Vrgfgspp96nMWSpo8jY7QjVCqb5TCAfW9U5NTOuW6aCH60dM8bjKSrTMjXaDPSrdw6q5AiOH8dGvs1tu63N2Q7m4m+gg2G250SFQ+97nPUVtbi9frZc+ePVx22WX6c4899hg7d+4ct/4973kPe/fuxev1UlNTo7vuscSlS9XwuD11PQyPRfHG1jCdZU/pSgDWthzH3dhgajaLuM6M+AKW7A8+oIfGWUikV1WR9Zc/ANDzq19bJgh3IpY8dxrinsuK7zkjh7We/rMsFrwnCJW7+yy5yXaiXW23kCJ9Bjz11FPcfffdfP3rX2ffvn1s3LiRq6++etxuupFXXnmFW2+9ldtvv51Dhw7x29/+lrfffps77rgjykceG1x1tjpK5vmDc+wb37qVhsefpjq3DHfAzyW1+9XHLZQ0eRr5+eP+uKhbLX2vnijSJ6yLBo1i/Fp2siV3SG3Tkx4I0N6u3gzknzhkCUfB1iJdGxtndk+62CToHfbhC1h7zJBEMlMqclMozUrGF1B4s7o7Oj90wnSWvSXqfPRzm46aPp0lKcFFlla6bbVrTSCocFhzMi0jNLXNluwu1WzpTdLKeJuaTA/CnYhVx6+BDeakaxxp1UR6sTVFugiO8wUUvBYbB9g16KVn2IfDAYvzpUg/I9///ve5/fbbueOOO1i5ciXbtm2jvLychx9+eNL1b7zxBhUVFdx1111UVlZy6aWX8pnPfIbdu3dH+chjg/evUvvFXz/VNeeL4U7NRT83L5GMxx6xXNLkaZSOF+OV3c3AJE76hHXRwKrJ7gJb9KRXVaFUVITS3W+7xRKOgp3L3bt1J93ccvfslERcYt68LHmXxAgOh4PLlomS9yj1pU+YzrKnVBXp65uOqA+YPJ2lyKJ96dUdg4z6gqQmuqi0wvgmw2ZLtpYH1JusiXSLjcL1BYIcbVFdzFUWmS9vRDjAo76gZWfNK4qiO+krrSrSE916Ma3VSt5FP3pZdjLJiRar8p0C00T62NgYe/bsYcuWLeMe37JlC6+99tqkr7n44otpbGzkueeeQ1EU2traePrpp7nmmmuiccgxx4LcFM5bmE1QgWf3z60H+6VjatjMey5YCjebN1t1xoheeo1FPerfuzrbEB5nUi99k4WT3QGKMtTjspq7oaM5Cv0dPYy5Vdc1f7jXEo6C6Kdu7/dasgRsKhRFodMi6e5Op0N30+1YkSCRTMWlS7R56Sej1GY1YTpLda46T/6c5mNTrosmIjyuzWLXGpGAf3ZJJk6nBardDJstWSOqAO5JNog3C43CPdGmBZ4luSnPsd49jhgxC9Z109v6VSfY5XSwtNCaTrDT6SAtMVTybiXsFhoHJor0zs5OAoHAaTNSCwsLT5uNKrj44ot5/PHHuemmm0hMTKSoqIisrCx++MMfTvlzvF4v/f39474kIbaeqwrW3+1tnLV4GPT69Z3/964oCPuxRQTRS+9wgMPBoi5R7l6mP2ZWL70+fs3iTnrX0BijPvN35sdhcBQ60tRgrPTRQZL8Y5ZwFMRN54gvwIBFU08nY9Dr110Fs510gIIMbbNjwFo37xLJfLhkSS4OBxxvG4xOMKdh6sq+kuUALOpqIHt0YMp10UQfw2YxJ/2dxl4A1ml5PqZj2EQ5zUmfYp1ZiBGDq0oyLdnO53Y5SdXcVas5wILDLeo5XJKfRlKCdc2wNIsmvJ9ss1c/OlggOG7iL6uiKFP+Ah8+fJi77rqLb3zjG+zZs4fnn3/+jGEyDzzwAJmZmfpXeXl5WI/f7lyzuphEt5PjbYMcap7dBsbfjrTh9QdZlJfKiiL77EwZx9Et6WoA1J70QHm5qb30oty9LNt6ye4AWSkJ+kVMHKtlMDgK7ak5ABQM9YSeN9lRSE506aNJrOYOTYcoK09JdFmiPKxACwJsl066JIbISknU+3RfiUbJu2E6iwiNW990NPS8ydNZxKam1Vqr9FnyZVmmHoeOYRMla1R1CXsmE+kWGIUrRtetNnnE33RkaAn5/RZzgAWhUndr329bdVb6MU2kLy+09vkzYppIz8vLw+Vyneaat7e3n+auCx544AEuueQSvvrVr7JmzRquuuoqHnroIR599FFaptgpvPfee+nr69O/Ghoawv53sTOZKQlcuVI930+8NXlg31T8+V31nL9/dbEld0anRRtHV/r7J0lyKHgTPDS8fcDUXnqrl7s7HA59A0G4/pbB8Pvfkao66fmDPdOuizZWn/87GV0WKXUXiLn3YsSeRBIrXLJE7UuPyrx0w3SWvVo/+rnNmki3wHQWEVJqpXGfo76A3lNtGSfdsNmSpTnpPUmGcncLjcIVTvrZFk0lB+uKS8ER7f1n1WR3gRXH2SmKwrFWTaTbyFQ0TaQnJiayfv16tm/fPu7x7du3c/HFF0/6muHhYZzO8Yfs0i4iU5VqezweMjIyxn1JxvPxDeqc2qq9jfQOzyyQqXd4jJ3H1f65a9aYv0s7J1wuXJs3s7hY3dk90Wme8BzzB2nTSnitWu4OauAGhDYULIPBKRDl7gVDkyQlm+gohG487SMwu7SgOyuUugMUZAgn3To37xJJONhoEOlRya3YuhXfb55mvxDpwkm3wHQWK04SOdTchz+okJfmoSTTGqM9jZst2ZqT3pechgKW2GwR+ANBPRX/bAuGxgmEuOwfsY64NHK4xdqhcQLR32+lzY7OwTE92V2Wu8+Qe+65h0ceeYRHH32UI0eO8KUvfYn6+nq9fP3ee+/l1ltv1ddfe+21VFVV8fDDD1NdXc2rr77KXXfdxQUXXEBJSclUP0ZyBi6szGFlcQajviC/fntmlQZP72lkzB9kZXGGvUrdJ2FpvprSeuKFV2DnTlP6lpt6R1AUSE5wkWcR13IyhEgX4+Isg8FRaBdO+lBv6HkLOAp6GJKF3KEzIZx0q7wndSddlrtLYoz1FdkkJTjpGPByvG0wKj/zwAWbGXF7yEqApQ8+YJnpLFZMd9/foDrB68qzrFU5qLXvZWerwsPnSmAoMdkSmy2CE+1qKn6ax82iPAuk4k9BhoWd9IFRH7VdQ4B1x68JrFiRcFwrda/ITbV0P/9ETBXpN910E9u2beP+++9n3bp17Nq1i+eee46FC1Vnt6WlZdzM9Ntuu43vf//7/OhHP2LVqlV85CMfYfny5VRZaA6kHXE4HHzykgoAHnu19oyhYIqi8MSb6r/Lxy5aYK0L1mypqmLp/z4EwIkXX4PNm00Z2VWnffguyEmx9Pm0bLm7wVHoSNN60gc1J90ijkKhFnpmJXfoTAgnPSfVYiLdQjfvEkk48LhdXFCZC8DLJ6KT8v5GdRcAFy4rxHmLdaazCJHePTSG12+NkFLRj76u3IJO8NatJJ86gUe7o+/5/Z8ssdkieEc7d2vKLJKKPwW6k26hMm3BwaZ+FEWttMxNs0Zl21SEyt2tI9JFqfsyi6biT4XpwXGf+9znqK2txev1smfPHi677DL9uccee4ydO3eOW/+P//iPHDp0iOHhYZqbm/nVr35FqQkzrWOND64toSQzidb+UX71Rt20a/9+tJ3qziFSE11ct87G514b2bX01EEATuQtUB83YWRXfbfqTC/ItWZonMCyTjrojkJbrlrSrot0izgKRTZ20q1yUxAqd5dOuiT2uHSJKtKj0pcOvFGtfkZetCg3Kj9vpmSlJOBxq7enVsmfEEJzbXmWqccxJS4X2Wnq52PvmvWW2GwRiFR8y547jYxk1QHut5C4FLyrncM1Fg7eE6Tr6e7W2ew4bsPQOLCASJdYg6QEF3dfuQyAH+04Sd/gqFr6/eST8Le/qV9PPomyYwfbth8H4GMXLRw3W9JWGEZ2LdUS3k/mlhHEYcrIrrouVfQuzLG2SC/VRbrFnHTB1q20rloPQOHd/59lyjfBnuXunVq6e67FnPSOAS/BoH3mzUskM0HMS3+zulsffRgpfIEgu2utKdIdDofel26FhPeuQa++kb7GKsnuk5CVojqYPTPMFooWolXAMqn4U2DFwDPBu1rwnpXff4J0C/aki2T3ZTZrz5UiXaKz9ZxSlhak0Tvs41uf+je19PuWW+CKK9SvW26h6h+/w4HmflKcCp++bJHZhzx3DCO7FvS2kugfYzQhicZMbd57lEd2CZFufSddPb72Aa/1ZqVrCBFc9KH3W6Z8EwxhSHYS6ZpjnZ9uDSc9T3P0/UHFcjeiEsl8WVGUTl5aIiO+AHvrJ5lOEUYONPUxPBYgKyXBku6SlaZhvNuoCqRF+alkamO6rIgVRfrwmF93MddZ3UnXg+OsIy4FdnLSxZz0AYvMSVcUheOt0kmX2By3y8m/53bjDAaoWnQRv1l9xbjn67KKuP/yOwH4wo5fkPvCn804zPBgGMXlUoIs7lIFu17yPsm6SNIgyt0t7qRnpySQos3LbrbarHTUHfChMXXzoMgqCbwa4qazY8BLwCYucIfWk55vkXL3RLdT74+XJe+SWMPpdIRGsUV4Xrrej16ZY8k+Yb09yAJOeqgfPcvU4zgT2SnqZ2PvsHWc4EPN/QSCCoUZHstdkycSCjyzzvkD6Bkao6Fbvd9aVWp9kW61nvSm3hGGxgIkuBxUWDi4cDKkSJeECARY/y938YXXfwPAve/7R36+/lrGnG4OFVRy643305ecztrm49z59u+jWg4ediaM4lrapQbhnchdMO26SKAoil5KtzDX2h8g6qx065a8Cxc9PclNSqK1WjHy0jy4nA6CCnQO2kNgdljMSQeZ8C6JbYRIfznCfelvav3oF1Zaq9RdUGyhyiO7iPQsC4p0vZffDmXaFkwlh1Cpe2WetSs5BFbb7BCVHIvz00hw2Uv22utoJZFFKwG/+5Un+Mi72wk4XXzris+w8su/45pP/pC67BLKelv5n99/h4SAP6rl4GHHMLILYGmn2pd+Iq88tCY3NyojuzoGvIz4Ajgd1p6RLhAl700WdNJb+1ThJlwYK+FyOnRH2g4J715/gD5tXqylRLoIj7PAzbtEEm42LlVF+oGGXvp++WRExoJauR9doJe7m/xZqShKKPjM4kIz24Ll7vutHrhnICPZmunuB2xU6g6hnvRBi2x2HGtVR1ous1mpO0iRLjGilXY7UfiPvzzIt7b/mPzBbgJOF85ggGuO7OKZX36ZQpGabXiN7RAju7SQON1JN5a7d3XBs89G/FDqNBe9JCuZRLf1fyWtnPAuXBerltUVWsgdOhNdWmhcgsthqd176aRLYpniv/2FxX0tBIHXv/PDiIwF3VvXw9BYgJzURFZYNEjJKhkedV3D9A77SHQ5WWnx+dShcnfriHSxwWH1KgSw7pz0d7RMhNU2KHUH65W768nuFv2smw5r1YNKzMVQ2u0APrH3T3x033O0pueSNTpI2tgkzmkUysEjxnXXqW55VxdLO1WRfjK3nCAOnCiqy3733eq6CIaP6aFxFu9HF9ih3L3Qgk46QKGN5nyLkvy8NA8Oh3V6VuWsdEnMoo0F3fjeOzl13gd5ueIc3nf89dBY0DCNktylzWHfuDTPkv3oYBDpJjvpe+rUAL9VpRmW30QPBcdZwwnuGvTqvdSrbeACZ1h0TvqBRvsku4P1yt1DM9LtJ9Kt/YkjiS4TSsAB3EqQsv6O0wW6wwHl5VEpB48YL7+suuXAwp4WEgI+hhOTacpQx+BEK+E91I9uF5GuHqflRHogQOuRUwAU9bRZMi/BKu7QTBD96HkWCY0TSCddEpMYxoJeWrsfgFcq1qnPhXks6K7jar/7ZUvz5/29IkWRYWSlmeMWd2si/byKHNOOYaZkWcxJF6n4i/NTdQFsZYwOsKJYI9y1vX+U1v5RnA44u8TalRyCtARVQwyNBQjs2GHqvZg/EORkh1rubrdkd5AiXWJElIDDOKF+GuK5bdssM95qThhK9d2GhPdj+RVTrosE9V1DACzIsXZonMCS5e5VVVBRQeuL6oZK4cPbwl4iGg5CfZbWF5hWDI0DQ0+6FOmSWMIwFvTChgO4ggHqsktoyCxUnw/TpnHnoJcDWhDVxmV58/pekSQ/3YPDoY5b7BoyT3TuqVPb+9YvzDbtGGZKtsWcdDv1o0PIAQ4EFUYsMmJWbHQsKUgj1WOD4ueqKtLXnK3/cfDqa029F6vrHmbMHyQ5waXfu9oJKdIl49m6VS2pKy2dek1ZWdjK7kxlQqn+We01ABwpqJx2XVgJBKiraQVgYWuNJd3fiQgnva3fi9dvgePVSkRpbKQtXQ1BKhrsCpWIWkioF+oC0/pOeqfFxq8JCjOEk279cyiRzBjDZnD62AjnNB8FDG76JOvmghjtdlZxBgXp1mwLAkhwOfXPnjaTKo/6Rnwcb1NduHMXWF+kW81Jt1M/OkBKoguX1v5hlVnpofnoWaYex4zQ7sU89bUk+tWNogFPiqn3Ysf1Uvc0y7b2TIcU6ZLT2boVamthxw544gl48UX164kn1Mdqauwv0OG08v6VE0V6pEv6q6pQKiqoblV3Sivu+rQl3d+JjJ+VbrJQMpSIArSmaSJ9oCvsJaLhoMgiicUzQS93T080+UjGI4RFe7/XMiWJEsm8mbAZvLFmHwA7Fp037brZsuu42o9+2TLrlroLirQNudY/vhCRlPszsbdeLXWvyE2xXEXRZAgnvX/Ujz8QNPVYFEWx1fg1UEfMWq2fWoxfs3yy+4R7sXSvWiE6mJhi6r2Y2GSzYz86SJEumQqXCzZtgptvhssvV79uvll9zM4l7kYmlPevbK8G4HDBosiX9Gs7jt1d/fQlqx8elT3NlnR/J2Kcld5kdl+6oUTU73DSmZoFQOGgmjUQrVyBmVKUqd102qAnvVNLd7eaky5ulr3+IP0WSY+VSObNhE3jy0++BcDLFecw6k4My6axPxBkx7F2AN5jdZFeVUXhG7sAaPnJzyOScn8m9tSqIn39Quv3owPjpnCI8Zlm0dA9Qo+Wir+i2D4CyUrhcYqi6OXulnfSDfdiAOletR1ywKO1cZp0L2bnZHeQIl0S7xjK+4WTXpddxFDF4siV9Bt2HKtzygAo7Wsj2e+1pPs7GWKeu+l96YbSz460bIJOF+6An7yhvinXmYkodx8Y9TM8Zm2BGepJt1ZJbFKCSx+V0yFL3iWxwoRN47Pbqynta2ckMYlXRcn7PDeN367toWfYR3ZKAudXWLh8W9vELupQb/pFG1O0N7FFsrsd+tEB3C6n/tlodl/6fq1Me2VJBh63fYwd4aRbYQO4qXeE7qEx3E6HZUcl6ky4x0obEyI9Zdp1keZYm32T3UGKdIlEL+/Pfe5ZCtxBFIeTo397PXIl/YYdx+pctfd/UXdT6HmLub+TIfrSRTK9aRhKP0Wpe8FQtzpCb4p1ZpLmceutAm391g4+69BHsFmr3B0M4XEWP4cSyawwbBo7gCtOvgnA9rXvDcum8V8Pqfknl68sxO2y6O2fYRO7aECtiGoVIj2Km9i+QFAPPjvPyhsaE7BKX/r++l4A1lq9THsC6RaalS5c9BXF6SQlWHyjY8I9lih3P02kR/FezOsPUNOpHocU6RKJndHK+1dWFgBw5E87I9cDZ9hJPKU56SJZfqp1VkOMi6szW6R3dur/K9yWwoHu8WssNCrQ4XDYpi+906Lp7hAaw9YmnXRJrGHIhLniI+8F4MV17yX4oQ/P69sqisL2w20AbDmrcL5HGTkMm9ghkW5IoY/SJvaRln5GfAEyktwsyU+L6M8KJ1ZJeN9Tb68qBIFe7m5yuwCERPrq0ixzD2QmTGjXOa3c3YSxzdUdQwSCChlJbj1w1m5IkS6RCKqqWPnMrwA48qcdkeuBM+wkinL3cU76JOusxsJc9YO3vstEkR4IwJe+pP9RD40T/eiC733PUjkKhYb5v1Zl1BdgwKs6CXkWFunSSZfEJNqm8YWfuoF0j5vOwTG9fHiuHGzqp6l3hOQEl7VD4wyb0+KzXHy2T7UuEohS93MXZtsqFdoKTvqoL8DhZlVg2iEV34hxVrrZiGR3W1QjTGjXSfMayt1NGtts7Ed3TDdW2sJIkS6RgN4Dt/LUu4Ah4T0SPXCGHcfqHFHubnDSTdhxnC3CSa/tGjIvYXtCUEmr7qRPEOn51rohLcrUnHQLi3TRj+5xO0m34GzWQjkrXRIHJLqdbFqhVnf95cD8ROmfDjQDamCcpUtnDZvTRQNqpZTekz7FukiwWxPp59nMCRZOeq+JTvqBpj58AYX8dI/tZlNnJIuedHOd9GBQ4YCW7L7aDiIdxrXrZBjT3U0a23ys1d796CBFukQyrgdOzEo/ml9BEEdkeuC0Hccxp5u6bPVGY7EQ6SbtOM6WBTmqSB8Y9Zt3MzDBSWkzjl+bZp3ZFGsivaXX5GT8aRD96PnpHkvuQIsSfCtXI0gk4eADa9RrxB/eaSYQnNuGaCCo8Ow+VaRft64kbMcWEQyb2OKzfMCTymCiJvaisImtKIrtkt0FwknvMdFJ3ysC9xZkW/L6MR0hJ91ckV7bNcTAqB+P22kvkam166R/RG3PGbj0PfDzn8N110X9UOye7A5SpEsk4xzZyu4mEv1jDCcmU59VpD4fiR64rVup/9+nCDhdpIyNhISlSTuOsyUpwaX3Vtd2DZlzEBOcFOGkn1bubrG2gWItGb/J7Bnz06DPSLfY+DVBcaZ6DqVIl8Q6m5bnk5Hkpq3fy5vVXWd+wSS8Wd1Fa/8oGUlu3ruyIMxHGGYMZbOpfq8eQNWalhu1TezmvlFa+0dxOR2sLbeJi6mRrYt080RmqFUgy7RjmCsZFgmOEy76WSUZJFg15HEqnn2WtN/9BoDBdw/DFVdEfXwi2D/ZHaRIl0jGOa1uJcjK9loADhYtnnJdOKhetwGAyrxUHE88ATt2QE2N5QW6YEGuyQnvE4JKWtLVsvbi/g71eYu2DZRmaU56n3Wd9M5B64bGQahloMXi4XsSyXzxuF1co7npz/xlDzz55MxDTQMB2LmTqt+pG8zXrC6yxzgsQ9nsuJL3KG1iv12jho+eXZJBSqL12n2mIztVlLub46QrisJem4bGgXWC495pUEX6WqvPR5+I1jqa3q5W7vSLdPcoj08c8vpp6FbvsaRIl0jszASndXXrCQDeLVo67br5crJjEIDFlUVw882waZOlS9wnUiES3s0KjzM4LkGHk+YMNQG4pL/D0m0DwgVutnK5u4WT3SEk0tv6RwnOsQRYIrEL1/WfAuAv1X2M3nrbzEJNq6qgooK+932A59pUQb/1374YdTdrzmhls0XL1XyY1n/7z6htYr9Zo1YsXFhpr1J3gMxkke5ujkhv6B6hc3CMBJeDs0vsVYUA1hnBdqCpF4DVpTY6h4bW0bQx9f5GT3eP4vhEgBPt6v11frqHnFTrjZGdKVKkSyQTHNk1mkh/p3iZ+nyEHFkRamHXfhmR8G5auTvojkvX4uWMuRNxBgNqubuF2wZKtHL3nmEfI2ORv1jNhc5Ba5e7F6R7cDjAF1DoGjJ3HrBEElGqqrjgUzdQ1tvKgCeVP6y8TH28sRGuv35y0a25WTQ28vTqyxlOTGZ5Ry3n7d8VVTdr3rhcFFaoPfStJZVR23B9s1p10i+snCSwzuJk6+nu5jjBe+rVc7eqNNPaAYVTkKFtcpgZHOcPBDnY1A9gr3YLQ+touh4cZwgOjNL4RIDj4v7axi46SJEukZw2OmJtiyrSDxYuJuDULjIRcGSP2fxDRITHmTqGDWDrVpq2qx/6hR4HCX970dJtAxlJblIT1fdSs0VL3q3upCe4nOSnyfA4SYyjOVNOJcjH9z0HwP+e+wHG1Y58+tPjnSmDmxXEwS/P+QAAt+75E44ou1nhQGSftEaptaW9f5TqziEcDjjfhk662SJ9b10voIbG2RErOOmnOoYY8QVITXRRmZdm2nHMGkNLqEh31530KdZFiqMxkOwOUqRLJCqGHrglXQ2kjI0w5EmheuW5EXFkfYEgp7Ryd7s66RW6k26ySAeaB1Q3taQk1/JtAw6HQ3fTW37/3Mz7S6OILtLTrFsmViz70iWxjsGZuvHd7Xh8Xg4VLWFP6crQmq4u+Ld/m/Q1Lyy9iNqcEtJHB/nQ4Z3q81F0s8JBtEdWvqn1o68sytBLx+1EVoq55e7G+fJ2JMMCc9Lf0eajryrNxOW0UTq+oSU0zSvK3VOmXRcpjrWplQgrbHp/LZAiXSIRaD1wrr//jVXZ6gf1Oz+PTMl0becQvoBCaqKL0ix7zREViOC4zkEvQ15z+7dEf3eJHc5lVRUl+98AoPlHj8ysvzTKtFvcSQfDzbtFqxEkIXp6evj4xz9OZmYmmZmZfPzjH6e3t3fK9T6fj//zf/4Pq1evJjU1lZKSEm699Vaam5ujd9BWwOA4ZY8O6EL7hxffNH7df/93aKPv2WcBCOJg26W3APCJvX8i1TdB5FpsNOVURNtJ1/vRF9nPRQfI1vpvvf5g1NupBr1+jraq4siOoXEQctIHvf45jzycLwca1dC4NXaZjy4wtI7q5e6elFDlTxTDfI+2qE76imIp0iWS2MHlgk2bWHOOGhr3bnN/RH6MXopTlI7TTjulBjKTE/Rde9PC4zSadJGeZOpxnBGtV7SkXXW6RNhdtJNPp0NRFNr7VZFemGHd8ylu3qWTbn1uueUW9u/fz/PPP8/zzz/P/v37+fjHPz7l+uHhYfbu3cu//uu/snfvXqqqqjh+/Dgf/OAHo3jUFmCC4/T513+DKxjgpUXnsXuim/7yy+rnx7ZtAPxx5UaOFlSS7h3ijrefOeP3tipRd9Jt3I8OkJroIsGl3lNE201/t6GXoAKlWcmWvnZMh5iTDjBokpv+ruakr7FbsruhdTR9TL0n9LkS8LoToxrm2zHgpWtoDIcDlhZIkS6RxBxryrMAeEfb0Qw3x9vs3Y8uEOFx9d0mhscRctItXZVg6BUt0cbENWeoY+OinXw6Hb3DPsYCQcDqTrr6bx2tm3fJ3Dhy5AjPP/88jzzyCBs2bGDDhg389Kc/5U9/+hPHjh2b9DWZmZls376dG2+8keXLl3PRRRfxwx/+kD179lBfXx/lv4GJbNwIOSFHd0FfGx858CIA913xGfwOwy3cT38Kd94JQJ8nle+89w4APv1mFVmjg+O/rwVHU06FEOmdg1582udSpOga9Oqp0BfYsB8d1HaqzGQxKz2KIj0QYM9LewE4N2nM9OvYXEl0O0lKUH+vzAiPG/MHOaK5wLZz0kFvHU3Nz8WhqL+v/Z6UqIb5imqOytxUkhOt2/o4E6RIl0gmYa324XikuZ8xf/hvDI7aPNldsDDH5DFsGs29qlArybSwSDf0ihYPqCK9JT0v9LxFekXbBtRzmZOaaOmZysWZ0S2DlcyN119/nczMTC688EL9sYsuuojMzExee+21GX+fvr4+HA4HWVlZU67xer309/eP+7I1Lpe6sWfgnpd/SebIAAeLlvCTC68PPfHEE9DdjQJ888rP0pGWw6KuRj791u9O/74WHE05FTkpiSS4HChKKCsjUryl9aMvL0y379imQIBsVHHe9/ru6Ihlbdzf3ufV3+dzf/WQ5Vq4ZoNw080Q6cdaBxgLBMlMTtDDeW3H1q04T50kzamaD4P3fQdOnoxamK/dJycZkSJdIpmEBTkpZKckMBYIcrgl/Dd6dk92FyzU+tLNDo+zRU+6oQdUOOlNwkmfYp0ZtGml7gUWdtHB2JMuRbqVaW1tpaCg4LTHCwoKaG1tndH3GB0d5Wtf+xq33HILGRkZU6574IEH9L73zMxMysvL53zcluHrX4fcUOl1wVAvX9/xMwC+t/FjPL9sg/6cAjx4yc08c/ZmXMEA//78D/EEJpTs3n23ZSdfTIbT6aAgPTqtLSI0zq796EIsZx85AEDP178ZebGstXAFG5vYW7ICgPVNRyzVwjVbMkxMeH9Xm4++piwTh8OerZBUVcHixaT3qfkOA997EBYvjtp7QVQirCia+lphF6RIl0gmweFw6MEnu2u7w/q9+4Z91HerovasEnt/iOiz0jvNK3cf9QX0WdmWLnc39ICW9HcC0JKez2nRNCb3ioqRZlbvKTT2pCuKOQE/8cx9992Hw+GY9mv37t0Ak95sKooyo5tQn8/HP/zDPxAMBnnooYemXXvvvffS19enfzU0NMztL2clXC74n/8J9XQCHznwIjfvf56g08X/96F7+cYVn+WZszZx59Z/YdulHwXgX/7+CBc0Hjr9+113XbSOPGyIqplIj1t8o1oLjbNjP7omlmlsJGtEFSk9yRmRFcuGFq7q3FL6ktNJ8o2ysr3GUi1cs0V30kei76S/22DT0DiB4X04LuE9ips2ItldOukSSQxzXoW6m/52mEX6wWb1Q7g8J5msFJuW1GkszldFenXn4BlWRg7hoqcmushIdpt2HGfEkHxaNKCK9JHEJHqTtAtJFJNPp6NdF+n2cNJHfAH6R8ydLhCPfOELX+DIkSPTfq1atYqioiLa2tpOe31HRweFhYXT/gyfz8eNN95ITU0N27dvn9ZFB/B4PGRkZIz7ignEiNCyMgAcwP3bH+bm/c+jOJz8Yv0HuPvar/Di0otwB/x848X/4ZN7/jj+e1jk82UuFEZh3GLv8BjHtKwY2/WjG8QyQPaIKlJ6k9MjK5YNLVx7S9QgwzUtJ0gIaj/HIi1cs8XMWenvNqn3h6tLs6L+s+fNhPehMeE9Wps2/kCQ423q/ehKmye7A1j4jlYiMZfzNZG+u7Znxq7PTDigfQivseOH8AQW5acBaon0wKhvXDJqtND70bOSrV0eJpJPb7iBpKCfvKEeOlOzac7II9urbXJYoFe0zQbJ7gBJCS6yUxLoGfbR2j9KZor9Zhrbmby8PPLy8s64bsOGDfT19fHWW29xwQUXAPDmm2/S19fHxRdfPOXrhEA/ceIEO3bsIDfXhu5mONm6VXXB77sPvvMdEoIBHvjrj7jm6Mv8Zs2VtKXlsqSrgU/s/RPLOieE60UxWTkSiAqppp7IjVt8q6YbRYElBWmWDsycFINYBsY76TBeLG/aFL6fa2jN2lMqSt2PTrvODmQki1np0XXSR8YCeqjw2nIbOukT3odpWsJ7v0c1cyL2PjRQ2zXMmD9ISqKL8myb9vQbkE66RDIFq0oz8LiddA2NUR3Gcm4xA3NVqQ0/hCeQmZxAXpp6Q1NjUsm7LfrRBcIRKy0dn/AexeTTMyFKSgssLtIhlPDeImelW5aVK1fyvve9jzvvvJM33niDN954gzvvvJMPfOADLF++XF+3YsUKfv/73wPg9/u54YYb2L17N48//jiBQIDW1lZaW1sZG4vuWClL4XLB5ZePe+jSunf47z/+F089eS//9sJDpwt0sNTny1wo1wK0RJtYJHjtlFrqfpEd+9EniOCsUU2kJ6VPu27eGFqz9moi/dzmI9OuswOiJ70/yk764ZZ+AkGFvDSP3s5lKya8v9K96u/rYGLKtOvCiUh2X1Zo3/HGRqRIl0imwON2sVYbxRbOvnRjMEgssEgreT/VYU7Je6OdRDqoN8q1tRSvU8sDW/7lO1BTY5kbaL0n3QZuUpFWki/D46zN448/zurVq9myZQtbtmxhzZo1/PKXvxy35tixY/T1qRuYjY2N/OEPf6CxsZF169ZRXFysf80mET4mMbTNnJGcHHjxRUt9vsyFBbpIj9xG8Csn1RakS5dMEuZpdSaI4GzNSe9LTp923bzR3ot9SWmcyFsIwLlGJ92mLRYZWkVgX5R70sV89LV2DY2b8P4S5e4DnpRp14UTEcq8Igb60UGWu0sk03J+RTZv1XTzdm0PN52/YH7fLBCg92+7aOhWReWqorQwHKH5LM5P462abqo7zHHSGzV3pTzHJiIdwOWiZEk5tNXSVFBmqRJUu5S7g9FJlyLdyuTk5PCrX/1q2jXG8L+KigoZBjgVhraZaXE41NnpE5x3O7LQ4KSHs/VM0No3ysn2QZwO2LDIhm0VYuOmqQkUxVDubsg7KSsLv1jW3ot7v/oAAJXdTeRq/fB2brEQrVPRFumiynK1XQ2cCe9D4aQPiHL3SL0PDYSS3WNDpEsnXSKZBtGXLuanzhltNMqBz9wDwIKeFjJXLrXleJKJLDbZSRclkHabKSr6LFt6rSMwA0GFjkH7iHQ5K10Sl0wIkjuN8nJbl7dPpCQrGacDRn3BiMxKf1Vz0VeXZtoz20Js3AA4HKHguKT0yIvlrVvZ98V/AeAco4tu4xaLrGQ10Ld3OEoiPRCAnTt557DaqrLWrlN/JrwP9XJ3T0rUNm1Cye42PYcTkCJdIpmG8ypycDsd1HcP0zDXfjjDSAoxR3Rty3FbzxE1slgLjzPLSW/osadIL9Zc4KZe6/RTdw15CQQVHA7IS7P+5AF9VnqERzNJJJZDa5thxw741a/gBz9Q/7tjh+3L2yeS6Hbq7Ux1EehLf/WUKtIvWXLmIETLYsg7yR41OOlREMt7UtQpDetvuhqeeML278Es3UmPQv6FZuAMXPV+qkdVIbv6g++1732h4X04rtw90u/DQIDBF3folaorCux1PzgVUqRLJNOQ5nFzzoIsAF4+0Tn7bzBhJMXusrMAOL/xsK3niBoRPek1nUMEgtEtUR31BfTybLsleZZmRz6xeLa0a+cyL82D22X9y0OxPprJOudQIokaLpeakvzRj6rXkY9+VP2zzcqLZ4Lel94VXpGuKIrupNtapIO+cZP1q58D0JeSSfBUdUTFciCosL++F4Bzr7wQbr7Z9u/BLC3dPeJOusHAOVi4BMXhpLSvnbzqo/Y2cLT3Ydo9dwHQf8mmyG7aaBsdxz7xOQAKB7rIPmuZfc+fAevfhUkkJrNxqRok8/KJjtm/2DCSwu9w6k76+Y2H1OdtOkfUSFl2CokuJ15/UE9ajxaNmoue7nHru992oVwT6W0Do3j91tikEaFxdkmWFdUIzb2jsodZIolhFuaqIj3cTvqpjkHa+r143E7WL8wO6/c2BZeLrMs3ARAE+n3BiP64o639DI0FSPO4WVYYG33AUelJn2DgHCheAsDq1hOxYeC4XKSvWw3AYGp65DZtDBsdR/MrAFjRURMzlapSpEskZ2DjUnV3/dWTnfgDs7zgGUZNHCmoZMiTQvro4Oljcmw2R9SIy+mgIk+9gYp2X3q9HhqXYrs01JzURFISXSiKddz0UGic9ZPdIdTXP+j10z8S3XE5EokkeizIUSu25tx2NhGtD/iVX/8VgPMXZpOUYF/310ii20m6R82F7hqKbMn2nroeAM5ZkIUrBkZeAWSlaD3pI77Ibf5OmCn+TtFSANa0nFAfiAEDR7wHByI1ym7CRscxXaTXxcZGB1KkSyRnZE1ZFhlJbvpH/bzb1De7FxtGTbxddjYA65uO4lKCU66zI6Iv/VSU+9JF6aPd+tEBHA4HZZqb3mAZkW6fGekAyYkuclPVG6rG3sjNUJZIJOYiPuPrusJwjdHKY9m8mVd37gfgkqd/anvXzUieNkKzMwJBe0berlVFugjZjQVEufuYP8hopCoRJhgzB4RIbz0x7To7ka6NshsYjVBFwoSNjqMFFQCsaK9RH4iBjQ4p0iWSM+ByOvRetZeOzbLk3TDT9q1yVaTrpe5g2zmiExF96dVRdtKFuF2Qaz+RDqE++rC5Q/OkfUDMSLeHSAdr9vZLJJLwIsrd6+f7WWkoj/U7nLyxcA0Alxx4OSbKYwUi+LNzMMJOeq06+ea8WGgV0EhJdJHgUqsCeiMVHmcwZnqS0qnPVv+8uvXklOvsRnqS6qQPRspJN2xgKMARzUlf3lE35Tq7IUW6RDIDNq8oAOCFw22ze6E2ksLvcPLqwrUAXFz3jvqcjeeITkQ46SfbTSp3z7bRjHQD5Zo7JBLqzUaMMiuwSbk7hErerZSSL5FIwov4rOwcHGPIO8eb/gnlse8WL2XAk0rmyABnt55S19i8PFaQl6Y56YORc9Kbekdo7hvF5XSwTgvYjQUcDgeZkQ6PMxg4B4rUfvSK7mYytUT0WDBw0jSRPjQWiEyosGEDoyU9j4GkNNwBP4u7G6ZcZzekSJdIZsAVKwtxOR0caemffbrs1q288+hvGUhKI2uknzVip9TGc0QnIgJjjrcNRDXAq8HQk25HRLl7o0Vc4BZNpIvRZnZAF+kWOYcSiST8ZCYnkKO1ttR0zrHkfUJ57M5F6wG4pO4dtQUtBspjBflauXsk5soLdmsu+tklGaQkuiP2c8wg4iLdMFP83eJlAKxpPa4+FyMGjnDSIUJuumGjQ4TGLepuwhPQflYMbHRIkS6RzICc1EQu0Hqu/nqoddavf6lELXW/pDIb1+OxN8t2SUEaTgf0DPvoiODOvRFFUXQn3Y496RDaXGi0SLm7SOcvybRPZYJe7i6ddIkkplmstVXNuWJrQtnrS5XnAbCpes+06+xINJx0ERoXE6n4ExDhcRGdla7NFH+3Uk1BjzUDx+N2kehWZeaANwKbHYaNjqMFlYCW7A4xs9Fhukh/6KGHqKysJCkpifXr///27jw+qvreG/hnlmSyD2RfSQIkJJAAArIJCC4RvFhrri0WL24tapVW1HoffWwfqK97L9b71Af7sq0t1KUVl16MW6UoKmERWSWENQGSkIWELCSTPZPMnOePc85kErJMklnP+bxfr7wKkzPJ4XSc33zP77vMxr5h7mB2dXXh+eefR3JyMgwGAyZNmoTXX3/dTWdLarY8KxYAsHM0QXqxWMt+4w3TFDFHtL8APx1SIsQPUEU1LW75nQ1tZrSbLdBoegM1X2OrSfeCXeC2rh40S3e748b54E46g3QiRZscPcayKru014bAMBRKY69uLD026HG+yh1Butw0bk6ycprGydw2Kz03F4XT5gEApq/9keI2cFze4V260XEuOROAXT26Qm50eDRIf//997F+/Xo8//zzOH78OBYvXowVK1agvLx80Of88Ic/xFdffYW//OUvKCoqwrvvvouMjAw3njWpVc60GADi3eORNPq63NSBExVN0GiApVOiXHV6HjclVkx5d1eQXialPMYbA2HQ++YNj8RwMcC82jaGOksnqTaJQW6IQY+wAN+ZOc/GcUTqMObeJ3J6LIC9qbMgaLSYeuUiYlrFtG0lpMfKXJ3u3tzZjaKaZgDAnBTl7aTLs9KbXDkrHUBtcydqmrug1QDT7stV3AaOrXmcKz/f5OaiaN5NAIDMB36gqBsdHg3SX375Zfz4xz/GT37yE2RmZmLz5s1ISkrCH//4xwGP37lzJ/bs2YMdO3bglltuQUpKCubOnYuFCxe6+cxJjeKMgbhhcgQA4IPvKoc5uteOk2Lq3PXJ4T4z2mo05Lp0dwXpJdK4N7mzvC8KC/Cz1b55unnc5SaxHj3eh3bRASBxnJiN0NBmRofZ9xs+EdHAbDvpo50i8vHHQId4M2/3pH6p7gpJj5W5urv78fImWAUgKTwQMQr8XDMuUJqV7uKd9MJKcazv5OgQBBuUVdcPuGEMG8RRefL43ymrVirqRofHgnSz2Yxjx44hJyenz+M5OTk4cODAgM/55JNPMGfOHLz00ktISEhAeno6fvGLX6CjY/AdlK6uLjQ3N/f5IhqtH8xOAgBsP1YJq4PdKuUg/fbsWJedlzeQd9KLr7gpSJd20lMjfTdIB8QPOQBQcdWzO8HyTnqcD9WjA0BYoB4h0ocbprwTKZccpF9qaEO3ZYTzq+XRaw0NsGi02Js6C4BdkB4eroj0WJmc7l7X0uWSZq7y6LXrFZjqDgDjpJ10l9akAyisEoP07IRxLv09nhLi6nR3ABfrWtFjFRAaoEe8DzW9dYTHgvT6+npYLBbExMT0eTwmJgY1NQPX/JaUlGD//v04deoUPvzwQ2zevBnbt2/H448/Pujv2bRpE4xGo+0rKSnJqf8OUpfbpsUi1KBHZWMHvrlYP+zxpfVt+K5cTHVfke37dW5D6Q3SWx2+gTEW8kz2ib4epHvJrHRf3UnXaDSsSydSgXhjIAL9dOi2CCObl95v9NqJuDQ0BYYhtLMVs6rOiscEBgJ33umCs/YMOd3dbLHaeo0401G5aZwCU92B3iDd9TvpTQCAGUlGl/4eT5HT3V0ZpJ+Tyi4yYkOhkTNiFMLjjeP6X1BBEAa9yFarFRqNBtu2bcPcuXNx++234+WXX8abb7456G76c889B5PJZPuqqKgY8DgiRwT665A7KwEA8Oe9JcMe/+5hsb/C0vQoRaaE2UsOD4K/XouObotbUrflMTypUp2ir/KWWem+upMO9N5YYF06kXJptRpMih5Fh/dBRq8tLiuAXpB25CsrFTF6TRbgp7M17XJ287huixXHy5sAKLNpHNA7gs3kwpp0QRBwslLeSVdmkB7iliBdzN7MiA1z2e/wFI8F6ZGRkdDpdNfsmtfW1l6zuy6Li4tDQkICjMbeF3NmZiYEQUBl5cA1wgaDAWFhYX2+iMbiJ4snQqsB9p2vxykpVWkg7eYe/M9R8abQvfOS3XV6HqPXaZEmpSOec3FdusUq4JI0r973d9K9Jd1d3EmP88F0sd4xbN4xyo6IXCMtehS9Tz7+uM9fd02eDwBYdvFI3+MUMHrNXqSLmsedrW5GR7cFYQF625qvNPIINlfupFc1daChzQy9VoPMOGXGJmFuqEk/Vy2+F8jZnErisSDd398fs2fPxq5du/o8vmvXrkEbwd1www24fPkyWlt776AWFxdDq9UiUerYSeRqSeFB+Jfp8QCAlz4vGrTe66/fXkJjezcmhAdhWUa0O0/RY6ZIzeOKXRykVzV2wGyxwl+vRfw439v5tZcopbtXerxxnDQj3QevZ4LUPE5O2SciZZoqBTOnLw9+g7wPiwXYts321wpjDM7GTITWasHN/YN0BYxesxflojFs8ui12cnjodUqK71Y5o6ddHkXfUpsKAL8lNHorD93dHeXb9hlxjFId6qnnnoKW7duxeuvv46zZ8/iySefRHl5OR599FEAYqr6fffdZzt+9erViIiIwIMPPogzZ85g7969eOaZZ/DQQw8hMND3PliS73r61nT467TYW1yHL8/WXvP9xjYz/rTnIgDg5zenQafQhay/dOlOpqt30i/WizfqUiOCff7aTogQA8zyq+0uafDjCEEQlLGTznR3IkWbliAH6Q42Ad63D6irs/318zRxF31uxWmEd9j9jKgoRYxesxcZKnV4d/JO+rFLYtO4OSnKTHUH7Oeku65x3AkpSJ+eqMxUd6B3J91VNzua2s2oaRY/u8gThpTEo0H6qlWrsHnzZrzwwguYOXMm9u7dix07diA5WUwNrq6u7jMzPSQkBLt27UJTUxPmzJmDe++9F3fccQd+97vfeeqfQCqVEhmMhxalAgCeyytEjal3B08QBPzy41NobO9GekwIvj8z3lOn6XbT4sUPUKcc3eUYpdI6ZXR2B8TGcVoN0G62oNZFM22H09zRg3ZpfJkv1qTLjeM8nY1ARK41LU4MaCobO2ByJBW5Xwr7F1KQftv5b/sed++9ihnbJLN1eHfiTrogCDgq7aTPSVZm0zigt3Fcm9kCc88IJwk46GRVEwBgeuI4l/x8b2B0cQM+eUMocXygbdybknh8KN9jjz2Gxx57bMDvvfnmm9c8lpGRcU2KPJEnPHFzGvKLanGupgX3bj2I1/5tNpLCg7Bpx1l8VlgNrQZ46e4Z0Os83p/RbbLixQ9QlxraYerotqWMOVuJtJPuyzPSZf56LRLHB6H8ajtK69s80mDwstQ0LjzYH4H+vvdBdYLUfK+6uRNdPRYY9L73byCi4RmD/JA4PhCVjR04XW3CwkmRQz/BLoW9ITAMRxOnAgBuPX+w73EK6uwuk9Pda5udF6RXXO1AbUsX/HQazEga57Sf621CA/yg0YgDAUwd3bZu+c5itQq2GelKbRoHAONttf2uyUg4V93b2V2J1BM9EDlZoL8Of14zB3HGAFysa8Ot/28vpm34HG99ewkA8F93ZWOmghexgYwP9rftap5xNB1xFEoUtJMOiJkZAFAmdax3t97O7r6X6g4AkSH+CPLXQRDEHTYiUi75ZrBDa0x9PaAVP+p+mTYPVq0OWTUXkNgspcBrNEBSkuJS3QEgVno/l9OBneGolOqelWBUbB01AOi0GluqtisCzEtX29HS2QN/vVaRDc9k4+WddBeluxddUW5nd4BBOtGYTIgIwoeP3YBbp8ZAoxG7jieMC8Rr/zYb98yd4OnT84ishBE29hmFYumNWSk1SKlSXXppg2eCdLnhmi+mugPiKE95N728gSnvREomrzFyTe+g8vKAH/wAsIrpyv/IEAPx24r7pbpv3qy4VHegN0i/4sQg/YgKUt1lEcHiLnBDm/ODdHk++tS4MPgpONtSLhtodME1BICzCu7sDnhBujuRr4s1BmDLfXNgau9Gq7kHcWEBiu146ojsBCM+P30FJ4cYTzcW9a1dqG8V3/DTYpQx/kXeSb9U75kAs7ezu2/upANAckQQztW04JKHbnQQkXvMlmZzHzlXDeGdc9DEx4k74faBtsUCPPyw7a+1wePwTfIMAMD3zu4RH9RqgffeA3Jz3Xbu7iRnRlWbnBekq6FpnCw82B8l9W246pIgXfx8NEPBTeOA3lF2zZ096LFYnVr+abUKtg0bJXZ2B7iTTuQ0xiA/JIwLVHWADgDTpPqqoWbIj4X8pjwhPAhB/sq4z5gSIaW7eyjArJBSxJOkcXC+KFm6hpeuciedSMmuO74HfpYe1HQJqHjsSWDZMiAlRdw5l+XnAw0Ntr9+mrkEVq0O11WdQ3JTjfig1QqEKzfYjJUyo1o6e9DmhBFYpvZuFF8R+8HMVsFOergbdtKzFdw0Dujtkg+IgbozVTS2o91sgb9ea/sMpTQM0onIqeR6wZL6Nqd8MOhPnsGupPQmW016QxusVvePYauQAtukcN9MdweAJKa7EylfXh4Cfng3smvOAwAOJ00TH6+qAu6+uzdQz8/v87SPpy4FAHz/TN/H+x+nJCEGPUIM4o1sZ9SlHysXd9FTI4NtneOVLCJEDNKvtjo3SLdYBZyqEvspKH0nXa/TIlR6DTY6ubZf7uyeFh2i2AbNyvxXEZHHRIUaEBsWAEEAzlQ7v3mc3ChkikLq0QFxfIhOq0FntxVXWpyXmugoudlaoi/vpIf3zpsnIgWyWIAnngAEAddXnAYAHEmUgnRBurm5fr14nJ0LEYkojEuHzmrBv5zb58YT9rzYMDGYvvLhDvGGRL9rMxJqGL1mT95Jv9rm3NGoF2pb0dFtQZC/DhOjlFGyN5Rxwa5pwHdO4fXoAIN0InIBubFP4XCNfUahSLp7mq6gN2Y/nRZJ48Vd7FI3d3jvMFtQL83R9e10994g3RPZCETkYvv2AZWVAID5FacAAPtTroPtv3ZBACoqxOOWLrU97e2ZtwMAbrpwGJHt/dYku+MUJy8PsYVHAQDVv/vTwGUBI2AL0lPUEqSLNzicne4up7pnJRihU0F5ZO8YNud2eC+6Im4CZSq0szvAIJ2IXOC6CeIi/l15o1N/riAItpo4pc3F7B3D5t6d4MpG8feFBuhhDHLNXHt3iB8nZiN09VhR2+LcnQ8i8gLV1bY/zi8/iYDuTlQZo3EmOvXa4xYvBsLC0O5nwAdZNwEA/q3gn32Pi4hQbpCelwfcfTdi68WbGjWhEeLj/csCHNTZbUGBFFyqoWkc0Nvd3dmN4+TNi+kKno9uzyjVpTc6OUjnTjoR0SjMkoP0S84N0quaOtDa1QM/nUZxjUI81TyuQgrSfXkXHRCzERLGidkI7PBOpEBxcbY/BvZ0YXHpcQDAl5Pn9T3u/Hlg0iSguRkfT12KloAQJDdeth1v8+c/K3L0mn1ZQGyL2DzPFqQPURYwlMJKE8w9VkSGGDAxUllr72DCXRakNwEApieNc+rP9Va9O+nOu44dZovts1KGQju7AwzSicgFZiSJaVzVpk7beC9nOHNZTG+aFBUCf72y3r5SbTvp7g0we+vRfbdpnExOeWeHdyIFWrwYSEwENGKK8K0XDgMAdmQsElPeNRpxd3zjRqCyEj0aLf44724AwJrvPoNWToxPTAQ++ECxo9fsywJsQXpIRO/37csCHHSoRPw581LDodEoP0UbcE13964ei61Xz0yFd3aXjQ+Sa9Kdt5N+vrYFVkH8/yhKwU0MlfUpl4i8QpC/3ja30pkp7/Ls9WwFponZd3h3p97O7r69kw6IY/kAdngnUiSdDnjlFfHPGg1uKz4AQ3cXiqJScDw+o3eXWPrfj6cuRfn4OIS3m7D6xE7xe1FRwMWLyg3QgT5lAXEt9QCAmtDIIY8bzuEysbP7vInqSHUHeru7N7aZIQjO6XNyrroF3RYB44P8fHqaykgYpZ10Z3Z3lzu7Z8SGKvqmEYN0InKJ2VIq17EvDo65q6xMDtKnK3BsyUS7mvQei9Vtv7fiqjwj3fc/MHAnnUjhcnOB7duBhAQYu9qwUurW/sbiVcCvf22bjd7qH4iXbrwfALD2cB6CuqU+FXV1wIEDHjl1t7ErC4iVgvTqsAGCdLvjhtJtseKYVLo2N1U9Qbq8k95jFdDc4Zxxsvbz0ZUcXNqz7aR3OG8nXQ316ACDdCJyhbw8zPq//wcA8F3hpTF3lQXEpnGnpCA9S4E76QnjAhHgp4XZYkVFo/NKBIZT2aSknXTxRgdr0r1LY2Mj1qxZA6PRCKPRiDVr1qCpqcnh5z/yyCPQaDTYvHmzy86RfEhuLlBWBuzejYf+dT4A4NOU61GQMMV2yH8u+zGuhEYgufEyHjz2ad/nj2AH2SfZlQUkmmoBAPXB49Ghl9KCNRogKUk8zgGnqkxoN1swLsgP6dHKDorsGfQ625z5BieNYSuoED/DzFTgRsNgXFGTrobO7gCDdCJyNqmr7OyT3wAATsdMRKfef9RdZWXVpk7Ut5qh12qQGae8N2atVoNJ0szU89IseHeQd9J9eUa6bGKUGKSX1rU5LT1xMN0WK/59+wm8+vV5dPWMPUtEyVavXo2CggLs3LkTO3fuREFBAdasWePQcz/66CMcOnQI8fHxLj5L8ik6HbB0KaY9tAq51yUAAH5WGYrv4qfgpSX34d2Zy6ERrPjPz3+PgJ5+wYGDO8g+y64swGhuR1inOBGlYlyMrZ4fmzc73DTvcKmY6n59Sji0KhgZZs/ZzeNsTeNUUo8OwDY1xpk16dxJJyIaKbuusgnNdYhtqUePTo/v7OsFR9hVVianuqfFhCLAT4EdeQGkRYtB+oW6Vrf8vubObpikFDSlNI7TaoCWrh7UuXgMW1VjB/5+tBKv7r4APy2X0sGcPXsWO3fuxNatW7FgwQIsWLAAW7ZswT/+8Q8UFRUN+dyqqiqsW7cO27Ztg5+f744HJNf65cqpmBAehIoOAblrfos/LPghAODZ/Dex6NKJ3gNHuIPs0+zKApKaagAAFcYYcYd9+/YR1eTLQfo8FaW6y+S69PrWsQfprV09trV9epIad9KdE6TXtXShoc0MjQZIj2GQTkTkGLuushoACy4VAgC+SZ4hfn8UXWVltlquBOXtossmy0H6FfcE6ZekmeyRIf4IltL6fJlBr7Ol7V+sc23Ku9zgb0J4kOp2l0bi22+/hdFoxLx5vWOy5s+fD6PRiAND1AZbrVasWbMGzzzzDKZNm+bQ7+rq6kJzc3OfL1K+8GB/vP/IfNw6NQYBWgGpV6vwyqf/F48ctsvaGsUOss+TygImzBDLAMp/+Z9AaemIAnSLVbA1jVNTPbrMmbPST1aaIAhAvDEA0aEBY/55vkKuSXdW47izUnf8lIhgBPor+79lBulE5Dz9av0WSrsY+1NmDnmcI46WiY1r5BnsSjRZqvc7X+ueIL1UCjRTFTT3Vi4ZuOjibIRyqTmdXAdPA6upqUF0dPQ1j0dHR6OmpmbQ5/3mN7+BXq/Hz3/+c4d/16ZNm2x170ajEUlJSaM6Z/I9ccZAbLlvDs7910rsXh6JO5sv9D1gFDvIiqDTIWlKMgCgIiJhxDcoztU0o6WzByEGPaYqsMxsOL3p7mPPzJI3GmaoZD66bFygeA3bzRanlIbJQboaXo8M0onIefrV+t0gBeknYyfDZAge9LjhdPVYUFDRBACYk6Lcu/lpMdJOem0rrFbX1lQDYu02IN6RVgq5S36Ji3fSL0lj3uSO8mqzceNGaDSaIb+OHj0KAAN2MRYEYdDuxseOHcMrr7yCN998c0QdkJ977jmYTCbbV0VFxej+ceTb7BrL4Z13xP8d4Q6yksiTO8pHMfVCTnWfnTweep36QobwYLHZnjNmpZ9QYT06AIQG6KGTss0a28ae8i4H6fKYXyXz/fxGIvIeclfZqipAEBDfUo+JDZUoiUjEoaQs5Fw8LH5/hDWBp6qa0dVjRXiwPyZFKSeg7C85PAh+Og06ui2oaupwecd1OWU7RUk76dHu2UlXe5C+bt063HPPPUMek5KSgsLCQly5cuWa79XV1SEmJmbA5+3btw+1tbWYMGGC7TGLxYKnn34amzdvRllZ2YDPMxgMMBgMjv8jSLmkxnLUO7mjsnHkQfrBEnGknRpT3QGxFAxwTk36Camz+wwVdXYHxKa44cH+Ui15F2KNY0v1Pys1jVNiA+H+GKQTkfPIXWXvvlusARQELLx0AiURifgmZaYYpI+iJvCoVBM3J3m8omeL6nVapEYGo/hKKy7Utbo8SC+tF4P0iQoK0m076fWuDdJLpZ+vpFKBkYiMjERk5ACzl/tZsGABTCYTDh8+jLlz5wIADh06BJPJhIULFw74nDVr1uCWW27p89htt92GNWvW4MEHHxz7yROpiLyOlF9tHzKDpT+LVcCBi2KQfsPk4f9bV6KoUPGmX21z55h+Tn1rF6qaOqDRAFkqC9IBIDLEgLqWrjHf7OjstthuwKshSFdf7goRuZZdV1kAWHSpAACwJ30ehP8ZXU3gkbLeETBKlybVpbujeZySd9IrGzvQ2e2a0Wg9FqstdVStQbqjMjMzsXz5cqxduxYHDx7EwYMHsXbtWqxcuRJTpvTOtc7IyMCHH34IAIiIiEBWVlafLz8/P8TGxvZ5DhENL2FcIDQasSZ4JEHSySoTWjp7EBqgR3aC+gJLAIgJE3d9xzotRK5HnxgZjLAA9U2qkDMSGlrHdh0v1LaixyrAGOiHuDHuyPsCBulE5Hx2NYGLfvUz+GuAstBoXFh064h/VI/FikPynFYVpNzJHd7P17p2Vnpjm9k2EkVJNekRwf4wBvpBEHozBZytsrED3RYBAX5axBt9f3Sdq23btg3Z2dnIyclBTk4Opk+fjr/97W99jikqKoLJZPLQGRIpV4CfzjZicyRlQN9cqAcALJwUYaspVptoaSf9yhh30m2p7iprGieTu+TXjzFIP2NXj67krEoZ092JyDWkmsAQAAvfOIz8ojp8ceYK0kY417KgogktnT0YF+Snirv5cvO4YhfvpMud3WPDAhQ1xkSj0WBiVDCOlzehpK7NJSlxcvCfEhHM8WsOCA8Px9tvvz3kMYIwdKPEwerQiWh4adGhqLjagQu1rZg/McKh5+w/Lwbpi1Sa6g4A0dJOepvZgraunlGPKpWbxs1QWdM4WWSI1IBvjOnuvU3jlJ/qDnAnnYjcIGdqLADgizPXNpAazp7iOgDA4rQoVdzNnyLdxCi+0uLSDu9l9cobvyZz9Rg2+edOVHATQyJSDjlD64KD4z07zBYcuySOPVVrPToAhBj0CJZuYteOMuVdEAQUVqp8J10K0uvGuJOupvFrAIN0InKDWzLFOcknKppGnDYmB+k3pkc5/by8UWpkMAx6LdrNFlwaxcgcR8lBupLq0WXyB9LiK64pGehtuBfikp9PRORMk6NGFqQfKbsKs8WKOGOAIm/kjoRclz6qlHeLBZX/3I2rbWb4aYDMaHVey96a9NHvpAuCoKrO7gCDdCJyg+iwAMyaMA4A8OmJyw4/70pzJ05WiXegl6Sp426+XqfFlFhxN12+a+wKJbaddOWNEJOvX1GNa4J0eQa72j+8EpFvmBwzsiB933nx5vjCSZGqqP0diq3D+0h30vPygJQUnHh6AwAg4/J5GCZPFB9XGTndfSw16dWmTpg6uqHXamxlgUrHIJ2I3CJ3ViIAYPuxymHrT2WfFVZDEIDZyeNttWFqIKdynbnsuiBd/rCmxN3gDClIL6lvQ1ePEzu8WyxAfj5KK8QPsBMj2DSOiLyfnF1U09yJ5s7uYY//6lwtAGBZhjoy2IYif/YY0Ri2vDxxFG1lJQpj0wAAM6qLgaoq8XGVBerOqEmXNy0mRYXAoFdOH52hMEgnIre4Y3o8/PVanKtpwWkHg89/FIq77iunx7ny1LzO1HgpSHfRTnqPxWrbSU8fYSM/XxAbFgBjoB8sVsHhnaNhSbsibTkrUNMtLp0Tb16oug9bROR7wgL8kDBOvKl4umrodaW0vg0ldW3QazVYopIys6HEjHQn3WIBnngCkDYjTsSlAwCm15y3PYb168XjVCJCTndv63J4k6a/s3ad3dWCQToRuYUxyA+3To0BALx/pGLY4yuutuO78iZoNMC/ZKsrSJfrrVyV7l5+tR3mHisC7UbzKIlGo3FuyrvdrkhpeAIAIKKtCcbS86rcFSEi3zM9UZyOIs/sHszX0i763NRwVc707i86bIRj2PbtAyorAQA9Gi1Oxk4GAMysLha/LwhARYV4nErIQXq3RUBzR8+ofsYZlXV2BxikE5Eb3Tt3AgDgf45VoLFt6LSndw6XAwBumBSpqlR3oDddu9rUOex1Gg15vNvk6BDFjhDLcFaQ3m9XpCgyGQCQVl+u2l0RIvI906XxX3Kn8cF8dVacwnJzZoyrT8knjLhxXHW17Y/nolLQ7h+I0K42TK6vGPQ4pTPodQgNEMfXjbbDu9qaxgEM0onIjRZMisC0+DB0dlvx128vDXpcZ7cF70lB+n0Lkt11el4jNMAPyeFiQ7ez2z4C8vOdGgSel7qeK7n5iq353liDdLtdEQAojhJfj1PqpdevCndFiMj3zJB20k8MsZPe2GbG4dKrAICbM6LdcVpeTw7Sa0wOBulxvZl/xxMyAAAzLxdBC2HQ49Sgty595EF6u7kHZQ1iiR6DdCIiF9BoNHh4yUQAwNZ9JX3frKWmXHj3XWzb9jUa27uRMC5QnXfz8/KQWbAfAHBm67vAsmVASorT0qqLpTptJdajyzJixYW8qGaMJQP9djvOSUF6et2lIY8jIvIm0xLEIL2ysWPQLtv/PFWDHquAqXFhihzPORpyLf/lpk5YrQ7UUy9eDCQmAhoNvosXg/TrLp/r/b5GAyQlicepiDyGrX4UzePO1bRAEMRO+3K3fTVgkE5EbrVyejymxYehpasHL+0sEh+UmnJh2TI0PvQIfv+d2D37Z+OaoVNoOvagpPrnqZfOAABOxoj1bM7sCivvpKerYCf9SnPX2EoG+u12FEvp7hn1ZUMeR0TkTYyBfrYyoG8vNgx4zMcFVQCA782Md9t5ebtYYwC0GsBssTo2QkynA155BUDvTvqsKilIl8fZbd4sHqci8k56bcvI582fVWE9OsAgnYjcTKfVYMMd0wAA7x+twCdbPrI15RIAPH/b47gaZMTk+nLc/bjKmnLZ1T/PkJrMFMaJ41ucVf/cY7Ha5nynRSt3Jz3EoMeEcHEH5MxYSgbsdkVMhmBUh4ndjtPqxHIMte6KEJHvWZwWCaB3Drq9qqYOHC4TU93vmMEgXean0yLOKK4llU0djj0pNxcN725H2XjxOl53WdqQSEwEtm8HcnNdcapeLdYolQ2MZJSd5FSV2EdhWjyDdCIil5qbGo7Hlk4CADxdrMFfZ96OCxGJeOb2J7AjYxF0Vgt++9n/g16wqqspl139sxykl4YnoClA2vF2Qv1zWUM7zBaxs7ucxqdIeXnIPi5ep8LX/z76kgG7XZHiqBQAQHxzLcLM7areFSEi37M4TbzJuLe4/ppRWNsOXoIgAAsmRih7bRgF+XpUNjoYpAM4nn0DAGBysAbGN7YAu3cDpaWqDNABIM44wtp+OyelID1bKtlQCwbpROQRT92ajpWxOnTr9Pg/OT/FLT95Dduzb4VGsOLFf/4OM+SZompqymVX1zyusxWpV8XUQ3nO6kDHjZQ8xiQjLlSxnd3lkoHpJYUAgEL5+o22ZCA3F9i+HUVp0wEA6fIuuop3RYjI98xNDUewvw41zZ04eqnR9nhntwXvSaNR71+ovmatw0kYJwaYVfnfOpyV9V25eH1nZSYAP/oRsHSpqm/mxkrZCNUjDNK7eiy2KS0M0omI3ECv0+KV6EZs+PJPSLl6Gf49ZsyuPINt7/0SPzj1Vd+D1dKUq19d80wpRa6gf5A+hvrn09Id6ax4hS52diUD2TXnAQCF0pzaMZUM5Oai6GfPAQCmzM9W/a4IEfmeAD8dVmSL68ffj/SOBPvrt2W42mZGwrhA3KLGZq1DyctDwttbAQBVn33lcFaWHKRfN2G8q8/QJ4x2J724phXdFgHGQD8kjldXhgeDdCLyGF18HB489inytzyM4t/m4oNt/46F5YXXHqiWplx29c9Ab8q7bSfdCfXPpy4rvLbLrmQgu+YCAKDKGIOGQOnfO4bsjNNy85qb5ql+V4SIfNOP5iYBAD48XoWSulZUNrbj1a/F98r1t6RBr2NoYCNlZSVUXgQAVBmlsXTDZGX1WKy2efSzGKQDAGLtRtn1L7UYivyZJTvBCI1Godl/g+B/iUTkOf2C0muorSmXXf0zNBrMlIL0gvgpEJxQ/ywIAk5fFgPNLKWmjdllXYSaOzCxQdwtOinvpg9wnCN6LFZbqUB2okKvHREp3uzkcCydEoUeq4AH3jiC1VsOobmzBzMSjcidlejp0/MedllZiaYrAIAKo5RlMExW1unLzWg3WxAaoEdatHKnqIyEPG/ebLHi6ggmrsj16Ir9zDIEBulE5Dn9gtI+1NqUS6p/RkICMmtL4N/TjatBRlRMmTnm+ueqpg40tXfDT6dBmlLHr/XLupgu7aYXjrFk4EJdKzq7rQgx6JEawfnBROS7/uP7WYgONaD8ajvKr7YjzhiAV1fPUt/I06HYZWWlXL0MACgfF4cejRQ6DZGVdahUHHE3NyVcub1fRshfr7WNYRtJXfopW5Cu0Oy/ITBIJyLPsgtK+1BzU67cXKCsDIYvdyErTFzgD//1ozFfi1NV4k5wWnQoDHqF3vjol50xvVquS5dG2Y0yO0NOXZwWH8YPXUTk0xLHB2HHE4vxi5x0/O/bM/DZzxcjKTzI06flXeyyrRKa62Do7oJZ74dKY8ygx8kOlYij7OZPjHDpKfqakdalm3usOFetzqZxAIN0IvIGUlCK3buBd95hUy5AzB5YuhTz5k4BABwqaxzmCcNTxazRftkZcl3/dwkZYyoZOCkF6dOZ6k5EChAZYsC6m9Lw8JJJCA/29/TpeB+7bCstBKQ2irvpJeEJgx4HABarYJs3P29iuGvP0cfIs9KrHZyVXnylBWaLFWEBekxQ4U0kBulE5B2koJSjSvqalyou8gel9LmxOCaN3JmVrPBGNnbZGdk1FxDQ3YmrQUZcnDpn1NkZtjmtieOcfLJEROR1+mVlTZRGopZESHX7g2Rlna1uRktnD0IMekyNU/AN8VGQd9KrmxybN3/Krh5dbU3jAAbpRERebU5KOHRaDSqudqDKwYVtID0WKwoqmgAAs5UepAO27Az/r3bhuvF6AMChLe+PKkDv6rH0No1TYcodEZHq9MvKmnRVrE+/GJ4wZM+cgyXiDfXrU8azU34/8ePEEWqOfpaRP7NMV+nNcY+/ev7whz8gNTUVAQEBmD17NvY5OBbnm2++gV6vx8yZM117gkREHhRi0Nu6mh4qGf1u+rmaFnR0WxAWoMfkKIU2jetPys6YOy8TAHDkUtOofszJShPMPVZEBPsjJUJ9KXdERKpkl5U1sUEO0hOH7JkjB+nzWI9+DXn9LGtod+h4edb8rAnjXHVKXs2jQfr777+P9evX4/nnn8fx48exePFirFixAuXl5UM+z2Qy4b777sPNN9/spjMlIvKc+VLKu9yMZjTsU93V1vhsrnz9Sq+OaD6rTK4vnJMyXpUpd0REqiVlZU3+r18CAIomZUMoKRkwQO/qseDARTFIXzQ50q2n6QuSpcko5Q1twx5r6ujG+dpWACoo0RuER4P0l19+GT/+8Y/xk5/8BJmZmdi8eTOSkpLwxz/+ccjnPfLII1i9ejUWLFjgpjMlIvIcuUPs/gv1owoyAeCoFKTPnqC+xe66CeOg12pQbepEZePISwaOlIpB+vUpbAJERKQ6Oh3S/2Up/HQamLqByuaB53wfKW1Eu9mCqFCDshu0jpLc/K2xvRum9u4hjy2oaIIgiM+RR7epjceCdLPZjGPHjiEnJ6fP4zk5OThw4MCgz3vjjTdw8eJFbNiwwaHf09XVhebm5j5fRES+ZN7EcPjrtahq6rDdWR4JQRBwWGo8p4p69H6C/PW2ruz7L9SP6LlWq2C7wSHvyBMRkboY9DpMiQ0F0NvQrL/8oloAwNL0KGZdDSDYoEdUqBhwX7o69G76d5fUneoOeDBIr6+vh8ViQUxM33mDMTExqKmpGfA558+fx7PPPott27ZBr9c79Hs2bdoEo9Fo+0pKShrzuRMRuVOQvx4LpN30r8/Vjvj5F2pbcaW5Cwa9VrVpY0unRAPo/RDlqDNSp94gfx079RIRqZjcOPTkIEH6bjlIl9YbulaKtJte9skuID8fsFgGPM5Wj67SzyyAFzSO63+nSRCEAe8+WSwWrF69Gr/+9a+Rnp7u8M9/7rnnYDKZbF8VFRVjPmciIne7KUNc9EcUpFssQH4+9r7/BQBgbsp4BPipc7TdMulD0/7z9TD3WB1+3p7iOgDAwkkR7NRLRKRi2QnjAPR2Hbd3obYFF+vaoNdqsCiN9egDysvDhK93AADK394OLFsGpKQAeXl9DrNaBds1nqXCEj2Zxz5xREZGQqfTXbNrXltbe83uOgC0tLTg6NGjWLduHfR6PfR6PV544QWcOHECer0eX3/99YC/x2AwICwsrM8XEZGvkYP0Y5cah63lAiAueikpwLJl2L/vJABg0d//fM1iqBbT4sMQGeKPNrMFRy853oBvT5EYpN/InREiIlWbN1EseTp6qREd5r47wJ+cqAYALEmPgjHQz+3n5vXy8oC770Zq1XkAUpd8AKiqAu6+u89nk3M1LbYMtgypxECNPBak+/v7Y/bs2di1a1efx3ft2oWFCxdec3xYWBhOnjyJgoIC29ejjz6KKVOmoKCgAPPmzXPXqRMRuV1SeBDSY0JgsQr46tyVoQ+WFkNUVqJT74+DSdkAgEWFe65ZDNVCq9XgxnQx0P7qrGPZCKaObhyTUu5uTIty2bkREZH3mxgZjHhjAMw9VtvUD0DMAv70xGUAwB0z4jx1et7LYgGeeAIQBKTXXQIAnItKEb8nN8Ndv96W+n7gotg7Zm5quKoz2Dz6L3/qqaewdetWvP766zh79iyefPJJlJeX49FHHwUgpqrfd9994olqtcjKyurzFR0djYCAAGRlZSE4ONiT/xQiIpe7PVtc/D8uuDz4QXaLIQDsTbkOHf4BiGuuQ+aVUvEYu8VQTXKmiVlaO05Ww2odvkv+3uI6WKwCJkYGYwLnoxMRqZpGo8Fi6YbtbrvSswMXG1Ba34ZAPx1unRrrqdPzXvv2AZXinPnMWvFzyIXIJJi1Un8xQQAqKsTjANsYu4WT1D1r3qNB+qpVq7B582a88MILmDlzJvbu3YsdO3YgOTkZAFBdXT3szHQiIrW4c2YCALFDeX1r18AH2S2GALBzyg0AgOXFB6CFcM1iqCZLp0QhNECPalMnjpQNn/L+j0LxZshtWfzQRUREvTd7PzlxGV094s3urftKAAA/mJOIEINjja1Vpbra9sfE5lqEdrWhW+eHkvCEa47rtlhxqEQO0tVd2+/xHILHHnsMZWVl6OrqwrFjx7BkyRLb9958803k5+cP+tyNGzeioKDA9SdJROQFUiODMSPRCItVwD9ODLKbbrcYmrV67Jo8FwBw+7lvBj1OLQx6HZZPEwPujwe7fpLmzm7slurR75ge7/JzIyIi73djehRiwgy42mZG3ndV2Ftch91FddBqgAdvSPX06XmnuN4SAA2AjNoyAMDZ6NRrjiusbEKb2YJxQX6qn6ji8SCdiIgc9/3rxDvP7xwuhyAMkLJ9/rztj1+mzUNLQAiiWxowu+ps3+Pi1Fk3J1+/Twouo6Vz8AZ8OwqrYe6xYlJUMDLj1Nu4hoiIeul1WqxdPBEAsOGT03j07WMAgPsWpCA1kqW3A1q8GEhMBKTpXdOuXAQAnIiTpnVpNEBSErB4MXadEcsIFqdFQatV96x5BulERD7kX2cnIthfh+IrrfjmQkPfb1oswJYttr++M3M5AOCHJ3eJqe6yxERx0VShhZMiMDk6BK1dPfj70coBjxEEAW8eKAMA/HBO0oBjQclxjY2NWLNmDYxGI4xGI9asWYOmpqZhn3f27Fl873vfg9FoRGhoKObPn88SOCLyuPsXpmBxWiTMPVa0my2YnTwe/758iqdPy3vpdMArr4h/1mgwp+oMAODghGxb4I7NmwGdDl+cEad+5Uy9dtKX2jBIJyLyIWEBfrh7tji65M9SHZyNXT36hYhE7E+5DhrBintOfN73uLVrxUVThTQaDR68IQUA8MY3pbaaQnvfXmzAuZoWBPrpcM/1E9x8hsqzevVqFBQUYOfOndi5cycKCgqwZs2aIZ9z8eJFLFq0CBkZGcjPz8eJEyfwq1/9CgEBAW46ayKigfnptHj9gevxx3tn4ferZ+HdtfMR5M9a9CHl5gLbtwMJCZhXfgoAUBSVjKaJ6eLjubm4UNuCkro2+Ok0WDqFE1X4iiIi8jEPLUrFtkPl2FtchwMX68XmKhYL8NVXtmN+t/AeAMCt5w8hsbmu7w9IS3Pn6Xqd3OsS8cqX51HZ2IG3DpTh4SWTbN+zWgX8Zuc5AGITIGMQ592OxdmzZ7Fz504cPHjQNip1y5YtWLBgAYqKijBlysC7T88//zxuv/12vPTSS7bHJk6c6JZzJiIajp9OixXZ6iwbG7XcXODOOxG1bx8m7W7GxS4dvv3gK6yYIZahbT9WBUBMdQ8N4NrLnXQiIh+THBGM1fPEHd4XPj2Dzu15QEoK8B//AQA4lpCBTzPFJpxPfPPOtT9ApfXoskB/HZ65TQwON395HsVXWmzfe/NAGU5UmhDsr8PPblL3zQxn+Pbbb2E0Gm0BOgDMnz8fRqMRBw4cGPA5VqsVn332GdLT03HbbbchOjoa8+bNw0cffeSmsyYiIpfQ6YClS7Hs+skAgH+cugIAMPdYsf1YBQCxzIwYpBMR+aQnbk5DRLA/ztW04Ndbd0OQ0tybAkLwi9ufhKDR4l9Pfolp0kxSAH2as6jdv85KxA2TI9ButuC+vxzGzlM1+PPei/iPz8Rauf+1IgNRoQYPn6Xvq6mpQXR09DWPR0dHo6amZsDn1NbWorW1FS+++CKWL1+OL774AnfddRdyc3OxZ8+eQX9XV1cXmpub+3wREZH3kZu47jp7BfWtXXjvSDnqW82IDjXg5sxr1ww1YpBOROSDIkIM+O/cLADAuzOX47HvP4dtM5bjB/f+BqXhCYhrrsOvvt7a+4R+zVnUTqvV4Hf3XIfJ0SGoae7Eo28fw3/tOAerAKyak4Q185M9fYpebePGjdBoNEN+HT16FAAGbLwnCMKgDfmsVisA4M4778STTz6JmTNn4tlnn8XKlSvx2muvDXpOmzZtsjWnMxqNSEribgwRkTeaFh+GGYlGmHuseOzt7/DfnxcBAH52cxr8dAxPAdakExH5rJvqivDiP3+H/33b4/jnlBvwzyk3AACiWxrw5v9sxLjO1t6DExPFAD031zMn64UiQgz44KcLsfnLYuw+V4sAPx3+bX4yVs+dwI7uw1i3bh3uueeeIY9JSUlBYWEhrly5cs336urqEBMzcPfeyMhI6PV6TJ06tc/jmZmZ2L9//6C/77nnnsNTTz1l+3tzczMDdSIiL6TRaPCrlVNxz58P4nDZVQDAnOTxuOd6vmfLGKQTEfmq6mrcU/gFsq5cxFuzVqImNALZNRfw0NGPEdlu6j3ul78ENm7kDvoAjIF+2HDHNGy4Y5qnT8WnREZGIjIyctjjFixYAJPJhMOHD2Pu3LkAgEOHDsFkMmHhwoUDPsff3x/XX389ioqK+jxeXFyM5OTBMxwMBgMMBpYoEBH5gjkp4Xj9gevx5oEyTAgPwpO3pHMX3Q6DdCIiXyU1gMu6chH//c9XBj/u5psZoJNHZGZmYvny5Vi7di3+9Kc/AQAefvhhrFy5sk9n94yMDGzatAl33XUXAOCZZ57BqlWrsGTJEixbtgw7d+7Ep59+ivz8fE/8M4iIyAWWpEdhSTrHrQ2EtyuIiHzV4sViGvtgqdlsFEdeYNu2bcjOzkZOTg5ycnIwffp0/O1vf+tzTFFREUym3uyPu+66C6+99hpeeuklZGdnY+vWrfjggw+waNEid58+ERGR22kEQRA8fRLu1NzcDKPRCJPJhLCwME+fDhHR2OTlAXffLf7Z/u1cDty3b2cdug/g2uR8vKZERORNRrIucSediMiX5eaKgXhCQt/HExMZoBMRERH5INakExH5utxc4M47gX37gOpqsVZ98WLWoRMRERH5IAbpRERKoNMBS5d6+iyIiIiIaIyY7k5ERERERETkJRikExEREREREXkJBulEREREREREXoJBOhEREREREZGXYJBORERERERE5CUYpBMRERERERF5CdWNYBMEAQDQ3Nzs4TMhIiISyWuSvEbR2HG9JyIibzKStV51QXpLSwsAICkpycNnQkRE1FdLSwuMRqOnT0MRuN4TEZE3cmSt1wgqu21vtVpx+fJlhIaGQqPRjPnnNTc3IykpCRUVFQgLC3PCGSoPr9HweI0cw+s0PF4jx3jbdRIEAS0tLYiPj4dWy0o0Z3Dmeu9trxdvxGvkGF6n4fEaDY/XyDHedp1Gstarbiddq9UiMTHR6T83LCzMK/7P92a8RsPjNXIMr9PweI0c403XiTvozuWK9d6bXi/eitfIMbxOw+M1Gh6vkWO86To5utbzdj0RERERERGRl2CQTkREREREROQlGKSPkcFgwIYNG2AwGDx9Kl6L12h4vEaO4XUaHq+RY3idaCT4ehker5FjeJ2Gx2s0PF4jx/jydVJd4zgiIiIiIiIib8WddCIiIiIiIiIvwSCdiIiIiIiIyEswSCciIiIiIiLyEgzSx+APf/gDUlNTERAQgNmzZ2Pfvn2ePiWvsnHjRmg0mj5fsbGxnj4tj9q7dy/uuOMOxMfHQ6PR4KOPPurzfUEQsHHjRsTHxyMwMBBLly7F6dOnPXOyHjLcNXrggQeueV3Nnz/fMyfrIZs2bcL111+P0NBQREdH4/vf/z6Kior6HMPXkmPXia8nGg7X+qFxrb8W13rHcL0fHtf74Sl1rWeQPkrvv/8+1q9fj+effx7Hjx/H4sWLsWLFCpSXl3v61LzKtGnTUF1dbfs6efKkp0/Jo9ra2jBjxgy8+uqrA37/pZdewssvv4xXX30VR44cQWxsLG699Va0tLS4+Uw9Z7hrBADLly/v87rasWOHG8/Q8/bs2YPHH38cBw8exK5du9DT04OcnBy0tbXZjuFrybHrBPD1RIPjWu8YrvV9ca13DNf74XG9H55i13qBRmXu3LnCo48+2uexjIwM4dlnn/XQGXmfDRs2CDNmzPD0aXgtAMKHH35o+7vVahViY2OFF1980fZYZ2enYDQahddee80DZ+h5/a+RIAjC/fffL9x5550eOR9vVVtbKwAQ9uzZIwgCX0uD6X+dBIGvJxoa1/rhca0fGtd6x3C9dwzX++EpZa3nTvoomM1mHDt2DDk5OX0ez8nJwYEDBzx0Vt7p/PnziI+PR2pqKu655x6UlJR4+pS8VmlpKWpqavq8rgwGA2688Ua+rvrJz89HdHQ00tPTsXbtWtTW1nr6lDzKZDIBAMLDwwHwtTSY/tdJxtcTDYRrveO41juO788jw/fnvrjeD08paz2D9FGor6+HxWJBTExMn8djYmJQU1PjobPyPvPmzcNf//pXfP7559iyZQtqamqwcOFCNDQ0ePrUvJL82uHramgrVqzAtm3b8PXXX+O3v/0tjhw5gptuugldXV2ePjWPEAQBTz31FBYtWoSsrCwAfC0NZKDrBPD1RIPjWu8YrvUjw/dnx/H9uS+u98NT0lqv9/QJ+DKNRtPn74IgXPOYmq1YscL25+zsbCxYsACTJk3CW2+9haeeesqDZ+bd+Loa2qpVq2x/zsrKwpw5c5CcnIzPPvsMubm5Hjwzz1i3bh0KCwuxf//+a77H11Kvwa4TX080HP53NDSu9aPD19Xw+P7cF9f74SlpredO+ihERkZCp9Ndc4eqtrb2mjtZ1Cs4OBjZ2dk4f/68p0/FK8ndcPm6Gpm4uDgkJyer8nX1s5/9DJ988gl2796NxMRE2+N8LfU12HUaiJpfT9QX1/rR4Vo/NL4/j56a35+53g9PaWs9g/RR8Pf3x+zZs7Fr164+j+/atQsLFy700Fl5v66uLpw9exZxcXGePhWvlJqaitjY2D6vK7PZjD179vB1NYSGhgZUVFSo6nUlCALWrVuHvLw8fP3110hNTe3zfb6WRMNdp4Go8fVEA+NaPzpc64fG9+fRU+P7M9f74Sl2rfdEtzoleO+99wQ/Pz/hL3/5i3DmzBlh/fr1QnBwsFBWVubpU/MaTz/9tJCfny+UlJQIBw8eFFauXCmEhoaq+hq1tLQIx48fF44fPy4AEF5++WXh+PHjwqVLlwRBEIQXX3xRMBqNQl5ennDy5EnhRz/6kRAXFyc0Nzd7+MzdZ6hr1NLSIjz99NPCgQMHhNLSUmH37t3CggULhISEBFVdo5/+9KeC0WgU8vPzherqattXe3u77Ri+loa/Tnw90XC41g+Pa/21uNY7huv98LjeD0+paz2D9DH4/e9/LyQnJwv+/v7CrFmz+rT6J0FYtWqVEBcXJ/j5+Qnx8fFCbm6ucPr0aU+flkft3r1bAHDN1/333y8IgjhKY8OGDUJsbKxgMBiEJUuWCCdPnvTsSbvZUNeovb1dyMnJEaKiogQ/Pz9hwoQJwv333y+Ul5d7+rTdaqDrA0B44403bMfwtTT8deLriRzBtX5oXOuvxbXeMVzvh8f1fnhKXes1giAIzt+fJyIiIiIiIqKRYk06ERERERERkZdgkE5ERERERETkJRikExEREREREXkJBulEREREREREXoJBOhEREREREZGXYJBORERERERE5CUYpBMRERERERF5CQbpRERERERERF6CQToRERERERGRl2CQTkSjsnTpUqxfv97Tp0FEREQuxPWeyP0YpBMRERERERF5CY0gCIKnT4KIfMsDDzyAt956q89jpaWlSElJ8cwJERERkdNxvSfyDAbpRDRiJpMJK1asQFZWFl544QUAQFRUFHQ6nYfPjIiIiJyF6z2RZ+g9fQJE5HuMRiP8/f0RFBSE2NhYT58OERERuQDXeyLPYE06ERERERERkZdgkE5ERERERETkJRikE9Go+Pv7w2KxePo0iIiIyIW43hO5H4N0IhqVlJQUHDp0CGVlZaivr4fVavX0KREREZGTcb0ncj8G6UQ0Kr/4xS+g0+kwdepUREVFoby83NOnRERERE7G9Z7I/TiCjYiIiIiIiMhLcCediIiIiIiIyEswSCciIiIiIiLyEgzSiYiIiIiIiLwEg3QiIiIiIiIiL8EgnYiIiIiIiMhLMEgnIiIiIiIi8hIM0omIiIiIiIi8BIN0IiIiIiIiIi/BIJ2IiIiIiIjISzBIJyIiIiIiIvISDNKJiIiIiIiIvASDdCIiIiIiIiIv8f8Bgr4gzY1daxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.scatter(t_tensor_train.numpy().flatten(),x_tensor_train.numpy().flatten(),c='r')\n", + "plt.plot(t_tensor.numpy().flatten(),x_tensor.numpy().flatten())\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(122)\n", + "plt.scatter(t_tensor_train.numpy().flatten(),vx_tensor_train.numpy().flatten(),c='r')\n", + "plt.plot(t_tensor.numpy().flatten(),vx_tensor.numpy().flatten())\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "35701405", + "metadata": {}, + "outputs": [], + "source": [ + "T = tp.spaces.R1('t') # input space (t)\n", + "State = tp.spaces.R2('state') # output space (x,vx)\n", + "X = tp.spaces.R1('x')\n", + "X2 = tp.spaces.R1('x2')\n", + "X3 = tp.spaces.R1('x3')\n", + "Vx = tp.spaces.R1('vx')\n", + "N_hid = tp.spaces.R1('N_hid')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "41176a8c", + "metadata": {}, + "outputs": [], + "source": [ + "I = tp.domains.Interval(space=T, lower_bound=t_sol.min(), upper_bound=t_sol.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2c7d8636", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApuUlEQVR4nO3df3RU9Z3/8dckmZlkIBlIAvkhSQhIBcRaDQLJmkJ3ZQQqWqG7KDXVr0DlSy2FfDkekHoI2EJBls3Xg0hLYbWrVs75Uly/Z/OliVWpLeHHIqhFSv0RCEqGmBAzgZDJJHO/f7DJNiZAIrkM+fh8nMNp5+bem8995wpPJpPBYVmWJQAAAINERXoBAAAAvY3AAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxYiK9gEgIh8M6deqU4uPj5XA4Ir0cAADQDZZlqaGhQenp6YqKuvRzNF/JwDl16pQyMjIivQwAAPAlnDx5UkOGDLnkPl/JwImPj5d0YUAJCQm9dt5QKKTS0lL5fD45nc5eOy+YrV2Yq32YrT2Yqz36ylwDgYAyMjLa/xy/lK9k4LR9WyohIaHXA8fj8SghIeGavkH6ImZrD+ZqH2ZrD+Zqj7421+68vIQXGQMAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMc1UCZ9OmTcrOzlZsbKxycnL01ltvXXL/3bt3KycnR7GxsRo2bJg2b9580X1ffvllORwOfec73+nlVQMAgL7K9sDZvn27Fi1apOXLl+vQoUPKz8/X1KlTVVlZ2eX+FRUVmjZtmvLz83Xo0CE9/vjjWrhwoXbs2NFp3xMnTmjJkiXKz8+3+zIAAEAfYnvgbNiwQXPmzNHcuXM1atQoFRcXKyMjQ88++2yX+2/evFmZmZkqLi7WqFGjNHfuXD388MNav359h/1aW1v1ve99TytXrtSwYcPsvgwAANCHxNh58ubmZh08eFBLly7tsN3n82nPnj1dHlNeXi6fz9dh25133qmtW7cqFArJ6XRKklatWqVBgwZpzpw5l/2WVzAYVDAYbH8cCAQkSaFQSKFQqMfXdTFt5+rNc+ICZmsP5mofZmsP5mqPvjLXnqzP1sCpqalRa2urUlJSOmxPSUmR3+/v8hi/39/l/i0tLaqpqVFaWpr+9Kc/aevWrTp8+HC31rFmzRqtXLmy0/bS0lJ5PJ7uXUwPlJWV9fo5cQGztQdztQ+ztQdztce1PtfGxsZu72tr4LRxOBwdHluW1Wnb5fZv297Q0KAHHnhAW7ZsUXJycrc+/7Jly1RYWNj+OBAIKCMjQz6fTwkJCd29jMsKhUIqKyvT5MmT259pQu9gtvZgrvZhtvZgrvboK3Nt+w5Md9gaOMnJyYqOju70bE11dXWnZ2napKamdrl/TEyMkpKSdOTIER0/flzTp09v/3g4HJYkxcTE6NixYxo+fHiH491ut9xud6fP5XQ6bflC2nVeMFu7MFf7MFt7MFd7XOtz7cnabH2RscvlUk5OTqenvMrKypSXl9flMbm5uZ32Ly0t1dixY+V0OjVy5Ei99957Onz4cPuvu+++W9/61rd0+PBhZWRk2HY9AACgb7D9W1SFhYUqKCjQ2LFjlZubq1/+8peqrKzU/PnzJV349tGnn36qX//615Kk+fPna+PGjSosLNS8efNUXl6urVu36je/+Y0kKTY2VmPGjOnwOQYMGCBJnbYDAICvJtsDZ9asWaqtrdWqVatUVVWlMWPGqKSkRFlZWZKkqqqqDu+Jk52drZKSEi1evFjPPPOM0tPT9fTTT2vmzJl2LxUAABjiqrzIeMGCBVqwYEGXH3vuuec6bZs4caLefvvtbp+/q3MAAICvLv4tKgAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxrkrgbNq0SdnZ2YqNjVVOTo7eeuutS+6/e/du5eTkKDY2VsOGDdPmzZs7fHzLli3Kz8/XwIEDNXDgQN1xxx3av3+/nZcAAAD6ENsDZ/v27Vq0aJGWL1+uQ4cOKT8/X1OnTlVlZWWX+1dUVGjatGnKz8/XoUOH9Pjjj2vhwoXasWNH+z5vvvmm7r//fr3xxhsqLy9XZmamfD6fPv30U7svBwAA9AG2B86GDRs0Z84czZ07V6NGjVJxcbEyMjL07LPPdrn/5s2blZmZqeLiYo0aNUpz587Vww8/rPXr17fv8+KLL2rBggX6xje+oZEjR2rLli0Kh8P6/e9/b/flAACAPiDGzpM3Nzfr4MGDWrp0aYftPp9Pe/bs6fKY8vJy+Xy+DtvuvPNObd26VaFQSE6ns9MxjY2NCoVCSkxM7PKcwWBQwWCw/XEgEJAkhUIhhUKhHl3TpbSdqzfPiQuYrT2Yq32YrT2Yqz36ylx7sj5bA6empkatra1KSUnpsD0lJUV+v7/LY/x+f5f7t7S0qKamRmlpaZ2OWbp0qa677jrdcccdXZ5zzZo1WrlyZaftpaWl8ng83b2cbisrK+v1c+ICZmsP5mofZmsP5mqPa32ujY2N3d7X1sBp43A4Ojy2LKvTtsvt39V2SVq3bp1+85vf6M0331RsbGyX51u2bJkKCwvbHwcCAWVkZMjn8ykhIaHb13E5oVBIZWVlmjx5cpfPNOHLY7b2YK72Ybb2YK726CtzbfsOTHfYGjjJycmKjo7u9GxNdXV1p2dp2qSmpna5f0xMjJKSkjpsX79+vVavXq3XXntNX//61y+6DrfbLbfb3Wm70+m05Qtp13nBbO3CXO3DbO3BXO1xrc+1J2uz9UXGLpdLOTk5nZ7yKisrU15eXpfH5Obmdtq/tLRUY8eO7XBhTz31lJ588knt2rVLY8eO7f3FAwCAPsv2n6IqLCzUr371K23btk1Hjx7V4sWLVVlZqfnz50u68O2j73//++37z58/XydOnFBhYaGOHj2qbdu2aevWrVqyZEn7PuvWrdNPfvITbdu2TUOHDpXf75ff79fZs2ftvhwAANAH2P4anFmzZqm2tlarVq1SVVWVxowZo5KSEmVlZUmSqqqqOrwnTnZ2tkpKSrR48WI988wzSk9P19NPP62ZM2e277Np0yY1Nzfru9/9bofPtWLFChUVFdl9SQAA4Bp3VV5kvGDBAi1YsKDLjz333HOdtk2cOFFvv/32Rc93/PjxXloZAAAwEf8WFQAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjxER6ASZpbglLkr63pVwf1wbVLzZat2UN0JlzLfqkrlGWpCEDYnW+Jaz6xpDONDbLGRWlIQPiNCjBLYccqj3bpPOhsNzOKEU5HIpzxSipn1MnzzSqvqlVzaEWRTukplZLiR63MpM8mnnLEI3NTtQLe49rf0WdGptDSurnVkaiRxOGJSkctvTbt0/qqL9BkjQqzau7Rqfq5UMndcx/VtEOS2kD4hRqseR2RSm5n0tyREnhVtWcC6mpJaw4Z7Ruus6rpP4uJfd3K7mfW+/7Azpw/Iz89U1KSXArJSFWCbFO+QNNknXhnAPjXKpratYnZ86rouasLEtyxTiU6HHJ447R2WCLTgeCqvr8vKIcUnysU5NvTFViP5fe/7Ref/EHdC7YKivcoqU3Sfds/KO+npmogR6XwmFLB47X6nSgWc4Yh25K9yozuZ8mZCcpyuFQdUOTas4GdeZcSP7680qMd+rtj8/oo9pGNQZbZUnq74rWNzIHKD7OqarPm+SOcSi5f6yiohxKiXfrXHOLHI4oDU3yaPb4LP3n8TP67dufqKEpJDmklIQ4ZSZ61NIS1iuHP1XNuWYl93NqZk6G7h+Xpad+d1TvfFKvBHeMbh+RrPrGFr13ql5xrigNjHPqz1UB1ZxtVkp8rP7XHV/ThOuT9cLeE9pfUaPG5rAS+7kU5XBIsiRJgxLcOl7TqPPNrYpzRWtoskc1gWbJIaV74xQfF6O/VDXofKhFYzMTdUNqvMo/rtEfP6yVJKUmuDV5dIoCTa2qaWjSvo8+0//Ikr799B+UPrC/oh2SHA41hVqV2M+t6P+aQ0OwRZ81BOVxReuGlHj9tfqsGptbdNvQJN0/LlP/trdCO9/+VA1NLcpK9ig7qb8cDqk60KRQOKwTtY2SHEr3xuqRbw7XuGFJemnfCX382VmdbggqHLZ0OtCk5paw4mNj5PU45ZB0OhBUqDWs/m6nBvSL0eCEWEU7HOrvjtGRUwHFxkQpHA7rzPmQzjeHNTI1Qd+9dYjyRiQrOsqh5paw/q38uD787Kz+6m9QdJSlT+uaFGwJy5Klwf3dShsQJzkkh+VQU0tYyf3cSh8Qq8T+Lg30uPTOJ58rHLbk+K/PW1V/XmFLOnMuqDhXjHKyBsghhw6eqFNVfZNS4l1K8cZpgDtKN0j636/9VbdlD9Jfq8/qZF2jshI9KsgdqtawpdUl7+t4baOGeGMVdkjvnwooIdap/OuTldTfpXc/rVfYklpaw/rzp/WqPx/S4HiXxmYlyd8QVE1Dk5pawoqNdig5IVap/WP1n5UX/ptstSz1c0cr2GLJ44xScnysEj1OHT/TqLPnQwoEW+VxRinFG6d/zLlOjc1hDfS4VNfYrMR+Lg2Oj5X+62vY9t9RVf15yZLSB8Yqd1iyZEl7Pq7Ru5/UK9jSqusGeDTjlusUFeVQ+cc1OlXXpLAkKxxWzdmgKuvOq7XVUmK/GA1L6q+axqA+rD4nOaSMAbHKGZqko1UBnQu26FR9k8JhS6neWP144ggdrz+vj2vO6vDxzzR/uJS7+jUNGuDRhGGJOlFzXh/XnFNLOKxbh3j1j7dlKe/6C/dAa9jS/oozOvX5eR08cUbH/A2yLGmAx6koh+RxxcjtcujD0+dU3RBUMBSWxxUlZ7RDrphoNTa3KtHjlMflVFJ/lxwOKW1AnJL6ueWNi1HZ+6d1trlFTcEWhWWp9mxIca5oDYp36+YhAzRhaJKOVNVr56ELvz94nFHKSvLo60MGamA/l+rPhyRZ8sa5VHeuWe9++rlqGoLq747WiEHxOlHXqOO1jUqIjdGMW4fo4duHKTrKoT0f1Oj/vH1Sn9SdV+zf/P48IM6pg5V1eruyTqEWS1mJcWpqCet0Q1D9XNH6u+uT9c0RgzVheJIkaX/FGVU3NCkxNlqS9PRrf9XxuiZ9dLpBZxpb1BIOKyPRI9+NqRqdmqD9x8/o07rzCodbVdvYIo8rWuOyk/TAhP/+/fFssEWDE9y6NTNR6QPiNC47UdFRjqv0J/F/c1iWZdn9STZt2qSnnnpKVVVVuvHGG1VcXKz8/PyL7r97924VFhbqyJEjSk9P12OPPab58+d32GfHjh164okn9NFHH2n48OH62c9+pnvvvbdb6wkEAvJ6vaqvr1dCQsIVXVubNSXv6/k/fay141r12P5oBVuv/hfTZO5oS+uYba8zda4eV7T+7vok/f5otcK2/w7XNVNnG2ndnWs/V7QemJCpV9+pUlV901Vcof1iohxqucIb2+OKlismSp83hiTZe7+meWO1YvpoTRmTdsXn6smf37Z/i2r79u1atGiRli9frkOHDik/P19Tp05VZWVll/tXVFRo2rRpys/P16FDh/T4449r4cKF2rFjR/s+5eXlmjVrlgoKCvTOO++ooKBA//RP/6R9+/bZfTldWlPyvn7xhwpF6PdRAF/Q2NyqsvcjFzeIvHPNrfrFHyqMixtJVxw30oX/Rtrixm5V9U36ny+8rV1/rroqn6+N7YGzYcMGzZkzR3PnztWoUaNUXFysjIwMPfvss13uv3nzZmVmZqq4uFijRo3S3Llz9fDDD2v9+vXt+xQXF2vy5MlatmyZRo4cqWXLlukf/uEfVFxcbPfldNLcEtaWtyqu+ucFAKCvsCSt/L/vq/Uq/q3D1tfgNDc36+DBg1q6dGmH7T6fT3v27OnymPLycvl8vg7b7rzzTm3dulWhUEhOp1Pl5eVavHhxp30uFjjBYFDBYLD9cSAQkCSFQiGFQldWsC+UH5cz6sIXzP2F/0XvYbb2YK72Ybb2YK72uBpzPXP2vPZ+WK1x2Ylf+hw9+TPb1sCpqalRa2urUlJSOmxPSUmR3+/v8hi/39/l/i0tLaqpqVFaWtpF97nYOdesWaOVK1d22l5aWiqPx9OTS+okSdK6cR23PTk2fEXnxMUxW3swV/swW3swV3vYPdeao3tVcvTLH9/Y2Njtfa/KT1E5HB1fsGRZVqdtl9v/i9t7cs5ly5apsLCw/XEgEFBGRoZ8Pt8Vv8j438qPa+3vjkm6UL5Pjg3rif+MUjDMiwp7E7O1B3O1D7O1B3O1x9Wa67YHb7uiZ3DavgPTHbYGTnJysqKjozs9s1JdXd3pGZg2qampXe4fExOjpKSkS+5zsXO63W653e5O251Op5xOZ7evpysP5A3XT//fXzu8mDEYdvBTEzZhtvZgrvZhtvZgrvawc65p3lhNuH7wFf3IeE/+zLb1RcYul0s5OTkqKyvrsL2srEx5eXldHpObm9tp/9LSUo0dO7b9wi62z8XOaSdXTJTm5Wdf9c8LAEBf4ZC0Yvroq/p+OLb/FFVhYaF+9atfadu2bTp69KgWL16sysrK9ve1WbZsmb7//e+37z9//nydOHFChYWFOnr0qLZt26atW7dqyZIl7fv8+Mc/VmlpqdauXau//OUvWrt2rV577TUtWrTI7svp0rJpo/XIN7PF3yWAa4PHFa3JowcrAu8thmtEP3e0HvlmttK8sZFeSq+L6YUb2+OK1gDPlX0Ho7vSvLF69oFbe+V9cHrC9tfgzJo1S7W1tVq1apWqqqo0ZswYlZSUKCsrS5JUVVXV4T1xsrOzVVJSosWLF+uZZ55Renq6nn76ac2cObN9n7y8PL388sv6yU9+oieeeELDhw/X9u3bNX78eLsv56KWTRuthd8artdKd+nm6xJ4J2Mb3slYatXw5H68k3Evv5Ox9LmyEuN4J2Mb3slYLR9p3u3ZvJNxL7+TsXRW8a5oDevGOxk/NmUU72TczXcyPnNsn35wezbvZNyX2fFOxtKFH18rKSnRtGnTrvi1PeiI2dqDudqH2dqDudqjr8z1mnonYwAAgKuNwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYx9bAqaurU0FBgbxer7xerwoKCvT5559f8hjLslRUVKT09HTFxcVp0qRJOnLkSPvHz5w5ox/96Ee64YYb5PF4lJmZqYULF6q+vt7OSwEAAH2IrYEze/ZsHT58WLt27dKuXbt0+PBhFRQUXPKYdevWacOGDdq4caMOHDig1NRUTZ48WQ0NDZKkU6dO6dSpU1q/fr3ee+89Pffcc9q1a5fmzJlj56UAAIA+JMauEx89elS7du3S3r17NX78eEnSli1blJubq2PHjumGG27odIxlWSouLtby5cs1Y8YMSdLzzz+vlJQUvfTSS3rkkUc0ZswY7dixo/2Y4cOH62c/+5keeOABtbS0KCam8yUFg0EFg8H2x4FAQJIUCoUUCoV67ZrbztWb58QFzNYezNU+zNYezNUefWWuPVmfbYFTXl4ur9fbHjeSNGHCBHm9Xu3Zs6fLwKmoqJDf75fP52vf5na7NXHiRO3Zs0ePPPJIl5+rvr5eCQkJXcaNJK1Zs0YrV67stL20tFQej6enl3ZZZWVlvX5OXMBs7cFc7cNs7cFc7XGtz7WxsbHb+9oWOH6/X4MHD+60ffDgwfL7/Rc9RpJSUlI6bE9JSdGJEye6PKa2tlZPPvnkReNHkpYtW6bCwsL2x4FAQBkZGfL5fEpISLjstXRXKBRSWVmZJk+eLKfT2WvnBbO1C3O1D7O1B3O1R1+Za9t3YLqjx4FTVFTU5bMhf+vAgQOSJIfD0eljlmV1uf1vffHjFzsmEAjo29/+tkaPHq0VK1Zc9Hxut1tut7vTdqfTacsX0q7zgtnahbnah9nag7na41qfa0/W1uPAefTRR3Xfffddcp+hQ4fq3Xff1enTpzt97LPPPuv0DE2b1NRUSReeyUlLS2vfXl1d3emYhoYGTZkyRf3799fOnTuv6S8IAAC4unocOMnJyUpOTr7sfrm5uaqvr9f+/fs1btw4SdK+fftUX1+vvLy8Lo/Jzs5WamqqysrKdMstt0iSmpubtXv3bq1du7Z9v0AgoDvvvFNut1uvvvqqYmNje3oZAADAYLb9mPioUaM0ZcoUzZs3T3v37tXevXs1b9483XXXXR1eYDxy5Ejt3LlT0oVvTS1atEirV6/Wzp079ec//1kPPfSQPB6PZs+eLenCMzc+n0/nzp3T1q1bFQgE5Pf75ff71draatflAACAPsS2FxlL0osvvqiFCxe2/1TU3XffrY0bN3bY59ixYx3epO+xxx7T+fPntWDBAtXV1Wn8+PEqLS1VfHy8JOngwYPat2+fJOn666/vcK6KigoNHTrUxisCAAB9ga2Bk5iYqBdeeOGS+1iW1eGxw+FQUVGRioqKutx/0qRJnY4BAAD4W/xbVAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADj2Bo4dXV1KigokNfrldfrVUFBgT7//PNLHmNZloqKipSenq64uDhNmjRJR44cuei+U6dOlcPh0CuvvNL7FwAAAPokWwNn9uzZOnz4sHbt2qVdu3bp8OHDKigouOQx69at04YNG7Rx40YdOHBAqampmjx5shoaGjrtW1xcLIfDYdfyAQBAHxVj14mPHj2qXbt2ae/evRo/frwkacuWLcrNzdWxY8d0ww03dDrGsiwVFxdr+fLlmjFjhiTp+eefV0pKil566SU98sgj7fu+88472rBhgw4cOKC0tLRLriUYDCoYDLY/DgQCkqRQKKRQKHTF19qm7Vy9eU5cwGztwVztw2ztwVzt0Vfm2pP12RY45eXl8nq97XEjSRMmTJDX69WePXu6DJyKigr5/X75fL72bW63WxMnTtSePXvaA6exsVH333+/Nm7cqNTU1MuuZc2aNVq5cmWn7aWlpfJ4PF/m8i6prKys18+JC5itPZirfZitPZirPa71uTY2NnZ7X9sCx+/3a/DgwZ22Dx48WH6//6LHSFJKSkqH7SkpKTpx4kT748WLFysvL0/33HNPt9aybNkyFRYWtj8OBALKyMiQz+dTQkJCt87RHaFQSGVlZZo8ebKcTmevnRfM1i7M1T7M1h7M1R59Za5t34Hpjh4HTlFRUZfPhvytAwcOSFKXr4+xLOuyr5v54sf/9phXX31Vr7/+ug4dOtTtNbvdbrnd7k7bnU6nLV9Iu84LZmsX5mofZmsP5mqPa32uPVlbjwPn0Ucf1X333XfJfYYOHap3331Xp0+f7vSxzz77rNMzNG3avt3k9/s7vK6murq6/ZjXX39dH330kQYMGNDh2JkzZyo/P19vvvlmD64GAACYqMeBk5ycrOTk5Mvul5ubq/r6eu3fv1/jxo2TJO3bt0/19fXKy8vr8pjs7GylpqaqrKxMt9xyiySpublZu3fv1tq1ayVJS5cu1dy5czscd9NNN+lf/uVfNH369J5eDgAAMJBtr8EZNWqUpkyZonnz5ukXv/iFJOkHP/iB7rrrrg4vMB45cqTWrFmje++9Vw6HQ4sWLdLq1as1YsQIjRgxQqtXr5bH49Hs2bMlXXiWp6sXFmdmZio7O9uuywEAAH2IbYEjSS+++KIWLlzY/lNRd999tzZu3Nhhn2PHjqm+vr798WOPPabz589rwYIFqqur0/jx41VaWqr4+Hg7lwoAAAxia+AkJibqhRdeuOQ+lmV1eOxwOFRUVKSioqJuf54vngMAAHy18W9RAQAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4MZFeQCRYliVJCgQCvXreUCikxsZGBQIBOZ3OXj33Vx2ztQdztQ+ztQdztUdfmWvbn9ttf45fylcycBoaGiRJGRkZEV4JAADoqYaGBnm93kvu47C6k0GGCYfDOnXqlOLj4+VwOHrtvIFAQBkZGTp58qQSEhJ67bxgtnZhrvZhtvZgrvboK3O1LEsNDQ1KT09XVNSlX2XzlXwGJyoqSkOGDLHt/AkJCdf0DdKXMVt7MFf7MFt7MFd79IW5Xu6Zmza8yBgAABiHwAEAAMYhcHqR2+3WihUr5Ha7I70U4zBbezBX+zBbezBXe5g416/ki4wBAIDZeAYHAAAYh8ABAADGIXAAAIBxCBwAAGAcAqcXbdq0SdnZ2YqNjVVOTo7eeuutSC+pTysqKpLD4ejwKzU1NdLL6pP+8Ic/aPr06UpPT5fD4dArr7zS4eOWZamoqEjp6emKi4vTpEmTdOTIkcgstg+53FwfeuihTvfwhAkTIrPYPmTNmjW67bbbFB8fr8GDB+s73/mOjh071mEf7tkvpzuzNeW+JXB6yfbt27Vo0SItX75chw4dUn5+vqZOnarKyspIL61Pu/HGG1VVVdX+67333ov0kvqkc+fO6eabb9bGjRu7/Pi6deu0YcMGbdy4UQcOHFBqaqomT57c/u+2oWuXm6skTZkypcM9XFJSchVX2Dft3r1bP/zhD7V3716VlZWppaVFPp9P586da9+He/bL6c5sJUPuWwu9Yty4cdb8+fM7bBs5cqS1dOnSCK2o71uxYoV18803R3oZxpFk7dy5s/1xOBy2UlNTrZ///Oft25qamiyv12tt3rw5Aivsm744V8uyrAcffNC65557IrIek1RXV1uSrN27d1uWxT3bm744W8sy577lGZxe0NzcrIMHD8rn83XY7vP5tGfPngitygwffPCB0tPTlZ2drfvuu08ff/xxpJdknIqKCvn9/g73r9vt1sSJE7l/e8Gbb76pwYMH62tf+5rmzZun6urqSC+pz6mvr5ckJSYmSuKe7U1fnG0bE+5bAqcX1NTUqLW1VSkpKR22p6SkyO/3R2hVfd/48eP161//Wr/73e+0ZcsW+f1+5eXlqba2NtJLM0rbPcr92/umTp2qF198Ua+//rr++Z//WQcOHNDf//3fKxgMRnppfYZlWSosLNTtt9+uMWPGSOKe7S1dzVYy5779Sv5r4nZxOBwdHluW1Wkbum/q1Knt//+mm25Sbm6uhg8frueff16FhYURXJmZuH9736xZs9r//5gxYzR27FhlZWXpP/7jPzRjxowIrqzvePTRR/Xuu+/qj3/8Y6ePcc9emYvN1pT7lmdwekFycrKio6M7/c2hurq6098w8OX169dPN910kz744INIL8UobT+Zxv1rv7S0NGVlZXEPd9OPfvQjvfrqq3rjjTc0ZMiQ9u3cs1fuYrPtSl+9bwmcXuByuZSTk6OysrIO28vKypSXlxehVZknGAzq6NGjSktLi/RSjJKdna3U1NQO929zc7N2797N/dvLamtrdfLkSe7hy7AsS48++qh++9vf6vXXX1d2dnaHj3PPfnmXm21X+up9y7eoeklhYaEKCgo0duxY5ebm6pe//KUqKys1f/78SC+tz1qyZImmT5+uzMxMVVdX66c//akCgYAefPDBSC+tzzl79qw+/PDD9scVFRU6fPiwEhMTlZmZqUWLFmn16tUaMWKERowYodWrV8vj8Wj27NkRXPW171JzTUxMVFFRkWbOnKm0tDQdP35cjz/+uJKTk3XvvfdGcNXXvh/+8Id66aWX9O///u+Kj49vf6bG6/UqLi5ODoeDe/ZLutxsz549a859G8Gf4DLOM888Y2VlZVkul8u69dZbO/zYHXpu1qxZVlpamuV0Oq309HRrxowZ1pEjRyK9rD7pjTfesCR1+vXggw9alnXhx25XrFhhpaamWm632/rmN79pvffee5FddB9wqbk2NjZaPp/PGjRokOV0Oq3MzEzrwQcftCorKyO97GteVzOVZP3rv/5r+z7cs1/O5WZr0n3rsCzLuppBBQAAYDdegwMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAMMqkSZO0aNGiSC8DQIQROAAAwDj8W1QAjPHQQw/p+eef77CtoqJCQ4cOjcyCAEQMgQPAGPX19Zo6darGjBmjVatWSZIGDRqk6OjoCK8MwNUWE+kFAEBv8Xq9crlc8ng8Sk1NjfRyAEQQr8EBAADGIXAAAIBxCBwARnG5XGptbY30MgBEGIEDwChDhw7Vvn37dPz4cdXU1CgcDkd6SQAigMABYJQlS5YoOjpao0eP1qBBg1RZWRnpJQGIAH5MHAAAGIdncAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABjn/wMrlSp9Wv6XFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(I, n_points=500)\n", + "plot = tp.utils.scatter(T, domain_sampler)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f8b84f42", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(I)\n", + "fcn_layer = tp.models.FCN(input_space=T, output_space=State, hidden = (100,100,100))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "12b07a6c", + "metadata": {}, + "outputs": [], + "source": [ + "model_state = tp.models.Sequential(normalization_layer, fcn_layer)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1f028169", + "metadata": {}, + "outputs": [], + "source": [ + "input_data = tp.spaces.Points(torch.column_stack([t_tensor]), T)\n", + "output_data = tp.spaces.Points(torch.column_stack([x_tensor,vx_tensor]), State)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5488a089", + "metadata": {}, + "outputs": [], + "source": [ + "input_data_train = tp.spaces.Points(torch.column_stack([t_tensor_train]), T)\n", + "output_data_train = tp.spaces.Points(torch.column_stack([x_tensor_train,vx_tensor_train]), State)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "3716d750", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "d74ffd89", + "metadata": {}, + "outputs": [], + "source": [ + "data_loader = tp.utils.PointsDataLoader((input_data_train, output_data_train), batch_size=len(input_data_train),\n", + " shuffle = False,\n", + " pin_memory = True)\n", + "\n", + "\n", + "data_condition = DataCondition(module=model_state,dataloader=data_loader,\n", + " norm=2,\n", + " use_full_dataset=True,\n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "53af4961", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid = tp.models.FCN(input_space=X*X2*X3, output_space= N_hid, hidden = (100,100))\n", + "model_hid = tp.models.Sequential(fcn_layer_hid)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5c5fd3b0", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "def hiddenPhysics(state):\n", + " x = state[:,0:1]\n", + " model_hid_inp = tp.spaces.Points(torch.column_stack((x,x**2,x**3)), X*X2*X3) #, device = 'cuda')\n", + " model_hid_out = model_hid(model_hid_inp)\n", + " \n", + " return model_hid_out.as_tensor\n", + "\n", + "\n", + "def residual_equation(t):\n", + " \n", + " state = model_state(tp.spaces.Points(t, T))\n", + " state = state.as_tensor \n", + " N_hid_out = hiddenPhysics(state)\n", + " \n", + " x = state[:,0:1]\n", + " vx = state[:,1:2]\n", + " grad_x_t = tp.utils.grad(x, t) \n", + " grad_vx_t = tp.utils.grad(vx, t) \n", + " \n", + " res_x = grad_x_t - vx\n", + " \n", + " res_vx = grad_vx_t + delta*vx + alpha*x - gamma*torch.cos(omega*t) - N_hid_out \n", + "\n", + " return torch.column_stack((res_x,res_vx))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d2dbe9d4", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "hpm_condition = HPM_EquationLoss_at_Sampler(module=model_hid,sampler=domain_sampler,\n", + " residual_fn= residual_equation)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "0b1e3e71", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hpm_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f81b5a0c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=0)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=0)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/setup.py:179: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.\n", + " category=PossibleUserWarning,\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 31.2 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "31.2 K Trainable params\n", + "0 Non-trainable params\n", + "31.2 K Total params\n", + "0.125 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 88%|████████▊ | 8758/10001 [01:42<00:14, 85.48it/s, loss=0.000419, v_num=2]" + ] + } + ], + "source": [ + "# Start the training\n", + "trainer = pl.Trainer(gpus=0, max_steps=10000, logger=True,benchmark=True)\n", + "\n", + "trainer.fit(solver) # start training\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ba57c7bf", + "metadata": {}, + "outputs": [], + "source": [ + "t_star = t_tensor.reshape(-1,1) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb6bb2c2", + "metadata": {}, + "outputs": [], + "source": [ + "def output_state_hidden_physics(t):\n", + " state = model_state(tp.spaces.Points(t, T))\n", + " state = state.as_tensor \n", + " N_hid_out = hiddenPhysics(state)\n", + " \n", + " x = state[:,0:1]\n", + " vx = state[:,1:2]\n", + " \n", + " return x , vx, N_hid_out" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e196e53b", + "metadata": {}, + "outputs": [], + "source": [ + "x_pred , vx_pred, N_hid_eqn = output_state_hidden_physics(t_star)\n", + "x_pred , vx_pred, N_hid_eqn = x_pred.detach().numpy(), vx_pred.detach().numpy(), N_hid_eqn.detach().numpy() " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c83fece", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n", + "\n", + "def R2_SCORE(true_val,pred_val):\n", + " \n", + " mean_true = np.mean(true_val)\n", + " \n", + " return 1.0 - np.mean(np.square(true_val-pred_val))/np.mean(np.square(true_val-mean_true))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4ea0601", + "metadata": {}, + "outputs": [], + "source": [ + "x_true = x_tensor.numpy()\n", + "vx_true = vx_tensor.numpy()\n", + "\n", + "l2_error_x = L2_ERROR(x_true.flatten(),x_pred.flatten())\n", + "l2_error_vx = L2_ERROR(vx_true.flatten(),vx_pred.flatten())\n", + "\n", + "r2_score_x = R2_SCORE(x_true.flatten(),x_pred.flatten())\n", + "r2_score_vx = R2_SCORE(vx_true.flatten(),vx_pred.flatten())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00c18379", + "metadata": {}, + "outputs": [], + "source": [ + "print('L2 error x ',l2_error_x,' R2 score ',r2_score_x)\n", + "print('L2 error vx ',l2_error_vx,' R2 score ',r2_score_vx)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b73267ee", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.plot(t_star.numpy().flatten(),x_true.flatten(),label='x True')\n", + "plt.plot(t_star.numpy().flatten(),x_pred.flatten(),label='x Pred')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(t_star.numpy().flatten(),abs(x_true.flatten() - x_pred.flatten()))\n", + "plt.xlabel('t')\n", + "plt.ylabel('x Error')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d4ed9251", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.plot(t_star.numpy().flatten(),vx_true.flatten(),label='vx True')\n", + "plt.plot(t_star.numpy().flatten(),vx_pred.flatten(),label='vx Pred')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx')\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(t_star.numpy().flatten(),abs(vx_true.flatten() - vx_pred.flatten()))\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx Error')\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_white_noise_input-checkpoint.ipynb b/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_white_noise_input-checkpoint.ipynb new file mode 100755 index 0000000..d0e4a4f --- /dev/null +++ b/examples/hidden_physics/.ipynb_checkpoints/duffing_oscillator_white_noise_input-checkpoint.ipynb @@ -0,0 +1,1136 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d2c66c17", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" # select GPUs to use" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d458b1f2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import torchphysics as tp\n", + "#import copy\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "import scipy.io\n", + "from scipy.interpolate import griddata\n", + "import time\n", + "import matplotlib.gridspec as gridspec\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ada6018f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "import torch\n", + "import sys\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "np.random.seed(2308)\n", + "torch.manual_seed(2308)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c9b715ae", + "metadata": {}, + "outputs": [], + "source": [ + "def oscillator_state(state, t, delta, alpha, beta, input_func):\n", + "\n", + " x,vx = state\n", + " \n", + " state_dt = [vx, -delta*vx - alpha*x - beta*x**3 + input_func(t)]\n", + "\n", + " return state_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "de0d7ff2", + "metadata": {}, + "outputs": [], + "source": [ + "delta = 0.3\n", + "omega = 1.2\n", + "alpha = -1.0\n", + "beta = 1.0\n", + "gamma = 0.2\n", + "state0 = [1.0, 0.]\n", + "Tp= 2*np.pi/omega\n", + "tfinal = 40*Tp #10.0\n", + "dt = 0.01\n", + "t = np.arange(0.0,tfinal+dt,dt)\n", + "\n", + "\n", + "def input_function(t):\n", + " return np.random.randn() #gamma*np.cos(omega*t) #np.random.randn()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5d509d24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20945" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(t)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7d10ea27", + "metadata": {}, + "outputs": [], + "source": [ + "def rungekutta4(func, y0, t, input_sig, args=()):\n", + " n = len(t)\n", + " y = np.zeros((n, len(y0)))\n", + " y[0] = y0\n", + " for i in range(n - 1):\n", + " h = t[i+1] - t[i]\n", + " k1 = func(y[i], t[i],input_sig[i], *args)\n", + " k2 = func(y[i] + k1 * h / 2., t[i] + h / 2.,input_sig[i], *args)\n", + " k3 = func(y[i] + k2 * h / 2., t[i] + h / 2.,input_sig[i], *args)\n", + " k4 = func(y[i] + k3 * h, t[i] + h,input_sig[i], *args)\n", + " y[i+1] = y[i] + (h / 6.) * (k1 + 2*k2 + 2*k3 + k4)\n", + " return y\n", + "\n", + "def euler_forward(func, y0, t,input_sig, args=()):\n", + " n = len(t)\n", + " y = np.zeros((n, len(y0)))\n", + " y[0] = y0\n", + " for i in range(n - 1):\n", + " y[i+1] = y[i] + (t[i+1] - t[i]) * np.array(func(y[i], t[i],input_sig[i], *args))\n", + " return y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "979d4300", + "metadata": {}, + "outputs": [], + "source": [ + "def oscillator_state2(t,state, delta, alpha, beta, input_func):\n", + "\n", + " x,vx = state\n", + " \n", + " fx = vx\n", + " fy = -delta*vx - alpha*x - beta*x**3 + input_func(t)\n", + "\n", + " return fx,fy" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "dd697f61", + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.integrate import solve_ivp\n", + "sol = solve_ivp(oscillator_state2, t_span=(t[0], t[-1]), y0=state0,t_eval=t, args=(delta, alpha, beta,input_function))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e23c1fe2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.00000000e+00, 9.99997726e-01, 9.99996745e-01, ...,\n", + " 1.00168186e+00, 1.00164255e+00, 1.00160743e+00],\n", + " [ 0.00000000e+00, -1.53625923e-04, -8.00303702e-05, ...,\n", + " -3.75108104e-03, -4.07941563e-03, -3.42193103e-03]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sol.y\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6bdf49fc", + "metadata": {}, + "outputs": [], + "source": [ + "x,vx=sol.y" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8da0740c", + "metadata": {}, + "outputs": [], + "source": [ + "np_datatype = np.float64\n", + "t_start,t_end = 0.0,100.0\n", + "\n", + "x_store , vx_store, t_store = [],[],[]\n", + "\n", + "for i in range(len(t)):\n", + " if t[i]>=t_start and t[i]<=t_end:\n", + " x_store.append(x[i])\n", + " vx_store.append(vx[i])\n", + " t_store.append(t[i])\n", + "\n", + "x_store = np.array(x_store).astype(np_datatype)\n", + "vx_store = np.array(vx_store).astype(np_datatype)\n", + "t_store = np.array(t_store).astype(np_datatype)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "c816642a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAAEmCAYAAAC04/2PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACd10lEQVR4nO3dd3gUVRcG8HfTQwslkFBCb0GkBaUIIiogShNUQBFU9BNFaaISAQsKWBAVERAQFVFBQREVFVR6EUJRQaQGQosQSkJNne+Pw80kIWXLlE14f8+TZ5bN7OxNyMzOnDnnXIemaRqIiIiIiIiIiIjIIz52D4CIiIiIiIiIiKgoYKCNiIiIiIiIiIjIAAy0ERERERERERERGYCBNiIiIiIiIiIiIgMw0EZERERERERERGQABtqIiIiIiIiIiIgMwEAbERERERERERGRARhoIyIiIiIiIiIiMoCf3QPwRhkZGTh27BhKliwJh8Nh93CIiIiIiIiIiMhGmqbh3LlzqFSpEnx88s5bY6AtF8eOHUNERITdwyAiIiIiIiIiIi9y+PBhVKlSJc/vM9CWi5IlSwKQX16pUqVsHg0REREREREREdkpKSkJERERmTGjvDDQlgtVLlqqVCkG2oiIiIiIiIiICAAKbDHGyRCIiIiIiIiIiIgMwEAbERERERERERGRARhoIyIiIiIiIiIiMgB7tBERERERERERUYHS09ORmppq9zBM4evrCz8/vwJ7sBWEgTYiIiIiIiIiIsrX+fPnceTIEWiaZvdQTFOsWDFUrFgRAQEBbm+DgTYiIiIiIiIiIspTeno6jhw5gmLFiqF8+fIeZ315G03TkJKSgpMnTyI2NhZ16tSBj4973dYYaCMisllGBjBuHLB6NfD008Ddd9s9IiIiIiIiIl1qaio0TUP58uURHBxs93BMERwcDH9/fxw6dAgpKSkICgpyazsMtBER2eytt4BXXpHHa9YAmzYBTZvaOyYiIiIiIqKcilomW07uZrFl24YB43Db6tWr0bVrV1SqVAkOhwOLFy8u8DWrVq1CVFQUgoKCULNmTcyYMeOqdc6ePYvBgwejYsWKCAoKQmRkJJYuXWrCT0BE5Jnz54EJE+Sxnx+QlgZER9s7JiIiIiIiInKPrYG2CxcuoHHjxpg6dapT68fGxuLOO+9E27ZtsW3bNrzwwgsYMmQIFi1alLlOSkoKOnTogIMHD2LhwoXYvXs3Zs2ahcqVK5v1YxARuW3JEiApCahVC9ixQ5779VfgzBl7x0VERERERESus7V0tHPnzujcubPT68+YMQNVq1bFu+++CwCIjIxETEwMJk2ahF69egEA5syZg9OnT2P9+vXw9/cHAFSrVs3wsRMRGWH+fFnefz9Qrx7QsKEE3H74AXjwQXvHRkRERERERK6xNaPNVRs2bEDHjh2zPdepUyfExMQgNTUVALBkyRK0atUKgwcPRlhYGBo2bIgJEyYgPT09z+0mJycjKSkp2xcRkdlSU4Hff5fHPXvKskcPWTpRSU9EREREREReplAF2uLj4xEWFpbtubCwMKSlpSEhIQEAcODAASxcuBDp6elYunQpxowZg7fffhvjx4/Pc7sTJ05ESEhI5ldERISpPwcREQDExAAXLgDlygGNGslz3brJ8rffgHzuDxAREREREZEXKlSBNuDqGS40Tcv2fEZGBipUqICZM2ciKioKffr0wejRozF9+vQ8txkdHY3ExMTMr8OHD5v3AxARXbFqlSzbtQPU5DZNmwIlSgCJiXrPNiIiIiIiIm+iaZI0YMfXlTBQgU6ePInw8HBMULPPAfjjjz8QEBCAZcuWmfSbsblHm6vCw8MRHx+f7bkTJ07Az88P5cqVAwBUrFgR/v7+8PX1zVwnMjIS8fHxSElJQUBAwFXbDQwMRGBgoLmDJyLKYcsWWbZqpT/n5wfcdBPwyy/A2rVA48b2jI2IiIiIiCgvFy9KgoAdzp8HihcveL3y5ctjzpw56NGjBzp27Ij69eujX79+ePLJJ69qS2akQpXR1qpVKyxfvjzbc8uWLUPz5s0zJz646aabsG/fPmRkZGSus2fPHlSsWDHXIBsRkV3++kuWOYNpzZtn/z4RERERERG57s4778Rjjz2GBx54AIMGDUJQUBBef/11U9/T1oy28+fPY9++fZn/jo2Nxfbt21G2bFlUrVoV0dHROHr0KObOnQsAGDRoEKZOnYoRI0bgsccew4YNG/DRRx/hyy+/zNzGE088gffffx9Dhw7F008/jb1792LChAkYMmSI5T8fEVFeLlwA9u6Vx6o/m9KggSz/+cfaMRERERERETmjWDHJLLPrvV0xadIkNGzYEF999RViYmIQFBRkzsCusDXQFhMTg/bt22f+e8SIEQCAAQMG4JNPPsHx48cRFxeX+f0aNWpg6dKlGD58OD744ANUqlQJU6ZMQa9evTLXiYiIwLJlyzB8+HA0atQIlStXxtChQ/H8889b94MRERVg507pLVChApBjjpfMQJtaJ0drSiIiIiIiIls5HM6Vb3qDAwcO4NixY8jIyMChQ4fQKGemg8EcmuZsG7lrR1JSEkJCQpCYmIhSpUrZPRwiKoK++AJ44AHg5pv1SRGUS5ek30FGBnD8OBAebs8YiYiIiIiIAODy5cuIjY1FjRo1TM8IM1JKSgpuvPFGNGnSBPXr18fkyZPx999/IyxntsMV+f2czsaKClWPNiKiouLgQVlWr37194KDgRo15PG//1o1IiIiIiIioqJl9OjRSExMxJQpU/Dcc88hMjISAwcONPU9GWgjIrLBoUOyzC3QBgB16shy/35LhkNERERERFSkrFy5Eu+++y4+++wzlCpVCj4+Pvjss8+wdu1aTJ8+3bT3tbVHGxHRtUpltFWrlvv3a9eWZZb5YoiIiIiIiMhJt9xyC1JTU7M9V7VqVZw9e9bU92VGGxGRDQrKaCuMgbYjR4C1a4G0NLtHQkREREREZA8G2oiILKZpeqAtr4y2WrVkWVgCbT/9JGNu2xa49VYgJcXuEREREREREVmPgTYiIoudOAFcvixTYkdE5L5O1ow2b58b+sIFoH9/Pbi2Zg1gYssDIiIiIiIir8VAGxGRxVQ2W6VKQEBA7uvUqCGBuPPnJTDnzb78EkhIAGrWBN57T56bMsX7A4RERERERERGY6CNiMhiaiKEvPqzAUBgIFC1qjz25vJRTdOz1wYNAh59FAgKAg4cAHbssHdsRERERERkLK2I30034udjoI2IyGIF9WdTCsOECHv2AFu3Smbeww8DxYoBt90m3/vhB3vHRkRERERExvD19QUApBTxZswXL14EAPj7+7u9DT+jBkNERM4paMZRpXZt4LffvDvQ9tNPsrz5ZiA0VB537Qr8+CPw/fdAdLR9YyMiIiIiImP4+fmhWLFiOHnyJPz9/eHjU7TytjRNw8WLF3HixAmULl06M7DoDgbaiIgsdviwLPOaCEFRGW3795s7Hk/8+qss77hDf65jR1nGxMikD0FB1o+LiIiIiIiM43A4ULFiRcTGxuKQyhwogkqXLo3w8HCPtsFAGxGRxY4fl2WlSvmvVxhKR7dskWXr1vpz1asD5csDJ08C27cDLVvaMTIiIiIiIjJSQEAA6tSpU2TLR/39/T3KZFMYaCMistixY7KsWDH/9bw90BYfL18OB9Cokf68wwG0aCE92v74g4E2IiIiIqKiwsfHB0EsWclX0SqqJSLychkZwH//yeOCAm01a8ryzBng9Glzx+WObdtkWa8eULx49u/deKMsN2+2dkxERERERER2YqCNiMhCCQlAWppkfYWF5b9usWJ6eak3ZrX99ZcsmzS5+ntNm8ryzz8tGw4REREREZHtGGgjIrKQKhstXx5wZsZoby4fPXBAlnXqXP29xo1l+e+/QHKydWMiIiIiIiKyEwNtREQWUhMhFFQ2qnhzoC02VpY1alz9vSpVgDJlJHvvn3+sHRcREREREZFdGGgjIrKQq4G2WrVkuX+/OePxRH6BNodDLyndvt2qEREREREREdnL1kDb6tWr0bVrV1SqVAkOhwOLFy8u8DWrVq1CVFQUgoKCULNmTcyYMSPPdefPnw+Hw4EePXoYN2giIg+oQJvqvVaQypVlGR9vznjclZ4OHDokj9WkDTmp8lH2aSMiIiIiomuFrYG2CxcuoHHjxpg6dapT68fGxuLOO+9E27ZtsW3bNrzwwgsYMmQIFi1adNW6hw4dwsiRI9G2bVujh01E5DbVo83ZjLbwcFl6W6Dt2DEgNVX6zKlgYE4MtBERERER0bXGz84379y5Mzp37uz0+jNmzEDVqlXx7rvvAgAiIyMRExODSZMmoVevXpnrpaen44EHHsArr7yCNWvW4OzZswaPnIjIPa6WjnproE1NhFC1KuDrm/s6KtC2fTugaVJOSkREREREVJQVqh5tGzZsQMeOHbM916lTJ8TExCA1NTXzuXHjxqF8+fIYOHCg1UMkIsqXu4G2kydlYgFvkV9/NiUyUoJrZ88C//1nybCIiIiIiIhsZWtGm6vi4+MRFhaW7bmwsDCkpaUhISEBFStWxLp16/DRRx9huwvdt5OTk5GcnJz576SkJKOGTESUjas92kJDAR8fICMDSEjQA292cybQFhQk3z9wANi923vGTkREREREZJZCldEGAI4ctUeapmU+f+7cOfTr1w+zZs1CaGio09ucOHEiQkJCMr8iIiIMHTMRESDlk65mtPn6AuXLy2NvKh9Vgba8JkJQ6teX5b//mjseIiIiKvqOHwdefx34/HPvyvQnIsqqUGW0hYeHIz7HleaJEyfg5+eHcuXKYefOnTh48CC6du2a+f2MjAwAgJ+fH3bv3o1atWpdtd3o6GiMGDEi899JSUkMthGR4U6fBlJS5LEr2V3h4VJ66U2Btrg4WVarlv969eoBS5cy0EZERESeWbUK6N4dSEyUf3/zDbBwIXvAEpH3KVSBtlatWuH777/P9tyyZcvQvHlz+Pv7o379+vj777+zfX/MmDE4d+4c3nvvvTyDZ4GBgQgMDDRt3EREgJ7NVrYs4MohJzxcZu70pkCbmj01rxlHFZXRtnu3ueMhIiKiouvCBeDeeyXIVru23PD75hv5yjInHhGRV7C1dPT8+fPYvn17Zj+12NhYbN++HXFXUiWio6PRv3//zPUHDRqEQ4cOYcSIEdi1axfmzJmDjz76CCNHjgQABAUFoWHDhtm+SpcujZIlS6Jhw4YICAiw/GckIlJc7c+mqNaU3jShgAq0FVQCy9JRIiIi8tSHH8rEUDVrAn//DTz3nDz/3nv2jouIKDe2BtpiYmLQtGlTNG3aFAAwYsQING3aFC+++CIA4Pjx45lBNwCoUaMGli5dipUrV6JJkyZ49dVXMWXKFPTibQwiKgScDU7lpMpMvSWj7dw5ubMMOB9oO3gQuHTJ1GER0TVo927JcunbVyZeIaKiR9OAGTPk8ahRMtnS//4n/167Fjh61L6xERHlxtbS0VtuuSVzMoPcfPLJJ1c9165dO2zdutXp98htG0REdnB1IgTF2wJtKmBYsiRQokT+65YvD5QuDZw9C+zbB1x/vdmjI6JrRWIi0LmzPjnLxo3Azp1AsWL2jovIW2RkAFu2AKVKSc/UwmrjRmDvXqB4cQmqA0BEBHDTTcC6dcDixcDgwbYOkYgom0I36ygRUWFVVAJtrpTAOhwsHyUqbE6eBN58E3j3Xclg9VbvvCNBtvBwCeofPAh8+qndoyLyDocOAc2bAzfeKJ/DY8faPSL3zZsny169st/gu+suWS5fbv2YiIjyw0AbEZFF3O3RpgJt3tKjzdUSWHUXnRMiEHm/+HigWTPg+eeB4cOBVq2ApCS7R3W1tDRg1ix5/PbbwAsvyGMWMhBJJtu99wLbtgG+vvLca6/JxAGF0c8/y/Kee7I/36GDLFeskGMCEZG3YKCNiMgi7vZoU5MhFMaMNgCoVUuW7J9E5P2eeQY4ckTKssqXl1LMMWPsHtXVfvhBjqnly0uWS58+kkG7aZNkthFdy376Cdi8WVo87Nsnfc0A2Zfz6drjlQ4ckC8/P+CWW7J/r2lToEwZuRmwaZMtwyMiyhUDbUREFvG0dPTMGSA52dgxucPVgGHNmrJkoI3Iu+3dC8yfL4+//VYv15ozR/osehOVzfbII0BgoBwn27WT5wpr1g6RUdS+++ijQPXqQHS0BN127ZLsr8JElYW2bCk/Q1a+vsBtt2Vfj4jIGzDQRkRkAU1zP9BWpgzg7y+PvaF8lBltREXTRx9JyVnnzkBUlJRlNWwoswx//LHdo9NduAD8+qs87t9ff75bN1n+8ov1YyLyFqmpktEGSPkoIJMhPPigPJ42zZ5xuUsF0FSZaE633y7LwhZAJKKijYE2IiILJCYCly7JY1cDbQ6Hd02I4G5G25Ej3pGRR0RXy8gAPv9cHj/6qCwdDmDQIHm8cKE948rN778DKSlAjRpAZKT+fKdOsly9Wj/eEl1rNmyQc47y5WUiBOWJJ2S5eLH+Oe7tUlP1oHrHjrmvo8pJN24ELl+2ZFhERAVioI2IyAIqCywkBChWzPXXqz5thTGjrXx5oHhxyeo7dMi8cRGR+9askWB46dLAnXfqz3fvLssNG4ATJ2wZ2lVWrpRlp04SDFQiI4HKleVie+1aW4ZGZLs1a2TZvr0+EQIg2alt2wLp6XrptbdTQcNy5YAbbsh9nbp15RwpOZl92ojIezDQRkRkAXfLRpXCnNHmcOhZbfv3mzMmIvLMt9/KskcPIChIf75KFZmFVNOApUttGdpVVBCtTZvszzscenbLhg2WDonIa6xbJ8ubbrr6eyqrbeZMyRbzduqY06lT9qBhVg6H3p9RBeGJiOzGQBsRkQWKSqDt3Dng/Hl57MrPwgkR6Fpz4gQwaRJw//3S38ybZ/rTNGDJEnmsMtiyUr3P1Dp2ungR2LpVHrduffX3W7aU5caN1o2JyFtkZOhB5twCbT17AhUqyA2zH3+0dmzuUL3msmbZ5kYF2latMnc8RETOYqCNiMgCR4/K0tlyy5y8JdCmAoYlSlw9+1d+1IQIzGija8GGDUCDBsCzzwJffikzY771lt2jytuOHUBsrGSy5dZwPOskA3b3Wdy8GUhLk0B/9epXf18F2v74w7uDm0Rm+OcfmSG4eHGgceOrvx8YqE+KoLJYvdXRo8Bff0nGmuq/mJesmawpKaYPjYioQAy0ERFZQJVbVq7s3utVoM3uHm2u9mdTatSQ5cGDhg7HIwkJwGOPAXfcAXzxhd2joaLixAngrruAU6ekJ5KaFTM6Wpr4eyOVqdahg1yg59SkifRavHgR2LLF0qFdJWtZXNb+bEqjRhIwPH0a2LvX2rER2U3tHy1aAH5+ua/Ttassly6Vfm3eSmWnRUUBoaH5rxsZKceoS5ckGE9EZDcG2oiILKAy2twNtKnJEOzOaHO1P5tSrZosvWUyhNRU4O67gdmzJUvngQeAadPsHhUVBePGAWfOSDbJH38An3wCDBggJV39+kljb2+zYoUsO3fO/fsOh94PTTVat4sqG1WZazkFBOiZPH/+ac2YiLyF6l+YW9mo0rq1TMyUkODdQSlV/p3fz6I4HMDNN8vj1avNGxMRkbMYaCMisoCngTZvKx11NaNNlXh5S0bb3LlyQVKqlJ5xNHKk98yqSIXT3r3Ahx/K43fekRmGHQ5g+nSgTh3Zf0aPtneMOaWl6Re0OScXyKptW1naPZvn33/LslGjvNdp0ECWu3aZPx4ib6L25dz6Fyr+/pLJDQA//GD+mNz1xx+yzCuonlOrVrK0O+uWiAhgoI2IyBJFJdDmaUbb6dP6ZAp2SU0FXntNHr/8smQcNW8uJSczZtg5smvHqVPAvHlATIzdIzHW++9L4KpzZ6B9e/354GAJtgHArFny83uLP/8ELlyQDJfrrst7PRWEW7dOsvPscOkSsG+fPL7++rzXq19flv/+a/6YiLzFhQt6H9RmzfJf9667ZOmtgbbLl4Ft2+RxixbOvaZJE1lu327GiIiIXMNAGxGRyTIy9ACVp5MhXLhgb6DK3dlTS5UCypSRx3aXjy5YIJl1YWHA449LxtEzz8j3ZsyQQAmZJzFReu48+CBwww3A0KFFo2l9Sore62/IkKu/f9ttciGYkgLMn2/p0PKlejq1bg345HNW2KSJZOidOWNfptg//8jxNDRUL6fPTWSkLJnRRteSnTvlWBoWJjOL5qdzZ/ns+/NP4MgRa8bnim3b5KZYhQq5T3qSG1Uyvn8/kJRk2tCIiJzCQBsRkckSEiR443C4HqBSSpSQi1zA3qw2TwKGKqvN7vLR2bNlOXiw/jvt2VMaKR8/Dvz4o31juxZER0uwNSBA/j1lCrBokb1jMsJPP0mmWsWKwO23577OQw/J8tNPLRtWgbJOLpAff3+9hMuuPm2qbPT663OfCEFRGW27d9uXfUdktb/+kmV+2Z5KaKi+P3vjZ54qgW3ZMv99PavQUL1qYOdOc8ZFROQsBtqIiEymykYrVJCLVXepDA47Zx51t0cb4B0TIly+rAcW7r9ffz4gQA+CzJpl+bCuGbGxennuL78AY8bI41dftW9MRlHBswceyHu2v/vvl6yxzZvld2E3TXOuebpid5+2rIG2/NSoIfv0pUvA4cPmj4vIGzjTvzCrLl1k6e2BNlfUqydLzjhMRHZjoI2IyGSe9mdTvCHQ5m6PNsA7JkT46y/JLgwNBWrWzP69Rx+V5U8/6T8nGWvWLAnudOgA3HILMHy4BET++ku/SCyMTp3Sex2pyTVyU7480K6dPP72W/PHVZBjx+TL1xe48caC11fBuA0bzB1XXnbskGXDhvmv5+cnwTZA71lFVNQ5u38oqk/br79KUNqbuBtoq1tXlnv2GDseIiJXMdBGRGQyowJtqk+bXYG28+eBc+fkcWHNaFOzkUVFXV2OUreuBBIyMoAvv7R+bEVdWhowZ448HjRIlmXL6hd7CxbYMy4jzJ8v/YSaNi0426pnT1l+84354yqIujCvW1cvo86PajZ+4ID0i7SaylJRpaH5qVVLlgy00bVC9SRUs+4WpFEjoEoVCbKtXGnasFx27BgQFyfZv82bu/ZaBtqIyFvYGmhbvXo1unbtikqVKsHhcGDx4sUFvmbVqlWIiopCUFAQatasiRk5poibNWsW2rZtizJlyqBMmTK4/fbbsWnTJpN+AiLyFpcvSz8eb7srCxSdjDZVNlq8OFCypOuv94aMtqyBttz06yfLjz8uGg36vcm6dfK3W6YM0LWr/nyPHrL0xvIlZ82dK8v8stkU9fOuX6/vU3ZxNQOmfHm9yfo//5gzprykpsrFN6AH0fKj1lGzlHqTrVuBW2+VrNqnn/auWWipcDp7Vj+eOBOIBuRmkzfOPqou2667zvVzDRVo273b2DEREbnK1kDbhQsX0LhxY0ydOtWp9WNjY3HnnXeibdu22LZtG1544QUMGTIEi7J0UV65ciX69u2LFStWYMOGDahatSo6duyIo+pKl4iKlJQU4Lnn5OKvfn3J+vK2xupFLdDm7syp3pbRlps+fSSzZ+dOYPVq68Z1LfjuO1l27Zq9V6Ga/W77dn1fKUz275cLQx8foG/fgtevUkXKNDVN/53YxdVAG6Bn7Fld6nvoEJCeDgQHO1e67q0ZbX/9JWXTK1ZIn76pU2W2RG8MCFLhobLZKlcGQkKcf13nzrJcscL4Mbnrzz9lmdfndH7q1JHl3r28WUZE9rI10Na5c2e89tpr6KnqKAowY8YMVK1aFe+++y4iIyPx6KOP4pFHHsGkSZMy1/n888/x5JNPokmTJqhfvz5mzZqFjIwM/Pbbb2b9GERkk6NH5YLlrbekpNHXV6Z0791bGq17C9Xvq7AH2jzpzwboGW3//WdP5uHly3pgIa9ylNKl9ay2Dz6wZFjXBE0DVNK6yuhSypfX+4P99JOVozKGKnm97TZ9Hy2IOu2xu0+bO4E2ta56rVVUwKxmTedmIaxdO/vrvEFamkyWce4c0KYN8MUXMs6jR6VHJAMD5C4VaIuMdO11qu/irl0yQ7o3UNmy113n+murV5ebHpcu2dvPloioUPVo27BhAzp27JjtuU6dOiEmJgapqam5vubixYtITU1F2bJl89xucnIykpKSsn0RkXeLj5cmuRs2yN3bhQvlxKpfP8l6uO8+4MgRu0cpmNEmypQBSpSQx6oEzEpZJ0KIiMh7vcGDZbl4MZCYaMnQirw//5TsnaAgIMfHOAC9fKkwlo+qQFufPs6/5u67Zfn778CZM8aPyRkZGZK5CbgWaFNlaVb3QFIBM2fKRrOut2+f9wSwPvxQApRly8rxpW9fYPly2S9WrSqcgWbyDu4G2kJD9deoGbntpo5LzvaayyogQP9896YgOxFdewpVoC0+Ph5hOW4Xh4WFIS0tDQl53IYZNWoUKleujNtvvz3P7U6cOBEhISGZXxH5XYERkVd4+GEJpNWtC8TEAL16STnaRx9JdkxSEjBkiN2jFCrQ5m6ASrE70OZpRpvDoZ8A2xEEzW8ihKwaNQLq1ZOeUN6UGVmYLVwoy86dpcdfTlnLlzIyrBuXp3btkgCuv78ePHNG3boS3EpLs683Umys3JwIDHQ+eAXY12xclVY6O9YaNWQ/P38eOHnSvHE569QpYOxYefzqq0C5cvK4enXgqafk8ejRhevvn7yHu4E2AGjbVpZr1hg3HnelpurHFncy2gDvLRsnomtLoQq0AYAjx9WRduU2Zc7nAeDNN9/El19+iW+++QZBQUF5bjM6OhqJiYmZX4cPHzZ20ERkqFWrgJ9/ljuX332nlwgB8tzs2VJG+u23wLZt9o0TkAvZ06fl8bWe0QboQTo7msCrQJszs5h17y5Lu3toFQWaBnz9tTy+997c12nSRAJwiYl6NkNh8NVXsuzYUTI2XaECc07MA2UKVfrZoIEcL52lAm2xsXJRbBV10Zz1eJ+fwEDph5f1tXZ65RXJXrz+euB//8v+vVGjpOn79u36vkLkCk8CbW3ayHLtWuPG4679++W4Urx4/pnn+alZU5YHDhg3LiIiVxWqQFt4eDji4+OzPXfixAn4+fmhnLo1eMWkSZMwYcIELFu2DI0aNcp3u4GBgShVqlS2LyLyXuPGyXLgwNxn17r+eikdBYB33rFuXLlRWWDBwdL/yxMq0Hb+PHDxomfbcoenGW2AHqSzI9AWEyNLZxosd+smy6VLrQ0mFEU7dkiGQmAg0KVL7uv4+UkpOOA95UvOUIE2dbxxhfpdLF9uz9+YO/3ZANmHg4MlG8/KGYRdLR3Nuq7dgbbYWGDGDHn8zjvy955VuXLAM8/I47fe8p5SVyocLl+WvzHA+RlHs1IZbVu22HNukVXWslEfN69SvWW/J6JrW6EKtLVq1QrLly/P9tyyZcvQvHlz+GeZwuytt97Cq6++ip9//hnNnUldIKJCY9s26Wvk5ydZAHkZMUKWX36pZ5TZIWt/NmcaeOenZEnp5QPYk9VmZEabCtpZ5fJl/QTemUBby5bSpP/sWe8opynMliyRZadO8jecF2/KqnDGjh3StDsgQA/MuqJ5c/kbO3fOnuCiCrS5Wp7l45N9Zj8raJqeneJKoE1lv9k9o+cbb0gwtUMHmTQjN4MHy/F9yxbpPUrkrAMHZB8pVcr5CVmyqlZNzlHS0oA//jB+fK5QEyG4059N8dZA26lTsp+Hhcmxv3t3YPduu0dFRGaxNdB2/vx5bN++Hdu3bwcAxMbGYvv27Yi70iU7Ojoa/fv3z1x/0KBBOHToEEaMGIFdu3Zhzpw5+OijjzBy5MjMdd58802MGTMGc+bMQfXq1REfH4/4+HicP3/e0p+NiMwxfbos77kHqFo17/WaN5cLyLQ0YNkya8aWG6MmQgAkUGdn+agRGW12lY46OxGC4uurN+hfutTcsRV1v/4qyzvuyH+9whZo++YbWXbq5F62qo+P3pvOjkkg3JkIQVGBNqv6tB0/LmX4vr4SFHCWN1xwJyUB8+bJ4xdeyHu90FCZkRQA3nvP/HFR0aH2w7p13buh53Dox1+7byyp45K7/dkA7ywdnTdPjpvTpgEnTsgMr0uWALfcIv8moqLH1kBbTEwMmjZtiqZNmwIARowYgaZNm+LFF18EABw/fjwz6AYANWrUwNKlS7Fy5Uo0adIEr776KqZMmYJevXplrjNt2jSkpKTgnnvuQcWKFTO/Jk2aZO0PR0SGO38e+OILefzEEwWv7w2BEiMDbYB9gbZLl+SCEQDCw93fjl2lo1n7szl7IXLnnbJkoM19Fy8C69fL47wyeZQWLST4dOiQ98wYnJ+VK2WpjjPuUH9jVs82mZoK/PuvPHYn0Kb6tFmV0aYCZVWrysQTzlIX3Kqszg7z5gEXLkjvrHbt8l/36adl+e23vPgm56n9UAXA3dG6tSw3b/Z8PJ4wMqPtv//kvNFub7wBPPig9Ghs1EhurPzxh/yM8fH5B+CJqPCyNdB2yy23QNO0q74++eQTAMAnn3yClepM9op27dph69atSE5ORmxsLAYNGpTt+wcPHsx1my+//LI1PxQRmWbhQrlgqVtX7ymSnw4dZLl6tbnjyo/KAivsgTZ10RcQAISEuL8duzLaXOnPpnToIBk0u3Z5153xwmTtWiAlRZrSF3QRWLIkcOW+m637rDNSUoCNG+WxM8eivHToIMHFnTuBLPcVTbd3rwTbSpTIPzM4L1bPPKoCZSpw5iyV/XbokLHjcYXq4/e//xUc5G/cWGbNTk0F5s41f2xUNGTNaHNXs2ay3LrV8/G4Ky1NL6X0JKOtdGmgbFl5bPdn94IFepuTMWPkpt+dd8p+PmuWPD9njmTdE1HRUqh6tBHRte2zz2T50EPOZSW1bCmBkkOHALsmEy4qGW0q0BYW5lmvObt6tKmMNlcCbaVLAzffLI9VmSC5RpWN3n67c3837dvL8vffzRuTEbZulSzPcuXcm+VPKVsWaNVKHluZ1ZZ1IgR39mere7Sp47erQUEVaDt2zJ4JJxIT9VJoZ/v4DRwoy48/LlyTImRkSFDx/vuBZ5+Vn52sYURGW+PGciw4dsy+bMr9++UmRrFi7t0AyMobysY3bQIGDJDHw4YBr76afSKU1q1lJm5NAyZPtmWIRGQiBtqIqFA4e1bPcnF2hr8SJfQMGbtmMlSBNk8mEMjKrkCber8KFTzbjgq0XbggTeCtkHUiBFfnx7nnHlkuWmTsmK4Vv/0my9tvd279W2+VpbcH2lQfozZtPJ/kRPVpszLQ5mkfJJU5Excn+5fZVLafM/0Vs6pQQWa7zciwpxx5+XIgPV1mgnQ2G693b5nV9Z9/9Excb3fqlJRQ9+4tExBNmiSN3pOT7R7ZtcGIjLaSJfVA3bZtno/JHUbMOKrY3aft7FnZH5KTga5dZZ/IjWoz/sUX9szGTkTmYaCNiAqFX36RsoLISNdmnbO7wXpRy2jzNNBWooQ+86RVJ5VqIoTy5aWE0RV33y2BlI0bC0ffMG+SkKBfsBXUn01p00bu+MfG2l/ykx8VaPOkbFRRgbZff7UuMKFm4XT3wjw0VErINc2ajBGV0eZqoM3HR8+MsaN8VPV3VL34nBESAvTsKY8//tj4MRktJUUmOvn5Z5k19amn5Bi/apVk8ZC5zp/XP0s9yWgD9BuTdgXajOjPptiZ0aZpkpl68CBQo4aUgfv65r7ujTdKZltqqkyUQERFBwNtRFQofP+9LLt2de11dgbaNK3o9WhT7+8Jq8tHVe+TJk1czz6qWFH/G2L5qGtWrJB9oGFD5yfQKFlSD159+615Y/NERoZ+PDEi0Nakifx+LlywbsY/FcR05aZFVg6HXEAC1gSw3A20Afb1acvI0LMUXQm0AXq52cKFkhHnzb7+WjLvypSRGxLvvy99qRwOYMYMmbgoJcXuURZdqmy0fHn3Zj/Oyu4+bUbMOKrYGWibPFnOF/z9ZV8o6P9l+HBZTp8uLQmIqGhgoI2oiMvIABYvBoYOBR59FPjwQ3t61XgiLU2/YHE10HbTTbL86y/re8YkJOgXGCq45KnCXjoKWD/zqOpHdf317r1eZZd8950x47lWZO3P5gpVrrtwobHjMco//8jsccWK6RkgnvDxkYwgQDJ3raAuPl2dXCArKwNY7vZoA/RxHjxo2HCcsnOnzChYrJgerHfWLbdI4OrkSX3WXm/1wQeyHD5c+nwBkqX5zjt6sO3eewvfecfRo1L+Wq6cfNWvL/8vjz8OzJ/vPT+PmjzA02w2wP5Am5EZbXaVjiYmAmr+vXfeAW64oeDX9OgBVK8uJdiqFzERFX4MtBEVYZcvS9+Uu+8GpkwBPvoIGDRITqbULG6FwYYNwOnT0ji8ZUvXXhseDtSuLZk1Vl+wqLLRChVktk4j2J3RZkSgzeqZR7M2fneHCu6uWiUBFiqYpkl/KsD5slHF28t1VdZZq1aSsWAENQmEFceoc+ckgAO4n9EGWBfASkrSb5IUpow2lfXYqpX0iXOFvz/QpYs8XrzY0GEZats2+Xz29wceeyz794YOlbEHBQFLlgAvvWTLEN1y9izQqZOM+/Rp+dq9Wz4DZs4E+vaV4Kk3TPjw99+ydPfzLSs1WdD+/fIzWyktDfj3X3lsZEbbwYOybavMmiXlvA0aAE8+6dxr/PyAIUPk8TvvFK5JUIgobwy0ERVhEybofVMGDwZGj5bygh07JNNLBSC83Q8/yPLOO7PP2OQsu8pHje7PBuiBtsREa5qQK2aUjhaWQFutWnLSnJ4u+xMVbPduCeYHBEgWiCsqVtQzUb2xXNfI/myKuoGwZYv5ZXYqmy00FChVyv3tWBXAUtlspUtLj0dXVa8uS6sz2jz9O7n7bll++633XnirnlK9euVeHt6tm56h89Zb+qQW3iw5WTKMdu6UY9Hq1fIZsmIF8PnnMqNqmTIyo2S/fvb/36jWCI0aeb6tMmXkxiRg/UQcBw7IsS84WD+2eKJyZfn8SUuzbtb51FS5qQ0AI0a41qpi4ECgeHEJNqpZ0omocGOgjaiI+vdf4PXX5fHcucDUqcBrrwHbt0vA4fhxuQDw9rIUQO/Ppu7wu0pdxFpdDmF0fzZALjZVdpwKflnBjIw2K3q0nTwp2X8Oh2flKN26yVL9LVL+VBP4du3cC4706iVLbysf1TRzAm116shFbnIy8Oefxm03NyrQ5kk2G2B9oM2dbDZA7yVnZaDNiL+Tjh3lJllsrJ615E1OnZLAEyA38vJyzz2SsZmWppeZeitNAx5+WDLXSpaUlhVt20qG1S23APffD7z5pmTrBgXJTcCPPrJ3zOpvw93WCDmpmbmtDrSp/myRkZ7POArINtS+b1X56DffyPGqQgXggQdce22pUrLPA8CPPxo/NiKyHgNtREXUyy/L3bU779R7HgHSH2vVKilnOXtW+iep/mfeaP9+YNcuyWTr1Mm9bag7vWZfwOakMtpUTzIjOBx6sMvK8tHC2qNNZbPVrCl3i92lAm1Ll3pPbx5v5s5si1mpvnhr10qfK29x6JCUs/r5uV7Gnh+HQ9/exo3GbTc311qgTWW0xcVZV0JmxN9J8eL6Z543Tgzy9tvSuL1pUz0DNS+qhG7RIvszwPLzyy/Al19KKey33+o953KKigLGj5fHw4fb03AfkMx2tf8ZFWhTPcU2bzZme85S/dmMKBtVrJ4Q4YsvZPm//0kg1lV33SVL9flJRIUbA21EbkhOBlaulNm2li71vr5N//2nl1y99trV6etly8od2TvukBPlbt1kZiRvpMpG27Z1f0YtVTJ4/Ljem8gKZpSOAtb3acvI0H9vha1Hm6dlo8qNN0rZdWKidTNDFlbnzkm5FaBfOLiqalX5nWuad/WoUv/3UVHS5N5IrVrJ0qpAmycTIQB6oO34cflMNIungbZKlSQLOD3dup5/6v+waVPP/k569JClN+0DgARFJk2Sxy++WHCJ3B13SJ+6/fv1zCVvk54uZaGA9JcrqLfk0KHAzTdLP65evaSXoNVU2WhEhGTEGsGujDb1WV1YA23nz+uT2fTu7d421I2pzZutrVggInMw0EbkAk0DZs+WC4z27YH77pMLyVq1vKuX0McfS9ZNixZ5z4pXvLjMoti3r9zl79dPnyXQm6hSPVdnG82qZEm9hMDKk/yiEmg7fVqCbYAEmzxVGANtvr566TLLR/P3yy9y/Kld27OZ8FT56KJFxozLCGaUjSoq82nDBuO3nZUqo/I0oy00VA8imdkDyZMZRwEpIbN65lEVpLjxRs+207WrjH/7du+ZwCgjQ2beTE2VY2L37gW/pkQJoEMHeextQUNl7lz5vChTBnjhhYLX9/UF5s2Tz+M//5TKAauznVWWfl6Zd+5o1kwCp0eOWJtNrM7NjAy0WTnz6E8/yQ2H2rXd/xkqVpTfv6Z5d6UJETmHgTYiJ+3YIXdlH3tMAhxhYXKxVa2aZLT16iUnanbLyAA+/FAeDxqU/7oBAdKoWAXb7rkH2LvX/DE6KzFRylwBzwJtgN6fS5UnWKGoBNrU+5Qta8wsi6p0NDERuHjR8+3lx6hAG6D/DX73nXeXP9lNBcZUM3d3qdevXGlPtkhuzAy03XijXODGxpq7bxtVOupwWFM+qhrou5vRBug3WqwKVqmyO1WG565y5SRrCpDjjjeYM0dKuosXl55rzjZ8V8dPbyyLu3gRGDtWHo8e7Xx2WESEZN0XLy5VAs89Z94Yc2NGoK1ECemTBliX1ZaWJhPoAIU3o03dbO/Z07VJEHJSWeDs01Z4HDkCREfLzbKWLeUY6a1SU+X4/fXXclOP57LmYqCNqACXL0uj38aNgWXLJDj15ptyl331amDPHuCJJ2TdRx6xf1bCZcvkrn3p0pJxVxBfX8mAa9VKAh89e0oKvDdYtkxOwOrV02fCcpc6eSsKGW0qqywhwdjt5sXIiRAAyTBUmTBmZrVpmrGBtg4dpPwpNtbagG1B9u+XY9KLL0pWqlV9qHJz+bJe7q0y0txVp47s+2lpekmOnU6elElmgIJ7UrkjJES/wP3jD+O3D8hJtgpceRpoA6zJFPO0dBTQ+7RZEWhLT9cn3lFleJ7IOvuo3Y4e1csrx41zLcuwc2dZbtxo3WeXs957T362atXyn9ghN82b67253nsPWLfO+PHlZft2WRoZaAOs79O2b5/MOFqsmDEzjipZA21mBhSyfu55eoNJBdpUZjh5t82bpXLo9dflc/uPP2QG2Xnz7B5Zdpomx6fwcLlReN99QOvW0tvxo48YcDMLA21E+bh8WXqkTJsmmWK9eskF9rPP6pk9AQEyo+eDD8oJdt++1s1wlJsZM2Q5YIDzvWECA2V2v/BwCUw8+qh3HHSNKBtVrM5ou3xZZmUDjA+0hYbK0upAm8qk85TDYU356JEjkgnl5wfUrev59kqU0Pv2eEP56OnTwFNPAfXrA88/D7z6qgQDa9a0LzC1bJkE6qtU8TybB9D3fW/4fasL6Ouuk0wjM5g9IcKhQ/I5FRSk74OeMDujTdOMCbRZOfPo7t2yDxQvLvump1Rp5tq11vYYzenSJTkfOntWytuGDHHt9RERMjGRpslxwlucPAlMnCiPx493r4l9t24yW6matfTyZWPHmJu0NP1GklmBNqsy2tQN0AYNjJlxVFH7fVKSfF6aZcUK2ecrVvS8XPyGG+RmalKStUFbcl1CggRWExKAJk2kqunxx+V7Awd6zw3Z1FS5rhs2TPaD8uUlyFasmOx7jz4KjBlj9yiLJgbaiPIxeLBcsBYrJv0SFi7MPQvAxweYNUt6op09KyWYly5ZPlwcOaJfkKqDvbMqVZJUYj8/mRjh66+NH58r0tP1EhPVG8sTVme0HTsmy6Ag45oUK1YH2oyccVRR5aPq92QGdRFSr54ExI2QtXzULpomd0vr15fSrbQ0mT14wAAJAB0+LJmpdsyEp8pGe/Y05oIpa7lZerrn2/OEKhtt08a892jRQpZmZZJknQjBk/ImxexA26lTetCiShX3t2Nl6agKTjRrJhnjnqpWTbaVkWFvwPmJJ+RnK1tWP1dwlWr27k3lo6++KhO4NGsmN0rdNXmyBFr27gVmzjRufHnZu1f2jeLFjclOzUplYm7ebM1NV3VeZkTmeVbBwfq5hpmfhyqbTfVU9ISPj5796U37CWWXkSHnXEePyjnm6tWScDFtmvz/paRIYMvupIXUVOD++6Wc1cdHjlPHj0sQ99gx4KWXZL0JE6R8XvVjJmMw0EaUh0WL9APTt99Kf7b8BAbKyWdoKLBtG/D009aMM6vZs+Ug2a6dXoLkijZt9Lsaw4bZ2xdp+XK5yCpXzpgyLfX7OHnSmqyArGWjRlzQZmVXRpuRgTYrMtp27ZKlymY0ggr6/vGHuXfI87JvH9Cxo5zQnTwpAeTff5f95ZNPJMh2883Sc+ihh6wNTqWm6oGAnj2N2Wbr1hKoPnXK/EkCCrJ2rSzN6M+mqMwUFSQ2mlH92RSzA20qm61CBfmMdZeVgTYVJDWibFSxe/bR334DPv1Uzoe+/tr9GWtVoO3nn+0PnANyDFdBsTff9CxIUrq0ftH6xhvmzsQL6P3Zrr/emIBuVo0bSyD15Em91NxMZkyEoJjdp03TsgfajOCNAWnK7u235f8nKAj46itpiQLIMWTqVPm8Wr4cWLLEvjGqie4WLpSbzd99Bwwfrh8vQkKAl1+W4xUAvPaafJ+Mw0AbUS7i4/W+a6NGyYWtMyIigC+/lAPtRx/Jl1XS0iSrDih4EoT8PP+89EM7ftzeVGI1sUTfvu7dOc+peHG9T48V6dwqU0vdTTVSYS8dBawJtKkSbk/7+2VVpYoE7jRNAlxWSUmRO47XXy992IKCpMxp61aZAVkJDpaAW4kSEhh6913rxrh6tUwMU768cVlffn76RYed2TwXLuh9t8zMaFNB4fh4c/bvwhZoUxf57s44qqhj/7Fj5gdAVEabEaXTiur7pEqzrZSaCgwdKo8HDwZuvdX9bbVqJRd3p04BW7YYMz5PfP65/D00aaK3BfDEQw/JzbVjx8yfHMuMiRCUoCD5rAGsKR+1ItBmVkuXv/+W41RwsDF/Q4Bcc/j4yO/FzIlm8pOYKBU9c+fKccfsiasKk3Xr9JmJ33tPSuKzqlkTeOYZeTxihDWl5DllZMjx6KuvpNXRokV5Vwc995wkagDAlCl64Jg8x0AbOS0hQXbE55+XnbdbN6lBX7TIvFTTs2dl+8OHS7prYqI575NVaipw771yJ69hQ2kw7orbb5dSBEBOStXFmdm+/15O7sqX96wZa1AQMH26PJ46Fdi0yZjxuSIxUW/8PGCAcdtVJ3FWBNrMmggBKBqlo1YE2rKWyRmpQwdZLl9u7HZzo2kSvK9XT2bDu3xZjjF//y0nermVxNaoAbzzjjwePdq6PiG//SbLO+4wNsPCG/q0/fGH3MyIiDC2WXdOJUvq2VdmZLWpi02jA21HjpiToWREfzZAPheLFZP9ycwMnfR0vUF9VJRx273uOvk/S062vv/i9OlywV+uHPDKK55ty89Pjl+A/RNHaZp+M3TgQGO2GRgIjBwpj6dMMWabeTEz0AZYNyFCWpo+2707lRgFUZ//ZmW0/fSTLG+7TYJtRihTRrK5s27fKpomE6RVqyaf5QMGAJ06yf7/2GNyM+1atn+/ZBinpQF9+sjvJDfR0XKj/cABa294KpMny40EPz/JQi6oBc/AgXpw8IknvGem98KOgTYq0MmT0ty1YkU5oLz5ppQQfP+9lFbec48Edoy825GeLqms4eGy/XfflQNA06bmTzQwcaJkgpQqJUE+d8pVRo2Si8PkZBm/FXegP/xQlgMHelZiA8iJcL9+8oFrR1bb119LQCEy0tiLFZUtYkWftiNHZGlmoO3cOcl0MpsZpaNW9GgzOqigqEDbsmXm998YO1b6axw8KMfDzz6T9y0oS2/gQOkTkpwsN0asmIl01SpZ3nKLsdu94w45Wdy1SxrN28GK/myK6lP099/Gb9vojLaKFeX/Ji3NnH3ZqECbw6FntZk5IUJsrHx2BQUZe9xxOPQLJSsC/Mp//2Xv4WNEv1HVhsPuQNvWrRKsCgwEHnjAuO0OGCA3QHbsAP76y7jt5mTWjKOKKn02O6Pt4EE5jwkO9jxzNTdqvzcrM0x9NqgAslHsKh+dMAF45BG54V2tmgQQq1aV49rs2ZJBb3ZWsDe6cAGYP1/ObxIS5Npk9uy8W8OUKJG9JNPMc92ckpLk/xEA3n9fn1CnIOPGyefWkSNyHUueczvQdvbsWcyePRvR0dE4faVRzdatW3FUpXE4YfXq1ejatSsqVaoEh8OBxU40n1i1ahWioqIQFBSEmjVrYoaaYjGLRYsWoUGDBggMDESDBg3wrTfMiV4IJSRIU8cGDaQUKS1NAl3DhkkwasYMSYkNDJQa9N69jbmjnZ4uGWWjRsnBvF494H//kw/L2Fjpj7Nvn+fvk5s//9Sz0T780P2ZCn18JN26WjUZ89ixxo0xNydO6CffjzxizDZffVWyUpYvt77E49NPZTlggLH9zazMaDPqAjE3ISF6xpCa2dRMhbF0ND1d78dkdEZbu3aSin/woLkNlt9/X8pDATmG7N8vAXBn9gmHQ0rJS5eWjAR1wmeWixf1zId27YzddkiIXr7/+efGbttZVvRnU1SgzejjlKbpwWej9glfX/3i2IwAlpHHUSv6tKmbOJGRxvfNUiWbK1YYu938PPOMPsuoUVlfnTrJ8o8/7M2OUdlsPXsaO2FRmTLAXXfJY7OOVydP6p+dqsTTaFlnHjWzQbrqpVqvnrEzjipmBtgzMoD16+WxEb2Es1KBtt9+s6708NNP9ZvrL78s5xy//iq/u5UrJavtzz/Nz9b0NnPnymdQ374ShKpTR5JNihfP/3UPPCDl8hcuWBu4eu89ObbWr593xl1uihXTe1bOmGF+Nus1QXPDn3/+qZUvX16rXbu25ufnp+3fv1/TNE0bM2aM9uCDDzq9naVLl2qjR4/WFi1apAHQvv3223zXP3DggFasWDFt6NCh2j///KPNmjVL8/f31xYuXJi5zvr16zVfX19twoQJ2q5du7QJEyZofn5+2saNG50eV2JiogZAS0xMdPo1RcnGjZrWvbum+flpmpyaa9r112vahg25r79qlaYFBcl6w4Z5/v7Dhsm2AgM17eOPNS0jQ54/dkzTrrtOvle9uqYdOeL5e2WVkqJpTZrI9nv21N/XEz/9JNtzOOT3apZp0+R9mjc3drv9+um/D6scOCDv6eNj/P/xpk2y7QoVjN1ublq0kPdatMic7ZcvL9v/6y9ztp9V8eLyXnv3GrfNHTtkm2XKGLfNrA4dku37+2taWprx22/XTrb/7rvGb1vTNG3xYjluAJo2YYL725k7V/89bN9u3PhyWr5c3qdKFWOOnTl9+aVsv0YNc7afn9RUfR+wYn/75BN5r/btjd3uiRP6Z/rly8Ztt3172eZnnxm3TaVNG9n2/Pmeb+upp2Rbo0Z5vq28jB8v79Gvn/HbPnNGPhcBTTt61Pjt57RypX7+snmzsduOjJRtF3Dab5qUFE0rW1bGsHy58dtftEg/HqanG799dbytXdv4bSspKfq5/Z495r3Pm2/Ke/TpY872zTwXUOcxxYvL54SRMjI0rVIl2f7PPxu77ZyOHdO0Bx7QPx9Gjsx9vY8/lu+HhGjayZPmjslbTJmi/16qV9e0MWM07fx551+vrjsATYuJMW+cyrFjmlaqlGefm+pvoWtXY8dWlDgbK3Ir0Hbbbbdpzz77rKZpmlaiRInMQNu6deu0atWqubNJpwJtzz33nFa/fv1szz3++ONay5YtM/993333aXfccUe2dTp16qT1ceEIfq0G2k6d0rQRI/SLO0DTmjbVtEmTNO3Spfxfu3Ch/hpPAkozZ+rbWbDg6u/Hx8uJBaBpDRpoWkKC+++V08svy3bLlZP3MYoKVjVsqGkXLxq33azURf+kScZu9++/9b+H9983dtt5USddt95q/LbPndP/vsw+SVAnSJs2mbN9daHy++/mbF85f17/nRl5SDx9Wt9uQccXd/z+u2y7Th3jt61p+snXjTcav+3NmzUtOFi2/7//eRZYysjQtB49ZFvNmpkXpHr2WXmP/v3N2f6FC5pWsqS8x9q15rxHXtSJcunS5lw057Rhg7xf5crGbnfLFtluWJix233oIdnua68Zu11N07SqVWXb69Z5vq1Jk8y9oNc0/QLFk+B4fqKiZPtz55qzfSUlRc5ZAE0bNMj47T/6qGz7+eeN37YzfvlFv+lmxo2YS5fkeAFo2ooVxm9f/S336mX8trNq2VLe5/PPzXuPRx6R93j5ZXO2n5qqJw4cPmzsttU1ixnnq5qmaY8/Ltvv3duc7WuaXLOVK6ff4B45Mu/PubQ0PSHh6afNG5O3WLlS03x95eeNjnY/mKo+F9q3N/9GYZ8+8l433OD++cru3fq13+7dxo6vqHA2VuRWku7mzZvx+OOPX/V85cqVER8f70F+Xf42bNiAjjmmf+zUqRNiYmKQmpqa7zrrVW5vLpKTk5GUlJTtq6iJipJShrZtpcTz+edllpFx44B584Bnn5X06smT5dK3Xz/pL7F1q5QOBAXlv/1evfSm9YMGAZcuuT7GmBjg6afl8WuvAffdd/U6YWFSylipkpTV3HabzM7mqe3b5T0BmQDAyBK5d96RRsw7dkjZrdHOntXLmnr1MnbbDRvqpbRPP63PSmOmb76RpdE/CyA9E1TzbjPLR1NT9bIOM0pHAesmRDh5UpZBQfr05UYoXVrvJWjGx4ZZ/dmU3r2lNGzTJmP7hl26JMe+S5ekl9EHH3hWPu1wSAlAiRJyPDerv5Nq0K7KwoxWrJh+TPjiC3PeIy/q+HrTTeaUNuWkWhYcPWpsf0+zytnNmnk0PV2fVMaI3k1Wlo6aMXsioO9fZk8MMn26nLOUK6eXrxupZUtZbtxo/LadsXChLHv2NL7EF5DPy3vukcfz5hm/fbMnQlBatJDlunXmvce//8qyfn1ztu/nJ7OFA8Yfo1SfPNXPzmiDBsly0SL9WGikf/+VXq6nTsnMuxs3Am+9lffnnK8vMGmSPJ4+Hdizx/gxuersWSlx/OEH+frlF2MmzktOllY86enAgw/KcdDPz71tjR8v57srVgA//uj52PKybJn0kfPxkfZH7p6v1K2rT0Jlx0QORYo7UbwKFSpoW7du1TQte0bbL7/8olWpUsWdTTqV0VanTh1t/Pjx2Z5bt26dBkA7duyYpmma5u/vr32e49bL559/rgUEBOS53ZdeekkDcNVXUcpoK1ZMzx7J76tJE0378Uf33iM+Xk/Fv+ce5+8SZmRItpRKUe/cueAo/M6dclce0LRataTc0F3JyZrWuLGxJaM5LVum3x3IUulsCJVNmCPZ0zAZGZo2fLheQvLJJ+a8j6bJ3Ub1Pld2acPdeae8x/Tp5mxf0zTt4EG9VMGsDJi775b3mDbNnO0rGzfK+1Stavy2q1c3Llslp+ho2faTTxq/beWuu+Q9hg41bptvv62XHJ09a9x2hw6V7XbsaNw2laNH9f32xAnjt6/88IO8T7Vq1paP3nOPuVlKuQkNlffcssW4bU6dKtvs0cO4bWqaps2ZY87f1pEjsl1fX2OyjrZuNbd1QHq6nolqVqndH3/I9kuUMLb8N6uTJ/VsrBkzzHkPVXJXrJjxJXcFSU3V969ffzXvfVTpbUiI8VnbjRrJtr/7ztjt5vTNN3oFiRkyMqR9BKBpf/5pzntomqbdcos5mXlt25pXNp/zPcaMMXa7ly5JWyBAMhddKYdU5z4PPGDsmJy1ebOm3Xef/reT8ys4WNOGDPHsGPn667KtihU1LSnJ8zGrrP/ISHOOeRcuyPUwYEwbJ3X8Cg42tnqsqDA1o6179+4YN25cZhaZw+FAXFwcRo0ahV5mpKFk4chxa1/TtKuez22dnM9lFR0djcTExMyvw+q2bxGhadJ09vffga++krsRw4ZJptrDD8sMKn37At99JxkPqgGnq8LCZLZIf3+5W/joo/k3UD13TmbQa9dOsqUuX5YMjnnzCo7CN2ggd9hq1JBmnR06uD/r6cSJcnewXDmZ/MHI5vtKhw4y1TMADB4MXJk/xBBmZ5I4HMDbbwNPPSV/SwMHAqtXm/Neat6S1q31ZvlGs2LmUXUIqVLFvAwYqzLazJhxVFEzj5oxIYLZGW0AMGSILD/6SO6qekrTJIMNkJn+QkI836YydKj8LS5bZvxsluoYFBUl2btmad9e7gofOqQ30DabppnX7Do/9erJ0shsycKW0abGW6mSMVlHqin6iRPGzpKuHDsmmai+vvp7Ga15c/lsPH9empOb4cUX5XjWuLGcx5khMlIypC9etG5fVlavls/NcuWMn7glq7ZtZV9LTDQ2iyU5Wc/INzuj7eab5Rzwn39kBlqjnTwpTdsdDmkwbxZ1jDJyQgRN0z9LzZqQApBzb0AmpTNqUgpNk+vAv/+Wc7vFiwtu7J/VK6/IcsECa2fTPH1aMu5at5brWTWZSni4HBtvuEEm+rl0SSZs6N7dvRlSjx/Xq5zeeMOYao4XXpBjzq5dMlGV0dTkFZUr6/8/nrj5ZpkE59IluTYm97h1CThp0iScPHkSFSpUwKVLl9CuXTvUrl0bJUuWxHgzcsyvCA8Pv6o09cSJE/Dz80O5cuXyXScsn1rAwMBAlCpVKttXUeJwSAlg+/Yym+czz0g546RJwJw5ksr6xRdAt26eB5luvVXSVn195UOhd2+54NU0ORjPnSsXpx06SGCuf3+ZGjsoSGbYW7oUKFvWufeqVUuCbVWqyMFl3DjXx3v4sATaAONLRnN68UU5ufzvP2DkSGO2qWn6RW6OimlDORzyoXX//ZJGfd995sx2uWiRLM2M11sx86iZM44qVgfazNg3VDDVjBM1NRuo0TOOZtWhg5xgnz+vz9TkiX//leNlYCDQp4/n28uqRg0pkwKkRYCRfvhBlu7epHFWsWJyYwgAfvrJ3PdS4uLk79PPz7zyoNwU1kDblXufhjB6vGXK6MFrM2Yg3LtXljVryg1HM/j46CU9331n/PZ37JCSI0BmrjOjrBKQn0MFiVT5nVVU2ejdd7tfCuYMHx85ZwKMnX101y4gLU3aLxhRUp2fcuWARo3k8apVxm9flY1Wrw4EBxu/fUUFvo0sGz96VALSvr7mlb0Ccm1WurTMdmlUcH38eNnPHQ7g449dP7+LipJAclqa+UEYTZPP+w4d5O/xueekPUuPHsCGDXL+dfy4lI9u2gTs2wcsWSLnC7/8IgEjV28CRUfLdlu0kJlDjVC6tATDALkeNKK8VVm2TC/pnTYNMCKM4XBIWylAYgZGjvda4lagrVSpUli7di0WLVqE119/HU899RSWLl2KVatWobgrIXEXtWrVCstzNJhZtmwZmjdvDv8rZzV5rdO6dWvTxkXZ9ewpATVfXzmhqVVLDniVK0sft/ffl+miL12SO1ivvCInDk895Xqgr2JFPQNk0iTX+wW88orc7WjXToKCZgoMlB5n6oPt11893+bu3XIhGBBg7p1ZQMY9c6YeLBw61NiLqhMnJOgK6AEBM1iZ0WZFoE31UDOLuottRkabCrSZmdFmZqDN4QBGjJDHU6YAKSmebU8FrNq3l55qRnvmGVl+/rlxv/PkZDnJA/QAgJk6d5bl0qXmvxegZ7M1bSqfY1YxI9B25IgsVb8io0REyL5w+bIemDdCXJy+faOooKDatpFUoM3MzBxAsjQAuZg08jMYkIvYjAz5DDb7nKJpU1lu22bu+2SVnq73gVU91MykLtJ//FHPvvGU6s/WqJE5FRg5qZsbZmRQqmzGyEjjt52VOg8wMtD211+yrFdP7zdrhqAgvWe1Ef1JP/8cGDtWHr/3nvs3yFTP6Rkz3OvLXZDLl+WaqWFDGaO6ZmrQQDLCvvlGej3mDDs4HHIusmSJ3FzZtEkysxYtcu54uWkT8Omn8njKFGOrUh5/XP5eEhKMu+F59KgcZzQN+N//JDBrlHvvlX3zzBnpF2j05821wK0/n7lz5yI5ORm33norRo4cieeeew633347UlJSMHfuXKe3c/78eWzfvh3br9zOio2Nxfbt2xF35QwoOjoa/fv3z1x/0KBBOHToEEaMGIFdu3Zhzpw5+OijjzAyS3rQ0KFDsWzZMrzxxhv4999/8cYbb+DXX3/FMDO60FOe7r9fmmredpt+Au5wSEbAiBFSarV1q1xEvPiiZ2UW3boBd90lJ1CjRzv/ut27JeAFSFabFScsrVtL6SggB8QLFzzbnspma9vWtbRvdxUvLv93Pj7yYW3kXdrFi+UEv3lz/WLIDOqE7r//zMnKA6wJtF1J4jW0DDk3hbF09OxZ/fdiZqANkLL7ihXlZMfTyUJUoO2uuzwfV25atpRjUGqqcXehV62SO7/h4XIyazZ1UbBmDWDFvEUq0Gb1vToVaDOy2bRZx6WAAH1fNrJ81IzxmlXmClgXaLv1VvksPnpUzqOMsm6dZI74+QGvv27cdvNiR6Bt3Tr57C9TRn6PZrv+egmIpaTomXSeUoG2Jk2M2V5B2reX5YoVxm/b7IkQFDURiroBZwQrykaVe++V5ZIlcq3jri1bpP0LIJPiqQno3NGtmxxPT52SSiajHDggAf9q1YDHHpPqk5IlgeHDJVC6c6eUtBd0zXbbbXJsueEGOR+85x6Z6C+/7lCXLunl8g89BNx4o2E/FgDJdFYTzL33nudZYunpEmRLSJDjwXvveTzEbHx95ZrP11f+j99+29jtXxPcaQDn4+Oj/ffff1c9n5CQoPn4+Di9nRUrVuQ6CcGAAQM0TdO0AQMGaO3atcv2mpUrV2pNmzbVAgICtOrVq2vTc+lo/vXXX2v16tXT/P39tfr162uLFi1y6edztsEdOefiRZke2Mxf519/6ZMNbNzo3GvuvVfW79rVvHHlJilJ0yIijJnaXjUkfeMNY8bmrHHj5H1DQ6UBpxE6dJBtTpxozPbyU7WqvNfq1eZsv1s38ycqWLJE3qN5c/PeQ9M0rW9feZ/Jk43f9scfm9NEfcsWc5ue56SazIeHu78/nD6tTyPvyeQuBZk/X96jenVjJhQYMkS29+ijnm/LWarhr9mNwDVN05o1k/dasMD898pKNYsPCTHm/yk9XSZnAWSyFqO1bi3b/uor47bZs6dsc8oU47Y5eLBs84UXjNumoo77U6cav+2cevWS9xo71rhtqomCHnvMuG3mZ9s2eb/Spa2b3OSpp+Q9H3rImvfTNDk/A+Qcxwi33irb++gjY7ZXkFOn9PPr+Hhjt33HHbLdmTON3W5OWSdWMaoR/f33WzdJTkqK3vh/1Sr3tnH+vKbVqSPb6NLFmIm61N9206ae78MXL2raSy9pWmCgPqlBRISmTZrk2cRQly/LcVKdX6kJCebOzT7mixf165Dy5TUtlzCHIdLTZXIRQNNefdWzbakJG4oXN28CHk2TCQvVBG+7d5v3PoWJs7EitwJtDodDO5HL1GLbt2/XypQp484mvQoDbYXTQw/JgaBdu4IP+KtX67Pk/fWXJcPL5rvv9Bm3Tp50bxspKXJwBWQ2NSulpGhazZrGXVScOKF/CO7b5/n2CtK5s7zXBx+Ys/26dc2f0WzdOnmPGjXMew9N00/q580zfts//yzbvv56Y7f71Vey3VatjN1uXpKT9RlU3Q16f/mlvP6664wdW07nz+szIxoxo2W9erItF+9neeTxx+U9hwwx930SE/Xj0uHD5r5XThcv6hcF7n5GZBUfr3/mpaR4vr2c7rtPtv/uu8Zt84YbZJsFTEjvEnVh2K+fcdtUIiNl27/8Yvy2c/rkE3mvFi2M2V7Wz2CrLqSSk/Xgb2ys+e+XliYzCAIyg7FVdu2S9wwIcG1mx9xkZGhauXKyvZgYY8bnjMaNzbnhUK2auTc9lfR0PYBj1I2s666z9m+pf395P3dnOX/ySXl95cpyY88ICQmaFhQk2/Vk9vglS+RcVn3mtW+vaQsXGvtZtXKlzOCqgsaAzEb76afyd92mjR60Mvvv8Ysv5L3KlHF/RtM//9SPn2YH3TMy9Oum7t3Nfa/CwpRZR5s2bYpmzZrB4XDgtttuQ7NmzTK/GjdujLZt2+L22283OOeOyDmvvCJ9Elatktlo8nLihKQPA5JCbUXad05du0qa78WLMiGFOzZulNLT0FDzZ57Kyd9f70317ruez4T01VeSAh0VZe4skYpqar5pk/HbTknRG/GbWQ5RlEpHjx41drtW9GfLKiBAZgkFpKfHlQm5XaLKRrt0MW5cuSleXO9zpiYfcdehQ1KC7+srZRpWUe/122/mvs+vv8pxqW5d4/uaFSQ4WPqaAvrxxBOqXCY83JxG/WpfNnJiE3VcMPJ3b1bpaHq6/v9kdukoIA2+ASkdNaI/0rffys/QrJn8vVshIECfnMiK8tE1a6RNQenS0ljdKvXqSeliSorn5ZfHjkmpnq+v/ruzgurXZ+SECOfO6fuh6p1rFh8fY8tHL1zQy17VZBFmU72Lv/3W9V5Zv/yit4v4+GMpnTZCuXL6xE2qFY8rUlKkRLNbNykLrVxZrgd++00mRTPys6pdO5lx+NQpmTzP31/6Dg4YID26166V3rhLl0o7HjPdd58cZ8+c0fuMu+LsWfn9pKbK7+7hhw0fYjYOh/SU8/GRSXiMbFlQ1LkUaOvRowe6d+8OTdPQqVMndO/ePfOrT58++PDDDzFv3jyzxkqUr6pVgVGj5PGgQbk3Oz5/Xj6s4uKA2rXtqzd3OPQpu2fOdC9Qpeb8uO02Y5t1OmvAADlh3bfPs6nr09P1vgJZWjKaqmVLWW7caPy29+2Tn6lkSf3i0wxqdt7ERJn5ySxqEufwcOO3rS6gT5+WoLNR1AWvFUFbpW9fmbnr6FG92baz0tP1WTTNDrQB+qy+zjYHzsvPP8uyZUt9NkcrqJ5BO3fqf59mUD/fHXeY9x75UX+/RgbazOobaXSgLT1d/7818jiqZmk0ejKEw4flojEgwPyZIAHpa1uxolxobd7s+fYWLJCl2ZNC5WRlnzbVQ/Pee+X/ySoOh3GTuKgZWuvVkyb5VjFjQoQdO2RZqZJ+49BM6sabEcfTNWvkGFWtmnU3YTp2lAl54uJcC3ScPg088og8fuop44PMDz0ky6++cj3o/7//ycQDvr7Sl+3ff2X/NLNndpkyMhnE/v0yq2a7dtKL7fHHpf+huolhJl9fYMwYefz226736x47Vq41qlXTJ9kzW/36cp4L6LOnOsuTvoKFnjvpcp988ol26dIld15aKLB0tPBKSdG0G2/Ue1ep/8KMDElNrl9fvleqlKTz2+n8eRkHoGnLl7v++hYt5LWzZxs/Nmc995ye5u2uRYv0FOpz54wbW34SEvTU8VOnjN32woWy3RtvNHa7OaWm6j+DWb0kkpP198ilW4DHMjL08mcjy5Vuu022+cknxm3TGS+95F7J6sqV+j5gVP+Y/CQmShkTIL3A3KX6cr3+unFjc1bTpuaVNGua/G1WqSLv8dNP5rxHQR5+WN7/lVc839Z778m2evb0fFu5mTdPtn/rrcZs79gx2Z6Pj7H7RNZeTWlpxm132TLZbv36xm2zIKrPrKc9ok6ckN+zVSWcWU2ZYk2v3IQEvXRw82Zz3ys3338v712tmme9rMaPl+307WvY0Jxy8qTx5xszZsj27rjDmO0VRPUTHTnS822NGCHbGjjQ8225QvVmfOIJ51/Tp4+8pm5d43oqZ5WerrfO+OIL51/37bf6Mf7HH40fl7dLTdX7zU6a5Pzr/vpLP16b2Z4mN7t36+/t7HE0PV3Tbr5Z0555xrprPCuYUjqqDBgwAEFW3kohcpK/v9yZLVsWiImRUsSnnwbatJH02n//BcqXlzRqs2c5Kkjx4sCDD8rjGTNce+3Ro8Aff8hju7ItALk75usr5RBqJixXaBrw1lvy+IknJG3bCuXK6eU9RpePqunqzf778vOTjELAvPJRVTbq52fOHWeHQ8+wyW8mKFfZkdEGSCatvz+wYYNrf1dq9t6775bftdlKldLvartbPvrnnzIjp6+vdZmoWZldPrpzJ3DkiGSNqLIpq9WuLUsjMjCOHJFlYcloU9sJCzN2nwgPl+2lpxtb5mrVjKNZ3XSTLNeu9Ww7a9ZIVn3Dhp7NAO8OqzLa5s4FkpPl/aKizH2v3LRvL61NDh3SSw7dYfWMo0poqN5mZfVqY7b511+ytKr0Us3kvHu359v69VdZWt0t6cknZTljhnPZhd98I7NF+voCn30mGXFG8/HRzwE+/dS51/zzj55l9+yz+mzi1xI/P2D0aHn81lvOVXVcvCgtjzIypDLBypYdgJS7qtZLql1KQWbPlmPGhx9Kqey1xq1AW3p6OiZNmoQbb7wR4eHhKFu2bLYvIjtVry5lleHhklo7dapcEAYGynTWe/bopYN2+9//ZLlkifQNcJYqTWvdWu/jY4eICJkyG5Beba5at07KNwMCPJtm3B3qb2DDBmO3q06iIyON3W5u1OHWlb8dVxw/LsvwcPPKk40OtKWm6mVhVvVoU8LD9X4l77zj3GsSEgDVcUEF3q2gykddLXNVVJn+PfdICZvV1Anmr796Vv6aF1U2esst0i/NDoWpdFR9DhnVb1Ftx+jPN19f/XdgZPmonYG29es965O6fn327VlJ9Zc9ckSOhWa4eFFvT/G//1lTZpVT8eJ6wN6T8lEVaLO6Ly9gfJ+2whpo++8/fexWBzpuvVUCVJomZd6xsXmvm56ulyc+95yUR5pFBdqWLQO2bMl/3aNHJUHgzBk5D3/lFfPG5e369ZNr1v/+A6ZPz3/dxET5vW3eLOWvkydbMsSrjB0rn6NLlxZ8/RQfL9fdAPDaa+adf3gzty6dXnnlFUyePBn33XcfEhMTMWLECPTs2RM+Pj542dXCXSITNGsmAY+ZM4GRIyUItHcv8PrrehaQN2jUSMaamgp88YXzr/v6a1mqi2U7DR0qywULgKQk1177+uuy7N/fnB5g+TGrT5vKaLMi0KayzMwKtJnZn01R/U1Uxo2nDh2Si86gIHsCQGqSkK++0nvQ5GfKFOlr0rSptZlT3brJydKff7oeyPn8cwlE+fsD48ebM76CtG0r73/4sNxQMZrqmad6K9lBBdqM+Pms6tF27px8eUplm5nR59KMPm12BNqaNJEAztmzkiHirnXrZGlHoK1kST1zU/UfM9r48fK5EBFh7c2MnNSxZNky915/7pzcKAasz2gD9D5ty5d7fnND04C//5bHVgXa1CQfBw64N2GRom7CNGkiFTJWe/99ee8TJ6Rvm7ohmtOCBXI+Wrq0HuwwS61awP33y/9r//55n88lJUn22uHDEvj84QdJgrhW+ftL4AqQCRry+r9MSJAg65o10g/3hx+s6QWam9q1pUc3ADz6qHz+5Ob0abkRe/asZBGrvuTXGrcCbZ9//jlmzZqFkSNHws/PD3379sXs2bPx4osvYqMZ3cWJ3BASAjz2mKTkDh3qvZF01Uj0k0+cW3/fPjnYOhwyc43dWraUoNKlS3oA0BkLF8okCr6+Egy1mgq0/fGH57OmKhkZekabFaXJZs88qj70zQxYGZ3RlnXGUTsyF5o0kZOLjIyC/643bdKDzaNGWTvecuXkxA1wrXx0wwYpXQDk5N3q8lyleHGgVSt5bHT56LlzcowF7C3NVwGI//6TiXw8oS58zGrcXaKEBE0AY0oyrQi0GTnzqB2BNj8/yWoHgN9/d28bly7pGSh2BNoAvXzUjJnsdu/W21NMmSLHDbuo7Ke1a2XiDFdt3y6BjMqVpaTaarffLkGR3bs9L/U9fFgydPz99Uwzs1WuLKWTaWn5Z4IV5LvvZNmtmzHjclWxYnLuXL26XA/cdNPVN8v++w945hl5/Mwz1kxW9NZb8nf5zz9AixZSqZM1IHvmjHye/vWX3Lz9+WdrJsHwdg89BNxwgwQhn3766iD20aMyQcPWrRLYXbFCP+7b5Y039P/rNm3khq0a94EDkqVYr57cxClVSm7O+vraO2a7uBVoi4+Px/VXivVLlCiBxMREAECXLl3woyfTDxJdg/r2lZONrVv1dPT8qIBcx47WzXaUH4fD9WDh6dPA4MHyODrauhOtrK6/XkrCEhON6dkByMXsxYvy/2lF2aLZGW1ZS0fNYnSgza7+bFm9/rr8Dfzyi373O6eTJyVQnpoqgbl777V2jED22Ued8fPPcjc6ORno3t3+kg+z+rQtXiz/L3XqWBs4yal0aT1jQmWyuCM9XS/FNPOGk5HZqWYG2qpVk6VRGW1paXqA3+q/l06dZKkyMF0VEyN/62FhQI0axo3LFc2by1L1nTVKaqpkXqSmAnfdJccsO113nfQ6u3jRvZliY2JkqX5fVgsJ0X+Hc+d6ti1VAlu/vnUzwPr46Flt7p7zXbyof6b36GHIsNxSqZIE12vVkqDhrbfqx6C//pJAV3y8/H5VwM2KMW3cKH/nx47J34oqdVy9WjL2N2yQzzUVKCT5u/zwQ7lxsmiRVEMocXGSvb9rl3y+rl6t35iwU2ionN9WqiT9bJs0kecaN5a/yZdfliy8yEhp72HHNZ63cCvQVqVKFRy/cgVWu3ZtLLuSB71582YEXss5oERuCA3V74wVFKhKT9ebjapGot6gXz/5sFi71rkypxEjJO09MlLvIWE1f3+5iwQYVz6qykZr15btm83sHm2qdNSKjDajSkezZrTZpVYtYMgQefzMM3IhntWPP0qg99AhGadV07Pn1KOHvO+mTfrvLTeaBkycKEG2s2flbuq8eeb17XOWakT9++/GZaUC+kVkv372/L9kpU5QPWmg/t9/8jfo42PuvmxknzYVaDOjB6nRpaOHDsnvNyjI+ptfKuNy5UrJTnNV1v5sdv2tt2kjy7Vrje23OHasBO9KlwamTbN/X/bx0csvV6xw/fUq89CuQBugN0JfvNiz7agyYatLYFWgzd0bF7/+KvtZ1ar2lO9mVaOG7DN168qx7LrrJCgTFSXHpNq1JfvOyh6j1avL+XR0tARQly2T3nDt2kmpcHi4BIuaNbNuTIVB06b6xAhPPin/n6mpsr/Fxso55dq19k/il1XjxvJ/3aOH/F+fPi1BXodDzs2++EL+ra6zrlVunSbffffd+O3KLeShQ4di7NixqFOnDvr3749HvOnqn6iQUBlh8+YBly/nvd6vv0pAomxZ++/OZlWpkn5nfdy4/Nf95RcJFjocwEcf2dufweg+bVb2ZwOKRkabujA1OqPNzkAbIAHkcuX02bVOnJBgyeOPA126SPCjfn0JullR1pGbsDDJjAWk70tukpMl8+6FF+Qi+LHHJLBl1QzB+bnhBhnH6dPG9Xc6elTPkLOzn5OiTqw9ybpVQeyKFc2d1dbIjDYVrCsMpaOqbLRWLeuDzw0ayO/98mX3ZoNUM5baWYoUFSXnASdOGNdvcf164M035fFHH9nXzyin9u1l6U6gTZ2n2Blou/VWOYYcOuRZ+aU6XludnePphAgqwKhuUtktPFyuC9q2lWPA2rUS9L/rLgkyq8CilUqUACZMkEynu++Wm87h4ZK1v3GjPnstZffCC7I/nD4t1yaNG0sLixIlJGCpMrG9SUQE8O230m4jJkZaAsXGSh/Hvn3NPd8oLNw6JXj99dfxwgsvAADuuecerF27Fk888QS+/vprvK4azhCR0+64Q06WT56UWva8zJ4ty/vv974GomPGyEXGZ5/J1OO5OXdOn2l1yBC9x5JdjJ551MoZRwHze7RZmdF29qznfagA/eTf7kBb6dLABx/Iyfhnn0lQKzJSJmgBpDHs9u3236EcPlyWs2dfPfV6RoaUXi1cKCfLH34o4/eWY4+/vz6BRF4luq764gsJKLZpY18pXVbq78OTjDa1T5h9om5GRlthKB1VgTY7LmodDj2rzdV9IC1ND87dfLOx43JFYKCe9aAmZvDEpUv6zIwDBgA9e3q+TaOoQNv69XITw1nHj8tNJIdDP2+xQ/Hi+uyV7gQLFdXjzeqsME8CbenpwPffy+O77zZuTJ6KiJCZYFeskHON7dulWb6qeLBL7doyq3lysvz9fvWVdwaLvEVAgAStqlaV39euXZKN+OWX9p/PFiQgQG6Y9OrF/+Oc3Aq0rV69GmlZamFatGiBESNG4M4778Rqd26pEV3j/PyAYcPk8dtv514GdfiwHIQBySrxNq1by/TNgAQRpk7NPrNTWprMRhQXJ+nlal07tWghyx07jJkpT2W0WRU8Mbt01IrJEEqVki/AmKw2tQ1vyGDo3VsuftWFib+/3GlesUIyyLwhYNWxI9CwoQQ5c/Zce/NNmbnM318y71SQ3JuoC57PPzem7Oyzz2TpDdlsgDGlo1b1LTQqoy05Wfq7AOYE2lRwPylJenR6yo6JELJSgTZX+7Rt3Sq/g5AQ+0u51EQMKsPOE889J4GUihWByZM9356R6teXmy6XL7uWSa9+L40ayU0cO3mSlQfITTUV/G/c2JAhOc2T0tHNm+W4FBKilzt7C4dDypL79bP+d1oQb8j8KyyqVZNMwIULgfnz5bO7Sxe7R0WecCvQ1r59e5zOJYUiMTER7dURmIhc8thjEnDYtSv3E+YpU+SO2i23WDcduqtGjZIL1PR0mT2nbl1JIX/9dUkXX7xYggtz53pH6VmlSnJxqGl6/xNPFKXSUU3TM9rMLB0FjOvTdvGi/rvwllmGO3aUEo4TJ+QC44cf9D493sDh0Gfle+89YPx4Obl75RUpZQCkv1GHDvaNMT/33CO9sf75x/N9+M8/pY9MQIA9k1PkRgXt9+xxvw+d6r9ndqDNqIw2ddwJCDBnVrrixfXtGlE+aneg7bbbZD/evVuOM85SM5Xecov9M8KpwIWnGW0//CA3+QBgzhz7s3pyUgERQLKQnKVmQW7b1vAhuUxlEasxuUpNhFCtmvX/P+rGRXy8fB67QmWMdujAkjgyT4kSkhnWu7e5N7nJGm4F2jRNgyOXEPWpU6dQ3M65s4kKsVKl9IyRZ58FLlzQv7dnj1wEA8DIkdaPzVkOh0zo8P77QIUKwMGD0uAzOloyMooXl/RxbzhZVFRWm6cznp06JaW/gHUz7JhZOnrmDJCSIo/NDrQZ1adNXeAXL27/Xf+cypcHihWzexS5u+MOCYwDUgJeu7bMGqVpUlo6cKCtw8tXSIie1fbBB55tS02C0LUrUKaMZ9sySvXqEnC6fNn9UsfCltGWtT+bWdkQRpaPquwYuwJtpUvrN3dc+RxTgbZbbzV8SC5TPeL+/Vf/HHXV8ePAww/L42HD9Ew/b+NORpg3BdpatZLA7KFD7gWq7ZoIAZDzbLXvq/JVZ6kb4J07GzsmIiq6XAq09ezZEz179oTD4cBDDz2U+e+ePXuie/fu6NSpE1rb2VGVqJB77jm5g7Frl8xE+t9/UtLVv7+UYXbuLDP/eTMfHykdjY2Vfk533SUnvDNnSt8dNcOqtzAq0KZKuyIirMvWM7N0VJWNliljfomjyj7zNNCmXh8RwXIFV737rjQNVxc/1arJpCWTJ3v/73LoUFl+/rn7QZ60NL0/Zv/+xozLCH5+EvgE3C8ftSrQpjLaTpzQg/TuMLM/m6JKyw8e9Gw7KSn6NuwKtAGuT+yTnKyXI952mzljckXZsnqwUM2E6orkZMkCSUiQ0jlvbhetMto2bMh/8islMVFm7wO8o2SxRAnpxwS4l9VmZ6AN0Fs5uHLOd/KklI4C3hvAJSLv41KgLSQkBCEhIdA0DSVLlsz8d0hICMLDw/G///0P8+bNM2usREVe+fLS+LJYMbnbHBkpJ+9//CEnolOnev9Fr1KsmJTD/vCD3AlUpbHexqhAm9Vlo4Ce0XbpknwZyYqJEBQzAm3kGh8faSC+bZuUfsfGelfAKT8tWkg5U2qqnvnrquXL5cZGaKj3XUh5MvNocrIefDS7oXJoqGTfaZoeqHeHCrSpwJ0ZVNBRBSHdtW+flPSWKGFvmY/6HHM20LZihXxmVKwoM5d6A0/KR0eOlMBVSIhkzXtD/8u81K0rWeLJyc6dd2zYIH9jNWuaG3x2hcqsc6ctt10TISgq0LZpk/OvWbZMjmuNG3vP/wEReT+XAm0ff/wxPv74Y4wcORJz5szJ/PdLL72EyMhINGvWDKGhoWaNleia0K6d3Dlr2FDK9+Lj5e770qXeP/NMYRQVJWUQx4551ltIZZtYOYtkqVJ6rxCjs9qsmAhBMapHm3q9KmEj9/j4FJ6AvvLcc7L88EP3Zq99911Z3n+/BIu8iSczj8bGygVi8eJSzm8mHx/9ItSTfdmKjDaVJbhvn2fb2blTlg0a2LvPqIy2zZslUF4QNbFS9+7es6+7OyHCzp162fiXX9oz+6srsvZpW7my4PW9qWxUUbPUuprRlpIi/TQBoGlTY8fkrKw3V52dQIdlo0TkDrd6tG3btg1zrzQzOXv2LFq2bIm3334bPXr0wPTp0w0dING1qEEDuev366/AkiVygaVODshYxYtLUBPwLKvNjow2h0MvHzW6T5sKtJndnw0wvkebmZkw5J06d5bs33PngK+/du21MTGSseDrq8/+7E08CbRlLRu1IqCiSjI92ZcLU6BNBQ2uu86z7Xjquuvks+zcOf2zKC8ZGcB338lj1d/QG6iMtpgY1zK0P/5YAibduxeeQIjq01ZYA23q/+rff12bgGPnTsk8Ll3avpnBmzeXmynHjjmX0ZqRAfzyizwuLH9fROQd3A60tb1yxF+4cCHCwsJw6NAhzJ07F1OmTDF0gETXKj8/6Z3StSsQHGz3aIo2FcR0pZQgJ3XBZWWgDTCvT1thLB1loO3a5XBI6SsgveZc8cYbsrz/fqBGDWPHZQQ1uYo7paNW9WdT1MWzJ5MMZJ0MwSwq0HbggHMZYHlRGW12B9p8fZ3vPbVxo5RJh4R41wzINWvKjZ3UVAm2OSM9HfjiC3msJkIoDJzt05acrJ+XeEN/NqVsWf0GpStZbVn7s9mVSRkcLBM6APqEIPnZtEl6/5Uqpb+OiMgZbgXaLl68iJIlSwIAli1bhp49e8LHxwctW7bEIRenoJk2bRpq1KiBoKAgREVFYU0BR+wPPvgAkZGRCA4ORr169TIz67J69913Ua9ePQQHByMiIgLDhw/HZWc6jhLRNemGG2TpbqDt/Hm9IbbVF1yqT5tZpaNWZLSpQNu5c9L42V0MtF3b+veXgMO6dc7vy7t3A4sWyePnnzdvbJ5Qgbbjx13fPwpjoM2KHm0REYC/v5SyeVLm6i2BNsD5Pm2qbLRLF+8qk3Y4XC8f/e032S/KlStc2UZ16shNrOTk/P+/1q+XdcLCvK8k1p3yUdWfza6yUUVlFP78c8Hrfv+9LDt3lmMGEZGz3Aq01a5dG4sXL8bhw4fxyy+/oGPHjgCAEydOoJQL3c4XLFiAYcOGYfTo0ZlZcp07d0ZcHmdo06dPR3R0NF5++WXs3LkTr7zyCgYPHozv1VEQwOeff45Ro0bhpZdewq5du/DRRx9hwYIFiI6OdudHJaJrgAq0bdkiZQKuUiVdFSpIQ3ArqUCb0aWjVma0FS8us5sCnl30MtB2batUCXjgAXn88svOveatt6TsrFs37wiW5CYkRN8PXc1qO3BAllYH2ly855qNFaWjvr56z1N3y0dTU4E9e+SxN0wooPq05ZfRpml6oK1HD9OH5DJXJ0T47DNZ9u7tXUHDgjjbp23ZMll27Og9vfQUFWhzZUKELVtkaXegrXt3Wf74Y8HnTkuWyLJbN3PHRERFj1uBthdffBEjR45E9erV0aJFC7S6kku7bNkyNHXh6Dl58mQMHDgQjz76KCIjI/Huu+8iIiIizz5vn332GR5//HH07t0bNWvWRJ8+fTBw4EC8oeo+AGzYsAE33XQT7r//flSvXh0dO3ZE3759EeNsHjoRXXOuu07KCZKS3CvPytoQ22pmlY5aORkC4HmfttRUKYcCGGi7lo0dK0GUn36Ssqz8HDkCqKT4UaPMH5sn3C0fLWwZbefPy3EYMH92P0/7tP3zD5CWJiVl3jDTsQq07dgBnDyZ+zo7d8rfRGCg982uC+gZbevWFXzT6/x54Jtv5PGDD5o7LjM406cta6DN26iecdu3O5dpm5amZ7Spm5t2adJEZhBNSQFmzcp7vQMHZH/y9S1cGZNE5B3cCrTdc889iIuLQ0xMDH7Oknd722234Z133nFqGykpKdiyZUtmNpzSsWNHrF+/PtfXJCcnIygoKNtzwcHB2LRpE1JTUwEAbdq0wZYtW7DpSt3IgQMHsHTpUtx11115jiU5ORlJSUnZvojo2uHnJ7OPAgWX3eTGzvKholA6Cnjepy0+XrI1/P2B8uWNGxcVLrVrAw89JI9ffDH/dd95RwK07dp5f+8ddyZEyMiwPqOtWjVZuhtoU9lsJUoAVzqUmMbTQJsK5LZo4R3ZRmFhkimkaZKpk5uFC2XZoYP8jr1NkyZAsWLA2bP652pevv0WuHhRyjAL42RRKqNt48bc+7SdPKkHpm6/3bJhOa1SJTmuaJqUuBbkn39kkouSJb2jDHbECFmOH69n8Of06aeybN9ez7onInKWW4E2AAgPD0fTpk3h46Nv4sYbb0R9dTZYgISEBKSnpyMsLCzb82FhYYjP44jXqVMnzJ49G1u2bIGmaYiJicGcOXOQmpqKhIQEAECfPn3w6quvok2bNvD390etWrXQvn17jMrndvXEiRMREhKS+RXhDbcmichSqmTF2d4wWdk585wZpaOXLul3qK3KaPM0EyZrA3Uftz/ZqCgYM0aC57/+mndZ0+nTwIcfymNvz2YD3Au0HTsm/Z38/Kyb4U+dPp09q2emuUKVjqsMVzN5GmhTvam8KUirykE/+eTq72VkAJ9/Lo9797ZqRK7x99dLEn/4If91Vdlov37eEeh0Ve3a8nmVV5+2X3+VIFbjxtbd8HKVK+WjmzfLMirKOz6j+/WTCUTOnQNy6y506ZI+sc7AgdaOjYiKBtsPdY4cn46apl31nDJ27Fh07twZLVu2hL+/P7p3746Hrty69vX1BQCsXLkS48ePx7Rp07B161Z88803+OGHH/Dqq6/mOYbo6GgkJiZmfh32dOo7Iip0PAm0FbWMNnWvIzBQ+kNZQWXCuNvbif3ZSKleXb8wGjtWLlZzmjoVuHBBMmg6dbJydO5xp3RUlY1WqybBNiuULKlnfrhzKlVYAm1paXojdW/KNnrkESlzW7VKLztUFi+WnzUkxDv7sylqbKqXXG7i4iQQBUjApDDK2qdtxYqrv790qSy9+fjkSqBNzfCpSpzt5uMDTJkijz/5RA/cKsOHy3lFlSrevb8QkfeyLdAWGhoKX1/fq7LXTpw4cVWWmxIcHIw5c+bg4sWLOHjwIOLi4lC9enWULFkSoVc6kI8dOxYPPvggHn30UVx//fW4++67MWHCBEycOBEZeTR8CAwMRKlSpbJ9EdG1pXVrWe7ZA5w44fzrLlzQZxwtKj3ask6EYFWmgKdN1Bloo6xGj5ZA8erVwFdfZf/ehQv6BdaoUYUjG0ZltO3dK0EeZ+zdK0vV9N8qnuzLKjhnRWGBCrTt3+/6JDgbNkhWZNmy3pXRVqUKMGiQPO7bVw9GnT0LPP20PH7qKe8sG1W6dZNg4ebNefdZ/PhjCaDfcov1f99GymtChPR0PZCbT+cb26k+bZs3SwZYXrL+PHfeaf64nNWiBfDss/L4kUeA5cvl7+r11yXj2eGQHm45uhYRETnFtkBbQEAAoqKisHz58mzPL1++HK3VFW8e/P39UaVKFfj6+mL+/Pno0qVLZgnrxYsXs5WzApLtpmkatNxuaxMRQbIwGjaUx87OeAYAu3bJ0o4ZRwFzMtqsnggB8DyjTWXCMNBGgARqVDnQ0KHZm8PPni37S61aQK9e9ozPVVWrysVeSooe2C/I33/L8vrrTRtWrjwpA7cyo61aNQnoXLqkH/OcpSa779zZumxBZ735pgQQTp+WbKhhw4B775VS4jp1gBdesHuE+atYERgwQB4///zVGalHjwKTJsnjxx6zdmxGUxMibNwIXOmAA0B6niUkyEQb3hTIzalmTSl/TU3Nf7bbTZvk77F0ae/7eV5/XYLSaWkyG2nbtvpnx/jx3jlpCBEVDraWjo4YMQKzZ8/GnDlzsGvXLgwfPhxxcXEYdOV2XHR0NPr375+5/p49ezBv3jzs3bsXmzZtQp8+fbBjxw5MmDAhc52uXbti+vTpmD9/PmJjY7F8+XKMHTsW3bp1yywvJSLKjTvlozt2yNKOslHAnB5tVk+EAOiBtiNHnM/YyYoZbZTTqFGyX/73n5SXpaTIfvL66/L9Z5/1viBJXnx89AbizpaP/vWXLBs1MmdMefEkaK6CiFZktPn7S5kxoGf/OUsF2rp2NXRIhihWTDKkHnlEMvXee08y2wICpDyuWDG7R1iwl16SmcDXrJFgR1YjRsiMoy1bAn362DM+o9SqBTRrJsemN97Qn1dN+Hv2lL9Tb+VwOFc+qvrtderkfcdcHx/JkLzjDgm6qxutkyfn3ruNiMhZtgbaevfujXfffRfjxo1DkyZNsHr1aixduhTVrpylHT9+HHFZbommp6fj7bffRuPGjdGhQwdcvnwZ69evR3V1pgRgzJgxeOaZZzBmzBg0aNAAAwcORKdOnfCh6npMRJQHdwJtdmWNKKp09PTp3HtRuSNr6ahVKlaUE/D0dH3mQVcw0EY5BQZK8/fgYOlX1aSJzMoYHy+ZGA8/bPcIXaPKR1VwPz+aBvz5pzy2OtDmSUabCnipsk6zRUbKUh3HnbFvn0xK4efnvdkuQUHSyH3pUgmENG4sM44Wltk5q1bVs9bGjpVgISA/z1dfSXBk+nTvaKrvCYcDeO01efz++7LP/vYbMHeuPFcYjlGqfDS/QJvqt+eNgWlAPiuWLpU+cm+8IRmGw4fbPSoiKuxsv6/w5JNP4sknn8z1e5/kmDYpMjIS29Rc13nw8/PDSy+9hJdeesmoIRLRNUIF2rZulT5OxYsX/Bq7skYUldGWliaz/BkxeYEdGW2+vpLFEhsrmTCuzpLIQBvlpnFj4LvvgHvu0cu8K1WS5wIC7B2bq5o1kyBDTEzB6x49Cpw5I/uV1b0j3c1oS03VM9rq1DF0SHlq3lyybdSMiM5Q2Ww332zdZDHu6txZvgqjJ5+U8smXXpLy17VrJQgFAEOGSOC8KLjjDulbtnRp9p+pWzc9iOXNVEbbhg2yD+fMwNuxQ469/v5Aly7Wj89ZDoeU8qpyXiIiTxXye0FERMapWlV6A6Wl5d9vJCu7M9qCg+ULMK5Pmx0ZbYD7F+iaxkAb5a1DB8mU+vhjyXDbsUPvx1iY3HijLDdtKnhddQOgfn3J1rCSuxltsbGS0RocLMFQKzRvLktngpeKN5eNFjVjx+rN6hculOBx8+bAxIn2jstIDodksGUN8PTvDyxYUDgmamnQQG74XbyoT76R1ccfy/Kuu7w/ME1EZCQG2oiIrnA4XCsfPXpU+j85HPb1aAOMnxDBjskQAD3Q5uoF+tmz+oxnVl2gU+FSoQLw0EPA/ffLxCeFUVSUHGvi4uS4kx9VNtq4sfnjykntx0ePSoaLs7KWjVpVEqgCbf/+C5w7V/D6Z89K3zCAgTYrOBxSyrdihcwk/N57wKpVRW8WyHLlpGzx6FH5HP/008LzM/r4AA8+KI8nTszewuL4cWDmTHn86KPWj42IyE4MtBERZaFKNdTFVH5UGUvz5s6VmZrFrECblaWjgPsZbSqbrWxZPbuPqKgpVUrvKVZQqaOdJe1hYVKWm5Gh75vOUIE2q8pGARlrRIQEB5wpH/3lF8l4joyURvZkPocDuOUW6WU2ZEjhmMzBXZUq6X1XC5Phw/XJKyZPlueSk2USmvPnpTfgnXfaO0YiIqsx0EZElIUKtG3YUPDsl8uXy/L2280dU0GMDLSlpwMnTsjjwlI6qi7mq1QxdjxE3sbZ8lE7A20+Pu6Vj6pAm5pd1Srt2skyt7K3nFTZqDf3miKyWtWq+qypI0cCTz0FdOwoWXrFi8vEHIWhDJaIyEgMtBERZXHddUDp0jIZwvbtea+nafqFWYcOVowsb0YG2hISJNjmcEi5nZU8DbSxPxsVdc4E2i5fBnbvlsd2lI4CeqDNlX3Zjow2QD9+qxsneUlLk4b1AMtGiXJ66ikJsgHABx/ILKQlSsjEM3a21iAisgsDbUREWfj4ADfdJI/zKx/95x+ZNCA4GGjVypqx5cXIQJsqGy1fHvCzeF7qrIG2rH1eCsJAG10rsgba8tpH/vlHguXlylmflaq4EzS3O9C2ZYvcaMjL+vXSjL9sWfuP+UTexuEA3npLZkaOjARat5Zg22232T0yIiJ7MNBGRJSDKh9dtSrvdZYt09e1u2mxkYE2u2YcBaRXEiATG+R3wZuTuphXrycqqq6/XmYRPXMG2L8/93VUtlvTpvaVa7kaaEtO1stMrQ60Vawov1dN0/tu5mbhQll26WL9TQiiwuLeeyXYv26dHIOIiK5VDLQREeXQsaMsf/5ZZpnLzU8/yfKOOywZUr5CQ2VpZEab1RMhABJAUO/rSiZMbKwsa9QwfkxE3iQgQL94zat8dP16WbZubc2YcuPqDMIHDsjkCSVKyAQFVlPHfHUDJae0NODrr+XxffdZMyYiIiIqvBhoIyLKoUkT6SmSnKxnMWR1/rye7eYNM2mZUTpamErOGGija4kqH80t4zYjQ+8dqUrg7eDqfpy1bNSOLDwVaPvuO+Dixau//+mnku0bGmp/T04iIiLyfgy0ERHl4HAA/fvL408+ufr7v/4KpKQANWtaP0NebopK6Sjg+gV6WpqeNcNAG10LVCP+hQvlOJTVunUSLC9VSp9N0w5ZJ0Nwpt+iXf3ZlFtvlePHqVNXH/MvXgRefFEev/CCZBUSERER5YeBNiKiXDz4IODrKxeuO3dm/968ebLs3t07pqxXgTZX+prlxc7SUcD1QNuRI9L4PTDQvuAgkZXat5e/9dOnpbw9qwULZNm9u+wTdqlaVfqYXb4MHDtW8Pp2B9r8/IBnnpHHb78NpKbq35syRX6GatWAJ5+0Z3xERERUuDDQRkSUi4oVgW7d5PHMmfrzu3ZJeREAPPSQ5cPK1bWc0abKRqtVkxljiYo6X1/g/vvl8Qcf6M+fPw989pk8Vt+3i7+/ZPwCwJ49Ba//77+ytDND+OGHZbblAweA116T5+Ljgddfl8evvWZv8JKIiIgKD16WEBHl4fHHZTl3LnDhgpRpPfqolCt26QI0amTv+BQVaLtwQfrKeaKw9Whjfza6Fg0eLIHlZcuAP/+U5z7+GEhKkqww1XPMTipotnt3weuqrOHrrjNvPAUpVgyYOlUejx8PTJ4M9OoFJCYCUVH2By+JiIio8GCgjYgoDx06ALVqycyjI0YAAwfKjH4lSmTPJLFbSIiezeVJVpumFb7SUQba6FpUowZw773yePx4YP9+6R8GAEOGeEd2pwq0FZTRduKElL07HEBkpPnjys9990lmW3q6lJKuXy/97j75xDt+p0RERFQ48LSBiCgPPj7AO+/I45kzpTebj4/0QVLNvr2Bjw9Qtqw89iTQdv68PuOeXYG26tVleeaMZOcUhIE2ulY9/7wEp77+GqhfX/bfm28GnnjC7pEJFWhTZaF52bFDljVqSFaZ3WbPBl59VTKWu3aVYFvDhnaPioiIiAoTBtqIiPLRtSswYYJcAFatCixeDNx5p92jupoRfdpUNluJEvJlh5Il9aChM1ltDLTRtappU2DSJGnkn5YmPdHmzZMebt7g+utluX17/utt3CjLZs1MHY7TfHyAMWOkJHfJEnvLWYmIiKhwYqCNiKgA0dGSLXLwoATevJGRgTa7Z+90pXyUgTa6lo0YIfvJxo3AP/8AERF2j0jXpIkErY4f148tuVm9WpY332zJsIiIiIhMx0AbEZETHA758lahobL0JNBm94yjiiofPXgw//UuXdIv4Bloo2tVpUpAixbeNyNmsWJ6z7UtW3JfJz1dSjMBoG1ba8ZFREREZDYG2oiIigAjM9rs6s+mOBtoUxlvWctNich7qHLQmJjcv795M3DunEzookpNiYiIiAo72wNt06ZNQ40aNRAUFISoqCisWbMm3/U/+OADREZGIjg4GPXq1cPcuXOvWufs2bMYPHgwKlasiKCgIERGRmLp0qVm/QhERLYrSqWjzgba9u2TZc2a3p1tSHStatVKlitX5v79776T5R13eE9vOSIiIiJP+dn55gsWLMCwYcMwbdo03HTTTfjwww/RuXNn/PPPP6iay5R+06dPR3R0NGbNmoUbbrgBmzZtwmOPPYYyZcqg65XGSSkpKejQoQMqVKiAhQsXokqVKjh8+DBKlixp9Y9HRGQZIwJtha10dM8eWdarZ+ZoiMhdHTvKct064OxZoHRp/XsZGcCiRfK4e3erR0ZERERkHlsDbZMnT8bAgQPx6KOPAgDeffdd/PLLL5g+fTomTpx41fqfffYZHn/8cfTu3RsAULNmTWzcuBFvvPFGZqBtzpw5OH36NNavXw9/f38AQDXVWZuIqIhSgbaEBPe3UdhKR1WgrW5dM0dDRO6qVQto2BDYsQOYOxcYMkT/3qJFwN69UjZ61132jZGIiIjIaLaVjqakpGDLli3oqG53XtGxY0esV51xc0hOTkZQUFC254KDg7Fp0yakpqYCAJYsWYJWrVph8ODBCAsLQ8OGDTFhwgSkp6fnOZbk5GQkJSVl+yIiKkyKUumoujdy6pTM9poXBtqIvN+TT8ry/feBK6dqyMgAxo2Tx8OGAaVK2TI0IiIiIlPYFmhLSEhAeno6wsLCsj0fFhaGeFW/lEOnTp0we/ZsbNmyBZqmISYmBnPmzEFqaioSrqRxHDhwAAsXLkR6ejqWLl2KMWPG4O2338b48ePzHMvEiRMREhKS+RUREWHcD0pEZIGiFGgLCdEnN9i/P+/1du+WJUtHibxXv35A+fLSU/G99+S5xYsly61UKWDoUFuHR0RERGQ42ydDcOToYK1p2lXPKWPHjkXnzp3RsmVL+Pv7o3v37njooYcAAL5XuuhmZGSgQoUKmDlzJqKiotCnTx+MHj0a06dPz3MM0dHRSExMzPw6fPiwMT8cEZFFPA20paTor7U70AbowTMVTMspIQE4dkwe169vzZiIyHUlSwJvvCGPX35ZMlFHj5Z/DxkClClj29CIiIiITGFboC00NBS+vr5XZa+dOHHiqiw3JTg4GHPmzMHFixdx8OBBxMXFoXr16ihZsiRCQ0MBABUrVkTdunUzA28AEBkZifj4eKSkpOS63cDAQJQqVSrbFxFRYaICbWfOSFmWq9Sh2N9f35adIiNluWtX7t/fskWWdeuy7IzI2w0YIDOQXrggQfR//wXCwoARI+weGREREZHxbAu0BQQEICoqCsuXL8/2/PLly9G6det8X+vv748qVarA19cX8+fPR5cuXeDjIz/KTTfdhH379iEjy5Xmnj17ULFiRQQEBBj/gxAReQEVHMvIkNn9XKUCbeHhQB5JxZZSWWoFBdqioqwZDxG5z8cHmD4dKFZM/h0SIuWjzGYjIiKiosjW0tERI0Zg9uzZmDNnDnbt2oXhw4cjLi4OgwYNAiAlnf37989cf8+ePZg3bx727t2LTZs2oU+fPtixYwcmTJiQuc4TTzyBU6dOYejQodizZw9+/PFHTJgwAYMHD7b85yMiskpAgJRoAe6Vj3pLfzZFZbT9+2/u34+JkSUDbUSFQ+PGEjhfvFj6tbVsafeIiIiIiMzhZ+eb9+7dG6dOncK4ceNw/PhxNGzYEEuXLkW1K1POHT9+HHFxcZnrp6en4+2338bu3bvh7++P9u3bY/369ahevXrmOhEREVi2bBmGDx+ORo0aoXLlyhg6dCief/55q388IiJLlSsHnDsngbY6dVx7rQq0hYcbPy53qEDb7t1AejqQpRsAAD2jrXlza8dFRO6rWlW+iIiIiIoyh6Zpmt2D8DZJSUkICQlBYmIi+7URUaHRvLkEoH74AbjrLtde+9JLwLhxwOOPAzNmmDM+V6SnA8WLA8nJwIEDQI0a+vdOngQqVJDHiYns0UZEREREROZzNlZk+6yjRERkDE9mHvW20lFfX5noALi6T5sqG+VECERERERE5G0YaCMiKiKKUqANyHtChNWrZdmqlbXjISIiIiIiKggDbURERURRC7Q1bizLzZuzP//777K89VZrx0NERERERFQQBtqIiIoIFWhLSHD9td4YaGvTRpZr1gCqm2hiol462r69PeMiIiIiIiLKCwNtRERFhLsZbWlpwH//yWNvCrTdcAPg7w8cOwYcPCjPffMNkJEhZaUREbYOj4iIiIiI6CoMtBERFRGhobJ0NaPt2DGZ5dPf37sCbcWKAVFR8viHHySrbfp0+feAAfaNi4iIiIiIKC8MtBERFRHh4bKMj3ftdYcOyTIiAvDxsk+FBx6Q5cSJwKOPSr+2YsWAhx+2d1xERERERES58bJLKiIicpengbZq1YwdjxEeeUTKRI8fB+bMkefGjQPCwuwdFxERERERUW4YaCMiKiJU2efZs8ClS86/zpsDbcWKAStXSmZbw4bAu+8CI0bYPSoiIiIiIqLc+dk9ACIiMkZICBAYCCQny+QG1as79zpvDrQBkr02b57doyAiIiIiIioYM9qIiIoIh8O98lFvD7QREREREREVFgy0EREVIap89Phx519z8KAsGWgjIiIiIiLyDANtRERFiKsZbRkZQFycPHa21JSIiIiIiIhyx0AbEVER4mqg7fhx4PJlwNcXiIgwb1xERERERETXAgbaiIiKEFdLRw8ckGW1aoC/vzljIiIiIiIiulYw0EZEVIS4mtGmAm01a5ozHiIiIiIiomsJA21EREWICrS5mtHGQBsREREREZHnGGgjIipCKlWSJQNtRERERERE1rM90DZt2jTUqFEDQUFBiIqKwpo1a/Jd/4MPPkBkZCSCg4NRr149zJ07N89158+fD4fDgR49ehg8aiIi76QCbfHxQHp6wevv3y9LBtqIiIiIiIg8Z2ugbcGCBRg2bBhGjx6Nbdu2oW3btujcuTPi4uJyXX/69OmIjo7Gyy+/jJ07d+KVV17B4MGD8f3331+17qFDhzBy5Ei0bdvW7B+DiMhrVKgA+PhIkO3kyYLXVxlttWqZOy4iIiIiIqJrgUPTNM2uN2/RogWaNWuG6dOnZz4XGRmJHj16YOLEiVet37p1a9x000146623Mp8bNmwYYmJisHbt2szn0tPT0a5dOzz88MNYs2YNzp49i8WLFzs9rqSkJISEhCAxMRGlSpVy74cjIrJJpUpSOrplC9CsWd7rXbgAlCghj8+cAUqXtmR4REREREREhY6zsSLbMtpSUlKwZcsWdOzYMdvzHTt2xPr163N9TXJyMoKCgrI9FxwcjE2bNiE1NTXzuXHjxqF8+fIYOHCg8QMnIvJyqnz02LH814uNlWWZMgyyERERERERGcG2QFtCQgLS09MRFhaW7fmwsDDEx8fn+ppOnTph9uzZ2LJlCzRNQ0xMDObMmYPU1FQkJCQAANatW4ePPvoIs2bNcnosycnJSEpKyvZFRFRYORtoY382IiIiIiIiY9k+GYLD4cj2b03TrnpOGTt2LDp37oyWLVvC398f3bt3x0MPPQQA8PX1xblz59CvXz/MmjULoaGhTo9h4sSJCAkJyfyKiIhw++chIrKbs4G23btlWbeuueMhIiIiIiK6VtgWaAsNDYWvr+9V2WsnTpy4KstNCQ4Oxpw5c3Dx4kUcPHgQcXFxqF69OkqWLInQ0FDs378fBw8eRNeuXeHn5wc/Pz/MnTsXS5YsgZ+fH/ar9I0coqOjkZiYmPl1+PBhw39eIiKrOBto+/dfWdarZ+54iIiIiIiIrhV+dr1xQEAAoqKisHz5ctx9992Zzy9fvhzdu3fP97X+/v6oUqUKAGD+/Pno0qULfHx8UL9+ffz999/Z1h0zZgzOnTuH9957L89MtcDAQAQGBnr4ExEReQdXM9oYaCMiIiIiIjKGbYE2ABgxYgQefPBBNG/eHK1atcLMmTMRFxeHQYMGAZBMs6NHj2Lu3LkAgD179mDTpk1o0aIFzpw5g8mTJ2PHjh349NNPAQBBQUFo2LBhtvcofaXDd87niYiKKgbaiIiIiIiI7GFroK137944deoUxo0bh+PHj6Nhw4ZYunQpqlWrBgA4fvw44uLiMtdPT0/H22+/jd27d8Pf3x/t27fH+vXrUb16dZt+AiIi7+NMoO3UKfkC2KONiIiIiIjIKA5N0zS7B+FtkpKSEBISgsTERJQqVcru4RARueTECSAsDHA4gORkwN//6nXWrwduugmIiACy3M8gIiIiIiKiXDgbK7J91lEiIjJWaCjg5wdoGvDff7mvw4kQiIiIiIiIjMdAGxFREePjA1SsKI/zKh9lfzYiIiIiIiLjMdBGRFQEFdSnjYE2IiIiIiIi4zHQRkRUBDHQRkREREREZD0G2oiIiqD8Am0pKcD+/fKYgTYiIiIiIiLjMNBGRFQE5Rdo27EDSE0FSpcGqla1dFhERERERERFGgNtRERFUH6Btq1bZdmsGeBwWDcmIiIiIiKioo6BNiKiIii/QNuWLbKMirJuPERERERERNcCBtqIiIqgypVlGRcHaFr276mMNgbaiIiIiIiIjMVAGxFREVSzpiwTE4GEBP351FTgzz/lcbNm1o+LiIiIiIioKGOgjYioCAoO1ic62LtXf37XLiA5GShVCqhVy56xERERERERFVUMtBERFVF16sgya6BN9Wdr2hTw4ScAERERERGRoXiZRURURKlA2549+nOcCIGIiIiIiMg8DLQRERVRuQXaOBECERERERGReRhoIyIqoiIjZfn337JMSwO2b5fHnAiBiIiIiIjIeH52D4CIiMyhstZ27waSkoCDB4FLl4ASJYC6dW0dGhERERERUZHEjDYioiKqQgV95tEtW4D16+Vxy5acCIGIiIiIiMgMvNQiIirCWraU5e+/64G2Vq3sGw8REREREVFRxkAbEVER1qWLLL/6Cli6VB63a2ffeIiIiIiIiIoy2wNt06ZNQ40aNRAUFISoqCisWbMm3/U/+OADREZGIjg4GPXq1cPcuXOzfX/WrFlo27YtypQpgzJlyuD222/Hpk2bzPwRiIi81l13AYGBMvPoqVNAWBgDbURERERERGaxNdC2YMECDBs2DKNHj8a2bdvQtm1bdO7cGXFxcbmuP336dERHR+Pll1/Gzp078corr2Dw4MH4/vvvM9dZuXIl+vbtixUrVmDDhg2oWrUqOnbsiKNHj1r1YxEReY2yZYHx4+Wxry8wbRrgx2lwiIiIiIiITOHQNE2z681btGiBZs2aYfr06ZnPRUZGokePHpg4ceJV67du3Ro33XQT3nrrrcznhg0bhpiYGKxduzbX90hPT0eZMmUwdepU9O/f36lxJSUlISQkBImJiShVqpSLPxURkffZuxcICACqVbN7JERERERERIWPs7Ei2/IaUlJSsGXLFowaNSrb8x07dsR61bE7h+TkZAQFBWV7Ljg4GJs2bUJqair8/f2ves3FixeRmpqKsmXL5jmW5ORkJCcnZ/47KSnJlR+FiMjr1alj9wiIiIiIiIiKPttKRxMSEpCeno6wsLBsz4eFhSE+Pj7X13Tq1AmzZ8/Gli1boGkaYmJiMGfOHKSmpiIhISHX14waNQqVK1fG7bffnudYJk6ciJCQkMyviIgI938wIiIiIiIiIiK6Jtk+GYLD4cj2b03TrnpOGTt2LDp37oyWLVvC398f3bt3x0MPPQQA8PX1vWr9N998E19++SW++eabqzLhsoqOjkZiYmLm1+HDh93/gYiIiIiIiIiI6JpkW6AtNDQUvr6+V2WvnThx4qosNyU4OBhz5szBxYsXcfDgQcTFxaF69eooWbIkQkNDs607adIkTJgwAcuWLUOjRo3yHUtgYCBKlSqV7YuIiIiIiIiIiMgVtgXaAgICEBUVheXLl2d7fvny5WjdunW+r/X390eVKlXg6+uL+fPno0uXLvDx0X+Ut956C6+++ip+/vlnNG/e3JTxExERERERERERZWXbZAgAMGLECDz44INo3rw5WrVqhZkzZyIuLg6DBg0CICWdR48exdy5cwEAe/bswaZNm9CiRQucOXMGkydPxo4dO/Dpp59mbvPNN9/E2LFj8cUXX6B69eqZGXMlSpRAiRIlrP8hiYiIiIiIiIjommBroK137944deoUxo0bh+PHj6Nhw4ZYunQpqlWrBgA4fvw44uLiMtdPT0/H22+/jd27d8Pf3x/t27fH+vXrUb169cx1pk2bhpSUFNxzzz3Z3uull17Cyy+/bMWPRURERERERERE1yCHpmma3YPwNklJSQgJCUFiYiL7tRERERERERERXeOcjRXZmtHmrVTsMSkpyeaREBERERERERGR3VSMqKB8NQbacnHu3DkAQEREhM0jISIiIiIiIiIib3Hu3DmEhITk+X2WjuYiIyMDx44dQ8mSJeFwOOwejiGSkpIQERGBw4cPsxyWyAPcl4iMw/2JyBjcl4iMw/2JyBhFcV/SNA3nzp1DpUqV4OPjk+d6zGjLhY+PD6pUqWL3MExRqlSpIvNHTmQn7ktExuH+RGQM7ktExuH+RGSMorYv5ZfJpuQdgiMiIiIiIiIiIiKnMdBGRERERERERERkAAbarhGBgYF46aWXEBgYaPdQiAo17ktExuH+RGQM7ktExuH+RGSMa3lf4mQIREREREREREREBmBGGxERERERERERkQEYaCMiIiIiIiIiIjIAA21EREREREREREQGYKCNiIiIiIiIiIjIAAy0XSOmTZuGGjVqICgoCFFRUVizZo3dQyLyahMnTsQNN9yAkiVLokKFCujRowd2796dbR1N0/Dyyy+jUqVKCA4Oxi233IKdO3faNGKiwmHixIlwOBwYNmxY5nPcl4icc/ToUfTr1w/lypVDsWLF0KRJE2zZsiXz+9yXiJyTlpaGMWPGoEaNGggODkbNmjUxbtw4ZGRkZK7D/YnoaqtXr0bXrl1RqVIlOBwOLF68ONv3ndlvkpOT8fTTTyM0NBTFixdHt27dcOTIEQt/CvMx0HYNWLBgAYYNG4bRo0dj27ZtaNu2LTp37oy4uDi7h0bktVatWoXBgwdj48aNWL58OdLS0tCxY0dcuHAhc50333wTkydPxtSpU7F582aEh4ejQ4cOOHfunI0jJ/JemzdvxsyZM9GoUaNsz3NfIirYmTNncNNNN8Hf3x8//fQT/vnnH7z99tsoXbp05jrcl4ic88Ybb2DGjBmYOnUqdu3ahTfffBNvvfUW3n///cx1uD8RXe3ChQto3Lgxpk6dmuv3ndlvhg0bhm+//Rbz58/H2rVrcf78eXTp0gXp6elW/Rjm06jIu/HGG7VBgwZle65+/fraqFGjbBoRUeFz4sQJDYC2atUqTdM0LSMjQwsPD9def/31zHUuX76shYSEaDNmzLBrmERe69y5c1qdOnW05cuXa+3atdOGDh2qaRr3JSJnPf/881qbNm3y/D73JSLn3XXXXdojjzyS7bmePXtq/fr10zSN+xORMwBo3377bea/ndlvzp49q/n7+2vz58/PXOfo0aOaj4+P9vPPP1s2drMxo62IS0lJwZYtW9CxY8dsz3fs2BHr16+3aVREhU9iYiIAoGzZsgCA2NhYxMfHZ9u3AgMD0a5dO+5bRLkYPHgw7rrrLtx+++3Znue+ROScJUuWoHnz5rj33ntRoUIFNG3aFLNmzcr8PvclIue1adMGv/32G/bs2QMA+PPPP7F27VrceeedALg/EbnDmf1my5YtSE1NzbZOpUqV0LBhwyK1b/nZPQAyV0JCAtLT0xEWFpbt+bCwMMTHx9s0KqLCRdM0jBgxAm3atEHDhg0BIHP/yW3fOnTokOVjJPJm8+fPx9atW7F58+arvsd9icg5Bw4cwPTp0zFixAi88MIL2LRpE4YMGYLAwED079+f+xKRC55//nkkJiaifv368PX1RXp6OsaPH4++ffsC4GcTkTuc2W/i4+MREBCAMmXKXLVOUYpPMNB2jXA4HNn+rWnaVc8RUe6eeuop/PXXX1i7du1V3+O+RZS/w4cPY+jQoVi2bBmCgoLyXI/7ElH+MjIy0Lx5c0yYMAEA0LRpU+zcuRPTp09H//79M9fjvkRUsAULFmDevHn44osvcN1112H79u0YNmwYKlWqhAEDBmSux/2JyHXu7DdFbd9i6WgRFxoaCl9f36uiwydOnLgq0kxEV3v66aexZMkSrFixAlWqVMl8Pjw8HAC4bxEVYMuWLThx4gSioqLg5+cHPz8/rFq1ClOmTIGfn1/m/sJ9iSh/FStWRIMGDbI9FxkZmTm5FT+XiJz37LPPYtSoUejTpw+uv/56PPjggxg+fDgmTpwIgPsTkTuc2W/Cw8ORkpKCM2fO5LlOUcBAWxEXEBCAqKgoLF++PNvzy5cvR+vWrW0aFZH30zQNTz31FL755hv8/vvvqFGjRrbv16hRA+Hh4dn2rZSUFKxatYr7FlEWt912G/7++29s374986t58+Z44IEHsH37dtSsWZP7EpETbrrpJuzevTvbc3v27EG1atUA8HOJyBUXL16Ej0/2S2FfX19kZGQA4P5E5A5n9puoqCj4+/tnW+f48ePYsWNHkdq3WDp6DRgxYgQefPBBNG/eHK1atcLMmTMRFxeHQYMG2T00Iq81ePBgfPHFF/juu+9QsmTJzDszISEhCA4OhsPhwLBhwzBhwgTUqVMHderUwYQJE1CsWDHcf//9No+eyHuULFkys7ehUrx4cZQrVy7zee5LRAUbPnw4WrdujQkTJuC+++7Dpk2bMHPmTMycORMA+LlE5IKuXbti/PjxqFq1Kq677jps27YNkydPxiOPPAKA+xNRXs6fP499+/Zl/js2Nhbbt29H2bJlUbVq1QL3m5CQEAwcOBDPPPMMypUrh7Jly2LkyJG4/vrrr5owq1Czbb5TstQHH3ygVatWTQsICNCaNWumrVq1yu4hEXk1ALl+ffzxx5nrZGRkaC+99JIWHh6uBQYGajfffLP2999/2zdookKiXbt22tChQzP/zX2JyDnff/+91rBhQy0wMFCrX7++NnPmzGzf575E5JykpCRt6NChWtWqVbWgoCCtZs2a2ujRo7Xk5OTMdbg/EV1txYoVuV4jDRgwQNM05/abS5cuaU899ZRWtmxZLTg4WOvSpYsWFxdnw09jHoemaZpNMT4iIiIiIiIiIqIigz3aiIiIiIiIiIiIDMBAGxERERERERERkQEYaCMiIiIiIiIiIjIAA21EREREREREREQGYKCNiIiIiIiIiIjIAAy0ERERERERERERGYCBNiIiIiIiIiIiIgMw0EZERERERERERGQABtqIiIiIKFe33HILhg0bZvcwiIiIiAoNBtqIiIiIiIiIiIgM4NA0TbN7EERERETkXR566CF8+umn2Z6LjY1F9erV7RkQERERUSHAQBsRERERXSUxMRGdO3dGw4YNMW7cOABA+fLl4evra/PIiIiIiLyXn90DICIiIiLvExISgoCAABQrVgzh4eF2D4eIiIioUGCPNiIiIiIiIiIiIgMw0EZERERERERERGQABtqIiIiIKFcBAQFIT0+3exhEREREhQYDbURERESUq+rVq+OPP/7AwYMHkZCQgIyMDLuHREREROTVGGgjIiIiolyNHDkSvr6+aNCgAcqXL4+4uDi7h0RERETk1Ryapml2D4KIiIiIiIiIiKiwY0YbERERERERERGRARhoIyIiIiIiIiIiMgADbURERERERERERAZgoI2IiIiIiIiIiMgADLQREREREREREREZgIE2IiIiIiIiIiIiAzDQRkREREREREREZAAG2oiIiIiIiIiIiAzAQBsREREREREREZEBGGgjIiIiIiIiIiIyAANtREREREREREREBmCgjYiIiIiIiIiIyAD/B0860NB3JEmHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,3))\n", + "plt.plot(t_store, x_store, 'b', label='x')\n", + "#plt.plot(t, vx, 'g', label='vx')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('state')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2c050bd6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAAEmCAYAAADGLJ85AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4g0lEQVR4nOzddXgU19cH8O/GSYAASUiQ4O6uxd21uBYtpRQotEgp9qNokQpStLRoi7trcXd3jUACJBDd94997+zM7qyPJTmf5+F5ZmdnhxvI7s6ce+45Or1erwchhBBCCCGEEEIIIURRbmoPgBBCCCGEEEIIIYSQtIgCc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqIACc4QQQgghhBBCCCGEqMBD7QGkBsnJyXjx4gUyZMgAnU6n9nAIIYQQQgghhBBCiEr0ej3ev3+P7Nmzw83Nek4cBeYk8OLFC4SGhqo9DEIIIYQQQgghhBCiEU+fPkXOnDmtHkOBOQlkyJABgOEfPGPGjCqPhhBCCCGEEEIIIYSo5d27dwgNDeXiRdZQYE4CbPlqxowZKTBHCCGEEEIIIYQQQuwqd0bNHwghhBBCCCGEEEIIUQEF5gghhBBCCCGEEEIIUQEF5gghhBBCCCGEEEIIUQHVmCOEEEIIIYQQQgghDtHr9UhMTERSUpLaQ1GFp6cn3N3dXT4PBeYIIYQQQgghhBBCiN3i4+Px8uVLxMbGqj0U1eh0OuTMmRPp06d36TwUmCOEEEIIIYQQQgghdklOTsbDhw/h7u6O7Nmzw8vLy67uo6mJXq9HeHg4nj17hoIFC7qUOUeBOUIIIZI69PAQpv83HfObzUe+zPnUHg4hhBBCCCFEQvHx8UhOTkZoaCh8fX3VHo5qgoKC8OjRIyQkJFBgjhBCiHbUXVkXAJD/l/zQj9erPBpCCCGEEEKIHNzc0nY/UamyBNP2vyIhhBBCCCGEEEIIISqhwBwhhBBCCCGEEEIIISqgwBwhhBDJbL+zXe0hEEIIIYQQQkiKQYE5QgghkgiLCUOLNS3UHgYhhBBCCCGEpBgUmCOEECKJyNhItYdACCGEEEIIISkKdWUlhBAiiY+JH9UeAiGEEEIIIUQFer0esQmxiv+9vp6+dndHXbRoESZNmoSnT58KOsq2bNkSmTNnxvPnz+Hh4YFdu3ZBp9MhKioKpUqVQvfu3TFlyhS5fgQKzBFCiFb9duY3zPhvBvZ234sigUXUHo5NanwRE0IIIYQQQtQXmxCL9FPTK/73fhj9AX5efnYd+/nnn2PIkCE4dOgQ6tWrBwB4+/Yt9uzZg23btqF48eIoWbIkfvnlF3zzzTcYOHAggoODMWHCBBl/AgrMEUKIZn2962sAQL9t/XCs9zGVR2PbxwTKmCOEEEIIIYRoU5YsWdC4cWOsXr2aC8z9888/yJIlC+rVqwd3d3csWrQI3bt3x+vXr7Ft2zZcvHgRnp6eso6LAnOEEKJxx58cV3sIdjHNmMvkk0mdgRBCCCGEEEIU5evpiw+jP6jy9zqia9eu6N+/P+bPnw9vb2+sWrUKnTp1gru7OwBDVt2mTZswdepULFiwAIUKFZJj2AIUmCOEEI2rkrOK2kMQ9cPBH5DZJzO+rfYtAOBT4ifB84nJiWoMixBCCCGEEKIwnU5n95JSNbVo0QLJycnYsWMHKlasiGPHjmH27Nnc87GxsTh//jzc3d1x9+5dRcZEgTlCCNG4XP651B6CmQdvH2DKMUMB1GFVhyEpOcms+QMF5gghhBBCCCFaki5dOrRt2xarVq3CvXv3UKhQIZQvX557/ttvv4Wbmxt27dqFpk2bolmzZqhbt66sY6LAHCGEaBB/WWiyPlnFkYjjj2/OyTkYsW8E97hC9go49+IcBeYIIYQQQgghmtO1a1e0aNEC169fR7du3bj9O3bswLJly3Dy5EmUK1cOo0aNQs+ePXHlyhVkzpxZtvG42T6EEEKI0g4/Osxt6/V69QZiwe2I29w2PygHAH6ehhT2xORETY6dEEIIIYQQknbVrVsXWbJkwe3bt9GlSxcAQHh4OPr06YMJEyagXLlyAIDx48cje/bsGDhwoKzjoYw5QgjRoO13tnPbSfokFUcibuS+kRaf49eWcJtkmP+JGBmBAN8A2cdFCElbVl9djYJZCqJijopqD4UQQgghKYS7uztevHgh2BcUFIRXr14J9nl4eOD06dOyj4cy5gghRIMWnFvAbZs2VdCCh1EPLT4n1hmp84bOcg6HEJIGLb+4HF03dkWlJZUQnxSv9nAIIYQQQpxCgTlCCNG4dB7p1B6CQ3TQme3b92AfdtzZocJoCCGp1eBdg7nt/x39n4ojIYQQQghxHgXmCCFE49x02vuoblGohcXnNt7cKLp/z/09cg3HKWMPjEWdP+sIGlkQQlKO3P65ue2Tz06qOBJCCCGEEOdp726PEELSqISkBCy7uAzP3j0T7NfiEi1rde+83L1E93u4aaes6awTs/DT8Z9w+NFhLL2wVO3hEEKc0LZoW257/4P9Ko6EEEIIIcR52rlLIoSQNK76suo4++IsGuVvJNifkJyg0ogsi/4UbfG54PTBKBNSBptvbRbsd9e5yzwq+0TERgiaV0TERqg4GkKIs5L1yWoPgRBCCEnT9Hq92kNQlVQ/P2XMEUKIBnyI/4CzL84CMF/yqcWMuXdx7yw+F+wXjMB0gWb7tZIxZ/rvqcXmGoSo5UP8B5RaUArf7ftO7aHYZPrejYmPwYTDE/Dy/UuVRkQIIYSkDZ6engCA2Ni0XRImPt5wX+Hu7loCgjbukgghJI3L/0t+i88dfHgQ/1z/B58X/1zBEVn3If6Dxef+V/d/2Hp7q9l+PbQxo2Y6s0VZN4QY/X3lb1wNu4qrYVcxo8EMtYdjlWlgruaKmrjw8gImHpkI/XhtfN4QQgghqZG7uzsyZcqEsLAwAICvry90OvMGcKlZcnIywsPD4evrCw8P10JrFJgjhBANCIsJs/p8h387QF9cOzeaMQkxFp+rk6cO9t3fZ7b/Y8JHOYdkN9OMOQrMEWKUkKS9pfOWxCXGCR5feHlBpZEQQgghaU9ISAgAcMG5tMjNzQ25cuVyOShJgTlCCNEoTzdPTdaXAwxLxvim1ZuGUQdGAQDc3dzh4+Fj9pq4pDizfWo49OiQ4DEF5ggx0mIXaEs+JRkz5gJ9A+Hp5omXHwzLWBOSEuDp7qnW0AghhJBUT6fTIVu2bMiaNSsSErR5zyI3Ly8vuLm5fu1EgTlCCNGojN4ZEfkxUu1hmHnz8Q2XMTesyjCM/mw0llxYIjiGv9S1dp7aOPzosGZquZ17cU7w2N1NG00pCNECFtgCDMtau5XqpuJorON/pvh7+6NKzipYdXUV9xwF5gghhBD5ubu7u1xjLa1LOdOihBCSSlnq5mOtwYKa1l5by23/r+7/EOQXhCR9kuAYfqOHKjmqANBOxlxAugDB4/Re6VUaCSHaM+XYFG67+6buKo7ENn5g7v7b+4LPnY+J2lg6TwghhBBiCwXmCCFEZSeenhDdr9VlrJGxxiw+X09fAED/8v1RMEtBTKg1AQBwJewKd0zuTLkBmNeDUkvUpyjBYy12vSWE2Gb6mbL++npuWysZuoQQQgghtlBgjhBCVGbpBjJ7huwKj8Q+rCabDsYip1n9suLO13cwvvZ4AEBI+hDuOW93bwDauVF+++mt4HFKKnZPCDEyzcLlZ8lNPz5d6eEQQgghhDiFAnOEEKKy7Xe2i+5P55FO4ZHYRw/D0tsepXtYPGZJiyUon608ZjecDW8PQ2BOK0tZX7x/IXhMGXOEGGl1QkCMtSzc+efmKzgSQgghhBDnUWCOEEJUNvf0XNH9icmJgsfTjk9TYDS2sUCWv7e/xWPc3dxxrv85DKs6jOvQqpWMufDYcMHjp++e4u8rf2tmqS0haqqQvQK3XSJrCRVHYhsF1QkhhBCSGlBgjhBCNCo+KR6n+57mHo8+MNosWKcGFsBimXC2ZPbJDMBQS+/Vh1eyjctepgHCTbc2ofum7ph6fKpKIyJEO2ITYrnt6E/RKo7ENq1k4RJCCCGEuIICc4QQoiFLWizhtrNnyI6yIWUFz2sh64xlqXi5e9l1fI6MObjtqcfUD36xf8OigUUF+7fc3qLGcAjRFH5gzrQeo9ZQxhwhhBBCUgMKzBFCiEbUzVsXfcr1waGeh1Avbz2sarsKnu6egmO0EJjbeW8nAECv19t1PL9m1bv4d7KMyRHs37BGrhqC/W46+kokhB+Y+xD/AQ/fPlRxNNbZWn5u72cUIYQQQoia6C6EEEI0YmLtiQCA2nlqY3+P/SgcWNjsGLUDc/sf7MeDtw8A2F9cPb1Xem7bTQNfOx8TDJ0bM3pnFOwPiwlTYziEaAo/MAcAJRZot84cW8q6pZN4tuv7+PdKDocQQgghxCnq3yERQkgal9UvKwDrzRQYtQNzDf5qwG1HfYpy+PXLLi2TcDTOYf+GGbwzCPY/e/dMjeEQohl6vR53Iu8I9pku+dYSljFXJLCI1ecJIYQQQrSMAnOEEKIyW80U8mTKw22rHZjja1+svd3Hti7SGgCQyz+XTKOxz5qra5CkTwIAZPLJpOpYCNEafnOWQN9AAECQXxCSkpPUGpJV7PMwnUc6TKk7xez55++fKz0kQgghhBCHUWCOEEJUxm4ufTx8RJ+vm6eu2bFaMKHWBLuPbVKgCQCYNbNQWpeNXbhtfu07Qojw86Vrya4AgN33diNgRoBaQ7IoMTkRCckJAAyfnQPKDzA7puvGrkoPy6ab4Tex+upqqn9HCCGEEA4F5gghREV6vZ6rk+TtLp4x92XFL7ltLQXmMqfLbPex6TzSAVB3/KY3wmwJMSHE4EP8B277/Mvz3HZ0XLQaw7GKH3RL55nOrGYkANwIv6HkkOxSemFpdN3YFXvu71F7KIQQQgjRCArMEUKIiuKT4rltSxlzFbJXQJZ0WQBoKzDHb+pgC/vZPiZ+lGs4Ng3bM0zw2HQpa2Yf+wONhKRGLDCXL3M+HH9yXOXRWLf++npu28fDB57unrj51U1cH3RdxVHZxrL8jj0+pvJICCGEEKIVFJgjhBAVsWw5wHJgDgAKZCkAQFuBOT9PP7uPTeepfsbcvNPzuO217dYiNGOo4PmoT1GaraVFiBJYF9P0XunRo3QPwXPJ+mQ1hmQXDzcPAIYmEMWCiqk8GssSkhK4bWuf94TI6U7kHey8u1PtYRBCCOFJcYG5+fPnI2/evPDx8UH58uVx7Jj1GccjR46gfPny8PHxQb58+bBw4ULB8ytWrIBOpzP78+mTdm5+CSGpFz9Q5eXuZfE4dhOnZmCLf1MJAO5u7na/lsuYS1AvY46vQJYCyJwuM4L9grl9eug1uWSPEKWMPjAagOG9XiFbBcFzX27/UuwlmnT367vc9s3wmyqORCjyYyS3vfraahVHQtKywr8VRrPVzShrkxBCNCRFBebWrVuHoUOHYuzYsbh48SJq1KiBJk2a4MmTJ6LHP3z4EE2bNkWNGjVw8eJFjBkzBkOGDMGGDRsEx2XMmBEvX74U/PHxoZlMQoh82BJWriOruzd0Op3F47UQmHNlaZsWxs/HluHeH3IfYSPCuMdvPr5Rc1iEqOZJ9BNceHkBAHAz4qZZxtwfF/5QY1hO4dePvBVxS8WRCP107Cdu+1bELWoAQVS1/8F+tYdACCHk/6WowNzs2bPRp08f9O3bF0WLFsXcuXMRGhqKBQsWiB6/cOFC5MqVC3PnzkXRokXRt29ffPHFF5g1a5bgOJ1Oh5CQEMEfQgiRy9xTc5H+p/Q4+vgoF6jy9hBv/MBoIbBVd2Vd2wdZoIXmD6wLa7XQaigcWBgA4OflhyC/IG58WsnoI0Rp/HqXAekCkNE7Y4rtXMxvBGHrs1VJ+x7sEzzefme7SiMhRJjBqXV6vR59tvTBiL0j1B4KIYTIIsUE5uLj43H+/Hk0bNhQsL9hw4Y4ceKE6GtOnjxpdnyjRo1w7tw5JCQYl2R9+PABuXPnRs6cOdG8eXNcvHjR6lji4uLw7t07wR9CCLHXsD3DkJCcgForaiEmIQaA7XpDagfmfjj4g+Dx0pZLHXq9Fpo/sODbjPozzJ5jN+/8mn+EpCX339zntmvlqQWdTofLAy+rOCLL7Kl3VzF7RQDaarJgGuhsubYlTjwVv4YlRA78APzDqIcqjsQxT989xbJLy/DzyZ8RGZtyAoqEEGKvFBOYi4iIQFJSEoKDgwX7g4OD8erVK9HXvHr1SvT4xMREREREAACKFCmCFStWYOvWrVizZg18fHxQvXp13L17V+yUAICpU6fC39+f+xMaGmrxWEIIseaX078AMCxltUbtwNyUY1MEj78o+4VDr8/gnQEA8D7uvWrLt9i/HWtEwcf+/dnSYkLSmsarGnPbicmJAIBA30C1hmMVP7PVUvDw7IuzAIBp/01TZEz2aFukrdm+hn81FDmSEHm8j3vPbaek0g0x8THG7YQYK0cSQkjKlGICc4xpDSa9Xm+1LpPY8fz9VapUQbdu3VC6dGnUqFED69evR6FChfDrr79aPOfo0aMRHR3N/Xn69KmzPw4hJI07//I8ADsy5tzVDczxmyQ4IyBdAABDRppaF9UsW49lzvFRxhwhRrky5hLdr5WaaPzM2xJZS6g4EseIBUIoyECU9C7OuMonNiFWxZE45kP8B26blrMSQlKjFBOYCwwMhLu7u1l2XFhYmFlWHBMSEiJ6vIeHBwICAkRf4+bmhooVK1rNmPP29kbGjBkFfwghxBlXXl8BYHtpltoZc/yAVbls5Rx+PT9LTa2bAZZlIxYEZWOqt7IekpKTFB0XIVoz6rNR3PaNQTe4ba00b2HvV293b7jpUsylLE48o2WrRF38wNyV11fQam0rzQTcreEHsP+58Q8A4MdDP6La0mopKsBICCGWpJirGS8vL5QvXx779gkL5+7btw/VqlUTfU3VqlXNjt+7dy8qVKgAT09P0dfo9XpcunQJ2bJlk2bghBBih/tv71t9nqvRplJzgqhPUdz24haLHX69m85N1QYLer3e6lLWR1GPuO299/cqNSxCNIF/sw4AOTLm4LaLBBbhtqcdV39ZqF6vR43lNQBYz3CdVs8wVk838es9NVjKRCREKabv9a23twqy0bSKv5QVABKSEjD56GScfHYSFRdXxN1IywkVhBCSEqSYwBwADB8+HEuWLMGyZctw8+ZNDBs2DE+ePMHAgQMBGJaY9ujRgzt+4MCBePz4MYYPH46bN29i2bJlWLp0KUaMMKZAT5w4EXv27MGDBw9w6dIl9OnTB5cuXeLOSQghWqB2xhxfqeBSTr3O19MXgDoZc/FJ8dDDkBVga9lwy7Ut8T7uPW6E37B6HCGphbX3JL8kyKSjk5QYjlURsRF4Ev3E5nGNCjQCACQkJ2imdiQtWyVqW311tdm+6LhoFUbiGH7wMNA3EDP+MzZxuhF+A5WXVFZjWHbbensraiyvIWiyQwghfCkqMNexY0fMnTsXkyZNQpkyZXD06FHs3LkTuXPnBgC8fPkST54YL9by5s2LnTt34vDhwyhTpgwmT56MX375Be3ateOOiYqKQv/+/VG0aFE0bNgQz58/x9GjR1GpUiXFfz5CCLFEzcAcP0B1Y9ANeLh5OHUelqmmRmCO/+8mVmOOLzE5EaUWlkLx+cVx6tkpuYdGiOr4y7d/afyL1WPVXvZmbxDBy92L215zbY1cw3GIpcAca7ZBiJT0ej3+uvwXroVd4/YtPL/Q7Dh+RrxW8d87EbER+OGQsFP8209vlR6SQ1qtbYXjT45zDb8IIcSUc3dXKho0aBAGDRok+tyKFSvM9tWqVQsXLlyweL45c+Zgzpw5Ug2PEEKsWn5xuej+uY3mWn0dC2p9SlI+MDfmwBhuO6O38zU1WcacGlkjrFi8DjrBDbslbGnrhhsbUCVnFTmHRojqEpITABiC1l9X/trqsX9d+Qs9Sveweoyc+EGEhvktdzTNniE7t62VwJelSYmI2AiEpA9ReDQktdtyewt6bDa8V8/2O4sK2SuIHpciAnPxqSPb9PjT42oPgRCiUSkqY44QQlKyT4mf8MXWL0Sfs9mVVcWMOf7fmd4rvdPn8fP0A6BOxtydyDsAAD3EO3lPrz9d9HW2mnIQkhokJBkCc57utuuxqd0RMfqTMWPOWvZuJp9MKBZUDADwPu697OOyR0RsBACgV5legv0d/+2owmhIavffk/+47YqLK1r8PksJgTnT2ngp1YWXlpNFCCFpGwXmCCFEIdYuLGvkrmH1tWoG5vbc38NtuxKYY69V4yb5+/3fW30+R4YcovtZXTpCUjOWMWcp0MUPXIfHhqsa6OIHEcqFWO8QXTt3bQDaWOYWGRvJ3ZQ3K9hM8NzRx0fVGBJJxZL1yZh1cpZgn6XGS0+jnyoxJIedf3EezVc3x53IOzj57KTawyGEEFlRYI4QQhRi6WY2l38uLrPDEq00f3B3c3f6tSwwp0YHuOYFm1t9vkPxDigbUtZsv7vO+Z+XkJSCdSK2dOP+XfXvMLTyUO7x2mtrlRiWKH6NudE1Rls9li2910LG3KwTxiDJvTf3kDgukVu+2rRgU7WGRVKp3fd2m+1rsqqJ6LFazUbrsbkHdtzdgcK/FcaOuztsHs/PpiWEkJSGAnOEEKIQVueMr2xIWezsstPma9UMzNlqlmCvDN4ZAKgTmPP38QcAtC/WXvR5T3dPXBhgvsRE7P+MkNRm2J5hAKz/vofHhnPb7L2sBpYx16VkF65upSUsMKeFwMORx0e47e6lusPdzR1ja4wF4FomMiFipv9nXp7h2JNj3PacRsb62nFJ2uhabMpWZ/Tvqn0nePzyw0s5h+M0tRvmEEJSBgrMEUKIQkyDanu77cWFARdQPGtxm69VMzCXP0t+AMCWTltcOk96T/Uy5lgmkK0b+Rq5hEuKfz/7uyrjJUQpYpk1YrqU7MJtq1l7kWXF+Hv72zyWC8zFqx+Y43+O5MhoWDqvZhYxSd1q5a5l9fmhVYbi60qGRi/33txTYkiSC/ILEjxWo36tPfiBTx3Ma9wSQghAgTlCCFEMf5nY5o6b0SB/A7tfq1Zg7lPiJ1wLuwbA2LzBWVyNuXjll5WxTCBb2X87u5pnL/56+ldZxkSIFlha3maqacGmyO2fG4DlJa9KYBlz9gTmWGafFjLmymUzr4dHgTkil0DfQJvHsOuKv678hfMvzss9JEkUyFKA2zbtZKzVzq38cVlrWEMISdsoMEcIIQphwaFSwaXQqkgrh17LbkJZVz+lrL66mtt29eZWzZtQFkiwFZgTW1I25uAYWcZEiNbYCnZVylEJgLqZKTEJhptce5bTsow5VkNPTfky5wMAtCzcktvHPm+OPj6KKUenqDIukjrZ8z3r7e7Nba+4tELG0TjOUkOKnqV7ctstCrVA8SDjioMjj49octko//+COr0TQiyhwBwhhCiEZbs5U7ONzX7zOxLKbdWVVeiztQ/3uFGBRi6dT80ac39c+AOA8UadEDksvbBUUOSfOfr4KIbuHqrZpVbMxo4b7Tru+NPjMo/EMvZvaM/naP7M+blttbPS2LjzZcrH7eNPBPxw6AfVm/vYsv76erRf3171f0ti2/03920ew68pyToza8WtiFui+0dWG4mjvY7ifP/z8Pfxx7VB1/BZrs8AAOMOjcOqq6uUHKZd2GQCACTpk5CUnKTiaAghWkWBOUIIUcjBhwcB2K5zJsbT3RMAkJCUoNiMcLdN3QSPnRk3n1pLWffc24M3H98AABKTE20enydTHplHRFKjZH0y+m7ri5H7RprVbKq1ohbmnZ4nGrTTklz+uaw+/8+NfwAYAjRqYcEEez6PSmQtwW1HxkbKNiZ7sM6w/Ew/0wxdpTOiHdXx347YcHMDvtn1jdpDITYsu7SM297ccbPoMT+f/Jnbzpkxp9xDcojYJGThgMLw9vBGjdw1BEvD+Zl/v535TYnhOcQ0kK21ICghRBsoMEcIIQphAbVXH145/Fovdy/DOaBHkj5lzraym1Cl68A0XtWY225S0HY9LbEb/tcfXks6JpL68LOdWBAoMTkRvlOMv08nnp5QfFyOcCSjVK0lY1zGnKftjDmdTods6bMBABecVwubkMjgZTkwl1Iy0fhBH6It7+LeYemFpYJ9pqUz2LLqaqHVuH3xSfHyD84B+x7s47Z/qvsT8mfOj4M9D4oe6+1hDMxp7ecAzK95hu0eptJICCFaRoE5QghRCOvM1bF4R4df6+nmyW0nJCk/2zqlruv1j7RQ6LxKzio2jxErbL/o/CI5huO02xG3UXN5Tay9tlbtoThlz709KLOwDJdFlBrsuruL2558dDJ0E3Vou66tYLlYgG+AGkOzW1a/rFaf538OqbXs0t4Oy0yWdFkAAJEfVc6YizfPmAv2CxYcM+YA1bMkrplweAL6buvLPS4SWMTsmB1ddgAQfq9rrXHC209vAQBNCjTB6BqjcW/IPWTPkF302J13jU2bLr66qMj4HGF6zbPw/EKVRkII0TIKzBFCiEJYYI4/u2svljEHgOuSqqSAdK4HFNTsysrY0xGNFbjnc9e5yzEcp807PQ/HnhxD5w2d1R6KUxqvaozLry8j47TUU/Nv1z1jYG7HXcON77Y72wTHlA0pq+iYHDG08lCbx/j7GJtDRMdFyzgay1i9Jntrdd59cxcAMO34NNnGZA92c87PksvgnQFzG83lHm+6tUnpYdlNa4EbIm7NtTWCx0taLBE89vHw4YJ1NXPX5PZroXMxH8uMbV+svcOvvfhSW8G5lJIJSwhRFwXmCCFEIWyJBb8eir34wbzr4dclG5M1/BtIe2qz2Xs+rV+k/t70d4yqPgo3v7rJ7QtJH6LiiMypEZwl1rHlYdZoLcDLN7DCQJvHjKo+itvmZ6koidVhYw1xbGGfuwceHpBtTPawlOn3TZVvUDigsNlxWtNsdTO1h0BsiEuMMyuVUTW0quCxDjpu203nxgWG+Q0KtMCRzNhTfU4JHnf4twOuvr4qy7icofVrHkKINlBgjpA0Ji20ao9LjMON8Buq1UCyJC7R+Yw5vt5beksxHJvyZsrLbUuxbE2twBzLUmpdpLVdxwf4BmBq/akoElgErQobavNorW4NP4MyJTNttLHu2joU+a0Ijj4+qs6AXGBPx1UpAtxS0uv1XBapn5efzeOHVTXWRuJ3bFaKXq9HeEw4ACDIL8iu14RmDJVzSHaz1k32p3o/cdsj9o5QbEz2evXhFY48PsI91kHHfZ8R7RDLCnXTuVl9zN73WgseHXp0CIAhw8+WijkqCh7fe3MPpRaWkmVczlh+aTkAIMjX8JlVJqSMiqMhhGgVBeYISUP+vPQnPCZ5YOPNjWoPRTZnn5+F70++KD6/OP698a/awxFgS1lTSlCFH2hoUbiFy+djRc+VvgFgf9/gioMdfi0LJtoTdFFSSvkdsoUfPD/34hw6beiE25G3MWTXEBVH5Rx7fkfYZ4BWxCfFc8FCflMCS0xv6pUWkxDD1eyzVQ+PWdlmJbetRn1Oxlo3Wf6//fxz8xUbk71MA8p66FUtSUDM6fV6TDgyweZxpoEuP09tBuaYy68u2zzGTeeGsBFhZvsfRz2WY0gO2Xd/H04+OwnAmOWrVn1OQoi2UWCOkDRCr9ej15Ze0EOPduvbafYizBV6vR6VllTisgJ/O/ubyiMSYhdjzixlVQMLNGzptAWFAgq5fD5+V1YlMzdfvH8BwDw7yx7sJlrLgTmtZfNZM+bAGMw7NY97/DjaeOPU4K8G3Pbl17ZvxrTGnt8Rrf1f8b8H7MmYU9svp3/htllAwRZ+58mwGPObd6VY6ybLr92nRWLZcVRzTlvEPn9y+efitle1XYWAdAHY1FFYx5B9Lx96dAj339yXd5B2Sko2dp63NwAf5BeEHqV7CPadeX5G0nHZ40P8B4zcO5L7u/97+h/3HAXmCCHWUGCOkDRi3ul5gsd3I++qNBL58C+AtCYxORH7H+wH4PxS1sYFGgMA2hVtJ9m4rGE1Z8S6ujmD3QDooVesjlJiciL3czhz88sCc/zOmlrg7masVZZSguxXX1/F1ONTMXTPUMH+WxG3AABRn6IE+5utboa5p+YqMzgJsCYD1rz5+EaBkdiPPx57GqMAwIpWKwAAuf1zyzEkq8YeHMtt63Q6K0ca8YPYEw5PkHpIdrO2lLV4UHHBY35gQgtM35uA9mqSpXUsK4vvxBcnuO0uJbsgfGQ4auSuITiG3yW45dqW8g3QAfzv226lutn9On79PAB4/v65ZGOy1+QjkzHr5CxUXlIZyfpkwWQMC8xRUJsQIoYCc4SkEcP2DBM8VntJkhwOPTwkeKyVnzEuMQ45ZufgHnu6eTp1ngb5DBlF9tRckQK7kbQ3M8WWdJ7puAtnpYJJBx4YC75n9Ha8A6hWM+b4GSxay8KyhAXgTA3bMwy1V9Q227/z7k6zzy2t2nV3Fw4+PGjzuPtvjRkpWqiBado11h5lsxlqNj6OfqyJn8ER18KVa5py78096CbqUGZhGcQmxHJNK8Qayfh5+Qma7bBJHLW9/vAaZReVRYXFFcyeo+CCtvAzjgFgcp3JyJExh2CfWDA7k08mbvtG+A1ZxuYo/sSdI5m8ptl1po0wlMBvztVmXRvB5Ef+zPkBAOGx4Vh5eSXWXF1j9npCSNqljbtWQoisnr8znzXUWq0jV32I/4A/L/8p2Gc6e6qWn479JFhCZe/SDFMs0+LSq0tSDMsqfu0pe7qi2cNN5wY9DDfy51+el+SctjRf05zbdqYuG6v9JJYxopZTz05hx90d3OOUUoR98YXFovsPPzosKCyfEjVd3dRs38YOGzG44mBMqj2J2/f241sAwPkX5xHycwgWnF2g2BjF5MiQw/ZBJviBJVbUPKWonKOyYn9Xt42GTJ/Lry+j+rLq3H5L3WQXNlvIbS+7tEzewdkp5OcQi983lDGnbfZe//ADc1rBJsK83b0dmmCtHlpd8FjppeufEj8Jvpu33t6KRecXcY+D0wdz2z0390SXjV1wM/wmCCEEoMAcIWmC2DK8lDzbrdfrMeO/GdBN1OH4k+MAgO/3fS/IRgHsX5olt0lHJwkeV8lZxanzPIx6CEA4IyuX93HGwt78pS5S6fhvR8nPKaZUsGud2XJmzAkAePruqRTDkUTDvxoKHqeUjLl8mfOJ7k9t9XYiRkbgwZAHaFO0DX5t+ivG1RqHde3XAQBXMH/KsSkIiwnDoJ2D1Bwqd9NbM3dNu18TkC6A2/5yx5eSj8katuSzT1nHOsKOqzkOgLJB7NPPT3Pb/OCWpSW4Lz+85LbXX18v27ikcvrZadsHaUxsQqzTWZ5a66jMJ1Ybzt7rn8w+maUejsv23N8DQLweozWm5Spex7yWbEz2+P3M71afFwuC3ntzT6bREEJSGgrMEZIGiN24X3h5AYvPL06RN8Xb72zH9/u/BwDUWF4Der1edElWeGy40kOzC78+mCOUvIBjAQQfDx9ZApxKLWWtk6cOAKB7qe5OvZ7NcIfHaOd3ybQbYkrJfk2NXRz1er1Z578A3wDkzZxXsC9vJsPjG+E3UOfPOth0S1iAXS0JyYYupY4sr+d/fikdFGY33s0KNnPodWwZ+4cEdesxtircyuJzYpntWjbqwCi1h+CQ62HXkXl6ZgzfM9zu1zx/9xyXX11GizUt4DnZE7+d0VZDKcY0wO/n6Yf+5fvb9Vo5Jt5cEZcYhwHbBwBwvByJaeDr9QdlA3OPoh5ZfV7sc0tr9WsJIeqhwBwhacCM/2Zw22wZ0oh9I9B/e3/MOjFLrWE5bd31dYLHBX4tIHrTf+nVJcWaDFhTK3ctSc7Dnw1OSEqQ5JyWsMAZv+5RSsT+/1lgxFFs+bCWA9gpJWPO2cYH/E6cWvL1zq8RNDNIEKCwtHyMf/N7+NFhuYdmN/a74+nuXN1L/jmU8C7uHQDHgwnsfaz290GQb5DF50ZWH6ngSJwzp9EcwWNHa5I9jnqsWgOUCUcmID4pHnNPz7Xr+NsRt5FzTk6UWVQG2+9sBwB8vetrGUfovCfRTwSP349+j8zp7MuE4we/smfILum4nMH/nXL0d8XfW5gxp/RSVmvXSye+OIFsGbKZ7U9JDY4IIfKiwBwhaQC/9pppMdxtd7bh1LNTKaoIremN4IO3DyzWABu+Z7jqBcpduenlm1h7Irctd/YRu6A1vdCVirPLeR0Vm/j/nRAdXBLDsNdpeVY7pdSYi4yNtOs4/lJJAPhm9zdyDMdlv539DZEfI7H22lpu319t/hI9VqsBbn4tJ0fMqG+c7Gm6yry+nlzYEntW+9Fe7H1sT+dcKbAAoilr9TqzZ8iOn+r+JNeQJME6gzNdN3a1+7WvP7xGnnl5EDAjwPbBMvjviWNd25deXCrTSKT3Wehn3PaCZgvs7ljMnOt3DoA2ugGbTrw6Iku6LILHrz68UvRnOvfynMXnWNOuPJnyCPaLddMlhKRNFJgjJJW7FmbsQlclZxWzWkLxSfGourQqumzsglPPTik9PKc8f2//kp+F5xeqfmPPn/U1vbFxRC7/XNyyUlZEXi5sCUiof6ik5/2+umEJcrmQcpKe1xIWeHC2gQVlzEkn8qPtwNyebntEj9Na8DFZnyy631L3XkcDSUp5Gm2onZjLP5dDr+tSsgu3feDhAStHSutxtGHZsLMZc1deX1Eki4b9u5qyFXTgLz/UYk2zQgGFBAX270Tesfu1l19f5rYtvX/kxK/hZ89k3cwTM+UcjqQS9YbfleFVhmNghYEOvz7Iz5DJqYUmR/xapLMbznbotaad1xOSE/Ds3TNJxmUPa5/zxbMa6mOyAB0hhJiiwBwhqVzJBSW57dkNZ+Pfz/8VPM8vSn3x5UWlhuWSE09PWH3+hxo/CB7/euZXOYdjE8sUGlp5KNa2W2vjaOvYzdqcU3NsHOkaFuyR+iKS1YBRKgMt+lO04O91FPv51V4CZ01KKR7NAtRBvkG4OMD8s2Zl65VomL+h2X5AWx0g45PiLS6xshQwspYxp+bS1hsRhmVj1pZYignwVT7rib/EzdmMOcBQX1Vu/OAff3mzrWL0/M/bXXd3ST8wB4gFBt10bhhfazz32JESAfysTEsZhXI5/0LYBXzZRee73k44PMHF0UiPrYQokbWEU69n349xSXGqf9ex+nJ+nn4YVnWYQ68VyxRU8vuR/V6vaLUCX1YwNsY51+8c1xV+RasVmuyESwhRHwXmCEnFTGcKQ/1DEeQXhKo5q6o0ItdFxEbYPKZu3rqokL2CYJ+ay1lZBtCgioPMuoY5S+6ufSwwxy4mpcKKzP995W9Jz2sJywBw9kKY3dBrKWPOXSdsHtJ3W1+VRmK/xORE7v/i+qDrKBNSBj/W/JF7Pp1HOnQr1c3i65VqFmLLjjs74PeTHz5b9pno822LthXdb63hS50/60gyNke9i3uHrbe3AnA8g8k0YK/E5yu/8L6jGXP8z7Ejj45INiZLouOiue34ccaM1i2dtlh9nbeHMXjVcm1L6QfmAEtZ2fyAnb11zAAgSW9cUqh0nbk114SlOmx9Zlob38QjEy0+pxYWmGM1hB3FD3RrpWmWs5MxlwZcwtZOW7ks4Pp/1ZdyWFaxf7uQ9CHoW874O8Z/n1TOWRmR30ViT7c93L7qy6pzk4iEkLSLAnOEpFKRsZEInSNchpgjQw4AlmtapIRZvLbrjDe+f7cxD+7ky5wPtfPUxp+t/xTsf/tJ3qWflnxK/MQFFaTIMmFLYXuU7uHyuaxhgTlHa0/ZsuW24cY0ITkBN8NvSnpuMS4H5v5/CVySPkn2hhv2eB/3XnCDm1Lw68uxm5Qfa/2I5oWaw8PNA0d7H+WyHYL9gs1er5XA3Hf7v0NiciJuR942e259+/WSB7LldPrZaW77athVh1//aawxWP0w6qEkY7KGHzBwNGOOvzxu2n/TJBuTJSxzpmH+hvBw80Dyj8mI/C4SLQtbD7bJ0QHbWWMPjhXdXz9ffS4D1JH35bkXxvpbow+Mdm1wDvr55M8OHW+rIL/adWtNsdITrIu4o/iZZn+c/0OSMamldEhptCjcwqwhhhJY9/YgvyBBvTvTJbZuOjdBFvWJpycw+6Rjy3YJkUpEbASOPT6muc+1tIgCc4TYITE5EZtvbea+dFOCnpt7Ch6HZgy1WRBYywXuAeDo46M49uQY9zhf5nzQjxd+kdz66hZ0Op1ZEeCsM7MqMkZT/JtfKQKflXNUBmC5lpVU4pIMNb2kDjTwu74tOr9I0nOLYQEUV5eyAsIsGLWYvq9Til33DMvydNBxwQd3N3ds67wN8T/ECzJcj/Q6gmn1pgkCPzHx6i1l3XNvD2admAW9Xm+1C6XpZ46p8/3PW31eaaefGz+b+pTt4/DrvT28USyoGADg4Vv5A3Olspbitq1lIIopElhE8FjuGxAWmGM35GLfSVr37w1h2YtJtScBMDQz2tttLwDHlqR+v/97blvujG9X6PV6TD462eoxm29ttit7XwnJ+mRu6bSzGXN8bAJXba4GqVl2PqBMvUa9Xs/9TgT5BiG3f250KtEJ7Yq2M2toBMBsVYda3YoJKf9HedRcURN77u+xfTCRFQXmCLHD72d+R5t1bfDZcvHlS1q04+4OwePd3XZz2yOqjhB9jdZrzJnO5Pp5+ZkdwzqgmgZikvRJqhSQ52c3uelc/8hlN3pyZwDKtZT196a/c9tyZxfxL3QDfQOdOgc/MBc007E6XHLYdmcbt32011EAQFY/dYLOjmB1fvQwD4iYThgUDiyM7z/7XhD4UStjTq/Xo/Gqxhi5byTcJpm/f/m/H7a6L5fLJt7wxJE6XVIad2gct92kYBOnzsFuOG3VTpMC+/ftXKKzU6/n/1/JvTSddY/N6JXRxpHmWhdpLfFonMNvCBIxMgLjahl/X9hS4jcf30Cv10Ov19sMftTKXUuegdqhUEAhAMIAtKXrnf0P9gseL2mxBONrjUe29Nm4fW3Xt0XQzCBNNOiIjI3krjMcrRXJ16JQCwDSdZF3Br+DqlgdUke8+PYFt3351WUrR0oj6lMUEpINWfWBvoHQ6XRY024N/u3wr+ikuOn1j9pNIaI+RQlqThP7PXv3DBtvblSlqY0UWHbpllvWSy0o4c3HN3gS/UTVyVg1UWCOEDv8e9Mwc3wn8o4imQFSu/f1Pe4GFwD+V/d/osf9dvY30f1aYZqtwoJUDfI1AADMaWRsiODj4cNllzFnX5yVeYTm2A1alZxVJDlfbv/cAIDHUY8lOZ8lci1lDfANQLui7QAIi6LLgV9jkZ+p5whbWaZK498I5s1sCOi8+fhG8xeEU45Ncep1ziyZk5KtOken+hg7WefPnN/m+TZ22Gi272HUQ2y6ucnxwWkAy7Jefmm5rH/P6WenueWPzgbZj/Qy1paT+/eJZZI5WgsPMGamAcC04/Ivu7WEdXCvk6eOWRmGPJnyADDczEd+jETvLb2Rc3ZOvPn4BovPL8aM/2aYnc+0869Sy6YSkhK47rEFshTg9q++ulr0eNPrjD7l+mBC7Qm4Pui62bHnXpxTffkXm6TL6J3RpaAa+11l1yxq4HfO5S8/dwb/c4J/XrmsvWZs7MVvNmMvtQNzTVY1QdlFZXHs8THbBxOBAr8UQLv17bDonPyrQBzFr+8rhh8M9/X0VWBE1i29sBS55+bGlzu+tH1wKkSBOULswP+wyveLaxcLSuBfKG7uuBn5swhvGL09vHFl4BWlh+WU8JhwFPu9GAbvHIyLr4QzqDkz5gQAbO28FdcHXcc3lb8RPH+q7ynBYzVu7lkw8HaEeU0qZ7DlUNa+aKXAsgvlyGpjnePk7szHlpXwg9KpRfGg4gj2C4anmycSkxPx/N1ztYdkl9LBpR06PrOPoR4dK26uNGtLVwFDJs6dwXdwqs8p5MhoewlYm6JtkPxjMi4NuISnw55y+9uuF28aoYSigUWdfi1bLib3TWWVpcaJDdN6TfaqlKMSty3nd0FiciJXx86ZsfILxY8+MFq1ml8s4CPWKZlfHyv7z9nx5+U/8TrmNcYeGIv+2/vj+/3fm2WkmS7VUyo7hx8w+brS19z2rJOzMHT3UKy7tk5wPP//LHqUsXyBWKOLqkurosWaFlIO12Hsd9nRuoum0nuqOwkCQFAXjtV3dUWzgs0AKPP9wW/c4oz38eoFRAHg1DPD9bLaTWdSIlb6ZdDOQSqPxJznZE9knp6Z+/81xZ9Uc/V3WArse4dd+6U1FJgjxA6m9SFi4mMQnxQP3UQddBN1migKz8e/CDGdpWZKBpfEwR4HzfZrLfPmp2M/4WbETfx+9nez51gNEh8PHxQLKiaa3XS6r7GOkhrFgFkRaamWnrIlunIH5uRaygoYs/DY3yEXFpgTq+/iCEudNtXAsrJmNZwFT3dPbnm0EksJnfUxwVi7kt0o2Yt9fqn181nLZPN084SPhw8KBhRE5ZyVLR5nSqfToXRIacHSOED5z172PlzYfKHT52CTIXJ+HvFn9AHXAhBs2bdcwYdkfTI8Jxuzlvi/+/YyrUU3YPsAxQPTer2e65xtK7OZLd8DgIXnjb9Lg3cNRmJyIvbe34uI2Aiz8hov3r+AEvjZUn5efoJMqnmn56HThk44+vgoHkU9AmCs31ouWzmzwOrE2uYdWU1/LqWx32V+sNQZamcnA8DZ58ZVDVJkq7P3uxL1odnyeEeuF0ZWG8ltq5mpyP+civoUhfdx7zHt+DTcf3NftTGlFAO2DVB7CHapurSq2b4TT0+g37Z+3GO5J8vt4WrDtpSOAnOE2ME0cr/s4jJ0+KcD95g/I6sFD94+4LbLZitr8bg6eetgXft1GFfTWDum7CLLx6th3ul5Zvty+eeyO+OvUo5K6F2mNwB1AnMN8huW2XYv1V2S86WGwBw7Z3yyMoE5Z5e+MTMbzOS2WZFtNbyLe4f7bw0XyhWzVwRgnKm11EFRC4bvGc5tD6s6zKHXsqDMuEPjFLuR5zPNNuZLSE5w6ebRtIEB/3Nbbnq9ngvqhmYMtXG0ZSxwKudnq2mRffY77ww/T0NdUrmCD3X/rCt4zA9a2UssU2jMgTFOj8kZ/M85FrBy1ImnJzBg2wA0+ruRaH3Ob/d+6+zwHPLnZUOH9oHlBwKA4HqHqbWiFvLOy4vYhFju562Rq4bZcWVCysg2Tmexzw1Wx9NZLDCnZuYWv7mXFFjNPSW+t1lwy5HlgNPrT+cmN97FqxcUMZ04brm2JUYfGI3KS+yfcJLbrBOzkG9ePtnLuDjqjwv2ZzTLXdvUdFm96aSW6fNdN3YVPNZCAxIuY04kQzktoMAcSbGuvL6CkgtKYvOtzbL/Xfse7BM8HrJ7CLbcNhbJHLpnKCYdmYShu4fKngVkjyG7hwAw7/okpkPxDphQewL3+MrrK6rXTGG+3/e9aLH424Nvo2RwSbvPw86x8aZ5fSe5sdn3ennrSXI+Fpj7mPhR1mYW7OZXjtR2ds599/fZONI17GLc1eYIrJ4SYKgppJbXHwxZYxm9M5rVfNp7f68aQ7ILP4vG0SDpzns7uW1LNaHkxA+A/9bkN7z9XtqmK1VzGmex11xdI+m5rQmPDcfHxI/QQedSJ8dQf0NQ70n0E9kK4ZtmS7py8/AwylAj1rTAv1SOPD4ieGypnqs1YsFeuWv4meJnThTPWlz0mFHVR9k8z7JLyyw+xzpmy2nr7a3ccvR11w1LVq1lXPr95IdZJ2cBEO+ybCnjV+4u6daw7yR+oylnBPkZglhqTIAwLND/RZkvJDkf++4Pi5U3MBf9KZpb1eHIElydTsc1BXoX9w7339zHtbBrsozRGtPP1MOPDgMAIj9G4vSz0yKvUN7IfSPxMOohfjj0g9pD4Zheg1uqyazX67H22lr4TvHFzyd+lmUs18OuI2BGgKAuKT/gWjlHZbhNcoNuog6XXl2CbqLObNKFX5dZDWMOjOESXaSub51SUGCOpFht1rXBtbBraLOuDb7Z9Y2swaS7b+5aff7NxzcYf3g85p2eh8Z/N5ZtHPa68PICAPuDCKbdQtmXstpmnDAvIN2ycEuH6xmtuLQCAHAz4ibefpS3m6kpNrsnVedMQf2buGgrR7pGzow5lq0i9+wcW77i6r+9m84NLQsb6q6okXXJsBtLS3Wr1J5Jfvj2Ia6HCQuku/q5/FkuYydsV2soOYMF5gZXHIyvKn0l+fIKfjZm5MdISc9tDXtvZEmXxalC5Qx/OS773pGa6TJOVsLAFa5k3VnDX07YrVQ3l5cXqmXpxaXcdv/y/UWPaVSgkcPnzZIuC1fTsG/Zvs4NzgGt1rbitn+s9SMA++v+iXUFNM1yZfx+8kO2n7OpMqnJAoh18tRx6TysZq9a9TwB47JjVofWVSzYKPdS1i+2fsEF/R0toM/+/668voICvxZAyQUlFc2eBqxfi1VZWgVvP77lSveoGbgFoKl6uqaTRnFJcaJ1ad0muaHzhs7QQ48R+0bIMpZvdn+Dt5/eck2SAGG2+ennxgCrpZVRx58cl2Vs9tDr9Zh6fCr3WImGLVpEgTmSYvG/uH458wseR8tzU+poltWhR4dkGYe9+PXuCgcUtvt1D4YY/z3lTrd2BetK6ghWoBxQNmvuyKMjXFaAK1kpfO5u7tyNhZzLWdmNqxyBuWqh1QDIXzD+zIszAKQJiubNZOiAKlUTD0fFJcZh3CHDEiz+rObwKsZlonnm5VHtpkqv1yPfL/lQYkEJHHhwgNu//vp6l867pMUSbttWh1Q5sPeYXMsqqueqjsl1JgNQNuum7zZDUMTVYKC7mzv3PSNXx3J+k4Bgv2AMrzrc8sE2/FDDkG1hujxWCnq9npt0mFJ3Cla0WuH0uc73P2+2T6kahOEx4Zj+33TusaXvgJq5a2JIpSEOnfvNxzfoVaYXAPlLGZhi2W72dsrl38jyHel1BL3K9MLrEcKb8lcfXqmSccIm0RxtrGOKLfsMj5W/HpsYllUEAMHpgyU5J5cxJ/NSVv51paNNKwoFFAIgDIjm/yW/or9LLBvfkjKLynDbOWYbmhzFJ8Ujz9w80E3UYdvtbbKMa/e93XCb6IaVl1dy+9QsJ2Jq+UXzTObi84vb/L878uiI1eedIfb94Oj3nB56NPirgSoTDKb3nSOqyRPA1DoKzJFUQ67sm3br23HbESPt+5CTc4mhLfwZjz3d9tj9uryZ83Lbz99rZ0bKFKsR5IgjvYxfgkp2Har9Z21uO1uGbBaPc5QSdebY+0mOzkisplVCcoKsFwAsUCBFUJQF5uaenuvyuZzxxVbxpT218tQSPM72czaXg2HO4N9U1P+rPgBDfZNOGzpx+0d/Ntrsdbb4+/hjUAVDpzO56yqKYUtB+JlycxvNBSAMirqCBdrlyjgz9SH+g8UObc5g2S1yZfx9v/97bvvlty+RPUN2p8/FAqyLzi9yeVym+DcWjfI3sphdZY9y2coh/od4LpAIgGvGILc7kXfsOs5N54Z5TebhxfAXGFRhEJdxZQvLEJI7Y3rHHWFTBvY9YG/m7R8txGtH1cxdE8tbLRed8JGqyZMjWEDfz8vxayM+pbLLLOFnYrnSKZqPBRvlCMRbYm/glwn2Ew9ClltUTorh2IWVv7HEdKXAwYcHcerZKS4hQq5Ork1WNYEeevTc3JPb52zNS6np9XpMODJB9LnQOaFcoEysBjn/3kAq/N+7qE9RuPr6qlO/9/sf7Mfqq6uRkJSgaGkm08YTznZfT+koMEdSJLFUajlqP5le2InVHBHTZl0bycdir3orjbXMcmdyPLsMMDS3UFvR340XZvxgnDNBlqqhVbkLNFcLJNvLtOgq+/ulwIIEcmZHSdU4QUy2DNng4eaBT4mfZJsV1uv13I1f9dDqLp/v5LOTgnMrzVJ9tafRT832dfy3IwDD+/jk05Nmz8uBv/QNMNx0Xw8XLmudVGeSU+dWquGJGLEOYd9U+Qb68Xr83EiaWjFsef35l+ZZUnKIjDUG0FiXX1ewgIASXQVd7dQox0QD8zHR2NmwdIhr2UsA4OnuiYl1jF1A+TencuL/HPZkG2fLkA2/N/sd5/oZrsFKZi1p8VqpTEgZxQJzv575VfCY3bjac8O3r/s+LpPJmj+aC4N3vbf0dmCE0mCBOUeXUJpi1yjv49+rMrn8x3njv6W1pmWOYIF4Ob87+KtUAHBlL+xl6fdRycxFR68l662sh+hP8pVSAYC7keIlhGISYjTRPfTnk8bv/9ZFWuPpMOG12J3IO9Dr9ei8obMi4+HXJsw8PTNKLSxl8160fLbyAIDiQcI6ot02dUPAjAAUn19cttqxpvjXP2KNd9IKCswRl5l+4Slx07rp5iazfQO2S9+ymv+h1rN0T+h0Orz69hWWt1qOI72OIGaM+NKqXfd24VPiJzyKeqR4IVexZgn2KhZUDIA2PhRvRdzitvd2Nxa271e+n9jhNjUrZFjGMvHIRKy6ssq1wdnhwMMDgseuZE+YKpClAAB5a4qxm3fTJgNS8PHwkX3ZTExCDPdekGLmjZ/tpUTRciYsJgxPop+gUo5K3D5+NkGbouIXXgceHECfrX1QbVk12ccIgFtmywTMCEDphcLghLO1wVhwQOnaNnq9HieengAAyWvL8dXOU1u2c4vhB0SO9j7q8vkuvrwIABh1wHYzAFds7bTV5XNUDTU02/D39nf5XKbOvzDcWHi4eUhSBw8wr/+qBP6ysQ0dNtj9uuD0wYgYGYGz/c5iTTtjI5PSwaXxe9PfUSigEDZ13MQF5i6/uizdoEUUzFKQ2+ZnHlr6TmtasCkAYH/3/aifr75dfwf/cxlQLuuVb/ud7QBcD8xl8snE/d4qvVzw0MNDmHTUuYkba9jndkxCjGzZP1deXxE8djSj19pkA38SRQ6JyYmCOoz8CeTFLRZbbSAndxZiiQWW6wwuOLvAbPLbkk03N2Hk3pF2H2+vkftGctuLWyxGzow5sbK18bPzUdQjq5NtUpdFcaYu4dl+Z3Fl4BVcGGD+ufU+/j3uvbmnWHkU/v32qrby36NpldPf+FFRUViyZAlGjx6NN28MF3kXLlzA8+faXQJHpDfzv5nIPD0zd2Ew478ZyDorq+ydCy3VcePXNnJVsj4ZCcmGmbAyIWWwovUKAIaLz15leqFm7pqCWhKmGVGnn51G3nl5UXJBSVU6Ji5q7vhSnfZF2wMw1uZSi+kMTbXQanj17SvE/RDn9MUnvyh9t03dXBqfPfgFYD+NlbZmX1ZfQ6BCzmLx7NwB6aQPzAHGTDy5LjxZ9o6bzs3lGxZAmAHz8r0yRWnDYsIQPCsYuefmxpnnhvdk5RyVsb3Ldu6Y7Bmyi/4fseWkAKCbqEPlJZWx+PxiVToTA65ljLIsWSWXIwGGLEU28SRH5ijDJkQA8UknqbH3dvGg4i4tC2Wuhl11+RyWfEwwZm+VCSnj8vlYxlx0XLTkN2rsukfqIG77Yu0lPZ8t/I7z/OYr9gjwDYC3hzca5m/I7XsY9RCDKg7C7cG3kSdTHi4wF5MQI8iSkhrL/JtcZzIm153M7Q9JH4LOJTrD19OXq+8IANs6b4N+vB718tnfQb10SGn83NCYOeNMqQ1XbLy5kStA7+r3nE6n4z4Pnr4zz8SWU92VdbltqRplAcIAvFzZ40P3DBU8tndlDd/Dbx5idsPZWN5KWLMscKZ83zsA8N+T/7D1tnHCY1XbVehbti/2dtuLvuX6Yn93YffqziWM2V/8zwkA6Le1n2R1MPtu7Ws1kDrqwChUX1YdtVbUsto1NiEpAW3Xt8Wsk7MkzTg2nSRk1wfdS3fn9k3/b7pgRUPTgk1xob8xACbnZ58pNoFQOUdlVMxekduv0+lQMrgkvNy94K4TTx74/czvioyR///Nur2nRU4F5q5cuYJChQph+vTpmDVrFqKiogAAmzZtwujRjteQISlPsj4Z666tw3f7vwMAtFjTAp8SP+H7/d8jIjYCFRdXlG2JWr+t/bDhpmEW1/Smgn8z6qyTT09CN1En6K76dxvx2i46nQ4jq41Eo/yN8GTYEyT/mMx9uPFrCDT62/HuZc7g32i0KtzKypHi8mTKA0D9rqz85ab/fP4PAENA1JVGBKYZDPyC4nJgweovynwheV07duEnV1ArISmBWyogR8Yc/7xyBVtYplOyPtnl5W9M5RyVARhmEpXAfga+1e1WI1/mfIJ9N7+6iX8//9fquc48P4P+2/uj3fp2qszU9i3nfAdGtgSNFdZXyrA9w7jtUsGlZPt7+EG/4XulqVtnDcuYk+u9LSVWCy+zT2ZJgoj8Jh5Sd7Uec3AMAOcaFFlTLacx61XqYKKYWrkNdSun159u40j79CsnzHLnL58esH2AbJnf3O+5yMTF6narETMmBoMrDcak2pNwsMdBp7MTh1cdjk0dDQF1pZfZ8Sd9pfguzZHBUNhfzc6b42uNl+xc/JUKRx5LX3D/RvgNQV3n2DHONfDJkykPhlUdhl5leiFhnHBprKUyFlIwzYwskbUEFrdcjAb5GwAw1HhtUagF9/yoz4xZ0aaBuSUXl2DFpRWSjMu0NIaY089P4+jjo6iytAr+uf4P1zWWH+Dhr1hadVW6LKydd3faPObwo8PcvVTrIq2xo8sOwRLt2admSzYe/gSWmFN9TuHBkAfY0WUHdnXdheFVhuPKQGGm592v73JZw3w77u4w2yenlNrJXCpOfQsNHz4cvXr1wt27d+HjY+yq16RJExw96vqyCKJ9i84tEhT1BoBvdn0jeBw6J1TyGiJrrq7BkovGLn0v3r/Ai+HCCwhXl9JO+28aAGDfg30ADEXfi2ctbvH4GQ1mYHe33fDx8IFOp0PjAo1Fj1OiZgc/bdqZWTv2ZQzIX//Fmvtv7gMAyoaUlSxb4JcmvwgeW2oXLhW2lFWOAqbshvrNJ3n+j/gFrOVawsdlzMmU9bf+hqEBgpSdX9n/pVI3XmLLibKlN28iEuQXhHbF2uHGoBtmz4kp8nsRwVJxV+X/xXijze+AzDe2xlinz88u1JQKiDLlshmLb8u5lFWn03Ez2lVyVpHt72HYZ7sz3xFiWFBCDiwbqFRwKUnKAXi5e3GZRay2n9Skmghg+OUb5F6NABg/d+ypsWbN7cG3Mb3+dLPakn5efqiTpw73WK5yH+y7xdrveSafTBhXaxzq5K1j8Rh78DuiWqqNJQd+J2dHa5uJefnBkA0+fI/8EwQMf8Kla8muGFRxkKTnr5m7JgBg/OHxZvXgXMVfGbG983ak83SsI6sYDzcPdC3ZlXvcdWNXs+YLUjFdainWpGxghYHctq0JKimC7KYTcDu77MTiFosxs8FMfFXxK9HXdPi3A7ddY3kNrkssf3WMFCsnmH7bjJ/JgysOFjw3sbaxLugvZwz3HXLXX7X2+xH5XSR0Oh3yZs6LAN8ABPgG4OdGP6NkcEnBcXkz58WOLjuwvr2weRhL2JCaXq/H9bDr+JT4CV02dOH2/9rkVyuvSv2cCsydPXsWAwaY1/PKkSMHXr1SZi0yUc/Dtw8xaKf5F+cfF8zTcgNmODcjf/HlRWy+tRlrr61FUnISoj5FYcTeEeiysYvguK4luyJbhmwYWN74xeEzxcelC27TrCxHbwbuvhG/KBu8c7DofilVXlKZ2/Z0F79BtiZnxpxcxzK5679Y89vZ3wCYL2l1RYXsFRT7wOen83cuKX3hV5YBIFfGHDsvv+aM1NjPIFfGHJs1lXIZmJKBuYMPD4rWzbR24V80qCjmNZ5n1/n5zVWkxDpB8wN031f/3qWOgewzSemMOfYZOqXuFNn/rnE1DTX61l5bK3vDDvaek2qZOgsquuncJA92scx7KZe3seWsUnbQ5H/mW8qwdxY/g+Cn4z9Jem4xLBhqqVukvQoFFMJ31b8TvSHuX74/t/35P5+79PdYwrrLynVjyZc3c15utYRcq0XEsN/hKXWncN2RXdEov2F1x9N3TxVp5gIYJwq83L3wV5u/JD9/p+LGJAKpl+jyu9ezOsZSKBJYRPA491xps3CZX04bJ6xvfnVT9JhG+RuhbdG23HeUtf8jKWoG82uadSnZBQ3zN0Tfcn0xotoIswl2MWeen0HLtS2hm6gTBE5jE2Lxz/V/XB6fqbmN5woeD6syzOwY/uQAP5AnVYYh61RbOKAwFjVfhCUtliD5x2Tox+sdnoD7vPjn0I/Xc9dy2+5skyWDduvtrSixoATSTUmHNdeMNUlbF2kt+d+VkjgVmPPx8cG7d+Y3Jrdv30ZQkHSdB8XMnz8fefPmhY+PD8qXL49jx45ZPf7IkSMoX748fHx8kC9fPixcuNDsmA0bNqBYsWLw9vZGsWLFsGmT/DVeUrJ8v+SzfZALoj9Fo9wf5dBmXRt03tAZHpM9kHl6ZkEHHOb3poa17wuaL+D2xSfFmxUdd4Rpq/h6ee2vNwIAHYoZZ274F6T8TD8tY4FIfs0PJS04uwC77+0GACTppV2206WkMLArV+0EdmHhrnNH2RDpM/NYxpxc2WZy15fjn1uu4CILEDQtYJ6a7yylAnOJyYmC7srM0V62M9JdWe7tDP6y84ffPESdvHWgH69H/Lh4XBpwCVs6bcG0+tNc+jvY8sOI2AjJatjYg2UOmXYskwP/7xD7rpMS+46TqlN09gzZkcs/F5L1ybgZIX5z56wfDhqK9j+MeijZOVm2rul3vSv4nwnOdkO3hk2QVMhmuRi7FPR6PV5/+P/AXHrXAnPWdChuvE7id4GVSkRsBPc9bG3Fg5TY9/L3+79X5O8DjNcaJbOWtHGkfeY3m89ty5WlZYqfwSt1tikgDAJLfb3B/v2lrgM5pPIQWbO0AeBT4ifuvTeh1gSzYCDj7uaODR02cJmv/KWtpiwlJjiClcbInzk/VrVdJUiOcNO5ceVtnNHh3w548PaBaJkQe7EyNQBwsMdBs+SNDN4Z8Hkx4WTDslbLuG1+N/feW3pL8j57HG3IVCwYUBD9y/dHn3J9XH4v8UsO5JidQ/LGjt/u/dZsX3qv9LL/3mudU4G5Vq1aYdKkSUhIMKQE63Q6PHnyBKNGjUK7du0kHSDfunXrMHToUIwdOxYXL15EjRo10KRJEzx5Iv5L/fDhQzRt2hQ1atTAxYsXMWbMGAwZMgQbNhi7TJ08eRIdO3ZE9+7dcfnyZXTv3h0dOnTA6dOWi0mmZaYXsvu67+NmnxlWo4Jh6/7Z8kRb+DMcllzofwHxP8TD38dY2JXN9AHOz4pFfYoS1KEoFFDI4Toro2sY6yw++uYRmhU0zqItOud4QwZ78WvPrG231unz8LvsSp32b0v0p2hBNuaPNX+U9PxZ0mVB/A/G+hODd8mTxcguLHL553Iqc9EWlskgVxMCOTuyMkF+hqBAWKw83d9Y1oIUdakYpQJzphdqvzf9Hf98/g9q5LbdLZl/0VwiawlUyVkFC5stxMTaE1Ezd01BZ8v/nvzn8lj59Shz+ecSPFc6pLQky6tyZMgBN50b4pPiuaCBEljQUcpsLUv4wRy5u/4+iDJ8PrH3oBRYp2h7v+ftxbKmTesquoJ9JkiZBcCKfPt6+kq6fJ75ssKXAOT/3fgQ/4G7WXc1Y84aN52bIPOGZbdJhS2PzZspr2I1i1gg/3bkbclvYi1hS5ulCqK66dy4rt8sc1Ju7DpGqokCU+5u7lzgkn99K4Xn7wwND6W8zgAM1xpvv38rWOUhdQYjP1tuaJWhdr/O38cf4SPDsabdGixruQxPhj5B9dDqAID9D/ZjzIExTo8pPimeq8mth/h7qG3Rtty2MyUy8v+SH9WXVUfR34ti9H7H6+K3WGO8xrLUtXbbnW3c9i+NfxF8BplOnkrxPcRWV4T4hbh8Lsb0O9eVhBcxYtezr0cod32nVU4F5mbNmoXw8HBkzZoVHz9+RK1atVCgQAFkyJABU6bIt+Rj9uzZ6NOnD/r27YuiRYti7ty5CA0NxYIFC0SPX7hwIXLlyoW5c+eiaNGi6Nu3L7744gvMmjWLO2bu3Llo0KABRo8ejSJFimD06NGoV68e5s6dK9vPkRKMOzgOuebkQlhMGCYfmQzdRB3arGuDHw8ZAyV/tv4T9fPVR/jIcIz+zPjhFuofirP9zpqds8CvBXDkke3iq6MOjLL6fOsirVEmpIxZwOPHWsIgzqdExzth8ps0PPzmIW4Pvi0I/tnD19MXZ/qewb7u+xDkF4StnY03wgN3DJQtQ4h9uHu4ebg0e3eun7GGTcXFFa0cKT3ThgxNCjaR/O/wdPcULPmQo5g2C8zlzZxX8nMDvBpzMtUBtFY0Wyqs06YcgZaEpARuBjF/lvw2jrYfq+/GzxKTA38ZeduibTGo4iC739M5MubgljBc/fIqTvY5iQEVBuDHWj/iSK8jaFHYeFH52XLHOi6KYb8r1UOrO1083RZPd0/uxof9v8pt2+1t3M+mRGDOTefGBU3lDD7GJcZxM/78uliuYkFZqZeKFQ0yBAn6lnW+eYgpOQrcs+sWOYJygPF3kHVnlgvLAPLz9HNp+bk9+HW0+F3TpTD1+FQA0n7+28LP5Bmya4gkEx/WTDtuzESWMojKgnz8JYVyYkHZggEFZfs7WBaOlMvXAeP3kemklFR6lenFbX+540tJz82vB+fofU6gbyA6leiE3mV7I9Q/VFBndOrxqU6Xndh8azO3bamplJvODfrxeujH6zGy2kjBc9s7b8eGDhtwpJfwXvO3Jr+ZnedWxC1M+2+aS5NJrDGVqVkNjHGGVkXMG/GNqDqC2+Z3bnUGvxyMFDUOGZ1OhwM9DnCPr4ZdlaxURbI+WbCMt0rOKng/+r2kdQBTKqeuojNmzIjjx49jw4YNmDZtGgYPHoydO3fiyJEj8POT54s8Pj4e58+fR8OGDQX7GzZsiBMnxFNST548aXZ8o0aNcO7cOS7bz9Ixls4JAHFxcXj37p3gT2oy/+x8/O/Y//D03VMEzwrGj4cNAa/NtzZj4XnDUuCB5QeiR+keAAyzUfyg2IYOG1AhewV8lsv8po/fqVRM1KcoHH0svlxraOWheDrsKTZ13CSaolsttBqivo/iHu9/sN/sGGuS9cmCi15X6pJUzFER9fMZOsS66dwEN9VytT9nmX65/HO5VCS7fPby0MHw73v59WVFs+b4y5VGVhspS+MEAIKW5RdeXrBypHPYBUW+TPIs+/b3NlxEfUz8KMv/jz1Fs13FAnOs2LSUHkY9RGJyIvw8/cwyeF3BZkdNCyZL7fRzQ8Z2Oo90NrutirG1hKFqzqpOjUsM+9yxtrxFCqEZQwEYMxTk1nKtMdNPjqWJYurmNZQPCI8Nl20Ch/8ZK/Yd7aycGXICcP0mwxQLDrDPCynIkTHHuvRZWg7mqorZDZNkcjdA4erLybiMldHpdOhcwlCDVerJDrbkXYkutgz/Ou+3s7/hs+WfmdW5khJrMAUYJmSkkjOj4b0sV7dcUywLtHBAYdn+DlYOQeoamGzpvlyBOX6mlZRdRSNiI/Dn5T8BANs6b7NxtG38zuIAsOXWFgtHWsdfJrqji+1uoP4+/hj92Wi0LtIaieMS0axQM7Qt2hY1c9fE7IaGrqdZ0mXBV5W+svgdwu+qayouMU5QM3L2ScM53XXu+DDacvDxq0pf4fbg2/g09pPo78bMhjPRpkgbAIblta5k2C65YCyTJGVHY8BwTcLPSpxzao4k5x26eyi3vavrLpzsczLNd2NlnArMrVy5EnFxcahbty5GjBiB7777DvXr10d8fDxWrlwp9RgBABEREUhKSkJwsPBiITg42GLDiVevXoken5iYiIiICKvHWGtiMXXqVPj7+3N/QkNDnfmRNKtJAdtZSvysC8AwS8xmMNhF77Hex7Ci1Qqz11pbBpZ5unFZ7MUBF+HnaQj0nu57GnMaz+EuGCzhz/rMPzvfypHm+DUHng2TtnjvkhbC+nJydO1iF1H8VuHOevCNcaaKX5RTbj8dMxS2bl+sPWY0mCHb3+Pp7sl16pIjMMdufqVcfsXHD1hGx0VLfn5WSFbKoJYpln0mx6w8O2fOjDklrVlTLKgYAMO/jxTvMzHv4t5h+n+G5fO/NvlVlpo7u7ru4rZbrnF+qemH+A9cQMJSN2qpsBtPpQqrs/fY58U+l60Biik/Lz/k9jcEAeW6mWfBqMIBheHt4S3ZeUP9DddBUmbMxcTHcNkAUgbm2LlexUj32cNm+vkd+aRUOaehsdOrD69kXUq/9pqhDIZStSpZ59fr4dJmzMXExwCAxS6OcuFnwjDF5xeXJcjFlnnPazxP0s+oQlkM/yfzzzl2De0sljHnahdga1j2v1inc2fFJcZxZSekqvEnhr+cVaquzNtub0NMQgxKBZcSlNtxlk6nE1xXdNvUDeuvr7fyCnHse29Zy2VoWtC++sA/1fsJmzpuMktIGFZ1GM73P4+LAy4CAF5++1K0PE6vLb0Qlxgnem6fKT4InROKRecW4U7kHa4uWpI+yWZGcaGAQla/Y/n1py1lB9pj1glDdl6eTHlkKT/zv7r/47YnH52MpquautSI6+TTk/j1jPF3miWxEAOnAnO9e/dGdLT5zeD79+/Ru3dvlwdljelNil6vt3rjIna86X5Hzzl69GhER0dzf54+lXaGWG15M+dF4jhhN0zT7LFqodXsOlfPMj2hH68XBLrYTb+piy8vCh6XCi6FyO8i8XTYU67rmz1YVoujGXM1lhvXu0s5+wgYAobvRxtnui++umjlaOf8cMhQJLtX6V4unytPpjxch7EB2wfIPut8+tlpTDk6hSscm9FLnkw5PpaBI+UsJCP3UlZPd0/uRjD6k/SBObaET8qbYVPs3O/i3iE2IVbSc7NsI6kz/kLSh8DX0xfJ+mSLn2Ou+t9R40WQlBlNfPwJjG13tuH8C+cyAPlLa0oGy3djAhizT+VeRgwYsmzYtcKoz6yXVpAaC/5KHahgWGBO6u84FlCU8n3BnzSR8oYjWwZpJwX4n2FVclaR5JymMvlk4pazyjGxx/x+1tAQ6VbELdn+Dj6WJSXlEvW/r/yNk88MnY3Z/7VSZjacKTpJkWdeHsn/riuvrwAAauWuJel52WeDXMuyTbHPJHZNJgf2eyZlcxq2XBqQt9wBqy8JAJ03dJbknCwAVit3Lckm/xoXaIydXXZyjzv+29GhTLCWa1pyqxGqhkqT1V8uWzlBxtrEOhO5e9LeZYzxCp8p5r/rC84ay2QN3DFQsDRdiqZuX1f+mtt+/t75lQBshQu/pJTU+BNOu+7twrxT85w6z70391BtmTF+MKLqCMUmPlMKpwJzlgJXz549g7+/Y+vU7RUYGAh3d3ezTLawsDCzjDcmJCRE9HgPDw8EBARYPcbSOQHA29sbGTNmFPxJbdzd3AUXmOvar+O2s/pldbhrCv8mwFIByV33jLMtz4Y9g5vODd4e3jaz5EytbG3I2kzSJ9ldZ45/gc6KmEotvVd6riuo1N2u+MuepAqmzGlkSFn+lPgJW247l5ZurypLq3CBRQAud3G0BwsuyxFg4ZayypQxBxiXs8qRMceWS8m1lJidm134S501x+/yJiWdTscVuZe6WDmTzsNYI6RwoHxLe/iTKxUWO97p8Un0E/x95W/usVz15Rj27/7bWfNaMVJ79u4Z3se/hw46QT1KJbBOaFIvCWX23t8LQPpi5ayW14O3DyTrnMuWVeb2zy3p7xeXMSfR5w77v8rkk0nW5TjsJteZ96s9PiZI3x3VFtaAhF8nyVXdN3XntllmtpJWtV2FibUnmk1oW8rKccatiFvc95zUdfTYtb9cy+lNhcf+f5doCZvRmGLXYlKuAJl4xBiskCOznXF3c+eWiko1MTXrpCHLSuqGG00KNhHUO9xx1/pyVL1ej3MvzuHY42OChgn8jqByyJExBxY0E9anZ4G3VmtbQTdRJ2hEBwBfbP2C25Zi+W8mn0zcdZizn3/8wGeDfA1cHpMlpjUsnW2isvrqasHjmQ1nOjukVMuhK52yZcuiXLly0Ol0qFevHsqVK8f9KV26NGrUqIH69eVJSfTy8kL58uWxb98+wf59+/ahWjXx7K2qVauaHb93715UqFABnp6eVo+xdM605Hjv4zjW+xjuD7mPSjkqYWq9qSiZtSSufXnN5XObzqI8inqEsQcN69i/KPOFS7P5RQKLwN/bH8n6ZLu/xPgFRzd23Oj0321LVl/DrNrIfSMlTann10MSKzTqDH5WDStGf/HlRcmLNP9w8AezfXJeoDFsVpvNNknlY8JHbgZY1sDc////yJExx5ZKWSpsKwWdTscFzvfc2yPpueUKzAFA8aDiAIxd/6T0JPoJJh2dBACYUle+RkqAsFA54PgSUbaEFQD+aP6HJGOyhr/MSeqJDVOszo0eesWW9DHss4/drErtryuGTphSd43M7Z8b7jp3fEz8KFm3aPY56kjGvD24+pbvX0ry78CW78qZ8QMIJ2H4QXEpJOuTBdlElwdetnK0dFjAITwmHJdfXUaz1c3MmkC5QumMOcDwvfNjrR/x8JuHgpUSUi7zXnhuIbctdTCY/Z9EfYrilsvKJSk5iQsAytWVFRCu+nGmMZwp/goffhMTuaxpZwwoutpZ9tDDQ9x2rTzSZlsCwPPhxuwvfgdT0bE8OoSKiyui5oqagv2mzf3k4O3hjf++MGbBTf9vOk49O4Wtt7daeRUwo/4MyTLO+Z9/zth403i/Kudnnekk/drra1F8fnGzlW62SFnXNbVyKDDXunVrtGrVCnq9Ho0aNUKrVq24P506dcKiRYvw99/SXizwDR8+HEuWLMGyZctw8+ZNDBs2DE+ePMHAgQMBGJaY9ujRgzt+4MCBePz4MYYPH46bN29i2bJlWLp0KUaMMNaA+Oabb7B3715Mnz4dt27dwvTp07F//34MHTpUtp8jpXB3c8dnuT7jggujPhuFK19ecTpoEvmdMQBiukwi7zzjkj9LLbLtpdPpuALMYw6M4WaBfz39K3QTdZj5n3mE/uFbY0FsOVPSjz81Fhnlz+q6ir/UVKq6YKwoMwBMOjoJ/1z/B+X+KIcSC0pIVucCAKYcEwYgTLssySWzj6GeYWxCrKQZWyzLw9vdW9aupixrVZaMuTj5M+b4pLhQ5mP/n6YFiaXAaslcDbsq+bn5s4lyLYljsmfIjr/a/MU9drTbI/8zoHdZeUtYAMIbCLkv7gbvGizr+a1h3z9y/Iz8IL7U7w1Pd0+uScb9t853ueNj/wZSZ/exwFxcUpwkn58sY47V2ZML69oLAAO3D5TsvBGxEXCf5I7yf5Tn9pUKLiXZ+a1hwZiI2Ag0X9McO+/uRNlFzi8T4xf3X99+vWLLMS3hB83+OG+YwLgWds3lWplSTyjysQktPfSSN0swNe34NO6aX47va4aVuAGkaSDEX2mxuMVil89nCz9z+3bEbafOcSfyDjbd3IS6K+ty+1itZSmZ1nqz1p143bV1Zvv2dJN2otaaaqHVuFUK2+5sQ9Wl5kto6+SpI3jct5x0HcID0xl+553NmItJiOG25fysM20G9OzdM9wIv4Fyf5Sz+xxdNnTBovOLABi+04/3ttx0Iy1zKDA3fvx4jB8/HsuXL8fkyZO5x+PHj8fo0aPRuXNneHnJN7vcsWNHzJ07F5MmTUKZMmVw9OhR7Ny5E7lzGy4GX758iSdPjDPpefPmxc6dO3H48GGUKVMGkydPxi+//IJ27dpxx1SrVg1r167F8uXLUapUKaxYsQLr1q1D5cqVZfs50ip+9kqx+cXw/N1z6PV67LsvzFiUoug/u3nedmcbxh4ci5ZrWmLI7iEAgO/2f2c2Sz771GyX/0578JcysCVFrmq7ri3XxXFl65WSpdR7unvi26rfco87/NuB2664uCIOPjwo+rqDDw9CN1GHPlv6OJzNtbHDRkyvP925ATuIH3T6/czvkp2XZZv5+/jLuryBBeZcnT0Vw2XMecmXMQcAfcsaLnD4FxeuStYnc+9nOZZDsAvkm+HS1aphvN2NhYLlDswBQLdS3bhtRy/qWH2jDR02KFYjhGWvydGwRSvyZjJMUsmRFcivYzOu5jjJz8+WG0tVA02OjqyA4XedfX5Kkd23+fZmAMb/O7k0KtCI25ayUH7frdLdaDqKBWOS9EmCYBVr3uAoflZa26JtXRucxG5H3sb9N/dR/o/yKLOwjEu1e33cDZ/Xnxf7XKrhcfif51LWZDOVkJQgKGEiZ5aUTqfj3jNSfLYmJCcAMHzmpfNMZ+No1/E/A52dSC78W2G0Xa/MeyJshHFFEKsdbUqv1wuSFZiG+RvKNi4xtr4LiwYW5baP9z7OdfiVgqsT7Cyg17F4R6mGJKpOnjqY2WAmBpQf4NTrk/XJgmXkf7X5C9VzyVM2KqVzqmhHz5494eOjzizUoEGD8OjRI8TFxeH8+fOoWdMY7V+xYgUOHz4sOL5WrVq4cOEC4uLi8PDhQy67jq99+/a4desW4uPjcfPmTbRtq60v89Qq55ycCJoZhIZ/Gz+Ex9YYK8msGf9Gf86pOYLaBYCxhhbDZm3lXj62/nNhl6JCvxbClddX0Pjvxphz0rk21JtubeK2bXUJcpS1jKl6K+vh9YfXgn16vR71VtYDACy7tAxlFpXBo6hHGLl3pOgMMf8CKW+mvGhTtI2swSw+/qyelMuKWVBL7mwzFuhmyzalxN4fci5lBeQJLp58epLblrrAPQCu5qUc3WTZ+6Frya5ccw+5sdlgR4PorPOw3LVg+FgnXDl+5xl+hsimjpusHCkP9v13Neyq5DW/2GeTXN3bCmQ2BOakqknK/p/lyDyWss4cW9atRIB6e2fjMmupmH7/ja81XrJz2+Lt4S06AXT40WGnzsfquxYLKmaWuaOWWQ0M9bwuvbqE8YfHIz4pHpEfI11q8BIVFwVAnownvn9v/CvbueXIOreGLTV3dUnx9OPT0fFfQyCENetRQsvChpI1jo7/wssL0E00v65uXaS1FMMSFeQXxAXYLJULGH94vFn38cl1Jss2JksGVrCefcyvc25v40N7sZI0rFmNo1i3Z9N6llLT6XQYUW2EoGGGJQ/fPkTIrBBBNqTpd4zc403JnArMJSUlYdasWahUqRJCQkKQJUsWwR9CLFnacqngsWk6vlQfyrYKdv94yNgye9WVVXj5wTBrLvesQ5HAItjf3dgt9u6buyi9sDT23N+D4XuHY8A2w2zE31f+Rrv17bDg7AKHZlWl/qJlDQYsCfk5BNOPGzPcTGd9HkU9Qt55eTHr5CzuQoav/fr23DZraa4k9iX7x4U/JKulwpaByp1txm5W5SjQrFRwkc08Srlc5u0n47maFWwm2XkZttQwPDZcsiL3zNzTcwHIUxvPErHg6LWwa1ZrniQlJ3EztXJ27jXFPp+PP5FvCUToHONyRLlvesXwA2YBMwJw5NERyc4t9xL1e28NNV1NJ8Kcxd7LUmYoMFIF5vgTTqy5k5zY54+UwWl+du6ZvmcUDcwB4jVl115f6/B5mq9ujjbr2gCQrqSHFE48OwHAMPHC7wL/88mfnT4nu9GVa/ln+2KGazOpO6bzKZ2pyZaau9pYZ9QBY6duOSboLGHd07/e9bWNI4Xq/FlHdP/qtqtF90uFJTxY+qyaf3Y+t/11pa9xvPdxxbugA9a/X1oVbiWoFS114gBbEn38yXGnroMfRRter1SgS6zRzFc7vhKUiCr3Rzm8jnmNThs6cfuOPT4meI2jTR3TEqcCcxMnTsTs2bPRoUMHREdHY/jw4Wjbti3c3NwwYcIEiYdIUpMepXtYfV6qD70R1UZYfX7eaUOr5/MvzqPbJuNyLjmL9TOsDo+YPy78gRNPT6D7pu7YeHMjBu0chBn/WV7am6xPhg6Gf7OX376UvDNin3J9zG5OTQNOow6MwoEHB5Bnbh5BtpKpE09PCB6fe3EOZ1+c5R4rVc+Mr1fpXtz2r6d/leScLDipVLbZxVfSBjTjk+K5mm9yBxe5oND/z/5LgWUZ1chVQ5alMewmMjE5UdJMP35guH4+eZooiWEztoN2DoJuog66iTqUXFASWWdltTgpwA/AyxE0sYRl0ey5L18NGn62NatDqSR+dtjHxI+o/Wdtyc4td8Dd2dpHlsjZxIV162STcs46+vgot10mpIxL57IH+7eQckKGZctOqTsFFXNUVCxrnRHrVupoc4tHUY8EHSCVKB5vL1ZaxZSzSyr1ej33eyfXZxRbIivnUlb+tcv9IdLUpbSGNV9zJaht2hjA0dqsrnB23Oxzn8/TzVP2Jbjss2rd9XWi73F+IkHhgMKonqu6YmUxbGlVuBVaF2mNxS0Wo32x9hhaeSjWtnN8ssCW8tmMdT2zzMjicDMiVlJEqcCc2OfN/HPz8d3+7/DVjq8ACCd52QQCv4nW8lbLFW+qlZI4dRe/atUqLF68GCNGjICHhwc6d+6MJUuW4Mcff8SpU6ekHiNJRZSsRRQxUlhMc0cX87bdFRYbC8JWzlFZkQtSdkNgSfVlwnX3Yw6OwZ3IO6LHRn2K4pa0yHGBlt4rPQ73PMzVvhpVfZSgiQdT/6/6eBz9GE1XN7V6Pv6XTsXFFbntYL9gxW8GAEPgkRm+d7jLM6kA8PtZQ706/g2bHFgAate9XZKel32Rerh5yB50Yb+zUmbMsRl+qZd1M17uXlzWiqX3pTP4y8KbFGgi2XltsRZ8tVRgnN81UckLLLk/I+admqfo3ydG6g6LfB/iP8j6d8xvNt/2QQ5gnwtyfLdJlTF3+tlpbluJ9wK72Y1JiBG92XUGmyCzlSEvF35h/i8rfMlts2Wp9jD9t/hfnf+5PjCJWFoqd/jRYaeWivIDNFJnbTPs/SFHRj4gbFhWKUclRSbF2YSEWKDKXqaBuOaFmrs0Jkcsa7UMgGNL+5dfXC66n9XIkxMb59kXZzH24Fiz59kEsI+Hj+BaXE1BvkG49dUtbOq4CZs6bkKQXxDc3dwxp/EcdCwh/YqqQRUHCR7vf2BcUfUk+glar22Nakurma3o0ev1qL+yPpdxl9vfcsKHlNzd3FE1p3mDDMAQoDPFmmmwSdXaeWqjV5lecg0vVXAqMPfq1SuULGmYAUqfPj2iow2zbc2bN8eOHebBD0L4HgwRv9h6PPSxpH9PlnRZ4OdpvDlvWlAYNFpyYYnwcUvhY7n4efnhWO9jtg/kKfxbYdH9g3cauwd6e3iLHuMqnU6HTz98QuK4REytPxWe7p6onae21deUDi4t2sTB0gzx+f7npRiqw0wzDKXIxGHL7Nx18ta34f8+S7UMFxAud5M6A9OUHDXmWMaTnDXaEpIMF7WbbjpXg0yssPmYg2O4bSWzPUzrbfJZKsDO6kgqTa6Ozcn6ZHy751sM3TOU26dkZzg+sWCgVF2LPyYagvlyvTdYxpi7zt3hmX8xcmbMscCDKxlznxI/4Zczv0g1JLv4+/hzn8tS1P/S6/VcrS8pJxocMbOBcRkUv2bXrYhbdp+Dv+Syb9m+KJvN+c6uUrO23P/zfz7HrBOzHDof//uyQf4Gzg7LKvbdfDtS2ixYhp8RqVTDL3adtOSi89f6U44J61Bv7rjZlSE5hGVFRX6M5K5BbPli6xei+4sEFpFqWBbxM7PFlm1vuLkBAPBL419U757MJiir5KyCwoGFFZuU0+l0glICrOb6X5f/Qu65ubHl9hacfHZS0PAqNiEWbpPccODhAW6ftZVYUjvR5wSSfxSfEDCdKHjw9gHuRN7hyrScekbJW7Y4ddeVM2dOvHxpuJgpUKAA9u41dJc8e/YsvL3lCQ6Q1CNvZmHnsr5l+0I/Xo9c/rkk/Xt0Oh0+jPmAV9++QtKPhtm5siHGi7V+2/oJjmeFYZXwWa7PBI//+fwfm69Ze808jZrf5UZu/ELKh3oeQtiIMJQKLiV6bIBvAL6r/p3Zfv6FP/v3HlV9lCxF+u31RRnjhYurS7z4ATI5uh7y1cpTi7tBk7J5BQts8YPacuFqzH2SLmOOZQXJGZhj42WBDkccfXwU6aemh26iDquuGOsNrby8UrLxOWLFpRUWn2P/llrRr5zxM1vKsR1+dNisM7ca9eWYBc0WCB472pjDEha8SOchzxImlnGVpE9yudPy+RfnEZdkyIKSI3M32C8YgGufnWoEstx0btzNT7dN3VwOgLImLoB89cps4S/D8nL34rpnPn/33MIrzC04Z3zPzGw408qR6ng/2vIEyMh9jk049N/en9uWaxUKP0tVqs8fvv0PjZlBlXJUkvz8Yk4/P237ICtY8yHm82KfK9pghH+P1HtLb4cySgFAP16PF8Nf4KuKX+Hfz+Vr6sFY+45+Ev2Em3Bi5TTUdKbfGQytPBR/tPhD8b/btOmg20Q39NgsLPvEzwgWmxhVqlkYo9PpMLjiYMG+ooFF8cd583+/vff3cttSTTKmZk4F5tq0aYMDBwyR2m+++Qbjxo1DwYIF0aNHD3zxhXh0nhBLpF6KZyo4fTAXwNjaeavF45SucTb6s9EISR+Ce1/f4wrt8rHCqUznDZ25gusMu4BVIzU4yC8IY2uYp6cDxhT2nxsKZ8kevH2A5++eI1mfzAWxOhTvIO9AbfixlrERCL/DrTP4/z/fVPnGpXPZ4qZz44JnljKbnMFu3pX4opcjY451upMz0D6h1gQAzl1kDNk1hNvutqkb4hLjBB3TlKhTxcfPVjFlWhfS1IEeB6w+L7UM3hm44IErQZGF5xZCN1GH62GG35Xmq82XI6k5gz+wwkC8GP6CC3RJ9f5gy9/lem/7evpymcKu3Mz/fOJnrsyEu85dllqXbKm7K8Xt+UG9OY2c66ruqt33drv0ev7/k9hkmhI83T3RtGBTZEufDa0Kt+KWZfEDULYsvrCY22bfK1pia/m4Ix2YDz486OpwbOIXZ3/x/oXk52f13gD5JgpM8QMgziwB3nPPmEWdN1NerGu/zsrR0sueITu3verqKkHzNHtly5ANvzX9DcWzFpdyaKJMf+f5y5f5QUVPN/XrQRYJLII5jeco2syKqZi9ouCxWMftd3Hv8PrDaxx/ctws60yJ7EcxQyoPETxO0ifh4kvzmtf8ZiXLWi6TfVwpnVOBuWnTpmHMGMOym/bt2+P48eP48ssv8c8//2DatGmSDpCkfgubL1Ts77LUCebBkAeK1xP6qd5PeDH8hWiXGwB4NeKVWeCLv/xWr9dzN6dyd5O1xNIFFVt6xGrTMbNPzUbOOTnhPsmdW0InZ00le/BTwMWyEh3Bll5l9smsyM0Bu7l0NTuFjwX55KrRxsdm5aM/RUtWK4d1Ey2QpYAk5xPDMnhMuxDb4/Lry4LH0/8TLuOxlIUqlxHVRsDP0w8+Hj5mF00Dd4jXRmLveyXqApli3RZNJykc8eUOQx2rEgtK4OX7l2aZj7MbzhZ7maKyZcjG/Z5JFZj7+6ph+ZirDQ8s0el0XPaDM+8NZsQ+Y/OmJH2SLN/N7HfYkYCIKRaYC0kfgm8qyzsRY0nT1U1dyppj9bYKZikoWzkMe2zvvB2Phj5CcPpg7Huwz6HXmmYyaZ27zh1hI8IwsfZEbp9YDS416XQ65M9suDaVsgMww64vymUrp9i1Nz8Y5czEQcu1LbltN52bKjVI6+aty2070vhrVHXlu52aXh8sOLcAN8Nv4l3cO0EGmBL17rQsg3cGnO5rPZuz+ZrmCPk5BDWW1xDsP9zzMM70Va4BCZ/p/++dyDt4HWOolWyplE+Lwi1kH1dK51Rg7ujRo0hMNC7Zqly5MoYPH46mTZvi6FF5C56T1IFfM0bJ4qli6uSpY7a8Vin8L3Z+AeRz/c7BTedmVlPp5XvjDRW/SCi7WVWapVpY/AYCfPwsF5bmrtbyGb7+5Ywz88/ePXP6PFyxcoU6VbKgZkrPmNND71JBZj42fjkDvvxMplsRt6CbqMP/jtouNi72uzX+8HjB4+JB8s9km/ow5gM+jv2Ihvkbmj3Hag4ynxI/cYEsNTJT2O+lVL/z2WdnN9s3rOowSc7tKikzSsNiwriaXdvvbHf5fJZIUWBdiWsC1pHQmeXoDFtqWSt3LUVv0m8PFtb9CpoZhPMvnKvTyv6f1M4y0+l0XPOMRc0XOfRaV76zlfRDjR/g6+mLywMvI8gvSBDMnXNqjl0BVtPPYzmx6/TPln+G2Selnax4HG2oKd2uaDtJz2uNl7sXl53l6mRm15JdpRiSw2xlS+r1enTb2A3D9wwXTDrwA3pKaVm4pSAg+PWur1FsfjH4T/MXTKzx733SKn53VkfUylMLGbylzyi3h9gy7i23twAA2hUTf19r4X5P65wKzNWpUwdv3pjPoERHR6NOnTouD4qkfts6b0PN3DVxof8F2wdL7Hjv44LHf7b+U/ExiJnbaC4q5aiE/774D+WzGz6k/X388WnsJ+5mlC21jE+K54qEAsYlrUqrHlod3u7eZh+27GK/fr76Vl+fwSuD6jcEgLCbnis3lOGxhmwtOYqVi2FLWaWst6VkjTlvD28uc0WqzqxKBBaD/AzLzPfe34uivxcFAIw7ZLum4P03920eY7o8QEk5MubAi+EvBI1FMk7LyDU0AYB0U4xZskov/wekWYJojemyEjVJGZjj11SVs3wA+ywaunuo0+fgL3M72eekq0MS5WrGXGJyIr7bb1j6WThAvDmTXAoFFBJkW0V+jESfrc51NWSZ62rd3IlpWdiQmaSDzq5gFX9JsdIZx46YXHcyor6P4jK3TD8/7ekQzG8+ED4yXNoBmuBfm32791tJm0xdeX0FgCFTU0lsws7RaybTn31sTXUyHE0z366+vip4nHVWVqy6ugpzTs3B/bfG6406eZW/N9fpdJhaf6roc+w9WyyomCqZ91rj7uYuGrSydj1yfdB1OYdkF0sT4NnSZzPbt6urvGWrUgunAnN6vV50djAyMhJ+fvLfzJGUr1poNRzpdUSVzlnVc1UXPA71V67pgzXVc1XH6b6nUS20mmC/t4c3VrRaAQB4+u4pdt3dhYK/FjQ7Rg0ZvDMgfGQ4bgy6IdjPah7kz5Ift766hS2dtoi+vmhQUVWWA5jityyPjI10+jyrrhqK+bOMKrmxrA8pC6oqmTEHSF9nTomurJay2mzdRNb+s7bV5/Xj9ap3J8uWIZvZUk62fIKfpQuYdzVWAlsi4WyNOWv/R8OqDMPmTpudOq8c2HtDiuYo/ABU0wJNrRzpGpYJ4Wyhdb1ej2WXDEuqZzaYKehYJyX22clvfuCIxeeNNc3UaJJiep1w+fVlp5a0sokoNYLslrDPQD30di1ze/3hNbe9pp1yDbGcwV9lYHrtY0/2Jv97Uu7sE9PyEjP/c7ypxpPoJ4LaYszN8JsAhF14leBsYI6/9PXigIuCyVwljakxRvC41EJjIDomPkaQica+I7OkyyJbkxB7/NLYvHP1zQjD/7+c30Upzb2v72Fjh41oXaQ1cvvnxuyGs3H2xVnRYw/2OKj4e0fMza9uYn/3/Wb7Tb//03mkQ+MCjZUaVorm0FV127Zt0bZtW+h0OvTq1Yt73LZtW7Rq1QqNGjVCtWrVbJ+IEOIQfkZc09VN8ST6iYqjEcrgncEsQ2xC7QncduHAwsibSXypsJKdcK0pGlQUOhguklkLd0f9feVv/HvD0OmKdROUG6vhJ+Xfx5YIKhWYk7ozKwssypnxZ+mGyFoW1+ln1gMVpo1S1FQ4sDAa5Gtgtr/BX+b7lLbnvqEA96Sjkywe8zHhI6ovq46em3uaPWet9tnUelMFBbbVFpjO8HvmSj09wBDs4tft6lhCnZqk9uAHHu5G3pXt7+FnA7G6lI7YesfYSKpH6R5WjpSHaXMoAJhweILD52FLI+VosOEsfu1aeyad2PujWcFmmrhZdQS/thQLkl58eRH33twTPb5ctnIAlMloNy1C//NJx76jJh2ZhNxzc8NjsjAolJCUwF2zKP15ywJzji4JZt8bfp5+ijdo4svgnQE/1PhBsI8FUE2XdLPAnFLNNSzpW66v2T7WrIVf4zmt8/fxR5uibbCp4yY8GvoIw6oOEy0vAqiTASkmZ8acqJevHv5q85dgf9SnKEE2XdSoKIVHlnI5FJjz9/eHv78/9Ho9MmTIwD329/dHSEgI+vfvj7///luusRIimTZF2qg9BIeUDilt8bmtnSx3mlWKu5s7t/zkzuA7ZoELS0EeVvxfC9hF6LzT85x6ffdN3bntYoHK3BywWVt+IV1XKRHY4pM6Y06JjD9L52azwMyrD6+w8vJKfIj/gNmnrNfoUauBiyU7uuyw+vzBHvJ3BhRjLVPh6OOjeP3hNQ48PIATT09g5eWVSEgSZtzws2scObcaWIe440+OIy4xTjTzxB78roo1c9eUNSuTP4nkzHjZ0kpA3m5zeTLl4badmehik00h6UOsfj/LpXCg+fJZa8FqS9jnklQTI1Lgvw/tCcyx7Ce1G0k5o1KOStx7puyisph/dj7K/VEOBX8tKJoByQIaSpTLMP23j/zo2GoC0/qpDP89rvQSameb07DrE/Z6NU2uO1nwmJWaMK2bx1ZwsOxgtVj7+7VQykbLlrdazm0vabHEypHq6laqm+DxzAYz8W7UOwyqMAiHex7W3LWVljkUmFu+fDmWL1+OESNGYNmyZdzj8ePHo2jRoihXrhwCA6mwH9G+de3X4femv+PWV7fUHordTDu0Mmq09xazpdMW6MfrUTDAvGaIpeXCqeVL2fRmn1+jS05s1pkVUpaC0ktZWXA2JdWYs7T8uufmnsg5OycWnluI8JhwZPs5G3pu7olBOwZxGZmMaX1NLWVqAYYlV6vbruYemy5rUmvGls3M8mtJLTi7AD029UCtFbVQamEpwVinHRd2ire2dFELy+r5smUw1GnZc38PfKb4wGOyh1PLFfm1hr6q+JVk4xPzz+f/cNvOLLHnZ7IMqDBAkjFZUjrYEFBzJiORBYOGVxku6ZjsZSm4eiviFur8WQfrr6/nMrAiYiPQbWM3HH502Ox4VtdMzoYgjtLpdNzPZ8/vkJJ1UeXAX5b/1U7j+1MsEHbuxTkAhrImchtaeags52XvcR8PH8WXWHLlARy83mBLWbVyzcrvxFlrRS0kJSeZLc+9FnYNgHLXcs6g5Y3WZc+QHfrxeujH69GlZBd0KtEJq9quUntYovg15LKlzwadToffm/2OWnlqqTiqlMepAjEXL17EypUrAQBRUVGoUqUKfv75Z7Ru3RoLFiyQdICEyMHT3RODKg4SnXXWql5leonuSwkdjbzcvRAxMsLsS1hLHXr6ljWk2xcNLOrwa7/Z/Y3gMcselNvRx4Yu2PY0HrCX0oE5NmN+8dVFl8+l1+u5pbisSYBcFjQz/667EX4Dz98/x5c7vsT8s/O5/X9d+UuQSfTmuzcom62soLOb1oJCANCmqDGzmB8wqZVbvQstFsi98voK9Ho9wmPCMWjnIPx1xRCwC4sJE9S++/Hwj4LXb7llXu+yX7l+ON/fua6WchKbdGENgBxRa4Xx/0vOxg+AsP6iMx1PWTZNbv/csn8GBfgGAHAuMMcFg2T+nLHm7zbmK1SK/l4Uhx8dRsd/OyLbz9mg1+vR+O/GWHV1Fer8aTmYvrTlUjmH6jBWpsGuwNz/f+anxIw5a6w1JlHiZ21dpDXmNJoj2Pfy/Uu7X182xFhDOj4pnttm2Wpq1DVk9X/tabTBx2XMKVQ/2JaKOYRNAY49OWaxU7naS1kBw4RNpRyVBPWmS2Ytqal7AK1L55kOa9qtQZeSXdQeiqjGBRqjf7n++CzXZygZXFLt4aRYTgfmatQwFIP+999/ERwcjMePH2PlypX45RfzIo+EENflz5zfbN/yVss1eUMvJsA3ALu67hIsI1aqe6k9WAYQy1JxBH9pBqDNIIu9lA7MsSyO38/+7vK54pLiuCXJco9/YIWBqJPH8o3uhCMTBI8nHzUsP2lXtB1XV4+9Xqsz2j4ePtwShEzTM3H7F7dYbOEV8uMvffrh4A+iN+7P3z23+HrT9yoA/FTvJ652k5aI3XzHJsTi7yt/o+fmnoKbXa1wd3Pntn869pPDr+dqnimwxI3dFDq6RA8wBoPUzNLqUrKLoDurqdiEWMw7PQ/nXxqDzpdeXcKUo1O43x1PN0MzArGakmpiwZtNNzfhr8t/cdk/YlizEDWDpK6wtGRbLLDNJjfnNXau5IYjPN09MbTKUEHQNvvs7GblASzhLxc/9ewUt/3m4xsA6lz/sczQMQfH2DhSiK1K0MJSVubzYp9z2/89+c9sKSujheBX+2LtcbrvaUEXXq1e9xDnLWqxCMd6H6Olqy5wKjAXGxuLDBkMF0179+5F27Zt4ebmhipVquDxY+mWVBFCjHQ6HT6MVr77m9T42TZauhl2tlsXIJwZnlF/hmRjUoMSXU35HJ25tobffEGJ8T94+8Dh17B6MADQs0xPrG67Gje/umnlFeoSW7qjZgdHfrDqp+M/iTY+GbhjoOAxf/knq7vDursC2qp1yZcvcz6zfX239kX3Td2x8vJKzDk5R+RV2jHnlOPjY5+/SjQjCEhnyJi7EX7DxpHmtJAxp9PpMPqz0SiQpYDFY4btGSZ4XHZRWfxw6AdMODwB8UnxXNdTpWt92WvUgVHosbkHSi6wnIFRMqvhubCYMKWGJalxNcUz3s+/OG8WfGcTEUoGhE0/773+52XXdRK/ecSYA8ZAmNKTf3yWgle2sNrDhx4eknI4LvnnhrFswA+HfrDY0ILfCVht/M8q05q8hBAnA3MFChTA5s2b8fTpU+zZswcNGxq6hoSFhSFjRu20XCcktfHz8kMu/1wAgEb5G6k8GufwU/C1NPvILnQtLQewZsqxKQAMTUVGVBsh6bjslZicKMl5uOYPCt1w8pcOWyvMbw/2f+fl7qVI7RrTumv2mN/MuMTVw80DnUt25t7TWiTW/VHNwJxpwMaepW6sLhM/QLes1TJk9M6IhvkbCrK8tKRAlgJmS6f4gchRB0YpPSTZsYxGJQJFrCnGovOLHH6tFjLmAMNNtzOB/anHpwqCK2r/HK5gvzPNCzVXeSTOEQvAA0CXjV3Qbn07wT41glpi33PjD4k3duDjX0vxf0bWrErOJjSWrGi1wqnXPYp6BEDbv2Mnn50EYMjK5yuUpZDY4argBwlZDUxCiJFTgbkff/wRI0aMQJ48eVC5cmVUrVoVgCF7rmzZsjZeTQhxxdUvr2JZy2VY026N2kNxCv9iTCv1OgBjIMqZjDnmcfRjRZex/tn6T27b0mypo5S+8J/VcBa37exsNqP02J2poVU1Z1UZRiIfsaYUatxQMabLO9myKGsqLakEANh9bze3r02RNoj8LhK7u+629DJN2Nt9r2Tn+rHmj7YPkpi1OlliuKWsCmTMtSrcits+8uiIQ6/VUidQDzcPriabvUpkLcH9DN7u3prKqgEg+vNYCsKz3xk1JwxcUSVnFSxruQxbOm3Bx7HC94tpUw72flKy0ya/qzOz9c5WQdMKMfwM9so5KnPbbHLB0d9ZKRTPaqyB6UhtSbYqok/ZPpKPyVn189UXPGadldN7pUeODDm4/WdenIGWsLHJ2XWbkJTKqcBc+/bt8eTJE5w7dw67dxsvauvVq4c5c7S9tIKQlC6jd0b0Ltubq1OV0vDrk2gpY45d1LPaNs4YX8v2LLKUepTuwdVyEKud5Qx2s6ZUcIstQwKc6+LIx24ElCp2PKC8410jtdJF2V77Huwz26dmDUXTTCp7sywfRT1C09XGbsnpPNPBw81D8/UgrQVB+YEla1gtp44lOkoyJluuD7rObYfHhjv0WiUz5jqV6MRt1/6ztkOvZZMIWgjMAcCpvqfQolALu4+PiI3QVHDR1C9NzOtVzzoxS+RIY+ZNSg3MAUDvsr3RsnBL+Hj4oGbumhaPUyNjbmCFgWb77r25h8K/FTYr5xCbEMstv+UH5vjbLGPO20P5wBz/83Tl5ZVotroZrry+YvN1Wli6bmpuo7mCxyzQ6OfpJ/j9mNlgppLDsmlr561oU6QNdnbZqfZQCNEcpwJzABASEoKyZcvCzc14ikqVKqFIEYqAE0Is4wcmtFQgNNgvGICh+xa7cLQX+5ly++eWfFy2sMwSqTLmWGBSrLaYHEL9Q7ltZ5YR87EMNqVuWkZUG4F5jefh2peWC5PzTag1QfOBIK0z/cx4+u6pXa/bc2+P4LESS52lYC1zjH+zaw2XZaNQwLpYUDFuO/fc3HYXiweUzZhzNuvoxfsXXBaRVm7Uy4SUwdbOW+0+PiY+RtOBObEu9KwLOV9iciJXpzSrX1a5h6WIvJnyCh7zs4LZd5ySnTatTQ4ce3yM245LjIPfT37w/p83YuJjBBnl/Gx4VgtQjYw5fpbWt3u/xc67O9Hob9tlYbSydJ2Pn/0HGBtp+Xn5CWoT8ic/taBctnLY2HEj8mbOa/tgQtIYpwNzhBDijNyZcmNTx0042sv8IltNmdNl5m7WHS0irWYxY9ZR0HTJi7OiPkUBULYgPqsz5+pSVpZxp9Qyn0w+mTCk8hCzC2RLtJQhaq+hlYdy2x2Kd8Ci5o7X45Ja+EhjFtb66+stHvfom0fcNr8hBL9boNblyZQHPUv3FO2aaU92r16vN97MK7j8jW/ttbV2H8sy5rQYLGJyzDYuE9PaOMtnKw8A6FaqG7dPrPvl+/j33Ge91n4GQHzSjt9MgNU9exr9FAnJCfB290bOjDkVG5+cTN/XATMCEJ8Uj/ln53MBYaWvNf75/B/RYGmSPonbvvvmLrfddn1bwQTnxCMT8ST6CQDgu/3fAQC23N4i02gtE5uQsacBlRYz5gDgzmDz5cQvP7zE6xhjJrkamYmEEOdQYI4QorjWRVqjRu4aag9DwE3nxmXN8S9qLAmPCUfDvxpi3bV1qgbmmAlHJkhyHnazplTGHGC82HU5Y+7/M4PUqIF27+t73LalAtFaqqlor5HVR8LDzQOtCrfCuvbr0L98f7WHhEDfQG779PPTAIDJdSYLAnGAYRKAX2uH6VW6l5zDk5ROp8OK1isE9SQZe4pn85tFKJllw+fIclYlu7ICQPti7QEAhQMK23U8v4EIoK0MGgA42eckIr+LxL03xs8jS5lJz989B6DNwBxg/n9SLsTQxf3bPd8i28/ZUGJ+CRSbb8jOzJc5H9x0qeOWRqyz+4+HfsRXO7/iHit9rdG+WHssb7XcrE4lP1OfH4jbe3+vWWmKAr8UQKu19i2/1xK9Xq/JjDkAKBhQEKEZQwX7/r7yt8tlQQgh6kgd32KEECKB5+8NNypLLywVff5m+E1EfzLMZk89PhX7HuxDpw2duI6oagTmhlQaAgD4LNdnLp8rPimeCzIqGphjHXElyphTIzDHv7n978l/ose4+vOpIXuG7IgeFY1NHTepPRSrgv2CkTtTbkSMjED3Ut1xsMdBAMCqtqvMjh1bc6zSw3NZkJ95d9yoT1F4/u651e7A/OYLSmbMjf5sNLftyE2ikjXmAGOdyNuRt+0a5+Pox4LHWsug8XT3RJZ0WbgukoAhg0YMy2DS2s/A3Bp8SxBYv/fWEGycfWo2wmLCcD38Ovd/lj9LflXGKIeCAQUxruY4wb7p/00XPFYr+/Xiq4uCx/xsTDapx5gG5BOSE7D1tv3LreXiaNA/NiEWCcmG5fharO1s+v79ueHPKo2EEOIqCswRQoiJhecXmtVsuxN5B8XmF0Om6Zkw7uA4zDll3uhGjeLTpUNKA5AmGMXPwFHyZ2E34ZGxkS6dR83AHP/v/KXJL5jZYKZZ1zS2ZDel8fX01XxtPFbnMcA3ACvbrESdvHUAALXy1BIcVySwSIqpL8fn4eaB96PfY3PHzSgdbHjPv/rwCjnn5ET/bZazGNkyVjedGzzdlOu8eSP8BrftUGBOwRpzgDADRqyGmaldd3cJHmv1d8k0e0wH8/fvHxf+AGCsr6pFJ/uc5LY33txo8bggX/PAdUo2qc4kbOu8zeLzamVu1cot/DzlZ+SadjllE5aWnOmrTrfQ35r+5tDx/GC81jLmAOBWxC3B42FVhnHbYl3VCSHaRYE5Qgj5f/yss4zThIGpnXeNHaT+d+x/Zq/19fSFu5u7fIOzgF38SlFjjmXL+Xj4KPqzsOLEl19fduk8ahTGZjJ4Z0Au/1zwdPNEx+IdMaLaCOzrvk9wkVwvXz3Fx5VaueuEv5/Wfl83dNjAbZtmdaQk6b3So1WRVjjW+5hg/9KL4hm+gLDxg5LBVX79qMlHJ5stAbVE6Yw5fmDBnmZEdyLNazppUS7/XNx2oG+gaKYPq1dmuhROS/jNgQBhBiifUoFcJTUp0MTic2plzHUp2UXwmC09B4BOGzqZHm5V2WxlJRmTo7qX6u7Q8e3Xt+e2tThBxe/GrB+vh06nw4EeB1A5R2Xs6LJDxZERQhxFgTlCCPl/R3odsfjcmefWZ3eVzEbhY524pKB090aG3xHXFWpmzLnp3HB78G28G/0Onu6egv1EepcHCoO4dfLUsXhs26JtuW17Cn1rnSM1wdRq/LC542bBY3v/3ZXOmKuQvQK3bU837rmn53Lbu7vulmNIkvip7k/c9oDyAwRLDk0/H7XeNKFMSBlumzU7MsXvAJpaWJpsEKubqZQA3wDBY1fqwqqVbarT6VAuWznusa0SJDcjbso9JJcsbbkU31b9FjcGGbOU6+ati1N9TwneO4QQ7aM7BkII+X+Wgignn57EmmtrrL6WZXoo7auKX9k+yE4sY07pm3i2bNbVf8NzL84BsJ49JScfDx+zm942RdoAULZmX1qQI6Pw5lStDBI1iGVtWMpIY4EuW8vKpNaqiLDIO6vfaYvSXVnTe6VH2ZCygr/bmg7FOwAAigcVR6MCjWQdmysq5qjIbe+6t0vQDCK3f27BsabvJa3Z2MG4hNV0uSSz+MJipYajqBfDX5jt+7fDvyqMxMDL3QuvR7zmuv6yuqn2ZsQyhQIKST42R5zpe4Zr0hSbEIuk5CQbr9CuIL8gzGo4C0WDUmapDEKIEQXmCCGE5+tKXwseJ+uTUW1ZNZuvs1aAXU6shogUjSdY1oHSTSzYsrWdd3di7/29Tp/nz8uGzpVrr62VZFxSqJ6rOvZ134e7X99VeyipiqM1EFnwpXGBxnIMR3VvPr4R3T/jhKHDoxpLePldiJ+9e2bXa7iurAotZQWMgSlL/4Z8IX6GWoati7SWc0gu408Q9C7TW/Cc6XsnIJ0wC0pr8mbOy21fD7suesz4WuOVGo6ismXIhlkNZnGPv6v2HarkrKLiiICsflm54O7DqIcAgBNPT1g8/uZX5hlnCUkJ8gzOTu5u7vjn83+4x2ExYSqOhhBCDCgwRwghPGNrGDs2nn52GtfCrtn1OtOaV0phN2AfEz46PGttisuYU3gpK3/ZWqO/tZuF4qz6+eoj0DdQ7WGkKvzsVm93b5vH7+iyA9PqTcPK1ivlHJZq+LWemPCYcGy+tVn5wfy/mrlrctuWMp349Hq94ktZASBnBsNSzqfRT20eG58UD8C+enRq8nDzwKUBlzC/6XwMrDBQ8NzZF2cFjwtkKaDk0Fyy94H4xE3tPLWVHYiCkvTGbC6lM18tYYH+tdfWou/Wvui3rR/3nIebB3JmzInZDWfjzuA7KBJYBFPqThFcI6k1kcnn4+HDBRj5XYz5+DUNJ9aeqMSwCCFpGAXmCCGEh19D5UP8B4w5MEbwvFj9Mn9vfzwdZvumTg5sCZ8eeiQkuzYLzS5Clc6Yk6oDLFv+9muTXyU5H0kZ+AX8LcmWIRu+/+x7BPmlju6N/EY1gHjn07KL1CmuzixtaWxKYdrlWszTd08RlxQHDzcPBKdXrlNotgzZANiXNcMCc2rVFHVE6ZDS+LLil/Bw88DA8gNFjykeVFzzS1kBoGnBpgCAlZfFA+usK3NqxH7nAKBjiY4qjsTowdsH3PbSi0sFddjif4jHo28eYVjVYSgYUBAAMKbGGCT+aAwq6uHaJKJU2PXe209vRZ/nd2pOzcFfQog2UGCOEEJ4PNw8UDyoOADDBfGOu8KuVvwb4DIhZZD8YzJej3jN3dwpjR8oFLs5d4RaNeakWrbGsqiq5qwqyfmItg2pNAQAMK7mOJVHorwlLZYIHt99Y75Uml/XbU6jObKPyVSQXxAGlB8AwL76baxGZImsJRRt4MIC+qxeljXxySkjY85U7kzGunL83x0W8NK6ciHlzPad7nsa5bOVx+CKg1EksIgKo1IGf9lnpRyVVByJ0exGs0X3Fw8qDp1OZ7POq6vZ/VJh2daWGr/wGzmlxs6/hBBtUaclDiGEaBgr1G+r09uEWhOg0+ng7WF7KZ1c+Mv4PiZ8dCn7TK0ac1IsnU3WJ3NZOVrvMkik8XOjn9GjdI802XmucGBhweM7kXesHv9N5W/kHI5F7Gb2Xdw7m8c+iX4CACgcUNjGkdLy8/QDIL4c2FRKWcpqinW+BoA+5fqg77a+ALSxpNAeYt9JlXJUwrn+51QYjbLUriknpmCWgqL7xRrTiOF3CVYTu3azlHWtg/HnKRlcUpExEULSLsqYI4QQEyxbwzQDrXhQcXxb9VvusVKdA63R6XQWx+uomHhDxojSgTkPN+McUbb0zmUefkz4yC2P0cL/C5Gfh5sHymcvr1oXXrVVzlGZ287sk1nwnGlGir03zFJj2bD2LGVlgTGplrbby5GMORZgTGmBua6luqJTiU74o/kfgv0pZXmeq2UaUrLGBRpjU8dNmmogZOkz11ZN3i2dtqBMSBmsartKjmE5jF07WcqY67m5J7fNv04hhBA50KcMIYSYYEs5+YV/AeDSwEuIS4zDzyd/BqCdOik+Hj74lPjJZoafLeymM6OXsjfGufxzIX/m/Lj/9r7TQRZ2U6+DTvGluISo4Wjvo2jwVwMcfXyUCypdfnUZXu5egk6WamIZc/YsZWXBO6UD635e9mXMJeuTsfvebgCWa1JplZe7F9a0W8M9vvblNVwNu4rmhZqrOCr7qd3FU006nU6TXYCLBxXH9XDxLrmWtCzcEi0Lt5RpRI5jAXZWxsPU03fq1A4mhKRNlDFHCCEm2NLKVx9ecfu+q/YdPNw8uJs4QPnMDkvYeE0DiY5iN89S1Xyzl06nw+ZOmwEAz949c+oc7Kbaz8tP0LGTkNTKy90L+TPnB2D4/X8X9w5lFpVBsfnFuOxXtXEZc3YE5th7WOnAHJcxZ+PfjJ/1lydTHjmHJLviWYujU4lOag/DbloJNBOjhvkbmu1Tqzu9s7be3goAGLRzkMojIYQQCswRQogZVm/kh0M/cPtKBZfitv/5/B/8r87/UDF7RcXHJobVxHM1i4NlzKlR5JgfTAuPCXf49Wrd1BOiJvb7/iH+AyJiI7j9kR8j1RqSAJcxZ8dSVm5iQOHPH3trzPHrUH1e7HNZx0SEupTsovYQiIn+5fub7TvT74wKIyGEkNSBAnOEEGLi4duHZvv43bnaF2uPsTXHqla3yZS/jz8A+wqsW8NujNXIBGQ3xwCQ7edsDtfLo8AcSYtY85cpx6YICpWHxYRx2z/W/FHxcTHssynqU5TNY9V6D7MsaFs15lgdKi93rzRb11AtSnbpJfYpElgENwbdwP7u+7l9OTLkUHFEhBCSslFgjhBCTFwNu2q2r02RNiqMxD6sToqrdXhYVovSS1kBIHem3Nx2kj4Jp56dcuj17Mbf39tfymERommXXl/itjtv6MxtTzg8AYAhyDWxzkSFR2UU5BsEALj8+jKmHZ9m9Vi1ltLbu5SVTRbwO2ET5Twf/hz/q/M/ZPbJjH8+/0ft4RAARYOKInM6Y+OZlFbf1bQZiqmSWQ2dWKfWm6rEcAghaRwF5gghxAYvdy9BxpzWeLoZxuZq5zo1l7KacrTrIcsQyuqXVY7hEKJJrL4kAJx+fprbPvDwAADjMne18N+Pow+MtnqsahlznsaMuWR9ssXj2FJWbw8KzKkhe4bsGFtzLCK/i0T7Yu3VHg75f/wO0PzPo5Sgck5DZ+tgv2DR51mmZvGg4oqNiRCSdlFgjhBCTHQo3kHwOCk5SaWR2OfQo0MAgK4buwoukh2l5lJWU/FJ8Q4d/zrmNQAKzJG0xdZyerXfD/xmObZwGbsKTwzwA4EDtg2weBxbykoZc+rSSgkJYsBvhKLlCUwx/KC8GNbp3tfTV7ExEULSLgrMEUKICdM6KUl6bQfm+FkeKy+vdPo8T6KfAACC04vPHivJViF2U5QxR9KiZgWbWX1e7fcDy+a1x/Xw6wCUz5jjL79bcnEJXr5/KXrc8/fPAYDqyxHCE+AbgMsDL+Pu13fVHorD2MTBh/gPohOwsQmxACgwRwhRBgXmCCHExLia49QegkP4gcSVV5wPzL39aOjqamlZh9wKBRTitm3VezLFAnNqjZ0QNfQp28fq55XaS8vszaDhN65xNFvWVfyO0IDlkgCt1rYCYJzAIIQYlAouhQJZCqg9DIfxm055TPYwW3HwMcGQMZfSaucRQlImCswRQogJfjFjAOhYvKNKI7EPvzDxwYcHcTfS8ZnrxOREroaSWp1Nz/c/j3yZ8wFwPGPu7SdDUNH0/46Q1MzdzR3dSnWz+LzamR72ZsyxG2AAqJKzilzDsQt/LISQ1Mv08/Hpu6fcdmRsJF5+eCl6HCGEyCHFBObevn2L7t27w9/fH/7+/ujevTuioqKsvkav12PChAnInj070qVLh9q1a+P69euCY2rXrg2dTif406lTJxl/EkJISrP9zna1h2CVaX2UxRcWO34OXoaaWoG59F7pUSq4FADg7Iuzdr8uWZ+MnXd3AtBG4wpClGQtK07tG0p7l32yjqc+Hj6q16myVG+KEJK6mH4+sWXs99/cR+DMQG6/2pnHhJC0IcUE5rp06YJLly5h9+7d2L17Ny5duoTu3btbfc2MGTMwe/Zs/Pbbbzh79ixCQkLQoEEDvH//XnBcv3798PLlS+7PokWL5PxRCCEpQO8yvbltrd+oRX+KFjyeeWKmw+dgGWoebh4Od0SV0uZbmwEAi84vsjtzZdWVVdy2WkFFQtTCOgeK0cINZZ08dbjtiy8vih7DiqyrNd6yIWW5bVZXihCStlRZasjWNa3Vmz1DdjWGQwhJY1JEYO7mzZvYvXs3lixZgqpVq6Jq1apYvHgxtm/fjtu3b4u+Rq/XY+7cuRg7dizatm2LEiVK4M8//0RsbCxWr14tONbX1xchISHcH39/fyV+LEKIhi1svlDtIdita6muLp+DBeb8PP000/Xu/tv7dh23+/5ubjuDN2XMkbTF28Nyl9BzL88pOBJxa9uv5bZvRtwUPYafMaeGXP65uG3TiQ6G1a/sWbqnImMihKijSGARwWNq+EIIUUKKCMydPHkS/v7+qFy5MrevSpUq8Pf3x4kTJ0Rf8/DhQ7x69QoNGzbk9nl7e6NWrVpmr1m1ahUCAwNRvHhxjBgxwiyjzlRcXBzevXsn+EMISV34WWPWajhpQc6MOVEhewXuMT9DxV4sK1DtjLMg3yBuOzE50a7X8As2qz1+QpTm7W45MHfiqfg1kpL4n6WWmrqoHZjrUrILt/3yw0uExYRh5n8zuaYyHxM+4nXMawC2O+ESQlI2tT6HCCFpW4oIzL169QpZs2Y12581a1a8evXK4msAIDhY2KEvODhY8JquXbtizZo1OHz4MMaNG4cNGzagbdu2VsczdepUrtadv78/QkNDHf2RCCEpwOaOm9GqcCvMazxP7aHYxO8smDdTXodfz7JE1M4461uuL7edkCTeHdGUHhSYI2mX6dJzfqdBe5svyIn/2dR/e3/U+bOO2TJ1tbsffl7sc64r9Mv3L9F3a198t/87tF/fHgAw77TxO8DDzUOVMRJC5KfX6/Hm4xu1h0EISYNUDcxNmDDBrPGC6Z9z5wzLMMSWVun1eptLrkyfN31Nv379UL9+fZQoUQKdOnXCv//+i/379+PChQsWzzl69GhER0dzf54+fWrxWEJIytWqSCts7rQZWdJlUXsoNv2vzv+4bdZd1RH33twDIMxYUwP/hr3uyrp2Zc0l65O5bQrMkbTG9DrnUM9D3Pa/Hf5VejhmTBuyHH50GEceHxHsUztjTqfToXXh1gCAyI+R2HZnGwDg2JNjAIDRB0Zzx1JgjpDUq+fmnui7ra/tAwkhRGKqBuYGDx6MmzdvWv1TokQJhISE4PXr12avDw8PN8uIY0JCQgDALKMuLCzM4msAoFy5cvD09MTdu3ctHuPt7Y2MGTMK/hBCiJoa5G+ACbUmADDe5Dqi//b+AIw3omrhF17/EP8B88/Ot/ka/vI46spK0jp+cIt1OVaTTqczKwdgGnBnzR/UXELGJmD42XGAsf4mw8/QJYSkLn9d+UvtIRBC0ihVp/0CAwMRGBho87iqVasiOjoaZ86cQaVKlQAAp0+fRnR0NKpVqyb6mrx58yIkJAT79u1D2bKGblvx8fE4cuQIpk+fbvHvun79OhISEpAtWzYnfiJCCFFPqL9hWb0zgTmtMC26vOveLgypPMTsuDuRd1D4t8IAgLp563L71VoKR4hW+Hr6cttayfb19xY21WK12xj2maVmF9nM6TKL7jf9PA1JH6LEcAghCgj2C+bqR4qZVHuSgqMhhKRlKaLGXNGiRdG4cWP069cPp06dwqlTp9CvXz80b94chQsX5o4rUqQINm3aBMAwQzt06FD89NNP2LRpE65du4ZevXrB19cXXboYivzev38fkyZNwrlz5/Do0SPs3LkTn3/+OcqWLYvq1aur8rMSQoizWBF4Z5ayasWgioMEj08+PSl6XMd/O3Lb/OL3/HpWhKRF+TLnQ7OCzdCheAfNZJBm9BauLOiztQ/exb1D4d8K45td32DjzY0A1O1+KBbEDEgXgLhE4edppRyVlBoSIURmh3oeQqcSnUSfa1e0HcbVGqfwiAghaVWKKZSxatUqDBkyhOuy2rJlS/z222+CY27fvo3oaGOb+++++w4fP37EoEGD8PbtW1SuXBl79+5FhgyGC1UvLy8cOHAA8+bNw4cPHxAaGopmzZph/PjxcHen1tiEkJSFLQNLyRlz3h7CDpPRcdGix116dYnbZtk3/Dp7hKRVOp0O27tsV3sYAmKdY/+89CfuRN7Bncg73L699/cqOSyBzD7mGXORHyPx6oOxJEryj8lmxxBCUq6iQUWxpt0anHx6Eo+jHwue83RXv3kOISTtSDGBuSxZsuDvv/+2eoxeL6z7odPpMGHCBEyYMEH0+NDQUBw5ckT0OUIISWlYUCslB+YA4O7Xd1Hw14IAhMvyLDn/8jwAdetTEUIsC05vXtt334N9KozEMkvLfuv8WQeAIXBnq+EYISRlmt1oNtqtbyfYp4Wu1oSQtIPW/BBCSCrBAlOmS68cMaSSeT03pRXIUgCHex4GYGgG8fDtQ7teZ5ptR0ha0b5YewDAwR4HVR6JOLFOplrLRrFUY+59/HsAwLu4d0oOhxCioFz+ucz2iWX6EkKIXCgwRwghqYQrS1nZjfOwqsMkHZOz+NkrI/aNEDx3O+K26Gv43VkJSUv++fwffBz7EXXy1lF7KKJq5Kphtk8sG/ZYb/W6QmdLb73pV5I+SaGREEKUViF7BYyoKrzW+PfmvyqNhhCSFlFgjhBCUgk2u+tMYI6VAtDK0g09jKUJ+LWfNtzYgCK/FxF7CT4mfpR9XIRolZaXcnu5e9k8pnRwaXyW6zMFRiPO28Mb42uNV+3vJ4Soa2bDmYLgXIN8DVQcDSEkraHAHCGEpBLcUlYHu7Lq9XouG0Qry8v4y0r4N/UzTsyw+BrqyEqINokF5jbf2ix4bKnGm5IGlB+g9hAIISpKTE7ktlsWbqniSAghaQ3dxRBCSCrhbPMH/oWoVjLmMvlkQq8yvQAYa+a9j3uPM8/PWHwNBeYI0SaxwNyH+A+Cx7EJsUoNx6J0nuksPlc5R2UFR0IIUUN8Ujy3bdpUkBBC5ER3MYQQkko4W2MuITmB2xYr0q6W0sGlARiXqC48t9Dq8TpQx0RCtCjIL8jmMaefn1ZgJNal87AcmNvfY7+CIyGEqIEfmEvWJ6s4EkJIWkOBOUIISSVYYC4+Kd6hmd6EJGNgTitLWQHjz7Pm2hrsuLOD645oCetMSQghzrBWCy+9V3oFR0IIUUOeTHm4bQrMEUKURIE5QghJJVjzB8CxOnNaXMoKCLNXmq9pzi1ptaRwYGG5h0QIcdKWTltQMXtFtYdhlU5nzLptVbgVt33ty2tqDIcQojB+Z/p2xdqpOBJCSFpDgTlCCEkl+F0ZHVnOypZu6KDTVJ020y6T1ho/EEK0rWXhljjTz3KNyHmN5yk4GtvKhpTltosFFVNxJIQQpfh6+kI/Xo/EcYnI6J1R7eEQQtIQ7RQTIoQQ4hL+Mixb2WV8LLvOx8NHkDGiNmuF2AEgq19WhMWEKTQaQoicauauqfYQAACjqo/C6eenMabGGOTNnBd5MuXR1OciIUR+7m7uag+BEJLGUGCOEEJSCZ1OB293b8QlxTmUMceOZV1dtcI0Y87U+Frj8T7uPUYdGIW/2/yt0KgIIa5w07kJajcVCiiEgeUHokxIGfUGxTO1/lRuu0fpHiqOhBBCCCFpBQXmCCEkFfHx8EFcUpzdNeYSkhLw6sMr7rVaYq1D4rzG89C/fH94uHngq0pfUWF2QlKI8JHhCJgRwD2eUncKNW4hhBBCSJqmnWJChBBCXMay3uzNmCv/R3nU+bOO4bXuKSdj7utKX8PDzTC3REE5QlKOLOmyoHRwae6xtU6ohBBCCCFpAQXmCCEkFWHBrJ6beyImPsbm8VfDrpq9Vius1Zijmk+EpFyXX1/mtiNjI1UcCSGEEEKI+igwRwghqQgLrl16dQk/n/zZodfejrwtx5CcZilQ2KlEJ4VHQgiRy6OoR2oPgRBCCCFEVRSYI4SQVIS/LGz99fWoubwmzj4/K3rs+RfnlRqWUyzVmJtYe6LCIyGEyKVSjkpqD4EQQgghRFUUmCOEkFTkSfQTbvt6+HUce3IMzVY3Ez12592dgsc1ctWQdWyOEsuYC0kfgkIBhVQYDSFEDk0LNlV7CIQQQgghqqLAHCGEpCKebp5m+8Jjw0WPzZs5r+Bxnkx55BiS0/y8/Mz2UaMHQlIXqhdJCCGEkLSOAnOEEJKKJOuTZTlWDT4ePsiZMadgH3VwJIQQQgghhKQmFJgjhJBUJCE5QXT/y/cvzfbFJ8VbfawFj4c+xpm+Z7jHHm4eKo6GECKlYL9gtYdACCGEEKI6CswRQkgqkpAkHpj7fv/3No+NS4qTZUyucNO5CWrKUWCOkNSD3s+EEEIIIRSYI4SQVMVSxpxYnTnTDLlPiZ9kGZOr+Dfv7jp3FUdCCJESBeYIIYQQQigwRwghqYqlunG+nr5m+0yDeHGJ2suYA0wCc24UmCMktSiRtYTaQyCEEEIIUR0F5gghJA3Ilj6b2T7TjDktLmUFhME4yrAhJOXb2WUnmhVshsUtFqs9FEIIIYQQ1dEdDiGEpAF+nn5m+8xqzGk0Y46/fJWWshKS8jUp2ARNCjZRexiEEEIIIZpAGXOEEJKKHO99HM0KNkONXDUE+998fGN2rGnGXK3ctWQdm7N0Oh23feTxERVHQgghhBBCCCHSosAcIYSkItVzVcf2LttRPKi4YP+Si0vM6s/diLgBAGhVuBXmN52P6Q2mKzZOQgghhBBCCCEUmCOEkFTJ28PbbF9MfIzg8eZbmw37E2LwZcUvqX4bIYQQQgghhCiMAnOEEJIKebubB+bex7/ntq+HXee2Dz48qMiYpNCkANWlIoQQQgghhKQeFJgjhJBUSCxj7vCjw9z2ncg73LabTvtfBUG+QQCAL8p+ofJICCGEEEIIIUQ62r8bI4QQ4jAfDx+zfT8c/IHb5teb+6riV4qMyRV/tv4TcxvNRbui7dQeCiGEEEIIIYRIhgoKEUJIKqSDzmxfi0ItuG1fT19ue2aDmYqMyRVNCjZBk4K0jJUQQgghhBCSulDGHCGEpELxSfHc9vAqwwEIl7d+SvwEAKgWWg2e7p7KDo4QQgghhBBCCAAKzBFCSKrED8z5efkBAGITYrl9LDAntuSVEEIIIYQQQogyKDBHCCGpUFxSHLfNlq3GJMSYPU+BOUIIIYQQQghRDwXmCCEkFcqWPhu37edpOWPO2928eyshhBBCCCGEEGVQ8wdCCEmFvqr0Fe5E3kGLwi3w+sNrAEBMvDFjjpayEkIIIYQQQoj6KGOOEEJSIR8PHyxqsQjNCzWnGnOEEEIIIYQQolEUmCOEkFSO1Zh7/v45t48Cc4QQQgghhBCiPgrMEUJIKsdqzN2JvIPmq5vj3xv/Ys6pOQCA25G31RwaIYQQQgghhKRpVGOOEEJSOZYxBwA77u7Ajrs7uMcHHx5UY0iEEEIIIYQQQkAZc4QQkuqxGnNiupXqpuBICCGEEEIIIYTwUWCOEEJSOX7GnKlG+RspOBJCCCGEEEIIIXwpJjD39u1bdO/eHf7+/vD390f37t0RFRVl9TUbN25Eo0aNEBgYCJ1Oh0uXLpkdExcXh6+//hqBgYHw8/NDy5Yt8ezZM3l+CEIIUYG1wJynm6eCIyGEEEIIIYQQwpdiAnNdunTBpUuXsHv3buzevRuXLl1C9+7drb4mJiYG1atXx7Rp0yweM3ToUGzatAlr167F8ePH8eHDBzRv3hxJSUlS/wiEEKIKa51Xw2LCFBwJIYQQQgghhBC+FNH84ebNm9i9ezdOnTqFypUrAwAWL16MqlWr4vbt2yhcuLDo61jg7tGjR6LPR0dHY+nSpfjrr79Qv359AMDff/+N0NBQ7N+/H40a0RIvQkjKZy0w9y7unYIjIYQQQgghhBDClyIy5k6ePAl/f38uKAcAVapUgb+/P06cOOH0ec+fP4+EhAQ0bNiQ25c9e3aUKFHC6nnj4uLw7t07wR9CCNEqa4G5L8p+oeBICCGEEEIIIYTwpYjA3KtXr5A1a1az/VmzZsWrV69cOq+XlxcyZ84s2B8cHGz1vFOnTuVq3fn7+yM0NNTpMRBCiNzcdJY/6rNlyKbgSAghhBBCCCGE8KkamJswYQJ0Op3VP+fOnQMA6HQ6s9fr9XrR/a6ydd7Ro0cjOjqa+/P06VPJx0AIIYQQQgghhBBCUjdVa8wNHjwYnTp1snpMnjx5cOXKFbx+/drsufDwcAQHBzv994eEhCA+Ph5v374VZM2FhYWhWrVqFl/n7e0Nb29vp/9eQgghhBBCCCGEEEJUDcwFBgYiMDDQ5nFVq1ZFdHQ0zpw5g0qVKgEATp8+jejoaKsBNFvKly8PT09P7Nu3Dx06dAAAvHz5EteuXcOMGTOcPi8hhGjN5o6bcTPiJkYfGK32UAghhBBCCCGE/L8UUWOuaNGiaNy4Mfr164dTp07h1KlT6NevH5o3by7oyFqkSBFs2rSJe/zmzRtcunQJN27cAADcvn0bly5d4urH+fv7o0+fPvj2229x4MABXLx4Ed26dUPJkiW5Lq2EEJIatCrSCqM+G4XiQcW5fZs6brLyCkIIIYQQQgghclM1Y84Rq1atwpAhQ7gOqi1btsRvv/0mOOb27duIjo7mHm/duhW9e/fmHrNls+PHj8eECRMAAHPmzIGHhwc6dOiAjx8/ol69elixYgXc3d1l/okIIUR5Z/udxfP3z1EgSwG1h0IIIYQQQgghaZ5Or9fr1R5ESvfu/9q7v9Cq6z+O46+zs52zTbaTm39OB51uMJg6M9sM0tUEdWBqRKCk+Sf0Rth0x6UoGRiCWxl5oSvldBFCyLxJs4uiUXJyiDmmy78o0XKmjiHYdrRyufP5Xfmlw9Z28nf0c856PmAX5/P5XLzPxYvDee17vt/eXvl8PvX09Cg3N9f2OAAAAAAAALDk3/REKfFTVgAAAAAAAGCkoZgDAAAAAAAALKCYAwAAAAAAACygmAMAAAAAAAAsoJgDAAAAAAAALKCYAwAAAAAAACygmAMAAAAAAAAsSLc9wEhgjJEk9fb2Wp4EAAAAAAAANj3shx72RUOhmEuASCQiSZo4caLlSQAAAAAAAJAMIpGIfD7fkGdcJp76DkOKRqO6efOmcnJy5HK5bI+TEL29vZo4caKuX7+u3Nxc2+MAKYssAYlBloDEIU9AYpAlIHFGWp6MMYpEIgoEAkpLG/ouclwxlwBpaWmaMGGC7TEei9zc3BERCsA2sgQkBlkCEoc8AYlBloDEGUl5Gu5KuYd4+AMAAAAAAABgAcUcAAAAAAAAYAHFHAbl9Xq1Y8cOeb1e26MAKY0sAYlBloDEIU9AYpAlIHH+y3ni4Q8AAAAAAACABVwxBwAAAAAAAFhAMQcAAAAAAABYQDEHAAAAAAAAWEAxBwAAAAAAAFhAMYcBPv74YxUWFiozM1NlZWU6ceKE7ZGApNbQ0KBZs2YpJydH48aN06uvvqorV67EnDHG6N1331UgEFBWVpbmzp2rixcvWpoYSA0NDQ1yuVwKBoPOGlkC4nfjxg2tXLlS+fn5ys7O1rPPPqu2tjZnnzwBw3vw4IHeeecdFRYWKisrS0VFRdq5c6ei0ahzhiwBg/v++++1ZMkSBQIBuVwuHT16NGY/nuzcv39fGzZs0JgxYzRq1Ci98sor+vXXX5/gu3j8KOYQ4/DhwwoGg9q+fbvOnj2rF198UQsXLlRnZ6ft0YCkFQ6HVV1drVOnTqm5uVkPHjxQVVWV7t2755zZvXu39uzZo8bGRrW2tsrv92vBggWKRCIWJweSV2trq0KhkJ555pmYdbIExOfOnTuaM2eOMjIy9NVXX+nSpUv68MMP9dRTTzlnyBMwvPfff18HDhxQY2OjLl++rN27d+uDDz7Qvn37nDNkCRjcvXv3NGPGDDU2Ng66H092gsGgjhw5oqamJrW0tOju3btavHix+vv7n9TbePwM8DfPP/+8Wb9+fcxaSUmJ2bZtm6WJgNTT3d1tJJlwOGyMMSYajRq/32/ee+8958yff/5pfD6fOXDggK0xgaQViURMcXGxaW5uNpWVlaa2ttYYQ5aAf2Pr1q2moqLiH/fJExCfRYsWmbVr18asvfbaa2blypXGGLIExEuSOXLkiPM6nuz89ttvJiMjwzQ1NTlnbty4YdLS0szXX3/9xGZ/3LhiDo6+vj61tbWpqqoqZr2qqkonT560NBWQenp6eiRJeXl5kqSOjg51dXXFZMvr9aqyspJsAYOorq7WokWLNH/+/Jh1sgTE79ixYyovL9fSpUs1btw4zZw5U5988omzT56A+FRUVOjbb7/V1atXJUk//vijWlpa9PLLL0siS8Cjiic7bW1t+uuvv2LOBAIBlZaWjqh8pdseAMnj9u3b6u/v1/jx42PWx48fr66uLktTAanFGKO6ujpVVFSotLRUkpz8DJata9euPfEZgWTW1NSkM2fOqLW1dcAeWQLi9/PPP2v//v2qq6vT22+/rdOnT2vjxo3yer1avXo1eQLitHXrVvX09KikpERut1v9/f3atWuXli9fLonPJuBRxZOdrq4ueTwejR49esCZkdRRUMxhAJfLFfPaGDNgDcDgampqdO7cObW0tAzYI1vA0K5fv67a2lp98803yszM/MdzZAkYXjQaVXl5uerr6yVJM2fO1MWLF7V//36tXr3aOUeegKEdPnxYn332mQ4dOqRp06apvb1dwWBQgUBAa9ascc6RJeDRPEp2Rlq++CkrHGPGjJHb7R7QPHd3dw9osQEMtGHDBh07dkzHjx/XhAkTnHW/3y9JZAsYRltbm7q7u1VWVqb09HSlp6crHA5r7969Sk9Pd/JCloDhPf3005o6dWrM2pQpU5wHevHZBMRny5Yt2rZtm15//XVNnz5dq1at0qZNm9TQ0CCJLAGPKp7s+P1+9fX16c6dO/94ZiSgmIPD4/GorKxMzc3NMevNzc2aPXu2pamA5GeMUU1NjT7//HN99913KiwsjNkvLCyU3++PyVZfX5/C4TDZAv5m3rx5On/+vNrb252/8vJyvfHGG2pvb1dRURFZAuI0Z84cXblyJWbt6tWrmjRpkiQ+m4B4/f7770pLi/3a7Ha7FY1GJZEl4FHFk52ysjJlZGTEnLl165YuXLgwovLFT1kRo66uTqtWrVJ5ebleeOEFhUIhdXZ2av369bZHA5JWdXW1Dh06pC+++EI5OTnOf318Pp+ysrLkcrkUDAZVX1+v4uJiFRcXq76+XtnZ2VqxYoXl6YHkkZOT49yb8aFRo0YpPz/fWSdLQHw2bdqk2bNnq76+XsuWLdPp06cVCoUUCoUkic8mIE5LlizRrl27VFBQoGnTpuns2bPas2eP1q5dK4ksAUO5e/eufvrpJ+d1R0eH2tvblZeXp4KCgmGz4/P5tG7dOr311lvKz89XXl6eNm/erOnTpw94SFhKs/Y8WCStjz76yEyaNMl4PB7z3HPPmXA4bHskIKlJGvTv008/dc5Eo1GzY8cO4/f7jdfrNS+99JI5f/68vaGBFFFZWWlqa2ud12QJiN+XX35pSktLjdfrNSUlJSYUCsXskydgeL29vaa2ttYUFBSYzMxMU1RUZLZv327u37/vnCFLwOCOHz8+6PekNWvWGGPiy84ff/xhampqTF5ensnKyjKLFy82nZ2dFt7N4+MyxhhLnSAAAAAAAADwn8U95gAAAAAAAAALKOYAAAAAAAAACyjmAAAAAAAAAAso5gAAAAAAAAALKOYAAAAAAAAACyjmAAAAAAAAAAso5gAAAAAAAAALKOYAAAAAAAAACyjmAAAAkBBz585VMBi0PQYAAEDKoJgDAAAAAAAALHAZY4ztIQAAAJDa3nzzTR08eDBmraOjQ5MnT7YzEAAAQAqgmAMAAMD/raenRwsXLlRpaal27twpSRo7dqzcbrflyQAAAJJXuu0BAAAAkPp8Pp88Ho+ys7Pl9/ttjwMAAJASuMccAAAAAAAAYAHFHAAAAAAAAGABxRwAAAASwuPxqL+/3/YYAAAAKYNiDgAAAAkxefJk/fDDD/rll190+/ZtRaNR2yMBAAAkNYo5AAAAJMTmzZvldrs1depUjR07Vp2dnbZHAgAASGouY4yxPQQAAAAAAADwX8MVcwAAAAAAAIAFFHMAAAAAAACABRRzAAAAAAAAgAUUcwAAAAAAAIAFFHMAAAAAAACABRRzAAAAAAAAgAUUcwAAAAAAAIAFFHMAAAAAAACABRRzAAAAAAAAgAUUcwAAAAAAAIAFFHMAAAAAAACABRRzAAAAAAAAgAX/AyD0fWX1JCu/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15,3))\n", + "#plt.plot(t, x, 'b', label='x')\n", + "plt.plot(t_store, vx_store, 'g', label='vx')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('state')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "1d3da84f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHFCAYAAAA0SmdSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxddZhU1Rv+tpfYXaR76e6WbmkURPCngAgIImURCi4gDRIiIakIgoC0iCDSJV0L0r1I7xLbc35/fH6cc2vmzk7uct7nOc/M7XPv3LnnvV+8nw9jjIGEhISEhISEhESK4evpDkhISEhISEhIpHZIQiUhISEhISEh4SAkoZKQkJCQkJCQcBCSUElISEhISEhIOAhJqCQkJCQkJCQkHIQkVBISEhISEhISDkISKgkJCQkJCQkJByEJlYSEhISEhISEg5CESkJCQkJCQkLCQUhCJSEh4fUoUKAAtGrVytPdkJCQkDCEJFQSEhISEhISEg5CEioJCQkJCQkJCQchCZWEhIRHMGLECPDx8YFjx45Bu3btIDQ0FMLCwuDdd9+Fe/fu6W6zefNmqFSpEqRLlw5KlCgBCxcuVCy/d+8e9OnTB0qVKgUZM2aE7NmzQ8OGDWH37t2afc2ePRvKly8PGTNmhJCQEChRogR88cUXinXu3LkDvXr1grx580JgYCAULFgQRo4cCUlJSTbP76+//oL69etDlixZIF26dJA/f35o3749PH/+HAAArl69Cj4+PjBx4kQYM2YM5M+fH4KDg6FKlSqwbds2xb4uXrwI3bp1g6JFi0L69OkhT5480Lp1azh16pTmuI8fP4ZPP/0UChUqBEFBQZA9e3Zo0aIFnDt37sU6CQkJMHr0aChRogQEBQVBtmzZoFu3bobXXUJCwjb8Pd0BCQmJlxtvvPEGvPXWW9C7d284c+YMDB8+HCIjI+HgwYMQEBDwYr0TJ07Ap59+CkOGDIEcOXLA/PnzoXv37lCkSBGoW7cuAAA8fPgQAAAiIiIgZ86c8PTpU1izZg3Ur18ftm3bBvXr1wcAgOXLl0OfPn2gX79+MHnyZPD19YWLFy9CZGTki+PduXMHqlWrBr6+vvDVV19B4cKFYf/+/TB69Gi4evUqLFq0yPCcrl69Ci1btoQ6derAwoULIVOmTHDr1i3YvHkzJCQkQPr06V+s+91330F4eDhMmzYNLBYLTJw4EZo3bw47d+6EV199FQAAbt++DVmyZIHx48dDtmzZ4OHDh/Djjz9C9erV4dixY1C8eHEAAHjy5AnUrl0brl69CoMHD4bq1avD06dPYdeuXRAVFQUlSpQAi8UCbdu2hd27d8OgQYOgZs2acO3aNYiIiID69evD4cOHIV26dM75cSUkXiYwCQkJCQ8gIiKCAQD7+OOPFfOXLl3KAIAtWbLkxbzw8HAWHBzMrl279mJebGwsy5w5M+vVq5fhMZKSklhiYiJr1KgRe+ONN17M79u3L8uUKZPV/vXq1YtlzJhRcUzGGJs8eTIDAHbmzBnDbVetWsUAgB0/ftxwnStXrjAAYLlz52axsbEv5sfExLDMmTOzxo0bWz2vhIQEVrRoUcX1GzVqFAMAtnXrVsNtly1bxgCA/frrr4r5hw4dYgDAZs2aZbithISEMaTLT0JCwqN45513FNNvvfUW+Pv7w/bt2xXzK1SoAPnz538xHRwcDMWKFYNr164p1pszZw5UqlQJgoODwd/fHwICAmDbtm1w9uzZF+tUq1YNHj9+DG+//TasW7cO7t+/r+nXxo0boUGDBpA7d25ISkp60Zo3bw4AADt37jQ8pwoVKkBgYCB88MEH8OOPP8Lly5cN123Xrh0EBwe/mA4JCYHWrVvDrl27IDk5GQAAkpKSYOzYsVCqVCkIDAwEf39/CAwMhAsXLijO6/fff4dixYpB48aNDY+3ceNGyJQpE7Ru3VpxXhUqVICcOXPCjh07DLeVkJAwhiRUEhISHkXOnDkV0/7+/pAlSxZ48OCBYn6WLFk02wYFBUFsbOyL6SlTpsCHH34I1atXh19//RUOHDgAhw4dgmbNminW69y5MyxcuBCuXbsG7du3h+zZs0P16tVh69atL9b5999/YcOGDRAQEKBopUuXBgDQJWGEwoULw59//gnZs2eHjz76CAoXLgyFCxeG6dOn2zx/mpeQkABPnz4FAIBPPvkEhg8fDq+//jps2LABDh48CIcOHYLy5csrzuvevXuQN29ew37ReT1+/BgCAwM153bnzh2r5yUhIWEMGUMlISHhUdy5cwfy5MnzYjopKQkePHigS6BsYcmSJVC/fn2YPXu2Yv6TJ08063br1g26desGz549g127dkFERAS0atUKzp8/D+Hh4ZA1a1YoV64cjBkzRvdYuXPnttqXOnXqQJ06dSA5ORkOHz4MM2bMgIEDB0KOHDmgU6dOL9a7c+eOZts7d+5AYGAgZMyY8cV5denSBcaOHatY7/79+5ApU6YX09myZYObN29a7VfWrFkhS5YssHnzZt3lISEhVreXkJDQh7RQSUhIeBRLly5VTK9YsQKSkpJeBJDbAx8fHwgKClLMO3nyJOzfv99wmwwZMkDz5s3hyy+/hISEBDhz5gwAALRq1QpOnz4NhQsXhipVqmiaLUJF8PPzg+rVq8PMmTMBAODo0aOK5atXr4a4uLgX00+ePIENGzZAnTp1wM/Pz/C8fvvtN7h165ZiXvPmzeH8+fPw119/GfanVatW8ODBA0hOTtY9Lwpwl5CQsA/SQiUhIeFRrF69Gvz9/aFJkyYvsvzKly8Pb731lt37atWqFXz99dcQEREB9erVg3/++QdGjRoFBQsWVEgd9OzZE9KlSwe1atWCXLlywZ07d2DcuHEQFhYGVatWBQCAUaNGwdatW6FmzZrQv39/KF68OMTFxcHVq1dh06ZNMGfOHEP32pw5c+Cvv/6Cli1bQv78+SEuLu6FxIM6vsnPzw+aNGkCn3zyCVgsFpgwYQLExMTAyJEjFef1ww8/QIkSJaBcuXJw5MgRmDRpkub4AwcOhF9++QXatm0LQ4YMgWrVqkFsbCzs3LkTWrVqBQ0aNIBOnTrB0qVLoUWLFjBgwACoVq0aBAQEwM2bN2H79u3Qtm1beOONN+y+9hISLz08HRUvISHxcoKy/I4cOcJat27NMmbMyEJCQtjbb7/N/v33X8W64eHhrGXLlpp91KtXj9WrV+/FdHx8PPvss89Ynjx5WHBwMKtUqRJbu3Yt69q1KwsPD3+x3o8//sgaNGjAcuTIwQIDA1nu3LnZW2+9xU6ePKnY/71791j//v1ZwYIFWUBAAMucOTOrXLky+/LLL9nTp08Nz23//v3sjTfeYOHh4SwoKIhlyZKF1atXj61fv/7FOpTlN2HCBDZy5EiWN29eFhgYyCpWrMj++OMPxf4ePXrEunfvzrJnz87Sp0/PateuzXbv3q05f1p3wIABLH/+/CwgIIBlz56dtWzZkp07d+7FOomJiWzy5MmsfPnyLDg4mGXMmJGVKFGC9erVi124cMHwvCQkJIzhwxhjniZ1EhISLx9GjBgBI0eOhHv37kHWrFk93R234+rVq1CwYEGYNGkSfPbZZ57ujoSEhIOQMVQSEhISEhISEg5CEioJCQkJCQkJCQchXX4SEhISEhISEg5CWqgkJCQkJCQkJByEJFQSEhISEhISEg5CEioJCQkJCQkJCQchhT3dBIvFArdv34aQkBDw8fHxdHckJCQkJCQkTIAxBk+ePIHcuXODr6+xHUoSKjfh9u3bkC9fPk93Q0JCQkJCQiIFuHHjhtXi45JQuQlUcPTGjRsQGhrq4d5ISEhISEhImEFMTAzky5fPZuFwSajcBHLzhYaGSkIlISEhISGRymArXEcGpUtISEhISEhIOAhJqCQkJCQkJCQkHIQkVBISEhISEhISDkISKgkJCQkJCQkJByEJlYSEhISEhISEg5CESkJCQkJCQkLCQUhCJSEhISEhISHhICShkpCQkJCQkJBwEJJQSUhISEhISEg4CEmoJCQkJCQkJCQchCRUEhISEhISEhIOQhIqCQkJCQkJCQkHIQmVhISExEuMxESApCRP90JCIvVDEioJCQmJlxTx8QC1agFkzw6wYoWneyMhkbrh7+kOSEhISEh4BuPHAxw6hN87dgT46y+Abt0A9u4FOHgQoFkznJaQkLANH8YY83QnXgbExMRAWFgYREdHQ2hoqKe7IyEh8ZLj/HmAsmUBEhIA2rYFWL8eQD0a+PkBHDkCUL68Z/ooIeENMDt+S5efhISExEsGxgD69EEy1awZwJo1AH/8AVCwIECmTACtWwPUrAmQnAzwwQf4KSEhYR3S5SchISHxkuHnnwG2bQMIDgaYORPAxwegSROAy5eRbPn4ANy+DVCyJMDffwPMmgXQr5+ney0h4d2QFioJCQmJlwgWC8CwYfh9+HCAQoWUy3188DN3boAJE/D7F18A3Ljhvj5KSKRGSEIlISEh4SZcugSwaxfAvn0Ap09rY5bcga1bAa5eRdfexx9bX/eDD9D19/QpQPv2AI8fu6GDEhKpFJJQSUhISLgBCxcCFC0KUK8eShWULQswbZr7+zFvHn527gyQLp31dX19ARYsAMiSBbMBGzUCePjQ9X2UkEiNkIRKQkJCwsU4fBiDwBkDKFAAIG9enP/NNyis6S78+y/AunX4vWdPc9uUKIFyCtmyARw9CtCgAcCjR67ro4REaoUkVBISEhIuxP376C6Lj0d5gkuXAC5eRDHNW7cA1q51/jG3bAGYO1frUvzhB1RFr1EDLWRmUa4cwI4dADlyAJw8CTB7tjN7KyGRNiAJlYSEhISLwBjAu+8CXL8OUKQIwI8/ohstKAjjkwAAZsxw7jHv30fi1qsXwJQpfL7Fwt19dGx7UKoUD2bftcvxfkpIpDVIQiUhISHhIvz5J+o7BQcDrF4NEBbGl/XuDeDvD7B7N8CJE8b7iItD65ZZzJuH2wAADB7Myc/q1WgdCw0FeOst+88FAKB2bfzct09qU0lIqCEJlYSEhISLMG4cfn7wgdbFlicPugIBjK1Ujx6huy1rVrQ22Yq3SkxEXSkADIBPTsaSMm+/DdChA87v0gUgQ4aUnU/ZsgAhIQBPngCcOpWyfUgosXIlwKhRmH359KmneyPhCCShkpCQkHABDhwA2L4drVCffaa/DollLl2KAd9qfPQRwIULONB++ilApUr66xFWr8a4rBw5sBZf6dIAd+4ALF+O+lI9ewKMHZvyc/LzQxkFAIA9e1K+HwnEunVoLYyIAGjaFKUsJk3ydK8kUgpJqCQkJCRcALJOde4MkC+f/jo1awK8+iq66GrUQCFNcqUtW4bNzw8FOLNkQe2q117DmCw9TJ+On717A7zyChKswoUxM+/wYQxUDwlx7LzI7ScJlf34/XdMGGAMiXKXLji/enW8R5KTZcB/aoYsjuwmyOLIEhJpHzExADdvYhZf27ZoFTp7FqB4ceNt7t9Hl+CaNTidPz9A/fpYrPjxY7RejBgB8OABloc5dgygcmWMvRJ1pHbtQo2rgAAkXDlzuuYcd+xAgpY7N54rKatLWMepU+i+BQAoUwbds//8g5pk27cDPH+OJJgxtCrmyOHZ/kpwyOLIEhISEm7ElStIYkqXRjIFgDFS1sgUAMZH/forCmiGhCAZWrwYyVS1agBffonrZcmCpCtLFoAjRzCL79o1dPF9/jmKbgIAdOrkOjIFgH3y98daf9euue44aQ3bt/Pvp08jmcqZE2OoAgIwYaFUKVx+4IBn+ijhGCShkpBIRXjyBOMuLBZP90RCjT//BIiNRUmE8HB044wZY25bHx+A999HkvLHHwBDh2Ig+S+/4GBLCA8HWLECpRd++omLhE6ejPpSLVuiWKgrkT49WsgApNvPHuzdi5+ff45xbA0bogZZrlx8nRo18FMSqtQJSagkJFIR3nsP4PXXna9dJOE4jh3Dz/79sVbegQMAxYrZt4+MGTE4eexYgJ9/RsKkRsOGAPPno8stOBjnlSgB8NtvABs3oqK5qyHjqOwDY/xatWyJhHnbNiTdIl59FT/373dv/yScA0moJCRSCSIjMcgYABWvJbwLx4/jZ8WKrj9Wt27o6ouNxVicyEiAFi1cf1yCJFT24do1tD76+wNUrWq8HlmoDh1Ci6NE6oIkVBISqQRiOvXx4wBnznisKx5BcjLAhx8CNG6MQdxTpniPbk9yMhfnrFDBvcf293d/YHitWvh55gwG1Usoce4c3qOUsUfEs3JldJkaoWRJFF59/lzqfKVGSEIlIeGlSEpCzaHkZMymWroU51OQM017OwYPBmjViqt3pxR//AEwZw66SubNQ12mr792Th8dxcWLOAimS2e/my81Ils2zFQDwMLJEohHj5D0lymD92jfvqhOT/FTRESN4OvL3YAyjir1QRIqCQkvRc+e+EZbpgxmdCUmAtSty0nE0qXOC04XxVOSkjDguUsXHAwcQWQkwMSJGN/zxx+O7WvOHPxs2xYHLQCMJYqNdWy/zgC5+8qVQ92olwFNmuDn1q2e7Yc3oXt3vE+Tk1ECwWJBSyoRKnKVWoOMo0q9SHWEatasWVCwYEEIDg6GypUrw+7du62uv3PnTqhcuTIEBwdDoUKFYA49lf9D/fr1wcfHR9Natmz5Yp0RI0Zolud0ZV6yxEuHpCQ08RNBOnCAx0mdOwewaRN+J2sPpdfTg5pw6ZL9BGP1agxuLlQIy5OUKIFk6qefUFDSEXz3Hf/uCKG6fh1JGQCKX86YgRlvDx9i1hsAakDt348B4bZKtDgbFJDujvgpb4FIqNRqhiNGoKr7rVtu75Yunj0DuHGD/78YQ32wlSsxa3brVoB796zvIzZWe54iLl3CrD0AvNd//RW/L1yIMgkAXGXeGiShSsVgqQjLly9nAQEBbN68eSwyMpINGDCAZciQgV27dk13/cuXL7P06dOzAQMGsMjISDZv3jwWEBDAVq1a9WKdBw8esKioqBft9OnTzM/Pjy1atOjFOhEREax06dKK9e7evWtX36OjoxkAsOjo6BSdu0TaRFwcY3PnMlaoEGMAjLVqxdjTp4xVq4bT//sfYxERjIWEMNaoEWMWC27XrRsu/+ADvq+FC3HeO++YP/69e4xlzYrbiS0kBD8zZWIsISFl5/boEWPp0/N9FiqUsv0wxtiwYbiPhg0Zi45mLDmZsXHjcF7Vqow9eMBYqVL8WL6+jNWqxdi0aYxFRjJ2/z5jSUkpP74tvPYaHnfOHNcdw9vw9CljgYF43ufP8/mbN/Pf4fPPPde/5GTG+vRhLFs25X1duzZj4eHae97XF++vZcu0+/rtN8aCg/FeO3xY/3gDBuB+mjfHaYuFscqV+f6LFjXX74cP+Tb37qXkzCWcDbPjd6oiVNWqVWO9e/dWzCtRogQbMmSI7vqDBg1iJUqUUMzr1asXq1GjhuExpk6dykJCQtjTp09fzIuIiGDly5dPeceZJFQSWjx7xli5ctoHe/78+JkxI2NRUbiuxYIDBOHPP3GdwEB82J86xVi6dDgvKAhJhxl07YrblCmD+5wwAUlBdDQfiLZtS9n5TZmC2xcvzlhAAH6/cMH+/SQkMJYzJ24/YgSeX/36jF2/zgf04sW111Gvffddys7FGiwWxrJnx/0fPOj8/XszGjTA8545E6cfPWIsTx5+vTNnZuz5c8/0bc4c5W/v56ecDgxkrEYNxqpX194/a9bw/Vy7huchEq+BA5UEPTqav4Rs3sznL1/Ot3vvPfN9L1ECt/n1V4cvg4QTkOYIVXx8PPPz82OrV69WzO/fvz+rW7eu7jZ16tRh/fv3V8xbvXo18/f3ZwkGr91lypRhPXv2VMyLiIhg6dOnZ7ly5WIFChRgHTt2ZJcuXbLa37i4OBYdHf2i3bhxQxIqCQU++QQfmlmyMDZ1KmNbtqBFiB7A48cbb2uxMNa+PR8Y1G/cP/9s+/hbt+K6Pj6M7d+vXU5WsAED7D+3pCRudZs7FwmQWULz8CFj8fF8et483DZnTsZ69ODn2LEjWuOMyFO6dGiNCA1Vzj950v7zsYbbt/lA++yZc/ft7Rg7Fs+9bVucfu89nC5ShL8YCMZ+t+Hff/l/acwYJHqJifji8dNP+BIivDMzxhi7dImxLl24NSkhAVuNGjivShW0GNN9NHUq33b6dE7sk5PxHitblrEOHfj6CxaY7//HH9tvbZZwHdIcobp16xYDALZ3717F/DFjxrBixYrpblO0aFE2ZswYxby9e/cyAGC3b9/WrH/w4EEGAOyg6jVz06ZNbNWqVezkyZNs69atrF69eixHjhzs/v37hv2NiIhgAKBpklBJMIYExtcXH5q//cbnnzrFWLFijL36KroDrSEhgZMqIhw9e+L3N96wvq3Fwljp0rhu377666xZg8sLFOCuRiPExKDbjfD777jtK68gySD3XOvW1vdz6BC6VnLmZGziRMY+/ZSf36BBjIWFKckRuUapFSvGB3kAxn75BfdLFj1qts5HjeXL0X25bp122W+/4T5LlbJvn2kBhw7huYeGMtavHyfoe/bw37xKFff0Zf58xt56C18miPhUrIhEyixiYri1ccYMtETRPXP5Mq4zYwYn7Bcu4H1PLw9kqROJFDV7okT27uXX1dZzQML1SLOEat++fYr5o0ePZsWLF9fdpmjRomzs2LGKeXv27GEAwKLIlyLggw8+YGXKlLHZl6dPn7IcOXKwb775xnAdaaGSMEJcHGMlS+IDs3Nn7XK1e88aEhLQbZctG2M7djB27BjuNziYsSdPjLcT13v0SH+dp09xuS2rTkICuiiyZsVYJcYY+/BD3O7DD3H66FHuxhStT2o0a6ZvberXD9/wieAtWqRdx8+Psb//xv20aYPzKlfG6eHDlesuXmzcBzUsFv571aypXT5mDC773//M7zOtIClJ6Q4DYGzSJFx29y53yTrbFRoVxdg336A1kzHGLl5kzN9f2Q8fH8YOHLB/37Nn67sI6f9ksWCsFQBjlSoxli8ftzQ/eYLnTS7ud97hLwHt2pkn8snJjOXOjdtt3Gj/OUg4F2mOULna5ffs2TMWGhrKpk2bZqo/jRs31sRzWYOMoZIgfP01PiizZ+cExFEQAbNYGCtcWGmd0cOQIfwhbw2tWuF6o0cbr7NqFR905s/HPpALcsMG3j9689++XX8/+/fzgWzyZE7SKJ6F3IajRuH0ggVoyaOgetFFKg6ERvFVjx9bP3fCvn3K7URv/8OHaAURicTLhrfe4mRZjD1ijLF338Vl9sQPmQG55ho2RFJHrt+SJZFwAzCmevQb4vJltIaOGYP33Y0bPIZJbEIuE7tyhbEMGfiyokXxpYExJHqiZe7QIU6wpk83f45k8XP2tZOwH2mOUDGGQekf0ivvfyhZsqTVoPSSJUsq5vXu3Vs3KH3RokUsKCjIqhuPEBcXx/LkycNGjhxpuu+SUEkwxtjVqzx4fOlS1xyDyFKHDvrLLRbGCha0TboY4/FLVasar9O4MR9YmjXDrDoADB4X41RocO3eHfswbx5jZ87w5WSd6taNz6PA3wsXuNXh+nVtH0Sr1+PH+gRK7SIcNky7n+++Y+zNN5X97t5duQ8idOfPo4uRyERKAu7TAs6dw9i2lSu1MWQ7d+L1cSRbVI2EBGWsYefOeF8AMHbkCJL3y5fNWYPUmXgA+EJC7m4ATobefVe57Q8/4D3euTO6Cml/ZM2cPZuv++23fF/Hj5s7T/HaWbPqSrgeaZJQkWzCggULWGRkJBs4cCDLkCEDu3r1KmOMsSFDhrDOgg+FZBM+/vhjFhkZyRYsWKCRTSDUrl2bdezYUfe4n376KduxYwe7fPkyO3DgAGvVqhULCQl5cVwzkIRKgjEcrAEYq1vX/jgeszh8GI+RPr028JYxdItZWy4iKorHep06pV1+/rxyMPL3Z+yLL/B706bKdbdt4+tRjEvZsrhszx5unbp4UXuczz7jhM0WtmwxJlRiSr+fH2N37vDtJk7ky5YswXkxMdwSQQHxxYoheSKLW758jJ04YbtfaRGbNiGBoHukdm1l9ltSEs8W3brVOcek+4iIDrW33rJ/Xzt24Lbp0iFxJvcdWbmyZmXsjz/w+yuvaEmheppin9KlU1pALRbuhjbrGk5KYixHDn7fSngOaZJQMcbYzJkzWXh4OAsMDGSVKlViO3fufLGsa9eurF69eor1d+zYwSpWrMgCAwNZgQIF2GzxteE//PPPPwwA2JYtW3SP2bFjR5YrVy4WEBDAcufOzdq1a8fOiK/WJiAJ1cuN+Hh8owXAwceVA7Do9iNiIIICvc0OQEQC33/feF8tWyI5IssUAGpAqfH551qSU6cOj38RrVOEqChu1Vu/3nZ/R41S9kNsq1fzQRMA3SqM8UBjahSoP38+J1HR0bwfRKbKl+fSFmkFV6+i5MXu3datSjt36l/jWbOU6xER7dPHOf0jV9j773PZDz8/xv75x/a29+9jlh+t27Ytbk/RG8eP898YAGPvkpK4W/mvv4z3fegQEkoA7JcaR45wImj2nundm1vhJDyHNEuoUiskoXp5MXSoMnXfKKvOmRg5Eo/VuLFyfnIyJxRmNW4ohigwkFt07t1DiwMFJG/YwI9JTRR7JCQkYNyTnvWoUSNMd1ejb19cXr26Oate8+a4/pgxWitGeLjSEkWuGfpesyZ+VqmCfS1fHqcnTsR9v/22ctu0RqYuXVLqSIWGIgFR4/hxfk+3aYPXgdxaYWE4ffIkus42bsT5uXObT7YwgsXC79916zAI/P33tSRO77zatOHEPSQEXc7kKjx3jq+7bBm/3+n3JTkIvbismBi0xtI1CwhAcqUHuvfJbWwLBw5wwij2UcK9kITKyyAJ1cuJS5f4gzZnTnwg23KzOQNXruAx1TFHX32F8zNmtE9wkQaCjz7isVDU8uXDt3iKnQJAC5kRSFJBbCo1FMV5ECkyIzCanIyuGQAc1MT4LpHo6QUd9+yJ1hkAHHgpUzE0lBM9tTuRYme8BX//jZYlQnIyuos++ACtbG++icHTt25hgPSoUTw+5/p17urKk4eT5fTplfdQcjKPHatTh99HSUlIRAEw442u0Vdf4f0GkLKsOxGULZo+vX33rxgHJ/aNrKtqbNzI2K5dfJpiqsLDlaQ+Lo5n/AUE4H/jyBHjfixdysml2Ziy1q1xG4OIFLsQHe3aigFpFZJQeRkkoXo5QWrhdes6/nZuL+rV45YaxjALzcgtYwsrV2oJSJEiqIMlDjxU/oVcaXqYOpW7y2hfN2/qr0vioo0amevnuXO4fnAwEgUSXKxXD1PcATBb66+/lOdSqRJjsbE4WObKpVymzlwTl/3xh7l+uQPR0Ug0fHzQqsgYL9mjbmSZAcAYqDZtuKurSBEUK01K4i6sN9/kx6FrFxLCZQsIR47weCr6DAzk7mCD/CHToBcCWzpralCm55Il+Du3a8fP/88/bW//7Bm/PqNH4z5u3MB+0AsKSXZYQ3w8j4tascJc30+c4H2lTMKU4PRp/F/Ury+1reyFJFReBkmoXk7UrYsPQnvSpZ0F0moqXBhjMOihrNK6NYXERB6XVbGi8eCxZg265qzFs1A23+TJXIWaBBFFREfzGB0jC5YadM61a+N0fDyW0zl3Dq004qBepw6/JqKLhvoEgDFiIq5eVZKR4cPN9csdWL1aSZLi4ng2Z6dOSCT/9z9OdCpU0CdbYq26Eye4HhOFmJJEgVhHUsSGDej+u3MHrT/ivg0kA03h8WMuoPnDD+a3u3uXH5/EZ5OSsIzRsGHmk0PIYgmgFJgNDDRHyghEclu1Mr8NuZrt2UYN0UrXs6frkmLSIiSh8jJIQvXy4e5dPnjZkRDqNMTEKIsTO0oArlzBoHB7lKcJBw9ijNWlS/xN/+RJJDsAjDVpot3mp5/4IGzr4X/pEgYcE2nSK8o7dy4uo7iy+/f5dRFL9YjXS+2WocGQ3JANGth3HVwJOndqZD0JDla6maOi0OW3e7c+oVK7wKjob8GC6C4lsVczYp03bmhL/0RG2n9usbHc4pojh7EYrR7WruUk0xEkJSGRoxgzHx+MubPXSklZtpkzmyc1//zDj6lT5MMmHj5UBtunxEr9MkMSKi+DJFQvHxYu5BYdT4EyourUMQ6UdTVWreKWJrJ25MqFgwnJLvj58YHpyRMkoCQqaosEnjyJ2wcHc8uBSv+XMcbjbzJl4gPZoEE4j7KorJWoSUjg7sARI/AzXTrv0AgSg7XVullqq0ZSEgZek5yBXhMTCh4/5pYuur6lS5snA5TdatZCeuoUxmKR1fLZM56NFxpqv9uLMkt79LBvOyM8e4ZyC3oJFGYQH89JqT2B5mQ5Nak9rQCJjZYrhwK4APiftKcczssMSai8DJJQpW0kJ6NLRNSFJd0ZO/RfnY7ERNR1crd5/++/0aXXowd3keXMyQdVMa2c3JEZM2KQtHqgP33a+rFosBCb3lt8fDwndqR1RTpEWbOii1Gtqi4GY1Ngcvbs6E6j4GYzgdbnz6OWllGsmKM4fZpbo54/Z+y11/g5zJ3L1zt3DlW9aVnFihgT9f77qGBPLjp1Ntu5c8pg7ilT7OsfxRJSswax4HX37oyVKcMJgJHKvjVQ5qYnijQbgdzNCxea34biAatXt+9YycncXf/99/gsoHhCe3/HlxWSUHkZJKFK26C34IwZMUZnyhRuYn+ZRB8tFgx+F+OMABjr1QvJ3YoVWDbkyhW+TVwcBp3rWUpKl7Z9TIov6dQJ1eH1FNAJpJS+bBlOJyRwlxRZn3Lk4LE6AIydPYvrkpWE3IlEmCdPtt1HihurUsU1AcGUcEDCpxT4ryaXdA6ZMyN5VT+OSMQyJES7bP9+vKczZkyZZUMMkDf6T4haX2LLnl0/y/PuXaxLaYTYWF5PUE/Gw1MYPNh+q5kosiuWP7IFyqoNC+Ou31mz7Lc0vsyQhMrLIAlV2sXx49pCqtSKFHl5HljJyco4nmbNcOD49Vfb1yA6GqUZXnmFDzYAvLiyNZDFxUwsy0cf4bpisDkJlwJgfMy+fYy1aMHnNWmC7h2aJk1fIjFt21o/5vXrSoLpDB2yR4+UsWyUuk/JD6JFiILML17k/TCKYxJLp+i5li5dSjkxsVh4n8LD9dchIdWSJdFt+8orqPGkZ3F8+BBlHnx80NKoB1Lgz5bNu/6HFNdl5oVBBMmAfPEFWtymTUOreHIyXq9hw7SyLCS7MGAAn/fokX2xcC87JKHyMkhClTaRlIQmeAAcmNesQbdJhw740NMr15JWQXX/fHzwQW/vAJacjG3dOj7wvvsu7sfIIvLoEV/XTKFpygIUCyps2IBv/q+/jvt4/lwbSC0S5rAwJGYU1J05M4qcGhVbpmLY+fMrSdpnnyktdWaxaxf2N2tWtHD06MGD5Cm7UsyuGzQI5/Xvr7RiGYGsFyVLOp+EkKwGAP534uOxnuTQoRjATjINEybg+kZSIxYLSnbQvmrV0u8rJT28/rpzz8NRiATdngD7BQu0L20ZMih11b74gq9/5Qon0erMW1vZmhIcklB5GSShSlsYPx4z6EJC8KEUGoqZUy8rHjzgMTZmXGBG+OsvZTmTPHm49aVXL+0AS3XdChY0t/9Tp7hrVtyXWNSXstpstY4dle6pkBAMau/TB4lgbCwegwK6Fy/W6kKlJA2+Uyf9/pQti6QiMZELaQKgFefRIz7PliXv8WP+G1hzp6UEFOsluvLE6weAZNHWf4nU7QMCeF9//127nj1uWXejSBHsmz11+h494tepUCGl9AWR6ly5eHYqWXv1smjpvxMSoi1qLaGEJFReBkmo0g4ePeIFc6nNmePpXnkWVHOsdGnzCtBqxMRgBh5ZUdRWIgAkK6IlgiwQHTqYO0ZiIpeS0NO2io3lx12+XHv8ixdR7ZosVpkzo3tQrA8oNrIKUXbahg0YsC+65OyJR3r6lPf/u+8Y+/hjJGkrVnCNJUrLDwrihI9S/UuVMmd1IuuPnvyEGs+e4e9g1tqmvka5cimJgZ4F7ckTbgG8c4f//yZPZuyTT/B75crKc0tM5L+lN7q1KBnjq6/s2+7UKSRDSUl4vps3Y+LBnTs8oWPNGryX6SVHLU7LGJL98HBcbrYM1csKSai8DJJQpR1MnszJw7lzPGPsZUNyMrpr2rblbgWjWBYzoIy73LlxMBg3Dqfbt8dMPjqGKKPQoYPSRWQGpL6up7b966+4LG9ePD+aBlAWk16+nAcI582LMTFi3JW65cnDyU2XLmitEpeZxc8/4zaFCxsTI4rtat0ajyX2Q9TbsgYSCaXrYA1kBSExVVugskgASCwTEpAcTJ2K+zh8GDNjx47Fc4yORitb1qyMXbjALYhVq2Lf/v2XE6zffuPHoRqUr7zineVWyMpWu7bzXKskA9KsGS8Sni+fsXYckdF33nHO8dMqJKHyMkhClTaQmMjf6ubN83RvPIe4OFTdFgfrjz5ybJ8zZijdYBaL0hVBActiEDK508zU+SOINQfVwdkUoP7ZZ3zeo0c4+N27p1z3zz95NmBgIK8DmJImEtGLFzHrsVYtJGliaR8KMP7yS+Pzo3UmT8a+//wzXh97BCFjY7nm1M6dxus9f66UUzBrCaLrrBe/8+OPfH8//YQJBDRdsiTP2iPldsbQUgegTBAgrTCxbI434cIFTsqdpbhPum5imzrVeH0K2g8N9Q49NW+FJFReBkmo0gbIYpEli33FWdMSnj9HhXAALCI8eDCmwTv6lk0ZgmJQrRrvv88tJ0eO8EHDnsBexjBIGQCtVYToaJ75ZK3ArYhnz3hNwtmzedHgDRvQDZw3L+9jt25YdJdiYCiZge4nejT06qUcEAsVQivOgwc8TsZImyspibtNzdSWswa61taClinIn1qnTub2vXMnrp8uHXdVMoZuKyrKTAO9vz9+p+sGgEkF4v125gzO9/PjxLFWLZwn6nB5G+bM4ec0aZJzLFUUc+jvjxZAa/tMTub6cHoxaBIISai8DJJQpQ00b27bQpDW8f33eA0yZnRucWBSgiaNKD08ecKDeakVK2b/sfbvx20DAnAQZ4y74YoVs29gozguIlY+PrxocGIius+WLOH7vHwZM/N++40XygXADK74eE4oxo7lQdvz53OLS9myxn05fpyTj5SUCBJBRZAzZMDzSUhA9XKy6okCkWSt9PNj7No12/u2WPj16tsXrb1jxvDal+XLo0uPrk3btkjCKHZtzx7tPknAc+xYjLeidVOSSelOkGuOrLMpKS0j4tw5FESlAtm2QDUKe/Z07LiMIaFv0ADdmCmNpfRGSELlZZCEKvUjOZkHuTo7+yk1IaXBtNaQnMyz0EjnyQhHj6LrhwbMESNSdkwa0H/5BadJXDQiwr79XLyoJHjWCA9jPLYnIEBpjerUiUtGZM3KWP36+u5Ba4WBSU3bljSCGVgsWKoEAMkOZSjmyYMEa/t2nA4ORrkJsoyY1dnSkwAAQDfY4cMoqJouHTYSsvzrL/0Aa8Z4qafChXkMWNGijl8HV8NiQUsSuTKDg/G+UNf/jIxk7L33sJSTM+Ustm7l99yPP2Ipp5SCXlQAGNu0yXl99DQkofIySEKV+kEp9xkyOP72n5pBZSzsSfe2hUuXcJ+BgebfbC0WjPVJKajOYb9+nOT4+aEFyV6IWWp9+ljvM2ktUXyLSCYotki0XKmbOpZLBGXnjR1r/znoYckS3F/mzNz1BoCxXZRRRmrfW7ZwC93Wrbb3/fw5pvMXK4aW3/ffx1ioDRv4Ov/8o9VPMsLTp9wtSK5bR+P63IlTp5Ru4Ny5+W/911/clUvXP6W1BNVISFDGwQGgtW/9evv39eWXfB9UHzMtQBIqL4MkVKkfc+fig6JBA0/3xHMgQUIfH/vjlqyBlKMrVHDePm3hl1/wmBUr4sAOgK6SlIDEO225LEXRUgAsU9S0qTF5ImVssZFFTY2kJMxoAzDv7rGFhASlJESVKjyQGgBdfjExfH2yuOXM6ZnCu3PmcEsPgDLrLzXAYkHXJqn/t2mDmncUOycG5ZuNVzOD7duRGDdowI9l617Wg/hikTFj2tG3koTKyyAJVeoFPRQo3d5a0HRaBxGfMmWcu18iJO58q715U0lU/P1THm9z9izfj1EB5ORkrhROweu1ailVzcUWFISkxGJBgkSxLkaaWwcO4PKwMOdaUMmKljEjqpkPHYrTRYporSTPnvFzLFnSM3UsnzzB+3T5cu8qN2MPjh1TEkMAlO2IjeUK/YGB5qoD2Ivbt3lCQrp0GJdHuHfP2CpM/ycfHx7ovmKF8/vnCZgdv31BQkLCED/9BJAhA8D06QD79+O8V1/1bJ88iX378NPZ1+DkSfwsV865+7WGPHkAChbk0927AxQokLJ9lSgBMG0awIwZuF/C0qUAr78OcO8eXrvISICQEICff8ble/cC/P67/j6TkwEmTwYoXRpg2TKAnTtx/sqVALt2adf/4w/8bNwYwN8/Zeehhw8/BPjyS4A1awDy5gUYPRpg82aAv/8GyJ5duW769AArVgDkygVw9ixAtWoAO3Y4ry9mkDEjQNu2AB07Avj4uPfYzkKFCgATJ+L3TJkAfvgBYPlygOBggNq1ASpVAkhIAFiyxPnHzpULYO5cgNdeA4iNxWt58ybAb7/hvd2kCd6bamzahJ/VqwO89x5+X7bM+f3zariJ4L30kBYqz+DePcZGj7Yd6KyHuDie9i6WGLEWw5LWQfE/ixY5d79Ui8yZcVlmIAZ+X7hgfV2LBfWcRBeXNdy+zVXNP/2Uu8O6dcN95cpl7Ooz09QiqiQT8P33KbsWzsTduzxI3ZmuqZcN+/bpu06p3mKZMnjfOsvFK+LBA55RW7Agv5eN7rG2bXHZ119jYDtZ0dKC20+6/LwMklC5H7ducfdD1qz2K5qTPIDYUkPWkKsQH8+Dfc0GCpvBs2c8LsfRlHGzOHUKz0csWGwLdD+8+665Y4gZfCEhPKiYREiJcFCsD7kByV1CbrbJkzG7iwYsdQwWY0qZAHV2mKeweTN3b0o4F48eKV/yAJwrYUK4do2L5wLwF8zMmZUvlo8fc8J19Ci+MOTOjdOiMG1qhSRUXgZJqNyLR4+4ijW14sWVIoLWkJCA5S4AMJ6Ayp506eLSbns1KEYnSxbnxqZs2ID7zZ/fPTEvP/2ExxMzqgCsK0WLEgJBQVyE0whnz3KCIxYAzpOHl0EhDScA3P+JE2i9evQItx84ED9FiMHv1KKiuOBs8eIOXRqn4u5d3kf52HM+undX3gfvv++a41y9inUSX3sN7036H4i6VTNn8rg5+g+3a4fzJk50Tb/cCRlDJfFSY/lygMuXAfLnx9iVfPkA/vkHY0HMYOZMgKtXMUZkxgyAAQNw/uuvu6rHngFjAF9/DTB/vu11f/gBPxs0cG5syoYN+Nm6tetjXuLiAL74Ar8fPKhctmWL8XZHjvA4r/h4jCcSceMGQHg4QNWqAPPmATRqhHEmbdsCjB/P1/vf/wD8/PB7UhKfv2cPwJAhAIsWAbRrB1CoEMDUqRibJaJpU23fZs/GuCoAjHvxFmTLhv87AIBjxwDGjsXzj472bL/SCqZPB1i/nscpbdigH9vkKMLDAQ4fxri5TJnw2QiAz4yDB/EZ8v33OK9XL/4frlEDPw8ccH6fvBZuIngvPaSFyr2gVHQqmkuqz8HBttO5z5xBKwQApmEzhm9d16+7ts+eAIn6+figG89iwRp17dujnMB332HG2L173N3nSAFkNZKTeSyRO+KnqLB1zpxKXR8Axjp2NN6O3HfkZmnaVLm8Tx+t5ahkSXSZxMWh9c3PD12NjOF5i5Yrut+ode9ubK2bOxczvmhd+l18fMzF0sTGonwDxYJt3oxiobaKIKcEVOLns8+4lbd27bQRV+MtSEjgdRddEUulh65d8XiVKvEyQsHBvEIAY+jqI6tsaod0+XkZJKFyHx4+5CKE58/jPIsFzdYAWOrBCAkJSCQAUGwwtaZdm0WnTnxg7tEDY3L0iEHHjvi9cmXnXpNDh3isUFyc8/arh/v3eVmXBQswNb13by4FERCAKek//aRMFRcFI+fNw09fX8bGjWPs88+VBLx9ewzE7dBBGbx+/bpSXf/ECX59xTiuPn14PNmkScbncu2a9ncaNszcdfjqK/67ir93q1bO1RZjjLso1YQxKAhjbrp3Nx/kL2EM+h8PHeqe4925w0kcta5dles8e8bd3jduuKdfroIkVF4GSajcB6rJptZK+vlnHtNipKVC8TWZM7svQNpTePBAOdCJSti9ezP2zTcYzC8+NJcutb7PyZMx2+yXX8xZPGhwb9fOOedkDUQKS5dW6jRNmaIlJwBIrM+c4QWACxdGMlmtmnI9um6vvorLzWhAffMNJ+3HjmFcyujRuOzbb7nFyajMCmPamoYjR9o+rsXCWHi49lzpHIoU4VY0Z2DTJm2cj9oyWKiQksAeP47Fj2fPdl4/0jro2Va6tPuOuXAhv2+CgvTLcdHL6cqV7uuXKyAJlZdBEir34Y038E88fLhyvqj6LCoAz5qFb+sHDyprl6UG3LiR8oBfGrgrVFCWQxkwgK/z6BFaYQID8WFtrSyMevCsX9+21Ymut7X6dM7AsmV4HD8/tIoRrl9XKn+rW/fu/NpQOZe1a5FwN2zIy/AA2Feqg4psf/ONdpnFwl2I6dMzdvq0/j7ELEIAJEoWC94Pjx/rb7N3L7cI1qiB5z5lCtbOI0tZ+vTo9nUGSFmfSNu9e2jxu3QJ3c10zNBQrFH3ww+8pmP27K5xQ6ZFiFZ58f52NRIS8MXsyRP95SRG++mn7uuTKyAJlZdBEir34O5dHuei98Y0aBAuExW5KV2d3Drp05vPBvQkNm3Ch2iFCko3XFISPuCMyMzp02gBICXm777DlGsAtL7oZbvFxOBAaISoKF7brXZtrHcIYL3Q8OHDuE5goGuvd1wct7Sp+0MFf0W3m17z80MZDjUePcJBY+BA84N/XBxPMTdSEk9M5GVnSpbUH7BWrtT2888/MTs1Z059V9pHH/H732JRxrzcu8cLRNeqZe5czIBS7Vu10i57+BDvRaPr/vffzutHWgcVLa9Tx3tCFX78kXsLzNbo9EZIQuVlkITKPaC39kqV9B8q27fj8mzZcACMitI+xPv1c3u37cbRo5y00ED6/DnG3Yhuupo10QVKg73FokzXL16cWzPOnsV9pARUjqRsWXSnLl+O0wEBSgvL7dvo4unRg7EPPsB13n7bsWthC0Q8cudWPtTj43kR4hUr0Fo1bhyXyxBbmzbO68/vv+M+c+WyPvD9+y/X8tGT63j+HLWpIiK4O5NILYC25l9iIl++aZP+Ma9e5QTSyMplLyi9Xyx6LCI2FtfJlg0tloMG4fW2RcgllLhxg79MeouLLSqKv6iKlu/UBkmovAySULkeJ05w942RmFxCAv+DHzrEB9v8+THIMigI3RHeDlIWpwyv5s2VREndunZFy5WYkXPypPPeZElxfMECnLZYGGvdmpM2uqbTp2v79tdfzumDEVq1wuOQCCaBiiPnzKkkWs+fo7tY7KM97jxb6NkT9/nhh7bX3bXL9j3NGNehEptIVI8e5bFfWbNatxYUL47r/fqr7f7FxdkOKn/6VFmp4MEDtIpaI2wLFmAfqlZF69yuXRi/d+2a7T69zKCYRGfX2nQEa9bwe3LtWk/3JmWQhMrLIAmV60FvtUbFYwkUYzVqFFqjABjr2xcf1mohRW8EFSH19eUEiVrWrBhE/fQpWlxGjuSZNm++yViTJvhdFOVzFElJnKSePKnsZ548vF8nT3JyQ61IEftJ3cOH+OZrC8nJmI1E50+/LR2PXGrqWDuCKIVQsiRmUllze5pBUhK3Em3ZYm4bsrpWrMhFQdV4/pxbLOmah4aiFe7MGb4sJMS29WLAAHP3yNOnjJUvj0Hmly+bOxfGeJHxpk2N3aSi5Vi0ulWsaP44LyMePuTyFHouak+BnrOutka7CmmWUM2cOZMVKFCABQUFsUqVKrFdNnTtd+zYwSpVqsSCgoJYwYIF2WxV6siiRYsYAGharCoNzN7jqiEJlfPw7Jl2EH76lGes2cpSmjsX13v1VRwQyOWTWkBvfOXK4TQFTQcHo5q5GitXclJBLSW1DY1w5gzuM0MG7YB/8ya3nL32Gh/YKSj7u+/sO1ZyMrrk/P2RBIsxQCLWr0f3BxG96tVxfqtWSOIiI7nlx8giefas1upTtaptHTNrIG2eTJnMx5TcvctT1K3VUPz8c1zv4EHuyvzlF27NrFvXXOYqJRfYUq4nly2A+XI8T54oXdXTphmvSzIn5B6loOvISHPHellB/zdbGbnuRGovQ5QmCdXy5ctZQEAAmzdvHouMjGQDBgxgGTJkYNcM7MCXL19m6dOnZwMGDGCRkZFs3rx5LCAggK1aterFOosWLWKhoaEsKipK0Rw5rh4koXIO9u/HLCD1mw6VLylQwLbF48YN7UBpxuLhLaB4pe7dcXrXLgxMX7fOeJs9e3jAsS0Lnr344Qfcb506+sv/+Ud5rSl+7fp1+61TFy4o96UW2GQMxQ3Vdc7mzUMdKpouWhQ/q1UzPpbFwssX1auHJXcA8DpaC0B//tw462ngQNyHvSWMRozA7dq3t74eXU+R7JDVyiwRfPaMv5xERmKrW5fXILRYlNIO9GkUYC+CJCjIVe3ri5IZegkkCxagle2LL9C12LIlbmNGHuJlxiefON8K7ShSexmiNEmoqlWrxnr37q2YV6JECTZEHRzxHwYNGsRKlCihmNerVy9Wo0aNF9OLFi1iYWFhTj2uHiShchzR0bxQp78/xmD8/jsWlqX03D59zO3riy/4Hzy1vTURMdKr+G4Lt25Zr1mXEpBr7JNPjNchi5SjZv8VK7RkWHTTxsfz4sItWqBLdO1aJAFbtmi31ZMtEHHkCFo0ExIwuJ6y86ZM0V//xg28R7NlQ3ejGmQtGjIE+2P2t6AsTNXjzBB793Kyky+fvuXSGsg1PHYszx4rWRItwc2a8es3ZAhXbW/b1vZ+KdZu9Gju+gPA66qnlC8SbiLu3hQf5I2gl8siRTzdEyVIsmbnTk/3xH6kOUIVHx/P/Pz82OrVqxXz+/fvz+rWrau7TZ06dVj//v0V81avXs38/f1Zwn/29kWLFjE/Pz+WP39+lidPHtayZUt29OhRh46rB0moEMeP45vslSsYjGxP7IW6GOi4cdxtQ66djRvN72/CBNzerMK0NyA5mbt/9N7qPYGqVbE/y5cbr0Mmf1tuK1sg65zYPv6YL6cMuhw5tPFO48Zpt7VXwfn773G7wECuws8YWqX+/hsHe9q3mmA+fKg9fliYcfabCIqb8/Mzryh/5w5a5VKSeECK8CVLKhWxa9XiFqZvvsH7MTKSv+RYk78gmQwfH17G6fRpTt78/NAF/9ln+oHujx5h1qh0+1nH48f8uehNCuVUhsjoZcSbkeYI1a1btxgAsL179yrmjxkzhhUzMDEULVqUjVEpNO7du5cBALv9XzDB/v372U8//cSOHz/Odu3axdq3b8/SpUvHzv/3tEzJcRljLC4ujkVHR79oN27ceOkJ1Z9/agcUHx98s7Xlcrt3j8cBkW6NqOwNgG4Ke2uEpbayF+fO4bmmS+cdui5xcVzPylp2ZHIyxqxlzoxyAEaIjTVWsWcMxTTV91DmzHwbcnWJBuV9+zAgvkMHXEZiog0b2neujCE5ee01pev00iWl+ndoKCcdYmCwSCrF9tprxsdLSkIr2fLl/Dqbca05iocPOXnRa2rZBbqmRmT5yRPuZlXXTIyPxxgscf8FCuifZ4sW+m6/Z8/wZcqR+La0BHrJWbjQ0z3hoDJEZuPtvAlmCZWvq4svOxs+qnL0jDHNPFvri/Nr1KgB7777LpQvXx7q1KkDK1asgGLFisGMGTMcOu64ceMgLCzsRctHZddfYvzxB376+2MrWBAfn+vWAfTrZ33bNWuwknrFigAjRuC8pCT8LFgQPxs2BEif3r4+hYTYt76n8fff+FmpEkBAgGf7AoCV5xMSALJm5b+DHnx9Af76C+D6dYDs2fXXef4coFgxgCJFAE6e1C5nDPehxsOHAD17AsTGAqxdi/PatcP1R4wAqFkToHp1gI0bcdk33wD89hvA0qX2nCnCxwdg0iT8XLkSf49x4wAePwYICwN47TWAffsAatUCiIsDGDOGb3vwoHJfbdvi5549AImJ2mM9eQJQtSpA5coAnTrhdQYAOH3a/n7bi1deAWjenE+3aoXnDADQtatyGQBA+/b4uWqV/v4GDQK4cAEgb16AWbOUywIDAX76CeDSJYBlywDCwwGuXgUYOFC7nw4d8HPlSvxkDGDGDNymVSuAbt3sOcu0C/p9vvwS4O5dz/aFUKkSfh454tl+uBTuYHfOgKtcfnro0aMHa9asWYqPy5i0UOlB1CoiN8T+/fyt1Fp2HrkFxo1TVlcvVgzdDF9/jcHPaR3k9hTdXJ7Cxo08TsdatpZZrFvH74VMmdBFJOLWLaVlk1xmZLmk+DrKoBs7Vt+64gxV9vfew30VLcotR3v28OU7dnA3Ft3XYhwZAIrMUrHm/fv5thYLaqT97398H+J2X3zheP/NgMRZATDxYcQIjJ/Su36U6RkYqNWXun6dW5PNaI6RuKjoGiSIlrOTJ5VxWAC4zCgh4GXC06foriULqDcop9+5w39XR+VH3I005/JjDIPDP1Sp4ZUsWdJqUHrJkiUV83r37q0ISlfDYrGwKlWqsG7duqX4uHp42WOokpJ4jS5Rq4gx1EfScwXcvYsZQLVq8UHl4kVc9v77OD1vnnv67w1ITOSZZs6qteYIypbFvvTq5ZwHNv2mlGGmdsl9/DEfOKdOxc/wcAzuFl1unTtjTBORlU6d+LIMGRzvJ2NI7ijIFkA/w7FdO1xGWYGvvMLXT58eXV2kiTZuHBIBiwXrnhm52gDMBX87A8+eochnlSrG+lciaADPmBHjoOieoMzGBg3MH5vc+uPHa5cRMSV9KqpHSITamSKsqRlnznDy6S0vm6T8L758pAakSUJF8gULFixgkZGRbODAgSxDhgzs6tWrjDHGhgwZwjoLRdpINuHjjz9mkZGRbMGCBRrZhBEjRrDNmzezS5cusWPHjrFu3boxf39/dvDgQdPHNYOXnVBZ0yo6fpwPFvPn47zTp7lAIbVKlfg2T55gbIw3vHm5C9u24XXIkgXJlSdBQdI+Phj47ChEwcv587kFigi0WGQXAN9wabA4fx5j7IYNw4H4zBkeVA3A40moOQuXLnFS9ccf2uWXL3NyOH++sg+NGuE6onK8j4+ybJBRK1zYfB8fPXLsP2LPtosXKzWm/vgD7w3KjNS7Rkag3690aW0fFi7kxwgM5IkolG1Kmb7//vtyPR/0QBp13hJLRdUTpk/3dE/sQ5okVIyhwGZ4eDgLDAxklSpVYjuFHMyuXbuyevXqKdbfsWMHq1ixIgsMDGQFChTQCHsOHDiQ5c+fnwUGBrJs2bKxpk2bsn379tl1XDN4mQlVXBzXnzHSKhoyhA8qU6bwANbixRnr3x+DVNescWevvQ8kDUH6U54EDWrWdJxs4elTtC4lJmKaP7nwEhJ44PfQobiuaLWhLKFXX8XpZcuU+7VYuPVMrzmTjD54oC3gu2QJimsyhrpRen1Inx6XnzhhnTz17cvd3SLxouSLJ09QTkDPhbJpE65rVkrEGUhKQgsa9ZWKkRvV1jTCo0ecjKozdx8+xOvn68uYGImxfj2uX7AgJ2TffuuMs0q9GDzYe54ZjGFtRgAshZWakGYJVWrFy0qoDh/mkgYAxlpFFgtmZokDR968aHmQQJcR6Sv9/rvz9nnlChKYgwdRRuLmTXPbUjFeRyQn6GHfujWPFyKNqlWrOMHq0kV5Xzx6hOv06KHfh1OntNYgMVbPjExBSiEe59tvUW9JjyjlyoXrJyejIrmvL2MzZqArl6xZ/v6YhWqxcHcWNSp8TO40vcwpIpx6pMSVUP+P1cc/fBhjn6xlezLGXbw5c2qtoMeOYZyZiCdPtJmJefJ43prrSZAmVfHinu4JgkhvatMSk4TKy/CyEioSoaRmTasoOZmxyZNxIPH3R6uFBOLYMbx+GTM6T5hzyhRuLaHfJ106xubM0a4bE4ODdosWWOKE4pN270758akIr2h52boVlyUkKGOUqDVpwrenOKo33lDu98cfldtQmR1SkHYkBsmaQjpjeP+KxyaXi14jd+bNm0pdpZkzcblobFcXPy5dGolCrlz82om6ZAcOaAkcBWvPnctYzZr6wqPWYLGg2/nnn431jR480J5nnjzKQHGyPn72mfXjPX/OJSgAzEmcNG2qPb4qn+ilgvh7eIOkhFiH1F6JG09CEiovw8tIqCjmJyAACxeXLWtce03E5cuotyTBQeSheXPn7ZPqGAJg0D8FFQcEKAfbhw+5oKPYQkMd08IiMkAP2B9/VC6PisI6hOIxxRKapHyuloMTg9ezZuWuJorjA2BM9PxbLEhA1NlpIiwWfDkoUMC61ZS0rijzT69RAP3MmbjN6tVIVhs1wnhCKvI9dizf79On2v1QwVlqjRtzwvf22zivQwdePmfmTGWsmj3usEePsPyMSH7V9S8vXTI+Z0owEIVpCxe27gY8eVK7H1v3m0imKZ4rXTp0nb5MCSwiSpfG67B2rad7gr831ZncssXceOANkITKy5DWCdX69dqCuyST0LevZ/qUlkAqw3pZTynBtWucyOzahW+OFgvGRAFg1hljWLyYXLZhYaiO3aMHkuOJE1N+/OhoPvD99JNSNkCNXr34uuIATDIKvr5KMdAGDfj6r7+u3Be5Gem4jPHA8NBQJK56EMkYxXXNmYMkSBTvDA/Hdf78k9eeE1uhQtwN2KYNt0ZRK1yYkzG1bIQRWalXj2/z+edowaRahocOoSsRAC2CJOcAoK0n+OiRsdVq1CjcJjgYCSztgyyKz54pLZ167dQpTDYR5/Xpg/eROlHl8WO8Fup9qEm3GlTYGUDfOugN2bHuBv1/3nnH0z1BkDgrAGPZs1sX8vUWSELlZUjLhIriRjJl4roxpOjt6+td5Q9SI8SUe3trshmBBvLatZXzKdi8YEEkCpRtV7q0NmbFEfz9N+43Z07b61apgusuWaKcb7Fwa8/x43yeKE+gLnNhsTA2YAC3Im3ejA91cdA9fVrbB7FsTcaMSEDJHUWJxaLOTnQ0xv1QHTxqdesqBxRq3bsr+5Enj9a92LixPlFZt47XuQPgCR5knYuJ4X0lwgfAWKlSfN+iVa9pU22QO8kYzJ6Nyu20br58uFzMvKNrSJIQ1D77TJl9KTbxt712jQfih4crrZS+vqjDpbaOMYa/ifq3VLe8ea1bItMiDh3i96U7VPZtYdgw5W+ifhH3RkhC5WVIy4SKMnkA0CqVnMyzslq39nTvUj9IViJjRueVm6ECt2qL17Nn3CVDrqeqVW3HDpnF48dIPH76iVtXrOHZM16XTC3yyBh3RS5ditNkeaOmtvIwhueiHuwLFeLxNxER2m0owJsEKtVZhEeO8IBbkagwZn2AB8As1t27lZa12bMxRurKFb6fCxe022bIgG/4FgvuB4BrtomxZRQ/JjYfHwwMP36cE2eR+FHc07Nn3AJ2/jxePzUZ0iOkO3dqj6lOMKBWsya6gMqV4783ESC99fUERClAn1ru3MpCztTcJYzqTaAC1i1aeLoneH9QkXAA9yZMpBSSUHkZ0jKhotgbamvWcD0dV2ZUpXU8fYoEasIEvJb/ifc7jLg4npKuZ41RC0tOmOCc4yYmItkIDeUinr16Wd+GrCFZs+ovp9p9NEiKaushIcYZXk+fKtP7Fy7k8TdqQnTnDiccagsLuUPLlOGq3e+9x7dVZxyabV99xQnetm18f2oLTJs2GNyeJ49+7T163Dx9yi1cPj48jgWA3wsdOiizFAMD8b9N2aV58yJxO3/euN/ffMP7arGgO48sjPY2da1OdfvhBzzOmTMoXEmWyd9+Q7cnuYfVVsKMGZ2jnZaacP48J9pHjni6Nwh6qZkxw9M9sQ1JqLwMaZVQXbzIH36U+l6kCH7myvVypyw7gmvX0FJUqRIf/ObOdc6+d+/G/WXPrh8UfPOmcnD+r064w1i9WjsoGsUsEciSZVTl6dtvcTkVGP7qK75vW9ZRiwWtSrNmodXl0SP9AsR0jMqVcZokIwDwWorB9QCYBUf48kvlsoAA5du52UagqgJiUx9fbJMm8W1FV4sYB0XtjTcYa9XKeF/ZsuE16tvXeB09S2ZcnPVzCw62ff4ZM/LM0urV8bNZMwwtEBMAwsO18Vj372stXV9+af3eSIt45x089zff9HRPEGQ19YYyWrYgCZWXIS0RqsOHMbh3zRou1NagAb4Zig8tVRlFCTugthIVKuQ8d9+YMbYfrKTxVLasc47JmFZCAwCDiK2B4oF699Yus1h4sHhQkFbzKSWijqTk/MorKPFhsaDFCgAD9BlDi1WlSrxPR4/yYw4ezElqQgKfTwHS9erxBAMA89abqCjc57599hExsZyT2pLs7Navn/F1PXxYuz5dV7HGYdeuGGtVqxa68K5d4yWrKMmF5Db8/PhLHLUxY/SPv3s3t8QBoJX0ZVNRJ2upj493lKKhZAl14og3QhIqL0NaIVSzZ+s/TOfMQd0Yyi4CcEyj6GVGTAyPY6J4EnVAtiOguBJr5R+iorAG3pYtzjkmER91rM7ly/ig/+gjfINevFhpYaA4LrVboF07ng5P9cHUjcq72IMLF7ichI8PJ5YZMnD3mR4aNuRWk2XLeKq62Bca8D/6iM///ntO4NT9p1qAAFy8lNxXAwdyHTFrjcrUUMFhAF6FgNqOHfj/7dcP+3fggO0SOIMHazWfzp61fm0pOJoaVU+gVqSIvkWbdKs++EBbKFrdrAWcnzunrPmoVrh/GUCZpwMGeLonGDsFgP83b4ckVF6GtEKo6A2+YkX+cBsyhJv6aXmuXM4LZH7ZQKS1eHEsIjp/vvPeppOSeNyPKATpClgs2Pc9ezCLDUAbDL5lizbAu2RJVEq3WHjqvBhHZMuFJDZR0sAWdu3CeLHYWK1bq2dP7foxMdj3xo1tu63ILXXoEC8hRP8jAJQ7IBImxqyJ+4iK4q7YbNnQlUVuMGvt4UNlVueDBxjz5eeHpOLRIwzqj4vjx+3Z0/o+v/+e61lRo5gma6AXBQAMiBddy0aSCGPH8ntn5Ejr/bIV4Czef3bUtk8z+P13PPewMP1yRe5EZCT2JTVYCyWh8jKkFUJFJTB27MA/hFrNnOJkRozwTP/SAsiN8fXXzt83uV5CQ7WxJs7GH3/wwYsGTrVbjkh5xoyo7yRaakgTi8gEwZ5Abz2XYmysVlDQYuFB0GPH4vS0aWgdee01ZbYdwUgCwKi1aYMvGXr6SEuW8KLO4u8iWrpEIgaA8WWkDwWgFfqk9uefXKqBsjpjY9FqxRiXTBCzAvftQ+to5crmz696ddv3BBFIAAyAF7Wmnj/X34YkNgC0ul3USGZBLKCuh+HD+TZFi3r/QO5sJCdzoVcqRO8pPH/Of4sHDzzbF1uQhMrLkBYIVUwM/wNYU4u+fVtapxwBxbrYii9KCb74AvftSPkVs1CnyNeqxdW233qLaxsB8BqPjx/joCe6jgGUA9+KFTivWDFjF1C5cvipF1Pz2mvowrtwgc+jt2UAJHVmxAb11OP1WtOmmFCQnKzUzhKbkT6QKElCjUhOlSpIDDNlQvKzebP+8YcP5xa0U6e0xxCz6Y4e5fMvX8ZBjwZgsZHFbdw4paXJWgYZCbFSmzBBWW9wzx7jbY3IIgDGyt29y6et1Qike4eanTXu0wQmTuTk09OEkjJI9eRNvAmSUHkZ0gKhovpgZsQYJVIGUXfp9m3n7js5mQs7UnHdlODWLcwes+YyeP6cBxNTE8uy3LyJAcevvIIK29euKbe/do2xGjU4IRExYgTO79ZNqd1EZDFDBi7E2aGDcluxnMmoUXw+qaVTmzzZ+jUgcVAzTbS8qHWyAJDQGNVnnDVLuW7Dhnj9iXBu2YKWrT17tBmF6pY/v3YAjY9XBmtXrKj9XUeNwnsyTx5OUuPisNQM7Y9K3VSrpnQdEiwWZUwYEUJRc2r0aO12Q4bgfXTiBMZt5cmDbs7vv0cLLgCv70gkWk/0kyASZ4CXUyfv3j3+mx886Nm+EKG29pt5AySh8jKkZkL111+Y8UTxC2KBWgnngkhrjhzO3zcJLYaGGrtXzIBIjDUr1+LFxgO7mLF344bSUiQiKQl1zNRxUCRbMGkSr3GYJw93wdWpw+v8FS2q3FZUBK9Qgc+nYF2SNMiQgbvE1CChVbFVr66NKdJ7+Vi6FOeLMVdlyhhfR4p5oetNZIdEPOvXx+nkZCRM1ghVnz7a/YsZilmy8OOIxCs5GUU+yTK2Zo12P5cvc3ctWRtFLFuGywICMABer3+NGyu3SUri+xSDqBMTsX9UxiZdOiRxdE30zlPcViSQANpg+v370d2blq3slNzQtatn+0E6clWrOi+L2RWQhMrLkFoJFWViiC016IakVlBAOukqORNkIXr/fcf2I94Lenj2DEuSAGjdYiEhyniolICC2EeMQEtX376Mbd/Os+cGDkS3Dx1z61YkYYsXa7PXLl9GSyAV0j16FAkZAFpd9DB0qHIfWbPiIKxW6gZAK5sIqqvWrx93m/3vf8bnSiWcMmRQkpwbN7ibbe9e7u6jEjMASr0sAJQ1UYNIaKNGGDdFZIMkIgjJybxWn1HKPYmqBgejnlXHjrzP7dvjsqFDkdSI/SRBVCJGJ08ikVyzhq8THo77evgQSW+VKki4yGW0fTuP31QLs6pRoYLyuogJB4mJXNfLVt3A1AzSogsLc30spTVcv85d4AMGeN4FaQRJqLwMqYlQ7d2LD5k7d7hIp9g8HcyYlkEDrrMzkEhx3McHByxHIBbBFS1IiYn4cCZ3W/782rgeR1XXExOV+2vYkC8jOYBVq3DaSE6hUCFOmvr0QQsRAMauJSejG4RITGwsuhIrVsRgdfXxxTR9PcuVmpRRfNzatXxgp0LUeoiN5ftSxy2SpAORGAB84yc9uKAgpUSDnlWyd29c1qoVWkdJxDQ4WOmGJdmLwEBjsV6LhWtEiYQ1OZlnI+7bh+suX45Ectw4JOBk3aMYO7129Ciq0NP0hQtcrHLYMMx6pGXW4qi6dsV1RHfxggXoBp8715gMpyUkJnKXvKuzfW1h1Sp+zVOiHecOSELlZfA0obJYzLN/0gqiz5w58cGYKxfGPNjSm5FIGR494iTAkRgnPZC1wtGK8xYLt+ZQe/VVjEXx80P1dYrTmjtXWTR3xgzHlfPFGChqd+6g1QQArTb0F5s7l7uMKLssPBwHYrVqe65cGBNE50jxQurAejGQXk/niiwx1IYO5fsUhW/v38f+lSiB/y1roHtCHbR94YIyBqlZM8yWslg4WSANJwBMKhERE6N1E1arxt2eZKWKjubZhg0aWO/rN98o97dtGyeaGTIYu3VIwFV87lCj+40kWah98gm3hBL5oX6uXas9RlQUDtgUlN2gAY/TM2qeJhuuBN0b1vTo3AWSxlC76L0FklB5GTxJqM6fx4eSGTG3p0+1DxWqz/XgAT4cJZyLpCTlwF2kCL61OxNkafzzT8f28+iR9QFIbFevcsV3Z6nmT5qkPc6PP6IcAIA2DicuDt1mFgu+CFDBX4uFx01lyqS12pHlxlrbulW/j9ev83VIpkCUWBBjpn77DS1D1kAkTQyiJ4wZg9a2JUuUMT/HjnFyQll8Bw4oxUlFC5fYiNCQjAJdi1y5tMkDajx8yC1+AHjeVE2B4r30YLGgDETz5ujuO3sWLSjBwbyWpbUWFIRknfSzBg3CzL/ff8f/15UrjBUowF8AaLvmzZX9pVa1qnPvW28EVUxo187TPeH/GX9/7yxXJgmVl8GThEo0+z94oJ+FQ9i6Vflg8fV1frbZy4hLlzAYV+9hIaZy+/o6X2E+NtZ5mYOiBpRoHdFrs2dzIuesOoSibpFepp09b9t376I7T+8lYdMm6+e2cKH1fZOcA6XlU5wQAGMrV+K8f/5B8hIcjDFRRiA19dq1zZ8bY1zxnRpZDt97DwVGiThRCRi1tSpTJtSbo+nt280fu08f3EaMNwsJsa//ly4h0X3wQCmPoafjBYDEmdTXa9fmMYONGmlr+YmtVCmlZS0ggFsTs2f3zgHeGdizB88xa1bPxy4lJ3O39cWLnu2LHiSh8jJ4klCJtcMAMM7ByPSuTr1Wv/FL2I9Hj/hgRhaLW7fwbXrOHB5YW7OmUgfIWSA3WViY4w9OGmjKlUMrGg2cAMriu2J75RUMHncEcXG89hcNAvv3K49TqJDjAe+EhATG3n3XeBAeO9Z6mZOrV9E6QqDg/OXL+TxRqsFaosDly3y97t0xu80MSEbCWmvVihdKXrvWuLZgt27mjkmYPFm7D0cyV6l0T2CgtmaoSFTJ9avO5LPVRMKVPj2+hFACg/g7piXEx3MSc+aMp3vD3bWbN3u6J1pIQuVl8BShslj0q9GvX69dNymJZ1B16oQP2pdR+M7ZoBRleuuPjtZmvwUHo8XEFSALmKNBtiJ5atkS561cyefdvq0MWAdAt5I164sZ9O+vtYZ9/TW+1X7wAcaHHTjg/LdsyoQyavbUQ6Oga5Ewt2rF9+Xraz1ZQKy/FxiIlpi4OExiaN+eW71E6BVSzp5dKeRJCuO+vkj89Uq7FC6M92xCAspRPH+O13rrVoxf04M6Rs3RlzOy0rVpg33R+z0iIpSq6npNretl1I4f5+WHHI079GZQrN2sWZ7uCcp1AGgzTL0BklB5GTxFqMR4DrG9+aZ2XcrwCQ21niUjYR5RUVo1bzFmIzQUrQK2XEiOgAbJ995L+T4sFuU59OqF86Oj0bVEejb//MMtHs5QY797V0umcue2L8YsORkDths0wGBwsxDLlOi1AgXM7efhQ+WAHhnJ2M8/83kkSNmihfE+5s/H60rxPz4+vJwMALrT1LpJSUncMkpt0CB9l9nrr+M2f/2lnF+jBrp5ExJ4UHjfvqjTBIAxSHrYtUt7DEcCjpOTMVGDnkvNmmHigCiDoQ5mp3tl2zY+ff8+z0T87DOt0CclL8yZwy2g6dPz2Lu0BhLJ7dTJ0z3B38PeFxV3QRIqL4OnCBW5ScqVwwBhqgcWGKi0iCQkcGE/b3hbSSugIOrq1XngNDVbatzOQqdOeDxHJAtu3lT2XU+8UX08PeVre0GWCXLh+Pjo19WzhvPneb+DgrB/trR3kpOxNIc1QmXWhUUyDEbtn3+41UivNIwIi8XYFfnWWxizJrpXz51TxkaRpIWfH0pOAOBykmR49ky5z7JllZZJvaYXPqAu8ULX3llimRYLxjaZcWuK1rJ165Cc0nknJnL9sPBw/r1bN2Vx7iVLnNNvb8P27Xh+uXJ5Po6KBF8zZLD9P3A3JKHyMniCUO3axa0jVGjXYlHGSTRrhpl9FISbloMwPQGyPsyZo9UpOn/ePX0g7SM9N69ZqIO0Fy82XpcGoS1bUn48ArmkiHCkRKVf1LmhduiQ8fqPH2uDmKdM0R+szcRs/fST9QH/3j38HwJgHJotWRJ1gWl1UxfVVlsXAVAewWJBzbl79zB7r0MHzA4kKQKzTa98iRiLOXEitzI6K8aNkJCgVL/Xa5SSD4CESYyPWr0a9zFlirLwcv786MKm/w6k0ZHy+XP+srJunWf7IloS06d3PFTAmZCEysvgCUJFMQCvv658M/z1V+UDZ9Einrb/0Udu616ax4MH/Brfvasd2NzxRkhK2wEB6HpKKci6VqMGxjgYkW7RveXI8RjDgY7UxKmlRJ+L0vbfeouri1vbjzroOVs2tGh99BEOPnPmcK0mMwWs9VyH+fLxgOBZs5TWy4AAromlh//9zzqBUGtFifchtc6dletQTF9ICJKMmjXxPJs356QWgFu4ihZlrGBBTjbVIOHUkBAMfiaCun+/7etlLywWPA4AkkJRhR1AKZNQvjxuQ1IUDRui2y82VhnTpteuX3d+370Bn3+O55cjh2ddm3fvKv/vni6LI0ISKi+DJwgVqQ6rSygkJ6MmDN24lStz1Vxnp+y/zKA6bGLsCD3c1QV/XYH16/lvbBTrYhZU/HbsWOvrHT6M6zmjgLY6viVLFuuSH+fO6Q8Ib7yB20+dqkwQmDIFyU6RIqg79OGHWGuPSAO1YcP4vkhtnK4HAFrrrJFjPQL08cc8E65mTV7DkdqCBfr70hM21WtRUdgnUt5XN7U7VlyWkIB6ZVevotyFKGZ6+DBmGT5/zi0/7dsr9/X0KR8YqUyNXpajM/H4Mcp0xMRg4LrRdfHx0f6+AEiQqeC0UZszB89dJLs3b1ovEp4aEBvL3cKOWLGdgX/+4SWHfH2xEoOjlR2cAUmovAzuJlQWC1eJ1lP7TUzEWBQxkLNECc/70dMSyDIiWgNu3uSig65EcjKXY7A2QJsFWWQ2brS+HsWrVK/u2PESEpQq6wDWa95Rkd+6dbXLSAtr2zb+m5htgYH6bqoff1SuZy3uUE+Ne/58lM4gV+bevcrlffvq70vM9tNrtDxHDhQCNVpvxQrc38WLmH0nLhNLsqibGPf35598fpkyPFGA3MP58/PnCZWI+eQTvIdc6e4m7aucOZFcde2KJMrWtVPfa5Ura7Nxab/JyUiuAgOdk3zhaVCRYm+p00qVCqh5elyShMrL4G5CdeMG3oh+ftbf6sUA1xkz3NK1lwIWC3+znznT/cc/dEg5ODiivK52XVrD1Km4XocOKT8eY8qSKdRGjDBev18/vp7o3n7yhL803L2rJUIAGHRNA766rV5tfMxz57gFqE4ddIXq6flkz67dL9W0o9p0b7yBsVa07quvavcjulON2u7d5mKgTpwwvs5iK1iQS6gQ2SIQiaW2ciW3ygKgZhZB7fb083O8rqMRli7Vv4bWguvVZCtvXnzp1Is/A8CYM7Gu4PPnjC1bplSiT01YtgzPo0IFT/cEQRIKZp87roYkVF4GdxMqeku0VXk9Lg7dFzVramt9SaQM8fEYr0MPA0+I5lE6tDPKSmzYgPsqXtz2uhQg/NlnKT+eOtOMGmVaXbmC96wYWC6qposuGQp0zZcPp9XaUuXK8bdfdbD3tGm2+0oxatRCQ5XL9Uo5AXBRUCo6DIAWn7Nn8Xu6dPh/rFGD/4akAk6NYrDE9tdfSi0mihlTt+fP+UuXXvvpJ7Saxcfzaw6AbpioKCQbamX1//1PSebEODU9XSpfX15Y25kQr6EY67d3r7YOJbXffsMkiqgoHrBO9QD1XIhbtypdoaTK3qqV88/HHYiKwv77+OALlKehtq6q61i6G2bHb1+QSJM4eRI/y5a1vl5QEMDPPwPs3QsQEuL6fr0M+OwzgBUrAAICAObOBShVyvXHZAxg61aA27fx+6pVOL9lS8f3vW8fftaqZXvda9fwM3/+lB/v9Gn9+UWL4mf//gDLlgFUqwbw/DnOu3KFr3fiBP++Zw9+1q6Nn4UKKffZqhWAjw9+f+015bKePW33tVgxgOzZ+XRMjHK52C9CnjwAYWH4Xbw3GjfG/WXMCBAbCxAaCnDgAMDq1QA3bwLMmKHcz4ULAG++qZw3YQJA1ap4jUqWBJg6VdlXgq8vwNtv8+nAQID27QFy5ABo2hRg1Ch8NgQG4vICBfB6WywAixYBXLwIcP268tg//wxw4wafrlaNf69alX/v1g3vJYsFt3E2xGt47hyfX7MmwL17AGfOAFSooNymXz/sU86cAO+/j/PmzMHPEiXws0sXgDZt8Pvx4wD79/PtV67Ez40bAX7/3dln5HrkzAlQvDg+O8Tz8hTKl1dOX7jgmX7YDTcRvJce7rZQkQtjzBi3HE5CQKFCeO2XLnXP8ZKTuehi3bo8qDNdOlS/dhQUR2ImDoskORxJwZ47V2nFoO8PH2pjjSZOxG3E9HYAjG35/HNesoTUlxMSlOu1acOPm5jI5xcubL6/b76p3KcYGL9unb5FhKxoycnK+Yxp9coA0H0mTpPrLSkJ0/vFZffvo+WMMaWwr1gOhlyzYWGo+SNacmidWrWU50maYGbb0KE89V10nX3xBdccoqw7Z4OyDH/4QX/5nj3o1vvhB56BSEXgL17kfV25Uvkb5s6Nn+oYH7GRO9PTcT/2glyYYhKGp/DgAd6b4r3kSUiXn5fB3YSKSshs2OCWw0n8B9HF4y6//86d+g92e+uv6eHhQ05qrl3TX+f0acZ698bzpUQIvYLDZkHFvN9/n7sbs2TBuB+16nyTJkgq1PIK6kaJGVQNgJoYOE3ut/Tp7fvtunZV7pOykiwW6xlnX36pVSaPjUU3mC2yMm6csg9i9mL58hjsHhmpJDIHDvBYKPpNKS7tl1+Q6IhB2KVLK49hseBvYg+popicCxf4vEyZ8BpRbNvnn2NGoVk8eYIhDeSO1AMJdBoF94v47jtct1o1Pq9pU97fiROVMXpG7fPPlTGpv/5q/py8AURyGzXydE8QN25w4Va9yh7uhCRUXgZ3Eqr4eB47Yc+DSsJxUDB49uzuO6ZeIdpMmRzXzdmxg+/PWiwevbVT8/FxzDJGpVHEeJzGjblVJX16bjXImFE5WBu1s2fRCkPyIBMm8LqDS5ag5WrePJzWCwg3QlKS9lhr1mCJFHWhcbNNz0IltkKFtIkmRtfgm2+QlE6ahITo4EEl+Tx2DAcuvbItesW0LRZjAm/U/v1Xmwzw7rtI/Gjankw5sghaS1IgMdfwcNuWoqgoTjAvXMB5oiU0d27bdR2Dg/E4FgvWnqR7NjXhxAnsd0iI7UoC7gJpwpUt69l+pFlCNXPmTFagQAEWFBTEKlWqxHbt2mV1/R07drBKlSqxoKAgVrBgQTZ79mzF8rlz57LatWuzTJkysUyZMrFGjRqxgyrp34iICAYAipbDztLp7iRUpAUUGpr6zM6pEU+eYA2w997jgcNqcUVXgkq9qAmEoyDBPwAsW3T/PlpUCFFR+mKIX32V8mNaLFphRgB0YZEVpk8fJZEZPBg/xRqJem3tWv7988+xcLPeelSn0Az0yMXXX6eMSJltRuK7RuuTdhZh9mycX7gwXu+NG/m6tWujZZOmr1xBi1nHjji40W8k1tBTN7IOUZs5k1vGxDqC5JajZha0/iuvGK/z/Dknz2YCmkk6omRJXoYnLo5nXS5fbhzgr+7/5cucoBpZdb0RSUk8aN8btJ8Yw2sJgC8B1iySrkaaJFTLly9nAQEBbN68eSwyMpINGDCAZciQgV0zuGsvX77M0qdPzwYMGMAiIyPZvHnzWEBAAFu1atWLdf73v/+xmTNnsmPHjrGzZ8+ybt26sbCwMHZTKIgVERHBSpcuzaKiol60u3b6c9xFqBISeLmTevVceiiJ/yAOSNT69XPf8UlnSWzOINKieOX06dyisHYtxv7kyKE/sDji6qAHqNgoc6pUKSUh0rvmZkmJnx/Gx+gtMyNzcfgwioE6So5CQrgGkFFTEw+jWDYj9+LOncr1LBaUNyDRTVHoMmtWfEEQrUfUMmbEbU+dwumgIFSRF9d57TV9aQpqq1Zxt6LoKqUsTFsQ49wKFdJfx2JBKyGRt/LlbSuAX7jAY6kCAtBl+t136MoGQNJerRo/R71zEx/tNWvivPnzzZ2Xt4A0yGbPRle+s2ovphQWC1rbAfT1FN2FNEmoqlWrxnr37q2YV6JECTZkyBDd9QcNGsRKlCihmNerVy9Wo0YNw2MkJSWxkJAQ9qMgLx4REcHKOxg96S5CRcUuATBmQsL10HO5uasulqhNRATBEQuRCKrxpW5NmmhVzMVWpIjxPtevt172RV0WCQCtBkZSCmJbvNg+MtO2LQ9aNyIgd+8iCVC7QF5/3XEyBcD3a0S2aHDbvJnPNxpY9ErMAKCieWIiJqj8/Td+//lnbj1Ra3DNm2es2VS9OieSrVppg+VbttS3mFJ78IAXaB88GN2tAEhwbdUQFQPsAdAqrAfxGUht/Hjr+2aMC3WK202fjp9vvIFSINZ+yzVr+L6GDcN51sRovRHqYtN6ZYXcDSJ5gwd7LiY4zRGq+Ph45ufnx1arlPb69+/P6urJIzPG6tSpw/r376+Yt3r1aubv788S9EqkM8ZiYmJYcHAw2yD8chERESx9+vQsV65crECBAqxjx47skrViW4yxuLg4Fh0d/aLduHHDLYSK1KXdUdpEAiG+aVesiGTDXSC1anpbv3/fOW+VRvpJ1IysU9RIZ0kEFRj28cHMNDX0yBS1BQusH8/fXzmQWlMJF/WD1C17dqVrgTKfxODmpCT+1gygrwdlth09ynWT1I0Gks6dOYG15fpo2VK7nxYtlNa75cv598hIrTXq1VeVVldbAf9mGxXLnjWL9ys5mbvSbMX8DRqk3J8RcZ82TXvs8HBzcUF61kAArBRAoRRiE1+mxMxQSjbIlSt1hV2I5aqoeRqffqrsz44d7u9DmtOhun//PiQnJ0OOHDkU83PkyAF37tzR3ebOnTu66yclJcH9+/d1txkyZAjkyZMHGjdu/GJe9erVYfHixfDHH3/AvHnz4M6dO1CzZk148OCBYX/HjRsHYWFhL1q+fPnMnqpDIN2bggXdcjgJ4LpJEyaghkvJku479uHD+FmlCn5myYIaQ44gMdG2ftW//1pfvncvQMOGAJUqcV2emTPxkzHUfPLxAVi3Duc9eYI6SCJ27gRo3hy/d+9ufKyvvgJYvx7g0SOcrlABYPhw4/V79eK6SAUKKPWZpkzh2ksAAD/8gJ/ffcf3f+IEwOPHqNt2+TLXILKGcuXws1Yt1KAqUwanZ8wwvl+2b8fPn37ielXVqmH/bt4EuHRJu039+vj5xht83qZNSg2rTp3492nTUJdJxP79AH//zadHjLByYlbw4Yf89wMAaNcO4OhRro23aRPAgwcAefPitKgZpUZcHMCPPyrnRUXpr3vxIv9eogTqeV27BnDqlO0+V6yonP7kE963ChWU9woAQNasABky4PdLl1BbCwDg1VcB0qfHPh49avu43oIaNZTT/v6e6YeIypWV06Qt541INYSK4EMqfP+BMaaZZ2t9vfkAABMnToRly5bB6tWrITg4+MX85s2bQ/v27aFs2bLQuHFj+O233wAA4Ef1P1zA0KFDITo6+kW7ISreuRBEqAoUcMvhXnokJwNERuL3119HMUR3Qk2onIHff0cyo8bcuQCDBxtvFxEB0KIFfv/6ayQEx44BdOgAcOiQkgDQ4Pb66zgIkXioiIoVtSRLD3FxAKVLAyxfjtM1a+LnsWP66+fKhX07fRrgn3/w92vYEJfdusXXs1gAhMcAZM6MJJAe8FWr4otLXJz1/vn6cjK2dy9AdDQn4YsW2T4/EfXq4T1XqxYO8LdvK5f374/EvlEjc/ubOxcgKUk7f9Qo/n3FCvv6SKhTB0kTiXc+fYr9fvaMk/7OnQHoXbNpU+35EBYu5CSeCOizZ0jSb95UriveZ1evomAlAJJfW1CLu0ZH8+9btgB8+qlyeebMAB99xKcPHMDP4GD+X/j1V9vH9RZky8YJLgAni54EifIS1L+3NyHVEKqsWbOCn5+fxhp19+5djRWKkDNnTt31/f39IUuWLIr5kydPhrFjx8KWLVugHL1OGiBDhgxQtmxZuGBFvjUoKAhCQ0MVzR2QFir34soVVGQODgYoXNj9x6e3X/VbnCM4e1Y53bYtwKBBqBw+frzSwiFixAiucEwDCwAOfKJqthp+fgCTJmnnh4TgsW1h4kSA8HA+8PfsiZYmtbWBkDMnwPTpAHfvorXHz49brERCdeuWdbJEA/eRI9b7V7asUkHcEYwZg1aD69eRoKjJTkAAnlvfvs45HgCqggOgtSZzZuUy9XHE3yt3bvxs3RqtNQB4PceNAxg9GqfPnOFkEwAtjSK6dkUSKZIW0Traty8Ssvr18T4DUFqo4uK4Er6ear0aLVogATxxAi2Z6mUtWyrJaubM3PoIwCsUAPCXgfnz0RKXWiAOjYmJaFH2JNTOHaoC4pVwiwPSSahWrRr78MMPFfNKlixpNSi9ZMmSinm9e/fWBKVPnDiRhYaGsv3795vqR1xcHMuTJw8bOXKk6b67Iyj9+XNevV6l/CDhIlCNskqV3H/sJ094XAGlejsDPXvy/YrZV3v26MfoAHBVbaohSW3RImW8kdkmZqjSPW2mdeyIgeTW1iEBQwCMb7l2jQt+Vq/OY5S2bsV5QUHGcUT//mu7T3rFkZ3VypdH7TOK01EHbjuz/fMPj9mjtmkTxg7RdP/+WAcQAOORKP1+717MeCO9J6qx6OurzRTs3x8lC+7ds69/69djYDvFZNF9RyLHRnITRiBdJmvt7Fll7cScOTHTmjG8jygztUQJlBlJDVBny96/7+keMda+Pe9PSIj7JRTSXFA6Y1w2YcGCBSwyMpINHDiQZciQgV39T71yyJAhrHPnzi/WJ9mEjz/+mEVGRrIFCxZoZBMmTJjAAgMD2apVqxSyCE+EPNtPP/2U7dixg12+fJkdOHCAtWrVioWEhLw4rhm4g1CR/kuGDM4pOSJhGxT83KWL+4994AB/iDsTYuabqKdlNKgMH86VxRMTlRpF0dHayvFm2pUr/LhGJE5sv/2Gwcjx8UpS16oVV1unJga5UjHnChX4vIED8bgzZuB069YoFUAlhext1jSbnNV+/hn7rCfh4YxGiufp0innJyVxwVVqNWrw7+osN7q35szhxCdnTu3xRo/mQqvWmphROHy4UnaDshcpgaJFC/v/C6tXazMZxfbwIT5rxXlitt/hw5xQp5bCyU+f8kxMAEyc8DRiYlCuha6lMIS7BWmSUDGGwp7h4eEsMDCQVapUie0Ucpy7du3K6qnEl3bs2MEqVqzIAgMDWYECBTTCnuHh4QwANC0iIuLFOh07dmS5cuViAQEBLHfu3Kxdu3bszJkzdvXbHYTq1Vf5g0XCPXjrLbzmVFPOnaABp0kT5+1TbYEgS+f58/oDSp062n0sWYIaQHv34vTw4drtxoxhbMUK/X02bKjcn56FR9RuUuutUaZrs2Z83rx5mF2orvln1BhjrF07/D5ypFIPx5UtXz6UObB3uzx5sM8p2RYAFdVJlFZsAQGob/XXX9q6g6SpHB+vLb8jNtEy06sXny/Waktp27aNE9a8ebl1jM5JXNea2r81GGVhAnAJEPU9unkz3/70aW6Zo9qGqQGkpfX9957uCceQIdin115z73HTLKFKrXAHoSpRAm82Uc1awrWoVAmvubt0pwixsbzExSefOG+/9BClwZRA8gHUPvkEH24PH9reJ5XjCQvjCtL//ovL9IrMkijqtWtK1W5qw4bhW7M4LzoaB75Ll7gVRV3L8OpVpevAWnv2jA/4Bw8qrV5Pn+LxmjRRbtOsGX7aY8mqXl07r0UL+4lFWBgSnv/9D6dJcsFMa9UK7ycqxSM2Hx+0zjGGVkOa/+67ymt77pz1Y5BkAQ2IRs2ae7dTJ62YqpHaPYBWYDQw0L7/AkGvvJDYYmKUCvDURJA0xcqVKeuDJ0Dk3N3kxRqocLWPD76wuatETpqTTZCwDQrufOUVz/bjZcLVq/jpziSA7dsxYPvbb3Ga0tAdRWKiMl2eUt4vXODyAYR338XgYjP3WkICfgYH41Dj68sDX5OTtevnzAlw/z5Aq1baLLigIMwmVEsN5MyJ8woXxiQBmicib16AHTvwe6ZM1vv8ySeY4ZU9OwbaU8YWAEDGjCh9sHUrn7dyJQDlxgiKKzaxYwde8w4d+LxNm8xvT4iOBvjlF55Rp3ddjTB6NAaeP3+unF+qFP5elD15/jxftn8/lwgAAChUCP8DefMC7N6N59WkCV/epw/u6+BB/T7kzInB9uqMw+LFecZy9eoYpJ4tG0CRIjjPWgZicrLyHkhIAIiJMV7fCH5+AB98YLx861atnIIar76Knx064L2dGvD66/i5fbt995MrUbgwZuQyhhmjX3/t6R6p4B5+J+FqC5XFwgNnU1P9qNSM6GjlW6q7ULq08k348GHH93n7tjZWhFzHpBDdvDnWPKtRgwfemoE67kaM+VKrdJNFqGFDfWvAhAl8W1ulZr79lq+bkMCFIcPC0CJD61mrAThzJmPHj9u28lgsvCSJUd/V7fPPef/27DFvUXJ2S0jg8WJi69sXP6tVQ1cVBe5T++47pWhlTIwydvPxY2W5oB07eIC4utWrx+v9iY3inzJnVpZ2SU7Wj70S2+DBjHXooJ2fkuDwpCS8RlOmYHC+GEifLp1+2R8qtMyY0r3dujVet/XruVvcG5GYiAr2AIwJldg8DlGY1sfHPceULj8vg6sJlViaw52D+8sMygLKksW9xxUHKR8fbfFbe5GYiLE76gGBFN9JWXzxYvv3feOGdr+lS/Pl5N767jtcNyKCu1HVzd9fa+K3NqCKJW5GjuTz27fHeWvWIGm8dMk4iy9XLm3QtbotW4b706t/Z9TWrFGei5Fb6d13GTtyBBX4ya0UFqavBm6rnTiBA7h6fsGCPF5MbKRsT02vTE/evNYL6VKmJABjc+fyennq1rq1dSKq53bSI0tiK1UK7yv1/KpVHf/PnDuHgfMFCljvw9q1uH5ysn6JKgDP18uzhvBw7GPNmrZLA7kLcXHcPZ05s3uOKQmVl8HVhIoGLj+/1FXqIDVj2TK85lWquPe4YkbaK684vr8tW7QP+WHD+PKCBXFeSt6m9errUbD4o0fcenX4MN631oLG8+fX7l+9jhhztXo1xnjt3KlcZ84c7X4uXlTWy7PVvvkG0+V/+w0H5+Rkbfq/urVpwy0ZU6dq+6AXX6QebA8e5OWFbBVVFtvcudqgcj0L34QJvPyKUbmf99/Xznv61PgeIMvnsGG8PqG61auHFiWavnhRmS343nva/ZohlcuX43rqoPFvvjHurz14+NC6hdPfHy2Az57h+nolkbzJ+qOG+Kz5+GO859ydYaeHmBjeLzNxnI5CxlC9ZBDjp6wIx0s4EdOn4yepbLsLovikWnwwJdAr+UHq0snJXJk4f377902K4CL698fPZcsw3ql0aSxRc+SIVlRUhKjgTFBr+m7YgHEqefKgAGO7digMSciQQVmWBQCP2bs3wOLF5s4JAJXpq1bF65QvH8bZ3LtnfZuBA7nAqV4sUZ8+2nlqQdBq1Xh5oe+/xzgSM+jaVflb1K4N8P77+uuRQO2dO1iaRg095e/vvzc+dqFC+Dl6NJYYCgwEeOst5To7d+J98fnnAGvXolCrWG6IREJFUDkeNXLnxt8dAJXXBwzQ/kedVb7klVcA/vzTuNxTUhIeO1s2/C3ffVe7jhV9aI+DYkQBAKZORWX9N9/E39GTCAnh94S1Z4a7IQlVGgERKrWSsYRrcOoUqoH7+AB8/LH7jvvkCR+4BwxIeZ01AFSU3r1bW6KlRAlOOv79F4PV/fywZIu9UJcS+eADHuw+fz5+1quHgxL1Q11PjKBHqEqXVk7fv4+ByteuYVkeCkIHwKBpCjQX0aYNHp8Cuo0g1jUjFfbPPjOvgt2gAQZWA2AJGsaUy/PlAyhaVDnPliq0mhzqoUULVP4Wa9k9faocLOn4OXLw3zkqCkmOqFIOoCzHQti2zfj4aqXrHDmUJJeQOzeW03n9dUw8qFSJL9O794wSQWrU4PfK3bt83wC8hqItdXt7kCMHT5JQK70DIHl7/hyD1wsW1CYtNGigvRe8Bd266c+nOpOeBN0fYlUGT0MSqjQCmeHnPsTH83ITVatqs8lcCbIm5ciB1oOU1g5MTMTBu25dZSZdVBS+8VENr+vX8TNPHiRV9oKsad9+ixag777D6WPHeNmcWbOwjhvVCaxZU7+GX+nSSCabNEEiO3IkZpsB4HkQfHyQ/Kjr2eXPrz2HxERlqRJraNUK+/rTT/iGDIDWFGt47z38pExMsuTcuKE/qO/diwWjyTpja+AigmANmzahZUu0jty8ieV5RFA9yDx5+Do+PrxAsDX8+afxMrVlM106LFGjJkkHDvBsurFjlZmcehYgcb+ixatRI06aiVDRvshKd/06/pbOAl27w4cBvvxSf51r1/Bz0yYkWAMH8mV6ha69AaNH4/NBTfT1an26G2SdFV+aPA1JqNII6A+p9xYv4VyIDxNn1kwzgzNn8FNtmbEXf/yhP19NDul4lKZuL8hdWLYsFsINCMDpBQu069JLQenS+m6lyZNxoKTBe8QIdBnmymXdUjd2LLqHZs5UzrdYtP+X6tX5AzpPHmXR5saNAT78EIlJVBTKRtgCpfxXq4aWLLHWmzigErJlQxcZEdHff7duvVBbfwgNGljv1/37aJ0UQVYc6vPVq0hyvvnG+r4AUJJAr8gyABJksswB4O+QJw+e45IlfP6rr/J6fABYN5JAtRZFBAby7wULYp3Dli0BunTREiq97T/6CItjOwNkVZ0+3fja08tQQACSStGyreca9wakT48vBVTkevZsnO8N/aVC1hs2eFF9P9eHc0kw5vqgdAoU/eorl+xe4j9YLJhxZRQo60w8faqVwCAJg759Hdv3mDHa4NiyZbXrkbL1oEH2H2PdOr7v8+f5/MRE66rjzZubD7YGQJXu27eNlxtJPIgK2BUqYKAyBQg/eIDNYsE6hdmz8/I6Fy4YB1erW+bMPAhaTPem9vXX2jJR6nX+/huz4PTKG+ll55GMhl5/smXj4qrqRuK0p0/bPq8tWzDTrVo1Pq9HD+OSV4mJGGiuxoULxscoUwZLyWzZor9PxvC+zJsXf38Ra9fiPqpV48fXO8bGjZhheeSIY1lsYskbEnwNDkbx3aAgnNZLXuncGZcFBnp3th9h3z7sb+7cnu4Jgq61KJHiCsgsPy+DqwkVKS6LqeISzoc4cIskwRWgLKfq1VE3iTGeWj53rmP7prqPYnvzTb48MRGPSX1Yvtz+Y4jZYJTlxBiSFnsIk602bx5m2tG0Wk/LSE15xAi+zuXL2uUJCah9FB+v7P/48fb38fRp4+3eeIP30WLRLqcKCABcYf7hQ1RvJ50gsQUFoWK6Xg3BpCTG3n5bO1/8fdUq9OpWvDhft08fbV/tQXy89WOZIRl6Wc008IeF8QxEsSwNta++QvkDAMa++MK+vqtRpQruh8rMAKBUxcGD+F0vS3X+fL7u8eOOHd8dELX3XFj0wzS++AL78sEHrj2OzPJ7yUDBv+5U7H4ZQXEQegHEzsTIkTzY8uBBbBYLxmgA6Lsw7IFeRlpYGP9epw7eSydO4HRKzpUy1Hr3RtcBwWwQtzWIcSplyqAKO7kTIyKU60ZFabcXA/pr1ND+b+Li0E0YFoZuP7H/1tS5CW3b8u/VquG+7tzRX3fNGoz5euUVgGbNtMvFLMwzZ/AeyJwZg82Tk1HJvWZNvk58PLpn9NStfX35dRKxZAlXER82zPq5ifFM6izDc+fw+GYhuu0AtMHqly5hYHz79sYuRb2s5goV0IUZHQ2wejXOo8w/EdOm8fMdO9Z8v/Xw9994PUQF+QMHlO5HxpTbdOvGXa1qF6w3IjQU/2sAAA8ferYvADyGkEITPA1JqNIInj7FTwqWlXANiFCFh7vuGImJ2pig+vUx9iQmBh9ojsZQEaES4zjSpwdo3RpjWQ4cQAJAZVzsJep37vDSLB07KpeltPRGSAjGyFy8iNeDUKoUDqpUTubxY2WpELX0wL17vGwPgLJECuH0aR6srh7oKJjeGtat499XrcL+GREqwuPHAFu2WF9n3jwuvUDYtk0/C+7RI4CFC5VxSZ066ccNbdzISaBR6Zuvv0YyJQZzkyQClRICsP/3FeUq1MHOX3wBMGMGkqJ9+7TlcYyQLh1PbKCXgvTpMe5NvOfVpWjsIYNq+PgADB+unHf+PMbFASBJp+c0wdeX36uHDqX82O4EJT5RzKMnQfcfJc94GpJQpRHQHzVjRs/2I63DHYRKTUAIpN9UsaK+lcEeEKESs4tmzMCBVS8N2d7s0Tlz+Hf1tdIbcK1lXFHg9dCh2L/ChZFQvf02wKef4lszACdUc+fywGoA7cNWLeVAWWxJSRjYfPAgwOXLfLlIhCjI3gzGjMGgcosFrUhUE69yZfP7UGPZMq2VQ52GT1l6AKg1JQ7UK1YY19PbscO6ht2wYWjxEcksHUuUUvj0U+N96OGdd4yXiUH89erh882a5pUIyqwUA6iHDNFmN4pYuNDcvo1A2b+EK1cwY5ayZilIXkSFCvi5eDHKlHg7xBcXT4Ose1FRSsugpyAJVRpAQgJaNQAkoXI13EGorlzh30+e1Kadi/o8KYHFwq02ero5aqgtImYgZhGK5AZAP4OvXj39gS5jRhwQ169XWhb8/dGtNXkyn0eD1nffAWzezOerCZVYADpvXj5ATJ2KpKFGDSWhmjWLE1Az1ilC0aLowouIUGYhDR+OblBrILeKGRw/riRRAQFKwr1mjX5xX7Egsxn4+CAZFK9tzpxoZRHdcb/8Yt9+fX1RNsMMGAOYONHcuiSV8McfaMXMm5dbAH/8UX8bPSFTe5Azp7LwNr2wkNtPz/1MmmYA5tzJnga9XHkDoaKs5KQk7yg6LQlVGoCoWisJlWvhDkJFD4YDB/Atm7SWCI4ee8MGPIYYM0UgPR3C2LH2a85cvMitXJs2Ka0ejOkPGnnyaAU3AXBwCg1FV6QtkiEeZ+9e/l1863/+HLV1CKK7T3SzDh2q3Hf27AB//cVj2MzgnXdQW0sda3L5MhIIa6ne9sqfiC7MDBmUcU5LlujLe6xcad8xANCFRcKsAEjc1Gr1APiSZw/Effzvf9bXvXLFnGtO/J+cPYsyDUuX4nSXLrzSgYjz5/Xnm4WPj9Idf/IkvrxQ5QE9Nfz8+fn56xEubwMRRm9w+QUE8OeG2vLsCUhClQZA7r7gYKWas4Tz4WpClZTEHwxkmcqdG0kQQa8Mhz2ggVTPtSgOJhMmILGwx1oCoCSA6pIfetpLAEia9Nxp4tu+LXTqxL+LAdlEqB4/xuOIFqugILTudupkOz6nUSOMIzKLxES0pojWLgB0MbZrZ71sjFmxUT2oz+PBA60rylGIbj2KYyHXKwBXYb9wAV2JajelGqKFTfwd9cCYueoEenFlYjwdudDVGDQI451SCnI1AmBfd+/mSQOnTum7/agvtuLsvAH0nzRrKXQ16N6RhErCKZDxU+5BbCwP6HVVht/Vq+iSE9+8ALiIHYDjpJncEOJbfunSGAdTowbG3TRsyFW+7UVkJH726aNUco+NVVpSCKTUPmQIn0ekzx5CNWiQsv4bgQawQ4e0mW9z5uBvaa+byh4YZSC5qh7anTuOBVfroWVL5fSUKTxmhcrfhIVx9y65Rlu2RKFLUY1fD0Tuc+dGRXo9wlSsGP8+e7Ztl5Pe/0Tt/qUg8qpV8d4ICkLrmiNBzv36Kaf/+UdZc/Ovv7TbkIUqNcRQEXG2J57QlaAXTEmoJJwCSajcg7//RqtDrlyuk6fYtQs/q1VTlkkJCMDgVT8/x4sx04NQjCM5fRoflL6+qGK+bZu+C84W4uJ4gLm6eK2RXMLt29oizxSDZQ+hAuCFfUXQW7+RHABZHdMKKDPTDPz9jZMgROjV3iPF+l698L65cYNbwt5+G18CqPDvmjXW91+hArqJd+9Gt5meOrta9kBdg1IPhw9jqSAi+TduKIOX6aXh8GEkvvSiJMYx2otSpZQvDmfO4H+pSxecVtdQBODWNG8hKdZA7vBnzxyz5DkLklBJOBU0UIkmdwnnIikJC+ECoEaTtWwoR0CWGb1A8P378Q2W0rDtxaxZ+Cbsyof2N9/wVHS1tIPRIPXllygHIIIKJ9ubXaiOAQPAAa1tW2UwujdhzBjMTPQEsmbF7MP337e+nhj8T6AYsIwZsaA2gLL2oCgBsXEjkrLx45Hg6LkAq1fn7kMfH2VZGgBtQoAZQlW5MpYKKloUX0YSEpRutUKFsBgzY/giQa58tdSGvRAJKMXziUWn1aD/ytmzzrcuOhv58nFdNm+QKyCX39mznu0HAIBUSncTXKmUPnkyqsW2a+f0XUv8h+3buULw2rWuOca2bfwYM2c6d9///musRt2+vfOOI+5XvNVtKWIbtX377Du+xcLYyJFYjuboUcZy5dLus3JlxsaNs349UtLX1NgCAvC6JSVhaZ3z55XLO3Uy3vbdd/l1f/NN+467bJm539Pfn29TsiRjzZop97N/v/l7I39+/Xtq2TK+v7fews/Ro83vVw/37in7+fQpY9Om8ekHD5TrWyyMhYbisshIx47tDlD5rVWrPN0Txvbuxb5kyqSvmu8MSKX0lwiUhu7swFMJDrKu5MihVMF2JsTsM3rjdxasvXGLx3UEot7RnDlKi+myZfbvr1s3FBm1Bz4+AF99BfDDD5iOri72DICB5d27KwOhRRgFztuDrl0d34c7QAHUfn5o+VQXW1661Nj1u2QJz+ZTu3dtwaw8wP37vFh1VBQ+68RszDZtzB+TrE9qF68o60H9EgszpwTq8It//1Wq2dM5EXx8uOsqNcRRUTHotWs92g0A4LITjx97Xr1dEqo0ABKus+fhImEfyLTtymssBtHSA8tZsEaoihRxzjFEEUbSACIYSQRYc50alRqxB3ru0bx5cb6YjSWiaVP7Y7fUSAmBFDF+vH48mLOhFuEUMzoHD8bYKHV8m4hRo/CTZAHM4sgRc+uFhfEXxcePsT89evDleiWUjGBEqPRI99OnaEtKKYKClDGQd+9i4Dvdj3qaSdSP1JDp9/rr+KknAuxupEvHXwT0Av7dCUmoUjmio3m2kJgFI+Fc0ANQT3PHWSBdl0mTlLXjnIHz542XOZo1mJSEAxulUdeuDVC3rnIdo4wsa4OWM+5ndSmmDh2w/ldUlFKgUkRsrOOihXo6TK1amd9+8GDHpBPMQk+odPlyjBMkS52YYUqq3gTSKNOLXXvtNWNL6/Xr5oUYM2Xi92jTplotML2ahXqgFwd11qWRpdKRmpM+Psp+kXRG69b4qUcEUxOhomt586ZjxNNZaNQIP61pu7kDklClcpDl4ZVXuFK0hPNBA6yjlgtroN/S0Sw+PYglZkS89ZZj+7VYULlddAvpSRDoae/YKvBMJWEcwbvv8u8ZMqBLx8dHqeTuLqRLp5w2KgEDgKKgYs09ey1AZvHNN5iptXMnv8c7dsRsUxrga9RAN3fRohh0LrrciBQVK4b1C0VX5+jRGChslEShrgBgBB8fbq3cvRutI6LKu1niQ64hNaEKCOCCnwD8pcmZQc7kDqdroUeoyKI1aJDzjusqEAmNi3NOsXNHQRYq6fKTcAg0CKtjHyScC1cTqidPeOyEK35L0eIikgyzddGMEBWFYoUi9FwoGzdq5xllG5YvjwOQM6x05JoAwGw6QmCgdl0xQy2lsGYJVCuTV6tmfA1+/llp3aEMU4IzCdb48Vifj97y1fDzw1iZf/7B+1/UpDp3jlso2rTB2DVC1apoqdu6FUnCw4dY25AQG2v9ellD/foAmTPjd7VwqhHov6suUAzACykDcO20unWdZ30hS2DWrPipZ52jAtNURsybERTEX6IczYh0BuhekIRKwiG4wxUlwd/CXEWoaDDPlo0/dJ0JkjIAUD50HD2fbt2083xVTxUjl4xYZJfwzjuYDq/nQkoJxMFJJJLqgXz5cv3+2At7JCliYnBgsmapIqjj3ETrlaMYORI/jx61rkBO8W7q5Bc1oRaLNZcsiS8IEyagFb1ZM4AvvuDLixdPmYtr/35+H5u1spIFX08RPzCQn59YUsVZ5VVu3cJPaxaqAQP4d2+XTgDgL36SUHFIQpXKQQ8H6e5zHe7d4+VUnBXArQa9Zdev7xqNq+ho/n3TJuftd+tW5bReXJKeRQBAqzE1ejRmjjnz/EXLHNUuZIyTCAB0W5oRtzQD0royk3FbrBgOsC1bamPORGTKhHFf7oCZ4sCBgajvRFBrWInus8uXteV6KJCdkJJrL2pUmR3Q6Rn57Jl2mY8Pd8mKdSDV2Xj2QCwtRNZna4SqYEFulRUzZr0VVG9SEioOSahSOejh4OwgZgkOsWyGs+UMCKSe7CoFdmdaNERQHNRXXyFREQOYCUYlVkhFm+CKDErKgM2cmQc2f/ihcp2UEriNG1FOQxSwnDIFP2vX5sc2Ag2y9+9r46tEPH6ccjHXlMCMm0t0S6stkNmzKwsoq608fn7K8921y3YZngMH0H1rjXjagjVCBcD75OvLn6eOJAaQOC0AvlScP2/d5efjw/tYp45zslxdCXL5eZrEAEhCJeEkSAuV60Fkx99fWZvOFccQNXGcCb0HzezZju+XXGrW9KL0SkIcPMjdIAAAU6cayxg4AgrwFwdRMW6M3rIJZslVv35oWSpQQGmBo+D7woVR/dpsWrknguSNYIsIAihdvXryDmKSgh5ZUhf4tlXloXp1LF9DVkY1zFh06BmZkKBPVohExcZyOQmz8Vl6ULvuW7dWWqj0iKuosO6qlyBngQioPaWOXAVJqCScAhooJKFyHWiAcYbgoxEo9sbVyQW1anFS2KKF4/ujwVItTyCC6qiJyJVLOdDWqeN4X9QQLSdiTIoYKyVeg5gY80HIYpyQ3qBLkg/Vq5tzo3kTzMSviZZUvYFfLHS9erV2uZ4L08hyJMIovpBc8tYgWvH14qhEgkAlcL7/PuWkKksWXm4GAK1SRKji4vT7ICYfeJoc2II3EqroaPMyGq6AJFSpHPSnlC4/14EICGXhuAIU42Rv7TozEB8wBQpwcuGMYtpmCJWe2yQkRDmAuiLYX2/AYkwZFyMOBkbWDz2I7km9tHFRr0mdteWIMn3t2inf1iz0NLTUEIm/nkWrRAmlaKgYwweA1tEmTZTSGceP2z7umDHK+C2CGcuuKLapR95EgiBa3cSYMHvg46O0gEZH44svPU/04qiqV+d1/cz8Dp6ENxEqem4ypr3X3AlJqFI5pMvP9aCK6lSJ3hWgh4ArClyLGX4iKXQXodLLlMqYUTlguOL+FQdNinNS62F16WL/fseOVU6L1xcAyYQoFvn558rvohq5vdi13f7X76++QpcqAMYgLVyY8uMT1ORTT2esb1/+Xa2DlisX/iZiwWozAeC5cmmFPQH4f9QafHz4i6ctC5V4furf1x6IIQLJyehqJCubkX5TQAB+ert8gugi9TQCAvgzyJOWvVRHqGbNmgUFCxaE4OBgqFy5Muzevdvq+jt37oTKlStDcHAwFCpUCObMmaNZ59dff4VSpUpBUFAQlCpVCtasWePwcd0FGZTuetADw1rgsKOgh7YrCJX4xkbnEBCgr8VkDywWfm2sESK16ni6dBiPJsYeueL+pf1nzIjWEABtPA+JPdoDtSYUXd8vv0Rr3NmzxrFY48YZK7TbwhAYBz4FC8D6IftMrX/qFIpYjhyJ7mqLBQU8u3XTv96ia85WHJX6/PQIlWg1+vFH2/1Vx1XZAzOECsAcoXr+XFk6yREXkjrmMjmZzzOyQBGh8vagdG+yUAFwt58nhUZTFaH65ZdfYODAgfDll1/CsWPHoE6dOtC8eXO4ToXWVLhy5Qq0aNEC6tSpA8eOHYMvvvgC+vfvD79SNWEA2L9/P3Ts2BE6d+4MJ06cgM6dO8Nbb70FBwVxGHuP605Il5/rQQ8MRywL1hAfz91w9ridzEIkNPQwd8bbrzggWAvWVxMqPWuWKy1UoiVOPZDae9zHj/mAR6AU/nz5rNffy50bXU6imrioOi5i+Sdacaqx8AXArVvQekJtKJ7bRlocAPz0k7JosUiC9LIGGzTg38UMNTOwRWjMZMeq5ResQaznB2B+UDdroQoIQMuePfvWg/qlJTnZNmFKLRYqkYB6A6g/ntTwSlWEasqUKdC9e3fo0aMHlCxZEqZNmwb58uWD2QbpSnPmzIH8+fPDtGnToGTJktCjRw94//33YfLkyS/WmTZtGjRp0gSGDh0KJUqUgKFDh0KjRo1gmhBJau9x3Ql6exILcUo4F662UIkuBWuus5RCjE0RNXYchfjgskY21Q/cu3e1b/2uuH/1EjbUg6M9WZt37lgnvEaZeuTioeWiVYwGbTU6rnhTMy8awl5Ezbd/8sOL+W+9pW8hotqKelAXCAZQ/p5NmxpvS6hWTeibQdwKySc4+79DNfEIzrRQ0T1CArWOFkkWkZTE5TuMCFNqI1TeYqEieLK2YKohVAkJCXDkyBFoqvqnN23aFPbt0zeB79+/X7P+a6+9BocPH4bE/+5Wo3Vonyk5LgBAfHw8xMTEKJor4Iw/vYR1uJq0isrirvgdxcwo0ZXhKMQB2Jr7UO9N3B2DhcWCn+L1FQfSTz5RWm3EwU/vt7ZloTSKsVNbkUuXxtIyO3bov03nzBwPcPMmNIPfFfNfgcf4hTEY/aQ/FM37HIYMwdqJehYne92ZCQk84NuMfETbtvy7WlOMQOTBjPvKnpcJdfyfWUJFv6EeCVATBLoGziRUycm2r4ktwuUt8KYYKgDXCCLbi1RDqO7fvw/JycmQQ1VjJUeOHHDHoHbBnTt3dNdPSkqC+/8pqxmtQ/tMyXEBAMaNGwdhYWEvWj4X5cPTTUSDh4Tz4eqYBvHt3RUPJ3HwoWw6Sgt3BGYfYOrrlju3e+JD9N70xT6ryaXYJ73CvUaaUkTYRDFLEUSoaNA/cwYLDterp70OdesCnBqLhQ+nwwAwgg8AnJ+4DsaN4/PUKv7WZD70yEtSEpdAMDOY79rFvxuFlJqxtlBtQDPq8gS1q9YsoSJypC6PBKAlCM4gVHouv7RiofIGAqMHaaGyAz6qX5Expplna331fDP7tPe4Q4cOhejo6Bfthov0+enBIAmV6+DqN0bR8mF2YLAHYswPxT05Q6tFHCyspXirj5WQoI1DcgX0BibRWqd2+4j91CN8Rn0mQVJbsRvTpqEWUZkySGgZ01owNmwAyFocUzGLgYHZhyCKHIFWcsPoXoqJ0RfbTJeOB/KbKU8kujiNrHf0XLI2+P72G37a445Oacwo/a7WrM3UZ2cMzHoWKuoDPVfUoON6K2Eh0P/K6DzcDW+4XqmGUGXNmhX8/Pw0VqG7d+9qrEeEnDlz6q7v7+8PWf7LHzdah/aZkuMCAAQFBUFoaKiiuQKSULkerrZQ+fpycuIKC5X4wKMB0xmEShwsrJEJ9Vv6kydacuKKt0o6b1GRXXSNWfPC65Fnkh4wOo4tMrxzJ8C5c3z62jXlb1Onzn9ZnnXqAOTNCwwMRggfH4yAV6mhqtXCjbLmVqzQn58zJ//eqJH+OkaoWVN/Pt1v1tx59Gi0R8JC/duZTS6wRmYo3Z6yxYh0OvLoVj+XM2SwLXWTWsSa6Vq64+XIDLwh7CXVEKrAwECoXLkybFVVY926dSvUNPg3v/rqq5r1t2zZAlWqVIGA/+4Co3Vonyk5rjvhDLO0hHW4wwTvygBPcfCgh7WzLVTWCJXa8hAfrz3+9u2O90cN8feigY0GSwCA4cNxENcjQnrkeeNG/eMcOYKfCxZY70/NmgBCgjF06aJ8q37hNvPzA5g+HfZCLdCANpg2TWNmKV5cuSoJRKqxfLlxHynovnx543X0IJaiESFKVxiByJG60LY1qIPwzZIP6o+ehYvS7UmrjbJTHRGdFYP1qVafLcJEffR2QkX/L29JiKL/sauysc0g1RAqAIBPPvkE5s+fDwsXLoSzZ8/Cxx9/DNevX4fevXsDALrZugivOb1794Zr167BJ598AmfPnoWFCxfCggUL4DNBSGbAgAGwZcsWmDBhApw7dw4mTJgAf/75JwwUAhBsHdeTIAuVJ+X20zrsCaxNKVxJqMQ3SHqYO+NcfH35tbFX1VnUoAIAGDzY8f6oQeVfALgqtfpt+qefuNClqH5ulLWmV5eQsGGD/vyPP8bPH35QqmPv3q20tCji2tq1g1HlVyn28zdURentVasA2rXTHEddAsao0Pa2bdp5Yf8lEJrVQzt/XjmtF5MEYI5QEfr3t70OQS0Wa4Z8MAZASjdirUECWaicSahEyZDQULxOtqRuKCvX2wkVvUR5ksCI8AZC5SXeT3Po2LEjPHjwAEaNGgVRUVFQpkwZ2LRpE4SHhwMAQFRUlEIbqmDBgrBp0yb4+OOPYebMmZA7d2749ttvoX379i/WqVmzJixfvhyGDRsGw4cPh8KFC8Mvv/wC1atXN31cT8Ja1oqEc+BOC5UrYqjEoHcqwvzwIVptjAZCsyBiFh2tVAe3BXUMj576taMQB/FXXzWuyUalcUS3lNFv3bYtuv7EEjCZMmm1tkSIFkJ1GROxruD9+8q0+q0neEhBRLtTULXfJHTzpdAk8PSpfrkTADyHp0+5pdsWoaL7CMB6uSRbhEp8EXz9devHFKG+3mZCHihWC0A/K/K/PCWXWahCQ22TVjGuz0VRIk5DVJSne6CENxAqYHZi2LBhLCkpSTP/8ePHrFOnTvbu7qVBdHQ0AwAWHR3t1P327csYAGNffunU3UoIqFsXr/GKFa47RqlSeIxt25y/7ydPcN/UfHzw884dx/dN+4yIMF5nxw7l8QEY+/lnxgYOVM5zBfT2r+4LAGPbtzP20Uf6y/SaiNGjrZ/DDz+Y32/r1tp+Zsli+zwtFuV+goOVy+fNs37cfPkYGzmST1ss2K5fx0815szh686cyVj//oy1a6ddN2tWXOf0af1+r13L92PP/ThsmLL/mzbZ3mb+fOX5iUhMZMzXF5fdvo3zqlTB6Y0bzfdLjWzZ+DHLlGEsOppPx8Zq179wgS9PSEj5cd2BEiWwnyEhnu4JIjgY+3P1qvP3bXb8tvv9dPHixVCrVi24JBRn2rFjB5QtWxauiq8tEm4BvcW4SOZKArjp3ZVFN+kt2JqlI6VQWwcol0IM1nYUGzcax/HVq6edt3ChJkkNfHwAFi92Xp8A9FPx//1XO69BA7RimYX4qHtT0ODUs5TYE2y9YQPA0aNKl2yZMrYt0OpzGj5cOd2zp/Xtb9wAiIjg0z4+AN98g/IRYqFnAJSPEKMdunUD+PZbLF1z9qxyXVsWKtF1Z09hcDEWDQDgtddsb0Pu7jff1GaE3b6Nv11gIP9/OGqhUlsEQ0P5PoOC9C0pFBtWqJD3BHsbgcYe0crqKTDmHRYquwnVyZMnoUCBAlChQgWYN28efP7559C0aVN47733YM+ePa7oo4QVkJtCLw1awjmgWBQjl5EzQG4Gcju4EpT9ZS0eyCyaNcPPI0cwRsgs/vxTq5sEgGVZnBkPKAaS036zZ8dQJDVUSXNWIcYniQOfnlaVj4+5wr+EypUBvvuOT+/cCdCvn36cGmNYW1B9PkOG8O8puZ4tW/KizidPcmLEmJZ4inpUYh21xEQ+yBm5r+ic8uUzX1syPl5J3Nq2Nee6pnPQU7sn5fh8+fi+iOyltByUWo0+LMw2SSNirBfj5W2g50iLFp7tB4AyVMKVNVdtwW5CFRYWBsuXL4f+/ftDr169YPr06fD777/DqFGjwM9bwv1fItCDShIq14Hqs40bZxyD4ihIH8lVhEp8g6dYJ7U1ISUQs/vef9/YUiqqahOM6t79+afj/SKIA5O/Py/1oqezmz+/kij17Wt932SNEosA79+vv66elc4a1BlvCxagVePnn5Xz9+5FS5JImg4eVBIMCrbWg5HlSq1DRc8XvRI3Qkiqoh6fmZJKRFrEOoK2oP6PqK+JEaiamJ5kAoXekqCrxcL7Ri879kJd6jUwkPddzDYVQdfXiiKP14DuCVeUy7IXROT9/T3bnxSFpM6YMQOmTp0Kb7/9NhQqVAj69+8PJ06ccHbfJEyAbh7p8nMdxIHfTI2zlMDVhEpMoadBY9AgxwPt1ZaBK1f012vcWDvPSCdp+HDunnEUamHFr7/GT7KsEapWxc9Bg/g8W8UN6tRBC4uvLydqRrX51LBVCNhIWPOdd9Di9e+/6GbTs6qJelKXLgEcO2Z8HLNiiDdu4KD1u7IaDgQHK3+rixe5lY5c5OnSGYs/qrWfzEB0vTdsaF7kk7bTe1aqCVVMjL7Uhj34+2/ldHIyD+RWu7sJqclC5U2Eil50s2b1rMCn3YSqefPmMGLECFi8eDEsXboUjh07BnXr1oUaNWrARGvVOCVcAmmhcj1E64KjWXFGcDWhEsmBmHF/9Khj+1UPlERY1ChTRjvvt98ATp3Szj90CKBTJ8f6JUJNgvUyEg8dQpIjxvEcOgQwdKjxfvftQ8LWogWXInj+XJvSrwfRqpUS5MwJMMCgMg2dw/r16Fa1Fl80d66541WvjveoWm9KLyuVMiBv3sRPI/IAABAZqeyzLTAGMGECn9Zz3RqB3Gx6Vjlyz1Hi9v/+h5/p09tXQFvE7NnK6VGjOKESSa8IKqhhz3l5Ct5EqOi5qZe96U7YPTwkJSXBqVOn4M3/IjHTpUsHs2fPhlWrVsFUIylhCZdBBqW7HpkycXeBWLrEmaAHgatcimJtuoYN+ffu3R3bb6tWyml1sDBBT2SyWzcs26InImkkopkS/PEHWhvoGv/1l/4xFy1SimOuWgUwdqzx4Ef4/Xd0vdF6w4frJzBUqoSfVapgzT5X4cYNJA16blZX4cMP+XdyP1LgvpEe1qFD/HcuUcLccaZNUyYumCViSUncnaZneSRXbf78+B8kS5y6PJFZ3L+vTBTInx+LVW/ejNNGJJOse16gyGMT3kioXPV8Ngu7CVWePHng7NmzL2riEVq2bAmn9F43JVwKGZTuHpDoohnrQ0rgakIlPqDFTLQzZxzb70cfAaxcqXyQkWVChLU3R7JSqDF5smN9E+Hjg1YWAOyf0UCsvv6MmR/cqHDCzJno4ly8WHktli3DgsWbN6OrzlU10Nq0AZg/3zX71kP69BjHJWb+3b3LY+GMCJVowTGTKXb1KsAnnyjnmc3Aa9KEf1cPulu3YuA9ABIfKzXvTUP9HyAyTQH8ev8Hi4X/H2vpiOR7E54/5wQ1pS5RZ4L6kuoI1aNHj6Bly5aQN29e+PTTT+E4yboC1r2TcC/I137njvdXJ0/NoAE4tRIq0UJ19y7AlCl82hE3o48PpqGTOCaA7dgjNYzu288/tx5QbS/IghQdrRyIRWuV2j14/75xrJca773Hvx8+jBmLIlEoVgxFQbNkQdexWq3eHnkFaxAUbVIMchO+9RbABx9YX7dXL4yTmj2bu1LbtEEVegCAUqX0txOtgWZihtS1CgHMEyoxy1KdtSdmVPr5WXfzmoU6g7ZxY4y3o3tdR+genj3j0iNm7zlP4fRpPJ8cOYwJsztBFkZr7mV3wG5CtW7dOrhz5w5ERETAkSNHoHLlylCqVCkYO3as1KHyAPLlQ7dfYqK2HISE8+BOQuWKuoziu86KFVgOhaxuzsgnUQ9SeueQktKXwvuaw6A+Pn6s7O/ChcZZeNmzK92PI0cqdadE6Ol6XbqkzfyzWAB69NCumy2bvm6WJ9C5M36uXYtEyZrFq0oV/p3I9MGDfJ5RJiFliFojbIwhOXv9dRzErR3b2j5EqIOWxd+nUSOlojpdB3uhtrrmzcvvj+BgfckQCtvw8/Ns6r8ZEGEMD/dsEDgAvpj88gt+T3UxVAAAmTJlgg8++AB27NgB165dg27dusFPP/0ERfTuEgmXwseHuyS8rRRAWoJIqMyUubAX9CCIjdXWuXMGxIfe6NH4SYNf48baOnApgUg0OnbUWmCmTze/L8qsdKaYKlkzFixAokPxh5UrKwOd1RAtaCVKKGsEihDjiETMmaOcXrpUv5DyN99w15OnQS6qhAQk3xRDqAfR5SNaQgGQRBiJepqJwfn3XxQ7XbcOg7oBuCXPz8+cGKsYB6UnR2DNKjxrlu3960H9khIWxt2AefPqkxAiVGFhnicptmArW9GdEC2XomvXE3AoZykxMREOHz4MBw8ehKtXr0KO1CCekQbh6gwxCU6oLBbXxKtlzMhdUtbS3J2Be/fwDVp0K5QoATBsmGP7nTePf1+5UqulVKUKWgDMgNxW7drhoOmMYs5kkXv8GM9XHGhr1AB44w3b+xg5kruyzGLxYoALF/D76tWcGHgzRKmQb79VWodatVKKOYqSGKK7t0IFY9fV6tU8Rs4aodJ7ptELTa5c5soaioRJTWRFIVI1Mmc2V9RZD2prZaZMtjP4KAbN28kUAL+fvcE1+e23+PnmmzxO0lNIEaHavn079OzZE3LkyAFdu3aFkJAQ2LBhA9ygO0bCrZCEyvVIl46nT7vC7efjw11irigUDKBU9C5bVhvAOWaMY9Y3dTyLnnBotWr4aY+Q44EDznFnv/22crpiReV0//7oHrJmlYiM5AOjPShWDGOn2rdXxpt5I2rVQhFKMbaIULMmwJo13E3299/K4HrRQqWnPUYQSaW1DD896xG5a82WPKH4qYoVUQFehFrZPnt2Hs81aZK5/etB7S1QW6jUYIwHrFsjed4AxvAeADD/guTKvqxdi99J6sKTsJtQ5c2bF1q0aAH37t2D77//Hv79919YtGgRNG7cGHxdJdIjYRWk5OuqgGYJBAXciqU2nImiRfFTFMdMSHDeACym6lss+uKZzqzvpyfySQPu9u327Utt7UoJfHwARKm8Fi0AfvyRT1NWmp7EgzPgzAB7VyFzZix1A6CvX7VmDWqHPXqENS7Vdf7EGLAaNTDjcfBgpaJ+YiK/p997D6BDB+P+6D3TZs7ET7Pq8/R/VYu5AihV+S0WdDHevg1w7pxWc8seqIPSc+XiL2J6uVviS9qMGSk/rjvwzz+YcZkuHUDz5p7ty507qIXm66uVcPEE7GZAX331Fdy+fRvWrl0LHTp0gGBPViKUAAD+xiNzAlyL1q3xc8wY1+yfsmXmz0crSEICZroVLYruMkeD1dWB4w0a4KA0dCgnc2TKTynEArt6MX0pdREMHIiByY7is8/497NnMR5nyRKc3rABP53lxqhUCYlEr17O2Z+rcP483gNVqiDRITeaWn8rIADPh+KrGjXSFvCtVw/FXT/7DO/nvn2RxFLQMAAmATx7hnGDc+YYi+UmJ2MsnhHonrWGR494aZoaNbTLRdkQcrX5+WEGYkpdb8+eKXUB167FQHSKB9SrDbhqFf/+0UcpO667QGSxQAHzKvWuAo15+fJ5RzFpuwnVBx98AK/YUxZcwuWgIFmZ5eda9O+PnxcuOLeAL6FyZfyMi0NRxgwZeHzAkSOOZ7yp34wfP0Z3yNixziNUw4bxtHNnEioADEx+8iTlxPLpU2WqPg2mZcviJ+kPOYNQffgh/maMYayQPS5OEaNHW1c6dwRRUXjORYviPXDokFKfK2NGpdsvMVHpqtOzEPn44D0waZKyfA4FDt+/j8H3AABffGFdhXzfPuv9p9/NGvbuRRKYIYP+dXRGPUs11Pc9WYaJZOkVil63Dj9LlvT+GCqyGno6ow6Akzt15QNPQfro0gCIUHl7bEZqR/78+LBjzDVxDlWqcAvKsWPaQGxHszjVejF79vDvziJU/v5coTsyErMWRThaciU0FC0a4hu9WTRpojy/M2cw+J1igO7fR6KcPn3KC+ISZs9Gi2a1ahgMn5JB8o03AL780jWEavt2tEDZyiP66CNuhQgPVz5jbKmbHznCv//+O74oVKjAfwOjuphHjqDb1aiMEQC65MwIStLgX7euPnnTE6F1FOL/9JVXOEklC5UeoSKZhXHjnN8fZ4NENL2h3iCp0XtLPpwkVGkAZJp/8MA1lhMJhL8/H2jFshLOhDVNHnqQpRRqy8uvv3LCQ4Rqzx7H76HKlZF8Pn6sLSGTNSum4TuKDh3Q8vDoEQ68Zq6NOgAZAPWAKFjdYuFxThQ87wg2bkQZhHv3sNyNvaCg68aNna+qbkZugLBvH9bn+/FHXvuxSBHbKepituqlS2iFEWP0SPlcTWq6dEGCoY6bq1gR3bJ793JLo8WCcVBq4k6g+8KWNUXPDWcLycloZVMH74vxU6KSkJGF6tkz7rrydoV0AEmorEESqjQAelNjzHXCkxIIeog4Sm6MUKSIUkwwc2Z0VzjjmOpBNCkJrQ/NmqEVJF06FGR0JLsJAAf/9u3xuyiSSJgyBS04ZqxA1oJer1xBN+xXX+ED1ajuWkwMKn4b4eRJboW5exeJABVzJhHGlSv5+u7KvRkwAK1U5crZlo0gN5pZ2FPwt3x5gN278RrHxOD9eO6c9ZiVa9ew+flxCYbVq/nyfPnw3KZOBejTR7mtnqW9b1/cvlUrng07cSLuv0kTtOTpgSxUeoO/+FKkzv4zg+nT0aLUrx/eHxYLukWp0DKAUn7CKIbq+nX8DA31fOkUWxAz/LyhgLO3ESpgEm5BdHQ0AwAWHR3tkv1nysQYAGNnz7pk9xL/oX59vM4DB7rneBYLY59+isf87DPH9/f667gvdbt5k7G5c/l0rVqMPX+e8uPs3s33tWCB/jo7dyr7oNe3TZvwvPX6vGEDY4GBfHrSJP3jDB6sv73Y/Pzws1Mn7bKYGNzPgQOMjRnD2I8/2t6fu1vnzow9emRu3dGjU/ab7t2L2xcqpL/82TPGjh9nLCEBf3MAxl59lbE2bbR92LVLOf3RR4wlJzP25Il+nx8+VB7LYtGuY7Fo+9SlCy6bMIGxhQsZK1cO73PGGOveXdkfs6Dj1Kih39f27fn3YcP4dgUL4rx9+5T727IF55cubb4PnsK5c9jXwEDG7tzxdG/4M2PmTNcex+z4LS1UaQRSi8o9oEy/lMTwpAQ+Pvzt+vZtzEhzJFaOLEdq/PuvUsdl717MsCpXTiktYBa1anGNmlGj9PWt1G41Wr94cS5d8PAhWszIYiRi7VpllpFRbXYx8LhwYX1hTnJzLl+uXZY9Oy6vXh1dPG3b2l+v0NX46SellWbAAOVyMdjc6B6wBVHJW42kJPw9K1RADavu3XF+o0ba4HHRgkOYORMV5On/JaJDB20xa71qAn37aueRO3HTJoD330dr5AcfAAwZohT5NJMxCID3co4c+J/QcyEDoCudQBaq+Hju7lRnT9J8bwmstgbSH6tWzTusQt5moZKEKo1AEir3oFMn/IyKcl+8GgVy//wzugONaqOZQevW+oPH1q3oMhMf6hs2IEkhRWt74OMDsH49Dq7XrulnUwUHKwc1ije5epUTKIot0XPJLFiAcVoEvYEaQFk6Jk8egHff5ceyptJNiItDIkUIDQW4fBn3q3adWXMtuhqiIKmoIL5vHxLTESPQPSpmOtoDW1lqogQBoVEjvF+JhH33HcbX6WmUbd+uLGJMQe96tRP13N+zZvFMzeRkvG8pdo20tQhiqaEmTbQkxwgREehGpELYDRtaX5/us/79UQYlSxZtYoY1wU9vA720UEaypyEJlYRLQFYMWc/PtciRAwer5GTXxVGpUbKkcnrHjpRLB4SFIbmJiVHW4RoyBO8hvQLGKQ3AT5+eD95G2VTvv8+zVAMDMZMsPp7XFqSB18xgozdIHz6MGWYEOmcaEMxqW02ciPXZoqJQTiAgAIUfp05VrueuoraUil+lCsY4qUGEKiCAl+OIiMDSOSlNyzfKUrt40bhgdN682MeMGTG7r0AB3A8Ft4tYtEg5TdmAVatq1xX/e8uW8e9EqpcvRw03M6DagLagFusEwCLXegK5BIo/mzsXp2vW1F7/1GShoutLZZw8DUmoJFwCKpAsxT1dCz8//jbrTFVxa9ArxmtkjTEDPz+0zPTooV22cqXWynn/vlLp2h5QZqHeYEQgt8jWrdwdde4cfl66hOTVzGBz/bpWq4tUtQn04CXLwvXrmCFmRhW7QgVUsabg9yVLtKrqKXGPpgSkiXbvHpZ/ERERgdYQAHTZOiuIXs/lZ7Eor92aNUoBzQMH8P65dQuvVatWmOVJukvWtKSSkzG7UE9qgwhV9epoNaaECyLuetaymTO1rlAAZV1Cazh4UDuvbFljccuVK/F/RoKxAJiQoUZqslDRc4fGG0/i2TNOZiWhknAqSGNIEirXg0iCuwhVUBASjfz5uSVSLFabUgwfrj+/Xz/lNGMpJ3BmCBVZscaP50SKBqkdO/At31pBhkaNuMu7YkWl+KS60PSnn+InEar9+5EUiBaWXr201hKCOgPSlsvHVSBr3LVryvIvFSqga49K+5i10jCGcXNqa8uzZzxeSc/lN3y4Us+sZk2A779HS+C8ebzINQAneYsW4XPKzw+3FbcXkT49wA8/KC069+7h/UKWRfo/EBmh/6S6ZE3Rolh8+JtvAKZNUy4zo2cFoI2ZypIF+6IXzwXA7ykivAsXKmUUCNRnSajsA5HqoCBzrnt3QBKqNAJ6i5OEyvUga4k1kuBsrFqFgygVnDUKwLYHAQH6BUVFFwpBPQiZBREqa65oMaaH1LVFi9SZM+jCEeOCCG+/jQHZYqmPX35BV8DmzRiEDIC/VWwsryVYuDAGlickoEtG7EOPHsZ14tTyBWbi6EJDUSNO/M3Kl0c1dRHly6NiuRmIREmMTzt7FokMnTeVibGFyZPRGjRoEE7PmIHq7jlzohUmLg6vEwAnu4mJyv6uWIEEp1w5tPy1a4exZkYoUQKvjZ72UmAgWoRE2QEAjCMUK0Js2IBxYXS/kAQBEU6yIFavjm639OmROBJsaWmJUFuoZs7E/5CeS5ykIC5e5ETMSNuMLFTe7vJ7/pwTVW8gVKK7z2vU5V2bbChBcLVswrFjmD6aLZtLdi8h4KOP8Fp/+aX7jz1uHB67TRv9NHF7ER/P2PTpjE2dajvd/skT+/c/cyZu26qV8Tq//aY9Vs6cKE1B0wULMvbHH9imTMF5b7zB9zFpknL7LFn491y59I/bqxdfZ/x4lKcYPpwvd5akwZ9/4v4ePGDMxwfnnTvH2BdfKNcbNoyxjh2dd1x/f5QwUGPHDuyLCHG7efNsyxwwppTG6NKFsbt3GStRgrGePRl7+23GAgIY8/U17t877+gfv1IlvC/VsFgYq11bf18kj5AlC8pHFCqE0xUq4Ge/fvzai239euP7Un3skBC+Xc2aKPPAGJeTKFiQsa1bUabj1i1cRv1q1Ej//xoby/d5/765vngKZ89iP0NCnPPscQSnTvHrVrWq649ndvyWhMpNcDWhEjVonj51ySEk/sOYMXid33vP/cfesIH/zj//7Lz9Wiz40Lc2QC9caP9+9+/HbTNn5gOQGklJjNWrpzyWry9jcXH4ECetqS1bcP2tW3G6aFG+j4QEJGZBQdp+t2ihf9wjR5Tr/fWXcvnhw1wDzJFG5OXXX3G6ZEmcFgmdoy1nTu28IkW05/zHH7isWDFOkJOTbe//k0+0hGrxYj79wQfWt9+6FXWWxHlTp/J+FSmC8woXNrqT+O8eEGD9WIsX83UqV+bXQu/6JCUZH0/E1av82PfuIREi0O/66qvKbaKjGUuXDpeptacIrVvj8uBgz5MUa3j2jLF167Cv3qCXVbYs/x1btnT98aQO1UuGTJmwAUi3n6vhCZcfQVQ7V5fmcAQ+PuiysQZby/VQuTIqaz98yN1Qavj5Afzxh3KexYI13UqU4DIRI0bgJwUyX7zIA8QDAjC4WC+d28jVUqkSBkdTkoFaW6xyZXSFqVPu7cVXX6Fr8auvcLpZM/x0psTJzz9rs0HVsXAAXGfr/HkeQK+ON9KDOpg6Pl7pAqMsNj0MGICB6upAcdHdRtmXo0cb74fud6MagIT33+dSGeSS1dNuGzFC6Ubu3Rtjraj8kAjqe7FiGK+3Zw+6bP/6i7uz1YHRf/+NbuYCBZSB+gB4f3fpwgPWW7XyIreVCqdPY1Yf1ej0pLvv6FH8X4ruc28ogUOQhCoNQcZRuQdEqNwVlC4iSxYs2wLA40WcBVvBuZs389R5swgIwFgcAGXpETWCgrTijfXqYewOxaOcOoXvpDlyYG02xnBQFOUS1AMXgLKUjxpt2mCwMPVPT4DUnt+5USMea0SYORPP78wZ7DcJcNoju6GXHSaiYUMlwU9IwLihQYOU/RFJ+Nat+KxIyYtBcLA2g9II06frBw2XKsW/0zPLWvFsktKgF8e8efWTB8Q4NzG+rEQJpUxGvnwAAwdi2aUdOzCY/uJFgG3btPskQlW6NN53b78NMGcO7o9iutQB5zToV6qkJUtnzigFZvUEZb0FERHKODFPEqq5c7WSG96S4QcgCVWagsz0cw/cneWnBgVQ37jh/H1TdpgR1MWOzYAC3/WC3UXQm+Y77+BnUhIOOoUL44D05Al/sJOVatIkrAnHGE6LhKpBA4AxY2xr5jRqhFIAd+6gxWLcOOXyMWOsby8iPFxfF4owaxavYagmXoTgYB6cT9BLCqAAe4JIdnv1wmsxaRJqVl24gNY8UQ9s3Tp8ZjhauzGlIJKRkMDvZaPBmjFOagID8bNgQdtyF6Lcx8KF3NpZvjyKxU6fDrBli9LqtXEjEi0x45GOnTEjWjLJuvjkCcC33+J3kSACcItsuXLafpHiOADWq9RLuPAG3L+vDcb3JKHSszQSwfYKuN77KMGY62OoGGPs44/Rp/zxxy47hATD2Ajy37vw5zTExYt47HTpnB93kZCgjTURY1batrW/xl9UFG7r42M9ZqVOHVzvl18YGzkSv1PgMtVB27kTp9X19A4cwPkPHjAWGspY8eL2XZtu3bQxQgRnxTm99Rbf59Onxuv16aMfqO9IGzWK12HzZKOEAvHevXSJLx8/nrG//8b5FJielIRJDep9UcC3mdakCe7LYsHEjjVrbG8zfjxuc/y4uWPQPfj4MY+NAsAYKzXeew+XZc7M2LVr5u9TdyImRpncQY1+H08gVy79e9vVkDFULyHorf3wYc/2I60jNJRbqfRKqrgapFcTG6sf7+EIAgIA/P2V88TSLevWYeq5PdY5ssgwBvDokfF6ZKG6d4+XniG1bBI3JfdKly7oMqP6f998g5+ZM6NraN8++2JSJk3COBYCWSCMNJLU/dZzFaqxYgW6TQGUJXfUmDWLl9pR/xYpRVSUY2KwzkDVqlwqIjaWX2PxeTVkCMa89eiBbtJ16wDmz9e3jNqj25QhA3526QIwdChaNW3h/Hl0h+pVD9BDyZIYbzR6NI+NypWL36MAaHVNTgb480+cXrpUa2n0Fpw8iXIfIj78UF+53h14+FBffsVsHUZ3INUQqkePHkHnzp0hLCwMwsLCoHPnzvBYLOSlA8YYjBgxAnLnzg3p0qWD+vXrwxkhMvLhw4fQr18/KF68OKRPnx7y588P/fv3h2hVoEiBAgXAx8dH0YYMGeKK03QI9Mc/dIiL6Em4BqRvo6fI7GoEBXHy4YpB8sABDMa25qLbtcv8/gICuLq2tUDsbNnw8+5dJYFijLs5IyOV60+disRp5UoeS5Uzp3mxRkKWLDgIkjvj7FkkkoMH83UiIvS37dDBPHmbMgXPR0+xWw9q3StrsNaH2bNtu3NdjUOHUOGdRFivXcN4mI4dtesS4Rw5Uj+mqXZtfVeaEW7dQsK8ZIlyPum6GW0zZAhPfBAxfLgyHmvwYCyKXLassvblunX83n/4EPvs74+u13TpjPXOvAHqkILnz83HzbkCX3+Nn8WL432zYAG64z1ZP1MD1xvLnINmzZqxMmXKsH379rF9+/axMmXKsFbWxG0YY+PHj2chISHs119/ZadOnWIdO3ZkuXLlYjExMYwxxk6dOsXatWvH1q9fzy5evMi2bdvGihYtytq3b6/YT3h4OBs1ahSLiop60Z7YKcrjDpefxcJNtEZpuhLOwYABeJ0//dQzx69bF4+fEikDs3j2DLWM9NwbERH27atwYdxuzx7jdb76Ctfp3RvdinSse/e4NlLjxtrtSGto40b7+qSHxo2NXTp58ujPb9DAnPQAtc6dza3n56c/3+g38cY2dSq6zJo10y779Vd0eVnbPmNG/fnjx6PmlTivbVv7+zd4MGMffoiSISQLYKt17Yr3CmlzdeyI96voHmvZUutyVv/uNoYvj2PsWGV/PQmLhd8LGza4//hpSocqMjKSAQA7QE5qxtj+/fsZALBz587pbmOxWFjOnDnZeHKEM8bi4uJYWFgYmzNnjuGxVqxYwQIDA1liYuKLeeHh4WyqKJqSAriDUDGGcRoAOOBLuA7ff4/XuVkzzxz/88/x+L16ufY4VasqH6qkF9Wxo337qV4dt1u71nid777Dddq1w+n8+fng+fff+D1bNu1ARQPprFn29UkPH35o/6AcFsbY6dPGy3/+GdfRW6a+vkZNJFcUT1SkCGNff+05smSm/fYbXtcLF7TLHOk7XY/gYCQqbdpoxUeNmhjfNH06/+2Tkxnr0YML91LLmJGxn37i06tW4fo9e/J5W7bw78OHM/bwofK+sli05HHTJsfvV1eiRw/e10mTPNuXGzewH0Zita5Gmoqh2r9/P4SFhUF1KpsOADVq1ICwsDDYt2+f7jZXrlyBO3fuQFMhfSMoKAjq1atnuA0AQHR0NISGhoK/KnhhwoQJkCVLFqhQoQKMGTMGEmz41OLj4yEmJkbR3IGuXfFzyRL73AUS9oFcfqILyp2gv4JewVZnQi1DQNlI9saOkZvHmsuPtIgiI/ExTtmBQ4diLJWvL8ZXqUt95MuHn87IeuzdG6BOHfPrh4Zidh25I2rVwr5TzUAAlGYQ47MIn3xi7hhHj+J/uVcvnCYX1NWrtsuVODN7jI6vByPXGWl7FSmirauYkoxRioUifalNmwAWL0bXWrlyfLkIMYOvYUN0Zbdpg643Wvb8Oe5z3jyA775TSiA8fcp/qy++4AW8xfhF0vx6802sJamWALl4ka+fLRve26RH5q0gF/oPPwB89plHu/KixmeRIhhC4LVwE8FzCGPGjGFFRVnk/1C0aFE2duxY3W327t3LAIDdohoA/6Fnz56sadOmutvcv3+f5c+fn32pqikyZcoUtmPHDnbixAk2b948ljVrVta9e3erfY6IiGAAoGmutlAlJvISCSdOuPRQLzUePuRvb/95kN2Kmzfx2L6+jN2+7brj/Pyz8q26SRP8DArCe+3ECcYmTEBVc2vo2hW3Gz8er9fp09p1Hj9WKksnJ6P7DwCVwMltuHmzcruJE3G+WMrEUcyZY9vS0bw5YzVqKOcNHYrbWyyMZciA8/r21d8+Lk5/fq9ejNWvj99Ll0bryPjxSisIteXLjfsXEOBcC1bFivrzJ0xA97BaCR0ALXOUFWqx8GxNdSO3bZUq1vuQIwf/LpYeIly+zNj163ydDz9k7LPP+DSp9SckoCuZMczUzZ4df0vC0aPaY+fOrVRIp/tRbBMn4rJbt/h9evkyX65WU/dWJCZyF+bevZ7uDWMzZmBfXn/dM8dPFS4/I9IhtkOHDrExY8awYsWKabYvUqQIGzdunO6+iVDdVo02PXr0YK+99ppm/ejoaFa9enXWrFkzlmDDprhq1SoGAOy+leJLcXFxLDo6+kW7ceOGWwgVY/xhvGCByw/1UoNSeA8e9Mzxa9bkA5qroHZl1a/PWKZM/DvNF2vg6YFKuGTKxEmZmhgxxolX//44nZCAgx2ROHHQIixdivPr1rXv3BIS9Ingv//qp4ubaefP4z4ePUI3lLV1Dx/Wzvv4Y+zX8+d4ngcPWt/H+vXG9fKqVLFeS89WmzWLsW++0V/Wti1j27dzGQvGkATT8lGjuMt26VK+DpVtUrfgYPzcupX3efBgjEUy6t8ff+j/rnfu8HUeP8bp0qWxdqIeRKIq3g9DhiiPJ24vlvoSY+t27MAXBpr355/Ksj2DBtm+L70B27Zhf7NkQXLlCSQl4QvBmjXcvTp4sGf6kioI1b1799jZs2etttjYWLZgwQIWFham2T4sLIwtNIjKvXTpEgMAdvToUcX8Nm3asC5duijmxcTEsFdffZU1atSIxYqvIAa4efMmA1DGdNmCu2KoGONvZB9+6PJDvdSg2neuDAy3BgrULlPGdceIj1cGQefLh7Xx1INbQABjo0fjw08PVNRZbFS37ckTHhdBsSq1anHNqkGDlNu9+y7OT05W6kcVKGDfeRUtylipUtpCvGasU3qNYr9277Zdb06v+flxqwmB6sQZtXnz9LV5zLZhw/TnHzuGx7dY9IPjb9zQv65kxVqzhicZZMqEFh/GkKyq9xUaip/p0+Nv+sYbOJ07t3G/Z8/WP/7z5/h/BMB6hWYg3ptXrvD5lSopj0lkmTFOOAoUwCLptM6zZzy+kZ7BZJWrXRsJXmpAnz7Y5x49PNeHJUu0v/vq1Z7pS6ogVGZBQekHBVPAgQMHGIDtoPQJwut7fHy8Jig9Ojqa1ahRg9WrV489e/bMVH82bNjAAIBds0ORzZ2EitwAlSu7/FAvNfr1w+vsKSHVBw/4YHfpkuuOU7Kk8qGmfnNXNzUpYAyzvfQIxM8/o5uvRQut+yooCAfHBQu0rqI//9R3Z12/rjxuYiJj336LVoK4OAyS/vtvXrQZQJs1ZMuyZNSIFBoRgWrVGJs503h7dZDy7NnadXbvRuJG019+iYKpKelvoUL6x1EnMG/erFxu9FxJSuIu2/Pn0YpDRWz/9z++nsVifH0YQ1JDVkmjZhTO8L//8XU6dNBfR4033+TbiFmo6mN++imK1DLG3czt2ysttfv361s3g4NTV9H6QoWw3+vXe+b4FgsvbE3to488V0A6TREqxlA2oVy5cmz//v1s//79rGzZshrZhOLFi7PVAoUdP348CwsLY6tXr2anTp1ib7/9tkI2ISYmhlWvXp2VLVuWXbx4USGLkPTf6/G+ffvYlClT2LFjx9jly5fZL7/8wnLnzs3atGljV//dSahu3OBm8zNnXH64lxZkTfEkcW3QAPvgYBKqVbRvr3ywDRzIvw8ejO45cfkbb+BAL77RR0amzGpDjbIqbbUxY5R9F90tlAEbGsoVuwG4xYsx48HeTFu3Tqn6bU/Tc9tSZiQNyO+8g/0T49py5kx5f/380KLToQOfZxBeyo4c4evMn6+/zvbtuDxTJm5d3LED52XNipbAceP0LQ8ASmvI2bOYxSguF89VJFTHj+M9ev68cv2vvza8pRUg8gCAKv0Eo+u2cydjnTrh9549lW5VcmeHhirni/eYt+PKFX5/eKISBGOMXb2KffD3R2vp5cue6QchzRGqBw8esHfeeYeFhISwkJAQ9s4777BHjx4p1gEAtmjRohfTFouFRUREsJw5c7KgoCBWt25ddurUqRfLt2/fzoxit678Z/s9cuQIq169OgsLC2PBwcGsePHiLCIiwrQ1i+BOQsX+3955h0dRdQ38bHqAJFKE0BHQ0It0aYI0pYhYQAERsICgIIiCihSlWCgWsNAU5KVIk95EVAihg/ReQgmdJEBI2/P9cb7DndmW7btJzu957jO7U++dnZ05cyoqtXmvXl45XK7k0iU6xwYDog13Oo/CPi6ezGnDphtu2jfH5ctJa2LpwWOaWuH+ffLL4Qe3Iw//jh3J4dt0fqdO6gHATfsWW7q0fftv0IAEw//+y3rdDz90Xoix1jZtov5eu0alSLS+S7//rj+P2tJHzjatcze3IUOsP0DT0qicz2OPkVnLEm++aX7PSUtTWlQ2kVtr336r35+pEL1hg/o8aRJd89qgAFMtpj3mIW1wCe/XVANbooR5X1kLxYEHlq6Rjz5S33ftyrov/sL06eo/4StWrqQ+eNKdwRFynECV3fG2QLV1K12QAQH0kBA8A0c2mT70vMWmTXR89kfyBLYiyV5+mbQRTzxBkVpan6bixc1V9GlpWT9YrTV2wtc2jiDT7nPbNppnKfeRO9rixbYFtcBAfV9r11Y+Kdbam2/S/9TUX+mhhyybOaztx1q+K27VqtHDirV1ps1S5ByTnm49mjMzk7RQLPgwtsynlSsrDRYAmXGZxESV88yZ9vDDZBLPio0b9duZalsBSMD9+mvbv7fp8h076H8xZIi51tRfycig/zrnyxo50nd9+eIL6oOj+e48hQhUfoa3BSpEZarJTurm7MZbb9E5thZB5Gk4oslgcLxosb2w1iY01FyQKFhQhaIzycl6c0fHjrSPp55SD11bLSxMpUywFmbPjWFHZBYK7M167UybOpWEnJIlLQsx776rljnSLGngHn7Y/Pe4ds32ubO2TJtW4soVFXlp2jZvtu+6iI2le8ypU4i//KK2Zx+6rCIUixYln6QaNeizNv2IacZ6a1njLbXnnzePTEtMJLOzKewLldU1xi+ollqvXuaZ8k3/E9kBbfLS0qXJB84XXLyozN3eKHxsDyJQ+Rm+EKi4Yn21al47ZK6D30x99SZlNCLmz0992LfPM8e4f1890DZtIrNPz56qFARHhGlhZ2RujjpOcxTZunVZrzt+vG1Bwt2Nyw1xxnJH2vLl1s1E3Jo3p0AHAMsZqk1NsPa2774z35c22zc3Lq2SFdbGMXkyLWffrE6dzP2huL35JpkQtY7wlvzQ7twhAe3MGRIyAcin6tw5Mq+9+qpa9/PP9f28cUMd/5VX6DxMnEjLOndW90hL/evZk9ZjU7Vpy5tXRQauXk0+P/b6bvkbvXqpcVkSPr2B0ajP77V4sW/6YYoIVH6GLwQqNnmEh2fPN6bswNKldI5r1/ZdH9i89L//ee4YMTF0DK05h9MnfP21+fram7NpK1RInziRc09pG/sUmZYB8YfGv7VpOoesWsOGtB1HTYaHU1CBaZ276dPpwbJnj7mmxWhUTtRZ1fTTBg8AWPfjqVSJlrOjtT3pBmbPtn3sBg1oajDQOI4e1fsmPfYYTQMCzKNCTXNVmdaNvH0bcd48fcBNZiYJmpUq0bG0WDNvLlyooglNNVUvvEBmp4QE2gdrorVRhB07UoJdLffu+S4SzVWqVKFx2SoP5WkuX9b/DlaC+L2OCFR+hi8EqvR0ddM1DScX3AObw/Ln910fuOZWVsk1XYGDHFj7gKgcpy05r2qjwri98QbVTuPMy40bW38gf/utqu3nj23/fsvOypZasWL04P75Z9LEsLaOQ/C1iSgB9MkyTeF0D3nz2jZDAVCkHH8OD7dcA23fPloeHIx48qRaXxtkkZFBppdPPiGNUFqa/edp6FD98Xr2JHPS+fPKnPvPP7Rs3jwy17HGFYD88FwxZZ85o873999bTmlRogSZG5ctU/O02cFTUpSpe8EC0nB175690iBkhdZM78nKC1mh9Wl76SX/UQSIQOVn+EKgQlRvgn/+6dXD5hru3FE3gJMn6WZrKQ+TJ+EcT88847ljjBxJx6hZkzQOmZl04w0Jofl//UVmkb/+Um/o/MbLTZsxG5EEDHsfzJGRZP6z5vfjSjMtH2OpFS5MQpQtoYmLNHO7do18uVJTlTaPTVPFiunPBf9PtYKWJbiMDftF2iqu/Prr9Ht06UIRc6YcP07JTQGo79p+aHNiaUu3FC+OuHOn5eM1baoSezZsSAK3raITHOk5fbr1yMV33rG+vT3w9dKiBX2/dw/xtdfU/sPCyGcHUSXKLV9e/yBnB+lixXKWEKXl77+VcOlLvv1Wfz36CyJQ+Rm+EqjYz8NaZmHBdUwzVffv793j84M+LMx6SLurXLyokjYCKB8US6a955+nfmiFBADSbmjhCvLcbKVSYNU/+wXyA84dAlXz5lmv06YNHV9bZkTb9uwxTx9hbZx8TC1as581k9GlSyoCa80amvfNN7b7/ccflvd1+LDyOytVSglxLPB98gl9txQpaakcTL9+JDieP0/CmD1mLxYOP/zQehSdabJTR1i6VGmntOfh99/V/rkK2Zgx6vrWljbav1+VPNJk5MlW7NqV9UseZ8x/4QXv9Mkavg7ysYYIVH6GrwQqTmzoq2zeuYFGjfQPAW+b/4xGVTfNNOu3O2EtFWsgEFUCPtPWsKH5PEtol1sTDjSFDfDqVfcIUQAqCaNp69rVXFjjosepqebrs4+PNtINQDnrW4sk07JkCc175BHL50l7bgoXVr5VCQl6XyptGgIWfizBWeZr1NCXW+Foyccfp++cC6pxYzL7WRrHsWOWj5EVfD21aaPyYmmjQMPCXDP3cWDEm2/qBTztNTt+vL4GYf36KrotOVn5DrZt6z/mJ0fgMkpNm1pfx2hUmkpTLbK34Xupr/thighUfoavBCo2q1jLgCy4jqXcNVevercPnOdIW+LD3RiNys8kMJDe2K0JJaZt6lTL+2RtR6lSqj6atllytC9TxvIxTFMyWKtTx02rcdO2hATyqdGaJBcuVMfnt2hu06bRfNPou6efJsdpa8c3dWheu5Ye9qZs26ZPG/Dpp/rl//5L0VBpadS0GcUNBuVYrYV94iZM0M+/elX50mhTUQwfTv01HQOXi3EUawlUtdn0XbmWU1LUOTM9z0ajckY/elQJ/6+9phe82DexeHHvm/HdgdaHDoAER0sJiNnfMTzcvOyQN8nMVIXXPRWx7CwiUPkZvhKo4uLoAi1SxKuHzVXcuoW4aBE9jDjRp7fDfbW16ebN81ykkVYbZq116IAYEaGfN3IkOQXHxFCOGa49eP06mX4OHbJcONdSLhxtMVptM9UeaZ2s7WmffkomRUbbnxMn1HxTwY+rUHXtat9xWBvDCR+nTKGHubW67BwF+cILZHrNSlNy9iz111JkJsNC6V9/mS8z1bgC0Hmx5IzOyThHjKBx2VPqavPmrBOQAiAePJj1vqzBUaQFClj+L5w9SxpEre+WtuDzzZtK82dvXi5/w1LdyPz59SWhEFV0p721Dz0FC4DWAih8iQhUfoavBKq7d9Ubpy1nV8E9aDNie9vnQqspi4khUxPXVHMnL7+sjjN4MAmT7GcCgFihAjnv3ruHOHYszateXW+aMtWyMJxjCIDSC1jixg3LD+CMDNIkGQyUpJB9dGw19iN65BHLD94ffzTPBXXvnn4soaH0YLbHuR1AJdytXl0fqTdnjuXxcl4e9puyF85SPmWK9fNnSWC15M/0zz/m6QfWrqX1tUktGze23aeMDKUdsiZUFSlC17IrzJpF+2rWzPZ6nHw0Olo//9dfaX7lyq71w5do61hq26OPksZ4wADl92cw+F4rxCVvbJknfYUIVH6GrwQqRPWmyjdAwXNo/THKlvXusVNS6CapTXLZoYP7fT/i4khomjFDzTt1it4w+dhHjtB89g0ybS1bWt43F3sGsJ0GYv58MltdvYqYJw+tr01GmFWWbm537pDjs9aPyB4ef1y/n7lzlTDYu7f5cYYPN58XFETnUftbmaLNhH/7tmN95Oi8AQPUvDVrsr4+LTmim0ZsssCbmalSLwCQyc5WPw8epPXy5SMNkek+Z892bIzW4MSo2rFbggUv0yABFkatCf7ZAY46ffdd+l3y5FEmNW58zfpDNQ0OcGF/RX9CBCo/w5cCFb9ZWqpoL7if69fVDYtNW97k9m2K6mStUWys947NJSPY5+joUf0NnBOhRkZaFvTY/ABgf1I/TmyqdWS1x7frySedH2efPtb3e/s2YpMm+nlcSNtWCwkxF0YWL6ZlVas63kf2AeMIRUS9Oc9Wdn97hFEWjPmFjZut+wz7ZT35JGkEtRrJUqXcY+pJTlbaQq3Qb4khQ2g9bWTu9evqv7N/v+v98RXsfrB2LZn5bt6kFwd2QNc2f3jZ5uvIk4E1zmLv8zsAhBxP9eo0jYvzbT9yCwULAjRuTJ83bPD+8aOiAPr0AejQgb6vXeu9Y1euTNNDh2harpxaVqoUQLt2AHnzAiQlARw5Yr59nTrqc0yMfcd8/HGa7thB03PnADZuND8+8+KLNN25EyAzkz4nJqrP9sD9rFIFoEwZNb9UKTr/69fr1//xR/XZYNAva9QIoFIlgLQ0gIceAti3Ty3bupWmDRva3zeGz9/x4zS9dg1gyxb6/OqrAGPHOr5PJiKCphs2ABw7Rp+rVqXpqFEAp09b3o5/o7p16Ty0aqWWTZgAEBzsfJ8AAO7fp2uQ73U1a9pen6/BihXVvOnTAVJTaVseU3YDUf0G5csDPPooQP78dK0ePAiwaZNaN29egKZNfdLNB1y7pq6jBg182xdXEIEqF/DMMzRdvtz6jU5wLy1b0tQXAhXTujVN163z3jGrVKHpwYM0DQpSyypXpu8sjGzbZr59//4AY8ZYFras0aQJTTdsADh/HqBXL3qgNG8OMHmy+fqvvAIQFgZw9y79H/77D6BQIYCePe0/Zt26ND17FmDJEhpbp05KkAoNBYiOVut/8w1Nn3gC4Kmn9PvasoXGzNSsqXQHq1bpx+gIjz1G09OnAT7+GODJJ9WyWbMAypa1vN3t2+ozv4wxefKQ8HnsGAmPjz4KEB4OEBAAsGABHePePbr2tm4FSE9X2xqNANu302e+Br75BuD33wEuXwZ44QXHx2hKbCxdAxERJDDWqGF7/cOHaVqpEk0zMgCmTKHP775rLvxmFy5fBkhJAQgMpN9JS0gI/U4lStD3Fi3o/+BLWMCrVo1eSLMtXtKY5Xp8afJDpAR2AGSqEDwPR1eGhvrObMAJJQ0G74V9r19Px4yJoe/a2lzvvUc+Txym3rGje45586YKvNA2dvK+cYMitcaMIZNjZiZirVq0zuLF+hpz9v5WGRkqyeaWLfplixdTRB4Xj9a2Xr3Iwdt0vjYbOQDVMuSErez07ihGo3VT3bffUsBAaqr5dpzzqkwZynel3a53b/P1z50jnzVEip7TprWoWpX2oY1CBTBP8uouOFVG165Zr3v3rkr8eeUKzWPfu4cesh51mR3gzOflyllfZ8QIZYb3NVyk21/zJYoPlZ/ha4GKayQVKJA9E9RlN4xGVW6kQgXzIrfeolo16kOLFq4lSbQX9hUKCKAH0tSp+gepae4nLoLsKtpEotHRVGvt/n3r63P5kZEjSfjhbV96yf5jsr8XZxVnuHixpcYRg5Ycv7UtJkb5O7lShoPrJbLgYNomTdKv/88/ShDk6MCePdX6LDjZ4tIlOqccoLBsmfov8EPeU2k92J8uK98pREoZwdcL94cTmWb3vH3sq2ZrHJmZ/hP5zf+ZlSt93RPLiEDlZ/haoEpLUw8zjsASPMu1ayqqRlts1Zts3UqFdAEQP/jA88czGlVx2337EJ96yvwhzoVmubkDbW6q3buzXn/iRFq3Uye9ABQYqLQViIh9+yJWqmQ5ISJnRq9dW80zzX0VFaU0AaYOt2vXUl08bWSjpfbbb86eFcTTpymtBQcDmLayZVVqjTFj1PwGDdSLF2tbtYKHPXz4IW2nzUn23XeeC9RITlbpLE6ftr7emjXkFN+5M6378stqGac9GTLEM330Fhw04e0yWM7A/5mgIEqo64+IQOVn+FqgQlSRR9On+6wLuQ7OOfTZZ77rA0eK5ctH5i9P07SpelBxtuo2bSh8e80aeihrNUrugE1N9tYA27CBjq2NMitfnqac1f3KFaXZ4WzoWrSRe5yN3FQjFxCgj/o8f958PyzcWWrPPecezSJn/X79dcoDFRKiBJ0//qDyMXzMXr30mf6drbZw+rReM2YpLYQ7mT2bjlOmjPV1jEbzGpPawtF8XboixPqSX3+la5CrBqxf7+seZU337tRX09QV/oQIVH6GPwhU7CvSq5fPupDr4GzFvrxZGI2URBJA1Z3zJKtX6x9Y9eubr8P5fwA8Z/6xBed30mpqvvqKPnNiQU40yIKNJThNxNCh9L1jR/1+K1Sg+Xv3UoZ1S9gy/7nD9y0pST1gN2wg4fPYMcrRxEJW+/bqmKbZ0zlB6vvvO37svn1JQ1qvHpWb8RRXrqgxjh5tvjw9ncZhqbAzZw6/d08JmQcOeK6vnuL8ef24Hn7Yd64G9rJlC/XVYEDcscPXvbGOCFR+hj8IVCtW6G/yguc5fJjOeViYb51c581TgoM3GDiQjlezpmUHZK1A4ysTNJeAASCfn3Pn1M394kX9wzdfPssO3MuX0/I8echkFhJC3+fOJY3Mrl329cWaQLVkiePjSk3V+0nyb1GunD7Pk7Ygs/aY9erphVzWbLsr6aYnYA1c9eqWfydtQlPTZjQijhqlvgcG+r70SWoq+b2eOmX/C8cPP+jH9dZbnu2jO+jbl/rao4eve2IbEaj8DH8QqLSmB0++LQoKo1EVq7VWWsQbJCWpSDhtzTJPYTSSf5A1x3BtBNr48Z7vjyX+9z9Vl5CFBY7+mzJFJXdk30NLGiajUWmpuD37rOOBH7Gx5OPGLz3cHC3Bsn8/aYTKlCHH5OPH1e++bp1+3YsXrQsZ7BxsNPpvwVrm7FnlO2UacckMG6bGFhpKjvKVKlFx6PR0vZ8XR6j6Em1/X3/dvm20WsawsOyRlJSFdV/eG+1BBCo/wx8EKkRywgWgCCJfmFpyI1wGIzAQ8ffffdeP2rWV9sQfsGUS9BYZGeQLxf8F0/p/1aohvvoqfbbmn3XoEOIrr5BZd+JE16Not21TJtHq1alvU6aYF+n95x8SCLRCKztac+Nw9Keesnys4sX167MfWceO5hoPW1GTniAhwb6oQi71Y22MiMo3avx4faFrROVPB4BYooR57UNvk56u156GhFDajA0b6F6yaJFa99Ahun5TUlQJpr17LWvp/A2jEbFgQeqzPYEkvkQEKj/DXwSqc+fUH2/ePJ92JdeQlqYeyoULU/04X8DFUt980zfHN0X7sHaVDRso15qjNflMYcdmbosXKz+4Z55xvZ/2oq3ht3at6s+uXfQgGj9eOXxz9OaZM0obxVol/v7115aP89xz+vGycPHQQ0p7B+C9IsFbtpDGb+dOijQEoAK+1tDWSPz7b8vr3LtHtewAKKLMFK4h5y8mMvZBLFRIRaDWqaP/nYYNU+aycuXUNsWLZ58X5StX1DV+966ve2MbEaj8DH8RqBCVvwC//QqeJzVV3RzHjvVNH/74g47vLz50XGsMgDQ7rvitcHoGV8PEtbUHK1cmbRM7zhYv7tq+HaViRTouJ+UFoJQT7Eyu9fn56SeVc6pFC8TJk/Xr7Nlj+Rjjxum1M+npVGdRu+3jj1P0mDfg3F41aqjjW3sB0P5WnN/LEpxvqlgx8/tdRoYSPk01gL7i5ZepP++8o086C2BeI5Ib59964w1f995++HfxdhF5ZxCBys/wJ4Hqxg2Vm2jNGl/3Jvfw2290zqOi9LmOvMWNG+oGfOGC949viunDYtAg5/aTmUnnlIWehQtJa+OMJjAzU/WHHWWTktQ8b2WcR9RrXyy1L75Qhc+5hYWRP5Y2DUL+/NbNkCwsAiAOHkzzOnRQ82yZ0TxBhQrm4yxUyHK02ty5SphgUlLMhSbOh9Wli/k+OGgkTx7/iIhLTVWJVePiVOZ21pAajYg//khC9nPPmWfjX7bM1yOwzeHDlEx33jzEL7+kPrdr5+teZY0IVH6GPwlUiMqv56GH6C1VNFWeJzOTot4AKFO3L+A3WVtv9N5ixgxzTcvBg47v5/hxywJH27aOPyTT0tT2/fqp+eXK0byNGx3vn7OcPq0fT8uW5CMVEKD8uW7fJkG0Xj3Kecb+QUajit7r1Mn2cXj/7N/HpWcAyEfLW9y5Yz2j+4YN5uuz4zab6g4cIH+jV15R97ObN5XGbfFi833MmWMulPkSLhnz8MN0v8jMRKxShQSnY8fM1+eM6AA09uRk7/cZkXy8fvqJzKechsKUtDTzHGAAJPD6OyJQ+Rn+JlBduUJ1tviizg4J4HIC2ppm3nw4Mz/+SMeuWpWi3ExzDnkTrvtXqZLK39S2reP7YU2Fpcb5oexl61a1bffuaj4naPWmgIFI5jvtePLnt18L8emntM38+dbXuXtXJV/lpKMHDqjjeTOlBWdk17ann6Zp7doUzXf+vBKWWJP23Xf0XZv64JtvaB7X9qtWTWnpYmNJGPv8c4qiZPOaP8AZ/195Rc1LTFSJY01JSFBCqK/K5Rw4oA9ueOQRyxp4DnLIn1+fUNdb5mRXEIHKz/A3gQqRbjCcpTY72d6zO2+9Ree8QAHrb3Oe4uZNlSsJgJx1bZXp8CTsA5M3Lzlb81v2rVukiRk2zL79sLaVS9oUKqQcyUNDLWcnt4a2/EqJEurhPXq0uZDlDVauNBcyihWzronIzCTH+nPnyD+InbBPnqTwe9O0AlyoWetfZDSSgDFwoHc111xHr2ZN6k+nTnSNcBFqbs2a0XXMPon8UqBNGxASQtuaaqdM01JwgI6vH+rp6aRtZOfzX36xf1t23v/2W8/1zxonTigftDJl1H+wVi29W0FKiopc/PZb8unj38AZrbS3EYHKz/BHgQpRX4LDH3wIcgP37iHWraseHt42t2qLAQNQBKIvSE1VObq6d1c3Y66nZjDYF6rPRYRnzaKyG3v30jnlEjivvEKawWbNyNG7Tx/KwWQJ09qDR4/SfE7gWbWqe8ZuL1evqr7cuqWECNOCzAwncOVs74ik2eGIvfz5VR6y69dVOoGszILegKPWtDUntSkNtI0d9gHoHBmN+lQDAMqxPSaGBE2jUc0zXdfXD3V+yeJm7fq0xMGD9CLgzlQJRqN99yX2T6tVi3w0jx5VqRAKF1ZmStZGFy2q+nnkCEUnZgdEoPIz/FWgSktTf4BNm3zdm9zD5cvq7XjRIjJ1TZrkvWN/8onyHzEYKJ+NL9i0SYX2a5Mr2mtyunNHnUfTMcTGWjcFvv22+b4uXVJ9YQHk++9p2YUL9D0w0Lsh3myCLFmSvnNdxrAwy1oqzhhuMJDZ5e5dfTQla3guXSJTKwA59O/c6b0xWYM1Lf/7n5rXpo0aj6XfsXBhWu/sWfoeFKQe8tw4r9SyZfQ9Xz4Suvm3zpNHFYj2BZmZKkgIgMyTvuTff+l60/qiWaNKFfPf7NQp5U7y4os074MP6LuvfEddRQQqP8NfBSpElRhPW3Vd8Dxvvmn+gPC2tqpdOzqupfpn3oJ9fSy1FStsb9uzpxKALD0Uv/tOaXWee478ZgAsp47gqKMnnlDpBBo2pMLISUn0dg1gPRu3LW7edK46wa+/KiEIka4PHs/y5TTv6FHyW/nmG32U3IwZSvMRHU2Z3ln4DAujafHivhOmtWRkKKGC+3P5shJ6uBUrZi4cIiIuWEDfH39cL0jny0eC586dSivFpmT22/O1Q/p//6n+fvyx/eWKPMHmzaoygKmgZAoLsQEB5kXXeUwGA0X2cTBOdi06LQKVn+HPAlVcnHoDXLDA173JPezfby5AmPozGY2erQE4cSIdt2NHzx0jK27cUA960zZ5svXtli5VN3RbOYS05/DGDXWtX76sX4fNSNOm0QNY24+PPlJO0I5qEhMTER99lI7rSK6jb74hAQFAn4uJTWMchTh4sGUNHzsKGwwqAGL9ejL7AZDvi6+LAF++TKbMQ4dUvznhMF+b1auTOfihh+j/waZhAOVMzuegb19yXeDljRqR2YmFtWrV6HiIVEonJsZ3ZU9SU8nsOnUq9a1FC9/04/x58tXLzFT/ARZco6PJtys1lVI4aNNvsJ9io0aW98tJY1u2VL+HNed6fyfHCVQ3b97Ebt26YWRkJEZGRmK3bt3wFv8zrGA0GnHEiBFYtGhRDAsLw6ZNm+JBE2N506ZNEQB0rXPnzi4f2xR/FqgQVXRJVBT9yQXv0KyZ/iFoWppm4EB6Y7SWBdpVNm9WGh5f0q+fZYHKVqJOzj4/YIBjx2I/Go5+u31bXf/h4SQAZWTQA46FlPr1lWO6NgLLGqmp1Pe6dZWfEgAlZrRHC6nVWgBQdCbDgmT58vRd608EYJ6Y89NP9fs+fZoEEF+W+9i6lQQazqPEgiO348dJkAKgB/ft2yoH2Nixar29e/U+Yr/8QjULeXmfPkoT/MQT9Nt6k+vXyQJgKe1Dq1Yk6PHYR470bt+Y+vXp+C++qLR6V66oMkSNGyufT46oRKS8WACkzbXEnj16U623/Q/dSY4TqNq0aYNVqlTB2NhYjI2NxSpVqmC7LDKCjR8/HiMiInDx4sV44MAB7Ny5MxYtWhSTkpIerNO0aVN844038PLlyw/a7du3XT62Kf4uUKWlKV+LH37wdW9yD1evktaAa65pI9vS01UETUyMZ+pzJSaqG543k1aacuKEPvqQW5061rfhB9GSJY4di6MCmzcnvx1OGwBgnlz05EmaHxysBJlHHyXfJO3vcfo0CVpDhiB+9pn5OIKC1PgsFVk2hWv5Va5Mvj/agJHERFUM+M8/zY/15pvURwDyXfG3HHPsy2SrcZHq8HDzF7wLF5Qp8I8/lCaudGkyrXKuNQDSxrEJy1MvJbbg/3XJkvrfMC1NlcPh5os0Kmy20zbW+u3aZS6cV6xI19Pdu8psbMuUPXu2+n8NHOidMXmCHCVQHT58GAEA4+LiHszbtm0bAgAe5TAcE4xGI0ZHR+N4TSn7+/fvY1RUFP6oed1r2rQpDrDxiuvMsS3h7wIVovIh0UYICd6B80Npc8loc1YBUCSPJ+CH77p1ntm/vRw4oE8qya1dO/P0EhkZ6kHpaOoJLsFj+qBYsMBc+NBGj7FABUCahcqVyXx065blDN8AlBupfXvKlfXOOzTPnpqAAwfa1r5xmRl2/q1USQlZc+aQgLp6tf8JU4jkmJyVQMXNWtJHdlbnVqkSCVrsxB8QoCJIAUgr6e1zcfiw3gdM606hNXECkNDhi6ScpiWKTP9PW7eSUFqxovq/bdum0nmULJn1eV21iqJIfZWexR3kKIFqxowZGBUVZTY/KioKZ86caXGbU6dOIQDgHpMiVh06dMBXNXHiTZs2xUKFCmHBggWxUqVKOHjwYJ0Gy5ljWyI7CFT8tmIwOBa2K7jOjh107gsVUjeokSNpHj/QCxWyXkLEFTp3tq269yZpaeZvxQD0cNT6kp04QfPDwhyP0Lp5Uz3onnqKcjbZolMndX44+7i2cfbnEiWURoKb5j3swcO+dOms+/jkk7TurFmWl0+YoD/OuHF0vTRqROYxf8VoNHcs17b27ZXTfWSkubMzwwInAJmseD322+ndmzQs/DtbO4+ehK8b9g+sX18tW7hQCVIAvnOM59Qib75J/7Hevc3XuXeP7jtsYn/jDeXH16eP17vsE+x9fgdANiAhIQEKFy5sNr9w4cKQkJBgdRsAgCJFiujmFylSRLdN165dYd68ebB582YYPnw4LF68GDp16uTSsQEAUlNTISkpSdf8ndKlAZ54gm5TCxf6uje5i6pVAYKCAK5fB4iPp3nr19P0008B8uShZYcPu//Yjz9O0z173L9vRwkOBmje3Hx+QoI6HwAABw/S9P59gCVLHDtG/vwAP/wA8MknAKtXA5QqZXv9hg1punUrQIcOAAYDQIsWavnx4wABAQDLl9N+IyLUMu3/6JFHaHrhAkBGhvXjIQLs30+fq1e3vM477wAMGULHBaB+jRgB8O+/AFFR+nVTUgBmzQI4c8b2OL3BiRMAly5ZX75oEcBHH9HnUaMAChQwXychAWDyZPV93Tpa7+RJgGXLaN6gQQC1atG4Bw0C6NrVXSOwj/R0gJUr6fPSpQAhIQBxcQB//EHzDh2iaffudI3MmePd/gEAXLtG1wsAwLBh9LtMn26+Xng4XWe9etH3//0PYPFi+ty2rXf6ml3wqUA1cuRIMBgMNtuuXbsAAMBgMJhtj4gW52sxXW66zRtvvAEtWrSAKlWqQJcuXWDRokWwceNG2KN5ujhz7HHjxkFUVNSDVrJkSZv99Be6dKHpp58C/P23b/uSmwgLA6hcmT7v3g1w+zbA9u30vW1bgEaN6PPmze4/dq1aNPUHgQoAoFUr/fdKlWj6++9qHgtUAHSjv3/fsWO8+SbAZ5/Rgy4rWKCKjQWYOJEE22ee0a+TLx9AUhIJQsnJav7ChQBGI30uUgQgNBQgM1MJzZaIjwe4dYsEbB67KcHBAF9+CbBvH8DGjdbXO3YMoH59OkdNmgDcuEH9/OYbgOHDAaZMAUhMzPocuIvPPrO+rFkz+j1696Z+Dhxoeb0hQ/TfL1yg6fffkzD6zDPqfLz6KsCECXS+vMmRIwBpaQCRkQAtWwL060fzu3Wja5cFqipVAF58EaBsWe/2DwBg7ly6NmvUAChThl4UbNGkCUDjxgB37wJcvUr3LEsvP7kab6jLrHHt2jU8cuSIzZaSkuJRk58pRqMRg4ODcf7/hwA5a/K7f/8+JiYmPmjx8fF+b/JDJPUuq4HDwihUVvAObC7q00fVp4uJoWUc2fT88+4/7s2bKhrn7Fn3799REhKU2QcAsUsXZQLizOlt2+pNRZyTScuFC+7xm0lNVdFoixbRPI7c69ZNBQ6wCRGAojc5QlCbt4rNg7aS6LqSlf3CBVVHLSNDn2KAzfmW/Mc87d+Snm470SoAOfNnxYEDagz8m8yaRU7S/DusXevZsdgD5w9r0oS+p6WpiN6YGGoAiGvW+KZ/KSkqr5o2gjQrbtxQwUv2+ALmFHKUDxU7hm/XPN3j4uIQIGun9C+++OLBvNTUVDOndFMOHDiAAIB//39IiDPHtkR28KFi7t1TRUnr1vWM345gDod7Fyyobr7Dh9Myfhh5yo+KfXa+/tr9+3YWrqtXubJyMB48WNU70zbTDMy//ELzR41S84xGivS6edPxvnDy0fLlyeeKH+rx8RSp+cor+v6MHYvYowd95mzRiBR0AIBoy/2SowS7dXOsj8eOkeNwQAD9f5csUYLo6tXmUZS9eqkIuUKFKCLro4/In2bwYBqXO7h1y/w369dP+QaOHUuChT1RrJyM84UXEN9/nz737auiIh95xLX/R3q6db+tuDhyxrYHS0EF16+b1yXMyn/PU3AOqZIl7SvvpOXSJQoWOHzYM33zR3KUQIVIqQuqVauG27Ztw23btmHVqlXNUhfExMTgEk0M9fjx4zEqKgqXLFmCBw4cwJdfflmXNuHkyZM4atQo3LlzJ545cwZXrVqFFSpUwJo1a2KGxtPVnmNnRXYSqBBJS8Bv2Jz4bscOeuM1zZUkuIf0dCqlob3hcnHbtDTl3OqJZIycXLBuXffv21lu3qS8aADmtde4saYqf346R4h0Htl5PH9+ekFAVMkftQKOvSQnqz7wvuvVU8vT0lSoPwCV79Bmi+bs35wTyTQ3lBYWGhwVbk3rwXF77jlabprOYcIECj6xpjFq2dI+4eTCBdKmWYpIPH7csgB88SKNr3JlVVswK1atom0DAuhhzo7dtWrRbwHgemBFz54keG7dqp+/ZYuKorSVPZyxFlQwfLg6BxERvonCNBqpkDGAKq0k2CbHCVQ3btzArl27YkREBEZERGDXrl3NkmsCAM7SXMGc2DM6OhpDQ0OxSZMmeEDzNDp//jw2adIECxQogCEhIViuXDl899138YbJK4o9x86K7CZQIaryG8WL01sMhztzWoX4+OwdCuuPcGi91lzAsHbDE1qkhAQVEXXmjPv37yyjRtk2E6WnU2FvADKVzptH5S2068yapbJuA1DKA2dyenFqC26mD6PDh0noLVxYvfVz1BmXdWLTrTWvgxs3EENDaR1H6utdvaryAo0fr+/n1Kn0EJ0+XT//4YfJhGx6TkeM0JcfsXSr27uXogpv31b1AwEoWSciHe/991UUW6FCqsZe9epk0nYk3cW1a0qg5XxGZ87o+x0U5Fom7qQkde7btFHzr1zRRybmy0catiee0LtE7N5NWsWNG5X5ce9e/TGuXFG/k1Yg9ybx8XR8b9elzM7kOIEqu5MdBaqUFGVqWb2awsIB6IaQmEg2+IcesnzDFZxDm3vK9O2WtUjFiimtiztp3pz2/+WX7tmf0UimnOHDEYcO1ff59Gky22RVt+z2bVW8W9siI9XDu08f/TI2x/FbuDYNAz/gnUnymJlJZrGZM+l3sqRdOHOGSnkwe/aoY/furYQyU2GZ4Txc1as7pr3gFBu1a9N2/F/lMdesqUrnDBmCWK6cWh4crLRiAFQSiXPSAVjODM8aodq19YlR2cfv55/1WsRjx1TYPRfUjYwkTZ4t+JzzNpUqqfQZRqMSpkNDXU9IPH++/jr67z8S2Nn8XrEipaXQrlOjBvVxzBilwWLfruBgy4I7pxzo29e1/jrLihXqdxDsQwQqPyM7ClSI6s/PjurcPvpIfV6/3te9zDkYjSTYVKxonujv/n1VYmPCBPcfmx/21au7Z39czoWbtgAzP1xZALDFkSPk5PvHH2SuK1IE8a+/1PLr10nz06cPaUIASMPy7796IWvECOXgzr5p3mDUKHNncEulfoxG5fA7ZYr9+790SZlGuQ6eJTMbt9WraT0AOpexsbQNa2cA9AIRAOKdO+p4V6+aj6dWLTVvwgRlng4Kot+lXTu1fy79w7+TLaGateQsgJnEGOHs2Yjdu5PA5iovvaQEIQDEZ59VGuO8eUkDeeEC/T9ffFEJ6toACW1Nyho1LB/nzh0q4eKrunZcQql7d98cPzsiApWfkV0FKm1dLG1jtTWA5zJ4C+aw2aZQIfdnVr5xQzkua00V588jmsZfpKaSX4k1YWjvXqW54Mi3yEgSfu7eVW/xzmiLbPn1JCaSlufnn/Vle7isx4wZNE+bZNEb/P23EvZYwEtLI2GC+8aJP8PDHUvOyTXYatemBz5roqw13veOHcoB22jUr6PtKwBpuBg2qRYtStdLQABpc7gftlrlyqpGH2uXLCWTRKTzw5FogwZ5psborl2kVRs+XBVQ/v57835z3Uctpj5p48fr75emgRL+Aicc9cRLWU5FBCo/I7sKVKmp6u0XQEUFaRs7vQqeJz1dmWscSNRvN/xQZD+VpCTyCQoMJKdghiPYhg4130dGBj3cAcisl5mptBLvv6+0I9w6dDDfR0oKaT5Hj3Y8migjQ1/P7d131bLz52leQID3TdX//KPMQgCkwWO/taVLVZHanj1t72fdOkq/sHevMt8EBpL2hrUsttq0aeb7XLPGfL2AAL05j1NqdO2qfvu9e5WGKz6e/KlatlRCEwtDbdrQMm0dQtaCFS9uWTDnKMXChd1bx/L8eQoKeOYZc01biRJ0vY4bR9dQiRLWtZnJySqI5LXX1BiefZbm+SI7uz1wUIU9NSUFQgQqPyO7ClSI+pBwDrflt2y+CQneg9MJPPmk+/fNNboefpg0BFqTS3g4aVHi4vTXgDbPEqIq2BsVReYoRBWhFRSkckzxw99goEhSfiDdvKk0EwDkQ3XwoP1j+Pxz1V8WDNjfClHlAFq82KVT5RQc3m/a2MyUL5/1qLeUFHMfHjYRvv8+OUjz+eRzAIA4aZLKm8XH4t/sq6/oOrJUDqZ1a8qXpZ331VdKe2VJs3jvHpm0PvmE1mnQgExbrNEeMEDdM1JSlIls/37zfbVuTcus1fNzhlu3lNmc2/PPq3xdjh5r2zY6J9rUAykppHX0x3Qzt26pcVtLDyGYIwKVn5GdBarff6c/YP78dOPgm2DnzkqounzZ173MPWjzILk7Ii89XUVTjR6tHp7s4B0Soh4+nFbjkUdIm8QPkK++UtopxmhUflPcjh7Va1SaN6fri5OaRkZS3icACo6wJ+noggXq3Pz6q9p/+/ZqnUGDaJ42ksubaAvm9u1L5jT+Pnmyft0DByjCDVEJqqYtTx7SEjVoQN/Ll1fmq+bN6TdNSCBBnMP5S5Qw95OKiFDFlgFIeDYalUO4tkVGqjQVTFISaZtCQpQAtWiR3t+SW5cutA37H2lq2CMiCYf8O3LqEFcxGpUPXZkydK5Z0L57l4RH0zHlNDZvpvFb8uETrCMClZ+RnQWq9HR6c+MUXy++SDe7zZsp6gaATA+C9+CIPK2jNyKZRr7/npySw8PtV+vfvUsPb6PRPFVBuXLkd9O+vZqXNy85i2vf9mvUIJNOt2703TTztdGoEmQ2bkzzUlLoQc9C+qJFypz4wQf0Fp0/vzqGLTZvVj5g/frR8fbuVf1NT6f1Tp1SQo27c3r99hv5qNh6wXj7bTWe+/dJsCxYkLRP3EdE8ksKDKTfElEfeWethYaq89WihXlYfFKSytbOrVcvMh//95/SbGmDBdLT9RpD1uqYwlpIbmXL6nOJaRs73bO/UsOGpL37/HMKjmBh3ZI52BoJCSTYm6YqYBYsoH0GBuqLVucmJk+mc/Dss77uSfZCBCo/IzsLVKYkJSm/Fn742UpUKLgfLm1Rvrx68CUnq1xV3OytBt+iBa3ftSsJRRMmKOGEfbWMRoqqql6dMpEjkoasXz8V8TRqlNJyWCoHg0gChKnTNWe9fuEF9fBmZ20W2gFIGLJEQoLSrL3wAvlRIZLWjJ3TtTmD2FesRw/9fjIzyUm6Z0+1D1usXUspBzjjNWvynnrK3ORjNJLANWeOOl+9etF6t26ReVXrd6N1ej5wQGlXLLWQEPoN+boAUJotU/buVRF39erptTJXrijhdtkyNZ/zZ0VHky+UJRMs55lq144e3EuXUiQZAGKFCoj9+6u+sYnv1CnrY2rWjK5FW2zaRNe8aULcl14iXzPWOmVmUuRsbr9X8TU0YoSve5K9EIHKz8hJApUWfsN8+mlf9yR3kZysBJ7jx8l3hUPl8+RRAkOjRlnv659/9A+j8uXJcfzIEUpVYE8+JM7ho43+dKSsxs6dtA1rjsLDSXuTmqq0FQCW8zdlZipBsmpV8xxdrFn76is1j/3AgoP1/dy4UR0rqwSqW7eq8X74IQl12vM4dqx+fRZKihen1AU81kqVEB99VI2fS+M0aaL29fHHKiqOtU/aY7Hp93//U9pCWyxYQOfFkhl12DB1Llko5N+nQAHr1wM71X/3HQmk2v7NmUO+YVFRpLnSCqtsUixShPw1H3+ctHicb8oaRqPyhwMgrXm5cnqTKgD9LxYvps8REY5FUOYktMK2rVqSgjkiUPkZOVWg4gdToUK+KaOQm2EH5enT6YHFD7y4ONIAAJB2Jqvfhes2tmqlj+J8/HH7c+VkZiJWq6a2jYx07HowGvUFkfnBzP5U2mb6F+JAifBwVeJFy9dfK82JFk7Y2KoVHd9UWxIWZj2/0fHj+oSj9euT8Mn9YNMS501atUofUXb6NGmjLJnD1qwhgVk7T5uctEgRc+d0joLr3Zu+Dx5s/7k3RWumW7CA5qWmKq2WpQznd+6o6D0ep8GgagoyFy+apz84dox+Z22uK3vgazw0lHzI2Ly5bx/91lWrqvQc/PLhynnJzvz9t/p9hgzxdW+yHyJQ+Rk5VaBKSVF/VHuchgX3wc6+3bsrVf6wYbTs/n0V8n7hgvV9sI9RQAA5/96+TX5ZbCarVInMQPbAAgU3RzOus2ZE2/ja0gpbWsftjAxlZjN16GZ27FDbvvqqMhsePao0TD/+qM8ezsJhmTKIX3xB54YFxKtX1boVKijhiZNA9u6tzw21fbsSiFjY4Hpwt2/TefroI1WmZvhwMrmangvteTUtdMwRdxwSv3q1Y+feFPZ105ZHYaf3Rx811x5t2KDvT5kypPn0JBxJ2LGj9XXWrVPnPChIn8U+N8HO/y++6J/Rh/6OCFR+Rk4VqBBJkwEgRZO9DScRLFFCOSJrUxiwz8jatfrttCYxLtbLteaY48dVKH1UFIWwT51quzK9aXJIAAort5d9+ywLEJw4kr/nzau24VxFBQtaL8eTnq5PJKqN7tPW+NO2nTvNCzKXKkVCj1bYunxZRT3yMaZN02cvZ6GwSRNVJkebG4v54QdaZmrOM22cAb5wYZXS5KOPSOvFx3M16WtCghLa2IGbUx4AkK8cIgmaq1aZC8OO/O7OYDQq5/qsihVzmpFevTzbJ38lNVVFfZpmmhfsQwQqPyMnC1Rc5f6DD3zdk9xFcrI+8WKBAnrfFNaSaH2BBg6kN3Yu3cIJGJcuNd//8eNK48GtZEnSRliDow+51alj/xux0ag0OYUKUbHZF15Qmq5atdR+N2+meexn9NFHtvddt66+X1zuJDOTEjyaCi2ffkrao59/prJLnCeKW/78KjDDNB0ERw6ygARA2p2kJOXjBEBO51qzKAuUWuGvWTPzagWsCevUSfnF1K6tsug3bGjf+c4KHhcL2wMHqj5ERtLvU6CA+bmrVs3z5n8+V2FhdF6z4uBB2y8DOZm//6Zz9fDDop1yFhGo/IycLFBNm6Zu/oJ30QoKpkVsOf0Bl8DgfGIAFHGlNddacyBPS6MH51dfKf8qa5mtjUblV7RqlXIm5yjBu3cpDP799y0fKz1dRWtZqmV34oT+wf3TT0ojc+ECaas+/tjyA9bUP6tTJ7XswAFzoaBgQX0m9Tt3yGF98mTS1OzcqZZxORtuEyfS/MxM0gC+/LLy+9q1S7+uVtjNyNALU1qNQsmSeo0dH+fSJfpsMKjoSHfVKdy9W53f+HjyS9L2TVv7T9scqUPoLGzu1v6OgmWGD6dzxbm/BMcRgcrPyMkCFb8tRkbKG5C3GTJEPcjmztUv48im2rXJd4T9ongeR24VLGifRuHOHeVwrc08znz7LS0LDCRhjZ3Bo6NJmOIcOFoNkRauZZc/v/UEi+w3Y9rYvwdAlc3RYqphAlAO7OzIzekWWPgqXJi0Plmdm5Mn9fvNl8+y+TE9XdU11LZp09QxTJcjkjBmWiIFgHzDEPXBADEx7k2yyxrA5s3NUxNwO3aMhHYAijD1dBSd0aiiIrkYtGAdjr6cMcPXPcm+iEDlZ+RkgSo9XT1oTYvoCp6FS8UEBJiXkjh2jJaFh1MiTQDldxIUREWEAaj2mr2wlkKbEsBoRHzvPfWAHTSI5qemKofxzz/XRxBaSgw5YgQte+kl68e/csXyQ12rMQkN1Zdv4fp93Ni3LCCAzhHnXfr3X1p/+3Z98st27WwX5jUazWtcLlxovh5r1Cy155+nvFFvvKGfn5GhfuNixVTm+jx5lNA5aRL9ngMGmCfydJVDh5T/jbWWmamSuVordOxOOJAiLMz9BcJzGrduKY1mbnXIdwciUPkZOVmgQlTFaOfM8XVPchcpKWRG++QT82UZGXqzTL58ZDZjZ2vWbDhSv4z9grT5rX75RR1j3Di9RoeXsYaFfW4MBspzpYW1TNOn2+6DVosTFETOxp99RuYv1qi89ZZa/4sv9ALA66+bCwWVK+v7nZpKZk4+fyVL2n4gmWrOTAuG37unnPz5/DdrRto0Nrs2b67XNgFQkAELq6+/rhKgPvWUfv/uLB5sCucYs9YWLlTnaflyzxedZgd4S0K5oIeDNmJifN2T7I0IVH5GTheo3n2X/riWopcE36GtEzd7Ns3r0EH/QORcQ/Zw9qzS7ty8qZI1AlA0lSnp6frkixMmqOOzbxei/k06q4SgixbRepaCIDhJaVCQSo/AjvesRWJnfW379lvLx9q7V6VI0AppphiNegf+0FC96YvLxpQuTeVRtAKhNhO8aRs6VPV/3jza56BB1sureIrRo6nv27aR8LpnD9UhBNAnXuWxDx/ufm0ZIp1n/j3mz3f//nMaHMXbr5+ve5K9EYHKz8jpAhUnlmzQwNc9EbTwDbVrVzWPM3Zzs5So0RaVK9N233+vtEV16+rr0GlZuFBpp5KT6aHMWirOn8T+XhUq2NcHW346rVvTvt54g6K7AMiHio9hmkkbwLZWhQvKhoZaT3SakqL2y87hXEbm5k2V1uKXX0gomDhRCUq2GqdkALA/H5i3sJbmglutWvaV73EEdpQPDxdzX1ZkZqpr0TR1iuAYIlD5GTldoGLH3KCgrOtvCd7j6lWqH6dNxLhpk3roRUQ4HkigdYQHIF8WU/OdFq5hp42M69VLCQy3b6vUGwMGONYXS2zZooQoDv1/9lkyu5kmxORmC6ORElwCUHTZ3bt0jCNHlBaG82RFRZE2B4DM4Eajvqi0qYARF6eSg2pbkyZ6wa9qVdfPiyfg8wJAYfkJ2XOi2wAAM65JREFUCaRBZL80d2vShg6l/b7wgnv3mxPhhLb58uXelBHuQgQqPyOnC1SIKvJm0SJf90SwRVKS8mmyVBsvKzixJADVjOMixo72gU1kpUurjOWrVjm+L0to6+BpzZpcssVgUJnJK1fOen/si5I3r75cTFAQRVeyn1GDBmSy5CANLm9jSxt47565n9dvv+nLy1iKXPQH2PxqqgXl2orff+++Y2nLEzlips6tsF+fCJ+uY+/zOwAEwU20bUvTVat82w/BNhERAFWq0OfHH3d8+0aNAJYsAVi3DmDPHoCnnnKuD3PmAAQEAJw7B3D/PkB0NEDTpo7vyxLDhumP1b49fea+tm0LMHYsfT55EiAlxfb+OnQAeOwxgLt3ARITAR5+GCBfPoCMDIAJEwCOHKH1KlYEKFUKYNQo+v7XX/r9bNxovu/wcIAPPgD46iv6HhpK/eX/EwBA8+ZZj9kXPP88QO3a9LlWLTW/YUOabt3qvmPt2QNw+jSdL+25ESyzfDlNO3TwbT9yEyJQCW6Db3KrVwMYjb7ti2Cbzp0BDAaAjh2d2/655wBataJ9OEvDhgA7dgAsWwawfTvA8eMAefM6vz8trVsD1KxJnzt1oocwAMD77wOMHw8wbRpATAxAsWIAqakAsbG29xcYCPC//wEMGACwfj1AQgLAmTMAQUH0oF+yhNarVImm772n375gQZr++af1Y7z+OvV7xAiAyEglBAYFuU/Q9ARXr9JUK5w3akTTLVvcd5yFC2narp37rpOcytmzAP/9Ry8szzzj697kIrykMcv15AaTX2qqyvSs9ZcR/I/MzJzv1LtnD2LnzlTjzhrdu9P1ykWlHUXrH2VqstQu+/NPmubP75ij9syZZG70V65dU2PU3tru3FFlkdyR/0gbRWkpx5egh3PMOWPSF8wRk5/gdUJCAFq2pM9i9vNvAgLIZJWTqVkTYP58gEcesb5OixY0XbnSuWN066b/zhoqAIBChWg6bBhAkyakdbp1C2DfPuv7O3IEoHFjgFdfpe89e5I20F/Zs4emjz5K42Py5gWoUYM+u8Pst3s3aQTz5BGNiz2wNk/Mfd5FBCrBrbDZb8UK3/bDEocOASxaRO/TggBAZrXgYIADB+j6sMbVqwCZmZa3j4igz3nykP8UEx9P0woV9GY7S2Y/RPIpq1OHzGRz5pDZxh/o358ExS++IIFQy+7dNNX6TzHu9KMSc5/9nDxJ5zwgAKBLF1/3JnchApXgVtq1owfU7t0Af//t697oefllgBdfBFiwwNc9EfyF/PkBnn6aPs+bR9O0NICkJLXOb7+Rw/ygQebbh4cDvPACfa5QgR5iDAtUJUrQlLVhpo7pmzcrrdTdu2of69c7PSy3cfAgwJQppDkbOhSgXDmAEyfUctZQWRKotH5UW7cC/Pxz1s7/ljAaSdMIQP9fwTa//krTVq0Aihf3bV9yGyJQCW6lSBGA3r3p84gRvu2LluRk0kIAAIwcSdFZggBAgjYACVSJiSQcFC1KwRWnTgH07UsapGnTaLkpAwfS+t27q3mIABcu0OeSJWnKEYb//gtw5QqtM3w4QLNmJHCEhQGMHk3zALwrUP3zD5lIR43SCz2TJ9O0Th0Spm7dApg1Sy1nDZWlaFHWUO3bR8LVW2+R472phnjfPoClS61rjjdtIuH0oYfohS07k5kJcPu25/ZvNALMnk2fX3vNc8cRrOAln65cT25wSmfOn1cJFDdt8nVvCG3uJADEX3/1dY8Ef+HOHZWIslYtdY0EB+vL5gBQLUN7uHlTbXPvHs0zGhHLl6d5JUog9uih1nnrLcSLF2m9uDia99BD1rPPu8qffyKuWEGf09P1yUVLlaKCzFevqhp9W7eqagg1a9J2N25knWmes+rny6ec1H/6SS1PS1O1DWfOtLyPrl1ped++bhu+z+jdm66rdes8s38OfoiK0ifzFVxDEnv6GblJoEJEfPtt+mNXqEBFTJ99lorX+gqOegkOpmm5cnQzFwRExJdf1gtS2gLMkZGUwZ0FLnvYv5/WL1RIP//IEXMh7bvv9OtkZKhSNbGxbhmejuRklUh1wQISZDgCsWRJ1S+uA1mnDgmDV66oZZcvUxFrAKpFaI3Tp0k4u3NHJS8NDVUZ1FetUvvMm9c88ent2ypJ6vbt7j8X3uT8eSVUli2rBG13wpUBbNWdFBxHBCo/I7cJVPHx5mU+hg/3XX9ee436MHgwlcgAoDIiRiO9oX/9NQl9deogNm9uu1ackPNYvlxdp99/T9dEz570MF+4kNID8PW8Z0/W+2NBoUYN82WJiYidOtG+p0+3vD0XcB450rVxWYJrE7IQU6wYff76ayqlw4XOuf3vf2pb1uD98gtlhQdAHD/evuNmZiK2bUvbNGxI/71XXlEZ51l4077ojBtH8ytWpPWzM8OG6c/rp5/ql1+/7lqKCaORBHgAKhIuuA8RqPyM3CZQIZJJYfBg9dZUp47v+sKFaJcuVW/WAPTweOIJ/Y0OgMwbQu4hLY2EbhaymdRU9blzZ7o23n476/39+COt27697WNaY9o02v6JJ7I+lqN8+aX59V6smF5jsngxaaxq1ND3k8uZsGAVGOiY5vnCBWVG/OMPZWpdtEhp5V58kcxVI0eq/g0e7L7x+4J79xALFqSx8P0wJATx0CFafuQIvejlyYN46pRzx7hwQf0mntB+5WZEoPIzcqNAxVy8SH90g4He9J1h0yYyLSxd6vi29++rN+CzZ2nexIn6B0pkJD1oOBnjoEHO9VPIuWzYoLQp7IOXloa4b5+5r9PHH9svfFni3Dn1cLTmn+Qszz9P+x4yRJn4tH5NTEaGeVFdLjzNzZbAaI133lH/OTa/G430AsYmeRY+tG3ePMcLefsLbFYtXZqulTZtlJ/ctGnkU8fj1NZEdIQVK2h7e2pTCo4hApWfkZsFKkTEatXMzQf2cuWKclwtXdpx36fdu5WPiFb78N139MCqW1e9Fc6YQes2a+Z4P4WcjdGoHKQBEDt2VObjDz/Ur8taiLFjnT9exYpKkHAnLERt3kwmpkWL7DenpaeTEMDnYNkyx4+v1VKZugJs3KiqLVhqVasirlnj+DF9SWam0pB/+SXNu3wZsX59/djKlFEvnvv2OX6czz6j7bt1c2v3BcyBmdJv3boF3bt3h6ioKIiKioLu3bvD7SziTxERRo4cCcWKFYPw8HB48skn4ZAme9/Zs2fBYDBYbL///vuD9cqUKWO2fOjQoZ4aao6kdWuarl3r2HaIFGp95Qp9P3eOaqrZs118PE337qV5NWvqa8/17w9w7RpAXBxA2bJqHQDaBtGxvgo5G4OBQtI//JC+L1tG1w8AwMyZ+lQcpikTnOHZZ2m6dKnz+zDl8mX6XwQEUHqIkiWpwLG9NRmDglQ1hCJFnMtaXrw4wJtvqu+vvELTffvofNatq5YdOEBpHEaOpEzsBw5Q9u/Tpx0/riOcOEFpHwYPBrhxw7V9TZsGsH8/JSTllDLR0ZSnb8AA+l66NKXT6NyZ7jsffeT4cbT3OcFHeEe+c502bdpglSpVMDY2FmNjY7FKlSrYrl07m9uMHz8eIyIicPHixXjgwAHs3LkzFi1aFJOSkhARMSMjAy9fvqxro0aNwrx582KyptBZ6dKlcfTo0br1kh0shJbbNVQczlukiGNq+6lTlb8Bh5nHxNiuh3brljLd9e2L2K+f/X4YqanK7HDmjP39FHIXs2fT9fjHH0pLtXatWv7oo0oL5Czbt9M+8uVzXwj8smVK0+Msa9cqJ3ZnuXgRsXhxxA4dKE1Eq1bm2qgvvtBvc+MG+XQBWHfmdxd9+6p+REUh/vyzc/uJj0eMiKD9TJ5seZ3Dh1UdxBMnlHvC668jrl6t9+OzRdmytN2ffzrXV8E6Ocrkd/jwYQQAjIuLezBv27ZtCAB49OhRi9sYjUaMjo7G8ZoQlPv372NUVBT++OOPVo9Vo0YN7NWrl25e6dKlcdKkSS6NIbcLVPfvU0QRgAqZzoo//lBhxhMm0E2HzQ2DByM2bky+B0eOqG3++498MrQ3ZnZ8/e03+47LN21n/LWE3AenCOnRg74bjSotgbMOxoj04lG8OO1n5Uq3dPVBpFnv3q7tJyXF9ag7o5EiKPl/GhRExXw7dSLnd0um/aFDaV2TW7RbycxUkY9a3yb2v7QXo1FFNTZoYH9R7EGD9Pevp5/Oepvbt9X6N2441k8ha3KUQDVjxgyMiooymx8VFYUzrWSDO3XqFAIA7jGJce7QoQO++uqrFrfZtWsXAgBu3bpVN7906dIYHR2NBQoUwOrVq+Pnn3+OqVm8Nty/fx8TExMftPj4+FwtUCEitmtHf/hx47Je988/lZ9F9+5Kq/Xpp+Zvsm+8QcvS01VF+tKlEd97T78eR9RkBadYMA1rFgRLcNLYiAiKrrp+XV1zpk7djsLC2uuvu6evnF/LWY1LVixeTDmQNm60TxPdtCn159lnKWdVVrDjdUyMqz21jlYzeO8epXgAoEAWayQkILZsqdfacTSxNprPHoxG8hPr00ddRxcu2N7m779pvVKl7D+OYD85SqAaM2YMPvroo2bzH330URxrxetz69atCAB4kdMP/z9vvPEGtmrVyuI2ffv2xYoVK5rNnzhxIm7evBn379+P06ZNw0KFCmHvLF7xRowYgQBg1nKzQPX99/Snb9zY9nonTyrH1I4d9RFU16+TU22hQsoEmDcvYlIS3cwBKELo+nW6MbG5L29e+98QOQmoMxFMQu4jM1M5ei9aRBpYAMTChV3fN0cWPvyw/devrX5yZJ0zTs9ZkZZG5jEWAh591LbJ89o1xIAAx8zr2uzszkYMZwVr8V56ib7z/aBhQ/puNFIerlWr1DbaxLA//ECBMPxCaM8LpDU4pcs339heb/JkJZgK7idbCFTWhA5t27lzJ44ZMwYfe+wxs+3Lly+P46xcrSxQXTJJkvL6669j69atzda/d+8eRkVF4dd2OAYsWrQIAQCvX79udR3RUJnDoeAGA73RWYPz/TRqZPkNPy2NHi5Go8o6/fPPZC4AoFxCTHo64uefk2nBXv75R6n7BcEePviArplOnVSSUHuzqtsiLU3lZ3I1WePhw8oE7omSNhs3qpcX9hsqVIgi2iwxaxatYyn5qS04+vGPP1zuss39c0RyfLy6b126RNoj/r5kiRo3t4AAxOho9VLmSqqHSZPsewllrfqIEc4fS7BOtojy69+/Pxw5csRmq1KlCkRHR8MVDvPScO3aNShSpIjFfUdHRwMAQEJCgm7+1atXLW6zaNEiuHfvHrz66qtZ9rt+/foAAHDy5Emr64SGhkJkZKSu5XZKlQKoXZtuO3/8YXmd3bsBFiygqKPvvwcIDTVfJzgYIDCQ1nnjDZo3ejQVeA0MpGK2TFAQwMcfO1alvnp1ml64AHD9uv3bCbkXLrC8ZIkqblyihOv7DQ5WBYE//NC1iLMdO2haqxb9L9wN/6c7dwa4eJH+R9evA/TqRf95U5Yto2nHjo4dh4sub93qbE+tc+wYwJEjdN45grFECYB69WgMixcDcIA3IkUo9upF3/v3p89GI0BCAkUO//orRVQ6y/PP03TLForQtIZE+PkJXhLwXIKd0rdrijnFxcXZ5ZT+hSZUJDU11apTetOmTfH555+3qz8rVqxAAMBz587ZPYbc7pTOcCkJK1bXB9E+9ia3u3pVReUBkHbLHXAR2/Xr3bM/IefDWipu/fu7Z7979ypTXfnyiMeOObcfTqj53nvu6ZcWo5H8d7Sao4MHldnrs89Ik7NxI2md795VNfocNT+yZotNcO5k/Hjat6kRg+sQclBMZKRKzglA0cu3b5NGsUsXMgHbG3yTFZyvyrTmI6ONTHbUcV6wj2xh8nOENm3aYLVq1XDbtm24bds2rFq1qlnahJiYGFyyZMmD7+PHj8eoqChcsmQJHjhwAF9++WVd2gTmxIkTaDAYcI2FjHGxsbE4ceJE3Lt3L54+fRoXLFiAxYoVww4dOjjUfxGoiGPHVETPzZv6ZZxaITjYseiol15SNzaTeAKn4VpqpqHbgmCLFStUPbXvv3fffg8epEALAMSiRZ0rLcL+OPZGuzoC+42Fh5OwxLBvj7bVqqX8KcuUcTxa8Phx2jY01HWnf1Pq1VN+UFpOntSPYcwYGicLO/Pn69d3Z0b3CRPoGE2a0HfT88XO76aJiwX3keMEqhs3bmDXrl0xIiICIyIisGvXrnjLpCYDAOCsWbMefDcajThixAiMjo7G0NBQbNKkCR44cMBs38OGDcMSJUpgpoV/we7du7FevXoYFRWFYWFhGBMTgyNGjMC72ruGHYhApahcmW4AXL4Dkd7uHnvMuTf7f/8lf4ZGjdx3Qxk7Vj0g3n7btfB3IXeRkEDZzd2VO0q7X06jsHixY9tmZKj0IYcPu7dfiKrunqlTdGYm+feUKkX/e63TOgDiwIGOH8toVLm/3PUChUhRhuwDZcnvi7OdR0cj3rlD8+7f16dt8QRa39PixelltEULxKNHyZ+LU8uI/5TnyHECVXZHBCoFpz7gm29mpkqpUKKEc9E7hw6RUOYuzp9XBWABEAsUsO1ILwje4P339RFo9nLwoOPRro5Qsybt30oWmwecPk1JRfl/9ddfzh2vY0fanku5uAN+iXrqKcvLZ8wg4cWZ8lmuwgE32hYSosym3bpl3zqH2YFs4ZQu5E46daLp2rUAn39OTuQrVwKEhZGjaqFCju+zUiWAqCj39bFkSYCdOwE2bQJ45BGAmzcB1qxx3/4FwRk6d6bpihUAd+7Yv92ePTStWZMCN9zJkSPkFG0wALRta3vdRx4BiI2lclKvvALQuLFzx3zySZouX+7c9paYN4+mHGBgSq9eAKmp1pd7kt9/p3vj9u1UoueZZwDS0qgsT8uWADNmuOb8LrgH+QkEr1OtGkCFCnRzGj4c4Oefaf7PP1MEkr9gMAA0awbQrRt9X7/et/0RhFq1AMqVowfpypU0b+xYesjfu2d9u9271fbu4upVgIEDAWrUoO+NGwMULpz1dvnyUX27uXOdF+5eeIH+n1u2AJw969w+tBw6RHUCg4PVC58l3C2M2kvhwlTbsW5dip5cuZJqPA4fTpGHISG+6ZegRwQqwesYDPSGPW4cwKuvAjzxBMD48QDdu/u6Z5Zp1YqmGzZQSLQg+AqDQWmpFiwA+O47Sgsyfz7ApEnWt3NEoNIWebbGokX0UvTNN6QpadqUtCTeonhxetkBsK9YelawdurppwHy53d9f57GYKB0E6NHA0RE+Lo3AmNAtJQhRHA3SUlJEBUVBYmJiZKTKpuRng5QsCBAcjI9mB5/3Nc9EnIz//1HWorgYIDMTCXkR0YCnD5N16qWzEwyh9+9S5qYSpWs73vtWtLQtGsHMH067VPLpUskwP3yC32vUQPgyy8BWrSgh7w3mTkToHdvGs/Bg84fHxGgfHk6d/PmAXTp4t5+Ctkfe5/foqEShCwIDgZo3pw+a81+d+6QD0efPuTH0LgxQIMG6m1XEDxB1aqkHUpPJ2HqtddIwEpKIq2vKcePkzCVNy9ATIz1/RqNAEOGkDnx998B6tQBiIsjn6cZM0h7U7IkCVMGA8CwYeTT07Kl94UpAEp6GRoKcPgwwP79zu/n339JmMqTB6B9e/f1T8h9iEAlCHbAZj8WqGbMIOf5Z58F+OkngI0byZ8jLo4ELG1G6//+o5u+ILgDg4FM5QAATZrQ9ceC1PffA5w/r1+fzX01atj2AfrjD9L0RERQdvDjx+kFoWFDciJfu5aEroYNATZvJt8tX/ruREWpLPJz5zq3j+vX1bl86SUSOgXBWUSgEgQ7YIFqyxaAdetIaEpNBShTBqBfP4DZs8k5tFo10hSMHUvr//MPmQhr1KA3YUFwB++/T47Ja9aQUNOmDfkxpaZSmaV585STuj3+U4gAn31Gn999l6IC27YlAaxUKdLQDh9OQtaWLSTI+QMcMDJvHpk2HSEjg4Soc+fI0X/iRPf3T8hdiA+VlxAfquwNIt10z5yhB1haGjkHz5unN3esXUumkZAQMpV06EB+JwCk0dq5k4QwQXA3O3eS2Tk1lb6HhlJ02K1bZJ7+9VeljTFl1SrS9uTNS1FznLokM9N3kW32kJoKULQojXHBAhKQ7MFoJMFxyhQa8/btAJUre7avQvZFfKgEwY0YDEpLlZZGN9/p0819R1q3phw5aWlkGrl0CaBiRdJSXb9OAlZyste7L+QC6tQh8/Inn1Bh3tRUgPh4la/qtdco99N331HuKH6V3ruX/KEAKCecNg+cPwtTACQ0DhhAn4cOBbh/P+ttbt0iU/2UKfR99mwRpgT3IBoqLyEaquzPH39QqHJkJGkDHnvM8nrbtwPUr0+fw8Np3agoeuAlJAD06KGipATBEyCSNvXGDTLXWUoCWrYsabDi4uh7vnwAJ04AREd7t6+ucvcu/RcvXQL44guADz6wvu6BAyRMnTlDwtjUqZSwUxBsIRoqQXAz7duT0+9ff1kXpgAA6tUD6NqVtFc//khvvyVKUO4eAIA5cyiqSBA8hcFAAlNcHAlTISEkxI8eTVF5ISF0DcbFAQQFUaqA2NjsJ0wBkMmOfRbHjKGEo9Z47TUSpjhjuwhTgjsRDZWXEA1V7iI9HeDKFRKktDz9NPlZ9ekD8MMPvumbkDvYs4ei9NLSAL79FuCdd9SyO3coMvXCBYDnnqNEmdkZo5E0wHv2UETizz+bm+O1+bvi4wGKFPFNX4Xsh2ioBMGHBAebC1MAyldl1iwy/wmCJ1ixgjRRaWlkpu7fX788Xz41P7sLUwBUx44zxU+fTi8s6en6dWbPpmn79iJMCZ5BBCpB8CKc/DM1FWDyZF/3RshppKYCDBpEwQ83bwLUrk0503yReNPbNGlCQpXBQBqq1q3pHABQigTOVWUt0lEQXEUEKkHwIpxhGoBMfomJvu2PkDMwGklgqFBBaWoGDqScUQUK+LRrXmXgQKpekC8f+Tq2bElO6xs2kEa4UCEyuwuCJxCBShC8TNu25KielATw5psqb5AgOEN8PCXt7NaNckgVLUoRqZMmUSRbbqNdO3I4f/hh8ql65RUysQMAvPyyb7O7CzkbEagEwcsEBAB8/TVFVy1cSG/MoqkSnOXTTwH27aPUHGPHApw8SSa/3EzVqiRUhoaSxur332l+jx6+7ZeQsxGBShB8QJs2AKtXK9NE48bK30MQ7OXGDYD58+nz6tVkTs6Tx7d98hcaNKDs8EylSpRgVxA8hQhUguAjWrak+n7R0ZRwkDM3C4K9zJpF2cFr1iQBQtDTuTPAl1+SVnjw4NzhnC/4DhGoBMGH1KgBMH48fZ47V5UDEYSsMBpVLrO33xZhwRpDhlChaEniKXgaEagEwcc89xyVqDl2DGDXLl/3RsgurFtH2c6josjxWrBObnTOF7yPCFSC4GMiI6m+GADAb7/5ti9C9mHqVJr27Cl+U4LgD4hAJQh+QPfuNJ03zzzDsyCYcvYswKpV9LlvX592RRCE/0cEKkHwA1q2pLw5165REkIhZ3LwIJWDcZVJk8jfrkUL24W6BUHwHiJQCYIfEBwM0KULfZ4zB2D9eiqlUaoUwKlTvu1bdiU11b+c/KdOpfxI77/v2n6uXKHSKgAAH37oer8EQXAPIlAJgp/AZr/586kO2b//UhZsjuTKiWzbRiH/48e7T/jJzAT4+GPyTYuKAqhfH+CNN8jp35SzZwHOnfO84JWYSAk4AQBmzqQs+c4yaRKlSqhbF+Cpp9zTP0EQXEcEKkHwE2rXplpsAABhYQDPPEOf580jISGnceIEQPv2lOV72DCA4cNdF2xu3aLSI2PHkmktORlg+3aA6dNJYNXuf9s2gPLlAcqUAXjoIYCGDcmEVq8eaZJGjKDUBO7g668pCScA1ZabN8+5/dy8qfKVffKJpEoQBH9CBCpB8BMMBoBFiwC++QbgzBmAJUvoQX/pEsDff/u6d+7l2jUquXPjBkDJkjRvzBiAjz5yXqg6dYqE0rVrKQ3FnDkAhw6R8JInD8DOnZRNHICO8eGHSlBNSqL6b3/+CbBjB/k6jR4N8M47rgt5CQkAEyfSZ9YoTZvm3L6++w7gzh2AatVIcBQEwX8QgUoQ/IjKlQHefZeyp4eGArz4Is2fO9e3/XIn9+5RrblTpwAeeYQEnW++oWXjxyvhwxEyMigX0+nTpHGKjaViwZUqkW9av3603siRJCCtX08m1dBQ2ubAATK1/vYb1YCbMIEE3KlTAd57zzWhavRoGnP9+nSMkBCA3bupOUJysjpPH38s2ilB8DtQ8AqJiYkIAJiYmOjrrgjZiM2bEQEQIyMRU1J83RvXuXABsXZtGlP+/IhHjqhl48fT/AoVHN8vbxsVhXj+vPnyK1cQ8+ShdZYvR6xViz4PGmR9nzNm0DoAiEOHWl/v4kXE995DrFoVsW5dxJYtETt1QnzpJcSXX0YMCqJ9bN5M63fpQt/fesuxMU6ZQtvFxCBmZDi2rSAIzmPv81sEKi8hApXgDJmZiCVL0oN00SJf98Y1duxALFqUxlKwIGJsrH759etKgLl+3f79HjyIGBJC282aZX29Dz6gdQoUoGm+fIhXr9re908/qT5t3KhfduECYt++6ti22jPPqO02baJ5ERGIycn2j/Opp2i7r76yfxtBEFzH3ue3AdGfAotzLklJSRAVFQWJiYkQGRnp6+4I2YihQwG++AKgY0eApUvJ3+fQIYA6dQCCgnzdO/vYtAmgbVuKTqtcGWDFCjL3mVKxIsDRowDLl5PDelZkZFBR4F27aP8rVlg3hV27Rse8e5e+Dx9O5ris6NePTH+PPEKmwbx5Ac6fB3jiCYCLF2mdRo3IVBsaShF9ycnUt8xM+o26dKE8YwAkYj32GMDJk+Qs37t31n24dYu2z8wkZ/7y5bPeRhAE92D389sr4p0buHnzJnbr1g0jIyMxMjISu3Xrhrdu3bK5zeLFi7FVq1ZYsGBBBADcu3ev2Tr379/H/v37Y8GCBTFPnjzYvn17jI+Pd/nYpoiGSnCW//4jzURICGkp2ITUurVjGg5vsGULaXUyM9W8u3cRy5RRmhpbf4HevS2b2BYvRnz7bcRJkxBXryZt0dChiNWq0foPPUSmt6z48ENlbrx9274xJSYqLeF775H2rGJFZX5jU54jfPEFbV+jBqLRmPX6c+bQ+lWqOH4sQRBcI8eZ/Nq0aYNVqlTB2NhYjI2NxSpVqmC7du1sbjN79mwcNWoUTps2zapA1adPHyxevDhu2LAB9+zZg82aNcPq1atjhsZJwZljmyICleAKVavqTUgBATStWxfx2rWst79wgUxNnuTqVfL1AkD8+GM1/6OPaF7Jkoh37tjex8yZtG7jxmpeYiJiWJh1c1pQEOKCBfb1MTGRzHSrVzs2ttWr6VgGAwk1AIglSlj217KH69eVT9f69Vmv//zztO4nnzh3PEEQnCdHCVSHDx9GAMC4uLgH87Zt24YAgEePHs1y+zNnzlgUqG7fvo3BwcE4f/78B/MuXryIAQEBuHbtWrccmxGBSnCFzZvJyXniRMTjxxG3bVO+QI89Rtqa559HrFkTsV8/vdPy2bOI0dH2P7yd5d139YLO3LnkdB4cTN+XLs16H0eP0rphYYipqTSPtTPFitEYq1RBLF0asXt3Wnb5sufGpKV7dzW2/PkRDx1ybX98vlq0sL3evXuIefPSurt2uXZMQRAcJ0cJVDNmzMCoqCiz+VFRUThz5swst7cmUP35558IAHjz5k3d/GrVquGnn37q0rHv37+PiYmJD1p8fLwIVIJbOXIEsVQpy1qbHj3I7Hb7ttKomDpHIyKeOoVYvTpi+/aI69bZZ36yxIkTyhT59NM0DQ0lkxYAYtu29u3baEQsVIi22baN5rVtS99HjHCub+7i+nXSsuXNi7h1q+v7O3MGMTCQxrZ7t/X1VqxQGjFnfx9BEJzHXoEqW+ShSkhIgMKFC5vNL1y4MCQkJLi035CQEMifP79ufpEiRR7s19ljjxs3DqKioh60kpy9UBDcRIUKlG/pnXfIcXrSJMrhFBgI8OuvAG+9BfDSS5Skkh2i16whZ2hm2DCA/fvJmbt1a3IKdybn1UcfkRN2mza0r/btqZbevn2U9f3bb+3Lm2QwkLM3AMDWrZQZfN06+t65s+P9cicFC1IwwIULqo+uUKaMqt/41VfW11u2jKYdO0ruKUHwZ3wqUI0cORIMBoPNtmvXLgAAMFi4kyCixfmuYrpfZ449bNgwSExMfNDi4+Pd3k9BKF6chJXvvwcYOJCSUM6dCxAQQBFk69dTlvA1aygzOSJFrAEA7N0LsHAhPaR79gSIiKB6d926Ud05jv9FBFi8mOZPmqQi25jt2wF+/5328+WXJNDNnUvRfABUIqVsWfvH1LAhTbdupajGjAzKDF6xokunyi1ERFD2encxZAhNFy6k7PimZGZSxCMACVSCIPgvPg267t+/P3ThVzQrlClTBv777z+4cuWK2bJr165BkSJFnD5+dHQ0pKWlwa1bt3RaqqtXr8IT//8KGh0d7dSxQ0NDITQ01Om+CYKzdO5Mdex69KDv8+cD1KpFmqw1a6g472efkaADAPDyyzTvm28oU/nYsbQ8IYEEq3ffJcEGgASlwYMBGjcGKFWKUhDs2UPLXnuNauABkODxzz8AW7Y4XiJFK1BxEeEsbhPZlurVSTO4bh1pCz//HKBcORJOMzJI23ftGglxTZr4ureCINjEG/ZHV2HH8O3btz+YFxcX5zan9AWaEKFLly5ZdEp39tiMOKUL3iYujhqTmYlYvjz547z6Kk0DA8n/SctPP6koQvbxCQpCfPNNxEaNLPts5cmDaJJtxGlSUsyTZZ465Z59+yN//qkfa5Ei5HsWGqrmdevm614KQu4lxyX2fPrpp+HSpUvw008/AQDAm2++CaVLl4YVK1Y8WKdChQowbtw4eO655wAA4ObNm3D+/Hm4dOkStG3bFubPnw8xMTEQHR0N0dHRAADQt29fWLlyJfzyyy9QoEABeP/99+HGjRuwe/duCAwMtPvYWSGJPQV/YPJkMgsyb7wB8PPP5ustWUK18VJTqeDwjBlkdgMAiI8nzUlKCpkT8+YlDRib+NxBw4bkHwZACUx37HDfvv0NRCqWPHs21TVMS1PL8uYFePxxgClTlPZPEATvkuMSe964cQO7du2KERERGBERgV27djVLrgkAOEtTe2LWrFkIAGZthCZcKCUlBfv3748FChTA8PBwbNeuHZ43SS5jz7GzQjRUgj9w65bKfxQaajuP0v79iPPnI6ane617DxgyRGlnJkzw/vF9RUoK4r//Ii5bRppDbYJUQRB8Q47TUGV3REMl+Avvvgvw3XfkC/X1177ujWWWLQP4f0UzxMcDlCjh0+4IgpCLsff5nU0qgQmC4C6++ooi/lq29HVPrNOiBZn9atYUYUoQhOyBCFSCkMsIDSWByp/Jl48iBAVBELIL2SKxpyAIgiAIgj8jApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLBPm6A7kFRAQAgKSkJB/3RBAEQRAEe+HnNj/HrSEClZdITk4GAICSJUv6uCeCIAiCIDhKcnIyREVFWV1uwKxELsEtGI1GuHTpEkRERIDBYHBo26SkJChZsiTEx8dDZGSkh3rov8j4Zfwy/tw7fgA5BzJ+344fESE5ORmKFSsGAQHWPaVEQ+UlAgICoESJEi7tIzIyMlf+mRgZv4xfxp97xw8g50DG77vx29JMMeKULgiCIAiC4CIiUAmCIAiCILiICFTZgNDQUBgxYgSEhob6uis+QcYv45fx597xA8g5kPFnj/GLU7ogCIIgCIKLiIZKEARBEATBRUSgEgRBEARBcBERqARBEARBEFxEBCpBEARBEAQXEYHKR0ydOhUeeeQRCAsLg1q1asG///5rc/0pU6ZAxYoVITw8HGJiYmD27Nm65dOmTYPGjRtD/vz5IX/+/NCiRQvYsWOHJ4fgEu4ev5b58+eDwWCAjh07urnX7sMT4799+zb069cPihYtCmFhYVCxYkVYvXq1p4bgEp4Y/+TJkyEmJgbCw8OhZMmS8N5778H9+/c9NQSn+eeff6B9+/ZQrFgxMBgMsGzZsiy3+fvvv6FWrVoQFhYGZcuWhR9//NFsncWLF0OlSpUgNDQUKlWqBEuXLvVA713HE+PPTvc/T/3+jL/f/zw1fr+4/6HgdebPn4/BwcE4bdo0PHz4MA4YMADz5s2L586ds7j+1KlTMSIiAufPn4+nTp3CefPmYb58+XD58uUP1nnllVdwypQpuHfvXjxy5Aj27NkTo6Ki8MKFC94alt14YvzM2bNnsXjx4ti4cWN89tlnPTwS5/DE+FNTU7F27dr4zDPP4JYtW/Ds2bP477//4r59+7w1LLvxxPh/++03DA0Nxblz5+KZM2dw3bp1WLRoURw4cKC3hmU3q1evxo8//hgXL16MAIBLly61uf7p06cxT548OGDAADx8+DBOmzYNg4ODcdGiRQ/WiY2NxcDAQBw7diweOXIEx44di0FBQRgXF+fh0TiOJ8afne5/nhg/kx3uf54Yv7/c/0Sg8gF169bFPn366OZVqFABhw4danH9Bg0a4Pvvv6+bN2DAAGzYsKHVY2RkZGBERAT++uuvrnfYzXhq/BkZGdiwYUOcPn069ujRw29vKJ4Y/w8//IBly5bFtLQ093fYzXhi/P369cPmzZvr1hk0aBA2atTITb32DPY8UD744AOsUKGCbt5bb72F9evXf/D9pZdewjZt2ujWad26NXbp0sVtffUE7hq/Kf58/9PizvFnl/ufFneN31/uf2Ly8zJpaWmwe/duaNWqlW5+q1atIDY21uI2qampEBYWppsXHh4OO3bsgPT0dIvb3Lt3D9LT06FAgQLu6bib8OT4R48eDQ8//DD07t3b/R13E54a//Lly6FBgwbQr18/KFKkCFSpUgXGjh0LmZmZnhmIk3hq/I0aNYLdu3c/MPOcPn0aVq9eDW3btvXAKLzLtm3bzM5X69atYdeuXQ/Gb20da+c0O2HP+E3x1/ufM9g7/uxw/3MGe8bvL/c/Eai8zPXr1yEzMxOKFCmim1+kSBFISEiwuE3r1q1h+vTpsHv3bkBE2LVrF8ycORPS09Ph+vXrFrcZOnQoFC9eHFq0aOH2MbiCp8a/detWmDFjBkybNs3jY3AFT43/9OnTsGjRIsjMzITVq1fDJ598AhMmTIAxY8Z4fEyO4Knxd+nSBT777DNo1KgRBAcHQ7ly5aBZs2YwdOhQj4/J0yQkJFg8XxkZGQ/Gb20da+c0O2HP+E3x1/ufM9gz/uxy/3MGe8bvL/e/IK8eTXiAwWDQfUdEs3nM8OHDISEhAerXrw+ICEWKFIHXXnsNvvzySwgMDDRb/8svv4R58+bB5s2bzd7s/QV3jj85ORm6desG06ZNg0KFCnmj+y7j7t/faDRC4cKF4eeff4bAwECoVasWXLp0Cb766iv49NNPPT4eR3H3+Ddv3gxjxoyBqVOnQr169eDkyZMwYMAAKFq0KAwfPtzj4/E0ls6X6XxHzml2w57xM9nh/ucotsafHe9/jpLV7+8v9z/RUHmZQoUKQWBgoNmb49WrV82kcCY8PBxmzpwJ9+7dg7Nnz8L58+ehTJkyEBERYfYH+vrrr2Hs2LGwfv16qFatmsfG4SyeGP+pU6fg7Nmz0L59ewgKCoKgoCCYPXs2LF++HIKCguDUqVPeGJpdeOr3L1q0KDz22GM6AbtixYqQkJAAaWlpnhuQg3hq/MOHD4fu3bvD66+/DlWrVoXnnnsOxo4dC+PGjQOj0ejxcXmS6Ohoi+crKCgIChYsaHMda+c0O2HP+Bl/v/85Q1bjz073P2ew5/f3l/ufCFReJiQkBGrVqgUbNmzQzd+wYQM88cQTNrcNDg6GEiVKQGBgIMyfPx/atWsHAQHqJ/zqq6/gs88+g7Vr10Lt2rU90n9X8cT4K1SoAAcOHIB9+/Y9aB06dIBmzZrBvn37oGTJkp4ckkN46vdv2LAhnDx5Uic8HD9+HIoWLQohISHuH4iTeGr89+7d0/0XAAACAwMBKfDGvYPwMg0aNDA7X+vXr4fatWtDcHCwzXWyOqfZAXvGD5A97n/OkNX4s9P9zxns+f395v7nZSd4AVXY+IwZM/Dw4cM4cOBAzJs3L549exYREYcOHYrdu3d/sP6xY8dwzpw5ePz4cdy+fTt27twZCxQogGfOnHmwzhdffIEhISG4aNEivHz58oOWnJzs7eFliSfGb4o/R7l4Yvznz5/HfPnyYf/+/fHYsWO4cuVKLFy4MH7++efeHl6WeGL8I0aMwIiICJw3bx6ePn0a169fj+XKlcOXXnrJ28PLkuTkZNy7dy/u3bsXAQAnTpyIe/fufZA2wnT8HDb+3nvv4eHDh3HGjBlmYeNbt27FwMBAHD9+PB45cgTHjx/vt2kTPDH+7HT/88T4TfHn+58nxu8v9z8RqHzElClTsHTp0hgSEoKPP/44/v333w+W9ejRA5s2bfrg++HDh7FGjRoYHh6OkZGR+Oyzz+LRo0d1+ytdujQCgFkbMWKEl0bkGO4evyn+fENB9Mz4Y2NjsV69ehgaGoply5bFMWPGYEZGhjeG4zDuHn96ejqOHDkSy5Urh2FhYViyZEl8++238datW14akf389ddfFv+rPXr0QETz8SMibt68GWvWrIkhISFYpkwZ/OGHH8z2+/vvv2NMTAwGBwdjhQoVcPHixV4YjeN4YvzZ6f7nqd9fiz/f/zw1fn+4/xkQs7k+XBAEQRAEwceID5UgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgOMG1a9cgOjoaxo4d+2De9u3bISQkBNavX+/DngmC4Auklp8gCIKTrF69Gjp27AixsbFQoUIFqFmzJrRt2xYmT57s664JguBlRKASBEFwgX79+sHGjRuhTp06sH//fti5cyeEhYX5uluCIHgZEagEQRBcICUlBapUqQLx8fGwa9cuqFatmq+7JAiCDxAfKkEQBBc4ffo0XLp0CYxGI5w7d87X3REEwUeIhkoQBMFJ0tLSoG7dulCjRg2oUKECTJw4EQ4cOABFihTxddcEQfAyIlAJgiA4yZAhQ2DRokWwf/9+yJcvHzRr1gwiIiJg5cqVvu6aIAheRkx+giAITrB582aYPHkyzJkzByIjIyEgIADmzJkDW7ZsgR9++MHX3RMEwcuIhkoQBEEQBMFFREMlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKLiEAlCIIgCILgIiJQCYIgCIIguIgIVIIgCIIgCC4iApUgCIIgCIKL/B/KVz29kWPregAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(x_store,vx_store,c='b')\n", + "plt.scatter(x_store[0],vx_store[0],c='r')\n", + "plt.xlabel('x')\n", + "plt.ylabel('vx')\n", + "plt.title('phase space')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "4ba7dd61", + "metadata": {}, + "outputs": [], + "source": [ + "t_data_exact = t_store.copy()\n", + "x_data_exact = x_store.copy()\n", + "vx_data_exact = vx_store.copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0ea3ac8a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL4AAAJaCAYAAAAh546iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKxklEQVR4nOzdd3xT1f/H8XfaQtl7yN4gCiKCCCjiABRUEEVAlCFDEBUQJ/JVhihOxAWCCDgAERBxgFBRAcEBCCJDZe89WmZHcn9/nF+SpjNpk6ZcX8/Ho48m6b03J2nOzb2f+zmf47AsyxIAAAAAAABgMxHhbgAAAAAAAAAQCgS+AAAAAAAAYEsEvgAAAAAAAGBLBL4AAAAAAABgSwS+AAAAAAAAYEsEvgAAAAAAAGBLBL4AAAAAAABgSwS+AAAAAAAAYEtR4W6AP1wulw4cOKDChQvL4XCEuzkAAAAAAAAIE8uydPr0aZUvX14RERnndF0Uga8DBw6oUqVK4W4GAAAAAAAAcom9e/eqYsWKGS5zUQS+ChcuLMm8oCJFioS5NcGRmJioJUuWqE2bNsqTJ0+4mwNctOhLQHDQl4DgoT8BwUFfAoLHbv0pLi5OlSpV8sSLMnJRBL7cwxuLFCliq8BXgQIFVKRIEVt86IBwoS8BwUFfAoKH/gQEB30JCB679id/ymFR3B4AAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwCSiY+XXntNatlSat1a+ugjyeUKd6sAAAAAAFkRFe4GAEBucfKkdPvt0qpV3se+/15avNgEwPLkCV/bAAAAAACBI+MLACQlJUmdOpmgV7Fi0rvvSmPGmGDXrFnSgw+Gu4UAAAAAgECR8QUAkiZPln74QSpUSPrpJ6lBA/P4lVdK7dtL06dLd99tMsIAAAAAABcHMr4A/OclJEgvvGBuv/yyN+glSbfdJj3+uLn91FMmM+xi4HJJu3ZJx46FuyUAAAAAED4EvgD8582dKx06JJUrl/aQxmeflUqWlLZskaZOzfn2BWr+fKlaNfNTurTUtq20d2+4WwUAAAAAOY/AF4D/vHfeMb8HDEi7gH2xYtLzz5vbL70kJSbmWNMCYlnSsGHSXXdJe/ZIUf8/mP2776RrrzUZYAAAAADwX0LgC8B/2h9/SL/+agJeGRWw79dPKltW2r3bFLvPjT7/3AzVlKRnnpFiY6V//pHq1DEZX506SfHx4W0jAAAAAOQkAl8A/tM++cT87thRuuSS9JfLn1967DFze+xYU0MrNzlzRho0yNwePty0sUABqXZtKSZGKlFCWrvW/A0AAAAA/isIfAH4z3I6pdmzze377st8+YcekooWlf7+W/rxx9C2LVAffywdOSJVry4995zv3ypVMrNSStKbb0p//pnjzQMAAACAsCDwBeA/a/ly6eBBU8PrllsyX75IEemee8ztefNC2rSAuFzS22+b20OGSNHRqZe54w6pc2ez7COPmHpgAAAAWWFZ0ooVpvbpkCHmOOTo0XC3CgDSRuALwH/WzJnmd6dOaQeL0tKpk/n9xRcmYyw3+P57U8urSBGpV6/0l3v9dTP88eefTT0wAAims2fNfvV//5OmTDF1BgF4JSaaWaRzy/FDVh04IN12m3T99aaEwltvSYMHSzVqSAsXhrt1AJAagS8A/0kJCd6srXvv9X+9m26SiheXDh+WVq4MTdsC9emn5nf37lLhwukvV6mS9PTT5vaYMbmvThkAX4mJZtbZ5s1N/23aVHrttdw5ScUPP0h165ph4y++aCYEuewy6bffwt0yIPxWrZJatDAX2cqVMxeq+vQxWecXm61bpSZNpEWLpLx5pa5dpSeekK68Ujp9WmrfXlqwINytBABfBL4A/CctXiydPGkOQFu29H+9PHmkDh3M7blzQ9O2QJw/L82fb25365b58oMGmQPujRs5MAVys127TKBr0CDpl1+kfftMEOmpp6TrrpN27gx3C70+/lhq3drMHlupkgl6Va9uskJuvln66adwtxAIny++MJlRP//sLTNw7pw0dap0+eUmS/JiKT+wfbt0ww3S/v0m0L1unZnp+rXXzP7pvvtMNlvnztKyZeFuLQB4EfgC8J80Y4b53aWLFBkZ2Lru4Y7z5oU/a+rbb82MjlWqSM2aZb58sWLSo4+a22PG5K6DbZfLnOwfPhzulsBOXC4T6B42zPT3e+81w3IOHQp3y9K3bp3pz3/8YTJM337bnFROmmRmaF2zxvz933/D3VJzctunj3mfe/SQNm+WJk82k2i0bm2GP955Z+5oK5DTli0z+x2n0xw77NplMjlXrJCuuspcgLvvPvOTGzM5k9u61QS9DhwwAbuffjJZnW5585qJdDp2NFn1d90lbdsWpsYCQAoEvgD858TFebOd7r8/8PVbtTJZUwcOSL/+Gty2BWrWLPO7a1fJ4fBvnSFDTK2vP/7IHZkY58+b4riXXCJVq2Z+X3qpeW25KTBnZ/v3Sxs2SOfPBxgFzuW+/tqcmN16q/Tyy6a23WefmT5QoYJ0993Snj3hbqWvbdvMPubQIal+ffN/efRRM7TowQdNUOyKK0yA+JZbpGPHwtfWo0fNhB9JSWYfNH26VKiQ+VuhQtJXX0nXXmtqffXqFf4LBUBOOntW6t3b9I8uXcy+p0oVKSrKZG3++qs0erS5P2uWGSJ49my4W5222Fjp9ttN5mnduqa2aJkyqZeLijIXFps0kU6cMOucOpXjzQWAVAh8AfjPmT9funDBBFeuuirw9aOjzSyJUniHO8bFmYwvyZx0+qtUKW8R/DffDHqzArJ7t6kLMny4OYnOk0eKiDDF+rt1M4HJuLjwttHO/vjDZOVUrCg1bpxH993XTp07R2r//nC3LHvOnzcnnO3beyd+6NvXfN7HjjVDCF0uMwTpqqtMfarcIDbWtPnECenqq01WSMWKvstUrmxOOmvUMNkjXbqYE+twGDrU9Nt69aQPP0wdfM+XzwzjKlzYDNdkUg38lzz/vLRjhxn++8EHqbPL8+SRnnvOFIMvWFBassTsj0+eDE97M9K3r8narFhR+vFHc4EqPfnzS19+aZb95x8z2QUAhBuBLwBBY1kme2L+fOn9983wnO++y33p++5i8Pff73+WVEru4Y5z54YvK2nePPPe1q0rNWgQ2LqDB5vfX38dviFI58+bq8H//muybz791FztPnVKGjnSnCTMnGkCE2vWhKeNdvbppyYA9P335n6JEpZcrgh9+WWEGjeW/vorvO3LqgMHzHCcadNM/37iCZOl8MEHJtPrmWdMEGbjRqlRI+n4cZMRNmdOuFtu2rdli+kPCxZIRYumvVzp0ubEsmBBE7QbNSonW2msX+/dl06darJI01K5svTkk+b2yJHhC9KlZ+tWU4y/e3dzcv/22xfvZx+5x2+/SePHm9uTJmU88Uzr1mY/XLy42TfdfHPuyvxasMAc60RFmYsFZctmvk65ctJHH5nbkyaZABgAhJV1EYiNjbUkWbGxseFuStAkJCRYX375pZWQkBDupgDZdviwZT31lGVVrWpZJgzk+1O0qGU9+KBl7d0b/OcOtC/t3WtZDodp144dWX/ec+csq2BBs53ffsv6drLj5pvN87/4YtbWv+MOs/7DDwe3Xf4aNMg8f5kyaX82Vq60rMqVzTJ58ljWm29alsuV4820HZfLsl56yds/O3SwrJ07TV8aP36pdfnlLkuyrNKlLWvTpnC3NjC//mpZ5cqZ11WihGX98EPGy58/b1n33GOWdzgsa9KknGlnWn76yduOlSv9W+ezz8w6efNa1rZtoW1fSrffbp67a9fMl42NNf8PybI++ij0bfPHH39494Fp/XTqZFn//pv17XOc99/ldFrWVVeZz9H99/u/3l9/me9DybK6dMkd33enT1tWpUqmTcOGBb6+ez/RrVvW20BfAoLHbv0pkDgRGV8AssyypClTpJo1pVdfNcNuoqKkhg1NMeO77jKZC7GxpthxnTrhH+ryySem3ddfb+pJZVX+/CZbSTKZVzlt/37v8Cx/ZnNMyyOPmN+zZplCtDlpyRKTWSGZzJyUw7kkqXlzk1Vy112mGPBjj5nsHep+ZZ3LJQ0YID37rLk/dKi5gl+1qrlftepp/fBDkq66ygxha9Mm99XASs/cuWaG1oMHTeHl33+Xbrwx43Xy5TOf//79zeeqf38zFDKnP2MJCeb/Ipk6Xs2b+7de587mf5SQID39dOjal9LatdI335isTH+yzYoUMbNRSmZ5pzO07cvIiRNmeOhVV5mMV4dDatvW/N9HjDC3IyLM5+myy0xtOGqTIRDz5plh5IUKSePG+b9evXrezKrZs81MieE2erSZrbVq1awNWRw92vz+7LPcU+je5TL11V580exvO3Qwkwv873/Spk3hbh2AkMmBQFy2kfEF5D5nz1rWvfd6r443amRZc+da1pkzvsslJVnW0qWW1by5N5thwYLgtSOQvuRyWVbt2qYd06Zl/7k//9xsq0aNnL8y+8Yb5rmvuy7r20hK8mbHzJ8ftKZlKi7Om8k1cGDmy7tclvX6697P2gMPWFZiYujbaTcul2UNGGDew4gIy3rvPd+/J+9Lx49b1uWXm2Xr1rWs48fD02Z/LVpkWVFRpr133GE+Y4FwuSzr2We9n7HHH8/ZPv32297sxxMnAlt340ZvFuvataFpX0q9e5vnu/de/9c5c8aySpY0682bF7q2ZWTnTsu69FLvd1G3bpb1zz+pl9uwwbLatvV+Htq3D/z/Es7jvLg4y/r+e8uaMMGyxoyxrNmzTdYdQu/8ecuqWdN8bkaOzNo23nvPu5/+7rvgti8QGzZ496vffJP17bj7Ut++WVs/GH0pPt68lwMGeI970vu57z7LOnIky08F5Gp2i0EEEici8BUmdvvQwX/btlnWt9+aoMmcOWa4RXx8uFsVmAMHLKthQ3OAEBVlWa++aoIoGUlK8p4sFSgQvBO0QPrSypXm+QsWNOn72XX6tGVFR5ttbtyY/e0Fwh1IfPfd7G3n8cfNdu6+Ozjt8sfgweY5q1VLHSjNyPTplhUZada9/XYTfIX/hg/3nvDPmJH67yn70p49llWxolmnaVPLOnUqhxvsp99/N/sUdyAms31RRtwBZckMz86J4FdcnBlWKlnWxIlZ20a3bmb9zp2D27a0nDhhWfnzm+dbsSKwdd3BxewE7LNqyxbLuuQS8/wVK1rWmjUZL+9yWdbkyd59fLVq5vvaX+E4zrtwwQxHy5s39cl83ryW1a6dZU2ZcnGe1O/da4bJvvmmZb31lrn9zTdmePO2bdnr98H0v/+Z97tcuawHG10uy+rTx/IMOT90KLht9IfTaVnXXmva0LFj9rb188/ekgV79gS+fnb60uHDltW/vym5kbw/FC5shrmPHGlZ779vLq7deaf3IkKpUmYoeW4YbgoEk91iEAS+LgJ2+9Ahc998Y1nXXJP21aUCBcwB6fjxlrV5c+7+oj1wwLLq1PEekP30k//rJiRYVps2Zt3KlYNzIh1IX+rXzzx3z57Zf163du2yV2crKw4e9B6c7duXvW2tX+89KQo0oyEr1q0zV7Ely1qyJPD1FyywrHz5vMGYY8eC3kTbcbks65lnvPub999Pe7m0+tLGjZZVrJhZr3797H/egm3fPu/V+1tuCc5FhGnTvJ/Rt9/O/vYyM3Kkea5atcw+Miv+/NNsIzLSsnbvDm77UnrrLfNc9eoF/l21f785+ZUsa/Xq0LQvLbGx3u+tQD/Ha9Z461dGR5vAkT9y8jjP5TLZLJdd5u3nVaua7Mdevbyv3f0TEWG+BwO58BAOe/aYizPuLL2MfsqXN8H9tDL4cspff3kzpObOzd62LlywrCuuMNu67bacPy6cMsV7oTArwaqUWrY02xs0KPB1s9qXPvzQ+/0lWVbZsuaCxqJF5v1Ny+rVZh/hXufee00WH2AXdotBhDTwtWzZMuv222+3ypUrZ0my5vsxPuann36yrrrqKis6OtqqVq2aNTHAS5oEvpCcy2W+hBcuNFfnBw40adR165qDu6uusqzu3S1r6tTcMTzn1Clz4On+Es2Tx7IaNDAHAc2bW1bx4qkP4CpWNNlRixfnnquYlmUK/daqZdpYqVLWiimfOmVZ1aubbfTrl/02+duXzp61rCJFzPMGEqzLzOTJZptXXx28bWbm/ffNczZpkv1tuVzmBFYKfWFvp9MEqyRTuDerfv7Z22/q1LGsXbuC18ZgOXvWTIAQbomJZmioe9/y6qvpL5teX/rjD2+mTKVKOZ/dmJ6zZy2rcWNvECbQ4Y0ZGTfOm9EaaFZTIE6cMJkHkhmOlh033WS28+STwWlbWlwu812bnWzT++8362en2HUgXC7Luusu73fr4cOBb+P4cRN8SD4U1unMeJ2cOM5LSLCsmTMt68orvW0rUybtoaSbN5thj+6i6+7Mu9x4aL13rzm2S565FhFhLh7ee6/JbGzd2ryWypW9F0PcP1dcYVmvvJKzWapOp2U1a2aev0OH4ASqNmzwvgfZze4OxJEj3skoXn89ONtcssRsL3/+wPtgoH3J6bSsxx7zfh6uuspMdJJZn3WLjzcXJNxB+pYtg/v9gtA5e9ayli0zGaGTJpmRAsEI3Aaby2USCVatMn3j66/NsVZOfM7sFoMIaeBr4cKF1vDhw6158+b5FfjasWOHVaBAAWvw4MHW5s2brQ8++MDKkyePNTeASyEEvmBZ5gDgscfMVb3Mrvy5f6KiTEbOxx+H5+Bu6VJvLSOHw7KGDk39he90mqyb114zB3LuYRXJg2AjR+ZMNk5GfvzRG2yoUsWytm/P+raWLfO+J9mdEdHfvvTJJ97hKv4e/PgjmNlX/rrlFvN8Y8cGZ3uvvGK216JFcLaXng8+MM9TqFD236tNm7wzTVWqFJ4Dm4QE047Zsy3ruefMyXXdut5AhmSGVzRtarI5c7oPnz3rnbUuIiLzTJWM+tLOnd6skaJFM58tMdRcLhM8lUzdqOzM0JrZ9i+5JHSZhe7ZNevVy/5+6auvzLaKFQvOUO60uGeeLFgw69+pa9d6v59zYp/58sverNZff836dpxOyxo1ytu3u3bNOEMvlMd5u3db1hNPeIfIuv8nQ4ZY1tGjma//44/eoV+NG+eOi4SWZVknT1rWo4/6BrxatjRlITLaf164YMpHtG3rHQ4vmX3xk0/mTGbwhAne77dgzmD95pvez29O1fBzXyy54oqsZ6Gm5HKZC4SSyUAORCB9KSHB1OhyfwZeeCHrF5B/+MH7fX799ZRXyK2cTnO+1b27t+xB8h+Hw5xfLVwY3hE1p0+b7+mBA70JAGn9VK5sEibmzQtNtqHdYhA5NtTRn8DXU089ZV166aU+j/Xv399q2rSp389D4MtISjIH94sXmys/Q4aYK6Z3321Obm67zbJ69LCsESPMQU2w6kY5nSYK/cEH5ipnv37mS2XoUFMQO5Sp8nFxZlhFgwa+O4XISFN4uVMnU8/igw8sKybGBFQWLDDp7smvgEomoHT33WaZUO/4EhJMOrf7uatX9z9r4Nw58z8eONA3G6xIEVM7IhwHqFOmeNP3r7nGBHuyq3t3b6ZUdk74/O1LN95onm/06Kw/V3rcV3knTAj+tlM6edL7vwjWkI69e73Bu1BlTx0/7r2CPG5ccLa5d683GFO3btYyOQJ9vnffNfu/K67wXg329ydfPjO8KCeGeMXHW9att3qf158JJTLrS8eOeWu+5Mljgsnh8sIL3uDJsmWheY4zZ7zZTb17B3/75897M+k+/jj723M6vUW1U05cECzuYOCDD2ZvO9dfn7UT4EBt2OANhKQ3xDdQM2d6+/5dd6U/0UYoTi5WrzYZT8mDO2XKmIBcoMGdtWu9kw00axb+k/qVK81FNffratEiawH2Y8fMMYt7cg538HrRoqA32WPfPm+A5J13grttl8tMruA+lgx1Ftvq1d73beXK4G77yy+9AclALgT525ecTlO3y/3d8Omn2WywZd4P92iB1q1zbthjYqJ57vHjzfHyDTeY/XuFCua45+abzXngunU5057c5NAh870/daplPfKI9yKo+6d8efO/6tDBO8rA/dO0qcmwyskA2L//mvP1lMeMERFmn9eggclKLFUq9XFjuXLmPDiYnzsCX1nkT+CrRYsW1qAUA7q/+OILKyoqyu833G6Brx07LGv69ERryJA11tSpidbHH5uUzI8+MimZ06aZn/feMxlOt99u6hukVaw0o58yZUxQKCvD0c6dM8OJ/vc/b22L9H6io81VtokTg3eV699/zQ7d/WXjPtG66y4TLfd3CNGWLSZbKmV9iMaNzXsciqBdfLwpkOl+rgEDsn71/fx5c5DtHormvqrbr5+5chHqL2Cn01wtdT93ly7BG7514ID3QNHfmilp8WcHvmOH96pPKOrfjB1rtt++ffC3nZI7c+3yy4O7XfeJaLCCUik9/7zZfr16wZ2RcfducyAomYPCDRuCt23LMsH3N99Mvz5foULmb336mOWWLDEBydhYc4KyaZMJlrlrtbh/mjc3+9hQcDq9w8kKFPA/MORPXzp/3nti4Q4k5/QV1M8+8z7/Bx+E9rncE2JIpoh+MLkzICtVCl5WxTvvmG3Wrh3czFbLMicb7gP3QIq8p2X+fLOd4sVDd/HM5TIni5Ipzh3Mz+k333izs3v0SDujJJgnFytWWFarVr77kBtvNAHt7Gx+wwZvDaR27YL3OQzU1KneCzrVqpkLmdn9fzmdZviQO3jtcJjjwWD3C8syny/3SXUoylMcP+4NCnbqFLp9rstlAo6SucATbE6n93j2hRf8X8/fvuSeWCBv3uzNQpnSypXm2Fsyx0qhyjDfvt2UI7jxxrQzl9L7adcu+/vk7Dp3zlwU377dZIjv2WNqOh46FJwM5BMnzHvTpEna70HRomYSg19+Sd0/duwwiRvuSVncx2CLF4f2+OW338ywbHfNUHfw+uGHzblsWu/LyZOmXUOHeo9t3cG8d98NTlLLfznw5bAsy1IWORwOzZ8/X3feeWe6y9SuXVu9evXSs88+63ls1apVuvbaa3XgwAGVK1cu1Trx8fGKj4/33I+Li1OlSpV07NgxFSlSJKvNzTVmznSoV6+oLK2bN6+l6tWlGjUs1aplqXx5KTpaio42/8bjxx366y+HfvjBoSNHHJ71atSwdN11lq67zqUyZaS8eaXTp6Xjx806x49Lx46Z3wcOOLRxo5SU5F2/UCFLTZpYql/fUrFiUv780s6d0pIlEdq50+HTxoYNLd1xh0u9e7tUvnxgr2/5cofeeCNCixZFeB6rXdvSww+71KWLSyVKBP6eSWa3sWGDNHlyhD75JEIXLpg2FyliqWtXlwYOdOmyy7K27eQuXJC6do3UwoURio62NGOGU+3bZ7mLebhc0pdfOvTii5H66y/v+12woKXWrS317etS69aWHI4MNhKgc+ekXr0i9eWX5n8xfLhTzz/vCupzjB8foaeeilSpUpY2bUpS8eKBbyMxMVExMTFq3bq18uTJk+Yyo0ZF6MUXI9W6tUvffuvMZqtTW7vWoWbNolSkiKVDh5IUlbXu7Zd77onUggURevZZp0aOdAVtu++9F6HHHotUs2YuLVsW3PfozBmpRo0onTzp0MyZSerUKft9Irl//5Vuvz1Ku3Y5FB1t6ZlnXHr8cZfy5cvedtetkzp0iNKhQ+ZD73BYatbMUps2Zl9Yr56lKlWkiIhMNiSzD/rtN4cmTozQ3LkOJSY65HBYeughl154waXChbPXVjenUxo4MFLTpkUoMtLS/PlO3Xqrf++3P31JMvujZ5+N0LhxkZKkhx92aty44O4b0rN6tUM33RSp+HiHBg926rXXgtcH0vPAA5GaMSNCN9/s0qJFwekbliVdeWWUtmxx6LXXnBo8ODiv48wZqVq1KMXGOvTll0lq1y54fe2VVyL03HORatLEpZ9/zt774HRKl18epR07HHr7bacGDAj+/3HuXIe6dYtSvnyWNmxIUtWqwd3+11871LlzpJxOh+66y6WPPnIqOtr7d3/7U0aWL3dozJgI/fST2clERVnq3NnS4MFONWwYjFchrVrl0K23RurCBYceecT05ZzicknPPx+hV181+5K773Zp0iSngnmof+GC9MQTEZo82TxHu3YuffKJM2j73C+/dKhz5yhFRVn67bck1a8fnO2m9PvvDt1wQ6SSkhwaMcKp4cOD/3/64guHunaNUv78ljZuTFKlSkF/Cs2a5VDPnlEqVcrStm1JKlAg83X86Uvr1knNmkXJ5XJo6tQk3X9/cI8zli1z6M47I3X2rEPFilmaMMEZlGOZ/fulzz6L0Jw5Dv3xh+/BRLFi5pjjmmssVatmqUIFcz52+rRDu3dLixdHaN48h1wuhyIjLQ0d6tJzz2X/2Cct589Lu3ZJe/Y4tHevtHu3Q7t2mXbs3OnQ4cMZHwDUq2epRQuXmjSxdOWVlurUkV/HyseOSe+8E6H33otQXJz3WKx6dalqVUu1a1u6+WZzXJbZ6z50SHr99QhNnuw9D2za1ByDtWwZnM/LhQvmu2HixAj9/LP3/9m2rUsjRwa2305IkD76KEJjx0Zo3z7T3po1Lb36qlO33Zb1c75gfDflJnFxcSpVqpRiY2MzjRPlSODrgQce0LBhwzyPrVy5Utddd50OHjyoSy65JNU6I0eO1KhRo1I9PnPmTBXwZw+Zy/35Zyl98UUtz32Hw3Ri923z21JkpKVLLjmrcuXcP2dUqtR5RUZm/hxJSQ79/vslWrKkqjZsKC2XK/DeUazYBV166Qldd91+XX31YUVHpz7QtSxp797CWr36Eq1eXVb//FNClmWeKyrKqRtu2KeOHbepQoUz6T6PZUlbtpTQ3Lm19ccfZT2vv1Gjw2rbdqcaNjzi14mlv+Li8mrJkiqKiamiw4cLSpIiIizdeOMede36t0qXvpCl7cbHR2js2Gu0fn0Z5c3r1LPP/qYrrzwavIbLvFd//VVKq1aV1+rVl+j48fyev1WseFr33POvrr9+X7ZPQA8eLKhXX22snTuLKSrKqUcfXa+WLfdls/WpJSU5NGTIjdq3r7DatduhBx/8K+jPkZAQof79W+vkyXx6/PE1atFif9Cfw+mUevRoq7Nn8+rVV5epdu1TQX8OSbpwIVI9etyqhIQojRv3o6pXjwvato8fz6c+fW6RJH3wweIs94O0LFhQQ9Om1VP58mf0zjtL/dqHBSo2Nq/eeaeh1qwx3yllypxVjx6bde21B7LUH7ZsKaEXXmiqc+fy6JJLzqh9+x1q2vSASpSIz3zlTJw4Ea2ZM+vq+++rSJJKlz6nJ59cne3PjdPp0NtvN9SyZZUUEWFp8OA/QtJv3RYurKrJkxtIku6++191774lZM8lSSdPRuvxx1vqxIn8atz4kIYN+y0kn6WUDh/Or4cfbqWkpAiNGrVSDRocy/Y2t2wpoWHDWig6OklTpy5WwYJJQWipMXXq5frqq5pq3PiQ/ve/34KyTadTGjCgtY4eLaBBg/7QTTftzfY2v/mmuqZMqa/y5c/o3XeXBvV7Pj4+Ug8/fJOOHSugLl3+1r33/hO8jSezalU5jRvXWElJEbriiqMaPvy3NI+VAnXqVF69/fZVnmOiyEiXbrppjzp1+ldly57P9vZT+u23SzR27DWSpBEjVqlhw+Aeu6Tl/PlIvfNOQ61aVUGS1LnzP+ra9e+gfg6SW7q0kt5/v4ESEyNVtWqsnnvuV5Usmb3vuXPnovTIIzfpxIn86tTpX91/f2j3gYsWVdWkSWafG6x+6JaYGKFHHrlJhw8XDGmfcTodGjjwZh0+XFB9+/6l22/fke1txsdHaNiwFtqxo5hatNinxx9fG4SWpnbgQEG9+WYjbd1qrtJ2775Zd9+9NeDtJCU5tHZtWcXEVNEff5T1nKNFRLhUr95xNW16UPXqHVPFiqcz7Q8HDxbUp5/W1cqVph9VqHBajz66TpdeejLgdknSmTN5tH17Me3cWUS7dxfRoUMFdehQQZ08mXk0zeGwlDevU5YluVyO//9J+wXkzetU5cpxKlfurMqUOaeSJc+rWLF4FS0ar6SkCO3bV1h//VVKa9eWVWKi+aKvXDlO7drt1DXXHFTx4lk/FjtxIlrz59fS4sVVlZBgtt28+X498MAmlS4d+P7VsqRt24pp6dLKWrGigs6ezStJiopyqUWLfWrffruqVcv68XpiYoRiYqpo9uzaio01/4eKFU+rbdudatVqT1C+cy5m586dU7du3XJH4Ov6669Xw4YN9dZbb3kemz9/vjp37qxz586lGWm0e8aXlLPR1thYc0VvxQqHVq926PRpKT7eocKFLZUsKZUqJZUs6b5tqVQp6YorLFWurIBPGI8ckb77zqFp0yK0cqXZ2Tkcljp0sHTXXS7VrGmCTAcPOrRhg0Nr1ji0dq1DBw64g2WWevd2afBgl2rVyuiZss/lMldw3nsvQl99ZdqaL5+l115z6cEHA8teiI01mTg//RShAgUsffmlUzfcENyrTSlZlrR+vfTppxGaPj1Cp0+bBt9yi0vvvedU5cqBbzMpSZoxw6HHH49UXJxDpUtb+vxzp669NnSv5YcfHLr11ihFRFhatMipG28M7Lky60sTJ0Zo8OBIVapkacuWJOXNG6yW++rUKVJffRWhMWOceuqp0Fwxnz/foS5dolS1qqV//kkKeoZNq1aRWr48QiNHOvXss8F5DfHxUp06UTpwwKH3309S796h+yxZljRnjkNPPx2p/fu9V/NefdWlpk39f96vvnKoR49InTvn0HXXuTR/vlNFiwa/vUuXOvTQQ5HatcuhAgVMX2vTJmvvz6FD0oABJts0MtLSxx87dc89we1LaZk8OUKPPGIOHIP5uUnpyBHpzjsjtWZNhC691NLPPycFNSskM489FqH33otU8+Yu/fijM9t9r3fvSH36aYR69XJp8uTgHrT++69Ur14eRURY2ro1OFkbCxc6dOedUSpe3NKuXUnKnz/zdTJz+rRUvbrJTps/P0m33Ra8fcOYMREaPTpSVaqYbK9gtDc9S5c61KmTyQTp1MmlGTPM5yOrx3mbN5tM0927HYqKstSnj0tPPunK0nd6IAYNitD770eqfHlLf/yRlOUMe3/8+ad0//1R+ucfh/LksfT++0517x7aYyZJWrPGoY4dI3X4sENVqlhatiwp4JEJybnfs5o1zXsWikyblJ59NkKvvx6pqChL8+Y51bZtcN63sWMjNGKE+f9v2pSkggWDstk0ub83Kla09PffmR+XZdSXLMuMTpg1K0IlSlhaty5JaQwmCprEROm557wZzz16uPTEE05demnm6+7ZY177xx9HeDLJJenaa126915LHTu6VLp01tq1YIFDjz4aqUOHTPbX88+79NRTLr8uDh0/Ls2bF6FPPnHot9/Sj7QVLmyy3CtXtlS5sqWqVaUqVUw2WvXqUpEiaWfAHzkirVjh0MqVDv3xhzn/O3PG/y/RRo3Ma+nQwQpqYPzgQemllyL0wQcRcrkcyp/f0hNPuDRkiH9Z+EePSosWOTR5coR+/93bsEqVLN1/v0v9+wc+8ikjcXGmn06aFOF5/ypWtPTCC07de69/780//0jjx0v16/+sfv2u+c9lfIW8xtdTTz1l1a1b1+exAQMGUNzeZuNr07JypbcgZ2Y/+fJZVt++prZXOPz6q7fGkWQmC/C3UPb27ZZ12WXeej/Ll4e2rWmJjTXTlLtrjhQqZMaC+1vL4sIFM+1v8llGrrsu52Yp7N3bW5du//7A1s2oL5044S3eG+qpwN9+2zxPq1ahew73TEVDh4Zm+x995K2xEqw6KO46RuXLm89ZTjhzxhR7Tl4jo3PnjGf+O3PGFD/u2tW7Ttu2oS/4HBdnWW3amOeLigqsZlVcnCkW3L+/t/5IdLSpn5QVWf1eev1173v26qtZe+6MbNzorTVZvLhl/f138J8jM/v3e/ev33+fvW2dOGG+86TszTKYEXdtq5Ejg7O9Dh1Cs+954gmz3ZtuCt42T570zlg4a1bwtpuRn37y1j97/nnzWFb60+HD3kLNNWta1ubNIWpwGs6eNbXhJFPHLxS1b9auNd/37uL85cv7P/FPsOzc6Z0E4oorsl4s/rvvvPu9nJzlNnkNx3z5gvPcmzZ56wgHoyB8ZpJP7DF1aubLp9eXXC6zT5LMZyon/w+vveZ7HlO/vtmfLV7sWws3IcHUhxw0yLdWc+nSpoZuML/PTpzwndGydm3Levppy/riC1N71P32JSWZmmAvvmhqXSWvQSVZVo0appbc6NFm1urffzd15oK1T3A6LWvrVjNr4euvmwL1HTuattSsaery3XKLad+aNaGvI/rnn2b2WPfrL1HCHEOmnMjL5TLv2+jRprare1Io97FXt26mzmso6vwlFxtrzmkqV/atHTZsmPlfb9hgJqravt2ck376qTkWcE/yZWpE7rZNDCKkxe1Pnz5trVu3zlq3bp0lyRo3bpy1bt06a/f/V4x+5plnrO7du3uW37Fjh1WgQAHrscceszZv3mx9+OGHVp48eay5c+eG5AVdLP4LgS+3jRtNUcEmTcwBXblyltWwoTnBHDfOHPSEezYhyzI74nHjvF9MZcpkXhzz00+9BfjLlzc76HD6+2/vrGvu4NWPP6ZfTPzUKTNbSPICiqVKmenfc/Kjefast/j3tdcGVrwxo740ZIjZ5mWXhf71bNrkPRANxaQD8fHez1qoiqKfPet9jqVLs789l8scDErm4CanHThgis67D07y5jUB9ilTLOvzz02w9+mnTT9JOdvOY48Fb2bczMTHm5na3M99331pB4CTkkx/HjrU7E/dxaDdP02aZG/GyOx8L7lnWZRMkf9gWbzY+5msUSM8QS+3Rx817WjaNHsH4u4gef36oTugnznTPEfFitk/CD9+3Ns/Nm4MTvvcdu/2BkHWrw/ONkeNMtu7/PLQFDJPz5Qp3j4wcqRlxccH1p8uXPCefNWuHfgsjcHw++/e/Yo/AQl/nD5tLqqknCCkY0fLOnIkOM8RqB07vIGXG24I/KLMgQMmcCGZGbhzWkKCmfhKMn3z88+zvq2kJO/Md+3a5dxkJa+8Yp6zTp3M91FpfTc5neaij/vzNHlyiBuchuXLzf8h5XdxvnwmeFOnTuoi9S1bWtbcuaE7vnC5zORd7smjkv9ERpqgTlozUl95pWW98Yb5bP8XuVwmyOcO/rvfr9tuMwHKfv1Szx4pmfPZUaNMEf+cdu6cmVwr+URwmf04HJZ1++1O68UXV9gmBhHSwNePP/5oSUr107NnT8uyLKtnz55Wy5Ytfdb56aefrIYNG1p58+a1qlatak2cODGg5yTwhZy0fr3vNNg9epir8u5/lctlWatWmZ2he5nmzXMuOyozTqeZ2cudASKZDLArrzQHmg89ZK4Wtmzpe/WpfHlzwhqqGbYy8++/3p13//7+r5deX9qyxXswsmRJkBubBpfLBHVDdfV30SKz7UsuCe3JnPtAsmvX7G/r99+9V8ICmbo82NavTz0jWlo/VaqYwFg4AthOp7m66Q7S5c9vMmYHD7asZ54xGRhlyqRus3uGoEWLsn/Ckt3vJffMnZJpU3a+sl0usz9yB0VatLCso0ezvr1gOHDAexIze3bWtuFyeWc1C2UW6vnz3mzX7M5u9v773hOjUOjc2Wy/V6/sbys21mQFSjmX7ZXciy96+8BrryX53Z+cTu/7ULhwzmZ6peQOYkdHm1nJssLlMkGBXr18T/zz5DFB/lBdvAnEH394gwP33OP/92pCgslQlCyrQYPQz66dnnPnzEzb7v9VVt9TdwCqcOHQzVaYlthY74yib7+d8bIpv5sSEy2re3fvifyHH+ZAgzNw9KjZ3zzwgLnYkPJ7unhxkzUbjNlK/RUXZ1nTp5uAzZVXpg7AFSxojjEmTgzNbOcXq6Qk8790B4NT/hQoYP6XkyfnnvO+M2dMm7t3t6zGjc13f7585jiyRg2T6dWzp2VNmGBZ27bZLwYR0sBXOBD4Qk47f96bLeT+iY42w23cX9TuqwGjRqWfURVOu3aZIQXuk5/0fi691JzY5NQwtIx88433xH/CBP/WSa8vtWtnttO+fQgamg53ivnw4cHfdr9+ZtsDBgR/28n98Yd5nqio7F/5e/BBs61QTIseKJfLHHQ+9phJoW/Rwnw2BgwwmRrbt+fcAWlGfvvNBNLT66/FipmTyU8/NUN2gim730sul3c6ecmcAHz3XeDb2bzZDDd3b6dnz9yxf7Isk8kjme+CrJzwLl7sDWyePBn05vlwDwHK7j7wuuvMdkKVtfnLL2b7efOmHloSqJde8n6vhXq4SXpeftm0ISLCZY0YsTLT/pSQYD7j7sBQTEzOtDM9Tqe3TEX58oF/DyxbZt7/5PutGjVMOYZwZEVk5Pvvvdkvjz6a+XeAy+W9OFSwYHgzUC3LfMbvvNO0p1SpjIfzp2XjRu8F0HAEj955xzx3vnwZZ3wm/26KjzfD8NzH4DNn5lx7/eFymQu5P/xghkD//XfOZp5m1K59+8z36549uaNNud2WLWZ/PnSoubA3f374At3BZLcYBIGvi4DdPnR2tWqV+YJ1X0FOfqWke3czZj63S0w0X3TffGMOMp57zlzh+/RTc9CTG072kxs71ht4+emnzJdPqy/FxHhPInKybty0aeZ5r7kmuNtNTDQHtTmVveYOvIwalfVtnD5tMg0lMzwP/nO5TNbZm29a1lNPmROyl182GRShHH4ZrO+l7783J7ru/WX//ma4XGbOnTNDT91ZXpGRJhMgN+2jzpwxwQAp8HpmLpf3KvLgwSFpno/Nm90BmKxfmd6505tVEWj9xUC43xd3fays2LfPmzX8ySfBa1ugXC5v3coCBRKsv/5Kvz+dPm1Zt97q/bx/9lkONjQDsbHe2qXXXONbsyg97qxVd72gggXN+7ByZe7qwynNmuXdV40dm/Gy7sC3w2FZX32VM+3LzJkzltWokWnX5Zf7n2mbkGBZV11l1rvttvD8j1wu7+e/dOn0h+q7v5tOnkzwLJ83b9brWQL/ZXaLQRD4ugjY7UNnd06nSQ9dudIUDcwt2Qd25HJ56x2VKpV5VkvKvpSQ4K0rNWRI6Nub3J493hPNrBbMTYs7S6RUqZzJLnTXBypfPuu10T780GyjZs3cfdIDr2B+L509awrWuk8oS5Qw2TjpZfQsWuQbLGvf3tTNy43cAe4iRfyfBMWyvMOV8+XLuToqLVqY5xw9Omvru0/0b745uO1KafZs8zwlS2ZtiOypU5bVrJk3UBOubC+3Cxcsq3lzpyVZVrVqLmvp0tRtWrvWW9syf37L+vrr8LQ1PVu3ei/6tW+fcS3WQ4dMJq27/3bvnr2hzjntzTe9bU9vghH3RTl/hubltH37vKUWbrvNv8//sGHeYXjhrOt04oSpk+QOKN5zj7lQm/zzFheXYD3zzG9W/fouT3/JSjYxAPvFIAh8XQTs9qEDgunsWe+VyCuuMFfF05OyL7lnmCtZMjzFgWvVMs+/YEHwttmnjzdzJifEx1tW2bLmObNaNNd9EprZFXTkHqH4XvrhB29NK3cm5913m2yJdevMCY57qI5kJtoIZt8JBafTe6Lm79Bjp9NMPiCFblbWtHzyiXnOypUDDwbFx3sLgIe6XlZioikEnZWsr5Mnve9tsWK5J2C6b1+CVbr0Wc9nu0ABk9nWvbtlXX219zNfpkzWa2mF2rJl3qFw5cub4Yp//eW9mHH4sMkgd5dUyJfPXPS4GC92PP20N/jyxBPmQpZ7eNjjj/ufFRYuv//unS126ND0/wcul3dIcE70bX8cP+47wYtkyos0bWqOJfLlc3keL1nSjMYAkDV2i0EQ+LoI2O1DBwTbnj3e4Mvdd6dfjyB5X9q1y1vUP1zFTgcM8NYLCYb4eO9V95ycqttdqPz66wNfd+NG79Cd/+oMQRejUH0vJSaaIrvpFYt1f1Yef9wU5L0Y/PSTN7vzjz8yX/6997zDv3KyztG5c979x8KFga07Y0b2Mz8DMWeON/vJ39kjjxzxBiFLlvTvf5FTEhISrOnTF1n9+iWlKpfgDgJ365b795E//ZS6YHeJEiaY6q7JKZkC2hs2hLu1Wedymcl/kr/OlLPfZWf4f0747DNvWwcM8J010+WyrD//9A0wjRgRtqamacMG8z+oUiV1fylZ8pw1dGhSQFm2AFKzWwwikDhRhAAgF6pUSZo3T8qTx/weMybj5WNjpY4dpbNnpebNpV69cqSZqbRqZX4vXRqc7X3/vXTypHTJJdL11wdnm/7o31+KipKWL5c2bAhs3Q8+ML/vuEMqVy74bcPFJSpK6tlT+uUX81l65BGpTh2pTBnpssuk3r2l9eul11+XChcOd2v907Kl1KmT5HJJXbpIcXHpL7trl/TUU+b2yy9LZcvmSBMlSfnzSz16mNuTJ/u/nmVJ48eb2w89ZPbDoXb33VKbNtL582Zffvhwxsvv32/+D+vWmc/Sjz9KDRuGvp2BKFYsXu+959LRo9KWLdLMmeYzMGWKtHevNGNG7t9HtmwpbdsmTZ0qtWsnRUdLJ05Ie/aYz0mTJtKHH0q//SbVrx/u1madwyG995709dfe79rERPO7WTNzHPL88+Frnz+6dPH22/ffN5+tq6+W7rlHuvRSqUEDadYsKSJCeustaeTIcLY2tfr1pQkTpJ07pU2bpDlzpM8+kzZsSNSUKUv08ssulSkT7lYCuFhFhbsBAJCea6+VJk6U+vaVRoyQypeX+vQxB6jJxcXl0a23RmrdOql0aXMyERGmsP6NN5r2bd4sHTyY/ZOa2bPN706dpMjI7LfPX+XLm5PPOXPMycCkSf6tFxdnTpAk6cEHQ9c+XJzq15feeSfcrQiO99+Xfv1V2rrV7KNmzUrdR8+dk7p2NQH566+XBg7M+Xb262dOcr/+2gSLKlTIfJ3586XVq03gLKf6scMhffKJOVHfulW6+WbT5mrVfJezLHNBoE8fEzyqWNHcr1MnZ9qZFZGRJvBw6aXhbknWREdLDzxgfs6dM4Gwc+ekKlVyf+AuEA6HdPvt5uf0aXPRqWRJqWDBcLfMf4MHS7Vrm2Om1aulNWvMj2T+j7fcIg0bJjVtGt52ZsThMBdFLrvM3E9MlHbsCG+bAFz8yPgCkKv16SM9+qi53a+f1LmzdOyYuR8fL82Z49DTT1+vtWsjVKqUtHixVLVq2JqrEiW8WQc//JC9bcXHS19+aW537py9bWXFI4+Y359+Kp065d86H35oThjq1jUH2IBdlSxpAtNRUSZA3KaNyVRwW7fOBHF++00qXlyaNi08AfnLLzdBN6dTeuWVzJdPSJCeftrcfuIJ5WiGRZkyJlu2fHmT8VG3rjmR/+UXc+L75Zfm4kKbNiboVauWtGJF7g562U2BAtIVV5jAiZ2CXikVLixVrnxxBb3c2raVfv/d7I/mzpXeeMNkrB05Ii1YkLuDXgAQKgS+AOR6b75phjpGRZmDuMqVpauuMkGm++6L0sGDhVSpkqVly3LHUBf3cMfvv8/edhYvNhlUFSqY7Lec1qKFydA5d06aPj3z5ZOSTGaJJD32WPiy7oCc0ry5Gb5WsKAJdF96qQnMNG5s9lGbN5vgwDffSNWrh6+d7iFakyaZIWoZeeMNk9FTpoz05JOhb1tKNWuaIdY332yC/2+/bd7nGjVMFuqyZVLevNKgQSajJZwXOoDcrGpVM4R46FDprrukIkXC3SIACB9OSwDkepGR0vDhZljRFVeYGjDr1pmATPnylu655x+tWZPkSYsPt5tvNr+XLjXDcrLKPczxnnvCE0RyOLxZX++9Z+oZZWT+fGn3bqlUKen++0PfPiA3uOceM5SoVSuTLfXTT9LatabPduli6pc1bx7eNt50k3TDDaZ9vXqZ7K+0fP219L//mdsvvxy+mms1akgxMdKiReY9LFXKDLusU8ecxG/bZoLsRYuGp30AAODiQo0vABeNRo3MSeSGDSZroVo1qVatJH333d8qXjyM6RQpXHedyUjYu9ecoNWqFfg2zp+XvvrK3O7SJbjtC8R995nC3Nu2Sd99Z4obp8Xlkl54wdx+6CFzkgr8V1x6qbRkidk/bdpk+v9115khe7mBw2FqkjVqZIrA33qr9O673iGCx4+biwuTJ5tg/QMPhG+CEDeHw7Tz1lvD2w4AAHDxI+MLwEXF4TAzE91xh1SvXu4cTleggDfDI6vDHRctks6cMcM6r7kmeG0LVMGCps6aZGaASi+DbfJk6a+/TAbGY4/lWPOAXMPhMEOt77/f1OTLLUEvtzp1zLDM/PnNfumyy8x+tGtXMwxz0iTTv/v0Mf055SQiAAAAF6tceMoIABe/5MMds2LmTPO7c+fwn4A+9ZQJgK1ebQrkpvTPP9Ljj5vbo0aZQt4Acp/27c0w8TvuMFma33xjhlTHxZlh5MuWSVOmmHqKAAAAdkHgCwBCwB34+vHHzGtjpXTypKm1I5mhhuFWtqyZ3U0yAa4TJ7x/O37cnEyfO2fqCLln4ASQO9WpY4ZRr18vvfqqmenxp59MQOz668PdOgAAgODjmh4AhMDVV5vC0CdOmBPKRo38X3fOHFOEul49M6wzN3j8cenTT6Xt26U2baT+/aXYWDPj2t69ZkjmjBm5c+gpgNQaNMg9+xcAAIBQ4hQFAEIgKsrM8iaZ2Q79ZVlmBkVJ6tEj/MMc3QoXNsMcixQxM9Y9+KD05JMm6FWjhqlJdskl4W4lAAAAAPgi8AUAIXLPPeb355+nXxQ+pSVLzKyVyYvK5xYNGpi2DRsm3XKL1KGD9NZbZsjUZZeFu3UAAAAAkBpDHQEgRG6/XcqXT9q61QSHGjbMfJ1XXzW/+/WTSpQIafOypEoV6aWXwt0KAAAAAPAPGV8AECKFC0u33WZuz5iR+fJr1kg//GCGST72WGjbBgAAAAD/BQS+ACCE7r/f/J45U3I6M152zBjz+957TbF4AAAAAED2EPgCgBBq184MWTx4UFq6NP3lVq6UFiwwsyIOG5Zz7QMAAAAAOyPwBQAhlDev1LWruf3JJ2kvY1nSU0+Z2336SHXr5kzbAAAAAMDuCHwBQIh1725+f/GFdOZM6r/PmyetWiXlzy+NHJmjTQMAAAAAWyPwBQAhds01Uq1a0rlzJsiV3KlT0qBB5vYTT0jly+d48wAAAADAtgh8AUCIORxSz57m9quveovcW5b04IOm/lft2tKzz4avjQAAAABgRwS+ACAHPPywKXK/ebM0frx57J13pDlzpKgo6aOPpHz5wtpEAAAAALAdAl8AkAOKFZNefNHcfuIJ6dprpSFDzP033pCaNg1XywAAAADAvgh8AUAO6d/fG+xatcoMdRw4UHr00bA2CwAAAABsKyrcDQCA/wqHQ3rzTem++6T166UGDaSrrw53qwAAAADAvgh8AUAOa9zY/AAAAAAAQouhjgAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwpSwFviZMmKBq1aopX758atSokVasWJHh8jNmzFCDBg1UoEABlStXTg888ICOHz+epQYDAAAAAAAA/gg48DV79mwNGTJEw4cP17p169SiRQu1bdtWe/bsSXP5n3/+WT169FCfPn20adMmzZkzR6tXr1bfvn2z3XgAAAAAAAAgPQEHvsaNG6c+ffqob9++qlu3rsaPH69KlSpp4sSJaS7/66+/qmrVqho0aJCqVaum6667Tv3799eaNWuy3XgAAAAAAAAgPQEFvhISErR27Vq1adPG5/E2bdpo1apVaa7TvHlz7du3TwsXLpRlWTp8+LDmzp2r2267LeutBgAAAAAAADIRFcjCx44dk9PpVNmyZX0eL1u2rA4dOpTmOs2bN9eMGTPUpUsXXbhwQUlJSWrfvr3eeeeddJ8nPj5e8fHxnvtxcXGSpMTERCUmJgbS5FzL/Trs8nqAcKEvAcFBXwKCh/4EBAd9CQgeu/WnQF5HQIEvN4fD4XPfsqxUj7lt3rxZgwYN0vPPP69bbrlFBw8e1JNPPqkBAwboww8/THOdsWPHatSoUakeX7JkiQoUKJCVJudaMTEx4W4CYAv0JSA46EtA8NCfgOCgLwHBY5f+dO7cOb+XdViWZfm7cEJCggoUKKA5c+aoY8eOnscHDx6s9evXa9myZanW6d69uy5cuKA5c+Z4Hvv555/VokULHThwQOXKlUu1TloZX5UqVdKxY8dUpEgRv19cbpaYmKiYmBi1bt1aefLkCXdzgIsWfQkIDvoSEDz0JyA46EtA8NitP8XFxalUqVKKjY3NNE4UUMZX3rx51ahRI8XExPgEvmJiYtShQ4c01zl37pyionyfJjIyUpLJFEtLdHS0oqOjUz2eJ08eW/yDkrPjawLCgb4EBAd9CQge+hMQHPQlIHjs0p8CeQ0Bz+o4dOhQTZkyRVOnTtWWLVv02GOPac+ePRowYIAkadiwYerRo4dn+TvuuENffPGFJk6cqB07dmjlypUaNGiQmjRpovLlywf69AAAAAAAAIBfAq7x1aVLFx0/flyjR4/WwYMHVa9ePS1cuFBVqlSRJB08eFB79uzxLN+rVy+dPn1a7777rh5//HEVK1ZMN910k1555ZXgvQoAAAAAAAAghSwVtx84cKAGDhyY5t+mT5+e6rFHH31Ujz76aFaeCgAAAAAAAMiSgIc6AgAAAAAAABcDAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALAlAl8AAAAAAACwJQJfAAAAAAAAsCUCXwAAAAAAALClLAW+JkyYoGrVqilfvnxq1KiRVqxYkeHy8fHxGj58uKpUqaLo6GjVqFFDU6dOzVKDAQAAAAAAAH9EBbrC7NmzNWTIEE2YMEHXXnutJk2apLZt22rz5s2qXLlymut07txZhw8f1ocffqiaNWvqyJEjSkpKynbjAQAAAAAAgPQEHPgaN26c+vTpo759+0qSxo8fr8WLF2vixIkaO3ZsquW/++47LVu2TDt27FCJEiUkSVWrVs1eqwEAAAAAAIBMBDTUMSEhQWvXrlWbNm18Hm/Tpo1WrVqV5jpfffWVGjdurFdffVUVKlRQ7dq19cQTT+j8+fNZbzUAAAAAAACQiYAyvo4dOyan06myZcv6PF62bFkdOnQozXV27Nihn3/+Wfny5dP8+fN17NgxDRw4UCdOnEi3zld8fLzi4+M99+Pi4iRJiYmJSkxMDKTJuZb7ddjl9QDhQl8CgoO+BAQP/QkIDvoSEDx260+BvI6AhzpKksPh8LlvWVaqx9xcLpccDodmzJihokWLSjLDJTt16qT33ntP+fPnT7XO2LFjNWrUqFSPL1myRAUKFMhKk3OtmJiYcDcBsAX6EhAc9CUgeOhPQHDQl4DgsUt/OnfunN/LBhT4KlWqlCIjI1Nldx05ciRVFphbuXLlVKFCBU/QS5Lq1q0ry7K0b98+1apVK9U6w4YN09ChQz334+LiVKlSJbVp00ZFihQJpMm5VmJiomJiYtS6dWvlyZMn3M0BLlr0JSA46EtA8NCfgOCgLwHBY7f+5B4Z6I+AAl958+ZVo0aNFBMTo44dO3oej4mJUYcOHdJc59prr9WcOXN05swZFSpUSJL077//KiIiQhUrVkxznejoaEVHR6d6PE+ePLb4ByVnx9cEhAN9CQgO+hIQPPQnIDjoS0Dw2KU/BfIaAipuL0lDhw7VlClTNHXqVG3ZskWPPfaY9uzZowEDBkgy2Vo9evTwLN+tWzeVLFlSDzzwgDZv3qzly5frySefVO/evdMc5ggAAAAAAAAEQ8A1vrp06aLjx49r9OjROnjwoOrVq6eFCxeqSpUqkqSDBw9qz549nuULFSqkmJgYPfroo2rcuLFKliypzp07a8yYMcF7FQAAAAAAAEAKWSpuP3DgQA0cODDNv02fPj3VY5deeqltCqgBAAAAAADg4hDwUEcAAAAAAADgYkDgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtkTgCwAAAAAAALZE4AsAAAAAAAC2ROALAAAAAAAAtpSlwNeECRNUrVo15cuXT40aNdKKFSv8Wm/lypWKiorSlVdemZWnBQAAAAAAAPwWcOBr9uzZGjJkiIYPH65169apRYsWatu2rfbs2ZPherGxserRo4duvvnmLDcWAAAAAAAA8FfAga9x48apT58+6tu3r+rWravx48erUqVKmjhxYobr9e/fX926dVOzZs2y3FgAAAAAAADAXwEFvhISErR27Vq1adPG5/E2bdpo1apV6a43bdo0bd++XSNGjMhaKwEAAAAAAIAARQWy8LFjx+R0OlW2bFmfx8uWLatDhw6luc7WrVv1zDPPaMWKFYqK8u/p4uPjFR8f77kfFxcnSUpMTFRiYmIgTc613K/DLq8HCBf6EhAc9CUgeOhPQHDQl4DgsVt/CuR1BBT4cnM4HD73LctK9ZgkOZ1OdevWTaNGjVLt2rX93v7YsWM1atSoVI8vWbJEBQoUCLzBuVhMTEy4mwDYAn0JCA76EhA89CcgOOhLQPDYpT+dO3fO72UdlmVZ/i6ckJCgAgUKaM6cOerYsaPn8cGDB2v9+vVatmyZz/KnTp1S8eLFFRkZ6XnM5XLJsixFRkZqyZIluummm1I9T1oZX5UqVdKxY8dUpEgRv19cbpaYmKiYmBi1bt1aefLkCXdzgIsWfQkIDvoSEDz0JyA46EtA8NitP8XFxalUqVKKjY3NNE4UUMZX3rx51ahRI8XExPgEvmJiYtShQ4dUyxcpUkR//fWXz2MTJkzQDz/8oLlz56patWppPk90dLSio6NTPZ4nTx5b/IOSs+NrAsKBvgQEB30JCB76ExAc9CUgeOzSnwJ5DQEPdRw6dKi6d++uxo0bq1mzZpo8ebL27NmjAQMGSJKGDRum/fv36+OPP1ZERITq1avns36ZMmWUL1++VI8DAAAAAAAAwRRw4KtLly46fvy4Ro8erYMHD6pevXpauHChqlSpIkk6ePCg9uzZE/SGAgAAAAAAAIHIUnH7gQMHauDAgWn+bfr06RmuO3LkSI0cOTIrTwsAAAAAAAD4LSLcDQAAAAAAAABCgcAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsicAXAAAAAAAAbInAFwAAAAAAAGyJwBcAAAAAAABsKUuBrwkTJqhatWrKly+fGjVqpBUrVqS77BdffKHWrVurdOnSKlKkiJo1a6bFixdnucEAAAAAAACAPwIOfM2ePVtDhgzR8OHDtW7dOrVo0UJt27bVnj170lx++fLlat26tRYuXKi1a9fqxhtv1B133KF169Zlu/EAAAAAAABAegIOfI0bN059+vRR3759VbduXY0fP16VKlXSxIkT01x+/Pjxeuqpp3T11VerVq1aeumll1SrVi19/fXX2W48AAAAAAAAkJ6AAl8JCQlau3at2rRp4/N4mzZttGrVKr+24XK5dPr0aZUoUSKQpwYAAAAAAAACEhXIwseOHZPT6VTZsmV9Hi9btqwOHTrk1zbeeOMNnT17Vp07d053mfj4eMXHx3vux8XFSZISExOVmJgYSJNzLffrsMvrAcKFvgQEB30JCB76ExAc9CUgeOzWnwJ5HQEFvtwcDofPfcuyUj2WllmzZmnkyJFasGCBypQpk+5yY8eO1ahRo1I9vmTJEhUoUCDwBudiMTEx4W4CYAv0JSA46EtA8NCfgOCgLwHBY5f+dO7cOb+XDSjwVapUKUVGRqbK7jpy5EiqLLCUZs+erT59+mjOnDlq1apVhssOGzZMQ4cO9dyPi4tTpUqV1KZNGxUpUiSQJudaiYmJiomJUevWrZUnT55wNwe4aNGXgOCgLwHBQ38CgoO+BASP3fqTe2SgPwIKfOXNm1eNGjVSTEyMOnbs6Hk8JiZGHTp0SHe9WbNmqXfv3po1a5Zuu+22TJ8nOjpa0dHRqR7PkyePLf5BydnxNQHhQF8CgoO+BAQP/QkIDvoSEDx26U+BvIaAhzoOHTpU3bt3V+PGjdWsWTNNnjxZe/bs0YABAySZbK39+/fr448/lmSCXj169NBbb72lpk2berLF8ufPr6JFiwb69AAAAAAAAIBfAg58denSRcePH9fo0aN18OBB1atXTwsXLlSVKlUkSQcPHtSePXs8y0+aNElJSUl6+OGH9fDDD3se79mzp6ZPn579VwAAAAAAAACkIUvF7QcOHKiBAwem+beUwayffvopK08BAAAAAAAAZEtEuBsAAAAAAAAAhAKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AAAAAAADYEoEvAAAAAAAA2BKBLwAAAAAAANgSgS8AuMicjj+tZbuWybKscDcFAAAAAHI1Al8AcJFpOb2lbvjoBt0287ZwNwUAAAAAcrWocDcAAOAfy7I0etlorTu0TpK0aNuiMLcIAAAAAHI3Mr4A/GfFxcdp05FN4W6G39YdWqeRy0aGuxkAAAAAcNEg8AXgP6voy0VVb2I9Lfh7QbibkiaX5fKp43Xw9MEwtgYAAAAALj4EvgD8JyUPKE1YMyGMLUnb+cTzuvTdS9VxdkedPH9S8zbP02/7f/NZpnzh8mFqHQAAAABcHKjxBeA/aeZfMz23Ly99eRhbkrZxv4zT1hNbtfXEVpV4tUSayxw4fUAv//yyjp49qtfavKYIB9cyAASPZVmatn6amldqrktLXRru5gAAAGQJZ0kA/pPun3+/53aCMyGMLUnb/378X7p/a1+nvef2sKXDNO7XcYocHanj547nRNP8tu3ENq09sDbczQCQReN+Gac+X/VR3ffq6vCZw+FuDgAAQJYQ+ALwn/Hu7+8qYlSEFm5d6PP42cSzYWpR+jLK3tp2Yluaj8/aOCtUzQmIy3Kp3Yx2qvVOLTX+oLH+PPRnuJsE5Co7T+7U+cTz4W5Gpl5Y/oLndrW3qknyHSYOAABwMSDwBeA/4a7Zd+nRRY/KkqXbZt7m87fp66drxe4VYWpZ2ioXrZzu31pWaZnm4/FJ8aFqTkDWH1qvRdsWee6v2JO73lsgnNYfWq/qb1dXi2ktwt2UTN1d927P7fNJ5zV9/XRFjI5QvQn1wtgqAACAwBD4AmB7lmVp/t/zM1zm+unX51BrMnch6YJ2ndqV7t/H3jxWfRv2TfX48fO5Y6hjyiBibhxKCoTLa6tekyStPbhWe2L3hLk1GUu5T3lgwQOSpE1HN4WjOQAAAFlC4AuA7aU3NDC3eu6H5zy3m1ZsqjfavKHXWr/meaxovqLadjL1a8otNb5W7Vvlc99lucLUEiD3ST6xRpe5XcLYkswdO3cs3b9tPro5B1sCAACQdQS+ANhe13ld03y8fpn6Pvc/3fBpTjQnU5a8NXR+6fOLhjYbqn5X9VOfhn20+P7FkqQ769zpWeadtu9IkpbsWJKj7UxPymy13/b/pjdWvZFrhmICucWv+34NdxMydPLCyXT/dvmE3DcbLgAAQFoIfAGwvT8O/pHm45cUukS3177dc7/7/O5hL9zsslxatddkTI1sOdLzeNF8RTWl/RS1qdFGkjTomkGa3mG6dg7eqUpFKkkyAafccCK94+QOn/tzN8/VEzFP6K3f3gpTi4Dco0bxGj73k1xJYWpJ5k6eTz/wBQAAcLEg8AXgP+OBKx/Qwm7eGR1fa/2aFnRd4LNMuGd4HLxosH7Z94skafWB1eku53A41PPKnqparKpaVPEWyX500aMhb2NGDp055BkeVbtkbZ+/ffDHB+FoEpBrWJal7Se3+zw27pdxYQ+4p8ed8ZUyO9aNYcwAAOBiQOALgK0lz6Z4udXLalurrawRlqwRlhpc0kARDt/d4NGzR3O6iT7eXf2u53aTCk38WqdE/hKe26UKlAp6m/wVeyFW5d4o57k/qMkgn79fbLXWgGDbcmxLqsee/v5ptfqkVRhak7GZf83UhaQLkqSlPZamuUynzzvlZJP88tKKl9RxdkfFXogNd1MAAEAuQeALgK0lH6qTPECU3IYBGzy3j54LX+DL6XL63H/q2qf8XnfS7ZMkSXki8gS1TYEo9koxn/uXlb4sPA0BcqkFfy9I8/Efdv6gfXH7crg1Gbvvi/s8t0sVKKULw00QrFDeQp7HM5stN6ddSLqg4T8M15d/f6nPNn4W7ubgP2rB3wv0+qrXc20mJwD8FxH4AmA7S3csVafPO+nvY3/r+Hkz02HR6KKKiohKc/n6Zet7hvJkNItZKB0/d1x13q3j81i+qHx+r1+mYBlJ0pGzR4LarqxadN8iNa3YNFUgLi4+LkwtAsLr0JlDevaHZyVJN1S9QU819w1s3/TRTeFoVppSnrA7HA5FR0Xr3LPndOKpEz7ZqJuObMrp5qVrzPIxntsDvh2gXad2MRwTOcqyLN05+049GfOkvvrnq3A3x2+WZWnM8jH65M9Pwt0UAAgJAl8AbKfVJ600b8s81X2vrtYeWCsp8yGA5QuXlxS+oY6PL3ncp/ZP25ptA1rfHfg6dOZQUNuVFVeXv1q31LhF+fPk18HHD+rok0dVOG9hSdLuU7vD3DogPG799FbP7QOnD+ilm1/y+fvWE1tzuknpio1Pe5hg/jz5lScyj37t451E44EFD+RUszI1468ZPvervVVNA74ZEKbW4L8oedb4lHVTLprZjDce2ajnfnxOPb7sob+P/S3JlIo4mxDeuqcAECwEvgDY2v3z75fkLdKcHndgLFxDHT/68yOf+190+SKg9WuWqClJ2h27WwnOhKC1y19Ol1MOOSRJX9/7tRwOc7tkgZIqVaCUTiecliRd8f4VOnTmkCzL0vnE8zneTiAcklxJ+vPwn57777R9R5ERkXI+7zu8+bd9v+V001KxLEvtZ7X33N85eGeqZdz9W8p4Eo6cVqVolVSPMakGctLq/d7+8M2/36jZh83C2Br/7Y71XpRq9XEr7Y3dqzwv5FGhsYU0dPFQ7TyZej+Qm5w8f1LLdy8nwxNAugh8AbCVJduXpPn4ifMnMlyvdIHSksKT8ZX8QFmS9g/dH9AwR8m03z2sMBxZX8fPH5clMzyqZIGSGS5b7o1yumfOPSo/rnzYJxMAcsK/x//1ud+6emtJUoQjQkef9PaBph829alLGA7/HP9HK/askGRqBlYtVjXN5Ya3GO65nfL1hUvy+mPJcTKMUIi9EKtSr5aSY5RDx8+Zsgq3z7rdZ5l1h9Z5/pabJa8xuP/0flUeX9lz/81f31SnOblvIovken7ZUy2nt9T8Lbmr7iCA3IPAFwDbOHr2qG759JY0//ZKq1cyXLd0wf8PfIUh46vJFG+9nN1DdnuGXQbC4XCoXGEzo+L+uP1Ba5u/5m2e57mdXi01n+W3zNOpC6f06YZPQ9ksIFc4ePqg5/aGARt8MqZSDsMu8WqJVBNd5CT3MCdJqly0crrLPdb0Mc/tn/f8HNI2+ePg6YP6duu3kpRqtt5nlz4bjibBxpwup4q9UsxTR7TUa6W0au+qNJdNnu2Zm6zcs1L3zLlHU/6Yojd+eSPDZf84+EcOtSprvv73a0nK9QE6AOFD4AuAbew6tSvdvz3S5JEM13VnfIWruL1bRieamXEP80k+ZCGn/H7g9wz/vmPQjjQfH7pkKDNfwdb+PPSnWn3SynO/ftn6qZaZ1mGaz313xlU4JA98xXSPSXe5kgVKqkeDHpKkrcfDX5/suR+f89z+vvv3Pn9bd2hdTjcHNvfwwodTPXbt1GvTXHbS2kmhbk6WDFs6THM3z1W/r/tp24ltmS5/6sKp0DcqC5LXUSuWr1j4GgIgVyPwBcA2Dp897HN/2HXD9GqrV3Vh+AUVyFMgw3XdGV8HTh8IWftS2hO7RzdMv8Fz/8nmT2Zre1WK/X/gKwwF5N3DLAc0SruQdLXi1RT7TKxK5k89DLLDZx1C2jbYx5ajW3wCM24HTh/QDzt/CEOLMnflpCszXabXlb30S59fPPczCuKHmnvY4vPXP69qxatluGzDSxpKkt767a2QtyszyYNbN1S9QdYIS++2fVeSGQL/8s8vh6tpftt+Yru+/ffbcDcDfsgsCLR54GbP7c83fa7f92d8cSinxV6IzTTAPuWOKT737//i/lxZrH//aW+We97IvGFsCYDcjMAXANtwD7e5rPRlujD8gl66+SU9ee2Tio6KznRdd3H4zUc3Z7Jk8FQZX0XLdi/z3B/RckS2tle1aFVJ0s5TOVuEdtKaSZ4C0peVvizd5YpEF9Gxp1Jn1H3979e5rgaP0+XUHwf/yJUH+f5IcCbYrn5a7IVYXTbhMtV9r652ntyp9YfWKz4pXldNukoVxlXQzR/fnGuDX24pM7uSa1qxqWeIXjhnSnSfRFYvXj3TZRuXbyxJOp90XqfjT4e0XZlpULaBJOnuund7hpLWKFHD8/dhS4fpTMKZsLTNXzXfqanbZ92ugd8ODHdTkI7DZw7rnd/e0exNszNcrm7pup7ZliXpx50/hrppAUmeIZncvsdMra/uV3TX/Vfcr/6N+nv+9u3Wb/XSipfSXC+c9sTu8dw+cvaIVu5ZGcbWAMitCHwBsA33EL/qxav7FexKrni+4pLMCVw4hjtWLVZVBfMWzNY2PBlfOTzUccC33iyvOy+9M9PlU9Y0kqRFWxcFs0nZ9tGfH6nR5EZ6ZGHGQ2Rzq+gx0Srzehl9sNZ3RjvLsnzqTV1MPlz3oed29berq+Gkhsr3Yj6fTJ9f9v6S1qq5hntoYHqSB4DPJpwNdXPS5M56vaTQJZkue13l6zy3e3/VO2Rt8oc74J98H1SnZB2fZUq9Wiqs9dMy8tF678y+E9dMDGNLkJ5EZ6Ju+OgGDfpukM/jcc/E+dyfdfcsSdI9l93jeexsYnj6c3rSqjv2zyP/qEKRCrJGWPq448eKjorW+7e/75OpPXr5aM3dPFdHzh7JyeZmKHngS5Kum3ZdOksC+C8j8AUE0bf/fqvoMdGati79q/oXu883fa6W01vqminX6PCZw5mvkIPcMzd2qht4cdOyhcp6bneb1y1obfLXW7dmf6iQp8ZXGIY6ulUqWinTZb7s8qVqlqipz+7+zPNYbHxsKJsVMPfQrSnrpmSyZO6y8+ROn0yvwd8N9tzedmKbIkZHqPy48hflPsqfbEz3kOXc4kLSBc/ttQ+uTVV0PaV32r7juV3n3ToZLBkah84c0sYjGyVJtUvWDmjduZvnhqJJfnMH7CoV8e6DqhWv5jNcK94Zr/dWv5fjbcvMntg96rWgl89j1D7MfYq/UjzVUOuzz55V4ejCnvv5ovKpa72ukkx/jnRESpIWbl2Ya/6nLsul5buXS5IWdF0ga4Qla4SVbp9PWYbhnjn3qOzrZZXkSgp5W1OyLEubjmxSgjNBkpnUoueXPX2WYbgjgLQQ+AKC5KpJV+n2WbcrwZmg3l/1zvVDKrIiZnuMusztouW7l+v3/b/rxRUvhrtJkqREV6Lu/PxOLdm+RJJUPH/xgLeRfCbCX/aFPmvEsizli8onyQwBbF29dba3WbVYVUnSlmNbcuwAe8dJb9H63/r+5tc611a+Vlsf3aou9bqo02UmSJmbgqiWZflk2+S2YZjp2Xhko6q/XV1lXvcOr3FnMA5dPFS13qnlebz3V71VcVxFvbg8d/ThzOw+tdsn4ys97gLNlmVp24ltYT/RXHfQm43mroeVkYev9hbMTl63JqfUfa+u57Z7f5KZmXfN9NzOyYy7E+dP6Ppp12vquqlyupye2mTu2W3d+lzVR0t7LPXcH/zd4LCcsKfl+Lnj6r2gt0b9NCr13/5/tkDkDk8seSLNrC13/dDuV3SXJE2+fbLnbw6HQx93/FiStPbgWn3050ep1g8H90VCSSpXqFwGSxpPX/e0vuj8RarHv/n3m6C2yx8z/5qpehPrKXpMtL7b9p0eX/K4528tKreQZIb6/7rvVy3btSy9zQD4DyLwBQTB7lO7U80a9fexvz1Xzi825xLPqe57deUY5dDsjaaOxcKtC9Xm0zY+y+2N2xuO5qXyyq5XtHDbQs/9asUyLsicnna12klSjgQtT5w/4ckGOfzEYeXPkz/b20yebTVvy7xsb88f/b/x1v+4uvzVAa/vzlJzn7TmBq+sfEXbT2733I+Lj8tg6dwjvZotpV8rrTd/fTPV4/tP79f/fvxfqJuVbQnOBFV9q2q6fy8SXcRz+7VVr+nnPT/r1ZWvqtY7tfTY4sdyoIXpW39ovee2u+5URhwOhxZ28+7LxiwfE4pmpSt5wW5/2ivJk90iSZ9u+DTYTUrXTR/dpBV7VqjPV30U9YK5cFEobyHPPiW5llVa+tzv93W/HGljZhq830DT1k/T1PVTU/0tedD0YuB0OTVt3TTtj/M/YBsXH6eT509qxe4Vmrh6Yq6tS7jr1C698csbqR5PPsTxw/YfauNDG3X/Fff7LJM8iyqctfuSG71stOf21RX8+97uWLejHrnad+h/Ttct23hko+6f731/285oq1kbZ3nut6nhPUZt9mEz3fDRDbnqohqA8CLwBQRBn6/6pHrs6g+uVv2J9bVo6yLN/GumPtv4WRpr5k5jlo/xpPN3nddVjlEO3TbztlTLffn3l3p/zfthv3q+Jm6Nz/16ZeplaTs5WVPHHei5pNAlnsyv7Eq+nZwqjuwOChXPV9zvE+XkmlRoIklaf3h9MJuVLcOWDvO5n1uncE8pqzVX0so2yQ2af9hcjlEO9ZjvWxdr8f2LNeeeOYp7Jk5bHt6ivx/+W72u7OX5e4tpLfTM0mckhX+2Qfe+sVnFZn6vk/zk7bkfn8vRGR4L5zVDtt6/7X2/13E4HGpbs60k6bf9/mV9ZpfT5UyzRlGkIzLN+o6REZF6/vrnPfenr58eyub5LaOsvjaftgkogy7JlaSHvnlIH/6ReWZkKNz3xX3q/VVv1Zvo3/fvsl3LVPTloirxagldP/16DVw4UNdOvTbErcyatMofHBh6wGeIY57IPLq8zOWpvgcvLXWp53blopVD10g/Ldq6SO/8boZUZzbbdUpd6nXxuf/z3p+D1i5/9P464zqCnS/vnOqxET9lb9IgAPZB4AvIhpPnT8oxyqGlO80winxR+VS/TH2fZdrNbKf7vrhP9867V5uObApHMwNyNuGsxv481u/lH/r2IeV5IU8IW5S5knm8hVdvrXlrlgIwkjThtgme26G+kunOBnTPJhlsdUvXzXyhICgaXVSS9Eab1FfD/VGhcAVJWQ/a5ITF2xaHuwmZsiwrVe0Zf41cNjLXDOc8dOaQxiwfo1/2/uIZcpx89rTHmz2uNjXaqNNlnVQ4urAuLXWpyhUul+GMqO7ZXsPBXQTbHeD1R2REpE9R7GpvZS2DNVA7T+7U6QQzM+OtNW8NaN3bapkLI2sPrs2RvvzjrrT3zw3LpT+cdMQNvp+RcM/8dj7xfKrHVvdb7XN/5LKRfm9v7ua5en/t++r7dd8c78/rDq7z9NNTF05lGrCzLEs3fHRDqse3ntiqj//8OAQtzB5L3iHTn3b8VEefPJpqSG16CuUtpEFNzH5gT+yesA+/bjezned2rwa9Alo35UXFPw7+oYmrc24ihjyR6R9rbnl4i2qXrJ0q43PS2kn6+p+vw/6+Awg/Al/IFeKT4jVpzaRcffKb0pxNc1Ti1RI+j+0esltfdEldB8EteT2k3OjI2SMqNLZQpsslLxbs1u+r8Awd2XFyh44nmlooI1uO1OedPs/yti4rfZnn9oJ/FmS7bRlx19gIduDLXSts+e7lWQ6EBCJmR4ykwAthu7knFdhxckeumG0wrRO25LNW5lbrD633fKZ6XdlLq/utTjUsZcZdM3Rh+IW0Vg/rEKN5m+fp9VWv66P1H6ncG+X03I/PqfnU5mkuO/KGkWk+XrFIxXS33+vLXkFoZeCSD1MMNNNj5t0zfe7nxP8n+bDQjN7PtCSvq1j29bIZLBkc7lpuku8wxqeaP5XuOhGOCJ0edtpzP9wzvz0Z82SqxxqXb6wl9y/x3E8+OUJmdp7c6bk9eNHgDJYMvmYf+mY0ptd/JVMzMWJ0+qcfPb/sqa//+dpnmHA4uSyX/jn2jyTplz6/6L4r7ktzZuKMjG3lvZi45sCaDJYMrZTBn9favBbQ+sXyFdPN1W72eWzgwoE5ElSyLEurD5jA8MJuC33asbL3Sk9mXUz3GN1U7Safddt/1t5zrBIulmUpPik+rG24WFmWdVHXTR7/63i1m9EuV7yGuPg4nUs8F+5mhA2BL+QKo5eN1oBvB6js62U1Y8MMz+NJrqRck4mQUue5vinV99W/T2UKllHNEjXV8dKOaa7T/rP2OdG0gLgsl977/T1tPro51QnL2gfX+mQeSNJPPX9Sn6v66ODjvkGKKeum6Ni5YyFvb0rubDvJXNFPPvQgK9zFpQ+fDW1dCPfwuWLRxYK63R4NvMPCFvwd2uDdlqNbPLeTBw0DUaagtxB77XezFjwLpvRO2HL71eKrJl/luT2twzQ1Lt9Yb7V9S+/f9r5eb/26Ep9LVLf63RQdFa2F3RaqQuEKWvvgWs864QrKnzh/Qp3mdNKTMU+mmtUupY0PbVShvGkH5qMiojTxtrQzD7af3K43f0ld4yzUktdc69mgZwZLphYVESXX8y7P8OXJaydnskb29JjfwyfYHxkRGdD6KYcYOV3OoLQrLfFJ8Xro24ckSQMaDdBPvX7SheEXtHPwTrWt1TbDdVN+flp93Epbj28NWVszknJ2SffMvq1rtNaw68xw6+W7l2ve5nnq+WVPlXmtjP46/JfunXev7pp9V6oSAxuPemuKvrv63ZD+D5LbdWqX4p2pT+i/2PKFPtv4mSdo5DZ1Xep6Zu4htm7tP2uvhpMaqur4qvrj4B/BbXCAth7fqpMXTip/VH41KtcoS9tIPqTQn9lpQyV5wHjUDaMCHuooSd/3+F7WCEuPNnnU89imo6EfzZC8pMXN1W/WovsWqfPlnfVok0fVvJL3e7tWyVpa2mOpzg/3zagM9+eo8QeNle/FfJ7ZNHP7MUVuYVmWIkZHqPDYwvpu23fhbk4qE1ZP0NUfXJ3u/nbHyR16bPFjWrRtUY7WwEzPxNUTVfy14vpg3wfhbkpYEPhCupJcSVq8bXGOXKH4ZMMnntv3z79fzT9srnoT6inPC3kUOTpSO0/u1M6TO7X9xPYMtpJzYrb7Xjla3W+1PunofQ3TOkxTl8u7pFxNkjTkuyGhbFpADp85rMjRkXpk0SO6fMLlqf5+5SVX6vN7PvcckG98aKNaVjVX1y8pdImGXDPEZ/lwDFH45C/zvmelsHpa3EN2NhzeEJTtpefkhZOSzBXUYLr/ivs9qf67Y3cHddspJZ/9MiszaUq+hcnPJJzxTFEeDsmzKxxy+BQuzo0HXG5zN8/13O5Qp4PndoQjQv0b99fjzR/3mbW0ba222jd0n64qd5VnaHbzqc3DcjX6kz8/yfDvF4ZfUL+r+unhqx/ONLg6oPEA/TngT3W5vIsK5S3k814MXTJUp+NPZ7B2cCU/qel9ZW+VLFAyg6XT5nA41Kp6K0mhzUDdE7vH5zs4K8OWoyKidGDoAc/9UM1IOWfTHOV70VvL0J1pGh0V7fcslH886D0BXrpzqWq/W1s/7fopmM3MVPIr/z0b9JQ1wtKgawZ5Hht9o7f4eKc5nfTxnx/r6LmjuuL9K/TZxs80/+/5ajy5sZ6KeUqOUQ7Vfa+uZv7lmyUY6qxlyQSuk2d77X3MO+HN3Z/frXvn3atL37tU+V/Mr1s+vUUvLn/RZ2KBKXdM0YXhF7Rv6D79+0jqCU52x+5Wo8mNwvq94B5WW7149QyH2mXGPevjgdMHMlkydCau8V4ceL7l8xksmbm3277tuR3q0hCWZWltnPdCTd7IvMoTmUezO832aUdyKWunHjt3TGcSzoQl6+bo2aOewFvL6S1140c3KmJ0hF5a8VKO1pbNyKy/Zqn7/O45+j2ZGXfQy63tjPQvbJyOP63p66eH7AK80+XU/C3zdfzccZ/HHl74sNYcWKPOczvrfz/8T+/9/p4SnAmasWGGHKMcqvF2Dc/yu0+F9pg8M9tPbNczS5+RJUtFo4qGtS3hQuAL6er5ZU/dOuNW5Xsxn+6Zc0/IMq8OnD6QanbAX/b94nMFqfrb1VX97eqq+U5NXTXpqpSbyFGWZfnMbmiNsNS4fGOfulJF8xXVZ50+067Bu9SkQhOf6aLf+u0txV6IzdE2pye9DJtqxappea/linCYXcSgawbJGmHp8jK+wbE3b31Tx5/yfgk8vuTxHP3S3Hhko37d/6skqU31Npks7R/3yfXW41tDWrTfk/EV5MCXJPVvZGZaDPWECu6ZI59o9kS2trOq9yrP7XDVdzmfeF75X/TOrHnhfxd8sgfbzWynZ5c+q9X7V4flSq1lWXrom4fkGOXQntg9nsfXHVyne+Z4szI/vyewob7J9+vf7/w++w0NUPLZM9MSHRWtyXdM1rvt3vWrdt8VZa/QZ50+0+lhpzW/y3yfv33wR85d4Uw+QcJ7t72XwZIZe/GmFyVJqw+sDmi2vEB88+83PvcjHYFle7mVK1zOE3QPVYH1lJnW7sBgIBpc0iDVYzd+dGOO9Wuny6nCY737lgeuTD3TX1RElE+wOi1/Hv5Tr60yQ9XSGtbuLmAeKpZlqeSrJXXozCFJUpfLu6hikYp6vNnjqZa9kHRBS7Yv8ZlF9tEmj6rPVX0UHRWtItFFVKtkLf05IPWEBZIUPSZa1d6qFpZ9r7s2a3aHB7mH4rmH64WDe3bftGY+zQr3/mn5nuVB2V56Xln1ir47bi4+Pdk89RDh9OwcvNMzbPuNX95Q4bGFVXhsYXX6vFOOTlqzcq9vPUF3oH34D8NVaGwhfbbxMzlGOeQY5dCdn90pyewnnop5Sk0+aBKymSnXH1qva6Zco41HNqrbF9306YZPc9VkAF/981Wqx1IeAzldTjlGOVTk5SJ6YMEDKv1aaZ/gVLC8uvJV3fX5XRqyeIjnseT73S+2fKEXV7yoRxY9ougx0T6zj7q9vPJlfb4p6+VYsiPRmaia73hLq5SNDn1JgtwoS4GvCRMmqFq1asqXL58aNWqkFStWZLj8smXL1KhRI+XLl0/Vq1fX++/7P1vQf53LcvkEEizLypH09aNnj/pcPZy7eW5IhlpMWzdNFcZVCGiddYfWeepJxV6IzfEgUotpLTy3P2yf8cF9lWJV9Fvf33Tg8QM+B+jJizWHy80f3+yZkS+5MTeO0Y7BO9SiSos01kqtRP4SuqXGLZ77RV4ukiOzPJ5PPK/6E70TCQy4Kjh1mCoVraQCeQoo0ZXoKUAfCu5gb/KhfsFSp1QdSWb/kehMDPr2JZMR+v0OEyhpWrFptrbVrFIzTzHtfl/3y9GTm31x+3TozKFUByl5I/NK8q3NNPbnsWoypYlqv1tbTpdT//vhf1q8bXGOtPfFFS/q/bXmu7PK+Cr6YssX6javm88Qx+Tt9tfHHb2Bxn+O/5PBksFnWZZ+3WcC1+PajFPSc0myRnjfy6zOzurmcDh8MlAeX5L6hDwUDpw+oFdWviLJ9O/szNqafLKUj/78KNttS8vDCx/23HbIofuvSH3A7i937aNJaydlu10p7Y31vUC2oOsC1S9bP52l0xfhiNCbt6Qe+hrq4aRuKU983FnUKR154ohK5C+R5t8yclfduyQFvi8IlDvo5ubOvLmh6g1+rd++TurSD1eUvUL31rtXUuq6kbtO7QrLhRH37KHubPCsalHZHFP9vv/3bLcpUMfPHVehl7zDfGd3Cs4x6PVVrpdkhuSG6nswwZmg55d5s9PKFy7v97pVi1XVwm4LUz0+b8s8FX8la1nqgVq2a5k6zk67/InbvfPu9dxe8M8CdZ3bVQu3LtRrq17T6gOr1WVu2iNIsuPXfb+q4aSG+n3/7z7H0m/++mZAmUn/Hv/X8z0eTLM3ztads+9M829VxlfR2YSzupB0wSeY41bqtcBq8Pnj2R+elSR9uuFTlX29rByjHH7PYJtcl7ldPEHOVh8HfuEmq1KOWri6SHBGyVxsAg58zZ49W0OGDNHw4cO1bt06tWjRQm3bttWePXvSXH7nzp1q166dWrRooXXr1unZZ5/VoEGDNG/evGw33s6SXEkavnS4ar5dU0VeLqLeC3rrbMJZ9fu6n6JeiJJjlEMnz58M+vO6LJeumHiFyrye+mT8oW8f0is/v5Lt59h+Yrt6L+it5buXq/dX3qmJi+crLmuE5VOotni+tL+YpqybIscoh4q9UkzFXikWlHb5w2W5fK7c9G6Y8dTKycV09w6PTF70OByOnTumH3b+4LmffMhizysDq0UjSYvuW+RzP88LeUIekBy4cKDPfXeR9OyKcER46nis2rsqk6Wzxuly6s9D5mA6o1nIsqp9nfYqmKegYuNjQ1ZPZOWelZ7hJ2mdwATKPeuVlHMBmG0ntqnSm5VU7o1y+mKLd1KK5Bls392XeojjthPbFPVClF5c8aJunXGrIkZHyDHKoZpv11Std2pp/pb5qdbJjs1HN/vUi5LMMKJZG2f5PHbq6VMBb/uqcldpzI1mf7TmYM4WXZ62fpon+6FhuYaeulJHnzyqkS1H6ucHsj8bY8UiFTWtwzTP/VAcoKe07uA6z+2xN/s/Q25akme5Df9heLa2lZbkBdE/7fipnM87szQs0809+UAgRdn9de3Uaz23rRFWtvY7Q5oOket5l4484Z1QJ6cmsUgewMxoMpbi+Yvr+FPHlfhcojYN3KRNAzfp6vJXq0/DPj5Z5MnFdI/xZJAt2b5EDd5vELILUYu3e2e77VCng+cijj8B60ebPJputt7Mu2fKGmHpn0f+0dPXPu3zt14LeuXohZH5W+ZrxR5zcb9x+cbZ2tZV5cxFiv2n93u+/3OCZVkq9VopnU30Dqm7puI1Qdn21eWvVr6ofDpy9oimr58elG0md/L8SUWPifZ5LK0MyYxk9Hl0jHJoxe6MkzeyY/X+1WnOXpqZ2Ztm+9QEXrZ7mRyjHEHLUqvzbp1UE1IkV/Wtqir1ailPgCYuPk5d5nbRZe9dJqfL6ckU3xe3z7Ott39Le8hpVqzYvUJd53X13P/gjg808y7fodyFxhbSvfPu1a5Tu9LcxhNLsjcSIbmU+9BAJ2JLb9KVpTuXavbG0CdCnI4/7fN5mttprgpEBl7fzw4CDnyNGzdOffr0Ud++fVW3bl2NHz9elSpV0sSJaReVff/991W5cmWNHz9edevWVd++fdW7d2+9/vrr2W68Xb3929vK80IevfTzS9p5yhyUTls/TYXGFtKH67wZRiVeLaHbZporUIFkdViWpReWvSDHKIfKvFZGn238TLXeqSXHKIciR0fqryN/pbvuM0ufkWOUI1uZMD2/7Klp66ep5XRvgGvW3bN07CkzLvunXj/JGmHJGmHpxNMnPJkgmwZuSnUQlLxdfRb0yXKb/BU52jsEJPkQP3/NuMsU7t8bt1eLty3OZOnQWHNgjWq/472S+m7bd/XmrW9q40MbdWbYmYBn85LMydmEdhN8Hiv2SrGQzdKZ6Ez0HGS1qNRCs+rPyniFALmvzIZqVqltJ7bpbOJZ5Y/Kr1olagV9+1ERUWpSoYmk0BV0dQ8bq1miZrbqnrglL0qdshhyKPT9qq9qvZP6vZ/afqrG3OQNTNctXdcznCMz209u17YT23TX53dp+NLgBCkSnAlp1t9LKaZ7jIrmy1rNBveJQU4XuHdnRUnyKU5cqkApjbhhRJZfT0rJM5iafdjMJzAVCu4MkXa12gV0cSQ9yTNNgl3raPRyU0uqStEq6la/m1/DSTNyc7Wb5ZBDsfGxQR2ek+RK8mTJ3lj1xqBs0+FwqHTB0nqnrXdI4LJdy4Ky7Yy4L6g8fPXDuufyezJZ2uzPLyt9mS4rfZl+7/e7prSfogOPe+tErem3RknPJenYk8fUqnorXVvJGyDccHiDyr/hf4aMv1yWyxM0nXT7JM3t7K0zWLVYVc3vMl/DWwzX+v7rdVO1mzT+lvFyPe9S3DNxskZY6dZlSunlVi/rhx4/qG1N7/fDl39/GdTXkpHpf0733HZnUmdVwbwF1ayiCTY0nNQwxyYfSFlvL/mkJtkVHRXtCQj2/qp30APeyS9ISdL09tMD/l5wOBzaPmi7pneYrt/7/p5qwqbrp1+v/l/3z3ZbU7IsS02mNPF5LOF/CZrdabYOPn5Q1ghLic/5nrttHpjxhcpJayZlu+zMjpM79O/x1PX0Ujp+3nuOU/Tlovp80+facmyLol6IUuToSDlGOVTpzUqeZQZ/N1jvr3lfB04f8Gv76Tl69qiun369536lIpXU96q+urf+vT4Z4ZLvvmBNvzXaPshbOuGNX94IWvArs++Ffx75R0ObDtUXnb/Qm7e8qWsqXKPlvZZ7zmVfaf2KlvdKezhw13ld9fLPLwf9AsX3O773BC6LvOytpdu6emu1r537JlrLKQEFvhISErR27Vq1aeNbS6dNmzZatSrtzIhffvkl1fK33HKL1qxZo8TE0AzBye12nNyhhxY+pAc3P6iYHTHqNq+bZycyaNEgDf7O/2moF25dKMcoh/KOyauCLxXMtECrZVka8M0APf+TSRs+eu6o7p13r89ML8n99dBfskZYnqKcbvUn1s/Sl/arK19NNdb9lVavqGu9rp56Uiktum+RrBGWLit9mV5u9bKGt0j7hHLq+qlyjHJoX9y+gNvlj5RjxrMyBMGdwi9Jt864VS+teCnb7QrEjpM7dO3Uaz2F1Z+97lk93MQMc7m8zOUqmLdglrfdv3F/vd7aN6DddEr2hsClJ3m22pxOc5Q/Mn8GSwfOnYUVqloc7oDaFWWvCHj2NH81vCR0r8Hpcnr+B4Ov8X9/lRn3hBDuwEGo/LL3F5+LCG5Vi1XVAw0fUHSU7xXmZ1s8K2uEpaTnkvTBHf7ViXrp55d8is5n1RurvIXG77nsHm0YkHrShd/6/palWkdu7rp2G49u1Dlnzkxz/cPOHzwHx+/f9n5Ih2VFRUT5FDRPXmco2CzL0tf/fi3JBIGCIfmwJPfw4mBxzzB2e+3bsx30kqT8efJ7AgTBzK579/d3Pbe/ujd13ZfseKTJI57bKbMog+3QmUM6nXBaDjl8AuxZkfhcok48dUKNyjdSZESkJ1OveP7iWt9/vWe5o+eOphomml3jfx2vnad2qli+YupWv1uqemR3Xnqnxtw0Rg0uaaClPZZqcNPBcjgcWZp1+cZqN+rbbt967t/1+V165vtnNPKnkfp+x/chywD7fsf3nhpDz1z7jK6pkP0sKfdFFEtWSEspJPfzHm/m7Pnh5z2ZZ8Hy7HXPem4HO8M8ZocZKVGuUDnNbzBf3ep1y9J2qhevrp5X9tTVFa7W5/d8ri0Pb/H5++Q/JqeqdZgdlmWlytDd+NBG5YnMo86Xd9YlhS6RZL6bnM87NeqGUVrQdYHqlq6rL7t8me52n1n6jCJHR2a5hMVfh//yKbY+suVIWSMsnXr6lM4MO6MjTxzxDFfPioe+fUgVxlVQnXfryDHKoRum35Bpbbzk/TcuPs5n+GClIpW0bZDv+enJp1OPdtr66FY1Kt9I1YtX1+99vUOJ3/jlDX3777eplg/E8XPH1eoTc3x1e+3bdXfdu/Va69f07yP/6tc+v8oaYal2ydp645Y31LFuRw1pOkS/9v01VbmYFlVayBph6cywM1rea7mm3DHF87dhS4cpzwt5ghY43hu7V60/aZ3m3767P/dO1JQTMq6cmcKxY8fkdDpVtqzvkKKyZcvq0KFDaa5z6NChNJdPSkrSsWPHVK5c6nTt+Ph4xcd7Z5eKizN1iBITE20RLPt598/6cL056brtM9+aAcmLkV5d/mot6LxAC7ctVN9v+noe/7jDx3po4UM+acuSKbx540c36tSTp9Kcovh84nkVfS3zKyXd63fXa61eU76ofKbWUWKiPrz9Q/W9sq9afuzN0npi8RN6tdWr/r1oSf2+6aePNnhT/B9u/LCuq3Sd7rr0roD+r89d95x2n9qty0pdpieaPaFf9/2q6z9OdnXgzUraP3i/Shcs7fc2/dF5jreo7sEhB7P8WVx470K1m9VOkhm6cuLcCY29KXvDYTKz/eR2bTi8Qd0XdPfJGHiq2VNB7VODrh6kh656SAVfMQG0nad2avLqyQGnpmdm1l/m5KT/Vf1VOMocSAfzddQvZeodbDm6RRfiLwQ9OPXzbnMgekWZK0K2T2tS3lxpXL57edCfY8WeFTp45qBK5C+hXvV7BW37N1S+QbM3zdaHf3yop5s9nW4wPDt2nNyh5lO92UWd6nbSSze+JKflVI3iNTJ9Lfdffr+OnDmi7Se369YatyouPk5XlL1CCUkJ2n5qu2oWr6lrp5uMi3vm3KNIR6R2PrrTc6AbiJkbZ3rqStxa41bNuNNkjCY8mzrrJzv/gyqFq6hm8ZradnKb1sStUYfEDpmvlE0PffOQ5/a9l90b8u/2eqXqaWjToRr36zh9t+07bT261e9ZAAPx856f9eu+X5U/Kr/uqHlHUF5XXkdePdjwQU1eN1lf/f2VWldN+4A2UEfOHvFk+fWo3yNo/4OWlVvq72N/K2Z7jNrVaJft7TldTs+V+zbV2yjaER30z8tnd32mrl901aS1kzT2xrEqlLdQ5itlwt3G5G2tOr6qJFOnqGBkwWy/jkJRhdLcxmUlL9P+wftV4S1TQ/XDPz7U8OuCk4W66egmT728O2rdEZL/R1o+6vCRei4wpRiSZ4tK0ju3vOOZ1CVYBi3yDr//33X/U1JS9jMyrqt4ndpUb6MlO5boxeUvakbHGdneZmY+Wm+Ou59u/rQircig/69aVW2lFpVaaMXeFVq9b7Xn+Cm7lu9e7qmH+/EdH+vslrNBa3uNojV0/pnzOnT2kKq9U02SdMesO7SsxzJPVl52fLjuQ4392Xtc7/7OTq/9w5oP8/y9XY12OjDkgLaf3G4uJJSoowX/LtD9X3ozl/OOyavba92uL+75Is3tpeXN397U00u9o2ZevflVDblmiBITEz3D3vLmzasDQw5o9PLROnTmkB5r+pgufz/zjPPmFZtr1b7UCTDLdi9TwZcK6vVWr/uUs0h0JmrbyW1qMNlMNDKh7QTVKF5Dt8z01gsulb+Utj+yXXJJiS7v+1YwsqBmdpypbvNNEHTHIztUsXBFz3t7ZZkr9Xqr1/XE9+Y74/ZZt+v448ezFHSX5BlZJUmDrx7sU46napGqAX8m8zryqmn5pmpavqm5CLveexE2/4v51ahcI33T5ZsslRw4l3hOxV4rlubfnm/xvP7X4n9yJjnT/G66mAXyOhxWAJdKDhw4oAoVKmjVqlVq1sy7Y3jxxRf1ySef6O+/U88qU7t2bT3wwAMaNsw7w9HKlSt13XXX6eDBg7rkktQnAyNHjtSoUaNSPT5z5kwVKHDxj0nddGaTPtj3gXZd2JXuMp/U+8RzQu+27dw2JVlJurSgmRnmvPO8Bm4ZqJNJqaPfX175ZarnHL7N96Bn6uVTNe/wPO04v0MPlH9ANQvU9OtEc8jfQ7Trwi7ldeTVm3XeVIV85sDqWMIxLT+5XK1KtlKRqCI+6+w4t0ND/x3q89wl8gSeMZWeeFe8Hv37UR1J8A6tC+ZzxByP0Xt7zcxcd5S+Q30qZG9Y5fGE4+qz2buN+8vdrzvL3Kk3d7+pwpGF1a9ivyzPrJXSzIMz9flh3zoiXS/pqjtK36GCkVnP8MrMuN3jtPykySZI+XnMjkRXonpt6qWzzrMaU3OM6hXKXgHstDgtp7pu6KpEK1GT6k4K+uwnw7cO16azmzSo8iDdVOKmoG7bLTYpVj03mpOEdy59R5XyVcpkDf99deQrTT0wVU2KNNGz1Z/NfAU/xbvi9cDGB3TOdU4ja4zUlYWvDNq2JelowlH129zPc39i3YkqF512rZzsOOs8q/v+us/nsXkN5gXUp9fFrdOoHeZ7sFhUMX14+YdB2yekZer+qfrqqMluCLStgXJ/fiRpSOUhuqHEDSF7rpSe3/a8NpzZoJ7le6pjmYwLDgfKsix1/NNs89pi1+rJqv7PPpaZtXFr9cKOF1Q0qqimXj41KP+f749/r3f3mkyq+Q3mByXjS5J+PvmzXt/9uqrmq6rxl47P9vb+Pvu3ntn6jCTp03qfqlBU9oNSKVmWpS4buijBMieowd5nzj8yX7MPzdYFl7miXyVfFb116VtB2356Fh9brIn7JqpuwbrqX7G/Zh6cqZ7le3qO27LizvV3em5PqDtB5aODP5QyPcn3iynNrD9TBSILKMGVIIccyhOR9SH4P574UW/tMf+fJ6o8oeuKX5flbaX0zdFvNGX/FJXNW1aTLgv+JBDJJT/WHF9nvKrmrxqS55l1cJZmHzZBqmAc751IPKHem7zDxIO5f0ppTdwajdnhzb78osEXWbroFu+K13nneZ1IPOE532lfur16V8j+cHdJWhO7RmN2ps4Szej9PhR/SAO2pK5dOLDSQLUp6d9M6HFJcbJkqWiUb+KE03Jq0bFFali4oSrkq6CjCUc1Zf8U/XX6L+WJyKPYJN86v/0r9teeC3u06JhvTeC09CrfS3eWudOv9qXH/Z0pSaNqjFKDwqln883M/gv79fDfZlRM7/K91b5M8IcInkk6o/s3+k4oU79QfeWPyK8e5XuoYj7/ys/su7BPL+98WfvivaOe6hSoo1dq50wN7HA6d+6cunXrptjYWBUpUiTDZQMKfCUkJKhAgQKaM2eOOnb0HjAOHjxY69ev17JlqcfAXn/99WrY8P/au+/wpqr/D+DvJN0TWlpKoUCRQtmjRdllDwEZypCpoMj8FhARBClDAUVBGRZQQUUFRAFBhlRkiLIsIHsXCpRRZvfM/f2RX25ym7RN2iS3De/X8/A8996cGz6FnuTezz3ncxrh8891X/CbN29Gv379kJaWBkdHwy8mYyO+goKC8ODBg0J/oNIiOzsb32z7BmMvjEXPGj2x4eUNWBG7AjP3z8SpkafMWrVE663tb2HNf7oivut6r0OukCt5SgBonphu6LOhyNPasnOz4fmxZ4HzzNOmpolD39WCGi7zdataJUxIKNZQ2oKELA/Bjae61UhGh43G203fxorjK1CtTDUMqz8MjirNcNIcdY5JT3WbrWmG2Du6mggp76ZYZFrOucRzaPhlw3xf7xPaB+ObjEeTwCaSv8/3E18kZ2lW+nyr8VuY+MJE7InbgyH1hxisHvY4/THKL5YmbV6o+AL+Gma9Yp5ap+6fQvhXmtoP3/b8Fq/WebWQM0wTeycWzdY0g6+rL25F3oI6V42YmBh07NjR6OdJUTVc1RDnHpzDr/1+ldQXsYTnlj2Hm0k3cWDogWKviFgQp3ma35sVL67A8IaWufi6n3oflT7XfBFrnyBZ0sTdE7H83+VmP800xWtbX8OPZzQFUqe1mIbZEcZvoCwh70jUw68fNmuKSYtvWojTVK39ewJoRoXWiq4FANj8ymZ0q1G8FczyczflLiov0ayUqYACme9lFnKGZS06vAhT/9QkUVLeTYGj0tFiN1T6n+lfdf8KQ+sPtcj7Aprv3SpLquBB+gODp+dF9frW1/HDmR8w8YWJ+Ki95S6Otf/HCihwd+JdlHUt3upp2s+xV2q9gh97/1hI66KbtX8W5v2tKT/Q9bmu+LX/r8V6v+zsbMTExOCQ6yF8dEj673tt3LUi1dM01/kH58VRFfpuRd4ye0XhzJxMfHniS0yK0dzUqxQqpE1Ns1pCIj/Zudm49OgSrj6+isWHF+PvW5ryGSMbjUSryq0w5FdNaY7MaZlFjm3g5oH4+bxmqrqxEbbF8Sj9EQIWax76x74RK1m51ZJuJ98WRzMBQPrUdKuVVrj2+BpCozUP5c+8dcZgRU5z/Bn3JwZuGYhH6Y8AaK4fX6nxilWu87S2XNyCfr9oZnX8PvB3s+oIxj2JQ6cfOknuPbRu/O9GvgtRFNX2y9vRe6PuHvzI8CNiaQt9Z+6fQeOvDK85Xq3zKr7taZ0VgvPS70emmttmLqY0m2KRz5UBmwZg04VNRf6Z5x2ch1kHZgEo3udJYfZe3ysZ7aYvfWo6ctQ5YgmOpMwkDNw8EHPbzBX/31OzUlH2E+n37JB6Q/B1D8OSHoDuu8la/cnWkpKSUK5cOZMSX2ZNdXRyckJYWBhiYmIkia+YmBj07Gl8akSzZs2wbds2ybHdu3cjPDw8339sZ2dnODs7Gxx3dHS0i/8grYouFZH1Xpb4M0U2i0Rks6LXy1ndazX+iPtDLAD76mbjiYZdg3cVq/M6OjrirbC3EP2v8QUNAKD99+3xz4h/cDD+IFqt0c1zntJ8Cip4W36EhdbP/X5Gky91S7RGx0YjOlYX55idYzC0wVDJktgtglrgwOsHjD7hycrNkiS9YkfGwt3FMqOkGgQ2wLSW0yTDofVturAJmy5sgpezFzo91wk/n/sZv/T7RUx6AcDK4yux8rjmieE3p77B0Td1c9t/OvuTwRLIWwdsRdeQrgb1OKyhcaDuC3fYr8NwK/kW3mtV/NFB2otcXzdfuDi7iENcLf35UK98PZx7cA7fnv4WL9Wy3FOejJwMsQ5dTf+aVv1MG9FoBL4+8TUuPLxgsb/n4C1dvZDBDQZbPP7XG72O5f8ux564PVCqlBa7UM/KzRKTXv7u/pjXwbr19VoFt0LG9Ay4fKhJRjddY5i4yluoVSsxNVFMet2ceNMmN8ih/qHidu+fe+cbW3Fcf3IdwUt0N2K/9PvF5t/p7aq1A/6/RKDHRx7oX6c/1r+y3iLvfeWJrhbJ8MbDLXqR7OjoiMxcTZJw8h+T8XaLt4v9nqfua+rFtQ1ua9H/h6CyQajpWxMXH17EkTtH0KNmjyK/168XdMmnwfUt/3mjb067OdhzfQ+O3D6CG0k3LPZ37Y+XPhRe2nUpgn2D82ltWXUD6sLVwRXpOemS45U+r2RWH3+a8RRlPi4jOZYz0zqrRRbG0dERDQMbomFgQ7xc52X4fuyLR+mPsOrEKqw6sUps5zzfGU+nPoWXs3kPzNWCWrxZX9l9pcV/58o76h5GrjqxCiu6r7Do+2vpJ70AwMXZJZ+WxVfTvybaVm2Lvdf34s8bf6JOQOHT44w5fe80uqzrIu5XLVMVQxsOtdp1nlbfun2BXzTbY3aOMagrlZ+7KXdR8wvjix683/p9VC5b2VIhinrV7oWbE2+KheW7/NgF1ydcN/g9nxgz0eDcFd1W4K1wyxfyz8/Gfhvxb8K/kvuyvBa0X4CpezQPo06NOoV65S2XCNYm99edXYdfL/2K5GnJ4r1eYmoi/rv3H1wcXNCysnREpyAIOHzrsJj0+qDtB3Bysl4d0o7VO2L9y+shQMCrv0jv3V0XaGoYH3z9IFpUboEmXzRB3JM47L62GwmTElDBswKiD0vvx+9NvmfSgw17yauY8zOYPZZz0qRJ+Oqrr7B69WqcP38eEydORHx8PEaN0gylnDZtGoYO1T3lHDVqFG7cuIFJkybh/PnzWL16Nb7++mtMnmy5ZUZJ58yYgotlClGCRS7GF3ZcWODrh24dgmK2QpL0alyhMT7qaN0hl+GB4ZLlyY3RT3oBwN83/4Zqjgp7ru0xaKu/Mtvp0actXhR0UrNJBqOJ8i6ZnZSZJBbJfvmnl/N9r2MJxyQF+PMmvYQoAT1q9rBJ0gvQrKSzZ6ju33T6n9Nx6p5hYW5zqAU1JsdoPjsqehZ9qoYptE9hd1zeUexVdPSdSzwHAQJ8XX3h52bZOnR5aUcJnXtguYKz8U/jAQDPlX0OIb6WX5Gyfvn6cFI5IT0nHd+f+t7s8+Mex8FhjgMUsxXYfXU3AOB20m3Jkuj/jbLNUvLODs5Gn8RqJWcmGz3u/4nugsUWSS+t8ArhhTcyQXJmMmITdA8Mjt4+CsVsBYI/l96I9a5l2amGpsh7Ub3h7AaLFcfWPvEfUHeAVZ4MT2051SLvk52bjWl/TBNXcLbkjYaWtg7K/htFXyUxMTURvTb0Evd7hlq39pxKqRJXJzyXeA6NVubfd02Vqc7E4duaIv9vNn4T6dPTJcX0rU2pUBoUWdb664bpI78XH14s2f99sDyrUhtTUDFw7wXeBtdChfnggG46maVHe2v99Iqm/MTK2JVWKc6/64q0gPXp0fmv1m4pFb0012T/21W00ahZuVmov6K+5Ni4JrbrKyMbjwSgGf285MgS3E66XcgZ+S/gFFouFHPazrFofPoqeVXC6HBNnczHGY/hvUA6DTEzJ1Py2Xtr4i2kTEuxadJLK+89TeMKjRHdLRqjwkbh0ZRHeLv525jRagZihsRY/LtoSAPdwmxp2WlQzVHhuSXPIXxVOPw/8UfHtR3Rak0ryb3Te3veg3KOUlIL9rWGr1k0rrwUCgX61+1vsOKovpZrWuLSw0uIexInHgtcFIhtF7eJtWABzcrk5o7mfZaYnfjq378/PvvsM8yZMwcNGzbEgQMHsGPHDlSpUgUAcOfOHcTHx4vtg4ODsWPHDuzbtw8NGzbE3LlzsWTJErz8cv438FR0Xs5euDXRcFXDVpVbGSybWxzuTu4QogR820szdHRj340QogTMaZP/B/2RN45Y7O8viJ+7H86NOQd3R/NGZnVY2wH/3dXdEKdkpeCTQ5pVCgM8AlDX3/K1pMq5lcOOQTuQMT0DNyfehBAl4Nibx7Cm5xo4qwxHPWoNbTDU6OpuQzYPgWK2AlU+qyI5rp5pucSNOdoFt8PkZrokd4MV5s+x13fxwUVx+43GbxTQsvjeDNPUgsrIycD91IKTqebQjvYKLhts9Skidfw0T13P3j9rsfc8dOsQABT4BV0cjipHcZrEkdtHkJadhtG/jcb5xPOFnKl5SldtSTXkCpoVZzt/3xnjd4xHpcXS5FFRCs0XVYugFvm+5rXACwnJCZJj6dm6kRna/z9b0Z8KcOGBYc1OU3kt8EL4l+FQzFag6VdN8cJXhquhZc6w7RRHLRcHF3zQVlon5XZy4Tc4hUnNShULflsyUa5PP2HyJONJkd/nrd/ewoK/F4j7VbyrFNC6aJpU1DzhL84qbzsu7xC332hk3c97Lf0HKifvnsTwX4fjo4Mf5ZukLsyFVF0/mtJiikE5AlvY2HejLp6xunhaf9PaWHMDGTkZmL1fNy386BtH0ek50+oD2UKrKq0k1xl5/XT2J8zaN8uk98pR5yBqX5S4H+RtuTpv+lpX0f3bt/22LeIexxXQ2nyLDi0St3Nn5lrl+jUv/e+6oiTz9B9OAUB59/KY2Mxw1JK16K+yGrkrEqO3jzZok5adhu/++w6xCbEQBEEyvXH88+Oxuf9mdKjWAWt7r7V6vJ5O0jrQz3/5PBSzFVhzYo24GikA/DHkD1T0qlisVduLa+egnej8XGfERcYhdmQsRoWPQnT3aJR1LQsHpQPmtptbrJWp89M8qDk2998sOXbt8TXJTB4AKLewHBSzFVDMVhidhaNN6lqbSqlCxvQMPJzyEFOaTzF4veYyw9GFL63XzUiZ3WY2Xm9k2cXE7E2RlswaM2YMrl+/jszMTMTGxqJ1a90H+DfffIN9+/ZJ2kdEROD48ePIzMxEXFycODqMrKOiV0XJqiRP3n2CA68fsMpIn6ENhkKIEvBK7VcAADNaG9b7CS4TjP9G/WezkUYAUMuvFi6Nv4R/hv8DIUqAECVIVhYc22Qs/n3zX3zS8RPJeQ1XNsSlh5cwZ/8ceM7Xfan8++a/Vo3X2cFZMrLjtYavIWNGBv4YYnzpejcHN9QrXw/f95aOiNl5RVM0Ujsqx9XBFZkzrDcv3RQLO0lHB2oTP+Z6nP5YXF3F29kbA+sVbVlrU/m7+4u19iy5FLz2KaK1R6wBmn4AaG7sn2Y8LaS1aS4+1CQfW1TOP6FTXNqnvNH/RsN9njtWxK5A7S9qF3iOIAhQzjH8Slt2bJlkf++wvZYL1ASfdv4UgOZzcEmXJQavV1xUEZN+19TMOXXvFNzm6RZwOTnqpE1i1ArxCRELVRc2GuRg/EHceGJY0yRv0ufIbcMHHkfeOGKROolFNb31dAhRAmr6ai4iTUmqFqb3Bt3otdSs1AJaFp3+VBb90dTmEAQBa07qaoG2D25vle8HbV0b7XeSuf649gde+/U1AICTygkre1i3CLiWQqHAmPAx4v6ak2swdc9UVFpcqUifofey7gHQJBer+1S3WJzm8HL2wvmx53F4xGHULFcTURFRhZ+k5+/4v8XtdsHtxKRmSbKw00JxVMYv/X7B/tf2o1uIrk7h7P2zxRWts3OzkZ1r/EHw8qPLxe2O1Syzeqox5T100x3339iPakuqmZ38eprxFL039Db4/BIEASfungCgGWVojdWRjRneSFdHNDEt0axzkzKTJPu7Bu3C3cl3bRY7oHloXttPd52x7dI2fHjgQ3E/OzcbQYuDMGzLMIR/GY4z93UzbP4c+ieWdF2CXqG9EDMkxmCUkzW83Vw63V1bHmH41uH456ZuhUVbxFKYLtW7YNfgXVZZSbkwvUJ74Zd+vxTp3M86f4abEy13/W8KZwdn+Lj6YH4H42VwAM2MC2Peb/2+tcKyG7b7RCGb+m3gb/i578/IeT8H3i7ehZ9gIQqFAk+nSi8Or/7vKuqXr5/PGdYT6BmIZkG6BOBHHT7C6pdW4/G7j7HsxWUICwzD283fRup7qXi7me4LpOaympInfoDtsv15ta/WHt/1+g7bXpXWyRv/wngAwMB6A7Go0yJ82O5DY6ejZ2hPWW8wtfSfMvda38vs83PVufD52Ecc4mvNpIs+7RO160+uW+w9tSN8irKAhbnKuJQRE2zFGXmhT5u4y++L1xLyG01w6t4pTP1jKi4/vAy1oEbHtR1R9qOyuPHkBj755xOj5+jb1G8T2lRtY+FoC+akcoIQJeBa5DWMf2E8Et9JxL5h+yRttNOI9EdEhpYLtenDAq2ETM3vp37CcOflnfjt0m8YuW0k/rj2B2ITYtFqTStU/byqQfKroCTSgLoDcHvSbTxf8XnrBG8m7bSKHut6oM4XdfDm1jcLOcO484nnEXMtRtxf2nWpReIzRvs7oX/TZQ79aRIADL5bLKWyt662zb2Ue2afv/aUbsTEkTeO2PQGeHm35QajBJIyk1BuYTk8SHuAxYcW4/id4+JI4LTsNCw/utzo1Kgvbn4BAGgY0NDqcRcktFwoXqikGXk5pokmsaeAArnq3ELP1SZRAGBNzzUFtJTX1y99jbT30tCnVh+0rtIavw38DcFldNOrnT9whmK2Ak4fOKHtt8aLl0/5QzfKwtrTOfMmQoduMW8xDJ+PfbDlwhaDh0L3U+/jQdoDAJrrXltxUjmJ1xvmJvH0R/PvHrwbnasbL/RtbTFDYiT7M/bOwOeHNYuzHb9zXCy4DwB9N+pGvbcNNr0YvqX4u/tDiBKMjnb87MhnAID57efb9B6wpOpTq484vVhrRKMReKGi4Wh0ABgdPhq5M3MR2TTSpuUm9CkVSmwfuB3z2xsmwPrXMZy+/fjdx7IOcigtmPiyUz6uPni59stWW8GlIF7OXtg1SFNf4Ic+P5SYjujn7ofXG72OMi5lJMfdHN2wsOPCfKcgJExKMHrcVoY0GILuNbqLybnDIw6LT6UUCgUmNpuIyBeML4pgqZo9xVWznG54bt4hxqZ46zdpXYJFnRbl09KytKOb+v3cz2LvqU182WLEl76Oa4v/9Do1KxVPMzWJbWsmg/N7KthgRQN89PdHqLGsBlRzVPjj2h94kvEErb9pLblhAWBQj089Uy1LTam8yrmVQ0TVCKRPlxabVsyWfk4W9QllcXXx1RQWPnXvFA7cOICE5AS8+OOL6LGuB748/iU6ru0o1tkDgKqfV5Wcn7cwq9iuTFWse3mdTRK+ptJ+PmbmZuJc4jl8deIrrDu9DgsOLkDENxEmT1nUv/HcOWgngstar3C5/mffxrMbC2hp3LXH18Tth1MewtXR1SJx5aU/terwrcNmn38n+Q4AzfQpOZJGPWoYFuTPUefAb6EfJu2ehLBVYQj+PBiTd0+G+zx3jNs5Dr039Mayo8vQ7cduSMtOk/z+WHtVVnP4uvoCAAQIWHp0KUb/Nloyqisvba3Fd1u8K0loljRKhdLg9/nq/64abfv3zb+Njj7XjgrzcPKw+rXrO83fkewfjD8IxWyFZLROQfR/vx6nPxa3Lz+6DECTfC7uiqrm0i6ioD+V2hTaac0vVHwBHZ+z3ki7wgR6BiJlWopk1dwJv0/A2v/WijMptLTXh+2C29k0xrzyzqrQ92bjoj3MsUd96/QVZwAJUQK+eukr7B6yG3X96+LdFu/i0rhLqOhZEbPbzMYX3b6w6cOW/LwY8iKmtpyKzBmZkv/LMU3G4Mm7T1DFuwoOjTgEIUowuLcl4+T/XyW71Ll6ZwhRgtWno1mKQqFAyrQU8YJQKy4yDhU8rbcKpTk+6fQJhChBfGqrz93JHbkzc/HX63+hT60+4vHmQc0N2splZXfNVJWijLj5+oRuSd4u1btIEmmlTUKK7UZ8Abr6RanZqSY93S/InRTNzai7o7tBfQlLUigUuDHBcBpdfvQvSIO8gpDzfg5iR8bi3JhzCPQMRHS36BKTgNdycXBB7sxcOCoNV6OJi4yTTLmwpbY+uifXEd9EGJ3mu+/6Psn+e3s0hVV3XdklFkzXd2viLZsUVzZX1xDDwtUDNw3EtD3TcODGAbyx1fy6Ul2qdym8UTGMfX6suF2UhLx2JEbX6l3h4+pjsbjyUigUYgmEXht6iSNQTKVNSsxuM7uQltahUqqQPj1dLCBtTFp2Gj499Km4fyzhGMbvHI8dl3dgSswU3EvVjXSb1GySVeM1h/4D0Ym/T8SK2BVouaZlvt8P2s/O0nhjpVAo8h3VEbQ4CON2SIuna4tCa69XrGlk2EhcGnfJoH5di9UtsPzochy5VXBdXP2fa9lR3Qhd/QVobE3777flwhYIgmBSgXgA2HFFk/iqVraa1WIzlbuTOz7v+rnk2NAtQ/Ote1lQPV5buTf5HnYN2iV5UO/v7g9fN98CziIvZy+cHn0aCzosQIhvCG5NuoWZETPlDsuAk8oJq3qswvGRx7H/tf2o6FUR3i7euD7heol6qFIaMPFF9P9UShUeTHmAld1XorpPdZwZfUaW+ehFpVQo0bJySwytrxsuX5JqcWgLdV9+eLnI7zG2yVjsGLij8IYWMqOVrmZd3iLkRaW9KLXV9NlV3XXLu99NuVus99KfpmntRFJl78pFWtHp3Nhz4o1dLb9auD3pNkaFl8y6kkqFEtlqw1ozcn7u+DlJVxrV1g0pyPyD89FydUt0/UGXSEqZloLeob3xc9+fUdGrIjycPCwea3HVL18fr9Y1PkIN0D3RL4h+EeflLy4voKVl5H0K3WhlI7OK6WunOupPAbOWXjV7idsvrXsp/4Z5bL+0HecfaKbMyjXNBNAkp7/o9gUSJiWY/RBp99Xd4md9kFdQiSg5UJhN5zcB0JQWSMtOA6AZAXXl0RUAQPca3WWLrTh2Dd4FX1dfVPCoYPDZuvzYcnGa/NHbR5GSlQIANikGDwAhviEY0XiEwfFxO8eh6ddNJaPSsnKzxALcTzOeSpLJe+L2ICs3C4IgYPkxzeeQrUd7AZDUzVXOUaLS4kpYd3pdoecdvX0UADCo3iCrxWauvLHM3KdJiOSdYTGxqe0K8OfH390fnat3RgXPCuLqlObW8qOSr1GFRpKFMch8THwR5TEybCQuj7+MOv62XVHNUjo91wmNKzTGqLBRstQIyo92usrt5NtGp+gIgoD1Z9Zjw5kNSMlKwcazG8VV4bRmtZll05E7c9vNFbejj0UX+/1y1Dli4k+7cqG1aVenBICbScUr0qmt1aNfmNeaprSYgpmtZ+LSuEsmtZ/bdm6JTLAUZEDdAZL9UWHyJunKOpSVjCQYv3N8/m1ddDdWf9+UTpVyd3LHpv6b8HLtkr2C85c9vpQUjdenFtTYenFrgcXqH2fophjpF3e2pozpGeL2ybsnsfvqbpPPFRNfVpyOqTWovu7GUbsabGEepj1E93W6BEtJmFpXwbMC/hz6p1mL3Fx/cl1MnFb2kv9nyCtlWorBsaVHNbXpXtn4CtznuUMxWwHnD5yRkpWCAI8AhJYLtXWYFlHGpQweTHmAhLcTEBcZZ5C4eCfmHShmK/DCVy+ICT9brvzbtFJTcaGNvE7f042UPRh/UNwu81EZXH2sm8a5/8Z+OH/gDOUcpThVUpvItKX8RtEWJDNHt8JvSXpYu7b3WqPJ3ryF++WcmmnMZ10+w7E3jxU4WpXoWcXEF5GdcXV0RezIWER3L36ixpL0l1Lu93M/g5pGs/bNwqu/vIoBvwxA2Y/KitN4tKvCuTm6GUxFtQXtxf4Hf31QSMvC3XhyA9nqbLg4uNj0hk77hEj/wrkotBd82ukM1hbkHYTZbWcjxDcE58boivPnV+Ota3XDi+6Sbm3vtfig7Qc4NOIQMmdkyt5vFQoF/hpmuKLj7sG7kTwtGS/X0iSy9gzdg0fvPsLCjob1RVLfs86qhtbg7uSOxHcSDWquAZraVD3X90Sfn/oYOVNDmwwu41Im3zqRlubsIJ1aoz/SrjDaqY62GPEFQLLwytVHxust6ZsSI63VZ60aZOZydnBGWGAYnk59ituTbiPIK6jA9tnqbLzxm2YKW4hviC1CNIu7k7tBofq/4v+CIAjYcmGLQfueNXuWqAdpxfFBu8K/y8u5lbNBJDoXxl2AeqbaoDyItqYmALT/rr1Z7zm8oW0S8fqUCiX61TFvCvY7MbpaZ35ufgW0tC2FQmF08Y8ZrWagincVAMZrAcrN1dEV4YHhJa68A1FJwMQXEdnMZ50/k+wLggBBEBCyNARzDswRj+eocwzOTctOk+WLfHC9wRZ7L22NrIqeFW1aOLN9sOaC+Z2Yd/KtU2GKyF2aJ+XJmckWicsctfxqYVC9QYioEoEJTSfg4ZSHiJ8QjzltdL83YYFhNo+ruByUDpjeejqaVmpaoqZDvRUmXVCiReUW8HDywM/9foYQJYgFfSc3n4y1vXUr8Hk4ecDN0c2msRaXk8oJLg4uEKIEZM7INKhHtvvqbsmURq1cdS5arWkFAEZft6Yve3wp2TclqQTYdsQXoBlBnffvLoj+6pgftC3+wwZL83L2QqBnIKa1nCYe09Yyy0+H4A7WDqtIXmv4GtQz1WhbVVfX72ziWaNtU7NLTzK7MB5OHhCiBOTONF7TzFHpKEtha4VCYVBbbM7+ObiXcg97ru0x+/2+7vl14Y2s4Lte3xkcK6i+qHakIYASmaz5e7hmNHPDgIa4HnkdtfxqYfvA7ZjcbDK+7/O9zNERkTmY+CIim4lsGim5yL786DIGbx4s1hApSFGK4luCJadqaVcqs+U0CgCoVa6Wbnt5rQJaFkybkJRjtVgA+L7P99j32j4oFAr4uPogyDsIE5pOwORmk3FohGlTqcg0y15cJtkvKJk1uP5gDK6vSRBv7Gv+SoMliZPKyWh9n7zTWwDNao4P0x8CkI7MsIU3Gr8hGQGrHRlbkKuPruJ+6n0AthvxVc6tHHrW7AkAOHSz8D6qLdQbFRGF6a2nWzW24ngrXJcYXtx5cYFtS2riC9AkGn4b+Ju4Xy+6ntF2cowesjalQons96U1FhsGNETGjIx8zrA+DycPJE1NEhfJOP/gPAI+DUCHtcZ/h5pVaiYZVaklZ8FrZwdnCFECYoboktjGFj0BgP/u/iduvxjyotVjK4rmQc0hRAk48dYJVCmjGelVx78OFnZamO80eSIqmewq8ZWbm4uMjIxS88fBwcFi76VWm17clkhOfw77U9y+lXQLP57+scD21X2qo3lQc+watMvaoRlV3l1Xzyojp3gXxNoRX7ZOfFli2ob+KK/Pu3xeQEvb8nT2xMJOC7myjYU5KB0wK2IWAGBz/82Ftl/bey0ypmdYfVVDW9k6YKtkX1s350HaA6RmpSI7NxuXHupqz33f2/ZP/i+P1y0UYsqIrw1nNwDQjAC1ZeFrbc04/ZpE+dl4TpM4LQm1vQqiVCghRAkQogRU8qqEsU10q20u7aobwdK2bFurrp5pCW6ObuKo4Pxel+vBk7U5KB0k/1+HRxyWZbSXPk9nT7zT/J18X0+YlICr/7uKrBlZ+GfEP3iv1XtImZYiqf1X3ae6LUItUIdqHcTarvktrKM/0v/bXt/aIiwieobZxYR9QRBw9+5dPHnyRO5QTCYIAgICAnDz5k2LDO1VKpUIDg6Gk1PJmSpDlJ/WVVrjwI0DiNonXXVmeqvpqOJdBSN/00yPOTfmHGr5FX2EkiWUcSkDB6UDctQ5uJdyT3ziVxQ3ntwAALE+hK3kLRh7+eFls+vOaFco83b2tllhfpLXzIiZGPf8OJOXRM9be6o061GzB95v/T7mHtAscHH10VUkZSbBf6E/AjwC8O9IaaFz/ULutlLWtSzmtJmDmftmmjSN8NrjawCAiCoR1g5NIshbUw9L+xmSn4dpD8Vt/YUTSoOFHRciJSsFL9V8CX1q9cG+6/tw+t5pjAg0XLGvJAqrEIY9cdLpdEKUbafvymVk2Eg8Tn+MztU7l5jPMO1UcmMqeFYwOKatofr74N8R/W+00dqLcjh59yQAoN/GfkialmTwun4BflvXVSOiZ49dJL60SS9/f3+4ubmVyDnieanVaqSkpMDDwwNKZfGeLqnVaiQkJODOnTuoXLlyqfj56dl24MYBANJi67EjY9G4QmMAmhWxHqY/LBGrSCkUClQtUxVXHl1B3JO4YiW+tCMeqpWtZqnwTOLh5IG9w/ai7beaaaY1ltVA8rRks1ZA1N5Y510OnuyXQqEwOellj+a0nYPjd45j++XtmBwzGYdvH4YAAXdS7kimhHV+rrNsMT7n8xwAYM3JNQjwCMC89vPybXv9yXUAtu/D2kLw8U/jIQhCvtco+qNCStpKaYVxdXTFN72+Efd/7vczsrOzsWPHDvmCMsOYJmPw8T8fi/uBnoEyRmNbTionvB/xvtxhGIgdGYuwVdK6lYWtLNrpuU7o9Fwna4ZVJMlZtq8LSkSUV6lPfOXm5opJL1/f0nOBrlarkZWVBRcXl2InvgDAz88PCQkJyMnJgaOjowUiJLKtRgGNxO0P2xvWrJCTtgZZ22/b4t7ke0Ve1fD8g/MAdDertpR3lMfVR1fRIKCByef/m6C54K5X3ngNGCJ7pE0WAcDP534Wtx+lPxK3N7yywZYhSTQor+vD8w/OLzDxpR3RY+vEl3ba4tXHV/H8V8/j6BtHjSa/jt4+CkDzYMCcpDwVX5UyVbBv2D5sPLcRB24c4LSzEqBxhcZQz1Tj8K3DaL66OYDSt4DL0q5LMX7neACaGn/NgppJXnd1cEV6Tjp/34jIJkp9ja/sbE1hSje30rWKlKVppzjm5ua/cgpRSbGl/xbJfm2/2qVmpGL5T8qLBaLNkZ6dLtYEqudv++RR3n9f7ag7U6gFNRb+o5k60bQia2nRs2NVj1UFvv5q3Vfh7eJto2gM+bn7mdQuITlB3Lb1iNOKXhXF7X8T/sWTjCdG2w3fqimgrp2SSbYVUTUCy15chlOjT6FRhUaFn0BWp1Ao0LRSU0RFROGHPj/IHY7ZeoX2Erebr24u1knNyMnAq7+8ivScdABAi6AWcoRHRM+YUp/40iotN83W8qz//FS69AztKdl/mmHbFdHMNbHpRMl+p7XmTyW4mXQTgGbaoVzTSK6M162e+b9d/0N2bnYBrXXW/rcWadlpADRJSqJnRfOg5jg16lS+r3s7y5f0AjQ1CPVpV47NSz/xpZ+IsgUnlbT26K2kW8hV50pG0wnCs1FPishcCoUCs9rMwsB6A+UOxWx5F/Jx/dAVAPDdf99h/Zn14vFnaWotEcnHbhJfRFS6XI+8Lm6PCh8lXyAmmNJiimTfQWn+LHHtVMFKXpVkS1TnnWL51m9vmXTDueq4btQLa3zRs8ZYMWmtv+L/smEkhpxUTljZfaW4H7goEI1WNkJqVqqkXWJqIgCIq6zZ2uLOi8Xt2Dua2kXBnwfjm5PfAADqRtcVX5/TZk7e04moFDJ2rfTLuV8wevtoyTFXR1dbhUREzzAmvohIFlXKVMHB1w9ifvv5eK/Ve3KHU6AAjwDsGrRL3C/KzeOgTZpV3y48uGCpsIqkZ03daLs1J9dg84XNRttdfngZitkKhK8Kl4wiqeRVyeoxEpUkeUdV9anVR9z+otsXNo7G0PBGwyX7J++exN7reyEIAjac2YBLDy8h9k4sABS5PmFxRb4QKdYje/3X1/Hfvf/E7cTURJxLPCe2LW2F7YnIdK9sfAVqQS13GET0DGLii4hk06JyC0xtORVKRcn/KOpcvTM+6/wZAOBB2gN5gymGD9p9INl/+aeXjbarsawGAM3oDO2KjgDgqOLiGfRsyTtqYfVLqxHoGYgmgU3QqnIrmaLScVA6YGiDoZJjPdb1wJYLWzDglwGouawm3t+rWbXu8sPLcoQIhUKBCU0nGH1txNYRkn25RqURkeWt6LaiwNc39zf+8I2IyNJK/t0mEVEJoR3tZG7iS//pphyF7fXV9a9rMJUo5mqMuP0o/RHaf9fe6LmFXcAS2bs3G78JbxdvXBp3CQdeP1Bi6msGeQUZHFtzco3BsTspxmuA2UJ+n33bLm0Tt9Uz1XBxcLFVSERkZW+Fv4WM6RlGpzAPbTBUUgCfiMia7C7xJQhAaqo8f8ypzZqYmIiaNWti/vz54rEjR47AyckJu3fvtsK/DBEVl6+bLwDzE1/awvAA8Pfwvy0aU1G8H/E+zo45K+7vuqKZxpmRkwHfj33xZ9yfRs9TKVU2iY+opImLjMNXPb4SV3l0d3IvUQmavrX7GhzTTyhp6ddWtDVTRnKVlEQiEVmOs4MzZrSegaiIKMnxCh75108kIrI08ys0l3BpaYCHhzx/d0oK4O5uWls/Pz8sXboUgwcPRufOnREaGorBgwdjzJgx6NTJ/BXjiMj6yrmVAwA8TH9o1nkpWSkAAAUU8HCS6QMqj9p+teHj6oNH6Y+w6PAiVCtbrdCEnlz1gYjkVrVMVYxoPKLwhjKpVraaSe3Ke5S3ciT5UylVuDf5Hsp/YjwG/SL9RGRftKtTXnx4UVzRsUO1DjJHRUTPErsb8VWadOrUCW+88QYGDRqEUaNGwcXFBQsWLJA7LCLKhzbx9Sj9EXLVuSafl5yZDADwcPIoUSMaPmz3obg9buc4zNo/q8D23UK6WTkiIioKT2dPNK7QuMA2wxoMs1E0+fN19RW3xzYZK26vf3k9RoaNlCMkIrIh/SmPzYOayxgJET1r7G7El5ubZuSVXH+3uRYuXIj69evjp59+wr///gsXl5IzdYKIpLQ3bWpBjZtJN1G1TNVCz1lzYg2+O/Wd5nw330Ja21ZhI7hmRcwSk2HvtXyPUx2JSrDYkbFQC2qo5hjvp9Hdom0ckSGVUoWoiCjEP43H510+h6+rLxpXaIyeoT0LP5mISr0Q3xDkzsxFjjoHTionucMhomeI3SW+FArTpxuWBNeuXUNCQgLUajVu3LiB+vXryx0SEeXDUeUIL2cvJGUmIfjzYJwdcxaXHl5C9xrdDVZ+A4DUrFQM3zpc3Hd3LFkfTgUlvjb334yeNXtiWqtpOHP/DFdaIyoFlAol7k++D/9PdH1764Ct6FK9S4lZkXVWm1ni9uy2s+ULhIhkoVQomfQiIpuzu8RXaZKVlYUhQ4agf//+CA0NxYgRI3D69GmULy9fDQ4iKpi2XhcA1PmiDgBgbtu5mNF6hkHbvKuqXXhwwbrBmamMSxmjx9e9vE5caclJ5VToFCoiKjn83P0k+zXL1SwxSS8iIiIiObDGl4zmzp2Lp0+fYsmSJZgyZQpq1aqFESNKbvFcItJMc8zr/b3v42nGU4Pj6dnpkv3B9QdbLa6iCPEJMThWrWw1DKg7QIZoiMgaavjWkDsEIiIiIlkx8SWTffv2YcWKFfj222/h5eUFpVKJtWvX4uDBg4iOlr8OBxGZZ/mx5QbHsnKzJPvOKmdbhWMSZwdnXBp3CSMa6RLuoeVCZYyIiCypfnmWTyAiIiJi4ksmbdq0QWJiIlq2bCkeq1y5Mp48eYLRo0fLGBkRFUViaqLBsaTMJMn+w/SHtgrHZCG+Ifi448fift5kHRGVPsMbamoLftrpU5kjISIiIpIfE19ERGZY1X2V0eOfHflMsi8IAj7+52PJsTcbv2mtsIrFzVG3JO0f1/6QMRIisoSVPVbixoQb6FCtg9yhEBEREcmOiS8iIjO8GfYmhChBMj1Q62D8QXF70/lN4naITwjOjjmLztU72yRGc+lPwez0XCcZIyEiS3BQOqCyd2W5wyAiIiIqEZj4IiIqAqXC8ONz15Vd4vb91Pvi9pc9vkRtv9o2iasoFAoFIl+IRIdqHbCp36bCTyAiIiIiIiolHOQOgIioNErOSha3e4X2wpYLW5CRkyEe067+WMO3BiKqRtg8PnN91uUzuUMgIiIiIiKyOI74IiIqgjHhYwAA3Wt0R6vKrQAA/9z8R3w9MU1T7L5NlTY2j42IiIiIiIg0OOKLiKgIWlVpheuR1xHoGSjW8zp06xAUsxWSdlceX5EjPCIiIiIiIgITX0RERValTBUAQEWvivm2CfQMtFU4RERERERElAenOhIRFVOAR0C+r/Wt3deGkRAREREREZE+Jr6IiIrJz80v39fCKoTZMBIiIiIiIiLSx8QXEVExeTl75ftaQdMgiYiIiIiIyLqY+CIiKiaFQoFN/TZhadelqFqmqnh8cefF8gVFRERERERELG5PRGQJvWv1BgC81vA13E+9jwCPALg5uskcFRERERER0bPN7hJfgiAgLTtNlr/bzdENCoXCpLYrV67E3LlzER8fD6VSN/DupZdeQtmyZXH79m04ODhg586dUCgUePLkCerXr48hQ4bgww8/tNaPQETF5OHkAQ8nD7nDICIiIiIiIthh4istOw0e8+W56UyZlgJ3J3eT2vbt2xcTJkzA3r170bFjRwDA48eP8fvvv2Pbtm2oU6cO6tWrhyVLliAyMhKjRo1C+fLlMWvWLCv+BERERERERERE9sPuEl+lhY+PD9q3b49169aJia+NGzeKx1UqFVauXIkhQ4bg3r172LZtG06cOAFHR0eZIyciIiIiIiIiKh3sLvHl5uiGlGkpsv3d5ujbty8mTpyI6OhoODs744cffsCAAQOgUqnE1zdv3oz58+cjOjoaNWrUsEbYRERERERERER2ye4SXwqFwuTphnLr0qULIiMjsX37djRp0gR//fUXFi1aJL6elpaG2NhYqFQqXL58WcZIiYiIiIiIiIhKH7tLfJUmrq6u6N27N3744QdcuXIFNWrUQFhYmPj622+/DaVSiZ07d+LFF19Et27d0K5dOxkjJiIiIiIiIiIqPZj4ktnAgQPRs2dPnD17FoMHDxaPb9++HatXr8ahQ4fQuHFjTJ06FcOGDcOpU6dQtmxZGSMmIiIiIiIiIiodlHIH8Kxr164dfHx8cPHiRQwcOBAAkJiYiBEjRmDWrFlo3LgxACAqKgqBgYEYNWqUnOESEREREREREZUaHPElM5VKhYSEBMkxPz8/3L17V3LMwcEBR44csWVoRERERERERESlGkd8ERERERERERGRXWLii4iIiIiIiIiI7BITX0REREREREREZJeY+CIiIiIiIiIiIrtkN4kvQRDkDkFWz/rPT0RERERERESUV6lPfDk6OgIA0tLSZI5EXllZWQA0q0QSERERERERERHgIHcAxaVSqVCmTBncv38fAODm5gaFQiFzVIVTq9XIyspCRkYGlMri5R/VajUSExPh5uYGB4dS/19KRERERERERGQRdpElCQgIAAAx+VUaCIKA9PR0uLq6WiRRp1QqUbly5VKR9CMiIiIiIiIisgW7SHwpFApUqFAB/v7+yM7Oljsck2RnZ+PAgQNo3bq1OF2zOJycnIo9coyIiIiIiIiIyJ7YReJLS6VSlZoaVyqVCjk5OXBxcbFI4ouIiIiIiIiIiKQ4RIiIiIiIiIiIiOwSE19ERERERERERGSXmPgiIiIiIiIiIiK7VCpqfAmCAABISkqSORLLyc7ORlpaGpKSkljji6gY2JeILIN9ichy2J+ILIN9ichy7K0/afND2nxRQUpF4is5ORkAEBQUJHMkRERERERERERUEiQnJ8Pb27vANgrBlPSYzNRqNRISEuDp6QmFQiF3OBaRlJSEoKAg3Lx5E15eXnKHQ1RqsS8RWQb7EpHlsD8RWQb7EpHl2Ft/EgQBycnJCAwMhFJZcBWvUjHiS6lUolKlSnKHYRVeXl528UtHJDf2JSLLYF8ishz2JyLLYF8ishx76k+FjfTSYnF7IiIiIiIiIiKyS0x8ERERERERERGRXWLiSybOzs6IioqCs7Oz3KEQlWrsS0SWwb5EZDnsT0SWwb5EZDnPcn8qFcXtiYiIiIiIiIiIzMURX0REREREREREZJeY+CIiIiIiIiIiIrvExBcREREREREREdklJr6IiIiIiIiIiMguMfElgy+++ALBwcFwcXFBWFgY/vrrL7lDIirR5s+fjyZNmsDT0xP+/v7o1asXLl68KGkjCAJmzZqFwMBAuLq6ok2bNjh79qxMEROVDvPnz4dCocCECRPEY+xLRKa7ffs2Bg8eDF9fX7i5uaFhw4aIjY0VX2d/IipcTk4OZsyYgeDgYLi6uqJatWqYM2cO1Gq12IZ9ici4AwcOoEePHggMDIRCocCWLVskr5vSdzIzMzF+/HiUK1cO7u7ueOmll3Dr1i0b/hTWx8SXjW3YsAETJkzA9OnTceLECbRq1Qpdu3ZFfHy83KERlVj79+/H2LFjcfjwYcTExCAnJwedOnVCamqq2Objjz/GokWLsGzZMhw7dgwBAQHo2LEjkpOTZYycqOQ6duwYVq1ahfr160uOsy8Rmebx48do0aIFHB0dsXPnTpw7dw6ffvopypQpI7ZhfyIq3EcffYQVK1Zg2bJlOH/+PD7++GMsXLgQS5cuFduwLxEZl5qaigYNGmDZsmVGXzel70yYMAGbN2/G+vXrcfDgQaSkpKB79+7Izc211Y9hfQLZ1PPPPy+MGjVKciw0NFSYOnWqTBERlT73798XAAj79+8XBEEQ1Gq1EBAQICxYsEBsk5GRIXh7ewsrVqyQK0yiEis5OVkICQkRYmJihIiICCEyMlIQBPYlInO8++67QsuWLfN9nf2JyDTdunUThg8fLjnWp08fYfDgwYIgsC8RmQqAsHnzZnHflL7z5MkTwdHRUVi/fr3Y5vbt24JSqRR27dpls9itjSO+bCgrKwuxsbHo1KmT5HinTp3wzz//yBQVUenz9OlTAICPjw8AIC4uDnfv3pX0LWdnZ0RERLBvERkxduxYdOvWDR06dJAcZ18iMt3WrVsRHh6Ovn37wt/fH40aNcKXX34pvs7+RGSali1bYs+ePbh06RIA4L///sPBgwfx4osvAmBfIioqU/pObGwssrOzJW0CAwNRt25du+pfDnIH8Cx58OABcnNzUb58ecnx8uXL4+7duzJFRVS6CIKASZMmoWXLlqhbty4AiP3HWN+6ceOGzWMkKsnWr1+P48eP49ixYwavsS8Rme7atWuIjo7GpEmT8N577+Ho0aP43//+B2dnZwwdOpT9ichE7777Lp4+fYrQ0FCoVCrk5ubiww8/xKuvvgqA301ERWVK37l79y6cnJxQtmxZgzb2lKNg4ksGCoVCsi8IgsExIjJu3LhxOHXqFA4ePGjwGvsWUcFu3ryJyMhI7N69Gy4uLvm2Y18iKpxarUZ4eDjmzZsHAGjUqBHOnj2L6OhoDB06VGzH/kRUsA0bNuD777/Hjz/+iDp16uDkyZOYMGECAgMDMWzYMLEd+xJR0RSl79hb/+JURxsqV64cVCqVQeb0/v37BllYIjI0fvx4bN26FXv37kWlSpXE4wEBAQDAvkVUiNjYWNy/fx9hYWFwcHCAg4MD9u/fjyVLlsDBwUHsL+xLRIWrUKECateuLTlWq1YtccEifjcRmeadd97B1KlTMWDAANSrVw9DhgzBxIkTMX/+fADsS0RFZUrfCQgIQFZWFh4/fpxvG3vAxJcNOTk5ISwsDDExMZLjMTExaN68uUxREZV8giBg3Lhx2LRpE/78808EBwdLXg8ODkZAQICkb2VlZWH//v3sW0R62rdvj9OnT+PkyZPin/DwcAwaNAgnT55EtWrV2JeITNSiRQtcvHhRcuzSpUuoUqUKAH43EZkqLS0NSqX0tlSlUkGtVgNgXyIqKlP6TlhYGBwdHSVt7ty5gzNnzthV/+JURxubNGkShgwZgvDwcDRr1gyrVq1CfHw8Ro0aJXdoRCXW2LFj8eOPP+LXX3+Fp6en+NTC29sbrq6uUCgUmDBhAubNm4eQkBCEhIRg3rx5cHNzw8CBA2WOnqjk8PT0FGvjabm7u8PX11c8zr5EZJqJEyeiefPmmDdvHvr164ejR49i1apVWLVqFQDwu4nIRD169MCHH36IypUro06dOjhx4gQWLVqE4cOHA2BfIipISkoKrly5Iu7HxcXh5MmT8PHxQeXKlQvtO97e3hgxYgTefvtt+Pr6wsfHB5MnT0a9evUMFkEq1WRbT/IZtnz5cqFKlSqCk5OT0LhxY2H//v1yh0RUogEw+mfNmjViG7VaLURFRQkBAQGCs7Oz0Lp1a+H06dPyBU1USkRERAiRkZHiPvsSkem2bdsm1K1bV3B2dhZCQ0OFVatWSV5nfyIqXFJSkhAZGSlUrlxZcHFxEapVqyZMnz5dyMzMFNuwLxEZt3fvXqP3ScOGDRMEwbS+k56eLowbN07w8fERXF1dhe7duwvx8fEy/DTWoxAEQZAp50ZERERERERERGQ1rPFFRERERERERER2iYkvIiIiIiIiIiKyS0x8ERERERERERGRXWLii4iIiIiIiIiI7BITX0REREREREREZJeY+CIiIiIiIiIiIrvExBcREREREREREdklJr6IiIiIiIiIiMguMfFFREREVEq0adMGEyZMkDsMIiIiolKDiS8iIiIiIiIiIrJLCkEQBLmDICIiIqKCvfbaa/j2228lx+Li4lC1alV5AiIiIiIqBZj4IiIiIioFnj59iq5du6Ju3bqYM2cOAMDPzw8qlUrmyIiIiIhKLge5AyAiIiKiwnl7e8PJyQlubm4ICAiQOxwiIiKiUoE1voiIiIiIiIiIyC4x8UVERERERERERHaJiS8iIiKiUsLJyQm5ublyh0FERERUajDxRURERFRKVK1aFUeOHMH169fx4MEDqNVquUMiIiIiKtGY+CIiIiIqJSZPngyVSoXatWvDz88P8fHxcodEREREVKIpBEEQ5A6CiIiIiIiIiIjI0jjii4iIiIiIiIiI7BITX0REREREREREZJeY+CIiIiIiIiIiIrvExBcREREREREREdklJr6IiIiIiIiIiMguMfFFRERERERERER2iYkvIiIiIiIiIiKyS0x8ERERERERERGRXWLii4iIiIiIiIiI7BITX0REREREREREZJeY+CIiIiIiIiIiIrvExBcREREREREREdml/wMvCx5vKO9kCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(15, 7))\n", + "plt.plot(t_data_exact,x_data_exact,c='b',label='x')\n", + "plt.plot(t_data_exact,vx_data_exact,c='g',label='vx')\n", + "plt.xlabel('t')\n", + "plt.grid('True')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "04784ca5", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = 200\n", + "filter_data = np.random.choice(len(t_data_exact), train_data, replace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2ee45d20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 121, 9092, 4897, 1999, 6817, 8214, 639, 5215, 2136, 5062, 4737,\n", + " 3908, 1069, 8015, 8918, 3367, 7441, 5189, 3642, 48, 8215, 9319,\n", + " 1906, 4208, 943, 3176, 6746, 8022, 5057, 3883, 9670, 8239, 9412,\n", + " 5005, 4789, 817, 3051, 2730, 1018, 5352, 202, 473, 1011, 9827,\n", + " 3763, 4483, 8749, 861, 556, 7249, 8791, 5760, 8164, 9306, 697,\n", + " 609, 9010, 9549, 1109, 4556, 6005, 8867, 2369, 2718, 7877, 355,\n", + " 5548, 7698, 9904, 9213, 4094, 5367, 9223, 9669, 169, 6327, 9496,\n", + " 9487, 8453, 4787, 8317, 3555, 3603, 9635, 4365, 302, 2046, 5945,\n", + " 6673, 9137, 7563, 8927, 7058, 9091, 9544, 8395, 9906, 5495, 8306,\n", + " 8625, 9742, 8776, 1964, 8896, 2576, 5660, 6610, 4180, 488, 6953,\n", + " 1397, 2950, 7069, 8386, 4150, 9300, 2771, 9950, 7328, 1670, 9342,\n", + " 1497, 6928, 9732, 7693, 5267, 2270, 293, 8612, 2203, 5828, 6394,\n", + " 6877, 4858, 4226, 5638, 2831, 3447, 1231, 3392, 395, 8218, 9637,\n", + " 2096, 1972, 6158, 5397, 3875, 9729, 1836, 8485, 897, 6343, 6111,\n", + " 37, 7111, 8796, 4182, 4486, 5841, 3620, 2389, 6924, 9963, 6921,\n", + " 2213, 7314, 9313, 3728, 3902, 3361, 2589, 9395, 7630, 9438, 5531,\n", + " 3673, 744, 2186, 7903, 6450, 1549, 3234, 7688, 8534, 3732, 7549,\n", + " 6727, 2240, 3669, 9125, 736, 6082, 9657, 7134, 4885, 3301, 725,\n", + " 6798, 5558])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filter_data" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "db239a6c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "training data percentage: 1.9998000199980002 %\n" + ] + } + ], + "source": [ + "print('training data percentage: ',train_data*100/len(t_data_exact),'%')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "cb6238a1", + "metadata": {}, + "outputs": [], + "source": [ + "t_c = np.max(np.abs(t_data_exact))\n", + "x_c = np.max(np.abs(x_data_exact))\n", + "vx_c = np.max(np.abs(vx_data_exact))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5111ebe3", + "metadata": {}, + "outputs": [], + "source": [ + "t_data = t_data_exact[:,None]\n", + "x_data = x_data_exact[:,None]\n", + "vx_data = vx_data_exact[:,None]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ba1bb7fc", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "c16c01be", + "metadata": {}, + "outputs": [], + "source": [ + "t_scale = t_data/t_c\n", + "x_scale = x_data/x_c\n", + "vx_scale = vx_data/vx_c" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "218a59c7", + "metadata": {}, + "outputs": [], + "source": [ + "t_tensor = torch.tensor(t_scale,dtype=torch.float32)\n", + "x_tensor = torch.tensor(x_scale,dtype=torch.float32)\n", + "vx_tensor = torch.tensor(vx_scale,dtype=torch.float32)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "18851be6", + "metadata": {}, + "outputs": [], + "source": [ + "t_tensor_train = t_tensor[filter_data]\n", + "x_tensor_train = x_tensor[filter_data]\n", + "vx_tensor_train = vx_tensor[filter_data]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "3f041a35", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAFzCAYAAACdETJsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXhU1f3/37NP9p2wJGyCLKKAuAGi4IL70ohCW7FWqLXYFvSr/kq1tWrVqhVRq1gXpFXrBnHHBRWECkpBUFH2PSEh+57M/vvjLPfcO3ebEAgJ5/U8eTK5c+bmzr0z95zP9v44YrFYDBKJRCKRSCQSiUQikUi6BM7OPgCJRCKRSCQSiUQikUgk9pGGvEQikUgkEolEIpFIJF0IachLJBKJRCKRSCQSiUTShZCGvEQikUgkEolEIpFIJF0IachLJBKJRCKRSCQSiUTShZCGvEQikUgkEolEIpFIJF0IachLJBKJRCKRSCQSiUTShZCGvEQikUgkEolEIpFIJF0Id2cfwNFINBrFgQMHkJaWBofD0dmHI5FIJBIJYrEYGhsb0bt3bzid0g/fEcj5XiKRSCRHE4nM9dKQ1+HAgQMoLCzs7MOQSCQSiSSO/fv3o6CgoLMPo1sg53uJRCKRHI3YmeulIa9DWloaAHIC09PTO/loJBKJRCIBGhoaUFhYyOcoyaEj53uJRCKRHE0kMtdLQ14Hll6Xnp4uJ3aJRCKRHFXIFPCOQ873EolEIjkasTPXyyI7iUQikUgkEolEIpFIuhDSkJdIJBKJRCKRSCQSiaQLIQ15iUQikUgkEolEIpFIuhDSkJdIJBKJRCKRSCQSiaQLIQ15iUQikUgkEolEIpFIuhDSkJdIJBKJRCKRSCQSiaQLIdvPSboWkQiwYgX5AYCJE8mPy9V5xySRSCQSiUQikUgkR5BOjcivXLkSl112GXr37g2Hw4G3337b8jVffPEFxowZA7/fj4EDB+KZZ56JG7NkyRIMHz4cPp8Pw4cPx1tvvXUYjl5yxCkuBvLzgfPOA/76V/Jz3nlkW3FxZx+dRCKRSCQSiUQikRwROtWQb25uxsiRI/GPf/zD1vjdu3fj4osvxoQJE7Bhwwb88Y9/xO9//3ssWbKEj1mzZg2mTp2K6dOn49tvv8X06dNxzTXX4Ouvvz5cb0NyJCguBq66Cqiujn+uupo8J415iUQikUgkEolEcgzgiMVisc4+CABwOBx46623cOWVVxqO+X//7//h3XffxebNm/m2m266Cd9++y3WrFkDAJg6dSoaGhrw4Ycf8jEXXnghsrKy8Oqrr9o6loaGBmRkZKC+vh7p6ente0OSjiMSAfr1A0pLAQAN3mTszeqFEQd3wiGOKygA9uyRafYSiaRbIuemjkee0+7JzsompPrcyE/3d/ahSCQSSUIkMi91KbG7NWvWYPLkyaptF1xwAdatW4dQKGQ6ZvXq1Yb7DQQCaGhoUP1IjiJWreJGPADcctltuOz6x/H28InqcSUlZKxEIpFIJJJjkorGNpz76Bc4/YHPOvtQJBKJ5LDSpQz58vJy5Ofnq7bl5+cjHA6jqqrKdEx5ebnhfh988EFkZGTwn8LCwo4/eEn7KSvjD5s9fnw26DQAwJITzzUdK5FIJBKJ5Nhix8Gmzj4EiUQiOSJ0KUMeICn4IqwyQNyuN0a7TWTu3Lmor6/nP/v37+/AI5YcMr168YcH0vP440ZvsulYiUQikUgkxxbieu8oqR6VSCSSw0KXaj/Xs2fPuMh6RUUF3G43cnJyTMdoo/QiPp8PPp+v4w9Y0jFMmABkZwM1NShPy+GbSzN6qMcVFJCxEolEIpFIjkmcQtwmEo3B7TIO5EgkEklXpktF5MeOHYtly5aptn3yySc45ZRT4PF4TMeMGzfuiB2n5DBAPezlqYohX5uUjqgodzdvnhS6k0gkEonkGMYRi/LHoRVfEMFciUQi6YZ0qiHf1NSEjRs3YuPGjQBIe7mNGzdi3759AEjK+3XXXcfH33TTTdi7dy9uvfVWbN68GQsXLsQLL7yA2267jY+ZPXs2PvnkEzz00EPYsmULHnroIXz66aeYM2fOkXxrko5k1Sredq4iNZtvjjhdaPCnKOPy8rSvlEgkEolEcqxQXIw9N9zM/wxdfCnQv79sTyuRSLolnWrIr1u3DqNHj8bo0aMBALfeeitGjx6NP//5zwCAsrIybtQDwIABA7B06VKsWLECo0aNwn333YcnnngCV111FR8zbtw4vPbaa3jxxRdx0kknYdGiRXj99ddx+umnH9k3J+k4BAG7ypQs1VM1Sem64yQSiUQikRxDFBcDU6bg0RGX8k1hl5t0vZkyRRrzEomk29GpNfITJ040FSJZtGhR3Lazzz4b33zzjel+p0yZgilTphzq4UmOFgQBu0afWuCuNjkdqD0QN04ikUgkEskxQiQCzJ4NxGI4KGjphFxuIBYj5Xlz5gBXXCFL8CQSSbehS9XIS45RJkwgQnYOBxp9KaqnqpMyyARdWCiF7iQSiUQiORZZtQooKYnbHHHQZW4sBuzfT8ZJJBJJN0Ea8pKjH5cLePxxAFDXxAOoS0onE/Sjj0ovu0QikUgkxyIGpXUxOGyNk0gkkq6INOQlXYOiImDxYjSmZgIA0tqaAABN3iTy/K23yvo3iUQikUi6OAtW7MT1L65FMBy1HswwKK2LaTvPyRI8iUTSjZCGvKTrUFSExl4FAICeTUTFvsXrJ89JMRuJRCKRSLo8D320BSu2VuLtjaX2XySU4InwiLwswZNIJN0QachLug6RCBoaWgAAPRuJId/soRF5Jpo4Z47sGSuRSCQSSRenpjlof7BQgqfC4VCM+/nzZQmeRCLpVkhDXtJ1WLUKzW4fAKBHUw0AISIPSDEbiUQikUi6CZtK6xN7AS3BE4k6HCRSv3gxeV4ikUi6EdKQl3QZogfKEHJ5AAA5LWSC5zXyIlLMRiKRSI46nn76aQwYMAB+vx9jxozBKhOn6/XXXw+HwxH3c8IJJ/AxixYt0h3T1tZ2JN6O5DBz1vF5CY2vbw3h2dyRqm2xl18Bdu+WRrxEIumWSENe0mUI5vfkjzNbGwEALXqGvBSzkUgkkqOK119/HXPmzMGdd96JDRs2YMKECbjooouwb98+3fGPP/44ysrK+M/+/fuRnZ2Nq6++WjUuPT1dNa6srAx+v193n5KjnxgrkwPgcye2RJ1b/B0eWLpFvb/TT5fp9BKJpNsiDXlJlyFw+lj+OLu1AYAmIi/FbCQSieSoZN68eZgxYwZmzpyJYcOGYf78+SgsLMSCBQt0x2dkZKBnz578Z926daitrcUvf/lL1TiHw6Ea17NnT939SboGkahiyLucWsl5c1ZsrYzbJjoGJBKJpLshDXlJlyEo9JFJCxLRu4DbSzZIMRuJRCI5KgkGg1i/fj0mT56s2j558mSsXr3a1j5eeOEFnHfeeejXr59qe1NTE/r164eCggJceuml2LBhQ4cdt+TIEw6F+WPnjz8esnitNOMlEkl3Rhryki5DIEwmdJ8jhqT0VABAGzPkpZiNRCKRHJVUVVUhEokgPz9ftT0/Px/l5eWWry8rK8OHH36ImTNnqrYPHToUixYtwrvvvotXX30Vfr8f48ePx/bt2w33FQgE0NDQoPqRHCUUFyM6dBj/03n3n4H+/W23lW0Jxhv9MiIvkUi6M9KQl3QZguEoAMDr88D/0r8AAK39jwOWL5diNhKJRHKU49D2+I7F4rbpsWjRImRmZuLKK69UbT/jjDNw7bXXYuTIkZgwYQLeeOMNHH/88XjyyScN9/Xggw8iIyOD/xQWFrbrvUg6mOJiYMoUhMsUx44jFgNKS4EpU2wb81o+31LRUUcokUgkRx3SkJd0GQLUkPe5nfD5iHp9W0oqMHGiTKeXSCSSo5Tc3Fy4XK646HtFRUVclF5LLBbDwoULMX36dHi9XtOxTqcTp556qmlEfu7cuaivr+c/+/fvt/9GJIeHSASYPRuIxbCp5yC+2RmLkrayADBnTrvS7B9YugWxcNh6oOSIcc7fV+CKf/y3sw9DIukWSENe0mUIckPehSQPMdzbQtF276+isQ17qpo75NgkEolEoo/X68WYMWOwbNky1fZly5Zh3Lhxpq/94osvsGPHDsyYMcPy/8RiMWzcuBG9TDqX+Hw+pKenq34kncyqVUBJCQDgi4Fj+GYHy4qPxYD9+8m4dtAyeGi7I/qSjmVLeQN2VTXj25J6lNW3dvbhSCRdHmnIS7oMwQhNrXc74feQj25bqH1COC3BMC5+fBXOnfcFth9s7LBjlEgkEkk8t956K55//nksXLgQmzdvxi233IJ9+/bhpptuAkAi5dddd13c61544QWcfvrpGDFiRNxz99xzDz7++GPs2rULGzduxIwZM7Bx40a+T0kXoayMP4wKpRYxbdWFMC4RFvUac0jp+ZKOo0QInqx677+HLGYokRzrSENe0mUIhJTUej+PyLdvEli3pxZVTUFEojHdljUSiUQi6TimTp2K+fPn495778WoUaOwcuVKLF26lKvQl5WVxfWUr6+vx5IlSwyj8XV1dbjxxhsxbNgwTJ48GaWlpVi5ciVOO+20w/5+JB2IkEERcSjL0qjDaTguDhODcGX/0eSBzfT8Hw80YPWOKstxkgQpLoZrxg38zz533Z6QmKFEIonH3dkHIJHYJUgnYK9gyIciMUSisYT7ze6raeGP99bI9HqJRCI53MyaNQuzZs3SfW7RokVx2zIyMtDS0hI/mPLYY4/hscce66jDk3QWEyaQzjOlpajzp/HNMdB53eEgz0+YYLwPk7T7kMutTs+fONH0cC5+guxrxW0T0T83xfbbkJhAxQzz8gbwTamBFuAgFTOUXYckknYhI/KSLgOLyHtdSmo90L6o/H7BkN9XI+u0JBKJRCLpFFwu4PHHEQNQfOK5fHPM4SBGPADMn28uamuSdh9yum2NA4h2DmN7RZPpWIlNBDFDd1RZr+3N6nXIYoYSybGONOQlXQZWI+/zOOF3KxN6ewx5MSJf2xw89IOTSCQSiUTSPoqKsOw5dYp1jEXi7URrTdLuw06XrXEAcO97P/LHieX5SQwRxAwjTsXsePgsqolxiGKGEsmxjDTkJV0G1n7O63LC6XTA66aCd+HElesrGwP8cW2LNOQlEolEIulMngv1UP0dvfsvwO7d9lKuTdLuo04niewXFpqn5wOoagqYPi8B9lW34KU1e+wHUYQsiJhW98BgnEQisYeskZd0GQJC+zkA8LudCIajaA0mHpEXjfe6llDHHKBEIpFIJJLEiUTwvz21qk3R4cPN0+lFTMZxAT2r9HyJLc6dtwKhSAyVjQHcOnmI9QuELAixK0FJZk/syuqNgbUH4sZJJBJ7yIi8pMvA+sizSPyhKNeLxntTIMz3LZFIJBKJ5AhSXEzUyzXc/eY3HbL7iNfXLjG1mPWQY5JQhJyZNbuq7b2AiRk6HKquBABwzo3P2s6WkEgk8UhDXtJlCIQV1XoASPK6VNvtEovFUNeqjsLXtcr0eolEIpFIjihUzZzVUIvUhh0d0pos2n+AVETvTKiYIUDLHPSQ2RISSbuQhrykyxAMK33kAXDBu7ZQYtH0hrYwIlHiUU6mzgCZXi+RSCQSyRFEUDM3pAPUzC8c0dP22G/21R3S/zqWcCQiB1hUBCxejGiPfNXmobUlsvWcRHIISENe0mWIT60nvxOtka+nRrvf40SPNB/Z1ioNeYlEIpFIjhiCmrkhCaiZ981O1t3OsvfsIMvs7NPQluC6qagI0TfeVG2KDR0qjXiJ5BCQhryky6AVu/OxGvkEU+tbQmEAQIrXjRQf0XtsDoQ76jAlEolEIpFYYVel3OY4j0s/Qswy8CQdgJAdsaW8MeFsiaimRl5eGonk0JCGvKTLoI3IJ3nal1rPIvh+jwspXmbIH1rqnkQikUgkkgSwq1Juc1zYwCpMxJAf0y/L9thjDj1Rwv79E9IxiGrKKKQdL5EcGtKQl3QZmKidT5Nan6hqfSsdn+R1IcVHnAHNQRmRl0gkEonkiCGomRuSgJp5OGJgyJvV4GtwCoeSQAV498dIlLC0lGy3aczHGfIJXBuJRBKPNOQlXYY4sbt2tp8L0Ah+kseFZJlaL5FIJBLJkUdQMzc05hNQMw9FyNz+/u/OVG2PJhCRdwjHIU1MipkoIdtmU5RQeylkar1EcmhIQ17SZQhGNGJ37vYZ8jwi73EhlabWtyQomCeRSCQSieQQoWrm6NPH+HmbsNR6r9uJiwSleqOUez2cMgwfj5UoYSxmW5RQ61TZXdV8qEcnkRzTSENe0mVgkXSfpo98u2vkvS4udtckI/ISiUQikRx5ioqAPXsOeTcsIu92OvDY1FE4hda7JxKRd5ql+R+rdKAooTa1XiKRHBqdbsg//fTTGDBgAPx+P8aMGYNVFh69p556CsOGDUNSUhKGDBmCf//733Fj5s+fjyFDhiApKQmFhYW45ZZb0NbWdrjeguQIoY3I+w61Rt7jVGrkpSEvkUgkEkmn0NYBXd9YjbzH5YTf48K4QbkAEq2Rl4Z8HAZig45Y1NY4EdlBQCLpWDrVkH/99dcxZ84c3HnnndiwYQMmTJiAiy66CPv27dMdv2DBAsydOxd/+ctf8MMPP+Cee+7BzTffjPfee4+PeeWVV/CHP/wBd999NzZv3owXXngBr7/+OubOnXuk3pbkMMEi8l5aL8dT6xNsP9cmpNYr7edkar1EIpFIJJ2BUfp7RYP9IEw4SiPytA2dm+bJJ2I8skABADz+2Tbbr+vWGIgSuqN03eRw2BYllHa8RNKxdKohP2/ePMyYMQMzZ87EsGHDMH/+fBQWFmLBggW641966SX8+te/xtSpUzFw4EBMmzYNM2bMwEMPPcTHrFmzBuPHj8fPfvYz9O/fH5MnT8ZPf/pTrFu37ki9LclhIhDRiN25yaTSunUHsGKF7X6mLLU+yetCildG5CUSiUQi6UyMjO1v9tXZen0sFkOIRuTdTrJG+K6kHgDw6tr9to8jP93HH28qbbD9um6NgShhDA7lb5uihFKlXiLpWDrNkA8Gg1i/fj0mT56s2j558mSsXr1a9zWBQAB+v1+1LSkpCWvXrkUoFAIAnHnmmVi/fj3Wrl0LANi1axeWLl2KSy65xPBYAoEAGhoaVD+Sow9VH/niYvjvvw8A0Lb6K2DSJNv9TFlqvV+MyMv2cxKJRCKRdAqJ1LHrIToCPDQi/+nmgwnvJ2TQwu6Yx0iUsKCAbLcpSphImYNEIrGm0wz5qqoqRCIR5Ofnq7bn5+ejvLxc9zUXXHABnn/+eaxfvx6xWAzr1q3DwoULEQqFUFVVBQCYNm0a7rvvPpx55pnweDw47rjjMGnSJPzhD38wPJYHH3wQGRkZ/KewsLDj3qikw+B95Ff/F5gyBUmVZJIOuKkH3WY/U1G1PplG95tLyxOK6kskEolEIukYRAPP70l8aSqm5rtd7V/ayhpuEzSihGGXG9i9O6HOAvL0SiQdS6eL3Tk0NTexWCxuG+NPf/oTLrroIpxxxhnweDy44oorcP311wMAXDSlZ8WKFbj//vvx9NNP45tvvkFxcTHef/993HfffYbHMHfuXNTX1/Of/fvtp2FJjhw8Ij9/HhCLwR8OAgDaPF4ywGY/U14jv30rUmf8AgDQvLckoai+RCKRSCSSjoGpmTscwL9+eVrCr2eK9YBSGz+0Z1rC+0mkVd0xiTZ93kY6vcihZl5IJBI1nWbI5+bmwuVyxUXfKyoq4qL0jKSkJCxcuBAtLS3Ys2cP9u3bh/79+yMtLQ25uUSd9E9/+hOmT5+OmTNn4sQTT8RPfvITPPDAA3jwwQcRjerLovp8PqSnp6t+JEcfAWbIl5UCADwRUk4RdLqVQTb6mfIa+ZcWIaWUCCs2e2jJhs2ovkQikUgkko6BLc9cDge2VTQJz9gz/LYLr/HQiPwt5x8PAOiXk2z7OCIG60RJxyDbz0kkHUunGfJerxdjxozBsmXLVNuXLVuGcePGmb7W4/GgoKAALpcLr732Gi699FI4qbhJS0sLf8xwuVyIxWJSZKOLwyLyvjAx4D0RUtcecnniB5v0M2UReV8ogJQQUcRt9iaRJ21G9SUSiUQikXQMLLXe6XSgd4bfYnQ8v/vPBv7YRSPyTBg31efWfY0eYVkjf1iRAXmJpGOxf3c7DNx6662YPn06TjnlFIwdOxbPPvss9u3bh5tuugkASXkvLS3lveK3bduGtWvX4vTTT0dtbS3mzZuHTZs24V//+hff52WXXYZ58+Zh9OjROP3007Fjxw786U9/wuWXX87T7yVdE27I00i8l/4OuXQ+xib9TIMVVXQ/YaQEWgEIhjygjupPnNgBRy6RSCQSicQIlnLtcjhwct8svj1iM0Be2RSI2+ZKtP1cJIKNOyvsjT1GCWsuSCQa4+fZDjK1XiLpWDrVkJ86dSqqq6tx7733oqysDCNGjMDSpUvRr18/AEBZWZmqp3wkEsGjjz6KrVu3wuPxYNKkSVi9ejX69+/Px9x1111wOBy46667UFpairy8PFx22WW4//77j/Tbk3QwXOwuLwdoqICXR+SFj7HDQVRUTfqZBlsDANzwRkJICRFDPuj2IuR0wRMVovAmUX2JpLsx75Ot+HRzBR6fNgqD8xOvLZVIJJL2wlKuXU6Hqpd70GZmnJ6x7qJ6S7bSuYuLgdmzUfHzZ1SbY0uK4bjKvphbd0erIdAUCCMjSScr0gCZWi+RdCydasgDwKxZszBr1izd5xYtWqT6e9iwYdiwYYPuWIbb7cbdd9+Nu+++u6MOUXIUEI5EeUqW9/77gGlTuNEdYjXyNvuZBj1eAFF4IiEkB9v49mZvEjLbhNo8k6i+RNKdqGhswxOf7wAAPPH5Djz509GdfEQSieRYghniDgfUhnzYXkhe15CnkWJLAbviYqKNo2NkNv98OlIdSEiZvTujPc8PfbQFD/zkRNuv74iA/OodVdhf24Kpp/Y99J1JJF2cTletl0jsEBAmc++VlwOLF8OTQ9Lvgiwib7OfaTCVRBu90TD5oTX3TSy93uEACgtNo/oSSXfi2/31/PHmsoZOPBKJRHIsIkbk3UKqdmG2faE6LcyQN03njkSA2bN1jXgAaPClSM0cAa1T5KNN+u2ijXhu1a64bVU6ZRFm/Oz5r/H/lnyPb/bVJvQ6iaQ7Ig15SZdA9Mp7XU6gqAie994FAIRyewDLl9vuZxoMk4nIGw4BDgeSqOBdm8dnO6ovOQJEIsCKFcCrr5LfciF12NghKD6X1LZIYVCJRHJEiQiq9Q6HA4N6pAIAHLBff63FyWrkze5nq1YBJSUAgEZRK4cdl8Np2QnnWEIbkbebMcHYXdUct+3Jz7a361j2Vbe063USSXdCGvKSLkGQzvIupwNu2lrG6yWR+JDPT0TpbBrerN+s5893AX36IClMvMFtbp/tqL7kMLN4MSltmDQJ+NnPyO/+/WVbwMPErkrFkG8LRVHTHOzEo5F0V55++mkMGDAAfr8fY8aMwSoT42jFihVwUKNO/NmyZYtq3JIlSzB8+HD4fD4MHz4cb7311uF+G5LDADMQmfHN6tsPxanIa+TNbE1BC+exM38e93TI6YobdywT1pzMWDh8yE72ob1ky2eJpL1IQ17SJQiEqGK9UDvHesWGEvQIM6eAb9LZwJ498OfnAQBaF/zTdlRfchi54w7g6qvxfL9xOHfmAnzbczDZXlJC6hilMd/hHGxUpzZKQ17S0bz++uuYM2cO7rzzTmzYsAETJkzARRddpBK01WPr1q0oKyvjP4MHD+bPrVmzBlOnTsX06dPx7bffYvr06bjmmmvw9ddfH+63I+lgeGo9Nb5Zctyh1FTbUq0XtHBeHn1x3NNhVronNXMAAOH3l6r+jra2HbKTvV9O+8snujPBcBTF35SgvL7NerDkmEUa8pIuAVOuFUVwPPRxwG5/GrYvavgzR4Cf7rJNZm53Pm++CTzyCKJw4K/n/go7cwrVUZJYTNYrHgYqpSEvOczMmzcPM2bMwMyZMzFs2DDMnz8fhYWFWLBggenrevTogZ49e/IfsY3s/Pnzcf7552Pu3LkYOnQo5s6di3PPPRfz588/zO9G0tEwQ56VxzsdNtLiLbC1jwkTSCaew4Gf/LA87umw0yU1cxjFxQj89neqTa1eP1Ba2i4n+zAaibfdHhCHlqHR1fjnFztx6xvf4uInZFmHxBhpyEu6BG00Iu91iRF5MkmHItGEbu4std67YjnQvz9820iqZtvcP8r07c4kEgFoB4v9mfl8894sTSRE1isCIO0YZ/5rHX723FdoDoQPaV/MkE/yECOptkUa8pKOIxgMYv369Zg8ebJq++TJk7F69WrT144ePRq9evXCueeei+XL1YbWmjVr4vZ5wQUXmO4zEAigoaFB9SPpfLSp9U461R9KuzJbYncuF/D44wCAXo1VfHNOcx0AGpGXmjlcFPD5U66Mf45dowSd7EzUMBxJZP2mjI2hexv1K7ZVApCOdYk50pCXdAl4OrxH+cgyoz4WS8yjyxTwvbN/B5SUICkk1Mi307MsieeHA/U4b94XePSTrfZesGoVUEUWUgfS8vjmquSM+LHHer1iJIKP3liOTzcfxOqd1fhgY2n7dxWNoaaZfAeO70k6OtQ0hzrkMCUSAKiqqkIkEkF+fr5qe35+PsrL9VWve/XqhWeffRZLlixBcXExhgwZgnPPPRcrV67kY8rLyxPaJwA8+OCDyMjI4D+FhYWH8M4kHUEoEsWaXdUAFOO7Q2rk7bafKyoCFi9GH5fiEE2mIriRvz0ky+0ALgr43rCz9J+PxRJ2stu+PgJijf7ebi5253K2X+hRJJH1saTrIQ15SZeApcOrI/LK41BCHl2aWk/bzvnDxNvZ6vG127MsieeZL3ZhR0UTnvx8hz2PsmCcl6Xn8seN/lS0un3qscdyvWJxMdC/P9a89C7ftOHhp9vtfKppDiIaIymtg/KIUrSMyEsOBw6HemEai8XitjGGDBmCX/3qVzj55JMxduxYPP3007jkkkvw97//vd37BIC5c+eivr6e/+zfv7+d70bSUTzy8VY8/BFx+Co18jaE6iywFZFnFBUh9vAjAIBz0kJw9iZzTPTss9t/AN0JOj9bnskEnOwsqzKSwEUOhZUjmP9p+9Tuuwouk/uYXeYt24ZR93yiErSVdC+kIS/pErAous+tpLeJhnwwgTr5IBPOizBDnkQjA24vGdAOz7Ikno37lR6v35bUWb9AMM7L0nJVT1WkZil/5OUdu/WKxcUkY6SkBCUZPfjm3b7MdmeSsB6+2Sle5KaR74BM5ZN0JLm5uXC5XHGR8oqKiriIuhlnnHEGtm9XFu89e/ZMeJ8+nw/p6emqH0nn8uxKpbc4T63nYnfWRrhRxNGVYJ19lI53FvSBKzmZ7tvWS7s/dp3nCTjZgzQA0xywHzQJHYpnp4vRERH5Jz7bjsZAGA8s3dwBRyQ5GpGGvKRLEAySlDdvfQ3vKc68uYASZbciHImCjfRG1BH5Nm3U91hP3z4EItEYDtQpSqv7Pllp3Qt+wgQgJwcAcCA9T/XUwdQc5Y+nnz426xVpjSLLGhHLD/Zn9CQP2pFJUkuN9qxkL7KSiSEvI/KSjsTr9WLMmDFYtmyZavuyZcswbtw42/vZsGEDegmGwtixY+P2+cknnyS0T8nRBTO+mVCdHUO+zuB+xers7aYWs2Gk1SHbJtOSAXBRwEZ/qv7zDoctUcBT+xOn/L1XnIBv99cBAP78zibbh6Gtpze69t0BZwel1gNKsqmk+yENecnRT3ExAr/+DQDAu2Uz7ynueOstnmpv15AXU/A9EeIcYDXyrR6Zvt1RVDUFVIun8sXvW/eCf+cdoJrUSWoj8nVs8XD77STyfCxCaxQBkt54QCg/qEzJIrWk7cgkqWslDq3MZA8ykjwAgIbWQxPPk0i03HrrrXj++eexcOFCbN68Gbfccgv27duHm266CQBJeb/uuuv4+Pnz5+Ptt9/G9u3b8cMPP2Du3LlYsmQJfvvb3/Ixs2fPxieffIKHHnoIW7ZswUMPPYRPP/0Uc+bMOdJvT9JBKGJ3zJC3fo3REJ5ab9OKiQgt8BJKyz8WEEQB42BeDxuigCyTks01ANAcTCAir1nrVWg6rnQnOtCO79bn6VhHGvKSoxuaShysJ8rCLB2eidJ5YmQCEOumzAgKPee9UWKs+HhEnqbW2/QsS4wpf/tD1d8HU7PJAyMxQRZtplQnZ6qerktKB7KzgQcfPByH2zUQMkTa3D60efz876Dbgzo/EapDaWLCdyz6npnsRZqf9ExuaJNid5KOZerUqZg/fz7uvfdejBo1CitXrsTSpUvRr18/AEBZWZmqp3wwGMRtt92Gk046CRMmTMB///tffPDBBygShMfGjRuH1157DS+++CJOOukkLFq0CK+//jpOP/30I/7+JB0Dq5hLJLVeNO5+epoiXshT620a40xYz+kUMwJsvfTYwEj0r6AAWLzYligguxbtTRvXCuN150hzR9TIM74vre+wfUmOLtydfQASiSFCKnHQRby3PipQh1gMcDjgaW0GfKm2a+QDQtqxOxoBHA5eI9/m9ibkWZYYEImgbMFC4Oyb+KaKNGrI0+uGOXOAK65QzrEQbQaAehqBL6grR0lmT9QlpQI1NWTcxIlH6I0cZQgZInVJ5Px4IiGkBlpQm5yBg6nZyGprBG65BUhKsq20XNdCvlNZyR6k+1lEXhryko5n1qxZmEVbTGpZtGiR6u877rgDd9xxh+U+p0yZginHapZON4SlTidiSIvp1qP7KnoqYlTfSgQRUKLvTocDW8obAQAb9tXizMG5Zi87psn3OYDdu22vl5jh7WynkWo3+7I7IKbWVzYGkJfmMxltzatr9+Gnp/U91MOSHGXIiLzk6EUw7pgQnS8i1EPFYvCEyN+JptZ73U44Fi8G+vRR18gn4FmWGLBqFQ7Sy5TeRpRSy8Uad70UcI0eQYM/BQDQr44IWfFo87GsW0BrFOFwoNZPBLoyWpuQ31QDADiYRs9xVVVCwnd1QkQ+naY7NrbJ1HqJRHLkYQY0N+RtWPKiI180D8WIph2HQETHyHx02TbrFx7DHAzEyFxuU5tl7R4yXzkdDowsIK1lLznJfhmjdq3XnXvJi0kLD3205ZD3N7f4e2utIkmXQxrykqMXwWhjEXlvWB0p9NI6d7uGPEut97mcxFjfswdJM64HALRdchnxLEsj/tAoK0MZNSpHlpFFUGVKlu44jhBtjgFo8BFDvm8dGVOblBY37phDqFFkEfnMtkb0oIZ8BTvHCbZQrKUR+YwkD9Jlar1EIjkKSERsTpz/R/TJ4I9dgiBu2IbaOU+t78Da5GOB7VOuM9e/oVQ0KgK4oUgUEwYTwda8VPuRZq3YXXdGdCjVd1CW3LarfwH065dwhxupFXH0Ig15ydGLYLQF3NSQj6hvZp4EDXneQ95NP/ouF/xDjgcAtOXkynR6kUiEeG9ffTUxL26vXtxwP76K1Lw2+FMQcTjjxnGEaHOLx4+wixiUfWlEvt6fJnULAOJkWrwY9T36AACyWht5RL6C6RAACbVQVFLrlYh8UyAsJ26JRNJpuBIQuxONu2G9lHaCqoi8jSVClNfIqy35QFhGMM2oTs4w1r8RENuafr27GiW1LQCA/3y9z+glcWgdMt25G90hl8jrXIs/XnAzuVZXXWXbmF+xtQIn/uVjvLMxMf0dyZFBGvKSoxfBuIurkQdIjTz9BAcTFLvzCj3o/XQnbaFuPCMkSGRJMd6eeA1+vOYG4Gc/s1acF5kwAXVZpMf5gBpy4485nLzuXVdMUIg2N9Bx7kgYvRqJin1dUprULWAUFaH2uhsAABltjchvIudI1aKPYaMUgdXDZyR5uNhdLAY0BmR6vUQi6RwSaT+3vaJRd7soqGanlzyLB2jrt6e/sNbytccEkQiG1xCj+7Ifv+Cbgy5PwplgV4zqg7c3HiCvT6DuPaSJyNvJtOiKlNa1Yun35fzvWKKqfpEIcOONcZvZWhoAed7Gtbr+xf+hORjB7Nc2JnYMkiOCNOQlRy+CcRcXkacTrac36Z9tW+yOGfJu0ZAnxmFrAi1QujXFxXjukf9gzvgb8NOfPoBWN017s+FxBwC4XKgdOgIAkNtSh7RAMwCaHm8mJkijzQ19BwIA0gPNyKA19vXDTpQlDwL1KSR9NKOtCT2aagEAFak65Qs2ShHqWlmNvAc+tws++t2QgncSiaSzYDa4HQPm/y3+3mAfgiFvI7QfFdrPiazdXWP52mOCVauQU18FABhxcCffvDOngDywyAQTL2Wy16UKqNhFm32pVbHvDnyxrRLj//a5apvWgWHJihW8na+IMyacv+pqMk7SpZGGvOTohhp3gQySNsxaxTFROk8O2R4KJ5haL9TOMUO+TabPAZEIYrNn418nXwoAqE9Kw9rCE8hzCXjca6k4XXaKD5mtJFpSl5RmLSZYVIT6d94HAGRkpiLlkb8BAFqT0w7hTXU/mnuTFktpgRZeIx8XkbdZilAn1MgD4On1sk5eIpF0Fg7eOs56rJEjX4zI2ykVEtvPSXQoK0PYSdZLYpnjPef9Om6cFbEY8EDRiQCAPplJtg9BWyN/sL7NYGTX5Y/F8Y6poM01LsfAQHdqHWPSkO/yyNuV5OinqAjB6b8AAHh/cgWwfDkXpfNSgzxRsTuvW4kGc0M+wdT6xetLcM7fV+DzLQcTet1RzapVOFAfQFl6Ht/0Xc/ByvM2a69Zb/KsD95GVt/eAIC6eU/aEhNsCJDrkN4jG8mnnwIAaA7KNG+RlhCZjJNCAZ5ar6qRB4Bp02yVItS3agx5JnjXKs+5RCI5vERD+vcZVwKp9UaIpe52UutZ1LO9Pc67Pb16ca2bpFDAdJwe2muZk0q6EWWlePSG66Jd63WEmvvRRmlda9y2jtJpcBzC90lydCINeUmXIMDaxo0eRfqIUwPFQ1Oz7KbWKzXyQkSephIHQondKP/24WbsqmomLT26C2Vl2JrXT7VpU/5xuuOMiERj3DjMTPUjsyeJFNceN9SWYckiwelJHqT4iFHZEpDZEiItAXKOUkKtgthdlroRz2uvWWZOtIUivNwkI1kdkW+UEXmJRHI4KS5GeNAg3e0sKp5wbbCAw+HgxrydiDy7F/rcUotFlwkTEElKBkA6pjB6N1SQB3r6NwJieUNGkod0D0Ji0WatenvCkeouSiI6AgCAiRPx2kmT4zbHtAp6Eyda7kr6tY5upCEv6RKwm5jPrf7IMkPebv0Q8+aKNfJJXlojn4AhX9kYQFUTiTofbAh0n/r6Xr2wI5ekbWe11AMAtuf21R1nRH1riGfhZyZ7eKSX9Su3gvUwT/O7kUKvTXMwfEgLuu5GSylxpCSF2pDbXAcACLk8qE1SFJvtZE6wRZHL6UAadZqk+1lqvYzISySSw0RxMTBlCqIH1E7hKd9/CkyZAkcpEUo91BJoN/UI2KmlDgoaOvddOeLQ/nF3xOVCc98B5KFQa30gvYe5/g1FvAaF2cm8e1Ai9d9/fucH1d83nDnA9mu7Mokuf0LVNfjDRb+P3w8Eqzwnx5YhLzNUjm6kIS/pEgRpWpFXY8h7+URgMyKvY8grqfX2jfG91c2qv3dWNtl+7VHNhAnY34dE4M/dSZR692T1QhtTOrXwuANKWn2a3w2Py8lTtRttGoYt1CmS5HEjmRqX0ZgSLZEALc2kLjAl2AZvNIwcaswf1KbXW9Qqsvr4dL+b16Sm8dR6GZGXSCSHgUgEmD0biMV4zTXjyh+WAwCc33xDhh6iJc8i+3b2E6QZTD63ExeP6HlI/7e7sqWVZjDmac6Plf4NlPr2gbkpAISMygTmdm3AhWXtdXf656TYH1xcjMjPr9V9KipG5J991laWpLaLg+ToQhryki6BkvKmMeRdCRryYSZ2Jxjy7sRr5PfVtKj+1qtpOlLEYjF8+uNB7OogZ8L+oaMBAGNKtyAl0IKo04XSDHsed0CJvGclk/q3ND9L1bZnyLfSevhkrwtJHuX/NMt2aJwW2kkgKUQM+rxmolxfmaJRrrdQrWfXKpNeK0CK3UkkksPMqlVASQkA8Jprxpl7vwViMTibibPcTo38L8f3BwCc1j877rlEau0DIcXRHxeFXLHCVquuY4Vdf3lIvcGG/k2YrtPYufUmWBqpu89uqFqvR//cZHsDqZNMFXlX4SDerddft90JSBryRzfSkJd0CYI6beMARX3erkeXR+R1+si3hiK207f3VqsN+YMNnaec+tGmcsz89zr85OnVaDoUY7e4GOjfH/srGwAAhXXl6CEaiDY87oCSks0iu+lJLCJvzzBkHvckrwsup4Mb8y3dpXyhA2imKv4p1JDPaiXXrDaJqvvbyJwAlGvFsibIY2rIS7E7iURyOBAyhcSI/ITd3/DHLHXbzpTMjPXR/TLjnnM6mfq9nYi8sj5I/fB91XOxSZOA/v2t2692Y8QSQp/XjfGDhE4pNiK7IXoNWCDF605s/aZH5BCcAF0JrVq/IdRJFjFovRBzAIhGgZtvtv1Zlpn1RzfSkJd0CYwi8onWyOs5BPxeZQKym75dUquOwJd1YguUL7ZVAiD1zmt3x/cNtUVxMXDVVUBJCcrScgEAvRsqlUjv9Tfa8rgDSuScpbyl+ROL8Cqp9S66H6VOXkJg5yg5FAAcDmS2kWyMen+a7cwJQLlWqaIhTx0vMiIvkUgOC0KmUFSIyD+35D7+2EENeTuR9O9KiJ5LXXP8PYtFfxOJyPs2fQf31VNUz7W5fUBpKTBlyjFrzC9YsYM/9rqduGE8qU8fWZBh6/VhTftfL52f7GZU6u7zGInIL1q9x95A6iSLGkTk+fetqsr2Z9kpLfmjGmnIS7oEQQM1WU+CNfIhvYi8sM+AzfR6lpLMar3KO9GQF7MDtpa3I70+EgFuvBEA0Ozxo8VLerr2aK5FHlVEr/pite3dceOQi6clViPPIvLJ1MHCxAibpXI9hxvy994N9OmDTDEibzNzAgDP4EjxKoY8E71rkmJ3EonkcDBhArlPORyI0sihKxqBn/UmdzjgTCapxHYMtbV7yDz1+rr9cc+52tGP3vfaq3GpAFvy+inb5sw5JtPsdwjlez63S+galJjYMHudpx0R+Z+frhbfPZT2hF0J2xpB1EkWdOu39OtTX6HeYOOzLMXujm6kIS/pEhil1re3Rl7cj8eltKhps9mrk0UrB+enAgDK6juvRr6iUXEi7K5qhyG/YgVQTSL5VSmZAICkYBtSgq3IoyJqlfCScTZoogZ3SpwKus3U+qCSWg8ojpZE2wN2Z1qYjsAF5wF79iCr6HIAQO2119vOnEAkgubNWwEAqXXVfDJPokZ9Il0cJBKJxDYuF/D44wCACE2td0XpHE4Nb9/Y0wEcenuxhFLr2fqgqiLuue25tC1rLGarI0h3pKpR6Txz1vG5Qkak3UAKuQZul7pGPhyN2WoPCMQHcx5Y2v36yB8S1En29gmTdJ+OiOKSNj/Lskb+6EYa8pIuQSCsqMmK8Bp526r16hotgPSaZcr1dtvIsejykHxSk3ywIWDrdYeDikblf1c2tuM4BAOdiaXlNdfCAUVErSI1y7Yhr0TkyTlNa7dqPTXkWVcBm04WTiRCjvnVV7udUBGPyHtdgMuFzKGk00BdVg9btYpMD6F54b8BACnvv83rP9l5l4a8RCI5bBQVAYsXI9KrNwDAGaP3G5pR5B5E7mnhqPncLs7Zc84bHPe8O5HUerbOCMe3Sg1p1PWtOoIcjeytbsYH35WhoS2EJetLEi6fYpkPAJCX5uM17nYNeXYtlYi8sg4LWVxnRkdF4NfursGTn20/5K4IRx3USVYjtqIFcPPq1wEAnw4+HWGNwKTVZ1ka8kc3x0bfBkmXx1jsjnqEw+2vkQeIg6AlGLHtEGCtuY7vSQz5svpWxGIx3sLrSNEajKgMZNbbvr2wiHxuS53qd3VyJgB7hl2zJl2b18jbbGempNaT1zMxwkS6CqC4mLQ3osrIAMgC8fHHbSu1Hq1EojGeZsfOMVOdr7Nzjmn/ZsRiaDqelFGkBFt5/WfS88UAPAm1Y5RIJJKEKSpC9MzzgXkr4fL5gOXLSUTR5YLr/R8BWKfEv/ftAf54YF5q3PPMCLGTov+/PcRx7Y3E30fDLs1y2aIjSIcQiZBoaVkZ+X/03LSXsx9Zofp70nd5ePGXp7VrXy6HQ1h/2YzIhzVid0JAJRiOxkXb9egoQ/6af64BAORn+HHNKYUdss+jhqIihPa5gHJlU4NfaV/X5vEhNShkkVp8lmVm/dGNjMhLugQBoxp5XqNlz+gwNuRZ+rZNQ54az4N7EEO+LRRFfSf03RbT6oF2RuQnTlRezyLyTWRBk91CRIRqkjJU48xoihO7UyLydroCKKn15BrxiLxdw5IZqiUlaHX7FO9zNxEqahFE/1j5AWv1V9ti8RkU+jcDQLOXGfJtfJv/6X8AsJ+dIpFIJO2F1cg7PR4yx1BD1W4kXWz96nXFWxwum6n14txUWTBQEQ2lhJghb7MjyCFDs6YwaRLws5+R3x2smr98a2VC45MFYWCnw8HXUbZr5GnUnV1bMTPSrmBxR9fEr9yW2DnoKviGDeWPL9i6Gp6Ism7gLR9tfpZljfzRTacb8k8//TQGDBgAv9+PMWPGYJVFrcZTTz2FYcOGISkpCUOGDMG///3vuDF1dXW4+eab0atXL/j9fgwbNgxLly49XG9BkgAtwXC7at4Ma+TdiUXktWIr2v3YcQhEQmFurOZ+tw45KcSI6gzlepZWzzzb1c0B27VmnIkTgRzSRoYZ8j2aSQpddgsRUatOy7JtyGvF7ljUOByN2ZqsmaGa5CGvY04WWxF5wVD9rucgnPy7V3DNzx8iaZGxGPnp4kJFLK3e5XTwUpOsZJL1wEQYDRH6NwOiIU8Xw7EYkg4QwSiZWi+RSA43zMDWKmOzv63abokCbNp5HbCvWi9G7ANTp8U9v7bghIQ6ghwSgjNaRSc7o8f0y+KPnU5HwjXyYU1po8vp4NfH7rqwo7vNvf/d0VUiUdN8aFmVjBOFTgL/fOdBeKLKfB51OBP6LItfnW5XitAN6FRD/vXXX8ecOXNw5513YsOGDZgwYQIuuugi7Nu3T3f8ggULMHfuXPzlL3/BDz/8gHvuuQc333wz3nvvPT4mGAzi/PPPx549e7B48WJs3boVzz33HPr06XOk3pbEgM1lDTjjgc8w8ZHl1gaHBuP2c4nVaAUN9sP+tozIFxejaegJ/M+0iyYjfz9pyVLeCb3kWf/6Yb1IZkAoEku8bZjLBTz7LACgIjUbALjIXQ6LyGfk2l64aMXukgQvvp0oLzPYmfdfSa23YVgKhmrxCeeg1evHN32G4b1hZyljurhQEa+P97h4KUcmN+Qtrr2mFo4Z8mKaXVKIOIdkar1EIjncMANbG/VjavNWBviYvopxqXX0A0pasJUBIjoMvGNOJp0/BD45fmxCHUG+K6nDve/9mPBaR3RGRxxOfHbcqahKpkZZJ6vmTz6hp+rvRMWGQ5r2c+3Zh52svq7M/72xsUP2wz7Ppw/IBhYvxo+FSoQ+5HIl9FmublYyPWUb4KOPTjXk582bhxkzZmDmzJkYNmwY5s+fj8LCQixYsEB3/EsvvYRf//rXmDp1KgYOHIhp06ZhxowZeOihh/iYhQsXoqamBm+//TbGjx+Pfv364cwzz8TIkSOP1NuSGLBgxU40tIVxoL4tIS9oLBbjtetGNfL2xe7i28+J+w2Y7Yd6yRuqiXGbFGyDNxpGrxpSiFS+3H6Lto6igorsFWQlI4UavpbGnB5FRcCSJajMIbVSTOQuO4vUVbVEHbYNO6WPPDker9vJU+nsRHl5RJ4b8gmI3QmG6ta8fvzx8oGnqMe98471vo5S2PlN9ikOElYj39AWMl+wamrhlIi80sIwKUw+UzK1XiKRHG54RF6Tym43JT4/3a+8Rkejxu5+RFE9t9Ohb+DY7QgC4I7F32Hhl7txz3s/2hrPEZzRb5x0PmZMuRsX/fJJ5flOVM1n2X6XnEjmkfar1qu7BgH226ux63jmoFy+7UBd53UN6mgSLXcwQpV9WlSEg6NO58/tfWlxQp9lUfsp4YxPyWGn0wz5YDCI9evXY/LkyartkydPxurV+gZRIBCA3+9XbUtKSsLatWsRChHj5d1338XYsWNx8803Iz8/HyNGjMADDzyAiIn3MhAIoKGhQfUj6VjqW0L46AdFeWPNrmrbrxVv8IZidwka8h5NLZ1lRF7wkjf4SH/btEAzAKBnYxUAoOy9T464l5yl1uel+RITPNOjqAiVp59J9nfTDGD5cqRt28zPVbXNlC/msWWp9YCiQN9iw5sbr1qfgNidYKhuy1UM+W2CUQ8AeOWVLpterxUDBIDMJBKRj8VgrtUwbpwqs6JJm1oPICka5v+nu0c/JBJJ58IMM21WPDPArUTqxLk8onO/ctEafCtDXnyetUd78Zen8m2sQ4hdtpQ3AgB+PJDgelJwRn92HPn/lTRTzmjckUJbBqFkRMZszRW6EXlaOmd3Dccu09jjcvi2lkNwOvdI87X7tUeSjCT9vvBGaNe6vxjfnz/3QJk/oc9y7wzF7pJ2/NFHpxnyVVVViEQiyM/PV23Pz89HeXm57msuuOACPP/881i/fj1isRjWrVuHhQsXIhQKoaqKGFO7du3C4sWLEYlEsHTpUtx111149NFHcf/99xsey4MPPoiMjAz+U1jYzRQsjwKWbipT1UB9X1Jv+7VitF2bEs9r5G0KpSi19uqbmFIjbzCZCF7yBh9Rxk2nhnyPJlJPXhlxHnEvORO7y0/38xt9wql8ApVU9b7HpecDEyfC4XYjm2oA1NhUxNeK3QFKdN0qIh8VFNlZaj0z6G31kZ8wAcjNRWVyJqqpAj8A7Mruo24fVFnZZdPreUReKFlwu5xIo+fb9PqvXq1yYOil1vvbSHQ+GrOf6SKRSCTtgafWa6LptfQ+tmq7eYRSbGGmZ6wzQ8bKkBfXEEzEdtKQHiQ1GcDMMweYvt6IhMXZBGc0K3OyGmeHjnDKsvfCxeqEc19Sax0VD+toFFU1kfdot6sNOwavy8mdPYlmjx0UyiAnDM5L6LWHFRPtg0Rr07V6UKMKM/lzG/bVJbSvnoIhL2vkjz46XexO267LrIXXn/70J1x00UU444wz4PF4cMUVV+D6668HALiodykajaJHjx549tlnMWbMGEybNg133nmnYbo+AMydOxf19fX8Z//+/R3z5iSc76jhPpW2+dhf22L75is6AOJS4jugRgsQVesNjknwfrM2HsyQzxGV3Y+wl5yl1vdI8/E66faq50ejMT6p5gle6uwU8liskzJDK3YHCIa8xTUXDf241Ho7hrzLBVx7LU+r71d7AN5wECGXB+WpOeqxXbAPMKCcQ9GQB4DMFHL9TZXrDWrkVRH5sHKd24IJGPKtrcBvfwtccAH53dp90h0lEsnhgdkF2nXfi1/uAWBtIIoGqp7RzIw9qzWCaKCM6KMIhR3XgzjutWJ8dknYkJ8wgdQvOxxIDikG5x8u/B0ePuu6dqvmd4T9FdaUQYjrMVF00IhQlDkC6OsEp/JTxf+zlSXHzqfT6eDX7OGPt9g4eoVnvtjJHx81LdKZwKEB4VBi6zrWEpA5W07onWE23JSGViWTsqO7BkgOnU4z5HNzc+FyueKi7xUVFXFRekZSUhIWLlyIlpYW7NmzB/v27UP//v2RlpaG3FxSL9OrVy8cf/zx3LAHgGHDhqG8vBzBoH6kyufzIT09XfUj6Vi2lJP0sjMH5yI7xYtYDNhRYX3jB5TUeq/bGTfZ8xp5m/VVVur3hhFIwfvd5CWp9cz4YYZ8dUrGkektKyBG5G0LnhlQ1xriUYmcFMWQZ6r8dtVUmzVid4CYWm/fkPe7tYa8TaPyiiuwJa8/AGBoxR4U1FcAAEoyNPeVI3ytOormYHxqPaC0oDONyGvec5NORN4TjcBNv2a2leuvvBJITgaeegr45BPyOzkZuOIKe6+XSCRHlJe+2ouPNulnP7aHWDiMm+d/hFsfegtYscJ26ZKSWt8+i0qcso/T6SPvTrBGnpVyMbjoXjst4YTtHpcLePxxIBaDeEZeG3kBnh57DcJwtEs1vyMiqdoyCLdwzVZsqbB8PTcuXQ6lvR4l//OPrNvrRSKIlB8EADh37OCbV22vsvkOCOI1OSrseE1bWN0hoUhC5YBsLacNfjHsZmgEwhH8WKaUh8iI/NFHpxnyXq8XY8aMwbJly1Tbly1bhnHjxpm+1uPxoKCgAC6XC6+99houvfRSOKmHb/z48dixYweignDJtm3b0KtXL3i93o5/IxJbMKP9+Pw0DMwlEe19NS1mL+FwpXmdG9IRU60XvOQtXpJmlKox5GvScw9/b1kN1TTdPSfVi4wkZsi1z5BnPeizU7wqR0d2AoZ8LBbjNfIpghhbss3U+lahPp5FQNi1sW1UjhuHbYVDAABDqvagTwMz5HuQ549UH+DDBNMZ0EbkldIKezXyEYcTbR7yWRYj8nC5kESdBLbO+ZVXGosHvvsucNpp1vuQSCRHhkgEO97/HH96exNuenl9x2iFFBfjszMvxwflERTXetEy+ULbPc+NVOvtIhoW/XJS4p7nEXmbNfI8Wkxhh9Ve++VQIpgOndeGXInVSnfEcfB9cEOenCNRtM7vtXYssIi+Z8c23l7vuGqSATt+77fm7fWo4R9bsYIcwxOPt/t9iJ+ZoyIiT0s3a5Lig4gu2jYu7EysdDNEbSC3wffKrq7AgTp1NyZpyB99dGpq/a233ornn38eCxcuxObNm3HLLbdg3759uOmmmwCQlPfrrruOj9+2bRtefvllbN++HWvXrsW0adOwadMmPPDAA3zMb37zG1RXV2P27NnYtm0bPvjgAzzwwAO4+eabj/j7kxCaAmE0thHjoyArCfm03uagzXZtAapW7vPoGPIJ1sgb9ZFnqfWGEXnmJYcYkSeOiOxW4q2syupxeHvLaohGY7yOMCfFy3uJ17azRp4Z8nmpavEXZsjbEbtrCUa4U7k9qfVc6E5YFCSUWl9cDBx3HLamkjY5Qyv3oqCeePBLMvKPXB/gw0iLQUTeltihUCPf7FHq3kTVekQi8IOMsSx/aW217gDwv/8Br71mPkZyTPD0009jwIAB8Pv9GDNmDFaZLEyLi4tx/vnnIy8vD+np6Rg7diw+/vhj1ZhFixbB4XDE/bS1HflWoF0CagxV3DyHb1p76nmH1pecpgTPnKhZY9nsea6o1qu3D8lPs/Xv2etP668jCAfFMLeKqIcNMgOYQ1lPSM/W8SX6OhqdDbjceHXUhfHH6XK1q/1cRxhgYU1EXmS0UINtBFt/uT/6kEefd+aQcstN+ccZt9djaeclJYg4yD93xNqv3yIGfhxHQ0yelrzV+dUZJU+9/SA+fPF3AICYw4mWEvvlgKEwdZrotGQE7AW/fjzQgJtf+Ua1TabWH310qiE/depUzJ8/H/feey9GjRqFlStXYunSpejXj9S3lpWVqXrKRyIRPProoxg5ciTOP/98tLW1YfXq1egvpOcUFhbik08+wf/+9z+cdNJJ+P3vf4/Zs2fjD3/4w5F+exJKGW0Nku53I8XnRn5aYoY8T4fXmT0SrZEPWKTWm/aRLyoCFi9GSw4RR0kJkuPPzSSGfUPEYTvFvyOobw3xKEFWipdHZO2KxmipbKLvJ02duZKbal/sjtXHOx1KOj0AJHnsRXjZ8+JrlfZzFueWTvaxkhJszyWLg+Mr96JPAxFLOpCel1Dv1KOVFh2xO0BxnLBroItQI9/sI2n1nkgIvoj6NUkxashbOU9uv13159Ih43HVzx/GO8POVo+bObPLdgmQdAyvv/465syZgzvvvBMbNmzAhAkTcNFFF6nmeJGVK1fi/PPPx9KlS7F+/XpMmjQJl112GTZs2KAal56ejrKyMtWPtruNBCpj6JXRF/PNuyNeWwa3LgYpwTE4bPc830lrq3dWNqu233jWQADA6L6Z5odgEdG3q37P+m5rI5iHmlofTXRJQKOz7wyfqPv0R4PHtqv9nNX7t4OeMOFIasBr2wfqwQMptTVxzz1/2k/IA217Pc1njBnyLq0hn8D8Iq7TnJ1qBVG2bwcQ/54u2fol8huVDk8vBjQ6PyaEdFotp/kV57+dUsWrFqxWpdUDMiJ/NOK2HnJ4mTVrFmbNmqX73KJFi1R/Dxs2LG4S12Ps2LH46quvOuLwJB3AgXpiIPbKIIZDzwwS8bUfkafp8J74CGp7+8jHR+TZfiwmg6IiNLmPB1bvRcpFk4E7pyF9/Jlw3f0JIjRCLva1PZzU0Mh7mt8Nj8up1Mi305CvbSavY7XWDEXszkZEvo2MSXbE4PjiC5K+7nLxCLtVOheLuot1ikr7OZPXqtoDpqCF1n4XNFTwrgIV2fnAjh1AFy+x4RF5n9aQJ3+bGvJCjbye0B0jyesCgjHrLAi6AAGAsrQc3HLJrQh4fPiu12Ccs3Mt0ti+m5vJwmziRPP9Sbot8+bNw4wZMzBz5kwAwPz58/Hxxx9jwYIFePDBB+PGz58/X/X3Aw88gHfeeQfvvfceRo8ezbc7HA707NnzsB57l0djDH0wVCkrClPDCHPmEE2LRDKVhG4uqn/H9ikaZQbf/aeX79TdzlrAJenM+6r/RS1lI0NeqZE3XyMwp6V2nrPbh96IhNXiqbOV3Z+13H7JLbh602cJi7U2trWzLa2Atv0cACTbdbRDcZZ4otZtaPn7Ez5jW3P7YdnxY8k+NM7nROaX9XtrlT8OlAGREzovQy8SAZ59FgCwpu9JcU+7o8ocXJXX2/Zu9YSde2X40dhGHGd2yub0xsiI/NHH0eCLknRzyuvJYr5XJjFwmaF7sMGeCrpZRD6hGvlIBKEmkkLs/W6jyoNrWSMvwMTGUkafBEycCKfHjWxq/FYtfichoZ9DgdWss9R3pUa+fan1TO1e269USa23uF7FxWg5dzIAIKmhFpg0iddJJttMj9drD+i36igAqCb7CtpzN6O1Ef5wkBvyB71pJLW8i8PF7jxqP2yqj1y3RjNDXtB6UEpEBIca1Q/wZ5JaPUtDfvBg/vDNE89HwEOcPiGXB9/0GaYe20W7BEgOnWAwiPXr12Py5Mmq7ZMnT8Zqm9/JaDSKxsZGZGerU6ibmprQr18/FBQU4NJLL7V09gcCATQ0NKh+uj0GBjcAtHp88VFQuxh8p6PaMKfJd7+0Tl+Vns33YYuyOTb1H2pE/t9r9uhuP9TU+oRfRZ2t3/Qeaj7OqqRJw98/3qq7nQnm2kHREVDONXe026i5ZoEUt531EXM6C5+dC2Y8pfzfsGadY3N+aVtcjL2CPpPjvfds6zkcFlatImUoAB6YdEPc0y7BkI8lUAbAz7WwbnYJ30tbpYo6nDdvZbteJzl8SENecthhYhksIs9qee22STOtkberWk9rA4MVRN3U++sbVTdvn5VqvQA35Flqc3ExcvaTqELNfX9TGbCHE60hf6gReSNDPifVhtgdTdtsrSHCf7xtDq2TTNq/G4Ai1GZEQEeM0JZqvTCJH6SGfM8mkpKWTw35ypSsQzMmIxHipHn11SPmrNGjVUdMEABSadpcU5vJORa0HuIi8oJ+QJJNcUI88gh/+O6ws1RPbcvtpx7bRbsESA6dqqoqRCKRuI40+fn5cZ1rjHj00UfR3NyMa665hm8bOnQoFi1ahHfffRevvvoq/H4/xo8fj+1CpoiWBx98EBkZGfynsLCwfW+qK2Fy34s4XbbG6WLwnQ453bbGmeGht6NgRYXp/TZiIerlttlHXiuAy2hPar34v9rVfq5PH9QmW3RPWrwYMOjEpMeW8kb+uKeQNXja/Z+hbt4TtvalF5FXSt+s50MekU9P5fPNedu/BgBcv+5dMkgrRmvwXY6LyNv5jBUX4x9PvK3aFHM4bOs5HBaE71zQFZ8kLUbkoyUlttcd/FwLhrz4HbFbjio5+pGGvOSwU0l7k+enk2hdOjU4GmymepnWyNsRuxNqA0P0RumNhlU3b1s18hSWupzsc/N959QTB0F1ciYZdAQmhlpmyCerDfn21sg3WETkDWvkhbTNNhqRTQrR6D1dxCR9/ikA69R6va4C3ONvtlAQJvHyNFJHxiLx7Hd1SiaC+e1MwWWtciZNAn72syPmrNGjWUcQEADSaI18k1lEHuBaD029CgAIhrygH8DSWS3F7j78EPD7UZWcgR25fQEoC7IdOQXKuC7cJUDScWjbh8Zisbhterz66qv4y1/+gtdffx09evTg28844wxce+21GDlyJCZMmIA33ngDxx9/PJ588knDfc2dOxf19fX8Z//+/e1/Q10FEyNHFeVL1OCeMAG1A4fgb2dfr9rMnQPt7RBSXAzPDWSfoV17TO+3YR3jUoRFIa0i+6cPIPMG04RhtCciv6m0nj9OOCPf5QLOPx+n7v/BfFwkAjz9tO3dihHYO3Z+qnpu8/znSbvQO+4w/5c6NfJs7VRvo1sOa/HnueZqssHhwKBqopHhikXjxWgjEeC553T3FZeeb/UZo+uUzLZG1ebV/U6yredwWBC+c0GdjgRi3Xzs7bdtrzvYOsArpNa7EjHkpaZNl0Ea8pLDTjU15HOoGjozFO1H5PUF6gDF2xgyishragPZjdIbDqlu3j56s7MTkW+hfdJTPU6+72zWS5550Y/AxMBq+ViGQ6bQfi7hujyYROSpId8YCPPsCBVC2marm1xjf1hIw4/FkFxNBOes0rnY/r26EXmT1wop4wdT1YZ8VmsjPBHy3qpGnmr6/3Whzppw6QFUi+1hSko6xYvfyjNC1N77FLuGPAAUFaHlHwsAAKlDBgHLlwO7d3MRQOYkMD3nzEHW1sbTQI+v3IsRB0l/31Kx3V8X7hIgOXRyc3Phcrniou8VFRVxUXotr7/+OmbMmIE33ngD5513nulYp9OJU0891TQi7/P5kJ6ervrp9gj3Ry0jDu5ov8HtcmH01Y/imTOmqDaHnc72dwih9xXPQRKp5O3WDJzjUZ10bxGPzRr3GE2CH9ZL/XlgRmt7A5jtinymplqPAYCd+voCcRQXo6H0IP/TtWaN6umYw0HWKY88YmrM653rdzYeAAA8umyb5WEEmaDgqacQp3GfPvDQiHPE4YwXoxXWFlFNWnlcRN7qM0b3VVinvgftzaJ15+0oL9lR0Yjb3vwWe6vVQo0LVuzE+98dsLcT4bsZFbJjXvsPEegW33UM9rMH3tpA0vVrBQeLeN2CYYvglyAirqU960vJ4UMa8pLDDut1nksNwnRqKDYFwrbS1fTSrRkeKwNcUxvIDXlq2LGbt3fPbvq/rI1uZiglb9vM953DDflMZWB76w5twmrhWeo7i8iHozEetU0EI0M+3e/hnlwmiKdCSA1r8ZKUPR6RpyRRw94qIq9ca732cyYLIiFlnKUk5jbXASAK+nn08UG94zeDOoKiMeDaqX/Fab99CSsGnKw8H4sdcS9+M02t10bkbaXWi/uh5zO5Xx8iEuSKP+eGqfUaB9l6Wg8/pnQz+tQTp01peo9u0SVAcuh4vV6MGTMGy5YtU21ftmwZxo0bZ/i6V199Fddffz3+85//4JJLLrH8P7FYDBs3bkQvWcahRrg/wuHAyANKvfQtl/4fedCBzraw092+775wX/FSQ41l0Rk5x43axjHs1sizJYRWfZ0lAiaSWi/uo12dbI47Di0eG6K5xx1nPaa4GNEpV6PGr7Tzq07OUA2Jiu953jzDNHur7AcrwqIAW1ERsGcPXNdNJ8/9pEjlTAagWluENJ/NOEPeCrqvmFUGUALlJdf88yssXl+CGf9ax7f1/8MHeOijLfjtf6yFuQGov5sCZ+zfFLcts60x4SDROkHYz1ZEXshgNaIjOiBIOg5pyEsOO1U0Ip+bxlLriaEYi4H3lzcjaBKRt2w/J9yUYwCCbvK/tZOAr7Fe9b/MYHXeqfVKC5XcljoA8ROk9hg6khpqlDID3u9xcWdHewTvjAx5p9PBlex1Be+ERXObW5NaT0migmpWqdo8tT5R1XqAp4zXZZMIH0+hKyhAj14kSl/RaE9gkUMdQasGjMZX/U5CxOnCqyM1vX0TddYEg2TR/Lvfkd8J1DkCSkaINiKfmkhEHsaRfQBCar09B9m3vY4HAIw+sBUF9STyU5reA9EXX5RGvAQAcOutt+L555/HwoULsXnzZtxyyy3Yt28fbrrpJgAk5f26667j41999VVcd911ePTRR3HGGWegvLwc5eXlqK9X0pbvuecefPzxx9i1axc2btyIGTNmYOPGjXyfEgF6f0SfPvi29xC+uTI1G6E3OtbZ1rDopXijzA7CfYXN0aq6YR3neMTCkFdq5M3ndqNa+/ak1otaf+0y5GfNwj81WQ5xuFyAQccnDnWM3K8RUavR1N9HHU71awxS9vXazyVCXN22ywX3wAHkuZ694h1JwtoirNFd8EZDSl29Hei+Io74daR4Zcuz8m1nizLdoB0VRAn+613V6gF2tXTYd9OCQjq3JhIkErNV3S4LB5NBO0ktwcChd0CQdBzSkJcY0xHiXpEIquuJQmjODxuBSARet5MbCnbq5PWitAxm3EdjBqlzwkQgCvDwiDz7OytD9b/MaKKGVHIPpaenklqvY8gfpugQM9azhXZxXPDORr2aFjZ5pSfF12mx9HpdwTshNayV18irldB96SRVMLC/1PSzxIUNXaIhT1Xrw1HrlK6iItRdciUAIPPaaTxlvEc/cg0qbLY85FA12Q+HjOeb1hUMj1cipuMsueMOUot4yy3AP/5BftuoTRRpCTGNBk2NvD8xQ94osg/YiMgLzqkoHNjUcxAA4KSybejVWAVXNIKg24PKA1W2jkXS/Zk6dSrmz5+Pe++9F6NGjcLKlSuxdOlS9OtHRBHLyspUPeX/+c9/IhwO4+abb0avXr34z+zZs/mYuro63HjjjRg2bBgmT56M0tJSrFy5EqeddtoRf39dAhoF1XJg0gUd+m/uPZDUvui+cF9hhnyccJ5mnJUhb7uPvMF+WHQ9EdE6cR/til5atEiNwgHceqt1K1XqGHnh1CtVm0OaWuyo1jA3SNnn51owCNP9OtfHAK6kLpwfrmGgd56EtcVOUXMFRPn+mu9Jhk8eLds0he4rrqMCgJKMfMDhQM2goThjRStG3vOJ3bek4tsP/6vekIiWTlERLh5BghAOzWftgq2ks0fYoflO2QgSiX3gxUwR3eCX4EjTc3gwgv/t+t1/uhPSkJfo0xHiXsXFaBs4CI3Ursi56nK+j/QkcvO34/k0i8iLipy6NyZhImDReAA8bY/VBvpOGA7AniHPI/JjT+P71k2tb2/doU1YH/msFMGQT0qsI4CIUUQeEATv9Ax5ITWMG/KsRt7hAGIx+NpIDVlg04+mnyUmNqiOyCuTl53rw1T7M88ez1PGWcvDhCPylSRNfIMQwapOycTO7ALdcabccQepQdQ6MWzUJooYReQTqpGHEpFP1jHkk6x0CQTn1O7s3mjyJcMfasOg6v1wx6Lo2UgiEyVpebaORXJsMGvWLOzZsweBQADr16/HWWcpnQ4WLVqEFStW8L9XrFiBWCwW97No0SI+5rHHHsPevXsRCARQUVGBjz/+GGPHjj2C76gLomNgn/3Iig5VsRbTec0QHbNpPrfqvuKNkvu4OG9zxEitRY28mxpuVjXyvLWaS72f9qjWd0QJ8XnDjLUj1tz+V+Dhh613YmDo5dAMQkZMa7QZpOxzZ4dgEKb5da6PAVzsTljL1dAsv8XrdVK5hbVFsibLzxMN83Vc2CLbQtxXVGsMA3BQ1/wPf3zAej9GFBfDtehF1aZoAjXtAJBMW8jeMUTtoHHHqI6A0zhjwYg7LlTWLmJGpG45qqqUwdhBEyw/aPic5MgjDXlJPEY1MokosdN9VNcSA84bDiE90Mz3kREiStl2FNZ5lNbCkNe9MQkTgeiF9kZCKjEeHzWKrAzFaDTG67yTk7x83zmtxOvJU9baK/STAEy1PkuIyGfQiHxtgqn1baEIf+9sHyLZtA6/2ki5nqaGtWQTw42n1tOez/5aYtgF3PRYDT5L7BqKHQr8wnW3VFGHYsiL76MHLes4mGhEPi8PMQB7M4nafa8GYrD/r/CEuHGmBIOk9pASdjhxIC1XHdk3qU0UYZF0rQHOUuuD4agtrQdlPzqp9XTfhu0CBQfZruw+AIBB1SVwU4XdPg0VAICSfsdbHodEIjlyGDn62uP8PVTEOfv1X49V3VdYr3FVSrWOc7zDIvIRth/1OkNJrbfzjtTHdCgUZicZPvfhuMvs7cTA0NP2cQ+IEXqTlP2ozrnOS7MRDQeASAThelLu5vn+e+7Qfm7VbmWMXrYeXVtEe6o7zrh69IDnifkAEihfKCpCVMjoYUR79SH/Y/yZ9vajx+zZOK5a3QEj6HInVNPOs08HH6cSp2S95MM2u0GIDrIpY5Sgg/gd0O30JCro62XCsOdyexg+JznySENeokaokXl32Fm46cq5+LqAGi12b0jCPqpTSKp5TksdUd+k+0jfuwtAR0TkhVQho5s5nQiCBaRfsCsaIS09BDEetm+rCaFFiFCm+tx83zlpJOLLI/JHQOSLqZFmpyiTsGkKvAnMoeJ0AKk6hh1L3zetvS8qQtus3wIAki44H/j0UyCJLEZ8YbL/NmbIG3yW+EQmROHdLiePttjpVcvKClh2AoD2R+T79EGdPw1tVHjo8s0rAQBrC06IG2fK00/z99ni8WHyjKcxbtYiXHjDP/Btz8FkjI12QpFojIv+sQg8I1X4uzlgfZ5aTCLylgKDgoNsDzXk+9VSlV6HAwX1xJAvbUjwfEskksPKC6LhJNAZQtSiMTEwL0V1X2FRyJBovABxznHLGnmbqvUsdV4b2WdLjCMdkTc7XjttcgEojhENMc2pWjRGcAyYpOyHmNidEJG/6Wwlem9Y+kYzPIN7SemM+9Y5JCtPm4VmlK1XVITg0o/U2z7+CO4LJgMgLVmbP11uq/wzMuaUuG3hFSuAoiLV8SeszF5SAqfmNR+xkjybNe0Bur70ed0qcUo3zTiIOF22gkTf7Kvjjz2CY+qvV47gj7dXqNvwAVA50sKaiLwokBk8eYzp+5AcWaQhL1FDa2R2ZvfBnEv/Dx8NGY+br/wD2pjH1s4NSaizqaKGLUs9Z/vIaCBCcYdaI+9wOLgxb9pLvqgIwdWk5YrH5Yxrt8X7yFsYiqyHvNMhZAgUFSF77ZcAgCZfMto+/bx9Qj8JEI5EuRNEjMgzBfsqo8i5AWJ9vJ4iLau/brAQJ2ylLU2SThpBJhn6OfCFyfEExDRJnc8Sn8g0ThtbyvUgk299K2vLp/yvvHQWkU/QsJwwAQcGE6M9p7kOZ+4hSrRrxYi8nfIJoebwy34jsYvW+23N64+bfvJHZbFq0jYLUEfItQa4y+ng2+wo17MU/WSfTkTeqkYe4E6sPX1IffwAZsgXFKBgMkmZ3l/TankcEonkyLF6p75uRUdEkRNFdL7z7Dp6X/Hm5ZIxzKAwcI7zlHid2mdAWT+U1prfi4xq5F02HQGqYxIMuiSPvrFlhVmpg502uQAAlwtr7ntCtenuT/8Zl0r/fc9BZL6+/XbTlP0PviOp19upuBsAjB+kaAXpZjQKGZ4su8ITCZO1wSOPxI83ytYTGrGN6ZeF49Z8DpdQRvP2bQ9bl39GIohs3hy3OUz3LWZ42inj0/LohGtVf38gaOsAsKxpZ9fV53apxCnD9LPd4vHZChJtO6gY6WKpyIg+iobTP7/YFf9CMYNVU9LSo1kpl/nwxwrT9yE5skhDXqKG3miWDzyF97SsSsnCmn4jdceZ7YO8NhOA0gqMkd5GJoJDjcgDQi95i8ktSN3QXp8nrt2Wz2ZEnhnyKT43HIJXOj3Fxx0KNWPOOOw9s+sF9fiMtau5Jzo7hRisNXrq8mb7M6mPB5Q6ONP660gErfuJ6FvS/j0qATgfFRfkqfUiwudFL7UesK9c3xKMcIeOaMjn04yJysYEU+tdLpTN/n8AgF6NVTi5dAtc0QhKM/JJezW7PdKFmsMv+40CAFyyeSUyWhtRlp6H73rRqPwrr5guRFgU3eV06JaaJFInz7JLknUWmol0Cth7EVlQ9Jt6BXeQ9Tx9NIB2nG+JRHJY+Xp3je52W3XGGrYf1InqJQC737ucDrUBXVQE93rS0ivqdCH6ubFzPKwTJRZZtHoPAOCD782NqIhO/TfQPtV60ejvn5ti+3UizJDUS10/Ls9mn3kAv9ihbmOX3taMHM16bGZ2K9DSYq/uHsDi9UoKeYrXzYPEcYEZjQo6c8p4oibzk0G2HlubHZeXgiX55XBfPQVpe3bw5+uS0szLP2lWwIufb417ipVViJfecu7TQewGAeisdyxq2lmmhVcIEmHPHrw7fCIA4LEJ19oKEgWEY/e4EjTzWAZrb3UmRyxJKfX4+yfbEtun5LAiDfnuTHtU5+mN5sceA1WbPzvuVN1xZvsAxIh8nWpIBjXkG1rtt5/TM1wA5UZl5aVWHAI66vf0Bh5sbDY9VyxlOVUTxXQ4HOaCcB1JcTFqx5KIZ0ZrI9znnsM90blWtewGWBnyrEd5o1EGBZ0kWz9bDgBIeupJoshO4RF5l44hL3xe9MTuACUbw2pyZfXxXpdTFQnpQSPy1c3BhEWdyoaPIocZakJKqA1DK0hq6qYTTrNfPjFrFjf21/Q7CQBwydYvcRrtFbuhF10A1Neb6lAwR1Ky16VyJDHSEjDkWw1q7QEbYncCe2pIV4r+l5zDHWSs3OOwfxckEkmHEE6kCJzy90/ijSKGnVR0Nid7XPH3MrdQ4hWacJahs5SnxOvsIxF4jXwHiN39b4/iLAm3U0SQOaR/c/Zx2HLfhZg/dRR/LhFDXhucKJkxC5c9+WfVtqSzxlsr4AuIWYBOp4OX48VlgmnalLIOBGKNvjeszBG8LlsnW4+v31xO7hxIFrrjBNxe4/JPIStgS48Bce8n/Olncdu+2GYuYBuXoaFTwhBkmaw2hY919aC0n3sbQSJx/tcGRewS1mRtXLVzTbv201X5fMtB/OXdH9rXPvIIIw357kp7VedpjcxmerP76UZSl7T8uFOJMJedG5JQZ1PNIvJiar3DgVQ7EV6KmdgdYD8iH+LRXs2EX1wM34Wk1irY2GR6rpoCxsYPi4ZXNR3GuuDiYuCqq1DTQNIEs6nIHvNE5/ywEUDHG/LpZq3NhEmyVewjX6WkcPr1UuuBuM+SURkFE1+zSq1nAoAZyR6VoZud7IXb6UAslvj12V1FDNV+064Eli9Hn+NJu6yKvz9hv3zC6wVuvRWVyZnYmtcfAHDGvu8x4iBJudc6zox0KMzq2gHF4dJko89rs0lqvWX7OUosFuMCgr0zFY+9khkiDXmJpCNZ9uNB3re6I2lPm7SPfzBWr35j3X7D5xghgwws7TazsjlFpO7QDPmSWnKf1+rAsIh8Wb397KIX/qvoELSr/RyUsgOP2wm/x4UrR/fBuONy6D7tGRfLt8anQKecMhrucyaptiXqbPjL5WqNGOZ4j0tH12RuhqkRyjoSAMBvvlL6pzNNJb3Xc0O+tZk7B8Qrzlu2aZ0AJr3RC+vKyXE99BAQDEI8rZUWejpxc2NrfOnGV9RpD8BW5l7AIGg17VSi73TVyfHOAj16ZShzsbZUsl9OsvmL6XouVEUEipOCbXj/xd/jwq8/sPW/uws3LFqHRav34NW1+6wHdzLSkO+OHIrqvMuF6PzHsTOH3DhuWPcO/KE2lGb04AaI5Q1JqLOJS62nxlXShecDMFHFFuDp1gaGPDPMrTxnuin69Fz5Ssmig0eMDc4Vbz2nY/y0V2jONpEIcOONAIDapDQAQGYrTW2kk1T2M08CAKramVqv10MeUN5vo9bjrpkkWfs5fzigmjiVGnlNmuC0aarPUsCgjIKneltoGBg5JJxOB09RrEiwTn5nJVk0H5efBkyciPzhpCa8IkFnCR5+GN/fTNL0j6/ci+zWBgyvIHVqP+YLhryJDgUv7dARJASU69RkQ+yOLUTaJXZHaWgN80V2jtAGsUtE5NuTsSSRdCLr9tTgV/9eh/PmfdHh++7oGvlPfrRuUcXuHXpzuyg6Z2ZoRqj1pU2JZ9x1yTDL4wCAdzYSjY/PNquNX+YUF/txW1GYpRhS7W3rx+ulBYdGovX6v3zxf3Hb9M61nahjaZ1iqBYI7w9QHO9x+9FkbupF5CftWscfa8XixNdzp09Yf04ZWaZJ92ZOAE1WgIibqcE3NAF9+iC0SukDP7xXuu5rGNq1a6CuXndcRUoW795jRdAgkNGDivUaOfC1sOzQLJ0ORCMLMo1fKKznWHZEq9ePERW74nrbH800B8KJixWKCJ/Psu+3HfVrA2nIdzdMvI92VeerJl+MoNsDZzSK/rUHMG7vdwCAz04+z34qMa2zqcoivVBzmVAGFepIGU08lc022onxdGujiLzbZo08T+Oj+xHOlTei6VlrcK6UiLyOsvvhNuTvvx+oJl7S2iQyyfCIPADEYsjdQ8TSOjoiz2rk4wx5zSTZQtXdk4Pq6AUz5INuD+mtynjtNY1qvYHYHZ3YAhYRYnZ8TJxPhAkBJnp9uCFP0xlzU1nmReLXeddl1wAABlcTL+8JB4khvz23ryIoydDRoeAReZ/+hM5r5G2I3TWbZJewDAirdn+VNLshze/mxj+gROQb2sId2p+6w1i8mCwSE81YAkiLwEcfBX7yE2D6dOCTT476iV7SPdhUqm8s2EVc3Iqp2gCwpdy+oWqEWM60p7rZcnzcnCzgcjp4zbJZRJ7VrhtF5M8YSKLY+enmbdLOOp6I6116Um/Vdnb/B+wrmX9Xolyn9pQsAMp6xuNW3pfbZis9M/rlkJr9YYKh2mJjHSYKE2odCbzrj/ZeL2RnAkrNuFuokWdRcQCIsHRuncxPHtDxq0sA8hvJmogFnzjMCaCZR69f9y4A4LIfv+DHce+5v0JdUxvCf/sbH6cn+ivSFlS/1yavfqR7XcFwsm6z0bqZX3NN1mii152dqwE6+gyXjSSf70E9dMozhPXcssFn2PpfVvzm5fWY/sLXR0xMc29FI064+2PMfPCd9jnoi4uBfv34n87/vEL+trE2+NW/12Hmv/6H6sOZlauDNOS7G8IXcXXfE/H7y25D8QlCGpUN1flymkKWl5EEz2efYtLZJwIAVlzxy8SU2IuKUDWK1Nbnzv6NSimeGcJ2+oJbReR5jXzY/EYRtx/hXHlpe7SI06XUBumcKzbhaVt/AYohX304DPlIRGlHAqCGGvJZreqFHesOUN8aSsiAsqyRN4rIaybJNhqRTwqrb2RM7A4QnCVAvGq9gUfabqo3M071MiZYXV8ihnxrMMIjEcflkUkxmzoEahO9zpEIdn5LHC3HVZPPXa/GKmS11CPidGFbXj/1eB0diiaLiLxSI2+dWt/K0/T1UuvtdXFgExZzbjAykjx8EV5r1rKwM7jtNuDqq4FKTQ1kSYn1YuuOO0hLxdtuA95+G3j5ZeCCC4DMTHtOAInkEPAIcyAraUmEkBBFnFSljmA+u1JHxdoErVH75E9H46s/nsv/FuuojQhGjA15h8PBW2eZzWWKar1B+zmXvSh2DnU+DsxTGz+ic8KuISWOa4+IIACs2k5K08S+9uxxe42iX581EGcNJg6LD353JtfUeV4oBTBCdJRo9VmY4z2uLZ6Qnbm28ATe0swbUT6HOUIwImzSXo2tDTw52SrnwME04qi5/5wZ7ODUTgDNPMqi8L0bKuGi12ZTz0EYNfs1fNN7KB+31kAUktESUq+FgtqyQUpJhtBz3SKIZtQ5gX2G7ZZAhEy+V2z9q1s7L6zn+jQcujJ9KBLFh5vKsWp7lX67u46muBivzvgjAOCzBk9iDnoA/33xLWyadYdKqNkZi5K/r7rKcj+fb6nAp5srDsnR1h6kId/doB/Ael8KflX0J7w7fCJuvfT/sDtL7WU2U51ntWA9M5OAiRMx8ecXAwC+2V9nLHZmADNqcy+7UKUUzyJ+dlLrlYi8fhTStmq9Nm1bOAe+iCC4or0hC+MU1fr4Y2GTYk0ikVq76b2rVgE1ysRSR1Prs1rVN8fM1kb+pU7E0LSOyBuI3WkmSVYj7w+pDXnx74BJ5NmoQ4Giom5+jdnnSc/QZY6WRAzL3VXNiMWIAj57fXY7HAJMs2Lnmo0AgIE15HvqAHACS69ndfImOhRmjgpAqJG3iMjHYjE083NlLHZn5WhjWQnss89wOR18IV/bnNg947By220kmm5ELGa82LrjDtIuSW9h3tRka6KXSA4FcWH+7pJViZWFFBejdZhS25xEdWEYRvd+XSIR/O3ZZapNl43srdrH2IE52lfFEbJw0isGjHWNvFEE1W400yga2itTUX23K3x1wQn5yvEd4qJ+hVDnfqgR+ZkTBnIj3Ol0qHRNrAgLhuuJOzaoPnNKRF7nc0izM6+d+le+yR2NkDnu9tuBggJk0HVM0OUxbK/2j8+JQv2KbVWqHusq9JwAmqyAMO3G5I5G4oTvFpxxNX+81aIjg3Zu/NP5v+GPk4NKGcIDk6iDwUYQzaiVojvBkgqz75XH6VCNUSGs51jZ5qgDW2z9T7PjANqfmWIbWia7pN9p6u0lJWRuvvde0/tkRW0zrt3qxaXXP07a/FF8YWH9cuONhvuIxWJK54tD1OtIFGnIdyeKi7lS+CujLkKzT0n1+WDomeqxJqrzLCLfO4NMYIXZyeid4UckGsMPB+yn30WiMW7s5GgW+snckLeRWm8iiEO2m9yYBFh6Hl8MCefAK3xZg1pDUxjHBML0I/KKMrotEhEk1DheapJpRL5FfT2c2Vnc4Ewk9bvBpiEfCEfVixnNJMlq5JM0hrw7FoWLesLbPJoUR1G13kDsxW9TRb3J5PpwwzIBQ15Mq2cLoCxW/213P4Jmxa7sPmR/1YoQ1HCaXv8Dq5OPxQx1KJqE9od68MwJCxHJQDgKtiZIMquRD0dN00mrqRYDi2aJKBkqRzbNzJDFi1VG/Oq+J+GPk2/GnkzNvVBvsRUMAvPmqTZFHE51mQgA/P73Ms1ectgQ58D7twax/K55ZN7o2RN4803jF9J7UKCCRnmjEXiiYRxfuZcPsSukxeatf+4OxW8HcNGIngAU56sZZqn14nazjjQstd4wIs+i2BaGhFF2wC/HKcae3d7iPdMV4z8uSp0gYls9pqgfaWe5kvYciSUAphQXI3zOeQCArJZ6uM45R7VWMYzIM4qKVOsq9ztvk+zMhx8G9uyBJ4MEJsKL/mXYXm0f7Y7C9sd6rIuECvvGOwGErAAAWHTK5QCgq14vMrow0/R5rSH/6eAz4KRrnOvXv2f8QpMgmpEhyDIx7DpwQmHNWleAZfXo7ktYz7FWgeLauGjT57b+v/Y4AOO2lx2CUCZbmWqgR3D33abR+aovVvPHXxWeyB97hOwRVFcTx6neIQjn0+M8sqa1NOS7C8xYqKxEm9uLRWMuAwCcuv8HAKQvPMflUimKa+ER+QxlMjqxgKiJfm/3xg8SsYzGiI2Xnaw15MlNwpYhT403bUsyhtdujXxEU38t3LTcsSi/CZu1DDGLYiZkuCQqSKhxvNQmkeuhqpEHgNmzkZPKHAr2DSguduc3T60HNMr14iTpcKhT67Xpd7wFnfH5DRrVyNsUX1Mi1vHXR0mttx8h3l7BDHkl3TKbOjVqaxqso2HCBFPvS0FVShYAJSIPKHXyP+TTXvPp6fpRX5g7kgD7EXnxe6efWk/OXyQaM61PraLKvrlp8Wm02UdTRD4SAWbM4H/uzO6D6VPvw39GX4R7z/1V/HjtYuvpp1XX+cPjx2Hk7Nfwk+l/V3nvUVpqGnGRSHSxmZnlXqcWL/vl1X8hD6qqgGuuIVkjevum9yDR0eoA8NHC3/JhwZB1dpzRvOULBfi8xURF7USvDTvJUFh03Cw93SoK5kowIu/WGD9JXhc/DqtSI3JAEQT3K/f31lAkodZ1Wq4YpWRTsvnt+9L26RmYtegzXD8xFfNKsmZkqeniWsWwRt4Az9lnKY5qlwueJLLWDJ88RteBretMpj3WRf63bK1++Scz/PPy+KbPBp0WP07AbN4D9Mv8ojTav2TEuXHPcUyCaEaf5YQi8pEIgptJFN1TWx13L1FKUXWulbCeC9N1mpfpGTgc+OV6oi8gOqrMED8P973/I75481PbWUTNgTAWfbkbZfXx3QDiMBA0jHO0m5XPrV3LHz4xfpryHrQZup/rOzPE+4u2heXhRhry3QGNwN3iEeeiIi0HvRsqcN8nTwMAvu85CAHqYUMkQiZ9A88U++L0Egz5k6jS5fcJiO2wNl/Zyd64yTGZCri01lobQ0GLiLzitbfwuIc1+9EYoSyFJuD2GtZpNZtERG2LqWmu10eDx2L8TQvxyITpZMKKxcjz4jnRRL6rkjPJ/2ypEw4gB7jzTn4ciQjeWaXWu4W+7HFGouAdZ6r//nCAHO/tt5NjdjgE5Xrj82ulWm9VI8/FCHUzJsh7S6TkYCsVgBrSkwoDFRcje+J4sp9gDNFJ55jXYAkTzN4sMoHnNdUgReh/e0IFaUG3OW8AEftpaCA13DqLclb7rueoAExECTWwEgSf26m7ABajaWbnvIpl3OhG5Gnmwhdfdr4q/IoV5LxSlow4FxG66Pqq74lxPXPjFls7d/KHjd4k3HbxHDT5kvFt7yGYP/5n6rEmEReJJA4a4Q6dex5C1043zsyKRBD597/N9/XII+ReLCLcg7SlT04oc+Yzn/xovm8TId1XXr+LPJgzB+zWYTUfAzZS61kk0kzszsKQd9twBgDK3OPXORZW1mflSGbXMvjhR6rNdW++Zf46DQ1CCVv/HMWJvGIr0fVY8o2+CrsV2pTt6Wcouiy6hp1wzSP0tdyQFwSBmbK+3ewDrUOB/W3kCDDMhNAY/Wv31Rn/06IiQ/V6Pazq0c2CUD/5QcfYs9G62Ui40e5nmH3+2p58CgDgWbE87l7iNkutB/h6LphLnB68w0BBAdyPPGzvOCjacUsXvmtbXPa+93/EX977EVMW2OhfbzDnBt0e7M/Ixxohwg4grnyurL4V1ZV1/O+NglZC0KVZS+7Xb6spOlmMsoMOF9KQ7w5ovFHvDj8bAHDDuncxpGovslrqEXR7lYgfw6AWVInIK/VTJ/ahEfl2GPJaISwUFyP54gsBAM0N5n3bEYkg0EhSqrzfbdQ9Xl4jbxYBiEQQ3LyVjBe9lIIRypTrAyZ1Wmbtv7hqvZUBLVyvkNOFv54zA6UZPfDUuKn4unAEGVNSQlTqGRqnQxXtt6pq6/fss4DL1S7RPStDHlDS6xv0dBKKihDZtZt7L32L31RS5+j5ZYJ3AbfX8Pwait3ZVK03aw+Yxa5PAqn1m8tIndiwXmk8MpG5i4hERZ0uNPhTzNs6ChPMvkySctqvTj3pDKg5AH+oDa1eP/ZkCQbkI4/EpcualQ4AotiduSHfatGP3utygs1FZudcicjHf8ez3ibHXvPakoRFZzocjRd9baFSK9ziTcKuHCGtOC8vfrF1nHLv/LLfKFXZ0msjL1A7AkwiLhKJCnpPCZcewJk3LcS5M58hUSS9e8qKFQjWxUdi552pcSTNmqWeJ4V7EGtzWZWaFbefvS0Whrcwb7W51Rk4uc11vAbYe4C0cbMjthqg92tPVaWus48ptpum1luI3dmNyLOyLbH7BiPZjqaPkK2gLc9r/vWseAeLCbsqFcV/IyeHHZI070VrIJ7QO50/1jXkxbUKNWi4IQ8o17yOpE2bZSwM7ZmmHIcmW89j4bARHdNm58My88GrfG4v3bzSdGjIYl+Ll643fE7MuANgGLjQwso/tJ9lWxF54fPX7CVr95Rga9y9xGuWWs8oKsL22+8GAMRGjeJC1Z7JpG10VVMQ1S+9ZumgD33woepvlQ1i0Q77082kfaXY9tAQgzk34PJgwk0v4Kc/exAbex1PNmq0Cupaghj74OeYnjNRdx9xpbaFhbrj3tqgXHNZIy9JHEFhMeR04duegwEA5+xYCweAMaUkzeabPkI/VRPhDVYjL0bkmSG/u6qZG31WsIiwqj6e3mySSvYAUNqV6X6pmXe7irQX8d34K11jwFLsju3nyX8AALzLP1Pvh6ZoeTPJpBZ8cZFhnRaLTurVFbM+2o2BsHkKnrCweuuESSihBh4AvHHi+cq4u+9Wv1fqdIj16cMj8rkt9XFGcS6NhFav3WA7EtrQSiZKM0Oep20bGInBmHLz8p09QZmw6Pn15xMPb2DBPw3PL++jqimjsFsjz1PP9UofeKq3PUO+ORDmdXlD81KUVoXRMNICZKFVk5Ru3tZRmGD2ZZDr3LdO3V/ZFYtiaOUeAIh3ts2cqdqnpdidzRr5ZhPFegBwRKNIopeg9b+rDT9DXMwyJf47nlNJFvQ1yeTeYTpxRyLAZ58Bf/oT+fnss46N4O/bxx+GHU780IOc5yza5YELDQIkjV672Jo1i2/7YuDJAIDp37yPjNZGNPhT8S1bJPTpYxpxkUg4QrTzQHoeDqblYF9WL+Lw095TiouBa67hqt8iT4z/GUJO4fNaWame14V70CNnXdf+4xXmLa14rksw7lobSTnSS2v2wpTiYoTm3AoA8Hy3UdfZZ2XgAaLSt0HGHt0ei5kbeizabm7IG9yTNNkKmzX111tz+wHTppnrGFBisZiq/vpQjAKtA0RrIE4ZozgwdaPewjUP077iqpphSgoVd2OOZj2iQiaHVpiQreGMouDNwny2+Kaxhv9j/b5aw+cYzKEw9cAGOGLGDiLTiHwkgi/qjc2n3g3qjij/PP+Xtlo3G6nWu3j3BoPPr+bz10Yzb1KCrXH3EluBLwDP/ncPAOCLRjcXqvZ8+gl//pKvAuYO+uJiBH83W7VpU89BmPrTB8kfFu2wExJ0nDCBZKRq2NRzEH+8TrR/AP7Z3lpuLmqYEtQ4Es45R3fcXW9v4o9lRP5YoSMXrp99xh9uy+2LgMeHtLYm9K8lH9QxpSRlbr32gwzEpaTEYjFuyIt1MFkpXhRkES/fDwfsReXjIvLCzSaF9hkPur0kmqW3cNF4t72RkK4x4HWbpAoJ+wk5yX48kXD8flwu+JLJ+w2MOtnQa8omcq2nGyD15ewGbFoXTBdWEYcTT59B+oqfvu97AOobj+p8CDS7vAjQWsecljp1qmNxMXKeeRIAUPXpF7YiocFwlDsozCPy5mnbovNCW+MOlwu+NNK3tO3EkYbnl+1DW0bBHCdWqY1mYnBZXLXeniOKCd3lpnqR/c3XqqwXJjLIjVQjx5gwweynDhuxby6D18mLBiVA0sEFcRUrQ96wu4AGFlnSjchTx5e/oQ4A0PaLGww/Q/w7nhb/Hc+m56haPEdA/Ge6uBjIzwfOOw/461/Jz3nnkW0dFcHv25c/3JFTiFavH6mBFly2mVwvLjR4xhnkvqDF6wVmz0YMwMoBxJA/Z+c6nLl3IyBswxNPmEZcJBKOEO2MCIb4r66iaersnnL//eQzWVPDU+O17M3SRKQE575YllWWngctg6v2xW3TRXAIiMcLAB7BkF9URWvkzQwhOi9/5yOt0Eoy8pXjFuZlO223otz40X9erFcNmaQEKxH5+B1ZavposiJ35PZVPf1dr0GWJY0A8F1JHU69/1O8+KXSDk40Cu67kmTsDdTpD64lEo3FRXC1BrTb5eROb93gQw+ldRpTew/otFlLSyVrQ8N5JxJB31ir6m/1cZhnXrTRY8tJ8fIyT8ZTPzuZP/5yR7X+/6eEI1FsoYab99VX8NZY/d7vgEVGiYUOyimlm3HlD8v53w+OLrLVutkotd5SK0Lz+WvzsBJHGrQQ1ic8tT7RtojFxXD/RlHmL08j311dBz1dB4R0HI9f9z0R950zkxjWJgHFjug7//NpSlZrVUqm+kl6P9O2UtTyyqiLlD/S0ohTwwKrfXY00pDvDDpy4RqJAO+8w//8nkbjTyrfwevfeES+91DEfTU0KSk1zUEEI1E4HEC+RtDi+HziydwppH2ZUak15IWbTZJQI8yj8uxLvWKFyrvIJg5fOKhrDBjWyGu8lCzt2xsJ6e6HC7aYeCrZZK9nADmdDkEx3kRoji6s3h86AXuyeyOztQH3f0xqmnbmFKjTFsWbHF38VNeTKHFysBXJoQBw4AC5kd5xBzBlCnLLyMKMRe2tUphYhoXDoRiCelj1KGcefZfTEaeJAChRdqNshVgspqTWaxZTzDHQZiE2ZKePfG1L0FSJnbHtIDHkB/dIi3N4ZVGRwZqkdPWLtLVa77xDlE6hpNb31THkWUR+Z45O2pZgyFuq1tsVuwsYfI4Fx5c/TD7DrR6f4WeI6UHwntHCdzyHRru5IQ/ET9zFxaQ1TLXOAqy6uuNaugle9I29hwAATizfjiHsvGfTyNRf/6p9JeGOO4DHH8fO7AKUZuTDGw7i9P3f46zd3wAAvhx4MrBkia3FmkQCQBPtVL6H23P7qcc9/jifr+4970bdXcU5ACuFiKBQllW06TP1OIcDt6+0qLtnCA4Bbd2oOxpWaoCtEOblf4+5FIBw3zOIHpo5Bawi8qIhbGYc8Bp5s4i8UaaTcC3btKm4IFkTHKP2lpEIbnp+NaqagvjkRyVrSzyeAtouzuj+L2KntAEAfB5myJuPf28YyTQqZU4XgVR6OM1654c6hj+tIO/5j8tfiHMMV9ISLaOMO6O2tABwyUn2S5lE5ftAFBh15bnom61vzJuK3VnooPjCQfI+E8RI78Fv1Q5WczxsDcl0icRxijh0AoYy/c56Iuq1X0l6nr6Dnq4DWrUdiigvnHolplz7iOHxP/jhZkudHxWrVvE1RF5Tje6QZ4TWgsjJsZ05V5EmRPovuOCodNRLQ/5I096Fq5Gqraa/+Le9iCF/Yvl2vu2k8u1wR8I4mJaDUtEjryO8werjc1N9cTdNpty9i0YqrahqpGm3TNFa1bc9xFXiW70aBcwVK7gxEINSo8JqrLXGgGFqvcZLyRYfvC+kZj9eG4sGFrn2G9QWs/R6U8E7urB68ZTLABAtg+NqSpDdUo+I04VtGm8+3nlHtfhhnkVmKIEJ5M2bB8RiyG0m6WXcA2mRwsQM+TSf27AXLyBGew0i8iw10aCGzapFTTga44fq09wsLScyipnYXWYy+RxFojE02JgkttM+ssfnp8Y5vFi3gNpkjSEvjmPXjLKfLoAK69Wp9YCSilcuTho6NJtoAABAmo+8R6sa+RbukBL2o3F8MW9+q9un+xmKRmP8/6Qn0f0I33EmxFgjGvKMsrK48wOQ9Lcf8zRtgbTCj+1h4kSeGcHS4Ecd2IYBtSRyuTu7D5BKMkbi/hfrHx+J8LT600p+QHIogJOpk3Rz/xMQvfInh3aMkmML4V5htOAFoJrfjYi7a+dpIu+0LGtrb7I+6NFI1x8FBUj/IxHVFDtz6KJStFbff7ws3Xr+fDx81Unm+zFQmOaI0UOecm0tdmfVfg4wN154RN6tY8j7LCLywrX8qu+JukN4m0u9CCQ1dg+0xR+faMi7rITKBETD/Jlrx+Dz/ztbdxxbq+ga0RVKD/t92jadAt5WEtyJC6bodDl4afQlcY7hCmrIf7a5AnoEDdrSJoroyGFt/d40SNU3E3SL9exp+BxAvo95TL/IJmZ9yC1LOzTrk1dpFHlXdkHcOLZejkRj9rsp0O+sSh8BwH3n/IodvPpzTdcBL4+62N7+Ncf/zy922Xsdg/6/kNNl3H5OpLqaB0BjX3xhOZyfpaFDzYZ1GtKQP5JEIqTPMKUyORMvnHI53h12ljpSrl24Fhdj0+gJqLi0KF7xUePJ+o5G5EeWKYa8PxzECQd3AgDW9xmuDJ42Lc67pFcfzxiYRxa6u2xG5Fn7Mx6RF76sDoBEkwE0e+L/FyPsdPGWHnreRcBE7E5zbkLUIeCJhnXHcc+0Sfq2WWo9IAjeWdRhrzt5Ijb2HgpPJISfbvwIDgDDK8jNS1tfh1deUTk3WKQ9mxnyDPqZYQJ4qlQikxQmJl6XkWycVg8I9dcGRjCLlvsMzg0TsDPy/IvbDWvkLaIG7Proqbr7PS6eRminTp61nhuUnxbXNYCn1rOIvJ4irbBgjQGooAJTPRvjWz+ybbqGvJDKZdV+jjlbWoIR03RUFllSReQ1C+wk+v1kaXraz1BLKMLte+ZAEL/jPLU+SceQ79Ur7v+9OeJcTLn2EVx8w5P4z8gLlLElJYfe0s3lImKQADbQiPzIsm0YWEPq+Pdl9kSopZVkRonRIk3/eHb/HL9nIwCgf+0BeMMhNAcj9kR5JBKGcE9Z1X90/PMOh27dpx6/v1zT4ULP0CgqAk4gqdmF+RmKgNUkYuDZqkmlDoFfF/1JtTmtRzavAR5IHQL9cwzSlu12dSgthbeJ3EPC331v6MyzUq33uBzcyDcTqzNLrU+xErsTSqiafPrv+93hZyvrPPEciFlQQqai6nmKol5ufa3EzMILTsjn6zcjvthaGb9RuJ+ft+NrAMCYkvjuBp50kq2pmnMMuhwU1h00DC4Mztc/RrOIfCKIawyWrt4jzYeROj3jxR7oWsLjzzR8LiXQAjgccNjJThEQL6nWKcXmacMOMgY14u+cMFH5g0ah3TZLTVTQz6tLY8jXJaXpjmOfm7718dmHIjEgft2k9z3XC2KK0P9n5ETTZfZs4M03EbrnXsuhJ//uFfLARlp9ZyAN+SPJ/ffz2rUdOQU458Z/4r5zb8TvL79DXYchLlyLi7Hg4Vdx6cV34sIb/oF6X4oyZsoUYLtisAdcbmzN6w8AGFG+Q/WvRx8giu2begpiWn//e1z0n7We0+sTyeqydlXZjMjz1HpqCGiMoWQqIsFT65kxJHxZRMVIr1ZkhX55vUb1VRovH+tf7g2HdMf5bETk2yzUvu0qxj9DPY5X7ViNPBq5HFZB6uJ+1EuTFNKr6/3k5hnXQ57CDfnkrPhSCp1FVINFD3lGCo9KmEfkjbzmfovUelEdPa5G3rbYnXnqeSLK9dtYRL5HalzXAB6RT0o3VqQVznWTNwlt9HOeK7YMpPSiEbKqlCylTSRAJl/h+6Ck1ut//sT33WwiPMQcHqrMBc1ng6XWt2nrcuk4Vg/pdjqUxa+woMhpJY6m2uR0dT9XltYm/L+Ay40HJ93A/37krOsQdBofW7soKkLjG0uwjaYujy7bivymaiQHWxFxunjpgypapOkfv5Oq2w+tJEJenmgEA2uIM8JKNEciUSHcUxafeJ76OXZPERz/IpkG934rBlFD6aJJJ3IBKzst3lQUFaHWrza4HIJ4KYui76lu0Y8c2+3qcMstcG/cAAAI3nufoU6HlSHvcDiUdGIT48xM7C7JKiIqlFDlGkRi5024Fu8Oo1Fxdg40xm5IJy1fr4zQTv1wUGjtZ6dmtyA7KX6jsGZj6dosiwkAX7N5BpF1pep6G2RezPrqDfJAcAxfeAK59yYZiK+ylHhW7tZeREN+CBW9czgceHvWOJ2xxvOnKOyr5cNF9Ds7f35CxyZmAGgzI9ln0qzlnR6s/bSIuLYyKyNVwdbImtT6Bl+K7jhW2hO31tYQdHvU6yaamRLHpEnmbevo53TJiHNtvBlKSQkwa5Z6nWFAbXIGojm5pob8JSeS9371mALDMYcLacgfKYqLiQo55cmx09AofAleOvkS9Xiaelr+h7vx6IRrAZAU1U8Hna6MicWA557jC+cdOYUIu9xIb2tCQYM6RWlYJTESt1BDnxPXT9E6Il9S22ppUAFCaj2LyGuMoVRmyHuT1MbQxIl88ggI9eKsPZw2+mlYR6dxHKhE83T2Y6dGnqvWG0Sdc2hUu8ZIMT4SQfOny7F8M/FUzuyn3ESGU8GzOEMeALZs4Q/rksh1yGjTn9SYYyDo9hjfaAXqbRrybDHTGjSKqNOIvGFqPTPG9V/Prp/H5dCZyFhavr3Uer32gIDiaKmzMOSbA2GU1JLP52CqDSG2KmTZEDXJ6Yat9MRzXZlCovGpgRaeiSKS1doAH91+MFXwrNOWguJxAcap9V63k5//RgMtA0D5HCeLn2PNZ4NH5DWtptg4Voef6nfrLhRZ1kLE6UK9XyfSIvy/b3oPQ01yBrJa6pHe1oTa5Ax832uQ7thD4b2+pyDqdOK4FAfyvSQzaABtFbQ7qw8ZJEaLBEdpxOHkat3HVe/n25m+wdZP/mu7S4Sk+xOKRPHRpjJsLW/EfqE2VwW9p/xyp6YVFrun3HmnIlQnZOsse35W3K7WFigtFcWUaBH+nRXuH3bq0M1Yd9d5qnuUqD/yzsYD8S/QzMsA8Mprd8aPq6zkqbxhp8tQp4MZQGbq7nxuN/huxmIxJaNMZ/5i80mzniGlKRF6U+uUEXhq7DVkvRaJkB+Nscuc+SqELCjLHuACbK6wMtaG9Uqn43Xem7Bma6WOaDYviGs2D53bVaULGudrAdWGSdWqgJeVWYoaWr3fC04gZWtWEXt2LlK8LmQmK/Oa3vxVaaJzJJ7T67au4I+HVuxG3zQPXw+oIusWc4NYNhgfkXfHjVEh1IhvFTQ2VE746mpg1Sp4XU5+6YzWYnEp9/Q764+EcErJD3xzL5ZdKK6lIxHgVtKN4uGJ1+sfLzu+V15T1k06ZRj80Gnm4/o+Q9H/58/gzn9+pr4P0M9pg946g8LLiUSqqlQ2hhmRZ/5pWh/PPqN62R2HG2nIHwlaW4Ff/pL/uSOnAO9T4ZBXXrsTzmgEW/P6ozRNqGvr1QtYsQIfpfVX1aP9t/8o9b5LSvgXeAutLR1WsTuuZm5oxR4AwGax/lQn3Zql1ufrGPK5qV6k+d2IxYC91QYLE77rWHxqPaAyhpJpGlmz1682hoTJgwnUuSNhuGJR3einx8jbrnEcMAVNTySsux9ew23iiWUeUT2vPYqLkf1P0uKuetmKeO8h9TZ+86tbEYEDfeoPYtArz/GXD6eT+OYeA9QRTEAdkfcZGPJOJ+BwwB8O8vZoPL1eL/WbwurFzRTrAcV50RoyUq03jmgA1udXiejrp8WT/218bcKRKD8GI0OXTd41Zl0FoFGsF1ur0VZ62TcT0amacy40bKUnLlirqCGvitawa/LGG3D06YM8qm1QmZJFXqcRT4tGY/zzZyZ2ZKVlACiLPFUbRc0C2x8SxO7E46WfIfa5UQkkCgsKbzSMdPoZVQne0QUF/38AVvcfSQ5hzwaMotlDW3L7k/EFBYfe0i0SQeOny/HQu98BAKb0cvHa4wG1xNjYldNHGc/ujcICrzQ9D0G3F95wEH2E9kJMMG/L51/b6hIhOTZ44b+7cdPL3+CC+Ssx4eHl+s7DSATIzob3yitUm6M7d6nnwliMz+8A+P1d5JqfP6T8YeD4Ysaq+L1nTlKrThdGqOZ3qPU59lTplOEJ8zITz+pXq2PwQ8nCC7nchunYzHY0a/nEnRUGEflgJKros+jMX6ZOfsEYr0zOxBJqyA+oKcWM/72tGrotrx9eGDBeKeERhIoBoIeBUJe2jNBO9sSzK+3VGW8uIw5XsX2WCrpma8sijiTuiBbWbLrOIM1nsI3OI1rBNPTqxaPERgY7e7dnHx/fdQEAThtAjs3KacGOr2+Oteq/mQI+24/L6cBf3ngQ2XTp9LvJQ5X1QHExPnj3HgAg86DF3LB4vWLAGtfIh/WFegWnyfo+Sh13ndawLSuD0+ngDnyj7MoG4V7wYNGJ6uyh//yBP/f5oNPi19JWGhgCJWfSCLqQmVKmU1445vf/QQzAVdf+HQDwyuiL4zWfiorw+XGnGv6vTIPAl5Ehn9GqzrCrPO8i3XEMK/2iw4k05A83d9xBRJQayM2y1e3DjKv+jIjThbN3rcP4vd/yeva1hdSjXlAAVFUB11yDdQWkJnPs3m8BAGv6nRSfLk3Z0qM/AH2v7vFV++CIRVGVmoVKpmbOEG4CVTQlvEdavCHvcDh4VH5HhXmKU31riHtnVX3kAW4MJQ8jolMt9/8t3hiik0egD6kz4vXxOtFP0z7yguNAFZHX2Y9VRD4aVVTVjdS+s8tJpI55EHkUgSrKo6QE/6ORk9P3/0CuM2VgTQm84SCafMnYnykow6anq8ax6GZGmyaV92qqyulwcIOxOjnTOPWbwlPrk8xvQLxOy8ArzLI0DCPyPKpuXiOv93q22DRrPydGFJINUs+zacaEVY28SrFei8uF9FGk1rQxJd3YSytMfpW0Pp4Z66prcvXVwN69yO1HFj7V1/8KWLQIuEK9uG8WJl2zyYK1CTQTvFMcAsKxaxxfTOyuze3T/Qyx/fP6eCAuCqOrXM/G0f8XA/DJ4DMAAOP3fssj3NvyaGTh8cetlWKNxEAB7kD7ctadqI84UFhXjpl/mM6fZqnxccJAAHCqsjDYQZW1B9aUEqciZXDVftXzVl0iJMcGH25S14d+sU1Tg8zSSCdNwh9K1XXVG8vU9/ZYTg5uv0iJ+vojISx648/cicQIO12GDltAv/yJOTfbQlHz3tkCg3qQOeims4+Le060M74x6utdVITYm4t5KjnPktOI9LmZIc/SX3WCDxEakTcTarUyFMV5Ra9G3nSNIbT6EzOPdmf3wf+teilu+H3n3qi8TpN+vWLgGPVxs3UPNYrdVm3IBDbY6KkukmJQLggAKCpCy/UzAAD+yy/l+gps/cTqzVXnR3AMxwDFmc20fQTHsHJ+9Ve3f36HRIHjvkOUdzaW6m7XYkc07yzBWcACW1pErSSnx43/3XMxvvzDObhkGs1OoevBpBJSgsW7UpjMDWwdBgAuTYYAc7xFYwYaQ4LTRDRYi374XHccK6kzKr9btHoPfzztVDqvCWtpFbm5wBtvKGvpBMrgfvYc0V0Qjf/XT5qsO3bA/3tfvcFA88kIvp5gJJN7rrad4nnbv8LShb/D+id/rtoeefsdwyxbfPYZmnfuAQCkbPnhiGfldboh//TTT2PAgAHw+/0YM2YMVllcmKeeegrDhg1DUlIShgwZgn//27h1ymuvvQaHw4Err7yyg4/aJkztWLjpvjz6YuzN6o1eDZV4ZOl8AMCIg6Se/UfWy/inPyX9Rmtq8A31rt249i14w0GUp+Xy9E4tLG1+qGZyB4CkcAADqLATM/g5wk2ghkbRs1P0o7NDaI3d1nLzGr2qJjIBpfvduhFWuFxI6UE8b82Dhugv1IuKEPx8BQDAm+yPmzwYPrf5JM0cB6FziPfP+9ubdffj5RFjg8leiCSrIpmCNzGHtSXT9s6mivIA8HUhMQJPFVKUAFJvO4im7G7PEZTrNZO2YshrnClXXMFvtEwxvCol0zj1m8K8r1ap9VZRccUQN4rIu1TjtJgJ2ihp+cY3SGboelwOw2PIYqUP6zaaproxxXoj8R0r4T8Onfwqe/cHIBjy2mvyzjvI/WEjAKDqg0/iRdegGM4up8N0IaIcm3GETekjr3EICJN1kth+TuczxPafKkbkter+vARBY8izcUVF+PrFYmzN64/kYCsu3LoaQ2j9+bZex9lr6SYYRHF1dEK63pc06n/Ozv/BU60sCI+rJguInXqGfK2yGN5KFwLHV+1VDelfqwjmxQDLLhGS7k8sFsO3++tU2/7xuaBbI3wu9cRew8tXqMZVtUZQlaqU5wDAxN3fYM5//6N6XcDtNXTYAvr3aNGZZ6arIcKycEb3zYx77tT+imr06p3GUc2Giy7jj30Lnibz+2OPqca4qTBtWNO3XtW6L2KuWg8YGJoCrGTL4YjXZxFfr+voEFr9aY8zORSI0ysCqEhqLEb+oXCtoprX/+Pdh1WOGaZnYKd12Ig+OiKjOtwwnmR6XH2KuThbK81mSDp5JNdXYOgGQQTHsFj77w8F4hzDbovrY8XMCTrliDqYrTE+/7+z8ferR+KOC4bwbftr9TNPWTCDrQNdTgf60NaA4nqQd37x+CznhjxBlyouIi9kiegGUgSniZjxcBwtG9Nm07F2f5tK6+N2BQBldYoDQ1V2UFSkEn8FgFhlJXk/bK2SQBkcK+sUv8962UaGJKido8p0pd+loEaX4sl3H8Hwyt1wx6J44t2H+famO+bqZ9nSVuIbYyTok/KH29vXSvwQ6FRD/vXXX8ecOXNw5513YsOGDZgwYQIuuugi7Nu3T3f8ggULMHfuXPzlL3/BDz/8gHvuuQc333wz3nvvvbixe/fuxW233YYJh5qS2V6o2nGtPw1VdBEbcTixiPZNnfPlf9CDRk1HUEX5TX2GEM/Wq68CsRgOpOXiQHoPuKIRnL7/e4wp3QwAWN1vZNy/i0Gprdats4Ji4PMUPZ1061qacpydot8OZzitp/rO4AbAqNL2kNdB8QoaG0MBel/3piTFTR4Mj5HYnYjLhWA2cRx4h+k7DnwWhrwoNKJqUSP2zqbXtEbbO5vetINONzbS9len7Y9PZWPRPVULuia1wc6UQuMM+V69uNMid8xJAIDqP95tnPpNUSLydlPrLWrkdSIa4nYjY9ysxp5NmKaGvIXQHYqLkb3gCQBArV7pgwBTrOf18RrspK9ziopQdfsfAQB540+Ld0jRxXpONYngVbOMGY33nr8/r8tUvIiVSNS3mhnytEZeLwpDP0P+S0nrmLYbZup+hli9bbpoyGvS81lmCNMIiKulW7ECb9Ny3sv7JSPj9lvQ/wrikd9/whh7RrxeXV1pKWnleeONggPtRADAOJrdxOCGfI7GkM/JUUUImUje8VXq+amwvhyOWBTNvmTeUcKsS4Sk+8Mc2SLbK5qI8zAYJCJ29HN5ID0vbmzbU8+QcdQgaBPa04mq6G5NB5aWf79s+p35ns7b4j3W53Zx47XJRNVdpNXk/pFkFtkVqGtVzlHG9J+S+V0T7VNS6zVzk2AsRGPmYneAWCNvHpH3u/XvrUrquI4BLdwjWrStdAGcqGPIPzCJlloKa4M4LRIA6YFmdRmhRS25yCnUoTLQoq0gC9o0mMwXgDL36ukDGTraWWZloRIN9elkRJpmPACYOISc46kGzgam6WTYKYHCNBL01hgD81IxZUyBysh3GsyzrLxQd/4U1oOsPC3mcPL2x7pzQyQCz/Zt5DhSHHBogjdul1P5juqtlwWnSYDWxZ++73vynElG5jMrd+q+v5MKyfo1U9vJqLiYBBkFFo25TJlvi4v5GiDqUM7j4+8+gl+tNTBsV6wAevTgf/ZuqNIfp8eyZQk5y1XfT7quFlPrP3rhZh7AAIDLN69En3qyQGn2UkeNmGVLW4nPO1OM3sfMW4kfBjrVkJ83bx5mzJiBmTNnYtiwYZg/fz4KCwuxYMEC3fEvvfQSfv3rX2Pq1KkYOHAgpk2bhhkzZuChhx5SjYtEIvj5z3+Oe+65BwMH2vPUdThU7fiNk87HKb97BRf+8klMnvEUSjPykdnagCt+/IIPPbGM3Og3DRyJ6I+b+U2ApdUPP7gLyaEAxtIv5pp+J8X9u8qULFSnZMIZjWCIJmIEAHA4uCG/Oa+/4ZebtU3LTtavG2GTw/9215h6T+0Y8qlei96sUIxqMxETq7Qsu/uySq1v5fXxTnUan9g7u9UglZiyO7sPAh4f0tqaMLAmPh2MKcLuy9J4NbOz+TVr0NbIax0yLhdy+pMFUWWvfpZpyQ2tOgaZDorYXftU6+22nzOrkTdrP2cqdEcNvqxy8t2qpcr/RqluTLF+cA/9iDwz5K36tTMqm8giKffkEWqHlOC9j2sbqPHeN9FomVUNFmsjWNfSTkMeAFwuJPUnzqS23gW6n6FGHeEsbXp+Pq35rEjNUt9z3nmHR9G/2EO+M5e+/BgwejQK/h9JIS6rbzNfsGoUn1s8PqzqPwr703so547W64ecLuzKJt8J7cJ6IP3O1SRnKO0EGe++yx8y59rxler7qy8S5ouPvdrvbUeo7Uu6DtQ5tfwvj+s+HZs0iRh+paVo8Cbjlktuxfkz49c7c8dMI2sIuhZoMWjRuleTnfdS9gjDQxPntRJNq0R2bzdzqotYib7agd0/eqQJawSNI5CJ3YVYpFon+MBasWnTkUWUGnnzbDu9tHoA5mJsgvPhP6MujHtaL4Pyy36j1BvmzEFD/0GqTSdV78HoR/+icsywjgAhG6r1rB3vCb3NI/Osw07xBvP0dLNrblr6VlSE4Lff8T+9n3wU5xhWMib031cmdU4PMpiP/RZrCwaPyOtkXTDEOb+yUT+1ngn+6n7+hXu+aBQadX9hGWVNTzwFADhx7XLdAANzQhl2RGJaBnmkLJN1ndHLpmPZK5OH67SphHKeJgwWnIyRCHGMA/jFeiV4umiMklmDX/yC/H78cUVbB6R14R+XL8Qzbz0Q/88mTQKuu45HyJkI+MSd6/TfJ2VvZk/gxReBfv3iztXVWfrnaH9GvnpDdjbvZjX1248xVMd2Ks0gToYX2fuMxcjPo48CAA6mZuOJ8T/l4wcJQrhxrcQPE51myAeDQaxfvx6TJ6vrISZPnozVq1frviYQCMDvV09oSUlJWLt2LUIhZdF67733Ii8vDzNmzLB1LIFAAA0NDaqfQ2Yn8XSxD86WHgOwk9ZQ/nb16zzlBgCOr94HvzOGxkAYu594lm9fRhXqT6eRWxZJ+qrwRCVFhC6wf6Bp+QNrSpV9s0nvzTeBPn0wjPYp39Kjv+6XuzUY4TfrLIPU+uG90pGZ5EFzMILvX1xsmJ5cRVN3ctOMFSFZHbNpRN7GgsGwj7yGEFdFNzDk6bk09tobHIsQHchpJkZJgz9V18O+g0b9BlWXxAkSArTHKnRuOEwV1+FAdTIxNrJbGgwdMjnUgVJtorzKsNtHPsmilyk3xNspdmeW9uYXnCxGrXeajQxdweDLYm3j6DnUS3UTFeuPN4zIK3XouuIzGpgCbl6aZjIXszloGnqVNpuDeu+5Yr2FwyXTVkSeid0Z78uqlKKR1chrSzKE9Pz8JmJIH0zNUe45AI+iV6Rkoiw9D45YFKO/+xKYMgV5y5bC63IiEo2hvEF/IQWA3HtKShAD8OiEazHq969h+tS/4tLrH8eBtFzV0L1ZvRB2uZESaFGUdinJoQD3uqvS66uryb0TJJtqOzXk9Ryl/WrJomxvpsaQ7yC1fUkXQCjxuMNzgu6QVo+P6+UUTf873hpxju640owefA0BUEFYHQrqD6r+1qbzi4jz7BDNfY3dKz7brK92L9IajHCxW6Po+/Xj+lvuh8+n4j40jkCeWu9yG851bD4Q+2NrsXL2Kz3k9d+PaY29INq5+MTz+eZbV70MAPhKJ/ByBouWMq64AvUrybo30xXFngtT8O4zN8E3RZ1d4XHaj8gr6x3j8wIAy7dYX3MgPp1chJ03w7mdnnaPywHnpElxjmGriDwX0jX4vHH9HbuGvElgSMzIePjjrbpjWvU+uwzhnu8R+q7HBXd69VJllLXQiG9yqFU3wMCCYhEzfYSiIgQeIungvlEjDctRr6F170br6oCew2PFCu4Y/8OKRXzztG8/VsY0NQH33QcUFWHDM6/wzf5wEA4Ak2r1MwBw4AAvIW30kfOQHjDX4fr4+LHkgc65Ore//rpt9mW3azbMRoA6HLxaEUYNHww7S72BHq/W+d9DFDQWW4kfRjrNkK+qqkIkEkF+vtpgyc/PR3l5ue5rLrjgAjz//PNYv349YrEY1q1bh4ULFyIUCqGKioF9+eWXeOGFF/Dcc8/p7kOPBx98EBkZGfynsNC8VsgWxxERmL8uW4C1/7gWd3/6T1yyeSVmrn0LvxS8WcjIgPvNN3BChEzu3/QmNfH1vhT+Qb3yxxUAgJPKtiM52IrqlEwSHXI4SJsHhwObtWn14qQ3ZQqwZw+GPv4gAGBH/gCEHniQRHkFI5z11va6nIZRP+fbb2HsViJQsXrhEsP0ZOY1NIvIp9iIyCuecmND3krIhmF1E+c18gap46LAiQohipDZ1ogUWsNYkk7ThYQ6uN00KsgEtrSwhRk35Jkz5s47uXFUS28c2a0NhvXveVRgsMqOIW+3/Rwz7NordmdRumCWWi9ef6PFAquRjxO6E4xlZsirbr5iqlskgp0fkWyZXC+Q7df/3LHvRyQaM1XSZ7CatDhDXvDes/7y1VoxSjquyap0gJKZQETeTOCIZ0EYfB90a+QZND2/x82/AgAcZOr+V1yhiqJvyidRqEHV+5FC2xI5b5mDPpnEcGEOlTgWLwZ+8hMAZEJ/ctw03uGiPilNHSWAIkR3XI2+A419H9n3k0OPc29mTwTdXvhDbdzZJtKvjtTJ84i8SZeIY5lENXG++OILjBkzBn6/HwMHDsQzzzwTN2bJkiUYPnw4fD4fhg8fjrfeeutwHb4xJq2TRMT2rzvE8ik96BoCUFp/AcA/i//KH59cukX1krSKA4bOdTF7yKhF0pOfb9fdLvLRD0LE0WBeFu9zlsaZNgNLcASqVOsN5jqlj7zxctau2J3ROoO3fdNzIjPngyYjYNYa0i/9yXceinsJT7MW7hN11BGdkZlqWEbIygeiMZ0WYRrYezWLPgNqcTczzCPy5nMFW1MZHYvb4vpYZYD4bWjoAPYyPEUuGqEfsTY9Hp32igDw2sgLlD9ycoBx41RzIdPKSAm26QYYWAmElbOijZ4C34B+xuWozCFk4BTg2ZUejSFPSQoHcPV3ywBAlUIPgOhcRCLwTjybb3K98jLw6afwRcP49LmbeKtdPT4cMp68D7cPL+u1paQ8MGkGWoUsh9Att/LH36bp64ipBO/ourrkMiIS7RLPRXY27KJXTqPiCGTldbrYnbYeKRaLGdZ//ulPf8JFF12EM844Ax6PB1dccQWuv/56AIDL5UJjYyOuvfZaPPfcc8jNzdXdhx5z585FfX09/9m/f7/1i6yYNYt/gXo01+GX69/DU+8+jLuWv6AoHjud5CJ/9RXGrvkQgKJa+vQZVyPo9mJoxW6cQGvovdEwF0hbPfJsMqk9/DCweDG29BsGQBC60056LhcKWuuQGmpFEE7svuWPcUZ4Da3ry0rx6F8DulgZt+UrAMCavtTTrOMRYwZkjkGtPWAvIs9SmMwMeY/bRo288LzRTdzH6+j0JwNDL6wQRXA4HChkxnhmvnIzpw4XVivck/W0FM+z8NoD6XmIsHRCFoEoKkLb9p1opjWS2a+/bFj/rkTkzdXZAaGPvM0aecPJ2kLsjnvtrV6vk94oXn+j/2/YY124kWbT3ua12hRqgKd7b7uLpH8N2v6dYQ19stcFVl3RZKNO3rDURPDex6XWa8ZZ9ZBnZCYRJ46dGnmzetYkeh0MI/J67edEXC7knzYKAHDQlazbmmZjbyIsxMqLmFOlACQSr2vI33YbUfpvbEQMwMIxlwMArl/3Lp4pvh8AWQyIy1xmyA+q1je0mBDormzzBcDgqv1w6vQN6U8j8nuyell2iThWSVQTZ/fu3bj44osxYcIEbNiwAX/84x/x+9//HkuWLOFj1qxZg6lTp2L69On49ttvMX36dFxzzTX4+uuvj9TbiivxMKNo+qOGXWe0xH7zG24QsPTsno1VuGA7mX/hcKBHdiruKlDu8e/XeQyd68yQz0kxzpKbdqqFcwHAplIlY9Ho/nH1KUpmi5GOCHf86qWzU0egu4g460I/n24410XspNa7zcXUrJzQSotbgzUGcz4IuGNRoLAQl112BjY88TPsfvgyPPo+EQpr8KfG3SfqqePVrA2sRzi+kIVyfS3dn9XH8tdC5wGz7DLziLxFtp3F2svLSxf0//+PB8hnzsiQZ5+hlmDE9D3oRpp1YErtcU4mimkGh9AyUqSn2Me8uhr4299Uc+FB2naNtWXW1tJbiTEzzAIiDLdFhoqdfawccDIA4JGzf6F+oqEBWLWKt9scWZhJBLwBoLoag2pK8O83/syHl6fmqF6+jnZ1+uT4sThTo2ej5dLr55MHsRgaKhVh2glDeui/QGTaNMDlQnE1uYYvn3o58J//kCyGP/6RDxNL6SJapwWAZk8Sfzz9m/fjnj8SWXmdZsjn5ubC5XLFRd8rKiriovSMpKQkLFy4EC0tLdizZw/27duH/v37Iy0tDbm5udi5cyf27NmDyy67DG63G263G//+97/x7rvvwu12Y6eQqibi8/mQnp6u+jlkvF5ivJnxf/9HvvTz5mESrQf5YuApePis6/DPM6YAAGZ/+aoqgjRuL6k1WjP9t8qkVlSEnWNJ79LBv7haP52muBiOq6dg6EGSXr+ZRQYEI5xF5LP06uOFxcrJVHTv+56DDJU4KxtpRN4ktZ4ZJGYReTu1eFZpWQzWZ97oJm5ZI2+WTiVEEQrryGe6JCNfcahQh0tNDvHwZtNaet4vfMkSmopcA08khLDLjfK+g4DXX1ddx1rqtXc7HUg/b6KhocAMRlsReS5aZi+13qj3qNXNn21vM+ojbzLJupwOvt3I695sVCMv3EizWWp9UppawRQgC6qSEmwXRc0MaugdDoeiDm9RVxqNxvh1iIvIC957JSIvpOAJERvD96eBLQR1+1ZTFLEq69T6NoPvJ3NgpJk4FnpSEaKDrNZQ453mHRxKf1RtL4iR8ftrNKrBt93Ga9MA4D8jL8TavifCFY1gxrp3MGHPBnjDQezP7Km0g4MQkRfr1wSYNsUesZ41Q7kOW3OZIa9jdKano18dS63vbdkl4lglUU2cZ555Bn379sX8+fMxbNgwzJw5EzfccAP+/ve/8zHz58/H+eefj7lz52Lo0KGYO3cuzj33XMzXtPU6rFDnVAzAZdc9hv7aNkka2GfRG1Z/P1c9MwOrFtzA/w443dxBfNcFNwMAylnJCDMCp03DzN9fhRO0gmo69y1239bL6DlzENnvwi/1hXI5kQgyyhXjI9kgbbtHmp9HsY1E1AL0ePy11fpZBC4XPP3J9y7cR1+nAxAj8iZid1Y18hap9bbWGML3/cUBLco67OGHkfXyi3D06cPThev8aXH3CeZ4NTPkxbnVyqB74b/kWr653jwwJTqGzXSGWk3OkSJ2p39MQQsnv24feoEKmtG2s1I/3Vo8Z2YObDup9YAgZmswtyufF4P9XHEFiboDcNH0+vvPEUp9HQ6lhITy9gmTAADvaVO46ZzJNYZMWvACytxulm1n1SVANygzcaJqzEGdfu/iMbOyuJ7pdM0jRPSdgpNDr2+8yB+Wv2j43E5hjm8QWj+OOy4X86eOAgB88sIs/HTjRwDAfwMA/v531f0xK9VHHA4TJ6rE92b+723+uMmrGO0MMSJ/7zJNxlhBwRHJyus0Q97r9WLMmDFYtmyZavuyZcswbtw409d6PB4UFBTA5XLhtddew6WXXgqn04mhQ4fi+++/x8aNG/nP5ZdfjkmTJmHjxo0dkzKfCA8/DNx+e/wE5HKR7Q8/zEXxRpVtQ3ZLPZp8yXh6LFGFnPG/t3HRNrVewMgLSdrJFirGBRBDYVcVadkw6KqL4tNpBCN8aMUe8nqmXC8Y4bV0sR3X9x1QRdIGV+2HJxJCgz+VGKtsP4L30JZqvddaMMzyhgn7Ynd2I/JGE2SrUWo9g0YRCs8nX9x9N/5e7VApKkLtuUQMJ/uX09UOl6Ii4LHH4MrNQe8G0s6mJOwmziDhZlPNsya8psrlrM1anYUSbSwW4wstswWE+L4Na+T10rEEfHYj8kbt6ywixM3MONWm1oulD63kexN1utDgF9R8he/Ldjo5DK7eZ9ouhtWGWynX17eG+Gcz7rslZHOwGvna5Awi7qSJ2DCxO6vU+gwb156VIaRqz5UA7xRg4HhpDJD9x9XIC+SnkUmuriVEvsuCU8Wsg0PvHHJtyuqFiPzixSojfkdOAe47dyYA4PYv/o3C+oNICbVxZ+d7wyYIY1lEXn9Ry1rIqQz5GTP452JTPolaDa/UGDouF1Bejn5/J+nOe/sdb9kl4likPZo4a9asiRt/wQUXYN26dVwTx2iM0T6Bw6CJQxfaT46bhu97DVY9teCtB1D0/WeqbVN/9jcAQEG9Upvct7YMhfUH0aehEg4as29oC+lGesmLC1QdbsSSkCgcBtofxvcPs/pyDtUAcD9PyhZTAy3IGDbYUJmZOfF0ncnFxWj7HdF98W36zjCLwKptHNBBNfIszd9g7rJKHRePAwBO+vnl6nUYXRvkPUKyvaoHxN8n7GTGeV1Onglm5GDVYqWLJ75no3s9YFfszsJJb7D2sooQM0YZlISIzgWz+dhqDchI5mWfVoa8wfy5ahWvJ2eZlRGnC8sGnUaej8WAmhrdl46l8xeHzplWGkMMtp5ONlknsDWW0fdK1+ExcSIgBDkv2bzS+CB69UIpFdTsnRlv/CaHlHk9riMF5cGPngQA3LDuHcxdvhAfLvyt7jj2iWFtmXs31wDFxbjypJ7Y88pNOL5qH3fUr+8zTP3iOXP4w/uuEHRNqpXsictpaTOgaJGJzB//M/447g70+ONHJCuvU1Prb731Vjz//PNYuHAhNm/ejFtuuQX79u3DTTfdBICkvF933XV8/LZt2/Dyyy9j+/btWLt2LaZNm4ZNmzbhgQfIzdHv92PEiBGqn8zMTKSlpWHEiBHweo2jw4eNhx8GWlpI3chvf0t+t7SQ7QAXtHHFolwcxRWN4JEPHsNdnz+v3ldBAQbdSs5NSW0rv5kcqG9FaygCj8uBvtk67TcEI5y3oBN7yVMjvPp7Um+XqReRFyJp3miYp5v80GOg7jg7hnyKRYQXMG95wo8nwRp5I7E7n0VEPmCjXh8uFwpPIsbJ/pTcuC9xDU13yzr3LPVEz9p6VFYin6ZgVaRmk+smRFZqW8y7CjCYMVffGjKtpWsNRbjqb3qSPdX6tlBUd5+GNY8Uu2J3Ro4AZTGl/3ql7lvzPgRj2RuL8D7MtUnpirEsGOnMmONdBQxaiSkt6MydJey7kJHk0XdS0MV6Zk46nNR7X5uUHhexUVLrzScGLnZnViMfYNkl1pO9kSZCk1VqPchnil33ysaAyqmyuccABDw+ZLXUK+eaZiD0Hkm0Qg6wfraRCClXErj3nF+hzePHhN3f4EahtU3RD58DAN488XxEHE5EHE4uYqcy5B0OEjkB0Jdm0ezPyFdSnx97DLj0UgDgBtpJZZoa4ltvBZKS0O8CEkWpC4HXukoU2qOJU15erjs+HA5zTRyjMUb7BA6DJg5daF+ms7DtW1eGeUsfwwcv/o5vq0nOQIvHh11Cu8PffE2MdSdiSKNp4NwgKSrCWYNJxPxPvdsUB3BuLp/XX1h8L99XJe03r71v8Yi8TqRu/EChJlQvOi5oALDWqlf+sNwwYwkAsmkKf4P2/kj3FWgg0VUfy0zQ2Rfvm24yh7H5y6hVGKCkpAcN5h4rw8xvkU0GKM5RwMDZ6nIha8IZAIADbTGExWV/MIj65eQ6ZW7fTFoP6uBwOGw5FUTuumSY6fNel5NPg2bOgTaTTidszg9HY7pCfEy0uNYgS4yl1huVLuRSB3iPdOP1JOt+YBaRVzrrmM+hSoceo6CORcmnQV30r676s3qD0I1oNNW7OHv3evKcRmfFan2qHBu9TibrVJ4dmUgrYJcLeF6xSXo26Tsi2DFXNpB1T346jVgLEf3hQovsz487RfVytj5jDg1vNIxfry3GsMo9+HHeVXEGfYMvBU+fPgVXXkfKVg6kZJP7yP338/vjskHke6eqkWf3R4rqFiO0lPQLIngsW5Pz+99jS48B8ecgJ4dk2R4hh36nGvJTp07F/Pnzce+992LUqFFYuXIlli5din79yMkqKytT1c9FIhE8+uijGDlyJM4//3y0tbVh9erV6N+/fye9A5t4vcTz8+ST5LfoUBAEba7d+CE+fe4mfPLCLFy96TNd705OehIykzyIxYCdLy0GPvsMu5f9FwDQzw+49SrwhJvKMBpREkV3GHU1JFqpayRq6jzYF/FHrYeKjmOR4zxbfeRNvMA2anmtWsswghbiL1ap9XYnAeZM2V/bEvccN8TFOkVNjWUeTbFWtSG78UYgElHaA5rUOQJKdD0WM/dQs0nP7XRYthISn9fLWjCteYR9sTuj62Pa4kb4/1alDyrBu4IClVc24nDyLJO+tZrJWDM58xZ0FhF5Q6E7zfG5du9GNt1n1X/ejIvYKGJ+VmJ35jXyoUiUfxfM0u9Ex40euu3nNDgcDu7Mq24OqpwqG/oQY31U2TZyrxMyEPpkk4g88+pj1SqgspLv9+3hE7Fy4Bi4ohHc//FTqrr1C7atRnpbE8rS8/Blv5HYld0HrV4/koOtvJYdhYWkbGU9WTQV1B/kveBVQojffIOK/5uL8rRcOGJRrleiyqoCieD0oZGHzWVKtpRETSKaOEbjtdsT3WeHa+JMmADk5WEAzeoQSQkSR9QJFbuRRxe+529bg09pRxqAiKJd852SmZjmIN83MSWdZdf0O+9MxQEs3I/G7v+eP241aHPF5tm4+0dxMU6Z/Uvlb210XDM/PX8aqVt/ddSFphlLKTzjTtgu7It1deFddnT2xWvbTeZ25lR220mtN0olZoa8wdyuGHbGa5UN++r4Y6PyMqZfAgD/WkNrb++4A0hORv0XXwIAMj7/BEhOJtt1sOomwmA91Y2i2AyHw2GpfyP+PzPVekC/RezXu8ln32gtYpVab5kNKRyXWcSalY6s2VVtOAawdtxwEWajtaCwXv7XG3/WHwOouhGxdm3JoTZdnRW7NfJ2sg6s1mIsKBL3Ob76ajLvAbhkyyrty8hx02Nu1pbyTJzIyw3Eb+ozZ1zNH0fhQBPVgEoNxq+fk0MBDKvcg5XPKGUK+zPy8fDE69UDYzHgkUf4n+ft0NdMEa2loT3TlD+ElpIid59/k3oDFdwFgByEgLvuAj79FDh48Ihm5XWqIQ8As2bNwp49exAIBLB+/XqcdZZSH7Jo0SKsEOoqhg0bhg0bNqClpQX19fV4++23MWTIENP9L1q0CG+//fZhOvoOQBDFA4BBNSU4Tqe/OF57DSgqguOttzB4L6kn3fH3p4HzzsOeB+cDAPpv/EpfnEu4qQyuJI6RsvS8uHqP2kayaM6qPBDvkdcocQ6uJvvhPVI1tbzspq+bpk+xFZHnnkEzQ96m2J1d1XqrPucmaf4AUEgN+X2a+t5YLMbV/FU6BBoBsLwmItrBhPEAkFSf+++3bcj73C7uOa9rNa6VFuvyzBa/gHoS1btmtsXurBwlBuc3iafm60+ubLI39JLT9MbsfuQzW/vYk4qSOqU8NQdBtweeSAi9NW3KtM4sXiNvZcjz7BSLjCCXC7nZJD2sauhJcdkctsXuhNR6PeEfUZPCrEY+ySIDwrD9nAZ2D+CtEIuKgDfewLf9TwQAjDpAW/wIGQjMKC6tayXv4Z13+P7aXB48MJEYHr9d/Tr6alpw+SJh/OSH5QCABybdgHUFwwEAJxzcRYRGMzKAHTuI151+73yRMG9Lty+TKhVTj/13p50DABjkCSHl1zPjs6ooJ/YhkcpNpfWm5+NYpD2aOD179tQd73a7kUMXhEZjjPYJHAZNHJeLlMjp0L9OMbaZse4A8D/6mQSA21a+pAjgAkj3x99XmGNcNZ9q7ke9G0iqvqpkSBjH7tmqSB2NjvfbpqTzBlxudXRcmJ8ahTXD2H30NQYZS6l6GUvCvgIu8l68YeF5zb48NCIfthGRt1Mjb9x+zjy13upeCACtwpxoNJeK2UuvfLWXGOuPPAJEIiintcJZrY1k/fXII7rGvJ1jAcxr2rXwKL+B4RqKRPl51q+RF9LzdY7L1IkN8yBKLBazpZXEje+PPzXs3MAwa9MICE5sA8fNghXEoVvTbKBBJKyXmUA1o9afpu5GdNttgNOJFqpanxxqI0LYt92mMgZ5jXwHtNizKnN8/zty39LtfPPww8Cbb6KfS3muPDWHvB8hgzCuM47LBTz7bNzuRL4TSpNYZJ5z113APfcAffqo5vwrfvGY/s6aFD0F1ro7v1HtwAk5le9jrvgZFVpKGlJQgI01yjmYc9lI0nrv3HOPuMhtpxvyxzx2RPFuuw2YOpVPuoMOkJsIE3r4/+2dd3wUZf7HP5st2SSkkZACAULvRVEpiqIi6FnQiGA51DtFPc9TrCc/G3innnhyeJ54NqwonBj1VA4FBUVBkGZBeg8kQEJ62Tq/P2ae2Wdmp6YnfN+vFy+ys8/Ozs7OzvN82+d7UGp51K2sUDvVjbupJPlrkCzVCR9m7dEAwOlE6SZxYk556YVoh4CqvytrwVSQnBnlPWSpxHFup2E9L3uu2kjsTkphMozIM0VZM7E7k4g8u1GaCeIYKXkCQE6quNiprAsq0pur/SF536m8Ia6K9KarI/KM557DCSm6a2bIA9b6ibMbtVkPeQCIiXHInz0qGhAKwVckXhOxe3drTqJm6VzMEWPmCNBbbFiZ7OF0IjVLXDCd6NlPvK6530dRkvhcdkVxZHGt00qMGbBRqaMqjkqiL3KKmQGR6HX0AkGucTX4LQCRbIxQWNDUn2ALeleMw3Cy95poErCIoVFqPRBRyZZrZfPzgbvvxq/JokNl8NE9Yprws8/Ki4DMJC8cDvG3WFJRC7zzjry/jweNw7HENHSuOIY/Si2e1NyxZjHSqsuwPaMHZl4opjWPYIJ65eXAmjVRvzt2Tzuo6gX/k6TSPXRoL+2sKokB2aJBuOsYReTV1EcTZ/To0VHjv/jiC5x22mlwu92GY8x0dhqdyZOB++/HVL6nsor3h4iCtF/0HY04rv2SnE0i3WcS00SHEG/Il2llcqmc60l1ok5ORWyCYn/svrVZMl7CzLnHRcdlpWwA+YPPV0bHD0cCC89x9aB8FgEA3YwlhTHAjQmySGNYwxEqjTMT5QKsid2xyL6eEWSaWm8hCs4O8YweHXXHxHDHuLe4Gpg7V368TGq75eLPx9y5UWn2ZloxDCvZjAxmBOtlHPDOX635NYabS7Tmdzb3j+un3erOyJAPhAQ57TlWb27Pz8eOo6Lh9sNbH+lqLljFatbDR1uis3AAKNbL8UE/vnzlVvmpEraumzdPdFD//e9AKCQb8nF+n/jbVImxWa2RZ78VvRJSIFLKsH6/Tnq8xLp9OpkLkycjeXek9WXpu/+JyiBcvUt0jCtKXvLyZGFnrXvl7Zc/KP8dy/d179oVmDULePRRYO9eIC7iUJS7O0k8wPW4h8MBOByIC4r3W5/LrXiuLjeSFh9VRqDRUlJBbS2Cd94lPzz49HP1vt4aChnyrQEzUTzJY8smXaa8zAScdkr9aHuUHtFOdVMb4eXMCOcM+VAIpXHiAqJjbYW2Q4BXZuf7natqeeX6eAPFeiCSemfYfs5OjXzQROzOLCIv7cdnR8lTg3iPS46+8un1xZWcg4OfXFWRFdaGLKqf+IkTKNkjpuNZMeSTZPVyfUOTGfkpJkJ3jEi6NTeZSCJIvjVi+pL3mb9pTqJmHmW516zO9+OVa7Z10u/ka8X4tsayIUql7Ab+98Ha0rH0e6NWYnJqvYlq/VF1rZgBLOJWXBmdRWE1td7rdsqTktZ3XyNlaMQ7woaRC6PIT60/JH+PqSbXYprcQcEvOyPrCo/K96+Bx/aKGSfMWQnxGmA1j0dWrQWKI9kRb51yMQDgxo2faBsBEMtTZq5aoNh24c61kQeFhVG/O1YnL0fkJX4Oixk2Q3OSYUSvDNGA2nO82nBcS/LII48gpPF9l5eX4xrWIqiJsKuJc9ttt+HAgQO45557sG3bNixYsACvvfYa7rvvPnnMXXfdhS+++AJPP/00tm/fjqeffhorVqzADK5cptmYMwdP/34s1r03AzllRbjzu/fE7dJ947y9G+ShP2f1BgCMZu2VuPtMB1lEk7UPE1ATYPXJ3G9fNa8n+cTrrlyjtRlCIeRvEg3yL349Kv7mueh4LKeg/yur+WTRca6k5Y0Rl8p/RwlHqX5PrAuKwjjkxrBomCuk8RuWxllRiw8JVlLrnYb7kfVdTAx5o9TznZIAsZmjX4H0W+RXLkeSOimfV2V7WI3Is240ZiVzAODVmtc59hdH7mluHVFB9j5aXYhMyxoNUut5Y1rzszD9Bol5Z10n/mGg3zDr0oFR23jY973lUJnheR5mNCdw62U+y7Ymp5u4fdIkRclKnZRaz4xOAIp1PHPgmJWQsqwTIyf9ur2iAc8yPPX43Zka9d8SLo9bdvaHTh0RWR+FQgqF+v3qTgN5ecCBA7jhD5FMSJ/TheL4ZBzhgouKq2zu3Mj+V68GamuRpc6YlGCBTQDiuRUEuXxHLjuS7o97HntaHhp1bbLvTxWZP9xNyhooUTo50o8d0r3emhoy5FsLZqJ43KTLBJt2pXeFAOBHSflZFmLSSnXjbio5vBHOGSelcWKNSEpthX7tm5SenPOWqFxb3CEVdTt3KzxxTKAqy8RwSYiN3PhDOqlzVlTrPRYi8uGwIKeG6U1Ecmq9HQEQHXJSxcV/AW/Icy3IFKl3Y8eKoicSaSwiHx89SZRUiOUPpmnaUKZY62Gldy2PrFzPjGlOBInVPMYGA5qTKJuI6nt+Y02UcessRiBkQ543cqXfR1m26BRLqZOiqgatxCyp1odCKNotlqFkHiswTPcDuLaBmhF5a6n1CIWQ4hSv9fLVa5XvmZ+Pmom/AQAklBYbRi6MohKsVaXHGWOaISBnGVTWyQuX3endEIpxIrWmXOyvq3G/kdPrj0SiBrvSumJrVm+4QwFc9dMK5RtddJHCU3/F1lUYv0t0Lo3f9T2GFe6MjM3OjopoRhnyUkTz51rx8w0xMeR7potlEbuPVRn2Mm5J3nrrLZx55pmKVqyrVq3CkCFDsH///iZ9b7uaOD169MDSpUuxatUqDB8+HH/5y1/wz3/+E1deeaU8ZsyYMVi0aBFef/11DB06FG+88QYWL16MkSNHRr1/s3DVVcjcux3fXt0L99x+sShMt2gR4HDIEewu5UextvswAJD/5+8zrCSq6tcdKHv7Pfi+WiX/PKLubdy8zu6/75zyG+V9S3K0KsjNVZSr8DPiomET5XaLAERDXpqfgs7IvefM/VukF2tnLGlGELnfXEDal5t3xqn25TbpLy4IgrX2cyb6N2b6LnKNvIFRxzpsGDnO9fC5IvP5tE2fKZ9UtU02E30VjyFioFnpSCA7yXX2uXDdAflvvbIBtt7QajfINA7cunO7fjYk+5zOGEf02k2l36BANafwDqXBXYzv5V7OKTHtb5/qOryfzBtiuB+2XsbKlfKmE+9Jv0tVSaWiRp4dP99H3mkttZ4FZ/ScJgBw/gD90iN+7jLKLkEohGy3OLZ2/Qbx/Ej3mkppjQEA4+/7XfT6wulEwpmj5IcvjJ6CV84wqClPT4/8LTkJfr/hY82hv9n+rXLDjBnwpouZlj53rNjVQ7o/Hh8xWh6meV2z749j/FV/k//my5Ov3fw/+f3M1nmNDRnyrQkjUTwuJY0Z8vtTO2NPWg7K4pLgCfoxgFOCVL8GQMQIn3gOAKBg0lTFBVcmGfKpUuq9Xu0bnE4kXzBONq6PVSsNGSZQ1UWj7QQPX1urJxhmRbXeTChF/ZxZ+zl9QRxrNfJAJL3+0IlImw0mehZlhDudEdETRNqQRaXWAzgRI97s0wxEBBlMWKdcr594KISyX6ROBZUnLN18FL3kVZOoTzbk/ZqGmVmNvFnGRJxJan2NWY28RMcE8borVXuj8/JQ9lfxJp1y6jBle0ANTFXrpUnt2A9iyUrm04+bpvtF6sk1IvJMrMrIcJbeM6VAvBeU33Vv5D0lp0t1qZhtEMcWDDqRCz4KpTZM2blLTTDXVmDXe8m+Annh8qvU7WLAsf0RI0J1v2Ftaw7Hpcj7WtttKABg1MGfkcqcLYwHHgDeekt+6BTCeCX/L/jm3zfhpQ+fjLwPMxRUEU2FIS99ppJn5omZBFCJ4WjQIz0BDoe4kDKLdLQUP/30E3JzczF8+HC88soruP/++zFhwgTceOON+Pbbb8130EDsaOIAwDnnnINNmzbB5/Nh3759cvSeZ/Lkydi+fTv8fj+2bduGvJZu/ed0isJOrCfx5MliV4pk0bnL9zsGEHWfiT8izu9/3e7H8K1JmPeXN+WhmvOgNK//JDn013YfFtkf52hlNfRzlj4n/ubnzdM8/IDTjYk3vRDZ8OSTmq2yLti9zjBjSVNQi/vNMaeAm0XkNfYlR+R1HP18AKBBhryJeJmXe71e0IHNP3rp4wzW5mqMJ+Lkr+MM+Wx1pJETRAbMRV8BpXM5PcF8rWAmbJpkooMCGEfV5bK5+kTkOaG7qLlGZQxHwc0pAx6N9BA3c/bHrY3cC3+odikc3vxcaCXLTr4fSDz08a+isj+3Pg/EOOUUcW9A5cRnfeTlQIixIb/xgKixVGmQKcjWGb0zOkQ9x/9edYNW0jrDu090MtXecz+QmQlceSVQUIDvu0UcHJ7CI5rrC77DVq+SAoQcButqjS4AzrD2OnDUwZ+VGyZNQtxPm+WHvhVfyvfHTgncda2Xneh04uKhkSg/LyZ645TH5b8T/bX6NlMTY9uQX7Fihe5zL730UoMOhjCAS0nrXFGMeH8tAk43Xh9xGQBR+TkqzVSV6gYAcDqRPVic8Is8yh9xqWzIVyhfo/EjcjgcyE4WF9qKXs8ADpdKhnyqsSHvccXIk5JenbEVwRaWUmeUcmTFkDdVrbeYWg9EblIHTkRS0viIfBQPPSQrenaSU+uTIyl3UqSixClOHJZq5OMNUuulG3H5628DAJL/+6GlmjJFL3nVJMrqj+TaJtVNjV/YaUUsrYrl6S02arXSTzVgqeAnNBwcZbXibyhlQG9le0ANEjVEqWS4BTQTMcqqLDFM9wO4iLxG7+VI73edz8e9J9PBKPN2EN/zyivFzgeCINfiMUVtvewbPgtG7Xxh3RdSTdog8p+pqCLymVj67sBje6NfIN1vmCPwSMdsOYr3oySGc8qR7crXMONcqlVmOAB0Kz+q1DvgjQ5FuZDUgi4lUi60Y4RoaHbrGG96XcV5nPIxs/T64iofZv13K95bf9Dopc1GcnIyFi1ahDvvvBO33nornnvuOfzvf//D448/DmczC/ScVOTlocMa8T5YyWrYAfTslKC8zzzwADZvV4rd8qrOzo8+1N6/Vlke52gNwyGnrSb6qiO/eadTtw5UALA5uy/yB52r+bwDMMxY0hXUkn5zgSQxKupiC3KNfcn9xXXm5BA3j8QYptYbrxEiYnfavwHe8NOrUWb3SLYu0oN1FRG6dJG/tzrJOHCGQ3DzBorTGdV2M85C/TabK1Lj3YbnhcHu9Xqf7cze6ZrbedwGgoJWhYa1vh/DNSC3Nr1l3Qf6B6fTDk6T/Hx4Z/45ers0d/s+iPwGrZQtRO2mrBaPf/qrYn3OG4feoGrut9FHng8q/FKgL7pqVLLC/141zzm3zmBlALXuWEWqOd9mr1fJIfF+o1pfOBwOnJoiHodHq7yGh7dlJKeIWyfwpLCDpHWB1xtZp9SOOlP8XeXnw3+lWJLRs+SQYXbic1OHGx+fGjvXWyNg25C/+OKLce+998LPCXAcP34cl156KWbOnNmoB0dwcCqKMRBwqrSQXXiKmMIyceca5fhOnaJS3Ris9vSYI3LzqHXFok5a4KewiDxDyyEAIDOJLdDrFNsjEXmNnvYqkkwEw0yVyBGZBIyUbfmFAFPC1duPWR95K6n1uWniYu1AScTrfpy15NMy5DlFT5ZaX+f2ikaXtNAS/jFPNobMVGCBiIBdVGo9dyNmWRjJdVWmRiYQiQbX+kNRNytFRJ6HeZRd+oahuM34/HrNUuutiN0h0l4xKiKPiMJ/sgUDVbdGnltACwCOdhDT0zKrThi2awK46LVmRF7VzkXnPQHp+wRQ5k2MvKc00dZ4OHVchoYnWdFSSHXOrXZPAIBenUSH4c4ah+yY2iYZ8lFZRIB8v5Ej8uV1chSPRR2HsTIiScxGYZzPmQP85z/KdDwgSlVXRopodlvwIgCgMCkDvu07gY4dseHTrwEAQzonmX5OAOiZLtXJf/YVsGoVth8uwxtr9uPlbzQcFi3E888/j3/84x+45ppr0LNnT9x555348ccfW/qw2j2J8dH37Bnj+0YevP8+8Mwz0b2KJTIqS8TfuM4CdmyfyPW+8qX3IfzzednR+vHAc+Tn9nbkWiuFQuJvX8OYX9Z3DK64fi7uueRezDr/FsVzQ47vE9ssGWQsGRoeeXkI3iB2nnBdPkk3+8kt3TGCR49qRsz46LhRjTxzCOitEZZsFM/TXnU9rwQfqdcThLNSBggAsdLTvqPH5dpuuRWfOhp7zz1RwpqxZqn1oRAq1/4AAEhG0FKmXUR/RnssO89Grexk0WGNud0fYmWNJtmQGq+tkUvmNF7LrU3POCSqww87stNwHBDpLBRFKATccgvi/Mo1rQDI82jtgw/J2610BGDwUd231h5QlJnUucXv2CGEI0ZtVB95/fIDxj5Oy8CopMJj0LJZbvkKjd+Uap3BRDvrOEdEWNU4W3aia3W26CSujao9cXJbSwC4ZouUpq5VtiO1sZO7ZujBrQucMQ75M9cFQvIa2H+iDADnSNBZA7tU122VJw6/SFmFmmRk6D/XBNg25L/55ht88sknOP3007F161Z89tlnGDx4MKqqqmgx0JTwaaAAztm7Sf67Y005rv7xC+X4667TjSaydKBjMV75RlISLy5U3aEAEln/Rp3aN0YkIq8y5C1G5AGTqCYiPUmNjDN2swmFBd3aVL+s5OnQ9VCbirGZCOLwdEsVz/HBA8fEBYjfj+M7RKMlvbhQe3KVFD3jMzvJE0lxQkqknmfCb1DjDyHGEUndN4Kl1isi8qobcbmU5plSV2lqZALK2jH15Ohzio4Dr9qQlz3KfFRDY7I38dqb1QZG+twa39ZYREQzIi+dq1QLKv4dYpkTSnXtcpkKZd5E+KVFWkaV5LE2SL9KSzCIyMuq9RqGvCo7IoUZ8nHR6eA1bvHaURjyDM4543bGyDWJ6uhPJLXe3JDv8/2XiAmHUSo4cUxyauzpKDolWRtLAFH3Gzkif+g44POh8rHHsTtNfN2QIsmQ14sIXnUVUFQkGgjvvmtaJgGnE2kTxiHe44QAoOC0M4Fzz8X334ut8Ua99qy5iE1+Pnr9dzEAYG/+/4Bzz8Xum+8EAPRKTzB6ZbNx0UUXYdasWXjrrbewcOFCbN68GWeffTZGjRqFOap2ekTjomXgnd9fWvCFQlGRVzVdKo6Lv/EnntB8fnpMREH7d/visXz+IvlxFtd26fpNnypfOGOGZt/kuy6NZLa8cdplWNYnUk/6x9XviusLgywONufqKXsHpfnGPXSIdvZTfj7ct04HAAR27daMmPGGfIxBiQ9bIwTDxmnJIZ31A6/KrhcJZyrdhhl7+fmIvUl0YPj27gcWLwa8Xvg84n1fnjuZ0LHGb9IwIi9l2v3613kAgOLSakuZdrKT/Pv1mg4Tdt6MBQX1OwxYjshrvPaYFCjSEoDljeHYkPi8WpmczSl8dxXdUoEnngBKSqIcKpUeyfAXBJSdiGSsGpVzqInSkuHW9CyIFhfwiWZwPfvI87+BbnrOCkS6OGh9V5f9K1JWYFbKUCWdl8LEiBNxynV/gy6HldlGHum3EnAq1zSPfPWqftmOFPSKChjxpKVFrQvkLjx1fnkNzFpgyvuysAYGgKnXPIVLfvdP/fdvZmwb8iNHjsTmzZsxdOhQjBgxAldccQXuvfdefPXVV+jatWtTHCPByMsT+ygCuPKXL9GttBDOcAgPffUaEtSLcq43thoWST9a4YMwT7yRHJXSfzOqTujeSNRkJYs3nyLOkBcEwXKNPBBRVtcSSAGsCZjxAip6fWLlicRAAMTIKwxwNfJmEfn8fHT/zXkAgMO1YQTPOx+Ij8exVWLWRKd//UN/cpWig+mSk6R4wTuyAcKi+51T4iyl96d4xTFlu/dFJmfVjbhEEtTrWCNNTiY1PvG86I9KLIx5ZeWbooZwEbustKI0kdT6ehrylmvkNRwcErKKvwVDXrdGnjOGD6WIojLp1aWIVaePaaRfsV6mJVV+hVMqFI700mUikUb7YmJ95ep6XADVLCLvr416TuGcCYXgdUhRiG+VonknpHPX0SxzIT8f3quulA32DV0GoDw2AcUdUgEAPZmar8b9pvMm8fdypPAEcO21WP/2fyE4YpAbrETGS/+yZJwrapVNUscdDgd6SL1xdwc98Dld2NilPwBg9M+rxfIEvQVxfj5w5ZXodVDMlGKOip3xYr1sn0ULWqw1DU8wGMTPP/+MyVIkMC4uDi+++CKWLFmCf/zjHy18dO0bLS0J+V63erWiM4MWLMsGjz0WfS3l58Mz6zHFpluufARn3foqwnDIUbGeJQViLSfPpElRgk4A4Hcp74G35UUikYVJ6abpo7uPake3AQChEPwF4uvdB/ZFL5qliJnrmCjMK/d7VkXMeLvcMCIvG/La64ORkqjXOX3169vjTEq7GOv1WnZJnym2SHRs1Lq92JfaGUJdHepiJCd4XGy00LEKpie0SaqFVu8fBQV47AJRS6IqNt480y4/H16pZOPJg05NhwlbVxlFeY20isxaoulGiEMhPPK+GLSqDYSirxPOGGYlCbJRqJpTTusuzjnPTB6q/QFCIXlf6mAEP49edv1c7deboFmaJZWZ1HXpqnxfDQe1ldR63rlz0WDtTFqA+6401rpGma3q3/yPncWMor+d+zt524acQfqv5zpgiMch/S5vVWqfxAd8hmU7yMuD68X5UZt7lh0RbaSjR6Nex9aXNes2yGtgv7ocFLBU575V6jrC8KidCseO6b62KaiX2N2OHTvwww8/ICcnBy6XC9u3b0dNTY35C4mG89BDQE4OOtZW4PMFd2DLc1fjyq1fRZ43iaIDQEaiuJCvDYRQefGlwJIlOCa1VMiskkRtjH5EEtkahvzRCh+qfEE4YxyWosZmyt9WauT5VHk95Xp5IjEwwo28woDF1HppMs3ctRWeoB9Bp0tsJxMKyYv7HqVHjCdXpxNp6aKBXdJ3kGyA7JPqbrunmZcsID8fqff8CQBQuo2LZnBKxQBwPEGc3DpVq8SMdBZpEdX6UJRYmFwjH/RrGmYOh0NO4dMSbGmsGnmz1PrUBKYd4I8SLmK13yybwQg5tV597XLGMGsN2bv4UPQONEpWWM91fyisEKthvd8BndR61b5YeYx2RF6qkeedf+r7BhOzKROvi7rf3axY3FmKyEtpigBwlqRwvbrHqdgjRdUzK0vQgRkVHTsq7zf5+egy/XoAYt/dWlcs1kgK36N/+U70qJ84YWqc22LJEvTbsAoAsCu9G7Zk94PPHYv0qlL0KpGcX7fcEr2Y5D4nG8c+49bMXgCAQQd+MXYENBNdunTBtm3bojKXLr74Yvz88886ryKaCjllk7vffvXyLZpjHXyTMj5iJGVZaXU5KUjJwkeDxiEoCWm5+Ppr/jfvdOLxSQYLcBV+p1u35I4xeUSO9hPSvSW4XNRbcr04X2k4clljzDiT1fJVETM+wm4UHZVT63XmdnZmjfZhte3bOVpid9xnYo7uvWk5OPeWl7Fw+EWRji/xsdFCxyqWbRW1PFZs44wFG+rtCqT1iqdSrKf2uzzY07FL1PqEzZMunbJEoAlq5KXrxFXCObi0AiCSMezumCK+P3P6qNawAZP0fqxeLYs6xqnq1Gs9EVG7Sg3nuBWKK1XBNvZd5OWh7jNRiM+bnKjroNYUj1TByvwyk2LRzWCd6DH4rgwx+c2b0kn525A1MIYMU44zc9IDcF9yseLxglNjkf/Mb8Ve8xrrAnbe5ny5J7LNya1Z1dioc3/vvf9TbmjoebKJbUP+b3/7G0aPHo0LLrgAv/zyC3744Qc5Qr927VrzHRANgxlPDgfiQn6ld91CFB0Qo9tJkhFyrKIOyMvD0TnzAACZA3tb+hEBkRT9QlYjHwph53IxLSc3DvBauLqYMWQudqe/M95LrNemxmcjIh8KC5oTfp2sWq9zbrnJNAaCrIJ9IDUbdS4PDqSKba16lxy0XivN1XGv2SNOaENzUnQ/AwB5ck4p2A9AqpMGNJWKWapzRrXKu69zI4qTvMqy55cTC/Px7ed0HEGy8qpBan2Da+Qttp8LC9GZICxKn2whIp+k54TiMhVYvWvfYv0Uch6v24lEyVAvrowsJlhavTPGoX1+VNkRLHpXHtsh8p5paYDDgRqpZUo8qwNU3ze4yI7cf9Udq1jcsbKEjkbnadUquS5/7D4xqvJNj1Pk/vGycQyIbeNYFpH0O0qqqxLrggGs7TYE30mG/KiDP4n7bcyerfn5wFVXoc9xsc3SzvRuWNtdjNyMOvRzpOqvpETRI1f9OXudED/ToeRMFCR1ws9ZoiEv121qOQKakdLSUlx88cXIycnBvffeiy1btsjPpas1BYjmg7vf5pRrR3NW9jo98oCPGElZVqlqbRuJV06/Qo5SunghKEFQrBWuGmE9o/La4z8bBgsAKAwJWY+Eu7d8PGic+FxcktJw5LLGmKK9bJyx45Y+P0uFj3Hot0UDIpE/PcX5MGthZ7APOTVXZ/5h2WpME0QB95lig8o5Z95Z18o9xL2HD9Xv/mBDvV2GW6+8N/zCyOYYZ9T6hAVCDOuuDdoAB+Q+8tqv54MogiAorpNrt4hG7tl7N+oHQPLy4PlQ3BZIThGzGnYr2yL7TbICeMNNnVrPnN/1Jj8fn/5cpNzGOSX80un2JHXQzR4zatHHYGuRHialXFZaNmuiWmfk/SIGEX+rbpmoh6qEh90X/vrZrxgm6S88cGE/Sxl0fCvCr+8fh/OmjEdKonnwcHV8F7x22mXYnZYjt+7W/H5Va2CjNrtJPkmbwEIgtSmwbcg/99xz+Oijj/D888/D6/Vi0KBBWL9+PfLy8jCOa7FANCGc8aTAQhSdkSEZ4Ucl8bSjkrhW5qA+ln5EAB+Rr5W9pzvniG1r+m1cbak2S9cYkqhhAl8GitF8Sp1eNJ3d/HRv4lB6i7X2YxqRV02m3Zkhn5KN3R1zIDhikFJbIavSG6XwyOrlkjEXDgtyDd7ZfQza23CTM1vYsW4EsqgRU8p1uuVWSJ2qJEPe5EYUx9fIM/LyIOzbJ9eCx76/WNcRZJQeZip2x+q19+yLquMLhMKyd9ksIu92xsgOJHWdfLlkyKfEWamRjzg1FBMil6nAIvJ9ikUD0YqzjbWGKeYE76pqxesgwRGG4+uvDVMM4XDIqfVlcYmR93z5ZWDJElSnigabXCPP3zd0xGx8Lo9icVcq1fAbRuQ5g3fkoa3wBAM4kpSBTwacLZ4Tvj6+oCDKMHEAuHiH6Bh8aeSV2J7RAw4hLEf3tZRw6wX7zAD6yYZ8d3zfdQgAYPQBlaiOliEv0am6FJ2qTiAc48Q11zyFcIwTpxzejq5S6y9NR0Az8vHHH6OoqAiPPfYYNm7ciBEjRmDgwIF48sknm7yPPAFcOqyz9hOcmK1b3X1GD2Z4SP+POaCtUbQts6doLAMojk/R3V2cx4ntf7lQ93meDs/8zXSNkMTdQ+d8vl03ary0/1lKw5Gro2WOB3UNLQCgsNBSD3nxeeMIJHMIGO3Hy2ejaeA3yijjjERWy81whUP4UOoM8Gta9/q1rrIaPeTH2TD+rUTkPQZK6GYReX5d5vcHFddJhdTloWv5Uf0ASH4+3JeKEdpAbR1w991i2z5u/bl+nyrrUA1nuLkE5WeocZuLC+siOSVyTyi1In4JxMpOCUvrU6d5RP7rHWLq+k6jshbufYJhQXZiWUK1zmC6P4rUdD001pXf7hbXtGEhsu7r3tGangz/WzXSxwAQZYf85fxbMP7mf+ON0y4DAGzMGagcryEW/svsibq794QClgOpTYFtQ/7nn3/GRRddpNjmdrvxzDPP4IsvvtB5FdHoSLXUlsWcVDAjnAnVHZWi6hlJ1m9YrEb+WEUdAlOmAgUF2CFHIA9YUkFnmQFaNfKCIKBGbimm/8NwOByRWhsdMRs2gRulxfPRei2vp1kNt3oy7VYmPj6YkiX29gUw+OgeRN1yNCbhiDEnGky/FlagpNqPBI8TI6RaL024yZm1ESz3dogoiQqCPAGyOmVP0C96FC3ciOLlfrPKxYxPiHwq77ixuq83EhSUz69W9kV+PryPPiy+9w8bo+r4+CiJWUQeiETleeX6AJfObqWtWgdOPCcqvV5ytu3MFJVN5Yi8BWcbq+Fnaf7Iz0f1RHGRklBarN8mhXPwyRF5bwfle+bloea6aeK+rrgs+r6hWtwxQ76WLWSkxd2J42WKYzUjLujD6QWiqvDqHqcCQLTqrMowAYDLt64CAKyT+tIOLtqDNL49ZmP0bOU+cx/pe9qe0QM/dBVTjUcdsp5y7gBw8XbR+XAoRczAuefbd5SDWtCQB4CUlBTccsstWLVqFQ4cOIDf/e53ePvtt9G7d2/zFxMNglf9/u8dZ0ae4DLtHABmL/931GuHFqrUuJnhIf1vtJR94CLRUXVM0sIRX+DQaDnpxMr7xpl+DseV5uuMDpzz/dCJWl3D8Q/fLxH/YIYjV0fLIvKsNEBBdrZlQ95sfWBlP3oaLSyDj9UWa2YPckaiOo3XIQj4iG/xZ2KU33q2OKf04XuAc/s/mJwp/+1S67LwUUad9wmoz3VhIQKyIW+e9aC5dpIj8sY18gAQXP2t4jphauZfsYwUdQBEMpTdR0QHUHFCqlgqobP+/HCzjvNCFW3mYQKxrEUwAIwfYEGZnHNeXbL9G8VTl9woGcQzZsAfEL8nPUcHwGcz6juuP9gkfrYTGh15ePhodoD7TRjtW4ZbZ+zolAsAeO30yxXnhjFhp5Slre4sowFztBhlffDwARvDLk6co94yGmLhRhk/MeGwrUBqY2PbkDdKvzvnnHMadDCETWyKOfF0lsTUjkjCdMekyHxWkvUUovSEWHhcMRDgwBFJtZJFIPsWm6ePAxGvvVZEXuw3Lv4dr9c7W4J5ivVS6808woBYr8MmckNDU09oTpWK071UnCj3p3bG531HAQAu2LXO9HVA5Hs4Ijlavt4pLm5G90o3/Az85MzqpMMxTlR4VV7OGTNwLLcfADGK6AAs3YiYkczXbAPKmndDZwmLyGvUuUcECVXnV5qovcdF4SOWws9P1EwUMcZhXD7BSJWN5YgDqZxzJiVZiMi7nTHyZBLVgg5A+YWX4nAHcXLr9+RDlp1tTFW/vCYgf/byClGDRBa8MkgxxP79SJn3dwBAWdeeUe9Z7RfPc8Lpp0bfN1SLu9igypCXKK214PBQZWiN3bdZ/tsT9CseA4gyTABgaNEunC61FQKAcfs2Rr9PQ3u2chHALhXHkeATz3Uoxom06rKIIJ98EOMMH9+xdjH6S231bv1+CcayDIJWRiAQwIYNG7Bu3Trs378fmZmZ5i8iGgSfWhwVReIWyDds+hQX7vhO8XQG069RZ02NHaupOs+jFq4DoJsRZpaWe/3o7obPM/juMFW+oO7v9FepFaVMp06yQSWn1vMRee7zhyykxAMRA11vfWDFkNdSiy+t9qPX/y1F74f+J2+LXftd9Hpn7Fi5HaY6tV5wODBuz4bIBpP62t6SAd+ZFxPmjNAFp02SNwd54Td1RJR7nw/evi/ymhjVWis7Wy41tCJ2p5X1wFrS6WkUKcojC4s0xxQmqTIRCwsVhjLfi/zzPqN115+6YoWqaDMPa9nKWgQDwK3n9NLeDw/nvLpi68ro56Xf4KpVYjbN1iMV0WMkYg3WTnbhI//898W3vb31nJ76O5DWGcdOGRnZdvQo8MEH8sO+xw/g+f8+rd/2VYeDXMtmI1zOGKz7v/OxduZ5xgLHZpknWhiIhWvhWPSerUBqY1MvsTui7cMmAWbIs4h8pg1DPibGgW6x4k3gYEoWwnBgFzPkpRRVMwVIWfnbFx2Rr+aMI/N0ackbbCZ2Z2LkGfXXlFO/9er1VR7d7lJEfmOXAdjYZQAAYMIulY5EerpmGnuO1Drk0IkaYNUqfPOtaMyc0zva66mAm5w94aBslLDUSplJk3D8bbE9UUZ2mmUjUzO1HpFzE+Mw9tobp9ZrROS5iTqqZyk3UddKGgtxbqeh55TBarv5iDyrj0/yuqy1lQmF0CFGPOYKlao7APxyRBQQ6toxDinTrDvbWFp/WbVP/uxMNTeJGfJGTjKnEyljxVZRZWFH1HtWGvWjVy0imegPE2MCRGGo0pD4HRmm1o8bp4xg7F6HGEm86jc7vlOK7akNkwTRmHAA+MsX85FUV4X+x/bh9z8oxRq1jtk2XAQwBgKGFO2WH59yZLsy0pmWpm3Ic58zvaYcS1+/E+teuB4zv34j+v1auARt5cqVmD59OjIzM3HDDTcgMTERn3zyCQ4d0hBkJBqVz7celf/WvE3l5QEHDgCzZ+Ou795TPDXq4M/aWVNOpyy2KPdfVnHGoV8AAD3UTinAtiPMbA7VomenBN3f6aWqSCW6dJENKpbiLNfIqz6/1Yi87OjXSSO2sh8tQbb3N0b/ZjwXjI/OmHI6gfmiyrZTiF5bDJAcf7/f/qVpfS1TP1ek+DudwDXX4NtuQ+V0YQDoXsqlc6sjotx6ZcSR7fLYIBuj4TAxjMjr1F2HwwK++FW87vWc7Px+AxlZmmO6lB9VbsjO1tRTACJio1rrz3sm9NX9DLwzrWdJ5Lvd0XMI8MEHCEy6XN5mJnoIQPHb0mz3KvHGAfNyGrmPvN26dg3cOtmnYa7s5RyjEk4AcDpx44TB8sNdxTWK9eOo/tmIXbHctoFbXB3delePzCSv3AZbFwv3NzlYUM8a9y4Xntvs6fQ8ZMifpHROEQ32w2W1QCiEoydEAyFz+0+2ak5znZICa8ccHE7OQI0nDp5gALmlynogvR8Tq5GvqI2+kdXI7cRiLKTOGUfkfRYi8vzzmhF5s/ZzvEcXQP/j+wGIqtuCIwbDjuxENtfPFwBwzjmaN4CuqaIhX3DwKGomXIhNFeLnGnvzlca6AypnAquVPsEMee5GdbxaNFw75XaxbGTqpdbLQoAuY0NaV3k1FIK/TryWYjf+ELkGuYlaIbzGkCbq2nU/ALCWVg9EDFC+Rr68VlKst5BWzzQhEo+IqdiVd8yIWrz9VCAa8kO7pFg6JgYT2ivbuVf+7MyQlyPygKGTjO2jLhCO+q6Yg4zvqyujun68AemcM+eJw4HqHr1lcR7D9nNSv1dG7xMFmP/R33DP6neUqcPqtDunU+wDL9G/+AA2PP9b/O/1PyFVup5lUlIaLiyjUtLlU+nHqOvjX345+nei+pyA6BCQO4DwaDkCmpGcnBz85je/wfHjx/HSSy/h6NGjeP311zF+/HjEGNS/Eo0Dn7mjm/3mdIrKy3PnKjbfsOlT/aypPmLXmSc/fwEPf/Vq1C7XdxUX3BepovwAbDvC7Bjy/TJFfZahXZKj7i2J0r0slbU+5RfRkkHl6SQ6yOTUetXnt51ar2MEWdmPVsS5dPMvUeOcQlg7Y+qqq4D775dL3hhFielyxoGnXx/TeTjOoyG6l5+Pqn++gN9e/YRi7DVbPhf/uO++6GtGFYFmHQ38Me4oh0mk/Zz9Gvmdxyq1hitwOByRFoGnnyHrRQBAF0n88XF+zmDXCbeujOMM5WfOuUH5Bty4zmaGnxRt/nRqP3nTC4MvAvLyFEYvE6A1hPttCYbFL+ZYicif2i0FAHDtyG6G+3LGOORrnf++vuQ6IVipnOfXW9/sKlbU2//2+vG2M4UBaxmVtpC+g2c/nas75LUlsyMP6lHjbiV41JTQzH2S0kWqhT+y4wBqu3RDhbS+yLjyUksidYzBtWI0a1Pn/tjeSUy563miIEosRG+xoNuLGxFDXrP/pgq3gdAKEPFimt0kLEWMjXq4M49uYiKyK0sw/Mh2+anJPy+PHj9ggOZucm4VJ6IqTzyW9x6JgNONLuXH0H37ZmPdAdXknC4J6x1PSI2anI9JQnqG9UUqIqn1KkM+GHG6GKFZIy8ZxT6/eA14rp4SuQZ5kSCN6DCj9mix9P7WbsDMAD2hEZE37SHPKeomShkPlep+vaEQtv24CwAwsK7YlnOMtb4rLauWtzFDPoU35BkaTrLE2EhWgVp/otooIq+6flhE3ueOla+f0ieeBiB+16aOk7w8Md1OSv29cNda3LlmEZKZyqte2t1LLwGcYekJB7WXQS+91HBPuCot+dot/8PQwp0Yu28TpvC/2dmz9SML7HNq1Akq0HIENCOPPvoojhw5go8++ghXXXUVvN4GqjETtuBr5NM6GN933RMuUD7+coV+dIurk+9YU667T932czbQUx7XgtXffrDpcNS9xS+1fnKHgtqZBnl5cH0rOikD3jjNrDErInX886YReYMFucelqrMPhZD26Yfag/UypubMgePee7Ht2SsVw9m58KxdY7r2YtkFsgK/lLXmV6fEA7hpw0fiH4sWac9BXARa1iNwOjUcJlJqvZUaedUajNc2/Oxn/egoS68PwCGWi0p4JCG1pLrIfIirrxavE25dKc8pGghZkSi/pRpspxPx48+N2swHitj1YAgnYtlohrxBHTvTrBnaJdl0f1qaBvtL9M+hFscrldFz/veVmWg+t1wyNNouMBJUrBdjxwIdO6JLxTHdIUn+GvF6Wry4xdLjGwIZ8icj+fnoPElUpz0SdOKoT1Ko9tch0V9jSaSO7ef0t0WV+g05A+VWDnxqqtligfWRr9CokWd12EZCdwx5EtBLrTep0WJo9jOV8Fk0VuXJEcBfP5+PQUW7cf3GT3Gd1EZFgVZ07v774f0oX2699Z+hEwAAow/+KE4FZmrd3OScXSkauEcT06ImZ3YTzrBww2Vo1QkCXOs3E0NaFmxhr5eM4nDBYQTknp6ByDW4a5f8WhaR1zTkU9MsvT+DGetMpR6hEEo3idHXlLoq/XOrUl5mbUeqPPGRFcsttwDdu2Pbz3sBAAOffMiWc4z1uS93RyIHmhF5hoaTzOFwyEKSZSpDvsrIkAcU14+cBeGKla+fE2edB8AkGq/e34ED4kL8nXfE1kDvvGNczuHxAPfea7zfSZOAKVOsHYMR3GILADKqy/Dft+7B2/95NNLnPicHeOgh4/3k5Yl1grNnA6mpyudyckRDv4UXCbfccgtS1cdGNBtJWlkwOkTVqhtFt7hot9xWUoPF0lzSEIVlOxH5vcfF++PPhyXnAndvYVHo2JB+u1KX5MQPwKH5+Zlh1dCMPeYQMDLymIHx6MdbUVguivfNGXa5/pvqtXxbvDiqTznTMHCHAqadOJgxLRvyUtZaWMMJ4WaOGyNRUCkC7e4t1nwH5zwTdV/eIamgx1jJWAgqzzH/3ewr1jEUQyG4WRnFt9+JAs4SssOH7+bAHBMGAnX+GJe8/gyMOStynDYMxdE9xXXF6bniPZN3UpgqpQMK51WXyuOY+uPniqdt6MXLQZDSmgDW7S3RHGMoGKxCK4Pi9e/2y38rxBR12HigVP5bEATc8e4m+bGV0/zQxdGBrEuGNUEP9mBQXkPpEgpFZee1FciQP9mQDKesXWJKWK3Hi5+yxbS8nIqjEUMRMJ5QJINm+JEdcIcCOJycgRdGi4vqU7koNADDxUJSnJWIvPlCg2+noYXViLyeIS8IgrWIPOP884G0NAw+thefvTkDj6/4N2LUt22tNFu/X06pZOUJ3+UOB6BK8zVT65Ym56wLRAHKwlv+FDU5H68UF3z1icirW/DUymUQJoY8n1rPGcW8GFNs0B+5Bl95RYyYOhzRNfKAPFHX9hfbh1i5VgAgWapDL68NyBkBZfNEp1TKN1/qG94q4RRm6FVKLXIgCEBJCaqPlWBPR9E4HHR0j3XnGHdsZQnJ8iJF05A3cZKxEoGyGm1DPtFIQFK6fryXiWr5dTf+Xr5+WDmCYX28GibMed114n3luuvM0+7mzAHuvz96TEyMaOR/9JH19zc7NkkxXBOHQ3zeisHD0qKPH1d2FNm/v8WNeKLlufnsnhjZoyP+evlg07GWdDrkwRGDYdy+jTjl8Hbcsu4DDCncpRh2lKnWmwibju2jL2ps5gw3JS8PwT17EZbS5T35H+g69Nh8LQjaPeBZTa+Z2J1Zxh7bt5Fxxhv5o5/6Cigs1BYRVKPT8o3XK1g0TGptJcB0bo9kF4QV+2dCw5aOI2qnTrhSxPI7/8DBUfe6T34U1yLvrjtoelwbDihLivgz+vmMs6NfKM2/7grR2RO86WaFAGmUPgwQOUeqLI/Lfl0lD9mUIxmJ8+YhyH2vbiuRdIkzJU2inuniMfDXj+V06rw84E9/AgA8vex5jCj4VX5qb0djkUoe3ji/8fUfNMf4AtbXqJFe8tpr5gwLelmje0Uy0JZsLJC1EIBIkM4IrfKiniZim7ZZvRqoqJBLXQ1pqHBuC0GG/MkEZzh5QwGkS73D13YbCiCisg7AVKSOTUgJgTpM/VFsOyg4xMtp5MFIjSlmzTJcwCZaqJGPs5RaL0XkdXpsshuwWTqUXnu0QEiQbUsr3k6tutkotNJs588HpAmad4iI/bNVKt9mNx2nE1kDROXRo2XV4nfGOWaO1yO1nhnKURF56XyZG/KSYEswrFjU+JyRmz5LpYMgiM9LQk5eqf9unTtSrw0AmDcPNVIUwGqNPFOlLz94RE6TL48T6zlTaqv0DW/VOU+UIvKVsfGK7b9m9EQ4xonMyhJkVJdac45JyAZ4bVBepJR7xWOTDXkLETXZIcDpAAAmqfU8TifieojlMrXZOfL7MIFAq63nGsScOUBNjRjFv+MO8f/aWuDvf2/c92GRQi4yD8C24q5MAzqKEO2XJK8bi28djd+Osqb8bgvpGvZmZeDDd+7D/616Parjwp+z6ywJm75y/Wm6z9VH7E6NnzPv3OeM1f19uBTq2tFzu5wSb5IuravNotqPUVrvcs5IAWBdW0Cn5dt937wVNXTx0AuixqlxqiPy0v7Z+svScWhglrVgxv9+EdXmmTYMgxmKiV5X9PqAK1NjrfL49nc+pwtV0twalY3GzhGX5cEr7gudOsn3bt5YtZO6zTIQmMOIvwYHdU7SfI0mXIs3vjwuoFEOoQcfhFKvvxiyILMFZ5uWc2vCQHudS87mBPG2F0W0EKyW32g5Qxq93ly6TrqXFWG8Rteo5/47J/LA6DeSn483v/pn1Oa/dI8OQjY3ZMifTKiiiUxVfXkfsYVEbqnG5KE3oXDb71yzSFZHv3HDf9GTF7qTRHj0YKmG/lC0KBdLrU+wklov3ZwDehF5ubVZ/SLydVxdkpWbJIBI3azaODBKs92zR/7zQtaDE6JicYZU7y5jtpDIz0f2Iw8AAAq3bBf7j3fvLhunkdR664a8V0e1nn135jXy3IKKu4ZYS7mYcEhZxwmI19CSJfCmdRTfi6XWc1GlWoup/Qw5In+gQDaySyVjOaWuUt/wVp1zRY08x0/ZYk9uRZmJmXNMIoXPFpAWKeXJ4mdPZmJvFloFsvIBPrXeFwzJixpTQx6A1xXtuGG6Aoat5xoTj0f8Hp5/Xvzf00TvK2UhKCLpLdhShiBso7qGPx40TvH0toyelhxLRg5ZOzXy91wgltsN7qI0evj0a8OWsLyauZEhb7L4Z853PaVxOSJvMH1FtcjVyITi27iZtXw7S6MtZUFKVtQ4NVH1/lJ6eaKqRlx2/FvUQpAFAcPazg4A6MK3vFOx+5hG2ReAz34W14NR509VpsbKAAKcU//9IRGdiA5+VVsy/hxJ1/3S/lwK/X8i9c68yKHbxvXLMjRCGoZ8uonGhQJOKGDmygXy32ol+8kB/TZpRgEkcV4PWxZ1BiKGPF8uMFiqrZ88IkfzNWr0zkGMz2e5lLDJ4a6TV/P/gq9evkXxdFfWDaFTJ/3fiORwGrlpZdRTGf+Y0+KflQz5kwmVUT68cCcAoDhBrP/pzbXbkNGbULjtGdWlWLLwATy17Hn8H3eTMny9RILHJQcXK1Tp9fZS641Vaa3e4GI1bm6AUinUlqqmlnFglGbbq5f85/DCnZi1/N8Yu28TZq94STkuOdl4Ys7PB668ElkHxNTKI6wH6+HDwJVXQvggH8er6hORF42/Ol1D3mKNfDCkuDZYRN4TCkRLwmRnA3l58G5cD0DsjRv88iuFkVVrQxgR4Ax5Z+Szn4gXJzFZLErL8FbV5HWQDXllOthPWeICdpj0G1NgkknBDPBSFknPy0P5KaeLx33XH633o49j2S6R31UVt5iy4iCTMzD8kdex42qWiHxzQ5F0oq3DXcNqcbLfDGl4/akVI4HRTWqjqnb68aJnxgJqfEQ+2kkfMcCNjTO5rlzQdvRbichbIbNKql3Wy5ji5g8tcbYLd6wxNbrVYncfbCnEjdc+gZL4FMU4B/9ZLWghyMEQ9XnmHNkzu4d1M8r0voLFP2isK4GowJJLqoEPchF53qkfy9rL6TkmVJ/vzXWR9w1yXQnsRHyZg4ipsfslB5Sd4AcARUCr94kCeILinMxKM045LGZfXtBJ//rTW3fW+IM4e85KXDH/O8XnNENL7I6tn60GROI+/VhzuzMctFxK2OSoNHBCMcrPFsN+J/Pna/9GVJnMagYe22sp07IpIUP+ZEJlVJ9esFXxOMroMJpQVAbNgOP7cc2Pn8MTNrnZqoiJcci1umqPbWOq1lvuI6+jDMqnLNlO/bFjHNx+u+L5Gzd9irf/8yj6Fqtq04zUukMhOR09R2rdUpiUjjBnIp+4614EQgIcDnueZbmPfCAEgVsoWBa740sXuGuIReRjg9yNUnUNeWMji8G6M5XpmLUWHQkMZshXcAIoxZIhn6ZWfeYNb1VNnl5qPRN+HFqkrFEFYOrcYqr1Nf6QfN2VS6UnyRddYNnAjKTWR84pa5kT53YathJS76OccwackNoWNltEniBOUlgGk1Ek1Ii5U4crHtsR2/vtKLHmev3/na/Ybie13qVhLADA/30YKb8zmk+dMQ7ZQNRy0lvpbw5wkVU91XpZ/d5wN0pyc6M2yWVhehlTqvlDzV+Wv2hqdKtT6+99/0escqRh3pnXKsaFHNI+tFrPaaC5hpLq1xn7n39FVz9Gr20rm0OiUDm03XJqfeQazZBaeMZK+jh2RBpZXT8Q+Uxm14maSGq9cj+2y0tU67pYqUxw/M3/xqoep8pCha6Lf6O7C735esvBMhyt8OGXwxWyw8EsQwXQLqVgGa2WlP2ZgatBkF17LWzgAojSwOmhKjdyhkOiFs/kydqvVzmceF5bMluM6FvItGxKyJA/mRg7VqHKOG7PBjklvmNNebSxaHSzNJqQbCriRurkVRF5X31U601S680i8jqp9RGhuyb+yXg8wD33GI+ZNAmYOlX/+VWrgBIxMpBZVQJnOISA041jHTrKQ44ExXPaqUOsrQgLq0EPhQVF1gLrI29mSHv4XqjcNeRzM0NeikJrXEP8uY8uw7CevQFEFheVsQkISbWFJ2RDvkw5WG14czV5rG6v3NtBXLylpaHG48X+jp0B2OvgwEj0uuTFKzOg2f+6iyKtzyjX2kdq5E0V61UkaRjykRp568dCEIR98m8fg4mDMvHm70+v1+u7piodAHac0H+9fAj2/+3iKFFLO0aMmYPdCsyA0SqbixjgxscU1bJNvZ+Qtf3wnHXxrKhtscGA2LXCKGOKmz/UeBa8amp0s7VOKCzgw42RqPOPnfsqxsUHpI4bCxZYMqZYRuR/Nkj7lNKJQ4cjBnGCv1ZXP+bJK7QFHK85Q0eETzWvsuh7kFszhqTvQxYqMykp08suZMaqXQOc2bPq1Ho7aybxBcp1HZ/Bd+OUx+UoccwP2iJ2msybB/j9imwUtk41y1ABNEQTEXGWWTpPkoH7uw3RUfmA02W5lLBZ4DRwXEIY+56+BL2LDyLRX4M+zz0lavHooXI4xbNONgDO3/OD7rjmhAz5kwmnU0wfkfCGAvjbsufR7/h+PPH5C3Cy3u9OJ/Cf/5h7cfUmJAv1uzyRXvKqiHzAfkRer77LqiGvVyMvq4FajPg2CCO17vvuM1frXrVK/tMlhJEltaA7nBxx4rBU+2ybkR7eUK7zR84Ri4ibCQFG9UKVriF/lmj4GkU0YmIc8uujVfOtO30AIMkTOc4KaVItkQz5dBaRNzK8pZKJjo88CAAoHX6GWDLx8sso6iAquSb4atCxtiKyL8CScysmxhGJhNcEEPQHZAM8efMPlj3cKRoRebafDrHWzpNWnX29VOsJgrDNoM7JeGnaaeidkViv16vFP/tmmreUUqNe1Nsz5FX13PVAnd7ME0klNt4Hs89NI/IGjo5hXVMUj+V6dg5POAS8+qrxwQDy/HF/H6UzNC7vctOXMgOspNqPu9//SXfcLFaOV1KiWBPosX6fGP3efLAMG/cWy+nErE0gAOT98pWufkyvTuK1lRqv/ExsTfWbIarzpcrqjIrIOxwIpWeIn7l3L0slZX86r7fi8e/f+AGT/vUtNh8ShZ0tRZo52LmOpNYzQ7cegmxPPQV00P79sWCC69/z9ef3Bx5QPr77biA+Hs5/vyhvkg15Cw47l1ZEPmQtwwWAbLheoCEgF+bT100M3P/7TX/z92oMuDJXx7vv4rNr++OHJyfBO/Uq49epHE7Xb/rU0rjmhAz5k43Jk0UjUeLS7avx+YI7cNHONZExixYBV5lc3IxGEIhiUb8oQ95GRF6vhykjYLP9nFrd1o4aaKOgp9b9zDO2d9W5QjTkCxMjLYUOJYvqpDk2DXm3M0a+ydcEIt9XvVLrGXl58C0RvfuxmZ0MryEW8VeXPthKrc/Ph7tXTzkbpdzbAUFHDEpZRL66zJrh7XQiddQIAMAJZ6w4Li8PRc8+D4CrlwRsO7dk5fplK1AxcIi8PfnC8ZZ70jMjnI+mM8X6DhZTbJM16uzliDyl1hNEq0atQJ5mR6CL4/UbIxkBZp1feGRBLR21eCuwW7FWebucSmwSSWcGmZlqvZH6/TPJx8wOFZ6g33oU0umEu08vxSYrkV6r6eE5FccjDywY8jw/rNokpxNv6hwxtFgLWK1oq1Nqrxus84vvJxmka3aL8+DSn4uUb6LK6nTJYncu+UsP33STODSjk6WSsjN7K9smfrX9GH4sKMfdi38EYD8izzJYmGq9v76p9YB4rqq0BQFZRN559Kj2tfPAA8Azz+CdRQ+pXhhCzMKF8kO2LrJyibjVoomIBMIsfT7JcJWzKE3G6XHL2b0Mn29UuDLX2PPOhddrYQ2jcjjduWYRrtmyDG8tfkR83mKmZVNChvzJyJw5YsQ9XdUrtmtXUU1dr1ZEjwYKRLG6PT2xOystxdjkFtCLyFs05PXa1PgstldrVOqr1j1unOIhi8gXJkYi8gWSId+1o7K22wpaveStptbrnl/pYWzHVMNryCurDytfbzm1nmt3k+yLpMWfiBdVlR1CWGwPY9HwTtXo1V40VFz0ZvftXm/nllzf/sTTKD8hKtV38NXAJYQt96SXo+kaEfkEi6KA/D4EQQBCIZSWiectddtPLV//RhCELgOybbTIMqAH19vZVo18DMuUq39Ent3bj1bWRT0nR+RNDBc+QqmlXG+qfh8KIWX2w6bHKmc1Wkyz5c+lVR0EK9HWhnKwpBrsG1vWd4y83R1WBlvkz5mfD/c5Yo/4yrBD7JAjOZwPnFCpzfNwWZ1uXuxOmn9Dp58BwPpnZlkBerht1sgzx/fnW0Vl80A9U/QBGF4TrITAGQ5Fj/P7gblzAQAdayrkzUelUkkHIr8tOxH5DQfELIWdRyNt4yIlCBbOk2TgetTXBKMVGLiNgsrhFB/w4anP/4Wz92+2XUbcVJAhf7Jy1VVAUVGraLWU5GUReZUhL024VtS13S4WkddLrRcU4/TQTa1vrhr5xmDcOCAtTX7YWTbkI9sOZXQFAHTtaF9EKU6jBZ3l9nNMtV61mLJa+sDeW70YkzMCjK4VVbubpDpRqK7c2wEn4sRofGpdFZzLv7D8W2BR6SpfUPaGF1WIC87M7tn1dm6lxImGdqk3EWWSIJ/cR9diT/pkSTSPj8hHUuvtReSDYQE1Sz5EOLcHSuvE9+x47VWWswMIgmh+rKhXWyGRy+DREX7XhEXvG1Ijz5i3IroDSFgWuzOeN/iU+oLSaMOSpdbr7mb1asQeOqC7/3tWv4On//dcZIPFNFs39/UcLqu15Bh1oR5OEZVz34x3Szx4f8h4AFCk1mt2lGHOcc4A3Z+SLTucJzjElP2rT++q/WZSVqd7+FAAQPDRWfL8G5Y1EBrnOrYi8Mrzr5URjZsvtx21nNmpicE1wYQJnUI4etz8SLq9JxyZy/90mZhqL3DfCltH2Tlfc5dHfldyar2VzycZuE51u2AeiwZuY32/TUYjlRE3FW3AKiGajFbSailRqtet2PCjIiUrklpvoUZeI02Ix2pE3uPUSP1GxPBsE4a80wm8/LL8MFtKsStMikTkD/YbBgDommo/Is+i3rwx3aDUelgvXWAR/1odsTvD91epjyZxQnXFCSkAgPSqUvH8WfwtJHpd8iTEIt9F5aIhn53stbQPLVIqS6VjSxSF9LjjBWBJSCaiWh9JfbObWh/ndsq/mbKb/4DK4yfkNMCU2grL2QEEQbRd+A4V6nuvEVrK2EBElOzhiwdY3pdWej6b7+10jVML4obDguyc0HUIFBYiVqP1FOPONYsw9afl4gOrUcj8fFTP+otyW/fupvdS5w/RNcmGpKXZNuQBYP5Z1wIOBwSt6C6Lto4ZIzvH+chwWVyi7PERPv8cgImT3ulETYKYPVLTu688/8qZEjYMvXsu6Kv7nKtGO7VdD77c86Y3N0RU622Ul8ioUrR5WEQ+RquX+Z498p9MRwAA1ncVxQXDjujzaidp4yyuHIGl1ltW98/Lg+PZZ7Wfs2HgWlHZb3EaoYy4qWgDVgnRrsnPR9IrolhH5f++iKRkvf8+ao6JtVXxu3eYeqoj6rh6qvWSR9NMtd5tFpFvufQZW+TliWUSaWnIliLyR6QaeSEtDQU+8cbZrR6p9V7DiLzV1HpVez+LYoKxckSe+35CIVRL10qC0bWiSlnjFedZD9706jJb6qMxMQ5ZVI71V2eGfFZSAwz5gBg1KvN2kA355DqNRYjBsbK0+Iq6oLwgsqta73A4ZPGi4vhkWRAwwVcj9vW1mB1AEETLkHeqGEW68tQck5H68CrYdpbczDD2qyLy7J4y0Ebqv5aRzSK2ZhF5/n6nTjvme8vrGhTZ2YjRKduLwkoUMj8fuPJKeE4UK7cfPgxceaWhMe86Zl6rv3jhnyMPXn7ZkmP6smGdlRs6ieuFGEH1ufl04jVrZOd4DHcefU5J8E4QEKoU5y2zdO/NB8sAAP/6KhIFZ/OWnXKCvvu26j7nPnTQltP5vglKp0BE7K4ephOXot2Z1y8A5NI+190zor+rXpEaco+GMymscW6sOD4mDRe/77P7coZ8PUoHYsaP137ChoFrxxHXorSS4KeatnL6iPaIlJKVWCyKoDD1cBQUAFOmoObXHQCA+Idnmqbwukza3DAD3zwizxYe2qnbZqrsrY6SEnnSOJwkKsAW14VRG3bAAQGd69GfmEXkeUM+olpvzZBXO0qsZkx4XaxGXnpvqc9txc69AIDkB+/Tv1ZUKWt8jfxxKSKfVlMGZGQYHoMapt5+QhKBOyql1mcl16/3MwAkJ4vGe1lcotzrPqWuMnqgQboe36qOidVV20ytB4DOMeJrjyR1QnFCKgCgU3VZZEBrajNDEISCJ68Ygjd+dzqe0GkPZhc70VGWWq/uAR+0k8IrccHAzKhtbD9m7bb4e6H6+Pm0tTNqpAAAXL1JREFUe12xu7Fj4exiki7vdALvv29uwIRCwC23iC/Rcw7ccouuY9SVFX0eeKZt+hQjC7aKGkgffGDZoFLXlzsSE4ElS3BWxSHlQD6dmHMku7ha6Tp3RFRRrv+2eN307BTRY7CdWh8Koeatd3SfdoVDtpzOQdU6JSCtO+plyANyivYnXzyNYUd2yJurPWJAJeb886Jfw/Wg5yPyjJCGFWzF8bHlUBkAURCQwdbPdtT9GyOY3iYi8q2YNmaVEO0Grl6Z1SrzvTUBoMYjRjTjA3WmKbxymxsdQ95u+zlfQC8i30Z+Muz8AsgtFfvAFndIRXlsAg5KQnfZ1aXwOOzX27FSB2VqvXh+TFPrZdV5ndIFE0eJl6+R54TrmBMoqa5K/1pRpbYlS9ddBZ9aX1MG3HijLa89q5MvrRYN3sJGiMinDhDb6JTFJaLMmygdLxeRtyAk43bGyAY7ax9nV+wOALo4RKXiw0mdZIdHRvWJ6IEt2EeVaN2UlpZi2rRpSE5ORnJyMqZNm4aysjLd8YFAAH/+858xZMgQJCQkoHPnzrj++utx5MgRxbhx48bB4XAo/l199dVN/GnaFl63E+P6ZTSaUKudNTeLlKsz5ZgorRWDYeIgcb7SmrtDckTefD/pHcT7tLoFncKQ1/twTidi/jHP+A3ee8+aUPCqVWJLOCMMWsbFn3OW8e57niYa8YcP24qKagrF5uUh5t9iy+LT4oPR6cScIzmDc+66uLpplvptZoyf0UMUb1u9S8pSCIUQ3CYau84TJdaM79Wrcf76ZbpPu0JB607n/Hx4n1X2Fw88LCqV16tGnpGXh7QdvyDv/CFRT2n+Hrge9GpD/lhCCgSN1PqYFStMD+NAiZj19/3eyFzOSlXcNkLkCV8t137Cxhpq7tThAJqxFV07o41YJUS7g6tXTvQxg0plyLs5Q94khVduc6ObWm/NkJcjxiE9Q751pNKYwp9ff61cJ787rausWJ9TcrheUVTj1PqGdQUwc5TIYnf+oEK4TjbkfdX614pKfVQ3td5m3XdqQiS1PhgKo7hKNHwzk+vX6gkAUhLE15Z5E1Eep0qtt6GUKvejlwx5Vsefour1a0ROivg7PJCajWOSUm6n6tLogTYzGYiTh2uvvRZbtmzBsmXLsGzZMmzZsgXTpk3THV9TU4NNmzbhkUcewaZNm5Cfn4+dO3fisssuixo7ffp0FBYWyv9eeumlpvwoJz0OG8n1sgitTkTeisEQ6Xcd7aS3k3rtlHV0VMfCGfJGh+O4UtsoHnTioBj5ttqylzPQl/cZaWkcj9Nt7IQ9lJIlzoGf6vS71kGtVL6vWFyXhSQzISYzIzqdWOUcH3ZEFE6rdUlzn8OBUHIy+9MQ1scegJxpF543DwDgXP2NNWHVwkIkS+tJLWTVfTOnsxQkmPCD0ikQkMoE3EcKtF5lHacT4d69ozfrnaQ5c4D774cHymv3rkvvj5QxcMTc+SdbhvTWI+UA6hGRz89Hl+uinVcOIWxrDTVxUBZ+mT2xeVvRtSNa3JCfP38+evToAa/XixEjRmC1iWHxwgsvYMCAAYiLi0O/fv3w1ltvKZ5/5ZVXMHbsWKSmpiI1NRXjx4/H+vXrm/IjEPWBu5EmSv28K9QRed6QBwxTeF1mEXmL/T/1Ur+bvY98Q1FNVL1LxPS4PWldcShFNOS7lRfVK4rKPPe1GmJ3XhNHh0enRt5v0ZCX28/t2C07KoKOGFTHiqlpLLtD91ph6qOdOysMeUVE3mbdd6ockffjeJUPYUGMEKUn1N+QT2Zt3wYORXlH0UCWDXkbSqnMYGf1+/Ux5Pt3EM/59k495JY3nao0DHmC0GDbtm1YtmwZXn31VYwePRqjR4/GK6+8gk8//RQ7duzQfE1ycjKWL1+OKVOmoF+/fhg1ahSef/55bNy4EQcPHlSMjY+PR1ZWlvwvWTIciKaBT302g4nQRhnyNkTMjIRsg2HrEXm5FV5IPyJv5lj47E6NaPigwfUWvJL7stvAYWIRx/nrgBMnbIuQdvBqzwmGAmgq57jPJe5jQ84A2XIPnTNOHGonlUPKtAuy/upW266adAuQI9pG47hs0XS+hAyAP0Z0orjXr2uwJoyW88nw9zBnDtylyky4td2H4fdXzYrejxA2Xb9cNDhL/nvGoi0AeEPewjpX1QWIx83e10YZg51yP0JJi1olixcvxowZM/DQQw9h8+bNGDt2LC666KKoiZrx4osvYubMmZg1axa2bt2K2bNn449//CM++eQTecyqVatwzTXXYOXKlVi7di26deuGCRMm4PDhw831sQgrcDfSJB9LrVcKr8mp9X5V/1gN49Nt0q/Wdmp9VOo3E2NrI4a8aqLqVSIavbvSu+IQ6yFfdhTYtcv2rllUvNYfSfOqlqLzZiJqsSalC6Y18iwiXx7pp8pqyIFIdoeMlqMiLw94802k1or7KI5PkQ1UeeK2Ufct18jX+OW0+swkr2ndphFMQK/Mk4DyS64AACRdO8W2UmqkD7xkyNcyQ96j+xo1AwOi0b4towd2dMoFAPQ8oXE/tSDCRJx8rF27FsnJyRg5MhJ9HDVqFJKTk7FmzRrL+ykvL4fD4UBKSopi+8KFC5Geno5BgwbhvvvuQ2WlhpYEh8/nQ0VFheIfYc7yu8/GoltGoXuaDUNeup+HBaXBHJQd6+b3SDanV9RqCH3ZcAg4dRwCzFCNcZjX2vfLTIzatrXQ5vXDKchfuu0b+e93Fj2kO07NFad00X0ut/RIvURILx2mXDMwO9O0Tp1rzbU9owcA4N+jrpIdzuGevYxfr4X0nrPH3woA+Krn6dY+k5QhcMXWlZpPu8Ih864CXDajS1C+D2vF564ob7AmzNc7j0dtMztHrjivpd9MTDhsun7pkR75HddJgZVIpoyF70rVBYgnNuQn7ZxmpEWtkrlz5+Kmm27CzTffjAEDBmDevHno2rUrXnzxRc3xb7/9Nm699VZMnToVPXv2xNVXX42bbroJTz/9tDxm4cKFuP322zF8+HD0798fr7zyCsLhML788svm+liEFbiULDm1novIB2KcCEgpQ3JEnqHhTY2k1uuJ3VlbOETao6lU1dtaav3YsYqel32KRefY7rSuOJgiemK7lh8FXnnFtmc5TiMiH2kVWL/2c3JE3+T1siEfH1lQsesm3l8Ll1phV8/zfuwYeklZCjvTu+FAijiue6nK8LeQscBq5MtqAjgqG/L1j8YDEUO7vDaAE1IUPW3cmbaVUlNU9fvlkkGfEmc9It+zewZiAz5UxcZjZa/TAQD9j++PHmixdzJxclFUVIQMjbKLjIwMFBUVWdpHXV0dHnzwQVx77bVISooonV933XV47733sGrVKjzyyCP44IMPkGfi5HrqqafkWv3k5GR07arT35pQ0CczEaN6ptl6DZ+iy0fl7YjdffqTeA/+J6dmLu/HhiHPjkWvRt5M+V7cR/SYjESb9/px48SWcAByyo/Km8868GNkjEnLOL6lqBoPizrbNKRiXU4M6hz5bTG7mX1XhueYtebikRzOVssfjLoq1EpBHdPPJGUIPP2/f2o+7Q6HzEvSuDnfE1Q6j5gj2xMKNFgTRku80UqJyJf3jDMd42DrIINjnL8q0taOfceBsPXfpdG+Y4N+S+OIxqHFDHm/34+NGzdiwoQJiu0TJkzQ9dL7fD54vUoBqbi4OKxfvx6BgHaPz5qaGgQCAXTs2FH3WMhD3wJwKVlJUmp9VWw8wlL9HUurB7iIvIHAl9XUesup21ER4zaWWu90ysq4QCS1fneaKiJfUGDbYxqnoVpfE2AReWuq9XWqXsS1FvvQy4Z8dmfZEcRat7AIOwBzMbjsbPQqKYArFER5XCKqY+MREw6hW1lR1DgzWNT7RLUfRbJiff2F7oCIoV3lC8r7TEuwHkVnpOpG5K0b8q5zzsaIkn3yY2c4hIHH9kYGWBDeI9ofs2bNihKaU//bsGEDAO10YEEQTNOEAVH47uqrr0Y4HMb8+fMVz02fPh3jx4/H4MGDcfXVV2PJkiVYsWIFNm3apLu/mTNnory8XP536NAh3bFEw+BL2Zgh/+TSbaiUHL+W+1XrYCci79KrkbdiqBpgluUXhdMptoQDcErhTvz18xfw9uKHlWNMWsat3BEdzWXkbf1KucGGIZXLRWk7SQ4KOSJv9ltVH6/0mPlNzM4vywgYVBTtsInC6DPl5cHzn0WaT7lOO9U8m42b89WBgaX9xdIKVzjUYMf18K4pUdusVB/Yygo1OEb+vdh3HLRTI2+wb0WbPHLwNzktZpUUFxcjFAohM1PplcrMzNT10k+cOBGvvvoqNm7cCEEQsGHDBixYsACBQADFxcWar3nwwQfRpUsXjNfrdQjy0LcYUkpWYppY0yg4YlDlEVt2sbR6VygITzhoKvDlkQVxTFLrTaKZsbwqOgcz7BtL+bdZ6NNH/pMZ8odSslDAR+QB2x7TeDm1no/Ii3/Hm6iheznVeoGrrbKqes8cLbVBQXYElbD69mpRsMWSGNzYsfBmZ2Ls/s3ypj4lh8Rrje3DonGa3kFc8BytqJN7yGc2QLEeAJLi3PLHKCitFd/Ha/92zer3y2oD8AVDsvMlJc6GU8DpxHlnRIR5Bh7diw5+8ZjsCO8R7Ys77rgD27ZtM/w3ePBgZGVl4ejRo1GvP378eNT8ryYQCGDKlCnYt28fli9frojGa3HqqafC7XZjl0HJUGxsLJKSkhT/iKaBN+SZs/blbyJOQCsGwx/GianZ14/uHvWcnYi8U6dGXq6zt9Fyi0ejRNicvDxRIC8nB7/d8j+M3b9F3J6TY6tlHAD8Ye37iscTdq1VDrBhSP3hnIjYmEtVilBfR4dVZws7jVuzokXgojD7TDrnzx0OiyKCRlmIKgG/qHI9AO6EuAY7rgdkR993+OCIHlacX7GhoOn6hQ9KqbMvLKnWq86T4hhDIXLwNyMtHl5Ue+SNvPSPPPIILrroIowaNQputxuTJk3CjTfeCABwaiwi58yZg/feew/5+flRkXwe8tC3IHl58O7dDY90JVZ+9Anw/vuoyckFAMSxtHoTgS82CZum1ruMb4JMrE1tyLe5iDygmOzSaivQsaZcfhwb8CGj6kTUOCuwOnhWF+8PhuXzbtbWjFe159PrI6r3FiPygZDsCDrRWVzgdayVPp8VMTgpI+QyrkbxFNbX1aZx2jdLTPPffawKv0jqr3z9WX1wPvhnJNUoa33T++QCDzxgaz9yan1NAOVSin6MA0j02hOWGT8l4gi9cCeXMWVDeI9oX6Snp6N///6G/7xeL0aPHo3y8nKF6Oy6detQXl6OMWPG6O6fGfG7du3CihUrkJZmnta9detWBAIBZFMUqFXAG29vfLcfuQ9+pnjeBXMr2CPX2UePtRwthn5EPmQk5taUsHT0lSuBd98V/9+/3/a9dOyBLYrHLmak1sOQGtwlGd06ilpFheV1KK8NREoP6unoYC0CzdLG1+7hWvLpjW2gceha8x1w7rnGCvgqAb+X8v8aNcR9wfgmcVxbmZetpL13qikzXb9MHBQRu2POGtYW0kodPn+eeqg0c2LY75oc/M1Ci1kl6enpcDqdUdH3Y8eO6Xrp4+LisGDBAtTU1GD//v04ePAgcnNzkZiYiPT0dMXYv//973jyySfxxRdfYOjQoYbHQh76FsbpRJJkcFQMPw2YPBnV//sCANAhMd6SwJfLJCJvXUxNL7W+jfWRB6I8pr2LIyKSORXHEONAvSZFpi5aVScahnxkPs5ijTugFLyznFqvFsubNAklv/09AKBj71xgxQrrYnB5ebho1h3oWSHegyYyA9Wmcdo52YuUeDeCYQHf7RYXIwM1vO2WeeAB4Jln0Lkikj7pCfqRVFMBPPOMLWNeFs2r8aO4Skyv75gQa1uILzc9AU9eMQRTRnTBtMf/EFl42hDeI05OBgwYgAsvvBDTp0/H999/j++//x7Tp0/HJZdcgn79+snj+vfvjw8//BAAEAwGMXnyZGzYsAELFy5EKBRCUVERioqK4PeL1/GePXvw+OOPY8OGDdi/fz+WLl2Kq666CqeccgrOPPPMFvmshD58TS7DfeoppsrqzMBW17YDXFq8BcPDLZffqXray6n19ZvbhXqF5CWcTrEW/pprbOufMMq9HZBaEykrc1vIYDTirvMjmXzPrdhlq8WfFmH59cbj1J0Nooz5xsz+MlPA5wT8/Brt3RwDBjTs/XXITo4zHWPJyLawfrmcE0xkGat7j4vZB5bLRdh5cikdELfvWEEO/makxawSj8eDESNGYPny5Yrty5cvN/TSA4Db7UZOTg6cTicWLVqESy65BDHcTfiZZ57BX/7yFyxbtgynnXZakxw/0bgkSq1PKuvE1OYqyVDrkJpkaYLzOLXb3DCsqtZHUr9VEfm2mFqv8iyPOvSz/NQQVodWj0mxg+Q1rpbS6asl9Xq302F6ft3OGDlKU8edY+YMsCx2FwjJvWZL3lsCAEj//hvgxhuBjz+2/Fm8k/Pw8TO/xcqxcTj3r/fWyzh1OBwY3FnZ8qp/fQ15vx+YOxcAMPhoZOHbvaww0r157lxxnAX4HvfHpf72neyKM0lcO7Ib5lw1HEkXnNughSdx8rFw4UIMGTIEEyZMwIQJEzB06FC8/fbbijE7duxAebmY0VJQUID//ve/KCgowPDhw5GdnS3/Yxo6Ho8HX375JSZOnIh+/frhzjvvxIQJE7BixQrNDD2i9eE6XGDaUsypY4ADkWivlYg8S/MP6LSfs2QgQWxBdydn7Oo0ymlS+mdFxF4//f0DeH7tAvmxMxxqUKYUn/lQUu3jxAAbFpE3S61XOPElI5px/u71jZL99fGgceIfVhTwpYyJ2ief1n6+hbAiymjlHPXuFOn24wuGFA6pQ1I5nyXy8nDL9ecBAC5ICmDl2DhM+fJdMuKbkRYNL95zzz149dVXsWDBAmzbtg133303Dh48iNtuuw2AmPJ+/fXXy+N37tyJd955B7t27cL69etx9dVX45dffsGTTz4pj5kzZw4efvhhLFiwALm5ubIXv6qqqtk/H2GdJMk4ZC1mqiQxHLN2Zgx2cwvozKrMwLfc3kxP7K6ttJ9jcJ7lSb9+DU8wAGc4hCmFW+o9KbLvhAkWsbous/p4hldD8M5qRJ5F/OuOFMm9Zk/EiUZzx5pya71mVSQmxKLHxec1yDgd3SuS9tutY3z9e6LOny8vLHhD/tTD2yNjQiFxnAVS+B73P2wBAHQKVDe4By5B2KFjx4545513ZDHZd955J6qNnCAIcqlcbm4uBEHQ/DdOUvPu2rUrvv76a5SUlMDn82H37t147rnnDIVtidaFi6mCGxhURhF5lhZvpX6bOZkb0tMeAAZ1TsY9F/SVHwsWygMam7u59x9/wamI58Td3Es/a1Cm1MJ1kcw9gWsbaDeLi73OakR/6umcNpVkRMdJU/HDvzun8bO/rKj6O51IOf2UqM1Vu/c1yhzKX0dWsepwMqNrx0i75zi3U/P3ZZWrR3bHF3efjfl/vkxcS5EjtVlpUatk6tSpmDdvHh5//HEMHz4c33zzDZYuXYru3cWa18LCQkVP+VAohGeffRbDhg3DBRdcgLq6OqxZswa5ubnymPnz58Pv92Py5MkKL/7f//735v54hA2SWAqwZMizKK9Vg8hItT4YCstec/OIvLaqutxHvq20n+ORJsVeH7yDzwf78PnZHTBm3ef1nhTZd1ItG/KS08Ukms7QcpbUWTTk2fmv3bNP9qqXxIvR8I415fXqn9sYTOBayYzonlr/He2JGO/n7vkBcf46OMMhXPXzCt1xRshid8fLcPz5lwAA6Su/MK4RJAiCaAZc4ZCpQcUMwJBGCjub7q0Y4XotamWlbpuGakepi8jpuc3vOOIzA8f26QQHF6BwjTunQYbUlkNl8t8CODFAC+fnqhGRFnIsC9K0D70Ev9YTBAFwOiFIARrX6FG2P1OGSzs7MwoTsd9RPaO/39cOBBtlDr19XC/zQSocDgcevKh/g96X0SVFTOWfOChL/p4B84CX1jH1zUxUiFsSzUc9w0aNx+23347bb79d87k33nhD8XjAgAHYvHmz5ljGfnUvS6JNIBscUpusKp+1dmYMj1Pb2y5ui9ygzG40TOwuGBYQDIXl2vs2KXbHI9Xi9WiEXck18pIhz1LszerjGV6NzgByRN5j8v1Ib1HHfc3MkE9jYn78wtCgF29j0iczEQ9fPADLfz2KP51nQXVXj16Rib1b+VGsePUPCDhdyC0r1B1nROpXnwOIRbXbi8NJYi/vTtWlYtvByZOpjo0giBZD0d5Lx6BSq6fz2BGqY5FMf1A7Im+pdzbHf24djY82H8b0s3vael1jwJcSeN1OhUB0fdXltaiqi4jdWdkv377OFwwhzuO03N6PTxkPhQW4nA6EbThq1CTGOnEsaCHKbCKM6fjwQyTWBVDp7aB8gmX/NWAOtXvNya9rpO/4ulHdMGeZKPLLr50bK+pPNA9t1Coh2hus33WpZMhX202t16l/A5QTt9UaeQCo417HxO7aVI18E8Fq5KvUEXmL35VWL3m5Rt7o/ObnI/HaKQCAytjIguGE2pBn2Gyr11BuHtsTi28djZ6dOpgP1uP22xWRhy6Vx6ONeKdTHGdGKISke2fAK3V+WN1DTBGU9ycIzZ65QBAEoYmOQeWU5vaQVo28NEVbSfs+VilqhLyoEt2rbw1474wOuG9iPyTHRYuhNTW8YeuKcaBfplgzn5EYq9v1ySrn9c+Q/w6GBTmIYdeYZmumOotrJ16wkDlXwhYV77V47sbRxgOsKOCHQsBdd8EdVs6R3UuPtFj2H9B4zhreScZrUAzpkqz3EqIVQoY80Srg22QBEUPeamq9rEgbjo7I+6SbrMNhPlnzEXfe0GR/t9mIfCPSQaqF9wfD8AfDchs6s7R4RiyLyNtpP5efD0yejJSDYg/isjhx4SJAlVrP0xZbUHk8wD33GI+55x5xnBmrVyOm4BD6HRfLkw6kdgYA9CwpiIwxqxEkCIJoSkwMKr22cYC9iPzmg2UAgMNlSiEvFolszEh2U8O3gnPGOBDnceLXxyfi2z+f1+B98+nxwZCAF1aKjo+V24/rvUSme1qk7poZ45G53XjtxGcZyPX1zJCvx7JrcNdUTEhVGthJdZJWllUF/NWrgYICuENB5bGya9FKnX0TwK5lRmI9NXlYFkQwLKBcKmsF6i+IS7QMZJUQrQIWkWep9Uz0LslrzdstK9JqpFKxKL3bGWPqrY6JiSiv84Z8pP0cReT5codqXxBVUqcBq73JtXQIWL28pjNA8opDEJBaK/ZWr4xNQCDGiSpPHPwu0ahNY33kG9hrtsWZMwe4//7oBYbTKW6fM8fafg6LvV37H98nb/IEAxhydLfmOIIgiMaGNwx5zt670ZJB5TQSu2tAxFbeRz1T61sS/vMyAzje47LeNswA3qHBO0/UDhAtfjM44jxnGRQ+ZsibrJ2U78vELaXn6vn9XnKhsmvV/62U1P2tKuBLWX2usNKQT66r0hzXXPz3xyOKx2/8/gyFE8UqvLbU+xsPydsbmtVBNC9t585FtGtSE5i6tmjAl1SzntcWIo+IeOQDGl57llofa3GijqiqR6fWtznV+ibA5YyRDe4qXxBVPvE7S7TodGETOjPkg6GwLECkachLXnGA86hD7J/L0urj/HWID/gat9dsSzJnDlBTA/zjH8Add4j/19RYN+IB4LgYQRl1MNJ28NTD28TzpDGOIAiisbl4qHZm1GsfPG7JoGJGnHaNfMNao/H7bay64+aAz1S0qyZvBi/e5wtaFIzjjoU59JkTwGpZIn/+w2FB0davvo4a9alx3TLdXotZKavvcHKmYvPrS2ZpjmsIN4zubnnsAFV7W2eMo14ZJXxEXqu9I9E2aHGxO4IA+NR6v+J/q4a8W6e1DBAx5N0WvdVetxMVdUFlRN6iV/lkISHWhdpACFW+ICrrGZFnnQD4FHtNwTzO2+0Swkiqq0KFtwPK4hJRIdXKd2TR+Jwc0YhvDwJuHo9Yf1dfOnUCAJy7dwPcoQACTjfO2/uD7jiCIIjGRs/AcH+5QsyaMnG4sqhhWFO1vn6t0XisirG1JvpmdsC0Ud2R3qHxU6BTuTUXry90+fDOll7PDHL2fVlNrY9RReT577u+36/aAZA07ixgUJb1HYwdK64pOL5+6Wak8Cn6OTmNkv1nJ5tiUOckbCuskB87HY56OaLkspVQGBlJXtuvJ1oHZMgTrYJIar0Y3T0hReZTrRryzLOo4VW02kMeABAKwRsUnQi+9RuAy8YBTqdsbFJEXiTJ60RxFVDx6TJUBsSouHVDntXIixM8E7oDdDQIVN7u1NoK0ZD3JqLMK9bKp9WUi1HrP/2pbUfiG5MuXQAAKXVVeDn/CfyQMxDXb/xUdxxBEERjo5sWbbGjCDPGtOb2xoims8hxW1Lqdjgc+Mvlg5v8ffiIfC+LIq5OLsoLREobrZQuuGIcCIYFhKR/jPp+veo1ie3IvtMJPPccsJ7bxITvGin7L8HjRLU/hHP7ZZgPlshOVhrdzhiH5YxIHjm1PixgoCrKT7QdyCohWgWp6og8S62Pt5haL92QtFTr2WRk6vHMzwdyc+E9uB8AUHf3vUBuLoIf5MuTCondAcjPR/K2XwAAZc/8AxWffQ4ASNy9w9LL1e3n+B7ymrVZzCsuPZdSK3rDS+MSUZIgCd0JfjLi1XDRhHP3bsAD37wFbyigHNOWtQQIgmj1NDT1Wx3h5QnbaI2mR6S9Gs3tanpy7eSs2sDMXmeOF7mPvIUdyHoIXH08v90uZ/ZKR96pEUd1dko9os6q7D4na5lotc7ehNV/Pg8f3j4GY3qnW37N9aNzFY8FCHj6yqHokZ6Av181zPJ+nDERJ9muY5WWX0e0LujORbQKUqSIvC8YRq0/hBOSQZ+aYFPsTrOPvAWPu6SKjoICeINiDXGdywMcPgzftb+Vh530YndMPb6iBICoHl8ZK4qsJL76kvi8CRGxO/F7ifSQ1zm3zCsukVInppSVeRNRHJ8CAEjLTicjXg07bw5H9CqMbWvrWgIEQbRqGlp7LhsbGjXyQRuG/OAu2hFHZnC2pRr5puY3Q8T08/qkW7O6a2bAR8ofzF8rG/IhQRYyBBpQIx/jwNwpw/HsVcNw1/l9MKhzw9uqOf/1L3t19iZ0TPDglG6ptl6j7uZ0otqP3hkdsPK+cZisIy6pBVs3h8ICHv14q61jIFoPZMgTrYIOsS55Ij1cVivXZqUlWKsBc3Pqm2r8ckRex2DhVNEByKn1dS4PIAji/xKx331z8vbd1lCPL/UmyT3dE33VlnqqxqrE7mqttK/LywPuuw9AJCJfFpeEQynigiNnzVeWnAgnHXl5YtRAnT7fSNEEgiAIIxoakTdSrZejvRbeY/bFAwAAXdxhYNUqeZ5qi2J3TU3XjqJz/rvdxfI2q0rmasdLRJDQ3NyIvDaM/cXV8vaGdCUAgCtH5ODuC/o2aB8MZ94VYllICzrAXaqgVJ+MxHrth51vLZFoou1AhjzRKnA4HLLg3Z7joqHmdcfoR2lVRCLy0ZO93yy1nlNFB4BY2ZAXnQg+p5gV4AkGEHPeeUBu7slpNHLnKaVWjIqX8hF5X7WlnqqR1HpJ7E4y6A31B0Ih4L33AESE7YoTUnBIUpPtWnbUkhPhpCQvD9i/X4wivPtuo0YTCIIgjKhv6zD59QaGvGWhuvx8uK+YBAAQSoqBc8+V53G5F30bqpFvaphT4+CJGtuvVX9fIdnZYv19w4IgZ+rx21sDrUEUUX0+spLrJ1THAmBavy2i7UCGPNFqYIJ3e9b9BADo6BQsG2ZyjbyGZzEidqdzA1b1APUGuNR6AD7p/9iQaODj8GExDf9kM+a588Qi8mVxiShOENPC0qvLosZpIavWM7G7gIWIPOdEyCk/CgA4mJLFGfJFlpwIJy1OpxhFuOaaFo8mEARx8sAbPinxbtxxbm98cffZll/PIrmGEXkjZ4FUDhZTVCTuxyHd+6R5PLD5R+k4aTnMsBI914Ovuwa41HpLNfIRoTxeqK6xW+w1hNZgyDdWn3f2PWsFwIi2A925iFZDhlT7/OvHXwIAUg7sthz9Zqr1ghA94bMe5boReZUqupxa75YMeSkizyL1sgrLyRYB5s4Ti8gXJ6TieEIKACCzqiRqnBZ6EXlDQ55zDnQvFRdk+1I740iS2Dqtq2TcmzkRCIIgiOaDj6wGgmHcN7Ef+mZaTwVmNqVmRN6sRp4rB2MiZUcT0yAA8jwe+ugjAIC7FRhorQWtCLjV70wtTmhHkLC4SgyilFYHZEdAVitri9YaDHkAmHKa9Vp4PVxy9gSl1rdlyJAnWgf5+chZvRwAsLGLWMuWVVliOfrN94hXC97JfeT1crtUquheVWp9nVv8XzbkAXERcLJFgLnzlCUZ7b9k9kI4xglnOIS0mgox0ltcbLgbr/Rd1akj8kZlFBmR1izdy0RjfXtGDwSdLniCAWRWnYgaRxAEQbQsvN1Tn0iiC5LBXV6uqG0HeMV5nf1ymVyy2jiAH3IGiX8IAgIVVcb7OAnZLZU38owfYG1ujaqRF6xH5Bn/2XDI/LttRuZNHS7/3ZBshcZkWNeUBu+DtQQMhgSc3bdTg/dHtAyt44okTm5CIeCWW9Cl4jgAoFCKsnauOG45+s17kKMMebM+8rwqusMhq9azlPqoiDzPyRQB5s5TZ+m7OpqYBgDoVF0qLpRCIWDKFEPHS6wUeffJYnfi9+M1ishzyNF3idzSI4pFGkEQBNE64A0420ZZfj6ck68EAASLjilq2wELhjw3P8dwUcfP+p8l/x2KEecdqpGP8PGWI4rH8R6d1rAaFJXXAQB2HRXL72SxOxvnd+KgrIgIYSv4Xi4/pQvuOLc3Zl7U37yNcTOh0Y3RNrzT5aze4lruwkFZDd8x0ay0jiuSOLl54gmgpARdyo8pNnepkB5biH7z0fagqt7HVOwOUKh7K1TrwdXIBwPRrzNJI2935OUB99yDHNV3lVl5IvJAEAwdL3rt5wwN+WOR9/MG/WJNvETvkkOa4wiCIIiWhTcAbdnxUm2786jouA2xSCiXpWdqyHPzc6070gFnWd8x8t9BZsi3kkhra6TGb72EsKRaXD/99bNtADhniwVHwCndUsSxMY5WFZEHgPsm9sOt5/Rq6cOQaYyqdr7bE4t/Jaha2xGtH7pzES1LKAQ88wwAznCXGFK0WznWIPrtjHHIiwR1RD5gFpFnSOre3mumAgDqEsWeoz6XFJEPcRF5hwPo2lVMNz+ZCIWAt95Ckq8aCb6Iom1OeZFynIHjxatqP1dVFwQAdIg1MORVDpPTCn6V/x5auEt3HEEQBNE6sGyUcbXtrrA4T7DIOZ+lJyvO6+1XVTbHSJU0XuBwIJiSau/YCMsIggAmbWBFsM4ti6+FETT7bk9yvI2QGcBH5MM2ugsQrQv6yoiWZdUqoEqsx1JH5KMMeRMjjdX7BNRid1Yi8gynE97ePQEAdWefCzgcco28NyAZ8mxRMG/eyaf+vXo1cPw4HFCmuA88ti96rI7jRRa7k2rkK+vETIdEr1v/fVULsnP2bZKfGr9n3cnrWCEIgmjF8GYYm4tN4WvbJUO+KDE98ryUpRcqEw1y3fprrhyMzww45ch2eS4JXnABADIYeRIbKSrLL8WsROS3F4nfZ/6mAi4iT2aKFpcN74wxvdJw34S+9d4Hy2QNhgVZlNCOlgHROqBfCNGyrFol/5ldGRFJy6osRrKvOjIuMdHUSGMR90BQW+zOam1TLBNj69IVWLIEvnSxxZkckc/JEdPwT8Y+3Jxx3u/4Ac2/ZXQcL7Gq1PoqnxiRN1w8qHQMLvv1azyx7F94bcls9D5xWNx+MjpWCIIgWjGx3LRbURe01umFm2d4/ZONnfsrhoX8ohPYsI6alc11ioh5jTy0VZ7HQ736SPug5TDjoYsHNMp++E4DViLyFVJ23optxyI18uRg0STW5cS700fhjvP61HsfkVaBYYT2icGYmKLCk6sbUzuA7lxEq8ElhHHjhv/CIYTx51VvKJ+cONHUSGOTeTCsFrsTJwRd1XoVkfZoISAvD76n5wAAYocPA1auBPbtOzmNeEBhnF+w+3sAQGJdFU47/KtyXKdOuo4X1mau1s8i8pIh7zWJAnA6BjEQcN2Py3D+nh9ObscKQRBEayU/H/1GDVFus9JSlptnWEQeAAqSlcrpQanszTSKmJeHjG9WRF73f/8nz+ORFnbGuziZmHp610bZD2/I2zXIQ6HWVSPfHmGlDBV1QVS89z4AwPnxR5bbPhOtA1I1IFqWceOAv/5VfvjYly/j/m/eQkKgTjnutttMd+WS66sakFoPPvVbfJ1PWkd4e3QHxp1iaR/tFpbiXlCAi7d/i6S6R9C58jhS6lTtal54QdfxwlLoWUp9hZXUekZeHjBpkph6WVgoLvjGjqVIPEEQRGtCEqtzqOW1mVidkfOVzTOHD8PJOeZPxIu6NXA4gJwchOPjgcoqS0J1GSnx8LpjUBcII9y3vzxnRGqxyZJn1KdNoBYh7ru3a5BTRL7pcX6xDIBYOrrg9MvFbeGwtd8o0WqgOxfRsowbB6SlyQ8dQLQRn5YmjjPBI0Xk9cTurEbk49xKMTZWyx3bStqOtCgsxd3hgAPA2fs3o3dJgXLM/fcDV12lu4ukONF/WOkLIhwWrEfk+WMYNw645hrxfzLiCYIgWg+cWF0UVlrKcqVUMZw+9+zxtyo0aoKykJq1wzqrt5hezxuYITIYmwxFar1N50BrU61vd4RCcD/6SNTmGCFsue0z0Togy4RoWZxO4OWXjce8/LIlY00Wu9OJyFs1xFl7NNbn3CfVcrPa7pMeluKek6Pc3qkT8P77wJw5hi9PkiLvggBU1vhQeaIcAJC4fStNGgRBEG0dTqxOEwstZdk8E85Saa1wpVRh2Qi3NjczY503MP1B1q+c5vfGJhxuSEReypRoBX3k2yWrV8N5OPo3GoyRAipWfqNEq4DuXETLk5cHfPBBtGGYkyNut5jaw/fE5PFbbT8nEamRF18XichT5FdGatWHlSuBd98V/y8sFNOxTPC6nbJTpeK0Uag4WgIASLz9FqrNIgiCaOsYtIq1NS4vD6GVK5XbOI0au/XtR8prAQDf7ooI636wSTRmjpTVWtsJYUjfzA4AgO5p8YrMB7uBdVKtb2IKC+XWjjzbM3KjxhGtG/qFEK0DLcNw/35b9TluvYi8nFpvbSZhEXlmwDNRtngPGfIKGpDinuQQz2lpeTVKpLrHjOoTkdosMuYJgiDaJiatYu2MS0yIVW7g5hm7xt5PBWL217KtRVHPfbTlsKV9EMbcdFYPAEDvTh3kiLwzxmG77p5q5JuY7GxNQ77O5YkaR7RuSOyOaD0ww7CesBSsgFq1Xha7s2Zossg7q5FnhnwcGfKNQyiE5OIiHE/Oxq60bgjHOOEOBZBeXQ5AEGsgZ8wQRe2o/p0gCKJtwYnVadbJS2J1Zi1lASAj0av7nGzIN4I4m1UNHcIYZoB/s+t4JGOiHt8P1cg3MWPHwpWdFbXZ75REh238RomWhe5cRLvB3Uh95NWp9TWSQc9E8IgGsno1kqrKAAA7OnUHAGRWlkREjag2iyDaFaWlpZg2bRqSk5ORnJyMadOmoayszPA1N954IxwOh+LfqFGjFGN8Ph/+9Kc/IT09HQkJCbjssstQYFSbTTQPnFgd1EYcJ1bXUEctS91uDGOPIr+Nw9trDwAQMyOZMW41O75PRgf57x1FlQCiSyWJRsLphGtqtCjx9owekQeN8Bslmh4y5Il2A+uJGQwrIwCB+qbWByi1vkkoLERqrThJb83sBQDoXFmsOY4giLbPtddeiy1btmDZsmVYtmwZtmzZgmnTppm+7sILL0RhYaH8b+nSpYrnZ8yYgQ8//BCLFi3Ct99+i6qqKlxyySUIkWhmy8NEUbt0wbLX/ojzdq/Hp6/fqRCrayiNGbWliHzjsL+kWv6btZa1GpG/f2I/+e831uwHAKzccbzxDo6IkJ8P59//rv/8ffdR67k2AqXWE+0Gl077Ofuq9aLB7guGIQgCavxie7Q4D/1cGoXsbHQp/wYA8EPOIABAlpYhT7VZBNHm2bZtG5YtW4bvv/8eI0eOBAC88sorGD16NHbs2IF+/frpvjY2NhZZWdHpnwBQXl6O1157DW+//TbGjx8PAHjnnXfQtWtXrFixAhMnTmz8D0PYIy8PmDQJ/VevxoLCQuCO18RU3UaK8jWmIU+aao3D+f0z8dnPohP+oQ9/AQDEWPx+yJnSTBi1h2QsWgQ89RRF5NsA9Ksh2g16Ynd2+8h7uRR6XzAcichTan3jMHYsugbFiLzfJdZjZVdwhrzDAXTtSrVZBNEOWLt2LZKTk2UjHgBGjRqF5ORkrFmzxvC1q1atQkZGBvr27Yvp06fj2LFj8nMbN25EIBDAhAkT5G2dO3fG4MGDDffr8/lQUVGh+Ec0IQ0QRWVcPrwzAOD8/hmK7eW1UsS3Pob8qlWKdqdWW9gRxlw/urv895ZDZQCsfz9UD99MmLWHBKi8sQ1Bdy6i3aDXfs5nt0aeG1cXCKGGUusbl48/RtcjexWbsvmIvCBQbRZBtBOKioqQkZERtT0jIwNFRdHq4YyLLroICxcuxFdffYVnn30WP/zwA8477zz4fD55vx6PB6mpqYrXZWZmGu73qaeekmv1k5OT0bVr13p+MqK5GNUzDYCy3J6VvgHKvvC6qDqhHL5sitjuVIJsyMYhViPgYVV/gHrGNxON1R6SaBWQIU+0G+SIfFi7/ZzVPvIuZ4w88dQFwqgNkGp9oyGldHUvVU4Q3cq4hXdamqhYTxBEq2XWrFlRYnTqfxs2bAAAzdZTgiAYtqSaOnUqLr74YgwePBiXXnop/ve//2Hnzp347LPPDI/LbL8zZ85EeXm5/O/QoUMWPzHRUsRI3yefCczqrwGlUa9Jfr7Y1pSjOCEFHyf1jnoPomFoGe1Wz63V8keigRiULb62ZLalcUTrocV/NfPnz0ePHj3g9XoxYsQIrDZJ5XjhhRcwYMAAxMXFoV+/fnjrrbeixnzwwQcYOHAgYmNjMXDgQHz44YdNdfhEK8Klo1ovp9bbmCQiyvUhaj/XmEgpXb1KlGldfYsPRB6UlFBKF0G0cu644w5s27bN8N/gwYORlZWFo0ePRr3++PHjyMzMtPx+2dnZ6N69O3bt2gUAyMrKgt/vR2lpqWLcsWPHDPcbGxuLpKQkxT+idcPswDBvyXN/GqZk69QDOyDgrkvvkx9fOkRbi4GILmkwwu2Izo6wmjLvoSy85oG1h9RwsIw++BOVN7YxWtSQX7x4MWbMmIGHHnoImzdvxtixY3HRRRfh4MGDmuNffPFFzJw5E7NmzcLWrVsxe/Zs/PGPf8Qnn3wij1m7di2mTp2KadOm4ccff8S0adMwZcoUrFu3rrk+FtFCuKXJIqjXR96GkIqsXB8MoVoSu4t3k9hdg5FStTzhIDpVnZA3d6k4rjmOIIjWSXp6Ovr372/4z+v1YvTo0SgvL8f69evl165btw7l5eUYM2aM5fcrKSnBoUOHkC1FiUaMGAG3243ly5fLYwoLC/HLL7/Y2i/R+mERXb0MekNDUaceOBCjnM8v9h2u9/G1Z/pmdsAL151qbXB+PpwXjI/aXFheZ+nlWuWP757uVWgZEI0A1x7ywVWvK56SvwEqb2wztKghP3fuXNx00024+eabMWDAAMybNw9du3bFiy++qDn+7bffxq233oqpU6eiZ8+euPrqq3HTTTfh6aeflsfMmzcPF1xwAWbOnIn+/ftj5syZOP/88zFv3rxm+lRES6EndmdXtV4cK97AKuuCcj/5RC8Z8g2GS9W6YdOnAICb13+IqGUYpXQRRLtgwIABuPDCCzF9+nR8//33+P777zF9+nRccsklCsX6/v37y9lzVVVVuO+++7B27Vrs378fq1atwqWXXor09HRcccUVAIDk5GTcdNNNuPfee/Hll19i8+bN+O1vf4shQ4bIKvZE+0AzIs9hGPDlnMI3bviv/DfrmMJwFh8DEc3onmkKAWBdpPIF9xEdh4hKo0ALLUM++fbpopaBhdcTNpDaQ15ctlu5vXPnRmsPSTQPLWbI+/1+bNy4UaE4CwATJkzQVZz1+Xzwer2KbXFxcVi/fj0CAbFeau3atVH7nDhxIqnYngTotZ/zyYa8de8ii8gXV/rkbR3IkG84XErXH9f+B2vn34CHVr4WeZ5Sugii3bFw4UIMGTIEEyZMwIQJEzB06FC8/fbbijE7duxAeXk5AMDpdOLnn3/GpEmT0LdvX9xwww3o27cv1q5di8TERPk1//jHP3D55ZdjypQpOPPMMxEfH49PPvkETooktSu0aqz56LyRJgLvFJ715cvy39WxcYphTg1BRgJwWlHz58oXXHrR8xkzTCPrnuWfR21zh0PA4cOixgEZ841LXh7i1iltI8eOHWTEtzFazDIpLi5GKBSKqmUzUpydOHEiXn31VVx++eU49dRTsXHjRixYsACBQADFxcXIzs5GUVGRrX0Coort7NmzdZ8n2gYsIh/UichbVa0HIjXyx6tEQz7O7aQep40BS+maPBkOhwPZlSWR59hijFK6CKJd0bFjR7zzzjuGYwQu2hoXF4fPP49e1Kvxer14/vnn8fzzzzf4GInWi1ZEnrfdu6TEQRfmPD58GBAE9D+2D9szesDndCvfIxwWDU2aexQM7mJBQ4IrX6jxeLXHsHZm48ZpPx8Kwf3oI8CVcxSb3aGgqG/gcIjOgEmT6DtqRPyC0gnmoHPb5mhxy0TtSTVSnH3kkUdw0UUXYdSoUXC73Zg0aRJuvPFGAFB44O3sEyAV2/aCWyMiHwoLCEquezup9bIhL0XkKa2+EZFSutCli3J7Tg6ldBEEQRAK5Bp5LtmOz7I3TP3m6oHhcGB7Rg8AwIeDzlUOu/ZqSuHm+PRPZ+HxSYNw+fAu5oO58oWccoMSBSPtm9Wr4S6IXnu7QqJGEQSBeps3AVlJSseL1VaBROuhxQz59PR0OJ3OqEi5keJsXFwcFixYgJqaGuzfvx8HDx5Ebm4uEhMTkZ6eDkBUsrWzT4BUbNsLLun+E/h1G7BqFRAKydF4wG5EXhxLhnwTkZcH7N8PrFwJvPuu+P++fWTEEwRBEAoiYncR6539bWle13AeH+/QUfkegkAp3ByDuyTj+tG5iLFi2HHlC86wQfq8kfZNYSHiAtGieG71/kgIt1FRf7+Wvm+iVdFihrzH48GIESMUirMAsHz5clPFWbfbjZycHDidTixatAiXXHIJYqQ6ntGjR0ft84svviAV2/ZOfj7c/xLTKwNfLAfOPRfIzYXvo4/lIbYi8i5lRD4pzm00nKgPTqeYZnfNNeL/lNJFEARBqGAJlXwUPiRl2lm2O5jzWIegwxl5Awv13AQHp33j0jDkTzm83Vz7Jjsb3lAgarMrHIwaRzQuQ7okt/QhEA2gRVPr77nnHrz66qtYsGABtm3bhrvvvhsHDx7EbbfdBkBMeb/++uvl8Tt37sQ777yDXbt2Yf369bj66qvxyy+/4Mknn5TH3HXXXfjiiy/w9NNPY/v27Xj66aexYsUKzJgxo7k/HtFcMLXUMrGfcJC1lTl8GP6bpgMQJ3uXrfZzolF5TI7IkyFPEARBEM0NM9YFrnk8s7mdRkJ3aqw4iymF2z6sfEEQEIPozgKbu/Q3175hzgAVnqBk3JMQbpPx8+Hylj4EogG0aL7w1KlTUVJSgscffxyFhYUYPHgwli5diu7duwMQe8LyPeVDoRCeffZZ7NixA263G+eeey7WrFmD3NxcecyYMWOwaNEiPPzww3jkkUfQq1cvLF68GCNHjmzuj0c0B7xaquS5DbDJQhDgc3kA2FOsB4B4jzi+qEJM9aLUeoIgCIJofhwafeRZar2Wor0RXdxhHA5EO/UF9W4ohbvR6FlSAKCT8SDmDFiv3OwOh0gIlyAMaHHr5Pbbb8ftt9+u+dwbb7yheDxgwABs3rzZdJ+TJ0/G5MmTG+PwiNYOp5bqlkRRAjGR6LlPis57YC9NLiVe3IecWk+GPEEQBEE0O0Y18jbteFzeNRYv7I1O4Y6CUritwwIqOnSuPA7MeMJccT4vD1j/mWJTbNAPdM0RjXjS0CGIKFpctZ4gGgTnNWeiKEFuovC5RIM8VlD2ljcjWVUT3zHBU98jJAiCIAiinjBbXTMib1OcK6ZbN5M3oxRu23ABFS0cDShXiFn5FQnhEoQBFGYk2jac19wtCaUEYiKXtV/qFesxak+jgdqQT+8QW98jJAiCIAiinsSwkJMiIi/+b6tGHoBDRysnNhigFO76YrUMoT7lCnp95wmCAEAReaKto6GWGnBGDHmfWzTAYzvE29ptcrwyAp9GhjxBEARBNDtGNfIOm4a8nuHfqaZMXEssWULRX7uYlCE4mAOGyhVaJSO6p7b0IRANgAx5om3DBFLApdbHSJ50hwM+KSJvV+wuOiJPqfUEQRAE0dxo1siH2XP29lVRp1Mfv3IlpXDXFy6gAgB//fwFxdOCI6Ze5Qp9Mjo02iES+rw7fSTSEjy4f2K/lj4Uoh6QIU+0ffLygCVL4E5OAhBJp0dODvwPPQIA8NjoIQ9EG+490hMafpwEQRAEQdjCsEbeZkQ+FI5ujwZATOGmdPr6wQVU4HDgjIKtiqdDMTH1KlfonmYvk5KoH7EuJzY+cgH+eG7vlj4Uoh6QIU+0D/Ly4HpxPgAg2H+A7F33nX4GACDWpiHfq5PSE5yV5G2c4yQIgiAIwjLMWBc0VOuddkPyRNMgBVTQpQvCUH4nuacNtpzpcFbvdPnvJ64Y0qiHSBDtERK7I9oNbknQLtgxDRh3FgDAHxTz7+xG5L1uJ87snYbvdpfgvP4ZtuvwCIIgCIJoOMxWFxQRefF/mppbEXl5wKRJCH66ClhbJ2++4sqzLO/i1RtOw+5jVRjUOYnWXQRhATLkiXaDW1Kj9Ycis71PMuTt1sgDwN+vGob//FCAKafnNM4BEgRBEARhC4dBH3m7qfVaPHLJwAbvg5BwOtFl/Fhg7XJ50+m5HS2/3Ot2YnCX5KY4MoJol5AhT7QbXE5xQg+GIj3j/bIhb7+KJDs5DneN79M4B0cQBEEQhG1YRF4pdiconrOKEA4rHv/9yiGYfLpJb3nCFqkJEY2h1Hi3wUiCIBoK1cgT7QaPFJEPhvmIvKhkXx9DniAIgiCIlsUh18hHtu06VgUAiLFjyefnQ3jzLcWm1D/dBuTnN/gYCW0aI2OCIAh9yLoh2g0ullofjHjcfYH61cgTBEEQBNHyyDXy3LaZ+T8DAPYer7a2k/x8YPJkhKuV413HjgKTJ5Mx30SUVPtb+hAIol1D1g3RbnBJs32QS52rkyLyXje1lSEIgiCItgaLyO8rrlYo11smFALuugsQBNR44hRPjTnwo/jHjBniOIIgiDYEGfJEu4FF3QOc2F2tXzTq4zxkyBMEQRBEW4PPnv/kp0L7O1i9GigoAADkDz5P8ZQ7HBJz9g8dEscRBEG0IciQJ9oNLCIf4MTuagOihz2OIvIEQRAE0ebg25D9crjc/g4KLRr/VscRBEG0EsiQJ9oNrP1ckIvI15EhTxAEQRBtFj4i//I3exEK20yvz85u3HEEQRCtBDLkiXYDM+T5iDwz5L2UWk8QBEEQbQ618vmuY5X2djB2LJCTA+gpqDscQNeu4jiiUTmrd3pLHwJBtGvIkCfaDXIf+bAgC+Kw1HovqdYTBEEQRJtDbX+rWsGb43QCzz1nvPN588RxRKPy7e7ilj4EgmjXkHVDtBtYRB6ICN7V+qXUeorIEwRBEESbQx2RD9dHuT4vD1iyBI9s+I9ye04OsGSJ+DxBEEQbgwx5ot3gURjyosueauQJgiAIou2ijshX+YL121FeHm5Y+qpy2759ZMQ3IZcO69zSh0AQ7Roy5Il2g4dLn/cHRUOeVOsJgiAIou2ijsifqPbXe18uj1u5gdLpmxR3jI4uAUEQjQIZ8kS7wRnjkFvQ+YIsIi/+H0uGPEEQRItQWlqKadOmITk5GcnJyZg2bRrKysoMX+NwODT/PfPMM/KYcePGRT1/9dVXN/GnIZqdUEjxcM6y7crnV62KGkO0Dhx6AoMEQTQKZMgT7YpYKSpPEXmCIIjWwbXXXostW7Zg2bJlWLZsGbZs2YJp06YZvqawsFDxb8GCBXA4HLjyyisV46ZPn64Y99JLLzXlRyGam/x8hCZeqNi0v6RGOebcc4HcXCA/v/mOi7AEBeQJomlxtfQBEERj4nHFoNofgi8oGvB1JHZHEATRYmzbtg3Lli3D999/j5EjRwIAXnnlFYwePRo7duxAv379NF+XlZWlePzxxx/j3HPPRc+ePRXb4+Pjo8YS7YT8fGDyZIQ69TAfe/gwMHkyCde1MtRlEQRBNC4UkSfaFbEu0WD3UUSeIAiixVm7di2Sk5NlIx4ARo0aheTkZKxZs8bSPo4ePYrPPvsMN910U9RzCxcuRHp6OgYNGoT77rsPlZXGPcZ9Ph8qKioU/4hWSCgE3HUXIAgIx1hYqjIl+xkzKM2+FZGa4GnpQyCIdg1F5Il2BRO88wXDCITCCIbFyd3rJp8VQRBEc1NUVISMjIyo7RkZGSgqKrK0jzfffBOJiYnIU0Var7vuOvTo0QNZWVn45ZdfMHPmTPz4449Yvny57r6eeuopzJ49296HIJqf1auBggIAQMhhcf4WBODQIfG148Y13bERpsybOhyf/HgEfzy3V0sfCkG0a8i6IdoPoRBi/bUAAN+GTairC8hPeSkiTxAE0WjMmjVLV5CO/duwYQMAbcErQRAsC2EtWLAA1113Hbxer2L79OnTMX78eAwePBhXX301lixZghUrVmDTpk26+5o5cybKy8vlf4cOHbLxqYlmo7BQ/lMdkY/z11l+LdEyXH5KF7x24+lI9LrNBxMEUW/IkCfaB/n5QG4uYnfvAgD4738AtcNPBSD2oI110aVOEATRWNxxxx3Ytm2b4b/BgwcjKysLR48ejXr98ePHkZmZafo+q1evxo4dO3DzzTebjj311FPhdruxa9cu3TGxsbFISkpS/CNaIdnZ8p+ZlSWKpyb/ssLyawmCINozlFpPtH0kQRwIAjwhMQrvc3lQd/wIACDOYT3yQxAEQZiTnp6O9PR003GjR49GeXk51q9fjzPOOAMAsG7dOpSXl2PMmDGmr3/ttdcwYsQIDBs2zHTs1q1bEQgEkE2GXNtn7FggJwc4fBg5FccxtHAnfsruCwBwCJFhXcpVTqKuXcXXEgRBnARQmJJo23CCOAAQG/QDEA35WlcsACCuporEbwiCIFqAAQMG4MILL8T06dPx/fff4/vvv8f06dNxySWXKBTr+/fvjw8//FDx2oqKCrz//vua0fg9e/bg8ccfx4YNG7B//34sXboUV111FU455RSceeaZTf65iCbG6QSee0782+HAuL0b5KfWdRss//3h2/cpXzd3rvhagiCIkwAy5Im2DSeIA0COyPudLtS5RLVUr69WHEcQBEE0OwsXLsSQIUMwYcIETJgwAUOHDsXbb7+tGLNjxw6Ul5crti1atAiCIOCaa66J2qfH48GXX36JiRMnol+/frjzzjsxYcIErFixAk4y5NoHeXliO7kuXRSbd3TKlf/OqC5VvsZClghBEER7gVLribaNStQmNiil1js9qHWLEXlv0EfiNwRBEC1Ex44d8c477xiOEQQhatstt9yCW265RXN8165d8fXXXzfK8RGtmLw8YNIk4JFXgbCF8TTXEwRxEtHiEfn58+ejR48e8Hq9GDFiBFabRE4XLlyIYcOGIT4+HtnZ2fjd736HkhKlEMq8efPQr18/xMXFoWvXrrj77rtRV2eickq0TVS1kHJE3uWWDfm4gI/EbwiCIAiiLeJ0Aj16WBtLcz1BECcRLWrIL168GDNmzMBDDz2EzZs3Y+zYsbjoootw8OBBzfHffvstrr/+etx0003YunUr3n//ffzwww+K+rmFCxfiwQcfxGOPPYZt27bhtddew+LFizFz5szm+lhEc8IEcSQxO7lG3ulBHauRjwGJ3xAEQRBEW6VbN+PnHQ7bQncp8dQajSCItk2LGvJz587FTTfdhJtvvhkDBgzAvHnz0LVrV7z44oua47///nvk5ubizjvvRI8ePXDWWWfh1ltvlXvVAsDatWtx5pln4tprr0Vubi4mTJiAa665RjGGaEeoBHHk1HqXG7Vuseewt3dPEr8hCIIgiDaKYNR5hj03b56luX7hzSMxrGsKFt48snEOjiAIooVoMUPe7/dj48aNmDBhgmL7hAkTsGbNGs3XjBkzBgUFBVi6dCkEQcDRo0exZMkSXHzxxfKYs846Cxs3bsT69esBAHv37sXSpUsVY9T4fD5UVFQo/hFtCE4QJyJ250ZdJ7FHsTeHUu0IgiAIoq2iIaEQISdHXAPk5Vna15m90/HxH8/EoM7JjXNwBEEQLUSLid0VFxcjFAohMzNTsT0zMxNFRUWarxkzZgwWLlyIqVOnoq6uDsFgEJdddhmef/55eczVV1+N48eP46yzzoIgCAgGg/jDH/6ABx98UPdYnnrqKcyePbtxPhjRMkiCOLGvfgnsC8B37XWoHdgbWLodcW6KxhMEQRBEWyWsYcmfnhAEVq4U0+kp644giJOQFhe7c6jSpQRBiNrG+PXXX3HnnXfi0UcfxcaNG7Fs2TLs27cPt912mzxm1apVeOKJJzB//nxs2rQJ+fn5+PTTT/GXv/xF9xhmzpyJ8vJy+d+hQ4ca58MRzYvTidge3QEA/uwuqAuJEz8Z8gRBEATRdtEKyLsyM4Fx48iIJwjipKXFIvLp6elwOp1R0fdjx45FRekZTz31FM4880zcf//9AIChQ4ciISEBY8eOxV//+ldkZ2fjkUcewbRp02QBvCFDhqC6uhq33HILHnroIcTERPsuYmNjERsb28ifkGgJYiWj3RcIo9YfAgB43S3uryIIgiAIop5opda7nAZ18wRBECcBLWbheDwejBgxAsuXL1dsX758OcaMGaP5mpqamihD3Cl5YlkPWr0xgiBo9qkl2hexLvG794fCqPYHAQAJsS3mryIIgiAIooFord+cMWTIEwRxctOiFs4999yDadOm4bTTTsPo0aPx8ssv4+DBg3Kq/MyZM3H48GG89dZbAIBLL70U06dPx4svvoiJEyeisLAQM2bMwBlnnIHOnTvLY+bOnYtTTjkFI0eOxO7du/HII4/gsssuk41+ov3ikQx5XzCEap84yZMhTxAEQRBtF83UejLkCYI4yWlRC2fq1KkoKSnB448/jsLCQgwePBhLly5F9+5inXNhYaGip/yNN96IyspK/Otf/8K9996LlJQUnHfeeXj66aflMQ8//DAcDgcefvhhHD58GJ06dcKll16KJ554otk/H9H8sIi8LxCGA2JqfYKHHDgEQRAE0VbRisi7NEolCYIgTiYcAuWbR1FRUYHk5GSUl5cjKSmppQ+HsMGHmwtw9+IfMbZPOpwxDqzacRzPTB6Kq07r2tKHRhAE0SBobmp86Jy2DY5V1uGMJ75UbLt4aDZeuPbUFjoigiCIpsHOvETuTKJdEeuKiN1V+6hGniAIgiDaOhmJXnzwh9GKbZRaTxDEyQ5ZOES7wuOUUutDYQSCYQBkyBMEQRBEW8epSqWn1HqCIE52yMIh2hWxblYjH0JtQKyR7xBLNfIEQRAE0ZZRB+ApIk8QxMkOuTOJdgVLrfcHw6j2iYZ8vIf8VQRBEATRlolxKA13J/WRJwjiJIcMeaJdEWk/F6mR70Cp9QRBEATRplH3jaeIPEEQJztkyBPtCtZ+ro5LrY+n9nMEQRAE0aZRR+SpRp4giJMdugsS7QoWkS+t8cvbSOyOIAiCINo2TtWK1UWp9QRBnOSQIU+0K1hEPiyIj10xDnkbQRAEQRBtk6gaeUqtJwjiJIcsHKJdwcTuGAmxLjgcNNkTBEEQRFsmOrWe5naCIE5uyJAn2hUeVfQ9KY7S6gmCIAiirRMtdkdLWIIgTm7oLki0K9TCdkledwsdCUEQBEEQjYU6uY5q5AmCONkhQ55oV7idMfC6I5d1opci8gRBEATR1qGaeIIgCCVkyBPtjkQuCk8ReYIgCIJo+zhVIfnvdhe30JEQBEG0DsiQJ9odfBQ+kQx5giAIgmjzqIVr1+wpaaEjIQiCaB2QIU+0OxJjeUOeUusJgiAIoq1DDWgIgiCUkCFPtDsUqfVxFJEnCIIgiLaOILT0ERAEQbQuyJAn2h0duIh8EkXkCYIgWpQnnngCY8aMQXx8PFJSUiy9RhAEzJo1C507d0ZcXBzGjRuHrVu3Ksb4fD786U9/Qnp6OhISEnDZZZehoKCgCT4BQRAEQbQ+yJAn2h2pCZEofGq8pwWPhCAIgvD7/bjqqqvwhz/8wfJr5syZg7lz5+Jf//oXfvjhB2RlZeGCCy5AZWWlPGbGjBn48MMPsWjRInz77beoqqrCJZdcglAo1BQfg2hh+I40AJCRGNtCR0IQBNE6IEOeaHd0SYmT/85M8rbgkRAEQRCzZ8/G3XffjSFDhlgaLwgC5s2bh4ceegh5eXkYPHgw3nzzTdTU1ODdd98FAJSXl+O1117Ds88+i/Hjx+OUU07BO++8g59//hkrVqxoyo9DtBCJXjfSO0SM93P6dmrBoyEIgmh5yJAn2h09O3WQ/+6b1cFgJEEQBNHa2LdvH4qKijBhwgR5W2xsLM455xysWbMGALBx40YEAgHFmM6dO2Pw4MHyGC18Ph8qKioU/4i2w/SxPeS/rzi1SwseCUEQRMtDBcREu2P8gExcc0Y35KbFIyORIvIEQRBtiaKiIgBAZmamYntmZiYOHDggj/F4PEhNTY0aw16vxVNPPYXZs2c38hETzcUNY3LxU0E5BnZOwphe6S19OARBEC0KReSJdofHFYOn8obg1nN6tfShEARBtEtmzZoFh8Nh+G/Dhg0Neg9133BBEKK2qTEbM3PmTJSXl8v/Dh061KBjJJoXr9uJF647FX88t3dLHwpBEESLQxF5giAIgiBscccdd+Dqq682HJObm1uvfWdlZQEQo+7Z2dny9mPHjslR+qysLPj9fpSWliqi8seOHcOYMWN09x0bG4vYWBJJIwiCINo+ZMgTBEEQBGGL9PR0pKc3TWpzjx49kJWVheXLl+OUU04BICrff/3113j66acBACNGjIDb7cby5csxZcoUAEBhYSF++eUXzJkzp0mOiyAIgiBaE2TIEwRBEATRZBw8eBAnTpzAwYMHEQqFsGXLFgBA79690aGDKEjav39/PPXUU7jiiivgcDgwY8YMPPnkk+jTpw/69OmDJ598EvHx8bj22msBAMnJybjppptw7733Ii0tDR07dsR9992HIUOGYPz48S31UQmCIAii2SBDniAIgiCIJuPRRx/Fm2++KT9mUfaVK1di3LhxAIAdO3agvLxcHvPAAw+gtrYWt99+O0pLSzFy5Eh88cUXSExMlMf84x//gMvlwpQpU1BbW4vzzz8fb7zxBpxOZ/N8MIIgCIJoQRyCIAgtfRCtjYqKCiQnJ6O8vBxJSUktfTgEQRAEQXNTE0DnlCAIgmhN2JmXSLWeIAiCIAiCIAiCINoQZMgTBEEQBEEQBEEQRBuCDHmCIAiCIAiCIAiCaEOQIU8QBEEQBEEQBEEQbQgy5AmCIAiCIAiCIAiiDUGGPEEQBEEQBEEQBEG0IaiPvAasI19FRUULHwlBEARBiLA5ibrGNh403xMEQRCtCTtzPRnyGlRWVgIAunbt2sJHQhAEQRBKKisrkZyc3NKH0S6g+Z4gCIJojViZ6x0CufajCIfDOHLkCBITE+FwOBq0r4qKCnTt2hWHDh1CUlJSIx1h+4bOmX3onNmHzpl96JzZpzHPmSAIqKysROfOnRETQ5VxjQHN9y0LnTN70PmyD50z+9A5s09LzfUUkdcgJiYGOTk5jbrPpKQk+jHYhM6Zfeic2YfOmX3onNmnsc4ZReIbF5rvWwd0zuxB58s+dM7sQ+fMPs0915NLnyAIgiAIgiAIgiDaEGTIEwRBEARBEARBEEQbggz5JiY2NhaPPfYYYmNjW/pQ2gx0zuxD58w+dM7sQ+fMPnTOTh7ou7YPnTN70PmyD50z+9A5s09LnTMSuyMIgiAIgiAIgiCINgRF5AmCIAiCIAiCIAiiDUGGPEEQBEEQBEEQBEG0IciQJwiCIAiCIAiCIIg2BBnyBEEQBEEQBEEQBNGGIEO+EZg/fz569OgBr9eLESNGYPXq1Ybjv/76a4wYMQJerxc9e/bEv//972Y60taDnXOWn5+PCy64AJ06dUJSUhJGjx6Nzz//vBmPtnVg9zpjfPfdd3C5XBg+fHjTHmArxO458/l8eOihh9C9e3fExsaiV69eWLBgQTMdbevA7jlbuHAhhg0bhvj4eGRnZ+N3v/sdSkpKmuloW5ZvvvkGl156KTp37gyHw4GPPvrI9DV0/2/b0HxvD5rr7UNzvX1orrcPzfX2aLXzvUA0iEWLFglut1t45ZVXhF9//VW46667hISEBOHAgQOa4/fu3SvEx8cLd911l/Drr78Kr7zyiuB2u4UlS5Y085G3HHbP2V133SU8/fTTwvr164WdO3cKM2fOFNxut7Bp06ZmPvKWw+45Y5SVlQk9e/YUJkyYIAwbNqx5DraVUJ9zdtlllwkjR44Uli9fLuzbt09Yt26d8N133zXjUbcsds/Z6tWrhZiYGOG5554T9u7dK6xevVoYNGiQcPnllzfzkbcMS5cuFR566CHhgw8+EAAIH374oeF4uv+3bWi+twfN9fahud4+NNfbh+Z6+7TW+Z4M+QZyxhlnCLfddptiW//+/YUHH3xQc/wDDzwg9O/fX7Ht1ltvFUaNGtVkx9jasHvOtBg4cKAwe/bsxj60Vkt9z9nUqVOFhx9+WHjsscdOusnd7jn73//+JyQnJwslJSXNcXitErvn7JlnnhF69uyp2PbPf/5TyMnJabJjbK1Ymdjp/t+2ofneHjTX24fmevvQXG8fmusbRmua7ym1vgH4/X5s3LgREyZMUGyfMGEC1qxZo/matWvXRo2fOHEiNmzYgEAg0GTH2lqozzlTEw6HUVlZiY4dOzbFIbY66nvOXn/9dezZswePPfZYUx9iq6M+5+y///0vTjvtNMyZMwddunRB3759cd9996G2trY5DrnFqc85GzNmDAoKCrB06VIIgoCjR49iyZIluPjii5vjkNscJ/v9vy1D8709aK63D8319qG53j401zcPzXX/dzXank5CiouLEQqFkJmZqdiemZmJoqIizdcUFRVpjg8GgyguLkZ2dnaTHW9roD7nTM2zzz6L6upqTJkypSkOsdVRn3O2a9cuPPjgg1i9ejVcrpPvZ16fc7Z37158++238Hq9+PDDD1FcXIzbb78dJ06cOClq5+pzzsaMGYOFCxdi6tSpqKurQzAYxGWXXYbnn3++OQ65zXGy3//bMjTf24PmevvQXG8fmuvtQ3N989Bc93+KyDcCDodD8VgQhKhtZuO1trdn7J4zxnvvvYdZs2Zh8eLFyMjIaKrDa5VYPWehUAjXXnstZs+ejb59+zbX4bVK7Fxn4XAYDocDCxcuxBlnnIHf/OY3mDt3Lt54442TxlMP2Dtnv/76K+688048+uij2LhxI5YtW4Z9+/bhtttua45DbZPQ/b9tQ/O9PWiutw/N9fahud4+NNc3Pc1x/z/53HeNSHp6OpxOZ5QH69ixY1FeGEZWVpbmeJfLhbS0tCY71tZCfc4ZY/Hixbjpppvw/vvvY/z48U15mK0Ku+essrISGzZswObNm3HHHXcAECcuQRDgcrnwxRdf4LzzzmuWY28p6nOdZWdno0uXLkhOTpa3DRgwAIIgoKCgAH369GnSY25p6nPOnnrqKZx55pm4//77AQBDhw5FQkICxo4di7/+9a/tOuJYH072+39bhuZ7e9Bcbx+a6+1Dc719aK5vHprr/k8R+Qbg8XgwYsQILF++XLF9+fLlGDNmjOZrRo8eHTX+iy++wGmnnQa3291kx9paqM85A0Tv/I033oh33333pKvJsXvOkpKS8PPPP2PLli3yv9tuuw39+vXDli1bMHLkyOY69BajPtfZmWeeiSNHjqCqqkretnPnTsTExCAnJ6dJj7c1UJ9zVlNTg5gY5TTidDoBRDzPRIST/f7flqH53h4019uH5nr70FxvH5rrm4dmu/83qnTeSQhr4fDaa68Jv/76qzBjxgwhISFB2L9/vyAIgvDggw8K06ZNk8ezdgR333238OuvvwqvvfbaSdWORhDsn7N3331XcLlcwgsvvCAUFhbK/8rKylrqIzQ7ds+ZmpNRydbuOausrBRycnKEyZMnC1u3bhW+/vproU+fPsLNN9/cUh+h2bF7zl5//XXB5XIJ8+fPF/bs2SN8++23wmmnnSacccYZLfURmpXKykph8+bNwubNmwUAwty5c4XNmzfLLXzo/t++oPneHjTX24fmevvQXG8fmuvt01rnezLkG4EXXnhB6N69u+DxeIRTTz1V+Prrr+XnbrjhBuGcc85RjF+1apVwyimnCB6PR8jNzRVefPHFZj7ilsfOOTvnnHMEAFH/brjhhuY/8BbE7nXGczJO7oJg/5xt27ZNGD9+vBAXFyfk5OQI99xzj1BTU9PMR92y2D1n//znP4WBAwcKcXFxQnZ2tnDdddcJBQUFzXzULcPKlSsN7010/29/0HxvD5rr7UNzvX1orrcPzfX2aK3zvUMQKCeCIAiCIAiCIAiCINoKVCNPEARBEARBEARBEG0IMuQJgiAIgiAIgiAIog1BhjxBEARBEARBEARBtCHIkCcIgiAIgiAIgiCINgQZ8gRBEARBEARBEATRhiBDniAIgiAIgiAIgiDaEGTIEwRBEARBEARBEEQbggx5giAIgiAIgiAIgmhDkCFPEESTMW7cOMyYMaOlD4MgCIIgiCaE5nuCaH7IkCcIgiAIgiAIgiCINoRDEAShpQ+CIIj2x4033og333xTsW3fvn3Izc1tmQMiCIIgCKLRofmeIFoGMuQJgmgSysvLcdFFF2Hw4MF4/PHHAQCdOnWC0+ls4SMjCIIgCKKxoPmeIFoGV0sfAEEQ7ZPk5GR4PB7Ex8cjKyurpQ+HIAiCIIgmgOZ7gmgZqEaeIAiCIAiCIAiCINoQZMgTBEEQBEEQBEEQRBuCDHmCIJoMj8eDUCjU0odBEARBEEQTQvM9QTQ/ZMgTBNFk5ObmYt26ddi/fz+Ki4sRDodb+pAIgiAIgmhkaL4niOaHDHmCIJqM++67D06nEwMHDkSnTp1w8ODBlj4kgiAIgiAaGZrvCaL5ofZzBEEQBEEQBEEQBNGGoIg8QRAEQRAEQRAEQbQhyJAnCIIgCIIgCIIgiDYEGfIEQRAEQRAEQRAE0YYgQ54gCIIgCIIgCIIg2hBkyBMEQRAEQRAEQRBEG4IMeYIgCIIgCIIgCIJoQ5AhTxAEQRAEQRAEQRBtCDLkCYIgCIIgCIIgCKINQYY8QRAEQRAEQRAEQbQhyJAnCIIgCIIgCIIgiDYEGfIEQRAEQRAEQRAE0YYgQ54gCIIgCIIgCIIg2hD/D6VmkSD2Lx1zAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.scatter(t_tensor_train.numpy().flatten(),x_tensor_train.numpy().flatten(),c='r')\n", + "plt.plot(t_tensor.numpy().flatten(),x_tensor.numpy().flatten())\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(122)\n", + "plt.scatter(t_tensor_train.numpy().flatten(),vx_tensor_train.numpy().flatten(),c='r')\n", + "plt.plot(t_tensor.numpy().flatten(),vx_tensor.numpy().flatten())\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "8f2e83dc", + "metadata": {}, + "outputs": [], + "source": [ + "T = tp.spaces.R1('t') # input space (t)\n", + "State = tp.spaces.R2('state') # output space (x,vx)\n", + "X = tp.spaces.R1('x')\n", + "X2 = tp.spaces.R1('x2')\n", + "X3 = tp.spaces.R1('x3')\n", + "T2 = tp.spaces.R1('t2')\n", + "T3 = tp.spaces.R1('t3')\n", + "Vx = tp.spaces.R1('vx')\n", + "\n", + "N_hid = tp.spaces.R1('N_hid')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "439dbf28", + "metadata": {}, + "outputs": [], + "source": [ + "I = tp.domains.Interval(space=T, lower_bound=t_scale.min(), upper_bound=t_scale.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "c4c03e04", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkVklEQVR4nO3df3BU9b3/8deSbDZESRQCSZAAwaqEUn80+YKJ3wy0JYugUiuOKBq1AjXD1yLkUieIvQRs5YKUphSQFoPaKyhTKY4zN02zVklRwg8xUSsUezWCCisGMRsbmyzJ+f7hZHXdBbKYc2I+PB8zTGdPPufkc96N7tPNhrgsy7IEAABgkD49vQEAAIDuRuAAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDjxPb2BntDR0aHDhw+rX79+crlcPb0dAADQBZZlqbm5WYMHD1afPqd+jeasDJzDhw8rMzOzp7cBAADOwHvvvachQ4accs1ZGTj9+vWT9PmAkpOTu/XawWBQ1dXV8nq9crvd3XptfIE5O4M5O4M5O4dZO8OuOQcCAWVmZoaex0/lrAyczm9LJScn2xI4SUlJSk5O5h8eGzFnZzBnZzBn5zBrZ9g95668vYQ3GQMAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACM40jgrF27VllZWUpMTFROTo62b99+yvU1NTXKyclRYmKiRowYoXXr1p107dNPPy2Xy6Xrr7++m3cNAAB6K9sDZ/PmzZo7d64WLlyouro6FRQUaNKkSTp06FDU9Q0NDZo8ebIKCgpUV1en+++/X3PmzNGWLVsi1h48eFDz589XQUGB3bcBAAB6EdsDZ+XKlZoxY4Zmzpyp7OxslZeXKzMzU4888kjU9evWrdPQoUNVXl6u7OxszZw5U3fddZdWrFgRtq69vV233nqrFi9erBEjRth9GwAAoBeJt/PibW1t2rt3r0pLS8OOe71e7dixI+o5tbW18nq9YccmTpyoiooKBYNBud1uSdKSJUs0cOBAzZgx47Tf8mptbVVra2vocSAQkCQFg0EFg8GY7+tUOq/X3ddFOObsDObsDObsHGbtDLvmHMv1bA2cxsZGtbe3Ky0tLex4Wlqa/H5/1HP8fn/U9SdOnFBjY6MyMjL08ssvq6KiQvX19V3ax9KlS7V48eKI49XV1UpKSurazcTI5/PZcl2EY87OYM7OYM7OYdbO6O45t7S0dHmtrYHTyeVyhT22LCvi2OnWdx5vbm7WbbfdpvXr1ys1NbVLn3/BggUqKSkJPQ4EAsrMzJTX61VycnJXb6NLgsGgfD6fCgsLQ682ofsxZ2cwZ2cwZ+cwa2fYNefO78B0ha2Bk5qaqri4uIhXa44ePRrxKk2n9PT0qOvj4+M1YMAAvfnmm3r33Xd13XXXhT7e0dEhSYqPj9eBAwd04YUXhp3v8Xjk8XgiPpfb7bbtC9zOa+MLzNkZzNkZzNk5zNoZ3T3nWK5l65uMExISlJOTE/ESlc/nU35+ftRz8vLyItZXV1crNzdXbrdbI0eO1BtvvKH6+vrQnylTpuh73/ue6uvrlZmZadv9AACA3sH2b1GVlJSoqKhIubm5ysvL0+9//3sdOnRIxcXFkj7/9tEHH3ygP/zhD5Kk4uJirV69WiUlJZo1a5Zqa2tVUVGhp556SpKUmJio0aNHh32O8847T5IijgMAgLOT7YEzbdo0HTt2TEuWLNGRI0c0evRoVVZWatiwYZKkI0eOhP2dOFlZWaqsrNS8efO0Zs0aDR48WKtWrdLUqVPt3ioAADCEI28ynj17tmbPnh31Y48//njEsXHjxunVV1/t8vWjXQMAAJy9+F1UAADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOM4Ejhr165VVlaWEhMTlZOTo+3bt59yfU1NjXJycpSYmKgRI0Zo3bp1YR9fv369CgoKdP755+v888/XhAkTtHv3bjtvAQAA9CK2B87mzZs1d+5cLVy4UHV1dSooKNCkSZN06NChqOsbGho0efJkFRQUqK6uTvfff7/mzJmjLVu2hNZs27ZNt9xyi1588UXV1tZq6NCh8nq9+uCDD+y+HQAA0AvYHjgrV67UjBkzNHPmTGVnZ6u8vFyZmZl65JFHoq5ft26dhg4dqvLycmVnZ2vmzJm66667tGLFitCajRs3avbs2br88ss1cuRIrV+/Xh0dHfrrX/9q9+0AAIBeIN7Oi7e1tWnv3r0qLS0NO+71erVjx46o59TW1srr9YYdmzhxoioqKhQMBuV2uyPOaWlpUTAYVP/+/aNes7W1Va2traHHgUBAkhQMBhUMBmO6p9PpvF53XxfhmLMzmLMzmLNzmLUz7JpzLNezNXAaGxvV3t6utLS0sONpaWny+/1Rz/H7/VHXnzhxQo2NjcrIyIg4p7S0VBdccIEmTJgQ9ZpLly7V4sWLI45XV1crKSmpq7cTE5/PZ8t1EY45O4M5O4M5O4dZO6O759zS0tLltbYGTieXyxX22LKsiGOnWx/tuCQtX75cTz31lLZt26bExMSo11uwYIFKSkpCjwOBgDIzM+X1epWcnNzl++iKYDAon8+nwsLCqK82oXswZ2cwZ2cwZ+cwa2fYNefO78B0ha2Bk5qaqri4uIhXa44ePRrxKk2n9PT0qOvj4+M1YMCAsOMrVqzQQw89pOeff16XXnrpSffh8Xjk8Xgijrvdbtu+wO28Nr7AnJ3BnJ3BnJ3DrJ3R3XOO5Vq2vsk4ISFBOTk5ES9R+Xw+5efnRz0nLy8vYn11dbVyc3PDbuzhhx/Wgw8+qKqqKuXm5nb/5gEAQK9l+09RlZSU6NFHH9WGDRu0f/9+zZs3T4cOHVJxcbGkz799dPvtt4fWFxcX6+DBgyopKdH+/fu1YcMGVVRUaP78+aE1y5cv1wMPPKANGzZo+PDh8vv98vv9+vTTT+2+HQAA0AvY/h6cadOm6dixY1qyZImOHDmi0aNHq7KyUsOGDZMkHTlyJOzvxMnKylJlZaXmzZunNWvWaPDgwVq1apWmTp0aWrN27Vq1tbXpxhtvDPtcixYtUllZmd23BAAAvuEceZPx7NmzNXv27Kgfe/zxxyOOjRs3Tq+++upJr/fuu+92084AAICJ+F1UAADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIzjsizL6ulNOC0QCCglJUVNTU1KTk7utuv+r/9TXfPbbVo+pl337Y5Ta7ur266NcJ44izk7gDk7gzk7h1k7o3POD9fH6bn/8Kr/uQndct1Ynr8deQVn7dq1ysrKUmJionJycrR9+/ZTrq+pqVFOTo4SExM1YsQIrVu3LmLNli1bNGrUKHk8Ho0aNUpbt261a/tdklX6P5pQXtOjewAA4Jvkozbpu7/w6f/8wuf457Y9cDZv3qy5c+dq4cKFqqurU0FBgSZNmqRDhw5FXd/Q0KDJkyeroKBAdXV1uv/++zVnzhxt2bIltKa2tlbTpk1TUVGRXnvtNRUVFemmm27Srl277L6dqLJK/0dn3ctgAAB00UeftjkeObYHzsqVKzVjxgzNnDlT2dnZKi8vV2Zmph555JGo69etW6ehQ4eqvLxc2dnZmjlzpu666y6tWLEitKa8vFyFhYVasGCBRo4cqQULFugHP/iBysvL7b6dCP/r/5S4AQDgND76tE0ff9rm2OeLt/PibW1t2rt3r0pLS8OOe71e7dixI+o5tbW18nq9YccmTpyoiooKBYNBud1u1dbWat68eRFrThY4ra2tam1tDT0OBAKSpGAwqGAwGOtthbl+zTZ54r547Oljhf0v7MGcncGcncGcncOsnXGyORetf1nP3vN/z/i6sTxn2xo4jY2Nam9vV1paWtjxtLQ0+f3+qOf4/f6o60+cOKHGxkZlZGScdM3Jrrl06VItXrw44nh1dbWSkpJiuaUIv8yNfvzB3I6vdV10DXN2BnN2BnN2DrN2RuScA6qsrDzj67W0tHR5ra2B08nlCn+numVZEcdOt/6rx2O55oIFC1RSUhJ6HAgElJmZKa/X+7V/iuqKJX9R8Ev//3n6WHowt0M/f6WPWjt4h75dmLMzmLMzmLNzmLUzTjbnb6We87Vewen8DkxX2Bo4qampiouLi3hl5ejRoxGvwHRKT0+Puj4+Pl4DBgw45ZqTXdPj8cjj8UQcd7vdcrvdXb6faJ79f+Oj/vRUa4eLH0F0AHN2BnN2BnN2DrN2xlfn/N+zrvpaz7uxnGvrm4wTEhKUk5Mjny/8ndM+n0/5+flRz8nLy4tYX11drdzc3NCNnWzNya5pp2+lnyv+EQEA4NQGnpvQbX8fTlfY/lNUJSUlevTRR7Vhwwbt379f8+bN06FDh1RcXCzp828f3X777aH1xcXFOnjwoEpKSrR//35t2LBBFRUVmj9/fmjNvffeq+rqai1btkz/+Mc/tGzZMj3//POaO3eu3bcTVcN/XUPkAABwEgPPTdCeBwod/Zy2vwdn2rRpOnbsmJYsWaIjR45o9OjRqqys1LBhwyRJR44cCfs7cbKyslRZWal58+ZpzZo1Gjx4sFatWqWpU6eG1uTn5+vpp5/WAw88oJ///Oe68MILtXnzZo0dO9bu2zmphv+6JvQ3GQMAAGlggvTcfxQ6+spNJ35VQzf+qgbp8x9hq6ys1OTJk7/2+3twcszZGczZGczZOczaGXbN+Rv3qxoAAACcROAAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjGNr4Bw/flxFRUVKSUlRSkqKioqK9Mknn5zyHMuyVFZWpsGDB6tv374aP3683nzzzdDHP/74Y/30pz/VJZdcoqSkJA0dOlRz5sxRU1OTnbcCAAB6EVsDZ/r06aqvr1dVVZWqqqpUX1+voqKiU56zfPlyrVy5UqtXr9aePXuUnp6uwsJCNTc3S5IOHz6sw4cPa8WKFXrjjTf0+OOPq6qqSjNmzLDzVgAAQC8Sb9eF9+/fr6qqKu3cuVNjx46VJK1fv155eXk6cOCALrnkkohzLMtSeXm5Fi5cqBtuuEGS9MQTTygtLU2bNm3S3XffrdGjR2vLli2hcy688EL98pe/1G233aYTJ04oPj7yllpbW9Xa2hp6HAgEJEnBYFDBYLBb77vzet19XYRjzs5gzs5gzs5h1s6wa86xXM+2wKmtrVVKSkoobiTpyiuvVEpKinbs2BE1cBoaGuT3++X1ekPHPB6Pxo0bpx07dujuu++O+rmampqUnJwcNW4kaenSpVq8eHHE8erqaiUlJcV6a13i8/lsuS7CMWdnMGdnMGfnMGtndPecW1paurzWtsDx+/0aNGhQxPFBgwbJ7/ef9BxJSktLCzuelpamgwcPRj3n2LFjevDBB08aP5K0YMEClZSUhB4HAgFlZmbK6/UqOTn5tPcSi2AwKJ/Pp8LCQrnd7m69Nr7AnJ3BnJ3BnJ3DrJ1h15w7vwPTFTEHTllZWdRXQ75sz549kiSXyxXxMcuyoh7/sq9+/GTnBAIBXXPNNRo1apQWLVp00ut5PB55PJ6I426327YvcDuvjS8wZ2cwZ2cwZ+cwa2d095xjuVbMgXPPPffo5ptvPuWa4cOH6/XXX9eHH34Y8bGPPvoo4hWaTunp6ZI+fyUnIyMjdPzo0aMR5zQ3N+vqq6/Wueeeq61bt/KFCgAAQmIOnNTUVKWmpp52XV5enpqamrR7926NGTNGkrRr1y41NTUpPz8/6jlZWVlKT0+Xz+fTFVdcIUlqa2tTTU2Nli1bFloXCAQ0ceJEeTwePffcc0pMTIz1NgAAgMFs+zHx7OxsXX311Zo1a5Z27typnTt3atasWbr22mvD3mA8cuRIbd26VdLn35qaO3euHnroIW3dulV///vfdeeddyopKUnTp0+X9PkrN16vV//6179UUVGhQCAgv98vv9+v9vZ2u24HAAD0Ira9yViSNm7cqDlz5oR+KmrKlClavXp12JoDBw6E/SV99913nz777DPNnj1bx48f19ixY1VdXa1+/fpJkvbu3atdu3ZJkr71rW+FXauhoUHDhw+38Y4AAEBvYGvg9O/fX08++eQp11iWFfbY5XKprKxMZWVlUdePHz8+4hwAAIAv43dRAQAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4xA4AADAOAQOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxja+AcP35cRUVFSklJUUpKioqKivTJJ5+c8hzLslRWVqbBgwerb9++Gj9+vN58882Trp00aZJcLpeeffbZ7r8BAADQK9kaONOnT1d9fb2qqqpUVVWl+vp6FRUVnfKc5cuXa+XKlVq9erX27Nmj9PR0FRYWqrm5OWJteXm5XC6XXdsHAAC9VLxdF96/f7+qqqq0c+dOjR07VpK0fv165eXl6cCBA7rkkksizrEsS+Xl5Vq4cKFuuOEGSdITTzyhtLQ0bdq0SXfffXdo7WuvvaaVK1dqz549ysjIOOVeWltb1draGnocCAQkScFgUMFg8Gvf65d1Xq+7r4twzNkZzNkZzNk5zNoZds05luvZFji1tbVKSUkJxY0kXXnllUpJSdGOHTuiBk5DQ4P8fr+8Xm/omMfj0bhx47Rjx45Q4LS0tOiWW27R6tWrlZ6eftq9LF26VIsXL444Xl1draSkpDO5vdPy+Xy2XBfhmLMzmLMzmLNzmLUzunvOLS0tXV5rW+D4/X4NGjQo4vigQYPk9/tPeo4kpaWlhR1PS0vTwYMHQ4/nzZun/Px8/fCHP+zSXhYsWKCSkpLQ40AgoMzMTHm9XiUnJ3fpGl0VDAbl8/lUWFgot9vdrdfGF5izM5izM5izc5i1M+yac+d3YLoi5sApKyuL+mrIl+3Zs0eSor4/xrKs075v5qsf//I5zz33nF544QXV1dV1ec8ej0cejyfiuNvttu0L3M5r4wvM2RnM2RnM2TnM2hndPedYrhVz4Nxzzz26+eabT7lm+PDhev311/Xhhx9GfOyjjz6KeIWmU+e3m/x+f9j7ao4ePRo654UXXtDbb7+t8847L+zcqVOnqqCgQNu2bYvhbgAAgIliDpzU1FSlpqaedl1eXp6ampq0e/dujRkzRpK0a9cuNTU1KT8/P+o5WVlZSk9Pl8/n0xVXXCFJamtrU01NjZYtWyZJKi0t1cyZM8PO+853vqNf//rXuu6662K9HQAAYCDb3oOTnZ2tq6++WrNmzdLvfvc7SdJPfvITXXvttWFvMB45cqSWLl2qH/3oR3K5XJo7d64eeughXXTRRbrooov00EMPKSkpSdOnT5f0+as80d5YPHToUGVlZdl1OwAAoBexLXAkaePGjZozZ07op6KmTJmi1atXh605cOCAmpqaQo/vu+8+ffbZZ5o9e7aOHz+usWPHqrq6Wv369bNzqwAAwCC2Bk7//v315JNPnnKNZVlhj10ul8rKylRWVtblz/PVawAAgLMbv4sKAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwAACAcQgcAABgHAIHAAAYh8ABAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMaJ7+kN9ATLsiRJgUCg268dDAbV0tKiQCAgt9vd7dfH55izM5izM5izc5i1M+yac+fzdufz+KmclYHT3NwsScrMzOzhnQAAgFg1NzcrJSXllGtcVlcyyDAdHR06fPiw+vXrJ5fL1a3XDgQCyszM1Hvvvafk5ORuvTa+wJydwZydwZydw6ydYdecLctSc3OzBg8erD59Tv0um7PyFZw+ffpoyJAhtn6O5ORk/uFxAHN2BnN2BnN2DrN2hh1zPt0rN514kzEAADAOgQMAAIxD4HQzj8ejRYsWyePx9PRWjMacncGcncGcncOsnfFNmPNZ+SZjAABgNl7BAQAAxiFwAACAcQgcAABgHAIHAAAYh8A5A2vXrlVWVpYSExOVk5Oj7du3n3J9TU2NcnJylJiYqBEjRmjdunUO7bR3i2XOf/rTn1RYWKiBAwcqOTlZeXl5+stf/uLgbnuvWL+eO7388suKj4/X5Zdfbu8GDRHrnFtbW7Vw4UINGzZMHo9HF154oTZs2ODQbnuvWOe8ceNGXXbZZUpKSlJGRoZ+/OMf69ixYw7ttnf629/+puuuu06DBw+Wy+XSs88+e9pzeuR50EJMnn76acvtdlvr16+39u3bZ917773WOeecYx08eDDq+nfeecdKSkqy7r33Xmvfvn3W+vXrLbfbbT3zzDMO77x3iXXO9957r7Vs2TJr9+7d1ltvvWUtWLDAcrvd1quvvurwznuXWOfc6ZNPPrFGjBhheb1e67LLLnNms73Ymcx5ypQp1tixYy2fz2c1NDRYu3btsl5++WUHd937xDrn7du3W3369LF+85vfWO+88461fft269vf/rZ1/fXXO7zz3qWystJauHChtWXLFkuStXXr1lOu76nnQQInRmPGjLGKi4vDjo0cOdIqLS2Nuv6+++6zRo4cGXbs7rvvtq688krb9miCWOcczahRo6zFixd399aMcqZznjZtmvXAAw9YixYtInC6INY5//nPf7ZSUlKsY8eOObE9Y8Q654cfftgaMWJE2LFVq1ZZQ4YMsW2PpulK4PTU8yDfoopBW1ub9u7dK6/XG3bc6/Vqx44dUc+pra2NWD9x4kS98sorCgaDtu21NzuTOX9VR0eHmpub1b9/fzu2aIQznfNjjz2mt99+W4sWLbJ7i0Y4kzk/99xzys3N1fLly3XBBRfo4osv1vz58/XZZ585seVe6UzmnJ+fr/fff1+VlZWyLEsffvihnnnmGV1zzTVObPms0VPPg2flL9s8U42NjWpvb1daWlrY8bS0NPn9/qjn+P3+qOtPnDihxsZGZWRk2Lbf3upM5vxVv/rVr/Svf/1LN910kx1bNMKZzPmf//ynSktLtX37dsXH86+PrjiTOb/zzjt66aWXlJiYqK1bt6qxsVGzZ8/Wxx9/zPtwTuJM5pyfn6+NGzdq2rRp+ve//60TJ05oypQp+u1vf+vEls8aPfU8yCs4Z8DlcoU9tiwr4tjp1kc7jnCxzrnTU089pbKyMm3evFmDBg2ya3vG6Oqc29vbNX36dC1evFgXX3yxU9szRixfzx0dHXK5XNq4caPGjBmjyZMna+XKlXr88cd5Fec0Ypnzvn37NGfOHP3nf/6n9u7dq6qqKjU0NKi4uNiJrZ5VeuJ5kP8Ei0Fqaqri4uIi/mvg6NGjEXXaKT09Per6+Ph4DRgwwLa99mZnMudOmzdv1owZM/THP/5REyZMsHObvV6sc25ubtYrr7yiuro63XPPPZI+fyK2LEvx8fGqrq7W97//fUf23pucyddzRkaGLrjgAqWkpISOZWdny7Isvf/++7rooots3XNvdCZzXrp0qa666ir97Gc/kyRdeumlOuecc1RQUKBf/OIXvMLeTXrqeZBXcGKQkJCgnJwc+Xy+sOM+n0/5+flRz8nLy4tYX11drdzcXLndbtv22pudyZylz1+5ufPOO7Vp0ya+h94Fsc45OTlZb7zxhurr60N/iouLdckll6i+vl5jx451auu9ypl8PV911VU6fPiwPv3009Cxt956S3369NGQIUNs3W9vdSZzbmlpUZ8+4U+DcXFxkr54hQFfX489D9r6FmYDdf4YYkVFhbVv3z5r7ty51jnnnGO9++67lmVZVmlpqVVUVBRa3/njcfPmzbP27dtnVVRU8GPiXRDrnDdt2mTFx8dba9assY4cORL688knn/TULfQKsc75q/gpqq6Jdc7Nzc3WkCFDrBtvvNF68803rZqaGuuiiy6yZs6c2VO30CvEOufHHnvMio+Pt9auXWu9/fbb1ksvvWTl5uZaY8aM6alb6BWam5uturo6q66uzpJkrVy50qqrqwv9OP435XmQwDkDa9assYYNG2YlJCRY3/3ud62amprQx+644w5r3LhxYeu3bdtmXXHFFVZCQoI1fPhw65FHHnF4x71TLHMeN26cJSnizx133OH8xnuZWL+ev4zA6bpY57x//35rwoQJVt++fa0hQ4ZYJSUlVktLi8O77n1infOqVausUaNGWX379rUyMjKsW2+91Xr//fcd3nXv8uKLL57y37fflOdBl2XxOhwAADAL78EBAADGIXAAAIBxCBwAAGAcAgcAABiHwAEAAMYhcAAAgHEIHAAAYBwCBwAAGIfAAQAAxiFwABhl/Pjxmjt3bk9vA0API3AAAIBx+F1UAIxx55136oknngg71tDQoOHDh/fMhgD0GAIHgDGampo0adIkjR49WkuWLJEkDRw4UHFxcT28MwBOi+/pDQBAd0lJSVFCQoKSkpKUnp7e09sB0IN4Dw4AADAOgQMAAIxD4AAwSkJCgtrb23t6GwB6GIEDwCjDhw/Xrl279O6776qxsVEdHR09vSUAPYDAAWCU+fPnKy4uTqNGjdLAgQN16NChnt4SgB7Aj4kDAADj8AoOAAAwDoEDAACMQ+AAAADjEDgAAMA4BA4AADAOgQMAAIxD4AAAAOMQOAAAwDgEDgAAMA6BAwAAjEPgAAAA4/x/oB9afkpVgVoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(I, n_points=10000)\n", + "plot = tp.utils.scatter(T, domain_sampler)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "eb03940e", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(I)\n", + "fcn_layer = tp.models.FCN(input_space=T, output_space=State, hidden = (100,100,100))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "8c67a780", + "metadata": {}, + "outputs": [], + "source": [ + "model_state = tp.models.Sequential(normalization_layer, fcn_layer)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "37e305d7", + "metadata": {}, + "outputs": [], + "source": [ + "input_data = tp.spaces.Points(torch.column_stack([t_tensor]), T)\n", + "output_data = tp.spaces.Points(torch.column_stack([x_tensor,vx_tensor]), State)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "52249886", + "metadata": {}, + "outputs": [], + "source": [ + "input_data_train = tp.spaces.Points(torch.column_stack([t_tensor_train]), T)\n", + "output_data_train = tp.spaces.Points(torch.column_stack([x_tensor_train,vx_tensor_train]), State)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "4c0169f5", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "29e34b14", + "metadata": {}, + "outputs": [], + "source": [ + "data_loader = tp.utils.PointsDataLoader((input_data_train, output_data_train), batch_size=len(input_data_train),\n", + " shuffle = False,\n", + " pin_memory = True)\n", + "\n", + "\n", + "data_condition = DataCondition(module=model_state,dataloader=data_loader,\n", + " norm=2,\n", + " use_full_dataset=True,\n", + " name=\"Data_Condition\",\n", + " weight = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "b5c43a06", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid = tp.models.FCN(input_space=X*X2*X3*T*T2*T3, output_space= N_hid, hidden = (100,100))\n", + "model_hid = tp.models.Sequential(fcn_layer_hid)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "1a57d5bf", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "def hiddenPhysics(t,state):\n", + " x = state[:,0:1]\n", + " model_hid_inp = tp.spaces.Points(torch.column_stack((x,x**2,x**3,t,t**2,t**3)), X*X2*X3*T*T2*T3) #, device = 'cuda')\n", + " model_hid_out = model_hid(model_hid_inp)\n", + " \n", + " return model_hid_out.as_tensor\n", + "\n", + "\n", + "def residual_equation(t):\n", + " \n", + " state = model_state(tp.spaces.Points(t, T))\n", + " state = state.as_tensor \n", + " N_hid_out = hiddenPhysics(t,state)\n", + " \n", + " x = state[:,0:1]\n", + " vx = state[:,1:2]\n", + " grad_x_t = tp.utils.grad(x, t) \n", + " grad_vx_t = tp.utils.grad(vx, t)\n", + " \n", + " \n", + " c1 = x_c/(vx_c*t_c)\n", + " c2 = vx_c/(t_c*x_c**3) \n", + " \n", + " \n", + " res_x = c1*grad_x_t - vx\n", + " \n", + " res_vx = c2*grad_vx_t + (vx_c/x_c**3)*delta*vx + (1.0/x_c**2)*alpha*x + beta*x**3 - N_hid_out \n", + "\n", + " return torch.column_stack((res_x,res_vx))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "62821be0", + "metadata": {}, + "outputs": [], + "source": [ + "hpm_condition = HPM_EquationLoss_at_Sampler(module=model_hid,sampler=domain_sampler,\n", + " residual_fn= residual_equation)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "74c8dd05", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hpm_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "66c05fad", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 31.5 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "31.5 K Trainable params\n", + "0 Non-trainable params\n", + "31.5 K Total params\n", + "0.126 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 50000/50001 [08:08<00:00, 102.39it/s, loss=0.000831, v_num=4]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.plot(t_star_.numpy().flatten(),x_true.flatten(),label='x True')\n", + "plt.plot(t_star_.numpy().flatten(),x_pred.flatten(),label='x Pred')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('x')\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(t_star_.numpy().flatten(),abs(x_true.flatten() - x_pred.flatten()))\n", + "plt.xlabel('t')\n", + "plt.ylabel('x Error')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "1d218c21", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAYAAAF1CAYAAAB71OgRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgU5bX/v1XV2+wLywzDDoqioigogqJGEQRjNKJXjVuiJJcfyXVBk+t6NZorcQ0xV9SguMW4mxgjCriwKJsiCMgg28ywzcDsW+9V7++Pt6q6e7qqu2qme9bzeZ5+YLprebuqu6vO9z3newTGGANBEARBEARBEARBEH0SsasHQBAEQRAEQRAEQRBE10HCAEEQBEEQBEEQBEH0YUgYIAiCIAiCIAiCIIg+DAkDBEEQBEEQBEEQBNGHIWGAIAiCIAiCIAiCIPowJAwQBEEQBEEQBEEQRB+GhAGCIAiCIAiCIAiC6MOQMEAQBEEQBEEQBEEQfRgSBgiCIAiCIAiCIAiiD0PCAEEQBEEQBEEQBEH0YRxdPQC7LFq0CI8//jgqKytx4oknYuHChZg6darhspWVlbjjjjuwadMm7N69G7fccgsWLlwYt9x7772H+++/H3v37sXo0aPxv//7v/jpT3/a7v0aoSgKDh8+jJycHAiCYOs9EwRBEEQ6YIyhubkZJSUlEEWaK+godK0nCIIguhuWr/WsB/Hmm28yp9PJFi9ezHbs2MFuvfVWlpWVxSoqKgyXLysrY7fccgt75ZVX2Pjx49mtt94at8zatWuZJEnskUceYaWlpeyRRx5hDoeDrV+/vt37NeLAgQMMAD3oQQ960IMe3e5x4MAB29dkIh661tODHvSgBz266yPZtV5gjDH0ECZNmoTTTjsNzz77rP7c2LFjcdlll2HBggUJ1z3vvPMwfvz4uIyBq666Ck1NTfj444/15y666CIUFBTgjTfe6PB+NRobG5Gfn48DBw4gNzfX0joEQRAEkU6ampowdOhQNDQ0IC8vr6uH0+Ohaz1BEATR3bB6re8xpQTBYBCbNm3CXXfdFfP89OnTsXbt2nZvd926dbj99ttjnpsxY4YuILR3v4FAAIFAQP+7ubkZAJCbm0s3CwRBEES3gtLeU4N2HOlaTxAEQXQ3kl3re0xBYU1NDWRZRlFRUczzRUVFqKqqavd2q6qqEm6zvftdsGAB8vLy9MfQoUPbPUaCIAiCIAiCIAiCSBc9RhjQaKt0MMY6PNNhZZt293v33XejsbFRfxw4cKBDYyQIgiAIgiAIgiCIdNBjSgn69+8PSZLiZumPHj0aN5tvh+Li4oTbbO9+3W433G53u8dFEARBEARBEARBEJ1BjxEGXC4XJkyYgBUrVsS0ElyxYgUuvfTSdm938uTJWLFiRYzPwPLlyzFlypS07pcgCKK3IssyQqFQVw+DACBJEhwOB3kIEARBEASRkB4jDADA/Pnzcf3112PixImYPHky/vrXv2L//v2YO3cuAJ6+f+jQIbz66qv6Olu2bAEAtLS0oLq6Glu2bIHL5cIJJ5wAALj11ltxzjnn4NFHH8Wll16KDz74AJ9++im+/PJLy/slCIIgOC0tLTh48CB6UMObXk9mZiYGDRoEl8vV1UMhCIIgCKKb0qOEgauuugq1tbV46KGHUFlZiZNOOglLly7F8OHDAQCVlZXYv39/zDqnnnqq/v9Nmzbh73//O4YPH47y8nIAwJQpU/Dmm2/ivvvuw/3334/Ro0fjrbfewqRJkyzvlyAIguCZAgcPHkRmZiYGDBhAs9RdDGMMwWAQ1dXVKCsrw7HHHgtR7HHWQgRBEARBdAICo2mdTqGpqQl5eXlobGykFkYEQfRK/H4/ysrKMGLECGRkZHT1cAgVr9eLiooKjBw5Eh6PJ+Y1ujalFjqeBEEQRHfD6rWJpg4IgiCIlEKZAt0LyhIgCIIgCCIZdLdAEARBEARBEARBEH0YEgYIor1UbQeCrV09CoIgCIIgCKIdKArD5v318Ifkrh4KQXQ5JAwQRHvY+g7w3FnA36/q6pEQBNGNKC8vhyAICR8PPvhgVw+TIAiCAPDqunL8dNFa3PTy1109FILocnpUVwKC6DZsf4//W74GCLQA7uyuHQ9BEN2CoUOHorKyUv/7iSeewCeffIJPP/1Ufy47O/J7wRiDLMtwOOhyTBAE0dn8bQPvZrZ2b20Xj4Qguh7KGCCI9tB0MPL/+rKuGwdBEB3i+eefx+DBg6EoSszzP/nJT3DjjTeCMYZp06bhoosugtbEp6GhAcOGDcO9994btz1JklBcXKw/srOz4XA49L937tyJnJwcLFu2DBMnToTb7caaNWvw85//HJdddlnMtm677Tacd955+t+MMTz22GMYNWoUMjIycMopp+Ddd99N+TEhCILoK4jklUsQOiQMEER7qK/Q/7v4X19AVqjrJ0G0hTEGbzDcJQ+rnXivvPJK1NTU4IsvvtCfq6+vx7Jly3DttddCEAS88sor2LhxI55++mkAwNy5c1FUVNShkoDf/e53WLBgAUpLS3HyySdbWue+++7DSy+9hGeffRbff/89br/9dlx33XVYtWpVu8dBEATRlxFAygBBaFDuIkHYJRwEAk36n3srKrBixxFcdFJxFw6KILofvpCME/5nWZfse8dDM5DpSn6JKywsxEUXXYS///3vuOCCCwAA77zzDgoLC/W/Bw8ejOeffx7XX389jhw5gg8//BCbN2+G0+ls9/geeughXHjhhZaXb21txVNPPYXPP/8ckydPBgCMGjUKX375JZ5//nmce+657R4LQRBEX4W66xJEBMoYIAi7+Opj/ixEE5r9oS4aDEEQHeXaa6/Fe++9h0AgAAB4/fXXcfXVV0OSJH2ZK6+8EpdffjkWLFiAJ598EmPGjOnQPidOnGhr+R07dsDv9+PCCy9Edna2/nj11Vexd+/eDo2FIAiCIAiCMgYIwi6+upg/+wnNoEICgognwylhx0MzumzfVrnkkkugKAo++ugjnH766VizZg2eeuqpmGW8Xi82bdoESZKwe/fuDo8vKysr5m9RFOPKH0KhiOCoeSB89NFHGDx4cMxybre7w+MhCILoiwiUMkAQOiQMEIRdvLHCQKHQhKDFemaC6EsIgmApnb+rycjIwOWXX47XX38de/bswZgxYzBhwoSYZe644w6IooiPP/4Ys2bNwsUXX4zzzz8/ZWMYMGAAtm/fHvPcli1b9HKFE044AW63G/v376eyAYIgCIIgUk73v2MjiO6GN7alTR5acYR0AYLo0Vx77bW45JJL8P333+O6666Lee2jjz7CkiVLsG7dOpx22mm46667cOONN2Lr1q0oKChIyf7PP/98PP7443j11VcxefJk/O1vf8P27dtx6qmnAgBycnJw55134vbbb4eiKDj77LPR1NSEtWvXIjs7GzfeeGNKxkEQBNGXsGpUSxB9AfIYIAi7tPEYyBZ8oOsKQfRszj//fBQWFuKHH37Az372M/356upq3HzzzXjwwQdx2mmnAQAeeOABlJSUYO7cuSnb/4wZM3D//ffjd7/7HU4//XQ0NzfjhhtuiFnm4Ycfxv/8z/9gwYIFGDt2LGbMmIEPP/wQI0eOTNk4CIIgCILomwiMpLJOoampCXl5eWhsbERubm5XD4foCOueAZbdgxYxB9lKM3Yow/HtrA9x3ZnDu3pkBNGl+P1+lJWVYeTIkfB4PF09HEIl0Xmha1NqoeNJED2LmX9eg9JK3mmq/I8Xd/FoCCI9WL02UcYAQdgl6AUAHEUhACAbXjIfJAiCIAiCIAiix0LCAEHYJdQKAKhFPgBeSiCRqy1BEARBEESPghKnCSICCQNEn6Wq0Y+/b9gPf0i2t6KaMVCp5AEAsuCHSLoAQRAEQRAEQRA9FOpKQPRZrlm8HmU1rdh1pBkP/uRE6yuqGQOHw3mAA3ALYThYKMlKBEEQBEEQRHdCoIxPgtChjAGiz1JWwwP8d745YG9FNWOgmkXMO9xya8rGRRAE0ddZtGiRbpY4YcIErFmzJuHyq1atwoQJE+DxeDBq1Cg899xzMa8vXrwYU6dORUFBAQoKCjBt2jRs3LgxZpkHH3wQgiDEPIqLi1P+3giCIAiiO0LCANHnaQ3aLCUIcWGgBZloZW4AgEshYYAgCCIVvPXWW7jttttw7733YvPmzZg6dSpmzpyJ/fv3Gy5fVlaGWbNmYerUqdi8eTPuuece3HLLLXjvvff0ZVauXIlrrrkGX3zxBdatW4dhw4Zh+vTpOHToUMy2TjzxRFRWVuqPbdu2pfW9EgTRtZDHAEFEoFICgrBLkIsAXuZGKzKQhQAcoZYuHhRBEETv4KmnnsLNN9+MOXPmAAAWLlyIZcuW4dlnn8WCBQviln/uuecwbNgwLFy4EAAwduxYfPPNN3jiiScwe/ZsAMDrr78es87ixYvx7rvv4rPPPsMNN9ygP+9wOChLgCAIguiTUMYA0ec5scRer2lfK+9364UbPuYCAAjhQMrHRRAE0dcIBoPYtGkTpk+fHvP89OnTsXbtWsN11q1bF7f8jBkz8M033yAUMvZ/8Xq9CIVCKCwsjHl+9+7dKCkpwciRI3H11Vdj3759CccbCATQ1NQU8yAIoudAHgMEEYGEAaLPI9lsKeDVhQEPfOClBJLsS/m4CIIg+ho1NTWQZRlFRUUxzxcVFaGqqspwnaqqKsPlw+EwampqDNe56667MHjwYEybNk1/btKkSXj11VexbNkyLF68GFVVVZgyZQpqa2tNx7tgwQLk5eXpj6FDh1p9qwRBEATRrSBhgOibMIaBqAfAbKvFDtkPAPAxN/zgGQOi+hxBEERn8/Of/xyXXXZZVw8jpbT9XWYs8W+10fJGzwPAY489hjfeeAPvv/8+PB6P/vzMmTMxe/ZsjBs3DtOmTcNHH30EAHjllVdM93v33XejsbFRfxw4YNPMluj2rNpVjel/WoUtBxq6eihEGiCPAYKIQMIA0TfZ8nds9Pwatzveg82EATjU7AAvIsKAFCZhgCCICOedd57ubO92uzFmzBg88sgjkGWbZqd9jP79+0OSpLjsgKNHj8ZlBWgUFxcbLu9wONCvX7+Y55944gk88sgjWL58OU4++eSEY8nKysK4ceOwe/du02Xcbjdyc3NjHkTv4IMthzDnla9x45KN2HWkBTe8uKGrh0QQBJFWepwwkOoWRtE3b9GPiy++WF+GWhj1QtY8CQC41fE+RJsZA6LalSDaY+DAEfNUU4Ig+ia//OUvUVlZiR9++AG33HIL7rvvPjzxxBOGywaDwU4eXffE5XJhwoQJWLFiRczzK1aswJQpUwzXmTx5ctzyy5cvx8SJE+F0OvXnHn/8cTz88MP45JNPMHHixKRjCQQCKC0txaBBg9rxToiezq1vbsGnpUf1v1sC4S4cDZEuyGOAICL0KGEgHS2M3n///ZjWRNu3b4ckSbjyyitjtkUtjHoXrKEi8n87aWSMIUPgN/AB5tI9BrZVVGFfNXUm6E6s3VODB//1PWSF0gQJc55//nkMHjwYiqLEPP+Tn/wEN954IxhjmDZtGi666CL9t6KhoQHDhg3Dvffem3DbmZmZKC4uxogRI/Cb3/wGF1xwAf75z38CiKT/L1iwACUlJRgzZgwA4NChQ7jqqqtQUFCAfv364dJLL0V5ebm+TVmWMX/+fOTn56Nfv3743e9+1+tSYefPn48XXngBS5YsQWlpKW6//Xbs378fc+fOBcDT96M7CcydOxcVFRWYP38+SktLsWTJErz44ou488479WUee+wx3HfffViyZAlGjBiBqqoqVFVVoaUl8rt95513YtWqVSgrK8OGDRtwxRVXoKmpCTfeeGPnvXmi29K7vmUEQRDx9ChhILqF0dixY7Fw4UIMHToUzz77rOHy0S2Mxo4dizlz5uCmm26KmbEpLCxEcXGx/lixYgUyMzPjhAGthZH2GDBgQFrfK5FeBCWi/JfZCejliMN1AE69lCADAXy1l7IGuhM/e2EDXl5bjkc/2dnVQ+m7MMbbe3bFw2KwfOWVV6KmpgZffPGF/lx9fT2WLVuGa6+9FoIg4JVXXsHGjRvx9NNPA+CBaFFRER588EFbhyMjIyPGJf+zzz5DaWkpVqxYgX//+9/wer340Y9+hOzsbKxevRpffvklsrOzcdFFF+kZBU8++aQe+H755Zeoq6vDP/7xD1vj6O5cddVVWLhwIR566CGMHz8eq1evxtKlSzF8+HAAQGVlZcyEwMiRI7F06VKsXLkS48ePx8MPP4ynn35ab1UI8GzDYDCIK664AoMGDdIf0fcDBw8exDXXXIPjjjsOl19+OVwuF9avX6/vlyCI3kdvE1YJoiM4unoAVtFaGN11110xz7enhdGLL76IUCgUk2Ko8eKLL+Lqq69GVlZWzPNaCyO3241JkybhkUcewahRo0zHGwgEEAhEWthRC6NuRJuLgAs2UnijvAQCcMKvlhJ4EMTjn+zE9WfSDWR3YphwBF+sOYh7Zo3t6qH0TUJe4JGSrtn3PYcBV1bSxQoLC3HRRRfh73//Oy644AIAwDvvvIPCwkL978GDB+P555/H9ddfjyNHjuDDDz/E5s2bDa8hRiiKguXLl2PZsmW47bbb9OezsrLwwgsvwOXivyNLliyBKIp44YUX9PTWl156Cfn5+Vi5ciWmT5+OhQsX4u6779aD3ueeew7Lli2zfFh6CvPmzcO8efMMX3v55Zfjnjv33HPx7bffmm4vOuvCjDfffNPq8AiCIAii19FjMgY6o4XRxo0bsX37dsyZMyfmeWph1MtQPQI08gQbrQbliIgQhEMvJcgQgmjy26s/DMsKDtR5ky9ItAs3gvjAdT8+dN0LNJBTOGHOtddei/fee08Xc19//XVcffXVkCRJX+bKK6/E5ZdfjgULFuDJJ5/UU/8TsWjRImRnZ8Pj8eAnP/kJrrvuOjzwwAP66+PGjdNFAQDYtGkT9uzZg5ycHGRnZyM7OxuFhYXw+/3Yu3cvGhsbUVlZicmTJ+vrOBwOS/XyBEF0DJpY7p2QxwBBROgxGQMa6Wxh9OKLL+Kkk07CGWecEfP8zJkz9f+PGzcOkydPxujRo/HKK69g/vz5hvu9++67Y15ramoicaC7EGiO+TNPtBGch3ngEGQSGET4okoJ7PL/Xv8WK3YcwQs3TMS0E4zdton2M0w4igJBLROp3ALk0/ev03Fm8pn7rtq3RS655BIoioKPPvoIp59+OtasWYOnnnoqZhmv14tNmzZBkqSELvXRXHvttbj33nvhdrtRUlISIzQAiMtMUxQFEyZMwOuvvx63LSpfIwiCSD1USkAQEXqMMJDuFkZerxdvvvkmHnrooaRjsdrCyO12J90W0QUEYj0FTh9k42uglhIEwVOItVICt51yBJUVO44AAP66eh8JA2mgWKiL/NF4sOsG0pcRBEvp/F1NRkYGLr/8crz++uvYs2cPxowZgwkTJsQsc8cdd0AURXz88ceYNWsWLr74Ypx//vkJt5uXl4djjjnG8jhOO+00vPXWWxg4cKBp27tBgwZh/fr1OOeccwAA4XAYmzZtwmmnnWZ5PwRBEARBEG3pMaUE6WxhBABvv/02AoEArrvuuqRjoRZGPRsWiPV7GOBWTJY0QC0lCKjCgJ4xINgTBrYebLC1PGGfIqE+8oev3nxBggCf3f/oo4+wZMmSuOuA9vzrr7+OCy+8EHfddRduvPFG1Nen9nN17bXXon///rj00kuxZs0alJWVYdWqVbj11ltx8CAXt2699Vb88Y9/xD/+8Q/s3LkT8+bNQ0NDQ0rHQRAEQRBE36PHCANAeloYabz44ou47LLL4jIJAGph1Ntoaoy9mXcoNsoA2mYMaB4DNjMGalrslx70NUKygjW7q+ENtq93dDaivCN8DakZFNFrOf/881FYWIgffvgBP/vZz/Tnq6urcfPNN+PBBx/UZ+UfeOABlJSU6NeeVJGZmYnVq1dj2LBhuPzyyzF27FjcdNNN8Pl8egbBHXfcgRtuuAE///nPMXnyZOTk5OCnP/1pSsdBEATRVyCPAYKI0GNKCQDewqi2thYPPfQQKisrcdJJJ1lqYXT77bfjmWeeQUlJSVwLIwDYtWsXvvzySyxfvtxwv1oLo5qaGgwYMABnnnkmtTDqwazeXoZLov52MTvCgJoxwGJLCTztKCUgEvPE8h/w/Kp9OO+4AXj5F2ckX6ENbkTawtXUHEH/VA6O6HVIkoTDh+P9EAYMGBBXkuZwOLBhw4aE21u5cmXC142c9QFeAvfKK6+YrudwOLBw4UIsXLgw4fYJgiCI5JDHAEFE6FHCAJD6FkYAMGbMmIQ/DNTCqHfx2Za9uCRiBI71PxzEVVZXllXzQfWrEyklsJcBIIAU6mS8tq4CALDyh+p2rR8tDHy3uwIXpGRUBEEQBEEQBNH76FGlBASRCrLbtCf02PEH0LoS6B4DvJSAMga6H+6o85ojUFtIgiAIgiAIgjCDhAGizxFTew6b/gCqMBDQPQba167QF5JtLU/YgzEWkzGQ2Y52kgRBEARB9G7IY4AgIpAwQPQ5sgR/zN8eO0GjZj6oegxoXgMuhDH1WOtV7B9sOWR9n4RtZCVWGLAr3BAEQRAE0fshjwGCiEDCANHnaJsxYKuUoE27woCaMeAWQpAV6xeXqccO0P8fVmy0S+xDeIPtz6pQWKzHgF0PCIIgCIIgCILoS5AwQPQ5OlZKoLUr5OaDAfVfN4K2hIHiXI/+/0CYhIFUozAWI/hQKUHnQjMw3Qs6HwRBEARBJIOEAaLPoZUSVDPeF9xWmrnarjCoZwzwf90IQbFx8y2JkZo2P/kNpByFUSlBVyBJEgAgGCQzzu6E18vNN51OZxePhCAIontBHgMEEaHHtSskiI6iZQzUsjwMEJrgEUJJ1ohCjpgP/v4nJ+LLbxWghgsDYRsZAwyRZSljIPW0LSVwC2FADgMS/eSlE4fDgczMTFRXV8PpdEIUSXvuShhj8Hq9OHr0KPLz83XhhiCI9nHJX77EWcf0x10zj+/qoRApgjKqCCIC3SUTfQ6tXWEdywEAuBCCojCIogXVWOtKwBxwSiIuPHk48DngEBQeeFokLEcuREESBlJOW/NBAFCCrRAz8rpoRH0DQRAwaNAglJWVoaKioquHQ6jk5+ejuLi4q4dBED2ebYcase1QIwkDBEH0SkgYIPocWsZAHTRhIIywwuCyIQwE4USmJOCKSaOBz/lLIrOePh2dXUAZA6mHMQZ3G1PJoK8FHhIG0o7L5cKxxx5L5QTdBKfTSZkCBEEQBEEkhYQBos+heQzUR2UMhBUFLiuWG6r5YABO5EkCRGfERFCS2ysMkMeAEZNH9cO6fbXtWtcoY0AIeVMxLMICoijC4/EkX5AgCIJISlhW8P9e/xanDMnDb84/tquH06sgjwGCiEAFoESfo23GgBNhfPjdYWsryxHzQYcoAqIERVD1tZDf8hjkqBaF/pBiq6NBX0EQgFHCYUiwL5y09RgAACXQmqqhEQRBEESnsW5fLVbsOIInlu/q6qH0OshjgCAikDBA9C0YiwgDalcClxDG86v3WVtfyxhgTjglrjIrkhsAUFXfaHkY0R4DALBq11HL6/YVxvs34nP3nXjM+VfbF27GDDwGKGOAIAiC6IHUtVJpFkEQ6YdKCYi+RcgHSeBBZj3LBsBnli3P2OvtCh08YwBq9gDiZ6gTbkbdnwQZMiT4Q+Qz0JZprf8GAMyW1kBmgGQj209mDO423SZYgIQBgiAIIjE7q5qwdFtVVw+DIAii06GMAaJvEYykkzeCCwMuhONm8E2RI+aDDjVSlUUXAMANex4DN0kfY5t7Dq6QVllery+RozTp/w+HArbW5aUE/Hw0sQwAAAtbL/UgCIIg+iYXLVyDpz/b3dXDIDoJ8hggiAgkDBB9ixAXBrzMjXsvHQ+Amw8eavBZW1/ms9Ah8HaFAOBwZ6jbCUOxmHkgywr+2/EmMoUAfut4y8Yb6EtELtaVlQdtralEmQ82IQsAwGx4QBAEQRAE0fshjwGCiEDCANG3CPJ0ci/cEFRvAJeNEgA5pGUMOOBQ2xu63JkAALcQgmzxAiMEW/RU9yKhATWNLZbH0FfIVCLHZOfuvbbWVRQFHvX4NjESBgiCIIieC81qE4R1GGOWJ+qIWEgYIPoWqgGdj7khOHgJgFOw7npfrQbwYSbB6VC/Po5IKYFVrwKXP9ZsMNd/yPIY+gquUMTMsSTDnvGSHI6UHjSBCzdUSkAQBEEQRDQkuvQ+bliyEdP+tAohmfy77ELCANG3UD0GvHADDvsZA1DCAIAwJDhFTRjg/drtmBjWVMWmxuf4LLZL7EPkIuIH4QnbbDUY5UnQqGYMgIQBgiAIgiCioFKC3sea3TXYV92K7w83JV+YiIGEAaJvoWUMwA1BFwbClleXFC4iBOHQzQeFaGHA4gWmdPeemL/7o97yGPoEigy3EDkv1bXV9tZXRQCFCWgBPz+gUgKCIAiCIKKIntChGebeBYk+9iFhgOhbqBkDrcwDsR0ZAyKLyhjQ+uc5+XbcQshyTVN/oTHmb6Wp0vIY+gTh2C4Ey7+15xDNQtxMMgAnAoyXetgtJdhyoAH3/3M7Gr02MkoIgiAIIsVQsnv6aPZHJiHqW+2VLRLdG5IF7EPCANG3iColEPSAPoybpoywtLqglxI4IKmlBEI7SgkKheaYv7NDtZbW6zO0CeJz4LW1+qodvFQjACcCcAIA1v9gr1zjsme+wmvrK/D7f39vaz2CIAiCIAiia6GMAfuQMED0LaJKCbSMAQAYkGXtqyCySClBs5//XytJsFpKwBhDFnjg61NnszMDRxOt0vdokzGQI9gTBt7dyEs1AnDCD36MD9XUtWsoOyubky9EEARB9Hi2HGjo6iEQBNEBSAzoGCQMEH0LLWOAuSE6I8KA0CYQNUNUPQbCTEKDlmIeJQwoFsrTdlY168JAOSsGALj8lDEQQwczBjxqeUiARTIG3HZMJqOgSwxBEET3oDUQRk2Ltet1e7jsma/Stm2ie8Kir/JUs6Gzalc1Xlizr8cF2rGJu3RC7ULCANG3MDAfBAAo1urKhKiuBEMKMviTWimBEELYgjIgCECWwAPfg6w/AMAVIufUGNoINVmCvRtBTQQIwAWPh7crnDA4IzVj62UwxvDsyr34ZHtVVw+FIAgiIeMeXIaJf/iUasF7KJ9sr8Jr6yu6ehimCBRI6ty4ZCP+8FEp1u9rX7ZlV9HThIzuRo8TBhYtWoSRI0fC4/FgwoQJWLNmTcLlV61ahQkTJsDj8WDUqFF47rnnYl5/+eWXIQhC3MPvj52xtLtfopsS5TEgSQ7IkAAAomztJiO6lGBgrup2H+UxYCVjIMvlQKaaMXCY9QMAuIINVt9B36BNxoB2vKzi0oUBJ4YW8WMsyumbZerJbKqox6Of7MTcv23q6qEQBEGYoihMnw3sa23IhF4Sr8792ybc/8/t2Fvd0u5tUOeAzqWy0dfVQ7BFdMZAb/nedCY9Shh46623cNttt+Hee+/F5s2bMXXqVMycORP79+83XL6srAyzZs3C1KlTsXnzZtxzzz245ZZb8N5778Usl5ubi8rKypiHx+Np936Jbkx0VwIBkEWeZi5azBiAHMkY0InqbmDFY0BWGLLVQPeQnjHQCJDKqbPrcE3M31nwW+74AABu8PMZgBOKyM+PRMKAITUtNPNGEET35x+bD3X1ELqM3jaTXdfOjI+H/70D4x5chora1pSNhVEg2ekwxtI2s8+oALRD9Chh4KmnnsLNN9+MOXPmYOzYsVi4cCGGDh2KZ5991nD55557DsOGDcPChQsxduxYzJkzBzfddBOeeOKJmOUEQUBxcXHMoyP7JbonisKw73A1ANV8UBQgC1wYECwGjeEQXy4MKfKjZrMrgcIYMtVSgqKhxwIAJBbWRQsCaGiKNfzLFPyWRBcNrZTAz1xgEjcfFJX2CQOllb17ZsohdvxOSFEYSiubEKaZHIIg0kRHZpmJ7kV7Y8IXvyyDP6TgL5/vSd1YUrYlwiq/ePlr/OT/vrLcycsOjCwjOkSPEQaCwSA2bdqE6dOnxzw/ffp0rF271nCddevWxS0/Y8YMfPPNNwiFIkZkLS0tGD58OIYMGYIf//jH2Lx5c4f2S3RP/rnlEPYe5u7/XnggCQLCIg8aBdmaMZ0TMgBeSuB2qFkDauDpFkJQLFztFAZkg6dm+d39EGAO/oKv3vJ76e04WOz5yEIAYdmGMCBESglkVbhxUMaAIZIUuXS29yL9f1/swcw/r8EfPipN1bAIgiBMoVnBvo2Ve632QIFk+lEUhpU/VGPboca0iH2UfNsxeowwUFNTA1mWUVRUFPN8UVERqqqMTbOqqqoMlw+Hw6ip4anKxx9/PF5++WX861//whtvvAGPx4OzzjoLu3fvbvd+ASAQCKCpqSnmQXQtO6uakQkeHPqYG5IUyRiwWkrggFpKwBxwOdSvj54xELQUvPKMAT6OoJSJRmTzF0gY0NH8AAKMn59MwW/J2FFj4mBuOBiAEyG1XWHAb6+zQTSBsNzudbs7UlTuZDDcvhn/p1bsAgC8vLY8FUMiCIIgejHtSSMnU7neQThqAkJMQ+1GtGgkUG2IbXqMMKDR9iQzxhKeeKPlo58/88wzcd111+GUU07B1KlT8fbbb2PMmDH4y1/+0qH9LliwAHl5efpj6NChyd8ckXa0gNwLNyRBgCxqaeYWhAHG4BJ4gGjkMeCG1YwBhiw1YyAsZaKBZfEXSBjQ+WonryWtV0WTbPhszWYXqYd0UL98fLiDO+qGg/YMDKN56avydq/b3Ym+MAepFIAgiB5AX4sRe1t8057Tt3ZvpK1zKj0X+tpnqauRY4SB1G+fTmfH6DHCQP/+/SFJUtws/dGjR+Nm8zWKi4sNl3c4HOjXr5/hOqIo4vTTT9czBtqzXwC4++670djYqD8OHDiQ9D0S6UVAxN3eCzck0aYwoLYqBHgpgY5djwGFm+kBQMiRhQbKGIij/Ai/AahnOQCATAQQsjGbLaldJhTJDT9TSz3QfpO93Ud6b21r9A1nezMGCIIgOhO6+e/ZtCcYjzYsTGUpiRyVjZhK7wKia4jJGOjCcfRUeoww4HK5MGHCBKxYsSLm+RUrVmDKlCmG60yePDlu+eXLl2PixIlwOp2G6zDGsGXLFgwaNKjd+wUAt9uN3NzcmAfR9WilBF7mgSgIUAQe4FvyGIhaxrgrQdiSQZ4ihyAJfDlFdKGRMgbiyBS5CFOnCgNOQUY4ZH3GX+tAIIsuBMC/65rvABFLtJiVijZQ6TATIgiCIPo26fIViE5tp3K49JNufxDKAOkYPUYYAID58+fjhRdewJIlS1BaWorbb78d+/fvx9y5cwHwWfobbrhBX37u3LmoqKjA/PnzUVpaiiVLluDFF1/EnXfeqS/z+9//HsuWLcO+ffuwZcsW3HzzzdiyZYu+TSv7JXoGDEBGdCmBKEBR2xUKUdkApihmwoCaMSAELbXUY3JE9f6u0otm8Hp4BJpN1uh7aF0F6pGjP6f4rc/aax0IZNGNrKwsdZvtzxjozUZX0WLWc6v2dnh75z+5kvpMEwSRVqjevGfTnmvqGxsjLcJ7W/tGInWwGI+BLhxID8WRfJHuw1VXXYXa2lo89NBDqKysxEknnYSlS5di+PDhAIDKykrs3x/54Rg5ciSWLl2K22+/Hc888wxKSkrw9NNPY/bs2foyDQ0N+NWvfoWqqirk5eXh1FNPxerVq3HGGWdY3i/RM2CMRTIG4IYoIGI+yOxlDGiCAgDAoaWqh9BiZbY0HAlQtxz24hJHBv+DhAEdTRhoZR74mRMeIYSqmloMHjzE0vp7DtdisgCEBRfm/OgEYAWQIVgQf/ogcpRh5qvrKvDQpSd1aHsVtV6UVjbh5CH5HRwZQRBEBJICehHtOJl7jvbekr6+Sjq+06QZdowelTEAAPPmzUN5eTkCgQA2bdqEc845R3/t5ZdfxsqVK2OWP/fcc/Htt98iEAigrKwsbpb/T3/6EyoqKhAIBHD06FEsW7YMkydPtrVfomcgy4puPuhjbgiCACZybUxUrAsDMhPwv5efEnnersdAlDAQgoRW8PURpIueRnS7Qe34/PXTrZbX17oabDjQioxMnpHRkYyB3nxHGk5B6v/YQbnIgB+Xil9iAOpx5zvftWs7G8vqUN1MbSUJYNGiRRg5ciQ8Hg8mTJiANWvWJFx+1apVmDBhAjweD0aNGoXnnnsu5vXFixdj6tSpKCgoQEFBAaZNm4aNGzd2eL8E0Rn0tonP9lx1yGG+d5DuwD3WY4A+M3bpccIAQbQXh+zT/+8F9wVQ7LQrVMWDMByYemz/qA1HCQNWfvHUoJUbGApoZjxj4PCRo8nX7SOMyueCTQBOeBk/vmGfdeHEIwT19at9/MLgRBhQrLUdtFIS0luo93ZAMFERANzpeAd/di3CItefsasdZo2rd1XjP55fh8uf/arD4yF6Nm+99RZuu+023Hvvvdi8eTOmTp2KmTNnxmQERlNWVoZZs2Zh6tSp2Lx5M+655x7ccssteO+99/RlVq5ciWuuuQZffPEF1q1bh2HDhmH69Ok4dOhQu/dLdB195xeaQzEx0VWk87OXDpGAxfy/r/1SdBwSBog+gxQlDPjV3vYRj4HkAWN1YysAHtA7paivjtauULCWMcDUjIGwWsnTAi4MbN5DN58aJdn8SjS4f76eMSCEWy2vr5UiZGVl4dtD3sgLYWuz0SGlb9TIv//tQdz9/rYOb0cUgdnSagDA6eIu5MK+MPD5Ti6MHajzJVmS6O089dRTuPnmmzFnzhyMHTsWCxcuxNChQ/Hss88aLv/cc89h2LBhWLhwIcaOHYs5c+bgpptuwhNPPKEv8/rrr2PevHkYP348jj/+eCxevBiKouCzzz5r936JrqPRS2ayqeRgvRcLP90V4/zf3UhXfNqbNJcGbxD/8fw6vPV1372fjM4YoLIC+5AwQPQZ6hu467+XucHUj74mDFjJGNi2vxoANx6MFQZ44OpCyJprrlqSEFazFVrUjIEcUECkoZUCuD2ZenaHELQvDIhODy4aPzLyQthaZ4OwHHseHVJvunXg/FDVjPlvty/lvy2Zig/5QuT8HCMctr0NKR0NjYkeRzAYxKZNmzB9+vSY56dPn461a9carrNu3bq45WfMmIFvvvkGoZBxAOn1ehEKhVBYWNju/RJdx5MrfujqIXQZ6TBevOLZdVj46W7c9taWlG/biPa8hXTNXPem2HHhp7uxsawO//1exwX/dJH24x21g3R1sujNkDBA9Bk27+XBSqsaaAKIeAyw5MZ0WjcBLgxEXaG0jAGEYMmMXZ21Dqlt9FrVjIEswXo7vt6OpHUVkNxoVUsJsmD9+Gh+AmHRjeNLChBivIuEHLQmvrR11X/7m4OW991TONyYOiFqqHIg5u+RQpXtbZAwQABATU0NZFlGUVFRzPNFRUWoqjL+XFVVVRkuHw6HUVNTY7jOXXfdhcGDB2PatGnt3i8ABAIBNDU1xTyI9NPQ2nczBtIR61Q18evr+n21qd94ioiuF0+pSNCLYsdmf08zWU79wY9O3O1Fp7bTIGGA6DNoHQl8LCIMKCIvKZAsmA+yMF8mCAccYtRXR4oSBiwoA2FVGAgLDhRmudCsCgPZlDGgI6oijCK64VVLCewIJ5p5oSy64XKICKgiTNiyMND7LyepnHUqkStj/i4S6m1vg2poiWjaGo0xxhKajxktb/Q8ADz22GN444038P7778Pj8XRovwsWLEBeXp7+GDp0qOmyRMfYfaQvd+7pnB/IzvoZ7mjtN00EE2ZEf7boc2IfEgaIPkOGoLUqjNwI6qUEFtoV7q6sAwCEmYSYyU21XaEoMChy8u3IIXU2XHDiJ6eU6KUE2QIJAxpaxoAiuZCZnQsAyLSVMcDPw9nHD4ZTEnVPiaDfm2g1nUZf75+N+mCL/XR/Ix77ZCd89bHbGiA02N6ORMoAAaB///6QJClulv7o0aNxs/kaxcXFhss7HA7069cv5vknnngCjzzyCJYvX46TTz65Q/sFgLvvvhuNjY3648CBA6bLEh3jYD1dI4H0zoJ255/h7jw2wjrpKIWJJtbqi5QBu5AwQPQZtFR0H9x6YM90YSB5+tX+Gp4iGoYUm/bsiAgNzIK5nRxS09wFJ+6ZNVY3H8yGL+0/mD0Fn1c1ehRcCIi83aDVjAHGmC4MjB06AE5JiGQMBKzdWL62rjzm7wtPMA8MeiqpEgYWrdyrCwEy49+LAUKj7e2IdNdHAHC5XJgwYQJWrFgR8/yKFSswZcoUw3UmT54ct/zy5csxceJEOJ1O/bnHH38cDz/8MD755BNMnDixw/sFALfbjdzc3JgHkX768pUynfcJ3bm9W/TIUnm56E6fpfX7arGpoq6rh9FppKUrAZkPdggSBog+Q4ZaSuBlbrwzdzKAKI8BC6UEl5zIWxQG4YhNLZUipQmCBWFACaqz4aITLocYyRiAr0+1yUuEX53ZX7GrAT6BHx+tFCQZYYXBpQoDkjMDgiAgqAoDctBaxkBtG2fmHI/D0no9EQEKtFuj/Exn4oVN0ISAHWw4AKB/u4SBdu2a6IXMnz8fL7zwApYsWYLS0lLcfvvt2L9/P+bOnQuAz9LfcMMN+vJz585FRUUF5s+fj9LSUixZsgQvvvgi7rzzTn2Zxx57DPfddx+WLFmCESNGoKqqClVVVWhpabG8X4LoKjpLN+2s/dgN2GpbAjjcmB4fpu4yIdPoC+Hqv67H7GfXxfkc9SbSfbQZeQx0iN57t0sQbcjUSwncOGs4d6LWMgaseAy4BP5D7XC6Yl8QRYQhwQHZWsZAWCsliG1XKAkMgUALpEyacXKBZ3D4mROujBygxbr5YFhmuseA5ObHNqSWEoSD1rbRtu2klTaUPZEBaMAbrj/AARmXBR/CmKLh7drOQHBPgVJlOMaJ5eiPdggDpAwQKldddRVqa2vx0EMPobKyEieddBKWLl2K4cP557OyshL790facY0cORJLly7F7bffjmeeeQYlJSV4+umnMXv2bH2ZRYsWIRgM4oorrojZ1wMPPIAHH3zQ0n4JojuQ1lKCNG47GrvvYdHKvWkZR3ciugWnrDA4pS4cTCeRjs9yjDDQO2/d0goJA0SfQZtxdnpy9OcUSRUGLHgMaG0GNTEhmrDghIPJgGwhYyAcyRgAuFChMAGiwPDZd3sxa/KpycfSiwmEZb0UIAAXzjhuKFANZAp+KApLGkCGFEXvSiC5eJlHSG0Nqfk7JCPcRgho+3dv4XrHchwj8pKCK6VV+Fft7CRrGKNlDOxhJQCAHMFaZkY00R4DyQzfiN7PvHnzMG/ePMPXXn755bjnzj33XHz77bem2ysvL+/wfomuRWjzG9GVdOVvVF8MdsK9eAa9L5OOz7ISU0rQB78sHYRKCYg+Q3GGDAA4aeQg/TmmdiUQmZx0/V2q+WBDIP6HJiTw7VgqJQhpjvt8nZMG56FFNURcv6M86fq9nX3VrXpgH2BOeFTzwSz4EVKS3xyEwoouLDhc3J9AOz9W2xW29RSQe2mXgkniTv3/Z4g7caQpgGDY/g2Y5jGwhw0GAOTCvjAQLfj0ha4QBEHYoy9LhZ313vui10tvutp0tNtDZ5DuWJ2Z/J+wBgkDRJ8hg/E0cubMjDypZgyIStBolRjW7+Zu1SEWn2gTVmekmYWMAa3cQBMlHKKod0rYtOdQ0vV7O4xF2g1mZmZBcvMMjyz4LQWMYSViPig6+XHVzo9iMWMgxx17jj/fedTa4HsQIhScLOzT/x4nlgEAfMHkIlk0DoRRKPA67X2Mi24ZQhCwIJLFjCfqhjRsQQAiCKJvER2zdnUA25UTke0J/h74YDt++eo3yWdQO81jwN57SGd2Bk0q9y4UMh/sECQMEH0Gt4EwIErqTL8FjwG3yAOmMOILv2QtY0BOLjAoYb6MVpLgEAV4GTcwtGqw15tRoroKXDR+OCRPNgDelSBkYTY7FA7DLahdJhyxwoAcsuYx0LZyICgrqG5u37kJhO0F2p1FMep4AK/9LdTDY/PzpygsJjtAKhgORe1MEGitt7Wt6AoRyhggCKIt0Tf5XT2x3ZW/UO0Jdl5ZV4EVO45g+6GmhMt1V48BgrBKrPkgfdLsQsIA0WfQhAEYZAxIFtoVauUGedmZca+FNd8BC7OkTBMG1H0LAm+hCEQMEnsyq3ZV4/wnVuKT7ZW48KlVeGHNvuQrRREtDGyp9EFyc2EgE35LTr0xBoMOflzDanYGsygMyAZ3Xu0RBl7fUIHj7vsEy76vSr5wJzNUqAYAlCtFaGL8Mz1EqI5R25MRUhTkCby1ZBPLwN0/Plk301y6cWeiVeOIngHszY7MBEG0D4cU+Y3oarPSnlS7HF0eliwbi7xdiLST5sCdUVuCDkHCANFn8CA+Y0Bw8IDRijDgVJ3yvXL81yasZwwkDx437eNBYkOQX4AFCPCqwkBGL8gYuHHJRuyracXcv32L3Udb8IePSm2tn+12RHkEeABNGBACCFoIGGN8BNSMAVkVBhSL6e1GbSOt7Lst9/5jOwDgP1/bZHvddDNU5OUR+9lA7GcDAQDDhKO2jBZDMkMuVGEAWch0SWgC/375mmptjSdakAhTxgBBEG2YHuX90tfC144E7C+vLbOxn3bvpsdCs8q9C/IY6BgkDBB9Bg9Tg0JXlv6cVuefrCsBY0wXBmp98QGiVkogWiglcIJnHlQ0qGKEAPhY7xEGOoosK7rHQHZWNuBSSwmsegwEeGp7GCIgca8A7fxYzRgwmjXvSTNEVtAyBg6yATjCCgDw7gJ2WjOG5UjGQHZeP3hcEhoZ/345w822xhOdpdEaTC7UEQTRt3BIkVvWjs5sh2QF3g78zvSkUoJtScoHouk0XcDme2h7ulM5zu5yaU+FQGE0qdFRhBR/KtItxFC7wo5BwgDRZ8hQMwaihQHRYa2UQGGAQw3oQwZdPvVSAgvCgEutf4/eTntLCRhjqGz09aqgVQlHgvf/mnGSfr6slhIoQX4Mg3Dpz2kZA1oZRzKMguOuNrtKJQfqvCgG77JxiPVHDcsDAPRHoy3jv6Cs6B4DeQX9IQkCmlRhwB2yfjMKxN7QvP31AVvrEgTRt+jor/HUR7/ACf+zDK2ByLXfjijak8wH7QSLfbGUYGT/rOQLdQI1LZH7k/Z+vr7aay9TzwrpDOTT3q6QcgZsQ8IA0WfQuhIIrkgpAdM9BhJnDMhKJGMgNyveY0ALPK2UEmjbiRYG2ltKsGLHEUxe8DkWfGyvnjuasKzgqufX4d5/bGv3NlKJEjWrn52ZrQsDbiGMUCD5jL8S5qUEITgjz6kmk1ad8rXrypCCDP25fTUtltbtCbywZh/6CY0AgFrkoga8JWR/mxkDIZnpGQNCRgH8IVn3GGhosGc+GK35VNTab3dIEETvJpXmg1VN/Fry/eGIgGlHYLfjxZIKOvJ27Yy178kCwKgB3UMY+MNHOzq8jUCoe5odm5GOrxFlDHQMEgaIPoMedDsjFwFB0koJEv+YKozpJQCKEJ8xYEcYcKn180FVGLjklBK9lMBuV4JnVu4FAPx1tT2Dv2g2H2jAhrI6vL5hf7u3kUq0dH8FAjeHjDpfcqA16fqyKh4EhUjGgFYygrA988Hji3P159bsqrG0bk9AEAT0E3iqfy3L1TMGBggN9jwGwpGMAXjycEJJLlpVkau8strWmKJLCfrgpBVBEElIu1GZDT7eXpnikVjH7pDtiL2d9dtr91ymOp09mu4SPG7e36D/v72f9XSYcqa8lCDNxzs2Y4CwCwkDRJ/BY1BKoJkPsiQlAGGFwSGYtytURDseAzxjQGuhd+0ZwyC61XR5m6UE1U3WAt1EOKIuJN2htZ4mDATh5HcpDhcCjIsoh44mDza1UoRQlDCgSDxYZRYzBrQbKVGIZA2cPrLQ4jvo/jDG0A9qxkCMMGA3YyDiMQBPPnI8TngZN3zMhL3PZnS668xxg2ytSxAE0Zl8b6NuP9XYDXaW7zhiY+nOUQY6GhymMuDrLsJAKkhHyWNPTsfvTWW2nQUJA0SfQZuNF6NKCWq8PH9ZUqyXEmgBfczrWsaAYl0YuODEwXw8ooBTRpUAAEbn2/tKpqIeMMMVETp2HG7Cl7u7dmZcC96jPQK84MHmc8u3Jl8/pJYSRAkD24+oaaP7rc1iaxcTSRQgqcLJ321mVDR6E3+mupJX1lWgUM0YqEMOatVSggI02+oIwD0GNGGAiwut6rnKEvxo9ls/BtEqv7OLW5ERBNH9SHeKcHcOIVIV7yV7j+n86U1lkNbb4732vj+6dFLGQEchYYBIK/6QjNqW1Drtl1Y24e1vDti+yOilBO6IMFBWxwMXLVg3Q1EipQQetzvudaaXEiQXBvJdfNwFuTmR7Tv4rLSL2ZtlFVP8Df7porW47sUN2FRhrz48legZA1ECjBZsIpi8zl8J8fMcilo/CM1Lwp75oCgIer37tkONltbV6M7O+m4EkS3w41zL8vROArmC17bHQK6WMZCRDyAi4mTCj2+jUiOT8c6mg/r/5d5+10cQRIfo6l+Iru1KkL6995QyrpSKDF3+aYqnO40o9V0Jov+fjvIgk50RliBhgEgrP3piJSb84VNUNvqSL2wB1lqDXz/9Fn737lassJEexxQZGQIPCsWomnXNfFAL+s2QGYNDFQ/OGlMc/7qklRIkF0E0o0OtjAGIEgYUe8cpFWljmXs/xtuu3+PH4jr9uU0VdR3ebnthWilAVMZAq5aebqXUIsQD+ZDo0Z8a3D8fAFCSbe0nT2HAKOEwbjjyR1wmfmlpnfhtdN8rUj/wNNggk9CMDDSCfyfy0GqrK0FYjvUYAIAxQ/n3I0sI4P1vD5qtGkd1c+Tc2hEnCILoe6QjOLazya7tStCBdZOsnM5afjvjaEvbW51UXl+78aW610NdCbofJAwQaaWykQd5f/iotOMb89Yh8PQkfO6+E+eJW7Cj0nqNX7RpnVbPDwDZmTx7wClYzxjIysiIe52pNexWPAYcamtEUYoSBpx8HC7FZsZAR4UBfyNKPrsFZ4g/4Annc8hDS2q2C4bbHe/iNecjOEXYY2tNQSslEOJLCXJFC8cnqJUSRISBogKeKu9M0n1CQ1FkLHY+iUlNy7DQtQgnCmWW1oumO99sFAr8u1OLPIzol4Wf/+gUAECGEITPZ70jQLCNxwAA5OZygSATfkvdBRSFYc3u2BKP7iyqEATRNQzOj1x7M5zxXj/t4aq/rseqXfaMUgHYKpNKNR37eUy8cjozBlL5s55Sj4EUbqu9+IKxk1OpEL78KepQkOrgOt11/9FbtzHPQaiQMECkjWgju4+2psDBd+tb8AR4/fu10me2lO1YYSBSSjD5WD67mayUIKwwSFB/YaT4rgTMhseAhPiMAebgY3LbLCXo8EV850dwqGKERwjhR+IWAMD+uo61i5spbsStjvcxVdqOPzufsfXrrJUSRHsEuLN4YD9zTI7hOjGE+diDYqTkY8WuBgBAS2vyrgYAMKh2PUaLkc/sZdJXltaLpjsHt1pHgnqWg5W//RHmTBsPhfEP01Mffm15OyGZIQ+xpQSKmpGTBT+y3fHflbb8Y/MhXP/ixpjnZLqYEwSRgFT462jcuGRj8oXaEF361Bl0Vop/Z1US2L06th1XN768touFn+1K+TafW7U35dvsCTDyGOgQPU4YWLRoEUaOHAmPx4MJEyZgzZo1CZdftWoVJkyYAI/Hg1GjRuG5556LeX3x4sWYOnUqCgoKUFBQgGnTpmHjxtiLxIMPPghBEGIexcXx6eRELG99fSC1GyyPpHRPFH+wdWXYffAoAMDL3JDEyEyD6OTBpyuJMCBHdSWAGB/sKFrbQwvCgCiH1H1HAlctY8DdyRkDrGJtzN+TRd5H99V1FfB2oEb+Z9Jn+v9HiEeAg9aDTcjxHgEOTzb/N5y81EJQzQfDUiRjIKB6DLgFa7M8g2v4Z80r8v2eJX5vab1oums6vKIw5Kjp/01QRTJRRAv4bFxdrfXZs1BYiXgMqKUEzMmPWabgx1nH9E+6DaOSIKWbHjuCILqO6JnLdATKPSbtuAPDTFpK0ENMBnpbKcG2g7EeRqm4BLbdZl8h1qS0G5zcHkaPEgbeeust3Hbbbbj33nuxefNmTJ06FTNnzsT+/cZu4WVlZZg1axamTp2KzZs345577sEtt9yC9957T19m5cqVuOaaa/DFF19g3bp1GDZsGKZPn45Dhw7FbOvEE09EZWWl/ti2bVta32tvYM/R5EZxlmEMOLBB/7NAaEFGyLpBXmkFn/31wh2TgiipwoAjmceAwiDBXBjQSgmSCQO+oAyXWrZglDHgYvaMGjuc8H9oMwDgfflsAMAJYrn+WpPPvjBQ2xJAPpoxRQ2ktysj+Av715qv1JawJgxEezDwWWghnHzGXwhrHgORtFPNfDCZAAQAP39pI8QD6wEAXxVdCwA4RjiYNKukLec/ucrW8p3Fmj01yBVUYYBFsmd0A0JYzxYJheUoj4F8AABTu35kIYBgOPnUvyTFf4p/917y7hMEQfQtmv2R32BPikoJeiIdETC6S5jU0YAttfFe1x+VtnpMd51YSAXpfmfRh673HsX00aOEgaeeego333wz5syZg7Fjx2LhwoUYOnQonn32WcPln3vuOQwbNgwLFy7E2LFjMWfOHNx000144okn9GVef/11zJs3D+PHj8fxxx+PxYsXQ1EUfPbZZzHbcjgcKC4u1h8DBgxI63vtDby6rhy/kD7GDdKyjm/MWwu08pnMarXner6v3PLqf/9yJwDAx9wQo/q5SE4+q+xEOOGFKqwwOLRSAkNhQDUfTCIMHKj3RgJMMRL4wsmDWI/NUoLdHRFfQj4I1dz74c3wjwAAY4SDusmiwyBgS0Z5bSsmirsgCQy7lcH4h3wWAGDd6mWoarT43lTzwbAQ78EgBZMLA6K6vhyVMXDRKcMAAG4kzxhY98MhnCBUAAB29L8IrWI2XIKMY4WDvUJ9bvSF9IyBZkSEAS17QPcMsIASaIFDUL8XasYAXGrGAPyWjAzNupZs3t91nTEIguh+PPThDv3/1585POXb784/76kyBUyeMZCS3RjvuwPrth1XKrM7uuN5D3ejerp0Hp+0tB2NLiXohue2u9NjhIFgMIhNmzZh+vTpMc9Pnz4da9caz0auW7cubvkZM2bgm2++QShkHCB4vV6EQiEUFhbGPL97926UlJRg5MiRuPrqq7Fv376E4w0EAmhqaop59DXOFrfjAedreMj5CiYKOzu2sVpeK3WI9cMPyhAAgKvZel/5DNXN3ovYVoMul5oxICgIhcxnhGMzBuJnKpjFUoJMl6QLA/k5Ud0RXPz/dj0GOkRdGQQmo5FlYiM7Hj7mglsIY7DAfRzaU6bAmFrmASDjmLOwm/Fz1c+/H/+71JoBpWCQMaAdH8lCxoAY1koJIhkDw4r49znXmfxiO0qohENQ0MCy4MsYhEMSfw/DhKMIydauMt1ZQGCMISdhxoB1YQD+BgBACE5d3BLUc5Ul+C0dr/X7eAeMYcIRjBAivg6HGzrxu0AQRLcnHDUVmOHqwxkDNi8vI/tH3WskWbmzKgk6eoXsbaZybYWf9h6fbnzr0WnEJlvQAbFLjxEGampqIMsyioqKYp4vKipCVVWV4TpVVVWGy4fDYdTU1Biuc9ddd2Hw4MGYNm2a/tykSZPw6quvYtmyZVi8eDGqqqowZcoU1NbWmo53wYIFyMvL0x9Dhw61+lZ7DT/JigSCVxV2zATlq428jKBMKcYR8CAvX7beUi8TPNj0tREGnK7I36GQeRq/nCRjAA5rpQSKEklnj/YY0EoJ7GYMdIj6cgBABSsCIGA/GwgAGC7wmu/2BrcTRW6i4y06HftYib7NFp/F96Z6DMhRGRV+tSvBkRrz75yGJgxEZwyI6vlxsOQeEKPU4HQvK4HLIULO5d/dIUJ1jKFmIlKZBqgoDJ/uOIKjzbHHr7LRh+2H7NcQylEeA82IiCda9kCOYL1l5rodXCBtETIjd5SqMJAJP2SLd2+nCrvxqetOfOr6LaaKvIzATttEgiD6GDZ/Yhu9Ifzx453YdaQ5PePpROxeXSTRerTfWe0K7dLW+6BtxsCeo8340RMrbbXIjWyr+9GbA/wYD4A0HP3obfbm45gueowwoBH348BYQrMUo+WNngeAxx57DG+88Qbef/99eDyRoGLmzJmYPXs2xo0bh2nTpuGjjz4CALzyyium+7377rvR2NioPw4cSLERXw/g9NxI4N6/pbRDs6ibt3wDAChnxTjCCgAAQxzWgyJNGPCytsJA5DyHguZBo1WPAUcyYYCxSClBVLtCqHXZHgQ6Twqv5y349rOimH+HCdyoUW7H+SqtbMRYNQ1fKTkVh1k/BJgTbiGMwvBRS9vQAvuQEDlX31TyDJ9MIbkHg5EwIKjCgJV2haOFwwCAfcogeIMyWjJ5xsAQoRphixkD4RQKA+9+exBzXv0GM/60Wn+u0RfC5AWf48d/+RLlNTZm+ME/y5rHwNVnn6Q/36qKL5mwLk7tLuc3YXVyJPOAaV0JhADCFoWUXzn+DZcgwyEouM3BPWCsHmuCIPoedgOKB/61Hc+t2ovpUb+jPYoOxOuxfd3jifaCafSlrw1jKjPp2m7qzne2oqymFfPf/q4d2+r6a00P8XxMOekpJYj6f+o33+vpMcJA//79IUlSXHbA0aNH47ICNIqLiw2Xdzgc6NevX8zzTzzxBB555BEsX74cJ598csKxZGVlYdy4cdi9e7fpMm63G7m5uTGPvoZQFym3GMqq8Ml248wOK4wQ+LplbJAuDDha493MzTArJZCiDABDIfOAKKwoEYNCo4wBzXwwSeAZVljEAC9aGHBmRi3USVkDasaAlimg/asJA1qKt1UO1nvx/L9WIksIIMAcKB5xAhSIOMT4d60wZE0YEGQuroSjMgZCDs3QLvmxcciqMOCIzIaLupdE8pueUSIXBvayEtS1BpE/aDQALgyELNb9GS1nxYjPiE9V1/56b2Tsp/x+uf7/bTazBqIzBtzZBfrzgpt7A5zU3/plQetI0IRIqircUf+30kUCit4NAwAmiLsxCLXwWxQVCIIgkrE1yqHdrL97N4gPLWE7kI1xaY9/OTrDrTXQ/m5EdrD7FtrGzW21d7Nzamks7V4zfaRiJr27ig0xM/pp2P4bGyNlxj3lO92d6DHCgMvlwoQJE7BixYqY51esWIEpU6YYrjN58uS45ZcvX46JEyfC6Yy0Qnv88cfx8MMP45NPPsHEiROTjiUQCKC0tBSDBg1qxzvpIzCGYiUSuA8RqrG7Ayl8JQJPIT/IBuAoywcA1FRZ9xjQZkHblhJAlCCr/dvDIfPZfoUxSAlLCVSvgiSp6rLC4NJa5kmRz6DgihIGQtZd4TtEnZYxECsMDFWFAY/D3s/D/35UijECn0Hex0r0VpBHmFb6Ya0NnqCWEkQLAxOP5bP2mfDDF0x8AyDJ/FyzKGHATsaA9lk7wAbCIQk49tix6vN1CFoUBoxmu19bX6H///5/bsfMP6+xdDOTLPkg2qnbCpIo6OUCmbkRYWDkIH7+86Xk5RYamlGh5k8AAJIzU/9OSaHk2QyjhErkC63wMje+U0YBAM6Rtna4FSdBEL2Xjtzwd1bwmy7svvXYjIH4taN/ajsvjupoV4LeHfG19+2lpY1nBw51WFYS3uek+jxu3l+Pf2+NeBX1mBak3YgeIwwAwPz58/HCCy9gyZIlKC0txe233479+/dj7ty5AHj6/g033KAvP3fuXFRUVGD+/PkoLS3FkiVL8OKLL+LOO+/Ul3nsscdw3333YcmSJRgxYgSqqqpQVVWFlpaI2/udd96JVatWoaysDBs2bMAVV1yBpqYm3HjjjZ335nsaYT88UT3jPUIIr376DeparQcd0QwUGgAAR1m+3pWgP6zPlGbopQSeuNdC4IF+OGCeph6WGRyCufmg7jGQNGNAiSoliIgUoiTBz1ShwILzfkpo4MLKAcY7bFSpAXyRwN3gvzvYYGtzH2+vwnGqMLCLDdEDuyPIBwAUhJP7AwAR88HorgTFA/oD4IZ2VU2JswYcqjCgRGcMuPj/nRY8BgaBZ0pUsQL+HrL58ekvNFo2HwwpCnLgxWLnk/iD40W4EEJZTeQ35bX1FSitbMLyHcmzXpJdOO3W4iuM6S0GnZn5+vOympXhVKwLU9p2mqK6GwRkBX7wc5chJD/eZ6olR3tYCVYqpwAAThd/QEGmM9FqBEH0YWzf7kcFTGblpz0liLAbS8WIy134FlO565Ruqxuc9rZiVSrMB1fvMvZS60xm/nkNxv7PJ2jpJDHuYH1slmJ3OLc9jR4lDFx11VVYuHAhHnroIYwfPx6rV6/G0qVLMXw4b1tTWVmJ/fsjs8gjR47E0qVLsXLlSowfPx4PP/wwnn76acyePVtfZtGiRQgGg7jiiiswaNAg/RHd0vDgwYO45pprcNxxx+Hyyy+Hy+XC+vXr9f0SBvh50C4zAZVqwDlYqMaSL8vsb4sxDEADAOAIK0ADeMpzvtCCRq+1ergiDw/qC/Lz414LCTwACYcTmw8myhgQHGqqugXzQadWkhCVMSAJQqTMobMyBpp5eYYmCGglGpoI88wX9g0jx4jcS+MHZQgk9eZL275ksfRDVLSMgYhwojg0Q7tA0nR+h6JmDDgjwsCBJn7MHYICKAlm6RnDQFUYOYJC7hWQxYWBQjQhFLZ2cQvLDL+QPsGF0iZc5/gMN0rL4BDjf26tqOU7KmM7mihtUgisihUagbCidyXQWwwCkFVvAJds/fNX5OQX4THDI+aqrUFZz8zRzkUiNLPL/awI3ym8bONkYS8C7Sy9IAii90M3/NZJ5jEQU5PdQw6skkq/gpRtqf18u78h5u9UnAerGY7pZPfRFjAGbKqIaj/ciR4A3eHc9jQMcqK7N/PmzcO8efMMX3v55Zfjnjv33HPx7bffmm6vvLw86T7ffPNNq8MjVFoba5EFXnt8hOVjkFCHAUKj5RrtGHz1cAs8IKtGPvIYn1HPhReHvH7kWZhZzJVCgAyMHVYc91pY/RrIiboSMGbJY8BhIWPAyGNAFAR44UEhWtotDCQz4owh5AMCXLypVkszdGEA9RCggLVDNzxWOAQA2M2GQIuDte1mBa2aD6oz/lEZFYWF6jbgR2OSgNGhlxJEZrGbQ1HvJRzQzR7j8Nbqn7UjrIBPMqnCgENQUHn4MMYU5xmvG0VYZpgkRrpyXC+twMv4TdxyVs5XZWNscN3W2PDdTQdx89kjk25HIxBS9Jl+uCPeJ7owoFjvSuAKNwMOQI7azmnD8vWMgX2Hk89YFIV52l8FG4htCn8fxwiHsd3fkmg1giB6OLauWW3X7cAtv9keUxkTVzb6kJ/hSl1bxQ44uUeLyUbBYvT22ns+7NLRY922xK4j2+uOYkh3GlIqhhIyuW9L9/vsjue2u9OjMgaInoOvmaeNN7FM1Gip/0Jj+y46zTxwqGU5CMGBRtXoTBQYhEBTojV1XEwNdgwCQhn8wi0n8BgIJ+lKIKgeA1IyjwFZgVsrsXBElRKIgJ+pQkGwfcKALSf8Fj5LK4tuPQ28Gvw8uQQZBbAXlPEaMoZh6uxvGSvWSwk04aG/YO1c1TTw5fbWR2bn8/O4MJAp+JPW1DvVwDY6Y0CIOtYJzR2bDqtjzkUIDlwzaRggOVHPeJbK/76zytJ7CCkKjhcj2UvDxGoM9X0ft1zYplDW7A9hf13s56O00tpx1QiGw8iG+n3wRAJ61o6MAc18sDIQOb5DCjIhqt+zqpp6w/WiKVZ45koFK0I1ClAt9IMoMGz7Zo3lcRAE0bP47kADJvzhU7zzTe/r2FRW04rJCz7H1Mc+T88O2u89iAf/FX8dio6dUtlqV+Ptbw5g7Z5YkbgjpSAABXw9DfNb/9SeR7Im6jgkDBBpYXcFrzVvQpQwgEZI7fjEMTXlXTMdDMGBFtUrQG61VrfuUlOaBQNhICzwQF9JlDEgM0jaD5iBx8DBZi4aSErijAFZjno9upRAjC4lsD5jG42t9m7NPID3uftDu+KG4UA144Gi5jNglVfXlSMPrchVTe1aPCV6KUG9VvphUWxoVv09avxRv/AuHrRmw49mf+Jj7FJLEaI7PQgOp26It7+6wXRduZELA0dYIZbddg5OG8YFiWhxywp1jc3oJ3CzzZUyr5uf1MpFhegbmtYkRooAUJIX8cXwBWV8unELbpHex7mi/bZMAMD8zRAFdQxRpQTlzfzLGfBaFxq0zAPZFdt1JaC2msyw0F6ygPHP2lE1s2RHeDAAwFdZaroOQRA9m1///VvUtQbx23e3tmv97hwXfr6TZ8fVtLTPU8mIjmRIRKfdV9TGC7/pPJTfH27E797dip+9sKFbn7PuRm8+Vul8a22PW28+jumChAEiLbyxejsA7lZeCx409BcakzqsG1FTyd3ctZlnALrPQLjVWks9ty4MZMW9FlY9BuSw+UVcZokzBtbu5zOnboQSOrAq0fuIKiWQBCHSMcGCkzsABNq0cwvZMaFr4WKL181N/WaNK8Y/5k2BM78EABcGrpwwxPLmalqCepvDIywfVT4RoqgKAywHAFAoWOtK4QY/RgEWVSLi4ufbLYTQ4k1ct+5k6rmOyhg4vjgHQfDtHaw2Fz0iwkABBhdE1q+xaXj54Zff6u/hDflHAIAh1asAxmJmZJ5fldzHoShKGIAcxMWb52K+81284noUPxI3WxpPDAF+HmTBATgi215/kB+3LCQP5gE+s6R1JVDcseUVssSPnQfJb4wLWQMAoJrlYeLwAuxhXBg4Ri1L6c3UtATw2rpyNCURuwiit9HRG3Y7q3+yvQr7qpNfV+1s89wxA2wsnVrsdyVIsr00Rk+VDalpvyy0SRlIqcdALwoee9pbSXspQY87Il0PCQOEIbUtAVQ2tm/mGgByBc2tPCtmtrWtcZoVSnfvBhCpVQeABjW1+63V1mYb3GqwKLoNhAHNYyCRMKAk9hgoKeTihwuhhO6r4eishGiPAVGAj6nCgMVSgui+zED7MgZanf0AAC5JxKnDCpA/cBgAYKBQjyy3NQuSmpYA/rp6ny4MaG0PNTRhIB/Nlq4CWqlFVnZ25Mmo2X85kOAGT1HgUss5hKh1RvTPQkAVBt7faB6MK6rQVI8cuKLSWyLilrXZdM1PoYoVoLFkKgLMgVzfAaBmV0zJR1sHXSOi2zM6dv4TQ+VI6u0djndg91ZADPL3EJCyY/LuZp95HB+7YO17H5IjXgUlxbHeHbk5/HhlJBMZFAX54OOZNvEkPHf9BOxlXJwaLRzu9emiv3jpa9z/wfe4+/1tXT0UguhZWPxtqG0JYO7fNsU8Z5Ru/N6mg9hz1HoJXZbb3Dsg3dnMdn8Wky2fzl9ZA89dvs+OCkO9+9LQrQLadF6HU73ltt/t3v45SQckDBCGTPjDp5i84POkadtm5IEHb7EeA03tUnlrq3it9lG17R0ANKh9048eqTRaJQ6PKgxIBsKArGYMsATCQDhJV4Ibz+FBlUNQoCRwrt9WzgNGhQkx23FJol5K4PNauzlpKwTYqldXMwaanTxjwOVQfwqyeVA/AI2W2+D919/5rHW0MDA4PzLbrpUSuARZn61OhJYxUJCbE3nS4Yas/lzJgQTHJxwV1EaVjeR6nHrGgBPmn2nFy0tT6lk2nFLkCqN5DJxebO2Wb4iTj7Ea+Rg8cADWKyfwF374OMaA84yRhUm35YvKQGHffwAAeCk8A37mxEliOU4QKrD9kPXWnZowEHRkxzyfkZMPAMgRrWUMhGRFzxgYO2pYzGuuDP49S9qu0FcPh/q9uuKc8eif7cYehQsDxwiH01Lv2p3Ypp63T7ZXdfFICKJnYfWXocFn7R7mjne+w2XPfGV9/53809Sx/SVeeftB69cPu0T7Su0+ai1r0Hg7sX+ntitB97vOdKeAdkOZtcxcq8R2wUjpphPui7AGCQNEHNE34+U17TPC00zJmpCFGkTSsNfstt9XtVDmwdrR6IwBNdgssJyezoMd0Z0d95osaF0JEmUMKHAIWsZA/EzBgLwod/eQeepcURb/yoXgiLnSuRwifKqTe3llten60RxqiJ3ZDbXDfLBZzRhwarPjmVwo6Cc0WQ7K1u3j52eoajx4gA3E6IH8ON8+bQz8cMOnGSt6k3tCuNXA/UBTlDAhCAiKqtgQTJAxEJVtIboyYl9SM0OG5plnQjAvvwA2CzkxNzTDhvCyCnfQ2g3UKUX8/bYyD5ySgBXKBD6G0qUxgs45x/ZPui0tY8CBMHIOcUO+t+XzsEY5GQBwvrgZ9/5zu6VxAYAU5N+ZUBthQCuzyWQ+S1fTkMyQqwqAjoyCmNcyMrmok4FAws9RSM1caWBZUEQu3FSIvPXhYKEG4UTZIVF8sOUQfvnqN+0WMu3CGMNNL3+NG5dsTMlsimhjivG1deV4ZGkpdhy2ZzpJEH2R3hgY2O5KkGTxn7/8dQdGkxgp6jp68dNfpmy7hVmumL87Etx3x89IdxrSu5sOpm3b6c4K7E7HsadAwgARR/SM5qpd1lrMtWVEFp81v+DUMXrGQD+hCTur7CvGWSEeTB5hBThhUC7+MW8KmhifDdbd1RPAGINHFwaMMgZ4oMjkRMIAEmYMRNdqy0FzYSBD4tvQgiANlyTqpQSCRY+B99r8WNvLGODntTLEBY2g1komiweqhUKTvdIERDIGDqIIj83mQeut047F5FH9UAceKIZarAsDQSH2GIVEfoxZAmHA5+WfLx9zwemIPU8hgd9InDTQHbdeZAOqMCDGmultreU3N80N1kQbIcwFCk9mNiRRwOfyqQAA6eBGfLE5Yqr3xsbkjtyaMDBGOAgXC6CJZWInG4rPFL7Nc6XvcLDOuoDnlvnxMxMGJCi8pWMSgoEAslRzQTEzP+Y10c2/nx4EE7YoDTbymfJalou8DH6+Hdn90cCyIAoMcs0+C+8IuPXNLVix4wie/my3peU7SoM3hM93HsWqXdWobraWYaFR2xLAriOxv4N2urV8uLUSf129D+W11n4nCKK3MGpA5PrdkXiibb16qklHMNKRWda61sSZW8GoVnL5Fto/20E0+W2zG8i33cpJg5O3DbZKtxQG2jmonlB+15kZGj3heHQ3SBgg4oi+kX9i+a52bSND5je+gicPdWqNeYHQAgcSt5pry/ZDjSiC5lqej9umHYtThxWgRW2xlyUkN7YJKwyZqjDg9MRnDGhBOgubzzbKihLxGBAMagslB2T10pUoY0BRX9PECH11SYAXPPAVwtZqvK9oYw4YshPI+/gxXV7Obxje0UQGNWOgEM2207g1YeDKC85CcZRh3n+df4zuM7BtV3KzPc1j4Jopx8U8H5LU0oAEHgzrdvJA2wcXHG2mYSWnKiwkCHqDapvNqlBs94ryVi4m5KMloblkZLD8HIYEN3ZUNuEw+mOHMhySwLBm6Rv6Ym2zPtrCGINX3d8pIj92W5WRYBCxXhkLADhZKENTq3VhwBnmZQ5hZxthIDqbJlFWhorsjTJx9MTepGnGjxlCIKEwwFp4BlEN8pDrUYUBh4gDjBt7sfqKpOOI5kiTvSC9vcjqzUYWfKhd+4ru2WGF6X9ajel/Wh0jDgRNejwb7lv9Xkp20gwIohcwqn/kN6qrb/h7a7zhbE/rqAS0Bo3v+ewev6qm2PuqnnL8D9Z78fyqvbYNZnvI2+sw6X6ffeU4phISBog42gaYn+6wftOrkanw4EPIzMf8S8/kNfUAzh1ibthjxH+/+x0GCg0AgKMowIj+fMZg/DE8KD4u30rKs6KboDk85h4DimweVHCPAXPzQQB6DbucoO2hopYrhIXYNLhcj1MvJci06ArvdMR+fa16AgAAfA0AgEbWRijJipQShG0IAyIUlAg8qA7kxNabe4MyGlVPCCGQPP1Zq0sfXhRbfx9Sne4RMvcYeG8DnzH2wQ2HFBs4yWJyL4mao3wGWytV0WgAH3+e0IK3vk4+y3+klgfNB1qAzfsbAACfK+MBAGdLEaO5ZM7WITnSxWCcwGfPt7LRAIBLfzQVdSwbbiGEE4Ryy2n0esZAG2FAcjgjJR/B5Jk9siouNSMjrrxGVLMPMhBMKFgp6uewCdl6F4vfzTgeB1QDS1ZfnnQc0Ww+YK/NZnv5toLv50/ORRi7/nfAkulAgs9VNLXq7N3qXdayT9qifS/bCl8E0fthBv+zvk7kmY6HC11Zl96Tgp0BOQky9GzwTXni3/aOCAXpPJeXPfMVFny8E/9jo9wPaP/7SdU76Sx/n/R7DPSkb0v3gIQBIo62M3xzXv0G9UlS0dqSqWi1x/m4dvIo3YDu2Gx7M3qZSos+g1zN8jCmSK1dzuY1zW45+UxpKKQgE1xtNs4YUAP9BBkDisJ0kzQzYSCkCgNKImFADR5kg230L1DrtEPWZn/bzjLaSmn2NwAAGtWA9/hi1egvk3sOFArN+LrcuuFMfzTCISiQmQAlKzbYVRhDC3hQv7M8eQs6N+PnwdHGI0BrgSckOD6nDuI3IX7mgj8Ue3xkQWsHaZ7Rka96VjS0EUy0jIcCtFhKV9+xn4tpfkQEoK+UkwAAZ4vboV2+XY7EP8HRHQlGi9xoc6fCa/DDjGGzciwA4DRxt+ULuUv9zshtSgkcooBWNWvFSmcMxdsAAGhBvNgmqsaPGQgkLHFRfNyzoRWRDI2LTx6kd7YQGvYnHUc0B+p8eM5CC8hoVu2qRnmNvbT8O9/5DiWowXRJdTuvLwf2fmZrG1sONNhaXkM7npQxQPQ1on/i+tr9fvTbtRvsDO+XmXwhlb74q5LOz1JNC7/n+3JP8jLKWLr2A55Kc8e2xJTFpPl99rXfiVRAwkAfJNlFxSj11249azbjs7pONYBvkfIBAFt37bG1naZqPjvbwLJwyYRR+vPMzQM1t5J8XIGgF5Kgpt8aZAwwCzPJsRkDxlkPQV0YME8Pl9U0dkWIr+ML64Gv9XZx0fx1tbV6bDAWlTHAj8dPxnMneD1jAI2W21WO7J+FYoGLCEdRECecTBrVD81q4HdMXvKsBpfqMSC6PDHPhx18G2KC4zO2H9+3F25s2Bd7IdYzBswyQxhDvmqmV99GGPCKastFoUWf8U1EhtpZwQc3RqlZLt8qx8LPnCgSGjBaOAzA+LsWTXRHgpECz2YoZ7w14LEDc7BF4dkDJ4nlSQ2mNDxqxoDcNmMgpmWmlVKCBgBAsxAvtkEtJfAIQQQTvUc/zyBpFWJvXI+IRQAAsbE86Tja8sePd1pedlNFHW5cshHnPbHS1j6a/GFMEktjnqveujxhO9aQrKDRq4peCOP4HQvxovNxnCXaa1WoeX84zPqAdQGhUAijRo3Cjh07unooRC8mVcFKKjbTlQFHqtsVxixrb9PtpqP7SeVMcG+KHVMl7PSWgLqXvI1OpfvcWRCdwkMf7sCZCz5DbYv57DJP/WX4neNNLHf9FtdKn+Kni9Za/iEOywqy1QDLmcWFgcowDx76wZ6Tdn/VX+AIK8CZo/rpzzMXD9Q8FoQB2R9ZRnAl8BiQE3kMWMgY0EoSEtSwy8FAzD6jEZxqcBS2ljHQNqg80pTcb4Gv6AUU/l61jAE9rVn1GHAJMnIsGDsCwJCCDAxShYEqFt9+TxSAZsYDRe1zYYochlPt/iC1EQYUB9+GmMicUfVn8MGNkf1jRSBZVGfvzc5PoEnfdz1yYl5qlfjfeYIXIpKLG/lOXlfpYy786Hg++x2AC18r3DeBZw3Et5xsy9aDDQB4LbtWUqMJAzkeB35gPHvgOOGA5YwBTUxr6zHglKIyBiwYYIZb+XfTK5oLAxkIJCwlCKk+BXVKrDBQpQoDdj0G7JIsPTURp4k8cyTg4ef38LaVeHltuenyP376S5zy0HIAwG8db+E3jg9wgbQZS5yP4xjBmutzbUsAP6jeBD4rXhedhNPpRCAQsGWiSBB2iZ1pTM4ra8ux6At7GUSWx5KWrSbYXwciNTuzst01IEz203Kw3tr9Sk+hveehKNeTfCEr+++sTzi1K+x2kDDQx1jyVRmONAXw0L/NZ3ZCsoKLxQ2Y5/gXxoiH8L/OJZgo7MRyi14D6/bWIBc8uHWpGQOC7nbfbOsCF208GN1XHqpRmpCop71K2M+XCTCn4Wy/HqQn7EqQ3GMgbKGUQPMfUCRX/IsubUbcmjBQ2xzAueJ3OE3gBpFlVtOh1WwBiA54wWeIs91OfQw+9blCwZqIEwgresZAJSuMCwRzPE40qRkDGUmEHDkqG0ByxQaLTBVOWKLjo6bA+1n88ZXVYy6YCQPqcfEzJy4aPyLmpVOPG6n/PzeZuAFgdD7/aT1tdAn6ZUfGslYtJzhLFQaSZQz86jWeqj5CbQVZy3LQpIo5YYXpwsCxwiHcsHht0nEBgEfhx0hxxYofkijqnwcrGQNaKYFfyol/0amVEgQTlhJs28MzghqV2LKRfSG1jWN9BZgd7wyV8Q8tt/Q7I3fgrmGcWAYA2DPyZwCA44UD+OtKc7NWLaAvRBNulLhAUM+y4RbCuNX1oaV9vvRVuf7/bypS21u6o/zXf/0XHn30UYTD9gxmCcIq0RkDVr7fD/zre7y/Ob58LRWxQqLdd7e65m42HAD2j1FbXaDt6h0SSjvl+NjbSXuHdMkpJQlff/STnbh80VdJTZTT+ZlhJv9PBW07jnSlF0hPhYSBPsoHWw6bvhYMK7hW+jTmud84PsAzX1grA6irr4dD4Dfz7mw+gzx0CDek6yc02jK1ixgP5sekzh4N8GArG96kjt7NTbyOWQ962sC0QD+BMBCWFf09JcsYSOR6r5USMKOMAU0YsNiV4Miqv+IV16N43/0gLhHXWp4x9jfzgKJVzIF2uc31RN6TM5fPgPZDk6WLdzCsxGQMrNsbX0s3oD/3HRADiU3twsHIe3e0yRgQNTEoUdAaimQMTDuhKOYlRcsYMDvP6tiakYHbp42JeenBy8brWQ/5QnIxqrKGHw/Z4cENk0foz2udBPhsM7P8XRihlhGUsUH6c+9tOohbr7gQXuaGWwghUG3t+2lWSuAQBXhtlBIIAf698kntLyVQ/HwbzYgVgcrlQihMQJYQgKx2LrBDgzeES5/5Csu/r0q4nNTOGe7pYwdipMA9H367ZSACzAm3EIKzNbmHxixpAzxCCNuUEbgx+N98e1hv6ZjXeyOf3RujPlfdgQ0bNuD999/HsGHDMGPGDFx++eUxD4LoKLZS4rtjNJwi0llK0F2Tr9tmI6VylN0xeGzvxzeZ98yzK/fi2/0N+PfWyvbtwAZWvoPpNx9M7/Z7IyQM9DHOFHfgdse7yIb5rOvnW/ZgovgDAOAG9cb1HHEr6o9aS3cd5ObBb4A54FT7mQ8oGgwA6IfmpLOk0RQJWsZAQcwPnl/is6bZgi+pG/8Ln20FALSwDMPXmRYwKonMB6NmwUw8BkJqpwGWwNyOhTRhIH5GW3KrfeQtCgNXSqv0///e+TJymbUWg19t5ynQVcFI4D1pVFQJQGYku8NK4BoMKyhWOxJUsQL8+JRBccuEVKM7KZRYGKhr5K8HmQSnI1Y8EdXjIyYotaiu458XyZ2JIQWxwaaW0REMmBzfIA/4W1hGnClgYZZLNyQsQHJhQPMY2HDQh2y3A7dewE0Cd7DhCDIJ/YUmDBFqEs6mR6O1gqxQTfkA4IKxA3H5hGHYxfh36zghebcEAPAw44wBj1PSW2YqAevCQMCRG/+imjHgSVJKkCvwsTSx2HMVgAtHkQ8A+GDluqRjARjOF7/FTHEDBLXUY+vBRvzqtU2mmTS7jjRjQZQfQSJ/gLYMdHiRp459HxuEfWp5xzGCueCqca74HQDgY/kMbGWjcJD1h1sIoW7HF0nXbfZHfocGpsjtO1Xk5+dj9uzZmDFjBkpKSpCXlxfzIIiOEh3AJbvhT/+MfudGHB3Zm5332xcDqfa+59ZA2MZ1wzxgP2pQBppusSLZfXhaMwaiM39S/D4D4dhMiD74ce4wxlOfRO/EV4/FzieRI/jU9n1XGi729VfLcYtLRoUyEKuVU7BFGYXx4j5cl7MVwNVJd1Ndw9Oem5CJAeosv5jDZ4z7CU0JA4VoGGMYoGUMsHy0HGrARSfxG/AfnTwa+BLIhg++sAIYZOZrHKmpAVxAC4xrr/TZ+wQeA4ocLQyYlBJowkCCjAFFm612xA9YmxGXFAteAYEWjBf4DHEjy0Sh0IK7HG/g1XWT8IuzRiZcVVQDuqYoN/mfnjoksoBe9tGEsMzgTNJhMigrKFYFnAvPPA2nDSuIW6ZJFWWStSs8UtuAQeCBYbazjW7p5ON1JTg+ew4dBZzAUX/8oPfUhzEBwI4DRzHdYF3F3wwRQCsykGPQLSDoygPC1cizkDHgUVsu+tUsldsvHIM/f7YbAbhQyobjFGEfxgt7sFcenXRbAHThpZJFfDYuHc8FgV3KUIwX92GMxTr1DL2UIHamP9Ml6R4DYX9zoq8UAKC6+giOA7CjTsBFbV908u1kIIjmBDcgOapA2TZjAODvtViox/L1mzH7J5eabqPJH8J/SCvxmHMxAODP4Z/iT+HIb9vuI81xfhMA8JP/+zLm70BYQYbLWjvV77dvBtzAYVYIP9zYywZjLA7gGME4Y0C7eRShYLLIy7hWKeMBCFgjj8M1ji9Q9/1nKBz/44T79UR9Jxwp7jfeUV566aWuHgLRg2hPsk70HECygCLRq+kuJUi314bdYMrO0qkOpFIVYCYrJehsaloCmPiHT3HqsHz8Y95ZFtYwHvCuI82Y/qfV8Ut38ftLSUvPLngPcZNZXX0geyDd686CSCvePV8iR+CzpReK35guN1bghl/bGA8wl8unAwCGN260tiO1BVkTi9yMi2oLu0KhyXLGwIayOj1joIoVol9WZIYsKzcfADfJi04/NyJbbVXYCpOMAYkLA0KCUgJYEAY01/tQMEHGgNb5wMBjwKFmVzhlCxkDdXshCQy1LAc3BX8LALjasRIf/fv9pFkDhSIPxhqjzk/0DLmgdyZoRshCfXcwrKAYPHX+9JNPMlzm60p+/JoaErfsyRS52uuHM/7myqUJA+bHJ0MIqOvHz6b2z+cz5EWZxjdtYb11nsewjWC9wvefb8FjwAM+Dt1QEsDNZ/Pv03dqJ4FTxL2WvwvFUd8DfR+qYqOVF4wQqyzNXmgZA2iTMZDhlPSuBCFf4swOAGio4yn+jQbtCiMeA4GEpQTa71GzQTZPpfpeNf8KM/xBGXOkpfrfc6UP0R+N+t9mTuazTorNbGk702CGrDC9tKNC4UJlmZoxoGV2tEU7BiOFSmQLfrQyN0oZL6/awo4BAFTu3IhGn7k4CQAFWcnkmq6nuroaX375Jb766itUV1e3ezuLFi3CyJEj4fF4MGHCBKxZsybh8qtWrcKECRPg8XgwatQoPPfcczGvf//995g9ezZGjBgBQRCwcOHCuG08+OCDEAQh5lFcXNzu90CkFjtdCdJdStD55oPG/7e7blva3i90VglGR3eTypnm9mzpU9Vza/P+hg7t2yylPxWnIS8jvmQ1ldtPhpVdpHocbT+/JAvYh4SBPkTDnkhgP1I8grDPePZ2rMh7h5cqwwFE6qIniaWxkr0JmQqfURUzIumjkWCzKakTu8Ztb26JMR/82aRhke1FBTVVRxPffGap7vqtzMStVQ3ohUSlBBaEAa2GnSUwH4wIA/E/2M4MPoObaEZcQ67m5QD72CBsYsfhjfCPAACPOhfj9+8kNqFTVCd4w4AOgNgmYyAZwZCsewwg19j4prBQPf8O82MDACE1hV0xKLXQPBjcCYSB0fk8WB5dMiDutX65/DMzKNv4Z0/7PjSzDLgMZmO9Ek+ZT+YxwBjTSwnOOXG4/vz9Pz4BQEQYOFncZzkYLW7T9eHPV4/XX9PS2EcKlajzJhC3VDK1UgJ3rDAgigICIg/QZQulBAWqwJST1y/+Ra0rgRBMXEqgiixGGQPaex2URBhoPFqBMeIhyEzAbmUw3EIYP5M+0193O4yzANqakvlDkd+2RDfHLYEwRoj8prCMcR+Lg4x/3gYLxn4IAXXbJwncsHAHGw5FvfzuUH9nTxAr8M7X+033CwBD1fKYGCPWbkJraytuuukmDBo0COeccw6mTp2KkpIS3HzzzfB6rRmqarz11lu47bbbcO+992Lz5s2YOnUqZs6cif37jY9PWVkZZs2ahalTp2Lz5s245557cMstt+C9997Tl/F6vRg1ahT++Mc/Jgz2TzzxRFRWVuqPbdvstZMk0keMaVmyUoJEr6U5Wuhu304zQeWp5T/g5AeXdfJo2sdPTx2ctm23Rwxxt81oTLoPe9tPhfBhNMFhdfupaelpvBG73UXs4GmT4koJA/YhYaAXsGZ3Nb470IDvDzcm/IErqN8a83d9ufENz/ECv/k67pTJAICtbBS8zI0CoQXLvkheB6uo7u5BZ1TtcVZ0KYG1WdKqJh+K1FKCx38xI/YLL4r6LOO8l1YZrB1hSBYPvjzZJnWuUnJhIKaVoWnGgFZKkCCwV8sMBIOMAZeHCwNu5k/6a7Z/Nz+XZQqf9Xw0fDUqWSFGi5U4d/u9gJIg4FQN36IzBqIRYoSB5Ocq0FwNt6Aen5x4fwEAOGk0d8/PYIkDhJDWQUKIF3EENWPAzczFhVyJjyM726Du3cFnw0XZeH1/i5YxkAG3wQV19HD+HgqSCAMhmamlOsCZY4bEvb5TnSkeIxzEgbrEx0NLgR/p4mOrYrxMQysjAIDLp53DlxGqEE5ixAlFQSbjwgpzxXcTCEk88JT9ycslshhfZkeDwWVEMx9EEL6gyWdRUfRsnqY2n8U/Xz0+KmMgcZbJolffAMCP67PhSwAAl0pfwe4tx0fb+MxNkz+EkXcvxSm/X264XHTGgNY68hDj35khQrVh1oYmAJ0klgMAvldG6K/tYkOgMAH9hGaEmhKbJbYGuEB5ycmJnae7gvnz52PVqlX48MMP0dDQgIaGBnzwwQdYtWoV7rjjDlvbeuqpp3DzzTdjzpw5GDt2LBYuXIihQ4fi2WefNVz+ueeew7Bhw7Bw4UKMHTsWc+bMwU033YQnnnhCX+b000/H448/jquvvhput7k/g8PhQHFxsf4YMCBeZCS6htja5GTLdt5YOhu7ezZb/unP96C1ze9zvTdx1lJXke2Jve9K5eFvz6ac3ayUy4jEPhtJ1k3F/q0sk+LvUU7c54SUAbt0/082kZBdR5px/YsbcekzX+Hip7/EZ6XGqaxgDK4jWwDw3uoA4D1i4GKuKBil3vQecvAAJgwHvlV4uusXny9N+kUT1TryoCMq8FCDzXyhFU0WZ49KXH494Bw1Mr4Wu0UtDchG4tT7QRn8wlc8oL/xAlqQnsBjgKmBNoMAiMZfGz1jIIHHABQ+oys4429MRXfUrGko8Xtat5kLA4dYf/xj3hQ0IAe/Cs6HnzlxgbQZzz5qfiMuqR4DZhkDyOQzwLyUIPG5Pljv1Wd05Yx+evDdltc28ywFj9ya8IqkBaRBMT61XFSFEw8zF15EtQyDOeOFBSapwoBiPKuu+Hn6fAvLMKwRzcxTP8NInGYflBVkqB4Dzoz4Y7yXDYLCBBQILeiPpoRZA8GwAgfCyAlrGQP9MG1sbLeFGWdzAS9P8CLYnDh7JhiVJVTREj+THpb4cVeSdI+QFYY8dba/rXEggJhSAm/A5HsVbIYo8M9Cc5syn0vHD0aLixstJssYOFbhfcq3KMdgmXI6/MyJ0WIlThTKAQBfl1tr6/fwv3egtiWAJV/yWf1GX8jw3Kz84WiklEAVBg7qwkANWg3eb0AVbLQyre/ZCABAlktCAC4cBv/Ord/0bcIxtgZlDBWO4OL617rdVMh7772HF198ETNnzkRubi5yc3Mxa9YsLF68GO+++67l7QSDQWzatAnTp8c6gUyfPh1r1xpnQ61bty5u+RkzZuCbb75BKGQv0Nm9ezdKSkowcuRIXH311di3b1/C5QOBAJqammIeRHLa5TEQ9ZE/WJ/4PiLRjGi6jd3SsXVvMJK1aDfYGWXgsdLVdPQcdPWvX9u2eKmmq3/ee2pA3XbYPfNddC0kDPRwdh+Jndmb+7dNxgvWl0EKNCDAHPhMOQ0AsHHLd3GLPfvRWriFEMJMxI/POQOfzj8XPz11MLazUQCAE4VyLPv+SMIxOYI88Aw5o4SBjALI6sct0GCt7vSXp/LgogHZuplZNFqXAa1O2QxvcwMAgLkM2qoBujAgJsgY0EQDRTA3J9MyBhBO5FXAtyNKBsKAK+riHUp80zNA4DefNcjDqarZ3zY2Cn8IXwcAmOlbih2HGg3X9TXxGVizjAFNxCkQmpNmDDT5wroPRDjLOFsAAIYN4q85BCVhWzYthT0smWcMeBIIQYJ63DyZ8bPhgipaSCbnee9BPmNsZlLZLPKMkwKhJeFxCYYVeNRSAqc7Nmieemx/+OFGtZMfj2PFgzG96dviC8kYgEYIYIDoxL/++1IsvmFC7EKuTFSBnzOlJnHLQl9LAwAgxCR45fjPsuxQxxtM/Pnzh2S9o8C4Y4bHL6BmDDgEBb6AsVB2tJYH7GEm4sWbzo57feZZ/H0Wow6HGszP+XA1SN/DSnDs0EH4VOHrXSZ9BQBYtHJv3DpmNz0T/vAp3tgYSVcPGGRgLN1aGdU+kgsDh1VhIFMIoKUhXpzVBIahAv/tK1OK8dkd5+Lr+6YBAPYrXAT5xQmJbzaD3ma85vwjLqh6AVj9RMJlOxuv14uioqK45wcOHGirlKCmpgayLMdtq6ioCFVVxhkVVVVVhsuHw2HU1Fhvdzlp0iS8+uqrWLZsGRYvXoyqqipMmTIFtbXmWSsLFiyI6b4wdOhQy/vry7Qn7oj+3v5t/f6EvwtpzxhI7+bjmP925H7N7r4H5pqUUXYhds9POsPwLq2376IAPGnGTSr2YWEjqX735D3YcUgY6OH8+u+xM0ym7eUO8eVK2TD9ZjbbH3+TtWLt1wCAKhQiJ9ODYwZm4+6Zx2O7mvp6klhu2v5Lw6G2pAtFlxKIEpoFHqyFWkyyGtrg8vLlghnxN5sA4FUN5rS0bTOkEBdP6kLGxl2CWkogsrDh60CkXWEiYUDRMg8SZQyoBoei08B80OmAn6neA0mEgf4CD/qrGQ9WH7yE16+/J09FgDkwQjyCdZuMRaLWxljTuBNL2qTdq+0KrXSQcDkEfUZXyDOvAbzhnLGQmXppT9CZQA7w9x0yyBiQ9IwB8+PrVPhrMSKL/qImDBiv36oKSK0mbS2LB/H3V4Bmw4BRIxiS9c+k6IoVBv7vZ6fh8StORuGIcQCAY4WDePsb8zaD3mA4Yr6XU4ySgizDbIZDoirK1MUHwdH4mrmI04IMnDk6PoNGVjs/sATiDQAEQrKeMXDf7MnxC0SZLn70jbFY4WvlvxNeuDGoIP6YK9n8PRULdVi+3bzn8giBC5UVrAiZLgkfyFMAAD+R1kKE8XnyhcyzNI40RT4fgVD8+vv2H9BbFVaoHgNBOHGE5QMAduzYHreOP6RAhIIStSzi4Z/PwugB2ch0ObD2rvOxX21DWRBI3FmiYOcbGCEeQbOrCDjt+oTLdjaTJ0/GAw88AL8/ktHj8/nw+9//HpMnG3xGkhDXt5yxhG7vRssbPZ+ImTNnYvbs2Rg3bhymTZuGjz76CADwyiuvmK5z9913o7GxUX8cOGCtbShhn2/bGL1tqqhv34ZSECz0hFRyja6d/U3TvlP4ntqzpTQ3nmj327M8rCQ7SInHgJUj28sEvN5Az/llIyxj6Ep/iAeJ3ymj9XrY0a74FNuhqqv2AWUgMl28Vscpidiupr6OFSrQmGT25+BhfhPfLMQGZy0SD2LDSdKdNVx+Phaf27jG06uaCWYhsVlftsBfH9A/cSmBWYo5AAiqMMAE8w6fWqq6YFLDDgCiljFg0K7QJYnwaW76CWZsFYXprus1qjBQks8DKx882KZmd+xYb2wqlCdoKeD8/Izo1yaIzuJpzYVoRjiJ2WRIZnoNuKsgvp5eI9vj1Es/EDCvX1fUjAHZIGNAM2fMhN/0RkczbhTd8entyTIGRuXybcommSWObM17oRn+BIFlMBjgmRF80DGv5WU4ceXEoXAWcyFnjHDQ0OgQ4OfZH1L0jAwz/wYAOCxx0UKqT5z2HGzln5sWloET2gpCAJhDNR/0Jy4lCHib9fcoZebHLyA5EWJcRNtz2HjGVlHFBz/cGD0g/pg78nkdvVsI4y//3mA8EMYwXBUGxMJR+M35x2ClMh71LBtFQgOmiN8brtbsNxYBJcSe1+j0XY1cHw/8KlkhAlFNHTUDwtqDu+PWCcq8c4dTkKEITow9doz+Wkl+BrKLeamWs7HC+H0C+HznEUxq5aaKf3fNBnK6l1v+woULsXbtWgwZMgQXXHABpk2bhqFDh2Lt2rX485//bHk7/fv3hyRJcdkBR48eNcxIAIDi4mLD5R0OB/r1MzDHtEhWVhbGjRuH3bvjz6mG2+3WSye0B5Ecu4FVRW28WJko4E13LDx5lPnnKu0dEVLYlaCn0PYtpPQtpeAAMcaw43CT7gPT4e31wHKXuH2Y7CTWfDC1I4nrStAbPvydDAkDPZijzcYB8fOrI7OGYVnBf72xGZvWrgDA63A1YYA1xM9sDFFdtQ+y/rqjqSQJqGBFaGYZ8AghfL7mq4Tj0lKMPy+PDbRbHDzlXbEoDGSqwoDfYywMMN35PHHGQI4qDGTn5Bu+LujmgwkyBuTkGQNMTJ4xoIkPkkFphFMS9SwIhMxnbDeW1WKAaspYDS4MOKJcyrcpvC3esaLx7GM/iZ8fr5SNYYWZuOfisbELqB4DmUJAn8E3IxhWMAiJOxIA3MFXc573tiSY5VHft57SHoUrg2ecZCBgOmPvVP0H2s7UAwBU4UZixgKQI8wFCzMvCjGLm+EVCM3wJ8gYCEUb9zkNxgEA/XggOEw4ivxM45ZCfjX9PCIMmAeCR11clHE1lpkuAwBBLxcGApJxGUmjwo+RI5y4PCfUys95iEmm71ETd44pMOkC4efnOigap7kO6penZ8SY+gy0ViNb8ENhAn520TmYMro/1t93Ef4tnwkA+Klk3OKu2c/FofxMJx669ERcKH6DZa7fYa/nenzquhPniDxt95kv4rMdfjyUf8b2s4G4dHzkM6/9ruaHDEoJQgqGqGUEYv4QQIz9Hfm0kv92NFSVG79PAHe8/DlOVrsa7B/4I9PlugotgF6wYAHGjx+Pk08+GX/84x+xe/dunHjiiZa343K5MGHCBKxYsSLm+RUrVmDKlCmG60yePDlu+eXLl2PixIlwOs1bdiUjEAigtLQUgwaZi3JE51DXmrzjSjSJPQY6jtilrQfsvYPSqu7ne9Hb4rWVP1Rj1tNrcPHTiduqWiU1x6cDwlmKz8/Wg8alrSlvV5jazfVJepwwkOrexgA3TTrhhBPgdrtxwgkn4B//+EeH99sZ/Ps74/TaxihX2b+tr8An3+3HSaoR12Z2DA4zHvgNEmpjxAXGWCRjQE1tBYBslwMMot53WzPQMkObkR45JPZmak8rDwA+27Qj6XsDgJpKPuZgpvEs0Ukj+SxpFvyobDQOZBSFIUN1YXdkxNedA5GZZJEl8hjQMgYSCANq5oGQMPOA70MyKiWQBL2PfCLzwTmLv4BHNWUcOnQEAKC6OSJG7GU8WBktHDZcP1ttJ/nHa8/B6t/9CIPz26Rxu3MRAs+MYK2J63NDshJJdU8gDARCiu4J0VhvXq+reQQojvjUck0YyIQffoOZXCDSsUAyyBgQXfzz5zQ5P5ImSjhNvChUwaQALQgkyBgIqQFvGKJhW0oAQD6vyx8qHMX6fcZBr+bmX6j6SWidPYxYW88D6GQeAyEv35ZfNA7mc3JUoUlOLAiFW7lY0SxkmU79acLdyDzjy4zmJxEQjA0rRw/I1rswTBlgIrY1cvHrKPJxqJkfr37ZbvxD5p4FF4lfI8Mgo0jLGMh2O5C59TUsdj2F41Qh7RjxMJY4H8dUcSve/iZeXGs6tIuPP39kTKmB5jNwsHxX3DqBsKz7C6Ag3pPhiPo+dRHIgDPEnRAFhp3KUFx34Zmmy3UFoVAIo0aNQllZGX75y1/iySefxFNPPYU5c+YgI8O4NCcR8+fPxwsvvIAlS5agtLQUt99+O/bv34+5c+cC4On7N9xwg7783LlzUVFRgfnz56O0tBRLlizBiy++iDvvvFNfJhgMYsuWLdiyZQuCwSAOHTqELVu2YM+eyHfmzjvvxKpVq1BWVoYNGzbgiiuuQFNTE2688cYOHB0iFRjd8HfEdb2j9KQAZF918vaz6cJ01jhN223XtlKwjX99x++3ymvttWY1o71jsrpespn0VM/k//kz86yrVBJnPtiTvqjdhB4lDKSjt/G6detw1VVX4frrr8d3332H66+/Hv/xH/+BDRsiqat299tZmLltf3ewQf//hrI6TBR/gFsIoYblopwVo8HBb2BzBR+aGyLb8EfNah17XGSGR1Sl8Z2KKgyIid93vioMTDv1uJjnaxlPsdQDnQQcafLrN9JNbuPZmiy1JV0mAvhgi3EQHAgryFbNCR2ZximegoMHwVKCjAEwCxkDDq2UwDjwDMsKHKr44DDoSsBLCVTBIEEpgeYv0MI8eHHOuQCAi06KHKN9jP//OCleOAqHZeSoteFZeSalFYKABoEfK8GbuFVcULaW6j6if6ZeSpAwTV0VRBSDWWin6jEgCQx+v/Hx0YQBhzt+RlzUSglMBCCH6kVhalKpCgMZQhABXwIDRfXcBeA2z5ctGAGA970fmmfsfaHVwQ8U1eOVZXK+EGmbl+M9kLjrgy9xxoBWruEIJ765kb0NAIAWweRYAVDUDgeSbCxyacJA0KA1pUbhoBEAgH6KsUAVVtv7VbM8zBoX+fy99sBvUO8egiwhgNnSmriSAK02eVLjMsyufJKvE56GswML8S95MhyCgqeci5CLVqz8ITYDYLjISxe+rM3FJ99H0tcPqYJriUF7xZqWoP7bivxhca+HVPFzgNBg2M5VVhiOFQ4BALazkTi+2Fjk7CqcTicCgYCtev5EXHXVVVi4cCEeeughjB8/HqtXr8bSpUsxfDgXVSorK2OuvyNHjsTSpUuxcuVKjB8/Hg8//DCefvppzJ49W1/m8OHDOPXUU3HqqaeisrISTzzxBE499VTMmTNHX+bgwYO45pprcNxxx+Hyyy+Hy+XC+vXr9f0SqcOuq7vRz1p7swLS38qwZ28/laRqqPFu8yn0GOgM80GbO+nqFPiUeAyYikIs6TId2Kvpvghr9ChhIB29jRcuXIgLL7wQd999N44//njcfffduOCCC7Bw4cJ277ez+HZ/PdwIYrywB2eL23C8sB8OhLF+Xx22qWk7LYEwLhS5v8AX8ngAAub/eILeYixUH5kRq/cG9WB81tRJMft6+z8n6xkDJyTLGFADz4zc2EDGncdvfvsjuTDQ7A/rY9kbMg6INDO6TMGP4YXGM6D+kKx7ELgyjIUBUUocMAJR7QrF5B4DoonHgD+swCnwAMXhihcGeCmBGiQlKCUYEOUvkOHiQkVehhO7/3cmyhbMwuO/vAwAUMyOAm08AppamuFWx5CdZ14j2STwmWPBmzhjIGCxBn5QXgZaVU8I2Wd+/kUtIDVKT48yFAx6jcUFzZhQ+2xEIzj4/h1m5znIhYFWmMxwurIRVDMpao4YC1FA8plwAEBuCRTBAZcgY2I/k8+LOhvdT1RLEzLNhYEDbCBkJnA/jQTmnn61K0GzicEi1GwJh5LYt0Px8e20CsYCAwAo6vGWTMoSFLVMxayUAABqRJ4lEW4wLovx1nPxq4blIT8zIrBkeZzIPe+/AAC/kv6NRZ/vjFnvDx+V4hJxLR5zPg8BDAeOvQ73h3+Bg2wgfhv6T+xRSjBAaMJ/Oj7Ez1/6OiZY1zwNckuOjdnmYV0YiP/O3P/P7QmFgf++8jy+TcGHfxuYNfpCMkaL/DNXhpKUBeCp5L/+67/w6KOPIhxOTY3tvHnzUF5ejkAggE2bNuGcc87RX3v55ZexcuXKmOXPPfdcfPvttwgEAigrK9OzCzRGjBgBxljcI3o7b775Jg4fPqxnFGjZhETqsf8Rjr/BT5wxkEg0SEVNuflr3qB5Rlkq6EmhTk8QMVLzeegeb9Tq16pTuhJY2EqqjxplDHScHiMMpKu3sdky2jbbs990EpIV/GTh5/j1PffjUd9D+N59E/7p/h/8zbUAn7jvwtfueXjA8Qre/pjXW04oEjFbWg0AWKpMwt9/OQnXThqu38SG6iM+A698tVef7ZIKR8Ts94yRhbhi1kUAgOPFA6YGK4rCkAseyLhzC2NeGz2Cb7NQSGxsBgC+QFi/kR41xqQ+VQ0UMxFAi8l4AmEFWarHgOQxEQbUtP5EXQmslBLoJQkmqer+kAwX+HaMPQYE+Jka3CQoJShx8MBaaZNa7pRECIKA7P5DoTABLkGGryG2tWRzPT+mYSbCYSKUAECzpL7Wmjhj4P53v9Yd2pGbpA7XzWc5ZX8CYUB934KRR4Aowa9mVASj6/ij8KjdANq2CQQAycXXdZoIA4IqDCzfbWKOKAioZzxwdgbNU741X4aEwoAowZfJSy+yvMZBr2Zw2F/7vmQWGi4HADdOHaOnsgerzVP2vv6Bi3qHfSafY/U75ZK9Ca+oivq58ErmnyGtHESSjUUGFtI6UJgLA2UB/pkpNkmxb61VW0w6+0FqU/QrTbgBNSwXw8Rq5G6NdZWfKW7An5yLIAkMOO1GOC9+HNotVQAu/DF8DQDgJukT5KMZVY3qe2AMowW+z4vOOQsb77kAAPDSz0/Hb37K6/6HSvGZXG6nqPu3aGUk0Zw8egha1TKi1tpD8e8zENZLg267+seGx6Kr2bBhA95//30MGzYMM2bMwOWXXx7zIIiOYNtwLz3DsMSfPo0vJ+qrmAXMHQ2kuzrgi77apEMUSPfbM2tgpmFkvJsOUn3s4toVpnTrfYMeIwykq7ex2TLaNtuzX4CbFjU1NcU8UkHtvi14pf56PON6GudJ38EhKPA6+6EhZwxakIkCoQW/cCzDw4duBl6ahZ9u+zXyBC/2KCVYqZyCKWqLMq+Hpx6zxsjM5wDGXbODTDI0OnOVnASFCRgoNGDlt8Zu316/D1mqGWBGbmzgWjiQB0L9BGMTkmiCTVXIEIKQmYCzTjvFeCF1VjkTflS3mM26ysjW+t67jdOetQ4BpjPJAJiFrgR6dwOTUgJ/SIZTdT036krgcUoR88EE7eJOyOXvNbvQOBDPzc5ANfIBAE1HY83ovE08oGsWshNO2bRKfH34EgsDUiv/DniZG3AnduPW09cTlBJIWm2703gm2q8en7AvPnhniowMgR97hyd+fU2MccD4PGep6543boTp+AIuXgsebjbPpNCEgUQp8gAQzOH9zgsCxtkHWilBgZZhk6CUYPGaMr0N6b0vfmC63Ogcvk2fZOK3oQoqAlhCcUrx8uC31ZFnuozW4UA0EQa0z3g4gTBwxiknAQCKUGfYbSXQwD9/QY9B9osrE0+FrwQA3Oh7BSj/imfQbPgr/s/1FzgEBV9mXQj8eCGK8zPxt5sn4Z+/PgvXnDEMnyqn4XtlODKEIK6WvtCNz1hzFQqEZshMQEbJWAzM9aD8jxfjR8cPhJivnk/WGHfsjh2YjaGimslhIAy4HZLuM1BbGZ+R9e43B3RhwDnwuLjXuwP5+fmYPXs2ZsyYgZKSEuTl5cU8CCIauwkDRjf4B+vNf6PS7T/QlQFHVwfFdjAbaoc9Bjq4fsy2OrgxK+vb3UVXn+OFn3bcEyD6PUTfbsZ2JUgtbbMUuvo49kQSRDndk3T0NrayTbv7XbBgAX7/+9+bvt5eikaehBqIqGSFeFc+B+/LU3HxmWfjzouORyAYxM8ffBzXSJ9jmrgJUsVXGA5ei35naC5+cdZofTvNrgFAEBCbIrNTeQE+E9boKsIAMX5GcdzIEuxjRRglVKFix0ZgcnzA7musQTYAhQlwZ+fHjr2YmwUWohkH6rwYapL+DwChGh7QHhX6YZBBEA0AcGmlBAGU+4zVTX8oHGlnaFI7rgXpUoKMAb1docFx0UmaMaDApQWlUvx7yogSBpSgz1S18zceARyAYpJaLggCKlkhioR6HCzfi6LjI07eflUY8IrZKDB/J2hVO0iISTwGzhskA3VAo6MfMpPkhgZVYYAlaFfoUOvRjdoNAkBA8ACsOdb5X3vNrxdiwJVh4DGgCgOGGQOMwQ1+3kYWmwfgPkc+EALkFnNhIGyllABAOHcoUAX0CxsLjFrGQD60jAHz0o9XbzoDFa8WAdiGEYK5YFnk5Md39DDj1pJStDdDyAsYZW4AEH1cGPA58k33pZkPmnkMsCB/PiSZm9P1Vz0GioV6rN9Xi7OOaXNuWnmwLWcYGzNuGXApPq/dhPOlLcDLswBPHuBvhATg7fC5cF7wJCDyb9rZx/Jtjx+aj/suHosHHlqNJ8TncYNjOUob78cblU34+J9/w6su7ukwuE1bOr+YjRbmQbbgh6+mAhmDjtdf+7a8BsVuNZPAoJQAAGqEQoxCFfZX7I177Z+rv8avhQBCTIKzcKTp8eoqwuEwzjvvPMyYMQPFxd2rjSLRPbFbDmN0g9/gNRfz094f3WbEoShM92vq8L478ObObvsb2oYcd+eEBd2pGKrDwkBqhpHyrXbkfZVWdnwysyti8rbvWSFlwDY9JmMgXb2NzZbRttme/QLcNbmxsVF/HDgQ3xqwPQgOFxYf8yzOCjyNJ8P/gTI2CF61FtntcmHqrJ/hP0PzcXbgaSjTHsZjoaswM7gAW9gxuDeqLV2rmjHgaI3MVopNfIzeTHN3+d0Cn+2akm0cfASa+c1vMzIhtAmitRnufkJT0tZD67/ZCAAokweaL+SKZAyYlTYE/T44BbXezyRjQFIDekeiUgKmbiNRxoBWU52glMCplhJoIkI0GS4JfjWdOGySKh8IyyhUZ5DDRrOkKpWMp53/a83XMc8HW9SAzmTGWMPnzOfD9CcWBkZ7+FhYAn8BjZCDB51C0PyC41RnlyWTc6UF27I/PqOioTGSieI28BjQMgacRhkDcggi+PfImWEuWPmcfOZTCpiXEvx70z4AQF0wgYgEQMnh37N82fgY+4IyBCjIZerxSuAxMPXY/roB4XDhiGmXDmdILUNxG8/gupxOnv0B6J4LhttR378vQcaAoGb0SGHjjAFZyxiQzDMGXAVcwCgS6uAwuKl2qp/PgMl34djiXMwL3Yp/yqo45m8EPHn4a9Z/4nfhXyHbY7zvLLcDjz7we9SwXJQIdaj95l3c/f42jBW44V0pGwaPM/b8njKsQC/RCtbFGrQOEurgEBSERReQbXzdcBdEPg8H6mLNHwcG+fb2s4HmnS66EIfDgf/3//4fAoHErWMJor3YNm9Lc7tCy+NgDL995ztMWvAZGn0JhAxb22z/uv2yTSZaVDSBNFX0ha4EVj6btkthUvD+EmlvycacChsb0zKSmGU6vp9oSAjoOLaFgfvvvx+yHG+s0tjYiGuuuSYlgzIiXb2NzZbRttme/QKA2+1Gbm5uzCNVrKnLgxJ16n5x1gj9/8cM5AFRJfph1zE/xyL5UhxgRdh037SYGlx/Jg8i3N5IgO9q4dkDgazBpvsOD+D1/ln1pYavB9UU6ybBIPBUA5t8oRU7D5kHnIrCkFH/AwDgBzbUdLlojwGtL3nceKON7kwyBgTVY0BCAmFAbTOYKGNAVDsNmAkDgbAMl2r8Z3Rz73aIesZA2GRW3RuQ9a4OxYPMz1Ol3pIytt65sY6fn6AzSdq/mjLv8Jv0j1fJDHDPgkBGAgFHJawLAwkCTkUTBoyDc60ePRyId81X1Jl6P3PC5Yo/vk61XaHLKGMgyiDP6TIuYwAAvy6YmB8XXyt/fz6W+AZMUMWUQsX4u/Da+grkoRWSKlgkyhgQBEEvJRgpVOGPH+80XM6lCgPMY5wv4nKIaLVQzqIJA9rxMByTKtxJJkaG3+7hvzc7axMYdanHKFfw4a2v4t+TJ8A/zyGPccbA2EG58MON20K/QdO8bcCvVqFx3nY8UnsuAAHZCWbHJFcGXgtfyLez7yUADBNF/ru0VRkVPxanhCrw3zi5LlYIPru/2oEha7CeodCWSpmLLAOERhxpij1mWhmB1oq0OzJp0iRs3ry5q4dB9FJ6Wiq2BmPAO5sOoro5gA+2xPuHdDardlV36v5MBZoOekZ0tdt8dOCcrF6/PbR3k93kY2+D9I64u5hC9iRsCwOvvvoqzjrrLOzdG0l3XLlyJcaNG4fy8vJUji2OdPQ2vvXWW7F8+XI8+uij2LlzJx599FF8+umnuO222yzvt7P5yzXjY/7Oy4wEQfujZpqia3L7ZcfOUIez+A13diBiTpft5zefco5xmjEANOSMAQDkNxmb6xyu4uUIdYpBYJdRwP0LADz9zzWm+9h8oB7HCdyQrTHnGNPltDr0TMGPepOUQhbgadh+uAGToN5KxoBgoSuBpAkDJl4F/pASyRgwKCUQBEF3aJcNAl8A8Idl9FPN6Bw55sG4ljHQ1iF9/Q7+vS33Jp51DKrCgCuByR4AZAf5TUYwM3n6cNjJxSIxgTCgdSVwGMz4A0BYVEstDOrfNbHAb5LC73SrwoBRxoDWJpEJcLnNZ7B3N/Pz9kOZeWeODNVjw4fEpQRiHg/yBjBjkWHN7pqIUac7FzArqVFZcvtVAHjGwJiBxsfPE1a3l5Fv+LrbIcKnZwyYtyzUPhcBV4KMAVUYUEw+yxlq6Ya+P8MB56JF7WZxSl68UOHw8c/f5jrjz/NNZ0XS7v+1jwEl4/HOd5HvRI4ncdrsq/KF8DEXxonlOE/8DpNELk7sz51guPxRtYsCGmOFAbmuHAAQzDb/bd3r479nA4WGuGyEniAMzJs3D3fccQf+7//+D+vWrcPWrVtjHgQRjW2PAYP7+/a3K+y8NO10hCUdGX7C8osObtt4g2ZP28wASWOA175tRz7BVt6L6Qy8yQvpbBfYWVjZfarHSF0JOo5tYWDr1q0YMWIExo8fj8WLF+O3v/0tpk+fjp///Of48ssv0zFGnXT0Np4yZQrefPNNvPTSSzj55JPx8ssv46233sKkSZMs77ezOWZgDsr/eDF+PmUEfjl1JHI9kZvi88ZEZs5W7DhitDoAQM7ls805wSP6N6cgeER9zfzmtaWA180W+MqAcPzM+PtfbQcANDKDWVdRxEHGxzdMM+IyYEdlM8aI/MZ6TUOCtLaojIFA2HjWkalBqFcwr2N2qNkjjoQZA+prFroSOFjyrgRGwgAAyGpaNQsYz9ZWNfr1UoJEM8hHBC4atO2pnifw7daGzdPlASCkpmZ7kggDoQY+AxLKTJ4xoKgZG46QsTCgKEzvKhA2qTuX1ZaQIYNSAq1NoN8kINcyBpyCHN9STRUG/HAhI8Es8r5Wvu1+gnk5xMlF/NzmJ8kScubz7+BA1GFThbE4YOVc6xQMhwIR2YIfBazBcJFMhQsDYma+4etuh4RWzakhgYDjDvGyjYDT3KlCMx/MFAIx7f40NAGlsMB4LBotLv6bUdS2M0E4qLdG/brG+Jy5HJFL3KaKeoRkBX/4KJLtlJeRWCC747IpeFs+FwDwsusx5ApeHGH5WF5vLITVSOr3oCl2ZlDrSFAtmZef7fby78dA1OPtbyLCQlhWdGGgObv7+QtoXHXVVSgrK8Mtt9yCs846C+PHj8epp56q/0sQHcEoeGtvu8LOJD2O9WkMklO8bbOt/fd729Kz4S6AMSCUJG3A7GOw7WCDyfLte4NNFstVPtxa2a7t20GJOiYxhoNp/G62LSXoRh+THoNtl5G8vDy8+eabuPfee/Gf//mfcDgc+Pjjj3HBBRekY3xxzJs3D/PmzTN87eWXX457TuttnIgrrrgCV1xxRbv321U8+JP4Nn5DCjLglASEZJbQVZRl84wBj+LD6m37cMbYEcgJVAEioCQQBvwZg9HEMpELL1CzCyg+Keb1/mrHgVoYB0WHxWKMQhWGCkfx9Ge7ccsFx8Yt83//XI3rPXWQmQD34HGmY9E9BoQAAuH4wIMPmAdCPtE8EBa1gD6hMGAlY4AHQo4E5oOJMgYANSAOA4pJGvfOqmZcqM0iJ3Cpn3HWRGADIr3TVXLVQOrkYxOLWmEPzzjICCUWBgYKDQCAbU2ZOCnhkoDiVIWBsPF7CykKMlRhoFE2Pj5MFU5C/vhZ6Eg3gMQZAwAQDPjgcESVu6h18D64kOkyF38053jtfbclGFZw4Egt4AQKkjixOwu0Lh3NmPzsauz642Uxr58xohAF+5Ofax2HG0eE/hjEjmLvD98BF5wet0iWzLcnZBi3PuTlLJowYF5K4NJLCczfY2YWP98Z4MKAU4rVoYs8ChACzhhjXhIDcKPU4tABOFrb+Jq08s92iEnIzTcuJYjmH5sP4bczYh39hxSYC4YAcGJJLn4Zvhw/ltbrmTqvhqcjJ8P4M1bnGAjIgNTcVhjgY3X1H2G6r2DGAEDmn61X11XgoUv5N6rBF8Jokd/E/eziaQnH25WUlZV19RD6JP6QjMpGP0b2Ny+B6o7YvWGvajIuSWrP9lPTlcDaRqKX2rCvDjdMHtHxnfcgUhUDxs0Ep2azhttuDyt3mk92JeKLH1Jb2rFoZbx5rRHfHWhI+LqQAnvI5QkmJzVSnqBCGQMdpl3mg3/5y1/wpz/9Cddccw1GjRqFW265Bd99912qx0a0A0EQks6CAYAzIwcN6qz+H95YgePv/xiD1VmtHd580/W+r2xCKVNdtY9sj3v9vBIeoPcrNnbebs7gQcBw4QieWrHLUDmcKPIyhVI2HM/POc/8TWhdCeCHP2QsDAhBtZRAMBcGnC5+k+9MUEogaq8lEgb07ZiVEsjJhQEHHyczSeP2BkIo0F3qzYPFcSeeDAAYiIaYzI4hHh545xcmnuFX1MAxQ24GZPPjUgw+033K2LGmy+io5QHOsPFMtKwwZKrCwJABxoGrZlQnGBjaaWKKWTcAtzsSBIYCbdaPzhhwmgsDp487AUDkfbfl2hfW6y0Ta4OJf149OQMQYPzzZCQ0BGUFBZoIZCVjAMDuMJ+Rbjr0Q7yrcDgAt3p8pSzjmX63U4yYD4ZMSgkUBZ4w3/bft5mLB6La4SADQQQNhDs34+dANPH+0Ghx88+q2xt7k/H97j0AuAiZnZG4zAIApp9QBDFJt5m25HgcqEEebgjehWXyRDwXvgTPyz/GS7+IF10AoMHJj7+zJSIMMMZ0YSC/xLw0at6PuWeN9lnQjtk1f/lU9woZPPrkhOPtSoYPH57wQaSHH//lS/zoiZVYvy+xUWx3w+6s4WOf/GBz+7YWTxvRM5gfbUvNLG0631vKU7tTFPp1Z1M5xvj1OqXbTOnWuoYWf4LJNpXUf97a/t0bjmTnYlsYmDlzJh588EG8+uqreP3117F582acc845OPPMM/HYY4+lY4yETWpaEjv+A9wBXzOoKxFq0R9N8AghKEzAxJPjMxE0hhRkolThQT+rjE8Fq6nipRzbG41n4r5r5QHfcIGrq1/8cBQfba3EiLs+wv5aHoicIfJU36+V45DjSSByqK7nWQlKCYSAljFgHnxIau22Swib/0qpGQNmPgVApB2ew6iGHYA3FG0+aBzIKGoKvRAyDrgEXx0kQR1jgmDRmTsAPuaCKDCg6aD+fLJUcn0/mYVQmBo0+UyM9hjT07vzi4yFoBhcPIvEJZtkDITC8Aj82A0eaCx6KKowIIbjPQa0WvaAYOwR4HDFZgzE7lwVBpgrrr47mplTTgMAFAkNYEr8jcDX5fV61kNNIHFXAlEScVTLQEA99hyNFUz8ITmqlMCaU7SniGfgjBCqMPPPbXw8fA0AuI+CM9N4pt/tkKIyBkxKCQKNcAj8vdcx8++VqGf0+A1vmlxJjCb1YXt4sO3xxwoDj7/P318Ny8PZx5pnDPy/83ib1iEFmWgNJr9RiaY4j38fv2cj8Z+h+fhj+BqE4cDoAcbvu8nNx+puPaz/loSViDAgFY4w3ddJx6n+LUIrXAjBq47V3cS7XFSzPAiZiZqMdg3z5s1DS0vks/Laa6/F/N3Q0IBZs2Z1xdD6BNrvxgdbDidZsnth93bdqPNQInEh3QFBooAm2tukG8ezhvSU4aYyHb2jnxUrooXdjhTd6XPjlNqXPWD2FmK6EqT4ExdXStCNjmNPwbYwEA6HsW3bNj31PiMjA88++yzeffdd/OlPf0r5AImOc3xxfIeAbysa9NZaxUIdhqu9zw+jHwYVmqcHXzFhCHaqGQOl362La4umzXbtbDG+2a9y8IwBrWb2ppe/wa//zks9znn8CzT5Apjl5H9/qSRJTlc9BtxCCD6fcZssMchLG3ySeQDjcEVmmJls/OMtKBYyBpyJMwZeX18R5TFgLHiE1G4BYsC4hl3vHy9mJzSj8zgd+vmV6yO+G1kKv4mUkgQYbpcLDVBTU1trDJcJttTrgXxmv8Tp4AAgevh7c5sIA3JUloTDY5wWq3kwCLJRxoBaSiCamAcKAoLqDH0oGLu+HOSf40CSUoKMAv4+3UII4dZ4wSTX44BHNdWbclyCjhoqVeDnoVioQ4M3VtDzheSI+WCWtYwBoR93yx8uGKTw+RsAAE3IhMegawPASwlak5USePn7bmEeBGEu3AkuLWMggJAce3WuaQlAUI0mJXfiFGi/h2cMZAYiqZqywjBALVuqYXmYMtr8+GSqQo83GMY970fEzHPGJC8/MOta4HEaXzq9noFQmMA7k6jfm2DAr2eYSIUJZs4zChBg/HgOQAP213nx7Mq93d548Pnnn4fXG/nu/vrXv8bRo5FzFQgEsGzZsq4YGtGNsTsDLBt5DCRaIaH/gK1d2918wmtIXyNlpQRp2m57txWdbMaQmtT7aLp6pjv6/V08Lnk76vaSbrNL0gXsY1sYGDx4MEpLS+PUuosvvhjbtnXQTIRIC/MvHBP33OEGH6pU5/pBQi1GqTWsZWxQwovaqAFZesbAAO9u/PSZtXrKK2MMA8FnkG+57GzD9XdhBADgWOEg3IjPbPj9M0swgNWihXlQkTcp7vUYotrKtbQ0xXRh0JDUANufSBhwRgJs2cBQEQAEpmYMCObCgOjis4uGrvcASvIzIqUEDuN0d8253xE0FgZ27OGzh81S4vp1tzNi9CjXRRz0c5gmDBin6mtkOCXUMdUnwmssDFQe4LVs9Swb2VmJ08EBQPDw9+ZkQcBAgFHU1pIyE/TZ5rhlHFrGQLwwwNTU95BJKQEABAUeeIXbCANer9piEC5kJ3Cqd3kyUMv4+9CMF6P55dRRuqnewH7JZ3c1z4IioR51rZHPXkhWUFHrjQgDFksJgnl8pmqkUBX/oo9/NxtZlmm5hMtKVwJVGKhnOTEtUONQM3qMSgnu/+d2vSuB5EmcMVAv8c+x0hg53i9+uQ8DoAoDyMMZI8w/z07VgDAkM2woi4g5i28w7ixgBZdkfOl0Oj04inz+h9qZIFR3AJLAeBvNvATdOwQB1eDf64FCA3716iY8+slOjBZVYUDpnsJA23uB7mL61vfoWcfd7sfESEhIaD5oczypJCZobDMQJQW97eweO7fD+q1+ulO720s6Swk6umXGWOpNG7vR17kbDSUpceehOx3IHoJtYaC+vh4XX3wxhgwZgjvuuANbtmzRX+vf31q6K9G5FGbFzyz/6txR+oxyCWoxWuDCwEFxcMK6W6ck4gc2FAoTMEBogtxUhTH3fYzvDjRAlmUMVl3wBw4Zbbj+/Nk/Qg3LhUNQMFbYH/f6BY3vAwA+ks/Envokab+SSzcDzEAAta3xWQOSGmBbzRgIh8yEAW2mP0EpgRrsOxEGDNLMTxiUG+UxYDzTGlbbvzlCzYavN9XygO9AIHEw5ZJEHGL8+7h561YcqPOCMYYc1XzQaVJjrqEwhjqomSZe49rVd1Z+DQCoYgVwmARK0TgyIpkrh6JmFDVkPz9XLcg0beGjlxIYZAxoNfEhs4wBACEYCwNf7+ZBp5+54HaYn2OXI5L+rzQap+5qAS+ciY3tAD7bDfAuBy1RqbLz3+aeLf1slhLIqjAwQqhC3OVcNeurRa7pjLeVrgRhdSa8Htn4280JxDtnxBy0bVeCj7dX6QKK5E4sKr2ynS8X3dbx/W8P6Uan1SwPYgKBwqG+1nYMic5zIs4YUWj6G9kSCOvfOzTyEh5FbVV4EAMhJfmeVLN8AFwY0MzWunvGAEG0B7v360bLJ7IIMSo90LeVglDHervC2AVnPW3eqtnyvm2O39Sc2WTrqSRVQmFHzAerGv14+5sDpiWn0QzOT37dBoAPv4tc/9MRenZ1PLv9UGO71mv2hww9haKJ6VDQrr2Y83kbE0iSBexjWxj44IMPUFVVhQceeACbNm3ChAkTcMIJJ+CRRx5BeXl5GoZIdJSwgUJ92rACvdf9YKFGv/ksDZm30wIASRTghxtljM98HS/y4P7SZ75CuOEQ3ML/b++846So7///mu13xxXg4I6jg0hHEZRiwYoFY4y9EY2KGmMBkhi7aKKoX39KjDVK7AZjjSYExQKKNCknvR8c5Y67A67fbf38/piyM7uzU3ZnG/d+Ph7o7ZTPfPYzszPzfn/e79fbDx+zw9ZZPef8rGElWBfiw51PFGqCi4zmtuMC+0oAwNzg+fpfjOPAOfmogTyuHU0qQid2wcD2aTgGnLKIgcgQc+lQYsSAAfFBAEAw2sEQZCwcTRBDY4AJ4fbOQLOqc6G3i/8+uZ01Zh4BOOw2VDI+BHv/7i2Y8vwP8AeZVN7N0Uk7YuDf5QfCEQMxUgnsLXy4umgo6+F2e9AuhEq/8120cCVrF0pLIrZhz4SIAbuaY0BIBxAFCtUIOwaUTqQeufxvpB3aInZ2GyfN8ocaox0D/mC4soJoGGtxSBjjrmhEiy/80iK+dJgVH2zM7Ykg45DHeaUZdYlm/oFZy4pi6ijwVQnEiAH1VAJvA+9gOMLyMaavxrkXoj488Kq+KIjj5NDRGDhhBC/42A31khBmMMQkx4DoXInZDWG2rKKuBRcdl5hxveXP52HeLeNjrl9RcVhyuIoRA+zIbgDAPmjfWwGgRnAMdJOJUYpO25PHTzDfYYLIUMwajOePiH7mba1uwtwlFarlUP/xY3KrZGgZ53J/ReTX3FKt7vQ3dWwTQ9dqUlfFapJlmJkZg/P/+j3u+Wgd/vbNDtX1cn0fo9flf2Tl/pJhxFvivEpg33gCWxra/Bg56yuc+vS3hvexOsLsy43KNMp0O1iykbiqEhQVFeGWW27BokWLsGfPHvzmN7/BO++8g2OOia24TKSOoT2UpQLzY4RGb2V8DvQw2x6MsPEP0W1MPy8agFSZYCgXDlMP1vE33b2sO5xO9RlxjuNQUcS/WJ9tD5eRzEcr/s/5KgDgo+Bp2MZ6Y6yW0SEipBPkwotXVMq0iLmuqw7G9mA67Xb4GG8oBfwxNAYMOAZE8UG+oWjDNRgMwcUJ7cRyDLj5c8eBASo6AyPy+Vlxd+fYJSVFRMdAX+4gGtsDaGtthlvQBHDna49tkDEcZtoRA4F63ng9aNAxsLOmGU0Q0i1UdAZCwvdt4WJ77LUcA5wQMRCwxd7fL6QSBP3K/T2Cw8bu0p8tqOV4pwpTiRjwBRk8nPGIgUNC6Hgx14g2lRe4LgZKU8qpbAjPWPfjqlHbFHaAhJr4B2YdK4wZCm+kKoG/iXcUNXD5ktGtihgxgOiIAXE5ABQVaV8/E44bigCz8aKbLfzveXtNM4oRjhjQIiDoG6zf34AyYTbo0hP0fz+RXDe+DzxOu2Z0AgBp/BetXIP/+3ILqvfwDtCKoL6mwejhQwCEHQM2hNBfcAy0FahHYWUCDz/8MGbOnImZM2fC5/Ph8ccflz4/8sgj6e5ehyDbXoDNGh7jBkQ7R1dUHMaf/7MJby3dHbWusU0jYiDZYyULZUj3aVmzp97U9snO+Y67mQQ6dqSVf74v2hZfSUE9GGPWp2Ck+8KRYbQvayr5dMWDjeqaX7IWE+uQCdKt1ZCNxOUYEPH7/Vi1ahVWrFiB3bt3o6REf0aESD6PXqSsKjAswlEgso31hpc5UMS1oAd3GEHGSbP5emwI8SHLJ8lm/QPVmwAAFawUTlvsS+umm34HBg7jbFswlNuDAjTjddczOMZ2AFWsC57wXwMA+I1M2TcmovI52vHh6n1Rq5mgxN7IYs9K2mwc/OAN/kiDUdpGEB/kNBwDTqd2xIBC2DCGY8DlzkEbE9YJYnFyCv1C7fY8/d/aHsZv00eoALFiE69PEGA2uHK0jakLRpTiELQjBsSKBAdhzDHQHgihmfGG2bbKaKOaCRUkWhH7XDGhnKM9FP3g4QL6EQMB0TEQERnS0MQ7JZqCsc+vSBXHj6utfk/Uule/32kqYqBOjBjgGtDqiw5zDKcSGIsYuPj4ntgtRPP0s1XjxMe/ltaFmvjroA6FUt59JPKqBMyrnkpQdYCPEjoY0r6G5KkEkREDHEKScKUnRzuVwGF3oFbM228Mz9JIEQPQ7ke9TA1aDC8uytUv6RqJx2DqgRgx0Fa3By9+txMV2zcC4B2menTvwYsTdkc9AKAXVws3F0A7c+KIKzOfr6eddhq2bt2KtWvXYu3atZg4cSJ27dolfd66dStOO+20dHeTyDDMvrCraQiJ/LwvvrDnRNAyluSuw2Tkxptp0ezxtbY+3OLDr176EXOXJDcaQ43oVALz42pkKOI5W8mJGMh+MkFvJgO6kHXovwWr8N133+H999/Hxx9/jGAwiEsuuQRffPEFzjzzTKv7R8SBXFjs0YuGx8yH3fCXC1H9/wajbxv/4rqR9dMM45bzXeh43It5OMW2ATloRxs82FX+PUYDWBcaiLO1ZtWK+oAb9ktg02d4xzUbHBi6ck1oZDmY5puJw4JBOmWUASVUMWKA86reSfM53lgs6Kw9WxeAA4AXAb+6p9NQKoHdBi9z8rPyARXDNShbFsMx4HHZ0YhcPk+9Pfyys+1gE1q8ARQFeSM92Ek7lQAIGyLduAbkoB3VB3mjqhG56KLhuAGA8QO74l8aEQOHW3wo4/i+iGUv9RhSmo9mIWJgQq/o78/aBceARsQAxJKQQZXzJJQcDDq0Igb444Yizs+36ytxvBNoDOgbjNv83QAX4KuNjlBhLD6NgWIoHQPjB3RB+a4q5IjRBwYdA2VFOfialeI0rBd0BmR9axFTCTQiBhw2tDB+jEO+ZqiZwpWVFRgK/Zn6cCqBL6oqgUcuPKrjQNl3pA1dWWf04A4DTQcA8KKBYlWCiaOGau6/cFM4tPBzIUXjSEu04y4WM885Fp+s2YfbTtefse/kduCAn48YKBP0VkTHXKUBxwA68duI1V0Gcbyzcycrwwvf7cTUCQacpSlm0aJF6e4Cgex7AbZCfDDclrmKBakcqqQYjSYaNe0Y0Nj+o9V7sbayHmsr63HTKcbuRVbN2FpRlcCQYyCedmH9NWWFUZ0Jhrkeye6iVc0zxvDK4l0YUpqPM4YYeJZnMaYjBnr16oULLrgAtbW1ePXVV3Hw4EG88cYbOPvss2HTMTaI1CAP79Wq2+122FE84Vrp8+fBiYbaH9AtD1tZb+wNdYOH8+NMWzkAhh71fGpAOTMQ8nr+U9gT6o5irhFduSbsDPXAFb5HsIHxEQsje+oYHSJOMZVAfaa/QMip3xxdWU5BQIwY8KkbDDbBMcDZNSIG7DZ4RV+bSsQADEQMeBx2NDKh2oLgGGCMYfJz3+NXLy1FnpePGGCd9HOlG5GHeqGtPlwNRnThb5ENTLs8HADkOh2S+r5aVYKVFYcloUlJbE2HXx7fE81C5EbvPBURICFioI2LbShygrHtDKmVK+TPdchAxACLcACJQnh6GgMAsFuIxAgdinYMADCZSiBGDDQqckFXVhwORwvYXYA7uuRo7P7xTqMBXJVieUMtL7BYxwpj1iWWawwwr3oqQVHwiNSOJs5wNI8/QvRJTCMAADi0nZGDSjpJFVTaDvOGshMBdOb4iIY7LlKvgCJSeSictiLWkv5kbXRFiVjcddYgLPrjGSjuFLvahUhhjjMs6srVAWDoJ5SONOYY4M9ddyEa51iO7+d21hODuhu/BoiOh5YQXyZiNpVAS81fbU0yVez1kJ+LQ816YdXJxcpxqGpQf8/SwrJyhUk6nVYZ4Fb//DLJpjfaFa0xmCQrD6wUH0zuF91qgaYHACzbdQhPLdiC37z5kyXtZTKmLfmHH34YBw4cwGeffYbLL78cHo+xGWYidcgdA08v2Kq5bd7EaXgjcC7eCJyLt4OTceVYfY2Bl649Acf17ozPQicDAG5yzMeJ3FaUog7NzIMVIe0ZPABAfinO9z2J3/ruxq99f8K5vqewhYUFC2MZLlG4wuKDai/une38LPIlJw/TbMYvlCGMVa5QcgxoRAw4bJxU150Js9cKBGdBCDYghoPB5bChUQylFxwD8hDKEk6oIe825rGUpxNwQmqC36XvdMlx2aUQbdaszMt7b8Ue3PbuailiYL/BiAG7jUNBYRH/t18lTF1QwW/TiBjgxIgBlVSCyoO8o+JgW+zbWlB0DEREDPQt4Pdph37EQKUwpt24BkAl3F6aDTeQSvDwlZMAAHmcFx8v3yYtDzGZvkBusam3/i2idginTHUICWH4tawwZhSRw25Dm5hKEKMqQS8Xv1wK74+F8P3tHEMgIkVHjIRogwvQcSj3KspFtaBjsXQNXxJX1BfwMTvg0e5HrjuuwLi4+L/LRkllQrtxjTiW24cCrhV+ZkcFMxABlS+7tgAcY+MdIdtCvXDdeHVBV4LITkymElgYApDK2djPf45Om0v42Ca2DUQM3OASbQej9TPfFrWTIjG+uFIUzHclKf2IpKQgc+yzY7qrpwwm2wESWaUgXuqajUcZZjumHQO33HILOnc2llNMpAe5Y+AvF4/Q3tjhwqOB6/Fo4Hr44MTDv9A2oAFgSGkBPrptAt4OnIN25sQJth14z/U4AL7M4JiBBl6AwavP/y80Dt+HjpNm7EWcBsrfAVBoDAwojp4J78T42cKCQu1Z7aAQNB2MUa7QZiCVwGGzwQtR3E4tlYCfrQzZYhufTjsXntEX9BGCwp0zD20oEFIjAnn6qQRXn9RHSifowx1EsJWfhWy1aed0A7wInThLiwj1/Qc+3YBOaEUhx88ody0zpksBAD4H/93sKkYnJ0QMtGuIB4rGppNFj684C72pLnaUTMCm7hjo6uZz4MceYywS4zATxvCIMtfyxH6dwxoDOjPhAHDWcQOlSg1dOaXYZBeTFQlENob6AQD62mqQj1Y+rz4YQBchDUU0XGPhtwsOjRhVCbqE+OuoZ6++2h2ROUaC3nBboRCTxkgSOtTA47ThoHAteo/whrIozufPKdZ1LEwZaex+ZAUTjylGI/KwT4iiucS+BACwi/XAv+86Q78BIWKgGA2wIYRjhVSCHawnSguNldEiiGzAdCqBZsSAyro0zrhysrnT5KQSGN82MmJAz+DU1k4wPy9u1dfPdSkT25JVBjEekqIjYUGTfbroT04YwRpHmrnlmUas9MujkY7zTTsQdtls4C9GmSvPZddR3BZx2DjUojP+HJgKAHBxQdSxAswJXIqNB6LV9NXokhc7bFtT7VyxIW+g5cKLlbsj8gX87eHygDpie5IoXSyNAeinEjjsHHxMTElQCbkTIgbEWWvVNmw2SWNBrDvf7uONVjEkuY4VgLn0w4pnXzJSCmsu4erRUs8bhu12/X0dNk5yDHDeRinMX0TMnz7COuH2c4/XbU9ELBtpD0Q7BmxCFEG7LXaqAydUDVBzDHikWejYxmZQ0BiIdAyIVQ5CGvoEcsSoAUSkE/gDIZnGgIGHMsehyc47WosR4RgQP+eZcww0oJNkmA7j9uBAfRvQdAAOBOFlDtTozPT7xVQMNcdAMACPn3cM5HXRubfYHVJ5SCZra03lEckxYGS83U67FDFQ6K8DY0xyDLQ69cfmzjNTXy1HFGe90v4dAL4CzNAeBlIB8rohwGxwcCGUcYdwjFBGdjvrheN6GUyvIogswKwxFdTYXi0CSlOTwNSRY7SRJQZNZEGYVPf7mS+1o1aN0rerfgqkFcQ1Pml2/sRsI/EmkkKm9ksL+S0moFJl6WiCHANHIXnusGfV4zJ3io3O1IsP4veCZ+NK70P4s/86/ML7OKrQVcrj1aO4U2zHgFEHhZhKIOaIKxDK34UYB5tH+6VcjFgIqWkDICw+qOsYEAyhyNBpALCFhFQCrcoGDptUy3zhynUAgHeW7wYASUxuDyvBoBL9WX8AGDmYN4q6cfVw+uoBAK0OfQPDbuPQghw0ClUE5GrwANBTSCM4wLoqHFF6+IWIAYc/2ug8UMO3Wdkc+xq0C3n7LpVUAtHYbNPQCQjahHURKSM2QczQZkAX4JITemIH6wkA2L5xlWIdF/LCxgmPPQNtAYC7iJ8l7ulSOku6iBEEJiMGvpx+Gtq68Ok8w2y78cP2OqCerySwnxWD6dz2a7z8NextVcnNa60DB4Yg4xDw6EeO+WxiWkL4fO+oaebFQgEUFOhfix6nDdXgnVSl3GFc+/oKKdS+0dFFd/+uKilGT182Sne/RBCru4g6CKtCx8ZM31Bgd0gaEefbViCH86GR5WA3KzG2P0FkCXoaAws2VOMLWRi+VlUCs7+MZBtd8p9qcowg460GQkojRm9Pq/u79aA1Od6RxFc9IHlnw6qWRfHwbDSe4yFbvqf80tlUZWzyM1shx8BRSL7HibdvPAnv3TwOboMltkQMG+QA3vzNiXjuyuNw6aVXYm7wAlTBnAHzt6tPiLnOZvQlWNQYUBMfFHL0m5EDl0M7z1iMGAjF0BiwG9AYcNlt8AkOhoBaxEBITCWIbbg6bZyk9u6tF3LChVr0fQXHwG5Wajh3rF9ffuayGA3YvmcvAGDDEf2fvUMIzxZDuHk1+DBhx0CxqXC1gJN3aDhVIgZq6/g2xcoFaogRA46QN+ohL87UP375STH3D4qpBJFVDYRShy6P/nc5Y3B3bA7xefz1FeWKdXa5toSRiAEAwRz+d9PfoxT7U2gMmGBwaT46DxgLABhl24W3lu0GjuwGoJ9GAACtQlWCXHij36AFvYlDKITbpS/U6OMEIUNfeFxcDhs8ghPH6dGfBXLZbTgoRAyUcEewdOchdBPK+RV166W7vxqDYuQ7WsXXIeW9bUlopOF97SVDAABX2BcD4J0Mes6cTOChhx5CMBgtKtrQ0ICrr746DT0iMhktI80XCOG2d1fjzn+ulSqIaKUSqDnNUj0z3u4Pwq8yk5gMY9RMk5EOFb3+aK3PpJrwCgG7BMY4qtpBgn1JFLGUrhXpCdbpO8RHP1mUh/zasercRaL2+7MKr0xA2YydlI1k/tsGERenHdsNJx9jzKA4M87SG6cP7o5fje6l+cDWYnBp7Fl8wz87raoE7bxXrxG5uqkJIU7UGNAuV6gVMcBxnFQOz++NFh+0i+KDXOw2apq8qBUiBsRw6epG/rsNsPGOgYqQvr6ASGkZL1hWzDVIs5f1TD+kWbzvVcXQGRBTCfaxYvTpasIxIEQMOAPREQN54MesmcV2DIjlBN3w4UhrODKFMSZFjTg0jE3JKSNLJWCMwdvK98fh1v8u3kAIWwWhzN7+XYp1zlBr+Dga14qcQA7/Oy1i9YrlXSA4BvLMOQYAAH35CiPjbZsxulchcJAvSSpGOmghViWwcUwqASnRHC556DaQ7uMT9CKYL+z06FGYI+lB2Fz6jgGOC6e1dOLa0QmtUsRAMFff0aGGWYepGdY8dA4O5w3EouBxAICvgmPQrZ+O1ouM/kP5coyDbHxFgjVskPWdTAJvv/02Tj75ZOzcGU6vWbRoEUaOHIndu3enr2MdBF8gu8Jbtd4a5EZRs5fXjNFKJVBv30K1QrUWZE20+4MY/siXOPnJbzW3i2T2/zbjDx/+nNSyclGOgaQdqeNipcNEnBTLllQVOXIHnT8YwpFWfcE+K7+mVlRRouR7wu9zRt59spmj+9sRhkjU+fXzvgZrOiLDcNSsVJXAK4VgSQgq/E1M3zEQVquPToMIhRgc0I8YACDlVKs6GMRUghilCgG+vKSYSiDOin65kdcWGCqozI84PvaMeCScUBe9mGtAEUTHgDFjTK4zEGrYj+0Hm6QXmF4cr39wwGBFApGgGDEQjI4YKLTxDhCtqgRMEPRzcwGEgmGRwU1VjVIqgd2t7xjgZCkjbf6gpE/QHNKvStDQ5seWEO8Y6B44AMiMXoeoVeA0ng8pOgYKQ/XSsk5uR1iM0GQqAQAUDz0VXuZAD+4wzi9rBap5Nf/NrA9O6FOkua88FUNemeCn3Yfx48+8g4Eveaj/+AgIegWcLHUkEJLrMBhLt2iFB41CqcsS7ghKhHJ+obz4nJqGNUzioEueC6sePAe3+mfgUu8juM0/A1010qai6Kcsv/htMHZkVSaxbt069OvXD8cffzxee+01/PGPf8TkyZNxww03YMmSJenu3lGPmRKc2YT4sq8ZMaCyLJWG1c7aZgRDDDVNXtQ0thsux/bq4l34aPU+7KxVrwATCzNfLWrmOQsNTjVizUBrYSQdK57rJsSsm/kOz0ZbooRhQRvxMXXuCvzxo3XhnmT5ddfJHX43PNrT+sgxQBgP24/BteOUZbSM1PuOpFNUSTFzqQS58EbNKOyv5mfYG5HLK7NrEORiawwEQgx28LMxNru24egXhQUD0Y4BW1A/lWD9vgapDFx3rl66m7rhkxTKW7oan32EYDh1QZMUml4PY2HUdhuHKiG3e82GTTjnue/xtCAkJNc7MENQEIt0BVuj1uUwfna6lYs9ax+0ha+tkCw8vd0flIzNkEY1AGnsZec5GGJSicERffWjMXKcfCnHOlYAGxhQu0VaJ36vkME0AiCcSlDEwg42XzAUTiWIJ2LAmYNdOcMBAHU/fYzQ/rUA+IoFJ/XXdjQw2NAiVAvwt4VfWC9/ZRl+XMs7BmpRZCiczm8THQPhcxUIhqM7jKZb8E4qPp2glDssOaaCBfrlVdVIhcffCxdWs8EIwWbuHttnIg4IDrmNob74mQ3AwhmnJamX1lFYWIh58+bhrrvuwq233oq//vWv+N///ofHHnsMdnvyIjSI7MToL0J8rmuLD5o7tjUaA+FG5L/vk574xvSxahrVIxVjHttE/wMmIwayxYCzLEw+qiHzDTNmXcyAw2ZdxIBl59Ko40X29/Jdh2NupxitLLne5A62bPmNxAs5BghcdDyvLt7PREi4nCERKQFd8vRnXUW2/eV8PH/1aKx56BzFcrMRA7loj1IKXbh2OwCgkeXpzm5KuecqGgMhJosY0NMqEFXY1RwDgmCelmNgeFkBDrCuCDEOnbh2NNTxIfyDub1wckEcZp3Q6jFRfi2Xb8vOMfTneM2C7iXG9nfYOEljoL66AgDw8qKdAJjkGDBUm11GyME7BtzB6FSCTkIpxvpgbMdSn9KwURuQlcDzOGySoF1ep4LYx7eLEQPh8xMKQcp5z8nVn+kXxT23CDoD4mw8ADhD/HdgDuO/pZCgIdBZiBhgjMEfDIWrEsQRMQAAK3J4Y/La5n/A5m9Gs6MzNrM+MKIvKqYTBL3KmawySVuiiyFj12/nIwJsgbBjwB8MhUs6GnQM/HpCP1QJ0Sm9udqwY6Cwj9ZuEsf1LlJ8djuT/+j7+9Qx0t/9VUqpxsThwnM9n8OT/qtws+8P2PKXCzBIp/Z4pvC3v/0Nzz33HK6++moMGDAAd911F37++ed0d4vIYkTD7bO1B3S2jNgvGZ2Rty87QOS9sK5ZlqoWc//wmhve/MnksY1/u8hIi0RmtuMpV9gRYMw6Y9EmOgasac5y9CbZzJJJuhVaKB0D2dHneCHHAIEpI3vg499OwOd3nqK/sQqOCEvDjBidy2HDRceVRYX2Gn78SKkE7QgxZY5RoKUeAB8xUFakHbIs5v2zWBEDnBAxoJNK4OOic9hFbIy/oTJbbMeJy2GDFy7sF8rN3fzsPADAiTZ+VnpdaKC56RG7A34Pb9znCYZz0FVkbFcbhz2MjzgQSyUCfFm9Aq4NIcbBl2/MMBOpC/DjE2xvwo4apdEpagz07xk7CmFIjyJ4mSDOI5uFtskM/by82EYUU0klCDIGD8dHc9gMGKqTh/FRBRsYL+x4eMcKrNh1CA1tfjhDfCoBc5mIGBDy5LsIqSPBEANj8YsPijxbNQpNMr2GjUVngMEGu03/ti8KEAbblOeoB8fPAlSxroZSkAJCxIAtEI4QCYSYpDEAg+N011nHYLugjzDWtg2FHN8eM+oYiCj1507BDPbk4aV4+8aTcM24PvjdGeZKJl529ql4JXgRqtAVTgPnKxM4//zz8eijj+Ltt9/Ge++9h7Vr1+K0007D+PHj8fTTT6e7e0QWIX/v3lLN3wf310fr9oiYrkoQR5+0iLwXvrN8T/hYKgebv75KsTyZ+hBm865TaaglYmSyGH8nilGb71ej9fV64sHSiIHEmxDa4Vv616q9GP7Il3jjxwrTbcRS8rfSxk6qvS5rO4lSBhlBdrxxEEmF4ziM6dsFBR7jM/1azLpoeFz7vXNTOHfebFUCUXxQrkra3swbMY0sV3fGTtQY4ILRD6qgXGPAYCqBWsSAXYgYYBoaAzedwpc5qxBKlvW38bP8k2x8rtYPoZGm4yaDOUrD8ve/HGdoP4fdhooQHxHQhzsIuzAG/YTIg/2sGB/deaapvny8gX845KMVd/5zbXgFY+gknMNrTtW+fryC8yUoE3iUq95rzUKHIwbUUwlsBsQHc1y8USmWpNu/8Udc+ffluPjFH+EWHQMmNAZCuUK6hyA+6A8yOBBAESdERMSTSgCgEXm4z38zWpkb20M98U336wFAt7zkWzeehFbwBn2gXVlqShSdPMCKDaUSBMSIgWBExAAnagwYcwzke5zYyvgIjbNtqwGAT+XQ0JOQ88dzBys+pyJiAOBFYJ/41Uh4IvVPdBhaFo56sWWJAnIgEMC6detw2WWXAQBycnLw8ssv46OPPsJzzz2X5t4R2YTcON1+0Fz+vdRGkl/e5c1r5RyrzS7e/t6ahIw2M/tGRhtlUipBuz+6iolR0q24L3+ntHLMxOeqFVUJzPLtloO46c2fUNOkIuYN4B5BM+DRLzaZbntlRTi1QKnBkR2EFI6BbOl1fJBjgLCcXp3jS0k4dVBYYdx0KoEwGy53DBSAn1VshH5/2kP8i7tfpcxgMMQko9imozTf4OM7HvRHt2MTyxVqOAa65PHrdjI+vWMYtwcFaME4IWLg+9Ao07MjgbzwDLyf2dGtpMzQfodbfKhCF7QzJ1xcUCpR2F+sjsBK0S3fnJ6E186fr05oQ22jLO+8vYlXwQdQ69MWamsXxPGYLGJg6z6+T17mBGwaRpgw9rZQ2DEQYmHHADT0CSJZxwYCAIZwe+GGDxV1LXALVQlgwjHAhPNThCYg6IcvGEJnQSiSgQNyOhtuK5L/hCZguHcuJvueQqOdjxzRSyWYdGw3KZWgsUkpLNpDcgx0NSTA4xMiBvxt4bQPf5BJqRtGHQN2G4dtIb40oegw2R7qZdhozvc4cfMp/aXPLiP5FGmkwOPEyvvPwtqIFKtMZuHChSgri763TJkyBevXr1fZgyDUkb93j+2nf/9TvxfFfnm35L1e1ojWbchIKkECh9Zlc8RMbSbZNFaJuL2/Yo/+RjAWWWJ0eFiSDEW7hakEZq+xG99chW+21MRl+B/txCN2ma1k9tsR0WExHP4miNmFIwbC+xUKBoSoZq5FTQtv+H+9YV/UukAoBIcgPqhVrhAAfILGQPmug1HrRMcANDQGRH4K8TOc42ybcZF9KdycH1tCvbGd9TRdXjKYH35Zr0GRKSEwBpsUvTBAiBQYwu0FEHZemEEsV2jnGJpbmrF6D+9FDgoz00HG6RqLrSF+/Lbvr5WWleXx512uqK8Gswul+GQRAwHFDLYxlXyAL9V4iOXDyQUxlKvkdxciBjgDkQciDVwn+Bl/Tg4cqIQvEEIXqSJBF21HhwEYbGCwSSJURlIJWoRUguf/Vy4ty0G7ZJRXsS6wG3jLKq/mx7WiKnyuAsFQOJXAxHhvY73gY+Gx2MT6qoiWxsYu63A2zMJ3L/Cgc56JagZp5je/+Q2++eYb1ZfR4uL4ol4IQnwVOKY7/6yfMCBacyXdv2atCMdYxlmqbIu//HdzxHG1j6xl9GSWGHu4ow/9e2P8rcR5IhSGIoALRhovI61FuFxh+qzP2ggxTKu7oogYyBIj24wjqLHdj682VsMbiD8iJp2QY4DISBraossGqiIYkXmCoSEXIOzt4Y20eqYv3OUHb2A4EZ1KEApBihjgdIw0r+AYaG6NFtezGyhXKLI8NAxBxmGobS/+4nwDAOAZ9xusfvAcXb2EqP7n95L+PsjMzz6LAoOiY2C4bTcAYCPrZ7qt4f3KEGL8gy8fbbj05WV8H9v4mekW5MCmY7iKEQPfb6yUlollAsWc9lgwlYgBeeSB0YiBF685AQAnpROMsvG120UHleiwMsK++nbUgc+Bv+Wl+bzwoKAvwMUpPAgAhTnKtJeQ5BjQ31dMJfAIERCMMSmNoJHloBm5hoxrMfJAEhsE4A/JqhK4jEdWtMGD5aFh0ueloWHwmEgJcGSBMyCbOXToEKZMmYJevXrh97//PcrLy9PdJSKD0Qy/l/0tvoSP6snfI88Y0i1q+31HovUHtN7drcijl7eg7Rgwt9zYsROPNvhyY7XlbaeSZBmURg1ypXHL0K+rCYFZDax8Tul9k63VTTjz/y3Cf9aZE/ZUPRZjcTmOrLzeknntqt2TYnHjGz/hlndW4+kFW5PWn2RCjgHCEq4Y20t/IxP4gwbFeATDws354UAAPtl+3Rz8y8KpowbpNuMTHAMOLtrDJ48YgIZwIN8Ov94einZsSMsMOAYOowD/C4W1ACpD3XB4yDXoGkcpSFYYFsmpFqoMmGGroL4/wlYBDiEM43YDACqc5gTVAGD6OceiWTA6xSoEQNgx0MDydEXt2oUxbmkJ57+L5fC8nPb41LTyN/RDDeHwypBCn8CY0+Xc4Xz4v5hOcJxtFwBeBBMAOBOOgX5d81DL+JfeblyDUJEgMeFBAOhRqHRyHGrhnSFGIgYaGP+7KkAL2v1BhJhSeBAwpgMysh8/i1LiCf+uAoqqBOacXC8HL0I7c+Kn0LH4PnScqZQAPW0FIjE+//xzVFdX45FHHsHq1asxZswYDBs2DE888QR2796d7u4RWYSacSYuUbvvVB6OLn+r9eputVGpdWuJFfyYkBGTyK7Cvre+szr+RizCzB0502aWkyV+aLdQfFCPu+etxa7aFtzx/lr9jTWY+a9ynP7MIrT7zYtoZtp5jYX8nqTX51V7jgAAPlodHYGcDWSNY+DIkSOYOnUqCgsLUVhYiKlTp6K+vl5zH8YYZs2ahbKyMuTk5OD000/Hxo3hkKPDhw/jzjvvxODBg5Gbm4s+ffrgrrvuQkODMq+2X79+4DhO8e/ee+9NxtfMWu6/YCgmDOiKZy4/zpL2jAibAVDMzObCq0glyAnyxl/QU6TbTAB8JIBLJ2IAelUJGL9+eEm0gWpnvGNAS3xQziP+6/G/4IlYFDwOv/Hfg6DdvFMAANBlgPTnjjjC/9cy3gEwmtuOAVwVCrg2tDMnXp95rem2CjxONIM3BjtBJh7Yxt9IG5CHQSXaRrVXiBjgAmEdBy5gzDGwaj8fyeFgYceNWN3ADzugIy4pIl6fP4sRAxzvGCgC3z6XazwyY3hZAWpZEQCgG1cvRAwIjou8+CMG/nb1aMXnxdv4cH4jKQCHwUfZdOWaUNXQjmCISRoTZhwDnfJ5ET2PLGIgEGTIgTnxQZFloeEY7X0VV/oehh8OUzmq2ZA+kO0UFRXhlltuwaJFi7Bnzx785je/wTvvvINjjjHvRCQ6LgphP+H/WrN06ZjllndH6zY0oqd6+dxMNYg0UwlS1w0FkaWoASvFB1nEZ6M7Kg1Fq05nIuKDkQ41vSZafMaqQui188ma/dhzqBVfxYhCiWpPNlp7VZx68ZLM35SZiIFsJ2scA9dccw3Ky8uxYMECLFiwAOXl5Zg6darmPk8//TSeffZZvPDCC/jpp59QWlqKc845B01N/GzcgQMHcODAATzzzDNYv3493nzzTSxYsAA33XRTVFuPPfYYqqqqpH8PPvhgUr5ntlKU68I/bxmPy8ZYEzlg+IXf4ZJm8XPgVTxAcgO8gydgoDzf0F78zOyw7tEzmMqIAe1Ugr7deYMwh4u+4UrGqEHHwCEU4rf+GbjB/yfsZD2R5zKeTy2H6zkGtYx/OVkSHGl6//IQPyve33YQv7IvAcBrIHQuMB8653ba0CyU0FOLGGhkuRjYTdsx0MZ4439ocdiI5/z8w8Wrk0ow5fh+AAAXZBEdPmFfHX0COeL1uU4Ym4HcAXRCKwo5XjTQnmfcMeCw28IRA2iAL8BQLGkMxB8xMKgkH/+9K7oEqRGn22Eh/aYz14QQYwgxhn4c/9DfzUqEdvT7sPqAUCLTKxMfDIUksVCzjgGATykIxfHoGtRdP6WIsAa/349Vq1ZhxYoV2L17N0pKYpcgJTomWo94pdGtnEG1cVxU+VG193StkHBrSsEZm0G0qtqT8tgJ7Kvz5VNp8hh5zft3+X4MfXgBvtqkNDrjcQYZMYSNXhuKiIFkiA8e3banxKvf77KsraQOmUJjIJkHSj/xWRopZvPmzViwYAGWL1+OceP48OrXXnsNEyZMwNatWzF48OCofRhjmDNnDh544AFccsklAIC33noLJSUleP/993HrrbdixIgR+Pjjj6V9Bg4ciMcffxzXXXcdAoEAHI7w8OTn56O01BpxEUIfU55pVy7Q3oA8rj2cShAKIjfEG2kBj76RluPhDUpOJQUgxBjsnLGIgaCNN1rl5fBEbJJjIL6Z/2Fl6jMPerjcHlzom4USHMFKNtT0/o3ohHWh/hhlq8Adjn8D4MsmnhpHX9wOm2rEANdWDwBo4vJ0nUJFhQVAM9C3MGwcihEDPk7bMdAW4s+fPDKECZEHXrhgPAGApw6F2MeK0YurwyjbLhQJ1QRsueZSNmpRBICPGKhr9qIb+AgK5Pcw2SMlDpW0ASOpBEfEiAE0Yvq8cnxw63iZY4C/Dxpx3u2sZwDHR/PsPdyK3l1yEZBXJXDFV8EkHs4fUYo/nTcEY/rGX+WB0Oa7777D+++/j48//hjBYBCXXHIJvvjiC5x5prmypkQHR+XFW5yls3GIsigz+T091uxiQhoD6clCsBzOwJve3fPKAfCz0omy51ByZqetHFNJfDCOfSOvC702jDtBjG2Y7my9ZAo2Kh2BmfQrsp6siBhYtmwZCgsLJacAAIwfPx6FhYVYunSp6j4VFRWorq7G5MmTpWVutxuTJk2KuQ8ANDQ0oKCgQOEUAICnnnoKXbt2xfHHH4/HH38cPl+04SfH6/WisbFR8Y8wTtdOJtS4ZZUJpFSC9nA6SMitb1BzDiE8XcUxEAgxOAymEoSEUHQu6I1a5xAF73TC1dVmeRPBabdhDyuNyykg8mkw3Cc/s+OzYHx9dNllEQPyVALhfDVCPwrB4eb397WHZ6FFjQGfTipBa0hMGQmfZ1F80AtzDptJx/IiWKtDxwIATrJtkVT7uRyTjgFJY6Ae9W1+lHKiYyAxZ6TboeYY0N/vkBBh0plrwvr9DXjyf1vQj+MrbYgRA0ZSCcYdy0cQ5XBeXPg3PtpEWZUgdY4Bm43Db08fiJP6m9fZIPTp1asXLrjgAtTW1uLVV1/FwYMH8cYbb+Dss8/WFRQlEqenSVHadGPWhhDfxTku2pxUjRjQassK8UEG3PTmT/jtu6u1ox+S0AcrxAc1Gs8KLEsliDSmjYoPJql8nXgtWWF8ptqANeLoAbIzGkLeZ8NV07KUrHhaV1dXo3v36BJt3bt3R3W1ek6LuDwyhLGkpCTmPocOHcKf//xn3HrrrYrld999N+bNm4fvvvsOd9xxB+bMmYPbb79ds8+zZ8+W9BAKCwvRu3dvze0JnleuOwETB3bFI78YbnwnQYAwT55KIOSsN7Ec2B0GDD4hHcGm5hgIMtilVAJtxwCzRavei0ipBE7t/gwvK9RcbxY149AI8rrv7wfPwsrQYIQYh/8LXIEaxDfrynFcOGJAlkogOnKaDTgGWoL8udq0pybcrhAx4NetSsCPvQsB6aF58FA9327IXMhnny68UbsyNAQAcCK3FUVCKgFyiky1FdYYaEAoxFAiOQYSixjIdUenvhiJGMgt4p0eYnWEt5ftRl/BMbBHiBgwkrI/agDf/xx4pUojfFUC8+Uhiczm4YcfxoEDB/DZZ5/h8ssvh8djrMIH0TExarhzEcvU7zupf1GvamjHN1tq8L8N1Wj1xS5Llu7Zxanj+yo+65YrzBLPQCb10soxC1/v8fTD5PaZNIgWkMyvoyxXmMQDZQBpdQzMmjUrStQv8t+qVasAqIet8uUxtN9OI9fH2qexsRFTpkzBsGHD8MgjjyjWzZgxA5MmTcKoUaNw880345VXXsHcuXNx6NChmMe977770NDQIP3bu3evZj8JnvNG9MD708ajpMDES6Uw65grTyVo5RXU61knQ+VfmgP8NrUNTVHrQkweMaD9kwkJhqdNJWLAzvjwdS5eEcE4kV/vL117guH9BnYPB9Z74cIVvocx2PsW/h78RUL9GdiLNxbz5akE7fUAgGZOP5i/upX/Ph4u7HyxBYxFDHTvzIfIuzi/dHN/7dsNAMLVDozyh3P5FCbRMTDWtg29BIE+szP9YY2BegRDDN0tihhQy281EjHwtxvPAQCpOkJ31COX8yLAbNjHeKfBkh11uu0E7bzhnysvVxiQVyUwHjHw0IXD9Dci0sYtt9yCzp0pTSNdpDuM10rUDJaQKB/EcVHfVV1jwFz7ZpGnCGgNfVLKFZrYd0C3PMX/DzZGv5uki0x0QhjtkbJcoXXHlyLx4mjTKidUlCCjwWa310S/P6cSvX5uO9iEZTtj222abSuOk3nXrZWkVWPgjjvuwFVXXaW5Tb9+/bBu3TocPHgwal1tbW1MUSNRD6C6uho9eoRn3WpqaqL2aWpqwnnnnYdOnTrh008/hdOpbSCMHz8eALBjxw507aquGu52u+F2p9YA7LBIqQReBIRUgoMHq1ACoB55cBiQYV9f1YZTgbADQEYgxOAyGDEgOQZUIwaEZUYiGCzmirG9sLmqCWcPNS4CFp2Px8FvwS3DkcOHqefJIgY4rxAxwOlHDAQdHsAHeCB3DPB99dm0Z6BPPKYH8D0fMRAMMdhtHFxCJEe7CfFBACjM4e8TO1gZDrNO6CJECwRgg6OTSceAoDFQwtXj3g9XY7tHSD0qMF9FQo7HGR0xEAjqP9Rs+bzxn8t5kYt2DLTxdY73sW7SNbDvcHTt8CgEwz9H5sThUwmEihIu4wKWLiPlFAiig5JtjgFNY1q+nWQnxY4YULujJfvV3WhVgtjlChM4tplthY0b26KjIbW2TwXp0lmwgmSp1IvXUjYq36+prE93FzSZ/Nz3AIDv/3gG+nQ1l8YodwYYjRjIVgdCWh0DxcXFKC7WV92eMGECGhoasHLlSpx00kkAgBUrVqChoQETJ05U3ad///4oLS3FwoULMXo0X7bL5/Nh8eLFeOqpp6TtGhsbce6558LtduPzzz83FP64du1aAFA4HIg0IhgXuVw7mtr5Wfm//nclnoAQMWBgivTkwT2A8ljlCo1rDIilCNVSEsRUApvDnAFqBU9fdpzpfbZUh3UxOE75IJ52an+VPYzRtWtXYFeE+GA7f6wWAxEDzM7/RnNks9A2QUDQb9N2ujicYiqBX8oTEx0MYrUDszDY8FNoCM6189FNB1GMnnZzt9aTRo1EaAuHXM6LodweALyWg9OkVoER/rVqLy4fq5Pa5M5HA8tFIdeKMq4Ow4Q+bWF9pE3q27R1VgBI4oLyc8UC7bBzwsVkImLAyO+YIIjsR+2FWnwZ51QymdPxAm54ZjnGlqnqs3iUumYD92sk36FiFUmLNjBs9Kn/nTgJiA9GfrZKh8GaZpKPwY5WHGox7xiQ/Z2NThszZMWb1tChQ3Heeedh2rRpWL58OZYvX45p06bhwgsvVFQkGDJkCD799FMAfPj09OnT8cQTT+DTTz/Fhg0bcMMNNyA3NxfXXHMNAD5SYPLkyWhpacHcuXPR2NiI6upqVFdXIxjkDcFly5bhueeeQ3l5OSoqKvCvf/0Lt956Ky666CL06dMnurNE6pE0Btrx1IIt+HTtPrh8/Ax0AzrBaSCVwC04hDqr+IUCIQabUY0Be2yNASmVIA0RA/EgT8G4+6xBinWJ6CAUFfFRNqLGQEObHzZvPQCg2abvGAg5+KgADxd2vtiDxjQGOCe/3o0ANhxoENrhz5WZcoWR/Dc4Xvp7s22Qxpbq/OkXx+EA+HE52bYRALCfFeumrhihrFA5Jo1txmoXiykDvbhaDLVVAgA2h8L3vEtO0C9N6swJC4OKj1bO3y7bwPjD2YimAXH08NJLL6F///7weDwYM2YMfvjhB83tFy9ejDFjxsDj8WDAgAF45ZVXFOs3btyISy+9FP369QPHcZgzZ44lx80UjAp/ZSvhcoXR68YPiI7cTLbhrTQOYo99UiIGTHw3K8dBLTKi1ReI+xiZYF6ZVfIPb5ec3ofFB83va3afdM1oJ+uwyUxNUWoMZMKVmzyywjEAAO+99x5GjhyJyZMnY/LkyRg1ahTeeecdxTZbt25FQ0NYjf6ee+7B9OnTcfvtt2Ps2LHYv38/vvrqK+Tn83nGq1evxooVK7B+/Xocc8wx6NGjh/RP1ARwu9344IMPcPrpp2PYsGF4+OGHMW3aNPzzn/9M3ZcntBFmJXPRjsrDrZjxwc/oLIR1HzEYMcAJBr2dRacSmIkYEEsR2lU0BpxixICO+CCQGUaQvNTdwUYvHpblePsCIbVdjOHmjUVRY2D6vLWw+fiIgTabgdByB2/oylMJ7FLEgLZjQIwYcHN+7D3EVxAQZ7PNagzIWRA6ET+HBsDLHPjQdq7p/Ys7ubE3xAusnmZbBwDYw6yp/X5c7yLF53vPH2Jov7BjoE6KYtjEwkJWx0e0q8aAnnxKhZ1j0jjvq+W1CYKcEzARWRH5LHZRBMFRywcffIDp06fjgQcewNq1a3Hqqafi/PPPR2Vlper2FRUVuOCCC3Dqqadi7dq1uP/++3HXXXcpyhG3trZiwIABePLJJ2OWHjZ73Ewi61IJNDos/6lXN/D3dtGIUauGUlHXErVMCyve6+VGlWZVgljlChN4hMbT/V6dw2l2WgahGWNx+8EmDHv4S6mkoFkSMkzTbZtFRAxYcU2VP3xOlNhmIugLTR5dJNdel6cSHG0jpyRr3qy6dOmCd999Vyr99+6776KoqEixDWMMN9xwg/SZ4zjMmjULVVVVaG9vx+LFizFixAhp/emnnw7GmOq/fv36AQBOOOEELF++HPX19Whra8OWLVswa9Ys5OamrswWoYOoMcCFjfFCoZ58PToZ0hjgHLxRaGfq5QrtnBgxEJ2zrUAwWtXaER0DnIFUgn/dOgG9u6RXsf3C48KpMv9cWYmpE8JGYSARWVahfKSYSvDd1lrYJY2BfN3dOUHJ3g0f/ILYpE2IGAjoOAbszvD6UJA/Hx6hdGE7iz9iwAcnfuV7DCd4X8WXzcfE1cYexjsGJtg3AQD2cokJD4pceaIybWBgN/2oDCDsGBjO7cZgjneUrg+FU0jsBrxXnKsTQozfrpOgK1BxgK8m0WKyPGRP2Yvt3WcNwoLpp5ran8genn32Wdx00024+eabMXToUMyZMwe9e/fGyy+/rLr9K6+8gj59+mDOnDkYOnQobr75Ztx444145plnpG1OPPFE/N///R+uuuqqmPo/Zo+bSWSZX0AT+Xv3o1/w90PpZZyLdipsqTYnemZVucJEtkuV8J54fPl9X1OY0UTbc5dUAAA+//lAHD1LjGSNXrM3gMMt+mkXCjE6i3pTlOuSHF9xRQyY7Eei13C2Es+9UhExYNCpl63DljWOAYKIiSyVQEQsG1fP8uA0EI7N2XnHgINFh1kHmfGIAVE/wK4mPijoF9gc+joWY/t1wQ/3nInBJfqGcrKYOFCp/+GUzdAm9CB0898pj+PPF4cQ7ELEQKtd32i1uXgDMQdefCG8kNjFcoV2Y6kEANCzE/99junMO3t6l6gLiWpx/oiw8R6CDS2I35kjlgEU2Rm0JmJgdG+lUrzRc7eF8Q6Fqx3fwcGFsDtUgmqEx2hULwPpJByHZvBjLqaOiJEDLSFzjphTjinG/RcMwds3noQZ5xyLAQYdHER24fP5sHr1akyePFmxfPLkyVi6dKnqPsuWLYva/txzz8WqVavg9xsTXYvnuADg9XqlCQvxH5EY8ntUszcgLONRixhQbUPjNrf/iAHh1ATalxNrdrG6sV11ubGDm99F7sfV2j1eI9AfDOEv/9mE77bW6G9soB+pQu15+OT/NuvvZ1CMrriTuedcOJUgdc6rRNh3JFKkWp9kOcWS+XXToTGwavdhvPDtdny3xfhvygrIMUBkP6L4oEzgrAh8aGGD0YgBIZXAoTLTHwwy2A1qDIj6AY4IxwBjDE4YTyUQ6WryoWIlHmf49nD20O6KdQnVcRUcA2LEQBGawQlxlc12fWNz/GA+t93D+SXPvj0opBLYdQxzWanIHDv/wukWUhK6FpnXTTihj3Xl2crZQMXnn0MDY2xpjoIc5TWbr1LCUI0Lz/+l4vPS0HDFZ6Oh/AGH6LgTHQP8eLeaFHvkOA63nDYQpx3bzdR+RHZRV1eHYDAYVT2opKQE1dXVqvtUV1erbh8IBFBXp19WM97jAsDs2bNRWFgo/evdW0fYM0nolW7ONDR7q/J8CYsPJh4d8Zf/6ht+esiNg3hKI67b16C+wgBmDKtwNYfwqFmVWy6/5OatrMTrSyrwmzd+sqRtPZKZH2+kpKNSfNB6HYe4xAcj9RJ0GrHCQJ/xQXnCbVhFqjQTjL7/JnqfWr7rEJ75ahu+2hT7+ZMMyDFAZD9OwfDg5BEDfGhhPesEt0P/Mpdm+mOUKzQaMcC51FMJgiEGl+AYsDuNG/uPXjQcg0vy8berRxvexyrkht8FI5UVOBK6AQupH/nCDHIX4Vw1sFzApm+0FhXyqQge+KTKAg4hlSCoU5UANhsC4CMEmJ83UJ0h/roJ6UQbqGHlu3j+gHGKzxtZP0vajTQYuuQZu/7yew/FnlDYIfRR8DTNdmPh6VQEABhcxJ8rMeWn3WQqAdGxiLy+GGOa15za9mrLrT7ufffdh4aGBumfqE+UalLpFhBTLpPWfoxjAsb1WLWMHm8iGjlS+7E/yYk1u+hMoPyqmaGXMjAMHi7es7qv3nwURqZKDBhpm8X4G4h8P4oeeMYY7vtkHf7fV1uj1okioqmwcWOmuUQtj92ZysPmIwaM8Pfvd2LmB+UImZiFUttyRM8CS/oTjyMo0VOYrhSOtJYrJAhLkCIGZI4BIWKgnuWhoq4Fo3VmdsW8f7WIgRCTRwwY0xhwMh//qxaexoEQk0oh2pzGDdBBJfn4csZp+hsmAbloYzDi5jy8LIGbbUTEQFfwobeHWIGhvHW7oGTvgQ9B8WVRiBhgDn3tDz+ccCCIkCBY6GReYV/zjoFTBumXWzVKyJmHOYFLMN3xCZ4PXJxQlQQrsNvseCBwEx5zvIH5oXFYw46Nqx0mOO5cIWUqgd1jQGiS6HAUFxfDbrdHzdLX1NREzeaLlJaWqm7vcDj48qhJOi7ACxTH0ixIKSnyDDDGcMWryxBiwEe3TYg7UqHdH+2E1z4u/38OnCEj16kZ0WRtmHY8EQPDepiPUIsHmUSiyjK1HWKv1TzXKciJN8Ix3c2lmKl9XSOGX+T533jAeATIztpm/HMl70AcUpqPLdVNuP10IULQylSCiPFdurMuYn3ixFMNxchXe2L+FgDAxaN7ZkSUoHwsDxnQoLCW1EaDUcQAkf2IjgGZ+GAXjjc2D6MAY/rqh3uLEQOiDoAcMxEDFfWyl51AuD9yx4DdRCpBpiDOenw98zS8/uuxGNO3S/yNefgXolzOCycC6Co7V0ZEpMSoDA/nkx5KYsQA59LP8fdzfFQCE86Pi/E3eeYwrw8wpLQAb9xwoun91HDaOcwJXIZR7X/Hs4ErLGkzEew2DktCI3Gm71k8E7gy7nZCLt4R5AnxzjrRgVfSNYFriDhqcblcGDNmDBYuXKhYvnDhQkycOFF1nwkTJkRt/9VXX2Hs2LFwOo2lzsRz3I7I4RYfftp9BKv3HEFts37ItRp1zV60+GI7BlSNNbHcqcF35AtG9NDfKAGMGm4JCfXGPLb5bRUaA3F2SWvotaI8kkGsppNZ0enlRTvx8qKd/PEjYgZ+2B42uvW+drs/HLEiRvANLuWfk+GqBObRO+41r60wtb3Z7ZJBq8Z9IhJ5PzvnOqOWJYK8nQc/22BNo3rHTMlRoqGIASL7cclrpQMu+FEghKnXsQL0LNI3+GyiNoBKKkEoxMIpBjqOgc21YU+ir70VLiE6IBhkcHF+xbGyCX+Qv0Ud0z0fx3RPUBAxpzOfMhDyoxgNkmPgEDMWheDy8OfbAx9KC4XzJkQMcC79WWi/WJZQcAw4Q/z/Q3FEDADA6YOt8WaLM1yNyAxRvQ37lTMgM885Fp3zXHjI5EMxJPw+PSE+5DCH438jbXDDOoUG4mhi5syZmDp1KsaOHYsJEybg73//OyorK3HbbbcB4MP39+/fj7fffhsAcNttt+GFF17AzJkzMW3aNCxbtgxz585VlBX2+XzYtGmT9Pf+/ftRXl6OTp064ZhjjjF03EwmHQoD8cwWAsD/1ldprlebSRaVwDmOUz3uW0t348oTe8Pj5KP6tLSFLClXGOPvSIIxDpaIgJmZPVU1BjRaMNcrbd2CRdtq9ToXN/HsWlZo7BmvdmqavQE8tYCfxc512RUlmyN9P4pEAp2fSOSxrKxKoN9G4j+EeAKGkmXwyr9/ntuBI61+aQwSdVKlw0g3mwZkFeQYILIfFx8+LlYl6CKEpvuZHa9NO0sREh8LMZXAqVKVgI8YEN9KtFMJdh5qR5BxsHMMIX845y4QCsEpRAw4XNnnGIhMJUgIjgM6lQCN+9CdO4Iu4KMEDjGDDgfB2cJrDPCLHIJOgM2tn0oQ4JwAA1iAN1BdCaQSANaJfjkipjquHJseETOR43oXKT7nuuxRfTSE6LhjrWCMSakEXi6+8SaOfq688kocOnQIjz32GKqqqjBixAjMnz8fffv2BQBUVVWhsrJS2r5///6YP38+ZsyYgRdffBFlZWV4/vnncemll0rbHDhwAKNHh7VannnmGTzzzDOYNGkSFi1aZOi4mUyqxActCT/W6avaO7xoSMe6BT3y+UZsPNCApy87DpsONGLmv35OtJuaGDU0YuVIq+3+jyUV6N0lF+cMs6Yijfw4cm2GeFIf4mFLlXYEYKqNrTH9oqPUVCMddHr2yOcbldtb8EXE34T400iV8n2iZJTkqWzIIm8xiQ5nXI4Fi05hqseYHANE9hORSiDNQKMAJw0wll9qdwjlClVSCULBIGyc+HTV/skcbPLB63YhF16E/GHNg0CIIU9om8uiiIErxvbC4m21uHh0T2sb7tRdcAzUK9I+DCGE/HvgQygYAhiTBARtLoOOAchTCRJzDERiVK0/kuW7Dkl/3376QNxz3hBL+hMvZYXKSBu7jYvLMcAETQl3qA0hJqse4oy/tCNx9HP77bfj9ttvV1335ptvRi2bNGkS1qxZE7O9fv36GXq50zouYQ26s6gay2wcF/NN+VuhrNev/7HSdPtmUUQMaDQYy6keafit39eAx/7DR7TsfnKK9rHjMFLSUbXCjIbAlxur0bdrLoaUGnsPiDUGlkSDqLShmUYRsQP/mdPdD4geo0TOUlRVApPbx9xOZdlr3+/CtNMGGGsgjYh9zxZHi5xklXXUgzQGiOxHmJEUy6EVi4YmKzD8MBQ1BpyqjgHZMh3xwbF9O8MrhKoHfUrHgNS2Pb2icmZ4+rLjsPTes1CYYyxP1zD5pQCAblwDunP1AIA6ZlCMSYgYcHAhhIJ+IOCFTQyXNOAYEDUGpFSCBDQG1Dg+YqbdKE3t4ess16UjcmmSgd1455kZER+nQ/nbcdg4Q6U/I+HE3ydrRYgxyYHXo9iY044gCH0yauZOh/gEywSNAZ2WAV7DINnI7X2tF3ij0XZPzDdeQjEec0FZrlCrbeOty1+v1EX8tPcX16/ecwS3vrMa5835wfCxrTKZ1BwMZm3IRPoi6g2IQ8klkEqgRrIqiDwuXK/xOJySpT2hSOGQqjuw6HXxpD+k0a+Qap8eOQaI7EcQsyvg2mBDCF3B50bXGcxZB+QaA2qOAb98Q812iju50S6oyTN5KkEgCDcnOgayJ2IAgKFKAabpxIdKdueOoIzjZ8oPMIOGolNm/Ptb+X8CRoz7WBEDSMAxcOGosNDVQJOqyCJN3vC1Z/Xszrs3j8Mfzx2MOVceb3ifHKfSOVHf6sepg3jHQv9iExUFhIgBD2tDMMTgESIGODdVJSAIq0jDhHDMY9a3aqt26z1StIw1K+6Nlii+y9rQjBgwOLO9TBYxpka8lYCkMo9yI15LY0C26kiLD++vqERDW3S1JiucL2I/1uw5knBbIlb8DszO1JqdqZdTvrceQLjfYfFBhg9+qpTWG+pHxOdQiOGXL/4YM4Im9er6yUV+HiKvg0QjBtR+A8mGyhUSRLx4iqQ/C9CiSCUwik1IJXBxQbBQCJwsIU8ZMaD9k5kwsCu8250AB6XGgKxCARzZEzGQNISIge6oRx/7YYCZcAzYXQiB46MEAu2SY8DLHNJ51CLI8ePPBfmHoig+CBNlJCN54ZoTcMbgfXh9SQXuPPOYuNsRsfolv0dhDn53hrl+Rb6Az/2xAneeNQg/PzI5ymmg2Y6HdwzkoQ1Ld9ZJqQQcpRIQhGXEKwRoNXOXVODP/9mEhy8chhtP6a+6jS0BjQGNTALDWP2+HU8qgVnjs1t+eEIhvqoExiIG5Nz6zmqs3H0Y32w+iLkR1XcWb1UKCyYypo+biJZI5ICG68+rRT/E2a7ZZ7n43F28rRY/7uCdRXqpJSLbDyo1HXbWNuNIK2/QxtK6UCPSmZXM6hKpItGvEKkrkUpSfW+niAEi+3G4AKFWeiHXYlrlHgAcshKCwYDSi2rGMXDtuD5SKgGTaQwwWVoBLMplz2oKygAA/bhqFLF6AECVUccAx8HPCecr0A4IDph2uHRfOIHoiAGnEDFQ05bYzffSMb3wv7tPRZmBKhh6GPkeqWZMH76GQGGOEy6H8UcHJ0QM5LI2NLUHwmVFDVSQIAgiu/izkCcv5surkYiSeabcG40aGoFgLI2BhI5uektOZZnq9rKVK3cfBgB8I2g3aNknq1Rm/fUMykSMNavyr1X1LBJMJYjne4nGn3h5b61uNt1GdUO74rO8Gz/sqINRYl2zViFv/VcW6lfJr4nISzUbfRvp6jI5BoijgxzeaClCs6QxcMhozjoAzhmexQ/4I8KrQsY1Bhx2G3yiYyAQvkkHffysdghcVmkMJI2ugwAAE+2bYANDO3OaivDw23jHgC3QJkUMtMFtKO0haOPPDxfkDVQP+PNd77dYRyEB7Bny8ivnplPVZ//0sHn489qJa4PXH5KqEnAG9CAIgsgsrFRgN3MM0ZDmENux0OaLTgU02r5Z5KHJWkZqrBBms7Ow8s3jiRjgFBEDGqkEBtuNjNz4WSXk3adjYCZyGmJ9BWtKUSaaSmD+nEemEsQzOtEz/eG/q+rbEC9aPdmfQLsAkOfWfqf+eM0+LNupnWYjoqVzkS4hv4SQRUmlEnIMEEcHOUUA+IgBsVzhqccbV3WXRwyEoiIG+FCsIOyGfqFeIVRdXpVATCvwwpWeZNBMo/hYxccdrCfMBIiKjgF5xEAbcxlyDASE8wPhvIo57ycNtrjygkl6yiINMvEh5nbEJ4hoE1IJOqEN3kAwnEpAEQMEYRlbD2qXhksG8T7J9PJ9Ve9/Yq68xltriy9o6PhWhEbvOSTTttES84ux0soKwFqIY6nUGLCgXQONvLGkwoIjmWN7TTMONrbrb2ghWs9reRi4eM4DGidffD2M5xL934ZqZb/ivM6T/f5hxsm1cNNBXP3acmPtqi7jl1r5e7v0hF5x9yceUm0xkGOAODqQIgZaJJX7iaOGGt7dbg+nCAQDEaI6QipBiDNmGPkE8UHIHQM+r3JdRyevK/zuztLHbYy/0XZyG5M9CXBixEBYY6AdbkMz7bVt/O36cEMjEAzAxfEvk/Y057wPKgmLFmZK2Nv708Yl3IboGMjj2uENhJDP8eeL88QnpkUQhDrtfmOGcbp58n9bNNfXNEUL20kRAxyXEXoKRmdKYxsk8d/k49nTcFUCo3n40J/jkAvqJnIs9X1jr/vDhz8n1I7Z6ysqYiBmNAO/4oOfKlWOqTx2PCOzrVrpHJS3YWY+KlPePxIhMipJfq0lev8o7pSa93hKJSCIRBAiBgq4FpRyfF4cCo3PANttNngZb5SGIlIJQiFzjoHWEN/Oqh1V0jKxQoGPI8eASGP3sdLfq0N8BMHzVx9vaN+AEDHABdoBIU2j1WAqQVOAP4/lFQeBQPjlzu5J7wz2wxcOk/52m8jhTyYn9Ak7b+INdLELDoB8tKEo14VOQllRGzkGCCIhWiIMrxe/25GmnpjjsI4a+gvfRn8PSXzQguOn8oU7VnTEpS8vM9WOvJW4xAfljxSLUyniJVkaAztqzOfn6x5Po7NaY8GpRGocao6+/qVUAi66TaMOPyvOiRrZ4ijQqmZiZcRAqofD6ipVemTG2ydBJIpQmaA7d0TSGECBGccAB79QpCNSfNBsxIAoPvjj1v3SMibMavu4zMljTzcbu/8CAFDP8rAgyCse9yg0Nmvvt/ECjvtqDplOJfAL52dgF6eipGS6IwYGdOuEP503BKcOKsalY4yFqiUbh2w843002XMEjQG0ocBtQyeOH3OKGCCIxHjth12KzysrDif9mKmISlAzcOTq+pmWjadlOMVjkCzfdcgyJXhJfFAeMWCBaaOpU5BmS9LU4S3oqjytRPNQsms4FuJ5qm8Nl8f727fb4+uY7LuZmSXfeKAxvuMZhqn8ZUGriu8b0X6CB4pHJDHR30G6fkbkGCCODoRUgsHcPgDg69nndNbaQwHHcQiAN/yjNAaEiAEGo44BPirAjfCNnfnFVAK36j4dkarSM3Ch9y843/skDoEXijRi2ANATTu/3c4DdbJUAmOOgYE9ugAAeubbERKiDdqYCw57+m+Hvz19IN65aRzyPZnhQJKPZ7xeay6XH28bxxBqa0C+EDEAoVoBQRDxETnzviIFjoEPV+2V/k7WTJZeucLED6C9uqzQXOUgLUM7HuPgqr8vx0er98V1PJUOAIjQGNBMJTDWbDAELI0hCvfN5hqjvYsbze+Q4jndx/9rrNyipPeg+qqhrEogZ/G22uiFKuysbYk4XlTzHYbIcUw0mqIwJ/xOlgzH14b9DWho8+tvmALS/yZMEFaQVwwAGGkTZlAKyky/QYgRA5GpBOGIAWM/l3bG30DkjgFxVlsSzSPgtNuwgQ1AFcJlCo06Bhr8/Llycz7JMdAKj6FSVkyoCsEFvQh6+QdpG1yw2zvYk9MA8hf/uEfH4UYLEzQhWg7CzQm/C3IMEETWYVTgLxHUDLtdgtGjFTFwYj/jkwFamHV4aEcMxGdE/GddleKz3BgxlUog/F+hMaC5vVEhPSadk0hiOQzSzX/WVWHmB+WWG3aRY6Y2cy1frnZ9RVclsKBfFkedJINkzYrfddYgoX3+AGZ0J9SQj6VVaQnvrdiDez76GT/uqMOFf1uCM59ZpDxmmlQGjCl9EUSmI6QNlIn6AgVlppvwCT8HrzeiFqwYMcAZ+7mIEQMeLuxgEEPW/ZRKIOFxRkdg5LqMRWW0C+kAHvgAH59P2MI8yDFUlYDfd+v+Qzje1ya050KRQadER2PKqB44UN+GET0L426jAfnIgxeuJtksmJtSCQiCiEbNWPAFQwC0w7aNGvRWv25rtaelQJ8K1MLXfYFQXG0p8uXTrjEQH5+s3Y/fnj4Qg0ryhXZU1QfN9cVkZ7SatzIIRyE+aF2zcVHgCb8/J8sZILab47SjtICP+mEAahrb8c2WxKJY5F32Bow5R/XuRw98ugEA8K9V/HvRoYgIsLAjyVgfrYIiBoijg0JlTjbXZYDpJgKMN0rnLd+pWM6C/E3ArMaAImJAqHTg5yhiQGRwafSMsUOrFpWMdiElIwdeSXywDW5FTnwsNhzkHT8u+GWpBMaECzsiL15zAj69/eSExqeR4ysueFr4MOQ2eABbfOUPCYLgSUcOaipuk1rfq6ZJoxSdReNh5Yv4Gz/ujms/7Vl9M+1Ebz1+9jextzecSqC/Yedc7YmQdM2I+oPmj5vomAPaGgORVQmsQBG5kMBFnW4nkOFjIJxuJP++kZdqPNedvP9GfX3NOlU5jJLqKizkGCCODiKFBouPNd2EmEqwvrJOuYKJEQPmHANdPTKvfIB/maFUgjADu3WKWuY0GM7fzoSoDPgBHx/O2AIPbAbeWr1iqgcXQMjLRwx44TLslCDMUxfkKz601e4GALRyuWnsDUEcHSRLhVwLS9KLdNB6cf/l8T2T/qIst6GGlObjuvF9NLdPtdiemeOZ7Zq4+Yb9DZrbaRlH4vj98njzgm1GsUInIXYD5jaPnOSIZZBLGgMql6+4ndq6DfvjEwOU/47SLQgpv1dFJF5Ydgxphj2i+UifSDxDkY6xTNcZozdh4uggvwfamKwUYLchppuQNAYixAeZqDFgcIazb3c+z7F3fvjnxQmOgSCVK1Qwpq8yJ9TorHS7PF1DcAy0MTfsBrziIRvvGFBEDMCVkpmwjko9eCdQWw2vAdLGpbcCBEEcDWRJFTHTqL13iyVcXRaUcjXzYj9hYFdcMKJHwsdMN/wsqvHtL/zbEs31RpxSesdLWki5mW1VNv55X33UsrWV0ctEpo7va+pYRqoSWEEmlRlMZUYNF6FDYoUQoSJiIL5MnLihVAKCiAe7AxtZv/Dn3ieabkLUGHBAGf7DhfhUAqMaA906F/FdCskcDBQxoErk/c5psDJAm+gYgA/wyyMG9PcN2fh9XQhI2g/tcKe8VmxHop7xjoH+XDUAoNlGwoMEkSiZ9OJvJWrVFeSzgbFu1VaFpssjEoxEJyTjNEQ6L+I91+JuHDhDbRh1mjAGnD20e3ydEttIYF9Rc0KNpvbE1N29KhoMW6tjz9pHTmjE+l7ScrWIAWNdMwWL8Xc6iGWMW3kPC1/r0cvUtjOD3LGRqhQYKldIEAny98AU+Jkdfw9MATzmhdLEcoWuCMdAWHzQWMQAs/PGvzPklZbZxIgBcgxoYjhiQEol8EoRA61wG0oHCNlFx0A4YkAUjCSSwxHwjoABHK+0XeXPS2d3COIoIQ2pBCk/Ik84DDvxHuiNWtQh0jTzbcXxzAqYGW06yBhiDUwqrpHvNUr4tft5w35HTTOeXrAlar3VcwBGx0x0uqg5m6SqBJaWJTC+6ZrKIxYeOBqFkyJp4oPhhjn5ssjjxXV866sSGCXV99yscQwcOXIEU6dORWFhIQoLCzF16lTU19dr7sMYw6xZs1BWVoacnBycfvrp2Lhxo2Kb008/XQg7Cf+76qqrEj42kXq+Cp2IY71v4YnAtXHtL6YSOBGhOCo6BgymEgSEGem6+rCHuXw3P1O644g1YiRHK0bEAwHg9BG9AQAezi+JD7YyD4wEHMgjBsQykl4ShUwq9Yx3BIilCmuD0foSBEGYIy0zShohuskkZMDATcZ4GPuOKdYYMHE8SZDNguPK27BC3yLZudrnzvkeLy3aqbmN0R5oRo5EitvFmh1P9DgmUVwnOge/+a1Vsdux4DTFHJMkRAwgIm0m0pBPOJUgZRoD6QkZyBrHwDXXXIPy8nIsWLAACxYsQHl5OaZOnaq5z9NPP41nn30WL7zwAn766SeUlpbinHPOQVNTk2K7adOmoaqqSvr36quvJnxsIj2wBC5pH1NPJYDJcoWr9vOGqrwqgb+dX9ZOM9MKdtUp6yAbDefvU9IVAJBv94fLFcJtaDYpKDoGOL+USuAj7YekUsOUWhKHQaUKCSJR0p1KsDNGHftEiG1AhBXHY+5rUR+iAwa0nyvJOA+1TV7F57iNBJMRA0YPE7Jg2jTZl2+syglWny+tc6Ms8Ri7DXE7K7WO5Merb/PF3hCA12+sBJ8VfUk2kakEkYZ8PCVEFU2k6ruY/e1ahDFLJ81s3rwZCxYswPLlyzFu3DgAwGuvvYYJEyZg69atGDx4cNQ+jDHMmTMHDzzwAC655BIAwFtvvYWSkhK8//77uPXWW6Vtc3NzUVpaatmxiexESiXgIh0DosaAsYiBBj//sxJnRwHADf6mLCriEzyHW7QfVjFx8OJ19qAslYB5DKUiBLhojQEv54mvH4Qh9rNixefDjCIGCCJR0lKVQPbafenLS7H7ySmWtn/fJ+tVl0sRA+AS1oPRG7ZUVF7QY0u1cgJrzZ566W9TqQTC/42OmdGmQypq71FtpTux3QDJKMUXs0UNQ0/8XVlpBMr78cT86JSKVMIAPPvVVgRCDJOO7WZp2ztqmvD5z1U4cwivecFf6/xA7jnUCl+EZkQgrnKV8lSC1F7Yqda/yoqIgWXLlqGwsFAyzAFg/PjxKCwsxNKlS1X3qaioQHV1NSZPniwtc7vdmDRpUtQ+7733HoqLizF8+HD84Q9/UEQUxHNsAPB6vWhsbFT8I5LL7acPTGj/WKkEnBAxAJsxP5qYSuBB2OgVnQQUMWANTUHewZIDH5hMY8CIY+CcUXwaggt+1B2uBwDU+7PCR5q1VLGuis+1rCg9HSGIo4jI19NfHFeW9GMm+x113k97o5bJjbdUVI+JihjQOeZPu5Obnw0AbbIZXXMaA+ZSCRhj8Ab0Z4+1jCNxvPQc/9ngODBC5NfYsC9c6lERMaDldpE0BqysSmDNAFsR0h4MMTz/7Q68tGgnjrSGrwsr2j772e/x/Dfb8egX4VRx+TD+uFNZgjyeY8qDDFKlMZCun0dWOAaqq6vRvXu0+mn37t1RXV0dcx8AKCkpUSwvKSlR7HPttdfin//8JxYtWoSHHnoIH3/8sRRhEO+xAWD27NmSJkFhYSF69+6t/SWJhPndGcfgF8eV4ZXrTohr/7BjIDHxQb8wIy1PJRCdBOQYsIY2IfLCw/kQ8vKpBK0wFjEwrDfvrXYhgOXb9gEA2kGRHMmkBkUIsPDjppIlpmZNEES0YXW0llyNrAsf62saVtQ38cptxE57SkXgLlupamjH4AcX6G5nxDjS3yR6C8YY/BoVBzKRyMvumtdXoKEtujKCkcszTdqDcfHjjjr9jVTwyWbsqxra8eT/tuBAfZu0TOt33OoL4N/l+1XHVywpGfmbjUwpicdfIt/H6O49i6wpy9yhxAdnzZoVJfwX+W/VKl4QQ82LxhjT9a5Fro/cZ9q0aTj7CefVxQAASnpJREFU7LMxYsQIXHXVVfjoo4/w9ddfY82aNTHbMHLs++67Dw0NDdK/vXujveCEteS5Hfjb1aNxXpw1h2OWK2SC99yg+KBPMDLdsogBj+Ak8JIBagndhZKQHvgQ9ArlCpkHdgNvcTYHnzbg5vxhhw0j8cFkEoQddQhXCqlkJRpbEwRhhEgDNxUzsOnwPci/lpbzw7Kvz2l+TDtmvqd0TRj8Emql+mI1rNdkPDPWt7yzGmP+vBCNBksO7qhp0t8oAuUsvvl9IlFzNB1q9qpsqdF+1B+Jk+z7wbWvr4hrP/l18cP2OryyeCd+/Y+VsvXR+4iaFvd/sh53zyvHbe+sjtl+OJFAvb1Yw8IYw46aZlX9jHhSCYxW2YpFssU5Y5HW+Nk77rgjqgJAJP369cO6detw8ODBqHW1tbVREQEiomZAdXU1evQIG4o1NTUx9wGAE044AU6nE9u3b8cJJ5yA0tJS08cG+LQFt5uMjWxiwjElQAXgikglONLEG57MZmy23y8o3Ls5P1p9AeS6HMgB/5AgA9QaunUpAgDkc61wcfz5aoMbNgM3YruLPwcuBJDDUSRHqvgueDyudnyHfawYtShKd3cIIutJx3tjOl5V5S/iVqq2x0J+hFTn9xrBjMEQ9gtYW+ax4lBrzO0M6xmofI2Fm/j37S83VOPysfqRtmc/+72hY8U6riUiiipNqLXKwM9eq72miGOWiutbDa1zZvV9Ru1YO2qaNfcRu/BZ+QEAwLJdhwwfL/L3Euv38+zCbfjbtzsw7dT+eGDKMPUOaOwfiWW3jhRfEmmNGCguLsaQIUM0/3k8HkyYMAENDQ1YuTLsUVqxYgUaGhowceJE1bb79++P0tJSLFy4UFrm8/mwePHimPsAwMaNG+H3+yVnQjzHJrKT3Bw+7CffpfSYNzTzD8CaVmOqrWIqgQc+XPnqcr5tjncMtIAcA1bAOflz1QXh2YJWuA2VO7Q7BccNfMgDH77WDBIfTDbPBS7Du4GzMMN3e7q7QhBHJakw2r/dXJOCoyhRpBLYtF+4KzUMVrX2jnbE72qFkSIfty9+PoB2o9EFGYZ8LF74bkfC7ak6AVQW3vvxOgy8fz7+tWpfzLZivcJc+/py7DlkfRUQkVTOTusdS22tGcE/MeI8vK+x/f72LX8tvPZDhWafxK6EQgz7jujfb+IlXfeprNAYGDp0KM477zxMmzYNy5cvx/LlyzFt2jRceOGFiqoAQ4YMwaeffgqAvzCmT5+OJ554Ap9++ik2bNiAG264Abm5ubjmmmsAADt37sRjjz2GVatWYffu3Zg/fz4uv/xyjB49GieffLKpYxPZD7PzBr2dKVMJRM2BujZjv9K8TvkAeMfA+v0NWLytFrloB8DnwRMW4OJV7UWHi5c5EYDDULlCp4ff1wMfOnH8eWlh1uSCEbGpQWc8GLgJP7EhOKlfl3R3hyCyHqMzYXIe+fcGzJ6/WbHPERPVYbYeNB+6bZTqhnbV5cqIgdgwBjwh+27xElmVINOiBkylEsCc+KCRtkT0rhu9fiZq98S6XvSQn863l+1JsBeIYcFFL/tqU3T0sdQn8f8xTtSPOw7hrnnlprtmBVq3lQKP9YHnavexKc//AMCYgysqlcCCPsnvQSHGwBjDgPvn45SnvsNHq9UdPYn+5qyM9jFDVjgGAL5ywMiRIzF58mRMnjwZo0aNwjvvvKPYZuvWrWhoCKuB3nPPPZg+fTpuv/12jB07Fvv378dXX32F/HzecHO5XPjmm29w7rnnYvDgwbjrrrswefJkfP3117Db7aaOTRwF2NTFB0XNgZDBzJsrJg4BALi5ABwI4Pp/rJQMWLs7z6reHnWYEmrxFCg+NoAfVyM5XZybdwy4uQCKwIevtZDDJqncf8EQxec7zzomTT0hiKOHyJkwvRfg6oZ2vLVsD179fhfaBZX76R+UY/SfF2LpzviExKzk2teX625j0xAfBIzVKDdjKPgyUQjPVFUC/v9GnOZmjxsp6iayq9bYzDZjQCCB8b36tdjXi1ZlBfEKUhOwi6S2yYv566tifldA/XTsPdymsjQ24unRurprG+NzhOjRPT/+SNYTk+Dk/2TN/qhl2w6q5/6rEXmpRztQzfdJkX7ClOVEn/9me4x+WGPQp9ovmTU1urp06YJ3331Xc5vIk89xHGbNmoVZs2apbt+7d28sXrzYkmMTRwFCxIAjImJA1BwIcMZ+Lm0yIzMXXjTCIUUMXHfacCt6elTyze8nGd/YrXQMNLJcADCUSgBXvvRnd44vMzVpRD/jxyZMc/3Efoo6ypa8pBJEBycQijCqdF541dTe/y3k7L68aCcmDiy2qmtxsTOGQamIGEiB+KD8EO+tqMQFI+MTNE4WZqoqSOUKk3DLjdWLrzfHnhmPZO6S6LBto1TUxXZA3Pfx+pjrxLE47tGvdI/xi78tQXVjO4o7xdYhavFGOyFufWc1tj1+vm77sfqWSjrnutDiDehvaBF6hvk9H69L+BhmxSL1iEwlMCzSmQCUSkAQaYYTHQMxIgaMOgZOGlQKP+MjTkSHQK4gPsgcuZb09WjE4zRW9QEA4PSgnYUrPDSCH1cj4oOwO6R9u3B8xEC34vS+EB/tuB3Kc0tuAYJInPnrlSWT9V54szW3Xt5vW0T+sJydNc0w5B7Q2UTevC9L8+hFTBYlMNSWiG6bOuPMwLBgo3rZ70Qv1U/WRs86x0O1MEtf1xw7bUKtXKUYaWL0NydGCqTr2agpPmixekm87fEh/Ea25FAlSzOJPHfxRQwwxd/ySahY+geJnsuDwrXXocoVEkQmwRy8sRgZMeDk+M9Bg46BAo8TrYLI4C+HF8GGEDwcH7IWclEqgVU0IjyWjUxIJTDobo9KHXB2sqxfhAHIM0AQlpOI4Z/JTgOjwmPN3oAl3yMynDvTblda33HpjjpFCb9wuUILqhJEReUm2l780WPdEgh/52BNNQIjGHYMiKkEHSCa7odt8aUtmSktKa9y8Mrincp24nEMxNGPRG4cwRDDf9dXAQDa/MaEz62CHAMEIWITHAOIFB/kf5Qj+3Qz3BQTxPGKXQEpagAAfBzlsss5a0h3AMA14/qY3rdJJhgoRgwYfaa2MOV5YG5yDKSSdJVkIoijmUw27hNB/rVsHCfpI+htGy+1JmvQpxp1FXyGibO/wTWvr1CU8LNUfNDk4BqZGY4Z5Jfka3l5hfFyd6nEbKrM0h11+Hd5YtERiUQExLPn6soj8R2LWVRdI65jK8UHjZBIV+VpX1rRKskgazQGCCLZiKkEkeKDnd0AgkB+rnFxvMM+B4o4YGH5LuSiFAAQYDYs2HIYvzppoGV9znaev3o0lu08hFMGmQ/ll0cMNAkaAzkuY+kILVCeS5+NUjxSidNOjgGCsBozJb0isTpc2EqYLJqf44ClO2MbdUYqM1x1Um9NNfrDEWr72TCJW9vsxQEVlX4ryxXWNCkdJnpt6p0K3tBTbySZaTEcB7T5UjsLq4dUlcCkOXnN6ysAAKN6FcV9bCPnyUr2GCgpqtoPg/eoZPxcI8UHY61T9CPi2m71BZDjtBuKCpFvkuprlSIGCELEIWoMKH+EUvlCe2zxmUiaGR/mlsu1I5cLlyps9Wd3vqLV5LkdOHtYiTl9AQFRcBAA6sCLEUbmssdCnkoQYDZ8vvGw6eMT5njq0pHS3xsPNKaxJwRxdJJIdHQmRxvIDQK90HMjXyPb7z9q5yrW+bOy5NnnPx9QfNZrU9fgBIvZgn5/E7lguZQ4e/zBkCFHFQDJmo23XzUJVCxg4NNwMh0zaRla4274nMQ4djz7b65qxLCHv8SMD8oNbS+//s2IeVoBOQYIQoATyhVGagzYxQgCu/EAmzZBYyAXXuQJwoOtcCc0o0MoOYxwdYFaVmRq3zYuHDHQAg84I6KFREIMKQ1Xkji2JF9jS4Ig4kNnljWDowK0kDs8rLhTr95jNpQ5/c+HzrlhsV1zVQn4/2dq1EPMfiWxvxyXmlz+R7/YaHqfeHtlSHg5BvuPaJdW1Lravt1SE/dxkwUHTtOJEFcqgWwvo1UJ5Gfkte93AQA+Kz+gvrHG8VINpRIQhIgQMSCKDUqL44gYEHPY87h25LJ2aRmVabOOStZd+vsg62xq36AjD2JgyGGWb1i0kIgfeXhukewllyAIa9CLGDjSGq7bHvninMk+a/kMXaLh69lKolngmfiEYyz+SIZEzvOG/Q0o8CT/GfTu8krD20pVCUwMh/x3kcjchhFxu3hmya3GTBc0N42rKkH47xBjmPX5Rtm6GFUJMvFHZwCKGCAIEbFcIQsofuiSGKEJx8CAniUAgBx4kcvxEQNiFAFhDXtljoHdrNTUvq2yiIEjyEf3AhKFTDYhxUtMlj4xCSKDKcyJbexUHmrFxS/+KH2OnJHK5GgCRcSABakEZsmE25UylFl7PQBJoDGZEQNWtGmLYYUkM5Fg0dZaBFNUlcAo8VQlMPO7SJQM8AsY1xjggAJP7HnveO51oYjf3/r9Dab2N3vEdI43OQYIQkASH+SCih+lGDHA2Y17mF05vMp9HrxSVYJWcgxYyvfBUTjE8rEp1Bc7WZmpfY9wheG/WT7+dN5gq7tHRJAJL9cEkc00tPmx51BLzPVaJdxm/Ktcs+1kvIjGylv+1eieEcc2lgJhZFY0E2Y2k43aNyzfW6/47BX0jMKOAetvwPrGu/65SFeFmmqdnPw7/7kW36UhTF6zKkHEcAZC4XD2pI4iS3qRCEOYkWvo2in2vTC+W0Q8VQmy86WHUgkIQkA0/F0IIMQYbMKPOqwxYNwxEHLywni5XDvywSuwysXyiMSpQWec4v0rgrAjZNLHeYjrIv19BPkoyjUeDUIkTibPThJEpnL8Y1+BMeDi48sw85xoZ6ZWGb9AUJkTmwz7ee9hpdr4tLdW4Z+3jBeOx/Dv8gMY2qMAndzKV0+9MmTJNG6NkAmv90wnZMAbUD/3UrnCZHwJvegNQ1UJYjWt13b8F/Cna/fj07XRJf76F+ehoo53vH3x8wF88bOxfHArMFKVoKZJ6cwIKap1JDtiIP3PbKt6EE87kREDsdbJkZ+STBg/o1DEAEEIcI5wuUL5T9gpRgzYTDgGHIJjAF4Ugn/QNCIP4/p30dqNMEkbPPDBfK5gHcKaBAdNChcSBEGkA/Hd8rPyA/jVSz9GrdcqwadrxCXSMYFTn/5O8VluyHy58SCmf1COc+d8b9oxKH7vjqwRa/r8CGMlGi3pmL3U67PWdXCo2autLB9nn7To1dl4SWqrEQ17rZ9pVJk82Sgk8+yu3H0YVSqlMFPN5a8sM+TQ1HcqmTvuS4t2KEQWUzGxQakEBJEJCBEBDgQVoUKSxoDD+KxyyJkHAMhFOwq4cMTAlFHmQt6J2Jx2bLe49z2IsIOmkpVY0R1Ch/EDukp/F+VQhAZBJMKhFh/OGtJdf0ORiDfNVLx3yg/5u/fXxN5Opx3xeWzEuM2iiTlTNLWH0zLUvmLMcoVpqkrw/DfbsW5fve52sfRmZv9vC/7vy60W90qbdEWkKPpgYttUXuuRTr9IIqOAksHmKmNlRq0+jU8vUF6HkQ6alhgpU+L11OwNoKHNr7pNJkKpBAQhoIgYkGsMwLzGgOgYyOfa4GP8z6wBeaR+byGvXjcGQx9eENe+mzAA+1lXdEUjfgwNt7hnhBq5LgdenToG7f4gSgtJ7JEgEqV3F+PpaZE2RNRsbBKMDHmTcrG36IoIDFomkbi5kcen3mweX+Ncvx3lPul9bkeeq8j+z/p8I95cult93zRVJXh24TbdbbZUN2muf2nRzpjrkmEUp/Msi5eYGWHeTCp/3b84z7QgX7KwcRyGlxXEXJ/ojH/kuDfFcAwA/G93xCNfmj6GvI9j+5qrupUoFDFAEAK2CI0BkbBjwETEgLsIAFCAFkXEgNtJPzmryHHZ4943ZHPhYu+fcab3/8HepZ91nSI0OXd4KX55fE/9DYkOz0svvYT+/fvD4/FgzJgx+OGHHzS3X7x4McaMGQOPx4MBAwbglVdeidrm448/xrBhw+B2uzFs2DB8+umnivWzZs0Cx3GKf6Wl5iqeZCrpMCKM5tXqbbVRMDiM2ExLdx7S6ZOhLmUUen2O5RTgd+b/l4lzEvd8tE5TF0OLZORsp/PSkDQGzJQrjPF3Osik68vGAQO6dYq5PtFLx+j+m6sacdazi1XXbak2Fv0AAMf3LjK8rRWQlUIQApyDVzF1cEFFqJCDCQ8uE6kEQU8RAKCIa0aBKD6IPLjs9JPLBF64ZjTa3MXo1e9YfHjrhHR3hyAIGR988AGmT5+OBx54AGvXrsWpp56K888/H5WV6nXBKyoqcMEFF+DUU0/F2rVrcf/99+Ouu+7Cxx9/LG2zbNkyXHnllZg6dSp+/vlnTJ06FVdccQVWrFihaGv48OGoqqqS/q1fvz6p3zURzBj7IaX2YHQEQRJMi1gtRkcvaLdzyzurARibTT3aZpIBA9EeBvZNisaABYPd2B57trUjEY9hnUlOrnT/RuQku6Sp2u8vVgWLXbXqVWTOm6Pt6JYfwp5icRWyUghCgHPwEQN8KkH4V+mMI5WACY6BQrSgkBPEB1luQrPchDbzBPVrI4zu0xnrZ03Gv26bgO4FFNZOEJnEs88+i5tuugk333wzhg4dijlz5qB37954+eWXVbd/5ZVX0KdPH8yZMwdDhw7FzTffjBtvvBHPPPOMtM2cOXNwzjnn4L777sOQIUNw33334ayzzsKcOXMUbTkcDpSWlkr/unWLX8sk2ZhxDKTDhojVv+gsBqPlv9JDrLKLqSIqlUBlmd6+yZjR/Xlf4qHjRvPGI0nG9ZwJxq2ptJUMcgxkUsiAblcS9KioXfe/efMnLN1Zl1C7ANDYHq1F0OJL7f2HHAMEIWLjIwL4VILwYhf4HyrnNG5AKiMGeMfAr88YBY+THAPJQi5uZ4R0540SBBGNz+fD6tWrMXnyZMXyyZMnY+nSpar7LFu2LGr7c889F6tWrYLf79fcJrLN7du3o6ysDP3798dVV12FXbt2afbX6/WisbFR8S9VxCqTpYZennqsd+WaxvaYpfBEapu8mL++SuWY4b+njOxhuC+xMJN/bSUBMwOdBCKP/ugXm3D2s4sNheFnku1oKcmIDEnrKwEn+68xMqnsr1WpHdsPautOaCHOrOvdJ8z0NGTit7+2st5Ey+ocavYBUPbx3eXqkXLJghwDBCFgU4gP8j/LUIjBw/E/VM5pvJQNEzQGCrlWdOX4F8WTRwyysLcEAIzqVZjuLhAEYSF1dXUIBoMoKVFWCykpKUF1dbXqPtXV1arbBwIB1NXVaW4jb3PcuHF4++238eWXX+K1115DdXU1Jk6ciEOHYuetz549G4WFhdK/3r17m/q+iZDQy7iBXSvqWnDSE9/gnGe/19xuyvM/4Pb3oqsOyLvXtZNLdbkpOqgvV228dta2YPG2Wo2dlPuSI1yfdIbmi6fHzGmS26z/76vUVnCIZJ0F0SMAcPGL0WVYjdIlj7/HWBkw8G2MFIFkIUZZJUNDwyjkGCAIAdExwJcr5Jct23UIbjFiQNAgMIKYSgAAXTnBA9qJyuJZTZsvPuEigiAym0hDhjGmadyobR+5XK/N888/H5deeilGjhyJs88+G//9738BAG+99VbM4953331oaGiQ/u3du1fnm1lHpG6AnHeX78E3mw8abkvtNfSrjbzTpPJwq+a+NU3emOv++OHPuOCvP8AfDB9hW41yVjDTIgZcDuWrcTpf0rXQ6pc4mxzWGDi6yMwzkjhmrnH5+f9he+Jh7JlASwLvdOJ4WHmfONLqs6wtIwTTHJ0EULlCgpAQNQScXBAsxN+crn19BTa4hYgBl/GIAc7uRBPLQT7XBgAIwgZ7XrHFPSa21zSnuwsEQVhIcXEx7HZ7VHRATU1N1Iy/SGlpqer2DocDXbt21dwmVpsAkJeXh5EjR2L79u0xt3G73XC7jTuNrSRWDv+W6kY8+NkGAMDuJ6eobhMZhrz/CP+sqmv24r/rqnDx8T0Vs5d1zV5MnbvSVP/qW334cPU+AMo8/cpD2o6GWKSqFnikWZHuV/VYIeNrKutx3ogequuYFDEgGktJ6VraSLfug9UkWpWACBvVemOYLEefFf4I6XebeFNxQxEDBCHAyaoOrKsMe1/FiAGbCY2BEGOoY+E6qgF3F8BG+gIEQRBauFwujBkzBgsXLlQsX7hwISZOnKi6z4QJE6K2/+qrrzB27Fg4nU7NbWK1CfD6AZs3b0aPHurGV7qJ9fJY1dAu/b2jRj1nN/LduLqR3+fGN3/CI59vxMx/lSuU7J//ZrtpoTi/wdmvTMqVBlRmHNPcvVh2zN+/j61/EZRCkvnPlEqgTzqHSDw/pjQGMutnk3ZCBq91+bB9ubEab/xYEXvbFI+x2r1wXP8uKe0DOQYIQsQedgz87h1+ZsSOIJwcHz1gRmOgtsmLAywcIeDPoWgBgiAII8ycOROvv/46/vGPf2Dz5s2YMWMGKisrcdtttwHgw/d//etfS9vfdttt2LNnD2bOnInNmzfjH//4B+bOnYs//OEP0jZ33303vvrqKzz11FPYsmULnnrqKXz99deYPn26tM0f/vAHLF68GBUVFVixYgUuu+wyNDY24vrrr0/ZdzdDrIiBoCxsv9VEaO55c76XcoW/2VKjMJT+t0Fd30EL+cxcIBjOezBbrjDVZIoN/dPuw9hVG19U3GlPf4d2f1AyNDLlOxE6xJlKQITvh3rRMfJhu/Wd1Xj0i03YsF9dI0GtSoB224mdk3CkT3jZOcNSm4ZMqQQEISJzDDgRQCjEpGgBwFzEAGPAfpljwNN9gDV9JAiCOMq58sorcejQITz22GOoqqrCiBEjMH/+fPTt2xcAUFVVhcrKsFJz//79MX/+fMyYMQMvvvgiysrK8Pzzz+PSSy+Vtpk4cSLmzZuHBx98EA899BAGDhyIDz74AOPGjZO22bdvH66++mrU1dWhW7duGD9+PJYvXy4dN9OI9Q4aVFkR6URQ23VLdWxF8FoNHYFYOGw2+IO8Y+KALIrhcIsyb5cBMV/M00Gm2NCXv7IMALD5sfNM79vqC2LJ9rpwxICVHSMsh4v4vxHILaA0xMU/46lK8OJ3O1S3NVUSlgHtfg3hFwPkudJvlqe/BwSRKdjsCDEONo7BhQD+/fN+eBB+gbGZiBgAgL0sXP/a0e1Yy7pJEARxtHP77bfj9ttvV1335ptvRi2bNGkS1qyJVsaXc9lll+Gyyy6LuX7evHmm+phuYkYMhKJflrcdND/z3JhgTv8VY3vhrWV7dLdjjOHCvy1J6FhWkq6yiLFIJNVCukQy7DsRSsTTY058MEmdyRLW72vAF+sOSJ9F3Qm9iAE1rZKNB6wpM/vv8v0J7X+41Yc+XXPT6vXJmlSCI0eOYOrUqVJJoKlTp6K+vl5zH8YYZs2ahbKyMuTk5OD000/Hxo0bpfW7d+8Gx3Gq/z788ENpu379+kWtv/fee5P1VYk04hd8ZU4EsHRHuCKBlzlgsxn/uYQYwyo2OLyg14mW9pMgCILo2MRK4TeibG0k5PX5b9Vn0YzitBt7Zma8fZNmm/rNpbvj3ldKJbCoL0RyMSc+mPG/nKTyixeWqOts6Azi899Ei8laVQ3ATOqWGhe/+CO2HYwduZUKssYxcM0116C8vBwLFizAggULUF5ejqlTp2ru8/TTT+PZZ5/FCy+8gJ9++gmlpaU455xz0NTED3rv3r1RVVWl+Pfoo48iLy8P559/vqItMaRR/Pfggw8m7bsS6cMnOAYcXBAMgIfjIwa8cJny5A7vWYjloaF4I3AuPgicDgyanITeEgRBEB0BtVxXtYiBFm/AmGPAkl5ps8NgfnzGzXxmmBX99ILYNer1SvaGxQet7BFhNaLQp5nTlAGV7TKSeCpwRN4z9xxqwTebD5oeYyscDP8u369w+qRaODQrUgk2b96MBQsWYPny5VI+4GuvvYYJEyZg69atGDx4cNQ+jDHMmTMHDzzwAC655BIAfC3ikpISvP/++7j11ltht9tRWlqq2O/TTz/FlVdeiU6dOimW5+fnR21LHH0EwFcOcCKAQDAkpRJ44USBibtNaYEHDDY8GuBFq66UVTwgCIIgCDOMmvVV1DK1Wf8gYwnPWlnFsB4FWLS1Vn/DDDNwssmG3ntEu/SjlEmQVd8qPaRzhETbz1TEQMZ51DKDeFKBInVZJv3fIgDAycd0Vd2+d5cc7D3cplgWCjEEbfrnZIeBMtvpPLVZETGwbNkyFBYWKkSCxo8fj8LCQixdulR1n4qKClRXV2Py5PBMrdvtxqRJk2Lus3r1apSXl+Omm26KWvfUU0+ha9euOP744/H444/D5/OptEBkO2IqgQsBtPqCUipBOzNn2NttHM4fQY4kgiAIIjmovTyyEHD/p+vDn2PsW15Zn5Q+KfpieLvMMnAiZ+gy2aTWmqHkuMyIGLjouLL0HTzLMOPAOdr8Au1+axyaq/ccMb1PKMbvaM2eetXlx3bPj1q2dm895q+v0j3WN5sPmupbqn+6WRExUF1dje7du0ct7969O6qr1UvoiMtLSpRlHkpKSrBnj7oYzty5czF06NCousZ33303TjjhBHTu3BkrV67Efffdh4qKCrz++usx++z1euH1hlV8GxutEbYgkouUSoAgvtp0EBNs/Dlsh/kZ/y55FCVAEARBJAe1VIJIIzvWS+WfPl6H1cPOSUKvwliVt0vERk81/WvBCKmoa0n4WC6HDb6AedX1fE9WmBqZgQkrcHPV0WVX7DmkHf2STAIx7lWxnJZqvzt/MCSVe9XCyF0xnXfOtEYMzJo1K6b4n/hv1apVANRzLBhjurkXketj7dPW1ob3339fNVpgxowZmDRpEkaNGoWbb74Zr7zyCubOnYtDhw7FPO7s2bMlocTCwkL07t1bs59EZuBnfCqBS4gUyANfYqkFxksVitA7EUEQBJEsgio2WuRzhwH4cUdd1HaHWqyJetQKZzbqGNhZm7jRaiXx5CinC6OzxqoibSZxGRSTjIT0DfSRUglM7HPLO6tVl18/ITPLqx5NqP3srKpmcrglsWowiZJWx8Add9yBzZs3a/4bMWIESktLcfBgdOhFbW1tVESAiKgHEBlRUFNTo7rPRx99hNbWVvz617/W7ff48eMBADt2xFbsve+++9DQ0CD927t3r267RPoRIwNyBNHBPPA5RE3MXKlCHvIMEARBEMnBSI1tDsC1r68w3XaBwVlerS4YdQy0+gKGtksVqRb7SgQzddYTJd6c9kwr/5jJWHHtXXR8Twt6knrSmVJk9tpW29yqy/yfKyvTqh+R1vie4uJiFBcX6243YcIENDQ0YOXKlTjppJMAACtWrEBDQ0NU2L9I//79UVpaioULF2L06NEAAJ/Ph8WLF+Opp56K2n7u3Lm46KKL0K1bt6h1kaxduxYA0KNHj5jbuN1uuN1u3baIzKIN/DnLAZ9CkM/xjoEWmHcMhMxH3BEEQRCEIdTCXyNfKLWMsj9++HPMdQU5TjS26xvsWq+vnXONpdNleq50JjsK9DQGRP547mD835exqxvoEQrFb7Zl7ugp+dlAGHiyMFOV4KuN1SjIcSa3Q2kgnfeBWMeOtVzNIWf0Ojf7PVN9+8mKxJ+hQ4fivPPOw7Rp0/Dqq68CAG655RZceOGFiooEQ4YMwezZs/GrX/0KHMdh+vTpeOKJJzBo0CAMGjQITzzxBHJzc3HNNdco2t+xYwe+//57zJ8/P+rYy5Ytw/Lly3HGGWegsLAQP/30E2bMmIGLLroIffr0Se4XJ1JOK1M6BhJLJcjwt52jgOvG98G7yysx7dT+6e4KQRBESvGr5HtHPnW0Xio/XL0v5jqjjy9SRk8veqM/tm9nrNpzBAO7ddLZUpv3VuyJ23DLtFSRWBy2KL0mHowaf/uOtMZMIRApzMkK0y6KtDoGzG6vskO739hs4MdrYt934+2PlWTN1fPee+/hrrvukqoMXHTRRXjhhRcU22zduhUNDWGP3z333IO2tjbcfvvtOHLkCMaNG4evvvoK+flKNcl//OMf6Nmzp6KCgYjb7cYHH3yARx99FF6vF3379sW0adNwzz33JOFbEulGjBjI5QTHABd/KgG9LiWfRy8agatO7IOhPQrS3RWCIIiUsmxXtM5RpEM62bNNWs85o87xTHtWyodsyqjYkaGZQJtOaUrxHCR6Hfxz5d64Q72XqGhcZCJnDy2RxBrThd55Otjo1d4AgMtut6g3qSXdqQTyKh7S8ojtbByv46J2b1O7H6thpFyhsm+mNk+YrHEMdOnSBe+++67mNpGea47jMGvWLMyaNUtzvyeeeAJPPPGE6roTTjgBy5cvN9VXInuJTCXoRBEDGY3dxmFEz8J0d4MgCCJt/O6MgXjxu538h4jHTrz1641GAmhtZrSNpvb0im1FIjfOrp/QD20WlVFLBg9+tiHmuspDrZIYZaJ5/hxnfEY0W+mSl77wfLtBxcsvN6pXYpOTjswXNaPaLM0GUpeSRYjxDsHIr6BmV4KxpL/fp9N8SKv4IEFkGl2KeCMzB150yXOhkyA+2BJPxAD5BQiCIIgEef6b7Zrrh/UIO0cjU87jNRKMPr60ZvmCBh+Csz7faPBoqSeZRta95w9JuA2tMoSzvtiE8r31ABLP8990lJXGU+OW0wak7diiX0DverOiukQysEJgcvb/tljQE+PIS28eW9LJ0HcQz1Oy3+/TGT1BjgGCkDGiXxkAPpXgcIsPxU4+cqDEgChlJJR7SRAEQSTKswu3aa632ziplFzkTFbSX2A12jdasreuOX253Xokc/K1i0FxRiuwJfi23xFeZ9Ip6Ge1wOXwstSmV1pR4lN0YiXKbZMGGtrOJ6v3enzvIlWnjD+oEjGA1EYEH9c7tVGx5BggCDnOXABADoRyhUFes+K04wfH3CUWRl+KCIIgCCJeHDZOeqmNfOzE+wJ7yAJjPZS1D0FO45OFR0lhyHcmV1YgwjPu8ab+yOE4YECCYpOmj5lBtSfyDZZalcNg7DuIDpBk39rkDokxfbsk92ARkGOAIOQ4+ZSBHEFboDP48LkGzrz3lTQGCIIgiGRzpNUnGZmRxni8Jerks2laaD3n6BmoTSqN9cwx2wg1rJhxT2Z7emSi3+nmU2JXq/phe63iM2PG7nmi8yDZ97Z3lu1JavtakGOAIGQwIWJArErQhWsCAOz15ppvy7puEQRBEIQqew+3SjOOke+ri7fVquxhHVakEmQaqTJyUmlLWZEDTiQPKWLAgtPEcamfv8+k62vv4VYAwIMXDlMsdznCJu/UuSsV6b5Gc/odNtExkGgvtXll8c7kHkADcgwQhBxXOJWAQwidwTsGvC7zoTw+lRrTBEEQBGElQcYkQ+DcOd+n9Ni7D8UWvwta/PZ86qBiS9tLN6lNJUjdsbKVdIbDW3l+OKTeUE91hIIW837aq7rcEdFJ+d0px2msxKOUsnUUR0ORY4Ag5EgaA14UogV2jv/xB9ydTTd17bg+AIDTjjUvXEgQBEEQRggxoEWoZ5/q0nqR4lxyrH55Lu7ktrQ9IyTTvkql7ZZJM7pENOL52Vkb29FmFI5DynNHsuH6iiwJyWRzd/2LjWkypEN8MNWYV2ggiKMYzsXfHPK4dnTn6gEA9SwPE44tNd3W6YO74/s/noEeRR4ru0gQBEEQEs40TtdpGf9GyxUaJQtsD1Okcob6KBu6ow7RsK5pbLe0vVSRDb/NXJcdTe0B6XM8xn1Dmx8AsGH/0Vu+kyIGCEIGy+HLghShGT25OgDAflaMvl3z4mqvT9dcOO30MyMIgiCSw6VjeqW7C6rMW6ke0hsvqTJ2UmXjUFUCQkT07WlF4BiFS0NShC2TcgliYI/4DRzNs/6JQBYLQcjJ4VMGiriwY+AAKBWAIAiCSD1GwvFzXMbyY1NNwGKNgVTZHkr7gUuaAZ/SqgSZb7d1bKzUGOBSf76zIZUg8vfmJR0wVcgxQBByPLzIYBGa0ZurAQBUkWOAIAiCSAP975uvu006RdNSOeuWDcaHGagqQWZhVJk+GYSriljTh1TfE7Lh6orUGHhvRbgk4LaDTanuTsZCjgGCkMFyeceAnWMYyVUAAKq47unsEkEQBNEB2VFj7GU1HTOEIu+tqEzZsdIRDn+02NNHy/dIKmmMLJccAxa0xQGob/NZ0JKJY2bQBTagm3rqb2TEUVV9WM/hzaW7k9ij7IIcAwQhg9ndaGW88vFE+yYAwE5b33R2iSAIguiA1DYZf7lP14zwJ2v2p+xYqfqKqZptTeU5y4IU8LSTzoxz8fxYEjHApf5+UNfsTenxtDhzsPpkXuSYfLI2dfeubIIcAwQhgwE4xAoUy3bZ+qWlLwRBEETHpUuey9B2HcXmS5dxmyxHAYkPZhbpFKPjLI0Y4Dp06og8ZeD6CeGJPZIaNAY5BghCRr7HgQoWLk24n3VFs70ofR0iCIIgOiRGc545jkPQYqG/TKSxLaC/kQWIJckAoNUbjLsdRwZN02dOTzKXdIrUW32pdGC/gKJCgtwhdt14iv41AjkGCEKG22HHCSecKH1eFhoeJVhCEARBEMnGqKHSUZ5Qn/98ICXH8QXDauWBUPKUy1P5btGRZ5CNkt5UAuvOD6850nHPt7wsoXwYJgzomobeZB/kGCCICDoNPkP6+4vgBDjtHfcGSxAEQRAdCfkT35fEkmaRddWTSYs3NdEW2YxVFQHiwVLHgGUtZSfyiAH5uNrI4jWEI90dIIiMY+gv8HhwKvwhDotDozCQIgYIgiCIFGM4YoAeUUljyY46TB5Wqr+hCnrnJZWGijwKglAnnakE4rVi1U85nU6OdKOIGJAtp6gZY5BjgCAi4Tj8I3iBlLPpIDcjQRAEkWIMawx0+DnC5JHMka0zUXUiUcgoymzE82PFeerIaQQAYJe9sseKHiBiQxYPQaggF3JyUCoBQRAEkWLMTPp1z3cnryMdDLn9wHFc3BEZeg4bo1UnrIC0kvQ5WsQHOQAbDzRa12CWYYsxmPQTMAY5BghCh2TmGBIEQRBEQqShbnk6cTmsfXU9+ZjYomTJHNYunVLnGCD0MRqhkwysFh+sqGuxpK1uWehwlKcSfLulJrycPAOGIMcAQeiwvaY53V0gCIIgOhhmNAaqG9uT25lMwmL7LcepzKqVz/TbOA4n9usSX8N6GgMdxJnz8IXDLGvrtkkDLWsrknRW/BQvhUxTBnj7xpPS3QXTyH9X+460qi4nYkOOAYLQge4lBEEQRKpJ5wxmJnNS/zgNdYNEPvPjjVDQe3VI5QRmOl9juloYGeFxJs9sSadgn5W6AFZqjnicdsvaSgfysaB3eWOQY4AgdCAvI0EQBJFqgganMDvaE8p63R/lOMtDjpM5til9tzhKLpJkCm26M8AIzjRDvEehJ91dMM0lJ/SU/pY7VymVwBjkGCAIHTpy2ReCIAgiPYQMPns6mgp5skO+FSXOEjAm9Az/Zm8g7rY7Ksm81HsW5SSvcYNYYbtaGWmUzomx0oL4nBJdO4V1EeT3CprkM0bWOAaOHDmCqVOnorCwEIWFhZg6dSrq6+s19/nkk09w7rnnori4GBzHoby8PGobr9eLO++8E8XFxcjLy8NFF12Effv2JXxs4ughnXlnBEEQRMckEKSIATVClj+UlSPYp2ue9HdhjjPuVtsDQc31O2tTp19U4In/eySKlY6rZE/6ui0WtkwHVs5lOdI4y35M904JtyG/V5BfwBhZ8wu45pprUF5ejgULFmDBggUoLy/H1KlTNfdpaWnBySefjCeffDLmNtOnT8enn36KefPmYcmSJWhubsaFF16IYDB8Q4/n2ARBEARBEPFiNJUgWxk/ID6tgGSPS747LEaYSBlIPQPNaU/dK/jwsoKUHSsSedRlooZ3sqNj0mkIW4WVvw6jETNXjO1l4VGtQx51lYkRA2cO6Z7uLkTh0N8k/WzevBkLFizA8uXLMW7cOADAa6+9hgkTJmDr1q0YPHiw6n6i8b57927V9Q0NDZg7dy7eeecdnH322QCAd999F71798bXX3+Nc889N+5jEwRBEARBxEvQcCpBkjuSJOJ9UTeaYgEAvbvkYO/hNlPta4Vi57nsaPFpRwIYJZWnzSqDOt/jQFO7uRSINXuOSH/37ZqLbQep0lMySUf667Xj+uJfq/bpb2gCKy5ZuQ/RnoE3youOK1OUVMwEsiJiYNmyZSgsLJQMcwAYP348CgsLsXTp0rjbXb16Nfx+PyZPniwtKysrw4gRI6R24z221+tFY2Oj4h9BEARBEIQRAobFBzPvhTeZmLF7HDbzr7la7Z92bDdMP3uQJTOkqTbfPrl9YsJtxCPg5peHc2f4tWrmnFw2JjNnydMRZ5Tvyfx55kT0QpLFqj2H092FKLLCMVBdXY3u3aPDLbp3747q6uqE2nW5XOjcubNieUlJidRuvMeePXu2pElQWFiI3r17x91PgiAIgiA6Fh+ttnYGLtOId2IzEAqZOAbDXWceY6r9ycNLwvtHtQdMP/tYPH3ZcabazARO6NNZfyMdHDYOf73qeFP7WK8JkTzMRKNYWYbRSpw2G64+qU+6u5EwVqeNZKBfICNJq2Ng1qxZ4DhO89+qVasAqF8gjLGk5BtFthvPse+77z40NDRI//bu3Wt5PwmCIAjiaOSll15C//794fF4MGbMGPzwww+a2y9evBhjxoyBx+PBgAED8Morr0Rt8/HHH2PYsGFwu90YNmwYPv3004SPm0z+u67K0HYcB5zQpyi5nYkgmaW/zh9Rio9um4BzhpWorjeoySjRq3Ou5vrIr3LWUPXjWk2m5Tw7DZSBrGv24aLjyky1a6UmRLdO2poP62dN1lyvh1pXX7hmdEJtppKB3fJQmOtEeuIGrMVqh1IqNT2MMrysMN1diCKto3THHXdg8+bNmv9GjBiB0tJSHDx4MGr/2tpalJTEfwMvLS2Fz+fDkSNHFMtramqkduM9ttvtRkFBgeIfQRAEQRDafPDBB5g+fToeeOABrF27FqeeeirOP/98VFZWqm5fUVGBCy64AKeeeirWrl2L+++/H3fddRc+/vhjaZtly5bhyiuvxNSpU/Hzzz9j6tSpuOKKK7BixYq4j5spBEIMI3um9gVTy4S8+qQ+uHKsfpRkrFz++y8YirH9uuBvV6sbZGZyqPW2LC3w4MEpw6KWd8njZ4NPPqbY8LHM4HbYMLBbnv6GKcRomL/ZCTmjWhlGkNeoVyPf44zpUDKCmjE6caD6NSAfr0tPsCat4Fejtb+fHh/dxqeLfLxmf8xtuuS5sPahc7Dlz+fh1tMGJHQ8kVjXxD+njY+7TTORQUbIMD8cAGBIaX66uxBFWh0DxcXFGDJkiOY/j8eDCRMmoKGhAStXrpT2XbFiBRoaGjBxYvw5U2PGjIHT6cTChQulZVVVVdiwYYPUbrKOTRAEQRBENM8++yxuuukm3HzzzRg6dCjmzJmD3r174+WXX1bd/pVXXkGfPn0wZ84cDB06FDfffDNuvPFGPPPMM9I2c+bMwTnnnIP77rsPQ4YMwX333YezzjoLc+bMifu4mUKeyx617NcT+qpu+8SvRlpyTK2X7IcvHIY7z9IP34/13i/mAnuc0d8LAHoUmqtvHssBcXzvIiy770z06aqMKLBxHJbeeyZWPnCWZm37vl21IxG0cDtsGN2nM4p1ZsBTiVVRIJEz7HJjO5Fj2G0cHHabbhuJVBZQSyWIFUkhv65+e/rAuI8pZ2y/Ljjt2G4AeCeIWcOxs+DQumBEacxt7jrzGHTOc8HjtFsWVxBrxAdoOL+G9tCeMDVarjWdJFplI9OihoAs0RgYOnQozjvvPEybNg3Lly/H8uXLMW3aNFx44YWKqgBDhgxRhAYePnwY5eXl2LRpEwBg69atKC8vl7QBCgsLcdNNN+H3v/89vvnmG6xduxbXXXcdRo4cKVUpMHps4ujCbA4dQRAEkTg+nw+rV69WiAIDwOTJk2MK/i5btixq+3PPPRerVq2C3+/X3EZsM57jpoPHfjkckwTDQURttu7hC6NnwQHgmnHW5B5rGWc5Ljt6FIYN6mmn9lfd7nIVAb9fHl+GshiG/8nHdNU9diSMAZOOVS8JdmxJJ2nsfnrgbGl5v6658Djt6J6v7YC4YWI/w/0AgCV/OkP6+2JhZnjVg2fH2twyTh/cLea68wUD8uRjuprKr4/k3vOH4D93noLdT07BhaPKcFL/cCnKAd3C9ej/fPEInNhPqXWgVrItR8UpJJ51tX5OHd8X70/jRcJjOZSMUJQbrRsQKwR9ZM9C/PTA2fjf3afimO6dFOsevWi49Le85GWxii7BF3ecovj8+q/HYt4t4zH7kpF4+Bfqv2M5vzm5HwBltEEso7u0wIPrZdety6Lw+lj2baxLqk+XXFWnx9TxYYfmFScmrs0mH2+3I/7rIhbf33MGjutdFLVcjDjS4rRju2k6TtJFVjgGAOC9997DyJEjMXnyZEyePBmjRo3CO++8o9hm69ataGhokD5//vnnGD16NKZMmQIAuOqqqzB69GhF7uFzzz2Hiy++GFdccQVOPvlk5Obm4osvvoDdHr6AjBybOLo4bVD4QXrd+OwXcSEIgsgG6urqEAwGo1L15KLAkVRXV6tuHwgEUFdXp7mN2GY8xwVSW4Fo+tmD8OsJ/fD69WOj1skNgXvPHwKH3YYLR/VQbPOPG/j93vzNiTi2RGnIxOLOGMJ9D8VwPIizq3Lj/Zxh0bOXZYWeKFX3C0f1wF+vGh0zLHnu9ScCgMLpsOXP5+F22WytOMMvhkg/eclIlBZ6sPahc3CKLC3gktE98YAshaBbvhu7n5yC3U9O0QyV71EUdhaM6lUUczsAuFz2/f571ykKrQOtcHd59QC5gXy9LArk8V+NwAe3GAvTfvqyUdLf8jE/dVAxnr5sFP7f5cfhpWvG4DyNWWaRf906QXX5xIFdMUKWzvKXi0dIf08d3xfrZ03Gt7+fhDF9O+P9aeOx+I+no1dn/lxNGdkDsy8ZqXAY/H7ysbhmXB/8+eIROEtwHFwnGI2/nRQ9O//ni0dIIf/3nT9EWj5LMKwnHdsNV47trRryf/IxXSWnzZu/OTFqvcPG4ZXrxuCOM5S/hSkje6Bbvlv67fXuwn+fhy8chusn9sPWv5yHb38/CUvvPRNfz5yE568ejZ8eOBuvXDcGJ/Xrgj+eOxg/3nsmRvZSpgG5HDaMH9AVbocdEwZ0VXyfSJbeeyYevnAYvp45Cc9cHhbEvD6G0+r2MwYqrm+5UXvLaQPw5CXREUVnaDiWRNQcOVrLX7zmBDwwZSimjOwhnffpZw/CzHOOxZVje+PD2ybg8jG98PkdJ0v3LTn9i3mD+lodR+cVQkrT8DL+HP37dyfrfpdl952Jj387EfluZaWF3l1yMOfK46XPN53SHyUFHjwuu9ZFHvvlcEyO+I1H3nN/MaoH8j1OzagQuVMpZTAiJTQ0NDAArKGhId1dIQzy/77cwm5/dzULBkPp7gpBEERSyLRn0/79+xkAtnTpUsXyv/zlL2zw4MGq+wwaNIg98cQTimVLlixhAFhVVRVjjDGn08nef/99xTbvvvsuc7vdcR+XMcYeeeQRBj6VXfHPivHce7iFPb1gM7vpzZVs8dYaxboHPl3H+v7pP8zrDzLGGAsEQ+z1H3axVbsPK7ZbvrOO/f5f5dJ2kcxfd4At2lrDFmyoYo99sZHd8+HPrK6pnS3cWM1eXbxD2u5ws5cFgyG2paqRtfkCjDH+Gfn7f5Wz2fM3s/oWH/ts7T62/0irtM+euha2SOj3gg1V7O5/rmGr9xxmMz8oZ5WHWqTtHvpsPfvlC0tYi9cf1b/NVQ3s7n+uYYebvdKyxjYfm/lBudQ2Y4y9u3w3W7X7MPP6g6yhzccYY1Hf2esPsq3VjSwUMv9MX7S1hs34YK3UtsjXm6rZ9oNNbMGGKvbAp+vYkRYv21HTxJrb/azVG2B3vr+GLdxYLW3/yZq97In5mxR9aPH62ez5m9n0eWtZU7tyDP5dvp/d8+HPbHddM2OMMV8gyOpblH1gjLE/fljO+v7pP2xLVSObPX8zu/291ez5r7exQMT7SygUYgcb21S/Y2Obj728aAf700c/s8/W7mPt/gD72zfb2Gdr9zHGmKKtXbXN7M0fK9iP22vZR6v2qrb3/oo9bN7KParrGGOsvsXHlu2sU4zFnroW9q+fKpk/ED53rd4AW7S1Rjqf/kCQLd9Zx9p8AfbZ2n1s/b76qLZ31TYrrjERfyDIXvt+J9uwv54dqG9l/y7frzgWY0y69i96YQl75sstinU/7qhlL3y7nbX7A1FtH272sm+3HIwacys43OxlL363nU1+djG7/5N1bMa8tezbzQc19wmFQqzNF2BrK4+wG/6xgr3w7fao7xoIhthT/9vMvt0SbutQs5fN/KCcLdleyxhjrL7Vx657fTl7+LP1bE9dC/vtu6vY0h117Idt/FgcaeF/m89+tZW98O129uriHey5hVul66K+1ccmzv6G3f7uanakxcu2VDWa/v4LN1azitpmtqu2WRp7+bv5gfpW9tgXG6XfiYjXH2QLNlQpfjPbDzaywQ/OZ33/9B+2aGsN236wib27fDdravdHjQ9jjFUeamGP/HsD21PHX0976lrY2sojiuPPWbiN9f3Tf9igB+azd5btlq7p9fvq2e3vrma7avl+Nbf72Yx5a9kj/96guE427K9nr32/k63fV8/ufH8Nm/HBWvbDtlrW2Bb9W48Xo896jjELVUGImDQ2NqKwsBANDQ0kREgQBEFkBJn2bPL5fMjNzcWHH36IX/3qV9Lyu+++G+Xl5Vi8eHHUPqeddhpGjx6Nv/71r9KyTz/9FFdccQVaW1vhdDrRp08fzJgxAzNmzJC2ee655zBnzhzs2bMnruMCfMSA1+uVPjc2NqJ3794ZM54EQRAEYfRZnzWpBARBEARBHN24XC6MGTNGIQoMAAsXLowp+DthwoSo7b/66iuMHTsWTqdTcxuxzXiOC1AFIoIgCOLowaG/CUEQBEEQRGqYOXMmpk6dirFjx2LChAn4+9//jsrKStx2220AgPvuuw/79+/H22+/DQC47bbb8MILL2DmzJmYNm0ali1bhrlz5+Kf//yn1Obdd9+N0047DU899RR++ctf4t///je+/vprLFmyxPBxCYIgCOJohhwDBEEQBEFkDFdeeSUOHTqExx57DFVVVRgxYgTmz5+Pvn158bGqqipUVlZK2/fv3x/z58/HjBkz8OKLL6KsrAzPP/88Lr30UmmbiRMnYt68eXjwwQfx0EMPYeDAgfjggw8wbtw4w8clCIIgiKMZ0hhIEZmWx0kQBEEQ9GyyFhpPgiAIItMgjQGCIAiCIAiCIAiCIHQhxwBBEARBEARBEARBdGDIMUAQBEEQBEEQBEEQHRhyDBAEQRAEQRAEQRBEB4YcAwRBEARBEARBEATRgSHHAEEQBEEQBEEQBEF0YMgxQBAEQRAEQRAEQRAdGEe6O9BRYIwB4OtIEgRBEEQmID6TxGcUkRj0rCcIgiAyDaPPenIMpIimpiYAQO/evdPcE4IgCIJQ0tTUhMLCwnR3I+uhZz1BEASRqeg96zlG0wQpIRQK4cCBA8jPzwfHcQm11djYiN69e2Pv3r0oKCiwqIdHNzRm5qExMw+NmTlovMxj9ZgxxtDU1ISysjLYbJRdmCj0rE8vNGbmoTEzD42ZeWjMzGPlmBl91lPEQIqw2Wzo1auXpW0WFBTQj8skNGbmoTEzD42ZOWi8zGPlmFGkgHXQsz4zoDEzD42ZeWjMzENjZh6rxszIs56mBwiCIAiCIAiCIAiiA0OOAYIgCIIgCIIgCILowJBjIAtxu9145JFH4Ha7092VrIHGzDw0ZuahMTMHjZd5aMw6DnSuzUNjZh4aM/PQmJmHxsw86RgzEh8kCIIgCIIgCIIgiA4MRQwQBEEQBEEQBEEQRAeGHAMEQRAEQRAEQRAE0YEhxwBBEARBEARBEARBdGDIMUAQBEEQBEEQBEEQHRhyDGQZL730Evr37w+Px4MxY8bghx9+SHeXMobZs2fjxBNPRH5+Prp3746LL74YW7duVWzDGMOsWbNQVlaGnJwcnH766di4cWOaepx5zJ49GxzHYfr06dIyGrNo9u/fj+uuuw5du3ZFbm4ujj/+eKxevVpaT2OmJBAI4MEHH0T//v2Rk5ODAQMG4LHHHkMoFJK26ehj9v333+MXv/gFysrKwHEcPvvsM8V6I+Pj9Xpx5513ori4GHl5ebjooouwb9++FH4Lwkroea8OPesTh571xqBnvTnoWa9Pxj/rGZE1zJs3jzmdTvbaa6+xTZs2sbvvvpvl5eWxPXv2pLtrGcG5557L3njjDbZhwwZWXl7OpkyZwvr06cOam5ulbZ588kmWn5/PPv74Y7Z+/Xp25ZVXsh49erDGxsY09jwzWLlyJevXrx8bNWoUu/vuu6XlNGZKDh8+zPr27ctuuOEGtmLFClZRUcG+/vprtmPHDmkbGjMlf/nLX1jXrl3Zf/7zH1ZRUcE+/PBD1qlTJzZnzhxpm44+ZvPnz2cPPPAA+/jjjxkA9umnnyrWGxmf2267jfXs2ZMtXLiQrVmzhp1xxhnsuOOOY4FAIMXfhkgUet7Hhp71iUHPemPQs9489KzXJ9Of9eQYyCJOOukkdttttymWDRkyhN17771p6lFmU1NTwwCwxYsXM8YYC4VCrLS0lD355JPSNu3t7aywsJC98sor6epmRtDU1MQGDRrEFi5cyCZNmiS9LNCYRfOnP/2JnXLKKTHX05hFM2XKFHbjjTcqll1yySXsuuuuY4zRmEUS+bJgZHzq6+uZ0+lk8+bNk7bZv38/s9lsbMGCBSnrO2EN9Lw3Dj3rjUPPeuPQs9489Kw3RyY+6ymVIEvw+XxYvXo1Jk+erFg+efJkLF26NE29ymwaGhoAAF26dAEAVFRUoLq6WjGGbrcbkyZN6vBj+Lvf/Q5TpkzB2WefrVhOYxbN559/jrFjx+Lyyy9H9+7dMXr0aLz22mvSehqzaE455RR888032LZtGwDg559/xpIlS3DBBRcAoDHTw8j4rF69Gn6/X7FNWVkZRowYQWOYZdDz3hz0rDcOPeuNQ89689CzPjEy4VnvSLgFIiXU1dUhGAyipKREsbykpATV1dVp6lXmwhjDzJkzccopp2DEiBEAII2T2hju2bMn5X3MFObNm4c1a9bgp59+ilpHYxbNrl278PLLL2PmzJm4//77sXLlStx1111wu9349a9/TWOmwp/+9Cc0NDRgyJAhsNvtCAaDePzxx3H11VcDoOtMDyPjU11dDZfLhc6dO0dtQ8+I7IKe98ahZ71x6FlvDnrWm4ee9YmRCc96cgxkGRzHKT4zxqKWEcAdd9yBdevWYcmSJVHraAzD7N27F3fffTe++uoreDyemNvRmIUJhUIYO3YsnnjiCQDA6NGjsXHjRrz88sv49a9/LW1HYxbmgw8+wLvvvov3338fw4cPR3l5OaZPn46ysjJcf/310nY0ZtrEMz40htkL/R70oWe9MehZbx561puHnvXWkM5nPaUSZAnFxcWw2+1R3qCampooz1JH584778Tnn3+O7777Dr169ZKWl5aWAgCNoYzVq1ejpqYGY8aMgcPhgMPhwOLFi/H888/D4XBI40JjFqZHjx4YNmyYYtnQoUNRWVkJgK4zNf74xz/i3nvvxVVXXYWRI0di6tSpmDFjBmbPng2AxkwPI+NTWloKn8+HI0eOxNyGyA7oeW8MetYbh5715qFnvXnoWZ8YmfCsJ8dAluByuTBmzBgsXLhQsXzhwoWYOHFimnqVWTDGcMcdd+CTTz7Bt99+i/79+yvW9+/fH6WlpYox9Pl8WLx4cYcdw7POOgvr169HeXm59G/s2LG49tprUV5ejgEDBtCYRXDyySdHlcbatm0b+vbtC4CuMzVaW1thsykfN3a7XSphRGOmjZHxGTNmDJxOp2KbqqoqbNiwgcYwy6DnvTb0rDcPPevNQ89689CzPjEy4lmfsHwhkTLE8kVz585lmzZtYtOnT2d5eXls9+7d6e5aRvDb3/6WFRYWskWLFrGqqirpX2trq7TNk08+yQoLC9knn3zC1q9fz66++uoOVSbFCHKlYsZozCJZuXIlczgc7PHHH2fbt29n7733HsvNzWXvvvuutA2NmZLrr7+e9ezZUyph9Mknn7Di4mJ2zz33SNt09DFrampia9euZWvXrmUA2LPPPsvWrl0rlaczMj633XYb69WrF/v666/ZmjVr2JlnnknlCrMUet7Hhp711kDPem3oWW8eetbrk+nPenIMZBkvvvgi69u3L3O5XOyEE06QyvMQfNkPtX9vvPGGtE0oFGKPPPIIKy0tZW63m5122mls/fr16et0BhL5skBjFs0XX3zBRowYwdxuNxsyZAj7+9//rlhPY6aksbGR3X333axPnz7M4/GwAQMGsAceeIB5vV5pm44+Zt99953q/ev6669njBkbn7a2NnbHHXewLl26sJycHHbhhReyysrKNHwbwgroea8OPeutgZ71+tCz3hz0rNcn05/1HGOMJR53QBAEQRAEQRAEQRBENkIaAwRBEARBEARBEATRgSHHAEEQBEEQBEEQBEF0YMgxQBAEQRAEQRAEQRAdGHIMEARBEARBEARBEEQHhhwDBEEQBEEQBEEQBNGBIccAQRAEQRAEQRAEQXRgyDFAEARBEARBEARBEB0YcgwQBEEQBEEQBEEQRAeGHAMEQWQVp59+OqZPn57ubhAEQRAEkSToWU8QqYccAwRBEARBEARBEATRgeEYYyzdnSAIgjDCDTfcgLfeekuxrKKiAv369UtPhwiCIAiCsBR61hNEeiDHAEEQWUNDQwPOP/98jBgxAo899hgAoFu3brDb7WnuGUEQBEEQVkDPeoJID450d4AgCMIohYWFcLlcyM3NRWlpabq7QxAEQRCExdCzniDSA2kMEARBEARBEARBEEQHhhwDBEEQBEEQBEEQBNGBIccAQRBZhcvlQjAYTHc3CIIgCIJIEvSsJ4jUQ44BgiCyin79+mHFihXYvXs36urqEAqF0t0lgiAIgiAshJ71BJF6yDFAEERW8Yc//AF2ux3Dhg1Dt27dUFlZme4uEQRBEARhIfSsJ4jUQ+UKCYIgCIIgCIIgCKIDQxEDBEEQBEEQBEEQBNGBIccAQRAEQRAEQRAEQXRgyDFAEARBEARBEARBEB0YcgwQBEEQBEEQBEEQRAeGHAMEQRAEQRAEQRAE0YEhxwBBEARBEARBEARBdGDIMUAQBEEQBEEQBEEQHRhyDBAEQRAEQRAEQRBEB4YcAwRBEARBEARBEATRgSHHAEEQBEEQBEEQBEF0YMgxQBAEQRAEQRAEQRAdGHIMEARBEARBEARBEEQH5v8DMXJGrVsBXm8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.plot(t_star_.numpy().flatten(),vx_true.flatten(),label='vx True')\n", + "plt.plot(t_star_.numpy().flatten(),vx_pred.flatten(),label='vx Pred')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx')\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(t_star_.numpy().flatten(),abs(vx_true.flatten() - vx_pred.flatten()))\n", + "plt.xlabel('t')\n", + "plt.ylabel('vx Error')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "de0ab6ca", + "metadata": {}, + "outputs": [], + "source": [ + "eqn = -beta*x_true**3/x_c**3" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "3998b222", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAFzCAYAAABRiAiHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3mklEQVR4nOydeZgU5bn2796nZ+vZmI0ZGED2VUBW0biBGFxjxPiJ0eAWo0bJMSdETdScHI7JibuSqDHE5agxatREQYwbCogsg7LvDLPv0zPT03t9f7z1Vld3V1VX9ezw/K5rLuiequrq6p6Zvt/7ee7HJAiCAIIgCIIgCIIgCIIgeh1zf58AQRAEQRAEQRAEQZwqkAgnCIIgCIIgCIIgiD6CRDhBEARBEARBEARB9BEkwgmCIAiCIAiCIAiijyARThAEQRAEQRAEQRB9BIlwgiAIgiAIgiAIgugjSIQTBEEQBEEQBEEQRB9BIpwgCIIgCIIgCIIg+ghrf59ATxMOh1FdXY2MjAyYTKb+Ph2CIAiCgCAIaG9vR3FxMcxmWv/uCejvPUEQBDGQMPK3/qQT4dXV1SgtLe3v0yAIgiCIOE6cOIGSkpL+Po2TAvp7TxAEQQxE9PytP+lEeEZGBgD25DMzM/v5bAiCIAgCcLvdKC0tlf5GEd2H/t4TBEEQAwkjf+tPOhHOS9IyMzPpjzJBEAQxoKCy6Z6D/t4TBEEQAxE9f+upMY0gCIIgCIIgCIIg+ggS4QRBEARBEARBEATRR5AIJwiCIAiCIAiCIIg+gkQ4QRAEQRAEQRAEQfQRJMIJgiAIgiAIgiAIoo8gEU4QBEEQBEEQBEEQfQSJcIIgCIIgCIIgCILoI0iEEwRBEARBEARBEEQfQSKcIAiCIAiCIAiCIPoIEuEEQSRH/T7g4Hqgraq/z4QgCIIYYOw80YqmDl9/nwZBEMSAxNrfJ0AQioRDgNnS32cxuPC2AbZUwGKL/17Qz66n1jVNdM3DIeDQR8CxDcChj4H63ZHvlc4BLl8N5IzUPkd3NfDZw0D1DiC7DJi5HBh5tvY+BEEQxKBi2/FmfG/1Jkwamol/3rGgv0+HIAhiwEEi/GSi5hugZieQns/EkKsU6KgFmo8ALccATxNgtgGZQ4EhY4GCieqiq6sFcGT2jxDe9lfgXz8DZt0EXLiq7x+/L/F7mKhtq2SvW9mZgDPb2DG6WoF/3Abs/xd7zc66B5j7E/baBf3Ahv8FvngMsKcBF/0emHxl9P5BP/D3G5irfe59wPw74x8jHAZevRo4+GHkPrMNyBkBNB0CTmwG/m8pcOuXgNWufJ6NB4E/LwS6mtntmp3AnneA8ZcAC3/DRDmhH68bCPmB1FzAZOrvsyEIgpD49956AMCuKjfaPAG4UhUWhwmCIE5hel2EP/PMM/j973+PmpoaTJw4EY899hgWLFBfFf3ss8+wYsUK7N69G8XFxfj5z3+OW2+9tbdPs/8RBCbEOuuZAPa2sS9PM9B6HGg5zv4NBYHckcDI7wCjFzEhXbcb+HQVsO+fxh7T4QJGLACGz2Oi3O8Bjn0BHFrPhHtKFhNk8++KFuMBL3us1Fx2HkYFQDgMmFU6IcJh4OPfAOEAsPkZYNbNTOidjBz5DHjrZrZQwrGnA2f/JzDvDn3XNRwC/v4j4PC/2W2fG1h/P7D3XWD6D4HNqyOOdZcPePNGIOgDTv9/7L6W48BHD0TeOx/9GiibDwydEf045a8wAW6xA1N/wN4zYxaxBYPWCuC584DGA8A3rwHTr4s/z85G4JUrmQAvmAwsWAEc/xLY+hd2rgfWsuMOnQF4GoGmw+x4nQ3M3c8ewd7rI78DlM5SdvsHG+EQULUN2P8BcPhjdh3NFiBnFDDiLGD0Bex6yH/2/J3At28AX/8ZqP2G3ZeSxaoJTruAvSbp+f3ydPodQQD2/AMo/z/WKmFzAsWnA5O/D5x2Hi1UdIPPP/8cv//977Ft2zbU1NTg7bffxmWXXaa5j56/5W+++Sbuv/9+HD58GKNGjcJvf/tbXH755b34TIi+osXjl/5f2eqBK9XVj2dDEAQx8DAJgiD01sFff/11LFu2DM888wzmz5+PP/3pT3j++eexZ88eDBs2LG77o0ePYtKkSbjppptwyy234Msvv8Rtt92GV199Fd/73vd0Pabb7YbL5UJbWxsyMzN7+il1j3AIaDvBhLQQZiK7ppwJ3+MbmQA3isMF+NrY/01moHQ24O8Amo4AgU4mmrJHMCGbNgQIBdiH/brdkf0SMepc4IrngbRcJo7e+CFQ+y373oKfAef9Sn3foJ+58Dkj2fn9625gxyvA2AuB770Q75rW7gL+OD9y++LHgRnX670ag4fKrcBfFjMnM6OYiYXG/cxVBoCp1wCXPq2+WMH5ZBXw2f8AVifww/eAhn3Aul8yMc5JzQUu/B/gxFfA188DMAGnnc+2bTshbmRiCwD+dib8ln8UeWyvG3hyOhPEC/+LLRDEsvEp4MN7gazhwB3bokWy3wO8eAlQ+TX7/o3/BtKHsO/V7mLne/Qz/dfO4QJGnsXel6POA7KH6993INDZBHz1R2DHy0B7tfa2qblMXOedBjQfBfa8y14jVUxAyRnAuIvYIkxqTo+e+oCl5Tjwz7vYYoYSxacD5z/Yr60PA/pvUwI++OADfPnll5g+fTq+973vJRThev6Wb9q0CQsWLMBvfvMbXH755Xj77bfxq1/9Cl988QVmz56t67wG8zU92bn+L1vw6f4GAMBz183EBRMK+vmMCIIgeh8jf5d6VYTPnj0b06dPx+rVq6X7xo8fj8suuwyrVsWXGf/nf/4n3n33Xezdu1e679Zbb8XOnTuxadMmXY85IP4oCwLQUc8cyLo9QP0eoG4X0LAfCHrV9zPbgPQC5i6muNiXM4uVlWcPZwLGYmfC/eB64OjnQLCLidsJlwLfWckcbX4OXS3sGEol5eEQO86RT4Gq7UxcWx3A0OlM2JTNB/a9D7z/H0DAw4TiaecBu95i4t5kZgsJMAG3fAYUTY1/jKAfWHMRE1+nnQ+M+y7wz7sj3//OL1npdHs14Cph9+1+G3jj+sg2M65nQjyW6h1s4eK0C4AhYzRejAGIrx344wKg5SirZrjqRcCWwl6zrS8A798DCCFgxg3AkkfVHbxD/wZe/h4AAbj8T8DUq9n9bZXAx//F3m/D5rCFkrQ8dvz3/0MU4iJmK1A8HZh7GzBsLvDkTCbyLnky4mivuxfY9BSQexrw403K5eb+TuDxqUyoX/S/wLRr2PvqxFfAzteApoPMsV2+Pv71EgT2Xt77LtB6gr1n80azr4widuzGg0DVVvaceTk7Z8h45gCXzBRL+U2skiLEv/zsGhafDmTFL/71KTtfBz64hy3AAWxB4bTzgDEXAoWTxJ/Lnayy4dDHygtlOSNZL/3Uq1n7Qc1O1qt/YC37meakDWHvn/EX98lT61HCIeDEFvacWo6x3zdDxrHqgKJpkQWiUBDY8if2fg94AIsDmHc7+7nytwMHPmSLHYFOtv2Yxaz1IW90zOOF2YJU0Md+11odPf6UBsTfph7AZDIlFOF6/pYvXboUbrcbH3zwgbTNhRdeiOzsbLz66qu6zuVkuaYnIxc9vgF7athi8B++PxXfm1HSz2dEEATR+wwIEe73+5Gamoo33ngjqrzspz/9KcrLy/HZZ/HO11lnnYXTTz8djz8eEV1vv/02rrrqKng8Hths8SWoPp8PPl8kfdPtdqO0tLTv/igH/Uxg1+0SBfdu5jJ7mpS3t9iZa2kC+wCdexor7S1bwASwkQ9/AS9zTzOKeq8EtW4P8Pq1QPPhyH3DzwS+9xzw4X3ArjeBCZcBV/01ft+tL0SLbk7h5IiTnjeGlR1zh/XLx4H1v4qI/GHzgB99EL3/vn+xcxLC7EP3srfZokEsAS8TbJnFST/9XuFfP2NC2FUK3PoFW2iR8+3fWdk4BOD0a4Elj0U7y+EwcOAD4K1bmNCYcQNw8WP6HlsQmMBr2A/kT2Cl3fa0yPe5o+3MAW78iLVAvPJ9IBwErnkDGLNQ/dibnmauNgCYLGwhgZOaB/zgVfZ43SEcYgswhz9mXye2RD9OIkpmsb73vnZEBQH45LfA579nt3lJ/rjvqv/MhwJAxWb2enU2sp/xEWez3xVqFRJtVUy4fvUn9rsBYO+hCx8GHOk9/7x6En8nW1jb+x6w/322oKNEeiFb1LOlsBaJ1gp2//D5wMVPsKoBOR0NwOe/YyX8QogtPM24AZhyFVssPbCWHaejjm1vtrHX5ZxfRhY1e4CTRTDqEeF6/pYPGzYMd999N+6+O/I34tFHH8Vjjz2G48ePKx633//eE7pZ8LuPcaK5CwDwwMUTcP38k7StjCAIQoaRv/W91hPe2NiIUCiEgoLoEqSCggLU1tYq7lNbW6u4fTAYRGNjI4qKiuL2WbVqFR588MGeO3EtwmHm6FVtYy5f1TYmvkN+hY1NzLEqmADkT2T9rAUTWfhUT4Wd2VKUHeiepGACcMvnTGw3H2GlyuOWMBFw5gp2/9732Id/19DofXe8zP4dMh5o2Bv5/40fA8+fy4R44wF2/4Y/AHNui3ygHnE2cOQT5oIB7HE++z1zOis2svvs6az0/vVrgZs/ATJLAIv4lm6rBJ49h/UXf+95YJK+doZe5+iGiBN96VPxAhxgwWlBH/Du7ewaHvuSCYyAh7l1TYdYlQPABNmF/6P/8U1iKfpp5yt/f/YtYk/tblaCzpl0pbYAB4DZt7JFm/KXmdjJKAZKz2DnOOl7PVMabbYwx7tkJnD2z9l1OPgRe6/U7WZCDgJb7DJb2b8WGxDoYu+3yi2sNH7u7cAFv0lc7t8TBLzAOz8Bdv2d3V7wM+CcexP/HrDYWGbDCAPJwq6hwBnLmfD+5L/ZotaOl9n77vRr2TXxdwC+DlaRYXOyhbCCiWxxTOn92FPwCqGWY6wKpOUYK7Hnt7kI5jhcrG2l+HTRGf+KLbx01LL3GMeZA1zwIDDtWuXXM30ICyQ84ya2wHfgA+Dr59iXHIudffk7WG/5vn8B5/+avVeon9wQev6Wq22j9vkA6OO/90S36PAGpf+3y/5PEARBMHo9mM0U8+FFEIS4+xJtr3Q/Z+XKlVixYoV0m6+M9wgd9cyZqd7ORHd1uXI/pjMbKJwCFEwSRfcEVjppT+2Z8+hvHOnAjB/G3184iYnD418y1/u8+yPfq9/HFinMVtar/OVjbMFi0SpWznzZH4HXfsBCtxr2MTFVvYP1dgIsmOrIJ6xUvaMBeO+u6D7n0QuBK18A1ixhJbiPT2UO1oIVzMH66k+RHvv1DwDjLwUgsNcw0MkWFKq2s+C7vNPYB/2iaWyRxOgH7lCQOcUAE05mCxMXx79kZf6OdLZAAADrVrJ/p1/HQsbUOP3/sX7gd34iCpaj0d+3pwMzb2BizpZi7Hy1sNiAa98E3r6ZlYjDxMqelzyaeF+zBbjsafY+EMJ9U4HgzAamfJ99JaK9jvXPb32Blde317D3oVqae0/QVgn87brIz8LFjzMx3NtYHUyYjr4AePtWVtHwyW8T75c1jP0uK5rKKmzsqexn1Joifjmi/7U52XtGENhr7u9kP3ftdWzBKEpoH4uUhauRUQSMvYg50WULYl6b29ni1LEvgIpNrFKgcDLbXs/v2iFjgGteY4GIXzzKFgBTXOxxxl7IfpdZ7Gyx5pPfMof8w/vY74lLn4quGCESoudvudHPB736957oUTp8QcX/EwRBEIxeE+F5eXmwWCxxq9r19fVxq9+cwsJCxe2tVityc3MV93E4HHA4er5/DwCw+x+sf1OOLZV9QB06gwm3oTOSE24nC7NuZmJz+1+ZM8lLa3eKPX2jFzInalGMACicBNwllqS/+gNWflr5dcQJL54G2DPYoseOlyICfNq1QEomKym2pwFX/x/w1yVMVIcDbAZ18XTm5nLaKljS+o6XIyW6cuR32dNZ77IjQxS3stdV/hrzYL3Opvi+XalfXoWiafrc67EXAj8tBw6sYyLcmsJEUtYwVl3RW+Ixs4gtnLTXMYFl1MHOKOyd8+ouGQVsMWH4fODtW1h1ha9d7Ml3dv/44TBzUbuaWbn/4Y+B7S+yCoaULPY4fV0GX3Yma3kof4VVKUBg73FHBlsc8rrZudZ+y35OWsUvo5MWdGNi+Q/ZZewrZ4T4f/HfRO81q4P10J92XvKnMPJs7dehaArwg9dYxcraX7Cfv9YTQP645B/zFEPP33K1bdQ+HwC9/Pee6DF8wRACoUino5uccIIgiDh6TYTb7XbMmDED69evj+oJX79+PS699FLFfebOnYv33nsv6r4PP/wQM2fOVOwH73VKZjJXaOgM1q89dAaQNzZS8kwwxyqjmDnWu/8BTF3KxMi3b7Dv87AwLYqmMhFe801EhGcNB3LKmDjYLvabn3Ej8N0/RO/rGgr85Gvmvn32O2DbX4BXl7LvpRcApy9jc7LXiy69PZ3NSXcNZYso6QXMia/ewZK6/R3sqzsIYeZ6Dp3JFhv8HsBdyQT7yLOZU6/XVXNkxM/17isyTtI028lXMlH8+rWsF/jlK1m/ekqCnlJBYCGLB9ay0vfmI2whxie+ZwIe5f1K5wCXPQPkjurxp6ILZxabG58ITzP7eav9hv0sdDWzMn5/J2u5CXpZaX3QyxzpoJctfMkxW4G0fNa/njk0XmRnlfZK6FmPYzIBs25i1U2eJhLgBtHzt3zu3LlYv359VE/4hx9+iHnz5vXpuRI9T0eM6G73BlS2JAiCOHXpVTW5YsUKLFu2DDNnzsTcuXPx7LPPoqKiQpoVunLlSlRVVeHFF18EwNJTn3rqKaxYsQI33XQTNm3ahD//+c+6k1J7nKHTgVs39M9jDxYsNuCMH7F04i1/YmFHRz4G3FWsp3P0osTHKJzM/j3yCUt7525Z7mlMFPC+8LIzVc7Bykqfz7kX+OZvkZLXyd8H5vyYOVreVtb7uuztSBJ7LEEfK4f3tzNhJU+yV8ovTHGx1HFnjhicJrDe1ZCfiWcqXx24jD4fWPYW8H9LgeNfAM+fz8LthscIAEFg7Q573gX2vBMdUKiGxQ7kjmaO6qTvsf77wVApk5qT2CWOhb/fTWbxy9I3ffZ9xfC5/X0GA4KOjg4cOnRIun306FGUl5cjJycHw4YNS+pv+U9/+lOcddZZePjhh3HppZfinXfewUcffYQvvviiz58f0bPElp9TOTpBEEQ8vSrCly5diqamJjz00EOoqanBpEmT8P7772P4cDbXt6amBhUVFdL2I0aMwPvvv4+7774bTz/9NIqLi/HEE0/onhFO9BPTr2ehaVXbmAjmgUen/z99/cpchLfXsH8ziphblhuTclySIFk7fQhw4SrgvTvZeKa5P2Ei+ZbP2Fzu0Qu13U6rY/CNOyOSZ/g8Vnb/yvdZm8JfFrP34vD5bHJB2wnWPyyf5W0Ry6GHzWHvT2cOK+u2i1+OdNY2MBhEd09gtgDmHijlJwY0W7duxTnnnCPd5n3ZP/zhD7FmzZqk/pbPmzcPr732Gu677z7cf//9GDVqFF5//XXdM8KJgUtsEBsFsxEEQcTTq3PC+4OTZQzMoOPT/wE+lc1+t6cDt3+tL5xLEIDfjYgkfvOxZDtfZwFhABPmP9un71zaqlhg18kSjEf0Lp5m4KMHWI6B0qQDWyoLOJtwKVvIcWT0+SkSgx/629Tz0DUdmGw+0oSrn90s3R5bkIF1d5/Vj2dEEATRNwyIEWXEKcaZK1i/7J532Bz0y/+kPx3bZGJ94Uc+ZbdzxHmiclfayHzp2FFpBKFFag5wyRPAufezMLXab1h/d0YRyw0oW9CzCfQEQRAnMbE94d5gqJ/OhCAIYuBCIpzoGax24Pt/ZaOQUrKMzxsumhYR4dmiCC+cyka9NexnI70IojdJH8KCBacu7e8zIQiCGLRw0Z3hsKLdF4Q3QCKcIAgiFhLhRM9hMrEE5GQYPp/NEgcirrfZDNz4EdDZGHHHCYIgCIIYsPiDbERnptMminCNkZ0EQRCnKCTCiYHBaecD83/K+sPLFkTud2RQDy5BEARBDBLkIryqtYuccIIgCAVIhBMDA7MZuOCh/j4LgiAIgiC6gY+L8BSrdFsQBJhOlakRBEEQOjiJBroSBEEQBEEQ/YncCedwYU4QBEEwSIQTBEEQBEEQPYI/xJ3wiAinknSCIIhoSIQTBEEQBEEQPQJ3vVPtFljNrAS9i0Q4QRBEFCTCCYIgCIIgiB7BJ44oc1jNSLFZAIAS0gmCIGIgEU4QBEEQBEH0CLwn3G41I8XGPmZSOTpBEEQ0JMIJgiAIgiCIHkEuwh1W5oRTMBtBEEQ0JMIJgiAIgiCIHoELbofVAoeVfcz0kwgnCIKIgkQ4QRAEQRAE0SPInXA7iXCCIAhFSIQTBEEQBEEQPYKiCA9RTzhBEIQcEuEEQRAEQRBEjyBPR7dbyAknCIJQgkQ4QRAEQRAE0SP4Q7wnPOKEJxvMFg4L2FXVJgl7giCIkwUS4QRBEARBEESPIJWjW7ovwtdsPIYlT36BX761q8fOjyAIYiBAIpwgCIIgCILoEaR0dFv3y9Gf23AEAPDm9sqeOTmCIIgBAolwgiAIgiAIokeIOOGWbqejt3uD0v89/qDGlgRBEIMLEuEEQRAEQRBEjyBPR3dYLey+kHERLghCVC94U4e/Z06QIAhiAEAinCAIgiAIgugRpHL0bs4Jb/cFEQgJ0u3mThLhBEGcPJAIJwiCIAiCIHoEX5QTnrwIb4kR3c0eEuEEQZw8kAgnCIIgCIIgegS/WEJulzvhSZSjN8WI8FhRThAEMZghEU4QBEEQBEH0CD75iLJupKPHiu4OHwWzEQRx8kAinCAIgiAIgug2giBIrrfD1r054a2eQNRtEuEEQZxMkAgnCIIgCIIguk0wLEAQs9Qc3RxRFjuSrMNLIpwgiJMHEuEEQRAEQRBEt5E73narrBw9iZ7wTn8o+jY54QRBnESQCCcIgiAIgiC6jT9WhPNy9EBIbRdVPDGiu8Nn/BgEQRADFRLhBEEQBEFo8swzz2DEiBFISUnBjBkzsGHDBs3tn376aYwfPx5OpxNjx47Fiy++GPX9NWvWwGQyxX15vd7efBpEL8NFuNVsgsVs6lY6OnfC0x1WdpuccIIgTiKs/X0CBEEQBEEMXF5//XXcddddeOaZZzB//nz86U9/wuLFi7Fnzx4MGzYsbvvVq1dj5cqVeO6553DGGWdgy5YtuOmmm5CdnY2LL75Y2i4zMxP79++P2jclJaXXnw/Re/hk48kAdGtOOO8Jz89woMMXRKefRDhBECcP5IQTBEEQBKHKI488guXLl+PGG2/E+PHj8dhjj6G0tBSrV69W3P6ll17CLbfcgqVLl2LkyJG4+uqrsXz5cjz88MNR25lMJhQWFkZ9EYMbLra5CO/OiDKP6ITnptsBAN4kStoJgiAGKiTCCYIgCIJQxO/3Y9u2bVi4cGHU/QsXLsTGjRsV9/H5fHGOttPpxJYtWxAIRMZOdXR0YPjw4SgpKcGSJUuwY8eOnn8CRJ/Cg9m4A+6wdaMcXewBz0ljIryLRDhBECcRJMIJgiAIglCksbERoVAIBQUFUfcXFBSgtrZWcZ9Fixbh+eefx7Zt2yAIArZu3YoXXngBgUAAjY2NAIBx48ZhzZo1ePfdd/Hqq68iJSUF8+fPx8GDB1XPxefzwe12R30RAwsutiNOuIXd341y9Nx0BwCgy08inCCIkwcS4QRBEARBaGIymaJuC4IQdx/n/vvvx+LFizFnzhzYbDZceumluP766wEAFlGUzZkzB9deey2mTp2KBQsW4G9/+xvGjBmDJ598UvUcVq1aBZfLJX2Vlpb2zJMjegypHF0sQ+/OnHAezJabxsvRjR+DIAhioEIinCAIgiAIRfLy8mCxWOJc7/r6+jh3nON0OvHCCy/A4/Hg2LFjqKioQFlZGTIyMpCXl6e4j9lsxhlnnKHphK9cuRJtbW3S14kTJ5J/YkSv4JN6wi3iv+ao+43QJTrh2anUE04QxMkHiXCCIAiCIBSx2+2YMWMG1q9fH3X/+vXrMW/ePM19bTYbSkpKYLFY8Nprr2HJkiUwm5U/dgiCgPLychQVFakez+FwIDMzM+qLGFj4Y3rCpWC2JHrC+bGyUm0AqCecIIiTCxpRRhAEQRCEKitWrMCyZcswc+ZMzJ07F88++ywqKipw6623AmAOdVVVlTQL/MCBA9iyZQtmz56NlpYWPPLII9i1axf++te/Ssd88MEHMWfOHIwePRputxtPPPEEysvL8fTTT/fLcyR6hrh09G6Uo/N9XM6ICNdqgyAIghhMkAgnCIIgCEKVpUuXoqmpCQ899BBqamowadIkvP/++xg+fDgAoKamBhUVFdL2oVAIf/jDH7B//37YbDacc8452LhxI8rKyqRtWltbcfPNN6O2thYulwunn346Pv/8c8yaNauvnx7Rg/hDzK129MCccF7CnimKcEFgjrpDLHUnCIIYzJAIJwiCIAhCk9tuuw233Xab4vfWrFkTdXv8+PEJx409+uijePTRR3vq9IgBgmowWzfK0bkTDgBeP4lw4tSmudMPl9MGi5kqQgY71BNOEARBEARBdBtfbDm6KMZDYQFBg0LcJ26farfAKgoO6gsnTmU+3leH6b9Zj9v/b3t/nwrRA5AIJwiCIAiCILqNWk84YMwNFwRBFvJmQYqNud+UkE6cyjzx70MAgA921aKl09/PZ0N0FxLhBEEQBEEQRLfxxaajy0W4gb7wQEiQ/m+3miURTk44cSpzpKFD+v+eGnc/ngnRE5AIJwiCIAiCILpNrBNuNZvAw8yNiHC5a+6wmuG0s+ORCCdOVVo9fri9Qel2VWtXP54N0ROQCCcIgiAIgiC6DRfPdgtzrk0mk+SK+4yIcNm2dosZKVYqRydObSqaPVG3q0mED3p6TYS3tLRg2bJlcLlccLlcWLZsGVpbW1W3DwQC+M///E9MnjwZaWlpKC4uxnXXXYfq6ureOkWCIAiCIAiih4h1woFIOJuRnnB+HKvZBLPZBKedRDhxalPZEi26qSd88NNrIvyaa65BeXk51q5di7Vr16K8vBzLli1T3d7j8WD79u24//77sX37drz11ls4cOAALrnkkt46RYIgCIIgCKKH8AWZSI4S4aKLbagcPUbMSz3hfuOjzgjiZKCpwxd1u8UT6KczIXqKXpkTvnfvXqxduxabN2/G7NmzAQDPPfcc5s6di/3792Ps2LFx+7hcLqxfvz7qvieffBKzZs1CRUUFhg0b1hunShAEQRAEQfQA/phgNvn/jYjwWDHvpGA24hSnuZOJbrvFDH8ojNYuEuGDnV5xwjdt2gSXyyUJcACYM2cOXC4XNm7cqPs4bW1tMJlMyMrKUt3G5/PB7XZHfREEQRAEQRB9i5II50LaSDm6NG/cwp1w9i+VoxODjS8ONuKc//0UL20+3q3jNHcyJ3zkkDQAQJuHytEHO70iwmtra5Gfnx93f35+Pmpra3Udw+v14he/+AWuueYaZGZmqm63atUqqe/c5XKhtLQ06fMmCIIgCIIgkkMKZlPqCU8iHT3WCScRTgw2Vn2wF0cbO3H/P3YhHBYS76BCs1h+PmpIOgCQE34SYEiEP/DAAzCZTJpfW7duBcASMWMRBEHx/lgCgQCuvvpqhMNhPPPMM5rbrly5Em1tbdLXiRMnjDwlgiAIgiAIogfwxzjYgMwJT6InnDvqPJity08inBg8+INh7K6OVOgej0k4NwJ3wkfkMSecgtkGP4Z6wm+//XZcffXVmtuUlZXhm2++QV1dXdz3GhoaUFBQoLl/IBDAVVddhaNHj+Ljjz/WdMEBwOFwwOFwJD55giAIgiAIotfwKaWjd2NEGQ91c/ARZUES4QOJQCiM/35/L0YOSceyOcP7+3QGHEcaO6JuVzR7JBFtFN4TzsvR3d4gQmEBFnNic5MYmBgS4Xl5ecjLy0u43dy5c9HW1oYtW7Zg1qxZAICvvvoKbW1tmDdvnup+XIAfPHgQn3zyCXJzc42cHkEQBEEQBNFPKIrwbowos8c54ZSOPpD4aE8d/vLlMQDAwgkFKMhM6d8TGmDUuaMTzU/0gBM+PDci4ju8QbhSbUkfk+hfeqUnfPz48bjwwgtx0003YfPmzdi8eTNuuukmLFmyJCoZfdy4cXj77bcBAMFgEFdeeSW2bt2KV155BaFQCLW1taitrYXfTyUXBEEQBEEQA5lIGblFuk9ywg30c3PB7rBQOvpA5qujzdL/d1e39eOZDEy4cObEzvrWiyAI0kiy/AyH1Kbh9lJf+GCm1+aEv/LKK5g8eTIWLlyIhQsXYsqUKXjppZeittm/fz/a2tgPbWVlJd59911UVlZi2rRpKCoqkr6MJKoTBEEQBEEQfU+sgy3/f3eccEpHH5hUtUZEZXWrtx/PZGDS1BFtIta5k7tG3kBY+pnISrUhI4W53+3eYPdOkOhXemVOOADk5OTg5Zdf1txGECIpgWVlZVG3CYIgCIIgiMGDlGreQ8FscXPCKZhtQFEvE5X17T6NLU9NmsTwtLx0Oxo7/KhpS84JbxOT0C1mE9IdVmQ6rWjs8KGdnPBBTa854QRBEARBEMSpg5IT7khiRJlPDGDjYt4hinAjbjrR+8h7nhtIhMfRLDrhE4pdAIDatuSccC7CXU4bTCaT5IS7yQkf1JAIJwiCIAiCILoNF88OuQi3JSPCo8W8Q0pYJyd8oBAKC2jokItwKkePpcPPRPLofDbbu6bNm1TVb6uHiXmXk4nvzBRWyExO+OCGRDhBEARBEATRbWLnewNJpqOHoo8jifAAOeE9zVvbK/HAu7vR6TPmqjZ1+BAKRwRlYweFKMfiEa9pmTiWzBcMo9VjXDjLnXAAyJBEODnhg5le6wknCIIgCIIgTh00g9m60RPO09apHD2ao42daPH4MX1YdlL7n2j2YMXfdgIACjJT8OPvjNK9b+z4LXcXubKxeMQMg+xUG3LT7Gjq9KO6rQvZaXZDx4kT4Q4ezEbXfDBDTjhBEARBEATRbaRgNgUR7jMgwgPicWyii24nJzyOjYcbce4fPsUVz2zEP7+pTuoYmw43RR3PCE3i+C2L2QQAaCURHgcfqZdqt6DQxWaoJ9MXTk74yQmJcIIgCIIgCKJbhMMCAiFWnhyVjm4x7mLz48SVo1NPuMTb26vA24vf/7YmqWMcb+6U/n+wrsPQvjwUbHhOKgAmFGnKUTTcCXfarMhNdwAAmjuNl+1zEZ6VKvaEOymY7WSARDhBEARBEATRLeQiu6fK0bkTzsvRjbjpJzOCIGCjzMXeeaItqeNUtkRGZtW3exE0sFDCS6FLRBEeCgvoMNhXfrLDe8JT7RbkiAK6xWNchPM+8ngnnKoPBjMkwgmCIAiCIIhuIRfI3RXhauXoRo4xEJEHmXWH+nYfqlojArqqtSspQSYX4WEBqDMwZoyXQg9Jd0iVCsmEjp3MeMRy9DSHBTlp3AnviWA23hNOix6DGRLhBEEQBEEQRLeQC+SocvRuiHCrhfUbO5LoKx9o3P+PXZj64IfYeMhY77UShxtY6XhZbioKM1mv8YG6dsPHqWzxRN2ukQn7RPAgtowUq1Qm3UZ94VFI5eh2K3LS2DVq7jQ+T12tJ9xNTvighkQ4QRAEQRAE0S3koWwmk0m632Ex3s8d21vOZ40P1p7wYCiMlzYfR4cviMf+fbDbxzvayHq5Rw5Jx9jCDADA/lpjPd2+YEhKOOdzrKsMiHDuwmY6bcgUnVlKSI8QDIWlhadUm0VKRE/GCW+lYLaTEhLhBEEQBEEQRLeQZoRboj9aSk54EnPCbaITzsV4ICQg3EMl3X3J8eaI48wFdLeO18SONzw3VSbC3YaOUS8KcIfVjAnFmQCMJXdzFzYzxYo0BxOFnf7BuUjSG/BSdABw2i3ISWUiPJmecLcUzMaOkZlCI8pOBmhOOEEQBEEQBNEtlGaEy28bKkfnwWw8Hd1miTxOKIwUs0Vxv4HKQVmpeEO7D75gSAqbSwYulotdTuSIDut+g+Xo9WL/95AMB/KSSO6WnPAUG9Ic7Ll4/OTMcrrEBQmL2QSH1Sw54S1JpKO3isKdnPCTC3LCCYIgCIIgiG7BS8XjRLjFuAgPim53JB09cszBOCucO9ecujbjfcFR+7uZCC9wpWBYLksnr241Nn+6QSbCuZBvMiAQ5T3hqXbRCfeRE87h/eCpNgtMJpN0jZsNOuGCIEijyDKd7Dqni5UHHn9oUFaGEAwS4QRBEARBaPLMM89gxIgRSElJwYwZM7BhwwbN7Z9++mmMHz8eTqcTY8eOxYsvvhi3zZtvvokJEybA4XBgwoQJePvtt3vr9Ik+QCpHjxHhkX5u48FsXMBbzSaYxTZzX2jwCb1Y4VXXbkwwx8Jd7IIMhxTMVuv2GprT3dghivB0B3KlfuUknHCnDWl2csJj4dfCKV6bbLGUvK0rYGgUnC8YllL1ufhOkVWGDOawwlMdEuEEQRAEQajy+uuv46677sK9996LHTt2YMGCBVi8eDEqKioUt1+9ejVWrlyJBx54ALt378aDDz6In/zkJ3jvvfekbTZt2oSlS5di2bJl2LlzJ5YtW4arrroKX331VV89LaKHUStHt0n93MnPCTeZTNJxB6MTHluC3J1RXoIgRJzwzBTkZ7JScn8wbOi43XbCvREn3GmPOLMEQ3LCJRHOSskFwViKvPya8ooDuQj3BuiaD1ZIhBMEQRAEocojjzyC5cuX48Ybb8T48ePx2GOPobS0FKtXr1bc/qWXXsItt9yCpUuXYuTIkbj66quxfPlyPPzww9I2jz32GC644AKsXLkS48aNw8qVK3Heeefhscce66NnRfQ0vlAiEa7fpQ3EBLMBkHqoB6PzF5uI3ZpEOBen3ReUhFlBZgocVosk8Grd+h32ho6ICM9N5064/jL5DtEJz0iJOOGd5IRLREQ4E85Wi1nq6TYSztbpY9fUYTXDIpaDWMyRRakuEuGDFhLhBEEQBEEo4vf7sW3bNixcuDDq/oULF2Ljxo2K+/h8PqSkpETd53Q6sWXLFgQCTIxs2rQp7piLFi1SPSY/rtvtjvoiBg6SEx6Tjs7L04044Vyw22SC3pFEwNtAgYtuLpy6M0+7XhTamSlWqdS5QFaSrhfuhOelO5CTJgazdegTh4IgSOnfaXYLUnmPMvWES3SJCxLcCQcQ6Qs3MKaMi3meQM9JIRE+6CERThAEQRCEIo2NjQiFQigoKIi6v6CgALW1tYr7LFq0CM8//zy2bdsGQRCwdetWvPDCCwgEAmhsbAQA1NbWGjomAKxatQoul0v6Ki0t7eazI3oSXw+Wo0tOuDlyLKkcfRDOCuc94SPz0gB0rxydz/bmwhsACl3s//UGRHibeA7ZqXZJHHb6Q7rKmwMhQepTTrFbuuWEP/XxQVzwyGfYVdVmeN+BDBfPTpkI5xULRnrvPQpiXn7cLmoBGLSQCCcIgiAIQhOTyRR1WxCEuPs4999/PxYvXow5c+bAZrPh0ksvxfXXXw8AsFgiHySNHBMAVq5ciba2NunrxIkTST4bojeI9IRHiwVeUm6kjDx2TjgQccIHYzk67wkfOYSJ8GRmRXP4eDK5CC/IYP/nAl0PvKfb5bQhM8UqXWs9AlHuvjptESecl07rpcMXxP9+eAAH6zvw4Hu7De070OmM6QkHIk64kddfcsLt0U6408bbM0iED1ZIhBMEQRAEoUheXh4sFkucQ11fXx/nZHOcTideeOEFeDweHDt2DBUVFSgrK0NGRgby8vIAAIWFhYaOCQAOhwOZmZlRX8TAQS0dvVtOeFQ5enI94buq2nC0sdPQPj1JKCxI5edluaIT3o1ydJ6szgPZADaqDDBWjs5HjGU6rTCZTMhMYS6tnlJ57pZbzSbYLGZJEHoNhuYdaeiQ/r/1eIshh3igw8vR5eKZJ6QbeZ58YSPVEb24xcPZuvyDb1GKYJAIJwiCIAhCEbvdjhkzZmD9+vVR969fvx7z5s3T3Ndms6GkpAQWiwWvvfYalixZArNYXjx37ty4Y3744YcJj0kMXPwqc8IjPeEGgtmCbFt5f7k9iZ7w/bXtuPTpL7H48c9xotmTeIdewN0VAB/lXCaWo7d1oxy9XnS7C+VOuCjIDZWjd0WccPm/bh0iXCq1FoWg05ZcafRhmQgXBOBgXbuh/QcySuXoOUmMglNzwiURTj3hgxZr4k0IgiAIgjhVWbFiBZYtW4aZM2di7ty5ePbZZ1FRUYFbb70VACsTr6qqkmaBHzhwAFu2bMHs2bPR0tKCRx55BLt27cJf//pX6Zg//elPcdZZZ+Hhhx/GpZdeinfeeQcfffQRvvjii355jkT34SXkDouyEx4Ksz5invCsRSQdPT6YzUj57ZeHGqXH/exAA66dM1z3vj0F7wfPSLFiSDoTy61d/VuOHgyFpXJp7oBnOvU74V0xApOXXBsVhIfroysUjjR2YvbIXEPHGKjEjigDAFeq/oUOTqdaT7hUfUAifLBCIpwgCIIgCFWWLl2KpqYmPPTQQ6ipqcGkSZPw/vvvY/hwJmhqamqiZoaHQiH84Q9/wP79+2Gz2XDOOedg48aNKCsrk7aZN28eXnvtNdx33324//77MWrUKLz++uuYPXt2Xz89oodQnRMuux0IhWExR4sJJRRHlPEeWAMlzxUy97u/XFbeD56dakeWKMK6FczWzkV4pBy90GA5utsb6d3OSGFSwJAID0SL8GRd2SONHVG3+7NtoKfhgWpOmYOdIS548H58XcfxKaejO5Nc+CAGDiTCCYIgCILQ5LbbbsNtt92m+L01a9ZE3R4/fjx27NiR8JhXXnklrrzyyp44PWIAoJ6OHhHS/lBYEmxaSCPK5OXo4v/9BnrL5SXolS1duvfrSeQBaFliT3B3RDgvR8+XOeGROd/+hAGHQMSJTXdYYRWvq8uACOfuq1SOnmRSN3fCzxuXj3/vq8eRhpNJhEdGuHEyxQUPd5f+ADulsnYASLGx142c8MEL9YQTBEEQBEEQAJgb+Ys3v8E3la2G9lMLZpP3dQd09nNzJ1wu6B2i6PAZEB3HZSK8qrV/RHi76DpnOq2S0O3wBRE0sJjACYcF1ItOuLwnnAd+hcJClMutBhfaXBQCgMspCkQd+3OxnRLTE25EEIbCguR8LxjNAhtr3f3zGvUGXQrl6LzawJATLgW8qQWzkQgfrJAIJwiCIAiCIBAOC7jtle147esTWP7XrYZElZoTbjKZJDdcj4sdDgsIhuOdcKMjysJhIcoJb+zQP76rJ+Guc4bDFiV69YjdWNp9QalKgId8AUyQcSHcqmP8FReBXBQCkd5wXcFssU64+K/HgCCsbPHAHwrDYTVjxvAcAEBtW/+8Rr1Bp+RgR15z/vq3G3jtIz3hyiPKjCbSEwMHEuEEQRAEQRAEPj/YgL01bgBAQ7sPn+6v170vF9h2S3y5uTSmLJg4IT0QjoiK6Dnh7Lh609EbO31Rgr2p05+U+9xd3DIn3GoxS46mkXAuToc4rspuMceV9RtJ3paccLkIN+DSemNKpOX9yYKgLwWfJ6OPyEtDURZz9Zs6fYbS7wcyXQqBapnd6glXccKpHH3QQiKcIAiCIAiCwBvbKqNuf7KvQfe+asFsQESE63HC5aPMuuOESw50ihVmExuB1dQPc6i54OKhXK4kSpI57d7Ic4rFSOgb70l2yUR4moG+7thgNnm/st7Xh/eDj8pPR06qHXaLGYIAqdx+sKOUjp4pGwOnd7EisRNOInywQiKcIAiCIAjiFCcQCuPfe+sAAHecexoAYHdNm+791crRAZkTrkeEB+VOePIjyrgD7XLakCeOBmto7/tyZ156nEwKeaJjyUnKCU+JiHBeNt1pRISLQjBF9prr7VGubmP93yXZTpjNJuSLae91BmadD2QiPeHydHT2/7Cg7zoDsoC3GCc82TA8YuBAIpwgCIIgCOIU50hDJ7yBMDIcVlw8tRgAcKzRo9ux84viWEmEcwGtp9SYC3WzCVEzxY0cA5ALVhuGZDCB1x8uqztG8Ebc0CR6wkUnPF1BhPNwthYDPeFKTrjHpz+YjYtwq8UsBfDpLY/mCyL54oxzHjRX03ZyiHCl+d5OmwVW8T2ttx3BoyDmgcjPg1fnohQx8CARThAEQRAEcYqzR3S9xxVlYHhuKswm1oPcoDPQTC0dHYj0dutxwv3SjPCYlHWD5egdMtc4P2MAOeEpPeCEO2xx38sWy9F1ifCu+LL2VHEOtZ5wtdhydPn/9Yaz1UsinL020qzzk0SEK40WM5lM0jXv0LHYAQCdPp6OrjInnJzwQQuJcIIgCIIgiFOcPdUskG1CUSYcVgtyxRJuPpc6EVw8K4tw/T3hQbEn3B4jwnkwm14Rzl3jzBRrxAnX+Vx6kvaYJPLu9YSrl6Nnp3EnPPFxubCTH0dywv3GR5QBxnuU+YIIf224E36ylaPHiud0gwnpkhMeW45OwWyDHhLhBEEQBEEQpzj761ha9biiTABAbpr+8mZAFsxm0eoJ15GOzp3wGDEvzQnXWX7LRU66wyqVPOt19XsSd1xPOPu3ez3hSk64+Hrp6AnvVChx5s5qMj3h8v2NlqNzEV4gifDBP6bMHwxLY/acMfO9eRVDu85FGI9CWTsQufY+GlE2aCERThAEQRAEcYpTKc7UHp6bCiAi6vQEfQHa6eh2A/3ckXJ0U9T9XNzr7wmPpJIPCCc8Nh09qRFl6uno2QYWTaQSZ5m7yh1bQ+notshrLY3M0rG/LxiSyrHz0thrk5fBzr+/5rn3JPJqgljxbNQJ7/QpO+o0omzwQyKcIAiCIAjiFCYcFlDZwtKqS7OZCM9JZ6KoqUOfCNdKR7cbSUcX3fLYnvCIE65zRJnMgeYivF+ccDGATQpm64mecMVgNrEnvFN/Obpc2PFy505/MGEYn1fJSbfpD2ZrE0vmTabIc+EJ9ieHCGfXwGYxxb2PMw30hIfCgnQ9Y8W80WkBxMCDRDhBEARBEMQpTEOHD/5QGBazCUViQFaOgbRtQB7MZon7ns2qP5iNb6PaE66z/FZeup3fT+nogVBYElGxI8rcOp1QOdoi3IATLo29kveEs/8LAuBNcI35c0qRCcNUA046X4BwOW0wi2nhERHe97Pcexq1RHOAtUcA+srR5Qsa8tcKABxSDz6Vow9WSIQTBEEQBEGcwpwQS9GLXCmwiuLXSNo2oG9OuB4Xm88Jj0tH58fQIeSB6NLtIbJ0dL0j13qCDpnQ5sLZ1SNzwuN7wnNk5eiJnqNSObq8v7szQTibxx/fE26kPFouwjlchLd4/AjqfI0HKpEZ4fELUvy169CxCMPL2s2m+MBDcsIHPyTCCYIgCIIgBil7qt041tjZrWOcaGEivCTbKd3HxYLe3lW/ioMtv8/IiDJrTE+4VI6uswe2XaEc3RsIo13naKiegCegp9ot0uIGL0duT0qEi3PCHepOeCAkJAxXi4jwyHHMZlMkcTvB/l6tYDYdTnirJ16E56TZYTYxJ75Z58LPQIUvYsSGsgGRnnA9lRAeWT+4yRT985BisD2DGHiQCCcIgiAIghiEvLalAhc9sQHn/OFTfHmoMenjVDZH94MDkRRv3SJcywkX7wvoccLVesLFcnT9wWyRXuxUu1UawdXYh7PC5efAcaX2Tk+4026RhJlWQrogRER6rJhPk/WFaxGZEx55jQz1hCs44RazSXLzG9sHtwjXdsL194Tz1yF2PBkQ+XnQOxKOGHiQCCcIgiAIghhkCIKAJz8+JP4feG7DkaSPVd3GeqWLs5SccH1ikZfFKs0Jtycxoiy+J9yY8ye5xqLo4UFzetPeewKegC4XzfJydKOl8e2+SOK7Enr6wn3BMELi+Ky4sVd8TJlPW9gpzQk30hPeqiDCASA37eQIZ9PqCTfyc6V1HHlQYV+2WBA9B4lwgiAIgiCIQUZlSxeqWruk218cbJRSp43SIAaW5Wc6pPu4cOTp3onQdMLF0nK/gWA2HubGsRsW4dGucY4o8PpUhCs411lOJpSD4cRl47F0SM56vCgD9I2V65Q5sLHijoezeXQ64fL9k+kJz0qNFuHdHVNW3+7F/3ywD9uOtyS1f0+hNtsbADIc+p1wj4ajzp1wQdC3uEUMPEiEEwRBEARBDDKOin3gYwsyMK4wA8GwgHV7apM6VoNYop2fkSLdl2nAsQuGwhDNVWUn3MCccPVydGNBVLz3mzuPuWn94ITzGeEyxzfFZpauR6uB3mdBEKSFhXQ1EZ6WOEyPu9xOmwUWc/RCBxd7ngSLA10KwWxOAyLcreKEd3dM2YrXd+KPnx3Gj1/ehnC4/4SplnjOMDAnvIv3ltvij5Mim9HuNRDO5g2E8OKmY91qXyF6BuWfYoIgCCJpBEFAMBhEKES9WqcKFosFVmt8eA5B9BYVYqJ5aU4qppa4sK+2Hf/6pgZXzSw1fKx6SYTHO+F6xILc4dZKRzcyoix+Trj+nnB/MCxtx/ueuUvc1IciXCnN3GQyIctpQ327D62eAEqy9R3LGwgjKApLtXJ0Lmq1XjPeZxw78kp+n5YTHghFziM6mI29Xl5dwWzsNeBVAZzujCmraPLgC1FY1rf7UNXahdKc1AR79Q6R9Hj1EWX60tF57328CLdbzDCJQXa+QBhIidtEkYf+uQf/91UFTCbgH7fNx9TSLH07Ej0OiXCCIIgexO/3o6amBh6Pp79PhehjUlNTUVRUBLvdnnhjgugmJyQR7sR3pxThD+sP4MtDjWj1+JGVqv89GA4LESdcVo7O3dsOfxDhsCDNc1ZCLoy7m46u1hNut0T3wGoteMn7krkbmSv2hGuFlvU0vIogtnw8O9WO+nafoXA23g9uMkEKmYuFl4dr9XQrjSfjcFGttb/c6U6JCmbr3ogyQDZmLYnX6OtjzVG399e295sI7/KrX2O+gKIrHV3DUTeZTHBYzfAGwrrD2ercXry2pQIAE+9vba8kEd6P9JoIb2lpwZ133ol3330XAHDJJZfgySefRFZWlq79b7nlFjz77LN49NFHcdddd/XWaRIEQfQY4XAYR48ehcViQXFxMex2OzmjpwCCIMDv96OhoQFHjx7F6NGjYTZTtxfRu3AnfFhOKkYOSce4wgzsq23Hh3vqDLnhrV0BydnkwVhAxAkXBFbaHSuY5HARbjZBGsUlh7vael1sto/yiDKAOe+8J1YJ7vbaLWbpsXP6oxy9S3muN09IbzXQwy+VojvUK264y9qp0W/M+9DTFMK+uOOqJeq40202RS+UOKV+cgMiPKYnXE+wnBrHmqLH9O2rdeP8CQWGj9MTdGo42JF09MSvfZdGMBvA+sK9gbDunITPDzRAXqX/bVWbrv2I3qHXRPg111yDyspKrF27FgBw8803Y9myZXjvvfcS7vuPf/wDX331FYqLi3vr9AiCIHocv9+PcDiM0tJSpKb2zwo80T84nU7YbDYcP34cfr8fKSk6awMJIknkIhwAFk0sxL7adnxxsNGQCK8XQ9ly0uxRpeQOqwV2qxn+YBjt3oCmCPdphLLJ7/frSkfX7gnnj6clwj0Ko51yeGhZH86g5k547EixLPFatnbpPxelcWexcMdUa8QYF+hKs8ZTdIy96pLNCJcvBhhxwtVGrWWn8p524wGD1a3sfexy2tDWFcDemnbDx+gpJAdboRydP2dvIIxAKBz3Plc6jpKYB4znJPBy/fPH5+OjvfU40tiZYA+iN+mVpfq9e/di7dq1eP755zF37lzMnTsXzz33HP75z39i//79mvtWVVXh9ttvxyuvvAKbTf0XDUEQxECFXNBTE3rdiWTYeaIV7+2s1jXaSU6sCJ8xnDUXf1PZaug49e74fnBOps6+cC7C1YRxMj3hsY663HVN5Kjzcmq529svTrhCMBsQSQU34oR3aMwI56TpcMJ5KrfS7Gke9uUNqF/fiDCMPg+pJ1yHCFdbCMjuRjl6TRubFHDeuHwAwO7q/nN5uzTS0eW9+In6wj0B8TgKwWxAJJFe6/XihMOCFMb2g1nDALD3n1vnCEKi5+mVTwybNm2Cy+XC7NmzpfvmzJkDl8uFjRs3qu4XDoexbNky3HPPPZg4caKux/L5fHC73VFfBEEQBEEQA53PDzTgsme+xB2v7sDv1u3TvV+bJyAJ45JsJsKnlLgAAMeaPIZSt+vczEEcoiDCU3WWGGuNJwMipeXGesKjS65NJpPuMWWdCiKIC7ymJEK/kqVdZaQY79k31BOu4qrLSZOccPXXy+NTD2aLiDodTrg9+rWWRpTpWEzqUDkHqSc8iWqFGnHWPS9BP9bk0T3jvqeRnHCFhQ6bxSxVDSRa3OrS6AkHjDnh+2rb0djhh9NmwZmj86RpATxbguh7ekWE19bWIj8/P+7+/Px81Naqj894+OGHYbVaceedd+p+rFWrVsHlcklfpaXGU0EJgiAIgiD6mqc/OQRBrND++9ZK3W74iRb2wTkv3SGVqmal2lGWywT5N5X6XUAuwotc8S0U/MN/ovPyq4SpcYyMKPOrpKMDMtGRwG31+LgIioi83G4IvGRRKyHnpf1GHF95T7gaqYZ6whVmT3MRriHqeE94SkzVA1+wSVSOLgiR+eixz0WqEOgKIGRgxFg4LKC6lTnhE4szUSy+l/dU948xpxWoBkRGzLUn6AtXqzrg8JwEPT3hXxxqAADMHpkDh9WCErGC5kRzV8J9id7BkAh/4IEHYDKZNL+2bt0KAIqhEVppltu2bcPjjz+ONWvWGAoyWrlyJdra2qSvEydOGHlKBEEQBEEQfc7eGje+OtoMHjre7gti6/Fm7Z1EqkTBMTTbGXU/TzreeaJV93lwB7EwU12Ea/UYAxFxrTQjHDCYjh4Ue8IVjuWQesv1OeFyoZkjpqN7/CHdadLdxa3WEy4Tm8aPpd6qyUWtR1c6upITzhc51K8vF+ixfcpOnU64LxiWBHbsOfBgNkEwViVQ4/bCFwzDZjGhOMuJiUNZVciufhPhfL63snjWO/4vkRPOF0ISLUoBwJaj7HfLmaflAQBKstjvDr54QfQ9hkT47bffjr1792p+TZo0CYWFhairq4vbv6GhAQUFykmFGzZsQH19PYYNGwar1Qqr1Yrjx4/jZz/7GcrKylTPyeFwIDMzM+qLIAiCGNi0t7fjjDPOwLRp0zB58mQ899xz/X1KBNGn/PGzwwCAxZOLcMX0oQCATYebdO1b1SKK8Kxo4TylJAsAsNNAXzh3wgtdzrjvSe5mQmHFvq9ejq4/mC0Y1nLCuejQFuEehVTpDIdVKovvq75wyQmP7QkX52O3GekJ9yXuCedirUPLCeciXMFdlYLZNJxV3n8c64TrDWaTn1tsr7PNYkaGKMyNVCwcru8AAAzPTYPNYsaoIekA+q/UOpETzhdSEvaEczGvVo5uwAk/JF6jCUVMJxWLvzuqSIT3G4bS0fPy8pCXl5dwu7lz56KtrQ1btmzBrFmzAABfffUV2traMG/ePMV9li1bhvPPPz/qvkWLFmHZsmW44YYbjJwmQRAEMcBJTU3FZ599htTUVHg8HkyaNAlXXHEFcnNz+/vUCKLXaWj34Z/f1AAAfnz2KOytceOt7VXYdESfCOfu1dCsaOE8qZh9wN5Xqz8ZWnLCXfE94fzDf7d7wsX7AzrEglpPOCDvgU0UzBY/p9lkMknzuZs7/SjOil906EkEQYC7K5ETrl9ocsGWriHCJSdco3Khg4fWJdkTzr8nHxkHRGaGdwVCmpWv/LVJtVsUZ89np9nR7guyUv0hqqcRxeEGJjBHDUkDEBGYPKytr+ELEUpzwgFICw16y9HVe8L1LUr5giGcEBfuRuWzBQr+u4Mv6BF9T6/0hI8fPx4XXnghbrrpJmzevBmbN2/GTTfdhCVLlmDs2LHSduPGjcPbb78NAMjNzcWkSZOivmw2GwoLC6P2IQiCIAYGf/3rXzFhwgSkpqZi3Lhx+Oc//6l7X4vFIo1x83q9CIXYBzdiYPLMM89gxIgRSElJwYwZM7BhwwbN7V955RVMnToVqampKCoqwg033ICmpojA5K1nsV9er7e3n8qA4NP99QiFBUwtcWHSUBfmjmKLT99Utmm6mBzuXsUKyTEFGQCAypYuzb5gObVSOXq8KE2TRHh3y9GZ2EpURs6OpTyiDNDfW67khAOR4K+mPnDCvYGwNH89bk64M4l0dJ4ortIfDESer1YwW1cgPrSOE0lH1xLhohNuU3bCBUF7kUQtlI0jJaQbuDYREc4EZpFY1cEXmPoans7f7XJ02Tg4JaTXK0EwW0WTB6GwgDS7RZqCwH93VPfTQgXRSyIcYH+AJ0+ejIULF2LhwoWYMmUKXnrppaht9u/fj7Y2GhRPEAQx2Hj77bfxk5/8BPfddx927dqFxYsX49ZbbzV0jNbWVkydOhUlJSX4+c9/rqvSiuh7Xn/9ddx111249957sWPHDixYsACLFy9GRUWF4vZffPEFrrvuOixfvhy7d+/GG2+8ga+//ho33nhj1HaZmZmoqamJ+jpV5qt/W8U++5xRlgOAJZwPy0lFKCzg66OJ+8KrVUR4dpodeWLvMxcmWviCIUmQFioEszn1pqOHtJ1wfr+RdHTNYLYEokOpJxyQpW/3gQjnPdxmU/x5yHvC9S4+JhKv7HtiD7/GAgxvLVASdlxYazmrXBiqiXD5YyjBBapawJw0K9zAa3S4ns275iKc5xvwVou+RmtEGRB57olEeOI54fqc8MMN4vXJT5cqFHieBDnh/YehcnQj5OTk4OWXX9bcJtEvnmPHjvXgGREEQRA9xR/+8AesWLEC11xzDQDgoosuwl/+8hdDx8jKysLOnTtRV1eHK664AldeeaVqbgjRfzzyyCNYvny5JKIfe+wxrFu3DqtXr8aqVavitt+8eTPKysqkSScjRozALbfcgt/97ndR25lMJhQWFvb+ExiAcBE+WRwrBgDzRuWiotmDjYcbcc64+AkzcqpambiILUcHgNH5GWjsaMKBug6pR1wNPiPcbjVL4kdOqs5ydO58qqWjSz3hBsrRlYPZLFGPp4ZSOjrQt054uyxILbY0m48o8wfD8AbCqiJLjtpsbTlpjsiiSTgsKJZ7cyc7tpwc0Oescpc8Jeb1sVrMsFvM8IfC6AqEkK32PPzxrQJycsRr02ykJ5w74WKpNV/kMBLu1lMIggBPQH1EGRCpjNAfzKb8muupXACAI43s+ozMS5PuK8lilWhNnX54A6G4RRWi9+k1J5wgCII4OWlvb8emTZvw3e9+V7pv7dq1mDZtmnT71VdfRUpKCqqqqqT7brzxRkyZMiWuAqqgoABTpkzB559/3uvnThjD7/dj27ZtWLhwYdT9CxcuxMaNGxX3mTdvHiorK/H+++9DEATU1dXh73//e9T7BQA6OjowfPhwlJSUYMmSJdixY0evPY+BRDAUlkYnTR4aEeG8JP2rBE54MBRGUycTzwUKieajC5gQOViXuC+81h1JRlfq4TVajp44mK2bPeE2fWJezQnnY8qaxevXm7ilULZ4AZVmt0ghcXr7wiUHWXNOeOR7HhVhJqWbKznhPJhNQ9T5VJxwdl+kL1wNrWA4QF6Oru+6tHkCqG9nr+dIsSfcJYpwbyDcZ0n4HF8wLI0dVBPP/DXsSNgTru2o612U4ottRbJFu0xn3wcVEtGQCCcIgiAMsXPnTphMJkyZMgUejwfPPfccnnzySfzsZz+Ttrn66qsxduxYySl98MEHsW7dOnzwwQdwuVyoq6uD282EiNvtxueff075HwOQxsZGhEKhuAqFgoIC1NbWKu4zb948vPLKK1i6dCnsdjsKCwuRlZWFJ598Utpm3LhxWLNmDd59911pwWb+/Pk4ePCg6rn4fD643e6or8HIoYYO+IJhpDusKMuNOFPThzHvcG+NW7Pcuq0rIH3IV3KvR4t94QfrE5ejR0LZlNsA9JajS064VVks2AyMKOMJ6lazQk+4RV85upoTni2J8N53SKVQNkf8a2QymeASE9L19oXrKUdPsZnB11LUFk7UeroB2ZxwzRFlfP/418epY658IkffaDn6vlr2e2BollOax55ut0qj/9x97IbLWwHUerkzdfaEezRaBwD97RkNHUyE56VHwhd5UCEwsEV4TVsXGjt6f9GsP+i1cnSCIAiClaYlGtnSGzhtFtV02u5SXl6OcePGoby8XJp4cfnll0c5nSaTCb/97W9x5ZVXori4GI8//jg2bNiAoUPZKKbKykosX74cgiBAEATcfvvtmDJlSq+cL9F9Yt9LWunHe/bswZ133olf/epXWLRoEWpqanDPPffg1ltvxZ///GcAwJw5czBnzhxpn/nz52P69Ol48skn8cQTTyged9WqVXjwwQd76Bn1H7uqmGiYWJwZVS5cku2Ey2lDW1cAh+o7MLHYpbg/dwhdThusCuXfo8WS3AM6nPA6jRnhQMSBSzSiTPec8GDi/meeoK5Yjq5zJNNAcMK5wFIbKZaVakNjh0+3COfPKV2lxBlgP6cpVgu6AiHVPmGvDidbTzq60v5OHenqWunsgPFgtv3i+3xcYYZ0n9lsgstpQ4sngLauAPJV3t+9ARfODqsZFoV2ACCyAKE1oiwcFqT3uaoTrmPRBAAa27kIt0fdn5MWmRYwEPloTx1+/Mo2uJw2rL3rrKhFhJMBEuEEQRC9SFcghAm/Wtfnj7vnoUWqpXBKPPDAAwkFztdff42ZM2eivLwcp59+OiZNmoSvvvoKmzZtwr333otf//rX+M1vfiNtv2TJEkyYMAEPPvggPvzwQ0ycOFH63owZM1BeXm74eRF9S15eHiwWS5zrXV9fr9q/v2rVKsyfPx/33HMPAGDKlClIS0vDggUL8F//9V8oKiqK28dsNuOMM87QdMJXrlyJFStWSLfdbjdKS0uTeVr9yu5q1o4RK7JNJhPGFmRgy7Fm7K9tVxXh3MXl/c2xxCakazmn3CHjicmx8A//nd0sR7eKZa98BrgW2iPKLFGPp4ZaOrok8PrCCRd7wmNnhHOynLxvWZ8A4oJN6/UEmJDuCoRUhXBERCv1hOsfUaYownVUTnQmSkdPNRaex8fxjZGJcACSCG9N0glv8wTw+w/3wd0VxHnj83HJ1GJdC9uR8WTqr5OennD54r3a33K9Tjh3kofEiNictIHrhIfDAn797m4EQgIaO/z4cHcdrpk9TPf+tW1e/OqdXbBbzfjVxROQnzHwQj9JhBMEQRC4/fbbcfXVV2tuU1ZWBoA54ddccw0yMjIwa9YszJo1C/v27cPmzZujtl+3bh327dunWM5M9C7BYBApKSkoLy/HpEmTkj6O3W7HjBkzsH79elx++eXS/evXr8ell16quI/H44HVGv3xwmLh44uUnVBBEFBeXo7JkyernovD4YDDMfidkL01zAkfX5QR972xhRERrgb/wJylUIoOsA/WuWl2NHX6cbhBO5xNcshURbjedHT2ffVgNi7CdTjhGunokXJ043PCAXkw28BwwgH9jm9Hgl5qDhPHAdUKLK/G2CtJhGtcXynYTWHBxWmgJ1zN0c82GMx2oDbeCQcAV6odaPIYGgMn58H3duOtHSzT5N2d1fAFwrjqjMSLfolKyIFIT3i7Roo9P47JpLxgAshFeAInvINdy9if84Eswg81dEijGAHgq6NNukW4IAj4+Zvf4PMDDew2gKevmd4bp9ktSIQTBEH0Ik6bBXseWtQvj2uEvLw8XSPCgsEgdu/ejXHjxkXdv3PnTlx44YXS7e3bt+P73/8+/vSnP+G1117D/fffjzfeeMPQORHJY7VaMXz4cIRC3W+FWLFiBZYtW4aZM2di7ty5ePbZZ1FRUSGNpFu5ciWqqqrw4osvAgAuvvhi3HTTTVi9erVUjn7XXXdh1qxZKC4uBsAyAubMmYPRo0fD7XbjiSeeQHl5OZ5++ulun+9ARhAE7K1homF8UWbc98eKQmKvhgjn5eg8RVqJ0QXpaDrSjH017ZoivEHFIeP0VDm6RezvDob0iHD1OeFSOXqCFh8uAmMdxNw09jz7QnTwdPTMFOXFEiM94cFQWBJaWunogNzNVitHV+8JT5HNYVdPV9dywvWUo2s74VwY6rkugiBIbRe8AoTjciafkC4IAj7eXw+A9VE3dvjwwa4afSLcpx2mBsjnhKufm3yUnJoDr6dywR8MS9cgtpw7x2AIXl8SG1CpZ3Qj5/1vayUBzm7XYH9tu/T7daBAIpwgCKIXMZlMhsrCBzr79u2D1+uVyopTU1OxevVqHD16FDfddBMANl7yu9/9Ln7xi19g2bJlmDBhAs444wxs27YNM2bM6OdncOpw3333YeXKlXj55ZeRk5OT9HGWLl2KpqYmPPTQQ6ipqcGkSZPw/vvvY/jw4QCAmpqaqJnh119/Pdrb2/HUU0/hZz/7GbKysnDuuefi4YcflrZpbW3FzTffjNraWrhcLpx++un4/PPPMWvWrOSfcD/j8Qext6Ydp5dmKYoXgKWRt3UFYDGbcJrYuy1nYjET5nuq21T77vkH5myVcnQAmFqahc1HmrG9okVTODSITviQbpaj+xKVo5uNl6N3zwnnJcHRQig7LTKfOxQWVHt2ewJ3l5iOnsAJ15OOzp8PkLgcnS+EKAkzQRCkdHSlEWUOmbD2BZVHp3GXXGmhl9+nJ5hNNR2dXxePX3UhgFPn9sHtDcJiNknJ6Bxe7t+ahMA80dyFVk8ANosJq6+dju//cRO+qVT/mZQTaYXQEOG8J1zLCQ8kFvN6nHBe9WExm6RrwunLkX1G2SKK7lvOGolnNxxBdZsX9e3ehGXlgiDgqU8OAQDuPG80Dta144NdtXh1SwUeuGSi5r59zcnzyZAgCILodcrLy1FUVCT1+KalpeHMM8/EJ598gqKiIjQ3N2Px4sW45JJL8Mtf/hIA6/+++OKLce+992Lt2rX9/AxOHZ544gkcOnQIxcXFGD58ONLSoj+kbt++XfexbrvtNtx2222K31uzZk3cfXfccQfuuOMO1eM9+uijePTRR3U//kDHGwjhytWbsKfGjRUXjMGd541W3O5gHUssL8tNVXQSxxVmwmxi5aP17T7FEWS8V1atJxwAzhiegz/hCL4+pu0eSb2iCcrR9TrhauXoUk+4LiecC3r1EWUJ54T7lYUeL3UWBCbOcnsx6Kldb0+4Dse3Q3w+dotZdaGDo+WOysdnaTnhfH9FEa6jJ1yrHD1RMBufoR4WWF99lkbFBw9lG5GXJuUFcLgTnkw6+s7KVgCsWmXyUBfMJiZU1X4m5XhUqjDkyHvC1YQ9F/Na87v5oolaCB8ANLaz3xe5afa4BQ3JCR9gIlwQBGw52gQA+M7YfKzfW4cjDZ3YW9OeUITvrWnH3ho3Umxm/Gh+Gb4+1oIPdtVi7a5a3Pfd8Yphlv0FiXCCIAhCN+Xl5Zg9ezbefvttxe/n5ORg7969cfe/8847vX1qRAyXXXZZf5/CKcM/dlRhj9jr/eKmY7j9nNMUHbxD4tiw0fnKZZFOuwWjhqTjYH0Hdle3KX7g58Fs2RriZGYZG3d2uKETbZ6ANDdZDps3LvaKqpWjO/iccJ3l6Cq9q3zcWDAsJHQTtcrR7WK2gNa88XBYUHUjbRazlEDf0ssi3K2zJ1xP2bVaj7sSUsK5wkKFXKylKIyTs1rMsJpNCIYjjnn8MdSD3XhPuL5gNuXnYreake6wosMXRHOnX1OE837wsQXxP0+RSgPjIvzbKhaeOKXEhRRb5GdyT7U7oQjvSjDbG4i8J0JhAd6AcsVBlw5HnS+aqL1WQGShTelnfKA64ceaPKhz+2CzmHD6sCxMKMrEkYZO7Kl24+wxQzT3LT/RCgA4oywHWal2LBidB5fThlq3FzsrWzFjePJVYT0NiXCCIAhCN+Xl5Zg/f35/nwahg1//+tf9fQqnDC9/dVz6f2OHHztOtCh+2OOzu0cXxJeicyYWZ+JgfQd2Vblx7rj4QEOpJzxN2WEFmJs4NMuJqtYu7K11Y87I3Lhtmjv9EATAbFJ31bkAUJs5zfGFEjjhsgWJUFiQnHEl/Frl6Lz8VsP5k7uwSm5rTpodbV0BNHX4cVq+6mG6DXfCM9R6wkVxqaccnYe8pasIejlaTjgXaxazSQrLU9q/wxdMqqdcz4gyjzRqTf25ZKfZ0OELJuxV5k640s9Td3rCeZ85z22YPNSFg/Ud2F7RgnPGab9peOuAkrDmpNotMJuY29/uDShuKwW8aTjqepxwaUa4QrVLjsEk+r7ik32sH/+Mshyk2CyYUJyJf35TI02W0OLbqlYA7DUD2Pt0zsgcrNtdh6+PKf9e7i8GjidPEARBDHh27txJ87wHGdu2bcPLL7+MV155BTt27Ojv0znpaPMEpNnfZ57Gwg0/3F2nuO2hevbhXqkfnMNHk6l94OShYlpOOBAREDyNPRb+4Tw33aHaG51qYwIgEBKkMnElIiPKlIWHXHQnSkiP9IQrjSgTg8M0zoX3r5tNykFxySZC17d7USvOVddDpCdcuxzdkBOuI1/EKQkzBRHOXWyrWSPsS3tWeJfWiDMdQX6JgtkAuTjUvjZalSXcbdaaxa3G4QZ23NOGsJ/TOaPYItYXhxoT7hsJBdSe584XIdQS0vliRapGOboeJ5y/z/MUFtpy0gdeOvrXx5rx8Np9AIBzxQUPLqh5m4AWO09Eqhg404exyqDyisT79yUkwgmCIAjdNDQ04Hvf+15/nwahg/r6epx77rk444wzcOedd+L222/HjBkzcN5556GhoSHxAQgArGx746FGqawzlm9E52VYTip+MIuN0Fm3uzZuHBtLctYuRweAiUOZeN5drSyeI064tgjn7uCxxk7F70uhbBol2XKHTqvEONGccLmrnVCEBxM74X4N0eHxRXpylYSmJMINBHbVu7047w+fYd7//Bvv7azWtU/ECdcuR9fj1EbGehlxwuMXKro0+rk5vLc60Zzx2B5sQBbMpjmijH1P67lk6RhTJggCDosiXGlRK90h9l1rhJ8p4Q2EUNnCRmONFEX4XLGS5NvKtoT5CJJ4TrBgkmhWuJ5ydD1OOO+JV8omyJaqMQII6xgf2NsIgoCVb30LXzCMYlcKrpheAoAFTZpMLDBP7fcwwBZE99W6pX0408T/81L1gQKJcIIgCII4Cbnjjjvgdruxe/duNDc3o6WlBbt27YLb7cadd97Z36c3KHB7A7jmua9wzfNf4fJnvlQsy/6mMuK8nD12COxWM441eaTSc05jhx9tXQGYTIhLcpYzsYg5OJUtXYqhXZE54doivDQ7FQBQ0exR/H5DghnhABO93JHWKkn3iaJYTYTLnfaghosNJOgJl43QUqMzQU8ud1mbO/SL8Kc+OYR2bxBhAfjtv/YmfA5ARFypBbNJAkhPMJsO95ij5WRrlZLH769Wjq4u5PWMtOvU44RLY8rUX6OGdh/afUGYTUBZXmrc99OTdMKPNXVCEFiqfZ7oFJdkO5GbZkcwLOBgvfr4QCCyyKAlnoHETn2kHL176ej8vaO0GMQXgkJhQXUxoC/ZX9eOQ/UdsFlMeOu2+dL7IDPFhlHigoiWm/3l4UaEBbYoU+RySvdPGuqCycSmU2iJ+L6GRDhBEARBnISsXbsWq1evxvjx46X7JkyYgKeffhoffPBBP57Z4GHlW99ii5gwfqK5C2t31cZt841YIjm1JAvpDqtUkr4uZttjTcyRHprl1BRBrlQbCsXwp8ON0UI+EApLH5YTOeHDcpgwOSG6erFIvaLp2sfh7qYeJ1xtTri8J1zLCRcEQbMnXI/o4OepOoc63VgYVYcviDe3VUq3a91eHFGpLuCEwoLkwKo54TwsrysQ0uyhBow54ZKTrVAtILnYKgF6gMxJV6k24IFvysFs2k64IAhSeniahrjkCxTNGuXovBR9eG58MjoQuVZaY8CUqGjySMfllRQmk0mqLOHVLGrocbDl56c2K1xPWXuKRusBp10jINBhtUivw0CYFf6tuKA5c3gOCl3RAXin63Cz+Wzws0ZHh7elOawoy2ULn2rtOf0BiXCCIAiCOAkJh8Ow2eJdOJvNhrCOec2nOofq2/Gvb2pgNgHnib2J//qmJm47/sFxstiDuGgiC1P7cE90XzgvC+cfBrUYnssE9PGmaLHHPyibTJHgKTUkEd7sUSw1rXczEV6YIO2Zi1mPT0OEh7TL0U0mk+SGa40pC8nOUynkzaHHCfdpO+G5fCyTTtHxbnk1Ov0hjByShhnDWW9pog/ycuGnJsIzHFbpmiQao9UpLSzoSUfnbnT8NeIiXGnGd+z+SsIuHBaka6844iyBCPeHwtJrnKIpwhPP+OZ926NUqkokp9mgCK9qZYtWQ7OcUffzBPaDddpOOF9k0ApUk59fwp5wrWA2HYtSiQICs5Noz+gt9tZEB+LJmTYsCwCwvaJFcV9BECIifExe3Pf565doEaUvIRFOEARBECch5557Ln7605+iujrSw1pVVYW7774b5513Xj+e2eDgze1VAIDzxhfgrvPHAAC2HG2OErQVTR5Ut3lhMZswSQwPWiC6MHtr3FFi8bjksMWXzsbChfqxxuhScl66nOW0qYapcYqyUmAxm+ALhiXXW059OwsZy9coRwci5bBa5eiSE64xg5e74UGNBaCATKDbFOaE23UEs0lOuIp4ibisiUWHIAh4RUy+v2bWMIwvYh/k99VqCzEuqh1Ws6JLC7CFCb6QkmiMFnczDZWjKzrh+svRlYSd/D7lOeHa5ejy+7UCx7J1hOcdbmALVLxMORbJCTdYZl0lVo4MzY4W4aMlEaf92ndJM+oTOOEJesLVxuzJkQcVqvV0aznhwMCaFc77uccVxWdm8HC1nSdaoxbrOIcbOlDd5oXdasbsEfHTIHglQ6JFlL6ERDhBEARBnIQ89dRTaG9vR1lZGUaNGoXTTjsNI0aMQHt7O5588sn+Pr0BTTAUxgffMtd7yZQijC/KQIrNjHZfMKoU+eN9zO2eOTxb+tBf5EpBhsOKYFiQStCBSDm6Hie8LC8tah+OlIyeoBQdYOXcRWJJ5wmFvvA60QlPNPdYGlOmUfKaKJiNnw+g7YTLxbXWnHCtICrJCVdxjY0kQu+udmN3tRt2ixnfm16CsYXModuXwAmPCB/tagUuwhMJoOSC2TTS0bXK0TWC2eT3pSi81vy9olZez4Wl3WKGVWPBhi+UaFUrcCdcLV+B94T7Q2Eps0APak74GJ1Oqp4RZUDinnA9vfPyhRA1N1wab6dynCwDi1IA8Pdtlfjxy9sUq4K6gyAIUoXJ+MJ4J3xMQQYyHFZ0+kOKffmfHWDJ9bNH5Chee76IEpvV0Z/QnHCCIAiCOAkpLS3F9u3bsX79euzbtw+CIGDChAk4//zz+/vUBjxvbKvEsSYPXE4bzhmXD6vFjEnFLmw93oJvKlulNOZ3xKTs88ZHZgebTCacVpCOHRWtOFDXLn14l0R4XmIRXiK6cDWt0SOxuFjLSRDKxhmWk4rKli5UNHswsyx6Pm6dW3TCE4rwxOXoPh0i3KLLCY98z6rg9PNeZi0nvCtByXWOAdHx+tcnAAAXTCxAdpod4wv1OeG8BDjTqf0xW+8sa0MiXGOWemREWeJydKVgNu6uW80mRRGdkiA/QE/YGMDmhANAi0Zo3ZEETri8EqLDG4QjPXEpPxAR4SXZsSI8Xfp+hy+o+lp4pF7uBOXoCXrCO3U44XIR7g2EFK9ru0+7HD0nlV/rxD8POypa8B9v7AQAfLCrFsVZ83C66FB3l/p2H1o8AZhNynPfLWYTxhdlYsuxZuypdmNcjFBX6wfnjJF6+tshCILqiL6+hJxwgiAIgjjJCAaDsFqt2LVrFy644ALccccduPPOO0mA6+Q1UXz95JxR0pznKSVZAFg5JMDmeO+oaIXNYsJlpw+N2n90fnyIEy9H573aWnB3uq49WoTzvk09Trj8sWIT0gVBkHrCCzK1y9FTDZSjazvhXISrO+FchNstynOseZ+4Vk+4L0HJNS+/ber0x42Rk+P2BvDGNvY++H/i6LkxogivafMqJtdH9jXmhCcS4byvOV2lpFiOPidca+xV4nR1tQWORMFsvBxdqycdkCfHKwtDbyCE6rboMWKxWMwmqSTcSF+4Wjl6Vqpder2qW5XDDoFIObredHTVcnQdTrjFbJJ+rtSC9KSUfpX3TraUkZA4pf/VLRVRt1/bciLhPrGUn2jF79fti6vO4S74yCHpqu/PCcWZUdtyvIEQNh9pAgCcNUZZhI/IS4PFbEK7NyhVAfU3JMIJgiAI4iTDarVi+PDhCIX0l2ESjAN17dh5ohVWs0maUwsAM8uY4/PvffUIhwX8ft1+AMCiiYXIz4h2k8fEhDi1eQLSh+HSnOgP90pwYVzn9kYJRe6E8+CqRJSqiPBWT0Byk4ck6AmXxk7pKEdX638GoCuYLRDk48mUXSq7jiAqXnqsltSeK5aj+4NhzcT3T/c3wBsIY+SQNMwdxXpMM1NskkPK+1eVkJzwBKLZsAjX4YRzN1RJlPHrpisdXcNJd6iJ8ATl6HoSv4Ho66K0UHK0kY0Ry0q1aU4JSE8gdOPOzx+SUvNLsuIXy3h7R5WGCNfTyw1EFmjUFgg6E2QbcCJz3eNfL0EQpHJ3tQUcqfQ/QWWIIAj48hATutfNHQ4A+KaqTXOfWN7bWY2r/rgJT39yGFc/uzkqI4CHso0rjO8H5/BMhj0xInzL0Wb4gmEUZqZIjncsDqsFZWIeR6K+/r6CRDhBEARBnITcd999WLlyJZqbm/v7VAYVfxNd8HPG5SMvPSJQzxmbj3SHFZUtXbjpxa34dH8D7BYzVlwwJu4YY8UPkvvFD3snWpgIzkt3JCxTBSCJem8gLLmqQGSsVm66tnDmcCe8sjlaNHCHPSfNrimcgUhZbadWOXqCdHQAsJrFnnANJ5wvDKj1C0fSoBOXxquJcKfNIn1PqyT9IzHdfuGEwihXfpyOknQezJap0wlPmI7OXVEd7x0tEe3TSDaX9tcx4kytp1xywlXL0dnzSFSOzq9LICQoLpTwUvSRCVo7jI4p4+I63WFVbCUozlJuE5ETEeHarxU/N7dKObqUjp4gET/RXHj+85YwHT2BCK9o9qCqtQtWswnXzmEi/FB9u2ZVipxP9tXjztd2SD/jVa1d+Pu2iJNefoKlnk8sdqkeg39vV5U7anHm0/2sFP3sMUM0y8xH5+sL1+srSIQTBEEQxEnIE088gQ0bNqC4uBhjx47F9OnTo76IeLr8IbwhzoS++ozSqO857RYsnlQIgLnhAPCLxeMUy2H5OJxjjZ3wBkLSh75EokH+WNxFrXdHPvA3dYgiXGc5upoTzssxEyWjAzInXKUcXRAiY6uUxopxpHJ0jX7ugMaMcECWjq7phHO3Vz2VPDeB8BAEAV8cYkFP547Lj/oe70XVdsK1E6k5utPRkyhHVxLCkpOtsViSSNTJHyMWp6xqQsnB1jtDO9Vukd4vSlUCVa3s/VySrd3awRPI9SakV4qLZUOznIpijjvhNW1aTri+cvQsaQybigj3GXXC418vXpFhNqmntfOfBaUJCnLeE/MvZo3Iwej8dGSkWBEICVJAnhaCIODhtfsgCMCVM0rwqyUTAADPf3EUobCAcFjAV0fZYvHskTmqxxlTkAG7xYy2rgBOyBYWtx1n+84fHT+aLHp/9rv60AAJZ6NgNoIgCII4Cbnsssv6+xQGDSeaPXjvm2q8srkCbV0BlOY48Z2x+XHbXT1rGP6+vRKCwFLTb5hfpni8IRkOZKXa0OoJ4HBDB3ZXM8HGexr1UJCZAre3A3Vun5Ts2yh+UM4z6ITXur3wBkKSeNIbygbIR5Qpu5vRY6v0BLPp6QnXLkf3h8Kq4Uo+HUIzJ92O6javqgg/3NCJ5k4/HFYzppZGO3N8fBIvn1XCLQWzaTvhXIj1ZDCbU6Mn3KejbUBPMFsiJzwssMeKFev8PaTlxAOR8W2NHX60dQUkB5pTLTrRRVna718p/MyXuN8ZAGrbtI8rOeFtyk54OCxE+uYTinDtBPhOnWI+smgS/3q5Zcnoag5xobiwUKfynAD2vP62lS1OXjG9BCaTCaOGpKP8RCuON3UqzvWWs72iFftq22G3mnHfd8fDbjXjiY8P4niTB7e8tBU3zB+BVk8AqXYLJg9Vd8LtVjPGF2VgZ2UbvqlqxbDcVARDYakqZVKC368802FvgmDFvoJEOEEQBEGcZASD7MPXj370I5SWlibY+tRmR0ULLn9mo3TbYTXj3osmKM7hnjE8G2/cMhc1bV5cOKlQ9YOtyWTCmIIMbDnajAN17dgl9k5O0viAGUtBZgoO1ndIghmQOeHp+pzw7FQbnDYLugIh1Lm9GC6OR6sUw6eKXYlFOHfiOtVEuOzDv5a40zOiTHLCVQS0QxxRJgisVNmuMEs8UTk6EOmDbVIR4VuPMWdtamlW3HPiVQ5abprkhCcQzZm609HZtTciwpV6+H0JRLT8ez4lJ5yLaJXXOTatO06E6+wJB9i1aezwKzrF3IkudmnnKxidFc7fD0NUFrl45Uh9u7JrLL/miRzsbL1OeILXXFo0UWgf4GX4WgGB/BrWtfsQCguKv/e+PtaMimYPMhxWXDSZVQMNy0lF+YnWuCqbWMJhAf/1rz0AgEunFkuLDysXj8N/vvktPtpbj4/2ssqiWSNyVKtgOJNLXNhZ2YZvq9qwZEoxNh5ugi8YRlaqLeH4R75YsL/Wrfpc+xIqRycIgiAGBSdOnMB3vvMdTJgwAVOmTMEbb7zRY8dub2/HGWecgWnTpmHy5Ml47rnneuzY/YHVasX//u//UjCbDqaUZKHYlYI5I3Nwz6Kx+PIX5+JCsexciZllObh4anHCD4tcrJVXtKJcTFSfWqJfhOdnxn/gb+pk/89N0+eEm0wmyemqlTldR8VZ5yN0lMcnKkfnws5sUg9UAyJOeEBzRBkPZlMR4TLxqDamTI/by0tw1cKovj7G+lPPKIsfv8RTszt8QdV+XimROoETrieYLRwWJDGVSJABgNPOrpGSCOduqS4nXKknPKjtZNssZuk9oPj4OvulASBL49pwJ7oowSKSFMymsyecV5qoZS7wyhF5i4gc7l6bTNoLHUBkIajDF4xrrxAEQTqWWhk5h78WSosmvBxdqy1iSIYDFrMJobAgPf9Ytoil4t8Zly+9djxg8kSzemk+AKzdXYsdFa1ItVvwH4vGSvdfNbMU/3nhuKhtfzivTPNYACSn/NtKtrD5jx1VAFhlkjmBqC7LTYPDaoY3EJZaD/oTcsIJgiCIQYHVasVjjz2GadOmob6+HtOnT8dFF12EtDR9fbZapKam4rPPPkNqaio8Hg8mTZqEK664Arm5uT1w5v3Deeedh08//RTXX399f5/KgMZiNuGjn52tSxgYgZc+/nXTcQDMOeLzxfUgjSkTP/CHwoJUPp2n0wlnx3HgaGMnat1yEc5cXD0iPFE5urxPWCsUiYethfQ44Wo94bL7/cEwoKCVpHR0DRGUIy5iqDnhR8TroxQSlWq3wuW0oa0rgJpWLzIL44W2W4f4AfSJcI9MXCU6HqDdE66nSiBFI2078lqr7++0WRAIBRUfX++ccEA7tI6L8Ngy9ViMOuGJfr4KFBbG5MhHsCWaQ53ptMFsYqX7rV3+qAkLvmAYvGsjNaETrl6OriebwGI2IT/DgZo2L2ravNLvHTl8EfH00izpPrXxh3LCYQFP/PsgAODGBSOjjm0ymfDj74zCWWPysPrTwzhnbD7OUWgBimXyUHYO31a1odMXxLrdtQCAy2PGRCphMZswIi8N+2rbcaShU6oM6i/ICScIgiAMcf/99yMjIwO//e1v0dTUhPz8fBw7dqzXH7eoqAjTpk0DAOTn5yMnJ6fHkr8tFgtSU9mHCq/Xi1AoOljoyiuvxCOPPNIjj9VXLF68GCtXrsR//Md/4NVXX8W7774b9UVE6GkBDgBTYkrPL5lanPCDuZwCqfSVCY5Wj1/6YK53TjgAFGZGO+GCIOAoT5cekvhDKC+rVRXhCUaCcWxST3jiYDa1nnCz2QSreBy1hHRfILHQzEljAq+5U1lMNbRrz1DnDmy1SkCXW5rNrLMnXGNGMxeQFrMp4TUGIuXovmAY4Zj+e1+354RrjygDtBdtPIFg1DlqobZAIQjyxSjtihAuPvWmoydq9+BCubnTrxgOqHc8GcBeTymYL+b175Sdb2qCa8UXTZR+HiJOuPb7sEiqlol/PwuCgJ2VrQBYewanVAzFi533LWfd7lrsq21HhsOK5fNHKG4zsdiFp66Zju/NKFH8fiyjC9LhsJrR7g3i+Q1H0ekPoTTHienD4qtWlOALj0fEaqD+hJxwgiAIIo5du3Zh0qRJcfd//PHHyMrKws0334ympiasWrUKF198McrKyvr0/LZu3YpwONyj/c6tra04++yzcfDgQfz+979HXl4kafVXv/oVzjnnHNx4443IzNQfrtWf/PjHPwYAxcUDk8lEpeq9zJQSF0qynahs6YLFbMJVM429VyNOOBOE3LXNSrUlLIWPOg7/gC064Q3tPnT6QzCbIunpWkRElUo5eoLEbI6eYDZ/ULscHWDiOugPqSak6ylHl5zwjngnXBAiZblD0tUDuvbVtquOqmrvMu6EqwXNtXaJr7vTpmsRR+4y+4LhqNtePU64RrCb5IRrXFutYDi96eiAPDk++jVye4MIie8hvoihhlEnnL/uOSrtHtmpNtgsJgRCAho6fBga48TrHU8WOZ4dLZ5AXEAgzwBItVsSllhrBem1e/UF+hW5nABapcA7OSeau9DY4YfNYsJEWfAZ/91R2dqFcFiIO88ufwj/9a+9AIAb5pfBleC10ovNYsaE4kzsqGjFox8dAABcOnWo7gVOvvDIq4H6E3LCCYIgiDiuvfZaRZf5008/xd13340//OEP+O1vf4s///nPuPHGG/v03JqamnDdddfh2Wef7dHjZmVlYefOnTh69Cj+7//+D3V1ddL3pkyZgrKyMrzyyis9+pi9STgcVv0iAd77mEwmPLZ0GhaMzsPjV0/DsNzEgldOfkw5utSvasAFByJOOD8Od4BKc1ITzggHIoIpkROeSIQbCmbTEOGJxpT5dDjzxWL6NQ+ok9PhC0qCJi9D+VonGlXl9iYOxAIiQjMYVp6HDQAtnUzQJxKcHLlAju3LlpLjNYPZtMrR9QS7qQfDGSpHF3umY53wVjFN3GmzJHzPGe0J5wtdaj9jJpNJcsOV+sL1jifjRMaUxYhw6TiJxbxW5YJUkaEw81yOtODXHv+ctoghhROLXVHXu9CVArOJ/Rwq9ZK/se0Eqlq7MDTLiVu/Myrh8zBCbJXR/NO0R5PJGZHHWoL4rPn+hEQ4QRAEEUV7ezu++eYbvPjii1H3h8NhmEwmmM3sT8cHH3wAq9WKuXPnStu8+uqrSElJQVVVlXTfjTfeiClTpqCtrS3hYyfa3+fz4fLLL8fKlSsxb9483c/JyHkVFBRgypQp+Pzzz6Puv+SSS/Dqq6/qfsz+4qKLLop6Tr/97W/R2toq3W5qasKECRP64cxOPWaW5eCl5bOxZEqx4X2l/lO3D4IgyEpl9YWycYpigtmMhLIBESGg3hOurxzdyIgytXR0ICLCfYmccA2hyHtBK5o9cfOseSl6usOqKoJ4L7KScwhEyoATiR+nTXseNhARaDzIKxFms0m6RnEiPJjYyU4R900mmA2QzQpXeL/w80lUYg3IqwSiBXSLWLqdrWNRgjvA7SoBenLCYX1l7jwwkVeoyDGyyABEXtOWmHJ0LubTHImPo7VowoMHcxK8d/hzalB4Tp8daAAALIiZwW2zmEUHHTihsJj1t60nAAA3LhjR4+0+ctFts5gwTVYmn4iIE04inCAI4uRGEAB/Z99/CeofdBOxfft25OTkxDnNmzdvxpw5c6Tbn3/+OWbOnBm1zdVXX42xY8di1apVAIAHH3wQ69atwwcffACXK3EytNb+mZmZuP7663Huuedi2bJlhp5TovOqq6uD281mObvdbnz++ecYO3Zs1DFmzZqFLVu2wOdT7iMdKKxbty7qHB9++OGoqoZgMIj9+/f3x6kRBhgi9oT7Q2G0egJokmaEG3PCY8vajzToD2UDEjvhUg92QidcFOEqqeaATIRrlOAmFOE6EsCHZjlhNjFR2BATssVv8+uvBHfSlZxwXzAknVsiJ5zPwwbUR1VxgZalU4QDsjFlfmURrscJ9ymIOp+OYDYpTV+jHN1IMFvs4gSfq63nenARrvbeldPWFZDK3HM0qk3yY7Ia5EjiWafo5M8hvidcf1m7Q2PRpJkv4CSonuHPSckJLz/BJgXMGRkfUsonBVS1Rv8c7Kl2Y1eVG1azCZdOSxyYZpQzR+dJr+3CiYW6Fz0AYKT4e6+mzavaYtNXUE84QRBEbxLwAP9t3AXrNr+sBuzJJX9u2bIFq1evxlVXXYWPPvoI559/PgDgk08+wT333CNtd+zYMRQXRz83k8mE3/72t7jyyitRXFyMxx9/HBs2bMDQofr+EGvt/8UXX+D111/HlClT8I9//AMA8NJLL2Hy5MndOi4AVFZWYvny5RAEAYIg4Pbbb8eUKVOijjF06FD4fD7U1tZi+PDhup5PfxDr7MXeJgYHDqsFOWl2NHf6UdfulZXKGnPCS8QApZq2LnT4gpIDNNKgCFcbUSa5owmccKtYQRPQ6glPMKIMiIjr7pSj261mFGexfv1jTR6p9B8AGnQsdnAHsKYtXrRw0WgyJZ4TDjCx2djhV3XCWyQnXH9PrdNmQVtXIK5EWSpH1zOiTCOYTStYTW0BAIiIVKeREWUxpdpSZUBa4uvBR7rpCWbjP1+ZKVZpoUeJAmlMWfxibKc021uvE65cju7ROZ4M0H69JCc8gQhXe04tnX5pBNmkofGL6CXZTmw5irhxX9wFXzixIOFjJ0Oq3Yq//mgWthxtxrK5xv4WZ6Xapd+rRxs7FScg9BUkwgmCIIgo9u3bh3vuuQeLFy/GI488IonwYDAIuz3yB7WrqwspKfHBRUuWLMGECRPw4IMP4sMPP8TEiRMNPb7a/meeeSbCGsnKyR4XAGbMmIHy8nLN/Z1O9sHb4+n/+aLEqUF+hoOJcLcPjQmSm9UYkuHA0Cwnqlq78M2JVqknfOQQfePSpHL0QEgxPMyrN5hNdMJDWk54UEc5uijQuzMnHACG56aisqULx5s6MWtEjnR/ox4n3MXL0bvirglPOnc5bQlDtfh2gI5ydANixqniRkvl6JpOeOJ0dK3XWqsnXApm01OOnqrihHfqrwzgbmmnHhEuLb5oL3JJrrFGT7heJ5y/pi2xPeHcCdexiKM1Uo6X1ydqZVB7Tt9WsbamEXlp0vtUTonYlhGbrfDFoUYA6BUXnDNjeDZmDNeXiB7LiLw0NHf6caSBRDhBEMTJiy2VudL98bhJ0NnZKaV/r1y5EmeddRa+/PJL5OfnY9y4cVHb5uXloaWlJe4Y69atw759+xAKhVBQUGD4HLq7f28dl5d0DxkypMfOqTcwmUxxQsnIaCxi4FCQmYJ9te2oc3slkWC0JxwATh+WharWLmw+2oyKJraIVGbQCRcE9kE/tvRTb0+4zUhPuMqIMkBWjq4g8gB9JdcAMCwnDV+iKW7EUoOUjK5+nQtcDumxWjyBKLevVRSNWQqiRQmtediAvBxdvxOuNis8UiWgwwlXqDTw6mg9cOoIZkvV4RTz8W7tMcnmrQYqA6RWCl/icnSp0iTBIhcX6Uoz5iPiWZ8TrtaKYMwJV/95aNbphPOwObc3CG8gJL0HuAifrOCCA5EqmyqZCG/rCuBQPWt5mZmkSO5tRg1Jw7bjLdhT48bFU/uhUlGEesIJgiB6E5OJlYX39VeSoutvf/sbrrjiCgDAggULcNVVV+GOO+7AP//5TyxevDhq29NPPx179uyJum/79u34/ve/jz/96U9YtGgR7r//fkOP3939e/O4u3btQklJSdTosoGIIAi4/vrrccUVV+CKK66A1+vFrbfeKt3+0Y9+1N+nSOgkEs7mRV17YnGoBv8w/MS/DyIYFpCXbkexS3n8Vizy0uNOhZL0iLuaaESZmI6uIcL59+wJRpQBGk64zkWB0hzlUCk9PeG8VQCI7w3mgsqls4dbtxNuoCdczc326pihzp3VUFiQFkWk/XW0HnDh61UsR9ff68zHu7m9gaiWmmYD10Nywv3BhG050iJXgnYPvgjWpJAIbtQJV3vtO/28rF2HEy4tmkRfb0EQJIc9kQjPdFql94S8JP3bykQinDvhkYWsnSdaAbBKk2QWDPuCeaPY3/CP9rAJKIfq2xXT7nsbEuEEQRCnOF9//TWuvfZaHD9+HB9++CEWLFggfe+pp57CiRMn8Pnnn8fNx160aBF2794tueHHjh3Dd7/7XfziF7/AsmXL8NBDD+HNN9/Etm3bdJ1Hd/fv7eNu2LABCxcu7Na59AU//OEPkZ+fD5fLBZfLhWuvvRbFxcXS7fz8fFx33XX9fZqEDvh4seo2L6rF8CP+wdcIF00pglVWGj1zeI7u6giz2aTZ56tnbBWgL5iN93l3b0SZvnL0UtHFi3PCdYhwILIY0tiu3LOsVL6rhBTO1RXvrALG0sA5am60T0e6ubyCIFbE89dfsxxdI5jNiMObKV6/QEiICuHj5eh6eo25iA0Lyucjh7d75CRwwrlT3qgwY77T4JzwLJWSe4/PuBMeW47e4QsiIGYsJFqwMJlMUkK6fFFpf107AGB8UabifkOzI+XofJFjR0UrAOB0A4nlfc054/Jhs5hwsL4Dh+o78N/v78Os//43Xv+6ok/Pg8rRCYIgTnHa2trw6quvYsOGDVi/fn3U94YMGYInnngCHR0dcftNnjwZM2fOxN/+9jd8//vfx+LFi3HJJZfgl7/8JQDWZ33xxRfj3nvvxdq1awEAa9aswQ033BDnSjQ3N+vaXwulY/fEcQHA6/Xi7bffxrp163Rt35/85S9/6e9TIHoIXjK+v7ZdEod8PJYR8jNScNUZpfi/r9iHzBvmlxnaP9VuQVcgpJgyrSfsCwCsoggPdHNOuENDhAdDYclNT+yEiyK8RaUcPYEIz8uwY38d0NAR7aDVi69TfoL9OZkJnHAjaeAcp0JYF3O2E18bh9UMkynSfpAhK5jw6qh64I+t9F7pNJCOnma3wGxiAtrdFZAes6mTXV89IlxexdHhC2qKY37cvATHHSKVo/vi8gAk8WywHF3NCdfVE64SzMZL0Z02i67rnZ+RghPNXdIUhS5/CMeaWH7E2MIMxX2KXE6YTGzhq7HDjyEZDuwQ09RPHzYwS9EBdt3PPC0Pn+xvwP98sA+fi2PYppX27TmTE04QBHGKc/7556OmpgZHjhzBmDFj4r7/gx/8ADfddJPivvfffz8ef/xxZGVlYe/evfjTn/4U9f133nknSugeO3YMZ599dtxxcnJydO2vhdKxe+K4APDnP/8Zs2fPjhrRdirxzDPPYMSIEUhJScGMGTOwYcMGze1feeUVTJ06FampqSgqKsINN9yApqamqG3efPNNTJgwAQ6HAxMmTMDbb7/dm09hUDJKDE/bdpx9sHXaLIYcUTkrF4/D8jNH4KlrTsdshXFDWvAeV+1ydH3p6CFdc8LVXXou9pVGlMlL1BP1hJeKLl6d2yc5xEDECU8U0KXmhPN57EU6y/3V5mFzWiUn3EA5usKsbvlz1Lo2JpNJEum+mBJnn46qBzUXPhgKSwsnesq1TSaTNOLNLesLbzYwJcBsNklucqK+cOm4CV537oR7A+G4hQajTriaCDdSMeCwaotwvenkBZnR4WwH69shCEBuml11QcpuNUvVOlViSKHkhA/L0vW4/cVNZ40EAHy0tw7BsICSbCfGFOgLq+wpSIQTBEEQyM/Ph8Wif9Ym56KLLsItt9yCqqoqXduvW7cOv/vd7ww/Tn8f22az4cknn+yVYw90Xn/9ddx111249957sWPHDixYsACLFy9GRYVy6d4XX3yB6667DsuXL8fu3bvxxhtv4Ouvv8aNN94obbNp0yYsXboUy5Ytw86dO7Fs2TJcddVV+Oqrr/rqaQ0KRg6JDk87LT896ZC9jBQb7l8yAUumGA8iSrUxUaFdjp7ACdcVzJa4J1yrHF0+21rrGAATJ7x/mQdLhcKCJMILM7VFNBfpDTG9wXxsWaFhER7vhIfDgqEgMk5ECEeuh/zaJKpaiLirMT3hOl5r7rrGikKP7Lbeuc7yvnCOUXGpd0yZ3ukDqXardH0bY157STwbdMI9/lDU+7nDwJzwSBJ+9Gultx+cM0Ksutlb4wYA7KtlpehqLjhnaFakL/xoYyfaugJwWM0YV6hcwj5QmDcqD7+5dKI0RvC6ucP7PMCURDhBEATRLX7605+itLRU17abNm3CrFmzeuU8evPYN998M8aOHdsrxx7oPPLII1i+fDluvPFGjB8/Ho899hhKS0uxevVqxe03b96MsrIy3HnnnRgxYgTOPPNM3HLLLdi6dau0zWOPPYYLLrgAK1euxLhx47By5Uqcd955eOyxx/roWQ0OMlJsUf2Yo/vYqeHwD/pKJcZ6wr6AyIgyzZ5w8XvcNVdCa0QZd8etZhOsCUS4yWSS+ut5OFtjhw9hAbCYTQkdUe4O8pFmnJo2dqxEIp6TpSHC271B8DWLZMrR5W60T+q3N8GSYHRaioq7Ko2j0xDxavkB/LbZlPi9wuEJ6Tw5PhwWpB55oyI80ZgyvcFsgHpfuDQnXKcTnpFikzJU5a+/kbL2dF6lEvP8msXeeb2j7aaL5ePbK1jVzX6dIlz6GWruwtfH2ASRKSUuzVnrA4Vlc8uw6Zfn4aMVZ+Hms0b1+eMP/CtEEARBEES/4Pf7sW3btrhAuoULF2Ljxo2K+8ybNw+VlZV4//33IQgC6urq8Pe//x3f/e53pW02bdoUd8xFixapHhMAfD4f3G531NepwMIJkXF6s8pyNLbsPbgY8CiWo+tzwm060tEjc8KTG1EWGcGl7+MtD2fj6c68FHdIuiOhUFVywsNhAUcaWB/tCJ0j4KR52J74oC/uZqbZLYZEjZIbrWc8GYeXq8eWo0vp6Frl6CoLNp2+SHK4Xscx08md8KD4b0BqZ8hO01cZEHnv6gtmy0vghAPqCen850PviDKL2SQ5sXIRzts+9DjhaosMzbx3XmcFxfRh2TCZgMMNnahzeyURPi6BCB8rOt6f7q/HxsOs5WiuwXaX/iTdYcVp+drPsbcgEU4QBEEQhCKNjY2Kc9ULCgpQW1uruM+8efPwyiuvYOnSpbDb7SgsLERWVlZUOX9tba2hYwLAqlWrpIR3l8ulu/pisPODWcMwNIv1Ky7pp5m2TrEcXdMJTziijJejqzvhvCdcz4gyn4YTnuhcOFI4WzNzr4+JM9SLsxK72NwJl490qmzpQlcgBLvFjGHisROhVY6eTCgbEBkhJhfhkoudoFee7d+NcnSVoDCPgVA2Tuy14bO5MxxWXYsJQMSV1ipH9wVD0mMkCuQDIsK2xaPshOvtCQdkizCydHyPNKJMT4Cd8vNrllLk9QUEZqfZMUUcRfb5gQbsq2WLnGMKtAXqZacXw2wCvjrajHfKqwEAc0YNHhHen5AIJwiCIAhCk1jnKjYVWM6ePXtw55134le/+hW2bduGtWvX4ujRo7j11luTPiYArFy5Em1tbdLXiRMnknw2g4tCVwo+//k5WHfXWdLc474mVascXaf7zHvCtYPZ2PeSHVHmD+orjedEytGZ+N5TzYSH2kgmOVyoV7dF5ox/ebiR7V+cmbAcnsOFptsbP8taCmXT6fpytILZ9IhXpTnjgiDIFlyMB7O1i262kfewdG1EgSz1g+twqznpOsrRm0QX3GYx6Rotx0u8eWk8p13sXTfyHLOc7FhRTrhPvxPOH8sXDEe1erRIvfP63ztnjxkCAHhuwxE0dvjhsJoT/iwUuZy4RLY4aLeapdJ2QhsS4QRBEARBKJKXlweLxRLnUNfX18c52ZxVq1Zh/vz5uOeeezBlyhQsWrQIzzzzDF544QXU1NQAAAoLCw0dEwAcDgcyMzOjvk4VLGZTn4cGyZFKehWEjE9yWBONKBPL0bs5okwqR1cKZjNYjl7Cy9HFWeE8lEqPCC9yMQHf7g1KLuS/99YBAC4Yn6/r8YGI0AyFhTg3s0UKZTPmhGv1hOu5Ng6FYDb59XYmMSecjwBLFHwmJ7YnnItlvf3gQGTMV6dGObo8EV/Pzxl/PbjQBdgiBX/9MlOMLzRE9YRzJ9xAOToQceIBoJm/dwxcq7PHMhF+oI6NJJ1/Wl7Cn2sA+PXFE6V09VvPGqlrH6IXRXhLSwuWLVsmlY0tW7YMra2tCffbu3cvLrnkErhcLmRkZGDOnDmqCawEQRAEQfQedrsdM2bMiJsfv379esybN09xH4/HA3NMsBZP3udO39y5c+OO+eGHH6oek+hfpHJ0hT5sqU9YpxOunY4eCQ9Tgzu5WunoekuVh+cyEX60sROCIGCPARGe5rBKYqumtQudviA2HGRO+Hnj1ReTYkmxWSRh3BrjrHKn1Wg5ulJJOP+/nlJ9pdnT8v9riaxUyYWPfn2apJ5rfeXRgLxKINoJzzUgLNWCy+TwlHO955YjOeEREd7pD0kheny0mh74c5S/9h28akCHmLdbzVL7Roc/fpRbjoH3ztSSrKgFhAsm6HsfZ6fZ8fZt8/HC9TNx1/nxY04JZXpNhF9zzTUoLy/H2rVrsXbtWpSXl2PZsmWa+xw+fBhnnnkmxo0bh08//RQ7d+7E/fffj5QUfQmTBEEQA4HYkkLi1OBkfd1XrFiB559/Hi+88AL27t2Lu+++GxUVFVJ5+cqVK3HddddJ21988cV46623sHr1ahw5cgRffvkl7rzzTsyaNQvFxaxs8ac//Sk+/PBDPPzww9i3bx8efvhhfPTRR7jrrrv64ykSCUhVKG/m6O0Jt1oMjCjTEPSaI8qCicul5Ywakg6bxQS3N4gPdtWiod0nluDqC2oqzoqUs3+yvx6+YBjDc1MThlnFotYXzsWh3nAtjlPBjfbpTLEHZD3lsmA27s7aLCbNSoVIOnq06JXSx4044THXhYeNGakM4G6ylgjnTriefnD54/O+ayBSim41m3T13XMiPeGRBHgupvWWtacpLDS0GBzlBrBqlZsWsPnZQ7Oiy8wTUZzlxLnjCmBOEGhIROiV5qK9e/di7dq12Lx5M2bPng0AeO655zB37lzs379fdczLvffei4suuihqzuvIkSN74xQJgiB6HJtNnPnp8cDpdPbz2RB9jcfDSlr5++BkYenSpWhqasJDDz2EmpoaTJo0Ce+//z6GDx8OAKipqYmqWLv++uvR3t6Op556Cj/72c+QlZWFc889Fw8//LC0zbx58/Daa6/hvvvuw/33349Ro0bh9ddflz4zEAOLVA030WfUCdcxoizZnnCj5eh2qxmn5Wdgb40bv/nnHgDAoomFuoO1RuWnY19tOw7WdWBnZSsA4KLJRYZbB7JSbahv98U54TWtrN+8KMvY35MUhTFhRsrRleaES8FqCRZb5KXw8pyHRsnFNu6ER0S4GDZmQMin6pgTzhc7huh0wrMVgtl4z3tGiv70dyD+OXb6gxAkR12vCLeixROIeo7NBueEc24/9zR8Z2w+RuWnGQqYI4zTK1d306ZNcLlcUX9M58yZA5fLhY0bNyqK8HA4jH/961/4+c9/jkWLFmHHjh0YMWIEVq5cicsuu0z1sXw+H3y+SDLlqTKyhCCIgYfFYkFWVhbq6+sBAKmpqf3ax0n0DYIgwOPxoL6+HllZWVLp9cnEbbfdhttuu03xe2vWrIm774477sAdd9yhecwrr7wSV155ZU+cHtHLpIrCSqkc3XBPuK5ydI10dIvy+Cx2n7FydACYWJyJvTVu1LSx8WTfm1Gie98x+Rn4F2qws7IVn+xrAAB8d3KR7v05+RkpOFDXIY1I41SL51TkMlYRGhHCERGtJ9mcoxTMxgV9ImHGe8LDAltU4a9Fk1TybcQJF0eUdTFxyZ3wZMrRtUaUVYiZAEU6UvEBeTCbkgg3tggbK8L5cWwWk+7FpNjwuWAoLB3PSE84wAIzJ5e4DO1DJEeviPDa2lrk58eHUuTn56uOH6mvr0dHRwf+53/+B//1X/+Fhx9+GGvXrsUVV1yBTz75BGeffbbifqtWrcKDDz7Yo+dPEASRLIWFhQAgCXHi1CErK0t6/QniZIILL+VydN5rrC0YLDqccF094eLj+JVGlBkoueacNy4ff99WCQAYNSQN8w2MVxpTkA4AeP9b9tm2NMeJicXGAwMLMpn4q40R4TVi8vrQJJ1w+Sx1vSn2avvz0vbUBCPG5E651y8X4aITnkRPeOyIMr1jt4BIcJmWE36wngWRjdY5L1opmI2Xo+t1rzlZ/DmKVRD8PDNSbLoX8WNnhbd2BSQ3PUtH2jvRPxh6pzzwwAMJBe/XX38NIH70CKA9fiQszo289NJLcffddwMApk2bho0bN+KPf/yjqghfuXIlVqxYId12u92nzOxQgiAGHiaTCUVFRcjPz0cgED/3lTg5sdlsJ6UDThBAonJ00QlP4D7rCmYL6hhRZtFRjm6gJ3fRxELceOYIfFPZhv++YpLu0WIA4hzDi6cUJ1X9VOhiolLuhIfDAmq5E25QhCulo0ecbAPBbEF5OTp77RPN+bZZzLBZTAiEBHQFQnCBiUAuoI0Es0np6N0IZkvUEy4IAg6JaeCjxUWVRGTJ+rjDYQFmsymqHN0I8U648TFnkYUG9hrzxYGsVJuh9zPRtxh6p9x+++24+uqrNbcpKyvDN998g7q6urjvNTQ0qI4fycvLg9VqxYQJE6LuHz9+PL744gvVx3M4HHA49P9AEwRB9AUWi4VEGUEQJwWpKmOnAP1lzlwMaM8J7+6IMuPl6GazCfctmZB4QwVKslOxaGIB1u2ug91qxv+bMzyp4xRyJ7wtIsIbO3wIhASYTUCBzsAwjtPOrpH89ZJ6unX0+UrBbN0Q8YFQUBLuQKTv2kgwm3xOeDgsSCLcSIl1WoIRZXVuH9p9QVjMJpTlphk6r7AAtPuCcDltsjnoPVOObkTM823j5qkbTNUn+hZDIjwvLw95eXkJt5s7dy7a2tqwZcsWzJo1CwDw1Vdfoa2tTXX8iN1uxxlnnIH9+/dH3X/gwAEp/IUgCIIgCILoW6QRZTFCJhgKS852ojLnSDCbugj3d3dEmYHwsZ7i8atPxzvlVRhdkGG4bJzDy9HlTjjvB8/PSDHsZioFs3mMiGiFNHwjIt5ps6DdG5QWAXzBkCQu8wyUkmfGiN2knPAEI8oO1rcDYOPqtFL55aTYLHDaLOgKhNDmCYginAlgIzPCgUg6emuMCDfihOfG9Ki3JDEjnOh7euW31Pjx43HhhRfipptuwubNm7F582bcdNNNWLJkSVQo27hx4/D2229Lt++55x68/vrreO6553Do0CE89dRTeO+991TDYAiCIAiCIIjehQsZT4yQkZcrJ3TCpXJ0PT3hSaajB/T3PfcUKTYLlp4xDNOHZSd9jCIXE+/ynvBIMrrxMb28HN0XDCMsLpLwkWF6RLhTqRyd94TrCHZzxoh43g9uNZuksDU9pNgsklN8uKFDWmQxkvgdG1oWyyGpH1xfKTonSxLP7Ln1XDm68YA33qPOS/6lFHkS4QOaXvst9corr2Dy5MlYuHAhFi5ciClTpuCll16K2mb//v1oa2uTbl9++eX44x//iN/97neYPHkynn/+ebz55ps488wze+s0CYIgCIIgCA24cItNR5cHdyV0wnXMCQ8amBOuWY6uQygOJArEnvCGdp8UXMed8OIk3HV53zYPZIs42QZ6wqPK0fWLeN7LzYWlvBTdaM/88NxUAMCWo83S4+s5B05qgp5wo6FsHC6e+Vi5SDBbcuXo/mAY3kBISoDPSdN/HF7i39zBRTifL08ifCDTawPgcnJy8PLLL2tuIwjxv4h/9KMf4Uc/+lFvnRZBEARBEARhAF6C7PFFi3DulNqtZpjN2uLKahZHlOkqR9cYUaarJ3xwhVHlpTlgNZsQDAto6PChyOVEteiEFxscTwZEh+R1+UNItVsj5eh6nGwFEW5ExPMxZFx817nZv7zs3gjDclLxTWUbvjzUCIAlxRsR8umynnClgGijoWwcKSHd0z0nPN1hhcVsQigsoNUTQGMSKfL8XPhscO6EUzn6wGZw/ZYiCIIgCIIg+pQ0UXj5Q+GoEWNeA+XfxsrR1UVWpBxdaU5435ej9wRms0kSqHxeOR9PxkvVjR6PXycunj2Sk60jmE2hp9xIMBsXkFxQ8l73ZET4BHHk24aDTIQbrQzg5e+hsBCXaSAIAg6IPeGnJVmOzt1+d5Jzwk0mU1RJelMSfe98Wz6LnS8MGHHTib5ncP2WIgiCIAiCIPoUufspL0nnc7kT9YMDsjnhmunoYjm6nhFlmnPCB1c5OgAUi73flS1MfFe3eqPuN0qG5AAzcWjEyXYqpOEbCWbjY8ga2rkTzkW48WlGZ40eEnV7bKGxsnGnzSItAHHBzGnq9KPVE4DJBIwakmRPuDTfO7k54UB0XzgX0kZGuRW6Igs4giBIFQhG5qkTfQ+JcIIgCIIgCEIVu8UsCRl5STrvN07RMZc70YiyUFiQvqe3HD22rTHSEz74Pt7y8VjHGjsBdM8JB4B0UQx2iA4tF9RGgtmURLie/ePL0ZkIL0zGCS/KjCrJn1qSZWh/udPM541zDoql6KXZqboWkuRkiSXgkZ5wMdU8CRGeGSXCeTm6fid8aLYTJhN7jRo6fNLiR77B0XZE3zL4fksRBEEQBEEQfYbJZJLcUfns50g5emIBk2hEWUDmbFt1jCgThHhXfbCWowNAWR4T4UcbOxEIhVEvCqlk0tGBiCPLxaEhJ5z3hMvL0QP6g9mGZPBy9Oie8PwkRLjZbMLFU4sBACYTcOboxKOSY5FEridahB9qSC4ZHQCypGA2v/hvIOr+ZI/VJIaq5RpwsR1WC4rFxZoTzR5JhA8hET6g6bVgNoIgCIIgCOLkINXOZj/L+2q586zPCdfuCZeLcD0jygCWKC3fNhLMNvjK0UeKIvxIYydq27wQBFaBYGSuthweSNYupoJHerr19ISza6pYjq7DMc7rwZ5wALjl7FGobvNi7shcydU2QqbkhEcnpB+qE/vBDYayAfIRZWJPuPhvVhKJ5PKkdT4LPc+AEw6wALuq1i4cru+U+spJhA9sSIQTBEEQBEEQmqTZrQB80SJcFGkpupxw7XT0gOx+vSLcFwxDrlEjPeGDzwkfMUR0whs6pGT0QldKwtR5NXhAWIfkhOt3slMUytH5iC8u7rWIiPDul6MDbN71kz84Pal9ASBTrAqI7QlPdjwZALicvBzdj0AoLC12JLNIwPc5WN+OsMDyE4wmmw/PTcWmI0348jALsHNYzTSibIAz+H5LESc14bCAxz46gJ//fWdUyRtBEARBEP2Hcjm6/h7sRHPCuRNuMZukEDclLGaTVNrujxlTJpWjD9KecLOJubVbj7cAAEpzkusHByLBbHx+tREnm7/W3kAYYfH16hCzANJ0iHAeFNbqCeBEswctYql2sqX13UXqCVcR4UaT0QEgW+aEy4+bmURPeI4ouPks9JJsp+ZClBKjC9hCwjvl1QCAMQUZSS/gEH3D4PstRZzUfLK/Ho99dBB/21qJlzYd7+/TIQiCIAgCEQe1K6oc3YgTznvCtcvRtcaTcSJjymJF+OAtR0+xWSRH9v1vawCwwLBkkYLZfEEEQ2Hp2hgJZgMi15Q74XpEuMtpk1zvd8qrADBhmWlwfFdPkakQzFbv9qKh3QeTKcmecFkwG3fYM1KsUgChEfiM8mNNHgCRkD4jTB+WFXV7ojjajRi4kAgnBhQbDzdJ/998pEljS4IgCIIg+greS9wpE+HeHhxRxsvR9TiAkggPRc995oLRPgjL0QFg0lAXAGB3tRsAUJqTvAiXB7N1+IKy+xMLYfnryUvSjZSjA5FRYm/tYCK8P0WhfAQYZ8eJVgDAmPwMXQsLsURGlPmludz8PqOMixm7Nmmo8Ws1sdgV9b6fNSInqXMh+o7B+VuKOGn5trJN+v/Oyra48SMEQRAEQfQ9ESdcKR098cdJW4IRZdwJ15oRzuHb8EUAjs/A+QxEppS4om6XZCdfjp7uYIKw3RuUEtJTbGZdCxQWs0najovwdskJ11dlwEX4kQY2cm1isUtr816FO/Dursh795vKVgDAtNKspI7JhX1YiMx2T6YfHABG5qVLJekAMH+U8QR4u9WMyUMj13heEscg+pbB+VuKOGmpaPZI/2/u9EtjFgiCIAiC6D8iPeHx6egOg0640gI7Ly3X44Tznm9/6OQpRwciTjhnfFHy7nGkHD0glWHrccE5KVa+0BFCIBSWXp8Mh75jxLq7A80Jr2hmwjmZfnCAVQvwsv3jYhl5ljO5IDSz2YSzxwwBwMT09OHZSR3n7vPHIMNhxbI5w6W+fGLgQunoxIDBHwyjrp0laLqcNrR1BbCvtj2puZIEQRAEQfQcaYrl6GJPuI4gNJs5sk0oLMTNApd6wq06esItiXrCB6fHNHmoC3npdjR2+FHkSkmqV5mTKesJ5054hoHQMKfdArc3iC5/SCpFB/Q74XNG5kbdnpqk49wTZDrZ85b3hPME+uKs5KsNslJt6GoL4VgTc/tdSZajA8CKC8ag0xfE4smFuto7lDhzdB52/nohBbINEgbnbynipKSmrQuCwP6YzxvFfnnvr23v57MiCIIgCEK5HF2/82yRiW6lvnBjPeHs8XwnUTo6wFzQR66ahgsmFOCpa6bDZEpeTElzwr1BKb3biBPOXV5vICSJeIfVrDt4rDjLiTNPYyXR54wdIo0t6w+U0tFrRBHencR2ftxjjZ1Rt5OhNCcVz143E5efXpL0MQCQAB9EkBNODBh4T83QLCfGFWbig1212F9HIpwgCIIg+hvlcnT9TrjVnEiEi064WUc5ukI6eigsSEJ+sJajA8BZY4bgLLE0uTvwOdNNHX5JRBsZn+W0R5z0NIOhbJznrpuJj/fV46wx/dufHOkJZyI8FBZQJ7Y7Fru654QDwME6NuosP6P/FhqIwQeJcGLAUC+Wohe6UjByCBvPcFws8SEIgiAIov/g5eieJNPRo0S4wpgyv5FydAURLv//YC1H70mGiM5zY4cPTZ1McMrDvxLhEku427oCUvl/toH9AbZw890pRYb26Q1ie8Lr272sJcJswpBuCOchGcxF56F1BdQ+SRiARDgxYGjqYCMe8tIdGCaO5ZAHtREEQRAE0T9EnHBZOXpQfxq5JZETbiSYTWFEGXfl9Z7PyQ4v//YFw5JTW2hAJMpLuM1iWbwRET+Q4HPCO/0hBENhqR+8IDMl6n1plBF50fO8CzLJCSf0Q7+liAFDUycT4TlpdkmE17l9UvALQRAEQRD9Q6pSOboUzJbYCTeZTJIbHgx1sydc3MYnG1HG+8MtZpPuvuWTGafdggyxfPzbKjb+1YhTK3eP+Rzs3EEqwuWBdG5vENWtrPKyuBv94AAwaki0CB9b2H8J8MTgg35LEQOGpg5WLpWX7kBWqk3641HZQm44QRAEQfQnqQrl6Fz46ukJB+RjyuLL0fl9euaEK40o8wUGdzJ6b8DHVO0TQ26NjK3KSmWCu60rIFUqGi1HHyjYLGakiYtI7q4AatrEULZu9IMDwDiZ6M5OtaGYxoIRBqDfVMSAoVnmhJtMJgzLpZJ0giAIghgIKDnhvFJNbxAad7lDCuXokTnhyY0o8xkojT9ViC2XLsnWLzrlTjjvKR+sTjgA5Irl+XVur8wJ754IH1OQLl3j788s7VaaPXHqQT3hxIChsSMiwgFgWE4qdle7cbyJRDhBEARB9CepSj3hgeSc8EB3y9FFoe0LxpejD+Zk9J5m5JB0AHXS7dMMzB3PlIlwvvBiRMQPNIbnpqKi2YPjzR7ZjPDuOdcmkwkv/mgWvj7WjIsm938AHTG4IBFODBi4E56XzkQ4LxOqbfP22zkRBEEQBKFWji72hOt2wpkIV3LCpRFlOpxsh8Kc8ME+I7w3GClzwkuyndJrqIcsUYS3eAKoEkfIMlE/OCnLTcOGg4043tQpjcTtiUWF0pxUlIo5RgRhBBLhxICB94TnpLGSoUJXpHSIIAiCIIj+gzvhXTIRzgV5il2fCI844fE94fw+PT3hSiPKqCc8nsklLun/Z5TlGNp3qChQD9V3SMFsseXtg4nhYovjsSaPlDVUkk3imeg/6DcVMSDwBkLoFP+Y54pOOE/xrCURThAE0a8888wzGDFiBFJSUjBjxgxs2LBBddvrr78eJpMp7mvixInSNmvWrFHcxuul3/cDFS7CO/1BCAJzsjvF+cjpDn2ejtWs0RMeMtATLpWjx4fEUTl6hHGFGbhu7nCMKUjHrWePMrQvd9GbO/0QBCAzxTqoe8KH57Ln801lK9xe9r4dzOX1xOCHRDgxIODjyWwWk5SKzkV4ndtn+Hgvbz6OCb9aixv/uhVBhRV3giAIQh+vv/467rrrLtx7773YsWMHFixYgMWLF6OiokJx+8cffxw1NTXS14kTJ5CTk4Pvf//7UdtlZmZGbVdTU4OUFEoXHqikin+bBSEiePnieZpeEW5RT0cPBAVxGwNzwhXK0e3khEuYTCY8dOkkfHj32RhbmGFo36xUu9QeCAAjhqQP6uCxceLzP9HMStHzMxyGyvMJoqeh31TEgICXouemOaRf8oXcCW/zSqvuevAFQ/jv9/fC4w/ho711+GBXbc+fMEEQxCnCI488guXLl+PGG2/E+PHj8dhjj6G0tBSrV69W3N7lcqGwsFD62rp1K1paWnDDDTdEbWcymaK2Kyws7IunQySJUzYL3OMPIRAKSyI4zWA5uvKc8O6Vo/OQOKeOmeWEPmaPyJX+f9og7gcHmOstd/KnD8vux7MhCBLhxACh1RMAAGSl2qT7uBPeFQhJpUN62HmiLSo45sM9dRpbEwRBEGr4/X5s27YNCxcujLp/4cKF2Lhxo65j/PnPf8b555+P4cOHR93f0dGB4cOHo6SkBEuWLMGOHTs0j+Pz+eB2u6O+iL7DYjZJDnSnLyiVogP6nXCbRjl6wEg5uiV+Tjgfl6Y3qZ1IzLzTIiJ8ZtngFq0mkwnTSrOk27NGGOuRJ4iehn5TEQMCt5eJcD4SAwCcdgsyU9gf9noDfeGH6jsARP4QbzvW3FOnSRAEcUrR2NiIUCiEgoKCqPsLCgpQW5u4yqimpgYffPABbrzxxqj7x40bhzVr1uDdd9/Fq6++ipSUFMyfPx8HDx5UPdaqVavgcrmkr9LS0uSeFJE0XGx3yXJc7FazrrFigCyYTVGE6x9RxhcDeBgbPycASCEnvMc4Z2w+Uu0W5KTZsXBCQeIdBjiXTCuW/n/22CH9eCYEQenoxADB3cVW1DNTbFH3F2SmwO3tQJ3bh9EF+vqZatpYv8/CCYV4d2c1qtu8aOsKwOW0JdiTMMLhhg4MzXLSBx6COAWI7QUVBEFXf+iaNWuQlZWFyy67LOr+OXPmYM6cOdLt+fPnY/r06XjyySfxxBNPKB5r5cqVWLFihXTb7XaTEO9jeKm3vNpMbyk6IB9Rpp6Ork+Es8eMdsL5zHL6m9RTFGc5sX7F2XBYzchNd/T36XSbi6cUo7nTj6FZTowa5OX1xOCHRDgxIOBOeKxQzk2342A90NSpP5ytupW55mMLM1B4NAW1bi8O1bdjxnAqPeopXt1SgZVvfYvSHCf+efsCuFJpgYMgTkby8vJgsVjiXO/6+vo4dzwWQRDwwgsvYNmyZbDbtVOVzWYzzjjjDE0n3OFwwOEY/EJgMJPmEEW4L4iwmNWitxQdkI8o0+gJ1xGsptQT3kXl6L3C0KyTJ0HcbDbhhvkj+vs0CAIAlaMTAwR3Fy9Hj/5jniOGaLSI6el64E54kSsFY8Q0zP21HT1xmgSAtq4AHl67DwBLGV2z8Vj/nhBBEL2G3W7HjBkzsH79+qj7169fj3nz5mnu+9lnn+HQoUNYvnx5wscRBAHl5eUoKirq1vkSvYtTTJP2+EPw+MRkdAMJ0706okwU4RTMRhDEYIBEODEgkHrCY8rRuQhvNiTCmRNe5HJKaZ5HGkiE9xQffFsjBekBwDvlVYbS6wmCGFysWLECzz//PF544QXs3bsXd999NyoqKnDrrbcCYGXi1113Xdx+f/7znzF79mxMmjQp7nsPPvgg1q1bhyNHjqC8vBzLly9HeXm5dExiYJLKy9EDIXSIwWzcHdcDH1EWUBgdmkxPeHQ6OvWEEwQxeKBydGJAIPWEx5Sj56SKItyjT4QLgoDqVuaEF2elYGg2K6PiwpzoPp8daAAA3Hr2KPzly6M40tiJ3dVuTBrq6uczIwiiN1i6dCmamprw0EMPoaamBpMmTcL7778vpZ3X1NTEzQxva2vDm2++iccff1zxmK2trbj55ptRW1sLl8uF008/HZ9//jlmzZrV68+HSB55OXpAFMvJlKMrpqMH9feER5xwCmYjCGJwQiKc6DE6fUF8eagR00qzkC+OF9NLxAlXLkfX64S3eALSH+VCVwqGZrHzqBZL1AmGIAh475sahMMCLplaDLM5cfkfZ39tOwBg/mm5ONzQgfV76vDFoUYS4QRxEnPbbbfhtttuU/zemjVr4u5zuVzweDyqx3v00Ufx6KOP9tTpEX2EvBzdZuEzwvV/lOQCO9grI8oomI0giMEDiXCix/jpazvw0d56DMlw4P07F2BIhv4AnUhPeLQTnm1QhPN+8Lx0OxxWC4pczAnn7jjBeOWrCtz3j10AWJXAj78zStd+vmAIx5o6AQBjCjIwtcSF9XvqJGGuh1aPH3e9Xo62rgBWXTEZ4wozjT8BgiAIos/h5ehdgRB8QSaWk3HCgwrBbH4D6eh2zRFl1GlJEMTAh35TET3CiWYPPtpbDwBoaPfh0Y8OGNrf7VUeUZabxoS8bhHeGukHB9h4DQCob/cp9qCdigiCgBc3HZNuP7fhCII6r83xJg/CApCRYkV+hgNjRQG9z4AIf+ife/Dp/gbsqGjFT18tR1jBESEIgiAGHqliOXqnL4gOH1s8TzfQE967I8oomI0giMEDiXCiR3hzeyUAwCqucv9zZ7VuYQewxG0gPh09O42J8ubOQNw+SnAnvNDFytBz0+ywWUwQBCbECTbf+0BdB6xmE2wWE5o7/dh8pFnXvvVudg2LXU6YTCaU5aYCAKpa1MtOo/f34t3yaun2/rp2fHGo0eAzIAiCIPqDVHtkTjjPcokdLaqFRUxHVx5Rpj+YTWlEGQWzEQQxmCARTvQIm480AQAeunQSXE4b3N4gdle7de8vlaOrOOEtHr8ux7RaDGArFkW42WzCkHR2jEYS4QCAbyrbAACnD8vCJVOHAgC2HG3StW99O7u+vNWgSKw0cHuDaPcmXihZu7sWwbCA6cOycO2cYQCAt8QFHEIdqhYgCGIgkCH+jXZ3BWSL5/pFuFUjmC0ozQlP3BPuUBhRxnvCyQknCGIwQCKc6DahsIBvRWE3sywbU0uzAADfVLbq2t8bCElhavE94TbpMdrFknUtasTeby4OgYhgbCARDgDS4sjEYhcmD2Xl5Htq9C2Y8GvIr2m6wyq5INWtiRPotx1vAQCcPSYfV0wvAQB8uKfOUNXEqUQwFMY9b+zExF+vwzOfHurv0yEI4hSHh6U2dfojgapJiPCAQjm6v5sjynhPuIN6wgmCGATQbyqi2xyq70CnP4Q0uwWjhqRjWglLyd4pCvNEcHFtMgEZMQEvDqsF6eJ9TZ2JRXS1NCM8ks4uifAOEuEAsKuKvS6ThrowroiJ8AN1+uaox4pwINJ3ryf8bnsFE+GnD8vCtJIsuJw2ePwhQ1UTvYEgCNIHyoHEC18exRvbKtEVCOF3a/fjSyrdJwiiH8mVhaXyCjYj5eh8TnhIsRzdeDBbWIg46J3i3PJ0A0FxBEEQ/QWJcKLb7DzRCgCYXOKCxWzClJKsqPsTwcVPhsOqOCqLu+EtOmaF857w4pPMCRcEAa9uqcCv3tmFIw36BLMS4bCAPZITnokReWkAgMoWT5SjoAZfyMiXifCh4rWuSiDCWzr9ONHMtpk2LAtmswlnlGUDALYc1deT3hu4vQF8b/VGTHngQ9z12g4IQvdLvz3+IG74yxbMXfVvvLezOvEOKry1vSrq9p+/ONrdUyMIgkga+djQNpU2Mi2sZj0jyvSLcCAyK7xDFOFG0toJgiD6CxLhRLfZIYrtaaVMUE0RnfBDDR1SUIoWauPJODliX3hTh7YIFwQBdW1MJBbK5pTnpQ9+Ef7y5uNY+da3eHHTcfzwL1uSTnqvbutCuy8Iu8WM0/LTkZ/hgNNmQVhgQjwRPJhtSJQIF2exJxDhfLRZYWaK9KFt1ogcAMBXSYhwbyCEX779Leb897/x9o7k+8p/894ebK9oBQD8o7wanx1oSPpYnBe+OIpP9jegps2Le/6+E22e/9/enYdHVZ79A/+emclM9gkh+0LCHsIu+6K4ILhUq62K1eLyStVSW8FXfaW+vyq+tVZtLdKKbRFFq1ZaLdZaN6iIIMgmm+xLIAskIWRfJzNzfn+c85yZTGY5J5BJQr6f68olDDPjmZNkztzPfT/3bTzL3tDixOEypev82/MmAQA2HDmDJkfo3ylvsizj1Y0FmPf6NmxiJp2IzoG4nlbUt6CmQ43Z1BFl/rqjq8G0VU8Q7nUfh9MNWZaZCSeiHoVBOJ2z3VoQrgTfyXE2xNoskGWguCp0iXKg8WRCYrS+THhts1MbV+IdJIo/i6ZiPU1DixO/+cwz8q2osgmfHyzv0HMVViqBdlZiFCLMJkiShBy1w/nJs6GDcJEJF83uAE/VQahMuHh+8f8DgIn9+wIAtp2oNNx87JF39+DtLYUorW3Gz//xLcprjX9/iyob8a7aGG5svwQAwLIvjhl+Hl8f7jmt/bm51Y0vDhv/fn1bUgO3rGytmDKwL1LjbWh1ydiplvTr9eaWQjz14X6sPVCOeW9sx0l1MYSIyCiRCW9xulGhXg8SovUH4WJEmb9MuLYnXEdjNovZpAX0Dpcbza1uiKdkJpyIegIG4XROmhwuHFKzdaIhmyRJyE5UAq2iytCBXW2A8WSClgkPMSv8rPqBINZmaTOiROuOHiKT3l2t2laEmqZW5PaNxo8u7g8A+Pv2og49l1gUyerjCYRz+yol6QUVoYOzYHvCT4dozOYvCB+eEY9oqxk1Ta04Uq6/zL6goqFNmXdTqwt/68A5+c+BMsgyMHlAIl667SIAwPYTldrPUkc0Opzaa7l2VLr6nMYCZwDYrTY2HJ2VAEmSMEldsNh6Qn/VwJm6Fjz78UGvY3Nhydojho+FiAhQRpTZvErBTVLb7UmhiBFlziB7wkXJeigiG+5wutHg8DRujWZ3dCLqARiE0znZf7oWLreM5Dgb0u2efdj9EpU/F+oIwsW+srhAmXCxJzxEEF6p/rtYqRdS4ntuJtzllrV9wD+6ZADmTFDGeq07dKZDr8cThHt9r8Ss7xCZ7BanS/te+as0qAgRuJZUq1l4rwWACLMJF/VTtjFsP6k/uBQj8SYPSMSvbhwJAPjikPEycjGubfKAvshIiMLwjHi4ZWDtgTLDzyXsO6X8TqTG23DNCCUI/8Zg9hoAdhcpxyYWt0ZmKpUmR3Q20QOAd3cUo77FiRGZ8Xj3/ikAgLXsRk9EHSRJktacDQBS4iJh0VE+LohMuL8RZSII11OODnj2hbc4XVoperTV7Le3DBFRd9NpQXhVVRXmzp0Lu90Ou92OuXPnorq6Ouhj6uvr8cADDyArKwtRUVEYNmwYXn755c46RDoPDpUqWfBhapdtoZ+aCdcThIvGbIH2lenNhItMd9/YtkF4cqyyZ/lMXct5aboVTlsLKlFS3YT4SAu+f1EWBqXEYnR2AlxuGZ98W2r4+YpFObpXEC46yYumdoGI82s1m9p8r5LU8x2q+3xZbfv9+gCQlxYHACg4o79MWnR4H52dgMkDlH3le0tqdDWX87ZHfR7Rx+Cq4WkAgE/3dTwIF9szRmUl4KKcBADAwdI6NDpCj9jztkt9ntHqNo9BKbEAlGkEen22X/kZuW1iDsb264OE6AjUtTi1101EZFSi1zU2PSEyyD3bEyXk/vqaaI3ZdJSjA96zwt1sykZEPU6nBeG33XYbdu3ahU8++QSffPIJdu3ahblz5wZ9zMKFC/HJJ5/gzTffxIEDB7Bw4UL89Kc/xT//+c/OOswe7aO9p3H9HzbiyQ/2dVlm61Cp0mlbBFKCkSC8JsSYE6OZ8L4+mfCkOOXvza2eC3VP8eEepeT6qhFpWon9tSOVQPGjvacDPi4QkQnP9spGe4Lw4Jl1sec6Oc4GSfJ8SBKNeuqanUEb8ZWLUvb4tqWLojz9hI496cK3aof3kZl29E+KgT0qAi1ONw6W6h91Vt/ixDG10/wINct81Qjl3G48UtHhkWW7tB4JCUi3RyHdHgmXW9Yy23qcqWtBSXUTJMmTARdBeEFFg67fd5dbxgF1/vvkAYkwmyRMyFUWLLYbKGknIvKWEucJvMW1Xi8xJ9w3Ey7LMloNzAkHPJlwh9ONhhbl2sOmbETUU3RKEH7gwAF88skneOWVVzBlyhRMmTIFy5cvx4cffohDhw4FfNzmzZtx55134tJLL0Vubi7uvfdejB49Gtu3b++Mw+zRthZU4idvf4M9xTVYuekEXv2qY6OL3G4Zf9tWhJ+8/Q3+tfuU4UzxQTUTPjS1bRBubE948A6rIhNeqXNPeN+YtkFetNWiXZjD1SHd5Zbx0rqjuPmPm/DqxoIOZeCdLjc+VrPd147K0G6/Wi1x3lpQafj1iA7o3pnwNLu+Pd3i/5Xks//PHhWhlRgGq1Y4o5bPp8a1zZxkaws2+jLhrS63FlyOyLBDkiSMUUu2d6pdzvXYV1IDWW18Jj5UDkqJxZDUWDhcbrz0+VHdz+XNey83AO3Y9pboP7Y96nMMSo7VtmlkJkQhMsIEh8uNIh0ND0+ebUBzqxtREWbkqPv+xUi4bR3Yo05EBACD1QVBoH0VXCiidN23MZv3340G4S1ONyoblOtTHwNN4oiIulKnBOGbN2+G3W7HpEmTtNsmT54Mu92OTZs2BXzc9OnT8cEHH6CkpASyLGPdunU4fPgwZs+eHfAxLS0tqK2tbfPVG/z+8yOQZU851vINBYaz4bIs44G/foNH39uDf+85jZ/+dSf+uP64oceLpmxDg2TCQwWgWmO2yECN2ZSLamWI7ugiAEz0KUcHPI1jjAStTQ4X3vz6JFbvLDZ8bv+2vQjPf3oI205U4akP92PlphOGHg8Am46dRWWDA4kxVkwb2Fe7PTsxGqOz7HDLwCf79JekO5xunFaz2d77sjPUTHh5XXPQ1+mvMzog9giq+8IDnN9Wl1srZ09plwkXs8qbdC1WHCqtg8PpRlykRfs5E53NjXQO36dm00UWXLyWx67OA6DM5D6i/nzrVek1C32kWuKer35IPXha/3Pt1krRE7TbTCZJa6J3QkeHc7FANiQtTisBHe+VCe9pWzP0qmlq7VCnfCLSJy/dc70Xi416iUy477XGuzxd755wm0WpDnM43TijXl+SDTSJIyLqSp0ShJeWliIlJaXd7SkpKSgtDRw0LF26FPn5+cjKyoLVasVVV12FZcuWYfr06QEf88wzz2j7zu12O7Kzs8/La+jOztS1YKM67/fjBy9GYowVZ+paDM9a/mD3KXy0txRWswkzhiQDAJb+50jIsm+hvK4F1Y2tMJskrVRWyOwTBUlSujGH2sutlaMHWMHWMuEhupufDVCODniyt+U6g3BZljHvjW343/e/xcJVu3Hjsk0oDVGu7f3Y19TKBJFxfvrfB7D52FldjxfW7Ff2JV81Iq1d45urRyrZ8I8NlKSfrmnSFm6SvBYq+sbaYDFJcMvBz4+/zuiCKPkP1JxN3G4xSUiMbvv9EeXwjQ4XqnTM097pVe4tGvCMVZu7iVJwPY6U+6/iuDwvFTOHpcLplvHkv/YZClZFFnxAcoxW2ZGnBuEHSvUH4buK2zZlE0QQflJHJ3sxY3xoqud3c0SGHZERJlQ1tuKYgT34APC3bUWY9/r2Nl3pQ3E43Xhry0m8tO6o7veVc3GwtBaXPLcOE3/1H7yyQf+CoreGFie+KaxCXQe3IxBd6K4Yloqx/RIwc1gqJvZPNPRYLQj3yYS3Or0z4fr2hHuXowe7PhERdUeGgvAnn3wSkiQF/RKl4957RgVZlv3eLixduhRff/01PvjgA+zYsQO//e1vMX/+fKxduzbgYxYtWoSamhrtq6ioY6ObepI1+5WxSqOy7BiQHIsr8pQFD6Ozo19Xs7PzLxuIlXdPwPCMeDS1uvDG5pO6Hi8ybbl9o9uMBAOUFep0tQFXqH3hYu9t4DnhStDW4HAF3XMsytF8G7MBnguz3kz4l0cq8NVRJWiOsZqxt6QGP35rh66AbG9JDQ6X1SMqwox///RiXDc6A063jHvf2I6j5foDse0nlazuxYOS2v3btWoQ/vXxsyG7kgvendG9fw/NJknb1x3s/IgA3d84mqTY4B3SRVO25Dhbu861kRFm7ftToqPMeqd6XkRXdQAYo2ZjTpxtDLltQRBdxgenxrb7tyeuy4fVbMJXR89i3SH9v1eiHN47OyT6JRwtr/PbjMiXLMtaJnyMT5YpJ0n//vkSP/v/rRaTVh6/zcC+8H98U4xH39uDtQfK8NO/7sT7O0tCPqa0phnffekrPL76Wzz/6SH8cMWWoL+/50qWZfzPu3u0Rb1nPj6IHQY67gPApmMVmPbs5/jesk245Ll1+Nu2ogu2YoCoo+IjI7B6/jS8cud4rcpGL7MoR/cZUeZQ3xslCbqf07sxmxaExxprFEdE1FUMBeEPPPAADhw4EPRrxIgRSEtLQ1lZ++7CZ86cQWpqqt/nbmpqws9//nO88MILuO666zBq1Cg88MADmDNnDn7zm98EPCabzYb4+Pg2Xz3BuoPleP7Tg9qHbSNECfJstZPz5WoQvs5AEH6qugnfFFZDkoDbJvaDJEm4b8ZAAMDrm0+gyRH6w7KnKZv/c653X3ioxmzxURbtolwdJFN6tl6MKGsfJIoS6lAdvIVV2woBAHdNzcXHD16CGKsZOwur8dn+0F2zNxxRqhQuHpwEe3QEnr9pFCbk9kFdixOPvbdX14f6uuZW7fxelNOn3b9nJ0YjP10Zp7VJZ4ZdfB+y/TTS8Yxx62AmPMQsdlEeHGierKgYEHvWgxGZcFGCDihVFAOSlSzxrqLQJemyLGuZ4iE+mXBAOUd3T8sFADz/6WHdgZgYnSYaoAHKa4uzWdDqknFcR/b55NlG1DS1wmoxtdvmoWXCdZSji0Z76QlRbW4Xx6Y3CN9xsgqPvbcXgGf83y//vT9kJ/oFq3biwOla2KMiYDFJ2HeqFk9+sE/X/7Mj1h4ox+7iGsRYzZg8IBEut4yfvLVT9yJVZYMD9/9lh/YeU9XYikff24P3d4VecCAifSICZcJFZ3SzKWiyxpvo9dLQ4sQpdcSm73YnIqLuylAQnpSUhLy8vKBfkZGRmDJlCmpqarB161btsVu2bEFNTQ2mTp3q97lbW1vR2toKk6ntIZnNZrjdF9ZM20++LcXdK7fhpXXHcOOyr7DSQFO12uZWbD6mBHkiCJ8+OAkRZgnHKxpQoKNMVRwDAIzP6YMUNWN9zYg0ZCdGobLBgb9tD11RoDVlS2sfxABe+8JDZO1qQwThkiShj5oNP9sQ+AN1sHJ0cWHWkwk/W9+ilYLPmZCNfn2j8cMpOQCAD3aFLsXd6BWEA0qmd+kPxsJqMWH7ySrs1TEeam9JDdyy0owrNd7/yr5osrVLZzMykQnP9AnKAE9wHGz2uJ4gPND5LRNZ9ACvRRxTqFnlVQ0O7Wd8bHbbxQnx9+06mo6dqWtBbbMTJgnonxTj9z4/vnQgIiNMOHC6Ft+WhO410dzq0r4XU7z28EuSpC0Q6Pn9FCXt+enxWrmlIDrJn9SRCT+ljpzL8Bkh5NkXHvo8udwyfv6PvXC43JiVn4rNiy5HSpwNFfUOvLujOODjTlQ04OvjlTCbJPzzJ9Ow8u6JkCTgnW1F+MBAObsRKzYq5edzp+TilTsnYEByDEprm/HI33frevw72wpR2+xEXloc9i2ejbum5gIAfvPpYV0VDEQUmlkLwv3vCY8wkFkXQXhtc6vWv2NwSvvKJiKi7qhT9oQPGzYMV111FX70ox/h66+/xtdff40f/ehH+M53voOhQ4dq98vLy8Pq1asBAPHx8ZgxYwYeeeQRfPHFFygoKMDKlSvxxhtv4MYbb+yMw+wS9S1O/Hy1klXKTIiCWwYWf7gf3+hsKLXuYDlaXTIGpcRq+7DjIiMwTs2WfqXuFQ9FZNOvUjttA0rX0num9QcArNZRbnpIZxB+MkgmXJZl1DYr3dHjAwThgKc5W6BMuNsta3tO/Zajx+rfE/7+rlNodckYmWnXOr+KjuRfHj7TbrSKt+ZWF3ao5dLTvMrI0+1RuHKYUgWy9kDoioW9xW3nV/szRs0E68n8AtAyBZl92gfhesr1gwfhwfeEnwmZCVd+VopDlKPvVF/rwOSYdj0EJql7E/X0RjislqLn9o1pt5VCSIi24oo85Xv2yb7Qe++/OVkFh8uNtPhI5PZtW22Qm6S/oZoYZTbGZz+4OF4AKKpqDNpET5Zlrdt9hr3t9/uifgkwSco2kbIQDcy2n6jEobI6xEVa8PxNo2GzmLWKmd+tPRxw9vm/1V4FUwf2RW5SDKYPTsIDlw0CAPz8H3ux71TwhagmhwtL/3MEVy35EgtX7UJNiF4BIuiXJOCOKTmItVnwpx+OQ4RZwrpDZ7ApxPui2y3j7S1K9cs90/sjxmbBY1fnoW+MFQ6XW1flARGFZjH7H1HmmRGu/2NprNrM9XRNM06plT+D/VQ2ERF1R502J/ytt97CyJEjMWvWLMyaNQujRo3CX/7ylzb3OXToEGpqPB/G3nnnHUyYMAG333478vPz8etf/xpPP/007r///s46zPOqssGBkurgHZ7/tq0IlQ0O9E+KwbqHL8WNYzMhy0rjLj0lr2Iv5uzhbcv6pwxQAj5RDhtMQUWDVorq+zyz1TnJu4urg+6tlWVZy+r5NmUTMtTsZrAP+vUtTu1iHCgTDigBERB4TFltc6tW3pboJxOud0+4LMv4u1oFcMv4LO32kZl2RFvNqGtx4rg6W9of70DMN8M6dZCSHd2mI0jco2bLRwYLwtXM77enakOWBgNemVG7vyBcdEj3f35kWQ7YHV15fPA94eJ5A2X1M7Vy9BBBuJppHtuvfYm+yD7vKqoO2QRMNGUL9LMrXKZu9RBbDILZrP7uTR6Q2K6cUutqbiATPjq7/fc+LT4SVosJrS4Zp4KMlKtubEWTuv86zd72nMdFRmBgsvK6D4ZoFvf1ceVn9ZIhydqix9zJOchOjMKZuhYs/9J/Fc+/9yhB+DUjPYt8D14xGBNzE1Hf4sSNyzbh6X/v9xtcbz52Fpc8vw4vrDmMg6V1WL2zBA+u2hn8fVX9nb1kcLL2vjM4NQ4/mNgPAPDUh/uDLp7952A5iquaEB9pwXfUcYCREWa8/l8TseHRyzAohR/sic4HiynAnnCnsRnhABCnBuEiiZEWHxn0cwQRUXfSaUF4YmIi3nzzTW1s2JtvvomEhIQ295FlGXfddZf297S0NLz22msoKSlBU1MTDh48iIceekj3/qCu9NpXBRj/yzWY9uvPcfFz6/B/H+5vF/A5XW68tkn50Drv4v6wWkxYdHUerBYTdpysCtk9+0hZHdYdOgNJAm4e17YL/OQBShbw6+OhRw/94fOjkGXgsqHJbUZVAUrGNi8tDrIMbDhyJuBznKlvQaPDBUlq2/jJmwi4ggXhIgtuNZu0Jiv+iOZsVQHGlIlS9DibRRtb4k1vEL6nuAYHS+tgtZhw3WjPbG6zSdJGWQWbRS32Z0/yE4hNVMuAdxZVhSxv1TLhmQkB75PbNxr2qAg4nG6tKiEY0d093d4+ENbK0Wv9n5/aJqcW6HdkT3iZzj3hocrRPUF4Qrt/y06MxvCMeLjcMv61J3jJs9gP7q8pm7dL1C0Fe0tqQjZ8E7+/3qXoQq7WUC14EN7qcuNbdQHG3+gfk0lCTmLo5xILLkmxVr+ZfrFAVBBkQQnwLOpN9uqAbLWY8MhsZYzbS+uO4mBp21L9gooG7D9dC7NJ0rbMAEqlzZ/vGIfL81LgcLqxfEMBLvvtF/jdmsNaD4p1B8sxd8UWnKlrQVafKDx05RDYLCZ8cehMwAZ5TpdbK42/dULb98WFM4fAHhWBg6V1+OvWwoCvc/mXSin7bZNyEGX1nK8RmfaAlRJEZJwlRDm63vFkgHK9BzzXhSEBqvKIiLqjTgvCLwTFVY1YvbMYS9Yexv99uB+/+fSQVtLr7eO9p7H4X/shEi3FVU1YsbEAV/5ufZuRSSs3nUBRZRP6REfge2OVLGtKfCR+oH5wXPr5kaDH8/RHBwAAs/PTtPJWYXR2AmwWEyrqW4KOHtp2ohKrdyofWB+cOcTvfWYMVcaVrT8UOAgX+7wz7FHt9q0KYh92WYDADoCWCYuPigi62NJHLUevavBfliqasvkrRQeAFDXTW9nQEjQjtkrNqF07Ml3LvgsiiF4fYHFClmX8c7dSqXDZ0PYj+gYmxyIhOgLNrW5tRrU/FfUtWkf5kZmBM+GSJGF4hjr+6nTwPcuyLGuNujL87AnXFikClZPXK4+Nj7T4DUpEEH42RCY8UNOcrITQjdlcbln7fbrITyYcAG4Zr/wu/fnL40HLtferM7vFdoNAUuIjdS1KNTqcWgZbVKV482TCg+/lPlRahxanG/GRFu0xvnJ0NGcTiymBKg/6q3vUjwfJzDc5PFsrpvp06L9uVLoSTLvceOTve9r8Tn3kVYruW5WSEG3FijvH47W7J2BQSiwqGxx48T9HMGvJetz7xnbc9+YOON0yrh2ZjrUPzcDPrhiMO9R+DK9uPOH3ONceKEN5XQv6xlhxxbC2lT19YqxYOHMwAOCFNf7L53cXVWPriUpEmCWtGR8RdQ4xbtO3MZsIyvWOJwOUqh5vQ0MsqhIRdScMwoPYcKQCC1ftxpK1R7BiYwH+sO4orvjteryx+YT2obPR4cT/++e3AJRO2t8uno3ld4xHfno8qhtbMf/NHWhocWJrQSV+/fFBAMDCK4e0ybbcN2MgIswSvj5eia0BSpW/PHwGXxw6gwizhP+5Oq/dv0dGmLXAJFBJem1zKx786064ZeB7YzP97jkFoM0M//JIBdwBAlbRGKqfn07bQqoa+NY0tQYcTeTpjG4J+DwAtMZsgTLhYjyZv1J0cbtZnYUdrFuyaKp2vVcWXLgyX/mAv2Zfmd8AaGtBJYoqmxBjNbfJAAomk4TxOaJ5WOCSdPEzkJcWF3B2uiCCyP0hgvDKBgdanG5Ikv/ATGSozwSoWigPMYNV7Amvamz1m+UXCzFiMcSXKEeva3ZqPxO+jpbXo77FiWir2W9Hc0BppJcUa0VxVVPABmAut6x1ng8VhAOekvT/BNnLv+NkFVpdMjLskchObL/IITLPpbXNQScPiCz4qKyEdqPcBPE7VxSkdF9UHgQKwkU5erBu7dtPVsLhciPDHokBPot+kiTh2e+PQpzNgr0lNXju04OQZRlut4z31Kz0d0al+3taSJKEy4am4OMHL8aLt45BSpwNRZVN+Gx/GRxONy4Zkowlt47RFnvumJILs0nCxqMV2u+nt1c2KNVFcyZk+10Q/OHkHPRLjEZlgwPvbG3fcHLFRuXx143KCHi+iOj80DLhPuXoLU5Pd3S9RGM2gfvBiagnYRAexNC0OEwekIhbJ2TjvksGYHR2AppaXfjFP/fh2qUbsO5QOR5f/S0q6h3olxiNx68dhlibBVfmp+Jv909BVp8onKppxn1/2YF5r2+D0y3j+tEZmDs5p83/JyMhCjep5eW/95MNl2UZv11zGAAwd3JuwG7OkwcoZbCBgvA/rT+GUzXNyOkbjaduGBHwdY/PSUS01YyK+hYcKPUf3Ilmazl9Awfh8VEWrbQsUOCrzQgPsY9LBNeBgvAKLRPuP0g0mySkqR+wA+07Lq1pRmFlI0wSMD63faZ1VJYd0wclweFyY+GqXe2CzZfXHwMAXDc6o80ii7dxOUo2XWQY/RHfv0leJcCB5OsMwkUWPCnW5jdQEV3Lz9S3+N3OEKwpG6Askoiut75l206XW+tqHygTHm21aN/jQLPCd6r7/kZnJQScIxsZYcZ/TVeaCy774pjfRaSCigY0t7oRFWEOmG32NnOYEoR/cag84DYCUYo+eWBfvxUdCdFWba/iycrAga9oGBeo2SHgKd0PNvov2Ex3wDsID1yOLhaDJg/w/5qS42xYdM0wAMCf1h/Hbz47hM8PluN4RQPivPZWBxJhNuG7YzKx5qEZWHb7RXjyunwsv2M8Xr1zfJsP4tmJ0bh9krK3e/5bO7TJDoCyF3T7ySpYzSatm7kvi9mE+9Vmcn/+8jhanJ5FkJLqJq2JnPi5IaLOIxqztR9Rpvw9UGWdP6IxmzCUQTgR9SAMwoO4qF8fvHPvFPz6+6Ow6JphWP3jqXjyunxtj+Hdr23Tuogvvn54mw+OsTYLfnnDCEgSsPFoBWqbnRiaGodff3+k3w+08y8dCItJwoYjFe2ypGv2l2F3UTUiI0yYf9nAgMcbbF94c6tL6/676Oq8divI3qwWE6aq+1rXH/ZfgluoZoL7BQnCJUnyBM8ByshDzQgXQjVmqwwynkzIDDGLeqt63vMz4tuVuQHK63nmeyMRF2nBN4XVuPu1bdr2hK+Pn8UXh87AbPLMW/fnInUv8zeFVQH37otsn28JsD8ik3vgdG3QXgBi/3CgygWRyW51yX470HuCcP+ZQpPJ87323Xd/tsEBWVYWQvr6meEuhNoXLvb9XZSTEPA5ACXzGRdpwdHyeny2v7Tdv4sFi6FpcQGDeW9jsvsgMcaK2mZnwLFeG9Xu21MGtN8PLmgd0oOUgIuGcUOClFWKOe/Bmthpe/ADZsKVYzlV04z6Fv8dzreoTdkmBlkMum1SP/zfd4cDAF5adwzz3tiu3D6xH2KCvMd4s0dF4JqR6bhrWn9cmZ+qlat6e+zqPOSnx6O22Yn5b+3AHrX0X2SxvzsmI+BrBYDvj8tEarwNpbXNeG+HZ/LD65uUqqYpA/pqPR+IqPNoI8p8FjQdHciEx/tcp0P1+CAi6k4YhBtgMkm4a1p/fLrgEtw8LgvZiVEYkByD//vucK1k1dulQ1OwfO54TOqfiEuGJGP5HeMRbfX/wTQ7MRo3jVP2iS/+l6eTb11zK37xz30AgLun9df23voTbF/4+ztLUNXYisyEKFyZ375U2tclakm6v/JPANqe5ZzE4JnEPjHB53uLGeG+F1NfoUaUib3IgfaEA6GDPNG1fEJu4KAjOzEaL9wyBpERJmw8WoHZS77EuzuK8Yy61eAHE7MDVioASpmxxSShrLZFG6nirbiqEccrGmA2SX4bfPkalBKLCLOEumZn0KBMlB37lhULNosZCWrpu78O6WdCZFYB7+ZsbR8vAsKkWGvQoFebFR5gkUR0wPWdD+4rPjJCy4q+tO5Yu8UJsX8+PyN0KTqgfGgUe/z/c6Cs3b+fPNuAPWojPdFPwZ/+6oJVQZB94aJhXLBu3KLcvSjI/vlQmfCEaKt2vv3NmW9udWn77ycFWVgAlLncP7tisFb1MiIzXss8ny/RVgtW/2QqrhqeBrcM/L/3v0VRZaOWFQ+VxbZZzLj3EuWYfv3xAZyoaEDh2Ua8+fVJAEqjTCLqfKI7eqARZUYy4RkJnoW3fonRAT9fERF1RwzCOyDNHonnbx6NDY9ejs//+1LMnZIb8L4z81Ox6r4peOO/JgbNGgPAf88airhIZY/l/76/F82tLjz3ySGU1iol5A9eMTjo4733hW/2KklvbnVh2RdKqfRdU3N1Zf9EJnzHyao25ZtCYaUS8AXbEw54MtMBR4udp0y46I6eGCzTqjX/ChCEq5nwiUGCcEDZG/7vn12MMdkJqGt24uG/78buompERZjxsxDfoyirWctef+OnJF1kH0dm2kMuTADKBxaxPzrY7OVjatnxgOTAmYKUIB3kQ5WjA96zwtt+j8pD7AcXxCKJv7nyNU2tOFKuvIYxfjqj+7p7Wn9ERZixt6Sm3Vx2se9az35wQZSkrz1Q1i6oX7JW2UJyyZDkoK8xVEO1mqZWbe98sIyOmEZQ3diKumb/i1LlIbrRA54M91Y//Ql2F1XD4XIjOc7Wbua5Pw9dOQSbFl2OD386Hf/8yXRt8e18slnMeOqG4YizWbC7uAYXP7cOLreMqQP76vpezp2cg4v6JaC22YnbX9mCHyz/Go0OFybk9vHbSJGIzr9A5egiE26kO3q617hNcf0gIuopGIR3I8lxNvy/a/MBAH/dWoQJT6/FX9RMzTPfG6lrVM50daTS514Zuyf+uQ+FlY1IjrPh9sn9dB3LwORYJMVa0eJ0t8uUNTqcWrYz1MJCYoggXG85uhhRVh1oRJka+CUFzYQHLuOtbnRoM5Mn6NiLPTA5Fu/ePwWPzB6KCLOEyAgTfvW9ESEDTaBtSbovsQ9Xz35wYUSGUkYbrOO6lglPDpylFwF2eV37DH2wGeFCwEx4nWgSFvixADBYzf6KbLA3UX7cLzE6aDWIkBhjxZ1qNnzZF0e1211u2VPWriOYFy4ekoxoqxknzja2WeA6WFqL93cp5c0Pz/I/bUDQxoIFKEc/or7udHtk0AWYGJtn/3xRpf8FpVBz2QFPxcfWgvY9JLYUeErR9Y6ITIq1YUSmXdciX0elxEXiv73OsyQBj8wequuxVosJf/zhOKTG21BS3YSS6iak2yPxh9suCtgEjzyWLVuG/v37IzIyEuPGjcOGDRsC3veuu+6CJEntvoYPH97mfu+99x7y8/Nhs9mQn5+P1atXd/bLoC5mCVGObiQTbrWYtPfVa0b6bwRJRNRdMQjvZm6ZkI0Vd45HSpwNdeoM7Tum5GDqwND7gwFgltrB+6ujZ1Hb3Iq/bS/Cqu1FkCTgd7eM0V2uJUmSlinb7pOxFR/87VERoYPnUJlw9TXG6+yO3uBw+e20XqllwkOXo/traCX2+g5IjtEV5AFKw6efXDYIXz12ObY+PhM3qmPnQrlI7ZD+jZ8yYC0bbyAIH56pZAEDBeGyLGsNuAYGCcLFAkKwcnRdmXCfx4tMeKD95IJoRuZv5vk3J6sBGAuc75neHxaThJ2F1dos64OltahvcSLOZkFemv5MeKzNghvHZgJQ9hELv/n0MGQZuGZkGkb5mevtTdsTHiATLpqy6enwm90ncEm62y17tg8EWfiY2F/5OdxZWK19ABa0pmwGfg7D5c6pufjfa4dh+qAk/PKGERgbYFydPynxkfjggel46MoheGT2UPzrp9PZEV2HVatWYcGCBXj88cexc+dOXHzxxbj66qtRWOh/9vqLL76I06dPa19FRUVITEzEzTffrN1n8+bNmDNnDubOnYvdu3dj7ty5uOWWW7Bly5ZwvSzqAqIcvV0m3GV8RBkALJkzBj+/Jk8bT0lE1FMwCO+GrhiWis8WXoJffCcfL946Bk9eNzz0g1SDUmIxJDUWDpcbi97bi//3vjI+beHMIVqWXC/Rydu3bFrsBw9Vig6cv0x4XKRFy7D52xd+NsSIMgDIUYOg4qrGdqvwoiTXSAZaSIkLnrn0JbYM7CupabOgcKauBccrGiBJSod6vcSscFFm7au8rgUNDhdMEtAvyB7+YOXooeZ8A4Ez4aH2JwtDUuMgSUo5u+8xbD2hZGvFAoYeyXE2baycGE0luphflNPHcMZW7DP/bH8ZNh2twL/3nMbaA2UwmyT896zQ2VhR1l1W2+J3XrVoyjY4JXRzIVHV4W9BqbLRAadbhiQh6ILSwORYJMYo1S7ezSAdTje2nxSLQaH7EoSbJEmYd/EAvDlvEm6flBP6AT5S4yPxsysG4yeXDdK94NbbvfDCC7jnnnswb948DBs2DEuWLEF2djZefvllv/e32+1IS0vTvrZv346qqircfffd2n2WLFmCK6+8EosWLUJeXh4WLVqEK664AkuWLAnTq6KuELIc3RK64s/b6OwE3HvJQEMZdCKi7oDvWt1UQrQV/zW9P747JtNQqaQkSbh7mtJk6N97T6NFnbv7wGWDDB9DoE7eYk+rv3nIvs5XEG4ySUhQ7+M7psztlrXnD/ahOj0+ElaLCa0uGaeq25Zcb9XRlO18yeoTheQ4G5xuGXu9AmeRBR+aGno+uLe8tHhIkhLs+gugRSOyAcmxQT+oeMrR2z5Hq8ut6/x6gnDfPeHBZ1YLUVbPyDDvbHhDixPbCpSFoOk6OsZ7+8FEZfvFP74pRnldM1776gQA4NIgDdQCGZwah1snZEOWgdte2YKfvP0NAODWCdnayK9gEqKtWvO7k2fbB89iy8AgPUF4YuD+BqLyoG+MNWinYUmScOUwZZHiHzs9HcN3F1ejudWNxBhr0C7t1Ds4HA7s2LEDs2bNanP7rFmzsGnTJl3PsWLFCsycORM5OZ5Fk82bN7d7ztmzZwd9zpaWFtTW1rb5op4lUDl6awcz4UREPRWD8AvQzeOyMGd8NuJsFkwflIQX54zp0J7H4Rl2WC0mVDW2ttnHeuC0GKMUumxWb2M2PZnkPtq4s7bPVd3UCrGoLsrW/TGZJOSo2XvvkuBGh1PLIocjCJckybPA4VVlIErijZSiA8oeYdH13F9zNrHXPS/I7GnAKwivbbtAIQJ7i0nS9ub7kxR3bplwwDPn9aDXfPrNx87C4XKjX2J00M7z/kwflITsxCjUNjsx8en/oKS6CVl9onBzB0sXn7huOMaq3zur2YQbx2bisavzdD9eLDL4G1N2vEJtnqfjNWYHyYSLPfh6+hPcPF7ZQvHhnlMoVBcGRMfxaYOSdO8HpwtXRUUFXC4XUlNT29yempqK0tL2IwB9nT59Gh9//DHmzZvX5vbS0lLDz/nMM8/AbrdrX9nZLEHuaQKWo6uZcBsz2kTUS/Dd7gJkMZvw7E2jsHfxbLw5b1KHOxVbLSaMzlKafnnPRxaZVT0difvozITHh8iEA57mbFU+5eiVail6fKQlZEma6FDtHYTvLKyG0y0jwx4Ztg6roiTduzmbWAgYHWJvsT/DgzRn21usrxt4mpqpPu0zOq3Mq9N2sMUcT3d03yBcXyYc8JTW71THYwGeWfUzhiQbDgpNJgn3XjxA+7vZJGHpD8YiVucMa19RVjPevX8qNv7PZdj9xCz8bs4YvzPlA8lRS9ILfYLn5laXltUO1sFeELPC/e0JP1MbeuuAMC6nDyb2T0RzqxuPvLsbDqcbH+w+BQC4YUxGyMdT7+H7uyfLsq7fx5UrVyIhIQE33HDDOT/nokWLUFNTo30VFRXpO3jqNswBytE9mXB+LCWi3oHvdhTUZHVG8LpDypgnh9Ot7V3N1xGEa5nwAF3Na5v1laMD0Ep5fZ9LlD/31bG/s3+Smgn3mtWslaIb6AR9rrybs8myDLdb1rLYI9WFDyNE8OqbCZdlWdvfOy7EfmoR2J2qbmozw9WzHzx4EC06p1c2OLTHu7yahIXqjg54qgC2HK+ELMuQZRlfHFZ+9mYMMV5CDgC3T8rBgpmDkdM3Gk/fMEJbAOkos0lCVp9oRFmN7V0EvDLYPsHzybONkGWl90GwDv+e5/GUo/uOTCvTMZ5MkCQJz980CtFWM7YUVOLmP23GmboWJMVacUkHzzddWJKSkmA2m9tlqMvLy9tlsn3JsoxXX30Vc+fOhdXa9uc6LS3N8HPabDbEx8e3+aKeJSJAOXqLmBPOIJyIegm+21FQM9U9o+sPn0FzqwsHS2vR6pIRF2nRlTUWe8KrG1vbX3SdLjS3KrfpyoSL5/LJqosse18dGX9/Haq3FhjvSH6uRmbaYTFJOFPXguKqJhScbUCDw4XICJOucmRfIzL9Z8JLqptQVtsCs0kKmWFPjY+E1WyC0y3jdI1nr7FnT3fwoC4xxgpJAtyyZ9/+2foWuGXAJOlbJBmdnQCbxYSK+hYcKqtDQUUDiiqbYDWbMGVgx5qEmUwSFswcgvWPXIZbJ+ob0ddZRB8F39Fix73muOtZCMpQZ943OlztqkzKDFQeAEp1yKJrhgFQ5oMDwJwJ2cxIEQDAarVi3LhxWLNmTZvb16xZg6lTpwZ97Pr163H06FHcc8897f5typQp7Z7zs88+C/mc1LOJhphuWennIrQ6lT9HsBydiHoJvttRUCMz7UiNt6HR4cKXh89g7X5l/viUAX11BQsJ0UpgBrQvIxel6JIExOkoD06I9p9VP1sfujO6kOtTju5wurGzSN2LHYb94EJkhFnLXn9TWKWVog9Lj4elA8GPeK6TZxu18woAO9Q958Mz4kNmbs0mCZnqwop3uXSpzsZqFrNJ25MvStLL1NLopFibrm7kkRFmLeP91y2F+M8BJQs+oX8fxHSwhLw7CZQJPyZGyOlcgImMMGvbB076lLafVpsOptv1b6344aR+WDBzMFLjbbgiLwX3zxio+7F04XvooYfwyiuv4NVXX8WBAwewcOFCFBYW4v777weglInfcccd7R63YsUKTJo0CSNGjGj3bw8++CA+++wzPPvsszh48CCeffZZrF27FgsWLOjsl0NdyPv65vKq4nG4lEkhzIQTUW/BdzsKymSS8N0xynzkx/6xF0s/PwoA+M5offtFzUG6mtc2KWOa4mwWXY3jEmPU5/HJ/J1t0F+OLjLhRZXKmLIdJ6vQ3OpG3xirrq7U55OYb7yzsFrLYI/MNF6KDigLFCKDvulohXa7yPKHKkUXREl6sVemVmRtMxNCB3WeWeHK98TIfnBh7hSlg/K7O4qxUp3JfdWIdN2P786081vV1CYLtF/ts6BnRrig7S/36bReUq18vzIS9J9zSVKqBbb8fCZW3DXB0D53uvDNmTMHS5YswVNPPYUxY8bgyy+/xEcffaR1Oz99+nS7meE1NTV47733/GbBAWDq1Kl455138Nprr2HUqFFYuXIlVq1ahUmTJnX666GuY/G61jtd7TPhHDVGRL1Fz08tUae795IB+HD3KZxSG3b1T4rB1SPSdD8+McaKqsZWnK13AF7b/bTxZDrHcSUEaMwmsq56ytHFmDKH043TNc1t9huHuxP0RTl9sHLTCXxTWIUYq/KrOCKjY0E4AFyWl4LjGwvw+cFyXD1SCVq3afPP9ZVyi73G3pnaYvXP2TrmwifF2nC4rL5dJlzPfnBh2sAkDEiOwfEzDWhwNCHGasb1Ohd9urt0eyTMJgkOpxtn6lu0xYldhdUAgNHZ+r///ZNisKWgss3kAsDTWC9Dx6IJkV7z58/H/Pnz/f7bypUr291mt9vR2Ni+caC3m266CTfddNP5ODzqISxeI8icbjcApUKr2alkwtkdnYh6C77bUUhJsTa8N38qpg9KwshMO37/g7GG9ov2jfE07PJmZDwZ4N0d3XcOtf5u0N5jyo5XNOCLg0rn7UvzUnQdw/kkxpTtKa7B5uNnAQCjDARhvi5XX8O6Q+Vwu2VUNThwuEwpc56QaywT7l2OXqR27Ral1MF4ZoWLIFxtEmYgE24ySXjyuuGwmCRIEvDYNcN0Ne7rCSxmE9LtyrkQ48XKa5txqqYZkgSMMtAZX3T6P+nV36Chxaktbon/DxFRdyFGlAFtM+GNDiUI70jDSyKinoiZcNIl3R6FN+d1rEywj1pGLkaJCUY6o3s/j28QfqZe/xxqABiSFocj5fVYu78Mh8rqYJKASwYn6Xrs+ZSZEIX+STFaJrNPdASGpOgvR/Y1ITcRsTYLKuod2FtSowXAg1JidZXqA0A/NQg/qZY4NzlcWndz0VQsGDFrvFTNxhrp1O3tkiHJ+PLRy+Byy7oy8D1Jdp9oFFc1oaiqEeNzE7FLbYY2JCXO0Og0rdO/Vzm6aKgXF2lhSTkRdTveO8+8x5Q1qUF4NINwIuolmAmnTpeoZcL9N2bTHYSLTLjP84hMeHKcvszfGDXb+JevTwJQ9maLUvdwkiQJ13mVWV81Ik3X3vhArBYTLlYXEz4/WI5Nx5TsupGu72Jf/JGyOrjdMg6XKePokmKtus6R2KcsmoV59icbL43OSIi64AJwoH2H9N3F1QCMlaIDbWfeizFlJWpTtgwDTdmIiMJFkiREaLPCPRNTGh1Kj5hoK3NDRNQ7MAinTqfNCvfNhBstR1efp77FCYdTuXjLsmcOtd5s68z8VHhv/768C0rRhXum9cfE/omYOrAvFl455Jyf7zL1tXy6rxSf7lNm8F5qYN5z/6QYWM0mNDhcKK5qwgG1YVhemr55vL4l0iVqKbuecXa9hdYhXV2oEJnwMdnG5pf3T4qBSVLG/4nfAfGcRpqyERGFk1mbFd6+HJ2ZcCLqLRiEU6frowbPZ332hBttzBYfGaGVslWrJek1Ta1wqPPHk3UG4f2TYnCFGqzaLCbcODZT1+M6gz06An+7bwre/tFkpOjM5Adz2dAUSBJwsLQOp2uakRxnw8WD9QfhEWYTBqcq2fD9p2txsFTJhA9L11cmn9vXU87ucssoVjPhWQkXXka7o0R2v6iqEW63jD1Fyng6o5nwyAgzBiYr36t96mLJIfX7NSSt49saiIg6U4S6L9zlXY7eyiCciHoXBuHU6UQm3Hcvd42WCddXfmYySe06pIsMYHykBZER+i/ez900Gv9zVR7+eu/kC6qLdHKcDbdOyNb+/ujsoYYb3YiZ47uKqrXRWXoz4ZkJUbCYJLQ43fimsAoOpxtmk4Q0NgnTeJej7ympQV2LE7E2C4YaGE8m5Kvfq/3qiLuDpcp/h+n8fhERhZvZTzl6XbNSjh5joC8GEVFPxnc76nQiE+67l1vMCTfS+TohOgKVDQ6t03q5KEU30H0bUErbf3zpQEOP6Sl+ecNITB7QF9FWC2YOM15qP6l/X/xtezG+OFSO42rTOL1ZWovZhAHJMThcVo93txcDAAanxHL2q5d+iUrJ/umaJny4+xQA4OLBSbAYmDgg5KfH45+7TmHfqRrIsoyDp0XlAoNwIuqeRId00ZjN4XRr1/TzURFGRNQT8JMxdbpAo8W0TLiBINz3ucrrOtZ9+0JmNkn47phMXJmf2qHZ59MGKc3dDpbWweF0IzXeppU96zEmOwEAsGp7EQBPtpYUyXE29EuMhlsGXtlYAMCzl9+oEZnK4sjekhqUVDehrsWJCLOEAckx5+14iYjOJ4vPnnAx4STCLKGPzu1pREQ9HYNw6nQJ0WJEmUPr4gx0LAhP8A3Ca401ZaPQ0uyRGJziCbqnDUoyFMz7Nhgbmdnx2ecXqqkD+2p/liTg0qH69+17G5GhnNuiyiatG/6glDhEdCCrTkQUDlpjNrcMt1vG3Fe2AABsFnOHFo6JiHoiflKjTie6mrc43VrzFcD4nHDludRZ4Wrp2pkOlqNTcPfPUEr1I8wS7pySa+ixM3wCSpFZJ48rhqVqf75kcHKHSzDt0RHaWLkVG5Ssej5L0YmoG9NGlLnc2FFYpW17muK1OElEdKHjnnDqdNFWM6wWExxON6oaW7U5oDUGR5QBXrPC1cZs5QbHk5E+3x+XhaFpcYiymg2VogNKc7ZLhybji0NnkJcW1yarToqZw1Lw1HeHY3dRDR6efW6j6SYPSMTR8nocUme6X5STcB6OkIioc3hnwsWIRqvZhBduGd2FR0VEFF4MwqnTSZKyz6ustgVVDQ5kJkTB7ZZR32K8MZunyZuSCS+tUfeEMxN+3o04hzLyF28di0/3laoj01he6EuSJNwxJReYcu7PdUVeKt78ulD7+6T+ief+pEREnURsl3G5ZRwpqwcA/OyKQYgzsCBPRNTTsRydwkJksEUH1LpmJ8T28Pgo/WtBvo3ZCisbAQDZfS6cMWMXAntUBG4Zn617djt13IwhyRjbLwGAsrd8UApnhBNR9yUy4a0ut9ZcNd3OazgR9S7MhFNYJPrMCq9uUv4bFWGGzaJ/jrXW5K2xFS1OF8rUC3h2YvT5PFyiHsNkkrDq3inYf7pWm/FORNRdWbwy4WW1yjU8ldVsRNTLMAinsPAtIxcN1YxmSkUwX93oQElVE2RZ2XPeV72dqDeyWkzaaDgiou7MomXCZZSpE05S41k1RUS9C8vRKSz6eGWwAU8QnhRrLHhO8Cpr95SiR3PfMRERUQ8gytEbWpxag1b2dSGi3oZBOIWFtpdbzYRX1J9bJryu2YkT6liT7ETuJSMiIuoJrGo5enFVEwAgMsKE+EgWZhJR78IgnMJClKNXNp5bObo9KgIi6b2npAYAkNWH+8GJiIh6gsgIpQ/MibPKQnpafCSr2Yio12EQTmHhvZcbAM6ITHissRI0s0nSRpp9c7IKAJuyERER9RTRViUIP65Ws6XZWYpORL0Pg3AKC89e7rZ7wjsywmpgciwA4MRZZU94XhpHMhEREfUEWhB+RpkRnsb94ETUCzEIp7Dw3RN+LkH4qCx7m79zLBMREVHPIMrR65qdAIA0zggnol6IQTiFRZ8Y0R3dAVmWzykInzEkWfvzgOQYLctORERE3ZvIhAtpHE9GRL0Qg3AKiz5qoOxwutHocHn2hHcgCJ8+KAlDUpWS9Lum5p63YyQiIqLO1S4IZyaciHohzoSgsIi2mmG1mOBwulFQ0YBWlwzA+JxwALCYTVg9fxqKq5owlPvBiYiIegxRji6wMRsR9UbMhFNYSJKk7Qs/VFoHAIiPtMBmMQd7WEAxNgsDcCIioh4m2to2/5POIJyIeiEG4RQ2YkzZ7uJqAEAm53sTERH1Kt7l6GaThKRY7gknot6HQTiFTT91nvfGoxUAgKw+3AdGRETUm3iXo6fG2WA2SV14NEREXaPTgvCnn34aU6dORXR0NBISEnQ9RpZlPPnkk8jIyEBUVBQuvfRS7Nu3r7MOkcJsQHIMAOD4mQYAnqCciIiIeocYmycIz+LnACLqpTotCHc4HLj55pvx4x//WPdjnnvuObzwwgv4wx/+gG3btiEtLQ1XXnkl6urqOuswKYz6J8W0+fuITM73JiIi6k3E1jSAFXFE1Ht1WhC+ePFiLFy4ECNHjtR1f1mWsWTJEjz++OP43ve+hxEjRuD1119HY2Mj3n777c46TAqj8bmJbf4+MjOhaw6EiIgMWbZsGfr374/IyEiMGzcOGzZsCHr/lpYWPP7448jJyYHNZsPAgQPx6quvav++cuVKSJLU7qu5ubmzXwp1sb4xnj3gWQkMwomod+o2I8oKCgpQWlqKWbNmabfZbDbMmDEDmzZtwn333ef3cS0tLWhpadH+Xltb2+nHSh2T2zca/RKjUVjZiKw+URiYHBP6QURE1KVWrVqFBQsWYNmyZZg2bRr+9Kc/4eqrr8b+/fvRr18/v4+55ZZbUFZWhhUrVmDQoEEoLy+H0+lsc5/4+HgcOnSozW2RkeyUfaHzzoSPzErougMhIupC3SYILy0tBQCkpqa2uT01NRUnT54M+LhnnnkGixcv7tRjo/NDkiT8bs4YvPzFUfz40kGQJDZjISLq7l544QXcc889mDdvHgBgyZIl+PTTT/Hyyy/jmWeeaXf/Tz75BOvXr8fx48eRmKhUQOXm5ra7nyRJSEtL69Rjp+7HajHh/747HMfONODSocldfThERF3CUDn6k08+6bd8zPtr+/bt53RAvoGZLMtBg7VFixahpqZG+yoqKjqn/z91rnE5ffDKnRMwLqdPVx8KERGF4HA4sGPHjjZVagAwa9YsbNq0ye9jPvjgA4wfPx7PPfccMjMzMWTIEDz88MNoampqc7/6+nrk5OQgKysL3/nOd7Bz586gx9LS0oLa2to2X9QzzZ2SiyevH44IM4f0EFHvZCgT/sADD+DWW28Neh9/q916iNXw0tJSpKena7eXl5e3y457s9lssNk4Y5KIiOh8q6iogMvl8lulJirYfB0/fhwbN25EZGQkVq9ejYqKCsyfPx+VlZXavvC8vDysXLkSI0eORG1tLV588UVMmzYNu3fvxuDBg/0+LyvfiIjoQmEoCE9KSkJSUlKnHEj//v2RlpaGNWvWYOzYsQCUFfj169fj2Wef7ZT/JxEREYVmpErN7XZDkiS89dZbsNvtAJSS9ptuugkvvfQSoqKiMHnyZEyePFl7zLRp03DRRRfh97//PZYuXer3eRctWoSHHnpI+3ttbS2ys7PP9aURERGFXafVARUWFmLXrl0oLCyEy+XCrl27sGvXLtTX12v3ycvLw+rVqwEoF/gFCxbgV7/6FVavXo1vv/0Wd911F6Kjo3Hbbbd11mESERFRAElJSTCbze2y3sGq1NLT05GZmakF4AAwbNgwyLKM4uJiv48xmUyYMGECjhw5EvBYbDYb4uPj23wRERH1RJ0WhP/iF7/A2LFj8cQTT6C+vh5jx47F2LFj2+wZP3ToEGpqarS/P/roo1iwYAHmz5+P8ePHo6SkBJ999hni4uI66zCJiIgoAKvVinHjxmHNmjVtbl+zZg2mTp3q9zHTpk3DqVOn2iy6Hz58GCaTCVlZWX4fI8sydu3a1WY7GhER0YVKkmVZ7uqDOJ9qa2tht9tRU1PDVXIiIuoWevK1adWqVZg7dy7++Mc/YsqUKfjzn/+M5cuXY9++fcjJycGiRYtQUlKCN954A4DScG3YsGGYPHkyFi9ejIqKCsybNw8zZszA8uXLAQCLFy/G5MmTMXjwYNTW1mLp0qX4y1/+gq+++goTJ07UdVw9+ZwSEdGFx8h1qduMKCMiIqLuZ86cOTh79iyeeuopnD59GiNGjMBHH32EnJwcAMDp06dRWFio3T82NhZr1qzBT3/6U4wfPx59+/bFLbfcgl/+8pfafaqrq3HvvfeitLQUdrsdY8eOxZdffqk7ACciIurJmAknIiLqZLw2nX88p0RE1J0YuS5xQCMRERERERFRmDAIJyIiIiIiIgoTBuFEREREREREYcIgnIiIiIiIiChMLrju6KLPXG1tbRcfCRERkUJcky6wXqhditd7IiLqToxc6y+4ILyurg4AkJ2d3cVHQkRE1FZdXR3sdntXH8YFgdd7IiLqjvRc6y+4EWVutxunTp1CXFwcJEk65+erra1FdnY2ioqKOAJFJ54zY3i+jOM5M47nzLjzec5kWUZdXR0yMjJgMnEn2PlwPq/3/P0wjufMOJ4z43jOjOH5Mq6rrvUXXCbcZDIhKyvrvD9vfHw8f5gN4jkzhufLOJ4z43jOjDtf54wZ8POrM673/P0wjufMOJ4z43jOjOH5Mi7c13ouxxMRERERERGFCYNwIiIiIiIiojBhEB6CzWbDE088AZvN1tWH0mPwnBnD82Ucz5lxPGfG8Zz1HvxeG8dzZhzPmXE8Z8bwfBnXVefsgmvMRkRERERERNRdMRNOREREREREFCYMwomIiIiIiIjChEE4ERERERERUZgwCCciIiIiIiIKk14fhC9btgz9+/dHZGQkxo0bhw0bNgS9//r16zFu3DhERkZiwIAB+OMf/ximI+0+jJyzf/zjH7jyyiuRnJyM+Ph4TJkyBZ9++mkYj7Z7MPpzJnz11VewWCwYM2ZM5x5gN2T0nLW0tODxxx9HTk4ObDYbBg4ciFdffTVMR9s9GD1nb731FkaPHo3o6Gikp6fj7rvvxtmzZ8N0tF3ryy+/xHXXXYeMjAxIkoT3338/5GP4/t+z8XpvHK/3xvBabxyv9cbxWm9Mt73ey73YO++8I0dERMjLly+X9+/fLz/44INyTEyMfPLkSb/3P378uBwdHS0/+OCD8v79++Xly5fLERER8rvvvhvmI+86Rs/Zgw8+KD/77LPy1q1b5cOHD8uLFi2SIyIi5G+++SbMR951jJ4zobq6Wh4wYIA8a9YsefTo0eE52G6iI+fs+uuvlydNmiSvWbNGLigokLds2SJ/9dVXYTzqrmX0nG3YsEE2mUzyiy++KB8/flzesGGDPHz4cPmGG24I85F3jY8++kh+/PHH5ffee08GIK9evTro/fn+37Pxem8cr/fG8FpvHK/1xvFab1x3vd736iB84sSJ8v3339/mtry8PPmxxx7ze/9HH31UzsvLa3PbfffdJ0+ePLnTjrG7MXrO/MnPz5cXL158vg+t2+roOZszZ478v//7v/ITTzzR6y7MRs/Zxx9/LNvtdvns2bPhOLxuyeg5e/755+UBAwa0uW3p0qVyVlZWpx1jd6Xnosz3/56N13vjeL03htd643itN47X+nPTna73vbYc3eFwYMeOHZg1a1ab22fNmoVNmzb5fczmzZvb3X/27NnYvn07WltbO+1Yu4uOnDNfbrcbdXV1SExM7IxD7HY6es5ee+01HDt2DE888URnH2K305Fz9sEHH2D8+PF47rnnkJmZiSFDhuDhhx9GU1NTOA65y3XknE2dOhXFxcX46KOPIMsyysrK8O677+Laa68NxyH3OL39/b8n4/XeOF7vjeG13jhe643jtT48wvX+bzlvz9TDVFRUwOVyITU1tc3tqampKC0t9fuY0tJSv/d3Op2oqKhAenp6px1vd9CRc+brt7/9LRoaGnDLLbd0xiF2Ox05Z0eOHMFjjz2GDRs2wGLpfb+iHTlnx48fx8aNGxEZGYnVq1ejoqIC8+fPR2VlZa/YK9aRczZ16lS89dZbmDNnDpqbm+F0OnH99dfj97//fTgOucfp7e//PRmv98bxem8Mr/XG8VpvHK/14RGu9/9emwkXJElq83dZltvdFur+/m6/kBk9Z8Jf//pXPPnkk1i1ahVSUlI66/C6Jb3nzOVy4bbbbsPixYsxZMiQcB1et2Tk58ztdkOSJLz11luYOHEirrnmGrzwwgtYuXJlr1khB4yds/379+NnP/sZfvGLX2DHjh345JNPUFBQgPvvvz8ch9oj8f2/Z+P13jhe743htd44XuuN47W+84Xj/b/3Lb2pkpKSYDab260clZeXt1v9ENLS0vze32KxoG/fvp12rN1FR86ZsGrVKtxzzz34+9//jpkzZ3bmYXYrRs9ZXV0dtm/fjp07d+KBBx4AoFx0ZFmGxWLBZ599hssvvzwsx95VOvJzlp6ejszMTNjtdu22YcOGQZZlFBcXY/DgwZ16zF2tI+fsmWeewbRp0/DII48AAEaNGoWYmBhcfPHF+OUvf3nBZ/qM6u3v/z0Zr/fG8XpvDK/1xvFabxyv9eERrvf/XpsJt1qtGDduHNasWdPm9jVr1mDq1Kl+HzNlypR29//ss88wfvx4REREdNqxdhcdOWeAsiJ+11134e233+51e1CMnrP4+Hjs3bsXu3bt0r7uv/9+DB06FLt27cKkSZPCdehdpiM/Z9OmTcOpU6dQX1+v3Xb48GGYTCZkZWV16vF2Bx05Z42NjTCZ2l4CzGYzAM+KL3n09vf/nozXe+N4vTeG13rjeK03jtf68Ajb+/95bfPWw4g2/ytWrJD3798vL1iwQI6JiZFPnDghy7IsP/bYY/LcuXO1+4uW9QsXLpT3798vr1ixoteOLNF7zt5++23ZYrHIL730knz69Gntq7q6uqteQtgZPWe+emPHVKPnrK6uTs7KypJvuukmed++ffL69evlwYMHy/PmzeuqlxB2Rs/Za6+9JlssFnnZsmXysWPH5I0bN8rjx4+XJ06c2FUvIazq6urknTt3yjt37pQByC+88IK8c+dObcwL3/8vLLzeG8frvTG81hvHa71xvNYb112v9706CJdlWX7ppZfknJwc2Wq1yhdddJG8fv167d/uvPNOecaMGW3u/8UXX8hjx46VrVarnJubK7/88sthPuKuZ+SczZgxQwbQ7uvOO+8M/4F3IaM/Z95644VZlo2fswMHDsgzZ86Uo6Ki5KysLPmhhx6SGxsbw3zUXcvoOVu6dKmcn58vR0VFyenp6fLtt98uFxcXh/mou8a6deuCvjfx/f/Cw+u9cbzeG8NrvXG81hvHa70x3fV6L8kyaxGIiIiIiIiIwqHX7gknIiIiIiIiCjcG4URERERERERhwiCciIiIiIiIKEwYhBMRERERERGFCYNwIiIiIiIiojBhEE5EREREREQUJgzCiYiIiIiIiMKEQTgRERERERFRmDAIJyK/Lr30UixYsKCrD4OIiIg6Ea/3ROHHIJyIiIiIiIgoTCRZluWuPggi6l7uuusuvP76621uKygoQG5ubtccEBEREZ13vN4TdQ0G4UTUTk1NDa6++mqMGDECTz31FAAgOTkZZrO5i4+MiIiIzhde74m6hqWrD4CIuh+73Q6r1Yro6GikpaV19eEQERFRJ+D1nqhrcE84ERERERERUZgwCCciIiIiIiIKEwbhROSX1WqFy+Xq6sMgIiKiTsTrPVH4MQgnIr9yc3OxZcsWnDhxAhUVFXC73V19SERERHSe8XpPFH4MwonIr4cffhhmsxn5+flITk5GYWFhVx8SERERnWe83hOFH0eUEREREREREYUJM+FEREREREREYcIgnIiIiIiIiChMGIQTERERERERhQmDcCIiIiIiIqIwYRBOREREREREFCYMwomIiIiIiIjChEE4ERERERERUZgwCCciIiIiIiIKEwbhRERERERERGHCIJyIiIiIiIgoTBiEExEREREREYUJg3AiIiIiIiKiMPn/nocDWvNq9/UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,4))\n", + "plt.subplot(121)\n", + "plt.plot(t_star.numpy().flatten(),eqn.flatten(),label=r'$-\\beta x^3$')\n", + "plt.plot(t_star.numpy().flatten(),N_hid_eqn.flatten(),label= r'$\\mathcal{N}(x,x^2,x^3)$')\n", + "plt.legend()\n", + "plt.xlabel('t')\n", + "\n", + "plt.subplot(122)\n", + "plt.plot(t_star.numpy().flatten(),np.abs(eqn.flatten()-N_hid_eqn.flatten()))\n", + "plt.xlabel('t')\n", + "plt.ylabel('Error')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/Burgers_Equation_HPM.ipynb b/examples/hidden_physics/Burgers_Equation_HPM.ipynb new file mode 100755 index 0000000..dc0f48e --- /dev/null +++ b/examples/hidden_physics/Burgers_Equation_HPM.ipynb @@ -0,0 +1,1456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e90f9c12", + "metadata": {}, + "source": [ + "# Hidden Physics Model (HPM) in TorchPhysics\n", + "\n", + "HPM is deep learning approach, introduced in [1], for discovering nonlinear partial differential equations from scattered and potentially noisy observations in space and time. The approach uses two deep neural networks to approximate the unknown solution and nonlinear dynamics. \n", + "\n", + "\n", + "The general form of a nonlinear PDE considered is \n", + "$\\frac{\\partial}{\\partial t} u(x,t) = \\mathcal{N}(t,x,u,\\partial_x u(x,t), \\partial_x^2 u(x,t), ...)$\n", + "Where $\\mathcal{N}$ is a nonlinear function of time t, space x, solution u and its derivatives. The first network approximates u(x,t) and acts as a prior on the unknown solution and to access numerical differentiations using automatic diverentiation. The second network represents the nonlinear dynamics $\\mathcal{N}$ and helps to uncover that govern equation of a given spatiotemporal data-set. The two networks can be trained together or alternativly in a sequential manner, which improves the results and reduces training time. Once the HPM-Model of $\\mathcal{N}$ is trained, it can be used to e.g. extrapolate in time or to new initial conditions using e.g. the PINN methodology. \n", + "\n", + "Following the example of [1] for discovering the Burger Equation is introduced.\n", + "\n", + "The Burgers Equation used is in one space dimension with the given initial condition:\n", + "\n", + "$$\n", + "\\begin{cases}\n", + "\\frac{\\partial}{\\partial t} u(x,t) &= -u(x,t)\\partial_x u(x,t) + 0.1 \\partial_x^2 u(x,t) &&\\text{ on } [-8,8]\\times [0,10], \\\\\n", + "u(x, 0) &= -sin(\\pi x/8) &&\\text{ on } [-8,8]\\times \\{0\\}\\\\\n", + "\\end{cases}\n", + "$$\n", + "\n", + "A periodic boundary condition is used.\n", + "\n", + "\n", + "\n", + "[1] https://arxiv.org/pdf/1801.06637.pdf" + ] + }, + { + "cell_type": "markdown", + "id": "0f75aa20", + "metadata": {}, + "source": [ + "## Importing Libraries " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6ce46b77", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" \n", + "import torchphysics as tp\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "import scipy.io\n", + "import time\n", + "from matplotlib import pyplot as plt\n", + "from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "181dc808", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__Python VERSION: 3.7.16 (default, Jan 17 2023, 22:20:44) \n", + "[GCC 11.2.0]\n", + "__pyTorch VERSION: 1.13.1\n", + "__CUDA VERSION\n", + "__CUDNN VERSION: 8500\n", + "__Number CUDA Devices: 1\n", + "__Devices\n", + "Active CUDA Device: GPU 0\n", + "Available devices 1\n", + "Current cuda device 0\n" + ] + } + ], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "import torch\n", + "import sys\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "RANDOM_SEED = 2308\n", + "np.random.seed(RANDOM_SEED)\n" + ] + }, + { + "cell_type": "markdown", + "id": "eea231db", + "metadata": {}, + "source": [ + "### Example-1 " + ] + }, + { + "cell_type": "markdown", + "id": "47d2ef9b", + "metadata": {}, + "source": [ + "### Data Generation " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c88bdd46", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "from scipy.integrate import odeint\n", + "\n", + "\n", + "def solve_burgers_eqn(u_initial,xmin,xmax,tfinal,N_x=256,dt=0.01,v=0.01/np.pi):\n", + " dx = (xmax - xmin)/N_x\n", + " x = np.arange(xmin,xmax,dx) \n", + " kappa = 2.0*np.pi*np.fft.fftfreq(N_x,dx)\n", + " tf = 1.0\n", + " t = np.arange(0.0,tfinal + dt,dt)\n", + " \n", + " def solve_u_spectral(u,t,kappa,v):\n", + " uhat = np.fft.fft(u)\n", + " d_uhat = 1j*kappa*uhat\n", + " dd_uhat = -(np.power(kappa,2))*uhat\n", + " du = np.fft.ifft(d_uhat) \n", + " ddu = np.fft.ifft(dd_uhat) \n", + " du_dt = v*ddu - u*du \n", + " return du_dt.real\n", + " \n", + " u_sol = odeint(solve_u_spectral,u_initial,t,args=(kappa,v))\n", + " \n", + " return (u_sol,x,t)\n", + " \n", + "def sample_in_t(u,t,step):\n", + " u_step = []\n", + " t_step = []\n", + " for i in range(len(u)):\n", + " if i%step==0:\n", + " u_step.append(u[i])\n", + " t_step.append(t[i])\n", + " return np.array(u_step), np.array(t_step)\n", + " \n", + "#------------ u(x,0) = exp(-(x+2)^2)--------------\n", + "N_x = 256 \n", + "dt = 0.001 \n", + "v = 0.1 \n", + "tfinal = 10.0 \n", + "xmin = -8.0 \n", + "xmax = 8.0 \n", + "dx = (xmax - xmin)/N_x\n", + "x = np.arange(xmin,xmax,dx)\n", + "uini = np.exp(-(x + 2.0)**2) \n", + "\n", + "\n", + "u,x,t = solve_burgers_eqn(uini,xmin,xmax,tfinal,N_x,dt,v)\n", + "u_sample, t_sample = sample_in_t(u,t,100)\n", + "\n", + "data_dict = {'usol': u_sample.T,'x':x,'t':t_sample}\n", + "\n", + "savepath = r'burgers_data' \n", + "if not os.path.exists(savepath):\n", + " os.makedirs(savepath)\n", + " \n", + "filesave = savepath + '/burgers_exp.mat'\n", + "scipy.io.savemat(filesave,data_dict)\n", + "\n", + "\n", + "#------------ u(x,0) = -sin(pi x/8) --------------\n", + "N_x = 256 \n", + "dt = 0.001 \n", + "v = 0.1 \n", + "tfinal = 10.0 \n", + "xmin = -8.0 \n", + "xmax = 8.0 \n", + "dx = (xmax - xmin)/N_x\n", + "x = np.arange(xmin,xmax,dx)\n", + "uini = -np.sin(np.pi*x/8.0) \n", + "\n", + "\n", + "u,x,t = solve_burgers_eqn(uini,xmin,xmax,tfinal,N_x,dt,v)\n", + "u_sample, t_sample = sample_in_t(u,t,50)\n", + "\n", + "data_dict = {'usol': u_sample.T,'x':x,'t':t_sample}\n", + "\n", + "filesave = savepath + '/burgers_sine.mat'\n", + "scipy.io.savemat(filesave,data_dict)\n" + ] + }, + { + "cell_type": "markdown", + "id": "5858b0e8", + "metadata": {}, + "source": [ + "### Reference Data " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "3c380e9d", + "metadata": {}, + "outputs": [], + "source": [ + "fileload = savepath + '/burgers_sine.mat'\n", + "data_sine = scipy.io.loadmat(fileload)\n", + "t = data_sine['t'].flatten()[:,None]\n", + "x = data_sine['x'].flatten()[:,None]\n", + "TT, XX = np.meshgrid(t,x)\n", + "X_star = np.hstack((TT.flatten()[:,None], XX.flatten()[:,None]))\n", + "u_soln = np.real(data_sine['usol'])\n", + "u_soln_v = u_soln.flatten()[:,None]\n", + "u_tensor = torch.tensor(u_soln_v,dtype=torch.float32)\n", + "X_tensor = torch.tensor(X_star,dtype=torch.float32)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cda6fadf", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x.flatten()\n", + "y_lbl = t.flatten()\n", + "xpoints = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints.append(len(x_lbl)-1)\n", + "ypoints = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints.append(len(y_lbl)-1)\n", + "x_label_list = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints]))\n", + "y_label_list = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fcaced98", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE3CAYAAADRx/TEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW3UlEQVR4nO29eXwV1d0//r65N5tIYpVCoEYEH8si1iUom1urggvaxQVrG5cilqIioq2itaK2UluriAs8+EVRUaR9kGorpaAVXAAVCFYtoq0oiIkUfxhEIcnczO+P3JmcOfM529y5Nwk577zmdWfO+ZwzZ27uzHs+2zkJ13VdWFhYWFhY7OUoaOsBWFhYWFhY5AOW8CwsLCwsOgUs4VlYWFhYdApYwrOwsLCw6BSwhGdhYWFh0SlgCc/CwsLColPAEp6FhYWFRaeAJTwLCwsLi04BS3gWFhYWFp0ClvAsLCwsLDoFLOFZWFhYWHQKWMKzsLCwsOgUsIRnYWFhYdEpYAnPwiImXHvttUgkEli3bl2obvbs2UgkEnjiiSfaYGQWFhaAJTwLi9hQU1ODwsJCHHbYYaE6jwSPPPLIPI/KwsLCgyU8C4uYsH79egwcOBDFxcWhurVr16KkpAT9+/dvg5FZWFgAlvAsLGLBpk2bsGPHDhx99NGhuqamJrz11lsYNGgQkslkG4zOwsICsIRnYRELPJPlUUcdFap755130NDQYM2ZFhZtDEt4FhYxoKamBgBIDW/t2rUArP/OwqKtYQnPwiIGrF+/HolEAkcccUSo7u9//zsAS3gWFm2NhOu6blsPwsKio6Nfv37YuXMnamtrA+WbN2/GgAEDsHv3btTX16Nr165tNEILCwur4VlYxIDi4mJ89tln+O9//+uXffLJJzj33HPx1Vdf4ZBDDrFkZ2HRxrCEZ2ERA0499VQ0NTVhyJAhuOqqqzBmzBgMHDjQz8mz5kwLi7aHJTwLixhw6623Yty4cdi1axfmzp2LTz/9FI8//jguvPBCAJbwLCzaA6wPz8LCwsKiU8BqeBYWFhYWnQKW8CwsLCwsOgUs4VlYWFhYdAq0C8K777770KNHDySTSSQSCUyZMiVQ39zcjJNOOsmv32+//fDMM88o+/35z3+O4uJiJBIJFBcX4/rrr8/VJVhYWFjstXjppZdw1llnoVevXkgkEvjzn/+sbLNixQpUVVWhpKQEffv2xaxZs0IyCxcu9CdcHzhwIBYtWpSD0beiXRDejh07cOihh+Laa68l688880ysWLEC1157LZ5++mmUlZXhBz/4AT755BNhn7Nnz8Zdd92Fk046Cc899xxOOukk/O53v8OcOXNydRkWFhYWeyW+/PJLHHHEEbj//vu15Ddt2oQzzjgDxx9/PGpqanDjjTdi4sSJWLhwoS+zatUqjBkzBtXV1XjzzTdRXV2N888/H6+99lquLqP9RWkmEgnccMMNmDZtGoAW7a6wsBAjR47E3/72NwDAzp07UV5ejgsvvFC4oOZBBx2E3bt3BxKBu3Xrhi5duuCjjz7SGktzczM++eQTdO3aFYlEIssrs7CwsFDDdV188cUX6NWrFwoK5DrJnj170NjYGOkc/DOtuLiYXNqKRyKRwKJFi/C9731PKHP99dfj2WefxYYNG/yy8ePH480338SqVasAAGPGjMHOnTv95zoAnHbaafja176G+fPnG16RHlI56TVGvPTSS2hubsZFF13kl5WVlaGiogKrV68Wtvvkk08wevToQNlxxx2Hv/71r8I2O3fuxM6dO/3j2tpaHHvssVmM3sLCwiIatmzZggMPPFBYv2fPHny9tBS7IvS97777YteuYMtbbrkFU6dOjdBbGKtWrcLIkSMDZaNGjcKcOXPQ1NSEwsJCrFq1Ctdcc01IZvr06bGMgUK7J7yNGzcCaJmrkMV+++0X0N54pNNpfOMb3wiUfeMb30A6nRa2Ofvss7FixYpQ+cQtV2CfspavKol06DPFlRX4xw5T1xxqVwAHAELtk2hGMlNHnY+XSYXOm2bqxOf1yliZ1mvItM98X0nH+3SRbKlCKvNVJryv1AHA7oM5ZssdTqaZO5b1Qx3L+vFkdfqhxsSWeXdLQWa/GEBZZtsfQE9gzzeATV0Oxrvoh3dwGN7BQLyL/tj8//WG80EZsBXApwDqAXyZ2ajvhL0zU9xnUlDO1ovqqD50+o9bJpkxLKWCP6ZEKo1kZj+Z+aGlUpnfJ1NXkGy9x1q6lvyGA/dFM9cuHbhvqE9aRnZeXoY9b2ud6HzOzt14oPJe5VR0jY2N2AXg52j5KeqiAcDvd+3Cli1bUFZW5pfraHe6qKurQ48ePQJlPXr0gOM42L59O3r27CmUqauri20cPNo94XngVXsdS6xpm2effTag4X3xxRctDtWyYpQICc9BmLC8zwKiriCzX4AkWkwKqYwrNel/pplnRSJT1vrZ0j6JJNyMDDJ1kNS5zHkL/LIWGa8uETgPAKTSmWMngaSTuWl5wpMRFUU6orpi5pPqxwFQxNUVEf0UMp+i8YiIM8WUeeXsmq3eF1qc2YoyWxcAJUBRGbBvlwLsg0IUoxgFKEMS+yLRVAZ0KQP2AVCKlqfOnkzbgszmXQ9/LnZf9hmXTFz9SevEhJfw9x2/zPtsRgvxeYTnkVoBQzYugi99FLFQddS93TJceV3U9uLnRst9putG2RdAiZZkCwozn2VlZQHCixv8+L3nL1tOyeTSfdTuCc/T7DZs2BCYnqm+vh7l5eXCdslkElu2bAmUffLJJ9IVp/kfAEt+7R3JwFNav06rb0fcPsETCAueVCjoDI3qO5t+RNqdznk9UtSRZZB2uN+dw+2bnEsEHXnTPrOB7FxOooX0nFQr6WWQdpK+JpdPpJEU3iuyurYG+26hK59rVFRUhDS1bdu2IZVK4YADDpDK8FpfnGgXUZoynHDCCSgoKMDjjz/ul+3atQt1dXUYOnSosF2vXr2wcuXKQNmrr74aMnPmCkmtpzTVzoy4UlnehLL2KYn5V/o80rn0fMioCE3WJovzCv+HFLHpjk2kocpeNOKWkY1LBi2Z8Ito2ml5NDtUXVr84qqDtOSx32pf6RhIoUVr093yQXjDhg3DsmXLAmVLly7F4MGDUVhYKJUZPnx4zsbVLgivrq4OCxYswIIFCwC0aHMLFizAqlWrUFBQ4EdoXn/99Vi0aBEGDRqEgoIC/P73v/f7OOSQQzBs2DD/+KabbsJ///tfnH766Vi8eDFOP/10bN++Hb/61a/yfn1thahkKCPrZDQeb4XOw5Mato5WZvKAFpk6eTlvnyKrdLjM+36k2oCKZPhz6yAfLxD5IEcJQloyVMTVfgxYFIk6MRFrKsJmil27dmH9+vVYv349gJa0g/Xr12Pz5s0AgClTpgQCC8ePH4+PPvoIkydPxoYNG/Dwww9jzpw5uO6663yZq6++GkuXLsWdd96Jd999F3feeSeef/55TJo0KcII9dAufhFPPfVUIFrnmWeewTPPPINDDjkE//73v/Hcc8/hO9/5Du666y40NzejvLwc//d//4devXr5bT777LOA7fenP/0p3nvvPdx///1YsmQJioqK8POf/xxjx47N67XFgVyYUqg+pdql0yys80E1lxGUjgYWtznTFKKHO/usUlwH+eClSI0vSxH7KniyUnOigYzOuWKsa3aSKIhgznSQzNrawSONVOjlrz2aNj3NTRdRboU1a9bg29/+tn88efJkAMDFF1+MuXPnora21ic/AOjTpw8WL16Ma665Bg888AB69eqFGTNm4JxzzvFlhg8fjqeeegq//OUvcfPNN+OQQw7BggULMGTIkAgj1EO7y8NrT/Dy/X5ePxldDINWTJ3aYRmZU5vuXzYu/pxsBJpwXEyEJhWwEvLfUZGTouATUZ1XLgsyiXpe71N2XqqchxehWYKWYJVytERp9gKa+gD/Ke+Nf2EganAk1uMo/AsD8cHWQ4APS4APAWzPbLvQEriyR3Eu3c82D0SJUscEr3gRmF6UZiqNZMa/l2LK/LpQpKb4964KPBFHQ+vf37Jzm4zL2fkV7i7/Herr66VBJd7zaTZaYqF08RWAywFl/3sj2oVJc29C1Le/ON8ao/oPyb6IgJXI/ru4zJmmfcct442FMnPq9J1rk2UufW5RzZoRf5KeHy8OxOmba0/m0nyYNPcWWMLbi2BqpqRMQLx2F6iTPbTybc6UkaBMU1Npd9S508xGjYs51rbGsWTJa78yQhRpvjoEJDOjRiUp0/+fVF5MSKaBKzJyo+o6WqAKC5OAFVPz594GS3hZIA5NSkY69DnNSC1XffiI8W0+MkHGrdlQBCk6Zttm2mkFrKjKVT4+0/51ZUyJM+s+wzlXzRLikwWuxBUEwkPWb67OaQJLePqwhNeBYeqkj5wqQQSsJKKSWhwPSw86Jk6dB7ioH1X/mibNNJIt2oupSVNFjlG1O5GMzrlVMibkHGgXNrRR5GYK0yjOjqjpWZOmPizhtRFMycdUA4sjYi0W/11OtAJJXVxJ7pSJU1c704GoP10Tpmwc2ZqJTfuUIaqmyoDy48nIMI4UgGyIz7RttiTbHvPw2iss4eUB+QxjpojUOJk9Tv+dqbzMnEkh2wCLKL5E0fjTYc039DDT1cZUpJBLDS5Ov5wMZF9mfjwLq+GZoDNfe7tDrL41BUx9hyTi1Np05T3kIkiG6pvSuNgctij/HlOthz+nqm+T/DdZ33nrK9GanmCIdDrppydoyRN5dLo5fO0xBw9omZq11EBeI6N2r4XV8GJCe9TiYglwycZ/l29zpmlfqrw73evkvlJ2JvzWvlLm/cfpw9M9b776UsALXNH14+XKH6ebfqB7rlz4CK1JUx+W8PIMXcLR9cHFQbQkMcaZf8ci1+bMbAMxqLE4zCbr20RBFml5fD8mfq/2SmS68pKcO9aPJyNBXV9dPnx0+crVsyZNfVjC6yTQNVfKJowOQBTcISrLhWamOqesTndWFZFWJko8J/oJPCB1Ca29aXem8qZWgAjIRvuj5Tqmj9CmJejDEl4OEbeWFkU71A1Y0Z0wWmrO1H6Tj6EPqs6EDCjokqBJnzI5XZOmrp9PJEPVmX5HcZCoVI7Jx4shAT2bSM2ORnxWw9OHJbwOimyCTrSJWGfCaCArX42xOZOS19HuKHlTc6HmQ598yeATrGUmTZ2xUJ8yGdG5ZfI58s/pfu9x+PFy0SaOtnHC+vD0YQmvDaFLWirNLm4NUdt/Z2rOlEU/UvLsfq41ERkJmvjbVF+xjklTR2ttS81Zt98o5Kk5d2Y2SelRAkyymVEl17OxWJOmPjoz2UdGviIyszlPFBI09t/FLZdNv7nyNZloXCZyKm3OQevdye6L5Ch5qp2sTHYe3T6itCXlkqG3rLST8ldPkJ+iNc2gvaYSxImSJFAanqFNiCYX0dJp9gJYDa+DIcr0YFG0Rl8uiv9OV0430ITSEGV9yDRKk+nIRNeha35FywNX+Yavex4TX56qXa61u0hlZvNqAvGlLcSlwbWF/y+VMt86KzrxpecO2RCM2XkI02OE85DjzcZ/R9XrmPr4/uIw0ekQgGpsfH0SrZpKmpYLfaciP51oP6p2x9epEFUbjFImO78BHCfpr4/nwTQBPSrao8ZYmAQKDTS8wk68AqrV8NoAca5XZwoVIVL+OxIqbSsObZDqW5fUTFMXRNqdyfybmX2tlw4Z8cmO8+lPMy1T9afdJp6JpKNEana0CE3AangmsITXThDwpUWYIUWlVWbzVppSEVmUh5+pOVNXzvSBrZszKDqvbhtdGUpeh6Dag7lSZ7xGfZubM3MROdleojFFKEwChSmDLSKnP/jgg+jTpw9KSkpQVVWFl19+WSh7ySWXIJFIhLbDDjvMl5k7dy4ps2fPnmgD1IAlvE4MVcCKdMJoIDtti2qjez7Vw91UGxSdnydU/rwqLY2CqB+qTjXObAgo7jIKqu8mgqHDdOUEYT8Bv5v5tGTtShNMRtgMsWDBAkyaNAk33XQTampqcPzxx+P000/H5s2bSfl7770XtbW1/rZlyxbsv//+OO+88wJyZWVlAbna2lqUlJSYD1ATlvDaOVR+OtV8mZHSHFTzZ+oqi7oPZFXbOGZz0Q1gkcmLzqH4PtIQzKOp48sz0fLasiwKCZL9mAeu0Kdp20CSvJ4zYub5zp07A1tDQ4PwFHfffTfGjh2Lyy67DAMGDMD06dNRWVmJmTNnkvLl5eWoqKjwtzVr1mDHjh249NJLA3KJRCIgV1FRkdVXoYIlvDZGPh3gqrw/bf8dhWzNniqi0S2LS7uLOgYVMVFanMn3JdPysvHhmcqJyrLpJ1Av1+R0Z1wJ1LexaTJnJFgSYQNQWVmJ8vJyf5s2bRrZfWNjI9auXYuRI0cGykeOHImVK1dqDXHOnDk45ZRT0Lt370D5rl270Lt3bxx44IEYPXo0ampq9K45Itq3cXovQFsTWtZ9mhCQrvZj0qcugckeoFG1O6r/FCPDE1jmU/t/LtLyRPl0DsR3rCNpF5ecqF63LFJ9OB+PRdpJIimd1Vwf1DJBbFQmXZ/yXxpNIjjZdtS5jFCASGbKLVu2oKyszD8uLi4m5bZv3450Oo0ePXoEynv06IG6ujrleWpra/G3v/0NTz75ZKC8f//+mDt3Lg4//HDs3LkT9957L0aMGIE333wThx56qPkFacASXozIdkaUgLal0sYMzqUye8bmv1PVZ2kaNNYCo2g1lDy/b3DX+KY1mQlTdg4ZSVCEpSOvkhNfTLz9COvD6+M1O0kUZIhNlYCuIqG9LjE9BTPCy1iNy8rKAoSnbJYImptd1w2VUZg7dy72228/fO973wuUDx06FEOHDvWPR4wYgaOPPhr33XcfZsyYoT0uE1iTZpaIqlXFqY3FmeYQyX8XlzlTVKbbp+7YdH13Uc6d+WT/vwFTW1STpq7J1ERe59y6P61s/4dZ/oSzmWos1Fd7CkjRQUQfni66deuGZDIZ0ua2bdsW0vp4uK6Lhx9+GNXV1SgqKpLKFhQU4JhjjsH7779vNkADWMLrAIjzDdSkL6WlSPWQisucqeozmwe9ieZHRW2mJfIqUFqf7rXoaqdUWRSt2FRrjgOKeTUpP54IbUViefEb5jhKs6ioCFVVVVi2bFmgfNmyZRg+fLi07YoVK/Dvf/8bY8eOVZ7HdV2sX78ePXv2NBugAaxJswPDJEIz64CVbN/W4zJnisp0kspVcqI6fjYVxQODXi3B4Fhk8tP1uemW6Zpn4/TNReqr1Y+n8tmxM65QPreALGPOpHxqOu3aBSKaNE0wefJkVFdXY/DgwRg2bBhmz56NzZs3Y/z48QCAKVOmYOvWrXjssccC7ebMmYMhQ4Zg0KBBoT5vvfVWDB06FIceeih27tyJGTNmYP369XjggQfMB6gJS3gdDLkITOGh9N+xyFYLjMucSdVn4+uTmT/TCD6gRX1R56NMmiJZVcBKNj41qk22vjkTRPDjiWASuNKhiU2EJHL+JB8zZgw+++wz3HbbbaitrcWgQYOwePFiP+qytrY2lJNXX1+PhQsX4t577yX7/Pzzz3H55Zejrq4O5eXlOOqoo/DSSy/h2GOPzdl1WMLLEUyISTTLipH5Mer5mIAVI/9dtuZIk/Y6vjeTPqNomF47ihA4/50WHJgRID+GXJJYttpbnNodA5PAFRZxEJcJUeYdxTB7kke07k6YMAETJkwg6+bOnRsqKy8vx1dffSXs75577sE999wTbTARYX14eUY+bhpRhGas/jsTqC7ZlCj4PlXkGId2p9LgJNeoFVBBEaCO9hjFt5aN1hxHn0YEr/8kZ79nle9MNKemyaoJca22kDVyHLSyN8ESXgeBKCUhDgLNmf8uiqyoPlvtTtbGVBtlx8praI7gfyLT6HSITPVdUX2pvtN8EaPpuUhZhswUCegiiAJX4g5oyXuAjCU8bVjCywNEmlXc/gFRf7orqwNZ+O+imjNNZKNod6o+ZX2Lzi86B9GvUNMQkKUSUYidKotCjHG+2IhkA+X60RUB7S6dveYVnGuznacpeInnulsnfup34ktvv4hjlQMhoYnIN1v/nQhxPCSz0e5U55cRJq/JUecSlAsjNSkNT3UuXS0vm++BamNaH4dZk+yj9aWhOaDpRVNVskkViEqgOTV5Wg1PG5bw2glMTZOq5YR0QM2w0lIuaJDtw0+EOGXjSoyXnYcnLoqs2NM7SZoodQlQp07X5ClCVFOliWyufj8MRP5SHXNmW8+1GRmW8LRhCc8AbR2irENscQSsBCB68Jh0p2POlGlconGYmD5V2h3Vp84YiHaiFwklVCQrkslWI8uHqTIGMhOtjyfy4+WLwNqcKPOwPNDegg5BeI7j4Je//CX69OmD0tJS9O3bF7fddhuam8NmOBYrVqxAVVUVSkpK0LdvX8yaNSvnY9XR1PKRSyeDKOGc9d8lRJeherCZEJZpf6p+4/Ld6ZZ5/ev+O001uji0PKqNaX0+NHvh74P248U5lVjolBr+Ox2/Xt58f8UwWymBniO6U6BDKLd33nknZs2ahUcffRSHHXYY1qxZg0svvRTl5eW4+uqryTabNm3CGWecgXHjxmHevHl49dVXMWHCBHz961/HOeeck+crMIeORpY3cjUxccrKVfWq8+gQK1Wm0g51z88f83eP7mwv3rGIAB2mb2qfLYvSRrSv25cOsumDHFMKUOTdsQno7IwrARnIVz/IN2IZg6nW1ok1vA5BeKtWrcJ3v/tdnHnmmQCAgw8+GPPnz8eaNWuEbWbNmoWDDjoI06dPBwAMGDAAa9aswV133dWuCE/HF6ezSoJOqoJOwIpW/p1mhGJINiph6ZSrzkHV62hVfH+ih4XETBoyucmuTUQMKmJS9ac6R67ITNSvTh+CtqYJ6DqkopOcrpN8rtdPzDO4mPrl5IaxvRodwqR53HHH4YUXXsB7770HAHjzzTfxyiuv4IwzzhC2WbVqVWjBwlGjRmHNmjVoamoi2zQ0NIRWAdaBHgm1rymKtPxMpibJXJozcyUra0+14eUIDU2Y1ygyZ4rOaVqmUy87dzb9Rv1/5wA65s4297vFCRu0oo0OcenXX3896uvr0b9/fySTSaTTafzmN7/BD3/4Q2Gburo6csFCx3Gwfft2ckbuadOm4dZbb419/LmEeSCLQPtjirX8d6YEqGqnQ5aUFiWSpaYRi0oM/HV4x5Q2k0HrpMTJUJ1/rGPSVJXHaZ6MQ3Mz7U9rn5lXUzCRtOMkkSLME6YLtJrLt4P5Nq2Gp40OoeEtWLAA8+bNw5NPPol169bh0UcfxV133YVHH31U2o5asJAq9zBlyhTU19f725YtW+K5gIgwnWPTVKNUzrAC6M8xaSJjQlii/uOUlWl3lEbH982Wy74LEcFRfctMq9lqebnU3HS+B5O+A/Lqp3qUYJZ2FYASBTbxXBsdQsP7+c9/jhtuuAEXXHABAODwww/HRx99hGnTpuHiiy8m21RUVJALFqZSKRxwwAFkm+LiYuEy93EjX7OvKM8n8t+ZEpGJhiZrK0IutDuqf5NzOQhGvAke2mSCtEjD8/bZQBNK88mH5pbNvk6fImjIR51IGsheK2sPwS4BmGp47Wjo+UaH4PqvvvoKBQXBoSaTSWlawrBhw0ILFi5duhSDBw9GYWFh1mOKMoelOJgku75M1sADssgT86Az3KiaoalGkQvtTtaHCAzJUrPWBEjSRPuJQtQ67U21K5N2cckE5M0XcdOZYiyOSaRVbXLuLyyOsHVSdAjCO+uss/Cb3/wGzz33HD788EMsWrQId999N77//e/7MlOmTMFFF13kH48fPx4fffQRJk+ejA0bNuDhhx/GnDlzcN1117XFJURGnKsrGPvvTMnAlKB0ZEy1yLi1O76OP04L+qQQ1dwpGmO21xhlX1QWVUbWRvhdZD+RNIU4zZZ5NYHaoBVtdIhLv++++3DzzTdjwoQJ2LZtG3r16oWf/vSn+NWvfuXL8AsQ9unTB4sXL8Y111yDBx54AL169cKMGTPaVUqCCHGaO8WmzAhaXjYEaGoiNdVG4tTudEkzyZWZfKUik6ZXpzJpUvKi/WzMjnGZLOPqXxOBnDzDQJRQX+0hMEUG0wVg43uH7nDoEITXtWtXTJ8+3c+po0AtQHjiiSdi3bp1uRuYAPmy74sCWaLcnFr+OxFEUYyy9nFohjraYlTNRyRD1bHjyOyz/4PAXJq6Jk3RueLy5Zn2Ede+bDw6dYIEdNaPp7sCepRFXbMlz5zAVGvrEE/93KBDmDQ7MmQ3RL5uFpMVzpUw1bxYRE1q1x2DiSlUV7vj6why48GaiAOmLZV5lC0TffL7or5lsqZ9mMrIkJVlIOjHa45xerFsJ5HWbZMTU2ee5tJ88MEH0adPH5SUlKCqqgovv/yyUHb58uVIJBKh7d133w3ILVy4EAMHDkRxcTEGDhyIRYsWRRucJizhxQRd8hIGknDluikJJmvgqaDtv8vGFxOXOTOOtipZ0fkov52J5iYjPur8JuPMZl+EuP7f2YwhdD49P54ocEWXeNp1OoKHPPjwFixYgEmTJuGmm25CTU0Njj/+eJx++ukBNxKFjRs3ora21t8OPfRQv27VqlUYM2YMqqur8eabb6K6uhrnn38+XnvtNfMBasIS3l4EmXlGZ8JoAOKHj4g/oxBjHBqaroxqPCqzqayc18oE52j2TJqUBieCrgYWF9Hkel8XcfbVWRCR8PhZpRoaGoSnuPvuuzF27FhcdtllGDBgAKZPn47KykrMnDlTOrTu3bujoqLC35LJ1heI6dOn49RTT8WUKVPQv39/TJkyBSeffLLUdZUtLOF1QOj6HbS1Th1fGH+sQzyQlOdLuxOdV1drYuXZjeo300bpPmLPQW0iWZ2y9rgftY0ImgvCBlZBZ9QaXmsTaX58moGsrk1RBLOUhKKWZpWVlSgvL/e3adOmkd03NjZi7dq1oakaR44ciZUrV0qHdtRRR6Fnz544+eST8eKLLwbqRNM/qvrMBp3Yfdn+EDZXOsI6UTuZnMx/F8mcmW3QiClRRtUMRVqYqg+KHHlQJCWDrnkwzijNfOzrXI9JX0I5ZpoxCXQDV+IAH7zCHuclsCVi0MqWLVtQVlbmF4sm3di+fTvS6TQ5VSM/uYeHnj17Yvbs2aiqqkJDQwMef/xxnHzyyVi+fDlOOOEEAOLpH0V9xgFLeHmAzO8WNc9O10eXtygyXTKTyWXTl46mIJtCTHQeqt4joSRak3g5DS30f2WJkdLm2L69Y50IyvZCdtmSIgvd9oJ5NU0QJVKz3SHi8kBlZWUBwlOBmqpRNE1jv3790K9fP/942LBh2LJlC+666y6f8Ez7jAPWpLmXQDbDSiT/nUz7iltOJU8dU32pCEvUTzZpFHzkJoLachpJBFbqpsYT1VyYb7OkqDyKRq9zHtV5RWKagSs8ZJGa7Tp4JcdBK926dUMymSSnauQ1NBmGDh2K999/3z8WTf9o0qcpLOHlCFE1K75dlAhNE2i/FMf8UDIySfLHug9Stiwb7U6HbHXAny9bQlHVx0l2pi8CuSZFgR/PBPkmsbBPMCYDm5d4rrsZXnZRURGqqqpCUzUuW7YMw4cP1+6npqYmsEqNaPpHkz5NYU2aeylCxKmbfxfFfxeHXJxaRhzaHUV2nmwStEmPSleg+pOdJy6TJn/ubGSyNVfGLScBP5G0aMaVrM6BdpZ8nofE88mTJ6O6uhqDBw/GsGHDMHv2bGzevBnjx48H0DK149atW/HYY48BaInAPPjgg3HYYYehsbER8+bNw8KFC7Fw4UK/z6uvvhonnHAC7rzzTnz3u9/FM888g+effx6vvPKK+QA1YQkvRsTljzO5geJYZFa4/h2Qe3NmXKkIfJ2oTFe748Hn4XlvyTJNTRf8WHT9ZzokpUtkojJdssuXHADR+ngm4IlKtgKCCam1yUoKEX14JhgzZgw+++wz3HbbbaitrcWgQYOwePFi9O7dG0B4asfGxkZcd9112Lp1K0pLS3HYYYfhueeeCyzaPXz4cDz11FP45S9/iZtvvhmHHHIIFixYgCFDhpgPUBOW8PIEngyjmzz1n64hE2gU/50J2sLsqaMBiohRV7uT+Rz5oBUyKT0V7ldl0tR9+Kvko/Ypk8kn2cnGxIEPXIkeyJJ/rS2rc5ZkNl1EXAB2woQJmDBhAlnHT+34i1/8Ar/4xS+UfZ577rk499xzow0oAqwPLwvk603O5EaQBawooUsq+TJnyur4vnVITKUBylIT2D4cplxXw6M0S75Ph5BTfU+yazSRibIfVc4E0j7FfjyTwBWZLy2bfLu8+QjtArDa6MSX3r4hI6psSE244KsKusTG18nkTINVZH2zcnFod3x/JmSJ1v9R4IFpouHJxqVTr5LR6T9qex4m7XTPLQG54K5uWwVJtcvk8xxHae5NsISXQ8giLlWyqnqTSallC76G/He6RMYf62qBJg84Xe2O6k/Wl4oYZUTEkxVrwuS1P79dQl/Do8ZgSnY6+1EIDoK6OAhNdb7Q+ZlcLUWUpmjGlZZjWZqCGTPI5HO6CKwlPG1YwmtDqDQzE5OpkjBN5s/UJTIeuuTJk0K22p2oPx3NU0QEOqkJuUhLkBF4XGQnG1Ou5EzqTGUZpHlTZo5WVGhXyNNqCXsDLOG1I5g6rbNZeihkzoyDyFSycTxETf2HIu2OlecDTWRkx5d5ZMt+yiDSrlTn4Ouy3c+nHHUsqzMiRv18PNaPB4QJrEP46yhYDU8blvBihkoryyb6y1QjDEWGqta/i4vI4tICdc6n+2AVtTHJw5Npe7IxUNqcqN/OQHZxEaMCfOBKsCt9Xx1d345YI8eJ53sTLOG1M5jOpqIkQRP/HY9cEBl1LCMjHXJSaWiq9rKxUjKiPphj8v/mcHIm33+c+3HKUceyuriIEYDMjydbOYGCisBMNbi8anwmKyV4WyeFJTxDxJ2fY5rakK0GaeS/oxCXFhjHQ1KnT9mDW1e78z7ToM2dku/Ef5CqNE8ZEbZXLS9bWd1+dOQZdARyi5UQrUlTG5bwcgyKgLLV2oz7c4L1Sv+dKmJR9lAz6ctECzQNcslWu6PITnYOXf+d9ykiOBHZxrkfh1wuZXko+1IQmJIA5fXZph/kXNuzJk1tWMLLEvmYkcHczEmQrIn/zqSOqjchtjgekiItLhvtjt2nvu408ykbi6x/6pgtywXZyb6T9kJ2Rn0Fl5IxDVyJgnYXrWmjNLVhCa8dgCIoU9OlaTI66b9TaW66xEUd83U65OMdZ5vCEFW746GjmYnAt5Mdy/o2JfaoWp5Jna6sznhMXw4C9eEnuSxwBVBHaqrMn5T2l/eEdGvS1IYlvBwgF1ofRWCq+Tn5gBWl/w7IrTkzarCKTNbkYc9qbCLS4stFJlJWLs3JQvIbMNF++POI9kGUU3WmciZ1KlnTvmRtyf7CT3FV4EqUSM12p90BlvAMYAkvD4hCVqIy43Ob+u94mJKi6Vu6ro+PP87Wx8fKUWZJVlakiYl8fhSxiwiLAk9mcWtvunJxkV0Uzc2EPAmoEtApza1dpRqYwBKeNizhdSBQZk4d/x7vv5NOJ0YdU6SoeiDFSWS5fHiriJIiHf6cEpmQRqD63vg6U7LLh5aXjRbIIw6yM/Tj6UBHk2svBOkWAG7SYOvET/328R/r4NDRxHTSD3S0vCj+PoAwZ/LQISVZHypSpLQemW9NlxRl/ehqgap9vk/RArDUOSmovktWLhVxnz32zqWSU9VR49PtV/dcgP75yD7C6+M5ThIpdtmgdBLJZFBGZ3kePZngIrNUm7iXH2osadm05RtjO3WHQyfm+rZHrpYX0kprUGllOjI6pGjyth41QV1WZ0KcovPy5SLtT6TpOdwmGpsI2Wh5Jtp1rmT5MenIi8pkiODHA9SBK+0dTjIBJ1lgsCXUne6lsBpejhDVJ6dDVjp9UzOsaPnv+NNna87kj6OYxHRIij/W1QJ1tTvqmljtyRQmZBdVy+P3oTiOIpuL46gyOQS/knmcmlu2q6SnUymkU/oklk65AJoin68jw2p47RA6KQZaxOiEbyKl/44qM9XMdPqIK9k9qo/PJIWB1ego7SnNjCNTFvr/iLQ8HYi0I5nWlE/NLc7jyDLhB77Oygk62lx78dWJkE4mjbcoePDBB9GnTx+UlJSgqqoKL7/8slD26aefxqmnnoqvf/3rKCsrw7Bhw/D3v/89IDN37lwkEonQtmfPnkjj04ElvJigOzuKaRJ5tn0pE86BsAbklcmOqT7iNHNRqQn51O4osqPOpyD7NJLRtUCqX55s+XKqTiQnk1Ud6/SVC7LT6jepFbiiE6mpm4agm8KQC3NpM5JIG2zNEcawYMECTJo0CTfddBNqampw/PHH4/TTT8fmzZtJ+ZdeegmnnnoqFi9ejLVr1+Lb3/42zjrrLNTU1ATkysrKUFtbG9hKSgwckoZo368unRi6i8dqaYO65KV6MFPalMpMGrdfUKXd8doY1Q+fh0eVs+NiytzMfiJFjJsiaepaQg9tN/MpMUs5iGa21A0QUfUjklWNj2qfjYzS9JkCUuF/QlyBKyZy+YKDJBzZbyck76qFONx9990YO3YsLrvsMgDA9OnT8fe//x0zZ87EtGnTQvLTp08PHN9xxx145pln8Je//AVHHXWUX55IJFBRUWE8nqiwGl4OoXtTiOSiaoOR/XeAWsviZUTHMs2B6jdb7U5Gijr9aGiBrui70NHgtLQ8F1A9jHQ0OZWcrnaoe2zSPqcy9EPfdOUEX05TE2rrIJcWzS1lsLWMd+fOnYGtoaGB7L+xsRFr167FyJEjA+UjR47EypUrtcbY3NyML774Avvvv3+gfNeuXejduzcOPPBAjB49OqQBxg1LeG0A08mh1f1RpkxN/10uH0g6wSpxaXfU+XT6kWmBDDyy875Wl5XlNTfRd0PKuJwQWyboh+qTugYTMtIhQtmxqr+oMtSxrgz0/HiAfqRmNjOt5MoX2Igi4w0AKisrUV5e7m+UpgYA27dvRzqdRo8ePQLlPXr0QF1dndYY//CHP+DLL7/E+eef75f1798fc+fOxbPPPov58+ejpKQEI0aMwPvvvx/xm1DDmjRjRDaRVmItz9GU0/TfqYhJVKYiGJGMqg0vo0NkMiKV9WWar5eR4cnOSQOpZFCGR+i3IH3HYRlKcUt6ol6EaNxRl3wdNSzqWNRfNjI655Kg2UmiIGTaCCObKEk+7y6OPs3HkETaQHdJZ8yfW7ZsQVlZmV9eXCxfKC+RCGrQruuGyijMnz8fU6dOxTPPPIPu3bv75UOHDsXQoUP94xEjRuDoo4/GfffdhxkzZmhdiyk6jIa3detW/PjHP8YBBxyAffbZB0ceeSTWrl0rbbNixQpUVVWhpKQEffv2xaxZs2IZSxwaWnbk6AhSE8LjIhPORaQTp6kpm3y9KMe6AS28BiTz+SFMdn51mjNxpgX7/DhC1y4abETTpqxORytTncekv2xkRHIUQnIp6E4kbTLFWFubLkVIZ54IupunpZaVlQU2EeF169YNyWQypM1t27YtpPXxWLBgAcaOHYs//vGPOOWUU6SyBQUFOOaYY3Kq4XUIwtuxYwdGjBiBwsJC/O1vf8O//vUv/OEPf8B+++0nbLNp0yacccYZOP7441FTU4Mbb7wREydOxMKFC/M3cJiRo0hWN2BFBPIlV/vhEVGGL+dJEJBrYFQbEyKl+pYRATEGnuyanNaN7Je4RkcapemRWhOzsQMyMG16+zrXqJLVrZeNKxuZrOT0/HgAsl4qyMS8mctJp838dylj02pRURGqqqqwbNmyQPmyZcswfPhwYbv58+fjkksuwZNPPokzzzxTeR7XdbF+/Xr07NnTaHwm6BAmzTvvvBOVlZV45JFH/LKDDz5Y2mbWrFk46KCD/GihAQMGYM2aNbjrrrtwzjnnkG0aGhoCjtudO3dmPXZTmGp+OgnngMZyQCx0Alx0zJnUOUy1CFUfIiLVaasRqMKSHYsmhzFrUufhISQPPgG4CUAhWm15LoTRm6y5jzL9RUkU98aWj0RxkYzq/Cb9ocVvl+Te+qgyQByBKTJdUjCRjQNpFBiSrzkmT56M6upqDB48GMOGDcPs2bOxefNmjB8/HgAwZcoUbN26FY899hiAFrK76KKLcO+992Lo0KG+dlhaWory8nIAwK233oqhQ4fi0EMPxc6dOzFjxgysX78eDzzwQIQR6qFDaHjPPvssBg8ejPPOOw/du3fHUUcdhYceekjaZtWqVaGoolGjRmHNmjVoaqJnGZg2bVrAiVtZWWk8VpNwZSN/nEm/RMAKAPqhbEJUuuSlk9Onk74QVbvj6020u8wxa65kyc5xWjYgQ4bsuLxjmTbi8AVUBa/pCfqimqq0PF1ZHfmoMtS5TMs0NUAqH083cMUra+/LBJnk4ImuR4UxY8Zg+vTpuO2223DkkUfipZdewuLFi9G7d28AQG1tbSAn73//93/hOA6uuOIK9OzZ09+uvvpqX+bzzz/H5ZdfjgEDBmDkyJHYunUrXnrpJRx77LHZfykCdAgN74MPPsDMmTMxefJk3HjjjXj99dcxceJEFBcX46KLLiLb1NXVkVFFjuNg+/btpNo8ZcoUTJ482T/euXNnJNLjEcVfZ0J6ooAVbf8dYPawkRGRqK2O39BUQ8yFdgeJ344jvkIqmCKDwP9E5zr9CuqWFGh5Ms2MOo5by4sikw85v1w9kbQM+Qg8iUMb9Hxz+vLRMGHCBEyYMIGsmzt3buB4+fLlyv7uuece3HPPPRFHEw0dgvCam5sxePBg3HHHHQCAo446Cu+88w5mzpwpJDyAjiqiyj0UFxcrI5WiwoSsWuvCP03RzSH0/2XjvwP0CVLnTVyk/eQzfYHti23HyfGmTIcYd5MDFBYz7WTaHVnfRDTwnt68aVPRry55mRKjqj+dMbBlfFshWUWUA9DixwsnoKedFJJEUnpLN/GQWz5WR+DRhGI0GhBeU56iR9sjOoRJs2fPnhg4cGCgbMCAAcJpbQCgoqKCjCpKpVI44IADcjJOFeL60Yv6kfrvNE1ApIlT9CAXEZNKu6NMf1SbbLU7k/SFDChTpkd2VNCKLy8gZD9AIHRuNiBFFLTCHmsGsIiuUfUbEL2cyP5HIhmd34/sN6X7W9X5TWYgNGOmk0aRmi118efoZYN8mDT3FnQIwhsxYgQ2btwYKHvvvfd8+zGFYcOGhaKKli5disGDB6OwsDAn4/RgrrWJ5WURmroJ5z50iMeDqMwkWCVX2p3Og5o9lp2P2WdNmRTZsWhyGK2P/+Qh1AAd0EErbCO2XkJ6psRnSow6/8tsXpSyJUWq3wxEfjwTX17rKei6tkxZ8IJW9LcO8djPCTrElV9zzTVYvXo17rjjDvz73//Gk08+idmzZ+OKK67wZaZMmRIwb44fPx4fffQRJk+ejA0bNuDhhx/GnDlzcN1118Uyprht+zI7vpxAaf+dELKHsk50pidrojHyx6oHWxQZWYqD7IEtMGUCYbJz0q1bSJ7S9KSQsRAVtCL+fYS6kR2r5GXDlMnoEmK22ptJOQDdfDwPUbSfKNpgnDDJwTP19+1t6BCEd8wxx2DRokWYP38+Bg0ahNtvvx3Tp0/Hj370I1+GjxLq06cPFi9ejOXLl+PII4/E7bffjhkzZghTEvKJKHl1xlqj0+K/M0pHoOpkDxNdjVFXW1RpdzoysgevhBRFUZks2QVOy2iBIEgv9P8itRiRD8+r8441tTzRsQ4R6miBKhlqHFRbUZmprOh8AOAkoLMgrAlo02fbk0eu8/D2JnSYKx89ejRGjx4trOejhADgxBNPxLp163I4KjFU/jpZEIvuNGMsRP47APRDQTY8GUGZvKHrRnNmq93x45AFqvCynHZHBamwZOdRj2cUb3Iy+5689gtGE7Hv9eogGLjCymjk5nlibFdUHV9PHevKiOT488nOoSsbpR+Ic+9am9KBKx6pxR14Elcwi7c8kL68+WoJews6hIbXGSGOxpRoeib+O0D8li6SZ9vxxybRnLqmMx3tTtZGRYoZuA6kpkwPFEWR5wmcJtkqQ14736vKnCk5mUrL4+tkGpyujImczjhksjrjEEC1Pp4ocEVm/lORTL5MhzZoRR8dRsPbG6F6uzMNWAEi+u8As+hMT57qX9fMpRPNSY1B5LuT8YNI03T0TZkeDbG6mJMOaoIh06YSniCv4bHgtTxvX1PLozQ+9tgri5pjp5IzldXpRzc9wa8L5+N58AJX+LXxOhIaUIQk+dsRyXdePafzXnkeEMf0QqYBK4BgwmgPMm3Mqxe1MSVElRmS6sNEA6TOKZOXmDL9faKcJzt+P7RUEA/yvJQgfyaWECNoeXFocLovMLptdcpNfmei8fh1gomgJVGagFp7U9fnT5ewGp4+LOFlgTjs79n2kYQjXPCVzL/zoNL2RKAIU0Rm1HlE5Kmjuelqdyz5SCJPZdqdjOzAlDXx584g9LJD/i9YEyZbxn7yJ9DIzaOaqcaiKxO1THSeKPKqdj5x6k8kHajPg6kyTtKxhKcPa9LMMXTSF1SaoA4pKv13sgeDjimRqtftT1e7k/WrCoChAlVE53HEOXcB4uM+2S5CN06a+VR+by6CRMf37JkuReZMhWnTgZk5M6oML8eemy+j5KlzqepU5xb1h1Y/XpTAFRPkemYV6nwmJJyGxO2xl8MSXpbQIiMNGdVNpmMelfrvADG5eXVUvUgj0+1PR15Hc6P6VBGmwqwqM2XKyI49Lszk5RVSQvw4SQ2P6pknPUAcdim4hXkxwIzoZCSlQ0JRiCkLMpN9FS31Yj+eB9W8lq3RmnIZ1f0e9xydpqkG6U4cpWkJLwYk4WgQVlpLk5PJJTM/bWkfjvK+lmsgsnoR+Qkf6IbyuoSryv9TaIRsVCY7YwprygRoshOGlzjcpz806s2bv3hW22Pnz2Q1OYer52U1lxDyoDu3JhRyIlldrU2qNkvGo1sPAE54Xk0WssAVlkhkRObJye5PHcJskTPzNJkvD9RxA3SyhSW8PEMWYcnLicASo3L+TBMNzLRepq1F1e5k56a0O1nqAqERqqIyAdrYKPK0eW0LwYxFpekFClTr4bFlsn0D0yaIMl0ykhGMKaHJtLJsiC7wHSeAVFijYf14IhOnjraWqxw9E5j65awPzyIWxP2j1+1P6r8D5OTFEpQJgbF9i5Ar7U5FkDGaMnnwz9kmviIDcqYVH3ywCtUrr8mJTJt8OTHgqCkH+fbPqc7NIoo2CD0/HhC/Hy6Xfr1GFKEARQbynReW8NoI2mSmTXoajmhVQAWgT45UG5k2qTsemXanClyhZBjw2p2uKVMUL+kbG/kKauzCer6SuiVlpk2eADVnYKHK4jJnUuU6/cvaSU2WkrYBObUfr6U7PR+bLonlOojF3Idng1YsYoLJD1uf9FQslZFztO5nNenpyJgGv8g0RV3tjhqXiID583pV6WimTGrYTeBuIJ2XiVAPlBDrvzM1bUq65MeQT3Mm1S4bsyUroyQ6en08CroLsuZjcVhdWJOmPmweXg5gRnqaZKYRsOJB6b8DgoRiooHxfUSpl5FZnNqdIFAFCJsyPVDJ5Sz5UZlzAHduUZpH4ICaUky2NJAojYHf11xCiBxXBDmZxi9CNvWy84rkNJB2kkin9YjARJvKx/Ri+Voe6MEHH0SfPn1QUlKCqqoqvPzyy1L5FStWoKqqCiUlJejbty9mzZoVklm4cCEGDhyI4uJiDBw4EIsWLYo0Nl1YwmsHMHlT5ANWtP13qlPoaGCivlTkKSNOU+2Of76LythjBjLtjlqfgKIe79g7ld8Pcf0Okq1loe+AJz72TOyZecqlRqmxogJ7WtX3ZiKnqlORlEm9DJpyzZlZVtJOSjnjCo9ca0dR+s/H8kALFizApEmTcNNNN6GmpgbHH388Tj/9dOEi3Js2bcIZZ5yB448/HjU1NbjxxhsxceJELFy40JdZtWoVxowZg+rqarz55puorq7G+eefj9dee814fLqIRHjl5eV466234h7LXgXTacUCRGZoKtHy3wH6b7w6BKmjGYoeoNlod2z/sjJCu6MSzNlAFe90/D5fT162zsPYBzVVmMPVi0bDj4jflwxERxsz1dpU8jqamsl4s5EDQK2PJ0KrRtQyibQpGeVrerF8LA909913Y+zYsbjsssswYMAATJ8+HZWVlZg5cyYpP2vWLBx00EGYPn06BgwYgMsuuww/+clPcNddd/ky06dPx6mnnoopU6agf//+mDJlCk4++WRMnz496lehRCTC++KLL7B7926ybvPmzTkdcGeBbJkgUt7R9N8BeoTmyalkVfU62h3/wNUlRGp87LETDFQBYGTK5Pf5Yfq0RGio+i8tIuITaW9sHCmlBXptFNOO6WpupmSWLYnFrM21ytPr41FQrZKg10f+/GTNMDFnJtGcGdvOnTsDW0NDA9l/Y2Mj1q5di5EjRwbKR44ciZUrV5JtVq1aFZIfNWoU1qxZg6amJqmMqM84oE14L7/8Mv74xz/iP//5DwAgkaCjwWpra3HttdfGM7oOjjic2snMu6UuAv47FWFRsqo3cl3tzUS7Y+v5MlGKgY6m4u2mxVGZKlMm3zXvwwsYJNNQvxwEzsSSlyr7jye4UKfcFQAk6ZloeHFqeTptdbRBE8I0JUVA248n7SPPQSGNKEQjigy2lgCnyspKlJeX+9u0adPI/rdv3450Oo0ePXoEynv06IG6ujqyTV1dHSnvOA62b98ulRH1GQe0ddvly5fjlltuQSKRQCKRwIQJE3DcccehqqoKVVVV6N+/PxKJBD799FN06dIlZwNuC7QQTjTzBG+qNNXcPOgmrAthcuPrpC94fcap3bFtROSnKmP65ANVAHVUJrsvTTZHMHbSdYQJAQbfPZ9+IJtOLLBQEbPPjlTym3U4Ef6Yl6Nk+XJR36JzK4ao7CeqLNh8vJaGac38PB4UuUV90Y2avuAgiaQByXra65YtW1BWVuaXFxcXS9vxSo7rukLFRyTPl5v2mS20n+I333wzxowZgzVr1uDHP/4xEokE5s+fj3vvvReJRAL77LMP+vfvj//85z8YPHhwzga8tyAqefEBK0mnWb4cEA8VSVGyUTRFUb2sPQ+qP83+RTl3AEIJ5o5gH8SxzrD1wWtk3pkKiWOW1FgC5NMTgDA5CmZg8fbZJmyZqFw1u0k2SeMqOd1zCttkBDPE5s24kjImOvVUYvmCeR5ei2xZWVmA8ETo1q0bkslkSPPatm1bSEPzUFFRQcqnUikccMABUhlRn3HAyIf3zW9+ExdeeCGOPvpo/O///i/q6uqwefNmPP3007jmmmvwjW98A2effTbmzJmTq/HuVYhjvTwP/nJAuqBISocMdc1EKtOliXZH9Sfqgyc2nvgM/HYU+QktcwKzcOBB5JeLglZ06FbHw8jXCUybohcHE1lVG13zowz8uaK8aTiAaLkgU7S3PLaoPjxdFBUVoaqqCsuWLQuUL1u2DMOHDyfbDBs2LCS/dOlSDB48GIWFhVIZUZ9xIJKdbs2aNf7+gQceiAMPPBDf/e53YxtUZwJlqoxq9gRAa2WmDwhdeR3Tp4l2SPWt81AmtDs+587ElMnuy1ZL4PUqPfDkQ/UsSjyn9vnprGWrKwjAa24yjUym5enU68qYyPHyFAyfdDKNKRezpmSTyJ6PxPPJkyejuroagwcPxrBhwzB79mxs3rwZ48ePBwBMmTIFW7duxWOPPQYAGD9+PO6//35MnjwZ48aNw6pVqzBnzhzMnz/f7/Pqq6/GCSecgDvvvBPf/e538cwzz+D555/HK6+8Yjw+XdiZVjSR68lhqZQE04AVJXQ0OBa6xCkiWUpOp140DlWZI54cGoDUlAnJvug5GpppRQayE9mMnSzpAXqmTSDMWorJpakmUWdS0amn+teVE8GUGCWQrZzQXuEgiYIIPjwTjBkzBp999hluu+021NbWYtCgQVi8eDF69+4NoCVYkc3J69OnDxYvXoxrrrkGDzzwAHr16oUZM2bgnHPO8WWGDx+Op556Cr/85S9x880345BDDsGCBQswZMgQ4/HpwhJeBwCpBUbx33mgSMyEDGWkJTqPSb3IbyjT7phyKudOZzYVHYLzQE7kJWro8PWyWE8+aIUlMp2pxXiiixDAEhgrV+cQZTr9iWRUcqLxsDB5innTjAHkjJKmQSvtAV6uoIl8FEyYMAETJkwg6+bOnRsqO/HEE7Fu3Tppn+eeey7OPffcSOOJAkt4HQiiJYGM/XcyZEN+Ov4a08AVqk5wPtn0YQA9eZdoX2emFfbm8ZcIyjTQ18xVQSvsyGQrJeiaNjUCWNhm4Op0Ak50NDhTksv2SRWjFtje0IgiwGi1hI5H6nFhL/z35w5tueaVFkSmRVMSY/sz7UdHlq8XkZkoUIU4n2olBFGWm2ifl+PbprjLCI1JCIpe+acx779TmTNjNm3ywzSp06kXyfGIw3dn2lcOwJoQqWeI7oTVIjQb+vBMg1b2JljCiwlsHJSOXJtBRmIqLU3Wj66sTEZX+xP0pxOVSZGYboRmvKB6ZJlHRHqAmACBWEyblJhK29LVxqJobXERowHS6SQ8XqBJKkwavBy1wnlLrl28vyYHSSRy7MPbW2AJLwcQzYfJ3hAyGc90qVohwWg6MRNQPjQdk6SIRHk5GcnK6gTyOlGZJn47HbJzQBgeZc8xR3Qg6l1EeoCYANlRU0TH7ktMm9Sw4ghW4eV05EVtosIBWq49mI8HAA4zzybry9MhN0pO9GKbRsq/r+NYKy+NJAry4MPbG2AJzxDU25mIlHQmhDaWYRLOPYSmE/OgIh9diEgrziAXWb3ElMlClmDudaMiOBnZ8aElTQBKvXY6321Ipon79Hr2hFXpCSIyg6IOkJo2eVFVnU69SFZHXgWT3zV3ruYAycWvx4vg+Npf9m+sacMoTUt4FpERt3kiFkTVxKIQo8pEqiOvGh/flgG/EgIgN2WC2TdJRxAlEITKs35+UdOLicyZovw8EH3wI9bMzfNgouGJZESyumPItr+9FJbw9NHJfyrR0B6mE8o5dIjRtB8RVP5DQWALtRKCKMGcP46ajpA9dHpTRWrqpCeoojYB7QAWtpyqM5ERyVOwTyctWB+ePuxPKiLaPPgkA610hFwNU6bd6crLcvBE2h9blKZNmR4o7c7Eb0eRpGfOzO7m4c2ZFEGJIjVlpk1wMqKoTbZMAJGo6Ddn6p+L3TdnMpaMH68D5t3xaEIxXMgnfmbhtIPnVlvBEl47hRewQpGql3Du36sisyRLGirTY1QNTgQTE6mOdsexk2glBGrZH+9Y16ypY/IkE88jQ9S7bqSmyJwpS0j3ygQBLIBYy9ONwlTJyvo1MatT59ExuwKAkyQT0H1IIjXbC9IoMNLw0tGWQd0rYAmvncELTqHKvICVvCFOYoyi3RkEqsjmyjTx1anIjoXpM1l+Zr5ex2dHpSew/csS0tkywrRJDS+qlqfbr6lJNI9Q+b3akhBbTJTWpKmDdvaz2vtBrY3HHndI6BCjqq1OkEsGVKAKAOFcmV43Mr+dihTzD5WfTqT1AXqmTVEZ0ZQt8xA1mVzWVgRjc2WEc2SJONILop87hYRRWkLnfex3SN122rRpSCQSmDRpklRuxYoVqKqqQklJCfr27YtZs2blZ4ACxH1DkKube1ARkEpri9vsqUuGimsS5dzJEswpDQ6cDF/HlrPDUj7PI788U2fg6VY0Yl16b2KOeXnJEkKi3xa16UDWXqfPqDKhLd6FRtsq+jHXywPtTehwVP/GG29g9uzZ+Na3viWV27RpE8444wyMGzcO8+bNw6uvvooJEybg61//emDG7nwhTrKTJpxnk28XBTrEqBqPZpQmNX2YToK5t0/Rg0jT48kOxHE8fjxKh+Q1s0KINTtWlh2ZaJ86r8K0yXYNmPnwKLSnp05mAViZHy9pMEO7iPRyGdmdNjRp2rSEDoJdu3bhRz/6ER566CH8+te/lsrOmjULBx10EKZPnw4AGDBgANasWYO77ror74Rn+mNnA1ZkCefaYAlIVhdFC9SFrpaoqFeZMr0uKP0Ggn0TstMC9TwJ3Gk8VYr+MV5DHdJj+1WlKrADUjCZQ1TJvpQ40hHiQIxPNnZmlKhwcmjytISnjw5l0rziiitw5pln4pRTTlHKrlq1CiNHjgyUjRo1CmvWrEFTE+2ZaWhowM6dOwObKSj/nGn7WCAipaiEJTuPDmnq9CEaj2NuygSxrxOkkhXZMQ9Z8qGSAqLrhfwI+ZF7+yI9lvohUG0J06YnrqOtRzFR5gIxj8MxnKCZQq6IpgFFaECxwaa/ssLehg6j4T311FNYt24d3njjDS35uro69OjRI1DWo0cPOI6D7du3o2fPnqE206ZNw6233hp5jNm8wZnm9ZH+O50gkWygS2CqtjLSVdTzOXeAPAVBJx1BNFy2Pw+R6Er7LqPOxJosWTlKSxTNvEJpcwYJ6fwQstXwZP3EFQmqff6EUX/0vJr5YnEaVsPTR4fQ8LZs2YKrr74a8+bNQ0lJiXa7RCLoj3Bdlyz3MGXKFNTX1/vbli1bog9aAipC06h9NoTDP/1NzJmi/rLR7ti+BLKy6cNMUxDYfZF2JyI76thDyntocg9P/Yeh7EwimubLdb8B75jSgQXjjVPDU2jzyvPErUU6KcBJotlJIu0kkXZSgYmkVcjH4qsy2KAVfXQIwlu7di22bduGqqoqpFIppFIprFixAjNmzEAqlUI6HX5SVlRUoK6uLlC2bds2pFIpHHDAAeR5iouLUVZWFth0oaudmbwNUv47oxXORUTSVoEtEaI0VSshAGYpCNmQnTao519KUC6FjPSyMW3KXhO8MoFp06uOg2jYvuJGNmPKIJ0hQL3TtR2JOJm1VUy2XGLHjh2orq5GeXk5ysvLUV1djc8//1wo39TUhOuvvx6HH344unTpgl69euGiiy7CJ598EpA76aSTkEgkAtsFF1xgNLYOYdI8+eST8dZbbwXKLr30UvTv3x/XX389ksnwP3DYsGH4y1/+EihbunQpBg8ejMLCeOfJ0IUuKRrl5GWjWbGIO2WBPda5BoU5VrQSgugxD439uMjO/zWJ7qYUdaD7G+RnS5EFsUBz3+uXHYeG4db7grKN0mRBWVtN2ulA1rdGP+l0UitSs61y8dJIwjX4QnKt4V144YX4+OOPsWTJEgDA5Zdfjurq6tDz2MNXX32FdevW4eabb8YRRxyBHTt2YNKkSTj77LOxZs2agOy4ceNw2223+celpaVGY+sQhNe1a1cMGjQoUNalSxcccMABfvmUKVOwdetWPPbYYwCA8ePH4/7778fkyZMxbtw4rFq1CnPmzMH8+fPzPn4TGBGd6SwnulpW3NAhRhacdidbCcHr3iQFgd2niC2KZlfImTRDb9Ek6emC8tlRpAfNfXYMVLI6KyNZQohCvp4ocY2Dfw8QQDdSU4f04l4EtoXw2seK5xs2bMCSJUuwevVqDBkyBADw0EMPYdiwYdi4cSP69esXalNeXo5ly5YFyu677z4ce+yx2Lx5Mw466CC/fJ999kFFRUXk8XUIk6YOamtrsXnzZv+4T58+WLx4MZYvX44jjzwSt99+O2bMmJGTlAQdktKTUd8EqbTmhNGAuaaXC+1OdwwKrZCPyvS0O5HJEoJ9yoDnlfNt+DoKARpKoSV2IMUWpVuPU0CQQGTTlfBnlemhpleta9oEpKZNHjJTZ5xblLFIZRPg/Xh0l6wvTMyS+Q4KMfHfeRuAUER6Q0ND1mNZtWoVysvLfbIDgKFDh6K8vBwrV67U7qe+vh6JRAL77bdfoPyJJ55At27dcNhhh+G6667DF198YTS+DqHhUVi+fHngeO7cuSGZE088EevWrcvPgCSQkR0bwBJup+G/y9aUaCKfDXSIkQGr3akSzL3udf12bD9suSgkxNtnb5ZCBHksxQbKifLw/A7Y1rzmJTsrZcIUmTzB7MumHmPHRP0IJLl5GqJKeH3FZaIU9aV5aR7STmtlUhAlJlvE1SNEnVXPs0VjYxESjfqpBm5GtrKyMlB+yy23YOrUqVmNpa6uDt27dw+Vd+/ePRRTIcKePXtwww034MILLwzEUfzoRz9Cnz59UFFRgbfffhtTpkzBm2++GdIOZeiwhNdRQP2oVTl6WikKpqSmq3Xx/cah3cnkiHPrzJXpDS0uv13U/LvQDZQpCLzlRwpY4UfDE5wOGVIEyPYpWjuPlfHaGZo2dWHqw4u6+kIWcmkniWRSfD/KTJRpnxRz90aZdlJIOPo/MDcju2XLlgChFBeLlxiaOnWqMmXLSxmjouBd1xVGx7NoamrCBRdcgObmZjz44IOBunHjxvn7gwYNwqGHHorBgwdj3bp1OProo5V9A5bwsoboLU1EaKq3Oq23Pl2i03mB5EnItH22UGiZsgTzbP12IoXZFIUAEh6pceQWeHEJaHje527Ns1BaHUtoMn+eiuh4fx4r40Ey7ZhsyGz3onqZjKyNqp2uVucAqnw8VeCKSmOj6uOafSXtFCBhkEbhOi2eLJNI9CuvvFIZEXnwwQfjn//8Jz799NNQ3X//+99QXjSPpqYmnH/++di0aRP+8Y9/KMd29NFHo7CwEO+//74lvLZEriK1hP47HXNmtsEqudDuIpoyeV428WDFkX7Ax1kWeoWBmVZSwQaB+hSChEIRjgoq0uNlALVpUzTXJivLQNe0qGMC1fkt6poqRbK8PC/DzauZTAU7j9MMGSfSTtKQ8Mx9jN26dUO3bt2UcsOGDUN9fT1ef/11HHvssQCA1157DfX19Rg+fLiwnUd277//Pl588UVh6hiLd955B01NTeQkIiLsNUEr7QWyG0Jm1mjJjgm21fbfyaBDbDpklUswpkxyeJopCCq/nYrsdJ65hYJPf7ILynxJaH6tBSYpMqIRygyzut+aVy9KPneQVQBLHDDpT/d3L0GaMBOygStUnSniCHBxnCScJoMtAuHpYsCAATjttNMwbtw4rF69GqtXr8a4ceMwevToQIRm//79sWjRosz4HZx77rlYs2YNnnjiCaTTadTV1aGurg6NjY0AgP/85z+47bbbsGbNGnz44YdYvHgxzjvvPBx11FEYMWKE9vishpcF4rLLiwJWpFCdWuXjk2mDIvlcaHd8igGn3ZmkIECwL9KbovrtPPg8xj4/uChN/3/Lkp6TTR4oZdoUlfPmzCimTXCyxHAohLQngZwIuv430/OK6gXnc5ykMGiF0vhkaQm5mkDaTafgpg0e5SayEfDEE09g4sSJ/lzGZ599Nu6///6AzMaNG1FfXw8A+Pjjj/Hss88CAI488siA3IsvvoiTTjoJRUVFeOGFF3Dvvfdi165dqKysxJlnnolbbrmFzMMWwRJejJBrcOEfuijBXHpTUBqXylRJkQ8PFVmZwLSNIw5UAfRNmSKdhv2U6UJRUcj775KCoBWf8DzNjo3WZIV1VBOK9NhjVX6eJ+udE0Q9C1ZWw5enIhrT9rp9KQhMaNJ0AJEfLy0hPYrETBPQs87Lc5Itm4l8DrH//vtj3rx5UhlvmkegxffHHlOorKzEihUrsh6bJbw8gP/xqyI0KZD+Ox0tTtecqYKJ1iZqI+iDN2Wy2p2JKRMIExtVJiM7UdgGlZLgUxZPaAENzyHqeKITpQTIRiTT6GT+PLZPlcbHgtcUucmlReIyGRFMtTuZb09FjhI/HktyskhNiuDiTi6XoiHFzHygKd9J0XmvPEtQJJaNHBD2/yn9dyJQRKjS3FSmSF1EbC8KVGGHZ+LD82Sikh0FPnvO98JltDoUwzdpSjU8ny69z90IkpcIvDanS3pgygCa6KSqDwOFOTbqM94kgEWHTGUBM/y5BE9BLwE9lSG+dDoJJGk/PUVwpibPyDC9R/PEw+0RlvByCJOILipghYQOUcnkeVAmUtl5dbU70XkI7Y4lO1+c0e54MqNSEHSILRuyY8EGrBQi48MrQcvdVAIg2WLqAjK/gRDhJZjWXk+6I+Bz5nRID1wZeyUq7U4zN09Ho5JB9NtRRWbKTJcqsyZFilQwKmfSlCWch0+lR3BZRYBawtOGJbwcQTcHjzJvUm0T1I/a1JxpYn4U5efFFajihFdCAMKmTJEWB0E9GBkRhbBtdGiGNz56ZZ5+FsjBo4JWvLqSzBboge2JfRKrnkq6ASssQbJyIqKTqUaUrMK0aQIVuVFyJtodpRmGyhKthYp1uNLsSw3EpJXzSaUt4WnDEl4EmJgpRdANWEk6gvtOFbhClVPQCTCJYto0gCwqE4gWsCLS+EzJzgM/lVhAu2NNmhn+CuXhlbTWtfbobbsZQZORiUhPJisjOpG/UCMnj4WKpEzaUW1VGp5I26TaSTTTZkazkwWuBE+hO3l0jATI3xA68p0UlvByAFWagU7Aiue/C0GkmVEQEaVKcxPJgCuPQbuTrWCuo9GZRGRGJTsWbGyl778rRtCkyfjwAhoeuzmUdseOytPyVOZOkdlSJ4gFCBKdSDVSkZ9kdXS2XAWVCZKS06kTjUfDl9dCdI6/DyA044o+yeWIadIwy5XNobLZ3mEJL2YYpxlkwJpCpP47FqL7R0ZmKllZf7o3Ck92GhBFZXrdUX47th5MHThZkYwMrOmSKvOIr9QjOjZohY/65k2aKaAlF49PTZARiwympMdemczMSY1F45GRLw1PV7sTaYQU6QHg0xPSTsoPXAHUwSh5XxfPmjS1YQkvz4hCiFr+O5k5k4eIjETaGd9Opd3Jzkdod7IEc5EWB4RJUBa4QrXXBW/O9D59kyYbtOKbNJlJg3mTZsrrle85qt4JhCM42TKe9IAguYnMnB5UplZOy6Og+5DV0Q51fHQqs6bKpOmkpD48VeAKnaqQo6nJ9oBeoUMm30lhpxYzhOwHKwpKofa9Y1nAipb/TuSDk5EZJavSFqNqd4L2qgRzkZbH74PbF/E7LxcFhdyWSmYCVjKRmShGqx8vg0CUZgmIwBW+Vxam76M6WYhsGbXPf4Oi/whb7iA07Zgj2FTQaaMq133pkx0DYBO0RdNxsekn/DRhsmnD4pqaLNOZ+PumNmvStIiKqKYLlaan7b+j6tlyFclRsjIN0FS749qzkZmyBHPvdDLzJfsYph7HvLxgSKGbgDddphCkopD/jtfgmLSElgYukEoEic8/ExWtyV8F5cejRu614SMyqXqRD08WoGJo2qSg+ofEqeGpzJoiGaaMD1wBIF0qiEdeJpzWfZlg5TspLOHlECyBpQT7lGySsu9RpkVRPSWjE4jCgyc1HlkGqrBkx55SFbDCk2AUvx3/9encCCwlBfx3xcxnMeCWtEZptgStOEBJYdCHlwLglDK9eZGaOjl5Dvcpi/aQ+fNYGX4fxDgMTZsmD1YRifH1rExkcyVTTsk4AOvHYwNXAISWCmJJrU1WVLCEpw1LeDGBN02K18kL/9pEASvC6cTYfYq8ZOTItmNlo2h3IlBEqIDKlEmRncxvJyI73Xud1+74EBPff1fMbBkyc5i5NJNIo6CkEc0s4XnbLvYspWj90njTpo6e6o3au2KdIBYwZfw+2x9/ftFsK17fAtKTPW1k2pqoH5XmR8mJtECS+Fr9eKrAFVmkJlvH7sdGjpR5RCXfSWEJLwfQSST3yoM+vla50HRilFbngSIhEfHp9CsjLIkGJyNCmXYnSjdQaXmsPFuWDdmJHuWs0bEUQGkxkGDJiyE9fjL6ZCqNZt6HlwJaiKEUrWTnR7Qg/FTizZAildyE9MCVAWHS88qoMfHIctoxkQmSr5cRGFsu1N64vqT1SZ/0qBlXKJLL1aoIQti0BG1YwjOArhYnbi8OYAnI8f47WTqC6LnH7su0Nb6MgkjrE8lw+yqy88CHQbBdi/Lt4iA7/iaQaXeeETKV8dX5pkzGvJlOFQQ0vGTKQRObp0cGrnifUbU8Vk6X9IBgfh5bRp1XZXdk5QxMm7Judfxwor5kBMkSm4gYM8eyBHRROgIfpZnTVAVNK0pAvpPCRmnGDJ1ZWGRlrP9OmY4g0rx068GVZaPdUX064kVdeXGd+EB2nyLAbDQ7QE+784nPIznOf4cU0FBcFEhLSKXSYbLztTzWjycKXlGNkIfqmxC9PrBlIv1apeUJojZlkFkHHEG9Sl4kQ/VD7QNomWasBWkmSjPt6EVj6izuGjkyM9iJ+dZJYTW8GJDtmxu5Vp6MmMDsq/x4CkLyj020O4r4ROQHuXYne6yKnkUUwWVLdh5k2p3vbSvOpCPw/rsMAaa52yqZSocDVnw/nmfW/ApBDU+l5YnMmqysTNNj92VJ6ZCUURA8UnT+EaJLUpkkRXJS/xzCXwPZf4q4GcOBK365xowqsWt7e6C1RGFAvpPCang5BGXC5M2gVMAK6b+jjvlySiNj9ylCooJgVNqdDJx2J1r2RycFAVyZTnK5Kdmp3vhSCOtdKTYyk/XhMUsDsaslJD0Nj5X39v2zqFIUPOhqeYD4NYA9pr5JSpOTlfGvKZLcPNVwVVqeTFamvanqZfdcRqNLO8FfC/tiw7/ktJaL8/RiA//iqdqsSdPCFNRbnK6PjpanVCOI/Ww6N7+ojg9ykT08stTueLBpCPwj0oOojL801SPbBDyN8KngAU3P4yOP5FjyKw4/2IqSDRKTptc7a9rkz5yNIUamG1PHsv+E6D+mc26mSLTJZPg6SpaSkd0bsn3R8DlzJmWSFJFfzmBCdqKXihixY8cOVFdXo7y8HOXl5aiursbnn38ubXPJJZcgkUgEtqFDhwZkGhoacNVVV6Fbt27o0qULzj77bHz88cdGY7OElwd4WpxoAmkq4VyZjuCBuknThBwVyamrxaneDCMEqrCPTvY0soAVmd8uG7LzwOpZYD5Z3au0GCjkzZhslGaq5SHI5uGlkA6TXSB4hQ2J4bU8DxTx6T5YTUjPKxP9F9h69pMqA7RmYBHVidpRxxAcy+p0Xh4zfrxmzocX8OllSE/kj8s5ATZF2HKICy+8EOvXr8eSJUuwZMkSrF+/HtXV1cp2p512Gmpra/1t8eLFgfpJkyZh0aJFeOqpp/DKK69g165dGD16NNKiuYcJWB9eDqCK3hRpgl7ASkqk1QHBm5QKNqHkKJLjZUUpDDraHYIyMlMmBVUKAhB8LMdFdiyhseB9dh4R7oOMOZPR5mgfXjKg5ZFr4rHbHjBn4f141FNZJzmdh8NcMZWTV8jVsefk0xJEjw3RmLioTWporChVztY5gmOvzBHsi9qK5Dg/nioBPXhJcj+dLLrTGO0oLWHDhg1YsmQJVq9ejSFDhgAAHnroIQwbNgwbN25Ev379hG2Li4tRUVFB1tXX12POnDl4/PHHccoppwAA5s2bh8rKSjz//PMYNWqU1vishpclRL651nonICecfYV6SxGlI8jeYvlgFLZORnwUwfGaG1/Gk5/kRhJpdzq6hCpIRVam+1JLaXcptGbJpQCkkpnoTJ7ovH3fh9f61E5m6A8lTRIND8yZRFoeP0J2AjTdK1Zpeuw+ZcZk5UQaneh8XLFI09PRAKl+KBkT7U+1nwHvx/PLM0Ql8tk5fn0OdAzR9ynbAOzcuTOwNTQ0ZD2UVatWoby83Cc7ABg6dCjKy8uxcuVKadvly5eje/fu+OY3v4lx48Zh27Ztft3atWvR1NSEkSNH+mW9evXCoEGDlP2ysIQXM0SmyrAc7b9LUjcrS2KUOZPS7njtj5UTyYo0N1k7jvhMTJmixyiYfd0gFf7ZpCI5He2O3fZBy1RifnQma8pkPpuKgUYE0xJaVkxQmTW9lbZFI+Bn89QB9S3IXhVEpMfXeW1Upk22ncK0KSrjy6ljkYysLStD7Yf6oSeSzru/jkLEoJXKykrfz1ZeXo5p06ZlPZS6ujp07949VN69e3fU1dUJ251++ul44okn8I9//AN/+MMf8MYbb+A73/mOT8J1dXUoKirC1772tUC7Hj16SPvl0Q7+Wx0PpiHFvBYonHmF8t+J9tOCMkpeRWAqMhOVcdBNMOeh0vJ4shMdgyvXBZ+KwOtXnnYXWOw1iRDZtSSdI0NxSab/NApLGtFUUiImvD1A64wr3jfGa3m8N7OQkRP8U3x5PpmcN2V6Zfw+a8Zkv1n+VUHnW5eYNh1OjC/zyh2JjI6Zku1Hx/yZAuC0zKspSkD3zJfeVGFsakJe1sbbDYCYa16IjCK3ZcsWlJWV+cXFxcXCJlOnTsWtt94q7faNN94AACQS4f+x67pkuYcxY8b4+4MGDcLgwYPRu3dvPPfcc/jBD34gbKfql4clvBxB90dOJZz7UBGfitC8fbZMR7vj66m3X1kKgwAinYDSL/jjbMmO0o/4MBAyIhMt2l1hKhOswhIcoeE1lhQG3vpTnkcv5aBJ5sfzHqxSX57O7Csi/54O6bFyXt+q/DxwdWw/ojpBNzKiY8t5fpcRGl8Opk7E8dQ+4cdLO0nhygmqRWJbjzVuHBUi+vDKysoChCfDlVdeiQsuuEAqc/DBB+Of//wnPv3001Ddf//7X/To0UN7iD179kTv3r3x/vvvAwAqKirQ2NiIHTt2BLS8bdu2Yfjw4dr9WsLThNw86Qhl+B+9KnUhxRKQ9+kQ+zyheWUq041MuxMRmAbxRTFligxmlDENXD1/WWy5Dgq5fd53x2t3gZXNPU2PXeU8U+ckPa9d0I+XEpk0WQLcxY6mFGEtj7pCkwAWVjMEwqRHkaBOEAsF2fRkxLRjlJKqE5QiqjfR8FSkx4GdSNoLXPHIjApW4YlNR8YImi+cAXlDdOvWDd26dVPKDRs2DPX19Xj99ddx7LHHAgBee+011NfXGxHTZ599hi1btqBnz54AgKqqKhQWFmLZsmU4//zzAQC1tbV4++238bvf/U67X+vDywIiEqSnDgv+IqUJ5xRR8aTFy4lSFURaIKXdgZPVTVtgRQRkJ5SHPEhF5cODopxHSrAv85wVptC6MgKv4XGaXmiWFWTS0NnpxXgtj7VaCnPy+NhRXj+N+u4q06GpVxBeL+f7Evnz+P800ZTvkldweTm+Dgo5SgaCOlJOvSBscPg5SjQPn8h8yxEGDBiA0047DePGjcPq1auxevVqjBs3DqNHjw5EaPbv3x+LFi0CAOzatQvXXXcdVq1ahQ8//BDLly/HWWedhW7duuH73/8+AKC8vBxjx47FtddeixdeeAE1NTX48Y9/jMMPP9yP2tSB1fDyCCpSkyfChPFNyNWJglVYGdkDgooMpbRMgXYngkrL4x+H1BBF9aY+OxPtrjSj3SXYte/4lATGr8enJHgoKm4ESjILwVLaXcCXl62Wp9L6eDMmXy5SdXjNjxqH6jxef4ZankhOZu6UmTZ5DU/VXuLH4313lN8up+vkNcFsajHTG8YQTzzxBCZOnOhHVJ599tm4//77AzIbN25EfX09ACCZTOKtt97CY489hs8//xw9e/bEt7/9bSxYsABdu3b129xzzz1IpVI4//zzsXv3bpx88smYO3cukkn9FwtLeDmEzNTJl5MrnANysjPR6ngyU6UviLQ7bmxRozL5S+Rj+qh96lJ17l0qgJ/VkbS0O3ZGFY1pxVjSS2VKAwvBUmSXam3RGsAiystjIWMMEUQBK5QPj93n/XmA+L8gImivjntKO1w1X+aVi0iMP6bIDFx5BLMmn48nQ878dsGTtJs8PADYf//9MW/ePKmM67ZG7ZaWluLvf/+7st+SkhLcd999uO+++yKPrUOYNKdNm4ZjjjkGXbt2Rffu3fG9730PGzduVLZbsWIFqqqqUFJSgr59+2LWrFk5G2M4ElMvLw8gEs75T0pbo4hMFqziyYpIkCdEivh47Y6AajYVSOoovx2/n41mB4hnohRpd6lUJhWBJTeP9Fj/XSYlgZ1lBWjNw0sh3fIPTkFMdj7pJSCJFxVchckcmx50vllKBzf571KpCgQoywPF8bLfMn/MX5asnjpH6Jyt/1cvH8+bcYU3X+omkMeS1sB/VzpbJ0WHILwVK1bgiiuuwOrVq7Fs2TI4joORI0fiyy+/FLbZtGkTzjjjDBx//PGoqanBjTfeiIkTJ2LhwoVZjSXblAQeSv+dTMMTaXJUPU9svDxFZnx+D9feZEYVVXSmzG/HXz6gT3ZRtTsvMjOQaJ4EGZnpEVU6BTSiOGTW9EivsKRRHbgSmFC61BsJt3lXJvPl6RKgiPTYY9nrhw758X165RrTjlGEZkp2MtIUyQk/w368dFqel0eRX6wTSe9BS2qC7rYnvlN3NHQIk+aSJUsCx4888gi6d++OtWvX4oQTTiDbzJo1CwcddBCmT58OoMWZumbNGtx1110455xzsh4TpcnpmjBV+XhaZGcazUk9IETaIvWA4PqMGpVJPRJ1glSikB0PKg1Blnfn++5YUiJy77ytJSWBJrtAagJPePuiJUKT9eM5rJZH+fJEiPLtsNGbDlpNkfwxuH1VtGZKUe/JCBaLpcyaIn8be2zkm+M+Iakj/Hgs+EhN3m+Xs5XQ0zBTXXJs0mzP6BAaHg/P2bn//vsLZVatWhWYhgYARo0ahTVr1qCpib4BGxoaQtPtZAN60miCKNmEc1NzJvvJl6URbC/S3lQaH1+eQbYpCKZkx6crsMOiXh1Ek2/xgSoi7S7gu6OmEuM2LyUBCL/B+wvBUtodRYL+SEURmyLTJnvFVL3sG9P5D/D/DZFWpzJtCjQ9mVYnqqcuTaddJA0vaMr0P9tSdxBdt2zrpOhwhOe6LiZPnozjjjsOgwYNEsrV1dWFEh179OgBx3Gwfft2ss20adMCU+1UVlZqjUkn+kqo9YkmjGY/qTLTm1Vnn/LhESTpaXcURCQnq6MuUycdweS+5Q2ArHHQSLvjzJgsaaWRAh+wAmTIDt66eK6Y5EK+PHbk/BybItOmiS8vW9Jjj/ly1WuPxtB0yU5GYDrtqH3qkwPvxwMQeuFxiBeg2MnREp42OhzhXXnllfjnP/+J+fPnK2X5KWe8yCDRVDRTpkxBfX29v23ZssV4fElOq5OZPIX+O3afMk/yWppMG5Rpd1T/PPFxmp7p9GGyx50qIjMbshNpd2y9lnbHJpezqQnMckAoAdyUl5KQAhvA4JOdT3iO2HeX4j79kVJaHkt8FMnp+vKoJ6COYZl6bdEhNgMtL9dkB8m+TE6Qg2eadxcmxYhE6H2NulsnJrwO4cPzcNVVV+HZZ5/FSy+9hAMPPFAqW1FREZpUdNu2bUilUjjggAPINsXFxdL55GQwD2bJkB+fjiC6ESlzpuhGlT0MRPuagSpAdn479t6kCE0UsMJfpglEOhDpv+O1O56IWKLzjpMtz0BqdnwPSaSRTKZRUNKI5lShmOxYP57vd6JGyn4bTQjfyqa+PIfogy1nfXrg9r3jKOf1wJ2bHQ71O+d9cmwd/ynz0TmK+lBZ0I/neLl4zFJBsry8nMytmYZZHp714bVvuK6LK6+8Ek8//TT+8Y9/oE+fPso2w4YNw7JlywJlS5cuxeDBg1FYGCWEOwxVcAoVoSkyfwYmjOZFqBtZJxUhinbH7gsCVWQQvefLtDz20njIYghZ8MEofBm4el4/IvPu2GnEWHMmQXyNJQXwzJnUbCstn8SMK6x5kz8ORGz6+idxhSZanuwdl/2GKeISRWtSqoPs9Uckr7miAogylZZHtRH1o2xD+/FUyJmfj/+edLZOig5BeFdccQXmzZuHJ598El27dkVdXR3q6uqwe/duX2bKlCm46KKL/OPx48fjo48+wuTJk7FhwwY8/PDDmDNnDq677rqsxyOKrpT58qg5NMn8O9VNK/L1md7sKvJk5TL1OlGZPCgtj5fnNT1K84t6j1LaHavlsRwTyLtj/XacNhcgvsxxOtUaj8mCDVxKZSI1hYnnVDBLCmhdOojfWPMmQF+hKSjS47999j8k+8/qQBLDyz+cRQSYDdlBsi+ql0C1+nlOYNMStNEhCG/mzJmor6/HSSedhJ49e/rbggULfJna2lps3rzZP+7Tpw8WL16M5cuX48gjj8Ttt9+OGTNmxJKSYALR+nja/jv2U3bzyshSV7tjNyJQBZCTnejTg+i9HoiP7GTaHa8bUdpdKe+f47U5lugYcmqJ0BQFraR9P17KC1zhIzRlQSwAWv14npbHBrHwOXrsFev68ljISC+KP0/0SZEdp+V53am0L105UZ3JOQDA1+5af2l0Dl5GG+R+E7ESYjrC1knRIXx47DQ0IsydOzdUduKJJ2LdunWxjYPS4HhtT70CuiAdAZC/ZYo0MqqO/RS9EVPyfFlGjpor04Ts2Mcb2z4ustMJTOF1IJ4yQtodS3QsAfFLA6W8gBWf0gCEH36tuXiZwJVUoTDa0z/ew3wGtLxS5tvxNs/Pxp7X+/ZYhxd1TMHrEwj673Llz+OnLUu0DoMatkj7Yn1zbB3V1mHKZZ+erF9O+PGYpYJkc2ryiGWqMQfke4LkpJ0WHULDa+/Q8eUFNT3iBy4ya6ry5ahy9lOWd2fgw+NNmbrgyY5/n4/TjMlrb3wdlWjuz2XCa3e8r46fS5Px73kBK7IcPO+zhfAYP55q8+QABKM1ReZNWZqCqZlTV9PT1ePByfH9878OprnqxY26LyCRkZWJZALlQT9ea3VYc4s67Zg2+O9HZ+uksIQXETzJKQkN8HUAQJJ/xxKV7CY01e5kDwieDJnze9pdFFOmiOw8xEF2vHaX4vb5xz9lykyJfHcs8bEEyPn3GksKQE0aDQRfelKZSE1/ijE+QEU53VgCrXopewW8eZMHP8cM9c2JoEN63j5bzuv5IkKLaNpUPcxl5fynivSEckxunZMkpxgL5t8lSULk5YzB3mg2LUGKDmHS7CigAlMo0ybpv1PdXLwZE4SMqg1BaKRfL3PMmzKjkB07VIr4siE7FrweQ+k4lG6k9N2xWh4/00rGl5dOeWSXIonPz8PzavnVz0W+vD3Ep6+Xet8ib3NzECY99htlTYe6cJjzUOZNSPZNoWHadJhqap/9FJXz9ew+/8levl+e8MvYBWEB/dSD2FIU0jAzaQoWZukMsISXB3gPu0AZ778DwlGSlBbnfbIaGf/Jy/CyqrdhgSkT0Cc7DzLjli7ZefUqg5xKvyGNf17eHeW7Y0mPN2VmNrcEzCrn8rd0jxJbA1cSQYJjfXekHw9oXUmhlOl5N3eFHlg24Mu8cv4bF33bUUiP7U8HFBkz46DICIJ93penIjP+fpD68FrL+Xk12fkz2bkzc5J/58GBma3OEp6FLigtTlzvhOrYstByQGCOZW+lKi2P1+RE7TVMmUDQlKkL3noi2+cvBUQdBe/Hyz+aKVOmaI6S0pIW0gtpWbzGRZgyWxPOUwETFhWtx86yEwhcSQnOR2l4Dhgtj70K6i2G1f7Yb1KXiCjik5EeX++NQ/Sawmud1JgK0aK6EJNLU2TH14tIjhqqiggpWScFpNJIO0lh4ErLfnjx11gXhN0NS3iasD68LEGaLFWkyEZ98ETFwjuWBbTw9VSfDtFWRJQITx8GRPfbAWKCy4bseLDk5oFPQ/A2L/SjtLjFnJlgtTp+OjFeq0sGP9Op1oAVkYYXSDz3/kns2ngU6fEEGFDePC1PFMACrk6Wm6d65+X/E7z+zu87xL7M2A2ofznctGPeJ8XzsnpeTtQOXB1/HCiXB6no+OayTkhvhllKgiU8i2zgL/DJlbXuO+F66q3U22fJTERSshubMm+CK1NEbVJRmbpkx16KLEiFunxWTgb2sc4/LkRpCIEwj0ygSoozUZJEw/vtmLJ0qsB/qDlEUALly02m0ijgZ1wRzbzCl/sXy2t5oVAciLUrWR0FGemxx6LwJK9O5xcESTlTrboXoPkpk+f7D9UF5/MSBa60Hrf6eWUwDmCRkbuM9HOEHTt2oLq62p+Ev7q6Gp9//rm0TSKRILff//73vsxJJ50Uqr/ggguMxmZNmjGC1+YoEkyl0+LlgNhjQE5UVDnfhpVhPyU3Oj99GDUxtOg9XVTP74M4BlfOQ/V4FpkwgTBfeIEqAe2OnUZMpuFxxJdOUbPh0w8sP6Ql2WLWbBaZMnlzplfn/c92Aa1anlfomTBZVnQE3xxrrvTaOVyZrI3Xdwq0P48yUbLjkP2XqTrOtMn/blPEPivDmzLZcjDyIrMmL8O1b3aSocAVHjlbC88bi8lcmiYBLhFw4YUX4uOPP/bXMb388stRXV2Nv/zlL8I2tbW1geO//e1vGDt2bGiikHHjxuG2227zj0tLS2ECS3gRIJ9CzOGOaVlyOSD22CsTmSJFqQc65MZHbWY+RSuYS961Q+/iUcnOxIQp0+7A1ZG6D6vdUb45SsPjpxlLtiScO8mkr9nxvjwP7CKwPumlHDSlXCCVEJs29yBIgGy9412lR1i8L4/9pjzwvrwor/osoclID9w+C9F/jZdNceUpSP15fBlPfhShUXIiGVBtUtzN7Pl0WwPVZMnlsQSzNKHdEN6GDRuwZMkSrF69GkOGDAEAPPTQQxg2bBg2btyIfv36ke0qKioCx8888wy+/e1vo2/fvoHyffbZJyRrAmvSzAHCOXpMSDrvv+PJjCckEVGZaHeeDE+EGqZMU78d/+zJJdmB2ee1O/ZTqN3xuXXsPp9kTvjxWgNW6EAVCsFITSdIcFQeHlVXwvZYilavJGXmZMclS0bn5WSgvK/Uf5r6NcRk2qRe9sB9yjZehmpL9cPXA4CT9ANXdBLRZYg05ZiJ/87bgNBi1w0NDebn5rBq1SqUl5f7ZAcAQ4cORXl5OVauXKnVx6effornnnsOY8eODdU98cQT6NatGw477DBcd911+OKLL4zGZzW8iFC9lQUCFPg6R5GOANBkxZaLiFKk3Sk2WYK5d5ooQSpg9qOSncoTJTNlUtpdaQlQKDNV8p8sCQXMmcGoTP3glTQz40oh7acT5eHx9YE0Be+b5zU8mSYXRcsDzDQ9MLK6rzfUo4kwbYrMlfwnpd0BwfuAl2U1OxBlDsDm4yEgmsz8tX6//Gw8vJkzq2nGImht/ALXt9xyC6ZOnRrt/BnU1dWhe/fuofLu3buHlmsT4dFHH0XXrl3xgx/8IFD+ox/9CH369EFFRQXefvttTJkyBW+++WZoVRwZLOFpoOVHGf6qWlOM2YVheO2udQFQ1n8HgM67M30jlbXhCVBgygSgTDAHs89/gqgHsQ8ELzdKJCYgJkA+XIPXeUqTRBoCT3SimVV482eyJWAF0CM6fskoL3ClmSc6GdmxfrzAw96/QrSaOIHWb5t/arNgzYamZk5T0uPPJ4JoHCnmU5KQLiIvqg4If5/8Pkl07HEKzU4aaSeFtJNGOtW6Nh7Q+lJE5ee1JbZs2YKysjL/WLYW6NSpU3HrrbdK+3vjjTcA0Atsu64rXHibx8MPP4wf/ehHKCkJmDIwbtw4f3/QoEE49NBDMXjwYKxbtw5HH320Vt+W8DRh8ual+jGneKKjSMqDKKiFJTpeDgjf5JQpM1Pnelpd5lMWSM6THAhZEPtA8LJ0yY4nN157Yz/58pCG55kyeQKjiI2fO5MlJD8lITx/pmgezZZ95uWIClyRzbBCkaL/P2YDWPbJnM1LRgeC/wn+lhcFsOjOyKJDeuwYPMiSzEVkRxC4iPBkRAemTkZ0FOnJiI8DT3QytAUJlpWVBQhPhiuvvFIZEXnwwQfjn//8Jz799NNQ3X//+1/06NFDeZ6XX34ZGzduDKyEI8LRRx+NwsJCvP/++5bw2hrsvJlCsATGQ6S5gdnnyU2m3YHoI02bMj3oaHNUXdyaHRD8ofI/Wpkp05tlMpSGQPnveL8ZpX1l2rMBKyrSA+i5VpWBK5TWx5JdgPRYYT6AhSIdKuoyKlSkx55HFLnJ1/GgEuAlpk2K/Cizpg7psSC/1gRC82omY0wsV4J3KujIm6Fbt27o1q2bUm7YsGGor6/H66+/jmOPPRYA8Nprr6G+vh7Dhw9Xtp8zZw6qqqpwxBFHKGXfeecdNDU1oWfPnuoLyMAGrRggyhsYH7Di++/4KE1RVCUQJi1eltL6VNpd5lNmymSHZxqkAmRPdnw4hShQhT8mwzdY7Y5KJudTEJLEPtPGe755OhsfbEAFH7D5mEk44cAVEenywSu8PAB5Mjr/KsB+Yyxk37gKskAWb5/6tegEr/DtiXhh6oWQ3Ze9OJq05c/HlHmBKzxYxweF7FdPEF2kbMsNBgwYgNNOOw3jxo3D6tWrsXr1aowbNw6jR48ORGj2798fixYtCrTduXMn/vSnP+Gyyy4L9fuf//wHt912G9asWYMPP/wQixcvxnnnnYejjjoKI0aM0B6fJbyYEPTlaf6gVL8/ymwpu/F4OREBZjZ+UVcdUyb7mPIgClLhQZGd6e3HPrL5Y5EpU5hkTgWl8Fofn6qQIcCWgJWwgUQnyi7lxXaySwWZbjwZ+t8G9Q3wxCeKZwX0SE70wxWRHr/P/6pEJMe34V+zuBlYdJ/zqntI9qM0+MFSq2fwEb3xLBXUFGHLHZ544gkcfvjhGDlyJEaOHIlvfetbePzxxwMyGzduRH19faDsqaeeguu6+OEPfxjqs6ioCC+88AJGjRqFfv36YeLEiRg5ciSef/55JJP636E1aRqCIjN6Ydh04I3eC1hJ8dqWB0L7CsjwN5rMp8fe2BqBKjqzqVDgH1EyUybfB/8tOgj+GCldgzdriogO3LGWdscTicysidYZVrzcO2+1cwre7yC4akLLFy4MXOFNmSJfnrc5gDgZ3fuG2W+U+q+mODkHal8e/5+jzJvUPiAmV9H5WBNpivlkTJveafj7gCqj5FNcHb+liPYOoApc4WHi31PD9LUxdxoeAOy///6YN2+eVIZa1Pvyyy/H5ZdfTspXVlZixYoVWY/NEl4EBJOI1T9YqQylibFlrAwEsjraHVfOBqpESUHgiTAbsgPkP0RVzh0rE9JtqCRzSnNLclsxUcaQoxeworNKggjJlBe4QvjxKILjozS1fXleOZhjimz4ABZdyEiPPWbPHeWhy56Dvy6mWEV0rFwU0qOIT4HYF30NQPZaKpLvnLCEFyNSDBHyCPnveKISgbrZqHQDWT238YEqgNqEKSI7ivi8ckCP7HhQqdC8KdOTo8yYgSVSWe3OIzae5EQJ3wJNzyXuGlbbk5k1AzSZTLcErngXqNLyVGZOBwhreR5YguAJiQcr60CPAEWk55XHQXqsPK85cloetc+Ki14YRaQHrj5EfC2BK+zKCelky4wrnibXYspsNLxmHbARubrynROW8GKCeHYVwqfH3+ciklKZLUXyEoJkpw+TzaYCokxGdvw+EHxERn2nFJkyU9wxFaYhnEKMj9RkzZrEmnc88TlJBCI0dd/e+QnF/d8Fu1QQH40p2vf+t1Itz5tnkDdtsv8NkWlTVOfVU/9Rlii99irSk52HBU+6/GsRR3reJ0V4/L6I5HiFktLsdF9cM8iNpse/durId05YwosBWmZN1n8HyLUwk2RyUbngk50rkzVlqvx2sojMbMmO/RFS2p1XzpsyeaIrZcpKkwhPIcYnnLPaHmvm9GT5JYMymxewwkbe6Sz+2rrf+o2kvMAVFKq1O5bU2GP2cxfQ8uAvReubP2/aZJ/aMtOmJ+/J6T5UWWZQkR6Ychn41x4qBrgwWGRKeLJykWbHgvDjOUlvvpUkijJiae44exgwri/fOWEJL0sIE4sRnGHFh4jg+Dpd7Q6CcuImlSWY82QnIj+VlgeYkZ0MolhCkSkzUJ8iphDztDte22NnWBGYMVlFgg1YablGOelR6yOykZragSt8mSOQdwA6gAXMMZiLksHTDvNBeqr+qH2eCDnTpinhicydOpsCVMSmNwVZduZO08jL3EZptmdYwssCstXNQ7ION38mD/5+pm5MXe0O4XJqBXNPTKThyepA7APmZCfS7lTB8dqmTFZjSymOqdw7jkzcFD/DSirzSZOeiOy841Dgindxuhuv5QWsjazgPgC+Yo6B4H9IFhmpiugUQYf0ZOcWgfrVsOcT+POoMhFxychM2Cbsx+PfgWSaXXRzpybjBuQ7JyzhRQSv2QXrgv67JMsuMuJitTYPKjlNMlSZMgE9smOHxe9no9nJAlUo7Y6VLeQ3z5TJEhuv3VGkR5ULEs4BhEivtVx8W/mzrPD/aNaPl80mnHIMCGp8LBl52hsFr20ULc9rLyM9cPsqsETLt2N/EQgTGKu9yTQ5vg5EPXWZxI/eWyqI1eDi9+Oxr5668p0TlvAMIUtFEEVoAgivfycjKlkZuH5UgSrQN2UCYbLjocq7A/RvJ9GPT/ToDZktkYV2J5paLAXanOkRH+AHrADBh1dwP3h1QWsAo+F5kZoyP56I1GQyIS0PaP3P8mWiJziYuqhaHn8OGelR5xeNi5Jhx6wIYOEvmyI9UZ1IwwPg+fEohH8fcUVsWg1PF5bwsoSfWC4kOmaFBIq0eIiIy2un6wPktDuANmWy+9TQeI2PIjte3hS62h0rz5Icm3NHanci0uPJjDJnskgFZ1jhl3pRQWQV8FfKjqrNiQgwoOV5J+BTFtiLpLSlbANYPMhIz6tnwefxicbDyrO/aEbLYzU2IHz/yMp1yY7jHD5wpTVgJRea3m6YTZpl0xIsNKCbZM4GrHjw/Xc65kxKuwN3rKPdOeIEc5WPTuTTA+gITiBwv4fqeK2N4BJfjiI7KlAF3HFhSqHdUbOsUJocqwClgsfskkDspwfVQyzo02tNTSgQJaCbaHdkioL3rYIp5NMUQOxTYANYWq9I/J/n/+si0gO3z4Oq48/LE6FAy/M+KY1OV4vjESC+4ETSHkS/C17TSyMVgQbZ11dd+c4JS3hZILTGGfFD8hLOAYRvOJnpkiI0WQoD8cknmItMmSqyYyEKUhHJqcDPoiKS4WdWobS7VAooLSa0O95sSaUfUATC+e/YgBUqwVw8tRjl43Uy18EGrjgQ+vF0k89ZeWTa+N8Y+3rAa3gsGQHh/ygQ1KJkWl4T90kFlnj1UfPyKAJk67zzJPQIL5s6vh4IJaADjfACVkxfktRQMTIl3zlhCS8iwgu9Bn00gYeaaGYVEZlR+w3cMS+zB6Gb0EkDu/e0kN3utJjUVGQni84Egpek86hitTn22NunTJmUtiecUcVLM2DTDfioS1EOHpV4nmnLrpDQeu2tBCgDZR3wozVTzIwr3sWqtDsqB88RtHMAeZqCd1IPTdwxGNlCbp/S+njwxEeRHiuXgvqXxI/PIeq8zMxMNbWIrqNRp9rA74f9eDpLSEWHTUvQhSU8TVDh5fw+b8YM+e+AIFmBKVNpdyzpeTdoA1fPkKNnyqRmU9nN7LOPv1yRnSzFgCU/VoMTRWUaB6rws6pQM66IND+OONIpwEm2PrBUJBe+1jRDj0HrQItAukXD8y42ykYRn/9P4r85rwwI/yBFYAlSJCfS/lhy40nP65MPYhGdgyr3ZpbhDd5Ebt4ermlUsiOJr+V8rB8PybD5kk9Gjw5LeLqwhJcFWkPMgzcfS3yB/DtZYjl1A1HanEd0mqZMauowdp81PvFkFrdm1/LdtEBmykxxdSzxsfvSNARCQyPJTJBvB4AwZxaETJnejCssTKcaSybTSPkJ6BHy8XS0vZCW54HS8FJEPV/HmzZVWp4HnvS8PkXaHeW/k+UGsmPzfu0E6bH7sZAcX9aSjwdfpNWcGe8sK/xF6cp3TljCM4QsJaHls5UEQ/l3ohskjSBx6fjqvH3WlJnR+Ni5MqkgFTD7PInxdWwZL+Mh6vsi/4iVBaykRPs62p1Mg6NWS+DJkgA/hya7foYJWNN3yI/nfTEm2pxoC2l5QPgXAYRNjPwjgjJPUlD5+ER+PW+fJz12PKoUiRT3aWDajEp2ID6BQAI6lcLCm8ejESF1F6vkOycs4UUEH7AiKkuxGhwgjsQEt6+K5hQcU1GZlFZnEpHJ7rOXwpaJwD7WRNpdipCjTJl8nTQNgSUskakyyXTK3wlcH04SgSWBoiI4/Rzz22ETNXlNU4f8VGToBb2QaQrsSSjio8D+Cky1PK9/ry1bJktXkPVPvZ5pmDZj1+y8z6AfL5iO0Lrf0iRbjc80zcCmJVhkgRT7lp55iAn9dw7EpKdKM5AlpwuiMkWkBkF5nGQnA09yVFmA3Kj9lIF2J9pUJtDMQNLMneKZNU3Jj7IO+CksXuAKlYAO7pMv1yE/L8LTYTujntQU8VFgHx0OopGe1z+fiK6brgBGhk9LAIK/Wq//CKTHy6uOHYD346HYE6Nz8rIDOxBd+c4Jk2zFNseDDz6IPn36oKSkBFVVVXj55Zel8itWrEBVVRVKSkrQt29fzJo1K6vz8z47UaRmyH/HEhMg19hUBCgiRU+jc4KBKiINjx2KzH8HhMlO10Uu0u5SXLko566QaOfLZUyZSu2OIjHKpweifabMW//OSdIE52gQn2quVQ8FqTSQcunxmG7sGn8BLTZBXyiA8DfNv2aIXlUoyDREFrJkF5ERnq0Tean5jfkfxKnZUfUAWD9eOh02gccH0fWKttwS3m9+8xsMHz4c++yzD/bbbz+tNq7rYurUqejVqxdKS0tx0kkn4Z133gnINDQ04KqrrkK3bt3QpUsXnH322fj444+NxtZhCG/BggWYNGkSbrrpJtTU1OD444/H6aefjs2bN5PymzZtwhlnnIHjjz8eNTU1uPHGGzFx4kQsXLgw1nHxpik/+o7133mfsmRyFQHKyhrUpkww++ztwYMiPvYyomh17KMUzD716GTr2H3+8euZMpXanUzTkwWvgClDa8CKB9VCrzK0Rmu2TlDgBa60CDhmGpzpBqDVtMlv/H8rBTHp8f9BKtFEFzqkJ2pH/bL517zdmX23tWlU0hMSHL/f8j04Dkt0KZL4siPDqAPPDRobG3HeeefhZz/7mXab3/3ud7j77rtx//3344033kBFRQVOPfVUfPHFF77MpEmTsGjRIjz11FN45ZVXsGvXLowePRrpdNhyIkKUX2ab4O6778bYsWNx2WWXAQCmT5+Ov//975g5cyamTZsWkp81axYOOuggTJ8+HQAwYMAArFmzBnfddRfOOecc8hwNDQ1oaGjwj3fu3CkcD2+eCpo1Wz5TPKkBYeKiglX2QF+7E5gyvdubv935R4LonZnfB8zITvRuT/3gqMcnRXS8dpdKMnl3fPK4LCpTRgYE8bETZ/DanM6DKryqhthjk0yl0ex9KRTp8cdRNv95x3fM/8fZ/5bsvy8LYJEFr/BQmTd1wY+fva7daAliSehzA2sO1iE/5rjZ0/Cc4BRjQJxaXhOE0VVC+dzh1ltvBQDMnTtXS951XUyfPh033XQTfvCDHwAAHn30UfTo0QNPPvkkfvrTn6K+vh5z5szB448/jlNOOQUAMG/ePFRWVuL555/HqFGjtM7VIQivsbERa9euxQ033BAoHzlyJFauXEm2WbVqFUaOHBkoGzVqFObMmYOmpiYUFoYfydOmTfP/WSwadjZiD9IAGpHAHrgZenDRgGakM1szHDQjDQdu2oGzpxnpr9ASOfkVWhbmbATwZeZ4D3PcwMixn41oTUNoYMq8z8zmmTH3NAG7m1t+zl7w5h60EmAa4fdfhzsGUwauzATeI957ThRmygJKRgYuswFAM1pMD96n11chgERBRqtLAk6BV4hWhYW975szx81ofaFgv4SCzJZC0MrHDqQZaEoDu5sLsLuhAA1oxh404yuksRtp7IaD3ShCI5qwG034Ckk0oRF7kEQDCuCgAI1w0QigCQk0wcl81y4SmYEk0IQEGlDQ0AD3y1Jgzx7gy5LW//2XaP1/s/8s73oy4wx8iWC+lwJm8wjd52Dvy9iD1l+L9+vxTmjy6/HkgGi/ngYEmX0PwsEn7CsS/1qUzPRRyPS1O3PsTVXARG16XOF9P+xvxYOL1t8RW8++CXp1XsqQ9xUWN8Fp2o2iLrvRVNzyK2nEbiSxBwWZX88eNKIAu5HEbiTQhOTOlpdu12X/mTJ8CfPvOPxCX1xcjOLiYoN+4sGmTZtQV1cXeF4XFxfjxBNPxMqVK/HTn/4Ua9euRVNTU0CmV69eGDRoEFauXLl3Ed727duRTqfRo0ePQHmPHj1QV1dHtqmrqyPlHcfB9u3b0bNnz1CbKVOmYPLkyf7x1q1bMXDgQNxVOTuGq7CIBc1offjnFQ4A7wHxWb5PbpErpNHCF1/m7hRRfzlffPEFysvLhfVFRUWoqKhAXd09xmPad999UVlZGSi75ZZbMHXqVOO+soX3DKee1x999JEvU1RUhK997WshGREHUOgQhOchkUgEjl3XDZWp5KlyD/wbzr777ot//etfGDhwILZs2YKysrKoQ2/X2LlzJyorK+01dnDYa+z48F6yX3/9dfTq1UsqW1JSgk2bNqGx0fztj3p2yrS7qVOnktYvFm+88QYGDx5sPBYPps93XRkWHYLwunXrhmQyGWLybdu2hd4KPLS8+YTlU6kUDjjgAK3zFhQU4Bvf+AYAoKysbK+8wVjYa9w7YK+x48IzM/bs2RMFBeqYwpKSEpSUlCjlssWVV16JCy64QCpz8MEHR+q7oqICQIsWx1re2Od7RUUFGhsbsWPHjoCWt23bNgwfPlz7XB0iSrOoqAhVVVVYtmxZoHzZsmXCix02bFhIfunSpRg8eDDpv7OwsLCwoNGtWzf0799fukUl3j59+qCioiLwvG5sbMSKFSv853tVVRUKCwsDMrW1tXj77bf3PsIDgMmTJ+P//b//h4cffhgbNmzANddcg82bN2P8+PEAWvxvF110kS8/fvx4fPTRR5g8eTI2bNiAhx9+GHPmzMF1113XVpdgYWFhsddj8+bNWL9+PTZv3ox0Oo3169dj/fr12LVrly/Tv39/LFq0CECLKXPSpEm44447sGjRIrz99tu45JJLsM8+++DCCy8EAJSXl2Ps2LG49tpr8cILL6CmpgY//vGPcfjhh/tRm1pwOxAeeOABt3fv3m5RUZF79NFHuytWrPDrLr74YvfEE08MyC9fvtw96qij3KKiIvfggw92Z86caXzOPXv2uLfccou7Z8+ebIffbmGvce+AvcaOj/r6evfEE0906+vr23ookXHxxRezgdf+9uKLL/oyANxHHnnEP25ubnZvueUWt6Kiwi0uLnZPOOEE96233gr0u3v3bvfKK690999/f7e0tNQdPXq0u3nzZqOxJTInt7CwsLCw2KvRYUyaFhYWFhYW2cASnoWFhYVFp4AlPAsLCwuLTgFLeBYWFhYWnQKW8ADs2rULV155JQ488ECUlpZiwIABmDlzprLdwoULMXDgQBQXF2PgwIF+mG17wk9/+lMkEgl/Em0Zpk+fjn79+qG0tBSVlZW45pprsGfPHr/+pZdewllnnYVevXohkUjgz3/+c+4GrsDTTz+NUaNGoVu3bkgkEli/fr1Wu88//xxXXHEFevbsiZKSEgwYMACLFy/266dNm4ZjjjkGXbt2Rffu3fG9730PGzduzNFViGH6XS9fvhyJRCK0vfvuuwE51fW3FaZNm+aHp4twySWXkNd42GGH+TJz584lZdjfcb6QSqXIsRx++OHCNueffz6Ki4uRSCRQVFSEyy+/XCg7ceJEJBIJcppECxodYqaVXOOaa67Biy++iHnz5uHggw/G0qVLMWHCBPTq1Qvf/e53yTarVq3CmDFjcPvtt+P73/8+Fi1ahPPPPx+vvPIKhgwZkucroPHnP/8Zr732mnKKIgB44okncMMNN+Dhhx/G8OHD8d577+GSSy4BANxzT8tcfV9++SWOOOIIXHrppcIVJ/KFL7/8EiNGjMB5552HcePGabVpbGzEqaeeiu7du+P//u//cOCBB2LLli3o2rWrL7NixQpcccUVOOaYY+A4Dm666SaMHDkS//rXv9ClS5dcXU4IUb/rjRs3BmYg+frXv+7v61x/W+CNN97A7Nmz8a1vfUsqd++99+K3v/2tf+w4Do444gicd955AbmysrLQS0o+ZiPh8dZbb6GpqXVlgiVLluD666/H2LFjSfkf/vCH+NOf/oSJEyfi+9//Pp5++mncd9996NGjB26//faA7KuvvooHHnhgr5xtJqeInm2x9+Cwww5zb7vttkDZ0Ucf7f7yl78Utjn//PPd0047LVA2atQo94ILLsjJGE3x8ccfu9/4xjfct99+2+3du7d7zz33SOWvuOIK9zvf+U6gbPLkye5xxx1HygNwFy1aFNNoo2PTpk0uALempkYpO3PmTLdv375uY2Ojdv/btm1zAQRyPvMNne/6xRdfdAG4O3bsEMpEuf5c44svvnAPPfRQd9myZe6JJ57oXn311dptFy1a5CYSCffDDz/0yx555BG3vLw8/oHGgCOPPNJNpVJuOp0m6/fdd1938ODBoTZdu3YNlDU0NLhdu3Z1L774YveQQw5xKyoqcjbmvQ3WpAnguOOOw7PPPoutW7fCdV28+OKLeO+996RLToiWHxItV5RPNDc3o7q6Gj//+c8D5h4ZjjvuOKxduxavv/46AOCDDz7A4sWLceaZZ+ZyqHnFs88+i2HDhuGKK65Ajx49MGjQINxxxx3SBSTr6+sBAPvvv3++hpkVjjrqKPTs2RMnn3wyXnzxxUBdlOvPNa644gqceeaZZrNlZDBnzhyccsop6N27d6B8165d6N27Nw488ECMHj0aNTU1cQ03Mnbt2oU333wT3/72t4VzZKbT6ZAmWlJSgi+++AJfffWVX3bqqadi33331V5vzoJBWzNue0BDQ4N70UUXuQDcVCrlFhUVuY899pi0TWFhofvEE08Eyp544gm3qKgol0PVwh133OGeeuqpbnNzs+u6rpaG57quO2PGDLewsNBNpVIuAPdnP/uZUBYdUMPr16+fW1xc7P7kJz9x16xZ486fP9/df//93VtvvZWUb25uds866yyhlpsv6HzX7777rjt79mx37dq17sqVK92f/exnbiKRCGimptefa8yfP98dNGiQu3v3btd1XSMN75NPPnGTyaS7YMGCQPmqVavcxx9/3F2/fr370ksvueecc45bWlrqvvfee3EP3wiTJk1yAbhr164VygwbNswtKChwH3/8cTedTruPPvqom0gkAr/vBx980C0oKHDfffdd13Vdq+EZotMR3rx589wuXbr420svveT+/ve/d7/5zW+6zz77rPvmm2+69913n7vvvvu6y5YtE/ZTWFjoPvnkk6G+i4uLc30JoXOy17N8+XK3R48e7tatW30ZHcJ78cUX3R49ergPPfSQ+89//tN9+umn3crKypCp10M+CY/6n3kwIbxDDz3UraysdB3H8cv+8Ic/CB8YEyZMcHv37u1u2bIl62vIBlG/69GjR7tnnXWWf2x6/bnE5s2b3e7du7vr16/3y0wI74477nAPOOAAt6GhQSqXTqfdI444wr3qqquyGW7WOOCAA9zu3btLZT777DP30EMP9afiKigocI899lgXgPv222+7W7dudVOpVOAFxRKeGTod4e3cudN9//33/e2rr75yCwsL3b/+9a8BubFjx7qjRo0S9lNZWenefffdgbK7777bPeigg3IybhH467njjjvcRCLhJpNJf/Nunt69ewv7Oe6449zrrrsuUPb444+7paWlpM8hn4RH/c88mBDeCSec4J588smBssWLF7sAQg/OK6+80j3wwAPdDz74IJZryAZRv+tf//rXbv/+/f1jk+vPNRYtWuQCCP1Ovd8uS8o8mpub3f/5n/9xJ02apHWuyy67LORvzydeeeUVF4A7ZcoULfkvv/zSff31192Ghgb3ggsucAG4TU1N7lNPPUXOUeltL7zwQo6vpOOj00Vpdu3aNRCVtnPnTjQ1NYXs6slkEs3NzcJ+vOWHrrnmGr9s6dKlRktVxAH+ei6//HKcddZZAZlRo0ahuroal156qbCfr776ivwO3JaXongHbQj+GqNixIgRePLJJ9Hc3Oxf63vvvYeePXuiqKgIQMuCkldddRUWLVqE5cuXo0+fPlmft61QU1MTCFnXuf584eSTT8Zbb70VKLv00kvRv39/XH/99Ugmk8K2K1aswL///W9htCML13Wxfv16aSpArnHTTTehoKAAv/rVr7Tk99lnHxxzzDEAgL/97W/o3bs3UqkURo0ahaeffjogO2HCBDQ0NGDOnDk49thjYx/7Xoe25dv2gRNPPNE97LDD3BdffNH94IMP3EceecQtKSlxH3zwQV+murraveGGG/zjV1991U0mk+5vf/tbd8OGDe5vf/tbN5VKuatXr26LS5CCMmny13PLLbe4Xbt2defPn+9+8MEH7tKlS91DDjnEPf/8832ZL774wq2pqXFrampcAO7dd9/t1tTUuB999FG+LsXHZ5995tbU1LjPPfecC8B96qmn3JqaGre2ttaX4a9x8+bN7r777uteeeWV7saNG92//vWvbvfu3d1f//rXvszPfvYzt7y83F2+fLlbW1vrb6xWmQ+ovusbbrjBra6u9uXvueced9GiRe57773nvv322+4NN9zgAnAXLlzoy+hcf1uCN2ny1+jhxz/+sTtkyBCyj6lTp7pLlixx//Of/7g1NTXupZde6qZSKfe1117L1bClaGpqcpPJJDneoUOHun379vWPlyxZ4o4fP95dunSp+/DDD7uVlZVuIpFwX375ZWH/1qRpBkt4ruvW1ta6l1xyidurVy+3pKTE7devn/uHP/zBD/pw3Zab8eKLLw60+9Of/uT269fPLSwsdPv37x94uLQnUITHX09TU5M7depU95BDDnFLSkrcyspKd8KECYEwdy/0nd/47yUfeOSRR8ix3HLLLb4M9T9buXKlO2TIELe4uNjt27ev+5vf/CZgPqP6BLeUST6g+q755bDuvPNO/3/3ta99zT3uuOPc5557LtSv6vrbEjzhUUt+ff75525paak7e/Zsso9Jkya5Bx10kFtUVOR+/etfd0eOHOmuXLkyh6OW44477nABuEuWLAnVHXLIIYEUir/85S9uaWmp/7+uqKhwFy9eLO3fEp4Z7PJAFhYWFhadAjYPz8LCwsKiU8ASnoWFhYVFp4AlPAsLCwuLTgFLeBYWFhYWnQKW8CwsLCwsOgUs4VlYWFhYdApYwrOwsLCw6BSwhGdhYWFh0SlgCc/CwsLColPAEp6FhYWFRaeAJTwLCwsLi04BS3gWFjGhtrYW++67Ly644IJA+V//+lcUFhbipptuaqORWVhYAJbwLCxiQ8+ePfGLX/wCf/zjH7F27VoAwPLly3HeeefhZz/7GX7zm9+08QgtLDo37GoJFhYx4quvvsKhhx6KAQMGYNq0aTj55JNx7rnnYs6cOUgkEm09PAuLTg1LeBYWMeORRx7BT37yE3Tp0gVnnnkmnnzySekK3hYWFvmBNWlaWMSMb37zmwCARCKBuXPnWrKzsGgnsIRnYREj1q9fj9GjR2PEiBHYtWsXHn744bYekoWFRQbWpGlhERM2btyIE044AVVVVXjmmWdw3nnn4dVXX8W///1vlJeXt/XwLCw6PayGZ2ERAz788EOccsop6NevHxYuXIjCwkL89re/xY4dO3DHHXe09fAsLCxgNTwLi6xRW1uL448/HuXl5XjxxRdRVlbm111++eV47LHH8O677+Lggw9uu0FaWFhYwrOwsLCw6BywJk0LCwsLi04BS3gWFhYWFp0ClvAsLCwsLDoFLOFZWFhYWHQKWMKzsLCwsOgUsIRnYWFhYdEpYAnPwsLCwqJTwBKehYWFhUWngCU8CwsLC4tOAUt4FhYWFhadApbwLCwsLCw6Bf5/ybXdu8OeUnAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "e61a7bbc", + "metadata": {}, + "source": [ + "### Training data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "eba06156", + "metadata": {}, + "outputs": [], + "source": [ + "train_data = 10000" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6d6fbd73", + "metadata": {}, + "outputs": [], + "source": [ + "idx = np.random.choice(len(X_star), train_data, replace=False)\n", + "X_train_tensor = X_tensor[idx]\n", + "u_train_tensor = u_tensor[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6ba7274f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAE0CAYAAABXU4ZqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU5ffH38OOKCig4gJuiIo74i7ivu+KK7hrSuKWlrZpZW6ZuZSaKZpiBZagpZVpuWRWrpVLKuVubmwqIAqc3x8jyJ25M3MH8Vu/4vN6nRc85znPcu/M3HOf5zmLTkSEQhSiEIUoRCH+5bD5uydQiEIUohCFKMT/AoUKrxCFKEQhCvGfQKHCK0QhClGIQvwnUKjwClGIQhSiEP8JFCq8QhSiEIUoxH8ChQqvEIUoRCEK8Z9AocIrRCEKUYhC/CdQqPAKUYhCFKIQ/wkUKrxCFKIQhSjEfwKFCq8QFrF+/Xp0Oh0XLlx4Kv2fOnWK2bNnP5X+Z8+ejU6nsyj30UcfsWTJkgIfPwcVK1Zk+PDh+Wo7fPhwKlasWKDz+TvxJPfiaX9Ohfh3w+7vnkAhCnHq1Clee+01WrVq9bc92D/66CNOnDjB5MmTn0r/sbGxuLq65qvtK6+8wqRJkwp4Rn8fnuRePO3PqRD/bhQqvEIUwkpkZWWRmZmJo6Oj5jb169fP93hVqlTJd9t/Ip7kXhSiEE+Cwi3Nfylu3brF2LFj8fb2xtHRkZIlS9K8eXN27dqlkNu1axdt27bF1dWVIkWK0Lx5c3bv3q1pDK1tf//9dwYNGkTp0qVxdHTEx8eHoUOHkpGRwfr16wkJCQGgdevW6HQ6dDod69evt3qc7du3U69ePRwdHalUqRKLFi3SdB2tWrVi+/btXLx4MXf8nG3QCxcuoNPpWLhwIXPmzKFSpUo4Ojry3Xffcf/+fZ577jnq1auHm5sb7u7uNG3alK1btxqNYbiNt2fPHnQ6HR9//DEvvfQSZcuWxdXVlXbt2nHmzBlFW7UtTZ1Ox4QJE9i4cSM1atSgSJEi1K1bly+++MJo7K1bt1KnTh0cHR2pXLkyS5cu1bzV26pVK2rVqsX+/ftp0qQJzs7OlCtXjldeeYWsrCyFbGJiIuHh4ZQrVw4HBwcqV67MSy+9REZGRoHcC3OfE8DKlSupW7cuRYsWpVixYlSvXp0XX3zR4jUW4j8EKcS/Eh07dpSSJUvK6tWrZc+ePRIXFyevvvqqfPLJJ7kyGzduFJ1OJ7169ZItW7bI559/Lt26dRNbW1vZtWtXrty6desEkPPnz1vd9vjx41K0aFGpWLGirFq1Snbv3i1RUVHSv39/uXPnjty8eVPmzp0rgLz33nty8OBBOXjwoNy8edOqcXbt2iW2trbSokUL2bJli2zevFkaNmwoPj4+YulrfvLkSWnevLl4eXnljn/w4EERETl//rwAUq5cOWndurV8+umnsnPnTjl//rwkJyfL8OHDZePGjfLtt9/KV199JdOmTRMbGxv58MMPFWNUqFBBhg0bllv+7rvvBJCKFSvKkCFDZPv27fLxxx+Lj4+PVK1aVTIzM3Nlhw0bJhUqVFD0l9O2UaNGEhMTIzt27JBWrVqJnZ2d/PHHH7lyX375pdjY2EirVq0kNjZWNm/eLI0bN5aKFStavC8iIsHBweLh4SFly5aVZcuWyddffy0TJ04UQJ599tlcufT0dKlTp464uLjIokWLZOfOnfLKK6+InZ2ddOnSpUDuhbnP6eOPPxZAIiIiZOfOnbJr1y5ZtWqVTJw40eI1FuK/g0KF9y9F0aJFZfLkySbrU1NTxd3dXbp3767gZ2VlSd26daVRo0a5PEOFZ03bNm3aSPHixXMVmBo2b94sgHz33Xf5nmPjxo2lbNmykp6ensu7c+eOuLu7a3qwd+3a1UipiDxWeFWqVJEHDx6Y7SMzM1MePnwoo0aNkvr16yvqTD3kDZVBTEyMALkPchHTCq906dJy586dXN7169fFxsZG5s2bl8tr2LCheHt7S0ZGRi7v7t274uHhoVnhAbJ161YFf8yYMWJjYyMXL14UEZFVq1YJIDExMQq5BQsWCCA7d+4skHth6nOaMGGCFC9e3OL1FOK/jcItzX8pGjVqxPr165kzZw4//vgjDx8+VNT/8MMPJCYmMmzYMDIzM3MpOzubTp06cejQIVJTU1X71to2LS2NvXv30r9/f0qWLGn1NWgdJzU1lUOHDtGnTx+cnJxy2xcrVozu3btbPa4aevTogb29vRF/8+bNNG/enKJFi2JnZ4e9vT1r167l9OnTmvvNizp16gBw8eJFi21bt25NsWLFcsulS5emVKlSuW1TU1M5fPgwvXr1wsHBIVeuaNGiVt2XYsWKGc1z8ODBZGdns2/fPgC+/fZbXFxc6Nevn0IuZ+tSyzb5k9yLRo0akZyczKBBg9i6dSu3b9+22KYQ/z0UGq38SxEdHc2cOXNYs2YNr7zyCkWLFqV3794sXLgQLy8vbty4AWD0gMqLxMREXFxcjPha29rY2JCVlUX58uXzdQ1ax9HpdGRnZ+Pl5WVUr8bLD8qUKWPE27JlC/379yckJITp06fj5eWFnZ0dK1euJDIyUlO/Hh4einKOIUx6errVbXPa57RNSkpCRChdurSRnBrPFNRkc+5rQkJC7l8vLy+jc8FSpUphZ2eXK2cOT3IvwsLCyMzM5IMPPqBv375kZ2fTsGFD5syZQ/v27S22L8R/A4UK718KT09PlixZwpIlS7h06RLbtm1jxowZ3Lx5k6+++gpPT08Ali9fTpMmTVT7MPVQ1No2KysLW1tbrly5ku9r0DLOw4cP0el0XL9+3ahejZcfqBl4REVFUalSJaKjoxX1hkYafxdKlCiBTqfLfXHIC2vui7n2OUrKw8ODn376CRFR3IubN2+SmZmZ+1k+TYwYMYIRI0aQmprKvn37mDVrFt26dePs2bNUqFDhqY9fiH8+ChXefwA+Pj5MmDCB3bt3c+DAAQCaN29O8eLFOXXqFBMmTLCqP2vaBgcHs3nzZt58802TDz1Tb/Jax3FwcKBRo0Zs2bKFt956K3db8+7du3z++eearinvykgrdDodDg4Oigf89evXVa00/w64uLgQGBhIXFwcixYtyt3WvHfvnqo1pyncvXuXbdu2KbYcP/roI2xsbGjZsiUAbdu2JSYmhri4OHr37p0rt2HDhtz6goCWz8nFxYXOnTvz4MEDevXqxcmTJwsVXiGAQoX3r0RKSgqtW7dm8ODBVK9enWLFinHo0CG++uor+vTpA+jPcZYvX86wYcNITEykX79+lCpVilu3bvHLL79w69YtVq5cqdq/NW0XL15MixYtaNy4MTNmzMDX15cbN26wbds23n//fYoVK0atWrUAWL16NcWKFcPJyYlKlSrh4eGheZw33niDTp060b59e5577jmysrJYsGABLi4uJCYmWrxntWvXZsuWLaxcuZIGDRpgY2NDYGCg2TbdunVjy5YthIeH069fPy5fvswbb7xBmTJlOHfunObP62ni9ddfp2vXrnTs2JFJkyaRlZXFW2+9RdGiRTXdF9Cv3saPH8+lS5fw8/Njx44dfPDBB4wfPx4fHx8Ahg4dynvvvcewYcO4cOECtWvX5vvvv2fu3Ll06dKFdu3aFcj1mPqcxowZg7OzM82bN6dMmTJcv36defPm4ebmRsOGDQtk7EL8C/B3W80UouBx//59GTdunNSpU0dcXV3F2dlZqlWrJrNmzZLU1FSF7N69e6Vr167i7u4u9vb2Uq5cOenatats3rw5V0bNLUFrWxGRU6dOSUhIiHh4eIiDg4P4+PjI8OHD5f79+7kyS5YskUqVKomtra0Asm7dOqvH2bZtm9SpUyd3jPnz58usWbM0WSMmJiZKv379pHjx4qLT6XLb5FhpvvXWW6rt5s+fLxUrVhRHR0epUaOGfPDBB6pjmrJMNLyGnPHyXr8pK828bgGmxhERiY2Nldq1ayvuy8SJE6VEiRIW7oreSrNmzZqyZ88eCQwMFEdHRylTpoy8+OKL8vDhQ4VsQkKCjBs3TsqUKSN2dnZSoUIFmTlzpuJzftJ7Yepz+vDDD6V169ZSunRpcXBwkLJly0r//v3l119/tXiNhfjvQCci8veo2kIUohB/Bx4+fEi9evUoV64cO3fuNCvbqlUrbt++zYkTJ/5HsytEIZ4eCrc0C1GIfzlGjRpF+/btc7f6Vq1axenTp1m6dOnfPbVCFOJ/ikKFV4hC/Mtx9+5dpk2bxq1bt7C3tycgIIAdO3YU2LlaIQrx/wWFW5qFKEQhClGI/wT+EZFWli9fTunSpbG1tUWn0zFz5kxFfXZ2Nq1atcqtL168uCbT7+nTp+Po6IhOp8PR0ZEXXnjhaV1CIQpRiEL8a7Fv3z66d+9O2bJl0el0xMXFWWyzd+9eGjRogJOTE5UrV2bVqlVGMp999hn+/v44Ojri7+9PbGzsU5j9Y/wjFF5SUhJVq1blueeeU63v2rUre/fu5bnnnmPLli24urrSp08frl27ZrLP1atXs2jRotwI661atWLhwoWsXbv2aV1GIQpRiEL8K5GamkrdunV59913NcmfP3+eLl26EBQUxLFjx3jxxReZOHEin332Wa7MwYMHGTBgAGFhYfzyyy+EhYXRv39/fvrpp6d1Gf+8LU2dTseMGTOYN28eoF/d2dvb06FDB7788ksA7ty5g5ubG4MHD2bTpk2q/fj4+JCens6tW7dyeZ6enri4uGiKzZcz9rVr1yhWrJimVCqFKEQhCvGkEBHu3r1L2bJlsbExvya5f/8+Dx48yNcYhs80R0dHTTkedTodsbGx9OrVy6TMCy+8wLZt2xQxZceNG8cvv/zCwYMHARgwYAB37tzJfa4DdOrUiRIlSvDxxx9beUXa8I83Wtm3bx/Z2dkMHTo0l+fq6oqXlxc//vijyXbXrl2jW7duCl6LFi3MRpi4c+cOd+7cyS3/9ddfNGrU6AlmX4hCFKIQ+cPly5fNxqG9f/8+JZ2duZePvosWLcq9e8qWs2bNYvbs2fnozRgHDx6kQ4cOCl7Hjh1Zu3YtDx8+xN7enoMHDzJlyhQjmSVLlhTIHNTwj9jSNIecBJDVqlVT8IsXL05KSorJdllZWZQrV07BK1eunFHSyrzo0aMH3t7euWRJ2fX/qBOvpYzlzZRRvJkyivkpw5mfMpxhH7VSyI3+qDnvpvTj3ZR+rEzpzcqU3gxbUU8ps6IWG1PasTGlHavPB9GklycNupTAt0FRhVy/qerBkLsMK6Eo12zoyJSFxsGFARo0t2PGwqKqdeZQw19ZfmYYLHzN6m70bU3HgzZC/yBj3oqxkBIFK0Zr6+Oj4ZDyFqTMh/OvQENvbe2eCYBhtZW81pWU5dXPQP9WcH4X3LgG/Z8phkm0DFOW/cLU5bSgzjPm673qQ9mA/PdvCp0Mxq3TSll2N/iOevtaPYRu9hvQuLGCZ9O0IUVWLTDZpviK2XinHKJiyo9UTPkRV4MvWfFhXal+/jOcG9ZQ8CutmEjDlG00SYmlSUosviueVdSXe0b54DaFimHq8V61oGr/mka8vJkw1PDgwQPuAdOBl62g6ejDy12+fJmUlJRcMrSdeBJcv37dKBZv6dKlyczMzM1kYUqmoOLfquEfv8LLgeHSXstOrLVttm3bpljh3b17F39/f5Py6Qn3iXt2L32WNqOIuxO26JXp+YM3FXJnvrtB00E+3EvMYNOko/SdXZ2DH19WyBTzdKCIqz0/b73Bgl5HTY6ZmqKusHd8mKQonzyUwclD6kGMjxzI5MgB698LPd2V5YuX4f0Pre4GgIDq2mVj9hvzRrQBJxsY3grC11juIyMTXJ1h6zHoZcUx7sNM+PA3Je+788ry2PcfzXMPBLUAz6pmvmfpd5XlRrPh7EbtE8oLzwbm668fy1+/luBroETvG6SRSjR4YF2Ot3oImf2KES/74CHSDh4y2cZlRF9snOwQwJYsHA2+ZMkfbif5w+1G7TxGdMXOyS739+s1vD3x4e/l1hepVs6ojRoClg7mwkbTu07mcC7mpBFP6zFKUcDJotRj5CS5cnV1xdXV1YqW1sFw/jnP37x8NZmneXz0j1/h5azsDPOLpaSk4ObmZrKdra0tly8rlcq1a9ewtbU12cbV1ZXy5cvnkuEKsWgZZaqczyP2cCzqDK94rGNFq62kJt4HwL2ScvW0/4N4PnvxFyZ5bOFg1EWm+X7N2f3KdCn372UCcC9JmbfOEM+8VdFsfX4wbpojyzZY3rvv1VNZLmV9irtchHWFsb1N13cyCGM5vjMsG6On6Ocg9T6ELYe0DIgcC93qmR9v52n44y9YYJCWbY6Fl/fIX83XG2L/9xC7TuVlIudt/VCckh9VBXx6KXneBjdaDXXCocYQ7ROrOxgajoCeS2GICQXbbrIxr8MEiDCQD+wKM2Ig4lGs1bOmlZBFhKkEBW/UzOpuik4fDY4OCl6x0K5m25RdMA7fmNlkpd7nXNg87ifqFbeNkwP+MS/SJH41PtP7cG7qOk1z+HX2kwUNr9C2EmPiJ9J1fQ/Lwnlglw962vDy8jJaqd28eRM7O7vcDBumZKxJXWUt/vEKr2XLltjY2LBx4+Mf3b1797h+/brJlDEAZcuW5YcfflDwDhw4YKTErMG9v/Q/iB4r29E4vI6i7o+913jJYwNfvPgzcVN/Nmp7/pD5fGDNB+nn1XJAKZMyL0b54uJmw+wYX6LO1ab/lFJMX1HW2sswgl9NO/qFOvJulLNJmclTYdhQJW/xHOvHOhkHMQvByRbemWJarncLg7HGQkQ3PTnag+dwiNoPnqNg5Gr44rhxH1EjYOVg/f8fHwHfN+HgBaXM1CAIN9i57lAZzj0L4QW5G3j3rum6TAMF6aiSVcLHIGFrmVZg5wxdYmB0PNQPNz9+v7UwIBKCJkLgEGiuIp+Vaczb+S44FIUe0x/zhpcHOwe4dMr8mOuOqPPb9ICvz8GyaPCvZ1z/s/J3q5vxvPlxAHt/X6OVgY2zE6Wj3jTZptTEfugc7Djm2ZPbUbs47NGbhK0/kK2zo2RIEEWqlMHF3/Ted6lOdRXl+GXGSW6LVtWeFuni7vPcPnGTar2t2P5Ar8DsraD/hcJr2rQp33zzjYK3c+dOAgMDcxMpm5Jp1sz6Fx6t+EcovOvXrxMdHU10dDSgX81FR0dz8OBBbGxsci00X3jhBWJjY6lVqxY2Nja89dZbuX1UqVKFpk2b5pZfeuklbt26RefOndmxYwedO3fm9u3bvPrqq08838ORv9HqRfXzvbs31VOXBPRSP3wO6Faa8ZF1sHfUfxQOTjZMi67DmKW+tBvhRfvhpRk+ryI1WxQjsJMbNjY2tApxp7yvMxGLy+PorFyx9htfnFfXelG9voPacKpo2cGOiKHptO5kx5JIR9p0Ag+D1Vv16jqKFIHV70L3rrB0HkycCcvehJ6dYNV80/2vmg3xX0PMIqjhA20bwdBZkJ4BkS9BHZUjnrAOEPMSxK+DmBngmPMsy4IkM7uxfqXh8MsQ8wwMbgROJn7dtUpDEx+4mgiPFua52DoQfN1gkcaMNuHtYM4wbbKqqNBLWa6pcpbiZPCBHH8HMpLALwSKV4GWi4zbtHoDygZCl2Xw2Wi48yg7gk4HPVXky9cx5gEkXoHfv1fy7iWBTy1j2c4jIagnvBQJ1erB/BiIMDh3a9YeKvhClxDoPkh1SJuRo7E7dAz79ZHYRVhOX1Vk4OPVXFZiMjfDZvAwKY1ig7tQJvJVHOsrbQA8wvugc3QgM0n5InJlQTQPEx8fa5QaoHKA/AglO9Q2WZcD97qmFWa/wxFGvPtJ1qWogv/NCu/evXscP36c48ePA3q3g+PHj3Pp0iUAZs6cqTAsHDduHBcvXmTq1KmcPn2ayMhI1q5dy7Rp03JlJk2axM6dO1mwYAG///47CxYsYNeuXUyePDkfM9SIvydmtRLvvPOOAEZUpUoVERHJysqS4OBgsbGxEUDc3Nxky5Ytij7c3Nxy5XMwdepUcXBwEEAcHBxk+vTpVs0rJSVFdV45FDS9gUw5MUjBm3q4l6rsitR+Mjqqicm+JmysJ59JZ9mY0FqCQ8vIRwlB8rm0kVfjairkZmz0lT3SSPZII9kvAfJdWm1F/fyYsibHGDWtqOyK95LR04qYvS41+vMcErnGvMz0Z5AT36jXxS1F5Ddk4xzLY22cidzegoS2RRI+QWQ7Ilv1lPAhMrCF5T6C/ZCEt5G0ZdZdJyAbeiKhtZDbk5HpDY3rKxdXltPXIp+8aP04uRT0iTGvXHdludHb6m27xwnTRHguW2g0zfJYw+OERSK8ky0MixZ6zBMqBAqha4X3UrXPeUu68KkF+dkbhc6hwo4rxnULNwo9Q4VFG1Tb6rr1ELtz58XxfLzoQvqJw9K3jGSKrporDj07SLFlr4pTaE8pm/CzlIx7VyFTYuZI1f5rXN0m7qEdpN6Vzar1visjpFRoG/FbMd7sNRbzLyttDr8ujaLGarpvbTYOlsHxM6VTzBAZeesVKdvcR1E/Nf0lmZryvACSkpKi6fm0DOQDK2jZo7Es9Z8XORktDCkn68WwYcMkODhY0WbPnj1Sv359cXBwkIoVK8rKlSuN+t28ebNUq1ZN7O3tpXr16vLZZ59pnlN+8I/zw/snIcffzxT6rmtPw2F+fPXCAfa8ddyo3q9tGQJ6lqNYaSdqti3JJ5OO4N+2FOmJGXw87Tcj+T4zK7Nl3p+55VfjanIvKZPFI84o5ObEVSW4p/5MyFYy+fbTFPwDHPj96H0y7j3ktZHqVk6vLnfj158yqNvYntcizGyx5RMRI2DpbFj/CSxfD8fyHLuuewNKuEKvSabbvzoUvjsOYzrD0DyLgriXIag69JkPe00E7W/mCz+o2EbEjoGHWVC/DKw4ALfvwkYTO21qGFMHPjBxjreoK2z9HSLHQdga+DHPx9RicGnO/JbNrd8e+4FSvzVkOUJyElQfAvG7wacnpKXCzwZv+5VHwp+RlifYajlc/wnaLoUfZ8OR5eblS1aDiB/A1R1+2wprez2uGxcLPITSlWB1GIzfCPvWwa4Vxv28FAtNesK36yB6HlyzYJhStQ6cs/JA1AB2k8Kxq1AWSUvn4aYYsk8b5xx0iQgjdfnj4w/XUb24szbObL9e0weSeSOB2xu+MStnDs1iI5CHWbjXL88fK77FLzyYM+98w5kV+xRybTYM4srOs1To6Ms3YdG5/OBFnfhj6yl6xQ7EwR4Wuy0kJSXFrFFJzvNpNVDEirmmAWPBYv//Rvy/sdL8J8K3QwV0Oh2l/Uuo1jcOrUzQ8Er8GPUnkz1jAfhx0yWT/SXfVDqQ3kvKpOWAkkYK727S47OWO0lZfLs5me82CzNWleXILtOK7PUIvRtHXNR9kzJPgsre0Lo/7FUJlDCwMzz/tvn2r+uTY7Pf4Lm4/WfoZeG8MN2E721yOgxvAmTC4m6w+kfrFJ4pZQcw7ZHBX9XpxnXff3TDmHnsu8f/X3p0k/40Yejg1UabwtvzSFH+HgU1R1iWv3UGXvWAUXGQlqSsS0uGYiXgtUcJU19tCBHR6grvTjL8tA3eGWV5THhiZQdgW6M6Nh7FSAsxfZ32tfwUZY+3plhUeFnJ90j//bJZGUt4mJxGpeFB2JJF4OL+ZCSmkpGUZiT37VC9Q/XZKOWXcO+0rwB413MhPT4yY82lAmu3Kf/LD/1/xBne/1csKLeGo1FnOLtT/ccSOLASx7deJjLsB9V6Q9RqpbT7D+hQAgcnG16IUv6I2wz04E5iJhGtztLJ4yTfbk5h9+Y7tPf4nRWvKF0iTKFYcU1iJtGlA/z6nZI35XVjZbfgOf3ZXWo6/HDcdH8BVU3XfWA+ZRsAxx69R4w2MHZxcQDy2GKE1jXdR0sLvnkD/czXFwiKVITAtZCl7lICQND7MCgeqo9U8k+uU5bbLAIvE64LX8+Bk58reQ0HQpLBd/l+KnRX0ehBA/XneP9D2PXrhSSZ9r0F0BUvhmfMO5SN/5pSMW+TtuewxX5vffAFqT///mRzc3ls5fxn1I9s9pjChY8tj62G+8nWvZBaY7CSQ/9VFCq8J0R02Dcc+1i/ndPjrUa0nlKLaYd6UKmJJ+vD9vHb9iua+3r4IIte0yvmlkPL/ciP2xJoM7gkUyN9adazBM9HVuLnr5Lp6vErx/caW29cOmverSEHd5M1T0sViUlQ1gumjzMvF9oDHOzBMwiOnDYt52egbMZ2gfg10NmCq5khdhmMcS8DElMhbAMkpsHOs6bbVjLYve5QQVnuXRViukH8GBhqwr7jiZF2AQ6PgnMfmJbZ/wz8vhZ+t7AC/HYaXDexnL1yGH7douR98Rp8ZLC12nQQlDHwRe0YDvaO4GiwkVa7pfn5GKJOI+gz0rzMqDE4HDuM/fpIcHTEprdy9eP0otLaVFLTcQnphH0VH4qGdISU/MQhMY1qbw+j3FDj68y8p39BubL1GD+EKT8XV7+SdN49gdLNKxm1U4N9EetUUqHC045ChWcF2swxbbEFsG36z4gIixpu4/yPtzn26SX2f/CH5v4DOpXi9PfKt+Z7SZkc3JbI4pHx/LA1iYUjz/PTjuT8TF8V3UKMv/5Vq8OLs8y3+/EQeNaA+xbC+JULhu37zMsAfPKtsrxkHFQpA70aq8ufXAirhhvzLxh4f6z+Hjxegqij4PEqzPjK9BzaGTyPqhgowJtpsO0POHgNNuR3h67fPG1yiRYcmP+Iyd/4tcyEuLl7S1kuWVlvoXl0m5Lf9yVYMhQSDXYTPMqo9xvYRp3/68+wxYLSXvsBcuo0tr16QlIy6b0HKqrvz1Vut7oMehxOMCsxhXs78+cIrgbv8I5UmtIdz3bG1pl2RR3JSLzHqQVfGtXdOXuLL9u+y40D5wFoubIv7aMGmBznQap1sTH/iX54/1g8VZOY/+fIsYIK3TNYfILKy5TL4xQWSj2WB2m3ajNDAd1KSecIH9W6relBMm1d1Xz3Xauhg7yx1l1CRjup1p9ILG6y7bMRxrxmjZTl9+c/2bUP7YSE91Tywrsh2V/orTNTo9XbTer05Pc9h4bURGL6IWu7KPlvB2tr719Gg9ysd4RXYoTILGFwtBBswury76ShUZZlGvayvt/Atk82r7BhYr9po0U55wlhUi77jJRN+FkcgxsW+P2pF/OcBMS9oFrn1bWO5n5arxsgo26/KiX8S6nWT7wxVUC7lWYcyDdWUNyjcayx0vy3oHCFpwFRrT7i0v4rvOO9Cr8uj5cB2yL2U7WDxqCMKqjWUm/scvSLm3y5XGnM0mZoaV6M8cfeUUdAezejti6u2j66E4ce8MqoRJq3M3YqDxvvwE97TJ8XZGXBCAObhEF9leWu7SDyLahvHApQE4o6wyIDH+i3n9G7igE4O0J4J+N2S82s1KyFgx209YZvLij5z+3V1n6rZTcxcCkKwSGQbQO+7eDmMQheC74ajT5ModF8KBus5JUPVpc1h5YTINPMuWEOzmg7j1Yg2DojDCNs/JCsvZa3CdLf3Ujy1Llc82hExl7L0V+KtKxvxHNp5k+Ft8aoyt+/nsSfC2JV62wcta+b7FwcWOv5Okmn1M/bz+/6U5Vvsr980H8Wf7fG/SfDkh8eIFU7qq/MAOnzdqCM+aS5jItuJq+f6GzV2+Szq6vJlxIss+NqFMjb6bzI4tKyk70Rf1SEg8k2y99DbiYqefcuI9NUVn6GNLKPtnm9PxWJfUPJi31V6XuX9nHBvqlbopXtkPC6Bdzv73eEXSI8G6fkl+2qLu/RXFu/7WKMeeEJynJghLa+RkY/nXv6XarQU8VPreMAzX3YLVmsKDsumC32A3r8T78X1lLjFQOkeB2lX2z5Dn5Sc4L5z7bDCv2zQusKbzfIj1bQ7kfjFK7wCmE1inmph+Oq3LwUTYZVoeGAStRo58X2eacYukp7rKrWofp4cveSVMI95UH4gjK8FmU5XNp3X9ynRQfjELPVapn+CuzbCw/uQtQGOH0MPloPzs5Q00zw+9rVIHIuLHvJ4pQACOsIyQZ2BQtjIDGPd4WTA4xoZdy2cWWoaSaymq96sgiLcLKFRcH5a2uIFieX4BnzDti6QFIifGkQdUQtjBiAz1B1fl4ER8FDg5vnPxK+nQgdI+GZeOgVAyU0ZivISIUR0dBQQ4zO0AUwLRo6jTctM3gm1A2CjHSY/I5x/dXz8GYkTDOdASEHNgP6Y78+kiK//kSRTauxDw0Befo5KsuGd6NJ/GrKh3e2uq2dswPVw5VfpIp96+FRWz3jSQ6q961htt5oHP55ocX+sfi7Ne4/GVpWeNPPhSrK/ZYro6l0nqmMlNJxsq+iPD5Sufe/7GQzeSGmluzIbilfSrBsumL+LGJujLf8lF1T3ogyHWHFHL0frTzbe3aajSx+z0bBi/kEeZCM3I5HQkOQK8ct9xu7HIlZhJyIVfK/fx+pXhE5tAaJnIn0C0a6NVHvY+MUJDQYWflM/t6wE940XRfZ03TdoOrI7bFIdGdkWUtkRHVkXmOkRgnrxg8YX186ZX8qFeS0sDJWXc67n7Lc+oTQMEYIWGO+/+AoYchtocpA0zLewUI3y2dfufROuvCuCMvSLMu2GCRsTBCiNciCUD9YmGQcLUU/rvmVpc2EiWJ79k+x6R8iLpfOiNMnHyrq7do0s+pzqXhgjZSPek2TrN/aKVI6tJU0PbHU6u9fn6sLJegTZaSXNtFDZXTqPOV8ulWTOuMbyuhzEdIjJkSmJE8X0L7COwDyixV04NG4/8UV3n9a2T8JAkfXpEhxe96qGpXLazO9Dld/TVTIXTAIGu1dx5UJMY2pElCM80eTada3FE5F7fANKMqFo8kUL+3Alnm3aNDWlRP7U3i9l3HakLy4+mcGs4deYdqSUsyLLkvyDb2F14XTGUSvtBxNZd83yhVkzRrGb81vL4bUFBjxKA1a1Gbo1QnizJyjTX8L6leHla9A5GzY+i2UdIcWj/poqCGPXdg7j8bTeJYGML4FPNcWjl6E4s7QuRp8mcdvf2g96OYHdqJsNy0QqpSA8d/Ax7/rKa4bRNSGrX9CL2PjO4s4uvIYAR0PkdWzDtxJUlZWHQDnouHyp0p+6jmwcYBDKjfIqz00WgF3joHOHjblWR0Gr4SE3+BEHqvFy3v1pAWtpwGPfMlOfW1cX7U5lKkKtnbw3Rr4/mM91QyGSZFQMwi+fE8fpcVOBxdPw+crH7c/tldPajhskP+pe1/4/LPcYvZXX8K7ywBIjdmM3YhQhXjWSTO+Jo+gK+qM3NPHqbzQfDTesQupEDMHl/pVuL0iFo9BrflzyBwk4yEPLj0+Wzs7Sv8lvBG1x+IYhthS7nmK+SmDwaffuIedsz2dYoZwPyGNPeNjufCF/gvq3aw857/+g3INza8ADWGtq8F/2S2hUOHlEzdPJlKzZ0UF7+H9LA5+oPzx1Wjvxeldj0N91e7oRcwLJ6jT1p1abUvy3rBfGLW0OsXcHbhy4g5DPfcAsCfqBuWrmc5ekIP3Zuh/nF9GpfDGxrIMiiiBHVl8FXNPk8LbtEap8PoO0CEC4XlsKX76WU958ZsZnzqA+Et62qzBabwgsbgvOOn0yotM8DKInPTjZXinI2wzmH+F4rDBIGzZ77dh02m4cId842FOpGtnZWopzkUbCwM8TDbdWdA2cHQCd184t15Zd2otdI1TKjxr4FXzsaXQPZU5tJ8EzUJg33q9wsvByb16qhUMs7ZAMXf9U+X2VaXCMwc/A6fGPMoOgHhlCLHMdVGKsty4bXGIHGWXg9Rvj+C9bDK2ZFI0uB6nG5nZmn0C3D2rNEw5OHELziWcuPr1aUo39lHUbQ+LBeBUlHU+L4WRVrTjv3ztT4RLB//i0sG/FLwytd2N5La8cFxRnlRuBwAHoh5bZe6PusoLcQGkGeTCu3LGusjpr4RdQ0dpeoW6kJ6arbndiHA7np1qw69HBUdHYfs2y23/uGjV1J465vQAP09wtINHeTyJOgLrDIz1ziaAxwKINrA2jdhl3OcMCy5cqzpCW3949kvYaSJQR5mBLUgCuJeqLmCIC5HQ6GNjfuONYOMIGYlwYBIEGqSnuHUY1qtn5KB7FHjVhQ/MRPfPyobURIidBL1UUl+kXIeVYTDARFqME3shxAOe3wguxWBWL9NjGaKYm3bZR7Ab0Iesnw4jF0yH6jMHeZQKKSMxlRsLNuWrD4/2dUj4xnqHzG/DPgLgTNSxfI1riJwzPGvk/6soNFopQDi55X+z4F7SQ1oMsG4rQw0vh91geKtrWBMSfMpLDlSqYkPPEFt0Oh13E9QbjxkKQ/s/8RT1Y/aD0V2UvAqloGM+c9B5uUJIAOgeKbutxyFMRW/k4JXv8jdOXoz7Gk5ehwEmosHUHVmHzNT7JIZNg2YmMs0aGqck7YevDRRX1WlQfghc3QabPeB8FGwuD+U0GlJkZ4N7TQgws4qJGQUvecDhKHhZRXFumggHomBieahlJm/SwjA4YpwXzixSU2FJDMQe0kdf0YDM6C1Gyq7InGk4jTDjWJ8HTnX9SNm6j5MenUg9aHxsUP/kaqpFv0SN6JlUXaruppCZovEl5imjMNKKdhQqvALEw9QsRsa0YeaJPla3rdfBk2NfW96aAXg5qgJTlpVlytIyNGxnHCf98N77vDpKW18AdcqlsWNrFnZZem1RxEVd4S2ZCy6Wd1k14eApaGLgu3fxJnx91Hy7qHEQvwDGt1byR0fB1jwv25bSip1NNF+vFS/shFEmFgi/RP7Kt54jSIvaBq3KQ69pUMUgLJWdi3rjvMjM0G83phnEufTupW2S24fC3pfgqMYtRks4YUGhVVTJk2cOXQaBvQP0bqiPvpKDcZPh/Q/R/fgrNmvWozN0CjVAVvId7q/71KxMDoqHdSYrSX3Lv8y0/tiXLkHi5z9StEFVrn+s7gOY8rPlKEpdj8zQNJ8cuFUqTvv3VBxPzcDJFpzttJOTreU+/60oVHj5QEhUR6aeG0a1LhWUFSL8tu0irl7OjI4JZk58T4LHm4mKnAdjyn3HN2uuWpTrPtaDDoPd6R9REq8KjhzaZRyRPT9YtiCTxEQhMVFy7ANy8eZsiI7U/1jqWvksM4UfT8HotyzLnVgEUzrDucUQORq++hUQSFJ5ub6cpI+b2T8SPreQjNscJteBFRrDQp4xn8heCe+axib/TuWgqL+6fA7casO1rXDUIM6lQ3EIjoYmy6CaBSugNBUn58ZaPObzgbZhMC0SKqlsoY55XVnuPw4cHCElyVjWzx+69kdXsTI2wcHIaQsfamKy2Wq3yUOoeHgjzkH1yU67T7EB6qtuyXjAz54h3IrazSHfkdzNm/dJBTXmD6RKRHsjvv/0DrjXK09wzGhC4l/FP7y5or7mWOPVbMr5ZL551rqoCnZ21tN/Fn+3meg/GWpuCS2mB8qb2ZNkrkyWfpFtTJokPxPXWlZLqLybZsZs3IBaDytjUeabtLqyXwLkoNSV/hHuZmUXRnnIrngvGRLubLVJdV66cx3JTkDkBpJ63rL8lDAkfgcSvQDZMDv/4wISOw2Rj5C4qU/WjzmqV1JZjmyNrGtjvs2cxvkYKyZdWGBFktUc6pYmBK4z5jeJFIaLnlqq1Cv6MAgb1idK6LX26dzT/jPU+UHd1fnL4oTjKu4N8UnClXTRrVdJkKtCHom/mK13i1D+Fr1jF4pP1Cwjucqrp1p1vd3S10uf7A3i1UmZjLlaRBsZJitkmKyQUbJcRqYtVNR3iB5stl+tbgnXiyBpLtrpehFt/f8b8V/W9flCSX8PdI+s2eoN9OPTkd+qyqUlPSA1MYOPJx5ieGQjagR5sHvFH7iVsmPzTPU31RGL/fjuw8eGMGPfrohnOQdsdYJfg6L8cfQujk6PF+VVahk7kgOMecmNo/vu06KTE54eOl5c5MqmFdYZwABMnQw//wSpaVDUTc9zdoaYVRDgD0dOwIN0CHtO2a52VX3g5yplQB6CowPcuK1PEfTF93DAOPetSSQ/WsCa2H0qENgaeGIM8gPJBFNZ18L9YUpdeDlPKqQ5/eBlld20In5lcfpoBYl7H+gzDDgAtUfCbxpy3QHUi4KsNPhLxdy10qDH/5czWGH4j4VTqx+XH2TondDLBsD1o1ClDXxtsGLsuwoqtYBFFpbxbcbpt1h3m9giTbmlznctqc6/k6S3Pn0nGpJugAiULqlPjPt8OBIYaHY6jq9Mwb5mNXBzxS16Gfe37SJj0zYjOdvSykgE2cn38BjWCRt7GzJvJGFLNnalS+DRrRF/jl2sOlblWQMo5l8OW7Jxa1CZu0fjsXG052HSHR4YbDsUr62PipCRmMr3k2JotqQn7WKG41a5BAenxJJ+o2AyOdjZ6T1BNMtLgQz7/xN/t8b9J0NthTcgppvMlckyVybL/OxnZUhMJ5kZP1hCo1or5EIjlc6wE+Oay3rpL2vTeqm+zfWcVkFe2KJ0Qp8VW112SgvZLU1ljzSSPdJI9ktA7gpvb6rlsGMr4jzk8O2S0qCpjUVZcxTcDIn/EQntgyScQOSSnrL/QKLeUspe3Y3IsUd0SE8bZyllGlVHJvSyPG76ev0KL23tU1iJqJB/CeT2UCR7LBLTDonvj0QZBJG+Ogi5PRJpUgbp7ItE9kdSV1noe1mc8KkIo+K0zcV/pVAvRmhg4LBepJJQvL7QcK0wJFsIFaGNQZ/F/YVhl5W8Z64KNUOFSQlCiJk5VA4WBkUK/VaYlolMFyLMOIt/nKjO32GC/+1VoVuo8HW80DNU2H1OaNzSZP/2e3Yb8Vw+XCol5aKUlItSOu2kpnvsd3W7uIW0keIhrcU//hPxCG0vdeI3iXtIsBRrUl0qvDVGtV2djROlXGiQdEiIlJ7ykTSKU18RDkx7V1rHPaPg1ZvZzuycRp4Ml67r9SHTtK7wUkog4qGdUh4FULB2hffee+9JxYoVxdHRUQICAmTfvn0mZYcNG6b++/L3z5VZt059VyI9Pd2qeVmDwhWelbh7/fFbnE6no06IL3ZkUaqyC3YOtvgElODg+6eIGqkMspuapHcIt3eyYWJMIEe/uMH3Gx4bIWRmZJOWkqVsk5zFncSHrJr0BxOX+uDqrvy4nJxt6BfuzqcrTFtgzBqfxK2/zLsZTJhmQ78QHaOGZPFHvLrM3h/At4n+/6gt0CwQPl8N7sVhcA/45Qy89cg9q1xb2DgHvj4IS6fAju8h7DVlfz//rqe86BwAy8bAih36gNHH4sHxkUmZkz1M7wxv5cMBPAcj60FDLxhv5ojkVBJ4boC4jhBSUc8r7gDVXOHMI3+8cgbWn1/Gw9sHLAx+JwnKoj1pqo0TuLeFY92U/LTzkAYcGgWOHlCxJ/xlYESSfAo+9Ib606HuM/Db+/D+o/BzJ6PAt6vpcf/cq6dqxmdSuTj2Ffz+vTG/5RBo2gNc3GDmo9Xa+WPg4wc/7YDsLHgzBvzqwyeL4fY1KOMNbR7N7YtH/nVbo4z7Bmzeegedewl0depg074N2d883l1JHTYJW7ciOPbsAE6OuMcsxSGgJskRr3H/y/1GfRVp05Cz5R7fh+TN3wGQEPVNLu/uj+q+Jr+G6Q+5r0btp1HcVB6qHCj7T++ArZM9Dwyynt+7pPz8Xau44+jqSPX+tShSypkf531P8BvBquOahC3WWWPkIyJbdHQ0kydPZsWKFTRv3pz333+fzp07c+rUKXx8fIzkly5dyvz5j11YMjMzqVu3LiEhIQo5V1dXzpxRnpE6OanvXBUEChWeldgx8Tvs7XVcPHCNnkv16bW/mLSPPkubUC+kMrZk4eVf3Kido4v+Vut0Omq1LcnnC5TOtKUrOVOvvXLLxcnFln4e+n2zXVG3eXFjZTqHFseOLFISM1k66QoNW5s3m7Sk7ADupECrxlkW5fLih8PgEQDBjWHLcvA3CNcY9rL+b9R27X16lQDfsrB4BJAJviX1fxNTYFIUNNaWP9MkIo+Di/ndsVxcfqTctl6EXt+YlwU4acne6NvPoVwP8DOjSPLiSiScMLWp+ggPHj08i5nYgnT3h+JV9H/zooiJ+J15ccbMRSddAVGJ8TphjX779Z1hEL5Uz3vjM/h6nf7/biVhXhycPwmfWW8xmh3zMXYfRWNjY4Nd9y48+EZ5nJCTDV2SUkjb9h0OAf5k3VC3Kkr71nI2BS14mJSKbREHI34x/3LodDrKtK+u4MdvUibkvfOH/mX11rHHRxnWOp5jh3UK79Ej4c4dZUQFR0dHHB0dVRrA4sWLGTVqFKNH642jlixZwtdff83KlSuZN884x6Obmxtubm655bi4OJKSkhgxQvmd1ul0eHk9uTuWZjy1teO/AFpiaealKsFeMj8hVJakDTGqGxXZUN5N6CnVgz019dVvennpGeFlxJ8bV1kWxFW0al75pQ7tkGM/aJONXlwwY26chCR8iIQGIQmrn8xYZWUPZHygkvd+Z+3t49oj65o//fucSzWjhGortcuHpAsDRRhgwhBm+FWhWqjQ3sA4pasV8TVNURtlbkjajhFmmIgXmpdeXCf015i9wQTZvb9SHK5dNuK7XTosxTYuKdDPpHrU81L/0BJxKF1ctb7D1XelXqRxJoj+6auk2UZlHE3nsq5Wja15S7MiIpW1U0pF9fFmzZqlOk5GRobY2trKli1bFPyJEydKy5YtNT1Lu3XrJu3bt1fw1q1bJ7a2tuLj4yPlypWTrl27ytGjRzX1l18UuiUUIP7Ye50ZHlEc/fQCw6NaKOoci9oxwWMrv+/V5h/n4+9ClspL9JHdd/lh+xPEurICO3dB+CRYuwzO/QhjBpuWfWWZ6TpTWDvVmBe2FDyGQdR+8BgLHxjYBLWtAT3rwviW8IbKzty4PBnSx2+DVgarQmsO7JPSoL2ZbAwFinLjwXMwYGE7p/wQqDUfPIPg4aOtNEODFs+GUCsC1peDM1HwjYH/WvYD6LnxyeZbvp6yfPc23LpiuV3bgVDJCt+W0Gegn9KVI/OZ8WRt+xyH995BV/nxB5ziE8jdsMna+34EtyEdsSurXPV6juhIteiXyMwWjjWczIMbyaptd5aboFcXedA0ajTXvvqNH8KUhknp157S79YG/bamVnr01L98+TIpKSm5NHPmTNXub9++TVZWFqVLl1bwS5cuzfXr11Xb5MVff/3Fl19+mbs6zEH16tVZv34927Zt4+OPP8bJyYnmzZtz7tw5Ez0VAJ6qOv1/DmtXeHlpbGwrGRsTJPPiu8nwyEZSpal5FwJDei7SV6o1cjHil/czzl/n7Wsnmw6VlwHji0lQV/XM5jnUvqedKr+RiYwFOTRzorJc0kLmgE7NkPhYJHqOns59gozrjgT6IfNHI9EvIllfIlHTzPczrIXpuk9GKMvjVK5hTED+3+5jNGY8B6RhBWR8F+S3L/I5XlC60EqEIAvZBxoa5L9rESdUtXLFVD5ImHhbaDI93/cG3xb5a/fyBmGXFa4Zv98R5r+b/3kaUOmoN8VjwSTLchN6So242fkao/GGUeIXYTrLe4WeNTX1o3mF54dIDe2U4qet/xxcvXpVAPnhhx8U/Dlz5ki1atUstp87d654eHhIRkaGWbmsrCypW7euREREaJpXflC4wssHmkbUpeP85mZlkq+kERhSgasnUlg/8mf+OGhdaI+3R8Zz5mfjw/ArZx8Y8S7HZzKk4RWiV95l/3Z9BvOB49QjeHyzVT2/3s8W4kbGGFh530oyL9+nFVQpD/3bQf9WcPI8rPocDp+FGWv0xijJ9+DLw7DKTMQrNQfzHLz6hbK8SuUaPrAQuUUNQ30hphXcU7lV/q7GPIBDF2HlDog/D6tjijBwprexUNAIKGcidFbiV/AwEc6MhWqRUGmOst53DgTEQIaBKfuDJHCzMhrAlf2wzBMykk3L1LIQLShexWglB5UDYOxSfQaFIbOUdXOGws879cYrm06ot8/BkvXg6Ah9BpmX0wjXacMpNrgLxSMs95edlkFm0j2Lcmr4aehasjJN57G8uNV8BhSr8ZRTnnt6emJra2u0mrt586bRqs8QIkJkZCRhYWE4OBifdeaFjY0NDRs2fKorvEKFZwWCZzWlQlA5mk6sx1/Hlb5GgyKVoTliIn5m76ozfGoQPPp/hcyHUqD9/XHBOvnQzpCYCP1fhP6vwGWDQB+7j4NHCGzaA+NWwoSuEL8CpnVXym07pv+7ciisUmaF4awJdy9LGFfHfH2LknoLzQ6ljOs81M/0c3HlBqx7L4NP5l02rty/Dq7+bMwHOPcsHPCAm1FwZiQ4GVgBVZwKZUOg3EAlv2QHuK7uC2oRxz4wXRdips4S/jwKqyfByf2w6TXj+nvJ0DYEKvtD6DRl3ZAJ0LYnvLoMvv1GH4Fln0pkbzMofuQLVb5jTV90Oh06J0fcp4eZ7eNW5FfYFLHwYZuDwc/Pf3Ir1WgrBQJrtjNzyAo4ODjQoEEDvvlGacj0zTff0KxZM7Nt9+7dS3x8PKNGmQ8LB3rlePz4ccqUKWPdBK1AoZWmFdj72kEAFlf9MJfXd2VLXDycsFM5HNo0vmAswdTwyUlftn6QwMdL1JdaL7xVnE/X5j/s2MRwWJaPTDMrXwSPYvD1j9B7+mP+I6vvXNSuqCy/ux3a1YaaKgsjgFNXYHk+n+s5aFkeGpWGRUfMy4VWga2XoJfKePsNlOyRUGiQx4o+Yg7kpmt4BIdBvXmQ4QVbzFgmPrimLKccAP8YKB4Ad4+CrRNkov8bEKM3kb34Pmw3ke2+RC1IsrCCyovA8VClFZRtADeOgnNxCIuB1L9gyyTt/aih81j4Mo8TfNtHSlungyoGAVU3vav/u3ur/u+2TTD8WauGS49RNw3WPQoEq9PpcPSvbLGfrNT7+nO867dJPab317l/6SbJ3xpHTqgyqSN/LH2cR7BEfaWpvkedcrhWKUmTRT05tcKSD4uVsMM6JZYPt4SpU6cSFhZGYGAgTZs2ZfXq1Vy6dIlx48YBMHPmTK5evcqGDRsU7dauXUvjxo2pVct4F+K1116jSZMmVK1alTt37rBs2TKOHz/Oe++9Z/0ENaJwhacBo4+NpGF4PdU6Oydb6oZUIeWqdZHTPSsojRMq1Cmque2sKB8q1XCkah3lG+iA8cXYfNiLBkGOZGVlszjKzajtO5HKcb8/YccwgzCM61dDbYPnUA5WzYU61dXrAJwcIaQdJKtERhnZGeI3QuRU+PYX4/qkezDAxAtjbQvGI+ObwAaliw/dDcKY9vKFAwZ6xRDh1fTBdc0Fn65QBNqVgSalwMcZYvpD/CwY2U5d3uWDt2Di2+YHNoRjJUjYBroSen+8X4bCg0S9kigbAi5VwMnY/ykX1cdZN17Ll6FCO/h2Nvi2hWwbqBsCDsWs60cN45bAKzGwKR6ej4QFo/XLf4D2Ayy39zPxZQRs2rTC/vWXFTzdbfXjg+x7aTxITOV62Es4BSr79N44i3KLlLFFk745SvF29Sk/sRf+6ybjv24y5cJaqfZd1LcUjWMm0CV+Ic1jxlExtKmivlxH/Y/G1smeDjFDGRw/k1rhTRQydcMbMSZ+Il3X9zB5vaqwxbrtzHwEjx4wYABLlizh9ddfp169euzbt48dO3ZQoUIFQG+YcumSMntFSkoKn332mcnVXXJyMmPHjqVGjRp06NCBq1evsm/fPho10pYxI194aqeD/wLkHArX6F9dplwZr3qwXH+QrwzeaDqmZkFTneZF5Mvb/vKz1JIDadUUdQ2CHBXllbFusizaTWYvKyoz5ztJwxa2cuKWi6yJcZKf4otIZIy9bPpMGYGlalXk1FGkfx/luCe/RSYMtzy/q1/rI6tEz1GvnznIdNv0KCQ7GtkYruRvHImkvmt+3PQ5SPYcZLoZIxc1WhZk0E8oIsORtIHa+1jZBQn2NV1v27Kx8NVtYXy00PoNZX3AEeu+A/XjhG4iBMYZ1zWJEnrGC61ihMH31Ns3fV3bOP03CgGhQoiBS0Oft63/3r4aK+wS4TWDOS+M09+XekFCuJl5/XheWBUlfH9SeHeNos7l9iVxuXVRwSsWtUS1n1Ix6nMvOX2I1Mn+QSrFvqla7xZcW5olxEgb+VzqRE8zOc+mcZOlv6yXQbJWWsQ+a1QfvDFMhia8KX6hDWREwhsyLm2Oon7s1enyvMyWqSnPC1hhtNIckWDtlPLI1ea/GEuzUOGZwZNYaeYl3xamfe+ahBj72uVQw07FZcO5ehIyxUumrKigqAsILiK7b1eV+THl5KWVJVXbL1jnKscTPKRxsL2C/2Gck9yUopIgTrJira3Zua9ciMR8gMRaEdpr4+tI5MvqdV7uynLbOkjPRsiyUciQFkhCJJK9CYmZgMQvQmLCkdvvIC2rqvc3tAESMwTJno/Im8i6XtZ/PtPrIod7IkGlkNsDEQlFsocgMc2RWTWf/PPPpQ6TleVK04WWWUL1GKGimVBeecm1oVAmRKi5XMmvHC4MeBRqLFSE1hp84vJDzUar88v6C+2NH/KA0CNCr/CmG4SSqlBN+7hLI4U+g4QffhGaNBPbXXvEfn2kuNy9IY4fr1fIOk5QhrVyHtxdPKIXi/vyF1X79l73stSVg1Jh3Uyzc6ixcaq4NTU95wbrxkh/WS99EpaKR9MqFq+p3Yb+0mB6kILXO26g9QovGJG22inlkfXxf1HhFW5p/g8Q/71p37tx75verilT2ZFyvs48u9gHJ4OAKkf3ptHW8xyZGZnERar794hAPY8EftqrzKSekiS5//fpb35D38kR2jaFhVac54W9Ci4m3MmuG+w27f4Vtv4ME9fCpu/BYyRsOqA3VinhCA624DkF9pkw3CrqACF1Hid+LZKP7Jax5yFwK+y/CZ6fwNbLoMuGjCx4rSAN6nYuUZZd/MHGBoqHgI3GRIN3DsFfm+GkQeDnkq30252piXAgDFI1+MTlBz+sUedfOwXfmDh7qVRbf/7YymD78qL5tDsKTBoJWz6GZnXhxx/IatcKycggK8uOrL1Ki1FdlvIM1X3tXGwcHUiMmKvaddLn33O+1/MkfrbH7BROhy0m5aDpOXsPbMLVrUfZ4jGJhIOWc+XtGhrDzeN/KXgXd/9psZ0RnrKV5r8J/+FL/9+idmcvfvtSadZbt4MHLm52TI+pQ+UAV2IX/MHODx7/AKrU1T8E7yRmsj1SXWm+HHbD5JgzRqorwl4D7bBFbzbt5ARr1sFoE1GsXIqARz5y4KXeh6hXIfR1y7KGCHukXKMOQFeVlGp5cfgyJKaBuwMk3oElBy33v6wFTMzzjIw3uE0LTsLdDAiz4KrxxCg5ENIS4Y9J4DNfXabsNCAdrlk4yD/5CpABPz2yPjyvHo/yb0H9LvpM6A1NZH3PJzKf0fuz2PgrD5UzDp+gaORbONSpyt0pb5KdmkZ2kvFvwc7Xm8z4y9zbsueJ51JuaAuOjFmLZ2OlMYxzOTfSr6aYbHf5G2Xw2pK1VUyDLSHH8VwrLEcb/Pfi715i/pNhaUuzagdv6baoiaYtmeptjLcdy/gVkfUJbWVjQmsJDi0jkZebKup3pDWSOXFVC2w7atuBItIkyEZ+v11EEsRJ4hMcZcAQnVy8imz8EJk/VynfvBEyZoj5PgeaCNWVvhfJ3o+M7fZkcx4YqE2uZinz9VMMHNA7exfMPe1X0cLnHvW8uBz4SqitzJ5BgyihtoZtxzJPFobLKqrc4cn7mBAljNG4PVtA5PDhaosy7mvfeOrz0EI1J5nOAgFI9+h+1m9pdkakh3ZKefSbLdzSLIRV8KrryRfTtC0Dfv/W2Gnsr7NpDPfYTZjHd+yN+ouR3gfx8Xfm3cN1eTmmOg5ONtxNMu3Aag1atLWjR/M0ftyfTXXPNN548SG+HhlEbxIqlNP7906MgI/Ww8pF+jYHfoYPNpnvN/J1mGDgxzs9FBxt9DtsrwzTNr9O9aBnAIwzsHT85LC29idVEnoDrGgHkR3gR+XOEb0qauvXEnqaCWjdK6oHNi6OpDbvBL89yp7RYSW0igGvwZCgwc/C4QkjZlsDQ2dp3w4w2QrXhvFR0Hww2Grcni0opKXjtGENjnNeNimSOOqVfHVdootpi8GyI1tRumcg3iODFfySbWqYbONaxYNSjUz43gAPU40DS1hE4ZamZvyHL107uq/vSqUWZTn49k8cWvk4kvmVnyzHkbMWl06lMyHwF/ybFcMvwIlDXxtvhzRoXYT0u1mcOpyhud/vdysfZrduiqKcnKxXUP16QZTGMIsRQ+DrH+Bdg3Q5PqVh6Bzo2AjC3tDW11fHTdeFB8P4ZlDbOCi7RWz/U0+GCKsK55JgkZnn+bAK8OFF8/0n3oeYHhBQHY6kA2XAr68dGw9U5Osv43nQxMBP7te14FQJ/NoCGl5mLqoEHH1auGSggP37wm2NUS+8qsGRrdCgMzgWKfi55cU7K2HK4/A8ut79sCtqj83De2S8PMdMQ+tRvFMgmXdScSjpRkKsMuXXtcg9qm0qjQji1renVesOTow1O57/oNrw4KFZGSNY60xeuKX5z8bDhw/lpZdekooVK4qTk5NUqlRJXnvtNcnKyjLbbs+ePRIQECCOjo5SqVIlWblypVXj5mwZTE+ZKrPleXk1beLfviViDVWrbdoCMz5RGZMz6TbyIFlPa5aqt6ntZ8zr2vLpX0f6ciR7ORIzEjnxgnnZWQZuBhWKGctMr6tP8LrOzNynmLAKVaO4nogs0Gd3CO2MvP+hxmS7XuPU+a6d//bvDiC8mib0WG59u44TnnxsH4Ot/LZdhT2n9O4J1+4I76wQXeeuYvfuMnFMui1F790U55hITX2XOWwmeW0BUJUJpuNomqPA6S1kevYs67c0ByASpp1SBqCp/38j/l9saS5YsIBVq1bx7rvvcvr0aRYuXMhbb73F8uXLTbY5f/48Xbp0ISgoiGPHjvHiiy8yceJEPvvss3zP49zXF/LdtqBQuZb2cEeDnzE2lXxlgQORMfa4ucH6T2z59aSODZt05KTB2rYdRk9S7++3s8a8iwaO3N75OHM3xGSDlHFf/apffYbUAX8viA6FAQbhwea0gZh+MN3Acf2iigO8fwm9FeYAE8E2NjaETDNvwd4GtzXpPmw9qc/uEPUlPDNM4yt0kXrqfPuK2tobotbbUN5MSosclG1jWaZPFMR/DdsiLMsawtuMpdHot6BWC9P1ObhksLIsVxkq+kK3vuh27oAp4ciX28mcMJHsHfqswA+//UGlo8dwXzkLz5h3cKxfA9exfS3PIZ+QrPwtobLuZ6LT5SMMylMOLfZvwv8LhXfw4EF69uxJ165dqVixIv369aNDhw4cPmz6gGfVqlX4+PiwZMkSatSowejRoxk5ciSLFi3K9zzuJ2vfQjSHt35rQZ0Oxkk4O4+1HEOua2hxzeP0H+HIsihlEOkxE+3pGWKLjY0NwW10zJ0jBNQWQofCoGEQr6LU8qKUMkctdf2U5Zb1zbfv1xwCfSEsWL1+aHP43mAOyXminuiyoJ2fcXSk4fUgxB/uZ4Cfu/k5DKyi34ocuw9GGoSsDK8MncvAT+p5QwGYUNGgv+rmg1ybhHs3KBoEnpOVfOd64B0Jrt3UWqmjRHPwHgYNTbgN5EWHT9X53aIgPB76xEDtwXDHjGtDszEwYBn0VYkgExQGk2Pg3XiYGg3TouGDeHgxBvo+Bwt2GrcBCDSjiL0fnWUmJSLvvKWokuRkwNha0yZAaV58b8NWnNo2wcbGBs93DGJ4FiCKVi1NyaCqtD/0MtWntKP7by8p6t3rlqWot5tRO4/8WGhC4RmeFdCJiPzdk7CE+fPns2rVKnbu3Imfnx+//PILHTp0YMmSJQwapB75vGXLltSvX5+lS5fm8mJjY+nfvz9paWnY2xs7bGVkZJCR8Vip3blzB29vb6anTMXF1Y7s9Pu8XkR74jefgBI07O9NqYrO2OiESg1KcOloAs37lebh/WxCi3ypkN94pTFz+p0i414WdnbgF+jCjjXGxi6h0z3xKm/LoknGLgmLotwJaGLDyaOZdOtnhx1ZbP/0IXUD4Kd9D/n2y4fogK7dYKzWlYgZnIuDqr3yXMOrEJYPVwRzSH8H0tJgUix0rAphH6vLzWwB88wE8c/BJH9Yekq9LqYJ9LfSHSG2KyQ6wKhYDcLVBsONU5CRBukm3i7Kr4UrJoLt+syHSzMel6svg98nPi4HbAAHJ7h3CU7keajXnAY1x8Ff++DsGrihshrqugHiP9e/BlfvAbFmAiwPXgvnvoPus2DjSKjdBYq4QPHS0DgE7HWPH6x5H7J2QGoCzO4NY+dDRJ5gyt8mQhszbysjIyDSeFfH8fpV7Ivak52WRlqpiqbbP4JTcCClPltCxld7uRH6WBlVPRFF8pqtOFYuiy2CfSlXdDodRWt6c6zWWIv9qqHZxpFc2XqMtCvJVO5Xl5+nxZmUbb+2J1e/O0/wG8GsrLSclJQUXF1NpOdA/3xyc3MjZSS4mk9EoGz3ANwisdj/vxJ/956qFmRnZ8uMGTNEp9OJnZ2d6HQ6mTt3rtk2VatWlTfffFPBO3DggABy7do11TazZs1S3VufnjJVnk+IkLqhNSRgpHouK78O5eTls32lzRR/GbiisaJuYlxz2Sh9ZaP0lY+kp8RIN4nO7ipTo+vJ6GXVJHReVfH2L6Lab4texY14AyLcpf8EYz4gCzcUlz/ES/4QL7kgJeW3hOLSN9Relm90fqJziQFm3At8yyNtA5GmtZBlk5R1fYNMt2ujIYpJZ38kdoy2ObarqCy3LIcsC0bG1zbfLtwPOdwBCfJE5tVS1g0tbzAfT+P2EXWNeT3Gl5JRh4eLY9WyT3Tfjcj3Q8E/RmgcL9SOEWqonFsVq27Ma75OaBOX/3Ert7YsM3aj0ChEaBwirEkQPhHhUxHiHtEXIswymEPvCGHtYaFWE8G/obKuRSfLY3p5icOf58QpOUFc7t4Q2w7KMH/2nVuJ09Deqm29YhdLuZj5Uvnwh+LctJa49mstNRO+kgDZL41kjzSSPdJUdkv1WPXnQl5yrqge7ehJSPMZ3lhEJminlLHa+v834v/FlmZ0dDRRUVF89NFHHD16lA8//JBFixbx4Ycfmm1nuB8ujxazpvbJZ86cqcgAfPmyPsVLVPuPWOixnF+iTnM0Uj30RlEPR4p6ONNvcUPsnZV7BomX01gVdoh7iQ+4l/iAxf2PsGTAUeq086CkjzNRM89x+ZR6ZoNrfxpvo5arbIdvbfVQJs8PTWZwqwTuJj4kNuo+tT2S+SzqIRFhZqIha0C0esYVAOKvwO7DcPAETFyqrPvgOdPtVmuIb9y7rj5vnhaUMYi/HVoDIupBKws7xYHFIXAn7L8NMw2sNlsUV5bbqSxADAJ7AFCvtRtrA9eTcc5CtGprET8MxAGcq4BrW0hU2R68+7sxz8YFMpLyP+4DDR/C6jD4eTP8tBlGe8DhrXA3ERb2h7f66/+/azCH2OUwKhBO/AinDLKLtO1teczr13lQuSpZ23eg0+mw7dZFUe3YuyMOzRuoNpXku+gc7PkzcBjpB09w59PvOOnRieSt+xVyWcmW96s9g81EVH/ayGfG8/8k/m6NqwXly5eXd999V8F74403zGbbDQoKkokTJyp4W7ZsETs7O3nw4IGmcc05nvdY0VpaTKknfVYoY+FVDS4tc6/00/wWV6+9+UzodVsWVeXXb2E+s7kWWrIc6dYVCQtFAuohIb0K9g0VkC2vImNNOKdrobTFyJXZSl7UQOTcFKR9ZQttwxGZhES2zt/Y4T7IGpVV6LQKyHw/pJ4b0tgDGV5dWR/UEqnW0CBbvX8z02Ppils3t2JNhaobrWsTuEzw6fPkn2mflUKDodpkO6k4zb9ghYXk7ivC2zHC7JUWZW3HjpGi925KkZsXFHyPtN+lVOoJ1TZV0n8StzG9jPgeY7qLR2h7CUjYJk1ltzRN+1xRX3a8sRVt/Y3qweW1UoX2vkY8zSu8CYg8p51SJmjr/9+I/xe6Pi0tDRsb5VRtbW3JzjZ9BtW0aVOjhIU7d+4kMDBQ9fzOWjg629B9cQtunk5S8M/tvcGL5T+lw3R/XjncgdJ+5tOrHP/GfCb0lv2Kq/KPfX/fqvkaolM3mBwBX2yHjVFw9DhsjnuiLlXx3S/Qpp717eb3gpiR8PVpKD/7MX90Q/jyNLgXga0WDBI7x0HiPXCx4nwjL1p5wGiVBX1GNsw4C8dT9MYt6w0WVPv3wZlDBquClmYmK8mm6zxVHBnvHoRz5hOYGuHwRLi0xbxMzRFQY4h5mVNfwJEN5mVyUF7FWjP5BvSerK192/KwcSl8utaiaPbRo0hiElm79yiHazsESb+P08h+Cr5r+EBSvzpAygdxRn0lfPA5CVHfcNSjB4lbD2Dj5ECZiJ659ddWfmnURh5kERgzkforh2u6NENU7eufr3YAOOaD/qP4f6Hwunfvzptvvsn27du5cOECsbGxLF68mN69H295zJw5k6FDh+aWx40bx8WLF5k6dSqnT58mMjKStWvXMm1awVhnnd15ibTE+3jV8lCt/2XbZd4I3MmNsyp28VbAo5QtnYaaPsgfEF6Mrb95Wd2vp7GR6FNBVpbe4MQSBjRUlie1hZAA4+3MNYdg0y/g8SZ8Ha93RYgfD1EqKcT2XgOPtfBqPmJiRtWF6ybeKbLEur5sRo6GtsOtnwSAkx9UiIYSViq4/ODkOnAqYV7mgYat8VK+MHotNFVRnu9PhKsWTIHz4vgBOGE53I4cPkKqTzWjQNJZB49wyzOQ+5FKy1SHwJokL1xvsd+U3ce4tWk3fy3falbOrpgT5UKakJ2psr+tAf5D69ItZkD+8uEVWmlqxv8Lhbd8+XL69etHeHg4NWrUYNq0aTzzzDO88cbjt1/DBISVKlVix44d7Nmzh3r16vHGG2+wbNky+va13v+men/j/flfPj7Hax5rOLJRPXr6jTNKRVeliWmlVcbXmUGzKqrW/XYgla82mF4F1mzgyJoFdxgSoT2BLECg+rFGLqKWQZvm5mW0oG4VGBhsWS7a4Pjmq0cBbQaYcXO4cge2nYESTuBi5pt8xnTsXpOY9wdMVA+WQR0rA4lIcjIctLC6MoV734A4QpLG8DcAfvOgyhRodw4qh1s33rF3zdfX0nCudjMe1oyC33bCpGgIMlB895/sPNkcDF0TTOH2yFe4f/BXi3KZqemcDVtoWe7eff7aephfIqz4nICS9cvSLrIPdk72VAupRYkq7lTrbeV54P8gAey/Bf8v3BL+LuSY/U6+HsESL9NO7gD9VjQn4VwKqbfT+HmjcSyrmu1LcfIbEwEfzaDXeE/iVj7OlNCgdRGOfKdhyWQFunaGxa/BynXw7DA4dhzs7aG3imV84zrwk+XnRC7StsDXR6D3m9bNaV0oDA8EEfjoZwg14YqQg4gAWH7UujHyi7SW8Hky3MgG7OD0fVipYidSYHCPgETz3z8jBMZB+Z6gS4fYAgz1NfATuHQQflhqWXbsOmgzXL8qHJpnDmOXw+p8OLRrQJFbF8naup2M0doVveec8dx+eeUTjdstfT0nn/+Y88u/zlf7nnGD8e1ZA1uyyLyTxmK3hdrdEl4FVxPpuFTb3Qe31/+bbgn/L1Z4fze+mriTHpGdmBI/in5RnVVl7J3t6LO4MVVaqDuPupSwvI/QYaQXVeorHcWr1FV+k19aYxCb0QQ69tF+Ttm+DbzxFjw7Cl5bBAG1Ya4Jd8PQrpb7i+gF5zZAzEuQlgEL8xHcpkN1CIuCpDQYHADhTZT1QT7Kci2DLdpGpaBDeevHtYSBJWHM79DOAyJ8IKIqvN3EcrsnglM+8jM9fHS2nO0EgZFQtidUGmlavrHGGJQZaVCmrjHfrxW88puS12Sg/q+9E0yNgUWHwT8ImvZUyg150fyYxYqr84eOhYO/oBs+Ejp3we7dZeicnLAb0BcnFX89UyjaszXOQfWp+P1qzW1y4FLLm+JN/chIzcK1lvILV316R8393E96glXv/yjSyooVK6hUqRJOTk40aNCA/fv3m5Tds2cPOp3OiH7/Xflm+Nlnn+Hv74+joyP+/v7Exsbmb3Ja8XdbzfyTYWil2XdjZ+mzQd03aHH6MFkuo2TO5b5PbgmXh75JqytDplvv4zN3pdKKc+BwWxk32UaO/m4rqzdojPWoQmtmI0EByFuTlfxpA5H4aCRmNpK9C5GvkbhZ1ve/cjAywSDG5cZByEAVX7e8NKg6EtkBWanRInNERWRweSSwBDKuInK2FdKjtLHcoiqm+4hrgEgIEtvOimv0GyWUGyF4LzIt427gW1d6rWnZ+ieEEt2N+Z3ThQ4Jgkew6bbN3xcq9BRaRQrPpGqbf51BQvel6nUdZyjL1VoKqxL0Pnn+BvPoNkFo0lPo9QTpj+KTRLf+EwXPftNGKXrvprimX5Oin6wStzPfi9O0sfkfwwpqEJ3/a5mU/qo8J2/I8zLb+liabyLytnZKeRNN/efFJ598Ivb29vLBBx/IqVOnZNKkSeLi4iIXL15Ulf/uu+8EkDNnzshff/2VS5mZmbkyP/zwg9ja2srcuXPl9OnTMnfuXLGzs5Mff/xR87ysRaHCMwNL+fAA6bqgiQyPaSfzbg8R32Avo/qWoytJ6/GVzfYxfEFl6RaudFAeu6C8zI7xlX3Z9eXldd5P/GOct8xGEsRJUjLt5W66TjZs0snJX5GO1jyszdCYHkjCNiS0PRK/AQltiywfZ1p+5Uikcx1jfisrgjarUbXi2uQiDMbZWB9ZZzCf8HLIaC8zfXgj0htZ19yKOTZfJ3QSobKZXHieW4RiGgMwV40Vqq5T8rzDhVobzLcr015Zrj9D23jmqGSVAvkumaSeQ4XB44R23YSFq4XLacLctxUydu8tl6L3borb/b+k+M3fxGFIHym6/PV8jWfr6WaVfK3lw6Son/EzIIdK1C5jxCvVyFvaR/aRqdmvS3jCTPEPrSPjz+sVp2aFtwCRpdopZYF+7MuXL0tKSkou3b9/3+RYjRo1knHjxil41atXlxkzZqjK5yi8pKQkk332799fOnXqpOB17NhRBg4caPa6nwSFCs8MtCi8+eljZFSc6cSZo9Y1lNVp5v2fPksPlpnRNRS85yMryR5pJPslQL5Lq10gD4yNcfaSkmkv9+7byL37NpJ+D1mx5Ck+oMzQujHI+DZ/z9iANChuzAsqoSzHWIgEs7iqXuFdCbFi7OAYoZ0I3mayEBSzYqVQtKkQeEXJqxVj/T2pNupv+yw00yADX7fRxi8Fdusjpei9m+IUmY8sD0+ZAuf3MFnXaKZxYljNCu8dRFZpp5R31Ocwa9Ys1XEyMjLE1tZWtmzZouBPnDhRWrZsqdomR+FVrFhRvLy8pE2bNvLtt98qZLy9vWXx4sUK3uLFi8XHx8fCkzn/KDzDewIMjGqPnaMtyZdNR6FoPNAHeydb2oYrQ/M36Vca38BiTFjrj72jDfdTlebMC0ee54etemOVjLQsfKrl05ksD+4mPPZbtH2UDsDNijPrIRrO7wxRurg6v0NtqPsEZ2yRFubS1OAo1d8V1jaGlYH68pFk4zb7k/R/V/pBTC3Tbgk5mHoOXvwNym/WNGU9/toPN7fCZTNGG7Zmsg0Y4t5BOGxwI/8wnQjVJJIL0OqmeFnr5GdEQa0gy3K//qwsr1GxKE1NJfOLL7k/Unl/daWfrh9OiRZKy8o6C/rTcO0wXP0fh/k5PGObyfbXD5kJ1G0J+XRLuHz5siKy1MyZM1W7v337NllZWZQuXVrBL126NNevq+cELVOmDKtXr+azzz5jy5YtVKtWjbZt27Jv377H13z9ulV9FgQKFZ4VaD6tAf2ju/Fc/HCGxHSi3mA/jm46y2cRptOS/PbVX9jpshm8SJnP5sdPbxB/+C7vjjrF8y2O5IY9y4uD21P4OiqBTp6nuHQmH5mQDdCmPYwdlkli4uOx0qw4K9+03foxbySr88tNhOJWGA8OrgNTmsK5ZyGyB+w6D0PM+OoeNDCIPXUHRv0EpzS4KGy4DhkPYeIflmVvWptAo0RtSNit5BkqOC3voW4hputMBaU2hxsHrG9jCskmwqnV6wRD5it53cKhYSfI1PD9PnnEooht3z5IsvGHLDduq0hbB8cqpmPUJX2vfGFwqeTJoVEfcufUX5r69u31BI7n+TRacXV1VZCjo3mPdLVQjabCNFarVo0xY8YQEBBA06ZNWbFiBV27djXKVmNNnwWBQoVnBS4duEbZBqXYPftHfNuW59S283wU9q3ZNmnJD7mX+IC1Y4/Q3jCvzCP8/sMdlowyziz9+QcJzAlTT7nda0RRZi5z5401Jahcw7LZVZdeNlT3ySJ6k+BTVvj8C7DNhCJWWqx3bg6HN0CLujDCRPaa1nWgnkGuuWZ+xnI370JQVdj/vHFdWYMANYFl4EoKDN8KI7fBR6dgk0rGg2UtINzMs0OLX/DBOxCm7l5phLeqaZPLRekukPCVkpdlYN2YMhqKTgPX+aBTD2yAa08rBzaB4hpWk5U6Ql0zFp5acfwrKFVJyavTCvp6wu8/PXn/1aohaWlkObpYls0HMv5QKq8SrZXWsy5+XrQ+/DqNYyaQec/ym1Ct8CaExT9Pl5hB1BxeL/8Te8qO556entja2hqtvG7evGm0QjOHJk2acO7c4+ecl5fXE/dpLf7DPvfW4/LBv1jiGwnA8ajfaTjG8lvZvsjzrB1xyKKctWgQ5EQJdx0TehmnD1LD6d+UYdiuXoXBw+HCBfPtWjWGPXmeRWU8IfBRQJvvf1Fv852Kn166ygv8xE36v0EL9W4IO/O8JF8zCFAzVaN7ky4bEs08a+oVh2lVYJHB6q1VCejkATPitY1T2xkcbWHMrzChKrxr/L6ijm0a93ElA+7MMOZ7zgFnP5Ani+CTC52GR8B5lZtfqRWc32O+XYuR8H2kkpeRCuMj4chWvXtCqsbI4Fpw5gwPKlfFZuyYguvTDOp+9gJ73B9HwEk9e53vAl/FvVlVHN2Vb5KdDjzHvfMJfB+6Ppd3PykDAc5t/o34zb/SIbIXFVr6cO37C2wfbnr70wg5jufWyFsBBwcHGjRowDfffKOIbvXNN9/Qs6f2F69jx45RpszjVXJO+McpU6bk8nbu3EmzZs3UmhcMntrp4L8AWoxWCpJe2FhVxr1dQZPskfSKMnedh2pd7IFiMnay/d9+SA/I0GBtcqsGmK5rYyFItDUU3RhZF6BeN7qMshyqkgpIC7VqVgBztTeRGqdqmlBLhPIagjA7VxeqztU2XuMVgnu9gvvsg8YL794z5ocbuFz0maa9z4AW2uQaNFCUHcaFFdx1PSLX5jUk+NaHUidmupQdasb1I+/3InastIkZKS1WhpiU6R030Hq3hA8R2aydUj5EU/95keOWsHbtWjl16pRMnjxZXFxc5MKFCyIiMmPGDAkLC8uVf+eddyQ2NlbOnj0rJ06ckBkz9FbAn332Wa7MgQMHxNbWVubPny+nT5+W+fPnP3W3hMItzSeEbxsrD+gN0H6UF+OW+TIzugZthpSi35QyvBRV2WK7779Ko/MA9f3I3s3vatq6swYrX4Hw/ta3a1FDm9zQxhBuIpTZpybG9TYfl1sVqQ+giIk33DUGxy1R+Tz22WP6SFc7bExkv079GjKBVNNOv7lI/x3OWXDqzkHKaagxXvP0LKL/YnAsAs9EQ8vRj/krDLZG75oPnq6ArwkH/EZNleUjyrO+B6u0hftyG90btyGdjPjl5o/Ba3JfKi0Nx2u0vv7OgdPsLTkMGwc7SjTXFgrsYXI6lULqY+tkejl2cbdxlCaL+B84ng8YMIAlS5bw+uuvU69ePfbt28eOHTuoUKECYBza8cGDB0ybNo06deoQFBTE999/z/bt2+nTp0+uTLNmzfjkk09Yt24dderUYf369URHR9O4cWPrJ6gRhQrvCTHsU+3RFNRQuZ4rbYaU4qfPE7iblMndpEy+j0vEv6kLIZNLmmx3N1lwdNLx+qriqvWHfyhYjbdhG7xoIgm3Gk4uh5jnoXOAebk5PSByKAzdANdVdunGNgQ3R4juCwMNdpBfaGgsbwlfXIcbBRuZzSzKzx8LIybDonPQLRoaR0O9ePBaC/YtwP0wOKqcjxV9Rb3DhLlwtT84Wn4psgolaoN3F2O+r8Hbhm83qD3UWC4vhkaBnSNk6aBhf6hqJijrSKURA5EnoI8JC9bqJgKr9rGQ4cEARZ8frcrP+OUM2enG++ElwzqQeTuFUqFtcGuu/BKeX7AFzy4WvuSPUGmg3kS4ipkAsa6VimvqSwGnfFA+EB4ezoULF8jIyODIkSO0bNkyt279+vXs2bMnt/z8888THx9Peno6iYmJ7N+/ny5djL9f/fr14/fff+fBgwecPn1aoRCfBgpjaZpBTqy6HDSeUA933+Lc+OUm5ep54FzUlnPfXsE3yIvN475X7WPOyY78dSKJ37+7we5V6gYo+cHbMaVwdBDNZ3gFBe9ScNnAAjKgKhzNc4YVNQ0Gt4BtP0IvA6M8Q6wNhVFRpuuDfGBdL5j9HcwLBu88luiXx8D2P2BcHruh8dWfclxLYJw7rDJYmPSqAHEqH2+9q59yPL0PfK+DE0A8cGornO1legCnKXD/nQKcMeBcGdLNrB5aRsO+AcZ8v4FQoQNkJMI+C5lGpp2E2yehQT/Q6fRtNk+Cri/AK3mMY8augjrt4OJRCOoLP3wGfgFwah8c2qGXqdUY3pv+uM1Lq+DIHvjqE+WYS9ZDl+7gZ8K45xF0vpWQ+PPm568BNaJncnrAPCN+5ek98BnanD21X1BvN6UNDd/ui70uGxvJ5OKnx/CoX5YTS/fy27sHFbKdVnfhq7E7tMfS3AKuVtjp3EkFtz7/zViahQrPDAwV3qDYHvj3qkpGYiof9dnGn3sfm183He3HteO3qde3IkkX75B4MZW05AdM+bwFf3x/kyW9DqoNoRmGQaNfXO7Ojo/ucfzgk7srFBRWRoCHC/RrAkn3oNsbcNCEteP8PpBwF976Rr0+PzCldNRQxRkcbOG0is1EjxLQyRXCVfrqVBS+Umnj5WTGb29lLDj3guPABeDARLhlJtajbShkmXkLKGgUrQwO7pBoOQ2PKjrOB4/KUK0NfD4ZQpbCH/thdS/TbZ6Pg2Y99f/bAYe2wmsm5Jt3gQM7HpdDRkP12lCyNHTvDXZZsH0L1K2N7v2lyPW/0JUpjb2/H3L6JA8jNxl1aR8UyMP91l+vk1957p819pmruXwkKT+dwaO1P6TeJ/HHc1z+6HFeqmaRoVQd0YysxDv8OOlTgpb2xMm9CDbykP0TYvl1hbGVqmaFty0fCq/Hf1PhFVppWoE7V+6ytlU0F/Yaf+EPrtH7Pl08rHz1j/DcSvuIKk88dglP5e7z3Agrzj7+R8jMgpAg2HoAes01LzupHXySjzx15uBhRWLLP8z4H956AKY2hH830c6sk3pSMuTE8s4EnC0Eg/5fKjuAe38C+Tg7ykGTSfDn1zDrkXP34SgItpAN4bfd0KgnpCdC5CRwcjYtm1fZAdRvDn2Gg52ALhOy7KB5axg7ADmo32kRILNFMxz6duWhSpf5UXaAqrIDOBmht0a9EnWApnGTqTI6SKHwvDrW4atW73Bjr34rJD7qMJ3iRuDbszqNXmylqvA0w1pXg//wU/8/fOnWY3vEd/lqV76W5beoslUduXbOtD39rs36ZcWURR789edDPllxJ7cuYpYLP+zK4MiBzHzNr6AQsULvTL7PhLtCDqa0A0cdDAiEERqTZ2vBzHqwNh8+14Y4mKonNVzIz9Fo14FwCL2yA3BTOSvTApuq4NIP7hpvqVkNnzFQpAz8/vqT9dMwHB6kwlcGW3lZFr6L5WrDz1thYS/rx+w4EJIT4bVxYJMN7brDlOFGYtnf/8D97/NvQVRm8UQeXr3B7bejzcp5dKhLws7HX/ozC76gVIsqNI0JxyPAmz/f/44t5YydTX984Qsy76axK8x8/xZhrSHKfzgfXqFbghnkmP22W9z2iUyY16T1lPCogAIziV4UXarAzazzSzUrWt9mTJA+pl/2ciR6JLKoh7pc+8rIG2bcGsoUsTzWMJ+/9/64j+wqdA8VliQIE0SoH/e/G99zgFAtWqi28emN4ROkzu//vhAUbrrdwt+EstVM19dsrix3HSq06inMjhSWmgm8rUK6ij5m64uFD5AK8Z+LV/RCKRs9T6rGb5EKMXOkTvYPUmHdTIv9e3Sqp8ovGVxNusXPFfdAba5GOVRntL4/zW4JuxH5UTul7EZT//9GFFppasCRFcaZRRuONu903nhIBfrNr0XVFp4kXU3nly9vMGJZTRr2LEWbEU/mypCems3I6U+2996lvbJcPZ+7rvuXWN/mg/2w9bjerqF/HZjaGsJVfE37+Zu3RfhLg7Xlh5csy5jD+BIwwIz7w3gviK4H8X30lqQrDQwuEyO3w+dRMNkD/tz6OE+dSRRgEr/b0WDjCF5DwD8GvCxYV1qDmo/6umTCPSIwDHovUq8DeL42XDM44C3h9fj/kwahzrZvgD1bYfZI2G+wxWkBcsH8l8Dj7edxqOJNsf4dcOvfAdsSxUjedoCspDtItljs37G0myr/1t4zfOH7IomHrTNWa/VmG6vkCzOea0fhlqYGJMUbP6Qs/RASL6Xx0yb9F3161Z0AHNh0tUDm07xjEWx16uNXqabjjzOWf6R9e8Dw/pCQBOOfh98NIo+MHwiJSRBtJsJJ1Euw57gVE8+DpDzKSpcFi7rDCoPdp6/Pwa83jNt6FwUz8boLFIvLQLZA9Gn1+pfLg1NxmHQMmleD8eaS3aYlQckBwAgzQk8QRFgNybvBoyeUCoHsJLheQHvI5VvASZW+pp2EGyf1SV9PbbWuzySNQYM//UCd360PfLFF83ClT+4g6+QZdI4OZKHDlkzubt3DlV7PAZAS9aWmfrLSCs5wrGyz8jywtj/HR6QVaoea/xEUrvDyCSc389kLzu037y7QaXw5Rr7tm6+x25S7RJYJhWtK2b06S1nu2Aa2fQ1HTZy3LZ4BkW+YnsP7U2Fwa7iq4pxtEDheFQMNXJE+VQlHtuUMxCcb861VdlH14XsrohVVsIP5ZSC6vP6s0TkbYsrCYW8IcoJn87zQlzsMHrsg6jyM/8p0nwCU7wCnxkDx4dZdgDk4NgLn1qbrnfK4A3iGFty4N018cW6chboh+uX7vWRtfVXNR8r43iPATxmQnfkq2RNUYONTlmJr52FXowouIZ3Q6XRkJaZwPewlHl5WecOygBubn8wCOy+u/XCFVZW0XUcunnIszX8V/u491X8yzIUWCxyhzF/nVbO4Vfv0MeltZVt2a5keVd2kTMtexTT11aK95TBit5KQqA3I6WPItAmm5eZMQWLeQbJPIbFLlHW9DDKRzxyUv3OfqJH68ztZoqe44fnrRyvNMJO13BzF+SBSXU9xZZ5wHnV6PdVrNEkN04QWoqfgbMHDRMiygqJ+64RFoqeFadrajCyA3HVjpwqXUoV31yj4DmtWiMPc11TbeMStkApyWkrGvatpDN+omeI18X/3OWo+wzuKyDntlHJUW///RhSu8DSgYtsKRryubyujR4zd1k617dwTbek0xZe3z7ah65RKvHsuiOkxdbifmsXCASc5GHeLKZF+rI9vQI9wZZRwNw971T4NcSHetEXc7Lk6VrwPEeOgXj14Yx74mDkmmjoC2jaBoS/AFQMHcxcDy/Gbyab7Gd8B5g+E8iWU/DHNYXBD/QIAgExI0pCiqGNFaGgiiHpUEMT3hCgTq7jLBi4DI8tAN3djuT5uynJSzs5SFiRlG4lbB7MR/Gc9YedA8XCoHA/lo6H8Wn02hYqRYOP02DpUpwOP3ma7eWLUHfh4PHsnGBkDPReYb9NmJHQON10/6nV44xOYFw1x8dBfRbaqP9jYQM/B8M4KdO3aQ2Agtg0DyPrlV+yHDTRqknn5OrfDnifzsnIrtXh4Pyof/pAiLergs3YGNeM/wTdmNp6D2+Lsq+383Wekhvx+BYX/QWixfw3+bo37T4baCi9wdC0ZGN1F5mWFy4DIVlKrZwVpEeGv+oY29P0AaTbEW1YmdJePpKfESDf5TDrL5I21jGSf3+gnO9IaKXib481YsWmkpi20ya18A4lZisS+p73vVZNN1wVVU+dHj0bk3cerO1mEpM0xeJMuYX7cFUHIlNrIuRAkMggZUglJCEGyByIxzZETHfJ3rzq7Ksvpfo9WeFWRNINVYlRpJL4yMqmkkj8qyMpxdasEVIIsW0uV04XqIvjEKflFg4XAhMervMaXre+72SrBp4dQa7wQek5os0pdrsV0YeZtoX6o8HqCfpW3RITFBiu9VuOU5YgNQouB5ucwa6PQKVTYnSD8qLJy/P2OcOGBsDYf2d4NyH26Mth00eB6EpCwTXw3zlCV9+gWKP4rxyp4PVI/kGrTO6vKu9UoJd2/n2hxHppXeCcRuaSdUk5q6//fiEKFZwZqCq/vuvYyVybL0LguJr+o3vWLS5sJVRW88RsDJCi0nIxdqa4cAZmxoYrMjvGVNYeriXc1B0Vdq15FLP5A/Pxt8v0jr1YJSfgZWTdXya/ta10/lUubr48ciiQsQEIDkYTX9Qovez4SMxBZacI9wZDWtULkGWRjKyV/YxMkpDzS1ILC1ELTSyDZ1fTKTqoi2RWRmFJIfHn93+yKemUYWV7ZbkgTM/2W6yQEnBOK9DCoixWIFpgv0EDA8IXIXVl2GCK4fiKUiBa84oWSMUKVbMFXBK916mP7xQk14rTfg1IthUbLhJoG2QwamDHTbxShLA+P0yu85dlC++naxm0dJvgFCh1HmJYZPMmYt2iD0Huw8MZik+10vpXF+c2ZUnTZa+I8fohJuWJD1BWVxe/+9B4SfHiOuAdVkw7n3hKPplXMytedFix+Q+qZrNes8M4gck07pZzR1v+/EYUKzwzUFN5r6RNkrkyWkHVP5ptniryrOanyG7dztti2/3C7Jx5/rcFqa0FEwV7f9LbKctxQRBYg8iayrpe2PmLaIXHtC/7e56V1Xo+VnVR6RN5IQlkkxBkJKYIkVEaiK1jRb+PV+lWWh6FSWi5gha9csRjBS/RUNkFwCRW8E/QKr6yJtEGV1wlVTShDNWq4WggVobqBEivfznSbjgbKZsA6vcJbIkKoFWM/ZXKN+0CKrl1Y4P1WjLBOUbZeN0DGpc0xWa9Z4f2ByE3tlPKHtv7/jSg8w7MCnjVK8CBVb9Nbd0BVRV2L8dpShFjC5TPqMapa97IcLG/22/kMg54Ho15Wll8wCPm4air0bA6LNObY9DXIcnP0srKclE7umc8AlYhbE+oZ8+49hN1P4OEx2cuyzEAXSMyCsGv6v2TC1nTwuAab02FzGnj8CVNU5hE+CMbMUnEgrBSqv1YXwyDNEUCYsbwppL0DDxLh/la45gGpUXDZA+5thYcmQsR4DoQSKsGhTaFMFzgQBsUMMpSXNXDg7B4Fz8RDk+nw9VRlnWRDZH9Y3x+8A5V1Y6Pg7XioZdBfQaBxC7PVD3Yf4N4oZeSToiN64R2/A+c2jfI9rGSph+HxaFJJlX/q/YN8MzSa9pF9aDon//dBbEBsraD/8lP/79a4/2SYstKsFFxOXr09SlpNr/c/eSN9I6qs/HCvkkW50RNNr/CGmEiw2kPDSmlkNyQ+Gpk+UL2+fT3TbZcPUZbfDVGW0+foV3fyGhJr0P+0hshalfmd6IM0Njg7G1nJWG6WwXbsi95IjD8SqcFqs6a9stzcAfG11fZ5Rc5R4XtUFfrdFpqI4K4lUkiUwGDzMs4Gqy/35UJRg7OwaieFijFCg2yhygbL49ZcIPhp3H4EoWesMEOEjlZYWnacLqzLFtaLMMLEeaAlGjJZmDxfqBkozFqprFu61mxbh3FDVfl21Y1/YyWGdRHn+lU1zanWqjGq/MBVoRbbBjzX3IindYV38y/kfqp2uvmXtv7/jfgv6/p84/zeq7zuuZbM+08eu7KElz01mhRj8Ivq1l8+fvbUauxERNe/VOvzYs0y0/NpbsLVaZuGbAWRX8CoeeBjwkrym+PQy+DFeNEgCPKDYIMILj1rQ8xwiJ8BMUOU/rLJBpFT9pgIkFFrC/xk4OaY9hDWBsI8fwh0g7V1oLrBonjuZXDIhoEGaQbfLw/1DRx3Txo45x54APEa4mhObgMjX1apSDgHn3rCra2Q8a2KQF6sAr4CGpgX0xmsHBIj4N6j9DmlV4J3DNjVgOIhkLwN/jCItFI82LjPyhOhiI+F+eVBRjKciIKvLQSLzouy/vpceQD1umpvlxfpqbBkBpw8DK8ZJK49fki1ieOclymyaTViIkFM5u/njXhJH+4g/dg5FWlj2JdwISBmCjXmKy1CD4+Lwnd0C8p3Mx00PFUtGaRGZNrqyLS1sYJ0ljv9t+Lv1rj/ZJjzwwOk7/stNb35tRtfUep1Lil+TdykZViZ/L3RPiGdP4VUzac/mhYK9rdCtvIjg5UFSMJLSGgdJOEF5Mrkgp1TFSdjXjUnZEPlp3cfIlpZkCkVIRR/30T9LAErVlcgFJkuFFtpzPdap7farCVCPRG8Vc7QvJSWhXiPEzyCrRu/ez6sIudfFZqECmOfUozPsLGqfLv+vaTYtVPivGKepn6KBNe3atxakeHSTWKkW9r6ArkOrSu8y4n2kpLpoJkuJ9pr6v/fiEKFZwaWFN68tNHSdKxpx/EnofqtXAqkn0PHkCmTnsJDpQBoZqu/fw6W6IgFq1NDet/Etm8ulV8tlEo1I2OwTUkH8/0VXSe4qiizHDeFWo+oggljlieluobzVZMZIARPFl49J7TToNAbdn+yOc0370ju8vEKTf1US9hp1bgd0j+WbhIjPbI3ScOocVa1BaRueCMZEz9Ruq7XW/FqVXgXUpwkUZw104UUJ039G+K9996TihUriqOjowQEBMi+fftMyn722WfSrl078fT0lGLFikmTJk3kq6++UsisW6duyJSenm7VvKxB4Zamlei1qg3PxQ9nSEwnHqZlcv+O9XH0OoeXZ8GBALMyZSqohy6bNMdN8zhr1kFNX6hRw6rp5WJEd+iQjzP8sa20yZ373yZrtxpjXcBHoIU9zHeBZUVhvMHW51iDGN5hjWDtLPAPdMB/UA2KhRqkAioRCpIO+JkY1XDbq6/5SToOBHsDYxT3VXBjKFztr886DvDA+pBZqqjzorJ8Q0Met6wH0OEVcPcFL/NB1wG4oBJnDqCphu3PJeuhp/kQapKajmvMClwWzDSqc+rQlArntlEuZj62xV3xjplL1d+U+QldGvhSeaVyC7dW1BRsHO15kHiPo0NXUrpTHRpGjVMdv+XGMJot60PTRd0V/MYvBVOiijvVeltnAJeNLVlWUHY+PM+jo6OZPHkyL730EseOHSMoKIjOnTtz6ZL6ucO+ffto3749O3bs4MiRI7Ru3Zru3btz7NgxhZyrqyt//fWXgpycntz4ziSemir9FyDnDSpwYgPFG0jIxo5m/fAs0YS1pn3xcuibBHWn87c/8TDZ5uV5djJ+iq3sOmQnTVvo5OJVJP0ekvJXwbzNT+mrzo/ooiynrUFiwpHfZhXMuHlpUQNkUaCS16gE0rk0srYOsrGOtn56uFqWWVNMWY5zQ1INfPyuVEBiKiPxLZCYNkjsSGV9mQ2vC6/HCFPihfqRQhFLW4aDBJYJ9Hz014xDtsM0wS1b8MgWiscInvFCUZUVVHEzq40i1YWGh4WaUUp+UePgCGap9mhluXRdY5kqwcIbV5S8MRuFwW8/+XejVTdh/lrhXJZwPkNYGSX0DlGVLXEvXtwzr6i6JlRMPyJV5bjUkCNSS36W6gnfSPEhHcUncoZUWDlFIVt2Qg/x6NlYakZOkPbZsRIQ94KivknsJGkaEy7tD70srtW9pOuhFyQ4ZrQMuT1PfEMDZfjt16X+dOWxSO+4gTI15XkB7Su8symu8pe4aaazKa6a+s+LRo0aybhx4xS86tWry4wZMzT34e/vL6+99lpued26deLm5qa5fUGgUOGZQc4XqtMK422lZhF1FOWmI32lTk9vaTmuqgxaWl+aDDGfg8sUdRzqLi9GlpeOQ1zl1bVe0mmIMp7mm5HusiTaXabPKyrlKxo7mlevqSzHfIKse9/0eE0DlOUOTZFDUUiVcsayEb2QmJeQ+cOV/AkdleXYCYh8gGSvRjpbcbY3vj6yoKV63fxAvULJHoZkD0FigpCVgcZysQFIdG1kWXVktJn4l3UcTdctcEOmFzPmR7ogWSWQaQZng3GVEOmAyGhknVp80XrBQm9L51WWLfmMyHGdUFwEz0dUKkFwaJqv7x21Y4VKKsqy0mjBx7STdi5559MvNSJWWH5bqBYk9JmVvz7yUo4D+tJI1XqHscPFNf2aFN1ibMnpMn6gVMr+LVfhlY9TKuLSEX1MjlsvbqbUXvesgufe1FcabVSeJ9aa2VH5PYxopih3XtfTaoV3OqWEXBEPzXQ6pYQAcvnyZUlJScml+/fvq46TkZEhtra2smXLFgV/4sSJ0rJlS03P0qysLPH29pbly5fn8tatWye2trbi4+Mj5cqVk65du8rRo0c19ZdfFG5pakD1PtWMeF61lMEYD0bG8+vWy+xbdY4jW67Sf0EdozZaYGsHc0de4etNd3h91HVa9VAmY+s6qCgOjjremnmPKxeMAzz+flJZ3rMHRjxjerwh3ZTl0b2hYSj8oeJfVskLtv0IoQbpur422IH69ndITIUB78MNKzIbHL8B+01kx6nsCm1Lw4A90HsPbL4AmSpWk8mZ0L8MRJSF5sVNj1XNTDqVnzJgj4o75EAHyMoGf4MdoaQH6P3rMmGA2sd+fC/EWvKzy0cIe9sOcC/skU9eFNz0gAf5jNyffgUeqlz0rf1Qz0IsTICK+fQjO/ktRHjCmf2w5bX89ZEX04ZC7EcwaaRqta5FC3Q6HZKUYlTnsXgGukdBXjOxJXX3z4r6zHumg74+TLpHmQHK+LqJB+P5OWy1gpd6KVFRdq+ldAq9sPMP0hM1BJfNgwc4WE0A3t7euLm55dK8efNU+799+zZZWVmULq000y5dujTXr2tL6fT222+TmppK//79c3nVq1dn/fr1bNu2jY8//hgnJyeaN2/OuXParGLzg/9yogjNsHOyo09UV7aEbs/lVetagaExHfAJcGfP4uN8v+L33Lqze28ytfwXFvsduaASnmXtWBj2+APeEan8QWxcdJvZkaVo1NKRM0fTcXbM4vpl7e4QNWuar/c0CO48c5lp2amr9H+jdsOErvDzWfj5HJwz8JiIvw4ekzVPMRcHr5muW38W+htY82++bCyX1xOhvZkcuZvvmK7bou77T9sU8NSBoVX3QDf938QMmLQZxvWBVZrSsjUEckzo12tp8AhvAesgrZy+eCfKWMSxF2TEae8yPgLKjTfm3zsD28pD9elQ7RlIPqLnu1WGXb0h7dEbyv4ZVsw/D8rVVpbbj4dSFeDHzeDXELxrwLmf4btN+evfAJKqd8y3a6cM7uwetQgcHYBsshJTuDVpIc4ByhfdhHVf4jmmKw+v3CIrIYV7Pz9OYOvRoR42Tg4ExEzh/vnrnHrhY9Xxz29SukxUC6uPUwlnUi8lsn/al5z++ASnPz5h1TXpz+a0r12y0H+BL1++jKvr4x+Jo6P5pHo6nfKLLyJGPDV8/PHHzJ49m61bt1Kq1ONIFE2aNKFJk8f+Us2bNycgIIDly5ezbJmZB9GT4KmuHwsQV65ckSFDhoi7u7s4OztL3bp15fDhw2bb7NmzRwICAsTR0VEqVaokK1eutGrMnC2D6SlTpfcG4zO7wRvbSGCor7xxxULgWxO0NT1Ivs5uLtMjq0jznsWl7RB3k7LL4krLaakgK+KMz/Dei3KWvSeUocd2fadPB/TnKfNz8FNx2DakVvWRKmW1X1drE4Gjn4SGmXAlaO2hLDdxRRKCkLjapvsK03B+p4VWFkFiPJDsmkhcTQ1tPAy3xs2d5/V+8jna+QvFzMS+NKSqZpzA68wXyocIPiFCkIXt2drDLY/10klhTIywwCCY9bBlyvJzG4VgM7+vGoFW3ROX25ekyGaldaDL9DFS5vZPUiSkozg2r5fv+10i2F86JERKhyva0g3Vm95Kns2eL+03DlCt17qleSjFW05LBc10KMVbU/85eJItzU8++UScnZ3liy++0DTW6NGjpVOnTppk84P/FwovMTFRKlSoIMOHD5effvpJzp8/L7t27ZL4+HiTbf78808pUqSITJo0SU6dOiUffPCB2Nvby6effqp53JwvVJlGXha/vN4BppWVIS08ECAvxvjLjuyWMjuuhqY2c9aVlNNSQeavK6HgDxjpINeyXeVGtotMmG6rqJs+7QkfmPmk+X0Kvs+NJrI+JHZV53vZG/MWlEGmlyq4OUW6IFIWSaiKNFU581NQ+eaCXwEYZzxNqrpGqBUt1FgmVHuCuZZpItQ2iGbi4St0mSd0mS9UbqF3Uahqpc9fXuo63Jg3cpoQYhztxGbVB2J36JjYr48Ul7s3xHn1EmW9b4W/5X4Xr1bSpLID7Qrvx5RKckKqaKYfUypp6j8vGjVqJOPHj1fwatSoYdZo5aOPPhInJyeJjY3VNEZ2drYEBgbKiBEjNM/LWvy/UHgvvPCCtGjRwqo2zz//vFSvXl3Be+aZZ6RJkyYm29y/f19xiHv5svZUKnV7l7fqy/5qXE2JSWgm5atZDgoNyJH0inJaKsivaeWM6tbFFZEzCS5S38CIY/jQgv+RDm1jvr5HPWPehsFIdCiysre2MZoYKKWRvoifyqpsmi+S1RWJqY8s0LCq7OOKNFRxRs8vRbsgcQWQmUFPNS3Um/h+OZwUHKP15GA6ELFmqr5R8AoVWt8WKoRra1Olf4F+x/JNc9YJi1X8DZu2ENtDx8Smf4gU+fUnsQvp9ffPVQNpVXgHUqrIL+KnmQ6kVNHUf1588sknYm9vL2vXrpVTp07J5MmTxcXFRS5cuCAiIjNmzJCwsLBc+Y8++kjs7Ozkvffek7/++iuXkpOTc2Vmz54tX331lfzxxx9y7NgxGTFihNjZ2clPP/2keV7W4v+FwqtRo4ZMnjxZ+vXrJyVLlpR69erJ6tWrzbYJCgqSiRMnKnhbtmwROzs7efDggWqbWbMKwErMgFoMVX9QdR5jedWYl5bHesppqSDvxRqvJNt1VY+heeo37f1X17C1Ccji0ebrvQwUU1s/JPstfRqgdSHaxogP1SbX1B1J6IhIFyStrbY2BUlzHJCmdgXV3zAL9WqxKt8XdKGCQ7xgFyoUzUeuO3NUfak2uarD/+f3XpWOpAtz1a0z/z+SVoW3L8VPjkoNzbQvxU9T/4Z47733pEKFCuLg4CABAQGyd+/e3Lphw4ZJcHBwbjk4WH31PmzYsFyZyZMni4+Pjzg4OEjJkiWlQ4cO8sMPP1g1J2vx/0LhOTo6iqOjo8ycOVOOHj0qq1atEicnJ/nwww9Ntqlataq8+eabCt6BAwcEkGvXrqm2eZIVXl7yrle8wL/8c9d5yFkpb7SlCciA4bZW9ze0NzJlOLLiVW3yg1sj01S2Ko+8ablt3HB9GDHDRK/maHodJL4/0lnD2WFcAyS7PRKu4kphipoYuCUMcf7fPcjU6R0L9amiz5m37BFNU5dzmC44v2G+L9+TQvlowdNEH+aoqN///t60GSrMjBZejBY2xAsvRanLLY0Vjqskh30Ccm6j7Yyw/PhO0jL+Pak8TT1KTODKMGkRPVZaRo+S3ieU56q1I5SuJAHher9frQrv25Qa8rPU0kzfptTQ1P+/Ef8v3BKys7MJCAhg7ty51K9fn2eeeYYxY8awcuVKs+3UrIrU+DlwdHTE1dVVQQBtFrSm87K29N3YSSHfaKR6RASdgRlfh/AKvHsuiLodPE3OdeSccmavpXkHJ6aFJRLU3tiw9vW31aOymEN9f7iVqDez14L7D8HTwOrRrwz4eEDMBJjVw3TbpEdW1k7A+EDTcnnh7w5VXKFXBSV/oDcMKa/kLYiHpPvwooEswKKyMMbdmD9E6e3B7w+NZZ4UFdpYEYSZzuitNg18PtgDRAPOQH9gCPAzoHKxADY+YD9VvQ6gVBTY1oDi/cHRRB/mYOdmWWb4SeiiYjmaX1w5A3XaQcv+ULYKtBsMvcON5e4mQ3oaNAiC6fPg5YVmuy2yYRlFl71GsWWv4rpxkapMmdWvaJpitcUjsS/hQuKBM6r1tk52VOwfSKX+DSjhX4Z2McMZHD+TDjFD8aynDBzvWqG4pjFz8BBHHlhBDzFvjflvxv8Lt4QyZcrg768MSVSjRg0+++wzk228vLyMfERu3ryJnZ0dHh4qucrMoMG4+ri42mEjmTg42uAd4MHVo7eo2aUcP0c+dkcYsLQB0ZOOcOlIkqL90Lf9cXaCF+PqMqDI7lz+2LcrcnxXEveSsug0zJPIl42d36a85c6WD+4QXE5fty0qjbHTnCjrY4cN2ZQuLbgV17E22o7rF7N46XnRdE1T3tT/jdqm7R5s+V5PeXH2Lyg5DmZ2h3mfm277+QnoUR3cHaBVJVh5+HHdiFpQvyTYA+O/e8wfWBHIhNDK8Ewe17KMTPjLwG3gYAp47FfyRpeE9sUgpATE3IIPlN4ejHQGF09YdQd+fgBHnjzxhRH6fdqHt92XKJku4yD1a+C8gbSpcFKtgHXAAOAq8MMjvgmFcj8CbMpD0Uh4sBWceoBtUXBsAFlHoUgb+GsoFOsIV63IcOAzGi6tgWT1TASUagyt3oM7f4JbDfCoAfb2kP4opJm9HWxXUVJacPYnGOQBdYJh9hb9U+tukrGcCDR99FJ5ZD+8vxlWRUG1qtC6ca6Y0897sTl3Bsf+ndHpdNjaZvEgbofq0H/69sRzeijuwzpxttbjkGWlJ/SiSNWy2OqycSztyu2vjvJL7/kmL8GrQ00OhK2l8dJ+uLg7UTmkHrZk4ViiCN8/+6lCds8Lu030oo6ckGHa5f+7+H+h8Jo3b86ZM8o3p7Nnz1Khguk31KZNm/L558qn8M6dOwkMDMTe3t7qOaQlpvP1pF10XxqMLZmc2nYe7/olqBzkRd93GpP0ZzJ/7DNO4ePl50JGaibOTnY4ONnQbUI5vnhXr7xWP3chV66/9y+q474zPdGIdzcF+g6xY/akVN5Y6kRKcjbbPs2CbGHFKkhNA9tsuHwB3nlX2bZfF/jlFJy7YNRtvvHDWWNe/XJw7JH+3nJST8EVoa9BXM/6JeGzc7A3j8P59LrgaAtk6dc1Mc0hIQPGH4ZYy1mSANAB7Vxh6J/QyFlZN74Y7MyAkbe19QUwAr1v+cY8vHaAsx2Ud4SR3jD1JgxvAcED4HN7T77fc9G4o9RV2gdVjK6GkcBM4Flg52P2g28h81Hm3gdboXgc2FWBzINw4ZFCUPPdM4cbFvJI3fwJYgKhbDBUbAv27lC+HeyZBL4dYWsex3u/TtDpDfh4CNxS+fKYwq97oY/By2qj9vDzo7m9YuBsfnAPzFmkV4TvrICd27Fr/X/snXd4FcXXxz83nQQIJPTQQw29d4L0Jk16CCJNiISioGDDDioooFJUAkoQEhACNhQLCAhIF6RGkCY1FUhInfePScjdvbt7916CP33N93nmSXbm7OzctmfnlO9pR8b8RXi9/QbZWW64umWRHZ/InbeUCeLWcK9YlutzVlExYiZF2jck7eBJfDvW58LUD6i+8HG8/ApxevIyzXMrDG9JoXLF2BQwHYBzkXvpHDOOqn3rcG7TMbb0W2H+9esgCxcHFZ65h+L/l/hf21TN4NdffxVubm7i9ddfF2fOnBGrV68W3t7eIjIy8p6MOkooNy1h2rRp4vjx42L58uVOpyX0+6yPXRv+o6vaiirN9XkuJ6+qL+oE2/rfHkSLXis5NJ8Y/zf7WqzaqGbOn7uiPUKMymkjEGIYYsV9zKduqZUQK/wcO+eSC+J1k7LBDRBbYsuJgFa2EbX534IFqPgpPT5UHhddIfCP+Xu/A42m/j3X6WZAe/bGEsGf6YLl2iWMvNet0KQYM2pVY94Q1WOU0bBFWgeJKq9qr6Nf6nJRLbyzoi8ovL0YGfe6KN3KOB3CrA9vY1JL8Z1oa7ptTGppav7/j/hX+PCaNWvGxo0bWbNmDXXr1uXVV19lwYIFhISE3JO5cuWKgrm7SpUqfP3112zbto2GDRvy6quvsmjRIh55xA77vAbuJupQb1jhk9CdnPs1Tnd8Uehv/L49wfQ1qzdw3C+Xi23bwDUT6tkyov1tmN9Xf6yGH8zroD8+tGrOP5lAlmQwWX7WVu7VqrZ9ZrDuNnxrkr3pbQssd4Gt2fCcyfm3H4Hu1f7i8m4NfrZ8x3agPDADXGPBPRrwVYoIH0jRMJN56lQFNkLQm9DYxC710ALH53YG3xowsPTJKXiblKg5LBKSbCjGPPt1Vh43Vpqab/1wgMwEZbHWW78c59wLtutoFjmBzDtpxO/9Q9F/6dsTfOr/HNd2a1gAnEAWbg63/yr+FQoPoHfv3hw9epS7d+9y4sQJxo0bpxhfuXIl27ZtU/QFBwdz8OBB0tLSOHfuHBMmaJfrsActLs38ROcQf15aW5lZywOo2ViWxjhzxPGyQ7koUQpGjYeeTtIbjuzq9KX5/TlZ0Xy7gaXqdDxM36Y9NroGeIq8402XwH8D7NR4lkhy0hkxMg7WmlR4XkCvbFAzL1bREta94JvQRcuE2M2RWewgEbJfguxOkKlytqZtBTeNattpe/SnKzUOKr9h259+Ew468TtqoM1taYju4bDgDEyLgt5TlWPhi6CHxpwjp8PXsbAgGjxzysw8PFB7fh9vPAYrS/SkxXyvOPasV01xfPvnIyRs/gUzSDp2iS9LhBH/6zlFf/JpZV2s0i0qKI4rPlTJ1Py5+DvKA/1/wb9G4f0v4eblRv2RJup4aaBSo6KMW6pxs7FCWmo2mRmCOWMuc+qgcjfZK6QwXR5R1ocaMtZ49/fKK/BZNFSsD9PDYNGr8IpB4B5A5CuwfwUEVYZPvzOW1UOPOlC7DAxqCD9p7Miea2t/jojTsPki93Z3Pxhw08anObdOLTTR+SX0zwm4VW9Yc29hCz3gMXub8d6TwcVHY0CLMzFQdWwyrJWPQERClj/yzbNC+kcgipmcJwduvvDns7b9d/WtGIZITYSAltDhFfPn1OoIZapBm8FQRcXKffEMfBNhe05gHagYCN0HgcUCifHwdBjMWwrPKa+dfe06yb2MSb393pmufBlHYkncuENHWom7N8wxp/vVVxJIV++rVytRG44oO0cDXP6/oUDhmcDaXuv47dPjTp17/lAyH004RvkgH4bM1rbB7diQwGuh2uaNjn292fq5Ugm+tsibD6O9+emY1k1UiV2/QnFfePEdfZmwgeDjCU0fg+N/2p1SF2WLwMhPID4ZVCTwALy+07ZPCwlWiqyuAQH0vGr6Y47igEZ6xhPI4B8AV2AJMEAl83UGrLC3GX+xE9zWKgOhZfL8Q3WsV8zUwOqQrbF9zdwJxaLBbz+4mnjjMmyDpQAI0gjfrzgQmmqH9d/D6Q1weQ9se1HZ32oitByrfU5KYt7/bYcqx6qoSKdz0d1KbusmaFgGNq6F6RNgi5LQPe3J58n6WX+XWzJSFoEtFqazQ7SC/8PNaHl0gaKvztvD7Z4H4OKqvA1X7aZ+6DFGGh6k4elAc95d8m9HgcIzgUu7dGrWODLH8TtEvayx7THA3MiS3L2tfFofEeaFl5eFhwe5ExQEiyONc2p274fQycbX6dAEEm8Zy5hBxB6I3A/+L4KvTiBssNJ6QzsNxTjUKn1thEEq27ZEiA6C2MYQVQ2iqsAxkxvxY8VhWiE4XRQe1/n930VGe2bk/O0GNFHJmEpwOfkL7HIgBUCBqcAkQF06JzdqeQm2KQorbafJyoQsD4hvClmxyrFiUyFQtdssos4HzMHNbdBQdb0L68E7EIKjoNUiqBaieaom+rwDVdpoj3nmPNBlAi5eMCMaPoqFZ6Ohk+oan/0Oc6PBw+r3kKzymR+Q5X7c3pmH6xj7JlaLTyFcXFwoPW+aXdlSA1pTpE4lGkY/xUOxi2gcPQ03X2+qTVOarQN61aXRqz1VF1Lm7X5U27FI3oIdnnkUKDwnUH9oNfovakubicoY+3J1DLYjOeg8ugzDX9S20c9eVYGnFpVlxqLSvBlVml7DC9NzqHIXl5yQzfmzWUwKTSExAQYPh5VrXXn+PkqJ3U6FIUpfPbsWQru6sHwyxC6FqKcgaiq8OczcnCkZML6Zbf8GlW2wtLfyuJk/3MlAJgtlQiEB0c0htiOEqZTf5bsyzy7QHQb7yxbkDmEaiea5mFsYootDkBvMLwTV3OAtL23Zikhlh9XffiqZlwTmUXw0eO1y4IRc1AT0ihpmAt8AEcB+QMcc5tIQhE7QlHtVcAuCCtFQOxaqRkOmjr045TKU7A4+quukXoIqgyEwBLJNshn4VYP0O1B/iPb43dvSJPl+KFw9C79uhsLFof0g8CwEL0TD6liYFQGfvAHNOknlkVObkG5DNacV7t64vWbftJr4xkdkxSdh8fKkfNTrlFs0Db/HelJ+0RQqLlEqwVJD22OxWCg7qDU+gWUoN6gVLi4u+NZTfmkrPdKQGqOUwUIlGpa1uxYjFCg887AIIRz5yf6nkJycjK+vr03/rEuPUiLAm6zUNJ72zvMjvB7bl+eqbXLqWgMmlWD6onK4WXJd0Jm4kYWLyGTr+tskxmUze2KizXmtgy2sXueKj1smpaxu9C2bwp79NuKauPwFPP0+dGoM7evCsk3wdnTeeHBd2DAD/ApJIgvvUcrze9WFh+vChLV5famvQXYG+Fgp4qXd4bOj8LOJ4MWYdtDOD6YchIVB4OcKqVng/a1Krhb09eWeggRITQdvHQt0almpjKckwwJvKCogPQM2ZkG1LGilcn+1BBYDxXKmF8AWoDLwOjIvb4knLHDan9gPGVX5iYHMx0gv4nOAfr6YIVyHgvc8uFVee7xQMFTKKeJ3bQpUmAu/6cjqod4sOGpVRLRUc6j/OMSfgIMGJs8q7aHFKKjaHN6w8ncHtoI/NAraPh8DbfvKLOIfI+ENKz/cvBjonDPmKuCr1TBd6adzu3QNVx9XWBNJ5hdfkvWNMlBFjULBTai0YS6uZHFlyjsU6dac86GvKWTqbnyWcv2a45qT1p0Vn8TxKRHUnzuIr8tPuSfXPnoMPw9efu/Yt2ZJ/INKcXajqnIzkJSUpKhXp0bu/WlJUn8KFTWfW5yanMFE34125///iAKFZwA9hQfwWEx36vepwL6VJzm66Tx+FbzZ/v5JTVmzmL2qAjs3J2FB8MLSkvj7ce+ZbOPKZJ55TL9q6VMzYP7b5q7zwQsQ+6f03X24Ht62yqZeNRNei4RTGlbcVeHw7UF4qDbcSYXfzsPHVn65GR3h8eZw8CIMrA1kwvrjslr5yI1w3IF4h/Bq8J6V5S3YDz6vDyN+gy1W7qWaXvBLHfCzQPxdmHABhIAyrvB+Yp7ckuLS/OieBf2t3sb2rrDaE4pmwZeZEKIT+bkYGT7yInAdOGg1NtoNIjSYWooEFCajVWvurrcXBdQGMNr5NQGGAdNV/XXRDnwxgEsQFBoIdxwIHjGLwDHwx3Lb/mI1IdGKOKJoRUi+YCs3eiOQAUkX4HP1a7XCqLnwxwG4fh5OKauSM3sF9B8lFZ4bcOsmhPWDjj2hsBeULolb/z5YvvuCjBB7VejNo/aKKVQY9RAANzft5mA/7Srx1ca2JvZj7SjPolWK4VXMiwZjGrB10remFd77SYMcVniTfNcVKLwCKGGk8Cq1Kk27sCAiQ396YNdfFFOaLn29cCWLG5fTaFP+hq5s1apw1qSLcNwj8OFLEB8HvcNh91HH1xYTDgm34LGVeX2tKsGXY8DPUwauTPkCulWF0BjH52/hB3s14iYmloMlGpXRa3nASYPgkRXFYJQ3rLwFj2n4K9taoIpQMqlYox8QY3fVfzfeADQiKf9XCOgLl52zcAAw4D04tAbOmQv718ScaGjdCd6YANcvwyGruZq2wrIqCreSvoioT8l8wlm/qi3apW6ClDvETllGsRbVOBGuofgdhFmFtzBpCIWKmg9ESU1OZ4pvVIHCK4ASRgrPLIbNqUHc+VQOfHmVuEuOMRRPm1uc2GPptO/mwYxQ80nrZjBrNMzRiOo2ixWjoEtNKD9LY+72MOdn4/OblYR9+vpbF40Lw0Fz0d4KXC4N5YQ0Z/rk71sJwMTCUK0UPKX30NFyCZz3g6sCxAXg6Xy6cnng/oOqnL98KNz6HZIO2pdVw7cyJP1pTrZ2MJzYbl+u71jY9LGxTLMWuEasJKtebV0Rt8a18e7fmeQX3rN7Sd/uTQl4vAfH+79qf30OwKzCeydpuMMK70nfz/6TCq8gaOUBo0xgYb5betFhZQfw7swEvoi8k+/KDmCfg5awiPHKYyG0lR3A9Tv25ws1mVIQovLnO6Lspln9lgOuQWQqfOtAPn9/86Jcy5Ik1ouCoYnWa7N4ge9gcB0ChCF3Z1po58BVwbSyc1no4LxmL7/KOWUH5pUdmFN2YF/ZAezbq6vs3NrIONzMgydIfuE9vPvZRqv6tFPmBJYY0JasROWX3r+Tce5tfiIdj5zUBHMtvSAtoQDOIiRC/wYVFtmYEzvMO66q1vn7vojlSjkmf1iVJjjaIMaigwnKrzG1YKlONLo1ijrJgtTdEzJU/rjQWzApRdmnznqwzgjbqDP3U8BbwALy1NaGVFgfB5O3w4FYjZMqD4WseMgcDASjb4pUc7rkE7KPAfmYuFi0OZSzE9pfNQTqT4MB5hK17aKmCeaC+0TmrgOKY1f/YjYyxYYrQ5rdfH0o1qWxoi/uBwefKO8DBdRi5lGg8O4DIyIfwquYrbN42tdtqdmuBA26l6KiUea0Cj1C9c2no6d56445g0+VObjMHQ/Lp0P1ctryi77V7lejTUXYrnXDt0K7stDzG5hgJ0I/vBI0KGzuumoMKAz1NPz4f6kM+LmhE28hM9r0jFzBwGdAY6APMievCybLjTw0Hi5vgTP+wDrggIHwbzl/XwSMEpe1Eq+NuDE/AjQ+mELjbfsAXCuBz8PaYwDJv8JfdmzipdtD6WDY4MCutccr0Fg7nYBTJpkLctErBIY4RyeYi+JvP2XTd3miksXh2qdb2Vs+jyDAvcz9uUHqjW1sX8gKBWkJ5lGg8JxAv8XtGRndlSbDq3E3ydZU+W7PnZzacZPHS2zh/G/6kZVqfDBT26lVLciVilWUyakdu9t+dCOGwcK5sOgNWLsEJuqRdGjgq90wZh6c0QgIMYNFOfl1uy7Ax4eMZXdcge0GlGG5eO88FHPyYXTLHfME0SDz7LYCrXTGzyPVz0Gk8ssNVeptZvIRC+BuovnFADIJwugcrUgjA25MPRRaIBlYSqt2JFnn4Y5BkcNcFO+gP/ZHJNy+qD8e/Jpt3zcvQvXOtv1qdNVR1NaY8hbMMKAYsoMSkW+Ruk2n/p8VspKUZoOMq+Z36c1f606XSKWCb/+6TtK/3vVzygOZb87d9hcvXkyVKlXw8vKiSZMm7NhhvHPfvn07TZo0wcvLi6pVq7J0qW1C/eeff05QUBCenp4EBQWxcaOeXSV/UKDwnIB7IXcaDArEYrHQeIix/e7bD+6fET32eBYvTVb6CHoPsK3aHrkGKgZA+BgY0gfmv2gjoosdTkRqrhoJsc9DdCiccSIAxQxSsiDSARrTkTl5+hvuwgaD3LjtKkX6HLABaI00a8ao5P9UHScgVZIr+tXqAAqFhUiWkIo6ydW6eAPILUpqruq2Q/B4E7yjpW/RaxAQBH7RUEw7nF4XCdv0x67vgN0akZDl20PfKGihw2ASpUM1Zo0xC2BmNCxVKeohVnN2DYBd38K7UdCsvc0ULm+/g0vYBNzeeg33kUPxevdlvKaOwf/MD/hFL8R7eG9Isu80vrVT23wZ9OZQmkSFU2WCvgKr/2QwNYY3pGf0MMbETqN39BBcPR17ysvE1eHmKKKiopg6dSrPPfcchw4dol27dvTo0UNRocYa586do2fPnrRr145Dhw7x7LPPMnnyZEXR7t27dzNkyBBCQ0M5cuQIoaGhDB48mL179zq8PrNwSuH5+vpy9KgTd8j/J6jeNY8fy93LlfZhf08dnio1XNiy34ePo73o3EP7o3trEfxxDkLDISUVot+HN2fk3xoix8D+WdCyMmw6AsULwaAG2tyZZvCjnYf5YSVheAkYb3L+hibcoO+6QJlMaQD8FllL3BrVctrbSGIvLXRFettmAGMMrlX4uSck+4fwgsITNSQ62F8w3sBC5L7S2eATlfnRfTK4dYLkkZAeL9foPQh88i9U/x7KBCuPa4+A6oPBUgh62KHRCg6DN2JhYhSMXQ5N+kJYBHh4QdtBUClIUo19GgsvRUNVlan3ViL0GAx9bc3D2Z+tgr+u4Dl0EN4fvot3+Bh8XpjM7Wfnk7ruGzITbuM1pJfTL7vsiIe4sv5X0q5rW3l8a5QkMyUDi8VCjUH1KBboR81BddVMY3bxd/jw3nnnHcaMGcPYsWOpXbs2CxYsoEKFCixZskRTfunSpVSsWJEFCxZQu3Ztxo4dy+jRo5k3L4+AYMGCBXTp0oVZs2ZRq1YtZs2aRadOnViwYIHD6zMLpxTerVu3SE3VthdduHDhgS74n4A3AlZybJPky7dYLAyYZ8xoP2p+LZr3LUn3CToOMisMGFuEmQv96PCwLd/VudPZdG96h6OHsqhfQTvqc/c+qNYSIjdAiQaQlg57VcXU506yuwwApvaEMJVCOnYZms6BPX/C+iPg/xx0WAw9VTp/1cMQOw5WdTe+RkcDkosZlcHTRd6L3zWomPJEUejrA2MLw5MmAlqnZUuyrj1IX1yUajwDWUe8BVBa4/wQYCfQHtgMWIdSTK8P061cXzcCWsMvkbBvJPhqVdTbZn/BdEMaWxcifXfNga+A93XkXwLWIF9ZLFLZ/QAsAktfsERA2hZI9oeMSIj3h5sdpOLDC0pGQ8Uz4Gvyi2IPnTcoj2vk2NrPbIZvrHxsjUJhsCoTMvkqeBeHrHT4eAwc2ASLR8PuzZAQD2+NhEadoFwgdBgEnVX+vx45x201FNehQ2THbOJOxZpkfLGF9M3fEuffgLR1X5O6bgt/+Tcn9dudFJ0+SnGa/1PDqLjqed2XGzC6IxWe6M4PAY/z17q9/LVBUh41Xqjk5Us6fYOVJV7k7CZblhVH4Gx5oOTkZEVLS9M2iaSnp3PgwAG6dlXWDevatSu//KKdM7l7924b+W7durF//34yMjIMZfTmzA+YVvU7duzgypUrNGkiw3YtOo8hV65c4amnnmLq1Kn5ssB/KlIS0rgTf5eYKbsIbFPCUHblU+YZWBq08eaRUT4ULWph2xfahWdvXjefOhmqURZopsZ9cmA7WK8yyWdlw2KVQtqvLO0FwPazUGGOsq+wKxT3gi1/QkRnaF8GFhyC9x34bQcVAks2klPTFSKqwKZ48HeFCKuk9A/Mu0lNIdeA+AW2uz+Am+gnqFfygc9OqTo/zGX0iESypRQD4oD1gJ6PqyngA3REqtdcBvCYnL+9gBVIqrGGwGwkpyZIhdcaqY53ArnRlKslNxqbQKh2cpnb4bo/FIuBwoPko7BXJ0iy+rL4jQVSId6g6GouSnUCt8JQsS9kZEPpdtDmXUg5C5kp8PV4KNdCec6hVVA0QNW3QTY1jv4Ab/WT//8UCS/HQHBfuJ0CDdrB1Hfh2llw8YTvNsHkfnnntmgLe5UBMFmnYrm7ao3NZUTiLTzrKKNbvesG4tujJW7l/Mn8yzYKO/ViHPFbj9j0uxXxpF30eC58vp/zUXmpHH9+dYKz63+j48IeFPJzPDgtHXcsDqQapCO5TitUUDK5z549m5deeslG/ubNm2RlZVG6tPLxr3Tp0ly9qu2Mv3r1qqZ8ZmYmN2/epGzZsroyenPmB0wrvG3btjF79mwsFgsWi4WwsDDatm1LkyZNaNKkCbVq1cJisXDt2jV8fOyXrfm3w8PHjef8PwVgX6S6pIvzaNW1EDNDr/PUXP1IrzYdXFh9/0QOCpTXoP2vopG60K8hfK++oWvgxwvQP0b+v/okzGrsmLIDGGp1/c03YLSGsn3Q0CrUYhSwGq5B/ahEHWTtBf0dgkQuEep24BEdmXjkfjMBOKMa+wUoAYxTnySRVVm7/+5XkL4e/BeCSFSOpR4BD5P8mtdzKqz/tSkvlmZDU2gyC7YMlsfHNYri3jHpDD6l2gUkJcD2TTC7nzx+rCm8skpWTFiu8kv2H2qj8NKef13zMkJk4zO0Ozcey/u84pZt5OJjGgE3OdBSdgCVh7Xk2re/KZQdwPGPZGDMycjD9I0ZTuWHDEqEaCATV1wd8Mvl+vAuXryoSDz39DSuvKLe5AghdDc+evLqfkfnvF+YNmm+8MILnDx5klWrVt1b1Jo1axg5ciR169alaNGiNGvWjFGjRtG0qdmilf9ODI3swtkdV3TH63QpyZtHO9idp3hp5fNGh36F6RrwJ19G3uah8pepGOhCrQa2zyRrPzGXPT1SXbzNAAdU98t2NeHJT23lSphME/ha9QywSyP6s53Bxnh8uZzK5znM9wkOVjdfUgjW+sDrOg++LbS7bdAV4wT0yo4tC7lrS3TwnM91+tsj40Rro5lyAMh0BC08Ba4zwFWVD3j3I0iJhIv+kK3abaTug6ScKLqSY6HSHPCqbuYF5OHsZuPxriYJYc+qUjuadIXbKnv2i6EQ7A9HVE8hHXrB20uggn3FEj/6eW6v/w73oLzgtJQ9jj251Zs/jJZRYbh4upGekGIo++ubO7gb70B4Mc778IoWLapoegqvRIkSuLq62uy8rl+/brNDy0WZMmU05d3c3PD39zeU0ZszP+CQD69GjRoMHz6cxo0bs2zZMq5evcqFCxfYsGED06ZNIyAggD59+rB8eT5vP/4haDOjCZXblaNG94qUqatfg+b3rTf481AStdr5EfKG/g0h4ZqScfjyWaUiu/BHNieP2LIS/6wyM5bTqS7yqYYlSA87VL/hHTq7uJS7ED0KRqoLw+VgVE7MwB+qyOyfNawUO27qr+fFSsoyYUOK6ctqYWIqLL4Lg3UefM2U5nwaCEc/AR3yygaZx20wND9VQaa2G2EMMqymGXk7QSM8BuwDVF+U7LuQpcf4AiQvgFIRUHy27ZilEJyfBXfVO0s7SDBQFn41IDsLArso+6ubCNMPCQBPk+bAllVgxkS4qB1hqMbNkc+ScdyxWpblx3fmodhFNIwYT+Kh8xRvUok9Iz/Gr6mBMxq4svsiy6o4FpjkrA/PLDw8PGjSpAlbt25V9G/dupXWrVtrntOqVSsb+e+++46mTZvi7u5uKKM3Z75AFEAXSUlJAun1sGkj1nbWHXO29RhRNF/mGdoHMTEkf9eW25aHIAY1RDQJyP+5a/koj1dVR4gWsmU3QURUQPQtjFheBtHd+/6uNQ/E+yCe0XqNIEIewHsnW4qAeSbkBghon/P3Qa2lhvLYbaT5c0uGGY9XGu/8uppPUB4PWSoYFy14+ZjxebVbCbo48BrysfmHPKQ47pLymWgaM+O+5kxKSjJ1fxqb9LoIE/NNt7FJr5ua3xpr164V7u7uYvny5eL48eNi6tSpwsfHR/z5559CCCFmzpwpQkND78mfPXtWeHt7i2nTponjx4+L5cuXC3d3d7F+/fp7Mrt27RKurq5i7ty54sSJE2Lu3LnCzc1N7Nmzx8E7tXkU5OE5ifSUTNqEOZAgZgJtuhrb0M3iuUlw7LR5+akOkEaOWQ3rDsMBEzXtHMVJFQdn6BkZpEIWrL4Boy/Cptsw5ipUuU92pF5AKqCVdTYG451bT0Avm+IhI2tMoYmAJ5KrxR42AD/n/H1QUH1JMjVs2HpI3mrbV248tDsDjaOh3rvOL+uSylzZYiQ0GQTlgiAsCtrrZD6e2A1bHXgN+Yi41T9RLrwPxXs0wbdVTbJS0rj5N9GL/R15eEOGDGHBggW88sorNGzYkJ9//pmvv/6aSpUqATJY0Tonr0qVKnz99dds27aNhg0b8uqrr7Jo0SIeeSTPH926dWvWrl3LihUrqF+/PitXriQqKooWLcw6HBxHQbUEAxhVSwiN7kK93hUUBWD1MGFJLbIzsrjw2y22fKy07VVv6MXcdeU5cyiVu7fSeWlMntM+sJYLf5zUrh7dtBkE1YJP9cIFNVChNFy8Zts/qTe8/6Vt/z8BKypDcVfop/IJNnaHg47bE/keOImM1jIinZoMLNIZq43Mv9NikpzXBKYbMYexEaiPjKR04MPTxbNIxeWCVOEm2FEeJBrFQOm+svjq9fWQeRMOhTk314AlUNQfmgyU9u3cGnfb3oPIyfbOhoq14IJGhHTpALim/8Tm9e7L3J0223Bqn45NufOjsTm50sSunF+iXwux1aL+uHu48POEPB/to79P4vq+S3wzKsZ0tYTQpLfxKFrIcC3WSE9OZZXvjIJqCQUwj/TbGbh7uTI6uiMtRhqzrSydeJKSFb0IamOrPB8JK0GFal50GVSU7sOUX77HntSPdt2/zzFlB9rKDqB+Ze3+hxuam7e9Y0FlDmGoHyRoxOg4o+xGIj1kPbEfNrIIGApopYqfQFvZgT1lB/AjMkrTgbINhghAMoHOBQyqiuN8AjUA3ma8nkBagvxrsUDAIHA1fyO2gYsX1B0EWVbO3EObzCk70FZ2YKjsALJj/7Q7tT1lB1CkQSXD8aQzNxTKrsmMdvjXLkWN/rXszm2N9JwKCI60/yoKFJ6TOP7leVIS0mg0qApV29jG7xctrfxSff7meao3tQ1x7Dai2L3/76Zk06SdJ+v2l2FhtB/9QuzfLEbo8OyawbzHIepZCHlIe7xkEXPzhKjILcIbwFEH19WmGPzQENoVheWBENsAoquCZxYMKe7YXHp4AalqbiLVjhoNVMeVgEHISM38Q64ZXCvhwRrPYcOOQjMNuVvk8W7OBF5BVkJXo6TquIOtnGUUuLQFzzngHqIc87Sl5tKEX1c4HAop8bJdsVft3QANhso5IkPhTrxs3zhIfQZQ37EgCNeqjj/BVYuwDTQqP7I9jSP1d7dFqyhzgfyCSjkVkv+gg1b+P6HApGkAMwVgx8V0JqhLKab5fObUNZ5eUo6ju+7QupsPL4Tmxe6/vao4O79NpVAhwdqP8hgQKlWF86qAsX49IeZrHEZwfdjwrEwQX78TgspA3el54/Hvg58Jso2UGfBlLDQuAQevwMCqQCZM3gbvHzc+d2EtmKLxIB5cBDYEgh8gMmBlHCxOgP06/JjHisJvGZCRCZcFPGsV3LoamA+UAR5CmiPNYB0yndvOS2AOkpnFHJKQSefnc1ajRiiyaFF7wB2Zh1cbOIyssqD2nR1EJrrZMxteQhaLNQmv5XDXijSt2HJINCBR824CRVvC1Q/MX0MLTcOh1WS4tAMOr4RzdioJv30Mtn0MZapIYtMb58CvNCw38Ym88g68qMHMoIJrrSpknTxn018x8iWKtKxF2sGT+D/ShuT1P5J5LQ5SUrnx5T4axzxDIT9vLq/8gWub9hPQpyEWsri6+RCFKxTjxPvK19Z5+QAajG5EZvIdFvrONW3S7J+0BHcHTJoZyals9J34nzRpFig8A5hReMHhQdTsWIoP+2/THPev6EXcBW3GlPxClYpwThVh/cQIaFwTFnwKR+1Eji+ZAD/+BiIbetaH9jXg4Fl4pAFMWg1LrH6X9cqApyu4WeD9nnA2HgZWB0sWkMW9vLlNsdDPIEN7bi2oWgiu3oHJBgE2MTkP2/00IsjLusDmonA2E/rlUJBlZMpCr49ruz7toidSJZXElkAapPftNmD9zPEm8JEFYu39kty6Q+YK4HGkglqBLbEZyL1obkkddyRbijWBdD+ges4qe+asVCuR/REkY0sZYGCOXFNgGrDFzmLtwCsY7posygpQNQxqT4PT78Cdc3DrDBSrAdUGgkdhKNsErvwMf34Dd/6CS3ZqRw16Uyq51gPhbgKsnAITFsLJHfByP1v5vqMhOQ5KlYPRT8Kpg3BgO3yyWHN6S9VKeIeN4M507YR0gHKLZ3D3lyNUXjgJTz8fXMkiYdNOfu/3yj2ZKlN7cm6B+afR8sGV6bWyL8uqLDSt8PokfYh7UfMMLRnJKWz2Hf+fVHj/3UqA+YTszGzSE/Vp+R+0sgNbZQfwgQaJhR4mWvH3rt8DMVNhUDMgE+YPVCq8o1YxN00/hJghaJLdXrRDMl/VR2ajGSk7gGeuQgtbWlEArmRDs0T41Eeu4VoGDEuFnffxCGfv1vSbRt8zIAPJ7UFYyMuF2wz01RG8jXxycEPGi6rfzLpIpZeUc3W9vL0XgNeRlReykWbMZ5C0Y/ep8CwOmsUyEuDmHjhjRTZ86w+4+A10WQVbx8BlBxRo6xGwZip8uxBO5yjH7ZHwsA759SYr83D7btBzEFzXz8MTZ88bKjuAv8Jkknx85HdUWzWTpG/3Ubiu0hzqiLIDuLT9T4fz8LJwxcUBM+V/uR5egcK7TwiRRe0uOpnfVug0shQ/fHo9365bpw78fn+cs7q4eBPib8OU1dDVjv884Q7y3qza3YXbeUC/nQ6HEpV9FT3ggiqW41S6bEYYeQfmWuD4P91WIdQMGnqMGrkaPlfpqb2LXZBeyKdzjr/SmKMbkmMTpHH2ScCoNtyngCe4NgHLHsi0U0zRuz+kanlCgaKtIVlF/XVxjWxa2Bqq3a+HBv1gWoD2WKYtUYMNrlyErZvgtfwrIxIbOhcAR6pk+TergG+1kpxdc9C+sAEKFJ55FAStOIgmj9lqgGfK28+VKlRY+WzhV+b+njXuR9mN7WE8Hh4J/uEQuQdGrjSWjTgCaiakBIM6dLkYVg7qqmJ4nrb/3KALM8quO9LfZhZTnF2MLtRJenoBHdY7ul9Q8sIMQ4be2GPMVu8KjcJHpwMjgMGQFQjZ3ckLrtFA4UlQxKAKYKZj1FgO466B+cBMzMdr4bBbpaz79IXmze9rWfZQpJbyCx637+J9Kzv4e/Lw/r+gQOE5iEptlIXZKjTSYF3WgNpVGn9VPon2DDX2ET4I/KTBbdu+trlzm6serHdcBP/3YNMpuSsM/Q662KldtyQIxv0GPYsp+/sWg+kahNX5hceR3jAdVjQFHkHWy6uNsvwPSFIvp5Ct5a/TQnvyUt/V1bNLIu/q9qqCq+i5CDaQrYRM2ogHIiG7BIahOrffh796StqxSvuhUFsoZhXQknJI/9wmKtrBlnrZjgYorE/rR8WG5uYornr42LwJfv3V8bUARbuY4w6+dVKff9ca9cY2duj6GXiS7kDLIH8ILv6NKFB4DmLD2G20mVSX52OHMjq6I4WKmctpqdpQO6euQVvHKks884KFcFXkZK9O8Op0bXkt/KFB5FxHx0KkxjePavd/dQ78l0PkGSi/FmbUhdi+sEpFmlDTGyYeh8grUEHF6VvhCKQ9QLNkf6Txz26qHFLdDEPm3O1UjenRNN8/qiEz/9yR6QZvAerom0XIeg0uSP+cXnSm+qb2itX/jVRj4cjSRf7IKFETSP8Zro+G800hdSck2uHPLdoIGkVApVFQy8qUuGcyVOpnK9/SIMryQLR2f7cw6GDHFJuLhVZBPr73l/ciXO+P3b9suyqK4/JtHUuLyMLFobSErP/wbb/Ah+cEdr1/jFqdy9FoUBXWT1bfDm3xVGQQ7m7aYYM9Qn3xLW4hsLYLg+rp1UbLw5uvCiaqKEIe6QlDesMLRnnHwGtj4Hm9+5IdRbOkP/h7QjF3iB4IQcWg7sd54x+pTKxBvhBYREZielogLhUmHoFTxmTxZDpYFSEXLwCVLHBAgHYNZsdgNq+9L3I/1tEdPvGBKlUgoyZMX+vMVWNz2lXyKKu3aci9hqyC3h7pPNWKNJwFjEeq7RVIH10u/geRecmH4NBoKOQHhVXmUk+VlaRKD9jjiPE5B3U6wGEn8v6SEhw/xwrZaSb8hga4skOZ8pBxx4RPwArSROl4eaD/Iv67qt4BPPyhbepxSo6jqlxd46fD6i2K0ri7H2kpSoU3cW5p3oiugLeXoFUnTz55M57XIvzYeqY0wyd4Ua+JKzPnejFygu0zSR3V/WJYPyjkBZEGMQk1ysOjBtXH1aQQ1VR5ypnZMKgeuLjAoCAIKglhDfXnG1oRyJLpCoPKgpfJ31hDx+tfAvC4C7QRYNYo9QIw1mDcLBXpo0jfYFUXeLcMjKgCe/6ARs1VP62a88FjKpIf094TvNqMqSeTjNzlPQeM0pCpijRXqlMWepuYPxcP2xdRw6uh/lhqApRWmVubq0oCVVORu/rVgIdNPMak3IZbicq+HqOhfltYsR9mLtU87X7h282W+zHwtRBbuQYVbPq0UKmTMXOTGs6WB/ov4l+p8ObMmYPFYrFbVX379u00adIELy8vqlatytKlzn3h6wyuRaupKrt6ttwSNR9h/OU8szeZkBI7iT2odLQXL+XOD+uSGN32T4L9z/Jl5B2eHx3P+ogUPlt6l6MHspg78y5tHnK3mdPXFz5bCbF7IXopeLpJxTK8F0QvhP3roFZl5TmnL0GFQTBjICx5wnadI1tDdBgsyfmdxqrCzcI3QeQBCF0P8bcg4bZtsEouZtQFTxeIT4PBu2HwXln1xQjVPGB5efB1wqS51AJbs6W/TW2uHIg02KlTrr0wZlAxW9J3AHmsLZtugf8GWL8PDv0qH3BcG9eFKi2h3KPg3gG5K7NXlmak6ngaturZE0kXthWp9FZqzLMTySvjitz3foWsBKhFzrsYmKrRr8HN6TUNSsSCXxSUiIKKZ6D4NCibs9O8e1j+DVwC1dW/OQFfqT6NS9ugYzQMi4Xu0VBDpSziT8MXE8Hfjvf0pxVQX6VMv4mA33bKgrBzrUwjbbvD5qM2U7iEGTGsauMvlSKtML0/labZPigkHbFvwQFYXsux5P0CphXz+Nep+n379vHhhx9Sv359Q7lz587Rs2dPxo0bR2RkJLt27SIsLIySJUsqGLtNwWKhdH1ltdI1Y36msL8HDfuUo0NYDbYtNt4TfPG+0nH2xuhLmnJx15WaYe9OW3PJzaswZSxYMiGwPMTHwZQXYeGz4OEKTQfpryOoEtIKpsK3R2Xu3XgDLuzQnGDUSNV9onQhuGal/O5mwOYL0G9HXt86Db+hNWLTYcwl6GJyhzfODUIsMDMDOqKfP7dep38/cl/kKMohg1ms43Jz92NaRWqzDuYw5p8rAR46OWIKdEFmKIYBu4E7QGOgCFAYyarSOqffHr7MaYuRSi+XT1OLJswLqKfRDzLvz4r5X2SCW2BOQ7bS78CtlcrTbh+Ha+8p+w5psJCmXIb4vVCxE1QbJImnG02CQ+8r5eLseE9P7YDHy0O/GdDrcdj0DnypnVjOzi2Qlgp9hsNmK5akWvVwW7EclwvnyPgkEnH2T8VphUf2wadXG9K27SNxifa36/qG3aT+eY0Kk3py8X37eXgVetTi4jc6vJ8mkOWgSbMgLeFfgtu3bxMSEsJHH31E8eLGpsSlS5dSsWJFFixYQO3atRk7diyjR49m3jw7ji4dePrY7rQSLt7GYrEwcJ5jUVVGuHNLafqsorGBnPYMPPQw/HEOOgwE//oQGQP+zeGHPcbzf3cAumgsN/E2RO6Ej3bYjtnDNdVOr14xbcJnM9hqx8eXi/Yu0CFD3v5rCHjf7hlKOGY0ysNf2Bbs6Znzd4hd15gZX08oki5sMXAIaVwNRQaVLEC+4neQgStmkYx9M+lAZDV2vTVZwVIVEkIhPV62K6GQFg8+Q5Rynibf5V/DITYSVvrDmU1wfLWtsnME/hXhs5dg6LPGcvu2K5UdgI8PFg8P0me/ZqPsADwa1iLli58pHjZYd9q0s1e5uf4XU8oOuC9lBzgYsOL6n1Z4/6oCsCNHjhRTp04VQggRHBwspkyZoivbrl07MXnyZEXfhg0bhJubm0hPT9c85+7duyIpKeleu3jxogBEncE1RYPQ2ppFGh+PeUgsyw4R3WbUshmr39FPtB9eyqa/S0gxm75Zi/zuq1hkbmteX7t/YZjyeGpv5XH0xPwrhnmpDyJlgDnZl0vbl+nqjjhVBDHZA/GLN6KNC+Ili3NrawXiaRDf5NNrBcQcEEmeiOw6iOm1DWS9lwlYqeoPUB2HCZigcX49E2vpLaCjRv+PAnoZnBcqYKiAd+/vvSjzqaBQO0HV/YIS4ebOKdFWeexbM98+F0AwcIbg01hBn4mm5C1z3xY0auTYNYr5OCRffVKwKTmzBWBrJP0saouDpluNpJ9Nzf//Ef8ak+batWs5ePAg+/btMyV/9epVSpdW5tqULl2azMxMbt68SdmytlnOc+bM4eWXX7bp/z36lO51trz+G/tX/0HN9mo2eqhQx4fH3qzKz58pGVa2rk5UHDdo7YGLxUnyRxV+zeG+erw/LNuY139GVRGlfiWImAibfoW+jeC2RmBY1xrwncpS+1o7uJQES7U4tnJQfjNsbAVRzXJ2f9lQykX+vZYGh29BQy+4mAazdUoWWWNTMVk1oX0WtM7ZAdohctHF7pz2DTAJx3eGWpgFVMqCYRaoU8xA0CsUUlyRu63TwAeAulTN4pyVqWGGw8MTacK0xiCk0dcIuXWmnAotzcPVHN/jWXN5aQDcVEU5J+n/1kyhWkuItTJzVAyCcoHwxHzYbD/wRcy0ZV/xeed5XNxcSP/6J9K2aJhAEs2Yl6H+whEUKVuYzFsmzRgmUWDSNI9/hcK7ePEiU6ZM4bvvvsPLS4dYUQPqUhsiJ/lbrwTHrFmzePLJPPb05ORkKlQwjqw6vy+O8/viOLDONhChYr3CeHi5MHBGeda/rfTZVajhwSPji7Fg+nWO/JLOkV/yqz6axPeq54J6lZXHhQvB4Bzr7qYDEDVeOR45HK4l2Sq86sXgeRNmz0t3YG8cLMxJaJ9wFMiGpdVhchlkNYWzRjPA7yXh9zTwyJRRoj/k41t0NKf5IdOt7xdXXGDwecgysrSnrQc2AeeQZks9aJm4rmr0qaFlMl1nIP8S8CfKgJdqyPCf/3EhWWcRq7Lpf70M2vaB4sXh5ShIugYuAq6eg97DYVJfuKmfEO7x2BAKTR2LS0IcdyNjTC3B1deHrCRbJehepBABg1ryV7SSdq1YrVIUr1OKc587VyE920GF918OWvlXmDQ3btwoAOHq6nqvAcJisQhXV1eRmZlpc44zJk01ck0GWq1cA/smyIVHW4oOI0qLie9Vy1czzaRxiLdedOycS6sR7eog9s9HRE9HRKhMmBGjENHjEPufRrSrivh0qO0cU5shIrrb9rcphdjZw/xaVlVFjPBDzC9nO7bUD9G3ECLCF5FdEpHth0j3lW2Ru/6cn+bj+/u/b0EOyA4Q8L6AWkJ6M+3JNxawScA8AY8IOOTcGt3nClzaCjyf+Hvek76RgolHtceqmzARvhYj2CkEe4RgvxC8G2P62q51zLyv9lu/1OVisFgpWkY8akrerEmzQtI+UUmcMN0qJO0zNb+ziI+PFyNGjBBFixYVRYsWFSNGjBAJCQm68unp6eLpp58WdevWFd7e3qJs2bIiNDRUXL58WSEXHGz7OQ8ZMsShtf0rFF5ycrI4evSoojVt2lSMGDFCHD16VPOcp59+WtSuXVvRN2HCBNGyZUvT19VSeJXalv17fuAa7dmZiM9WIjZ8av6cN8cjZgxR9q2agmhXS9kXPQ4RM954rkWdEFG99Mdn1ELE9kCEVXHu9dV0VR63cUMMckecKIwY6oo47qYc76s6/zEQnVV99VTHg/Lx8ygFotv/6LuQ1/rkwxyTBLyYf2sqsdx4vGgbQZ3lghqvmZ+z16eCuiMEfSMEk1SK75VY++dPek/QZYTg6zip9Ga897d+TpXDOosB2Z+KwWKlGJryvqlzzCq8ckkHRXlxxnQrl3TQ1PzOonv37qJu3bril19+Eb/88ouoW7eu6N27t658YmKi6Ny5s4iKihInT54Uu3fvFi1atBBNmjRRyAUHB4tx48aJK1eu3GuJiYkOre1fofC0oA5amTlzpggNDb13fPbsWeHt7S2mTZsmjh8/LpYvXy7c3d3F+vXrTV9DS+H1X9ZBcVylZQlTX97AhvqO7ReW+ItB4805vtevRkS8Z/6HlvotYsVT9uUiRiJWjLAvF95Qf2xFC4QYhIhqZn59YcUQS0qal59kQewBEaYxFmJyjn73efP6Z7Uwjb5xAlo6MMcCAR/bkTEX9EGJSEHVLEG5aEGZRcayjaKce83tZ9r2dZkheP2MoMtUwbB5xuc/Ost4fIbG/DqtaEh3UX7VbLtyvVNXikfEKqnwsj8WwdFjRctFjxieY1bhlU46IsqKs6Zb6aQjpuZ3BsePHxeA2LNnz72+3bt3C0CcPHnS9Dy//vqrAMT58+fv9dkLVDSDf1VaghGuXLnChQt5frQqVarw9ddfs23bNho2bMirr77KokWLHM/BA/qt7MG02DEMi+5JrZ6VFGNhX9sj8ZUIbKDve/T0cmHWu+b4/JLjYagd8otVL0Pseoh4Gsa9Dc2q2593WDMYokptbFMBBqqKQ/xikE83NADIhDsavrbGPjC3IqxS0gYyv5S5YP1cVBNQGQjUGFP3qRkjc1EByY5ijS7Au8iMs/vB3GYGg94TkfUa6iFz4lohGVKcTZIIRrtC30Bk7Tuz2Ipx+E5Yzng0stytDgqFgedwyHYB70HIvEED/DEPAlRVFwLH2V/uMQ2/ZNkgKF0N+r4A5w/B48th9CIYuwg6q64RryrT1aSd8rhnfyytWuG11b4f06d9I/xCulExYiZFezTHraSvYrxIoyrUWfQYh8Z+RHq8JJ+wWCxUHtQY98Lm4xGM4GxaQnJysqKlpTlGaaaF3bt34+vrS4sWeeQGLVu2xNfXl19++cXgTCWSkpKwWCwUK1ZM0b969WpKlChBnTp1mD59Ordu3XJsgfelLv+fI/cJambSFPGqeEqMiHlY8QTWaUY98X5WqJgQ3UYMnFtXMTZyntLuvzGuie6T3LvRJcSp7ADxXnQx8d2x4oZPfSmXEdlXEVFLEYteRoT2tZXZ+CYiZo75J+YZXRA35yJCmiAiBiOW9Dd/7vQ6iNi+iOg2iOyBCNEfkdJTX35jVUR0ZURsdUREGUR7L1uZHm765/cC8RuI91T9I0DsUPU9pDPHOhAzVH3VQTQHsdDgtZYG0VtnbIk3IroaImscYobe+1ci2sR72lrINAHrvrEmzusoZDrDcwK+FbDF9Gdov10WIHJair6cb7SgvBBUFoJqQlDDQFavVRomaL5IULGvIGiiYNA+QdnW9s8LWW7ry3s6RjArxlZ2+hLT63Gf8oTwevdl3fHCAx4SFUzs8HJb81XjxTCxXIwQH4q2y4cbyprd4RW9cVr4pl0x3YreOK15vdmzZ9/3PfP1118X1atXt+mvXr26eOONN0zNkZqaKpo0aSJCQkIU/R9++KHYunWrOHr0qFizZo2oXLmy6Ny5s0Pr+1dEaf6vkRp/l2+e+JmKLZRpDsUrFubTR3dRv1sp1s9URljtWX+NSRFBNGpfmHMHkzmyXb9+WcrtbCwWC607efDq5ESGPOZK1Apb2o7qgXAnBQoVhcE9YdM3MHmT7XyJt+CgA7mshy9CiZny/9UHILyl+XPrFIVAbwgsx70CsF4CZlSCt89rrC0DRvnCpgQYrRN4+I3Blu+rnKbaKFIdyRXyOjLN+k3gp5yxcCRVWDzQDLgLrFadfybn769AD2QRnk9VMtewDfrPhacFBvkDHhCkDux9ZDZcrwPH7ZSBB2T9O+sn4e7IHWFNZF283cjirl8jd2a5+BFog9w1WpAVF2YjIy7fBfaauDZAH2Q1dmsEADFIqmwv5E6vMTJ9wqpyeupWSNsMfgsBP3D1Ap/ucMdOdfVKYVCsHhyZCOfXyJaL4yapwFePse2Luwg7P7PtnzfR3JyApWJ58NHfid3e8BO3N/ykO67Gr6Ef4lnEg6xbKfwyRmNtTiAr0w1LpvlbuciRvXjxIkWL5rEleHrqlw166aWXNFO2rJGbMqYVBS+E0I2Ot0ZGRgZDhw4lOzubxYuVLDnjxuXt/uvWrUv16tVp2rQpBw8epHFjk+QfDqnH/xiMojTNtnrBvmJFbBMR1Kqwrsz2ywFicYy/6TljIhBxvyFaNdYeT92OWPak82ue2Ny87OUBiLgBiBEVEbFdECMCEHGdEeEVtOWHFUPE1UKEF7u/91XddiF9e3tAzFKNqQNZ7LVAEMEOnjPMExHXHCGmIFI2aMgExwiqOrHjoYzqeJSQNNmLNWQnC4gS8JCA9QJ+ymkzHLjeSZ3+cMG9XV5OsyzTn6dUjKBCnMCzuf1r+rYUFGuWr9+H/Gzu00z6L022GuGdTMmZ3eF5XfxTFEqKN928Lv5pan5r3LhxQ5w4ccKwpaamiuXLlwtfX1+b8319fUVERIThNdLT00W/fv1E/fr1xc2bN+2uKTs7W7i7u4u1a9eafh0FCs8A+aHw9FrF6u6K40rVXJXHVfXPHRei3d+kFmL5s4jsHYg7W5xfW+OyiJr+9/f6JgbYGfc1N8/bFsQSA1aVCSBeBNEdxLdIs+bLD+gzM9NieiOyv0QMD1MFIbVZISi3USU/VcgoS7UJ02zrqTpWs5s8LaCLkErQul/N7pLbHhUyzWGRAHVgxzsCRgiIE9xTenf01+bRxWAsf9N0bFr/1wSdtYJ5nGsuD7XNt7kA0eidIabkzCo893MXhUdckunmfu6iqfmdQW7Qyt69e+/17dmzR4Bx0EqusqtTp464fv26qWsdPSqjdbdv3256fQUKzwAPUuGZbQvfQyxaYCwzso/yeNULiOyfEGF9Hty67LVmhY3Hl5qMzJwL4jiIyiav+waSOszsOgOQvrlBIFrmw+sOb4SIW4foNbSQcmxUqiBghUp+qpC7sQghFZOj15uQM8cCYT89YZiApxyY2yhqM0ZIxTdCYIkQeMQKXMcbz+caIHCvYv76lUMFwVGCh6IEQ88I6pukKgPB4hTBh87sprWbW8ggU3LFR3bXHSvZvaHoFjtPVJtkbncH5hWe5cxfwuXqbdPNcuYvU/M7i+7du4v69euL3bt3i927d4t69erZpCXUrFlTbNiwQQghREZGhujTp48oX768OHz4sCLtIC0tTQghRGxsrHj55ZfFvn37xLlz58RXX30latWqJRo1aqSZh62HAoVnAHsKr1bXB5+T181EQveHGknoMa8gLkWau8aU9g/2NWi1lIqI0T7Kvhe8EK1c7m/eZ0BsMRjvbjBWPR9e12N1lcf+S14QTIoQVB8hCLpkcO7jTlxvrIC2QiqnUXZk6wipHM3O/bqQqQ1auXIq5WNZJXAZ6vj6A57VH/NrIijfV1BlkGBUnGDMTYGfiYT8kGWCj7IF790U1GwnGKgRcFK9kW3gSsNWgin6wSn322q/O1I0j3nSUKZwpWKi3dyuovuKvgLMKzxOXhdcvmu+nbxuan5nERcXJ0JCQkSRIkVEkSJFREhIiE3iOSBWrFghhBDi3Llzuu/JTz/9JIQQ4sKFC6J9+/bCz89PeHh4iMDAQDF58mQRFxfn0NoKFJ4Bcr9Q/Vb2ENNix4jmE5UEvkOXtnhgP5DcNnCw8fjYgYgh3Wz7w1WRgp3rKY+XjkD0bYCICEFEDHuwr0GrTSnyYObthPEOrxrSDDrEQGYkiI4a/UEg2ji4nqLhIco+l34G8j2FNBv+/Z+HY82kudC1rn2ZclOdX0cVLaJsBN3s5NnlthEzBDNViq9SoKBmHd1zvCYOF8WjFohibzqyW5atSng3U3K9P5P5eaYV3rE4wfkM8+1YnKn5/z/i/00e3oNErf418AssRq/5wYr+liOr0SGshu55j74ZyIzIWrrjZrA+2nj84/UQpVEpJksV5Pn9UZjRG2LnwYzuMCESNh2B0avBR0Wt904XWNgFJjU0t8bFdWFaZTjTBiKD7IoDsFCVPlPXiW/iQxp9PwBvGZwTCywFjLJ3XJCMkmoEIOMSnwZWAEOB74BOBmv3rKfKsXPxN7hyADIKMj9R00H5b5H5fUYwSXSeZYIb0rs+lAszN58a537U7r91XbtfjYpB4Kl6v8//Aad+1z3F953n8RnckyLhI0wuMg9F66rLEEuUbl1ZcXw3Uaeysh7S3OCuAy3tvxucX6DwHICblysh0d2Ztv8RAtuVJvHyHe7E6ydr9plcns7D/ZkeUZUWPXyp3Vy7uunA0d48/aZtkm57e/cdA9SvbNtXsTi89Ln8a4076RAxAPrWhEXd4eBf0KsyXEuBlmVg/yCI6gTL20HfCjBaleGdBdxIBz8PGF4Cwso4vl4vYdv3PLJ2wHydc54xOfdIZMC+NYwSBIKA7zX6KyNTGn5FBv3fQFao+1injFyTsMYUCemp7PR+2+DK7ZBpBWYw3KScVrFXkLTZ1piKrLNXDNvaeeprNTR5bRPwGwaVHKxR2eY1aGSgJPsavcdW+PU7aNLFrpjnx0vw2bUFt7YtyMhhVbB4eVIycq656+SgfGhbWkRPot5r/RT9FfsoC+/WfMTkU2MuMp1o/1X8r7eY/2SoE8+fj5sgqgaXs2uS6DQmQEyPqie+zm4vXoqxraM3Y2Fpm763ltumLVy84rzZKWUzInK6OdmIgfZlptY1N1dMHURKS+2xSRqRmY976M91BsRZEKdAjFaNDQTRFcQUpJlRnRDeB8RSEE+CWJMjZz3e1Yn3VD2H4v3RCMKZmTpD1MreL3g6QlC9r6BmhKDYDSGJnq1lqwtJ3fWR0E48z23mAx7y2sdCkkTbk+skYK7O2AUh6/hty1mfTjqCZbrALUrgHSsoFKkc81RHlOa06hsFbbIFQVGCGosEtRYKKk8VBL2tv9YawwSP6/hDR0QK5twQVG0pqN1JUKaG4LV9gl7TnHjvEC5LPxRuqz9V9BWLWSrKi9Oi4s2dwrNVfeHTo7Uot/x5UWnV8wq5gGn9FMfNNk4Tj4hVYuAdrZSSvNZlmaxdaNqkuStJcESYb7uSTM3//xH/3b2tgzixKZbP+mlkeWugVls/GncuxryRJ6ndwnbndiHWdlf49JjbTJjuSfmKFtzIpHTJbHb8rG86KlMCGtaEKuVg2lB46h34wqpI3Ld7YXhb8AAaV4Twj+EbKxaq+uXgtxyasNHr7b+mBRrWqeo+cEZVBSUhDVI8oV1h6OANr1pZl77VsCMm67zEksAE5E7qKWyL6eQu+Tud9VYCSuS0TED9jl/UOc8IUQZjX6s2RSOn+5J+J50L3cfD9tzV631/zpCX+g4y8bw7kh7s+5y/F7B9FdbohEyZ/zOn5abIj0XSmNnDDznNGs8g97W3gQ/JS4jXoYgSdYDB0uIpjirH3AK1l5+RCFkW8BsMrvFwcoK0O9V+HopWAv/GkHQAsm/DmWVw41c4vUa25jOg7mDYHAoDV0HyOXB1h1mq2pTPN4Nu4SbeA6BxW6hSDerWh4ASuPTvAyuXKUSyE5JI3fQ9cf3kLjMNuPPNL1TaOJdq0S9RpHEgqQdPkbxDSft288fjlGlfg98mf0LLiEfJjE9m//SNNkvY+vhX5taaC0d3bf/hHV6BwjOJ1IS7pmUvHb/F8MfkD/7HSFt/gtq/losaddzo1QeenpCORWTTpKH+Na7ehC035f/dWsCAYKXCS7wDFgt0CoIJy+C66oacq+zuB2plB+DjAiVy7u87VHbDMxrKbY3Oj+8GebdfOzwdmsg1DOZO3wzpu8tFE+CEg3MaVaQ7reIPTUtz4Z0SCx28gjVKIBXkYMAHKAWkA5/oyA8BCgGlsb2jVXJyDf2AaYBZZpKu8k8mQKJyyF2HpTSnRiVxm+BEv7z+K+ugRQwUCoTbx2DnENtzM+5CRA556dJmEBoDyTqPMrEmmWZWbAUfT3DLBLcsxDcbyZqhNJ4XGvowt5+eY3NqduJtio7qhifp+ASWJitB+aPLup3KF/7yvTy/2izzjQlkAhkOyv9HUeDDM4l6Q7Sd/1Vbl7DpO3dQ+UXvM7E0UxeV58lF5Xg9qjy16rtrznX0QDo1/e+waV02MevhhefNre3iFchWKZOIrRD5I/iPhnV74YAGzZdCvo/964RUNh6fVhZuq354YcXgTaM4jQeEX5D+tdvIe0Eakly6HjCa/AsNGaDTH1iv0H3OHImkEZsGHAbuICuTq72RA5Dkzm7k3cnUdzRP5O7PGvY+lDLIx4Y9OuODNfoCILMDiHhwVSkoj1Aovsr2lPOj4cYmSEuwHUvP6UvVGAMoofR9ceYH2Kizk/vjV/m3y1joOlZbBmBUJxm4Mm0UJMSTHa+kBPScMBI8PXCvaxusVmyoJJLPiE/mVOibFO+pZBK/sOJn/eveD7KcaP9RFCg8k3DzcqPJaFtnsmdh203yxd+VW59GDxXmkfBSDAovSZfBxegVWkTzGived+QxLQ/h82GMyn++43cINbnBmNbKfr3kRsVh9Z/GMrtv5T2w56KDF4QXM7eO/MT7wE6kQW8mUiX8gaxyHkH+1PMeBTyi0pyLhkL0QugW4qscKN/UxIzdgfEa/TuQim8vsEs11hI4gFSIt4HXgI9VMmmAOqowzs5a7FVY1wsf3g5Z/pD2iupynZAuKg1kJUAJjR1cmaFSd1dUjfX4Bsq1A4vq9pWtupNXawvVVZUQju+Aqg101g4c+gU6VYeNn0G9AEQhZaCZ97wXyba449XTNhgoecseEjftYL9/f25E/sCvFUZSuLFWXQ9jBI2oZ1/IGgVBK6ZRYNI0iSOrT3Ag4rhN/43TtqTQCVeV9q27t/O2X7fj05k/5QazFvmx+7sUtn1pzlQ6bRy8+5GDizaJjCx4VM0XrMJfKfbn2XNbNmu8FQ+NXCDIDY4b/NAGo38LvV9c1ui75sQ8pVXnrQQKq3bWFlfo1A4GPnqZgFblEI/056/pH8Cl/SauUB34XKNfaz8aAvyFTJIAY3Loekhv7pPATWxpsR8ALDeU+i1rNyTs1pYtOhSyPKFaFHBNPoYXKg0uOWTGl1V5N9/k7Fb/2qHsL6Oqb/XEVjj4KZyxkrt8Cpaa9OcB3LwOTZvi6ueLxyO9wdOTu5Gfcyt0qo1oxqXrXFmo9PRm3tZPMSjdoTpZt9PwKV+U8zF5TvLjkUd1z9HEXew/sarl/6OwCKF+Ji9ALpKTk/H19eWRz3rz+XA9nnz7WHe5IR89c4E23QoxO1Tr9muMkYPh+EnYr1X6LB/wYW8Y7/zL+1tRF5kjF/M/XkculhWBxx0syZU/6IiskGAWTyD3t6OQRl01vMjfO2E8tqkPKlTcBeIy+A0Ed4t8/Bbx8OcUqLUQCvnJvqsrYf9jxnMBVGgL9QfDmW+kOXTCl3AsBiI1TJg9w6BcJfjYbHKLhOeUsaQtVO+gHwySkpIU1QzUyL0/sS4JvPXlbJCSDIN87c7//xEFJk0TSE20fyOo2NBXs79Rp6IMCjjMd5HxTik7gE+jzSm7IcHK4+kPw3S160YDRT3Mr2V4OfOyjqIKMkxDnUX1NDI3DuAYD0bZBQPjsPWQ2UMvH+jxt9wzVKY5zBUMzsMHwM9IZdcPaKsazw9lF4lM7Y8GfMESaSx+oQ1ke8gozbvxcLQt7PWHa5Gw3R+u5US1ltUwd2rh4k74ajKc/gb+3AMzS2grO4DqTaGIrf/9Hma+DSMet+nWUnYVf/+coqNNOMEfFApMmqZRoPBMIGiAPptKLi4cVifrShz6Qb8Onhl076Td30gjhiZqu/K4Tjmoo03uoEBKGnQ1GcgX7A8z1MXo8gnnkBXXPJFKLwYIRTKn2BqTteGowsrFYGQkp7o4fEMNWevU8PJXofL9xqdg4FO6hyHci4IEtE2fZhGArBLoDIbp9H+SMxYIDAJcQAwHlyhwWwQei8BdI9ozIwESNsExf7ij8k+mJcibc7YXtIiCyqOcXLMGFo6GdzVq6OVi7gxoqZe0r0Tiqq9JjrDjEzCJR38Pp8fKfo6dVKDwTKNA4ZmAm5cbQ6J7M/mY43RCajy3rCRfnynPo9OK8OXRUnbl+3fX7k80UUt0aCvoUlvZ16YK7FTdd4bVgQHqO70OQstCRf06kYZoZfLbloy8tZdHP6B+BpKBRR0S4Gi2xXSkiTQNGfahJpXSyLywYWlpoL25p9P8jtRY+yy88wFUaWSwit6qY9VWnZHICE11ZGU7pHJpiXxUUOWf3YP6MaAN8pU5s11/AViCjCAdBfTMOR6KDP/L9ZDEy3VndwbCwSUcvDU4cwoPlUErWvDLUfAWC5QdDL4mi3zmF5a/B/OWwEtvKPsrV1QcpqxTZoO6FFcGpZUa3p7ai8bQcO0UmkZNptux1zUv1yVyKP61S1Kjv4N0hBlOtP8oCnx4Bsi1kdcZXJM+SzpRuLg7J9cd5861O7iQjU9xVz4JVUfN2aLfhBLELL1573hRTGm69PXCXdwlatltnpuodVuViPoQhmgF7tnBjF7Quhr014nUDCoJnw6As9dhYDVIvQs+72nLTq8BEyrBwXhwz4T+RxxfjyPoBDyLfBB9C2U69Dwkj2UXZNqBs3gK+Ay4ojPeDhkbaQYpXWFDBoz4Ka9v6tIqbN1RiPTuvTkTasTuCbAImKzq64P0032FsrK5NcYgMwqPAMt0ZNQIQCrHxRpjnYEU5I5Tq9J4I2Q2Y0mk/9DaXBgF9Ec+rjwCWJkbXGLAoy+4CsheBy45gSnupaHIIHC9C2e1afeotQSSd0GpbnA4VP9lFQ6AJlNg+9O2Y4MXQbT6/dXAtEXwrobcijW4HNhN9vuL7M+hgTrRz1BxUHNcycKVTDxEGn+t34t/owDOLv6ROmGtSTh0keoDg/CyZJCZfIeFvnPN+/A+csKHN+6/6cMriNI0gd+jT/F79ClGxvSk4eBqOV/cLDzEXQp5QpVGRdm2+BTdJlbg+8V/UqayG/s3x3H4x0QAhbIDSE7IxpUsNq2+a6jsHguBBR8ar619ffhZw7+387RMPtfD8RvQdBkEV4RO5UGkQbuy8FJjGP8z/GEViLH9OsyqAoNKw0qdfL7uhcFTQB9vKAwcvwsv2wnmCAZ8AbUxSIvzYxzwNXJHBrY7MUdQH31+zlyYVXYA3yaBj8odtGDCOfnPajPG2AyksrBm3TiF3N/qKTuQyiVXVo1qSGV4HbDSxFxGW9lBHoOoDpMKh4AWOeerCRUuINev4W/LvphjRrOA22B518ltWcBdDfbzXJzMMUf8pfIHFqsHiVbRjLcvayu7kjVg1wrb/q4ToV4wpFyXyvfmBW1lB5BwC0tN50ng068lcDh0EfUWPkohPy/SE+5wefNhynWqSYt3BpARn8wf645wZvV+3D0sPPRWZ8cukIVjZsr/cB5ewQ7PAPeeoHLQfFwQQz4MvqfwPEnDlSxS41NYNWEfWelZeHrAE0trsH/zdd55TOtGBO9Gl8DTQxDWz14ulH18+BSMt3f3zifENISuvuC93VhuamFYYMLkCvAeznuTnEVNtFWEswivBjUqQ7gW47QpvIvMs3MG1ZFpBxs0xsKQ4T6TnJxbD22RWY5qdEeXF8eyBCy7wOslyHgJiiwEj5wozNSVEGciCtMajd6EQ45FWCrw7jFY/zJYgCeXwt7N8KbOGvoOhpdeg0b2ffn2UH1WH87MyXvEqzX1IU4u+ElT1vQO7/0kKOTATi01GSb9N3d4BT48B/DrR8c5tukcd+Lv8mnoNq7/cYs3O/zAJP9N7F33F/s3XWPXumsM99+Bp7f+W3vxbDofvWm8/emgDqJToWsLaFnn7/0AEzLgWxM62qyyA+kPe4f7j7wMUB33Qu5xtOL7DGLzdFEZaQIdqTGW5eKEsvOwzhkzq+zGY+vfO4O2sgM4iWQj7eDQ0uxDS9mB3OXpQEyE7EhIqQYZkRDvDzc7QHo8eJmMwrTG/Sg7gGl1Ydc62LkOBvjDF0ttZZ7PMWFuipbKrkYNXPs/bCNWaGBXmz49pF5Q/oD0lJ1DuOtE+4+iYIdnAPUOD6BteF12vme/zldATS/6P1GGQz8k0rJHYeZPuPSglukU6pWEozccOye6DuxIgPfygYczF72RGWLvIxkjnU0+r4KM8rSHMshgGHtp4A2RhF5qvAsUcYexVo7/ZW3gcXuu3MYd4OC2vGOPOpDuiGG2MzLQZCDSA2kGw5HKLh3jXd5kpPnUet53kWZLW85IfTyCU9GjHsHgWQ9uvW8s51kO0kx8+YpVBXdvuGGiHp8WylWBcc+DpwWe1cpZ/Htgeof3ZhJ4ObBTu5sMzxTs8ApgAtlZ5p4PLp+6y/uT/2TXpkTmT7hEq+62VRP+l3BU2QHczoJMO/b/biYjOF/M+fslkuXxK+6PacWMsgNJmGWG86S1Tv80wNcNIkpA32IQ0QB8deItFCihKhLokLID6V/bjVRKZbDlxtRCHaRzx+haXZCJFhWRgTK5mAacdXCNGj40M0jfbl/ZgTllB5B41nllB/DXOXh5DHhoFzp0adsCSjlPEOtTowxd979AtQnm0h7s4h+WlpCQkEBoaCi+vr74+voSGhpKYmKi4TmjRo3CYrEoWsuWLRUyaWlphIeHU6JECXx8fOjTpw+XLjm2kSgIWnEQ5eo790UvV0WbMFqN+W/BU07eN/ID1QvD6KpwIhE+VVmouhWDBDvFmL81qmCDND36oW+E+6egA3KdVbHlJXk+DU7lvA+bEmGcqhDAM3O9SStflQUjrG66363Nx9VdBb4xIfcc8DjGHsvbyJ1jYaCCamybyfU8gywa20JnvHfO3BORIUMPCH71IT4f6Yg2aVemyN5pS+PmE9oHr6a1yDp8gkINq5Fx4g9uLtXOzbtz+irfNX01/9aZgWPUYg84LWH48OFcunSJLVukP3f8+PGEhobyxRfGDLbdu3dnxYq8ACMPDyUjxtSpU/niiy9Yu3Yt/v7+PPXUU/Tu3ZsDBw7g6mruDSjY4TmI2O2XGRYRTN+5RnlVtqjR0D4//5RpEGvnoTq0p/G4PYTa4aU9cxtm/Qb9y0BUYwi1StUK2ANP2am6YA+XkQRX9/H8bRp6uzQz+A2ZHqGVtnBKxZ/5kerF/PhVBlnZFtsTG5rZlTmC5tgv/ZOCNsVXLnPBbmR6wX5kITtrqBlHn0DycaorJYzCNmV/LJCbE/MlMs3hMNKzqgOLRjJosYHgN9S231tjHkeUXZN+9mXS7DzdWeHOqs3cjvqW7NspFO3VmpTDsTYy5Uaq/a/aKN/ewXJO/6BqCSdOnGDLli18/PHHtGrVilatWvHRRx/x5ZdfcuqUcaiYp6cnZcqUudf8/PK+t0lJSSxfvpz58+fTuXNnGjVqRGRkJEePHuX778070AsUnoM4vOYP1ozeTokq2hUPtDAgzJ9eI+zL165toY5tQQYF2jU0fVlNdKgMUf0gRJWQ3lqVs/zjTenCWJWP/rr8wihkhpo93FQd1wZm5/y1h7tI80e6PUEN7NuRwXsjNQiA2/Z3YjYj/ArYewLxxNx++gjauXe5aI4MAeqPTHewxo9IcmprtEUGzFhjJJJ6zApuU8Er57riDDZIXA9+Gu9biq1CcQjeJiw1D+kVf9JG2i9HSF73A6eqDSJlj206SvE25lIbLv3s4FOlkybN5ORkRUtLs2OeMYHdu3fj6+tLixZ5u/2WLVvi6+vLL7/opbtIbNu2jVKlSlGjRg3GjRvH9et5qS8HDhwgIyODrl3zAoTKlStH3bp17c5rjQKF5yR+ePc4bUZXVfTV66xNljvquVLMfvQvajc2Jq0cOBhGDLTtnzgU9kdBy/qwxfxnq4kWZeCL0zBLWaqLDNXDfb3CMirzf4GaSFPiSLRDLdyxjb7UYjtTb2YnICsemOHLOYjcGxltqH/vCpFmU6YWrYDuISaF7xdtkIwoo9DmigFbvhh7rD+tydsaqCOMEzTm+wPbbEoNiEAQdqwfGXegZD4HjwxVM7bmoNFD0LYvPBcBfVVpCoHVsXz3I65hEyn8+y/4fOpYInq50GAaR0+jW+w8WkaF0WbtWCoPUT88OIHcPDyzLedjrFChwj0/m6+vL3PmOBKgpI2rV69SqpTtd6lUqVJcvapfcqpHjx6sXr2aH3/8kfnz57Nv3z46dux4TwlfvXoVDw8PihdXcsiWLl3acF41ChSeCYzaNoSKbZQ0TH/uucmuCKX9cdbmJjwTXZePzzRjwLRyRJ6px7AZpegTcIIf1t/mxEHt/cIbC11YudYVb1dBoUIQ+YFy/KEW0HQI7PkNNmxzbO21VDH4dT+CyONQV1UhZp8q3WDVRcg2cG4Pu88YnF4afbn5eKeQ4RKfAt4o+TxAcl6mIY1juc8HWkErp5Geo+rItII05D7mORPr+xHohiy68x62SjI8AOachu7VYapO7EGPZd3oHPsuAdFzcRvWHyypENjKVtBjGjK9YAKSzeR+kYqsft4IucPTgprIfLWdOTshnT+Z2O7cNmIbCfEqpiI2s8KRn7IVis1THl+dBzci9Oco7YCdf+BiGBcN7r7wmEYqwqGfYOcmeH00bN0Ar0ZAUA6l2R9nEF074tKmNVSqhsew/hSNXoz/Mfv+1CItanD00ffwbVyFEy9tpHTnIKoMaU7ZLs4ntN9DqhMNuHjxIklJSffarFmzdC/x0ksv2QSVqNv+/TIczGKxNecLITT7czFkyBB69epF3bp1efjhh/nmm284ffo0X331leFLtzevGgVBKyawskOUXZnukyqzZNwxJi6qRnE/F0KfL8fiKeeo08I+s3DhIhYG9hMkXIcZ02HRyxC9FBrXhIO/wW2DvLaO9eFHDdfF421g2S44qbbrmcSOBNn0sEZjTe1dIcACa+xEgQ1G7uKsv8p9sDWKgfSlqVOZN1mdqzZstUUyREYjfYXWeBrbjLROQFmkd0nLr5iC3Ce5ukGk1et6L0dfRC6BcPWkOfjm8W9pFVOb4oOGc/2zLyBEhxrLqx5k7AGhcQO2QQv0a99VRyrOgzltLFLNm0UN5GOCNUYio0Ktn43Vu8YDOc3M/H2xqYeReQe8osGzKtyZBLfWKMfTVOZBd3/IsHpCu/a1crzWaEiPg5p94NQ6OGv1Dbp2Ajosgr2RsGKC8XJna2VdgvhL2vmzs9zwHNQLF5GBz8Sh3FmiH5h0a+9pbu2Fq+tkTcALkbsImtWT43O+tpGtN7YRRz8+ZLw2azjql8uRLVq0qOm0hEmTJjF0qIYv1QqVK1fmt99+49o122qTN27coHTp0qaXWLZsWSpVqsSZM9LMXaZMGdLT00lISFDs8q5fv07r1g5460UBdJGUlCSQbLgOtX5TAxySP3bZQ7Rtp+xbtQAxoh8ibjciZZ/jaxjTwvFz7rct8UJ86mFf7hsQ21R9X4LYqCE7VqOvjcHcL4MoZTDeTnW8HMTHIMrpyJ8AcdMVkVRUf85lI/THfKqVFnXitgjPpYv03xOPdg68zysNxlqqjocLePs+P9fPBGwS8HVO+07Alnz+7gwTeCzJ5zlzWvHqyuM+7wrGx9z3vJ4ffyDchz0iip7aKbxG9BNlL+1weI6qY9pq9vdY2VcAIikpydz96fEkQbgw3x5PMjW/Mzh+/LgAxN69e+/17dmzRwDi5MmTpue5efOm8PT0FJ988okQQojExETh7u4uoqKi7sn89ddfwsXFRWzZssX0vAUKzwDOKjyt1n9sEdGik5dT525ciFjyjGPnLB3kmHzz4oiJVRCv1tCXGV4U0bcwYmlJ7fGkIogPXJV94SCaghikkh2pOn4aRAcQPVX9T2hcJ+Q+Pocg1XFXA9mxIC6ASPJEZBVHRJdCxNZGTC2vlIt6AhH5nPF1C61epuzrGSloMM/gnO0Cxqj6BgiYYnDOW6rjlwUsEBBicE5h1XFbAVUEDM65VoSA9gIiRZ7Sm+30++9Q8+yjPC5u9DocaC3HPZD1Fp0W6pB87z/maPZ3/qCnAAcU3pgkwURhvo15cApPCCG6d+8u6tevL3bv3i12794t6tWrJ3r37q2QqVmzptiwYYMQQohbt26Jp556Svzyyy/i3Llz4qeffhKtWrUSAQEBIjk5+d45EyZMEOXLlxfff/+9OHjwoOjYsaNo0KCByMzMNL22Ah+eCTSfbFuWxMvXXF5dLlwsFtJS1GHf5vD1Npj4Zt7x1EfsnzNhHUyzQ09mjV8TYMk5qG6QRP1ZMmy6DRNuwAQNuXV34UfVS3wPGfC+TiWrZih7C5n1pTbwpGNbqtSet8kIagPOd5pSEnHAUxZI9YBET9icCnjAXpU59042DO8NUUugzxDtfKCM95fBCwuhVV8IjQBvHzgyXVNW4jzS82iNVPJC/dXogDTkWpt3ZiMNtUZBIWrb9E6kRzQaad4cjSwcO4I8SrF9BvMBPESed/U+kKbKY7OYj4w2xJ6PzMu21KnPpQG3erXwDVOnbNiixov9KRpUji8DtX1m7j4OVGSGf1x5oNWrV1OvXj26du1K165dqV+/PqtWrVLInDp1iqQkWUPU1dWVo0eP0rdvX2rUqMGjjz5KjRo12L17N0WK5H3m7777Lv369WPw4MG0adMGb29vvvjiC9M5eAAFOzwD5D5BNXi0zt/zRGuyRTyJiJ6JOLbAWC68peNzL6qJaOeL2N8YEVUDMbHUg3kNbU3Kdcrn63Z8AK/lcgRiRA9E7B5EjwHu5s5rbG+XMSGf1jdcwCMmZe2Z4msKmPZAvg+mWtml+TdX9YfMyT27zPSc3sN6icqXvr3vtbV/s7MAB3Z4IUmCx4T5FvJgd3j/ZPwrdnhz5syhWbNmFClShFKlStGvXz+7SYwA27dvp0mTJnh5eVG1alWWLjUTFGCLI5/cTzGa/EfhQjCoFZzRK+aWg9uqoNA2Ze3PPfkU7EiCpgchPQuOGZQYuh/k7hXs5dOZCGynKvA85qqdO5NXp3vd4jDpIQgYDZHfQLWW8M0Gk4/PB1W7jJIGUYiAYcK2IfZgnt+yqp3xU0iOzfxEGHlEc3ZQpDd4qEv+aslVh777oIIBqfNgk7u8wsXMyQEpa77iz/Ld8JsRSvXYDVRY/gw+betRcc5oyjzWhZqLxuLfvaHdeX5+xkEm8n8Ytdg/Gf8Khbd9+3aeeOIJ9uzZw9atW8nMzKRr167cuaN/Nz537hw9e/akXbt2HDp0iGeffZbJkyfz+edOkNveB3o/VsyU3PMO0IndznnZiXbqza04qDyu7w/jamrLLgqCsPLKvtA/YEc+Kjwt41CdfJj3LJJsy4xKMJN0bvq6CfD+T/kwUbkw8CxmR2iQRl9XZKlaI6ipe2oBjyIfEdTlbpypgG4GC5G0YlroALxifwqv7nC6PKT/YV/21hnY1AxqjdEeD+oHr5v4tvSbCAb3GD14BlUl7dgfXBzzJnd2HuXCrAj8+7aiUnhvvKuYj1Q0jbs4lpLwH66W8K9IS8jlZMvFihUrKFWqFAcOHKB9e+0kqKVLl1KxYkUWLFgAQO3atdm/fz/z5s3jkUdMOMHsoP+cBmycpV36+9nIatRp6c0fB2+RcTuNL1ck2p1v+lSoVwua1IQDB4EsCPCHthqR7MOCIT4RvjDDgmyF6kXh8VrwkcbmuLArzAuExfdZ1CEImf01ClgOWAdq18M2xaAdMqsrEXlrvovckziKFKQ9yB4EMpn9L8zxjxwrAfPTYIWdhwstjNw1grOXChFHCW41bstfc9aT/Ucc1O0JH1iFxDeYD8c+Vp2tptnK/c5aJwePQ5JKO1KuthYyG/EIEIL08+WiFVAE6Tu8gCRoLAmsQaY7aOEh5CdYA1nO93WrsVVIZdcW7Ty9QGyT2B8Dt+7gXgdSrUhKvQfAXZ1ae3rIuAPdouDPzXDKyvNrhmUFYOI7sqrx6xpJ70OHwbWr8JPtE4/30J7cXavMH8tMuE0mrhRpUMmRV2AOWTi2dfkPF4D9V+zw1Mh1dlpzramxe/duBQ0NQLdu3di/fz8ZGdpmp7S0NBu6HT2UrunLiKVNFX2Nu/lRq2URarbw4aNZl9i6+iY7vtSfA+Dbn11YuhjCpkLn1hBYATq3gcWrtZXdjIGw5VfwfxQ2/JrX36i8rawaT/4Cn8dCdAfY1Uk5NqyU/Vp3E7TJ4xU4jgwqOYltlbeu2DKk7EcqwtM5Y+PsX4Jy2NYKOIHk+7fGU9iaTHcglZ6esnsZWAYc8oCownBG2Fd204bDmZ3Q/WFlAuynbSJx9XSn1OD2ZP1+muyIFbB9s1R2PWbAtFjoEg1xW+CiugyudameGshUeGtlNwiZsG1vh6dGDDLr8DBS2bUjj5UFoDGSe7MpMofvFfSVHcAUZJ2+U0iFORNoj/w0Q5GfcBNsiy0VR+bkqYNbVkC2J7gEQaEI8OgLRSNAOFHGpvIwqDIYuqjMl910WFZysfh3eDIC3h4Ld1JgbjQ8rQoWWrvGRtn5Ln6JUtHzsXh64DtEScFTvGtjfg+dT6le9plVGk9ubldGgQKTpmn8K3Z41hBC8OSTT9K2bVvq1q2rK3f16lWbRMfSpUuTmZnJzZs3KVvW1qE1Z84cXn75ZVPr2L7kNCe2KiltDn4bD8Cj1bV3frno1s+Nb2Pkt65b+7ywxs+iYdYTMOcDvTOhYglI1LCyHDK5Mxv5M8yqA4Ot3JIzqsCdNJhpx1q01Oq6vd3gGVd4Oh2GCMlb+ZqV7F9I3hBrTEfuF6zxMRCf8/9O5O4rDJkMvp282trWXo2/clppJMPjF8ChnGaN+diWSz2Fbe2AauQlsM8GlligTiFo6AMrTTwNVykPfiXg5k0L6n3m729uoXa7tpCQqDypQhAEBEJqcYi2Fwl4GtvSO2WR5boLIwmdKyIVUxZSuaj3yQ8jX+UJVf8OJAH1SaRitSB3bAcAPb9i3RyZFGRs7YKc/q0Gr2GV6ngS8tvQHpuE9+w34e4VyMoxg6ZvAm8tkjkdFGsMLi7wYyh0XAauAsq1gy7vwq2z4OoLw6OhQiP4fBzEbss7t+tEuHAa3snZ1X2/Gt6KgQsmuDuzsrmzeRuFOzUlu7gPlaJfo3DjaiQs28ieAMnVcy1yGyW6N+Dmlrx7hH/T8sTtz/sB+6npkewhE/mxOSL/H8W/boc3adIkfvvtN9asWWNXVk05I3Jq3epR0cyaNUtBtXPx4kXdudXKzhEUNtgpRX9pfG74Uvj9PisWrFAptruZUGJnXskbMyghoF0a7BYwFVvvzxxsFdARlIoL8pRdLhKRPCLrc8Z8kIYyLVxDKjsjnLMzDrY0ZxMFfJUFuIK3iYjnyW+Bfy3Yv9s27eTm7rPs8B+Om7cq1LxpVzixCZb6Q7y9MH8tLEKSR3sg1XoZoCVSEWkZhYOxZRfNRSRyJ/Yskp8mA6nM9HAM+emeIk/ZOYMIpOJWs7vszlN2uXC1F1BjhcSDEL8fLqyHlf6wvAT8tQM+aQrpaRDzKFTuBNd+Vyo7gMRrsP51ZV9yAlTTf7jORVL4K9yJ/IKz/sEkr/6GYoM64RkYQKEgpe2hbH9lGSVrZQdQ8xE7DPJqZOJYSkKBwvt3IDw8nM2bN/PTTz9RvryxDa9MmTI2pKLXr1/Hzc0Nf39tG76np+c9uh1HaHccxeer9b9xf5hQZlfUWsJBXFU5rW878QNQ73yuIb013yANVc4iErm3OIIkx5qBUzW07+GCfRHNzLZEN8AL7jhSZ8wAt7/fS6EZj+d1jA+AvQaRgq4dTMyaSp6Rxg2p7LQiEkKR5kkj02QuchVdPpAa28VJ86K3nsyfS34ZCr9Fwhv+cFojBvjXDRCrco53GQrdzFCO5+Gv0BdI2CRjkYurzJsBoe0IDO+ie+6f3ztYePcfVB7on45/hcITQjBp0iQ2bNjAjz/+SJUqWtz4SrRq1YqtW5Umlu+++46mTZvi7u5Y0vjfgdbN7MvkYrUjMQomsEInvWGcA3m+LyNvt6eQXJf/VIxDm7hajaGFAVcYqrbBAu0rwygHi+0lfLQZ7qq20IUM3mAfnQhDTdwF3kfGqmqUJeISkjI7d8+t7/uWPrxcjEV+svo3Z3PQezi9T1PF/aK4nfvI6DfhhWhw8ZS18ao6tvPKSpDO38Rvf1X0n5j1GX+8p2/+TUtyMIyywIdnGv8KhffEE08QGRnJZ599RpEiRbh69SpXr14lNTXvBjJr1ixGjswje50wYQLnz5/nySef5MSJE0RERLB8+XKmTzdit9BGjw86U775AwgntsJwg1Jp7fOhSHQxB3V8oDvcsJNSpn7mjQeMQ3Rk7ev3kKEOdqh77aIP0gPkCAqRV/pUD7UscMcC8W4w7gKMVLl7+9WHY07UCfSsq4q83GdQBT1TjyDaGm8iQ2yGIH1pU9E2Z6ojCfVMBB2s/rcgTaDe2FJ0O4phDsrnYzVwI3xltWtsp/Ft7D0ZGnWC8Iegcwk4a1vjzgi+Q+WDQvKPSuP++YXG1RUcNmkWpCWYx/848d0U0GEkWLFixT2ZRx99VAQHByvO27Ztm2jUqJHw8PAQlStXFkuWLHHoukZcmjU6lMo/1gcQaxZr9/ds9fewWERU0R9r7ob42Bux2gvxkiuiLogmIPaq5H4FsdPgGk+CWIcka24LYjGI8XbWVQpENYPx5g6+zql/w3up1yqkHBKeixcIOvcV9BptLO/Z4n+wxiEC5ue0N4Tk1MyPeV8VMNCk7AQBd7TH3P8mDs/cNnCmaVmPyUreU882DUXNm9+JOnFbhEdgOcNz20aOEp2iHhXDY2eJntHDxOREeV3TTCv1kwSNhPlW/7/LtGIRIieSowA2SE5OxtfXV3e8x/Qa+JZw5fsl57h5XvuxqVlHT/b9qCzR8lA3F0r6C6I/y3vrI+bDiVPw9ofGa+reELYc1h5rEQDnEuC6QbzBoHKwTmN3EuwD1T3hYwP/4HQ3mKcyh4xFZogdQ+bfTUcZgN4HuI6sYdceycL4ltX4JKTXyB7PyP2gB9K3eD+oURTGN4Lp223HOrSBhDQLHR8pyt5f4JcvkjTnKDpzDMlzl+tfpEQb8O8Pp7SsENaxpI4gCJksYgYvIgsv1QQ+c+JaepiJpB3ooDEWjIzHzcUaZA0/jWrjXmvB3QU8G0PaB3Dr3XxcowY6j4HvdT6vEqXhZl4ZHK9l7+JR3BOXuBskTpxt+hKtIsdSfXgjvCwZuJKFJ2mI5GQW+s4lKSnJMI7g3v0pKAlcHYg3yEqG47525///iH+FSfOfioy0bNbOPKGr7ADKVbYlgn34ERcWLVNGQwx7GO6aKF02wCCWYO9lY2UHsEwnUG/7HWNlB3BNg/u6GjIg3h3ojG221Wakke09pLJTmzxvo1+i1CzaIHlDOiIVqzXqIYPu7xenk7WVHcC2XXBkv+DdWUmUqWxA1HxDlejYeyKELIJmOSVub+6yVXYeuWZ6Z82KTTX61DbyXuQxnhzAMWVXH8ncYoSHkJ+yOrF0LDJdwhpJ6Jpcs1PAdRC4BYKrzhfZ12wJehMYZZCvZ6XsADyG9MNzUC/Sjttngqk0tRedY9+lVXQYlYa3dKiAqSYKfHimUaDw7gMB9fR3f7l4cp5tTs3gES6kJWfSvDn06AwRC8DTE+rqsB0tmwR9W0DERAjRqYAw3kRQXWRTyMqGlr7Qpbh9eTVe1LAFNEdmiKnrZ2vhOjL43RrNsOXrB/t+NmvcQnqaBmJbX6AFtjXEXwK+RAbUG3HbP1YOGhXTHx/aDSaq7uEV6+qXmyj99hRlR9g70CMcKjbQv4i32ZIX3XT6j2KraNTp/00wl8ChhXrALo3+HkiuneeRj0Px2CaqlAPU1co7IMvyasAyLO+G7alTjLSIyernPVbBgCiYHAvDo+DRKJixD8rWgtn7YGo0ePjCzGj4WKs0cA5q1IKmTck4f42kEdNwq2KfAaJI/cr4BJamwqDm95RdFvcRDlyQlmAaBSZNA+SaDLq+8xDfPfmTYmxsZEua9S/L4z4bFf0Vanlx8WTejm/hhlJkZWSReC0dd7IoUzoLb7cMQh5RbpdWvQMDOoGP1b1v53uwaTu8vT6vL7gWPNIEvj8KAYXhyXaw4wxE7IOdqrTBJ2pD+1LQpAgcvAnumdDfQToygIXu4CsgORMmW/V3RPJ/aKE6cse3xGDersgUhgxkuIUW+iG5QcygG/Ctqm8aSrrjEciAGW9kQvvjOI+UfUBx8LZ6UKnbrgjHdthSs9SKfBqXYQP46/N9pFRvRfrXv8FPP0Dt7vCeSiE1iQS3lnDtIFh6wTkTFDd20RW5F76IZDA9gsyB240MeMlvPIk0V7oj8wVf0pH7IGctdmz5AC4bwaOfrHbkKkCsB69GcPsdyL4MXpXg5nv655dqA60WQtpZqDkQClnkXG5A7CZY2S9PdloMtOkrxzwF7F0PcRfgPceD3tTomroG15Rb/D7lE5ouHEwRP3fcyCI7PpHdUz4n+NVgllVZaN6kWSkJXBwwTWYnw/n/pknzX8e08r+Am5ft05enjxsehdwYt7wBPy45R5mqnuyKvqFQdgC//nSX2YuK4oELbmThQTrrI2wfsUKfBDEXgqrC8Zw0nLbh0EvFMrT9pGy5KOYBc7Zpr/uDE9ClFAQWgsCysNLA2tLQAxq5w29pctu/z2qJCzNgukWp7EA/IRxkxtcZ5DP8JGTdOfUySyP9d2uRcXzVkNURfrGSUWdMtEDepi9hu1vU2imqeUUCkana7jryuejhD9/oUK29GQpVqoOXD4hiEBHtzuU4L16YeEtT2VWd1IW4b/ZRqkdHCg/qxt2o3fCcFZOHNbzLQbnukOoPWcXh1Chwbwlu70Nq7gdYEUkFplcxJJefxhoVkO9cSeQjRu6+t5hKrja275ozyP0dZCAzKvVwGRk6aALZb0F2Pbj9EhR+CVLXwe0FkJ7zjTH6QAGu74JNTaF0a5l4ngl8OQX6LITbCUrZL96EOu2ghB9YLGDxMK3sXMqUIPvqTc2xgLCe3NhyiEP9pSf7QuQuHop5HFey+b6fzMs8GXnY1HXuIRPHbHXOleX8f4EChWcCQuMLkpKYwZHNl/hojKQI+kNn51StXl4+QHJ8BrOnpPDkDG3ZkTNt+47ZsTRdt8PzmJB738mEIWXhsd+05Q6ny6aFs0CYhh2gKbDRtluBv5D8HVq4Qh7h1AFgOLZUwurg/HLIW3SMxnwDsTWuqRlg2iLvi7NR0iarEWdg9jl8AcaOAIsbZLpB70GeRKzU/ymdfV/mXN1Y/RMlY97Hkmwwecpf8EUJKFwHblvxv2U0BUswiLFIzkojTMNW4dVFmhiHIv1piTnH6qeg/FB2IB8rMpCKz6iU1xuYT1vYDek52+nESOeXdu0XyXCTi2OR0EpFXRa7G8b6w9Mx0KgdLDO/s9NTdgCFm1bjxtfKB4BLXx0j6ZgZp4AOUilQeGbxvw0S/WfDKC1haepgEfpeA7vhyodSKojTorz4MKboAwmdjn/OeDy6JUL0R8R1RgwshWhZFPFCeUTDQojqHogXSzp33TdAvKDq6w1iiQNzVHfyNddQHVcDMQ7EJCfmCvNAnCmOCC9iXza0mfJ4yauIYUMRx+OKiEMpFUxdr+SK10TRhLMP4LvQSMAqAa8I2CJgpoBxAkYL6K2SLWtyzmoafcYh9nmtm4DpJmVffADvRz61zjqFekuVVx7Xqik8X3suX69tOi2hWJKguDDfiv130xIKglacxLqZh1kVrk0SPTC8BKv2VaJxOy9SU7JxJZPbCcZ8PlNHGWvIVAAANN9JREFUmbtu9VLK47d0Igdz8fMN2HQJ/L+H9ddhTzK8egkOp8KZdHjlhrnr5qIP8DaSe0Mdj3gWSWVsUHZTAWfz6dXMiy2RwS9qw5j98AFYnA6/Ax1NuMlWqSgvJ74Aa9ZCkP8tdn6byqCpGrQsKnh1bc3dJ6bDu4th2psmVmgPuRUUDiGDU7yQNGL7kF7Unti+E3YqBxvKmd0elMO+jTEXhYF3kKwu/zB8r0P/NuYZ5fHJU1Cx8n1frvbIRnRbqZGSYYR/WJRmQkICoaGh+Pr64uvrS2hoKImJiYbnWCwWzfb223mRsh06dLAZHzpUJ3hJBwUKz0n8sFB925UYNK00Qc28CG12noM77tK6xGW2brrLw0Ns0xOskWmyUPaZ68rji4nG8tnZkGAn3SGsCJwpA11NsLE0QpJPvYCMurTGceQtV03zWxUZF9gAWYzm6Zw++3S85pBLmaxm+zJb2u+HTGngux98/NYt/EobewhKTxvIxYCOpH+2AaaFwc92mMJ1MQ2ZpvAZ2ET3HUCGAv2AfNcP4ngJoVxoFT81WxiwDeY9JvuRkZm/2xPMwVFgKrgONykPFK4PARr1tpyFr230tbiTgs+aJbi3VybHeNRUF67KQ4l2ytDsEo3KUr2/g2WK/2EKb/jw4Rw+fJgtW7awZcsWDh8+TGio8Xt/5coVRYuIiMBisdjULh03bpxCbtmyZY4t7n+9xfwnw8ikqdcGTCph0zdknJcYMMJDvL7IQ/R8GBHc3va8xwYojx9q4JwZZEhl5fGyeoiUTsbnXC6HEOUQd4rbn7/u/9rEpGpVQbwDYgWIKU7O8WFJREp9c7K9mjq/1qJdmmiPPbFEMDFK8GiUIPyMoN5EgW9d/bks7wkQQpow1eMzVMfTBMQIeFLACNXYYAEPPaDPZpKAsSZlBwpYYDA+VcBqIasTRgu4KbCMEHhcMr+eQtXz9/W9HCGYG6no8z79m/AIGSB83nnB9Dz+rW3Nxj0/GyTAAZOma5LATZhvrg/OpHn8+HEBiD179tzr2717twDEyZMnTc/Tt29f0bFjR0VfcHCwmDJlyn2tr0DhGcCewgvqZKvcJr0TkC8/qMinnTvv5YbK45SuiOwuiOnllf2lXJTHq4ogQtwRoS7OXTc/WxvV8RAQs0C0NjhnKogJTl4vpTYiuwkirJyy/7EgxPB6yr7hHR7Aa35yhWCtECwVgtAYk+dN1egL1uh7UsAmAesFdNWQD3Vy3ZXsjI8SsMzkXM8ISWumN/64kHRjV21fo6V7/n8eZlrXYYKvzwiathN8sUcweoKhfJEeLUSj2FWidtQsUT9quqi7RP9hoNNi6XM1rfBIEliE+YY87+LFiyIpKeleu3v37n3fM5cvXy58fX1t+n19fUVERISpOa5evSrc3NzE6tWrFf3BwcGiRIkSwt/fXwQFBYmnnnpKJCcnO7S+ApPmfaBMdVu2+/efvI9oKyukpUGYvbqgGph9OO//GYHgJcCSBXVUDrfrKldM6C1YnQGrNFw0L2OcoG0NvfRnR5CNjNickfO3GVAC6T/UwwkkMbSjCPMFLw+weME8lSVpxXHoW0fZ99k2Jy5iD92GSuufG3BOo2RN8e7gq/4yLNCYSMt09g7SZOiObVp+BWzLAKmT0vXQwM54rllPXXNeC97Yrs0aGcgaHGVQ0pABrhqs6yWWQLGJtv1q9DkK9adB+wUm1qjCd2ugZ3XYvwMebgkRSw3Fi/dvj3tgBfwHP0SZwW2xeOnzC9nUTjQDR9R1DipUqHDPz+br68ucOXPUszqMq1evUqpUKZv+UqVK2ZRr08Mnn3xCkSJFGDBA6csMCQlhzZo1bNu2jRdeeIHPP//cRsYeChTefaBsdWdusXkIbqk/NrwtzHOsBJcNgnyksiMLujhQ6qeN6tgVeMrOOcOQyeMVzK4N/YprfsiAFv+cv7nES17I7LOXkQwv1jiN/RCJEcCvqvvM/ACp7HCDFFeooXqfFuyG0Srn4GP9YdGr8PJr0LytC68uL87nZ6rTN1xVVkEDFSNnU/bMFrymjoPdR2B+NHh75im8chqezTLdICvB7tz6nJmpSIWnZjBpiXxMGIH0qA5DJpvYq300BJmvp4dROX8taHJi2uAOMsBGD7UBnaTIzG3gMlrZJ7zAb762fNHGEDQXWkdB8TrQ+h1w00i+HhEJL56BzlNhxAJ46DEYOQcCqtvKmkDSj4fIjJfEeqnxKdz89rCubMYdExyD+YCLFy8qCl7PmjVLV/all17SDSzJbfv3y9wsLao0IYRpCrWIiAhCQkLw8lI+pY8bN47OnTtTt25dhg4dyvr16/n+++85eNAoz9N2IQXQgTM+PL325U5PUa2Gsi/uiPJ46XRE39aIiKmI7BhEdhQiYiyiaSXb+UaZ8PGldkKIjoiYWvoyTV1t+46qjj8H0cjOtT4BsQrEMjtyPU2+X0NAzAUx36otRFZYePw+Pof2roiIIoj9pRDtCiHO1ESMKIlYVdexeerUVB6/GVNZrLvZXNRq5ycGva1MVwkc20bUWfSYqB01SzTK/llUitslPAb1EvTtJ9gTJ9gjBOviBG1HCOZcNL8O1/d0xtSVCb4V0qQZLGRG5RsCagpYlHNsLTtWwFydeZsJGCZsfYHqNkbA4py2TMB4O/Jtc9Y2SGf8tAAH3peAVEHlm4JC7QTV9wlKTRNUelsp0zpGMEIIxgpBtyjV2DTB29mC94Vgfpyg1QjBmCVOf+esW7mp/e3KTLj2jAAHTZoIB5rjPrwbN26IEydOGLbU1NT7Nmn+/PPPAhCHDx+2K5udnS3c3d3F2rVrTb+OAoVngPxUeNateWNExHxEViwi+l1E7NeIGaFKmeA6iFUT9ecIb2LbN68RYlp1xJkuiOhGiOyHECIYsaKqUm6gD2Ksj/7cH2G/bI+6VUPm4EWA6ODAeU1A1ARRWGNsMEpll6vwOhrM9zCI7g/gM6td3ni877jiumOtVowSfcVnIlh8I6rGvGErM2qW/twBGj6qImMF3kY5bvMFLBTwpYDXc5qebGfV8XAB8wSMFNBDNdZHSGXYR9WvDrAZnnN9a6VXWyVTT8hSQPbe+0cE/CHguIBAc5+Xt6qsTxmN97fRCsFQIRgWJyjdSjlWrqmg3iBBiFZQUE6bMFcwfJr04402m29o3NouGSi6R4eIJxKfFeCIwrspIN2BdtPU/M4gN2hl79699/r27NkjwFzQyqOPPiqaNGli6lpHjx4VgNi+fbvp9RUwrfwP8OtB2fwKw6DuwF3bSgnbf5dND1kaaX3TD8GqJvDycVhYAxIyYcpJeEaVHrb+DozT5zjmMpL90BHEAhORHJpjMc/OeMBgLBrwyZlzDdKQlo4sRaSHSUh+zy0mr28WJ+zkOGz6KEF3TORQ9biSye0fNCh5vlihP3GGRuUA10LgVkfysmniEaQnNBXp94rRn9+mQnou8VoDpO/MurDSZmS9i22qc3qg/FRyQ+0zkJ/YR9hmTx7FXKbk50ApjFlZVchUkcqmqxNogPJD4cIm+KWf7dhf+2U7uk7/Gv2nACmwaAo0amF+bQY4/el++nz5KBaLo3kDjuYaPLi8hNq1a9O9e3fGjRt3L2Vg/Pjx9O7dm5o18yjha9WqxZw5c+jfP88Hm5yczLp165g/39Yc/ccff7B69Wp69uxJiRIlOH78OE899RSNGjWiTRu1E8YAplXjfxAPaoeX28YNRozojYjdgGgeZP68VQ8jJjqZtvB3tVomZMwUb63twDUHgvgZxA6Nsekaptu/szVeFSbaxX0mfFqodzpOtHIfCkqrzHBUF/C9gNYCfhUwIOfvEQHmw+ShspAmz/lC7vSaqsbVx3q7rseE/bQEPaYi9Y5RvaN0sNWKVx7XiRT0yhY0XaHsr9rX/JzDzReHVbcibYJEsx9mi2LNq2qOd/5Qvl7zO7yLQpopzbaLpuZ3FnFxcSIkJEQUKVJEFClSRISEhIiEhASFDCgLeAshxLJly0ShQoVEYmKizZwXLlwQ7du3F35+fsLDw0MEBgaKyZMni7i4OIfWVqDwDKBWeOUb+Tv1BQ993M3pH0fkY4gzLyKmtUecmYaIHozInoWY1+4+bgAabRSIr5AVxq37y4Loh22OW0M78/UxGOsEohKIGSbW5UhF8ykg9oCYpzMe7oVo4JY/71fFivn7/ital2mC+gZh+vVSBGUiTM6nRY1lnxJPKqvHNPrN0oANEWDPXxWk0/+Vk+/d2wJLJ9v+0p8IfNoJau0XVIsQlAoRtIsVBAx1/jPqMca2b857wtKpS759D8wrvHMC4hxo50zN//8RBQrPAGqF12iY9hOZVmv+kOd9f+FHt0GENEfEvY6Im40YVBcxqDZiSZf8+UFZN3scmP3y+Xq5raWd8QYGY1U1+uaBeOUBrfVvazU72PYVqSbosF9QL1rQIlsQlGJyPj8n1zFc2ObGtRRy99fcxPmDTcho5Q32EbBRQHk755r/LTrUKnUX1DeRML8x3rbvsTDBcHsBPeabeYV3RsgcRbPtjKn5/z+iIC3BARxac9a07K8/GYcWm+HOjNgFq38F/+fA/2VYdwzWnYCJW5VyHW3TXu7h7VJQVqe2ZF8LzLHISmTqSuRq2GeJzIP94Hyl7FBkTWwtaLOVSmh9GinIGnrOoJs+A9Q91NYp0muN8g2L02JCHTrN03tVdnBqm23frVjY1hTcPMDdAu5eUHSkrZwN7JSx10VjZPKINXohM5mq2Dm3LdIDaw9ab/hmoD/2ieHuM2dHD3cTQNgJn+83Aw5us+3fthU+U1VxCDTxpbpvpDrR/psoUHgmEHYolJZhyvyo1iEVmLK2IdOj6rM8tjl9JxpoHQ2cPqfd311dntsE1htUi5lxHa7o8FZvEpI3vweyWWOl6vgj9PPmaqiODdILbeCJzPP7yYFzjNAbGeiyGFl4JtQNFhQyDtLJhTpNKFwjNexErErmtWI066Jknr50OIG9S3+neGBxukeH0D/2ZZpHPUHDqCdpEruSilGvUTrqTfzP/IDLxAnw7FzzLzA7QSYkpm6G5E/Nn2cXbyBpv18FxiODTGZbjbcnjxvzgsE8zZGBMlpQF2sqDExweKUwGnjFnKjnJPsy1ri2F47qEEbnokIQHNb4xp47Y9v3h/K98qii997kodFkR35BUFDy3DwKFJ4JFK/qS+95bRV9Q96qR5sh5WnQ2Z/PXjrHiOfUP2ZjlCqu3T+gmXa/HsZXhqx0aFccZqtZm1Vo5ArBqk88DvkTcEEmdLcHnkMmfatj6PRy18eqjpsh4wSNkstzkZbT8gNzkcruDvCTBXq4Q5YFQn1hgYrrd1dTqKZSgqVVL7BaeYh6BhZNhkXTYaJG2baQJ/14foX2U3z86XjObT6OZ3FvKg9uRtnBbSgUWI4Sg4MpOrgb7tUqU2jWNDh5BGboJEqrUTWHlUUkKPs9BoKlDbLGnVYc62QkLYAW88lk5K4tFPmpN8V2F3Deqs/opt0DWVFdCwGq4y1AJWQcrhlMRTLHGNEbqHa9ro2gWDSU3Q9e7aDscqhzBspMg+ZnoEEUNI2C+g5Urmg1FCo6R31euIV612wLv1q2xNTG+IexR/+T8b+2qf6TkWsjr9UvUNQdGCjahiud7P1mKSPURswoIb6IrSTeXGXfb7JYo47dpJ6IqHDH7Pwfa+TjOdJOgDgNYoEJ2TGq4/4gRiBz6YYh+Syr4pi/byiIV3XGSiM5NLuCCNYYD8+5VjsQL4PYC6KFzlwbyyCiKyNiGyBm6AScxE237YuZjRA7EXHbEC0bKsdGTfMR72wsY+p1tomZLDrFrRSlRnQUQbFrRZFBnYVH60aOfV61JgqGZAu6xglKDzOQVUcQGvFN9hOSXHq9gLVCElKvEPC+jnwljfkRMmdviIBXc9pQYVuHz2jNZlpDYZxTqFGT0DdVUCRG2VclRtBUCNoKQXCcIGCEoJdJIurxkYKPbgpqt73P15LXfBsq1+144vkuIaNxzbZdpub//4iCPDwTOBmjrgotkXxduTepGuRJhUAPAqsWxtszm0aNBWuW3uGDebZPVGGv2873/teQZtLtM7serPsTxuoksjXygkN3tcces0g63kPInV0GsNvENZerjjda/W+9DLVvrTqgYeyBnGu7ITkzE4GvrcauIau9hQNJGudeJi/DbAfGFcy/ToHUdOhUCoJUO7k3W0GVkrD9ou15PxwBfKDf07ZjP25OpVTVwgZXzcO1H44T228RANcjfzR1jg1OLoFL38Ntq3ez4hJIPgqJi60E1UUO/dFHIDL3Tv0d1UsCPY/cS7cDcim5CiOpyaxtwnWBL1TnHjJYhxkczml60PgAU9dBpurHlvAV+PaFK5HwR07ZmsuRENAPLsfoTx8cBp4+ME5jBzZoIox7Cj59GyK1S9a4165Mxok/bfqTDst1t14yhKL+brh66jjddfHPycP7p6PApHkfGPl2TcVxl6G+ALhZsnl4kDuBgVBLz7qjg49+Mif38lE4blCarKZBbbvrQiqab4GbyK9/oPklOgwjI04NZHhDbaQ5VQs/A1reKrOlSAE+SobIePD/FdTcvIfjoHEAvP2L7XlVysFrK7TnvPBHNm+FXzN1/atb1AneTuK26tEh/lMo/ayyz+Vt5TEaT1f3kFuu1x356JH7N93OQkoDrXJaPZTKLhdq06cTpMj3i/SRkH1K2Zf4Efz1bJ6yy0WGHTbWmxfgize0x6a+Az7FITlB93QtZWeNM5/+SvlO1UxzTuahwIdnFgUK7z7w+7Y4nomuy6rYRrwSXYX0Oxk8H3qFxHh5K06Iz+anb40rnTuD8eooEQ2sNVCGXyGfz2OQRNGbgF35sTAd6PPCyx3cIWRB2ZPYEleDtu8wAMm/4Qy23lQerzkN1ZbAbo0NwpOLYf8JJy9khdtnzClGABp1hMY9oJQdpyzA7d1wqjwUnwFlYqFINFi2qYS2Au8D3ZG7s/nIT/85ZLDKXOAuSqWnpudW4wSwGliLPuVLA9Xxb6pjs0z3Y1THL5o8zwBa7Cv+XYzP+f1L+HOf9thHL0Mbf9gso1MtQ4fgMdfW5lAirD8Nz3xKQLht7Y8bu8/xsf/LnP1Ku7i0Pgp8eGZRoPDuAylJWTTpVJRPXrpIVlomnUqc4cvI2zT3/4tXpt0iyP8WG9aKfL+uu8kpu7vDWCNtk4MXURZd0QsJcCwsJw8ZyCAWe0hHO1C9vkbfZWQ6hTP4WEOx5TeajnVwa2+NQz/CwW/geo5xuPko++eIRPAKBJ9B4KY2AI9Dkq5tAWYiKyT8idz5bUfuoYcAe5EVzd9HVko3wu9IpXcMqTRPIBXfOvIUoDsy6WQa2grU7EOABXgeiERGZ+qF3O7EVjnqoIRqF1xhGpx4xuR6NHBF+aUSa6PAvySurZoq+svOn0KhagEELpxA/ajp1F00koohyqjMtERH0wYK0hLMokDh3Qe8fFwZ7P8L30fe5OVQ5Rc+YoGOA80BvNAOavnBI6rcrw/0HGIqdPWA3514mNPTB5XtnDcImamlRhUk12Z/pD9ODwLJmWmNYtz/z3OCHwTdXyUnh7H/YwMiVEdx9XcIaAFVeurLJH4EGZvkBq2wvZp2S5HKQY1jwGM5Y9p+KH2cQiq+Izl/jyIVVVXgO7SLN5l98vg4Z65SSNuEWqHPQHJtBgJTVGOR4BoLblHgtRzce4BHK8jIggrRUHs/FG0HhXR20xV0dn2h7ymPv11tI5I+bhJZuyV3qt+S2QREz8XiKc26FouFMoPbUjm8N+X6NFac53g9vAKTplkUBK04ibDIxqTffrB1q17dIf+edDJ3+Mk7+mNDkc/0UUijlBo1kbcwa1RE+twqIPcK1sadxkjK4FWqcwKRgeQgb4UVkIHv/ZApEW45x3uxVXYgA1l0XGgK7ADCsKVCBljqbO51PqPS+I6c/9A2YMVtzAiy6rVAfPUdtOoFr6hy0y7omNHUiH8TiteF27OQn0asjuBv2JoXQT5yOAs1KfZd5KcRZXCOUT6fGoeQ/kKw9QWWRZYe/gplksx0YLjMTXE5BnetHgTOlwS/WXAxp7Rx8g7ty1boDhetmB46zoQTm2GVxqObXymI1zCVAhnH/8B/0XQspJKFMigl/Y7SX+p4PbyCoBWzKNjhmYBfDdukOZfsLNoONU4ifXW+C/VVboyGNeGxh/XPmdgOYp+GMFU+XhkvbXln0QR5m9DjzFAru9xzGiE5MNS34INIf5yaH0P9zl3MkXkf+cxeA+lhssf0Yo3eSO+TNZ4CBj7gmIjZz0H4k86fX6y5dmhQ9rHfEVPDYesXtsrOEaTuhr+qQdq6/2vvzOOiOLa+/xtgFhQkirIJASUIIsYo7hvGBZKoUR+DkgXFJYigBo1GjHkvmgiaTRNNNK83gjduYKKoMYbokxcwilHDM3jlum9BER8TRRHZhpnz/tEwTPf0bMiiTn0/n/poV5+urpoZ+nSdOnUO9JWdOSueDUtuKk4QOKXXWDgA+ARACfRni/8Lbo/efwvqK6B1ptGIOJOoBMqpVXd9mdx3Ad/x9cf/bxVQbCDRrgFlBwAaNbeuX6fs6v6tvluG24f4+ya9R1jqQmbJ7K6uWCdM4ZnB3Qv6fyxfTTmF9A/FtyvU8X/e1eDfgthY+eeBVKG3tg6rXwV8nYDPBFE+bjXmswOcUUgFIETk3DDBcR8AU8GtyNSAW+UxxUgAr4Hz5TPEdnDOKn9Af35gjP3gVqB0OQEg0ZRjIYAVQj8KEWa/AnwcrV+/PAmoVPHfzmM+9sDirWZ4EQE4NVM8gofm+KO665uD2MNYuNlaJPO3RYSDW6+LABc/x4irsChiv8Y60sClJZoM4Krg3MfgQpIJbRUBqJ+1iph5HQXreK6zxG8tM7atwzykPbpCLTCoFe89iYPO03Fjx++8+tSAtRa2zhSeuTCT5iPw4C++6WH0mw6whRr7tpledYp9FYh9CQiKra/7JoLzaLxbCryzH0gJBf56ACw2Z5OchfwOTpEpwLkxXAe3F284uNBg2Tqyk1Gv7FTgfO9+MNF+P9Q7t//UwD6GAZgEbl/faXCPtDpMRSgMbQ187QP8jwooswF+uAOUqIGpfsAHxgJ0AvjgTeBd4abDWvyDbAHUe95OmOcBtbwVNDIFPHq54FxeOZSZf+NEqqWedhbiMQy4md2AC18HN09vB2AUuLH8N7j4l8IHYXfwjcRe4F6HZODsAzng9vhVgLMJdASXjXA0uNkd/0HOOcsY+9uo2+pg6gdvro16JLiYm8sBLAOwCbB5yP0w7VyBGiegw07AsReg+R/A+RXgqkgosipL7A/iVGQfh/q14ahGFW7EfARJdSVqioT7JRsKM2mai4SIGt+N8CmhtLQUTk5O2uOek32gTL+mPY7d4If1s+s9SPIqfJC7rwRzJ4ttk+ZT8SMgVwOLU4BPdZ7kS4YBK7Prj9NHApN1LDV5A4Fgnf1iWzoCUAORt4zf7784MajA39zdHdxjYY1O3SsCmRmo30unAvfOnA/OaCbc9/4SOONTIDhjEoGLytgenBnTEoaAc0Fwru27SGhLg1Q8Dyjsgb1lwHiB/8iinsCs3sDvfwFv7amvfzEQKLwLXDbyWf5Z3grpabb4ea8ag8Y9gxFRHfFXiRRfvXMNr38ZjNO/lWL9+BzDDTQWUZeAzWZEstbjBrhvZS44X1dd4/RKAEt0jueD/8uoYxbqE8Tmw7xVVnNYBc5xZqspQRP0AKfUN4uc2wLYvcW96QlL+R7gygSRa2px6wN49gb6TgN2vgl08AHOHjIs/4jcv38fbdoYnnXXP5/Wg3uZMJcKALEm238aYTM8C9BVdgB4yg4AcjPLUP7Q+PvDp3MBZ3tg5ufA8nDgiGCP13WB9fTITf7xdwLHNlIbjnGpy2VwWwOEO5hOQ9/RQ6iu74IzP44G5xCuBqcoVdBXeDLwIynKwK3mELhoKm3BOa4/D/0VF19w5tIAcI7yv9WWD2DeLDHIDvCVA+OcAHntlrISkd3pge0B3w5ArmA/XpaBpZk6ZsbY4NdfCO9N54y6WXvLcfUiYdvKYgDA4a03MXyuv8HrHYI6oqygSHts49Qamvs6nkXDhgOJ64B/fQuMiwXS/i+Q/pl4Y5ufA3ouAuSdgN9jxWW0N+oDaOoUm7Es48UAXgC3heEaxD0rAc79SAnO9chg2nUzeQ7AWHDrcA/BfeO6vFDbD0MOOABnq9BV3KdgOM9GJFDjCNSM09+aprpnvKu3TnLlj9rs63/X/v3PWA/cuQi4uAIbE4y30SQ0ZBuDdcIUXiPy4B7hvyJkWDzdsMwiHW/mbdn657cK/k4zBQruS8HxlFvAc2Z8i8YeAUJCwd+IXhdCLA/Am+CiogCcYhJyEVw44F9rj8PAOaUQOJeI7bX1QmUHcEoZ0F9tWmFmvwtquLL3ISC1B15xBX4R8VVoLQf2XgamZOifM0bSZzbY8T2/7u5tvnnII8gJhtBVdgD4yg6AbMNaVC9dAbz3FaBoB/ia2MvXLtC85Rjp80CVOZ6edWtHM8HNkkTiqQGoN1WeABBlRrvGGAXODOoHLlODkHxw9gFj3LPwniXie7EdJ4PblmEhUnsgajXwhzkpkZoCZtI0lyfKaWX9+vXo1KkTFAoFgoOD8dtvBlyJa8nJyUFwcDAUCgU6d+6Mb775pkn7NzZCAbkCmBZr+XtEYhgQK7I396IZHiKXGuH3OwzcI24YjMekvIz6ZW87cI4puhmNzgJYB+BMbVkDzkj1H9THvazDdKKUhhN5GXDOBdJEzJO/3QSum+N5o8P8eKC00gZZv/A/7Fmf+vCO+0d2RtTOkXj5syFmt62Y/AoUC2NQ3TUI2L0D6O8MTB0EZO8yfmHXCKCLqT13AJyEocbM4RS41xtTnIN4Bga9Thio31B7L2Orwn8bOQcYjtRqiIjaGd1d4H4kUH0XqLoL3IgGPDcBHYT5P0zQLRQouQv8IGb+BeymT4HT+SNou6Uh34M5PF778JKSkjBw4EC0atUKzzzzjFnXEBGWLVsGDw8P2NvbY9iwYfjPf/hrEVVVVZg7dy7at2+P1q1b49VXX8WNG6byJvJ5YhReeno64uPjsXTpUiiVSgwZMgQvv/wyCgvF9/JcvXoVr7zyCoYMGQKlUon3338f8+bNw65dJh4iJlhe8BJent8ZX10cgiXpXZGY7ovdl/zwyU43yOSAVKLBwBC+J18vM4JuLP8FCPF+pK49EtngHjvZJuR037Ul4MyXDU1xOczIuXfAhRkTzjFMJ1cxzZk7wNwD+vWDAoBBBrK+lJQCfu2rsTeNm1LFf+aCHkNaQ63WYPHOIKy99CLm7OwHqcIWNVVq/LyQ/zLmFy0WNI2jMv0Aav4QzL9P5QK5+40P5PL3wOFoYEgKMPoSEGxg7avqR8AhBbAdB/0ZzFTj9zDJ7zDvAWp6Xds0LwiOTYU/E+IJbhO7HMBeoMoZUG0FbjsD152B0q3AjRkwmgA2aDowPg14QScO59yOwDRn4JzQSYdDsnARKj5cDcXLQ+Gy83P4XdoN3/REeLwzTlS+20xTSbWEPF6hxaqrqxEeHo7Zs2ebfc0nn3yC1atX46uvvsLJkyfh5uaGUaNG4cGD+jfT+Ph4ZGRkIC0tDUeOHEFZWRnGjBkDtdqC8I0tnK3BbPr27UsxMTG8uoCAAEpISBCVf++99yggIIBXN2vWLOrfv7/Be1RWVtL9+/e15fr16wSAQj8eQuPXDqYZ6UPpW00EbadxtIdC6WcKoWzqSycoiAqoM10mN7pB7Whdih0v3ce0iealCZnTu3HSjTRleR+gREF5vwHtRAG0VqQ+BqCJDezb28882tgqMkDpiZZft3RPd9pJY2gzTaLYPSGiMm+Wf0H+i15uuu8mZA9hoobQ3tJ7fCc4Fqb00S3zCPhEpF6Y9meu4LhXI41TeO9/NrCdDJE+WlD6LzFPbvnXhJj5vDrXPWspiE5QX8omt7njRK+L/l+uffPTA31AwAoLygdmtf+opKamkpOTk0k5jUZDbm5utGrVKm1dZWUlOTk50TfffENERPfu3SOpVEppaWlamaKiIrKxsaHMzEyz+/RErOFVV1cjLy8PCQn8BeHQ0FDk5oqEuAdw7NgxhIaG8urCwsKwadMmqFQqSKX6e4RWrlyJ5cuX69U//0ZXtG2jhgLlUD2oRHmtWYBQBQ3UtUWDGmigRg1eCiPe9YmxQKpgYjk8EEiaAAzQCWTv9wxfZpAzcPSO6PB4BNsAeQLnjOHgVkbq6A4uracawE3w19D6gYt0UkdvAAPBuTDUgHMl0IBLrqqGfpYCAvAqOPeF6xDftK7LG+De1W3B7bzS9Wm0gXkxO/8hAzxlQLSOX8VHzwIkA77VWQRcHgS4OwDR4i/fAIDjHwJn/wKqNMDfFpo6AeDvmyqUl6pQARXu3NTfMBmycRLU1TVo3cnSxJ46xG4EXJ4HlhnIhl15E8ADwCUM+PtnE43NBBAHbk5/T3DuBXA7HetYBC482EVwvwwVuIzoupFMe4Cb73uCi57SFtyevA7gnFG8IR6bU/jtG+IlcCZRNbgEr88CuFV7HAPO1elG7bFuyLTx4Bw0fhG0dwMm84O0nQl4xwFV+cCDI8ANnX0q9800o6klQEd+yLLqm3+jurQCtqiEva+73iWDN05CTRU3YyGzHegfwrJZG7edqrSUv91CLpdDLjcj+G4jc/XqVdy6dYv3vJbL5QgJCUFubi5mzZqFvLw8qFQqnoyHhweCgoKQm5uLsLAw825mtmpsQYqKiggAHT16lFeflJREXbp0Eb3Gz8+PkpKSeHVHj3KJD2/evCl6jXCGd+bMmUZ6M2WFFVZYsaxcv37d6HOxoqKC3NzMS0AsLA4ODnp1iYmJ5j+UzcDcGV7dc7moqIhX//bbb1NoaCgREW3bto1kMpnetaNGjaLo6Giz+/REzPDqEOaJIiKjuaPE5MXq6xC+4Tg4OODMmTMIDAzE9evXn9o9K6WlpfDy8mJjfMJhY3zyKSoqQmBgIE6cOAEPD+O2DoVCgatXr6K62owQQwLEnp3GZnfLli0TtX7pcvLkSfTu3duojDEsfb6bK6PLE6Hw2rdvD1tbW9y6xXe5u337NlxdxYNXubm5icrb2dnB2dm8UEE2Njbo2LEjAKBNmzZP5R+YLmyMTwdsjE8udWZGd3d32NiY9ilUKBRQKBo50K4Ic+bMQUREhFEZHx+fBrXt5sb5a9+6dQvu7vVmXt3nu5ubG6qrq1FSUoK2bdvyZAYOHGj2vZ4IL02ZTIbg4GAcOsSPanDo0CGDgx0wYICe/MGDB9G7d2/R9TsGg8FgiNO+fXsEBAQYLQ1VvJ06dYKbmxvveV1dXY2cnBzt8z04OBhSqZQnU1xcjIKCgqdP4QHAggUL8O233yIlJQVnz57F/PnzUVhYiJgYLrr8kiVLMGXKFK18TEwM/vzzTyxYsABnz55FSkoKNm3ahIULF7bUEBgMBuOpp7CwEPn5+SgsLIRarUZ+fj7y8/NRVlbvYRYQEICMjAwAnCkzPj4eycnJyMjIQEFBAaKiotCqVSu88cYbAAAnJyfMmDED7777Ln799VcolUq89dZb6N69O0aOtCDooNmrfY8BX3/9NXl7e5NMJqNevXpRTk6O9tzUqVMpJCSEJ5+dnU09e/YkmUxGPj4+tGHDBovvWVlZSYmJiVRZWfmo3X9sYWN8OmBjfPK5f/8+hYSENPmWgaZk6tSpoo4yWVlZWhkAlJqaqj3WaDSUmJhIbm5uJJfLaejQoXT69GleuxUVFTRnzhxq164d2dvb05gxY6iwsNCivrHg0QwGg8GwCp4YkyaDwWAwGI8CU3gMBoPBsAqYwmMwGAyGVcAUHoPBYDCsAqbwAJSVlWHOnDnw9PSEvb09unbtig0bNpi8bteuXQgMDIRcLkdgYKDWzfZxYtasWZBIJPjiiy9Myn7xxRfw9/eHvb09vLy8MH/+fFRW1seGPHz4MMaOHQsPDw9IJBLs2bOn6Tpugt27dyMsLAzt27eHRCJBfn6+Wdfdu3cPcXFxcHd3h0KhQNeuXXHgQH3qhJUrV6JPnz5wdHSEi4sLxo8fj/PnTUUHbXws/ayzs7MhkUj0yrlz53hypsbfUqxcuVLrnm6IqKgo0TF261afjmTz5s2iMrq/4+bCzs5OtC/du3c3eM2kSZMgl8shkUggk8kQHR1tUHbevHmQSCS8zdoM4zwRkVaamvnz5yMrKwtbt26Fj48PDh48iNjYWHh4eGDcuHGi1xw7dgyTJ0/GRx99hAkTJiAjIwOTJk3CkSNH0K9fv2YegTh79uzB8ePHTYYoAoBt27YhISEBKSkpGDhwIC5cuICoqCgAwJo1awAADx8+RI8ePTBt2jRMnDixKbtukocPH2LQoEEIDw/H22+/bdY11dXVGDVqFFxcXPDDDz/A09MT169fh6Njfc74nJwcxMXFoU+fPqipqcHSpUsRGhqKM2fOoHXr1k01HD0a+lmfP3+eF4GkQ4cO2v+bM/6W4OTJk9i4cSOef/55o3JffvklVq1apT2uqalBjx49EB4ezpNr06aN3ktKc0QjEXL69GmoVPUZejMzM7F48WLMmDFDVP7111/H999/j3nz5mHChAnYvXs31q1bB1dXV3z0ET857tGjR/H1118/ldFmmpSG77Z4eujWrRt9+OGHvLpevXrRBx98YPCaSZMm0UsvvcSrCwsLo4iIiCbpo6XcuHGDOnbsSAUFBeTt7U1r1qwxKh8XF0fDhw/n1S1YsIAGDx4sKg+AMjIyGqm3Defq1asEgJRKpUnZDRs2UOfOnam6utrs9m/fvk0AeHs+mxtzPuusrCwCQCUlJQZlGjL+pubBgwfk5+dHhw4dopCQEHrnnXfMvjYjI4MkEgldu3ZNW2duwOKW4IUXXiA7OztSq9Wi5x0cHKh379561zg6OvLqqqqqyNHRkaZOnUq+vr7k5ubWZH1+2mAmTQCDBw/Gvn37UFRUBCJCVlYWLly4YDTlhKH0Q4bSFTUnGo0GkZGRWLRoEc/cY4zBgwcjLy8PJ06cAABcuXIFBw4cwOjRo5uyq83Kvn37MGDAAMTFxcHV1RVBQUFITk42mkDy/n0ucWm7du2aq5uPRM+ePeHu7o4RI0YgKyuLd64h429q4uLiMHr0aMuiZdSyadMmjBw5Et7e3rz6srIyeHt7w9PTE2PGjIFSqWys7jaYsrIynDp1Ci+++KLBGJlqtVpvJqpQKPDgwQOUl5dr60aNGgUHBwds3ry5Kbv8dNLSGvdxoKqqiqZMmUIAyM7OjmQyGX333XdGr5FKpbRt2zZenaEUFs1NcnIyjRo1ijQaDRGRWTM8IqK1a9eSVColOzsuge3s2bMNyuIJnOH5+/uTXC6n6dOn0x9//EE7duygdu3a0fLly0XlNRoNjR071uAst7kw57M+d+4cbdy4kfLy8ig3N5dmz55NEomENzO1dPxNzY4dOygoKIgqKiqIiCya4d28eZNsbW0pPT2dV3/s2DHasmUL5efn0+HDh2nixIlkb29PFy5caOzuW0R8fDwBoLy8PIMyAwYMIBsbG9qyZQup1Wr617/+RRKJhPf7Xr9+PdnY2NC5c+eIiNgMz0KsTuFt3bqVWrdurS2HDx+mTz/9lLp06UL79u2jU6dO0bp168jBwYEOHTpksB2pVErbt2/Xa1sulzf1EPTuqTue7OxscnV15eWWMkfhZWVlkaurK/3zn/+kf//737R7927y8vLSM/XW0ZwKT+w7q8MShefn50deXl5UU1Ojrfv8888NPjBiY2PJ29vbZF6ypqahn/WYMWNo7Nix2mNLx9+UFBYWkouLC+Xn52vrLFF4ycnJ5OzsTFVVVUbl1Go19ejRg+bOnfso3X1knJ2dycXFxajMnTt3yM/PTxuKy8bGhvr27UsAqKCggIqKisjOzo73gsIUnmVYncIrLS2lixcvakt5eTlJpVLav38/T27GjBkUFhZmsB0vLy9avXo1r2716tX07LPPNkm/DSEcT3JyMkkkErK1tdWWuj8eb29vg+0MHjyYFi5cyKvbsmUL2dvbi645NKfCE/vO6rBE4Q0dOpRGjBjBqztw4AAB0Htwzpkzhzw9PenKlSuNMoZHoaGf9YoVKyggIEB7bMn4m5qMjAwCoPc7rfvt6iplIRqNhp577jmKj483614zZ87UW29vTo4cOUIAaMmSJWbJP3z4kE6cOEFVVVUUERFBAEilUlFaWprRpK6//vprE4/kycfqvDQdHR15XmmlpaVQqVR6dnVbW1toNBqD7dSlH5o/f7627uDBgxalqmgMhOOJjo7G2LFjeTJhYWGIjIzEtGnTDLZTXl4u+hkQ91LUuJ22EOEYG8qgQYOwfft2aDQa7VgvXLgAd3d3yGQyAFxCyblz5yIjIwPZ2dno1KnTI9+3pVAqlTyXdXPG31yMGDECp0+f5tVNmzYNAQEBWLx4MWxtbQ1em5OTg0uXLhn0dtSFiJCfn290K0BTs3TpUtjY2OAf//iHWfKtWrVCnz59AAA///wzvL29YWdnh7CwMOzevZsnGxsbi6qqKmzatAl9+/Zt9L4/dbSsvn08CAkJoW7dulFWVhZduXKFUlNTSaFQ0Pr167UykZGRlJCQoD0+evQo2dra0qpVq+js2bO0atUqsrOzo99//70lhmAUMZOmcDyJiYnk6OhIO3bsoCtXrtDBgwfJ19eXJk2apJV58OABKZVKUiqVBIBWr15NSqWS/vzzz+YaipY7d+6QUqmkn376iQBQWloaKZVKKi4u1soIx1hYWEgODg40Z84cOn/+PO3fv59cXFxoxYoVWpnZs2eTk5MTZWdnU3FxsbboziqbA1OfdUJCAkVGRmrl16xZQxkZGXThwgUqKCighIQEAkC7du3Sypgz/pZEaNIUjrGOt956i/r16yfaxrJlyygzM5MuX75MSqWSpk2bRnZ2dnT8+PGm6rZRVCoV2draiva3f//+1LlzZ+1xZmYmxcTE0MGDByklJYW8vLxIIpHQb7/9ZrB9ZtK0DKbwiKi4uJiioqLIw8ODFAoF+fv70+eff651+iDi/hinTp3Ku+77778nf39/kkqlFBAQwHu4PE6IKTzheFQqFS1btox8fX1JoVCQl5cXxcbG8tzc61zfhUX4uTQHqampon1JTEzUyoh9Z7m5udSvXz+Sy+XUuXNnSkpK4pnPxNqEIJVJc2Dqsxamw/r444+1313btm1p8ODB9NNPP+m1a2r8LYlQ4Yml/Lp37x7Z29vTxo0bRduIj4+nZ599lmQyGXXo0IFCQ0MpNze3CXttnOTkZAJAmZmZeud8fX15Wyh+/PFHsre3137Xbm5udODAAaPtM4VnGSw9EIPBYDCsArYPj8FgMBhWAVN4DAaDwbAKmMJjMBgMhlXAFB6DwWAwrAKm8BgMBoNhFTCFx2AwGAyrgCk8BoPBYFgFTOExGAwGwypgCo/BYDAYVgFTeAwGg8GwCpjCYzAYDIZVwBQeg9FIFBcXw8HBAREREbz6/fv3QyqVYunSpS3UMwaDATCFx2A0Gu7u7njvvfewc+dO5OXlAQCys7MRHh6O2bNnIykpqYV7yGBYNyxbAoPRiJSXl8PPzw9du3bFypUrMWLECLz22mvYtGkTJBJJS3ePwbBqmMJjMBqZ1NRUTJ8+Ha1bt8bo0aOxfft2oxm8GQxG88BMmgxGI9OlSxcAgEQiwebNm5myYzAeE5jCYzAakfz8fIwZMwaDBg1CWVkZUlJSWrpLDAajFmbSZDAaifPnz2Po0KEIDg7G3r17ER4ejqNHj+LSpUtwcnJq6e4xGFYPm+ExGI3AtWvXMHLkSPj7+2PXrl2QSqVYtWoVSkpKkJyc3NLdYzAYYDM8BuORKS4uxpAhQ+Dk5ISsrCy0adNGey46Ohrfffcdzp07Bx8fn5brJIPBYAqPwWAwGNYBM2kyGAwGwypgCo/BYDAYVgFTeAwGg8GwCpjCYzAYDIZVwBQeg8FgMKwCpvAYDAaDYRUwhcdgMBgMq4ApPAaDwWBYBUzhMRgMBsMqYAqPwWAwGFYBU3gMBoPBsAr+P1UeJFMGWsCpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,figsize=(4,4))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('selected training points',fontsize=12)\n", + "ax1.scatter((X_train_tensor[:,1]+8.)/16.0*255,X_train_tensor[:,0]/10*200,c='k',marker='*',s=5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "74e03284", + "metadata": {}, + "source": [ + "### Defining input-output spaces " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "6af0dba0-d481-4566-a8b7-244098eee713", + "metadata": {}, + "outputs": [], + "source": [ + "X = tp.spaces.R1('x')\n", + "T = tp.spaces.R1('t')\n", + "U = tp.spaces.R1('u')\n", + "I_phy = tp.spaces.Rn('I',3)\n", + "N_phy = tp.spaces.R1('N')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9a7cf509", + "metadata": {}, + "outputs": [], + "source": [ + "input_space_sol = T*X\n", + "output_space_sol = U\n", + "input_space_hid_phy = I_phy\n", + "output_space_hid_phy = N_phy" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b4b300a2", + "metadata": {}, + "outputs": [], + "source": [ + "Omega = tp.domains.Interval(space=X, lower_bound=x.min(), upper_bound=x.max())\n", + "I = tp.domains.Interval(space=T, lower_bound=t.min(), upper_bound=t.max())\n", + "domain = I*Omega" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b21e9f61", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll = 10000 # number of collocation points to constrain equation" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1efe92cb-daab-4d21-8a43-5008e3e9248a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGwCAYAAABRgJRuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9e0lEQVR4nO3deXwTZf4H8E+S5mh6pC2FJkBpy00pUApUEEGOghyyXj9XRbxwWQ/YFdzDW0BE8AQVRXHVdWWr7OqqoIhQQFEEWyhXLbctILTU0iNt0hxN5vdHSWnplWMyz8zk+369fO0SkpkvTyYz33nmeZ6vguM4DoQQQgghEqdkHQAhhBBCCB8oqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIAiU1hBBCCJGFMNYBCMntduPcuXOIioqCQqFgHQ4hhBBCvMBxHGpqatC1a1colW33x4RUUnPu3DkkJiayDoMQQgghfjhz5gy6d+/e5t+HVFITFRUFoKFRoqOjeduu0+nE5s2bMXnyZKjVat62S5qjdhYOtbUwqJ2FQe0sjGC2s9lsRmJiYuN1vC0hldR4HjlFR0fzntTo9XpER0fTDyaIqJ2FQ20tDGpnYVA7C0OIdu5o6AgNFCaEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIAiU1hBBCCJEFSmoIIYQQIguU1BBCCCFEFiipIYQQQogsSGZF4fr6eixatAj//ve/UVpaCpPJhLvvvhtPPvlku8WtCOByc8gtqkBZjQ1donQYlhSLvacqG/+cmRIHlbLlKo2Xf+7y93X093zGnJkSx8t2WQhmO/EhGG0t9n8zn8T+bxUqPrG2gycuAMgtqsDI3l2Cfp5i3Q5i/S6EIJmk5vnnn8dbb72FDz74AAMHDsSePXtwzz33wGAw4KGHHmIdHoCGA2nPyQuiOpA2FZRg8YZClFTbGl9TKgA3d+k9JoMOC2ekYkqaqd3PNX1fa38fF6HBdeld0T0mHHERGhgN4X4lTBsPluDJLwpQYXE02/fT0/vx0ia+xBKojtqRdZxtxedPW3vi2/xzCT7J/xU1Nlezbfrzbxa7ttrvqempiI3Q+PVd8fk9d3T88bUvPo9zPnniqqitwwuZwOwP8hAXGc5LXK39m2P0DaUBqqzOxtf4aoe2vqvLXy+vtWPh+p+bnT/jIjS4Pr0rJqUam33HfH3/jduptjT+mVUxCgXHcVzHb2Pv2muvRUJCAt59993G12666Sbo9Xp8+OGHXm3DbDbDYDCgurqat9pPLjeH3SfKUH54N5YVhKO0hv+D2V+bCkrwwNp8ePsFL8jqi3kTeuObghI8mL2vxd97DvU/jk3Bmh1FXm3XGK3Dot95nzDtO12Jt3cUtbotnYrD85kuTJs2jbe6IsE8GbfV/p52XD0ro8U+2jrJbCoowaL1P6PUbG98rzFai0W/G9hsG970ygENd5I5haV4d2dxq7FrVRxe8KGtNx48dzERdbb7vtmjk1ucWL3h78k3kM/tPnkBu34pB6DAqF6dMLJnp2YXg1XbTmBFzjGv4m/rmHI6ndi4cWNjO7eV0F/+WW/+XR0df38cm4L1B0pa3Jg8e10arkkzet1u/hznvnLUu/HhrmKcqrAiKU6PO0YlQxPWfg9907g8x/Pfc1WwuxoiW5DVB/Mm9PE7ifP23MpHO7T2+zIZdPjdEFOL77AjnuMJQItznzFah9syeyA5Xu/176XpOdTTzq8cicBj0wfyeu3z9votmaRm+fLleOutt7B582b07dsXBw4cwOTJk7Fy5UrcdtttrX7GbrfDbr90EfBU+SwvL+clqck5fB7Lvz6Cyto6LBnuxlN7lLC7Lx0Anv+34pZ0ZA1IaHUbLjeHvacqUV5rR3ykFsOSYnnpJXC5OVyzcgdKzd4f7ABg0KpgdrjQ3lFxeU+PN165eQgmDzQi5/B5LFi3v9UTYEeb1Co5LBnuxsSsLGg1mg732VHbthcL0P731nQfeUUVyCu+AECBESlxGJHckDi01/4KALF6Df5+TT/ER2kBDvju2G/48lAJKq2XLmjGaB2mpSXgvR9PtRnDyotxeo7HpvtUKNDsu4wJv3gnWdd+8uFpa0W3IZg6pFu7731l85F242uNMVqHR6f2R9aABK++p8v/XbF6Da4dZML4/l0a33/5dqqsTrzwTfPPNd1vW3IOn8eiLwpQZatv9npMuBqLfjcQALBs42Gcr7G39vE2KdDymHI6ndiyZQsmTZqE17efbLMdm362rfZ4anoqJg9s2La/v38PvVoFq/NST1uMTo3bRybhj2N7tngE3dFxnhCtwzfzx/p8XvN8n//6sQjfHS9v9jtVKoC7RyXh4cn92/xs07g8x/Pl5+hYvQaPTxuAThGaFsdfW8elv20bE67GS/83BBlJsdh/psrrc74/vy++tPd7cbk5rNnxC9749kTja552fvpiO3tzDvWW2WxGfHy8fJIajuPw+OOP4/nnn4dKpYLL5cLSpUvx2GOPtfmZRYsWYfHixS1ez87Ohl6vD2a4hBBCCOGJ1WrFzJkz5ZPUfPzxx/jb3/6GF198EQMHDsT+/fsxf/58vPLKK7jrrrta/Uywemq8vQu4nALA1X3iceeVKaiyOvCX/x7osJcg5/B5LFr/c4s7a89doycLbu3uTW6atnNsZHibdxA5h89j/rr9LV73tO09Vybhs/3nUGltv7cCAP4yqS9qbU5c3guzZsdJvPHtyQD+NfyKDVejsoPeF19cfkxHqJW4KSMR45r0jGz++Twe/u9+3vbZlALAyzcPwTNfFnbYqxSIpneijno3xizfCku9O2j7A4C543rhj2N7NfQCmK3A2YN4+WcNzltcHX42Vq/u8Lh95eYhqHdz+PunB/kKuQVP7+ALXx/Bv37quBfhhZsGY9qghkcRrZ2rjNE6/P2a/ojWhWHdntPYcrjM61he/L8hmJya0KxX5Xy1DY99fqjxPd6eo9vj+dQdVyR59W/2dbuX92q43BxGL9+GWkd96x8UiAJAhCYMHDhYHO0fo62183t3jeBl8oHsemoSExPx6KOPYu7cuY2vPfvss1i7di2OHDni1Tb4GlOz6+QF3PbO7sY/t/a8tiMdPcIxRmvx9LUD8WB2frvbeXPmUCiVCp/GzkhV68/FG8YBNR3rMOzZLc0G6vFJr1FBE6YM2vbFor1jOkoXhuFJsdh+9LegxhCpVaHW3vGFPhCex54T+nfGrpMXUOcMbkIDABqVEpG6MFRYHH6dOzoSq1fjwXG9sXTjYV6215qGwdADWh1715qnpg9AfJQWxeVWrMw5xvu5yhAehuq6Sxd/XZgStibJKV/trAAQG6HucOyYP9uNi9DgyekDGidYrNp2HCtyjvO6n2BrrZ1fvTUd16W3/wjbG95evyUz+8lqtbaYuq1SqeB2B/8kdLmymsB7Qzoak1Jqtnt1pzU3ex8M4WGyT2jasiLnGP75YxFuHNoNWalG7P7lQlATDqvDBWsHdytyV2OrD3pCAyDoCQ1waRzXtiPB//d4OFzuZgOB+VZpdQY1oQGAkmobnvyiwKv3KgAs+Sq48TRNaAA0S2j4xAG8JzSe7V6wOLDgPwcANPRcmYPYQymkLlE6QfcnmaRmxowZWLp0KXr06IGBAwdi3759eOWVVzB79mzBYxHqS6q1d9ztyAGoqmPbPclapdWJd3cW492dxeDnXpcQ0hFvL+6hesMVCDkMI1AAMBqEX2NMMknN66+/jqeeegoPPvggysrK0LVrV9x33314+umnBY8lMyUOJoMOpdU2+sGKDH0fhBAiDgtnpAq+VptkkpqoqCisXLkSK1euZB0KVEoFFs5IxQNr2x/vQgghhIQaY7SO93VqvEX1Bfw0Jc2EP45NgUKGzzu0HSxqRQghhLTlm/ljmS06S1cvP20qKGlYVVdGzzsitSpMS0uAPchTWgmRE52aTqNEHJLiwlmHAABMywPRr9EPLjeHxRsKZTd+o9buwsaC86zDIERSbAJMAyfEG6cq6pjtW4GGx06sUVLjh9yiCp9qbRBChBOrD8O9o5Px4exMhEhhYkKY8vzMHp3aetkKIUlmoLCY8LFODZEvnVpJd+8M3DUqCVPSTM2K8M0Zk9JmgVRCCD8SLhbXndgvHhsZ/9woqfGD0IsJEWmhhIaND3adQlyEtlll6cempcLNcfjH98WtPi42RmuRHB+B3b9UCB4vIXLx8u/TMbp3PJxO9gsGUlLjB1qnhhBxWpFzrPH/x0VokBSnx/Gymma/U41KifH9OuPOK5MxsmcnfHnwHCU1hARg6+HzGN07nnUYACip8YtnnZr7aZ0aQkSrwuJotRyBw+XGN4Xn8VNxBZbfOIh6XklQRWrD4HC54ZDxrNL3dhbDEK5BcpwWQMNkGjWjWGigMJEMnYoOV8KfKqsT96/NR6XFDpOBEhsSHLX2elknNB4rco411iu8ZuUObCooYRIHXSX84HJzWLS+kHUYIWHe+N6YPToZkdow2FzSOjEsyOoriimOpH1LvjqMJ6YOYB0GIbJx3mzDA2vzmSQ2lNT4IbeoQhYFx6SgtLoO7+0s9qq4p5jEhKsxb0Jv7Hx0AhZk9WEdDmlHSbUN54MwozFCq+J9m4RIgWcM2+INhXC5hR15SkmNH2hKt3A+yT/LOgS/3DM6GSqlAiqlAg9l9cWbM4fSmikiVnTBwvs2bxnWnfdtEiIVHBpuGHKLhB2ET0mNH2hgIWlPhEaF4Ulxze5QYiO0EPiGhfjgi/3neN/mP3ed4n2bhEiN0J0AlNT4ITMljsZKkDZZHC7c/u5PuOr5bdhUUAKXm8O/dhWzDou0o8bG/+NNSmIJEb4TgKZ0+0GlVGDR72hKty8itCpY7C7WYQiqtNqG+9fmwxAehuo6aY0JIsQjQqOCxRFav13CD5OhYRFMIVFS46cpaSa8NSsDj/7vEOrsLdfCIM2N6R2PTT+HVrFMz406JTTiFKtXo9LKfgVUsXvztgyEqZXYdfICOHAorapDzuEyVAehd4vIy8IZqYJX7KakJgBT0kyYlGrEj8fPo+LIT6zDETWxJDTRujA4692oC4F1I8glN2V0w7IbB2PvqcrGMgo/nPgNb2w/yTo00bv7gzzoL+utMUbrMPuqnkiO1+P4+Vqs2n6CYYREjBZk9cWUNJPg+6UxNQLThVGTs2S21VNCE4Ku6h0PTZgSo3p1wnXp3TCqVyfQZDTvcECLx0+lZhtW5ByDNkwJtYpakjSXEKXFvAm9meybemoCsKmgBIs3FKKitg4vZHr3GRtdUAkRXGvlEkb1jMcq6qkJyF/+c4DG25AWHps2QPDHTh6U1PhpU0EJHlibDw4ArbFFiLgZwtXYebwcO0/+hnNVNnSLDcfIlE4w6MLaHRsSqQ2T3MKPQqKEhjQVo1MDcCFrQAKzGCip8YPLzWHxhkKq0C0xCgBGgw4cx6HUbGcdDhHQk18UwOZs3kv6xvaTHT6CumZgAj6V6AKQhAjtpd8PYT6+lAZ4+CG3qAIl1bSqsNRwAG4d0QNp3aIF2V+4msYaiMXlCY1HWzcmMeFheGtWBsI11A0bqCHdoxHRRjtqJTweZ/ogI+sQmtGGsW3LWL0aI5KFnb7dGkpq/EBlEqRrRc4x5Bz+TZB91Tm968uL1Kqgp4un6ExKNdJgYh4c+NXc5mMqu0u6/d2TBxoxZ0wK6zAapXePYbp/sVQip6TGD1QmgfCp1u6ClcYmiEpVXT12/3IBQxNjWYdCeNQw5oMfZWY7xvXtwtv2AvVTcSXTJNzicGHNDvYD7ymp8UNmShyidDQciRA5e/KzQzDFhLMOg/DgjiuSADSM+eDL0o2HMfuDPN62xwfW/V7v/1AMAIJX5m6Kkho/qJQK3DIskXUYhJAgKrpgxaBuBpgM1DMrZbNHJ+ORqf0BAOY6J/icaWz345GLnB9pWusbepyvWbkDmwpKmMRASY0fXG4OXzH6wgghwlmwbh+mpjUMCJXzxUjODOHqxp6Dh/97gEmh0QitCvdcmYxYvZp5b0pH5k/sg1dvTQ9oG+fNNjywNp9JYkNJjR9o9hORO88F/PbMHm3OXJGCQBORLYfL8N7O4oZtUVYjSStyjuPK5VuZxmCxu/D+j8WirzV27WAT/jSxD64d3DWg2V3cxf8WbygU/FEUDQzxA81+InLW9NqtV6vgqJfuIGbP6VSjUsLhCmx2BsNhAiRAtEigd748WIIfTpQDAKp4SMBKqm3ILarAqF6dAt6Wt6inxg80+4k/E/vHsw6BXCZCq2qsUfbOziK0scSLpASa0BASKqqsTl4SGo9Ss7CdAJTU+CEzJQ4mg46esQcozRSNrUfKWYdBLlNrd1HRT55EUg0VEuIqaoVdvV1SSc3Zs2cxa9YsdOrUCXq9Hunp6di7d6/gcaiUCiyckRrwdmL1ahjC+Vs3QWqKKyysQyAkqGrt9NiDhLa4CI2g+5NMUlNZWYnRo0dDrVbj66+/RmFhIV5++WXExMQwiWdKmgmrZ2UgVu//sKSl16dh9mjxrEgpJJ1aSSd8wtzYPvT4k5BgMhqEXetJMgOFn3/+eSQmJuL9999vfC05OZldQBfZ6/0fPfj45wW8PruUkrZq8RDfxOjVqLY6RT9NVKx2HKfHn4QEi8mgQ2aKsPWgJJPUrF+/Htdccw1uvvlmfPfdd+jWrRsefPBBzJkzp83P2O122O2XnueZzWYAgNPphNMZWDKRc/g85q/bDwDQKrlm/+utOrsD9Mjde/62sxzdltkDkwYkYFhSLP7+yQF8U3ie1+1TWwuD2lkYYm1nhQLgxBVSQC5v56en94PbVQ83D53y3l6zFRwnjSbV6RpmHD388MO4+eabkZubi/nz5+Ptt9/GnXfe2epnFi1ahMWLF7d4PTs7G3q9PqjxEkIIIYQfVqsVM2fORHV1NaKjo9t8n2SSGo1Gg+HDh+PHH39sfO3Pf/4z8vLysGvXrlY/01pPTWJiIsrLy9ttlI7kFlU0q/mhVXJYMtyNp/YoYXfTnKhgoXa+5JWbh2DigARc/eJ2VNXx/wiT2loY1M7CoHYWRmvtvPKWdGQNSAh422azGfHx8R0mNZJ5/GQymZCa2nzG0YABA/Dpp5+2+RmtVgutVtvidbVaDbXa/1lH5dZ62F0tfxh2t6LV1wm/qJ2BZ78+hmi9Dudr6xHMBfxDpa3VSkCpUMDuYnOPF4x2ViiAq/vE49tjNG7II1SOZ9aatvMzXx3F5LRuUAVYdMvba7ZkZj+NHj0aR48ebfbasWPHkJSUJHgstPgeYa2k2ob/5f8atO2H2mnf6QazhCZYOA7oJPB0WhJc88b3wkdzRuLuK4W/7jXlS4LiWVVYKJJJahYsWIDdu3fjueeew4kTJ5CdnY01a9Zg7ty5gseSmRIHY3TLHiBChFRjrw/atgO9vCsApHSicWusfbrvHOsQCE9MBh3+PLEvACBCw/Yhi6/1nIQsLSSZx08jRozAZ599hsceewzPPPMMUlJSsHLlStx+++2Cx6JSKrDodwNx/9p8wfdNiEeCiBNrDkDRBSvrMAiRjWFJsbj6xe2SLKYs5NMNyfTUAMC1116LQ4cOwWaz4fDhw+1O5w62KWkmvDUrAxE0J5sITIGGu7ZhPYKz/oMvK4CG2mMqIjw6xzb48mCJJBOauAi1oGvVSCqpEZspaSY8d/0g1mGQEOJJIhbOSEWCITh3P3eOTIIxuv1tG8LD8MS0AbToHwm6e0N01XW5ePa6tIAHCfuCkpoAuNwcFn/5M+swiAx4+5OP1oXhpoxuqHO6UXjOHJRYUjpH4NGp/VuNS3Hxv+dvGowuIn78FSzzxvfCgqy+onn0J+cTuKdH8j97zrAOxSsqJTBjsJF1GKJy39gUTBvcVdB9yvk3EXS5RRWosIRmmQPCr7uvTPIqsam21eOT/LNYsG4/lm48HJRY4iO0iLw4EFGvad71HxuhxuzRyTCEaxAfIY4Lu5D6JETB6nDivFnYysNtkXuxkVtH9ECpSNq6Iy43sOFgKeswmLj8kXWcXoM3Z2bgsWmBF372lWQGCouRkCO6ibx1j9Xj7iuT8En+r6ixsSn0qQBg0KsxNzsfdQ4HXsgELA4XAAW0YUqoVUpUWJx4d2cx3t1ZjLgIDfQaFawO4ePtHqPDr1XC//7+ubMY+85UCb7f1oQpFaj3cRaKVMSEq7H8pkGw18s9betYpDYMtUGc6RgovUaFV29Jh1KpQLnZCpzZh+1/HQedls1yApTUBIDWqyF8UCqAJV8Fp9fFFxzQWGD18rGZ9np3iwtMhcUhUGTNGXQqJgkNANEkNABkm9AAwOu3DUWYSomdJ4K/cGCERok5Y3rigsWJD3efCvr+fHVbZiK+PFiC0mqbKMewWR0u3PFeLkwGHZ6e3g8O+LaODd8oqQlAZkocTAYdKmrrWIdCJEwM1yZjtBbmOiesEqieXs2oJ4sII1Ibhr/+9wDO1wjz2MnqcGPl1hPQa8Q5GuOd74tw39gUrNlRxDqUdpVU2zB/3X68kNkw3tT/NfsDI85vUSJUSgUWzkgNqWmt1w424c2ZQxGjZ3XIygfDm5lGk1K74KnpA/D8jYMlkdAQ+au11wuW0ACXFpq0OsR7/P9nz694Y+ZQmII045Fvk1d8h00FJUz2TUlNgKakmbDilnTWYQhm18kLsNe78fotQzFSwLUH5EgMPTRbCsuw5KvDmPsRLSRJvKcQQUIeSiqtThj0Gnz3t/HQhon/sn2+xo4H1uYzSWzo8RMPsgYkYKO4ewZ5c8HiwIL/HGAdBuFZrZ0e6RDvcSJIyIUUoVFdHDTPzq6TFwAOkho8vXhDISalGmmdGqnxtQ4GIbRKKiESIoIszs25sesX6VRc5yB8MUuAkhperNlxknUIRGJU1H1PiGRYRDDe7MPdp3GirJZ1GD4TeukTSmoCtKmgBG98S0lNMERopNmbYTLocO1gU4uF65oy0wweEqJi9WoYwmnkg69qbPXY9PN51mH4TOilTyipCYDLzWHxhkLWYcjW2L6dJTOzbEFWH7x6azoWZPUBx3H48mAJk0XphOLPQNFYvZpmzfnpzxN6I1YmbVdpdWLe+D6swyACMBl0ghazBCipCUhuUYUkq6ZKRb+ESBhEfiKPi9BgQVZfJMdHoLjcghU5xyWzrHsgOA4YkRzr9UyMuAgNXrt1KG4a2i3IkcnTv3afwtLr0yST5HckPlIjmenJxH8LZ6QKvhAf9QEGoNQsnYRGAYhyNcr2rNx6gnUIHXK53FiRc4x1GEzkFVd6/d5KiwN3vJcbxGjkrcrqhCFcg9WzMvDwfw5IvhfQaAjHU9NT8WA2LSUgV/dcmYQpaSbB90s9NQGoqJXOHbnUEhqpqLaJtyaLmNDxF7hdv5RjUqpREuuUtCdWr0alxY4lX9Gje76IsQcvK5VNxXLqqQnA5ZVJxUgBwBCuRlUdVRMnRMpOlFnwz51FqLQG/luO1aub1foSkqPejQez9wm+XzkT5U0Do6CknfIzZjSE87YtQzj/Y0c82fs9o5N533Yo8AzMFONdEAk9m34u5a3w6QNjezFJaAAwX8SOCGPbETYztSipCYCnoCUfbE7ff+iXL+B2+Xgso0GH1bMyMG9CH5gMOtFcnDOTYliH0K4IjQr//sMV2PPkJLw1KwPGy77jmCAkoE33TeRBAXHU92rN9yels4gbkaZ3dxZTmQSp8RS0fOijvQFvy5+lry0Xl7aPCVfjntEpeGBcL+w9VYmyGhu6RDVMpfOMPF84IxUPrM1nPmBYAWBg9xjknqpiGEX7Zo3sgdG94wE01PaalGrE7pMXLq7mqYAhXI2lG/m5Y/a458okTB5owrYj5/HO9yFSc0PmOIhiIdpWfX+ckppg06gUcLhEegAI5NFPDwpeJoGSmgBNSTNh7rhegJXdDJjqOidW5hxDP2Nkm6PNp6SZsHpWBhZvKGw2DV2pELawIgfg/Z3Fwu3QD+sPlODvUwY0/hC3FJa2aDe+fZp/FhwH/HPXqaDtg7RNqQCidWpU1zl5SfojNCrcPLw7/vkjfZ+hKtQTGgCoqqvHqm0n8FCWcOsSUVLDgz+O7YVvNrFLajw/nb/89wAi1GG4olenFj02AGAI1+Dv1/RDea0dFVYHSqpsKC6vxf5fzcxiF6OSahtWbDmK0b0740KNDfM+3h/0fZpt9ZTQMOTmwOtgeovDhfUHhO96lwK9RoU6h0ucg1sJ797/sQjzJvQWrLeGkhoeCL24UFssdhfueD+3xSMmzyqurAYGStGq7SexajuVvwg1OrUSNp7q/FRYHLxsR26kvsYO8U2V1YncogqM6tVJkP3RQGEeiK1K9+XRVFmdlNAQ4gW+EhqxiNKpcMfIJNZhtEAD4qWpvXp27RGyqCUlNTzYe8r7lVUJIUQoNTYXamziu6Ghad3SdMPQrn59TsiilpTU8ODbI2WsQyCEkFZ9vv8c6xCITJy6YPX5M0IXtaSkJkAuN4cNh+ikQYg3MpNjWYdACPHTDycu+PwZoYtaUlIToNyiCl6WLSeEhRmDjTBGawXZl8mgw/GyGkH2RQhh782ZGYIXtaSkJkBCDoAihE+xejWmpnWFUIUgbhmeiEorFQAlJBRow5S4Jk34opaU1ARIyAFQhPDp98O7Y252PkrNwiTmR87TekhE+jQqcSzhIXb2ejdWbTsu+H4pqQlQZkocjNGU2BDpUCqAVbemY/2BEkEXQPv26G8C7o2Q4HC4OOg1qsb1vzxMBh1i9Oo2+z0VuFQkVwr4SN3e31ks+JInkk1qli1bBoVCgfnz5zONQ6VUYFpaAq/bpPsAEkyrbstApyhdUMs+tEZua8CQ0GV1uFBldWJqmhHzxvfCv++9Aj88MgHLbxwEoOU53LMgqrhWNGsfH7FW1TUsvCckSSY1eXl5WLNmDQYPHsw6FLjcHDYW8Fdi3fNjmD5I+GeRRN5i9Wq8NSsD0wabaCwYITz4uqAUq7afxF/+ewCrtp2Avd6N+Vl9kXBZ771UV3UPVweeIgh9rpFcmYTa2lrcfvvteOedd/Dss8+yDge5RRW8jkkwGnR4anoqDHo1thwug8OP6t0dYV2pmwjv2kEJePW2YY1TK70dCxalDYPdSgulEdKeUrMNK3Iu1f8zRmuxIKsPkuMjEB+pxV/+s59dcAGo5+HRUXG5hYdIvCe5pGbu3LmYPn06srKyOkxq7HY77HZ745/N5oaBik6nE04nPxlzWbUFWmXDF+/5X3/cNyYFV/SMR5XVgee//hmlZhsUALQ8ryZ+35gUrNvzK6/F+4TCRzuHovF9O2PF74fA7aqH+2J+MrR7FJJitW0m5J42vm5IAtbmnhUq1JBDx7QwhG7nKosNq7cfw4pb0uGur0elxcb7uVwYnE9xt9bOn+45hfvGJAe8Vo2312wFx3GS+TV9/PHHWLp0KfLy8qDT6TBu3Dikp6dj5cqVrb5/0aJFWLx4cYvXs7OzodfrgxwtIYQQQvhgtVoxc+ZMVFdXIzo6us33SSapOXPmDIYPH47NmzdjyJAhANBhUtNaT01iYiLKy8vbbRRfuNwcZrz2Heb1teKpPUrY3b5no2N7x+PQ2WpUSrD3REhaJYclw91YuFcJKFSoC8KjORaUCqBpLy/fjwcVABKidfhm/thmd0urvz2JN7490epnPG3t7zFNvEPtLAxqZ2G01c4v3DQY0wYFtgif2WxGfHx8h0mNZB4/7d27F2VlZRg2bFjjay6XCzt27MCqVatgt9uhUjXvJ9NqtdBqW66WqlaroVbzM7VODeDhawbAUbQXDrcCdpfvP5gtRz1LT9OPrT36MBUAB167dTju/Fc+5NBeEVoVwpQKVNcFd1G6U5V27Pu1BpkpccgtqsDmn0vw/o+n0FEb2v08polvqJ2FQe0sjMvbuYshIuBrrrefl0xSM3HiRBw6dKjZa/fccw/69++PRx55pEVCI6SsAQnYWNRwN3yq0t7xB4hfnrtpEBxFe1EpwqrD/rLYhRuEu6WwFA//Z7/gU7lDRUKUBmP6dMYn+TQGiRCg4ZbJKHBBS8kkNVFRUUhLS2v2WkREBDp16tTidVa+mT8We8+YMedfe2B10IwRPjVd6Co+UphaRXLz3s5i1iHI1rCkGJyttFFC04qMRAOOnq+Fhc6JIYkKWkqYSqlAjc3pVUJDHaC+qbY6sWDdfgDAsKRYmAy0ijMRj72nqgQrNyE1+WeqBUloNCoFdGF0SRMLpQJ4Y+ZQwQtaSqanpjXffvst6xCacbk5LN5Q6NV7JTE6W0Qub6+FM1Jx/9p8JrEQQsTH4fJ9zd44vRoVQVgQTxemgK0+tM/ybg6IjRC+V53SWh7tPVVJ4xWCyHOK2HuqElPSTHhzZgYU1OVFCPFRr84RmD+xDzRh/I/FjNaF4Z7RKbxvV4pyCksF3yclNTwqq6FBwkIor21oZ6USkMaCBIQQMTn5mwUrtx4PyiPD/sYoKGiAAQDgs/1nqaCl1LjcXGPBrv1nKhlHExriI7U+PeojhPiHLs2+yy2uxJvfnWQdhihUWIQvaCnpMTWsbSooweINhaiorcMLmcDHeWdAp4Hg23b4PI6ct9CjPsKLSG0Yau3BXSdIqqgjlASKClpKxKaCEjywNh8c+K/PRNq3Nvc0LaBFAhahUUEdppRc5WShXd0nHt8dL2cdBpGoeIEHC9PjJz94Hn3QXQzpSFwEPytXB4uAy0eIjsXhooTGC5TQkIAIfI6hpMYPuUUV9OiDdMhk0GHWFUmsw2iXwGP4QsKk1C54aGIf1mEQIgqeiR1CocdPfhD6GSGRpuo6J17b1nrBSNK2u0YlYUqaCaXVdVjy1WFUWBysQ/LJiB5xeH9XMeswCBGFLlHCLpRKPTV+EPpLItJEpTL80yNOj7IaG7pE6XDnSHH3dLXm55Jq6sklIU+Bht5qIes+AdRT45fMlDjEhKtRVUfP4wnh25KvDrMOISBfHChhHQIhoiB03SeAemr8olIqcM/oZNZhEBKSdGo6bRF50qjkMXLfGK3D6lkZgtd9Aiip8du8CX2g19BcbkKEZnO6WYdACK9i9GrcNzZF0jNqFQDG9o4HAHwzfyyThAagpMZvKqUC943txToMQgghEldldeLtHUVwuqSZ1lzVqxOOPjsVb84aBgCCP3JqipKaAMyb0BsxenGvQ0IIIYQE031X94ImTBzphDiikCiVUoHlNw5iHQYhhEiKQh5DR8hFf/3vfryacwwbDzUMkhe6iGVTlNQEaEqaCStvSWcdBpGxYUkxmDeeHnUS+eCk+ZSFtOF8jQMrco7j758eBABcs3IHNhWwmQVISQ0PsgYkAADeu2sE7hwlvXU1iLjtO12FueP7ICacHnV2JFqnwtQ0I+swCAlp5802PLA2n0liQ0kNjzJT4nBNauieULUieaYqN24OyP7pFC0j4IVauwtfF5SyDoO0Qkfnh5Dh6YhbvKFQ8EdRdJTxLUSfFcfq1Vjx+yGsw5CtHcfL8cC43lDRL7ZdVMtKvLRqWgIjlHAASqptyC2qEHS/dIrkmdDFu8SCA3BNmglvzcqAMVqYUvOhlD/mFlVgxNItcNESLUSiqmkF9pAkdK1ESmp4JkRdqIzE6KDvw1dVVidyiyowJc2EnY9OFGRga4RWhVW3DkVchPzHmtQ5Xaiuq2cdBiGE+IQKWkpYblEFSs02RGqD282671dzULfvr1JzQ0auUiqgFuA5Sa3dhWc3FuKmjG5B3xchhEhJtC6M+ar3LApaUlLDg5zD5wEAsz/Iw4J1+1Fr77g6cyCDasU6HTL/VAUc9W68mnMMK3KOC7LPUrMd//i+GJNSuwiyP0KkKtg3W0RcFs4YiFcYj3OkgpYStKmgBAvW7ff5cyt+n475E3sj4rITTYxezTy7jovQ+PW5D3efRv+nvhYsoWmq4KwZr982FJFa/gvP62mAIxFQMK4B88b3xoGF1+DeEJxBFxGiNfqM0ToYwjVI725gsv8FWX2Z1H/i/woQQlxuDo/+75BPRchiwsNwy4hELPmqECXVlwZQ6TUqTB2YgOuHdke5xYG9xRVY+9Np/oP2QjeDFhUWh1+fZTH7xDPKPj5SiwMLJ2Ne9l58XXCet+1PTUvA//adC0qxuQiNChZHxz17JDQ8NX0ATAYdHszex+t2R/eOh0qpQFaqEe/uLOZ122JncbgQap1UEVoV/vLfA41DAoSWEKXFvAm9meybkpoArNp2HFVWp08/mKq6ery9o6jF61aHC5/uO4dP953jMUL/HDpXwzoEv3hG2es1/B7W1w/tjvgobavfW6AooZEuvUYFK8/f36kKK2rtLsTo1aiy8jdbqNLSMCszMyWO922T4FEAiNKpYLb5dpxZ7C5YvBgGwTdPJ+Nj0wYwK2pJSY2fXG4O74fYHY/YbSk8j6e/KOB9llC5xYF1e37ldZtypQBgCFejKgSm7/Kd0ADAv3ad4n2bALDkq8PISjVi9bcnKaGREA7wOaFhKSFaB8DSuMo+CzSmxk+5RRUhceKWki8PlgRl2nN5jZ0uBF7iANx9ZeiUCglXKySxXlJJtQ0ZSzZjRc4x1qEQmeoUocHGP49hHQYlNf4SekEhIjwFGqYkVlr9G18Uqj7OO+PTgO1JA6Q7c63OyQVlrFUweDMrkxB/XbA4sP9MFeswKKnxl9ALChE2Fs5IDcpsFDkrNdtRa/e+x2zL4bIgRkMIEcpPv5QDaHiSIXTNJw9KavyUmRIHk0Enia5n4p+s1C6YkmbCqJ7xrEMhhBDRe/v7hskUsz/Iw1XPb6Mq3VKiUiqwcEaqZLqeie+2FJZh48FzGNmrE2LC5V+KgZAoXYjNfSZBU1ptwwNr8wVPbCST1CxbtgwjRoxAVFQUunTpguuvvx5Hjx5lGtOkVCNi9HSxk7O/f3oQAHDP6BTGkRASfDU2F/U+E154bvgXbygU9FGUZJKa7777DnPnzsXu3buxZcsW1NfXY/LkybBYLMxiyi2qoFkxMldrd2Fe9l7Y62mQJQkN1PtM+OJZGDW3qEKwfUpmnZpNmzY1+/P777+PLl26YO/evRg7dmyrn7Hb7bDb7Y1/NpsbCkE6nU44nYEnI2XVFmhVHLTKhtOA53/FZkzvTvj+xAXWYQQs0Ha+qncn3H1lCsABecUXGp//dmTb4dKG/YZQz7zYj2m5oHYWBrWzMNpq57JqC5zO6IC27e01W8FxYi2P2L4TJ06gT58+OHToENLS0lp9z6JFi7B48eIWr2dnZ0Ov1wc7REIIIYTwwGq1YubMmaiurkZ0dNsJkiSTGo7jcN1116GyshLff/99m+9rracmMTER5eXl7TaKN1xuDmOe3wqz3QWtksOS4W48tUcJu5ueSAdKr1bB6mz5uCeQdo7RqfHS74dgRHJc4/LdXxeU4m+fHOAlZrmR0zG9/IZBWLn1OLM6OO2RUzuLWXvtPLFfZ0TpNNh+5DyqfViKIBj+mtUX52vs+PCn4KwsHQwRF8uFcGjZzgo0rDL8zfyxAZdNMJvNiI+P7zCpkczjp6bmzZuHgwcP4ocffmj3fVqtFlqttsXrarUaanVgA3xzj5fjN6sbaDKszu5WwO6iExMQWKFGu6t5u7b4ez/a+bylHne8vxcmgw4LZ6RiSpoJnaP1Qfu+YmRSKkAOx3SXmAhMGdQ1KLW7+CKHdhYLBdoeF9RaO28sbFhbRakA3By778Bk0GH21X2wpbAU//iRTTFjfyicgO2yNrW7FXBcfO2x6QOh02oC3o+312zJDBT2+NOf/oT169dj+/bt6N69O7M4dl1cZIi0FKkVb+XpptMMg7kq9J2jQqdUgJCGJ8X6/Jl5/96Lj/POBCEaIkZGgw6zRyf7/DlGa8U1qnO68E1BCRZvKGQbiI9s9e5WXzcadFg9KwNT0kyCxiOZnhqO4/CnP/0Jn332Gb799lukpLCeYkt3VW0R83LsHBq+ucUbCnHL8MSg7EMBYO1P0rnTkpI9pyp9/kxlEOqBEfExhKsxe3QyHhjXGx/uKmYdjs+qrU48mL2PdRi8mDuuN+ZO7MekUrdkemrmzp2LtWvXIjs7G1FRUSgtLUVpaSnq6uqYxDOqVycm+yWB80wz/McPwXkcwQGosFC9KOIbuk0KTHWdEytyjiPzuRws+eow63B8JrnBre34KPc0lUnoyOrVq1FdXY1x48bBZDI1/rdu3Tom8YxIjoOCzkKCCNZqvr7UJxITnVoyP1viAzld1FiitcPYq7A6MHJZDpMyCZJ6/CQme09VQmQhydYbMzMAANm7TgA4zzYYH0TpwlBj4z9xsjlbf4ZNCCFiUWFx4oG1+YKPq6FbPj8Fc5ApaaBAw4yA6jon5mbnI+eotAZnD0+KYR0CkaHIUFoFkkgelUmQiPjIllPFCf9+N8SEB7PzJTk9+sCZatYhEBm6IiWOdQiEeIVFmQRKavwlgUdPQxMDW2CQJaUC+MOYFHyx/xzrUPxWYXUiQkN31VKiC1NCL9LvLFavxvyJfbBbwAsEIXwQ8skGJTV+KrfYO34TY0UX6jBnTDLrMPzCccA73xeh1Cz+dm7P2L6dWYdAfGCrd8MqwjWWwtUqaFRKrNx6HBYRL5lASGu6ROkE2xclNX4S8kvyV5XViXe+L2Ydhl8k0BHmlVkjk6BR0TQ5Epg6pwvna6Sd4JPQZDLokCngI1NKavyUmRKHuIjgTDUm8tAlUg23mwto5p6aweJVhBDCl98NMQm6CB8lNX5SKRW4Ib0b6zCIiP1mceKO93IRyAxsJ+u12wkhJADrD5TQ7CepyEo1sg6BiBitY0QICXU0+0lCMlPiYDLwO7YmUhtGy6UTyaBjlRDSEZr9JBEqpQJPTR/A6zZr7fWyGSRL5O3awSYkRIt/wDwJLWldo/DEtAEwhItjwfzJqQkYEeILcdLsJwmJjaBF+Ah7Bl0YPpydiYQojWD7/PJgCQAOC7L6YN743oLtl5C2xISr8djUVMRHapDVvwvrcAAAmwvPI+9UVcDbidML89vu3VnP6/biIjQ0+0lKqFwCEYNqWz3yT1dh4YyBgu631GzHypzjqHNIszhoWyK1wTs1Tugfj3C1OBf4k7qqOiduf/cnLPjPAXy6T7oLd7bGbBNmVfUTv1l53d4VKbGCzn4SR/+chElhvRoSGlbkHEOMXvhlBjgA/9l7RvD9BlOYSgUgOIVDtx2RVg0ztUoBp4seirNWL9GZkL06Rwm6P+qpCVBmShyMNK6AiESVlU2NrBqbvFa5ZdWOYiTnhEanpktgU8EoETKqVyfet9ke+kYDpFIq8OjU/gBoJgghhEiJLZBFpGRGAWBINwOv24zVqzGyJyU1kpM1IAEAaCYIIUTW6MZNnuL0arx221AcLjXzut1lNw4SdDwNQEkNr76ZPxb/vvcKaMPop0/EbWyfeDwxbYCgs6XkShFCP/fJAxNYh0CC4Lr0rli4vgBVdfwM+I/RheGtWRmYkmbiZXu+oIHCAXK5ucbVEveeqgSUKtjr5fsMmghLE6aEo57/LvIdx8ux43g5IoLwDD3UhNLK0bMyk/BTUQWNOZKZ9388xev2Xvp9Osb0Y7PiPiU1AdhUUILFGwpRUVuHFzKB2R/kISyMmpTwJxgJTVMWh7wG+JLg2nu6AstvHIT71+a3+DsFQAuHEgBAhcXBbN/0+MlPmwpK8MDafJRUN1+nxmJnf5HQhikxNDGGdRiEEJlZufUEAOCtWRktSsQYDTq8OTODt2UF5oxJDqlHe3ISH8luUVrqVvCDy81h8YZC0d6V2Ovd2HeminUYhBAZWryhED88MgGTUo3ILapAWY0NXaJ0yEyJg0qpgFIJPLA23+/zo1IBrLptKJRKBd75vpjP0IlAhiXFMts39dT4IbeookUPDSHEO2qBZ0NInV6jQniYeE7VnqrLKqUCo3p1wnXp3TCqV6fGWS5T0kx4Y+ZQxEX412MTrlbhp6IK/O2Tg3yGTUKEeH4pEkKlEQjxn1OiK6OyYnW4UBfksVW+au8cuKmgBEu+OowKi3+DiS0OFz7YdQo1NnmV3ggl2T+dgovR75weP/mBSiMQQkLZ5edAzyzQLYWleG9nMZugiGg8/81RvLPzNBbOSBV8WjclNX7ITIlDXISG6QhvQghhwaALQ8HZapSabTBG61BpsWPJV4fpkTxpprTahgfW5mO1wOvVUFLjB5VSgWevS8OD2S2nNQbbjUO7YnPhedSKYJYVIST0VNvqsXTjYdZhEJHj0DDNf/GGQkxKNQq2sjCNqfHTtMEmTOjfWdB9RmhU+PHkBSYJDS3SRgghxBccLg0sFwolNQGYM6aXoPuzOFwoNdsF3WfTfRNCCCG+EnJyDSU1AchMiUNMOD8LTXUkGCXhCSGEkGATcnINJTUBUCkVuGd0siD7slJPCe+0KlovhRBCgslkaFiYUSiU1ARo3oQ+gvXW8Imu54DdxSFSy7YHLEpHY/UJ6QidrqTr1hE9BBskDEgwqXnzzTeRkpICnU6HYcOG4fvvv2caj0qpwNPXpjKNwR9KWtUVAJjPIrt5WHcoQCdtf43qGYs7RyXhjpE9WIdCgoiWa5Su5Hi9oPuTVFKzbt06zJ8/H0888QT27duHMWPGYOrUqTh9+jTTuGL0Gqb794fTRacJMZiUasQfx6awDiNodEFe3n/XL5VQKxWYkmZCtI7GnREiNkIvVutz33dOTg6ysrJa/bu3334b9913X8BBteWVV17Bvffeiz/84Q8AgJUrV+Kbb77B6tWrsWzZshbvt9vtsNsvzRYym80AAKfTCafTvyW8W7PjcClSAWiVwUsUwhRAfYjnIZ72DWY7C+3bw+fwwa5TENs4cL7amuNcCPYTvrW7i7B2dxEUQND3xTc5HtPemjuuNz7N/xWl5uDPjAnldhbS5e0cq1djaPcoXq633m5DwXGcT9+yVqvFvHnzsGzZMmg0DT0Uv/32G2bPno2dO3eioiI489EdDgf0ej3++9//4oYbbmh8/aGHHsL+/fvx3XfftfjMokWLsHjx4havZ2dnQ68XtkuMEEIIIf6xWq2YOXMmqqurER0d3eb7fO6p2bFjB+644w7k5OQgOzsbxcXFmD17NlJTU3HgwIGAgm5PeXk5XC4XEhISmr2ekJCA0tLSVj/z2GOP4eGHH278s9lsRmJiIiZPntxuo3jL5eZw9YvbUWd3YMlwN57ao4TdHZzREb8f3h3/2fNrULbNhwiNClaHK6jPvrVKLujt3Jq543ohO/c0Kq389e6JHau2DjWh3s5KBSBE3cNQb2ehXN7O941JwZ8m9uVl254nLR3xOam54oorsG/fPtx///0YNmwY3G43nn32Wfztb3+DQhH8g+XyfXAc1+Z+tVottFpti9fVajXU6sBnLOWeKMf52vrGqcF2twJ2V3DaIDk+Omjb5sOEXp2xqeC8IAP6gtnOl4vQqnD/+H64f3w/jFy2NeTqfQnZ1kIIUwIiK3gNQH7tLFbUzsLwtPMVvRJ4udYC8Ho7fo3iO3r0KPLy8tC9e3eEhYXhyJEjsFqt/mzKa/Hx8VCpVC16ZcrKylr03ghl18kLguwnQqNC786RiNWLd+p4Ro9YTBzQhXUYvLPYXRi5bCtyCs/juRvSaJaSxIkxoSEdk/vvTq9Rokuk9CactCdGr8bIXp0E36/PSc3y5csxatQoTJo0CQUFBcjLy8O+ffswePBg7Nq1KxgxAgA0Gg2GDRuGLVu2NHt9y5YtuPLKK4O23/a4OWHOkBaHC3f9M0/Ujz+WbjyCnMNlrMMIigqLAw9m5+Org+fwhzHJrMMhJOQYDTq8OXMo4iLkdeH3sDrcKKuVVy/w8hsHCbo+jYfPj59effVVfP7555g6dSoAYODAgcjNzcXjjz+OcePGNZttxLeHH34Yd9xxB4YPH45Ro0ZhzZo1OH36NO6///6g7bM9sfqWj7aIfG04WCr7O0ZCxMSgC8Obs4ZhZM9OUCkVcLuBeR/vYx0WaSJWH4ZKa32z11beko4paSYm8fic1Bw6dAjx8fHNXlOr1XjxxRdx7bXX8hZYa2655RZcuHABzzzzDEpKSpCWloaNGzciKSkpqPttS3wUJTWhRsgJoammKBSW1Ai4R0LEZfZVKRjdu+F6s6mgBEu/Psw4InK564d2x+RUI0qr61BZWwdUFiJap4bLzUmjp+byhKapq6++OqBgvPHggw/iwQcfDPp+vGGMFnZRIRJahiXFUlJDQlpyfASAhoTmgbX5tLKwCL2/sxgalQLrD5SgorYOL2QCsz/IQ1xkOBbOSBW8x0ZSKwqLTWZKnGyf8RL2PtzNdqVsQljrEqWDy81h8YZCSmhE7O0dRSipbr6IYmm1DQ+szcemghJBY6GkJgAqpQLPXpfGOgxCCJEVBS5Vd84tqmhxwSTi50lCF28ohEuIxYguoqQmQNMGmzD7SjZjegiRGr1GKfrB1nqx1awIUQtnpEKlVKCshhIaqeIAlFTbkFsUnEoDraGkhgcPT+4PAKJeR4YQMah3i7vi8nVDTIjW0e+YpRi9GqtnZTSOxRC6ICLhn5CJKSU1PPr2r+Px0ZyRSO8eeAkG4jsFgEmp8lsAUE4cIl/9TqFQCFJgkbRt7rhemJRqBNBwvBScrYZeTb1nUiZkYurz7CfSNpVSgcyUOJyqqGMdiqytvCUdz3x1tNlzdpNBh6emD8AzX9KUT+K/bjHhrEMIeUs3HsF7O4uR1i0aWw+XCVIbigSPZ2yUUCip4VluUYWoV/6VsoQoLQArxvbpjNmjHcgrroBeo8JNQ7vjyj7xeH3rcbrLJn6L0auhVlHntRiUVNtocLBMeMZGCYWSGh653Bx2nviNdRiyZb/46GL40i2oq7/0I1l/4BzSukXj4K/eVXGVIwXEPVZFCm7K6IaP886wDoMQ2ViQ1VfwdWooqeHRNSt34FRl8MpEhLqquoYesMu7o90cQjqhAYCpaUZsLCjt+I2kTe/+UMw6BCITERoVLA4X6zCYMkZrMW9Cb8H3S0lNgFxuDqu/PYkk4OKjD7FPWCVytOuXC4jRq1FtdVKPDajnirBldbjw0MTeSI6PxM7j5fgk/9cW75H7MbrodwOlUSaBXLKpoASL1v+MSosNL2SyjoaEsqbjuOR6smzr7tfz712Q1QfJ8RHoEqVDpcWBudm0rD7x3Z8n9Mbr204EdOxwAF7degIxejWq2hhjaQhX457Rycg/VYnvjpcHsDfxmTSgi3QKWpIGTWuRaCU02zBcrUSdU9zTaon/FAAMl51II7Uq1Nql3xVucbig1yhhdTQ/fg16NZbfOKjFSfQNZODJLwpQYXEIGaas6DUq/OGqlIAv8lJytqqOt39rWwkN0PA4fUXOcejC+B2cLoZHXz+eKMemghImiQ0N9feDlGuRUEIjbxwaTqQLsvrg1VvT8e97r8CE/vJZu+fyhAZo+PfmFVVg18kLcLk5uNwcXs05hsc/O9QsoYnSSejuQySsDhcM4WpJnuv8teGgsLWKbDyv3dQ1Rst8EITF6cb9DOo+AdRT4xeqRULE7uO8M3hqeir++smBkDhW391ZjHd3FiNGr4aj3g1rK3eqNTbp91ax8Et5LesQBCX2BSI7crzMyjqERo/+7xAmpRoFHVtDPTV+oFokROxKqm14MDs/JBKapqqszlYTGuK/MrP3MzoVaFjvR4oUoGkefKuyOrH75AVB90lJjR+oFgkbxuiGdqcTDyHCiYvU+PT+565PQ0y4tB4CeAabh9JjNqHs+kXYQdCU1PghMyUOJgMlNkKzOeoBAFMZjaonJBSty2s5Hbk1erUC87P6wqDXoKquPshR8cto0GFC/86sw5ApYW9DpZVOi4RKqcDCGam4f20+61BCSpWt4US5saAE1F9DiLhYnRxW5BxDTLj4Hz9lJsXgTxP7osLqQJcoHYYlxWLksq2sw5KlUb06Cbo/6qnx05Q0E96cORQM1hYihBDR8qz8LWa5p6ow76N8aMOUGNWrE/aeqqSp/0GgUAAjkoUrZglQUhOQaYO7YtVtGazDIIQQ4qPquvrGacc0+SM4OA7Ye6pS0H1SUhOgaYNNmH1lEuswfGIy6GCQ2EA+QgAgVq/Ggqy+mEjjHwKmABCppfPAo/87hPhILeswZEvohJGSmgC53Bw2Fpz36TMRGmEXAVMA6BShwYrfD8FHc0bih0cm4NYRiYLGQEggIjQqLMjqgz1PTkI/YyS2HfmNdUiS5nlq/sJNg4M6BVvD82q5wVBldcLt4gSf/GGQwNgjPgg9W1j8R5zI5RZVXCxk6Z3r07sK/kPnAFywONDl4pTo9QfO4b97vZvRQOTj8uFfUhoP9uwNg/BQVl8AwKL1P9PU2wBF6cLwxswMTBtswvIbBwVtP5HaMMyf2KfFBVxsh95PxRewcEaqoPsc1TNW0P2xYDLokJki7Jga6nsMkK9dayqlolnxQSHN/Xe+JAbxEd/o1UpYvSh/0TQRiItQ46aMbvjH98WSSBA8axSt2nYCpT4sBkdaZ7bVY8lXhQA4xEZoce/oZHy2/ywqLPyeHzyDb8PVSlTXXXpdfMeconHyx7yP9sEtQICbfi4L/k4YWzgjVfBK3ZTUBKi43LclqbceZncgU0IjPgpFw2C6QGjCVF4lNU1VWpz4x/fFyErtgi2F4j25KtCwhkhmShw2FZRgRc4x1iHJRsOq0/uavRalC0ONjd81ZlZuPc7r9oKB4zjsOnkB16SZsOo2BR7MpuU6AnVTRlcqaCk1LjeHj3JP+/QZSixIU4EmNEDbx1SERoWINkrIe1ZPZZlkd8Rzf+d5LLB4QyG7YDoQo1fjzZlD8e8/XCHpsRJ8JzRS8ca3J3HbO7tx1fPboFQCb83KoAVWA5Rz+DcmBS0pqQmAr+NpCBHSnDE9YbG3XwdJiG72Mb3j0MXHpfaBhh6a1bMyMCXNJPoism/cloFpg7tCqVCgmm5cJKuk2ob71+bjSIkZL9w4GPPG98LUNCNiJVrPiqXqOiceYFCpmx4/BYDWNuCHp+4K4dc/fviFdQgAgO9PVEDr4+D4eeN7YcGkfo3P41n81mL0aszMTMSb33bcjuWWhnE+cj4nKBXCJMFisHLriWZ/jtAooVYq4JRwA2hUAItar4s3FApaqZt6agLA91Q1Y7QWMXq16GYGBJt0TxPiVttBL42Q7PW+jfkZ3btzs5OgkNNCPdWal984CGP6dPHqM56xdXIudhuuFnYpCjGxONySTmgANgkNh4ber9yiCsH2SUlNADyFLflKQu69KgVLrkujizwJaTF6dYtpoEIWkTUadJif1Rf2ejd2e1lh+OO803C5OQxLioVCpnclFhZXRSILQvZg0uOnAHgKW87/aC8v21u68YhsT4iEeKu1n4AQRWSv7huPzpE6fH/8N59nWTW9G+Vj8DchciJkD6YkemqKi4tx7733IiUlBeHh4ejVqxcWLlwIh0McBciidfzlhsE4IUppkbXINmbrkNBRaXVi1bZL04Bd7obptvZ6Nx6a2Dtoif93x8rxSf6vOF/j3zo4WwpLZT2mhhBfKSD8AnyS6Kk5cuQI3G433n77bfTu3RsFBQWYM2cOLBYLXnrpJWZxbSoowf1r86FVifPWbEh3A/4+pT++PXoe73xfzDocr9w5KsmrgZlE3lbkHEc/YxTcbg5PflHQbFE4vUYFqwgfhby3sxjzJ/YJ2vafmj4AMeFq/PWTg/SImohe0yUZhFyATxJJzZQpUzBlypTGP/fs2RNHjx7F6tWr201q7HY77PZLd11msxkA4HQ64XQGNu3S5eaw8POD0Ko4aJUNpxjP/4rFkZIqPPzxXlTVOSGFDpCEKC1GJcfi3TaSRLG2sxyJoa0f+2Q/rM6G5KXp8ety1Yv2eH7r22M+xeZtO8fq1bg9szv2nqqERsCbqFi9mtkK6HwSw/EcCpq2szFah0en9sfEfvEBX28BeL0NBcdJ8wnwk08+iU2bNmHPnj1tvmfRokVYvHhxi9ezs7Oh1+uDGR4hhBBCeGK1WjFz5kxUV1cjOjq6zfdJMqk5efIkMjIy8PLLL+MPf/hDm+9rracmMTER5eXl7TaKN17fegxvf18EoCErXTLcjaf2KGF3S2gAi8gM7haNg2fNbf49tbNwqK2F4U073z0qCX+9pj8AYPcvF/CHf7V9IydmxmgdlvxuIOas5WdihS/oeBZGQmQY/pJqx6RJk6BW87tgodlsRnx8fIdJDdPHT231pDSVl5eH4cOHN/753LlzmDJlCm6++eZ2ExoA0Gq10Gq1LV5Xq9UBN7hbEQa7q/mPw+5WtHiNeC/vdA28qd9L7SwcPttaF6aEzcf1akJFe+38332lcHJKTEo1AlBJ9tjv2SUaf8zezzT+UD93/HlCb7y27UTHb/TT+dqGMht8XGMv5+32mCY18+bNw6233true5KTkxv//7lz5zB+/HiMGjUKa9asCXJ07bsiJQ6rtjMNgRBJoYTGPxUWB97bWYz3dhYjRoJ1pTwrhm8/+hvrUELa9EEJSImPYB1G0DFNauLj4xEfH+/Ve8+ePYvx48dj2LBheP/996FUsp2NrqQFZQghApNiQVzJjW+QIW2YEr27ROGZL8VbFJYvkpj9dO7cOYwbNw49evTASy+9hN9+u5TxG41GJjF5ar3wIZRqqhBCCBGWvd6NV7cG77GTR5xeA6Au6PtpjySSms2bN+PEiRM4ceIEunfv3uzvWI1z5nOFRDcHPDFtALpEa9ElSofyWjsWrv8ZFRZxLC5ICCGEdGRqmhFAEdMYJLGi8N133w2O41r9jxW+a9Gs2n4cxeUWlNXYEB+pxe7HJuKjOSNx7+hk3vZBCCGEBEvXmHDWIUijp0aM+K5FU11XjxU5l5aGjwlX4+4rkzChfwJO/laLb495V1iPeCdMCdC4VUII4U91nQOdGcdASU0AJqUaEakNg7Oe/8F7VXVOrNx6AkDwn4OGokidGs56FywOymzkKFoXBrOtnnUYhIQUMUyfkcTjJ7HKLapArZ1OnMEQF6EJ6varrE5KaGRs1sgerEMgJOSMSO7EOgRKagJBFXmDZ8X/DYExuuXCiYR4Q6mgUxshQlIrFUhPjGEdBiU1geBzBhRp7uO9p1FDjw98og2jn7PHqF6deB3IT4ivFGhYwffff7gCd45KYh1O0DndHEY8lwOgoeAzK3QWDEBmShyM0XTiDIavC87D4nCxDkNSMhJjEaMXx4qzd45KwkdzRuLNmUMFj8lk0GFkz054avoAQfdLSFMcgCidGuAaxniFAk8qM2rZVmwqKGESQ2i0dJColAos+l0qHvpI+AJthFxuV9EF1iE0mppmwqheDc/Xr0kzYdW243jru5OocwZ3HJMCwMIZqVApFYiNoMeXhK2lGw+zDoEJq9OF+9fm461ZGZiSZhJ039RTE6ApaSasvCWddRiEiIICDT0lmSlxABq6oXOLKpAcH4GbMrq3/2Ee/HFsCqakmeByc9h5gpZBIKQ1wZ6I4bF4Q6Hgj6Kop4YHWQMSsLEIeGfWMNy7dh+cLqp5QEKPZzqnp6dkU0EJFm8oREm1cAPq1x8owZDusVjylbD7JUQqYvVq7H5sIvaeqkROYSne3VkctH2VVNuQW1TR2GsrBEpqeJTZsxOuG9IVn+SfZR0KIUEXo1ejynppjaYoXRhuzOgGQ7gGGw6cw58+2id4TCXVNjyYzc+CmITIEYeGoROe3lQ3B3yUdxq2ID0aFnqWMCU1PLpm5Q6cquSv0CUhosZxiNKFNc5SM9vq8c8fT+GfP55iHBghpC1VVidWbTuBj/NOC9KbKfQsYUpqeJBz+DwAoNRsgzjWVCSBiNCoaOaVF6rqaMo9IVK0IueYIPvpFKFp7BESCg0UDpDLzWH510dYhyE7YUp2ySElNIQQErgl16VBJfC5nJKaAOUWVVzsoZEeBYA5Y1KggPj6l+oZLt4kVa/9Ph2xIlmnhvArSqdiHQIhPpmU2gXTBgs7nRugx08Bk3KphNlXJWNC/wS43Rw+238WFRb+C3MS4fxmseP6od3wfhBnMxA2amwuROnCcFNGN0waYAQUwLbD5/GfvWdQY6OeRSI+BWfNcLk5wXtqKKkJkJRLJbz7QzHe/aGYdRgtZtEQ/xRdsGDjoVLWYZAgqbk4EFsbpsTQHrF4b2cxqD+TiBWL6dwAJTUBy0yJQ4xODYDulnx17+hkRIersSLnOOtQZEEBoMLi6PB9GpUCDlpLSbLe3lGEmPAzgic0eo0SfRMisf+MWeA9k8tN7N8ZP5+rEf3QBxZPMmhMTYBUSgVuHyn/YmV8Mhl0eGtWBh6fnoqPcs+wDkcWFACGdI/x6r1KhdhGUBFfsZh5ZnW4KaERiSt7xeOmjG6sw+gQiycZ1FPDgz+O7YlvNh1lHYboXZ/eFTcPSwQUQHmtHf/cWST6O42mIrQqWOzi7JHjADzn5Sw8W31w6y/JRVyEGk9MS0WV1QFDuBqLvyykyvGEOaUCWPKV+GtKNS2XIiRKangg9EAoqYrVa/DXTw5Idvl6sSY0HpVePHoi3nvuhkGYkmZqLPdACQ0RA6lMDL11RA8m10ZKangUoVHBXkd3wW15/8di1iHImkTOdZKQHKdDwdlqHC6pwWtbj1PbSlS4Whn0yvBCUUBav/HqOjY3WTSmhgeeFYVp0TYiFnERzderiQmn9Wt8UVxhw6rtJ/EqJTSSdnlCo1VJ95InxHGoU/PXPl/sPyd4hW6AemoCtqmgBAvW7cfzmW2/J1KrQq3IH10QeXnq2oEwRutQVmNDlygd3ByH2//xE+uwCGHK7nJDfEuNigefRS0vWBxMpnRLN20VAZebw+INhe1m0J0iNHjt1gzBYiIEALpEaQEAbjeHwnPVKK22IVIrz3sYbRidxggRIxYTQeR5lhNIblEFSqpt0LazgvkFiwMnf6sRLigS8mL1avzlP/tRag6NivFxERr8fngiPvixGFV1tIgj8U5chBpTBxrxb1pWImgqaoU/B9EtTgC8XVgor7gyyJEQckml1RkyCQ3QsHJptC4MC383EHeM7ME6HCIRFRYnenaOZB2GrMVFaATfJ/XUBMDbhYU2F54PciSENIzdClMpQ7LkhBTW7SDiExephcmgk+wyE2JnNIQLvk/qqQlAZkocTAYdDTsTuaemD8Drtw1lctcgpHtGJ4dkQkP4FUrnM2O0DgtnpLIOQ5ZiwtVMFt+jpCYAKqWCfhBtmDuuFyLbG2zkpbgINe4Z7f8jBaUCuGNUMmYM6Yo7ZF7O4vVtJ1mHQFqh53GabDCZDDosyOoTElPYFbi04u2UNBPuHZ3MOiTZGd27E5PF96TxaxOxKWkmvHxzOuswRMVk0OHhyf0wZ0yvgLYTrlZh5yMT0T0mwu9tuDlg76lKbCoowatbqXAmEZ5V5Iu/3TkqCR/NGYkfHpmA5Hj/f2tSs3BGauNFNyvVyDgacdOplUiI8q2n+6tDpVi2sTBIEbWNkpoAbSoowQvfeFdzJ1R4lseeN6E3YvT+L/pW53Rh+NIt+O5YWUDxlFbXYfEG4X9chHgoFeJ9rDM1zYRRvRruqovLLazDCToFgD+OTcGkVCN2nbyAL/afxU+/XGAdlqjZnG7ce1VPzB3XC9cNMWFEUqxXn3t7RxE2HiwJcnTNSW6gsN1uxxVXXIEDBw5g3759SE9PZxbLpoISPLA2HxoVuw5bnVoJbZgK1V5MZY3RqzF3XC8s3RjcJMzpcsHl5qBSKnDL8O54e0eR39uy2F3YcTywE06FxUEDAQlTwVxYdWRyHHYXV/j1WYXiUs0wl5tD9k+n+AxNlDg0XGzX7j5Nq8D7wNuCuZd76osCXJNmFOxRlOR6av7+97+ja9eurMPwauE9Idic7g4TGsXF/5bfOAizr+oJkyG45eBXbT+Jq57fhmUbC7EmgISGLxsOnmMdAiFBcWN6VxRXWP3+PMcBc7PzsfHgOTzyyQGcrwmdoqiU0AjDs7KwUCSV1Hz99dfYvHkzXnrpJdahNC68JwkKYEL/zjCENzwTXTgjNehd4SXVNry9o4h50gcA+89Usw6BkKD43/5zAa/aygGYm70Pn+Sf5ScoQi7j7ZpufJDM46fz589jzpw5+Pzzz6HX6736jN1uh91+aREys9kMAHA6nXA6A5v6WlZtgfbiYyetsvn/itEPx8vww/EyGKN1eHRqf9w/pgfe+1FaXc1SaGe5CHZbx4arUUmr/9IxLRBqZ2G01c7x+rCAr7nefl7BcZzov2WO4zBt2jSMHj0aTz75JIqLi5GSktLhmJpFixZh8eLFLV7Pzs72OjEihBBCCFtWqxUzZ85EdXU1oqOj23wf06SmraSjqby8PPz4449Yt24dduzYAZVK5XVS01pPTWJiIsrLy9ttFG846t0YvnQL3FxDVrpkuBtP7VHC7hbrHAfpo3YWTii1tQJg9pg0lNrZHxFqFSzOwMe+UDsL4/J2VgBYcUs6sgYkBLxts9mM+Pj4DpMapo+f5s2bh1tvvbXd9yQnJ+PZZ5/F7t27odVqm/3d8OHDcfvtt+ODDz5o9bNarbbFZwBArVZDrfZ/qjEA7Dl9AXX1zX8cdrcCdhf9YIKN2lk4odLWCgARWhVq7WwGj4ZKO3trapoRMzN74G+fHESFjb/xGNTOwrC7FdBrNVh24yBMSTPxsk1vr9lMk5r4+HjEx8d3+L7XXnsNzz77bOOfz507h2uuuQbr1q3DFVdcEcwQ2yTkwCdCSHBxAGrtLkTpwlBjq2cdTsjbcew3ZPSIDXgQNGFDq1Lgp8ezoAkTfi6SJAYK9+jRfJn8yMiGyqq9evVC9+7dWYTkdTFLIn16jQov/d9gHD1fg1e3nmAdDgkiVgkN9R00Z3G4sHQjFSmVKruLw95TlRjVq5Pg+5bUlG4xoWKW7YsJD5NN27xz53AACry+jRIaEhyGcDWuHWySzW+GEFZPMyTRU3O55ORksJ605Slm+cDafKZxiEGEVoW3bh8GpUKBcosdxeUWrMiRR52lThEaVFudeDCbvmfCr2sHm5B78jcALlTVOfHlwRKEKYH6y0pFKRXBXZGYkGBg9TSDemoCMCXNhNWzMqBXB16NWspuHZ6IMX07Y3SfeFw7uCve/7GYdUi8WTxjIJZ8RXWjCH9MBh3uG5uCLw+WoNrWfO2NyxMaoGHVX0KkJCFKi8yUOCb7pqQmQJNSjVAqQvusE65RYdfJC3C5Oew+eQFVVnksqjZnTAo6RWmls3I0Eb2npg/Ad38bj3V7fvX6M6F9diFSNH2QcLWeLifJx09ikltUgVpHK7dXIWTV9pNYtf0kTAYd0hMNrMPhzZcHS+Cmfn/CE5NBhztGJeP9nUWySfwJac37P57CkKR43qZz+4KSmgDR1O5LSqtt+FpGvRql1Ta8u7OYdRhEJn43xITM53IooSEhYfGGQkxKFb7HhpKaAMl5ave88b3RJyESxeVWvP9jx3eXcuvTkNu/h7ATpgTeFkHFekKEwKGhqHFuUYXg07ppTE2AMlPiYIyWZ2Izunc8rkvvhnkTekPHYBEl4ptrBwvf1Uu809oAYELkjsWTDLpSBUilVGDKwMDrWohNXIS6cfR6blEFSs32Dj5BWLr7yiT8cKKcdRgkBIzrG4+4CA2tqUM6xOJJBiU1AVq2sRD/3HWKdRi8e/a6tMZnoTRuSPxqbfU0VoMI4uDZajx7XRoAWgmZtE6BhoHxLKZ1U1ITgI0Hz8nyOfl9Y1MwbXBXuNwcdp28gGOlNaxDIh3YeKiEyX5j9Gq6sIWYCosTn+8/i5syuqFLlIZ1OESkFs5IZTKtmwYK+8nl5vDkFwWswwgKp4vDqznH8VHuaSooJxFWp/CDNiK1KtwyvDvW7CiCAjSwOpRsLjwPoGG141EpcdhVVME4orbp1EpwbjbV10PVilvSmUznBiip8VtuUQUqLPLs7n+PpjETL9TaXVizowh/HJuC9QdKaJHCEOTmIOqEBgBsTje0ob3oe9DFRWjw1PQB6BKpRvnh3cgawG6cKT1+8hONMyGkwfoDJXjhxsGYN74Xbkjvyjoc0ga9RoVIbev3sRFaFQzhdI9L/FNhccBoCGdWGqEpOor9JOf1aQjxlmc9ijvez2UdCulAncPV5iNCi73h8cy1g02oc9Rj65HfhAuMyELDjX406zCop8ZfDevTaIOy7Sem9cfL/zcYUTrKOQkh/PBmzNOXB0twU0Yi5oxJpgHgxCdiudGnpMZPKqUCt2X2CMq2a2z1eGnLMdTY6oOyfb6p6OxHiGz85b/78c73xTTwm7HJqdJY/8wzfXtYUixyL46vyi2qgItR3TxKagKQHB8RlO2+tu2EpAZduujsRwKkaOP/E+HVMZhJR1q6QgTjUzrimfU4wBSFkcu2YvYHeQCA2R/k4arnt2FTgfBLTVBSEwCxdLcRYURoaApFsMTo1XhrVgbempUBo0GevysGS3YQiQpTKhATrkZchLjXAVJcPKa3HfkNFRZHs78rrbbhgbX5gic2NGgjAJkpcYiLUMNic3T8ZiJ5tnpa6yJYKi+uhjwlzYRJqcaG0hzVdVjy1WFUWhyyeBTCqDeeSFC9m8NfPjnIOowOtXdMc2joyRG6Wjf11ARApVTghvRurMMgAnFRr3zQeE5+TZ/DK5UK3DUqmVlMfFGESA+N55+ppkF25KKm1bqFQj01AcpKNWLtbvmVSiDiE6tX4/+Gdcc738vvePOc/FZtO46P8840G1OmVytR53RLrrdmapoRGT1isXTjYdahCMJo0OGW4YlYufU461CIyAi5rhv11ASo0kLVq0nwzbqiB356PAtfHmRT40koK3KOtxgkb5VgQnNTRldMSTOiuk6eq443NW98b3w0ZySemj4A7//oX8Idq2dzf/3QxD401kkAQo4/pZ6aALjcHJZ8FRp3YVLVKUKD36V3RVeDDr/V2vHjiQsAgCGJBiTG6LH8m6OMI/ROWY0dr209JqlZcaHs0/xz+DT/nNfvnzuuN976vhhWh/TGbfVJiER1nQNzs/f5lXzGRaiR0SMGOYeFXfBPqWh4ZEZjnYJHgYYePCFXGqakJgC5RRUoqbZRXRERu2Bx4P2LtaxMBh0WzkhtLLT22b6zDCPzzebC841FBMVMp1bCRlOCvebpJBiaGIO7r0zGm9+eZBqPP+Ijtfjrfw/43ZvWI04veEIDNCQz9KgseDzHttDVuimpCQDVf5IWzxTD1bMyMCXNBGO0PKcOszB7dDImpRpRUlWHh/97gHU4vApWBfKm2/3Dh3tgd0nvOUiUTgW3iwuoB3H/mWoeIyJiYbzsJlIoNKYmAMXlFtYhEB94LiCeWTaZKXEwyXRNFD7F6NUdvufjvDNwcxwSZNKeSgXw+m1DsSCrb9DKlXjTrmJXY3Nh3sf7WIdBREaBhjpiQic0APXU+G1TQQlW5FDXpdQ0nWI4qlcnLJyRigfW5vt8J64NU8JeHyKPWbiOW8fqcOH2f/wEY7QWMXo1qqzSHiB771XJeG7jYd7HMM0b3wt9EqIQH6nFw+v2w8rr1tkIhcHQxDccgHe+L4JSATw2LVXQfVNPjR9cbg6LNxSyDoMEwPPocEqaCatnZSAm3Le75pBJaABU1Xlfg+y82S7phEavUeK+sSn4x/fFQRmUPbp3Z1yX3g17iitwvoZmThJ5e+f7IjgEPldSUuMHzwBhIl1NpxhOSTPhjdszGEYjH1KfSBKmVOKL/eeC8u+ICVfDzXHYeJB6eUlocHPAh7uKBd0nPX7yAw0Qlq62phiO7NkJMeFqVFFXekgz2+phtnnfM+WLqjonbv/HT4KuMKxTK3F7Zg90jQmn5ScIE6cqhH3ISj01fqBCltLU2hRDl5vDrpMX8OXBc8ga0IVdcCRkeDFEiTc2pxvv7SxGqZluxAgbSXF6QfdHPTV+8BSyrLDQXb2UXD7FcFNBCRZvKKRHiUTWOADv/iC/0hrtUSiETR6b7fvi/2aldsGWwjI2QYiEUgHcIXD9Nkn11Hz11Ve44oorEB4ejvj4eNx4441M4lApFXj2ujQm+ya+6RShwYrfD8FHc0bih0cmNEtoHlibH5SERksF/YjIhMqquZ5fHquEBmi4eXpj5lAUnDWzC0Ik5oxJgSZM2DRDMj01n376KebMmYPnnnsOEyZMAMdxOHToELN4pg3uivt+rcLbO0LrDihYNGEKKKDweVZRhEYFSztLyy+9Ia3FWgme2WvBOu/ZXSFyBSFEZGL0YXDUc+2eE4JFG6bAP+4YAaVKgV0nL4R0D7ACwH1jUwSfzg1IJKmpr6/HQw89hBdffBH33ntv4+v9+vVjGFXD/PtwdRhWf3uMaRxy4KjnMDm1Mzb72F07a2QPDOkei79/ehC19uYDPNta3IxmrxG5iNGrUe/iWhz7oWZc3044eLYGFRYHsxgSY/X408f7aLIBgL1PTkJEuJbJviWR1OTn5+Ps2bNQKpUYOnQoSktLkZ6ejpdeegkDBw5s83N2ux12+6W1IMzmhu5Ap9MJp5OfA+/+scnYkF8MoA5aJd2hB6KkwgKtqu029LRv03b+YOcvGN+vM5z1zhY1uOrsDjz00V5cP6QbwrUq9IgNx83DErHr+Pl290Nab2vCv0Dbed7VyegcocPfPzvIZ1iSs+tkOQC0WYdPiOP5TEVtuzGEAk/7cu56OJ38Pnby9pqt4DiWTx+98/HHH+O2225Djx498MorryA5ORkvv/wyNm/ejGPHjiEurvUKoIsWLcLixYtbvJ6dnQ29XtgR2YQQQgjxj9VqxcyZM1FdXY3o6Og238c0qWkr6WgqLy8Px44dw+233463334bf/zjHwE09MJ0794dzz77LO67775WP9taT01iYiLKy8vbbRRv5Rw+jwXr9kOj5LBkuBtP7VHC7qZBooG4fkhXfH7gXKt/p6V2Fgy1tXcyk2KRe6rS788H2s5R2jDUhPijJ2/Q8SwMTzv/oumJByb047U6t9lsRnx8fIdJDdPHT/PmzcOtt97a7nuSk5NRU1MDAEhNvTToSKvVomfPnjh9+nSbn9VqtdBqWz7XU6vVUKsDKybncnN45qujsLkUjQNO7W6FJCvtism6/BJcmsPQOtbtHKlVodYu/EBEFli3tdh9/0sVOjpeveFPOysUQLnVxcv+QwUdz8J464dT+M/+Ml6rdHt7zWaa1MTHxyM+Pr7D9w0bNgxarRZHjx7FVVddBaDh+VpxcTGSkpKCHWaraLBpaNKrlRB4hiIhrZrQrzO2HvmNdRiEtKq02oYH1uZj9awMQat1S+L0HB0djfvvvx8LFy7E5s2bcfToUTzwwAMAgJtvvplJTFsKS5nsl7BldbpRVRcavTREnBSKhvU/BnePZR1K0Ewb2Jl1CM1ow6h3x1eeJxiLNxTCJeBCSZKY/QQAL774IsLCwnDHHXegrq4OV1xxBbZt24bYWOF/2C43h8/3tz7ugxBC+BauVqLO2bCGE8cB2bmnYQngEWhmcixyi/0fCxRsX//8G8KUCtQzXjVwaloC7hyVgmFJschcmkPTtX3EASiptiG3qAKjenUSZJ+SSWrUajVeeuklvPTSS6xDQW5RBdP1EMQkRq9GlZV+6IQEkyeh8QgkoQEg+tVuOYB5QhOrV2PVzGFQKRXYVFAiu6FL2jAl9BoVKgU4fwtZBFoSj5/Ehqp0N9CrFbh5WHe5/dYFo6XBOYQRq5MeobZHAWDZjYMaE5oH1ubL7ubNXu/Ga7cORVyEJuj7ErIINJ1V/UBVuhtYnRze+b4IWald2ly9l7QuUqvC/qcnIyac2i0Uhavp1CtWJoMOb8zMgCFcg8/yf8XjnxUEraQKaz8F+amDAg3tmZnS+lpywSCZx09ikpkSh4QoLc7X2Dt+cwjYUliGP0/ojde2nWAdimTU2l3Yf6YKy28ahPvX5rMOR3bi9GpowpQoNYvvN6oAEK4JQ52THmF7I7VrFArP1QR9PwoA/5qdiRqbE0u+KgyJ2a1ckNM1DsDCGam8rlfTEbpd8INKqcCYPuIanc/auz9QYU9f7TxRjkmpRrw1KwOGcLq/4FOF1SnaQZ0cgAqLA3ERanp064X4CC3enJkR9MckHID805WYm73P54SmX0JkcIIKsmD3FMfq1ZiUagzqPi5HSY2f9KFc4KMVLKriSt2q7ScwevlWHC4xQ3ajEEXA5vSt4rvQbkjvxjoESdhxvBxKJZD3RBb+/YcrgnohXrPjpF99FwqJ/nzPVdUhmJ0olVYncosqgreDVlBS46ekOKodJQS592CUmu14desJVPvYq6ChQcaSl5VqxIpb0lmHIQmLNxQCAEb3jsfymwYF7RbA4vAvET5SWstzJMJ4/8dTCPYkM6En1tCZ0U93jEoOaoZLgHuvSoZCqrdAQeaoF3cvBGmf0IMnpc6z1gkATEo1Yn5WH+jV1FsuBcXlFkH3R0mNnzRhSswZk8I6DFl794di2U2jJAQAnpo+ALt/uYBFX/zMOhTJKKuxYVNBCa56fhtW5BynaekS8VHuaVpRWCoem9ZQYPNfP/7COBJCSLAMT4rBnlNVvG0vQqPCM18eRqnZBq1KrpOF+Vf0mwWvbj0u2+nVclVqtgu6ojD11ATosWmpyH0sCwDQr0sU42gICZ64CDXG9wu9WX9hPD9ntjhcKDXLf7ow3/61+xQlNBJFKwpLyKaCEkx//QcAwNGy4K+lIBajBcq6vUGjboJPr1Zi5yMTcaQ0dI5xj91FHddIitGrserWoQJEE7qoNI100YrCErGpoAT3r83H+RAsm/B/w7ojSieOp5dGgw5vzsyAMVrLOhTZsjrdyP7plCgWJEtPNLAOoYXlNw7C5DRh1+MgROxYrChMSY2fXG4Oj/7vEOsweOPp7dB5OVV454lyPHt9WvAC6kBchBorbknHR3NG4odHJmDaYBNuy+zBLJ5QsOP4b6xDAACcrrAia4B4HoPNn9gHU9JM+HBXMetQSCsm9Pf/WImL0FBPcABYrCgsjlttCdr9ywVZzcwxGnRYOCMV9fUc/vTxvg6fXX+SfxY5R8owuHs0Dv4qbMVfBYDnbhiEKWmmZq8nx0cIGkeo+e5YOesQAAAVFidyDosjwQKAf/5YjL4Jkdj9ywXWochaTLjar1Wid530/3u5Pr0r3ttZ7PfnifCop8ZPgfxQxCJSG4YVvx/S2NsBwKuExqPK6sShX80Y1kPYxwErbklvkdAAVGiUsFFV58SD2fuw5XAZ61BkLWtAF78+VxfAytJROio4GwgFGhZOFHJKNyU1fhPXOHx/Ovdq7fU4XWFtnGq3eEOhz/8qDsDJ36x+7N174WolXv6/wXjvrhEAgKwBCa2+b1hSbNDrwxBC2Pgk/yz0GmEX3PvHD7RcRyA4NF84UQiU1PhpVM941iE042+K9faOX+Byc8gtqvB7EGiwCwfWOd1Y+vVhmG1t72dTQQmufnE7zZAgRMasAteYs9hpgT8+0JRuCRjZqxMiZVDU0upw4ZFPDuDrghLWobSrwuLEgnX7W/27TQUleGBtvihm5siNQUvD7gghgRFyaACdsfykUipwy/BEvCuDQWSf5J9lHYJPXG4Oyou9S6VmG5Z8+bPIHgbKh5IKnBFC/KRAwyQUIad0U1ITgKxUoyySGqnwJC4LvyjAdycqaVVWAVTWOUHLGxJC/MFiSjc9fgpAZkocTAaacSO0zw+co4SGEBJUCni/bhdp3d1XJrU6UzWY6BsLgEqpwMIZqazDYCozOZZ1CIQQwjsOwPgAFu4jQGKsXvB9UlIToClpJqy8JZ11GMzkFlfS3QyRFZ1aiXC1/I5puT5EDNa/a2qaESm0oGdAfq0M7nIfrZHfL5eBttZNCRW2ev8XtyJEbGxON2xONx6a2Acx4fJZfM1o0OGtWRl4a1YGDCKp2+arWL0aMXp1i9fmje/Fe3LzdUEp3vyW1qkJxBcHzgm68B5AA4UJCYheoxJ87QwSfByAD3cXB30NJiFcn94Vt4zogcyUuMYBm4dLavDq1uOMI/Pdg+N6wRStw9MbfkaFpeG7qbA6sWr7ScaRkdZUWJzILapoXOBVCNRTI2G6MCU+uHsEDOGUm7Ky9Po0zBvfi3UYJAg8F01vRWhUuHawsIMivWGK0aGspmFVV5ebw6aCErwmwYQGAJZuPIJ5H+/3+bsh7Ai58B5APTW8yDl8nsl+bfVuzP1oH26/IhFrdhTRWi0MGA3hMBrC6U6RAOCQEq+HAuIqorK6ySMUY7QWtnq3qOIj8hYfoRV0f9RTE6BNBSVtrnQrhFp7Pd7eUYRx/TtDIZKRgKEwcFgBwHRxUSnP1H6RND9hxOJw4/VtJ0WdMJSa7aiyUi8HEZDAJ0b5X32CyOXm/CoCGQzbj/wGTgyBAFCFwFHFAbhleHfsPnkBXx48h1tHJIKDfGeYSJkujL4VwlYoH4HltXZB90ePnwLgKQLZUQkosXVHB5vFId7ZUPPG94LF7sIn+b+ixlYf0LZWbj0B4ETjnz2zMpreCbf2GhHW1X07Y8vhMgg8CYOQRhyA/8vojk/yf2UdiuCErPsEUFITEG8HQE1OTcA3hWzG3bASE65GdZ1TdMmcWqXEpp/PBpzQtKb6YuKyIKsvkuP16BJ1qeZJblEFthSW4j0qqyE4pVIJnZpmqQWDAg2Je6XVGXI3bwAQqQ1Drd27c4nRoMO9o5Px8Z4zIVP92yRw3SdAQo+fjh07huuuuw7x8fGIjo7G6NGjsX37dqYxeZuBhlpCAwD3jE5mHUILsXo1VuQcD1o1b88J/eO807h2cFeM6tUJKqUCKqUCo3p1EvzHTRp8XVBKCU0QeB6pLLtxEN6alQHjZSVjPL2Ucn30ogAQpQvDTRndvHr/qu0n8O7O4pBJaBQQvu4TIKGemunTp6Nv377Ytm0bwsPDsXLlSlx77bU4efIkjEYjk5g8A0QrauuY7F+MPFVZ503og37GKDzyyUFUe9ErolEp4HAF9z5PiLtIDkBJta3F2gwuN4dHPj0oQARsdYnUICs1AV8eLIE5CL1hvlIoIJqxZnJjNOiwcEZqY22fSalG5BZVoKzG1thLuaWwFIs3FAbtRoIlz29925Ey1qGIjgLAGzOHCl73CZBIT015eTlOnDiBRx99FIMHD0afPn2wfPlyWK1W/Pzzz8ziotpPzXnycU92PiXNhDdvH+bVZyf6sCqzAkCsj2vzTE0zCjqu5fJHk7t/uYDqOvYX+WBTqZRYcv0gvPB/gwXZX0frwlBCExxPTR+AHx6Z0Oyi5emRvC69W2Mv5ZQ0E354ZAI+mjOS1/Wc/jyhN/597xWiWPG5ksbLtcABiBV4KreHJHpqOnXqhAEDBuBf//oXMjIyoNVq8fbbbyMhIQHDhrV90bTb7bDbL428NpvNAACn0wmnk58DcWK/eNydmQigGFplYGfQ8X3jsf1YOS9xsRCn1+DpGamY2C++sX2H9YhGUqy23araxmgdZo7ohm2HS9rdvqd9tUoOo3vFYsth7++Q+sTrsE3l+/ejVAD3j+2FN7/zbR2aeH1Ys2PspxNl0Pqxf1aatrUvKmrrsPtEGSb2i8fqmUPw+P8Ower0r7vdM0ZDr1a12EZsuBoLfzcQWQMSMD2tC5ZtPILzTRJJY7QOkwYk4MOfTvm1b6H4284sGaN1uD2zO9yueri9/GqH94jG0O5R2LD/V5w32wLqNY3RheHBq1OgUiqw7IZULFi3v8Pt+dPOsRfHChHvNW3nsmoLnM5o3rbt7TVbwXHSuJc5e/YsrrvuOuTn50OpVCIhIQFfffUV0tPT2/zMokWLsHjx4havZ2dnQ68XvnooIYQQQnxntVoxc+ZMVFdXIzq67WSJaVLTVtLRVF5eHoYNG4brr78eTqcTTzzxBMLDw/GPf/wD69evR15eHkym1rugW+upSUxMRHl5ebuN4iu7w4GtOTl4eo8SNrfvg6KM0Tp8M39s44CqrwtK8fTnh1DHoFCkMVqHv07qh79+esDnz75314g2B8PmHD6P5V8fadZjY4zW4dGp/RsLguYcPt+4kGFrB+W8q1PQo+4EJk2ahL1nzPjDv/Z4FdfKW9Ixvl8XXLNyh9d3ib7GBlx6/LbilvQWRU53n7yAP3zoXbzB4un5iNSEodbR9qOwGJ0aL940EJXH9/p1TDc9DlxuDtes3NFuTx0AvHJzOiYO6IK9pypRXmtHfKQWw5JiAxpk6Nm3Pz0DXSI1cNRzqLIFfqfe3kxArZLDkuFuPLVHCXsr7RyrV+ORKQPQJaple+QWVWD2B3kd7r/p99HW79DmdHU4W7Fp71ggcg6fb9Gz5o3Lf5NNudwc9p6qRFmNHbtPluPzA+ea/X1b7RyrV+OFGwaj0uZs9Zhr63fvecfLNw/BC98cDbj3KZgSorTYvOBquNwcJr7yHSqtjqDty9POq47pseHPV/M6SNhsNiM+Pr7DpIbp46d58+bh1ltvbfc9ycnJ2LZtG7788ktUVlY2/mPefPNNbNmyBR988AEeffTRVj+r1Wqh1bZ8rqdWq6FW8/8s1u5WwOFStDj4uVb+v+fPAPDY9IHQaTWNr/9uaCKmD+mO17cex0oBa7QoLsYyJc2EgtIavL2jyOvPGQ06jOzdpc2DeOrg7pic1q3FQMKm7586uDsUSlWLgYWmiwMSJ/aLx8aNJ6BWq3FlnwSEazXtjpNRKIA3bhuKqYO7Ahf/bQ+szQfQ8nvgACzI6oPk+AifYmvKdNnAyaau7NtxvJfHwzdPfADabAcAWHzDYIzqE4+Nx4HlNw/FY58Xeh335ceBGpfava1/031jUzA9vTsAYHRf/ireN9034H2bLsjqi3kTemNLYSnuv/jZttw3NgUA2vytKAAsvr5hfFF7x47drYDdpWj2OQBYdN3gNgdbjuzdBXGR4Sitbv2C2tr30dbvcEthabvtNH9iH/xpYh9eLlKeGFZtO44VOW2f3+aMScaE/sY2zxdNqXHp2LlhWA+MTzW12t6edm7avmNT2x6X1dE5aUqaCaqwsHbPK6w9fm1a4/Vl0XWDfP49+MLTrg9fM6DZNY0P3l6zJfH4acOGDbj++utRXV2NyMjIxtf79euHu+66C48//rhX2zGbzTAYDB1mer5yOp3YuHEjNCnD8MxXR1s9+IGWJ7X2LoIemwpKsGh9YbM7K5NBh1tH9EByvB7F5VZ8lHu6xd//bogJ6w+UtHkSvXxWSGuxbDxYgie/KECFpe3M3nMQr56VwdtId5ebazX58bTztGnToFarsamgpN2LzpszMzDtsoGkmwpK/PoeWostPlILcEC5xd7hSdez7/bindC/M+aM6YVKiwNzs9s+8dw7OhkTBiQ02/eFGluzysVAQ52f2zJ7tJqoddQOTdtaqQrDqm3H8f7OtqtWd3QctLa/uAg1nr0uDdMuJp3B0tq+W1sUsbXjYFNBCR7936EWSV2EVoUXbxrcGPvGg+cu/lba3p7n2Ck121BRa0dchAZdItUoP7wbrxyJwKlKe5ufbe/f1l6C6svvMtDfhj+CeVx42junsBRfHfwVj6XZ8PdcFewuhc//rrbOSe39Ozzn4TUXE15/LrQmgw5PTU/F8bJarMg55tNnY/RqLL9xUIt/Y2uxxurV4OD7IqGXX0eSYrV4uL+l8RzNJ2+v35JIasrLy9G/f39cffXVePrppxEeHo533nkHr776KvLy8jBkyBCvthPspMZzAWjr4O/oh9GWjj7X1t+3dwEelhR7sbu2/ViabqO43HIxgfL95MuHy5MaoO2kr72Y/P0e+NAQ78/N2jBWr8bS65ufxP25wPj672rv/a21tef9WwpL8fn+c82SXW+OA5bt3tq+AXgVj8vNYfcvF7Dr5AUAHEb1jMfIi7N7OtpHR/8+TztfM2Uq9v1a41fb8JmMsPiOhNinze7AN5u+BhKHooshIij7aOvf0db3c+uIHqiuc7T4LcVFqHFDejdkpRo7vBGJCVfj7iuTMaxHLHYXXcC5qjp0jQ3HlW0co+3FCjT/PVRa7Fjy1eFm+7v8Runy68jQ7lH4ZtPXlNR4Y8+ePXjiiSewZ88eOJ1ODBw4EE8//TSmTp3q9TaESGqC8VhLTFhemNpqZ5Yx+cPbeMXY1mKITU74OnfQ99E+1ufo9r4fX747ob9nX/cXzHb29votiSndADB8+HB88803rMMIeZ61KMREjDG1x9t4xfzvEnNsoYi+D3Fr7/vx5bsT+nuW4nElicX3CCGEEEI6QkkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbIgmRWF+eCpCGE2m3ndrtPphNVqhdlsln2ZBJaonYVDbS0MamdhUDsLI5jt7Llud1TZKaSSmpqaGgBAYmIi40gIIYQQ4quamhoYDIY2/14yBS354Ha7ce7cOURFRUGh4K8ImNlsRmJiIs6cOcNroUzSHLWzcKithUHtLAxqZ2EEs505jkNNTQ26du0KpbLtkTMh1VOjVCrRvXv3oG0/OjqafjACoHYWDrW1MKidhUHtLIxgtXN7PTQeNFCYEEIIIbJASQ0hhBBCZIGSGh5otVosXLgQWq2WdSiyRu0sHGprYVA7C4PaWRhiaOeQGihMCCGEEPminhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqeHBm2++iZSUFOh0OgwbNgzff/8965BkZdmyZRgxYgSioqLQpUsXXH/99Th69CjrsGRv2bJlUCgUmD9/PutQZOfs2bOYNWsWOnXqBL1ej/T0dOzdu5d1WLJTX1+PJ598EikpKQgPD0fPnj3xzDPPwO12sw5N0nbs2IEZM2aga9euUCgU+Pzzz5v9PcdxWLRoEbp27Yrw8HCMGzcOP//8syCxUVIToHXr1mH+/Pl44oknsG/fPowZMwZTp07F6dOnWYcmG9999x3mzp2L3bt3Y8uWLaivr8fkyZNhsVhYhyZbeXl5WLNmDQYPHsw6FNmprKzE6NGjoVar8fXXX6OwsBAvv/wyYmJiWIcmO88//zzeeustrFq1CocPH8YLL7yAF198Ea+//jrr0CTNYrFgyJAhWLVqVat//8ILL+CVV17BqlWrkJeXB6PRiEmTJjXWXwwqjgQkMzOTu//++5u91r9/f+7RRx9lFJH8lZWVcQC47777jnUoslRTU8P16dOH27JlC3f11VdzDz30EOuQZOWRRx7hrrrqKtZhhITp06dzs2fPbvbajTfeyM2aNYtRRPIDgPvss88a/+x2uzmj0cgtX7688TWbzcYZDAburbfeCno81FMTAIfDgb1792Ly5MnNXp88eTJ+/PFHRlHJX3V1NQAgLi6OcSTyNHfuXEyfPh1ZWVmsQ5Gl9evXY/jw4bj55pvRpUsXDB06FO+88w7rsGTpqquuwtatW3Hs2DEAwIEDB/DDDz9g2rRpjCOTr6KiIpSWlja7Lmq1Wlx99dWCXBdDqqAl38rLy+FyuZCQkNDs9YSEBJSWljKKSt44jsPDDz+Mq666CmlpaazDkZ2PP/4Y+fn5yMvLYx2KbP3yyy9YvXo1Hn74YTz++OPIzc3Fn//8Z2i1Wtx5552sw5OVRx55BNXV1ejfvz9UKhVcLheWLl2K2267jXVosuW59rV2XTx16lTQ909JDQ8UCkWzP3Mc1+I1wo958+bh4MGD+OGHH1iHIjtnzpzBQw89hM2bN0On07EOR7bcbjeGDx+O5557DgAwdOhQ/Pzzz1i9ejUlNTxbt24d1q5di+zsbAwcOBD79+/H/Pnz0bVrV9x1112sw5M1VtdFSmoCEB8fD5VK1aJXpqysrEWWSgL3pz/9CevXr8eOHTvQvXt31uHIzt69e1FWVoZhw4Y1vuZyubBjxw6sWrUKdrsdKpWKYYTyYDKZkJqa2uy1AQMG4NNPP2UUkXz97W9/w6OPPopbb70VADBo0CCcOnUKy5Yto6QmSIxGI4CGHhuTydT4ulDXRRpTEwCNRoNhw4Zhy5YtzV7fsmULrrzySkZRyQ/HcZg3bx7+97//Ydu2bUhJSWEdkixNnDgRhw4dwv79+xv/Gz58OG6//Xbs37+fEhqejB49usWSBMeOHUNSUhKjiOTLarVCqWx+mVOpVDSlO4hSUlJgNBqbXRcdDge+++47Qa6L1FMToIcffhh33HEHhg8fjlGjRmHNmjU4ffo07r//ftahycbcuXORnZ2NL774AlFRUY09YwaDAeHh4Yyjk4+oqKgW45QiIiLQqVMnGr/EowULFuDKK6/Ec889h9///vfIzc3FmjVrsGbNGtahyc6MGTOwdOlS9OjRAwMHDsS+ffvwyiuvYPbs2axDk7Ta2lqcOHGi8c9FRUXYv38/4uLi0KNHD8yfPx/PPfcc+vTpgz59+uC5556DXq/HzJkzgx9c0OdXhYA33niDS0pK4jQaDZeRkUFTjXkGoNX/3n//fdahyR5N6Q6ODRs2cGlpaZxWq+X69+/PrVmzhnVIsmQ2m7mHHnqI69GjB6fT6biePXtyTzzxBGe321mHJmnbt29v9Zx81113cRzXMK174cKFnNFo5LRaLTd27Fju0KFDgsSm4DiOC37qRAghhBASXDSmhhBCCCGyQEkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hRPLGjRuH+fPnsw6DEMIYJTWEEEIIkQWq/UQIkbS7774bH3zwQbPXioqKkJyczCYgQggzlNQQQiSturoaU6dORVpaGp555hkAQOfOnaFSqRhHRggRWhjrAAghJBAGgwEajQZ6vR5Go5F1OIQQhmhMDSGEEEJkgZIaQgghhMgCJTWEEMnTaDRwuVyswyCEMEZJDSFE8pKTk/HTTz+huLgY5eXlcLvdrEMihDBASQ0hRPL++te/QqVSITU1FZ07d8bp06dZh0QIYYCmdBNCCCFEFqinhhBCCCGyQEkNIYQQQmSBkhpCCCGEyAIlNYQQQgiRBUpqCCGEECILlNQQQgghRBYoqSGEEEKILFBSQwghhBBZoKSGEEIIIbJASQ0hhBBCZIGSGkIIIYTIwv8DHs84eSN4TGQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(domain,n_points=N_coll)\n", + "plot = tp.utils.scatter(T*X, domain_sampler)" + ] + }, + { + "cell_type": "markdown", + "id": "9500e8d0", + "metadata": {}, + "source": [ + "### Define solution Neural Network \n", + "At this point, let us define the model $u:\\overline{\\Omega\\times I}\\to \\mathbb{R}$.\n", + "A normalization layer is used and the scaled points will be passed through a fully connected network. The constructor requires to include the input space $T\\times X$, output space $U$. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "bdef3d80-90e6-47aa-95ce-6d735fd03f36", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(domain)\n", + "fcn_layer_sol = tp.models.FCN(input_space=input_space_sol,output_space=output_space_sol, hidden = (128,128,128))" + ] + }, + { + "cell_type": "markdown", + "id": "694d8666-170e-4c28-a87a-73aa329e2094", + "metadata": {}, + "source": [ + "Similar to Pytorch, the normalization layer and FCN can be concatenated by the class \"tp.models.Sequential\":" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9b838d6f-1b90-4667-8ecb-9f54b4ec627e", + "metadata": {}, + "outputs": [], + "source": [ + "model_sol = tp.models.Sequential(normalization_layer, fcn_layer_sol)" + ] + }, + { + "cell_type": "markdown", + "id": "28d166be", + "metadata": {}, + "source": [ + "### Data Condition\n", + "For training the first network, the DataCondition of torchphysics is used. The training data is converted into tp.spaces.Points and fed into a DataLoader. \n", + "The DataLoader as well as defined NN are then used in the DataCondition." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "394583c4", + "metadata": {}, + "outputs": [], + "source": [ + "input_train = tp.spaces.Points(torch.column_stack([X_train_tensor]), input_space_sol)\n", + "output_train = tp.spaces.Points(torch.column_stack([u_train_tensor]), output_space_sol)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "4eff5c9f", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "008c09a7-81f8-41b5-8c10-3892812740ad", + "metadata": {}, + "outputs": [], + "source": [ + "batch_size_data = len(input_train)\n", + "\n", + "data_loader = tp.utils.PointsDataLoader((input_train, output_train),batch_size=batch_size_data,shuffle=False,pin_memory = True)\n", + "\n", + "data_condition = DataCondition(module=model_sol,\n", + " dataloader=data_loader, \n", + " norm=2,\n", + " use_full_dataset=False,\n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "98f1e13d", + "metadata": {}, + "source": [ + "### Hidden physics condition " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3a9f7d2a", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid_phy = tp.models.FCN(input_space=input_space_hid_phy,output_space=output_space_hid_phy,hidden = (128,128))\n", + "model_hidden_phy = tp.models.Sequential(fcn_layer_hid_phy)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4f9f6a81", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities(t,x):\n", + " \n", + " u = model_sol(tp.spaces.Points(torch.column_stack((t, x)), input_space_sol))\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def hiddenPhysics(u, grad_u_x, grad_u_xx):\n", + " \n", + " \n", + " input_model_hid = tp.spaces.Points(torch.column_stack((u,grad_u_x,grad_u_xx)),input_space_hid_phy) \n", + " output_model_hid = model_hidden_phy(input_model_hid)\n", + " \n", + " return output_model_hid.as_tensor\n", + "\n", + "\n", + "def residual_equation(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities(t,x)\n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx)\n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " return residual\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "bf22405d", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_condition = HPM_EquationLoss_at_Sampler(module=model_hidden_phy,\n", + " sampler=domain_sampler,\n", + " residual_fn= residual_equation)\n" + ] + }, + { + "cell_type": "markdown", + "id": "9691ab29", + "metadata": {}, + "source": [ + "### Training model " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "ea27b608-e319-4fac-85c1-5984f2d043c6", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hidden_phy_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "9ea9431a-9ea4-4312-8869-af4c8c4733a4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "Missing logger folder: /home/ibp5kor/torchphyics/examples/hidden_physics/lightning_logs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 50.7 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "50.7 K Trainable params\n", + "0 Non-trainable params\n", + "50.7 K Total params\n", + "0.203 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 25000/25001 [05:03<00:00, 82.43it/s, loss=2.85e-05, v_num=0]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $u$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $u$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln.T - u_pred.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_sol_pred.png',format='png')\n", + "plt.savefig('burgers_sol_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "18616a5b", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n", + "\n", + "def R2_SCORE(true_val,pred_val):\n", + " \n", + " mean_true = np.mean(true_val)\n", + " \n", + " return 1.0 - np.mean(np.square(true_val-pred_val))/np.mean(np.square(true_val-mean_true))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "5651303e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u : 0.01223288558430782\n", + "R2 Score u : 0.9998503565102812\n" + ] + } + ], + "source": [ + "l2_error_u = L2_ERROR(u_soln.flatten(),u_pred.flatten())\n", + "r2_score_u = R2_SCORE(u_soln.flatten(),u_pred.flatten())\n", + "print('L2 Error u : ', l2_error_u)\n", + "print('R2 Score u : ', r2_score_u)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "9ea3303f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAE6CAYAAADHteF6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5xcRZk+/ky6p7tnkkkCCSQEEggsSlZk0UQlIAJeglzUVXCRu3LR/KLLQrwRWSUgEEFkI9eABJFlQVbFBRVBFuUihF0CQf0Ki6sLJEJCSCDJJDPTM93Tvz9O1zl1qut+6pzunq4nn850n1O3c/r0W1VPPe9bXbVarQYPDw8PDw8PDw8PDw8PDw8PD48MMa7ZDfDw8PDw8PDw8PDw8PDw8PDw6Dx4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw8PDw8PDw8PDw8PDw8PDI3N4UsrDw0MbmzZtwpo1a5rdDA8PDw8Px/D23cPDw8PDw6MZ8KSUh4eHFh599FHMnj0b73znO3HhhRc2uzkeHh4eHo7g7buHh4eHh4dHs+BJKY+Wwq233oqurq7wlc/nsdtuu+FTn/oU/vd//9e63Lvuugtve9vb0NPTg66uLjz77LPuGj1G8NprrwnP1Wo1XHzxxbjzzjux22674dVXX82wZR4eHmMZPLu/xx574DOf+QxeeeWVTNqwdOlSdHV1NbTppZdeMirniSeewNKlS7Flyxa3DURjG03g7buHh0eWuPrqq9HV1YX999+fe/6ll15CV1cXrrzyykzblcSOPvfcc1i6dKlxv6ACuRei19KlS53W5+HRisg3uwEeHjx8//vfx3777YehoSE8/vjjuPTSS/Gb3/wG//M//4OddtrJqKzXX38dp556Kj784Q/j+uuvR7FYxFve8paUWt6+OPnkk3HzzTdjr732ajj35JNP4rjjjsOxxx6LF154AcViMfsGenh4jGkQuz84OIhHH30Uy5YtwyOPPII//OEPGD9+fKZtOeaYY7Bq1SrstttuRvmeeOIJXHTRRfj0pz+NyZMnp9M4C3j77uHhkSVuueUWAMAf//hH/Nd//Rfe8573NLlFyfHcc8/hoosuwuGHH861pUnxj//4jzjppJMaju+xxx7O6/LwaDV4pZRHS2L//ffHQQcdhMMPPxwXXHABzj//fGzcuBH/8R//YVzWn/70J4yMjOCUU07BYYcdhoMOOgi9vb2J2jcwMJAofyti9erVWLlyJffcPffcg4997GMAgL6+PhQKhSyb5uHh0QEgdv+II47AhRdeiK985St48cUXpXY/LVu8yy674KCDDhozBI237x4eHllh9erV+N3vfodjjjkGAIS2xyOOWbNm4aCDDmp4qUgpUT9YrVZRLpcTtWksznc8WhOelPJoC8ybNw9AowvC//7v/+Kkk07CrrvuimKxiDlz5uC6664Lz3/605/Ge9/7XgDACSecgK6uLhx++OHa+YFI6vvMM8/g+OOPx0477YR99tnHqAy6nD/+8Y848cQTMWnSJEybNg1nnHEGtm7dGkv7P//zPzjxxBMxbdo0FItFzJo1C6eddlqsc9GtVwf/93//h61bt+KWW25BpVJpOL9+/XrMmDHDqmwPDw8PGxx00EEAgJdffhmA3Bab2MNf/OIXOPDAA1EsFjF79myu+4jIfU9mm5cuXYovf/nLAIDZs2eHrhcPP/xwmF+3nTpt1IW37x4eHlmCkFDf+ta3cPDBB+OHP/yhkNwYHR3FpZdeilmzZqFUKmHevHl46KGHYmlef/11fPazn8XMmTNRLBaxyy674JBDDsF//ud/xtLdcsst+Lu/+zuUSiXsvPPO+PjHP47nn39e2V6Ri9xee+2FT3/60wCCPuGTn/wkAOCII44I7futt94apv/P//xPfOADH8DEiRPR29uLQw45pOFakuLwww/H/vvvj0cffRQHH3wwent7ccYZZ4QugFdccQUuueQSzJ49G8ViEb/5zW8AAPfeey/mz5+P3t5e9PX14UMf+hBWrVoVK1s13/HwSBPefc+jLfDiiy8CQMzt7rnnnsPBBx+MWbNm4Tvf+Q6mT5+OBx54AOeccw42bdqECy+8EF//+tfx7ne/G5///Odx2WWX4YgjjsDEiRO189P4xCc+gU996lNYuHAhduzYYVUGABx33HE44YQTcOaZZ+IPf/gDlixZAiCSOv/ud7/De9/7XkydOhUXX3wx9t13X6xfvx733nsvhoeHUSwWreqVYfXq1Zg9ezZefPFF3HPPPTjuuOPCcy+88ALe+ta3GpXn4eHhkRR//vOfAQSqJRqsLTaxhw899BA+9rGPYf78+fjhD3+IarWKK664QhpziUBlm8866yy88cYbuOaaa3D33XeHrn9/+7d/C0C/v0jSRh68fffw8MgKg4ODuPPOO/Gud70L+++/P8444wycddZZ+NGPfoTTTz+9If21116LPffcE8uXL8fo6CiuuOIKHHXUUXjkkUcwf/58AMCpp56KZ555Bpdeeine8pa3YMuWLXjmmWewefPmsJxly5bha1/7Gk488UQsW7YMmzdvxtKlSzF//nw89dRT2HfffRNd1zHHHIPLLrsMX/va13Ddddfhne98JwCEpM3tt9+O0047DR/72Mfwgx/8AN3d3bjxxhtx5JFH4oEHHsAHPvABZR2jo6PchYN8Pj5dX79+PU455RR85StfwWWXXYZx4yKNydVXX423vOUtuPLKKzFx4kTsu+++uOOOO3DyySdjwYIFuPPOO1Eul3HFFVfg8MMPx0MPPRQu3hPw5jseHqmj5uHRQvj+979fA1B78sknayMjI7X+/v7a/fffX5s+fXrtfe97X21kZCRMe+SRR9b22GOP2tatW2NlfOELX6iVSqXaG2+8UavVarXf/OY3NQC1H/3oR7F0uvkvvPDCGoDaN77xjYb26pZBl3PFFVfE0i5atKhWKpVqo6OjtVqtVnv/+99fmzx5cm3jxo3C+2RSrw7OO++82s9//vNad3d37bDDDoudu/zyy2v/7//9P6PyPDw8PHTBs/s///nPa7vsskutr6+vtmHDhlqtJrbFJvbwPe95T23GjBm1wcHB8Ni2bdtqO++8c40eEpE2vfjii+ExHdv87W9/uyGfaTt126gLb989PDyywm233VYDUFuxYkWtVqvV+vv7axMmTKgdeuihsXQvvvhiDYDQ1n3wgx8Mj02YMKF27rnnCut88803az09PbWjjz46dnzt2rW1YrFYO+mkk8JjpB+hAaB24YUXNpS755571k4//fTw849+9KMagNpvfvObWLodO3bUdt5559pHPvKR2PFqtVr7u7/7u9q73/1uYdtrteheiF6PPfZYmPawww6rAag99NBD3DL22Wef2vDwcKwNM2bMqL397W+vVavV8Hh/f39t1113rR188MEN94Y33/HwSBvefc+jJXHQQQehu7sbfX19+PCHP4yddtoJ99xzT7haMDQ0hIceeggf//jH0dvbi0qlEr6OPvpoDA0N4cknnxSWb5OfXl1O0oaPfvSjsc8HHHAAhoaGsHHjRgwMDOCRRx7BP/zDPzSoA5LWK8OaNWvw4Q9/GMcffzweeeQRPPPMM+G5559/Hm9729uMyvPw8PAwBW33jz32WEyfPh2//OUvMW3atFg62hab2MMdO3bgqaeewic+8QmUSqWwjL6+PnzkIx+Rtk3HNsug284kbRTB23cPD4+ssHLlSvT09OBTn/oUAGDChAn45Cc/iccee4y7i7bI1j366KOoVqsAgHe/+9249dZbcckll+DJJ5/EyMhIrIxVq1ZhcHAwdLUjmDlzJt7//vc7d6Fj8cQTT+CNN97A6aefHrPto6Oj+PCHP4ynnnpKS3H0T//0T3jqqacaXgceeGAs3U477YT3v//93DI++tGPoru7O/z8wgsv4NVXX8Wpp54aU1RNmDABxx13HJ588skG10p2vuPhkQU8KeXRkrjtttvw1FNP4de//jU+97nP4fnnn8eJJ54Ynt+8eTMqlQquueYadHd3x15HH300AGDTpk3C8m3ys7sw2bZhypQpsc8kkO7g4CDefPNNVKtVaVDDpNfO4o033sDOO++MXC6Hr3/96xg3bhwuuuiisJxdd91VuywPDw8PWxC7v2bNGrz66qv4/e9/j0MOOaQhHW2LTezhm2++idHRUUyfPr2hTN4xGjq2WQbddiZpIw/evnt4eGSFP//5z3j00UdxzDHHoFarYcuWLdiyZQuOP/54AFGYChoiWzc8PIzt27cDAO666y6cfvrpuPnmmzF//nzsvPPOOO2007BhwwYACN34eLulzpgxI+bmlwaIa/Xxxx/fYN8vv/xy1Go1vPHGG8py9thjD8ybN6/hNWHChFg62a6wvLmKKM+MGTMwOjqKN998U7t8D4+04GNKebQk5syZEwY3P+KII1CtVnHzzTfjxz/+cRh8L5fL4dRTT8XnP/95bhmzZ88Wlm+Tv6urK3EZKpDJw1//+lenbZfh7rvvDtVbc+bMwcknn4x//dd/xW9+8xusW7cOxx57rNE1eHh4eNiAtvsy0LbYxB7utNNO6OrqCicyNHjHaOjYZhl021kqlazbyIO37x4eHlnhlltuQa1Ww49//GP8+Mc/bjj/gx/8AJdccglyuVx4TGTrCoVCSMZMnToVy5cvx/Lly7F27Vrce++94a7c999/f7jYu379+oayXn31VUydOlXa7mKxyN2lTpfMIuVfc8014QYdLFjFbxKw8xHZOdW9GTduHHbaaSft8j080oInpTzaAldccQV+8pOf4Bvf+AY+8YlPoLe3F0cccQTWrFmDAw44wHgL66T5XZXBoqenB4cddhh+9KMf4dJLL+V2pK7r/elPf4of/ehH4efLL78c//Ef/4Gzzz4bhxxyCHdly8PDw6MVYGIPx48fj3e/+924++678e1vfzt0Genv78fPfvYzaT06thmIK19t22nbRh68fffw8MgC1WoVP/jBD7DPPvvg5ptvbjj/85//HN/5znfwy1/+MkaGi2zdoYceGiOvCGbNmoUvfOELeOihh/D4448DAObPn4+enh7cfvvt4Q55APDXv/4Vv/71r0Ollgh77bUXfv/738eO/frXvw6VWgQi+37IIYdg8uTJeO655/CFL3xBWlfWeOtb34rdd98dd9xxB770pS+FhNOOHTvwk5/8JNyRz8Oj2fCklEdbYKeddsKSJUvwla98BXfccQdOOeUUfPe738V73/teHHroofj//r//D3vttRf6+/vx5z//GT/72c/w61//Wlpm0vyuymBx1VVX4b3vfS/e85734Pzzz8ff/M3f4LXXXsO9996LG2+8EX19fYnq/fOf/4wPfvCD+P73v4/nnnsO8+bNi3VIu+22Gy699FKcc845wkGBh4eHR6vAxB5+85vfxIc//GF86EMfwhe/+EVUq1VcfvnlGD9+vNK9Qsc2v/3tbw/bdPrpp6O7uxtvfetbjex2kjZ6++7h4dEM/PKXv8Srr76Kyy+/HIcffnjD+f333x/XXnstVq5cGSOlcrkcPvShD2Hx4sUYHR3F5Zdfjm3btoVuxlu3bsURRxyBk046Cfvttx/6+vrw1FNP4f7778cnPvEJAMDkyZPx9a9/HV/72tdw2mmn4cQTT8TmzZtx0UUXoVQqKXekPvXUU/H1r38d3/jGN3DYYYfhueeew7XXXotJkyY1XAMA3HTTTejr60OpVMLs2bMxZcoUXHPNNTj99NPxxhtv4Pjjj8euu+6K119/Hb/73e/w+uuv44YbblDew7Vr13Jjwu6yyy7hLn+mGDduHK644gqcfPLJOPbYY/G5z30O5XIZ3/72t7FlyxZ861vfsirXw8M5mhxo3cMjBrLj0VNPPdVwbnBwsDZr1qzavvvuW6tUKrVaLdht4owzzqjtvvvute7u7touu+xSO/jgg2uXXHJJmE+0+55ufrIbxeuvv85ts04ZsnJ4uzw999xztU9+8pO1KVOm1AqFQm3WrFm1T3/607WhoSHjelmsXr063NHjkEMOqQ0MDDSkGR0drX3wgx+s/fSnP5WW5eHh4ZEUMrtPQ2aLTezhvffeWzvggANC2/qtb32rYUcmnl2u1fRs85IlS2ozZsyojRs3rmGnJt126rSRB2/fPTw8moG///u/rxUKBenupJ/61Kdq+Xy+tmHDhnC3uMsvv7x20UUX1fbYY49aoVCoveMd76g98MADYZ6hoaHawoULawcccEBt4sSJtZ6entpb3/rW2oUXXljbsWNHrPybb745tJuTJk2qfexjH6v98Y9/jKXh2dFyuVz7yle+Ups5c2atp6endthhh9WeffbZht33arVabfny5bXZs2fXcrlcDUDt+9//fnjukUceqR1zzDG1nXfeudbd3V3bfffda8cccwx3/kFDtfveySefHKY97LDDam9729uEZXz729/m1vEf//Eftfe85z21UqlUGz9+fO0DH/hA7fHHH+feG9F8x8MjTXTVarVaRvyXh4dHi+A3v/kNXnnlFRx//PGxXU9ovPnmm+jt7Q3lyh4eHh4erQ9v3z08PDw8PDzaCZ6U8vDw8PDw8PDw8PDw8PDw8PDIHOOa3QAPDw8PDw8PDw8PDw8PDw8Pj86DJ6U8PDw8PDw8PDw8PDw8PDw8PDJHS5BS11xzDaZNm4ZcLoeuri4sWbIkdn50dBSHH354eH7y5Mm45557lOV++ctfRrFYRFdXF4rFIr761a+mdQkeHh4eHh4eHh4eHh4eHh4eHgZoCVLqzTffxL777osvfvGL3PPHHHMMHnnkEXzxi1/E3XffjYkTJ+ITn/gEXn31VWGZN910E6688kocfvjh+MUvfoHDDz8cV1xxBVauXJnWZXh4eHh4eHh4eHh4eHh4eHh4aKLlAp13dXXh/PPPx7JlywAEKqnu7m4sWLAAv/zlLwEA27Ztw6RJk3DSSSfh3/7t37jlzJo1C4ODg3j99dfDY1OnTsX48ePx8ssvp38hHh4eHh4eHh4eHh4eHh4eHh5C5JvdABUeffRRjI6O4rTTTguPTZw4EdOnT8eTTz4pzPfqq6/i2GOPjR1773vfi5///OfCPNu2bcO2bdvCz6Ojo9ixYwdmzJiBrq6uBFfh4eHhYY5arYb+/n7MmDED48ZFwtahoSEMDw8bl1coFIRbxHc6RkdH8eqrr6Kvr8/bew8Pj0zh2tYD3t6L4G29h4dHM+HH9ny0PCn1wgsvAADe+ta3xo5Pnjw5poJiUa1Wsfvuu8eO7b777qhWq8I8H/3oR/HII48kaK2Hh4eHe6xbtw577LEHgKDT2qWnB9stypk+fTpefPHFMdF5ucarr76KmTNnNrsZHh4eHQxXth7w9l4Eb+s9PDxaAX5sH0fLk1IENJMIBCyj6zz33ntvTCm1bds2vO1tb8Pn1/0TihOLDemripBcVeSsz6vzyr86ednydlcS1g0AowmuXec8AFQ0QqIluU/sNdD3hZcvhyoKGEYvBlHCIPqwHTtjMyZjKyagHz0YQg8GUMAwcmgkR6ux8vPMOf616t0ndZpRje806Xemeu6AZM9e0mdOXXeS36vd+fK2Mq6eeR36+vrCY8PDw9gOYAkAk+5nCMCyDRswPDzc9h1XGiD3+Jx1nw/tvex5S9P+65cha5/977EV+gDddKp+oNGWxssj7WTtO0lXRS6Wpoo8cqggX7fh41BFDwaxO/6KydiK6diA3bABE7AdPRhADwZRQLDyOYxC2J4qxjW0hdRbRV7LXsqui0DH/hPI+gE3z7P92MPW9ie1+zpl2PQN7HGXth7w9l6G6B6vBNDrqNRuwXHRsyFKD5hPzSqa6UYMy6Uhay+BTrvZcmS/LZ6IgE1P0owguA8j9WMjAAbrxyr190MA+uvt7EHwq8oD2AnArvXXLvVz3cAMAJPqyfYFcASAvQF8tJ5tx7eBnb8M7AlgCoBZ9ddrAH4L4P8A7CBtGwTQB4Ao87YB+GP99Xq9wEr9b1/9Vaq3hZSB+jWQ6yTfO8lHQN53w+xZ0n2OZNCtT1YX7zm1bRuvPbxn2RUdwmsn73qGAHzVj+0ZtDwpRRRSzz//PA488MDw+NatWzFp0iRhvlwuh3Xr1sWOvfrqq8jlxAZw4sSJmDhxYviZEFTFiUUBKZVsoCK7+UkmBVXkFGZeXvY4B4SYqn7VcFvVhgpyyi6yinyiehrvU/S5i3MPcqigG3l0AygAKKCCIooooYAeFNCDKnrRjQJGkUejZDw+KZJPpHTP8coWl2NP4OmmSU4MJWuj7HyadSe9bp6LwQSYdVwtb+ybDHKPaXufjPRJ/luQ29G8tZ2X2egKcigkqFdVPoHKxpNyZDZc1Q/w+oBxMTtLl58L8+QBdNU/d9WJouj7CJ6JWp2YCiikLuTQhyLKdXvfjT4AvehCATkU6znLyAGo1UmnXMN3ROoh502QxLbFy2nuM++6XS76xzRsv6hOF7Ye8PZehuge9yJ9Ukr0TbQTKeWKkOKVJZ8J6dVDkzT03y5EhFBP/X2x/r5OPKEHwTMwHsBkADsHx/JdwUC+iKBrGFdPTrJXAKAEFCYGx0r1Ykr1NCRdGUClVm9DN3X9dFvI/DKHiCzrQUBM0ekr9WsiJJTs/nQzn+ljpDwWLkgptk4ZRPWJ8tu0rxVIKXHZfmwfR0vsvifD+973PowbNw7/+q//Gh7bvn07NmzYgIMOOkiYb8aMGXjiiSdixx5//PEGl752hM4qdTvDdDDOLyOZ8oc9JyOMWIgGmzmFQSUr77y0PGWVzjle2bbQqaed4eIeZYk8oiGOzmtsWw2PVoEL8lonjQnRYlJvkvQEIlvP2pisbGq+TnM1G83oQ8ZCv2Vq672998gWJk8bS4aYEA2iesgvhPzVqZfk4/26uoLDJSoJaWqFOZZXvEoAOIvQcXRz/rr+BesQi50MV4RccnTy2L4lSKkNGzbgrrvuwl133QUgUEXdddddWLVqFcaNGxfuvPfVr34VP/3pT7H//vtj3Lhx+Pa3vx2Wsc8++2D+/Pnh5wsuuACvv/46jjrqKNx333046qijsGnTJnzjG9/I/PpaCa2sVNGFzWQkjXa4KMfVgNlFOSrSzEU7VOdVEydVG8fCBEQXqrEQ7+WRDVzZlzTqT9I2Fwsirkgrl5ArdPQXJFyCZ8uIc5/onAo6xJTMxia17yrI2pekXUnhom9MAhtb7+29hxuoyAybJy0JMUVAT8tJO1h1kEyl1s18Zggt3o+JJqVoiH54JU7aEETNxWubq1+vrBwTkmqEermEjYpw7KOTbX1LXMsPf/hDnHfeeeHne+65B/fccw/22Wcf/PnPf8YvfvELvP/978eVV16J0dFRTJo0CT/+8Y8xY8aMMM/mzZtjMrjPfe5z+NOf/oRrr70W999/PwqFAr785S/jzDPPzOSakgyqk5AuzZ4MJYWb+A/JHmub1XSbQbFpnhyqib7fPKrK+5dDRXr/krah2UjSftW9SateEdhhlQqtsw7k0aq/oaSEvxuVqxt3ZJt6RL9vNt6UzHazxAqPaAlsSa7+XmwbyDmXpEvSfkBly5Ke7xTofA8EprYe8Pa+fdES07I60iQHRpjyeWyPLroRESZ5iMkT9lfB+2Xloz9E6USHbuIppej0WoxBjdNGQkbR7nem95913YPgswnYdpLPsjKTfJcyiFwWTcE+e62FTh7bt4T1O/fcc3HuuecKz48bNw4PP/ywtIwtW7Y0HPvOd76D73znO8ka10FotkqqFdz2eBDdF1cDa9Eg3ZQE0RnsmwyEbetJel7VxiTk0FiC6QqJv2PtAxeBxl0jC5WUS0IqSXuzIE10yRkRIcXLr1smIcpckHs2kLVTZv9tbX/SPidp+Ulhsxru7X2WaPYEV2ey7lrlQupNAh4xRcqVXQ/vftOxl7rRqESqUOnYXxTt/lcXN5TQqHTiKaV4BJSQlBqhro1uGznGqr94YIOci+DCAqTxzHio0Mlj+7F0LR2BVh9o29adRTBSF+1IezKoJmSSr0K7IH1aeTU8Sd0uSLuswIjNlfDDi86Arete2iqpZhNSSXeno8skZandjauxv8EGJ61jY2wJoFa0/2NZgWVq6wFv71sbzSaxdJCG2x4PPNWKbrBo2q+OoBuN+WUBtTnlikilBlIqH09Hk1jkc0PE6orgvY7ESudXbauSMtXbuFIbiQhIWv3WWejksX1LxJTqNKQ1cEpzQOZiZ7YkaAVCSgcyNwz6bxK4iOuRNHZTUiSNLZVm3a1Wrgid7HfebIzVya8Iadv/rBVSOq57/DT618l32xOrnuKf9eyvbWypVoCJC2Snw8bW29j766+/HrNnz0apVMLcuXPx2GOPCdP+9re/xSGHHIIpU6agp6cH++23H/7lX/7FolaP9oPr0UTSabWNrkSithIRTUCj+x6YdNIfIrHrtNKJUBBsjCsWNsool257tmlcI82RbGs4wnXy2H4sXcuYQLNWUNOMY5XmNtFB/vQIKVvXPdNJmqkLXysoppoZW6RZLnyt5DrocjNrj7EPW5VUVsHNZcjCZS8qo/0JRxPb2m5qqVaywTpwcR+ysPV33XUXzj33XFx//fU45JBDcOONN+Koo47Cc889h1mzZjWkHz9+PL7whS/ggAMOwPjx4/Hb3/4Wn/vc5zB+/Hh89rOfTbm1HumiGUoumfJG5/dOq6ZE6Yn7nMZudzTRRP7SPBKdjscQCBkDQkix7nukHd3MexPihw30rpM+KbEk+t5M4kqJ1FIukFZ8q/TQyWN7r5RqIzTLdS/NetPY9tt1G6J04vtguoLuYpU47Z2QgjKS7XaXpA1JVsubVW+WyGo1xa+eu0WaJHwzCJVmL0pE5Zg/4ep7LVdLsQHQeeDZIpmNMbU/MvWVrh1sls1zrZaSlZf2zq9pIgul1FVXXYUzzzwTZ511FubMmYPly5dj5syZuOGGG7jp3/GOd+DEE0/E2972Nuy111445ZRTcOSRR0r7h86D6bfQDpPnrNsoqk91nD3Pki8SxZSOUoqXVqmSYgkpXpt4v14VcaRSSbWrpqYd3Fzdo5OVUp6U8mjr3f7SdCsxvS9prd4mGQw3001OB0nIo2Zv091s0KJvnZfN00lWzy+44AKsWbMGhx56KI466iisXbuWm56snj/66KN4/vnn8c///M/453/+Z9x0000WtTcX7aTGSIJmxjfKipCqKsgjWX5eG3RUqCLoEic5VLgvU+iSU6I2y+rMYmGEX25n2X5TW0/b+23btsVe5XK5ofzh4WE8/fTTWLBgQez4ggUL8MQTT2i1cc2aNXjiiSdw2GGHWVxhO6MzJ87JUKFeNGxiJplCczTEm/nzmixjB6SMARsHS8eFTwe8Rsg+twpM2uXiGrJ0PTT7LrMY27cqPCk1RpBenKrWVUm5IKSaTaolhc6gP+0V4lZVS8nQLnFXZMhiNcWvnpujFW2KbZvS3nFVhixd9qKyRO7ajXXo7ZxXif11AduyWtXm+dhSaiRRSs2cOROTJk0KX8uWLWsof9OmTahWq5g2bVrs+LRp07BhwwZp2/bYYw8Ui0XMmzcPn//853HWWWcluFIPe2QxNVXVobt7nOxzEtgq05i/9EcR2QSAG4NKWy0laovq/onAI7RsnwlTwiZNgidr0rf5Cx6drJQaS9fiIUArBlbPIo5Ukjaw9fN2XiLvk6l9ongT9Hs2zkeS2B46SDu+lAzpxR4Zu7sxAeZDF5J227ZtsePFYhHFYrEhPVk9P//882PHbVbPL7nkEoOWeojg2nWvVVVSzSCk4uUmC3LOQ2BD07nfuraO3gWQB1E/0E6xpWT1tWufYDNNJenXrVuHiRMnhsd5tp6gq6sr9rlWqzUcY/HYY49h+/btePLJJ3H++efjb/7mb3DiiScattaj/cHb9U2XrKB94mx2dRPV1Q1gUJKH97cO0cxf5b7HlhFiBHG3PfKe52ZnArYxrYT2i+fUCrAd248F+KclBaSxJXdag++06mz2wC+LnfbosmzcI1yuXLfiFt2u6rcNxJsEaQT/df0dmA5f6JVzGhdeeCGWLl3akD7p6vnrr7+OSqWCpUuX+tXzNkSzVFKuiTLTTSxUZVWQ01LwiHbGixYh7EmqpHZPZotsiKkk9emczwqqxZlmIclUdeLEiTFSioepU6cil8s12PWNGzc22H8Ws2fPBgC8/e1vx2uvvYalS5d6Uqrj4GJarENg6NTTXS9LREZplkN+dCXBOTZdYgkLG+ScBx0Vj45KKq9ZVtYwaVerXkNy2I7txwLG0rVkilYYQBG0WnDbdnDbS1K/CmnGlkprIgKkr5ZqtRXsVpkIAXaToTzMhoLkmzNZOQf86nmWSGNCnMYznrTMpESRrR2UxZMyuaaKgUJWFUPK1fdjWlYz6zaBjW0ca/2Jqa0neXRRKBQwd+5cPPjgg/j4xz8eHn/wwQfxsY99TLucWq3GjVk1djGWNAoEpjvgye6B6e5uWShr6PIFbZe571WYhCIiiv3bEOCcjSlFu++RjDzSZYQ6z8vPgr7GNN3sbBRuuki6S6DouUqzzfawHduPBYyla/HgIA1lViu77SWNI8UPasuvM+0BPW8wntSNr9nElG3b0tq2vJ1hu5qis3IO+NXzNJDWLqiuXfeSEus2ixZpEFI294Xk0VlcCdoybFyHCjpEDM/uuSKmmuHGZ2OrbRZqkvVR6ShzVUjq1KODxYsX49RTT8W8efMwf/583HTTTVi7di0WLlwIAFiyZAleeeUV3HbbbQCA6667DrNmzcJ+++0HINh59corr8Q//uM/GtbsEaAdp2OmE3oRycKWwzvGurmpIHPdo8sQlMUqpSrMOV46ETEFIE5EsYVVeBkYmASBZwmudkIrqKWa63bolVIeHo6QZmDbZhBSNnUkgR6x1NrEVJK6PfTRU3/pwtRZ1K+etz+aoZJqhU03XO3qlxQ8Nz+inGpccIjbRjavbptVcaPSRFpueq3qVpcVTG09YG7vTzjhBGzevBkXX3wx1q9fj/333x/33Xcf9txzTwDA+vXrY7uujo6OYsmSJXjxxReRz+exzz774Fvf+hY+97nPGdbcaWhHoiANjDDvk9yXpAogiWJKqn7qFrvrCZkFQqLQbaa1Mab7qbFtlxFSPMWRrgpJxMp5xCEiyvTVXmmP7VsZ/slqc2QdvypNlZQ8b7qElG29dNm5+sC5IEkX7cakZ0bScl1ISkwlrd8mbzvEecoSWUh8/ep5dshy0t0M+y/L73JjC/EOem7VZLJyWfvuglSxUc6K2semc6WWSgqXaqmxRICl7b5HsGjRIixatIh77tZbb419/sd//McOt+uqb2SsT69ck2uEmOKpVExVUrpQXAOtghqSNEEWRyr8TIKby8gJ3ZhZbH5bC6GrMuLtmJjm881rW1oufK0H777n0XQ0I8i5a6Spkkpar+uV8yTXqgqAq1dGem50LuqX520PIqgZAdZNkMUOHX71vDWQJlHkEkliDYrzpeeux8aTksWcYo+Jgp0T+x79dedeYLtIAcjvjcv+px3UUu3SBxEk2X3Pw6O5MCETVIopmzGX5S+BJZlKiFdfqSfSVkpVwHff0wlMLupDdFRS5D292x/v+3DhCteMGE1J2916caX87nsemaBVBkHNIMCSuM2lGd9Ep37dcgK1VPIJiP723ukFHgeSufGlNehvdaIoaEc2E56s/M796nl7wrUytBm77bXC7xmIrq2CXNgmVhWrun5CYqmuyfUCBV1uUL9+2WmphsaqelWEpNeURUwpDxOMpWlgM5BmwG0aJK6UUL6kRgkB5zFEZeO57/FiSnHBI6bo9ib9pfMIqTSgqzxqH4VSHM1rt48p5THmkHUskTRWyIO8ydz2khBSrTIhSkLEpE1MyWA78UhjUjIWJzr5HNAt3wQvnr6GseV87mEFm99zWm578jxm9le3D3IZO7AZNiUpUSSyhVmqpWxheu1jxe6b2nrA23s9eHJJDzLiIy2wChZdAsQUkmth40k1kFKIE1FS7kvmvmfjfseST6rvKKn7W9ZIw4Wv2dBrfyeP7Vtj1u1hhbEw2EpCCqVJSLlEDlWuy5678ptHTLWKOikJ2nXiks8D+Q7tuFoV7RTjz6QedV63KimXhJQr2NSRpt2P12Nmh02IKVsSLEm/k5ZazAWa0eeZ2nrA2/v00MpElgsXrKzBBtAeod7zwLqj6UK1G58APDIqT51kVVLc21+r/3X13YiewW7FeTqd7v2TtbndVFCi9rp24Uv2O+zksX07PU1tAdeDY5vBT9aTnzQmYiqkvQMUey/o8njv2clHtU5FycC6U9ADcd5OTGmsjuuel5ftPsh41gHPRXDtvuKSAOs2XE3prqnTeIwN2MZWsinLtS12TUhlQ1i5HUrZLBS4IqZ067Ops5Vg28e4hG49prYe8PZeHyYTdN2Ja3v+JrJHEpKG/d54u9olrJeNKQXqc6XeBllMKWGdop3sRISJrIE8RRRbXoU6x+7618okZrPb1xzSrZPH9t5ytgBabacXFs0gpNKObdIObnsskiqWkhBTacWXaleVEtD8CZnVaopHR6OV+hpeW7IkpERBzk02zqgKyZpIHZuvv48WHCpa9pBe6NC1kXRMw1bYiCINtZQpQZZlH5Oa26KtUspDEzrElAslhaiM1hxzmoG+BlsiQUUC2HwHNq5xTHaaG4k1Md8YU4rLN1UQue8R0O9ttjJgGykKek7ep0XusN9Z2oHDRe6PJjsJNvP3prY1nTy2HwuWsCNhM/BpFyImbTcS0/sgKtP0uMiVw5UrhQtiSoast8pOQy1lU1erorsAdI8zSD+aXls80kEWrnvNUEllEdeKl96k3izdu3VUtabXTwgqG9duk74nTffxdrTLacDU1gPe3ptDNFlsZXe9ZqAV74cuIdFtkBZxwmmIOU6UUiVEhBQJii5smktiiGdzdXbyayXQz5KIqMlKLdU6LnydPLZvlye37ZHVwMq9+2C2KqmkcaRUSErMpf096gzC04zxlFZ8qVYJep7VJCeTevIATCYqY6jjaiZcf6+uyQ+XRJBNPbrnG9O7I+DS/O2ZxToSL0SYwtalW0VOtaMbn6sFkrYhvUxtPeDtvRXoeEW2E9ROnFbZXLMt0UBP9lkikaeg4b03rI4QTkB8Fz529z1R1RiB3fXqqPdYlZToOsl9a9Vg4a3ariagg8f2pt2cR4bIapDnOm5Vq8aRsiGkdAesJoN6QH9SIkqXl+TPKTo/Vd1JgvPK6paVa1On7B64RFb1GIONZaDz8mgK2mLiy8DWxqvOm7jt6cTm063bTp3l9kcjsiW2NtfENuVQEdpnXv0ug7Sn2efEy9G/PhWS9LHOYWPrvb1PgFZUA2UFF8SA6cNHu7ZVoG5Dhg83IZzoYOY89z3eb66BmDJR4slsjEgllWc+y9wC2d37sgavzqzcW03sdxq2XnG/O9jWe1KqDeHadc9lPUmQphtJVioBnUlM2hOAoLz0iKmsSRo7VYF5R5LVTlnO0MEdV6fD1Da72uWuXcFev+0iBJ2vWqd52NhUuuooG4LKhY1KSqiI252szzHN17KLBWnAk1IeYxYiAsrUTtGkFg1aTZSX1MdBnvrLElN0oHP6OBdskHNRG0Ww2WmQ9zkto+CSuNEhyNIi0VwrtRKq8zrQ1ntSagzBhkRqFZVUMwkp3QlKVrs8sYNw20F5s4ipVldLtR35JMI4ADmDl7f2bQXXttlVOa5VUrb1uMrDy0e3k6fW0ukbiB1M2964ImdcLJYkIbzGjF1OA6a23tv7JkFms8eq+spGFWVzjiVukpA4hsQUj5QiJ+nz0ojTLBllEpibbQwQJ9uarXpqR7TwroMdPLYfQ/xae6KVdkOi0S7uJmkRUu2CJLviBefbI6ZGq7azqTvw5QGjW2K4e5NH+mim/U+D9LIhpEw2l7CBfDFEvx6T7yoipOwGvqZx9ggxpdvGpHbLNqaTrR032YnP9NpatW+JwdTWA97ee4wBjMBsmurQLYtVSRF1FCGnAMRiSuUB5EnMJhZs3Ks0iCOT+0THbwplX4LzaUB1/TY77KnOtxE6eGw/hvi1sYWkMY5ouHTdaCWVVJqElO59Tjqp1J20JHGnS6KYame1lEsXvpZ0FelgiW8nw5Xrnqvyk+RzSUjp7rbX7IUIXbc9W1tIXirw7GMWaqm03RNdlu1SiZvo2rz7XhvA3/DsYErq0KoinvucBCKlVKV+Mua+V42TWcJHQpfwsXXb4xkCnXvm6hn2AcsjWNzTDrb1npQaI3C50pfl7lLtQkjRx2SuHiZgB+/0oNV0ctBuxJQNsgy82xYwdedocTFAu8OtDW6O614SmytD2oowXULKdZ0B/aOuR0xUqO1ykiDoKoJKl5gSlW9Sri5ckDqZByJPGza23tv7NsEYmlFmAhW5whIisvSi4ON1kK+mBKBUixNTAICe6HNpBOPyIhtFgrfrkjWqYO+su56uWyN7PkuiyhRZuCHy+okWINQysvXXX389Zs+ejVKphLlz5+Kxxx6Tpn/kkUcwd+5clEol7L333lixYkXs/K233oqurq6G19DQkHabPCnlEK0oAW+2SqrdCKl2RjsRU62slkobzgixIqJBks6r6KZaDzM0s19wZf9bwW2PxHbivXShc92kvUnVymmqK01tSNK2uN4F1uWiQLNUrJn2Laa23tv7jKGyK1nG+Wmn8S2PABiBezcsopKi69Qgo8j7PIBSGSiNRMqohkDnVeR4pFRqZoK+JkD+jLXTM6GLdo+dJWl/BmP7u+66C+eeey4uuOACrFmzBoceeiiOOuoorF27lpv+xRdfxNFHH41DDz0Ua9aswde+9jWcc845+MlPfhJLN3HiRKxfvz72KpVK3DJ58KSUBVxtUS1O7851zxRZBZd14TrHQ1JCSqWSMqlLFy636U5KTMnzut2Rz25XvfQnIK5c+FJvq185b2u43BE1bZVUGvl0yzElngA9tz3TjSxk5dN5TRWworSq4zbEFM+GpeXGp4LNwkTSNqRVburwSikPDw2IduAjyDPpNFBXQXWXhtE9YZBRSkXue92lYUVBFeavKp0NVCqodguIzrYxDXKt9Raus7D1V111Fc4880ycddZZmDNnDpYvX46ZM2fihhtu4KZfsWIFZs2aheXLl2POnDk466yzcMYZZ+DKK6+Mpevq6sL06dNjLxN4UqqJcEVqmJImWbmGpOE+kWRnJxtCyiZNEugMjtMkptIYnLuM7eQSrupwtWJuTOx1sN+5hz1cqqRsVau6bXBHeKXz8NOEGX2t5LfsUsXjiijSJaaSlKdbbprxpZpml9OAjynVwvA32g1YokhFMLFua6rfOx1biU2rIKnyVRRLZRRLZYaU6g1/a7l8Bbk8VW7sN6hDgtGxroirH8+NT0U20Z9NiKd2IKnaFYY2wtLWb9u2LfYql8vc4oeHh/H0009jwYIFseMLFizAE088wc2zatWqhvRHHnkkVq9ejZGR6Bndvn079txzT+yxxx449thjsWbNGqNL96SURwiXKqms3fbSIqRcBjyPr5gnC3DeLGIqSzc+0za0kwufE/hJypiEKwLFZFEgDQVWq+y2l2QxIomaSgbaJsmUVXplpUOamJBgzY4t2BLEUZrwpFQbw0/2swVtb+gA50D8uyCED00E1cH8jsblqyiUhlEoDQcufCUqYV0pVSwNIy+MKUXgOl4RTczRpBubhj7PvncFXTtvE6S+ldEN5220tPUzZ87EpEmTwteyZcu4xW/atAnVahXTpk2LHZ82bRo2bNjAzbNhwwZu+kqlgk2bNgEA9ttvP9x666249957ceedd6JUKuGQQw7B//7v/xpduoeHFC4nLO1ESMkgnnDxXU3IQFoUuNZmi27VVtaqbbtldZpuSa5bp0l5bbFVdzPhJx4dhTRd92yQxCYnLT/LsqvIoYJcg62sIGdECKVpz+h26NTBs9O6fZDr67Dta1oBNv22Fbytb1G005fSjZYI4tw0EAInD/F94BAreSCXr6KQC1Qn40rDGM1TJFcJQL7GjyclRFKinibaXCCPqE3kfac/LzrguUM6uGeW9n7dunWYOHFi+LlYlAeb6urqin2u1WoNx1Tp6eMHHXQQDjrooPD8IYccgne+85245pprcPXVV2tdQztZ1I6AaTypLFz3TOHaba9ZhJTpKnmVmqQkGUizA/Ekg/a0iCkbZDGAF12vad2ia7ch3VLDOJj5ko+m1RCPdoGJSimNnfh067ct31QllSZkKlcVIZSEqNclqHSIKZM+QGYbXdt+3Xbx6s1iEcQ5mWZq6wFv71OHnz61D7oBDDLHBAHVaeFR/X0uX0ERw8Gicr6K0TyVOA+gVEYuV0W14uI3n4TUaHVVUbNA7qno/lTQUr9ny7H9xIkTY6SUCFOnTkUul2tQRW3cuLFBDUUwffp0bvp8Po8pU6Zw84wbNw7vete7jJRS3n3PA4D5xCQrlVSrEFLNRpLYG2m48mUV9DztwLQtH+BWBu/O0fJIe5OEtMu3QTMXRHSg06fI2kpfX6SiEi8aiGAb9NwEImWuaRk6xwB7Nz4X1zqmXfi8+16bQkUSdOqXZKMUSqpAIeoiXkwpTlLqfbE0jALKKIKKKwUA6And+4oox9VSiX6DbDwp3XhZomOyAOc6RFYWz6nshnUz6UwwInifFKL75oAYTNnWFwoFzJ07Fw8++GDs+IMPPoiDDz6Ym2f+/PkN6X/1q19h3rx56O7mX3OtVsOzzz6L3XbbTbttnWoRm440Jw2tqJJKa7c9cZluCSn6WHxSEtRjEzeDDKJJefSqLm+lNU3FlA1s3PiaqZZKE5m5cdAowqz/80sQLY80d141eT7TcqXWKcuVO3WasauqyGvbfJJOdf91VT02KhwT5WdSNz5b+9vKbtxNV8ia2nrA2/tU4adOEXgqk2bH8RxBYxwp2n0PiMeSEiim6q9cvooiAmKqZ/wgtoeX2wXkgUKpHCwA5ETEuIoMIe3lpVPdS168LFruJcvfKi56DAtoFJ9K1n7eOfrZkOVLW3UmaXcGY/vFixfj1FNPxbx58zB//nzcdNNNWLt2LRYuXAgAWLJkCV555RXcdtttAICFCxfi2muvxeLFi3H22Wdj1apVWLlyJe68886wzIsuuggHHXQQ9t13X2zbtg1XX301nn32WVx33XVpXkr2qFQq+Od//mfMnj0bPT092HvvvXHxxRdjdFSuT37kkUcwd+5clEol7L333lixYkVGLY7QKnExbMpx5TJoU7fqnG0g9SR1tgLSUkylEfjctK601VIug63r15ni6r1fOffgwEWAc5v0SWyyqvxKXZEkeiUp2xbsNZHPeYk6iT2uo+5xteueSDWlsxtfq+1UGpRldy2ivC0Nr5RqIejeWO9KFUBX7ZPl/Rph/jJgvuJcrlpXSg2jCFophZiSKtU26TRUeEznHNA6z2yrGy/VfUp4HzOw9SeccAKWL1+Oiy++GAceeCAeffRR3Hfffdhzzz0BAOvXr8fatWvD9LNnz8Z9992Hhx9+GAceeCC++c1v4uqrr8Zxxx0XptmyZQs++9nPYs6cOViwYAFeeeUVPProo3j3u9+t3a62IKUuv/xyrFixAtdeey2ef/55XHHFFfj2t7+Na665RpjnxRdfxNFHH41DDz0Ua9aswde+9jWcc845+MlPfpJhy82Q5iq5KbJw22sXQkp83I3hFO8aZ07GtBIxlYUbX5pweV2pIAezTqu1+da2RivZaH7a5Cop1zZZN2af3WIHSxi56c/Y9CQAOl8V6o6w56e1s0Mu82XlxpeV/W/Gd6bVn5jaekt7f/3112P27NkolUqYO3cuHnvsMWHau+++Gx/60Iewyy67YOLEiZg/fz4eeOAB80rbCq0+Wfbgo5t5AY0kUP13zPktFeuEVA8GUMBwAymVy1frixGV2HH7x4V23ZNdUxLokFdZkFTN+E21gjpMgozG9osWLcJLL72EcrmMp59+Gu973/vCc7feeisefvjhWPrDDjsMzzzzDMrlMl588cVQVUXwL//yL3j55ZdRLpexceNGPPDAA5g/f75Rm9qClFq1ahU+9rGP4ZhjjsFee+2F448/HgsWLMDq1auFeVasWIFZs2Zh+fLlmDNnDs466yycccYZuPLKK1NpY6sobEzd51y122W9aRBSol3xdOrUrd8F9F1C5CSRbcynrIgpVyvmzao3KZxMsnIWLwv4iUpzkVbfYroDnQguCCmbsnWhU5eOG6HN95B27DsXMaMAfYWRqA26ZeqUbbqjYUfAxtYbPq533XUXzj33XFxwwQVYs2YNDj30UBx11FGx1XIajz76KD70oQ/hvvvuw9NPP40jjjgCH/nIR7BmzRq7a2x5mEyeWyVOjw1siIiK4L1r2JTNuoblEcWVol34ONmI+x6qKGA4UkrR3nEloJAr15cnVPZIx22Mhun1miqnkpadRj2i8kyfyxYnnmTIaGzfimgLUuq9730vHnroIfzpT38CAPzud7/Db3/7Wxx99NHCPKtWrcKCBQtix4488kisXr0aIyP8h7VcLmPbtm2xV6uiGW6BWez0lxYhZVun7n02vVZdtU1agXKzDEhrShA1Y7W8LSc3GUh8/UTFPdKM+acbW0mELBZXXO62xy8/2X3kx6JyO+CmbSJrH22Ic0JO0S9VelmbTPLJYNvPJKnbRd+apFzb8hWVp27vr7rqKpx55pk466yzMGfOHCxfvhwzZ87EDTfcwE2/fPlyfOUrX8G73vUu7Lvvvrjsssuw77774mc/+5ndNXpkgDSVLzTJkwS6xI0p6WCg/on9jmrIIQhk3ssqpepp8qgauu/Jfpw699Dme/RB9+UQ3fek5JgFMhjbtyra4lK++tWvYuvWrdhvv/2Qy+VQrVZx6aWX4sQTTxTm2bBhQ8PWhtOmTUOlUsGmTZu40eCXLVuGiy66yHn7WWQdMLOV3AJt621lQiptJAlwbhOMPMhnHri7WQFpXQfctW9HxsHOTTsjiy3C6YkKEExEHnjgAdxwww1YtmxZQ/rly5fHPl922WW455578LOf/QzveMc7zBvgwUXS31kzVVK6SNNtT3VOVUe1mguD2uqWQ+wDz16xtko36Lm8Pnn7dMpLM/i6vF7X5TVhIwqXsJl41O09u7haLBZRLBZjx4aHh/H000/j/PPPjx1fsGABnnjiCb3qRkfR39+PnXfe2bCh7QDXKql2RhZBoKFZh+6udCwhlUdwHYIg57GsJHIhUUuVG4olKqkYEW1sbthd4tJUnLEBwpsV8LyZNln2HDf5N5zB2L5V0RZKqbvuugu333477rjjDjzzzDP4wQ9+gCuvvBI/+MEPpPm6urpin2u1Gvc4wZIlS7B169bwtW7dOjcXkAAmA7M0XR1cqaRsJgnNIKRU7UgywOWtENOrsK5XkF0rprJw40tTLZVF3JZMYLmawqpBy2X+Ch+ZqLCK006eqLgic9IoI6n9T2IPG8vSt/+8Yy4IKXlaXQWsOJB6tZrTqrPZNsSk/iTx8rJw43MV9F2GZn9fXCRQSs2cOROTJk0KX7zFhE2bNqFarXIXcjds2KDVxO985zvYsWMH/uEf/sHmClsYaRBSbUyQGsE2LhJ7f9hybAkUsgMfWy8Tw4kmnerxogoo11/D9fO18HdWQFlLoRovXBdZk0XsveHt6pcV2vl3koDY8kqp1saXv/xlnH/++fjUpz4FAHj729+Ol19+GcuWLcPpp5/OzTN9+vSGznTjxo3I5/OYMmUKNw9vBSkrZO1ika77n/lj5ZqQsq1P9zwPFeSQU6482weZtVVEqWCjmLKpL03lkouVdZMymr5FOBAsKZg0ob4EMXPmzNjhCy+8EEuXLm1I7icq7Y/krmzuyKH0YmMlI8BMIFuEqSIXs++miwtpqKVU+bJSbblW5SapL163G0VW6kosU1tP8gBYt24dJk6cGB6WjXF5C7miRVwad955J5YuXYp77rkHu+66q2FDPTySQrbDH0uqdEvSomGyPy4fkE3FekypAr37HuW+x1VJGZsEtk0jzLk0bIxIJZXntKdV0MptcwDLsf1YQFuQUgMDAxg3Ln7Xc7kcRkfFmrX58+c3+Lb/6le/wrx589DdPdbltRHS3HXJdFKexY5+OmXaEFLiyUh8IiKDaGtq/mTBfCKQxM3PhmQxmejIyzEjvtqOPEoLJQAmHHp9bmEySQH8RCULZLko4YKscaWQtVFJ2U7+Vdfoyk7QK+bE5hObRds6lXsdyd8MYsq2HVm48dlff3LiqGn9iamtB0J7P3HixJi952Hq1KnI5XLchVx2UYLFXXfdhTPPPBM/+tGP8MEPftCwka2OsaiSkrlqpTU3kgQUT6V+WTm0tESyy10eQAnI5auhQqpQ34UvrqRCeK5h972GAkVI6rqX5ZyWRwjpPtPtPvfOqP2WY/uxgLbg1z7ykY/g0ksvxS9+8Qu89NJL+OlPf4qrrroKH//4x8M0S5YswWmnnRZ+XrhwIV5++WUsXrwYzz//PG655RasXLkSX/rSlzJrd5ZxP0wGSi4GjWlOSmzr0CnThUJKFbdE97tgySwXgWaTBEa32bHO1M0uzV3xzHZtys6FLzV3kJzFC9EkhbxEpJSLicq///u/j8GJSjZIav91J+BpL0aY1KtSxtpek2mfJyPuqtVkZcuQVpBu03yt5MaXpM5WKS8xbGy9wWNZKBQwd+5cPPjgg7HjDz74IA4++GBhvjvvvBOf/vSncccdd+CYY44xuKB2wFgkpLJEWm5nFeqvisAh7npEIdVNHee1r36sTkghD+TyFeRBAp0P1pVSVLp8YL/y0Nl9zwRp3b+84D3vMwH7fNPEXtrP9Fj8zSi+2xRtfaujLUipa665BscffzwWLVqEOXPm4Etf+hI+97nP4Zvf/GaYZv369bEdoWbPno377rsPDz/8MA488EB885vfxNVXX43jjjuuGZcQIsu4H2mppLJQSNkQUmTfIdN2qM4n/c7sJxDmMZ1U51V+71kQU+Jy+EqypGWbDBSSE1AZSopT9jv3ExX3aLZqLy33taDs9OJIJenL0nDVrlZywaua/vcp6wf045jE8+kc09kV0NWihKh8UVk61+x2gthkJIgppYvFixfj5ptvxi233ILnn38e5513HtauXYuFCxcCaFz4vfPOO3HaaafhO9/5Dg466CBs2LABGzZswNatWxNebLuhHdUfvDY36zq6ESeMeA8uOSdz02PBI1wIOUXO0Tv5VRqT5oFiaRgFDCMIdB4QU8hXg/QkTf18DlXF744mx2hXQhVUBJVrAkv2XdDQJbFcwdX9anGkbOtbGW1xKX19fVi+fHnDzk40br311oZjhx12GJ555pn0GtaGSDNQr6uYCnZBbtNRR7Ftoa/R1Qo57Y6gE8+D5JG1IY0YVK7iZpi6QJi0tVk7ADYFOZhZcAu+bPHixTj11FMxb948zJ8/HzfddFPDROWVV17BbbfdBiCaqHz3u98NJyoA0NPTg0mTJpk3oA2QXBGbbPFAVyVl4rbnyvbrlpMWIWUK2+tIUi9ry3n2UWV7eSSNqf136cYnO56WC5zr9mfVJs2CzEfrhvb+hBNOwObNm3HxxRdj/fr12H///XHfffdhzz33BNC48HvjjTeiUqng85//PD7/+c+Hx08//XTueLy9kMbUqNWmW7RayDWJkJQUoEkb3fsmq5OOI8WSYJwfCpno1933CCFFYkqNy1cxihyllArOx/Jz2yBrY7NjJGW9A1+r/R5aqD0ZjO1bFS30LXQu0tg6O62BfNpue65W4nXO6ZxPgizIEVUcKVk7bCYNruI/ieowIb6SxpZKSrI1PV6V6QqJxaX6iUpz0Exi1dQ2u3TZ1i1bt1zX99GkPUSpQ+wEHVcKKCjzulLomth/9piu3XQV+Nykf9GpM8l9TLPvMobNarhFUxYtWoRFixZxz7H2++GHHzavYMyh3d32dNpv2naW2DCZMcvqYgN9E3WTzIWPJrZIfroMCSFFCKdcFTlUQkIqjyoKpTKGUAiLCvZhZVSrpJoK0BhsXdRem3hSWSFr0qoV0KTfbQZj+1bFGLqUsYU0BthpqqRMymgXQkqmkkoK0/hHqlVyW1VUM4kpE2SplsoigK8T5GDmS27ZfD9RMUcaz4oLV2pbNCOOVLMJKWH/VYkfl90bE/c2tR23Iz2aabtkdTeF3GlXmNp6ksfDAq6fvbH4LI/AXF3litCwLSePqN0as/66UqpYJ6LIDnwFDCOfr0Zl5WvIoYLAfU9FKNFucbLroN0UTSUzSZ83QpoREkpGonUSMnRvzWhs34poi5hSrY6Wm6waIC2VlMt7ksYW46aElCq/jtuA/Hw0SeHFwjDJbwqb+B8u6nAR9LzlAtIaIHHbO9jv3EOMJK57abrtpaGQEsUR1K3Ltv8jxBRNULkeB9j0AyKYkmM27XAVW1AEnbamHQC+abCx9d7eW8DkprVjLKm04UIlpeuyZ0IA0QHO6c8ETLvrhFTkmhfFjCqijFy+GmtyTCVF//YqbKG89jUL3YL3unl00amGiH6mDPvtDrb1npQyRJKBZxqr2kld93hIy71CVrYr1xCd80kJqWYhCTFlGxzdlDgyHdxnGYTc5SQvLRgRgR3ccY0VtIMixLVtVpWddNdAWXqaxNJR8gbr34LrrCTrJ8jqevxYeuRIEtIoKTFlUq6obFdwseiReRB1T0q1KZrxJTRrTJNWsG1VnbzrpQkuurw8dZ4Nnk61n/x+SmRDiQqKKAeEFKoRKQUA+UrYs6jtAkuI2T4fJrGpXDwPdDtV30uzybZWh8bvpINt/Ri6lLGDrFw/XKikdOuSHXfhvqFTj+qcy7bI7pfOgNbWtcHGVc91W1y48SWNLdVcl5WM3E8KAIoG6UfTaoiHDnRtqK6tdh3gPGuXbVtCymZBwlTZKixbsNuebmwjF7GXCKmSpisfL51ufCZX9thVUPKmx/5zAVNbD3h7bwzXKqmxML2SXQPtwsebaFeYtLzjbD3sfRXVz5Yhi8XE7rZHK6gGBXkQTvZp971QNZWrxuoroMxdZOA2NWxThXrvmtAjbnymhBTbFlHbOjG+VIbo4LG9V0qlBH33AftV4XZSSbkkpGQTnywIKbqc+Hu7SQLvPWC/iqxSTNmsmKepmGpFtZTttukipKKA6ODVFI9s4MJl21XfpbLvorp0+jSjRRdGISUi5nV/82xak36AvEyga9t02t8KqiMbtZkLlVem8EqpFkKnEFI6GIF7coK9d+z9Jr9dm6DgIvc9puxQKTWCQj2OVAHluhsfZXPzAPKBQip04aN/e7HmkR3/aLUWfU4EWVB02WcecacLnec3qSKqtbwUIphcV0q/8w629Z6U6gCkoZJyEUvENSElyyM7T4b2tjC5l7LJhwlUkxHVpKhZxJTJxCTphKelJxkukLN4eYxZuFZJpRWA3JaQsqnLWhGlWsDQdN1r2JHJEirihiaodIgqW3uZVnwpk74la7tuuilJSo3w9j5VuJzVNXOG6PL5S3IdIpWUbj2iuFI0IUWXL1JfkRdNCHVTL7atVNYSMK40HLrs5VGtu/ANN9groqDiNpULkTJMuwAmTZLvXfU908oy0TnRZ1cwfRbb3IWwg229J6XGENJQSSUlpETIkpCyaYeoPSKVlG59PNiskkfp3ceZcklMmZSfVtySMYsOXk0ZC3CtkrVvR3J1rGuXQ7oMG0JKN58uuNdSyRnFlVLbcjcLFlEZ5hMVHdVR1sSUDUz7URvYlmn13XqlVIpw6bY3Vm56Wtchs0m8eyuLv1SBWi3ElkXvvKe4xjxQKAXqqGKokorc+Ehd4/LkWN19jy62Ak6wczroOnuO91n1XbAEnQoyN0f6L69eETFFk3xZw7Zek3y8tCn+1jvY1ntSqsWQdBXbtrykA/ikrhsuy9c5p9OOVglC3GrElEk70t6RSVWm60lVSxFiOZh1WmNoNaWVkcSW2it77FVSPKS1GGECfRf4RkIqDWTdH7ggVmSqKRP3QhZZ7sinU27a/VUSOCnT1NZ7e9+BaBV3qCQqKULaiAgaWX2iunRUUsy9q/+GiiWaiKrE/tIgSqqYW18D6IMugp2LwLsPSV0sXRFO7RSHqonzvw4e23tSKiOkEf8pbSRts/nuSGaTnqwJqawCZ9vELsqSmDKdHCWNL9Xqaqmm7erXwasprYIkJI8tmqWSSlpuGkSXWzVUvC3c9lZy2q57OmDthMqu2atzkrlYJ4mnZ4LMd7XTRNP7G6+USgkmv2WvkkoGW5UU2x7irke77YmCcYvKoBVLnFP1v7l8ta6SIsHOK3HyCUEaQlTlUQXytaisBqUUG1OKbVcS8oclA+mXLXTVUu2OrK5JFfC/jg629Z6UGiPIYqVcXLd+Pa62F2+2Qsr1ZM42nke8jOYTUy7iS5mUa1tPq05+jNDBfuedApcxkbJSSTWTkJL1O07JvIqawNKFjJhyabvSIKZ06nDRt9iopbJw4csMNrbe2/sM0exZoatFsKTXYbLjniuICCneMXoGL7nWerJCLnDbI7EB4zECK1Ryjm1pIKTYClTtVbQxVZi6UjYDrdAGHVg8+x1s6z0p1YZwvb1xkp0C04wj5ZqQ0pmYpOmi4mKXOd2At6blys65IqZ0y27WjnaZqJtcooNXUzwi2Cpuk7pWtwMhxdp8XlvoY42ugHllm6pVdZtVds7UZpPdnsxVq8lj/7Ht0KkjSzduEyRV4WZGdHmlVJPRyoGT22zcIgRRL+WZYzqQMUC0YooX/0igJMoDRUSBzukX3+6R3feodsSaxe78J4rFJFFxCUGuQfUsqM6bxE5yYWDGyrPrGB1s68fQpbQOmrG67bL8pKRXWoFzVWWrCCmbduiiipzRYDbJYJx0iLJryqEivKYcqsJ7JTonOp5HVft5kdWrl198TS7rUZVlW77LdgEACgCKBul9/58IabqK6ZZva5uTxblyO0xIQki5iF1IjpvYLm6dlTzy+ciOJ+03aftmYivoCZJOG3h2VLc+XjrefdS11SK4KtO5zW0WTG094O19ZrB5zjVIkczh0s4nVUnpkDKsCx85JlL05KnzPOKnEv2pT/QJ0RQPch6PKZXLV0ATVrGqhFxZN+cE75gOSINFn+njNFTPXTcnDXuMXGiW4LWLgG6PLF3aSFhvB4/tvVKqzaC76ux6IJbUPdDFanmzCCnTQLq2g3HT4K1J3PnSVkwldRVxrZZKEqy3ZdHBqymdAD2SRm2Xs1I0ud6QwyaNSb1i5a7CvlOue7L4Ug0TFeacCXTT66qnkmzsYLugkkbsQhd9ZhLXcH66FPoQr5QaAxApY1zFEUoCnYdFtcua6+de1iaTSb9MeSV34Yt23SOaW9q+Rm0gZFWQj7ITDbeEF1NK58cquueinfcqnJcMqvqTGJNWHFO7Uj6mdG0dbOs9KdUktEKQ8yQTk6QTBFeEFBn2i+qVTU6IA4QMSeNTqZAkDhSgnoSodl8ynSi4IKZ0y22noOdNiVfSwR1XO8G1u3UaaKbbnprkF9t4Xv607ne1mkO1TkJVHQY7pxELoGtIuNCwce0T1aFzLCtbndWiQSv0KTF4UqqJkE1gTcgc2zpEyGqyr9N+GqYqKdN7wyqjSJ0sUcWSUewufIrvLg8U6u57xTCuVFAfbR/y+XgA9HGElGrgg0h9srrp46r7ksYue2y9qthSgLmhYdvo4jluhnttir+/Drb1npRKiFZ0uWiGG6DoeNqElAhpBTNP2xXAdmU6DdVUVgFqVcdtkMUKvzqfutNKdM2igIeyl0dLwqYfcamS4rfJXh3rgpBSkVG8/K4IKbYcF+Xa7araSEy5innkOvB5Evufploq7YDnmSxI2Nh6b+9bACaTZZO0LifEsrGw68m+zO2KRxjJ6h9h/vLq4Lny0fWw5cfLyqESc93LC+wvsQExWxAjpUbClFEbWOUZ/deUZRAFmBfBhrySEWatyoq0ciw4CTrY1ntSqkVgS26lHeRWt/w0gubaHNepV0cdZfJ92E5YolUXN+RFKxBTuvWauKO4LM+2fFf1OUUHr6a0KlyR1lnGwXHZr4hgQkjp2l8dQioKB966Dz+ranJtf2SqKde7pSZxu26me1xS8ix1eKVUC8LW5apdkJQkY4kSUyJEVr9JfCSa+GFJIUH++u+nGCqlyuFvP3LVC/Lk8tFx+rPYc05HfSRruw5k91vnexCppUyUXDSSBmAXQVepKPusey4pDBSEHWzrPSk1xuBS3eN6pdykTJvjsnpJ3Unc9UxX7UVQDWxlRJALdz6benWPm0x+XMeXsi2/bZGDWac1hlZT2hlpESQuVVI65YuO2Si6VMdN0/Fsvey+89uo6Cscu/CJiClVf5CE4GfrYstXHdOx11m4cSdxdWwLmNp6b+8dwXaSmma+LFRSabgbJoEsptII570MrFufGPEg51GA80YbpxPonFVF8dgEm/sq23lvhPMSQdYWnXaZkmZpwXR81YKMTgeP7T0p1QTYuo7ZlKNbdhZxT5pNSKmQhJByDZtA5DRakZhyibTVUjZlZx5XqoNXU9KGKxvtCjpEjwpZxBDU6UdE5FYSQoqu15R8MkW1ksOoISGVPJaSeiEjiY1Koj7SqbfZsQDTduFLHV4p1WKQ3dx2V0glAY8gEbnX2TygSXb166q/SN2K+vOElApUUsRmNBDg+bjtzeWpdnGVUmy97A82DzsXPlJh2rBVS7ms1xSqIP1pwfL7yMjWX3/99Zg9ezZKpRLmzp2Lxx57TJr+kUcewdy5c1EqlbD33ntjxYoVwrQ//OEP0dXVhb//+783apMnpRwjrYlKksG+DbKIJyKuO1tCymRCpFOfDUwnBbqqKZv6XLjsuY4vkrVaKq2Auk4nYh3sd94usLXbpsiaNNets1GtlKyPcrGg0uqufAQqNRAPSfoFlzvyuXbjy2Kn1DSJs8Tl2Nh6b+/HILIgHZpJqtHxnlyWxxIpbBwnChSRRAKYE/c92oWP/S5oJVVYzpCoXeQaVdeZZ/6mraRLqpaSwcTlUgUTF8g2RAa2/q677sK5556LCy64AGvWrMGhhx6Ko446CmvXruWmf/HFF3H00Ufj0EMPxZo1a/C1r30N55xzDn7yk580pH355ZfxpS99CYceeqhxuzwp1QLIckLhUiWVVhwp07RJCakkdacJ3UmIDK6JqeRp3Q38W231PXMUAZQMXsXmNNPDDC6Cd+u48iVRSdm67dlCP86UXp10OrmyKk0XPXP7oR93KXtiSlVHUjc+0zxJ+kaTejKBqa339r5JaKeJMc/uZRXYnAfd/mKE855nW0xdEBvd2/KI3PcIGhYLcvGFgDw3phTJIyNTRCSVzn3h7WiXJoEpalOSPj+r3STThgPXxAzG9ldddRXOPPNMnHXWWZgzZw6WL1+OmTNn4oYbbuCmX7FiBWbNmoXly5djzpw5OOuss3DGGWfgyiuvjKWrVqs4+eSTcdFFF2Hvvfc2bpcnpdoUrtxLXLtv8NuRzG1PlLZSX5sQ1dnOhBSBK2JKNglxEezWtRufy9XylnS9cwG/ct6R0FEfuSjXpOy0lLwqMkrXbY9fdryP0OmTKo7jSPGgCnqu66qXNTGVthtfUhudJpmUhIDTgldKNQEiUsM2DpOHOUT3OokbH+0eR8oXj4GJAioKcE7ZElmXI+SFaFcyngLKpVrMhpwyjXPVrF0jCXhfQuuqobVgaeu3bdsWe5XLZW7xw8PDePrpp7FgwYLY8QULFuCJJ57g5lm1alVD+iOPPBKrV6/GyEj0e7z44ouxyy674MwzzzS86ACelEoZLla5XeWxXWnOahtwU0JKBFfuejZ1J4EJOcRLk4ZqKg1iKm03PhcTNnd5Ulz98TFG2g5ZuI7ZqKSSuFfr2H0T2x6FjJXbWfUuqzntsmxRrfDvWzxQuVyRqrLdMtucNNZU2sRUErc7myDqSQOeN1t9K4SPKdVBSEJG6Aa1dl0vDfIb0t3lTUTAqB5gV8GyK8KPOVRRxHAYVypoFbGp9d336gu7edbWavNBecF7QK2i4qnGeDAlp2TtcAnT77BDjJqlrZ85cyYmTZoUvpYtW8YtftOmTahWq5g2bVrs+LRp07BhwwZung0bNnDTVyoVbNq0CQDw+OOPY+XKlfje975ncdEBOuQbbh3YTEpsJhC2KimdcrJwBZEdtyWkXOzslHZA+Bwq3GsgnZ3qGlTp8qgKr0FWN1ueqB5eWl6dvLpE9aivmd9u03LYduqUqyojVZhOPLy1bzm4IF5Moft82sZ/siWkTK5F1SeKylcRDGRdXN2AHEaBaPtvB6BtlIkt0ukbZPZPZLN0bbSqLh2bKCpXpz4T2LStJWBDMnl7nyGyUEmpSAXeBH8E2Sm40txRDVBffwXia+3iHKOJnhGExA0TU6qAcp1w4hBPaPREyOWr0W+vIaYU+SFXEJFxg9Rx9vviXZPsh02+A9F9IPdQxziQdtqeF4Fce1J0o/GZ4x1rQ1iO7detW4eJEyeGh4tFuV9fV1f8d1Gr1RqOqdKT4/39/TjllFPwve99D1OnTjVofBxeKdVkZOUe5ioeR6sSUip3PV1lVLPd9VRw4bqhcuczKc91oFpXrnYtsbqdNjJaOTfZoWP9+vU46aST8Na3vhXjxo3Dueeea1dpGyKLgOWmLslZq2Nt+5AkhJRJWS6+I9Od90wQi02iUAXx8soVV+LzSRRTNjGnXLrx2QSET4rM+5eMlFLe1qvQqkxfWhNxV7I7G+UWm98l8sxffj1krNxo8yphdqEtCMmtWkO58XplwcTZ9ul+D6r7nUTBnybJ6dKzoFV/qxqwtPUTJ06MvUSk1NSpU5HL5RpUURs3bmxQQxFMnz6dmz6fz2PKlCn4y1/+gpdeegkf+chHkM/nkc/ncdttt+Hee+9FPp/HX/7yF61L96SUAbIgLFy47qWpktIppxmElAg6RJMuGZXViqpunKQsXTdIebrHXcaYso1Voioni2C6NtC9T7VxQC1n8LKw9qY7dJTLZeyyyy644IIL8Hd/93fmFY4htKICQ4dESqKOVeVLg5DSiQtl2oZW3aFPFgMwSqPuF3hwTUypynYZVF0G07al6nJtCWNbb2Hvva23hc4kPU2fShVho+tGx0KXEHH9e3GxwxxNOrHldTFpSHkj0duYWioYRxNyirwnRbDj7Bwb6FzYVpaMIp/znM+iZ0d1r5KSeSLyzLQdMrggHFuzv7ZF2mP7QqGAuXPn4sEHH4wdf/DBB3HwwQdz88yfP78h/a9+9SvMmzcP3d3d2G+//fCHP/wBzz77bPj66Ec/iiOOOALPPvssZs6cqdU2T0q1OFzsaJR2DBCXcE1I2dbnon4dmBJDjemSq6ZM6ndNwthOTHQmOTZtbYcJCkE1b/4yhekOHXvttRe++93v4rTTTsOkSZMSXuHYhqnrnspGqz6nTZKZtk90jAfRphamhFQzoWuPZGqpKE1y1RQPLokpHZttiyRqqaziCbqEja03tffe1tNwqQbhkTuuJtGt6qqkG+uIheq+sLGRko7PWHevSkOxdLDz4DN5Xwk/y5squ34T1zxbiOp3Mba1bW+rjKuzIrPMfqdZjO0XL16Mm2++Gbfccguef/55nHfeeVi7di0WLlwIAFiyZAlOO+20MP3ChQvx8ssvY/HixXj++edxyy23YOXKlfjSl74EACiVSth///1jr8mTJ6Ovrw/7778/CoWCVrvGFr3YZDRjUGyjknIF1yqpLAkpF+4iOnGMdGAS00NWTxYxRURl6R7TjS+VFtg2uY5ZYtMGW5h2RiTttm3bYseLxSJX5kt26Dj//PNjx2U7dHiI4WI3UJfI0m3PhpBSu+np18naYnIujd+/awJDZp8B+X2QXZ/oXNL+yAQuYwvK60nfzqcZn8pm4mFi772t14HNsy/Lk0fzJueqa2kVskFWnktCjhMcvsJXScWQR4N7Xy5HxZQKlVKyeFe0qovElCLXLYuRZEKcJoktxntOmxm7qZm/GxdQt912bG+CE044AZs3b8bFF1+M9evXY//998d9992HPffcE0Dgnk2rZGfPno377rsP5513Hq677jrMmDEDV199NY477jjzyiXwpFSGaMakJC2VVKcTUjK4VNeYTARUA+92IqZ0yrItJylUZWYVPLdc7Ea5KA5K2Jg+iG3AymgvvPBCLF26tCG9zQ4dnYJmq3LSUEml6bZnct7FjrW8zzyyqNnfowgmAblVfUSaxJSK5Lex2ao2i8pK0lfalJXlgoaprQ/y6Nt7b+ttIZvou5xeZTkJd9nuLIkL0u5u5jOLGpWOZo+oexxTSlVQwDBVC0VC5XViSumAEFL0Z8BtoHoXZbVaIHFVsPOsCSw398Z2bG+KRYsWYdGiRdxzt956a8Oxww47DM8884x2+bwyVPCkVAIkX+lN5r7hAq528tPN10xCyvQ6bHf5A+LuBbx6WeIqyaQjnlaummoVYkoHNhMTFzCdoKjJwGT5Rajmcqjm9Duuai7ouNLeoWMsotnkhWvb77K8pG6FBCa/Y5s+QERMqfKlDR2lK6DuI4Iy+Pel1YkpHegucMjSJ4FpeaodE03KMrX1QR5ze+9tvSvo2tckk+ZmkANpTvJZwoStJ63rZXfgQ4xQilRSxIm8Go3f84h/ZiF036PVULLjaZNArnbC83AJ27H9WIB/GtsYWa2Ws3AZk8oVIeVKHZWmwiVJ2XSnp+vSJ5uEBOUkd92wJaZs3fh0BvNJJ03tglHkUOVudSxKH6wQkp05VLDZocMjQFI7YkbQmNn9NN32bAippGQUXabL33Gz3XpFJAwgvmcyckpm902JKRVM1aSu3PhcEkGtBFNbH+TRt/fe1rtEK06rZCqZNHdTcwGKLHIOopYiLNQIgBpQ6QIq0UJGDpWYC19gh0fqpBQbz64SLzIst4dTP/2sEEKKPkbc/lwRDrZqKRfkKY90dKkIazW3Pvu22I7txwJ8oPMORlpue2kQUkE3YE5IkW5EBVEgXX6Z5oMOnTy6gWB1dmAK0nF84Jnzonbo7pYkKifNYOVpBtBtJ1SQM36ZwGaHjk6F6WRXVz2UtK6s3fZM68makGp1UkIVLJxAZfNk/YOoTFF/4WJTCb0NOfQ2vWAhuxcm/V8rb3JhY+tNflve1tPQ2YlOlC4rpKWKaEVCjQYn9lMM3cxf07IrAAYbXO9ol72YnSwBRQwr7PEI85d9T++0xyLPpJGlbXU0MwZVeyHtsX0ro/2+rTEK09XtpCopV257tuWYElK65eqcU9XXLtAJdBukk6+Qi86ZqJls3fZ0VuJtVrhdu5hkEavKFMHQSH9doYpR4zoWL16MU089FfPmzcP8+fNx0003NezQ8corr+C2224L8zz77LMAgO3bt+P111/Hs88+i0KhgL/92781rn+sIIm7nImrmloxareAYLMYoSKM9Agz+9iBsnyiwOdJ+wMx4SO2mzpliuwzYK+aMnHn49XVrPhSSd2lXcKkH0jSZ5ja+iCPmb33tt4FbIOhtw4Bmhw8EkYFl79Xk7IIyUNYqMHg7xCAocDeERIqCnge7cTHiymVBxvonH6j+p7Zto9AHGicTmMCVpVk68KXlmuhTnvG2m8mjizG9q0KT0plBJ3JQDNh42ah4wbSqoSU7eTD1WC3inw4aaBh4y5hQk65iCuShJjSiQtiMzHJKri4CM1oj3nHZR4bxHSHDgB4xzveEb5/+umncccdd2DPPffESy+9ZFx/J8LVc+NqISIpIaXTNlnZ/DT6/RVvFTtx/1vJA3k9habI1otgSvDrkFMuiClSVzOIKZO2y9ImJbhM3RJdwY6UMrP33tZ72MP1Tnh0nCcCUxJCpCpiy6FdyEYQKKUmMsHOIzKqiOGIiCoBBZQb7UKMlHJxbxpYLgpZBx9n62s2QZTF9bsMOK9GFmP7VoUnpdoQWaikWNjGJbEtX1SHqp4kkyEVslp9tY/jkd0W4UlWo22JKRVcT5haHVl1XKY7dNRqY8e/PQvI7ZmY/EniAmiTXqdNOp9tNrBIUn4FOWcuvnlNIkoHKtcyHjEFiL83GTmlUmqJVLQuiCkXcBGjSgfNXtwQIQtSCvC2Xh+6Ln4ejWDvnWqyT2Iykfc85BHfTY/9LmpA7PcgCqJeJ6bqwil6QSGHakhA5UiCkkn4CFotxXtW2B34AD4BxGt/q+2K12zoEGet+3vtZFKqbWJKvfLKKzjllFMwZcoU9Pb24sADD8TTTz8tzfPII49g7ty5KJVK2HvvvbFixYrU2qc78NZBFrvuxctPNrkR5XHpGqJqGxHYipDE71YWzyotiOI66UC1Ki+LNWUSw0Q3BojuMRV04624gssYI6YxWHQwjALKBq9hFBLX6ZEcWRCfpu7fomOu40i5JqRYiMrXuQ6SRqst+eatDKtsh6jfkMUiNO0PTKCy2ybxC2Xl2LanHWBq6729H8sYC/GkWBKJhSxulMo2yEgudpcy0g5S5yDipBRRWAaBzvPVavieZC/QyinU7UvssmhSzcalkaf4yqP1SBXSRlm7PHGmg04e27faU83Fm2++iUMOOQRHHHEEfvnLX2LXXXfFX/7yF0yePFmY58UXX8TRRx+Ns88+G7fffjsef/xxLFq0CLvssguOO+647BqvAZeTFNOYIjr5XbmBpElIyZCVq14ag12Va4a4LfaqqaSKKVfxpXTLVrXRtB26aLayKqAtO9PvvJWR1qJCUpdl07Jdu+2Z2Hqd9rHHVTbSpWIqC6hUrYBcNeXKnc9G2ZqGG18S22+jEBa1wwSu4luZ2vogj7f35rBVQCX9jlklh43yhc7fFlM7Dni7zxGkScaR+12PK1WPKUXsQrjzXqWKfI5a1C3RZL8uMSBzSWRjRdHPBe+ZUJ2XtcFFXCkdyNqVZr3ti04e27fF03D55Zdj5syZ+P73vx8e22uvvaR5VqxYgVmzZmH58uUAgDlz5mD16tW48sorm05KJZlAuIzdYZPfZRyptAkpGzIqC0VUFY2BdlWgJ1Mm16Uip5pJTLlw40s6oXDpwpc1SVXFOKP62mc63rnQ/W2b2D0bIskFIZV0gURVTrMI4XH5KkYr2dSttm/yjSoAc3e+tIgpFWw2vZCTTem48DXD7dvU1gd5PDoHtsrNpHFyKoL3LkHIIvKehUhRxF4b7WrKI3eIOqsSKqWIHQiDnVdGUSjGY0oVMRwrKaaUit0SUn6P5FpU4MXasiWmmoG04zLJ4lulHfvK3X3v5LF9W7jv3XvvvZg3bx4++clPYtddd8U73vEOfO9735PmWbVqFRYsWBA7duSRR2L16tUYGeE/POVyGdu2bYu9XMBkYJRkld00lpRt7A+TMkTHdAkpkVuejrueLoh7ngtCKtqhg28mXAxe81SL9dsl3yJc5GLHO+7SlU+HnFO5vum4g9giiQtf2qqMavgN6b88ksOFu7NOXhcubS43ZjBpg2lfxCtP9sza9FWydGnFEXLxm9OzkeI+R+bOZ1KWTl+g6mdU5em2UQRdm9tuLnw2tt7b+1ZBN/guWGmiFXcmM71+2TXwYi8R5CGui+yyx+Yl6QcRV0pF/VSxWkaxzLhBl6Ixfwyx7o0m1UgbdAgM2h2O7S/Z5ynPnLNBms+MTptamUzLFp1s69uClPq///s/3HDDDdh3333xwAMPYOHChTjnnHNiW9Oy2LBhA6ZNmxY7Nm3aNFQqFWzatImbZ9myZZg0aVL4mjlzptPrSAqXkyG7+s13EExKSOmWSZetu9V4lrGiqvWuyzVMCCpZTJHgvH5ckSTElCqNazLHlNRqlwlLJfxG9V8e7QldW2+qjNWxz6abWiQhpFQDLN550+ea/i2wv4u0+oOk5cpIJzYdD6I+wjTOlCkxZWprdfoVE3sta4tuGa0AG1vv7X1a4MX30U2bBjHVDAIqDQKBDmbOKqNUaikRdGNWESKr7r5HxZQKgp0HrntdlUAZFdipkdjuewQ5VATV8ggxk+sRkVM8NJsE4t0Ak2c/rWdaFAi/tdDJtr4tSKnR0VG8853vxGWXXYZ3vOMd+NznPoezzz4bN9xwgzRfV1c8Ij3ZKYQ9TrBkyRJs3bo1fK1bt87NBUiQFrHkWiVlEyi3GYSUClkSUaq4H65hQk6Jz6VPTOlMdlQr8KaTmyRBymVo5mRmNEZJql+jLd4Rj0WYEPk2rnsmKqm0CClZe3QJKZ3VPt32si8RdO93KxEWOuSUa9WUzjFZeS6IKZM2uFBLZa2QVeUxtfXe3rcCkhAGrYpmEGAyF8E88z7PeU+DF0CdVVaNhEopEkA6hwpylVGgzAQ2nxCQVFxbwm0C5SKopZgSxTjjKaN0CSu2PTRMv1+27lZ6tkVtaX272Mlj+7YgpXbbbTf87d/+bezYnDlzsHbtWmGe6dOnY8OGDbFjGzduRD6fx5QpU7h5isUiJk6cGHvZQDbYNZmUqFaUdcs1zZsVISWaNJi666mY4qxVUc2GjnrK1U5MvHpahZiSwSRvEhcV3Xw26GSJ71iALqHkQiWlU4Yrd21ReSbu2Tpp9AkvXTdIcbo8qsjlqsjl9W2M6e9NpWSNp41+1bI0PKRBTKlIFVNbbUoKZa2Wylpd6933soBtkHPdskzO03Ad7Fv3mnTbOCJ4n6RMXlm61y5z3WPfEze4PKJYT3Wl1FDQx5DfUbEcHCtWKWUUpZQix/Jgd99j2z8CPjlmej2uiCkWIkWXR1boZFvfFqTUIYccghdeeCF27E9/+hP23HNPYZ758+fjwQcfjB371a9+hXnz5qG7Ozmbm73rnH59ae3+JIKrFXhR3qRkVCdDPVngT4REEx7diY4tMeUSSVa7s1ZH2NTXyR1Xp8JWJSUrB0g/sLmpC6AqjXmMqvbpB0zJaxk5JTpn6s6XxiKC6lyS8tJQSzUTnpRqVTTbrrgiD9K+DtM5F+3Kx8Zk4pXdTb1XocL8JfmIAqkeU6oS9Rs5BK57qAK5CrGplTDQeYPNzNc0XfjIteleo8x1VERMqSDbGY93r+i6ZEj6THUuMdbJtr4tSKnzzjsPTz75JC677DL8+c9/xh133IGbbroJn//858M0S5YswWmnnRZ+XrhwIV5++WUsXrwYzz//PG655RasXLkSX/rSl5pxCamimSopG0JKt22iYzplNmsSIlvBbpbh0HHrc+2+ISpTRUw1Uy3VbiijG2UUDF6tJK0em7D17U8aE8BEJeWCkFLVoYrTJCewxAMt3kKECyWUSX+hUkuxdsXG7tuoKlXkFA8mqikXxJQsb1J7nLY9T8sFXAfmtt7b+3Sgc0/Hyn1PK+aQLBC5joJIdJ4mZVRqKV4ZhPQZCZVSwyigilxg1+rHCkOjkS1gAp3n6toq5CtRU2I74rFqKd1r47WTgNd3mQY+l9Vr69JnA9tnbqz85gJ08ti+LUipd73rXfjpT3+KO++8E/vvvz+++c1vYvny5Tj55JPDNOvXr4+5882ePRv33XcfHn74YRx44IH45je/iauvvhrHHXdcpm03ccFzkS+JSsrFVuKqMkVtckVINVMdJRu0kmupciZVWUHHpY9/3C7graxMWVlJJjqqNtm63snvW3NW201jjLSTWmQsQpecsHHdE+W3gU5+mWLLNNg6fdykbwvyNOmZrhNTubzcFiWx9bYkSKsRU7K0rhclRHmzcOETp9OrWwYbW+/tfauj3SeSuvbJRL3EHmOVRLakhcwFklZJ5aO0FWYRpC6Oiq1JTGh03wtIqSoT+qkbcUJMpEAyAY+YUpFVaUCm0NJpg+wedKZaqpNtfdtcybHHHotjjz1WeP7WW29tOHbYYYfhmWeeSbFVAVwoYJLGA9GBDamUpPxmEFK60L12/YGn2WCzipz2pEO3bN1ryqMqvI85VLj3MYdqQ/m8Y7yy2TJ5+ZKALc9V+bJyRPfJVfk6GFVM4hvT16zr6mSoVD3ic3YLCzp56PcuVVKmgc1Z2MQjVJXJK5dXtg6qyDfY3TQGdLIyg9+9Xp2kraZtJH0Gz2bzjov6BJ6d0+kL6PKS2n+2bTLba2NTZXlkfWWWMLX1QR5v7/XRCgQRRYi0HXjtVt1TmU0zvQ+8XdXY+mWEFrXzHgbDJsTszBCAMtA1RBHeJUWg84Y28eI1qVz3ZKBVWOT5oY/x0okwgtb4HbiEznXTaWWQ3R+3qsJOHtu3DSk1FuBioiybICQJlO7abS+JS4ipC6C++4b9RLAZrl6mddLpVddKOlXdiQgpX2eSY0NMqT6rJiYmEws6bxqElmvSTQRTX/LqGOq4xhJcTnqT2HydPEn6H5PFB1U7dRc3+G7UZkowEcYZBD1PCt4Chs51iGyR7oICqduGmJKVQadNaoNtSKWsbLQMJm2wiRvi7X0z0E6TetO2ylzf0qjPtB6dHeDo3e9oMoec60ZAStWASlfdfS8f9CNVAGUEcaUoUir4ZQaaqnz9/bh8FaN00Q1tyHOuj46jZQIZ8WJKdJoQU7J6eWSZLSpovJGy8tqZ3A3QyWP7tnDf6zSks3Jr8oCPLULKZkCnC547QfQKzlWYozTSWoWVxRehIXPd0HXf4B3XceVL6sohQxokYisFvgWACsaF8nK9lzf3rQ6R656dctR0EpteYHMbQkq0kYVJjCrXCxG5fLXBZS+X49uFtEkP9tctTsfvC0Qu2Lpu2KoyXcaXcuGG7UKZrFuv677C3NZ7e58+/Jq+W/Bc2lSue7zg36CO6RIsJA4VITQqDbvvhSKnIZJnpK6UKjfap5j7XneUnks8id7z2si+CFgXuqzjOtkGWdetv71JJlN08th+7FxJiyBJUG/TdGmopJpFSImII9H9VPnRikggW8jKIR2S7kCUtFvl4uECssDrBLJYU0l25kubmEqyG5PrGCM28UWSopP9ztsNLgkKMQEjjkWVpTI2KSElI6N4ZavurdmCDF8JSi8yAI0qKZENdd0PyaAiqHSJKUA/PmASYsplfCmbuH50njTiCbqEjynVDLD3TzXRz1olZTKWSKttpq5RqmdSpcZSBTnXvU66HDovUfiMhO57oe0eqr9iSqkaCnX3vXzd0udRX7hoIKXI9dFEGy/OFPmsc29pckpETNkQVS7c0VzHt3IRh6sZML+XnWzrPSnVAlDtVBSd0yWyxJMCE6VOloQUC9HEhFcmW1YzZPnxAa7aaDarjXaDd3fbhJPyZHlUn3XLslVa6d6jZu7GBMQnvLovj2RQkSmmZSRRStougDSTkJI9h6Y2PwnZZJJGqLzJV5E3dOFzFRNRBRkxxbOvItUUr1ydxYC0iCkZdEgm13Ecs4KNrff2Xhft5HLXKnAVoFtVh0m8JRXxVUGcCGLzEoKnO0w+XA5234u57w1FucZNGADZcY9ewMjHlFKsqolWftHuhEAjGWVKaJgqlug28M7p1ieqOy1iygTN+H0nmxt0sq0fO/RayrBzA0i2i5K87ORKqyQ79ekN8u0JKZ3yTNuTBciglx380lLLZoN0nrx7ZhprKgezoLeyNul+h2kEvjWpXwd0eWkFyzXtjOpRDjwygG0Q7ug9fyHBRiVFwzYQuW55srJkZJQMSQkpG0iJ6XwVVQkZRX6X4n4smz5AFiRdx24D+nGmVPZTvrmGfkwpE9uvA7ou/b4i+SYXprCZeHh73w4wCcTsArbPbdJ4UiYwJUhk10RiJKnaTauJophE1UoOlSLjvkcN7XP5ahjonEvuNyil2HbQ8Y+S3FtRHCWT54sXT0onxhSvDlF7RMfZuFFjMei6Pjp5bO9JqRaGzmQEcKO0Ml0tl7VBpzzRsXYipFQrxoTgUd2LCnLaKh6XMBn8R3ncEFOqgb1qomIyyRFdly6Z5Zqw0oEOkTWMInIGHfewF8Z2HExsvk5+mcrLxH1QVIZO+8TEXPR7FZ2XndMBL34UWSnnl5tHpT7EbHY/ZRus3JaYktlsE2LH1vaLFgZsSKVm78JnauuDPN7eZ4csJtBpEUJJp4EqVQhPQSOqk465JAoETpfLlm1zLYK89csKbUUFgVqqGtnUYqkcLkEAUV+Qa1BKkQDqTOEhRgTnSEB0sjsgT4Wks/seDyLyz4aYottks/NfO8P9tXXy2N6TUk1A0sFpGiopWT4T943gvDtCyhUZpUqbRK7PuiqICCbefUniAqZqs65CSJRWpJpKi5hSTWpkE7tWUEtlPfGsYpzhb6C1XFLaHUntsOnudyJCSDc4ulqRZGb34+fM7LRLdZSonTz7yCOmbH+zuXwlmHyQzy3++0qyi55uX2Brs9Oy/UnQLJUtD6a2PsjT2s9ja8Bksk2j1adOqva5INFM3btsIApwzoOK6OK5qrHxluKB0ysV6jdXRYNSqlCKx5MCwCGliPqKbg9LKAF6CiIC1m2Od49oVZJIocSDjUrJhVrKRTtEcEWMZaPg6uSx/dih19oUuiqnpPldTSjaiZCKBLX6aU2RDzuiCvd4VH48uDm5XpvvXBQDRJRON60IroLe8soyjS+lapdpPhtSsFXiSlVj33Bn+Z23K8TESnqu3kDzA5vL2sK2y9Xuejp5bO41uwOfziJEGt+p7JcuzmNntwmSxghMEl9K1Q5ePlHdonqTEos69dnAxtZ7e98qaHUCSwX22U0rnhRvZ7q0QNdBk0ZMX1bJx39HTNNyuUAlRdRSDXYpVErRBfBiZbExpVQqMRayoOai9zIkIXBkuyEStNpvorVcBTvZ1ntSqkUhGjhnrZKSnXNBSJls+03yq+5Bkh+pbj7Z4F7lImKjHGDrMIUOOSVL00xiSv+c+TbhsnQuJytpoJM7Lo8AuiopeRnpEVKqPoMux8Rdz2SxQXTc5B6R1XDZeV69af3uktjyViOmdOrknct6caCZixGelMoaribNtm5lLl2CXE24VW3iuW0RqOI+8UgYdjc6EXSuT+f3KiCmyO+Is/kbIaJI/0DIqVyurpQqAUAXWAVWvF2imFIuSDpXz7HroOfsuST18tBqpJcZOtnWt/c31wKgH4asA5u62O3JJg6IqhxRXpMJCv+4mftJlogUU5SEF5FrnIyQyhJ0m2RpeOd5cTV48Up4+dljSYKV059l5Yiuo7H8bN0/bNrIA1mjM0nvkQ6SKl55EJFMprFtTGy+rA2qupMQUrplio7JUIU4lpQpAntXCHfdy+XF5I9Jf2rWBvMd6Rrtsb4rHy+/qC/QdeWTxXii08nKkEFWBq+94jTNiwVGw9TWkzweWUBEirB2zcSFqlUgam/SoNy69YnqISQPTxkkKo/nCkjKoN33JGgQQlFEFEVO1U9Sl8pes+i+ioKV0+dF94+4qLl6ztJ242MhujZXLnPtE9uqk8f2XillAb0VWjWxohMXRL9N5vlt3fbSIqRkrhuqFW+XP0rR4JSFiIiSTVKqsa6LEFV67iou1TqqtorOiWJmmW4TTsoSlSFbaee1SQe6q/Wm+WXtNqnP9Putht+G/ssjW4jskgvbr6OSMt1h1XYhwoaQUqmjeGVmMfiKKyQrjbaNs/MeHeyctwhRYT6LoPp+XCpludcmsPu6fYGtYspW5WqqXkrDDmcBG1vv7X1aaPX7Kmqfi3bLXPlEbmIq4oiFLXHQDbEiSaW0EvRDFYocaDAv3aGtiMgpJpxHPkobfSDKMJYwY134yPERNBJqMrKO914FztaC0noIYswbU69LNz5TlZ4JkhBe6ZBcWdn666+/HrNnz0apVMLcuXPx2GOPSdM/8sgjmDt3LkqlEvbee2+sWLEidv7uu+/GvHnzMHnyZIwfPx4HHngg/vVf/9WoTZ6UanGYrpbrkkkyIsklIcWbSOi66+mQUc0Aj4QgqyXR+0alFO8eJ1FAuIItOdWYVj3BcUVM6bpy6JJbacUYSRM8Ca/qZQPXHVenIokijiCJjUgSR8qWkHLlnq0iy0T16OS3QRBXqlqPKaJy13azWYcL8AknfXc+nb6AJbtsiCnXtl/H7otg2mekARtbP5ZWz9sPrUxc6U7Cdd3nbMuX1UeTMDrECA8qdzhWaUUTLHkgz1+AACKbTv/aiigjthMrcd8rydooIqN47TcBrz5ZG2SfdeqQqbdk51XnXCOrAP/JkIWtv+uuu3DuuefiggsuwJo1a3DooYfiqKOOwtq1a7npX3zxRRx99NE49NBDsWbNGnzta1/DOeecg5/85Cdhmp133hkXXHABVq1ahd///vf4zGc+g8985jN44IEHtNvlSakxAFt3N1461URFVq9OXt7kxiSwreqcCGkSPvHBaaXhGF0/PXnKqk36ecxifeislPPyqogp3by6E4Ek6qVWBtmhQ/9lbu7T6Lg81DBR1OgsXGRBSLGDIxt1lMlxHhElI6dM+w0eyZ5HQEQBxHUvqDFYKY/S0zae3Jcs3PvptVMRkhBTouOqRQp9W62XJwkJJLo3On2Liz7Dpu3mtt7O3vsFCB5cBkFOewIuUq3opteBSXwnViXl4vrpslTlsqok0W5wdLnx9+JFhTzYhWg6vlTIceUBoBf8XfjoNtLv6RerlmKvgadWYpEFGSOLH0Wfl52TzVtckUHdkKvqdMCLg+YOWYztr7rqKpx55pk466yzMGfOHCxfvhwzZ87EDTfcwE2/YsUKzJo1C8uXL8ecOXNw1lln4YwzzsCVV14Zpjn88MPx8Y9/HHPmzME+++yDf/qnf8IBBxyA3/72t9rtsiKlJk2ahD/84Q82WTsa4kG3eoKhs1quWk1W1acqL8kkh83PK0PVJl1GmF45Z0kgnVV1GUgnxHPdI5MBESFUYVKRawr+5sM0tu2iX7xjuqvCJpMRQB24nJdXd7VbVi97Lqk7iM4qu6g+3fa6RBlF45cp0ui4xgJcEQkqW+xKJSUqU/XZNh6VK3WUqB9R3QvXhL/IhY/tBwDS7nxo72nQpFwaZJTqWNj+jIgpUR4dOyrLI6u72arXNOqxsfWm9t4vQBCYECeyCXY7g6eSMlXU2BJeOguqqqDaorJ55Qjc9wy8IOmYUjE7GgY7Z4kjVgVGE1Cy4Oc6YO+Nzfdgq5LjEVMuSV3btrQXbG39tm3bYq9yucwtf3h4GE8//TQWLFgQO75gwQI88cQT3DyrVq1qSH/kkUdi9erVGBlp/F5qtRoeeughvPDCC3jf+96nfe1WpFR/fz8GBwe559auXYvly5fbFNtRcDfBsI9dJcsjI6TUbbIjpEwnJ2z5pmRT0h3vyHF2YhLRTtWwHp5CQDU50Z20mKiidAkqETklOm5DTKnaKcqbdHIiSp8EWe/GBACj1DBI5zVaf55aqeMaC9Ah/NMgl3TrsI0d2JhWrxxTQkr3eJLFBFV9BNEig8I+5iLFFLEhrC2h7Tu9EKFql2zDBx5UNkwcB7DRlruOM6Vrx20WFFyppZK48JnUkwSmtp6297rwCxDtBl4gdd20WcJmd7ykrnukTPJiy2Nc9RoCnhP3PcbzIfaTCtIS282qpcIqSiQtex/YaxORfryYUrz8Js9DUug+aywxlVQtBbh1c2xN2I7tZ86ciUmTJoWvZcuWccvftGkTqtUqpk2bFjs+bdo0bNiwgZtnw4YN3PSVSgWbNm0Kj23duhUTJkxAoVDAMcccg2uuuQYf+tCHtK9dm5R67LHH8O///u/4y1/+AgDo6uriplu/fj2++MUvajdgrMPlaiiQ3oTGpE6TeFQ6+WVt0SWjmg1aMcUbxNPKKF3FV9rQJad0j5sSUzK1lCi/SRtt4JpcSnN13nSSQp65Vui4PMRQ2VCToJY6m1CIztnEIHQVL5CFjY134S7XSLJEK+Hx1fEoTYXzm2sFyMipxmPu4kwlJaaSKmXNFkPMXPiyWoywsfXk2dNZhPALELpoJ/WFTqDpLOHSdU/2HuCTFjz1kahNXQEvxYsplSd9SLTQTPoFrkoqDwA9iJNedNtodZjIdY+A58KXlg1KUm7S71qn7nRd6OyR/PuwtfXr1q3D1q1bw9eSJUuk9bA8Tq1WE3I7ovTs8b6+Pjz77LN46qmncOmll2Lx4sV4+OGHta9d+8l5+OGHceGFF6KrqwtdXV1YtGgR3vve92Lu3LmYO3cu9ttvP3R1deG1117D+PHjtRswVuBiS3DRQF88eLePKyJbITdZLdchjWT5RWWYlmuLCnLaq5ms6x45FnVI8QE6SR9c83CDASG5SJ4qAh91mzYlQbydvPOkfbmG4+yxPOJbhfO2HpeVweYXpWXz0Z/pMkTbfovS69THu24diNplC+J3bpIeCDquiRMnhseLRbmbRxodVzvCNcFg4rqnao+KGOKVJ7P5aRNSOu2TlasLkS2tUnZXhEaSnLYBJI5U/EXbdvI3sPHRZ1uimpfXRonDs3c8m8azUbZ9AVuWjg3Vsd2m0OknbKFqV5I6TG09yQMEixA0LrzwQixdujR2LI0FiN12282ovWMDzSKtXNYrc93TJQFkihhRfbplsy5p7LWPUPXKFFeK2EL1YmM76eUB0c+Q9ZAI84Tue6p7wd7rfP1YnjrnmlTMglTvRvSdjHCOe7CwHdtPnDgxNrYXYerUqcjlcg22fePGjQ02nWD69Onc9Pl8HlOmTAmPjRs3Dn/zN38DADjwwAPx/PPPY9myZTj88MO1rkXbkn3961/HCSecgNWrV+OUU05BV1cX7rzzTnz3u99FV1cXent7sd9+++Evf/kL5s2bp1tsx8P1tr02gzUXkxP2s84ExXRyIiq3GeCtEPNWzuMuHPR6Sg6Fej56sN1M6JBTvMlIkEdMLLHlygglNr9sMmMzOUkyoeFBRqKlDXqyq5seaI2Oq13gmohK7n4mJ3ls3fZo6O5iJ7P3rjavkLeFtgvuBte8svKohvU1LkrEV8ijeFK58HM11ieI+72s+oAkxJQ4rRkxxcuna091FhhEpJZt2WlAt3xTW0/yAGaLEH4Bgn0+m6ks0oHO/CENoszU3uq2wTSWkez7oQkpUZBwUgZN/NSRR+Pue7HL6A7H9EDwWy5gOBr/x9z3uhAdYMkYkeqpUk9P7xaoS07ZED68skkbRiCvkz5Hu0iKAsvrPD+k7iTQrau1YDu210WhUMDcuXPx4IMP4uMf/3h4/MEHH8THPvYxbp758+fjZz/7WezYr371K8ybNw/d3eJno1arCUOE8GAUU+otb3kLTjrpJLzzne/EjTfeiA0bNmDt2rW4++67cd5552H33XfHRz/6UaxcudKk2I6Azkq2CqbByk1jnejm5+VLm5BqlpsemSTwVFLkcw7xIOeEnCJp6aNssHNRnClyrWkOiEWQufWJJk06K/i6W36z+W1ijOjkN02vQpZbhAOgniP9lwnojovGgw8+iIMPPpibZ/78+Q3pdTqusQZdG6uTlm9PTVUT4jp0yaU0CCl6UE9DZO9Fz7Ls2bZx46PjBLI2Jkedo39ddDq6N4jraPW+NxeqHZFrHUESVz5x2sY6TYOQu3DDk0FUl0m+rGFj68kzRBYhyItHSvkFCBuIdpqzBe93Zjuh1ulree21DXDNKzfJzmY8yAJ45znHZGXR+Uje7oZTDaRUDoz7Xi5U49KWPlZ8iW6z6J7QxJnIfY91SeTFmXIB0zLZa6I/s8+CLC2dnqD9CCUXSHtsDwCLFy/GzTffjFtuuQXPP/88zjvvPKxduxYLFy4EACxZsgSnnXZamH7hwoV4+eWXsXjxYjz//PO45ZZbsHLlSnzpS18K0yxbtgwPPvgg/u///g//8z//g6uuugq33XYbTjnlFO12WVnR1atXh+/32GMP7LHHHkJ2zUMPogG/mYRPvWKuu1pt477B5uPlFbUhqeuG6kdpFgxcPvjMMR0Q/cqjiiKGG+prnL7ES9Gp23QlXZVWx32CtJ1XrmqlnAz4Re58toop2epyVqvmaa+g64AEQzRJb4rFixfj1FNPxbx58zB//nzcdNNNDR3XK6+8gttuuw1A0HFde+21WLx4Mc4++2ysWrUKK1euxJ133mlc91iGyl7xbaSdSipNQkrVRpvFB51yRWmSKKZkRDmx1EE9gR0uoMwlf8iRMorowSCqlL2k3bXpslxCdh08JRPA2uhG++6iL7B1qdZJ78Lum6RVKcBc9w+mtp7k0UWWK+cezYLtd8K617lUSblw3eNdlygOExtPikeKVEKuKpej4vDlqRcAoAcV1MLffhHl2MJ0mJbElar0IE6Cia5ZRE52U+d45E0SUpQXRF10X0k7ZPXR10fUSrxjOkh6bc1US6mC2fORxdj+hBNOwObNm3HxxRdj/fr12H///XHfffdhzz33BBDEB6d3Xp09ezbuu+8+nHfeebjuuuswY8YMXH311TjuuOPCNDt27MCiRYvw17/+FT09Pdhvv/1w++2344QTTtBuV7McoMcETFbA+ef1b78NyaSC7sq3Th5ePh1CKgkZZXL/ZBMW3RhOPJUU0Oi2R8gpdsA+jEIsFXHhqyIfK1t3cmWqZpKlUw3WSbt4+WXEEiCPM8WWISecWjPGiMrlRD0Zsmu/ifKCpDdFGh3XWIKLWIJRfjcqqaSLELIyZDZfh5CStScJIUWn5dlFkzh9LHjkORD87gsox102EP0uq8hhGIUGW8LrA+m80Xtzkk1nQYXXBhN3PtI2VbmtSEzx2pbUfqvgwsXb1NaTPCbwCxAqO9Mu0yWeUkUHzVZJyernkUe68ap4gcHp+0KILupY/W2D/c0DCIWG3ahiFMP1QBzBQsVwnMQqUa/tdPwqdvd6tp00+UPIHNI+muRhy9CBqWufLSkkqoe+Hpasct0GWzT3t57F2B4AFi1ahEWLFnHP3XrrrQ3HDjvsMDzzzDPC8i655BJccsklVm0haBcr2zZQDaBVg5OsVFK6hJTN5ITNx0svOsYrS1auCUSDfNFkhXXdI8foVfOIgKpAtHpOrrMSyx3lzDWQNtHqNYlGkrbrgA5BpRtfhDdBUQVA15lcsPnSXDUXXZ/JajsPLmNQlVFADfIg5TSGMWpVj+uOq5OgIvt17aKJSkqnLbpqpywIKRdklCvQAcyDz3FXvXha1mU76BNESxQ02LJsbLwtyUbabktMBcf1+wJXxJQLJLXfaS0wqGBq6wFze+8XIJKg3aZSuu01VTLZ1kMgq4fnAsZz2SNgx/q8mFIkP4coylPhOarVwHUvR1fXjeFyDdViZLdoix9TVpUAbKeJL5qI4amUyF8egcMjcnTiPdnEmEqqeLQhoERIQkw1Uy1ljqzG9q2IdrOkbYmkiqp42uQqKd18WRNSaZFRbDk2Lh6i+BvxaUcFNEEVrzdIFbh0DIQ5yIvn7qdqJy+NC/JKtJoenBOvlDeuqst31pNNAGwmJrYTAttJULMmKARZraZ4xJHVfdQlsdKMHSjKbxtvUFZ3PI/7xQdT0IsSQZmNpBSx/UUMx+ovoxhSVZGNJwsM/LbF05jbcdM8ImIKULvzBcf1+gJdYkrd3mzVUiYufGkjC6UU0MkLELxnUDewcytB1C5Ve01cqUSwtdkqkkKk/GLVTqKyRbGXJPeEuO+xNjV2iT0oD1VQKUY2RhhTKh+kj5No9K507H2lA4yTz+wudqb3m1yvbd+oQ1KRNtF1sMQU75guWZW1YsoUboivTh7bGwU698gOJqvgpiopV3l5bXNNSNkGcbNF48SDr5Liue7lY3/jK+fx1fN4WEQguE5eMNzG+5ud8aHVXo3nGo0vLy17rFFtoBf83DT4bZK8vLStiLgaQ+/loUYabniq8nWVS7p1yNLq2HxZHS4IKVUgcx6q1VzDyxVUdk7UDxQwHLrvETtDzg6jGOsNyL0gtl5n8w7d78QWouvWDYIeHOf3BXR6WT9Aq4556U0DpauQBuGXdl9hY+u9ve90pEUSqUCIC7Z+W3czWR006Pp0g8bTboAUORS67zFj4JiXXx7DQ0UMU4oWeoOMmEoq3IGPJaZYiHblG0Gjskrn/jXL5Y1xh7Quhwfb56aVyaw4OtnWe1LKEKYKH3E55hMNFVHkym1PNimTEybmhJTN5CQLiAbFbJq4695w+JeENAeiayExpchf2oWPB1exw5JCRE7xdulzTUyJ8ulMTnS+Q920qgmQjSuNLrEnwijMOi2bYIgebpDEdU+33CSLELJ0ugsXJoQUv045GSU6Z1KWDlh7x+7EF9j4eFBbNk9ETJE4gnnuPQLsxg+m1yKzK6LzMnVw4/HGvoCk572XlS9Krwtbux8dk/dHuu2ybT8Pprbe23vXaIcJra56KyvXPRpJlVo0cZRn3puopHSupTFNrkLFiQp/Vt0YrUQ2nV6sCNOSv5TLX9RmUbvZ+Fc8oor9bkyCppvANrg9AS/GmGgnviyg8+w3/7feyWP75t/9DoLN4NNEJaWCaKIRTyMmlpIQUiaDca2dlhSr5LmceEBoG0CWdDi04x0QBbwNVs7J3+EwACKAMOAtcd8ro4BC3eVDNFkxHdSq0qsG6KpnLQe9+CKkHXRaNq9NrChePl75onaq6lKl1YVNHhtUkEOXwe8/K1eTTkRSNRMLmwDnvHQ6Nj84p17EMCHAXNh7XSVUtZqT2nsRWHtJK2DZz7xNLsjiA9ltldiSKoKd92jKitj/oNy43QMa4weSv4C4v1IFb2+8PnncQJ4t1LG38eNyNzmdfLz0SYKeq+pQXWsaUPU7LExtPcnjoYOkfbXrvt4FCaTj2kbQKq57PIJFx3VPBzS5I3J9o+oN3ff4ZHvYtu3doas2mQeEMQkblFKkYJag4ZU/Qp0n7Re58PFc2lw8QyIkiTXFi+1kE29qbMeX6uSxvVdKpQSbCYT8mL5qxlRhI54sZEtIqdRRJm4bLlw7ZMQVIaho141AyDscm6QACCcnw/WJCu3WMYxCzLWDBxcGR3d3QVrhxYNspZyXVvZZVzElItv0dihMRy2lapttOhNECgzd19jpuNoVLl33VOpWXZvikpDiEewyN7WkhJRtehqq32aO80uLFFOB/adjShF7XqZ6BNbuh+2m+jzXAb1tzosUU0lVUyJ7buJabeuGnVQtpdumNGFu672914NovJmVisMVeeBKJZVUGcNz3eO1LWvXPRNwfvuVeiDpHFPVEGK779GBORpIqTxpe556qcDuyCdz4UuTiEoCmVoqCZJ8z6J7n4Rgdkd0dfLY3iulHEJXHeFqVZ03aXDltpcWISUio0RIMtkwXUEng0520CxSSbGue5H7XjAdIddFJiQAJC584pXTKKCsXSBcm4EznUe0Uk7a1NjOuGrKtWIqyao5yWu7E5/oOnjXIoKrFfkqchhnUM5Y6rhaAUm+Q9lihKlKKo3YgbaEFIu0yag0wNp6coz9W0QZRZSpHVcD+0fb+mEUUEYhRuAE9icXK4+GjZ23Ib15Nlx2nBcEXV6O+Q6rPLusk1a3Dhu1lGn/IEtvq6I1tfUkj0caaNUg5wQmKikVsiA6dF33ADvXPVGgc1E+xMQ0eVSRqwCoInTdC+3tEEJVLDkenmNJqRKA7T2I4koR9RNRPMnaSKu7RLvwqcrQBatCopVRtiopWp1Ev0+yGx+QXDGVJtjr0ietOnls75VSKcP0YZERQKLyTCZHWRFSohVzNr9NHBETqMoQx4viGxCaoCJ0EnHZy6FSn6gMxyYpZOV8OJzGBHLfMgrgBcLlwdbV0cVKrkw9pbPKzK6ou1BM2a6ay9opym9bvk16E9B0qe7Lww66987UPuuQTTx7rOob0liEMCGkTGMFSuNGVXKxlws0qjjjJBRJQ9su+nNARgW0U7Fu2elA57StJ0qpMhNfiqQlxwA9O+/6dyxWPPFtl4lyilVNmdpzVVpVuUlUUCqltEn6pP2wja339t4VWmXt3nZnPQLedegqbXRc93RVUjr1sXlpAoq9jqTfD1EgEZKoEflq/RT9My4B2B5XStEL1jFBFCGnwuvooU7oKojo9qliSbHXZwodAkXi1hh7sed4711/p+2NTrb1nf3NZ4hkMULEkxNeOlHaJJMT3bp4n03UUc1aKWdXwgG+SoqkYRVTxFGjBwN1xVQl7KyqyKOMAor1OFNkKlPFIFNKemopFzBZKVepptg8MvWQixV2UT5eHfT16hC+vLxZxJUaRhGj1M4vKlQyfl46GSr7rJPetsxWIKR02hmek5BRsuO5fPLnWUQuxEmSxjhThTrtVAhfww2DxMjWR2qpcr28uDq0MXaUqZ130R/w7RhfBQXI402xeVj7TLdZZs9FNlxUrux3lJYKKotYVKa2HvD23h4mSpBmT6HYtrpQSbkMcK4LXZLFtUqNR/Tkw1PEtnTRySp1G5YHsJ0QCJENCkN3kK8i5r7XhbjKa5C6LhEpxsaXopVVbHwkUzdGNr8sj60qiY1/xdZLq6VslFNJ1FKtiU4e24+tb7JFoEvmyNLrDnJMVsxVZcvypT1BMSGj2MmK6eTEdvtmmqAifwvM1IPEkypiGIPU4Ju4dBSoqQzJFSitcoxbh3kbbSYmbHqdAbqMnFKRM2waHZKJTSeaSNgE2VXlMU2XJaowC4Y4llZTWgmm5KPse+C5YYvSqMoUEUyiNKJ26dp7V656umqoaiUXs/267to8NQ85zlNF0baYVsFGKqnhGNFSrtv6Moqx/iEgs+KTmDwaiXpRAHOatDK5PvZaZc+WiIQSHRf1BSSPiJgSpbNZMHBt912QVzb5ZN+bqa0neTxcIy3XPZsxaSu4Ecr6PrZ9vDhINq575H033E1hRxAQRHX3NLZYHl+UR+i+B0Sq0NB20wqpUCnFtp2QUSNUBlI5j5yhyR3ahY9uKA82z5eM7EkS7DwpCcVDs4kpt4HTO3ls70kpS6TxENishMvSqfLolu+KkLJVR6kmKaqVc9PJChs7SqSSIo53tKNGgZqk0AN5QkwNoopeDITuHT0YQKSSIlOUqvBembgBqAKW6xy3WXlm86VBTMnaIEqr03ad8mVl6yq+TNvLQxXjDDsu762dFKbfka3rHptGZvN1iCVePhlUMQrZzy7UsK5c83TBqmJ573mqKbLoQKukiiiHkxNyXwgdRVRTZPGB9AdsfRGJEh/gulFBVbjvRd+RmPg3jzclU0zxiCNe/CdeeSrb7MKey0i8LBclTG09yeMx1iAjAmQqKZXrngw66USudbYQue6x55KAuO0Rkoe48NFKqfpvrgqgjPB9DpXQfY+15+HYn9wKmpgK208TU6xqStZempBid+FLQhSpICtbp16VWor3uXPRyWN7T0o1CTqr5ar0SVVSOnEq0iSkZGSUzQSFXTlXgSaaVBCppAgBFSmlyujFQKxcsnpO8pZjk5XAqS8ojw2CyzfQZJIS/dVbQde9VlF63jNiMxnhn9cPZmuaPk21lCx92giuWb/OsbRt7FiCyXOj+x2KCCOb2IG8NsrS2yw+pE1I6cYO5KmmyGcAKNaDmtMqKRJfKiLyiOq1FwUMYwC9YR5e2WwdBC7IKN418s6JbCxpB++cbn9gQ0yxaZO68Znac9vFBZM0JjC19VEeDzPokDljEayKKal6RUVSjHDe69SZxvdBCCmilOoJD4e/YVopNVS3c3WlFLvAENpsmpSiXxUS6JxWSg1S78WxreKEFOvCxyOm0nDBdEF+sQopV4qpsYFOHtuPHXqtSdBZCU+6Wq5KrxtXpFkxRUwIqaTBbJNObhpXxmUqqSo1QSmjF4Mxdw060PkwChhEb/iX7NsUlRIvGQjuG3svm2l8RJMpQB18Nvgs3iac/awTyFyUXpXWpM1JQE9wVWlsEG0Hq//ycIMkO+SpymQVUElUUi5sfpqElI69l503tfe0ex4BbcvjaSqMnaeDm8edsElaEuB9ONTNxl/xniOy/RXO59h1Cp4NV/0BG5Ccd894x3X7g0aST27TdW2zSjlsavf5ZKHajkdjhHRW+m1svbf3aaOV7q+sLUnaqRPgPI2ys8IIgAEEpBAhpyL3vdC+VgDsQKCWqtZtQZ2U4m1SFJ4nKin6FZJRrFKKZa9kyiTSKN5fEclnQ/qpviOT71A3UL+t6q4VnicRzNrWyba+LUmpZcuWoaurC+eee6403SOPPIK5c+eiVCph7733xooVK1Jrk85DYRroVjQpAOziivDa4ZKQYndc4v1YRLssudxZyaYcHkFCD1RZlVQOVcptrxwqpXoxELp1RG4ZeSokbpGZ2hTDLWUJSUVPUIL80WQlvEaLyYgrwkU0GeHtysSbjMh2s3NBTKl2y5NNPHjpTCcxOi6WSXdjAoDRhsmt/DXqaALrIYecnMpx/+pAd3HDtc2n08rSixYfbAKZs7vtuewfCHi/eVY9S349ZHc9YsF7MIBeDKIXA7EdVwGEhFQZRQyECxCRg3cZBe5Ehoes1ZcickpGQJn2B3RdvON0flE6E7uvQzjxoGOjXS5iyGBq6729TwNZxHByoRbJOtaUDonAiyelWy4pm3XhS+KSSNKS1yAiYopWStXrIO57OwBsp0in7fHF42h+UIliSLFcE7oQJ566mfey9rLvkxBQNnBB/OQF73mfWRCXy1aCLDi9HTp5bN929NpTTz2Fm266CQcccIA03Ysvvoijjz4aZ599Nm6//XY8/vjjWLRoEXbZZRccd9xxRnVWMc7pjZINNE1VVboxp0xc/Wx25rNVR2UfR0Ss1hGppCJKKPpboNz2ggnKQKiU6q3vqkfcNaLd9oIgqkWUMYBB9KE/FnMkhyro2FJAdB9zzGc6Dgl9DeznNJGj2kBDJ26HaDcmNq3INY9Ow5bNphW1QbetqnKbhaCN+r+frCe4nQ4TFUtSlVR0rtGOC9VLBjZfZu9NlbAi6PQFpi7aAJ9oos81LjpUGdsfHY/opiimVE/dXbsQ7raawwB663VFMQcDG1+p79RH7lkh7CdEbTe16XR6+009xG7TpA7dc6yNjdtu+a6puvGleO2W2fFWc89TwdTWR3k89OHKdY/eJY2FKWmiAxuVFF12K7juicBTDOl8L+y9Y4Nr025whJTaVv+7c2N4oyEEhBQAlCm7ur1RxdrQTHr3vTBJT72uHkQug5RSi/v9kPd55j3vHtJtET1HSV3mWDc+nWDjsiDnJu0RuRA2O+C5G3Ty2L6tvr3t27fj5JNPxve+9z1ccskl0rQrVqzArFmzsHz5cgDAnDlzsHr1alx55ZXGpJQJTB4O+Yq6+KuREUw84khnBZxXtitCyoaM0iWrdCYovCDnbPDaWHrEVVLB33gsqeBvOZygEGKqD/3oxUB9C/DIfY+EwyVEVh/6MYBe9GAQ5XoQXDL9iXbiI4P0SoyACe8RNfngxZUS7eLUcH80JzxioqZxMmIaW4Q9b0pM0fXqbCuuS2TxyhXB9WQmj2oYW5OHMrqRq0+EdVCVTH497JBUIasLGcHEs/2q3fZsCSkbWw+4dcGzIaZYqFRSNCEVxQ1k7f0gejGIYv13RXZbJapYUhZx5CP9yjCG64HPSVsaSXEC2oZHdks/hmASJIk3xZ5j+4MkxBTPnuvGFdQtl263Ko0ubDflAMxtPeDtvRlM1UUim25SThqKD5cqqTRd91iw5IQIOtcnuq+83QAJKbUNESnVE15etZoLuIEygK31bDuCXVhBxZSi7U2oEKWVUjH3PdIWlpBi3fhE18EGCheRMyaQEUK8eFW82FWi74Zl+HjHdAgpnhqsFXagdI9OHtu3lfve5z//eRxzzDH44Ac/qEy7atUqLFiwIHbsyCOPxOrVqzEywn/4y+Uytm3bFnvZwoac0iGbdGJ+iI/J3b+SElKsCwfPdUPmhsG6bOggidKKp5Lir5Q3xpIiQW6JC0cvBkNiikxYyEA82HUvSNWPvjAFyRWFzC1wagrey2KOJGHJTVbg6RbIztNgXTjYNHLlmtqVT5WWd549xiubp6owSaNTf1J0st95FnC9+sTacpndV9UvU1KZbGbhipCycctOwyWPQCc+kkwlxdp9QkbFCanI3vdgICybtffE5kcu3JHWirh2k5oBgLbz4b2S9PEVybMgQr5abXjJ7qXKrU9kX3n9AX2eroM9rmN7RWXz6pAds0nDphW5Krqw/T6mVLPRqpNf17GkTIky1nWPd5+SKsYIXD/PrOseCXQ+MSKlKvWF3x0ISKn6K/xNb6ftdWTDc6jGlVINLny0ux4honqYY7Rbn6j9QJxcU31/LhYz2DLYzyrlFg2RG6ZuXKlmu/Lp3E/ze97Jtr5truSHP/whnnnmGTz11FNa6Tds2IBp06bFjk2bNg2VSgWbNm3Cbrvt1pBn2bJluOiii5y0l0DkliGD7eq7bCKhIpmS7tCURB2VdGKiu3JOBrQylVQ8PTtJITvuxbcCpwOdkwkLgNAto4pg973BHT3AeKC3PmHpQ38YY6pQd9+L6svFJhuqnfiC98EKOn1Mfj/sB8uqlXKZgolNw67ImyimVGlVq/Ci9vGgk4ZNm6a7X3ANbpSZHsmgSzTJy+D3ESo3PF4eNr2NzddRUwHmSliVva8w5/MJVFGs617wnr8AQdLJ3PZ4hBRx16ZtIq2WCmIN9qKI4XAI2YvBUBUb5OG7awN8tVQSiAgo+nglx/+ObNRTrL2N23E9xZTMzZpnz03tvo0SSpRWZfNt6jK19VEeDzV4k36bPtuWuHKletStX+a6x0vDwnY8o0NeiJCEFOQpdUj9rOteXcHEXuIQAkKqGvwtEA37UJSk4feWrwHoiiulyPvtJK4UTy1FjonUUqwLHxDdH1Z9BCada9iolVSqKNH3pYtmu/Alv9edPLZvC6XUunXr8E//9E+4/fbbUSqV1Bnq6Orqin2u1Wrc4wRLlizB1q1bw9e6devsG62AHjmlnujorpjz6rWZyPDKVU1SRCviaa6Um0CukoreFykXDHor8GByEimmessDscC3VeQwuKMHA9t7g78UfUXiTZGYU1XkqPe0Qkq9Q1MzYLtKTtLEP6ezy55MWeVKCSWrPy10cjDEdoFOPCfzMvmKK8CtzeeVmXTxQXSuUsmFL945FzBdgCgi2o4isvnDFCFF3PeiLSwABAsQoXNfD0VhRUHP6T38WJ0WoFZL2RLdMkUUm05HPcU/12j72WM6iin2vE7gc5WillenKg1bb5Y2nsAHOk8LNmSH7m8vbXWVa5WUKWyuT0Sy8Mqm3dl0YEKk0coieve9HrCkVA7VyH1vKyL3PSAkpaqhRaSUUqVyVDV5EWIKQKMyilVP8QKf0zvtsbGmeO5trgODq+KBmXwH7GdVoHedNqkgu7etg04e27eFUurpp5/Gxo0bMXfu3PBYtVrFo48+imuvvRblchk5ZmVv+vTp2LBhQ+zYxo0bkc/nMWXKFG49xWIRxWJR2I402EiWcEoao0Q16eCl01VT0WlFZfMIqYa6W4KI4pMpQNytAwAzMYlvBd5LOeP1oR+95QEUhkbRmx9ALhcY6DKKKA8VMTpUwACAnvGDsXX2QDEVV0uV6/GniPIpWOkVq6XINTULNqvkvPM6wcxlKigapkHMTdRS7Gq3yaq3CrplVZDDOIM6x1LH1W4QLR6oApybKG1Vrt02Nt+EkLJVwuqQTpVKTqmY4sUOBOxUUqxail6ACBRTEdVUqMeIom0g2VE1h2rYV5DdWUmo9OB3HoQyj+xYDrRNC8oLPvPUUuS9bvxAUxBiylY5JesPVIopmR00jf8ns9Mu40alBVNbD3h77w46k9dmT3Bd1G9LXshc93iQERdp3kdWgTOCuOseAPQhdN/LA7l8fR6wA4GYqq6Y6q1vbiFTSo3LVzFKquUGO2fVUnScKdq2yZRDdHwp+lgaro46rnS235+OOippYHZRmUih3GTo5LF9W5BSH/jAB/CHP/whduwzn/kM9ttvP3z1q19tIKQAYP78+fjZz34WO/arX/0K8+bNQ3e3W8Nn4pqnX6a5koqGrqrKdle+4Fw8pkjsnAUZpTM5EU1MRC58ZKLCc90jx9lJSnA8WiWNr2NHKikyIemt76TXgwH07hhF1xBQzY+gOD5y3xsZKgDbuzFayaO/VEbfpH4M1pVSA+it78g0GGtJuT7RITswyQbh4X1A3IVPNFmRqwbU0llRW3jkFHtMFvSW1K8ipmRpVenodukSSmmQTibugDxUkUPNwISPpY6rmWgFhaLM9usuQojOqwipLMkoEWQu2y7ctCOdUhWsqzbrvse6CAY2vSdmlwooow/F0NaTnfhyoQ0IAp9XQ5tkt7kFfV6Uxga25JSoPzAlpng2U7YwIHOfbuZCgi1MbT3g7b09mjUtMpkYu1BJ2bjumcL1ZF8UY8lk50CikiKue/2IdsKbGPylHHKKKEcxpYYAbItCcxBSqhL2FsTmV1AolTGE8Y3xpMirAsR3AqTJKZ2A57zrp8u0fY51CCK2fPaziKAiZct24YPiOA86hJgqgL7ps5reZiOdPLZvC1Kqr68P+++/f+zY+PHjMWXKlPD4kiVL8Morr+C2224DACxcuBDXXnstFi9ejLPPPhurVq3CypUrceeddyZuD2/QzjsffbYnrUyUVLLJhIqQUq2sx+txp44ynZiQ9EnijMgmKCxBVajHAaFVUtHqdzkeW2THELq2AigDpTyQG08NyLeXgC0ASl0YKvWif1JfuAPfBPSHa+n0hKiKfHgsLAd8FzZyPolaymTyQqe1WSUHxBMSWVmyyQkvjyoOFQsXq+Yi0klUlm1dQcfVmaspWUJEACWNFZaGSsomNpTK5rtcfHDlimcDG5UUca6O4klFqljiiM0uZJRRxHC1iOGhAqqlHHK5KnoxgH70hW5+RCkV2fIyol1X1QsQPLUUjaR9gQiquFMycsqUmGLT6pD5sgUJWdkqBayuQjbpQoMIprYe8PY+HfB+l2m7HLlE0om0qSrKVb2yOlXKK5HLIHmRWFIT66/uUN2UywVjfWxH6LoXU0rVq6Z7DSCwA+EchaeUCnkf8oG0k3Xjq0SVNKi8CHiuiTxiSnSfksZwUhFCMoIsad0u4UI1xeYVXduI5Fxnj+3bgpTSwfr167F27drw8+zZs3HffffhvPPOw3XXXYcZM2bg6quvxnHHHZdZm3S35bYLhp7j/o2nEZcnc8tg8yRx4XBFRrlA4y5wYpVUtBV4QBJFq+WBCwcJbE4IqT70o0R8zisAxiMWYwRDCDq2IQClEvonTMDApChsbi8GYxMVehV9GEWQSUtOMuiVraCnCdtVcqBxQkLSy4Kf8/Oqt/Vm20ZPKkzUUqYufGkFO+/kjquVoGvPZbbaRX28NDQSu/dZ2npA395XK3nk8nzbpePCx0JEzPBsP6uSou0/vfMeIaT60B/GDqRtbhU5DGzvwdD2XnSXhpGbUqWctQNbTy9AkHYSNz6ilgIaFyBYW8mes3Hhy1XEeap58fcmU0/x+gS2P6A/84gpHRc9U7tPtyVNZZNr925PSmUFXpwbV3A1JpO1MespnS1JJVLGkL95zl8WosDp7HEZMUVc9/rqr57gVJ0rKpJYgTuA2lbgja3AlM1AH/qDdJT7HgnqQWxOoTQcKytGTpVI3i40uu3RKikeVGRTt+RcEpB6aRKKR0jZqrTYPLRroul1NDvYeTJ08ti+bb+1hx9+OPb51ltvbUhz2GGH4ZlnnsmmQSnA1Yq5qDw2ne7KOtB8Mko2QSFuHazrXvBeFJQ7PkmhV82jUORRLCmyaj6BbPq9dQh4A9EOHRPi7hzYjkApVe9rhib0oX9SH/rr+XvqRBdvO3LeZEV0PbwVdDJZka2euyCxdMkpE3c+lXueC3cOup0y0qnVMDxcQNdwQTt9zSCtDd58802cc845uPfeewEAH/3oR3HNNddg8uTJwjx33303brzxRjz99NPYvHkz1qxZgwMPPDDVdrYyTIktXaIpSTogbu9dklHVCqefoo6JCCoRRK57rH2Pjjfae6KKJWQUiSNFNrIIbX6MlMqFwW/LKGBoey+wpYSRUhH9+QqKk6L8PRjAAHqp+ipBH1FvE1FL8RYg4grVXMMxclxXJSUjpNjzIoLKhpziLVTIiCkdm26SJt5GM7VUM2Bq64H07b0HkJy0apZKhCVwRIROGnU2G6zrXj24OSYC6AMmICSOgrH+ILAN2PgGsBnAlDeACYSUCpVSgTWn7VchV46q5CmluGopVilFu/CZkDMy9ZKr70FEjskIKxo6LnwmSBLTikYasatoqMtutbF9lmiL3ffGAlSr5DYufqoVelkaVTppWgtCSrSzUpQnz325gmySQs7zVs2jWCJRXBF6chHEk9qO7m2IdufYCmB7tG1sBbmIlApf3di+oy/UWg3Wd2YiziJV5MJdmhrX8HOx54V0hlXB95X43tV3YmJfIoh2ZmInSuxnnR2Z6AklP5945zzRLkombi7086KTLk2IfjOyV5o46aST8Oyzz+L+++/H/fffj2effRannnqqNM+OHTtwyCGH4Fvf+laqbWs12KhjZTBdhEiTkJLtpBfkSf48svGkeEHOdRcgCAFF7D1t63uouIE99diBfejHZGxBH7ajr9qP3mqggooWIYqRu/amLgxt2gn95b6QytqOPgygJ9yzj96FL/gbtG64/p636yr7vNg8PypCipeevHiQ9Q1sn0CTg+QzwO8DTOy1LE0Su69TTpo238bWp2nv33zzTZx66qmYNGkSJk2ahFNPPRVbtmyR5rn77rtx5JFHYurUqejq6sKzzz6bWvvsoLpfWa7hy1ytaJiopFy77qnq4xFdojaYkAmyHfxU10hc9siOe4MIrqMeSwoTI/KohHC8j+0BIbURALYCO1W3xKoj9jrYOTu4L3lU+QopmpQCEKmlaHKKJqYA/v2hdxBk/9L3xCV4sbt0dvijvxf2uZE9R83aQCCtevW+k1ay9Vlj7FxJi0JEDshcL3jnZbGhxHWL07ogpHQnKNy2af6ISDrVirkq6G3wvpEUIZMR+nO0Wj4cO1YIJykRMdWHfvTtqPdYWxHs0AHEto0drhYDUmp7/VwewBZg+5Y+9I/vw2T0YqBOckXugtEK/DCKdaVT8D9pazxeUXwFnVVLNdxXwXEaqu3D2fPsSrmpCwegDnxLHxcppui6dF0nRKviKrVUs2KMAEC1Mg5dBsrDWiW9NYjnn38e999/P5588km85z3vAQB873vfw/z58/HCCy/grW99KzcfIa1eeuml1NrWDCRx3TNVSdksQrDpVfY+ia0P0tsNNWTufADf7usuQATnI/dsYu+J2x7trk3iSNGv3h1DKNYXwwd2Hg7tXZlVxqILW0uT0bd7fxhHcBC9KIbxCiuxdvHiCJJrabg/lH0E4i58JoopU6gUVCL1FKtUjdt4c8WUTkBzHTc+XbVUUtj2B6a2HkjX3p900kn461//ivvvvx8A8NnPfhannnpqw+ZCNMgCxCc/+UmcffbZqbXNHZIETgbMSIEsVURsXUlVUkkn8N2C9zqgr0UnODf9nnymlVI9MVKKjPexI9BUbQOArUDf1vg9pBeNAYRj+NAk0YSUMLYUq5SiSSpTVzaiGjJRD9kG+xa5VrKufmMduvGk1GilsX3W8KSUI8gmA1nUq7PyniQYLmBGSCUlo3j5TFw56JVz0SQl+CyPLRJXSZFJyiAKGA4nJ2EsKeK+BwC7UoRLhVJKEUwAMLWE/ql96C8GQc/JRGWY2Z2JdumocL6vHKrgEz9RnBPTeCMqQkqWR5ec4rlwAMmJKZ0JStaueWlMcqqVnGHHFaTdtm1b7HixWESxWEzUllWrVmHSpEkhIQUABx10ECZNmoQnnnhCSEqNNZjYfZ2FBtE5WRwp00WIpIRUGmSUDXTdtKP3cre9Qmj740HOezGIvq1D6N4BoAwgDxR2LlNkUD6+CAEAEyJb34NBDKC3vgjRy7QvaCMdR5BcG58U5+/MRyPtGIOEoNIlp2TxAl0SSbzyktp9HVIpjYUIU1sPRPbeNcbmAkSWKilbAsq1LW2VANMsWLUQD7YEACGjSDypnsYXRR4FyweDQDkgpLYBwA6gawdiXweJ/VpGMbQrRZSjNLRiqkEpBQRqKR4xRWceoT63IujvRLRDIk/pJ4svZkvGieozgYykS/e3Yzu2HwsYO/RaG8N09yWdFfOobPWqOo20CCkXEkOd/GLFFF8lRb+PgpvHVVLsBIXeda+3OhD0VLTr3o7gRcovDxWiQOdb4q+B7dFUJ15DsS4FDloRvY+7cwCIvQ/vlWBQrDMQtyGk2PwiF474Z7E7n44rnywf62IRa58gDftXlc4mqLBLVCo5VEYMXvXf5cyZM0O3i0mTJmHZsmWJ27JhwwbsuuuuDcd33XVXbNiwIXH5rQYb5SqBbMIqs+W8epIuQpgQUtVKzmjxQWWvSXm8cm1h66ado44XOYsQxF17AvrRV+4P3LWJ3d8B9O4YCuuoVnOBvd8Sf/Vv6cMAetGPCaHL9nDd1tO7N9G2PmpVo90HEDsfu7eWpEiuMip9yfNWhe59vD5BRCI22t/G2JC8fHQaHYWYqd2X1SNL4wLGtp6y99u2bYu9yuWyojY5VAsQ7QeenUqqksoCWQY4N3XdY5FECWbilkjvqieqm7i5Edc9Emg8D6Ar4oAmIBzrYyjKMVAf30e1B/aXhN0ghHkO1TgpxYspFbs0Vh0F2KnIRAHg2fe2ELnwqdqhgoqIbHfo33vbsf1YgCelEkIndo+KTHLfJvVEiR3Ysu3RIaTYyQQvjkgz/V15JIhMJdW4Ws5XSZEJSg8GAhkvcdujSakhoFgNBn/VCrVyviX+GtnSVy+pp15yL7UJeURQVRHFmOJNVgDEJi40slAC8SCaiOjEFgHUxJQoHwvZxMEFksQYSUJs1ap5jBq8atXgd7hu3Tps3bo1fC1ZskRYx9KlS9HV1SV9rV69GgDQ1dXV2MZajXu8EyCy+7I0OvllqlidRQilkkpASNGQ2XqZvZeRULbkFBtPSqaSogkpnkqqMXZg5K7dh370YhDjt47GFyG2AsVyVO/wUCGy95ui1+iW8eiv9oV2fiCMI1ig7H1RQpfR32WeO34geWygIp1IGhOCioUrYor9jnl2VEU2mcK2/3BBWJnaetreu16EGFsLEFmNjZqtShIFNE/Ldc+G/LAhI1hCim0DfX00YTVI1dlT/1tXrTJKqQKGgXJEZVUqCGw7RSoRuxvbfY+nlJKSUqQ9NPHXzRxToRnB5HnPjoiw0o2VJsJYJazisB3bm+L666/H7NmzUSqVMHfuXDz22GPS9I888gjmzp2LUqmEvffeGytWrIid/973vodDDz0UO+20E3baaSd88IMfxH//938btalVdYAdB1cqKZ0Vc1eEVKwOzgRFBJ2Jh0jxZAp6lTwsmzomWjWPk1GROoqeoPRhO7qYyUm4+96OultDrn69ZOWcbCG7hby6goDn46O4UgPoRaFOjA3X444UUQ5blwv/0vE2IjcPAt6xJNAJjGviwqGKLQKoXfl0XDVi1yBIw7qE6KZrKiq54GWSHsDEiRMxceJErSxf+MIX8KlPfUqaZq+99sLvf/97vPbaaw3nXn/9dUybNk2/jS0OnQm/3kKFxD5adsu6ixAEXOJKQUiJVLDSdhkSTdVKjh8rig1unqdJDPECBI/gCGIEDsfsPU1QFUKqaBixTS12bI/b+gqAKtA1FJEPFZ69nwBgE9A/tQ99U/pD971CuONqfDc+8j5ycdNbyGLvA7FVKugQUrI81Tx/fZPn2sf2Bzy3bPp9ZIPt40s1tEth92XQcS10DlNbT/IgWISg7b3IVXvp0qW46KKLpEU+9dRTADptASKtaZLJuKxdp2q618gSMaLztEuWjJAStYV23wMiQooopahmTAB6MRAuLpNaRioI3bYJiMKVqF6DIiillCzQeeiZRn/HvPtAzusST7Qrm+ud7UQxo1gXQ54LnY2CyjQ+myvyKu2d+ASwHNub4K677sK5556L66+/HocccghuvPFGHHXUUXjuuecwa9ashvQvvvgijj76aJx99tm4/fbb8fjjj2PRokXYZZddcNxxxwEAHn74YZx44ok4+OCDUSqVcMUVV2DBggX44x//iN13312rXe1q6doCSScnjWn1HzybVXW2PTqElMkkxWRyIpqY8EDShX9zVekkJfhMq6QaV83J5ICemAgnKJvrrzcQqKSqAMr1QXsRGCWTFLJ6DkQr6FuigOdBuUFcqUH0Io8qyiiggDLKKNYHvMFUpYo8ygiCqccH9HGiJ7yfFMnDDsK17rHmTk2q+CKmsUVIm5MSU2lNFpoVYwRAJh3X1KlTMXXqVGW6+fPnY+vWrfjv//5vvPvd7wYA/Nd//Re2bt2Kgw8+2LjesYq4rRUrZ00XIehn21pJZUhIJV14sIWoX+AtQAB8lRT5S3RKZCOLQj2weTC9oNy065tahPEDNyOy9UB9YwuOMnY7gjF4CcDUQBnbP7kP/bm+ej1B3cTWE0KMKGMBoACAbHBB20oZaHtJ8uVQQSWXS+yezYOKoBKRU7rEVFiOITElOq+CTv9h2rck6oMSkFK6ixB+AYKg2a57OpP2LF33WGRRn8yNS+aeJkpP70hHdt0jRBT52x0ni0oIFi7qtiumVyKkVB71sXgxXDimbRdKiHgZnkKq4VbS6igwGXSuM43vhr53qu9Eppyz+d2EjF2LQxXjzJDYshzbm8SLveqqq3DmmWfirLPOAgAsX74cDzzwAG644QaumnbFihWYNWsWli9fDgCYM2cOVq9ejSuvvDIkpf7t3/4tlud73/sefvzjH+Ohhx7CaaedpnUpnpSyhCzQrE4QWp38IvWT7gTFJNZUrByH6qgkkxMTYooHNn4I/RmIVFJk1ZzEEmFVUvTkhN59qUSCm5MXcd0D6kqp+vuhYuS6R09SQmIqCILbUxwIyS/6RdRSLNFGJiusWoqHJGop063D2TyyVXLSNnayRRNmZDIBILZiTuflDfh1Jyi2aqnY9WooqXTyG6HcBXQbrEyX01vFnjNnDj784Q/j7LPPxo033ggg2JHp2GOPjQW+3W+//bBs2TJ8/OMfBwC88cYbWLt2LV599VUAwAsvvAAAmD59OqZPn55ae13CxO4H781UUo323y0hpbL3umRUmkSUCKzrHqCOJcUuQJDFB9ppmjhU99A2v9wft/c7EI09qRiCMWXsFgTvQ3vfFZBSU4LNLcguq3Tb6E0uRBtcEJJKeF8U502Qo7oOHS8BGUHFklN0f0AvUrA2kr+7qtxmurL78TLFxJJoIcUJTG09yWMAvwABiNUpovMukLYSI6nrHrkH7LW7VKPQ9fDqFkF0Dbx8tPteBVFwc0IE5eMcUF0pVRgaBfJByj4A3YQnqbv4EetdpmYQQEBooURVr1RKsb9XmqAahPp+ZzGd5wUS5xFOKpKKBqtGoq+DPc5+z3QgdB5ooq6NdgK0HNvPnDkzdvjCCy/E0qVLG5IPDw/j6aefxvnnnx87vmDBAmFcwFWrVmHBggWxY0ceeSRWrlyJkZERdHc33tuBgQGMjIxg55131r4UT0q1AHRWz0xXzE2JMRNCKm0yii3HhJjiTVJi5xsIqsboHYSM6gmjPQ2Ek5OQmCr3B3GkNjMvovQdAsJmV7rigc5jkxSEQXD7pvWjH331yCLErYONKlINW5uj/ooUUixMd+GzIaREZahcOAB91ZSMmDIhjZK45zXdhY/e1Vg3fYr4t3/7N5xzzjlhx/XRj34U1157bSzNCy+8gK1bt4af7733XnzmM58JP5OVelFn2izwvmfZd887p7uQwSObRPl555MSUmnY+lFJmnEWCw+s655sASJu28sNCxBF6nNvGPFpMHTR7kM/JmMLxm8ejdt6sgCRR6CMrdvVUXq31S0I7H0ewGQEaqnJE9E/pS+09XGX8WLM1scR7cZHPwuqBQea4De6x5xiecdkRBUhqHTIKVY1JbbVIvWUvhrKREnLI790XQXV5zX7EFNbT/KkgE5egEgOGwIqC2Isa4iugQS7VkEVp4h17SM/IKKSGkHkuidoSz3QOQCgCOyMYMg/cRKiMXwJYU+SQzVcxgbqdpkopURkFPdSyQk2yHnSH7QrVzTRDnd0+3Rc/ViYuifSsFWJ0XlE9zfpfbPIazm213XV3rRpE6rVaoOyddq0acK4gBs2bOCmr1Qq2LRpE3bbbbeGPOeffz523313fPCDH9S+FE9KGSLJ5ESmYNJVSem0jUs2pUBImUxQZJMSGqYTFNZ1D5BPUgCEyih6tZy4cciDmw/Gg91uRqCOolfPiW0sA13EqFQQJ6XqKyyEkMImYHTqePRP7kOhSLq1aBfA4F+0eh5cYxXEja+KYHW9gMg9T3i/EFci2UxYdOOPqCYigHl8EcCMmIq7/pm78onIKxo6MaxkZeumb0CLkVI777wzbr/9dmmaWq0W+/zpT38an/70p1NsVbbQUTqJj6kVrbqqWNeEFGvrVUSUrr0naXXtfszOKxYggEY3bZakot32iCqWVcZOQH/gqk3UsLRSCgjs+Q6KHKLdtbcgmmOQRYipwJbNk9E3pR9FlEHc98j7QLlVaLD1w/XJjsxlm38P4i58OuCRT7ppeSSVSD2Vq1QTEVOuFxvk/YeeLU9lsaKFSClgrC5AZKmScvXl2E7hdCfKbPki1VRSqO61KD4Sbyc4XttGAAwg+iGxhBRVPymyVLe1eaB7EjCN1DIJweJzCcAEhD1HDhUM1HdUJbYDJURxBXnuew0gqigCQk6NgE+g6D6j9G5+pvGZRMfZWFJJ1FIqZBFXqoVcBS3H9ibxYoHG2ICquIC89LzjAHDFFVfgzjvvxMMPP4xSqdRwXgRPSqUE22C1/LL0JyC8NmRBSPEmKSYTEzqPzgSFDXoLiCcpOqvmIjcOEtycTFR6MBCopEhskTcQkVMk8O14BJ0Wj5TaXj82ASEhRW8Z3jNtoB4EdxAFlMOg52QFnUxaiESYgA6Ezl47C55aSnfCYhIQVzYRCY7FyaksiKlY+xJMYEzPpRJXig6VoJveIzF0bbuKeNJVSbl00+amcURI2dh7Oq/M7vPsPaBWSYnc9mi1VGTvh2Nuez0UMVVi7T1RSuUR2Pv6xCO8vzQpBUSk1Jbg78jUwIUv6F+CBZHA1je6bBNbH9h4ElOQfJ/iXedo0IsPqrhSJoSUKr+MoCJ9QrOIKVu1lIkiK8qf0LXP1NaTPClh7C1AtIr6yPWXpnLVMw1EngZ0iS5R3B7erns0icEGOKfjSZFXJUpKmlSq/27z44BJo9h1ZwT2f2dEtn8CMIwCBtBTX0COdlCNXRrQSEopyak89ZdFnkkrKiNNkPvMqpTIfbdRS/HAkkUigspFTC0XxJSD33DKY/upU6cil8s1qKI2btwojAs4ffp0bvp8Po8pU6bEjl955ZW47LLL8J//+Z844IADjNrG3zLFwxoyF434sUZCKclOeqYr6rE0ghVzOqaIaJLC28Z7tJJLPEExgUolxT8ndtujVVJRcPPB+gRle7QlOFk5rwe+rW0FajsQxRqhx/2EmEJ9oLYFsUkKtgRbhg+WSVjdoMbhBposaJls7b/CPFPstIzAdDXXZocmOi+bn902nJ4oEdfF4H2kcqMnXOx24SQffYxWx5mcj7VTkoY9x8sXP+Zw0Fm1eHkYQfc3wiOWROf59egprHTK1SGt2KDmPEKqWslr2/ok9t4UOu7ctO1nLSW96x5t70ngcTqweR/60bd1KHLVJnZ/GyLbvwMIdv+ut6uSj5NS9CtchOhC/9YJ6Ecf4yQe0WG0YyHf1sffE9C2vsKcyxq5SvRqPDdKvY/6gny1GvYFanvNt9squ65jt3lpTGy6iZu8Eja23tt7h0gywZf1+aZMY6uQZzKYXJNIicU7R0NESLFtILN78iKue7R7XCX+l/BX+WCsPlDsBXYGumYA03YFsCsipVQJ9d4i2hKDKKUARO579CXJLlkIoupi3fp4hajUU2k9Q8RNkoYNm04gca10AtGNbwGtTsq2vlAoYO7cuXjwwQdjxx988EFhXMD58+c3pP/Vr36FefPmxeJJffvb38Y3v/lN3H///Zg3b55Zw9ASd789oLvqrYIuacWeM5mgmOz659qFo1mTEx2VlHrVvExNVOidlwZClVRveSCYiJBJyeb6+21Af92dYyKtkgIiQmoIAPqDY9snNiilsD2ulooHPCdtGw53aQIa3fh4K+gqtRS9ip42cpVRrlsfL/AtwF+hVimmRDDbMtxOLaUbsDzxyjnQcu57nQjVM8fvNxoXIlTnZcHNZeeTEFJh+iR2npfOJEZgniKAGXvfSDSog5vTbtFEHRUQVVGAc3rHvR4MoHsHIjtPFiKIUmp8/e8Q4qDVsWQBl7b1W4ChLX0YmLQdBfSFiyCD9d1XWZdtWhlLbD4Qfa+0G5/MltOK2Go+px0zUPcrkz0WhJii1VNsf8BTTZnEmNJ1z2s87mYnvVRc94CWc98bW1BN8puJJO0QqaJMA5yzn5MQBbQSRaT2UZWvug623YQYoX9EAgUSnaTe9wygB5i2HZiBgGSahsim10mpAfSiglxdNdVLNaUGVLqi9EqFFAtCQg0iUhqR9rOw+V5M3OJYdg0Qq6Xoc3R+XbWUSLHEHtdRNrlQUNnGlbIk5DIY2y9evBinnnoq5s2bh/nz5+Omm27C2rVrsXDhQgDAkiVL8Morr+C2224DACxcuBDXXnstFi9ejLPPPhurVq3CypUrceedd4ZlXnHFFfj617+OO+64A3vttVeorJowYQImTJig1a5WsbxjEipViq6CikB3gsKWL1RRWRJSRpMUnclLgh32aIhUUjqr5tG24LQ2aTh06YippHYgWiWvr6APbAW2lQPTNXEIjUYl/Ey27OwBtnQ3rKSPTu7F9gl96B0/GBJjpEX0tuFkwhJNXKKg5znE42CIXNec3HMNY8i6cPCC3+oEvg3eq4kpXTc8lTsHL63ujkwmEyUetPJ4UqplYbKIIYsDxSvTRhUbliEgpHRtvZSMMiWqEgY4B+LEExCpKnl6oiK16MASVPSLuO/1YiBSSW1FTBWLrYhctIfAqGK7okUI8pvbgtjGFsGrG/2TJ6A4qYx+avGhjEL9X+SyTa6tijzjzhffeZV9T8N28cHka2LT8h4JlpzSceeziRlo6sYXayOn75DFE6TzNFyv5iKIFJ6USgm6u4OJYOLuo5qgmn5hutO3pMGts4ofpXM9OsQafYzebY+8J6574KSjsueD3/MgegN11AwEixAz6ufrwcsH0IN+9KEXuXD5OrQL+UpwfSJ+hQt6t71B6hgbYJxXEEscylz7VDvbyUATPTzyia3bxG0vSWBxFwRUCyCDsf0JJ5yAzZs34+KLL8b69eux//7747777sOee+4JAFi/fj3Wrl0bpp89ezbuu+8+nHfeebjuuuswY8YMXH311TjuuOPCNNdffz2Gh4dx/PHHx+oyiRs4Br691oNqAMI7b7qduO0ExTUhxZ2kmKqlKjmjkS8dX0TmykG76qlWzaN4UvFAt2TFfAL6A5UUIaQ2x//27wgW0XsATOPJKUOjQXb/6Aa2TIu78E0FsKULAxN60T++D0WUMYDBkBzL1UmzKNZIQFSRv6xaKs+854GeqJgEwgX0Y4+IYoyIyKk0iSmTCYqM1FJNUHhwHlfKk1KZQuWiJ7L7onymKilemTobYrA234aQSrToIIKm3WfjSclUUvR72t4TpWlcDTsc2npWJdWHfvRV+9FNu+1tRqSYIqQUpZSKEQuhu3bdZaQyMU5M1e390JY+9JeGUSgS98FySI4NU26GOUQLErKdV2UB0On2qeJKhfc+4doFnZ99VHjkFI+Y0oGu3ZeXIVZL6QY8Z9uje1wJT0plCJ1pEUsE+I7YDiaEl4yQEpEeNBlFkyUsYUL9wKhiyyhgCyYDM14GZiMY5BNSqv61b9/Rh/7xfagih370YRC9oc1GvgpUuimXQOoFaM7ASQbZveIpzdIOzM8SQCIyClQ6E7UUDZoA04VN/Cq6PldkMwvGXVSUJAOTsmjRIixatIh77tZbb204dthhh+GZZ54RlvfSSy/ZNYSCJ6VShskkREclxUNahJTMXc8JGcXmVYyAVa4cooDmAEJCh7dqTiI1kYkJrZDqoYiphlhS9b8j26K5CgDUhqid92KoISCktiH46e0cqKVoYmoyMDphPAYnDGBgfG+9PZFiagA9DdcVTFiK4YQFKKCA4dgzI3p+eC58OhMW22C4IheO4Bh/pZy0KS1iittOTbWUirBKzZ0DCCbFJkWX02lGp0P021IpWIP3cpWUTBVrs9OeDiGlXHjI0EWbgLf4IFJJ0ccJ+URUsOxue8Te0zusElVs39aR+IYWtOveG0CtAnQBwe+KtwgxBIS+3RgBNk3hq6VKfShMi+IZ0osQ0fVUwmsmf0U7r8rUUoD54oMrkK+QR07xVFOkHzB145MpZV2qpVQqKqcwtfUkj4chVPF4eGmygg2Bw8K16x5NNpiCLostn+eCBzS2nyYEWNc2dpe+wfpfWilFZv9kdz7ECIFhFANSaiaAvRHsvLcbgt9WHsAQsH3DVGzeZwqG6wRWP/rqY/ZBjMtXMUo31xjsbnz0cfZ6Rc+l6F4mUSTRZfFIJh21FI804pFBLtopq7MF0cFje09KWcBk5ZtNo5vPRCUlO2dCSFmvmEtdOjiPWF5goSliSmcXvly+yo0lxa6aF8MBfiUkn8iqOXHV66kTT1GgWybY7Y7tjYRUfXLy2tbgYz/q3tVVjtmrkP8GEcaVwmvApj1iK+fYBGACsH1CHwqlYRRyAWE2gMFwkjJIzYDocLblMO5IGTnk6luIl0GvmrNuAjS5Ir3XsaC04nS8r0zHhYOug0xIgvdx1VQYD0Uw6TAlpsi1J1VLqVz4TPJpwyulWg5iIipuB3V33OOdV/UzpoSUtq1XkVE8W0+DZ/c5ixGEgMox6Ym9j9t3dkGCFwY87qZNx5OK2/tAITWhbu+7iDKK3nFvY/B521ZgpAJMqU9MUKFsKPldDgGRva8AlZ2BTV2Bjd+AwN5PAEZL49FfKqM4iZBS5fqiSbTZQ3gPEC1CEBA3vjKK4Q59JC2PKKFtvUlcKQL+ggsfNV73z1FPiVRTrogpoDGmoAlpRedvuB7muCgPa+uNiCyvlGpxsJNpnUk0S5qkAV0SSgSV66JJOSPMZ91y2LbzCCkabJBzEtycF4+JBD0fjNIP1ZVNQ0X0ow+vYRo2zJiE6ftuDXbe2xXBIkQewF8BbOjCa/vsigH0YgsmYwsmoy8c4yP67bKXIbxs9rpIzCa6gArkpJ6MqGKf1aSkD62YMlFL0ed4kKVxSVTJ6hf9bkzVkQSaeTp4bO9JqZSgMzkxXfWmj5mcE01O6PdWhBSXoNJ4pEgaETkFCAkp3tbgrEoqONa4at4Y3Jzdba8cBjTvQ39ETFX7UWJXyslq+eZoEZ14q4tBOsj6igzeACq7RxOVulIqIKZK6C/1oXfKQOjCF59wxSdg5NrooOcAYu/pFfTo3sXvp2gVPZggiHffk/GHsjgjquC3JtuFB+13s3LOO0ful0wtJZq46Ll8GK620+Ms3fQeWtAhCnWUUDKXP15fwOsT6OO2qlgTQkqbjNKx9Wx6ic3ngWfvCchvnuemXUA5VEXFY0fx7T2x+eRVohVShJiqv7ZtBl6rr0z27AB6q6iTUtS1hYNKoowdBLAR2DQt7sI3IXgNlSI3viLV5jy3D6vUrz8eSzCoNnpP230eaEUsz77zbr0JIcVLz5JUrHqKVU25IKaARrutQ1rRaCSUMg50bmrrSR4PA7SaSkpWl+xcUpWUCCZEkio/rxz2PNtO2gWPdy28NpE8g4I0NFFV/5ERd7uhLmzBZLyGXbEOMzFlv63o3gigBIxMrGd7CcAG4FXMwE7YgjcxGdt39KEynrEBdHxBthnat1KVUIeQossixBZLFtoaDlqFJCIgXSiVVIQQ61YoOmYKnXsjI6YNfncdPLb3pJQDiCYSNFTxSOjjfGWVeoIiO2dKSKVCRvHyKCYpvFXzXL4aWzUH4gFueavmdAwRerc9+j3tykGC3fahHz3bR+KxpKgtwd/YGk05wo1nKxyzG94eQkxVAPQFhW2ZEt8yfELwfmRCD/on9KGnSGKNENVUT3hteeY6aZAVdN5zQpM4sfuNuAufzkq6adwRnhuHLPgtrZqSEVOk/Tx3DJOVc/ocDZlqij5P19dw7QIyywqmW8Fms8HimIbIvrPHVeSS6DOA8JfNnk+LkBLaeld2ns2vQUzJ7L1oM4vGOFLD4THW3hMyKlJLcYKb04QUWYjYCmwuB6e7AQwOAb2ihXwAkVIqHxQwNC1u6yfX/5a6MTChFz3FYOfVHkoZGy20xBch6FiCZQBFDINehIgIGrGLsglMCSlVGTRBla/yVVO2xBQNMXklJq14+aLy9Fz4nLr3mdp6ksdDEzrfjc33JyNRsoJpnSpXOlcwJaTY9zzDS6txRpi/PNc9usx6vNeh3nCjii2YjI2YhnWYicmTtmBG6VXkKqN4aXwQDJqQUhtemYHBqb0Y2N6LkS19wHSgOH446E8rVHXaaikWxEWOQKQ8431n7L0VMRg66h+eigtovPci8k+Whi2XrUuknJK1u03c9Vh08Njek1IpQrYyTqDrisGWZxLollu+DSHVxEmKDHQQb35w80rsL3Hfo+OL0K57UbDzQfRWB4Jgt1v5r23VYMqxjWpPdx6SYIZk1WYQwMQgJ01K0a8JwURlsNiLXgyijCIG6kEUh6kJVwHDzDSNHwiXrKDnmcFyonufwBjqklOsakpFTNFQHVftpqcuXx3wPLXV87pCwyi9hzFcf3fs80aTSyq3PtG5VAmppDaehcTmyzau4EHltkfsPe22Fyej4htahMHNRfZ+a2DvCc00jfoNsosCAWhl7MTg/abexkWICcDIhD5sL5XRO34w7IeIoyGrlGLd+AoIlFGR/Y8rZsXts3Pha4DMy0EAQlARckqkmjIlpgCaUFLvxCpTyTZejplC1hlMbT3J42EJUeykdkJa8oms7wXrjkfem+Tl3Qv6GFkortRVUgC2AJswBa9iBl7FDEzGFqAITC5uwZ+xT5CNKF5fKmHr9ukhmbU9Pxk94weBoWLcfc9quE0IKZXiSIeQIseI22KFOUbXqdNYWbtEaikbZOGu10Lo4LF9O1ratoKOi4doJZ2eaGQxQaHPAQpCSjRRqXTxjxPka/Lzsqz1FXMCk1VzdvW8wLhxkKC3wUugktqB2Pbgta2RaIpeDOE3HmjczpUsx+8FbOkKJinb668tACYDI9vjaqkgLlY5JKcCgqoQTlTI9dNufNHzEaTnkTAELsgq1Yq6yoUD4LtxBO+jiUmQJ70AuABRG/BXxvW2A08x0HkH+503EzwbzR5XnaNtOnvetSrWiJByZedpaNh8nrs2sfc2Kinirsd30x7m2vteDAT2niaiiL2vG/rN5cjmTwQ1TGZvU+wzcR2p2/stvXF37S2oE1PBzqsD44PW8IKdF+obWtDkFG8RglZLkXvEtUM5CF346HBfQpuusim888y94pFTtsRUULzYjS9qgp5Klkd0Be/lyieV3TcmsWwmtN7ea6IZ0yDTeFK6k/q0XPdsISI3VMQJAa/drPqMF2BblJenkiLH674OxNVuC7CxPA2vFmdgHWaiD/31eUMZ6zGjXsTmYAOLvyIYt5OiS93onzwBGOqKSC7ahY9XvdFXI4vRJTumU5YpCBGlUkuR4+Ckt2mfy1hYIhh/MZK6DJN36Njek1IGEE0cALvJiei4ishKY4JCnzMmo0wmKJUuY2JKFPA2doyjjGp01+MFu412PCrGVs8ZlRQhpqj3b9RXzYnuiQiD8zkA5AVykL0qkqsfDS58W0BNViK1FJlkRWqpAneiMhwGPI9AduOj1VIEcdcE823Daei4eMhcOIJ6621hiCkAsYlJkCe9ALgsdCYotu4cVivtHdxxtSpk6ljZggJgp4pNSkgZqaNM7DybT2TzeTECddz7OPaeddMmn+PnysyCxHCjSoq29dRrYGukih2EZEgcu3V0TJMeBJTWHo2q2MkAtgOj23uxfUIfescPUm0tIEcpZFk3vqDK+CIErZaKK2PV9jwggZTJ7O0Jb46IoF/gqaZ0iSmAFzuKp55Su/EF7/U2pGh074t/dqKi8qRUSuBNgVpdJaXTHlsSSuS6l0TpQk/s2babEFK8mFLkPc9FjfxoZAHRCTHRHU9bXxje+tdpeHWf3UKlVB/6sRO24NWQlHqjkZTKAygBQ5P7IiKKJqWMvhKeSgr1QmQxumTxv0heVi1FYEP2sAopEVFo+hzZkkK6hFeLooPH9m38rbUvbFVS7HFZHiADQiqNSQoFWhXFC3irDm5eQeOkpXHVnHbh6KHf0yophpAirnvUht/hN9lV75TCAyEpRd6Q6FPbotf2KRz3PYRqqYHJvSjkop0D6RdvohJNTOQr6OG9ZiYrdMBzXfcOm5gj7Co5II4vEnwedUZMkeum09AwVUu5gra6qoM7rmZDtkDRSEzFbbRN/ClRHKnYubQIKVs7nwCsvdfbzILvpl2kFh7YHVYb7D1PJVW3+/074srY2KYWUqUUsfeE0toGbJ/It/d1tVT/+L4whiAJdl6myKl8/brK9QUJejc+cm9UaqmYQtbUhc+VLWHmqiLVlA4xBUBo94NzeruwBs0Rq6WCZovuacLYUbL75EkpDymy+MJtn+2kvwleTCndfOTHk+ccp937KNJrCIGS9a9dWDd1JmZMWo/JeBNTsQmbMBWvYRpFSiGILTUZISGFEoDJ3QFRRRNT1i58LHhkjQ4hRecVxW1iSSST+82qpdj2EPDUVSZg26lDXpG62iDOVAeP7T0p5RDygLbiW23ixkEfdzFBoc85maSI7KQDiAOc81fNG3fbK8cmKr0YiCmlejAYBrzlxhbZFv0d2RappGj70U2uOU8RLfkakO8C0IXIGJJcRC1Vi1z4yGsyQrVU/4Q+FKZEwc6Hw83Do4lKEcNh/BFyb1g3PlHQc/Z51VlR14bGM6EbXyR4n5yYItdYbThm587BftbdJjwRyggeKZP0HplAFDeK/myikqKP06rYxISUjZ1XDYC4qn31QgQbT4q29+ExDXtPFKVxN+0yeG7aUntP7cBX2xrEOScqqdj6ex6Ifb1CZWw3Alu/uZGU2oQwttTohPEYnDCAgfFxFz5yjcN1G0/OlevKWHo3PqKWDTa7IGR6nFgJn7Oc2IXPCCZdBmv+JOSULjEVFCsjncRKWBu1lI7aVdS3ypRVXJjaepLHwxBpqqRMZo5pTM2SqqZ0oUtk6KqkeO9VoEkm0S5otPKKUVVtB7ABwJ+BoQk7Y93cmZiKTZiGjZiMLdiMKQHJhDeCdBPqeUrUazJVLCGneMSU8VdNq5xkkJ0XqddcuPGx7wH5JMDEjY+uy6ZdbYIOHtt7UioBVAMJ1Yq5zrksJihAgkmKDjkNcBSk4kkKHV8kl69IVVL0e3aywnPfK2I4DHRLVs7jwW4H0Ift6NvKUUmR3fe2Atu2RzonEjGkm1xmMXiFtzJfAUq0HJq8J9uFk1gjU/gTlcmBWmp7qQ/F8fFJCj1RGUAvdT/ibnyRQ0d8giJz7agirz1h4aqkRM+GpH+SkVOiXZmCY2ZbhpPro9METbNz55Cfk086tJVRLEbQOLlTpfewAo9EVO2oKnPx5uVjFyF03LSBFAgp1s7bKjQ0Rxcqe0/b9aBYub2Pu/FFwc1pIoq2+6G9p0io2M57dVdtopLqBzNdq5NQ4XcZLkKEKRAtQJA4gtOi2FJ1MipSSwHbJ/ShUBoOF2BYm59DFQOUVovsxhfcL7IYEalkAYAop3TUUlIXPt7xJDvD0T8LDjmlS0whJ1ZDBVXq77gXNCFy7yP5ETZPvZmF7jEtmNp6ksejBcB+EabxpGzr47m6yaAioVxOF23iSPGClotUOKo6yW579GeKxNreHbjk1ZVP6/aaiZlT1uE17AogCIAekFLbgP8J0oSk1GQEdnxDPT9NSNGklKnQJ5ZQFmeJpONdN7lW+pysHFmjRMyaqVqKzcNrW1pxpXRAfzm69SX8jXfw2N6TUgkhI54AOflk4saR+gQFiCYpKjLK1sUXUJD39OREvGrOqqRocoboh4pU/KgCh5hqJKL6o7/lAXSxhBSZpNRX09+oRkopYlrzqLt01EkpouxBvhqQUnkAlZC6QtQx9gcVVKbEtwknE5UtCGJLlXrDiQrPjY+9H+G9QyXcPnwYhXCnpuBr4at+yDEC7QlLUKgZOH2bipwiE5OgPXZbhqviSwFoOE7ui2iColpNt1olF6GDt41tRfCJKdb+5xuOseSWSBXL2vsq8skJKZdkFAsDZb5KJcWzbyp7H7nnEZc93gJEP/p2bEeXYLe9cEOLarTrXsOUqO45F7o85ytAnth7+gYQUqpe0hb+LnzBq4T+UqCOjci3SgNBRQc8J/cp2viCpIjbevJM0QsSoBYfjJHUrvAIKmq8wCOmAugTU0HRkft2UC2PuMqH95LtL0gZ5FzwuZGwouuKH0vg2mdq60keDwPoqKRs1RpJoKPyGCv+O7I4UvR5HRAii703vHhTTB1bugOXvCEAJWBkv4nYPGUK1mMGNmIaNmJaPYbUNqDyV+ClPYDpQVoMIXh0JiAiq3jEFBdk0XqQc46NAyVSJbF5VOWQemnwVo5Vg37aNU5FRoFJT5fh0clje/8EGEK1Yg6oJyKySUhM8cQph83jdIIC2E9SUnDbU62a67hxRH9p5VQU7JbefYm8xm8d5bvt7QCwHRjYEemb6MvuRp2UqseTIjvGjctXMUokvdt70ChrJaUNANt7oxXzLYjFGxktjcdAqYzCpPhEJYgtUqgHxI0mKsHXUA0JqTKKdXeORpIzRz1r8SDo+WQTFhpsETwuRuLGATROTGy2DDdZOaePB+/j6Uk5onOy1XTeJMVo4sKutumk99CGyP7KjtG/LdUxlnzS6QdSIaR07LzOs8N7bGXjzAYiqhLbYZXecQ9otP18t70yJ24g7aodqaYmoB991X6U6AWIbY3v+3fEVbHEEa8bQE8Rje56+WpASpUQrLjHJg+EmNoMYNfIZTu2AIGYOjY/Pu6KTuJJETc+cjy4R41/I7sf2focKjEiHUDoAgdEhD/Zga+WF6hhRd2Crq1hnw1SHk1OMcQUaVfQB+gRU0FR+u7b9HlyPGieWC1FINvtzxqmtp7k8dCEKSFFPstIkjS+ANXYQKTK0m2LywDnqjpYqAKbuyCk6HOie1OJ3Pe2I1gk3gBswWS8ihl4DdMClep2ILDnfwA27RFknVAvroTIrW8IfPc9o8eDJYVY9c7/396Xh1lSVXn+Xr7I915mbXSBxdLsioDaY/cgaikt06OC7dp8NMj4Tbm0wiAgA3zOCOPMgHYLzjc2Mi6I2gW0gsv0CD1AMzR8M4ALi7K17cjSjiiLlDY0RVVW5lsz5o+IE3HuiXNv3HhLVlXm/X3fyxcv4kbEvTdunrjnd5Yry5ZBhgC6+nYUbySXF5YGrVNshJirT+hauynFsYLn9rvpE9v14KNIlnlJ2cLzfFdlAsZESI1DSfHxjFKgLQ1us5pzBYUIKFJWzDCODlttryvCN/LvJIyjrYft0b5tiZJCygnn/Gdgekp1mo2s/ostpHHna5Cv00cvRrYSX3vWWI3JTIILtLeuwUKri6gpSbdcYeGeUrRNCXF50vPkOI2hXPHTLMOEoXKO2BQXF0nlIKdGWTLc13KeHDf3J9UqD+cYyfupCgao9jJaRtaUnQUfb6hkX9EjSntHyMTnNs9bq7esh7x3esNyWa/MzSvBV+b7rK7HvWY95b2WRyonoXjYXv7JkptbVtzDDmBbx/SKJcwAmGkhkff1/FlNRQMspmEfiRGCWCu+Et92GCHbnJTaI/1uSe/YpM18BVbeB0lf9VN5nxBWiWesufIq5RlMHlVR3hG8V+HjGIOXbFpJpJUyiClA85oqJ6aSy9vDt/nx5LbuHICax2vepHKvqfyYpxGiqqyncwLGhN0sJ03lwVIqtIetiEAZIaX9loTUKGQDEVI86Yal2BYkMnx/AFuBrTv2AFYBT/3fwzC1145ERqMP4B8AHAE8e0hOOtF8f4/0N+2fg05MFZpT5i1FJ03AG6BwHd+xpHlL2epj85byhU9on7yfVqedRVyVkKwreG4fSKkJwTYJqZKHxGZJV8M7BvXxh3CMqqTQORVlQEJC5VZzHrbHreZFZYVCOjrp5J3nFcnD9khZIet5Fs7Rmcc0KSc7xCfd19uRW8y5HYa8pGaBLNEhPZtmq4MeeUphNi1JLx3+ktwGYAMwV8sJqT2Qu//OIVFU5mZRjwbZanzzmE3b2mSJcXNPKamoDKCH8dWZspL0cT55pyFXukKTHCPDuqAqYRyA3WJelZgy21y0nNNxvj+phltBsSkZrpC/odFHtbjzZWRN2ZmoQjhqJJP0kpLlXESVzBsIeBJSLuPDOOS8PN9zZjGVyfjR5X3uDds1ZD95SzW5rOfynhkcDCPEjtwrVsp7CrKI6ijklMqMEBHATBUpuBFiG4A9TSKKPqkRYnFuFvOtDurrBqlxpYN5zGTesXw1Ph6mTfLGtvKq9JbKwH5WNj6MY9wQaPwMkBNT6X49nK+4+AWX+8ml7OHbdJzvT7Z18qnM45WXH4uBoqqsp3MCPFCmEFdVmDVls4plt6paNu4HPQ4vqSreNbb8O30Ur6G11RYixs/38Xzj58YpiZQvPjT37B6Yn5sFHgIWX7KKeUrNAPglgLXJKtpATkoR+Ap8zhC+mqWust4aMSXP8xnXnNjhcOXlGsZrSjZ22LHlk+vKBzsz+blH/63guX0gpYaAbQIiJx/a8t/yfB8FRTum5ZECJkRIjeoV5aOkKB5SGjSrOe0zreW5MsI9piRRNctC92Z3LKpEFP8stHOVQhJSM0jDOVYhySnFlJRsRY68JHJLCFnPUwv63FqTiNoKZj1Pwjq6rQ7mV82w1fiSv/OYyfqEQvZ4f5mrMpneF9xbKtlnhndweFnRXY+0bMxYwjiAXCkB4L0yU/mqevrKTFUUFI1o4rlK+HljUVR6AKYqlg8YC8rC8Vxl+X5b7kB5TVveQJ9FLLwJqWE8YoGJziKGkffFsL18ddWZ1BChyvs5tr0Nhryfh+kpRTK/Rp5SJI+QEGw98pTKAv00I0R65blZ3QAxB2BrDe3WLKJogOaqTvbemmdklAzjI5lPfaWtvCq9pVygEL6h4DtZlmOIzxmImGL7JTEFmLI/qbdr0YrcS9YWci3fFUlVzIq6jAtj9ZitKuvpnIAhMEm1aJIPZdgE54SdoaRrhJQklKqGINraza/Dc7sCzMyQ/ib5PJPI5zaArdNYnJsGfpIW28rP/TWA9ck15tYmOQJb7DB5RVEon/SUUkFeRBokMeUDzbPKtV/eDx7lpLcU4CaAtPKuOqwQobaC5/aBlBozbOEdLuIJKLeO28L2qigoXoTUKEqKzRXfBRbKYQ3ds1rNtRwj5ipM3GMqT3g7Lz4LmN3RTpKbax5STFnZ1smVE/5KiJAoKWtSQirxlBKk1GoA4OF79DKQYXxri4SUoagkYR31aIBms5spXdTeBZjeBAPUhaJiWtCTPs1T4xbzHNlD+CopLL7jSYZxKF5ToxJTyaXd+aWSW/opKD4Wda2c2eyK3lMrOBniUsGlVLrC8bTQPRtxZSvLr5ntF3mkgBJ57yPrhyWjeFkXqaDBIjRGkfda2F6jIO8XTHnvyB0Yt4Ftg5xK0owQWIVEttfz5xSVGiGI5tqefPqzprzfCsMIga0tzEcDNFrdzDu2kWURJLluEnZEUfEVWBN0DPmfPCrxLOq5R6zT+MBPG8cYIkRiX8TuRV5TUdFrVluVleR+Ut1yL9nkdnrScw7bfnm+C5XkfUh0PiGM20tq3Ci7v88/WVmZUouxxz2GgaZJV8mJVdY3tpxSRIBIkkOGdKRZY9spKbUl/fwM+Zw8m/n/E5LM6KlX7Na1WW7ZjJwq85TKuCFJmNnImKokDb2UfcaM7NthySzbRMDmoVUVsg6+7Rv1Pr6Q53g+rxU8tw+k1JBwKyt+FvNhwjhceUWAIQgpX++oqv+PpUpJrO6WoRxZcUay8KSvfPWlfBUm05JOeaPoN7eaz2Aes4P5JNltiZdUr5PTRgtZvRKxujb91FYhUVRWMUKjzpWUWlpSJjznIR3rkwS50ltqNbJlZxe3rkoUlSa1u1NIfguYYS8D1I1lwzvpnSmMj3tLURmAjcnMIl2UgNZEuIRhFBRuKWf350oJ3bsqMUXt0yznvM1SwdBIJZd3lauc7zErOgD0fyMd3WqXDyhH2XtAUzpz+sDuJSX32fJIVSKkNFlfxSPWBd+QPWGEGFbeU9ieDNXTDBCZZxR9SN5rYdpsv5Y7EGAGCCDLH8jb3mh185WXDCME7yzmKUVLkG+FmUuQy/vWbLbIBXnH5jkE+6gngePsN38HmLkEuayXMpCQhcCxEL5MxtP8vA77ZHjUsQSY5JT0mvIgpgBkcp/aJ71ajRB1yHeCKcfNBUDq6n55zIbK8r6qrAeCvB8KVVWiMmJgd3NhoPZXIQuq/LPb+kML26vqIcWvrykwnFiQz5l7tALmkhbISalHkHBPe2jVImKqB2B/YMvaZPdqdjsXIVUKjRhxjT/N+8h1Pi87SuJzm7cUh3wflnlLlbV9mXlRreC5fVWH4AAG16TCZgHTrOhVwjjoGgAKeaS8CKl+VFRSuBlYupTaXEy93E9FeRs8rOYAhXL0xXdRackt5QtGDin6La3mM3O9PHxDJjanUI42sG3OJKQA02q+BsgIKTTBCKB+vtR3hLS0Rkyx3FLk5ksKCreip/t7czNY2FFsVW5Lb2JB/O6iAbKga0ExfTbW5G+JgetFWsV7qmyM8WsOiseInIoGyYcs+6RQEYlGKwjKJdTlylW0bf7uG7/lUuzyWhIyibB5zN5ZrmPZvK3KZ4J4/vnnsWnTJqxbtw7r1q3Dpk2bsHXrVnv1ez187GMfw+/8zu9g1apV2G+//fDe974Xv/rVryZb0TGjTLnUZD4/V/OKHVne2wgpKevlPoh9ro+E77tgDPKeh+3RanQyb2DuKbVghGmveaE8uXnMvGI1L6m1MPMHUg7BOga5EWI1YBoheG4pIqa2w5D3W2GR9zW052ax0DFlvZTxifzP6bnESzZ/K8oepfcAkI/FASJjJT4ARgRoKbRxMPD8yOtoY5S/A2AaQ7js53LfHFPp/hL5nh8bqHLYtt9WTntneGMYWb+MdLSdg0l6SQ3D2vowF3Rd34c/DAnlg6oePHQOEVLaMZu3EFAkOfi33E/kE297xD6yPBIZ/AskpNRTSLyl8By7//q0fr8A8HT6vS0hsraiMHcvrMRnNIFM3b7PZBzPzja2qC782+c8DttY14jHquO2yr1dhOUuhhUs64On1IiwhWsA1UI2aJ+moMh7AX4KSiXvqDKLua8XjEaA2+BhNZchG5ExwePKiPmdWMo7zEq+kOUYMazmnXlMU9gGT3TLlZa5RElZGOgJb0lJWVtHTj6x8L0muuZqHM+uT8/4J5iCkvthxcly4XTOVuSW863pjdnqTBTWISfd0oqe9Kk5KaaQPZ5npM7GHV+hiQ9b7xA+33eAzXokx5cllAMwreYJcku/9JgC9JCOZH9uOadj/LdPWB7vZy05elavYcXwLubi+573vAdPPfUUbrnlFgDAaaedhk2bNuHGG29Uy8/Pz+OBBx7Af/pP/wmvfOUr8fzzz+Occ87BO9/5Ttx3332TrWwF+ITYmF5NbgJKe2e49gFjkvcaGWU2tBpsRmcNwjN2nPKeyKc8hxQZIBK6fg22F8O0ZchemkMqyx3YKfgyATANEOvXITNApPaHrA2GEaJPb4jt7Eo8ZDv1jiV5vxW6vI9a2B6tQX2vARr1ToFcTx7FwFiZL2L7XeF8pqcnhe7RvsWM7KnsETtqyBnJeCA3lkeiXFonPgzJYyrZLq7Il9zKDN9ObqcdMwe4tvqqBt9yXgjhe0uAXUEdqlIHTeF2lRkGZfXRrj8KIQXld9n1XOFh0vumh6LnKieB6CPaRXL4ESREE4Bk/g4kMnw9zDA+ElQHA8/Omtk6uDzLFsTg4Kufy7pYSDOrp5BPriYJfg+fnFYuyPtrbdGekavOWtilvK7PuB+mb/j9fe/D7+eJXWxuv5TYLTylLrnkEhx99NFYs2YNNmzYgD/6oz/Co48+WnrenXfeiaOOOgqtVguHHnoorrjiiqHu7zupKPOckkpHmYKilQPcCgrllvJSUMos5lW9ofi1bCgQ7YoFkq3AVFxpKVdI5KpLeejGvBrGwZcGJ6v5qhcW7SF79LuTh3JwsUJW8zXpZ+1qJLpH6i1lTHRbSMil1UgL0Vk2b6kF03queEphaxrGN6e1LPcFowA/7kXVRSOzmOe92Sx4UA0QMR8FhUitajipOpZsYxIo9ZoCipbzen+QeUwBuRIiPaZsnlH8PJvlW5aV8LWUl5bz8WYp824ZEx5++GHccsst+Iu/+Ats3LgRGzduxFe/+lXcdNNNVlm9bt063HbbbTj55JNx+OGH47WvfS0+//nP4/7778cTTzwxucoOAS6jXSQV9zqxLXRhlreH7blWVk22Swipfi39oDgGbP9Tcp/P+CkzaBAi/eCo8p78gnLJl/uOzrDvNZ3taNk8YedgyH+S93KqGyEP1Z5mXrG0sEVCnDEjRCbvic7SQrZTjynpHcs/6f7FuVnMz81gO9YIeT9jyPjktwxs12R88t1Fk427MXhLAe7QPl8ZJb1jIcoN8m0u+6t6TNWhH0t+m156EvJd4PKYHRrDyPoJyvvl7xU7CS+pXc2dwTZ5W4o8WnyA8n4hsr6MkKriSSQJKo0kkfKZhYX1kcjgX6Qf9FJi6tcwiQm6xj8hcad6Oi0znxSRYXvavgxElLkgPbts5au40tiuoXlLaV5qBG1CYSPNtHPKPONsddwZmMB9dyFZv9TYLUipO++8E2eeeSbuuece3Hbbbej3+zjuuOOwY8cO6zmPP/443vrWt+L3f//38eCDD+I//If/gLPPPhvf+c53JlpXTcnQyvicqxEB2kp7yXYuGCpZzEdVUrR/Bm2fQzeTVnMAXmEcMo+UXH1JD+PI6Zo1L7SLqy7xTyf97AB6fXPtJGrSDJIwjrUAphkhhSbQkeF7WUgHZaGahWm14e7LaZAgufnOoRjOl35kWMeCoZiYZFQn7SVSRDoVwviS7URZGUT1LG+HCm2Ia+NimFAOfi1FaXERUwSpoGT7xY3LwvhcZYvHhwzdsIEUMt9Peutt27YZn06nU7x2Rdx9991Yt24dXvOa12T7Xvva12LdunW46667vK/zwgsvoFarYY899hi5TpPAgP0fVDFWaF5Smlesj7zv9+t+hBRQlO9S5mty3zXBqToBUowQw8p7nkdKynsyPvCFLPjqqomXlGKA4MQUyx3IveL7yFUZ8nkyQrVXIU9mm9Y/I6T2QFqaE1NckWFGCKC4+p4kqUQYH8lzIqh4CB83SNA39Sg3ShQD4ZnsT+V8ZeODBt+xo41DxQAxDDEFmKHUpmzXDQ8aZN6uiaOqrGfyfhJ4z3veg4ceegi33HILbrnlFjz00EPYtGmTtTz3in3ggQdw3XXX4bHHHsM73/nOyVWyEnwG9LB5lobVGF33c028q5JfwyrVWh187i3JB9oniQjbtaSXk7y/FgYor8XJJ05UKdfrI1lN7ykA7R4SoukpJJ6vdA16S5DJ4jdpOfp+DslLhj7zAGLz/9XgmGwhhRp8iCmqp+wH1/OSYY62e2q/y6B5xg2DcRFCuxirM+TcfjlgV/BXLQWFgxCuuuoqbNiwAffffz/e8IY3qOdcccUVOPDAA3HZZZcBAI488kjcd999+MxnPoMTTzyxch2qumBLRV+7ns2Sbg3tsKy0N7YQDo2I8gGV8x1NUWy1mgPIQjl4D5IiwsM4itb0jthOwjjkinuU3Hw6JZxsic2NBOcDU6TTq4I8pdYCiXKyGoXV9wqW8whAn1SbedF6rqT0ignP55JrZ98tAHOtJIyv2WUqRfJZyDwLGgWLLpBMvCmkwxXGR+Fptkl4v540yxnaweEjRHkZ+nfgY41vD2BNgCsToAN+IR3Jbz2Mj2BLfpucY3ZGlZX1tHDAAqq+x9PyBxxwgLH7wgsvxEUXXVTxYia2bNmCDRs2FPZv2LABW7ZsUc4oot1u4/zzz8d73vMerF27dqT6LBVsHoS+0N4BI8v7KrJ+2LkYTaJ9YFnUgqDJe1vYnk3e89BsWszCoOk78/rqqmSUYKsiLbSLuaSAnE6aQRqqTWF7LWSeUkD6f294Ss2imPA8Qj4x7yN5D8wnKz1p8j6T9QBaubxPvMeSEdNg70ha8KKRZkDNCb9+1teU8zBBB3I1vgEioG4ubOEt57nsLivrmj9IGZ80Ih9/fXEssic/z9tgD99OLp8fI4wiy8eCYXS2CTnmkFfsPffckxkhvvrVr2Ljxo149NFHcfjhhxfOIa9Yjs9//vN49atfjSeeeAIHHnjgZCo7Nkyz713N42mY+vgIb1eZcRNSssyk+thF8siwtbQObSQGgWeBhGD6NZI6pqvzAUjeGDPi8xskmgEXVHwcAcCs5V0qd5SNuyqhZD5967pe1QTjWgif7Otpy7FhYav/sCF7S4wh5/bLAbsFKSXxwgsvAADWr19vLXP33XfjuOOOM/Ydf/zx2Lx5M3q9HqaniwOz0+kYXgPbtm0zjo8yESnLL6WRVGpox7CEVBkJNQ7DTlUoVnOe7LZov6XJd8dQVPJlwc2QDrKkzzJFJbOeU3Jz7hXFPaaYotLr2+0s5CW1hggp5ilVCN/j1vNnicraDrvw7AH96aKnVIGUAnqtGSy0Omiu6mQtpdwiDXTRTRU6s0/7BiHVSRWZZMw1slX5AN6WYm4pnnNkYuAKCWC+u6RikqKG4Ykpgm01vrxa/nmkxo4Bqvm6plV78sknDdKn2WxaTgAuuugifOITn3Be9kc/+hEAoFarFY7Fcazul+j1ejjllFOwuLiIyy+/vLT8rgbpASV/FzyglN9jkfdlhNQoRgg5W9D+B63n9ivJe5LrJsneBw/n4/KePpoBooGO6SVl84xN3wMLHd0AAeReUmuFrEeU/79HUt5nZ65FosjwpTJ4bqkFoO8gpVbnv7m8N1fh66OBZkZQcflORFSEATpoFowQXNZTHsE6+mpuqQx1VLfS2saZtl8bX8IA4UtMATnBJomp5DRN/uvGCHmcw/aucF2nFFVlPZ2D4jy22Ww6ZX4ZyrxiNVJKw67rFSt1A+33JLRApwAd4npVJmV0/Ukq7C5CSobtyXOqtN9Gammhe9wjideNjAW9nJTaCiSE1D8hzwXI70eEx5p0+5/Sz0xahha64OTUTK6fUTWyLqD68veFD8Y9PuWYkJZhnmOJjrssDDaCqiphJC3TVcY73XcXJamGnNsvB+x2pFQcxzjvvPNwzDHH4BWveIW13JYtW7D33nsb+/bee2/0+308++yz2HfffQvnXHLJJaUKmO7ZVM1aXhbip4Z2sLwiALI8UoAZxudFSFUho1z/5y4lxae8As1qzr2lcmt5JyOoZNieTkSJ5Oa2cL0dSF5CFLo3SCzn3GrObR3kKTUrQzmawvLKFYvVSJIfZhYV/kKjjuwjeRnNGlZ8zMFQTnKCKk96nih5g0wp4QSVDNhI6pcTUnki3E6qkuThSmXeUt7QTvcdZ9JaTsctXlM2YgpIFJRs6XPky3/z9hnEIopkAmGYpLY5AVi8llfy8zaqvYzSecratWu9PZHOOussnHLKKc4yBx98MH784x/j17/+deHYP/7jPxbkcKFavR5OPvlkPP744/g//+f/7DZeUlUh8wfaFsnwkfcjEVLDGiCq6AeeMwsfed/MjBB5Xikp78lzSjNAZMnN29C9pEjud/LQPdktpLpQ+N40l/WpvAdYCK80QmyVK/DJh0CfGGjXTEOEIKSS39PotJuJzK/n7V1QCCou3+uMkOJGCCnrXd5SxjP29YKy/S6DS8Zr9VGIKYBC+RYxiKYMYgrQZXuZMYKgyWnXu4ISztvOsaKqrAcm5hm7Ur1ixweff4KqoXvDYhiFvKqXlCyvEVKu47510iQ3h41403JMsXx/REphHjnRRMaFHitPBA0nv7YhDfZOyxAhRQxUOscvoMbKTlvaxevtSrxt65PIo4xGcHESqey6LnCdZ1zeUqMQcuPy0hoDhpzbLwfsIk/AH2eddRZ+/OMf4/vf/35pWWmhj+NY3U+44IILcN5552W/t23bVnihA+WeTb6raWmWdQ5tn5bYHFCWAZ+kxVyWqzKKKHTPy2peDOPgPgicoJIhHQUiKksHO49GW7Ga0zcpLp1kO24D/UExwTnACCnAtJqvAuJWPmGNMEj6aDUU6/k2mK6wBHrBCiVFKifMa2pxdQPzczOorzND+DhBZfpw9Nn+QbannpUww/jKvKWStqZrh1QdQ75luLWc6iAVF4WYyg7X7QqKHrbBlLPsOsNbwHkYCA8V1MJISjGsglcBe+21F/baa6/Schs3bsQLL7yAH/7wh3j1q18NALj33nvxwgsv4HWve531PCKk/uEf/gG333479txzz+qV3AVRJedUUp79Z4o8Upq8B1Au78dhhLAZPH09pASGlfeadxRfXZWWeZByvznooGXziuKGiFTeL7SLNntphMhCtdmHy/sGOkUjxNY1yAO95ZXpjvNIlKDZ3FPXIfN7rRnMR3001lEIXx7GR96xC0xW8QUYuOynY0k4n7kaH9FV3FsKqBiqTRjF6OVhgDD2pdu0Kp+U+wAML1lgOGPEMNAWweCeuiqG4SHSc3w9Y1euV6xLgFUlbXaWdmgjeDSMovZVIaR8Bm2PfffhR0i5ch25zoFyjiSqSBYT6ZR6KW0FTEJqe34sqzsnncgAsR35Kn2crKKk6rPIQvh4lfq8Tryemq5AvzViytWPVYWKrQ5ExlUZ+2WTiLKJhU8IYVXvqV0ISzC331WxW5FSH/nIR3DDDTfgu9/9Lvbff39n2X322adgtfnNb36DKIqsis+obs0crjAOHy8pI+F5ajWfOCFlG9gaKSCPjziSaAWm5Bb2MI6iUlIM26PV9zgRlSe7beteUhZFxUZIcav5+nUAaHnwlJjqFML3ekBr2iSm5tajGM6hEFPtadNTqgWVlMLcNNrRLJqtLrpN8pCaQR7yOFsYjXLFOer/fAzmYXzcWyo5Z0RJOMx4k0QoKSV0zEJMuRQUjZjKb1dsa5m3lAuuMJDKis8A5urBPuUnhCOPPBJvectbcOqpp+LLX/4yAOC0007D29/+diOc44gjjsAll1yCE044Af1+H3/8x3+MBx54ADfddBMGg0Ems9evX49GQy5fv2tAk+e2HIKuMq68gyPL+1Flvna8qodUhIIRgjC8vO8Y+/IE5x3VAJGFac/BzBvIw7VJtnaSUG2tyZyQWkNyfjUyed+vC6+aVgysrjEjRA15uPYCdMGWfvpwE1LMO7YdzWKh1UXUTPqPe0nJ0EfpHZuXraODJproFIwR9GT48OT5mYyOqqL/DGuMKDFAZMeYrCOfA/qX0cK3Ad0rymZgdBFIvkbJSqgq6+kc+HvGBq/YccOVaFti2DEzCglWlXDzJaRc/9wa6SQ9nHyZatc9SJ7yNsr28gBtTiylq6FiG4D1yMkeTkhtU64l20Er8S0gD+OjetA101C//rTStIh9bGQURxlRo2kyLpCQ5YSdPCbL+YxHm4eU/D0GxdLrOrtgCN8uNLdfauwWpFQcx/jIRz6C66+/HnfccQcOOeSQ0nM2btyIG2+80dh366234lWvepWaT2qp4VJQjDKMkMr2D0tI+Sgm41ZSLOVsXlIUquETxtHICKhi2F5uNV/IP535xGpOKy2RUiIJKaakLLTNZkfsu7A0OCOnuq1pg5SaanWxuHraDOmYm06vQKSUJjwXAEznCopGTNHvrQCiFrZHa1Dfa5CF8SUW81lEGBTC+Ah8FNKqgQnyML466syaPihXVqrkG/EhqAiatZzuJ8fnEMRUcik9d5RLGVny5Le7mDXl2muvxdlnn53l8nvnO9+JL3zhC0aZRx99NMsJ+NRTT+GGG24AAPzu7/6uUe7222/Hv/gX/2KyFXZAC8kuMyhUu747bK8SIVVmfCgjpqDsH7OHFADrintV5H0T3dzAwFZXlZ/MAMFW1TM+cmGLDhD3TSMEb541VDsN4eu2poQRogOsbiVyfg8oRggK/ZAT8gUAa4vhe/KzNa1glCQ9z73OcjKvi25qlMhlO4HTqjY0APSR+HDSOUAe/px5xQLVJsXa2NPO5/8ecly6DBDyGv2cmALseQXzqpTLepcBwWacGMnbagRPKV8Er1jAXzkdd94eVx00l8Ey2MppQlt6C/FruNjmKoRUTynTQ5G4k2SVi1TS7uEiTvg16F4zrDzJZCKd6DfNzzkhRXmiZLsk8UPeUkR4kYcXtW17vr/wTq3BDN+zTYb5/bV2y3pB+e0L7i0lt6sQU0BxQgF2/rTY76qP1m5ZXw66vjaJGRcRpt2zAnaxuf1SomrqxJ2CM888E9dccw2+8Y1vYM2aNdiyZQu2bNmChYXcw+SCCy7Ae9/73uz36aefjl/+8pc477zz8PDDD+PKK6/E5s2b8dGPfnTJ669Z1V3gYRwyr4iXgmL7wHPbF2VKjsNqDsAgpICcGDEXse4KrygzlwgP15jJCKn54mcwnye71cgoHrq3w+wPErncMZcS3q5Zlf7gnlKrEnKDT24brU4ezrFH+mmBroJ8yXDulswEWR+5ksK9ppTP4twstm9dg+2DNdiONUZPkPcUqXW574HZ47aeLwYFRhmRM4iS4RhHKD57iSpEqHauNm4HyJUbPu5pf/q7lg9B1Pu5glLvDxANBgWlgtPHLvCQyDKFbyxw/a+7ZMCEsH79elxzzTXYtm0btm3bhmuuuaaQxDaOY7z//e8HkFjd4zhWPzuXkMpfi7a8T+7zq3lS2eQ9YCGk+pGbkKoq/7XxYRszProO//8XXlKZASLKCShOPPnIe26AmOFGB2mAIOLpBeQkFPeO6pjflOBcNosCMdYgXXWPe8a2ku9Os2HI++lW1zRA7AGwZTHYVemtwsNXeqUynn96W9dgfm5Ge+uhi2ZK381k8r/ob9Ys+FNJP6sB6sk7LapjEE1lxJRzHGiQ44fLbImB+ND5tg8vg+I+kvuJzE/kPs+VJZPt2/bbfpdhpPfBMLJ+QvKee8Xec889uOeee3DqqaeqXrHXX399Uv3UK/a+++7Dtddem3nFbtmyBd1udzIVHRk733hdDZMgyXwJKdeAKyOkJGkiySWfOmr3IJCMdQknIo2IdCJSiq5NhBQRGjyom9dB3ptkOxki6Dr8PtsAxCa3Uqh74YDltw+JN6yA0K6t1W/aUpbuLTHucbu7/d8qWCJZf/nll+OQQw5Bq9XCUUcdhe9973vO8nfeeSeOOuootFotHHroobjiiiuM4//3//5fnHjiiTj44INRq9Vw2WWXVa7TbuEp9aUvfQkACorKVVddlSk4zzzzDJ544ons2CGHHIKbb74Z5557Lr74xS9iv/32w+c+9zmceOKJY69fEQkcQQAAbJ1JREFUWYjGqOeQ1XxJLOY+g3vEUTPFiSjmJSXzidjzipjLgfNQjkL4BgvjUJcE54oJKSsDZJbzHuuPQm6Remo1X42i5RzNTPmso49mq4s2KSn80yZFhb+spfU8zSvVRzGMT/OcimroRXm+EW4tp4lxVBh9xfAOLb8UfVMiXGpfljBcC+2ogirjj7/E+bbwjsq+RZ4pl8dUVcs5L2dWtfo53ugDiCuUX0YuvrsKysLwNIwk720LWIwi88tA/z9VEeWDk7yksm0m78kjykfe+xogVr1QYoBQ5H+/bw9wIAppPTc+0HaTkoPncqLZ6qDHc0qtTvuwvx65ssMFF7fgp+EccoELzWMqlfftaE1C+K3qp2RfnmeK6qStvsrlfeHxCVnPPWPr/UX068JbCqg2tnwWvODjjnvEUtkIxa7k5/bNczRP2ezW9fx/l/eHr4w2z9H/Yei9WhlVZX1SiYlhOXnFjge2gT/JCbVP/iUbRlHcNUKqSjkbgWQjLHzrqmnntr4lEok8nubZ/Yg4Io8mTij1Ya6ip9VXWmiImKJ2L7ByFCmRJjwnWZbJrmm2g3skST9e7d5afw6j8NE9uA9xX+zjIYnynaZBe678vKohdaN6LpaFDU6C4Xdccwnm9t/+9rdxzjnn4PLLL8frX/96fPnLX8Yf/uEf4qc//SkOPPDAQvnHH38cb33rW3HqqafimmuuwQ9+8AOcccYZeNGLXpTxKvPz8zj00ENx0kkn4dxzz61eKewmpBQlKHfh6quvLuw79thj8cADD0ygRjl8Jyy+XlJZeRHGQUuBAx6EVFXFZBQlpUxhIXlq8ZIC7GEc0muKfvM8UjyUg37zsL0mumh2uuV5pNppWzr5Nl9wSNoFZgDMpFZySUihidSrKErPGaDR7JqJb+nzLGCuyqS5UqcvAK6kuBSVCEBrGt12Ewut2SzfSBLSQcnOZ7O6aYpKB3k+H05Q5URVroDxFZoqh3YMMw55uTLvXQ0lxBSAQkhHctvy//WoojIztJKS3GCy5QNUcO+RsjK+pJUm70cipMYh8+X8tuzVpR3XvKSGlPck47Xf0gCRGRm4V5TNGDGwGyBom4wQNS7r00UtEiNELu/r6CdGF57sfI/0eysZIShMRENaESnvucxfzbZTeT8/l4TxNZvdLEyb8kzNsxWeip4+ecJzkucD6GHcyWMepHJyMfM4LYCHbmtjUZ7nq9OTcYHuob0LeBn5TohMYgoQhhRHfikX5LyOe9XK/3nbCnwlN6iOCcp78op1gc/bySt2ZWAUBdYVujcqVAFd8Ro+hJQrrK/HvvuW7SrwOY+IHRfJQcQUeUstIF81DzBX2iuri3xZ2kIFtqf3pNxVs8p7lusDRKRphBRta7mnfEjDqmGrnJgC25bEVBm0iQURRJPM9eQK4bPVawmxBHP7Sy+9FB/84AfxoQ99CABw2WWX4W//9m/xpS99CZdcckmh/BVXXIEDDzww83468sgjcd999+Ezn/lMRkodffTROProowEA559/fvVKYTchpXZV+EwsbLlJXF5SWhgHgHwpcC2HFDAei7lNllQZKSVlC15SKK66RGEc8rcZtreghHV0s1wjRtgeKSFSIaFv+lAfKoQUNW0awNqmkluEEVP8uWehX3JFJvrMzaLIrCgvUaqbpqwoystiNIv5tI8b9VxRkVZzGbBBE3GaPPMVmrREuEkbE28pp6dUlXdVcnEdtlwjWhdqXlPsGjbLeb7aFBX3VU6K1vYy0mkoJSW5cPCUWmKUPaeyUD+XvNdkviHvATchNazMt2GYeZk0QiD3khpV3vPfpvFhPnsXGAtZkEyX5BTJyAHbZlDlPYC1q2F6SBEx1TT/x61GiD2QruJERghbB6fKgkveEyHFvkneN5pdRug10+Tx9rAz7i3VycipfsEIQeM6y7uXektNa8TRMAaGKuVd5JQ87iCmABihiLb8UmXQVm7Nb1dcwa+Ovve1AVSX9ckNA3Z5VBGwk/qn8sWohJRWxrbtA43okqF/Gqmh5bKSXlHSA4hSxZRZaoicobrxbVmOE2ALSP7Ba6I45ZWixTFsfaSRRPwYtRPKNv/tQwJp5JP0nuJeCz6wEVBViamqSobrXpP6P/LAkHP7bdvMBPy2xdu63S7uv//+AnF03HHH4a677lJvcffdd2eesYTjjz8emzdvRq/XG1uu7kBKDQlN0fQN3bNdz7YcOFnNnUnNqxBS8n/N53+Pyx767eUhRb/7mdVcJjeXqy7xZOdmwlszbE/+piTnZDlvoItGW4Tt2YgpZjXXJnM8Snqm7vaSQhNpQnDeHYNcSZHKyhyQKCklLwb+nF2KStb3NfRaDXTbDcyvmkETnTSnlJns3FyVL1dUyFLOV2jKPXsaWSJcIA/tSAjHhNjJlBUebmGDy4ouwY/La3NCqoyYSsu7Qjqk5TzZVVQyXNCs7ZplvXIoXxvVsgKOGFkZYIfmBTVMaF+pvB+WkKoi86t4SJW84jQvKS1Mr4q8nyECiq2y2kAHs4N5NImEmoPuFcWNEOQdO0DmFUsqhCHvAcw00wUtiJgieZ/KfMrLBPgYIdIVlwDkoXyyM+PkeZNs12Q+J6YiAK0aeu0GFnbMoLmqky1uwVfji7J+bhq/k3r301oM0EWzYITQZH29v4g4KgnhkzLXJt995iFS1ymT77Y6CGJKM0b4GCKkzHYZIhIvtCG9YqvKeiDI+2WNUUKVhlEex0FI+YTtaWTKsLDlYpIgggjICSJ+fh96EvYyaLmxeBKQBeUziyLINMI9iPi1IvbNiSlbXbXf08qxUbyneKgfoL/jwI5JxVLWSaufT518UNX6No4cWCUvuyHn9gcccICx+8ILL8RFF11UKP7ss89iMBgUVkvde++9sxWwJbZs2aKW7/f7ePbZZ7HvvvtWqLAdgZSqCJvnk0vhcHpFaddTwjgWDWt5CSHlYym3/U9oE0ofOBUXM7cIfcswDhm20UyJqoZYfYm2eRiHzDHSRDdfbY+TTpyY4jmkWCJsow8hLOcpITUtCSmmqPSaRU+pBrpAqwe0potKSgtAm4JEAOvD4YRUi22TckI5pgzFpZVYz1tdzNdzMkquypSE9ZlW9KTu/YxgM8P6OjDD+BK7OveWypSVUQ0OrjEpCSqXYsLPdxBTgB7SkVfHL8dUUj1dLmiWdV/PKnbxataUoKSMBBfpxOEK7XN5SVUmpFwElEv2lzc0gWYEtkWAGJ88VJt7SQHmYhZR+k1yxyXvuWeUbZXVzADBSScu6/l+hwFCBkdkRggK1xMhfHGr+Myb6JpGCE5OzdWQe0oBuRIkO3vaboSQnlK0L2qh0+pivjWLRr2bvScXYHrHdpkRKH8HJEQUGR+4EcJceTWX9YNIGCCqYJSxCRTluJZHUNNxB+bvPATRlPk+RkX5DpBhfxppZYa+T0jWA0Hej4RJhQ0B5gB13dNn8k0DvExRHlbVq+r5ZCvXE9+07Vv/MvgKELqnrW7cS4pb1fuiHP22ebpq40cjkTgh1c9vFcnziJiSpI+ErA8PU9PqKbenLcclbESURkxp9eJ1s/221XWSmFTIYMWcV0PO7Z988kmsXbs22615SXHUaoY5CXEcF/aVldf2j4JASlVA1RCbsrwjVMamoBSQrbw0BCE1jMWcH/f1kNJg85JCMYyDvKZIYeGrMvEwPb4cON/Hk5w32otmHpE5FBUTrrzIdxWA6cjcjqI0bK+JbOUlvgoTmsny4GSbBkgRS/oArWndgt4GcisJfwFWDOEjqzn7LLYamJ+bQX0dKYEJObWAPGxDC+OjY/RNxJVMeg4ge3pkQS94SxXGRLGv0wuZbdVgI6mkgmnzmtLu7wjpAIZf5rsy0QRkHgql6CN4Si0RNOKpWMYkqFyeszZCqgAfQmpcMt825IaR+Sh6STXqHYucz5OZ2+Q994xSk5yTAcKWL7CDXP6TAYLJfMonJTN0RPUkbM9qhFgFdNIcgpysrmNQYoTgIduA9aGUyXtF5vdaM+i2OphfNZO9e0yZrnvHUt2pDP8GEqItf1OUeEvJNrggj5dx/TbvWA3aMfYeqCFdLZYu7TBGaCh6vJpEU5n8zz2PS1BV1gNB3u9UTIokWkqMi5DSjmmEiPaiKusn7o2k3TMSZfk5nCigOvFrcH9Z6eXluqcsb6sPeUvRSn+Ux0qTpDyEj0gffj1J7khvI67AuQiSKp5SPsSUvKYP6Ln7EkRlVmgbJkVAjQFDzu3Xrl1rkFI27LXXXqjX6wWvqN/85jcFbyjCPvvso5aPogh77rlnhcq6sTtIxl0aphKiKyAuLynntaXVvEoIh8tSXqbsl3lY2lCwmMPpJSXD9shKnodxdCG9o3IruRnGMcO8pQq5RbSPJKaktxQ1KSWigISUmpbW8tUw84usouXBzc6KkCwT3mu1ikoKkVJzQEJM2SwwrH6aosKt5oY1fRrtaBbNVhcLzYT44qsyLWSj0lRUqN70nXhNUaJ0It3yMD6nt5REmeJRZYxKazgP55CoQEzZVmbiKPOWkpZzvo/OHzqkI5BSS4IyQkp6ymqes75hfF7yvoyQcsl+F0Y1QDi8pMYh73keQasBgntGSXmvGSCIjIqQ5ZHHICGjpqPUK5ZkPs8ltRqZYaLbmgalFAdyI8RUq4tFMkJo8t5IpGsJqSA5zz1jHQYIkvfzrSTpOS1yQfKHe0Yl3rIDQ4ZxcsodxpfI/UE0GM1bisM3B5LLO1aT/yU6Cy14AbjzSyW3lp5P+YWlB63MM5aPj4H1mBWBlNpF4crTUwXDeEmNCs2rxoVhCSnpYcTLSXKnJIWF9f4aSWRTZGz14/WZQS5UNe8q7Xlxzyp+L+klNsPKkHfWAvJE67Oiipx40vp8WnzTdWV+JC4oIY5p9/MhbcqIKVe9ZR04EVWVmPK9T9n9UfGeE8KE5/aNRgNHHXUUbrvtNpxwwgnZ/ttuuw3vete71HM2btyIG2+80dh366234lWvetXY8kkBgZTyhp5DyrSKa5CTmLLk5tYwjnFbzMsMGYRRRghTUMhLqtnqZl5SMmxPt5J30rwhCyJMb8FQTGi1PUpunlnNOfEk80fxvCLKu4rnuo7qQC1CljMKq5Bkv1XC9yg5uLH6HrrJMuEaIbUHq0cbyN11LSxhGTHF34/Z71amqKCekyRSCZk3XpjmcWlNT5CH8Q2QhnjUO4a3VISE7Bka2rk2wknu9w3pY+BKipZfqgxlpFOek0pXUpJ9Hjmmegik1IQh5brmCaUdt5FQQ8l7l+GhiszXfhPkXHoYA0R2TPeKHae8n+FyXxog5qDLfW6A6ChNYsaHKLIYIdahEL7XqTdTeW8SDY1WB+3WKru8n6shIaYimLmlgGxSLGW9FqKtyP/FVr7IRRImLz2gBplBgteZoHlPmUjkfr9ez2R9NCjJLaWByviuxsfBDQxVId4HmsyXi10AdiPEAPWs/2whfEPlDSRUlfVAkPcTRRXldxyhR/wfwuWlY5sYEYZVHrX7l93bRthp5JTruho0oqssXIwIIun1pNWR0mlwbx9+L8oBqyVA1+7Ly3DSQ8stJfNKkXSK2Hmyr6WPr9zHX9JlwpXX14ckdBFTYPuAYh/7oApRWRX8WfgQU0sURrgEc/vzzjsPmzZtwqte9Sps3LgRX/nKV/DEE0/g9NNPBwBccMEFePrpp/G1r30NAHD66afjC1/4As477zyceuqpuPvuu7F582Z885vfzK7Z7Xbx05/+NNt++umn8dBDD2H16tV4yUte4lWvQEoNCekJJY/x0D1b7qjs2LgIqWHJKBtRTsdclnNtBHH5lykoAyOMQ1NMeNgeKSgzaX4ouRS45i1FoR0zc71i2J5mMe+j2HfMi4ZeBTVqDxFSq5Fby7mSkiW9bWQqGJAnvm20uvbkt6tZHdpAvupGuiKHfFay7mUW9CgJ65iP+qivGxhKCfeSMilT04JOigqtxqchCfGIMCCvOAqHsL0Pyww38pjUCfi/FH+X+pJg0qMq/V2FmNJCOPgx+TsvlyspQ63At4hqcecrZUXuMUGT665j9CxVEoq/D0YhpMYl84uNTSBlvQ9BReelRggp73lyczMsu5q8LxogFvSwPZ7snJNRXFYChizh/MN0xIwQtrA9Ct9m8j7vijQ0MRrohNQccnnfpvxS/CEosBkhrB5TNfQiCuPjC1sUvaRIthO4L3fyO/+Wq/FxWd/vL5oGCJteWAZf2c3vU0ZOebwTxiHz+2nv2AwTtC3lvS083KhOVfkd5P1uiqpq2aQV5XERUn1lv42Qquqt4kO08PvJa2uE1CyKyhDSfVxmu0LhpJcUvwddq4/cS4pyWsn6EXkFdp6Eto/3vSaYtedUhaTh9dMiPDSvKRvoftJbSqurC5IcGxayzfJavi+qIbAEc/t3v/vdeO655/DJT34SzzzzDF7xilfg5ptvxkEHHQQAeOaZZ/DEE09k5Q855BDcfPPNOPfcc/HFL34R++23Hz73uc/hxBNPzMr86le/wu/93u9lvz/zmc/gM5/5DI499ljccccdXvUKpNQQkKEafFtLhsu3bRZ0Z6Jb84J2BUVuQ+yX++wNTOAiozg0i7ltSXChoPBvnkOEKyWkqORkVNfuLUVWc74cOPeQkhb0AfsoMrsWIZmUEinF80hxkird7qX5RbTwvXqd5RnhxBRt82dHipMW/CaftVRSIpgKS5YINwnji6IB6quKRJRcmc+ou6Ko8JAOHtpBFnQAWWhHpqzIceQai/yYTenQSCpJTkmlRSooGjHFf/YB14p8mkJhs47LBOcjh+9VyS8YlJSxwCXzc0NEXS2X5WAbNyFVJudd/2e+XlJl+1OvWACZvG80pRdU10vea55RmlHCyBuoJTWXsl/rJ6p+PSenapTYXEtuTkaJNMm5Fo6fGSEi6LKey/s+T3xOE1/W2S4DBJf3RE5lCdCnMT+XeMfON3l+qdnUuNBVPWOlYaKT5hLsKMaIOgYFWT/N5w1VUZVM5bKc5Lyvd6wS4l1GTNlkPveK5oYIHtI3lDcsoaqsB4K8HwnDhvAMM+h30bw2APyVBY6ysDpJEMkyvmopXcMnNIyXdRFSdP8Z5J5S0rtqhpXhRE5Zkm5eVvYRJ6RsY4+IGq3OvAzHLBLCS/OUcpFp/H5ViSnA7TVVBT5WsVHJIZu3FB0bBVUs5AxLNLc/44wzcMYZZ6jHrr766sK+Y489Fg888ID1egcffHCW/HxYBFJqTNDCOGwKCsAmsqnV3AqppPgSUj5klPa/4quguFDwktLDOLhiQqswmcltTWt5nleEKSXMuj7bSZcEp6S23GoulRStLwFzokqPRRJS3FuK/24lOSmkZ0SdKWHWZOekYKxmdWmjCC7bbcpKJLa5stJuYn5ukOUbyVfhM1fmy7vDXKGJKyp5Gd2CjjqM0A4vi7YGn9AO6hcqq+WU4vevYDm3/XvKUA5pHU+qWs+25fGRlJTk4oGUmhA0eS33y23uGUvnFJKfC3nvNEAkF/EjpVzfZaiiCygemMn+ZHAVvKSEvOer67nkPYXxyUTnRkifZoAgo4PL+KAsiFATvw2DAzdEcK/YVpLkvIsmk3v1/KnXB0ArBlo1U97TN8n7OaTEFIVtW55Rmbzn5FRKTC1GeRhft56vwjdf8IztF7a5B5UZ2pcvdkGEFcn6LOk5nzuUyXw6XpWQ4uV85v7aO6ECMTWom16vQJGkSk0y2X7uEcUJq8qGiEBK7cKwDbxhlOUyIexSkssm9FUhr1fVU0TzfrJdU/7zu+o9DqJA3pNAXlIz0OsQsTILsCccJ68mF2knJ/M8hG8G5j981ecow/moHpQsXRJMtnpqHktl97URU3xfGVxE0agY9/U0jOiltYLn9oGU8kAy0ci3IbYLqyoZZYrHCgSWr9XcRzkpI6N8DB++yom2L0LBS0oL42gyxYT/bhQUElM5abDflPQ2299eTJYEl95RffbNwzgkIaW1jTylpOWcf7NPkvS2+IypnUayc66ozKHoLQXxW+tzTVHheUek11RUw2LUQKfdQD2aRb0+yBSVDhpopEqGr6IyQD0jqGjS3Wf/MYNUUenX00S4dVZv2ec+7yqf+R8nnzRFRIOFMPO1nCe7imF6MsGtdkwL75DXU9HGin1xLSU0BVLKdYKNvLJ5SRlwyftJyXybTPGdGWQyvw9bcnMu35voVpL33BhBn4IBgjykZP4oLve5IcLVfukVyz2lVsNb3ieX6gOtDtBqFUO2pbzPvLhK/qFd8l71kK2h126g224UwvioRzWjg5T/HTRB3rEUvk2yqqslPef6Fpf5PkSVfEZl8lt6S9F9tAUvbMSUB1xJzYE8VFuG8LmMDd4EVVVZDwR5742lUFJt8PGS0v4BaF8VxXeUcDhfQkqrTx9FzyC+bxjyjl+Xf7vKANW8pIiYkiQSeVDxcaMZFHh9XAQQz1fFP7Zk6mVeUq56yAlE2fiRxJQttJBfi/+uSkzxPpXEFDD6/6lr3E6KBNNQcv0VPLcPpNQYYQvdkyEempfURAgpl2Limpzz/0nX/6dqMafv3EuqLqzmzZSM4suBFxUVc7tZIKI6WQ6SzGquJTKXnz50aznVnU+iAZOQarEPWctXwyCn+nUzU0dyCZYsPOqjx6+zWly3JZ4N95aSfcwhFRVpPTc+02jPJWF8pKiQwrcATTmxKyrUroGhuORtVxPhkteUrL+GgaOMbQzz95ckp/j7UCooFYmpYSzndGzokD2JZfQy2tWRjWmLXOeescl3ZG4PK++Hkfm+8/wyWe+aIaheUkWv2GHlvZbknIftZQYI8pDS5L6tH9V2pN8aIUUyXxBTXN73jf/xpL1T0QCL5KUq5b7mGet6bto44PJeyvrMY6qVeUtRGF9ifmjCrH1xm+R/0qZ+9l1PjREJCZNKOSnrpbz1NTzI9koQ2STL2a7vQ0wJuGR+cqviaqok17UQPnov1rPeKnrKliLI+iWAT9iepsgvUQLkJUHZP6kPIeUTtieP+/R9GWHA66AJfDNcuZhLij4zbHtBHOdKz4w4rtWHE1acjJNEFeWVmkeyAIatL7Sk4QROkhEpNMPKR2JfGfnI2+AiprR62RKgA/4vA82jSyqrw6BsHPkcr4qK3lMrVN4HUqoCNC8pm2XcpqAY5ViyWwCjE1JlZJTPhNeHjLIhm9zbk93KsI18OXB3GMdMqpiQskIfw2oureU8lEPrSxsxxbe51ZyH63HPqVTRiFtJKIc22aTJfrPVRZtCOjghpSkpBKqv7XnYFFkbKTUHIMrD+Mx8I5xS81NUuOWcKypAOu5ZItzMW6qqTPcZx5Jg0sgpiSGJqUFUr2w5T/aZHlGakjKUwhIwEdjIQ7u8z6lbOqbnDqxASA1DSsltDb6yXhofpBGCeUmNKu/zEL0FmGF8zEOWwvY0IorLen5MCxHjjzZi+zghJb1jWUgfyfuOkPlchmYr8GmElHwvAUViykbea3Kee8gash5YbDey/FI8jI9CtzVI+d9lRgj6Tjyt+vmbgct6kqXSWOCCi4hy/eZynHtLDauzoLrM18inpDo5SWWbG/B3RMCugjKSpCwnT1WUTbhdnkXavmHUO+06Pu1xEVK2sL2+KE/bPsQUv4arfvwYf3HZ+mtGfKZRFMiUBF27jk3oaB5akfjNSbs+CoscZXUpE2q21ff4bwrj415J4wInX8qIKaDYHjkh8Qk1HAfKCLCApUDo8TFAs4zTb8AkrriXFAAjbC/ZMWGLedm7q+r/YUFZiaGFcfAkt6So2JYDb6BbSGDOyalmpsx0MTuYz63mtvxRLuu5kl/EaJcM3ZOJbw2refKMiZgyFZV+MjqiQaLEybxScxDJb8UzcRExmoLCP4qSgrkkjI8rKt3UU0pTVLQwPtpP30RI5avz5cuGA0kiXMOCztvgCx+l2zYvICWpCinG3ps1IFNk6/104KTPPELRY0pazpPigXza1ZE8M7kvyo7Z9vMVN21eUkbY3jgIKR8yykZyjDLnEvKee8Xy5OZV5T0P4yNySl1tT1vEwiXnAbusl23iXrGroa+810zySZl+pPkFqb1RNCgSUlLeS0jvWI2YkvKebxc8YwHMTaMXDTA/N5OtvtpIQyltodqcuOLt6jI5T2RVPZV4nXoTTXRMWU915u0o4194v5TlFHQZHWzwPIcTUy6ZLz2kXCF8tH+oFVcDJgRfYThu5b0MronKUnhnlYXtaXmjeDlJPvWVfeOAJKfkfYhMsq2mxnNJrYWeU4qInWm2La3Yrm2NhIKyr4c8rxTVt2rsbpmXD38x8txYVA8JX28pAveachFTYPtlHV3ElAat3q57af/zNgLMRWaWtSWgCsIbcQhoCooM4+BElE1BGfistpdcfHhSSm7brg+UW85t1nJ+buYllXgFyTCOPFTDDNmw5RGh0A1OTvEVmWbmernVfE58u4go2Sda10uruVRMeBhfC+i2ppCsvFeHqaD0QaErjXoHU60uFvkKfPRtI5/ayj6XosIVFm49zwgp+i4qKpxwSuqeLyHOf/NQjqQ6A+Obh/F10QTqHdSjQW5BpzprbeHHbPtcY1oq4aO8I+jcdHxEWdfwkA5JSOWhGwNmOU9+58pMUFJ2bchnwWU4YBobbPv7qDvkvQch5ZLzNplf9X+Df7tg8ZJyJTfPianq8p6TVbOYx+xgHrM7Fk1CSgvhow8P09aIOd5maYTgsl4SU+n7oNuaZvK++AKJMEhW4KMVV0nWS89Y+Zx5fTV9ho5r5BSRUnNQnlcL3WiAhWz11Xw1Pg4Zts33y20qS15UTXSzML6Ct9TAuImJstVVq4xpH4KqAiFLxoh6P5H5/brp1USerkkxewhfUr0g43ctuBRwbVuiykTbhUmPCS0/kYSvokAYJyHl8w8pn4W8nlZPOoeTSfzedD0igLiX1Kyokwzr68Mevif7RnoqaSQaUFyFL0IigXgsVwR9LEoQkVXWr5riMS6ykEihcRFTdM1xwYeYonLDIhBVVRDejp6QCofcn/8uD+PwCtuzhZzB8RvKt9zWUEZGuc4zPrmXFCkojXrHSGoureSzWMi+TWVkwaqsZEuGUx4pntxcrsREfaNZzrU+kG0jQkrmBOG5RjLLeQNJou+ikkJKWqKoiJAOUlCIRLIpKZpiBaUMV1Loe075DQBRK9nFFBWqLyejklsmqzZp4EoKeU0RmuiCQjsyCzrgzhflAi+7xBEPPiEdMp9UnckEbj0H7EqKn/JCExdfLKe8F0sHmQ8QKOaP0owQWnJzgMt7T0LKJfe1b7ktUfWtrxkghLxvtjpotLqGvNe8onzkfSbfmbcsGSBqbeSyna+2J1fZ0/rP1aY626cQUIa8X52E7vXr9Sx8jxNTRrhzfQBjxdXVKIbvrVbqphkiJGyyXnpMMWPEYjSLDr2jmwPDiJDL/NliO5CXNVfi6xsEDZ1nyPph5iSATkjtpLl9lI2VxcT7jb3eeWh2BFqZsGiIoP10jgzzc6OqrKdzAvxhmwDbiKuya7lQVbFeitA92z3Ljmnkio2QkufIf26fOY88T9tP95Sr6Wl5fUjwy9A9m1LAP7Y8UjbIZOScAOEkG5FT0/AfKzIkkEAru1aFRjpq3lKSxJEkjC8xpUFaZ7R6jQpfYqoqtPb55pVauXP7QEoNCZlThH/bFBdr2J5mNSeMg5SCsi8S+4cho/h2uuKekdyc5RUprrbUtSgvXSN3lE5OLaA56BTzSPHfAxS9pDQCgx4j7wOymBMpxcP3FDIKLSCOkufbRYPZmaP0cvlkvo6EsEMklgqX3lKa0UAjpnzJKe4xxd+pcwCiJjrtrqGocDIq6SbuSVUM4SM1nEI6qL18NT5uQY9gCe2oonS4wjoiUWaYPFYEoTP4hHRoYRwyf5QZ3lFVSQHsGrerfEAVSBlu7osKZQqyX4TtGfIemBwpxX9rXjYu7yg577btt8h7kgc8bK+KvKdyRFg10UWz080NEJKQInJHeklR+weiDVp7gaKs57mkWuaxfj3JJ8UlonnJ/Ei24qo0bEh5T/UlQsol611jQ5JShjGihl40g07UR6PZzEL4FgrEUuJBJT1jk2MDVsYkthLP2EbucYYemkBCJmrGr1HFF5fvvIzUi0aR/0jeVWUyn8twmyGCxoSU8TL8u4iqsp7OCSiHpoBWUUptBM2ocD2/Kvfx8ZKqUpdRCCm5XeX+GnGgXY/vJ3KJSCcCeTcRsSS9pGgf987ps/0y1xSvE0+ODlZeCnAOSbrwNmjPi9eNvsuea1l+NNv5VcZaJL4Bk4AaNvm5bTIzLkyKmBoWK3duH0ipESBziCTfeoLzocM4UOE3YI5N1ziV/+NligpBklHZdp9ZzbuFvCKJl1Q3IzOkUsLziJi5ozoFS3oDndxqznOKSOWEk1Fym6OubEtCilvO+Sc93mkCXTSgeUkll81JnSSkgy0VrikrBKmocLmtKZu2j1RO+KddQ28uV1RI6eAhHDzXFFdEZDkK5eCr83FEctlwmQiX9tmgKZraOB+XjLbUh4ipgTWkwyTmJBHF9w+/Gt/KtaZMGlquLy1cm3tESXJqgCiT9wCGC9tzyXlfmS/JDdqnbWvQDMSKV2xTNTroycxd8p6TU0bYni1voM1LSpP1vA/4bx6qzeUw94olmR8lodpFPyI9hK8e9dGLoMt6LXS7D9NjVqszhybrpRGCvKUiGKuv5mF8RYODyzhB21z2k3cs5ZdSw/i0cecjq3kZ7f0wSY/ZtI6uMD7ykM3/Fg0RxVVYq+QUDJ5SS4MyYQjYvXxcZUdBVRLHZwI/al3kdhk55CoDVFP+6Tqu6/GwPU40Udlpdr7mJcU9pXg7iVziChCvByevXHARQCTI+bYPqKxPrid5T5LzC+KYT1vKIAmoYTymeH3KxvCwk38bMQXY+8C33r4vOn7dlTm3D6RUBWhWc8BUUJLvKNtfIK20MI6kcHWFRColVYipYRUSiG+moEylYRxaXpF8GfAOTI+pPNGtYRlnic3Jkk5hHwWruaacaH3o6gNORkklhSsq3GLOjg+iKUM5lZNNsjQ30UG9ni4VblNSbHXX2mLzluLlNXKq4C01jW67yfKNcOWjn3o8dAuKik2hIUIqn6Inn069WVw2nOpKcts33widp23LPuLKnW+y87IyEVDvAzKkg5QQSTpxIkrzitI8qNxoo9qEwScmKECCh1FK8slmhACKXlJDhe1VJaW034C/vLedV/jOvaQobI/LgGHkvVx1j4432sIAoRkiymQ9YM8baJP5PHRbeEsNonqaT0ono3hfJMnOe0A0bZf3q9nJUlZrz4PDJueJmMrIKP6deMc2Wl0s1A3TWbbdSBOYS6MDzyfYQCfzjk3kVp5fSg3j0wwQmnFF2wb8kp7zciN6SMl7aGF8uWyvZ31kS3hO0Lxk3agq6+mcAD/4ekuNQ/mbZIJz+c8kw6p8oXlAacclGeQioWzn+MJ2nlYHICebuKeSbIvmJcW9p3j5iB0D+5ZeThD7OenD99O1XYQHkTdViBuX1xO/H70sZthvQCemRkUZMSXLucCf77hhmyBJYlLu4+BtqPLcOFbu3D6QUkNCTiK00D2DnBpwi3mF1fZsiolLOfGRIdoE0QcFQgqZgtIgQkqE7RExJcM4tG2ujPBV97Ljgw4a7cUiESWVlAH79Nl3WZsA3Wpu8ZBCKzkvySdleknxSaf53U/ySkWrknv6klKat5QG1xjSSKlUUVlsN9CJEk+uqK5bzU3lxFRUNKWFKyhkM+40G0lCXJ70nCsovu9A3/FedlzekxSZkv8JCukYRHlIx6DOk5xzMkoP4ctv6UtEcaxca8pSQPtfzn+bi1cAQE7D515SAJQwbYyXlAL8/geqyHtphHB5SbGwPZ4/sKq8bxjGiPnEU6ozn4RpS0JK85SiPuFGCQn+GHn7JCGlecWmn14T6NSbBYKSfyeXZZ6xlFfKR95zUqnsnSWfpU3Wc4JqDkBUQ6/dQLfdQH1VboDQvWN1L6okXD3xiqXvpIvzML56vW/3luqjGmnkk4PQ91pV7svGjC7zebt1QwSA7D0wXLLz4Ck1GfBBIHPm0D7XeZrn0BhZ0Eplx0VI2SDDxZaSkJKga/Jr8/2ciNJeZhC/ifiRCc5t9dRWaCO42ibD1bTr8fA9n2tKAkR51oV5tZbIW5JT2j1GgSSmZH2GJSnHjTLSaynk6sqd2wdSqiI0qzkP3dMSnEsvKWO1vXEku9WUc9f/q2tC6xoRUjkBigoKC+MwialBIYyjuK2vyES/ZzCPRruXeEm1xYeHb2gWdA2SA+BWc/rYyCjaridKCi0Jzqkas+tMEieznlMCXKmkcKWEnosM6eDPRYNNQdH2tQG0i6vx5aM5CdvrpiSjTVGRYXxJtybLh1M/FJKecyWF2uPyjhr2WFWreVnZehLSUa8DtBpfPXGdyogn7hWV5xnhIXymkiIVlrqzQa7BPUyDAiRkknPpBanJeUB6SaXyHkjkfXLi6KSU9q2hjIzSSGp5LNs2cwc2WrnRIfeO0sP2fOS9zCvVaC/mXlLaSqr84yKjeD/w31zm+3jFthJCYiAkYNK9ZIQQ8rE+SPJKRZZwbd93va0dsqyN5BJGCLTzXIL1pts7Vjc6FL1jZRhfF80sZLvgLUUyv4ohgtqqbUvYjA1VIN9FQubTQhe5PNcNEfQ2KF7el6CqKuvpnIByaIKxbDIsy46zLhy+RNekVDlJIpURUny/i7SqAu6xxokoF9kliSbNu0USUVQuYt/82jI3lJa0HGKfhiqeclwBcJWj+/M6i/vI5jhXC5wUuFC2eUtJaATWUqCKDJBwtdM3wfvKnNtP7ewK7A6weUXJfVqCc+4lVQzj8LSat8V3VSVGjm9NuXHBZmyIAJnslsI4TGJKKiF5qIa2wp5KRqXJbtXk5rKfuIcUb7NsD5BMVOvIcoV4KygWJSW5le7xYigrEa3KpNyD5zPhH14//lu2SbZXG09tsd1GYkFvN5Mwvh0z2WLs3L9B/u6ima2HyNPZ0zYlf6cVqmgJ9X69noQ8klJYh9kW/tsFaidf/l1rMy8jwzvlPuqbDjuuKb/pdzRIwvjq/UVEg6ICp3nKuckmZOXKG9+r8Jnsi+v555/Hpk2bsG7dOqxbtw6bNm3C1q1bnedcdNFFOOKII7Bq1Sr81m/9Ft70pjfh3nvvnWg9q8Im76Wcz/dHurxvT1eX4+OS91WhEVUk71tdNFodNFtd1OuUK7DP5HxR3uvb3WyFvdwzNpcsxuqqczANEDaCKn9AOVzGBpKlXK6Tl5T8Tst1W9OCktdD+JJuTEtFfaAV2+W99rE+A8szs8l56yfNJdhuoDswZfcCZtFFA/OYyVLTd1P5v4BZy7sgf7KJp1Qq8+tNU9arxi3o4ZXUrrJtLttt/cHlPJ8raLKdtmW5gswfpDLf/AAoyH6TxPN7B5iNqSLrJy/vlxeor8rC1mxlNUzC80Ne0yYQbF5S0+Ljcw+NkOJjrA9zvGnbfVTrDy1s0peQ0nJJae2VBBQvXzb55KSXvA6/T1moF6+HvKf8X+6LYxx9SzlR3cJtZOiillerbLzY4BprMgSSb/MKav1WxYtoHB55O0OO7lpz+6XEpOj1ZQc56eyLKYYsV/CiKlttT5tQlikf2rYLdNxX3spJozzW6oF7STWauXeUVFAoHMNcVSnPE6WRU7SPh+3ViJDSQjn4JJJPJF3tlG2mibO2EpP8pOW7relM1ZLEJKFggW52c+s5KUZllnNY9rmgjauIfWdW83R7robFqJEtG55Y0PMlwrXkt0n3UXifOdnmk/IOGsY3eUsB6euIKwRkodYMmGXtrbLfB1QfyzW1lZkG9TzHiJZnBOCeBkVrugzvs1esSsMm++J6z3veg6eeegq33HILAOC0007Dpk2bcOONN1rPeelLX4ovfOELOPTQQ7GwsIDPfvazOO644/Czn/0ML3rRiyZaXxsGCiNq+gKaoXs2I0Rp2F5VcgqObw1c3vfFtw1W4wNg94qVK+qZoXp8FVW5TWF7hRVXKWzPltScCCmZ4Nym59vC9kjm22T9KhhGiDgC+vV6JutdhFTBMzbqA5ESwjeMvK9CTnG5z2X+HIAoSXoOIDGE1BmRlnrHFlfmK4Z082Pmd9JLnWYDQBfAYq6G8DHJf8u22NoI+CU9Jw+psrFvg3weYGF8/dxDlntLcYnu4w2l+1HJSlSV38tHUZkcJAkVwfTMsfWhy2NoGGjnDatQa8q9jVBweW1oJIhGQJXt579d4MSOqz62e/HrSJKIBA2tjMd/SwJmBok/ZMzuBRRJpzKSxofEcZWhe/P7lREQ5JFDn1p+iL/3jPfKNIC1JfUYB1weQ/xF4Av+3CftPeWrPHMM0yZ+v11nbr+UCKRUBbiUxGJ2HWY9L4TtpYSU5gHlo6hA2ebfLrgUFG2ia7XWJgrKdKuLZquDRksP1chXWuoWVlWyKSsylGN2MI+ZuR6mKbE5J6QGyBUU+i37Q05StTaWJbzVPKaaQNxKlBSmfuREJCMYktskR5voJJP5qI9eKwZatWpKCikY8pg2oZeTfo2YAkylZW4aPQDzdJ2muUS4DVKB0Za5jlhfUD832j0ztIOeIf27aW3klx6IclXlMyU+p3NdUtHSfLkaX71eXI+JPJ94aIcG/9X4dp2484cffhi33HIL7rnnHrzmNa8BAHz1q1/Fxo0b8eijj+Lwww9Xz3vPe95j/L700kuxefNm/PjHP8Yb3/jGidXXB+VqYtFbxvSSGmG1PXoPAOb/uSYPXPAhoqiclYxC6uXTMeR9o17MEyUTmXPvJ5e8p32UR2p2h8UAwb08uaeUq122tsrQPc1TVbwDklVWm0zWc/+Y/GZmCF9C4E21uliU4dqroT9/gvbe5+1yyXybvI+Qr8bXBhA10SWiUeSXmk9lvib3aT/JfF6G55fKwpi1ML6B8s1B7dPGvE+OKQ3y/4HXpQz1/JuH8UXRwMgtJQ0R9A4g2c/L+cn7qrKezgkohyShJDGlldd+ayTOOOBL7Li8o0a5p0Y8aSF5chvw64cq4WzSY0q7lvSS4kSSDLFzrbpXVmcaJ7w8J7DoHj4TU+lR1EvrQu2ke2nQwttI+FtC+DicxFSEhMSbEfcZlhDSQvY4OTVsYnDfc8pIZoKtTT6TKQ5JwPkSVbvO3H6pEUipiuBhG8lvk4ji+waIDKt5aR6pYcLztG8NfHI3jMWc74sA2+pLPDyjoRBTPLGtlmfETHJOeUXSPFKapVxTUFweUnWYHjj0KDVCSiGhJEnVUfNJFe2e0r0/zyvVAVotf1KqzcpQvV3EFEEba5HynX2S/FKdNCyTVmhyJTvnCgwnpHji8zz/SJp3xJUIF+JZuca39j9QJTqCylfNNV6ipHDlzKakdLNLJH3jv0x4mUaulQe2bdtm7G02m2g2mxWuU8Tdd9+NdevWZYQUALz2ta/FunXrcNddd1lJKY5ut4uvfOUrWLduHV75yleOVJ9xQTM0DMR/QFKu6CWlynvNEFEm+6FsQ9nmkPJebvNy0jDB9yvynhazIJmdyP1u5vWqyfRZtqqeDM3mMn92MJ/nkaIPGSM0j1gZfkWwkcyaASKC3VNKvAN46F6VkO1GM8ndtCiNEH3oMp8g93N57yPrXXI+85bSvGPzFtpWW+WesfTfkVSrGMLGjRD1fk9Peg7l2wfDnMPPtRF7Lcd56Tm0Gl+9P1C9pWyEU/Vk51VlPZ0zGTz//PM4++yzccMNNwAA3vnOd+Lzn/889thjD+s5F110Eb71rW/hySefRKPRwFFHHYVPfepTxjtj6UGTBK4Uc2LKBV8FdxhUvYZGSLkSnfvUXYYGucLntO0qIOLIVU9XKCAngfi1eD4pCU5Y8QTnzLuo1DOJE0D8N3lj8XbY6uEjB3yJDE6UFSMajFuS3M0MYJKYIkLK9/7DEKFE1kjPRBt546PsVIUtRBDQ21GVmBoGw83tlwMCKTUkbG77Li+pkVZf8iGl5DbgVkhscFnMIwCtnppXRK6wJD2m+JLf/Ld2jOcVaXIiiisrpKBouX+k9wzvBxnKYbOa25QUds4gmkpzJ+lklASf7DdaXUxFAywafQv78ya4jvE2UVlpObcpLIVP0YKuhXPwtsnQvrqhoBQT5XbRTPqVQjuovpr3k6+RAXBb0X2t4i5wMpN9SyVF85bSCMvhVmSqOgFMOuKAAw4w9l544YW46KKLKt7bxJYtW7Bhw4bC/g0bNmDLli3Oc2+66SaccsopmJ+fx7777ovbbrsNe+2110j1mSScRggp78vySI3iGSu3CT5GB4jjNlkfATxsr9nqotHMQ69zQ4Q0MohVU0UeQdNQwWS+ZoAYoGiIKEtqrrUR0D1iSeaXrLxHoXvCBwqSkIoKcq4PyivVkyF83MigyfR2xfZpkPJek/8wvWOjphnCV8yP17e+C2wyv44B+vU6uq0BsjA+eldHyjdgl9Mu79gq7wjX65qeDYHL/PRYrQ1ErcRDlgwRxbDt/Dsn7xqeleSNmkSOouGwXEK1E3BhSQpymQDlRI322wWXF5a8hs8zdIXr2drgmkzRWCsjpMZBRmn9oO3j99MIA07EcbKJE13Su4cTUlo+KHkOvxcvKyfcWt15GR+hzesh28v7gPc/f6bcM6dmDmd5e3oPGcQUhTkSyFuqyiTcBlcYn60slPuOg6AqG7M2cqqqQl1GsGnHqs/tlwMCKTUipNXcsJ4XrOYRKntJ8f1Qtvm3Bk7K9MW3Bim4JEHVMvOKkIJC1nKZT8SW5NydBLeThXE0OzCt5rbk5i6CBsgnsbLdGiFF+7ilnB9noXuDSCqodnJKTtbr9UHRei4JIq6wcEXGB/w9yKERU3w7+yQW9Hkgs6A30nxQRb8RXYHRLOhUhpYRN1bjawE1W26pAaurBtovFRZbORekx5YN4n+Q5xrh3lKkqGhKyvBYQLW1KpJJxpNPPom1a3OLmMtL6qKLLsInPvEJ51V/9KMfAQBqtVrhWBzH6n6OP/iDP8BDDz2EZ599Fl/96ldx8skn495771VJrqWE5hUliUPDg0qV97DL9FE9Y+0VL8p5OZa1bZsxgoXt1aOktXx1VSnHbavqlb4LaCELzQBB/aCRUWV5pDj5IOU8l+lc1ivh2rlXbEYzGYSUzSMmC9tuddGOBshWXLURUtrc2+cd5zpHk/n8fRIhW321E/XRaDaZnG4U5NQC+4+QMp9v01YXzewaxmp8TRT1Kf7ts2Je2f/FKPN1TkxJvZPJ/HrdbYjIw7fzlQn5iqzlqCrr6ZzxY3mFakuFN4JJTNE+XsZ27lKjindUWcJtSTS5SCgfMspGLGlliOCxTbbkveW5/HqcMPLJ+UREi60Osn0yMbetP/nzkP+HZeNFElIaqcavI79pDJPAV/qhlJjSoMkTn2fPb6aRZhq5NCwBPylKw+U5xaGRifyYb7uGm9svBwRSqgJsOaOSY/K3YjX3CeMoU1bg+LahquXcppxEAIVxUF4R6g2NXJrFQsF7ihLbap5VxbC9xST3hLbakkxwm3e8vT+09muEFFdQ+Op8nJyK0kdarxtKCgf/zSf1hkqjWc/lM+fhejRJ9iWmzAoVFVWNnDIUl2ksAui0G0YYn6aAcAVGt64XySw1jI+eyUDUs87qX8bl+P5v2M6VY4XGFbecM4t5BhbGx5WUOnJPKKmMSOWFh/SVV7RKA5Oya9euNUgpF8466yyccsopzjIHH3wwfvzjH+PXv/514dg//uM/Yu+993aev2rVKrzkJS/BS17yErz2ta/FYYcdhs2bN+OCCy7wquO4Mcj+6fVjmhGiVN5XJaFGIaU0ee/adn7iwuqq5mp7RTlOIXwzwhtKljNCtWkhC80AIWV//jDsfcLnulq4nouc4p96fs4gmmLPnOcOzLfNKohAv2hgesYOa4TQiHnbu91GSGkEVYRk9dVogIVogPqqXE4T+IjX5HmRqCoaITr1phnGpxkeuAHCZojoW7ZH9YKV4O9c/i5modtRpBsiJPK+yJHnmXIRVFVlPZ0z/nDt5ReqXZZTSuv3sjxSmqJtu6d2XQ1l4V8+Cc6rKMZlxJSs7zC5q4gMsl1DuzcnjyQJx72jONkk2yzJq1nkCc61+9tApBP3rtPqBnYdVz/ZwsX4MZ+wUk76TBfn/mDbfB5bSkxVlUFy7NuEuS3n1zAyz/UyHBWarLDB9b9WVpfh5vbLAYGU8oQtLMtGTlmt5mWKSdlxOL4lOPmgbWtlXYRU6iXVIIu5JWzPFsJHlnNjlSWR9JZbzael1ZzIKK1Pylbas1nNgZx8ksQUKQXMWs6VlUEkk95G0MgpGcahWs+j6XzCq1nQef4RfpwrGUC5nKQyfLKvKS3UPxGAKEK33SwkwuVwKSpmGZPMSvolD+Or99umtxTVQ+YfsVnQbWF745LZnISS/3/ssetKSm4/T4rbLeV+HlQ0SfNF9U7Ya6+9vELpNm7ciBdeeAE//OEP8epXvxoAcO+99+KFF17A6173ukr3jOMYnU6ncl0nCS7nZX6pUi8pH8ODVgbKNv+W8JHxGiHFtwsyv2OE7ZF3lJYP0MwjleeQ4qF6WgL00ryB9BmIb1c/aBNwzQDBySgu64Xsj6PEK7YjQrVtIbfy/5c8YxutDtrRbOIZa/OUonsDblmvtZvDJuM1Mir71LDYbqDf6qA7aCKqax6x+TZ5zmresWVGiG5rgGiwaPeWon22JOgSoyY+d3nHav977H9H85ayhfABvvJdVmA474Fxh2svr1BtSa7YckppCiYfDK6QO59JmbyGdh0JST65yCjXPSXp00NCtMj9tI/XtSxM0NYGWV9JTmnX6TnKyheZTBxO0EL4uLeUvGdZ/aVXnUTEjrtIJZ/n5RpjGulG941RJNtYMcDUK5zElC2MT2u/bUzQua7k36MkP+eKw7AY5hq2UFRbG8vuH8L3AizQJp58QjqU1VxTSHws6RDbYPsIkdg3KiGVTdT7mG51jbC9MgWlmEfEVFjMc9JrpVbzrE/aMHNHkZeUS3GT7ePEgWynjZDi1nLRJ3FLT3rrkxdIWs+nW130Wk2gXcv7mysn1D754gBMy63WbgmpqPDtLIxDfDsS4XIyKmlbEsZXrIrbgk790m1NJxZ0MuRyRYwrKFKJkW3UtgFTceHElu+8keokvKPSRmbfvkpKFzCUFY5o7Nbzyb24jjzySLzlLW/Bqaeeii9/+csAkjwjb3/72w3L+RFHHIFLLrkEJ5xwAnbs2IFPfepTeOc734l9990Xzz33HC6//HI89dRTOOmkkyZW1yrQjA70PZS89yGjNHmvfXNoRIwLGjlVkPu9zCu2HuW5o2xhe7ZtnlNQlfe2sD2S9Vq/aDo9tYnnJCL4EFLcK7bJtutJ6F6n3jRkfXKrfFuCy/nkdz9f3KLdMj2lXOSUj6y3gY8J1zgzSKqiEcLmHauF8Zl9YDdCRNEAneYiWvRu48+Nk0R18S3bp7VZ266qF/CmkMxn3lEGYWj1ljK9YKn9SXV0ua+jqqync/zDtVduqDafKNtC93wIKdfz0YTzMDmYCHQtSQoNSxJRfTRCagEmOUX3kfeU16J6aIRDpGxr15DKOc//JDHNvl3X1cpNQ/eS4h8b6UChU5LIlOB9Mgo4MWgjp6jfGAHE3ysEvl2JmBoVkpiS9ypT5GA5j6NMXmrPyvaC4R1VlhNuHNh15vZLjUBKVYQkHmhCWim3iEZCVQntANz/O9r/kfZO5MYBGyGVfWJMtbrZans+uaO07Xx1JiKnzIS4mdV8B0yLuaakcMs5YFdUbILYRki1YCou0kuqiSx0j9uDCeQxxcE9pJLfg8x6noXwtab15011IFQJ4fMhpjTlRH7DXI3PZUG3KTA2Czr1TxcN04IuiShXrimtjRy+VnRfxV4qKXyfp5ICkaulmpICmAkvfctPDtdeey3OPvtsHHfccQCSFZm+8IUvGGUeffRRvPDCCwCAer2ORx55BH/5l3+JZ599FnvuuSeOPvpofO9738PLX/7yida1DJqcl3mlrPK+PV3MhaRt+8p8wByzUtGmfb7ElEvWZ95BplesubqqPfxahmJzY4T2LjBW29sBcwELLvOll5TWJtovOSJqr8sj1mg7+0SUOzAP3csWMVHISolcziXyXw3h4zKN7wOKnlJae7XxwMGvz2W8JKO4EQKzqhHC7NaBuj9pt05aUZ8AyHIq9prpAhfcECE9Y12GCD4H0PrE9n7w/X8h0kz2Px1LH70tbJuH7OVyP/nm/SEJPRNVZT2d4x+uvRJDtU3CgQaD9JpynUvwUQp9JxcEOdjluTInkyzjym/D66R5Q/HtBRTJKBf5JckGfn+NkJIheJJ4oPpIEkkiYsf5tu2FEUEluYxTJCkmPa1sz5TXM0JO5Ghjyofg8BmHvC4sdI/6zsZzDEVMcQEqx9Yw80zXc/Ill0YlisahGGiw/S+4sGvN7ZcSgZSqAD7xLC4R7lqBqWZXUtrwV1IAXbDYCCnXxMtG0tg+PIyjbioYUimRIXkyPC8P3yiG8TU7XbQ4IcUVE9rWlgF3yTOt7VqeEU5IKUQU749BVEx667KaE0xCpp9bzymETyqIso1aWIfsC60fJHyJKX7+XCtbja9AyGTt0z2lePtlrqnCcW5B15QTzYJObZJtBPTE51xR4/ukks/vx7dtpCC7R5mSIoPApJJSjl3rxbV+/Xpcc801zjJxHGfbrVYL11133UTrNCokCUXfhtzn8r7dLP4vuWS9S+ZDbIPtA+zyHiiObSrj/emnyc1ptT1ONpkeTzZZz/NKWUO1yQDBCSmS9dw7tkzG8TZq+0jOa8SUlPV1FAwQnSYP24sMec/HBYGTMBH/f0+JnsVWLyEvpZynDzdC0DiR5ar0AZd3mpyXcwDU0JubyYwQXNbr3rEDJsf0cnx/drzZL4ZsS1mvfVObZBv5tzREyP8J7ogq3zWROJ/3P0EhqqY7SJK4q4aIfBwk/TZJAwSd44+VGapNz0ALf7Ipu1XCqEZVlG2EBz9W5rVE+2W9aUz1kay7KUkoTlBJksV2HxmqpJEWZWQaXYcLumnkYWO8vfwFyK/pys3E60HE1EyxuFF3G5HE7+tLNtD5PfZN9eiJurj6WdZV1pPqTyF3NV0OUvXlYwMcxBTVmZNt9Mx8QxHphrwPtHL8+mXXnKQHE++4snvZXlIEW3v58V1nbr+UCKSUJ8pDOBxW8ypKitwGzPOB4jjnEzmw7WEJqYLFuJetvkQKCreYS6VEU0KaBhllElc8j9TsjkVTMeG5RTgZVWY5r8MexsHbyxWVltgvk5unSkqvyUP3eMLbonJi3tqcjGbKCoXw9etAX4yXltimyTGQjxUOl8FBooyYkudGwOLcbLZsuMwvRZZx2taUkXnl5a95j2WJcGVhmwWd6inn+TJZunZMwkZWaUqKRkwxxXdYJcVv2XAfLV2WDyiDi4Si7y6aRXnfbiAL22vDLetH9ZIahpCS39onlfdTbLU9vnBFkxFTFJqtGSLksYZGXu1omwYIHrqnGSFcOrxtJkP7pZzn8p4TUsxDCi0K057CAJHIJ1X0hkV2K/l/rHnGDkzPWM0IQZCE1CgesmXElEFQTaM9lxoYViPzjpVttRkXykirzJu2NTBDtqmuUtb3YYbwae86SUjJ/x3tf8MnStol63kd60CzAwyioiGCe8fqnlOu6XhVWU/njB/LL1SbDygXOaWdQ7AphVJ5LXvONkhvItonySjbP778zUkfvr3APlT3GZikkKwP4OcJIoklW335dTghJgkpeT7PIxWJYzZCisrXlOpQP9j+j3yJKPKO4uF7tC3D7WZYGVvflIWLam1dADBrzi1s3SjJ9+ydo41BXncq4+NBKHMtaaSTvMc029buBQxPTGn1tIUVasqBrW9c9xmnvF8+c/tASlUAzy9C6iQAeFnNbZ5SfNvXU0qD3O9LSGlKibFPC9vTLeacjOKeUzLxLV+VKVN25OpLfehWcs1LSoJNENVj9O1SUFrsmCCnBhGyVfc06zlQzEPGiRf6nZ0dMUVFW4VPviQ4IWKbLNv6RYKPK9vHUFjM/FIUckGEE7VpAbmiIi3mthwkRsifLYyPkuJqFvTkInZFBbCTVvy3XOVPjiOupMhnQ/1E2x5KCvUJV1LyPnFp4nwy4IPl8+KaNHhSc4ATVdxLJpf3vXYD1sUsfAwRw8p7GyFlMzyAHdeMEFExbK+YK9AMzdZyRfFjxcTmljxSUubbPGLlv4TNAEHHXAYIKe+Fx1S/niQ41zykkurYPWQLhBRyz9gkhC8GoloxhI8THfw3yZVxeEzZ5DydlxFBdSO/VN62pE2JzM/ltmy/JufNPkmJutYAQBrGR22m+srwbY2Q5ahiiODX0zxiqS5lsp7tq/WBRnsRA2GIkAaIah5TVWU9nTMZLJ9Qbc0jgUiDsvA9Ot/nHsN6cNjIKPptyynF781ZXU5ocI8o+mxD3mZJRrnyNNG9OCRZoRFLWoghJ8kkeSQJAO36ZaBrkIdUZB6iqhdyWtlCEG3Q+ss2XjRPLbVSYrsntum+nOihMmnCcy7zXfohyWCa//fp2rygy4NJ8wbibdCIKXk+v6cm9H08qGx18z2m1WMY6kSSia6xs3Ln9oGU8oCccMpcEpnC4rKaV1FQMpdJmAIEKB97UjnRjtG2TUnJJsMx0Oqg0eqIsD1OQs0bJJUkp3KFheeR0hKbp6svDWDmE5EeUZpSYusHOYHk3zKUgxQUrsBwki4lp5JVmKYUEkrzpIvSW4pcGuibk9P6oKioSIVEKpHcom0jprT2u+BDTPUBtPP8UgCMnCMLhj+JbhnXj3G/w1TJScP4mhChHVwRl/8nQPHZy74Yh/zWCMEIpvLSgVVJoQTnmnJifrtM+FUTTo4jQeXKgfzfLhDQqbzvtinJXK0o212yf1R5byOkZBn69jFCtDpiMQuZtNzMHTUj5LsM4XYtZFHjfcRD9TSP2LK+IGKK/+btthFSUt6LDxkgci+pvIN9FrWIhKwjz9h6NMBi1IcRsi0NEQRORpUZILgMdJWxyXb+OwIQTWMxGqDTbmZGCCmnF6CTUQtGuVnjWCHvIA/jozrSM+Kynggj+i7rByjlqkTNAeVesX3khow2snyCjXYP/VV1YYjQjRHlGEZ2T07eL59Qbd8wGd/8TISyf0DXcamslpFRvDxta6F6fJs+LkIqgplzSSNZ6HpE5Mn7gZ0nryVBHj1Uf55Hyha6Z8stxcHby8twzyrlNIPQ0Z6XD2lJF+b9YyNB+bMZZZLKwwLpNwutk/KezxFkU+V7yCCmAFPGyAm5NhYlwSaJKV4Goiztl+UnmUuKw4dctv1fa8ShSwas3Ln91M6uQBVcfvnlOOSQQ9BqtXDUUUfhe9/7nrP8nXfeiaOOOgqtVguHHnoorrjiiqHvzS3lybeSstnHai4VEb7tUmJc15JKjA9xpSkrLGxBX21PT2AuvaNycir/zcP4pGJT7w8SqzlvMykpvM0+CopGvPEP93zixBPPMyJXY2KKm2k5z8cAoCc4l6CEt8l2bj0nRQVR33wO/Nm0lH3yuE351PqHQ1OKtXGajdUmuu0mOu0GugO+uHuzkD2G76dy8hg/PxtZ9Sa6rWn06Zlp5KEcxy7I8eMi4Gi8yTBSPj7b7Jod8VtcKxqkuaWyEaMnfI/EtxuuRriERIAvbPKevKQ67Wa+mIXNA8omx0eV9/xxavqQ9r/hIqfYanvSK5b+Q4urpubklAzh5v/VhYUs6P+J/l9kW/n/EWAnEvj/fJ19pMyXxFNZXikWpt1Fvupe0tV2j9i8KsUKm3mlUqHQiu3PxCbnXTLeV94nDXGPtYw0bKLXbqDTbmAwqBtyuluyPY9Zj3Lp6GhNo8Ofh62dfAU8VxtpHMm2yo8chzJ9AO0fiH38fE6oDtLVV/tANCgmeZBEpR+GkfVB3peD95MWUsWPaQSWra+r9r0gSADkA16GpMlt7VxNedaIKElIEXk0A2At26aPvJ+NYOqjmItKklvaBJXO7Svl5P2koON9UObBJK+tVYXaID2m5PV9SRFbOWqvRna6BLgrZJITW33kzzk2bymHrnVugFwmZ22RZKH2fHlZbWwD5vOU/aqNMZ/Qz2Hhk7fKt6ytHJFqLaUsYeXK+kk81Yng29/+Ns455xxcfvnleP3rX48vf/nL+MM//EP89Kc/xYEHHlgo//jjj+Otb30rTj31VFxzzTX4wQ9+gDPOOAMvetGLcOKJJw5VBy1cT4ZyDPopcyGXBK9iObeNN9e4i5C/U1zwUVAiwBW251p5SYbulW53urnVnE/uNDKqrB/Kwjh4myUhJb2m+MQ43Z94SYGF7kUFjylf8AlqxBSVJIQvgre3lI/1XMI1iadxxPtbs6QjCePrAl5Lh3OLuV85JYyPW80jpb70/Mr4nDJFV/aHBq3v6+I31XNQ9JbihJSppJgr8pVXcGW6+E4SfCQDFnmfecWyxSy43FoKec/L2MapS94b5LdP2J5tpdViOe4xy4krI2yPkwCawq/lBQJMOW/7H41YWUk+2RKei4+U9UDRay6pXh7Wb1bBDFPm4Wq5Z2wfiKZNGS+3payRcof6oQq0fuNy3tiuAVEexocWnKuvyu1GKtPc5Qb6anz8mz9vLZTP1Vb+XaVPZP/Qs+GgsZR6xtq9pXKDFMEMbyxjEHed8L3lg7J+9fWGsV2bnqnLy8LmGcWPcWWf9tuUc62+8gUjSSlJSPHQPZuHlLbNiTtOKEhPJ+l5FsH09uBeUho54QrbkjmANHAipWYpQ31jg4/6TONH9hHE70gpx68hvYMI2m9eLzovguEtJW8lT5NN4+/G7Dybx5QGOkl6T9EFeRv5OTbCU5Yft6zTrifrJvu5jJykTuf/V66yK3Nuv9uQUpdeeik++MEP4kMf+hAA4LLLLsPf/u3f4ktf+hIuueSSQvkrrrgCBx54IC677DIASXLG++67D5/5zGeGJqUAM1yPQKEcVi+pKpZzm3IyKiEVoSh0bAqKV9jegqqEyPANXVnJwzjq/cU8bE9YGw1CiuZyfE6n6e6uMA761izmmqIiQj0SLyktdE9XP8xqFZUTw2NKU1RshCEpJbxNLvCxo5XlY0cSPbSP7kfKUASgbYZ28DA+WzsjDNBhSopNcTNW6GsC9X47D+Oz5Zai+tIzdP3P2BReV58MxH6bkkIEmaKk0Ep8lGeEg+cc8UOZYNDKB1SBNjK5V2zmJSXluybvbR5Sw8p72pbH6NtFSBXkvjtsj3vFNsQ7wDREmB6yRpJ0boDoo2iEkDIfKB+yNtnH5b6NkNLkfbqthWlz6Ubgcr7MSzavWp+F8LE8gpyQIiMql/OSmJLjJq+ICVsfaWNPI6ZI1gPoRKksdxghzLYWw/vMqjnC+LicJ/kr5bCWS5Daw29b9j8l5b2U9QRphMgbYvZZB6hFQL0ORANpiMj7zi90z6cBtnMC3ND6lRR4TnyMGiIkr0+Q3iNyf6Rsa3l9CJK8IOWWe0jNo0hKRSh6RtnC9qRwpv7ix12hd1oIngw1o+vyjzyP9wHBRmL0lTLsBamSLj3lXIlhVGhZR5kXykVM+UB7IdAnfS58bsLbbSOm6N1EyOSgi5hykUecnNJINHkNF7RzhkFZ/1IHuQgomyIux/U0/DylfLF8ZP1uQUp1u13cf//9OP/88439xx13HO666y71nLvvvjtLwkg4/vjjsXnzZvR6PUxPFwdVp9Mxlqfdtm1bti1JBnNqEaHbbpheUpJoasOunGgEFWCOS5/JuY18cJFRBUIK0JYD5zmh8uW+zZWWaD9PfJuvwqSHcWRWc9+wFYI2j+CkhGx7xI5Ru5vimxQVJdcIeUmZS4NX95CSMKzGqadCu18HWlEyjqSSAuQvknF6S9mIKfrNX2C0DQBREz0gWzqcW9Al5lMvqTLiRVrQAZgrNFF9IuWbK7RcaeHtcCXCldD6hVDGHxEhxZQU8pZq1Lvoo27QHdXRgzvnlFY+wAcyNJfvJ6/YLJdUW6y4p8l7jZCScg4oH5Pa5JEfg3LMJfMjeIXtyYUp+Ip60hBRDOfOF7LIwvbKkpvz/2Ot/fRYNAMEb7PNAKHJe7bdaZph2tJbyuYdqxsjTO8g7hk7iOrFPILas7J5SfnCNdOT8lT1jAUQRYnRDVCNELLdcvELb8/Z1gBADy1er2G9peT/l3wf8L6xEVHyPNn/EdtH26lRgntLFcP2q8j8qrKezglwgyu0klwhVCEEqHzVfZJg4r99yCgOTkTJcL15ANtRDNlbC2ANEgJpFvbk5vIfjRM3gvgwEonbPK64oOH34ITWtOVcCW1Sawu3EiFlhUvHyBPBa+GcEeweVj510yDzSvlCJtDWjtPYXkDWbvnYfOYU2jspG4fa/SXp6EtODQvXdXyJG17OleTcpnDzl5L8/6BrzcBNSq3cuf1uQUo9++yzGAwG2HvvvY39e++9N7Zs2aKes2XLFrV8v9/Hs88+i3333bdwziWXXIJPfOIThf0L27oYYAELiNFBHR1MoYMauqihjQj9wTx6c4vo7YiBdgzsqCUT7TkAO5D889K3nIyThZgrKL7hakAua0hYLKafqfR7gFx28ndGPS3TSOtBXqYLMWr1eTS6C4g6C2h1FlBHB3W00cB21LGAGuZRxw5EWADQQYwFxFjAFOYAzGOANoDt6KOLHhYwjQVEmMci2uhQD3Y6qO8AuqSgdNP+6sJcIryf7qO68/wPZd4uHDFyORGnbe+lfdMV31S+jkSGTyVFu4MaFgZ1dDGFBUxhHsljm896YDFtcR1tRGiD8m/U0MUUuqihB2ARA8ToI84EVnJ0atBFvd1AbaGDuN0A2tP5+KA+6qb1jlF8F5EXUU30z6LSH112Dj9XKgBN5O9Iun8TwGrkCnYzRmehg/p8B7VVXSxiEYPUEyhGDzH6WbsHaWv7rAe66f9SB7VspK1BFwuoYxbTmMYiZtHATLeP2fkYtS6rk+ybDjvGxxAfR1XGjyQzuQdUg/cBciW3kf7upN9tAKsALADxLNCZ72F+1RTamEYXbSykY6WNqfS/o5b3ybZECeRJY3PsKKm8RKe8yAoG9THJ+2TkJhKugxrmEaGHBfQHQG9uEYs7YmDHAGgvJI9iDqbc5znIaBxKAp4eiSRMbaBxGKefRZgy30fe0/9MBKAXo9abx/RUB9PdNqJBBxHaiDCPCAuppEs+wAJqqWITo40pbEeMBdQwhxjz6KONPubRwwK66ageYAfaaGNqRw+YBxY6QCY4u6yfOmyfRk5Jkkob9nI+GrOPr7yfAuIaMF+rYWHQMGR9N/v0sYA+FtDDAnqYQxNtdNFBBx1MZ7J+EQP0UikYpw+ilr4FauiiPt/BVKeBxYU20Jk23290s0Xk8l7OCQbiQ3LeJe9pTtBBIqu4NxKRfSTrV7Nyq5DJ+v7qebTnO5ha3cVUPanoAIuYTf9jkpbG6KGGAWIMMrlexywiLKCOBUxjBtPooIM2mliNLmYxjXn00MQMZgYxZjp9TJOs196DXNbzedQiivOEsjEkDXc2ArOBnHii/GMN5IRmG4lOT9/zQG8WWOj2sVDvo4MF0IxqBxrpmKlhAXX0tiUPbjyyHgjy3o68j+eQT3YUD5pSAkgDL1sX+1ILFaaRDGJ5fMB+k/vfNEzGlJMMHJIYaiOZwLaREFDbkbR3e/oBcuKIW6abSATjVPotwxPon5KuTd/8urSCMK8rCWPpGdUX15mDufxmlN4zFufIf2A6Ti9EKkvXJbKMv5jnkzaS/KcqogfghbQ9ZPmdR/6iJ0KPSL45pT/4fbm3gfS06YvjlBhxCvnzBzuXytIE2EVK0bimCchsWn4G6Nfy7plCPn+QrMCAHZ9i/WREpdALikJBJblGBbUxy8HL83bx80j50RRk2/W04/x82YfyOiRLuVwgopTGKBF+HNQfPESW2jBOeb98ZP1uQUoRajWTmY7juLCvrLy2n3DBBRfgvPPOy34//fTTeNnLXoZvH/Cfh63ybokYyb/EDgDP7eS67FrgPfP8Tq7LrgXeMwE+IE3cbxz96le/wrp16wAAjUYD++yzD7Zs+Wzlu+6zzz5oNBrlBVcgnnsukXYrUd7TaAwgBFlvAx8voWd80UeiyG4D8BtnyXHJeiDIexu2byfy5OM7tR4BuwhW6guQ2v3Czq7IykWY25vYLUipvfbaC/V6veAV9Zvf/KbgDUVIHmyxfBRF2HPPPdVzms0mms1m9nv16tX46U9/ipe97GV48sknsXbt2hFbsmti27ZtOOCAA5Z1G4HQzuWEldBGAHjqqafw8pe/HKtWrcr2tVotPP744+h2/TOSEBqNBlotl9vwysX69esBAE888UQ2SViOWCn/OyuhnSuhjcDKaOe4ZT0Q5L0N++23X5jbLyOEdi4frIQ2AmFub8NuQUo1Gg0cddRRuO2223DCCSdk+2+77Ta8613vUs/ZuHEjbrzxRmPfrbfeile96lVqPikNU1NT+O3f/m0AwNq1a5f1PwiwMtoIhHYuJyz3NlLbpqamjP2tVmtZvIB2JVAfr1u3blmPKcJy/98hrIR2roQ2Asu7nUHWLx3C3H55IrRz+WC5tzHIex1T5UV2DZx33nn4i7/4C1x55ZV4+OGHce655+KJJ57A6aefDiAJvXvve9+blT/99NPxy1/+Eueddx4efvhhXHnlldi8eTM++tGP7qwmBAQEBAQEBAQEBAQEBAQEBASk2C08pQDg3e9+N5577jl88pOfxDPPPINXvOIVuPnmm3HQQQcBAJ555hk88cQTWflDDjkEN998M84991x88YtfxH777YfPfe5zOPHEE3dWEwICAgICAgICAgICAgICAgICUuw2pBQAnHHGGTjjjDPUY1dffXVh37HHHosHHnhgpHs2m01ceOGFRq6p5YaV0EYgtHM5YSW0EUhcfI899thl7ca8q2CljKnQzuWDldBGYGW0M8j6pcVKGFMroY1AaOdywkpoIxDkvQ21WF+PMCAgICAgICAgICAgICAgICAgYGLYbXJKBQQEBAQEBAQEBAQEBAQEBAQsHwRSKiAgICAgICAgICAgICAgICBgyRFIqYCAgICAgICAgICAgICAgICAJUcgpQICAgICAgICAgICAgICAgIClhyBlAIwNzeHs846C/vvvz9mZmZw5JFH4ktf+lLped/5znfwspe9DM1mEy972ctw/fXXL0Ftq+Pf/Jt/g1qthssuu6y07GWXXYbDDz8cMzMzOOCAA3Duueei3W5nx7/73e/iHe94B/bbbz/UajX89V//9eQq7oHrrrsOxx9/PPbaay/UajU89NBDXudt3boVZ555Jvbdd1+0Wi0ceeSRuPnmm7Pjl1xyCY4++misWbMGGzZswB/90R/h0UcfnVAr7Kja33fccQdqtVrh88gjjxjlytq/s3DJJZegVqvhnHPOsZZ5//vfr7bx5S9/eVbm6quvVsvwsbyUiKJIrc/v/M7vWM85+eST0Ww2UavV0Gg0cNppp1nLnn322ajVath3330nUf1lg+Uu64HlK++DrDexu8t6IMh7jiDvx4/lLu+Xq6wHgryX2N3lfZD1OYKstyPa2RXYFXDuuefi9ttvxzXXXIODDz4Yt956K8444wzst99+eNe73qWec/fdd+Pd7343/vRP/xQnnHACrr/+epx88sn4/ve/j9e85jVL3AI7/vqv/xr33nsv9ttvv9Ky1157Lc4//3xceeWVeN3rXofHHnsM73//+wEAn/3sZwEAO3bswCtf+Up84AMfwIknnjjJqnthx44deP3rX4+TTjoJp556qtc53W4Xb37zm7Fhwwb8j//xP7D//vvjySefxJo1a7Iyd955J84880wcffTR6Pf7+PjHP47jjjsOP/3pT7Fq1apJNaeAYfv70UcfNZYafdGLXpRt+7R/Z+BHP/oRvvKVr+Cf/bN/5iz33/7bf8OnP/3p7He/38crX/lKnHTSSUa5tWvXFiYbrVZrfBWugL//+79Hr9fLft9yyy342Mc+hg9+8INq+X/1r/4V/uqv/gpnn302TjjhBFx33XX4/Oc/j7333ht/+qd/apT9wQ9+gC9+8YthaVkPLGdZDyxveR9kvY7dUdYDQd5zBHk/GSxneb+cZT3VJ8j7InZHeR9kfY4g60sQB8Qvf/nL409+8pPGvn/+z/95/B//43+0nnPyySfHb3nLW4x9xx9/fHzKKadMpI7D4Kmnnop/+7d/O/7JT34SH3TQQfFnP/tZZ/kzzzwz/pf/8l8a+84777z4mGOOUcsDiK+//vox1XY0PP744zGA+MEHHywt+6UvfSk+9NBD426363393/zmNzGA+M477xyhlqPBp79vv/32GED8/PPPW8sM0/5JY/v27fFhhx0W33bbbfGxxx4b/9t/+2+9z73++uvjWq0W/+IXv8j2XXXVVfG6devGX9Ex4Xd/93fjKIriwWCgHl+9enX8qle9qnDOmjVrjH2dTides2ZN/L73vS9+8YtfHO+zzz4Tq/NywHKV9XG8cuR9kPUJdldZH8dB3ksEeT8ZLFd5v1JkfRwHeU/YXeV9kPUmgqx3I4TvATjmmGNwww034Omnn0Ycx7j99tvx2GOP4fjjj7eec/fdd+O4444z9h1//PG46667Jl1dLywuLmLTpk34d//u3xmujy4cc8wxuP/++/HDH/4QAPDzn/8cN998M972trdNsqpLjhtuuAEbN27EmWeeib333huveMUrcPHFF2MwGFjPeeGFFwAA69evX6pqjoTf+73fw7777os3vvGNuP32241jw7R/0jjzzDPxtre9DW9605sqn7t582a86U1vwkEHHWTsn5ubw0EHHYT9998fb3/72/Hggw+Oq7ojYW5uDn/3d3+HP/iDP8DUlC6CB4NBwfLTarWwfft2zM/PZ/ve/OY3Y/Xq1bj66qsnWeVlg+Uo64Eg720Isn7Xk/VAkPcSQd5PBstR3gdZb0eQ97uevA+y3kSQ9SXYyaTYLoFOpxO/973vjQHEURTFjUYj/trXvuY8Z3p6Or722muNfddee23caDQmWVVvXHzxxfGb3/zmeHFxMY7j2MuaEsdx/LnPfS6enp6OoyiKAcQf/vCHrWWxm1pTDj/88LjZbMZ/8id/Et93333xN7/5zXj9+vXxJz7xCbX84uJi/I53vMNqVVoq+PT3I488En/lK1+J77///viuu+6KP/zhD8e1Ws2wAlVt/6TxzW9+M37FK14RLywsxHEcV7Km/OpXv4rr9Xr87W9/29h/9913x1//+tfjhx56KP7ud78bn3jiifHMzEz82GOPjbv6lXHOOefEAOL777/fWmbjxo3x1NRU/PWvfz0eDAbxX/7lX8a1Ws0Y45dffnk8NTUVP/LII3EcxyvKmjIslqOsj+OVJe+DrE+wO8r6OA7yXkOQ95PBcpT3K0nWx3GQ94TdUd4HWV9EkPVurDhS6pprrolXrVqVfb773e/G//W//tf4pS99aXzDDTfEf/d3fxd//vOfj1evXh3fdttt1utMT0/H3/jGNwrXbjabk25CAbJNd9xxR7z33nvHTz/9dFbG58V1++23x3vvvXf81a9+Nf7xj38cX3fddfEBBxxQcH8mLPWLS3t2hCovrsMOOyw+4IAD4n6/n+378z//c+s//RlnnBEfdNBB8ZNPPjlyG0bBsP399re/PX7HO96R/a7a/kniiSeeiDds2BA/9NBD2b4qL66LL7443nPPPeNOp+MsNxgM4le+8pXxRz7ykVGqOxbsueee8YYNG5xlnnvuufiwww6LAcQA4qmpqfjVr351DCD+yU9+Ej/99NNxFEXGZGMlvbh8sBxlPd17ucv7IOuXn6yP4yDvbQjyfnQsR3m/EmR9HAd5vxzlfZD1OoKsd2PFkVLbtm2L/+Ef/iH7zM/Px9PT0/FNN91klPvgBz8YH3/88dbrHHDAAfGll15q7Lv00kvjAw88cCL1dkG26eKLL45rtVpcr9ezDw3+gw46yHqdY445Jv7oRz9q7Pv6178ez8zMqPGxS/3i0p4docqL6w1veEP8xje+0dh38803xwAKAvCss86K999///jnP//5WNowCobt7z/7sz+LjzjiiOx3lfZPGtdff30MoDBWafzyl6vE4uJi/JKXvCQ+55xzvO71oQ99qJArYqnx/e9/PwYQX3DBBV7ld+zYEf/whz+MO51OfMopp8QA4l6vF3/rW9/KXmra53//7/894Zbs+liOsj6OV4a8D7J++cn6OA7yvgxB3g+P5SjvV4Ksj+Mg75ejvA+y3o0g63WsuNX31qxZY6xEsG3bNvR6vUL8Z71ex+LiovU6GzduxG233YZzzz0323frrbfida973fgrXQLZptNOOw3veMc7jDLHH388Nm3ahA984APW68zPz6v9ECfk5XgrPQRkO4fF61//enzjG9/A4uJi1t7HHnsM++67LxqNBgAgjmN85CMfwfXXX4877rgDhxxyyMj33Vl48MEHjeVEfdq/VHjjG9+Iv//7vzf2feADH8ARRxyBj33sY6jX69Zz77zzTvzsZz+zrnLBEccxHnroIecyrUuBj3/845iamsJ//s//2av87Owsjj76aADA//pf/wsHHXQQoijC8ccfj+uuu84oe8YZZ6DT6WDz5s149atfPfa6725YjrIeWBnyPsj64bAry3ogyPsyBHk/PJajvF8Jsh4I8n5Y7MryPsh6N4Kst2DncGG7Fo499tj45S9/eXz77bfHP//5z+OrrroqbrVa8eWXX56V2bRpU3z++ednv3/wgx/E9Xo9/vSnPx0//PDD8ac//ek4iqL4nnvu2RlNKIXm4ivbdOGFF8Zr1qyJv/nNb8Y///nP41tvvTV+8YtfHJ988slZme3bt8cPPvhg/OCDD8YA4ksvvTR+8MEH41/+8pdL1RQDzz33XPzggw/Gf/M3fxMDiL/1rW/FDz74YPzMM89kZWQ7n3jiiXj16tXxWWedFT/66KPxTTfdFG/YsCH+sz/7s6zMhz/84XjdunXxHXfcET/zzDPZh1twlgJl/X3++efHmzZtysp/9rOfja+//vr4sccei3/yk5/E559/fgwg/s53vpOV8Wn/zoR08ZVtJPzrf/2v49e85jXqNS666KL4lltuif/f//t/8YMPPhh/4AMfiKMoiu+9995JVbsUvV4vrtfrap1f+9rXxoceemj2+5ZbbolPP/30+NZbb42vvPLK+IADDohrtVr8ve99z3r9leTiOyxWgqyP4+Up74OsX36yPo6DvI/jIO8nhZUg75ejrI/jIO+Xo7wPsj7I+jIEUiqO42eeeSZ+//vfH++3335xq9WKDz/88PjP//zPs0SCcZz8M73vfe8zzvurv/qr+PDDD4+np6fjI444whAOuxq0F5dsU6/Xiy+66KL4xS9+cdxqteIDDjggPuOMM4wlSGlZUvmRfbNUuOqqq9T6XHjhhVkZ7dnddddd8Wte85q42WzGhx56aPypT33KcCfVrgkgvuqqq5amYSnK+vt973tffOyxx2bl/8t/+S/Z8/ut3/qt+Jhjjon/5m/+pnDdsvbvTMgXl2xjHMfx1q1b45mZmfgrX/mKeo1zzjknPvDAA+NGoxG/6EUvio877rj4rrvummCty3HxxRfHAOJbbrmlcOzFL36xscztjTfeGM/MzGTPe5999olvvvlm5/VX0otrWKwEWR/Hy1PeB1m//GR9HAd5H8dB3k8KK0HeL0dZH8dB3i9HeR9kfZD1ZajF8S7guxkQEBAQEBAQEBAQEBAQEBAQsKIwVV4kICAgICAgICAgICAgICAgICBgvAikVEBAQEBAQEBAQEBAQEBAQEDAkiOQUgEBAQEBAQEBAQEBAQEBAQEBS45ASgUEBAQEBAQEBAQEBAQEBAQELDkCKRUQEBAQEBAQEBAQEBAQEBAQsOQIpFRAQEBAQEBAQEBAQEBAQEBAwJIjkFIBAQEBAQEBAQEBAQEBAQEBAUuOQEoFBAQEBAQEBAQEBAQEBAQEBCw5AikVEBAQEBAQEBAQEBAQEBAQELDkCKRUQEBAQEBAQEBAQEBAQEBAQMCSI5BSAQEBAQEBAQEBAQEBAQEBAQFLjkBKBQSMEc888wxWr16NU045xdh/0003YXp6Gh//+Md3Us0CAgICAsaJIO8DAgIClj+CrA8ImDwCKRUQMEbsu++++Pf//t/jv//3/477778fAHDHHXfgpJNOwoc//GF86lOf2sk1DAgICAgYB4K8DwgICFj+CLI+IGDyqMVxHO/sSgQELCfMz8/jsMMOw5FHHolLLrkEb3zjG/HHf/zH2Lx5M2q12s6uXkBAQEDAmBDkfUBAQMDyR5D1AQGTRSClAgImgKuuugp/8id/glWrVuFtb3sbvvGNb6Ber+/sagUEBAQEjBlB3gcEBAQsfwRZHxAwOYTwvYCACeClL30pAKBWq+Hqq68OL62AgICAZYog7wMCAgKWP4KsDwiYHAIpFRAwZjz00EN4+9vfjte//vWYm5vDlVdeubOrFBAQEBAwAQR5HxAQELD8EWR9QMBkEcL3AgLGiEcffRRveMMbcNRRR+F//s//iZNOOgk/+MEP8LOf/Qzr1q3b2dULCAgICBgTgrwPCAgIWP4Isj4gYPIInlIBAWPCL37xC7zpTW/C4Ycfju985zuYnp7Gpz/9aTz//PO4+OKLd3b1AgICAgLGhCDvAwICApY/gqwPCFgaBE+pgIAx4JlnnsHv//7vY926dbj99tuxdu3a7Nhpp52Gr33ta3jkkUdw8MEH77xKBgQEBASMjCDvAwICApY/gqwPCFg6BFIqICAgICAgICAgICAgICAgIGDJEcL3AgICAgICAgICAgICAgICAgKWHIGUCggICAgICAgICAgICAgICAhYcgRSKiAgICAgICAgICAgICAgICBgyRFIqYCAgICAgICAgICAgICAgICAJUcgpQICAgICAgICAgICAgICAgIClhyBlAoICAgICAgICAgICAgICAgIWHIEUiogICAgICAgICAgICAgICAgYMkRSKmAgICAgICAgICAgICAgICAgCVHIKUCAgICAgICAgICAgICAgICApYcgZQKCAgICAgICAgICAgICAgICFhyBFIqICAgICAgICAgICAgICAgIGDJ8f8B+iWCIFJ2JgoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(12,3))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(eqn_true,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints)\n", + "ax1.set_xticklabels(x_label_list)\n", + "ax1.set_yticks(ypoints)\n", + "ax1.set_yticklabels(y_label_list)\n", + "ax1.set_title('Reference $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(eqn_pred,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints)\n", + "ax2.set_xticklabels(x_label_list)\n", + "ax2.set_yticks(ypoints)\n", + "ax2.set_yticklabels(y_label_list)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('Predicted $\\mathcal{N}$',fontsize=12)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(eqn_true - eqn_pred),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='5%', pad=0.05)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints)\n", + "ax3.set_xticklabels(x_label_list)\n", + "ax3.set_yticks(ypoints)\n", + "ax3.set_yticklabels(y_label_list)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "ax3.set_title('Absolute Error',fontsize=12)\n", + "plt.tight_layout()\n", + "plt.savefig('burgers_hidden_phy_pred.png',format='png')\n", + "plt.savefig('burgers_hidden_phy_pred.pdf',format='pdf')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "65381926", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error eqn : 0.07746229419954428\n", + "R2 Score eqn : 0.9939995929773432\n" + ] + } + ], + "source": [ + "l2_error_eqn = L2_ERROR(eqn_true.flatten(),eqn_pred.flatten())\n", + "r2_score_eqn = R2_SCORE(eqn_true.flatten(),eqn_pred.flatten())\n", + "print('L2 Error eqn : ', l2_error_eqn)\n", + "print('R2 Score eqn : ', r2_score_eqn)" + ] + }, + { + "cell_type": "markdown", + "id": "8900bd2d", + "metadata": {}, + "source": [ + "## Prediction with New initial condition \n", + "$u(x,0) = e^{-(x+2)^2}$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a7e263c1", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "X_new = tp.spaces.R1('x')\n", + "T_new = tp.spaces.R1('t')\n", + "U_new = tp.spaces.R1('u')\n", + "\n", + "Omega_new = tp.domains.Interval(space=X_new, lower_bound=x.min(), upper_bound=x.max())\n", + "I_new = tp.domains.Interval(space=T_new, lower_bound=t.min(), upper_bound=t.max())" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "be94c05e", + "metadata": {}, + "outputs": [], + "source": [ + "fileload = savepath + '/burgers_exp.mat'\n", + "data_new = scipy.io.loadmat(fileload)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "23ce7897", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "t_new = data_new['t'].flatten()[:,None]\n", + "x_new = data_new['x'].flatten()[:,None]\n", + "u_soln_new = np.real(data_new['usol'])\n", + "\n", + "TT_new, XX_new = np.meshgrid(t_new,x_new)\n", + "X_star_new = np.hstack((TT_new.flatten()[:,None], XX_new.flatten()[:,None]))\n", + "\n", + "u_soln_new_v = u_soln_new.flatten()[:,None]\n", + "u_tensor_new = torch.tensor(u_soln_new_v,dtype=torch.float32)\n", + "X_tensor_new = torch.tensor(X_star_new,dtype=torch.float32)\n", + "\n", + "input_data_new = tp.spaces.Points(torch.column_stack([X_tensor_new]), T_new*X_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "9d429daa", + "metadata": {}, + "outputs": [], + "source": [ + "axis_interval = 5\n", + "x_lbl = x_new.flatten()\n", + "y_lbl = t_new.flatten()\n", + "xpoints_n = list(np.arange(0,len(x_lbl),len(x_lbl)//axis_interval))\n", + "xpoints_n.append(len(x_lbl)-1)\n", + "ypoints_n = list(np.arange(0,len(y_lbl),len(y_lbl)//axis_interval))\n", + "ypoints_n.append(len(y_lbl)-1)\n", + "\n", + "x_label_list_n = list(map( lambda x :round(x,2),[x_lbl[val] for val in xpoints_n]))\n", + "y_label_list_n = list(map( lambda x :round(x,2),[y_lbl[val] for val in ypoints_n]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "e88854b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAECCAYAAAD91dPPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB000lEQVR4nO2de3hU1bn/v5OZzEwCSdAggUhAsF5QWqXBtgiopyoctf7aHuultl7BlopyIOpP0NNqrRVtLUWrQmkBH+uNX1WqtlThOUfwArYFQ29ytCoIQgImmhvJzGQm+/fHnrX32muvtS+TnWQmeT/Ps5+ZWXvtywwk8837ft93hTRN00AQBEEQBDFEKRroGyAIgiAIghhISAwRBEEQBDGkITFEEARBEMSQhsQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExRBAEQRDEkIbEEEEQBEEQQxoSQwRBEARBDGlIDBEEQRAEMaQhMUQQBEEQxJCGxBBBEARBEEMaEkMEQRAEQQxpSAwRBNGv3HTTTQiFQnjrrbds+1atWoVQKIQnnnhiAO6MIIihCokhgiD6lfr6ehQXF+Pkk0+27WMC6dRTT+3nuyIIYihDYoggiH5l586dOOmkkxCLxWz7duzYgXg8jhNPPHEA7owgiKEKiSGCIPqN3bt349NPP8XnP/95277u7m78/e9/x+TJkxEOhwfg7giCGKqQGCIIot9gabApU6bY9v3zn/9EMpmkFBlBEP0OiSGCIPqN+vp6AJBGhnbs2AGA/EIEQfQ/JIYIgug3du7ciVAohFNOOcW27+WXXwZAYoggiP4npGmaNtA3QRDE0OCEE05AW1sbGhoaLON79+7FpEmT0NXVhdbWVpSVlQ3QHRIEMRShyBBBEP1GLBZDc3MzPv74Y2PswIED+MY3voHOzk4ce+yxJIQIguh3SAwRBNFvnHvuueju7sYXv/hF3Hjjjbj00ktx0kknGT2HKEVGEMRAQGKIIIh+44c//CGuu+46dHR04NFHH8XBgwfxm9/8BpdffjkAEkMEQQwM5BkiCIIgCGJIQ5EhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIvODVV1/FhRdeiOrqaoRCIfzud79zPWbLli2ora1FPB7HxIkTsXLlSt/XzQsx9Itf/AJVVVUIh8MIhUJYsmSJZX9PTw/OOussY/+IESPw/PPPu573lltuQSwWQygUQiwWw6233tpXb4EgCIIgiF5y+PBhnHLKKXjooYc8zd+9ezfOP/98zJw5E/X19bjtttuwYMECPPvss76umxdi6NNPP8Vxxx2Hm266Sbr/ggsuwJYtW3DTTTfhueeeQ3l5Of7jP/4DBw4cUJ5z1apVuP/++3HWWWfhD3/4A8466yz85Cc/werVq/vqbRAEQRAE0QvOO+883H333fiP//gPT/NXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff7+v6+ZdaX0oFMLixYuxdOlSAHpUqLi4GLNmzcIf//hHAEBbWxsqKipw+eWX44knnpCeZ9y4cejq6rJ0uh05ciSGDRuGDz/80NO99PT04MCBAygrK0MoFOrlOyMIgiCI/kXTNLS3t6O6uhpFRc7xj0QigVQqFfj1xe/PWCyGWCzmemwoFML69evxta99TTnnjDPOwJQpU/DAAw8YY+vXr8cll1yCzs5OFBcXe7rPiKdZA8irr76Knp4eXHnllcZYeXk5Ro8ejTfffFN53IEDB/CVr3zFMjZjxgz8/ve/Vx7T1taGtrY243VDQwO+8IUv9OLuCYIgCGLg2bdvH8aOHavcn0gkcFRJCToCvu7w4cPR0WE96x133IE777wzkPM3NjaiqqrKMlZVVYV0Oo2mpiaMGTPG03nyXgy98847APQFHnlGjBhhifqIZDIZHH300Zaxo48+GplMRnnM//k//wdbtmyR7FkEwF3F5gd+/0m9zFcpa9Wx4rhsnnjOiIfnxYrnYclYxMM81ZxixTzxUdzvED0MK04Tloyp9nsZ5/fLzikbd9qnuo54jGrMab6XewtnA9eRNBDRf3ZDkQzC2efhcBqRSI/5OvtYFM4gjHT2VD3Z05s/++x5UXaOPk/9uwEA0saHAfQggkz2tX6lImQQQU8mjFQiinS6CKlkDFo6DByOA2kACQCHoT9v5V4nAXRknyey+/jnbD8/L8nupBtAV3ZyN4B2mBfrFp6z12wDNwbJY7ftE1B9MkQ+kwTwc9c1/1KpFDoALAEQD+jKCQBLOzqwb98+lJeXG+NeokJ+ECNPLOHlJ6OT92KIIYb3vGT3/B7zwgsvWCJD7e3tOOmkk6ALoUIRQ95CgiZ9IYachI6XOTJRI467CR8vY26vvc7zIIZC3G7+kf0XLeJOwz8PC8/FMZmwcNrndV5Q+3p9Xk0XQgAQyaCIF0KRNCJSgWQVOkXIGOLHKoi8CyF9Pi+IItCyzzWEUYQwNESQTkYRioYRSocRSsSgJaJAqFj/VmAkAESh/zunAGRgCs9wdpz//6JltxSAnux8YwcvRMIwRU9P9kRF2QOKoYumKEwBxMROcfY5+9DT3PnAjal+3kXRROQjXoXBCAAlAV2zK/tYXl5uEUNBMnr0aDQ2NlrGDh06hEgkgsrKSs/nyXsxxCJCu3btsqxb1NraioqKCuVx4XAY+/bts4wdOHAA4XBYcYT9H4wXRoMXp19yhXSNPEb21r0G1Zz2q577vZdcjhOv7XQvTvsd99mFECMcSXPPufEwEz0sKpSxCCBjnosQYsdkoP594UQmHUFPOnssH3BJK1773YwTdAuPImKURxRCqvleISE02BB/JHt7rr5m2rRpePHFFy1jGzduxNSpUz37hYA8qSZz4owzzkBRURF+85vfGGMdHR1obGzEl770JeVx1dXV2Lp1q2XsjTfesKXOiN5A4XGTXhjscxVG4hyvQikXYeLlfpzO5TRXeiwXxbWIoIwhhCKWKJE94iOKHDM6JBdC4axwkqXT3Mi4fTgqAeS0z2mu7cSAPRXmV6iI5yKGIiUBb37p6OjAzp07sXPnTgB66fzOnTuxd+9eAMCSJUssHuJ58+bhww8/RF1dHXbt2oU1a9Zg9erVuPnmm31dNy/EUGNjI9atW4d169YB0KNA69atw7Zt21BUVGRUkt16661Yv349Jk+ejKKiIvz0pz81znHsscdi2rRpxuvbb78dH3/8Mc477zxs2LAB5513HpqamvCDH/yg399f4UO/GO2IKTIXIsKj03On431c0vMxbvu8iie/853SYwB4nxCfHgNgpMcAWNJjohAS02P8fn6Ok+jh9zml0zKZMDLpMNJGRCgMpCPOAifBPSa412nJc/YagJ4i64LcC8R+XtPCfjF6pPIGefUK0e+FwUgE+m+3ILZcIkPbt2/HlClTMGXKFABAXV0dpkyZYnx3NzQ0GMIIACZMmIANGzZg8+bNOPXUU/GjH/0IDz74IC666CLf73vAefrpp7Fo0SLj9fPPP4/nn38exx57LN577z384Q9/wJe//GXcf//96OnpQUVFBZ555hlUV1cbxzQ3N1tyot/97nfx7rvv4qGHHsJLL72EaDSKW265BXPmzOnX90bkC4UU+PVALuJIPN6PyPF6bBDzPSJLj1n2K4RQTtdCRpoyU6XRMmmX9JpTtEeWSoNirkXw8DgJlW7Fc4LIPaIjI5e+PWeddZajv/fRRx+1jZ155pl46623criaSd71GconWD8jYDEKx0AN+DdRA+7fUEGbqPvbQC07j2qOk4FadYwiTSZGhMRIiGyst897sy/IY3M+v9w0zafHAJYyc44KySJCDDEaJIsO8WKHPU8jnI0rhbOVZNnX2UqyZCKGTDqMno5SIB3SK8BYZIc9b+Fes002Js5PA6Zxug16dIhtrLIsDXvUiI8Kic8Bq8riBRJFhQqfJIB70dra6mhiZt93TwMoDejKnQAuA1yvnQ/kyZ+5BDFE8fIT6CWq4icN5jcK5OfYXkeNrF4h3jTNk4sQshyfgy/IDxbzdBCGactbcDJMu+EmYkjkDHXiCC4y1BPQefoDEkME4QmnaFtA3cn9ppLcUl2qc/fmvKrXftNqjiLL9AoBsHmFvKbH7LchK693FkKq9JiIzS8E6FEh43kvN0AhiPhNZZxWCRxZVEi8htNxxGDE7cfZ77kKhUK6V8Iz3cgtVZYLaQyO/0b98B6CigLlej0nQSK7ltt8NzHmJoKc0mOAsqeQ/tpaPSYzTDulxtzK7fnqMK+CyDg2HdbN04C7yBFN06Jxmh8D4G6c7pY8B6wiSXzOIJFDBOsZosgQQRQMomjsJxGZSxSIf+4mQlTn9hPBcbuPPjuHc08hWXqMRxXtUY/LzpG2lct7EUWZNHeMzAStSn35SpHxjzLzdF9CgmmwE0FwvwULSWAU0r0SRAB4/TH3Ujrv8cfHi8/HryDygx/xJI559QV5PYfqvCwq5KGnEGBNj0Us/iC5YdqtA7UMmSCSkUEEmXTYqCDrUZXUqyI+qnH+0UCWFgPsaTK3cnoRr+X0xGAnyMhQ8G68voPEENFP5Fs6bYDupa9SZX6Ny07X9HJ+2XG57o9YC1rdegrxXabl3aN7L4S8khYiRbaSevEyuXiEjHNosAsgSF7LcKsgc7pp/hzEYIc8Q8QQJ9/EyiAjKKHiFpFRHSfb5yXi4/Ve/J7XNmaNComExciQx/SYFyEkCipR4KgQU2bWZouh3hmmxWhR9s50nLxB4j4vkMghTEoQXGk9RYaIQUh/mrJ5eJE2UPcg4vEeepP6GoiUmJfzqa7hN3VmjNlN0wxmmhbTY7J1x/j0mJeIkFMn6QgyhiDykipjlWSAQ4rMq5FaZqYGIK8cA6wiSBbREUURRYUIZygyRAwy8kU4qMj3++PpxX36+QnzanYeiJSYlzSZbMzzMXKvED/mhhcPkFd4QSTixUdkwWtaTDZfugOwGqf5id3CIyRzeEjkEFbiMaAkoG4h3Rr0no8FAIkhgvCM7MfFx2+N3kaK/ERw/EZpconueDVIR2A/P/MKuaw/Jqsec+sw7bQMh2rxVgaf+rJGiKyVZOw5E0bpdFivJHNKkalK6BOSzRIVAuTGaZlZGrBGjcgrRPijOAwUBySGigtofQsSQwShJFdDToCXCfK8vUm99fUYh9hTCJA3V7Sf1nmO01Ic/LhyvTHRI8QEUdr66GqK9jMOwGqcdiult7muCcIXJTGgJKAl3Lt7oK/JUQCQGCJ8UEiprQHGbyrKa1THj4Fadh85e3uCHpM3WFT1FAKsER4xKuTUdFG/BXWzRRGZIFIKpAwTQtk3aDy6bGJUSCmgmBCSdZmWvYbkkUeWUhPHoZhDDAnCAAISQ0E15+8PSAwNavyKF96sTMgZgKaMfubm6vdR7fcjdrym3VzWH1OZpt3WHVN1l3YSQvyYly7TMh+R1TztUEUm9g5ySqEZb4tPdTktveHmFfKzqj0xpIkjODFUQC2o6ZuPCACZiCrkKFLA990bs7PqfH4jQl7252qSdtsnFVCmVwgwTdOqnkIyvPiEVEJIJYw8rUNmyDHzTdlSZPxzL2kx1Zixw62HEJsnm+/mFXI7LzGkiIDEEEHkB70VUnn437qvU2J+TNJ+j3MbczNQW+Y7N1gE5OkxUfA4rzumFkJeF2b1LIyyi7P2sPXI/KTFZMZpS8dpr+uQQfIoPuehbtOEA1HAx1J8zhRQo6E8/NYgCMITXiJEquN6M5ZLBMkiytK29JhbTyEZblVlbJ9xvl5EgzwhrkvmZVPNt544++i0FAf/6OumFeMUFRqyRBCcGCLPEJE/kG8oGGSfictPulex4ifi48X701fm51znG49W0zSg7ikkW3vMyTDNxtl8fp8XQQR48wyxeWmEjWaLtpJ6J0O0FwO1gSoqxCMTLU7l9F5EDgmhIU0MFBkiiIGjP0WY6joBeYVUp3cSNX58Rbl6hnoritzmy96D9D4yrj2FAPnaYyrDdK5CSIYqWpSW+ITSbIFWvoqMPaqM025iCYC8nJ4XNmKUyGkJDkqDET4IY0gqgyH4lomhS54Zuv2YkL2cy4uoUZ07iJSY431kvUI2f5C8p5BM9Jinkwuc3gohPykzaRdqr6kxT6kzp8iOaukNEbcKMhJJhIQYglMGQUWY+gESQ0RA5BLZGeiKM3btPP0x6K/0l2wsVwO1bJ8xpn/5OvUU8pIe8xMR8rpSvev6Y9xvdb7ZYiYdsZfU85EfVVRIZZ4GoP9cdMFMk7FHMU0mRoXMO3RPdZFXiFCQqxexwBmCb5noHX4EzECLnSCQ3b+HHxsvqTLxda7pr97glhJTzfdqlgYsXiG3nkKAe3pMRa5CyA/GMhwZ7k9esYoMiudOkSDl7Ynih425eYVkx7tBQoiAXk0W1K/toEr0+wESQ0Q/MlDm7L64ps81yfx4gpyOVZ0v1zG3fblEiyznszZYBJx7Csm6TIv9hLysUC9rysjOweAbKLLV6Z2X44hYHi1+IdEjpFprTOYZspTTA9aokKqkHtxrL14hL92mCQLBRoYKaG2yAtJtRO7QX3zB0EdRLqdoUV9ew6/vx2mfo2hKW4QQj2ia1g/PQOYTcov0uC3QKkabZGMimeyVbeN8igzw7geSpdBsxmmG2Hka3EQvTRhVr70cQwxZYgFvOfDII49gwoQJiMfjqK2txWuvveY4/4knnsApp5yC0tJSjBkzBtdccw2am5t9XbMgxFA6ncZ//dd/YcKECSgpKcHEiRNx1113oafHub3lli1bUFtbi3g8jokTJ2LlypX9dMdEflBAjRvdBFFvvUBO13VL6flKifHntTdYBJxN06I5WjWmXyLDRY+8r1SfC4ZPKFtSb+5wWYLDiygyxJBsHTJwE7wsvZHryvQEkUX0AvZ288m6deuwcOFC3H777aivr8fMmTNx3nnnYe/evdL5r7/+Oq688krMmTMH//znP/Hb3/4Wf/nLXzB37lxf1y0IMXTfffdh5cqVeOihh7Br1y785Cc/wU9/+lP84he/UB6ze/dunH/++Zg5cybq6+tx2223YcGCBXj22Wf78c4LlaH8CzNHj5BsqlN6LFd/kJ8xL6Zmt31uESHZsZb3qUeFeCHE4E3TqvSYrLGifglZ52l740W7kMo4nssJo79Q2txsKTK3dJnYV8hinE7DniLjhY9M7MgM1H6hqBDBEUVwUaGo/8svW7YMc+bMwdy5czFp0iQsX74cNTU1WLFihXT+m2++iWOOOQYLFizAhAkTMGPGDHz3u9/F9u3bfV23IDxD27Ztw1e/+lVccMEFAIBjjjkGTz31lOObXblyJcaNG4fly5cDACZNmoTt27fj/vvvx0UXXSQ9JplMIplMGq/b2tqCexMDzmAwM/clXj+bPvyR6U2u3s3U7OdaXva5RYYAyBosApD2FNIPtafHALsRWt55Wt6BWjxePG+u3aeNJTgAd2O0lzEAdl+PGBHi9/GPTpBXiPBJkJ6hbPJG/C6NxWKIxew5tFQqhR07dmDx4sWW8VmzZmHr1q3SS5x++um4/fbbsWHDBpx33nk4dOgQnnnmGUMveKUgIkMzZszAf//3f+Pdd98FAPz1r3/F66+/jvPPP195zLZt2zBr1izL2OzZs7F9+3Z0d8v/Elq6dCkqKiqMraamJrg3MagYKn9J5ige3dJSXuey/X78PqpreBU3Tvs8R4Y08H2F+FJ6p/SYWDKvKqM3X7svzuplLTLzuXl+IwpkbBHzke86nQi5R4OcokQWrxCLDHULm8w8LUaM+DEvviLGUPlZJjwTD3gDUFNTY/luXbp0qfTSTU1NyGQyqKqqsoxXVVWhsbFReszpp5+OJ554Apdeeimi0ShGjx6NESNGOGaOZBREZOjWW29Fa2srTjzxRITDYWQyGfz4xz/GN7/5TeUxjY2N0g80nU6jqakJY8aMsR2zZMkS1NXVGa/b2tpIEPlioKrFCowg02O5+IO8RIS8Ch/VfQqr0vPIegoZ+7LixKmxoqyZot9V6sWIUAQZS3WZDLY/bUSEImxH7zbjJLyYcYriOAkY8goRvaQIwTVLzIZb9u3bh/LycmNYFhXiCYWs1bqaptnGGG+//TYWLFiAH/zgB5g9ezYaGhpwyy23YN68eVi9erXnWy2Ib65169bh8ccfx5NPPomTTz4ZO3fuxMKFC1FdXY2rrrpKeZzsA5WNM1Shu6FJXwkbr+ctwLRerv4gr6LGTyrMj/BRnc/rORzmiA0WVT2FZIutqsro2T7+HPrteO887SdFxiJEgNlfKCMzTqtK5j1VkImVY7KIkGiq5kURVZARARFHzlVgNrJfteXl5RYxpGLkyJEIh8O2KNChQ4dswQ3G0qVLMX36dNxyyy0AgM997nMYNmwYZs6cibvvvlsa+JBREGmyW265BYsXL8Zll12Gz372s7jiiiuwaNEiZagNAEaPHi39QCORCCorK/v6lgnCnVwiRKp9blEdr4KmN/MigNFgUbH+GGDvKSTzBKnG7JtcCHlJkangRZL1eUToOg3nztKycXEOAKvo6YJdBImVZHyUx0vERzaHhBChIBzw5oNoNIra2lps2rTJMr5p0yacfvrp0mM6OztRVGSVMuGwfmEWAPFCQUSGVG/WqbR+2rRpePHFFy1jGzduxNSpU1FcXGARh4Im3yM8Xn8EAn4PfivA3I71us+LOdKrgdJJgHHwXiGZaRqwe4KcxsznaiFkPcZ6DtY0UYwOiUtyWBZl5eelw7B1nfadFmOwqJDMDyRO5l87eYUIohfEYHh9BoK6ujpcccUVmDp1KqZNm4ZVq1Zh7969mDdvHgDdzrJ//3489thjAIALL7wQ1113HVasWGGkyRYuXIgvfOELqK6u9nzdghBDF154IX784x9j3LhxOPnkk1FfX49ly5bh2muvNeaIH9C8efPw0EMPoa6uDtdddx22bduG1atX46mnnhqot5EHBClM+kLk5IvnyO0ePHafFkWFn2ovt3PxY7manz1Fehw28T1IokKy9JhompZ5gpxK672tSaYWBqzbtAwmetLcYwYR/TGjl9P3iCX1qnSYm5E6ewV75ZgsKiSrKuMRhZJsnCA84PWPIa/n8smll16K5uZm3HXXXWhoaMDkyZOxYcMGjB8/HgDQ0NBg6Tl09dVXo729HQ899BBuuukmjBgxAl/+8pdx3333+bpuSPMTRxog2tvb8f3vfx/r16/HoUOHUF1djW9+85v4wQ9+gGhUb2Rw9dVXY8+ePdi8ebNx3JYtW7Bo0SL885//RHV1NW699VZDXXqhra0NFRUVABYjuCTqQONHwLj9T/bak0ecF/G5TzbGHxcRxvy8FvfJxiLCc4UYEsWH7LW4TzWWy3hv9onz4n7ns+oxuxjiS+mZadqe+vJaUSYXQk7dqVXm6Ax3BwCQRMx4nUQUGUTQiRKkEEMSUXQlS5FMRJFoKQMSxUALgI7sxp43ScbEeYnscwBAJ8zeQm0wK8pki7TKeg25VZBRioxIArgXra2tjr4d9n3X+mOgPKDIUFsCqLgdrtfOB/Lhz3BXysrKsHz5cqNnkIxHH33UNnbmmWfirbfe6rsbIwgZXlJVbmNO53H6y83LPrfUlpOgc5wvF0KAEBmSCCEeJyFkXtI9JRaRzBdFkfNaZGHw65GZJfURe0BH1lHaacV6AGY5vSwiBKijPYBcCIlQVIjIgQGODA0UBXSrRDD4SW/lS9oqX8jxs/BzmFeh5HWfSsh4iTx5nc+lxwD5+mOAOj0mRnjkS3A4R4S8Lr+hEkU8vAgyXmfC3MKsIavgceslJDNUS5feECvIAKs3KC28FvGSHqOoEOEC60AdBM4rZuUV9E1HEI4EJIC8iJxcfxq9Rm68XsNvZIhDXH+MF0IyZGX05j51RZhq3KnztN9u06YEM4/r6Y1x2maglkWDxPEgISFEeIAiQwQRBH6jSV4iVX0RocrV/O3BL6TC61twSqV5jdw4Xd/NU+Tl/JKokLj+WFiIFLn5hORz7H2GZBEhVdqMxyklxi/EaukrlI0SpRJRpBIxs4rMT0RI2nGa9wXxSqkru19loFZVkJHQIQIih5J4x3MVCCSGCMJAJZD6sDWAm7/I7zH8HJ9RHakg8nkOfv0x9lrVU8hynCQ9Zu5LC/P8CyEviEJJmkpzWpjVV1SIFzFiab2TV0h2Dq/jBOGBIEvrKU1G5Df53vtnkODVLD3QhuhcU2eKUnqvPYXcyuhFn1Bvu05nELZEh9xK7PmS+nQ6jJ5EVPcLuTVSdGq6CMAUPnyDRd4r1Jtu0+QVInoJpckIQoZTisqrqCpE8TVA95uLKOKP8/qLzCkK5MVUzS3EKsPJNG2vFLNHflS9h/j5qnXKVLg1WdTHTBHE5kiryFQdp1XGauMtqpbeEAUQI6147gcSQoQPYgjOQN27YG2/QmKIGAAGcZWan7eVi4HaazSnN1Egt+saz/UvZ1lPIQCe02P6ae0iSOUpYvNl55Fdy8k4rVp6g71mjRala5F5Ka+3pcjEUnpb/gxWscS/BsgrRPQ5FBkiiKDoD7HTV9Emv6VXkmleU2OqS/g1S/sxP4vHed0sx2kWIQT4W3JDFSVyb7hojwipluDgESNCYVibMLIu0+Zz/XUGuggyU2RwN0h3ZDepcVqDaZqWRYREszQgT4+phJAsckRiifBJkKX1BWRfIzFEEJ7w+aOiEjmqub0xS/Pz3B5zRfp+JA0VPfYUUqHqM2Tehl0Iyc9j9QM5VZIxrBVk2aoyp0aLOZumZRPE8np+vhcK6FuHyG8oMkQMLYJqvlhofiDZ++jn+/fi/ZGNezFLy87Vm4iQLTJkb7Co6ikk8wWpoj+ybtROJmr7o10MsDGVSZrHFEIRS3TI0mjRaZ0xT+X0zDTdCXlUCJB7h/hIkR/RQ1EhIgeC9AwVkEYnMUTkAbygKlA/kSoV5scXlEsUKEhfkJdrchRJzNN8TyFjTIgKqdJj5qWcq8m8CCHLPTlUjQGmWOL7C5kLs0bkjRZlosgxMsR3nIYwQeYNkr2GsI9B6TEiQMII7ncI9RkiCJFCiyD1MW6psSCjQLLxnMbkDRbFhVjdyuZlOAkkWcpM1WtIhPcGyVJlstSZsR6ZERVy6DotrlQvqzbL3om9kaK4j38tfzc6JHSIPiTIyFAB/VclMTSkGQoChf0Xl71P/r+/l89B0X3ayy24eYK87M81CiSb25uxLOFIRmqadur9I0Z63MrtVYu1uokg/l5U65CJHiF+FftUJoYMM04niu0maa/rkAEw02OsrxB7lJmoVRVkbgKJp4C+gYj8gzxDBEHo9EIg5vKLRCY+vMz3Ypb2MuYUGbLsM6NCzCsE2E3TgFX8iOJI1TeIITNbuwkhWcTJzTAtm29JlaWzx/sxS4vpMgBWc7QodsS0mEguDRYJohcEWU2WCug8/QCJIYJwpBiOPyYq8eM0lmsUyInepMPc7k9osCgKIbf0mPq1+6r14lynSjMneN8QiwIBfCk9Z5pGGKlEVK8iE6NCshJ6/jm/ATDL6dOSR6du07kKHYoKEb2EIkME0Z8MpFF6AFODuUaB2HMvabJcxJkqIsRHhWA1TUckBmq/iKvWO3WjVkWQxOfmchvO5fT8Pn6hVmsVGeSmaVUkiJ+XPbNd+ADu3abBzSWvENGPxBHc2mQF9F+WxBDhEb/ipUCrwoKkN14h1XzZsVLx4mNMdg3Lta1CSGywmGtUSDZHvw179EhlwpZFhtgYEzvOvqEI+IiQ2XU6kvULwS6CnNYfs1WQqRorMpy8QoA6QkReIaJv0IoALaAqMK0omPP0B0P824oIxkTdV0bsAjJ4u4WW3fb5FUd+8SOmLJs9RcZgQkg/Re+EkHlr3oSQVRBZhYGXZou8P4g9phADa7TYnYgC6Yj/nkKWqBAzTXfD2nmaF0XiI8OvV4iEEBEMqbi+BXIu8gwRBGHgN/qjit749fyIAs1rms12X/IGi7KeQrkiW36DH7eOqYWQF1RRIsBcmBX8WmRO/YQco0Kik5pPd8k6TvNzCGJgSIdDSIdzrJy1nUuD/rOQ/5AYInyQD6mvoKNFqnOJ79PjLwe31FhvjdGyMa8iye14WVTIshhrMKZpL+uTAXYhpPIOsTlM5DCzNB8V4svm9ddmKX0KMSQRRRJRpJJRJBMx53J6lWHa5hXio0F8hEiWFvO6GCtFhYi+JRWLIRULRgylYhq4H4q8ZqC/2Qgij3ERXbmmxfj9uURq3FAJJy+RIWPc2mCRRYFE07TYVdp87k8I8agqyvTnadu1xddphA1B5AafQmNRIZtx2msZvc0rBPjvESTuI6FD9C89CCOTa08127kKIyoEkBgiAPSdNycfIkl+yOFee+MVEufkmiZzMks73YPb9bLwQkiMCgHqhVRVZfSiYVpsqugmhNwaLbrBm6X119koUcbnCvWuUaFOmFEfFhHy6xXioagQ0fckEUUUwTifk+gBcDiQc/U1BeP13r9/P7797W+jsrISpaWlOPXUU7Fjxw7HY7Zs2YLa2lrE43FMnDgRK1eu7Ke7HYp4+aXcm1W5CxAvlVpez+GUJvNyXSfRJB6rWHaD4ZYeA2Rl8GnDqmxeKmMTPapoEhu375MLLhX8IqzszEnEkEIUqUQUqUTMNE6r+gupOk6nAbvwYc/ZPievEKXHiIHH+SfM/5YLjzzyCCZMmIB4PI7a2lq89tprjvOTySRuv/12jB8/HrFYDMceeyzWrFnj65oF8Wf7p59+iunTp+Pf/u3f8Mc//hGjRo3C+++/jxEjRiiP2b17N84//3xcd911ePzxx/HGG2/g+uuvx1FHHYWLLrqo/26e8Eh/eYH66jh4i8A4zevtNd3M0k735RDhEr1C8lM5+4TYHECVUrOnzMRy+1zhewjxMFHE5qTTYX1R1kTIe1qM3wfAvsQGG7Pk0SCPChHEwJNCFKmA4iQp9Pg+Zt26dVi4cCEeeeQRTJ8+Hb/85S9x3nnn4e2338a4ceOkx1xyySU4ePAgVq9ejc985jM4dOgQ0ml/f2wXhBi67777UFNTg7Vr1xpjxxxzjOMxK1euxLhx47B8+XIAwKRJk7B9+3bcf//9JIak5HsZexAptwD/u6u8Nl6Pc0tvOY35SYn5vZ7EK+Slp5A6FebfVA3IfUOMsEIYZRCGUym9/hix3LX+iz+KDCJ6VCgRs5qk+U0c518DsFaQuXWbFnsJUVSIyA/0n41gxFAu3qNly5Zhzpw5mDt3LgBg+fLlePnll7FixQosXbrUNv+ll17Cli1b8MEHH+DII48E4K4PZBREmuyFF17A1KlTcfHFF2PUqFGYMmUKfvWrXzkes23bNsyaNcsyNnv2bGzfvh3d3fJfJMlkEm1tbZaNEOmP1Fa+pc98/EC7eYjcjvUy5na8l1QY4HivqvXHGLLSd/ZanCOb71QdxkeErMdmlEJIvJ4MWTUZkE2dZbJRobQiKiSLDNnK6XnRA9gjQ/wccRzIv//3xFBE/wMhFtAWBQDb92oymZRfO5XCjh07bN/ds2bNwtatW6XHMH3wk5/8BEcffTSOP/543Hzzzejq6vL1vgtCDH3wwQdYsWIFjjvuOLz88suYN28eFixYgMcee0x5TGNjI6qqqixjVVVVSKfTaGpqkh6zdOlSVFRUGFtNTU2g74MoRHJUNkGmxFQRIK8eIHG+8lxmVIhHVkoPgHPeqCNA4pjM82P3Aln9Qexa7FHlFfIKvx5ZEjGkMjGkElG9t5DbOmQqv5BRQdYF6wr1fDpMJpTE5+JrigoR/UtfeIZqamos362yCA8ANDU1IZPJSL+7Gxsbpcd88MEHeP311/GPf/wD69evx/Lly/HMM89g/vz5vt53QaTJenp6MHXqVNxzzz0AgClTpuCf//wnVqxYgSuvvFJ5XChk/Yte0zTpOGPJkiWoq6szXre1tZEg8oWXVFu+p+MAzz8WbtPcIjVOpmgxauPFjO0lMuQqnqyr0keE5oqy9Jh8n5gys1eesePYuCwiJIoh8TgW3ZGlx0QJxpunLQu0psPy3kKyZTekpmnA2m1atgArYI0OQbHPDRJCRN+i990KZj2OVPbndt++fSgvLzfGY7GY43Gy727V93ZPTw9CoRCeeOIJVFRUANBTbd/4xjfw8MMPo6SkxNO9FoQYGjNmDE466STL2KRJk/Dss88qjxk9erRNSR46dAiRSASVlZXSY2KxmOs/EuGX3np98lw8+U2LOYkeJ5HkdJ5cU2KWfWaDRQB2IRS2G5tlfh5xv9pALY8ksXmqFJuI135CDKkgYr2FvK4/Jo5lzyzfxIiQ+B78RoUIom/hIzq9P5dOeXm5RQypGDlyJMLhsPS7W4wWMcaMGYOjjz7aEEKArg80TcNHH32E4447ztO9FkSabPr06XjnnXcsY++++y7Gjx+vPGbatGnYtGmTZWzjxo2YOnUqiovz+Mt1QPH6V+dg+yVdjED+LuirPy1yFT5u6TXjtT/TtH6YH4O09+aLMaQkgfa0RSjxG6D2KTFkCTnmi0gihmQiZl2UVWaWFlNl7DkA+9pjYmTI62KslB4jBp4Uio3Cgt5v/r5ro9Eoamtrbd/dmzZtwumnny49Zvr06Thw4AA6OoxKBrz77rsoKirC2LFjPV+7IMTQokWL8Oabb+Kee+7Be++9hyeffBKrVq2y5ASXLFliSZnNmzcPH374Ierq6rBr1y6sWbMGq1evxs033zwQb4HIOwJWLl6iOX7O45QmE+d7EUiqfcKYuBCrZZ80lWUvkbfOV5fQOxuo7ddyK6+XCSFWVp8WzgpkRVImGxVKR+wRIFWwx5IeU61Mz0eGZOZpgMQNkY+wjmBBbX6pq6vDr3/9a6xZswa7du3CokWLsHfvXsybNw+A/bv+8ssvR2VlJa655hq8/fbbePXVV3HLLbfg2muv9ZwiAwokTXbaaadh/fr1WLJkCe666y5MmDABy5cvx7e+9S1jTkNDA/bu3Wu8njBhAjZs2IBFixbh4YcfRnV1NR588EEqq3dlINNS+ZYSy+HHQ5XyUqXD3EzQMr+P+Fx2bTeztWW/GRUC9BSZev0xN0O0eq5TRAiQiyCx7xBPBmFEkFH+wrWIHu6qSRYRgm6c7ukoBTpC1oiQKjLER4gA2Feml0WIAHvUh0rpifykGzGkApIG3TmIoUsvvRTNzc2466670NDQgMmTJ2PDhg1GJkj8rh8+fDg2bdqEG2+8EVOnTkVlZSUuueQS3H333b6uG9KYq5iw0dbWls1DLgYwlLxEXgSJ6odFdqw4t9jDvojDWLHLeESxT/Vcto8fkxj34tzp+3qL57hPtd8ypqfIiuIp6ar00XDSJl7MVJYpbKJIOabHokgBQNaaaRU8sew+q2Fa7UniYYInnRU8es8g/S/SLpQiiRi6UIIkYuhECTpQhk6Uoh1laM+Uob2lDN1N5brAaQTQAqApu/FjbOvI7ksAelSoHboAauMeWX8hfpFWMUpEYojoL5IA7kVra6ujb4d93z3V+mWUlgcjhjrb0vhmxf+4XjsfKIjIEJGPqIzRfqM7qvME0WSxj+jL21JFd2TzvKbOlGP2Unpx/TFAtWaYfKV5c768n5A4V2aqFsf58zLcDJ7MIM3P503TyezyGxlVOb1bJRkA9yiQapFWEkJE/pJEFOGAIvTJwnDiAMjbbxticBG0sMmTdJpTesvtOPF4p/M4CSTH9JfbmP7Fy5fS89VjftNjZoTHnh6LIZndZwojMSIkiwapokJOwkgUQems+NGN0zGjt1AyEdNTZE6dpcVxQwhpsPYUknWclj2ad6lDQojIL4KtJvO/HMdAQWKIGADyRMz01T3IhI1TJMfpPLLnstdOxzqOWaNCQLaCTDA5A069gOyNGGXzVSkw2TnF+SJu5fRWyRbhxoRy+nTIubO0bByAVcy4rT5PpmmicEgFGBlK5bAcx0BBYoiQkC9iRaSvU2ey9+zxh1kW1fE6Jo6rokRukR9fmwaxwSJgltKrS+Pdy+i9GKadq8vsIoiJJxb1kfUXMg3TVvFjltFHs8bpKJKGcRreNkuKzKnTdBpAJ+zRIDJNE4UBa0ERzLkKx5JMYojoA/JVTHmhH38kvEZ7ZFElz5EfSASVusEiS49ZT6GKEIlRIHvJvFchxJ+bHcuuLd6LU7mutYLMLO0VI0WpRMy6Dpmbb8iSIlOtSs+PAfJO014hIUQMDCkUI5xdU6z35yocSAwReUCuEZ8BEF1B/MTIoj2yOSoR5NkT5HwdvsEiM00z5JEeecdoVXQn15Xq9du1CyQmdJgg0qND1mgQP4+NJxEzrphEFKlkVN5k0ZMQUnmFnBos8o9eo0IEMTAE6xkK5jz9AYkhQoEXoeFHxHid298CJ8dreUl9ifv8mKTFfR7EjXKOLT2mV5DJ0mPqlJg8ysNK5vl9Uc4s7UUIeS2n50WRKkLEN1lkpmldBOnpMd04HdXXIVMZplWLswKQp8XcBJF5d3YoPUbkFynEUBRYZIg8QwRRwLgIJDdTtEyUeMFrKszJR+R0X8Z+s8EiYO00rVoXjD1nr62Rm7Tjfn6fLCLEztH7cnprSsx8zrxDepPFVCLmvNaYuEaZpdu0KHbchItMFJHYIfIXigz5oKKiAq+//jo++9nPBn0/RMHRHymugfIg+firxsks7TTXTdz4SHvJI0H8lm2wKFmVnkWF+FJ4byZpM0IklthHITZsVEeYAHk5Pb86vZMw4tNlaU78sIhQJ0qzxumYs3G6BfIokaXBIp8eY5Eh0TRNpfREYZJEMUIBRYaSBWSgzqkjUnt7O7q6uqT79u7di+XLl/fmnghi8OE1TeZlzC0yJL1u9peSrMGiZCFW6ynUhmeZYVp/7rZUh9Wozc9j55KtgeaE1dZtjQhlEEYqE0N3ImqW0/tqsMhHgmSNFvl5PKrGiySEiPzEuhRy77dCwfOdvvbaa2hoaEBtbS0AIBSS/9Xc0NCAm266CQsXLgzkBomBpJCrwnpLQD/Ejukq2AWSKJZUAsqTP0g8Pm1rsMhSZKKo8Wqg5n1CuZTY69ezXpvdD49pmLZ/oGnuigDAjNJJxJBCNPtc7ziNRMy+Bpm4HpkojgBYfUF8VEhlmqb0GFGYdCMamGeou4AiQ55/42/evBl33HEHQqEQQqEQrr/+esyYMQO1tbWora3FiSeeiFAohIMHD2LYsGF9ec9EQdCfQipPlu7wa5b2ch7VuSF57eRVEkzTqvSY167TMcEk7dZ7SPXaPIdcBJlvRW6YFtNlpmk6YgikFNdxGh0h+WKsKkEEwIwAdcIqisRNlh7jz8GgqBCRv2RQZPu56s25CgXP3yDf//73cemll2L79u349re/jVAohKeeegoPPPAAQqEQSktLceKJJ+L999/H1KlT+/KeCaIX8AuwiuMecPMG9cYsrRI/qut42Wd4hZxN0/xz95SW1TDtVGJvHuNdCMlSdeyXM19OL+5XNVvMIIxUIppNkcE9RWYxTmuwVo6JlWRe1x9zgoQQkT8kEUNQC5MXkmfI15/Txx9/PI4//ngsW7YMv/zlLzFlyhR89NFH2LFjB3bs2IG//e1vOPnkk3HHHXf01f0S/U6QER4xguN27jyJ+DC8prBUx3jx+zilyqSpL7fNbpqOsRXqJVEhp0gPvzJ9VFi5XtwHyAzUcoEl6z7Nk0HYGLeuO8bM0nLTtGGezpSis6MU6IhbDdLic/61IYaYWboT9r5CQa0/RhD5Qw+CqybrCeg8/UFO3zTbt283no8dOxZjx47FV7/61cBuiig0VKKlUDxHfSy4vJql/Yzz+7ykydhQxF7OLkuP8X4fp3J7fp+/povehJAXZPKNvU4hhkw6jB7Z6vRiab24AbBHhAB/a5HxUHqMyH+SiEILrM8QLdRKED7JsyhQLjhFgWRzxDGnY71Eh2xz7Q0Ww5xXyGtzRVm5vRj1EfcBTk0XVWuRqaNC4l+qshiWGRGKIsWV0xtRIdVq9LINgGmW5r1CqgaLgFUgyaJCBJH/8CnnIM5VKBT4tw/RPxRKhCcIevk+3aI4qjEv4kd2DZWQMs7LFmNNm6vSC+kxlUnaS7RItQ+we4hkr9k8/dEaOWG9hZx+oVqjQfrV2aKsqWzH6e5E1N0obasgE4WQqqyeegoRg4sUokBgkaHcor0DAYkhIiC8Rna8zBso8eXjx8GradpNBMnGvQgqJ98QYPMKMcIRu8gBYBM1+mmtAsY4h2Cmlgkj1T6ZEFL1EOJL6XlRJD4CgFjIz7xDRjm9KHhUQshWQSbLn3mpGOMhIUQUDuQZIoiChxdRvRFUDj8WbmZn2T7VmCryI9vn2TDNNmt6jDdNe0mP8WkvNm43UOvdplWRJFkpPjNXy6rIRFhvIUDWcTqSLZtn/YTMTtNs6zpcoqfIWkJyk3SH5LUlKsS2buG50zpklB4jCpskougJqJqsmyJDBMEYJCk2Pz8pTl4ht+PcIkOexvRyVr6UniGLwlijNOpokUzs8Od1K8uXRYNU5fQZyBdj5SvH+LlW07TeayidDltXp3frOG18NOLaY7IGil6hqBBRWGQQRlFAER3yDBGDkP4QNbIUGhtj1xdf99V9STqsq6JA/H4/ESIn8eM5AiTb1A0WzShPkovqpC3PxVJ5e4QoCadokWweEzvMXO1UoeZkmubnWMvoo+hECTpRgiRi6EQpEi1lQEuxvIxe9hyAu2laFR0C7FEhEkJE4aFHhoLqQF04rSRIDBEBkktFWH+IrD4+v9e37MUPpPIFOZ3Hcqy1waKq07T1dDJjtLqqzMlkrTZjW1ezd6ogczJNszOLlu1UNlWWQgydKEEqGQUSxc7dpnnfkNFgUVyIVbYOmVfTNEEUHj0Ibk2xngKSGIVzp8QQo0DSa7JokSzio/Iaifuc5qtEkOIcllJ6l55CADwLHlVVmdvaZPo1nCvIAIA3TfPrjZn7zaux5Tf4x1QmpnuFVIZpmXnaaLDIp8b4Ncj8rjdGUSGiMEmhOLDIULqA/s8XzsIhHEuXLkUoFHJdDHbLli2ora1FPB7HxIkTsXLlyv65wUFLUP+x8yF0GkAJvSz95TbPSczkbJZmm1lBFo0npekxUdiw9Jg1paVagNWaAuNN1uJzmbFaHGPj/AaYokxElFtJPhKUTY11oRSdHSXo7igxDdMtUBuoDdO0GBXijdNBmKYL50uBGNqkjZ/OYLZceOSRRzBhwgTE43HU1tbitdde83TcG2+8gUgkglNPPdX3NQtODP3lL3/BqlWr8LnPfc5x3u7du3H++edj5syZqK+vx2233YYFCxbg2Wef7ac7JUzy9YsgB0HkFkv14ifyKqK8XsM4r+kVAqzrj9nL2a39gMxxVfl7xjbOH+MUEbJHjNKC+JGvk8ZgUaEM9wvWmoCLZNchyzqhEjEzRea22TpNy3oHif9/ackNYvDSzaWce7t151CVtm7dOixcuBC333476uvrMXPmTJx33nnYu3ev43Gtra248sorcfbZZ+f0vgtKDHV0dOBb3/oWfvWrX+GII45wnLty5UqMGzcOy5cvx6RJkzB37lxce+21uP/++/vpbgnvDKRY8pApdhMvXo3Tsv2BRYZMrxBvmo6G+QiO1SgdNZYyNSM5Yjl8zJAYSdt86/OkLSLEv44iaRFBZuQpZZE1+tuWCyLeH2SapkuzxmmznL6nZZg1KsRvYlQoAej//9qyG+8XYkZqWTRI1WuI0mNEYZOx/bHRu80vy5Ytw5w5czB37lxMmjQJy5cvR01NDVasWOF43He/+11cfvnlmDZtWk7vu6DE0Pz583HBBRfgnHPOcZ27bds2zJo1yzI2e/ZsbN++Hd3d8l9OyWQSbW1tlo3wS2//KnY63ulLRfbXuh9cRJGbuFGdyqshWnU9mUAS9wPgGyzy6TEGXwovlsXrY/YIDxtXlcmrPUaiF0ls4iiPMPGPPPKIkCmrLOJI9Aq5+oQAebWYLBrk1zdEEIVHEsXGz1PvNz36Ln6vJpNJ6bVTqRR27Nhh++6eNWsWtm7dqrzntWvX4v333+/VIvEFI4aefvppvPXWW1i6dKmn+Y2NjaiqqrKMVVVVIZ1Oo6mpSXrM0qVLUVFRYWw1NTW9vu/BR66/+AvlC8Oj4nEyTrud1msUSHYOh6iQuP6YfohVrMjWFFOV0bNxMeVln2+VKTFL6b09YiTbAJUQiliesyNYWqwTpUghii6UoitZqvcVYlGfFpjRIHFdMumyG6pO0169QBQVIgofq4uv9xsA1NTUWL5bVd/jTU1NyGQy0u/uxsZG6TH/+te/sHjxYjzxxBOIRLz+xWon9yP7kX379uE///M/sXHjRsTjcc/HhULWXjGapknHGUuWLEFdXZ3xuq2tjQRRTngpsfdThi/O7etFXeX/P2z4SYM5HeMUBXId55fdsPYUYumxqKKbNJ8+YyKHiSWxw7SqL5HT4q1+l98QQ+q8VyiFGJhpmm26YTqbIsuUop31FWqBvZcQ/9pIjzHTNOsppFqDzMk0DcVrgIQQUYh0I4pMQNVkrCpt3759KC8vN8ZjMWcvkey7W/a9nclkcPnll+OHP/whjj/++F7da0GIoR07duDQoUOora01xjKZDF599VU89NBDSCaTCIetv0hHjx5tU5KHDh1CJBJBZWWl9DqxWMz1H4kY4jiJGdUcpxSXn0iS8vrqTtPWVFRaIkxU5fF2IcPO4XXxVlmfIb7ztFhpEoa9vxC7CnvOR4VSiCKNbDl9Iurebdq2/hgvcpyeA/I0LFWPEYOPNILrQM3WJisvL7eIIRUjR45EOByWfneL0SIAaG9vx/bt21FfX48bbrhBv2ZPDzRNQyQSwcaNG/HlL3/Z070WhBg6++yz8fe//90yds011+DEE0/ErbfeahNCADBt2jS8+OKLlrGNGzdi6tSpKC4ugP41eU2B9ADyTLHw6IJK+DiJIpWY8WOSjsvGkhavUDSeQjRsRnf46JA8VZY2IkWiBygqRH/4qJE5Zk+x8dEiXgTJqtd48WNNifECKJL1H8SM1Bjb2lGGdpShg0WFmqBHgZpgPmebq2maeYd40zQvalTPqXqMGDykEEVRQGuT9WTXIvRKNBpFbW0tNm3ahK9//evG+KZNm/DVr37VNr+8vNymDR555BH8z//8D5555hlMmDDB87ULQgyVlZVh8uTJlrFhw4ahsrLSGF+yZAn279+Pxx57DAAwb948PPTQQ6irq8N1112Hbdu2YfXq1Xjqqaf6/f6JXMkz0eXnp0VmmlaZn53O4Sie9LQv7xViiP4bVbrKqRGj2iStWq/MHi3iI0EyT5AsGsSwd5nWBZE1OhRDV7IU6IhbvUGuUSGxoSJfJcYe+aiQ0xIbIhQVIgqXDMLQAo4M+aGurg5XXHEFpk6dimnTpmHVqlXYu3cv5s2bB8D6XV9UVGTTBqNGjUI8HreNu1EQYsgLDQ0Nlj4EEyZMwIYNG7Bo0SI8/PDDqK6uxoMPPoiLLrpoAO9yMBGEUOG9P7mcz+sxvbxXJ1Gimu9ljD+P783JK2SP6PDiRCyj5yNFYsQn5uAjcjJmi0IJkBukAXNRVjEyxC+7kcpWp9giQ5kyvYKM9wfxj+IGwL7+GF9K7zc9JoojEkJEYZNKRRFKBeMZ0nI4z6WXXorm5mbcddddaGhowOTJk7FhwwaMHz8egP27PihCGnMVEzba2tpQUVEBYDEQUNhwcOEmMGQKQDwmItnnNCZ7zY+Jz/l5EeFRNhaBzUAtTU9Jnvsdkz16HusGIhkUx1OIxZN6T6GYLlZK0aUQMtbqMX2eVTTJDNOq/aoFXdlirLFsiFxlmmbihx1pdiyKoh1lSCFmpMHaUYZmVKIdZTiIUWjBCDRjJA62jkKi6QhgT0hPizUC+Ai6GNoDXQA1wkyVGUKoGaYQaoeZNlN1mubvnxZiJQqJJIB70dra6ujbYd93wxo+QKi8LJAra23tODxmouu184FBExkiBhN9XS3WC1TmaL/HieNeo0nGfLPBIgDL+mP6NLtR2kxhyVNiKiO1H6M128euqz+aqTIRcUFIq4fIGmfi2z6y3kKJjlIgEbKnyGSpMgDWCjHRLM3ItacQCSGi8EklihGKBhQZSuSRzcGFPP3GIQYveeYDckMlSLykybyYpVXjskiUERnqtpmm2fpjYsm8U3RHFj2Sm6Tl+8WUGV+iD8hN0wyWGmPPrY9ml2kzJVairzvGm6YPlwEtcbtpmjdOs5SZYZpuhzU9Jq5D5mVFeooIEYOXdDqMUHcwniEtHcx5+gMSQ0QvcBM2QUR4CkA8qQSOuE91nOpcsjkRM6vNm6bFjs/2Und5dEe/RBARIWu0iT8vuydGBmGlcVpWrG8u/CH4hphXiG+o6Lj+mNg3SNZpmsdpfTKCGJxoyRi0aEC2kGTh2EtIDBF5BC98+rvRIkPScNEtEiSbrxrPJSpk2fTFWPlV6VkpvbWs3ZQVqjG+nJ49FyM+5jxn75Cqugww02QivBgSpVfSiEOZa5C1owwdzEPUOtxcg0wsoWcbE0hpQI8GtcMeERJN0166TouQUCIGEemwvgV1rgKBxBDRS3obufErcmTX48f6OJLk1TPkNSUmjsnObew3F2Plq8dkQsjeIZqlxPh+QtaxGGeG9poaE6vJAFjSZPqjGBVK27xC/H69fD6CJGL6MhvZTtNGmixZpnuFWuBePdYBWNcc46vHRPGjWp2eqseIIUQyBBR77MLv5VwFAokhokAJOlLkQ0A5pcKcbsnNJO0hKlTErTvGTNPWKIxbesxeWi+ORZFyTY2JESHVYq7629If04r0mOwMKUSNCBG//IaZHourxQ+fLgNgCh7Zchv8fsAeFaLmisQQg+8sEcS5CgQSQ0QfIxMtQUZv+jAS5FfY8Pt6Y5aWbtbFWHnTtJj2EtNa1lSXNf1l9nW2Gqdlpfiqdcr4qBFgLalXwUeGmJwzl3Q102JdKEU7hqMFI9COMrRkRqC7qVxulmYbixQZC7G2w95pWmWaprXHiCFOApDY+XI/V4FAYojIA3rbfDEoJD8OYuTGwyGeT680SUMiooQGi2FrqTygWjdM1k3abo527j6tigilOeGTtogf0TjtZJpm+80S+pjxXF+VngmkEqTY+mN89EcWETIWYpUtugrJcx4yTRNDmEx2C+pcBQKJISIA+lrAsPMPYP8hMTUmjgUVBZI2eOw2okJGKb3E2yP6emSNE3mfEIv6qBoxihGhUnQakoU3UwMw5gD2/kI89hRZxGKa7kQJUtmmi2xrwQh8ihFoaR2BREuZNSqkMk+nAdMwLUaFZM0U/aTHSCQRgxiKDBFEXxG0iPGzDIfbdT2cRxbRcTutqxlaMS7OiQB8g0XmF5JFdKKweoH4aA6f3hIrx0TfkFhVJi7iKi7EKvMLRTLCn4Rhe4NFfqmNdPZMqaw3yOwxVILOrIlaN00Xq03TLEqUBvSoEFtyg/mFxJJ6p55CqtcEMcghzxBB9Aa/0aG+iCYNQORIld5SvRbnQjLfcn5zMVa+gszJIC1fgd6e3vISQbL6gpI2gWUrq8+KoHCaqyCL6H9mhrMW6jTsXaZTxp3om7WCrASdmVK9wSITQS2wr0fGBBEA97XHRLz2FKKoEDHISSK4yFAyoPP0AySGiH4iF6Hi55h+8BqpbkUqYhT7vaTRWLfpuL4Ya3E8ZUSF9IVYk7bFVcXyeDEVxpfJx6SP9j5DYgpN1luIpckimQzC6QzC6R7lx5cOh400GRNAacM4HTUiQB1CiqwFR+CTxkp7ekzWbVrZU0gWDZL1FKL0GDHEocgQQfSW3giSgVyPzMd1Zd4g2X7xORTjTtEjAGBpMRYVgthp2osZWp1Ck0WLeO+RvZGitakiHwliQijM/QLMRIBwuseIDgHW5TfMLtOmNLOU0aMUXYdLgETMbpqWdZs20mOqRoqycnqA0mMEkSUBoCjAcxUIJIaIAUQlnryKKi8CymmOy7FOIkWc4yZ8/Jqo4xoQT6IokjFXpQ/z6SzzUWaGlkWAIsigBJ02QzR75KNErgbqjB4RiiZ0cRFOG7rNRkb47PSGirpPqCvrCepECRcJ4rbkCHQ0jgQaQ2YkqBHWyBBLkQGQl9GnYXqHRJ8QpccIwkIGwf0tQNVkBDGI8PNT4uQREh+dIkSA0WCRbeqyeeujNYUmb6bIV4M5mauZkOL9SbFM0ogEMREUkvzy1CSfWxrWxVjTWQN1F0q5HkMlhnG6vaUM6AjZfUKiaRqAtW+Q2GTRzwr0FBUihjAJSFclyvlcBQKJISJggvbusMhOkOcN4DyySFCuKTFpdChpNFi0mqbt5meV8OEFDy9y7KvR2w3UynXIst6gaKLHKoIk+iEkfCSyLtMpLiXWjuGcV+gItGRG6OuP8b4g9lw0TqMbekSIN02L6TGn5oq0Ij1BACDPEEH0PW5pLS/NF72kxryU1OeAKh0me+0mgviUmE0IdRul9LFsp2lTpFjTY/au0WlpukzsRi0zUNu7WAtrlyVTCKd7EEtmRVAaZhic/6UniL1MxDRPsxSZKYDKbD2FWjACLZkRaGka4dxTiAkiAPIO007pMf6mSQgRhEESwUWGqJqMGNr0RxfpoK/hwT+UyyncokC2MWspPWB2d+Y7TavSZBHBVM0vqsqnu8SGjewYVWk9E0LhtCCEVJGhCKS6VbRtp7LSjKXKWEVZZ0cJethirGJqjN8AWNceE9cfA+TpsQL6k5Ug+pNuBFdaX0B/S5AYIvoZ8RvSj6iRzWVfarJxv/+9uT+HVMZo1f7eGKYtWxpF2VL6qBEVciqJ5yM7+mvWRboUncZ+Zn5mBmpZREi6Xlkmg2iiG+E0UJyEVQTxkSEZ3C9UFhFiXaaZYZpFg5owEk2oRDMq0YSRSDQeqRul+U0WGTLSY7LIkKzbtMo3RFEhggBAkSGCyA9kImYgy+45nMQRJOOqqJBszNgy0qiQqiSeFzTW8aQkMpSyHK9KqxlRo6wQMtJi7BdbAvL0mOwzAJCJFHGRID1p18WVzndyDRbbUYb21uHqpoq2qJBM+Mj6Azmlx2SQECKGKFRNRhADhd+Ul5M46kfh5NcfZPMGiWOa4RWKxlNGKb3M78MLIFHQWB+tq9HzpfWO5fi8P4iJH/bI64009z4ZYXMsHdY7UPNXMirFhLXHmlCJlsMjkGg6wu4TUjZX5CNC3ZJH/re6qoyeUmYEYdAFQN071R8UGSIIJ4HjVbAM5Ar2Aqqoj2zMb/osDt0rFE8iGk8aq9LztVdRyA3RZrVX2iaUWOqM7xHER5JK0Alb76FMp1EtZqTFxEemHVR/9cXMp8w8ze6oK+sJkpqmcQQ6mkYATSHnLtMJwBQ8MiHkVD0mQukxgrBAq9YTBOGKLE0mS38BdiHkND+SRhG//phgjrZ3jM6A9wnxZfay8nhZ2byZKuMM1jIhxIsg0TjNI5gutQhLkZldps3UWAm6ON9QF0qz6bFiuy/Ilh5jXabFPkKyhoo8lB4jCFeS0H/EgiAV0Hn6gaCabvcpS5cuxWmnnYaysjKMGjUKX/va1/DOO++4HrdlyxbU1tYiHo9j4sSJWLlyZT/cLWGS6xeL17SFuKZUgF9kquiObL9sviwVFle8jmtZ07QuhKIxq8iRp7/MNBhvoC5BJ6JZw3SJtT6LX/YUZWg3ej+XoR2lmU6UHk5gWGsPig8D4DcWjTkM/RdlAmqRxH0+6TCQjEVtZukWjEAzRuIgqtCMShxEFQ5mqpD46EjgI+ibaJxm0aEEYHaZboN1DTIxGuQmkGTeIoIY4nQHvBUIBSGGtmzZgvnz5+PNN9/Epk2bkE6nMWvWLBw+fFh5zO7du3H++edj5syZqK+vx2233YYFCxbg2Wef7cc7J9R4/SJyqvbJE5yM0hCe8/u5CjJLg0UhGmTd0tLoDu8PUvUcYq9F8zVvlDZEDS92MrCmysRqMjEUHgEQ1lNkrNM0S/KljB5DZkVZJ0qynaahNk0nstezrT0mNlYU02LUZZogfJEMeMuBRx55BBMmTEA8HkdtbS1ee+015dznnnsO5557Lo466iiUl5dj2rRpePnll31fsyDSZC+99JLl9dq1azFq1Cjs2LEDZ5xxhvSYlStXYty4cVi+fDkAYNKkSdi+fTvuv/9+XHTRRX19y4RB0L4fP+dLK+a6nMOLH0j2XDbPddOyFWR6g0XeNC2LApWiy+ILKkGXxR/Ee4tYREhch4xFk0rQiVgyZabFWNQnA12AMNHDV5GpPi/eBpZ9b53D4obo6UAZPs0apZtRiWaMzG6VOHSwCj2Nw6wRIZlx2vAFiavSi9Egty7TMgroT1iC6EsGuJps3bp1WLhwIR555BFMnz4dv/zlL3Heeefh7bffxrhx42zzX331VZx77rm45557MGLECKxduxYXXngh/vSnP2HKlCmer1sQYkiktbUVAHDkkUcq52zbtg2zZs2yjM2ePRurV69Gd3c3iovtX4bJZBLJpCll29raArpjQk5vqsL6uWqMf1Q9V6XOxH1CVIj3CvHRILsgMpfbECvMrCkzmaAy97E+RIYQOgyzWoxPg6W5ccBqnBabsoWzWzYq1B2DUULPDNMd2WU2+HTZpxiBnqZhzoZpo3pMZph2M0lT9RhB+IJvndFbcvgbY9myZZgzZw7mzp0LAFi+fDlefvllrFixAkuXLrXNZwEPxj333IPnn38eL774oi8xVBBpMh5N01BXV4cZM2Zg8uTJynmNjY2oqqqyjFVVVSGdTqOpqUl6zNKlS1FRUWFsNTU1gd474YbbT46q8kccD/DLLtcokY+oUDSeNBosWkvm5ekxZnpmj9bIkDVCJEaNDEGU7LRHhEQ/EHudFsZU6THuvWci4Josmv2ErOuPjUBL6wirYboF9jRZAjDTY+LaY1Q9RhCBkg54gx5Y4Dc+6MCTSqWwY8cOWyBj1qxZ2Lp1q6fb7+npQXt7u2OwREbBiaEbbrgBf/vb3/DUU0+5zg2FrG00NU2TjjOWLFmC1tZWY9u3b1/vb5hA779svK42rsLpy9EBVfRHfHTb4qotieJ4yiiljyFpiJfSrBE6hqTFBG2ao/m6LOtjWTYOY9/XhbJMO0oPJ1B6uAfFbTBN0q3ZRzbWAauJWjRNGx4e7nOIA4gBiWFA+7DhRiSoOdtZ+iCqcAhVOIBqHEA1DjZ7ME13IPtv9wnshmmx0SKlxwii1yQgb+aey5aNKtfU1FgCDbIIDwA0NTUhk8lIAxmNjY2ebv9nP/sZDh8+jEsuucT7e0aBpcluvPFGvPDCC3j11VcxduxYx7mjR4+2fXiHDh1CJBJBZWWl9JhYLIZYLCbdR/QWr16f3nqM2PHioxse+s/LjNCqObLUGnudHSuSmKZVUSA+dcZ3lrYu1pri1h9LSyNCRkfpBMxwOJ8WE8vnVaX0YpqME3+peLFhlO7iGiyapfTD0YkSdLeUOUeDDI+SaJLmmx3x425QeowgXMkguOU4stHjffv2oby83Bh2+56VBTJUQQyep556CnfeeSeef/55jBo1ytetFoQY0jQNN954I9avX4/NmzdjwoQJrsdMmzYNL774omVs48aNmDp1qtQvRAwUvfENBYXk/4OTP8hrSiwOe2TI2NeNaDypm6ZjfGoraUtzsaaIrDye9wDx0SL2vAztVpM0UihLtiOc7kGcRXrSsJfKi14hWck8L4L4zyCmb9owoD1sXXOMRYX0x1E4hCo07q8G9mSbK34E/ZFFhVqyr9OAaZZmUSGnLtN+yujF/QRBANB/DwT1azf7Y1deXm4RQypGjhyJcDgsDWSI0SKRdevWYc6cOfjtb3+Lc845x/etFkSabP78+Xj88cfx5JNPoqysDI2NjWhsbERXV5cxZ8mSJbjyyiuN1/PmzcOHH36Iuro67Nq1C2vWrMHq1atx8803D8RbIPqEtPC8D77cVBEe2T4no7VFJHUDnGmaFze874dFhpipmvcAiVVlfBUZL4RK0YXSjO4PMoRQEtb0l5gGc+slJKbHYuZj57Aiy1Ib7RiOT40O03qX6ZbDI4CmuHyZDYthWvQJiREiwC6AvEJCiCCkiJ0qerP5/LGMRqOora3Fpk2bLOObNm3C6aefrjzuqaeewtVXX40nn3wSF1xwgb+LZimIyNCKFSsAAGeddZZlfO3atbj66qsBAA0NDdi7d6+xb8KECdiwYQMWLVqEhx9+GNXV1XjwwQeprH5AUaWsvESAgi7Rd0B1KyqztGyf45ZBMWuyGLZ3luZTZjLBw3uLxMiRmBqLZfTUmFExloRZNi9GhVTrj4mI0aGsEOoeBnTGSoUGi0dwQmgEmpOV6GgcaUaCVNVjhhBia4+x36wqUQSof/tSeowgPJOEPQ2eKzlUpdXV1eGKK67A1KlTMW3aNKxatQp79+7FvHnzAOiBj/379+Oxxx4DoAuhK6+8Eg888AC+9KUvGVGlkpISVFRUeL5uQYghZnx24tFHH7WNnXnmmXjrrbf64I6IvoUXPqJQYq9zFUfd8Pzf3inSw567maZt6TItK4TS2fSYLnJEQcNMz9YxZqI2+wvpKTHrfGMs2YnSwz26P4iPCCW452nukYkhPjXGf/x8mj8MIzWGYQAqgPaKONoxPNthmhmmRxmm6WZUonXPaF0E7YFdDLHnacBulFZ1mQbkUUEyTRNETqQR3HIcOYihSy+9FM3NzbjrrrvQ0NCAyZMnY8OGDRg/fjwAe+Djl7/8JdLpNObPn4/58+cb41dddZVUF6goCDFEDCaCjvCwL0RVc0WZkMoBlU9IfM2PS/eljQaLfEdoWWRI9A7x5mlrT2d700U9IpQVQnzqKyE857tLsxJ6wB4ZiggfHxcRQkTvK8T3FBJXpW9HGdqTEsM0e85M07b0GIsGibF7WXqMegoRRK9JIjgDTU9uh11//fW4/vrrpftEgbN58+bcLiJAYojIE0ShIhNNbMxN1PiI/qhwqgYTH50iQ5aoUDeK4inDNF2aje6USEzQ4nMWPWJeIaup2lp6X3a4Q68Y431BrTA7S7OUGYsIicZpQK4hWOiciaA4gOEAjgRaKoajKdtZ+hBGoQkjcQBj0JAtoz/QOkYvo98De2SoEaY4MozRbdyjmB4TI0FkmiaIwEhjwMXQQEBiiBgA/EaH/ER0vAomHzgJIre0mWU8YyzGqkd/zDXIzJJ40yckGqL5DtKiKDKeJ1O6UZqlwTpgjQwdFl7zDRVlPqEITIE0DFYhlE2RJYbB0kzRapjWt0TTEerGionsIwD5avSyNccgeU0QRK/pAokhghhY/AoYXlSxL0Xx+LRiXIEXfxAUzx0jRN0oimQQiye59cfsKS6rT4iVz5sRJBYB4n1EhkA6nNAXW2WCp4N73gp5OX0a9nJ68f3znwNbciMrhLrL9QaLzCjN1h1jJfQHUYWDzVXARyFrU0VWQs+2BGBWjbGokFhC39v0GAkngnClB8F5hoI6Tz9AYogYILxEh4L0F6W9n8vtp8KriZoXRNyyG3xPIZm4cRI+5nrv2Y7S2Z5CpYcTiLfCFD5iZIhPk4mLsgqt86WfAS/sKrJbpZ4ea0YlDmEUGlCNg1mz9CGM0rtMt45C90fl1l5CTbB2mFYutyFLjwFW8UNCiCACJYHgmi6SGCKIXFFFh8Qqsn5qyOia+vKyaeZirFwpPd9FOmykykxTtayc3owcdZmC6nDCmhqTRYbE3kFi12nVOmOAZQFWvoJME9Jj/AKs7ShDe6ZMT4/xpfMtsBqmOwBTCMkqxiA8Fx+9QEKIIDzTDRJDBNG/BBEdkqXHeMGUY2RJ9AOJ455SYwCGa0A8idLhnSgZxkd6rCkxVg5fhg6jZL4M7SjJRn/YHD4iVJrpRFlrt2mUZuKHjwzxjRUz3GuxcoyJIV748K9jsESEukcBzRUV2ZL5kdiHGuxDDQ6gGntwDJpQiU/+92hz3bE90IUQ32HaVkbPp8dkXaa9rD1G1WME0SuCWrG+wCAxRBQQXnoM9WHESFZJxh6VWzq7Bpm1mWLMWFMsaekuzVeX8Qu1steGRyjTiWgiK4RYmTwfBRK9QbKIEC+GRFhPIYlhGsNYTyEzEvRpdjNM0+Jq9LxhmkWFpGX0Tt0ec4GiQgRBuENiiMhDvAoafp7Yb0hVms/meowcydJj4qPNHwQjMlQUT+leoZi5xAYTNzJfEB/5YREh2xgfEWKrzbPnCegBlgQ3nobpGRLTY7L3yr+OQS+fHwagUt8So2AzSTegGvtQozdYPFiNnqZhZlToI1gjQkwYQYMeFeJ9QiwSxMRRb0zTJIQIgvAGiSFigPGyREdvjNTsC1HVs8gHbpEgW8dpTV97LG6KIGtPIashmnWPjsHsM2SmybJiKNmud5VmIkgUQ8wsLYohliZjYghwNkyzSFAcuhA6EkAloI0CDg47yhBCB1CNg1mz9CFU4UCmGj2Nw8yKMeVyG4C9y7RsQaPe9BQiCMI/4jI3vT1XYUBiiMgD+mPdsV42YszJOJ1GLJ5EOGKapK3GaLOsngkgtsBqSVYI8aKpNJNdXoOJHNmWEB7FJTdYVAiw+oT4R3b/XFoMwwCUA+0Vxejg0mNs/bFmVKIJlWhpGmGtFmuBPEVm/MIV02MybxAkrwmC6Bu6ENzv4y73KXkCiSGiQBCryPjXgL3fUDFyFkB+Ksik648BGN6N4uFdKBnWZUSFStFp1F5Fs1EgMSU2Ai2WeaXo0seSnRjW3GMKnE+gC4s2mOZplh5jESJ+UdbD2feQkLxX/pFVi5VDN0sfCaBaf/y4ejgOYRR24xjswQQcQDXew7FoxkjsRQ0aP6wBPio2u0t/BIcy+jbYDdN8dIh6ChHEwBCkb69wIrYkhog8QRYd6o0Z2k+0ycNcVWUZe7RtGYQjaaNUnpmkI9lH1lDR7DekR4JYtIh1mS5Fp7HgqiUdxirHDgvPeSO1WErv1FRRVg2XXYCVbS2GSVqPBFlWpW8dAbQU29NhfDTIEGKsh5DT0hpe/T8khAgiWLoQnDSgyBBB9AGq6BDbB9j/S/MdqNnzEvUlvIoeMRLEP8+uTB+Lm00U+fJ45hNipfJl2W49RhQIXRiBT1GGDj0idKjHFEHMI9QMtWeIX5mepcWYEMnATIfFs8/ZxgugIwGM0rdEDdA87EjsQw0OYhT24Jjs8yrsQw2ak5VIvHek1TDdArtfKA2YZmnRNJ2G1TQNeCulFyEhRBC9gyJDBDHABB0dEs/DCycP53RKkYljfG+heFJfdiOW4krlk4YPiFWHmVViHZaUmTF2uEPvKs0LIPb8E+gC5xNYF2MVy+ply2wApiBi74MXQuXQhVAVgGpdCB1EFVc9NgoHUYVDGIXmZCVaGyut3aVbYI8QWcronRosyvxCKgrnFy1BFA4JBCcNxLx8/kJiiChQ+OgQYP2v3A175Eh2fDcco0QM8afExThdHE9ll92wGqTN0nrTGM0iRWzMEENMCLXBFEDsdQeslWNMDPEl9bxZWtVEjTdKM7M08wplo0OHK4uyq9FXGmX0h7JCqAkjdSHUWGxfa6wF1jQZAHskSOUH4l9TVIgg+heqJiOIPMAtOuRUis9gKTFeLKkM1T6jRNJIUHYbDmB4AqXDO1Ea7rQYo8vQjhFoMR6ZWZq9HoFPUYoujMw0o6SjG8WfwEyFHYIZGWrjnie5R+YdYmbpNKClgTQnhCJhIBTPvmBLa7BoUBVMs3QVgInAJzVxNKAa7+MzaEYl9uAYIzW2FzVobh4J7Ck2y+h5w3QLTEFkSY/JBFEn929BPYUIYmBJwBo67u25CgMSQ8QQgYkej6mViIfn7LWxaUa3aX69MdZMkV9njFWXmZseJSrp6EYxiwbxUaDDsEeJFEtudGcrx7rTQDoNRCJAsfgexIgQE0WVAMqBxJG6YboJI41H9pwZprubyuWl87xh2vhdyJulxYoxQP7v4sc0TRBEMJBniCDyBK/RIdXyHG4dpj10nga8+YPY6+FA0fBOIyrEokG8F4hFgirRjFJ0ohLN2fFPMTLTrHeVPgRd6DRD9wO1whoZOgxrZCgrirQE0H44K4Ay1nhYJK3fY4QZpZkAqoQugFg0aAyACfq6Y+8Pm2hEgd7jIkPNqMS+wzVI7DlSjwbtgbnmmNhbyEiPdUJXcmytMVVPIVmPIUqPEUT/0gWgKMBzFQYkhog8xauZWhxjx/GPgBkVEk3UJXD968XJI8SJomg8iWicLanRaVluowwdtp5CTAiNQAvKm7utJulPuOdMBPFiKGug1g4DXUmgKwF0ZUwpIQaCiiNASDRKcwuvMsN09yjgUIVpmD6IUWhGJQ5ilBEh6mgc6bwSvSUixC+2yqfGxA1QixrqNE0Q/UeQDU4L5+eVxBBRoIhiSVVaz2BCSDRNs3ENQMj5kjIhZAgiDbF4CtFwMttFukswRbNIUYchiFj5/BGfJKxRIA+RIa1VF0Hth+2reLFbLeY+oYjoEWLl80wIVevbgYqjjHXHGlCNhuxyG/pYFZoPVgJNIbs3qAX2NBk07q7ESJB4x7J0mcxQLUJRIYIIli64/i70da7CgMQQkcfkukwH/wUp+y/u8AUqft+6RYSG649FwztREjNTY6bgYamxJqNF4SgcRBnaUZU8pHeVPgRTBB2AKYBYl2kmhj7R/UBdCaA5qd9qG+x/xzGpVwygJAyUxIEQE0DZ3kGoBDAu+/w4QBsHHDyyAnswIZsSm4BDGIV9qNF7CWEkPv5wDNBUbC68yneWboEkPdYF60KsfApMFELimmOUHiOIgYGqyQgiD5H5gVTeIXE/ew1YU2biPgWynw6pMOpGNJ40yuf1RVfNhVlLsmky1lyRRYiGNfeY0R9WKcZe89Vk2V5Cna1mJIhf4lT8lFisi6XHSsQ1xiqhR4W4yFDTkcPRnC2hZ92lP+U6TrdnyswO02IESJoeY3fi5gkS/00K55cnQQxOEgguMlQ41WRBuaT6hUceeQQTJkxAPB5HbW0tXnvtNcf5W7ZsQW1tLeLxOCZOnIiVK1f2050SfQsvYnijrZPYUflOPPwV5BIZKh7ehdLhpkn6CLQYsmIkmrOdeQ5mk04HUNPaiKP2dQC7AXwA4F/ctkt4/S+g+QNg9wFg12F96D3ovuWPoOslpqO6uNstAVAeBsorgRCXBsNEABMAHAdgEoATgQ+rj8L7OBbv4TPYg2OwGxOwJ7v+2D7U4EDrGHyyp9qMCMlWpLf0FNIg7zAt9hfyY5qmUnqC6B/SAW+FQcGIoXXr1mHhwoW4/fbbUV9fj5kzZ+K8887D3r17pfN3796N888/HzNnzkR9fT1uu+02LFiwAM8++2w/3znRe/x+8YmRBzEdw8Y9GHNl1WQWQaQhFk8aFWRsjTExTcZ6CY3MNOs9hA7CTI8d4Db2+iDQeQg4eAjYnzGzZmzjlzhNC7dYnt2OZN2keZM026r0x7aqYjRjpNFYsQkjzRXoMQLtKEOipQxoCVlL6BOKLc0+yzR0QSQzSXv59yQhRBADg9gPrLebfwYi8FEwYmjZsmWYM2cO5s6di0mTJmH58uWoqanBihUrpPNXrlyJcePGYfny5Zg0aRLmzp2La6+9Fvfff38/3znRN6j+4vBSkSQ+99F7yNZwMYmSYfrSGsM5Y3S2Gw8q0ZStyTqIquQhlB/oBvYC2Ac9KrQ7+5y9/gDQ9gIf7QPey0aC9mS3/dA11CfQ02QsVcbeTUl2Y0IoVAljSQ1jq4ERHWqsrsC+cA0OYEw2ZlWNAxhjGKabUak3VmwslhumWyAxTQNWmSaap1VRIYYX0zRBEH2HquIzl83/z+9ABT4KwjOUSqWwY8cOLF682DI+a9YsbN26VXrMtm3bMGvWLMvY7NmzsXr1anR3d6O42G7MTSaTSCaTxuu2trYA7p4IBicztazvkGoeYA/hsh/cCJCW5MplFWRZ43R8uGmazq7fbsRWRqIZ1WjACHyKcZ98jBCL/PwLem5rd/YxGw3SWoE9n+gi5yD06E871CbpYpgCiNmAygFUjcq+qIIufiqhp8ZGZR/HAZ+MimeN0ZXYhxrLUhstGKGX0reOQHdjuTcRJC2ld/rFKL4jMk0TRH7QBT3VHQT+PUN84AMAli9fjpdffhkrVqzA0qVLbfP5wAcATJo0Cdu3b8f999+Piy66yPN1C0IMNTU1IZPJoKqqyjJeVVWFxsZG6TGNjY3S+el0Gk1NTRgzZoztmKVLl+KHP/yh5GxJyRjR/yQhbwEN6D90xdxrJox4gaRl5/Rkt0x2i3NzQvpDCuYCp+x1EvrviWj2ebeGaKoZkbZmhNGKEFoRxicIoQURfIoifIoQWgG0o/0j6J6bj6GHeD6F7rv5WN86DwKfdgIN0MXPx9CFUALWVBh7x/xdl8BchgxRoG04TJVUAmuDyDBwOBTCobZy7MdwtCKOjxFDE4rRjAjaoKEdGjqTGSSa08DBNmvPI6bQOrIXTYk32JndyR7ZO0jA2mtILLMH5GLIKWpEEIQ7+veXpnkVOGxxw+CuLQYWYrEYYrGYbXZ/BT5kFIQYYoRC1r/aNU2zjbnNl40zlixZgrq6OuP1/v37cdJJJwH4eY53TBQkrLHhIfepbdkNAP7Sd3fknRT0dJsjGkzDEkEQQ4H29nZUVFQo90ejUYwePRqNjcF+3w0fPhw1NTWWsTvuuAN33nmnbW5/BT5kFIQYGjlyJMLhsO3DOHTokO1DYOj/qPb5kUgElZWV0mNEtTp8+HC8/fbbOOmkk7Bv3z6Ul5f38p0QjLa2NtTU1NDn2gfQZ9s30OfaN9Dn2newP+j//Oc/o7q62nFuPB7H7t27kUqlAr0HWdBCFhXi6evAh4yCEEPRaBS1tbXYtGkTvv71rxvjmzZtwle/+lXpMdOmTcOLL75oGdu4cSOmTp3qOWxWVFSEo48+GgBQXl5OP6h9AH2ufQd9tn0Dfa59A32uwcPSU2PGjEFRkXu9VDweRzwe7+vbUtJfgQ8ZBVNNVldXh1//+tdYs2YNdu3ahUWLFmHv3r2YN28eAD3FdeWVVxrz582bhw8//BB1dXXYtWsX1qxZg9WrV+Pmm28eqLdAEARBEIQCPvDBs2nTJpx++unSY6ZNm2ab7zfwARRIZAgALr30UjQ3N+Ouu+5CQ0MDJk+ejA0bNmD8+PEAgIaGBkvp3YQJE7BhwwYsWrQIDz/8MKqrq/Hggw/6cpcTBEEQBNF/1NXV4YorrsDUqVMxbdo0rFq1yhb42L9/Px577DEAeuDjoYceQl1dHa677jps27YNq1evxlNPPeXvwhrhSCKR0O644w4tkUgM9K0MKuhz7Tvos+0b6HPtG+hz7TtaW1u1M888U2ttbR3oW/HFww8/rI0fP16LRqPa5z//eW3Lli3Gvquuuko788wzLfM3b96sTZkyRYtGo9oxxxyjrVixwvc1Q5rmud6OIAiCIAhi0FEwniGCIAiCIIi+gMQQQRAEQRBDGhJDBEEQBEEMaUgMEQRBEAQxpCExBKCjowM33HADxo4di5KSEkyaNAkrVqxwPe7ZZ5/FSSedhFgshpNOOgnr16/vh7stDL773e8iFAoZi+c5sXz5cpxwwgkoKSlBTU0NFi1ahETCXODv1VdfxYUXXojq6mqEQiH87ne/67sbz0Oee+45zJ49GyNHjkQoFMLOnTs9HdfS0oL58+djzJgxiMfjmDRpEjZs2GDsX7p0KU477TSUlZVh1KhR+NrXvoZ33nmnj95FfuH3/9TmzZsRCoVs2//+7/9a5rl95kONpUuXIhQKYeHChco5V199tfSzPfnkk405jz76qHQO/3tiMBOJRKTv/7Of/azymEsuuQSxWAyhUAjRaBTf+c53lHMXLFiAUCjkeemKwUjB9BnqSxYtWoRXXnkFjz/+OI455hhs3LgR119/Paqrq5Udrrdt24ZLL70UP/rRj/D1r38d69evxyWXXILXX38dX/ziF/v5HeQXv/vd7/CnP/3Jtf07ADzxxBNYvHgx1qxZg9NPPx3vvvsurr76agDAz3+ur5Fz+PBhnHLKKbjmmmuGZJ+ow4cPY/r06bj44otx3XXXeTomlUrh3HPPxahRo/DMM89g7Nix2LdvH8rKyow5W7Zswfz583HaaachnU7j9ttvx6xZs/D2229j2LBhffV28oJc/0+98847li7JRx11lPHcy2c+lPjLX/6CVatW4XOf+5zjvAceeAD33nuv8TqdTuOUU07BxRdfbJlXXl5uE+sD2S25P/n73/+O7m5zAeOXXnoJt956K+bMmSOd/81vfhO//e1vsWDBAnz961/Hc889h1/84heoqqrCj370I8vcN954Aw8//DB1/+5dN4DBwcknn6zdddddlrHPf/7z2n/9138pj7nkkku0f//3f7eMzZ49W7vsssv65B4LhY8++kg7+uijtX/84x/a+PHjtZ///OeO8+fPn699+ctftozV1dVpM2bMkM4HoK1fvz6guy0sdu/erQHQ6uvrXeeuWLFCmzhxopZKpTyf/9ChQxoAS0+PoYCX/1OvvPKKBkD79NNPlXNy+cwHK+3t7dpxxx2nbdq0STvzzDO1//zP//R87Pr167VQKKTt2bPHGFu7dq1WUVER/I0WKKeeeqoWiUS0TCYj3T98+HBt6tSptmPKysosY8lkUisrK9Ouuuoq7dhjj9VGjx7dZ/ec71CaDMCMGTPwwgsvYP/+/dA0Da+88greffddzJ49W3nMtm3bMGvWLMvY7NmzsXXr1r6+3bylp6cHV1xxBW655RZLiNuJGTNmYMeOHfjzn/8MAPjggw+wYcMGXHDBBX15q4OeF154AdOmTcP8+fNRVVWFyZMn45577kEmk1Ee09raCgA48sgj++s2C44pU6ZgzJgxOPvss/HKK69Y9uXymQ9W5s+fjwsuuADnnHOO72NXr16Nc845x1hdgNHR0YHx48dj7Nix+MpXvoL6+vqgbreg6OjowF//+lf827/9m3K9sUwmY4uaxeNxtLe3o7Oz0xg799xzMXz4cDz66KN9ecsFAaXJADz44IO47rrrMHbsWEQiERQVFeHXv/41ZsyYoTymsbHRtnBcVVWVbcG4ocR9992HSCSCBQsWeD7msssuw8cff4wZM2ZA0zSk02l873vfw+LFi/vwTgc/H3zwAf7nf/4H3/rWt7Bhwwb861//wvz585FOp/GDH/zANl/TNNTV1WHGjBmYPHnyANxxfjNmzBisWrUKtbW1SCaT+M1vfoOzzz4bmzdvxhlnnAHA/2c+WHn66afx1ltv4S9/+YvvYxsaGvDHP/4RTz75pGX8xBNPxKOPPorPfvazaGtrwwMPPIDp06fjr3/9K4477rigbr0g+P73vw9N0yypRZFTTz0VW7duxeOPP47LL78cjz/+OP70pz8BAN59912ceuqpWLFiBV5//XW8/fbb/XXr+c3ABqb6n8cff1wbNmyYsb366qvaT3/6U+3444/XXnjhBe2vf/2r9otf/EIbPny4tmnTJuV5iouLtSeffNJ27lgs1tdvIS8QP8fNmzdrVVVV2v79+405XtJkr7zyilZVVaX96le/0v72t79pzz33nFZTU2NLWzIwyNNksv+fDD9psuOOO06rqanR0um0Mfazn/1MGQa//vrrtfHjx2v79u3r9XsoNHL9P/WVr3xFu/DCC43Xfj/zwcjevXu1UaNGaTt37jTG/KTJ7rnnHq2yslJLJpOO8zKZjHbKKadoN954Y29utyCprKzURo0a5TinublZO+644zQAGgCtqKhI+8IXvqAB0P7xj39o+/fv1yKRiPbDH/7QOGaop8mGnBhqa2vT/vWvfxlbZ2enVlxcrP3+97+3zJszZ442e/Zs5Xlqamq0ZcuWWcaWLVumjRs3rk/uO98QP8d77rlHC4VCWjgcNjb2Qzh+/HjleWbMmKHdfPPNlrHf/OY3WklJiTQfPtjFkOz/J8OPGDrjjDO0s88+2zK2YcMGDYDti+aGG27Qxo4dq33wwQeBvIdCI9f/U3fffbd24oknGq/9fOaDlfXr12sAbL8H2O8GXiiK9PT0aJ/5zGe0hQsXerrW3Llzbb7Nwc7rr7+uAdCWLFniaf7hw4e1P//5z1oymdQuu+wyDYDW3d2tPf3004ZQkm3//d//3cfvJP8YcmmysrIyS3VHW1sburu7bbnXcDiMnp4e5XmmTZuGTZs2YdGiRcbYxo0bcfrppwd/03mI+Dl+5zvfwYUXXmiZM3v2bFxxxRW45pprlOfp7OyUfvaaLtSDvekCQPxcc2X69Ol48skn0dPTY3y+7777LsaMGYNoNApAT43deOONWL9+PTZv3owJEyb0+rpDifr6ekspspfPfLBz9tln4+9//7tl7JprrsGJJ56IW2+9FeFwWHnsli1b8N577ykrpHg0TcPOnTsdS8sHI7fffjuKioo8p11LS0tx2mmnAQD++Mc/Yvz48YhEIpg9ezaee+45y9zrr78eyWQSq1evxhe+8IXA7z3vGVgtlh+ceeaZ2sknn6y98sor2gcffKCtXbtWi8fj2iOPPGLMueKKK7TFixcbr9944w0tHA5r9957r7Zr1y7t3nvv1SKRiPbmm28OxFvIS2RpMvFzvOOOO7SysjLtqaee0j744ANt48aN2rHHHqtdcsklxpz29natvr5eq6+v1wBoy5Yt0+rr67UPP/ywv97KgNLc3KzV19drf/jDHzQA2tNPP63V19drDQ0Nxhzxc927d682fPhw7YYbbtDeeecd7fe//702atQo7e677zbmfO9739MqKiq0zZs3aw0NDcbGR6MGK27/pxYvXqxdccUVxvyf//zn2vr167V3331X+8c//qEtXrxYA6A9++yzxhwvn/lQREyTiZ8t49vf/rb2xS9+UXqOO++8U3vppZe0999/X6uvr9euueYaLRKJaH/605/66rbzju7ubi0cDks/oy996UvaxIkTjdcvvfSSNm/ePG3jxo3amjVrtJqaGi0UCmmvvfaa8vyUJiO0hoYG7eqrr9aqq6u1eDyunXDCCdrPfvYzraenx5hz5plnaldddZXluN/+9rfaCSecoBUXF2snnnii5RcjIRdD4ufY3d2t3Xnnndqxxx6rxeNxraamRrv++ustJcysrFncxH+PwcratWul7/+OO+4w5sj+f27dulX74he/qMViMW3ixInaj3/8Y0uaQnZOANratWv7540NIG7/p6666irtzDPPNObfd999xv/RI444QpsxY4b2hz/8wXZet898KCKKIfGz1TRNa2lp0UpKSrRVq1ZJz7Fw4UJt3LhxWjQa1Y466iht1qxZ2tatW/vwrvOPe+65RwOgvfTSS7Z9xx57rKX1wIsvvqiVlJQY/69Hjx6tbdiwwfH8Q10MhTRtCOYiCIIgCIIgslCfIYIgCIIghjQkhgiCIAiCGNKQGCIIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCCIfqWhoQHDhw/HZZddZhn//e9/j+LiYtx+++0DdGcEQQxVSAwRBNGvjBkzBv/3//5f/L//9/+wY8cOAMDmzZtx8cUX43vf+x5+/OMfD/AdEgQx1KBV6wmC6Hc6Oztx3HHHYdKkSVi6dCnOPvtsfOMb38Dq1asRCoUG+vYIghhikBgiCGJAWLt2La699loMGzYMF1xwAZ588kmEw+GBvi2CIIYglCYjCGJAOP744wEAoVAIjz76KAkhgiAGDBJDBEH0Ozt37sRXvvIVTJ8+HR0dHVizZs1A3xJBEEMYSpMRBNGvvPPOOzjjjDNQW1uL559/HhdffDHeeOMNvPfee6ioqBjo2yMIYghCkSGCIPqNPXv24JxzzsEJJ5yAZ599FsXFxbj33nvx6aef4p577hno2yMIYohCkSGCIPqFhoYGzJw5ExUVFXjllVdQXl5u7PvOd76Dxx57DP/7v/+LY445ZuBukiCIIQmJIYIgCIIghjSUJiMIgiAIYkhDYoggCIIgiCENiSGCIAiCIIY0JIYIgiAIghjSkBgiCIIgCGJIQ2KIIAiCIIghDYkhgiAIgiCGNCSGCIIgCIIY0pAYIgiCIAhiSENiiCAIgiCIIQ2JIYIgCIIghjT/H/P7mjzSRbPMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "fig, ax = plt.subplots(1,figsize=(6,8))\n", + "ax1 = ax\n", + "im1 = ax1.imshow(u_soln_new.T,cmap='jet',origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='5%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$',fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "8a151326", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer_new = tp.models.NormalizationLayer(I_new*Omega_new)\n", + "fcn_layer_new = tp.models.FCN(input_space=T_new*X_new, output_space=U_new, hidden = (128,128,128))\n", + "model_sol_new = tp.models.Sequential(normalization_layer_new, fcn_layer_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b62ecf69", + "metadata": {}, + "outputs": [], + "source": [ + "N_coll_new = 5000" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "9132e130", + "metadata": {}, + "outputs": [], + "source": [ + "domain_sampler_new = tp.samplers.RandomUniformSampler(I_new*Omega_new, n_points=N_coll_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "15dc322e", + "metadata": {}, + "outputs": [], + "source": [ + "def quantities_new(t, x):\n", + " \n", + " model_input = tp.spaces.Points(torch.column_stack((t, x)), T_new*X_new)\n", + " u = model_sol_new(model_input)\n", + " u = u.as_tensor\n", + " grad_u_x = tp.utils.grad(u, x) \n", + " grad_u_xx = tp.utils.grad(grad_u_x, x) \n", + " grad_u_t = tp.utils.grad(u, t) \n", + " \n", + " return u, grad_u_t, grad_u_x, grad_u_xx \n", + "\n", + "\n", + "def residual_equation_new(t,x):\n", + " \n", + " u, grad_u_t, grad_u_x, grad_u_xx = quantities_new(t,x)\n", + " \n", + " output_hid_phy = hiddenPhysics(u, grad_u_x, grad_u_xx) \n", + " \n", + " residual = grad_u_t - output_hid_phy\n", + " \n", + " \n", + " return residual " + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "3611a53d", + "metadata": {}, + "outputs": [], + "source": [ + "pde_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = domain_sampler_new,\n", + " residual_fn = residual_equation_new, \n", + " name='PDE Condition',\n", + " weight=1.0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "80d9740a", + "metadata": {}, + "outputs": [], + "source": [ + "N_ic = 500\n", + "initial_sampler_new = tp.samplers.RandomUniformSampler(I_new.boundary_left*Omega_new, n_points=N_ic)\n", + "\n", + "def residual_IC(u,t,x):\n", + " \n", + " return -torch.exp(-(x + 2)**2) + u\n", + "\n", + "\n", + "initial_condition_new = tp.conditions.PINNCondition(module = model_sol_new, \n", + " sampler = initial_sampler_new,\n", + " residual_fn = residual_IC, \n", + " name='Initial Condition',\n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "d75d7987", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def residual_BC(u_left,u_right,x_left,x_right):\n", + " \n", + " u_x_left = tp.utils.grad(u_left, x_left)\n", + " u_x_right = tp.utils.grad(u_right, x_right)\n", + " \n", + " error_u_neumann = u_left - u_right\n", + " error_u_x_neumann = u_x_left - u_x_right\n", + " \n", + " return error_u_neumann + error_u_x_neumann\n", + "\n", + "N_bc = 250\n", + "boundary_sampler_new = tp.samplers.RandomUniformSampler(I_new, n_points=N_bc)\n", + "\n", + "bound_condition_new = tp.conditions.PeriodicCondition(module=model_sol_new,\n", + " periodic_interval=Omega_new,\n", + " non_periodic_sampler=boundary_sampler_new,\n", + " residual_fn=residual_BC,\n", + " name='Boundary Condition', \n", + " weight=1.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "bc500357", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions_new = [initial_condition_new,pde_condition_new,bound_condition_new]\n", + "optim_new = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.0001)\n", + "solver_new = tp.solver.Solver(train_conditions=training_conditions_new, optimizer_setting=optim_new)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "ae35a441", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:479: LightningDeprecationWarning: Setting `Trainer(gpus=0)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=0)` instead.\n", + " f\"Setting `Trainer(gpus={gpus!r})` is deprecated in v1.7 and will be removed\"\n", + "GPU available: True (cuda), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/setup.py:179: PossibleUserWarning: GPU available but not used. Set `accelerator` and `devices` using `Trainer(accelerator='gpu', devices=1)`.\n", + " category=PossibleUserWarning,\n", + "\n", + " | Name | Type | Params\n", + "------------------------------------------------\n", + "0 | train_conditions | ModuleList | 33.5 K\n", + "1 | val_conditions | ModuleList | 0 \n", + "------------------------------------------------\n", + "33.5 K Trainable params\n", + "0 Non-trainable params\n", + "33.5 K Total params\n", + "0.134 Total estimated model params size (MB)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " " + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, val_dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n", + "/home/ibp5kor/.conda/envs/torchphysics/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:229: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 36 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", + " category=PossibleUserWarning,\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 0: 100%|█████████▉| 25000/25001 [20:00<00:00, 20.83it/s, loss=3.51e-05, v_num=1]\n", + "Validation: 0it [00:00, ?it/s]\u001b[A\n", + "Validation: 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cmap = 'jet'#'seismic'\n", + "plt.figure(figsize=(15,6))\n", + "ax1 = plt.subplot(131)\n", + "im1 = ax1.imshow(u_soln_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax1)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im1, cax=cax, orientation='vertical')\n", + "ax1.set_xlabel('$x$',fontsize=12)\n", + "ax1.set_ylabel('$t$',fontsize=12)\n", + "ax1.set_xticks(xpoints_n)\n", + "ax1.set_xticklabels(x_label_list_n)\n", + "ax1.set_yticks(ypoints_n)\n", + "ax1.set_yticklabels(y_label_list_n)\n", + "ax1.set_title('$u$: True',fontsize=14)\n", + "\n", + "ax2 = plt.subplot(132)\n", + "im2 = ax2.imshow(u_pred_new.T,cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax2)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im2, cax=cax, orientation='vertical')\n", + "ax2.set_xlabel('$x$',fontsize=12)\n", + "#ax2.set_ylabel('$t$',fontsize=12)\n", + "ax2.set_xticks(xpoints_n)\n", + "ax2.set_xticklabels(x_label_list_n)\n", + "ax2.set_yticks(ypoints_n)\n", + "ax2.set_yticklabels(y_label_list_n)\n", + "ax2.tick_params(left = False, labelleft = False) \n", + "ax2.set_title('$u$: Pred',fontsize=14)\n", + "\n", + "ax3 = plt.subplot(133)\n", + "im3 = ax3.imshow(np.abs(u_soln_new.T - u_pred_new.T),cmap=cmap,origin='lower')\n", + "divider = make_axes_locatable(ax3)\n", + "cax = divider.append_axes('right', size='4%', pad=0.1)\n", + "plt.colorbar(im3, cax=cax, orientation='vertical')\n", + "ax3.set_xlabel('$x$',fontsize=12)\n", + "#ax3.set_ylabel('$t$',fontsize=12)\n", + "ax3.set_xticks(xpoints_n)\n", + "ax3.set_xticklabels(x_label_list_n)\n", + "ax3.set_yticks(ypoints_n)\n", + "ax3.set_yticklabels(y_label_list_n)\n", + "ax3.set_title('Abs. Error',fontsize=14)\n", + "ax3.tick_params(left = False, labelleft = False) \n", + "plt.tight_layout()\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "54efcae8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L2 Error u: 0.15133772266569284\n", + "R2 Score u: 0.9685556669473732\n" + ] + } + ], + "source": [ + "l2_error_u_new = L2_ERROR(u_soln_new.flatten(),u_pred_new.flatten())\n", + "r2_score_u_new = R2_SCORE(u_soln_new.flatten(),u_pred_new.flatten())\n", + "print('L2 Error u: ', l2_error_u_new)\n", + "print('R2 Score u: ', r2_score_u_new)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + }, + "vscode": { + "interpreter": { + "hash": "da0fbe8389eabce767ecf652ec31e8710a923604e2f1fdffa4a2f324d0133cdc" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/hidden_physics/Duffing_Hidden_Physics.ipynb b/examples/hidden_physics/Duffing_Hidden_Physics.ipynb new file mode 100755 index 0000000..abc0261 --- /dev/null +++ b/examples/hidden_physics/Duffing_Hidden_Physics.ipynb @@ -0,0 +1,757 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7671ba59", + "metadata": {}, + "source": [ + "# Deep Hidden Physics Model " + ] + }, + { + "cell_type": "markdown", + "id": "dd5108eb", + "metadata": {}, + "source": [ + "### Example-2 " + ] + }, + { + "cell_type": "markdown", + "id": "98991643", + "metadata": {}, + "source": [ + "## Duffing oscillator " + ] + }, + { + "cell_type": "markdown", + "id": "e9766cbf", + "metadata": {}, + "source": [ + "$\\normalsize{Governing \\ Equation}$ " + ] + }, + { + "cell_type": "markdown", + "id": "2decc272", + "metadata": {}, + "source": [ + "$ \\large{\\frac{d^2x}{dt^2} + \\delta \\frac{dx}{dt} + \\alpha x + \\beta x^3 = \\gamma cos(\\omega t)}; \\ \\normalsize{for \\ t \\in [0,T]} $" + ] + }, + { + "cell_type": "markdown", + "id": "cb959d7a", + "metadata": {}, + "source": [ + "$\\delta$ $\\rightarrow$ controls the amount of damping, \n", + "$\\alpha$ $\\rightarrow$ controls the linear stiffness, \n", + "$\\beta$ $\\rightarrow$ controls the amount of non-linearity in the restoring force, \n", + "$\\gamma$ $\\rightarrow$ amplitude of the periodic driving force \n", + "$\\omega$ $\\rightarrow$ the angular frequency of driving force." + ] + }, + { + "cell_type": "markdown", + "id": "6e776690", + "metadata": {}, + "source": [ + "The equation of motion can be written in terms of displacement $(x)$ and velocity $(v)$ as," + ] + }, + { + "cell_type": "markdown", + "id": "740c8186", + "metadata": {}, + "source": [ + "$ \\large{\\frac{dx}{dt} = v}; \\\\ \\large{\\frac{dv}{dt} = - \\delta v - \\alpha x - \\beta x^3 + \\gamma cos(\\omega t)}; $" + ] + }, + { + "cell_type": "markdown", + "id": "c9ed1337", + "metadata": {}, + "source": [ + "We consider the governing equation of system is partially known, Our objective is to identify the remaining terms in equation using ${Deep \\ Hidden \\ Physics \\ Model}$. \n", + "We approximate the solution $(x, v)$ by a neural network and the remaining unknown terms in equation by a second neural network $\\mathcal{N}$." + ] + }, + { + "cell_type": "markdown", + "id": "c444f64e", + "metadata": {}, + "source": [ + "We can rewrite equations in the form," + ] + }, + { + "cell_type": "markdown", + "id": "cce00332", + "metadata": {}, + "source": [ + "$ \\large{\\frac{dx}{dt} = v}; \\\\ \\large{\\frac{dv}{dt} = \\mathcal{N}(t,x,v) + \\gamma cos(\\omega t)}; $" + ] + }, + { + "cell_type": "markdown", + "id": "d3466754", + "metadata": {}, + "source": [ + "## Importing Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33625585", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\" " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "76867067", + "metadata": {}, + "outputs": [], + "source": [ + "import torchphysics as tp\n", + "import numpy as np\n", + "import torch\n", + "import pytorch_lightning as pl\n", + "from scipy.integrate import odeint\n", + "from matplotlib import pyplot as plt\n", + "import sys\n", + "from torchphysics.problem.conditions.condition import DataCondition, HPM_EquationLoss_at_Sampler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "006416e3", + "metadata": {}, + "outputs": [], + "source": [ + "os.environ[\"KMP_DUPLICATE_LIB_OK\"]=\"TRUE\"\n", + "print('__Python VERSION:', sys.version)\n", + "print('__pyTorch VERSION:', torch.__version__)\n", + "print('__CUDA VERSION')\n", + "print('__CUDNN VERSION:', torch.backends.cudnn.version())\n", + "print('__Number CUDA Devices:', torch.cuda.device_count())\n", + "print('__Devices')\n", + "print('Active CUDA Device: GPU', torch.cuda.current_device())\n", + "print ('Available devices ', torch.cuda.device_count())\n", + "print ('Current cuda device ', torch.cuda.current_device())\n", + "\n", + "RANDOM_SEED = 2308\n", + "np.random.seed(RANDOM_SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "bb92d41d", + "metadata": {}, + "source": [ + "## Data Generation" + ] + }, + { + "cell_type": "markdown", + "id": "f8a45a82", + "metadata": {}, + "source": [ + "### Defining equations to solver" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e352416", + "metadata": {}, + "outputs": [], + "source": [ + "def equation_of_motion(s, t, delta, alpha, beta, gamma, Omega):\n", + "\n", + " x, v = s # position, velocity\n", + " \n", + " ds_dt = [v, -delta*v - alpha*x - beta*x**3 + gamma*np.cos(Omega*t)] # governing equations\n", + "\n", + " return ds_dt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e441233", + "metadata": {}, + "outputs": [], + "source": [ + "# ---- control parameters -----\n", + "\n", + "delta = 0.3\n", + "Omega = 1.2\n", + "alpha = -1.0\n", + "beta = 1.0\n", + "gamma = 0.2\n", + "\n", + "# ---- initial condition ----\n", + "\n", + "s_initial = [1.0, 0.] # [x initial, v initial]\n", + "\n", + "# ------ solver -------\n", + "\n", + "t_final = 10*np.pi/Omega # simulation time\n", + "dt = 0.01 # time step for solver\n", + "t = np.arange(0.0,t_final + dt,dt) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29970716", + "metadata": {}, + "outputs": [], + "source": [ + "soln = odeint(equation_of_motion,s_initial,t, args=(delta, alpha, beta, gamma, Omega)) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e727e920", + "metadata": {}, + "outputs": [], + "source": [ + "x_soln = soln[:,0]\n", + "v_soln = soln[:,1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8efe62e0", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t, x_soln, 'b', label='$x$')\n", + "plt.plot(t, v_soln, 'g', label='$v$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Solution',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6e05515c", + "metadata": {}, + "source": [ + "### Training data " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1fbfc12c", + "metadata": {}, + "outputs": [], + "source": [ + "t_tensor = torch.tensor(t,dtype=torch.float32).reshape(-1,1)\n", + "x_tensor = torch.tensor(x_soln,dtype=torch.float32).reshape(-1,1)\n", + "v_tensor = torch.tensor(v_soln,dtype=torch.float32).reshape(-1,1)\n", + "\n", + "data_tensor = torch.cat((t_tensor,x_tensor, v_tensor),axis=1) # Reference values for t , x, v\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e845ad2", + "metadata": {}, + "outputs": [], + "source": [ + "# ------ Training data -----------\n", + "\n", + "train_points = 100 # no of training data points\n", + "coll_points = 1000 # no of collocation points to constrain ODE/PDE residual " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c8b20e4", + "metadata": {}, + "outputs": [], + "source": [ + "idx = np.random.choice(len(t), train_points, replace=False)\n", + "data_train_tensor = data_tensor[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6870301", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t, x_soln, 'b', label='$x$')\n", + "plt.plot(t, v_soln, 'g', label='$v$')\n", + "plt.scatter(data_train_tensor[:,0],data_train_tensor[:,1],c='b',label='$x_{train}$')\n", + "plt.scatter(data_train_tensor[:,0],data_train_tensor[:,2],c='g',label='$v_{train}$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Training data points',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1c63a65e", + "metadata": {}, + "source": [ + "### Defining input-output spaces " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "35701405", + "metadata": {}, + "outputs": [], + "source": [ + "T = tp.spaces.R1('t') # input space (t)\n", + "X = tp.spaces.R1('x') # x space\n", + "V = tp.spaces.R1('v') # v space\n", + "S = tp.spaces.R2('s')# output space (x,v)\n", + "N_phy = tp.spaces.R1('N') # hidden physics output space" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6b49f983", + "metadata": {}, + "outputs": [], + "source": [ + "# --------- neural net solution -----------\n", + "input_space_sol = T\n", + "output_space_sol = S\n", + "# ---------- neural net hidden physics ---------\n", + "input_space_hid_phy = T*X*V # input to hidden network are (t, x, v)\n", + "output_space_hid_phy = N_phy\n" + ] + }, + { + "cell_type": "markdown", + "id": "b7c49026", + "metadata": {}, + "source": [ + "### Sampling collocation points " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "41176a8c", + "metadata": {}, + "outputs": [], + "source": [ + "T_domain = tp.domains.Interval(space = T, lower_bound=t.min(), upper_bound=t.max())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c7d8636", + "metadata": {}, + "outputs": [], + "source": [ + "domain_sampler = tp.samplers.RandomUniformSampler(T_domain, n_points=coll_points)\n", + "#plot = tp.utils.scatter(T, domain_sampler)" + ] + }, + { + "cell_type": "markdown", + "id": "7883da3c", + "metadata": {}, + "source": [ + "### neural net solution " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f8b84f42", + "metadata": {}, + "outputs": [], + "source": [ + "normalization_layer = tp.models.NormalizationLayer(T_domain)\n", + "fcn_layer_sol = tp.models.FCN(input_space=input_space_sol,output_space=output_space_sol, hidden = (64,64,64))\n", + "model_sol = tp.models.Sequential(normalization_layer, fcn_layer_sol)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3716d750", + "metadata": {}, + "outputs": [], + "source": [ + "device = 'cuda' if torch.cuda.is_available() else 'cpu'" + ] + }, + { + "cell_type": "markdown", + "id": "ac90af8a", + "metadata": {}, + "source": [ + "### data condition " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "aafe7747", + "metadata": {}, + "outputs": [], + "source": [ + "input_train = tp.spaces.Points(torch.column_stack([data_train_tensor[:,0:1]]),input_space_sol)\n", + "output_train = tp.spaces.Points(torch.column_stack([data_train_tensor[:,1:3]]),output_space_sol)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d74ffd89", + "metadata": {}, + "outputs": [], + "source": [ + "batch_size_data = len(input_train)\n", + "\n", + "data_loader = tp.utils.PointsDataLoader((input_train, output_train), batch_size = batch_size_data,shuffle = False, pin_memory = True)\n", + "\n", + "data_condition = DataCondition(module=model_sol,\n", + " dataloader=data_loader, \n", + " norm=2,\n", + " use_full_dataset=False, \n", + " name=\"Data_Condition\",\n", + " weight = 1)\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "f9755dde", + "metadata": {}, + "source": [ + "### neural net hidden physics " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "53af4961", + "metadata": {}, + "outputs": [], + "source": [ + "fcn_layer_hid_phy = tp.models.FCN(input_space=input_space_hid_phy,output_space=output_space_hid_phy,hidden = (128,128))\n", + "model_hidden_phy = tp.models.Sequential(fcn_layer_hid_phy)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5c5fd3b0", + "metadata": {}, + "outputs": [], + "source": [ + "def hiddenPhysics(t,s):\n", + " \n", + " x, v = s[:,0:1], s[:,1:2]\n", + " input_model_hid = tp.spaces.Points(torch.column_stack((t,x,v)), input_space_hid_phy) \n", + " output_model_hid = model_hidden_phy(input_model_hid)\n", + " \n", + " return output_model_hid.as_tensor\n", + "\n", + "\n", + "def residual_equation(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " output_hid_phy = hiddenPhysics(t,s)\n", + " x = s[:,0:1]\n", + " v = s[:,1:2]\n", + " grad_x_t = tp.utils.grad(x, t) \n", + " grad_v_t = tp.utils.grad(v, t) \n", + " residual_x = grad_x_t - v\n", + " residual_v = grad_v_t - output_hid_phy - gamma*torch.cos(Omega*t) \n", + "\n", + " return torch.column_stack((residual_x,residual_v))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "641bfe5b", + "metadata": {}, + "source": [ + "### hidden physics condition " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d2dbe9d4", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_condition = HPM_EquationLoss_at_Sampler(module=model_hidden_phy,\n", + " sampler=domain_sampler,\n", + " residual_fn= residual_equation)" + ] + }, + { + "cell_type": "markdown", + "id": "cd4cfc7c", + "metadata": {}, + "source": [ + "### Training model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b1e3e71", + "metadata": {}, + "outputs": [], + "source": [ + "training_conditions = [data_condition,hidden_phy_condition]\n", + "optim = tp.OptimizerSetting(optimizer_class=torch.optim.Adam, lr=0.001)\n", + "solver = tp.solver.Solver(train_conditions=training_conditions, optimizer_setting=optim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f81b5a0c", + "metadata": {}, + "outputs": [], + "source": [ + "epochs = 10000\n", + "trainer = pl.Trainer(gpus=1, max_steps=epochs, logger=True,benchmark=True)\n", + "trainer.fit(solver)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb6bb2c2", + "metadata": {}, + "outputs": [], + "source": [ + "def output_hidden_physics(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " output_hid_phy = hiddenPhysics(t,s)\n", + " \n", + " return output_hid_phy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4bdf138c", + "metadata": {}, + "outputs": [], + "source": [ + "def output_solution(t):\n", + " \n", + " s = model_sol(tp.spaces.Points(t, T))\n", + " s = s.as_tensor \n", + " x = s[:,0:1]\n", + " v = s[:,1:2]\n", + " \n", + " return x, v" + ] + }, + { + "cell_type": "markdown", + "id": "dd65cb7a", + "metadata": {}, + "source": [ + "### Predictions " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e196e53b", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_pred = output_hidden_physics(t_tensor)\n", + "x_pred, v_pred = output_solution(t_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7032315d", + "metadata": {}, + "outputs": [], + "source": [ + "hidden_phy_pred = hidden_phy_pred.detach().numpy()\n", + "x_pred = x_pred.detach().numpy()\n", + "v_pred = v_pred.detach().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2c83fece", + "metadata": {}, + "outputs": [], + "source": [ + "def L2_ERROR(true_val,pred_val):\n", + " \n", + " return np.linalg.norm(true_val-pred_val,2)/np.linalg.norm(true_val,2)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4ea0601", + "metadata": {}, + "outputs": [], + "source": [ + "l2_error_x = L2_ERROR(x_soln.flatten(),x_pred.flatten())\n", + "l2_error_v = L2_ERROR(v_soln.flatten(),v_pred.flatten())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "00c18379", + "metadata": {}, + "outputs": [], + "source": [ + "print('L2 error x : ',l2_error_x)\n", + "print('L2 error v : ',l2_error_v)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b73267ee", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,x_soln.flatten(),label='$x: True$')\n", + "plt.plot(t,x_pred.flatten(),label='$x: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Position Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "252f8cab", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,v_soln.flatten(),label='$v: True$')\n", + "plt.plot(t,v_pred.flatten(),label='$v: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Velocity Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cae4e743", + "metadata": {}, + "outputs": [], + "source": [ + "actual_phy = -delta*v_soln - alpha*x_soln - beta*x_soln**3" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b12e411e", + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(15,4))\n", + "plt.plot(t,actual_phy.flatten(),label='$\\mathcal{N}: True$')\n", + "plt.plot(t,hidden_phy_pred.flatten(),label='$\\mathcal{N}: Pred$')\n", + "plt.xlim(t.min(),t.max())\n", + "plt.legend(fontsize=14)\n", + "plt.xlabel('$t$',fontsize=14)\n", + "plt.xticks(fontsize=14)\n", + "plt.yticks(fontsize=14)\n", + "plt.title('Hidden Physics Prediction',fontsize=14)\n", + "plt.grid('True')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d720ece7", + "metadata": {}, + "source": [ + "$\\large{ \\mathcal{N}(t,x,v) \\approx \\ - \\delta v - \\alpha x - \\beta x^3 }$" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:.conda-torchphysics]", + "language": "python", + "name": "conda-env-.conda-torchphysics-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/setup.cfg b/setup.cfg index b99499a..22b43d4 100644 --- a/setup.cfg +++ b/setup.cfg @@ -49,7 +49,7 @@ install_requires = torch>=2.0.0 pytorch-lightning>=2.0.0 numpy>=1.20.2, <2.0 - matplotlib>=3.0.0 + matplotlib>=3.0.0, <3.10 scipy>=1.6.3 importlib-metadata jupyter @@ -95,8 +95,8 @@ testing = # CAUTION: --cov flags may prohibit setting breakpoints while debugging. # Comment those flags to avoid this py.test issue. addopts = - --cov torchphysics --cov-report term-missing - --verbose +# --cov torchphysics --cov-report term-missing +# --verbose norecursedirs = dist build diff --git a/src/torchphysics/problem/conditions/__init__.py b/src/torchphysics/problem/conditions/__init__.py index c815db4..9347321 100644 --- a/src/torchphysics/problem/conditions/__init__.py +++ b/src/torchphysics/problem/conditions/__init__.py @@ -7,27 +7,19 @@ .. _here: https://boschresearch.github.io/torchphysics/tutorial/tutorial_start.html """ -from .condition import ( - Condition, - PINNCondition, - DataCondition, - DeepRitzCondition, - ParameterCondition, - MeanCondition, - AdaptiveWeightsCondition, - SingleModuleCondition, - PeriodicCondition, - IntegroPINNCondition, - HPM_EquationLoss_at_DataPoints, - HPM_EquationLoss_at_Sampler, - HPCMCondition, -) +from .condition import (Condition, + PINNCondition, + DataCondition, + DeepRitzCondition, + ParameterCondition, + MeanCondition, + AdaptiveWeightsCondition, + SingleModuleCondition, + PeriodicCondition, + IntegroPINNCondition, + HPM_EquationLoss_at_DataPoints, + HPM_EquationLoss_at_Sampler) -from .deeponet_condition import ( - DeepONetSingleModuleCondition, - PIDeepONetCondition, - DeepONetDataCondition, -) - - -from .variational_condition import VariationalPINNCondition \ No newline at end of file +from .deeponet_condition import (DeepONetSingleModuleCondition, + PIDeepONetCondition, + DeepONetDataCondition) \ No newline at end of file diff --git a/src/torchphysics/problem/conditions/condition.py b/src/torchphysics/problem/conditions/condition.py index 9e98a47..08c159e 100644 --- a/src/torchphysics/problem/conditions/condition.py +++ b/src/torchphysics/problem/conditions/condition.py @@ -51,7 +51,7 @@ def __init__(self, name=None, weight=1.0, track_gradients=True): self.track_gradients = track_gradients @abc.abstractmethod - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): """ The forward run performed by this condition. @@ -69,14 +69,13 @@ def _setup_data_functions(self, data_functions, sampler): for fun in data_functions: points = sampler.sample_points() data_fun_points = data_functions[fun](points) - # self.register_buffer(fun, data_fun_points) + #self.register_buffer(fun, data_fun_points) data_functions[fun] = UserFunction(data_fun_points) return data_functions def _move_static_data(self, device): pass - class DataCondition(Condition): """ A condition that fits a single given module to data (handed through a PyTorch @@ -112,17 +111,9 @@ class DataCondition(Condition): training. """ - def __init__( - self, - module, - dataloader, - norm, - root=1.0, - use_full_dataset=False, - name="datacondition", - constrain_fn=None, - weight=1.0, - ): + def __init__(self, module, dataloader, norm, root=1., use_full_dataset=False, + name='datacondition', constrain_fn = None, + weight=1.0): super().__init__(name=name, weight=weight, track_gradients=False) self.module = module self.dataloader = dataloader @@ -143,15 +134,15 @@ def _compute_dist(self, batch, device): model_out = model_out.as_tensor return torch.abs(model_out - y.as_tensor) - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): if self.use_full_dataset: loss = torch.zeros(1, requires_grad=True, device=device) for batch in iter(self.dataloader): a = self._compute_dist(batch, device) - if self.norm == "inf": + if self.norm == 'inf': loss = torch.maximum(loss, torch.max(a)) else: - loss = loss + torch.mean(a**self.norm) / len(self.dataloader) + loss = loss + torch.mean(a**self.norm)/len(self.dataloader) else: try: batch = next(self.iterator) @@ -159,12 +150,12 @@ def forward(self, device="cpu", iteration=None): self.iterator = iter(self.dataloader) batch = next(self.iterator) a = self._compute_dist(batch, device) - if self.norm == "inf": + if self.norm == 'inf': loss = torch.max(a) else: loss = torch.mean(a**self.norm) if self.root != 1.0: - loss = loss ** (1 / self.root) + loss = loss**(1/self.root) return loss @@ -185,13 +176,13 @@ class ParameterCondition(Condition): The name of this condition which will be monitored in logging. """ - def __init__(self, parameter, penalty, weight, name="parametercondition"): + def __init__(self, parameter, penalty, weight, name='parametercondition'): super().__init__(name=name, weight=weight, track_gradients=False) self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.penalty = UserFunction(penalty) - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): return self.penalty(self.parameter.coordinates) @@ -232,23 +223,13 @@ class SingleModuleCondition(Condition): training. """ - def __init__( - self, - module, - sampler, - residual_fn, - error_fn, - reduce_fn=torch.mean, - name="singlemodulecondition", - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - weight=1.0, - ): + def __init__(self, module, sampler, residual_fn, error_fn, reduce_fn=torch.mean, + name='singlemodulecondition', track_gradients=True, data_functions={}, + parameter=Parameter.empty(), weight=1.0): super().__init__(name=name, weight=weight, track_gradients=track_gradients) self.module = module self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.sampler = sampler self.residual_fn = UserFunction(residual_fn) self.error_fn = error_fn @@ -258,11 +239,10 @@ def __init__( if self.sampler.is_adaptive: self.last_unreduced_loss = None - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): if self.sampler.is_adaptive: - x = self.sampler.sample_points( - unreduced_loss=self.last_unreduced_loss, device=device - ) + x = self.sampler.sample_points(unreduced_loss=self.last_unreduced_loss, + device=device) self.last_unreduced_loss = None else: x = self.sampler.sample_points(device=device) @@ -275,11 +255,10 @@ def forward(self, device="cpu", iteration=None): y = self.module(x) - unreduced_loss = self.error_fn( - self.residual_fn( - {**y.coordinates, **x_coordinates, **self.parameter.coordinates, **data} - ) - ) + unreduced_loss = self.error_fn(self.residual_fn({**y.coordinates, + **x_coordinates, + **self.parameter.coordinates, + **data})) if self.sampler.is_adaptive: self.last_unreduced_loss = unreduced_loss @@ -331,29 +310,12 @@ class MeanCondition(SingleModuleCondition): algorithm for solving variational problems", 2017 """ - def __init__( - self, - module, - sampler, - residual_fn, - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - name="meancondition", - weight=1.0, - ): - super().__init__( - module, - sampler, - residual_fn, - error_fn=torch.nn.Identity(), - reduce_fn=torch.mean, - name=name, - track_gradients=track_gradients, - data_functions=data_functions, - parameter=parameter, - weight=weight, - ) + def __init__(self, module, sampler, residual_fn, track_gradients=True, + data_functions={}, parameter=Parameter.empty(), name='meancondition', + weight=1.0): + super().__init__(module, sampler, residual_fn, error_fn=torch.nn.Identity(), + reduce_fn=torch.mean, name=name, track_gradients=track_gradients, + data_functions=data_functions, parameter=parameter, weight=weight) class DeepRitzCondition(MeanCondition): @@ -390,28 +352,11 @@ class DeepRitzCondition(MeanCondition): .. [#] Weinan E and Bing Yu, "The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems", 2017 """ - - def __init__( - self, - module, - sampler, - integrand_fn, - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - name="deepritzcondition", - weight=1.0, - ): - super().__init__( - module, - sampler, - integrand_fn, - track_gradients=track_gradients, - data_functions=data_functions, - parameter=parameter, - name=name, - weight=weight, - ) + def __init__(self, module, sampler, integrand_fn, track_gradients=True, data_functions={}, + parameter=Parameter.empty(), name='deepritzcondition', weight=1.0): + super().__init__(module, sampler, integrand_fn, track_gradients=track_gradients, + data_functions=data_functions, parameter=parameter, name=name, + weight=weight) class PINNCondition(SingleModuleCondition): @@ -453,29 +398,12 @@ class PINNCondition(SingleModuleCondition): equations", Journal of Computational Physics, vol. 378, pp. 686-707, 2019. """ - def __init__( - self, - module, - sampler, - residual_fn, - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - name="pinncondition", - weight=1.0, - ): - super().__init__( - module, - sampler, - residual_fn, - error_fn=SquaredError(), - reduce_fn=torch.mean, - name=name, - track_gradients=track_gradients, - data_functions=data_functions, - parameter=parameter, - weight=weight, - ) + def __init__(self, module, sampler, residual_fn, track_gradients=True, + data_functions={}, parameter=Parameter.empty(), name='pinncondition', + weight=1.0): + super().__init__(module, sampler, residual_fn, error_fn=SquaredError(), + reduce_fn=torch.mean, name=name, track_gradients=track_gradients, + data_functions=data_functions, parameter=parameter, weight=weight) class PeriodicCondition(Condition): @@ -521,24 +449,14 @@ class PeriodicCondition(Condition): training. """ - def __init__( - self, - module, - periodic_interval, - residual_fn, - non_periodic_sampler=EmptySampler(), - error_fn=SquaredError(), - reduce_fn=torch.mean, - name="periodiccondition", - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - weight=1.0, - ): + def __init__(self, module, periodic_interval, residual_fn, + non_periodic_sampler=EmptySampler(), error_fn=SquaredError(), + reduce_fn=torch.mean, name='periodiccondition', track_gradients=True, + data_functions={}, parameter=Parameter.empty(), weight=1.0): super().__init__(name=name, weight=weight, track_gradients=track_gradients) self.module = module self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.periodic_interval = periodic_interval self.non_periodic_sampler = non_periodic_sampler self.residual_fn = UserFunction(residual_fn) @@ -546,33 +464,29 @@ def __init__( self.reduce_fn = reduce_fn n_points = max(len(self.non_periodic_sampler), 1) - self.left_sampler = GridSampler( - self.periodic_interval.boundary_left, n_points=n_points - ).make_static() - self.right_sampler = GridSampler( - self.periodic_interval.boundary_right, n_points=n_points - ).make_static() - - tmp_left_sampler = self.left_sampler * self.non_periodic_sampler - tmp_right_sampler = self.right_sampler * self.non_periodic_sampler + self.left_sampler = GridSampler(self.periodic_interval.boundary_left, + n_points=n_points).make_static() + self.right_sampler = GridSampler(self.periodic_interval.boundary_right, + n_points=n_points).make_static() + + tmp_left_sampler = self.left_sampler*self.non_periodic_sampler + tmp_right_sampler = self.right_sampler*self.non_periodic_sampler if self.non_periodic_sampler.is_static: tmp_left_sampler = tmp_left_sampler.make_static() tmp_right_sampler = tmp_right_sampler.make_static() - self.left_data_functions = self._setup_data_functions( - data_functions, tmp_left_sampler - ) - self.right_data_functions = self._setup_data_functions( - data_functions, tmp_right_sampler - ) + self.left_data_functions = self._setup_data_functions(data_functions, + tmp_left_sampler) + self.right_data_functions = self._setup_data_functions(data_functions, + tmp_right_sampler) if self.non_periodic_sampler.is_adaptive: self.last_unreduced_loss = None - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): if self.non_periodic_sampler.is_adaptive: x_b = self.non_periodic_sampler.sample_points( - unreduced_loss=self.last_unreduced_loss, device=device - ) + unreduced_loss=self.last_unreduced_loss, + device=device) self.last_unreduced_loss = None else: x_b = self.non_periodic_sampler.sample_points(device=device) @@ -584,52 +498,39 @@ def forward(self, device="cpu", iteration=None): x_right_coordinates, x_right = x_right.track_coord_gradients() x_b_coordinates, x_b = x_b.track_coord_gradients() + data_left = {} data_right = {} for fun in self.left_data_functions: - data_left[fun] = self.left_data_functions[fun]( - {**x_left_coordinates, **x_b_coordinates} - ) - data_left = {f"{k}_left": data_left[k] for k in data_left} + data_left[fun] = self.left_data_functions[fun]({**x_left_coordinates, + **x_b_coordinates}) + data_left = {f'{k}_left': data_left[k] for k in data_left} for fun in self.right_data_functions: - data_right[fun] = self.right_data_functions[fun]( - {**x_right_coordinates, **x_b_coordinates} - ) - data_right = {f"{k}_right": data_right[k] for k in data_right} + data_right[fun] = self.right_data_functions[fun]({**x_right_coordinates, + **x_b_coordinates}) + data_right = {f'{k}_right': data_right[k] for k in data_right} y_left = self.module(x_left.join(x_b)) y_right = self.module(x_right.join(x_b)) y_left_coordinates = y_left.coordinates - y_left_coordinates = { - f"{k}_left": y_left_coordinates[k] for k in y_left_coordinates - } + y_left_coordinates = {f'{k}_left': y_left_coordinates[k] for k in y_left_coordinates} y_right_coordinates = y_right.coordinates - y_right_coordinates = { - f"{k}_right": y_right_coordinates[k] for k in y_right_coordinates - } - - x_left_coordinates = { - f"{k}_left": x_left_coordinates[k] for k in x_left_coordinates - } - x_right_coordinates = { - f"{k}_right": x_right_coordinates[k] for k in x_right_coordinates - } - - unreduced_loss = self.error_fn( - self.residual_fn( - { - **y_left_coordinates, - **y_right_coordinates, - **x_left_coordinates, - **x_right_coordinates, - **x_b_coordinates, - **self.parameter.coordinates, - **data_right, - **data_left, - } - ) - ) + y_right_coordinates = {f'{k}_right': y_right_coordinates[k] for k in y_right_coordinates} + + + x_left_coordinates = {f'{k}_left': x_left_coordinates[k] for k in x_left_coordinates} + x_right_coordinates = {f'{k}_right': x_right_coordinates[k] for k in x_right_coordinates} + + + unreduced_loss = self.error_fn(self.residual_fn({**y_left_coordinates, + **y_right_coordinates, + **x_left_coordinates, + **x_right_coordinates, + **x_b_coordinates, + **self.parameter.coordinates, + **data_right, + **data_left})) if self.non_periodic_sampler.is_adaptive: self.last_unreduced_loss = unreduced_loss @@ -639,13 +540,11 @@ def forward(self, device="cpu", iteration=None): def _move_static_data(self, device): if self.non_periodic_sampler.is_static: for fn in self.left_data_functions: - self.left_data_functions[fn].fun = self.left_data_functions[fn].fun.to( - device - ) + self.left_data_functions[fn].fun = \ + self.left_data_functions[fn].fun.to(device) for fn in self.right_data_functions: - self.right_data_functions[fn].fun = self.right_data_functions[ - fn - ].fun.to(device) + self.right_data_functions[fn].fun = \ + self.right_data_functions[fn].fun.to(device) class IntegroPINNCondition(Condition): @@ -689,24 +588,14 @@ class IntegroPINNCondition(Condition): training. """ - def __init__( - self, - module, - sampler, - residual_fn, - integral_sampler, - error_fn=SquaredError(), - reduce_fn=torch.mean, - name="periodiccondition", - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - weight=1.0, - ): + def __init__(self, module, sampler, residual_fn, + integral_sampler, error_fn=SquaredError(), + reduce_fn=torch.mean, name='periodiccondition', track_gradients=True, + data_functions={}, parameter=Parameter.empty(), weight=1.0): super().__init__(name=name, weight=weight, track_gradients=track_gradients) self.module = module self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.residual_fn = UserFunction(residual_fn) self.error_fn = error_fn self.reduce_fn = reduce_fn @@ -714,16 +603,17 @@ def __init__( self.sampler = sampler self.integral_sampler = integral_sampler - self.data_functions = self._setup_data_functions(data_functions, self.sampler) + self.data_functions = self._setup_data_functions(data_functions, + self.sampler) if self.sampler.is_adaptive: self.last_unreduced_loss = None - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): if self.sampler.is_adaptive: x = self.sampler.sample_points( - unreduced_loss=self.last_unreduced_loss, device=device - ) + unreduced_loss=self.last_unreduced_loss, + device=device) self.last_unreduced_loss = None else: x = self.sampler.sample_points(device=device) @@ -750,26 +640,16 @@ def forward(self, device="cpu", iteration=None): y_int = self.module(x_combined) y_int_coordinates = y_int.coordinates - y_int_coordinates = { - f"{k}_integral": y_int_coordinates[k] for k in y_int_coordinates - } - - x_int_coordinates = { - f"{k}_integral": x_int_coordinates[k] for k in x_int_coordinates - } - - unreduced_loss = self.error_fn( - self.residual_fn( - { - **y.coordinates, - **y_int_coordinates, - **x_coordinates, - **x_int_coordinates, - **self.parameter.coordinates, - **data, - } - ) - ) + y_int_coordinates = {f'{k}_integral': y_int_coordinates[k] for k in y_int_coordinates} + + x_int_coordinates = {f'{k}_integral': x_int_coordinates[k] for k in x_int_coordinates} + + unreduced_loss = self.error_fn(self.residual_fn({**y.coordinates, + **y_int_coordinates, + **x_coordinates, + **x_int_coordinates, + **self.parameter.coordinates, + **data})) if self.sampler.is_adaptive: self.last_unreduced_loss = unreduced_loss @@ -824,47 +704,28 @@ class AdaptiveWeightsCondition(SingleModuleCondition): Soft Attention Mechanism", CoRR, 2020 """ - def __init__( - self, - module, - sampler, - residual_fn, - error_fn=SquaredError(), - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - name="adaptive_w_condition", - weight=1.0, - ): + def __init__(self, module, sampler, residual_fn, error_fn=SquaredError(), + track_gradients=True, data_functions={}, parameter=Parameter.empty(), + name='adaptive_w_condition', weight=1.0): if not sampler.is_static: - raise ValueError( - "Adaptive point weights should only be used with static", "samplers." - ) + raise ValueError("Adaptive point weights should only be used with static", + "samplers.") adaptive_layer = AdaptiveWeightLayer(len(sampler)) def adaptive_reduce_fun(x): return torch.mean(adaptive_layer(x)) - super().__init__( - module, - sampler, - residual_fn, - error_fn=error_fn, - reduce_fn=adaptive_reduce_fun, - name=name, - track_gradients=track_gradients, - data_functions=data_functions, - parameter=parameter, - weight=weight, - ) + super().__init__(module, sampler, residual_fn, error_fn=error_fn, + reduce_fn=adaptive_reduce_fun, name=name, track_gradients=track_gradients, + data_functions=data_functions, parameter=parameter, weight=weight) self.adaptive_layer = adaptive_layer class HPM_EquationLoss_at_DataPoints(Condition): - """ + """ A condition that minimizes the mean squared error of the given residual with the help of data (handed through a PyTorch dataloader), as required in the framework of HPM [1]. @@ -902,24 +763,14 @@ class HPM_EquationLoss_at_DataPoints(Condition): Notes ----- - . . [1] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. + . . [1] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1), 932-955. """ - def __init__( - self, - module, - dataloader, - norm, - residual_fn, - error_fn=SquaredError(), - root=1.0, - use_full_dataset=False, - name="HPMcondition", - reduce_fn=torch.mean, - parameter=Parameter.empty(), - weight=1.0, - ): + + def __init__(self, module, dataloader, norm, residual_fn , error_fn=SquaredError(), root=1., use_full_dataset=False, + name='HPMcondition' ,reduce_fn=torch.mean, parameter=Parameter.empty(), + weight=1.0): super().__init__(name=name, weight=weight, track_gradients=True) self.module = module self.dataloader = dataloader @@ -927,31 +778,33 @@ def __init__( self.root = root self.use_full_dataset = use_full_dataset self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.residual_fn = UserFunction(residual_fn) self.error_fn = error_fn self.reduce_fn = reduce_fn + def _compute_dist(self, batch, device): x, y_reference = batch x, y_reference = x.to(device), y_reference.to(device) x_coordinates, x = x.track_coord_gradients() - unreduced_loss = self.error_fn( - self.residual_fn({**x_coordinates, **self.parameter.coordinates}) - ) + unreduced_loss = self.error_fn(self.residual_fn({ + **x_coordinates, + **self.parameter.coordinates})) return self.reduce_fn(unreduced_loss) - def forward(self, device="cpu", iteration=None): + + def forward(self, device='cpu', iteration=None): if self.use_full_dataset: loss = torch.zeros(1, requires_grad=True, device=device) for batch in iter(self.dataloader): a = self._compute_dist(batch, device) - if self.norm == "inf": + if self.norm == 'inf': loss = torch.maximum(loss, torch.max(a)) else: - loss = loss + torch.mean(a**self.norm) / len(self.dataloader) + loss = loss + torch.mean(a**self.norm)/len(self.dataloader) else: try: batch = next(self.iterator) @@ -959,22 +812,22 @@ def forward(self, device="cpu", iteration=None): self.iterator = iter(self.dataloader) batch = next(self.iterator) a = self._compute_dist(batch, device) - if self.norm == "inf": + if self.norm == 'inf': loss = torch.max(a) else: loss = torch.mean(a**self.norm) if self.root != 1.0: - loss = loss ** (1 / self.root) + loss = loss**(1/self.root) return loss - + + def _move_static_data(self, device): pass - class HPM_EquationLoss_at_Sampler(Condition): """ - - A condition that minimizes the mean squared error of the given residual on sampled collocation points, instead of using the collocation points of the data set + + A condition that minimizes the mean squared error of the given residual on sampled collocation points, instead of using the collocation points of the data set as the original proposal HPM [1]. Parameters @@ -1006,28 +859,22 @@ class HPM_EquationLoss_at_Sampler(Condition): Notes ----- - . . [1] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. + . . [1] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1), 932-955. """ - def __init__( - self, - module, - sampler, - residual_fn, - error_fn=SquaredError(), - reduce_fn=torch.mean, - name="SampleHPMCondition", - track_gradients=True, - data_functions={}, - parameter=Parameter.empty(), - weight=1.0, - ): + + def __init__(self, module, sampler, residual_fn, error_fn=SquaredError(), reduce_fn=torch.mean, + name='SampleHPMCondition', track_gradients=True, data_functions={}, + parameter=Parameter.empty(), weight=1.0): super().__init__(name=name, weight=weight, track_gradients=track_gradients) - + + + + self.module = module self.parameter = parameter - self.register_parameter(name + "_params", self.parameter.as_tensor) + self.register_parameter(name + '_params', self.parameter.as_tensor) self.sampler = sampler self.residual_fn = UserFunction(residual_fn) self.error_fn = error_fn @@ -1037,24 +884,23 @@ def __init__( if self.sampler.is_adaptive: self.last_unreduced_loss = None - def forward(self, device="cpu", iteration=None): + def forward(self, device='cpu', iteration=None): if self.sampler.is_adaptive: - x = self.sampler.sample_points( - unreduced_loss=self.last_unreduced_loss, device=device - ) + x = self.sampler.sample_points(unreduced_loss=self.last_unreduced_loss, + device=device) self.last_unreduced_loss = None else: x = self.sampler.sample_points(device=device) x_coordinates, x = x.track_coord_gradients() - + data = {} for fun in self.data_functions: data[fun] = self.data_functions[fun](x_coordinates) - unreduced_loss = self.error_fn( - self.residual_fn({**x_coordinates, **self.parameter.coordinates, **data}) - ) + unreduced_loss = self.error_fn(self.residual_fn({**x_coordinates, + **self.parameter.coordinates, + **data})) if self.sampler.is_adaptive: self.last_unreduced_loss = unreduced_loss @@ -1066,64 +912,3 @@ def _move_static_data(self, device): for fn in self.data_functions: self.data_functions[fn].fun = self.data_functions[fn].fun.to(device) - -class HPCMCondition(Condition): - def __init__( - self, - module_state, - module_corr, - dataloader_corr, - correction_fn, - norm=2, - root=1.0, - use_full_dataset=True, - name="hpcmcondition", - weight=1.0, - ): - super().__init__(name=name, weight=weight, track_gradients=False) - self.module_state = module_state - self.module_corr = module_corr - self.dataloader = dataloader_corr - self.norm = norm - self.root = root - self.use_full_dataset = use_full_dataset - self.correction_fn = UserFunction(correction_fn) - - def _compute_dist(self, batch, device="cuda"): - x, y = batch - - x, y = x.to(device), y.to(device) - - model_state_out = self.module_state(x) - - model_corr_out = self.correction_fn( - {**model_state_out.coordinates, **x.coordinates} - ) - - return torch.abs( - model_state_out.as_tensor - y.as_tensor - model_corr_out.as_tensor - ) - - def forward(self, device="cpu", iteration=None): - if self.use_full_dataset: - loss = torch.zeros(1, requires_grad=True, device=device) - for batch in iter(self.dataloader): - a = self._compute_dist(batch, device) - if self.norm == "inf": - loss = torch.maximum(loss, torch.max(a)) - else: - loss = loss + torch.mean(a**self.norm) / len(self.dataloader) - else: - try: - batch = next(self.iterator) - except (StopIteration, AttributeError): - self.iterator = iter(self.dataloader) - batch = next(self.iterator) - a = self._compute_dist(batch, device) - if self.norm == "inf": - loss = torch.max(a) - else: - loss = torch.mean(a**self.norm) - if self.root != 1.0: - loss = loss ** (1 / self.root) - return loss diff --git a/tests/test_conditions.py b/tests/test_conditions.py index 70526be..cbe3527 100644 --- a/tests/test_conditions.py +++ b/tests/test_conditions.py @@ -1,13 +1,15 @@ -#%% import torch import pytest + + from torchphysics.problem.conditions import * from torchphysics.problem.spaces import Points, R1, R2 from torchphysics.problem.domains import Interval from torchphysics.problem.samplers import GridSampler, DataSampler from torchphysics.utils import UserFunction, laplacian, PointsDataLoader from torchphysics.models import Parameter -#%% + + def helper_fn(x, D=0.0): return Points(x**2 + D, R1('u')) @@ -240,7 +242,7 @@ def penalty(D): return D-3 assert isinstance(out, torch.Tensor) assert out.requires_grad assert out == -1.0 - + def test_HPM_EquationLoss_at_DataPoints(): module = UserFunction(helper_fn) @@ -255,6 +257,8 @@ def test_HPM_EquationLoss_at_DataPoints(): assert cond.dataloader == loader assert isinstance(cond.residual_fn, UserFunction) + + def test_HPM_EquationLoss_at_Sampler(): module = UserFunction(helper_fn) ps = GridSampler(Interval(R1('x'), 0, 1), n_points=25)